1974_Motorola_Discrete_Semiconductor_Series_A_Vol3_Non Registered_Type_Numbers 1974 Motorola Discrete Semiconductor Series A Vol3 Non Registered Type Numbers
User Manual: 1974_Motorola_Discrete_Semiconductor_Series_A_Vol3_Non-Registered_Type_Numbers
Open the PDF directly: View PDF
.
Page Count: 1483
| Download | |
| Open PDF In Browser | View PDF |
Volume 3
DISCRETE PRODUCTS
Series A
Data Sheets For:
• Motorola Non-Registered
Type Numbers
THE
SEMICONDUCTOR
DATA LIBRARY
SERIES A
VOLUMEm
prepared by
Technical I nformation Center
The information in this book has been carefully checked and is believed to be reliable; however, no responsibility
is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of semiconductor
devices any license under the patent rights of any manufacturer identified in this library.
Nous n'acceptons aucune responsabilite'en ce qui concerne les erreurs qui auraient pu s'introduire dans cette
edition, en depit des soins minutieux apportes sa preparation et sa revision; nous esperons toutefois que les
renseignements fournis sont fiables. De plus, il est bien entendu que ces renseignements ne permettent pas a'
I'acheteur de dispositifs semiconducteurs d'utiliser les brevets des fabricants mentionnes dans ce catalogue.
a
a
Die in diesem Buch enthaltenen Angaben wurden sorgfiiltig UberprUft und sind nach unserer Meinung voll ig
zuverliissig. Wir konnen jedoch fUr die Genauigkeit dieser Angaben keine Verantwortung ubernehmen. Daruber
hinaus wird dam Kaufer von Halbleiterelementen mit Angaben, die in dieser Bibliothek genannt werden, keine
unter die Patentrechte eines Herstellers fallende Lizenz erteilt.
i1. t:tti.j'tJi~l;tt~~ l:t~HH i1. t: to) -C dO ~, jgtA L i{f'-' to) -C T 1;', JJ-~~ ~ 0) dO -:> t:~-g-li. ~ O)'HH' A
l'l -tt /c, ;J: t:*.O)tti;t,j'tJi~I:}; L' -c ~~i1.-Cl' '-' ""Ut; J: Uit1.lo) ;l-1J -O)H~Hil:? L' -c ~O)jf!llI:jf£ItlT '-' lifIJj1!~~
I:IIIIL-Ct, ""U1;t~O).jx~AL'';-tt/c,
*.I:~cit;e.
Series A
INC., 1974
"All Rights Reserved"
© MOTOROLA
Printed in U.S.A.
VOLUMEm
This volume contains complete data sheets for
Motorola non-registered devices. Data sheets are in
alphanumeric sequence according to device type number
except for those data sheets that cover several devices
with different type numbers. The alphanumerical index
in front of the book permits the user to quickly locate
the page number of the data sheet for any device
characterized in the book.
Econocap, Epibase, Epicap, Glassivated, Isothermal, *k-Pak, MeMOS, Meg-A-Life II, MDTL,
MECL, MECL 10,000, MHTL, Micro-T, MIDA, MRTL, mW MRTL, MTTL, Multi-Cell II,
RamRod, Surmetic, Surmetic 20, Surmetic 30, Surmetic 40, Thermopad, Thermowatt, Unibase,
Unibloc and Uniwatt are trademarks of Motorola Inc.
Annular Semiconductors and Field-Relief Electrode are patented by Motorola Inc.
ii
ALPHA-NUMERIC INDEX
Devices characterized in Volume III show the page reference
only. Devices characterized in Volume I and Volume II are
referenced by volume and page number.
DEVICE
VOL
UoM2.4A2
UoM2.7A2
UoM3.0A2
UoM3.3A2
UoM3.6A2
UoM3.9A2
UoM4.3A2
UoM4.7A2
UoM5.1A2
UoM5.6AZ
PAGE
2
DEVICE
.5M2.52S
.5M2.72S
.5M3.02S
.5M3.32S
.5M3.62S
.5M3.92S
.5M4.32S
.5M4.72S
.5M5.12S
.5M5.6ZS
VOL
PAGE
II
1-20
DEVICE
1M3.6A210
1M3.9A210
1M4.3A210
1M4.7A210
1M5.1A210
1M5.6A210
1M6.2A210
1M6.SA210
1M7.5A210
1M6.SZ
UoM6.2A2
UoM6.SZ
UoM7.5Z
UoMS.2Z
UoM9.12
UoM102
UoM11Z
UoM12Z
UoM13Z
UoM14Z
.5M6.0ZS
.5M6.22S
.5M6.S2S
.5M7.5ZS
.5MS.22S
.5MS.72S
.5M9.12S
.5M10ZS
.5M11ZS
.5M12ZS
1M7.5Z
1MS.22
1M9.12
1M10Z
1M112
1M12Z
1M132
1M152
1M162
1M1S2
UoM152
UoM162
UoM17Z
UoM1SZ
UoM19Z
UoM20Z
UoM22Z
UoM24Z
UoM25Z
UoM27Z
.5M132S
.5M142S
.5M152S
.5M16ZS
.5M17ZS
.5M1SZS
.5M192S
.5M20ZS
.5M222S
.5M24ZS
1M202
1M222
1M24Z
1M272
1M30Z
1M332
1M36Z
1M392
1M432
1M472
UoM302
UoM33Z
UoM36Z
UoM39Z
UoM43Z
UoM45Z
UoM472
UoM50Z
UoM52Z
UoM56Z
.5M252S
.5M27ZS
.5M2SZS
.5M30ZS
.5M33ZS
.5M362S
.5M39ZS
.5M43ZS
.5M47ZS
.5M51ZS
1M51Z
1M562
1M62Z
1M6S2
1M752
1MS22
1M91Z
1M1002
1 M1102
1M1202
UoM62Z
UoM6SZ
UoM75Z
UoMS2Z
UoM91 Z
UoM100Z
UoM1052
UoM1102
UoM120Z
UoM1302
.5M56ZS
.5M60ZS
.5M62ZS
.5M6SZS
.5M75ZS
.5MS2ZS
.5MS7ZS
.5M91ZS
.5M100ZS
.5M1102S
11111130Z
1M150Z
1M1602
1M1S0Z
1M200Z
1M3.32S10
1M3.6ZS10
1M3.9ZS10
1M4.3ZS10
1M4.7ZS10
UoM140Z
UoM150Z
UoM175Z
UoM200Z
.4M.64FR10
.4M1.36FR5
.4M1.36FR2
.4M2.04FR5
.4M2.04FR2
.5M2.4ZS
.5M120ZS
.5M130ZS
.5M140ZS
.5M150ZS
.5M160ZS
.5M170ZS
.5M1S0ZS
.5M190ZS
.5M200ZS
1M3.3AZ10
1 M5.1ZS10
1M5.6ZS10
1M6.22S10
1M6.SZS10
1M7.52S10
1MS.2ZS10
1M9.12S10
1M10ZS10
1M112S10
1M122S10
I
2
1-10
! !
I
II
1-10
1-20
II
I
iii
1-20
1-59
VOL
PAGE
I
1-59
1-59
1-100
I
1-100
DEVICE
lM13ZS10
lM15ZS10
1M16ZS10
lM18ZS10
1 M20ZS1 0
1 M22ZS10
lM24ZS10
lM27ZS10
1 M30ZS1 0
1M33ZS10
VOL
PAGE
I
1-100
DEVICE
5M75ZS
5M82ZS
5M87ZS
5M91ZS
5Ml00ZS
5Mll0ZS
5M120ZS
5M130ZS
5M140ZS
5M150ZS
VOL
PAGE
II
1-30
DEVICE
50M13Z
50M14Z
50M15Z
50M16Z
50M 17Z
50M18Z
50M19Z
50M20Z
50M22Z
50M24Z
lM36ZS10
1M39ZS10
1 M43ZS10
1M47ZS10
lM51ZS10
1 M56ZS1 0
1 M62ZS10
1 M68ZS1 0
lM75ZS10
lM82ZS10
5M160ZS
5M170ZS
5M180ZS
5M190ZS
5M200ZS
10M6.8Z
10M7.5Z
10M8.2Z
10M9.1Z
10Ml0Z
1 M91 ZSl 0
lM100ZS10
1M110ZS10
lM120ZS10
lM130ZS10
1M150ZS10
1 M160ZS1 0
lM180ZS10
1 M200ZS1 0
5M3.3ZS
10Ml1 Z
10M12Z
10M13Z
10M14Z
10M15Z
10M16Z
10M18Z
10M19Z
10M20Z
10M22Z
50M51Z
50M52Z
50M56Z
50M62Z
50M68Z
50M75Z
50M82Z
50M91Z
50Ml00Z
50Ml05Z
5M3.6ZS
5M3.9ZS
5M4.3ZS
5M4.7ZS
5M5.1ZS
5M5.6ZS
5M6.0ZS
5M6.2ZS
5M6.8ZS
5M7.5ZS
10M24Z
10M27Z
10M30Z
10M3'3Z
10M36Z
10M39Z
10M43Z
10M47Z
10M50Z
10M51Z
50Mll0Z
50M120Z
50M130Z
50M140Z
50M150Z
50M160Z
50M175Z
50M180Z
50M200Z
BB105A,B,G
5M8.2ZS
5M8.7ZS
5M9.1ZS
5Ml0ZS
5M11ZS
5M12ZS
5M13ZS
5M14ZS
5M15ZS
5M16ZS
10M52Z
10M56Z
10M62Z
10M68Z
10M75Z
10M82Z
10M91Z
1 OMl OOZ
10Ml05Z
10Ml10Z
BU105
BU108
MA202
MA206
MA4404
MA4404A
MAC5-1
MAC5-2
MAC5-3
MAC5-4
5M17ZS
5M18ZS
5M19ZS
5M20ZS
5M22ZS
5M24ZS
5M25ZS
5M27ZS
5M28ZS
5M30ZS
10M120Z
10M130Z
10M140Z
10M150Z
10M160Z
10M180Z
10M200Z
50M3.9Z
50M4.3Z
50M4.7Z
MAC5-5
MAC5-6
MAC5-7
MAC5-S
MAC6-l
MAC6-2
MAC6-3
MAC6-4
MAC6-5
MAC6-6
5M33ZS
5M36ZS
5M39ZS
5M43ZS
5M47ZS
5M51ZS
5M56ZS
5M60ZS
5M62ZS
5M68ZS
50M5.1Z
50M5.6Z
50M6.2Z
50M6.8Z
50M7.5Z
50M8.2Z
50M9.1Z
50Ml0Z
50Ml1Z
50M12Z
I
II
II
1-100
1-30
1-30
II
1-30
1-44
1-44
1-41
I
iv
1-41
VOL
PAGE
I
1-41
I
lAl
4
50M25Z
50M27Z
50M30Z
50M33Z
50M36Z
50M39Z
50M43Z
50M45Z
50M47Z
50M50Z
MAC6-7
MAC6-8
MAC10-1
MAC10-2
MAC10-3
MAC10-4
MAC10-5
MAC10-6
MAC10-7
MAC10-8
364
6
12
12
14
14
16
I
16
20
20
DEVICE
VOL
MAC11-1
MAC11-2
MAC11-3
MAC11-4
MAC11-5
MAC11-6
MAC11-7
MAC11-8
MAC37-1
PAGE
20
j
20
24
MAC37-2
MAC37-3
MAC37-4
MAC37-5
MAC37-6
MAC37-7
MAC38-1
MAC38-2
MAC38-3
MAC38-4
MAC38-5
MAC38-6
MAC38-7
MAC92,A-1
MAC92,A-2
MAC92,A-3
MAC92,A-4
MAC92,A-5
MAC92,A-6
MAC93,A-1
MAC93,A-2
MAC93,A-3
MAC93,A-4
MAC94,A-1
MAC94,A-2
MAC94,A-3
MAC94,A-4
MAC40688
MAC40689
MAC40690
MAC40797
MAC40798
,MAC800-02,A,B
MAC800-05A,B
MAC800-10,A,B
MAC800-20A,B
MAC800-40A, B
MAC800-60A,B
MAC800-80,A,B
MBD101
24
28
!
28
32
l
32
36
~
36
"
2-164
2-164
2-164
II
II
2-186
2-186
40
II
II
1
40
44
MBD102
MBD103
MBD501
MBD502
MBD701
MBD702
MBI-101
MBR320M
MBR330M
MBR340M
46
48
50
52
50
52
54
56
56
56
MBR1520
MBR1530
MBR1540
MBR2520
MBR2530
MBR2540
MBR4020
MBR4020PF
MBR4030
MBR4030PF
60
60
60
64
64
64
68
72
68
72
DEVICE
VOL
MBR4040
MBS100
MBS4991
MBS4992
MCA1911N,P
MCA1912N,P
MCA1913N,P
MCA 1914N,P
MCA1921N,P
MCA1922N,P
PAGE
68
76
78
78
82
DEVICE
MCR39-40
MCR39-50
MCR39-60
MCR051
MCR052
MCR053
MCR054
MCR80-0.5
MCR80-10
MCR80-20
MCA 1923N,P
MCA1924N,P
MCA1931N,P
MCA 1932N,P
MCA 1933N,P
MCA1934N,P
MCA2011N,P
MCA2012N,P
MCA2013N,P
MCA2014N,P
MCR80-30
MCR80-40
MCR80-50
MCR80-60
MCR80-70
MCR80-80
MCR81-0.5
MCR81-10
MCR81-20
MCR81-30
MCA2021N,P
MCA2022N,P
MCA2023N,P
MCA2024N,P
MCA2031N,P
MCA2032N,P
MCA2033N,P
MCA2034N,P
MCA2111N,P
MCA2112N,P
MCR81-40
MCR81-50
MCR81-60
MCR81-70
MCR81-80
MCR82-0.5
MCR82-10
MCR82-20
MCR82-30
MCR82-40
MCA2113N,P
MCA2114N,P
MCA2121N,P
MCA2122N,P
MCA2123N,P
MCA2124N,P
MCA2131N,P
MCA2132N,P
MCA2133N,P
MCA2134N,P
MCR82-50
MCR82-60
MCR82-70
MCR82·80
MCR101
MCR102
MCR103
MCR104
MCR106-1
MCR 1 06·2
MCA2211N,P
MCA2212N,P
MCA2213N,P
MCA2214N,P
MCA2221N,P
MCA2222N,P
MCA2223N,P
MCA2224N,P
MCA2231N,P
MCA2232N,P
MCR106-3
MCR 1 06·4
MCR 1 06·6
MCR106-8
MCR107-1
MCR107·2
MCR107·3
MCR107-4
MCR107·5
MCR107·6
MCA2233N,P
MCA2234N,P
MCL 1300
MCL 1301
MCL1302
MCL 1303
MCL 1304
MCL TC6010
MCLTC6025
MCLTC6050
82
84
l
84
85
l
MCLTC6100
MCR32-05
MCR32-20
MCR32-30
MCR32-40
MCR32-50
MCR32-60
MCR39-05
MCR39-20
MCR39-30
85
87
!
87
91
91
91
v
MCR107·7
MCR107·8
MCR115
MCR120
MCR154-10
MCR154·20
MCR154·30
MCR154·40
MCR154·50
MCR154·60
MCR155-10
MCR155·20
MCR155·30
MCR155·40
MCR155·50
MCR155·60
MCR156-10
MCR156·20
MCR156·30
MCR156-40
VOL
PAGE
91
91
91
93
~
93
97
r
97
99
101
I
101
103
103
105
105
107
107
DEVICE
MCR156-50
MCR156-60
MCR157-10
MCR157-20
MCR157-30
MCR157-40
MCR157-50
MCR157-60
MCR158-50
MCR158-60
VOL
PAGE
107
107
111
MCR158-70
MCR158-80
MCR158-90
MCR158-100
MCR158-110
MCR158-120
MCR159-50
MCR159-60
MCR159-70
MCR159-80
MCR380-40
MCR380-50
MCA380-60
MCA380-70
MCA380-80
MCA380-90
MCR380-100
MCR380-110
MCR380-120
MCR380-130
MCR159-90
MCR159-100
MCR 159-11 0
MCR159-120
MCR201
MCR202
MCR203
MCR204
MCR205
MCR206
MCR380-140
MCR380-150
MCR380B-l0
MCR380B-20
MCR380B-30
MCR380B-40
MCR380B-50
MCR380B-60
MCR380B-70
MCR380B-80
MCR235-10
MCR235-20
MCR235,30
MCR235-40
MCR235-50
MCR235-60
MCR235-70
MCR235-80
MCR235-90
MCR235-100
MCR235-110
MCR235-120
MCR235-130
MCR235-140
MCR235-150
MCR235A-l0
MCR235A-20
MCR235A-30
MCR235A-40
MCR235A-50
111
115
I
115
119
119
123
PAGE
125
j
125
129
DEVICE
MCR470-110
MCR470-120
MCR470-130
MCR470-140
MCR470-150
MCR470C-l0
MCR470C-20
MCR470C-30
MCR470C-40
MCR470C-50
129
133
MCR380D-l0
MCD380D-20
MCR380D-30
MCR380D-40
MCR380D-50
MCR380D-60
MCR380D-70
MCR380D-80
MCR380D-90
MCR380D-l00
MCR550C-70
MCR550C-80
MCA550C-90
MCR550C-l00
MCR550D-l0
MCR550D-20
MCR550D-30
MCR550D-40
MCA550D-50
MCA550D-60
MCR235C-20
MCR235C-30
MCR235C-40
MCR235C-50
MCR235C-60
MCR235C-70
MCR235C-80
MCR235C-90
MCR235C-l00
MCR320-1
MCR470-10
MCR470-20
MCR470-30
MCR470-40
MCR470-50
MCR470-60
MCR470-70
MCR470-80
MCR470-90
MCR470-100
PAGE
,
141
141
145
MCR470D-80
MCR470D-90
MCR470D-l00
MCR470E-l0
MCR470E-20
MCR470E-30
MCR470E-40
MCR470E-50
MCA470E-60
MCR470E-70
MCR470E-80
MCR470E-90
MCR470E-l00
MCR470E-120
MCR550C-l0
MCR550C-20
MCR550C-30
MCA550C-40
MCR550C-50
MCR550C-60
MCR380D-l10
MCR380D-120
MCR406-1
MCR406-2
MCR406-3
MCR406-4
MCR407-1
MCR407-2
MCR407-3
MCR407-4
VOL
MCR470C-60
MCR470C-70
MCR470C-80
MCR470D-l0
MCR470D-20
MCR470D-30
MCR470D-40
MCR470D-50
MCR470D-60
MCR470D-70
MCR380C-l0
MCR380C-20
MCR380C-30
MCR380C-40
MCR380C-50
MCR380C-60
MCR380C-70
MCR380C-80
MCR380C-90
MCR380C-l00
MCR235A-60
MCR235B-l0
MCR235B-20
MCR235B-30
MCR235B-40
MCR235B-50
MCR235B-60
MCR235B-70
MCR235B-80
MCR235C-l0
123
125
VOL
DEVICE
MCA320-2
MCA320-3
MCA320-4
MCA320-5
MCA320-6
MCA320-7
MCA320-8
MCA380-10
MCA380-20
MCR380-30
133
135
~
135
139
~
139
141
141
vi
MCA550D-70
MCA550D-80
MCA550D-90
MCA550D-l00
MCA550D-ll0
MCA550D-120
MCA649-1
MCA649-2
MCA649-3
MCA649-4
MCR649-5
MCR649-6
MCR649-7
MCA729-5
MCR729-6
MCR729-7
MCR729-8
MCA729-9
MCR729-10
MCR800-10
145
147
147
149
j
149
152
I
152
154
DEVICE
MCR800-20
MCR80e-30
MCR800-40
MCR800-50
MCR800-60
MCR800-70
MCR800-80
MCR800-90
MCR80e-100
MCR800-110
MCR800-120
MCR800-130
MCR800-140
MCR800-150
MCR846-1
MCR846-2
MCR846-3
MCR846-4
MCR1336-5
MCR1336-6
MCR1336-7
MCR1336-8
MCR1336-9
MCR1336-10
MCR1718-5
MCR1718-6
MCR1718-7
MCR1718-8
MCR1906-1
MCR1906-2
MCR1906-3
MCR1906-4
MCR1907-1
MCR1907-2
MCR1907-3
MCR1907-4
MCR1907-5
MCR1907-6
MCR2315-1
MCR2315-2
VOL
PAGE
154
154
158
i
158
160
j
,
160
162
162
164
~
164
166
!
166
169
MCR2315-3
MCR2315-4
MCR2315-5
MCR2315-6
MCR2614L-1
MCR2614L-2
MCR2614L-3
MCR2614L-4
MCR2614L-5
MCR2614L-6
MCR3818-1
MCR3818-2
MCR3818-3
MCR3818-4
MCR3818-5
MCR3818-6
MCR3818-7
MCR3818-8
MCR3835-1
MCR3835-2
MCR3835-3
MCR3835-4
MCR3835-5
MCR3835-6
MCR3835-7
MCR3835-8
MCR3918-1
MCR3918-2
MCR3918-3
169
171
j
171
173
173
171
171
171
DEVICE
VOL
MCR3918-4
MCR3918-5
MCR3918-6
MCR3918-7
MCR3918-8
MCR3935-1
MCR3935-2
MCR3935-3
MCR3935-4
MCR3935-5
PAGE
171
~
171
173
MCR3935-6
MCR3935-7
MCR3935-8
M0708.A,B
M0708F,AF,BF
M0918,A,B
M0918F,AF,BF
M0982,F
M09B4
M0985,F
DEVICE
MOA922-1
MOA922-2
MOA922-3
MOA922-4
MDA922-5
MDA922-6
MDA922-7
MDA922-8
MDA922-9
MOA942-1
173
175
175
178
178
181
183
185
MDA942-2
MOA942-3
MDA942-4
MDA942-5
MDA942-6
MDA952FR-1
MDA952FR-2
MDA952FR-3
MDA952FR-4
MDA952FR-5
M0986,F
M01120,F
M01121
M01122
M01123
M01129,F
M01130,F
M02218.A,F.AF
M02219.A,F,AF
M02369.A,B,F ,A F
,BF
187
189
189
189
191
193
191
195
195
200
MDA970-1
MDA970-2
MDA970-3
MDA972-1
MDA972-2
MDA972-3
MDA972-4
MDA972-5
MDA980-1
MDA980-2
M 02904.A,F ,A F
M02905.A,F,AF
M03250.A,F ,AF
M03251.A,F .AF
M03409
M03410
M03467,F
M03725,F
M03762,F
M04957
204
204
209
209
213
213
215
219
223
227
M05000,A,B
M06001,F
M06002,F
M06003,F
M07000
M07001,F
M07002.A,B
M07003,F
M07003A,AF
M07003B
231
233
233
233
238
240
242
244
244
244
M07004,F
M07007,A,B
M07007F
M07021,F
M08001
M08002
M08003
MOA100
MOA101
MOA102
246
248
248
250
252
252
252
254
MOA104
MOA106
MOA108
MOA110
MOA800
MOA801
MOA802
MOA804
MOA806
MOA920
J
254
256
!
256
260
vii
MDA980-3
MDA980-4
MDA980-5
MDA980-6
MDA990-1
MDA990-2
MDA99e-3
MDA990-4
MDA990-5
MDA990-6
MOA1200
MDA1201
MDA1202
MDA1204
MDA1206
MDA1330H
MDA1331H
MDA1332H
MDA1333H
MOA1505-1
VOL
PAGE
262
262
266
j
266
270
l
270
271
271
271
266
~
266
275
275
279
!
279
283
~
283
266
MOA1505-2
MDA1505-3
MDA1505-4
MDA1505-5
MDA1505-6
MDA1591-1
MDA1591-2
MDA1591-3
MDA1591-4
MDA1591-5
MDA1591-6
MDA3551
MDA3552
MDA3661
MDA3662
MFE130
MFE131
MFE132
MFE590
MFE591
266
287
~
287
796
796
796
289
289
DEVICE
VOL
PAGE
DEVICE
VOL
PAGE
DEVICE
MFE823
MFE824
MFE2000
MFE2001
MFE2004
MFE2005
MFE2006
MFE2007
MFE2008
MFE2009
295
297
299
299
301
301
301
303
303
303
MJ450
MJ480
MJ481
MJ490
MJ491
MJ802
MJ900
MJ901
MJ920
MJ921
378
380
380
382
382
384
386
386
388
388
MJ4646
MJ4647
MJ4648
MJ5415
MJ5416
MJ6257
MJ6302
MJ6700
MJ6701
MJ7000
MFE2010
MFE2011
MFE2012
MFE2093
MFE2094
MFE2095
MFE3001
MFE3002
MFE3003
MFE3004
305
305
305
307
307
307
308
310
311
312
MJ1000
MJ1001
MJ1200
MJ1201
MJ1800
MJ2249
MJ2250
MJ2251
MJ2252
MJ2253
386
386
388
388
393
395
395
397
397
399
MJ7160
MJ7161
MJ7260
MJ7261
MJ8100
MJ8101
MJ9000
MJE 105
MJE 105K
MJE 170
MFE3005
MFE3006
MFE3007
MFE3008
MFE3020
MFE3021
MFE4007
MFE4008
MFE4009
MFE4010
312
314
314
314
320
320
322
MJ2254
MJ2267
MJ2268
MJ2500
MJ2501
MJ2801
MJ2840
MJ2841
MJ2901
MJ2940
399
401
401
403
403
405
407
407
405
409
MJE171
MJE 172
MJE 180
MJE 181
MJE 182
MJE200
MJE205
MJE205K
MJE210
MJE220
~J2941
MJE221
MJE222
MJE223
MJE224
MJE225
MJE230
MJE231
MJE232
MJE233
MJE234
MJE235
j
MFE4011
MFE4012
MFE5000
MHQ918
MHQ2221
MHQ2222
MHQ2369
MHQ2483
MHQ2484
MHQ2906
322
328
330
332
332
334
336
336
338
MJ2955
MJ3000
MJ3001
MJ3026
MJ3027
MJ3028
MJ3029
MJ3030
MJ3040
4'09
411
403
403
415
415
417
419
419
421
MHQ2907
MHQ3467
MHQ3546
MHQ3798
MHQ3799
MHQ4001A
MHQ4002A
MHQ4013
MHQ4014
MHQ6001
338
340
342
344
344
346
346
348
348
350
MJ3041
MJ3042
MJ3101
MJ3201
MJ3202
MJ3260
MJ3430
MJ3480
MJ3583
MJ3584
421
421
395
423
423
425
429
6
2-537
2-537
MHQ6002
MHQ6100
MHQ6100A
MHW559
MHW560
MHW561
MHW562
MHW709
MHW710
MJ105
350
352
352
354
355
356
357
358
361
364
MJ3585
MJ3701
MJ3760
MJ3761
MJ3771
MJ3772
MJ3773
MJ4030
MJ4031
MJ4032
MJ400
MJ410
MJ411
MJ413
MJ420S
MJ421S
MJ423
MJ424
MJ425
MJ431
368
370
370
372
374
374
372
376
376
372
MJ4033
MJ4034
MJ4035
MJ4200
MJ4201
MJ4210
MJ4211
MJ4240
MJ4502
MJ4645
I
I
I
2-537
399
431
431
437
437
442
T
,
447
449
I
viii
449
2-537
454
456
MJI'240
MJE241
MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254
VOL
PAGE
456
456
456
2-499
2-499
437
442
458
458
460
462
462
466
466
468
468
470
472
472
475
j
475
479
483
483
479
486
I
486
490
490
MJE340
MJE340K
MJE341
MJE341K
MJE344
MJE344K
MJE350
MJE370
MJE370K
MJE371
494
494
497
MJE371K
MJE520
MJE520K
MJE521
MJE521K
MJE700
MJE701
MJE702
MJE703
MJE710
505
508
508
511
511
514
t
497
500
502
502
505
~
514
516
DEVICE
VOL
MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE801
MJE802
MJE803
MJE1090
PAGE
516
516
518
518
518
514
~
514
520
MJE1091
MJE1092
MJE1093
MJE1100
MJEll01
MJE1102
MJE1103
MJE 1290
MJE1291
MJE 1660
520
523
~
MJE1661
MJE2010
MJE2011
MJE2020
MJE2021
MJE2050
MJE2090
MJE2091
MJE2092
MJE2093
523
525
~
525
527
520
MJE2100
MJE2101
MJE2102
MJE2103
MJE2150
MJE2160
MJE2360
MJE2361
MJE2370
MJE2480
520
527
528
530
530
532
534
MJE2481
MJE2482
MJE2483
MJE2490
MJE2491
MJE2520
MJE2801
MJE2801K
MJE2901
MJE2901K
534
536
536
538
540
540
543
543
MJE2955
MJE2955K
MJE3055
MJE3055K
MJE3370
MJE3371
MJE3439
MJE3440
MJE3520
MJE3521
546
546
549
549
502
505
552
552
508
511
MJE3738
MJE3739
MJE4918
MJE4919
MJE4920
MJE4921
MJE4922
MJE4923
MJE5190
MJE5191
~
I
I
I
I
I
I
II
II
554
554
2-872
2-872
2-872
2-876
2-876
2-876
2-67
2-67
DEVICE
MJE5192
MJE5193
MJE5194
MJE5195
MJE5655
MJE5656
MJE5657
MJE5974
MJE5975
MJE5976
VOL
PAGE
PAGE
II
2-67
2-71
2-71
2-71
2-237
2-237
2-237
2-374
2-374
2-374
MM3007
MM3008
MM3009
MM3053
MM3726
MM3734
MM3735
MM3736
MM3737
MM3903
607
609
609
611
613
617
617
621
621
625
2-378
2-378
2-378
2-382
2-382
2-382
2-386
2-386
2-386
2-408
MM3904
MM3905
MM3906
MM4000
MM4001
MM4002
MM4003
MM4005
MM4006
MM4007
625
630
630
635
MM4008
MM4009
MM4010
MM4018
MM4019
MM4030
MM4031
MM4032
MM4033
MM4036
638
638
638
640
642
646
MJE5977
MJE5978
MJE5979
MJE5980
MJE5981
.MJE5982
MJE5983
MJE5984
MJE5985
MJE6040
MJE6041
MJE6042
MJE6043
MJE6044
MJE6045
MLED50
MLED55
MLED60
MLED90
MLED92
DEVICE
VOL
II
I
2-408
557
557
559
559
561
,
635
636
636
636
~
646
648
MLED440
MLED445
MLED500
MLED600
MLED610
MLED640
MLED655
MLED660
MLED900
MLED910
563
565
567
569
571
573
575
577
579
581
MM4037
MM4049
MM4052
MM4208
MM4208A
MM4209
MM4209A
MM4257
MM4258
MM4261H
650
652
654
656
MLED930
MLS10l
MLS102
MLS103
MLS104
MLS105
MLS201
MLS202
MLS203
MLS204
583
585
MM5005
MM5006
MM5007
MM5189
MM5262
MM6427
MM8000
MM8001
MM8006
MM8007
670
670
670
672
674
676
678
678
680
680
MLS205
MM439
MM1500,A
MM1501
MM1505
MM1553
MM1748,A
MM1803
MM1941
585
587
589
589
591
593
597
2-425
599
MM8008
MM8009
MM8010
MM8011
MMCM918
MMCM930
MMCM2222
MMCM2369
MMCM2484
MMCM2857
684
688
684
684
691
693
695
697
693
729
MMCM2907
MMCM3798
MMCM3799
MMCM3903
MMCM3904
MMCM3905
MMCM3906
MMCM3960A
MMD70
MMD6050
699
738
738
743
743
747
747
753
701
702
I
MM2005-2
MM2258
MM2259
MM2260
MM3000
MM3001
MM3002
MM3003
MM3005
MM3006
601
603
603
603
606
~
606
607
607
ix
t
656
658
658
662
DEVICE
VOL
PAGE
VOL
DEVICE
PAGE
DEVICE
VOL
PAGE
706
MPF112
MPF130
MPF131
MPF132
MPF161
MPF256
MPF820
MPF970
MPF971
MPF4391
795
796
796
796
800
802
803
805
805
809
MPS3397
MPS3398
MPS3563
MPS3638,A
MPS3639
MPS3640
MPS3646
MPS3693
MPS3694
MPS3702
881
881
869
883
885
887
890
894
894
896
MMT70
MMT71
MMT72
MMT73
MMT74
MMT75
MMT76
MMT806
MMT807
MMT808
708
709
710
712
714
716
716
718
720
722
MPF4392
MPF4393
MPI-3401
MPM5006
MPN3401
MPN3402
MPN3411
MPN3601
MP0918
MP01000
809
809
813
815
817
817
819
821
823
825
MPS3703
MPS3704
MPS3705
MPS3706
MPS3707
MPS3709
MPS3710
MPS3711
MPS3826
MPS3827
896
898
898
898
900
MMT809
MMT918
MMT930
MMT2222
MMT2369
MMT2484
MMT2857
MMT2907
MMT3014
MMT3546
724
691
693
726
697
693
729
731
734
736
MP01050
MP02221
MP02222
MP02369
MP02483
MP02484
MP02906
MP02907
MP03303
MP03467
827
332
332
334
829
829
338
338
831
833
MPS4354
MPS4355
MPS4356
MPS5172
MPS6507
MPS6511
MPS6512
MPS6513
MPS6514
MPS6515
904
904
904
908
910
912
914
MMT3798
MMT3799
MMT3823
MMT3903
MMT3904
MMT3905
MMT3906
MMT3960
MMT3960A
MMT8015
738 .
738
741
743
743
747
747
751
753
756
MP03546
MP03725,A
MP03762
MP03798
MP03799
MP03904
MP03906
MP04003
MP04004
MP06001
342
835
838
840
840
842
844
846
846
849
MPS6516
MPS6517
MPS6518
MPS6519
MPS6520
MPS6521
MPS6522
MPS6523
MPS6530
MPS6531
MOC2000
MPll0
MP110B
MP500
MP501
MP502
MP504
MP505
MP506
MP600
761
763
765
767
MP06002
MP06100
MP06100A
MP06501
MP06502
MP06600,A
MP06700
MPS404
MPS404A
MPS706,A
849
851
851
849
849
851
853
855
855
859
MPS6532
MPS6533
MPS6534
MPS6535
MPS6539
MPS6540
MPS6541
MPS6543
MPS6544
MPS6545
918
920
922
924
926
928
928
MPS708
MPS753
MPS834
MPS835
MPS918
MPS2369
MPS2712
MPS2714
MPS2716
MPS2923
861
863
865
867
869
871
873
875
873
877
MPS6546
MPS6547
MPS6548
MPS6560
MPS6561
MPS6562
MPS6563
MPS6565
MPS6566
MPS6567
930
932
934
936
940
936
940
944
944
948
MPS2924
MPS2925
MPS2926
MPS3390
MPS3391
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396
877
877
879
881
MPS6568,A
MPS6569,A
MPS6970,A
MPS6571
MPS6573
MPS6574
MPS6575
MPS6576
MPS6580
MPS8000
950
950
950
954
957
MMD6100
MMD6150
MMD7000
MMD7001
MMFl
MMF2
MMF3
MMF4
MMF5
MMF6
MP601
MP602
MP603
MP1613
MP2000A
MP2060
MP2061
MP2062
MP2063
MP2100A
MP2200A
MP2300A
MP2400A
MP3730
MP3731
MPC1000
MPF102
MPF108
MPF109
MPF111
702
702
702
704
706
I
I
767
769
!
771
773
777
~
777
773
~
773
781
781
783
789
790
792
794
I
881
x
~
900
902
902
914
916
~
916
918
j
~
957
959
961
DEVICE
VOL
PAGE
VOL
DEVICE
PAGE
DEVICE
VOL
PAGE
970
976
976
982
985
MPS-U05
MPS-U06
MPS-U07
MPS-U10
MPS-U31
MPS-U45
MPS-U51,A
MPS-U52
MPS-U55
MPS-U56
1087
1087
1089
1091
1095
1099
1103
1105
1107
1107
MR811
MR812
MR814
MR816
MR817
MR818
MR820
MR821
MR822
MR824
MPS-A13
MPS-A14
MPS-A16
MPS-A17
MPS-A18
MPS-A20
MPS-A42
MPS-A43
MPS-A55
MPS-A56
987
987
990
990
992
997
1001
1001
976
976
MPS-U57
MPS-U60
MPS-U95
MPT20
MPT28
MPT32
MPU131
MPU132
MPU133
MPU6027
1109
1111
1113
1117
1119
1119
1121
1121
1121
1125
MR826
MR830
MR831
MR832
MR824
MR836
MR840
MR841
MR842
MR844
1159
1167
MPS-A65
MPS-A66
MPS-A70
MPS-A92
MPS-A93
MPS-001
MPS-002
MPS-003
MPS-004
MPS-005
1003
1003
1006
1010
1010
1012
1014
1016
1018
1020
MPU6028
MPZ5-16
MPZ5-32
MPZ5-180
M0930
M0982
M01120
M01129
M02218,A
M02219,A
1125
1129
1129
1129
1131
181
189
193
195
195
MR846
MR850
MR851
MR852
MR854
MR856
MR860
MR861
MR862
MR864
1167
1168
MPS-006
MPS-051
MPS-052
MPS-053
MPS-054
MPS-055
MPS-056
MPS-H02
MPS-H04
MPS-H05
1022
1012
1014
1016
1018
1020
1022
1025
1028
1028
M02369
M02484
M02904
M02905A
M03251
M03467
M03725
M03762
M03798
M03799,A
200
1131
204
204
209
215
219
223
1134
1134
MR866
MR870
MR871
MR872
MR874
MR876
MR1030
MR1031
MR1032
MR1033
1176
1181
MPS-H07
MPS-H08
MPS-H10
MPS-H11
MPS-H17
MPS-H19
MPS-H20
MPS-H24
MPS-H30
MPS-H31
1032
1032
1036
1036
1039
1041
1043
1046
1049
1049
M06001
M06002
M07001
M07003
M07004
M07007
M07021
MR1-1200
MR1-1400
MR1-1600
233
233
240
244
246
248
250
1138
1138
1138
MR1034
MR1035
MR1036
MR1038
MR1040
MR1120
MR1121
MR1122
MR1123
MR1124
MPS-H32
MPS-H34
MPS-H37
MPS-H54
MPS-H55
MPS-H81
MPS-H83
MPS-H85
MPS-K20
MPS-K21
1053
1057
1060
1062
1062
1066
1068
1072
997
997
MR250-1
MR250-2
MR250-3
MR250-4
MR250-5
MR327
MR328
MR330
MR331
MR501
1141
MR1125
MR1126
MR1128
MR1130
MR1205FL
MR1209FL
MR1215FL
MR1219FL
MR1235FL,SL
MR1239FL,5L
MPS-K22
MPS-K70
MPS-K71
MPS-K72
MPS-L01
MPS-L51
MPS-U01,A
MPS-U02
MPS-U03
MPS-U04
997
1006
1006
1006
1074
1078
1082
1084
1086
1086
MR502
MR504
MR506
MR508
MR510
MR751
MR752
MR754
MR756
MR810
MPS8001
MPS8907
MPS8098
MPS8099
MPS8598
MPS8599
MPS-A05
MPS-A06
MPS-A09
MPS-A12
963
965
970
~
,
I
I
!
1141
1-50
t
1-50
1143
I
1143
1149
~
1149
1154
xi
MR1245FL,SL
MR1249FL,SL
MR1265FL
MR1269FL
MR1337-1
MR1337-2
MR1337-3
MR1337-4
MR1337-5
MR1366
1154
j
1153
1159
!
!
1168
1176
l
!
I
I
1181
1-98
1-98
1187
1187
1191
1191
1194
1194
1198
1198
1201
1201
1203
1203
1205
!
I
1205
1-64
DEVICE
VOL
MR1376
MR1386
MR1396
MR1815SL
MR1819SL
MR2000S
MR2001S
MR2002S
MR2004S
MR2006S
PAGE
1-69
1-74
1-79
1194
1194
1208
I
DEVICE
VOL
PAGE
DEVICE
MRF226
MRF230
MRF231
MRF232
MRF233
MRF234
MRF304
MRF305
MRF401
MRF501
1285
1287
1291
1295
1299
1303
1307
1311
1315
1318
MV1632
MV1634
MV1636
MV1638
MV1640
MV1642
MV1644
MV1646
MV1648
MV1650
1318
1320
1324
1330
1332
1335
1339
1339
1343
1347
MV1652
MV1654
MV1656
MV1658
MV1660
MV1662
MV1664
MV1666
MV1803
MV1805C
MR2008S
MR2010S
MR2083HA
MR2266
MR2271
MR2272
MR2273
MR2500
MR2500S
MR2501
1208
1212
1214
1-107
1216
1214
1218
1224
1218
MRF502
MRF509
MRF511
MRF603
MRF607
MRF618
MRF619
MRF620
MRF621
MRF628
MR2501S
MR2502
MR2502S
MR2504
MR2504S
MR2506
MR2506S
MR2508
MR2508S
MR2510
1224
1218
1224
1218
1224
1218
1224
1218
1224
1218
MRF816
MRF817
MRF818
MRF5174
MRF5175
MRF5176
MRF5177
MRF8004
MSD6100
MSD6101
1350
1353
1357
1361
1364
1367
1370
1374
1376
1378
MV1809C1
MV1858D
MV1860D
MV1862D
MV1863D
MV1864D
MV1865D
MV1866
MV1866D
MV1868
MR2510S
MR2525
MR2525R
MR5005
MR5010
MR5020
MR5030
MR5040
MRA133,B
MRA163,B
1224
1228
1228
1233
1233
1235
1237
MSD6102
MSD6150
MSD7000
MU851
MU852
MU853
MU2646
MU2646M
MU4891
MU4892
1380
1382
1384
1386
1386
1386
1388
1390
1392
MV1868D
MV1870
MV1870D
MV1871
MV1872
MV1874
MV1876
MV1877
MV1878
MV2101
MRA333,B
MRA363,B
MRD14B
MRD150
MRD300
MRD310
MRD360
MRD370
MRD450
MRD500
1239
1241
2-264
1243
1247
1247
1251
1251
1255
1259
MU4893
MU4894
MUS4987
MUS4988
MV104
MV109
MV205
MV206
MV209
MV830
1259
1263
MV831
MV832
MV833
MV834
MV835
MV836
MV837
MV838
MV839
MV840
II
MRD510
MRD601
MRD602
MRD603
MRD604
MRD810
MRD3050
MRD3051
MRD3052
MRD3053
MRD3054
MRD3055
MRD3056
MRF207
MRF208
MRF209
MRF215
MRF216
MRF221
MRF225
~
1263
1267
1269
I
II
1269
1273
1273
1273
1277
1280
2-443
1283
~
1392
1394
1394
1398
1400
1402
1402
1404
1406
,
1406
MV1401
MV1403
MV1404
MV1405
MV1620
MV1622
MV1624
MV1626
MV1628
MV1630
1408
1408
1410
I
1410
xii
VOL
PAGE
1410
1410
1411
I
1411
2-425
1413
1415
1417
!
1417
1421
1417
1421
1417
1421
1417
1421
l
1421
1425
MV2102
MV2103
MV2104
MV2105
MV2106
MV2107
MV2108
MV2109
MV2110
MV2111
MV2112
MV2113
MV2114
MV2115
MV2201
MV2203
MV2205
MV2209
MV2301
MV2302
MV2303
MV2304
MV2305
MV2306
MV2307
MV2308
MV3102
MV3103
MV3140
MV3141
1425
1429
"
1429
1431
1431
1433
1433
1435
1435
DEVICE
MV3142
MV3501
MV3502
MV3503
MV3504
MV3505
MV3506
MV3507
MVAM-1
MVI-2097
VOL
PAGE
1435
1437
I
1437
1439
1441
MVI-2098
MVI-2099
MVI-2100
MVI-2101
MVI-2102
MVI-2103
MVI-2104
MVI-2105
MVI-2106
MVI-2107
MVI-2108
MVI-2109
MVS460
MZ500-1
MZ500-2
MZ500-3
MZ50Q-4
MZ500-5
MZ500-6
MZ500-7
DEVICE
VOL
MZ821,A
MZ823.A
MZ825.A
MZ827.A
MZ840
MZ935,A,B
MZ936.A,B
MZ937,A,B
MZ938,A,B
MZ941,A,B
1452
~
1452
1449
1452
MZ942,A,B
MZ943,A,B
MZ944.A,B
MZ1000-1
MZ1000-2
MZ1000-3
MZ 1 000-4
MZ1000-5
MZ1000-6
MZ1000-7
1441
1445
1447
MZ1000-18
MZ1000-19
MZ1000-20
MZ1000-21
MZ1000-22
MZ1000-23
MZ1000-24
MZ1000-25
MZ1000-26
MZ1000-27
MZ500-18
MZ500-19
MZ500-20
MZ500-21
MZ500-2<'
MZ500-23
MZ500-24
MZ500-25
MZ500-26
MZ500-27
MZ 1 000-28
MZ1000-29
MZ 1 000-30
MZ 1 000-31
MZ 1 000-32
MZ 1 000-33
MZ1000-34
MZ1000-35
MZ1000-36
MZ1000-37
MZ500-28
MZ500-29
MZ500-30
MZ500-31
MZ500-32
MZ500-33
MZ500-34
MZ500-35
MZ500-36
MZ500-37
MZ2360
MZ2361
MZ2362
MZ3154.A
MZ3155.A
MZ3156.A
MZ4614
MZ4615
MZ4616
MZ4617
MZ500-38
MZ500-39
MZ500-40
MZ605
MZ610
MZ620
MZ640
MZ805
MZ810
MZ820
MZ4618
MZ4619
MZ4620
MZ4621
MZ4622
MZ4623
MZ4624
MZ4625
MZ4626
MZ4627
I
1449
1452
1460
MZ 1 000-8
MZ1000-9
MZ1000-10
MZ1000-11
MZ1000-12
MZ1000-13
MZ1000-14
MZ1000-15
MZ1000-16
MZ1000-17
MZ500-8
MZ500-9
MZ500-10
MZ500-11
MZ500-12
MZ500-13
MZ500-14
MZ500-15
MZ500-16
MZ500-17
1447
1449
PAGE
1460
I
I
I
xiii
I
1-10
1-10
1-10
1452
1452
1452
1-89
I
1-89
DEVICE
MZ5555
MZ5556
MZ5557
MZ5558
VOL
PAGE
1462
~
1462
..
IN -HOUSE NUMBERED
DEVICE SPECIFICATIONS
DIODES
OPTOELECTRONICS
MODULES
POWER VARACTORS
RECTIFIERS
RECTIFIER ASSEMBLIES
THYRISTORS & TRIGGERS
TRANSISTORS
I
II
.4M.64FR10
.4Ml. 36FRS
.4Ml. 36FR2
.4M2.04FRS
.4M2.04FR2
For Specifications, See I N816 Data, Volume 1.
.SM2. 4lS thru .SM2001S
For Specifications, See IN5221 Data, Volume II.
1M3.3AI thru 1M7.SAZ
For Specifications, See IN3821 Data, Volume 1.
1M3.31S thru 1M200ZS
For Specifications, See IN4728 Data, Volume 1.
1M6.81 thru 1M200Z
For Specifications, See I N3821 Data, Volume 1.
5M3.3ZS thru 5M200ZS
For Specifications, See IN5333 Data, Volume II.
10M6.8Z thru 10M200Z
For Specifications, See IN2970 Data, Volume 1.
50M3.9Z thru 50M200Z
For Specifications, See IN2804 Data, Volume 1.
1/4M2.4AZ thru 1/4M200Z (SILICON)
1/4W
2.4 - 200 V
Hermetically sealed, all-glass case with all external surfaces corrosion resistant. Cathode end, indicated by color band, will be
positive with respect to anode end when operated in the zener
region. These devices are in the same 400 mW glass package as the
IN746 and IN9S7 Series, but designated 1/4 Watt to allow characterization at a different test current level.
CASE 51
(00-7)
MAXIMUM RATINGS
Junction and Storage Temperature: -65°C to +175°C
D C Power Dissipation: 1/4 Watt (Derate 1. 67 mW;oC Above 25°C)
The type numbers specified have a standard voltage (VZ) tolerance of ±20%.
For closer tolerances, add suffix "10" for ±10% or "5" for ±5%. (3%, 2%, 1%
tolerances also available. )
ELECTRICAL CHARACTERISTICS ITA
TYPE NO.
NOMINAL
ZENER
VOLTAGE@ln
(V z) VOLTS
TEST
CURRENT
(lzr)mA
= 25°C, VF = 1.5 V max @
MAXIMUM
ZENER
IMPEDANCE
(Zn)@ lIT
ohms
MAXIMUM
DC ZENER
CURRENT
(lZM) mA
100 mAl
REVERSE LEAKAGE CURRENT
I, MAX
(J1A}
TEST VOLTAGE Vdc *
VR1
VR2
2.4
2.7
3.0
3.3
3.6
10
10
10
10
10
60
60
55
55
50
70
65
60
55
52
75
75
50
50
50
1
1
1
1
1
10
10
10
10
10
10
50
45
35
25
20
15
49
46
42
39
36
33
1
1.5
1.5
1.5
1.5
3.5
9.2
8.3
7.6
6.9
6.3
7.0
8.0
9 .. 0
10
11
33
. 30
26
24
21
25
25
10
5
5
5
150
75
50
25
10
1
1.5
1.5
1.5
. 1. 5
3. 5
1!4M6.8Z
1/4M7.5Z
1/4M8.2Z
1!4M9.1Z
1/4M10Z
3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
9.1
10
5.2
5.7
6.2
6.9
7.6
4.9
5.4
5.9
6.6
7.2
1!4M11Z
1!4M12Z
1!4M13Z
1!4M14Z
1!4M15Z
11
12
13
14
15
5.7
5.2
4.8
4.5
4.2
13
15
18
20
22
19
18
16
15
1.4
5
5
5
5
5
8.4
9. 1
9'.9
10.6
11. 4
8.0
8.6
9.4
10.1
10.8
1!4M16Z
1/4M17Z
1!4M18Z
1!4M19Z
1!4M20Z
16
17
18
19
20
3.9
3.7
3.5
3.3
3.1
24
26
28
30
33
13
12.5
11.5
11. 0
10.5
5
5
5
5
5
12.2
13.0
13.7
14.4
15.2
11.5
12.2
13.0
13.7
14.4
1!4M22Z
1!4M24Z
1/4M25Z
1!4M27Z
1!4M30Z
22
24
25
27
30
2.8
2.6
2.5
2.3
2.1
1!4M2.4AZ
1/4M2.7AZ
1!4M3.0AZ
1!4M3.3AZ
1!4M3.6AZ
1!4M3.9AZ
1!4M4.3AZ
1!4M4.7AZ
1!4M5.1AZ
1!4M5.6AZ
1!4M6.2AZ
16.7
5
9.5
40
18.2
5
9.0
46
19.0
5
50
8.0
20.6
5
7.5
58
22.8
5
7.0
70
*VR1 - Test Voltage for 5% Tolerance Device
VR2 - Test vOltage for 10% Tolerance Device
No Leakage Specified as 20% Tolerance Device
2
1
1
1
1
1
15.8
17.3
18.0
19.4
21.6
1/4M2.4AZ thru 1/4M200Z
(continued)
ELECTRICAL CHARACTERISTICS (TA
TYPE NO.
NOMINAL
ZENER
VOLTAGE@ III
(V,) VOLTS
1/4M33Z
1/4M36Z
1/4M39Z
1/4M43Z
1/4M45Z
1/4M47Z
1/4M50Z
1/4M52Z
1/4M56Z
1/4M62Z
33
36
39
43
45
47
50
52
56
62
1/4M68Z
1/4M75Z
1/4M82Z
1/4M91Z
1/4M100Z
68
75
82
91
100
1/4M105Z
1/4M110Z
1/4M120Z
1/4M130Z
1/4M140Z
1/4M150Z
1/4M175Z
1/4M200Z
TEST
CURRENT
(llT)mA
105
110
120
130
140
1.9
1.7
1.6
1.5
1.4
1.3
1.2
1.2
1.1
1.0
0.92
0.83
0.76
0.69
0.63
0.60
0.57
0.52
0.48
0.45
150
175
200
0.42
0.36
0.31
= 25 C. VF = 1.5 V max
Q
MAXIMUM
ZENER
IMPEDANCE
(Zll)@l ll
ohms
MAXIMUM
DC ZENER
CURRENT
(I'M) rnA
@ 100 mA) (continued)
REVERSE LEAKAGE CURRENT
I. MAX
(/LA)
TEST VOLTAGE Vdc *
VR2
VR1
350
450
550
700
900
6.5
6.0
5.0
4.8
4.5
4.3
4.1
4.0
3.8
3.3
3.0
2.8
2.5
2.3
2.0
5
5
5
5
5
5
5
5
5
5
5
5
5
5
51. 7
56.0
62.2
69.2
76.0
23.8
25.9
28.1
31. 0
32.4
33.8
36.0
37.4
40.3
44.6
49.0
54.0
59.0
65. 5
72.0
1000
1200
1500
1900
2200
1.9
1.8
1.7
1.5
1.4
5
5
5
5
5
79.8
83.6
91. 2
98.8
106.4
75.6
79.2
86.4
93.6
100.8
2500
3300
4300
1.3
1.1
1.0
5
5
5
114.0
133.0
152.0
108.0
126.0
144.0
85
100
120
140
150
160
180
200
230
290
*VHI - Test Voltage for 5% Tolerance Device
5
25. 1
27.4
29.7
32.7
34.2
35.8
38,0
39.5
42.6
47.1
VH2 - Test Voltage for 10% Tolerance Device
No Leakage Specified as 20% Tolerance Device
SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)
1 - Nominal zener voltages between those shown.
2
~. ~~~hoerd ~~;:: u(;i\~nf~~r~e~~~e~aonnCne:c~~~ =;~t~~pe~i~i'~Jot'O~~~~~~' :nlt~~~ ~~ft:~~~n~e~i~svo,.:,t:~1!,3rs~~~j~ake
possible higher
zener voltages and provide lower temperature coefficients, lower dynamic impedance and greater power handling ability.
b. Two or more Units matched to one another with any specified tolerance.
3 - Tight voltage tolerances: 1.0%.2.0%.3.0%.
3
881 05A (SILICON)
881058
88105G
I
vvc -.IfVOLTAGE VARIABLE
CAPACITANCE DIODES
SILICON EPICAP OIODES
30 VOLTS
· .. designed in the new low-inductance mini-L package for high
volume requirements of UHF and VHF TV tuning and AFC. general
frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.
• Guaranteed Minimum 0 Values at VHF and UHF Frequencies
• Controlled and Uniform Tuning Ratio
• Guaranteed Matching' Tolerance From Diode to Diode and Group
to Group
• Upon request, diodes are available In matched sets of any number or in
matched groups. All diodes in a set or group can be matched for capacitance
to your specified conditions along the entire tuning range.
If you require BB150A and 881058 matched to ±1.6% between 3.0 and
26 Volts. add "M" to the device title {i.e., BB105BML BB105G can be
ordered matched to ±3.0% by adding M to the device title. For any other
matched tolerances or conditions. plealB contact your local Motorola Repr.
!(I8ntative.
MAXIMUM RATINGS
Roting
Reverse Voltage
Symbol
Value
Unit
VR
30
Volts
Forward Current
IF
200
rnA
Device Dissipation til T A - 25°C
Derate above 25°C
Po
400
4.0
mW
mW/oC
Junction Temperature
TJ
+125
°c
T stg
-65 to +150
°c
Storage Temperature Range
~~q
fTN
I
L
20
18
~ 16
-
~
i'-..
14
12
H
iJr
I
TT,
.......
===rJ==.,------h
~J-+c
"'-
§
10
~
8.0
Q
6.0
IS
4. 0
o
S
I
w
g
ILL! E ERS
f"'1.0MHz
0.5
MI.
MAX
A
3.88
C
1.91
0.64
0.08
4.11
318
>16
0 ..
0.18
13D
1.55
0."
0.89
4.32
2.62
D
F
II
II
o
DIM
•
TA"'250 C
2.0
0.3
•
FIGURE 1 - DIODE CAPACITANCE
t---
H
J
•
•
l
1.0
2.0
3.0
5.0
10
20
YR. REVERSE VOLTAGE (VOLTS)
30
29'
....
2.36
112
R
0.19
S
1.99
1.14
0.43
T
•
1.37
1.04
12.15
140
0."
I H
MAX
MI.
0.152 0.162
0.115 0.125
0,015
0
0.025
0035
0.003
0.051
0.007
0025
0.160
0.035
0.110
0.093
0....
0.031
0.472
0.045
0.011
CASE 226
4
0.061
.
0.103
"'54
.041
."
0.055
.27
PIN 1 CATHODE
2 ANODE
BB105A, BB105B, BB105G (continued)
ELECTRICAL CHARACTERISTICS
(T A
= 2SoC unless otherwise notedl
Characteristic·AII .Types
Reverse Breakdown Voltage
(lR = 10ltAdei
Symbol
Min
BVR
30
-
Vde
-
50.0
0.5
nAde
ItAde
Max
Unit
Reverse Voltage Leakage Current
(VR = 28 VI
(VR = 28 VI T A = 60Dc
IR
Series Inductance
LS
-
3.0
nH
TCC
-
400
ppm/DC
(I
= 250 MHzl
Diode Capacitance Temperature Coefficient
(VR
= 3.0 Vdc. I = 1.0 MHzl
CT
Device
Type
VR
= 25Vdc
pF
Q
I -100MHz
CT=9pF
RS
Ohm.
Ridge
Stripe
Min
Max
Min
Max
Min
Max
Color
2.3
2.8
225
0.8
4.0
5
Blue
8Bl05B
2.0
2.3
225
0.8
4.5
White
1.8
2.B
150
1.2
4.0
6
6
Yellow
BB105G
Green
White
1600
I
0
FIGURE 3 - DIODE CAPACITANCE
/
~ 1000
o
~ 800
I
~
BB105A.B
::>
to
u:: 600
..... V
400
f"""
f--- . /V
200
/
L
/
~
'/
/
f=100MHz
1200
;x
/
4.0
VR = 3.0 Vdc
~ 1.00
>-
. . .V
<:;
:
BB105G
0.99
/
~
~ 0.98
........... V
.....
o
~O.97
u
8.0
12
16
20
24
28
0.96
-75
32
·50
VR. REVERSE VOLTAGE (VOLTS)
BU105
......... .......-
w
u
f--
o
o
1.02
o
!!! 1.01
/
/'
1.03
::;
i
,/
./
Color
White
1.04
V
Or-- r- TA = 25 C
140
d
Body
BB105A
FIGURE 2 - FIGURE OF MERIT
>-
Stripe on
C3/C25
-25
+25
+50
+75
TA. AMBIENT TEMPERATURE (DC)
For Specifications, See MHOS Data.
5
+100
+125
aUl08 (SILICON)
MJ3480
HORIZONTAL DEFLECTION SILICON
TRANSISTORS
.
5.0 AMPERE
· .. designed for use in large screen color television receivers.
TRIPLE DIFFUSED
POWER TRANSISTORS
NPN SILICON
•
Coliector·Emitter Voltage VCER = 1500 Vdc
•
Collector Current IC = 5.0Adc
•
Fall Time @ IC = 4.5 Adc tf = 0.71ls (Typ) • tf = 1.0 IlS (Max)
1300. 1500 VOLTS
56 WATTS
MAXIMUM RATINGS
Symbol
BU108
MJ3480
Unit
Collector·Emitter Voltage
Rating
VeEO
750
700
Vdc
Collector-Emitter Voltage
(ReE = 100 nl
VeER
1500
1300
Vdc
Collector-Base Voltage
Vee
1500
1300
Vdc
Eniitt,r-Base Voltage
VEe
5.0
7.0
Vdc
Collector Current - Continuous
- Peak
Ie
5.0
10
Base Current
Ie
4.0
Adc
Total Device Dissipation@Tc::::25OC
Po
56
Watts
0.625
w/oe
TJ.Tstg
-65 to +115
De
Derate Above 25°C
Operating and Storage Junction
Adc
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
FIGURE 1 - POWER DERATING
56
~
""
~
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLL£CTOR
......
.......
48
DIM
.......
40
........
z
A
B
C
0
0
~
iii
0
'"~
Ie
~
32
.......
24
.........
E
16
........
8.0
o20
F
G
H
J
K
.......
......
.......
Q
30
40
50
60
70
80
90
TC. CASE TEMPERATURE (OC)
100
110
6
120
R
MILLIMETERS
MIN MAX
-
(NCHES
MIN
MAX
39.37
1.550
0.830
21.08
7.62 0.250 0.300
1.09 0.039 0.043
3.43
0.135
.29.90 30.40 1.177 1.197
10.67
11.18 0.420 u.44O
5.33
5.59 0.210 0.220
16.64 17.15 0.655 0.675
11.18 12.19 0.440 0.480
3.64
4.09 0.151 0.161
26.67
1.050
Collector connected to case.
eASE 11
6.35
0.99
BU108, MJ3480
(continued)
ELECTRICAL CHARACTERISTICS (Tc = 250 C unl ..s otherwise noted.)
I
I
Characteristic
Symbol
I
Min
Typ
Max
750
700
-
-
-
-
1.0
1.0
.-
-
1.0
-
-
5.0
-
-
1.5
200
-
-
-
7.5
-
-
125
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
IIC = 10 mAde, IB = 0)
Collector Cutoff Current
(VeE
IVeE
= 1500 Vde,
= 1300 Vde,
VBE
VBE
= 5.0 Vde,
mAde
ICES
= 0)
= 0)
BU108
MJ3480
Emitter Cutoff Current
IV BE
Vde
VCEOlsus)
BU10B
MJ3480
mAde
lEBO
= 01
Ie
ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
IIc
= 4.5
Ade, IB
Base Emitter Saturation Voltage
IIC
= 4.5 Adc,
IB
Vde
VeElsat)
= 2.0 Ade)
Vde
VBElsat)
= 2.0 Ade)
Second Breakdown Collector Current with Base
Forward Biased
(t = 1.0 s, VCE = 100 Vde)
mAde
ISlb
DYNAMIC CHARACTERISTICS
Output Capacitance
IVCB
= 10 Vde,
IE
MHz
IT
Current-Gain - Bandwidth Product (2)
IIC = 0.1 Ade, VCE = 5.0 Vde, f tes! = 1.0 MHz)
Cob
= 0, f = 0.1
pF
MHz)
SWITCHING CHARACTERISTICS
Fall Time
IIC = 4.5Ade,IBl
= 1.8 Ade,
LB
= 10l'H, See
Figure 2)
111
Pulse Test: Pulse Width 300 I'S, Duty Cycle", 2.0%
(2) fT = Ihfel - f test
FIGURE 2 - TEST CIRCUIT
100
lOW
LF
8 mH
+80 V
1.0I'F~
0.0051'F
1.5 k
CR
251'F
II
Ly
250l'F
150 V
MR11600
Cs
20l'F
600 V
Vjn
51
300
51
RB
500l'F
15 V
DRIVER TRANSFORMER ITl)
Ly
mH
IC
Motorola part number 25D68782A05-1/4" laminate "E" iron
core. Primary 1nductance-39 mH, Secondary I nductance-O.22 mH,
Leakage inductance with primary shorted-2.0 J.LH. Primary 260
A
turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG
enamel wire.
3.5
18
2.5
0.0133
4.5
1.0
2.5
0.02
TEST CIRCUIT OPTIMIZATION
transistor that is of fundamental importance. Once the required
transistor operating current is determined, fixed circuit values
may be selected from the table. Factory testing is performed by
reading the current meter only, since the input power is pro·
portional to current. No adjustment of the test apparatus is required.
The test circuit and operating waveforms for the BU108 and
MJ3480 transistors are shown in Figures 2 and 3. The test circuit
may be used to evaluate devices in the conventional manner, Le.,
to measure fall time, storage time, and saturation voltage. How~
ever, this circuit was designed to evaluate devices by a simple
criterion, power supply input. Excessive power input can be
caused by a variety of problems, but it is the dissipation in the
7
BU108, MJ3480 (continued)
BASIC CONSIDERATIONS
be 8 times the 130-volt power supply voitage or approximately 1000 volts, but may be varied slightly by adjusting retrace time and flyback tuning. For this reason, high
voltage devices are particu larly useful in cost conscious
solid-state receivers as they permit the use of an off-theline half wave power supply.
The power supply used in the circuit of Figure 2,
was chosen to produce approximately a 1000 V collector
pulse on the transistor, a conservative value, recommended
for unregulated applications_
The values of yoke inductance (L V). flyback primary
inductance (LFl. retrace capacitor (CR) and "S" shaping
capacitor (CS) are shown for operating collector currents
of 3_5 A which is suitable for 900 color and 1100 large
screen black and white receivers, and 4.5 A for 1100
color receivers_ Peak collector currents to 10 A may be
handled by these transistors. The most efficient application results when the power supply voltage is held constant_ Adjustments of the amount of deflection can then
be 'made by raising or lowering Ly and LF. Lyly is constant for the fixed voltage situation, and actual deflection
is proportional to IYJIY. Values of Cs and CR must
be varied inversely with Ly to maintain retrace and "s"
shaping periods.
.
,
The primary consideration when choosing a deflection
transistor for a conventional (parallel·connected) circuit,
as shown in Figure 2, is voltage capability. The flyback
voltage that the device will be subjected to is a relatively
predictable value with respect to the main power supply
voltage. This voltage pulse, shown in Figure 3, will usually
FIGURE 3 - TEST CIRCUIT WAVEFORMS
TEST CIRCUIT VALUES
The driver power supply and driver transistor type
can be selected according to convenience. A TO-5 or
plastic power type will generally be needed. For testing
convenience, the Darlington arrangement of the driver
transistor shown in Figure 2 was used to produce a wide
range of IB1 current values. Once the driver circuitry is
chosen, the turns ratio of the driver transformer can be
selected to produce 4 to 5 volts peak-to-peak at the base
of the output device. Tight coupling between windings is
recommended on early designs to allow optimizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The
RB and its bypass electrolytic, often called the "speed
up" circuit, allows adjustment of IB 1 (or IB "end of scan"
or IB end) while still providing a low AC impedance for
good turn-off of the output device.
In Figure 4, the effects of varying LB and IB1 on
total power input to a deflection circuit requiring an IC
of 4.5 A are shown. Note that an optimum LB can be
found which will produce low dissipation over a wide
range of' IB1. This is desirable in order to produce efficient operation over a wide range of circuit component
tolerances. Likewise, best LB also gives the least sensitivity to output transistor hF E.
The best value of LB found in Figure 4 is 12 MH. This
is the sum of the actual leakage inductance of the driver
transformer (secondary inductance with primary shorted)
and an external L if necessary. The value of IB1 is approximately 1.75 A achieved in a typical device by using
RB ~ 2.3 n, which was derived experimentally. These
are the choices recommended for the test fixture when
the transistor is used at ICM = 4.5 A.
Fundamental waveforms of a simplified horizontal
deflection cirCUit.
FIGURE 4 - RELATIONSHIP OF POWER DISSIPATION
TO LB WITH CHANGING IBVICM = 4.5 A
IS
171\
g«
~
z
17
0
;::
~
ill
16
~.
Ii:
,\
\\
~712 1\ \
i5
'"
~
14
./
15
~
14
0.5
7.6
\
LS" 2.0"H
/
/
r\.
J
~\
"- /
\1\\\ 'v ~ ....:..,/ ....~ ~ t:><
-..,
5.9'- ~"'"
1.0
-~
1.5
--
2:0
......
~
2,5
IB, BASE CURRENT (AMP)
8
BU108, MJ3480 (continued)
Today many TV receivers operate with an leM of
approximately 3.5 A. Figure 8 shows the relationship of
power dissipation to LB. with changing IB1. when Ie of
3.5 A is required.
The best value of LB. found in Figure 9 is 22 .uH. This
value is the sum of the driver transformer leakage induct·
ance and an external inductance if necessary. The best
value of IB1 is approximately 1.15 A. with an RB of
3.2 n. These are the choices recommended for the test
fixture when the transistor is used at I eM = 3.5 A.
For other values of leM the drive circuit components
must be changed. Figures 5. 6 and 7 show the values of
LB and IB1 which should be used. The value of RB which
will be required to produce the corresponding IB1 is also
given. but. it is not an independent variable.
PERFORMANCE
Shown in Figures 9 and 10 are the typical results that
will be obtained with the test circuit at various operating
conditions.
INTERRELATION OF BASE RESISTANCE.
BASE INDUCTANCE AND
BASE CURRENT
FIGURE 5 - OPTIMUM BASE RESISTANCE
FIGURE 6 - OPTIMUM BASE INDUCTANCE
0
4.0
f""....
~ 3.5
S
f'.....
w
~
5['....
~
3.0
~
~
2. 5
~
2,0
I'-.
t....."
0
~
r----....
i'-..
~
5
...............
~
..............
f'...
f'..,.
...........
1""''50
30
1.5
3.5
3.0
4.0
4.5
5.0
35
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)
ICM. COLLECTOR CURRENT (AMP)
FIGURE 8 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IB1.ICM = 3.5 A
FIGURE 7 - OPTIMUM BASE CURRENT
2.0
./
ii:' 1.75
15
V
LB
iilf-
,/'
'"
~
~
/'
f-
~ 1.50
>=
~
/V
~ 125
V
0.75
3.0
~
'"
~
/'
1.0
13
c;
./
;;'i
~
j
12
11
3.5
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)
5.0
9
5.9
V
.L.
V
V /
II'y. '/
~
7.6
12
~
0iJ [K
~
~
/
2.0"H
V V V r-
0
110
~
/
14
z
./
'"
~
5.0
19
27
"'>c:::
-22
o
1.0
1.5
lB. BASE CURRENT (AMP)
2.0
25
BU108, MJ3480 (continued)
FIGURE 9 - INTERRELATION OF tf. FALL TIME
AND ts. STORAGE TIME
2.2 5
1.1 5"""-
-- --
1
r--
5
0.7 5
~
FIGURE 10 - EFFECT OF COLLECTOR CURRENT
ON INPUT POWER
-
ts
r---....
8.0
VCEIM
;::
6.0 ~
3
o
t;
2
4.0 $
./'
1~
2.0
5.0
3.5
4.0
4.5
ICM. COLLECTOR CU RRENT (AMP)
.......- ......-
9.0
3.0
~
5.0
FIGURE 12 - "ON" VOLTAGES
1.2
""- .'-
25 0 C
10
VCE =S.O V
r-
I
z
7.0
"
/
1.4
TJ =100 0 C
5.0
en
c:;
1.0
~
w
0.8
o
I'"\
<.>
g
L
V
3.5
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)
FIGURE 11 - DC CURRENT GAIN
20
iii
g§
1000 IV
w
:E
0
0.2 5
3.0
<
'">-
=
]
.'"
tf
-
7
6
'"~
0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)
2.0
3.0
VCE(sat)@ IC/IS - 2
0.05 0.07 0.1
5.0
I-'"'V
i-"""100 oC
/
1
10~OC
>
O. 2
=-Ltsoc ~ ....: /
1--""
0.6
o
2.0
0.05 0.07 0.1
=.:- r--
,; 0.4
\
3.0
VBE(sat)@ IC/IS
o
'\.
~
1
TJ
/
.A'
·Jsoc i,..---"
0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)
2.0
3.0
5.0
FIGURE 13 - ACTIVE REGION SAFE OPERATING AREA
10kf~ J1 1~ :j!i!;li!lIl!l!j !ili !l~! f1
S.Ok
®
d';O.OS
10 0
8
0} 10 0
/'
B
IL
/'
ffi
V
./
BU10B - VCB = 1500 Volts
'" 3D0 - MJ3480 - VCB = 1300 Volts
.;,
I-
1.0 k
~ ov
25 0lC
./'
/
./
8
10- 1 REVERSE
-01
~
FORWARD
+0.1
+0.2
+0.3
+04
VBE, BASE·EMITTER VOLTAGE (VOLTS)
+0.5
+0.6
50
o
20
40
SO
TJ, JUNCTION TEMPERATURE (OC)
FIGURE 17 - CAPACITANCE
20 k
10 k
TJ
50k
:e 2V
25°C
-Gib
k
~ 1.0 k
;::
G
;t
~
-
500
200
100
0
Cob
_.
r-
20
0.5
10
20
5.0
10
20
50
100
VR REVERSE VOLTAGE (VOLTS)
11
200
500
80
100
MA202, MA206 (GERMANIUM)
Germanium PNPtransistor designed for high-voltage
applications in the audio frequency range, such as neon
driver, solenoid or relay driver applications.
{).\
CASE 31(1)
(TO-5)
,
All I•• ds isol.ted ,from cas.
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
MAXIMUM RATINGS (TA
= 250 C unless otherwise noted.)
Rating
Symbol
MA202
MA206
Collector-Base Voltage
VCB
105
SO
Vdc
Collector-Emitter Voltage
VCE
105
SO
Vdc
Emitter-Base Voltage
VEB
10
Collector Current
IC
Emitter Current
Unit
10
Vdc
200
mAdc
mAdc
IE
200
Operating and Storage Junction
Temperature Range
TJ,Tstg
-65 to +100
°c
Thermal Resistance
R9JA
0.5
°C/mW
Po
150
2.0
mW
mW/oC
Collector Dissipation @TA = 25 0 C
Derate above 250 C
ElECTR ICAl CHARACTER ISTICS (T A
= 250 C unless otherwise noted.)
Symbol
Characteristic
Collector-Base Cutoff Current
(VCB = 105 V, IE = 0)
(VCB = SO V, IE = 0)
ICBO
Min
Typ
Max
Unit
12
12
50
50
5.0
14
/LA
/LA
Collector-Base Cutoff Current
(VCB = 2.5 V, IE = 0)
ICBO
-
Emitter-Base Cutoff Current
(VEB = 10 V, IC = 0)
lEBO
-
3.0
50
/LA
Collector-Emitter Saturation Voltage
(lc = 5.0 mAdc, IB = 0.25 mAdc)
VCE(sat)
-
0.11
0.35
Vdc
Base-Emitter Saturation Voltage
(lc = 5.0 mAdc, IB = 0.25 mAd c)
VBE(sat)
-
0.22
0.40
Vdc
20
40
-
-
DC Current Ga.in
(lc = 5.0 mAde, VCE
MA202
MA20S
hFE
= 0.35 Vdc)
MA20S
MA202
DC Collector-Emitter Punch-Through Voltage
(VCB necessary to obtain VEB of -1.0 V max,
using instrument with Zin > 11 M.I1 to
MA202
measure VBE)
MA20S
VPT
Small-Signal Short-Circuit Forward Current Transfer
Ratio Cutoff Frequency
(VCB = S.O Vdc, IE = 1.0 mAdc)
fOb
12
-
-
Vdc
105
-
60
-
-
1.0
-
MHz
MA202,MA206 (continued)
DC CHARACTERISTICS
(TJ= 25°C unless otherwise noted)
"ON" VOLTAGES
CURRENT GAIN
200
II
TJ
I
VeE~
IV
100
z
~
>;
!
TJ
-
50
1
06
IIIIIII
100°C
·
~
-
wc
~
~
~J ~I~ssoc
~
20
1\
10
0.5
1.0
2.0
5.0
10
20
50
100
~
....
o
200
1.0
"..
20
5.0
1.~I\mA
~
;
~
~
160
f//
'1/
120
80
.!J
40
-;"
/. ,-
!J./
,.,
~
12
I
-
10
rOly
~
50
20
100
200
V
/
8
OIOV
/
6
~
V
/'-'"
-
".
./
Z
0.4
/
COLLECTOR HIGH VOLTAGE REGION
~ rnA
02
10
olO~
Ie. COLLECTOR CURRENT ImAI
COLLECTOR SATURATION REGION
~
VCEl.at)@IC/IB
.....
Ie. COLLECTOR CURRENT ImAI
200
f1' I II
V
0.2
}
'\~
02
vrur
ffi
~
J
I I II
0.4
:::
1-' .. -
0.1
I
06
08
o
o
10
,...,...
V
i-- ..-
m
m
O~
I
I
I
..:vI/
004V
I
0.02 V
I. I
..J,../:/
w w
~
7V'~ ~O
m
~
VeE. COLLECTOR·EMIITER VOLTAGE (VOLTSI
VeE. COLLECTOR·EMITTER VOLTAGE IVOLTSI
13
~
m
~
MA4404, MA4404A (GERMANIUM)
PNP GERMANIUM SWITCHING TRANSISTORS
PNP GERMANIUM
SWITCHING
TRANSISTORS
.. designed for medium·speed saturated switching and chopper
applications.
•
Low Coliector·Emitter Saturation Voltage VCE(sat) ~ 0.2 Vdc (Max) @ IC = 24 mAde
~ 0.25 Vdc (Max) @ IC = 200 mAde
•
High Ern Itter-Base Breakdown Voltage @ IE = 100/lAdc BVEBO = 12 Vdc (Min) - MA4404
~ 25 Vdc (Mm) - MA4404A
MAXIMUM RATINGS
Symbol
MA4404
MA4404A
VCES
24
35
Collector-Base Voltage
VCB
25
40
Vdc
EmItter-Sase Voltage
VEB
12
25
Vdc
Rating
Collector-Emitter Voltage
Collector Current-Continuous
Total Power Dlsslpation@TA"'250C
= 2SoC
IC
350
mAde
200
2.67
mW
mW/oC
PD
300
4.0
mW
mW/oC
Derate above 2SoC
Operating and Storage Junction
Vdc
PD
Derate above 2SoC
Total Power DISslpatlon@ TC
Unit
TJ.Tstg
-
-65 to +100 ---.-..
MA4404
MA4404A
°c
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction
to Ambient
ReJA
375
°CIW
Thermal Resistance. Junction
ReJC
250
°CIW
to Case
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
-10 V
+5.0V
1.0 k
390
10",F
:,-::1£
GENERATOR
<20 ns
tf<20 ns
tr
tw~5.0,",s
Duty Cycle
< 2.0%
T-
n
Output
5.0 k
OSCI LLOSCOPE
tr
<15 ns
Rin;;a: 10 Megohms
Cin ~7.0 pF
AlIJEDECdlm.nslonsandnotlSapply.
CASE 31-03
TO·S
14
MA4404, MA4404A
(continued)
ELECTRICAL CHARACTERISTICS IT A
<
250 C unless otherwise noted)
Characteristic
Min
Symbol
TV.
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
Vdc
BVCES
MA4404,
MA4404A
(Ie = 100J,lAdc, 18 = 0)
Collector-Base Breakdown Voltage
(Ie = 20 ,u.Adc, Ie = 0)
24
35
Vdc
BVCBO
MA4404,
MA4404A
25
40
Emitter-Base Breakdown Voltage
Vdc
BVEBO
MA4404.
MA4404A
(Ie = 100 /.lAde. Ie'" 0)
12
25
Collector Cutoff Current
(Vea = 12 Vdc, Ie = 0)
.,Adc
leBO
10
500
(Ves = 12 Vdc, Ie '" D, TA '" BOOC)
Emitter Cutoff Current
(VES = 2 5 Vdc, Ie'" 01
",Adc
lEBO
0.5
5.0
ON CHARACTERISTICS
DC Current Gain
hFE
tiC = 12 mAde, VeE = 0.2 Vdcl
(Ie = 24 mAde, VeE = 0.2 Vdcl
80
70
30
24
Collector-Emitter Saturation Voltage
Vdc
VeE(sat)
0.09
0.09
(Ie = 12 mAde, IS = 0.4 mAde)
(Ie = 24 mAde, IS = 1.0 mAdel
(Ie"" 200 mAde, IS = 20 mAdel
Sase-Emitter Saturation Voltage
(lC"" 12mAdc,IB=04mAdcl
(lc"" 24 mAde, 18 "" 1.0 mAde)
0.20
0.13
0.20
0.25
027
0.30
0.40
Vdc
VSE(satl
0.38
SMALL·SIGNAL CHARACTERISTICS
Alpha Cutoff Frequency
(IE'" 1.0 mAdc, Ve8: 6.0 Vdc)
MHz
fhfb
1.0
Output Capacitance
{Ves '" 6.0 Vdc, IE '" 0, f = , 0 MHz}
20
pF
Cob
MA4404
(Ves '" 6 0 Vdc, IE '" 1.0 mAde, f '" 2.0 MHz)
25
MA4404A
4.0
25
Input Impedance
{Ie"" 1.0 mAdc, VCE "" 6.0 Vde, f "" 1.0 kHz}
h,.
4.0
kohm
Voltage Feedback Ratio
(Ie"" 1.0 mAdc, VCE "" 6.0 Vdc, f '" 1.0 kHz)
h,.
8.5
Xl0-4
Smail-Signal Current Gain
(Ie"" 1.0 mAde, VeE = 6.0 Vde, f'" 1.0 kHz)
hf.
145
Output Admittance
(Ie = 1.0 mAdc, VCE = 6.0 Vdc, f = 1.0 kHz)
hoe
50
~mhos
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
(Vee = 10 Vdc,IC~ 10 mAdc)
VSE(oft) = 50 Vdc, ISl ~
1 0 mAdcl (Figure 1)
Storage Time
Fall Time
(Vee'" 10 Vde, IC~ 10 mAde,
ISl = 182 ~ 10 mAde)
{Figure 1}
Total Control Charge (Figure 2)
MA4404
Id
0.13
MA4404
I,
040
MA4404
I,
110
MA4404
If
060
MA4404
°T
3000
.,.'
3600
.'
.'
pC
FIGURE 2 - TOTAL CONTROL CHARGE TEST CIRCUIT
Capacitor C, is adjusted to a minimum
value whJch will produce a turn-off waveform simllar to the one shown where
-6.0 V
Cl
C, "" Copt.
TURN-OFF WAVEFORM
560
QT = Copt V ln
0 .0 " .
C, - Copt
_:.~VIn
~,
TIME-
OSC I L LOSCOP E
GENERATOR
tr
t r <20 ns
tf <20 ns
':'
A ln
<;'5
ns
~'O Megohms
Cin ~7.0 pF
t w >5.0IJ.s
Dutv Cvcle <2.0%
15
MACS
MAC6
SERIES
(SILICON)
SERIES
TRIACS
(THYRISTORS)
SILICON BIDIRECTIONAL THYRISTORS
10 AMPERES RMS
.. designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies;
25 THRU 600 VOLTS
or wherever full-wave silicon gate controlled solid-state devices are
needed. Triac type thyrostors switch from a blocking to a conducting
state for either polaroty of applied anode voltage with positive or
MAC 5
negative gate triggering.
•
Glass Passivated Junctions
•
Low "on" Voltage - VTM
•
Four Mode and Isolated Stud Versions Available
(2N6139 Series)
=
1.3 V (Typ) @ 14 A Peak
flf~
f- ~,!. ~,
§
~~
MAXIMUM RATINGS
Rating
Symbol
Repetitive Peak Off-State Voltage (1)
ITJ
= 1000 CI
MACS and MAC6
-1
-2
-3
-4
-S
-6
-7
-8
On-State Curren' RMS ITC = 7SoCI
Peak Surge Current
lOne Full cycle, 60 HZ,Tr -40 to +1000 CI
Circuit Fusing Considerations
ITJ = -40'0 +1000
Value
Unit
Volts
VDRM
2S
SO
100
200
300
400
500
600
STYLE 2.
PIN I. GATE
2. MAIN TERMINAL!
STUD:,MAIN TERMINAL 2
CASE 86
10·J2UNf.ZA
MIlliMETER
INCHE
DIM MIN
MAX
11.10
0.437
A
7.87
0.310
C
1.78TYP
0.070TYP
F
2.29
2.79 0.0900.110
G
1
11.48 0.422 0.452
16.16
0.660
15.49
0.610
NOTE:
1. DIM "G" MEASURED AT CAN.
MAce
ITIRMSI
10
Amp
ITSM
100
Amp
12,
40
A 2s
~
.---:
. .
p
L+
I'
N
e, t = 1.0 to 8.3 msl
Peak Gate Power
Average Gate Power
Peak Gate Current
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque, MACS
(1) Ratings apply for open gate conditions.
PGM
10
Watts
PGIAVI
O.S
Watt
IGM
2.0
Amp
TJ
-40,0 +100
Tstg
-
-40'0 +lS0
°e
°e
lS
In.
lb.
Thyristor devices shall not be tested
With a constant current source for blocking capability such that the voltage
applied exceeds the rated blocking voltage.
STYlE 2:
PIN 1. GATE
2 MAIN TERMINAL!
3. MAIN TERMINAL 2
DIM
MILLIMETERS
MI.
AX
10.92
8.
5.97
0.16 0.86
5.33
2.79
33.53
3t.50TYP
165 1.91
22'
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance, Junction to Case
eJC
2.0
°C/W
Thermal Resistance, Case to Ambient
eCA
SO
°C/W
Characteristic
16
3.43
457
3D
CASE 87l
3.68
5.0B
.,N
INCHES
MAX
0.430
0.2
0.030
.1
D.D9
I.
1.2
"'
0.1
0.180
1.2
NOTES
1. DIM "G" MEASURED AT CAN
2 LEAD NO 3 *7.50 DISPLACEMENT.
MAC5 series, MAC6 series (continued)
ELECTRICAL CHARACTERISTICS 1Te = 25 0 e unless otherwISe notedl
Symbol
Min
Typ
Max
Unit
IORM
-
-
2.0
mA
VTM
-
1.3
1.8
Volts
IGT
-
-
50
mA
Gate Trigger Voltage, Continuous de
Main Terminal Voltage = 12 Vdc, RL == 100 ohms
MT21+)GI+); MT21-)GH
VGT
-
10
2.5
Volts
Gate Trigger Voltage, Continuous de - All Modes
Main Terminal Voltage = Rated VORM. RL == 100ohms. T J == lOOoe
VGO
0.2
-
-
Volts
IH
-
-
50
mA
ton
-
1.5
-
M'
dv/dt
-
5.0
-
VIM'
Characteristic
Peak Blocking Current (Either Direction)
Rated VORM @ TJ = lOOoe. Gate Open
On-State Voltage (Either Direction)
ITM = 14 A Peak
Gate Trigger Current, Continuous de
Main Terminal Voltage == 12 Vdc, RL == 100 ohms
MT21+)GI+); MT2HGH
Holding Current (Either Direction)
Main Terminal Voltage == 12 Vdc, Gate Open,
Initiating Current = 100 rnA
Turn-On Time
ITM = 14 Ade. IGT
= 100 mAde
Blocking Voltage Application Rate at Commutation
@ VORM. T J = 75 0 e. Gate Open
QUADRANT DEFINITIONS
Trigger devices are recommended for gating on Triacs. They provide:
MT2(+)
QUADRANT II
QUADRANT I
MT21+1. GH
MT21+1. G(+)
1. Consistent predictable turn-on points.
2. Simplified circuitry.
3. Fast turn-on time for cooler, more efficient
and reliable operation.
ELECTRICAL CHARACTERISTICS of RECOMMENDED
BIDIRECTIONAL SWITCHES
GH - - - - - - - + - - - - - - - G ( + )
QUADRANT III
QUADRANT IV
MT2H. GI-I
MT21-1. GI+I
General
USAGE
PART NUMBER
MBS4991
V<:
6.0 -10 V
IS
350 IJA Max
0.5 V Max
VSl -VS2
Temperature Coefficient 0.02%/ o
Lamp Dimmer
MBS4992
7.5
~
9.0 V
MBSloo
3.0 - 5.0 V
120 MA Max
100 - 400 MA
0.2 V Max
0.35 V Max
e Typ
See AN-526 for Theory and Characteristics of Silicon Bidirectional Switches.
MT2H
17
MAC5 series, MAC6 series
...
(continued)
-
FIGURE 1 - AVERAGE CURRENT DERATING
100
u
~
'"
90
"''"=>
t-
~
illt-
3"'
<3
t-
100
80
~
.....
l~ ~ ~ ~
'\ ~ ~ ~
30
0
0: ""
60 0
I
~
70
~
~~
90
":::::::
"''"
:>
150 0
~
-I.
<3
70
.........
1800
~
-I.
t-
a- CONDUCTION ANGLE
60
o
=
~
~
~
30 0
/;0 0_
-...;::. t:-<:",
0:
w
1800
s:::::----...
80
ill
t-
a-C01DUcT1DN ANTLE
60
::::::::::: ~ :---...
t-
r-;~ t-120 0
90 0
FIGURE 2 - RMS CURRENT DERATING
20
4.0
6.0
8.0
10
o
I
I
I
2.0
4.0
6.0
B.O
ITIAV),AVERAGE ON·STATE CURRENlIAMP)
ITIRMS), RMS ON·STATE CURRENT lAMP)
FIGURE 3 - POWER DISSIPATION
FIGURE 4 - POWER DISSIPATION
10
16
g 12 --~
-I.
lJOO
120 0
'"
~
'"~
a:
"''"
-
.-300
8.0
~>
'":;;
~
;OO~
.-CONOUCTION ANGLE -600
.,
/'~
V0"
~~
4.0
~
L
"
~~
~
~
o
o
2.0
4.0
6.0
10
8.0
2.0
ITIAV), AVERAGE ON·STATE CURRENT lAMP)
3.0
§
N
2.0
'"o
~
"''"
o~
1.0
>
ffi
'"
'"t-
----
::;
'"~
'",.:
>'"
10
3.0
2.0
-..........
0
~
VTM-12V
_ _ RL-l00"
t-
~
=>
-
ir
w
to<
B.O
N
::;
~
6.0
FIGURE 6 - TYPICAL GATE TRIGGER CURRENT
FIGURE 5 - TYPICAL GATE TRIGGER VOLTAGE
ffi
4.0
IHRMS), RMS ON·STATE CURRENT lAMP)
1.0
r--.. ---....
'"'
'"w
'"
'"
ir
VTM-12V
RL -100"
......
~ 0.5
O.S
!;;:
0.3
-50
-
..........
......
'",.:
-25
+25
+50
+75
!E 0.3
-50
+100
TJ,JUNCTION TEMPERATURE 10C)
-25
+25
+50
TJ,JUNCTION TEMPERATURE 10C)
18
+75
+100
MAC5 series, MAC6 series
(continued)
FIGURE 7 - MAXIMUM ON·STATE CHARACTERISTICS
60
50
'/'
.d- ......
30
~
20
FIGURE 8 - TYPICAL HOLOING CURRENT
3.0
~
N
~
/
ffi
,.
25°C
§
70
~
5.0
0
I
-
~N~~~A~~~~
CURRENT" 100 mA
APPLIES TO EITHER DIRECTION
-25
+25
+50
+75
+100
TJ.JUNCTION TEMPERATU RE 10C)
I
=>
u
'"~
.::::::::::,
0.5 -VTM"12V
0.3
-50
II
~
-.....
"~
I I
5:
1.0
'"'"=>
u
'"z
10
0::-
~
0
~
I-
~
TJ" 100 0CiJ
"
20
'"
~
1
1 I
3.0
~
III
z
~ 2.0
.t:-
II
0
FIGURE 9 - MAXIMUM ALLOWABLE SURGE CURRENT
I
~
BO
~
60
5:
o. 7
0.5
.......
r-
-
-r-r-
r- t'--,
=>
u
'">
'I
'"as
II
'"in
'"~
I
0.3
I
I I
0.2
---
100
0.5
40
TJ" -40 to +100 0 C
20
t---
fi 6oH ,
a
1.0
1.5
2.0
2.5
3.0
3.5
4.0
1.0
2.0
4.0
3.0
5.0
6.0 7.0 B.O
10
NUMBER OF FULL CYCLES
VTM. ON·STATE VOLTAGE IVOLTS)
FIGURE 10 - THERMAL RESPONSE
a
'"~
~
~-
~o
o. 5
o. 3
-
I--"
o. 2
~
~~
f5:i o. 1
"",
1-'"
1- 0
~o.o 5
ffi
~
~
0.03
I-
0.0 2
0.0 1
0.1 x 10-3
O.h 10-3
1 x 10-3
3 x 10- 3
10 x 10-3
0.03
t. TIME lsi
See AN-292 for details on using transient thermal response curve.
19
0.1
0.3
1.0
3.0
10
MAC 10-1 thru MAC 10-8 (SILICON)
MAC11-1 thruMAC11-8
o~
TRIACS
(THYRISTORS)
10 AMPERES RMS
SILICON BIDIRECTIONAL THYRISTORS
25 THRU 600 VOLTS
· .. designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies;
or wherever full·wave silicon gate controlled solid·state devices are
needed. Triac type thyristors switch from a blocking to a conducting
state for either polarity of applied anode voltage with positive or
negative gate triggering.
• All Diffused and Passivated Junctions for Greater Parameter Uni·
formity and Stability
• Small, Rugged, Thermopad Construction for Low Thermal
Resistance, High Heat Dissipation and Durability
• Gate Triggering Guaranteed in Two (MACll) or Four Modes
(MAC10)
MAXIMUM RATINGS
Rating
Symbol
Repetitive Peak Off-State Voltage, Note 1
-1
(TJ'I00o CI
-2
-3
-4
MAC10/ll
-5
-6
-7
On-State Current RMS (TC
=750 CI
lOne Full cycle, 60 Hz, T J
=-40'0 +100o C)
Circuit Fusing Considerations
ITJ =-40 '0 +1 OOoC, ,= 1.0 '0 8.3 msl
Peak Gate Power
Average Gate Power
. Unit
Volts
25
50
100
200
300
400
500
600
-8
Peak Surge Current
Value
VDRM
IT(RMSI
10
Amp
ITSM
100
Amp
12,
40
A2s
PGM
10
Watts
PGIAV)
0.5
Watt
Peak Gate Current
IGM
2.0
Amp
Oper,ating Junction Temperature Range
TJ
-40'0+100
Ts,g
-40 to +150
°c
°c
Storage Temperature Range
Mounting Torque (6-32 Screw), Note 2
-
in. lb.
B
STYLE 4:
PIN 1. MT 1
2. MT2
3. GATE
DIM
A
B
C
D
NOTES,
1. Ratings apply for open gate conditions. Thyristor devices shall not be tested
with a constant current source for blocking capability such that the voltage
applied exceeds the rated blocking voltage.
2. Torque rating appl ies with use of torque washer (Shakeproof WD 19522 #6
or equ iva lent) . Mounting torque in excess of 8 in. Ibs. does not appreciably
lower case·to-sink thermal resistance. Anode lead and heatsink contact pad
are common.
For soldering purposes (either terminal connection or device mounting). soldering temperatures shall not exceed +2000 c. For optimum results, an activated
flux (oxide removing) is recommended.
20
F
G
H
J
K
M
Q
R
U
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51 3.76
4.22 BSC
0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
·0.166 BSC
0.105 0.115
"0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255
2.67~
0.813
15.11
90
4.70 4.95
1.91 2.16
6.22 6.48
CASE 90·05
NOTE:
1. LEADS WITHIN .005" RAD OF TRUE
POSITION (TPI AT MMC
MAC10-l thru MAC10-8/MACll-l thru MACll-8 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
IDRM
-
-
2.0
mA
On-State Voltage (Either Direction)
ITM = 14 A Peak
VTM
-
1.3
1.8
Volts
Gate Trigger Current, Continuous de
IGT
-
50
-
-
75
-
0.9
2.0
-
Characteristic
Peak Blocking Current (Either Direction)
Rated V DRM @ T J = l000C, Gate Open
mA
Main Terminal Voltage = 12 Vdc, RL = 100 ohms
MT2(+)G(+); MT2HGH
MAC10, MACll
MT2(+)G(-); MT2HG(+)
MAC10
Gate Trigger Voltage, Continuous de
Volts
VGT
Main Terminal Voltage = 12 Vdc, RL = 100 ohms
MT2(+)G(+); MT2HGH
MAC10, MACll
MT2(+)G(-); MT2(-)G(+)
1.0
2.5
VGD
0.2
-
-
Volts
IH
-
-
50
mA
ton
-
1.5
-
j.lS
dv/dt
-
5.0
-
V/j.ls
Thermal Resistance, Junction to Case
8JC
-
°CIW
eCA
-
2_0
Thermal Resistance, Case to Ambient
50
°CIW
MAC10
Gate Trigger Voltage, Continuous de - All Modes
Main Terminal Voltage = Rated VDRM, RL = 100ohms, TJ = 100°C
Holding Current (Either Direction)
Main Terminal Voltage = 12 Vdc, Gate Open,
Initiating Current = 100 mA
Turn-On Time
ITM = 14 Adc, IGT = 100 mAde
Blocking Voltage Application Rate at Commutation
@ VDRM, T J
= 75°C, Gate Open
MBS4991/MBS4992
Recommended for Triac Triggering
Triggers Provide:
1. Consistent predictable turn-on points.
2. Simplified circuitry.
3. Fast turn-on time for cooler, more efficient and reliable
operation.
Electrical Characteristics
Symbol
VSIS
VSl
~
VS2=
MBS4991
MBS4992
6 10V
7.5 9.0 V
350j.lA Max
120 j.lA Max
0.5 V Max
0.2 V Max
Temperature Coefficient = 0.02%/ o C Typ
(For light dimmer applications the MBS100 is recommended)_
See AN-526 for Theory and Characteristics of Silicon Bidirectional
Switches.
21
MAC10-1 thru MAC10-8/MAC11-1 thru MAC11-8 (continued)
FIGURE 1 - AVERAGE CURRENT DERATING
100
~
w
I~ ......
'"
90
'":0
I-
~
15
~
ex= 30
0
70
0
1"( ~ ~ ~
--
16
~
I«
~
12
'"~
~
w
to
900
'"
:0
,,~
120 0
t-....
150 0
~
BO
a'"
w
lBOo
.~
oj
70
I-
0_
'i::. K'-...
15
I-
0
..........
t80 0
iJ\y
-I
Q
~
•
.-C~NDUCiION A~GLE
60
o
2.0
4.0
6.0
B.O
-
·0
10
2.0
6.0
4.0
B.D·
IT(AV), AVERAGE ON·STATE CURRENT (AMP)
IT(RMS), RMS ON·STATE CURRENT (AMP)
FIGURE 3 - POWER DISSIPATION
FIGURE 4 - POWER DISSIPATION
-iJ\y
lJOO
p~
-I.
.-30 0
B.O
10
120 0
~o
.-CONOUCTION ANGLE -60 0
{/'
/'~ ~
V)0 V
«
ffi
>
«
:;
«
~ ~ t-~ ~ :--....... /;030
I-
-I.
-
~~
90
.- C01DUCTItN AN~LE
60
FlqURE 2 - RMS CURRENT DERATING
w
..;:::: ~
60 0
I
w
~
~~
u
"
iJ\y
BO
I-
5
100
.,
~~
4.0
~
~
L
~
o
a
2.0
4.0
6.0
B.O
10
2.0
IT(AV), AVERAGE ON·STATE CURRENT (AMP)
3.0
0.3
-50
r-- t---
-25
VTM-12V
RL -100 n
+25
+50
+75
6.0
B.O
10
FIGURE 6 - TYPICAL GATE TRIGGER CURRENT
FIGURE 5 - TYPICAL GATE TRIGGER VOLTAGE
3.0
--
4.0
IT(RMS), RMS ON·STATE CURRENT(AMP)
0.3
-50
+100
TJ,JUNCTION TEMPERATURE (OC)
--
r---. i'--
-25
VTM -12 V
RL-l00n
.......
+25
-----
+50
TJ,JUNCTlDN TEMPERATURE (OC)
22
+75
+100
MAC10-1 thru MAC10-8/MAC11-1 thru MAC11-8
FIGURE 7 - MAXIMUM ON-STATE CHARACTERISTICS
60
50
FIGURE 8 - TYPICAL HOLDING CURRENT
~
~
~V
30
./
20
l/
I-
-VTM=12V
GATE OPEN
-INITliTING CURrENT' 100
I II
II
50
~
13'"
I"'
-........
-.....
25°C
I
7.0
:!.
~
........
10
'"
~
(f
TJ = 1000r/,
0:
(continued)
-25
.............
r
+25
+50
+75
+100
TJ,JUNCTION TEMPERATURE lOCI
3.0
t?'"
""
"
I I
/
FIGURE 9 - MAXIMUM ALLOWABLE SURGE CURRENT
I II
2.0
II
.!:"
I
10
0.)
0:
'"
~
'">
"'
I
40
~
20 -
"v;,.
I I
0.5
r-
60
'"
1:'i
I
I
0.2
r--
=>
I
0.3
80
:!.
I II
0.5
--- ----- -- --
100
TJ = -40 to +100 oC
f 60Hz
l
o
1.0
1.5
2.5
2.0
3.0
3.5
4.0
1.0
3.0
2.0
5.0
70
10
NUM8ER OF FULL CYCLES
VTM, ON·STATE VOLTAGE IVOLTSI
FIGURE 10 - THERMAL RESPONSE
1.0
"'
~
~~'"~
~~
ffi
0.5
0.3
«
x"
,.--
0.2
...- ...-
O. 1
1-00
1- 0
~ ~O.05
v;
~
0.03
I-
0.02
:E
0.0 1
0.1,10-3
0,3,10-3
,,10- 3
10,
w-3
0.03
t, TIME
See AN·292 for details on using transient thermal response curve.
23
0.1
lsi
0.3
1.0
3.0
10
MAC37-1 thru MAC37-7
MAC38-1 thru MAC38-7
(SILICON)
SILICON BIDIRECTIONAL THYRISTORS
· .. designed primarily for industrial and military applications for the
control of ac loads in applications such as light dimmers, power supplies, heating controls, motor controls, welding equipment and power
switching systems; or wherever full-wave, silicon gate controlled
solid-state devices are needed.
• Glass Passivated and Center Gate Fire
• 25 Amperes RMS @ TC = 67 0 C
• Isolated Stud Available
TRIAC
(THYRISTORS)
25 AMPERES RMS
25 thru 500 VOLTS
MAXIMUM RATINGS
Rating
Symbol
Repetitive Peak Off-State Voltage (1)
ITJ = 110 0 CI
-2
-3
MAC37
-4
MAC38
-5
Value
Unit
Volts
VORM
25
r'
50
100
200
300
400
500
-6
-7
ITIRMSI
25
Amp
ITSM
225
Amp
12,
210
A2 s
Peak Gate Power (2)
PGM
5.0·
Watts
Average Gate Power
.PGIAVI
0.5
Watt
IGM
2.0
Amp
Operating Junction Temperature Range
TJ
-401o +110
Storage Temperature Range
Tstg
-4010+150
°c
°c
-
30
in. lb.
On-5tate Current RMS
Peak Surge Current
lOne Full cycle, 60 Hz,
TJ = -40 '0 +1100 CI
Circuit Fusing Considerations
ITJ = -40 10 +11 O"C,
I = 1.0 10 8.3 msl
Peak Gate Current (2)
Stud Torque
MAC37
(1)For either directi.on of blocking yoltage. VORM for all typas can be applied on a con-
tinuous de basis without incurring damage. Ratings apply for open gate conditions.
Thyristor devices shall not be tested with a constant current source for blocking capability such that the voltage applied exceeds the rated blocking voltage.
(2)T J = 110o C. 1.0 second maximum duration; 6.0% duty cycle. ITM "" 10 Amp.
THERMAL CHARACTERISTICS
MAC38
Characteristic
Thermal Resistance. Junction to Case
24
MAC37-1 thru MAC37-7/MAC38-1 thru MAC38-7 (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Peak Blocking Current (Either Direction)
Rated VORM @ T J = 1100 C
IORM
-
-
2.0
mA
On-8tate Voltage (Either Oirection)
ITM =35APeak
VTM
-
1.4
1.9
Volts
IGT
-
20
75
mA
Gate Trigger Current, Continuous de (1)
Main Terminal Voltage = 7.0 Vdc, R L = 47 ohms
MT2(+)G(+); MT2HG(-)
mA
Gate Trigger Voltage, Continuous de (11
Main Terminal Voltage "" 7.0 Vdc, R L = 47 ohms
MT21+)GI+); MT2HGI-)
VGT
-
1.0
3.0
Volts
VGO
0.2
-
-
Volt
Holding Current (Either Direction)
Main Terminal Voltage:::; 7.0 Vdc, Gate Open,
I nitiating Current:::: 150 rnA
IH
-
10
75
mA
Turn·On Time
ITM = 25 Adc, IGT = 200 mA
ton
-
1.0
-
1-"
dv/dt
-
100
-
V/~s
Gate Trigger Voltage, Continuous dc - MT2(+) G(+); MT2H GH
Main Terminal Voltage = Rated VORM, RL = l00olims, TJ" l100C
Critical Forward VOltage Application Rate (Exponential Rise
of Voltage)
@VORM,TJ=1100 C, Gate Open
(1)AII voltage polarity reference to main terminal 1.
FIGURE 1 - MAXIMUM THERMAL RESPONSE
1.0
~
wZ
MAC 37
0,5
~~
~~ 0.2
w~
c«
~~ 0.1
MAC 38
~
~~
~
MAC 38
---
~
,.......
8Je· 1.00 eIW MAX
MAC 37
a: 1-0.05
c Z
z!!!
?~
""«
:= 0.02
0.0 1
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
500
1000
t, TIME (ms)
PIN 1 MTl
PIN 1 MTI
2 GArE
CASEMT2
2 GATE
MT2
CAS~
DIM
A
B
C
D
E
F
0505
0475
0380
0068
0065
0090
0510
0097
0800
G
J
K
ri
INCHES
MIN
MAX
0501
0465
0330
0035
0080
J~
9650
.!.~
IS..
-
2040
1400
1650
2290
10670
2280
12950
2460
20320
AIiJEOECdlmenSIClnsBndllolesapplv
CASE 174·02
TO·203
MAC37
CASE 175
MAC38
25
2000
MAC37-1 thru MAC37-7/MAC38"1 thru MAC38-7 (continued)
-"
-
FIGURE 2 - AVERAGE CURRENT DERATING
110
~
'"'
=>
'"
Q
~
70
I-
50
\.
ill
w
:>
-...... .......
1200
900
'"'
W
'"
=>
180 0
~
7
ill
....
50
~
~~
0-
-
4D -
•• CONDUCTION ANGLE
'"=>
a=
0
10
o
5.0
10
20
15
25
o
5.0
"'"" f"...
'\ "'-. ~ -..........: t---.
70
\
50
30
.............
...........
\
100 I----t::s~~:!-.dl-_+-+-+-
"'\ 60
"
SOo
r-...
i"---
~
90~-~~--;~~~~~~--_r--_r--_r--~
~
80~--~~r_~---+~~~~~~~~--_r--~
=>
~ 70
160 0
1200.......
~, 60
ill
0
~
50
5
40
U
....
-10
10 o·CONDUCTION ANGLE
5.0
30~--r_--,r_--,---.--~
20~~---+--_r---r--+--r_~---+-_r~
I
10
15
IOLO--L-~-~-~-~-L--L-~2~0--L-~2·5
25
20
IT (AV), AVERAGE ON·STATE CURRENT (AMP)
IT (RMS), RMS ON-STATE CURRENT (AMP)
FIGURE 6 - POWER DISSIPATION versus AVERAGE CURRENT
40
@
!
~
Ii!
w
600 / .
0~30~ ~
ffi
r
~
~
~
....
«
1800
f---
j;
10
Ii:"
o~
a
30
25
w
20
'"ffi
>
0" CONOOCTION ANGLE
15
«
'>
«
0::
~
5.0
35
'"~
Ii!
./. ~ ~
~P'"
~
>
«
«
90"
o· CONOUCTION ANGLE
20
'"
S
J
1200
-10
'"3;:
FIGURE 7 - POWER DISSIPATION versus RMS CURRENT
40
-J0t+
30
25
FIGURE 5 - RMS CURRENT DERATING
~\a.300
I
~
20
15
10
IT (RMS), RMS ON·STATE CURRENT (AMP)
MAC'38 -
r::::::--
w
~
30 0
r
110 _=---,---,--,--,----,,--.--,---,---,
I~ ~
90
~
ill
I-
I
~ 30
o"CONDUCTION ANGLE
w
I-
-lif.' L?< 0 t.::::
-sht' V ?' "'
"-6~[' V
-10
FIGURE 4 - AVERAGE CURRENT DERATING
~
"':;::; ~ ~
~
IT (AV). AVERAGE ON·STATE CURRENT (AMP)
110
M}C37- ~
IIIIIIIIIII! ~
0
0-
w
-I.
30
0
Q
.............
'-
100
~
U
10
"""-
a=30 0\
~
I-
.......... 1--........... ~ ..........
'\
W
I-
MAL7-
"'-." :::s :::::::::: t--.
90
FIGURE 3 - RMS CURR.ENT DERATING
........
110
10
5.0
0
10
15
20
0
25
2.5
5.0
7.5
10
12.5
15
17.5
IT (RMS), RMS ON·STATE CURRENT (AMP)
IT (AV), AVERAGE ON·STATE CURRENT (AMP)
26
20
22.5
25
MAC37-1 thru MAC37-7/MAC38-1 thru MAC38-7 (continued)
FIGURE 9 - MAXIMUM MULTI-CYCLE SURGE RATING
FIGURE 8 - MAXIMUM ON-STATE CHARACTERISTICS
300
..--~
200
./
TJ = 25°C
/'
100
70
,.
~
~
o
..........
.........
-:;:; ~50C
""
0
.........
0
/
1
30
:--....
0
10
II
2.0
3.0
5.0
7.0
10
20
30
50
70 100
FULL CYCLES AT 60 Hz
'I
10
f'.~
0
Ii
20
w
~Z
,......- .--
1//
50
0::
~
250
~
"'~
7. 0
~
5.0
«
AGURE10-TY~CALHOLrnNGCURRENT
to
~
:;;
"
.!:"
3.
0
3.0
~~ 2. 0
..........
u'"
~E
2. 0
r-..........
",0
;5~ 1. 0
~
,"0
000
1. 0
~~ o. 7
""'-
:::;>-
~§ o. 5
0.7
o
0.5
0.3
'".i=
1.0
1.4
loB
2.2
2.6
3.0
3.B
3.4
4.2
4.6
-
o. 3
o. 2
5.0
~~:c~~~~!llg~~A~EJTERISTICS
-50
50
~
2. 0
0
G
w
'"
'"
~
1. 0
~
o
z
o. 3
-
w
~
'"'"
~
1.0
w
!;;:
I'..
"" f'.,..
t - ~~:c~~7~!llg~!'R~CETERISTICS
o. 2
2. 0
>
~ o. 7
B'N : o. 5
:::;
.0
o
00
w
«
w
'"~
..........
00
- 50
50
100
FIGURE 12 - TYPICAL GATE TRIGGER VOLTAGE
FIGURE 11 - TYPICAL GATE TRIGGER CURRENT
3.
-....
TJ, JUNCTION TEMPERATURE 1°C)
VTM, INSTANTANEOUS ON-STATE VOLTAGE (VOLTS)
~
..........
'"
~:::; o. 5
~
"
o
z
TJ, JUNCTION TEMPERATURE (oC)
f--.
F'"'"
f - ~~:c~~~~~llg~~AWTERISTICS
.3
o. 2
100
-
0.7
50
50
TJ , JUNCTION TEMPERATURE 1°C)
27
100
MAC92·1 thru MAC92·6 (SILICON)
MAC92A·l thru MAC92A-6
MT2
o----tii~:I!~
.......
TRIACS
(THYRISTORS)
G-...OMTI
0.45 AMPERE RMS
30-400 VOLTS
SILICON BIDIRECTIONAL THYRISTORS
· .. designed for use in solid state relays, TTL logic and light industrial applications. Supplied in an inexpensive plastic TO·92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC92 Series)
or Four Modes (MAC92A Series)
•
One·Piece, Injection-Molded Unibloc Package
MAXIMUM RATINGS
Rating
Symbol
Repetitive Peak Off-State Voltage
ITJ = -40.to +100oCI
% Sine Wave 50 to 60 Hz, Gate Open
MAC92 and MAC92A - 1
-2
-3
-4
-5
STYLE 12:
PIN 1. ANODE I
2. GATE
3. ANODE 2
Amp
IT(RMSI
Full Cycle Sine Wave 50 to 60 Hz,
(TC = +6QoCI
Peak Non-Repetitive Surge Current
Volts
30
60
100
200
300
400
-6
On-State RMS Current
Unit
Value
VDRM
0.45
Amp
ITSM
(One Full Cycle, 60 Hz, T C = +60o CI
preceded and fOllowed by rated
DIM
6.0
A
B
current
Circuit Fusing Considerations
(TJ =-40 to +100o C, t= 1.0toS.3 mol
12t
A 2s
0.15
F
Average Gate Power
PG(AVI
0.1
Watt
Peak Gate Current
IGM
1.0
Amp
Operating Junction Temperature Range
Storage Temperature Range
C
D
MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.48;
L
N
1.150
P
6.350
3.430
2.410
2.030
TJ
-40 to +100
°c
Q
T stg
-40 to +150
°c
R
S
1.390
1.270
2.670
2.670
INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.' 16
0.019
0.045
0.250
0.135
0.095
0.080
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
R8JC
75
°C/W
Thermal Resistance, Junction to
R6JA
200
°C/W
Ambient
28
CASE 29-02
TO-92
0.055
0.050
0.105
0.105
MAC92-1 thru MAC92-6, MAC92A-1 thru MAC92A-6 (continued)
ELECTRICAL CHARACTERISTICS (TC = 2SoC unless otherwise noted)
Characteristic
Symbol
Peak Blocking Current (Either Direction)
Rated VDRM @ T J = 100oC. Gate Open
Min
Max
-
100
-
1.7
Peak On-State Voltage (Either Direction)
ITM = 0.7 A Peak; Pulse Width = 1.0 to 2.0 ms. Duty Cycle.s;;;2.0%
IlA
Volts
VTM
Gate Trigger Current, Continuous de
mA
IGT
Main Terminal Voltage = 7.0 Vdc. RL = 100 Ohms
All Devices
MT2 H). G(+); MT2H. GI-)
MAC92A-1 thru MAC92A-6
MT2(+). GH; MT2H. GI+)
-
Gate Trigger Voltage, Continuous de
Volts
.-
Main Terminal Voltage = Rated VDRM. RL = 10 k ohms. TJ = 125°C
All Devices
MT2 (+1. GI+); MT2H. GH
MT21+). GI-); MT2H. GI+)
MAC92A-1 thru MAC92A-6
Holding Current (Either Direction)
Main Terminal Voltage = 7.0 Vdc, Gate Open; } TC=2SoC
Initiating Current = 20 rnA
TC=-40oC
~ 1.6
~ 1.4
;::
i5
1.2
~
1. 0
>
-
w
O. 6
~
0.4
f-
'"
«
..s
UUADRANT 4
t-- ::r2ann-
r- r--
f-
-..::
o
-40
-20
+20
r+40
~
=::::::::::: ~
~ O. 2
-60
0.1
0.1
-
-
10
20
rnA
50
..............
~ O. 8
f-
3.0
3.0
FIGURE 2 - TYPICAL GATE TRIGGER
CURRENT
...........
to
-
IH
FIGURE 1 - TYPICAL GATE TRIGGER
VOLTAGE
1. 8
2.0
2.0
-
MT2 (+). GI+); MT2H. GH. TC = -40°C
All Devices
MT2(+). GH; MT2H. G(+) T C = - 400C MAC92A-1 thru MAC92A-6
~
5.0
15
VGT
Main Terminal Voltage = 7.0 Vdc. RL = 100 Ohms
Minimum Gate Pulse Width = 2.0 IlS
All Devices
MT2 1+). G(+); MT2H. GI-)
MAC92A-1 thru MAC92A-6
MT2(+). GH; MT2H. G(+)
2. 0
Unit
IDRM
+60
'"
B
'"gw
-+80
+100
"'
'""
w 70
'""
'""
60
\190°:4
50
o
t\
160
BO
240
o ...... 111;;;
o
~~~~
-"
~~
.--lS00
\.
"- 'b.
50
4S0
560
o
so
""
FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
lS0b~ (".,
d';-"
:-..... l"'-- :-..... -.......
."- ,,~
""-
160
240
400
320
i'..
560
4S0
100
~ 90
90
~
w
~ 80f---+---'''"''~n-____1f---
SO
::>
"'
~
~
''""""
~
::>
~ 70f---+---r~~~~r--7---r--+-_;
'""
~ 60 f---+---r:-:-::-9i<=-cYl~"""".j<
'""
~ 50f---+---r---+~____1~~~~-r-_+-_;
.
.. 40f---+---r--+-~f----'~~~~_+-_;
...
30~-+_--r--+-~~-+_~_?~~~~
'""
0;
70
60
50
0;
40
'"
30
20
0
160
FIGURE 7 - ON-5TATE POWER DISSIPATION
700
I
I
/
• - 30°--t/600- '"/ / /
600
I
3"
/90 0
.; 50 0
~ 400
/
V
w
to
30 0
/
/
:;; 20 0
0:
100
o~
// /
/ "/ /'
/. "/
Z
/
~
~
~V
t..fJ!! ::r
~
'"
3"E
~
I
TJ ,'1000C -
~
-
~320
I
400
I
I
I
I
-~
~"_
I
4S0
-
40 0
to
~.-
240
I
;- 50 0=
,L-- 1-1S00
I
160
600
=
. ' CONDUCTION ANGLE-
~ ......
so
1'1
/-- !--r- 1200
:r---
240
2S0
320
FIGURE 8 - ON-STATE POWER DISSIPATION
700
A
1/
200
IT(RMS). RMS ON-STATE CURRENT (rnA)
IT(AV). AVERAGE ON-STATE CURRENT (rnA)
.
.
~ ~ l 'I::"~ i'-.. r-.... r-.... .......
FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
100=---.------,---,-------,,---.,------,---,-----,
ffi
:;;:
0
ITlRMS). RMS ON-STATE CURRENT (rnA)
IT(AV). AVERAGE ON-STATE CURRENT (rnA)
~
~ 1e90
0- ", CONDUCTION ANGLE
400
320
/60 0
120'0')."
~
~.-
0-
'\
\
n= 30 0
""~;:;:::::~
-
"' CONDUCTION ANG LE -
1\ \.'\: r0
"- 30°.-'1
\. I'( "- 1<"""1200
1\ 600 -'
""
1:i
3u
~"
~
\. ~ ~
0: ~
SO
10
-J"r- '~'
~
'" '\ ~
FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
~
:;;:
300
. ' CONDUCTION ANG LE
I
100
I
o
o
560
IT(AV). AVERAGE ON-STATE CURRENT (rnA)
a= 180 0
---, -/
120°--,
90° .,/.
L
I
W /.
# ~ :,#. 0 :::;..- :.,...-
........
V
P"
V
'60°
400
4S0
./
~ ~ ~ i-"'"
~
80
160
240
320
IT(RMS). RMS ON-STATE CURRENT (rnA)
30
/' /'
/'
/ '/ K V V
y- V. V V / '
~ / . . / K V ---300
TJ'1000C
:;; 200
'~
de-
560
MAC92-1 thru MAC92-6, MAC92A-1 thru MAC92A-6
FIGURE 9 - MAXIMUM ON-STATE
CHARACTERISTICS
-
6.0
4.0
~
.... 10""
FIGURE 10 - TYPICAL HOLDING CURRENT
7.0
s.0
1
>-
/,~
TJ = lOOoC
2.0
~
/, Visoc
J.
1.0
(continued)
I
I
GAT~ OPEN 1
APPLIES TO EITHER DIRECTION
I"-..
"'- '""-
3.0
13
y
'"
z 2.0
-...........
..........
§
o
r--.....
'":;E
O. 6
ii:'
"
~
=>
II/
:":
>- 0.4
'"
0.2
W
~Z
O. 7
'/
-60
-40
-20
+20
+40
+60
+80
+120 +140
I
FIGURE 11 - MAXIMUM ALLOWABLE
SURGE CURRENT
'"2: o. 1
"'z
er
10
~
0.06
~
....
~
1;;
z
:":
:t: 0.04
--
7.0
5.0
=>
'"w
0.02
~ 3.0
i>l
'"~
0.0 1
TJ
2.0
2.8
3.6
1.0
6.0
S.2
4.4
100 0 C
Surge is preceded and followed by rated current
'"
1.2
=
r--
f =60 Hz
2.0
~
0.00 6
0.4
+100
TJ. JUNCTION TEMPERATURE (OCI
o
:i
...........
1.0
2.0
1.0
3.0
S.O
VT.INSTANTANEOUS ON-STATE VOLTAGE (VOLTSI
II II
10
30
so
III
100
NUMBER OF CYCLES
FIGURE 12 - THERMAL RESPONSE
ffi
.
"
1.0
N
:::;
a:
O.S
o
f- r-
~
"''"z
~
iiia:
-'
~
02
V-
rZOJC(tI = rltl • ROJC
0.1
0.05
:ll
'"....
5 0.02
~
:=
0.01
2.0
5.0
10
20
50
200
100
t, TIME (msl
31
500
1.0 k
2.0 k
5.0 k
10 k
20 k
MAC93-1 thru MAC93-4 (SILICON)
MAC93A-l thru MAC93A-4
MT2
O-----li~i:!~--G-OMT1
TRIACS
(THYRISTORS)
0.65 AMPERE RMS
30-200 VOLTS
SILICON BIDIRECTIONAL THYRISTORS
... designed for use in solid state relays, TTL logic and light indus·
trial applications. Supplied in an inexpensive plastic TO-92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC93 Series) or Four
Modes (MAC93A Series)
• One-Piece, Injection-Molded Unibloc
Package
SEATING
MAXIMUM RATINGS
Rating
Repetitive Peak Off-State Voltage
ITJ = -40 to +1250 t)
% Sine Wave 50 to 60 Hz, Gate Open
MAC93 and MAC93A - 1
2
3
4
On-State RMS Current
Full Cycle Sine Wave 50 to 60 Hz,
Svmbol
Unit
Value
Volts
VDRM
Amp
ITIRMS)
0.65
Amp
ITSM
6.0
Average Gate Power
Peak Gate Current
A 2s
12,
ITJ = -40 '0 +125 0 C, t = 1.0 to 8.3 ms)
0.15
PG AV
0.01
Watt
IGM
1.0
Amp
°c
°c
Operating Junction Temperature Range
T
-40 to +125
Storage Temperature Range
T stg
-40 to +150
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Aesistance, Junction to Case
ReJC
75
°C/W
Thermal Resistance, Junction to
Ambient
ReJA
200
°C/W
Characteristic
STYLE
PIN 1.
2.
3.
32
L
~
12:
MAIN TERMINAL 1
GATE
MAIN TERMINAL 2
o
30
60
100
200
preceded and followed by rated
current
Circuit Fusing Considerations
H
PLANE F -
ITC = +60o C)
Peak Non-Repetitive Surge Current
(One Full Cycle, 60 Hz, T C = +60o C)
It:frlB
A
p~rJ
'~
3~
ItR
K
~
~
MILLIMETERS
DIM MIN
MAX
A
4.32
5.33
B
4.44
5.21
C
3.18
4.19
D
0.41
0.56
F
0.48
0.41
G
1.40
1.14"
H
2.54
J
2.41
2.67
K 12.70
L
6.35
N
2.03
2.92
P
2.92
R
3.43
0.41
S
0.36
C
SECT. A-A
INCHES
MIN
MAX
0.170 0.210
0.175 0.205
0.125 0.165
0.016 0.022
0.016 0.019
0.045 0.055
0.100
0.095 0.105
rr.500
0.250
0.080 0.115
0.115
0.135
0.014 0.016
All JEDEC dimensions and notes apply.
CASE 29-02
TO-92
MAC93-1 thru MAC93-4,MAC93A-1 thru MAC93A-4 (continued)
ElECTR ICAl CHARACTERISTICS
ITC ~ 25°C unless otherwISe noted I
Characteristic
Symbol
Peak Blocking Current (Either Direction)
Rated VDRM@TJ = 125°C, Gate Open
Min
Max
-
100
Peak On-State Voltage (Either Direction)
ITM ~ 0.92 A Peak; Pulse Width ~ 1.0 to 2.0 ms, Duty Cycle";; 2.0%
-
1.85
Volts
VTM
Gate Trigger Current, Continuous de
mA
IGT
Main Terminal Voltage = 7.0 Vdc, RL = 100 Ohms
Minimum Gate Pulse Width = 2.0 /olS
MT2 1+1, GI+I; MT21-1, GI-I
All Devices
MT2I+I, GI-I; MT21-1, GI+I
MAC93A-l thru MAC93A-4
-
5.0
12
-
Gate Trigger Voltage, Continuous de
Volts
VGT
Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width = 2.0 JIS
MT2 1+1, GI+I; MT21-1, GI-I
MT21+1, GH; MT2H, GI+I
= 100 Ohms
-
All Devices
MAC93A-l thru MAC93A-4
20
2.0
MT2 1+1, GI+I; MT21-1, GI-I TC ~ -40°C
All Devices
MT21+1, GI-I; MT2H, GI+I TC ~ -40°C MAC93A-l thru MAC93A-4
-
2.5
3.0
Main Terminal Voltage = Rated VORM. RL = 10 k ohms, TJ = 125°C
MT2 1+1, GI+I; MT2I-I, GI-I
All Devices
MT21+1, GI+I; MT21-1, GI-I
MAC93A-l thru MAC93A-4
0.1
0.1
-
Holding Current (Either Direction)
Main Terminal Voltage ~ 7.0 Vae, Gate Open, }
Initiating Current = 20 rnA
~ 1. 8
~ 1. 6
>
~
1. 0
'"'"
O. 8
ii'
;....
~ O. 6
~
FIGURE 2 - TYPICAL GATE TRIGGER CURRENT
--
;;:
QUADRANH
~
r-!-
--..;;
f=::::= ~
r- I-..
> O. 2
-20
+20
+40
0
~
0
~
7. 0
5. 0
~
r--==::
-
'"i§
w
~
r---...
t;;
-40
0
.s
'"""
'" O. 4
0
-60
10
20
-
r-....
to-- .............
I. 2
-
0
~ 1. 4
o~
mA
IH
TC ~ 25°C
TC ~ -40°C
FIGURE 1 - TYPICAL GATE TRIGGER VOLTAGE
2. 0
Unit
IlA
IDRM
+60
+80
+100
r--...
.............
2 and 3
3. 0
1
2. 0
r--
'"
"'
QUAD1RANT
+120
+140
-60
-
........
t'----.
:E 1. 0
O. 7
O. 5
1
- 40
-20
+20
+40
+60
+80
TJ,JUNCTION TEMPERATURE lOCI
TJ. JUNCTION TEMPERATURE lOCI
33
+100
+120 +140
MAC93-1 thru MAC93-4,MAC93A-l thru MAC93A-4(continued)
FIGURE 3 - AVERAGE CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
5~~--~10~0--~10~0--~3~0~0--~~~~~~~~7±00~~BOO
ITlAV), AVERAGE ON·STATE CURRENT (rnA)
IT(RMS),AVERAGE ON·STATE CURRENT (rnA)
FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
"''"=>
w
'"=>
~ 90~--~----~~~~~~--4---~----4---~
~ 90~---+----r---+~~~~~~~~~-'
~
I-
I-
~
I-
~
~
«
(5
~;;;
70~--~----r_--~~~~~~--~~--4---~
70
::E
«
50 ~--~----t-
(5
50
G
30
3~~--~5~0--~10=0--~~--~L-~~~~L-~~~400
0
ITlAV), AVERAGE ON·srATE CURRENT (rnA)
=
-.ju~
CONOUCTION ANG lE
100
150
300
IT(RMS), RMS ON·STATE CURRENT (rnA)
FIGURE 8 - ON-STATE POWER DISSIPATION
FIGURE 7 - ON-STATE POWER OISSIPATION
1.0,-----,-------r----,---,----,----,----;ror--;;'"
~ 0.8
~ 0.8
i
i
~ O,6~--~-
~
~
'"ffi
O.S
~
w
"''"ffi
O.4~--~-----,h~7iS'c..-11-
:>
O.41---~----r_--_b~<_,.17t''''''''"'';;r;---'
~
«
~ 0.2 ~--~M"r_--+--~I-
--+---+--~
~ O.21---~--~Is_~~~"'__I---
IT(RMS), RMS ON-STATE CURRENT (rnA)
IT(AV),AVERAGE ON·STATE CURRENT (rnA)
34
MAC93-1 thru MAC93-4,MAC93A-1 thru MAC93A-4(continued)
-
FIGURE 9 - MAXIMUM ON-STATE CHARACTERISTICS
6.0
~
4.0
A~
2.0
I
I
GAT~ OPEN I
APPLIES TO EITHER OIRECTION
r--...
"'--
.........
............
/, I"
1.0
...........
I
0.6
I
1.0
'/
O. 7
JI
0.4
c..
5. 0
/, ~
/. ~5OC
TJ = 125°C
,.
FIGURE 10 - TYPICAL HOLDING CURRENT
7.0
5
-60
-20
-40
+20
+40
r--...
+60
I"'---
+80
I'--
+100
+120 +140
>-
~=>
TJ, JUNCTION TEMPERATURE 1°C)
0.2
I
u
'">-
FIGURE 11 - MAXIMUM NON-REPETITIVE SURGE CURRENT
~2:
O. I
o
10
fsr
~
=>
o
~
~
0.06
5
~
7.0
>-
z
~
~ 0.04
;;;
50
-I--.
=>
u
.t::::
'"~
0.02
=>
3.0
TJ = 125°C
f = 60 Hz
Surge IS preceded and followed by rated current.
~
'"~
2.0
'"
0.0 I
E
1.0
0.006
0.4
2.0
1.2
2B
3.6
4.4
5.2
6.0
10
2.0
~::i
30
5.0
10
30
50
100
NUMBER OF CYCLES
VT, INSTANTANEOUS ON·STATE VOLTAGE IVOLTS)
FIGURE 12 - THERMAL RESPONSE
1.0
'"
il§
~
0.5
f- f-
j..--
ZOJClt) =,Itl. ROJC
I
2
1
5.0
10
20
50
100
200
t, TIME Im'l
35
500
1.0 k
2.0 k
5.0 k
10 k
20 k
MAC94-1 thru MAC94..4 (SILICON)
MAC94A·l thru MAC94A-4
TRIACS
(THYRISTORS)
SILICON BIDIRECTIONAL THYRISTORS
0_8 AMPERE RMS
30-200 VOLTS
· .. designed for use in solid state relays, TTL logic and light industrial applications. Supplied in an inexpensive plastic TO-92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC94 Series) or Four
Modes (MAC94A Series)
•
One-Piece, Injection-Molded Unibloc
Package
MB
MAXIMUM RATINGS
Rating
Repetitive Peak Off-State Voltage
Symbol
Value
Unit
Volts
VDRM
(T J = -40 to +1250 Ci
Ya Sine Wave 50 to 60 Hz, Gate Open
MAC94 and MAC94A - 1
2
3
4
On-State RMS Current
Amp
IT(RMS)
Full Cycle Sine Wave 50 to 60 Hz,
SEATINGP~F1~~
PLANE
30
60
100
200
D3~
O.S
Amp
ITSM
(One Full Cycle, 60 Hz, T C = +600 C)
preceded and followed by rBted
12t
(T J = -40 to +1250 C, t=1.0to S.3 m~
Average Gate Power
Peak Gate Cu rrent
0,01
Watt
IGM
1.0
Amp
Operating Junction Temperature Range
TJ
-40 to +125
Storage Temperature Range
T stg
-40 to +150
°c
°c
MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A
4.32
5.33 0.170 0.210
B
C
D
F
G
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
ROJC
75
°C/W
Thermal Resistance, Junction to
ROJA
200
°C/W
Ambient
H
J
K
L
N
P
4.44
3.18
0.41·
0.41
1.14
5.21
4.19
0.56
0.48
1.40
2.54
2.67
0.175
0.125
0.016
0.016
0.045
0.205
0.165
0.022
0.019
0.055
0.100
0.105
2.41
0.095
12.70
0.500
6.35
.Jili!I
2.03
2.92 0.080 0.115
2.92
0.115
R
3.43
0.135
S
0.41 0.014 0.016
0.36
All JED EC dimensions and notes apply.
CASE 29-02
TO-92
36
C
SECT. A·A
~
A',
0.15
PG(AV)
.
K
~
IiR
6.0
current
Circuit Fusing Considerations
T L
F~_ ~
STYLE 12:
PIN 1. MAIN TERMINAL 1
2. GATE
3. MAIN TERMINAL 2
ITC = +SOoC)
Peak Non-Repetitive Surge Current
A
MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)
ELECTRICAL CHARACTERISTICS (TC ' 25°C unless otherwise notedl
Characteristic
Symbol
Peak Blocking Current (Either Direction)
Rated VDRM@TJ' 125°C, Gate Open
Peak On-State Voltage (Either Directionl
ITM' 1.12A Peak; Pulse Width = 1.0 to 2.0 ms, Duty Cycle':; 2.0%
Gate Trigger Current, Continuous de
Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width"" 2.0/.ls
MT2 (+1, G(+I; MT2(-1, G(-I
MT2(+I, G(-); MT2(-1, G(+)
-
Volts
-
All Devices
MAC94A-l thru MAC94A-4
~
o
>
2
~
l. 0
'"~
O. 8
I-
~ O. 6
t!:I
'"
-..........
- --40
0.1
0.1
-
-
10
20
mA
IH
TC' 25°C
TC = -40°C
FIGURE 2 - TYPICAL GATE TRIGGER
CURRENT
-20
;;0
.§
UUAORANT4
~
2 and 3
~
~ O. 2
o
3.0
3.0
-
0
0.4
-60
2.0
2.0
-
2.0
~ 1.4
5.0
10
VGT
= 100 Ohms
FIGURE 1 - TYPICAL GATE TRIGGER
VOLTAGE
~
1.5
mA
All Devices
MAC94A-l thru MAC94A-4
Initiating Current = 20 rnA
~ 1. 6
IGT
= 100 Ohms
Holding Current (Either Direction)
Main Terminal Voltage = 7.0 Vdc, Gate open,}
I'....
2.0
Volts
Main Terminal Voltage = Rated VDRM, RL' 10 k ohms, TJ = 125°C
MT2 (+1, G(+I; MT2(-), G(-)
All Devices
MT2(+I, G(+I; MT2(-), G(-I
MAC94A-I thru MAC94A-4
1. 8
-
Unit
mA
MT2 (+), G(+I; MT2(-1, G(-I TC = -40°C
All Devices
MT2(+I, G(-I; MT2(-I, G(+) TC' -40o C MAC94A-l thru MAC94A-4
~
Max
VTM
Gate Trigger Voltage, Continuous de
Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width = 2.0 J,l.S
MT2 (+), G(+); MT2(-1, G(-I
MT2(+I, G(-I; MT2(-1, G(+I
Min
IDRM
+20
-..;;;
=::::::::: ::::::,....
-- -+40
+60
+80
~
=>
~
r.-::::::
0
0
r-..
aUAORANT4
I
............
0
7. 0
~ 5. 0
2and3
~
~
3. 0
1
w
!;{ 2.0
r-
+100
"'"-
'"
~
+140
-60
.......
-
~
1. 0
O. 7
O. 5
+120
-
-40
-20
+20
+40
+60
+80
TJ, JUNCTION TEMPERATURE (OCI
TJ, JUNCTION TEMPERATURE (OCI
37
+100
+120 +140
MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)
FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
FIGURE 3 - AVERAGE CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
~ 1101--+--fS::S~R,oC'~
w
a:
~ 100
~ 901---+---+-~
ai
~ 80
«
~-t,t
~.~
u~ 70
'"
'"
a = CONDUCTIO NANG LE ---I---I----+------"i~-----""I
60
500L-~-----:-!-=---:.l:::----c40~0--5~0c::-0----:6:-!-DO=---:7±OO:--~BOO
ITIRMS). RMS ON-STATE CURRENT ImA)
InAV). AVERAGE ON-STATE CURRENT ImA)
Iwl-
FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
130
120
'"'w
::>
'"
r....
~
110
~~ ~
90
~
ai
600
70
iii
.
'"'"
'"
-
40
o
."'-. ~~ i------ 12oO
200
100
300
400
70
a:;
60
~
50 -
'"
~
~.-
o
100
200
"'" ,-'"
...........
" "- , ''-
-......: ........ '-
........
40 - . = iDNDUrlDN JNGLE
30
500
/,600
,,,,
0
§'"
'"«
30°
~ ~ ~ b<900
IBOO~ K" ~ ~
de --'"
~ ......:........
~ -.......:
0
~
\ \. 1\.." _"---l-IBOO
\. "'-.1"...
~.
120°..---'
i
~
~ ~I-...
~ ~ ;::::.....
~ 10 0
".l ~"
~
\.
50
Or-..
11 0
w
a" CONDUCTION ANGLE-
~
90°
60
30
12
~
a"'300~ ~ ::--..
BO
'"'"a5
~a-
~~
100
!;(
~
130
.........
300
400
500
ITIRMS). RMS ON-8TATE CURRENT ImA)
InAV).AVERAGE ON-STATE CURRENT ImA)
FIGURE 7 - ON-STATE POWER DISSIPATION
FIGURE 8 - ON-STATE POWER DISSIPATION
1.0,---r----,-----,----,,-------,-;.-----------..----------o...----y--,
g
~
'"~
O_B
S
O_B t---j----j---t---I--;,---,'-ho"-----oA--"c----f---1
~
0:
0_6
~
~
to
w
:::;
'"
0_6
~
w
TJ = 125°C
0.4
'"~
>
«
~
0.4
I--~--I-~~~~~~~~-+-~~-~
~ 0_21--~-----o...,.~~;.£~=--I----""--__+_-~-~
1-~~~------1'---+---+- a = CONDUCTION ANGLE
200
300
400
~-W.~~1~00--20LO--3~00-~4~00:--~L---~LO--7~0-0-~BOO
BOO
InRMS). RMS ON-8TATE CURRENT (rnA)
'TIAV). AVERAGE ON-STATE CURRENT (rnA)
38
MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)
FIGURE 9 - MAXIMUM ON-STATE
CHARACTER ISTICS
FIGURE 10 - TYPICAL HOLDING CURRENT
.0
7. 0
~
-""!: j::"'"
.0
k;::: ~
.0
~
3. 0
~
V/250C
=>
'-'
;)
.0
'"
;;:
.§
~
TJ = 125°C
I
5. 0
CI
z
2.0
~
I
GAT! OPEN 1
APPLIES TO EITHER OIRECTION
'"
..........
...........
..........
o
i'--.
x
~
~
06
",
~
0
.4
~
13
w
f-
~
O. 2
'"i'--.
1.0
I
I
O. 7
-60
/I
-40
-20
+20
/I
+40
+60
+80
+100
+120 +140
TJ,JUNCTION TEMPERATURE (OCI
:z
o
FIGURE 11 - MAXIMUM NON·REPETITIVE SURGE CURRENT
~
=>
~
o. 1
10
z
~ 0.0 6
''""
c::
"
~
~
70
",
c- 0 a4
=:::::::: r-.....
5.0
~
=>
'-'
w
'"
0;
0.0 2
~
'"
~
0.006
0.4
TJ = 115°C
f = 60 Hz I
rr r
10
SlrgellS , re e e( nd fOllOWer by
'"
0.0 1
r-...
30
rar ed crrrT t
I-
);
1.0
1.1
1.0
28
10 •
4.4
3.6
1.0
30
50
VT, INSTANTANEOUS ON·STATE VOLTAGE (VOLTS)
II II
10
10
30
50
100
10k
10 k
NUM8ER OF CYCLES
FIGURE 12 - THERMAL RESPONSE
~
N
1.0
'"
05
~
02
:::;
~
--
~
<{
~
~
01
~
'"~
0.05
- --
ZOJC(t) = r(t) • ROJC
f-
E 0.02
in
:
I-
001
2.0
5.0
10
20
50
100
100
500
10k
10k
5.0 k
t, TIME (m,)
MAC40688 thru MAC40690
For Specifications, See 2N5441 Data, Volume II.
MAC40797, MAC40798
For Specifications, See 2N5571 Data, Volume II.
39
MAC800, A, B(SILICON)
Series
MT20~MTI
SENSITIVE GATE
TRIACS
(THYRISTORS)
4 AMPERES RMS
SILICON BIDIRECTIONAL THYRISTORS
· .. designed primarily for full·wave ac control applications, such as light
dimmers, motor controls, heating controls and power supplies; or wherever
full·wave silicon gate controlled solid-state devices are needed. Triac type
thyristors switch from a blocking to a conducting state for either polarity
of applied anode voltage with positive or negative gate triggering.
25 thru 800 VOL TS
• Sensitive Gate Triggering (A and B versions) Uniquely Compatible for
Direct Coupling to TTL, HTL, CMOS and Operational Amplifier
I ntegrated Circuit Logic Functions.
• Gate Triggering 2 Quadrants - MAC800 Series
4 Quadrants - MAC800A,B Series
• Blocking Voltages to 800 Volts
• All Diffused and Glass Passivated Junctions for Greater Parameter Uni·
formity and Stability
• Center Gate Fire for High di/dt Capability
MAXIMUM RATINGS
Rating
R epetl tive Pea k Off -State Voltage, Note 1
MAC800.A,B-02
ITJ = 1250 CI
-05
-10
-20
-40
-60
-80
RMS On-State Current
TC = 95°C
IFull Cycle Sine Wave 50 to 60 Hzl
Peak Non-Repetitive Surge Current
10na Full cycle, 60 Hz, T = -40 to +1250 CI
Circuit F using Considerations
ITJ • -40 to +1250 C, t = 1.0 to 8.3 msl
Peak Gate Power
IMaximum Pulse Width
Value
Unit
Volts
VORM
25
50
100
200
400
600
800
ITIRMSI
4.0
Amp
ITSM
40
Amp
12t
6.5
A 2s
PGM
10
Watts
PGIAVI
0.5
Watt
VGM
5.0
Volts
TJ
-40 to +125
°c
T stg
-40 to +150
°c
= 10 !lsi
Average Gate Power
Peak Gate Voltage
IMaximum Pulse Width
Symbol
= 10 !Is)
Operating Junction Temperature Range
Storage Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
ReJC
5.0
°C/W
Thermal Resistance. Case to Ambient
ReCA
150
°CIW
NOTES:
1. Ratings apply for open gate conditions. Thyristor devices shall not be
tested with a constant current source for blocktng capability such that
the voltage applied exceeds the rated blocking voltage.
2. For soldering purposes, soldering temperatures shall not exceed +230o C
for 10 seconds.
40
MILLIMETERS
MIN MAX
B.B9 9.40
B B.OO B.51
C 6.10 6.60
D 0.406 0.533
E
0.229 3.lT
F
0.406 0.483
G
4.83 5.33
H 0.711 0.864
0737 1.02
J
K 12.70
L
6.35
450 NOM
M
1.27
P
Q
90' NOM
R 254
-
DIM
A
INCHES
MAX
MIN
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.1J09 0.125
0.016 0.019
0190 0.210
0.028 0.034
0029 0.040
0.500
0250
45' NOM
0.050
90' NOM
0100
-
STYLE 4:
PIN 1. MAIN TERM. 1
2. GATE
3. MAIN TERM. 2
All JEDEC notes and dimensions apply.
CASE 79-02
TO·39
MAC800,A,B series (continued)
ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted 1
Symbol
Min
Typ
Max
Unit
Peak Blocking Current (Either Direction)
Rated VDRM @ T J = 125°C, Gate Open
IDRM
-
0.5
2.0
mA
Peak On-State Voltage (Either Direction)
VTM
-
-
2.0
Volts
Characteristic
ITM = 6.0 A Peak, Pulse Width ';;300~s, Duty Cycle ';;2.0%.
Peak Gate Trigger Voltage
Volts
VGTM
Main Terminal Voltage = 12 Vde, R L = 100 Ohms, T J = -4o"C
Minimum Gate Pulse Width = 8.3 ms
MT2 1+1, GI+I; MT21-1, GI-I All Types
MT21+1. GI-I; MT21-1, GI+I MAC800A,B Series
-
Main Terminal Voltage = Rated VDRM, R L = 10k ohms, TJ = 125°C
Minimum Gate Pulse Width::. 8.3 ms
MT21+I, GI+I; MT21-1, GI-I All Ty·pes
MT21+1. GI-I; MT21-I, G(+I MAC800A,B Series
0.2
02
=
12 Vdc, Gate Open, T J
Initiating Current = 1.0 Adc
TJ = -40°C
TJ = 25°C
2.5
2.5
-
-
-
mA
IH
Holding Current (Either Direction)
Main Terminal Voltage
1.4
1.4
=
-40°C
-
-
-
70
30
30
15
tgt
-
1.0
2.0
/-"
dv/dt
-
5.0
-
VI",
MAC800 Series
MAC800A,B Series
MAC800 Series
MAC800A,B Series
Gate Controlled Turn-On Time (Either Direction)
Rated VDRM,ITM = 14 Ade,lGT = 100 mAde
Cntlcal Rate of Rise of Off-State Voltage
Rated VORM, Exponential Waveform, TC
=
95°C, Gate Open
IGTM* (mAl for the following Quadrants
(See Definition Below)
Junction
Temperature
Device
Peak Gate Tngger Current
Main Terminal Voltage = 12 Vdc, RL
Minimum Gate Pulse Width
= 8.3
= 100 ohms
I
II
III
IV
-
30
-
60
-
C
30
-40°C
60
MAC800A
+25 O C
5.0
5.0
5.0
10
Series
-40°C
20
20
20
30
MAC800B
+25 0 C
3.0
30
30
5.0
Series
_40°C
15
15
15
20
+25 0
MAC800
Series
ms
*The values listed are Maximum Values.
QUADRANT DEFINITIONS
MT2(+1
QUADRANT II
QUADRANT I
MT2(+\, G(-)
MT2(+), G(+)
Trigger devices are recommended for gating on Tnacs
They provide
Consistent predictable turn-on POints
Simplified CircUitry
Fast turn-on time for cooler, more effiCient
and relrable operation
ELECTRICAL CHARACTERISTICS of RECOMMENDED
BIDIRECTIONAL SWITCHES
MBS4991
MBS4992
MBS100
Vs
60-lOV
75 - 9.0 V
30-50V
IS
350 "A Max
120 "A Max
100 - 400 "A
!VS1 -VS2!
05 V Max
02 V Max
PART NUMBER
QUADRANT IV
QUADRANT III
MT2(-), G(+)
MT21-I, GI-I
LampDlmmer
General
USAGE
G(-I-------~I-------- GI+I
Temperature
Coefficient
0.02%/ o C Typ
0.35 V Max
0.05%/ o C Typ
See AN-526 for Theory and Characteristics of Silicon BIdirectional SWitches
MT21-1
41
MAC800,A,B series (continued)
fiGURE 2 - POWER DISSIPATION
fiGURE 1 - RMS CURRENT DERATING
- 8.0,--,---,---y--,---,----,---y----,
~
~ 7.0J---+---+----+---+----+--+----+-~
120J--+--""'~~2"""=-+---1'-----+--+~'--i
-~ 6.0
~ 1151---+--+-~-k=''';;~;;;:c---'''''+-=----"f-=-+--w
:3
1101---+--+--+---~...-~...F""""-=--cI/-=""'l~--
; : !:f-
105J--+---+--+--+--=1""-~-.I.-7':..d---'1
~
~ 100
5
~
~
jJ~~
95
CONOUCTION ANG LE
90
~
~ 5.0
C
0:
4.0
w
3.0J---+--+--+_--t....-;,L-h~=--+_\ _"'i""--_j
~
o~
CONDUCTION ANGLE
..
'"
~ 20J---+--+-~~~~~~~~,-t_~_+--~
>
«
'>
--I--+--+---IJ--~
10f----+---:~:e::;.-:;;.r."""'=--+---+--=-t----+--I
~ O~~~:---_~-__;_~-~:___:---~-~~-~--:~
o
1.5
2.0
2.5
3.5
4.0
85o!---~---;-l,;---,l;----;;2l,;.0---;;2J,.5---;;3!;;.0:-----;;3!;,5-~4.0
IT(RMS). RMS DN·STATE CURRENT (AMP)
IT(RMS). RMS ON·STATE CURRENT (AMP)
fiGURE 4 - TVPICALGATE·TRIGGER CURRENT
FIGURE 3 - TYPICAL GATE·TRIGGER VOLTAGE
~ 3.0
I
::;
I
~
z
w
'::;
o 1. 0
>
r-- r-- I---"-
w
'"'"co
fw
~
7
O. 5
iB
-
'"
w
-..;;
"
1"--.
1'--
1. 0
o. 7
~
O. 5
«
..........
i'...
r--...
i"'---.
'"
'"
"
f-
'" O. 3
>
-60
"-
~
I
DFF·STATE VOLTAGE~ 12 Vdc
ALL QUADRANTS
2. 0
o
o
""~
'"
I
:l
OFF·STATE VOLTAGE< 12 Vdc
ALL QUADRANTS
~ 2. 0
.0
~
I
t;
-40
-20
20
40
60
80
100
120
140
O. 3
-60
-40
20
-20
40
60
80
100
120
140
TJ. JUNCTION TEMPERATURE (OC)
TJ. JUNCTION TEMPERATURE (OC)
SAMPLE APPLICATION:
TTL·SENSITIVE GATE 4 AMPERE TRIAC
TRIGGERS IN QUADRANTS II AND III
IC LOGIC
FUNCTIONS
I
TTL
HTL
CMOS (NAND)
FIRING QUADRANT
III
II
MAcaOOA
MACaOOA
Senes
Series
MACaOOA
MAcaOOA
Series
Series
MACaOOe
MACaQOB
Series
Series
CMOS (Buffer)
60 Hz
Operational
Amplifier
Zero Voltage
Switch
42
IV
MACaQOe
Series
MACaOOe
MAC800A
Series
MAC800A
Series
MAC800A
MAcaOOA
Series
Series
Series
MAC800,A,B series
(continued)
FIGURE 6 - TYPICAL HOLDING CURRENT
FIGURE 5 - MAXIMUMON·STATE CHARACTERISTICS
40
3.0
~
-:;....--
I
1\
0
V
0
t7'
7
II
0
0
.......
.............
..........
5
I
TJ= 125 0 C
""
0
H
0
IN EITHER OIRECTION
f',.
~
20
~~~e~~~~LlEJ FORCIONOUJTION
\..
./
30
..........
O. 3
-60
!
-40
-20
20
40
60
80
100
120
140
TJ, JUNCTION TEMPERATURE IOC)
/I
'/
0
FIGURE 7 - MAXIMUM NON·REPETITIVE SURGE CURRENT
25 0 C
40
II
0
7
I
o. 5
~
34
~
"'"
32
'"
'"~
30
'"
24 t---
E
I
I
36
w
I
o. 1
~
.~
III
o. 2
,.
38
'"~
I
II
o. 3
0::
28
r-
""'" ~ I"--
't-..
TJ "'-40 to+1250C
f = 6~ Hz
'"
I
26
,",met-·
SURG~ IS PREC~OEO ANO FOLLOWEO
BY RATED CURRENT
22
f"...
,
r--
20
1.0
1.0
2.0
3.0
4.0
5.0
NUMBER OF FULL CYCLES
5.0
4.0
3.0
2.0
7.0
10
IIT,INSTANTANEOUS ON·STATE VOLTAGE IVOLTS)
FIGURE 8 - THERMAL RESPONSE
0
7
-
o. 5
;i §
03
~;i
,.
02
~~
1
~ ~
0.05
,.~
"f-
~
ZOJClt) = rltl o ROJC
V
'"
f-O
~ ~ 007 c--.
:g ~
003
002
om
01
02
05
1.0
2.0
5.0
10
20
t, TIMElms)
43
50
100
200
500
10k
2.0 k
5.0k
10k
MBD 101 (SILICON)
SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)
SILICON HOT-CARRIER
UHF MIXER DIODE
... designed primarily for UHF mixer applications but suitable also
for use in detector and ultra·fast switching circuits. Supplied in an
inexpensive plastic package for low·cost, high·volume consumer
requ irements.
• The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact
•
Low Noise Figure - 7.0 dB Max @ 1.0 GHz
• Very Low Capacitance - Less Than 1.0 pF
•
@
Zero Volts
High Forward Conductance - 0.48 Volts (Typ) @ IF = 10 mA
MAXIMUM RATINGS
Rating
MB
Symbol
Value
Unit
Reverse Voltage
VR
4.0
Volts
Forward Power Dissipation @I T A = 25°C
Derate above 250 C
PF
280
2.8
mW
mW/oC
Junction Temperature
TJ
+125
°c
T stg
-65 to +150
°c
Storage Temperature Range
A
P~fr1::frl
SEATING
PLANET
F-
.
L
~K
l
A
~1:1
IsECT A·A
ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)
r--J-R
Symbol
Min
Typ
Max
Unit
V(BR)R
4.0
5.0
-
Volts
CT
-
O.BB
1.0
pF
VF(11
-
0.48
0.60
Volts
Noise Figure
(f= 1.0 GHz. Nota 2)
NF
-
6.0
7.0
dB
Reverse Leakage
(VR = 3.0 V)
IR
-
0.02
0.25
itA
Series Inductance (Note 3)
LS
-
6.0
-
nH
Cc
-
0.18
-
pF
Characteristic
Reverse Breakdown Voltage
(lR = IOI'Al
Diode Capacitance
(VR =0. 1= 1.0 MHz. Note 1)
Forward Voltage
Case Capacitance (Nota 1)
If = 1.0 MHz. Lead Length"" 1116"')
2. CATHODE
N
DIM
(IF=10mA)
(I =250 MHz, Lead Length"" 1/16"')
~LE1:
~
PIN 1. ANODE
,0"-0,
N
..
(1) Matched sets available. Contact Motorola Sale. Office with specific requirements.
44
MILLIMETERS
MIN
MAX
4.32
5.33
S 4.45
5.21
C 3.18 4.19
D U.Jbti 0.533
0.407 0.482
F
1.27 SSC
G
H
1.27
J
2.54 BSC
K 12.70
L
6.35
N 2.03
2.66
P
!.93
R 3.43
A
INCHES
MIN
MAX
0.110
0.175
0.125
0.014
0.01.
0.05
0.210
0.205
0.1
0.021
J.Dl.
BSG
0.0
0.100 BSC
U.bUU
0.250
O.UIIO 0.1U~
0.115
0.135
CASE 182·02
C
MBD101 (continued)
TYPICAL CHARACTERISTICS
(T A = 25°C unless noted)
FIGURE 2 - FORWARD VOLTAGE
FIGURE 1 - REVERSE LEAKAGE
100
1.0
0.7
0.5
50
-
<"
.3
~
0.2
;
o. I
;2
w
ffi
-VR=3.0Vdc
1
V
....
./
/
0.0 7
'"
5.0
~
2.0
~
"
0.0 2
10
~~
~
~ 0.05
./
20
/
1.0
!£. o. 5
0.2
0.0 1
30
O. 1
40
50
60
10
80
90
100
110
120
0.2
130
0.4
0.3
TA. AMBIENT TEMPERATURE (OC)
FIGURE 3 - CAPACITANCE
o. 9
9. 0
~
!XI
...........
w
-..............
O.B
i"--..
U
;t
;oj
",'
0.1
---
0.1
FIGURE 4 - NOISE FIGURE
1
0
'"2
0.6
VF. FORWARO VOLTAGE (VOLTS)
1.0
~
0.5
~
7. 0
6.0
I'---
~
LhcAt
o!cll~A~JJ FREJuEJCyl = ).0 G1Hl
(Test circuit Figure 5J
'" "-
8.0
"'u:::w
::>
\..
.......
5.0
5
2
I.L~
2
4. 0
3. 0
2.0
0.6
1.0
o
1.0
2.0
3.0
0.1
4.0
VR. REVERSE VOLTAGE (VOLTS)
0.2
0.5
1.0
2.0
5.0
10
PLO. LOCAL OSCILLATOR POWER (mW)
FIGURE 5 - NOISE FIGURE TEST CIRCUIT
LOCAL
OSCILLATOR
NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge
~
UHF
NOISE SOURCE
H.P.349A
I------
OIOOE IN
TUNEO
MOUNT
{Boonton Electronics Model 75A or equivalend.
Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adiusted
for 1.0 mW. I F amplifier NF = 1.5 dB, f = 30 MHz,
-
see Figure 5.
J
NOISE
FIGURE METER
H.P.342A
IF AMPLIFIER
NF =1.5 dB
f =30 MHz
Note 3 - LS is measured on a package having a short- instead of a
die. using an impedance bridge (Boonton Radio Model
250A R X Meter!'
45
MBD 102 (SILICON)
SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)
SILICON HOT-CARRIER
UHF MIXER DIODE
· .. designed primarily for UHF mixer applications but suitable also
for use in detector and ultra-fast switching circuits. Supplied in the
low-inductance Mini-L package for low·cost, high-volume consumer
requirements.
• The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact
• Low Noise Figure - 5.5 dB Typical @ 1.0 GHz
• Very Low Capacitance - Less Than 1.0 pF @ Zero Volts
• High Forward Conductance - 0.48 volts (Typ) @IF = 10 mA
•
Mini·L Ridge Clearly Identifies Cathode Lead for Easy Handling
. and Mounting
MAXIMUM RATINGS (TJ
= 125 0 C unless otherwise noted)
Rating
Symbol
Value
Unit
Reverse Voltage
VR
4.0
Volts
Forward Power Dissipation @TA - 2SoC
PF
400
4.0
rnW
rnW/oC
TJ
+125
°c
Tstg
-65 to +150
°c
Derate above 2SoC
Junction Temperature
Storage Temperature Range
~q
n=~L
f
L
S
ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Characteristic
Reverse Breakdown Voltage
Symbol
Min
Typ
Max
Unit
VIBR)R
4.0
5.0
-
Volts
CT
-
1.0
pF
(lR = 101lA)
Diode Capacitance
IVR=O,f= 1.0MHz, Note I)
0.8
DIM
A
B
C
Forward Voltage
(IF = lOrnA)
VF(I)
-
0.48
0.60
Volts
Noise Figure
If = 1.0 GHz, Note 2)
NF
-
6.0
7.0
dB
0
F
Reverse Leakage
IVR = 3.0 V)
IR
-
0.02
0.25
Il A
H
J
K
L
Series Inductance (Note 31
If = 250 MHz, Measu'ed at Lead
Stop ",I 18")
LS
-
3.0
-
nH
N
R
Case Capacitance INote I)
If = 1.0 MHz)
Cc
-
0.1
-
(1) Matched sets available. Contact Motorola Sales Office with specific requirements.
46
pF
S
T
U
MILLIMETERS
MIN
MAX
INCHES
MAX
MIN
3.86
4.11
2.92
3.18
1.91, 2.16
0.64
0.89
0.18
0.08
1.55
1.30
0.64
0.89
4.06
4.32
2.36
2.62
1.12
1.37
0.79
1.04
1.99 12.75
1.14
1.40
0.43
0.69
0.152
0.115
0,075
0,025
0.003
0.051
0.025
0.160
0.162
0.125
0.085
0.035
0.007
0.061
0.035
0,170
ft
.
0.045
0,017
CASE 226
0.054
0.041
0.502
0.055
0.027
B
MBD102 (continued)
TYPICAL CHARACTERISTICS
(TA = 25°C unless noted)
FIGURE 1 - REVERSE LEAKAGE
1.0
0.7
0.5
~
0,3
~
0.2
~w
0.1
;2
~
FIGURE 2 - FORWARD VOLTAGE
100
50
r--- I--VR
3.0 Vdc
,/
.,/
./
20
~
10
a~
5.0
~
0.07
~ 0.05
'" 0.03
0.02
~
~-~--
./
~
1--- f---
~
r---? ~-
./
/
20
1.0
u: 0.5
_.- - -
)---
0.2
0.0 1
30
o. I
40
50
60
70
80
90
100
110
120
0.2
130
0.4
0.3
TA, AMBIENT TEMPERATURE (OC)
FIGURE 3 -DIODE CAPACITANCE
I\.
LbcAL
10
.e
w
f" 1.0 MHz
!g
'-'
""
'-'
"
w
c
~
f-
i3
;t
O.S
c
Q
...:
--
""-
0.7
'-'
0.6
o
o!cll!A~JJ FREJUE~Cv'";O G1HZ
(Test circUit FIgure 5)
90
TA" 2(OC
0.9
0.7
FIGURE 4 - NOISE FIGURE
10
"-
0.6
05
VF, FORWARO VOLTAGE (VOLTS)
'-'
"-
8.0
70
u:
6.0
~
5.0
i'...
.....
w
I--"-
u: 4.0
z
3.0
2.0
1.0
2.0
1. 0
0.1
4.0
3.0
0.2
VR, REVERSE VOLTAGE (VOL TSI
03
0.5
1.0
2.0
3.0
5.0
10
PLO, LOCAL OSCILLATOR POWER (mWI
FIGURE 5 - NOISE FIGURE TEST CIRCUIT
LOCAL
OSCILLATOR
NOTES ON TESTING AND SPECIFICATIONS
Note 1 -
l
UHF
NOISE SOURCE
H.P_ 349A
I----
DIODE IN
TUNED
MOUNT
I---
IF AMPLIFIER
NF= 1.5 dB
f = 30 MHz
and CT are measured using a capacitance bridge
(Boonton Electronics Model 75A or equivalent).
Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. I F amplifier NF = 1.5 dB, f = 30 MHz,
see Figure 5.
-
t
NOISE
FIGURE METER
H.P.342A
Cc
Note 3 - LS is measured on a package having a short instead of a
die, using an impedance bridge (Boonton Radio Model
250A R X Meter).
-47
MBD103
(SILICON)
SILICON HOT-CARRIER DIODE
(SCHOTTKY BAR'RIER DIODE)
SILICON HOT-CARRIER
... designed primarily for microwave mixer applications but suitable
also for use in detector and ultra·fast switching circuits.
•
Supplied in Hermetic Ceramic Pill Package with low package
parasitics
•
The Rugged Schottky Barrier Construction Provides Stable
Characteristics by Eliminating the "Cat-Whisker" Contact
Cathode
•
Low Noise Figure - 6.0 dB Typ
•
Very Low Capacitance - Less Than 1.0 pF
•
High Forward Conductance - 0.35 Volts (Typ)
@
MICROWAVE MIXER DIODE
1.0 GHz
@
B
Zero Volts
@
IF = 100 IJA
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
Reverse Voltage
VR
4.0
Volts
Forward Power Dissipation @TA = 2SoC
Derate above 2SoC
PF
280
2.8
mW
mW/oC
+125
°c
-65 to +150
°c
Junction Temperature
TJ
T stg
Storage Temperature Range
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Svmbol
Min
Tvp
Max
Unit
V(BR)R
4.0
5.0
-
Volts
CT
-
0.88
1.0
pF
VF
-
0.48
0.60
Volts
Noise Figure
If = 1.0 GHz, Note 21
NF
-
6.0
7.0
dB
Reverse Leakage
IR
-
0.016
0.25
~A
Characteristic
Reverse Breakdown Voltage
(lR =
IO~A)
Diode Capacitance
(VR=O,f= 1.0MHz, Note 1)
Forward Voltage
(IF = 10mAI
(VR = 3.0 VI
Series I nduetaoce (Note 3)
DIM
LS
(1= 250 MHz)
Case Capacitance (Note 1)
(I = 1.0 MHz)
STYLE 1PIN 1. CATHODE
2 ANODE
Cc
..
-
-
0.8
-
nH
0.15
-
pF
•
B
C
0
F
H
MILLIMETERS
MIN
MAX
2.97
3.30
1.96
221
3.78
4.09
1.52
1.68
1.50
1.65
1.78
1.93
INCHES
MIN
MAX
0117
0.077
0.149
0.060
0.059
0.070
CASE 45·01
48
0.130
0.087
0.161
0066
0.065
0.D76
MBD103 (continued)
TYPICAL CHARACTERISTICS
ITA = 25°C unless noted)
FIGURE 2 - FORWARD VOLTAGE
FIGURE 1 - REVERSE CURRENT
1.0
0.7
100
t--- VR = 3.0 Vdc
50
" 0.5
.3
ffi
./
0.3
./
~
0.2
~
~ 0.1
«
~ 0.07
~ 0.05
>
~
5.0
/'
10
'"=>
~ 2.0
/'
0.03
~ 0.02
'"
20
~
./
lli
ffi
"
./
/
0.0 1
20
'"~
1.0
~
0.5
~
40
60
80
100
/
o. 2
o. 1
120
0.38
0.30
0.46
TA, AM81ENT TEMPERATUR E (DC)
12
11
o. 9
"'uz
~
~
............
...............
0.8
U
::
;:;
u
-- ---
r--
\
~
8.0
(L~C;I(O;""ato~ F';QUencv' = 1.~ G~z
r
-
I-- ,---
1.0
20
"
J'.,.
7.0
5.0
0.1
4.0
3.0
VR. REVERSE VOLTAGE (VOLTS)
(FIgure 5, Note 2)
'\.
6.0
o
0.70
I II
I II
I II
---'
9.0
~~
\
10
"'
~
~
07
0.6
062
FIGURE 4 - NOISE FIGURE
FIGURE 3 - CAPACITANCE
1.0
~
0.54
VF, FORWARD VOLTAGE (VOLTSJ
0.2
"
0.3
05 0.7 1.0
20
3.0
PLO, LOCAL OSCILLATOR POWER (mWJ
50
70
10
FIGURE 5 - BLOCK DIAGRAM FOR NOISE FIGURE
LOCAL
OSCILLATOR
NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge
~
UHF
NOISE SOURCE
H.P.349A
DIODE IN
TUNED
MOUNT
(Boonton Electronics Model 75A or equivalent).
Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. IF amplifier NF = 1.5 dB, f = 30 MHz,
f--
see Figure 5.
t
NOISE
FIGURE METER
H.P.342A
Note 3 - LS is measured on a package having a short instead of a
I---
IF AMPLIFIER
NF= 1.5 dB
f = 30 MHz
die. using an impedance bridge (Boonton Radio Model
250A R X Meter!.
I-
49
MBDSO 1(SILICON)
MBD701
o -....~~~o
HIGH-VOLTAGE
SILICON HOT-CARRIER
DETECTOR AND SWITCHING.
DIODES
SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)
50-70 VOLTS
I~DfrlB
· .. designed primarily for high-efficiency UH F and VH F detector
applications. Readily adaptable to many other fast switching RF and
digital applications. Supplied in an inexpensive plastic package for
low-cost, high-volume consumer and industriallcommerical requirements.
• The Schottky BarrierConstruction Provides Ultra-Stable Characteristics By Eliminating the "Cat-Whisker" or "S-Bend" Contact
•
Extremely Low Minority Carrier Lifetime - 100 ps (Max)
•
Very Low Capacitance - 1.0 pF
•
High Reverse Voltage - to 70 Volts
•
Low Reverse Leakage - 200 nA (Max)
-r....l",--H
SEATING
PLANE
•
F
MAXIMUM RATING (TJ
A
o .:l1i~--
.:J a, 1-=
Symbol
Reverse Voltage
Value
Unit
Forward Power Dissipation@TA = 25°C
PF
Operating Junction Temperature Range
Storage Temperature Range
mW
mWloC
TJ
-55 to +125
,DC
T stg
-65 to +150
DC
0
S~CT A-A
C
::t:t,-
MIN
o
500
5.0
I
R
OIM
50
70
Derate Above 25°C
J
-I
MIllIMETERS
Volts
VR
MBD501
MBD701
K
r-r
~-t-i
= 1250 C unless otherwise noted)
Rating
1
L
______1
STYLE 1:
PIN 1. ANOOE
2. CATHOOE
A
CASE 182-1
F
MAX
432
5.33
445
18
521
.1
0533
O.
27
127
2Jl4BSC
121
R
343
0135
ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)
Characteristic
~mbol
Reverse Breakdown Voltage
(lR = 101'Ade)
Min
~
Max
50
70
-
-
CT
-
0.5
1.0
pF
T
-
15
100
ps
-
7.0
9.0
200
200
VF
-
1.0
1.2
Vde
LS
-
6.0
-
nH
Cc
-
0.18
-
pF
MBD501
MBD701
Total Capacitance, Figure 1
Unit
Volts
V(BR)R
(VR = 20 Volts, 1 = 1.0 MHz)
Minority Carrier Lifetime, Figure 2
(I F = 5.0 mA, Krakauer Method)
Reverse Leakage, Figure 3
(VR = 25 V)
(VR = 35 V)
nAdc
IR
MBD501
MBD701
Forward Voltage, Figure 4
(IF = 10 mAde)
Series Inductance
(1= 250 MHz, Lead Lenth",1116")
Case Capacitance
(1= 1.0MHz, Lead Lenth""1116")
50
MBD501, MBD701
(continued)
KRAKAUER METHOD OF MEASURING LIFE TIME
CAPACITIVE
CONDUCTION
STORAGE
CONDUCTION
FORWARD
CONDUCTION
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - MINORITY CARRIER LIFETIME
FIGURE 1 - TOTAL CAPACITANCE
500
20
-
.
.....
w
u
Z
>-
12
U
;t
j
0.8
b
>-
is
I
1.6
f
=
"[
:; 400
,.
1.0 MHz f-----
~
1\
\
KRAKAUER METHOD
~ 300
\
~
~ 200
I'---
"'
t---
o
~ 100
0.4
"
5.0
/
>>-
10
15
20
25
30
35
40
45
---
./
f--
10
50
/
20
30
40
50
60
70
80
90
100
IF, FORWARD CURRENT (mA)
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 4 - FORWARD VOLTAGE
FIGURE 3 - REVERSE LEAKAGE
100
0
TA
11000C
0
-
TA
1
1
TA
75°C
1
>-
5. 0
;:;
2. 0
1. 0
~
\
I--
.
~
-
25°C
o
o
~
~
10
O. 2
O. 1
10
20
30
40
50
VR, REVERSE VOLTAGE (VOLTS)
o
0.4
0.8
1.2
1.6
2.0
VF, FORWARD VOLTAGE (VOLTS)
51
=
0.05
0.02
0.01
0.00 1
VALUES SHOWN ARE
STEADY STATE.
TYPICAL PRINTED
CIRCUIT BOARD
MOUNTING
5
2.4
2.8
MBD502 (SILICON)
MBD702
O--II~aI------40
HIGH-VOLTAGE
SILICON HOT-CARRIER
DETECTOR AND SWITCHING
DIODES
SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)
50-70 VOLTS
· .. designed primarily for high·efficiency UHF and VHF detector
applications. Readily adaptable to many other fast switching RF
and digital applications. Supplied in the low·inductance Mini·L package for low-cost, high·volume consumer and industrial/commercial
requirements.
MBD502 Marked with Orange ColorStripe
MBD702 Marked with Brown Color Stripe
• The Schottky Barrier Construction Provides Ultra-Stable Character·
istics by Eliminating the "Cat-Whisker" or "S-Bend" Contact
•
Extremely Low Minority Carrier Lifetime - 100 ps (Max)
~q
• Very Low Capacitance - 1.0 pF
•
High Reverse Voltage - to 70 Volts
•
•
Low Reverse Leakage - 200 nA (Max)
Mini·L Ridge Clearly Identifies Cathode Lead for Easy Handling
and Mounting
n=~L
iJr
Symbol
Reverse Voltage
Unit
Operating Junction Temperature Range
Storage Temperature Range
MILLIMETER
DIM MIN
MAX
4.11
A 3.86
8
2.92
3.18
C
1.91
2.16
0.64
0
0.89
0.08
0.18
F
H
1.30
1.55
0.64
J
0.89
4.32
K 4.06
L
2.36
2.62
1.12
1.37
1.04
R 0.79
1.99 12.75
S
T 1.14
1.40
0.69
U 0.43
Volts
VR
50
70
Forward Power Dissipation @TA = 25°C
Derate Above 25°C
TJ
T stg
mW
400
4.0
mW/oC
-55 to +125
°c
~5
°c
PF
1.ANOOE
K
Value
MBD502
MBD702
PIN 1 CATHODE
~
~-+c
T+~
= 1250 C unless otherwise noted)
Rating
B
S
j
MAXIMUM RATING (TJ
I
L
to +150
•
INCHES
MI.
0.152
0.115
0.075
0.025
0.003
0.051
0.025
0.160
0.093
0.044
0.031
0.472
0.045
0.017
MAX
0.162
0.125
0.085
0.035
0.007
0.061
0.035
0.110
0.103
0.054
0.041
0.502
0.055
0.027
CASE 226
ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)
Characteristic
Symbol
Reverse Breakdown Voltage
IIR
= 10jlAdei
MBD502
MBD702
Diode Capacitance. Figure 1
IVR
= 20 Volts, f = 1.0 MHzl
Minority Carrier Lifetime, Figure 2
II F
(VR
(VR
= 25 VI
= 35 VI
Max
Unit
Volts
-
-
50
70
-
-
CT
-
0.4B
1.0
pF
T
-
15
100
ps
-
7.0
9.0
200
200
1.0
1.2
Vde
nAdc
IR
MBD502
MBD702
Forward Voltage, Figure 4
VF
-
LS
-
3.0
-
nH
Cc
-
0.1
-
pF
= 10 mAdel
Series Inductance
(f = 250 MHz, Measured at Lead Stop"" 1/8"1
Case Capacitance
(f
Typ
=5.0 rnA, Krakauer Methodl
Reverse Leakage, Figure 3
IIF
Min
VIBRIR
= 1.0 MHzl
52
MBD502, MBD702
(continued)
KRAKAUER METHOD OF MEASURING LIFE TIME
STORAGE
CONDUCTION
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - DIODE CAPACITANCE
FIGURE 2 - MINORITY CARRIER LIFETIME
2.0
500
TA ='25 DC
u..
I
1.6
f
f--
=1.0 MHz r--
w
u
'"
~
U
KRAKAUER METHOD
1.2
1
~
;3
w
'"'"
c
li
0.8
~
......"
r--
0.4
0
-
0
0
0
5.0
10
15
20
25
30
35
40
45
-I--
50
VR. REVERSE VOLTAGE (VOLTS)
V
- --
/
/
I-- I--
IF.PEAK FORWARD CURRENT (mA)
FIGURE 3 - REVERSE LEAKAGE
FIGURE 4 - FORWARD VOLTAGE
0
100
50
TA _IIOODC
;;:
0
.§
I-
~
-
TA=J5DC
r--
1
1
u
~
~
-
TA=25 DC
~
i-
10
20
30
40
5.0
2. 0
1. 0
50
VR. REVERSE VOLTAGE (VOLTSI
VALUES SHOWN ARE
STEADY STATE.
TYPICAL PRINTED
::
CI RCUIT BOARD
MOUNTING
=
O. 5
O. 2
O. 1
0.0 5
0.02
0.0 1
0
I
0.00 1
o
:::>
0
10
0.4
O.B
1.6
2.0
VF. FORWARD VOLTAGE (VOLTS)
53
2.4
2.B
MBI-l0l (SILICON)
SILICON HOT-CARRIER MICRO-I DIODE
(SCHOTTKY BARRIER DIODE)
SILICON HOT-CARRIER
UHF MIXER
MICRO-I DIODE
... designed primarily for UHF mixer applications but suitable also
for use in detector and ultra·fast switching circuits.
•
The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact
•
Low Noise Figure - 7.0 dB Max@ 1.0 GHz
•
Very Low Capacitance - Less Than 1.0 pF @ Zero Volts
•
High Forward Conductance - 0.48 Volts (Typ) @ IF = 10 rnA
•
Supplied in Space Saving Miniature Package
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VR
4.0
Volts
PF
200
2.0
mW/oC
TJ
+125
°c
Tstg
-65 to +150
°c
Reverse Voltage
Forward Power Dissipation @TA
= 25°C
Derate above 25°C
Operating Junction Temperature
Storage Temperature Range
Device Marked With Yellow Top.
mW
~ KJlo
--.i
ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)
Characteristic
Reverse Breakdown yoltage
(lA= lO I'Al
Diode Capacitance
(VA = O. f= 1.0 MHz. Note 1)
Forward Voltage
L K-
Symbol
Min
Typ
Max
Unit
V(BA)R
4.0
5.0
-
Volts
CT
-
0.88
1.0
pF
VF(ll
-
0.48
0.60
Volts
NF
-
6.0
7.0
dB
'A
-
0.02
0.25
I'A
LS
-
3.0
-
nH
OIM
Cc
-
0.15
-
pF
C
(IF = 10 rnA)
Noise Figure
(f = 1.0 GHz. Note 2)
Reverse Leakage
STYLE 1:
PIN 1. ANODE
2. CATHOOE
iA-j
,~EJ~ tit
1
t
4
I
(VR = 3.0 V)
Series Inductance (Note 3)
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
1.98
1.22
0.25
0.10
0.51
0.03
4.19
0.89
0.38
0.078
0.048
0.010
0.004
0.020
0.001
0.165
0.035
0.015
(f = 250 MHz. Lead Length'" 1/16")
Case Capacitance (Note 1)
(f = 1.0MHz. Lead Length'" 1116")
(1) Matched sets available. Contact Motorola Sales Office with specific requirements.
TYPICAL HIGH DENSITY MOUNTING TECHNIQUE
~00~5
~
PC
===::a=:r
0
F
H
J
K
l
N
2.34
1.47
0.41
0.15
0.76
0.08
4.45
1.14
0.64
0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025
Optional Package with Raised
Circular Tab Available; Specify
Case 166·01.
0025
BOARD MOUNTING
A
t
MaXimum Solder Temperature
2S0 oC for lOs
CASE 166·02
54
MBI-101 (continued)
TYPICAL CHARACTERISTICS
(T A = 25°C unless noted)
FIGURE 1 - REVERSE LEAKAGE
FIGURE 2 - FORWARD VOLTAGE
100
1.0
07
50
05
-
;;'
./
-VR,3.0Vdc
V
.3
~
~
~w
/'
./
0.1
~
10
50
~
10
13
~ 0.0 7
"~
~ 0.0 5
'"
10
....
IL"
0.2
;;'
.§
'"
-
"
0.0 1
/
/
/
1.0
~
05
01
00 1
30
01
40
50
60
70
80
90
100
110
110
0.1
130
0.3
TA, AMBIENT TEMPERATU RE 1°C)
04
FIGURE 3 - CAPACITANCE
1\.
10
LbcAL
O~CIIL!A~JJ FREJUE~Cyl,)o G1HZ
(Test Circuit F1gure 5)
9.0
.."....
0.9
w
I'---.-
u
U
~
0.8
u
w
o
o
i5
~
...............
-- ---
0.7
FIGURE 4 - NOISE FIGURE
1.0
't;.
0.6
05
VF, FORWARD VOLTAGE (VOLTS)
r:o
8.0
~
70
'"u:
6.0
'"
<3
5.0
::>
t---
"-
"'- ..........
w
.
..
~.
0.7
4.0
3.0
1.0
0.6
o
1.0
1.0
1.0
3.0
0.1
4.0
VR, REVERSE VOLTAGE (VOLTS)
0,1
0.5
10
1.0
5.0
10
PLO, LOCAL OSCILLATOR POWER (mW)
FIGURE 5 - NOISE FIGURE TEST CIRCUIT
NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge
1800nton Electronics Model 75A or eqUIvalent).
Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. IF amplifier NF = 1.5 dB, f = 30 MHz,
see Figure 5.
Note 3 - LS is measured on a package having a short instead of a
die, using an impedance bridge (Boonton Radio Model
250A RX Meterl.
55
MBR320M
MBR330M
MBR340M
SCHOTTKY
BARRIER
RECTIFIERS
HOT CARRIER POWER RECTIFIERS
3 AMPERE
. emploYing the Schottky Barner pnnclple in a large area metal-ta-sillcon power
diode. State of the art geometry features epitaxial construction with oXide passiva-
20, 30,40 VOLTS
tion and metal overlap contact. Ideally sUited for use as rectifiers In low-voltage,
high-frequency Inverters, free wheeling diodes, and polarity protection diodes .
•
Extremely Low vF
•
Low Power Loss/High Efficiency
•
Low Stored Charge, MaJonty
•
High Surge Capacity
Carner Conduction
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
Average Rectified Forward Current
Symbol
20
30
40
Volts
VRSM
24
36
48
Volts
10
VR(equiv)";; 0.2VR (de), TC = 65°C
VR(equiv),,;;0.2 VR,(dcl. TL = 90°C
( ReJA = 25 0 C/W, P.C. Soard
Mou nt i "9, See Note 31
Ambient Temperature
Rated VR(dc), PF(AV) = 0
ReJA = 25 0 C/W
Non-Repetitive Peak Surge Current
..
1-'
°c
65
60
55
I
~
L
Amp
500 (for 1 cycle)
~
- - -65 to +125 _
C
r
°c
Temperature Range (Reverse
Voltage applied)
Peak Operating Junction Temperature
TJ(pk)
(Forward Current Appl ied)
.
..
150
A
B
Thermal Resistance, Junction to Case
C
D
K
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherWISe noted.)
Symbol
Min
Typ
Max
-
-
TC = 25°C
TC = 100°C
-
-
-
-
10
75
-
11.43
8.89
7.62
1.17 1.42
24.89
INCHES
MIN
MAX
-0.046
0.980
MECHANICAL CHARACTER ISTICS
FINISH: All external surfaces corrosion-resistant
and the terminal leads are readily
solderable.
POLARITY: Cathode to c ....
MOUNTING POSITIONS: Any
(1) Pulse Test: Pulse Width =300"s, Duty Cycle = 2.0%.
56
0.450
0.350
0.300
0.056
CASE: Welded, hermetically sealed construction.
mA
IR
MILLIMETERS
MIN
MAX
CASE 60
0.450
Currerit@rateddeVoltage(11
STYLE 1:
PIN 1. CATHODE
2. ANODE
Unit
Volts
vF
Voltage (1)
(iF = 5.0 Amp)
Maximum Instantaneous Reverse
L,
DIM
Characteristic
Maximum Instantaneous Forward
K
°c
THERMAL CHARACTERISTICS
Characteristic
o
K
IFSM
TJ,Tstg
~,
Amp
15_
3.0_
TA
(surge applied at rated load conditions, halfwave, single phase 60 Hz)
Operating and Storage Junction
MBR320M MBR330M MBR340M Unit
VRRM
VRWM
VR
MBR320M, MBR330M, MBR340M (continued)
NOTE 1: OETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibil ity of thermal runavvay
must be considered when operating th is rectifier at reverse voltages
above 0.1 VRWM.
of equation III:
TAlmaxl
where
Proper derating may be accomplished by use
of 1150 C. The data of Figure. 1, 2 and 3 iobased upon dc condi·
= TJlmaxl
- R8JA PFIAVI - R8JA PRIAVI
III
T A(max) '" Maximum allowable ambient temperature
tions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative
design; Le.:
VRlequivl
T J(max) == Maximumallowable junction temperature
11250 C or the temperature at which ther·
= VINIPKI
x F
141
The Factor F is derived by considering the properties of the various
rectifier circu its and the reverse characteristics of Schottk V diodes.
mal runaway occurs, whichever is lowest).
PF(AV) = Average forward power dissipation
Example:
PR(AV) = Average reverse power dissipation
Find TAlmaxlfor MBR340M operated in a 12·Volt dc
10 A IIFIAV) = 5 A), IIPKI/IIAVI
Vlrmsl. R9JA = 100 CIW.
supply using a bridge circuit with capacitive filter such that IDe
R8JA = Junction-ta-ambient thermal resistance
Figures 1, 2 and 3 permit easier use of equation (1) by taking
reverse power dissipation and thermal runaway IOta consideration.
The figures solve for a reference temperature as determined by
equation 121:
TR
when forward power is zero. The transition from one bou ndary
condition to the other is evident on the curves of Figures 1, 2 and
3 • a difference in the rate of change of the slope in the vicinity
= TJlmaxl - R8JAPRIAVI
121
Find VRlequivl. Read F = 0.65 from Table I :.
VRlequiv) = 11.411110110.65) = 9.2 V
Find TR from Figure 3. Read TR = 117o C@ VR =
9.2 V & R9JA = lO o C/W.
Find PFIAVI from Figure 4. Read PFIAVI = 6.3 W
Step 1:
Step 2.
Step 3
Substituting equation 12) into equation (1) yields.
TAlmaxl = TR - R9JA PFIAVI
@IIPKt 10 & IFIAVI = 5 A
IIAVI
Find':: AI \Y.ax I from equation 131. TAl maxI = 117·1101
16.3) - 54 C.
131
Inspection of equations (2) and (3) reveals that TR IS the ambient
temperature atwhich thermal runaway occurs or where TJ =- 12S o C,
=
= 10, Input Voltage = 10
Step 4'
TABLE I - VALUES FOR FACTOR F
Circuit
Half Wave
Resistive _1 ~apacitive (1)
Load
0.5
0.75
Sine Wave
Square Wave
I
Resistive
Capacitive
Resistive
0.5
0.65
1.0
1.5
0.75
0.75
1.5
J-;-;:-r-- N
......
~ t"'-... .........
f"""'-.....""""":
'"~ 105 -.........: :---.:
, , =' i"'r-..." r--...
i". . . . . . r--.,.,
.....
.........
r-...
........... 1'-...,
t--.'
~ 95
,r--..
ROJA IOCM') = 71i' ~I:...
I>("r-,.
60
./
'X~
50
40
. / 'X ~r30
"",)4.
25 20
/15
-1 10'"
1!i
>-
~ 85
r--... ><
iii
i
r-....'
75
~ 65
,
55
2.0
3.0
'j"
E~
RaJA IOC/WI
'"=>>-
105
~
95
w
'-'
85
1!i
>-
~
...
'"
,
~~
w
;:--...;
.....
55
3.0
4.0
5.0
~
" "........
LX :-............. "-
15
10 ....
~~ ~
10
15
7.0
VR, REVERSE VOLTAGE IVOLTSI
"'
~
20
FIGURE 4 - FORWARO POWER DISSIPATION
~
.........
~........
_L
55
7.0
,,~
...........'2'" ~~ K.~ !"..
............ ~. ~ K
./
:'.2' t'.L'>
/"'.">
"
......
:.'-.. .".. .'-l"\'
:-.: ~ ."l"\"
.......
~ ~
10
15
20
VR. REVERSE VOLTAGE IVOLTSI
'"'
30
40
IFIAVI. AVERAGE FORWARO CURRENT lAMP)
57
......
~x.~ ['.2'.. ~
I/'.x.~ ~ ........
"'
~
...........
310 25 ."
,
20 1510 """
5.0
~
r-..,."
~L".L-.. 1>-..."')...
I'X.X ~... "- I\...
" , " " """ .,
" r-. ......-'"
60
50
40
65
4.0
,
" "-"' "".....
'-
...........
...........
r-...'
.......... .........
........ ........
'..
r-~K
3.0
I:::' 1"'"":::;:::--
~.A. ~
................
I Capacitive
I
(2)Use line to center tap voltage for Vin.
FIGURE 1- MAXIMUM REFERENCE TEMPERATURE - MBR320M
125
7.0 5
~L' ',4.0
~115
3.0
,~l:"~~~~..... ..... r--.
,
Center Tapped 111,121
1.3
111 Note that VRIPKI""2 VinlPKI
w
Full Wave,
Full Wave, Bridge
........
'-
30
MBR320M, MBR330M, MBR340M (continued)
THERMAL CHARACTERISTICS
FIGURE 5 - THERMAL RESPONSE
1.0
W
<.>
z
~
iii
0.7
0.5
.--
0.3
~ C 0.2
.. !:::!
«W
a: ....
~ ~
:: g;
Ji:J1
_f-"
o. 1
tp
0,07
~ ~ 0.05
~
?
""
_
f-tl----1
0;
>-
ZeJCIt! • R'JC • rlt!
DUTY CYCLE, 0 • tp/ll
PEAK POWER, Ppk, is peak of an
equivalent square power pulse.
Pk
TIME
'" TJC· Ppk . ROJC 10 + II - O!· rIll + tp! + rltp!-rll1l1
0.03
where
l:l TJC
0.02
rlt)
0.0 1
0.5
1.0
2.0
5.0
10
20
50
100
t, TIME
200
Pk
500
1-----11---1
2.0 k
1.0 k
10 k
5.0 k
20 k
50k
NOTE 3 - MOUNTING DATA
Data shown for thermal resistance junction-to-ambient
(RaJA) for the mountir.gs shown is to be used as typical
guideline values for preliminary engineering.
Ppk
tp
': the increase in junction temperature above the case temperature
normalized value of transient thermal resistance at time, t, from Figure 5, i.e.:
r(tl + tp) '" normalized value of transient thermal resistance at time, 11 + tp.
1m,!
NOTE 2 - FINDING JUNCTION TEMPERATURE
J=tjL
=
DUTY CYCLE, 0 " tp/q
PEAK POWER, Ppk. IS peak of an
equivalent square power pulse
TYPICAL VALUES FOR ReJA IN STILL AIR
LEAD LENGTH, L liN!
TIME
To determme maximum Junction temperature of the diode 10 a given Situation,
the following procedure is retommended.
The temperature of the Clse should be measured uSing a thermocouple placed
on the case at the temperature reference pomt (see Note 3). The thermal mass
connected to the case IS normaily large enough so that It will not Significantly
respond to heat surges generated in the dIOde ala result of pulsed operation once
staady-state conditions are achieved. USlIlg the measured value of TC. the junction
temperature mavbedetermmed by
TJ'''TC+6TJC
where 0. TJC IS the IIlcrease In Junction temperature above the case temperature
It may be determined by
t:. TJC = Ppk 'R6JC [0+(1- Ol . r(q +tpJ +r(tpl-r(I111
where
r(tl'" normalized value of tranSient thermal resistance at time, t, from Figure
51' ..
r (tl + tpl ~ normaflzed value of tranSient thermal resistance at time tl + tp
MOUNTING
METHOD
1/4
1
ReJA
1
55
60
°C/W
2
65
70
°C/W
25
3
°C/W
MOUNTING METHOD 3
P. C. Board with
2 1/2" x 2 1/2" copper surface
FIGURE 6 - APPROXIMATE THERMAL CIRCUIT MODEL
ReCA
70 0 C/W
ReS(Al
ReLlA!
40 0 C/W/IN
ReLIK!
40 0 C/W/IN
Use of the above model permits calculation of average
junction tem",erature for any mounting situation. Lowest
values of thermal resistance will occur when the cathode
lead Is brought as close as possible to a heat dissipator; as
heat conduction through the anode lead is small. Terms
In the model are defined as follows:
·Ca.. temperature reference
I, at cathode end.
TEMPERA,URES
TA =
T A(Al =
T A( K) =
TL(A) =
TL(K)=
TJ =
ReSIK!
THERMAL RESISTANCES
AaCA = Case to Ambient
Ambient
ReS(A):::; Anode Lead Heat Sink to Ambient
Anode Heat Sink Ambient
Cathode Heat Sink Ambient RaS( K) = Cathode Lead Heat Sink to Ambient
L(A) = Anode Lead
Anode Lead
RaL(K)= Cathode Lead
Cathode Lead
Junction
AOCL = Case to Cathode Lead
AOJC = Junction to Case
R8J(A) = Junction to Anode Lead (S bend)
Rn
58
MBR320M, MBR330M, MBR340M (continued)
FIGURE 7 - TYPICAL FORWARD VOL TAGE
200
~J5DC
100
:.,....-
./
100DC-
70
...z
a:
~
20
700
~
500
::>
u
f = 60 Hz
...........
...........
w
G
it
"...
:::;
L
0:
30
Prior to surge, the rectifier is operated such
that TJ = 100DC; VRRM may beapplied be·
tween each cvcle of surge .
0:
/
50
~
--
FIGURE 8 - MAXIMUM SURGe CAPABILITY
1000
80
12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)
NOTE 4 - HIGH
FREQU~NCY
MBRl20M
MBR330M
-MBR340M
32
36
20 V
30 V
40.V
40
OPERATION
2500
2000
1500
~ :::1'---
TJ = 25 0C
......
t.... ..... :--.,
~ 1000
z
MBRl20M -
... rated de Voltaga (1)
TC
= l000C
Min
Typ
Max
vF
-
-
Unit
MECHANICAL CHARACTERISTICS
Volts
CASE: Welded, hermetically ..aled
FINISH: All external surfaces corrosion resistant
and terminal lead is readily solderable.
0.550
mA
IR
-
-
-
-
10
75
POLARITY: Cathode to Case
MOUNTING POSITION: Any
STUO TORQUE: 15 in .. lb. max
(1) Pulse Test: Pulse Width = 300 1'5, Duty Cycle = 2.0%:
60
MBR1520, MBR1530, MBR1540 (continued)
NOTE 1: DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibil ity of thermal runaway
3 as a difference in the rate of change of the slope in the vicinitY
of 115°C. The data of Figures 1. 2 and 3 is based upon dc condi·
tions. For use in common rectifier circuits, Table I indicates sug-
must be considered when operating this rectifier at reverse voltages
above 0.2 VRWM. Proper derating may be accomplished by use
of equation 111:
TAlmaxl = TJlmaxl- R8JA PFIAVI- ReJA PRIAVI
III
where
T A(max)
TJlmaxl
gested factors for an equivatent dc voltage to use for con.rvative
design; i.e.:
VRlequivl = VinlPKI x F
= Maximum allowable ambient temperature
= Maximum allowable junction temper.turel125 0 C
or the temperature at which thermal runaway
Example:
Find TA(max) for MBR1540 operated in a 12·Voltdc
supply using a bridge circuit with capacitive filter such that! DC =
10 A (IFIAVI = 5 AI. I(PKI/IIAV) = 20. Input Voltage = 10
Vlrmsl. R8JA = 5 0 C/W.
occurs, whichever is lowest).
PFIAVI = Average forward power dissipation
PRIAVI = Average reverse power dissipation
Step 1:
R8JA = Junction-to~ambient thermal resistance
Figures 1. 2 and 3 permit easier use of equation III by taking
reverse power dissipation and thermal runaway into consideration.
Find VR(equivl. Read F = 0.65 from Table I:.
VRlequivl = (1.411110110.651 = S.18 V
Find TR from Figure 3. Read TR = 121 0 C @ VR = 9.18
& R8JA = 5 0 C/W
Find PF(AVI from Figure 4. Read PFIAVI = 10.5 W
I(PKI
@1(AVI=20& IFIAV)· 5 A
Step 2:
The figures solve for a reference temperature as determined by
equation 121:
TR = TJlmaxl- R8JA PRIAVI
141
The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.
Step 3:
121
Substituting equation 121 into equation 111 yields:
TAlmaxl = TR - R8JA PFIAVI
131
Inspection of equations 12) and (3) reveals that TR is the ambient
Step 4:
Find T:,(max.\ from equation (31. TAlmaxl = 121-151
110.51 - 68.5 CI.
temperatureatwhich thermal runaway occurs or where TJ = 12SoC,
when forward power is zero. The transition from one boundary
condition to the other is eviuent on the curves of Figures 1,2 and
TABLE I - VALUES FOR FACTOR F
Circuit
Half Wave
Load
Resistive
Sme Wave
Square Wave
0.5
0.75
Full Wave.
Full Wave. Bridge
Capacitive( 11 Resistive
1.3
1.5
Center Tapped I 11(2
Capacitive
Resistive
Capacitive
0.65
0.75
1.0
1.5
1.3
1.5
0.5
0.75
(21 Use line to center tap voltage for Vin-
111 Note that VR(PKI ""2 VinlPKI
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - MBR1520 FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - MBR1530
125
~~
roo
'"' 115 -==:r::::::: :-~:--::r--- ::::::t::'
~
a:
r-..... i'" ............. r-..... ...... ~
~
a: 105
.......
...........
~
>-
........
.......
"
....
~ 95
~a:
85
'- .......
3.0
4.0
.....
.....
3.5+~5.0
'I'..
"
~ 115
I-v<::.
!;;:
3il'
a:
=>
ffi
I'.
"'\to I\."'\.
......
......~
r-...
5.0
,
cr
t'<'. . . .~]><~.0
'"'-, ,'"
......
~
>-
7.0
'"
10
~
VR. REVERSE VOL TAGE (VOLTSI
15
~a:
~
~ 115
=>
~
=
105
...
11l
~
'"
....
~
...'"
95
75
........
...... r-.,
105
...........
"
'"
85
75
3.0
20
r-..
2.5
,
...
.....
.....
r-.... .......
~
5.0
"
20"\.
30",
"I'\.
10
,
I'......
1'-..,
"'-
i"
......
......
I'\.
:'\ "'\. ~
I'\.
\\
""
"""" "
'""
...............
"
'I\.
30
r\
"\.
2~r-..
~
"\
.'\ "\. \ \
'\ "I"'\. "-
"
15
20
7.0
10
4.0
5.0
"No external heat sink. VR. REVERSE VOLTAGE (VOLTSI
30
FIGURE 4 - FORWARD POWER DISSIPATION
""I" "- "\1\
'I\.
20
20r----.----,----,----,--,-r----r--r-r----,
.).; -"'. :"'\
ReJA IOCIWI • 50' .........
\.
"\. I\.
"'\.
15
1~
.~5
7.O-
VR. REVERSE VOLTAGE IVOL TSI
~=
2.5
J~
r- -t-'" ~~K35
5.0
r-..... r-.. . . . :. . . . . . . . . . . . . . . . . "><~1.. . 7.0
'r-...
1
~
'1~
,i~
'- ......
7.0
1'.."""""":: <.. . . . . X
......
ReJA (OCIW) • 50'
4.0
3.5
c:--......~ ~5.0
f..,.
,
85
.......... ......... ~
>-
FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR1540
125
........ r--- r-.... ...
~ 95
I'\.
21 ' " "'\.
-t-
....
'J 11\.'1\. I\. "\
r....."'\.
ReJA (OelW! • 50'
75
2.0
125
2.5
,"- 1"\r\
30
u
40
u
U
U
10
IF(AV). AVERAGE FORWARD CURRENT lAMP!
61
MBR1520, MBR1530, MBR1540 (continued)
FIGURE 5 - TYPICAL FORWARD VOLTAGE
200
FIGURE 6 - MAXIMUM SURGE CAP.o.BILITY
1000
V
TJ' 25°C
100
V
,/"
1/ /"
I
'fI
0::
',.."
~
:! 20
B
~
'"'"
500
B
100°C
r
~
...........
w
>
'"~
:r
"
300
-
.......
~
W-
-'
"'"
r--.
!'....
200
~
.........
~
1/
10
700
~
1/
30
"...
~
70
50
Prior to surge. the rectifier is operated such
that TJ '" tOODe; Vfl RM may be applied be~e~~ e~~h cycle surge .
0::
V
.........
..... 1'-1--
100
1.0
20
3.0
"
~ 7.0
5.0
10
20
30
50
100
NUMBER Of CYCI ES
~
'""
5.0
I
I
~
2!
",..z
";!:t;
3.0
FIGURE 7 - CURRENT DERATING
I
2.0
"...
~
:! 14
.If
I
1.0
16
0::
12
B
10
c
«
'"
~ 8.0
0.7
~
w
6.0
0.&
'"
0.3
"~ 2.0
0.2
ffi
>
o
0.2
0.4
0.6
0.8
1.0
1.2
VF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
4.0
SINEWAVE ~'20
,CAPAC,ITIVE ~OADS , IIAV) ,
-+---jf--+---"'~~
CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
0
75
1.4
105
95
TC. CASE TEMPERATURE 1°C)
85
115
125
FIGURE 8 - THERMAL RESPONSE
w
1.0
0.7
~
0.5
~
iii
- --
0.3
~ i5: 0.2
-
;i~
=-'
w
< 0.1
,,"
~ ~ 0.07
tpJ L I T P k
I-tl---1
TIME
~ ~O.05
z
~
0.03
I0.02
~
0;
DUTY CYCLE. D = tp/tl
PEAK POWER, Ppk. is peak of an
equivalent square power pulse.
:::
TJC' Ppk' ROJC [D + 11- D)· rlq +tp) + rltp)-rlq)]
where
11 TJC "" the mcreaH In junction temperature above the case temperature
r(t) = normalized value of uansient thermal resistance at time, t, from Figure 8, i.e.:
r(t1 + tp) =normalized value of transient thermal resistance at time, t1 + tp.
~
0.0 1
0.115
ZOJCIW ROJC • rlt)
0.1
0.2
0.5
1.0
2.0
5.0
10
20
t. TIME 1m,)
62
50
100
200
500
1.0 k
2.0k
5.0k
MBR1520, MBR1530, MBR1540 (continued)
FIGURE 10- TYPICAL REVERSE CURRENT
FIGURE 9 - NORMALIZEO REVERSE CURRENT
5.0
200
i5
3.0 t-VR =VRWM
N
:::;
2.0
.
1.0
w
,.a:.
0
~
~
a:
a:
::>
'"w
'"a:w
~
IE
./
./
0.2
0.1
0.07
-::::
10
~'1000C
~
75°C
V
~
'"
2.0
10
105
1--
..... :....
- -
~.
o
125
....
0.5
02
65
85
TC. CASE TEMPERATURE (OC)
~
I--- 25°C
- --
- ..- .-- - -
.- ::;.-
w 5.0
'"a:w
~
~
45
~
20
13
v
-
<
E.
50
..
./
0.7
0.5
0.3
125°C
TJ
100
V
4.0
8.0
12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)
M8R1520 20 V
M8R1530 30 V
M8R1540 40 V
32
36
40
FIGURE 11-CAPACITANCE
2500
2000
1500
........
.........
NOTE 2 - HIGH FREQUENCY OPERATION
......
~
...'"
w
z
U
~
U
t-..
1000
1'.,
Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed
TJ' 25°C
M8R1520 1-1--
by using a model consisting of an ideal diode in parallel with a
variable capacitance. (See Figure 11).
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
700
M8R1530
."
500
400
300
250
0.040.06 0.1
M8R 1540
waveform rectification efficiency IS approximately 70 per cent at
2.0 MHz, e.g., the ratio of dc power to RMS power In the load IS
0.28 ~t this frequency, whereas perfect rectification would Yield
0.406 for sine wave Inputs
However, In contrast to ordinary
Junction diodes, the loss In waveform efficiency IS not Indicative of
power loss; It IS simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.
I'~
I IIII
0.2
0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
40
63
MBR2520
MBR2S30
MBR2S40
SCHOTTKY
BARRIER
RECTIFIERS
HOT CARRIER POWER RECTIFIER
25 AMPERE
20, 30, 40 VOLTS
· .. employing the Schottky Barrier principle in a large area metal·to·
silicon power diode. State of the art geometry features epitaxial can·
str'uction with oxide passivation and metal overlap contact. Ideally
suited for use as rectifiers in low·voltage, high·frequency inverters,
free wheeling diodes, and polarity protection diodes.
•
•
Extremely Low vF
•
Low Stored Charge, Majority
Carrier Conduction
•
Low Power Loss/H igh
Efficiency
High Surge Capacity
MAXIMUM RATINGS
Non·Repetitive Peak Reverse Voltage
Average Rectified Forward Current
VR(equiv.) ';;;0.2 VR(dc), TC
VRRM
VRWM
VR
VRSM
10
= 80°C
Ambient Temperature
Rated VR(dc), PF(AV)
ReJA = 3.5 0 C/W
@J
Symbol MBR2520 MBR2530 MBR2540 Unit
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
=0
Non-Repetitive Peak Surge Current
20
30
40
24
36
25
48
85
80
•
Volts
Volts
•
Amp
STYLE 1:
1. CATHODE
2. ANODE
uc
TA
90
Amp
IFSM
(surge appl ied at rated load
conditions, halfwave, single phase,
800 (for 1 cycle)
60 Hz)
Operating and Storage Junction
TJ, T stg
-4---65to+125~
°c
Temperature Range (Reverse
voltage applied)
Peak Operating Junction Temperature
(Forward Current Applied)
TJ (pk)
..
..
150
°c
THERMAL CHARACTERISTICS
Characteristic
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 10.77 11.10 0.424 0.437
0.405
10.29
C
0
6.35
- 0.250
1.91
4.45 0.075 0.175
E
0.060
F
1.52
J
10.72 11.51 0.422 0.453
0.800
K
20.32
Thermal Resistance. Junction to Case
CASE 245.01
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwISe noted.)
-
Symbol.
Characteristic
MaxlmufTl Instantaneous Forward
Voltage (1)
(iF = 25 Amp)
Maximum Instantaneous Reverse Current
@
Rated dc Voltage (11 (TC = lO00C)
(1) Puis. Test: Pulse Width
Min
Typ
Max
IR
Unit
Volts
vF
-
-
0.550
-
20
150
= 300 I'S, Duty Cycle = 2.0%.
64
mA
MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistance and terminal lead is
readily solderable.
POLARITY: Cathode to Cose
MOUNTING POSITIONS: Any
STUO TOROUE: 15 in. lb. Max
MBR2520, MBR2530, MBR2540 (continued)
NOTE 1: DETERMINING MAXIMUM RATINGS
Raverse power dissipation and the possibility of thermal runaway
when forward power is zefO. The transition from one boundary
condition to the other is evident on the curves of Figures 1, 2 and
3 .. a difference in the rat, of change of the slope in the vicinity
of 1150 C. The data of Figures I, 2 and 3 is based upon dc condi-
must be considered when operating this rectifier at revena voltages
above 0.2 VRWM.
of equation (1):
Proper derating may be accomplilhed by use
TA(max) = TJ(max) -R6JA PF(AV) - R8JA PR(AV)
where
T A(max) = Maxi"1um allowable ambient temperature
tions. For use in common rectifier circuits, Table I indicates sug.
gested factors for an equivalent dc voltage to use for conservative
design; i.e.:
(I)
VR(equiv) ~ Vin(PK) x F
TJ(max) = Maximum allowable junction temperature (125 0 C
or the temperature at which thermat runaway
(4)
The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottk.y diodes.
occurs. whichever is lowesd.
Example:
Find TA(max) for MBR2540 operated in a 12·Voltdc
PF(AV) = Average forward povver dissipation
supply using a bridge circuit with capacitive filter such that I DC
PR(AV) = Average reverse power dissipation
16 A (IF(AV) = 8 A), I(PK)/I(AV) = 20, Input Voltage = 10
V(rms), R6JA = 5 0 CIW.
ROJC ;;; Junction-to-ambient thermal resistance
Figures I, 2 and 3 permit e..ier use of equation (1) by taking
Step 1:
reverse power dissipation and thermal run8\Nay into consideration.
The figures solve for a reference temperature as determined by
Step 2:
equation (2):
(2)
Step 3:
Substituting equation (2) into equation (1) yields:
TA(max) = TR - R8JA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR is the ambient
Step 4:
temperature at which thermal runaway occurs or where TJ ;;; 125°C.
=
Find VR(equiv)' Read F = 0.65 from Table I :.
VR(equiv) = (1.41)(10110.65) =9.18 V
Find TR from Figure 3. Read TR = I 1~C @ VR = 9.18
& R6JA = 5 0 C/W
Find PF(AV) from Figure 4. Read PF(AV) = 14.8 W
I(PK)
@1(AV)=20& IF(AV) = 8 A
Find T A(max) from equation (3). TA(max) = 113-(5)
(14.8) = 3QoC
TABLE I - VALUES FOR FACTOR F
Circuit
HalfW...
Load
Resistive
Sine Wave
0.5
0.75
Square Wave
I Capacitive(1)
I
I
I
Resistive
1.3
1.5
I
0.5
0.75
~
......
:::>
~
~ 105
1!i
...
~
95
!
_
" r-... r-......... '"" ,"'-
i'.....
"- "
t-.....
-r-...'
I'-........
"'-
"
85
u
~ 115 ........
r-.. ~5""'"
3.5
or
w 105
.""
"
~
~
....
w
'"
r-,. 20"- r-.. "-
ffi
7.0
10
'\..
15
VR, REVERSE VOLTAGE (VOLTS)
""
95
~
cc. 85
"'\
"' 30'" I"- r-..'\..
~'\. .~ "'
5.0
..,
e..115
w
or
:::>
~
~105
1!i
...
~ 95
~
~_
....
-
r:::- r~
I"--,
I'....
"
"
I'-.
I'....
I'-.
85
-...;
r:::::
..... i'I"i'~
"-
"
"
ROJA = (oCIW) = 5i?'
75
4.0
5.0
7.0
-r-......
.........
I"--,
t'....
.......
"'"
b.., i'-
"
0"
10
"""-
~
"
I"- I\.
'"
=
5.0
7.0
10
VR, REVERSE VOLTAGE (VOLTS)
15
'\.
r-SI~EWLE 1 1 1
1
""
WAVE
./ ./
"
"-
"
/
// /
/ ' c......
4.0
8.0
>(
TJ
12
~
V
LOAD
125 0 C
16
65
-
L
1 1 1
20
IFIAV), AVERAGE FORWARD CURRENT (AMP)
*No ftxternal heat sink
de
~I~S~:;'~:EE-
./
i--"""
b :...::; ~
~ Fi""'"
40
I/:
./
V hV
..&
L
'V
V
/
/
.
l'Y
1/ /
/SQU~RE
/
/
2
'\"\
30
[\.. \.
20
5.0
/
10
/
~
\.
VR, REVERSE VOLTAGE (VOLTS)
/
"' " '\
'\.. '\..
20
3.~
!'~
i',.
"'
!',~"
ROJAIoCIW) 50......
4.0
US
2.5' ~
I\. \.
~.ot~
'\.. r-,." \
10
):'\.. '\ \
II
~
15
~"
/
"- I"\.. '\..
~15"",,-
:--.20.",-
'\.."
",,,~
...................
"
"
~'" " ""
r-,.
r-........
r--,.1.75
........... ~.5'"
...........
5.0 '\..
7.0
"- r"-.. 10"
r--"
.........
r-... ........... t"-.,. 2.5 t'-.,."['..
~
1.3
1.5
I
CAPACITIVE I(PK) = 20
LOAOS
IIAV)
l"'--.
Capacitive
FIGURE 4 - FORWARD POWER DISSIPATION
C'............
-- r-....
~"
"
75
3.0
20
8
-
........
....or
FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR2540
125
I
I
~r--;~...:::r--::::::::-r-.
~
'-..
r--~~.75-
f'.... I'...
~ .~ '\..
r-.... r"-.. i"- ~ '\..'\..
,'\.. r-,."
!'- }
4.0
3.0
1.0
1.5
(2)Use hne to center tap voltage for Vin.
ROJA(oCIW) = 50"
75
2.0
Resistive
0.65
0.75
FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - MBR2530
125
t- - _r-;;F::::-t--.. -.. ,t-- .......... ,I.
I""--.. ........
Capacitive
I
(1) Note that VR(PK) "" 2 Vin(PK)
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE- MBR2520
125
U
e.. 115
w
or
Full Wave,
Center Tapped (I), (2)
Full Wav., Bridge
24
28
MBR2520, MBR2530, MBR2540 (continued)
FIGURE 5 - TYPICAL FORWARD VOLTAGE
20 0
T}:25~C
7
V
100
1000 C
0
1""-1.'
FIGURE 6 - MAXIMUM SURGE CAPABILITY
--..,.
1000
~
....
15
~
- -
..............
>
Prior to surge, the rectifier is operated sue
~ 200
that TJ::: lOQDe; VRRM may be applied
between each cycle of surge
~
JI
I
i-lin
!
100
1.0
0
............
r--.
«
II
0
....... r--.
~ 300
/
0
t---..
500
13
w
..IV
~
0
.......
700
2.0
I
5.0
10
20
NUMBER OF CYCLES
50
100
0
0
0
II II
II
28
0::
~
~_
2. 0
FIGURE 7 - CURRENT DERATING
..............
~
20
SINE WAVE' h.::::"
RESISTIVE /
~ 16
LOAD
~~
O. 7
t - - t-SINEWAVE
;(
u::
O. 20
8.0
~4.0 I - - t- ~APAGITIVE
LOADS
0.3
0.2
0
1.4
0.4
0.6
0.8
1.0
1.2
vF,lNSTANTANEOUS FORWARD VOLTAGE IVOLTSI
l'..
-...... i"""'o......o.. ........ "- I,
-r-- --.
12
w
ffi
. / dc, CONTINUOUS IMAX lOG: 39.3 AI_
r-.,
,
t--
to
O.5
'<
~
13
1. 0
I"
J....-SUUARE
WAVE
24
.
IIPKI :
IIAVI
"r-,... V"'I'..
177V- ........ -"..'\1\.
20 10 5.0
::--.::: ~\
I
'\.
-
I
~
~
CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
75
85
95
105
115
TC, CASE TEMPERATURE IOGI
125
FIGURE 8 - THERMAL RESPONSE
...Jo
«w
~~
w«
1.0
O. 7
O. 5
O. 3
ZOJCIII - ROJC • rill
~~ D, 2
./
.... 0
ffi~
U; w
z<.>
V
O. 1
Pk
_
1-_ 11---1
~iO'O5
TIME
DUTY CYCLE, 0 : Ip/ll
PEAK POWER, Ppk. IS peak of an
equivalent square power pulse
,; TJC: Ppk • ROJC [0 + II - 01· rllJ + tpl + rltpl-rllJll
c: 0.0 3
where
t" TJC " the mcrease
0.0 2
0.0 1
0.05
J1:JL
tp
~ ~ 0.0 7
In
junction temperature above the case temperature
r(t) = normalized value of tranSient thermal resistance at time, t, from FigureS, I.e
r(ll + tpl::: normahzed value of tranSient thermal resistance at time, tl + tp
0.1
0.2
0.5
1.0
2.0
5.0
10
t,TIMElmsl
66
20
50
100
200
500
1.0 k
2.0 k
5.0 k
MBR2520, MBR2530, MBR2540 (continued)
FIGURE 10 - TYPICAL REVERSE CURRENT
FIGURE 9 - NORMALIZED REVERSE CURRENT
5.0
ffi
N
SOD
./
3.0 I-VR=VRWM
~ 2.0
!Z
w
./
ffi
~
!E
0.3
0.2
O. I
0.07
0.05
~
50
0.7
-
,.....
10
~
5.0
!E
2.0
w
i'
~
O.5
65
85
TC. CASE TEMPERATURE (OC)
105
o
125
FIGURE 11 - CAPACITANCE
4.0
B.O
.
-
--
--
j - - 25°C ....
1.0
45
25
....
V-
~
-~
100°C
75°C
~ ~"""
20
g§ 0.5
a~
~
1 100 v
./
a:
~ 1.0
--
TJ = 125°C
:.m
V
t;.
-.-
--
-
MBR2520 20VMBR2530 - 30 V
- - - - - - MBR2540-40V=
36
40
12
16
20
24
28
32
VR. REVERSE VOLTAGE (VOLTS)
==
NOTE 2 - HIGH FREQUENCY OPERATION
8ODO
6000
4DD0
l""'-
~3000
III
r-...
TJ
r-
Since current flow in a Schottky rectifier is the resu It of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed
t-. "'r---.
w
u
:i 2000
by using a model consisting of an ideal diode in parallel with a
variable capacitance. (See Figure 111.
"'~ 9'
t-
~ 1500
~
;;'1000
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz, e.g., the ratio of dc power to RMS power an the load is
0.28 at this frequency, whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the de output voltage.
MB~Z5Z0
i'..
MBR2~30
800
MBR2540
600
4DD
0.040.06 0.1
=2ioC
t-....
1'",
IIIII
0.2
0.4 0.6 1.0
2.0
4.0 6.0
10
20
40
VR. REVERSE VOLTAGE (VOLTS)
67
MBR4020
MBR4030
MBR4040
SCHOTTKY
BARRIER
RECTIFIERS
HOT CARRIER'POWER RECTIFIER
40 AMPERE
2O.ao.4O VOLTS
· .. employing the Schottky Sarrier principle in a large ,rea metal·to·silicon power
diode. State of the art oee0metry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for UI8 • rectifiers in low-voltage.
high-frequency inverters, free wheeling diodes. and polarity protection diodel.
•
Extremely L_ vF
• Low Stored Charge. Majority
•
low Power Loss/High Efficiency
•
High Surge Capacity
Carrier Conduction
dl
I
MAXIMUM RATINGS
Rating
Symbol MBR.4020 MBR4030 MBR4040 Unit
Peak Repatitiv. Rav«H Voltage
Working Paak.R"""... Voltag.
DC Blocking Vol~
VRRM
VRWM
VR
Non·Repetitiv. Paak Rov.... Voltage
VRSM
Average Rectified Forward Currant
VR(equivl SO.2 VR(dcl. TC = 700C
10
Ambient T_rature
Rated VR(dcl. PFCAVI • O.
RBJA • 2.0o CIW
TA
Non·Repetitive Peak Surge Current
(surge applied at rated loed conditions
hllfwav.. single ph_. 60 H~I
20
30
40
24
36
4B
•
100
40
95
Volts
.
90
Volts
Amp
oC
IFSM
_900 (for 1 cyclel_
Operating and Storage Junction
T.mp.ratura Rango (R"""...
voltage appliedl
TJ.Tstg
_ _ -66 to + 1 2 5 _
Amp
OIM
°c
8
C
0
E
F
Peak Operating Junction Temp.rature
(Forward Currant Appliedl
TJ(pkl
_150_
"C
Thermol Resistance. Junction to C_
2.9
-
11.43
9.53
-
11.51
25.
I.
10.72
IIJ§
5.08
2.03
-
jE5
-
-
-
0.115
0.667
0.450
0 5
O.
-80 O.QlO
0.422 O.
1.0lI0
0.152
0.20 0.411
D().6
ELECTRICAL CHARACTERISTICS
(Tc
= 25 0 C unle.. otherwise noted.1
Symllol
Maximum Instantaneous Forward
Min
Typ
Max
Maximum Instantaneous Reverse
Current@ rated dc Voltage (11
TC = l000 C
-
-
0.630
-
-
20
150
mA
IR
Duty
Unit
Volts
vF
Voltage (11
{iF =40Ampl
(11 Pulse Test. Pulse WIdth - 300 ....
J
K
L
Ii!1L IMETERS
MIN
MAX
16.94 I .45
5.58
8.32
~.
0.140 0.1 5
0
3.5&
4.45
NOTES:
1. Dim. .n·'P'·ildilnm•.
2. All JEOEC dlnoooooionsand ....... pply.
CASE 257.01
THERMAL CHARACTERISTICS
Characteristic
A
-
Cycle - 2.0%.
68
MECHANICAL CHARACTERISTICS
CASE: Welded, h.rmetlcally _ed
FINISH: All extornal ..rfKes corrosion rasislant
and terminal Iud is raadlly _
...
POLARITY: Cathode to C_
MOUNTING POSITION: Any
STUD TORQUE: 2Ii in. lb. Max
MBR4020, MBR4030, MBR4040 (continued)
NOTE 1: DETERMINING MAXIMUM RATINGS
Rev.... power dissipation and the possibility of therm. runM8\'
must be considered when operating this rectifier at rev .... voltllglll
above 0.2 V RWM. Prop.r d.rating may be eccqmplished by use
of equation (1):
TA(max)· TJ(max) -RUA PF(AV) - RSJA PR(AV)
(1)
where
wh.n forward powar is zaro. Tha transition from one boundary
condition to tha other is evidant on the curves of Figures I, 2 and
3 . . . difference in the rate of change of tha slopa in the vicinity
of 1150 C. Tha data of Figures 1, 2 and 3 is b-.l upon dc cond~
tlons. For use in common rectifiar Circuits, Tabla I indicates SUII'
gasted factors for an equiv.ant de voltage to use for conservative
design; i.a.:
VR(equiv) = Vin(PK) x F
(4)
The Factor F is derived by considering the properties of the various
ractifier circuits and tha reve... characteristics of Schottky diodes.
T A(max) = Maximum allowable ambient temperature
TJ(max)· Maximum.lowabl.junction temp.ratur. (125 0 C
or the temperature at which th.rm. runMOV
occurs, whichev.r is lowest).
Example: Find TA(max) for MBR4040 operated in a 12·Voltdc
supply using a bridge circuit with capacitive filter such that loC =
30 A IIF(AV) = 15 A), I(PK)/I(AV) = 10, Input Voltage = 10
V(rms), RSJiII = 3 0 CIW.
PF(AV) = Av.rage forward power dissipetion
PR(AV) = Av.rage rev.... pow.r dissipation
RUC = Junction·to-ambient thermal resistance
Figures I, 2 and 3 permit e..iar use of equation (1) by taking
reverse power diaipation and thermal runawav into consideration.
Tha figures solva for a referance temperature as datermined by
equation (2):
TR = TJ(max) - RSJA PR(AV)
Step 1:
Find VR(equiv)' R.ed F = 0.65 from Table I .:.
VR(equiv) = (10)(1.41)(0.65) = 9.18 V
FindTR from Figure 3. Read TR.= lISOC@ VR = 9.18 V
& R8JA = 3 0 CIW
Find PF(AV) from Figure 4. Read PF(AV) = 25 W
I(PK)
@1(AVi 10 &IF(AV)=15A
Stap 2:
(2)
Step 3:
Substituting equation (2) into equation (1) yialds:
TA(max) =TR - RSJAPF(AV)
(3)
Inspection of equations (2) and (3) revaals that TR is the ambient
temperatu re at wh ich tharmal ru n_ov occurs or where TJ = 1250 C,
Step 4:
Find T A(l!)ax) from equation (3), T A(max) = 118·(3)
(25) = 43 C.
TABLE I - VALUES FOR FACTOR F
Circuit
HaifWav.
Load
Resistiv.
Sine Wave
Square Wave
0.5
0.75
I Capacitiva (1)
I 1.3
J
1.5
Resistive
Capacitiv.
Resistiv.
0.5
0.75
0.65
0.75
1.0
1.5
(1) Note that VR(PK) "" 2 Vin(PK)
~ 115 :::0:
=>
:c
0:
~
105
~
w
u
z
w
5
~
W
0:
.....:
5
75
2.0
r-.... r- ~ r-..
~ I'
~
I"
I""
...... t"--"
......
...... t"-" ~
r-.... ..... ~~
""
.........
t'.
"-
g
1.0
115
r"-,.... -..........:: r-...~
~
i'-
0:
~
"- ~~'\
"-
~ 105
~
....
w
i".."
"'" I""- " ",," " I"'"
"" r-..i".."-"~
I"'"
" ~~"- "~
~
,....,
~.O
u
ffi
~
'" 5.0 "
0:
15.~
R8JA (OCIW) = 40'"
3.0
4.0
5.0
7.0
3;j'..
.....:
'\
10
I
1.3
1.5
I
FIGURE 2 -MAXIMUM REFERENCE TEMPERATURE -MBR4030
125
-
I Capacitiv.
(2)Use line to center tap voltage for Yin.
FIGURE I-MAXIMUM REFERENCE TEMPERATURE -MBR4020
125
Full Wav.,
Canter Tapped (1),(2)
Full Wave, Bridge
I'
r--..
b
-..:::: -.,
~
I"-- r-....
t-....
r-... .....
r-.....-'::::::: ~
"
1'...'
1.0
'" ",,- '"
~
.\
...........
~
"-
r-.... . . . . .
~ t-....
......... ....... r-.... ......
........
r-..... ........
"-
95
I'
......
.......
r-.....
85
r-....
1"- ' "
R8JA (OCIW) = 40~"
75
3.0
20
........
4.0
5.0
" "'"
~ k~
2.0
"- '" '\ I~O
'"
5.0.
'\
.......
1:,\30 ' \ 20'\,15 I~
7.0
10
15
20
VR, REVERSE VOLTAGE (VOLTS)
I~
30
FIGURE 4 - FORWARD POWER DISSIPATION
4
6
SINE lAVE .
CAPACITIVE I(PK)
o LOAOS
I(Av)
69
-
L 1/
/ / ./.
0
0
10
)
6
'"'"
L
/
20J
II /
2
4
'No external heat sink VR, REVERSE VOLTAGE (VOLTS)
=
/
~
/
V V
5J
/
SINE WAVE
RESIST7
LOAO
/
~
~V
V
VSIlUARE
,/
TJ
~
de
~
125 0 C
V~ ~ to-'
8.0
16
24
32
IF(AV), AVERAGE FORWARO CURRENT (AMP)
40
MBR4020, MBR4030, MBR4040 (continued)
FIGURE 5 - TYPICAL FORWARD VOLTAGE
200
FIGURE 6 - MAXIMUM SURGE CAPABILITY
1000
t....-- ~
TJ = 25 0C
100
V
L
70
I-'"
lOOoC
0::
~~
'..."'
~
1:'0:i
I- -
::>
'"
pr.
...>
~
<[
'"""
lt1
0
I
............
<.>
'/
0
-.....
500
0:
L.~
50
=--- r:---"
700
300
Prior to surge, the rectifier is operated sue .
that TJ = 1000C; VRRM may beappliad
between each cvcle of surge
200
~
/1/
!
,rill
100
1.0
0
r--
2.0
5.0
1
10
20
NUMBER OF CYCLES
50
100
0
0
II 11
FIGURE 7 - CURRENT DERATING
0
...
~
2.0
0:
aco
0:
i
1. 0
.7
~
~ 16r---~~=-+----i-=~~=---~-~~~~t----l
.5
~>
": B.O
~
.3
if
.2
0.2
0.4
0.6
O.B
1.0
1.2
vF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)
CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
066
1.4
.74
B2
90
9B
106
114
TC, CASE TEMPERATURE 10C)
130
FIGURE 8 - THERMAL RESPONSE
0
7
5
3
....-
I-
2
_r-
I
29JC(t) = R9JC
~
Ji:TIPk
Ip I TIME
11--'
7
PEAK POWER, Ppk,
IS
peak of an
equivalent square power pulse.
IITJC= Ppk . ROJC 10+11-0)· rllJ+lp)+rltp)-r(ll)]
where
!:::. TJC :: the Increase in junction temperature above the case temperatura
r(tl = normalized value of transient thermal resistance at time, t, from Figure 8, I,e.~
r{tl + tp) - normalized value of transient thermal resistance at time, q + tp.
3
2
0.0 1
0.1
.-dt)
DUTY CYCLE, 0 = tpltl
I II III
0.2
0.5
1.0
2.0
5.0
10
20
50
I,T1MElms)
70
100
I
I
200
111111
500
1.0k
I I
2.0 k
I II
5.0k
10 k
MBR4020, MBR4030, MBR4040 (continued)
FIGURE 9 - NORMALIZED REVERSE CURRENT
FIGURE 10 - TYPICAL REVERSE CURRENT
5.0
500
ffi
3.0 r-VR= VRWM
~
2.0
N
./
V
200
0 .....
/
~ 1.0
I-
a'a:i
E 0.7
::l
a:
i:l
0.5
w
::>
~
0.3
'"
ffi
0.2
~
a:
!IE O. I
......
...... ....
'"ffi
'"
V"
105
65
85
TC, CASE TEMPERATURE (OC)
125
~300o
I"'-,
2.0
TJ - 25°C
~
~ 1500
~
«
~ 1000
MBR4~0
so0
600
400
0.040.06 0.1
r-
t-.. I'-i'.
~ 2000
MB,,4020
,
2.0
L
,
4.0
8.0
~
MBR4020
___
20 V -
MBR4030-30~~
~ 1===-- - - -- MBR4D40-40V =
12
16
20
24
28
32
36
40
4.0 6.0
2.0 MHz, e.g., the ratio of dc power to RMS power in the load is
"10
20
HIGH FREQUENCY OPERATION
0.28 at this frequency. whereas perfect rectification would yield
Q.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.
II II
0.4 0.6 1.0
V
25°C
Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. F or example, relative
waveform rectification efficiency is approximately 70 per cent at
,[;
MBR4D40
0.2
r--
- ---
--
,
Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a
variable capacitance. (See Figure 11).
I....... t-
w
--
NOTE 2
r-.
<.)
.....
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 11- CAPACITANCE
t--.
I'"
t---- 75°C
~
~ 5.0
!i
800 0
4000
0
O.5
45
100°C ~
O~
I.0
0.07
0.05
25
6000
O~
-
-- --
r-
,
110
./
'"a:
TJ = 125°C
40
VR, REVERSE VOLTAGE (VOLTS)
71
MBR4020PF
MBR4030PF
SCHOTTKY,
BARRIER
RECTIFIERS
.HOTCARRIER POWER RECTIFIER
40 AMPERE
20,30, VOLTS
· .. employing the Schottky Barriin principle in a large area metalto-silicon power diode. State of the art geometry features epitaxial
construction with oxide passivation and metal overlap contact.
'Ideally suited for use as rectifiers in low-voltage, high-frequency
inverters, free wheeling diodes, .and polarity protection diodes .
•. Extremely Low VF·
•
•
Low Stored Charge, Majority,. Carrier Conduction
Low Power Loss/High Efficiency
• High Surge Capacity
MAXIMUM RATINGS
Symbol MBR4020PF MBR4030PF
Rlltlng
Peak Repetitive Reverse Voltage
. Working Peak Rev.rse Voltage
"VRRM
VRWM
VR'
DC Blocking Voltage
Non·Repetltlve Peak Aevana Voltage
~
-
24
VRSM
Average Reclified Forward Current
VR(eQuiv) ';;;0.2 VR(dc), TC ~ 500 C
Ambient Temperature
Rated VR(dc)' PF(AV)
R8JA = 2.~CIW
20
10
0,
Non·Repetitive Peak Surge Current
IFSM
-
30
Volts
36
Volts
40-
Amp
96
DC,
100
TA
Unit
8QO (for 1 cyel.)-
Amp
(surge applied at fated load conditions
halfwava, ,ingle pha .. , 60 Hz)
Operating and Storage Junction
Temperature Range (Reverse
DC
TJ,Tstg
--65to+125-
DIM
voltage applied)
Peak Operating Junction Temperature
-,50-
TJ(pk)
DC
(Forward Current Applied)'
A
B
C
D
E
F
MILLIMETERS
MI.
AX
15.494 16.256 0.610
12.725 12.821 11.501
5118
635 0.20
1.193 1.346 0..'
10.11
2.032
452
J
K
THERMAL CHARACTERISTICS
Symbol
Characteristic
Thermal Reailtanca, Junction to Case
R8JC
ELECTRICAL CHARACTERISTICS (TC
Characteristic
Maximum Instantaneous Forward
Current@rateddcVoltage (11
TC -100°C
I
I
Max
Unit
Min
Typ
Max
vF
-
0.67
-
0.500
0.10
-
CASE 43-02
00-21
MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed
Volts
FINISH: All external surfaces corrosion resistant
and terminal lead is readily solderable.
mA
-
-
Unit
0.630
IR
-
4.826 0.080
0
0
3.556
12.70
0.640
0.50fi
0.25
0.03
D••
0.1
°CIW
1.3
= 25 0 C unless otherwise noted.)
Symbol
Voltage (1)
(iF -40 Amp)
Maximum Instantaneous Reverse
I
INCHES
MIN MAX
20
150
(11 Pulse Test: Pulse Width - 300 liS, Duty Cycle = 2.0%.
72
POLARITY: Cathode to C_
MOUNTING POSITION: Any
WEIGHT: 9 grams IApproximately)
MBR4020PF, MBR4030PF (continued)
NOTE 1: DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibility of thermal runavvav
must be considered when operating this rectifier at reverse voltages
when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figures 1 and
2 as a difference in the rate of change of the slope in the vicinity
of 115°C. The data of Figure, 1 and 2 is bosed upon dc condi-
above 0.2 VRWM. Proper derating may be accomplished by use
of equation (1 J:
TA(max) = TJ(max) - R9JA PF(AV) - R9JA PR(AV)
(1)
where
T A(maxl
tions. For use in common rectifier circuits, Table I indicates sug.gested factors for an equivalent dc voltage to use for conseNative
design; i.e.:
VR(equiv) = Vin(PK) x F
(4)
The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.
= Maximum allowable ambient temperature
TJlma)(~ = Maximum allovvabfejunction temperature (125 DC
or the temperature at which thermal runaway
occurs, wh ichever is lowest).
Example: FindTA(max) for MBR4030PF operated in a 12-Volt dc
supply using a bridge circuit with capacitive filter such that IDe =
30 A (iF(AV) = 15 A), I(FM)/IIAV) = 10, Input Voltage = 10
V(rms), RaJA = 3 0 C/W.
PF(AV) = Average forward power dissipation
PRIAV) = Average reverse power dissipation
R8JA := Junction-to-ambient thermal resistance
Figures 1 and 2 permit easier use of equation (1) by taking
reverse power dissipation and thermal ru naway into consideration.
The figures solve for a reference temperature as determined by
equation (2):
TR = TJ(max) - R9JA PR(AV)
Step 1:
Find VR(equiv). Read F = 0.65 from Table I :.
VR(equiv) = (10)(1.41)(0.65) = 9.18 V
FindTR from Figure 2. ReadTR = 118o C@VR=9.18V
& R9JA = 3 0 C/W
Fond PF(AV) from Figure 3. Read PF(AV) = 25 W
Step 2:
(2)
Step 3:
Substituting equation (2) Into equation (1) vields:
TAlmax) = TR - RaJA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR IS the ambient
temperature at which thermal runaway occurs or where TJ = 1250 C,
@ I(FM)/I(AV) = 10 & IF(AV) = 15 A
Step 4:
Find T A(max) from equation (3),
T A(max) = 118-(3) (25) = 43°C.
TABLE I - VALUES FOR FACTOR F
Circuit
Half Wave
Load
Resistive
Sine Wave
Square Wave
0.5
0.75
I Capacitive (1 )
I 1.3
I
Full Wave,
Center Tapped (1).(21
Full Wave, Bridge
I
Resistive
1.5
Capacitive
Resistive
0.65
0.75
1.0
1.5
L
0.5
0.75
I
I
I
Capacitive
1.3
1.5
I
(2)Use line to center tap voltage for Vm
(1) Note that VR(RM) ""2 Vin(PK)
FIGURE 1- MAXIMUM REFERENCE TEMPERATURE-MBR4020PF FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE-MBR403OPF
125
125
5t-::
- r--.. -.: .::::::- ........
.........
......... i"-
5
5
f"""-.
~
75
2.0
I'..
""
1"'-
......
""-
= 40:"-
115
""-"""
"'-"'\.
,,,,-
i'
"-
-.....: :-. r-..
g r-.- r- ....::::
..........
r--............
'"
~
r-.."""
i'..
......
ROJA IOCIW)
30
I"- r--
""- ""I"
"- ""
"
i'..
5
:--.. r--
~
........
......
.........
"'
...........
"
:::>
1.3
~
,,~
~ 105
'\
15
....
w
~.O
2~"'\.
r-......
..........
"- ........
r-.. .
"-
'" 85
.... 300
~
0
,
........
700
5
- -
. 100°C
70
FIGURE 5 - MAXIMUM NON·REPETITIVE SURGE CAPABILITY
,.,. ,.,.
;;
'"
1/
~
~
~
!i
Prior to surge, the rectIfier IS operated such
200
that TJ '" 100 oC, VRRM may be applied
between each cycle of surge
"
~
III
~
100
1.0
0
20
3.0
50
rrrn
7.0 10
20
NUMBER OF CYCLES
30
50
70
100
0
[I
I
FIGURE 6 - CURRENT DERATING
II
2.0
1.0
o. 7
o. 5
SINEWAVE
CAPACITIVE
LOADS
o.3
i
I
(FM) = 20 -10
I(AV)
CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
o. 2
0.2
0.4
a6
0.8
1.0
1.2
vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
14
50
60
70
80
SO
100
110
TC, CASE TEMPERATURE (OC)
120
130
FIGURE 7 - THERMAL RESPONSE
1.0
........
i-"'"
ZOJCltl
J1:jl
tp
I
_
I-
..-
6 TJC
-
-I
11
=Ppk • ROJC
equlvalenl square power pulse.
10 + 11 - 0) . r(1l + tp) + r(lp) - r(ll) I
I 1'1 (1111
0.2
TIME
=ROJC. r(l)
DUTY CYCLE, 0 = Ip/ll
PEAK POWER, Ppk. IS peak of an
where
6 TJC '" the mcrease m junctIOn temperature above the case temperature
r(11 '" normalized value of transient thermal resistance at time, t. from Figure 7, i.e.:
((q + tpl:: normalized value of transient thermal resistance at tIme, t1 + tp
0.0 1
0.1
Pk
.5
1.0
2.0
.0
10
20
SO
I,TIME(ms)
74
100
I I
200
I I IIIIII
500
1.0k
I I
2.0 k
[ II
5.0 k
10
MBR4020PF, MBR4030PF (continued)
FIGURE 8 - NORMALIZED REVERSE CURRENT
FIGURE 9 - TYPICAL REVERSE CURRENT
5.0
~
3.0 f-VR'VRWM
N
~
./
V
2.0
~
./
co:
~
~
500
300
200
"<
.5
....
iii
a:
./
1.0
o.7
l:i
~
0.3
~
...
~
co:
0. I
0.0 7
0.05
25
~
joo"'"
"'-
!E
~
75 0 C
~-
5.0
3.0 ~
2.0
250 C
.....
MBR402DPF
MBR4D3OPF
....-L
2OV30V~
0.5
45
65
86
TC, CASE TEMPERATURE (OC)
105
125
"
i... 300a
r---
:"'-.
Rectification efficiency measurements show that operation will
i.......
S1500
1/
~
~IOO 0
Since Clm.nt flow in. SchottkV rectifier il the relult of majority
carrier CIInduction, it il not lubject to junction diode forward and
reve. . reco_V trlnli.ntl due to minority Clll'rler injection Ind
stored charge. Setllflctorv circuit .""Iylil worlc may be performed
bV uling I model CIInliotlng of an ideal diode in parall.1 with I
varleble capacltlnce. (Se. Figure 10),
t-
"
'"z 2000
30
NOTE 2 HIGH FREQUENCY OPERATION
TJ =25 0 C
1"'0.
26
10
14
18
22
VR, REVERSE VOLTAGE (VOLTS)
6.0
2.0
FIGURE 10 - CAPACITANCE
4D0 O
E
1.0
BOD0
BOD0
10
a:
w
>
w
a:
."
O. 2
!E
=>
\:.J
'"
I"
IllJOOC
100
50
3D
20
a:
0.5
=>
TJ =12~C
be satilfectory up to llveral megahertz. For .xampl., relltive
wlveform rectification .ffici.ncy is Ipproximately 70 par cent It
2.0 MHz, •. g., the ratio of dc power to RMS power in the loed is
0.28 at this frequency, where.s parf.ct rectification would yi.ld
MBR~~2DPF
,~
MBR.tsOPF
80 0
0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of
so0
power 10.. ; it is simply a result of reverse curr.nt flow through the
diode clpacitance, which lowers th. dc output voltage.
400
0.040.06 0.1
0.2
0.4 0.6 1.0
2.0
4.0 6.0
10
20
4D
VR, REVERSE VOLTAGE (VOLTS)
MOUNTING INFORMATION
Recommended procadures for mountlng.re "' follows:
1. Drill I hal. in the heat sink 0.499 t 0.001 inch in diameter.
2. Break the hal. edge al .hown to provide a guld. Into the hoi.
and prevent lhearlng off the knurled lid. of the rectifier.
3. The d.pth Ind width of the brelk should be 0.010 Inch
maximum to retain maximum heat sink surface contact.
4. To prevant daml91 to the rectifier during pre..·in, the
presling force Ihould be Ipplied only on the shoulder ring
of the rectifier case.
6. The preaing forca .hould be applied evenly ebout the
shoulder ring to avoid tilting or centing of the rectifier case
in the hole during the prell·ln oparetlon. AIIO, the use of •
thermlilubricint luch II D.C. 340 will be of conliderlble lid.
For more informetlon see: Mounting T.chnique. for M.tll Pick.
1ged Power Semiconductors, AN·69B.
TYPICAL THERMAL
IIESISTANCE, CAst
TOSINK.8CS-Q.2oCIW
M
SHOULO .. AI.o./'
1
...T
..t....f~.01NOM
I ".
...,,.,
.
NOM
~ 01' ~'EAT.i.'1%f4.
--I
t-- ..... , O.IXII "A.
HeAT SINK MOUNTINQ
ADDITIONAL
HEAT SINK PLATE
IIIVET
........
INTIMATE
CONTACT AREA
,./
CQMPLETE KNUIIL
CONTACT AREA
THIN·CHASSIS MOUNTINQ
75
THIN
CHASSIS
Mas 100 (SILICON)
A1 OO--+C@"'MI:PIG+--oOA2
SILICON
BIDIRECTIONAL SWITCH
(PLASTIC)
3to5VOLTS
500mW
SILICON BIDIRECTIONAL SWITCH
· .. designed specifically for low cost lamp dimmer and small motor
speed controls. Supplied in an inexpensive plastic TO·92 package
for high-volume requirements, this low-cost plastic package is readily
adaptable for use in automatic insertion equipment.
•
•
•
•
Low Switching Voltage - 4.0 Volts Typical
Uniform Characteristics in Each Direction
Minimizes "Flash-On" in a Lamp O'immer
Minimizes "Cogging" in a Motor Speed Control'
STYLE 12:
PIN 1. ANODE 1
2. GATE
MAXIMUM RATINGS
3.
Symbol
Value
Power Dissipation
Po
500
mW
DC Forward Anode Current
IF
200
mA
DC Gate Current (off·state only)
IGloffi
5.0
mA
Repetitive Peak Forward Current
(1.0% Duty Cycle, 10'1'5 Pulse
IFMlrep)
2.0
Amp
Rating
IFMlnonrep)
6.0
Amp
TJ
-55 to +125
°c
T stg
-65 to +150
°c
10 ~s Pulse Width, T A • 25°C
Operating Junction Temperature
Range
Storage Temperature Range
DIM
A
B
Width, T A • l000C)
Non·Repetitive Forward Current
ANODE 2
Unit
C
0
F
.L
N
P
Q
R
S
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
4.450
3.180
4.320
0.407
0.407
1.
1-.150
5.200
4.190
5.330
0.533
0.48
0.17!i
0.125
0.170
0.816
J.016
'l[2ll5"
1.390
1.270
0.045
0.055
0.050
6.350
3.430
2.410
2.030
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
76
0.165
0.210
0.021
0.019
0.105
0.105
MBS100 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Symbol
Min
Typ
Max
Switching Voltage
Characteristic
Vs
3.0
4.0
5.0
Vdc
Switching Currant
IS
100
-
400
"Adc
Unit
IVS1-VS21
-
0.35
Vdc
Holding Currant
IH
-
1.0
mAde
Forward On-State Voltage
(IF 175 mAdc)
VF
-
-
2.0
Vdc
Voltage Switchback
(IF 10mAdc)
I>.V
2.0
2.8
-
Vdc
Switching Voltage Differential
=
=
FIGURE 1 - FULL RANGE CONTROL CIRCUIT
APPLICATION NOTE
The circuit shown in Figure 1 is for full range control and may
be used as a lamp dimmer or small motor speed control. Lamp
"flash-on" and motor "cogging" is minimized. Suggested triaes
listed below give power capacity available for each davice. The inrush current andlor motor locked rotor current must be within the
maximum multlcycle surge rating for the triaes suggested.
TRIAC RECOMMENDATIONS
TriltC
MAC77-4/2N6071
MACll-4
MAC37-4
MAC38-4
Package
Type
Cue 77
(Plastic)
Cue9\!
(Plastic)
C_174
(Praufltl
Cue 175
(Stud)
Maximum
Limp Load
500 Watts
Maximum
Motor Load
1/2 HP
Maximum Single
l!iOO Watts
1-1/2 HI'
!INA
3000 Watts
3HP
225 A
3000 Watts
3HP
225 A
77
Cycle Surge
30A
MBS4991 (SILICON)
MBS4992
o
o
SILICON
BIDIRECTIONAL SWITCH
(PLASTIC)
6.0-10 VOLTS
500mW
SILICON BIDIRECTIONAL SWITCH
• •. designed for full-wave triggering in Triac phase control circuits,
half-wave SCR triggering application and as voltage level detectors.
Supplied in an inexpensive plastic TO-92 package for high-volume
requirements, this low-cost plastic package is readily adaptable for use
in automatic insertion equipment.
• Low Switching Voltage - 8.0 Volts Typical
• Uniform Characteristics in Each Direction
• Low On-State Voltage - 1.7 Volts Maximum
• Low Off-State Current - 0.1 J.l.A Maximum
• Low Temperature Coefficient - O.02%/OC Typical
STYLE 12:
PIN 1. ANODE 1
2. GATE
3. ANODE 2
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
mW
Power Dissipation
Po
500
DC Forward Anode Current
IF
200
mA
DC Gate Current (off-state onlyl
IG(off)
5.0
mA
Repetitive Peak Forward Current
(1.1)% Duty Cycle, 10 ". Pulse
Width, TA = lCOOC)
IFM(rep)
2.0
Amp
Non-Repetitive Forward Current
IFM(nonrap)
6.0
Amp
Operating Junction Temperature
Range
TJ
-55 to +125
uc
Storage Temperature Range
Tstg
-65 to +150
°c
DIM
INCHES
MIN
MAX
5.200 0.175
4.19fi 0.125
5.330 0.170
0.533 0.016
0.462 0.016
1rnJ5
0.165
0.210
0.021
0.019
L
N
1.150
1.390
1.270
0.055
0.050
P
6.350
3.430
2.410
2.030
C
10 ". Pulra Width, T A = 25°C
MILLIM TERS
MN
MAX
4,450
3.180
4.320
0.407
0.407
A
B
0
F
R
S
-
2.670
2.670
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
78
-
0.105
0.105
MBS4991, MBS4992 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Characteristic
Min
Typ
Max
6.0
7.5
B.O
B.O
10
9.0
-
175
90
500
120
-
-
0.3
0.1
0.5
0.2
-
-
100
-
0.7
0.2
1.5
0.5
O.OB
2.0
0.08
6.0
1.0
10
0.1
10
1.7
1.7
Unit
Vs
Switching Voltage
Vdc
MBS4991
MBS4992
IS
Switching Current
MBS4991
MBS4992
Switching Voltage Differential
)VS1-VS21
Vdc
MBS4991
MBS4992
Gate Trigger Current
(VF = 5.0 Vdc RL
"Adc
IGF
= 1.0 K ohm)
MBS4992
"Ade
IH
Holding Current
MBS4991
MBS4992
mAdc
IB
Off-State Blocking Current
(VF = 5.0 Vdc, T A = 25°C)
(VF = 5.0 Vdc, T A = B50C)
(VF = 5.0 Vdc, T A = 25°C)
(VF = 5.0 Vdc, T A = 10oDC)
"Adc
-
MBS4991
MBS4991
MBS4992
MBS4992
-
VF
Forward On-5tate Voltage
MBS4991
(IF = 175 mAdc)
MBS4992
(I" = 200 mAde)
Peak Output Voltage (CC = 0.1 "F, RL = 200hms, (Figure 7)
-
1.4
1.5
Vdc
Vo
3.5
4.B
-
Vdc
Turn-On Time (Figure B)
ton
-
1.0
-
lIS
Turn-Off Time (Fiwrp. 9)
toff
-
30
-
Temperature Coefficient of Switching Voltage (-50 to +125 0 C)
TC
-
+0.02
-
-
us
%/oC
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - SWITCHING CURRENT versus TEMPERATURE
FIGURE 1 - SWITCHING VOLTAGE versus TEMPERATURE
8.0
1.04
ffi
N
1.03
~
1.02
:::;
o
~
w
~
1.01
to
~
o
1.00
j..--- I---"
>
9
~
7. a
N
:::;
--
V
""
V
~
~
~
=>
-25
+25
+50
4.0
'"'
to
3.0
~
2. 0
~
1.0
1\
Z
~
-50
5. 0
>-
0.97
0.96
-75
6.0
+75
+100
0
-75
+125
"'"
-t"'-.
-50
-25
+25
+50
TA,AMBIENTTEMPERATURE IOC)
TA, AMBIENT TEMPERATURE (DC)
79
+75
+100 +125
MBS4991. MBS4992 (continued)
FIGURE 4 - OFF-5TATE BLOCKING CURRENT
v........ TEMPERATURE
FIGURE 3 - HOLDING CURRENT versus TEMPERATURE
10.0
B.O
ffi
i
7.0
Normalized
to
-
N
~
« 6.0
~
0
<0
~
\
5.0
250 C
z
~
~
2.0
'" -
w
t-
o
-50
-25
+25
+50
/
0.1
~
I'-...
~
1.0
~
-75
VF-5.0V- f - -
1.0
to
=> 3.0
§
/
~
'"'"=><.>
."'..
4.0
<.>
~
t-
r--
~
0.01
+75
+100
-50
+125
./
-25
TA. AMBIENT TEMPERATURE (OC)
+25
+50
FIGURE 5 - ON·STATE VOLTAGE.arsus FORV'!ARD CURRENT
7.0
-
~
6.0
~
w
to
5.0
0
~
0
4.0
>
t-
~
3.0
=>
0
'"~
2.0
V
V
--
1-"
..-f--
"~
V
V
~
~RL=500n
"
~RL=100n
RL = 50 n
RL = 20 n
iL'rll
.; 1.0
>
0.0 1
2.0
3.0
+100 +125
FIGURE 6 - PEAK OUTPUT VOLTAGE (FUNCTION OF RL AND Cel
10
1.0
+75
TA. AMBIENT TEMPERATU RE (OC)
4.0
5.0
0.01
0.02
VF. FORWARO ON-STATE VOLTAGE (VOLTS)
0.05
0.1
0.2
I
0.5
TA=25 0 C
1.0
2.0
5.0
Cc.CHARGING CAPACITANCE {,tFI
FIGURE 7 - PEAK OUTPUT VOLTAGE TEST CIRCUIT
10K
O.U.T.
80
+mv
10
MBS4991, MBS4992 (continued)
FIGURE 8 - TURN-ON TIME TEST CIRCUIT
MERCURY RELAY
1.0kn
ANODE
VOLTAGE
-=-
12V
1.0kn 0.01
Vs
D.U.T.
~F
VF
Vf+O.1 (VS-VF)
Turn-on timeismeasuredfromthetime
Vs is achieved to the time when the anode vOlt~gedrops to within 90% of the difference between Vs and VF'
FIGURE 9 - TURN-OFF TIME TEST CI RCUIT
lOon
S.OV
-=-
ANODE
VOLTAGE
SOD n
~----~~~----~A2
MERCURY
RELAY
(N.O.)
D.U.T.
L-________~--------------~ Al
With the SSS in conduction and the relay contacts open, close the contacts to cause anode A2 to be driven negative. Decrease C until the sas
just remains off when anode A2 becomes positive. The turn-off time, toff. is the time from initial contact closure and until anode A2 voltage
reaches zero volts.
FIGURE 10 - DEVICE EQUIVALENT CIRCUIT, CHARACTERISTICS AND SYMBOLS
+1
A2
A2
~---.~~----r---~=r~------~+V
Al
CI RCUIT SYMOO L
Al
-I
EQUIVALENT CIRCUIT
CHARACTERISTICS
81
MCA 1911 N, Pseries MCA20 11 N, Pseries
6.8 Volts
(SILICON)
8.6 Volts
MCA2111 N, Pseries
9.5 Volts
MCA2211 N, Pseries
11 Volts
REFERENCE AMPLIFIERS
REFERENCE AMPLIFIERS
OS 6039 Rl
· .. designed for use in regulated power supplies as a combination
voltage reference element and error voltage amplifier, providing tern·
perature compensation for excellent reference voltage stability.
• Available With Either PNP or NPN Polarity for Versatility of
Circuit Design
• Specified With a Variety of Reference Voltage Stability Factors
Allowing for a Wide Selection of the Most Economical Device
to Meet Circuit Requirements
• Available for Operation in Three Different Test Temperature
Ranges: 0 to +75 0 C, -55 to +1000 C, -55 to +1500 C
• Guaranteed Maximum Impedance
• "I n·Line" Leads - Ideal for Automatic Insertion
MAXIMUM RATINGS
Rating
Zener Current
Collector Current
Collector-Emitter Voltage
Operating and Storage Junction Temperature Range
Symbol
Value
Unit
IZ
20
mA
IC
20
mA
VCEO
30
Volts
TJ, T stg
435 to +175
°c
ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)
Characteristic
Nominal Reference Voltage
(lZ= 5.0mA, VCE = 3.0 V,IC= 2501'AI
Maximum Reference Voltage Change with Temperature
(lz = 5.0 mA, VCE = 3.0 V,IC = 2501'AI
(lZT = 5.0 mA, lac = 10% IZI
MCA1911N, P; MCA2011N,P; MCA2111N,P;Series
MCA2211N,P Series
Collector-Emitter Breakdown Voltage
Value
Unit
VREF
6.8 -11
(Noml
(Table 11
Volts
AVREF
(Table 11
Volts
T
+
r-
~
- ---I
d-~
~
F
J\'!IIx
ohms
ZZT
BVCEO
-
40
120
30
-
Volts
STYLE
1
PIN 1 ZENER
ICBO
hFE
"A
-
0.05
10
50
300
life
6500
82
3 BASE
4 COLLECTOR
Oi
MILLIMETERS
MIN
MAX
A
•
9.65
1.62
10.41
'.1
f
G
2.29
1.02
.68
9.53
2.79
1.5
4.
•
K
$tmhas
2 EMITTER
~.
DIM
(lC = 250 "A, VCE = 3.0 VI
Small·Signal Transconductance
(VCE = 3.0 V, IC - 250 "A, f = 1.0 kHz)
--j
G
(VCB=45 VI
(VCB = 45 V, T A = 1500CI
DC Current Gain
A
~~,,;;'n3nt""'"
01-
(lC= 250"AI
Collector-Cutoff Current
rSEATING
PLANE
Symbol
Min
Zensr Impedance
Series uses onlv zener
diode and transistor.
(1) MeA 1911
INCHES
MIN
MAX
0.380 0.410
D.
.30
.1
0.090 0.110
0.0
0.375
CASE 212·(2)
(Form_ly Case 181)
-
MCA1911 N,Pseries, MCA2011 N,P series, MCA2111 N,Pseries, MCA2211 N,Pseries(contmued)
TABLE 1 - ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise specified)
Type
Number
(Note 11
Max Voltage
Change
(Note 21
Reference
Voltage
Test
Temperature
(oCI
@
1-
2.0
~ -2.5
~ -3.0
::; -3.5
10
E
~ +100
Normalized tol31 Vdc
to
Input Voltage
..
+B0
w
+6 0
~
+40
TJ
z
5
= 250 C
to
"\
c
i ~:
'\
\
20
FIGURE 3 - EFFECTS OF TEMPERATURE
ON REFERENCE VOLTAGE.
S
'"
\
\
30
40
50
60
VIn , INPUT VOLTAGE (VOLTS)
-40
a:::
~
-6 0
70
t
6.0
5. 0
~
4.0
~ 3. 0
~
2.0
....
1. 0
ii:
'!O
-60
1. 0
c
MCLTC6025 -
-20
0
+20
+40
+60
TA, AMBIENT TEMPERATURE (OC)
~ -4. 0
Reverse
u
..... r-.,.
MCLTC6010
I:::::::::::,
o
0
<
MCLT~
>
J
0
.............
-40
+2. 0
I
J
1 !'
~ -20
MCLTC6025
FIGURE 5 - EFFECTS OF LOAD RESISTANCE
ON REFERENCE VOLTAGE
l
0
~
r--
MCLTC6100.............
FIGURE 4 - TYPICAL CURRENT REGULATING
CHARACTERISTICS (Current Regulator Only)
7. 0
~
--.,..
r::-:::
~ -80
> -10 0
BO
V
- -
V
I.--:::
0
MCLTC~050-
MCLTC6102..--~
0
~
5
.....r-
Nurmalized to -550C
Vin = 31 Vdc
(No;. 2)
II
10
Temperature range -55 to 1000 e
(Nots: Typical6.VREF Isnegetive) -
111
20
30
50
40
Vin, INPUT VOLTAGE (VOLTS)
60
70
BO
(3) Figure 4 applies only to' the F ET portion of the device (from
Input to Reference).
mV or -16 mV for MCLTC6050.
86
MCR32 SERIES (SILICON)
THYRISTORS
7 AMPERES RMS
5()'600VOLTS
SILICON CONTROLLED RECTIFIERS
· .. designed primarily for industrial applications. Ideally suited for
capacitor·discharge ignition, systems, power switching and power con·
trol.
• Glass Passivated for High Reliability
•
Low Profile Hermetic Package for Tight
Printed Circuit Board Applications
•
High di/dt Capability
MAXIMUM RATINGS
Rating
Symbol
Peak Reverse Blocking Voltage
MCR32· ·05
20
30
40
50
60
Forward Current RMS (See Figures 4 & 5)
(All Conduction Angles)
Peak Forward Surge Current, T A
(1/2 cycle, Sine Wave, 60 Hz)
Value
Unit
Volts
VRRM
= 2SoC
Circuit Fusing Considerations, TA
(t ~ 1.0 to 8.3 m.)
= 25°C
Forward Peak Gate Power, TA == 25°C
Forward Average Gate Power, TA - 2SoC
Forward Peak Gate Current, T A - 2SoC
50
200
300
400
500
600
STYLE 3
PIN 1. CATHODE
2. GATE
3.ANODE
Reverse Peak Gate Voltage
Storage Temperature Range
7.0
Amps
ITSM
80
Amps
12 t
0.15
A2.
PGM
10
Watts
PGF(AV)
0.5
Watt
IGFM
10
Amps
VGRM
T
4.0
Volts
-40 to +135
°c
T.tg
-40 to +150
°c
THERMAL CHARACTERISTICS
Symbol
Max
Thermal Resistance, Junction to Case
ReJC
5.0
Thermal Resistance, Junction to Ambient
ReJA
150
Characteristic
~
/'
I
N
IT(RMS)
(3001", 120 PPS)
Operating JunctIon Temperature Range
a
I
Unit
°C/W
I
°C/W
MILLIMETERS
MIN MAX
8.89 9.40
B
8.00 8.51
6.10 6.60
C
D
0.406 0.533
E
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K
12.70
L
6.35
45 0 NOM
M
P
1.27
Q
90 0 NOM
R
2.54
DIM
A
INCHES
MIN
MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.D19
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
45 0 NOM
0.050
900 NOM
0.100
All JEDEC dimensions and notes apply.
CASE 79·02
TO·39
87
MCR32 series (continued)
ELECTRICAL CHARACTERISTICS
Characteristic
Max
Min
Symbol'
Peak Forward Blocking Voltage (1)
Unit
Volts
VoRM
MCR32-05
MCR32-20
MCR32-30
MCR32-40
MCR32-50
MCR32-S0
-
50
200
300
400
500
SOO
-
-
-
Peak Forward Blocking Current
(Rated VoRM @TC ~ 135°C)·
loRM
-
1.0
mA
Peak Reverse Blocking Current
(Rated VRRM @TC ~ '13S oC)
IRRM
-
1.0
mA
Forward "On" Voltage (2)
(lTM ~ 30 A peak @ TC ~ 25°C)
VTM
-
2.S
Volts
Gate Trigger Current (Continuous de)
(Anode Voltage ~ 12 Vdc, R L = 30 Ohms, T C = 25°C)
IGT
-
20
mA
Gate Trigger Voltage (Continuous de)
(Anode Voltage = 12 Vdc, RL ~ 30 Ohms, TC
VGT
-
1.5
Volts
VGo
0.1
-
Volts
IH
-
20
mA
Gata Non-Trigger Voltage
(Anode Voltage = Rated VoRM, RL
Holding Current
(Gate Open, TC
= 25°C)
= 30 Ohms, TC~
135°C)
= 25°C) .
(1) Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the
anode.
When checking forward or reverse blocking capability. thyristor devices should not be tested with a constant current
SOUTce
in a
manner that the voltage applied exceeds the rated blocking voltage.
(2) Forward current applied for 1.0 ms ma,ximum duration, duty cycle :==:;;;1.0%.
FIGURE 2 - TYPICAL GATE TRIGGER CURRENT
FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT
300
III
III
~
100
0
cc
cc
0
\.
0
11I111
OFF-STATE VOLTAGE = 12 V
!
.~
~
~
0
~
1\
['...
0
.
'"cc
r-
TJ = -1i5 DC
1"-
25JC
w
2.0
10
20
w
......
!;[
........
,.:
!E
50
100
3. 0
-60
200
PULSE WIDTH (m.)
-40
-20
20
40
60
80
TJ,JUNCTION TEMPERATURE (DC)
88
V-
r-..
~ 7.0
5.0
J
i'-- ~
0
.. 5.0
1.0
I
OFJSTATJVOLT1GE.
co
100DC
0.5
I
i'....
::>
1"-
7.0
5. 0
3.0
0.2
.........
cc
::>
'"
0
I-
!i:
w
I
100
.......'"
120
140
MCR32 series (continued)
FIGURE 4 - AVERAGE CURRENT DERATING
IREFERENCE. CASE TEMPERATURE)
FIGURE 3 - MAXIMUM ON-STATE POWER DISSIPATION
8.0,-----,----.----,--,--,------,---,----,-----:..-:-:::::;;---r
140
~
70
""~
60
o"""lllll!!!!! ~
13
~
f-
~
~ 50
"
~
~
w
<.0
15>
~ ~ r-....
~~
w
~
40
12
0
'\. ~"
~ 110
"":; 10
;3
0:-
f-
U
""
,
"~CONOUCTION
~ ..........
".-......:'\. f\.
a5
30
~
-jaf-
100
a"
1.0
60 0
30 0
.......
'""- "-
o
05
IfIAV), AVERAGE fORWARD CURRENT lAMP)
10
1.5
10
-
t-....
~
"'-
:"'-.. ~
'1 l'-..
110 I
180
90 0
15
-
ANGLE
0
90
-
30
0
35
40
45
50
IfIAV), AVERAGE fORWARD CURRENT lAMP)
FIGURE 6 - AVERAGE CURRENT DERATING (REFERENCE.
AMBIENT TEMPERATURE. TYPICAL P.C. BOARD MOUNTING)
FIGURE 5 - AVERAGE CURRENT DERATING IREFERENCE.
AMBIENT -rEMPERATURE 4 in. sq. P.C. BOARD)
14 0
13
O~
~12 0 w
w
~ 110f--t---t--'...,.1Iili!l=~""'-+--
~ 11 0
~
100
~
100
as
90
r5
90
f-
f-
~ t-.....
~ ~ :-.....
~ ~ t-..
~
f-
f-
~ 80
EEl 80
~ 70
~ 70
""
""~
~ 60
~
ROJA ~ 150 0 C/W
"~CONOUCTION
60 0 ~
120 0
~ 0: ~ ~
~ ~
90°
60
50f--f--f--+--f--r--~.-+_~~~~~
50
4~~-f~~-~-----:~~~~~~-~~~~.
40
\
o
0.1
::'\:
"
180 0
""<.de
l"\: ~
"'"
0,4
0.3
0.2
ANGLE
-
r-...
0: "
30 0
~
-jaf-
~.
~
........
'\.
0.5
0.6
0.7
IT(AV), AVERAGE ON-STATE CURRENT (AMP)
FIGURE 8 - TYPICAL HOLDING CURRENT
FIGURE 7 - TYPICAL GATE TRIGGER VOLTAGE
1. I
g
o
1. 0 .........
2:
~
O. 9
~
O.8
~
'"
0
OFF-STATE VOLTAGE ~ 12 V - I - -
.........
........
;;c
g
.......
t-
~
a'"
w
~
ii:
O. 7
w
O. 6
z
§
.........
0
...........
~ O. 5
>
0.4
-60
-40
-20
20
40
60
80
""
0
<.0
......
f-
~
<.0
OFf·STATE VOLTAGE = 12 V
0'
100
'"~
..........
120
0
1'.....
~
.........
7.0
5, 0
140
-60
TJ. JUNCTION TEMPERATURE (OC)
-40
-20
W
~
W
........
M
TJ, JUNCTION TEMPERATURE (OC)
89
~
~
lW
1~
MCR32 series (continued)
FIGURE 10 - MAXIMUM NON-REPETITIVE SURGE CURRENT
FIGURE 9 - MAXIMUM ON-STATE CHARACTERISTICS
100
100
70
./
~ V"
50
_ su!g, is
10
1.0
I
j Ii
5.0
7.0
10
20
30
50
70 100
NUMBER OF CYCLES
1/
I
I
w
2. 0
~
~
=>
:il
~ 1.0
FIGURE 11 - CHARACTERISTICS AND SYMBOLS
t
TYPICAL I·V CHARACTERISTICS
,
-v :
o.7
ON.STATE
1M
I
I
I
VORM
A-
o.5
BLOCKING
STATE
~+
,
-----,
,
VRRM
z
!!;
.~
3.0
/I
5: 3.0
~
2.0
I
~
r--- r--r-.
~receded and followed by
raTTntTvori
7.0
G
i'-
TJ • 135°C
f= 60 Hz
TJ = 135°C ;/25 0 C
10
h
r--..........
V
~ 5.0
~
t-....
#V
20
I-
;-ICYCLE
........
f-""
/.- r
30
~
~_
",
",
+V
I
I
0.3
I
o. 2
o. 1
o
II
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
45
5.0
vF,lNSTANTANEOUS ON·STATE VOLTAGE IVOLTS)
FIGURE 12 - THERMAL RESPONSE
1.0
O. 7
O. 5
-,8
~ ~
o. 3
~
o. 2
ffi
"''''
1-",
1-0
~ ~
f.-"'
---
ZOJClt
=
rlt). ROJC
V
o. I
~ ~ 0.07
~ ~
0.05
:g ~
0.03
0.0 2
0.0 1
0.1
0.2
0.5
1.0
2.0
5.0
10
20
t, TIMElm~
90
50
100
200
500
l.ok
2.0 k
5.0 k
MCR39 SERIES
(SILICON)
Advance InforIllation
THYRISTORS
G
AO-_.*"""~-OK
7 AMPERES RMS
50-600 va LTS
SILICON CONTROLLED RECTIFIERS
· .. designed for CD ignition and crowbar applications requiring
high repetitive di/dt.
• Glass Passivated for High Reliability
•
180 Amp Repetitive di/dt
•
Low Profile Hermetic Package for Tight Printed Circuit
Board Applications.
I~Jj-=:=
:
--
C
L
_~K
4
SEATING
PLAN E
MAXIMUM RATINGS
Symbol
Rating
Peak Reverse Blocking Voltage
MCR39·
.()5
50
200
300
N
400
500
600
'TSM
180
Amps
Peak Forward Gate Power - T A = 25°C
PGFM
10
Watt.
PGF(AVI
0.5
Watt
VGRM
TJ
5.0
-65 to +135
Volts
Tstg
di/dt
-65 to +200
TA -25°C
Operating Junction Temperature Range@
Rated VRRM and VDRM(1I
Storage Temperature Range
'Critical Rate-of-RiseofOn-5tateCurrent
PIN 1. CATHODE
2. GATE
3. ANODE
Volts
Peak Forward Current, TC = 125°C
P.W. = 101", Duty Cycle =0.1%
Peak Reverse Gate Voltage
~I-~
D STYLE 3
Unit
Value
VRRM
-20
-30
-40
-50
-60
Average Forward Gate Power
t
°c
uc
Amp/l"
500
during Turn-On Interval
THERMAL CHARACTERISTICS .
Characteristic
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
This is advance information on a new introduction and specifications are subject to
change without notice.
91
MILLIMETERS
MIN MAX
8.89 9.40
B
8.00 8.51
C
6.10 6.60
D
0.406 0.533
E
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
M
45 0 NOM
P
1.27
Q
900 NOM
R
2.54
DIM
A
INCHES
MIN
MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
45 0 NOM
0.050
900 NOM
0.100
All JEDEC dimensions and notes apply.
CASE 79-02
TO·39
MCR39 series (continued)
ELECTRICAL CHARACTERISTICS (RGK ; 1000 Ohms)
Symbol
Characteristic
Peak Forward Blocking Voltage (Note 1)
(TC = 135°C)
Min
Max
50
200
-
Unit
Volts
vORM
MCR39-05
MCR39-20
MCR39.JO
MCR39-40
MCR39-50
MCR39-60
300
400
500
-
600
-
IORM
-
2.0
mA
Peak Reverse Blocking Current
(Rated VRRM@TC=I35o C)
IRRM
-
2.0
mA
Forward "On" Voltage (Note 2)
(lTM = 50 A peak @ TA ='250 C)
VTM
-
3.5
Volts
1.0
15
30
mA
1.25
1.5
Volts
1.0
-
Peak Forward Blocking Current
(Rated VORM@TC=I350C)
Gate Trigger Current (Continuous dc) (Note 3)
(Anode Voltage = Rated VORM)
TC = 2SoC
TC = -4o"C
IGT
Gate Trigger Voltage (Continuous de)
(Anode Voltage = Rated VORM)
TC = 2SoC
TC = -4Q°C
VGT
0.25
mA
Holding Current
(Anode Voltage = 7.0 Vdc. Gate Open. TC = 135°C)
IH
Turn-On Time
(lTM = lBOA. Rated VORM. C = 1.0I'F. 10to 90%)
ton
-
500
ns
Critical Exponential Rate of Rise
(Rated VORM. Gate Open, TC = 135°C)
dvldt
50
-
VII'S
1. Ratings apply for zero or negative gate voltage but positive gate voltege shall not be applied concurrently with a negative potential on the
anode. When checking forward or reverse blocking capability. thyristor devices should not be tested with a const8.nt current source in a
manner that the voltage applied exceeds the rated blocking voltage.
2. Forward current applied for 0.1 ms maximum duration. duty cycle.:; 0.1%.
3. RGK current is not included in measurement.
FIGURE 2 - MAXIMUM ON-STATE POWER DISSIPATION
FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT
300
\
0
0
0
w
!;(
0
'"
""
~
.
IIII
IIII
8.0r--,--,--....,--,--.--r---,--,--~=~
111111
OFF·STATE VOLTAGE
1\
=12 V
§
7.01--f--1--1---1---1--+--++~"--+""",.."I
"--+--I--I---1~
co B.Or
.......
1\
'"w
~
r---
=-55 DC
TJ
ill
J
f'.- r--.
0
~
IE 7. 0
I
~
;,3.0
~
2.0
(
I
~
-jaf-
11--~~!iF"~+-+-+- a= CONDUCTION ANGLE
100 DC
5. 0
5.011-~-I---I---:
4.011---I---I--...."-+~.4.L..-!.,£..-+- TJ= 135 DC.
3.0
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
1.5
2.0
2.5
IF(AV). AVERAGE FORWARD CURRENT (AMP)
PULSE WIOT~ (m.)
92
5.0
MCR051 (SILICON)
thru
MCR054
A
o------tl~~~-G-O
K
MICRO·T
PLASTIC SILICON
CONTROLLED RECTIFIERS
0.25 AMPERE RMS
15 thru 100 VOLTS
PLASTIC THYRISTORS
· .. Annular PNPN devices designed for applications such as relay
and lamp drivers, small motor controls, gate drivers for larger thy·
ristors, and sensing and detection circuits.
•
Sensitive Gate Trigger Current - 200 IlA Maximum
•
Low Reverse and Forward Blocking Current 50 IJ.A Maximum, T A = 1250 C
•
Low Holding Current - 5.0 mA Maximum
•
Passivated Surface for Reliability and Uniformity
•
Small Size for High Density Packaging
MAXIMUM RATINGS
Symbol
Rating
Peak Reverse Blocking Voltage
Value
Unit
vo ts
VRRM
15
30
60
100
MCR051
MCR052
MCR053
MCR054
K
ITIRMS)
0.25
Amp
Peak Forward Surge Current, T A = 2SoC
11/2 cycle, Sine WINe, 60 Hz)
ITSM
6.0
Amp
Circuit Fusing Considerations, T A = 2SoC
It = 1.0 to 8.3 ms)
12t
0.15
A 2s
PGM
0.1
VJatt
PGF(AV)
0.01
Watt
IGFM
1.0
Amp
VGRM
4.0
Volts
DIM
A
TJ
-65 to +125
°c
B
C
Tstg
-65 to +150
-
+230
Forward Current RMS (See Figure 31
(All Conduction Angles)
Peak Gate Power - Forward. T A - 2SoC
Average Gate Powsr - Forward. T A'" 26°C
Peak Gate Current - Forward, T A
(300,.., 120PPSI
= 2SoC
Peak Gate Voltage - Reverse
Operating Junction Temperature Range @ Rated
VRRM and VDRM
Storage Temperature Range
Lead Solder Temperature
1<1/16" from case, 10. maxi
uc
°c
I
STYLE 8:
PIN 1. CATHODE
2. GATE
3. ANODE
r¥-__1iM .
EF=="T;1H
o
F
H
J
K
M
MILLIMETERS
MIN
MAX
1.98
2.34
0.38
0.64
1.24
1.55
0.25
0.41
0.10
0.15
0.51
0.76
0.03
0.09
4.19
4.45
30
7"
INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
30
CASE 28·01
93
,-.1
70
MCR051 thru MCR054 (continued)
ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Svmbol
Characteristic
Peak Forward Blocking Voltage (Note 1)
(TA
= 125°C)
Min
Max
15
30
60
100
-
MCR051
MCR052
MCR053
MCR054
Peak Forward Blocking Current
Unit
Volts
VORM
IORM
-
50
itA
IRRM
-
50
itA
VTM
-
1.3
Volts
(Rated VORM@TA=1250C)
Peak Reverse Blocking Current
(Rated VRRM @TA = 125°C)
Forward "On" Voltage (Note 2)
(lTM = 0.25 A peak @ T A = 25°C)
Gate Trigger Current (Continuous del (Note 3)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohmsl
TC = 25°C
IGT
-
200
itA
Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohms)
(Anode Voltage = Rated VORM, R L = 100 Ohms)
TC = 25°C
TC = -6SoC
TC = 125°C
VGT
-
0.8
1.2
Volts
Holding Current
(Anode Voltage = 7.0 Vdc, initiating current = 20 rnA)
TC = 25°C
TC = -6SoC
VGO
0.1
-
IH
-
mA
-
5.0
10'
-
500
°CIW
8JA
Thermal Resistance, Junction to Ambient
2.
1. Ratings apply for zero or negative gat8 voltage but positive
gate voltage shafl not be applied concurrently with a negative
Forward current applied for 1.0 ms maximum duration, duty
cycle S 1.0%.
potential on the anode. When checking forward or reverse
blocking capability, thyristor devices should not be tested
3.
with a constant current source in a manner that the voltage
applied exceeds the rated blocking voltage.
94
RGK current is not included in measurement.
MCR051 thru MCR054 (continued)
FIGURE 1 - POWER DISSIPATION
0.50
0::0::
0.4 5
'"~
o
~-
~ ~
0.4 Of-0.3 5 f - -
"' ....
~~ 0.3 0
~~
0.2 5
"'~ ....~
0.20
:::E. Ci
0.1 5
~
0.10
~~
:;
~
./
V
~I"' b-::" r0.0 5AO!! la
...-
01'- ~
25
50
75
100
125
~
150
90"
/'
L.I"'
3.0
L
V
~
200
V
TJ ~ 125"C
2.0
180"
~ o. 7
....
~
225
'"~
IFIAV). AVERAGE FORWARD CURRENT ImA)
D. 5
25"C-
1.5
2.0
r--
/1.
I II
O. 3
I
~
~
/ :/
1/
i3
250
!/ V
fl
1.0
~
175
L--"'::
/~ V
60..L'"
- -
/ . / /.V
V./ ../'
V
~V
°/
V L
30
L
./
L L.
HALF·WAVE
r-- OPERATION
IL
FIGURE 2 - FORWARD VOLTAGE
5.0
I
O. 2
~
~
z
~ O. 1
z
;: 0.07
I I
0.05
I I
J
0.03
L
0.0 2
J
1/
0.0 1
I
0.5
1.0
VF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
FIGURE 3 -CURRENT DERATING
130
O~
o
~
"""ii ~
~ ['......
"\
I
~~
"\.~ ~
\
0
0
0
30
o
25
50
I~
1\ ~'"
\
~
;"--
"" .""
600'\
1\
75
60 Hz
HALF-WAVE - t - OPERATION
f
I~ l'..
lX=30o \
0
t--
-J.l- t - -
100
"-
"- f'..
NSO"
'\,.90"
r-...
125
150
IFIAV). AVERAGE FORWARO CURRENT (rnA)
95
"'175
de
200
2.5
MCR051 thru MCR054 (continued)
TYPICAL CHARACTERISTICS
FIGURE 4 -GATE TRIGGER VOLTAGE
FIGURE 5 -GATE TRIGGER CURRENT
0.8
~
o.
~ 100
'" "'
o
~
~
~
>
w
!;(
,.:
:3
~
o. 5
0.3
-50
50
50
75
100
125
"'
2.0
1.0
w
'"'""
!;(
o. 5
'",..:.
O•2
.......
.5? O. 1
150
-75
-50
-25
25
FIGURE 6 -HOLDING CURRENT
TYPICAL V - I CHARACTERISTICS
N
~
2.0
il!
.............
0
~
"'"
1.0
B
0.7
~
'"z
§
0
--
VRRM
t
I--
A-
=
25
50
75
150
175
ON-STATE
IH
~+
I
I
I
'"
:#
-25
125
/;:i~~~V~::~~:-::-::-;=-==-J'~ ~
~
0.5
0.3
-50
100
FIGURE 7 -CHARACTERISTICS AND SYMBOLS
3.0
§
75
50
TJ, JUNCTION TEMPERATURE 1°C)
TJ.JUNCTION TEMPERATURE 10C)
100
125
150
TJ, JUNCTION TEMPERATURE 10C)
SELECTED THYRISTOR-TRIGGER
APPLICATION NOTES
AN-240
seR
AN-295
AN-422
Suppressing RFI in Thyristor Circuits
AN-453
Zero Point Switching Techniques
Power Control Fundamentals
Testers for Thyristors and Trigger Diodes
To obtain copies of these notes list theAN number(s)
on your company letterhead and send your request to:
Technical Information Center
Motorola Semiconductor Products, Inc.
P.O. Box 20924
Phoenix, Arizona 85036
96
V----<
VORM
BLOCKING
STATE
MCR80 series (SILICON)
MCR81 series
MCR82 series
~(F-_G_OK
THYRISTORS
PNPN
AO........_ ...
80 AMPERES RMS
50 thru 800 VOLTS
SILICON CONTROLLED RECTIFIERS
MeR80 SER IES
· .. designed for high power industrial and consumer applications in
power and speed controls such as welders, furnaces, motors, space
heaters and other equipment where control of high current is needed.
• Glass Passivated Junctions with Center Gate Fire for Greater
Parameter Uniformity and Stability.
• All Devices are Hermetically Sealed
•
'~Flll.
J
Epoxy Encapsulated for Long Voltage Creepage Path
• MCR82 Series Internally Isolated with 5000 Volt Dielectric
Strength
•
@f~ ~
II '
I,
STYLE 1
TERM. I. CATHODE
2. GATE
Flexible Leads are Optional - Consult Factory
3. CASE. ANODE
MIlliMETERS
INCHES
DIM MIN MAX
MIN
MAX
19.0& 11.300.150 0.160
1.21 1.86011500.085
3.
0.145
.155
5.11 61202350245
9.&3
365
1.41 1.425 1. 15
25.40 28.67 1.1100 t 050
4.83 5.21 0 190 0.
CASE 287·01
MAXIMUM RATINGS
MeR81 SERIES
Aating
Repetitive Peak Reverse Blocking
Voltage 'MCR8()'
MCR81·
MCR82·
Average On-State Current IT C :::: 75°C)
Peak Non-Repetitive Surge Current
lOne Cycle, 60 Hz) ITC = 7SOC)
Circuit Fusing Considerations
ITJ
= -40 to +1250 C)
It
-0.5
-10
-20
-30
-40
-50
-60
-70
-80
Symbol
Value
Unit
VRRMlll
50
100
200
300
400
500
600
700
800
Volts
Peak Gate Power
ITIAV)
50
Amp
ITSM
1000
Amp
12 t
4150
A 2s
PGM
15
Watts
Watts
PGIAVI
3.0
Peak Forward Gate Current
IGM
4.0
Amp
Peak Reverse Gate Voltage
VGM
5.0
Vol"
TJ
-40 to +125
T,to
-40 to +150
°c
°c
-
130
in. lb.
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque (3)
MILLIMHERS
MIN
MAX
A 29.12
= 1.5 to 8.3 msl
Average Gate Power
INCHES
MIN
MAX
1.110 1.190
126.4227.061040 1.0&5
C 4U4 4318 1.800 17
f
t.27
US 0050 D.
H 3.611
3.940.145
155
J
21.5922,480.8508.885
K 22.86 2794 0800 liDO
L 5.08 9.530.200 0.375
N 11.15 20.98 0.675 0825
Q
4.13 5.21 0.190 02
1\
2.18 2.410.
0
S
112-20UNF- A
T 25.27 25.78 0.9951015
DIM
STYLE 1.
TERM. 1. tATHODE
2. &ATE
STUD. ANODE
30.2
CASE 288-01
MCR82 SERIES
MIL 1M TERS
DIM MIN MAX
A
THERMAL CHARACTERISTICS
•
Characteristic
29.12
30.23
26.42 21.115
45.724818
1.27
to
3.61
3.1M
2.19
Thermal Resistance, Junction to Case
INCHES
MIN
MAX
1.1701.180
1.
1.086
1.
,
....
0.145 1U16
11100.110
.SO
22."
U8
.1
(1) Ratings apply for zero or negative gate voltage. Devices should not be tested for blocking
capability In a manner such that the voltage applied exceeds the rated blocking voltage.
11.43
(2) Devices should not be operated with a positive bias applied to the gate concurrent with a
negative potential applied to the anode.
STYLE 1:
PIN 1. CATHODE
2. GATE
(31 Reliable operation can be impaired if torque rating is exceeded, terminal tubes bent,
or seal broken.
S. AIODE
STUD. ISOLATED
97
R
T
CASE 29H)1
2.18
21.14
0.900
U30.
1
11
1.100
0.5
10
0.41
52'
41
1 -lOU
,
-
MCR80 Series, MCR81 Series, MCR82 Series (continued)
ELECTRICAL CHARACTERISTICS (TC
= 25°C unless otherwise noted.)
Characteristic
Peak Forward Blocking Voltage (1)
(TJ = 125°C)
MCR80MCR81MCR82-
-0:5
-10
-20
-30
-40
Symbol
Min
VORM
50
100
200
300
400
500
600
700
800
-50
-60
-70
-80
Typ
Unit
Max
Volts
-
-
-
-
-
-
-
Peak Forward Blocking Current
(Rated VORM, with gate open, TJ = 125°C)
IORM
-
-
Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 125°C)
IRRM
-
-
4.0
rnA
Peak On-5tate Voltage (2)
(lTM = 160 A Peak)
VTM
-
-
1.55
Volts
Gate Trigger Current, Continuous de
IGT
-
-
70
mA
VGT
-
-
3.0
Volts
IH
-
-
70
mA
VGO
0.25
-
,-
Vorts
tq
-
70
-
!,s
dvldt
-
100
-
V/!'s
(VAK
= 12 V, RL = 3.0 Ohms)
Holding Current
(VAK = 12 V, Gate Open)
Non-Trigger Gate Voltage
(Anode Voltage = Rated VOM, RL = l00ohms, TJ
= 125°C)
Circuit Commutated Turn-Off Time
(IT
mA
= 12 V, RL = 3.0 Ohms)
Gate Trigger Voltage, Continuous de
(VAK
4.0
= 50A,IR = 20A, TJ = 125°C)
Critical Rate of Rise of Off-State Voltage
(Rated VORM, Exponential Waveform, T J
= 125°C, Gate Open)
(1) Ratings apply for zero or negative gate voltage. Devices should not be tested with a constant current source for forward or reverse blocking
capability such that the voltage applied exceeds the rated blocking voltage.
(2) Pulse Te": Pulse Width ';;;300 !,S, Duty Cycle ';;;2.0%.
FIGURE 2 - ON-STATE POWER DISSIPATION
FIGURE 1 - AVERAGE CURRENT DERATING
12
u
o
5~~
w
~11
~
-1+-
120;..-...... , /
0
\. ~ ~ r-....
\ "\ t'-... r-.....
1\ '\., .'...; t'--.. r-.......
............ de
\ '\'\.,I"
I\, '\. ~'r-... ...........
,"
0-
w
5
:::I
~
1800
0
• = CONDUCTION ANG LE
~10 5
...
~
'\l~::s:::-.
5
ffi
5
0
5
:}
1
75 0
a: '" 300
5.0
10
15
20
"
'"II
90
60·1
25
30
35
a= 30D
0
0
/
0
r-.... . . .
0
120.1 18~
50
40
45
/
.L:: ~
/~ ~
~ ~ ,./
a~
.",
10
./
'"/ ' ~
TJ""'125DC
--101-
• = CONDUCTION ANGLE
15
20
25
30
3~
40
IT(AV), AVERAGE ON-STATE CURRENT (AMP)
98
-
~
~
~~
5.0
IT(AV), AVERAGE ON-STATE CURRENT (AMP)
~~
60·"
0
45
50
MCR101
(SILICON)
thru
MCR104
PLASTIC SILICON
CONTROLLED RECTIFIERS
0.8 AMPERE RMS
15 thru 100 VOLTS
PLASTIC THYRISTORS
· .. Annular PNPN devices designed for low cost, high volume con·
sumer applications such as relay and lamp drivers, small motor
controls, gate drivers for larger thyristors, and sensing and detection
circuits. Supplied in an inexpensive plastic TO·92 package which is
readily adaptable for use in automatic insertion equipment.
• Sensitive Gate Trigger Current - 200 p.A Maximum
•
Low Reverse and Forward Blocking Current 100 p.A Maximum, TC = 850 C
•
Low Holding Current - 5.0 mA Maximum
• Passivated Surface for Reliability and Uniformity
MAXIMUM RATINGSI11
Symbol
Ratina
Peak Reverse Blocking Voltage
Value
Unit
Volts
VRRM
MCRIOI
MCRI02
MCRI03
MCRI04
15
30
60
100
ITIRMS)
0.8
Amp
Peak Forward Surge Current, T A = 2SoC
11/2 cycle, Sine Wave, 60 Hz)
ITSM
6.0
Amp
Circuit Fusing Considerations, T A = 2SoC
It = 1.0 to 8.3 ms)
12,
0.15
A2,
0.1
Watt
Forward Current RMS (See Figures 1 & 2)
(All Conduction Angles)
Peak Gate Power - Forward, T A
= 2SoC
Average Gate Power - Forward, T A
= 2SoC
PGM
PGIAV)
Peak Gate Current - Forward, TA = 2SoC
1300 1", 120 PPS)
IGM
Peak Gate Voltage - Reverse
VGM
Operating Junction Temperature Range@ Rated
0.01
Watt
1.0
Amp
4.0
Volts
TJ
-65 to +85
°c
T,to
-65 to +150
-
+230
°c
°c
VRRM and VORt.I
Storage Temperature Range
Lead Solder Temperature
1<1/16" from case, 10. max)
STYLE 10:
PIN I. CATHODE
2. GATE
3. ANOOE
DIM
A
B
C
D
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance Junction to Case
L
N
P
Thermal Resistance. Junction to Ambient
Q
R
S
(1) Temperature reference point for all case temperature is center of flat
portion of package.
(T C "" +85 0 C unless otherwise noted.)
99
MI LLIMETERS
INCHES
MIN
MAX MIN
MAX
4.450
0.205
5.200 0.175
4.1
0.120
0.165
.1
0.210
4.320
5.330 0.170
0.407
0.021
0.533 0.016
.4
nJ:l!Tlf if.lfW
I.
1.150
1.390 0.045
0.055
0.050
1.270
0.250
6.350
3.430
0.135
0.105
2.410
2.670 0.095
0.105
2.030
2.670 O.OBO
CASE 29-02
TO·92
-
MCR101 thru MCR104 (continued)
ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Characteristic
Svmbol
Peak Forward Blocking'Voltage (Not,,'ll
(TC = 85°C)
Min
Max
15
30
60
100
-
MCR10l
MCR102
MCRI03
MCRI04
Unit
Volt.
VDRM
Peak Forward Blocking Current
(Rated VDRM @TC=850C)
IDRM
-
100
,..A
Peak Reverse Blocking Current
IRRM
-
100
,..A
VTM
-
1.7
Volt.
(Rated VRRM @TC
=85°C)
Forward "On" Voltage (Note 2)
(lTM = 1,0 A peak@TA = 25°C)
Gate Trigger Current (Continuou. dc) (Note 3)
(Anode Voltage = 7.,0 Vdc, R L = 100 Ohm.)
TC = 25°C
IGT
-
200
,..A
Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohm.)
TC = 25°C
TC = -65°C
TC = 85°C
VGT
-
0.8
1.2
Volts
VGD
0.1
-
IH
-
5.0
10
TC = 25°C
TC = -65°C
Holding Current
(Anode Voltage = 7.0 Vdc, initiating current = 20 mAl
1. "ORM and VRRM forall types can beappliad on a continuous
2. Forward current applied for 1.0 rns maximum duration, duty
cycle :S:' 1.0%.
When checking forward or reverse blocking capability. thyris-
3.
tor devices should not be tasted with a constant current source
FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
RGK current Is not Included in
measurement."
FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
N
90
a- COINOUCTlbN
ANGLE
CASE MEASUREMENT
~ I!;;:::,...
~ ~ ;::-- r-..
~ ~~
I
POINT - CENTER OF
......... ~ATPORTION
r--...." 0
\.
~
\ "~' ~
.......
Q'"
300
9~
60·
0.1
0.2
0.3
IF(AV),AVERAGE FORWARD
I
~~
~
~~
120·
o
mA
in a manner that the voltage applied exceeds the rated blocking
voltage.
de basis without incurring damage. Ratings apply for zero or
negative gate voltage but positive gate voltage shall not be
applied concurrently with a negative potential on the anode.
10
-
0.4
180·
100~--~--~0~.1~--~--~~--~~~----~~~
0.5
C~RRENT (AMP)
IF(AV), AVERAGE FORWARD CURRENT (AMP)
100
MCR 106-1 (SILl.CON)
thru
MCR106-4
MCR1 06-6,MCRl 06-8
THYRISTORS
4.0 AMPERES RMS
30 thru 600 VOLTS
SILICON
CONTROLLED RECTIFIERS
. . . Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliability of oper·
ation is important.
•
Annular Passivated Surface for Reliability and Uniformity
• Power Rated at Economical Prices
• Practical Level Triggering and Holding Characteristics
•
Flat, Rugged, Thermopad Construction for Low Thermal Resist·
ance, High Heat Dissipation and Durability.
MAXIMUM RATINGS
Rating
Symbol
Peak Reverse Blocking Voltage
(Note 11
MCR 106-1
·2
·3
VRRM
-4
-6
(All Conduction Anglesl
Average Forward Current
TC - 930C
TA - 300C
Unit
Volts
30
60
100
200
400
600
·8
AMS Forward Current
Value
IT(RMSI
IT(AVI
4.0
Amp
Amp
Peak Non-Repetitive Surge Current
(1/2
cle,60 Hz, T = -40 to +1100CI
ITSM
2.66
0.68
25
Circuit Fusing Considerations
(T --40to+l100C,t-l.0t08.3msl
Peek Gate Power
'1 2t
2.6
A2s
PGM
PG(AVI
IGM
VR M
T
0.5
0.1
0.2
6.0
-40 to +110
-40 to +150
6.0
Watt
Watt
Amp
Volts
Symbol
Max
Unit
'!uc.
3.0
75
°CIW
°CIW
Average Gate Power
Peak Forward Gate Current
Peek Reverse Glte Voltage
0 atin Junction Temperature Range
Storage Temperature Range
Tot
Mounting Torque (Note 21
Amp
°c
°c
in. lb.
Thermal Rasistance, Junction to ca..
Thermal Resistance, Junction to Ambient
Pin 1. Cathode
2. Anode
3. Gate
DIM
A
B
C
D
E
F
G
H
THERMAL CHARACTERISTICS
Choraa_lotIc
HEAT SINK
CONTACT AREA
(BOnOMI
R8JA
101
J
K
L
CASE 77·02
MCR106-1 thru MCR106-4 (continued)
MCR106-6, MCR106-8
ELECTRICAL CHARACTERISTICS (TC
= 2So C unless otherwise noted. RGK = 1000 ohms.)
Symbol
Characteristic
Peak Forward Blocking Voltage
(TJ = 1100 C. Note 1)
Min
Typ.
Max
MCR106-1
-2
-3
-4
Unit
Volts
VORM
30
-
-
-
-
P.ak Forward Blocking Current
(Rated VORM. T J = 110°C)
IORM
-
-
200
"A
Peak Reverse Blocking Current
'RRM
-
-
200
"A
Forward "On" Voltage
(lTM = 4.0 A P.ak)
VTM
-
-
2.0
Volts
Gat. Trigg.r Current (Continuous dc)
(VAK = 7.0 Vdc. RL = 100 ohms)
(VAK = 7.0 Vdc. RL = 100 ohms. TC
IGT
-
-
200
-
SOO
60
100
200
400
600
-6
-8
(Rat.d VRRM. T J = 110°C)
Gate Trigger Voltage (Continuous dcl
(V AK = 7.0 Vdc. RL = 100 ohms. TC
Gat. Non-Trigger Voltage
(VAK = Rated VORM. RL
Holding Current
(VAK = 7.0 Vdc. TC
= -4QDC)
"A
1.0
VGT
= 2SoC)
VGO
0.2
Volts
Volts
= 100 ohms. TJ = 110°C)
'H
= 25"C)
Forward Voltaga Application Rate
(TJ = 110°C)
dv/dt
-
10
5.0
rnA
-
V/"s
NOTES:
1. Ratings apply for zero or negative gate voltage but positive
gate voltage shall not be applied concurrently with a negative
. potential on the anode. When checking forward or reverse
2. Torque rating applies with use of torque washer (Shakeproof
W019523 or equivalent). Mounting torque in excess of 6 in. lb .
does not appreciably lower case-to-sink thermal resistance. Anode
blocking capability, thyristor devices should not be tested with
lead and heatsink contact pad are common. (S.e AN-290 B)
a constant current source in a manner that the voltage applied
For soldering purposes (either terminal connection or device
mounting), soldering temperatures shall not exceed +22SoC. For
optimum results, an activated flux (oxide removing) isrecommended.
exceeds the rated blocking voltage:
CURRENT DERATING
FIGURE 1 - MAXIMUM CASE TEMPERATURE
~
FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE
110
::!
:::>
I-
«
cc
~
w
:E
IW
...~
~
.,
;;
j
«
'"
:::>
'"x
«
:E
..;
I-
IT(AV). AVERAGE FORWARD CURRENT (AMP)
IT(AV). AVERAGE FORWARD CURRENT (AMP)
102
MCR107-1 thru MCR107-B (SILICON)
PLASTIC SILICON
CONTROLLED RECTIFIERS
4.0 AMPERES RMS
PLASTIC THYRISTORS
(PLASTIC SILICON CONTROLLED RECTIFIERS)
30 thru 600 VOLTS
· .. Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliabil ity of oper·
ation is important.
•
Annular Passivated Surface for Reliability and Uniformity
•
Power Rated at Economical Prices
•
Practical Level Triggering and Holding Characteristics
•
Flat, Rugged, Thermopad Construction for Low Thermal Resist·
ance, High Heat Dissipation and Durability
MAXIMUM RATINGS
Svmbol
Rating
Peak Reverse Blocking Voltage
INote 11 MCR107-1
VRRM
-2
-3
-4
-5
-6
-7
-8
Value
Unit
Volts
30
60
100
200
300
400
500
600
=1 UBr-~ t
tH
Amp
Peak Forward Surge Current
ITSM
25
Amp
12 t
2.6
A2 s
E!:3- C
M--J~·'T
PGFM
0.5
Watt
MILLIMETERS
DIM MIN
MAX
A 10.80 11.05
TJ" -40 to +1100 CI
IT J " -40 to +llO oCI
t" 1.0t08.3m.1
PGFIAV)
0.1
Watt
Peak Gate Current· Forward
IGFM
0.2
Amp
Peak Gate Voltage - Reverse
VGRM
6.0
Volts
Range
TJ
-40 to +110
°c
Storage Temperature Range
Tstg
-40 to +150
°c
8.0
in. lb.
Average Gate Power - Forward
Operating Junction Temperature
Mounting Torque (4-40)
-
INote21
G
H
K
M
Q
THERMAL CHARACTERISTICS
Svmbol
Ma.
Unit
Thermal Resistance, Junction to Case
9 JC
3.0
°CIW
Thermal Resistance, Junction to Ambient
9 JA
75
°C/W
Characteristic
103
K
!~D
GJJ
7.49
2.41
0.51
2.92
2.31
2.16
0.38
15.38
7.75
2.67
0.66
3.00
2.46
2.41
0.64
16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94
rj
tL--lLJ
ln~
4.0
Peak Gate Power· Forward
A
~
ITIRMSI
Circuit Fusing Considerations
+-
~a
'Ii
':" + '
U
Forward Current RMS
(All Conduction Anglesl
(% cycle, 60 Hz,
M
F
STYLE 2
PIN 1. CATHODE
2. ANODE
3. GATE
INCHES
MIN
MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.118
0.091 0.097
0.085 0.095
0.015 0.025
0.605 0.655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
CASE 77·03
MCR107-1 thru MCR107-8 (continued)
ELECTRICAL CHARACTERISTICS (TC
= 25°C unless otherwise noted,
Characteristics
Peak Forward Blocking Voltage
ITJ = 1100 CI (Note 11 MCR107
Symbol
RGK
= 1000 ohms)
Min
VORM
1
30
-2
60
-3
-4
-5
100
200
300
-6
-7
-8
400
500
Peak Forward Blocking Current
(Rated VORM, T J = 1100 CI
IORM
Peak Reverse Blocking Current
IRRM
(Rated VRRM, T J = 11o"C)
Forward "On" Voltage
(lTM = 4.0 A Peak I
VTM
Gate Trigger Current (Continuous de)
(Anode Voltage = 70 Vdc. RL = 100 ohms, TC = 25°C)
IGT
Typ
-
-
Max
-
Unit
Volts
-
-
-
-
-
600
-
-
-
-
200
-
-
200
-
-
2.0
-
-
20
-
1.5
0.2
-
-
-
20
-
10
-
~A
~A
Volts
rnA
Gate Trigger Voltage !Continuous de)
Volts
(Anode Voltage = 7 0 Vdc, RL = 100 ohms, TC = 25 0 CI
(Anode Voltage = Rated VORM, RL = 100 ohms, T J = 110°C)
VGT
VGO
Holding Current
(Anode Voltage = 7.0 Vdc, ~= 250 CI
Forward Voltage Application Rate
rnA
IH
dv/dt
IT J = 1100 CI
V/~s
(1)0085 not Include current through AGK resistor.
NOTES:
(1) Ratings apply for zero or negative gate voltage. Devices shall
not have
III
positive bias applted to the gate concurrently with
a negative potential on the anode. Devices should not be tested
with 8 constant current lOurce for forward or raverse blocking
capability such that the voltage applied exceeds the rated
block Ing voltage.
(2) Torque rating applies with us. of torque washer (Shakeproof
W019523 or equivalent). Mounting torque in excess of 6 in.
lb. does not appreciably lower case-to-sink thermal resistance.
Anode lead and heatslnk contact pad are common.
For soldering purposes (either terminal connection or device
mounting), IOldering,temperatllres shall not exceed +225~C.
CURRENT DERATING DATA
FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE
FIGURE 1 - MAXIMUM CASE TEMPERATURE
11o . .- - . - - - - , , - - - , - - - - , - - - - , - - - - , - - - - , - - - - ,
30~0----~--~0.~2--~~--~~~~--~--~--~~
IF(AV),AVERAGE FORWARD CURRENT (AMP)
IF (AV), AVERAGE FORWARD CURRENT (AMP)
104
MCRl15 (SILICON)
MCR120
o~~~-o
PLASTIC SILICON
CONTROLLED RECTIFIERS
0.8 AMPERE RMS
100 and 200 VOLTS
PLASTIC THYRISTORS
· .. Annular PNPN devices designed for high volume consumer
applications such as relay and lamp drivers, small motor controls, gate
drivers for larger thyristors, and sensing and detection circuits.
Supplied in an inexpensive plastic TO-92 package which is readily
adaptable for use in automatic insertion equipment.
• Sensitive Gate Trigger Current - 200llA Maximum
• Low Reverse and Forward Blocking Current 100llAMaximum, TC= 1100 C
• Low Holding Current - 5.0 rnA Maximum
• Passivated Surface for Reliability and Uniformity
MAXIMUM RATINGS(ll
Rating
Svmbol
Peak Reverse Blocking Voltage
Value
MCR115
MCR120
Forward Current RMS (See Figures 1 & 2)
Unit
Volts
VRRM
IT(RMS)
150
200
0.8
Amp
'TSM
6.0
Amp
12 t
0.15
A2.
(All Conduction Angles)
Peak Forward Surge Current, T A
= 25°C
(112 cycle, Sine WINe, 60 Hz)
Circuit Fusing Considerations, T A
(t = 1.0 to 8.3 m.)
Peak Gate Power - Forward, T A
Average Gate Power
= 25uC
Forward, T A
Peak Gate Current Forward, T A
(300 It., 120 PPS)
Peak Gate Voltage
= 25u C
= 25u C
= 25 C
Reverse
Operating Junction Temperature Range@ Rated
PGM
0.1
Watt
PGF(AV)
0.Q1
Watt
IGFM
1.0
Amp
DIM
A
VGRM
5.0
Volts
TJ
-65 to +110
°c
C
D
F
B
VRRM and VDRM
Storage Temperature Range
Lead Solder Temperature
STYLE 10:
PIN 1. CATHODE
2. GATE
3. ANODE
K
Tstg
-65 to +150
uC
+230
vc
«1/16" from case, 10. maxi
L
N
P
Q
R
S
(') Temperatur. r.ference point for all case temperatura. In center of flat portion
of package. (TC = +110o C unle.. otherwise notad.)
105
MILLIMETERS
MIN
MAX
4.450
5.200
3.1HU
4.1"0
5.330
4.320
0.407
0.533
0.482
0.407
IVUU
1.150
1.390
1.270
6.350
3.430
2.410
2.670
2.030
2.670
INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.210
0.170
0.021
0.016
0.019
0.016
J.~UU
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
0.055
0.050
0.105
0.105
MCR 115, MCR 120 (continued)
ELECTRICAL CHARACTERISTICS (RGK
=
1000 Ohms)
Symbol
Characteristic
Peak Forward Blocking Voltage (Note 1)
(TC = 110o C)
Min
Max
MCR115
MCR120
Unit
Volts
VDRM
150
200
-
Peak Forward Blocking Current
(Rated VDRM @ T C = 110o C)
IDRM
-
100
!LA
Peak Reverse Blocking Current
(Rated VRRM@TC= 110o C)
IRRM
-
100
!LA
VTM
-
1.7
Volts
Forward "Dn" Voltage (Note 2)
(lTM = 1.0 A peak @ T A = 25 0 C)
Gate Trigger Current (Continuous de) (Note 3)
(Anode Voltage = 7.0 Vdc. RL = 100 Ohms)
TC = 250 C
IGT
-
200
IlA
Gate Trigger Voltage (Continuous del
TC = 250 C
TC = -650 C
TC = 1100 C
VGT
-
0.8
1.2
Volts
VGD
0.1
-
IH
-
5.0
10
Thermal Resistance. Junction to Case
OJC.
-
75
°C/W
Thermal Resistance, Junction to Ambient
°JA
-
200
°CM
(Anode Voltage = 7.0 Vdc. RL = 100 Ohms)
(Anode Voltage = Rated VDRM. RL = 100 Ohms)
Holding Current
(Anode Voltage
>=
TC=25 0 C
TC = -650 C
7.0 Vdc, initiating current == 20 rnA)
1. VORMsndVARMforall types can be applied on a continuous
de basis without incurring damage. Ratings apply for zero or
negative gate voltage but positive gate voltage shall not be
applied concurrently with a negative potential on the anode.
in a manner that the voltage applied exceeds the rated blocking
voltage.
2. Forward current-applied for 1.0 ms maximum duration. duty
cycle S 1.0%.
When checking forward or reverse blocking capability. thvristor devices should not be tested with a constant current source
3. RGK current is not included in measurement.
FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
11 0
~
100
110
~ ~ r--.
~"
0
0
==
0
POINT - CENTER OF
o
0.1
~ ~ 801----+--\:-P~~~......::>.j.::--+--____i~-_+-_i
j~
~ ~ 701----+---l\......:~~~ct_-~"k-____i1_-_+---I
"" "'" "
90·
AC
or- CA:EN~~!SUREMENT
:~FliTPORTN
w<>
ex: ~ 90 I---+~~IQ.."-=~;:--+==+=---t--+---I
"'f'..: '"
a= CONOUCTION
3
FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
"'~ ~ ~ ...............
.............. ......... de
~~
r---....
'\
I'::'
a 300
I
~
~
0
rnA
I
0.2
0.3
"'120·
0.4
~~
x
I-
«2:
60
.:ri 501----+--+--\-,1_~=+-.....:~~c:..-1_----'~-:E W
180·
401--4--~-~r-~~~~~~--+~~
0.5
0.1
IFIAV). AVERAGE FORWARD CURRENT lAMP)
0.2
0.3
IFIAV). AVERAGE FORWARO CURRENT lAMP)
106
0.4
MCR154, MCR155 (SILICON)
MCR156, MCR157
THYRISTORS
SILICON CONTROLLED RECTIFIERS
THYRISTORS
PNPN
· .. designed for high frequency power switching applications such as
110 AMPERES RMS
100 thru 600 VOLTS
inverters, choppers, transmitters, induction heaters, cycloconverters
and high frequency lighting.
•
High Voltage Application Rate dv/dt = 200 Voltsf!.1S (Min). MCR 154. 156
•
Fast Turn-Off Time tq = 10 !.Is (MaxI. MCR154. MCR 156
MAXIMUM RATINGS
Rating
Symbol
Repetitive Peak Voltage
ITJ - +125 0 C)
MCR154.155.156.157
-10
-20
-30
-40
-50
-60
Non-Repetitive Peak Reverse Blocking Voltage
It';;;; S.O ms)
MCR154. 155. 156,157
VDRM (1)
and
VRRMll)
Unit
Volts
100
200
300
400
500
600
Volts
VRSM
-10
-20
-30
-40
-50
-60
Average On-State Current
Value
200
300
400
500
600
650
ITIAV)
70
Amp
ITSM
1800
Amp
IT C = 65°C. 180 Conduction Angle)
Peak Surge Current
(One cvcle, 60 Hz) IT J - 40 to +12SoC)
ILt
Circuit Fusing Considerations
ITJ - -40 to +1250 C)
h= 8.3 msl
Peak Gate Power
A's
PGM
15
Watts
PGIAV)
3.0
Watt
Peak Forward Gate Current
IGM
4.0
Amp
Peak Reverse Gate Voltage
VGRM
5.0
Volts
°c
Average Gate Power
Operating Junction Temperature Range
TJ
-40 to +125
Storage Temperature Range
T sto
-40 to +150
°c
150
175
in.lb.
Stud Torque 12)
MCR156, MCR157
SERIES
CASE 246
TO-83
9,500
13.000
It- 1.5 msl
-
Kg - em
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
(1) Ratings apply for zero or negative gate voltage. Devices shall not have a positive bias
applied to the gate concurrently with a negative potential on the anode. Devices should
not be tested with a constant current source for forward or reverse blocking capability
such that the voltage applied exceeds the rated block ing voltage.
(2) Reliable operation can be impaired if torque rating is exceeded, terminal tubes bent, or
seal broken.
107
MCR154, MCR155
SER IES
CASE 219
TO-94
MCR154, MCR155, MCR156, MCR157 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Characteristic
Peak Forward Blocking Current
Symbol
Min
Typ
Max
Unit
IORM
-
-
10
mA
IRRM
-
-
15
mA
VTM
-
-
3.0
Volts
IGT
-
150
200
120
mA
-
50
100
30
-
-
3.0
(Rated VORM, with gate open, TJ = 1250 C)
Peak Reverse Blocking Current
(Rated VRRM,with gate open, TJ = 1250 C)
Forward "On" Voltage
(lTM = 500 A Peak, Duty Cycle = 0.01%)
Gata Trigger Current
(Anode Voltage = 6 V, RL =3.0 ohms, tp;;' 20 jJs)
TJ=25 0 C
TJ = -40o C
T J = +125 0 C
Gate Trigger Voltage
(Anode Voltage = 6.0 V, RL =3.0 ohms, T J = -40o C)
(VORM = Rated, RL = 1000 ohms, TJ = +1250 C)
Volts
VGT
Holding Current
IH
0.25
-
-
-
30
200
mA
( Anode Voltage = 24 V, Gate Open, Initiating Current = 2.0 A)
Circuit Commutated Turn-Off Time
jJS
tq
(VR= 50 V (Min); VORM = Rated;TJ = +125 0 C;
diR/dt = 5.0 A/",s; Repetition Rate = 1.0 pp,;
ITM = 50 A; Duty Cycle ';;0.01%; Gate
Bia, during Turn·Off Interval = 0 V, 100 ohm,;
Rate of Rise of Reapplied Forward Blocking Voltage = 20 VI""
MCR154,156
MCR155,157
Linear)
Critical Exponential Rate of Rise of
-
-
-
-
dv/dt
Forward Blocking Voltage
(VORM = Rated, TJ = 1250 C, Gate Open)
MCR154,156
MCR155,157
200
100
10
20
-
-
-
VI""
FIGURE 1 - THERMAL RESPONSE
_
~
D. 3
I---
~ O. 1
~+-
'z"'
<[
ffi
!!....
,...,
<[
~
"
:: 0.0 1
V
i-'
z
w
z
in
<[
0:
1- 0.00
3
D.DDDI
0.001
0.01
0.1
SIlUARE WAVE PULSE WIDTH (S)
108
1.0
10
MCR154, MCR155, MCR156, MCR157 (continued)
FORWARD POWER DISSIPATION
FIGURE 2 - SQUARE WAVE
FIGURE 3 - SINE WAVE
S
240
DC
~ 200
z
180
o
~
~160
-:;0
o
ffi
120
..'"'"'
80
;=
~
~~ /
h
30
=>
x
40 r--
~
~
~
h
:E
S
0;
~
20
/
./
~/ V
j
I
/"
I~O
i
V
I~O
~ 160
~
./
~
o
t'
'h / '
180
JUL
V
lOU'
120
'"~
~
~
'"
I
I
/M ~I
80
V/:. W-
I
40
~
~
180'
0'
I
~
10
120
p-
E
~
I
/. :;@
~
40
BO
80
100
ITIAV). AVERAGE FORWARD CURRENT lAMP)
BO/$
30
=>
"x
"":;;
V
/
80
10
20
30
40
50
BO
ITIAV). AVERAGE FORWARD CURRENT lAMP)
CURRENT DERATING
FIGURE 5 - SQUARE WAVE
FIGURE 4 - FORWARD CONDUCTION CHARACTERISTICS
140
. 1000
5000
2000
V
1000
~
200
.
'\
:i
B0
....
100
........
~
.........
15
........
BOO
.......
.........
-""
90' 120'
II
0
I---l-CONDUCTIDN
ANGLE
"'"' "
300
<3
/
ffi
'"
~
w
'" 80
;3
/
V
~
~ t-..,..............
'\., ~
~ 100
....
"=>
"x
JUL
~~
g
V
/
500
i---t-3BO 'C
~ 120 ~
=>
/'
./
t'-...
.......
1800
13Bo'
I
I
30
45
BO
15
90
105
ITlAV). AVERAGE FORWARD CURRENT lAMP)
120
o
'"
~ 50
FIGURE 6 - SINE WAVE
~
140
~
20
10
~
w
I
§
~fi
120
"""""
"'-"
~
100
~
"-
w
'";3
5.0
'=>"
":ix
2.0
80
-
~
0'
-
180'
~ ::---..
~ t--......
.......
'\.
~ l""'-......
"" , "'
30'
-BO'
.........
r-~ h2O'
~-
B0
~
40
1.0
o
1.0
2.0
3.0
4.0
5.0
VTM. MAXIMUM FORWARD VOLTAGE DROP IVOLTS)
o
B.O
109
10
20
30
40
50
60
ITIAV). AVERAGE FORWARD CURRENT lAMP)
10
80
MCR154, MCR155, MCR156, MCR157 (continued)
rA~
ljTerminal2
~ 1~
B
d
t
YL~
G
Terminal 1
..J LR
~Q
El~
r-
V
1
K
Terminal 4
1/2.20.UNF.2A ,(Coated)
~ \
S./-'\
Lw
MILLIMETERS
DIM MIN
MAX
A
B
C
0
E
F
H
J
K
L
N
P
Q
R
S
T
26.19
-
STYLE 1:
TERM. 1. GATE
2. CATHOOE
3. CATHODE
INCHES
4. ANODE
MIN
MAX
31.16
27.00 1.031
63.50
11.10 16.50 0.437
4.40 12.70 0.170
0.215
5.46 7.62
3.17
0.797
20.25 21.00
174.0 190.5
6.850
6.35
0.250
26.18
10.80 12.67 0.425
7.87 0.260
6.61
5.775
146.7 159.1
11.73 ·11.874 0.4619
3.81 0.140
3.56
DIM
A
1.227
1.063
2.500
0.650 .
0.50n
0.300
0.125
0.827
7.500
26.19
D
E
F
4.4
4.58
H
J
K
L
N
P
Q
R
S
T
U
V
All JEDEC dimenSions and nates apply
-
B
G
1.031
0.499
0.310
6.265
0.4675
0.150
MILLIMETERS
MIN MAX
31.16
27.00
16.51
12.70
14.60
3.17
20.25 21.00
45.97
0.31
1.27
26.18
10.80 12.67
4.58
6.60
2.93
4.06
11.733 11.874
1.53
2.03
1.53
2.92
11.9
9.2
Terminal 3
STYLE 1:
TERMINAL 1. GATE
2. CATHODE
INCHES
3. ANODE
MIN MAX
1.031
0.170
0.180
1.227
1.063
0.650
0.500
0.575
0.125
0.827
1.810
0.012 0.050
1.031
0.425 0.499
0.180 0.260
0.115 0.160
0.4619 0.4675
0.060 0.080
0.060 0.115
0.360 0.470
0.797
-
All JEDEC dimenSions and notes apply
CASE 219
CASE 246
T0-94
TO·B3
110
MCR158 (SILICON)
MCR159
INTEGRATED GATE THYRISTORS
SILICON CONTROLLED RECTIFIERS
INTEGRATED GATE
THYRISTORS
PNPN
designed for high frequency applications which require high
di/dt such as inverters, choppers, transmitters, induction heaters,
crowbars, cycloconverters and high frequency lighting.
•
10 kHz Sine Wave Operation
•
5 kHz Rectangular Waveform Operation
110 AMPERES RMS
500 thru 1200 VOLTS
•
Critical Rate-of-Rise of On-State Current - di/dt ~ 800 Amp/p.s (Max)'
•
Critical Exponential Rate - dv/dt ~ 200 V/p.s (Min)
•
Low Switching Losses at High Frequency
•
Integrated Gate Permits Soft-Fire Gate Control
o
o
MAXIMUM RATINGS
Symbol
Rating
Repetitive Peak off-State Voltage
ITJ = +1250 CI MCR158,159
Value
- 50
-60
-70
-80
-90
-100
-110
-120
Non-Repetitive Peak Reverse
VRRM
500
600
700
SOO
900
1000
1100
1200
Volts
VRSM
Block Voltage
It';;5.0msl MCR158,159
-50
-60
-70
- 80
-90
- 100
-110
-120
Average Forward Current, T C :: 65°C
Unit
Volu
VDRMlll
600
720
840
960
1080
1200
1300
1400
MCR159
SERIES
CASE 246
T0-83
ITIAVI
70
Amp
ITSM
1600
Amp
lSOoC Conducted Angle
Peak Surge Current
lOne cycle, 60 Hzl IT J = -40 to +1250 CI
ITJ = -40 to +1250 CI
A2 ,
12,
Circuit Fusing Considerations
Peak Gate Power
MCR158
5200
10,500
It= 1.5msl
It = 8.3 msl
SERIES
CASE 219
PGFM
15
Watts
PGFIAVI
3.0
Watt
Peak Forward Gate Current
IGFM
4.0
Amp
Peak Reverse Gate Voltage
VGRM
5.0
Volts
TJ
T stg
-4Oto +125
°c
°c
-
150
175
800
Average Gate Power
Operating Ju nction Temperature Range
Storage T-emperature Range
Stud Torque 121
Critical Rate-of-Rise of Oo-State Current during
di/dt
-4Oto +150
Turn! On Interval
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
·With 0.05 "F and 20 ohm snubber circuit.
111
in.lb. '
Kg-em
Amp/!,s
TO-94
(1) Ratings apply for zero or negative gate voltage.
Devices shall not have a positive bias applied to
the gate concurrently with a negative potential
on the anode. Devices should not be tested with
a constant current source for forward or reverse
blocking capability such that the voltage applied
exceeds the rated blocking voltage.
(2) Reliableoperation can be impaired if torque rating
is exceeded. terminal tubes bent. or seal broken.
MCR158, MCR159 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Peak Forward Blocking Current
(Rated VORM, with gate open, T J = 1250 C)
IORM
-
-
10
mA
Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 1250 C)
IRRM
-
-
15
mA
Forward "On" Voltage
(lTM = 500 A Peak, Duty Cycle ~ 0.01%)
VTM
-
-
3,0
Volts
Gate Trigger Current
IGT
-
-
150
mA
VGT'
-
-
3.0
Volts
IH
-
20
500
mA
VGOM
0.15
-
-
Volts
tq
-
-
30
I-'S
ton
-
2.0
-
I-'S
-
-
10
I-'S
200
-
-
(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Gate Trigger Voltage
(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Holding Currant
(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 A)
Non-Triggering Gate Voltage
(Anode Voltage = Rated VORM, RJ. = 1000 Ohms, T.J.. = 125°C)
Circuit Commutated Turn-Off Time
VR = 50 V (Min); VORM = Rated; TJ = +12S o C;
diR/dt = 5.0 A/I-'s; Repetition Rate = 1.0 pps;
ITM = 150 A; Duty Cycle ~0.01%; Gate
Bias during Turn-Off Interval::: 0 V, 100 ohms;
Rate of Rise of Reapplied Forward Blocking Voltage::: 20 V/J,J.s Linear
Turn-On Time
(lTM = 50 A, VORM = Rated)
10 V open ~ircuit, 20 Ohm
Gate Supply =
0.1 I-'S (Max) rise time
Gate Pulse Width Necessary to Trigger
5.0 V open circuit, 5.0 Ohm
0.1 I-'S (Max) rise time
Gate Supply =
Critical Exponential Rate of Rise
dv/dt
V/I-'s
(VORM = Rated, Gate open, TJ = 125°C)
ALLOWABLE PEAK ON-STATE CURRENT
FIGURE 1 - SQUARE WAVE
FIGURE 2 - SINE WAVE
2BO
w
~oz
240
240~----+-~--+-+-~+++-----+---r-+-+-rt1HH
200
"";;:
"'"
w>-
,It .$ 160
~
~ffi
~ ~ 120
~
0:::>
j'-'
"
BO
:E
E
40
o
50
FZ)
-
........
~
~
50% Duty Cycle
di/dt = 25 Alp'
BOO Volt Blocking
TC = 65 0C
r
100
200
~
120 +-t+t+-----t--+-Hr-++1'-N
- I B O o Conduction H-HI+--+-+-!---iH+t-H
BO - S O D Volt Blocking H+t+---+--+.....JI-Hr+-Hi
-~C=650C
o
I
I
I I
500
1000
2000
5000
f, FREQUENCY (Hz)
f, FREOUENCY (Hz)
112
MCR158, MCR159 (continued)
FORWARD POWER DISSIPATION
FIGURE 3 - SQUARE WAVE
FIGURE 4 - SINE WAVE
0
V
0
180
120
0
Vl"
90
0
0
1/
~
16 o
~
C
1--- r~ t-
0
180
1180
'""'
3:
~
:;;
90/12 0
30
80
:;;
~
:;;
4o
:;
40
60
60
80
100
O~
..-,.. ~
~
10
120
~~
t"-
V
~
~- t-- t"-
~~ ~
=>
~
20
12~ IL
~
L(
v/ V ~ '360
~ rL V ~
31~V/ V
I//- ~ V
V
O~ ~
or--
/L
-
i
DC
180·
D·
r& ~
t-- t"-
Ii?'
20
30
60
50
40
BO
70
IT(AV). AVERAGE FORWARD CU RRENT (AMP)
IT(AV). AVERAGE FORWARD CURRENT (AMP)
CURRENT DERATING
FIGURE 5 - FORWARD CONDUCTION CHARACTERISTICS
FIGURE 6 - SQUARE WAVE
10.000
-
5000
125·C
L-
2000
V-
100 0
V
IL
500
/
V
E 200
V
~
=>
'-'
.......
1i1
100
~
0
~
IT(AV). AVERAGE FORWARD CURRENT (AMP)
FIGURE 7 - SINE WAVE
1
~
J
20
1
10
~
"'~
120~~~--~----+----+----r--
~~
100~--4-~~~~~~~--~----+----+--~
~
lBO·
I-
"'
~,.
5.0
80
=>
:;;
.
x
2.0
:;;
U
90·
120·
180·
60
I-
1.0
o
0
1.0
2.0
3.0
4.0
5.0
6.0
VTM. MAXIMUM FORWARD VOLTAGE DROP (VOLTS)
0
10
20
30
40
50
60
IT(AV). AVERAGE FORWARD CURRENT (AMP)
113
70
80
MCR158, MCR159 (continued)
FIGURE 8 - THERMAL RESPONSE
!
w
u
o. 3
~
o. 1
z
--
-
~ 7.0
::>
Q
~
5.0
z
--
J\....f\..
-l
r-....
r----... ........
>
.4
"
2.0
.2
'"'"
~
~
1.0
1.0
2.0
3.0
0
5.0
1.0
10
20
1200
30
50
10 100
sob.
900
V/
///
300
~ .//
~ ,............
~~~
/
~~
F-
0.1
0.2
0.3
0.4
IF(AV). AVERAGE I'ORWARD CURRENT (AMP)
NUMBER OF CYCLESATSO Hz
116
18~
L /
.,/
/ / / ///
:; / / 0
./ -'de
Q=
TA=250 C
~ 3.0
l:'
~
= ~ON-;jCt;~~NGLJ
s - •"
.
I
1--1 CYCLE
;::
~
FIGURE 2 - POWER DISSIPATION
.8
0
0.5
MCR201 thru MCR206 (continued)
FIGURE 4- CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
FIGURE 3 - FORWARD VOLTAGE
5.0
3. a
/ L
II
1.0
~
150C _
r--
o
'"U
....
~
\
40
10
Ct'
I
100
o. 1
0.05
J J
0.03
II
""
I
150
300
400
450
500
-J.I-I
I
~~
~ t:"--......
" "-
"\
I
.= CONDUCTION ANGLE
f =60 Hz
~ ..........
'"
I II
"\
1\
I
1.0
1.5
2.0
0.=300'\
1.5
15
VF.1NSTANTANEOUS FORWARD VOLTAGE (VOLTS)
50
100
75
........
~
1'-.. ........
\
0.5
1800
350
A-
I
1/
600\ 900\!10 0\ '
100
110
:: 0.0 7
0.01
~
\"\. I"\.
= 30 0
150
b-,.
FIGURE 5 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
z
0.0 1
50
.......
"\
\
o
..........
""\ '"\ 1"\l'\."' ."-
30
I
;'!'
z
\
60
• =CONDUCTION ANGLE
f =60 Hz
IF(AV). AVERAGE FORWARD CURRENT (rnA)
I
I
0.2
'"
~
=>
• r--
~~
~ I- 50
I
~
o
~!;: 70
/J
o. 3
~
~=>
'"~
--./L..
---I . ' - r--
0
~ ~ ...........
\"' ~ ~ ['--.,
o~
/ /
~
=>
u
~
~e...
3:: I.LJ 80
::::I 0..
I
~ O. 5
~~
100
~G 90
O. 7
I-
110
w
1/ V
TJ = moc
1.0
~
~
V
110
l./:
V
~
"-
"\
I'---.
de
r--......
r--...
1"-.."'
0
0
0
60 " " 90 ",," 180 " " "
115
150
175
100
IF(AV). AVERAGE FORWARD CURRENT (rnA)
FIGURE 6 - THERMAL RESPONSE
....
as
~
1.0
o.7
O.5
'"
~~ 0.3
_V
wZ
:::~ 0.2
~~
8JCIt)
~r--
:ff3
:t ~ o. 1
=r(t)8JC
~ ~ 0.01
N",
~ ~ 0.05
:5
z
-E
0.03
0.02
~
0.01
0.0001
0.0003 0.0005
0.001
0.003 0.005
0.01
0.03
0.05
t. TIME (SECONDS)
117
0.1
0.3
0.5
1.0
3.0
5.0
10
MCR201 thru MCR206 (continued)
TYPICAL CHARACTERISTICS
FIGURE 8 - GATE TRIGGER CURRENT
FIGURE 7 - GATE TRIGGER VOLTAGE
0.8
~
~ 100
0.7 ""-.
~
0
~
w
'"
'" ""-.
s""
0
>
w
I-
0.5
""'"
r;
>
25
5.0
MCR201
20
MCR204
50
75
100
TJ. JUNCTION TEMPERATURE 10C)
10
Iw
05
~
'"
125
thru
'"'"
ii'
"- "-25
10
~
~
1""-.
I"i MCR205. MCR206
-
I-
=>
'-'
0.4
0.3
-50
50
20
!O
"r--.
O.S
::::i
""
o~
eO
'3
........
2
-50
-25
:J
""~
\.
~
=>
'-'
~
§
!i!
VRRM
1.0
""-:::::~
......
0.7
0.5
-
........
I
A-
-25
25
50
75
ISO
""t--
~II
BLOCKING
STATE
----I
II
I
V~
VORM
LOAD
Mcf~
100
175
ON.STATE
IH
A--~o------V~------,
............ J
MCj205.
125
~~=;f;===~==,~+V.
-V', .-=E'
MCR201
thru ---: MCR204 -
~
0.3
-50
t
~V
.............
0
~
I-
100
FIGURE 10 - CHARACTERISTICS AND SYMBOLS
TYPICAL V - I CHARACTERISTICS
2.0
75
50
25
TJ. JUNCTION TEMPERATURE 1°C)
FIGURE 9 - HOLDING CURRENT
N
E===
MC R201 thru MC R204-
3.0
§
MCR205. MCR20S
o1
-75
ISO
......
125
ISO
TJ.JUNCTION TEMPERATURE 10C)
118
MCR235 SERIES (SILICON)
BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS
BEAM-FIRED
INTEGRATED GATE
THYRISTORS
. designed for high power industrial and consumer applications
in power and speed controls such as weiders, furnaces, motors, space
heaters and other equipment where cOl>trol of high current is needed.
In addition, the entire series employs the unique Beam·Fired gate
design to allow high di/dt and to reduce turn-on losses.
235 AMPERES RMS
100 thru 1500 VOLTS
• Critical Rate-of·R ise of On·State Current di/dt = 1000 Ampllls (Max)"
• Critical Exponential Rate - dv/dt = 200 VIllS (Min)
• low Switching losses at High Frequency
• Integrated Gate Permits Soft·Fire Gate Control
·Wlth 0.05 IJF and 2().ohm snubber circuit
MAXIMUM RATINGS
Rating
Symbol
Repetitive Peak Qff.stete Voltaga
ITJ =+12SoCI MCR235
Value
Volts
VORM(1)
-10
-20
-30
....,
VRRM
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
Non-RepetitIVe Peak Reverse
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
-10
-20
-30
-40
-50
-70
-80
-90
-100
-110
-120
-130
-140
-150
Average FOIWard Current, TC .. 7SoC
IT(AVI
150
'TSM
1800
,2,
Clrclut FUSing Conllderatlons
IT J = -40 to +12S 0 CI
(1= 1Sms!
(t=83ms)
Amp
Amp
A2.
9500
13,000
15
W....
30
Watts
Peak Forward Gafa Current
IGFM
4.0
Amp
Peak Reverse Gate Voltage
VGRM
5.0
Volh
TJ
-40 to +125
Tot,
-40 to +150
"c
"c
1000
'b.
dl/dt
1000
Amp/J's
OperatIng JunctIon Temperature Range
Storage Temperature Range
MountIng Force
Cntlcal Rate-of-Rlse of On-State Current dUring
Tum-On Interval !Non-RepetttIlffJ Rattng)
rF
1'-..1
"
j-' : ; ) "I':';,..
E
\
~2'GATE
3. CATHOOE
,: . n
I
AL
SEATING PLANE
4. CATHOOE
K
PGFIAV}
Average Forward Gate Power
'1
TERMINAL 3
PGFM
Peak Forward Gate Power
r--;::. ~ -:::;-1
:;:'~.
~
fct4
_
.
.
~.~
~T
~M
{1aCO Conduction Anglel
Peak Surge Currant
lOne cycle, 60 Hz, T J = -40 to +12S 0 Cl
Wi!
"
200
300
400
500
600
720
840
960
to90
1200
1300
1450
1550
1650
1800
....,
R
~
r
Volts
VRSM
Block Voltage
ttS:S.Omsl MCR236
Unit
THERMAL CHARACTERISTICS
Characteriltic
Thermal Reststance, Junctton to CaM
119
T~P
I
0
NOTE,
N
1. OIM "K" APPLIES TO BOTH LEAOS
MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A 36.07 43.1B 1.420 1.700
B 18.54 29.59 0.730 1.165
C 12.45 15.24 0.490 0.600
0
4.72
4.85 0.186 0.191
0.25
2.54 0.010 0.100
E
0.35
0.48 0.014 0.019
F
2.54
0.100
H
J
6.22 19.30 0.245 0.760
K 202.69 206.12 7.980 8.115
7.62
L
- 0.300
M 200
500
'20·
50 0
N 15.49 28.58 0.610 1.125
Q
3.48
3.89 0.137 0.153
R
1.27
3.18 0.050 0.125
3.12
S
3.68 0.12l 0.145
T
4.72
7.92 0.186 0.312
U
1.27
1.78 0.050 0.070
V 2.92
3.56 0'.115 0.140
W
0.25
0.51 0.010 0.020
V
1.45
1.50' 0.057 0.059
0.64
1.65 0.025 0.065
Z
CASE 221).03
(1) Ratings apply for zero or negative gate voltage.
Devices shall not have a positive bias applied to
the gate concurrently with a negative potential
on the anode. Devices should not be tested with
a constant current source for forward or reverse
blocking capability such that the voltage applied
exceeds the rated block ing voltage_
MCR235 series (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Min
Typ
Max
Unit
IORM
-
-
15
mA
IRRM
-
-
15
mA
Forward "On" Voltage
(lTM ='220 A Peak. Pulse Width = 8.3 ms. Outy Cycle :51.0%)
VTM
-
-
.1.6
Volts
Gate Trigger Current
IGT
150
mA
Symbol ..
Peak ForWard Blocking Current
(Rated VORM. with 90te open. TJ
= 125°C)
Peak Reverse Blocking Current
(Rated VRRM. with gate open. TJ
(Anode Voltage
= 125°C)
= 6.0 V. RL = 3.0 Ohms)
Gate Trigger Voltage
(Anode Voltage = 6.0 V. R L
= 3.0 Ohms)
Holding Current
(Anode Voltage = 24 V. gate open. Initiating Current = 2.0 A)
.
Non·Triggering Gate Voltage
(Anode Voltage = Rated VORM. RL = 1000 Ohms. TJ = 1250 C)
Turn·On Time
(lTM = 50 A. Rated VORM)
Gate Pulse
{.10
0.1
VGT
-
-
3.0
Volts
.IH
-
20
500
mA
VGOM
0.15
-
ton
-
2.0
-
p.s
-
-
10
p.s
200
-
-
VII's
'! open circuit, 20 Ohm Source
IJ,S
(Max) rise time
Gate Pulse Width Necessary to Trigger
Gate Pulse
.volts
{500 V open circuit, 5.0 Ohm Source
0.1 }lS (Max) rise time
Critical Exponential Rate of Rise
dv/dt
(VORM = .Rated VORM. gate open. TJ = 125°C)
FIGURE 1 - SQUARE WAVE
CURRENT DERATING
(f = 50 to 400 Hz)
FIGURE 2 - SINE WAVE
u
o
w
j
'"
110
~
r--;~~~~~+-~r--+~~~
:
90r----+~~~~,,~~-+~~4_----~--_+----~
5
~
'" 70r-~-r--~r--\-f~~r-~~----~~-+--~
~
~
iT(AV). AVERAGE DN.sTATE FORWARD CURRENT (AMP)
iT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)
120
MCR235 series (continued)
FORWARD POWER DISSIPATION
(f = 50 to 400 Hz)
FIGURE 3 - SQUARE WAVE
FIGURE 4 - SINE WAVE
400'--"--'--TT--r-.-'--"r--'~-'
i
::i
i
~ 300
300f--+--f--+--P
;0
~
~
W
W
to
ffi
to
«
2ool---+--I---7'f--~4F:TS4-..."""'t---+----1
~
~
~
>
«
~
200 f--+--t-+----It'--------,t<----7'+--t---+-----I
~
~
~ 100f--+-~~~~~~t_-~
~ 100f--+~~~~4---t_-
~
~
:>
«
a:::
:>
«
a:::
50
100
150
200
50
IT(AV), AVERAGE ON·STATE FORWARD CURRENT (AMP)
100
FIGURE 5 - MAXIMUM ON-8TATE
CHARACTERISTICS
1000
V
1000
/'
800
600
/
V
400
..:
~ 300
S
/
I-
~
/
II
200
TJ -125°C
G
~
/
«
~
:;:
100
'"
80
r-
I
60
40
30
20
o
1.0
150
IT(AV), AVERAGE ON·STATE FORWARO CURRENT (AMP)
3.0
20
4.0
VTM, MAXIMUM FORWARD VOLTAGE (VOLTS)
121
5.0
200
MCR235 series (continued)
FIGURE 6 - TRIGGERING CHARACTERISTICS
10
~ 3.0~=R=+rn+m=+:h
...5 2.01r-~~~~++~~
iii
~
G
~ ::~I=t=~E~
'"
s@ U•• r----r-• ..-
VG. GATE VOLTAGE (VOLTS)
FIGURE 7 - THERMAL RESPONSE
0.14
-
0.12
.-
0.10
O.OB
v
0.06
.--
0.04
.;'
.-
.-
0.02
o
0.001
O.ODZ
0.DD5
0.01
0.02 0.0l
0.D5 0.D7 0.1
0.2
0.3
t. TIME
122
0.5 0.7 1.0
I~
2.0
3.0
5.0 7.0 10
20
30
50
70 100
MCR23SA
MCR23SB
MCR23SC
SERIES (SILICON)
SERIES
SERIES
Advance InforIDation.
BEAM-FIRED
INTEGRATED GATE
THYRISTORS
BEAM-FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS
235 AMPER ES RMS
... designed for high-current, high-frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•
•
•
•
•
Low SWitching Losses - @ 3.0 I'S with 30 I'S Pulse, Ip = 100 A
MCR235A Series = 3.0 Volts
MCR235B Series = 6.0 Volts
MCR235C Series = 6.0 Volts
Critical Rate-of-Rise of On·State Current di/dt = 1000 Amp/l's (Max)'
Critical Exponential Rate - dv/dt = 200 VII's (Min)
Integrated Gate Permits Soft-Fire Gate Control
Fast Turn·Off Time - 10 to 20 I's
·With 0.05 #F and 20 ohm snubber circuit,
MAXIMUM RATINGS
Repetitive Peak Off-State
Voltage (TJ = +125o CI
VORM,VRRM
Volts
Device Type
Non-Repetitive Peak
Reverse Blocking Voltage
VRSM
Volts
Tu rn-Off Time"" 10 IlS Max
MCR235A
-10
-20
-30
-40
-50
-60
Turn-Off Time = 15
MCR235B
,",S
TERMINAL 2
100
200
300
400
500
600
200
300
400
500
600
700
Max
-10
-20
-30
-40
-50
-60
-70
-80
JJO~~f
W
f.:+T
TERMINAL 3
100
200
300
400
500
600
700
800
200
300
400
500
600
700
800
900
100
200
300
400
500
200
300
400
500
600
700
800
900
1000
1100
Turn-Off Time - 20 IlS Max
MCR235C
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
MM
T~P
o.
~TI
600
700
800
900
1000
N
I DIM "K" APPLIES TO BOTH LEADS
MILLIMETERS
DIM MIN MAX
A 36.07 43.18
B 18.54 29.59
C 12.45 15.24
D
4.72
4.85
E
0.25
2.54
0.48
F
0.35
H
2.54
J
6.22 19.30
K 202.69 206.12
L
7.62
M 2D"
50·
N 15.49 28.58
Q
3.48 3.89
R
1.27 3.18
S
3.12
3.68
T
4.72
7.92
1.27
1.78
U
V
2.92
3.56
W
0.25
0.51
Y
1.45
1.50'
Z
0.64
1.65
INCHESMIN MAX
1.420 1.700
0.730 1.165
0.490 0.600
0.186 0.191
0.010 0.100
0.014 0.019
0.100
0.245 0.760
7.980 8.115
0.300
20·
50·
0.610 1.125
0.137 0.153
0.050 0.125
0.123 0.145
0.186 0.312
0.050 0.070
0.115 0.140
0.010 0.020
0.057 0.059
0.025 0.065
CASE 220·03
This is advance information on a new introduction and specifications are subject to change without notice.
123
MCR235A series, MCR235B series, MCR235C series (continued)
MAXIMUM RATINGS
Rating
Average Forward Current, T C = 60°C
(180° Conduction Angle)
Peak Surge Current
(One Cycle, 60 Hz, TJ = -40 to +125 0 C)
Circuit Fusing Considerations
Symbol
Value
Unit
IT(AV)
150
Amp
ITSM
1600
Amp
12t
10,500
A2s
(TJ = -40 to +125 0 C, t = lo5-8.3ms)
Peak Forward Gate Power
PGFM
15
.Watts
PGF(AV)
3.0
Watts
Peak Forward Gate Cuhe'nt
IGFM
4.0
Amp
Peak Reverse Gate Voltage
VGRM
5.0
Volts
TJ,
-40 to +125
°c
T stg
-40 to +150
°c
-
looO±200
Ibs
di/dt
200
1000
Amp/itS
Average Forward Gate Po",:,er
Operating.Junction Temperature Range
Storage Temperature Range
Mounting Force
C:ritical Rate-af-Rise of On-State Current - Repetitive
Non-Repetitive
THERMAL CHARACTERISTICS
Max
Characteristic
0.13
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Typ
Max
Unit
Peak Forward Blocking Current
(Rated VORM, with gate o"en, TJ = 125°C)
Symbol
IORM
-
-
15
mA
Peak ,Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 125°C)
IRRM
-
-
15
mA
Forward "On" Voltage
(iTM=220A Peak, PulseWidth=8.3 ms, Outy Cycle=~l.O%, TJ =25 0 C)
VTM
-
-
1.85
Volts
Gate Trigger Current
(Anode Voltage ='6.0 V, RL = 3.0 Ohms)
IGT
-
-
150
mA
Gate Trigger Voltage
(Anode Voltage =,6.0 V, RL = 3.0 Ohms)
VGT
-
-
3.0
Volts
IH
-
50
500
mA
VGOM
0.15
-
-
-
Characteristic
Holding CUrrent
(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 AJ
Non· Triggering Gate Voltage
(Anode Voltage = RatedVORM, RL = 1-000 Ohms, TJ = 125°C)
Circuit Commutated Turn-Off Time
(VR = 50 V(Min); Rated VORM, TJ = +125 0 C,
diR/dt = 20 A/I's; Repetition Rate = 1.0 pps;
ITM = 1,50 A dv/dt = 20 VII'S)
Transient Turn·On Voltage
(VORM = 100 V, ITM = 200 A, PW = B.O I'S,
Gate Oriv,e = 600 mA, rise = O.ll's, test point = 4.0 I's)
Min
Volts
tq
MCR235A
MCR235B
MCR235C
MCR235A
MCR235B
MCR235C
Critical Exponential R'ate of Rise'
(Rated VORM, gate open, TJ = 125°C)
VTO
dv/dt
124
ItS
-
-
10
15
20
-
5.0
8,0
8.0
Volts
-
200
-
-
VII'S
MCR320 SERIES
(SILICON)
G
A
O>----1.~~--O
THYRISTORS
K
7 AMPERES RMS
5()'600VOlTS
SILICON CONTROLLED RECTIFIERS
· .. designed primarily for industrial applications. Ideally suited for
capacitor-discharge ignition, systems, power switching and power control.
•
Glass Passivated for High Reliability
•
low Profile Hermetic Package for Tight
Printed Circuit Board Applications
•
High di/dt Capability
MAXIMUM RATINGS
Symbol
Rating
Peak Reverse Blocking Voltage
Value
MCR320 -1
-2
-3
Unit
Volts
VRRM
25
50
100
200
300
--4
-5
~
400
-7
--8
500
600
PIN I. CATHODE
2 GATE
3. ANODE
N
Forward Current RMS ISee Figures 4 & 5)
IAII Conduction Angles)
'T(RMS)
7.0
Amps
Peak Forward Surge Current, T A - 2SoC
(112 cycle, Sine Wave, 60 Hz)
Circuit Fusing Considerations, TA = 25u C
'TSM
80
Amps
I"t
0.15
A 2s
PGM
PGIAV)
IGM
10
0.5
10
Watts
VGM
TJ
Tsta
4.0
-4010+100
-40 to +150
Volts
It· 1.0 to 8.3 ms)
Forward Peak Gate Power. TA
= 2SoC
Forward Average Gate Power, TA = 25°C
Forward Peak Gate Current, T A
(300 I'S,
= 2SoC
Watt
Amps
120 PPS)
Reverse Peak- Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range
°c
°c
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance, Junction to Case
RSJC
Thermal Resistance. J,unction to Ambient
ASJA
5.0
150
°CIW
°CIW
Charact.. istic
MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
F
0.406 0.483
G 4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
45 0 NOM'
M
P
1.27
11
900 NOM
R .2.54
DIM
A
B
C
D
E
All JEOEC dimensiDnsand notesapply.
CASE 79-02
TO-39
125
MCR320 series (continued)
ELECTRICAL CHARACTERISTICS
Max
Min
Svmbol
Characteristic
Peak Forward Blocking Voltage (1)
Unit
Volts
VORM
MCR320-1
MCR320-2
MCR320-3
MCR320-4
MCR320-S
MCR320--6
MCR320-7
MCR320-8
25
50
100
200
300
400
,500
600
-
-
Peak Forward Blocking Current
(Rated VORM @TC = l00DC)
IORM
-
1.0
mA
Peak Reverse Blocking Current
IRRM
-
1.0
mA
VTM
-
2.6
Volts
IGT
-
20
mA
VGT
-
I.S
Volts
VGO
0.1
-
Volts
IH
-
20
'rnA
(Rated VRRM@TC = l00DC)
Forward "On" Voltage (2)
(lTM = 30 A peak @TC = 2So C)
Gate Trigger Current (Continuous de) (3)
(Anode Voltage = 12 Vdc. RL = 30 Ohms, TC
= 2S o C)
Gate Trigger Voltage (Continuous de)
(Anode Voltage = 12 Vdc, RL = 30 Ohms, TC
= 2S oC)
Gate Non-Trigger Voltaga
(Anode Voltage = Rated VORM, RL
= 30 Ohms, TC = 10oDC)
Holding Current
(Gate Open, TC
= 2S oC)
(1) Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the
anode.
When checking forward or reverse blocking capability, thyristor devices should not be tested with a constant current source in a
manner that the voltage applied exceeds the rated blocking voltage.
(2) Forward current applied for 1.0 ms maximum duration, duty cycle ";;1.0%.
FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT
300
c
.sI~
\
"'
::0
w
30
.
~
~
30
II IIII
1
OFF-STATE VOLTAGE = 12 V
...."'
100
70
50
'-'
III
FIGURE 2 - TYPICAL GATE TRIGGER CURRENT
........
r-......
........
::0
........
\
ffi
I-
1,·0
1.0
2.0
5.0
PULSE WIDTH
10
(m~
20
........
'"'
~
......
~ 0.5
.......
!::
100DC
0.5
r-.... i'-
I-
25JC
5.0
10
'"'" 7.0
TJ= ...\l)OC
......... r--.
10
3.0
0.2
20
~
OIFF-sfATE1VOLtAGEI'12 IV
50
100
200
0.3
-40
-20
20
40
so
TJ,JUNCTION TEMPERATURE (OCI
80
r---.
100
MCR320 series
(continued)
FIGURE 4 - AVERAGE CURRENT DERATING
(REFERENCE. CASE TEMPERATURE)
FIGURE 3 - MAXIMUM ON·STATE POWER DISSIPATION
100
~
70
~
6.0
.
>-
'"~
~~
~ ~ r-....
'"w
~ ~ :---......
'":::> 80
~ ............
w
5.0
"- ~"
~
4.0
>
30
iii>-
;;;
1.0
~
::i
w
,,~
0:=
1.0
<>~
70
1.5
10
2.5
5.0
>~
.,;
'".<1
>-
o
0.5
Or-.
10
90
~
w
80
'":::>
70
~
60
iii>-
1.0
0
of-1
0
~
:Ii
;5
40
30
20
o. 9
'"~
0.4
ITlAV), AVERAGE ON·STATE CURRENT (AMP)
~
>
o.8
""'- r--..
o. 7
~
~
0.1
'" "
-
~"fANGLE
0.2
0.3
0.4
0.5
"
0.6
0.7
OFF·STATE VOLTAGE = 12 V
I'-:-.... t-.....
I'
.........
w
o. 6
........
r-......
0
I'--
!'-..
!""';;;;
f-
7. 0
>'"
O. 5
-20
5.0
"~CONDUCTION
\ ''-': ~'\
o
0
!;(
-40
4.5
FIGURE 8 - TYPICAL HOLDING CURRENT
t-.....
>~
4.0
0
'"w
'"~
3.5
~ ~ k--12O•
r\ ~ ~ l-- k 18O•
90· , /
\ ~~
' - de
0
1'....
""" ........
3.0
ITIAV), AVERAGE ON·STATE CURRENT lAMP)
OFF·STATE VOLTAGE =12 V
......
~.
6~.-
40
20
w
2.5
R8JA = 150·CIW
0:::300\
>-
.,;
Or---..
2.0
'I ~ ~
FIGURE 7 - TYPICAL GATE TRIGGER VOLTAGE
~
1.5
-~
0
30
1.
180·
~
as 50
50
0
"'-
~
FIGURE 6 - AVERAGE CURRENT DERATING (REFERENCE.
AMBIENT TEMPERATURE, TYPICAL P.C. BOARD MOUNTING)
:::>
iii>-
120·
:-.......
IFIAV), AVERAGE FORWARD CURRENT (AMP)
100
'"~
""
~
CONDUCTION ANGLE
FIGURE 5 - AVERAGE CURRENT DERATING (REFERENCE:
AMBIENT TEMPERATURE 4 in. sq. P,C, BOARD)
'"
"" ......
~
90·
IFIAV), AVERAGE FORWARD CURRENT lAMP)
!;(
"~CONDUCTIDN
60·
50
0
0
w
~
"- "-'\
300
~ 60
0::
~
~"fANGLE
0
~
.'"
.
.
~
90
20
40
60
80
5. 0
100
-40
TJ, JUNCTION TEMPERATURE (·C)
-20
20
40
60
TJ, JUNCTION TEMPERATURE (.C)
127
80
100
MCR320 series (continued)
FIGURE 9 - MAXIMUM ON·STATE CHARACTERISTICS
FIGURE 10 - MAXIMUM NON·REPETITIVE SURGE CURRENT
100
100
0
v
./ V
0
b
;;:
0
~_
7. 0
~=>
50
TJ' 100°C
If
...
,/
~
V
'"
< 20
~
250C
"
~
i"'-
TJ'100oC
t· 60 Hz
iil
f-
'I'
~u~e is ~receded and followed by
rated current and voltage.
I I I 1'1111
2.0
3.0
5.0 7.0 10
20
NUMBER OF CYCLES
30
50
70 100
/I
~ 3. 0
III
I
1/
2. 0
o
=>
"'
5l
~ 1. 0
z
~ O.7
!!O
.':f. o. 5
FIGURE 11 - CHARACTERISTICS AND SYMBOLS
t-----+
ON.STATE
IH
~+
TYPICAL I·V CHARACTERISTICS
VRRM
l-
VORM
A---Q~---V~----,
I
I
o. 2
BLOCKING
STATE
-V~~,::::::~~::::::::~:~+~
I
o. 3
o. 1
o
..........
~ 30
h _
r-......
I
w
~
r-....
w
10
1.0
~ 5.0
:-lCYCLE
'-'
~
z
--
~
j V
0
~
70
.......:::: V
0
I-
Ii
LOAD
1/,
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
vF,lNSTANTANEOUS ON·STATE VOLTAGE IVOLTS)
FIGURE 12 - THERMAL RESPONSE
1. 0
O. 7
O.5
~c
<[ w
O. 3
~ ~
"',.
O. 2
~ ~
O. 1
,.!::!
1-",
1-0
--
V
41JC(t) • 'It} 0 RUC
~ ~ 0.0 7
~ ~
~~
0.05
b.03
0.02 0.0 1
0.1
i
0.2
0.5
1.0
2.0
5.0
10
20
t,TIMElms)
128
50
100
200
. 500
1.0 k
2.0 k
5.0 k
MCR380 SERIES (SILICON)
BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS
BEAM-FIRED
INTEGRATED GATE
THYRISTORS
· .. designed fer high pewer industrial and censumer applicatiens in
pewer and speed centrels such as welders, furnaces, moters, space
heaters and ether equipment where centrel 'If high current is needed.
In additien, the entire series empleys the unique Beam-Fired gate
design t<;l allew high di/dt and to reduce turn-en lesses.
• Critical Rate-ef-Rise 'If On-State Current di/dt ~ 1000 Amp/p.s (Max)'
380 AMPERES RMS
100 thru 1500 VOLTS
• Critical Expenential Rate - dv/dt ~ 200 V/p.s (Min)
• Lew Switching Lesses
• Integrated Gate Permits Seft-Fire Gate Centrel
·With 0.05 IJF and 20·ohm snubber circuit.
MAXIMUM RATINGS
Rating
Svmbol
Repetitive Peak Oft-State Voltage
ITJ .. +12SoC) MCR380
VRRM
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
Non-Repetitive Peak Reverse
Block Voltage
(t ~5.0 msl MCR380
Value
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
-70
-80
-90
-100
-110
-120
-130
-140
-150
Average Forward Current IT C = 7T'CI
t!
UoJ
CirCUit
ITJ = -40 to +12SoCI
Peak FOfWard Gate Power
Average Forward Gate Power
ITSM
3500
Amp
Peak Forward Gate Current
Pellk Reverse Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range
15
3.0
Watts
Watt
IGFM
4.0
Amp
VGRM
5.0
Volts
TJ
-40 to +125
THO
-40 to +150
°c
°c
Mounting Force
CritICal ASle-of-Rise of On-Stete Current dUring
Turn-On Interval INon-Repetltive Rating)
A2.
32,000
50,000
PGFM
dl/dt
I
"l~4.
-( .~: g~i~DDE
SEATING PLANE
TER~~ S~"
I,
MILLIMETERS
Amp
PGFIAVI
E
STYLE l'
PIN.!. ANODE
CATHODE
0M~
TYP
: /
NOTE
)(N
I DIM "K" APPLIES TO BOTH LEADS
250
(t= 1.5ms)
(t= 8.3ms)
'
";;r='
J
tT(AV)
12,
Fusing ConSiderations
IL
f' "
fi¥3 ft.;:,
,):~n
(1800 Conduction Anglel
Peel< $urgeCurrent
(One cycle, 60 Hz, T J = -40 to +12S o CI
C
TERMINAL 1
200
300
400
500
600
720
840
960
1060
1200
1300
1450
1550
1650
1800
-so
lIt r~ ~ c4'
(I
Volts
VRSM
-10
-20
-30
-40
-50
Unit
Volts
VDRM(1)
-10
-20
1000
lb.
1000
Amp/j.ls
THERMAL CHARACTERISTICS
Char-=teristic
Thermal Resistance, Junction to Case
129
INCHES
DIM MIN MAX
MIN
A 36.07 43.18 1.420
B 18.54 29.59 0.730
C 12.45 15.24 0.490
D
4.72
4.85 0.186
E
0.25
2.54 0.010
F
0.35
0.48 0.014
H
1.54
0.100
J
6.22 19.30 0.245
K 202.69 206.12 7.980
L
7.62
M 200
50 0
20 0
N 15.49 28.58 0.610
n 3.48 3.89 0.137
R
1.27
3.18 0.050
S
3.12
3.68 0.123
T
4.72
7.92 0.186
U
1.27
1.78 0.050
V
2.92
3.56 0.115
W 0.25
0.51 0.010
Y
1.45
1.50 0.057
Z
0.64
1.65 0:025
CASE 220·03
MAX
1.700
1.165
0.600
0.191
0.100
0.019
0.760
8.115
0.300
50 0
1.125
0.153
0.125
0.145
0.312
0.070
0.140
0.020
0.059
0.065
(1) Ratings apply for zero or negative gate voltage_
Devices shall not have a pOSitive bias applied to
the gate concurrently with a negative potential
on the anode_ Devices should not be tested with
a constant current source for forward or reverse
block ing capabi lity such that the va Itage applied
exceeds the rated blocking voltage_
MCR380 series (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Peak Forward B)ocking. Current
(Rated VORM, whh gate open, T J = 1250 C)
IORM
-
-
15
mA
Peak Reverse Blocking' Current
(Rated VRRM, with gate open, TJ = 1250 C)
IRRM
-
-
20
mA
Forward "On:' Voltage
(ITM = 1000 A Peak, Pulse Width = B.3 ms,Outy Cycles 1.0%)
VTM
-
-
.2.4
Volts
Gate Trigger Current
IGT
-
-
150
mA
VGT
-
-
3.0
Volts
IH
-
20
500
mA
VGOM
0.15
-
ton
-
2.0
-
!'s
-
-
10
!"
200
-
-
Characteristic
(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Gate Trigger Voltage
(Anode Voltage =.6,0 V,.RL = 3.0 Ohms)
Holding Current
(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 A)
Non·Triggering Gate Voltage
(Anode Voltage = Rated VORM, RL = 1000 Ohms, T J = 1250 C)
Turn-On Time
Volts
(ITM = 50 A, Rated VORM)
Gate Pulse
{10 V ?pen circuit, 20 Ohm Source
. 0.1 !,s (Max) rise time
Gate Pulse Width Necessary to Trigger
{5.0 V open circuit, 5.0 Ohm Source
Gate Pulse
0.1 !,S (Max) rise time
dv/dt
Critical Exponential Rate of Rise
V/!'s
(Rated VORM, gate open, T J = 125°C)
CURRENT DERATING
(f
= 50 to 400 Hz)
FIGURE 2 - SINE WAVE
FIGURE 1 - SQUARE WAVE
'"
'"
'"
~
~i= 11O~--".:-?oo.:-""<~=----+--~-+---1
~
a I-
o
~
110~~~~~~~~~---+~--
ffi
~
1:i
~ 90~---+~~~~~~~~----~.---~--~----~
'<.l"
I-
1800
,~ 90~---+~\-~~--~~~----~----~---+----~
;:3
5
'"::>
'"~
00
CONDUCTION ANGLE
'"
'~"
'~"
::>
70~--~---\t-~~~\-t---~~--+---~~--4
0'= 30 0
500~---L--~10~O~--~~~~--~--~~~~--~400
IT(AV), AVERAGE ON·STATE FORWARD CURRENT lAMP)
70r---~----f\---f\---~\-~'---+----+----4
ITIAV), AVERAGE ON·STATE FORWARD CURRENT (AMP)
130
MCR380 series (continued)
FORWARD POWER DISSIPATION
(f
= 50 to 400 Hz)
FIGURE 3 - saUAR!' WAVE
i
~OOOr----r----r----r----T7---r
80°1--__---I--____1---__---I--__+--I--+-+-_____
Ci
Ci
ffi
FIGURE 4 - SINE WAVE
3:
~
--t 3600 I-
rm
'~"" 2001---+~'---7f7'~£f------I---
FZ1
-1,,1-
"'"
r---"""~~~~-+----+-----+ CONOUCTION ANG LE
:>
~
~ D~~~__~~__~__~~__~__~~__~__~
o
~
m
~
200
100
IT(AV). AVERAGE ON-STATE FORWARO CURRENT (AMP)
IT(AV). AVERAGE ON-STATE FORWARO CURRENT (AMPI
FIGURE 5 - MAXIMUM ON-STATE VOLTAGE
3000
V
200 0
V
V
1000
80 0
600
/
TJ: 125 0 C
/
0
0
I
I
0
I
/
100
80
60
40
30
o
I
1.0
2_0
3.0
4.0
VTM. MAXIMUM FORWARO VOLTAGE (VOLTS)
131
5.0
400
MCR380 series (continued)
FIGURE 6 - TRIGGERING CHARACTERISTICS
!EU.• ,-r-.tT-
1.0
VG. GATE VOLTAGE (VOLTS)
FIGURE 7 - THERMAL RESPONSE
0.14
0.12
~
'" _
~
0.10
!i!~
::
~
zw
wu
0.08
- -
~ ~ 0.06
"'w
~~ 0.04
§
-I--
0.02
o
0.001
0.002
0.005
0.01
-
0.02
~
-
I-
i-"'"
0.05
0.1
0.2
0.3
t. TIME I,)
132
0.5 0.7 1.0
2.0
3.0
5.0 7.0
10
20
30
50
70 100
MCR380B SERIES (SILICON)
MCR380C SERIES
MCR380D SERIES
Advance Infor:rn.ation
BEAM·FIRED
INTEGRATED GATE
THYRISTORS
BEAM·FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS
... designed for high·current. high·frequency applications in inverters,
ch.oppers, cycloconverters, induction heating and high·frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•
•
•
•
•
380 AMPERES RMS
Low Switching Losses - @ 3.0 ps with 30 ps Pulse, Ip = 150 A
MCR380B Series = 3.0 Volts
MCR380C Series = 6.0 Volts
MCR380D Series = 6.0 Volts
Critical Rate·of·R ise of On·State Current di/dt = 1000 Amp/ps (Max)'
Critical Exponential Rate - dv/dt = 200 VIps (Min)
Integrated Gate Permits Soft·Fire Gate Control
Fast Turn·Off Time - 15 to 30 ps
·With 0.05 J,LF and 20 ohm snubber circuit.
MAXIMUM RATINGS
Device Type
Rapetitive Peak Off·Stata
Voltaga (TJ = +125o C)
VORM, VRRM
Volts
Non-Repetitive Peak
Reverse Blocking Voltage
VRSM
Volts
100
200
300
400
500
600
700
800
200
300
400
500
600
700
800
900
100
200
200
300
400
500
600
700
800
900
1000
1100
Turn·Off Time = 15 ,",5 Max
MCR380B
-10
-20
-30
-40
-50
-60
-70
-80
Turn-Off Time = 20 IJS Max
MCR380C
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
300
400
500
600
700
800
900
1000
Turn-Off Time· 30 lIS Max
MCR380D
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
100
200
300
400
500
600
700
800
900
1000
1100
1200
200
300
400
500
600
700
800
900
1000
1100
1200
1300
MILLIMETERS
DIM MIN MAX
A 36.07 43.18
8 18.54 29.59
C 12.45 15.24
4.72
4.85
0
0.25
2.54
E
0.35
0.48
F
H
2.54
J
6.22 19.30
K 202.69 206.12
L
7.62
M 200
500
N 15.49 28.58
Q
3.48
3.89
R
1.27
3.18
S
3.12
3.68
T
4.72
7.92
U
1.27
1.78
V
2.92
3.56
W
0.25
0.51
Y 1.45
1.50'
Z
0.64
1.65
INCHES
MIN MAX
1.420 1.700
0.730 1.165
0.490 0.600
0.186 0.191
0.010 0.100
0.014 0.019
0.100
0.245 0.760
7.980 8.115
0.300
200
50 0
0.610 1.125
0.137 0.153
0.050 0.125
0.123 0.145
0.186 0.312
0.050 0.070
0.115 0:140
0.010 0.020
0.057 0.059
0.025 0.065
CASE 220·03
This is advance information on a new introduction and specifications are subject to change without notice.
133
MCR380B series, MCR380C series, MCR380D series (continued)
MAXIMUM RATINGS
Symbol
Value
Unit
ITIAV)
250
Amp
Peak Surga Current
lOne cycle, 60 Hz, T J = -40 to +125 0 C)
ITSM
3500
Amp
Circu it Fusing Considerations
ITJ = -40 to +125 0 C, t = 1.5 - 8.3 ms)
12 t
50,000
A2s
Rating
Average Forward Current, T C - 60°C
1180° Conduction Angle)
Peak Gate Power
Average Gate Power
Peak Forward Gate Current
Peak Reverse Gate yoltage .,...
Operating Junction Temperature Range
Storage Temperature Range
Mounting Force
Critical Rate-ot-Rise of On-State Current - Repetitive
Non-Repetitive
PGFM
15
Watts
PGFIAV)
3.0
Watts
IGFM
4.0
Amp
VGRM
5.0
Volts
TJ
-40 to +125
°c
T stg
-40 to +150
°c
-
l000±200
lb.
di/dt
200
1000
Amp/j!s
THERMAL CHARACTERISTICS
Max
Characteristic
Thermal
R~istance.
Junction to Case
0.095
ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Peak Forward Blocking Current
I Rated VORM, with gate open, T J = 125Dc!
IORM
-
-
15
mA
Peak Reverse Blocking Current
IRated VRRM, with gate open, TJ = 1250 C)
IRRM
-
-
15
mA
Forward "On" Voltaga
IITM = 1000 A Peak, Outy. Cycle S 0.01", TJ = 25°C!
VTM
2.65
Volts
Gate T r ' - Current
IAnode Voltaga = 6.0 V, RL = 3.0 Ohms!
IGT
150
mA
Gate Trigger Voltage
IAnode Voltage = 6.0 V, RL = 3.0 Ohms)
VGT
3.0
Volts
50
500
mA
0.15
-
-
Volts
-
-
15
20
30
-
-
Volts
-
-
5.0
8.0
8.0
200
-
-
V/j!s
Characteristic
Holding Current
IAnode Voltaga = 24 V, gate open, Initiating Current ='2.0 A)
IH
Non·Triggering Gate Voltaga
IAnode Voltaga = Rated VORM, RL = 1000 ohms, TJ = 125°C)
Circuit Commutated Turn·Off Time
IVR = 50 V IMin); Rated VORM, TJ ~'~1250C;
diR/dt = 20 A/jJs, Repetition Rate = 1.0 pps,
ITM = 250 A; dv/dt = 20 V/j!s)
Transient Turn-On Voltage
= 100 V, ITM = 300 A, PW = 8.0 j!S,
Gate Drive = 600 mAo rise = 0.1 ,",5, test point = 4.0 j.ls)
IVORM
VGOM
tq
MCR3BOB
MCR380C
MCR3800
MCR380B
MCR380C
MCR3800
Critical Exponential R ate of R iSB
IRated VORM, Gate open, TJ = 125°C)
VTO
dv/dt
134
-
JJS
-
MCR406-1 (SILICON)
thru
MCR406-4
PLASTIC 81 LICON
CONTROLLED RECTIFIERS
PLASTIC THYRISTORS
· .. Annular PNPN devices designed for high volume consumer
applications, such as temperature, light, and speed control, process
and remote control, and warning systems where reliability of opera·
tion is important. Sensitive gate trigger permits operation as a switch
directly from low level sensors.
4.0 AMPERES RMS
30 thru 200 VOLTS
• Annular Passivated Surface for Reliability and Uniformity
• True Power Rated - 4.0 Amp@Tc
=
97 0 C
= 200!lA @ T A = 25 0 C
•
Low Level Gate Characteristics - IGT
•
Higher Surge Current Rating - ITSM = 30 Amp
•
Flat, Rugged, Thermopadtt Construction - for Low Thermal
Resistance, High Heat Dissipation, and Durability
MAXIMUM RATINGS
Rating
Symbol
Peak Reverse Blocking Voltage
(Note 1)
MCR40.6-1
MCR406-2
MCR40.6-3
MCR40.6-4
Forward Current RMS
(All Conduction Angles)
Peak Forward Surge Current
(112 cycle, 60. Hz, T J = -40. to +11 o.°C)
Circuit Fusing Considerations
(T J
Unit
Volts
VRRM
30
60.
10.0.
20.0.
4.0.
Amp
ITSM
30.
12 t
A 2s
3.6
PGFM
0..5
Watt
PGF(AV)
0.1
Watt
Peak Gate Current - Forward
IGFM
0..2
Amp
Peak Gate Voltage - Reverse
VGRM
6.0.
Volts
TJ
-40. to +110.
°c
T stg
-40. to +150.
Average Gate Power - Forward
Operating Junction Temperature
Range
Storage Temperature Range
Mounting Torque (6-32 screw) (Note 2)
STYLE 1:
PIN 1. CATHODE
2. ANOo.E
3. GATE
Amp
IT(RMS)
=-40. to 11 o.°C, t =1.0. to 8.3 ms)
Peak Gate Power - Forward
Value
-
8
°c
in. lb.
MILLIMETERS
MIN
MAX
A 16.13 16.38
B
12.57 12.83
C
3.18 3.43
D
1.09 1.24
F
3.51 3.76
4.228SC
G
H
2.67 2.92
J
0.813 0.864
15.11 16.38
K
M
90 TYP
n
4.70 4.95
R
1.91 2.16
U
6.22 6.48
DIM
INCHES
MIN MAX
0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255
CASE 90.·0.5
NOTE:
1. LEADS WITHIN .005" RAD OF TRUE
POSITION (TP) AT MMC
135
MCR406-1 thru MCR406-4 (continued)
ELECTRICAL CHARACTI;RISTICS (TC = 25°C unless otherwise noted, RGK = 1000 Ohms)
Characteristic
Min
Symbol
Peak Forward Blocking Voltage
(TJ = 110o C) Note 1
Typ
Max
Unit
Volts
VORM
MCR406-1
MCR406-2
MCR406-3
MCR406-4
Peak Forward Blocking Current
(Rated VORM @TJ= IlOo C)
IORM
Peak Reverse Blocking CUrrent
(Rated VRRM @TJ = IlOo C)
IRRM
Forward "On" Voltage
IITM = 4.0 A peak)
VTM
Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vde, R L = 100 Ohms)
IGT
Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vde, R L = 100 Ohms)
VGT
(Anode Voltage = Rated VORM, RL = 100 Ohms, T J = 110°C)
-
-
-
100
-
-
100
-
-
2.2
-
-
200
-
-
0.8
0.2
-
-
3.0
jlA
jlA
Volts
jlA
Volts
VGO
Holding Current
(Anode Voltage = 7.0 Vde)
30
60
100
200
mA
IH
Turn-On Time
ton
Turn-Off Time
toff
Forward Voltage Application Rate
Circuit Dependent. Consult Manufacturer.
V/jls
dvldt
IT J = 110o C)
-
10
-
Thermal Resistance, Junction to Case
9JC
-
-
2.0
°CIW
Thermal Resistance. Junction to Ambient
9JA
-
-
50
°C/W
NOTES:
1.
VORM and VRRM for all types can be applied on a continuous
de basis without Incurring damage. Ratings apply for zero or
negative gate voltage but positive gate voltage shall not be applied
concurrently with a negative potential on the anode. When checking forward or reverse blocking capability. thyristor devices should
not be tested with a constant current source in a manner that
the voltage applied exceeds the rated blocking voltage.
FIGURE 1 - CASE TEMPERATURE versus CURRENT
w
'"'"
~
'"~
....'ww"'
70
j
'"x
'"'
"
....' < I'-..
~ 10
00(
..........
OEVICE MOUNTEO OJ
HEAT SINK
>
0.0 2
I
PRIOR TO SURGE
SCR OPERATED AT
RATEO LOAD CONDITIONS
TJ 0 -IOoC TO +110.C
PULSE REPETITION
FREDUENCY 0 60 Hz -
20
10
30
40 50 60
NUMBER OF CYCLES
VF.INSTANTANEOUS FORWARD "ON" VOLTAGE IVOLTS)
FIGURE 6 - THERMAL RESPONSE
1.0
i---
~
...... .... i'"
VI
0.1
10
1.0
t.TIMElms)
137
100
1000
10.000
MCR406-1 thru MCR406-4 (continued)
FIGURE 7 - TVPICAL GATE TRIGGER CURRENT
FIGURE 8 - TYPICAL GATE TRIGGER VOLTAGE'
10
30
E 10
..
VAKI=7.0~~
"-
'":::>
'"
<..>
W
co
~
RGK=I.Qk
:li
co
...........
co 1.0
0:
'"
co
co
0:
..
..
IW
W
~
1.0
I-
~
.......
co
ffi
r---
W
I-
N
VAK-7.0V _
RGK=I.0k
0
>
DOES NOT INCLUDE'CURRENT:
THROUGH GATE·CATHOOE
_
(RGK) RESISTOR
co
ffi
.............
O. 1
N
::;
&!!
&!!
o
z
0
z
0.0 1
-75
-so
0.1
--a
100
50
-75
125
-50
-25
-25
FIGURE 9 - TYPICAL HOLDING CURRENT
10
12
'":::><..>'"
-......
co
z
o
VAK = 7.0 V
RGK = l0001l
.......
'W
§
-
......
...........
1.0
:z:
ffi
N
..
'""
::;
r-
o
z
0.1
-75
50
75
TJ, JUNCTION TEMPERATURE (DC)
TJ, JUNCTION TEMPERATURE (DC)
-so
25
50
100
125
TJ,JUNCTION TEMPERATURE (DC)
SILEeTaD THYftISTOfI-Tflf4GEfi APf'LICATION N01'U
AN-240' - SCR Power Control Fundamentals
AN-29GB - Mounting Procedure for, and Thermal Aspects of,
Thermopedt t Plastic Power Devices
AN-295 - Suppressing RFI in Thyristor Circuits
AN-453 - Zero Point Switching Techniques.
To obtain copias of these n.otas list the AN numbeds)
on your company letterhead and send your requilst to:
Technical I nformation Center
Motorola Semiconductor Products, Inc.
P.O. Box 20924
Phoenix, Arizona 85036
138
100
125
MCR407-1 (SILICON)
thru
MCR407-4
AO
~G
OK
THYRISTORS
4.0 AMPERES RMS
30 thru 200 VO LTS
PLASTIC SILICON CONTROLLED RECTIFIERS
... Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliability of oper·
ation is important.
• Annular Passivated Surface for Reliability and Uniformity
• Power Rated at Economical Prices
• Practical Level Triggering and Holding Characteristics
• Flat, Rugged, Thermopad Construction··for Low Thermal Re·
sistance, High Heat Dissipation and Durability
MAXIMUM RATINGS
Rating
Repetitive Peak Reverse Blocking Voltage
Symbol
Value
INole 11 MCR407·1
·2
:3
·4
Unit
Volts
VRRM
RMS On-State Current
(All Conduction Angles)
ITIRMS)
30
60
100
200
4.0
Average On-State Current
ITIAV)
2.55
Amp
ITSM
20
Amp
121
1.6
A2,
PGFM
PGFIAV)
IGFM
VGRM
TJ
0.5
0.1
0.2
6.0
-4010 +110
-4010 +150
8.0
ITC = 890 C)
Peak Non-Repetitive Surge Current
Amp
(One cycle, 60 Hz.
STYLE 1:
PIN 1. CATHODE
2.ANODE
3. GATE
TJ= -4010 +1100C)
Circuit Fusing Considerations
IT J = -40 10 +1100C)
1= 1.010 8.3 m,)
Peak Gate Power
Average Gate Power
Peak Gate Current
Peak Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range
Mounting Torque (6-32 Screw)
T stg
-
INole 2)
Watt
Watt
Amp
DIM
Volts
B
C
uc
°c
in. lb.
A
D
F
G
H
J
THERMAL CHARACTERISTICS
K
M
Characteristic
Q
Thermal Resistance. Junction to Case
R
U
Thermal Resistance. Junction to Ambient
MILLIMETERS
MIN
MAX
INCHES
MIN MAX
16.13 16.38 0.635 0.645
12.57 12.83 0.495 0.505
3.18 3.43 0.125 0.135
1.09 1.24 0.043 0.049
3.51 3.76 0.138 0.148
4.22 sse
0.166 SSC
2.67 2.92 0.105 0.115
0.813 0.864 0.032 0.034
15.11 16.38 0.595 0.645
90 TYP
90 TYP
4.70 4.95 0.185 0.195
1.91 2.16 0.075 0.085
6.22 6.48 0.245 0.255
CASE 90·05
NOTE:
1. LEADS WITHIN .005" RAD OF TRUE
POSITION ITP) AT MMC
139
MCR407·1 thru MCR407·4 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted, RGK = 1000 ohms)
Typ
Min
Symbol
Characteristic
Peak Forward Blocking Voltage
(TJ - 110°C) Note 1
Unit
Max
Volts
VORM
30
60
100
200
-
-
-
-
-
-
IORM
-
-
100
I'A
IRRM
-
-
100
I'A
Peak On-State Voltage
(lTM= 4.0A)
VTM
-
-
2.6
Volts
Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vdc, R L = 100 ohms)
IGT
-
-
500
I'A
Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vdc, R L = 100 ohms)
(Anode Voltage = Rated VORM, RL = 100 ohms, T J = 1100 C)
VGT
-
1.0
5.0
mA
-
VII's
MCR407-1
-2
-3
-4
Peak Forvvard Blocking Current
(Rated VORM, TJ = lOOoC)
Peak Reverse Blocking Current
(Rated VRRM, T J = 11 oDC)
Volts
IH
-
-
dvldt
-
10
0.2
Holding Current
-
(Anode Voltage = 7.0 Vdc)
Forward Voltage Application Rate
(TJ= 1100 C)
NOTES:
1. VORM and VRRM for all types can be applied on a continuous de
basis without incurring damage. Ratings apply for zero or negative
gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the anode. When checking
forward or reverse blocking capability, thyristor devices should not
be tested with a constant current source in a manner that the
voltage applied exceeds the rated blocking voltage.
2. Torque rating applies with use of torque washer (Shakeproof
WD19522 #6 or equivalent). Mounting torque in excess of 8 in.
Ibs. does not appreciably lower case-to-sink thermal resistance.
Anode lead and heatsink contact pad are common.
For soldering purposes (either terminal connection or device
mounting), soldering temperatures shall not exceed +22SoC. For
optimum results,8:18ctivated flu)( (oxide removing) isrecommended.
CURRENT DERATING
'"\" \
FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE
FIGURE 1 - MAXIMUM CASE T"MPERATURE
.110
;:--..:
~ 100
...g;
~
II!
~
.
60
i
50
r--
A~ ~
60 0
01=300 \
~
~100 ~ ......
'"i=
~~
~ 90
~ f-----'
\80 0
~ 90'--
80
70
~
~
~~ t'......
90
....
~
~
'G 110
.'"
ffi
a
a .. Conduction Angle
40
\' ~"\
CQ
60
,.!!i
50
x
;!
\ \ '\ ,'\.
o
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
IT(AVI, AVERAGE ON-5TATE CURRENT (AMPI
......
\\
,
~
40
30
• - 300
o
0.1
\
i'-,.
600\ 900 \
120~80~
0.2
0.4
0.5
0.8
" r-...
de
0.7
0.8
0.9
IT(AV),AVERAGE ON·STATE CURRENT (AMP)
140
~
...... i'-,.
"\\
0.3
a
a .. Conduction Angle
\
\ I'\.
\ 1\ \ 1\
ii1i
20
........
\.
\
±!t=
"-
"
\ ,\
,. 80
~
>- 70
1.0
1.1
MCR470 SERIES (SILICON)
BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS
. designed for high power industrial and consumer applications in
power and speed controls such as welders, furnaces, motors, space
heaters and other equipment where control of high current is needed.
In addition, the entire series employs the unique Beam·Fired gate
design to al!ow high dildt and to reduce turn·on losses.
• Critical Rate·of·Rise of On·State Currentdildt = 1000 Amp//1s (Max)"
• Critical Exponential Rate - dv/dt = 200 Vl/1s (Min)
BEAM-FIRED
INTEGRATED GATE
THYRISTORS
470 AMPERES RMS
100 thru 1500
va LTS
• Low Switching Losses
• Integrated Gate Permits Soft·Fire Gate Control
·With 0,05 JJ.F and 20 ohm snubber Circuit.
MAXIMUM RATINGS
Rating
SVmbol
Repet!tlve Peak Off-State Voltage
fTJ" +12S0C) MCR470-
-130
-140
150
Non-Repetitive Peak Aeverse
Volts
VRSM
Block Voltage
It ~5 0 ms) MCR47Q-
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
-100
200
300
400
500
600
720
840
960
1080
1200
1300
1450
1550
1650
1800
-110
-120
-130
-140
150
Average Forward Current
USOO Conduction Angle, Te = 7SoCJ
Peak Surge Current
(Ona cycle, 60 Hz • T J = -40 to +12S0CI
'TIAV)
300
Amp
ITSM
5500
Amp
A2,
, t
Circuit FUSlllg ConSiderations
(t=
1 5msl
50,000
(t=8.3msl
Peak Forward Gate Power
PGFM
Average Forward Gate Power
Peak Forward Gate Current
Peak Reverse Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range
PGF(AVI
IGFM
VGRM
TJ
T~
Mounting Force
Cntlcal Rate·ot·Rlse of On·State Current dunng
Turn· On Interval (Non·Repetltlve RatlOgl
Umt
Volts
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
-110
-120
(T J '" -40 to +12S0C)
Value
VORM(l)
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
-100
dl/dt
120,000
15
Watts
30
40
Watts
Amp
50
-40 to "'125
-40 to "'150
1000
Volts
1000
Amp/~J
°c
°c
'b.
THERMA L CHARACTER ISTICS
CharacteristiC
Thermal ReSistance, Junction to Case
111 Ratings apply for zero or negative gata voltage DeviCes shall not have a positive bias applied to the gata concur·
rently with a negative potential on the anode DeviCes should not be tested with a constant current source for
forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage
MILLIMETERS
INCHES
MIN MAX
DIM MIN MAX
A 36.07 43.18 1.420 1.700
B 18.54 29.59 0.730 1.165
C 12.45 15.24 0.490 0.600
4.85 0.186 0.191
D
4.72
2.54 0.010 0.100
0.25
E
0.35
0.48 0.014 0.019
F
2.54
0.100
H
6.22 19.30 0.245 0.760
J
K 202.69 206.12 7.980 8.115
0.300
7.62
L
50 0
M 200
500
200
N 15.49 28.58 0.610 1.125
Q
3.48
3.89 0.137 0.153
1.27
R
3.18 0.050 0.125
S
3.12
3.68 0.123 0.145
4.72
T
7.92 0.186 0.312
1.27
1.78 0.050 0.070
U
V
2.92
3.56 0.115 0.140
0.51 0.010 0.020
W 0.25
Y
1.45
1.50 0.057 0.059
0.64
1.65 0.025 0.065
Z
CASE 220·03
141
MCR470 series (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Peak Forward Blocking Current
(Rated VORM. with gate open. TJ = 125°C)
IORM
-
-
15
mA
Peak Reverse Blocking Current
(Rated VRRM. with gate open. TJ = 125°C)
IRRM
-
-
15
mA
Forward "On" Voltage
(ITM = 1000 A Peak. Pulse Width = 8.3 ms. Duty Cycle S; 1.0%)
VTM
-
-
1.9
Volts
Gate Trigger Current
(Anode Voltage =6.0 V. R L
IGT
-
-
150
mA
VGT
-
-
3.0
Volts
IH
-
20
500
mA
VGOM
0.15
-
-
Volts
ton
-
2.0
-
J.lS
-
-
10
J.lS
200
-
-
V/".s
Characteristic
= 3.0 Ohms)
Gate Trigger Voltage
(Anode Voltage =6.0 V. R L = 3.0 Ohms)
Holding Current
(Anode Voltaga'; 24 V; gate open. Initiating Current = 2.0 A)
Non·Triggering Gata Vol tag..
(Anode Voltage = Rated VORM. RL = 1000 Ohms. T J = 1250 C)
Turn·On Time
(lTM = 50 A. Rated VORM)
10 V open circuit. 20 Ohm Source
Gate Pulse
0.1 J.lS (Max) rise time
{
Gate Pulse Width Necessary to Trigger
5.0 V open circuit. 5.0 Ohm Source
Gate Pulse
0.1 J.lS (Max) rise time
{
Critical Exponential Rate 01 Rise
dv/dt
(Rated VDRM. gate open. TJ = 125°C)
CURRENT DERATING
(I = 50 to 400 Hz)
FIGURE 2 - SINE WAVE
FIGURE 1 - SQUARE WAVE
~
--I
3600
130
f--
~ ~
'"'
'"~
~~
~
~
w
~
~
\
90
i
70r---+--t---+-~t--~-~t-~-+~~
""
\
=>
X
70
50
IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)
r\.
\ '\
a=300 ~
....<3
500~--L-~1~OO~-~--~~~~-~~--~--~
- l a I-CONDUCTION
ANGLE
1,\"'- ~ t-.....
,.'"
;!
~
110
,.'"
~
~ 901---t--+-~+-~~~~d-~c-+-~~~~4
~
00
1800
~~
W
~ 1101---t""""r"'('~~""""",.q:c--+---l a f--
'=>"'
~
Q
o
100
\
1',.
I"",''-
I'...
"'-'
90~
60~
200
180)...,
\
""
300
IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)
142
400
MCR470 series
(continued)
FIGURE 4 - SINE WAVE
FIGURE 3 - SQUARE WAVE
00
1800
a I-CONDUCTION
ANGLE
-l
300
100
200
IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)
IT(AV). AVERAGE DN·STATE FORWARD CURRENT (AMP)
FIGURE 5 - MAXIMUM ON·STATE VOLTAGE
4000
V
i/
2000
/
V
0
0
o.
/
/
0
TJ: 125 0 C
/
100
80
I
0
II
1.0
2.0
3.0
4.0
VrM. MAXIMUM FORWARD VOLTAGE (VOLTS)
143
5.0
400
MCR470 series (continued)
FIGURE 6 - TRIGGERING CHARACTERISTICS
10 _
__
VG, GATE VOLTAGE (VOLTS)
FIGURE 7 - THERMAL RESPONSE
~
.
~
w
(.)
z
0.14
0.12
0.10
!!
~
0.08
~
....
0.06
~
~ 0.04
~
.-I-
..... 0.02
-
--
...-
?
U
~ O~OOl
0.002
0.005
0.01
0.02
0.05
0'.1
0.5 0.7 1.0
0.2
t,TIME(,)
144
2.0
5.0 7.0
10
20
50
70 100
MCR470C SERIES (SILICON)
MCR470D SERIES
MCR470E SERIES
Advance Infor:rnatlon
BEAM-FIRED
INTEGRATED GATE
THYRISTORS
BEAM-FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS
· .. designed for high-current, high· frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•
•
•
•
•
470 AMPERES RMS
Low Switching Losses - @ 3.0 /-IS with 30/-IS Pulse, Ip = 150 A
MCR470C Series - 3.0 Volts
MCR470D Series - 6.0 Volts
MCR740E Series - 6.0 Volts
Critical Rate-of-Rise of On-State Currentdi/dt = 1000 Amp//-Is (Max)'
Critical Exponential Rate - dv/dt = 200 V//-Is (Min)
I ntegrated Gate Perm its Soft-F ire Gate Control
Fast Turn·Off Time - 20 to 40/-ls
·With 0.05 ",F and 20 ohm snubber circuit.
MAXIMUM RATINGS
Device Type
R.petiti •• POIIk Off-Stet.
Voltag. ITJ = +125"1:1
VORM, VRRM
Volts
Non-R.petitiv. P.ak
R...... Blocking Voltage
VRSM
Volts
Turn-Off Tlma 'Q 20 IJS Max
MCR470C
-10
-20
-30
-40
-50
-60
-70
-80
100
200
300
400
500
600
700
800
200
300
400
500
600
700
800
900
100
200
300
400
500
600
700
800
900
1000
200
300
400
500
600
700
800
900
1000
1100
100
200
300
400
500
600
700
800
900
1000
1100
1200
200
300
400
500
600
700
800
900
1000
1100
1200
1300
Turn-Off Tima .. 30 I'S Max
MCR4700
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
~
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
"1
r
I
"
I
E
..L...I..J
ILl
2 GATE
~3.
CATHODE
4. CATHODE
SEATING PLANE
]i'
~T Jp
TERMINAL 3
:~n
0
MM
NOTE:
This Is advance Information on a new introduction and ,pacifications are subject to chal1Qt1 without notice.
145
rF
mtfl;f= ~ ~,. "
Turn-Off Time" 40 ",I Max
MCR470E
r-;::.~ -=;-J
~
N
1 DIM "~" ""PLIES TO. BOH LEAQS
DIM
A
B
C
. 0
E
F
H
J
K
L
M
N
Q
R
S
T
U
V
W
y
Z
INCHES
MILLIMETERS
MIN MAX
MIN MAX
36.07 43.18 1.420 1.700
18.54 29.59 0.730 1.165
5.24 0.490 0.600
12.45
4.72_ 4.85 0.186 0.191
0.25 • 2.54 0.010 0.100
0.48 0.014 0.019
0.35
0.100
2.54
6.22 19.30 0.245 0.760
202.69 206.12 7.980 8.115
0.300
7.62
50·
20·
20·
50·
15.49 28.58 0.610 1.125
3.48
3.89 0.137 0.153
1.27
3.18 0.050 0.125
3.12
3.68 0.123 0.145
4.72
7.92 0.186 0.312
1.27
1.78 0.050 0.070
2.92
3.56 0.115 0.140
0.51 0.010 0.020
0.25
1.45
1.50 0.057 0.059
0.64
1.65 0:025 0.065
CASE 220-03
MCR470C series, MCR470D series, MCR470E series (continued)
MAXIMUM RATINGS
Rating
Average Forward Current, T C • 60°C
(1 SOOConduction· Angle)
Peak Surge Current
(One cvcle, 60 Hz, TJ = -40 to +1250 C)
Circuit Fusing Considerations
Symbol
Value
Unit
.lnAV)
300
Amp
ITSM
4500
Amp
12 t
B4,OOO
A2.
(TJ • -40 to +125 0 C, t = 1.5 - 8.3 ms)
PGFM
15
Wetts
PGF(AV)
3.0
Watts
Peak Forward Gete Current
IGFM
4.0
Amp
Peak Reverse Gate Voltage
VGRM
5.0 .'
Volts
Peek Forwerd Gate Power
Average Forward Gate Power
Opereting Junction Tempereture Range
TJ
-40 to+125
Storege Temperature Range
Tstg
-40 to +150
°c
-
l000±2oo
Ibs
di/dt
200
1000
Amp/"s
Mounting Force
Critical Rete-of-Rise of OnoState Current - Repetitive
Non-Repetitive
°c
THERMAL CHARACTERISTICS
Characteristic
Max
Thermal Resistance, Junction to Case
0.08
ELECTRICAL CHARACTERISTICS (TC = 25°C unl ... otherwise noted)
Symbol
TVp
Max
Unit
IORM
-
-
15
mA
IRRM
-
-
15
mA
VTM
-
-
2.30
Volts
Gate Trigger Current
(Anode Voltage =6.0 V, RL =3.0 Ohms)
IGT
-
-
150
mA
Gate Trigger voltage
(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
VGT
3.0
Volts
Holding Current
(Anode Vortage = 24 V, gate open, Initiating Current = 2.0 A)
IH
500
mA
Characteristic
Peak Forward Blocking Current
(Reted "ORM, with gate open, TJ
= 1250 CI
Peak Reverse Blocking Current
(Reted VRRM, with gate open, TJ· = 125°C)
Forward "On" Voltage
(tTM = 1000 APeak, outy Cvcle:!::O.OI%, TJ
= 25°C)
Non-Triggering Gate Voltage
(Anode Voltage = Rated VORM, RL •. 1000 Ohms, TJ
Circuit Commutated Turn-Off Time
IVR = 50 V.(Min); RatedVORM, TJ = +125 0 C,
diR'dt = 20 A/"s; Repetition Rete = 1.0 pps;
ITM = 250 A; dvldt = 20 VI".)
Transient Turn·On Voltage
"S
(VORM = 100 V, ITM = 300 A, PW = B.O
Gate Ori.ve = 600 mA, rise = 0.1 "s, test point = 4.0 "s)
VGSM
= 125°C)
Min
50
0.15
Volts
tq
-
MCR470C
MCR4700
MCR470E
MCR470C
MCR4700
MCR470E
Critical Exponential Rate of Rise .
(Rated VORM, gate open; TJ = 125°C)
VTO
-
dvldt
146
-
200
-
-
-
"s
20
30
40
5.0
B.O
8.0
Volts
-
V/"s
MCR550C series
MCR550D series
Advance InforIDation
BEAM·FIRED
INTEGRATED GATE
THYRISTORS
BEAM·FIRED INTEGRATED GATE
FAST SWITCHING THYRISTORS
550 AMPERES RMS
· .. designed for high·current, high·frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency lighting. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•
•
•
•
Critical Rate-of-Rise of On-State Currentdi/dt = 1000 Amp/ils (Max)
Critical Exponential Rate - dv/dt = 200 V IllS (Min)
Integrated Gate Permits Soft-Fire Gate Control
Fast Turn-Off Time - 20 and 30 IlS
MAXIMUM RATINGS
Device Type
Voltage ITJ = +125o CI
VORM,VRRM
Volts
Non-Repetitive P••
Reverse Blocking Voltage
VRSM
Volts
Tum-Off Time - 20 /olS Max
MCR550C
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
'--t
IflH~~.jI
3t!] r~'L
z
Repetitive Peak Off-State
100
200
300
400
500
600
700
800
900
1000
200
300
400
500
600
700
800
900
1000
1100
1
-10
-20
-30
-40
-50
-60
-70
-80.
-90
-100
-110
-120
SEATING PlANE
if
-': ~n
, ~, !, ' ,~~t-~
lE;:.~
4 CATHODE
NOTE:
1. OIM "K" APPLIES TO. 80TH LEAOS
DIM
Turn-Off Time = 30 IJS Max
MCR5500
E
INCHES
MILLIMETERS
MAX
MIN MAX MIN
A
100
200
300
400
500
600
700
800
900
1000
1100
1200
200
300
400
500
600
700
800
900
1000
1100
1200
1300
55.88
B 6.19
C 25.40
D 4.72
E 0.78
F 0.35
H
3.18
J
6.22
K 2
L
15
-
S
3.48
127
3.1
U
V
1.27
29
Y
Z
1.45
0.64
R
6150
38.1
2.2no
2.5
1 31 1 0
1.000 I- 5
4.8& o:iliif .1
.19 11[030
0
0.48 10.014
9
10.125
19.30 0.245 0.760
208.12 7.980 .1 5
7.82
o.3DD
15
5
1.435
.137
0 oRn
3.88
.1 3
.9
1.78
3.&6
.11 '.1
27.05
-
i.M
1
1.65
0.025 0.084
CASE 220-02
This is advance Information on a new Introduction and specifications are subject to change without nOtice.
147
MCR550C Series, MCR550D Series (continued)
MAXIMUM RATINGS
Rating
Average On-State Current, T C = so"c
(180" Conduction Angle)
Peak Non-Repetitive Surge Currant
(One cycle, 60 Hz, T J
= -40 to +1250 C)
Circuit Fusing Considerations
(TJ = -40 to +1250 C, t = 1_5 - 8.3 ms)
Peak Gate Power
(Maximum Pulse Width
= 401's)
Average Gate POVV8r
Peak Forward Gate Current
Symbol
Value
Unit
IT(AV)
350
Amp
ITSM
5500
Amp
12 t
120,000
A 2s
PGFM
200
Watts
PGF(AV)
3.0
Watts
IGFM
4.0
Amp
VGRM
10
Volts
TJ
-40 to +125
°c
T stg
-40 to +150
°c
-
2000± 200
Ibs
200
1000
Amp/l's
(Maximum Pulse Width = 401's)
Peak Reverse Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range
Mounting Force
Critical AateMof-Rise of On-State Current - Repetitive
(R
= 20 Ohms, C = 0.05I'F)
di/dt
Non-Repetitive
THERMAL CHARACTERISTICS
Characteristic
Symbol
Thermal Resistance, Junction to Case
Unit
ROJC
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
IORM
-
-
30
mA
Peak Reverse Blocking Current
(Rated VRRM, with gate open, T J = 125°C)
IRRM
-
-
30
mA
Peak On-State Voltage
(lTM = 1000 A Peak, Pulse Width ";2.0 ms, Outy Cycle ";0.01%,
TJ = 2sOC)
VTM
-
-
2.4
Volts
Gate Trigger Current, Continuous de
IGT
-
-
150
mA
Gate Trigger Voltage, Continuous de
VGT
-
-
3.0
Volts
-
0.15
Volts
-
50
500
mA
-
-
20
30
-
-
-
10
200
-
-
Characteristic
Peak Forward Blocking Current
(Rated VORM, with gate open, TJ
= 125°C)
(Anode Voltage = 6.0V, RL = 3.0 Ohms)
(Anode Voltage = 6.0 V, RL
= 3.0 Ohms)
Non-Trigger Gate Voltage
(Anode Voltage = Rated VORM, R L = 1000 ohms, T J
Holding Current
(Anode Voltage = 24 V, gate open, Initiating Current
VGOM
= 125°C)
IH
= 2.0 A)
Circuit Commutated Turn~ff Time
(VR = 50 V (Min); Rated VORM, TJ = +1250 C,
diR/dt = 20 AIl's; Repetition Rate = 1.0 pps,
ITM = 250 A; dv/dt = 20 VII's)
I'S
tq
MCR550C
MCR5500
Transient Turn-On Voltage
(VORM = 100 V,ITM =,300 A, PW= 8.01's,
Gate Orive = 600 mA, rise = 0.1 I'S, tast point = 4.0 I's)
VTO
Critical Exponential Rate of Rise of Off-State Voltage
(Rated VORM, Gate open, T J = 125°C)
dv/dt
-
148
Volts
VII's
MCR649-1 thru MCR649-7 (SILICON)
~~
,
(D (;)
o
0
~,
o
'
@,
CASE 61
CASE 54
(TO-41)
(TO-3 Modified)
PIN 1. GATE
Industrial-type, silicon controlled rectifiers in a
"diamond" package for applications requiring a high
surge-current rating or low thermal resistance.
For units with pins (TO-3) specify devices MCR649P-l
thru MCR649P-7.
0
PIN 1 ANODE
2. CATHODE
CASE ANODE
2. GATE
CASE CATHODE
MAXIMUM RATINGS
(TJ" 100'C unless otherwise noted)
Rating
Symbol
Peak Reverse Blocking Voltage*
MCR649-1
-2
-3
-4
-5
VROM *
-6
-7
Forward Current RMS
(All Conduction Angles)
It
Value
Volts
25
50
100
200
300
400
500
20
Amp
A2s
12t
Circuit Fusing Considerations
(T J = -40 to +lOOoC; t ;;; 8.3 ms)
Unit
275
Peak Forward Surge Current
(One Cycle, 60 Hz, TJ = -40 to +1000 C)
IFM(surge)
Peak Gate Power - Forward
Amp
260
P GFM
5.0
Watts
PGF(AV)
0.5
Watt
Peak Gate Current - Forward
IGFM
2.0
Amp
Peak Gate Voltage - Forward
VGFM
VGRM
10
Volts
5.0
TJ
-40 to +100
°c
Tstg
-40 to +150
°c
Average Gate Power - Forward
Reverse
Operating Junction Temperature Range
Storage Temperature Range
*VROM for all types can be appUed on a continuous dc basis without incurring damage.
VROM ratings apply for zero or negative gate voltage.
149
MCR649·1 thru MCR649·7 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Peak Forward Blocking Voltage
(T J = 100°C)
Symbol
VFOM
MCR649-1
-2
-3
-4
-5
-6
-7
Peak Forward Blocking Current
(Rated VFOM with gate open, TJ = 100°C)
IFOM
Peak Reverse Blocking Current
(Rated VFOM with gate open, T J = 100°C)
IROM
Min
Typ
Max
25'
50
100
200
300
400
500
-
---
--
Volts
rnA
- -
5.0
- -
5.0
rnA
Gate Trigger Current (Continuous de)
(Anode Voltage = 7Vdc, RZ = 50 S"l)
IGT
-
30
80
Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7 Vdc, RL = 50 S"l)
VGT
-
1.0
3.5
rnA
-
-
20
-
1.1
1.5
Volts
. VGNT
0.3
Holding Current
(Anode Voltage. = 7 Vdc, Gate Open)
IHO
Forward On Voltage
(IF = 20 Adc)
VF
-
Turn-On Time (~ + ~)
(IG = 50 mA, IF = 10 A)
tan
-
1.0
-
Turn-Off Time
(IF = 10 A, IR = 10 A, dv/dt = 20 V/ /loS min, T J =1000C)
(V FXM = rated voltage)
,
toff
-
25
-
(Anode Voltage = Rated VFOM' RL = ,50n, T J = 100°C)
Units
rnA
Volts
Ips
/loS
(VRXM = rated voltage)
Forward Voltage Application Rate
(Gate open, TJ = 100°C)
MCR6·49-1 thru MCR649-4
-
MCR649-5 thru MCR649-7,
Thermal Resistance (Junction to Case)
8JC
150
V/ /loS
dv/dt
-
20
-
30
-
1.0
1.5
°C/W
MCR649·1 thru MCR649·7
(continued)
F~R~l~~~tH~~~mT GATE TRIGGER CHARACTERISTICS
IsHot = 2 AMP :::3.
2.0
MAXIMUM ALLOWABLE NON·RECURRENT
SURGE CURRENT
-
300
l
~OAMJ
RJsj
T, = -40 10 +100·C
!5
"-....
<>
1
200
r-----. r----- r---
r-----.. r-----.
i
~
~ 150
IB
0.1
.J
.05
I
I
~~ '"~ ~
II
I
~~~
L
-
.02
100
10
40
20
I
WITHIN THIS
AREA
I
.0001 ....
0.3
100
I
LL
t - - - TYPICAL --...
~
1/ /
~MAXIMUM6"
e...
::>
<>
~
~
~
i
I
2.0
I I
1.0
I
S5
~
JUNCTION TEMPERATURE _
IV
I TJ = lOQ·C
TJ 25·~
~
75
I I!
0.2
65
l '1/
0.1
0.5
0.0
9
10
1~:r-
0.]
r-...·CONDUCTION ....
1----4--+- .60~~"'''
ANGLE
.90~~
.120~'\~
~-f-"""f-"""f--t--+ .1SO.>--p.~,,+~-+--j
1.0
1.5
2.0
~.....,f--+--+---r--+---r--+---r--~~--~
DC
2.5
10
~ 1.2
v
~
<>
~ 1.0
~
/
i3
~ O.S
;j
ffi
I
0.6
V
!5in
~ 0.4
e:
V
0.2
~
.001
V
.002
.01
.02
14
0
z
12
~
10
~
.05
"""
Q
~0
0.1
4 ~
9,c
0.2
20
0.5
.J.
""
"\
"\
_ TJ1m •• r - Te _
p ••k -
IS
WITH UNIT MOUNTED
ON THE MS·I0 HEAT SINK
USING DC4· AND FREE
CONVECTION COOLING
ASSUMING MAXIMUM F01:::1:-VOLTAGE AND 9,0 = 1.5,
8cs = 0.2 AND 8.. = 3.0·C/W
...
...•
1 1 1
.005
~
~
p
'\
16
CURVE DEFINES TEMP RISE OF
JUNCTION ABOVE CASE FOR
SINGLE LOAD PULSE OF OURA·
TlON I. PEAK ALLOWABLE DIS·
SIPATION IN RECTIFIER FOR
TIME I, IF STARTING FROM
CASE TEMP., EQUALS lOO·C
(MAX. T,) MINUS MAXIMUM
CASE TEMP, OIVIDED BY THE
TRANSIENT THERMAL RESIST·
ANCE,
f
l\.
IS
/
g..
16
t,,! -l.•.J'Mrt
20
V
14
POWER DERATING CURVE
1.6
1.4
12
IFI"" AVERAGE FORWARD CURRENT IAMPI)
MAXIMUM TRANSIENT THERMAL RESISTANCE
JUNCTION TDCASE
0.0
8
0--
~
.30~ ~'"
'F, INSTANTANEOUS FORWARD ON VOLTAGE IVOLTS)
~
7
70 ~.....,--+--+-~-+-.....,f--+--r~;-~
0.5
.~
i!=
6
I I
Iso
i! 5.0
.,::>'"~
i~
5
~
90
Yif //
10
I
4
VG , GATE VOLTAGE (VOLTS)
2S·C - ANODE @ 7VOLTS)
95~~
50
20
1-40·C -150 mAl
MAXIMUM AllOWABLE FORWARD .............
GATE VOLTAGE 10 VOLTS
MAXIMUM ALLOWABLE CASE TEMPERATURE
100
~
s...-
GATE CURRENT REQUIRED
TO TRIGGER ALL UNITS
(100°C - 50 rnA I
ITJ =
LOW CURRENT LEVU
~
- -:;;8 ~P-;ES~I;M;;
I
~,ri. ~~I~~~:
~----oI i 2 3
60
CYCLES AT 60 Hz
AS A TRIGGER CIRCUIT DESIGN CRITERIA
ALL UNITS WILL TRIGGER AT ANY VOLTAGE
AND CURRENT WITHIN THIS AREA
-I
APPROXIMATELY
'"
1
I
~ !:: ~I
~~
i~ II
t---.
~
~
~ ..:( ALL UNITS
~~~
~~~
~
50.2
~ 250
f?
_
3.SVOLTS~
MINIMUM
GATE VOLTAGE
RE~II~~rRTO
I
1.0
o
1.0
I, TIME Is)
151
·DC4 IS DOW CORNING NO.4
SILICONE LUBRiCANT
I
I
I
I
~
~
~
~
"\
"\
I'\.
o
10
ro
ro
TA , AMBIENT TEMPERATURE (OC)
ro
~
~
MCR729-5 thru MCR729-10 (SILICON)
Fast-switching, high-voltage silicon controlled rectifiers especially designed and characterized for radar,
proximity fuse, beacon and similar pulse applications.
PIN 1 CATHODE
2 GATE
3 STUD ANODE
CASE 63
MAXIMUM RATINGS (T J = lOS·C unless otherwise noted)
Symbol
Value
Unit
VROM(rep) *
50
Volts
2.0
Amp
IFM(pulse)
100
Amp
Average Forward Power
PF(AV)
5.0
Watts
Peak Gate Power - Forward
P GFM
20
Watts
PGF(AV)
1.0
Watt
Peak Gate Current - Forward
IGFM
5.0
Amp
Peak Gate Voltage - Forward
VGFM
VGRM
10
Volts
10
Operating Junction Temperature Range
TJ
-65 to+ 105
Storage Temperature Range
Tstg
-65 to + 150
°c
Stud Torque
-
15
in. lb.
Rating
Peak Reverse Blocking Voltage*
Forward Current RMS
If
Repetitive Pulse Current
(PW = lOllS)
Average Gate Power - Forward
Reverse
°c
*Characterized for unilateral applications where reverse blocking capability is not important. Higher
VROM rated units available on request.
152
MCR729·5 thru MCR729·10 (continued)
ELECTRICAL CHARACTERISTICS
fTc = 25°C unless otherwise noted)
Characteristic
Peak Forward Blocking Voltage*
(T J = l05 0 C)
Symbol
MCR729-5
-6
-7
-8
-9
-10
Peak Forward Blocking Current
(Rated VFOM ' T J = 105 0 C, gate open)
I FOM
IGT
Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 100 ohms)
VGT
Holding Current
(Anode Voltage
I HO
7 Vdc, gate open)
Forward On Voltage
(If = 2 Adc)
VF
Dynamic Forward On Voltage
(0.5 /.Is after 50% pt, IG = 200 mA,
Ipulse = 30 Amps)
Typ
Max
300
400
500
600
700
800
--
-
-
0.2
2.0
-
10
50
-
0.8
1.5
5.0
15
-
-
1.1
1.5
V FOM *
Gate Trigger Current (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 100 ohms)
=
Min
mAdc
Volts
Volts
15
25
ns
ton
-
-
Turn-On Time Variatign
(T J = +25 0 C to +105 C and _65°C to +25 0 C)
Ll.t
on
200
-
400
-
±50
-
-
Pulse Turn-Off Time
t off(pulse)
15
Test Conditions: PFN discharge; Forward Current = 30 A pulse; Reverse Current = 5 A;
Rep. Rate = 100 pps; Duty cycle = 0.05%; Forward Voltage = rated VFOM;
TC = 85·C; dv/dt = 250 V! /lS; Reverse anode voltage applied during turn-off
interval = rated VFOM;
Reverse gate bias during turn-off interval = -6 V;
Gate Trigger Pulse: 200 rnA, 1 jlS wide, 2 ns rise time.
Turn-off time measured from 90% pt. of forward, current decay to 10% pt. of reapplied forward voltage.
Forward Voltage Application Rate
(T J = 105 0 C, gate open)
dv/dt
Thermal Resistance (Junction to Case)
9 JC
*Other voltage units available upon request.
153
mA
Volts
-
(Ipulse = 100 Amps peak)
Volts
mA
VF(on)
Turn-On Time (td + t r )
(IG = -200 mAl
(Ipulse = 30 Amps peak)
Units
50
-
-
-
-
3.0
ns
/.IS
V//.IS
°C/W
MeR800
series (SILICON)
BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS
· .. designed for high power industrial and consllmer applications in
power and speed controls such as welders, 'furnaces, motors, space
heaters and other equipment Where control of high current is needed.
In addition, the entire series emp'Ioys the unique Beam·Fired gate
design to allow high di/dt and to reduce turn-on losses.
• Critical Rate·of·Rise of On-State Currentdi/dt ~ 1000 Amp/p.s (Maxl(2)
BEAM-FIRED
INTEGRATED GATE
THYRISTORS
BOO AMPERES RMS
100 thru 1500 VOLTS
• Critical Exponential Rate·of·Rise of Off·State Voltagedv/dt ~ 200 Vlp.s (Mini
•
•
Low Switching Losses
Integrated Gate Permits Soft·Fire Gate Control
MAXIMUM RATINGS
Value
Unit
Volts
Repetitive Peak Off·State Voltage
(T J .. +125o CI MCRSCIO-
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
Volts
Non·Repetltlve Peak Reverse
Block Voltage
(t <5.0 msl MCRSOQ-
200
300
400
500
600
720
840
960
lOBO
1200
1300
1450
1560
STYLE 1:
l.ANODE
2. GATE
3. CATHOOE
4. CATHOOE
16SO
Average On-State Current
11800 Conduction Angle, Tr. = 75°C)
Peak Surge Current
(Onl evel. 60 Hz. T = -40 to +125 o C)
lBOO
500
Amp
7000
Amp
Circuit FUllng Conlld8l"8tlon,
IT J • -40 to +1250 CI
(t"1.5ms)
(t- 8.3 mIl
Pak Forward Gata Power
Average Forward G,te Power
Peek Forw.rd Gate Current
Puk Rever. Gate VOltaga
Oper.,mg Junction Temperature Renge
Storage Temper.ture Range
Mounting Foret
Criticel Rate-of·Rise of On-State Current during
Turn-On Interval (Non-Aepetltiva Altln 1 (21
100,000
200.000
25
5.0
8.0
10
-40 to +125
-40 to +150
2000
1000
DIM
MILLIME ERS
MAX
.,.
.,.
A
U' 63.60
,. '00
• .7
W.ttt
•
.78
Amp
•
..
127
154
19.30
"0'
,.
.11
O.
.1
DJ.. &'80
•.300
1.435
1.27
3.1
, 2
Thermal Rlsistance, JunctIOn to C..
R8JC
0.08
°cm
m Ratinll' apply for lero or negetiva geM volt8g8. Devices shell not hew I positive b •• applied to the gate concur·
rently with I negative potlntial on the .nod.. Devices should not be tetted with • consUlnt current 1CMJrc8 for
forw.-d C»" revenI blocking CllPability such that the vcNYgllPplled exceed. the retld blocking voltege.
(21 With O.OS,..F Ind 20 ohm snubber circuit.
.7.
89' 7.8212
lb•.
THERMAL CHARACTERISTICS
•
1.
0.1
14
.22
·c
Arnp/~s
27.
3.18
Volu
1
ID
1
2i.4D
Wetts
INCHES
AX
....
'.1l6
.1'
1.7
11
1.'
1.65
0.025 0.084
CASE 220.Q2
MCR800 series (continued)
ELECTRICAL CHARACTERISTICS
ITC = 25°C unless otherwise noted)
Symbol
Characteristic
Peak Forward and Reverse Blocking Current
IRated VORM, with gate open)
IRated VRRM, with gate open, T J = 125°C)
Peak On-State Voltage
IITM = 1000 A Peak, Pulse Width
= 6.0 V,
RL
= 3.0 Ohms)
Gate Trigger Voltage, Continuous de
IAnode Voltage
IAnode Voltage
Typ
-
-
30
VTM
-
-
1.55
Volts
IGT
-
-
150
rnA
-
-
3.0
-
100
500
rnA
-
4.0
-
"S
-
-
10
"S
200
-
-
V/"s
Max
Unit
rnA
15
= 8.3 ms, Duty Cycle'; 1.0%)
Gate Trigger Current, Continuous de
IAnode Voltage
Min
IORM
IRRM
= 6.0 V, RL = 3.0 Ohms)
= Rated VORM, RL = 1000 Ohms, T J =
VGT
12SoC)
Volts
0.15
Holding Current
IH
-
(Anode Voltage == 24 V, gate open, Initiating Current = 2.0 AI
Gate Controlled Turn-Dn Time
tgt
IITM = 50 A. Rated VORM)
Gate Pulse
{
10 V open circuit, 20 Ohm Source
0.1 J.l5 (Max) rise time
Gate Pulse Width Necessary to Trigger
Gate Pulse
{
5.0 V open circUit, 5.0 Ohm Source
0.1 j.l5 (MaxI rise time
Critical Exponential Rate of Rise of Off·State Voltage
dv/dt
IRated VORM, gate open, TJ = 125°C)
CURRENT DERATING
If
= 50 to 400 Hz)
FIGURE 1 - SQUARE WAVE
FIGURE 2 - SINE WAVE
~
w
•
~ lIDr---+~,-"...p~~t:---t--+---t ~
s
!!'
_
1li
~
1.
• I--
CONDUCTION
ANGLE
9Dr---+--4-~-~~~~~~~-r---t---4
~
"=>
.."
~ 7Dr---+--4---~--t-~+-~.-~~-t~-~
~-
5DD~---L--~15~D----L-~~~--L-~~~~L---~
ITIAV), AVERAGE ON-8TATE CURRENT (AMP)
155
MCR800 series
(continued)
FORWARD POWER DISSIPATION
FIGURE 4 - SINE WAVE
FIGURE 3 - SQUARE WAVE
i800r-__
~ ~r- ~~~~,f~,f~~__~~
__
__
z
~ 600r---~--~~---HL-~h"--.,f-",,'---1f"7"<-"""'L..~
~
i:i
C
ffi400~--~--~~~~~~~~~~~~--~--~
~
'~" 200~--~---,~1Iiil!~=t---~~--~ -.J
~
~.I-
~
cO~~~~~ON
ir:
150
300
450
600
150
IT(AV!. AVERAGE ON·STATE CURRENT (AMP)
300
FIGURE 5 - MAXIMUM ON·STATE VOLTAGE
4000
./
/
2000
/
;;:- 1000
'>-"
5
800
~
600
1l
w
I
I
I
400
>«
>-
/
~
0
'"
200
TJ'
moc
I
.!:"
I
100
80
60
40
o
1.0
450
IT(AV). AVERAGE ON·STATE CURRENT (AMP)
3.0
2.0
4.0
VTM. MAXIMUM ON·STATE VOLTAGE (VOLTS)
156
5.0
600
MCR800 series (continued)
FIGURE 6 - TRIGGERING CHARACTERISTICS
10
7.0
5.0
=
~I:X.
LLOV
:UR
l<;'<0-.
ii:
~ 3.0
i
"'
a
2.0
1.0
- Al IEVI'CE
WILL FIRE
~ O. 7 •
~ 0.5
~~~~_~!~:S
ci
- 0.3
~'\.
~~~
~$~~
:AL_OEVII.,r-I
E
~_;
f--f,i
THIS
~
-LIN
l~'::
0.2
o. 1
0.1
liit
:;;:
I ~I
o
03
.0
.0
30
5
VG. GATE VOLTAGE (VOLTS)
FIGURE 7 - THERMAL RESPONSE
~
0.14
~ 0.12
z
~'"
0.10
;!l
-'
~ 0.08
i=
al
0,06
-
I-
~ 0.04
;;'i
1-_
0.02
I-
5
~ O~OOl
0.002
0.005
om
-
0.02
0.05
0.1
I-
0.2
t. TIME (s)
157
0.5 0.7 1.0
2.0
5.0 7.0 10
20
so 70 100
MCR846 series (SILICON)
Silicon controlled rectifiers for low-power switching
and control applications requiring blocking to 200 volts
and load currents to 2 amp.
PIN 1. CATHODE
2. GATE
3. STUD ANODE
CASE 63
MAXIMUM RATINGS (TJ
= 105°C unless otherwise noted)
Rating
Symbol
Peak Reverse Blocking Voltage
VROM(rep)
MCRB.6-1
-2
-3
-4
Forward Current RMS (all conduction angles)
It
Value
Volts
25
50
100
200
2.0
12t
Circuit Fusing Considerations
(T J = -65 to +105 0 C; t ;;i B.3 ms)
Unit
Amp
A""s
35
Peak Forward Surge Current
(One Cycle, 60 Hz, T J = -65 to + 105 0 C)
IFM(surge)
Peak Gate Power - Forward
P GFM
5.0
Watts
PGF(AV)
0.5
Watt
Average Gate Power - Forward
Amp
30
Peak Gate Current - Forward
IGFM
2.0
Amp
Peak Gate Voltage - Forward
VGFM
10
Volts
Reverse
VGRM
10
TJ
-65 to +105
U
Storage Temperature Range
Tstg
-65 to +150
°c
Stud Torque
-
15
in -lb.
Operating Junction Temperature Range
158
c
MCR846 series
(continued)
ELECTRICAL CHARACTERISTICS· (TC = 2S0C unless otherwise noted)
Characteristic
Peak Forward Blocking Voltage
(T J = 1050 C)
MCR846-1
-2
Max
25
50
100
200
-
---
-
-
2.0
- -
2.0
-
10
50
-
0.8
1.5
-
15
-
-
1.3
1.6
ton
-
0.5
-
taft
-
'6.0
~
VFOM
-3
-4
Peak Forward Blocking Current
(Rated VFOM with gate open, T J
=
1050 C)
Peak Reverse Blocking Current
(Rated VROM with gate open, T J
=
1050 C)
IFOM
IROM
Gate Trigger Current (Continuous de)
(Anode Voltage = 7 Vdc, RL = lOon)
IGT
Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7 Vdc, RL = lOOn)
VGT
Holding Current
(Anode Voltage
IHO
=
7 Vdc, Gate Open)
Forward On Voltage
(IF = 2 Adc)
VF
Turn-On Time (td + t r )
(IG = 50 rnA, IF = 2 A)
Turn-Off Time
(IF = 2 A, IR
(VFXM
(VRXM
=
10 A, dv/dt
=
50V//.Is)
= rated voltage)
= rated voltage)
Forward Voltage Application Rate
(TJ = l05 0 C gate open)
Thermal ReSistance (Junction to Case)
159
Min
Typ
Symbol
dv/dt
50
9JC
-
Units
Volts
-
mA
mA
mA
Volts
mA
Volts
/.IS
/.IS
-
-
V//.IS
3.0
°C/W
MCR 1336-5 (SILICON)
thru
MCR1336-10
Fast switching, high-voltage thyristors especially
designed for pulse modulator applications in radar and
other similar equipment.
PIN 1. CATHODE
2. GATE
3. inuo ANODE
CASE 63-02
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VROM(rep)*
50
Volts
IFM(rep)
300
Amp
Current Applic·ation Rate**
di/dt**
1000
Alp.s
Peak Gate Power- Forward
P GFM
20
Watts
PGF(AV)
1.0
Watt
Peak Gate Current-Forward
IGFM
5.0
Amp
Peak Gate Voltage-Forward
VGFM
VGRM***
7.0
Volts
TJ
-65 to +105
°c
Tstg
-65 to +200
°c
-
15
in. lb.
Peak Reverse Blocking Voltage*
(T J = 105°C)
Repetitive Peak Forward Current
(pw = 3.0 p.s, Duty Cycle = 0.6%,
TC = 85°C max)
Average Gate Power-Forward
Reverse***
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque
7.0
*Characterized for unilateral applications where reverse blocking capability is
not important. Higher voltage units available upon request. VROM(rep) may
be applied as a continuous dc voltage for zero or negative gate voltage but
positive gate voltage must not be applied concurrently with a negative potential
on the anode. When checking blocking capability, do not permit the applied
voltage to exceed the rated voltage.
**Minimum Gate Trigger Pulse: iG = 500 mA, PW = 1.0 p. s, tr = 20 ns.
***Do not reverse bias gate during forward conduction if anode current exceeds
10 amperes.
160
MCR1336-S thru MCR1336-1 0
(continued)
ELECTRICAL CHARACTERISTICS (T c = 25 0 C unless otherwise noted)
Characteristic
Symbol
Peak Forward Blocking Voltage(TC = 105'C)
MCR1336
Peak Forward and Reverse Blocking Current
(Rated V FOM and VROM ' TC = 105'C, gate open)
r
VFOM
-6
-7
-8
-9
-10
-
I FOM
IROM
Gate Trigger Current (Continuous dc)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, T C = 25 'C)
IGT
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = -65'C)
Gate Trigger Voltage (Continuous dc)
(Anode Voltage = rated VFOM' RL = 100 ohms, TC = 105'C)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC
VGT
rHO
(Anode Voltage = 7.0 Vdc, gate open, TC = 25°C)
Forward "On" Voltage
(If = 1. 0 Adc, PW = 1. 0 ms max, Duty cycle s 1. 0%)
VF
Dynamic Forward "On" Voltage
(0.5 I's after 50% decay point on dynamic forward voltage waveform)
Forward Current: 100 A pulse (PFN discharge circuit)
Gate Pulse: at 500 mA, PW = 1. 0 I'S, tr = 20 ns
--
Volts
-
--
2.0
mA
-
-
300
400
500
600
700
800
0.2
-
2.0
mA
40
100
-
Volts
1.25
2.0
rnA
-
-
50
-
-
2.0
1.0
Volts
Volts
td
t
r
Rise Time
Unit
VF(on)
Turn-On Time
Delay Time
Max
-
= 25'C)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = -65,'C)
Holding Current
(Anode Voltage = 7.0 Vdc, gate open, TC = 105'C)
Typ
Min
45
-
75
75
-
-
7.0
-
250
-
-
-
-
2.5
-
ns
Forward Current: 100 A Pulse (Capacitor discharge circuit)
Gate Pulse: at 500 rnA, PW = 1. 0 I'S, tr = 20 ns
Pulse Turn-Off Time
Test Conditions: PFN discharge; Forward Current == 100 A pulse;
Reverse Current = 5.0 A, TC = 85'C, dv/dt = 250 VI,", to Rated VFOM ;
toff(pulse)
I'S
Reverse anode voltage during turn-off interval = 0 Vi
Reverse gate bias during turn-off interval = 6. 0 V.
Forward Voltage Application Rate (Linear Rise of Voltage)
(TC = 105 'c, gate shorted)
dvldt
Thermal Resistance (Junction to Case)
eJC
VII'S
°C/W
*VFOM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate
voltage. When checking forward or reverse blocking capability, these devices should not be tested with a constant current
source in a manner that the voltage applied exceeds the rated blocking voltage. Other voltage units aVailable upon request.
161
MCR 1718-5 (SILICON)
thru
MCR1718-8
THYRISTORS
PNPN
THYRISTORS
SILICON CONTROLLED RECTIFIERS
25 AMPERES RMS
300 thru 600 VOLTS
· .. fast switching, high-voltage thyristors especially designed for
pulse modulator applications.
•
•
•
•
High-Voltage Capability from 300 to 600 Volts
Repetitive Pulse Current to 1000 Amp
Pulse Repetition as High as 4000 pps
Current Application Rate as High as 1000 A/",s
MAXIMUM RATINGS
Symbol
Rating
Peak Reverse Blocking VOltagel 1)
MCR1718-5
-8
Non-Repetitive Peak Reverse Voltage
Peak Forward Surge Current
Volts
VRsM
400
500
600
700
-8
Forward Current RMS
Volt.
300
400
500
600
-6
-7
(Transient) (Non~Recurrent 5 ms (max)
MCR1718-5
-6
-7
Unit
Value
VRRM
ITiRMS)
25
Amp
ITsM
1000
Amp
di/dt
1000
A/!'s
12t
250·
A2.
PFIAV)
30
Watts
PGM
20
Watts
11-10!'. Pulse Width)
Current Application Rate
lup to 1000 Adc peak)
Circuit Fusing Considerations
ITJ = -65 to +1250 C; t ;:;; 1.0 m.
Dynamic Average Power
STYLE 1:
Pili 1. CATHODE
2. GATE
3. ANODE
ITC= 650 C)
Peak Gate Power - Forward
Average Gate Powar - Forward
PGIAV)
1.0
Watt
Peak Gate Current· Forward
IGM
5.0
Amp
Peak Gate Voltage
VGM
10
Volts
Operating Junction Temperature Range
Storage Temperature Range'
TJ
-65 to +125
T.tg
-65 to +150
°c
uc
30
in.-Ib
Stud Torque
(1)VRRM for all types can be applied on a continuous de basis without incurring damage.
Ratings apply for zero or negetive getO voltage.
MILLIMETERS
INCHES
I
MIN
MAX
MAX
15.34\15.60 aS04\ O.SI'
14.00 14.20 M51 0.559
2S.67 30.23 1.050 1.190
F
3.43 4.06 0.135 0.160
H
2.29 REF
0.090 REF
10.67 11.5
0.420 0.455
J
K
15.75 11.02 a620 0.S70
O.
L
7.S
1.
R
1. R
O. 5 EF
T
12.73 12.83 o.!iOl 0.505
DIM
A
THERMAL CHARACTERISTICS
Characteristic
CASE 263.(12
Thermal Resistance, Junction to Case
162
MCR1718·5 thru MCR1718·8 (continued)
ELECTRICAL CHARACTERISTICS
(Tc = 2So C unless otherwise noted I
Symbol
CharKteristtc
Peak Forward Blocking Voltage (11
(TJ = 12So CI
Min
Typ
Max
300
400
500
600
-
--
-
-
-
-
8.0
-
-
8.0
-
1.1
1.3
-
30
5.0
-
-
10
50
-
0.8
I.S
0.2S
-
-
5.0
-
IS
6.0
-
-
20
-
-
100
-
VORM
MCRI718-S
·6
·7
·8
Peak Forward Blocking Current
(Rated VORM with gate open, TJ = 12So CI
Peak Reverse Blocking Current
(Rated VRRM with gate open, TJ = 12So CI
Forward "On" Voltage
(IF = 25 Adcl
(lGT = SOO mA, Ipul se = SOO Ampsl
(1.0I's after start (10% ptJ of Ipulsel
(S.O lOS afterstart (10% pt.1 of Ipulsel
IORM
IRRM
VTM
Gate Trigger Current (Continuous de)
-
VGT
VGO
IH
Circuit Commutated Turn·Off Time
(IF = SOO A, IR = 10 A, dv/dt = 20 V/l'sl
Volts
mA
mA
Volts
mA
IGT
(Anode Voltage = 7.0 Vdc, RL = 500hmsl
Gate Trigger Voltage (Continuous dcl
(Anode Voltage = 7.0 Vdc, R L = SO Ohmsl
(Anode Voltage = Rated VORM, RL = 500 Ohms, TJ = 12So CI
Holding Current
(Anode Voltage = 7.0 Vdc, Gate Open I
(Anode Voltage = 7.0 Vdc, Gate Open, T J = 125 0 CI
Units
Volts
mA
lOS
tq
(Conductive Charging Circuit - Circuit dependend
(Gate Open, T J
VII'S
dv/dt
Cri tical Exponential Rate of Rise
= 12So CI
(1)VORM for all types can be supplied on a continuous de basis without incurring damage.
Ratings apply for zero or negative gate voltage.
163
MCR 1906-1 thru MCR 1906-4 (SILICON)
THYRISTORS
SILICON CONTROLLED RECTIFIERS
PNPN
1.6 AMPERES RMS
25 thru 200 VOLTS
... designed for applications in control systems and sensing circuits
where low·level gating and holding characteristics are necessary.
•
Low·Level Gate Characteristics IGT = 1.0 mA (Max) @TC= 250 C
•
Low Holding Current - I H = 5.0 mA (Max) @ TC = 2So C
•
•
Anode Common to Case
Glass·to·Metal Bond for Maximum Hermetic Seal
MAXIMUM RATINGS IT J
=
1000C unless otherwise noted.1
Symbol
Rating
Peak Reverse Blocking
Voltage INote 1 I
Value
25
MCR1906-1
MCRI906-2
MCR1906-3
MCRI906-4
Forward Current RMS
50
100
200
ITIRMSI
1.6
Amp
ITSM
15
Amp
IAII Conduction Angle,)
Peak Forward Surge Current
lOne Cycle. 60 Hz. T J = -40 to +1 OOoC)
Unit
Volts
VRRM
No Repetition Until Thermal Equilibrium
is Restored
Peak Gate Power-Forward
PGM
0.1
Watt
PGF(AV)
0.01
Watt
Peak Gate Current-Forward
IGM
0.1
Amp
Peak Gate Voltage
VGM
6.0
Volt
TJ
-65 to +100
T stg
-65 to +150
°c
°c
°c
Average Gate Power-Forward
Operating Junction Temperature Range
Storage Temperature Range
Lead Solder Temoerature
-
+230
(>1/16" From case, 10, max.)
All JEOEC dimenstonsand notes apply_
CASE 31·03
TO-5
164
MCR1906.1 thru MCR1906·4 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted, RGK = 1000 ohms.)
Symbol
Characteristic
Peak Forward Blocking Voltage (1)
Min
Unit
Max
Volt
VORM
MCRI906·1
MCR1906·2
MCR1906-3
MCR1906·4
-
25
50
100
200
-
IORM
-
500
"A
Peak Reverse Blocking Current (3)
(Rated VRRM, TJ = 100°C)
IRRM
-
500
"A
Forward "On" Voltage (Pulsed, 1.0 ms max, Duty Cycle ";;1.0%)
(IF = 1.0 Adc peak)
VTM
-
1.75
Volt
IGT
-
1.0
mAde
(Anode Voltage = 7.0 V, R L = 100 ohms)
VGT
-
1.0
(Anode Voltage = Rated VORM, RL = 100 ohms, TJ = 100°C)
VGO
0.1
-
IH
-
5.0
Peak Forward Blocking Current
-
(Rated VORM, T J = 100°C)
Gate Trigger Current (2) (Continuous de)
(Anode Voltage = 7.0 V, RL = 100 ohms)
Volt
Gate Trigger Voltage (Continuous del
Holding Current
mA
(Anode Voltage = 7.0 V)
Turn-On Time
ton
Turn-Off Time
toft
(1)
Circu it dependent,
consult manufacturer
VRRM and VORM can be applied for all types on a continuous de basis without incurring damage. Thyristor devices shall not be tested
with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.
(2)
RGK current is not included in measurement.
(3)
Thyristor devices shall not have a positive bias applied to the gate concurrently with a negative potential applied to the anode.
FIGURE 2 - AMBIENT TEMPERATURE versus CURRENT
FIGURE 1 - CASE TEMPERATURE versus CURRENT
100 .....::--,---r--,----,---r--,----,---,
100
...
~
,.«a;
w
3
w
-'
'"~ "w
j ...::>'"
" 1li~
"«x ...
"~
«
::>
1800
«
'"
"
~ 60
«
~
w
-'
so I--+---+--t-
80
~ ...:il 40
" ...~
"«x 20
"....;:
::>
::>
50~---t---~~--1---~----1-~·~----~
40~---t---~~--1---~----1---~----+---~
0.2
0.4
O.S
0.8
10
1.2
1.4
1.S
IFIAV), AVERAGE FORWARD CURRENT lAMPS)
IFIAV), AVERAGE FORWARD CURRENT IAMPSI
165
MCR 1907-1 thru MCR 1907-6 '(SILICON)
PINt CATHODE
2. GATE
\
3, STUD ANODE
~1
Fast turn-on, fast turn-off silicon controlled rectifiers for high-frequency applications requiring blocking to 400 volts and load currents to 25 amp.
CASE 64
(TO·48)
MAXIMUM RATINGS (T.r:::::: 125°C unless otherwise noted)
Rating
Symbol
Peak Reverse Blocking VoltageMCR1907-1
-2
-3
-4
-5
VROM(rep)
Value
-
-6
Peak Reverse Blocking Voltage
(Non-Recurrent 5 ms (max.)
MCR1907-1
-2
Unit
Volts
25
50
100
200
300
400
Volts
VROM(non_rep)
35
75
150
300
400
500
-3
-4
-5
-6
Forward Current RMS
(All Conduction Angles)
It
25
12t
Circuit Fusing Consideration~
(T J = -65 to+125 0 C; t ;a 8.3 ms)
Amp
A2s
75
Peak Forward Surge Current
(One Cycle, 60 Hz, TJ = -65 to +125 0 C)
IFM(surge)
Peak Gate Power - Forward
Amp
150
P GFM
5.0
Watts
Average Gate Power - Forward
PGF(AV)
0.5
Watt
Peak Gate Current - Forward
IaFM
2.0
Amp
Peak Gate Voltage - Forward
VGFM
VGRM
10
Volts
5.0
Reverse
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque
TJ
-65 to +125
°c
Tstg
-65 to +150
°c
-
30
-VROM(rep) for all types can be applied on a continuous dc basis without incurring damage.
Ratings apply for zero or negative gate voltage.
166'
in. lb.
MCR1907·1 thru MCR1907·6 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
Symbol
Characteristic
Peak Forward Blocking Voltage*
(T J = 125 0 C)
MCR1907-1
-2
-3
-4
Min
Typ
Max
25
50
100
200
300
400
-
-
-
-
-
4.0
- -
4.0
V FOM *
-5
-6
Peak Forward Blocking Current
(Rated V FOM with gate open, T J = 1250 C)
I FOM
Peak Reverse Blocking Current
(Rated VROM with gate open, T J = 125°C)
IROM
Gate Trigger Current (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 501'1)
IGT
Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 50 12)
VGT
(Anode Voltage = Rated V FOM ' RL = 501'1, TJ = 125°C)
VGNT
Units
Volts
mA
mA
mA
-
15
30
-
1.5
0.25
-
-
12
-
-
1.4
1.7
Volts
-
Holding Current
(Anode Voltage = 7 V dc, Gate Open)
I HO
mA
Forward On Voltage
(IF = 20 Adc)
VF
Turn-On Time
(IG = 200 mA, IF = 10 A)
ton
-
0.5
-
Turn-Off Time
(IF = 10 A, IR = 10 A, dv/dt = 30 V//-IS min.)
toff
-
-
12
dv/dt
30
-
-
V//-IS
8JC
-
1.0
1.7
°C/W
Volts
/-IS
/-IS
(VFXM = rated voltage) T J = 1250 C
(VRXM = rated voltage)
Forward Voltage Application Rate
(TJ = 125 0 C, gate open)
Thermal Resistance (Junction to Case)
*VFOM for all types can be applied on a continuous dc basis without incurring damage.
Ratings apply for zero or negative gate voltage. These devices should never be tested
with a constant current source for forward or reverse blocking capability such that
the voltage applied exceeds the rated blocking voltage.
CURRENT DERATING
125
......"
110
I
'\ ~ ~
\.'
00
-.1,
I
DC. 116. 34>, 616, CIRCUIT
I
RESISTIVE OR INDUCTIVE LOAD, 50 TO 400 Hz-
~ :::-- .....
,~
30·>
r---...... ......
~
50
,
"'"' ~, ,
.......
60·'
~ 70
,2
90·'
w
i'--
.......
120·'
o
O·
r---......
u
u
"
IFIAVI AVERAGE FORWARO CURRENT lAMP)
167
I
LD
180·
~
'CONDUCTION ANGLE
.......
:-......
180·'
~
I
"- .....
DC
u
ro
n
M
U
MCR1907·1 thru MCR1907·6
(continued)
TURN·OFF TIME TEST CIRCUIT t
TYPICAL TURN·OFF TIME varsus
PEAK FORWARD CURRENT AND JUNCTION TEMPERATURE
14
12 -
llOV
01
...-t-+-'-~I-O
60 H, ""~-=~=-r'-+t-!-:"
(SELECTED
RECOVERYDIO[)£)
SCOPEIVOLTAGEI
~1O
,.
I, ~ lOA
'F~20A
I
dv/dt~30V/l"min
J---
---
I---- I--tlsTANDARD TEST VALUEl
'~ :J---
>=
~
,-~ ,-~
IF
~
IF
I
-65 -50
-25
25
50
75
100
125
T" JUNCTION TEMPERATURE (OCI
FORWARD CONDUCTING CHARACTERISTICS
::-,.
:I:==~TI~.E~--'~~======~'-'-----~~~=--
~ili!
TYPICAl~.r
~.~
I I
Forward conduction current is passed through the device
(SCR, and test device triggered on). The anode is then
driven negative (SCR. triggered on), causing reverse current
to flow. The anode-to-cathode potential goes negative with
a decrease in reverse current. Forward voltage is then ap~
plied to the anode of the device (SCR. triggered on). The
device has fully recovered when it regains its ability to block
the reapplied forward voltage.
0.5
1.0
D6--
MAXIMUM
---TJ 125"C====
TJ 25"C -
1.5
2.0
'F. INSTANTANEOUS FORWARD ON VOLTAGE (VOlTSI
t Consult manufacturer for further circuit mformation.
168
2.5
MCR2315 SERIES (SILl.CON)
MCR2614L SERIES
SILICON CONTROLLED RECTIFIERS
· .. designed for applications requiring blocking voltages through 400
volts and rms currents through 8.0 amperes. These devices are avail·
able in a choice of space-saving, economical packages for mounting
versatility.
SI LICON CONTROLLED
RECTIFIERS
B.O AMPERES RMS
25 thru 400 VOLTS
• Low Forward Voltage Drop - Typically 1.0 Volt at 5.0 A at 25 0 C
• Fast, Stable Switching Times - Typically 1.0 j.ls Turn·On, 12 j.ls
Turn·Off at 250 C
• AII·Diffused Junctions for Greater Parameter Uniformity
• Fatigue·Free Solder Construction
• Glass·to·Metal Hermetic Seal
jt~
flf~I
MCA2315
CASE 86
MAXIMUM RATINGS
Rating
Symbol
r
Peak Reverse Blocking Voltage
11)
Value
Unit
Volts
VRRM
Forward Current RMS
(All Conduction Angles)
Peak Forward Surge Current
lOne cycle. 60 Hz,
TJ=-40to+l00o C)
Forward Polarity
ITSM
Circuit Fusing Considerations
12 t
A
C
,
G
Amp
Amp
SEATING PLANE
~=
DIM
8.0
ITIRMS)
-----.
J
STUD ANODE
25
50
100
200
300
400
-2
MCR2315
-3
MCR2614L -4
-5
-6
L
I,
ill
I
_
==
STYLE'
PIN I GATE
2 CATHODE
MILLIMETERS
MIN MAX
T032UNf-2A
INCHES
MAX
MIN
-
0437
0.310
O.070TYP
0090 0110
0.4220.452
1110
7.87
1.78lYP
229
2.79
1072 11.48
1616
1549
"GO
0.610
NOTE
1. DIM "6" MEASURED AT CAN.
CASE 86
80
A 2s
ITJ = -40 to +1000C; t "';8.3 ms)
Forward Polarity
Peak Gate Power - Forward
40
PGM
5.0
Watts
Average Gate Power - Forward
PGMIAV)
0.5
Watt
Peak Gate Current - Forward
Peak Gate Voltage
Operating Junction Temperature
IGM
2.0
Amp
VGM
10
Volts
TJ
-40 to +100
°c
T stg
-40 to +150
I i,:N
U¥~
ro::~r=rl
-----.ii~ t
lL __
MCR2614L
CASE 87L
Range
Storage Temperature Range
.-~
Stud Torque IMCR2315 series)
15
°c
in. lb.
(1) VRRM for all types can be applied on a continuous de basis without incurring damage.
Ratings apply for zero or negative gate voltage.
Oevices should not be tested with a constant current source for forward or reverse
blocking capabilitv such that the voltage applied exceeds the rated blocking voltage.
j
STYLE I
PIN 1 GATE
2 CATHODE
B
3.ANODE
DIM
MI.
X
c A
10.92
-
THERMAL CHARACTERISTICS
Characteristic
Symbol
Thermal Resistance, Junction to Case
MCR2614L
Max
1.5
1.8
ReCA
Unit
°CIW
ReJC
MCR2315
MCR2614L
Thermal Resistance, Case to Ambient
Typ
50 (2 )
2.7
Q
3.0
-
°CIW
(2) Applies for the worst·cas. conditions of: (0) highest ReCA peckage configuration, Ib)
leads terminated at end points, Ic) temperature measured at hottest spot on device
(center of case bottom), and (dl still air mounting.
169
•
--
INCHES
MILLIMETERS
2.29
3.63
1.
1.B5
.43
4.57
&.97
.S
.3
.79
-
TVP
1.91
3.
6.08
-
-
-30
.D
,
D.l
1
D.430_
-
NOTES:
1. DIM. "G" MEASURED AT CAN.
2. LEAD NO.3 :t7.50 DISPLACEMENT.
CASE 87L·01
MCR2315 series, MCR2614L series (continued)
ELECTRICAL CHARACTERISTICS ITJ = 25 0 C unless otherwise noted)
Apply to all case types unless otherwise noted
Symbol
ClwHteristic
....(TJ'0"'""
.,.... "'_ '" { -1
= 100°C)
MCR2315
MCR2614L
-2
-3
-4
-5
-6
Peak Forward Blocking Current
(Ratad VORM, TJ = l000C, gata opan)
IORM
Peak Reverse Blocking Current
(Ratad VRRM, T J = l000C, gate opan)
Forward On Voltage
(IF = 5.0 Ade)
IRRM
Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vde, RL = lOOn)
IGT
Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vde, RL = 100 n)
(Anode Voltage = 7.0 Vdc, RL = 100 n, TJ
Holding Current
(Anode Voltage
VTM
Typ
Max
Unit
. Volts
25
50
100
200
300
400
-
-
-
3.0
-
-
3.0
-
1.0
1.6
-
10
40
0.2
0.6
1.5
-
-
-
10
50
-
1.0
-
-
15
30
-
-
50
-
-
-
-
-
mA
mA
Volts
mA
Volts
VGT
VGO
= 100°C)
IH
= 7.0 Vdc, gate opan)
Turn·On Time
(IF = 5.0 Ade,lGT
Min
\tORM
ton
= 20 mAde)
Circuit Commutated Turn-Off Time
UF = 5.0 Adc, IR = 5.0 Adc)
(IF = 5.0Adc,IR = 5.0 Adc, TJ = 100°C)
Critical Exponential Rate of Rise
(TJ = 100°C)
mA
#,S
tq
#,S
dv/dt
V/!"s
(1) VORM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate voltage.
Devices should not be tested with a constant current source for forward or reverse blocking capability in 8 manner that the voltage
applied exceeds the rated blocking voltage.
FIGURE 2 - TYPICAL PARAMETER VARIATIONS
versus TEMPERATURE
FIGURE 1 - CURRENT DERATING - HALF WAVE
1.6,.--,----,-------,---,----,----,
NORMALIZED IGT, VGT.IH
W
II:
::>
I-
...w~
'"w
I-
~
~
~
j
«
'"
'"x.«
::>
.;
I-
IH
1.0
2.0
3.0
4.0
5.0
6.0
7.0
0·~1..0---~25:---7-----J2'-5---:5'::0---:::75:--~100
8.0
IT, JUNCTION TEMPERATURE (DC) .
IF(AV), AVERAGE FORWARD CURRENT (AMP)
170
MCR3818-1 thru MCR3818-8 (SILICON)
MCR3918-1 thru MCR3918-8
THYRISTORS
PNPN
THYRISTORS
SILICON CONTROLLED RECTIFIERS
20 AMPERES RMS
25 thru 600 VOLTS
· .. designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder con·
trois.
•
Economical for a Wide Range of Uses
•
High Surge Current - ITSM = 240 Amp
•
Low Forward "On" Voltage - 1.2 V (Typ) @ ITM = 20 Amp
MCR3818 Series
• Practical Level Triggering and Holding Characteristics 10 mA (Typ) @ TC = 25 0 C
Rugged Construction in Either Pressfit or Stud Package
•
STYlE 1
TERM 1 CATHODE
2. GATE
MAXIMUM RATINGS
Symbol
Rating
Repetitive Peak Reverse Blocking
Voltage
MCR3818
MCR3918
Non·repetitive Peak Reverse
Blocking Voltage Its 5.0 m',)
MCR3818
MCR3918
r
r
= -40 to +100"C)
K
0,501
0.465
0.330
0.100
0,035
0.080
-
-
N
n
0.065
CASE 174'()2
TQ.203AA
IT(RMS)
20
Amp
ITSM
240
Amp
12t
235
A2,
(t= 1.0te 8.3 m,!
Peak Gate Power
Average Gate. Po'Mtr
Peak Forward Gate Current
Peak Gate Voltage
Forward
Reverse
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque (MCR3918Serie,!
PGM
5.0
Watt
PG(AV)
0.5
Watt
IGM
2.0
Amp
VGFM
10
10
STYLE 1
TERM 1 CATHODE
2 GATE
Volt,
VGRM
TJ
-40 to +100
T,tg
-40 to +150
-
°c
°c
in. lb.
30
A
B
C
15.34
14.00
20.70
F
1.40
H
2,29
10,67
9J8
6.99
2.03
1.65
12.70
K
L
(1) VRRM for all typel can be applied on a contlnuou. de basi. without Incurring damage,
n
Ratings apply for zero or negative gam voltage. Device. 'hall not have a pOtltive biu applied to the gate concurrently with. negative potential on the anode.
R
T
R
11.56
10,54
7J5
2.41
REF
12.83
CASE 175
171
0.505
0.475
0.3lI0
0.068
0,097
0.800
0.510
0.090
All JEDEC dimensions and notes apply
75
150
300
400
500
600
700
-7
(TJ
12.726 12.827
11.811 12.065
8.39
9.65
2.54
1.72
0.89
2,46
2.04
- 20.32
12,95
1.66
2.28
J
35
-6
Circuit Fusing Considerations
A
C
E
F
Volts
INCHES
MIN
MAX
MILLIMETERS
MAX
MIN
DIM
B
VRSM
-2
-3
-4
-5
Peak Surge Current (one cycle, 60 Hd
ITJ : -40 to +1 oo"C)
Unit
Volts
25
50
100
200
300
400
500
600
-2
-3
-4
-5
-6
-7
-8
-8
Forward Current RMS
Value
VRRM(I)
MCR3818-1 thru MCR3818-8, MCR3918-1 thru MCR3918-8 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Svmbol
Characteristic
Peak Forward Blocking Voltage (TJ
MCR3818
MCR3918
Peak Forward Blocking Current
= 1Oo"CI
r
= 100°C)
Peak Reverse Blocking Current
(Rated VRRM, with gate open, T J = 10o"CI
Forward "On" Voltage (lTM
= 20 A Peak)
Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 V. RL = 100 n)
Gate Trigger Voltage (Continuous del
(Anode Voltage = 7.0 V, RL = 100 n)
(Anode Voltage
= Rated
VORM, R L
Holding Current IAnode Voltage
= 100 n, T J = 1000 CI
= 7.0 V, gate open)
= 40 mAde)
Turn-On Time (td +trl (lTM = 20 Adc, IGT
, Turn-Off Time
(lTM
(lTM
Max
25
50
100
200
300
400
SOO
600
-
-
-
Unit
--
-
10RM
-
1.0
S.O
mA
IRRM
-
1.0
5.0
mA
VTM
-
1.2
I.S
Volts
IGT
-
10
40
mA
VGT
VGD
-
0.7
I.S
Volts
0.2
-
-
IH
-
10
SO
mA
ton
-
1.0
-
/-IS
-
15
25
-
dv/dt
-
50
-
eJC
-
toff
= lOA, IR. = 10 A)
= 10 A,IR = 10 A, TJ = 10o"C)
Forward Voltage Application Rate (TJ
Typ
Volts
-2
-3
-4
-5
-6
-7
-8
(Rated VORM, with gate open, TJ
Min
VORM(11
= 100°C)
Thermal Resistance, Junction to Case
/-IS
MCR3818
MCR3918
V//-Is
°C/W
-
1.5
1.6
(1) VORM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate voltage.
Devices should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds
the rated blocking'voltage.
FIGURE 1 - CURRENT DERATING
FIGURE 2 - POWER DISSIPATION
28
kc"
,/
HALF·WAVE OPERATION
180 0
0
/ 'L~
900
L
V~ ~
.=~i'~ ~ V
~o
0
0
2.0,
4.0
6.0
8.0
10
12
14
16
18
o~
o 2.0
20
IT(AV). AVERAGE FORWARD CURRENT lAMP)
~~
~
4.0
6.0
8.0
10
12
14
16
ITIAV), AVERAGE FORWARD CURRENT lAMP)
172
18
20
MCR3835-1 thru MCR3835-8 (SILICON)
MCR3935-1 thru MCR3935-8
THYRISTORS
PNPN
THYRISTORS
SILICON CONTROLLED RECTIFIERS
35 AMPERES RMS
25 thru 600 VOLTS
· .. designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder
controls.
MCR3835 Series
• Economical for a Wide Range of Uses
• High Surge Current - ITSM = 325 Amp
• Low Forward "On" Voltage - 1.2 V (Typ) @ ITM = 35 Amp
•
Practical Level Triggering and Holding Characteristics 10 mA (Typ) @TC= 25 0 C
• Rugged Construction in Either Pressfit or Stud Package
STYLE 1
TERM I CATHODE
2 GATE
MAXIMUM RATINGS
Rating
Repetitive Peak Reverse Blocking
Voltage
MCR3835
MCR3935
Symbol
r
MCR3835
MCR3935
-6
A
K
N
Q
-6
-7
-8
MILLIMETERS
MIN MAX
INCHES
MIN
MAX
12.726 12.827 0.501
11.811 12.065 0.465
8.39 9.65 0.330
2.54
0.100
0.89
1.72 0.035
2.04 2.46 0.080
20.32
- 12.95
1.66 2.28 0.065
0.505
0.475
0.380
0.068
0.097
0.800
0.510
0.090
All JED EC dImensions and notes apply
CASE 174.(J2
TO·203AA
35
75
150
300
400
500
600
700
[
Forward Current RMS
DIM
B
C
E
F
J
VQlts
VRSM
-1
-2
-3
-4
-5
Peak Surge Current
Unit
Volts
25
50
100
200
300
400
500
600
-2
-3
-4
-5
-7
-8
NonMRepetitive Peak Reverse
Blocking Voltage
(t:<:5.0 ms)
Value
VRRM(I)
IT(RMS)
35
Amp
ITSM
325
Amp
12t
435
A 2s
PGFM
5.0
PGF(AVI
0.5
Watts
Watt
IGFM
2.0
Amp
VGFM
VGRM
10
10
Volts
(One cycle, 60 Hz) (TJ =-40to+l000 C)
Circuit Fusing Considerations
(TJ=-40to+l000 C) (10 1.0 to 8.3 msl
Peak Gate Power
Average Gate Power
Peak F orW8rd~Gate Current
Peak Gate Voltage - Forward
Reverse
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque (MCR3935 Series)
SfATINGl'lANf
TJ
-4010+100
QC
Tstg
-40 to +150
°C
-
30
in. lb.
(1)VRRM for all typas can ba applied on a continuous de bali, without incurring damag•.
Ratingl apply for zero or negative gate voltage. Oevlce' shall not have a positive bla' applied
to the gate concurrentlv with a negative potential on the anode.
STYLE 1.
TERM.1.·CATHODE
2 GATE
MILLIMETERS
DIM MIN MAX
A 15.34 15.60
B 14.00 14.20
C 20.70 24.13
F
1.40 1.65
H
2.29 REF
1 . 7 11.56
K 9.78 10.54
L
.99 7.75
Q
2.03 2.41
R
1.65 REF
T 12.70 12.83
CASE 175
173
MCR3835·' thru MCR3835·8, MCR3935·' thru MCR3935-8 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Typ
Min
Symbol
Peak Forward Blocking Voltage
(TJ = l00"C)
Max
Unit
Volts
VORM(I)
25
50
100
200
300
400
500
600
-
-
-
IORM
-
1.0
5.0
mA
IRRM
-
1.0
5.0
mA
Forward "On" Voltage
(ITM = 35 A Peak)
VTM
-
1.2
1.5
Volts
Gate Trigger Current (Continuous dc)
(Anode Voltage = 7.0 V, RL = 100 n)
IGT
-
10
40
mA
Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7.0 V, RL = 100 n)
VGT
0.7
1.5
Volts
r
-2
MCR3B35
MCR3935
-3
-4
-5
-6
-7
-8
Peek Forward Blocking Current
(Rated VORM, with gate open, TJ
=
Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ
= l000C)
l00o C)
-
-
-
-
-
(Anode Voltage = Rated VOM, RL = lOOn, TJ
= l000 C)
VGO
0.2
-
-
Holding Current
(Anode Voltage = 7.0 V, gete open)
IH
-
10
50
mA
Turn·On Time (td + t r )
(ITM = 35 Adc, IGT = 40 mAdc)
ton
-
1.0
-
itS
Turn-Off Time
(ITM = 10A,IR
tott
-
15
-
25
-
dv/dt
-
50
-
VIItS
6JC
-
-
1.2
1.3
°C/W
= lOA)
(ITM = 10 A,IR = 10 A, TJ = l00"C)
Forward Voltage Application Rate
(TJ = l00"C)
Thermal Resistance, Junction to Case
MCR3B35
MCR3935
ItS
-
(1) VORM for all types can be applied on a continuous de basis without incurring qamage. Ratings apply for zero or negative gate voltage. Devices
should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the
rated blocking voltage.
'
FIGURE 2 - TYPICAL POWER DISSIPATION
FIGURE 1 - CURRENT DERATING
50
100
~
'"~
90
~C3
80
ii~
70
f
j~
<",
"'w
:>""
",,,,
~~
40
i~
..
......
0-
V.
30
~
w9
80
~~
50
~~
20
'"
S
f
30
/. V
/
1/ i
- //V//
/. ' l ' /
10
J118~
W ::..---
o~V
o
ITIAV), AVERAGE FORWARO CURRENT lAMP)
60.- 90' /
t--- ~a'~ 3D'
"5
....<3
L
180' /
~~
.,~
0:>
de
I
4.0
fa
8.0
12
16
20
24
'= CONOUCTION ANGLE
28
32
ITIAV), AVERAGE FORWARD CURRENT (AMP)
174
36
40
MD708, F (SILICON)
MD708A, AF
MD708B, BF
NPN SIL1CON ANNULAR MULTIPLE TRANSISTORS
· .. designed for use as differential amplifiers, dual high·speed
switches, front end detectors and temperature compensation ap·
plications.
•
•
Excellent Matching Characteristics @ IC = 10 mAdc
hFE1ihFE2 = 0.9 (Min) - MD70BA,AF
= 0.8 (Min) - MD7088,BF
MD708
MD708A
MD708B
Low Collector· Emitter Saturation Voltage VCE(sat) = 0.20 Vdc (Max) @ Ie = 10 mAde
•
DC Current Gain Specified from 500 /.lAde to 150 mAde
•
High Current·Gain-Bandwidth Product IT = 300 MHz (Min) @ IC = 20 mAde
•
NPN SILICON
MULTIPLE TRANSISTORS
I
STYLE "
PIN 1. COLLECTOR
Fast Switching Time ton = 35 ns (Max)
toft = 75 ns (Max)
2 BASE
3. EMITTER
4. OMITTED
S.EMITTER
6. BASE
7.COLLECTOR
a.OMITTED
MAXIMUM RATINGS
Rating
COllector-Emitter Voltage
Symbol
Value
Unit
VCEO
15
Vdc
COllector-Base Voltage
VCB
40
Vdc
Emitter~Base
VEB
5.0
Vdc
IC
200
TJ,Tstg
-65 to +200
mAde
DC
Voltage
Collector Current
Continuous
Operating and Storage Junction
Temperature Range
One Die
Both Die
Equal Power
Total Power Dissipation @TA = 25°C
550
350
600
400
3.13
2.0
3.42
2.2B
1.4
0.7
2.0
1.4
B.O
4.0
11.4
B.O
One Die
Both Die
Equal Power
mW/oC
Derate above 2SoC
MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD70BBF
Total Power Dissipation @TC= 25°C
MD70BF
MD70BAF
MD70BBF
Watts
PD
MD70B,MD70BA,MD70BB
MD7OBF,MD7OBAF,MD70BBF
CASE 654-01
mW
PD
MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD7OBB F
mW/oC
Derate above 25°C
MD70B,MD7!J8A ,MD70BB
MD7OBF,MD7OBAF,MD7OBBF
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction
to Ambient
Symbol
R8JAI11
MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD7OBBF
Thermal Resistance, Junction to Case
MD7OB,MD708A,MD708B
MD708F,MD7OBAF,MD7OBBF
°CIW
319
500
STYLE 1.
292
438
PIN 1 BASE
125
250
Ambient
87.5
125
%
83
75
40
0
(1) R()JA IS measured With the deVice soldered Into a tYPical printed CirCUit board.
MILLIMETERS
DIM
MIN
A
6.10
MAX
1.36
22
406
0.6
036
11.08
0.48
0.15
•
Junction to
Ca ..
Coupling Factors
5 BASE
2 EMITTER
4. EMITTER
°CIW
R8JC
Junction to
MD7OB,MD7OBA,MD7OBB
MD7OBF,MD7OBAF,MD7OBBF
Unit
C
0
F
G
H
K
N
•
-
2.03
1.27BSC
0.89
381
2.548SC
127
-
1 COLLECTOR
9. COLLECTOR
INCHES
MIN
0.240
-
CASE 610A·03
175
MAX
0.290
0.115 0.1
0030 0.080
0014 0019
0.0
0.00
OD50BSC
0.035
0150
DIOOase
0.050
MD708, F,A,A F,B,BF (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip deVices, coupling of heat between die occurs.
The Junction temperature can be calculated as follows:
Assuming equal thermal resistance for each die, equation (11
simplifies to:
131 ~TJl "ROIIPOI + K02 P02)
II) ~TJI "ROI POI + R02 K02 P02
Where llT Jl
IS
the change
In
junction temperature of die 1
Ro 1 and R02 IS the thermal resistance of die 1 and die 2
POl and P02
K82
IS
IS
the power dissipated
10
die 1 and die 2
the thermal coupling between die 1 and die 2.
An effectIve package thermal resistance can be defined as
follows'
Where PDT
I
For the conditions where Po 1 = P02 = POT == 2 PO. equation
(3) can be further si mplifled and by substituting Into equation (2)
results In:
IS
141 ROIEFFI" ROIl)
+ K021/2
Values for the coupling factors when either the case or the
ambient IS used as a reference are given In the table on page 1.
the total package power diSsipation.
ELECTRICAL CHARACTERISTICS ITA" 25 0 e unless otherwise notedl.
I
Characteristic
Svmbol
Min
Max
Unit
BVeEO
15
-
Vde
BVeBO
40
-
Vde
BVEBO
5.0
-
Vde
-
15
30
nAde
/lAde
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage( 1)
(lC "30 mAde, IB
= 01
Collector-Base Breakdown Voltage
(Ie" 10 I'Ade, IE
= 01
Emitter-Base Breakdown Voltage
liE
= 10l'Ade, IC = 01
Collector Cutoff Current
IVCB
IVCB
= 20 Vde,
= 20 Vde,
IE = 01
IE" 0, TA
ICBO
= 1500 CI
-
ON CHARACTERISTICS
DC Current Gainlll
IIC = 500 /lAde, VCE = 1.0 Vde)
(lC = 10 mAde, V CE = 1.0 Vdel
(lC = 100 mAde, VCE = 5.0 Vdel
(lC = 150 mAde, VCE = 5.0 Vdel
hFE
Collector-Emitter Saturation Voltage
VCElsat)
(lC
(lC
(Ie
40
40
35
20
= 10 mAde, IB = 1.0 mAdel
= 50 mAde, IB = 5.0 mAde)
= 100 mAde, IB = 10 mAdel
Bsse-Emitter Saturation Voltage
-
200
-
Vde
-
0.20
0.35
0.50
0.65
0.85
0.95
1.10
Vde
VBElsatl
(lC" 10 mAde, IB = 1.0 mAdel
(lC = 50 mAde, IB " 5.0 mAdel
(lC = 100 mAde, IB = 10 mAdel
-
(11 Pulse Test: Pulse Width'" 300 I'S, Duty Cycle'" 2.0%.
176
-
MD708,F ,A,AF ,B,BF (continued)
ELECTRICAL CHARACTER ISTICS (continued)
Svmbol
Min
Max
Unit
tr
300
-
MHz
Output Capacitance
(VCB = 10 Vde, 'E = 0, f = 100 MHz)
Cob
-
5.0
pF
Input Capacitance
Cib
-
7.0
pF
0.9
O.B
1.0
1.0
-
5.0
10
-
10
20
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 20 mAde, VCE = 10 We, f
= 100 MHz)
(VBE = 0.5 Vde, IC = 0, f = 100 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time (Figure 11
Turn-Off Time (Figure 2)
Storage Time (Figure 2)
MATCHING CHARACTERISTICS
DC Current Gain Ratio(2}
(lC = 10 mAde, VCE = 1.0 Vde)
-
hFE1/hFE2
M07OBA,AF
MD7OBB,BF
Base Votlage Differential
mVdc
i'lBE1- V BE2i
MD70BA,AF
MD70BB,BF
(lC = 10 mAde, VCE = 1.0 Vde)
Base-Emitter Voltage Differential Change
liVBE1 IVBE2 i
6TA
MD7OBA,AF
MD7OBB,BF
(lC = 10 mAde, VCE = 1.0 Vdc,
T A = _55°C to 125°C)
-
I'Vdc
(2) The lowest hFE reacting IS taken as hFE1 for this ratio.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
FIGURE 2 - STORAGE TIME TEST CIRCUIT
+10 V
+3.0 V
160
280
0.11'F
....~1'Y.O""kv--Ir-<> Scope
0.11'F
- ........1"'.5"'k..--Ir-<> Scope
5.0 k
50
toff
VB"" +16 V
5.0 k
870
-:,li
-:9li
o{l" ,,:00
+11 V
177
MD918, A, B(SILICON)
MD918F, AF, BF
NPN SILICON
MULTIPLE TRANSISTORS·
MULTIPLE SILICON ANNULAR TRANSISTORS
· .. designed for use as differential amplifiers, dual high frequency
amplifiers, front end detectors and temperature compensation
applications.
•
Low Collector· Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Max) @ IC = 10 mAdc
•
DC Current Gain - 50 (Min)
•
High Current·Gai n - Bandwidth Product fT = 600 MHz @ IC = 4.0 mAdc
@
I
IC = 3.0 mAdc
MD918
MD918A
M09188
STYLE 1:
PIN 1. COLLECTOR
2. BASE
3. EMITIER
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
4. OMITTED
Symbol
Value
Unit
VCEO
15
Vdc
Vdc.
Collector-Base Voltage
VCB
30
Emitter-Base Voltage
VEB
3.0
Vdc
IC
50
mAde
Collector Current - Continuous
Total Power DISsipatIon @ T A = 25°C
Total Power DISsipation @ T C "" 25°C
MD918,A,B
MD918F,AF,BF
Derate Above 25°C
MD918,A,B
MD918F,AF,BF
Operatmg and Storage Junction
MILL
DIM
A
B
One Die
AIiDio
550
350
600
400
mW
3.14
2.0
3.42
2.28
mW/oC
1.4
0.7
2.0
1.4
Watts
8.0
4.0
11.4
8.0
mW/oC
Po
M091B,A,B
M0918F,AF,BF
Derate Above 2SoC
MD918,A,B
M0918F,AF,BF
5. EMITTER
6. BASE
1. COLLECTOR
B. OMITTED
CASE 664-()7
E S
K
I
X
8.S1 9.40
1.15 8.51
.81 '.10
0."
0.53
5.088st
0.11 0.86
0.74 1.14
12.10
M
N
45
2.54BSC
C
D
G
H
J
Po
T J,T stg
-65'0 +200
MD918F
MD918AF
MD9188F
°c
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to
Ambient
MD918,A,8
MD918F,AF,BF
Thermal Resistance,Junction to Case
MD918,A,B
MD918F,AF,BF
Symbol
On8 Die
All Dio'
Equal Power
319
500
292
438
125
250
87.5
125
°CIW
R9JC
Junction to
Ambient
DIM
STYlE 1:
PIN 1. BASE
2. EMITTER
•. EMITTER
Junction to
c..
5. BASE
%
Coupling Factors
MD918,A,B
MD918F,AF,BF
Unit
°C/W
R9JA(1)
83
75
40
0
(11 ReJA is measured with the device soldered into 8 typical printed circuit board.
178
7. COLLECTOR
9. COLLECTOR
CASE 810A-03
A
B
C
0
F
G
H
K
N
R
MILLIMETERS
MIN MAX
6.10
1.36
0.16
..
2.
~36
M8
O.
~Iti
1.21 SSC
U9
3. I
2.
B
1.1
MD918,A,B. MD918F,AF,BF (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices. coupling of heat between die occurs.
where: PDT is the total package power dissipation.
Assuming equa' thermal resistance for each die, equation 11)
The junction temperature can be calculated as follows:
simplifies to
(3) AT Jl = R81 (POI + KB2 P02)
Where ~T J1 is the change in junction temperature of die 1
R81 and R82 is the thermal resistance 01 die 1 and die 2
POI and P02 is the power dissipated in die 1 and die 2
k62 is the thermal coupling between die 1 and die 2
For the conditions where POI = P02, PDT = 2PD,
equation (3~ can be further simplified and by substituting Into
equation (2t results in
An effective package thermal resistance can be defined as
lollows:
Values for the coupling factors when either the case or the
(2) R8IEFF) ~ AT Jl/PDT
ambient is used as a reference are given in the table on page 1.
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.)
I
Characteristic
Symbol
Min
Typ
BVCEO
'15
-
BVCBO
30
-
BVEBO
3.0
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(1)
IIc
= 3.0 mAde,
IB
= 0)
Collector-Base Breakdown Voltage
IIc
Vde
Vde
= 1.0 "Ade, IE = 0)
Emitter-Base Breakdown Voltage
liE
-
Vde
= 10"Ade,lc = 0)
Collector Cutoff Current
IVCB
IVCB
= 15 Vde,
= 15 Vde,
IE
IE
ICBO
= 0)
= 0, TA = lSOoC)
-
-
-
10
1.0
50
165
-
VCE(sat)
0.09
0.2
Vde
VBElsatl
0.86
0.9
Vde
1150
-
MHz
Cob
1.1
1.7
pF
Cib
1.15
2.0
pF
6.0
dB
nAdc
"Ade
ON CHARACTERISTICS
DC Current Gain
IIc
hFE
= 3.0 mAde, VCE = 5.0 Vdcl
Collector-Emitter Saturation Voltage
IIc
= 10 mAde,
IB = 1.0 Ade)
Base-E mitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC
= 4.0 mAde,
VCE
fy
Output Capacitance
IVCB = 10 Vde, IE
= 0, 1= 100 kHz)
Input Capacitance
IVBE = 0.5 Vde, IC
= 0, I = 100 kHz)
Noise Figure
(lC
600
= 10 Vde, 1= 100 MHz)
NF
= 1.0 mAde, V CE = 6.0 Vde, RS = 400 n, f = 60 MHz)
MATCHING CHARACTERISTICS
DC Current-Gain Ratio' 21
(lC = 1.0 mAde, VCE = 5.0 Vde)
hFE1/hFE2
MD918B,BF
MD918A,AF
Base-Emitter Voltage Differential
(lC
= 1.0 mAde,
VCE
= 5.0 Vde)
Base-Emitter Voltage Differential Gradient
(lC = 1.0 mAde, VCE = 5.0 Vde,
TA = -55 to +12SoC)
IVBE1,VBE21
MD918B,BF
MD918A,AF
<.IVBE1-VBE21
MD918B,AF,BF
L>TA
MD918A
II) Pulse Test: Pulse Width ';;;300 "s, Duty Cycle ';;;2.0%.
(2) The lowest hFE reading is taken as hFEl lor this ratio.
179
0.8
0.9
-
1.0
1.0
-
-
10
5.0
-
-
20
10
-
mVde
"V/de
°c
MD918,A,B, MD918F,AF,BF (continued)
FIGURE 2 - "ON" VOLTAGES
FIGURE 1 - DC CURRENT GAIN
0
1.0
-r-I-
,
TJ = 150~C
z
1-'
~
~
'"
ag'"
~
-
200
--
O. 8
~
~
~
40
I
1.0
I
c
>
,;
~ y~,
- - VCE=5.0V
- - - VCE=10V -
I 1111
I I
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT ImAI
20
~~
'\
30
I II
."
:z:
Ij5h~ 10 15~OC t--+-++l+l++--+--+--+A--l
:::>
I-
t;
V
c
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT ImAI
lc!J})
TJ = 250C
f=I00MHz
~ 1000
~G -1. 4t--++t-t+----jHi--+-+-+-+++4+-1--/-¥----j---1-j
/
1
.....
.:'-
:z:
....
20
30
-
c
'":::>
z
50
........
~ 700
z
~ 50
0/
I
~
~ -t.6H--H+t--f-+-f-+-H+I.I4V
-+--f--IC--H
\"
Y
;;:
; -1.8 emrSE_
!;(
~
III
1.0
FIGURE 4 - CURRENT-GAIN
BANDWIDTH PRODUCT
2000
~
I..-
VCElsal) Q IC IB = 0
0
0.5 0.7
50
-1.0 rT"T-rTT---r--,---r--'-T"""T""l""TTT-'--'---'-"""'-'j
~
1/
O. 2
FIGURE 3 - BASE·EMITTER
TEMPERATURE COEFFICIENT
~
~
VaElonl@VCE= 6.0 V
~ D. 6
w
r-..... -'l
-550C
-1.2
------
~
:; 0.4
60
20
0.5 0.7
~
VBElj') ·IIC~.i!
;;;
f'" ~
250C
100
0
I I. .! l.l
II
TJ = 250C
to
~ 300
~
~
-2.0 L....I.-11T.L..L.J,",-l_-,--",---,--,-.i.-..l.,",",",".L.L---'--'_-'--J.......J
2.0 3.0
5.0 7.0 10
50
0.5 0.7 1.0
20 30
IC. COLLECTOR CURRENT ImAI
J::'
200
3.0
0.5 0.7
1.0
2.0
FIGURE 5 - CAPACITANCE
3. 0
I I
2.0
--
~
..,w
~
~
..;
=1250~
Cob
'-
1.0
Cib
t:
..,
~
TJ
O.7
O.5
O.3
0.05
0.1
0.2
0.5
1.0
2.0
5.0
VR. REVERSE VOLTAGE IVOLTS)
180
10
20
50
3.0
5.0 7.0
10
20
30
MD 982 (SILICON)
MD'982F
MQ982
MULTIPLE SILICON ANNULAR TRANSISTORS
PNPSILICON
MULTIPLE
TRANSISTORS
· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors, and temperature compensation
applications.
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 150 mAdc
M0982
• DC Current Gain Specified 100llAdcto 150mAdc
•
I
High Current-Gain-Bandwidth Product fT = 320 MHz (Typ) @ IC = 50 mAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
50
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
Total Power Dissipation @TC :: 2SoC
B
C
SEMITTER
600
IC
OneDie
Total Power Dissipation @TA :: 2SoC
MD982
M0982F
M0982
Derate above 25°C
M0982
MD982F
M0982
A
mAde
S8A5E
7CollEtTOil
80MITIED
All Oi.
Po
mW
600
350
400
650
400
600
3.42
2.0
2.28
3.7
2.28
3.42
2.1
1.25
1.0
3.8
2.5
4.0
12
7.15
5.71
17.2
14.3
22.8
CASE 654-01
Po
-65 to +200
TJ.Tstg
DIM
SfYLEl
PlHJBASE
:::¥~:
1 COllECTOR
• COllECTOR
°C,
Symbol
MD982
MD982F
M0982
All Oi.
On.Oie Equal Powe,
ROJAll)
M0982
M0982F
M0982
Thermal Resistance, Junction to Case
270
438
292
83.3
140
175
58.3
70
43.8
D
F
G
CASE 610A-03
R
Unit
Junction to
STYLE!
PlN1CDllECToR
Ce..
211ASE
%
85
75
57
55
40
0
0
0
1 EMITTER
:
~~M~~NECTED
6 BASE
~ ~m~gg:
gBAS£
10 EMITTER
J1NCTCONNECTEO
l~ :~~T£l1
14 COLLECTOR
DIM
A
C
D
F
G
H
J
K
L
N
(1) RSJA is measured with the davice soldered into a tvplcal printed circuit board.
CASE 607·04
181
MILLIMETERS
MIN MAX
6.10
2.92
0.76
0.36
D.DB
1.27
7.36
4.0
203
0.48
0.15
asc
D.B9
3.81
2.54
sse
1.27
INCHES
MIN
MAX
0240 0290
0115 0.1
0030 0.080
0.014 0.019
0003 0.006
0.050BSC
0.035
0.150
010BSC
0.050
MQ982
°CIW
ROJC
Coupling Factor
(01-02)
jOl-Q3 or 01-04)
c
°CIW
292
500
438
Junction to
Ambient
MD982
MD982F
M0982
A
B
H
K
N
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient
K
M
N
Watts
mW/oC
Charact.. istic
H
J
mW/oC
M0982
M0982F
M0982
Derate above 25°C
M0982
MD982F
M0982
Operating and Storage Junction
T emoerature R anae
D
G
R
S
M0982, M0982F, M0982 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(1) ATJl - RBI POI
where:
+ R82 K82 P02 + RB3 KB3 P03
+RB4 KB4 PQ4
(31 ATJl = RBI (POI + KB2 P02 + Ke3 P03 + K84 P04,
Where ~,Jl is the change in junction temperature of die 1
ReI thru 4 is the thermal resistance of die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.
For the conditions where POI = P02 = P03
=P04, PDT =4PO
equation (3) can be further simplified and by substituting into
equation (21 results in
(41 RB(EFFI
An effective package thermal resistance can be defined as
follows:
PDT is the total package pOlA/er dissipation.
Assuming equal thermal resistance for each die, equation (1)
simplifies to
= RB111
+ K82 + KB3 + K841 /4
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.
(21 Re(EFFI = ATJ1/POT
ELECTRICAL CHARACTERISTICS (TA
= 25°C unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage 111
(lC = 10 mAde,lB = 01
BVCEO
50
-
-
Vde
Coliector·Base Breakdown Voltage
(lC = IOI'Ade,lE = 01
BVCBO
60
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = lOI'Ade,lc = 01
BVEBO
5.0
-
-
Vde
--
-
0.020
20
20
25
35
40
50
75
90
60
-
OFF CHARACTERISTICS
Collector Cutoff Current
IVCS = 50 Vde, IE
(VCS = 50 Vde, IE
ICBO
= 01
= 0, TA = 1500 CI
I'Ade
ON CHARACTERISTICS III
DC Current Gai n
-
hFE
(lc = 0.1 mAde, VeE = 10 Vdel
(Ie = 1.0 mAde, VCE = 10 Vdel
(lC = 10 mAde, VCE = 10 Vdel
(lC = 150 mAde, VCE = 10 Vdel
-
-
Collector-Emitter'Saturation Voltage
(Ie = 150 mAde, IS = 15 mAdei
VCE(sati
-
0.25
0.5
Vde
Base-Emitter Saturation Voltage
(lC = 150 mAde, IS = 15 mAdei
VBE(sati
-
0.88
1.4
Vile
IT
200
320
-
MHz
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHzI
Cob
-
5.B
8.0
pF
Input Capacitance
(VSE = 2.0 Vde, IC = 0, f = 100 kHzI
Cib
-
16
30
pF
DYNAMIC CHARACTERISTICS
Current-Gain -Bandwidth Product
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHzI
(1) Pulse Test: Pulse Width ";;300 I'S, Duty Cycle";; 2.0%.
182
MD984
(SILICON)
MULTIPLE SILICON ANNULAR
TRANSISTOR
PNP SILICON
MULTIPLE TRANSISTOR
... designed for use as differential amplifiers. dual general·purpose
amplifiers. front end detectors and temperature compensation appli·
cations.
•
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.18 Vde (Typ) @ IC = 10 mAde
High Current-Gain-Bandwidth Product fT = 550 MHz (Typ) @ IC = 20 mAde
iF:b
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
20
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
200
mAde
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Total Power Dissipation
@
Derate above 2SoC
@
575
3.29
625
3.57
1.8
2.5
14.3
Derate above 2SoC
PLANE
=q
-lLo
mW/oC
Watts
10.3
TJ.T stg
SEATING
mW
Po
TC - 25°C
Operating and Storage Junction
Temperature Range
Both Die
Equal Pow",
Po
TA=250C
Total Power Dissipation
One Die
'\
mW/oC
°c
-65'0 +200
STYLE 1:
PIN 1. COLLECTOR
2. BASE
3.EMITIER
4.0"UTTED
THERMAL CHARACTERISTICS
Symbol
One Die
Both Die
Equal Power,
Thermal Resistance. Junction to
Ambient
RaJAI1)
304
280
°C/W
Thermal Resistance, Junction to Case
RaJC
97
70
°C/W
Characteristic
Unit
Junction to Junction to
Ambient
Ca..
Coupling Factor
84
44
DIM
A
8
C
D
G
H
J
K
M
N
MIN MAX
Ul
9.40
7.75 B.51
3.81 4.70
0.41 0.53
5.0B BSC
0.71 0.B6
0.74 1.14
12.70
45' BSC
2.54
%
CASE 654.(17
(1) R6JA is measured with the davice soldered into 8 typical printed circuit board.
183
5. EMITIER
6. BASE
1. COLLECTOR
B. OMITTED
MD984 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction
temperatur~
where:
can be calculated as follows:
PDT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation (1)
simplifies to
Where .o.TJ 1 is the change in junction temperature of die 1
(3) "'T J1 = Re1 1P01 + Ke2 P02)
Re1 and Re2 is the thermal resistance 01 die 1 and die 2
P01 and P02 is the power dissipated in die 1 and die 2
k82 is the thermal caupl ing between die 1 and die 2
For the conditions where P01 = P02, PDT = 2PO,
equation (3) can be further simplified and by substituting into
equation (2) results in
An effective package thermal resistance can be defined as
follows:
(4) Re(EFF)
= Re1
(1 + Ke2)/2
Values for the coupling factors when either the case or the
ambient is used as
ELECTRICAL CHARACTERISTICS
I
(TA
,8
reference are given in the table on page 1.
= 250 C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)
BVCEO
20
-
-
Vde
Collector-Base Breakdown. Voltage
(IC = 10"Ade,IE = 0)
BVCBO
40
-
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
5.0
-
-
Vdc
-
-
25
30
nAde
"A de
25
75
-
-
-
0.18
0.38
0.3
0.5
0.8
0.9
Characteristic
OFF CHARACTERISTICS
(IE = 10"Ade, IC
= 0)
Collector Cutoff Current
(VCB
(VCB
ICBO
= 20 Vde, IE =·0)
= 20 Vde, IE = 0, TA = 15o"C)
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 10 mAde, VCE
hFE
= 10 Vde)
Collector-Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAde)
(lc
= 50 mAde, IS = 5.0 mAde)
Vde
VCE(sat)
(1)
8ase-E mitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)
VBE(sat)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Produetl1)
(IC = 20 mAde, VCE = 20 Vde, 1 = 100 MHz)
(1) Pulse Test: Pulse Width ';;;;300"., Duty Cycle ';;;;2.0%.
184
Vde
MD985 (SILICON)
MD985F
MULTIPLE SI LICON ANNULAR TRANSISTORS
NPN/PNP SILICON
MULTIPLE
TRANSISTORS
· .. designed for use as differential amplifiers, dual general·purpose
switches and amplifiers, front end detectors, and temperature com·
pensation amplifiers.
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 150 mAdc
M0985
• Fast Switching Times ton = 25 ns (Typ) and toff = 75 ns (Typ)
• DC Current Gain Specified 0.1 mAde to 150 mAde
•
High Current·Gain-Bandwidth Product fT = 320 MHz (Typ) @ Ie = 50 mAde
STYlE'
PIN 1
2
3
4
5.
6
COLLECTOR
BASE
EMITTER
OMITTEO
EMITTER
BASE
7 COLLECTOR
8.0MITTEO
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
VCEO
30
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
500
mAde
Operating and Storage Junction
Temperature Range
TJ,Tstg
Collector-Emitter Voltage
Total Power 0 issipation
@
T A - 25°C
-65'0 +200
A
B
C
D
G
H
J
One Die
Both Die
Equal Power
575
350
625
400
3.29
2.0
3.57
2.28
1.8
1.0
2.5
2.0
10.3
5.71
14.3
11.4
One Die
Both Die
Equal Power
304
500
280
438
K
M
N
851
940
775 851
31 4.70
0.41
053
508BSC
071
074
086
114
1270
451l BSC
254BSC
CASE 654-07
mW
Po
M0985
M0985F
mW/oC
Derate above 25°C
M0985
M0985F
Total Power Dissipation
°c
DIM
@
T C = 25°C
Watts
Po
M0985
M0985F
Derate above 2SoC
M0985
M0985F
mW/oC
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
M0985
M0985F
Thermal Resistance, Junction to Case
M0985
M0985F
Svmbol
°CIW
R8JAI11
°C/W
R8JC
97
175
70
87.5
Junction to
Junction to
Ambient
Coupling Factor
M0985
M0985F
Unit
ease
44
0
(1) R6JA is measured with the device soldered into a typical printed circuit board.
5 BASE
7 COLLECTOR
9 COLLECTOR
MILLIMETERS
%
84
75
STYLE 1
PIN 1. BASE
2. EMITTER
4. EMITTER
DIM
MIN
A
6.10
2.2
076
0.36
B
C
D
,
G
H
K
R
D."
MAX
7.36
40
203
0
0
1.27B
-
"9
381
2.54B81:
1.27
INCHES
NAX
MIN
0.240
0.115
0.030
0014
0"
MBO
0.01
.06
0.050B8C
0.035
0.150
O.I00BSC
0.050
CASE 610A·03
185
0.290
0.1
M0985,F (continued)
THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
where:
PDT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation (1)
simplifies to
(3) "T Jl = RBI IPOI + KB2 P02)
Where .o.T J1 is the change in junction temperature of dte 1
RBI and R82 is the thermal resistance of die l'and die 2
Po 1 and P02 is the power dissipated in die 1 and die 2
k82 is the thermal coupling between die 1 and die 2
For the conditions where POI = P02, PDT = 2Po,
equation (3t can be further simplifie(t'and by substituting into
equation (2) results in
An effective package thermal resistance can be defined as
follows:
(2) RBIEFF)
Values for the coupling factors when either the case or the
ambient is used as 8 reference are given in the table on page 1.
6TJ1/POT
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.)
I
Characteristic
Symbol
'I
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (1)
lie ~ 10 mAde,lB = 0)
BVCEO
30
-
-
Vde
Collector·Base Breakdown Voltage
SVCBO
60
-
-
Vde
BVEBO
5.0
-
-
Vde
-
-
20
20
nAde
"Ade
20
25
35
40
50
75
90
90
-
VCElsatl
-
0.3
0.5
Vde
VBElsat)
-
1.0
1:4
Vde
fT
200
320
-
MHz
Output Capacitance
IVeB = 10 Vde, IE = 0, f = 100 kHz)
Cob
-
5.8
S.O
pF
Input Capacitance
Cib
-
20
-
pF
ton
-
25
-
ns
toff
-
75
-
ns
IIc = 10"Ade,IE = 0)
Emitter·Base Breakdown Voltage
liE = 1O"Ade,lc = 0)
Collector Cutoff Current
ICBO
(YCB = 50 Vde, IE = 0)
IVCB = 50 Vde, IE = 0, TA = +150o C)
ON CHARACTERISTICS
DC Current Gain
(lC =
(lC·
(Ie =
(lC =
-
hFE
0.1 mAde, VeE = 10 Vde)
1.0 mAde, VCE= 10Vde)
10 mAde, VCE = 10 Vde)
150 mAde, VCE = 10 Vde)
Collector·Emitter Saturation Voltage
(lC = "50 mAde, IB = 15 mAde)
Base·Emitter Saturation Voltage
1Ir.= 150 mAde, IS = 15 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain'-Bandwidth Product
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)
MD985
IVBe= 0.5Vde,lc= O,f= l00'kHz)
SWITCHING CHARACTERISTICS
Turn·On Time
(VCC= 30 Vc;I.e,IC= 150 mAde, IBI = 15 mAde)
Turn-Qff Time
IVCC= 30 Vdc,IC· 150 mAde,lBl = IB2= 15 mAde)
(1) Pulse Test: Pul. Width <;300,,5, Duty Cycle <;2.0%.
186
MD986 (SILICON)
MD986F
MULTIPLE SILICON ANNULAR TRANSISTORS
NPN/PNP SILICON
MULTIPLE TRANSISTORS
· .. designed for use as switches, dual general'purpose amplifiers,
front end detectors and in temperature compensation applications.
•
•
•
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.3 Vde (Max) @ IC = 10 mAdc
DC Current Gain hFE = 25 (Min)@ IC = 10 mAdc
High Current·Gain-Bandwidth Product fT = 200 MHz @ IC = 20 mAde
Fast Switching Time@ IC= 150 mAde
ton = 28 ns (Typ)
toff = 72 ns (Typ)
MD986
I
MAXIMUM RATINGS
SymbOl
Value
Unit
Collector-Emitter Voltage
Rating
VCEO
15
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
200
mAde
Coliector Current - Continuous
IC
Total Power Dissipation@TA = 25°C
MD98B
MD98BF
Dorat. Above 25°C
MD98B
MD98BF
Po
Totol Power Dissipation@Tc= 25°C
MD986
MD9B6F
Derate Above 2SoC
MD98B
MD986F
Po
Operating and Storage Junction
One Die
Both Dia
EquaJPoww
550
350
BOO
3.14
2.0
3.42
2.2B
1.4
0.7
2.0
1.4
8.0
4.0
11.4
8.0
STYLE 1:
PIN 1,COLLECTOR
2. BASE
3. EMITTER
4. OMITTED
5, EMITTER
6. BASE
1. COLLECTOR
8. OMITTED
~~M~'~LL~'~~5~~~
l-DIM M
A
8.51 9.40
B 1.15 8.51
C
3.81 4.70
D 0.41 0.53
G
5.08 SSC
H 0.11 0.86
J
0.74 1.14
K 12.0
mW
II
I
400
B
2.54BSC
CASE 854-07
mW/oC
Watts
mWI"C
TJ.T.tg
-65 to +200
°c
Temperature Range
THERMAL CHARACTERISTICS
Both Die
Cllllracteriitic
Thermal Resistance, Junction to Ambient
MD98B
MD9B6F
Thermal Rllistance. Junction to Case
MD98B
MD9B6F
SymbOl
One Die
~qu"Pow..
Unit
°CIW
RSJA(1)
319
500
292
438
°CIW
RSJC
125
250
87.5
125
Junction to Junction to
Ambiont
eo.
Coupling Factors
MD98B
MD9B8F
~
~r -
%
83
75
40
0
(1) RSJA ilmeuurad with tho device loldered into a typical printed circuit bOard.
187
STYLE 1:
PIN 1. BASE
2. EMITTER
4. EMITTER
5. BASE
1. COLLECTOR
9. COLLECTOR
MlLLlIlETERS
0111
1111
MAX
A
I
C
D
S.10
U
0.16
1.38
•
D.38
121
H
I
CASE B1C1A-03
D.8B
M0986,F (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(1) ATJl
= RBl
POl
(3) ATJl = RBl (POl + KB2 P021
+ RB2 KB2 P02
Where 4.T J1 is the change in junction temperature of die 1
RBl and RB2 is the thermal resistance of die 1 and die 2
POl and P02 is tho pOwer dissipated in die 1 and die 2
KB2 is tho thermal coupling between die 1 and die 2.
An effective package thermal resistance can be defined as
follows:
(2) RB(EFF)
Assuming equal thermal resistance for each die, equation (1)
simplifies to:
For the conditions where POl = P02 = PDT = 2 PO, equation
(3) can be further simplified and by substituting into equation (2)
results in:
(4) RB(EFFI
= RBl (POl
+ KB2 P021
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.
= AT JllPOT
Where PDT is the total package power dissipation.
ELECTRICAL CHARACTERISTICS
(TA = 250 C unless otharwise noted.)
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
IIc = 10 mAde, IB = 0)
BVCEO
15
-
-
Vdc
Collector-Base Breakdown Voltage
IIc = 10"Adc,IE = 0)
BVCBO
40
-
-
Vdc
Emitter-Base Breakdown Voltage
liE = 10"Adc,IC = 0)
BVEBO
5.0
-
-
Vdc
-
-
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 20 Vdc,lE = 0)
(VCB = 20 Vdc, IE = 0, TA
ICBO
-
-
25
30
nAdc
"Adc
25
-
-
-
-
0.3
0.5
VBE(set)
-
0.9
Vdc
fT
200
320
-
MHz
Cob
-
-
4.0
pF
= 15O"C)
ON CHARACTERISTICS
DC Current Gain
IIC= 10 mAde, VCE
hFE
= 10 Vde)
Collector-Emitter Saturation Voltage
IIc = 50 mAde, IB ~ 10 mAde)
Base-Emitter Saturation Voltage
(lC
Vdc
VCE(sat)
(Ie ~ 10mAde,IB = 1.0 mAde)
= 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwldth Product
IIc = 20 mAde, VCE = 20 Vde, f
(lC = 20 mAde, VCE = 10Vde, f
= 100 MHz)
= 100MHz)
M0986F
Output Capacitance
(VCB: 10 Vde,lE = 0, f
= 100 kHz)
(1) Pulse Test. Pulse Width 0;;;3OO"s, Duty Cycle 0;;;2.0%,
188
I
MD 1120I MD 1120F(SILICON)
MDl121
MDl122
MQl120
MULTIPLE SILICON ANNULAR TRANSISTORS
NPN SILICON
MULTIPLE TRANSISTORS
.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.
•
Excellent Temperature Tracking - Dual Devices
"'IVBEI . VBE21 = O.B mVdc (Max) @-55 to +25 0 C
= 1.0 mVdc (Max) @+25 to +125 0 C
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = BO mVdc (Typ) @IC= 10 mAdc
•
DC Current Gain Specified - 10pAde to 10 mAde
•
High Current·Gain-Bandwidth Product fT = 250 MHz @ IC = 20 mAde
MD1120
MD1121
MD11221
~-
DIM
A
•
MAXIMUM RATINGS
Rating
Value
30
Unit
VCB
60
Vdc
VEB
IC
5.0
Vdc
500
mAde
Symbol
Collector-Emitter Voltage
VCEO
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Vdc
STYlE I
PIN 1 COLLECTOR
28ASE
lEMITTER
OMITTEIl
~
One Die
~ ~:1~TEII
lCOLlECTU!I
8 OMITTED
CASE 654-07
C
D
G
H
J
K
M
AU Die
IMD1120F
Equal
Power
Total Power Oisipatlon @ T A - 2SoC
MOI120.MOI121.MOI122
M01120F
M01120
Derate Abo\le 25°C
MOI120.MOI121.MOI122
MD1120F
M01120
Total Power DIssipation @ T C - 2SoC
MOI120.MDI121.MOI122
M01120F
M01120
Derate Above 2SoC
MOI120.MDI121.MOI122
MD1120F
M01120
Operating and Storage Junction
1
N
Po
575
350
400
625
400
600
mW
3.29
2.0
2.28
3.57
2.28
3.42
mwroc
1.8
1.0
0.9
2.5
2.0
3.6
Watts
10.3
5.71
5.13
14.3
11.4
20.5
mW/oC
MILLIMETERS
Po
~5
TJ, T stg
DIM
STYLE I
BASE
2 EMITTER
4 EMInER
saME
1 COLLECTOR
9CIlLLECTIlR
PIN I
CASE 610A·03
°c
to +200
A
•
MIN
610
2.91
INCHES
MAX
MIN
736
406
103
0240 0290
0115 0.1 0
0.030 0080
0.014 0019
0.003 0.006
0050 BSC
0035
0.150
0100BSC
0.050
C
D
F
0.76
G
H
K
N
127BSC
0.89
3.81
254 BSC
R
127
036
0.48
OOS
015
MAX
Temperature Range
THERMAL CHARACTERISTICS
All Die
Characteristic
Thermal Aesistance. Junction to Ambient
MD1120,MDI121.MDI122
M01120F
M01120
Thermal Resistance, Junction to Case
MDI120,MDI121.MOI122
M01120F
M01120
Symbol
One Die Equal Power
ReJAlll
304
500
438
280
438
292
°C/W
ReJC
97
175
195
Junction to
Ambient
70
B7.5
48.8
Junction to
STYlfl
PIN I COLLECTOR
2 BASE
JEMITTER
Unit
%
84
75
57
55
44
0
0
0
(1IA 9 JA IS measured with the device soldered Into a tVPlcal pnnted CirCUit board.
189
j
I
Ca..
Coupltng Factors
MOI120.MOI121.MOI122
MD1120F
M01120 101-02)
101-03 or 01-04)
Unit
°CIW
~ Er~~~:NECTEO
1 COLLECTOR
: ~~~~ECTOR
:1 ~~J:mNECTEU
!lBASE
I_COLLECTOR
DIM
•
C
D
F
G
H
J
•
L
N
R
CASE 607·04
S
0.38
762
8.38
.1
0.300
0.330
MD1120, MD1120F, MD1121 ,MD1122, MQ1120
(contjl)lJed)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die. equation (1)
simplifies to
The junction temperature can be calculated as follows:
In multiple chip devices, coupling of heat between die occurs.
(11 "TJl
= R81
(3) "TJl
POl + R92 K92 P02 + R83 K83 P03
= R91
(POl + K92 P02 + K93 P03 + K94 P04
= P02 = PD3 = PD4, PDT = 4PO
For the conditions where POl
+R84 K84 PD4
equation (3) can be further simplified and by substituting into
equation (2) results in
Where .0.1J1 is the change in junction temperature of die 1
R91 thru 4 is the thermal resistance of die 1 throu~ 4
POl thru 4 is the power dissipated in die 1 through 4
K82 thru 4 is the thermal coupling between die 1 and
die 2 through 4.
(4) R9(EFF)
= R91 (1
+ K92 + K93 + K94) 14
Values for the coupling factors when either the case or the
ambient is used as a reference afe given in the tabJe on page 1.
An effective package thermal resistance can be defined as
follows:
(2) R8(EFF) = "TJ1IPOT
where:
PDT is the total package power dissipation.
ELECTRICAL CHARACTERISTICS ITA
= 25°C unless otherwise
Characteristic
OFF
noted)
Symbo'
Min
Typ
Max
Unit
CHARACTERISTICS
Collector-Emitter Breakdown Voltage(1)
IIC
BVCED
= 10 mAde, IB = 0)
Collector-Base Breakdown Voltage
IIC
Collector Cutoff Current
= 50 Vde,
= 50 Vde,
IE
IE
= 3.0 Vde, IC = 0)
-
5.0
-
-
-
-
-
-
10
10
-
-
10
20
30
40
50
40
50
60
65
100
120
160
200
-
BO
100
-
700
B50
200
250
-
-
3.5
B.O
O.B
0.9
-
1.0
1.0
-
-
10
5.0
Vde
nAde
Base-Emitter Saturation Voltage
-
mVde
mVde
VBElsat)
= 10 mAde, IS = 1.0 mAdcl
jtAde
nAdc
VCElsatl
= 10 mAde, IS = 1.0 mAde)
Vde
Vde
hFE
Collector-Emitter ,Staruation Voltage
(lC
-
lEBO
ON CHARACTERISTICS
DC Current Gain (1)
IIC ~ 10 /lAde, VCE = 10 Vdc)
lic = 100 /lAde, VCE = 10 Vde)
lic = 1.0 mAde, VCE = 10 Vdc)
IIC = 10 mAde, VCE ~ 10 Vdc)
lic
60
ICBO
= Q)
= 0, TA = 150°C)
Emitter Cutoff Current
(VEB
-
BVEBD
= 10 jtAde, IC = 0)
IVCB
IVCB
-
BVCBO
= 10jtAde,IE = 0)
Emitter-Base Breakdown Voltage
liE
30
DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product I 1)
lic = 20 mAde, VCE = 20 Vde, f
Output Capacitance
IVCB
MHz
fT
= 100 MHz)
pF
Cob
= 10 Vdc, IE = 0, f = 100 kHz)
MATCHING CHARACTERISTICS (MDl120 MDl120F MDl121 MDl122)
DC Current Gain Ratio (2)
lic
lic
= 100 /lAde, VCE = 10 Vde)
= 1.0 mAde, VCE = 10 Vde)
hFE11hFE2
All Devices
MOl122
Base-Emitter Voltage Differential
(lc
(lC
= 100 /lAde, VCE = 10 Vde)
= 1.0 mAde, VCE = 10 Vde)
~ase-Emitter
IVBE1-V BE21
All Devices
MD1122
Voltage Differential Change
mVdc
"IVBE1- V BE21
mVde
Due to Temperature - M01121, MOl122
(lC = 100/lAde, VCE
lic = 100 /lAde, VCE
= 10 Vde, T A = -55 to +25 0 C)
= 10 Vde, TA = +25 to +12S o C)
(1) Pulse test: Pulse Width <;;300 jtS, Duty Cycle <;; 2.0%.
(2) The lowest hFE reading is taken as hFEl for this ratio
190
-
.-
-
-
O.B
1.0
MDl123 (SILICON)
MDl130
MDl130F
MULTIPLE SI LICON ANNULAR
TRANSISTORS
PNPSILICON
MULTIPLE TRANSISTORS
.. designed for use as differential amplifiers, dual general-purpose
amplifiers, front end detectors and temperature compensation
applications.
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.18 Vdc (Typ) @ IC = 10 mAdc
•
DC Current Gain Specified - 10 !lAde to 10 mAde - MD 1130,F
•
High Current-Gain-Bandwidth Product fT = 600 MHz @ IC = 20 mAde - MDl123
,
A
MD1123
MD1130
8
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
40
Vdc
STYlE!
PIN 1. COLLECTOR
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
200
mAde
2. BASE
3 EMITTER
40MlnED
5. EMITTER
6 BASE
1 COLLECTOR
• OIlITTEO
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Total Power DISSipation @ T A = 2SoC
MD1123, MD1130
MD1130F
Operating and Storage Junction
All Die
575
350
625
400
mW
3.29
2.0
3.57
2.28
mW/oC
1.8
1.0
2.5
2.0
Watts
10.3
5.71
14.3
11.4
mWfDC
-65 to +200
~DIM
G
PD
T J.T stg
+N'N
~
r;;~M~IL~'~'M~n~E~RslJ~~~ V'Y.",-;;:-, G
H
PD
Derate Above 2SoC
MD1123.MD1130
MD1130F
Total Power Dissipation@Tc =: 2SoC
MD1123. MD1130
MD1130F
Derate Above 2SoC
MD1123. MD1130
MD1130F
One Die
-ll.o
H 011
J
014
IC 1210
M
"
MIN MAX
851
940
115 851
381 41D
041 0.53
5088S
•
>-
D88
1.14
45 8 C
CASE 654-07
254BSC
°c
Temperature Range
THERMAL CHARACTERISTICS
AU Die
Characteristic
Thermal Resistance. Junction to
Ambient
Symbol
Coupling Factors
MD1123. MD1130
MD1130F
Equal Power
Unit
°C/W
ROJA(1)
MD1123. MD1130
MD1130F
Thermal Resistance.Junction to Case
MD1123, MD1130
MD1130F
One Die
304
500
280
438
97
175
70
B7.5
Junction to
Ambient
Junction to
°C/W
ROJC
ca ..
STYlE 1
PIN I BASE
2 EMITTER
4 EMITTER
Unit
%
B4
75
44
0
S BASE
1 COLLECTOR
!l COLLECTOR
R8JA is measured with the device soldered into a typical printed circuit board.
191
C
MILLIMETERS
MIN
MAX
610 1.36
2924.06
II
01
036
0.08
12
K
l
.81
1054
o
F
H
MD1130F
CASE 610-A03
(1)
DIM
A
1
2.
0.48
0.15
ISC
..
-
2.54ISC
1.27
MD1123, MD1130, MD1130F (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, equation (1)
simplifies to
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(3) ATJl = R81 IPDl + K82 PD2 + K83 PD3 + K84 PD4,
111 6TJl = R81 PD1 + R82 K82 PD2 + R83 K83 PD3
For the conditions where PDl = PD2 = PD3 = PD4, PDT = 4PD
+R84 K84 PD4
Where
~TJl
equation (3) can be further simplified and by substituting into
is the change in junction temperature of die 1
equation (2) results in
R01 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated in die 1 through 4
(4) R81EFFI = R8111 + K82 + K83 + K841 14
K02 thru 4 is the thermal coupling between die 1 and
die 2 through 4.
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.
An effective package thermal resistance can be defined as
follows:
121 R81EFFI = bTJ1/PDT
where:
PDT is the total package power dissipation.
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherWISe noted.1
I
Symbol
Min
Typ
Max
Unit
COllector-Emitter Breakdown Voltage (1)
(lC = 10 mAdc, IB = 0)
BVCEO
40
-
-
Vdc
Collector-Base Breakdown Voltage
BVCBO
60
-
-
Vde
BVEBO
~.O
-
-
Vdc
-
-
10
10
"Adc
-
-
10
nAdc
MDl130,F
60
100
-
MDll23
MDl130,F
30
100
80
170
120
300
(Ie = 1.0 mAdc, VCE = 10 Vde)
MDl130,F
100
180
-
IIC= 10 mAde, VeE = 10Vdcl
MDl123
MDl130,F
50
100
75
150
200
VeElsat)
-
0.18
0,25
Vdc
VSElsat)
-
0,8
0.9
Vdc
250
200
600
550
_.
-
MHz
-
3.5
4.0
pF
0.8
O,g
-
1.0
1.0
-
-
-
-
Characteristic
OFF CHARACTERISTICS
(lC = 10"Adc, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 "A dc, Ie = 0)
Collector Cutoff Current
ICBO
IVCB = 50 Vdc, IE = 01
IVCB = 50 Vdc, IE = 0, TA = 150°C)
Emitter Cutoff Current
IESO
nAdc
IVSE = 3,0 Vdc, IC = 01
ON CHARACTERISTICS
DC Current Gam 111
IIC= 10"Adc, VCE = 10Vdcl
(Ie = 100"Adc, VeE = 10 Vdc)
hFE
Collector-Emitter Saturation Voltage
-
-
(lC= 10mAdc, IS = 1.0Adel
Base-Emitter Saturation Voltage
(lC = 10 mAde, IS = 1.0 mAdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 20 mAde, VCE = 20 Vde, I = 100 MHzl
Output Capacitance
MDl123
MD1130,F
IT
MDl130,F
Cob
IVCS = 10 Vdc, IE = 0, I = 100 kHz)
MATCHING CHARACTERISTICS
DC Current-Gain Ratio (2)
MDl123
MDl130,F
Base-Emitter Voltage Differential
(lC = 100 "A dc, VeE = 10 Vdc)
(lC = 1.0 mAdc, VeE = 10 Vdc)
MDl123
MDl130,F
10
5.0
mVdc
LlIVBE1!VSE21
Due to Temperature - MD1121, MD1122
(lC = 100 "Adc, VCE = 10Vdc, TA =+25 to +1250 C)
MDl130,F
-
(1) Pulse test: Pulse Width <;;;3OO"s, Duty Cycle <;;;2,0%,
IS
mVdc
IVBE 1!VBE21
Base-Emitter Voltage Differential Change
(2) The lowest hFE reading
-
hFE l/hFE2
(lC = 100 "Adc, VCE = 10 Vdcl
taken as hFE 1 for this ratio.
192
-
10
MDl129(SILICON)
MDl129F
MQl129
MULTIPLE SILICON ANNULAR
TRANSISTORS
NPN SILICON
MULTIPLE TRANSISTORS
.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation applications.
Excellent Temperature Tracking - MDl129,F
LlIVBEl - VBE21 = 0.8 mVde (Max) @ -55 to +250 C
= 1.0 mVdc (Max) @ +250 C to +125 0 C
• Low Collector-Emitter Saturation Voltage VCE(sat) = 0.09 Vde (Typ) @ IC = 10 mAde - MDl129,MQl129
• DC Current Gain Specified at Low Collector Currents hFE = 60 (Min) @ IC = 10llAde
•
•
MDl129
I
High Current-Gain-Bandwidth Product fT" 250 MHz (Typ) @ IC = 20 mAde
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
SVmbol
Value
Unit
"cEO
VCB
VEB
IC
30
60
5.0
500
Vde
Vdc
One Die
Total Powsr Dissiaption
MDI129
MDII29F
MOl 129
Derate above 25°C
MDl129
MDI129F
MOl 128
@
TA
= 25°C
Total Power Dissipation @ T C = 25°C
MDI129
MDII29F
MOl129
Derate above 250C
'MD1129
MDI129F
MOl129
Operating and Storage Junction
Temperature Range
Po
Po
Vdc
mAde
"IIDie
Equal Power
o
STVLE,
"11"COLLECTOR
!i~~~~
3.29
2.0
2.28
3.57
2.28
3.42
mW/OC
1.8
1.0
0.9
2.5
2.0
3.6
Watts
14.3
11.4
20.5
-65 to +200
MILLIMETERS
mW/oC
DIM
A
B
C
°c
o
F
G
Symbol
Thermal Resistance, Junction to Ambient
MDI129
MDll29F
MOl 129
RSJA
(II
Thermal Resistance, Junction to Case
MDI129
MDII29F
MOII29
RSJC
Ona Die
All Die
Equal Power
Unit
CASE 61DA-03
MAX
MIN
736
40
2.03
0.48
0.15
0.240
0.290
0.115
0.030
0.014
0.1
0.080
0.019
sse
H
0.89
K
N
3.81
2.54 Bse
1.27
R
INCHES
MIN
6.10
2.92
0.76
0.36
0.08
121
0.003
0.050
MAX
0.006
sse
0.035
0.150
0.100
sse
0.050
Ma1129
°CIW
304
500
438
280
438
292
97
70
87.5
48.8
°CIW
175
195
Junction to Junction to
Ambient
CI..
Unit
PIN : ~~~EtTOR
%
84
75
57
55
44
0
0
0
(1) ReJA is measured with the device soldered into a typical printed circuit board.
4 NOTCOh'h'ECTED
;giK::OR
: ~mECTOR
rOEMrTTER
11 NOTCONNECUO
It EMITTER
::
ro~~ECTOR
CASE 601·04 ,
193
INCHES
MfN
MAX
STVLEr
aE"'TTER
Coupling Factors
MDI129
MDI129F
MOI129IQI·02)
(01·03 or 01·04)
J(
N
MIN MAX
8.51 9.40
7.75 8.51
3.Bl 4.10
0.41 0.53
5.08BSC
0.11 0.86
0.74 1.14
12.70
45° BSC
254BSC
mW
625
400
600
THERMAL CHARACTERISTICS
Characteristic
G
H
J
M
CASE 654-07
575
350
400
10.3
5.71
5.13
TJ,T,tg
MILLIMETE
DIM
A
B
C
0.240 0.275
.D3D O.
.01
0.019
.00
0.006
0.050BSC
0.005 0.035
0.015
0.250
0.740
0.010
A
C
0
F
G
H
J
K
L
N
R
S
7.62
'0.
B.38
f
0.30
O.
MDl129, MDl129F, MQl129 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat batw"" die occurs.
The junction temperature can be calculated as follows:
(11 oTJl = ReI POI + Re2 Ke2 P02 + Re3 Ke3 P03
where:
POT is the total package power dissipation.
Assuming equal thermal resistance for each die. equation (1),
simpl ifies to
+Re4 Ke4 PD4
(3) oTJl = ReI (POI + K82 P02 + Ke3 P03 + Ke4 P()4l
Where ~TJl is the change in junction temperature of die 1
R61 thru 4 is the thermal resistance of die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.
An effective package thermal resistance can be defined" as
follows:
For the conditions where POI = P02 = P03 = P04, POT = 4PO
equation (3) can be further simplified and by substituting into
equation (2) results in
(4) Re(EFF) = ReI (1 + Ke2 + Ke3 + Ke4) 14
Values for the.coupling -factors when either the case or the
. ambient is used as a reference are given in the table on page 1.
(2) Re(EFFi = oTJ1/POT
ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Symbol
.1
Typ
Max
.30
-
-
60
-
-
5.0
-
-
-
-
-
10
10
-
-
10
60
-
300
-
Min
Unit
OFF CHARACTERISTICS
Collector-E mitter Breakdown Voltage (11
(lc = 10 mAde, IB = 0)
BVCEO
Collector-Base Breakdown Voltage
(lC ~ 10"Ade,IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(IE = 10"Ade,lc = 0)
BVEBO
Collector Cutoff Current
- (VCB = 50 Vde, IE = 0)
(VCB = 50 Vdc, IE = 0, TA = 150°C)
-ICBO
Emitter Cutoff Current
(VBE ~ 3.0 Vde, IC = 0)
lEBO
Vde
Vdc
Vdc
-
nAdc
"Ade
nAde
ON CHARACTERISTICS
OC Current Gain (1)
(lC
(lC
(lC
(lC
hFE
= 10 "Ade, VCE = 10 Vde)
= l00"Ade, VCE = 10 Vdel
= 1.0 mAde, VCE = 10 Vde)
= 10 mAde, VCE = 10 Vde)
100
100
100
Collector-E mitter Saturation Voltage
(lC
(lC
-
Vde
VCE(sat)
= 10 mAde,lB = 1.0 mAde)
Base~E mitter
120
140
M01129,MQl129
MOl129F
Saturation Voltage
-
0.09
-
0.1
0.15
-
0.7
0.85
200
250
-
-
3.5
8.0
0.9
0.9
-
-
1.0
1.0
-
-
5.0
5.0
-
-
O.B
1.0
Vde
VBE(satl
= 10 mAde,lB = 1.0 mAde)
-
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 20 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f
fT
pF
Cob
= 100 kHz)
MHz
MATCHING CHARACTERISTICS (MD1129, MD1129F)
OC Current Gain Ratio (2)
(lC = 100 "Ade, VCE = 10 Vde)
(lC = 1.0 mAde, VCE = 10 Vdc)
Base~Emjtter Voltage Differential
mVde
IVBE1-VBE21
(lc 100 "Ade, VC6.= 10 Vde)
(lC = 1.0 mAde, VCE = 10 Vdc)
Base-Emitter Voltage Differential Change Due to Temperature
(lC = 100 "Ade, VCE
(lC = 100 "Ade, VCE
-
hFE1/hFE2
mVde
",IVBE1-VBE21
= 10 Vde, TA = -55 to +250 C)
= 10Vde, TA ='+25 to +1250 C)
(1) Pulse Test: Pulse Width';;; 300 "s, Outy Cycle';;; 2.0%
(2) The lowest hFE reading is taken as hFEl for this ratio.
MDl130
MDl130F
For Specifications, See MD 1123 Data.
194
MD2218, MD2218A (SILICON)
MD2218F, MD2218AF
MD2219, MD2219A
MD2219F, MD2219AF
MQ2218,A,MQ2219,A
MULTIPLE SILICON ANNULAR
TRANSISTORS
NPNSILICON
MULTIPLE TRANSISTORS
· .. designed for use as differential amplifiers, dual general-purpose
amplifiers, front end detectors and temperature compensation applications.
MD2218,A
MD2219,A
•
Fast Switching - MD2218A,AF, MD2219A,AF
td = 15 p.s (Max) tr = 30 p.s (Max)
ts = 250 p.s (Max) tf = 60 p.s (Max)
•
Low Collector-Emitter Saturation Voltage - MD2218AF, MD2219AF
VCE(sat) = 0.3 Vdc (Max) @ IC = 150 mAdc
DC Current Gain Specified - MD2218,A, MD2219,A
0.1 mAdc to 300 mAdc
•
•
High Current-Gain-8andwidth Product
fT = 250 MHz (Typ) @ IC = 20 mAdc
I
-ll-D
;t:
~
,N
H,>;
'<
V,,~;I
G
MILLI
DIM
A
MIN
8,51
C
3.81
!lB~l7!.7'~!8·i51~
o
• ""'"
! ~itCJOR
MAXIMUM RATINGS
M02218.A.F
MD2219,A,F
MQ2218.A
MQ2219.A
M02218AF
MD2219AF
Unit
VCEO
30
40
Vdc
Collector-Base Voltage
VCB
60
75
Vdc
Emttter-Base Voltage
VEB
50
Rating
Collector-Emitter Voltage
Collector Current - ContinUOus
Svmbol
60
One 0 ..
AllOil
Equ"row.
Total Power Dlsslpatlon@TA"'250C
Po
MD221B.A,MD2219.A
MD2218F .AF, MD2219F,Af
M02218,A, MQ2219,A
Derate Above 25 0 C
M02218,A,MD2219,A
M02218F,AF ,MD2219F,AF
MQ2218,A,M02219,A
Total Power Dlsslpatlon@Tc=-250C
625
400
600
mW
329
20
22B
357
2.28
342
mW/oC
18
10
09
25
20
3.6
Watts
MQ2218,A,MQ2219,A
Derate Above 250C
MD221B,A,MD2219,A
MD2218F ,AF ,MD2219F ,AF
M02218,A,MQ2219,A
103
571
513
143
114
205
mW/oC
N
~:~! ~:~
2.54 BSC
I
.:;1 j
.~.L
~
r-q;r'lf~. ~
u:::::=,__
DIM
....,
2 EMITTER
A
B
4 (MInER
C
1 COLLECtOR
D
• COLUCtDIL
F
G
H
K
N
CASE 610A-03
R
MILLIMETERS
MIN MAX
6.10
2 2
0.16
0.36
1.36
4.
2.03
0.48
0.08
0.15
1.21 BSe
INCHES
MIN
MAX
0.240 0.290
0.115
.1
0.0 0 0.080
0.014 0.019
aD
0.006
0_050 BSe
0.89
3.81
2.548Se
1.27
aC
-65 to +200
TJ,Tstg
~
4.10
0.41 0.53
'.08 sse
K 12.0
M
450 BSC
:'
STYlE.
PlltlWE
Po
MD2218,A,MD2219.A
MD2218F ,AF,MD2219F ,AF
Operating and Storage Junction
Temperature Range
575
350
400
G
MD2218F,AF
_ _.....- ; , - - - - , MD2219F,AF
Va,
mAde
500
'C
CASE 664-01
TES
MAX
9_40
0.035
al5IJ
0100 sse
0.050
M02218,A
MQ2219,A
THERMAL CHARACTERISTICS
CharacterIStic
Thermal ReSistance, Junction to
Ambient
Svmbol
Unit
°C!W
304
500
438
280
438
292
97
175
195
87.5
48.8
°CfW
RfjJC
Junction to
Ambl8nt
Coupling Factors
M02218,A,M02219,A
MD2218F ,AF ,MD2219F ,AF
M02218,A,M02219,A (01,02)
(01·03 or 01·04)
All Ole
Equal Power
R8JA(11
MD2218,A,MD2219,A
MD2218,F ,AF ,MD2219,F,AF
MQ2218,A,M02219,A
Thermal ReSistance, JUllCtlOn to Case
MD2218,A,MD2219,A
MD2218F ,AF,MD2219F ,AF
M02218,A.M02219,A
One Ole
70
STYlE.
PlN.COLLECTOft
2 BASE
3EMITTEA
'NOTCONllEtTEO
: ::~TEII
Junction to
84
75
57
55
CaM
44
0
0
1 COllECTOR
%
1: :~~:OR
g ~~~~~:"ECTEO
13 lASE
14 COllECTOR
D1M
A
C
o
F
G
H
J
K
6.3'
L
18.80
NO.2'
R
(1) R8JA IS measured With the device soldered Into a typical printed CirCUit board
CASE 607-04
195
S
0
7.62
a
.1
0.300
0.330
MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A
THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
I n multiple chip devices, coupling of heat bet\'Veen die occurs.
where: PDT is the total package power dissipation.
Assuming equal thermal resistance for each die. equation
simplifies to
The Junction temperature can be calculated as follows:
III ATJl = ROl PD1 + Rn K02 PD2 + R03 K03 PD3
(1)
131 t.TJl = ROl IPDl + K02 PD2 + K03 PD3 + K04 PD41
+R04 K04 PD4
= P03 = P04, PDT
Where .\.TJ1 is the change in junction temperature of die 1
Rel thru 4 is the thermal resistance of die 1 through 4
POt thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.
equation
An effective package thermal resistance can be defined as
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.
follows:
For the conditions where POl'" P02
(2)
results in
141 RolEFFI = R0111 + K02 + K03 + K041 14
121 ROIEFFI = "TJ1/PDT
'ELECTRICAL CHARACTERISTICS
ITA = 25°C unless otherwise noted I
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Collector- Emitter Breakdown Voltage {1)
IIc = 10 mAde, IS = 01
30
40
Vde
60
75
-
-
BVEBO
MD2218,A,F, MD2219,A.F. M02218,A: M02219,A
MD2218AF, MD2219AF
Collector Cutoff Current
(VCE = 50 Vde, VEBloff) = 3.0 Vdel
-
BVCBO
MD2218,A,F,MD2219,A,F,M02218,A,MD2219,A
MD2218AF, MD2219AF
Emitter-Base Breakdown Voltage
liE = 10 "Ade, IC = 01
Vde
SVCEO
MD2218,A,F, MD2219,A,F, M02218,A, M02219,A
MD2218AF, MD2219AF
Collector-Base Breakdown Voltage
IIc = lO"Adc, IE = 01
Vde
5.0
6 ..0
-
-
nAdc
ICEV
MD2218,F,MD2219,F,M02218,A
M02218A,AF,MD2219A,AF,M02219,A
20
15
-
-
-
-
30
-
-
20
35
50
45
-
25
50
55
55
-
MD2218,A,F,AF,M02218,A
MD2219,A,F ,AF ,M02219,A
35
75
65
85
-
(lC = 150 mAde, VCE = 1.0 Vdel
MD2218,A,F,AF,M02218,A
MD2219,A,F,AF,M02219,A
20
50
65
65
-
(lC = 150 mAde, VCE = 10 Vdel
MD2218,A,F,AF ,M02218,A
MD2219,A,F,AF,M02219,A
40
'100
30
120
120
300
25
30
75
75
-
Base Cutoff Current
IVCE = 50 Vde, VEB(off) = 3.0 Vdel
ON
CHARACTERIST~CS
nAdc
18L
(1)
DC Current Gain
(lC = 0.1 mAde, VCE =,10 Vde)
MD2218,A,F,AF,M02218,A
MD2219,A,F ,AF ,M02219,A
= 4PO
equation (3) can be further simplified and" by substituting into
-
hFE
(lC - 1.0 mAde, VCE ~ 10 Vdcl
MD2218,A,F,AF,M02218,A
MD2219,A,F,AF,M02219,A
IIc = 10 mAde, VCE = 10 Vdel
-
IIc = 300 mAde, VCE = 10 Vdel
MD2218,A,M02218,A
M02219,A,M02219,A
196
-
MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A
Symbol
Characteristic
Max
Typ
Min
Unit
ON CHARACTERISTICS (continued) (1)
Collector-Emitter Saturation Voltage
Vde
VCE(,.t)
IIc: 150mAdc,IS: 15 mAde)
MD221B,A,F,MD2219,A,F,MQ221B,A,MQ2219,A
MD221BAF, MD2219AF
(lC : 300 mAde, IS: 30 mAde)
MD221B,A,F,MD2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF
-
0.2
-
0.35
-
Base-Emitter Saturation Voltage
0.4
0.3
-
1.2
0.9
-
Vde
VSEI,.tl
IIC: 150 mAde, IS: 15 mAde)
MD221B,A,F ,MD2219,A, F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF
(lC : 300 mAde, IS: 30 mAde)
MD221B,A,F ,MD2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF
0.6
0.6
0.95
1.0
1.3
1.2
-
-
-
2.0
I.B
200
250
-
-
3.5
B.O
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
MHz
IT
(lC: 20 mAde, VCE : 20 Vde, I : 100 MHz
Output Capacitance
IVCB: 10 Vde, IE: 0, I : 100 kHz)
Cob
Input Capacitance
IVEB : 0.5 Vde, IC: 0, I : 100 kHz)
Cib
pF
pF
-
-
15
18
30
25
td
-
-
20
15
jlS
tr
-
-
40
30
jlS
ts
-
-
280
250
jlS
-
70
60
jlS
MD221B,A,F ,M D2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF
SWITCHING CHARACTERISTICS
Delay Time
(VCC: 30 Vde, Ie : 150 mAde,
VBEloll): 0.5 Vde, lSI: 15 mAde)
(Figure 11)
MD221B,F,MD2219,F
MD221BA,AF ,MD2219A,AF
MD221B,F,MD2219,F
MD221BA,AF ,MD2219A,AF
Rise Time
Storage Time
(VCC: 30 Vde, Ie: 150 mAde,
lSI: IB2: 15 mAde)
(Figure 12)
MD221B,F,MD2219,F
MD221BA,AF,MD2219A,AF
MD221B,F,MD2219,F
MD221BA,AF,MD2219A,AF
Fall Time
11) Pulse Test: Pulse Width <0;300
jlS,
tl
-
-
Duty Cycle <0; 2.0%.
FIGURE 1 - NORMALIZED DC CURRENT GAIN
4.0
§
3.0
N
::;
'"a~
'z"
;;:
'"....
- -
TJ=j?50L
20
-I-
I
1.0
!O~
- -
-55°C
-
iii 0.7
"'
"'
13
0.5
u
a
~
-1-
-
I-
J
-
-
--
-
-
- --
- - - - '~
-"
0.7
1.0
2.0
3.0
5.0
7.0
10
20
30
IC, COLLECTOR CURRENT ImA)
197
50
70
100
-
t'-
- "'
........
0:
0.3
0.2
0.5
I
CE ~ 1.0 V
-VCE=10V
200
-
'"
\
-"I
~
300
500
MD2218, MD2218A, MD2218F, MD2218AF(continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A
FIGURE 2 - "ON" VOLTAGES
FIGURE 3 - TEMPERATURE COEFFICIENTS
1.4
+1.6
II
II
evc L)CE~salt)
TJ =Z50C
G
I.Z
~
2!
3; +0.8
.5
1. 0
UJ
0.8
VBE(jat)@IC/IB -10
'"~
0.6
VaE@VCE
o
>
I--::;:..
e-
V
15
G
0
~
-0.8
~
1.0 V
IIII
(Z50C to 1750C)
(-55°C to IZ50C )
=>
:> 0.4
O. Z
o
1.0
Z.O
5.0
0VB for VSE
~ -1.6
VCE(,.t)@ Iclla = 10
0.5
..... 1./
§
I IIIIIII
I IIIIIII
10
ZO
50
---
100
II 1
e-
:>
~
ZOO
500
~
IIJl....--'1
-Z.4
0.5
1.0
Z.O
5.0
IC, COLLECTOR CURRENT (mA)
10
ZO
il
50
100
ZQO
500
IC, COLLECTOR CURRENT (mA)
NOISE FIGURE
= 10 Vdc, T A = 25°C)
(VCE
FIGURE 4 - FREQUENCY EFFECTS
FIGURE 5 - SOURCE RESISTANCE EFFECTS
6.0
10
5.01'\.
w
'"
=>
IC = 10"A
AS, 4.3 kil
0 1"
~ 3. 0
z
z
~.
1\
Z. 0
I"'-
II
1'1"---1'
0.5
O.Z
1.0
Z.O
5.0
10
ZO
f'
II
50
O
0.1
100
~
0.2
VCE = ZO V
TJ = Z50C
t= 100MHz
~
z
50
"i'
«
~
1'"
cl
0
"
30
~
0
V
1'1'
:---
.0
to
J:'
TJ = 25°C
t-b
,:.
~
100
Cib
100
~
50
J 11l
V
70
20
t-l'
0
y
:l:
o
10
FIGURE 7 - CAPACITANCES
j..-I-'
ZO0
«
5.0
2.0
0
t; 30Ot--
'"e-o
1.0
0.5
RS, SOURCE RESISTANCE (k OHMS)
500
'"~
V
t-
FIGURE 6 - CURRENT-GAIN-BANOWIDTH PRODUCT
5o
II
"
Z. 0
t, FREnUENCY (kHz)
N
V
f'.
z
I. 0
0
0.1
4.0
~.
IC = 100"A
AS = 1.0 kil
I)
'\
w
Y111
;~~I
-'-
V
'"
u:
5z
llJll
100"A
Ic=1.0mA
~ 6.0
=>
I-
w
'"o
J",.
B.O
I'-
~ 4.
I
t= 1.0 kHz
........
.0
.....
/
10
0.1
O.Z 0.3
,
0.5
1.0
2.0
3.0
5.0
10
20
3.0
0.1
30
0.2
0.3
0.5
1.0
2.0
3.0
REVERSE VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (mAde)
198
5.0
10
20
MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
MQ2218, MQ2218A, MQ2219, MQ2219A
SWITCHING TIME CHARACTERISTICS
FIGURE 9 - CHARGE DATA
FIGURE 8·- TURN-ON TIME
200
"\
10,000
11t,@5V
I\.
100 :\. I\v
r-,:-2,V
td@VEB(oH)'-O
10
3.0
"
'"' 500
~
'\
200
~
10
10 a
1/
~
r-.
. . . V 1.-- ....
~ ......
5.0
Vee
I-
200
100
-
50
t-.
20
30
50
Ie, COLLECTOR CURRENT (mAl
./
1000
'\
~<'
-
lellB.
2000
Vee -, 30 V
UNLESS NOTED
I"
20
TJ -- 25"C
10
5V(UNLESS NOTEDI
-f-
- I-
td@VEB(onl
30
=~
5000
TJ 25"C
lefl, --10
~
HIGH GAIN TYPES
L?WGAIN TY PES
v--
./
Vee - 30V
~
-GA, ACTIV\~~~~~t: ALL TYPES
II II
20
300
QT, TOTAL CONTRO~~
CHARGE
3.0
5.0
7.0
I
10
20
30
50 70
Ie, COLLECTOR CURRENT (mAl
zoo
100
300
FIGURE 10 - TURN-OFF BEHAVIOR
300
" ......
200
~
~ 100
>=
::j
c::
70
Q
"'"
300 ..........
,- -l'
"
,.,
~
i lel l,
+i
~
10
"'-
20
I,
11 1
20
~
10
a
a
~~
20
......
..........
............
.......
70
200
100
300
TJ
10
i
......
l"-
---
I,
......
25 C
"I
20
30
50
70
200
100
300
Ie, COLLECTOR CURRENT ImAI
Ie, COLLECTOR CURRENT ImAI
FIGURE 12 - STORAGE TIME AND FALL
TIME EQUIVALENT TEST CIRCUIT
FIGURE 11 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT
GENERATOR RISE TIME'; 2.0 ns
PW'; 200 ns
DUTY CYCLE' 2.11%
-
n H GAIN TYPES
o
50
10
0
I>
1
30
~
0
..............
[>:
20 -
lel l,
......
lell,
.........
~
"" "',
lell, -10
0"'-
......
LOW GAIN TYPES
r---- TJ ~ 25"C
10
10
~
t-.
I
~
lell,
r-o
..........
30
t--- lell,
......
:l' 50
t,
ZO a
+30 V
RISE TIME'; 2.0 ns
DUTY CYCLE· 2.0%
+30 V
200
200
9. 9V
n
SCOPE
0-
o_L-L
619
SCOPE
Rio> 100 k ohms
Cin'; lZ pF
RISE TIME.; 5.0 ns
+16ZVR;
Ain> 100 k ohms
Cin'; 12 pF
RISE TIME'; 5.0 ns
> zooOn:...J-- - -
-j--
1.0 k
lN916
-13.8 V
-3.0 V
199
MD2369, A, B(SILICON)
MD2369F, AF, BF
MQ2369
MULTIPLE SILICON ANNULAR TRANSISTORS
NPN SILICON
MULTIPLE
TRANSISTORS
· .. designed for use as differential amplifiers, dual general·purpose
switches and amplifiers, front end detectors, and temperature com·
pensation amplifiers.
• Low Collector-Emitter Saturation Voltage -'
VCE(sat) = 0.25 Vdc (Max) @ IC = 10 mAdc
•
Fast Switching Times
ton = 15 ns (Max)
toff = 20 ns (Max)
•
DC Current Gilin hFE = 40 (Min) @ IC = 10 mAdc
•
@
~;~1 :=:/A-
IC = 10 mAdc
.....,
1EAT1..
-II-D
High Current-Gain-Bandwidth Product fT = 800 MHz (Typ) @ IC = 10 mAdc
N
MAXIMUM RATINGS
Rating
Value
Symbol
Unit
VCEO
15
Vdc
Collector-Base Voltage
VCS
40
Vdc
Emitter-Base Voltage
VES
5.0
Vdc
IC
500
mAde
Coliector·Emitter Voltage
Collector Current - Continuous
One Die
Total Power Dissipation @ T A := 2SoC
M02369,A,S
M02369F,AF ,SF
MQ2369
Derate above 2SoC
M02369.A,S
M02369F ,AF ,SF
MQ2369
Po
Total Power Dissipatlon@ TC
Po
=
25°C
All Die
Equal Power
550
350
400
600
400
600
3.14
2.0
2.28
3.42
2.28
3.42
1.4
0.7
0.7
2.0
1.4
2.8
Operating and Storage Junction
.....
'CO,,",..
I RITTER
80MrtTiO
8.0
4.0
4.0
11.4
8.0
16
-65 to +200
MD2369F ,AF ,SF
"~"L
~u..,/
rLJdKl r; ~
~,
rr~~Ei~~:
.....
, COLUCTOR
'COllECTOR
°c
THERMAL CHARACTERISTICS
CASE 610A..(l3
Symbol
One Die
All Die
'
A
B
C
D
F
G
H
K
N
Temperature Range
Characteristic
!I~I~!!
DIM
mW/oC
TJ,T stg
!=~~
CASE 664.07
Watts
Derate above 2SoC
M02369,A,S
M02369F,AF ,SF
MQ2369
PlMlCOI,.UCToa
mW
mW/oC
M02369.A.S
M02369F ,AF .SF
MQ2369
"''''
R
MILLIMETERS
MIN MAX
6.10
7.36
4.06
2.2
0.76
2.03
0.36
0.48
0.15
0.08
1.27 sse
0~9
3.81
2.54 SSC
1.27
Unit
Thermal Resistance. Junction to Case
M02369,A.S
M02369F ,AF ,SF
MQ2369
°C/W
R8JA(1)
M02369,A,S
M02369F ,AF ,SF
MQ2369
319
500
438
292
438
292
125
250
250
87.5
125
62.6
Junction to
Ambiant
Junction to
°C/W
R8JC
M02369,A,S
M02369F,AF ,SF
MQ2369
IQ1-02)
(Q1-Q3 or Q1-Q4)
STYUl
!'1M ~ ~~~EtTOII
34 EMITTER
NOTCOMNECTEO
Ca ..
Coupl ing Factor
%
83
75
57
55
40
0
0
0
(1) R8JA is measured with the device soldered into a typical printed circuit board.
200
~150
MQ2369
Equal Power
Thermal Resistance, Junction to Ambient
INCHES
MI.
MAX
0.240 0.290
0.115
.1
O. 0 o. 0
0.014 0.019
0.00
O.
0.050 SSC
0.035
;m~C:OR
• COLUtTOA
1:
:~~TER
:~ :~iJ~:"Emo
138ASE
14COLLECTOII
CASE607..()4
Mil IMETERS
DIM MIN
MAX
6.10 6.99
A
C 0.16 2.03
0
0.25 0.48
F
0.08 0.15
1.21BSC
G
H
0.13 0.89
J
O.
K
6.35
L 18.80
0.25
•
R
S
1.B2
B.38
0.1008S
0.050
MD2369,A,B, MD2369F,AF,BF, MQ2369 (continued)
THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows'
(1)
Assuming equal thermal resistance for each die, equation (1)
simplifies to
131 ATJl = Rel IPOl + Ke2 P02 + Ke3 P03 + K84 P041
ATJl = R81 POl + R82 K82 P02 + R83 K03 P03
For the conditions where POl'" P02
+Re4 Ke4 P04
Where L!.TJl IS the change
ROl thru 4 IS
POl thru 4 IS
K02 thru 4 IS
die 2 through
In
= PD3
'" P04. POT
4PD
=
equation (3) can be further simplified and by substituting into
equation (21 results In
junction temperature of die 1
the thermal resistance of die 1 through 4
the power dissipated in die 1 through 4
141 RelEFFI ~ R8111 + Ke2 + Ke3 + Ke41 14
the thermal coupling between die 1 and
Values for the coupling factors when either the case or the
ambient IS used as a reference are given In the table on page 1
4.
An effective package thermal resistance can be defined as
follows'
121 RelEFFI = ATjl/POT
where
I
PDT
15
the total package power diSSipation
ELECTRICAL CHARACTERISTICS leaeh sidel ITA = 25°C unless otherWISe noted.1
I
Characteristic
Collector-Emitter Breakdown Voltage (1)
I
Min
Typ
Max
Unit
SVCEO
15
-
-
Vde
SVCBO
40
-
-
Vde
BVEBO
50
-
-
Vde
-
-
0.03
30
40
20
95
140
Symbol
IIC= lOmAde,IB= 01
Collector-Base Breakdown Voltage
IIc = lO!,Ade, IE = 01
Emitter-Base Breakdown Voltage
liE = 10!,Ade, IC = 01
Collector Cutoff Current
!,Ade
ICSO
IVCS= 20Vde, IE = 01
IVCS= 20Vde, IE= 0, TA= +150o CI
ON CHARACTERISTICS 111
DC Current Gain
-
hFE
IIc = 10 mAde, VCE = 1 0 Vdel
IIC = 10 mAde, VCE = 1.0 Vde, TA = -550 CI
Collector-EmItter Saturation Voltage
VCElsatl
-
--
0.25
Vde
VBElsatl
0.7
-
0.85
Vde
IT
500
800
-
MHz
IIc = 10 mAde, IB = 1.0 mAdel
Base-Emitter Saturation Voltage
IIc = 10 mAde, IB = 1 0 mAdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
IIc = 10 mAde, VCE = 10 Vde, I = 100 MHzl
Output Capacitance
Cob
-
-
40
pF
C,b
-
-
40
pF
ts
13
ns
ton
15
ns
toff
20
ns
IVCB = 50 Vde, IE = 0, I = 100 kHzl
I nput Capacitance
IVBE = 1.0 Vde, IC = 0, I = 100 MHzl
SWITCHING CHARACTERISTICS
Storage Time (Figure 1)
IVCC = 10 Vde, IC = 181 = 182 = 10 mAdel
Turn-On Time (Figures 2,4)
IVCC = 3.0 Vde, V8Eloffi = 1.5 Vde, IC = 10 mAde,
IBl = 3.0 mAdel
Turn-Off Time (Figures 3,5)
IVCC = 30 Vde, IC
IB2 = 1 5 mAdel
~
10 mAde, IBl
= 3.0 mAde,
MATCHING CHARACTERISTICS
DC Current Gain Ratio (2)
M02369A, M02369AF
M023698, M023698F
Base Voltage Differential
IVBE l,V8E21
IIC ~ 3 0 mAde, VCE = 1.0 Vdel
M02369A, M02369AF
M02369B, M023698 F
Base Voltage Differential Gradient
-
10
1.0
-
-
5.0
10
mVdc
!lV/oC
l>IVSE l,VSE21
l>TA
(1) Pulse Test. Pulse WIdth ~ 300 J.lS, Duty Cycle';;;; 2 0%.
IS
0.9
0.8
-
IIC = 3.0 mAde, V CE = 1.0 Vde, T A = -55 to +125 0 CI
MD2369A, M02369AF
M02369B, M023698F
(2) The lowest hFE readIng
-
hFE1/hFE2
IIc = 3.0 mAde, VCE = 1.0 Vdel
taken as hFE1 for this test
201
-
-
10
20
MD2369,A,B, MD2369F,AF,BF, MQ2369 (continued)
FIGURE 1 - STORAGE TIME TEST CIRCUIT
+10 V
980
e---=
.......
10
70
50
70
5.0
td@VBEloffi= 1 5 V
30
10
10
-I
20
Scope
I
30
50 7.0
10
T'I
20
30
20
I
30
50
70 100
-
I-10
1.0
30
ts
5.07010
20
30
50
70
100
IC. COllECTOR CURRENT ImAI
IC. COllECTOR CURRENT ImAI
FIGURE 5 - TURN-OFF TEST CIRCUIT
FIGURE 4 - TURN-ON TEST CIRCUIT
VCC= 3.0V
VCC=3.0V
270
e---._-. 0.4
- - - VCE=1.0V
- - - VCE=5.oV
0.5
1.0
2.0
5.0
10
20
50
100
o
200
0.5
0.2
11111
1.0
"ffi
t:
~
...
IC= lOrnA
-
.
0.4
~
100 rnA
JJIIjI.1
250C to 1500C ........
'OVC tor VCEI ..!)-+-t+ttftt--++.l-t.ld-ttrl-ti"itrrl;l;o-£....j
r-
$
200 rnA f-
-550Cto 250C
"-
0.2
0
0.05
~ -1.0t-H-ti-t+tt--+-+-I-+t+t+t--+--+-+1+1+1+I +111+-1-;
-!
........ I-
i\.
ILWTI
"'~ t=tlj~~~~:l:ttt~~~~2:5°tCltolll5000tC~~
~
ill-2.0
:--r-
W
>
r--
200
8
"
g
8
30rnA
100
I'I'I"Illrr1111'---'
!.1.01-H+11-tt11tt-111-+++t+tttt--+-t+1++
II++!
1111+:----\1
0.8
0.6
50
l3 +2.0 r---;"APP'L'IE'SrTFOTTR-I-c/-la'",-hF'E"-/3."-0TTTTr--~"',
TJ=250C
c
~
w
I I
2.0
5.0
10
20
IC. COLLECTOR CURRENT (rnA)
FIGURE 11 - TEMPERATURE COEFFICIENTS
FIGURE 10 - COLLECTOR SATURATION REGION
g 1.0
V
VCE("t)@ leila = 10
o. 2 =-
IC. COLLECTOR CURRENT (rnA)
;'"
70 100
1.2
200
..'"'"'"
50
30
TJ= 25°C
I-
300
15
20
10
FIGURE 9 - "ON" VOLTAGES
500
'"...
5.0 7.0
IC. COLLECTOR CURRENT (rnA)
...
i
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
la. aASE CURRENT (rnA)
~
Ova lor VaE
~~~~III#III~4-++~~~f~=;-55~~~bh
'--'-:'-:'-~IIIII,::----O,::-'--'-::!~-+---'--rlu.,.HJ...L.J.·lf.u,.,.111r-----,-,J.
_3.0,::--F
0.2
0.5
1.0
2.0
5.0
10
20
IC. COLLECTOR CURRENT ImA)
203
50
100
200
MD2904, MD2904A (SILICON)
MD2904F, MD2904AF
MD2905, MD2905A
MD2905F, MD2905AF
MQ2904 ,MQ2905A
MULTIPLE SI LICON ANNULAR TRANSISTORS
PNPSILICON
MULTIPLE
TRANSISTORS
· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors, and temperature compensation
amplifiers.
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAde
•
Fast Switching Timeston = 45 ns (Max) and toff = 130 ns (Max)
•
DC Current Gain Specified 0.1 mAde to 500 mAde
•
High Current-Gain-Bandwidth Product fT = 320 MHz (Typ) @ IC = 50 mAde
MD2904,A
MD2906,A
I
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
MD2904,F
MD2906,F
MQ2904
MD2904A,AF
MD2906A,AF
MQ2906A
Unit
VCEO
40
60
Vde
DIM
A
Collector-Base Voltage
Ves
60
Vde
Emitter-Base Voltage
VES
5.0
Vde
Collector Current
Continuous
600
IC
0 ... 010
Totlll Po_ Dillipetion • T A - 25"c
M02904,A, M02906,A
M02904F ,AF, M02906F .AF
MQ2904. M02905A
Po
-
AnDie
.......
575
350
400
625
3.29
2.0
2.28
3.57
2.28
3.42
Total Power Oissipotion@Tc=25u C
M02904,A, M02905,A
M02904F,AF. M02905F,AF
M02904. M02905A
1.8
1.0
0.9
2.5
2.0
3.6
Po
Derate above 25°C
TJ.T stg
~ ,,~'u
.L.__~-"----r
r
Thermal Resistance. Junction to
IIY-'
~~::"r
STYlE I
PIN 1 WE
2EMITTEft
: ::r
Ell
~ ~gtt~gg:
304
438
280
438
292
97
175
195
70
87.5
48.8
500
MIN
MAX
A
6.10
7.36
B
C
2.92
0.76
4.0
2.0
D
F
0.36
0.08
O.
0.1
G
CASE 610A·03
H
K
N
R
1.27 Bse
0.89
3.81
2.54 Bse
1.21
MQ2904
MQ2906A
°CIW
ReJC
Junction to
Ambient
Coupling actor
M02904,A. M02905,A
M02904F .AF. M02905F ,AF
M02904. M02905A
(01-02)
(01-03 or 01·04)
..-
DIM
°CIW
ReJA(lI
Ambient
M02904.A. M02905.A
M02904F,AF, M02906F,AF
M02904, M02906A
Thermal Resistance, Junction to Case
M02904,A. M02906.A
M02904F,AF, M02905F,AF
M02904. M02905A
0 ... _
MD2904F,AF
MD2906F,AF
~---'Ir--~-+------~
Temperature Range
THERMAL CHARACTERISTICS
K
M
CASE 654-07
DC
-65.to +200
G
H
J
Watts
14.3
11.4
20.5
10.3
5.71
5.13
&':'~,'."\:~,',:""
~ r:~~~~
PlN1COLUCTOfl
L
mWflC
M02904,A. M02906,A
M02904F,AF. M02905F,AF
M02904, M02905A
Operating and Storage Junction
...
mWflC
M02904.A, M02905,A
M02904.F,AF. M02905F,AF
M02904, M02906A
o
mAde
400
600
Derate above 25°C
o
C
STVLE!
snlEI
PIN I COLlECTOR
Junction to
2 eASE
Case
%
84
75
57
55
44
0
0
0
(11 R6JA IS measured With the device soldered Into 8 typical printed CirCUit board.
a EMmER
4 NOT CONNECTED
: ~~~~m
1 COllECTOR
BCttLLEtTOR
1~ :~:"ER
11 NOTCDNNECTED
12 EMITTER
13 eASE
'.COLLECTO"
CASE 607·04
204
DIM
A
C
0
F
G
H
J
K
L
N
R
S
MILLIMETERS
MI.
MAX
~IO
6.99
0.76 2.03
0.25
.46
0.08 0.15
1.27 BSe
0.13 0.99
0.31
6.5
18.00
0.26
7.62
8.31
O.
I
0.330
MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
MQ2905A
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
Assuming equal thermal resistance for each die. equation (1)
simpl ifias to
The junction temperature can be calculated as follo~:
II) "TJl : ReI POI + R82 K82 P02 + Re3 Ke3 P03
(3) "TJl : ReI IPOI + Ke2 P02 + Ke3 P03 + Ke4 P04)
For the condition. where POI
+Re4 Ke4 PD4
Where l\TJ1
R91 thru 4
POl thru 4
K62 thru 4
= P02: P03 :
PD4, PDT: 4PO
equation (3) can be further simplified and by substituting into
equation (2) results in
is the change in junction temperature of die 1
is the thermal resistance of die 1 through 4
is the power dissipated in die 1 through 4
is the thermal coupling between die 1 and
14) ReIEFF) : ReI II + Ke2 + K83 + Ke4) 14
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.
die 2 throult! 4.
An effective package thermal resistance can be defined as
follows:
(2) ReIEFF) : "TJ1/POT
where:
PDT is the total package power dissipation.
ELECTRICAL CHARACTERISTICS ITA: 250 C unless otherwise noted.)
(Characteristics apply to corresponding flat package, and quad type number.)
Ct.ract.istic
Symbol
Min
Typ
Max
40
-
-
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breekclown Voltage 11)
(lC: 10 mAde,IB: 0)
M02904, M02905
M02904A, M02905A
BVCEO
60
-
-
Coliector·B... Bre.kdown Voltage
IIC = 10 I'Ade, IE : 0)
BVCBO
60
-
-
Vde
Emitter-Ba.. Breekdown Voltage
(IE =10jAAde, IC: 0)
BVEBO
5.0
-
-
Vde
-
-
0.020
-
-
30
20
40
50
70
70
150
-
Collector Cutoff Current
IVCB : 50 Vde, IE : 0)
IVCB : 50 Vde, IE : 0, T A : 15o"C)
IceO
Emitter Cutoff Current
lEBO
-
Vde
I'Ade
-
30
nAde
IVBE : 3.0 Vde, IC: 0)
ON CHARACTERISTICS 11)
DC Current Gain
(lC: 0.1 mAde, VCE : 10 Vde)
(lC: 1,0 mAde, VCE: 10 Vde)
(lC
~
10 mAde, VCE: 10 Vde)
(lC = 150 mAde, VCE
(lC
=10 Vde)
= 500 mAde, VCE :
10 Vde)
-
hFE
M02904
M02904A
M02905
MD2905A
35
75
M02904
M02904A
M02905
M02905A
25
40
50
100
35
40
MD2904
MD2904A
M02905
M02905A
75
100
MD2904.A.
MD2905.A
40
100
M02904
M02904A
M02905
M02905A
20
40
30
50
Collector-Emitter Saturation Voltage
(lC: 150 mAde, IB = 15 mAde)
IIC: 500 mAde, IB : 50 mAde)
VCElsat)
B...·Emitter Saturation Voltage
(lC: 150 mAde,lB : 15 mAde)
(lC = 500 mAde, IB : 50 mAde)
VBElsat)
II) Pulse Test: Pul .. Width ';;300 I'S, Duty Cycle ';;2.0%
205
75
75
100
175
90
90
110
200
90
200
60
-
-
-
-
-
-
-
120
300
-
BO
130
150
-
-
-
0.25
0.5
0,4
1.6
-
0.88
1.0
1.3
2,6
Vde
Vde
MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
MQ29 05 A
ELECTRICAL CHARACTERISTICS (continuedl
DYNAMIC CHARACTERISTICS
Current·(l"ain-Bandwidth ProduC1l( 11
(lc ·50 mAde. VCE - 20 Vde. I· 100 MHzl
Output Capacitance
(Ves s 10 Vdc. IE = O. 1 ~ 100 kHzl
Input Capacitance
(VSE s 2.0 Vdc.le = 0;1 -IOOkHzl
IT
200
Cob
-
5.S .
S.O
pF
16
30
pF
-
-
-
-
45
12
35
130
100
40
ns
ns
ns
ns
ns
ns
Cib
SWITCHING CHARACTERISTICS
Turn.()n Time
(Vee s 30 Vde. VSE(olll = 0.5 Vdc.
Delay Time
IC -150 mAde.
(Figun. 121
Ri.Time
IBI = 15 mAdel
Turn'()ll Time
(Vce = 30 Vde.
Ie = 150 mAde.
Storage Ti me
lSI = IS2 - 15 mAdel
(Figura 131
Fall Time
t..n
td
tr
toll
to.
tl
MHz
320
-
-
-
-
-
(11 Pulse T..t: Pulse WIdth" 300 /.IS. Duty. Cycle" 2.0%.
FIGURE 1 - DC CURRENT GAIN
2.0
--
Q
~I -
-- -- - - --
~
:::;
I-'
iII:
1.0
;;:
0.7
'"z~
C!\
....
i5
II:
II:
'"
~
0.3
--
TJ =+1750 C
-- -- - -'- -r-.
-- - - - -- - -
r-r--"
-... ......
+25'C
--- .- - --
0.5
:::>
u
u
-
""""
-.-
r-- _
-
'Iii'
~
'\
.......
......
1
--VeE-IOV
---- VeE - 1.0V
"
55'C
.... ...
"
........
....
\
0.2
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
20
30
Ie. COLLECTOR CURRENT (mAl
206
50
70
100
200
300
500
MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
M02905A
FIGURE 2 - "ON" VOLTAGES
FIGURE 3 - TEMPERATURE COEFFICIENTS
2.0
II
Y.. lSAT1mw' ~
1.2
~
[ -55·C
I III
I
TO +25·C
~
I~I
0.8
~
i~F~J~I~T:
+1.0
1.1 ~
!
Y.. @Yc,
1111 I
!11I
yl_12J·!
J
11
1.6
~
+2.0
1.0Y
+25·C TO +175·C
~Jv~11111
J
II III.I.LU
I-==r-
+25"C TO +175·C
'j -I
0.4
-2.0
~rll11li
i,...o'
10
YCElSATI @ lell,
o
-3.0
0.5
1.0
2.0
5.0
10
20
50
100
0.5
500
200
1.0
2.0
5.0
20
10
50
200
100
500
Ie, COlLECTOR CURRENT \mAl
Ie, COllfCTOR CURRENT (mAl
NOISE FIGURE
VCE
= 10 V, TA· 250 C
FIGURE 4 - FREQUENCY EFFECTS
FIGURE 5 - SOURCE RESISTANCE EFFECTS
10
I I lUll
1\ 1111111
5.0
,
1\
8.0
iii
:s
I-N-+-I++H++-H-t-Hfflrt+-+l--f-t-I-ttlti
4.0
~
le- IO ,.A
3.0
2.0
t=tt=t1f!tttt:t3:~~RisB-~4.1~kk~la~3:~~
po..H-t-l++Htt-H-t-t
&.0
::>
'"u::
~
i
4.0
....z
I.b
Ie IlIA
Rs-O.Ha
o
0.1
.
II 1111
0.2
0.5
1.0
2.0
5.0
I, FREQUENCY IkHzl
I
20
0
100
50
600
II
::>
Q
Q
1\
1\
1''''
lmA
0.1
0.2
f
20
w
~I--'
~200
~
'"~
!:
V
!
/
~100
..:.
I?'
""II
I;'
VeE = 10 Vd.
Tf=l2~Cl
~
0.5
1.0
Ii
2.0
5.0
10
20
1111
50
-- -
-
10
-... ......
-... ......
C!b -
-
~J 1.1~!e
f • 100 kHz
t-..... 'e~
~
5.0
80
0.7
1.0
2.0 3.0
5.0 7.0 10
IC.COLLECTOR CURRENT (MA)
r-
c5f 7.0
/'
a:
80
0.5
100
FIGURE 7 - CAPACITANCE
30
I I
:z:
1::
I\~
~
RS,SOURCE RESISTANCE (k OHMS)
VCE = 20 Vd.
I ' 100 MHz
TJ • 25 0 C
'"i!400
.t:
IL
l00pA
FIGURE 6 - CURRENT·GAIN BANDWIDTH PRODUCT
:z:
:
10
I'
,
'a
V
V
l-l.0kHz
1\
2.0
1.0 HH-t----R"I"+'II+H-+-H-++
IIH
III-HIIIH
11-4-+4-++1#1
le-IOO,.A
I-H-+-I++H++-H-t-+ Rs -1.2 +-+-i-Htttt
IC·10;.A
20
30
3.0
0.2
50
207
0.3
0.5 0.7 1.0
2.0 3.0
5.0
VR, REVERSE VOLTAGE (VOLlSI
7.0 10
r--.
20
MD2904, MD2904A, MD2904F, MD2904AF. (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
M02905A
FIGURE 8 -
TURN ON TIME
FIGURE 9 -
",
~
~IOO
t..
so
,
,
,
" ",
~;
30
20
2000
!
700
d
500
1/
300
:".
~
- --
...
I'
5.0 7.0
20
10
30
so 70 100
Ie, COLLECTOR CURRENT ImAl
FIGURE 10 -
200
300
200
100
500
300
III
I
200
t',-ts-lIBtl
~
~
.
~
... r-..,
...
'1Iri B- 21
10
5.0 7.0
10
20
30
50 70 100
Ie, COLLECTOR CURRENT ImAl
200
300
70
SO
ICIIB = 20
1c!IB = 10"'
i"
--
-
~
10
5.0 7.0
SOD
FIGURE 12 - DELAY AND RISE
TIME TEST CIRCUIT
•
P.W. > 200 ns
tr .;;; 2.0 ns
Duty Cycle'" 2.0%.
"
100
20
III
10
20
30
50 70 100
Ie, COLLECTOR CURRENT ImAl
200
300
FIGURE 13 - STORAGE AND FALL
TIME TEST CIRCUIT
P.W. R:l1.0tJ.s
-30 V
-30 V
os
tr '" 2.0
Duty Cycle" 2.0%.
200
209
Scope
Scope
1.0 k
-3.0 V
208
500
VCC=lOV _
IBI = IB2
TJ=250 C-
30
,
300
~Ll~
"
:g
f=
200
FALL TIME
...
200
;:1:
.
30
50 70 100
Ie, COLLECTOR CURRENT ImAl
-.l -.l_Ll
300
:::i
.....
20
10
500
IBI = IB2
TJ=250 e
t111,
l.f'
llJl
5.0 7.0
FIGURE 11 -
I
1c!IB" 10 _
~
QA,ACTIVE REGION CHARGE
STORAGE TIME
III
20
Vce'lO V
:J' 250 C
1/ QT, TOTAL CONTROL CHARGE
~1000
...
500
30
~
3000
~
70
10
I
----vee =30 v, VBEloffl =2.0 V- - vee = 10 v, VBEloffl = 0 ~ le/lB = 10 .
TJ = 25 0 e
200
~
I
I III
300
>=
CHARGE DATA
SOOO
500
500
MD3250, A, F, AF (SILICON)
MD3251, A, F, AF
MQ3251
MULTIPLE SILICON ANNULAR
TRANSISTORS
PNPSILICON
MULTIPLE TRANSISTORS
.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.
•
•
Excellent Temperature Tracking - Dual Devices
LlIVBE 1 . VBE21 = O.B mVdc (Maxi @-55 to +250 C
= 1.0 mVdc (Maxi @+25 to +125 0 C
MD3250,A
MD3251,A
Low Collector· Emitter Saturation Voltage VCE(satl =O.lB Vdc (Typl @ IC =50 mAdc
•
DC Current Gain Specified - 10 /LAdc to 50 mAdc
•
High Current·Gain·Bandwidth Product fT = 600 MHz (Typl @ IC = 10 mAdc - M03251
I
MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Symbol
Value
Unit
VCEO
40
Vdc
Vce
50
Vdc
VEe
5.0
Vdc
IC
50
mAde
OnaDia
Total Power Dissipation @ T A == 2SoC
All Die
EqualPowar
Po
MD3250,A, MD3251 ,A
M03250F .AF. M03251 F .AF
M03251
!::1~~:
A
B
C
D
G
H
.....
IlIItlTTER
1 COUECTOR
IOIllITTEO
J
K
M
N
CASE 664-07
8.51
940
775 8.&1
3.81
470
0.41
0.53
5.08 Bse
0.71
0.86
0.74
114
12.70
450 BSe
2.54BSC
676
350
400
625
400
600
3.29
2.0
2.28
3.57
2.28
3.42
1.8
1.0
0.9
2.5
2.0
3.6
10.3
5.71
5.13
14.3
11.4
20.5
MD3260F,AF
MD326IF,AF
mW/oC
M03250,A, M03251,A
M03260F,AF, M03251F,AF
M03261
Po
Watts
Derate Above 25°C
DIM
mWtDC
M03250,A, M03251,A
M03250F,AF, M03251F,AF
M03251
Operating and Storage Junction
Temperature Range
snut
,.MICOLtlCTOR
mW
Derate Above 25°C
Total Power Dissipation@ TC::= 2SoC
M03250.A, M03251 ,A
M03250F,AF, M03251F,AF
M03251
MILLIME
S
Dill MIN MAX
TJ,T"9
-65 to +200
STYlE I
"Nt WE
2 EMtnER
: ::~lR
'COLLECTOR
• COLUCTOR
A
B
C
0
F
G
H
K
N
°c
CASE 610A·03
R
MILLIMETERS
MI. MAX
INCHES
MIN
MAX
6.10
0240
2.9
7.36
4.06
0.76
0.36
2.03
0.48
0030
0014
0.08
0.15
1.27 BSC
0.89
3.8-J
2.54 BSe
1.27
.115
0.290
0.1
0.080
0.019
Q003 0006
0.050 SSC
Q035
0.150
0100 BSe
0.050
THERMAL CHARACTERISTICS
All Di.
Characteristic
Symbol
Thermal Resistance, Junction to Ambient R8JA(I)
M03250,A, M03251,A
M03260F,AF, M03261F,AF
M03251
Thermal Resistance, Junction to Case
M03251,A, M03251 ,A
M03260F,AF, M03251F,AF
M03251
One Die
Equal Power
304
500
438
280
438
292
97
175
195
70
87.5
48.8
Junction to
Ambient
Junction to
°C/W
R8JC
$TVtEI
ptNICOLLECTOR
21f1SE
....,
3 EllllnER
4 NOTCOIIIIECTEO
, EM'TTER
ca.
Coupling Factors
MP3260,A, MD3261 ,A
MD3250F ,AF, MD3261 F ,AF
M03251 (01-02)
(01-03 or 0 1-04)
Unit
°C/W
%
84
75
57
55
44
0
0
0
, ...,
'COLLECTOR
ICQLLECTOR
ll1P1lnEIL
IINDTtoJIIIECTfD
12 EMITTEII
IJI4SE
14CIIlllCTOR
CASE 607-04
U) R6JA" measured with the device soldered Into a typical pnnted Circuit board.
209
INCHES
MILLIMETERS
DIM MIN MAX
MIN
MAX
A
S.10 6.9S 11.240 0.215
C o.n 2.03 0.030
0
0.25 0.41 0.010 0.019
F
0.08
G
N
0.13
0.15
0.0113 0.00II
O.05OSSC
O. 5
1.27BSC
0.89
0.006
.01
j
K
L
0.25
0.1
0.010
S.5
I.
N
R
0.25
S
I.
a.
O.
D. 0
M03250,A,AF,F, MQ3251,A,AF,F, MQ3251 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
Assuming equal thermal resistance for each die. equation (1)
simplifies to
The junction temperature can be calculated as follows:
(31 ATJl : ROl (POl + K02 P02 + K03 P03 + K04 P041
(11 ATJl : R81 POl + R82 Ke2 P02 + R83 K03 P03
For the conditions where POl: P02 = P03: P04, PDT: 4PO
+R04 K04 P04
Where 6T Jl
AlI1 thru 4
POl thru 4
K62 thru 4
equation (3) can be further simplified and by substituting into
is the change in junction temperature of die 1
is the thermal resistance of die 1 through 4
is the power dissipated in die 1 through 4
is the thermal coupling between die 1 and
equation (2) results
10
(41 RO!EFFI : R01(1 + K02 + Ko3 + K041 /4
Values for the coupling factors when either the. case or the
ambient is used as a reference are given in the ta~e on page 1.
die 2 through 4,
An effective package thermal resistance can be defined as
follows:
(21 RO(EFFI : ATJ1/ POT
where:
PDT is the total package power dissipation.
ELECTRICAL CHARACTERISTICS (TA
= 25°C unless otherwise noted'!
Characteristic
OFF CHARACTERISTICS
Colleetor·Emitter· Breakdown Voltage (1 I
(lC = 10 mAde, IB = 01
BVCEO
Collector~Base
BVCBO
Breakdown Voltage
(lC: lO/lAde, IE: 01
Emitter~Base
Vde
40
-
-
50
-
-
5.0
-
-
-
-
10
10
nAdc
-
-
-
10
nAde
Vde
Vde
BVEBO
Breakdown Voltage
(IE: 10 /lAde,lc: O)
Collector Cutoff Current
(VCB = 40 Vde, IE = 01
(VCB = 40 Vde, IE: 0, T A = 1500 CI
ICBO
Emitter Cutoff Current
(VBE = 3,0 Vde, IC = 01
lEBO
/lAde
ON CHARACTERISTICS (1)
DC Current Gain
(lC = 10 /lAde, VCE : 5.0 Vdel
hFE
M03250,A,F,AF
M03251,A,F,AF
25
50
75
100
-
M03250,A,F ,AF
M03251,A,F,AF
M03251
50
80
80
82
170
170
150
300
(lC: 100 /lAde, VCE = 5.0 Vde, T A: -55°C I
M03250,A,F ,AF
M03251 ,A,F,AF
25
50
35
75
-
M03250,A,F ,AF
M03251 ,A,F,AF
M03251
50
100
100
87
180
180
150
300
M03250,A,F ,AF
M03251,A,F,AF
M03251
50
100
100
92
190
190
M03250,A,F ,AF
M03251,A,F,AF
M03251
15
30
30
50
90
90
(lC: 100 /lAde, VCE = 5.0 Vde)
(lC
= 1.0 mAde, VCE :
(lC
= 10 mAde, VCE :
(lC
5.0 Vdel
5,0 Vdel
= 50 mAde, VCE = 5.0 Vdel
Collector-Emitter Saturation Voltage
-
300
-
Vde
VCE(sat)
(lC= 10mAde,IB = 1.0 mAdei
(Ie: 50 mAde, IB: 5,0 mAde)
Base~Emitter
-
-
-
Saturation Voltage
0.11
0.18
0.25
0.5
0.78
0.8B
0.9
1.2
Vde
VBE(sati
= 10 mAde, IB: 1.0 mAdei
(lC = 50 mAde, 'B: 5.0 mAde)
0.6
(Ie
-
(II Pulse Test: Pulse Width ";;300 I'S, Duty Cycle ";;2.0%
210
MD3250,A,AF,F, M03251,A,AF,F, M03251 (continued)
ELECTRICAL CHARACTERISTICS (continued)
Characteristic
Symbol
Min
Typ
200
250
300
600
600
600
-
-
2.5
6.0
-
6.0
B.O
0.9
0.9
-
1.0
1.0
-
3.0
5.0
5.0
Max
Unit
DYNAMIC CHARACTERISTICS
Current~Gain-Bandwidth
Product
(lC = 10 mAde, VCE = 20 Vdc, 1= 100 MHz
MHz
IT
MD3250,A,F ,AF
MD3251,A,F,AF
MQ3251
Output Capacitance
(VCB = 5,0 Vde, IE = 0, 1= 100 kHz)
Cob
Input Capacitance
Cib
pF
pF
IVBE = 1.0 Vde, IC = 0, I = 100 kHz)
MATCHING CHARACTERISTICS (MD3250A AF MD3251A AF only)
DC Current Gain Ratio 121
IIC = 100 /lAde, VCE = 5.0 Vde)
(lC = 1.0 mAde, VCE = 5.0 Vde)
hFE1/hFE2
Base-Emitter Voltage Differential
(lc = 100 /lAde, VCE = 5.0 Vdel
(lC = 10 /lAde, VCE = 5.0 Vde)
Ilc = 10 mAde, VCE = 5.0 Vde)
IV eEl Ned
Base-Emitter Voltage Differential Change
Due to Temperature
C.IVBE1 N eE21
mVde
-
-
-
mVdc
-
IIC = 100 "Adc, VCE = 5.0 Vde, TA = -55 to +25 0 C)
(lc = 100 /lAde, VCE = 5.0 Vde, TA = +25 to +125 0 C)
-
0.8
1.0
-
(2) The lowest hFE reading is taken as hFE1 for this ratio
FIGURE 1 - CAPACITANCE
FIGURE 2 - CURRENT·GAIN BANDWIDTH PRODUCT
1000
0
TJ - 25°C
G
::>
7. 0
g
-I-
~ 5. 0
f
...........
C3 3. 0
e
§
e
z
............
0.2
0.5
1.0
2.0
5.0
10
~
a
I--r-
20
100
0.2
50
/'
,/
;;;:
~ 200
Cob
1.0
V
./
Z
2. 0
1.0
0.5
400
;;;
.....
~
u'
l-
Gib
...........
:t
.....
60
:t:
.....
"'z
;:
u
-
80o-VCE - 20 Vdc
f=100MHz
0 - TJ=250C
VI' "
0.3
0.5
1.0
2.0
3.0
5.0
7.0
10
20
NOISE FIGURE VARIATIONS
IVCE = 6.0 V, T A = 25°C)
FIGURE 3 - EFFECTS OF FREQUENCY
FIGURE 4 - EFFECTS OF SOURCE RESISTANCE
SO
10
II
f = 1.0 kHz
'\.
8.0
1\
~
~
4.0
"- ......
::>
"'u:
"'
~
"'u:
"'
Rs=4.3kn
IC = 10"A
"'
~
~
6.0
10"A
~ 4.0
.......
~
2.0
Rs-1.Skn
Ic = 100"",
II
o
0.1
0.2
0.4
1.0
2.0
4.0
10
20
40
o
0.1
100
f, FREQUENCY 1kHz!
1\
........
........ ~
0.2
0.4
v ./L
V
,/
1.0
2.0
1/
'I
I'~
10O"A
I-"
4.0
10
Rs. SOURCE RESISTANCE IkOHMS)
211
'I
I
_\
.
.......
I/,
J.
IC= 1.0 mA /
I"\"
~
~- 2.0
I
II
20
40
100
MD3250,A,AF,F, MQ3251 ,A,AF,F, MQ3251 (continued)
FIGURE 5 - DC CURRENT GAIN
2.0
TJ • 125'C
........
@
N
~
'"
o
lc
1.0
""-
;;:
to
>-
~
05
=>
u
u
o
~
NORMALIZED AT IC' 10 rnA. VCE' 1.0 V
S3 - MD3250.A.F.AF
0.3
02
01
0,3
02
TYPICrFE
II
0,5
0,)
1,0
"'""
........ ~
-~5'C
~ ·0.1
z'
I'...
--
~
1
16) - MT51.AtF•
3,0
20
iQT I
50
),0
20
10
"'".....'\r-,.
~
\
30
50
IC. COLLECTOR CURRENT (rnA)
FIGURE 7 - TEMPERATURE COEFFICIENTS
FIGURE 6 - "ON" VOLTAGE
1.0
-
IITJ'25'C
It JI
0,8
VBE(sat
~
@ Icils
- 10
f..-r'""
o
;:: 0,6
w
to
~
o
>
0, 4
:>
0, 2
-
VCE("t) @ IcllB • 10
o
II
0,5 0.1 10
2,0
3,0
5,0 ),0
10
20
30
50
IC. COLLECTOR CURRENT (rnA)
MD3250
IC. COLLECTOR CURRENT (rnA)
FIGURE 8 - COLLECTOR SATURATION REGION
1,0 rTrTTTTTTrT""----,----,-.--rnrrrr---t-,--,---n-rrnr---,
\
II III
to
~ 0,6
<5
o 0.6
10mA_
~25mA
'"
~
0
02
\
~
-
0
u
ul
0.02
0.05
0.1
~
~ O. 4
\
--
0.5
1.0. 2,0
0.2
lB. BASE'CURRENT (mAl
't;" o.
~
2
8
w
u
0
o
5.0
10
>
20
212
\
\
,~
"-
~
om
(
~50mA
w
~ 0.4
>
Ic·2.0mA
>
'"w
u
.
~
25 rnA -------\
\ 50 rnA) +t++tt-----t
II
((
TJ' 25'C
w
>
'"
~
(
~ 0.8
to
10 mA
\
~
g
o,sl-+l+H-Iti++--+-+-t+++++t--1rl--+ ~J! J5W r-~
I
IC',
20 m.
A-
MD3251. MQ3251
1.0
0,02
0,05
0.1
0.2
0.5
1.0
lB. BASE CURRENT (mA)
\
\
-
........
2.0
5.0
10
MD3409 (SILICON)
MD3410
NPN SILICON ANNULAR
MULTIPLE TRANSISTORS
NPN SILICON
MULTIPLE TRANSISTORS
· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.
,
• Excellent Temperature Tracking - MD3410 61 VBE1,VBE21 = 0.8 mVdc (Max) @TA = -55 to +25 0 C
= 1.0 mVdc (Max) @ TA = +25 to +125 0 C
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.15 Vdc (Max) @ IC = 10 mAdc
•
Low DC Current Gain hFE = 20-100@ IC = 10 /lAdc - MD3410
•
High Current-Gain-Bandwidth Product fT = 250 MHz (Typ) @ IC = 20 mAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
30
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
SOD
mAde
TJ,Tstg
-65 to +200
°c
Collector-Emitter Voltage
Collector-Current
Operating and Storage Junction
Temperature Range
= 2SoC
Total Power DIssipatIon @TA
PD
Derate above 2SoC
Total Power Dissipation @ TC
= 2SoC
PD
Derate above 25°C
One
Both Die
Die
Power
575
3.29
3.57
mW
mW/oC
1.8
10.3
2.5
14.3
Watts
mWfOC
Equal
625
STYL"-,
PIN' COLLECTOR
2 BAS"-
THERMAL CHARACTERISTICS
3 "-MITUR
One
Characteristic
Thermal ReSIstance, Junction to Ambient
Thermal Resistance. JunctIon to Case
4 OMITIED
Both Die
Equal
Symbol
Die
ROJA(I)
304
Power
280
°C/W
97
70
°CIW
ROJC
(1) R9JA
IS
84
44
measured With the device soldered into a typical printed circuit board.
213
"-MITTER
BASE
COLl"-CTOR
OM1TTEO
Unit
DIM MIN
A 851
B 115
MAX
940
851
C
381
410
041 053
503BSC
0.11 0.86
J
014 114
II. 1210
M 450 BSC
N
S4BSC
o
Junction Junction
to Ambient to Case
Coupling Factors
5
6
1
8
G
H
%
CASE 654-07
MD3409, MD3410 (continued)
THERMAL CDUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as fOllows:·
Assuming equal thermal resistance for each die, equation (1)
simplifies to:
(3) -
I---- VBf(sat)~O
100
200
1
"Applies for leIla'" hFE/4
1000e to 1750e
S+o 8
~ . t-- ·'eve'tor Ve'E(sa~)
~
o
25 DC to 1000
i3
-l-
~
.£>(1
-55 DC to 250C
0
8
«
w
VBE(on)@ VCE = 1.0 V
>
~ 0.4
0.2 I----
~.OA
">
1.2
~ 0.6 I----
400 mA
TJ = 25°C
FIGURE 4 - TEMPERATURE COEFFICIENTS
+1. 6
TJ=250C
~O.8
\
\
14
>
100mA
JJl
Jl
0.6
>
5.0
IIII
Illl
Ic=20mA
~
~
2.0
II I
II I
>
o
r-
-55°
1.0
~
o
. . r:::~
V
~
z 100
FIGURE 2 - COLLECTOR SATURATION REGION
en
VC~(sat) ~ ICiI'B
~-o. 8
~
I
I
~-1. 6.
j..--
'10 '
....
30
III
?
II
20
-55DC to 250 C
0VB for VBE
W
-24
50 70 100
200 300
IC. COLLECTOR CURRENT (mA)
10
500 700 1000
20
30
2.0
~
....
O. 6
'"~
O. 2
~ 0.4
1""-...
r------ TJ =200 0 e
-
o
~
O. 1
de
-Bonding Wire Limit
Second Breakdown limit
...........
t-"
'~
~ 0.06 ~(Note:
~~~r~~~a~~~i~~~"l ~e:r~:~ be
EO.04
0.02
2.0
4.0
6.0
8.0 10
20
VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)
217
I 25 0e to TOOoe
50 10 100
200 300
Ie. eOLLECTOR eUR RENT (mA)
FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
0:: 1.0
--
...~
=-"'i oooe to 175 0e
40
I I
11
500 700 1000
MD3467 ,F, MQ3467 (continued)
FIGURE 6 - TURN'()N TIME
200
100
r-..
FIGURE 7 - RISE AND FALL TIME
200
lc/lB'10
I~
'\,
.
w
'"
1=
30
"' "- .......
20
20
30
"
w
"
1,@VCC·l0V
~
........
N-+l
""'-~ .....
1= 30
r--....
VCC' 30 V
........
10
10
500 100 1.0 k
20
30
200
- r--
i-?' <::
TJ·25'C
- --
--
-
') Ic/IB' 20
IC/IB'10?
0
---
TJ'150'C
100
20
30
70
;
50
~ 1'.
I'-. "
...,.
Ic/1B'10 :.-
'"
50 10 100
200 300
Ic. COLLECTOR CURRENT (mAl
20
20
500 100 1.0 k
30
59
Rise Time ~5 ns
Pulse Width'" 0.5 IlS
Dutv Cycle"" 2%
O.lIlF
~
1
-30U
50
~
30
z
lN916o'
n
oquiv.
-=
::s.
--
f'. t-
r-
50 10 100
200 300
IC. COLLECTOR CURRENT (rnA)
"Cii;-.
50
n
.5
300 n
-
500 100 1.0 k
FIGURE 11 - CAPACITANCE
IB1: IB2: 50mA
300n
Ic/lB-io
10
-30 V
+27.7 V
f-TJ • 150'C
"I
1-<'
........
"'-
Vec' .10 V
IB1' IB2
TJ' 25'C
-
'.
..... "
FIGURE 10 - SWITCHING TIME TEST CIRCUIT
Ie: 500mA
500 100 1.0 k
-
.......... "-
,,;. 30
t's trT/Btf
20
10
-
50 10 100
200 300
COLLECTOR CURRENT (rnA)
I'-l. . .,
:E
lBl- IB2
0
~
.
.~
......
0
1,/
-.u.
FIGURE 9 - FALL TIME
FIGURE 8 - STORAGE TIME
0
~ r-..
IC/rli
I'-..
50 10 100.
200 300
IC. COLLECTOR CURRENT (mAl
400
II
......... r---..
20
2.0 v..........
Id@IVBE/,ffl;,
10
10
0
.
1
~
- 25'C
I-TJ-150'C
0
1,@VCC-30V
~
"-
~I-- I-TJ
--
~~,
100
10
-;;
.5 50
~,
TJ·25'C
TJ 25'e
I--.....
20
~
~
;'\
u'
In
,
'r--
10
1.0
0.04 0.06 0.1
Out
218
I--0.2
0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
40
MD3725 (SILICON)
MD3725F
MQ3725
NPN SILICON
MULTIPLE
TRANSISTORS
MULTIPLE SILICON ANNULAR TRANSISTORS
· .. designed for use as differential amplifiers, dual high·current
amplifiers, switching and temPerature compensation applications.
•
Collector-Emitter Breakdown Voltage BVeEO = 40 Vdc (Min) @ Ie = 10 mAde
•
Guaranteed Fast Switching Times @ Ie = 500 mAde
ton = 20 ns (Typ)
toff = 50 ns (Typ)
•
Guaranteed DC Current Gain hFE = 30 (Min) @ IC = 500 mAde
MD3725
MAXIMUM RATINGS
Ratin.
Voltage
Collector-Base Voltage
Coliector~Emitter
Emitter-Base Voltage
Collector Current - Continuous
Operating and Storage Junction
Temperature Range
ISvmbol
Value
Unit
VCEO
40
V"R
65
Vdc
Vdc
V~R
6.0
Vdc
Ie
1.0
Adc
T J,Tstg
-6510 +200
°c
DIM
A
B
C
o
STYLE 1
PIN ~ ~~~ECTOR
3EMInER
40MITTEO
5 EMITTER
Total Power Dissipation @ T A::: 2SoC
MD3725
MD3725F
M03725
Derate above 25°C
MD3725
MD3725F
M03725
PD
Total Power Dissipation @ T A == 2SoC
PD
K
M
N
MD3725F
mW
600
350
400
650
400
600
3.42
2.0
2.28
3.7
2.28
3.42
2.1
1.25
1.0
3.0
2.5
4.0
Watts
DIM
STYLE 1
PIN1BASE
!EMtTTER
:=~ER
mW/oC
12
7.15
5.71
MD3725
MD3725F
M03725
~ ~mm~:
17.2
14.3
22.8
A
B
C
0
F
G
H
K
N
CASE 610A·03
THERMAL CHARACTERISTICS
Svmbol
On. Die
433
83.3
140
175
58.3
70
43.8
Junction to
Junction to
Ca..
500
1.03
0.48
076
0.36
0.08
0.15
1.21
sse
INCHES
MIN
MAX
0.240 0.291)
0115 0160
0.030 0080
0014 0019
0003 0.006
0.050 sse
0.035
OB9
3.81
2.54 Bst
1.21
0.150
0100
sse
0.050
M03725
Unit
SHU1
PIN I COLLECTOR
lBASE
3 EYITTEA
%
(01·02)
101-03,01-04)
7.36
4.06
6.10
2.92
°C/W
ReJC
Ambient
Coupling Factor
MD3725
MD3725F
M03725
"
MILLIMETERS
MIN MAX
°C/W
270
438
292
292
MD3725
MD3725F
M03725
AU Die
Equal Power
ReJA(I)
MD3725
MD3725F
M03725
Thermal Resistance, Junction to Case
0
BSC
1210
450 SSC
254 sse
AU Die.
Equal Power
Derate above 2SoC
Thermal Resistance, Junction to Ambient
9.40
8.51
410
0.53
mW/oC
MD3725
MD3725F
M03725
Characteristic
8.51
1.75
381
041
508
! ~~~~mOR t~~e~g~:~:~~'t~:j:!
CASE 654-07
One Die
G
I
MllLiMET R
MIN
MAX
85
75
57
55
40
0
0
0
: ~~:T~~:N£mo
6 BASE
1 COLLECTOR
: :~~ECTOA
:~ ~~~Ti~:NECTEO
H~~~l:::OA
(1) R6JA is measured with the device soldered into a typical printed circuit board.
CASE 607·04
219
INCHES
MAX
0.175
0030 0.080
DIM
MIN
0.240
•
C
D
F
G
0.010
H
J
K
L
0.005
S
0035
0.015
0.250
0.740
0.010
•
"
0.019
0.003 0.006
0.050Bse
1.62
8.38
0.300
.01
0.330
MD3725,F, MQ3725 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, equation (1)
In multiple chip devices, coupling of heet bet_n die occurs.
The junction temperature con be calculated as follows:
simplifies to
(1I4TJI ~ RBI POI + RB2 Ke2 P02 + RB3 Ke3 P03
+ RB4 Ke4 PD4
Where ATJl is the change in junction temperature of die 1
RBI thru 4 Is the thermal re.istance of die I through 4
POI thru 41. the power dissipation in die I through 4
Ke.2 thru 4 i. the thermal coupling between die I and
die 2 through 4.
(3) 4T Jl = RBI (POI
+ Ke2 P02 + K83 P03 + K84 P04)
For the conditions where POI = P02 = P03 = P04, PDT = 4PO
equation (3) can be further simplified and by substituting into
equation (2) results in
(4) R8(EFF) = R81 (1 + Ke2
+ Ke3 + K84) /4
Values for the coupling factors when either the case or the
An effective package thermal resistance can be defined as
ambient is used as a reference are given in the table on page 1. If
follows:
significant power is to be dissipated in two die. die at the opposite
(2) R8(EFF) = 4TJ1/POT
endlot the package should be used so that lovvest possible junction
temperatures will result.
Where: PDT is the total package povver dissipation.
ELECTRICAL CHARACTERISTICS (TAITC = 25°C unless otherwise noted).
I
I
Characteristic
Typ
Max
Unit
-
Vde
Symbol
Min
BVCEO
40
BVCES
65
BVCSO
65
-
-
Vde
BVESO
6.0
-
-
Vde
ICBO
-
0.12
1.7
-
-
120
I'Ade
I'Ade
50
-
150
30
-
-
-
-
0.19
0.30
0.26
0.45
-
-
0.80
-
0.86
1.2
tr
200
-
-
MHz
Cob
-
-
10
pF
eib
-
-
65
pF
20
45
ns
50
75
ns
OFF CHARACTERISTICS
Collector·Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)
Collector-Emitter Breakdown Voltage
(lc = 10 I'Adc, VBE = 0)
Collector-Base Breakdown Voltage
(lC = 100l'Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 I'Ade, IC = 0)
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
(VCB = 40 Vde, IE = 0, TA = 100°C)
ON CHARACTERISTICS (1)
-
Vde
M03725F
DC Current Gain
(IC = 100 mAde, VCE = 1.0 Vde)
(Ie = 500 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage
(Ie = 100 mAde, IB = 10 mAde)
(lC = 500 mAde, IB = 50 mAde)
Base-Emitter Saturation Voltage
(Ie = 100 mAde, IS = 10 mAde)
(le.= 500 mAde, IS = 50 mAde)
DYNAMIC CHARACTERISTICS
-
hFE
Vde
VeE(sat)
VBE(sot)
Current-Gain - Bandwidth Product
(lC = 50 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance,
(VeB = 10 Vde, IE = 0, f = 100 kHz)
Input Capacitance
(VBE = 0.5 Vde, Ie = 0, f = 100 kHz)
Vde
SWITCHING CHARACTERISTICS
Turn-On Time (Figures 7 and 8)
(Vee = 30 Vdc, Ie = 500 mAde, IBI = 50 mAde, VSEloff) = 3.8 Vde)
ton
Turn-Off Time
(Vee = 30 Vde, Ie = 500 mAde, IB1 = IS2 = 50 mAde)
toff
(1) Pulse Test: Pulse Width ";300l's, Duty Cycle ";2.0%.
220
-
MD3725,F, MQ3725 (continued)
TYPICAL DC CHARACTERISTICS
FIGURE 2 - "ON" VOLTAGES
FIGURE 1 - DC CURRENT GAIN
400
14
200
"
"'"
t--- t-
l-
I
u
0
~
100
80
t--- f--
60
-
25°C
~
i '~
-55°C
-TJ·250C
12
VCE ·1.0 V
iJ • 1250C
~
10
-
0.0
w
'"~
0.6 =VOElsa'i ""elia' 10
0
>
,; 0.4
,.....
40
f.-'
--I-""
0.2
o
20
10
50
20
100
200
300
-VCEI",) ""Cllo -10
10
500 . 700 1000
20
~
~
w
«
'"
!:::;
0
>
'"w
l-
"'
~8
~
:>
TJ'250C
300
~
\
0.6
\
\
\
0.4
"'
0.2
1~'100mA
I
'APPLIES FOR IC/IO< hFE/2
~
0
0.5
1.0
2.0
5.0
10
20
w
~
8rOmA
ffi
500 rnA
....
-0.5
I-
-1.0
I--f-
~ -1.5 r--6VO FOR VOE
300 rnA
'"
,....
0 5 f--'6VC FOR VCElsa'i
.
1000 rnA
50
+1.0
1+
I I
....
'-
500 700 1000
+2.0
E. +1.5
~
0
>
200
FIGURE 4 - TEMPERATURE COEFFICIENTS
0.8
I-
~
100
+2.5
I
0
70
Ie. COLLECTOR CURRENT ImAI
FIGURE 3 - COLLECTOR SATURATION REGION
1.0
50
30
IC. COLLECTOR CURRENT (mAl
.-
I-
~ -2.0
-2.5
100
200
500
10
" IS. 8ASE CURRENT (mAl
20
30
50
100
200
300
IC. COLLECTOR CURRENT ImAI
221
500
1000
MD3725,F, MQ3725 (continued)
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 6 - CAPACITANCE
FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT
~ 500
VCE' 10 Vdc
f· 100 MHz
TJ= 25 0 C
!.
g
~ 300
"
b
V
200
~
~z
100
70
..-
..............
.s
30
z
20
w
u
"'-
;'!:
U
V
~
~ 100
i
I'-... Cib
I"--
~
........
10
U
7.0
l-
B
.l:'
Tr 25 0 C
50
--
Cob
5.0
70
50
4.0
6.0
10
20
40
60
100
200
3.0
0.1
400
05
0.2
10
IC. COLLECTOR CURRENT (mAl
100
~
100
50
;:::
'"
w
!w
,.
VCC' 30 Vdc
r-..
20
10
Id@VBE(off}-OV
.....
50
1,@IC/IB-20
/IC/IB 10
oJ
r-....
30
50
100
200
300
/
500
10
1000
~
20
30
200
300
Ii
Vln = +9.7
l-
15
11'F
f--o
1k
1000
....
1000
+30 V
Pulse Generator
tr.tf~1 ns
500
FIGURE 10 - COLLECTOR CUTOFF CURRENT
FIGURE 9 - SWITCHING TIME TEST CIRCUIT
P.W. ~1.01l'
Zin = 50 n
D.C.<2%
100
50
IC. COLLECTOR CURRENT (mA)
IC. COLLECTOR CURRENT (mA)
-3.8 V
.......
V !"'..
Vi/
V
V
10
20
20
-
.....
30
......
~~~(~f~~ ~:~2 Vdc
10
100
TJ' 25 0 C
ICIIB' 20
I
20
50
50
VC~ .10 ~d~
If~ICIIB'1O
;:::
.....
~ ."...
3.0
20
70
tr@VCC=10Vdc
30
10
200
ICIIB'10
TJ' 25 0 C
~
50
FIGURE 8 - TURN·OFF TIME
FIGURE 7 - TURN·ON TIME
200
20
VR. REVERSE VOLTAGE IVOLTS)
~
o
To Sampling
43 Oscilloscope
.A. 17"
100
10
§
~
~
8
100
I--
~
VCES·60
r== ==
3~,.
10.,-
~~
1.0
1.0""
0.1
Zfn ;;'100 kn
t r <1.0nl
0.0 1
~
~
00
~
~
rn
~
TJ. JUNCTION TEMPERATURE (DC)
222
~
~
~
MD3762 (SILICON)
MD3762F
MQ3762
MULTIPLE SILICON ANNULAR TRANSISTORS
PNPSILICON
DUAL TRANSISTORS
· .. desilJled for use as differential amplifiers, dual general-purpose
amplifiers, and temperature compensation amplifiers• Collector-Emitter Breakdown Voltage - .
BVCEO = 40 Vdc (Min) @ IC = 10 mAdc
• Low Collector-Emitter Saturation Voltage VCE(sat) 0.62 Vdc (TVp) @ IC 1.0 Adc
=
MD3762
=
I
• DC Current Gain Specified hFE = 20 (Min) @ IC = 1.0 Adc
• Fast Switching Times@ IC = 1.0 Adc
ton = 40 ns (Max)
toft = 110 ns (Max)
MILUM
DIM MIN MAX
A
B.51 9.40
~ ~.a~7i.75aI8'i5Iff
g
:1'
MAXIMUM RATINGS
+
I
H'Y. \,-
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitt.-Base Voltage
Collector Current - Continuous
Symbol
Value
VCEO
VeB
VEB
IC
40
40
5.0
1.5
OnaDio
Total Power Dissipation@TA- 25°C
Mo3762
Mo3762F
M03762
Derate above 26°C
Mo3762
MD3762F
M03762
Total Power Dissipation@Tc"" 25°C
Mo3762
Mo3762F
M03762
Unit
Vdc
Vdc
Vdc
Adc
AUDio
EqualP_
mW
Po
600
350
400
650
400
600
3.7
2.28
3.42
2.1
1.25
1.0
3.0
2.5
4.0
3E11ITTER
4 OMITTED
12
7.15
5.71
:~m
J
K
CASE 664-07
M
•
0.~.~8 B~~
1.1,
OJ'
12.0
'SO SSC
2.54BSC
.t'.__,-r--,.----.
r
L
~
1'1'11:,-.I ~
~
~,=:Jt.
DIM
ST~~i=::
.....
17.2
14.3
22.8
-65 to +200
TJ.Tstg
~::! ~:~~
=
r.----rr=-.~-H-._ - 1
mW/oC
Mo3762
Mo3762F
M03762
~
1 COUlCTDA
t OMITTED
:
Watts
Po
Derate above 2SoC
Operating and Storage Junction
Temperature Range
1'I11~ ~eCTOA
mW/oC
3.42
2.0
2.28
N
~);;I
STYLE'
JCOLLECTOR
• COLLECTOR
°c
INCHES
MI.
MAX
MI.
MAX
6.10
7.36
B
C
2.92
0.240
.115
0.030
0.014
0.290
0.1 0
0
F
G
H
K
CASE 610A·03
MILLIMETERS
A
N
R
0.76
0.36
..
2.03
0.8
0.15
1.27 BSe
0.08
lBl
0.B9
2.54 BS
1.27
n
Thermal Resistance. Junction to
ea.
Symbol
R8JA(11
OnaDio
AUoi.
Equal Power
0.0
nlso
292
500
Unit
270
438
292
°C/W
R8JC
Mo3762
Mo3762F
'M03762
....,
'EilITTER
: ::JJ~:IIEmD
eoll
Coupling Factors
MD3762
MD3762F
M03762 (01-021
(01-03,01-041
(,) RtJA is measured with the device IOldarad into
85
75
57
55
8
40
0
0
0
typical printed circuit board.
223
, ...,
STYUI
1'111 1 COLLECTOR
83.3
58.3
140
70
175
43.8
Junction to Junction to
Amblent
"
1
•
•
II
COLLECTOR
COUECTOR
"H
EMITTER
11 IIOTCOMECTED
12 EMITTER
''''''
14 COLLECTOR
CASE 607-04
DIM
A
C
D
F
G
H
J
K
I.
L II.BO
•
US
S
7.12
R
1.38
0.035
0100 BS
0.050
uCIW
438
0.019
0.050BSC
THERMAL CHARACTERISTICS
Charicterilli.
Thermal Resistance. Junction to Ambient
MD3762
Mo3762F
M03762
0.080
0.300
MD3762,F, MQ3762 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip device., coupling of heat between die occur••
Assuming equal thermal resistance for each die, equation (1)
The junctiOn temp8ratur. can be calculated es follows:
slmpllfie.to
(I)ATJ1- RBI POI +RB21<82P02+RB31<83P03
(3) AT J1
= RB1
(POI + 1<82 P02 + 1<83 P03 + KB4 P04)
+ RB4 1<84 P04
For the conditions whore POI = P02 = P03 - P04, PDT = 4PO
equation (3) can be further simplified and by substituting into
Whore ATJl i. the change in junction temperature of die 1
RB 1 thru 4 is the thermal resistence of
10
20
50
100
200
IC. COLLECTOR CURRENT (rnA)
+1. 6
G
~
~ 1.0
o
1--1-
VBf(sat)@ICIIB= 10
J...-I-
0.2
o
10
100
200
I
'Applies for ICIIB'; hFE/4
1000C to 1750C
250C to 1000~
-550C to 25 0C
8
w
~-O.8
1I
I I
I
f-
50
ffi
VBE(on) @VCE = 1.0 V
>
0,4
2.0
5.0
10
20
lB. BASE CURRENT (rnA)
'eVc for VCE(sat)
iii
u
l-
'"
~
1.0
~
.5+0.8
1.2
~ 0.6 I--
0.5
FIGURE 4 - TEMPERATURE COEFFICIENTS
TJ= 250C
I--
"'"
"
0
0.2
500 1000
1.4
>
:\1.0 A
~
8j 0.2
5.0
Ir
400 rnA
iii
I--
I---'
2.0
TJ = 250C
;; 0.6
FIGURE 3 - "ON" VOLTAGE
~O.8
100mA
Ic=20mA
8
20
1.0
\ II
IIII
IIII
ILl I
>
~ 0.8
~
.-
VC~(sati ~ ICli B-110 I
...~-1.
30
6
II
~
I I
20
-550Cto 250C
eVB for VSE
50 70 100
200 300
IC. COLLECTOR CURRENT (rnA)
500 700 1000
20
10
30
50 70 100
200 300
IC. COLLECTOR CURRENT (rnA)
FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
2. 0
.1"-....
1.0
i... ~
6
ffi o.41--- TJ = 200 0C
~
~ o.
'"
~
de
---Bonding Wire limit
2
Second Breakdown Limit
...........
,....
t-...
.1
~(Note:
80.06 ~
Thermililimitations need to be
incorporated in SOA Curve'!
.:lo.o4
0.02
2.0
I
I
4.0
6.0
8.0 10
20
VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)
225
1250C to 1000C
II
-2.4
40
100:
1000C to 175 0C
I
I
500 700 1000
MD3762,F, MQ3762 (continued)
FIGURE 6 - TURN-oN TIME
FIGURE 7 - RISE AND FALL TIME
200
100
....
!~
"-
"'
;:::
!
I
N. I'. r-.....
"'I'-...
0
";:::
I'
rt+l
50
I'..~ .....
30
IC/IS·'~
"'"
10
10
500 700 1.0k
. j 1
20
30
FIGURE 8 - STORAGE TIME
200
---
-
200
TJ=lS00C
100
-IIC/IS=l?
)IC/IS' 20
0
~
r- -":: ~~
"~
0
,',
['..
,""' "
~. I'
I'-
0
t's"'tr 1/8tf
30
50 70 100
200 300
IC. COLLECTOR CURRENT (mA)
10
10
500 700 1.0 k
20
""
f-
-
~
~
50 70 100
200 300
Ie. COLLECTOR CURRENT (mA)
-30 V
70
RlseTlme";Snl
"
Pul .. Width = 400 n.
Duty Cvcl. - 2%
~
150n
T
500 700 1.0 k
Tr 2SoC
c;;...
150n
-30lJ
r-
FIGURE 11 - CAPACITANCE
50
O.I1'F
1'-1""~
30
~o .
1"<
f'...
l
vec" ov
IS1- IS2
FIGURE 10 - SWITCHING TIME TEST CIRCUIT
+27.3 V
T1' 1500C
lells'
lells"0
'" 3
20
500 700 1.0 k
TJ = 25°C
-
i"
r...1'
50
0
IS1=I.S2
r-
70
~
0
0
50 70 100
200 300
COLLECTOR CURRENT (mA)
FIGURE 9 - FALL TIME
1- ro- TJ = 25°C
k~ i""=
I,'t
~J"o.,
VCC = 30 V
Id @IVSEI(OIf -0
I
20
30
50 70 100
200 300
IC. COLLECTOR CURRENT (mA)
400
If
~ I' r-.....
20
2.0 V,,",
I-T = 1500C
70
w
~lr@VCC=10V
.....
0
10
10
~
Ir@VCC'- 30 V
-
~~,
100
~
-t-- rTJ-2SOC
,~
TJ - 25°C
0
~ 50
'"
200
IClls =10
~
1N916 or
equiv.
'I'
10
Ie· 1.0 Amp
'S1· IS2 = 100 rnA
7.0
0.04 0.06 0.1
226
I"0.2
0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
40
MD4957 (SILICON)
Dual PNP silicon annular transistor designed for high-frequency
amplifier, oscillator, and mixer applications.
CASE 654-07
Pin Connections. Bottom View
All leads electrically isolated from case
MAXIMUM RATINGS (each side)
Rating
Symbol
Collector-Emitter Voltage
Unit
Value
VCEO
30
Vdc
Collector-Base Voltage
VCB
30
Vdc
Emitter-Base Voltage
VEB
3.0
Vdc
IC
30
mAde
-65 to +200
°c
Collector Current
Operating and Storage Junction
Temperature Range
T J' Tstg
One Both
Side Sides
Total Power DisSipation @ TA '" 25°C
Derate above 25°C
PD
200
1.15
mW
400
2.3
mW/oC
TYPICAL NOISE FIGURE vs. FREQUENCY
6.0
5.0
65
~
w
4.0
G:
w
=>
'"
'"
'"
C5
3.0
:
2.0
z:
Vee = 10 Vdc
./
Ie = 2.0 mA
~
......
./'
V
V
./
1.0
o
0.1
0.2
0.3
0.4
f, FREQUENCY IGHz)
227
0.5
0.6
0.7
0.8 0.9 1.0
MD4957
(continued)
ELECTRICAL CHARACTERISTICS
(TA
=2S"C unless otherwISe noted)
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAde, IB = 0)
BVCEO
Collector-Base Breakdown Voltage
(IC = 100 !lAde, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(IE = 100 !lAde, IC = 0)
BV EBO
Collector Cutoff Current
(VCB = 20 Vde, IE = 0)
ICBO
30
-
-
30
-
-
3.0
-
-
-
-
0.1
1000
1500
-
-
0.4
0.8
20
-
200
-
4.0
8.0
-
2.6
-
-
18
-
13
Vde
Vde
Vde
/lAde
ON CHARACTERISTICS
DC Current Gain
(IC = 2.0 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
'Current-Gain- Bandwidth Product
(IC = 2.0 mAde, VCE = 10 Vde, f
iT
= 100 MHz)
Collector-Base Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
Ceb
Small-Signal Current Gain
(IC = 2.0 mAde, VCE = 10 Vde, f
= 1.0 kHz).
hfe
Collector-Base Time Constant
(IE = 2.0 mAde, VCB = 10 Vde, f
= 63.6
Noise Figure
(IC = 2.0 mAde, VCE
= 450
(IC
= 2.0 mAde,
VCE
= 10 Vde,
= 10 Vde,
f
r
MHz)
b
'c e
pF
ps
NF
MHz) Figure 1
RS = 50 ohms, f = 1. 0 GHz)
MHz
5.0
dB
FUNCTIONAL TESTS
Corhmon-Emitter Amplifier Power Gain
(VCE = 10 Vde, IC = 2.0 mAde, f = 450 MHz)
(VCE = 10 Vde, IC = 2.0 mAde, RS = 50' ohms, f
Gpe
= 1. 0 GHz)
dB
-
FIGURE 1- NOISE FIGURE AND POWER GAIN TEST CIRCUIT
• Button type capacitors
•• Variable air piston type capacitors
1. L1 . silver plated brass bar, 1.0
in. Ig by 0.25 in od.
2. L2· silver plated brass bar, 1.5
in. Ig by 0.25 in od. Tap is
0.25 in. from collector
3. L3· 14 turn of AWG No. 16 wire
0.25 in. from and parallel to
L2.
4. The noise source is a hot·cold body
(All type 70 or equivalent) with a
test receiver (AI L type 136 or
equivalent).
228
MD4957
(continued)
COMMON 'EMITTER Y PARAMETER VARIATIONS
YPARAMETERS VS FREQUENCY
VeE = 10 Vdc
Ie = 2.0 rnA.
YPARAMETERS VS CURRENT
VeE = 10Vdc - - VeE = 15Vdc - - f
FIGURE 2 - INPUT ADMITTANCE
16
!i 14
~
2
.§
~
0
--- -- -
V
.-- ~
5i!
~ 6.0
....
,J 4.0
2. 0
o
!i 80
i
~
~
~
~ 6.0
.
g"
>
0
~
0
~
~~
01----
f...--....
c
~
i
~
f-" f-,
i
.§
2. 0
~
I
-b"
-,-- .-
0
0
V
b.,
0
~
....
1!i
V
V
/
17
~
b..
-
if.
0
4. 0
3. 0
.~
0
FIGURE 4 - OUTPUT ADMITTANCE
O!---
fiGURE 1- FORWARD TRANSFER ADMITTANCE
~
0
4. 0
i"""
~
u
~
o
gr:.-
~ f--
-
--
k:::::" F- lo-"
1
..... r-
~
-,
b"
o
ii,
0
i
4.0
!i 80
70
~
10
~
- 8. 0
FIGURE 3 - FORWARD TRANSFER ADMITTANCE
lE 60
~
12
.§
---- I--
!-.-'
14
i
V
b"
,. 8. 0
=450 MHz
FIGURE &-INPUT ADMITTANCE
6
FIGURE 8- OUTPUT ADMITTANCE
f0-
r- I - .- , -
3.0
rb••
0
J..---
0
goo
g••
0
0
FIGURE 5- REVERSE TRANSFER ADMITTANCE
!i
FIGURE 9- REVERSE TRANSFER ADMITTANCE
I. 6
4
2
2
1 1.4
~
~
1.
,. I. 0
5i!
~ o.6
~
4__
~
O.
~
o. 2
ffi
b"
./
ffi O. 8
-b"
~
I-
0
V
~
<0.01
8
-i,,~
6.0
to
u:
'"0
·2
W
2.0 """'H-+-++-tH+t-+-~H- Ie = 1.0 mA
Rs =0.7 k!l
r-
1.0
4.0
0.5
1.0
2.0
5.0
f. FREQUENCY (kHzl
10
50
1mA
o0.1
100
0.2'.
FIGUR" 6 - CURRENT·GAIN BANDWIDTH PRODUCT
..,:z:
:>
'"'"IE
30
III
VCP 20 Vd,
f = 100 MHz
TJ • 25 0 C
" ....
:z:
1:;200
~
2
~
2
~Ioo
'i5"
a:
a:
V
~
......
0.5
VCE' 10 Vdc
2 C
I
Tl rl
1.0
2.0
5.0
10
20
RS.SOURCE RESISTANCE (k OHMS)
II I
50
-
20
----r--.
I r-.. r--.
r-.. r--. 'i:o~
r--....
Cib -
0.5
1.0
100
I I III
TJ • 25 0C
f· 100 kHz I-
./
~.
.......
5.0
.......
80
a 60
.t::'
./
I
V
FIGURE 7 - CAPACITANCE
600
~400
t;
'f
/1'
1'."
2.0
20
",
~I\
I--H-+-++-tH+t-+-~H- ~: 10fffi +--H+ttttl
0.2
V V
100.A
\~
2
111111
I~
\
~.
OL-LL-LLL~~~.-L~UUll-~-L~~
0.1
V
1/
I
2.0 3.0
5.0 7.0 10
IC.COLLECTOR CURRENT (MA)
20
30
3.0
0.2
50
236
0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
MD6001 ,F, MD6002,F, MD6003, F, M06001, M06002 (continued)
FIGURE 8 -
TURN ON TIME
FIGURE 9 -
Ii II
300
,,
~
I
I
~
~
70
t"
"'
30
20
10
,
,
50
5.0 7.0
,
~
d
,
'" ......., ,
10
20
""
30
II
2000
~ 100
i!
- -50
70
I.III'OT' TOTAL CONTROL CHARGE
1000
700
SOD
200
100
200
300
100
500
I'"
OA, ACTIVE REGION CHARGE
II II
5.0 7.0
20
10
II
"
200
FIGURE" -
I
30
10
5.0 7.0
,
II
10
20
30
so
70 100
Ie, COLLECTOR CURRENT
200
300
100
~
70
..:3
50
IC/IB -10
ICIlB -'0
,
-
20
10
500
-
.......
5.0 7.0
10
(mA)
20
30
50
70
100
200
300
Ie, COLLECTOR CURRENT ImA)
FIGURE 13 - STORAGE AND FALL
TIME TEST CIRCUIT
·30
-30 V
100
tr~2.0ns
Duty Cycle < 2.0%
0:U-
500
VCC =30V _
IB,=IB1 _
TJ=25 DC
"'
FIGURE 12 - DELAY AND RISE
TIME TEST CIRCUIT
P.W.> 200ns
300
I
30
.",
'1'I'll a = 2j
~
'";:::
-t--.,
101"
20 ~
200
FALL TIME
",
~
=~
~
t111, .....
100
I I
200
70
IClla='O_
70
,
300
la, = IB2
TJ 25 DC
li;!
100
;:::
50
500
I
,'s-'s-lIB',
~
30
Ie, COLLECTOR CURRENT ImAl
STORAGE TIME
300
50
i
300
~
500
~
5ij
VCC- 30V
J = 25DC
1/
Ie, COLLECTOR CURRENT (mA)
FIGURE 10 -
....,.
3000
----vce -30 v, VBEloff) =2.0 V--Vce=10V,VBEIDff)=OV Ic/la = 10
TJ = 25 DC
200
~
CHARGE DATA
5000
500
, 0k
TO OSCILLOSCOPE
RISE TIME
~
5.0 ns
.-_cfT
-:1>100ns~
tr"'2.0ns
Duty Cycle" 2.0%.
For NPN Test CirCUits, Reverse
Diode and all Voltage Polantles.
237
100
t------oSCOPE
4
Ok v - ,-+--f
o-V
'vv
lN9'S
-3.0 V
500
MD7000
(SILICON)
MULTIPLE SILICON ANNULAR
TRANSISTOR
NPN SILICON
MULTIPLE TRANSISTOR
· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation appli·
cations.
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Typ) @ IC = 150 mAdc
•
DC Current Gain Specified 1.0 mAdc to 300 mAdc
•
High Current·Gain·Bandwidth Product fT = 250 MHz (Typ) @ IC = 20 mAdc
MAXIMUM RATINGS
Rating
Collector~Emitter
Voltage
Coliector·Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Symbol
Value
Unit
VCEO
30
Vdc
VCS
50
Vdc
VES
5.0
Vdc
IC
500
mAde
One Die
Total Power Dissipation
TA = 25°C
~~:~
,
K
"SEATING
PLANE
-JLo
Both Die
@
Po
Derate above 250C
Total Power Dissipation @
TC = 25°C
Derate above 25°C
Operating and Storage Junction,
Po
575
625
mV'/
3.29
3.57
mW/oC
1.8
2.5
Watts
10.3
14.3
mW/oC
°c
TJ. Tstg
-65 to +200
Temperature Range
STYLE I:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
4.0MITTEO
OIM
A
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to
Symbol
One Die
Both Di.
R8JA(1)
304
280
°CIW
97
70
°CIW
MILLIMETER
MIN MAX
9.40
8.51
Unit
Ambient
Thermal Resistance. Junction to Case
R8JC
84
44
(1) R6JA is measured with the device soldered into a typical printed circuit board.
K
M
N
Junction to Junction to
Ambient
Ca..
Coupling Factor
I
%
CASE 654'()7
5. EMITTER
6. BASE
7. COLLECTOR
B. OMITTEO
INCHES
MIN MAX
0.335 0.370
0.305 0.335
0.150 0.185
0.016 0.021
0.200 BSC
0.028 0.034
0.029 0.045
0.500
45' BSC
0.100 BSC
MD7000 (continued)
THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
where:
PDT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation (1)
simplifies to
13) "T Jl
Where ll.T Jl is the change in junction temperature of die 1
R81 and R82 is the thermal resistance of die 1 and die 2
= ROI
(POI + K02 P02)
For the conditions where POI = P02, POT = 2PO,
equation (3) can be further simplified and by substituting into
equation (2) results in
Po 1 and P02 is the pow... dissipated in die 1 and die 2
k82 is the thermal coupling between die 1 and die 2
An effective package thermal resistance can be defined as
14) RO(EFF) = RO 1 11 + K02) 12
follows:
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.
ELECTRICAL CHARACTERISTICS
Min
Typ
Max
30
-
-
50
-
-
5.0
-
-
-
-
100
40
60
lic = 150 mAde, VCE = 10 Vdc)
70
80
lic = 300 mAde, V CE = 10 Vdc)
30
50
-
-
0.2
0.4
-
0.95
1,3
200
250
-
-
3.5
8.0
-
15
30
Characteristic
Symbol
Unit
OFF CHARACTERISTICS IT A = 25 0 C unless otherwise noted)
Collector-Emitter Breakdown Voltage (1)
Collector-Base Breakdown Voltage
Vde
BVEBO
liE = 10 /tAdc, IC = 0)
Collector Cutoff Current
Vde
BVCBO
lic = 10 /tAde, IE = 0)
Emitter-Base Breakdown Voltage
Vde
BVCEO
IiC = 10 mAde, IB = 0)
nAdc
ICBO
(VCB = 40 Vde, IE = 0)
ON CHARACTERISTICS
OC Current Gain (1)
Collector-Emitter Saturation Voltage
Vde
VCElsad
lic = 150mAde,IB = 15 mAde)
Base-Emitter Saturation Voltage
-
hFE
lic = 1.0 mAde, VCE = 10 Vdc)
Vde
VBE(sat)
lic = 150mAde,IB = 15 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
Output Capacitance
pF
Cob
(Vce = 10 Vdc, IE = 0, 1= 100 kHz)
lnput Capacitance
MHz
IT
lic = 20 mAde, VCE = 20 Vdc, 1= 100 MHz)
pF
Cib
(VEB = 2.0 Vde, IC = 0, f = 100 kHz)
(1) Pulse Test: Pulse Width ';;;300 /tS, Outy Cycle';;; 2.0%
239
MD7001 (SILICON)
MD7001F
MQ7001
MULTIPLE SILICON ANNULAR
TRANSISTORS
PNP SILICON
MULTIPLE
TRANSISTORS
· .. designed for use as differential amplifiers, dual general·
purpose amplifiers, front end detectors, and temperature
compensation applications.
•
Low Collector· Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAdc
•
DC Current Gain Specified 1.0 mAdc to 300 mAdc
•
High Current·Gain·Bandwidth Product fT = 320 MHz (Typ) @ IC = 20 mAdc
MD7001
I
MAXIMUM RATING
Symbol
Rating
Collector-Emitter Voltage
Value
Unit
VCEO
30
Vdc
Collector-Base Voltage
VCB
50
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
600
mAde
Collector Current - Continuous
One Die
Total Power Dissipation @ T A = 2SoC
MD7001
MD7001F
M07001
Dera.. above 25°C
M07001
M07001F
M07001
Po
Total Power Dissipation @TC:: 2SoC
MD7oo1
MD7oo1F
M07001
Derate above 2SoC
M07oo1
M07001F
M07oo1
Po
Operating and Storage Junction
Temperature Range
mW
350
400
650
400
600
3.42
2.0
2.28
3.7
2.28
3.42
2.1
1.25
1.0
3.8
2.5
4.0
600
mW/oC
Watts
DIM
mW/oC
12
7.15
5.71
TJ, Tstg
STYLE!.
Pl1tl aME
2EMlTTER
4 EMITTER
17.2
14.3
22.8
-65 to +200
seASE
1 COLLECTOR
IWLLECTOR
°c
A
B
C
D
f
G
H
6.10
.92
0.76
0,3
7.36
4.
2.03
O.
O.
0,
K
3.81
1.27 SC
0.89
2.54BSC
Symbol
Thermal Resistance. Junction to Ambient
MD7001
MD7001F
M07001
R6JA(11
Thermal Resistance. Junction to Case
R6JC
M07001
MD7001F
M07001
Coupling Factor
3 EMITTER
, OMITTEO
CASE 664-01
All Die
THERMAL CHARACTERISTICS
Characteristic
STYLE I
f'lH~ :'~ECTOR
One Die
All Die
Equal Power
292
500
438
270
438
292
83.3
140
175
58.3
70
43.8
Unit
M07001
°CIW
°CIW
, oIunctlon to
"unction to
Ambient
Case
%
M07001
MD7oo1F
M07001 (01·021
(01·03 or 01·041
1.27
CASE 61DA·D3
85
75
57
55
40
0
0
0
STYLE I
PIN ~ m~ECTO"
3EMITTEA
4 NOTCONNECTEO
& EMITTER
68",S£
1COLLEcrOll
a COLLECTOR
98115£
10 EMITTER
IIltOTCONNECTED
IZ EMllUR
13 lASE
(11 ReJA is measured with the device soldered into a tvpical printed circuit board.
"
COLlECTO~
CASE 601·04
240
DIM
A
C
D
f
B
H
J
K
L
N
R
S
1.82
8.
MD7001, MD7001F, MQ7001 (continued)
THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
In multiple chip devices. coupling of heat between die occurs.
where:
PDT is the total package power dissipation.
The junction temperature can be calculated as follows:
(1) l>TJl • RSI POI + RS2 KS2 P02 + RS3 KS3 P03
Assuming equal thermal resistance for each die, equation (11
simplifies to
+RS4 KS4 P04
(3) "TJl = ReI (POI + Ke2 P02 + KS3 P03 + KS4 P04)
Where ATJ1 is the change in junction temperature of die 1
RSI thru 4 is
Po 1 thru 4 is
KS2 thru 4 is
die 2 through
the thermal resistance of die 1 through 4
the power dissipated in die 1 through 4
the thermal coupling between die 1 and
= P02 = P03 = P04, POT = 4PO
equation (3) can be further simplified and by substituting into
equation (2) results in
4.
(4) Re(EFF) = Rel(l + Ke2 + Ke3 + KS4) /4
An effective package thermal resistance can be defined as
follows:
(2) Re(EFF)
For the conditions where POI
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the tab'e on page 1.
= "TJ1/POT
ELECTRICAL CHARACTERISTICS (TA
2S0C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage
(lC = 10 mAde, IB = 0)
(1)
BVCEO
Coliector·Ba.. Breakdown Voltage
(lC = 10"Ade,IE = 0)
BVCBO
Emitter·Ba.e Breakdown Voltage
(IE = 10 "Ade, IC = 0)
BVEBO
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
ICBO
30
-
-
50
-
-
5.0
-
-
-
-
100
40
70
30
50
90
60
-
-
0.25
0,4
-
0.B8
.1.3
200
320
-
-
5.8
8.0
-
16
30
Vde
Vde
Vde
nAde
ON CHARACTERISTICS (1)
DC Cu rrent Gain
hFE
(lC = 1.0 mAde, VCE = 10 Vde)
(lC = 150 mAde, VCE = 10 Vde)
(lC = 300 mAde, VCE = 10 Vde)
Collector· Emitter Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)
VCE (satl
Base·Emitter Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)
VBE(sat)
-
-
Vdc
Vde
DYNAMIC CHARACTERISTICS
Current·Gain·Bandwidth Produet(1)
(lC = 20 mAde, VCE = 20 Vde, f = 100 MHz)
Output Capeeitance
(VCB = 10 Vde, IE = 0, f
=100 kHz)
Input Capecitance
(VBE· 2.0 Vde, IC = 0, f
=100 kHz)
MHz
fT
Cob
C;b
(1) Pulse Test: Pulse Width ";300"s, Duty Cycle ";2.0%,
241
pF
pF
MD7002 (SILICON)
MD7002A
MD7002B
NPN SILICON ANNULAR MULTIPLE TRANSISTORS
NPN SILICON
MULTIPLE TRANSISTORS'
· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
.
applications.
•
Excellent Matching Characteristics@ IC = 100/lAdchFE1/hFE2 = 0.75 (Min) - MD7oo2A
= 0.85 (Min) - MD7002B
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.35 Vdc (Max) @ IC = 10 mAdc
DC Current Gain Specified @ 100 /lAde and 10 mAde
•
•
I
High Current·Gain-Bandwidth Product fT = 260 MHz (Typ) @ IC = 5.0 mAdc
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
40
Vdc
Coliector·Base Voltage
VCB
SO
Vdc
Emitter·Base Voltage
VEB
S.O
Vdc
IC
30
mAde
TJ,T,tg
-85 to +200
°c
Rating
Coliector Emitter Voltage
8
Collector-Current
Operating and Storage Junction
Temperature Range
One Die
Both Ole
Equal Pow..
=25°C
Po
575
3.29
625
3.57
mW
mW/oC
Total Power Dissipation@ T C =250 C
Derate above 2sOC
Po
1.B
10.3
2.5
14.3
Watts
mWJOC
Total Power Dissipation@ TA
Derate above 25°C
3. EMITTER
. 4.0MITTEO
THERMAL CHARACTERISTICS
C.a_lotio
Symbol
One Die
Both Die
EquelPower
Thermal Resistance. Junction to Ambient
RSJA(lI
304
280
°CIW
RSJC
97
70
°CIW
Thermal Resistance, Junction to Case
Unit
Junction to Junction to
Ambient
ea.
Coupling Factors
84
44
(1) R8JA is measured with the device soldered into a typical printed circuit board.
STYLE 1:
PIN 1. COLLECTOR
2. BASE
S. BASE
7. COLLECTOR
B. OMITTED
MILL!
A
B
C
o
%
5. EMITTER
G
H
J
K
8.51 9.40
7.75 B.51
3.81 4.70
.41 0.53
5.08 SSC
0.71 O.
0.74 1.14
2.
M
45 B
N
2.54SSC
CASE 654-07
242
MD7002, MD7002A, MD7002B (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices. coupling of heat between die occurs.
The junction temperature can be calculated as follows:
Assuming equal thermal resistance for each die, equation (1)
simplifies to:
(3)
«
;; 0.2
~
0
..........
SURGE APPlIEO AT
RATED LOAD CONDITIONS
t--VRRM APPllEO AFTER SURGE
NY\
1--1.0 CYCLE
f---l
I
50
70
60
2.0
80
90
100
110
TA. AMBIENT TEMPERATURE (DC)
3.0
5.0 7.0 10
20
NUMBER OF CYCLES
30
50
70
100
SINGLE DIODE CHARACTERISTICS
FIGURE 3 - MAXIMUM FORWARD VOLTAGE
0:
~
50
t-
0
~
10
~
B
5.0
Q
'"
~
2. 0
~
1.0
./
-
....-
FIGURE 4 - JUNCTION CAPACITANCE
- -
100
70
50
~
.e
r-TJ -15QDC
"
/
..,Zw
0
=c~
0
~
25DC
:::>
TJ =25 DC
0-
I""-
7.0
~. 5.0
53 o. 5
z
~ o.2
~ o. 1
~
3.0
2.0
I
.~o.o 5
1.2
1.0
1.4
1.6
1.8
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
0.8
0.6
1.0
0.1
2.0
FIGURE 5 - FORWARD RECOVERY TIME
20
r~
j
,.
;::
E or1.
j
L...
I
~,
Q
-- --
~
*
~
,., ,..,.
,
0.2
0.1
0.2
0.3
2.0 3.0
0.5 0.7 1.0
IF. FORWARD CURRENT (AMP)
ffi
fa
5.0
'"ffiw
3.0
>
~
0
100
t-tO
..........
i"'-
1.0
0.1
10
255
TJ = 25DC
0.1
fo-i-'
0.3
I"10
;::
'r,
~ o. 7
'"
'"~ o.5
r-.....
j
vtr=2.0V
TJ = 25 DC
>
0.5
1.0
2.0
5.0
10
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 6 - REVERSE RECOVERY TIME
2. 0
w
0.2
0.2
0.3
2.0 3.0
0.5 0.7 1.0
IR/IF. DRIVE CURRENT RATIO
5.0 7.0
10
MDA800, MDA801
MDA802, MDA804
MDA806
Designers Data Sheet
F",LL WAVE BRIDGE RECTIFIER ASSEMBLIES
SI NG LE-PHASE
FULL-WAVE BRIDGE
· . , utilizing inidvidual hermetically sealed metal case rectifiers interconnected and then encapsulated in plastic to provide a single rugged
package. Devices are available with voltages from 50 to 600 Volts
with these additional features,
8.0 AMPERE
50 thru 600 VOLTS
• Slip On Terminals
• High Surge Capability
• Output Current Ratings for Iloth Case and Ambient Conditions
Designers Data for "Worst Ca." Conditions
The Designers Data sheets permit the design of 'most circuits entirely from the
information presented. Limit curves - representing boundaries on device character·
istics - are given to facilitate "worst case.:' design.
.
I
MAXIMUM RATINGS (TC = 25°C
Rating
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Vortage
DC Blocking Voltage
RMS Reverse Voltage
~~ ~~
MDA MDA MDA
800
eo1 802
VAAM
VAWM
VA
50
100
200
400
600
VA(AMS)
35
70
140
280
420
30
62
100
124
200
250
400
380
600
DC Output Voltage
Resistive Load
Vdc
Capacitive load
50
Average Rectified Forward Current
TA
TC
.-
•
•
= 55°C
= 1000C
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions)
Operating and Storage Junction
IFSM
Unit
Volts
Volts
Volts
r-----
Amp
10
...
(Single phase bridge, resistive load,
60 Hz)
I
un Ie.. otherwise noted,)
3.5
.
8.0
200
Amp
I
l
R_I
TJ,T stg
~-65to+175~
°c
Temperature Range
Characteristic
Each Die
Effective Bridge
Thermal Resistance, Junction
to Case
Each Die
Effective Bridge
ELECTRICAL CHARACTERISTICS
Characteristic
Instantaneous Forward Voltage (1)
= 18.9 A)
(iF = 18.9 A, TJ = 175°C)
(TC
Symbol
Max
A8JA
40
°CIW
A8JA(EFF)
23
°C/W
A8JC
16
°CIW
A8JC(EFF)
5.6
°C/W
Symbol
Typ
Max
Volts
vF
IA
Unit
0.9
1.0
-
0.85
-
0.5
mA
=1c
A
B
C
D
f
G
H
J
K
L
Q
(1) Pulse Test: Pulse Width .. 3001'1, Duty Cycle .. 2.0%.
R
MECHANICAL CHARACTERISTICS
CASE: Transfer-molded plastic case witn epoxy fill.
POLARITY: Terminal-designation embossed on case
+DC Output
-DC Output
AC not marked
MOUNTING POSITION: Anv. highest heat transfer efficiency accomplished throuWt the
surface opposite the terminals.
WEIGHT: 40 grams (approx.)
TERMINALS: Readily solderable. corrosion resistant. suitable for slip-on terminals.
256
1.7
VB
o~i-I f
DIM
= 25°C unless otherwise noted.)
(iF
Reverse Current
(Rated VR applied to ac terminals,
+ and - terminals open)
Unit
Val
~i~VO
0 +~:/
lH
THERMAL CHARACTERISTICS
Thermal Aesistance, Junction
to Ambient
A-
J::=-J -
MILLIMETERS
INCMS
MAX
MIN
MAX
MIN
47.75 48.89 1.880 1.925
37.21
1.465
36.20
15.37 16.38
0.645
3.78
0.149
3.43
0.470
10.92 11.94
0.920
22.35 23.37
0.648
15.95 16.46
2 BSC
33.32 SSC
0.547
12.88 13.89
7.24
7.49
0.295
3.94
4.19
0.165
31.90 32.92
1.296
NOTES:
1. DIM "L" IS 6.35 (0.250) OEEP,
DIM "Q" IS THRU HOLE.
2. MOUNTING HOLES WITHIN 0.25 mm
(0.010) Dill OF TRUE POSITION AT
MAXIMUM MATERIAL CONDITIOft.
CASE 298·01
MDABOO, MDAB01, MDAB02, MDAB04, MDAB06 (continued)
FIGURE 1 - FORWARDVOLTAGE
200
FIGURE 2 - MAXIMUM SURGE CAPABILITY
. / I-"'"
TJ =25 DC
/
100
V
30 0
I-"'""
V
V-
0
~UR~E APJLlEJ @I I I I
.....
MAXIMUM
f'.
0
TYPICAL
0
TJ = 175DC
V
I
I
.......
0
I--
I /
0
1'1"-
Of-- f- I-60Hz
IL
0
RATEO LOAD CONDITIONS
VRRM APPLIED AFTER
SURGE
r-- t-...
0
II II
fr\rJ\
I
I-30
~1.0CYCLE
I
1 'I
2.0
1.0
0
I'--
I
111
3.0
5.0
7.0
10
20
50
30
70 100
NUMBER OF CYCLES
0
I
0
II
0
+1. 5
I
1. 0
I. 0
FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
I
G
3; +0. 5
II
.5
>ffi
u
o. 7
~
8
o. 5
o. 3
O. 1
0.6
l
lLL
+1. 0
I
II
0
TYPICAL
-0. 5
RANG~
-I. 5
I
)--
-1. of-
0.8
1.0
14
1.2
1.6
1.8
0.1
1.0
V
V
I--
I
I
./
~-1. 0
0.5
1.0
10
5.0
10
10
50
100
100
'F, INSTANTANEOUS FORWARD CURRENT lAMP)
VF, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
FIGURE 4 - TYPICAL THERMAL RESPONSE
I. 0
O. 7
o. 5
~
V
ffi
o. 3
"'~
ffi -
I"- ........ f::::: ~
~ 2.5
I
I
I
I
I
I
I
~ =. (RESISTIVE & INDUCITVE LOADS)
1
2.0
i!
~ 1.5
'"~ 1.01--
TJ ~ 175°C
NOTE: Th.I(FM)/I(AV) ratio
referstoa single diode and
IF(AV) refers to the
80
60
100
:(FM) = .(RESISTIVE & INDUCTIVE LOAOS)
2 .....
(Ay~
........
1
0 .......
1/5.0 } CAPACITIVE
10
LOADS
'"SO.51--1I j"'dTrenj" I I
'" 0
!F
40
1
1
" r--:: ~~r'.l. ~
a:
~
FIGURE 6 - CASE TEMPERATURE DERATING
4
1.1.
........
.0 ......
~
I'J".,.
......
'"
.0
f"": ~1!Io.
1""'<'111
120
~
r--.
5.0 } CAPACITIVE
10
LOADS
20
..... c-....
.......
........
~
,..,L
~
]"-.. ["'-.. ~
~
o ~bTJ:7~oh~ I(FM)iI(AV) ralio
the load curjent.
0
40
180
I........ ~
..... ~
refers to a smglediode
and IF(A VI refers to
.0
'h
160
140
/
L ]
1'..
L
140
80
100
120
TC. CASE TEMPERATURE (OC)
60
TA. AMBI ENT TEMPERATUR E (OC)
160
180
TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)
FIGURE 7 - RECTIFICATION WAVEFORM EFFICIENCY
0
0
FIGURE 8 - CAPACITANCE
60 0
I T~ }2~OJ
IF(AV) = 1.0 A
r-- ::::.~
~~
0
....... 1'
0
0
JV\;-
JlJ1.J
0~1.:1 :l :I-~~
6.0
1.0
.......
1\
CURRENT INPUT WAVEFORM
I--
B.
t'-...
300
0
01-
TJ=250C
400
2.0
3.0
5.0
7.0
-
-
-
-
o
10
20
30
3
50
70 100
11111
0.5
1111111
1.0
2.0
f. FREQUENCY (kHz)
FIGURE 9 - REVERSE RECOVERY TIME
~
.3
~
....
~
10
.......
~
a:
3.
0
2.0
.;
r--.
1f'10A
IF
0~Lr°'25IR
r-...
.......
ffi
8~
LOA
~ ~ ....... 1'5.0 A'
1 1
I-lfr-l
>
t'-...
.......... r--..
0.3
o
a:
,,'
i
500
i!
I""
1 1 1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
IRtIF. RATIO OF REVERSE TO FORWARD CURRENT
/
,......
/
7.0
O.
10
258
.j--""'""
-
1-1-
.,,/' . - Vfr= 1.0 V
0.2
I-lrr
1.0
0.1
I
UF
w
7.0
~
~
0.7
;:: 0.5
>
5.0
200
TJ - 25°C
. ~~
~
]
TJ=250C
..........
50
100
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)
1.0
II
i:;
~
o
I....
1111111
FIGVRE 10 - FORWARD RECOVERY TIME
20
t'-...
ALL OEVICES
APPLICABLE FOR RATEO VOLTAGE
40
1~
1.0
~
.....
I--- r-2'r
2.0
3.0
5.0
IF. FORWARD CURRENT (AMP)
7.0
10
MDASOO, MDAS01, MDAS02, MDA804, MDAS06 (continued)
FIGURE 11 - POWER DISSIPATION FIGURE
8
-
./
r-/
(
(
(
(
(
IFM) =_(RESISTIVE &
r-IIAV)
INDUCTIVE LDA~S
0 - f-CAPACITIVE } ~~
fLDADS
20 ..... :--......
/
/
/
......... /
~
L
0;(. /.
.... ......... ......... . / ./.
:y Y Z
-
6
././ h
:0
2
V
D
'A'
TJ ~ 175°C
NOTE: The IIFM)/IIAV) ratio
refarsto a single diode
and IF(AVI referstD the
h ~
AlIIiIiP'
II""'"
0
I
0/
I
1°'1 CU'TI.
10
4.0
6.0
B.O
2.0
IFIAV). AVERAGE FDRWARD CURRENT IAMPI
I
I
12
14
NOTE 1 - THERMAL COUPLING ANO EFFECTIVE
THERMAL RESISTANCE
Where: POT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation 111
I n multiple chip devices where there is coupling of heat between
die, the junctlon temperature can be calculated as follows:
II) <>TJl = ROI P02 + R02i<62 P02 + R03K03P03
+ R04 K04 P04
simplifies to
(3) ATJl = ROllPOl + K02 P02 + K03 P03 + K84 P04)
For the condition where POI = P02 = P03 = P04, POT = 4POI
equation (3) caR be further simplified and by substituting into
equation (2) results in
(4) R8(EFF)' ROI II + K82 + Ke3 + K841/4
Where 8 T J1 is the change in junction temperature of diode 1
ROI thru 4 is the thermal resistance of diodes 1 through 4.
P01 thru 4 IS the power dlssipat~d in diodes 1 through 4
K82 thru 4 is the thermal coupling between diode 1 and
diodes 2 through 4.
For the MDA800 rectifier assembly, thermal coupling between
opposite diodes is 10% and between adjacent diodes is 15%when
the case temperature is used as a reference. Similarly for ambient
mounting thermal coupling between opposite diodes is 40% and
between adjacent diodes is 45%.
An effective package thermal resistance can be defined as
follows:
121 ROIEFF) = ~TJ1/POT
NOTE 2 - SPLIT LOAO OERATING INFORMATION
from Figure11,for an average current of lOA and an I(FM}/
IIAV) ~ 9.2 read POTIAV) = 21 watts or 5.25 watts/diode. Thus
POl = P03 = 5.25 watts.
Similarly, for aloed current IB of 5.0 A, diode #2 and diode #4
each see 2.5 A average resulting in en IIFM)/IIAV) = 14.
Thus, the package power dissipation for 5.0 A is 10 watts or
2.5 wattsl diode .. :P02 = P04 = 2.5 watts.
The maximum junction temperature occurs in diodes #1 and
#3. From equation (3) for diode #1 "TJl = 16 [5.25 + 0.1
12.5) +0.1515.26) +0.1512.5)]
Bridge rectifiers are used in two basic configurations as shown
in circuits A and B of Figure 12. The current derating data of
Figures 5 and 6 apply to the standard bri!lge circuit (A) where
IA = lB' For circuit B where IA;tdB, derating information can be
calculated as follows:
(5) TRJMAX) = T JIMAX) - "T Jl
Where TR(MAX) is the reference temperature (either case or
ambient)
AT J1 can be calculated using equation (3) in Note 1.
ATJl "" 1060 C
Thus TCIMAX) = 175·106 = 690 C
The total package dissipation in this example is:
PDT = 2 X 5.25 + 2 X 2.5 = 15.5 watts.
For example, to determine TCIMAX) for the MOABOO with
the following capacitive load conditions:
IA
= 10 A average with. peak of 46 A
IB
= 5.0 A average with a
peak of 35 A
First calculate the peak to average ratio for IA' IIFM)liIAV) =
46/5.0 • 9.2 INote thet the peak to average retio is on a per diode
besis and aech diode provides 5.0 A ..erage).
FIGURE 12 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS
load 1
JII·
Load
Load 2
CIRCUIT A
CIRCUIT 8
259
SILICON,
.
MINIATURE DIODE ASSEMBLIES
MDA920 series
CASE 108
CASE 109
MDA920
MDA920A
Miniature Integral Diode Assemblies (MIDA ) are low-current rectifier circuit
configurations designed with a high output-current/size ratio for applications
where space is at a premium. MIDA packages are available with flat ribbon
leads and with round leads. For round leads, add sUffix "A" to type number.
Example, MDA920A-1.
ELECTR ICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)
Characteristic
Symbol
V
F
Maximum Forward Voltage Drop per Cell
(IF = 500 mA ContinJlous)
Maximum Reverse Current (Figure 2)
25°C
(VR = Rated VRM)
100°C
Value
Unit
Vdc
1.2
ILAdc.
IR
60
600
MECHANICAL CHARACTERISTICS
CASE: Transfer molded plastic encapsulation.
FINISH: All external surfaces are corrosion,resistant,
terminals are readily solderable.
POLARITY: Embossed symbol on 4·lead devices.'
. Terminal designation by color dots on 3·lead devices:
AC input ,..... yellow
SINGLE PHASE FULL WAVE BRIDGE
+DC output - red
AC<>---~
-DC output - white
MOUNTING POSITION: Any.
WEIGHT (approx.kO.4 gram.
AC <>--'---46'
ABSOLUTE MAXIMUM RATINGS
MOTOROLA
TYPE NO.
DEVICE
MARKING
LETTER
SYMBOLS
CT" - 2S'C unless otherw,se noted)
.,
DC OUTPUT
VOLTAGE
PEAK REVERSE
VOLTAGE PER CELL
SINE WAVE
RMS INPUT
VOLTAGE
(DC or RECURRENT)
(LINE to LINE)
Res.
Load
VIM
Volts
V..
Volts
Volts
Vout'
DC OUTPUT
CURRENT
Cap.
Load @ 75'C AMBIENT
V...
lout
Volts
Amp
MDA920-1
BA
25
18
15
25
-2
BB
50
3S
30
50
-3
Be
100
70
62
100
-4
BD
200
140
124
200
-5
BE
300
210
185
300
-6
BF
400
280
250
400
-7
BG
600
420
380
600
260
LO
PEAK FUll WAVE
. PEAK FULL WAVE
ONE CYCLE
REPETITIVE
SU.RGE CURRENT
NON-REPETITIVE FORWARD CURRENT
(SINUSOIDAL 60 cps) (NONSINUSOIOAL 60 cps)
If:Mfsurq.1
IFMlr.pl
Amp
Amp
32.0
.!,
5.0
MINIATURE DIODE ASSEMBLIES
FIGURE 1 -
(continued)
FIGURE 2 -
TYPICAL FORWARD CHARACTERISTICS
I. u
TYPICAL REVERSE CHARACTERISTICS
1000
J
II
r-- -tJ
N "1/
I 1/
/I
II,
/ II
/ 1/
I
O. 9
O. 8
55°C_
25°C ...
O. 7
150°C ...
i!
~
O.6
is
~ o.5
~~
0.4
~
O.3
O. 2
O. I
o
o
./
0.2
0.4
0
O. I
~/
0.6
0.0 I
1.0
0.8
--
1.2
1.4
o
-
FIGURE 3 -
0.5
MAX ALLOWABLE SURGE CURRENT
4
0
"'
"'-
\
./
1.5
~
\
CYCLE
6
"
\\
\
4
~
2
T.
~
""'"'-
25°C
8
I
25°C
10
8
r:=ll l
"-
55'C
MAX ALLOWABLE DC OUTPUT CURRENT
0
I""I~
6
o
FIGURE 4 -
II I
6
8
I
V./V ..... NORMALIZED VOLTAGE
40
2~
/""
lOO'C
-
V,. FORWARD VOLTAGE DROP IVDLTS)
1
j
1--"'"
I~~
100
6
8 10
20
\
~
0.2
\
'r--.
40
o
o
60 80100
NUMBER Of CYCLES AT 60 H.
25
50
75
100
125
T•• AMBIENT" TEMPERATURE 1°C)
261
ISO
\
175
200
MDA922-1 (SILICON)
thru
MDA922-9
Designers Data Sheet
SINGLE-PHASE
FULL-WAVE BRIDGE
MINIATURE INTEGRAL DIODE ASSEMBLIES
1.8 AMPERES
25-1000VOLTS
passivated, diffused-silicon dice interconnected and transfer
molded into void less hybrid rectifier circuit assemblies.
•
Large Inrush Surge Capability - 100 A (For 1.0 Cycle)
•
Efficient Thermal Management Provides Maximum Power Handling
in Minimum Space
Designers Data for "Worst Case" Conditions
The Designers Data Sheet permits the design of most circuits entirely from
the information presented.
Limit curves - representing boundaries on device
characteristics - are given to facilitate "WOTst case" design.
MAXIMUM RATINGS
Rating (Per Legl
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
VRRM
VRWM
DC Blocking Voltage
VR
DC Output Voltage
Resistive load
Capacitative Load
Vdc
Vdc
Sine Wave RMS Input Voltage
-1 -2 -3
-4
-5
-6
-7
-8
-9
Unit
25 50 100 200 300 400 600 800 1000 Volts
1530 62 124 185 250 380 500 620 Volts
25 50 100 200 300 400 600 800 1000 Volts
VRIRMS) 1835 70 140 210 280 420 560 700 Volts
Average Rectified Forward
Current
(smgle phase bridge
resistive load. 60 Hz,
see Figure 6, T A = 56 o C)
10
Non-Repetitive Peak Surge
Current, (see Figure 2)
rated load, T J = 175°C
no load, T J =25°C
IFSM
60 (for 1 cycle I
100 I for 1 cycle)
TJ, T stg
-55 to +175
Operating and Storage Junction
Temperature Range
1.8
Amp
Am~
°c
ELECTRICAL CHARACTERISTICS
Characteristic
MaXimum Instantaneous Forward Voltage Drop
(Per Leg) (IF
= 0.75 Amp, TJ = 25°C) Figure
Maximum Reverse Current (Rated de Voltage
across ac terminals, T = 25 0 CI
Symbol
Max
Unit
VF
1.1
Volts
IR
20
"A
Characteristic
+
""--SEATING PLANE
DIM
Symbol
Max
Unit
ReJA
40
°C/W
A
B
0
F
G
MECHANICAL CHARACTERISTICS
CASE: Transfer-molded plastic encapsulation.
POLARITY: Terminal-designation embossed.
on case +DC output
-DC output
-ACmput
~=p'
1
THERMAL CHARACTERISTICS)
Thermal Resistance, Junction to Ambient
(Full-Wave Bridge Operation,
Typical Printed Circuit Board Mounting)
[~J
t
-l'G
MOUNTING POSITION: Any
WEIGHT: 1.0 gram (approx)
TERMINALS: Readily solderable
connections, corrosion resistant.
262
K
L
MILLIMETERS
MIN MAX
INCHES
MIN
MAX
6.10
6.73
4.06
4.70
0.89
1.27
0.46
0.76
2.84 NOM
6.60
7.11
1.27
1.78
0.240 0.265
0.160 0.185
0.035 OO~Q
0.018 i 0.030
0.112 NOM
0.260 I 0.280
0.050 0.070
CASE 216
F
MDA922-1 thru MDA922-9 (continued)
FIGURE 1 - FORWARD VOLTAGE (PER LEG)
FIGURE 2 - MAXIMUM SURGE CAPABILITY
100
100
~
/'
50
TYP/
30
V
,/
::;
>--
/'
~
'"i3
'""'
/MAX
20
I /
'"
=>
'"
TJ,250C
I
10
'"~
~
~
"'"
~
~
'"=>
5l
z
50
I"'-
...........
l"-
N {\
30
20
I
.............
r---.....
t-----
I--
2.0
1.0
5.0
II II
10
"l"-
I
10 CYCLE
SURGE APPLIED AT RATED~
LOAD CONDITIONS (TJ' 175°C)
VRRM APPLIED AFTER SURGE
10
5.0
SURGE APPLIED AT N?:t.i:t
LOAD CONDITIONS (TJ' 25°C)
VRRM APPLIED AFTER SURGE
......
~
'">--
::;
'"
i3
.......
70
.........
.........
20
50
100
NUMBER OF CYCLES AT 60 Hz
3.0
2.0
FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
1.0
+3.0
-z
~
0.5
~
0.3
'"
+20
0.2
TYPICAL RANGE
0.1
0.03
0.5
--
-1.0
0.05
1.0
1.5
2.0
2.5
3.0
3.5
-2. a
0.1
4.0
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
0.5
0.2
1a
""...
I
i
2.0
5.0
10
20
IF, INSTANTANEOUS FORWARD CURRENT (AMP)
FIGURE 4 - TYPICAL THERMAL RESPONSE
0.002
V
.....
7
0.005
t, TIME OR PULSE WIDTH (SECONDS)
263
50
100
MDA922-1 thru MDA922-9 (continued)
FIGURE 6 - CURRENT DERATING
FIGURE 5 - POWER OISSIPATION
2.0
8.0
~
,..
«
~
z
6.0
<::
",..
:;
~
c;
"'~
li:
~
5
I':
=>
3.0
~
1.0
""
Ipk
0.4
o
0
,~
/
-..;;::~
I,vg
~
(PER LEG)
o
0
'10
RESISTIVE·INDUCTIVE
LOADS
i/" ~ ~
1/
lpk = 10 lavg
u
"~
1
l1A' 18
......... ~ ~
f--CAPACITIVE LOApS/
Ipk • 5.0 lavg
0.8
c
2.0
FULL WAVE BRIOGE OPERATION
.............. ~ ~
1.2
"'
13
4.0
«
:;
,..
~
5.0
~
........
t'--..
...... ........... ~
0: 1.6
c
;::
'"
7.0
10 , (I,vy), DC OUTPUT CURRENT (AMP)
20
60
40
80
100
120
140
TA, AMBIENT TEMPERATURE (DC)
"
160
180
200
FIGURE 7 - BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS
Load 1
Load 2
CIRCUIT B
CIRCUIT A
APPLICATION NOTE
The Data of Figure 4 applies for typical wire terminal or printed
circu it board mounting conditions in still air. Under these or simi-
mal coupling between the individual semiconductor die in the
MDA922 assembly, the maximum ambient temperature is given
lar conditions. the thermal resistance between the diode junctions
and the leads at the edge of the case is a small fraction of the ther-
closely by
mal resistance from junction to ambient. Consequently. the lead
TA
temperature is very close to the iunction temperature. Therefore.
it is recommended that the lead temperature be measured when the
diodes are operating in prototype equipment, in order to d~termine
if operation is within the diode temperature ratings. The lead having
the highest thermal resistance to the ambient will yield readings
closest to the junction temperature. By measuring temperature as
outlined, variations of junction to ambient thermal resistance.
caused by the amount of surface area of the terminals or printed
circuit board and the qegree of air convection, as well as proximity
of other heat sources cease to be important design cOr:"lsiderations.
Bridge rectifiers are used in two basic circuit configurations as
shown by circuits A and B of Figure 7. The current derating data
of Figure 6 applies to the standard bridge circuit (Al, where IA
= T J(max)
-ROJA PT
where PT is the total average powEr dissipation in the assembly.
For the circuit of Figure B, use of the above formula will yield
suitable rating information. For example to determine T Almax)
for the conditions:
IA
IB
= 2.0A,
= ,.OA,
IpK
IpK
= 8.0 lavg
= 18 lavg
From Figure 5: For lA, read PTA"'" 4.2W
For I B, read PTB "" 2.2W
= lB·
PT
The derating data considers the thermal response of the junction
and is bas~d upon the criteria that the junction temperature must
not exceed rated T J(max) when peak reverse voltage is applied.
However, because of the slow thermal response and the close ther·
= (PTA + PTB) -4- 2 = 3.2W
(Division by 2 is necessary as data from Figure 5-is for full wave
bridge operation.) :. TA(':"ax)
264
= 1750
-
(40) (3.2)
= 47 o C.
MDA922-1 thru MDA922-9 (continued)
TYPICAL DYNAMIC CHARACTERISTICS (PER LEG)
FIGURE 9 - REVERSE RECOVERY TIME
FIGURE 8 - FORWARD RECOVERY TIME
2. 0
~
~
,.;::
w
1. 01==
ffi
>
O. 7f=
~
~
~
:r
20
TJ=250C
-2fj
I
]
L-
!
w
'"
;::
Vir
/
O. 5
ffi
>
V
i---"
0.3
-
0.2
O. 1
0.1
0.2
0.5
0.3
0.7
~
i""Vlr= 1.0 V
w
~
~
1.0
2.0
~
E
2.0V
3.0
"'"
5.0 7.0
"'"
3.0
2.0
1.0
0.1
10
t-teJ
r-...
5.0
w
lTV
~
10
7.0
I
[IF
a
r-....
0.2
0.3
0.5
0.7
d
I.J A~~
TJ = 25 0
0.1 < IF <
.......
2a
1.0
3.0
1.0
a ,.....!'-
O. 5f- 10.4
TJ = 25°C
a
f'.
1-n1'f~ ~
l>-.
TJ = 175°C
...
~
f':::::
I---
o. 21---
-
J\f'vJ1JL----
25°C
~
O. 1
1.0
2.0
3.0
20
5.0 7.0 10
30
l'
a
'I"
"
CURRENT INPUT WAVEFORM
.......
1' ...
"""'i!I~
0.3
11111
~
k:: I~EiURED DATA
10
FIGURE 11 - CAPACITANCE
FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
I--- I-- I--DATA NORMALIZED P'l",
5.0 7.0
IR/IF, DRIVE CURRENT RATIO
IF, FORWARD CURRENT (AMP)
o. 71--- I-- +--TO 1.0 kHz VALUE
I-....
50 70 100
""-i'...
a
I
7. a
~
5. a
0.2
200
I'...
0.5
1.0
2.0
5.0
10
20
50
100
200
VR, REVERSE VOLTAGE (VOLTS)
REPETITION FREQUENCY (kHz)
RECTIFIER EFFICIENCY NOTE
FIGURE 12 - SINGLE-PHASE FULL-WAVE
BRIDGE RECTIFIER CIRCUIT
,,2RL
8
alsine) = --·100% = -·100%= 81.2%
V2m
,,2
121
V2m
For a square wave
mput of amplitude V m,
the efficiency factor
The rectification efficiency factor
calculated using the formula:
(J
becomes:
shown in Figure 10 was
RL
alsquare) = - - . 100% = 100%
V2m
(3)
RL
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, resultIng in an increasing ac voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor G, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data
was obtained by measuring the ac component of Vo with a true
rms ac voltmeter and the dc component with a dc voltmeter. The
data was used in Equation 1 to obtain points for Figure 10.
V2oldc)
Pldcl
RL
V2o ( d c ) . 100%
a = p(rms) =v2olrmsl' 100% = V2o (ac) + V20ldcl
(1)
RL
For a sine wave input Vm sin (wt) to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:
265
SILICON
MOLDED ASSEMBLY RECTIFIER BRIDGES
Single-Phase Full-Wave Bridge
MDA942 SERIES (l.5 AMPS DC)
MDA972 SERIES (16.0 AMPS DC)
MDA1591 SERIES (4.0 AMPS DC)
Three-Phase Full-Wave Bridge
MDA 1505 SERIES (8.0 AMPS DC)
MDA942
CASE 110
MDA942A
CASE 111
CASE 116
Molded assembly rectifier bridges are individual hermetically sealed rectifiers interconnected and encapsu lated in molded assemblies for use as single-phase and
three-phase full-wave bridge configurations, with output
current from 1.5 to 16 amps, peak reverse voltage from
50 to 600 volts.
MDA1591
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Maximum Forward Voltage Drop per Cell
= O. 75 Ade)
= 5.0 Ade)
(IF = 4.0 Ade)
(IF = 2.0 Ade)
Value
VF
(IF
MDA942 series
1.1
MDA972 series
1.0
MDA1505 series
1.0
MDA1591 series
1.0
(VR
= Rated VRM)
mAde
IR
MDA942 series
0.01
MDA972 series
1.0
MDA1505 series
1.0
MDA1591 series
1.0
266
Unit
Vde
(IF
Maximum Reverse Current per Cell
CASE 112
RECTIFIER BRIDGES
(continued)
s9}
r
I
I~
:
LA-L K
f
I
2
11
S
'N
fK
L G
.!.!
!
CASE 116·02
E C
'~l
L=
f
.J
K
l
G
~
[2A1
o
80
7
0
0
0
o
~
-1.030
0.245
0.585
l285
1.034
l255
1.100
MDA942
MILLIMETERS
MAX
MIN
INCHES
MAX
MIN
- 0.687
0.260
0.468
0.029 0.035
0.114NOM
0.147 0.153
0.125 NOM
0.500
0.750
MDA942A
CASE 111·01
MILLIMETERS
INCHES
MIN
MIN
MAX
MAX
A 176.28 177.80 6.940 7.000
8 150.88 152.40 5.940 6.000
C 28.96 34.29 1.140 1.350
E 10.67 12.70 0.420 0.500
F 14.61 15.88 0.575 0.625
G 116.84 121.92 4.600 4.800
H 32.26 34.29 1.270 1.350
3.66 NOM
0.144 NOM
J
K
7.11
8.13 0.280 0.320
L 66.04 68.58 2.600 2.700
N
25.40 26.67 1.000 1.050
Q
8.89
9.40 0.350 0.370
NOTES: R 11.68 12.70 0.460 0.500
1. TERMINALS HAVE MILLED SLOTS
1.17 mm (0.046) WIDE ANO 4.37 mm
(0.172) OEEP.
DIM
STYLE 1.
PIN 1. +
2. OPEN
3. AC
4. OPEN
5. 6. OPEN
7. AC
8. OPEN
COLOR CODED
L
..!Lsi-
14.35
7.24
0.86
6.48
27.94
A
- 17.45
6.60
8
11.89
C
0.89
D 0.74
2.90 NOM
F
3.89
G 3.73
3.18 NOM
H
J 12.70
K 19.05
"ftt
>~Q "
t=
l!j r- =!1
r;=g
F! · ·
~ .!
0.76
6.22
CASE 110·01
DIM
11
'-;;1
A
EEl!
K
NOTE:
1. POLARITY INK MARKEO ON CASE.
D
THREE..pHASE
FULL-WAVE BRIDGE
D
G
s
I
SINGLE-PHASE
FULL-WAVE BRIDGE
A
B
I
f'T~~
L
1
A
G
INCHES
MIN
MAX
MILLIMETERS
DIM MIN MAX
DIM
A
B
C
G
K
L
MILLIMETERS
MIN MAX
- 32.13
7.75
8.00
20.32 21.72
17.32 17.58
31.27 32.89
34.24 35.31
INCHES
MIN
MAX
-
0.305
0.800
0.682
1.231
1.348
1.265
0.315
0.855
0.692
1.295
1.390
CASE 112·03
04
0
5
'i'l
I .AJ
f<':'~ ' . )
~.w~,lt.
;:
0
/~
' "\::,;;/
I
D
I
L
i---J-
CASE 114--01
267
MILLIMETERS
INCHES
MIN
MAX
MIN
MAX
2.270
57.66
43.18
44.45
1.700
1.750
0.870
C
21.08
22.10
0.830
3.56
0.140
D
F
13.84
14.48
1.1
G
28.588SC
H
22.10
J
43.948SC
1.730 sse
K
5. 8
6.22
6.48
0.245
0.255
L
Q
O.lou
3.81
0.130
3.30
44.20
1.740
R
NOTES:
1. DIM "L" IS 3.18 mm (0.125) DEEP;
DIM "(1" IS THRU HO LE
OIM
A
8
O.54~
4
RECTIFIER BRIDGES
(continued)
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
DC DUTPUT
VOLTAGE
Rls. . Cap•.
Load
Load
Volts
Volts
~55°C
PEAK FULL WAVE
ONE CYCLE
SURCE CURRENT
'MPS
AlDp.
PEAK FULL WAVE
RECURRENT
FORWARO CURRENT
PEAK REVERSE
VQlTACE
(DC or RECURREND
Volts
SINE WAVE
RMS INPUT
VOlTACE
CliNE 10 LINE!
Volts
-2
-3
-4
-5
-6·
50
100
200
300
400
600
35
70
140
210
280
420
30
62
124
185
250
380
50
100
200
300
400
600
1. 50
1. 50
1. 50
1. 50
1. 50
1. 50
25
25
25
25
25
25
6.0
6.0
6.0
6.0
6.0
6.0
2
MDA972-l
-2
-3
-4
-5
50
100
200
300
400
35
70
140
210
··280
30
62
124
185
250
50
100
200
300
4QO
16.0
16.0
16.0
16.0
16.0
250
250
250
250
250
60
60
60
60
60
3
MDA1591 -1
-2
-3
-4
,.
-5
-6
50
100
200
300
400
600
35
70
140
210
280
420
30
62
124
185
250
380
50
100
200
300
400
600
4.00
4.00
4.00
4.00
4.00
4.00
100
100
100
100
100
100
25
25
25
25
25
25
4
MDA1505 -1
-2
-3
-4
-5
-6
50.
100
200,
300
400
600
35
70
140
210
280
420
47
95
190
285
380
570
50
100
200
300
400
600
8.00
8.00
8.00
8.00
8.00
8.00
200
200
200
200
200
200
45
45
45
45
45
45
'riPE NO.
,
MDA~42-1
ru cm.
DC OUTPUT
CURRENT
BIENT
(80
Hz,
(80 Hz'
AlWps
,
Maximum Operating and Storage Temperature: -65°C to ...150°C (AlI1'ypes)
·,.
'"
~""
/
II
0
50
w
1/ I
0
70
'"
'"
a
I
20
30
50
70
100
NUMBER OF CYCLES
0
I
I
0
FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
1/
0
0
L
VI
-0.5
0
/
'-'
3.s -1.Or-
TYPICAL
RANGE,
~
1.0
r;
O. 7
~
O. 5
8
:>
~
tr
/1'
l1
1-1-
V
-2.0
...... 1-
O. 3
O.2
o
r---
.~
-1. 5
I--'
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
-2. 5
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
iF, INSTANTANEOUS FORWARD CURRENT lAMP)
VF, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)
·FIGURE 4 - TYPICAL THERMAL RESPONSE
§N
1.0
~
,0. 7
g;
~
O. 5
~
o.2
...... V
to
i:i
'"
Z8JClt) = rlt) • R8JC
f-"'"
O. 3
vI-
O. 1
~ 0.07
ffi
0.0 5
,
!I:
~ 0.0 3
-I--"
z
i* 0.02
:=~ 0.0 I
?
2.0
~
5.0
10
20
50
100
200
500
t,TIME
272
1.0k
(m~
2.0k
5.0k
10k
20 k
50k
lOOk
200k
MDA970-' thru MDA970-3 (continued)
MAXIMUM CURRENT RATINGS, BRIDGE OPERATION
..
FIGURE 5 - CASE TEMPERATURE
DERATING
0
~ 9. o
~
8.
a:
o
. . . r--...:r---.:"
-"
~ 7.0
:il
6. 0
~
5. 0
~
4.0
w
to
ffi
3.0
~ 2.0
V, I I I
i.-- 5 }CAPACITIVE
r--...I"~k . . . . I---~~
...... r--...~~
......
......;:
r-....."t'~ ..... 150
~ ;<:20
a
i'--~
ffi
.
~
~ 2.
~ !IIi..
~
~
~ 1.0
:f"
0
20
en
40
80
100
-
a: 3.0
a:
5
~ 2.
LOADS
Noh: T1hel(PK)iI(AV) ratio
reters t~ a linlyle di~de.
~~ (RESISTIVE & INDUCTIVE LOADS)
S 3. 5t':::-.-
~~
TJ~150oC
-
.'"
~ =" (RESISTIVE & INDUCTIVE LOADS)
........ 1:'-.
FIGURE 6 - AMBIENT TEMPERATURE
DERATING
4.0
,
~
wi.5
to
..ffiSO.
>
I".
140
110
(4". x 4" Copper
PC Biard)
~
160
I
I
I
CAPACITIVE
LOADS
r<:~~
ROJA = 22oC/w
o
}
,,~~
I
TJ~
~
150°C
1.0
NOTE: Thel(PK)iI(AV) ratio
refers to a single diode.
5 - 1-
~~
I I I I I I
0
10
en
40
TC. CASE TEMPERATURE (OC)
80
"'"
120
100
,
160
140
TA. AMBIENT TEMPERATURE(OC)
TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)
-
FIGURE 7 - RECTIFICATION EFFICIENCY
100
""-:::-
10
r-
N:.
70
~......
~
~
15
U
TJ = 15°C
~
"
a:
rvv-'
30
ruu --2.0
3.0
5.0
\
'"ffi
~
1\
\
7.0
10
10
a
1
5.0
t
30
3. a
2.OI-
O~
0.1
0.1
500
I'.
........
300
~
1.0
2.0
3.0
VF~
- 1- Vfr-I I
-
5.0
I-- Tj=250C
7.0
10
,
w
~ O. 5r-
Tj = 25°C
200
/
/
tfr
/'
>-
ffi
>
100
§a:
70
~
~~
c;j 50
0.3
O. 2
V-
30
20
1 ____
O.
10
1.0
1.0
3.0
I
O. 7 -
'"'z
~
0.5 0.7
1.0
700
~
" "'" I'........... i'.r-... I"- l"""""
FIGURE 10 - FORWARD RECOVERY TIME
FIGURE 9 - JUNCTION CAPACITANCE
1000
w
0.3
.........
l......
L
trr
......
IRiIF. RATIO OF REVERSE TO FORWARD CURRENT
REPETITION FREQUENCY (kHz)
~
-I
IR
1. a
70 100
......
........
~~.-
f-
1\
50
Tj = 15°C
'I"-
IF = 5A
w
\
20
1.0
§
\
............
~
~ 7.0
Tj=1"750C
\
\
CURRENT INPUT
WAVEFORM.
>
;::
~
'";::
"'"'"",
""..........
Jw
~
"
I
50
w
FIGURE B - REVERSE RECOVERY TIME
30
5.0
7.0
10
10
30
50
70 100
1.0
--
--
.........-
V
1.0
/
--3.0
Vfr= I V
Vfr= 1 V
II
5.0
iF. FORWARD PULSE CURRENT (AMP)
VR. REVERSE VOLTAGE (VOLTS)
273
-
~r--
- -
. 7.0
10
MDA97o-1 thru MDA970-3 (continued)
°H
: fW) =:
FIGURE 11 -
.1
0:
~
CAPACITIVE
~u; 14 LOADS
1=
to
ffi~
I
" ,"
I
6& ~
~~
..A ~
~
.",~
a
o
1.0
",
2.0
/1./'::
]1
/ ...... ~V
~~
4.a
2. a
I
FIGURE 12 - BASIC CIRCUIT USES FOR
BRIDGE RECTIFIERS
;"./::;>5:V
-, "'''
e~ 6.0
~
I
{I~~
20
12
~~ 8. a
So
I
(RESISTIVE & INDUCTIVE LOADS))<
>z 10
<0
!'!.
POWER DISSIPATION
3.0
4.0
5.0
TJ~
15a·c
Load
CIRCUIT A
NOTE: The I(PK))I(AV) ratio refers to a single diode;
PDTIAV) referst. the package dissipation.
6.0
7.0
B.O
9.0
10
IFIAV).AVERAGE FORWARD CURRENT (AMP)
CIRCUIT B
NOTE 1: THERMAL COUPLING AND EFFECTIVE THERMAL
NOTE 2: SPLIT LOAD DERATING INFORMATION
RESISTANCE
In multiple chip devices where there is coupling of heat between
die, the junction temperature can be calculated as follows:
Bridge rectifiers are used in two basic configurations as sh,own
by circuits A and B of Figure 12. The current derating data of
Figures 5 and 6 apply to the standard bridge circuit (A) where
'A = 'B. For circuit B where IA :;6 IB' derating information can be
calculated as follows:
11) "TJl = Rei POI + R82 Ke2 P02 + Re3 Ke3P03
+ Re4 Ke4 P04
(6) TRIMAX) = T J(MAX) - "T Jl
Where TR(MAXI is the reference temperature (either
ambient)
Where 6 TJl is the change in junction temperature of diode 1
R81 thru 4 is the thermal resistance of diodes 1 through 4
POI thru 4 is the power dissipated in diodes 1 through 4
Ke2 thru 4 is the thermal coupling between diode 1 and
diodes 2 through 4.
case or
I!..T Jl can be calculated using equation (3) in Note 1.
For example. to determine T C(MAX) for the following load
conditions:
An effective package thermal resistance can be defined as
follows:
(2) R8IEFF) = "TJ1/POT
where: PDT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation (1)
simplifies to
IA = 3.1 A average with a peak of 11.2 A
18 = 1.55 A average with a peak of 6.B A
First calculate the peak to average ratio for IA. I(PK)/I(AV) =
11.2/1.55 = 7.23 INote that the peak to average ratio is on a per
diode basis.)
(3) "TJl =R81 (P01,+Ke2P02+Ke3P03+K84P04)
For the conditions where POI = P02 = P03 = P04. PDT = 4 PO'
equation (3) can be further simplified and by substituting into
equation (2) results in
From Figure 11. for an average current of 3.1 A and an I(PK)/
IIAV) = 7.23 reed PTIAV) = 4.8 watts or 1.2 watts/diode :.
POI = P03 = 1.2 watts.
Similarly. for a load current IS of 1.55 A. diode #2 and diode
#4 each see 0.775 A average resulting in an I (PK)/I (A VI "" B.B.
(4) ReIEFF) = Rel(1 + Ke2 + K83 + Ke4)/4
Thus, the package power dissipation for 1.55 A is 2.3 watts or
0.575 watts/diode:. P02 = P04 = 0.575 watts.
The maximum junction temperature occurs in diode #1 and #3.
From equation (3) for diode #1 "T Jl = 9[1.2 +.65(.575) +.725
(1.2) + .725 1.575)J
For this rectifier assembly, thermal coupling between opposite
diodes is 65% and between adjacent diodes is 72.5% when the case
temperature is used as a reference. When the ambient temperature
is used as the reference, the coupling is a function of the mounting
conditions and is essentially the same for opposite and adjacent
diodes.
"TJl "" 260 C
Thus TCIMAX) = 150-26 = 1240 C
The effective bridge thermal resistance, junction to ambient,
is (from equation 4).
The total package dissipation in this example is:
(5) ROIEFF)JA = R8JAII +3KOIAV)JA)/4
PJ = 2 X 1.2 + 2 X 0.575'" 3.6 watts
Where: K8IAV)JA "" IKO(AV)JC ROJC + ReCAIiROJA
and K8(AV)JC is approximately 70%. ReCA is the case to
ambient thermal resistance.
(Note that although maximum R8JC is lOoC/watt. gOC/watt is
used in this example and on the derating data as it IS unlikely that
all four die in a given package would be at the maximum value.)
NOTE 3
Under typical wire terminal or printed circuit board mounting
conditions, the thermal resistance between the diode junctions
and the leads at the edge of the case is a small fraction of the thermal'resistance from junction to ambient. Consequently. the lead
temperature is very close to the junction temperature. Therefore,
it is recommended that the lead temperature be measured when the
diodes are operating In prototype eqUipment, in order to determine
if operation is within the diode temperature ratings. The lead having
the highest thermal resistance to the ambient will yield readings
closest to the junction temperature. By measuring temperature as
outlined, variations of junction to ambient thermal resistance,
caused by the amOunt of surface area of the terminals or printed
circuit board and the degree of air convection, as well as proximity
of other heat sources cease to be important design considerations.
MDA972 series
For Specifications, See MDA942 Data_
274
MDA980-1
MDA990-1
thru
thru
MDA980-6
MDA990-6
Designers Data Sheet
SINGLE-PHASE
FULL-WAVE BRIDGE
INTEGRAL DIODE ASSEMBLIES
12 and 30AMPERES
50 thru 600 VOLTS
passivated, diffused silicon dice interconnected and transfer
molded into voidless hybrid rectifier circuit assemblies. The MDA990
series incorporates an electrically insulated aluminum disc for im·
proved heat dissipation when mounted directly on a metal chasis
or heat sink .
•
Large surge capability - 300 A
•
Efficient Thermal Management Provides Maximum Power Handling
In Minimum Space
~~
Designers Dat8 for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.
Symbol
l'1Iek Repe1lt,veReverse Voltage
Worlung Puk Reverse Voltage
DC81oeklngVoltage
RMS ReVllrseVoltaga
DC Output Voltage
ReSlS1lve Loed
. ..
.,
MAXIMUM RATI NGS (T C .. 25 0 C unless otherwise noted)
VRRM
VRWM
VR
50
100
200
V.R!AMS
36
70
140
Vd,
,.
210
<00
600
280
<20
Volt$
62
185
12'
250
400
ClIpileluwl.Q1td
380
(Smgle pha!lll bridge rHlstlve lolid,
60 Hz, TC - SSoe)
CASE 179.01
MDA980Serie.
C>
~
,
Am,
MOA990
Aluminum
Disc
0.8750Ia.
CASE 179·02
MOA 990 Series
12
MOA980
Non·Repetlt.ve PeliIk Surge Current
ISurveapphed at rated load
ffi
z
,~.
5.0
;!:
~
3,0
!
2.0
v
-
0.3
~
0.2
0.6
0.8
1.0
1.2
1.4
1.B
1.8
2.0
2.2
-
TYPICAL
RANGE,
-1.0 " -
~
I-
V
).;1
1
f"
~
-2.0
2.B
2.4
-2. S
0.2
YF. INSTANTANEOUS FORWARD VOLTAGE IVOLTSI
0.5
1.0
5.0
2.0
10
20
50
100
200
, iF. INSTANTANEOUS FORWARD CURRENT IAMPI
FIGURE 4 - TYPICAL THERMAL RESPONSE
.
1.0
w
z
~
fa
'"..
'\
30
FIGURE 8 - JUNCTION CAPACITANCE
"',-
r-
100
30
50
10
1.0
70 100
2.0
3.0
5.0
FIGURE 9 - REVERSE RECOVERY TIME
30
20
].
!:i1 10
t'--.
f'.. I'..
;::
"-I'-I'
~
;::
~
~ 3.0
2.0
If~~~1
......
, IA,
.......
-~
=O~
_I In
I.
1.0
0.1
0.2
0.3
'" ...........
I'...
0.5 0.7
Ie
........... 'I'...
"
2.0
II-
1_
t.
3.0
0.2
_I
- t--
30
50
70 lOa
t
v,.
5.0 7.0
,0.1
10
---
1.0
l.iI" RATIO Of REVERSE TO FORWARD CURRENT
277
1/
/
..........
V
TJ~25'C
L
~
L
v.~IV
~
$
r--..
1.0
0.5
~
"-. "
L
20
I
~Vf~1
~ 0.3
>,
5.0
I
l-
0.7
].
TJ ~ 25'C
~ 7.0
~
10
FIGURE 10 - FORWARD RECOVERY TIME
1.0
i"""- t--..
7.0
V., REVERSE VOLTAGE (VOLTS)
REPETITION FREQUENCY (kHz)
~
~
2.0
k--::'"
3.0
-
r--~
vfr=2V
11
5.0
if, FORWARD PULSE CURRENT (AMPS)
7.0
10
MDA980-1 thru MDA980-6, MDA990-1 thru MDA990-6 (continued)
FIGURE 11 - POWER DISSIPATION
70
50
'"~
3D
IIPK) = "'IRESISTIVE &
IIAV)
INDUCTIVE LOADS
30
dA~!CITI~E
~;;;211
~S
ffi~ 10
>z
~ e7.0
:::::
1~"""
LOADS
IIPK) =
IIAV)
~
r-.
Ogj
~i53.0
~
0.7
1.0
'"'
~
S
2.0
3.0
I-
20
B
15
-...........
I-
5.0 7.0
10
3D
20
~ MDA99~
-~
--r-... ~
r-...
~
=> 10
TJ ~ 1750 C
NOTE: TheIIPK)/IIAV) ratio refers to a single diode; POT(AV)
refers to the package dissipation:_
p1.0
0.7
0.5
Ii::
~ i~
~ r--.;:
~
2.0
LNIT MriUNTEDION A 8 ~ 8 x 1181INCH
ALUMINUM PLATE IN VERTICAL
POSITION IN STILL AIR
rESISTIVE -INDUCTIVE LOAO
25
P'
---
~ ~5.0
j
FIGURE 12 - CURRENT VERSUS AMBIENT TEMPERATURE
0
u
°ES.O
50
""
..... ~
5.0
25
45
IFIAV). AVERAGE FORWARD CURRENT lAMP)
65
105
85
125
~~
145
165
185
TA. AMBIENT TEMPERATURE IOC)
NOTE 1 - THERMAL COUPLING AND EFFECTIVE
THERMAL RESISTANCE
Where: PDT is the total package power dissipation.
In multiple chip devices where there is coupling of heat between
die, the junction temperature can be calculated as follows:
Assuming equal thermal resistance for each die, equation (1)
simplifies to
(3) ~TJl = R811POl + K82 P02 + K83 P03 + Ke4 P04)
(1) 6TJl = R81 P02 + R82 K82 P02 + R83 K83P03
+ R84 K84 P04
\Ntiere ~T J1 is the change in junction temperature of diode 1
For the condition where POl = P02 = P03 = P04, PDT = 4POI
equation (3) can be further simplified and by substituting into
equation (2) results in
RS1 thru 4 is the thermal resistance of diodes 1 through 4.
Po 1 thru 4 is the power dissipated In diodes 1 through 4
(4) RO(EFF)
K82 thru 4 IS the thermal couplmg between diode 1 and
diodes 2 through 4.
=
R81 11 + K02 + Ke3 + Ke4114
For the MDA980 rectifier assembly, thermal coupling between
opposite diodes is 42% and between adjacent diodes is 50% when
the case temperature is used as a reference. Similarly for the
MDA990, thermal coupling between opposite diodes is 12% and
An effective package thermal resistance can be defmed as
follows:
(2) R8(EFF) = ~TJ1/POT
between adjacent diodes is 20%.
NOTE 2 - SPLIT LOAD DERATING INFORMATION
Bridge rectifiers are used in two basic configurations as shown
From Figure 11.for an average current of 20 A and an I(PK)I
I IA V) = 8.6 read POTIA V) = 40 watts or 10 watts/diode. Thus
POl = P03 = 10 watts.
Similarly, for a load current 16 of 10 A, diode #2 and diode 114
each see 6.0 A average resulting in an I IPK)/I IAV) '" 14.4
Thus, the package power dissipation for 10 A is 20.2 watts or
6.05 watts/diode_ .: P02 = P04 = 6.05 watts.
in circuits A and B of Figure 13. The currant derating data of
Figures 5 and 6 apply to the standard bridge circuit (A) where
IA:::; lB. For circuit B where IA*IB. derating information can be
calculated as follows:
(6) TRIMAX) = T JIMAX) - 6T Ji
The maximum junction temperature occurs in diodes #1 and
Where TR(MAX) is the reference temperature (either case or
ambient)
113. From equation (3) for diode #1 ~TJl = 5.6 [10 + 0.12
15.05) + 0.2 (10) + 0.216.0611.
6T Jl can be calculated using equation (3) in Note 1.
"TJ1 '" 760 C
Thus T CIMAX)
For example. to determine TCIMAX) for the MOA990 with
the following capacitive load conditions:
= 175-76 = 99 0 C
The total package dissipation in this example is:
IA = 20 A average with a peak of 86 A
16 = lOA average with a peak of 72 A
PJ
=2 x
10+ 2 x 5.06 '" 30.1 watts
INote that although maximum ReJC is 6 0 C/W. 5.60 C/watt is
used in this example and on the derating data as it is unlikely that
all four die in a given package would be at the maximum value).
First calculate the peak to average ratio for IA. I(PK)ilIAV) =
86/10 = 8.6. INote that the peak to average ratio is on a per diode
basis and each diode provides lOA average).
FIGURE 13 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS
Jil
Load 2
Load
CIRCUIT B
CIRCUIT A
278
MDA1200, MDA1201
MDA1202, MDA1204
MDA1206
Designers Data Sheet
FULL WAVE BRIDGE RECTIFIER ASSEMBLIES
SINGLE·PHASE
FULL·WAVE BRIDGE
· .. utilizing inidvidual hermetically sealed metal case rectifiers inter·
connected and then encapsulated in plastic to provide a single rugged
package. Devices are available with voltages from 50 to 600 Volts
with these additional features.
•
•
12 AMPERE
50 thru 600 VOLTS
Slip On Terminals
• High Surge Capability
Output Current Ratings for Both Case and Ambient Conditions
Designers Data for
·~or.t C••••
Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves -" representing boundaries on device character-
istics - are given to facilitate "worst case" design.
MAXIMUM RATINGS ITIC = 25°C un ess ath erwi18 noted.
Rating
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
AMS Reverse Voltage
DC Output Voltage
MDA
1200
MDA MDA
1204 lZ06
MDA MDA
1201 1202
50
100
200
400
600
VRIRMS}
35
70
140
280
420
30
50
62
100
124
200
250
380
600
Volts
Volts
Vdc
Resistive Load
Capacitive Load
Average Rectified Forward Current
(Single phase bridge, resistive load,
60 Hz)
TA = 55°C
TC - 1000C
Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions)
Operating and Storage Junction
Temperature Range
10
IFSM
TJ.Tstg
Unit
Volts
VRRM
VRWM
VR
....
..
400
Amp
..
..
4.5
12
300
Amp
~-65to +175~
Q
"C
THERMAL CHARACTERISTICS
Symbol
Characteristic
Thermal Resistance, Junction
to Ambient
Unit
Max
Each Die
Effective Bridge
R8JA
28
°C/W
R8JAIEFF}
17.15
°C/W
Each Die
Effective Bridge
ROJC
10
ROJCIEFF}
3.75
°C/W
°C/W
Thermal Resistance, Junction I
to Case
ELECTRICAL CHARACTERISTICS ITC = 25°C unle" otherwise noted.}
Characteristic
Instananeaus Forward Voltage (Per Diode) (1)
(iF
(iF
= 18.9 A)
a
18.9A, TJ
Symbol
Typ
(I) Pula Te.. : Pula Widlh
'R
Unit
Volts
0.94
= 17s"C)
Reverse Current
(Rated VA applied to ac terminals.
+ and - terminals open)
Max
vF
-
1.05
0.9
0.5
< 300 "', Duty Cycl. < 2.0%.
MECHANICAL CHARACTERISTICS
CASE: Transfer-molded plastic ca.. with epoxy fill.
POlARITV: Termlnal.- ..
!iii! o. 1
i~ 0.01
<:i!
0.05
'l::' a:
0.02
~i 0.03
0.0 1·
.....
5.0
10
i'""""
Z6JC tl
....
=r I)
. R6JC
-
l/
20
50
100
200
500
1.ok
2.ok
t.TIME(m~
280
S.ok
10k
20k
SDk
lOOk
200k.
Sook
MDA1200, MDA1201, MDA1202, MDA1204, MDA1206 (continued}
MAXIMUM CURRENT RATINGS, BRIDGE OPERATION
FIGURE 5 - AMBIENT TEMPERATURE DERATING
~
~
ffi
5. O~
4. 5~
... 4.0 ......... c-..;:: t:-...
'"g;
'"'~
~
c
3. 5 .........
3.0
~ 1.5
~
:::>
~
r-
0.:
40
w S.0 -
oo
~
I F(A V) refllrs to the load current.
so
60
100
120
ffi 6. 0
t-..
140
r-...:t--.
-,mic
r-.....
TJ
/
5.0 } CAPACITIVE
t":t'. ~~~ LOADS)
r-.... )' ~
r---.. r--.J. r-...... ~ ~
......... ~ ~
-....;: ~
NOTE: The I(FM)Ii(AV) rotio
refers to a single diode and
IF(AV) refers to the load current.
>
r"
:~:~: - .(RESISTIVE & INDUCTIVE LOADS)
.........
r---..
~ 10
~
......
~:e~E~o ~~i~~~~I:~~Aa~~ ratio
4
2
'-'
«
~~
TJ" 175 0 C
to
S
~1 6 r--..
r-...: ~ ~
R 8S~
~ 2.0
« 1.0
~1 SI""---
~~
V 1...- 5.0 } CAPACITIVE
r-.... ...... ~ I::x1-/ v~~ LOADS
2. 5
~
FIGURE 8 - CASE TEMPERATURE DERATIIIIG
~ 2O~
I
/. . 1
~ - .(RESISTIVE & INDUCTIVE LOADS)-
« 4.0 -
S
~2.0
......
~
"""
o
160
40
ISO
60
SO
100
120
140
TC. CASE TEMPERATURE (DCI
TA.AMSIENT TEMPERATURE (DC)
160
ISO
TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)
FIGURE 8 - CAPACITANCE
FIGURE 7 - RECTIFICATION WAVEFORM EFFICIENCY
60
40
'"
t;
c
CURRENT INPUT WAVEFORM
:1:
...
'-'
20 f--
~
~
f--
'"~
'"'"
LOA
.......... ~ ......... t-..
5.0 A'
..........:
II IIII
"-
111111
100
5.0
10
20
50
VR. REVERSE VOLTAGE (VOLTS)
200
Tr 250 C
"I'
~~
~
5.0
2.0
"-
ALL DEVICES
APPLICABLE FOR RATED VOLTAGE
O. 7"F
"' o.
'" 5 r
w
'">-
-
1.0
t
TJ-25D
;:: 7.0
~
-
500
FIGURE 10 - FORWARD RECOVERY TIME
.......
~ r--- ...........
-
r--. ....... 1"-
i
.......
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
IR/IF. RATIO OF REVERSE TO FORWARD CURRENT
0.3
I- tf, --l
V
0.2
~
7.0
1l-0'1.0
10
281
....,..
/'
--
,....
r--
-r-
I-
V
...... Uf;-1.0V
I--- r2'r
2.0
3.0
5.0
IF. FORWARD CURRENT (AMP)
7.0
10
MDA1200, MDA1201, MDA1202, MDA1204, MDA1206
(continued)
FIGURE 11 - POWER DISSIPATION
40
I- :(FMI."
I(AVI
(RESISTIVE &
INDUCTIVE LDADSI
2
CAPACITIVE
8 r-LOAOS
-x...
5.0 .....
~
I? ........
4
2~,
0
/ h
6
/
J
7. ~
/
7> 'Y
~
~ f7
2
/~ ~
0
0/
~
2.0
/
./
V ' / /'
r,!... / /. /'
-,
TJ"'" 115DC
DTE: Til! I(FMlnl(AVI rat~ refeB
~:':~I~~=~VJ.tion
~
and IF(AVI refeB to til! load current.
4.0
6.0
8.0
10
14
12
16
18
20
IHAVI. AVERAGE FORWARD CURRENT (AMPI
NOTE 1 - THERMAL COUPLING AND EFFECTIVE
THERMAL RESISTANCE
Where: PDT is the total package power dissipation.
I n multiple chip devices where there is coupling of heat between
die, the junction temperature can be calculated 8S follows:
Assuming equal thermal resistance for each die, equation (1)
simplifies to
(31 AT J1 = R81(P01 + K82 P02 + K83 P03 + K84 P041
For the condition where POI = P02 = P03 = P04. PDT = 4POI
equation (3) can be further simplified and by substituting into
equation (2) results in
(11 liT J1 = R81 P02 + R82K82P02 + R83 K83P03
+ R84 K84 P04
Where .6T J 1 is the change in junction temperature of diode 1
R81 thru 4 is the thermal resistance of diodes 1 through 4.
Po 1 thru 4 IS the power dlsslpat~d In diodes 1 through 4
K62 thru 4 IS the thermal coupling between diode 1 and
diodes 2 through 4.
(4) Re(EFFI= R81 (1+K82+K83+Ke4114
For the MOA 1200 rectifier assembly. thermal coupling between
opposite diodes is 10% and between adjacent diodes is 20% when
the case temperature is used as a reference. Similarly for ambient
mounting, thermal coupling between opposite diodes is 45'% and
between adjacent diodes is 50%.
An effective package thermal resistance can be defined as
follows'
NOTE 2 - SPLIT LOAD DERATING INFORMATION
Bridge rectifiers are used in two basic configurations as shown
in circuits A and B of Figure 12. The current derating data of
Figures 5 and 6 apply to the standard bridge circuit (AI where
IA = IS' For circuit B where IA~IB' derating information can be
calculated as follows:
From Figure 11. for an average current of lOA and an I(FMI/
I(AVI = 9.2 read POT(AVI = 21 watts or 5.25 watts/diode. Thus
POI = P03 = 5.25 watts.
Similarly. for aloed current IS of 5.0 A. diode #2 and diode #4
each see 2.5 A average resulting in an I(FMI/I(AVI = 14.
Thus, the package power dissipation for 5.0 A is 10 watts or
2.5 watts/diode .. : P02 = P04 = 2.5 watts.
The maximum junction temperature occurs in diodes #1 and
#3. From equation (31 for diode #1 .:3.TJl = 10 [5.25 + 0.1
(2.51 + 0.2 (5.251 + 0.2 (2.511.
(51 TR(MAXI = TJ(MAXI - ATJl
Where TR(MAX) ·is the reference temperature (either case or
ambient)
D.T J1 can be calculated uSing equatIon (3) in Note 1.
.:3.TJl '" 700 C
Thus TC(MAXI = 175 - 65= 106"C
The total package dissipation in this example is:
PDT = 2 x 5.25 + 2 x 2.5 = 15.5 watts
For example. to determine TC(MAXI for the MOA1200 with
the following capacitive load conditions:
IA = 10 A average with a peak of 46 A
IS = 5.0 A average with a peak of 35 A
First calculate the peak to average ratio for IA' I(FMI/I(AVI =
46/5.0 = 9.2. (Note that the peak to average ratio is on a per diode
basis and each diode provides 5.0 A averagel.
FIGURE 12 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS
]1·
JI1
Load
CIRCUIT B
CIRCUIT A
282
HIGH VOLTAGE SILICON RECTIFIER MOLDED ASSEMBLIES
MDA1330H
MDA1331H
MDA1332H
MDA1333H
Compensated series-connected rectifier cells for high-voltage,single-phase,
half-wave circuit applications. Each cell in the series string is shunted by a
high-voltage capacitor and resistor for equal voltage distribution.
NOTES:
1. MDA 1330H and MDA 1331 H, add suffix "C" for common cathode,
"U" for common anode, "D" for voltage doubler.
2. MDA 1332H and MDA 1333H, reverse polarity available by adding
suffix "R".
MAXIMUM RATINGS
Rating
Symbol
Peak Repetitive Reverse Voltage
CD
(Rated Current, Over Operating Temperature Range)
RMS Reverse Voltage
(Rated Current Over the Complete Operating
Temperature Range)
DC Blocking Voltage
(Over Operating Temperature Range)
MDA1330H MDA1331H MDA1332H MDA1333H
Units
VRRM
5,000
10,000
5,000
10,000
Volts
VR(RMS)
3,500
7,000
3,500
7,000
Volts
VR
3,000
6,000
3,000
6,000
Volts
10
1.0
1.0
2.5
2,5
Amps
0,3
0.3
0.5
0.5
25
25
250
250
®
Average Half Wave Rectified Forward Current
(Resistive Load, 180" Conduction Angle,
60cps, Free Convection Cooling)
TA = 40"C
T A = 100"C
Peak 1 Cycle Surge Current
(TA = 40"C, Superimposed on Rated
Current at Rated Voltage)
Operating Frequency Range
I FSM
Operating and Storage Temperature Range
Amps
DC to 400
cps
-55 to +110
"C
CD
VRM(rep) ratings of 5,000 or 10,000 volts peak are both the maximum repetitive
and non-repetitive ratings. Where voltage transient suppression is employed,
these assemblies can be reliably operated at the maximum ratings.
®
The DC Blocking Voltage rating (VR)' is established by the continuous power
dissipation ratings of the shunting reslstors and is not a function of the series
rectifiers.
ELECTRICAL CHARACTERISTICS
Rating
Symbol
MDA1330H MOA1331H MDA1332H MDA1333H
Units
Maximum Full-Cycle Average Forward Voltage Drop
(Half-Wave, Resistive Load, Rated Current and
Voltage, T A=40"C)
VF(AV)
5.0
10.0
5.0
10.0
Volts
Maximum Full-Cycle Average Reverse Current
(Half-Wave, Resistive Load, Rated Current and
Voltage, T A=40" C)
IR(AV)
0.2
0.2
3.0
3.0
rnA
Note: Ambient temperatures are measured at the cold air source point i. e. immediately below the rectifier legs under convection cooling and on the cool air
side with forced air cooling.
283
HIGH VOLTAGE SILICON RECTIFrERS(c6i1:tinUed)'
,
"
~'
ELECTRICAL DESIGN NOTES
1. .. For slngle-'phase',full-wave circuits using "Series 1300" stacks, multiply
the current ratings given for the half-wave by two.
2. For three-phase,full-wave and half-wave circuits, multiply given current
ratiQgs for single-phase,half-wave by two and one half.
3. For capacitive loads, sufficient surge and capacitor . inrush current protection must be employed. Recurrent peak currents up to six times the singlephase average output-curreI).t ratings can be safely sustained when the average
value of these peaks are held at or below the rated average output. Nonrepetitive peak currents must be held to the maximum surge ratings.
TYPICAL FORWARD CHARACTERISTICS
(TJ = 25°C)
4.0
,
8.0
I
7.0
i
i1!
~
3.0
i
I .
~
I
.L
~
MOA1330H
2.0
I
I
1.0
o
MOA1331H
/
o
5.0
I
5?
4.0
i
3.0
.~
12
o
14
16
MOA1333H
2.0
I
LO
/
10
MOA1332H
~
·z
II
/
:::
~
I
6.0
18
v, INSTANTANEOUS FOIIWARO VOLTAGE (VOLTS)
o
I
II
I
10
12
14
16
v, INSTANTANEOUS FORWARD VOLTAGE (VOlTS)
284
18
HIGH VOLTAGE SILICON RECTIFIERS
(continued)
MAXIMUM SURGE CURRENT
RATED CONDITIONS
MOA1330H and MOA1331H
MOA1332H and MOAl333H
300
30
,..i1!
\.
;
I
\.
TA. = 40°C
I\.
'\.
"
\
\
200
~
e
I
Ol
"
......... ......
T. - 4O'C
\..
!@
i"'I
\,
'"
100
j
r--..
........... ......
I"
...... ....
o
o
4
I
6810
20
CYCLES AT60 CPS
40
; 8 10
20
CYCLES AT 80 CPS
I
6080100
40
60 80100
MAXIMUM AVERAGE HALF·WAVE RECTIFIED CURRENT
(RESISTIVE OR INDUCTIVE LOAD. 180· CONDUCTION ANGLE, 60 CPS)
MOA1330H and MOA1331H
1.0
FREE
CONVENTION \looLfr\
COOLING
MDA1332H and MOAl333H
\!OOOJM
\ \ \
\ \
\ \
\
\
IrL~
\.
500LfM
\.
\
f-
FREE
CONVENTION
COOLING
"
I
o
o
o
20
40
60
\.
\.
100
120
T. AMBIENT TEMPERATURE t'CI
\.
\
\
'\
'" "- \ \.'\
"
o
20
40
60
80
T. o AMBIENT TEMPERATURE I"CI
o
285
~
~
100
120
HIGH VOLTAGE SILICON RECTIFIERS
MECHANICAL DESIGN INFORMATION AND OUTLINE 01·
MENSIONS FOR THE BASIC MDA1330H AND MDA1331H
RECTIFIER LEGS.
1 r-
(continued)
MECHANICAL DESIGN INFORMATIOt4 AND OUTLINE 01·
MENSIONS FOR THE BASIC MDA1332H AND MDA13331t
RECTIFIER LEGS.
0.50 NOM
0 50MAX
,
--.L
MOUNTING BARS,
SEE NOTE 1
OFFSET MOUNTING
TABS, SEE NOTE 2
A
(4)
0.260 HOLES
0.275
3/4
=
POlARITY DOTS: RED +DC OUTPUT
Device
ADim
BDim
t
CDim
Device
DDim
BDim
ADim
MDA1330H 4. 25max 3.70±O.05 3. 25 max 3.00nom
MDA1332H
MDA1331H 7. 00 max 6. 39±0.05 6.00max 5. 25nom
MDA1333H 11-1/4 nom 6-l/2±1/16 2-3/8 nom
NOTES: These basic rectifier legs are suitable for chassis
mounting and connection into multiple leg circuits. Center
tapped versions of the MDAI330H and MDA\33IH are
also available for use in lower voltage, Center tapped and
Voltage Doubler applications. The center tapped versions
of the MDAI330H and MDA\331H are designated by a
different suffix letter' as follows: instead of "H" specify
"C" for common cathode, center tap
"U" for common anode, center tap
"D" for voltage doubler.
1<1> TOP VIEW
NOTE I. Insulated mountinll bars are supplied
with all Series I300 stacks and tbe smgle umt bar is
shown above. For multiple leg Circuits, mom,ting bars are
available in lengths suitable for 2 or 3 legs mounted side
by side. In addition, the mounting arrangement used is also
suitable for mounting legs top and bottom on the same bar
with stand·offs employed for support of the assembly.
NOTE 2. Offset mounting taps are used to provide more
compact multiple leg assemblies. When top & bottQm or
side by side mounting is employed. reverse polarity legs
are often required in some circuits. Legs of reverse polarity
to that shown above are designated by an "R" suffix, i.e.
MDAI332HR.
t
6·718 MAX
141 0.260HOLES
0275
_
5-5/8 nom 3-1/4
CDim
1/16 1-1/8 nom
1+-518 NOM
I
I
3¢ DR TOP VIEW
141 0.260 HOLES
0275
1'·718 NOM
I---
~L::::==::::::::!H::::::41T
6· 112 ± 1/16---/
8·1/8 MAX
~~+--------~~--~~
2 NOM
f + - - - - - - - 1 3 MAX--------<001
1<1> AND 3¢ SIDE VIEW
-.i..
AC
1-------13MAX------.j
286
MDA1505 series
For Specifications, See MDA942 Data.
MDA1591
For Specifications, See MDA942 Data.
MDA3551, MDA3661, MDA3552, MDA3662
VOLTAGE
TRIPLERS
HIGH VOLTAGE TRIPLER ASSEMBLIES
30,000 VOLTS
3 MILLIAMPERES
... designed for use in horizontal deflection circuits of black and
white and color television, and in high resolution CRT terminals tal
supply high voltage to the picture tube .
•
30,000 Volt Output
•
Excellent Regulation With Changing Load
IN
~
GNO
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
I nput Voltage, Peak·to·Peak
Vlnl p_p )
10,000
Volts
Average Forward Output Current
IFIAV)
3.0'
mA
IF IA VHfocu,)
0.5
mA
60
,
3.0
Minutes
TA -
750 C,
V out - 25 kV
Average Forward Focus Current
TA -750 C, V out - 25 kV
",rclng \-apao, ,ty
30 kV, 1 arcl,
-
Short Circuit Overload
Output to chassis ground
MDA3551, MDA3552
IN~~~
GNO~~~~OUT
FOCUS
MDA3661, MDA3662
.
Operating Temperature, Ambient
75
TA
°c
Derate to zero output with Vout -- 30 kV.
CASE 281
ELECTRICAL CHARACTERISTICS
Characteristic
Output Voltage (11 IJ,S pulse width,
Symbol
Typ
Max
30,000
25,000
-
vF
-
150
Volts
IR
-
1.0
I'A
1,800
-
Volts
Vout
Unit
Volts
15.75 kHz repetition rate I
Vin::;: 10 kV. 'out = 0
Vin = 8.5 kV, lout = 1.5 mA
Forward Voltage, iF
2.0mA
Reverse Current, VR - 30,000 V
va tage
egu atlon
Vin = 8500 Volts,
lout = 1ool'A to 1.0 mA
Focus Terminal Voltage
lout = 1.5 mA, Vin
-
'" out
V(focus)
8,000
Volts
MDA3551, MDA3661
= 8.5 kV
CASE 280
MECHANICAL CHARACTER ISTICS
CASE: Housing and epoxy fill are self-extinguishing and arc-tracking resistant. Case
and epoxy fill are SEQ rated.
FINISH: All external surfaces are corrosion resistant. Terminals are readily solderable.
POLAR lTV: Polarity designation is indicated by position in the outline drawing marked
on C8J8.
MOUNTING POSITION:
Any. Terminals must be adequate distance from ground pOlential.
Case may be mounted on the chassis.
WEIGHT: (approximate) 9.7 oz. for Case 280; 11.7 oz. for Case 281.
MDA3552. MDA3662
ANODE CONNECTOR: Hobson Bros., Type P125-23
287
OUT
FOCUS
MDA3551, MDA35q2, MDA3661, MDA3662 (continued)
';,'.,
DIM
A
B
C.
STYLE 1:
TERM. 1.
2.
3.
4.
INPUT
GROUND
FOCUS
OUTPUT
D
F
G
H
J
K
L
N
Q
R
S
T
MILLIMETERS
MAX
MIN
107.29 108.56
41.02 41.53
53.72 54.23
3.68
3.94
9.40
9.65
31.12 ,31.37
3.94
3.68
3.81
5.08
304.80 381.00
21.31 21.56
31.50 32.00
4.70
4.95
6.10
6.60
85.60 85.85
69.85 70.10
" ,INCHES
MIN
MAX
4.224 4.274
1.615 1.635
2.115 2.135
0.145 0.155
0.370 0.380
1.225 1.235
0.145 0.155
0.150 0.200
12.000 15.000
1.075 1.085
1.240 1.260
0.185 0.195
0.240 0.260
3.370 3.380
2.750 2.760
"'Length and type of lead may be specified, consul~ factory,
I'
Caso 280
MDA3552. MDA3662
STYLE 1:
TERM. 1.
2.
3.
4.
.• Length and WR8 of lead may be specified. consult factory,
ease 281
MDA3551. MDA3661
288
INPUT
GROUND
FOCUS
OUTPUT
INCHES
MILLIMETERS
MIN
MAX
MIN
MAX
A
98.68 100.20 3.885 3.945
B
53.09 53.59 2.090 2.110
C
49.28 49.78 1.940 1.960
D
3.56
3.94 0.140 0.155
4.50' 5.00 0.177 0.197
E
F
9.62 0.2l10 '0.380
5.08
G 34.04 34.54 ' 1.G40 1.360
H
6.10
6.60 0.240 0.260
5.08 0.150 0.2011
J
3.81
K 304.80 381.00 12.000 15.000
L, 21.84 22.35 0.860 0,880
N
1.37
1.87 0.290 0.310
Q
4.70
4.95 0.185 0.195
R
4.83
5.33 0.190 0.210
68.71 69.22 2.705 2.725
S
T
43.94 44.45 1.730 1.750
DIM
MFE130 thru MFE132
MFES90
MFE591
For Specifications, See MPF 130 Data.
(SILICON)
N·CHANNEL
DUAL GATE
N·CHANNEL DUAL·GATE
SILlCON·NITRIDE PASSIVATED
DMOS FIELD·EFFECT TRANSISTORS
DOUBLE·DIFFUSED METAL
OXIDE FIELD·EFFECT
TRANSISTORS (DMOS)
Enhancement mode (Type C) dual gate double·diffused metal
oxide transistors designed for UHF amplifier and mixer applications.
Especially suited for UH F TV tuner applications.
This series features high·volume production capability using ion
implantation techniques. Characteristics of major importance are:
•
High UHF Power Gain @ 900 MHzG ps = 12.5 dB (Min) MFE591
= 10.5 dB (Min) MFE590
•
Low UHF Noise Figure @ 900 MHzNF = 6.0 dB (Max) MFE591
= 8.0 dB (Max) MFE590
•
Low Input Capacitance @ 1.0 MHz Ciss = 3.0 pF (Max) MFE591
= 3.5 pF (Max) MFE590
•
Low Output Capacitance@ 1.0 MHz Coss = 2.0 pF (Max) MFE591
= 2.5 pF (Max) MFE590
•
Diode Protected Gates
•
Ion Implanted
Gps @ 900 MHz -15.3 dB (Typ)
N F @ 900 MHz - 4.4 dB (Typ)
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VOS
25
Vdc
VOGI
VOG2
30
30
Vdc
Drain Current
10
30
mAde
Gate Current
IGI
IG2
10
10
mAde
Po
300
1.71
mW
A
mW/oC
·65 to +200
°c
C
0
E
D~ain·Source Voltage
Drain-Gate Voltage
Total Power Dissipation
Derate above 2SoC
@
T A = 2SoC
Operating and Storage Channel
Temperature Range
T channel.
T stg
SUBSTRATE
AND CASE
DIM
Thermal Resistance. Junction to Ambient
B
F
G
H
J
THERMAL CHARACTERISTICS
Characteristic
DRAIN
GATE 2
GATE 1
SOURCE.
K
Symbol
Max
Unit
ReJA
585
°C/W
L
M
N
P
MILLIMETERS
MIN MAX
5.31 5.84
4.52 4.95
4.32 5.33
0.41
0.53
0.76
0.41 0.48
2.54 8SC
0.91
1.17
0.71
1.22
12.70
6.35
45 0 BSC
1.27 BSC
1.27
INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0.170 0.210
0.016 0.021
0.030
0.016 0.019
0.1008SC
0.036 0.046
0.028 0048
0.500
0.250
4~BSC
0050 BSC
0.050
CASE 20-03
TO·72
289
MFE590, MFE591
(continued)
ELECTRICAL CHARACTERISTICS IT A = 25 0 C unless otherwise noted.1 Substrate Connected to Source
Characteristic
Symbol
Min
Typ
Max
Unit
V(BRIOSS
25
-
-
Vdc
V(BRIG1S
10
-
-
Vdc
V(BRIG2S
1;/
OFF CHARACTERISTICS
Drain-Source Breakdown Voltage
liD = 1.0 !lAde, VG1 = Vcn = 01
Gate 1 - Source Breakdown Voltage
IIG1 = 10!lAdc, VG2S = 01
Gate 2 Source Breakdown Voltage
IIG2= 10 !lAde, VG2S~ 01
"Off" Drain Current
(VOS~ 15Vde, VG1S~ VG2S= 01
-
1.0
!lAde
IG1SS
50
nAde
IG2SS
50
nAde
mmhos
10(0111
Gate 1 Reverse Leakage Current
-
Vdc
(VG1S = 5.0 Vde, VG2S = 0, VOS = 01
Gate 2 Reverse Leakage Current
(VG2S = 5.0 Vde, VG1S = 0, VOS = 01
ON CHARACTERISTICS
Gate Source Threshold Voltage
(VOS = VG1S, VG2S = 10 Vde, 10 = 1.0 !lAdel
(VOS = VG2S, VG1S = 4.0 Vdc, 10 = 1.0 !lAdel
SMALL-SIGNAL CHARACTERISTICS
MFE591
(VOS ~ 15 Vdc, VG2S = 10 Vdc, 10 = 10 mAde, I = 1.0 kHzl MFE590
Forward Transfer Admittance
I "put Capacitance
MFE591
MFE590
Output Capacitance
(VOS= 15Vde, VG2S= 10Vde,
VG 1 = 2.5 Vde, I = 1.0 MHzl
MFE591
MFE590
Reverse Transfer Capacitance
(VOS = 15 Vde, VG2S = 10 Vde,
VG1 = 2.5 Vde, I = 1.0 MHzl
MFE591
MFE590
Coss
-
20
20
-
-
3.0
3.5
-
-
2.0
2.5
-
-
-
-
0.02
0.025
-
4.4
4.4
6.0
8.0
12.5
10.5
15.3
15.3
-
pF
pF
pI'
Crss
NF
Common-Source Noise Figure (Figure 14)
MFE591
MFE590
dB
dB
Gps
Common-Source Power Gain (Figure 14)
(VOS= 15Vde,VG2S= 10Vde,
10 = 10 mAde, I = 900 MHzl
10
8.0
Ciss
(VOS = 15 Vde, VG2S = 10 Vde,
VG1 = 2.5 Vde, I = 1.0 MHzl
(VOS = 15 Vde, VG2S = 10 Vde,
10 = 10 mAde, I = 900 MHz 1
Vis
MFE591
MFE590
290
-
MFE590, MFE591 (continued)
COMMON-SOURCE CHARACTERISTICS
{VOS
= 15 Vdc, V G2S =
10 Vdc, 10 = 10 mAde, T channel = 250 CI
FIGURE 2 - REVERSE TRANSFER ADMITTANCE - Y12
FIGURE 1 - INPUT ADMITTANCE - VII
100
0
70
~S
~~
~
ii
~~
g~
cu
0
50
A
30
./V
20
7
~ ~ 5.0
~~
/
/ . / jbrs
0
~ ~ 7.0
5
jbis/"
3.0
~~ 2.0
1.0
50
/
./
9rs)
0
7
10
/
0
""
70
/'1
gis
}
100
200
300
/'
3
2
II
SOD 700 1000
2000 3000
./
/
./
1
300
5000
500
2000
0
V
""
V
100
0
0
0
0
./
0
0
0
./
0
- jbfs
0
0
jbos
0
0
5
'\
3
200
500
700
3000
FIGURE 4 - OUTPUT ADMITTANCE - Y22
FIGURE 3 - FORWARD TRANSADMITTANCE - Y21
30
0
1000
700
f, FREUUENCY (MH')
f, FREUUENCY (MHzl
gls
./ /
1000
2000 3000
1. 0
50
5000
""
V
70
100
V
200
f, FREUUENCY (MHzl
""
300
'"
gos
500 700 1000
2000 3000
5000
f, FREUUENCY (MHzl
POWER GAIN AND NOISE FIGURE CHARACTERISTICS
{VOS
= 15 Vdc, VG2S =
10 Vdc, f = 900 MHzl
FIGURE 5 - POWER GAIN
FIGURE 6 - NOISE FIGURE
6
8.0
r":
1/
4
V
12
/
~
1'\\
10
J
II
1\
\
6.0
~
1\
I
)
i5
z 5.0
~z
\
II
7.0
w
"'"'"u::
I
I
\
i..o--
.........
4.0
8.0
o
I
3.0
4.0
8.0
12
16
20
o
4.0
--V
"
8.0
12
10, DRAIN CURRENT {mAl
10, DRAIN CURRENT (mAl
291
V
16
20
MFE590, MFE591 (continued)
S PARAMETERS
(Vos = 15 Vdc, VG2S = 10 Vde, 10 = 10 mAde)
FIGURE 8 - S'2
FIGURE 7 - S"
FIGURE 10 - S22
FIGURE 9 - S21
292
MFE590, MFE591
(continued)
DRAIN CHARACTERISTICS
FIGURE 11 - FORWARD TRANSFER ADMITTANCE
13
I.s
12
~
11
w
'-'
.
c
'"""
........
/~
J
1/
......
........
/'
"\
I'\.
\..
\
w
'"
z
10
~
I(voy 15 vde'i G2
1
I-
~
Y
l0te'i' l.ikHll
9.0
~
~~ 8.0
>"
5.0
7.0
15
9.0
11
13
lOS, DRAIN CURRENT (mAl
20
24
""::i!
I-
16
.s
~
:::>
'-'
w
'-'
.""
:::>
"I
8.0
"""
c 4.0
.;
E
,/
VGIS
2.4 VOLTS
1/
~
2.2
r
[jj
"""":::>
'-'
1.8
1/
w
1.6
II
Y..
1.2
1.0
25
8.0
"""
4.0
c
.;
30
0.5
293
/
/
./
/
./
E
0.8
5.0
15
20
10
VOS, ORAIN·SOURCE VOLTAGE (VO LTSI
12
~
~
z
1.4
J
/
/
I-
2.0
Iv
16
.s
V-
12
z
19
FIGURE 13 - EFFECTS OF GATE 1 VOLTAGE ON
DRAIN-SOURCE CURRENT
FIGURE 12 - DRAIN-SOURCE CURRENT
20
17
1.0
1.5
2.0
2.5
VGIS, GATE I SOURCE VOLTAGE (VOLTSI
3.0
MFE590, MFE591
(continued)
FIGURE 1,!\- 900 MHo TEST FIXTURE
Gate 2
1~\C6
\~J
}
R2
* rf--
L3
---i -iE-
j-L1~j 0 " :
?I-~~ 0
--@)
Drain
¢
Gate 1
il
L
e-
..J
Rl
..J
u
OJ
........
C2
.--
Cl
,rJ
5
0
II)
.,..,.
~@-~_Jo./'
~-'
C3
C5
C4 -.,l.,
T
-.J..,
T
RFC
-r'("' ..~'
\'~I
C7
I
I
/
Shield Thru
Dielectric
I
C8
Rl,R2
RFC
1/16" Teflon@FiberglassCopper Clad 2 Sides
1000 pF Bare Ceramic Disc
10 kfl
10!,H
Ll
L2
L3
L4
0.6S"
1.62"
Note' All components mounted on opposite side using
cutouts in ground plane.
Cl,C2,C3,C4
0.8-10 pF JOHANSON 5201 or Equivalent
@Registered Trademark of E. 1. DuPont, De Nemours & Co., Inc.
C5,C6,C7
100 pF Feedthru
0.5.0"
1.62"
All Width 0.125"
CAPACITANCE CHARACTERISTICS
(V OS = 15 Vdc, VG2 = 10 Vdc, f = 1.0 MHz)
FIGURE 15 - GATE ONE
FIGURE 16 - GATE TWO
3.0
3.0
2.8
Ciss
2.6
V
2.4
~
~
2.2
"'z
2.0
~
1.6
'-'
28
I.,...- I--
1---" .....
26
I
2.4
C'SS
~
22
"''-'z
2.0
'"
«
>u 1.8
>- 18
U
;t
;5
c,:.- /
1.4
1.2
1.6
14
Coss
1.2
--
L..-- V
1.0
1.0
a
1.0
2.0
3.0
4.0
5.0
VG1S, GATE·ONE VOLTAGE (VOLTS)
6.0
a
7.0
294
1.0
2.0
3.0
4.0
5.0
6.0
7.0
VG2S, GATE TWO VOLTAGE (VOLTSI
8.0
9.0
10
MFE823
(SILICON)
SILICON P-CHANNEL
P-CHANNEL
MaS FIELD-EFFECT
TRANSISTORS
MaS FIELD-EFFECT TRANSISTORS
Enhancement Mode (Type C) MOS Field-Effect Transistors designed
for use in smoke detector circuits .
•
Low Gate Reverse Current IGSS = 1.0 pAdc (Maxi @ VGS = 10 Vdc
•
High Sensitivity VIs = 1.0 mmho (Mini @ VDS = 10 Vdc
fAl
MAXIMUM RATINGS
Symbol
Rating
Value
Unit
Vdc
DraIn-Source Voltage
VOS
25
Gate..source Voltage
VGS
±10
Vdc
ID
30
mAde
PD
300
mW
mWfJC
Dram Current
Total Power DISSipation @ T A
= 2SoC
Derate above 25°C
Operatmg and Storage Junction
1.71
TJ. Tstg
-65 to +200
°c
""'~~
~·~-U
B
PLA)
--H-o
STYlE 11
PIN T DRAIN
Temperature Range
2 GATE
3 SOURCE,SUBSTRATE
AND CASE
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSIstance, Junction
Symbol
Unit
Max
R8JA
584
°C/W
R8JC
250
°C/W
to AmbIent
Thermal Resistance, Junction
MILLIMETERS
DIM
to Case
••
C
0
E
F
HANDLING PRECAUTIONS:
MOS field-effect transistors have extremely high input resistance. They can be damaged
by the accumulation of excess static charge. Avoid possible damage to the devices while
handling, testing. or In actual operation. by follOWing the procedures outlined below'
1. To avoid the build·up of static charge. the leads of the devices should rema,"
shorted together With a metal ring except when being tested or used.
2. Avoid unnecessary handhng. Pick up devices by the case instead of the leads.
3. Do not Insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.
295
G
H
J
K
L
M
N
p
MIN
MAX
531
584
495
533
452
432
0406
0533
0.762
0406 0483
254BSC
0.914 1.17
0711 122
1270
-
635
45 0 Bse
127 Bse
127
INCHES
MIN
MAX
0209
0118
0170
0016
0230
0195
0210
0021
0.030
0016 0019
0100 BSe
0.036 0046
0028 0048
0
0250
45 as
0050 as
0050
AIIJEDEC nousand dimensIOns applv
CASE 22·03
(TO·1S)
MFE823 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Max
Unit
BVOSS
-25
-
Vde
lOSS
-
-20
nAdc
IGSS
-
1.0
pAde
VGS(TH)
-2.0
-6.0
Vde
10(on)
-3.0
-
mAde
VIs
1000
-
#mhos
Cis!
-
6.0
pF
erss
-
1.5
pF
OFF CHARACTERISTICS
Drain·Source Breakdown Voltage
(10 = -10 /lAde, VGS = 0 Vde)
Zero·Gate Voltage Drain Current
NOS = -10 Vde, VGS = 0)
Gate Reverse Current
(VGS = -10 Vde, VOS = 0)
ON CHARACTERISTICS
Gate-Source Voltage
(VOS = -10 Vde, 10 ~ -10/lAde)
Drain Current
(VOS= -10Vde, VGS= -10Vde)
SMALL·SIGNAL CHARACTERISTICS
Forward Transfer Admittance
(VOS = -10 Vde, 10 = -2.0 mAde, I = 1.0 kHz)
I nput Capacitance
(VOS = -10 Vde, VGS = -10 Vde, I = 1.0 MHz)
Reverse Transfer Capacitance
(VOS = -10 Vde, VGS = -10 Vde, 1= 1.0 MHz)
296
MFE824
(SILICON)
SI LICON N-CHANNEL
N-CHANNEL
MOS FIELD-EFFECT
TRANSISTORS
MOS FIELD-EFFECT TRANSISTORS
Depletion-Enhancement Mode (Type B) MOS Field-Effect Transistors designed for use in smoke detector circuits.
•
Low Gate Reverse Current IGSS = 1.0 pAdc (Max) @ VGS = 10 Vdc
•
High Sensitivity Yf1; = 1.0 mmho (Min) @VDS= 10 Vdc
MAXIMUM RATINGS
Symbol
Rating
Value
Unit
Vdc
Drain-Source Voltage
VOS
20
Gate-5ource Voltage
VGS
±10
Vdc
10
30
mAde
Po
300
Drain Current
Total Power Dissipation
Derate above 25°C
@
T A = 25°C
Operating and Storage Junction
mW
mW/oC
1.71
TJ. Tstg
-65 to +200
°c
Temperature Range
STYlE 2
PIN I SOURCE. SUBSTRATE.CASE
2 GATE
3
THERMAL CHARACTERISTICS
Character istic
Thermal Resistance, Junction
Symbol
Max
DRAIN
Unit
ROJA
584
°CIW
ROJC
250
°C/W
to Ambient
Thermal ReSistance, Junction
MILLIMETERS
to Case
DIM
MOS field-effect transistors have extremely high input resistance. They can be damaged
by the accumulation of excess static charge. Avoid possible damage to- the devices while
handling. testing, or in actual operation, by following the procedures outlined below:
1. To avoid the build-up of static charge, the leads of the devices should remain
shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.
297
INCHES
MAX
MIN
5.B4
4.95
5.33
0.533
0.162
0.406 0.4B3
2.54 BSe
H
0.914 1.17
0.111 1.22
J
K 12.10
L
6. 5
M
45° BSe
N
1.21 BSe
p
1.21
0.209
O.17B
0.170
0.016
A
B
e
D
E
F
G
HANDLING PRECAUTIONS:
MIN
5.31
4.52
4.32
0.406
MAX
0.230
0.195
0.210
0.021
0.030
0.016 0.019
0.100 BSe
0.036 0.046
0.02B 00411
ro:smr
-
0.250
45 BSe
.050
0.050
AU JED EC notes and dimensions applv.
CASE 22·03
(TO·1S)
MFE824 (continued)
ELECTRICAL CHARACTERISTICS IT A = 250 C unless otherwise noted)
Min
Max
VIBR)OSX
20
-
Vde
Vas
-
-6.0
Vde
-
1.0
pAde
1.0
4.0
mmhos
Ciss
-
4.0
pF
Crss
-
0.7
pF
Co ..
-
2.5
pF
Symbol
Characteristic
Unit
OFF CHARACTERISTICS
Drain·Source Breakdown Voltage
lie = 1.0 /lAde, Vas = -8.0 Vde)
Gate-Source Voltage
IVOS = 10 Vdc,lO = 1.0 nAdc)
Gate Reverse Current
IVGS
IGSS
= 10 Vdc, VOS = 0)
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
IVOS = 10 Vde, Vas = 0)
SMALL-SIGNAL CHARACTERISTICS
Forward Transfer Admittance
IVOS = 10 Vde, VGS = 0, I
Input Capacitance
IVOS = 10 Vdc, VGS
VIs
= 1.0 kHz)
= 0, I = 1.0 MHz)
Reverse Transfer Capacitance
IVOS
= 10 Vde, Vas = 0, f =
Output Capacitance
IVOS = 10 Vde, VGS
= 0, f
1.0 MHz)
= 1.0 MHz)
298
MFE2000 (SILICON)
MFE2001
Silicon N-channel junction field-effect transistor
designed for VHF/UHF amplifier applications.
\
MAXIMUM RATINGS
Rating
Symbol
CASE 20
(TO-72)
Active elements
isolated
from case
Unit
25
Vdc
Drain-Gate Voltage
VDG
25
Vdc
Gate-Source Voltage
VGS
25
Vdc
mAdc
Drain Current
ID
30
Total Device Dissipation @TA = 25'C
Derate above 25'C
PD
300
mW
2.0
mW/'C
Operating & Storage Junction
Temperature Range
STYLE 1
PIN 1. SOURCE
2. ORAIN
3. GATE
4. CASE LEAD
Value
VDS
Drain-Source Voltage
ELECTRICAL CHARACTERISTICS
(fA
T J' T stg
'c
-65 to +175
= 25'C unless otherwise noted)
Symbol
Characteristic
Min
Typ
25
-
-
Max
Unit
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = -1.0 !lAde, Vos = 0)
Gate-Source Voltage
(10 = 0.5 mAde, VOS = 15 Vde)
V(BR)GSS
MFE2000
MFE2001
Gate Reverse Current
(VGS =-20Vde, VOS=O)
(VGS = -20 Vde, VOS = 0, T A = l50'C)
VGS
IGSS
Vde
Vde
0.5
3.0
-
-
4.0
7.5
-
-
100
-
-
200
-
6000
8000
pAde
nAde
ON CHARACTERISTICS
Zero-Gate Voltage Orain Current
(VOS = 15 Vde, VGS = 0)
MFE2000
MFE2001
SMAll·SIGNAl CHARACTERISTICS
Forward Transfer Admittance
(VOS = 15 Vde, VGS = 0, f = 1. 0 kHz)
Output Admittance
(VOS = 15 We, VGS = 0, f = 1.0 kHz)
MFE2000
MFE2001
MFE2000
MFE2001
Input Capacitance
(Vns = 15 Vde, VGS = 0, f = 1.0 MHz)
I Yf.1
IYosl
C isS
Output Capacitance
(VOS = 15 Vde, VGS = 0, f = 1.0 MHz)
COBS
Reverse Transfer CapaCitance
(VOS = 15 Vde, VGS = 0, f = 1.0 MHz)
C rss
Small-Signal Power Gain (Figure 1)
(VOS = 15 Vde, 10 = 4.0 mAde, f = 100 MHz)
Gps
(VOS = 15 Vde, 10 = 4.0 mAde, f = 400 MHZ)
(Figure 1)
Noise Figure
(VOS = 15 Vde, 10 = 4.0 mAde, f = 100 MHz, RG
(Vns = 15 Vde, 10 4.0 mAde, f = 400 MHz, RG
=
= 1. 0 k ohm)
= 1.0 k ohm)
299
NF
Ilffihos
2500
4000
-
--
Ilffihos
50
75
pF
-
5.0
-
-
2.0
-
-
1.0
18
23
10
14
-
-
1.6
2.0
3.3
4.0
pF
pF
dB
dB
MFE2000, MFE2001
(continued)
FIGURE 1 - 100 MHz and 400 MHz NEUTRALIZED AMPLIFIER
NOTE:
The noise source is a hot-cold body
(AIL type 70 or equivalent) with a
test receiver (AIL type 136 or
equivalent).
ADJUST VGS FOR
ID = 5.0 rnA
VGS < 0 VOLTS
Reference
Designation
C1
C2
C3
C4
C5
C6
C7
L1
L2
L3
VALUE
100 MHz
400 MHz
7.0 pF
1. 8 pF
1000 pF
27 pF
3.0 pF
1. 0 pF
1-12 pF
0.8-8.0 pF
1-12 pF
0.8-8.0 pF
0.0015 iJ.F
0.001 fJ.F
0.0015 fJ.F
0.001 iJ.F
JJ.H*
0.25 JJ.H*
O. 14 JJ.H*
3.0
0.2 JJ.H**
0.03 JJ.H**
O. 022 JJ.H**
17 turns (approximately-- depending on circuit layout),
AWG #28 enameled copper wire, close wound on 9/32"
ceramic coil form. Tuning provided by a powdered
iron slug.
4-1/2 turns, AWG #18 enameled copper wire, 5/16" long,
3/8" I; D.
3-1/2 turns, AWG #18 enameled copper wire, 1/4" long,
3/8" I. D.
6 turns approximately -(depending on circuit layout),
AWG #24 enameled copper wire, close wound on 7/32"
ceramic coil form. Tuning provided by an aluminum
slug.
1 turn, AWG 1116 enameled copper Wire, 3/8" I. D.
1/2 turn, AWG 1116 enameled copper Wire, 1/4" I. D.
300
MFE2004 (SILICON)
MFE200S
MFE2006
Silicon N-channel depletion mode (Type A) junction
field-effect transistors designed for chopper applications.
MAXIMUM RATINGS
Rating
CASE 22
(T0·1S)
2
10
Symbol
Value
Unit
Drain-Source Voltage
VDS
30
Vdc
Drain-Gate Voltage
VDG
30
Vdc
Gate-Source Voltage
VGS
30
Vdc
Forward Gate Current
IG(f)
10
mAdc
Total Device Dissipation @ T C = 25° C
Derate above 25° C
PD
1.8
10
Watts
mW/oC
Operating Junction Temperature Range
TJ
-65 to +175
°c
Tstg
-65 to +200
°c
3
STYLE 4:
PIN 1. SOURCE
2. DRAIN
3. GATE &CASE
Storage Temperature Range
ELECTRICAL CHARACTERISTICS (TA = 250 (: unless otherwise noted)
Characteristic
Symbol
Min
Max
30
-
-
0.2
-
0.4
-
0.2
-
0.4
8.0
15
30
-
1.0
2.0
5.0
6.0
8.0
10
-
1.0
0.4
Unit
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 1. 0 /lAdc, VDS = 0)
V(BR)GSS
Gate Reverse Current
(V Gs =20Vdc, Vns=O
(V GS = 20 Vdc, VDS = 0, TA = 150°C)
IGSS
Drain Cutoff Current
(VDS = 20 Vdc, VGS = 12 Vdc)
ID(off)
(VDS = 20 Vdc, VGS = 12 Vdc, T A = 150°C)
Vdc
nAdc
/lAdc
nAdc
/lAdc
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current 111
(VDS = 20 Vdc, VGS = 0)
MFE2004
MFE2005
MFE2006
Gate-Source Voltage
(VDS = 20 Vdc,
= 50 /lAdc)
1J
MFE2004
MFE2005
MFE2006·
IDSS
VGS
mAdc
Vdc
Vdc
VGSF
Gate-Source Forward Voltage
(IG = 1. 0 mAdc, VDS = 0)
Vdc
Drain-Source "ON" Voltage
(I D = 3.0 mAde, VGS = 0)
(ID = 6.0 mAde, VGS = 0)
MFE2004
MFE2005
-
(ID = 10 mAde, VGS = 0)
MFE2006
-
0.4
-
80
50
30
Static Drain-Source "ON" Resistance
(ID = 1. 0 mAdc, VGS = 0)
CllPulse Test: Pulse Width ~ 300 /lS, Duty Cycle
MFE2004
MFE2005
MFE2006
~
3. 0%.
301
VDS(on)
rDS(on)
0.4
Ohms
MFE2004, MFE200S, MFE2006 (continued)
ELECTRICAL CHARACTERISTICS (continued)
I
Symbol
Characteristic
Min
Max
Unit
SMALL-SIGNAL CHARACTERISTICS
static Orain-Source "ON" Resistance
(V GS = 0, 10 = 0, f = 1. 0 kHz)
MFE2004
MFE2005
MFE2006
Input Capacitance
(VOS = 0, V OS = -12 Vde, f = 1. 0 MHz)
rds(on)
Ohms
--
80
50
30
-
C.
C
pF
ISS
-
16
rss
-
5.0
pF
Reverse Transler Capacitance
(VDS = 0, V-A-lH~---'-~
GENERATOR'
OR NOISE
~
10 k
SOURCE
FROM 50n
1000
SIGNAL ">-A-lH~~--'~-+
GENERATOR'
OR NOISE
~
10 k
SOURCE
:r: .
::r: .
All upacltanca va!uelare in pF; all rllllstanet V81uesara In ohms.
el. C3, C4: Johanson Type 29&1 or 8qulVllIant
C2: Cantralab Type 82S-0.N. or aqulvalan1
LI: 5 Tums',6 AWG Wire (Internal diamata, 5/1S", Length 518")
L2: 5 Tul'l'll ',8 AWG Wire (Internal diamater 31B". Length 5/8")
All cepecitance valunare in pF;.lIresistancevaluas.reinohml.
Cl, C3, C4: Johanson Tvpe 2951 or equlvelent
C2: JohanlOn Typa 3908 or equivelent
Ll: 4 TurOl',8 AWG Wire tlnternal diameter 114", Langth3/4'1
L2: 5 TurRI "6 AWO Wfre (Internal diameter 114", Length 3/4'"
Overall bandwidth' 9.5 MHz 11-3.0 dB
14 MHz@-6.0dB
FIGURE 3 - CONVERSION POWER GAIN
FIGURE 6 - CONVERSION POWER GAIN
0....1bandwidth =3.0 MHz II -3.0 dB
4.6 MHz" -6.0 dB
~~--~~----~~VOD
+15V
TO 30 MHz
IF AMPLIFIER
150n INPUn
TO 30 MHz
IF AMPliFIER
l50n INPUT)
~-+--E~~
r-:---I---tl---«~
FROM 50G
FROM50n
~~::~ ~&;U~:::;;::;;~
~~:AH~ )-A.,j.j~;::;::;:t=;
GENERATOR
GENERATOR
1 1
1000
2000
All capacitance values a7a in pF; all r$istance val~as are in ;hms. L1: 2 Turns '16 AWG Wire (Internal diameter 1/4", Length 1/4"1
12: 25 Turns #32 AWG Wire wound on 1/4" 0.0. ceramic form
l3: 4 Turn.I2S AWG Wire wound on top of and at dc stJpply end of L2
Cl: Johanson capacitor Type 3908 ar equivalent
C2, &3: Johanson Capacitor Type 2950 or equill8lent
All capacitance valuas are in pF; all i-asistance valuas are in ohms.
Ll: GTums 116 AWG Wire (lntarnal diameter 5/1S",lengtb 1/16")
L2: 25 Tums ta2 AWG Wire wound on 114" 0.0. ceramic form
L3: 4 Turn.126AWG Wire wound on top of and at dc supply and of L2
Cl: Johanson Capacitor Type 3908 or equivalent
C2, C3: Johanson Capacitor Type 2950 or aquiwtBnt
316
MFE3006 thru MFE3008
(continued)
CIRCUIT PERFORMANCE
FIGURE 8 - NOISE FIGURE versus SOURCE RESISTANCE
FIGURE 7 - POWER GAIN versus SOURCE RESISTANCE
0
5.0
-- - -
6
,'"
~ 22
to
'"
~
a
18
...
V
"
4.0
1-1-
w
::>
'"
3.0
-
,.-
r-
w
'"0z
2.0
~.
== ~~~~~~~: ~~~ ~~:-
-
10
150
200
300
1.0
t-. TEST CI RCUITS
FIGURE~ 1 AND 4
400 500
700
1.0 k
RS.SOURCE RESISTANCE (OHMS)
2.0 k
-
-
160
200
o
3.0 k 4.0 k
18
. /~
20
fil
'"z
<1
80
/
Parfo1rmance is
I
~ot
l:;!
u::
10
'"0z
8.0
w
_
u:
z
o
2.0
+2.0
+4.0
+8.0
/
,/'./
11.
/.
/' /
//
. / .;'
,//
/
1/',.'
/. 10-
,.
~,.
~
......-:::
1-- ....
o
5.0
10
GAIN REDUCTION (dB)
VG2S. GATE 2T0 SOURCE VOLTAGE (VOLTS)
15
a
:s
20
<1
co
'"
~
15
:5:
z
.....
0
~
10
...
5.0
w
>
z
.....
,.".
,.-
o
0.5
-~
~1
w
-'
:5'"
40
r-.....
'x"
«
co'
'"
«
'"
3.0
317
-
-
1 L
......
VOS=15V
VG2S = 4.0 V
lo=10mA
i"'-..
>
«
~
1 I
IUfsl 2
MAG = 4IUisl~..1
......
<1
~~-
1.0
1.5
2.0
2.5
LOCAL OSCILLATOR INJECTION LEVEL AT VG2 (Vrm.)
I
50
z
<1
co
0
a
co
20
FIGURE 12 - MAXIMUM AVAILABLE POWER GAIN
FIGURE 11 - CONVERSION POWER GAIN
25
!z
3.0 k 4.0 k
/ ' ~,.
- - - MFE3006@f=100MHz
- - MFE3007@f=200MHz
8.0
4.0
-2.0
_
12
::>
co
frequency dependent.
80
400 600
700
1.0 k
2.0 k
Rs. SOURCE RESISTANCE (OHMS)
I
1
'"
TEST CIRCUITS . _
FIG~RES2A~D5
0
300
TESTeI RCUITS
-FIGURE~ 1tNDl4
TES~
CI RCUI~S
FIGURES2AND5
14
/
z
40
16 t---
/
:s
'"
- - - MFE3006@100MHz_
I I MF~300l @200 MH~
FIGURE 10 - COMMON SOURCE NOISE FIGURE
versus GAIN REDUCTION
FIGURE 9 - GAIN REDUCTION
co
/
"':-
co
z
14
::>
/'
u::
to
...;::
~
"- ~
:s
'"
"
30
- - -
r-....
.....
20
.....
10
50
70
100
200
f. FREQUENCY (MHz)
300
..........
400
500
MFE3006 thru MFE3008 (continued)
COMMON-SOURCE ADMITTANCE PARAMETERS
(VDS = 15 Vde, VG2S =4.0 Vde, 10 = 10 mAde)
FIGURE 13 - INPUT ADMITTANCE
FIGURE 14 - REVERSE TRANSFER ADMITTANCE
'ii
14
0.07
~
12
j
e
.§
lL
10
I~jbi' r---
w
'"z
«
I::
:iii
/
8.0
...~
.
~
0.05
/
-jbrs
~ 0.04
~ 2.0
o
-
50
...-
I,....-
l,../
gis
......-r
~ 0.0
~
I
200
I. FREQUENCY (MHz)
100
70
1-......
w
8.
400
300
500
./
I-"
1,-- r-
4. 0
z
~
2. 0
'"
~
0
>=
-3.0
a:
-"""
I--'"
-
"""
~ ~
-g"
70
'ii
~
:i!
I::
" I,
«
'"
r-
...
'"
~
'"
~
'\
300
400
400
500
12
10
./
8.0
:iii
\'\
200
I. FREQUENCY (MHz)
300
~
I'..
......gl.
100
200
I, FREQUENCY (MHz)
FIGURE 16 - OUTPUT ADMITTANCE
1\
70
100
14
............
'"
~ -2. 0
50
.--
,./
0
50
I
-j~• r -
...........
0
:iii 6. 0
~
a:
~
~
V
0.03
...a:~« 0.02
V'
FIGURE 15 - FORWARD TRANSFER ADMITTANCE
1
0
~
I-L
L
a:
w
u.
~
./
4.0
~
~
:iii
V
6.0
'"
«
.§ 006
/'
-jbos
/
6.0
4.0
2.0
r-
....... +-
I'
go.
or500
50
318
1/
70
100
200
I. FREQUENCY (MHz)
300
400
500
MFE3006 thru MFE3008 (continued)
COMMON-SOURCE CIRCUIT DESIGN DATA AS A
FUNCTION OF THE STERN "K" FACTOR
(VDS = 15 Vde. VG2S = 4.0 Vde. ID = 10 mAde)
FIGURE 18 - SOURCE ADMITTANCE
FIGURE 17 - TRANSDUCER POWER GAIN
34
10
"'
~
z
;;:
30
"
to
'"3:w
~
~
'-'
z
...'"'",.:
22
IB
2.0
B.O
"§
oS
..
w
'-'
'"......... i'--..
to
I
-iBS
"ii
- - - MFE3007@200MHz
z
""
26
=>
~
_..2_ MFE~006@IJOMHz_
\
'
...... ..........
...t:
'"co
-- -- ---
-
6.0
'"
4.0
w
t--
'-'
'"
~
2.0
o
4.0
6.0
B.O
-
2.0
10
-
I
1
- MFE3006@100MHz_
MFE 007 @200 MHz
-iBS
GiS
=>
~
r-- r--_
-
"K" FACTOR
- 4.0
;::;;;;
Gs
I
6.0
8.0
10
"K" FACTOR
FIGURE 19 - LOAD ADMITTANCE
5.0
ioS
........
.
r
-
3.0
-
co
determining the transducer gain and the proper source and load
2.0
@200 MHz
-
-1I
..:;
> 1.0
GL
i-
2.0
4.0
6.0
admittances required for a given stability (Stern "K" factor*),
The Stern 10K" factor has been defined to determine the stability of a practical amplifier terminated in finite load and source
admittances. If "K" is greater than 1.0, the circuit will be stable.
If less than 1.0, the circuit will be unstable. For further details.
see Application Note AN-215.
As the Crss of the MFE3006-7 is comparable to the distributed
capacitance of the circuit where it is used, a feedback capacitance
of 0.1 pF has been used throughout these calculations.
MFE~006 @100 MHz_
-jBL
g'"
o
-
MFE~007
~
co
Figures 17-19 are included to assist the circuit designer in
r
w
'-'
z
DESIGN NOTE
-jBL
4.0
GL
B.O
l-
·"Stability and Power Gain of Tuned Transistor Amplifiers,"
Arthur P. Stern, Proc. I.R.E., March 1967.
10
"K" FACTOR
319
MFE 30 20 (SIUCON)
MFE3021
DUAL P-CHANNEL
MOS FIELD-EFFECT
TRANSISTORS
DUAL P-CHANNEL
MOS FIELD-EFFECT TRANSISTORS
(TYp8CI
Enhancement Mode (Type C) MaS Field-Effect Transistors designed primarily for low-power, chopper or switching applications.
• Low Reverse Gate Current IGSS~10 pAdc@ vGS = -25 Vdc
• Low Drain-Source "ON" Resistance rds(on) = 250 Ohms (Max) @VGS
= -15 Vdc (MFE3021)
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain·Source Voltage
VOS
-25
Vdc
Drain-Gate Voltage
VOG
-25
Vdc
Reverse Gate-Source Voltage
VGSR
+25
Vdc
Forward Gate-Source Voltage
VGSF
-25
Vdc
Drain Current
10
200
mAde
Total Device Dissipation@TA=2SoC
Po
0.6
4.0
Watt
mW/oC
T stg
-65 to +200
TJ
-65 to +175
°c
°c
Derate above 2SoC
Storage Temperature Range
Operating Junction Temperature Range
STYLE 1,
PIN 1. DRAIN 1
2. NOT USED
3. GATE 1
4. SUBSTRATE
5. GATE 2
6. NOT USED
1. DRAIN 2
8. SOURCE 1
All JECEC dimensions and notes apply
NOTE,
1. DIM "0" & "R"· STAND·DFF
CASE 642-02
(TO·761
320
MFE3020, MFE3021 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
Symbol
Min
Max
Unit
Drain-Source Breakdown Voltage
(10 = 10 "Ade, VGS = 0)
V(BR)OSS
-25
-
Vde
Source-Drain Breakdown Voltage
(IS = 10 "Ade, VGO = 0)
V(BR)SOS
-25
-
Vde
ZerowGate Voltage Source Current
(VSO = -15 Vde, VGO = 0)
ISOS
-
10
nAde
Zero-Gate Voltage Drain Current (!)
lOSS
-
10
nAde
IGSS
-
10
pAde
VGS(th)
-2_0
-6.0
Vde
10(on)
10
75
mAde
-
Characteristic
OFF CHARACTERISTICS
(VOS
= -15 Vde, VGS = 0)
Gate Reverse Current
(VGS = -25 Vde, VOS
= 0)
ON CHARACTERISTICS
Gate-Source Threshold Voltage
(VOS = -15 Vde, 10 = 10 "Ade)
"ON" Drain Current
(VOS = -15 Vde, VGS
= -15 Vde)
SMALL-5IGNAL CHARACTERISTICS
Drain-Source "ON" Resistance
(VGS = -15 Vde, 10 = 0, f = 1.0 kHz)
Forward Transadmittanee (j)
(VOS = -15 Vde, VGS = -15 Vde, f
= -15 Vde, VGS = -15 Vde, f = 1.0 MHz)
Reverse Transfer Capacitance
(VOS
500
-
IJmhos
Giss
-
7.0
pF
Crss
-
1.5
pF
CSU
-
5.0
pF
COU
-
5.0
pF
td
t,
-
20
30
toff
-
50
ns
ns
ns
= -15 Vde, VGS = 0, IS = 0, f = 1.0 MHz)
Drain-Substrate Capacitance
(VSU
IYfsl
= 0, VGS = 0, f = 1.0 MHz)
Source-Substrate Capacitance
(VOU
-
500
250
= 1.0 kHz)
Input Capacitance
(VOS
Ohms
'ds(on)
MFE3020
MFE3021
= -15 Vde,
VGS
= 0, IS = 0, f = 1.0 MHz)
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Turn-Off Time
10 7 Ohms
Input Capacitance';;;; 1.5 pF
90%
I
Input
90%
I
I
-:-
~PulseWidth~
Output
r--Input PulseiAlse Time
1.4k
Input
...
.,
I
1
L- - - - - VGS(on)
:
~'nput Pulse Fall Time
toft
~
I
I
51
I
10%
321
10%
MFE4007 (SILICON)
thru
MFE4012
P-CHANNEL JUNCTION FIELD-EFFECT TRANSISTORS
• depletion mode (Type A) Field-Effect Transistors designed for
general-purpose amplifier applications.
P-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS
• Tightly Specified I DSS Ranges - 2: 1 for All Types
• High Gate-Source Breakdown VoltageV(BR)GSS 40 Vdc (Min) for All Types
=
• New Designers Data Sheet with Min/Max Curves for Ease in Design
LIMIT DATA FOR "WORST CASE" DESIGNS
The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves - representing boundaries for device characteristics - are
given to facilitata "worst case" design.
MAXIMUM RATINGS
Value
Unit
Drain-Source Voltage
VDS
40
Vdc
Drain-Gate Voltage
Voo
40
Vdc
VGS(r)
40
Vdc
In
20
mAdc
Rating
Reverse Gate-Source Voltage
Drain Current
Symbol
Forward Gate Current
IG(f)
10
mAdc
'fotal Device Dissipation@ TA = 25·C
Derate above 25·C
storage Temperature Range
PD
Tstg
200
1.33
-65 to +200
mW
mW/"C
·C
Operating Junction Temperature Range
TJ
-65 to +115
·C
All JEDEC dimellliGnslnd ootH apply
CASE 2(1..03
10·72
322
MFE4007 thru MFE4012
(continued)
ELECTRICAL CHARACTERISTICS
(Tc
=2S'C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
-
Vdc
40
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 /LAdc, Vns = 0)
Gate-Source Cutoff Voltage
(VOS = 15 Vdc, ID = 1. 0 /LAde)
V(BR)GSS
MFE4007, MFE400B
MFE4009, MFE4010
MFE4011, MFE4012
Gate Reverse Current
(VGS = 20 Vdc, Vns = 0)
(VGS = 20 Vde, Vns = 0, T A = 150'C)
VGS(off)
IGSS
-
-
Vdc
3.0
6.0
B.O
nAdc
2.0
-
2.0
0.5
O.B
1.5
2.5
4.0
7.0
1.0
1.6
3.0
5.0
B.O
14
0.3
1.5
MFE400B
0.4
2.0
MFE4009
1.0
4.0
MFE4010
1.0
4.0
MFE4011
2.0
6.0
MFE4012
2.0
6.0
900
1000
1500
2000
2200
2500
2700
3000
3500
4000
4500
5000
/LAdc
ON CHARACTERISTICS
Zero-Gate Voltage Orain Current
(VOS = 15 Vdc, VGS = 0)
Gate-Source Voltage
(Vos = 15 Vdc,
= 50 /LAdc)
(VOS = 15 Vdc,
= BO /LAde)
(Vos = 15 Vdc,
(VDS
(VOS
=15 Vdc,
=15 Vdc,
(VOS = 15 Vdc,
10
10
10 =150 /LAdc)
10 = 250 /LAde)
10 = 400 /LAde)
10 =700 /L Adc )
lOSS
MFE4007
MFE400B
MFE4009
MFE4010
MFE4011
MFE4012
VGS
MFE4007
mAdc
Vdc
SMALL·SIGNAL CHARACTERISTICS
Forward Transadmittance
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz)
Forward Transconductance
(VOS = 15 Vdc, VGS = 0, f = 100 MHz)
IYfsl
MFE4007
MFE4008
MFE4009
MFE4010
MFE4011
MFE4012
Re(yfS )
MFE4007
MFE4008
MFE4009
MFE4010
MFE4011
MFE4012
Output Admittance
(Vos = 15 Vdc, VGS = 0, f = 1.0 kHz)
IYosl
lnput Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1. 0 kHz)
CiSS
Reverse Transfer Capacitance
(Vns =15VdC, VGS=O, f=I.0MHz)
Cras
Common-Source Noise Figure
(VDS = 15 Vdc, VGS = 0, RG = 1.0 Megohm, f = 100 Hz,
/Lmhos
800
900
1400
1700
1900
2100
---
Ilmhos
-
75
-
7.0
-
2.0
pF
pF
NF
BW = 1.0 Hz)
Equivalent Short-Circuit Input Noise Voltage
(VDS = 15 Vde, VGS = 0, f = 100 HZ, BW = 1.0 Hz)
e
323
n
/Lmhos
dB
-
2.5
-
115
nV//Hz
MFE4007 thru MFE4012
(continued)
TRANSFER CHARACTERISTIC CURVES FOR MIN/MAX lOSS LIMITS
FIGURE 1
FIGURE 2
2.5
1...
~
1.2
-550C
r-..'\.
0.9
~
z
~ 0.6
c
~::::
0.3
o
o
,
~,
,
1250C
-
.s...
- - MIN
2.0
~
1.5
z
1.0
ii:
12~~
'.!i.
12
25 0C........ liS::..
0.5
" '.......
-
o
o
1.25
- - - MIN
......
r'\.
""
. . . . r-.......-........;~
~
- 2 50e
t&,
1.0
0.25
0.5
0.75
VGS. GATE·SOURCE VOLTAGE (VOLTS)
"
---MAX
'\.
1250C
CJ
MFE400S
VOS'15V-
~r~ \.
i3
~.:1--
550Cf-'"""
«
_ _ _ MAX
250C
1'-.." ~
'"
i3
\/Joc
MFE4007
VOS'15V-
550e
il
'\.
25 0C ""
~
i3
moc...........
~ 2.0
"12
-550C
S.O
1.0
o
o
'-
«
.s...
_ _ MAX
'"
~ r-..... 250C.........
"-
7.0
MFE4009
VOS'15 V-
./
~ 3.0
~~
0.5
=>
. ,
u
-.
....
4.0
ii:
3.0
12
2.0
1.0
1.5
2.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)
o
2.5
"-
10.5
t-..., ......
o
~~(
..,;:
~
0.5
§ 7.5
~
z
~
f.......... )(..
' .... ~~ .........
~"-
4.5
-"I" ~
1.5
o
o
1250e
~
........
-..;;::
~-
~
---MIN
-55 0C
........
3.0
«
.s...
--MAX
""'- )(
25~
c
12
MFE4011
VOS'15 Vdc_
.......... ~
~ 6.0
z
u
1.0
1.5
2.0
2.5
3.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)
3.5
~0
1.0
2.0
3.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)
r-zr~ /
12
"-
z
~
8.0
CJ
4.0
-
~
~
.....
324
MFE4012
VOS'15Vdc-
,
""
r-.....
250C
r--.....
"
"'/..":-...
.... ..... .... ,
0C
_ _ MAX
.........
,. -.::-
o 125
o
4.0
-55 0e
16
'"i3
1250C
--
-
.~
- ~F=-..
FIGURE 6
20
-550e
-j>"
« 9.0
.s
_ _ _ MIN
moe
FIGURE 5
12
--MAX
55 0C
~~250C
.....J..
!!oooo.
MFE4010
VOS '15 Vdc
1"'- "'- v'
f'....
~
i-.. .:'"V
j',(
1.0 250C~
~
-.;;:!
!i550C
250C'<:
5.0
CJ
--... ~
1'"-
"'-
6.0
z
......
....... ...............
:"il"----
1250C 550C
~
---MIN
i'-.
2.0
FIGURE 4
I
4.0
io-.
0.5
1.0
1.5
VGS. GATE·SOURCE VOLTAGE (VOLTS)
FIGURE 3
5.0
1
...
-
~
moc
~l::::~l
125 0C
4--
-.......;".
......
:----
-..../.. ......;.
.J... ....... ""f..........
...:::- ....
'-"'
--- MIN
-;5 0C
:::::o;,:;!
'- -"-
1-:' ~
1.5
3.0
4.5
VGS, GATE·SOURCE VOLTAGE (VOLTS)
"'"""-6.0
MFE4007 thru MFE4012
(continued)
TYPICAL AND MINIMUM FORWARD TRANSFER ADMITTANCE
FIGURE 7
1i
2000
1
V ~
w
~ 1000
~
;; 700
e
~
500
-
FIGURE 8
I-t-
S
I
Typ
In
w
'-'
;;
e
../
700
~
500
./
~
300
200
z
~
300
~
«
20a
....
VOS'15Vf'1.°r Z -
;:
V
~
./
~
e
~
0.1
0.3
0.2
0.5
0.7
1.0
2.0
VOS'15Vf '1.0 kHz
3000
w
~
2000
!---""
;;
i
z
I----
I--"
V V
e
1000
~
Typ
t--
!
700 a
z
500a
'-'
~
Min
;;
~
-
300a
'"
lj; 200a
100
500
e
'" 100a
VOS·15V_
f·1.0 kHz
!
300
~ 200
0.5
0.7
2.0
1.0
3.0
I-
~
70a
i!'
50 a
0.5
4.0
0.7
2.0
1.0
FIGURE 11
~
'"w
lj;
i
MFE4011
z
300 a
;:i
....
e
'"
1000
_
700
~
10
MFE401 2
1
7000
w
'-'
500a
200a
7.0
FIGURE 12
w
~
5.0
"" 10,000
1 7000
z
3.0
10, DRAIN CURRENT (rnA)
1i 10,000
;;
Min
VOS'15V
f '1.0 kHz
10, DRAIN CURRENT (mAl
'-'
Typ
I-
..- f..-
I-f-'
....~
0.3
2.0
MFE4010
w
0.2
1.0
sJO,ooa
MFE4009
--
'"
!
0.7
FIGURE 10
;:i
....
e
0.5
10, DRAIN CURRENT (mA)
FIGURE 9
"" 400a
1-
-I
0.3
0.2
0.1
10, DRAIN CURRENT (mAl
i
MFE4008
....-
~
' ] 100
100
>
:!ITyp
Jjnl
'"
~
i.
100a
~
~
~
~.-
z
«
z
....
2000
1
MFE4007 -
.-1--
.-
---
I--
- -
-I--
~
Min
5000
;;;
e
«
300a
'"w
lj;
200a
Typ
z
«
Typ
~I-'"
'"
~ 1000
VOS'15 V
f -1.0 kHz
!
~
~ 500
-r-
I-
700
,..- H-
r--
.........
Min
1
I
VOS ·15 V
f·1.0 kHz
~ 500
0.5
0.7
1.0
2.0
3.0
5.0
7.0
0.5
10
10, ORAIN CURRENT (mA)
0.7
1.0
2.0
3.0
10, DRAIN CURRENT (rnA)
325
5.0
7.0
10
MFE4007 thru MFE4012
(continued)
TYPICAL CURVES
FIGURE 14 - CAPACITANCE versus
DRAIN·SOURCE VOLTAGE
FIGURE 13 - OUTPUT RESISTANCE
versus DRAIN CURRENT
1000
i
:r:
10
lOSS' 0.7 mA
500
300
~
20o
iii~
100
~
50
o
30
.
!
9.0
8.0
t-
~
o
~
VOS=15V
t-'= 1.0 kHz
\.
ii: 7.0
oS
r-... .....1.5mA
~
!;:; 5.0
5 4.0
~
No
-19.bmA
0.2
1.0
0.5
2.0
C",
10
10
O'S='IJ
VGS=OV
B.O
7.0
lJJ
i5
6.0
5.0
4.0
z
~ 3.0
J~s11H
8.0
VGS'OV
f= 1.0 kHz
1.0
~
6.0
:::>
~ 5.0
1\
1'\
w
1'\
S
z
l'
z
[!b
1.0
II
o
20
50
100
500
200
1000
2000
1.0
5000 10.000
10
100
Rs. SOURCE RESISTANCE (k OHMS)
f. FREQUENCY (Hz)
FIGURE 17 - DRAIN CURRENT TEMPERATURE
COEFFICIENT versus DRAIN CURRENT
-11.5
+0.01
i
!Z
w
-11.01
8
-11.03
"-
;:;
$ -0.02
w
1.0M
FIGURE 18 - TEMPERATURE COEFFICIEN1
versus DRAII'lI CURRENT
r-"....,...,-,-rnrrrr--,--,..-rr-,-,..,.,-rrr---r-,-,rrrrrrm
VOS' 15 V
..........
"-
........
i'..
'"
~ -11.04
ffi
1:11 -11.05
" r-......
r--......
..........
~ -0.06
;
-
is
-11.07
I
2.0
I
1.0
4. 0
u: 3.0
,
2.0
0
10
9.0
CD
:2
w
~
40
FIGURE 16 - NOISE FIGURE versus
SOURCE RESISTANCE
~
J
9.0
~
to
30
VOS. ORAIN·SOURCE VOLTAGE (VOLTS)
FIGURE 15 - NOISE FIGURE versus FREQUENCY
:g
2D
10
10. DRAIN CURRENT (mA)
;;;
c... r---
...........
o
o
10
5.0
Cia
G
1.0
II I
0.1
-
\.
3.0
2.0
10
I'-
.
4.5mA
20
......
6.0
o
2.0
4.0
6.0
B.O
10
12
14
~ O~~~~~~~~~~~~~~~~~
0.01
16
10. DRAIN CURRENT (mA)
0.02
0.05
0.1
0.2
.0.5
1.0
10. DRAIN CURRENT (mA)
326
2.0
5.0
10
MFE4007 thru MFE4012
(continued)
FIGURE 19 - EaUIVALENT LOW FREaUENCY
CIRCUIT
VGS(max) - VGS(min)
1.9 Vdc - 0.8 Vdc
10(max) - 10(min)
(l.25mA -0.75mA)
AS=-=~~--~~~
= 2.2 k Ohms
Common Source
YPlrlmetersforFnlquencln
Below 30 MHz
10(max) VGS(min) - 10(min) VGS(max)
VG=--------------~--------
Yls=IWC1SS
Yos=JwCos p *+ 1/ross
10(max) - 10(min)
'ffs=IYfsl
Vrs" -IWens
1.25 X 0.80 - 0.75 X 1.9
·CospiICossinparallelWlIIiSerIHCombinatlonofCifl.ndCus.
0.5
= -0.9 Vdc
In Figure B the maximum allowable value for R 1 will be determined
by loading due to gate reverse current. Gate reverse current variations with temperature follow the pattern of all silicon devices. and.
as a rule, we can assume that it will double with each 1 SoC temperature rise. Therefore. we can assume a maximum reverse current of
approximately 0.5 !lAde at 1250 C. based on the specified maximum
2.0 !lAde reverse at lS00C. The variation in V G bias versus tem·
perature will not be too great if we chose a value for R1 which re-
BIAS NETWORK DESIGN
FOR WORST CASE lOSS VARIANCE
sults in a bias network current H 1 in Figure B) greater than 5 times
the maximum reverse current. Assuming a value for R 1 of 9.1 Megohms. R2 can be solved from the equation:
This Designers Data Sheet has been published to assist the circuit
designer in optimizing his "worst case" design. The following example illustrates the use of the forward transfer characteristics
curves (Pigures 1 thru 6) in the design of a typical bias network.
VG
VOO
Given:
to +1250 C
= -30 Vdc.
10
= 1.0 ± 0.25
mAde from -550 C
ffi
~
~
z
~
o
-30A2
""----- IIgnoring IG)
9.1 + A2
A2"" 300 k Ohms
Procedure: The MFE4010 "worst case" bias conditions across the
temperature range (from Figure 4) are reproduced in Figure A.
The first step in the bias network design is to determ ine the value
of the source resistance (AS! necessary to hold the ± 0.25 mAde
10 bias tolerance. To solve AS. plot 10(max) and 10(min) on
Figure A and calculate AS. and VG.
1
....
= -0.9 Vdc
USing the above values of R1 and R2. the variation in VG can be
computed for IG = 0 to IG = 0.5 !lAde. VG will vary from 0.81 Vdc
at IG = 0.5 !lAde to 0.96 Vdc @ IG = O. This variation will have a
minimal effect on 10. as can be seen from Figure A by plotting load
lines with a slope equal to liAS from VG = 0.81 Vdc and 0.96 Vdc
respectively.
5.0
4.0
3.0
2.0
o ID(max)
-
-1.0
-0.5
AS'
2.2 k
1.0
IOlmin)
t
0.5
1.0
1.5
2.5
VGS(min)
VGS(max)
VGS. GATE·SOURCE VOLTAGE (VOLTS)
3.0
FIGURE A
FIGURE B
327
MFESOOO (SILICON)
SILICON P-CHANNEL ENHANCEMENT
MOS FIELD EFFECT QUAD TRANSISTOR
MOS FIELD-EFFECT
QUAD TRANSISTOR
P-CHANNEL
•
Monolithic Construction Provides
Improved Temperature Tracking
•
Four Field Effect Transistors in One Package
Cut Assembly Costs
•
Diode Protected Gates
•
Motorola's High Reliability Dual In-Line
Ceramic Package
FIGURE 1 - SCHEMATIC OIAGRAM
SUBSTRATE
~
4
81
,
7
--II-oJ
DIM
A
B
MAXIMUM RATINGS
Symbol
Value
Unit
C
D
F
Drain·Source Voltage
VOS
-25
Vdc
G
Orain·Gate Voltage
VOG
±40
Vdc
J
For Each 1ndlvidual DeVIce
Rating
Gate-Source Voltage
Drain Current
VGS
±40
Vdc
10
50
mAde
Each
Total
Device Package
Device Dissipation @TA
= 25°C
Po
Derate above 25°C
Operating and Storage Junction
TJ,Tstg
250
1.66
450
3.0
-65 to +175
Temperature Range
328
H
K
L
M
N
MIN
B
.1
F
MAX
19.05 19.81
6.22
6.99
4.32
5.08
0.41
0.51
1.45
1.60
2.54 BSe
1.91
2.29
0.20
0.30
3.18
4.06
7.62 BSe
15"
0.51
0.76
0.780
0.275
0.200
0.020
0.063
BSC
0.090
0.012
0.125 0.160
0.300 BSe
15"
0.020 0.030
mW
mW/oC
NOTE:
1. DIMENSION "L"TO CENTER OF
LEADS WHEN FORMED PARALLEL
°c
CASE 632-03
MFE5000 (continued)
ELECTRICAL CHARACTERISTICS
(TA = 25°C unless olherwlse nOledl For Each FET
Characteristic
OFF CHARACTERISTICS
Drain-Source Breakdown Voltage
(VGS = 0, 10 = -10/lAdel
= -10 Vde,
= -10Vde,
VOS
VOS
= 01
= 0, TA = 1250 CI
Gate-Drain Breakdown Voltage
(VOSU = O,IG = -10 )lAde)
Vdc
25
IGSS
-
-
-
10
1.0
nAdc
/lAde
V(BR)GOS
50
100
125
Vde
Gate Leakage Current
(VGS
(VGS
-
V(BRIOSS
-
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
(VOS
(VOS
= -10
= -10
Vdcl, VGS = 01
Vdc, VGS = 0, T A
"ON" Drain Current
(VOS = - 5.0 Vdc, VGS
-
lOSS
= 1250 CI
= -10
1010ni
10
10
nAdc
-
1.0
10
.uAtlc
10
-
50
mAde
Vdel
Dram-Source "ON" Voltage
(10 = 5.0 mAde, VGS = -10 Vdel
VOSlonl
-
10
15
Vde
Gate-Source Threshold Voltage
(VOS = -10 Vde, 10 = -101'Adcl
VGS'(lh)
10
40
5.0
Vdc
-
175
75
225
110
Ohms
rds(onJ2
C ISs
-
50
60
pF
C'55
-
06
2.0
pF
Forward Transfer Admittance
(VOS = -10 Vdc, VGS = -10 Vdc, 1 0 1 0 kHzl
I Vis I
2000
5000
8000
/-ImhOS
Output Admittance
(VOS = -10 Vde, VGS = -10 Vdc, f
I Vos I
-
400
1000
,umhos
SMALL-SIGNAL CHARACTERISTICS
Drain-Source Aeslstance
(VGS = -10 Vde, 10 = 0, f
(VGS = -25 Vdc, 10 = 0, f
= 1.0 kHzl
= 1 0 kHzl
rds(onJ1
Input Capacitance
(VOS
= -10
Vdc, VGS
= 0,
f
0
1.0 MHz 1
Reverse Transfer Capacitance
(VOS
= 0,
VGS
= 0, f = 1 0
MHzl
= 1.0 kHzl
SWITCHING CHARACTERISTICS
Turn-On Delay Time
Rise Time
1VOO
Turn-Off Oelay Time
= -15
VGSloffl
Vde, 10
= 0,
= 10 mAde,
VGSlon)
'dlonl
-
30
10
ns
'r
-
10
20
ns
= 10 Vdc,
See F,gure 1)
'd(om
-
50
10
ns
'I
-
40
60
ns
Fall Time
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
VOO
1.3 k
PULSE
GENERATOR
(50 Ohms)
L_--EZ:::;~:f1---T...J
r
INPUT----.
CoaxIal
Cable
TEKTRONIX
~;:.:..------'l-=---VGSlon)
567
-EE~=f8SAMPLING
SCOPE DR
tt
1_
Id(on)-~l---;~_ _~~=~~
EQUIVALENT
-=
INPUT PULSE
Fall rime < 3.0 ns
Rise Time < 3.0 ns
VGSloffl
50 Ohm
OUTPUT---""';'1
-=
I,
Nominal Value of "on" Pulse Width = 300 ns
329
MHQ918 (SILICON)
QUAD DUAL IN·LlNE
NPN SILICON HERMETIC ANNULAR
HIGH FREQUENCY AMPLIFIER TRANSISTORS
QUAD DUAL IN·LINE
NPN SILICON HIGH
FREQUENCY AMPLIFIER
TRANSISTORS
· .. designed for low-level, high·gain amplifier appl.ications.
•
Low Noise Figure - @ IC: 1.0 mAdc
NF: 4.0 dB (Typ)
•
High Current·Gain-Bandwidth Product fT: 850 MHz (Typ) @ IC : 4.0 mAde
•
Transistors Similar to 2N918
• TO-116 Ceramic Package - Compact Size, Compatible with IC
Automatic Insertion Equipment
MAXIMUM RATINGS
Symbol
Value
Unit
VeEO
15
Vde
Collector-8ase Voltage
Ves
30
Vde
Emitter-Base Voltage
VES
3.0
Vde
Ie
50
mAde
Rating
Collector· Emitter Voltage
Collector Current - Continuous
Each
Transistor
Total
Device
Po
0.65
3.72
1.9
10.88
Watts
mW/oe
Power Dissipation @ T C ::: 2SoC
Po
1.3
7.43
4.6
26.3
Watts
mW/oe
Operating and Storage Junction
T emperatu re Range
TJ,Tstg
-65 to +200
'gg:: :~I
8
E
E.8
~
1
F
°e
MILLIMETERS
DIM MIN
MAX
A 18.8
19.9
B 5.59
7.11
C
5.08
D 0.381 0.584
F
0.77
1.77
CONNECTION DIAGRAM
c
~
-11-0
Power Dissipation @ T A = 25°C
Detate above 2SoC
Derate above 25°C
.S1
4
G
J
K
L
0.203
2.54 8SC
M
N
P
0.51
0.381
2.54
7.828SC
150
0.78
8.25
All JEOEC dimensionsa,ll: notes apply.
eASE 632'()2
TO·116
C
330
MHQ918 (continued)
ELECTRICAL CHARACTERISTICS IT A
I
~ 25°C unless otherw,se noted
I
Characteristic
I
Symbol
Min
Typ
Max
Unit
Collector·Emitter Breakdown Voltage (1)
(lC = 3.0 mAde, IS = 0)
SVCEO
15
-
-
Vde
Collector-Base Breakdown Voltage
SVCSO
30
-
-
Vde
BVESO
3.0
-
-
Vde
ICSO
-
-
10
nAdc
-
110
80
-
OFF CHARACTERISTICS
(lC = 1.0"Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10"Ade, IC = 01
Collector Cutoff Current
IVCS = 15 Vde, IE = 0)
ON CHARACTERISTICS III
DC Current Gain
(lC = 0.1 mAde, VCE = 1.0 Vdel
(lC = 3.0 mAde, VCE = 1.0 Vde)
(lC = 10 mAde, VCE = 1.0 Vde)
-
hFE
20
-
50
-
Collector-Emitter Saturation Voltage
(lC = 10 mAde, IS = 1.0 mAde)
VCEI .. t)
-
0.11
0.4
Vde
Base-Emitter Saturation Voltage
IIC = 10 mAde, IS = 1.0 mAde)
VSEI .. tl
-
0.84
1.0
Vde
IT
600
850
-
MHz
Cob
-
0.75
2.0
pF
Input Capacitance
IVSE = 0.5 Vde, IC = 0, I = 140 kHz)
Cib
-
1.4
2.5
pF
Noise Figure
(lC = 1.0 mAde, VCE = 6.0 Vdc, RS = 400 Ohms, I = 60 MHz I
NF
-
4.0
6.0
dB
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, 1= 100 MHz)
Output Capacitance
IVCS = 10 Vde, IE = 0, 1= 140 kHzl
11) Pulse Test: Pulse Width <;;300 p.s, Duty Cycle <;;2.0%.
331
MHQ2221, MHQ2222 (SILICON)
MPQ2221, MPQ2222
QUAD DUAL-IN-L1NE
NPN SILICON ANNULAR
GENERAL-PURPOSE TRANSISTORS
QUAD DUAL-IN-L1NE
NPN SILICON
GENERAL-PURPOSE
TRANSISTORS
· .. Designed for general-purpose switching circuits and DC to VHF
amplifier applications.
•
Choice of Ceramic or Plastic Package
•
DC Current Gain Specified - 10 to 300 mAdc·
•
Low Collector-Cutoff Current ICBO = 50 nAdc (Max) @VCB = 50 Vdc
•
High Collector Breakdown Voltages BVCEO = 40 Vdc (Min) BVCBO = 60 Vdc (Min)
CONNECTION DIAGRAM
•
Transistors Similar to 2N2218 thru 2N2222 Series
•
TO-116 Packaging - Compact Size Compatible With I C
Automatic Insertion Equipment
•
MH02221 Available With BVCEO = 60 Vdc on Specified Request
C
MAXIMUM RATINGS
Symbol
Rating
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCS
60
Vdc
Emitter-Base Voltage
VES
5.0
Vdc
IC
500
mAde
Collector-Emitter Voltage
Collector Current - Continuous
B
B
~MOO~~''''=
,.~ ¥~
CERAMIC
Each
Transistor
Total Power Dissipation @TA
Derate above 2SoC
:=.
25°C
PD
0.65
Operating and Storage Junction MHQ2221.22
Temperature Range
MPQ2221.22
mW/oC
10.88
15.2
5.2
TJ.Tstg
Watts
1.9
3.72
MHQ2221. MHQ2222
MPQ2221. MPQ2222
Total
Device
°c
-65 to +200
-55 to +150
~
4
8~
8 P
CASE 632·02
TO-116
7~
1
-11-0
F
MP02221. MPQ2222
CASE 646
MILLIMETERS
PLASTIC PACKAG E
DIM
A
B
C
0
F
G
NOTES
1 LEAOSWITHINO.13mm
iO.0051 RADIUS OF TRUE
POSITION ATSEATING
PLANE AT MAXIMUM
MATERIAL CONOITION.
2. DIMENSION "l" TO
GENTER OF LEADS
WHEN FORMED
PARAllEL
H
J
K
L
M
N
p
n
MILLIMETERS
MIN
MAX
18.16
6.10
18.80
6.60
4.06 4.57
0.51
038
1.02
1.52
2.S4BSC
1.32
1.83
0.30
0.20
2.92
3.43
7.37
7.87
INCHES
MIN
0.715
0.240
OISO
0.040
0.052
0.008
0.115
0.290
0.072
0.012
0135
0,310
0.020
0.005
0020
0.015
0.030
0.015
a.looase
10"
10"
0.51
0.13
O.SI
101
0.38
0.76
MAX
0.740
0.260
0.180
0.020
0060
332
0.040
C
DIM MIN
MAX
A 16.8
19.9
B 5.59
7.11
C
5.08
o 0.381 0.584
F
0.77
1.77
G
2.54 Bse
J
0.203 0.381
K 2.54
L
7.62 BSe
M
N
P
0.51
150
0.76
8.25
AIIJEOEC dlmensionsandnotesapplv.
NOTE.
DIMENSION "l" TO CENTER OF
LEADS WHEN FORMED PARALLEL
MH02221, MH02222, MP02221, MP02222
ELECTRICAL CHARACTERISTICS
(continued)
(TA = 25 0 C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Colieetor-Emitter Breakdown Voltage(l)
(lC = 10 mAde, IB = 0)
BVCEO
40
-
-
Vde
Collector-Base Breakdown Voltage
(IC = 10 "Ade, IE = 0)
BVCBO
60
Emitter-Base Breakdown Voltage
BVEBO
5.0
-
-
ICBO
-
-
50
nAde
lEBO
-
-
50
nAde
35
75
-
-
-
-
-
-
-
-
0.4
1.6
-
-
-
1.3
2.6
IT
200
350
-
Cob
-
4.5
8.0
pF
Cib
-
17
30
pF
ton
-
25
-
ns
toft
-
250
-
ns
OFF CHARACTERISTICS
(IE = 10 "Ade, IC
= 0)
Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
Emitter Cutoff Current
(VSE = 3.0 Vde, IC = 0)
Vde
Vde
------
ON CHARACTERISTICS
DC Current Gain(l)
(lC = 10 mAde, VCE 0 10 Vde)
hFE
MH02221,
MH02222,
MH02221,
MH02222,
(lC = 150 mAde, VCE = 10 Vdc)
(lC = 300 mAde, VCE = 10 Vdc)
MP02221
MP02222
MP02221
MPQ2222
40
100
MH02221, MPQ2221
MH02222, MP02222
20
30
Collector-Emitter Saturation Voltage
VCE(sat)
(lC = 150 mAde, IB = :5 m!\de)
(lC = 300 mAde, I B = 30 mAco)
."
Base-Emitter SaturatIon Voltage
(lC = 150 mAde, IS = 15 mAde)
(lC = 300 mAde, 18 = 30 mAdcl
VBE(sat)
-
-
-
Vde
-
Vde
DYNAMIC CHARACTERISTICS
Current-Gain -Bandwidth Product \ 1)
(lC = 20 mAde, VCE = 20 Vde, f = 100 MHz)
Output Capacitance
MHz
(VCB = 10 Vde, Ie = 0, f" 100 kHz)
Input Capacitance
(VSE 00.5 Vde, IC = Q, f =.100 kHz)
SWITCHING CHARACTERISTICS (F,gure 1)
Turn-On Time
(VCC 0 30 Vde, VBE(offi = 0.5 Vde,
IC" 150mAde, lSI = 15mAde) (Figure 1)
Turn-Off Time
(VCC = 30 Vde, IC = 150 mAde,
IB1 = IS2 = 15 mAde) (Figure 2)
(1)Pulse Test- Pulse Width
S
300 Jls, Duty Cycle == 2%.
FIGURE 2 - STORAGE TIME AND FALL
TIME EQUIVALENT TEST CIRCUIT
FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT
GENERATOR RISE TIME.;; 2.0 ns
200 n.
DUTY CYCLE = 2.0%
f'W"
DUTY CYCLE = 2.0%
+30 V
l-frr~ ~~.::s
+30 V
+1602vn
99
o
J \
4
619
~n--'ll'lllr--+-0.5 V
'
Ok
,1>-J\3
a,:f\l\r9'6-.-+--I
SCOPE
Rin> 100 k ohms
Cin,,12pF
RISE TIME" 5.0 ns
J
~ 500~sl
333
-3.0 V
SCOPE
Rin > 100 k oh...
Cin,,'2pF
RISE TIME" 5.0 ns
MHQ2369 (SILICON)
MPQ2369
QUAD DUAL-IN-LiNE
NPN SILICON ANNULAR
SWITCHING TRANSISTORS
· .. designed for low-current. high-speed switching and space saving
applications.
•
Choice of Ceramic or Plastic Package
•
High Current-Gain-Bandwidth Product fT = 550 MHz (Typ) @ IC = 10 mAdc
•
Fast Switching Times ton = 9.0 ns (Typ)
toff = 15 ns (Typ)
@
QUAD DUAL-IN-LiNE
NPN SILICON
SWITCHING
TRANSISTORS
VCC = 3.0 Vdc
CONNECTION DIAGRAM
•
Low Saturation Voltage VCE(sat) = 0.25 Vdc (Max)
•
Each Transistor Similar to 2N2369
•
TO-116 Package - Compact Size Compatible With IC
Automatic Insertion Equ ipment
@
IC = 10 mAdc
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
15
Vdc
Collector-Sa.. Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
4.5
Vdc
IC
500
mAde
Rating
Collector-Emitter Voltage
Collector Current - Peak
Total Device Dissipation@TA = 25°C
Derate above 2SoC
Temperature Range
Total
Transistor
Device
0.5
1.5
Watts
2.86
4.0
8.58
12
mW/oC
PD
MH02369
MPQ2369
Operating and Storage Junction MH02369
Each
°c
-65 to +200
-55 to +150
TJ.Tstg
MP02369
-
MHQ2369
.S1
~
,
't:J
4
-ll-o
CERAMIC
CASE 632-02
TO-116
F
MPQ2369
CASE 646
PLASTIC PACKAGE
INCHES
DIM
A
•
C
o
F
G
H
J
NOTES:
1. LEADSWITHINO.13mm
{D.DObl RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION ItL" TO
CENTER OF LEADS
WHEN FORMED
PARALLEL
K
L
M
Q
MIN
MAX
0.115 0.740
0.240 0.260
0.1600.180
0.015 0.020
0.040 0.060
O.l00BSC
0.052 0.012
0.008 0.012
O.t15 0.135
0.
0.310
10'
0.020 0.040
0.005 0.015
0.020 0.030
334
All JEDEC dimenslOm:a'ld notes applv.
NOTE:
DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL.
MH02369, MP02369 (continued)
ELECTRICAL CHARACTERISTICS ITA = 250 C unless otherwise noted)
I
I
Characteristic
Symbol
Min
Typ
Max
Unit
Colleetor·Emitter Breakdown Voltagell)
(lC = 10 mAde, IB - 0)
BVCEO
15
-
-
Vde
Coliector·Base Breakdown Voltage
(lC = 10 /lAde, IE = 0)
BVCBO
40
-
-
Vde
Emitter·Base Breakdown Voltage
BVeBO
4.5
-
-
Vde
Collector Cutoff Current
IVCB = 20 Vde, IE = 0)
ICBO
-
-
0.4
/lAde
Emitter Cutoff Current
IVBE = 3.0 Vde, IC = 0)
lEBO
-
-
0.5
/lAde
40
20
-
-
-
-
0.25
-
-
0.9
fT
450
550
-
MHz
Cob
-
2.5
4.0
pF
Cib
-
3.0
5.0
pF
-
9.0
-
-
15
-
OFF CHARACTERISTICS
(IE = 10 /lAde, IC = 0)
ON CHARACTERISTICS
DC Current Gain(1)
(lC = 10 mAde, VCE = 1.0 Vde)
(lC = 100 mAde, VCE = 2.0 Vde)
hFE
Collector-Emitter Saturation Voltage
VCElsat)
-
Vdc
(lC = 10 mAde, IB = 1.0 mAde)
Base-Emitter Saturation Voltage
-
Vde
VBElsat)
(lC = 10 mAde, 18 = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product (1)
l'c= 10 mAde, Vr." = 10 Vde, f = 100 MHz)
Output Capacitance
IVCB = 5.0 Vde, 'E = 0, f = 140 kHz)
I nput ,Capacitance
IVBE = 0.5 Vde, IC = 0, f = 140 kHz)
SWITCHING CHARACTERISTICS
Turn·On Time
IVCC = 3.0 Vde, VBEloff) = 1.5 Vde,
= 10 mAde,lBl = 3.0 mAde)
ton
Turn·Off Time
IVCC = 3.0 Vde; IC = 10 mAde,
181 =3.0mAde,IB2= 1.5 mAde)
toff
ns
'c
(1)Pulse Test: Pulse Width.s; 300 /Js, Duty Cycle
ns
= 2%.
SWITCHING TIME EQUIVALENT TEST CIRCUITS
--lilt--
FIGURE 1 - ton CIRCUIT
+10.SV
nil
3.0 V
_..,.'It---,
270
0---1.5 V
-1
<1.0ns
PU LSE WIDTH (q) = 300 n.
DUTY CYCLE· 2.0%
FIGURE 2 - toff CIRCUIT
3.0 v
+1O'7:~__
__
-9.15 V
3.lk
I
J..t-< loOns
PULSE WIDTH Ill) = 300 n.
DUTY CYCLE' 2.0%
"'Total Shunt Capacitance Df test jig and connectors.
335
_IIN_--,
270
MHQ2483 (SILICON)
MHQ2484
QUAD DUAL-IN-LINE
NPN HERMETIC SILICON ANNULAR
AMPLIFIER TRANSISTORS
QUAD DUAL-IN-L1NE
NPN SILICON
AMPLIFIER
TRANSISTORS
· .. designed for low-level, high-gain amplifier applications.
•
Low Noise Figure -@ IC = 10 !lAdc, f
NF = 3.0dB (Typ) - MH024B3
= 2.0dB (Typ) - MH02484
= 10 Hz to 15.7 kHz
• Transistors Similar to 2N2483 and 2N24B4
• TO-116 Ceramic Package - Compact Size Compatible with IC
Automatic I nsertion Equipment
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VeEO
40
Vdc
Collector-Base Voltage
Vee
60
Vdc
Emitter-Base Voltage
VEe
6.0
Vdc
Ie
50
mAde
Collector-Emitter Voltage
Collector Current - Continuous
Power Dissipation @ T A == 25°C
Derate above 25°C
PD
Power Dissipation @ T C = 2SoC
Derate above 25°C
PD
Ope{ating and Storage Junction
TJ,Tstg
Each
Transistor
Total
Device
0.6
3.42
1.8
10.3
1.2
6.85
4.2
24
-65 to +200
Temperature Range
Watts
mW/oe
Watts
mW/oe
°e
. .S1
~
-II-oJ
7~
,
CASE 632-02
TO·116
F
CONNECTION DIAGRAM
DIM
A
B
C
D
F
G
J
K
L
M
N
P
MILLIMETERS
MIN
MAX
19.9
7.11
- 5.08
0.381 0.584
0.77
1.77
16.8
5.59
INCHES
MAX
MIN
0.660
0.220
0.785
0.280
0.200
0.023
0.070
O.of5
0.30
0.100 sse
0.203 0.381 0.008 0.015
0.100
2.54
0.300 BSC
7.62BSC
15'
0.76 0.020 0.030
0.51
0.325
8.25
2.548SC
I"
AlIJEOEC dimensionsElndnotesapplv
NOTE·
DIMENSION "l" TO GENTER OF
LEADS WHEN FORMED PARAllEl.
336
MH02483, MH02484 (continued)
ELECTRICAL CHARACTERISTICS ITA
=
250 C unless otherwise noted)
Characteristic
Max
Unit
-
-
Vde
60
-
-
Vde
BVEBO
6.0
-
-
Vde
ICBO
-
-
20
nAde
lEBO
-
-
20
nAdc
-
Svmbol
Min
Colieetor·Emitter Breakdown Voltage(1)
IIC = 10 mAde, IB = 0)
BVCEO
40
Coliector~Base
BVCBO
OFF CHARACTERISTICS
IIC
Breakdown Voltage
= 10 pAde, IE = 0)
Emitter~Base
Breakdown Voltage
liE = lOI'Ade,lc
=0)
Collector Cutoff Current
(VCB = 45 Vde, IE
=0)
Emitter Cutoff Current
(VeE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
OC Current Gain(1)
IIC = 0.1 mAde, VCE
-
hFE
= 5.0 Vde)
MHQ2483
MHQ2484
100
200
= 5.0
(lC
= 1.0 mAde,
Vde)
MHQ2483
MHQ2484
150
300
-
(lc
= 10 mAde, VCE = 5.0 Vde)
MHQ2483
MHQ2484
150
300
-
-
-
0.13
0.15
0.35
0.5
-
0.58
0.70
0.7
0.8
iT
50
100
-
MHz
Ceb
-
1.8
6.0
pF
4.0
8.0
pF
3.0
2.0
-
VCE
Collector-Emitter Saturation Voltage(1)
-
8ase-E mitter On Voltage
(Ie
(lc
Vde
VCE(sat)
IIC= 1.0mAde,IB =0.1 mAde)
IIC = 10 mAde, IB = 1.0 mAde)
VBE(on)
= 100 I'Adc, VCE = 5.0 Vdc)
= 10 mAde, V CE = 5.0 Vdc)
Vde
-
OYNAMIC CHARACTERISTICS
Current~Gain-Bandwidth
(lc
Product
= 500 I'Ade, VCE = 5.0 Vdc, f = 20 MHz)
Collector-Base Capacitance
(VCB = 5.0 Vdc, IE
= 0, f
= 100 kHz)
Input Capacitance
IVBE
= 0.5 Vdc,
IC
eib
= 0, f = 100 kHz)
Noise Figure
(lC = 10 I'Adc, VCE = 5.0 Vdc, RS = 10 k ohms,
f = 10 Hz to 15.7 kHz, BW = 10 kHz)
.~
NF
dB
-
MHQ2483
MHQ2484
~
337
MHQ2906, MHQ2907 (SILICON)
MPQ2906, MPQ2907
QUAD DUAL-IN-LINE
PNP SILICON ANNULAR
GENERAL-PURPOSE TRANSISTORS
QUAD DUAL-IN-LINE
PNPSILICON
GENERAL-PURPOSE..
TRANSISTORS
· .. designed for general-purpose switching circuits and DC to VHF
amplifier applications.
• Choice of Ceramic or Plastic Package
• High Collector-Base Breakdown Voltage BVCBO = 60 Vdc (Min) @ IC = 10 IlAdc
• DC Current Gain Specified - 10 to 300 mAdc
•
CONNECTION DIAGRAM
High Current-Gain-Bandwidth Product tr = 350 MHz (Typ) @ IC = 50 mAdc
• Transistors Similar to 2N2906 and 2N2907
•
TO-116 Packaging - Compact Size Compatible With IC
Automatic Insertion Equipment
MAXIMUM RATINGS
Symbol
Value
Unit
VeEO
40
Vdc
Collector-Base Voltage
VeB
60
Vd"
Emitter-Base Voltage
VEe
5.0
Vdc
Ie
600
mAde
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Each
Transistor
Total Device Dissipation @TA ,.. 25°C
Po
Derate above 25°C MHQ2906. MHQ2907
MPQ2906. MPQ2907
Operating and Storage Junction MHQ2906,07
Temperature Range
MPQ2906.07
TJ.Tstg
MHQ2906.MHa2907
_
CERAMIC
CASE 632-02
TO-llG
Total
Device
0.65
1.9
Watts
3.72
5.2
10.88
15.2
mw/oe
-65 to +200
-55 to +150
4
B P
~
1
°e
~
~
.•
-11-0.:1 F
MP029OS. MPQ2907
CASE 646
PLASTIC PACKAGE
DIM
MIN
MAX
A 16.8
8
5.
C
D
F
G
J
K
L
M
N
NOTES:
1. lEADS WITHIN 0 13 mm
{O.OOS, RADIUS Of TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
P
2. DIMENSION "l"TO
CENTER OF lEADS
WHEN FORMED
PARALLEL
AU JECEC dlmeoSionSllfld Rutesapp1v
NOTE'
DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL
MATERIAL CONDITION.
338
MH02906, MH02907 (continued)
MP02906, MP02907
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
I
I
Characteristic
Symbol
Min
Typ
Max
40
-
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(l)
(Ie = 10 mAde, IB = 0)
BVeEO
Collector-Base Breakdown Voltage
(Ie = 10 /lAde, IE = 0)
BVCBO
60
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)
BVEBO
5.0
-
-
Vde
Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
leBO
-
-
50
nAde
Emitter Cutoff Current
(VCR = 3.0Vde, IE = 0)
lEBO
-
-
50
nAde
MHQ2906, MPQ2906
MHQ2907, MPQ2907
35
75
-
-
-
MHQ2906, MPQ2906
MHQ2907, MPQ2907
40
100
-
MHQ2906, MPQ2906
MHQ2907 MPQ2907
30
50
-
-
-
-
-
0.4
1.6
-
-
1.3
2.6
f,-
200
350
-
MHz
Output Capacitance
(VCS = 10 Vde, IE = 0, f = 100 kHz)
Cob
-
6.0
8.0
pF
I nput Capacitance
Cib
-
20
30
pF
Turn-On Time
(VCC = 30 Vdc, IC = 150 mAde,
IBI = 15 mAde) (Figure 1)
ton
-
30
-
ns
Turn-Off Time
(VCC = 6.0 Vde, IC = 150 mAde,
lSI = 182= 15 mAde) (Figure 2)
toff
-
100
-
n.
Vde
ON CHARACTERISTICS
DC Current Gain(l)
(lC = 10 mAde, VCE = 10 Vde)
(lC = 150 mAde, VCE = 10 Vde)
(lC = 300 mAde, VCE = 10 Vde)
-
hFE
Coliector·Emitter Saturation Voltage (1 )
(Ie = 150 mAde, IB = 15 mAde)
(lC = 300 mAde, IB = 30 mAde)
VCE(sat)
Base-Emitter Saturation Voltage (1)
(Ie = 150 mAde, IB = 15 mAde)
(Ie = 300 mAde IR = 30 mAde)
VBE(satl
-
-
Vde
Vde
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product ( 1 )
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)
(VSE = 2.0 Vde, IC = 0, f = 100 kHz)
SWITCHING CHARACTERISTICS
(llpulse Test: Pul.. Width,. 300 /ll, Duty Cvcl.
= 2%.
FIGURE 1 - DELAY AND RISE
TIME TEST CIRCUIT
FIGURE 2 - STORAGE AND FALL
TIME TEST CIRCUIT
-30
INPUT
ZO'50n
PRF' ISO PPS
RISE TIME <; 2.0 .s
+15 V
INPUT
Zo'50n
PRF' ISO PPS
RISETIME <;20",
200
TO OSCILLOSCOPE
RISE TIME
~
-s.O
1.0 k
37
TO OSCI LLOSCOPE
RISE TIME <; 5.0 .s
1.0 k
5 0 ns
0:u50
IN91S
J200.sl
-::-
-=
339
-=
MHQ3467 (SILICON)
QUAD DUAL-IN-LiNE
PNP HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS
QUAD DUAL-IN-LiNE
PNPSILICON
MEMORY DRIVER
TRANSISTORS
· .. designed for medium·current. high-speed switching. ferrite core
and plated wire memory driver. and MOS translator applications.
•
Low Collector-Emitter Saturation Voltage VCE(satl ~ 0.5 Vdc (Maxi @ IC ~ 500 mAdc
•
Collector-Emitter Breakdown Voltage BVCEO ~ 40 Vdc (Mini @ IC ~ 10 mAdc
• Transistors Similar to 2N3467
• TO-116 Ceramic Package - Compact Size Compatible With IC
Automatic I nsertion Equipment
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCS
40
Vdc
Emitter-Base Voltage
VES
5.0
Vdc
IC
1.0
Collector·Emitter Voltage
Collector Current - Continuous
Power Dissipation @ T A
= 25°C
Po
Derate above 25°C
Power DisSipation @ T C
Derate above 25°C
= 25°C
Operating and Storage Junction
Temperature Range
Po
TJ.T stg
Adc
Total
Each
Transistor
Device
0.9
5.14
2.7
15.4
mVV/oC
1.8
10.3
6.3
36
Watts
mW/oC
-55 to +200
Watts
°c
~
4
.~
B P
~
1
......1l-oJ
CASE 632-02
TO·116
F
CONNECTION DIAGRAM
DIM
MILLIMETERS
MIN
MAX
A 16.8
B
5.59
C
D
F
G
J
K
19.9
1.11
5.08
0.381 0.584
0.17
1.77
2.54 ase
L
M
0.203 0.381
2.54
I.B2Bse
15°
N
0.51
P
0.76
8.25
AUJEOEC dimensIOns and notes apply
NOTE
DIMENSION "l" TO CENTER OF
LEADS WHEN FORMED PARALLEL.
340
MH03467 (continued)
ELECTRICAL CHARACTERISTICS (TA
= 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Colleetor·Emitter Sreakdown Voltage(l)
(lC = 10 mAde, IS = 0)
SVCEO
40
-
-
Vde
Collector-Base Breakdown Voltage
SVCSO
40
-
-
Vde
SVESO
5.0
-
-
Vde
ICSO
-
-
200
nAde
lEBO
-
-
200
nAde
20
-
-
-
0.23
0.5
-
0.9
1.2
fT
125
190
Cob
-
10
25
pF
Cib
-
55
80
pF
ton
-
-
40
ns
taff
-
-
90
ns
Characteristic
OFF CHARACTERISTICS
IIC
= 10 "Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE
= 10 "Ade, IC = 0)
Collector Cutoff Current
(VCS
= 30 Vde,
IE
= 0)
Emitter Cutoff Current
(VSE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
OC Current Gain(ll
IIC
Collector-Emitter Saturation Voltage (1)
(lC
Vde
VCE(sat)
= 500 mAde, IB = 50 mAdcl
Base-Emitter Saturation Voltage (1 )
(lC
--
hFE
= 500 mAde, VCE = 1.0Vde)
Vde
VBE(,atl
= 500 mAde, I B = 50 mAde)
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth Product, ( 11
(IC = 50 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(VCS
= 10 Vde,
IE
= 0, f = 100 kHz)
I nput Capacitance
(VSE
= 0.5 Vde,
IC
=0, f = 100 kHz)
MHz
SWITCHING CHARACTERISTICS (Figure 1)
Turn-On Time
(lc = 500 mAde, lSI
Turn·Off Time
= 50 mAde)
(lC = 500 mAde, lSI = IS2 = 50 mAde)
(1 )Pulse Test: Pulse Width.s;; 300 MS, Duty Cycle == 2%.
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
+3.8 V
-30 V
1.0"F
E----o To Sampling Oscilloscope
1.0k
Zin ;;'100 kn
tr <1.0 ns
1.0 "F
':LJt
Pulse Generator
t r , tf t;;;;; '.0 ns
100
-=
PW""1.0"s
Zin"" 50.n
DC<2.0%
341
MHQ3546 (SILICON)
MPQ3546
QUAD DUAL-IN-LiNE
PNP SILICON ANNULAR
SWITCHING TRANSISTORS
QUAD DUAL-IN-LiNE
PNPSILICON
SWITCHING TRANSISTOR
· .. designed for low-level, high-speed switching applications.
•
Choice of Ceramic or Plastic Package
•
High Current·Gain-Bandwidth Product fT = 1000 MHz (TVp) @ IC = 10 mAdc
•
Fast Switching Times
ton = 15 ns (TVp)
toff = 25 ns (TVp)
CONNECTION DIAGRAM
•
Transistor Similar to 2N3546
•
TO-116 Packaging - Compact Size Compatible With IC
Automatic I nsertion Equipment
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VeEO
12
Vdc
Collector-Base Voltage
VeB
15
Vdc
Emitter-Base Voltage
VEB
4.5
Vdc
Ie
200
mAde
Collector-Emitter Voltage
Collector Current
Continuous
Each
Transistor
Total Device Oissipation@TA=2SoC
Derate above 2SoC
Po
MHQ3546
MP03546
Operating and Storage Junction MH03546
Temperature Range
MP03546
TJ,Ts'g
Total
Device
0.5
1.5
Watts
2.86
4.0
8.58
12
mwf'e
ue
-65 '0 +200
-55'0 +150
.,
MHQ3546
.S1
~
4·
CERAMIC
CASE 632-02
TO-116
7~
,
-11-0
F
MP03546
CASE 646
PLASTIC PACKAGE
MILLIMETERS
MIN
MAX
19.9
7.11
C
5.08
0
0.381 0.584
F
0.77
1.77
2.54BSC
G
J
0.203 0.381
K
2.54
7.62 BSC
L
M
- 15"
0.76
N 0.51
p
8.25
DIM
A 16.8
B 5.59
NOTE$:
1. lEADS WITHIN 0.13 mm
(0.005) RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
INCHES
MI.
MAX
0.785
0.280
0.200
0.015 0.023
0.030 0.070
0.1008SC
O.oIUl 0.015
0.100
0.300BSC
15"
0.020 0.030
- 0.325
0.660
0.220
-
AIIJEOEC dimensionsand notes apply.
2. DIMENSION "L" TO
CENTER OF LEADS
WHEN FORMED
PARALLEL
NOTE·
DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL
MATERIAL CONDITION.
342
MH03546, MP03546 (continued)
ELECTRICAL CHARACTERISTICS IT A
=
250 C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage(l)
(lC = 10 mAde,lB = 0)
BVCEO
12
-
-
Vdc
Collector-Base Breakdown Voltage
(lC = 10 I'Ade, IE = 0)
BVCBO
15
-
-
Vdc
Emitter-Base Breakdown Voltage
BVEBO
4.5
-
-
Vdc
ICBO
-
-
0.1
I'Ade
lEBO
-
-
0.1
I'Ade
Characteristic
OFF CHARACTERISTICS
(IE
= 10 I'Ade, Ie = 0)
Colieetor Cutoff Current
(VCB
= 10 Vde,
IE
= 0)
Emitter Cutoff Current
(VBE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
De eurrent Gain( 1)
-
hFE
(lC
= 10 mAde, VCE = 1.0 Vde)
30
-
(lC
= 100 mAde,
15
-
VCE(sat)
-
-
0.25
Vde
VBE(sat)
-
-
0.9
Vde
fT
600
1000
-
MHz
eob
-
2.0
6.0
pF
Cib
-
3.5
8.0
pF
Turn-On Time
(Vee = 2.0 Vde, VBE(off) = 3.0 Vde,
Ie = 30 mAde, IBI = 1.5 mAde)
ton
-
15
-
ns
Turn-Off Time
(Vee = 2.0 Vde, Ie = 30 mAde,
IBI = IB2 = 1.5 mAde)
toft
-
25
-
ns
VeE
= 1.0 Vde)
Collector-Emitter Saturation Voltage
(IC
= 10
mAde, IB
= 1.0 mAde)
Base-Emitter Saturation Voltage
(Ie
= 10 mAde,lS = 1.0 mAde)
-
DYNAMIC CHARACTERISTICS
Current-Galn-Bandwidth Product(1)
(Ie
= 10 mAde,
VeE
Output Capacitance
(VeB = 10 Vde, IE
= 10 Vde, f = 100 MHz)
= 0, f = 1.0 MHz)
Input Capacitance
(VBE
= 0.5 Vde,
IC
= 0, f = 1.0 MHz)
SWITCHING CHARACTERISTICS (F,gure 1)
(1)Pulse Test
Pulse W1dth
~ 300 jJs, Duty Cycle = 2%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
VBB
-2.0 V
....Vin:P
'""1
...OVout·
PU LSE WIDTH> 200 ns
RISE TIME < 1.0 ns
Zin=50~!
_L
'T' c, .: 10 pF
I
-b
"'Oscilloscope Rise Time~;' 1 0 ns
343
ton. VBB = +3.0 V, Vin = -7.0 Vdc
toff. VBB = -4.0 V, V," = +6.0 Vdc
MHQ3798 (SILICON)
MHQ3799
QUAD DUAL-IN-LlNE
PNP HERMETIC SILICON ANNULAR
AMPLIFIER TRANSISTORS
QUAD DUAL-IN-LlNE
PNPSILICON
AMPLIFIER TRANSISTORS
· .. designed for low·level, low·noise amplifier applications.
• Low DC Current Gain Specified - 10 !lAdc to 10 mAdc
hFE = 150 (Min) @ IC = 500 MAdc - MH03798
= 300 (Min) @ IC = 500 !lAdc - MH03799
• Low Capacitance Cob = 2.3 pF (Typ) @ VCB = 5.0 Vdc
• Low Noise Figure - NF = 2.5dB (Typ) @ IC = 100 !lAdc
• Transistors Similar to 2N3798 and 2N3799
• TD·116 Ceramic Packaging - Compact Size Compatible With IC
Automatic I ns..rtion Equipment
MAXIMUM RATINGS
flating
Collector-Emmer Voltage
Symbol
MHC3798
VCEO
40
MHC3799
Unit
60
Vdc
I
Collector-Base Voltage
VCB
60
Emitter-Base Voltage
VEB
5.0
Vdc
IC
50
mAde
Collector Current - Continuous
Vdc
Each
Transistor
Total
Device
Total Device Dlssipatlon@TA = 25°C
Derate above 25°C
PD
0.5
2.B6
1.5
8.58
Watts
mW/oC
Total Device Dlssipation@Tc=250C
Derate above 25°C
PD
1.0
5.71
3.5
20
Watts
mW/oC
Operating and Storage Junction
Temperature Range
T J.T stg
-65 to +200
CASE 632-02
°c
TO-11S
r--
A
-t_.l CJ
_
J
CONNECTION DIAGRAM
...lc'
Hi-...lGi-
'K'.:i J~\--
SEATING
PLANE
INCHES
MILLIMETERS
MAX
MIN
MAX
MIN
19.9
0.660 0.785
16.8
B
5.59
7.11 0.220 0.280
0.200
5.08
e
0
0.381 0.584 0.015 0.023
0.77
1.77
0.030 0.070
F
0.1008se
2.54BSe
G
J
0.203 0.381 0.008 0.015
K
2.54
0.100
0.3008Se
L
7.628se
M
15°
15°
0.76
0.030
N 0.51
0.020
8.25
0.325
P
DIM
A
AIIJEOEC dimensiansand nates apply.
NOTE
DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARAllEL
344
,
-:Tl ,II :
~II~II
MH03798, MH03799 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(1,
(lc = 10 mAde, IB = 0)
Vde
BVCEO
-
BVCBO
40
60
60
BVEBO
5.0
Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
ICBO
Emitter Cutoff Current
(VBE = 3.0 Vde, I C = 0)
lEBO
MHQ3798
MHQ3799
Collector-Base Breakdown Voltage
-
-
Vde
-
-
Vde
-
-
10
nAdc
-
-
20
nAdc
.100
225
-
150
300
150
300
125
250
-
-
-
-
0.2
0.25
-
-
0.7
0.8
IT
-
130
-
MHz
Cob
-
2.3
-
pF
Cib
-
5.5
-
pF
-
2.5
-
1.5
-
(lC = 10 !lAde, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC = 0)
ON CHARACTERISTICS
OC Current Gain(1)
(IC = 10 !lAde, VCE = 5.0 Vde)
(lc = 100 !lAde, VCE = 5.0 Vde)
(lC = 500 !lAde, VCE = 5.0 Vde)
(lC = 10 mAde, VCE = 5.0 Vde)
hFE
MHQ3798
MHQ3799
MH03798
MH03799
MH03798
MH03799
MH03798
MH03799
Collector-Emitter Saturation Voltage
-
Vde
VCE(sat)
(lC = 100 !lAde, IB = 10 !lAde)
(lC = 1.0 mAde, IB = 100!l Ade)
Base-Emitter Saturation Voltage
Vde
VBE(sat)
(lC= 100 !lAde, IB= 10 !lAde)
(lC = 1.0 mAde, I B = 100/lAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 mAde, VCE = 5.0 Vde, I = 100 MHz)
Output Capacitance
IVCB = 5.0 Vde, IE = 0, I = 100 kHz)
I nput Capacitance
NBE = 0.5 Vde, IC = 0, 1= 100 kHz)
Noise Figure
IIC = 100 /lAde, VCE = 10 Vde, RS = 3.0 k Ohms,
1= 10 Hz to 15.7 kHz)
NF
MH03798
MHQ3799
(, )Pulse Test: Pulse Width'S 300 p.s, Duty Cycle"" 2%.
345
dB
MHQ4001A (SILICON)
MHQ4002A
QUAD DUAL·IN·LlNE'
NPN HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS
QUAD DUAL·IN·LlNE
NPN SILICON
MEMORY DRIVER
TRANSISTORS
· .. designed for high current, high speed switching, ferrite core and
plated wire memory driver, and MOS translator applications.
•
Fast Switching Timeston = 40 ns (Max)
toff = 75 ns (Max)
•
Low Collector· Emitter Saturation Voltage VCE(sat) = 0.95 Vdc (Max) @ IC = 1.0 Adc
• DC Current Gain Specified 100 mAdc to 1.0 Adc
• Transistors Similar to 2N3725
• TO·116 Ceramic Package - Compact Size Compatible
with IC Automatic Insertion Equipment
MAXIMUM RATINGS
Rating
Symbol
MHO
4001A
MHO
4002A
Unit
Collector-Emitter Voltage
VCEO
40
45
Vdc
Collector-Emitter Voltage
VCES
60
70
Vdc
60
70
Vdc
Collector-Base Volt ~ge
VCB
Emitter-Base Voltage
VEe
6.0
Vdc
IC
1.5
Adc
Collector Current - Continuous
Each
Transistor
Q
4
,
-lI--oJ
~
8 P
't:J
F
Four
Transistors
Equal Power
Total PO\M!f Dissipation@ T A = 25°C
Po
750
4.3
2500
14.3
mW
mW/oC
Po
1.2
6.86
4.0
22.8
Watts
mW/oC
Derate above 25°C
Total Power Dissipation @ T C = 25°C
D~rate above 2SoC
Operating and Storage Junction
TJ,Tstg
-55 to +200
°c
Temperature Range
MilLIMETERS
DIM
MIN
MAX
A 16.8
8
5.59
CONNECTION DIAGRAM
e
o
F
G
J
K
L
19.9
7.11
5.08
0.381 0.584
0.77
1.77
1.54 ase
0.103 0.381
1.54
7.61 asc
M
N
P
150
0.51
0.76
8.25
NOTE
DIMENSION "L" TO CENTER OF
LEA OS WHEN FORMEO PARALLEL.
CASE 632.()2
TO·116
All JEDEC dimeoslOnsand notes appl'l.
346
MHQ4001A,MHQ4002A (continued)
ELECTRICAL CHARACTERISTICS
(T A
= 25°C unless otherwise noted)
Symbol
Characteristic
Collector-Emitter Breakdown Voltage (1)
(lC
= 10 mAde,lB = 0)
= 10 I'Ade,
VSE
= 0)
= 10 I'Ade,
Ie
= 0)
= 10 I'Ade,
IC
MH04001A
MH04002A
-
-
-
-
60
70
-
-
-
60
70
-
-
6.0
-
-
-
-
500
50
30
20
100
60
45
250
-
0.14
0.23
0.36
0.26
0.52
0.95
-
0.75
0.88
1.0
0.86
1.1
1.7
200
275
-
-
5.0
10
-
55
70
-
30
40
-
60
75
Vde
Vde
Vde
ICBO
= 30 Vde, Ie = 0)
Unit
Vde
SVeso
= 0)
Collector Cutoff Current
(VCS
40
45
SVCSO
Emitter-Base Breakdown Voltage
(Ie
Max
SVCES
MHQ4001A
MH04002A
Collector-Base Breakdown Voltage
(lC
Typ
BVCEO
MHQ4001A
MHQ4002A
Collector-Emitter Breakdown Voltage
(lC
Min
nAde
ON CHARACTERISTICS (1)
DC Current Gain
(lC
(IC
(lC
Collector-Emitter Saturation Voltage
(lC
(lC
(lC
= 100 mAde,
= 500 mAde,
= 1.0 Ade,
IS
IS
IS
VCe(s.t)
= 10 mAde)
= 50 mAde)
= 100 mAde)
Base-Emitter Saturation Voltage
(lC
(IC
(lC
-
hFe
= 100 mAde, Vce = 1.0 Vde)
= 500 mAde, Vce = 1.0 Vde)
= 1.0 Ade, VCE = 5.0 Vde)
VSe(s.t)
= 100 mAde, IS = 10 mAde)
= 500 mAde, IS = 50 mAde)
= 1.0 Ade, IS = 100 mAde)
Vde
Vde
0.8
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(IC = 50 mAde, Vce = 10 Vde, 1= 100 MHz)
Output Capacitance
(VCB
pF
Cob
= 10 Vde, Ie = 0, I = 100 kHz)
Input Capacitance
(Vse = 0.5 Vde, IC
MHz
IT
Cib
= 0, I = 100 kHz)
pF
SWITCHING CHARACTERISTICS (F,gure 1)
Turn-On Time
(VCC = 30 Vde, IC
= 0.5 Ade, VSE(off) = 3.8 Vde,
ton
lSI = 50 mAde)
Turn-Off Time
(VCC
toff
= 30 Vde, IC = 0.5 Ade, IS 1 = IB2 = 50 mAde)
ns
ns
(11 Pulse Test: Pulse Width ';;300 I'S, Duty Cycle';; 2.0%
FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT
~
1.0"F
~~L;;~~NERAToTf----....
100
43
15
,.-;:::>.--J\IIIV------""""M~-<>+30V
-J\II".,.--t-l
tr, tf'" 1.0 ns
PW"", 1.0,l.ls
Zin" 50ll
Duty Cycle = 2.0%
62
_
-
SAMPLING
TO
OSCILLOSCOPE
1.0 k
2m~
100kH
tr<1.0 ns
-3.BV
347
MHQ4013
MHQ4014
(SILICON)
QUAD DUAL-IN-L1NE
NPN HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS
QUAD DUAL-IN-L1NE
NPN SILICON
MEMORY DRIVER
TRANSISTORS
· .. designed for high current. high speed switching, ferrite core and
plated wire memory driver, and MOS translator applications.
•
•
Fast Switching Times ton = 35 ns (Max)
toff = 60 ns (Max)
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.95 Vdc (Max) @ IC = 1.0 Adc
•
DC Current Gain Specified 100 mAdc to 1.0 Adc
•
Transistors Similar to 2N3725
• TO·116 Ceramic Package - Compact Size Compatible with IC
Automatic Insertion Equipment
MAXIMUM RATINGS
Symbol
MHQ4013
MHQ4014
Unit
Collector·E mitter Voltage
VeEO
40
45
Vdc
Collector·Emltter Voltage
VeES
60
70
Vdc
Collector-Base Voltage
Vee
60
70
Vdc
Emitter-Base Voltage
VEe
6.0
Vdc
Ie
1.5
Adc
Rating
Collector Current - Continuous
Four
Each
Transistor
Total Power Dissipation
Derate above 2SoC
@
TA == 2SoC
Total Power Dissipation @TC'" 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
Po
Po
TJ,T stg
Transistors
Equal Power
2500
14.3
mW
mw/oe
1.2
6.86
4.0
22.8
Watts
mw/oe
-55 to +200
4
7~
1
4.3
750
Q .S1
-R-oJ
F
°e
CONNECTION DIAGRAM
MILLIMETERS
DIM MIN
MAX
A IS.8
19.9
B
7.11
5.59
C
5.08
D
0.381 0.584
F
0.77
1.77
2.54 Bse
G
J
0.203 0.381
K
2.54
L
7.S28SC
M
15'
N
0.51
0.76
P
8.25
INCHES
MIN
O.SSO
0.220
MAX
0.785
0.280
0.200
0.015 0.023
0.030 0.070
0.100 BSC
0.008 0.015
0.100
0.300 BSC
15'
0.020 0.030
0.325
-
AIIJEOEC rlimenSlonsand notes apply.
NOTE.
DIMENSION "'L"' TO CENTER OF
LEADS WHEN FORMED PARALLEl.
CASE 632.()2
TO·116
348
MHQ4013, MHQ4014 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)
I
I
Characteristic
Symbol
Min
Typ
Max
40
45
-
-
-
60
70
-
-
-
-
60
70
-
-
Unit
OFF CHARACTERISTICS
Collector-E mitter Breakdown Voltage (1)
(IC = 10 mAde, 18
MHQ4013
MHQ4014
Collector-Emitter Breakdown Voltage
(lc
Vde
SVCES
= 1OI'Ade, VBE = 0)
MHQ4013
MHQ4014
Collector-Base Breakdown Voltage
(lC = 10l'Ade,IE = 0)
Vde
SVCBO
MHQ4013
MHQ4014
Emitter-Base Breakdown Voltage
(IE
Vde
SVCEO
= 0)
SVESO
6.0
-
Vde
500
nAdc
= 10 I'Ade,lc = 0)
Collector Cutoff Current
(VCS
= 50
ICBO
= 0)
Vde, IE
ON CHARACTERISTICS (1)
DC Current Gain
(lc
(lC
(lC
Collector-Emitter Saturation Voltage
(lC
(lc
(lc
60
35
25
100
65
50
250
-
0.14
0.23
0.36
0.26
0.52
0.95
-
0.75
0.88
1.0
0.86
1.1
1.7
fT
200
275
-
MHz
Cob
-
5.0
10
pF
Cib
-
50
70
pF
ton
-
20
35
ns
toff
-
50
60
ns
-
Vde
VCE(sat)
= 100 mAde, IS = 10 mAde)
= 500 mAde, IS = 50 mAde)
= 1.0 Ade, IS = 100 mAde)
-
Base-Emitter Saturation Voltage
(IC
(lC
(lC
-
hFE
= 100 mAde, VCE = 1.0 Vde)
= 500 mAde, VCE = 1.0 Vde)
= 1.0 Ade, VCE = 5.0 Vde)
Vde
VSE(sat)
= 100 mAde, IS = 10 mAde)
= 500 mAde, I B = 50 mAde)
= 1.0Ade,IS = 100 mAde)
0.8
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(VCS
= 10 Vde, IE = 0, f = 100 kHz)
Input Capacitance
(VSE
= 0.5
Vde, IC
= 0, f = 100 kHz)
SWITCHING CHARACTERISTICS
Turn..on Time
IC
= 0.5 Ade,
VSE(off)
Turn-Off Time
(VCC = 30 Vde, IC
= 0.5 Ade,
IBI
(VCC
= 30 Vde,
= 3.8 Vde,
lSI
= 50 mAde)
= IS2 = 50 mAde)
(1) Pulse Test: Pulse Width ';;;300 I'S, Duty Cycle ';;;2.0%.
FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT
JL
10llF
100
43
15
r.:::><--~
o
1.0:1
500
480
-410MHz
40
/
S
10
~
ffi
so
8.0
~
t-
~ 6.0
t-
::>
0
~
20
440 to 410 MHz
Pin set for 7.5W
Pout at 12.5 V
~
4.0
2.0
10
11
--------12
13
v---- i
Pin'IOOmW
V,, 12.5 V
16
ffi
12
~I-
440M./"
~ 8.0
t-
::>
0
~
,e
14
4.0
o
o
15
!/
6.0
Pin'" l00mW
V,, 12.5V
Q:'
0.20
~
o
'"
!Z
8
440 MHz
./
0.15
~
'"::>'"
'-'
0.10
~
0.05
A
~
~
........-:::::~
~HZ
z
j
o
o
9.0
9.0
S.O
3.0
V,~
GAIN CONTROL VOLTAGE (VOLTS)
359
12
,...
12
Vsc, GAIN CONTROL VOLTAGE (VOLTS)
FIGURE 5 - GAIN CONTROL CURRENT versus VOLTAGE
!
".,- ~
~OMHZ
//
3.0
V, VOLTAGE (V,, Vsc)
0.25
140
FIGURE 4 - QUTPUT POWER v.....u. GAIN
CONTROL VOLTAGE
FIGURE 3 - OUTPUT POWER versus VOLTAGE
12
120
100
80
Pin,lNPUT POWER (mW)
60
f, FREQUENCY (MHz)
15
15
MHW709 (continued)
UH F Power Module Test Information
FIGURE 1 - TEST CIRCUIT
FIGURE 2 - UHF POWER MODULE TEST FIXTURE
PRINTEO CIRCUIT BOARD
~--------~~-----------4" ----------------------~
Teflon Glass Board
t = 0.062"
ER = 2.56
Mount Board and module on 1/2" thick aluminum block
for heat sinking and electrical ground. Pins 2, 4 and 6 are
PIN 3
PI N 7
not directly connected to ground in this test fixture.
Ground is provided through module heat sink.
FIGURE 3 - UHF POWER MODULE TEST SETUP
12.5 Vdc
125 Vdc
Signal
Generator
Z1, Z2
L 1, L2
el, C4
50.n Mlcrostrlpllne
Ferroxcube VK200-20J4B
1.0 ~F Tantalum 25 V
C2, C3
Rl
NOTE- No Internal D.C. blockmg on input pin.
360
0 1 /-IF Ceramic
100 Ohm Pot, 2W, Linear Taper
MHW710
The RF Line
UHF POWER MODULE
13 W,12.5 V
400·470 MHz
UHF POWER MODULE
· .. designed for Land Mobile Communications equipment in the
UHF band.
•
Frequency Range 400 to 470 MHz
•
Power Gain Gp = 19.4 dB (Min)
•
Output Power Pout = 13 W (Min)
ELECTRICA L CHARACTERISTICS \Vs and
Characteristic
Frequency Range (1)
Output Power
Vsc
set at 12 5 Vdc unless
otherWise
noted.}
Symbol
Min
Max
Unit
-
400
470
MHz
Pout
13
-
Watts
Gp
19.4
-
dB
~
35
-
%
-
-
-40
dB
Zoo
-
2 1
VSWR
-
-
03
dB
(Pin = 150 mWI
Power Gain
Efficiency
(Pout" 13 WI
Harmonics
(Pout::; 13 W, Reference)
Input Impedance
(Pout"" 13 W, 50 Ohm Reference)
Power Degradation
IP out " 13 W. TC" 25 0 CI
(T C " OOC to BOoCI
Power Degradation
-
-
-
No degradation
0.7
dB
(Pout = 13 W. TC " 25 0 CI
ITC "OoC to BOaC I
Load Mismatch
IVSWR = 00, Vs = 15 Vdc, Pout
=
In
Pout
13 WI
Stability
(Pin:: 50 to 200 mW, load Mismatch 2: 1
50 ohm reference, Vs = 8.0 to 16 Vdc,
-
All SpUriOUS outputs more than
70 dB below desired signal
Vsc adjusted for Pout = 5.0 to 16 W)
(11 Frequency Range is covered in two bands:
MHW710·1 400·440 MHz
MHW71Q.2 440·470 MHz
361
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 67.06 67.56 2.640 2.660
8 52.32 52.83 2.060 2.080
C 8.51
8.89 0.335 0.350
E 2.54
2.79 0.100 0.110
F
2.67
2.92 0.105 0.115
61.09 SSC
2.405 SSC
G
H 47.88 48.64 1.885 1.915
10.67
11.18
0.420
0.440
J
7.62 0.230 0.300
K
5.84
L 45.34 46.10 1.785 1.815
N 40.26 41.02 1.585 1.615
n 3.45 3.71 0.136 0.146
R 20.32 20.57 0.800 0.810
S 17.02 17.53 0.670 0.690
3.24 0.1175 0.1275
T 2.98
U 12.32 13.08 0.485 0.515
V 9.78 10.54 0.385 0.415
5.46 0.185 0.215
W 4.70
2.92 0.085 0.115
X 2.16
CASE 700·02
MHW710 (continued)
TVPICAL PERFORMANCE CURVES
IMHW71G-2)
FIGURE 1 - INPUT POWER. EFFICIENCY AND
VSWR versus FREQUENCY
FIGURE 2 - OUTPUT POWER versus INPUT POWER
5
225
22.
Pout = 13 Witts
0 V.-V.. -12.5 V
~
in 20
VI"'"
..,
-'-
V
-
PiQ.......
~
F"'<
0
440
420
V
~
1
~
12.5
/'
5
/
/
61 0
I-"""
r-'
5
VszV~·'2.5V
S
! 17.5
I--i-'"
5
5 INPUT VSWR <2:1
r
'!SWR
fo'
460
7.
0
1
5
80
f. F,REOUEN,CY (MHz!
J
6
i...
~o_
.
~
f2
°v
0
/'
V
~
~
V
in
i
..,
~
....
16
12
~ 8.0
o
0
12
13
V. VOLTAGE (V,-VIC!
14
15
..,~
..,g;
....
..,....o
0.1 5
3.0
6.0
9.0
12
V... GAIN CONTROL VOLTAGE (VOLTS!
~~
B
0.1 O
z
:c
j
0.05
0
3.0
6.0
9.0
12
VIC. GAIN CONTROL VOLTAGE (VOLTS!
362
...
;;
V
~
p-
160
r~
V/
V
FIGURE 5 - GAIN CONTROL CURRENT versus VOL TAGE
0.25
Pin' 150 mW
V"12.5 V
i.5 0.20
140
/" ~
V,, 12.S V
0
11
100
120
Pin. INPUT POWER (mWl
o Pin' 150mW
440 to 470 MH,
,
Pin set for l3W
Pout at 12.5 V
Input VSWR < 2:1 for voltage
from 10 to 15 V.
4
V
FIGURE 4 - OUTPUT POWER versus GAIN
CONTROL VOLTAGE
FIGURE 3 - OUTPUT POWER versus VOLTAGE
18
47lMHZ
I--~
5fi
1
480
~
V/
1i
re
2.0:1
V
/'
V
~
15
15
MHW710 (continued)
UHF Power Module Test Information
FIGURE 1 - TEST CI RCUIT
FIGURE 2 - UHF POWER MOOULE TEST FIXTURE
PRINTED CIRCUIT BOARD
1-------
4 ..
-----l~1
!
u...:...:~~_p~..l....---~~~~l-..~~~ ~O
Teflon Glass Board
t'" 0.062"
ER"" 2.56
..
Mount Board and module on 1/2" thick aluminum block
for heat sinking and electrical ground. Pins 2, 4 and 6 are
PIN 7
not directly connected to ground In this test fixtur •.
Ground is provided through module heat sink.
FIGURE 3 - UHF POWER MODULE TEST SETUP
50 Ohm
Lo""
Signa'
Generator
Z " Z2
50 n MicfO$tnpline
L " l2
Ferroxt:ube VK2OQ-20/48
C1. C4
1.0"F Tantalum 25 V
C2. C3
R1
NOTE: No Internel D.c. blocking on inpllt pin.
363
0.1 #IF Ceramic
100 Ohm Pot, 2 W. linear Taper
MJ105 (SILICON)
BU105
HORIZONTAL DEFLECTION SILICON
TRANSISTORS
2.5 AMPERE
· .. designed for use in line operated black and white (19 and 20 inch
1100 deflection circuits) or color (11 and 14 inch 900 deflection
circuits) television receivers.
•
High Collector· Emitter Volt~ge VCER (Peak) = 1400 Vdc ';'·MJl05.
= 1500 Vdc --' Bl;lJ,05' :
•
Collector· Emitter Saturation Voltage.:':;
VCE(sat) = 5.0 Vdc (Max) @ IC =2:5 Adc
•
Fall Time @ IC = 2.0 Adc tf = 0.5 lIS (Typ)
= 1.0 I1s (Max)
POWER TRANSISTORS
NPN SILICON
1400,1500 VOLTS
10 WATTS
", ....
....
MAXIMUM RATINGS
Symbol
Rating
MJ105
Collector-Emitter Voltage
VCEO
Collector-Emmer Voltage - Contmuous
(ABE = 100 nl
Peak
veER
750
1400
veB
750
1400
Collector-Base Voltage _ Continuous
Peak
Unit·
BU10S
750
I
I
Vdc
750
1500
v
750
1500
v
Emitter-Base Voltage
5.0
Vdc
Collector Current - Continuous
2S
Adc
25
Adc
'B
Base Current - POSitive
Negative
15
10
Total Device DISSipation @ TC '" gOOe
Derate above gooe
0.4
Operating and Storage Junction Temperature
Range
TJ,Tstg
-65to+115
THERMAL CHARACTERISTICS
O1aract,rlstic
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherWise noted}
t
OIaractaristic
Symbol'
Min
BVCEO(sus)
750
TVO
Max
Umt
OFF CHARACTERISTICS
Collector-Emitter Sustalnmg Voltage (1)
lie'" 100mAdc,IB"'O)
Collector Cutoff Current
(VCE = 1400 Vdc, VBe '" 0)
MJ105
(VCE = 1500 Vdc, VBe = 0)
BU10S
Emitter-Base Voltage
(IE = 100 mAdc, Ie
Vdc
mAde
ICES
'" O)
1.0
10
.BVEBO .
5.0
DIM
Vdc
ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
(lC = 2.5 Adc, Ie = 1.5 Adc).
Base-Emitter Saturation Voltage
(lC"" 2.5 Adc, 'B '" 1.5 Adcl
DYNAMIC CHARACTERISTICS
Current-Gam-Bandwidth Product (2)
lie = 0 1 Adc, VCE = 5.0 Vdc, f test '" 1.0MHz)
Output Capacitance
(VCB = 10Vdc, Ie =0, f = 01 MHz)
SWITCHING CHARACTERISTICS (Figure 1 and text)
Fall TIffi8
UC=2.0 Adc,'Bl = 1.5 Adc, LB=12J.1H,
AS = 2.5, Non-opttmum values to comply
with aUl05 specification)
11 Pulse Test· Pulse Width 300 j.ls, Duty Cycle ~2.0%"
(2) fT = !hf.l.ft8St
364
MILLlMHERS
MIN MAX
INCHES
MAX
MIN
39.37
A
21.08
B
7.62 0.250
C 6.35
1.09 0.039
D 0.99
3.43
E
30.40 1.177
F 29.90
11.18 0.420
G 10.67
5.59 0.210
H 5. 3
J 16.64 17.15 0.655
12.19 0.440
K 11.18
Q
4.09 0.151
3.84
26.67
R
NOTE:
1. DIM "0" IS OIA.
CASE" ,
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ105, BU105 (continued)
CIRCUIT OPTIMIZATION
Test/application circuit and operating waveforms for BU1051
MJ105 are shown in Figure 1. It may be used to evaluate devices
in the conventional manner, i.e., to measure fall time, storage time,
and saturation voltage. However, the circuit was designed with operating effiCiency in mind, so that it could be used to evaluate devices
can be caused by a variety of problems. but it is the dissipation itself
that is of fundamental importance. Once the transistor operating
point has been established, fixed circuit values may be selected
for the test fixture. Factory testing may then be made with one
meter reading, without adjustment of the test apparatus.
by one simple criterion, supply power input. E>eC8ssive power input
FIGURE 1 - TEST CIRCUIT AND WAVEFORMS
+ 50 Vd,
I.B k
Ly
La
Tl==
Cs
1.0.F
600 Vd,
40
.F
200
Vd,
RB
BASE CIRCUIT VALUES
Switching Test
Optimum
RB
2.5
7.0
LB
12.0
15.0
DESCRIPTION OF SPECIAL COMPONENTS
DRIVER
INPUT
SIGNAL
IB
-5.0V
to
-28.,- 1---35.,-
DUMMY YOKE INDUCTOR (Lyl
r---
2.0 mH, 52.5 turns, #16 AWe;, enamel wire 15 turns per layer,
3.5 layers on 1.376 Inch diameter bobbin, enclosed In a Ferroxcube,
cup core K535221-B2A, With a 0.687 Inch diameter core, with
I Bl
1,-
v.:
-
r-90%
IC
VCE
VBE
to
to
0.003 inch core gap. Use a nylon bolt and nut to hold cup halves
together.
r
DUMMY HIGH VOLTAGE AND HORIZONTAL SCAN
TRANSFORMER (LFI
5.5 mH, 121 turns, #20 AWG enamel wire 33 turns per layer,
3.6 layers 1 mil mylar Insulation between layers wound on 1 leg
of Allen Bradley 0.5 Inch square Fernte "u" core (21·W03 material
with 0.007 Inch gap in each leg. Core halves held together with
plastic.
ICM
-If
VCEM
q
DRIVER TRANSFORMER (nl
Motorola part number 25D68782A05-1/4" laminate "E" iron
core. Primary Inductance - 39 mH, Secondary Inductance 0.22 mH, leakage .inductance with primary shorted· 2.0 IlH. Pri·
mary 260 turns, 1128 AWe;, enamel wire, Secondary 17 turns,
#22 AWG enamel wire.
It
--l
I,
~
BASIC CONSIDERATIONS.
The primary consideration when choosing a deflection tra(lslstor
for a conventional (parallel connected) circuit, as shown in Figure
1, IS one of voltage capabIlity. The flyback voltage to which the
deVice will be subj.ect~d is a relati.vely predictable value with
respect to the main power supply voltage. This voltage pulse,
shown in Figure 1, will usually be about 8 times the value of V+,
but may be varied somewhat by adjusting retrace time and fly back
tuning. For this reason these high voltage devices are particularly
useful in cost conscious solid state receivers, as they permit the
to
FUNDAMENTAL WAVEFORMS OF A SIMPLIFIED
HORIZONTAL DEFLECTION CIRCUIT
use of an off-lhe-line half wave power supply.
365
MJ105/BU105 (continued)
COLLECTOR CIRCUIT VALUES
The power supply ul8d in the circuit of Figure I, _ chosen
to produce a 1000 volt collector pulse on the transistor, a' conserva·
tive value, recommended for unregulated applications. The values
of yoke (LVI, flybeck primary (LFI, retrace capecitor (CRI, and
"s" shaping capacitor (CsI shown, will result in a peak collector
current of 'about 2.0 A. This is sufficient to deflect (and provide
high voltage forI large screen' 110" black and white or smell 90"
color receivers. Peak collector currents to 2.5 A ma-" be handled
by the SUI05/MJI05. Holding the supply constant for most effi·
cient application. adjustment of amountofdaflection may be made
by raising or lowering LV and LF. Remember that LV IV is constant
for tho fixed voltage situatio,n. and actual daflection is proportional
to IV
VaiuBS of Cs and CR must be varied inversely with
LV to meintein retrace and "5" shaping periods.
FIGURE 3-INTERRELATION OF RB, LB. AND la1
50
2.5
~
.",
l\ "'
\
\
0
~
.JLY.
FIGURE 2 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IBI. IC· 2.0 A PEAK
:::: ~ ~27
~
~
'"
~
!a
/38
6.0
0.5
/..
20
k::;,;; ~7.6
15
1.0
1
-.........
-"La- t-Ra- t--
1.5
2.0
ICM,COLLECTOR CURRENT lAMP)
o
3.0
2.5
FIGURE 4 - INTERRELATION OF tf. FALL TIME
AND t l • STORAGE TIME
5.0
4.0
4.0
0
2.0
o
,......,
LS/2.0pH
i
~
~181
~~
"....V ......... t--
0
0
~ 8.0
"
0
1
0.2
0.4
0.6
0.8
1.0
1.2
lal. SASE·CURRENT lAMP)
1.4
1.6
1.8
2.0
's- t--
V-
/
"-"
V
t--
.: 2.0
BASE CIRCUIT VALUES
The driver power supply and driver transistor type ~n be
selected according to convenience. A TO-5 or Uniwatt type will
generally 'be 'needed. Once this is done, the turns ratio of the
1.0
driver transformer can be picked to produce about 4 to 5 volts
o
peak to peak at the base of the output dowice. Tight coupling be·
0.5
1.0
tween windings is recommended on early deSigns to allow optimizing
'1- c--
V
......
1.5
2.0,
ICM, COLLECTOR CURRENT lAMP)
2.S
3.0
I..kage inductance by adding inductance externally. Later, tho leakage can be "designed in" to the transformer. The R8 and its bypess
electrolytic. often called the "speed up" circuit f allows adjustment
of lSI lor IS "end of scan" or IS endl while still providing a low
ac impedance for good turn..,ff of the output device. In Figure 2,
the effects of varying LB and 'lSI on the total power input to the
daflection, circuit are "shown. Note that an optimum LS can be
found which will produce low dissipetion over a wide range of IS 1.
FIGURE 5 - PIN. POWER DISSIPATION, WITH DEVIATIONS
OF VCEM AND ICM
a.0
This is desirable in order to produce efficient operation oyer a wide
.,so
range of circuit component tolerances. Likewise, be.~ LS
Qives
the least sensitivity to output transistor hFE.
.
.
Tho best value of LB found in Figure 2 is 15 pH. Remember
that this is the sum of the actual leakage- inductance of the trans·
former (secondary inductance with primary shorted> and an ex·
ternal L, if necessary. Tho boist value of IS1 is 0.8 A achieved'in
the typical device by using R8 = 7 n, derived experimentelly.
These are the choices recommended, for the test fixture, when
the transistor is used at leM = 2.0 A. Fo'r other values""f ICM ,tie
drive circuit, components must be· changed. Figura 3 showS the
velues of LS and lSI wh"ich should be used.
'
The value of RS which will be required to produce the IS1 is
also given. but of course, it is not an independent variable.
ll00~IOOOV
7.0
VCEM
~ 6.0
~
'"
4.0
~
3.0
~
2.0
z
~v
5.0
~
~
:LI
V 900 V
/.
~~
0
V-
1.0
PERFORMANCE
~~own in Figures 4 and 5 are the results which will be typically
obtained with the test circuit at various operating conditions. _
0
0.5
366
1.0
1.5
2.0
,ICM, CO~LECTOIt ~URRENT (AMP)
2.5
3.0
MJ105. BU105 (continued)
TYPICAL TRANSISTOR CHARACTERISTICS
FIGURE 1 - DC CURRENT GAIN
20
II
TJ -IOOoC
z
~
....
z
~
'"
i3
~
0
j.f
FIGURE 2 - "ON" VOLTAGES
5.0
V
7.0",", "2'5oc
-
~
II
4.0
1i)-IOOoc ...
ill
0
II
I\,
\.
5. 0
\\
3. 0
11
VBE(..t)" Ic/lB = 2.0
I.0
1\
0.05
0.1
02 0.3
0.5
1.0
IC. COLLECTOR CURRENT (AMP)
~51J
I!I"?C
\
2.0
2.0
0
0.03
3.0
25JC ...
·1
VCEloat)t!lIc!IB-2.0
0
_\
~
0.03
II
VCIE =J.OV
FIGURE 3 - SAFE OPERATING AREA
0.05
0.1
J
W
'
'{l
~
0.2 0.3
0.5
1.0
IC. COLLECTOR CURRENT (AMP)
2.0
3.0
FIGURE 4 - COLLECTOR CUTOFF CURRENT
1000
l....
~
'"
'"
i3
......
~
'"
~
50O~ !=BUI05 - VCB =1500 VOLTS
I- MJI05 - VCB = 1400 VOLTS
300
r--
200
100
0
:l
o
30
~
0
..,
~
-
"
I0
o
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
367
20
40
60
TJ. TEMPERATU RE (DC)
BO
100
MJ400 (SILICON)
High-voltage NPN silicon transistor designed for video
output circuitry in color television receivers.
o
CASE 80
PIN 1. BASE
2 EMITTER
(TO·66)
Collector connected to case
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
325
Vdc
Collector-Base Voltage
VCB
350
Vdc
Emitter-Base Voltage
V EB
5
Vdc
250
mAde
Colleci:or- Emitter Voltage
,
Collector Current-Continuous
IC
Peak
1000
Base Current
Is
Total Device Dissipation @ TA = 25°C
PD.
Derate above 25°C
200
mAde
2.5
Watts
wjOc
0.0167
Total Device Dissipation @ TC = 75°C
PD
Operating and storage Junction
Temperature Range
0.067
Watts
wjOc
-65 to +175
°c
6.67
Derate above 75°C
. T J , Tstg
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal ReSistance, Junction to Case
8JC
15
°cjw
Thermal ReSistance, Case to Ambient
8CA
60
°cjw
Characteristic
FIGURE 1- POWER·TEMPERATURE DERATING CURVE
10
;
~
~
8.0
.............
......... Te, CASE TEMPERATURE
~ 6.0
~
~
Q
ieE
4.0
2.0
.............
.............
-
............
............
TA. AMBIENT TEMPERATURE
i"-.....
I
o
25
50
75
100
TEMPERATURE (OC)
368
125
150
:::--.....
175
MJ400 (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted I
Symbol
Characteristic
. Min
Max
Unit
-
Vde
-
Vde
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
(IC '1.0 mAde. I H • 0)
HVCEO(sUB)
Collector-Base Breakdown Voltage
(IC • 0.1 mAde, IE • 0)
HVCHO
Emitter-Base Breakdown Voltage
(IE' O. 1 mAde, IC • 0)
HV EHO
325
350
5.0
ICEO
Collector Cutoff Current
(VCE' 325 Vde,
0)
Is'
Vde
mAde
-
1.0
30
300
ON CHARACTERISTICS
DC Current Gain
hFE
(IC • 50 mAde, VCE • 10 Vde)
Vde
Collector-Emitter Saturation Voltage
(IC • 50 mAde,
5 mAde)
VCE(B.t)
-
5.0
Base-Emitter On Voltage
(IC • 50 mAde, VCE • 10 Vde)
VHE(on)
-
1.0
15
-
-
10
25
-
Is •
Vde
SMALL SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC' 50 mAde, VCE ' 25 Vde, f-1O MHz)
fT
Output Capacitance
Cob
(VCH • 20 Vde, IE' 0, f· 100 kHz)
Small Signal Current Gain
50 mAde, VCE • 10 Vde, f • 1 kHz)
hf.
(Ie •
MHz
pF
-
(11 Pulse Test: PW " 300 ~s. duty cycle '" 2%
FIGURE 2- CURRENT GAIN CHARACTERISTICS
100
VeE 10V
Te 25'C
70
50
V
-
r- T;=2~'C
20
~
i"'"
FIGURE 3- OUTPUT CAPACITANCE
30
h,.@lkHz
h"
r-- l -
t'--...
~
tl
z:
5if:
10
........
'"
r--- ......
5 7.0
C;'
...........
20
5.0
3.0
10
1.0
2.0
3.0
5.0 7.0
10
20
30
50
70
1.0
100
2.0
3.0
5.0
7.0
10
20
REVERSE VOlTAGE (VOLTS)
Ie. COLLECTOR CURRENT ImAdel
369
30
50
70
100
MJ41 0(SILICON)
MJ411
HIGH VOLTAGE NPN SILICON TRANSISTORS
. designed for medium to high voltage Inverters, converters,
regulators and switching circuits.
•
•
•
High Coliector·Emitter Voltage VCEO = 200 Volts - MJ410
300 Volts - MJ411
5 AMPERE
POWER TRANSISTORS
NPN SILICON
200-300 VOLTS
100 WATTS
DC Cllrrent Gain Specified @ 1.0 and 2.5 Adc
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.8 Vdc @ IC = 1.0 Adc
MAXIMUM RATINGS
Symbol
MJ410
I
MJ411
U!Ii'
Vceo
200
I
300
Vd.
CQII8l;tor·Base Voltage
VCB
200
300
Vd.
Emitter·Base Voltage
VEB
5.0
Vde
IC
5.0
10
Ad.
Rating
Collector-Emitter Voltage
CQllector Current - Continuous
Peak
Stile Curr.nt
IB
2.0
Ad.
Total Device Dissipation@Tc :t 75°C
Derate above 75°C
Po
100
1.33
wl"c
Operating Junction Temperature Range
Storage Temperature Rilnge
~65
TJ
Tltg
Watts
to +150
°c
-65 to +200
°c
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS (Tc '"' 25°C unless otherwise noted)
I
Characteristic
SVmbol
I Min
Ma.
Unit
OFF CHARACTERISTICS
FOllector.Emltter Sustaining Voltage
tiC = 100 mAde, la = 0)
!collector Cutoff Current
(Vee = 200 Vdc. Ie '" 0)
(Vce = 300 Vdc. 'a '" 01
200
300
mAde
ICEO
0.25
0.25
MJ410
MJ411
ollector Cutoff Current
IVeE ""200Vdc, VEBloff) = 1.5 V$, MJ410
Te" usOe)
(Vee = 300 Vdc, VeB(offl·1.5 Vdc. MJ411
Te =1250 el
Emitter Cutoff C\,Irrent
(VES = 5.0 Vdc,lC = 0)
Vd.
VCEOlsus)
MJ410
MJ4t1
mAde
Icex
0.5
0.5
5.0
lEBO
MI LlMETERS
DIM MIN MAX
mAde
ON CHARACTERISTICS
toe Current Gain
IIC'" 1.0 Adc. VCE "'5.0 Vdcl
(IC" 2.5 Adc, VeE" 5.0 Vdcl
~lIector-Emitter ~aturation Voltage
lie'" 1.0 Adc,lS = 0.1 Adcl
· Base-Emitter Saturation Voltage
tic" 1.0 Adc. IS =. 0.1 Adcl
"FE
30
10
BO
VCElsatJ
0.8
V~.
VaElsatJ
1.2
Vd.
DYNAMIC CHARACTERISTICS
Current·Galn-Bandwidth Product
tic" 200 mAde. veE'" 10 Vdc.
f"'.OMHz)
39.37
21.08
B
7.62 0.250
C 6.35
1.09 0.039
D 0.99
3.43
E
f 211.90 30.40 1.177
0.420
.67 11 •
G
O. 1
5.5
.3
J 16.64 . 1 .15 0.655
0.440
K 1.18 12.1
Q 3.84
4.09 0.151
26.67
R
NOTE:
1. DIM "Q" IS DIA.
A
CASE II
370
INCHES
X
MIN
1.550
0.830
0.043
0.135
1.197
0.440
0.22
0.675
0.480
0.161
1.050
MJ410, MJ411 (continued)
FIGURE 1 - ACTIVE REGION SAFE OPERATING AREA
10
i
:5
TJ
J. " ' \
=1500 e
5.0 m.
10
_
r-____
~ 02
~
o. I
8
005
'\
There are two limitations on the power handling abifity of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 150°C; TC is variable
depending on conditions. Pulse curves are valid for duty cycles of
10% provided TJ(pk)~ 150°C. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown. (See
AN-415)
de
0.5
a
~~
1.0m~500".
5.0
0:
" 2.0
Secondary Breakdown Limited
Bonding Wire Limited
- - - - - - Thermal Limitation at Te = 750 C
"'
!}
'\.
"'"
Curves Apply Below Rated VCEO
-
MJ410_
0.02
I
0.0 I
5.0
10
I
20
50
if
I
100
200
500
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)
FIGURE 2 - DC CURRENT GAIN
FIGURE 3 - "ON" VOLTAGES
100
20
TJ-150·C
0
50
"
ffi
::
30
a'"'"
20
'"'c
~
".......
I
l---' r-
;z
2r
/"'"
"
~ VCE
e
10
=5.0 Vde
"
...... ~
....... f-"
/"'" ~
!""" -55°C
~
Tr 150oe~
7.0
5.0
0.05
0.2
0.1
0.3
'-'-'-TTT-----r--'-"-"""-"T"I"TlII'---'----",rr-"
Tp 25°C
I II
2.0
1.0
0.5
3.0
\'I
5.0
IC, COLLECTO R CU RRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
FIGURE 4 -SUSTAINING VOLTAGE TEST LOAD LINE
FIGURE 5 -SUSTAINING VOLTAGE TEST CIRCUIT
500
50mH
;( 400
S
....
ffi
",~I
~ 300
a
'"c
~
-
200
.......
VCEO(.u.) IS ACCEPTABLE WHEN
VeE;;' RATEO VCEO,AT IC -IOOmA
8
\
-=-6.0 V
\
!} 100
o
\
MJ4\0MJ411
o
100
200
300 "
300
400
500
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
371
1.0 !l
MJ413 (SILICON)
MJ423
MJ431
High-voltage NPN silicon transistors designed
for medium-to-high-voltage inverters, converters, regulators and switching circuits.
CASE 11
~~
o
@2
STYLE 1:
PIN 1. BASE
0
CAS~': ~~Z~:C~OR
@.
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emuter-Base Voltage
Unit
Symbol
MJ413
MJ423
VCEX
400
400
400
Vdc
Vca
VEB
400
40U
4UU
VdC
•• u
•• u
•• U
,ac
MJ431
IC
lU
10
lU
Adc
Base Current
Ia
2.0
2'.0
2.0
Ade
Total Device Dissipation @ T C = 25 C
Derate above 25·C
PD
~~g
~i~~
Operation Junction Temperature Range
TJ
-65 to +150
·C
Continuous
Collector Current
Storage Temperature Rsnge
-6. to +200
Tstg
·C
THERMAL CHARACTERISTICS
Characteristic
Max
Thermal'Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
1.0
(Tc = 2S'C unl... o"o.w". noted)
Symbol
Characteristic
Min
Max
325
-
Unit
OFF CHARACTERISTICS
Collector-Emitter SUstaining Voltage 111
(IC = 100 mAde, Ia = 0)
Collector Cutoff Current
(VCE = 400 Vdc, VEB(off) = 1. 5 Vd~
(VCE= 400 Vdc, VEB(off) = 1. 5 Vde,
TC = 125·C)
Emitter Cutoff Current'
(VBE = 5.0 Vde, IC = 0)
aVCEO(S~)
MJ413, MJ423
MJ431
MJ413, MJ423
MJ431
MJ413, MJ423
MJ431
I CEX
--
-
Vdc
mAde
0.25
2.5
0.5
5.0
~BO
--
5.0
2.0
hFE
20
80
15
-
30
90
mAde
mAde
ON CHARACTERISTICS
DC Current Gain III
MJ413
(IC = 0.5 Ade, VCE = 5.0 Vde)
(Ic = 1.0 Ade, VCE = 5.0 Vde)
MJ423
(IC = 1.0 Ade, VCE = 5.0 Vde)
(Ie= 2.5 Adc, VCE
=5.0 Vde)
MJ431
(IC = 2. 5 Ade, VCE = 5.0 Vde)
(IC = 3.5 Adc, VCE
=5.0 Vdc)
Collector-Emitter Saturation Voltage
(Ic = O. 5 Adc,
= 0.05 Ade)
(Ic = 1.0 Ade,
(IC = 2. 5 Ade,
Ia
Ia = O. 10 Ade)
Ia = O. 5 Ade)
Base-Emitter Saturation Voltage'(ll
(IC = O. 5 Ade,
= 0.05 Ade)
(Ic = 1.0 Ade,
= 0.1 Ade)
Ia
Ia
(IC = 2. 5 Ade, Ia = 0.5 Adc)
(11
MJ413
VCE(sat)
MJ423
MJ431
MJ413
MJ423
MJ431
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 200 mAde, VCE = 10Vdc,
f = 1.0 MHz)
(II PW " 300 I
50
30
10
~
~
hFE
"....
.........
".
7.0
-
Cob
C"
--...;
"
i3
g:
;3 3.0
u'
.....
2.0
1.0
10
20
0.5
:::::-
z
>- 5.0
V
ul
.la'
---
0;;;:::::::;
hfe@1.0kHz
z
;;:
1.0
5.0
10
2.0
Ie, COLLECTOR CURRENT (mAd,)
20
50
2.0
3.0
5.0 7.0
10
2r
30
50
VCB, COLLECTOR·BASE VOLTAGE (VOLTS)
MJ423
For Specifications, See MJ413 Data.
375
70
100
MJ424 (SILICON)
MJ425
HIGH VOLTAGE NPN SILICON TRANSISTORS
5 AMPERE
· .. designed for use in high voltage applications in deflection circuits,
switching regulators, inverters, and line operated amplifiers.
POWER TRANSISTORS
NPN SILICON
• High Collector-Emitter Voltage VCEX =; 700 Vdc
350-400 VOL TS '
100 WATTS
• Excellent DC Current Gain hFE = 10 (Min) @ IC = 2.5 Adc
• Low Collector-Emitter Saturation Voltage VCE(sat) = 0.8 Vdc (Max) @ IC = 1.0 Adc
MAXIMUM RATINGS
Rating
I
I
MJ425
Unit
400
Vdc
Symbol
MJ424
Collector-Emitter Voltage
VCEO
350
Collector-Emitter Voltage
VCEX
700
Vdc
Collector-Base Voltage
VCR
700
Vdc
Emitter-Base Voltage
VEB
6.0
Vdc
IC
5.0
10
Adc
Collector Current - ContinUous
Peak
Base Current
I.
Total Device Dissipation@Tc = 7SoC
PD
Operating Junction Temperature Range
Storage Temperature Range
Adc
2.0
100
Watts
1.33
WIDe
TJ
-65 to +150
DC
T"9
-65to+200
DC
Derate above 7SoC
THERMAL CHARACTERISTICS
Characteristic
Max
Thermal ReSistance, Junction to Case
0.75
ELECTRICAL CHARACTERISTICS (Tc z. 2SoC unless
I
Characteristic
Symbol
otherWise
I
Min
noted)
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaming Voltage
(Ie'" 100 mAde, IS:= 0)
Vdc
VCEO(sus)
MJ424
350
400
MJ425
Collector Cutoff Current
(VCE = 350 Vde, IS '" 0)
MJ424
0.25
(VCE '" 400 Vde, IS '" 01
MJ425
0.25
Collector Cutoff Current
mAde
ICED
ICEX
0.5
mAde
leBO
5.0
mAde
(VCE '" 700 Vdc, VSEloff) '" 1.5 Vde)
Emitter Cutoff Current
IVBE
~
6.0 Vdc. Ie
~
Ol
ON CHARACTERISTICS
DC Current Gain
(lC == 1.0 Ade, VCE == 5.0 Vdc)
hFE
30
(Ie:: 2.5 Adc, VCE '" 5.0 Vdc)
90
10
Collector-Emitter Saturation Voltage
(Ie"" 1.0 Adc, 18"" 0.1 Adcl
VCElsat)
0.8
Vdc
Base-Emitter Saturation Voltage
(Ie"" 1.0 Adc, Ie = 0.1'Ade)
VSE(sat)
1.2
Vdc
MILLlMl'TERS
DIM MIN MAX
A
B
C
D
E
F
G
H
J
K
n
R
DYNAMIC CHARACTERISTICS
6.35
0.99
29.90
,lu.67
5.33
18.64
11.18
3.84
-
39.37
21.08
7.62
1.09
3.43
30;40
11.18
5.59
17.15
12.19
4.09
26.67
NOTE:
1. DIM
Current-Gain-Bandwidth Product
lie'" 200 mAde, VeE" 10 Vdc.
f=1.0MHzI
INCHES
MAX
MIN
0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
"0" IS OIA.
CASE 11
376
-
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ424, MJ425 (continued)
FIGURE 1 - SAFE OPERATING AREA
10
5.0
,
'"~
2.0
~
1.0
TJ=150 0 C
'\.<'o<>,~o-f<>',
di:-
There are two limitations on the power handling ability of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate I C-VCE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on T J(pk) == 150°C; TC is variable
depending on conditions. Pulse curves are valid for duty cycles of
10% provided TJ(pk)~ 150o C. At high case tempera~u.res, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown. (See
....
B0.5
,;
~
0
0.05
5.0
0.1
0.2
0.3
0.5
1.0
2.0
5.0
IC. COLLECTOR CURRENT (AMP)
FIGURE 4 - SUSTAINING VOLTAGES TEST LOAD LINE
FIGUFIE 5 - SUSTAINING VOLTAGE TEST CIRCUIT
::;
-< 0.5
~
11111
TJ'" 25°e
1.6
1.4
rJ
1.2
1.0
I-"
VaE(saII@IC/IS= 10
0.8
V
V
J
0.6
VBE@ VCE" 2.0 V
0.3
0.4
~ 0.2
~: ~I"~~O
IClli'~
vi II
~.2
o
O. 1
0.03 O.S
0.1
0.2 0.3 O.S
1.0
2.0 3.0 S.O
20 30
10
0.03 0.05
0.1
0.2 0.3
O.S
1.0
2.0 3.0 S.O
10
20 30
IC. COLLECTOR eURRENT IAMPI
IC, COLLECTOR CURRENT IAMPI
FIGURE 4 - THERMAL RESPONSE
.."
1.0
0.1
O.S
o -O.S
..~~
O. 3
IJ.2
.. z
>""
!!:~ 0.2
0.1
~
~~
!::!ffi
V
I
0. I
0.05
~ ~ 0,01
~
0
:
t: 0.0S
..
~ 0.03
'r"":= 0.02
0.0 1 .........
0.01
STEADY STATE VALUES
ITYPI
0.alS0CIWIMAXI
'JCIII = rltl.JCI~)
'Jcl~1 = D.l'lW
""" In
~
SINGLE
PULSE
Plpkl
0.01
L
-I--
'"""'"
0.02
0.1
0.2
n
~CURVESAPPLYFORPOWER
L!ULSE TRAIN SHOWN
1!lm
t~J ::"::::""W '
DUTY CYCLE. 0 = 11/12
I
0.05
J U
O.S
1.0
2.0
S.O
I. TIME OR PULSE WIOTH Imsl
379
10
20
so
100
200
SUO
1000
MJ480 (SILICON)
MJ481
NPN SILICON POWER TRANSISTORS
4AMPERE
POWER TRANSISTORS
NPN SI.LlCON
. designed for general·purpose and 5 to 20 Watt audio amplifier
. applications.
40-60 VOLTS.
87.5 WATTS
•
Current-Gain-Bandwidth Product tr = 4.0 MHz (Min) @ IC = 1.0 Adc
•
DC Current Gain hFE = 30-200@ IC = 1.0 Adc
•
Complements to PNP MJ490 and MJ491
MAXIMUM RATINGS
Rating
Symbol
MJ480
MJ481
Unit
VeEO
40
60
Vdc
Collector-Base Voltage
VCB
40
60
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Ie
4.0
7.0
Adc
Base Current
'B
1.0
Adc
Total Device Dissipation @TA =2SoC
Derate above 25°C
Po
5.0
28.6
mWfOC
Total Device Dissipation@TC=2SoC
Derate above 2SoC
Po
87.5
500
mw/oe
-65 to +200
°e
Collector-Emitter Voltage
Collector Current - Continuous
Peak
Operating and Storage Junction
Temperature R 8nge
TJ,Tstg
.Watts
Watts
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
10
1.0
~ 5.0
S
~
3.0
~ 2.0
de
~ 1.0 ~
~ O.1
j 0.5 I - - -
r==--I--
8 0.3 f::::::=
~O.2
f---
.......
MJ480
DIM
1.0ms
A
B
C
5.cims·
.1:
TJ o 200'C
SECONDARY BREAKDOWN LIMITED
THERMALLY LIMITED
Tco 25'C (SINGLE PULSEI
CURVES APPLY BELOW
RATED VCEO
100fJ.S
MJ481
O. 1
1.0
2.0
3.0
5.0
7.0
10
20
VCE, CDLLECTOR·EMITIER VOLTAGE (VOLTS)
The Safe OperatIng Area Curves mdlcate Ie -VeE I,mlts below
wh,,::h the dev,ce w,1I not enter secondary breakdown Collector
load hneoforspac,f,cclrcu'tsmustfallw,thmthaapphcableSala
30
50
70
Area 10 avo,d causong 8 c~tastroph'~ failure To ,nsure operat,on
below the ma,,,mum TJ, pawertemperdlu,e de,a"ng must beob
servedforbolhsteadY5t&teandpulsepawercond't,on.
380
0
MILLIMETERS
MIN MAX
6.35
0.99
39.37
21.08
7.6
1.09
3.43
30.40
11.18
5.59
17.15
12.19'
4.09
26.67
INCHES
MIN
MAX
-
1.550
0.830
0.300
_. 0.043
0.135
1.177 1.197
0.420 0.440
'0.210 0.220
0.655 0.675
0.440· 0.480
0.151 0.161
1.050
0250
0.039
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
0 3.84
R
NOTE:
.1. DIM "0" IS DIA.
CASE 11
MJ480, MJ481 (continued)
ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
40
60
-
-
1.0
5.0
-
1.0
50
-
30
200
10
-
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 0.2 Ade, la = O)
Collector Cutoff Current
= Rated
(Vca = Rated
(VCB
Vca, IE
VCB, IE
Vde
BVCEO
MJ480
MJ481
mAde
ICBO
= O)
= 0, TC = 1500 C)
Emitter Cutoff Current
(VaE = 5.0 Vde, IC = O)
lEBO
mAde
ON CHARACTERISTICS
DC Current Gain
(I C = 50 mAde, V CE
(lC
(lc
= 1.0 Ado,
= 3.0 Ado,
VCE
VCE
Collector-Emitter Saturation Voltage
(lc = 1.0 Ado,IB = 0.1 Ado)
(lC = 3.0 Ado,IB
-
hFE
= 2.0 Vde)
= 2.0 Vdo)
= 2.0 Vdo)
= 0.3 Ade)
Base-Emitter Saturation Voltage
(lC = 1.0 Ado,la = 0.1 Ade)
(lc = 3.0 Ado, la = 0.3 Ado)
VaE(,at}
Base-Emitter "On" Voltage
(lc = 1.0 Ado, VCE = 2.0 Vde)
VaE(on}
(lc
= 3.0 Ade,
Vdo
VCE(,at}
VCE
= 2.0
-
0.4
-
1.2
Vdo
1.0
-
1.5
-
1.2
-
1.5
Vde
Vde)'
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 1.0 Ade, VCE = 10 Vde, f = 1.0 MHz)
Output Capacitance
(Vca = 10 Vde,IE
t-r
4.0
-
MHz
Cob
-
200
pF
= 0, f = 0.1 MHz)
FIGURE 3 - "ON" VOLTAGES
FIGURE 2 - NORMALIZED DC CURRENT GAIN
Z
10
8.0
6.0
!:
4.0
;;:
~
a:
i3
2.0
-
...---
2.0
r--
:::J
TJ' 1+1750C -
~
~
I
-550C
ffi ~:O8
.1:: o.
.............
>S
~
4
~
25'C
V
1.2
i"
0.8
r-
Z
0.01
0.02
0.04
0.1
0.2
0.4
1.0
2.0
0
0.005
4.0
III
~ll ,@I /I ~IO
:Ililu"1 I ll..l-!0.01
2.0V
V,,@Vc •
0.4
~ O. 2
~
10
VBEt •• tj@Ic/la
........
o
0.004
TJ
l'5
O. 6
O. 1
I
I
1.6
+25 0 C
<.>
N
=
VCE '2.0 Vdc
0.02 0.03 0.05
0.1
0.2 0.3 0.5
",'
1.0
2.0 3.0 5.0
200 300
500 700 1000
Ie. COLLECTOR CURRENT lAMP)
IC, COLLECTOR CURRENT (AMP)
FIGURE 4 - TRANSIENT THERMAL RESISTANCE
Q
1.0
~ 0.5
D 0.5
..r 0.3
0.2
~
~
~
r=
1il r--0.05
~ 0.1
~
ffi
~
0.2
0.1
SINGLE
PULSE
~ t:;:;'
1.
I-"'"
l..-
t,;-J
DUTY CYCLE. D:l1/t2
0.01
8Jc(U"'r(U8JC
0.5
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT II
~ (SINGLE PULSE)
~O.03
!Z
TJ/pkJ- TC=P/ llkJ6JC/ t J
~O.02
;:;
.... 0.0 I
';:: 0.01
'jl]il
P!pk)
0.02 0.03
0.05 0.07 0.1
0.2
0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0 10
t, PULSE WIOTH (m,)
381
~
LU lL
I J
I I I I I I I 1111
LJ
ILL
I I
20
30
I
50 70 100
MJ490 (SILICON)
MJ491
PNP SILICON,POWER TRANSISTORS
4 AMPERE
POWER TRANSISTORS
... designed for general'purpose and 5 to 20 Watt audio amplifier
applications.
PNPSILICON
40-60 VOLTS
87.5 WATTS
• Current·Gain-Bandwidth Product for = 4.0 MHz (Min) @ IC = 1.0 Adc
• DC Current Gain hFE = 30-200@ IC = 1.0 Adc
• Complements to NPN MJ480 and MJ481
MAXIMUM RATINGS
Rating
Svmbol
MJ490
MJ491
VCEO
40
60
Vdc
Coliector·a... Voltage
Vca
40
60
Vdc
Emitter·aase Voltage
VEa
5.0
Vdc
IC
4.0
7.0
Adc
Coliector·Emitter Voltage
Collector Current
Continuous
Peak
Unit
Base Current
la
',0
Adc
Total Device Dissipation iiilTA =25°C
Derata above 25°C
Po
5.0
28.6
Watts
mW/oC
Total Device Dissipation iiilTC =25°C
Oarata above 25°C
Po
87.5
500
mW/oC
-65 to +200
DC
Operating and Storage Junction
Temperature Range
TJ.Tstg
Watts
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
I0
100J,ll
7,0
~ 5.0
1.6m.
~ 3.0
~ 2.0
de
~ 1.
==
TJ 200'C
:= O.0
7 t:::::=-- SECONOARY BREAKDOWN LlMITEO
o
; o.5 r-8 o.3 t:::::=
~o. 2
r--
-
"
5.rim•
3.0
MJ4S0
20
5.0
7,0
10
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI
Ie-Vee
The Saf. Oparatlng A,.. CUI'Vei IndlClit.
lImits below
which the dev,e, Will not ~nler $lCondary breakdown ,Collector
loiildhnH'or1lPaclricclrc ... ltsrnusll~I""lhll'llh.apphcabl,Sale
C
D
E
-6. 5
0.99
F 29.90
THERMALLY LIMITED
TC' 25'C (SINGLE PULSEI
CURVES APPLY BELOW
RATED VCEO
2.0
A
B
......
r
MJ491
0, 1
1.0
MILLIMETERS
DIM MIN MAX
30
Area to .... ood t;8Us.ng a c.1Mlroph,e
fa,lut~
50
70
To Insure operation
below the m...,mum T J. powur-lemplll'alure dflral'"g must be abterued for bolh ste$iV stale and pulse powet condltlons
382
G 10.ti7
H 5.33
J 16.64
K 11,18
n 3.84
R
-
39.37
21.08
7.62
1,09
3.43
30.40
11.18
5,59
17.16
12,19
4.Q9
28.67
INCHES
MIN
MAX
--
0.250
0.039
-
1.177
0,420
0,~10
0,665
0.440
0,151
-
NOTE:
1. DIM "n" IS OIiI.
CASE
11 .
1,550
0.830
0.300
0,043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ490, MJ491 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
40
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Vole.
SVCEO
MJ490
MJ491
(lc - 0.2 Ade, 'a - 01
Collector Cutoff Current
(VCS - Rated VCS, 'E = 01
(VC~ - Rato<:t VCS, IE • 0, TC -lSOoCI
Icao
Emitter~utoff
IESO
Current
mAde
-
(VSE - 5.0 Vde, IC ~ 01
Vdc
-
60
1.0
5.0
1.0
mAde
ON CHARACTIORISTICS
DC Current Gain
/lc = 50 mAde, VCE = 2.0 Vdel
hFE
(lc = 1.0 Ade, VCE = 2.0 Vdel
30
/lc • 3.0 Ade, VCE = 2.0 Vdel.
10
Collector-Emitter Saturation Voltage
VCE(satl
Base-Emitter Saturation Voltage
(lc =
1.b Adc, IS = 0.1
(lC = 3.0 Adc,
'e =
VSE(sa"
0.3 Adcl
VeE(onl
1.2
Vdc
1.0
1.5
Vde
-
(lC = 1.0 Adc, VCE = 2.0 Vdel
1.2
-
1.5
IT
4.0
-
MHz
Cob
-
200
pF
= 2.0 Vdel
(lc • 3.0 Ade, VCE
0.4
-
Adcl
Base-Emitter "On" Voltage
Vde
-
/lC'- 1.0 Ade, IS = 0.1 Adel
/lc = 3.0 Ade, IS = 0.3 Adcl
-
200
-
50
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 Adc, VCE = 10 Vdc, 1= 1.0 MHz!
Output Capacitance
(Vee' 10 Vdc,IE
=0, f
= 0.1. MHzl
FIGURE 3 - "ON" VOLTAGE
FIGURE 2 - NORMALIZED DC CURRENT GAIN
,.
1.5
10
Z
~
0
6.0
5
~ 2.0
...
0
N
~
!o
z
i
r-.. ......
r-..
.....
0:
;
=
VCE =2.0 Vd.
4.0
1.2
V
+25~C
1O.8
TJ-2S'C
+~ ~1+1750~_
9
~
VIE (N'I @'ell,= 10
-550C
o. 6
o.4
6
VIE@V",=2.0V
........
V
O.3
o.2
VeElu•• @lell,-IO
O. 1
0.004
0.01
0.02
0.04
0.1
0.2
0.4
1.0
2.0
4.0
D2.0 3.0 5.0
20 3D
10
'e. COLLECTOR CURRENT (AMPI
50
200 300 SOD
100
1000 2000
Ie. COlLECTOR CURRENT (mAl
FIGURE 4 - TRANSIENT THERMAL R~ISTANCE
!!l!.0
i~ 0.5
oJ
1
i
Ii
0.2
0.3
02
i
D-O.S
0.1
F=
0.1
~0.05
_f-'
-
SINGLE
PULS'
~
Plptl
L
......
'JCIII-ri1I'JC
oCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATI1
0.5
3 ~ (SINGLE PULSE)'
jO.o
10.02
S
":0.01
-.: 0,01
t~j
DUTY CYC:LE. D -111tz
0.01
TJlpk) - TC· '(Pkl'Jc(d
I I I II I 1111
II
0.02 0.03
0.050.07 0.1
0.2
0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
~ PULSE WIDTH (ms)
383
20
3D
50 70 100
I I I
200 300
500 700 1000
MJ802 (SILICON)
30 AMPERE
POWER TRANSISTOR
HI-GH-POWER NPN SILICON TRANSISTOR
NPN SlkiCON
100 VOLTS
200 WATTS
· .. for use as an output device in complementary audio amplifiers to
1~O-Watts music power per channel.
•
High DC Current Gain - hFE
•
Excellent Safe Operating Area
= 25-100@ IC = 7.5 A
• Complement to the PNP MJ4502
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
VCER
100
100
90
4.0
Vdc
30
7.5
200
1.14
Adc
Collector-Base Voltage
VCS
Collector-Emitter Voltage
VCEO
Emitter-Base Voltage
VES
Collector Current
IC
Base Current
IS
Total Device Dissipation@Tc
= 25°C
Po
Derate above 2SoC
Operating anm Storage Junction
Es~i
Vdc
Vdc
PLANE
. Adc
Watts
W/oC
°c
. -65 '0+200
TJ. T sts
Lr~
r~,
Vdc
Temperature Range
THERMAL CHARACTERISTI"S
Chara~ristic
Thermal Resistance, Junction to Case
MILLIMETERS
DIM MIN MAX
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
200
...........
S
~
150
...........
z
c
ill~
,
'.
~
100
C
'"~
~
A
B
C
D
E
~ .......
'"
~
i'-..
~
o
o
20
40
60
30
29.90
G _10.67
II 5.33
J 16.64
K 11.18
Q
3.84
R
F
50
100
120
140
-
-
6.35
0.99
~
160
TC. CASE TEMPERATURE (OCI
384
~
180
200
39.37
21.0B
7.62
1.09
3.43
30.40
n.18
5.:m
17.15
12.19
4.09
26.67
INCIIES
MIN
MAX
-
0250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
1.550
0.830
0300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
·0.161
1.050
MJ802 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250C unless otherwise notedl
Characteristic
Svmbol
Min
Max
Unit
100
-
Vde
90
-
Vde
-
1.0
5.0
IESO
-
1.0
mAde
hFE
25
100
-
Base-Emitter "On" Voltage(l)
(lc = 7.5 Adc, VCE = 2.0 Vde)
VBE(on)
-
1.3
Vdc
Collector-Emitter Saturation Voltage fl)
(lc = 7.5 Ade, IR = 0.75 Adcl
VCE(sat)
-
0.8
Vdc
Base-Emitter Saturation Voltage ft,
VBE(sati
-
1.3
Vdc
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
SVCER
= 200 mAde, RSE = 100 Ohms)
(lc
Collector-Emitter Sustaining Voltage (1)
VCEO(sus)
= 200 mAde)
(lc
Collector-Base Cutoff Current
(VCS = 100 Vde, IE = 0)
(VCS = 100 Vde, IE = 0, TC
mAde
ICSO
= 150°C)
Emitter-Base Cutoff Current
(VSE = 4.0 Vde, IC = 01
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 7.5 Ade, VCE
(lC
= 2.0 Vde)
= 7.5 Adc, IB = 0.75 Ade)
DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product
(lC = 1.0 Adc, VCE = 10 Vde, f
= 1.0 MHz)
(I)
Pulse Test: Pulse WidthS: 300 ,",s. Duty Cycle s:'2.0%.
FIGURE 3 - "ON" VOLTAGES
FIGURE 2 - DC CURRENT GAIN
'";;:co
3.0
2.0
2.0
1.8
I
1.6
T) 2Jod
I-
al
a:
1.0
a:
il!!
CI
z
~
1.4
'"
1.2
(!:I
1.0
~
0.8
;
o. 31---
VBE(..t)@ICII8= 10
Ilil . L
~ O. 6
f'
0.2
0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)
10
II I
Wll
VCE(..t) @lelI8 - 10
O. 2
o
20 30
....
......
f.-'
JL
.i.
V8E@VCE=2.0V
0.4
Data shown is obtained from pulse tests bH--f+l+--t~~........
O.,.,=,:::-!:;'~,::-a...Jnr,--:a;,:dj'ju:,":ii:,::d..J.tT°-:!-,.nlu;-,-I IiJ. .J~ii~:-f.ct...J-t--:f!-::
c;' iIC.1.:TB~!-: .-'-:';;'--U-':'::--'-:!:-J:!!
0.03 0.05
~
!L
w
-55°C
:;
<
~
~
o. 7
'CIW"'
o.
5
N
::>
0.03 0.05
0.1
r-
r-
0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)
10
20 30
FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA
100
50
~
-:- ... ,
0:
~ 20
de
I-
~ 10
~ 5.0
a:
'" 2.0
t;
j
-
.....
-
..::--.,'00,..1.0ms
~
5.0ms
I--- TJ = 200°C
1.0 ~ .
The SefiI Operating Area Curves Indicate IC - VeE limits below
which the device Will not enter secondary breakdown Collector
load lines for specific CirculH must fall within the applicable Safe
Area to avoifil cau.ing. catastrophic failure. To insure operation
below the maximum TJ. power-tempereture derating must be ob·
served for both steady stete and pulse power conditions.
Secondary Breakdown Limited
F
- Bonding Wire Limitad
'"~ 0.5 ~ - - - - Thermal LimitadonsTC =250 C
I---
Pulse Duty Cycle < 10%
0.2
O. 1
1.0
2.0
3.0
5.0
10
20
30
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
385
50
100
MJ900, MJ901 PNP (SILICON)
MJ1000, MJ100l NPN
8.0 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON
MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS
· .. for use as output devices in complementary general purpose
amplifier applications.
60-80 VOLTS
90 WATTS
= 6000 (Typ) @ IC = 3.0 Adc
•
High DC Current Gain - hFE
•
Monolithic Construction with Built-In Base-Emitter
Shunt Resistors
MAXIMUM RATINGS
Rating
Svmbol
Collector-Emitter Vo tage
VeEO
MJ900 MJ901
MJ1OO0 MJ1oo1
60
80
Unit
Vdc
Vdc
Collector-Base Voltage
Vee
Eminer-Base Voltage
VEe
5.0
Vdc
Ie
8.0
Adc
Base Current
Ie
0.1
Adc
Total Device Dissipation@Tc "'" 25°C
Po
90
0.515
Watts
w/oe
TJ.Tstg
-55 to +200
°e
Collector Current
60
Derate above 25°C
Operating and Storage Junction
80
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
FIGURE 1-DARLINGTON CIRCUIT SCHEMATIC
STYLE 1:
PIN 1. BASE
PNP
MJ900
MJ901
Collector
r-------I
I
--.,
.------<1--,
I
I
I
I
I
I
I
I
Ba..
NPN
MJIOOO
MJIOOI
--.,
,---+-,
Base
I
I
I
I
I
I
I
I
I
__ --1
__ --1
DIM
A
8
C
D
E
F
MILLIMETERS
MIN MAX
-
-
US
0.97
39.37
22.23
11.43
1.119
INCHES
MIN MAX
0.250
0.038
3.43
0
R
2&.67
I
Emitter
I. DIM "0" IS DIA.
.40 1177
11.18 0.420
5.72 0.205
17.15 0.855
12.19
3.94. 4.D9
.11
B
H
Emitter
NOTE:
2. EMITTER
CASE: COLLECTOR
Collector
K
10.
5.21
18.84
11.18
CASE 11-03
386
1.551L
0.875
0.460
0.D43
0.1
1.197
0.440
0.225
0.675
0.4BD
10.161
1.050
MJ900. MJ901. MJ1000. MJ100l (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
I
I
Ch.acterittic
Symbol
Ma.
Min
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage III
Vdc
BVCEO
MJ900. MJ1000
MJ901,MJ1001
(Ie = 100 mAde. IS;;; 0)
60
80
mAde
Collector Emitter Leakage Current
(Ves;;; 6QVdc. RBe '" t.Ok ohm)
MJ900. MJ1000
(Vee'" 80 Vdc, RBe = t.Ok ohm}
MJ901, MJ1001
1.0
1.0
5.0
5.0
(VCS;;; 60Vdc. ABe "'.Ok ohm, TC = 1500CI MJ900, MJtOOO
(Ves = 80Vdc, RBe = t.Ok ohm, TC;;; 1SOCCI MJ901. MJ1001
2.0
Emitter Cutoff Current
(VSE '" 5.0 Vdc, Ie;;; 0)
mAde
~Adc
Collector-Emitter Leakage Current
(VeE'" 30 Vdc, Ie '" 0)
MJ900. MJ1000
(VeE;;; 40 Vdc, IS'" O)
MJ901.MJ1001
500
500
ON CHARACTERISTICS
DC Current Gain(1)
(Ie;;; 3.0 Adc, VeE;;; 3.0 vdcl
(Ie'" 4.0 Adc, VeE = 3.0 Vdc)
Collector-Emitter Saturation Voltage(1)
Vdc
(Ie = 3.0 Adc,IS = 12 mAde)
2.0
(Ie = 8 0 Ade, Ie '" 40 mAde)
4.0
Base-Emitter Voltage(1)
flc = 3.0 Adc, VCE = 3.0 Vdc)
2.5
Vdc
(1)Pulse Test: Pulse WIdth $300 P.S, Duty Cycle'S 2.0%.
FIGURE 2 - DC CURRENT GAIN
FIGURE 3 -SMALL-8IGNAL CURRENT GAIN
3000
50,00 0
2000
z
<1
~ 1000
20,000
TJ -1500 C
10,000
z
ffi
<1'5000
co
t-
~ 200 0
25 0 C
'" 1000
B
'" 50 0
to
200
i
100
500
~
~f5~C
./
200
100
50
0.01
300
z
Q
~
'"~
'";;!
J
VCE = 3.0 Volts
./
0.05
0.1
0.2
0.5
1.0
2.0
5.0
TC - 25 0 C
50
30
103
10
104
IC, COLLECTOR CURRENT (AMP)
t, FREQUENCY (Hz)
FIGURE 4 - "ON" VOLTAGES
3. 5
I
I
3.0
_
~
o
~
w
to
~
FIGURE 5 -DC SAFE OPERATING AREA
10
I
I
1.0
I
'"
;: 3.0
z
I
~ 2. 0
=>
VB~(..t! @Ic/lB = 250........
~ 1.
o
1- 5
o
>
>' I.0
0
0.01
~
_j'Bj@IIEI=~ 1/
8
~
i
VC~(sat)1 @llcrlf 12~10
o. 5
0.02
0.05
0.1
TJ=200·C
«
1 1
2. 0
~~
~ 5.0
i
TJ 25 0lC
2. 5
1\
VCE = 3.0 Vdc
IC = 3.0 Adc
I I II IIII
0,2
0.5
1.0
2.0
5.0
10
~
SECONOARY BREAKDOWN LIMITATION
THERMAL LIMITATION @TC=250 C
BONDING WIRE LIMITATION
:
1~.
..5 - - -
MllOho
o. 3
o. 2
r.L9Dd,
I I I I
MJ901, MJIOOI
o. 1
~~~~
1.0
IC, COLLECTOR CURRENT (AMP)
il\.
dc:
~.o
3.0
5.0 1.0
10
20
-
30
50
10
100
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
There are two limitations on the po_r handling abilitv of a
transistor: average junction temperature and secondary breakdown.
Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; e.g., the transistor
must not be subjected to greater dissipation than the curves indicate.
At high casa temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed bV secondary breakdown. (See AN·415l
387
MJ920,MJ921 PNP (SILICON)·
MJ1200, MJ1201 NPN
DUAL SI LICON POWER DAR LlNGTON TRANSISTORS
· .. designed for hammer driver, regulator and amplifier applications.
• High DC Current Gain hFE =3000 (Typ) @ IC =4.0 Adc
• Coliector·Emitter Sustaining Voltage VCEO(sus} = 60 Vdc - MJ920, MJ1200
= 80 Vdc - MJ921 , MJI201
• Total Monolithic Construction
Dual transistors in the same chip, yielding like electrical char·
acteristics. Collectors are common .
DUAL DARLINGTON
8 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
60,80 VOLTS
160 WATTS
MAXIMUM RATINGS
Symbol
Rating
Collector·Emitter Voltage
Collector-Basa Voltage
Emitter-Base Voltage
Collector Current - Continuous
VCEO
60
VCS·
VES
60
IC
-Peak
Base Current
otal Device Dissipation@TC·250C
Derate above 25°C
MJ920 MJ921
MJI200 MJ1201
80
80
Unit
Vde
Vde
5.0
Vde
S.O
16
Ade
IS
120
mAde
Po
160
0.91
Watts
120
0.68
-65 to +200
Watts
wf>c
°c
wf>c
(Equal power in both transistors)
Single Transistor Dissipation @TC'" 2SoC
Po
Derate above 25°C
Operating and Storage Junction, Temperature
T J,T stg
Range
THERMAL CHARACTERISTICS
Symbol
Characteristic
Thermal Resistance, Junction to case
Single Transistor
8JC
Effective, equal power both transistors
Thermal Coupling Factor
K8
Ma.
Unit
°CIW
1.46
1.10
50
%
FIGURE 1 - POWER DERATING
G
K
•
Q
R
11. BSC
7.11
8.13
7
3.84
C
4.09
26.67
47
0.280 0.
7
0.161
l
1.050
NOTE:
I. LEADS WlTHIN 0.13 mm (0.0061 DIA OF
TRU~ POSITION AT SEATING PLANE AT
MAXIMUM MATERIAL CONDITION.
CASE 263
TC. TEMPERATURE ('CI
388
MJ920, MJ921, MJ1200, MJ1201 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
I
I
C......ct.. istic
SYmbol
Min
Max
60
-
Unit
OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage
(lC· 100 mAde, IB = 01
Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)
(VCE = 40 Vdc, IB = 0)
Vdc
VCEO(sus)
MJ920, MJl200
MJ921 , MJ1201
ICED
mAde
-
MJ920, MJl200
MJ921 , MJl201
Collector Cutoff Current
(VCE· Rated VCB, VBE(off)
(VCE = Rated VCB, VEB(off)
(VCE = Rated VCB, VBE(off)
TC= 1500C)
(VCE = Rated VCB, VEB(off)
TC = 1500C)
-
BO
0.5
0.5
-
mAde
ICEX
= 1.5 Vdc)
= 1.5 Vdc,
MJ920, MJ921
MJ1200, MJ1201
MJ920, MJ921
-
-
0.5
0.5
5.0
1.5 Vdc,
MJl200, MJ1201
-
5_0
-
2.0
750
100
lBOOO
-
= 1.5 Vdc)
=
Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)
lEBO
mAde
ON CHARACTERISTICS
DC Current Gain
(lc = 4.0 Adc, VCE = 3.0 Vde)
(lC = 8.0 Ade, VCE = 3.0 Vde)
-
hFE
-
Collector-Emitter Saturation Voltage
(lC = 4.0 Adc, IB = 16 mAde)
(lC = 8.0 Ade, IB = 80 mAde)
VCE(sat)
-
2.0
3.0
Base-Emitter Saturation Voltage
VBE(satl
-
4.0
Vde
VBE(on)
-
2.8
Vde
Magnitude of Common Emitter Small-Signal Short Circuit Forward
Current Transfer Ratio
(lC = 3.0 Ade, VCE = 3.0 Vde, f = 1.0 MHz)
Ihlel
4.0
-
-
Output Capacitance
(VCB = 10 Vde, IE
Cob
-
200
300
300
-
(lC
= 8.0 Ade, IB = 80 mAde)
Base-Emitter On Voltage
(lc = 4.0 Ade, VCE = 3.0 Vde)
Vde
DYNAMIC CHARACTERISTICS
=0, f = 0.1
MHz)
Small-5ignal Current Gain
(lC = 3.0 Ade, VCE 3.0 We, f
=
pF
MJl200, MJ1201
MJ920, MJ921
hfe
= 1.0 kHz)
FIGURE 2 - SWITCHING TIMES TEST
CIRCUIT
-
FIGURE 3 - SWITCHING TIMES
5.0
3.0
Vee
-JOV
RS & Ae VARIED TO OBTAIN DESIRED CURRENT lEVElS
0,. MUST BE FAST RECOVERY TYPES, e g.,
MB05300 USED ABOVE 18 '" 100 mA
MSD6100 USED BELOW 18'" 100 rnA
2.0
Re
1.0
O. 7
~ O. 5
;::
O. 3
SCOPE
::-...
~
-'
-...
,...--
It....
;>. ~ ~
~
._
r-I---
forldandl"Ollsdlltonnetled
and V2 '" 0
I,
.-...
O.2 -VCC;:IDV .......
-1c!IB;250 - -+O. 1 =~~I_;2~I!,2C- td@VBElolI);O ~
'--MJ920. MJ921 (PHP)
0.0
~
MJI200. MJ1201 (NPH)
0.0
0.2
0.3
0.5 0.7 1.0
0.1
Ir,lf';: IOns
DUTY CYCLE = 1 0%
......
II
-.
2.0
3.0
Ie. COLLECTOR CURRENT (AMP)
For NPN test circuit, reverse
all polarities.
389
5.0 7.0
10
MJ920, MJ921, MJ1200, MJ1201 (continued)
FIGURE 4 - THERMAL RESPONSE
1.0
O. 7:=0
0.5
O.5
r0-
Cib
70
U
''':
O
I I I ~~11~~' MJI21011~P~)
5.0
'~
..,
MJ920, MJ9211PNp)
0
--
::::::
~
1000
a
Tj =~~oJ
200
1- ____ MJ920, MJ92111PNP)
100
200
30
0.1
500 1000
_f, FREQUENCY IkHzl
-
0.2
-
MJI200, MJ12011NPNI
0.5
1.0
2.0
5.0
10
VR, REVERSE VOLTAGE IVOLTS)
390
20
50
100
MJ920, MJ921, MJ1200, MJ1201
(continued)
I
PNP
M1920,MJ921
NPN
MJ1200, MJ1201
FIGURE 8 - DC CURRENT GAIN
20,000
20,000
~ 310 ~
v'CE
7000
z 5000
;;:
TJ %1500C.....
'" 300 0
>~ 200 0
..... V
r--
G
u 100
"~
-
0
~V
0.1
F== r-- 1---' I-- r"-".
r-- r-- -- I"--
'"
V-
/
25°C
A"
r--
~
I'
G
'-'
t7Z
.v
300
200
05
03
0.7
1.0
2.0
30
50
..
-"-- -
..
_:'5::
_..
-
k:::::
25 0C /
1000
;"
..
t"":
~
2000
500
0.2
--
5000
I---+~
>- 3000 ~:1500C,.......
700
500~,-550C
30
20
I
VCE - 3.0 V
10,000
10,00 0
--
r-
-55°C
~I'
V
7.0 10
01
02
03
05
07
10
20
3.0
50
70
10
IC, COLLECTOR CURRENT lAMP)
IC, COLLECTOR CURRENT lAMP)
FIGURE 9 - COLLECTOR SATURATION REGION
en
~
3.0
I III
I III
"
;::
~ 2.6
;
"ffi
II
IC - 2 OA
4.0 A
2.2
~_
1.8
~
1.4
~
'"
25°C
3.0
j LI
~
II
;::
"
6.0 A
'"«
w
">
'">-w
1\
\
IC
°
TJ
4.0A
2.0 A
11
~
14
~
1.0
>
0.3
0.5
0_7
10
20
3.0
5.0
II
2.2
lB
"'-'
70
10
20
30
25°C
26
~
""'
I'-
°
6.0A
r-r--
\
>-
\
"
>
°
~
~
8
TJ
I"\..
I'
1.0
03
0.5
07
10
18, BASE CURRENT ImA)
20
30
50
70
10
20
30
IB, BASE CURRENT ImA)
FIGURE 10 - ON VOLTAGES
3.0
3.0
TJ %25°C
2.5
"
«
'"~
w
">
1.5
>'
1.0
'"
~
;:: 2.0
-
05
0.1
.,
VBE @V CE o30V
I
VBE1s8tl
i
./
"
;::
V
~
03
0.5 0.7
20
30
~
V
I--"
,....... ,.,
VBElsat)@ICIIB-250
10
f.---" r-
VCEI,,') @IC/18 0250
1.0
~ "'"
,.--
1.5 I--VBE@VCE%30V
>'
VCEI,,') @I~/IB - 250
02
20
«
'"
",
V
1
25°C
w
">
Ie/Ii.=: 2 0
=:
2.5
V
g
TJ
05
5.0
70
10
01
IC, COLLECTOR CURRENT lAMP)
02
03
05
07
10
20
30
Ie, CO LLECTO R CURRENT lAMP)
391
50
70
10
MJ920, MJ921, MJ1200, MJ1201 (continued)
I
PNP
MJ920, MJ921
NPN
MJ1200,MJ1201
FIGURE 11 - TEMPERATURE COEFFICIENTS
+5.0
+5.0
II "
'Applies for ICilB
E
~
~ +3.0
f1i
i
>
.§ +3.0
1/
+2.0
'"~
250C 10 1500C
G+2.0
-I
1 -j
~
-2.0
~
-3.0 9VB for VBE- 25°C 10
.1. 1 I,
-550C 1o 250C
>-
0.2
0.1
0.3
'"'"
::::J
f-"".............
-55 DC to 25°C
II II
-5.0
0.5
10
2.0
3.0
5.0
-550C 10 250C
8
f-"
i-'
!--- ?
15~
>-4.0
<:t>
./
7.0
-1.0
:cffi -2.0
OVC for VCE(sal)
~ -3.0
>~ -4.0
OVB for VBE
-5.0
10
7'
. 25°C 10 150°C
$ +1.0
V
..-
-1.0 'UVC for VCE(sal)
>-
*Apphes for le/lB < hFE/3
!Z
U
+10
II
+4.0
k:::::: ;;.;-
~
,/
250CI0150~
:.-+ttI
II II
0.1
0.2
0.3
IC. COLLECTOR CURRENT (AMP)
0.5 0.7
/
/
f-"'" , /
...... """
10
f;:::
2.0
-550C 10 25°C
I
3.0
5.0 7.0
10
+1.2
+1.4
IC. COLLECTOR CURRENT (AMP)
FIGURE 12 - COLLECTOR CUTOFF REGION
10 5
_
10
105
4 =REVERSE =:!: FFORWARO
Ia
1+= REVERSE==<' !;;::::FORWARO
L
1
./
10
3 = VCE-30V
r=VCE=30V
'" 10 2
g
_
10 I
8
E
100
Tr 150°C
r-TJ-1500C
r---
100°C
E=:=
25°C
./
10- I
-0.6
10- I
+0.6
+0.4
+0.2
-0.2
-0.4
-0.6
-0.8
-10
- 12
- 14
I
100°C
25°C
-0.4
-0.2
+0.2
+0.4
+0.6
+0.8
+1.0
VBE. BASE EMITTER VOLTAGE (VOLTS)
VBE. BASE-EMITTER VOLTAGE (VOLTS)
FIGURE 13 - DARLINGTON SCHEMATIC
PNP
MJ920
MJ921
r - - - - -----------,
I
BASE I
NPN
MJI200
MJI201
COLLECTOR
COLLECTOR
I
I
1
I
I
___
_ _ _ _ _ _ .....JI
'--t-~.........,vv--J
EMITTER I
BASE 2
BASEI..,.....,~--....
I
1
I
I
___
_ _ _ _ _ _ .....JI
'--t-~.......,w-'
EMITTER I
EMITTER 2
MJ1000, MJ100l
(SILICON)
For Specifications, See MJ900 Data.
MJ1200, MJ1201 (SILICON)
For Specifications, See MJ920 Data.
392
EMITTER 2
BASE 2
MJ 1800 (SILICON)
HIGH-VOLTAGE NPN SILICON TRANSISTOR
5 AMPERES
POWER TRANSISTOR
· . . designed for use in vertical deflection amplifier circuits in
television receivers.
NPNSILICON
500 VOLTS
100 WATTS
• High Coliector·Emitter Voltage - VCER = 500 Vdc
• Excellent Gain Linearity
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VeEO
250
Vdc
VeER
500
Vdc
VEB
5.0
Vdc
Ie
5.0
Adc
Po
100
0.8
Watts
wfDe
TJ,Tstg
-55 to +150
°e
Collector-Emitter Voltage
Collector·Emitter Voltage
Emitter·Base Voltage
Collector Current
Continuous
Total Device Dissipation@Tc=26oC
Derate above 250 e
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS (TC
Ch8nteteristic
= 25°C unless otherwise noted)
Symbol
Min
OFF Ct:lARACTERISTICS
Collector-Emitter Breakdown Voltage
(Ie = 0.1 Adc, Ie" 0)
BVCEO
III
250
-
Unit
Vdc
Collector Cutoff Current
(Vee =-5ODVdc, RBE -1.5 k Ohms)
ICER
200
,Ado
Emitter-Base Leakage Current
(VEe = 5.0 Vdc,lC = 0)
lEBO
'00
~c
DC Current Gain
hFE'
111
35
hFE2
111
40
lie" 0.3 Adc, VeE = 5.0 Vdc)
Gain Lln8lrity
DIM
A
B
C
ON CHARACTERISTICS
DC Current Gain
(Ie" 0.4 Ade, VeE" 5.0 Vdc)
STYLE 1:
PIN I. BASE
2. EMITTER
CASE: COLLECTOR
hFE1 JhFE2
D
MILLIMETERS
MIN MAX
6.35
0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.64
R
'20
0.95
(') 'Pulse Test: Pul.. Width ~ 600 III, Duty Cycl.~ 2.0%.
NOTE:
I. OIM "U" IS OIA.
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
eASE 11
393
INCHES
MAX
MIN
-
0.250
0.039
_.
1.177
0.420
0.210
0.655
0.440
0.151
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ1800 (continued)
FIGURE 2 - NORMALIZED DC CURRENT GAIN
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
100
""-I\.
~
t-
~
75
0
iii
z
;;:
to
50
"-
~
o
o
~
~
~
I'\.
40
60
80
"-
100
120
140
I\.
'\
O. 3
1\
o. 2
1\
~
I\.
20
0.7
ffi
N
!"'-
25
~
1.0
g o. 5
'\,
0
'"~
I
t-
\.
z
;::
;t
2. 0
o. 1
160
180
200
0.05 0.07 0.1
TC. CASE TEMPERATURE (DC)
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
IC. COLLECTOR CURRENT (AMPS)
FIGURE 3 - ACTIVE-REGION DC SAFE OPERATING AREA
10
5.0
~ 3.0
~ 2.0
"-
t-
~ 1.0
The Safe Operating Area Curves'indicate Ie-VeE limits below
~
0.5
~ 0.3
which the device will not enter secondary breakdown. Collector
r-
~ :.21
o
u
-
-
-
Secondarv Breakdown Limited
- Bonding Wire Limited
"'
0.0 5
~o.o3
0.0 2
0.01
3.0
5.0
7.0
10
20
30
50
70
load lines for specific circuits must fall within the applicable 'Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power·temperature derat,ing must be observed for both steady state and pulse power conditions.
"""
100
200 300
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
394
MJ2249 (SILICON)
MJ2250
MJ3101
Medium-power NPN silicon transistors ideal for
use as drivers, switches, amplifiers.
02
o
0
( ; )
CASE 80
(TO·66)
@I
STYLE 1:
PIN 1 BASE
2 EMITTER
CASE: CO LLECTOR
MAXIMUM RATINGS
Symbol
Rating
Collector-Emitter Voltage
Collector-Bast. Voltage
Emitter-Base Voltage
MJ3101 MJ2249 MJ2250
VCEO
40
VCB
50
·•
·
VEB
60
80
60
80
6.0
Collector Current - Continuous
Peak
IC
Base CUrrent
IB
•
0.5
Total Device DiSSipation @ T C = 25°C
Derate above 25°C
PD
•
•
20
0.133
Operating and Storage
Junction Temperature Range
TJ,Tstg
2.0
3.0
Unit
Vdc
.
.
.
Vdc
Vdc
Adc
1
.,
- - 6 5 to+175-
Adc
Watts
wloc
°c
FIGURE 1- POWER· TEMPERATURE DERATING CURVE
20
en
~z:
16
~
en
12
C
8.0
0
..............
............
............
...... r--.....
..............
en
..,
Q:
............
............
:;::
0
"-
Ci
"-
............
4.0
t--....
0
25
50
75
100
125
150
Te , CASE TEMPERATURE (OC)
Safe Area Curves are indicated by Figure 2. Both limits are applicable and
must be observed.
395
""'"
175
MJ2249, MJ2250, MJ3101
(continued)
ELECTRICAL CHARACTERISTICS fTC
=2SoC unless otherwise noted)
Symbol
Characteristic
Min
Max
Unit
OfF CHARACTERISTICS
Collector-Emitter Voltage (1)
Uc • 100 mAde, IS • 0)
svCEO
MJ3101
40
M.J2Z49
60
MJ2250
60
Collector-Base Cutoff Current
(VCS· 50 Vde, IE • 0)
MJ2249
(VCS· 60 Vde,IE' 0, TA' 15oCC)
(VCS • 60 Vde, IE· 0)
(VCS' 80 Vde,IE '
MJ2Z50
0, TA • 15oCC)
Emitter-Baae CutoU Current
(VES • 6.0 Vdo, IC ·0)
lEBO
All Type.
1.0
-
(VCS· SO Vdc,IE • 0, TA • 15oCC)
(VCS· 60 Vdc, IE' 0)
-
2.0
1.0
2.0
1.0
Z.O
mAde
1.0
ON CHARACTERISTICS
DC Current Gain
50 mAde, VCE • 4.0 Vdc)
Uc •
Uc = 100 mAde, VCE (Ie •
hFE
All Type.
25
AU Type.
4.0 Vde)t
All Types
500 mAde, VCE • 4.0 Vde)·
Collector-Emitter SaturaUon Voltage
(Ie ·600 mAde, IS' 50 mAde)
VCE(••t)
All Type.
Uc • 150 mAde, IS • 15 mAde)
Uc =1.0 Ado, lB' 0.1 Ado)
MJ3101
Base... Emltter Saturation Voltages
500 mAde,IS' 50 mAde)
VBE(••t)
(Ie •
All Type.
(Ic ·150 mAde,IS - 15 mAde)
W3101
Uc =1.0 Ade, Is = 0.1 Ade)
MJ2249, MJ2250
-
25
ZOO
25·
200"
-
-
MJ2249, MJ2250
Vdc
mAde
leso
MJ3101
-
-
-
Yd.
1.0
2.5
2.5
Vde
1.2
1.5
1.5
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
Uc = 100 mAde, VCE ' 10 Vde, f • 10 MHz)
(11 PULSE TEST: PW
~
All Type.
500 •• , Duty Cycle S 2. 0%
tColor coded hJrE groups available at 100 mAde
FIGURE 2- ACTIVE REGION SAFE OPERATING AREAS
MI2249, MJ2250, MI3101
'-I.
dc, .......
2.0
11.0
"-
M)2249, MJ2250
1.0m~ .;: t"--".
,
......
~
S
M12250
j'--... __ I-- sOO~
-.... r-..
S.ORlS •
~ 0.6
M13101'
l!i 0.4
;
-'~
""-
--
r.....
~
.Ji 0.2
'M)2249
r-
h........ r-.....
'.
'"'~
MJ2250
0.1
0.06
o
10
-
1--"-
,
70
80
50
60
30
40
VeE. COllECTOR·EMITTER VOlTAGE !VOlTS)
NOTE: For additional design curves, please refer to Type 2N3766.
20
396
The Safe Operating Area Curves indio
cate the Ic·VeE limits below which the
devices will not go into secondary
breakdown. These curves can be used
as long as the average power derat·
ing curve (Figure 1) is also taken
into consideration to insure opera·
tion below the maximum junction
temperature.
MJ2251 (SILICON)
MJ2252
High-voltage NPN silicon power transistors, particularly well suited for power output stages in television,
radio, phonograph and other consumer product applica~
~~ions.
@.
' STYLE I:
CASE 80 0
0
(TO.66)
PIN 1. BASE
2. EMITTER
CASE: COllECTOR
@I
MAXIMUM RATINGS
Rating
Symbol
Value
VCEO
Collector-Emitter Voltage
Vdc
225
300
KJ2251
14J2252
Emitter-Base Voltage
8
Vo
Collector Current
Ie;
Total Device Dissipation
@ TC = 'IO·C
Derate above 'IO·C
PD
Operating and storage
Junction Temperature Range
(TA'"
~
Collector-Emitter Breakdown Voltage
KJ2251
(IC ~ 1 oiAde, lB. 0)
BVCEO
..
225
Collector Cutoff Current
(VCB'" 300 Vdc, IE. 0)
leBO
-
Emitter-Baae Leakage Current
(VEB;' 8 Vde, Ie .. 0)
lEBO
-
DC Current Gain
(Ie" 50 mAde, VCE .. 10 Vdc)
bFE
Small Signal Current Gain
c;;:
~\
de ~
8 0.3
\
I:\._li
~\\
~
.9 0.2
0.1
0.1
10
15
25
30
20
35
VeE, COLLECTOR·EMIITER VOLTAGE IVOLTSI
40
The Safe Operating Area Curves indicate Ie - VeE limits
below which the device will not go into secondary breakdown.
Collector load lines for specific circuits must fall within the ap·
plicable Safe Area to avoid causing a collector·emitter short.
20
25
30
40
45
35
VeE, COLLECTOR·EMIITER VOLTAGE (VOLTS)
50
55
(Duty cycle of the excursions make no significant change in
these safe areas.) To insure operation below the maximum TJ ,
the power·temperature derating curve must be observed for
both steady state and pulse power conditions.
NOTE: For additional design curves, please refer to Type 2N3789.
402
MJ2500, MJ2501 PNP (SILICON)
MJ3000, MJ3001 NPN
10 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON
MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS
60-80 VOLTS
150 WATTS
for use as output devices in complementary general purpose
amplifier applications .
•
High DC Current Gain - hFE = 4000 (Typ)
@
IC = 5.0 Adc
• Monolithic Construction with Built-In Base-Emitter
Shunt Resistors
MAXIMUM RATINGS
Rating
Symbol
Collector·Emitter Voltage
VCEO
Collector-Base Voltage
VCB
Emitter-Base Voltage
VEB
MJ2500 MJ2501
MJ3000 l.I"nnl
60
80
60
BO
Unit
Vdc
Vdc
5.0
Vdc
Adc
Collector Current
IC
10
Base Current
IB
0.2
Adc
Total Device Dissipation@Tc= 2SoC
Po
150
0.857
Watts
W/oC
TJ.Tstg
-55 to +200
°c
Symbol
Max
Unit
°JC
1.17
°C/W
Derate above 2SoC
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to CaS!'!
STYLE 1:
PIN 1. BASE
2. EMITTER
NOTE:
CASE: COLLECTOR
1. DIM
"a" IS OIA.
FIGURE I-DARLINGTON CIRCUIT SCHEMATIC
MILLIMETERS
DIM MIN MAX
PNP
MJ251l0
MJ2S01
Collector
---,
r---+, :
I
I
I
I
Base
Collector
NPN
MJ3000
MJ3001
A
---,
~---
1000
g
500
u
~
2000
z
§
.,; 1.0
VBiiWlll"°':'
0.5
VjC~(i1) j~ jlCIlB •
II
0.02
0.05
0.1
0.2
ilill
0.5
1.0
'"
~
1.5
0.01
.
.
1.0
~
O.7
O. 5
~ O.3
O.2
t
50 I5.0
~
MJ2500, MJ3000 - ~
MJ260l, jJ300,1 -
~
r-~
TJj 200"IC
I
2.0
~
~
1\
- - Secondary Breakdown Limited
Thermally Limnad at TC = 250C
- - - . Bonding Wire Limited
2.
o
-
3.0
0:
1
~ 2.0
-- ---
i o=
2.5
0
'"~
f\
100
100
~
"\
TC' 25°C
VCP3.0 Vdc
IC' 5.0 Adc
~
200
50
Vde
O. I
10
1.0
IC. COLLECTOR CURRENT (AMP)
2.0
3.0
5.0 7.0
10
20
30
50
70 100
VCE, COLLECTOR·EMITIERVOLTAGE (VOLTS)
not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by seCO(1dary breakdown. (See A N-415)
There are two limitations on the power handling ability of a
trensistor: junction temperature and secondary breakdown. Safe
operating area curves indicate IC-VCE limits of the transistor that
must be observed for reliable operetion; a.g., tha transistor must
\.
404
MJ2801 NPN (SILl.CON)
MJ2901 PNP
COMPLEMENTARY SILICON POWER TRANSISTORS
· .. designed for general·purpose amplifier and switching circuit
applications.
•
Low Collector-Emitter Saturation Voltage VCE(sat) 1.5 Vdc (MaxI @ IC 8.0 Adc
•
DC Current Gain hFE = 15 (Min) @ IC = 8.0 Adc
=
15 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON
40 VOLTS
115 WATTS
=
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Ba.. Voltage
VCB
Emitter-Base Voltage
VEB
IC
Vdc
Vdc
TJ.Tstg
50
7.0
15
7.0
115
0.657
-65 to +200
Symbol
Max
Unit
9JC
1.52
°CIW
Collector-Emitter Voltage
Collector Current
Continuous
Ba.. Current
IB
Total Devica Dissipation@TC=250C
Derate above 25°C
Po
Operating and Storage Junction
Adc
Adc
Watts
WloC
°c
Tamperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
FIGURE 1 - POWER TEMPERATURE DERATING CURVE
NOTE:
1. DIM "O"IS DIA.
140
e
120
I--
115
~ 100
.,z
"'"
~. 80
~
Q
'"~
2
MILLIMETERS
DIM MIN MAX
~
60
40
A
B
C
~
..........
i'....
~ 20
"'"1'--.
o
o
25
50
75
100
125
150
f':
175
200
D
E
F
G
H
J
K
Q
R
-
-
39.37
21.08
7.62
1.09
3.43
29.90
10.67·
5.33
16.64
11.18
3.84
30.40
6.35
0.99
-
11.18
5.59
17.15
12.19
4.09
26.67
INCHES
MIN
MAX
0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
CASE II
TC. CASE TEMPERATURE (OC)
405
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ2801 NPN, MJ2901 PNP (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
BVCEO
40
-
Vdc
ICEX
-
5.0
mAdc
-
5.0
lEBO
-
10
mAdc
hFE
15
60
-
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(l)
(lC
= 200 mAdc,
IB = 0)
Collector Cutoff Current
(VCE = 50 Vdc, VEB(off)
= 1.5 Vdc)
Collector Cutoff Current
Emitter Cutoff Current
(VEB
= 7.0 Vdc,
IC
mAdc
ICBO
= 50 Vdc, IE = 0)
(VCB = 50 Vdc,IE = 0, TC = 1500C)
(VCB
= 0)
ON CHARACTERISTICS
DC Current Gain!l)
(I C = 8.0 Adc, V CE = 4.0 Vdc)
10
Coliector·Emitter Saturation Voltage(l)
(lC = 8.0 Adc, IB = 0.8 Adc)
VCE(sat)
-
1.5
Vdc
Base-Emitter On Voltage(l)
(lC = 8.0 Adc, VCE = 4.0 Vdc)
VBE(on)
-
2.2
Vdc
DYNAMIC'CHARACTERISTICS
Current·G.in -Bandwidth Product
(lC = 0.4 Adc, VCE = 10 Vdc, f = 1.0 MHz)
(1)Pulse Test: Pulse Width,:S 300 ",s, Duty Cycle 5,2.0%.
FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA
20
"- I"
t·
ii::' 10
2\
~
;:: 5.0
ffi
~
3.0
250".
500".
f--
~ 2.0 f - -
I
de
~ 1.0
I I
..
F-- Secondary
Breakdown Llmlttd
I
8
f:: -- - Thermal
Limitations, TC =25 C
Pul .. Duty Cycle'; 10%
'"o
G
:} 0.5
I
..
.-/
1.0ms
TJ =2000 C
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must faU within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power-temperature derating must be ob·
served for both steady state and pulse power conditions.
~ _. _. Bonding Wir, Limited
0
II0.3
Applicable For Rattd BVCEO
0.2
3.0
6.0
10
20
30
40
VeE, COLLECTOR·EMmER VOLTAGE IVOLTS)
406
MJ2840 (SILICON)
MJ2841
10 AMPERE
POWER TRANSISTORS
HIGH-POWER NPN SILICON TRANSISTORS
NPN SILICON
60-80 VOLTS
150 WATTS
· .. designed for use inaudio amplifjercircuits utilizing complementary
symmetry.
•
Excellent Safe Operating Area
•
DC Current Gain hFE = 20 - 100@ IC = 3.0 Adc (MJ2840)
= 4.0 Adc (MJ2841)
•
Complement to PNP MJ2940 and MJ2941
MAXIMUM RATINGS
Rllting
Symbol
MJ2840
MJ2841
Unit
VCEO
60
SO
Vdc
Collector-Sase Voltage
VCS
60
60
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
IC
10
Adc
Collector-Emitter Voltage
Collector Current - Continuous
Base Current
18
4.0
Adc
Total Device Dissipation @TC= 25°C
Po
160
0.S5
Watts
wfDc
TJ.Tstg
-65 to +200
DC
Derete above 250 C
Operating and Storage Junction
Temperature Range
lr~
r~,
ES::?t:
PLANE
i
THERMAL CHARACTERISTICS
Characteristic
Thermal R_istanc8. Junction to Case
STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
NOTE:
1. DIM "O"IS DIA.
160
In
i
z
120
~
If
100
Ili
50
~
........,....
140
DIM
..............
40
t
2D
C
..........
D
E
..............
..............
25
50
75
-
B
.............
80
~
A
MILLIMETERS
MAX
MIN
100
125
150
..............
175
2DD
Te. CASE TEMPERATURE (OCI
6.35
0.99
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84
R
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11
Slife Area Limits are Indicated by Figure 4. Both limits are applicable and must be observed.
407
INCHES
MIN
MAX
0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ2840, MJ2841 (continued) .
ELECTRICAL CHARACTERISTIC (TC = 25°C unless otherwise noted)
I
I
Min
Max
60
80
-
0.1
2.0
-
1.0
-
Both Types
40
-
(lC = 3.0 Ade, VeE = 2.0 Vde)
MJ2840
(lC = 4.0 Adc, VeE = 2.0 Vde)
MJ2841
20
20
100
B.....Emitter On Voltage~1)
(lC = 3.0 Ade, VCE = 2.0 Vde)
MJ2840
-
IIc = 4.0 Ade, VCE = 2.0 Vde)
MJ2841
-
Characteristic
Symbol
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltaga(1)
(lC = 200 mAde, IB = 0)
Vdc
VCEO(sus)
MJ2840
MJ2841
Collector-Base Cutoff Current
(VCB" Rated VCB, IE = 0)
mAde
ICBO
Both Types
Both Types
IVCB = Rated VeB, IE = 0, TC = 150OC)
S.....E mittsr Cutoff Current
IVBE = 4.0 Vde, IC = 0)
mAde
lEBO
Both Types
ON CHARACTERISTICS
DC Current Gain(l)
(lC = 50 mAde, VCE = 10 Vde)
-
hFE
100
Vdc
VBElon)
1.3
1.4
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIC = 0.5 Ade, VCE = 10 Vde, f = 1.0 MHz)
(1)Pulsa Teat: Pulse Width S300 ,",5, Duty Cycle'S..2%.
FIGURE 2 - DC CURRENT GAIN
FIGURE 3 - "ON" VOLTAGES
500
300
200
z
~
100
0:
10
50
~
:::>
<.>
<.>
'"
30
~ 20
2.0
1.8
VCE = 2.0 Vd,
-
TJ= 175°C
1.6
-I-
6 1.21.4
'"
+250C
2:
w
to
-55°C
:;
"
r-....
'">>'
./
10
7.0
5. 0
0.01
1.0
0.8 _
I--'
k:o::=~
V8Elsat)@ Iclla = 10 Vd,
VaElon)@ VCE = 2.0 Vdc--:
0.6
Till U
0.4
.J...+1"
0.2
VCElsatl@lclia - 10 Vd,
o
0.02 0.03 0.05
0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
10
0.1
IC. COLLECTOR CURRENT lAMP)
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0
7.0 10
IC. COLLECTOR CURRENT lAMP)
FIGURE 4 - ACTIVE,REGION SAFE OPERATING AREA
10
0:
d,~.Oms'S.100 ..
5.0
'"5
r--
I-
z
w 2.0 r-~
=
TJ = 200°C
\
~;~~~ ~i:~~wn ~~i~50C
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. powerwtemperature derating must be observed for both steady state and pulse power conditions.
.~
Curves Apply aelow Rated aVCEO
B 1.0
0:
'"
~'" 0.5
<.>
~ 0.2
0.1
1.0
MJ2840 r-~
MJ2841
r-
2.0
3.0 4.0 5.0 7.0
10
20
30 40 50
70 100
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
MJ2901 (SILICON)
For Specifications, See MJ2801 Data.
408
MJ2940 (SILICON)
MJ2941
10 AMPERE
POWER TRANSISTORS
HIGH-POWER PNP SILICON TRANSISTORS
PNPSILICON
60-80 VOLTS
150 WATTS
· .. designed for use inaudio amplifier circuits utilizing complementary
symmetry.
•
Excellent Safe Operating Area
•
DC Current Gain hFE = 20 - l00@ IC = 3.0 Adc (MJ2940)
= 4.0 Adc (MJ2941)
•
Complement to NPN MJ2840 and MJ2841
MAXIMUM RATINGS
Rating
Symbol
MJ2940
MJ2941
Unit
VeEO
60
80
Vdc
Collector-Base Voltage
VeB
60
80
Vdc
Emitter-Base Voltage
VEB
4.0
Collector Current - Continuous
Ie
10
Adc
Base Current
IB
4.0
Adc
Total Devica Dissipation @Te =250 e
Derata above 250 e
Po
150
0.85
Watts
w/oe
TJ.Tstg
-65 to +200
°e
Collector-Emitter Voltage
Operating and Storage Junction
Vdc
Temperature Range
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to
c.e
STYLE 1:
PIN 1. BASE
2. EMITTER
NOTE:
CASE: COLLECTOR
1. OIM "a" IS DIA.
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
160
140
............
S 120
~
~
!C
.~
I
~
r-...
100
MILLIMETERS
DIM MIN MAX
............
A
B
..............
80
.............
40
..............
20
..............
o
o
25
50
75
100
TCo CASE TEMPERATURE tOC)
125
6.35
0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
a 3.84
C
D
.............
60
ISO
175
200
-
R
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11
Safe Area Limits are Indicated by Figure 4. Both limits are applicable and must be observed.
409
INCHES
MIN
MAX
0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
1.550
0.830
0.3
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ2940, MJ2941 (continued)
ELECTRICAL CHARACTERISTIC (TC = 25°C unless otherwise noted)
Symbol
Characteristic
Min
Max
60
BO
-
-
0_1
3_0
-
1.0
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(1)
(lC = 200 mAde, IB = 01
Collector-Base Cutoff Current
(VCB = Rated VCB, IE = 01
(VCB
Vde
VCEO(susl
MJ2940
MJ2941
mAde
ICBO
= Rated VCB, IE = 0, TC = 150o C)
Emitter-Base Cutoff Current
(VBE = 4_0 Vde, IC = 01
lEBO
mAde
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 50 mAde, VCE
-
hFE
= 10 Vdel
(lC = 3.0 Ade, VCE = 2.0 Vde)
(I C = 4.0 Adc, V CE = 2.0 Vdel
Both Types
40
-
MJ2940
20
20
100
1.3
1.4
MJ2941
Base-Emitter On Voltage(1)
(lC = 3.0 Ade, VCE = 2.0 Vdel
MJ2940
-
(lC = 4.0 Ade, VCE = 3.0 Vdel
MJ2941
-
100
Vde
VBE(onl
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.5 Ade, VCE = 10 Vde, f
= 1.0 kHzl
(1)Pulse Test: Pulse Width 5300 #ls, Dutv Cycle~ 2%.
FIGURE 2 - DC CURRENT GAIN
100 0
700
500 - -TJ +175°C
z
"
300
'" 200
~
w
~ 100
"
'-'
'-'
'"
~
+25 e
-
FIGURE 3 - "ON" VOLTAGES
2.4
VeE - 2.0 Vdc t
'"~
t"--r-r-.
t"---r-.
-55 e
I I I II II
ITJ .1+25IoCI I III
g 2.0
I I I I
I I II
_ i l f 'ICIIB (FORCEO AGAIN)
VCE" 2., Vi'
w
'"
:;
<[
'">z
'"
~
0
0
0
0
1.6
IA.
1.2
~ ?'
""';l5>--
O.B _VBE(satl
~
0.4
;;:
~
~F
·10
~
VBE
",.
-I-"'"
_VCE!sat)
10
0.01
0.020.03 0.05
0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
10
0.1
IC COLLECTOR CURRENT lAMP)
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7.0
10
IC. COLLECTOR CURRENT (AMPS)
FIGURE 4 - ACTIVE-REGION SAFE OPERATING AREA
10
li:
"">--
dc:::S:; 1.0 ms'3;:.100 "'
5.0
~
a'i
"
'-' 1.0
::'"'-'
w
::::
8
It
2.0
'"'"
F==
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power·temperature derating must be observed for both steady state and pulse power conditions.
[~
TJ • 200 0 C
f=-- Secondary Breakdown limited
f== --- Thermally
Limited
TC' 25°C
0.5 r-Curves Apply Below Rated BV CEO
~ 0.2
0.1
1.0
MJ2940-r
MJ2941,-+
2.0
3.0 4.0 5.0 7.0
10
20
30 40 50
70 100
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
410
MJ2955 (SILICON)
15 AMPERE
POWER TRANSISTOR
PNP SILICON POWER TRANSISTOR
PNP SILICON
60 VOLTS
150 WATTS
· .. designed for general-purpose switching and amplifier applications.
•
DC Current Gain hFE = 20·70 @ IC
= 4.0 Adc
• Collector-Emitter Saturation Voltage,VCE(sat) = 1.1 Vdc (Max) @ IC =4.0 Adc
•
Excellent Safe Operating Area
• Complement to Motorola's "Epi-Base" Transistor, 2N3055
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Eminer Voltage
VeEO
60
Vdc
Collector-Emitter Voltage
VeER
70
Vdc
Collector-Base Voltage
VeB
100
Vdc
Emitter-Base Voltage
VEB
7.0
Vdc
Ie
15
Adc
Rating
Collector Current - Continuous
8ase Current
'B
7.0
Adc
Total Device Dissipation @ T C = 2SoC
Derate above 2SoC
Po
150
Watts
Operating and Storage Junction
TJ, T sts
0.86
w/oe
-65 to +200
De
STYLE 1:
PIN 1. BASE
C
2. EMmER
--~~+-j- CASE: COLLECTOR
Temperature Range
THERMAL CHARACTERISTICS
NOTE:
1. OIM "O"IS OIA.
Characteristic
Thermal Resistance, Junction to Case
FIGURE 1 - POWER DERATING
160
I-0
"- '),.
,
DIM
.........
A
8
C
0
"'"
0
0
0
" "'"
0
E
F
0
25
50
75
100
125
G
H
J
...............
150
K
...............
175 200
TC, CASE TEMPERATURE ,oCI
11
R
MILLIMETERS
MIN MAX
-
6.35
0.91
-
29.90
10.67
5.21
18.84
11.18
3.84
311.'7
22.23
11.43
1.119
INCHES
MIN
MAX
-
0.250
0.038
3.43
30.40 un
11.18 0.420
5.72 0.205
11.15 .665
12.19 iD.44O fD.480
4.D9 0.151 0.181
26.11
- 1.050
CASE 11·03
411
1'"
0.815
.450
0.043
D.T!&"
1.191
0.440
0.225
0.615
MJ2955 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unl_ otherwise noted)
I
I
Characteristic
symbol
Min
Collector-Emitter Sustaining Voltage (1)
(lc = 200 mAde. IB = 0)
VCEO(sus)
60
Collector-Emitter Breakdown Voltege (1)
(lC • 200 mAde. RSE = 100 Ohms)
BVCER
70
-
ICEO
-
0.7
Unit
Ma"
OFF CHARACTERISTICS
Collector Cutoff Current
(VCE = 30 Vde.IB = 0)
Collector Cutoff Current
(VCE = l00Vdc. VSE(off)
(VCE - 100 Vde. VSE(off)
= 1.5Vde)
= 1.5 Vdc. TC =
Vde
mAde
mAde
ICEX
150°C)
Emitter Cutoff Current
(VSE = 7.0 Vde.IC = 0)
Vdc
IESO
-
-
1.0
5.0
-
5.0
20
70
mAde
ON CHARACTERISTICS (1)
DC Current Gain
(lC = 4.0 Adc. VCE = 4.0 Vdc)
(lc = 10 Adc. VCE = 4.0 Vdc)
-
hFE
-
5.0
Collector-Emitter Saturation Voltage
(lc = 4.0 Adc. IS· 400 mAde)
(lc = 10 Adc. IS = 3.3 Adc)
VCE(satl
Sase-Emltter On Voltage
(lC = 4.0 Ado. VCE • 4.0 Vdo)
Vdc
-
-
1.1
3.0
VSE(on)
-
1.8
Vde
Current Gain - Bendwidth Product
(lC =0.5Adc. VCE = 10 Vde. f = 1.0MHz)
fT
4.0
-
MHz
Smell-5ignal Current Gain
(lC· 1.0 Adc. VCE = 4.0 Vde. f· 1.0 kHz)
hfe
15
-.
-
Smell-5lgnal Current Gain Cutoff Frequency
f"",
10
-
kHz
DYNAMIC CHARACTERISTICS
(VCE· 4.0 Vdc.IC = 1.0Ade. f= 1.0 kHz)
·Pulse Test: Pulse WidthS" 300 "', Duty Cycl.~ 2.0%.
FIGURE 3 - TURN-ON TIME
FIGURE 2 ...: SWITCHING TIME TEST CIRCUIT
1.0
VCC
-30Y
O.5
......
.......
J
+10iJ-0- - - - -
Ra
SCOPE
0.2
]
~
;::
-10V--~
51
25,.
"
.....''''10 ..
-I4,OY
DUTY CYCLE = 1.0!I
Ra ",d RC YARIED TO OBTAIN DESIRED CURRENT LEVELS
"'1-
.......
I'
o. 1
...
.;
0.05
0.02
0.01
01 MUST aE FAST RECOVERY TYPE. II:
Ma05300 USEO ABOVE IB-l00mA
MSD6100 USED BELOW la -100 mA
.......
YCC-30Y
Ic/la" 10
YaElolI) =3.0 Y
-TJ= 250C
0.1
,
0.2
0.3
0.5
2.0
3.0
IC. COLLECTOR CURRENT (AMP)
412
5.0
10
MJ2955 (continued)
FIGURE 4 - THERMAL RESPONSE
1•0
.:.
o.7 f=D -0.5
1_
o.5
wO
:>::w
~
i~ :~ r-0.1
0.2
,......
in"
ZO
~ r-io-'
",Z
~: o. 1~.0.05
~ ~o.o 7~0.02
~~o.o5
... " ,
..k"' 0.01
:t ~ 0.03
~
SINGLE
PULSE P B l J l
-
-1
f- I
~ 6JC(I) = ,(I) 6JC _
r-- 6JC·I.17 0C/W MIX
DUTY CYCLE. D-11112
D CURVES APPLY FOR POWER
PULSETRAIN S~~~ I I I
READ TIME AlII
TJ(pk) - TC = P(pk) 6Jc(l)
0.02 - SINGLE PULSE
0.0 1
0.01
I II
I
0.02 0.03
0.05
0.1
0.2
0.3
0.5
1.0
2.0
II
II II
3.0
5.0
10
20
30
50
I
100
200 300
500
1000
I. TIME (m.)
FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
20
I!Z
5.0
~
3.0
....
w
r-
.. 2.0
~...
1--
0
H-H
- -- ".l1fm~ ~ f~
.... .....
There ere two limitations on the po_r handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curvas indicate IC,VCE limits of the transistor
that must be observed for reliable operation; i.e .• the transistor
must not be subjected to greater dissipation than the curves indicMe•
The data of Figure S il based on TJ(pk) = 200; TC ilvariable
depending on conditions. Sacond breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pkl"'2000C. TJ(pkl may be
calculated from the data in Figure 4. At his;. c_ tamperatures.
thermal limitations will reduce the power that can be handled to
values lass than the limitations imposed by second breakdown.
(Sea AN-41 Sl
5.0 ms
TJ =200°C
Secondary Breakdown
Limited-500'J.~ k-
- - - - - Bonding Wire Limit
~c\
- - - - - - - Thermal limit at TC =2SDC
1.0
~
8
~
o.5
O.3
0.2
2.0
\
3.0
4.0
6.0
10
20
3D
40
60
VCE. COLLECTOR·EMITT~R VOLTAGE (VOLTS)
FIGURE 8 - TURN-OFF TIME
FIGURE 7 - CAPACITANCE
0
1000
2.0
TJ - 2SOC
VCC-30V
5.0
700
IC~B -10
--
IBI = IB2
TJ = 25°C
~ 500
~
--
Is
-
0.1
0.1
0.2
0.3
0.5
1.0
-""
I=;:,..
~
~
!::3OD
~.. 200
0.5
0.2
"'-
~
If
2.0
3.0
5.0
100
0.1
10
IC. COLLECTOR CURRENT (AMP)
0.2
0.5
1.0
2.0
5.0
.........
III
10
VR. REVERSE VOLTAGE (VOLTS)
413
,
Cob
Cib
I"
20
50
100
MJ2955 (continued)
FIGURE 9 - COLLECTOR SATURATION REGION
FIGURE 8 - DC CURRENT GAIN
200 _ H 4 , .
i--
-1
or-- t-~ I-
-
1
III
r--
TJ -150 DC
~
0
> 1.2
'"
~
"o~
~-'
O. B
\
O.4
~
>
0.3
1.0
0.5
2.0
3.0
5.0
0
10
5.0
10
20
50
IC. COLLECTOR CURRENT IAMPI
TJ - 25DC
>
II I
~
'BVC for VCEI"tl
.§. +1. 5
ffl +1, 0
J.;
VaEI,,!)@lc/la-l0
I I
I
I I I
f - - f-- VaE
@VCE - 4.0 V
O. B
~ 1--.....
S
V
O.4
VCEI"tl@lc/l a- 10
~ +0. 5
w
~
>'
....
1.1
o
0.3
1.0
0.5
-0. 5
3.0
5.0
0.1
10
- 55DC to 25DC
1/
j..- ..... ~
J.u.~ !o'"
II
';.-2.0
~ -2.5 r-
2.0
-
~
Bva for VaE
a5 -1.5
~
0.2
0.3
0.5
1.0
2.0
- 55DC to 25DC
II
3.0
5.0
FIGURE 13 - EFFECTS OF BASE·EMITTER RESISTANCE
FIGURE 12 - COLLECTOR CUTOFF REGION
10.000
VCE -30V
VCP30V
ffi
'"'"
'"'"
10
IC. COLLECTOR CURRENT IAMPI
IC. COLLECTOR CURRENT IAMPI
1
....
5000
25 DCto 150DC
~-1. 0
~
.&.-0.2
2000
j..-V
25DCto 150DC
U
V
>
0.1
1000
'APPLIES FOR Icila< hFE/4
~+2. 0
~ 1.2
o
500
FIGURE 11 - TEMPERATURE COEFFICIENTS
~
'"
;
200
+2 .5
.6
w
100
la. aASE CURRENT (mAl
FIGURE 10 - "ON" VOLTAGES
.0
r-
\
S
0.2
TJ - 25DC
B.OA
~o
k r"t--.
10
0.1
4.0A
w 1.6
,
f - - f---55 DC
II II
II
IC -1.0 A
~
VCE-4.0V
10
0
2.0
o
=
1000
IC
10 x ICES
100
r- TJ -1500C
::>
10
~
I-- r 100DC
1.0
IC -ICES
IC -ICES
o
'"~
O. Ii--
REVERSE_
I-- r-+-25DC
~FORWARD
""""
=
(TYPICAL ICES VALUES
=lOBTAINED FROM FIGURE 121
0.0 1
+11.2
103
+11.1
-0.1
-0.2
-0.3
-0.4
-0.5
20
40
60
80
100
120
TJ.JUNCTION TEMPERATURE (Oci
VaE. aASE·EMITTER VOLTAGE (VOLTSI
MJ3000, MJ3001 (SILICON)
For Specifications, See MJ2500 Data.
414
140
160
MJ3026 (SILICON)
MJ3027
2 AMPERES
POWER TRANSISTORS
VERTICAL OUTPUT
HIGH-VOLTAGE NPN SILICON TRANSISTORS
NPN SILICON
500,700 VOLTS
80 WATTS
... designed for use in class A vertical deflection in television receivers,
where linear hFE is desired to 250 rnA. Intended for use with high
supply voltage (80-120 Vdc); ideal for line operated receivers.
MAXIMUM RATINGS
Rating
Symbol
MJ3026 MJ3027
Unit
Collector-Emitter Voltage
VeEO
275
300
Vdc
Collector-Emitter Voltage
VeER
500
700
Vdc
Emitter-Base Voltage
VE8
5.0
Vdc
Ie
2.0
Adc
Collector Current - Continuous
Base Current
18
1.0
Adc
Total Device Dissipation@Te= 250 e
Po
80
Watts
0.64
wloe
TJ,Tstg
-55 to +150
°e
Derate above 25°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Cass
ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)
I
Ch.._I....
I
Symbol
I
Min
I
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
UC·O.1Adc,IS",OI
MJ3026
MJ3027
Vd,
VCEO(sus)
275
300
Collector Cutoff Current
(Vee· SOD Vdc,RSE = 1.5 k Ohms) MJ3026
(VeE = 700 Vdc, RBe" 1.6 k Ohms) MJ3027
ICER
Emitter-aase Leakage Current
(VEB - 5.0 Vdc. Ie = 01
lEBO
~Ade
200
200
500
Gain Linearity
A
~Ade
•
D
hFE1
25
hFE2
25
E
F
B
tic ""250 mAde. VeE = 5.0 Vde)
DC Curnnt Galn(1)
Uc-200mAde, VCE "'5.0Vdel
DIM
C
ON CHARACTERISTICS
DC Current Gain! 1)
STYLE 1:
PIN 1. BASE
2. EM lITER
NOTE:
CASE: COLLECTOR
1. OIM "Q"IS OIA.
hFE1/hFE2
H
J
K
II
0.95
R
(1)Pulle Tnt: Pul .. WIdth ~'500 ~s, Duty CYl::le ~2.0".
MILLIMETERS
MIN MAX
-
39.37
22.23
11.43
1.09
3.43
29.90 30.40
10.87 11.18
5.72
521
16.64 17.15
11.18 12.19
3.84 4.09
26.67
6.35
0.97
INCHES
MIN MAX
0.250
0.038
-
1.177
0.420
02115
0.656
O.
0.151
CASE "·03
415
1.550
0.875
0.450
0.043
0.135
1.197
0.440
0.225
0.675
O.
.161
1.
MJ3026, MJ3027 (continued)
FIGURE 2 - DC CURRENT GAIN
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
80
~
"- ~
60
~
z
200
70
t"-.
0
;::
£
ill
40
is
'"~
~
~ 50
'1'..
"-
20
~
20
40
TJ'liooc
100
60
80
'"w
!i<
'"
a'"
0...,0
u
"
100
o
I':
120
~
'~
140
-
25 0 C
I'i
VCE = 5.0 Volts
0
7.0
5. 0
S
\
\
2. 0
160
0.02
0.05
0.1
0.2
0.5
1.0
2.0
IC. COLLECTOR CURRENT IAMPI
TC. CASE TEMPERATURE lOCI
FIGURE 3 - ACTIVE-REGION DC SAFE OPERATING AREA
0
..
1.0ms
5.0
I'(
~ 2.0
....
~
a
1.
O. 5
g
O.2
_
O. 1
'"
Setondary Breakdown Limited
_ .. - Bonding Wire limit
., .. _ .. Thermal limit at Te '" 25°C
Curves Apply 8olow Rated VCEO
o
g 0.05
"-
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·
sistor that must be observed for reliable operation; i.e., the transistor
.A
MJ3026
20
30
50
The data of Figure 3 is based on T Jlpkl = 150°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) " 150°C. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. ISee AN-4151
17'""
de
MJ3027
10
must not be subjected to greater dissipation than the curves indicate.
"\.
5.0 ms
0.02
0.0 1
5.0
50",
"\.
' I...
TJ =1500 C
0
O.5ms
100
:::.x,..
-r
200
300
500
VCE. CO LLECTO R·EMITTER VOLTAGE IVOLTSI
416
MJ3028 (SILICON)
3.5 AMPERES
POWER TRANSISTOR
VERTICAL OUTPUT
HIGH-VOLTAGE NPN SILICON TRANSISTOR
NPN SILICON
700 VOLTS
100 WATTS
. . . designed for use in class A vertical deflection circuits where
linear hFE is desired to 400 rnA. Primarily intended for 1100 color
television receivers.
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
300
Vdc
Collector-Emitter Voltage
VCER
700
Vdc
VEB
5.0
Vdc
IC
3.5
Adc
Rating
Emitt~r-Base
Voltage
Collector Current - Continuous
Base Current
IB
1.0
Adc
Total Device Dissipation@Tc=2SoC
PD
100
Watts
O.B
WloC
TJ.Tstg
-55 to +150
DC
Derate above 25°C
Operating and Storage 'Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS (TC
=250 C unless otherwise noted)
Symbol
Min
Ma.
Unit
Collector-Eminer Breakdown Voltage
(Ie'" 0.1 Adc.ls = 01
VCEO(susl
300
-
Vde
Collector Cutoff Current
(VeE = 700 Vdc, RBe '" 1.5 k Ohms)
leeR
-
200
JlAdc
Emitter-Base Leakage Current
(VEB .. 5.0 Vdc, Ie .. 01
leso
500
.ADe
Characteristic
OFf CHARACTERISTICS
STYLE 1:
PIN I. BASE
2.EMITIER
CASE: COLLECTOR
DIM
ON CHARACTERISTICS
DC Current Gain·
lie = 0.3 Adc, VCE '" 5.0 Vdc)
hFE1*
25
DC Current Gain
tiC - 0.4 Adc. VCE
hFE2
30
Gain Linearity
=
A
MILLIMETERS
MIN MAX
-
B
C
0
5.0 Vdc)
6.35
0.99
E
29.90
G 10.67
H 5.33
J 16.64
K 11.18
a 3.64
R
F
0.95
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
NOTE:
I. aiM "a" IS DlA.
INCHES
MAX
MIN
0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
CASE 11
417
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.490
0.161
1.050
MJ3028 (continued)
FIGURE 2 - DC CURRENT GAIN
FIGURE 1-POWER-TEMPERATURE DERATING
100
100
"- r"-........
" ""-
0
0
z
<1
40
1Q10OC
60
-
f-
I"
100
80
70
0
to
0
10
L
100
TC, CASE TEMPERATURE laC)
iji
~
0
'"
10
i3
<.>
"
110
~
"
~
140
"~
i\.
VCE =5.0 Volts
7. 0
5,0
1,0
160
TJ =15 0 C
0.40.5
0.1
0.1
0.5 0.7
1.0
1.0
3.0 4.0
IC, COI.LECTOR CURRENT lAMP)
FIGURE 3 - ACTIVE REGION SAFE OPERATING AREA
7,0
50
10
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
1.0
de
0.5
<.>
~
'"
~8
0.1
O. 1
Secondary Breakdown Limited
t-- - -
-
Bonding Wire Limited
- - - - - - Thermal Limitation at Te = 250C
Curves Apply Below Rated VCEO
005
0.01I-++I-t+---+-+-+-++H+t---t-+-+-l
o0 ~': -.O.L-I-~1Q:----:'}0:---'--'-::'::50..J1..JILlwl~1!0::----:!10:::"0---I---l5:::!00
Safe operating area curves indicate Ie - VeE limits of the transistor. that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 3 is based on T J(pk) = 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) '" IS0o C. At high case
temperatures, thermal I imitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. ISee AN-415)
VCE, COLLECTOR·EMITTERVOL TAGE (VOLTS)
418
MJ3029 (SILICON)
MJ3030
NPN SILICON HIGH-VOLTAGE TRANSISTORS
5 AMPERE
POWER TRANSISTORS
NPN SILICON
. designed for TV horizontal and vertical deflection amplifier
circuits.
•
High Collector-Emitter Sustaining Voltage VCEO(sus) = 250 Vdc (Min) MJ3029
325 Vdc (Min) MJ3030
•
Fast Fall Time in Horizontal Deflection tf= 1.0j.ls(Max)@Vcc=80Vdc - MJ3030
•
Excellent Gain Linearity for Vertical Deflection hfe@0.4Adc. hfe@0.3Adc= 0.95 (Min) - MJ3029
250-325 VOLTS
125 WATTS
MAXIMUM RATINGS
Symbol
MJ3029
MJ3030
Unit
Collector-Emitter Voltage
VCEO
250
325
Vdc
Collector-Emitter Voltage
VCER
500
-
Vdc
Collector-Emitter Voltage
VCEX
700
Vdc
Rating
VEe
5.0
Vdc
IC
5.0
Adc
Base Current
Ie
1.0
Adc
Total Device Dissipation @TC= 25°C
Po
125
1.0
Watts
W/oC
TJ.Tstg
. -65 to +150
°c
Emitter-Base Voltage
Continuous
Collector Current
Derate above 25°C
Operating and Storage Junction
Temperatura Range
ir~
~,
i
E SEATING
PLANE
I---FI---J-
,
,
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Symbol
8JC
,
,
Max
1.0
,,
i!I~
"
~
75
C
50
0
1li
~
r\.
"-r\.
100
r\.
"II\..
w
J?
25
a
a
25
50
A
B
C
D
E
F
G
H
J
K
r\.
75
100
"I'\.
125
"
150
175
419
200
R
NOTE:
1. DIM "11" IS DIA.
MILLIMETERS
MAX
MIN
-6.35
0.99
-
29.90
10.67
5.33
16.64
11.1B
Q
3.84
TC. CASE TEMPERATURE I"C)
~
~
~-1
DIM
;;:
a:
Vi
I!
"""
~
r
t ~ ../
br
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
125
Unit
°C/W
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11
INCHES
MAX
MIN
-
0.250
0.039
1.177
'0.420
0.210
0.655
0.440
0.151
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ3029, MJ3030 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
I
Chancterlstlc
Min
Symbol
Mox
Unit
OFF CHARACTERISTICS
Coliector·Emltter Sustaining Voltage(1)
UC=O.1Adc,IS"'OI
Vd,
VCEO(sus)
250
325
MJ3029
MJ3030
Collector Cutoff Current
mAde
leEA
(V CE = 500 Vdc, RBE '" 1.5 k Ohms)
1.0
MJ3029
Collector Cutoff Current
mAd,
IpEX
2.0
MJ3030
(VeE = 700 Vdc. VEBloffl = 1.5 Vdc)
ON CHARACTERISTICS
DC Current Gain
lie'" 0.3 Adc. VeE = 5.0 Vdc)(1)
MJ3029
hFE1
25
lie'" 0.4 Adc. VeE = 5.0 Vdc)(11
MJ3029
hFE2
30
hFE 2
0.95
Gain Linearity
MJ3029
Collector-Emitter Saturation Voltage
lie = 3.0 Adc, IS ... 0.8 Adc)
hFE 1
Vd,
VCE(satl
2.0
MJ3030
SWITCHING CHARACTERISTICS
fall Time
(VCC=80Vdc,IC=3.0Adc,IS1 = O.BAde) Figure 3
MJ3030
(l}PulseTast; Pulse Width ~300~$. Dutv CyclaS2 0%.
FIGURE 2 - DC CURRENT GAIN
100
70
50
z
30
'">-
20
a
10
;;:
~a:
FIGURE 3 - TEST FOR FALL TIME
VCE - 2.0 V
"-
TJ=100~"\ f'\. 251c
7.0
5.0
u
c
~
I'\.
3.0
2.0
1.0
0.1
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0
7.0
*HP 212A: Set for 10 IlS wide pulses at 2000 pulses per S1!C.
(500 IJ.$ intervals). Adjust for IB1 =0.8 A.
10
~~aspur;:~~~~~r~~:o~~t~;~~p~~a:o~~~t~~Thr~t 1.
IC. COLLECTOR CURRENT (AMP)
FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA
t-- 10~~~~~~~~~~~~~~~~~~~~~
-+--++-+-+++++
5.0
100
~3.0
"
"
2.0 I--T-J-'-15+0-.C-+--d"'c<++H++1-0-'m"'.'I.
s
S
affi~
0.5
1.0
a:
~
0.3
=
~~~~"EII·~"·~"~I!III
0.2 ~-----------+-Set-.n+d-81-yf-Br0.1 _
_ Bondmg Wire limited
..j-k--jdow+n+L-+im-+it"'.d\."--+-*-+-+++-++
for duty cycles to 10% provided TJ(pk) ~ 1500 C. At high ca.e
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
8 5 ..,:.=..::..::: Thermal LimitaUon at TC .. 250C
~ ~:OO r-------rCuMsApply Below Rated VCEO
3
0.02
1
0.0
10
I II
20
30
50
70
100
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 4 i. based on T J(pk) = 1500 C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
MJ3029 :...
MJ3030'ft+"I-"t.l-I-++4++1
200
325
breakdown.
500 700 1000
VCE. COLLECTOR·EMITIERVOLTAGE (VOLTS)
420
MJ3040 (SILICON)
thru
MJ3042
Advance Inforll1ation
DARLINGTON
7 AMPERE
POWER TRANSISTORS
NPN SILICON
HIGH VOLTAGE SILICON POWER
DARLINGTONS
300,350 VOL TS
100 WATTS
· .. developed for line operated amplifier, series pass and switching
regulator applications.
•
Collector-Emitter Sustaining VoltageVCEO(sus) = 300 Vdc (Min) - MJ3040, MJ3041
= 350 Vdc (Min) - MJ3042
•
High DC Current Gain hFE = 100 (Min) @ IC = 2.5 Adc - MJ3040
= 250 (Min) @ IC = 2.5 Adc - MJ3041, MJ3042
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 2.2 Vdc (Max) @ IC = 2.5 Adc
•
Monolithic Construction with Built-In
Base-Emitter Shunt Resistors
MAXIMUM RATINGS
Rating
MJ3042
Unit
VCB
400
400
500
Vdc
VCEO
300
300
350
Symbol
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Device Dissipation @ T C
Derate above 25°C
= 2SoC
Operating and Storage Junction
MJ3040 MJ3041
Vdc
VEB
-5.0-
IC
-1.0-
Adc
Po
-100-0.8-
Watts
TJ.Tstg
-
-65 to +150-
Vdc
lr~
rLE:B '
ES:?-t;:
PLANE
i
W/oC
°c
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR
Thermal Resistance, Junction to Case
NOTE:
1. OIM "U"IS OIA.
DARLINGTON SCHEMATIC
COLLECTOR
r-------
I
DIM
--,
A
B
C 6.35
D 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R
I
I
I
I
BASE
MILLIMETERS
MIN MAX
I
I
I
I
I
---'
EMITTER
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11
This is advance information on a new introduction and specifications are subject to change without notice.
421
INCHES
MIN
MAX
0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
-
I
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ3040, MJ3041, MJ3042 (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted'!
Characteristic
Symbol
Min
Max
300
350
-
-
1.0
1.0
5.0
5.0
-
20
100
250
25
50
-
-
2.2
-
2.5
-
3.0
-
2.5
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 100 mAde, IS = 01
Collector Cutoff Current
(Vca = 400 Vde,
(Vca= 500Vde,
(Vca= 400 Vde,
(VCS=500Vde,
IE
IE
IE
IE
Vde
VCEO(susl
MJ3040, MJ3041
MJ3042
= 01
=01
= 0, TC = 100°C I
=0, TC= 100°C I
mAde
ICBO
MJ3040, MJ3041
MJ3042
MJ3040, MJ3041
MJ3042
-
Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 01
mAde
IEaO
ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 Ade, VCE = 5.0 Vdel
-
hFE
MJ3040
MJ3041, MJ3042
MJ3040
MJ3041, MJ3042
(lc = 5.0 Ade, VCE = 5.0 Vdel
Collector-Emitter Saturation Voltage
(lc = 2.5 Ade, I B = 50 mAde I
Vde
VCE(satl
(IC = 5.0 Ade, la = 400 mAdel
Base-Emitter Saturation Voltage
(lC = 5.0 Ade, la = 400 mAdel
VSE(satl
Base-Emitter On Voltage
(lc = 2.5 Ade, VCE = 5.0 Vdel
VSElonl
Vde
Vde
FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
FIGURE 2 - DC CURRENT GAIN
400
10
30o -VcIE = J:o V
TJ 25·C
5.0
i
ffi
...
'"~
'"o
~o
-
TJ = 150·C
2.0
T
1.0
=
.....
V
0
- -....,
I"'
V
O.5
1\
0
~~·-aONDING
WIRE LIMITED
o.2 ~~- --THERMALLY L1MITED@TC·2S.C
--SECOND BREAKDOWN LIMITED
o. 1
"' ""-
0
0
~ 0.05
0.0 1
5.0
0
MJ304!~
Ft-rIj3040, MJ3041-
0.02
7.0
10
20
30
50
70
100
200
300
20.
0.1
500
VCE, COLLECTOR·EMITIERVOLTAGE IVOLTSI
f
0.1
0.3
0.5
0.7
1.0
2.0
Ic, COLLECTOR CURRENT IAMPI
There are two limitations on the power handling ability of a
transistor - average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate.
The data of Figure 1 is based on TJlpkl = 1500C; TC is variable
depending on conditions. At high case temperatures, thermal Iimi~
tations will reduce the power that can be handled to values less
than the limitations imposed bV second breakdown. ISee AN4151.
MJ31 01, (SILICON)
For Specifications, See MJ2249 Data.
422
3.0
5.0
7.0
10
MJ3201 (SILICON)
MJ3202
~~
~
ST~I~EtBASE
2. EMITTER
CASE 80
(TO-66)
CASE, COLLECTOR
High-voltage NPN silicon transistors designed for
use in line-operated equipment such as audio output
amplifiers; low-current, high-voltage converters; and
ac line relays.
MAXIMUM RATINGS
Rating
Symbol
Collector-Emitter Voltage
MJ3201 MJ3202
VCEO
VCB
Collector-Base Voltage
Emitter-Base Voltage
Unit
225
300
Vdc
225
300
Vdc
VEB
3.0
Vdc
Collector Current-Continuous
Ie
100
mAdc
Total Device Dissipation @ T C = 25 0 C
Derate above 25 0 C
PD
15
0.1
Watts
W/oC
T J , Tstg
-65 to + 175
°c
Symbol
Max
Unit
8JC
10
°C/W
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case
ELECTRICAL CHARACTERISTICS (TC =256 C unless otherwise noted)
Characteristic
Min
Max
225
300
--
IeBO
--
0.1
0.1
lEBO
-
0.1
30
200
-
5.0
Symbol
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(IC = 1.0 mAdc, IB = 0)
BVCEO
MJ3201
MJ3202
Collector Cutoff Current
(VCB = 225 Vdc, IE = 0)
(VCB = 300 Vdc, IE = 0)
MJ3201
MJ3202
Emitter Cutoff Current
(VBE = 3.0 Vdc, IC = 0)
Vdc
mAdc
mAdc
ON CHARACTERISTICS
DC Current Gain (11
(IC = 50 mAde, VCE = 10 Vdc)
hFE
Collector-Emitter Saturation Voltage III
(Ie = 50 mAdc, IB = 5.0 mAdc)
VCE(sat)
Base-Emitter On Voltage (11
(Ie = 50 mAdc, VCE = 10 Vdc)
VBE(on)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(Ic = 50 mAde, VCE = 10 Vdc, f = 10 MHz)
(1)
Pulse Test: PW S 300 ILS, Duty Cycle S 2%
423
Vdc
Vdc
1.0
MJ3201, MJ3202
(continued)
FIGURE 1- DC CURRENT GAIN
200
TJ ~ 125'C
-
100
~
70
§
50
~
i
30
-
75'C
,VeE~
-
- -'"
10V
'"
25'C
~
25'C
f'.
"\'r..
~
,-,"",
.'
20
~
.....
\:'
\'
10
2.0
1.0
3.0
5.0
10
7.0
30
20
70
50
100
200
Ie, COLLECTOR CURRENT ImAl
FIGU!lE 3- TRANSCONDUCTANCE .
FIGURE 2- COLLECTOR OUTPUT CHARACTERISTICS
100
t---
t~25lc
".-
...-
l.-0 V ,..-
v-::
..--
~ ,.... V
~ ~ .- f-- f---h ~ ,/'
~ b----:"
~ 1-1.21...- ~
-
1.0
0.8
10.6 -
~ V-
o
-
~
I
1.~0.2mA
'/..
-
I
o
12
16
,I,
VeE~IOV
V
,/'
TJI~ 125~C/ V
V
/
V /
/
wc
70
~
50
f!!
30
.Y
20
8
r-
.. I
100
~
e
I--
I 0.4
12 ~
20
200
1.6
/
2S'C
/
/
/
10
0,4
20
25'C
I
J
/
1
I
I
I
/
0.6
I
/
10
0.8
V", BASE·EMITTER VOlTAGE (VOLTS)
VeE, COLLECTOR,EMITTER VOLTAGE IVOLTS)
FIGURE 4- TYPICAL AUDIO AMPLIFIER
FIGURE 5- AMPLIFIER DISTORTION
10
/
1p.F
o----il---+--+-l
1
/
/
/
./
1.0
R;, '" 6.5kOhms
ViII = 130mV
POWER GAIN tOf
CIRCUIT", 56 dB
.
./
0.8
0,01
0.02
0.05
0.1
0.2
PL, LOAD POWER (WATTS)
424
0,5
1.0
1.5
MJ 3260
(SILICON)
HORIZONTAL DEFLECTION SILICON
TRANSISTOR
6 AMPERE
· .. designed for use in large screen, 21", 23" and 25" color television
receivers, using 90 0 deflection circuits.
POWER TRANSISTOR
NPN SILICON
• Collector-Emitter Voltage VCER = 700 Vdc
700 VOLTS
80 WATTS
•
Collector Current IC = 6.0 Adc
•
Fall Time @ IC = 5.5 Adc tf = O.4)ls ITypl
= 1.0)ls IMaxl
•
Circuit Information Included - Complete Technical Dissertation
on Requirements for Optimum Circuit Performance
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
250
Vd,
Collector-Emitter Voltage
(RBE : 100 nI
VeER
700
Vd,
Collector-Base Voltage
VCB
700
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
6.0
Adc
'B
25
Adc
PD
80
064
WIDe
Rating
Collector Current
Continuous
Base Current
Total Device Dissipation @ TC
2SoC
Derate above 25°C
Operating and Storage Junction Temperature
Range
TJ,Tstg
Watts
e
65 to +150
THERMAL CHARACTERISTICS
Otaracteristic
Thermal ReSistance, Junction to Case
ELECTRICAL CHARACTERISTICS (TC
=
2SoC unless otherwise noted!
Otaracteristlc
Symbol
I
Min
TVp
Max
Unit
I
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
VCEOfsus)
Vd,
250
(Ie = 100 mAde, IS"" 0)
Collector Cutoff Current
(VCE : 700 Vdc, VBE : 0)
ICES
Emitter Cutoff Current
(V BE : 5.0 Vdc, IC: 01
lEBO
1.0
mAde
Collector-Emitter Saturation Voltage
lie: 5.5 Adc, 'B: 1.25 Adc)
VCE(satl
6.0
Vdc
Base-Emitter Saturation Voltage
(lc"" 5.5 Adc, IB "" 1.25 Adcl
VBE(satl
1.8
Vdc
mAde
1.0
ON CHARACTERISTICS
DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product (21
(lc = 0.2 Adc, VeE"" 6.0 Vdc, ftest " 1.0 MHz)
Output Capacitance
(VCB;:: 10 Vdc, 'E =0, f = 0.1 MHzl
75
Cob
STYLE 1:
PIN 1. BASE
NOTE:
2. EMITTER
1. DIM "11" IS OIA.
CASE: COLLECTOR
DIM
A
B
C
D
E
SWITCHING CHARACTERISTICS (Figure 1 and textl
Fall Tune
IIC = 5.5 Adc, 'Bl : 1.25 Adc, LB: 2.0pH)
Ra - 1.6 Ohms)
pF
6.35
0.99
29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R
F
180
MI LLlMETERS
MIN MAX
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11
(1) Pulse Test: Pulse Width 300"'5. Duty Cycle ~2.0%.,
(2) fT '" Ihf.l- f t85t
425
INCHES
MAX
MIN
0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
-
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ3260 (continued)
CIRCUIT OPTIMIZATION
can be caused by a variety of problems. but it is the dissipation itself
that is of fundamental importance. Once the transistor operating
point has been established, fixed circuit values may be selected
Test/application circuit and operating waveforms for MJ3260
are shown in Figure 1. It may be used to evaluate devices in the
conventional manner, i.e., to measure fall time, storage time, and
saturation voltage. However, the circuit was designed with operating
for the test fixture.
Factory testing may then be made with one
meter reading, without adjustment of the test apparatus.
efficiency in mind, so that it could be used to evaluate devices
by one simple criterion, supply power input. Excessive power input
FIGURE 1 - TEST CIRCUIT AND WAVEFORMS
+80 V
250
1.5 k
15W
25~F
V" >--~+~I--1~-l
40
"F
250
51
Vdc
r----...,PIN
DESCRIPTION OF SPECIAL COMPONENTS
DUMMY YOKE INDUCTOR (Ly)
V"
-50 V
Ie
to
f-28",- '---35",-
V--
,
0.69 mH, 36 turns, #16 AWG enamel Wire, 12 turns per layer, 3
layers, 1 mil mylar Insulation between layers on 1.3 inch plastic
bobbin, enclosed in Ferroxcube cup core No. 4229P387, core
spacing of 0.006 inch.
IBI
I
1,-
to I~
DUMMY HIGH VOLTAGE AND HORIZONTAL SCAN
TRANSFORMER (LF)
0.98 mH, 31 turns, #12 AWG enamel wire, 16 turns per layer, 1.9
layers, 1 mil mylar insulation between layers on 2.0 inch plastic
bobbin, enclosed In a Ferroxcube cup core K5350-11-3E, core spacing of 0.011 inch.
-
-90%
IC
VCE
VeE
to
-1
-If
(,
VCEM
DRIVER TRANSFORMER IT1)
Motorola part number 25D68782A05-1/4" lammate "E" Ifon
core. Primary Inductance - 39 mH, Secondary Inductance 0.22 mH, Leakage Inductance with pnmary shorted - 2.0 ,uH. Primary 260 turns, #28 AWG enamel Wire, Secondary 17 turns,
IL
I,
#22·AWG enametwire.
~
BASIC CONSIDERATIONS
The pnmary conSideratIOn when choosing a deflection transistor
for a conventional (parallel connected) cirCUit, as shown In Figure
1, IS one of voltage capability. The flyback voltage to which the
device will be subjected IS a relatively predictable value with
respect to the main power supply voltage. This voltage pulse, (VCEM),
shown in Figure 1, will usually be about 8 times the value of V+,
but may be vaned somewhat by adjusting retrace time and flyback
tuning and can reduce the voltage pulse by 15 to 30% depending
on the circuit values chosen.
to
FUNDAMENTAL WAVEFORMS OF A SIMPLIFIED
HORIZONTAL DEFLECTION CIRCUIT
426
MJ3260 (continued)
COLLECTOR CIRCUIT VALUES
The power supply used in the circuit of Figure 1, was chosen
to produce a 600 volt collector pLAse on the transistor, recommended
PERFORMANCE
Shown in Figures 4 and 5 are the results which will be typically
obtained with the test circuit at various operating conditions.
for regulated applications. The values of yoke (Lyl, flyback prImary (LFI. retrace capacitor (CR). and "S" shaping capacitor (CS)
FIGURE 3 - INTERRELATION OF RB.LB. ANO IB1
shown, will result in a peak collector current of about 5.5 A. This
is sufficient to deflect (and provide high voltage fod large screen
color television receivers using 900 deflection or small and mediumscreen color television receivers using 1100 deflection. Peak collector currents to 6.0 A may be handled by the MJ3260. Holding the
supply constant for most efficient application, adjustment of amount of deflection may be made by raising or lowering Ly and
LF. Remember that Ly Iy is constant for the fixed voltage situa.tion, and actual deflection is proportional to Iy
Values of
Cs and CR must be varied inversely with Ly to maintain retrace
and "5" shaping periods.
20
A1
f--LB
.fLY.
i\ /"
14
0
::
ffi
"
~~
--..;;~
;::
12
--
C
'"~
~
-
=
..,~
I .0
0.5
F::::::::: ==-5.5
5.0
4.5
4.0
3.5
3.0
2.5
6.5
6.0
ICM. COLLECTOR CURRENT (AMP)
5.9-
FIGURE 4 - INTERRELATION OF .,. FALL TIME
AND ts. STORAGE TIME
2.0
4.0
10
~
3.0
~-
B.O
0.5
1.0
1.5
2.0
2.5
lB. BASE CURRENT (AMP)
BASE CIRCUIT VALUES
The driver power supply and driver transistor type can be selec·
ted according to convenience. A TO·5 or Uniwatt type will
generally be needed. (The Darlington arrangement of the driver
transistors used in Figure 1, produces a wide range of ISl current
values). Once the driver circuitry is chosen, the turns ratio of the
driver transformer can be picked to produce about 4 to 5 volts
peak to peak at the base of the output device. Tight coupling
between windings is recommended on early designs to allow opti·
mizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The RB and
its bypass electrolytic, often called the "speed up" circuit, allows
adjustment of IS1 (or IS "end of scan" or IB end) while still
providing a low ac impedance for good turn·off of the output
device. In Figure 2, the effects of varying LB and ISl on the total
power input to the deflection circuit are shown. Note that an
optimum lS can be found which will produce low dissipation over
a wide range of IS1. This is desirable in order to produce efficient
operation over a wide range of circuit component tolerances. likewise, best La also gives the least sensitivity to output transistor
hFE·
The best value of LS found In Figure 2 is 2.0 }.tH, which is the
leakage Inductance value of the driver transformer, and no external
L is necessary. A lower LS would have reduced the power dissipatlan, over a narrow range of IS 1. However, a leakage inductance
of 2.0 pH is a minimum practical value. The best value of ISl is
2.0 A achieved In the typical device by using RS = 1.6 n. derived
experimentally.
These are the choices recommended for the test fixture, when
the transistor is used at leM = 5.5 A. For other values of leM
the drive circuit components must be changed. Figure 3 shows
the values of LB and IS1 which should be used. The value of RB
which will be required to produce the corresponding ISl is also
given, but of course, it is not an independent variable.
]
w
'"
;::
2. 0
--
"
1.0
'f
o
2.5
I
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
ICM. COLLECTOR CURRENT (AMP)
FIGURE 5 - PIN. POWER DISSIPATION WITH DEVIATIONS
OFVCEM AND ICM
0
~
...
VCEM =
5
~
...~
..
.....- /
-- f---
tr
~
0
:::>
:!:
Z
a: 5. 0
o
2.5
....-
;--
3.0
- ---
V
r- /
~
V
./"'"
700V
600 V
,/
~
500 V
V
--- ------
3.5
4.0
4.5
5.0
5.5
IC. COLLECTOR CURRENT (AMP)
427
~
~
o
o
LB = 14~H
12
_7.6
~
m
~B
.........
16
~
z:
I .5
/
~
FIGURE 2 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IB1. IC = 5.5 A PEAK
~
...«
2.0
/"
6.0
6.5
~
.3!
MJ3260 (continued)
TYPICAL TRANSISTOR CHARACTERISTICS
FIGURE 1 - DC CURRENT GAIN
50
z
<1
-
.J='I~OC ,
V
'"
iii 20
..........
~
VzSOC
I-
1.6
i\
..,'"..,'"
::>
~
~ 1.2
~
w
~
\~
c
~
10
C
>
>'
0.1
0.4
0.2
0.6
4.0
2.0
1.0
Iclla~ ~
o.8
VaE(sat)
6.0
0.06
0.2
0.1
0.4
1/
/
s.y ....... v-
~lc/IB=2.0
VC~(sati
o
~f1
leila ~s.n
Iclla=
o. 4
,
7.0
5.0
0.06
~\" 2Sj C
VCE = 5. V
~
.....
30
FIGURE 2 - "ON" VOL TAGE
2.0
I
0.6
1.0
2.0
4.0
6.0
IC. COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
FIGURE 3 - SAFE OPERATING AREA
10
100",
S.O
3.0
~ 2.0
.....
iL
~
w
1.0
..,::>'"
O.S
'"
I"
dcl'\
iJillS00C
"\.
'~"'~
5.0ms
"
'"c
0.2 r-- _---BONDING WIRE LIMITED
- - - -THERMALLY L1MITEO@TC=2So C
~j 0.1
(SINGLE PULSE)
SECONO BREAKDOWN LIMITED
8 0.05
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC·VCE limits of the transistor
that must be observed for reliable operation; Le., the transistor
must not be subjected to greater dissipation than the curves indi-
l.olm~ =
cate.
The dat~ of Figure 3 is based on T J(pk) = 1500 C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pk) ,.;;; 1500 C. At high case
temperatures, thermal limitation,s will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. (See AN,415).
I\."\.
E=::.
F'=
!J
0.02
0.0 1
3.0
IIIII
S.O 7.0
10
I
20
30
SO
)
70
100
200
300
VCE!.~OLLECTOR.EMITTER VOLTAGE (VOLTS)
FIGURE 4 - TEMPERATURE COEFFICIENTS
+3.0
J
'APPLIES FOR 'elia ";hFE/2
G
3.s +2.0
I
TJ =+2s bc to +IS00 C
~
iii
I Y1
c::;
~ +1.0
..,c
,.....1/ t.....r"
~SoC to +2S?C
'BVC forVCE( ..
w
'"
::>
I
!;(
'"
~ -1.0
~ltOYST
l-
i
Bva for VaE
-2.0
0.06
./
1250C 10 +'fo~ V'''''
~
0.1
0.2
0.4
0.6
1.0
.~
Ie, COLLECTOR CURRENT ,(AMP)
428
2.0
4.0
6.0
MJ3430 (SILICON)
HIGH VOLTAGE NPN SILICON TRANSISTOR
.. designed for use in high·voltage inverters, converters, switching
regulators and line operated amplifiers.
5.0 AMPERE
POWER TRANSISTOR
NPN SILICON
= 400 Vdc
•
High Coliector·Emitter Voltage - VCEX
•
Excellent DC Current Gain hFE = 10 (Min) @ IC = 3.5 Adc
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.9 Vdc (Max) @ IC = 2.5 Adc
JOOVOLTS
125 WATTS
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
300
Vdc
Collector-Base Voltage
VCB
400
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
5.0
Adc
Base Current
IB
2.0
Adc
Total Device Dissipation@Tc = 25°C
Derate above 25°C
Po
125
1.0
Watts
Operating Junction Temperature Range
TJ
-65to+150
°c
T stg
-65 to +200
°c
Rating
Collector-Emitter Voltage
Storage Temperature Range
W/oC
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS ITC
Characteristic
0
25°C unless otherwISe noted!
Svmbol
Min
Ma.
Unit
VCEOlsus!
300
-
Vde
-
2.5
mAde
OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage
(lc
= 100 mAde, IB =0)
Collector Cutoff Current
IVCE = 300 Vdc, IB =0)
ICEO
Collector Cutoff Current
IVCE = 400 Vdc,
ICEX
= 1.5 Vdc)
=400 Vdc,
VEBlol!) = 1.5 Vde, TC = 125°C!
VEBloff)
mAde
-
1.0
-
5.0
STYLE 1:
PIN 1. BASE
2. EMITIER
NOTE:
CASE: COLLECTOR
1. DIM "U" IS DlA.
IVCE
Emitter Cutoff Current
IVBE = 5.0 Vde. IC =01
lEBO
2.0
mAde
OIM
ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 Adc, VCE
(lc
= 5.0 Vdcl
= 3.5 Ade, VCE = 5.0 Vdcl
Collector-Emitter Saturation Voltage
IIc
= 2.5 Adc, IB = 0.5 Adcl
Base~Emitter
IIc
Saturation Voltage
= 2.5 Adc, IB = 0.5 Adcl
-
hFE
15
45
10
-
VCEIs.tl
-
0.9
Vdc
VBElsati
-
1.5
Vdc
OYNAMIC CHARACTERISTICS
-
6.35
0 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R
C
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11
Current-Gain-Bandwidth Product
(lC
A
B
MILLIMETERS
MIN MAX
=0.2 Adc, VCE = 10 Vdcl
429
INCHES
MAX
MIN
-
0.250
0.039
1.177
0.420
0.210
0.655
0.4411
0.151
-
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ3430 (continued)
FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
0
..
6.0
~
5
2.0
~
a:
1.0
1'l
O.5
~
o.2
o. I
E
0.0 5
a:
o
8
TJ -150°C
.5ms=~
I"..
~5.0ms \..
I
---------
Secondary Breakdown Limi~t-;I
Thermal Limit@Tc=250C de
Bonding Wire Limit
Curves Apply Below Rated VCEO
0.0 2
0.0 1
5.0
"'
1.0m "'
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figur. 1 is based on TJ(pk) = 1500 C; TC is
"" "- ""
variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pk) lsoOC. At high
case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by second
breakdown. (See AN-415)
10
20
30
50
100
200
300
500
VCE.COLLECTOR-EMITTER VOLTAGE (VOLTS)
FIGURE 3 - "ON" VOLTAGES
FIGURE 2 - DC CURRENT GAIN
300
2.0
II"
200
iJ
I I " 5.0 Vdc
VCE"
J
TJ- 150 C
0
25°C
0
0
~
I-
-
~
I-
-55°C
1I11
1I11
1.6
10 0
0
~ J~oc
I-
VCE(sa')@ ICIIS - 10 "
~
1. 2
"'
o~
0.8
......
to
\
~ ~I\
>
J
V
VSE(sa,)@ICIIS-l0
II
0.4
V vF\
0.1
0.2
0.3
0.5
1.0
2.0
3.0
VCE(sa')@ ICIIS - 5.0
o
3.0
5.0
0.2
0.05 0.07 0.1
IC. COLLECTOR CURRENT (AMP)
0.3
0.5 0.7
50mH
1 400
",~l
I-
~
~ 300
a:
8
E
tOO
2.0
Of-- VCEO(sus) IS ACCEPTASLEWHEN
VCE;;.300 VAT Ic-l00mA
"
0
100
200
300
..=..6.0V
\
\
'\
400
300
500
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
MJ3480
3.0
FIGURE 5-SUSTAINING VOLTAGE TEST CIRCUIT
FIGURE 4 -SUSTAINING VOL TAGE TEST LOAD LINE
20
1.0
IC. COLLECTOR CURRENT (AMP)
500
~
17
)
:>
5.0
0.05
I--"'
IL vl7
(SILICON)
For Specifications, See BUI08 Data.
430
1.0
5.0
MJ3583 thru MJ3585
(SILICON) For Specifications, See 2N3583 Data.
MJ3701 (SILICON)
For Specifications, See MJ2253 Data.
MJ3760 (SILICON)
MJ3761
HORIZONTAL DEFLECTION SILICON
TRANSISTORS
6.0/8.0 AMPERE
TRIPLE DIFFUSED
POWER TRANSISTORS
NPN SILICON
· .. designed for use in large screen color television receivers.
• Collector· Emitter Voltage VCER = 750 Vdc
750 VOLTS
80 WATTS
• Collector Current IC = 6.0/8.0 Adc
•
Fall Time @ IC = 8.0 Adc tf = 0.51ls (Typ). tf = 0.91ls (Max)
MAXIMUM RATINGS
Rating
Symbol
MJ3760j MJ3761
Unit
Collector·Emitter Voltage
VeEO
550
Vdc
Collector-Emitter Voltage
(RBE = 100 nI
VeER
750
Vdc
Collector·Base Voltage
VeB
750
Vdc
Emitter-Base Voltage
VEB
7.0
Vdc
Collector Current - Continuous
Ie
6.0
12.0
- Peak
Sase Current
Tota' Power Dissipation
"Derate above 25°C
@
TC == 25°C
Operating and Storage Junction
Temperature Range
I
8.0
16.0
Adc
IB
4.0
Adc
Po
80
0.638
Watts
-65 to +150
°e
TJ.T"g
w/oe
Lr=':j±t
r~K
ESEATIN(~
I
PLANE
THERMAL CHARACTERISTICS
Characteriltic
Therrpal Resistance, Junction to Case
FIGURE 1 - POWER DERATING
80
"-
70
~
""
!.
60
z 6D
;::
0
;t
~
.
~
:c
40
STYLE I,
PIN 1. BASE
2. EMITTER
CASE COLLECTOR
"'-
MILLIMETERS
"",
30
20
0
0-
"" "-
lD
20
40
60
80
100
TC. CASE TEMPERATURE (DC)
MAX
MIN
MAX
A
-
39.37
21.08
7.6
1.09
3.43
30.40
11.18
5.59
17.1
12.19
4.09
28.61
-
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
O. 5
D.4lID
0.161
1.050
0
E
6.35
0.99
-
F
9.90
G !l0.67
o
o
MIN
B
C
~
120
5.33
J 16.64
K 11.18
II 3.84
H
"
140
431
160
INCHES
DIM
R
-
0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
CASE 11
-
MJ3760,MJ3761 (continued)
ELECTRICAL CHARACTERISTICS (T
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lr. = 10mAdc,IR = 0)
Collector Cutoff Current
(VCE
= 750 Vdc, VBE = 0)
Emitter Cutoff Current
(VBE = 7.0 Vdc, IC = 0)
VCEO(sus)
550
-
-
ICES
-
-
1.0
mAd~
lEBO
-
-
1.0
mAdc
-
-
5.0
5.0
-
-
Vdc
ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
(lc
(lC
= 6.0 Adc,
= 8.0 Adc,
IB
IB
MJ3760
MJ3761
Base-Emitter Saturation Voltage
(lC
(lC
Vde
VCE(sat)
= 2.5 Adc)
= 3.0 Adc)
-
Vde
VBE(sat)
= 6.0 Adc, I B = 2.5 Adc)
= 8.0 Adc, I B = 3.0 Adc)
MJ3760
MJ3761
Second Breakdown Collector Current with Base Forward Biased
(t = 1.0., VCE = 100 Vdc)
ISlb
200
-
fT
-
Cob
1.5
1.5
-
mAde
7.5
-
MHz
-
150
-
pF
tf
-
0.33
0.7
1'5
tf
-
0.5
0.9
!,s
OYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product (1), (2)
(lC = 0.3 Adc, VCE = 5.0Vdc, f test = 1.0 MHz)
Output Capacitance
(Vce
= 10 Vdc,IE = 0, f = 0.1
MHz)
SWITCHING CHARACTER ISTICS
Fall Time: MJ3760
(lC = 5.5 Adc, I B1
= 1.5 Adc,
Fall Time: MJ3761
(lC = 8.0 Adc, IB1
= 2.0 Ade, LB = 20 !,H, See Figure 2)
LB
= 20 !'H, See Figure 2)
(1) Pulse Test: Pulse Width .. 300 !,S, Duty Cycle .. 2.0%.
(2) fT = Ihfel. f test
FIGURE 2 - TEST CIRCUIT
100
TUT
lOW
8 mH
+60 V
0.005 !,F
1.5 k
25 J,lF
MJE
3439
Von
51
300
51
RS
500 IlF
15 V
values
so
below
V
·Selected for 800 Volts
DRIVER TRANSFORMER (T1)
Cs
Ly
Motorola part number 25D68782A05·1/4" laminate "E" iron
core. Primary Inductance-39 mH, Secondary Inductance-O.22 mH,
IC
A
LF
mH
mH
Leakage inductance with primary shorted-2.0 llH. Primary 260
5.5
0.98
0.65
0.03
1.0
8.0
0.57
0.44
0.05
6.0
turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG
enamel wire.
!,F
TEST CIRCUIT OPTIMIZATION
The test circuit and operating waveforms for the
of problems, but it is the dissipation in the transistor that
MJ3760 and MJ3761 transistors are shown in Figures 2
is of fundamental importance. Once the required transistor
and 3. The test circuit may be used to evaluate devices in
operating current is determined, fixed circuit values may
the conventional manner, i.e., to measure fall time, storage
be selected from the table . .Factory testing is performed by
time, and saturation voltage. However, this circuit was
reading the current meter only, since the input power is
designed to evaluate devices by a simple criterion, input
proportional to current. No adjustment of the test ap·
power. Excessive power input can be caused by a variety
paratus is required.
432
MJ3760,MJ3761 (continued)
be 8 times the 8o-volt power supply voltage or approx·
imately 640 volts, but may be varied slightly by adiust·
ing retrace time and flyback tuning. For this reason, high
voltage devices are particularly useful in cost conscious
solid·state receivers as they permit the use of an off-the'
line half wave power supply.
The power supply used in the circuit of Figure 2,
was chosen to produce approximately a 650 V collector
pulse on the transistor, a conservative value, recommended
for unregulated applications.
The values of yoke inductance (LV), flyback primary
inductance (LF), retrace capacitor (CR) and "s" shaping
capacitor (CS) are shown for operating collector currents
of 5.5 A which is suitable for 90 0 color and 1100 large
screen black and white receivers, and 8.0 A for 1100
color receivers. Peak collector currents to lOA may be
handled by these transistors. The most efficient application results when the power supply voltage is held constant. Adjustments of the amount of deflection can then
be made by raising or lowering LV and LF. LVIV is constant for the fixed voltage situation, and actual deflection
is proportional to IV
Values of Cs and CR must
be varied inverselY with LV to maintain retrace and "s"
shaping periods.
BASIC CONSIDERATIONS
The primary consideration when choosing a deflection
transistor for a conventional (parallel connected) circuit,
as shown in Figure 2, is voltage capability. The flyback
voltage that the device will be subjected to is a relatively
predictable value with respect to the main power supply
voltage. This voltage pulse, shown in Figure 3, will usually
FIGURE 3 - TEST CIRCUIT WAVEFORMS
JIY.
TEST CIRCUIT VALUES
The driver power supply and driver transistor type
can be selected accord ing to convenience. A TO-5 or
plastic power type will generally be needed. For testing
convenience, the Darlington arrangement of the driver
transistor shown in Figure 2-was used to produce a wide
range of IBl current values. Once the driver circuitry IS
chosen, the turns ratio of the driver transformer can be
selected to produce 4 to 5 volts peak-to-peak at the base
of the output device. Tight coupling between windings is
recommended on early designs to allow optimizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The
RB and its bypass electrolytic, often called the "speed
up" circuit, allows adjustment of IB 1 (or IB "end of scan"
or IB end) while still providing a low AC impedance for
good turn·off of the output device.
In Figure 4, the effects of varying LB and IB 1 on
total power input to a deflection circuit requiring an IC
of 5.5 A are shown. Note that an optimum LB can be
found which will produce low dissipation over a wide
range of I B1. This is desirable in order to produce efficient operation over a wide range of circuit component
tolerances. Likewise, best LB also gives the least sensitivity to output transistor hFE.
The best value of LB found in Figure 4 is 2.0 J.lH. This
is the sum of the actual leakage inductance of the driver
transformer (secondary inductance with primary shorted)
and an external L if necessary. The value of IBl is approximately 2.5 A achieved in a typical device by using
RB = 0.7 n, which was derived experimentally. These
are the choices recommended for the test fixture when
the transistor is used at IC = 5.5 A.
Fundamental waveforms of a simplified horizontal
deflection Circuit.
FIGURE 4 - RELATIONSHIP OF POWER DISSIPATION
TO L8 WITH CHANGING 181, IC = 5.5 A
11.2
i
110
10.8
z
o
;:: 10.6
;t
~10.4
'"w
~ 10.2
6
lei. 5.~ A
TJ' 25'e
~
ti
I~ ~
Q..l0.0
9.8
0.5
LB-12
10
8.0
6.0
4.0
:'\. 2.0
:r
0.75
~t-..
"
1.0
1.25
1.5
1.75
2.0
2.25
2.5
IB1, BASE CURRENT (AMP)
433
MJ3760,MJ3761 (continued)
A lower value of LS would have reduced the power
dissipation by a small value. However, a leakage inductance of 2.0 IlH is a minimum practical value for
driver transformer manufacturers to meet as the secondary
winding leakage inductance.
For other values of Ie, the drive circuit components
must be changed. Figures 7 and 8 show the values of LS
and IS 1 which should be used. The value of R S, which
will be required to produce the corresponding IS1 value,
is also given; however, it is not an independent variable.
Figures 9 and 10 show the typical results that will be
obtained with the test circu it of Figure 2 at various
operating conditions.
With the increasing usage of the toroidal yoke and the
inherently lower inductance, a much higher collector
current will be demanded from the horizontal output
transistor. Figure 5 shows the relationship of power dis·
sipation to LS with changing I Sl when an Ie of 8.0 amps
is required.
The best value of LS, found in Figures 5 and 7, is
2.0 IlH. The best value of IS1, found in Figure S, is
2.5 amps. In Figure 5, the 2.5 amp base current falls in
the flatter region of the 2.0 IlH base inductance curve.
The optimum base resistance RS in Figure 6 is 0.7 ohms
to produce the I Sl value of 2.5 amps.
INTERRELATION OF SASE RESISTANCE,
SASE INDUCTANCE AND SASE CURRENT
FIGURE 5 - RELATIONSHIP OF POWER DISSIPATION TO
LB WITH CHANGING 'B1
FIGURE 6 - OPTIMUM BASE RESISTANCE
5.5
1
Ic= B.OA
f - - I--TJ = 25"C
I
O~"-.
9 ~"\." I'-..
1\'-" r-....
\~
""-.....
--
t-....
'\ ~
LB~
.....V
L---
~
~
"«
~
~
r-...."-. r-r---
16
1.0
~
z
TJ = 25"C
\
3.5
t;
iii
'"w
tt
\
\
2.5
'\
.--.......
1.5
I'....
.2.0.H
""""
1.5
i
"w
S
1\
4.5 \
2.0
181. BASE CURRENT (AMP)
2.5
0.5
5.0
3.0
6.0
I
2.6
I
TJ = 25"C
j
./'"
~ 2.2
2.2
9.0
S
~
~
B
1.8
"
>-
::> 2.0
"
:!:
/
!
w
~
V
~ 1.4
!11.8
...- f...- I--
//
w
1.6
5.0
B.O
FIGURE 8 - OPTIMUM BASE CURRENT
FIGURE 7 - OPTIMUM BASE INDUCTANCE
2.4
-
7.0
IC. COLLECTOR CURRENT (AMP)
/
TJ =25"C
/
1.0 V
6.0
7.0
8.0
9.0
5.0
6.0
7.0
IC. COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
434
8.0
9.0
MJ3760,MJ3761 (continued)
FIGURE 9 - INTERRELATION OF tt, FALL TIME
AND t .. STORAGE TIME
FIGURE 10 - EFFECT OF COLLECTOR CURRENT
ON INPUT POWER
20
0.6
0.5
....-::::
./
/
~
-- -----
~ 18
's
~
~ 16
~
~
;!;
C
0::
14
TEST CIRCUIT OF FIGURE 2 USING
OPTIMUj LB ANi'Bl. I
I
6.0
1.0
8.0
IC. COLLECTOR CURRENT lAMP)
--- -
12
5.0
0.2
5.0
9.0
FIGURE 11 - DC CURRENT GAIN
1.4
z
TJ=150oC
50
I
§'" 30
I---"
~
u
Q
t
a
1.
VCE 5.0 V
1.2
~
6.0
1.0
8.0
IC.COLLECTOR CURRENT lAMP)
9.0
L
TJ' 25°C
~ 1.0
25°C
0
B
/
i"..
:;:
0:
/
V
FIGURE 12 - "ON" VOL TAGES
100
10
V
0:
V/
0.3
/
/
>-
~
....... 1--'
~
rr
'"~
1\
~
~
~
-5JOC
r-- VBEI,,')@ IC/IB - 5.0
0.6
.0
V
'">
r-.~
~I---
,
.......:V
0.8
>- O. 4
VCEI,,!)@ IC/18 = ~~
O. 2
a
5.0 "
0.01 0.02
o
0.05 0.1
0.2
0.5
1.0
IC. COLLECTOR CURRENT lAMP)
2.0
5.0
0.01
10
~2.0
I
0.02
0.05 0.1
0.2
0.5
1.0
IC. COLLECTOR CURRENT lAMP)
2.0
5.0
10
FIGURE 13 - ACTIVE REGION SAFE OPERA TlNG AREA
10
5.0
~
~
MJ3161.
-MJ3160
2.0
r'
>-
There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate Ie - VeE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 13 is based on Te = 850 e. The
thermal pulse limit shown is valid for a duty cycle of
5.0%. For other conditions, TJ(pk) must be calculated and
kept below 1500 e. T J(pk) may be calculated from the
data of Figure 14. At higher case temperatures, thermal
limitations will reduce the power that can be handled to
values less than the limitation imposed by second
breakdown.
100",
DUTY CYCLE ... 0.05
de
O
:::: 0.5
0:
~
0.2
= ==
~
=.
0.1
80.05
~
0.02
0.01
1.0
TC 85°C
BONOING WIRE LIMIT
- - - - THERMAL LIMIT
SECIlIlPJREAKIl'lWN LIMIT
2.0
5.0
10
20
50
100
200
VCE. COLLECTOR·EMITTER VOLTAGE IVOL TS)
500
435
MJ3760,MJ3761 (continued)'
FIGURE 14 - THERMAL RESPONSE
10
0,7
0.5
;;i
L
wC
0,3
\.
>-N
0,2
"-
",w
>-~
2<
w,"
,"'"
2C
-w
~~
........
u~
0,03
tt'"
..,
0.02
'"
0.D1
~m
IS
~ ~ ~ 0'0,5
0,1
0,07
0,05
",-
~
'-'<" "\.
pFflSl
0,2
01
0,05
0,02
0,01
SINGLE PULSE
0.02 0,03
005
O,Z
01
0,3
0,5
1':~t2 j
I
10
2.0
30
5,0
r:
I
~ TJ - 150'C
/
~
20
""~
10
<
1/
FORWARD
w
5,0
2.0
....
~
8
25'C
6
~
-0.2
0
+0.2
50
-
+0.6
+0.4
--
ZO
60
80
100
120
TJ. JUNCTION TEMPERATURE I'CI
40
TJ' 25'C
II
~
...... C,b
100
U 70
u
a
a
2a
0,5
......
1.0
2,0
2000
0.5
......
<
1000
0.2
Cib
~ 300
500
/
1.0
w
S 200
300
./
FIGURE 17 -CAPACITANCE
1000
70 0
~ 500
200
VCS'750V
VSE. BASE·EMITTER VOLTAGE IVOLTSI
2000
100
,/
g;
~
10.1
-0.4
111111
11111
30
FIGURE 16 - COLLECTOR·BASE LEAKAGE CURRENT
«.;; 200
F= != REVERSE
~
I-
TIME (ms)
r-- VCE' 250 V
/
ZO
10
FIGURE 15 - COLLECTOR CUT·OFF REGION
./
f=
r=
DUTY CYCLE, D' I1ltz
t,
100'C
'
I4IJC(tI" rltl ReJC
ReJc' 1.56'CMI Max
o CURVES APPLY FOR
POWER PULSE TRAIN
SHOWN READ TIME
IAT 11
ITJlpkl - TC' P(pkl ZeJCltl
5,0
10
20
50
VR. REVERSE VOLTAGE IVOLTSI
436
100
200
500
140
16D
MJ3771" MJ3772, MJ6257 (SILICON)
20 and 30 AMPERE
POWER TRANSISTORS
NPN SILICON
HIGH POWER NPN SILICON POWER TRANSISTORS
40 and 60 VOLTS
200 WATTS
Select from Epibase transistors for ultimate circuIt performance
based on the design requirements.
EPIBASE - Designed for power amplifier and switching applications.
•
Low Collector-Emitter Saturation Voltage VCElsatl
= 1.0 Vde IMaxl @ IC = 15 Ade - MJ3771
= 0.8 Vdc IMaxl @ IC = 10 Ade - MJ3772
= 0.7 Vde (Max) @ IC = 8.0 Ade - MJ6257
•
Low Leakage 'CBO = 1.0 mAde (Maxi @ Rated VCB
•
High Current-Gain - Bandwidth Product IT = 2.0 MHz (Mini @ IC = 1.0 Adc
MAXIMUM RATINGS
Rating
MJ3772
MJ6257
Unit
Collector-Emitter Voltage
VCEO
40
60
40
Vdc
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base: Voltage
VCEX
50
80
50
Vdc
VCS
50
100
50
Vdc
VES
5.0
7.0
5.0
Vdc
Ie
30
30
30
7.5
15
5.0
15
Collector Current
SVmbol MJ3771
Continuous
Peak
20
Adc
IS
Peak
Total Device Dissipation @TC = 25°C
PD
200
1.14
Watts
T J,T stg
-65 to +200
°e
Operating and Storage Junction
ESEATIN!~
I
PLANE
Adc
Base Current - Continuous
Derate above 25°C
Lr~
r~.
w/oe
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction
to
Case
OIM
A
FIGURE 1 - POWER DERATlNG
200
175
150
125
'"
0
E
i'-
F
G
"'-
100
H
J
K
......
75
......
50
Q
R
........
25
o
o
8
C
.........
25
50
75
100
125
150
175
200
TC, CASE TEMPERATURE (OC)
437
MilliMETERS
MAX
MIN
-
INCHES
MIN
MAX
39.31
21.08
1.62 0.250
1.09 0.039
3.43
29.90 30.40 1.111
10.61
11.18 0.420
5.33
5.59 0.210
16.64 11.15 0.655
11.18 12.19 0.«0
3.84
4.09 0.151
26.61
Collector connected to case.
6.35
0.99
CASE 11
1.550
0.830
0.300
0.043
0.135
1.191
0.«0
0.220
0.615
0.480
0.161
1.050
MJ3771, MJ3772, MJ6257 (continued)
ElECTR ICAl CHARACTER ISTICS (T C = 25°C unless otherwise noted.!
Symbol
Characteristic
Min
Max
40
60
40
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 0.2 Adc, IS = 0)
Coliector·Emitter Sustaining Voltage
(lC = 0.2 Adc, VES(off) = 1.5 Vdc,
RSE = 100 Ohms
MJ3771
MJ3772
. MJ6257
MJ3771
MJ3772
MJ6257
Collector Cutoff Current'
Vdc
50
SO
50
-
45
70
45
-
-
2.0
2.0
2.0
-
1.0
1.0
1.0
2.0
2.0
5.0
Vdc
mAdc
ICEO
(VCE = 30 Vdc, IS = 0)
(VCE = 50 Vdc, IB = 0)
(VCE = 25 Vdc, IS = 0)
Collector Cutoff Current
(VCE =50 Vdc, VES(off) = 1.5 Vdc)
(VCE = 100 Vdc, VEB(off) = 1.5 Vdc)
(VCE = 45 Vdc, VEB(off) = 1.5 Vde)
(VCE = 30 Vdc, VES(off) = 1.5 Vdc,
TC = 1500C)
(VCE = 45 Vde, VES(off) = 1.5 Vde,
TC= 1500C)
MJ3771
MJ3772
MJ6257
ICEX
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257
Collector Cutoff Current
(VCS = 50 Vde, IE = 0)
= 100 Vdc,
-
VCER(sus)
= 0.2 Adc, RSE = 100 Ohms)
(VCS
-
VCEX(sus)
Collector-Emitter Sustaining Voltage
(lC
Vdc
VCEO(sus)
MJ3771
MJ3772
MJ6257
mAdc
-
-
mAdc
ICSO
-
MJ3771
MJ6257
MJ3772
IE = 0)
Emitter Cutoff Current
-
1.0
1.0
1.0
mAde
IESO
(VSE = 5.0 Vde, IC = 0)
-
MJ3771
MJ6257
MJ3772
(VSE = 7.0 Vdc, IC = 0)
-
1.0
1.0
1.0
ON CHARACTERISTICS
DC Current Gain
(lC = 15 Adc, VCE = 4.0 Vde)
(lC = 10 Ade, VCE = 4.0 Vdc)
(lc = S.O Adc, VCE = 4.0 Vdc)
(lc = 30 Ade, VCE - 4.0 Vdc)
(lc - 20 Ade, VCE = 4.0 Vdc)
-
hFE
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257
Collector-Emitter Saturation Voltage
(lC = 15 Adc, IS = 1.5 Adc)
VCE(satl
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257
(lC =10 Ade, IS = 1.0 Adc)
(lC = S.O Adc, IS = O.S Ade)
(lC =30 Adc, IS = 6.0 Ade)
(lC = 20 Adc, IS = 4,0 Adc)
Sase·Emitter On Voltage
(IC = 15 Ade, VCE = 4.0 Vdc)
(lC = 10 Adc, VCE = 4.0 Vde)
(lC = S.O Adc, VCE = 4.0 Vde)
15
15
15
5.0
5.0
5.0
60
-
1.0
O.S
0.7
4.0
3.0
60
75
Vde
-
-
3.0
Vdc
VSE(on)
-
1.7
1.5
1.4
t,
-
0.7
ts
-
1.0
tf
-
O.S
MJ3771
MJ3772
MJ6257
DYNAMIC CHARACTERISTICS
Current-Gain - Sandwidth Product
(lC = 1.0 Adc, VCE· 4.0 Vdc, ftost = 1.0 MHz)
SWITCHING CHARACTERISTICS
Rise Time
Storage Time
(VCC· 30 Vde, IC = 10 Adc)
lSI = IS2 = 1.0 Adc)
Fall Time
438
,..S
,..S
,..s
MJ3771, MJ3772, MJ6257
(continued)
FIGURE 2 - SWITCHING TIME TEST CIRCUIT
FIGURE 3 - TURN-ON TIME
VCC
+30 V
5.0
RC
2.0
10
SCOPE
RB
]
w
'">=
51
-~ E
f- I-
VCC
ICIIB
TJ
30 V
10
25°C
VBE(offi = 5.0 V
1.0
O. 5
...
O. 2
O. 1
tr, tfslO ns
OUTY CYCLE = 1 0%
td
0.05
-4 V
RB AND RC ARE VARIED TO SBTAIN DESIREO CURRENT LEVELS
0.0 2
0.0 1
0,3
01 MUST BE FAST RECOVERY TYPE, eg
MBD5300 USED ABOVE IB ~100 mA
MSD6100 USED BELOW IB ~100 mA
0.5
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
IC, COLLECTOR CURRENT (AMP)
FIGURE 4 - THERMAL RESPONSE
10
0, 7
-'
~
O. 5
~c
::J: UJ O. 3
r-- I -
0=0.5
>-N
0.2
Vi~
0.1
~~ O. 2
f-:::::::: t;;;:;:;;;
'"
PtJUl
"t-~'2--I
0.01
f'INGLE(UiSE
.,.,.
~ mO.D3 -
II
0.0 1
002
0.05
0.1
-
I
,....
~O.O 5_
~'"
w
0.0 2
I
DUTY CYCLE, D = ,,1'2
~~
--
~~ 0.1f-- - f- 0.05
~ ~O.O 7~ ~ 1-0.02
"'-
t
-
i-- I-""
-OJC(') ,(tl OJC
OJC 0.B750C/W Max 1 1 1 _
o CURVES APPLY FOR POWER_
PULSE TRAIN SHOWN
- t-- - READ TIME AT"
- - TJlpk)- TC = P(pk) 0JC(')-
...... Iiiii'
II
0.2.
1.0
0.5
2.0
50
10
I
20
II II
50
100
200
500
1000
2001
',TIME (m,)
FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
30
MJ3771
20
~
'" 10
:'>
~
"'"
'"
0
I
I
....
....
r-MJT2,t625i
d~""
I.
....
5.0
3.0
-
-
-
TC - 25°C
BONDING WIRE LIMITED
r- - - - THERMALLY LIMITED
r
There are two limitations on the power handling abdlty of a
transistor average junction temperature and second breaKdown.
Safe operating area curves mdlcate I C·V CE limits of the transistor
that must be observed for relIable operation, i.e., the transistor
must not be subjected to greater dissipation than the curves Indicate
The data of Figure 5 IS based on T J(pk) = 200°C; T C IS vanable
depending on conditions. Second breakdown pulse limits are valid
\
I
==
ln
5.0ms
7.0
(SINGLE PULSE) I
2.0 ----SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW
0
RATED VCEO
'"~ 1.0
0.7
-PULSE CURVES APPLY
0.5
-FOR ALL DEVICES
J377
0.3
2.0 3.0
5.0 7.0 10
20
1.0
~
.... 1". 50 OIlS
for duty cycle. to 10% provIded T J(ok) .;; 200°C T J(pk) may be
\
calculated from the data In Figure 4 At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations Imposed by second breakdown.
1' ~j;~;; r-I
r i30
50
(S.e Motorola Application Note AN-415)
70
100
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)
439
MJ3771, MJ3772, MJ6257 (continued)
FIGURE 6 - TURN-OFF TIME
FIGURE 7 - CAPACITANCE
100
2000
0
VCC - 30 V
IC/IB 10
IBl = IB2
TJ = 25 0 C
0
0
]
;:: 2. 0
TJ = 250 C
l
~1000 b-
Cib
"z
Co~
w
5. 0
w
::;;
r---.
f--
-
ts
~.
1. 0
O. 5~
tf
..
~ 700
<3
'"
",'
........ r-300
["'-....
O.2
O. 1
0.3
I.......
~ 500
l- I----,
1.0
0.5
2.0
3.0
5.0
7.0
10
20
b,
200
30
0.1
1.0
0.5
0.2
IC. COLLECTOR CURRENT (AMP)
FIGURE 8 - DC CURRENT GAIN
200
25 0 C
z
<
'"
t-
VCE = 4.0 V
r--..
Q
ffi
'"'"
Q
0
30
r--
i"'- ~
a:
0.8
'"
§
0.4
g
r-.. "
10
~
7. 0
>
5. 0
0.3
0.5
0.7
1.0
1.2
1l']
...... i".
l'
~ 20
2.0
3.0
5.0
7.0
10
20
I'
~
0
0.01
30
0.02
I
/)
1.6
r
.
--
W
'"
O.B
VBE(sat)@IC/IB-l0
'::;
Q
>
i"'"VrE ~ ~CE = 4.0 V
>'
0.4
o
0.3
V~E(~tl JIUBI= 10
0.5 0.7
1.0
I2.0
I
~F"
~
1li
~
7.0
~
13
~
8
1.0
2.0
5.0
10
t-
i
10
20
IC. COLLECTOR CURRENT (AMP)
II
.L
./
-550 C to 250 C
+1.0
-1.0
-2.0
11
.llU
lUl
III
-
OVB for VBE
li
0.5 0.7
1.0
VI
~
-'OVC for VCE( ..ti
2.0
250 C to 1500 C
f0-
3.0
l~
_._-
tz'r-'
L
-550 C to 250 C
J.ilill
5.0 7.0
L
"",I""'"
II L
IC. COLLECTOR CURRENT (AMP)
440
/
/
25 0 C to 1500 C
-3. 0
0.3
30
..lJl U
'APPLIES FOR IC/IB" hFE/2
+2.0
w
/
5.0
0.5
+3.0
'"=>
./
,....
3.0
..;.:V II
r--
13
.§
'I
~
0.2
+4.0
3;
A
Q
0.1
FIGURE 11 - TEMPERATURE COEFFICIENTS
TJ = 250 C
~
0.05
IC. COLLECTOR CURRENT (AMP)
FIGURE 10 - "ON" VOLTAGES
1.2
I'
1\
IC. COLLECTOR CURRENT (AMP)
2.0
100
20A
~
-55 0 C
+-
0
TJ = 250 C
lOA
5.0 A
1.6
LU
'"
~
'"
r--..
100
20
II
1111
IC=2.0A
~
ill 70
'"'"=>
II
!:;
TJ = 150 0 C
hi.
10
FIGURE 9 - COLLECTOR SATURATION REGION
2.0
til
500
30 oJ--
5.0
2.0
VR. REVERSE VOLTAGE (VOLTS)
10
-20
L
30
MJ3771, MJ3772, MJ6257
(continued)
FIGURE 12 - COLLECTOR CUTOFF REGION
f--VCE - 30V
F==I==TJ
+100 0 C': !.i+250~
§
+150 OC
1
/
16:= REVERSE
FORWARD
2
w- 3
-04
-0.3
-0.2
-0.1
+0 1
+0.2
+0.3
+0.4
VBE, BASE·EMITTER VOLTAGE (VOLTS)
441
+0.5
+0.6
MJ3773, MJ6302
(SILICON)
16 AMPERE
POWER TRANSISTORS
HIGH POWER NPN SILICON POWER TRANSISTORS
Epibase transistors for ultimate circuit performance based on
the designer's requirement.
EPIBASE
NPN SILICON
120, 140 VOLTS
200 WATTS
- designed for power amplifier and switching
appl ications.
•
Low Collector· Emitter Saturation VoltageVCE(sat) = 0.8 Vdc (Max) @ IC = 8.0 Adc
= 2.0 Vdc (Max) @ IC = 16 Adc
•
Low Leakage ICBO = 1.0 mAde @ VCB = 125 Vdc - MJ6302
= 1.0 mAde @ VCB = 140 Vdc - MJ3773
•
High Current-Gain - Bandwidth Product fT = 1.0 MHz (Min) @ IC = 1.0 Adc
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Collector-Emitter Voltage
Collector-Base Voltage
veE x
Emitter-Base Voltage
Collector Current - Continuous
VEe
MJ6302
MJ3773
Unit
120
140
140
140
160
160
Vdc
VeEO
Vee
7.0
16
30
4.0
15
200
1.14
-65 to +200
Ie
Peak
Base Current - Continuous
Ie
Peak
Total Device Dissipation
Derate above 25°C
@
T C =25°C
Operating and Storage Junction
Temperature Range
Vdc
Vdc
Po
TJ,T stg
Vdc
Adc
Adc
Watts
wfOe
°e
THERMAL CHARACTERISTICS
Characteristic
MJ3773
MJ6302
Thermal Resistance, Junction to Case
0.875
STYLE 1:
PIN " BASE
2, EMITTER
CASE: COLLECTOR
200
FIGURE 1 - POWER DERATING
NOTE:
" DIM "n"ls DlA.
I"'"
DIM
""'"
0
0
25
"'" r-....
A
B
C
""
"'"
125
50
75
100
TC, CASE TEMPERATURE lOCI
~
150
""
175
D
E
F
0
H
J
K
"
Q
R
MILLIMETERS
MIN
MAX
-
INCHES
MIN
MAX
- 1.550
22.23
- 0,875
11.43 0,250 0,450
1,09 0.038 0.043
3,43
J!..136
29.90 3D,4D 1,177 1.197
10.67 1I.IB 0,420 0,440
5.21
5.72 0.2D5 O.22S
16.84 17.15 0,65 0,675
11.18 12.19 0.440 O.
.151 0,' I
3.84 4
26.61
- 1.D50
39,3)
8.35
0.97
200
442
CASE 11·03
-
MJ3773, MJ6302 (continued)
I
ELECTRICAL CHARACTERISTICS (TC = 2SoC unless otherwise noted.!
Symbol
Characteristic
Min
Max
120
140
-
140
160
-
140
160
-
-
2.0
2.0
Unit
OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage! 11
(lc = 0.2 Ade, IB = 0)
Collector~Emitter
Sustaining'Voltage
Sustaining Voltage
Vde
VCER(sus)
MJ6302
MJ3773
(IC = 0.2 Ade, RBE = 100 Ohms)
Collector Cutoff current
(VCE = 100 Vde, IB = 0)
(VCE = 120 Vde, IB = 0)
Collector Cutoff Current
(VCE = 120 Vde, VEB(off)
(VCE = 140 Vde, VEB(off)
(VCE = 120 Vde, VEB(off)
(VCE = 140 Vde, VEBloff)
Vde
VCEX(sus)
MJ6302
MJ3773
(lC = 0.2 Ade, VBE(off) = 1.5 Vde,
RBE = 100 Ohms)
Collector~Emtiter
Vde
VCEO(sus)
MJ6302
MJ3773
mAde
ICED
MJ6302
MJ3773
-
mAde
ICEX
=
=
=
=
1.5
1.5
1.5
1.5
-
MJ6302
MJ3773
MJ6302
MJ3773
Vde)
Vde)
Vde, TC = 1500 CI
Vde, TC = IS00C)
Collector Cutoff Current
(VCB = 125 Vde, IE = 0)
(VCB = 140 Vde, IE = 0)
-
1.0
1.0
5.0
5.0
mAde
ICBO
-
MJ6302
MJ3773
Em itter Cutoff Current
(VBE = 7.0 Vde, IC = 0)
-
1.0
1.0
-
1.0
1.0
15
15
5.0
5.0
60
60
-
O.B
O.B
2.0
2.0
-
-
I.S
1.5
1.0
-
40
-
mAde
lEBO
MJ6302
MJ3773
ON CHARACTERISTlCS(I)
DC Current Gain
(lc
-
hFE
= B.O Ade, VCE = 4.0 Vde)
MJ6302
MJ3773
MJ6302
MJ3773
(lc = 16 Ade, VCE = 4.0 Vde)
Collector-Emitter Saturation Voltage
(lC = B.O Ade, IB = BOO mAde)
-
Vde
VCE(satl
MJ6302
MJ3773
MJ6302
MJ3773
(lC = 16Ade, IB = 3.2 Ade)
Base-Emitter On Voltage
(lC = B.O Ade, VCE = 4.0 Vde)
Vde
VBE(on)
MJ6302
MJ3773
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 1.0 Ade, VCE = 10 Vde, ftost = 0.5 MHz)
fT
Smell-5ignal Current Gain
(lC = 1.0 Ade, VCE = 4.0 Vde, f = 1.0 kHz)
hfo
(VCC = 30 Vde, IC
= B.O Ade,
IB 1 = IB2 = O.B Ade)
443
MHz
-
MJ3773, MJ6302 (continued)
FIGURE 2 - SWITCHING TIME TEST CIRCUIT
FIGURE 3 - TURN-ON TIME
5. 0
VCC
VCC-30V
IC/IB'1O
TJ ~ 25°C
3.0
+30 V
2.0
H
+~] --1--,
v
RC
J
SCOPE
RB
w
!
-9.0
51
'"
1.0
o. 7
o. 5
o.3
lr
r-I'--
O.2
t r• tt::::10
DUTY CYCLE
os
~
1.0%
-4V
- -
Id
-.
-=
~. 1
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
0.0 7
0.05
0.2
Dl MUST BE FAST RECOVERY TYPE. 09:
MBD5300 USED ABOVE IB ~100 rnA
MSD6100 USED BELOW IB ~100 rnA
0.3
0.5
0.7
1.0
--
2.0
3.0
/ i IiTli
B
V
5.0 7.0
50
• V
-
-
10
20
IC, COLLECTOR CURRENT (AMP)
FIGURE 4 - THERMAL RESPONSE
1.0
0.7
;;!
~_ 0.5
-
-
~ffi 0.3
~~
:i~
0:-
..-- iiiII-
0.2
.... N
tz ~
9JCh)' r(~_9JC
0=0.5
0.2
- o.1 --
-
-Inn
I--:::::
u.
ffjO.03
tt;o:
'2
0.02
>- -::::::: [:;;;:F"
_0.05
.,..,.-
pr
11~2~
0.01
~IINGLE{U1SE
II
0.0 1
0.02
PULSE TRAIN SHOWN
:- r--READTIMEAT'1
--TJ(pk) TC = P(pk)9JCh)- r-
DUTY CYCLE, 0 - 11/12
-~.1
_0.02
~ ~O.Q7 ~ " -
§>'"~O.05
~€~~:~;::.~·:ci~ ~OWE~-
0.05
I II
0.1
0.2
1.0
0.5
.2.0
5.0
10
111111
20
'50
100
200
500
1000
t, TIME (m.)
FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
100
70
50
0:: 30
20
'"
- --
~
I-
~
0:
:::>
<.>
0:
0
....
~
10
7.0
5.0
3.0
2.0
1.0
0.7
8 0.5
~ 0.3
0.2
he'"
5.011)~ ,;:J.OI~
Tc = 25°C
"'-
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e ... , the transistor
must not be subjected to greater dissipation th,an the curves indicate.
The data of Figure 5 is based on T J(pk) = 200"c; TC is variable
depending on conditions. Second breakdown pulse limits are valid
,",
values less than the limitations imposed by second breakdown.
(See AN-415)
~.-
for duty cycles to 10% provided T J(pk) .;:;;; 200o C. T J(pk) may be
~. _.:= ~~~~~N:L~~RCI~:~~~~~INGLE PULSE)
0.1
2.0
calculated from the data in Figure 4. ·'At high case temperatures,
thermal limitations will reduce the power that can be handled to
- - - - SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCEO
IIIII
3.0
5.0
7.0
10
II
20
30
50
70
II
100
200
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
444
2000
MJ3773, MJ6302 (continued)
FIGURE 7 - CAPACITANCE
FIGURE 6 - TURN·OFF TIME
200 0
0
30
~c~1J~- ffIc1IB=10 -
20
.=t:=
IB1- IB2._
Tr 25 OC
10
:g
7.0
~ 5.0
's
;::
2.0
1.0
100 0
u:
~
700
z
;:: 500
G
~
-- -- -
3.0
I IIII
TJ = 25°C
_
~
C~
300
r-....
200
i'-
'f
0.7
0.5
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
100
0.2
20
0.5
1.0
2.0
IC. COLLECTOR CURRENT (AMP)
o
VCE' 4.0 V
1. 1:.
100
200
I-
~
70 =
0
5
g
30
6
-...
- > - 2 50C
"'10 0
IC=4.0A-
-
t=-550C
8
~
~ 20
I'--f-
~
:"
4
!'-...
10
7. 0
5. 0
0.2
03
05
0.7
1.0
20
3.0
5.0
10
0
005 0.07 01
20
0.2
0.3
~rT.Isob
w
">
It
1.6
/
~
c;
5
~
10
08
04
o
0.2
VIBE(,..)@ Ic/lB = 10
S
~i::::=~
7
~BETvfEI-m
JCE(lti ~ IUB 1= 110
3.0
5.0
w
~
II
/
V
./
25'~
~ o. 5 "OVC for VCE sat)
w
>
2.0
"Applies for ICIIS < hFE/2
0
.s
W
12
->
10
25
I-+-
'"«
07
FIGURE 11 - TEMPERATURE COEFFICIENTS
FIGURE 10 - "ON" VOL TAGES
I-
0.5
lB. BASE CURRENT (AMP)
IC.COLLECTOR CURRENT (AMP)
0
16 A
8.0 A
2
B
i5
50
TJ=250C
;;:
2.
20
0
30O;;;:::;!~
20
10
FIGURE 9 - COLLECTOR SATURATION REGION
FIGURE 8 - DC CURRENT GAIN
50 0
z
50
VR. REVERSE VOLTAGE (VOLTS)
/
0
j55 ·0250C
V
I--'
V
1
-0. 5
I-
~ -l. 0
~
...... ~
-15
i- 2.a
25 to 1500C
_K-r
8VB for VSE
_i-"
-55'0 250C
·25
03
20
3.0
50 70
0.5 07 10
IC. COLLECTOR CURRENT (AMP)
10
o2
20
445
03
0.5
2.0
30
50
IC. COLLECTOR CURRENT (AMP)
07
10
10
20
MJ3773, MJ6302 (continued)
'FIGURE 12 - COLLECTOR CUTOFF REGION
cF ~
TJ = +1500C,/=+10ooC; r=+25 0
I--
VCE = BOV
11--
REVERSE
c -ICES
10- 2
-0.4
-0.3
FORWARD
0 +0.1 +0.2 +0.3 +0.4
-0.2 -0.1
VBE. BASE·EMITTER VOL TAGE (VOLTS)
446
+0.5
+0.6
MJ4030, MJ4031, MJ4032 PNP (SILICON)
MJ4033, MJ4034, MJ4035 NPN
16 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON
MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS
60-100 VOL TS
150 WATTS
. . . for use as output devices in complementary general purpose
amplifier appl ications.
•
High DC Current Gain - hFE = 3500 (Typ) @ IC = 10 Adc
•
Monolithic Construction with Built-In Base-Emitter
Shunt Resistor
MAXIMUM RATINGS
VCEO
MJ4030
MJ4033
60
MJ4031
MJ4034
80
MJ4032
MJ4035
100
Collector-Base Voltage
VCB
60
80
100
Emitter-Base Voltage
VEB
5.0
Collector Current
IC
16
Adc
Base Current
'B
Po
0.5
Adc
150
0.857
Watts
-55 to +200
°c
Rating
Symbol
Collector-Emitter Voltage
Total Device Dissipation@TC=250C
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ.Tstg
Unit
Vdc
Vdc
Vdc
W/oC
!=:'
=
:I==t
r~K
l
ESEATIN!~
j
PLANE
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Svmbol
I
I
OJe
Unit
Mox
1.17
I
°C/W
FIGURE 1 -DARLINGTON CIRCUIT SCHEMATIC
Collector
PNP
MJ4030
MJ4031
MJ4031
I
NPN
--,
,..-----<1--.
r------I
I
I
I
I
I
I
I
I
Sase
Collector
MJ4033
MJ4034
MJ4035
--,
.----<4-.
Sase
I
I
I
I
I
I
I
I
I
__ ...J
__ ...J
DIM
B
C
D
E
F
G
H
J
K
n
S
T
INCHES
MAX
MIN
MILLIMETERS
MIN
MAX
6.35
0.97
29.90
10.67
5.11
16.64
7.92
3.84
-
11.23
11.43
1.09
3.43
30.40
11.18
5.72
17.15
4.09
13.34
4.78
0.250
0.038
1177
0.420
0.205
0.655
0.312
0.151
447
-
All JEOEC dImenSIOns and noles apply
CASE 1·03
Emitter
Emitter
0.875
0.450
0043
0.135
1197
0.440
0.225
0675
(TO·3)
0.161
0.525
0188
MJ4030 thru MJ4035 (continued)
ELECTRICAL CHARACTERISTICS ITC = 2S0C unless otherwise noted)
I
I
Characteristic
Max
Min
Symbol
Unit
OFF CHARACTERISTICS
Collector·Emltter Breakdown Voltage(1)
(Ie = 100 mAde, '8 = 01
Vdc
BVCEO
60
MJ4030, MJ4033
MJ4031 , MJ4034
MJ4032. MJ4035
ao
100
Collector Emitter Leakage Current
mAde
'eER
(Vee =60Vdc, ABe'" 1.0kohmJ
MJ4030, MJ4033
(Vee =80Vdc. RBe = 1.0kohml
MJ4031, MJ4034
(Vee = l00V~c. RBe = 1 Okohm"l
(Vee "'OOVdc, ABe = 1.0kohm. TC = 1500 CI
MJ4032, MJ4035
(VCS=80 Vdc, RBe = 1.0kDhm. TC = lS00CI
MJ4031. MJ4034
(Vee = l00Vdc, ABe'" 1 Okohm, TC = 150°C)
MJ4032. MJ4035
1.0
1.0
10
5.0
5.0
5.0
MJ4Q30, MJ4033
Emitter Cutoff Current
(VBE =5DVdc, IC=Ol
5.0
'EBO
Coliector·Emltter Leakage Current
mAde
mAde
iCED
30
3.0
30
MJ4030, MJ4033
(VeE = 30 Vdc, 'S = 0)
(VCE = 40 Vdc, la '" 0)
MJ4031, MJ4034
(VCE = 50Vde,Ia '" 0)
MJ4032, MJ4035
ON CHARACTERISTICS(11
1000
hFE
DC Current Gein
(lC'" 10 Ade, VCE" 3.0 Vde)
Collector-Emittllr Saturation Voltage
vao
VeE(sat)
(lC = 10Ade, la = 40 mAde)
25
40
(lC = 16 Adc, 18 = 80 mAde)
3.0
VaE
Bese-Emitter Voltage
IIC'" 10 Adc, VCE '" 3.0 Vdcl
Vdc
(1)Pulse Test. Pulse WIdth ~300 jJs, Dutv Cycles;2 0%
FIGURE 3 - SMALL-SIGNAL CURRENT GAIN
FIGURE 2 - DC CURRENT GAIN
3000
50,000
2000
20,000
z
;;:
TJ =1500 C
10,000
C!)
~
z
;;: 5000
_
'"
I-
~ 2000
a
1"\
1000
~ 500
~
a-;t
1"\'
25°C
z
200
VCE • 3.0 Vol ..
100
50
0.02
0.05
0.1
0.5
0.2
1.0
2.0
5.0
10
500
300
Cl
200
i
100
j
50
~
-55 0C
1000
104
20
f, FREUUEN~Y 1Hz)
1r.,COLLECTOA CURRENT IAMPI
FIGURE 4 - "ON" VOLTAGES
FIGURE 5 - DC SAFE OPERATING AREA
3.5
50
3.0
~
~
TJ = 25°C
,
2.5
2_ a
w
'"
;
o
>
"> 1_0
~
20
16
10
~
50
ii:'
~ :::
VBE@viiillovolj...
8 o. 2
~
VCElsat)@IChB-250
O. 5
a
0.05
0.1
0.5
1.0
5.0
O. I
10
r-- -
20
1'- ........
MJ4030, MJ403~
MJ4031, MJ4034
''\ ~ MJ4032, MJ4035 -
TJ' 200°C
SECONOARY BREAKOOWN LIMITATION
- - - THERMAL LlMITATlON@TC·250C
- - - BONOING WIRE LIMITATION
0.05
2.0
IC, COLLECTOR CU RRENT lAMP)
-
=
:: 2.0
/
::::
VBElsat)@IC/IB'250
1.5 -
0.02
"-
TC·250C
VCE = 3.0 Vdc
IC =10 Ado
5.0
10
20
50
100
200
VCE, COLLECTOR·EMITTER VOLTAGE IVOL TS)
There are two limitations on the power handling ability of a
transistor: average junction temperature and secondary breakdown_
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; e_g., the transistor
must not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed by secondary breakdown. (See AN-415)
448
MJ4200, MJ4201 NPN (SILICON)
MJ4210, MJ4211 PNP
DUAL DARLINGTON
4 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
DUAL SILICON POWER DARLINGTON TRANSISTORS
· . . designed for hammer driver, regulator and amplifier
applications.
• High DC Current Gain hFE = 3000 (Typ) @ IC = 2.0 Adc
• Collector-Emitter Sustaining Voltage VCEO(sus) = 60 Vdc - MJ4200, MJ4210
= 80 Vdc - MJ4201, MJ4211
• Total Monolithic Construction
Dual transistors in the same chip, yielding like electrical
characteristics. Collectors are common
60,80 VOLTS
85 WATTS
MAXIMUM RATINGS
MJ4201
MJ4211
Unit
80
Vdc
80
Vdc
VCEO
MJ4200
MJ421 0
60
Collector-Base Voltage
VCB
60
Emitter-Base Voltage
VEe
5.0
Vdc
IC
4.0
8.0
Adc
IB
80
mAde
PDT
85
0.485
W/oC
60
0.343
W/oC
-65°C to +2000 C
°c
Symbol
Rating
Collector-Emitter Voltage
Collector Current - Continuous
- Peak
Base Current
Total Device Dissipation@Tc=25DC
Derate above 2SoC
(Equal power
Watts
both transistors)
In
Single Transistor Disslpatlon@TC=250C
PD
Derate above 2SoC
Operating and Storage Junction Temperature
Range
TJ,T,tg
Watts
r------
THERMAL CHARACTERISTICS
Characteristic
Max
Symbol
Thermal Resistance, Junction to Case
Unit
°C/W
°JC
Single Transistor
2.92
2.06
Effective. equal power both transistors
Thermal Coupling Factor
%
FIGURE 1 - POWER DERATING
I
A
B
-
0-
C
D
E
F
G
K
M
N
P02" 1(Equal Power in
~
......... ~Ol BOfhTransistofs)
,
-........:::: ~--"";:~0.5
--.......;
~
0
~25
""" ~ ~
Q
-....;~
0
o
TJ =TC +OJC (PDI + KO POl)
25
50
75
100
125
TC, TEMPERATURE (DC)
",
150
175
R
200
449
20\
if
eN
2. BASE 2
3. BASEI
4. EMinER I
DIM
0
o
Q)V'~
it- \,i+\3J ~
PIN 1. EMinER 2
41
KO
.
STYLE 1
F-
1
jJ
G
1/
_____ M
MILLIMETERS
MAX
MIN
-
38.61
21.08
8.13
1.09
3.43
29.90 30.40
11.94 BSC
8.13
7.11
72 0 Bse
18 0 BaC
3.84
4.09
26.67
6.35
0.97
INCHES
MIN
MAX
-
1.520
0.830
0.250
320
0.038 0.043
.135
1.177 1.197
0.470 BSC
0.280 0.320
720 sse
18 0 Bse
0.151 0.161
1.050
NOTE:
1. LEADS WITHIN 0.13 mm (0.005) OIA OF
TRUE POSITION AT SEATING PLANE AT
MAXIMUM MATERIAL CONDITION.
CASE 253
1
R
MJ4200, MJ4201, MJ4210, MJ4211 (continued)
E LECTR ICA L CHARACTER ISTI CS (T C = 25°C unless otherwise noted)
Symbol
Min
Max
60
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 50 mAde, IB = O)
Vde
VCEO(sus)
MJ4200, MJ4210
MJ4201, MJ4211
Collector Cutoff Current
(VCE = 30 Vde, la = O)
(VCE = 40 Vde, la = 01
BO
ICEO
mAde
-
-
0.5
0.5
MJ4200, MJ4201
-
0.5
(VCE
MJ4210, MJ4211
-
0:5
(VCE
MJ4200, MJ4201
-
5.0
MJ4200, MJ4210
MJ4201, MJ4211
Collector Cutoff Current
mAde
ICEX
(VCE = Rated VCEO' VEa(off)
= 1.5 Vde}
= Rated VCEO, VaE(offl = 1.5 Vde)
= Rated VCEO, VEB(off} = 1.5 Vde, TC = 1500C)
(VCE = Rated VCEO, VaE(offl = 1.5 Vde, TC = 150°C)
MJ4210, MJ4211
Emitter Cutoff Current
(VaE = 5.0 Vdc, IC = O)
lEaD
5.0
2.0
mAde
ON CHARACTERISTICS
DC Current Gain
(lC = 2.0 Ade, VCE
(lc = 4.0 Ade, VCE
Collector-Emitter Saturation Voltage
(lC
(lC
750
100
lBOOO
-
2.0
3.0
= 2.0 Ade, la = B.O mAde)
= 4.0 Ade, la =AO mAde)
Vde
VCE(satl
Base-Emitter Saturation Voltage
(lC
-
hFE
= 3.0 Vdc)
= 3.0 Vde)
VaE(sat)
-
4.0
Vde
VeE(on)
-
2.B
Vde
= 4.0 Ade, Ie = 40 mAdcl
Base-Emitter On Voltage
(lC = 2.0 Ade, VCE = 3.0 Vdc)
DYNAMIC CHARACTERISTICS
-
I hfe I
Magnitude of Common-Emitter Small--5ignal Short-Circuit
Forward Current Transfer Ratio
(lc = 1.5 Ade, VCE = 3.0 Vde, f = 1.0 MHz)
Output Capacitance
(Vce = 10 Vde, IE = 0, f= 0.1 MHz)
4.0
-
-
120
200
300
-
Cob
MJ4200, MJ4201
MJ4210, MJ4211
Small-5ignal Current Gain
pF
hfe
-
(lC = 1.5 Ade, VCE = 3.0 Vdc, f = 1.0 kHz)
FIGURE 3 - SWITCHING TIMES
FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
"J:++R+=t=t==t=t==t++RWVCC:;,ToV
.,=+=1
VCC=~~V--
Vee
5.0 ....
-30V
RS & RC VARIED TO OBTAIN DESIRED CURRENT lEVELS
01. MUST BE FAST RECOVERY TYPES, B.g.,
:~g:: ~~:g ::~~~ I':: ::::
3.01-",p.,j:+~+---+-f--+-f-H++++-IC/IB = 250 - -
2.0
Re
SCOPE
I~
Ir
illI
1.0~ ..
-. r
1[ 0.7
~ 0.5
~
fortdand1r,0, IS disconnected
and V2'" 0
0.3
I~~:~~~c--
l
If
,_1""'-...
'
,-r-
.
0.2I-H+H-l-+-+
-'",,- ....-.2'~+-H+JI:-I-,...-..j....--::-:I:------j'-j
I--H-f-t+t-+-+-..,i'p',.......~-t.'~(Offr
f=
0.1~1=~~-~--~M~J~42~O~0.~M~J4~2~0~1(~N~PN~)~~~llg~~r~~
0.07
MJ4210. MJ4211IPNP} ,
0.05
0.04 0.06
0.1
0.2
0.4 0.6
1.0
IC, COLLECTOR CURRENT lAMP)
For NPN test circuit reverse all polarities.
450
2.0
4.0
MJ4200, MJ4201, MJ4210, MJ4211 (continued)
FIGURE 4 - THERMAL RESPONSE
I, 0
~
o. 7 0
;z
O.5
~
0.3
ffi
0=0.5
ffi~
"''''
:::5
'"
....
~
~
0.1
O.!-- ......
o. I to.05
0.02
0.07
ffi~O.05
u;
~
012
1-0.2
~c 0.2
"w
"'~
0.5
i='"
8JC(t) = r(tle;:;
t 1 1 . n 8 J C = 2 . 9 2 0 C Max
P(pkl
0 CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME AT t1
........: ~
..1
0.05
~~.Ol
0.03 -fIN~L~
P~~SE I--
0.02
0.0 I
0.02
'!:2!-
I L l~
1
0.05
0.1
j
t~
ONE OlE
.....
,I'
0.2
0.5
1.0
2.0
TJl(pkl-TC=PP~18JCI(tl
t2
DUTY CYCLE, 0 - tl/12
OUAL OlE
SINGLE PULSE
COUPLEO RESPONSE
5.0
10
t,TIME(msl
50
20
+K8 PPK2 8JC2!tl
K8 = 0.41
100
200
500
~
F=
~
t:
iii~
1000
2000
FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
NOTE
0
5. 0
~
~
~
~
B
71"1
2. DONE
TRANSISTO ~
,V
.....
100;":
.......
......
~............ .........
.~
1. o~ ~QUAL POWER
5 '= BOTH TRANSISTO R
.........
r--,.200ps
BONDING WIRE LIMITED
r--TJ= 2000C
0.02
'" "\.
r--.." 5.0 ms
PPK2 = 50 W }
. .
_ 10
Pulse COlOcident at
tl ms T... Ed
D = 20%
ra. 109
ge
r(t) = 0.58
rlt) ~ 0.35
(from Figure 4)
:.8 JC1(t) = 1.690 C/W :.8 JC2(t) = 1.02o C/W
TJ1(pkl - TC = (801 (1.69) + (0.41) (50) 11,02)
= 135 + 21 = 156°C
Read
Where the side having highest junction temperature is not
obvious, both sides should be checked.
MJ4200, MJ4210
MJ420r MJ4Y I
I
0.0 I
10
Example: PPKI = 80 W
tl = 5 ms
D = 20%
.Oms
~ o. 2 - - - THERMALLY LIMITED @lTC = 25 0[,",\
to
(SINGLE PULSEI
j o. I ~SECOND BREAKOOWN LIMITED
8 0.05f:::::=CURVES APPLY BELOW RATEO VCEO
~
Use TJ1(pkl - TC = PPKI 8JCHtI + Kg PPK2 8JC2(tJ
......... ~ 500jJS
o.
-.
Computing Peak Junction Temperature
20
30
50
70
VCE, COLLECTOR-EMmER VOLTAGE (VOLTSI
100
There are two limitations on the power handling ability of a
depending on conditions. SlitCond breakdown pulse limits are valid
transistor - average junction temperature and second breakdown.
for duty cycles to 10% provided T J(pk) <200°C. T J(pk) mav be
calculated from the data in Figure 4. At hioh case temperatures,
thermal limitations will reduce the power that can be handled to
values leiS than the limitation. imposed by second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
(See AN-4151.
The data of Figure 5 is basad on T J(pk) = 200°C; T C is variable
FIGURE 7 - CAPACITANCE
FIGURE 6 - SMAll-SIGNAL CURRENT GAIN
4000
2000
..
;!;IOOO
co
10 600
~400
...
I TJ = ~50CI
Vce= 3.0 V
IC= 1.5 A
a:
B
j
300
"
200
'\
~
..,zw
~IOO
5
\
'\
100
BD
40
4.0 6.0
70
20
40 BD 100 200 400 600 1000 2000
I, FREQUENCY (kHz)
....
--'II
50
---MJ4 00, MJ 1 NPN)
MJ4210, MJ4211 (PNPl
10
t--- r-
..
f
200
TJ=250C
1-- - 30
4000
0.1
451
I
02
MJ4200, MJ4201 (NPN)
j42,IOj ~iir (PNPl
0.5
I
r-CII
--
I
1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTSJ
50
100
MJ4200, MJ4201, MJ4210, MJ4211 (continued)
NPN
PNP
MJ4200. MJ4201
MJ4210. MJ4211
FIGURE 8 - DC CURRENT GAIN
20.000
10.000
f-- Vc =13jOIV
......
10.000
7000
~
5000
TJ - 1500
z
~2000
~
..,i3
25 0;"'"
..,:::>
/'
~1000
~
V
200
V
0.04 0.06
in 3.0
0.1
I I III
!:;
c
~
~ 2. 5
IC =1.0 A 2.OA
2.0
4.0
,
~
'"
~
w
3.0 A
to
.
I I
1.0
0.4 0.6
0.2
lC. COLLECTOR CURRENT (AMP)
"
IC = 1.0 A
2. 5
II
1\
2.0 A
13.0 A
4.0
2.0
11
~
~
1\
\
1- 5
\..
'"
8j
1. 0
TJ = 25DC
\
~ 2. 0
iii
g
0.1
~
:II
~ 1. 5
100
0.04 0.06
~ 3.0
TJ = 25 DC
1
\
~
'" 2.0
200
'J.-.-1"
FIGURE 9 - COLLECTOR SATURATION REGION
1\
~
-55 DC
300
V
0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)
"
25 DCL . "
500
-55DC
300
i-'
1000
c
ul 700
500
"...,
~
..............
I-'
~
/'}
~2000
<
~3000
..,is
TJ - 150DC
z 3000
~5000
~
=YCP3.0V
...... r-..,
"'-
1. 0
8
~
..,ul
> O. 5
> O. 5
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7.0
0.2
20
10
0.3
0.5 0.7
lB. BASE CURRENT (mA)
1.0
2.0 3.0
5.0
lB. BASE CURRENT (mA)
7.0
20
10
FIGURE 10 - ON VOLTAGES
2.0
1.8 f-
~
2.0
f/
111'1
/,
TJ = 25DC
1.8
ff
1. 6
1.6
~
~ 1.4
w
to
~ 1.2
'"
>
:>
o 1.4
VBE(sat)@ICIIB=250
~
w
--== I=""
1.0 ViEilYI-rov
O. 8
./
IIIIJI
VCE(sa,)@ICIIB=250
O. 6
0.04 0.06
I
0.1
V
'"~
L
11111
11111
VBE(~t\ ~ l~llB = 250
I"'"
IL
1.0
0.8
2.0
lrli'f
~ 1.2 VBE @VCE = 3.0 V
!:;
V
0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)
11111
r--
V~E(~~I JIC~IB = 250
I I III
0.6
0.04 0.06
0.1
4.0
452
I
"
---
0.2
0.4
0.6
1.0
IC. COLLECTOR CURRENT (AMP)
2.0
4.0
MJ4200, MJ4201, MJ4210, MJ4211 (continued)
NPN
PNP
MJ4200, MJ4201
MJ4210, MJ4211
FIGURE 11 - TEMPERATURE COEFFICIENTS
+5.0
+5.0
'Applies for 'elle < hFE/3
u +4.0
3;
.s +3.0
I-
J
~ +2.0
./ [/
$ +1.0
8w
./
0
2nt1150~ V
~ -1.0
!;(
ffi -2.0
~ -3.0
I-
i-
-~
~BVe. for VeE(rat)
V
-55°C to 250C
250C to 1500C
:..;.
BVB. forVBE
4.0
11I11
-5.0
0.04 0.06
0.1
V V
/
J
1
..5 +3.0
V
I-
ffi +2. 0
U
~ +1.0
8
/
III~
w
~-1. 0
·BVC. for VCE!sat)
~ -2. 0
~
~
II II
-3.0
i-
0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)
2.0
4.0
4.0
-550C to 250 C
II II
-5.0
0.04 0.06
0.1
-
...I-"r
~
-55°C to 25°C
I
250C to 1500C
~
--:t::::t-
BVB. for VBE
I-
II
,/
5°C to 1500C
0
I-
V
~
-55°C to 250C
'Applies for ICIIB < hFE/3
~+4.0
>
rr
I
/ II
~ f-
V" L r'
V
0.4 0.6
1.0
0.2
Ie. COLLECTOR CURRENT (AMP)
4.0
2.0
FIGURE 12 - COLLECTOR CUTOFF REGION
.L
4~VCE-30V
--
~
0.03 0.05
0.1
f-
0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)
10
20 30
FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA
100
50
I
~
-;,
20
~ 10
w
:::~
- -
......
.......
5.0
.....
'" 2.0 -TJ=2000C
~
=
o
~100"'1.0 ms
1.0
~ 0.5
0.2
5.0 ms
.-
The Safe Operating Area Curves mdlCate Ie - VeE hmits below
which the device will not enter secondary breakdown Collector
Ioad lines for specific CircUits must fall within the applicable Safe
Area to avoid CilUSlng a catastrophic failure. To Insure operation
below the maximum T J. power-temperature deratmg must be observed for both steady state and pulse power conditIOns.
Secondarv Breakdown Limited
Bonding Wire limited
- ThermallimitationsTC =25 0 C
Pulse Duty Cycle < 10%
~
==
==
O. 1
1.0
2.0
3.0
5.0
10
20
30
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
455
50
100
MJ464S thru MJ4648 (SILICON)
1.0 AMPERE
POWER TRANSISTORS
PNPSILICON
200-300-350-400 VOL TS
5 WATTS
PNP SILICON POWER TRANSISTORS
designed for high-voltage amplifier and saturated switching
applications at collector currents to one Ampere. Ideally suited for
applications of dc-to-dc converters, relay and hammer drivers, motor
controls, and servo and pulse amplifiers. High·voltage ratings permit
direct-line operation.
•
Low Collector-Emitter Saturation Voltage VCE(sat) = < 1.5 Vdc (Max) @ IC = 500 mAdc
•
High Collector· Emitter Breakdown Voltage BVCEO = 200, 300, 350 and 400 Vdc (Min)
•
DC Current Gain Specified - 10 mAdc to 500 mAdc
MAXIMUM RATINGS
Symbol
Rating
Collector-Emitter Voltage
MJ4645 MJ4646 MJ4647 MJ4648
Unit
Vceo
200
300
400
350
Vdc
Collector-Base Voltage
VCB
200
300
400
350
Vdc
Emitter·Base Voltage
VeB
5.0
IC
0.5
1.0
Adc
5.0
Watts
28.6----
mWf'C
Collector Current
Continuous
Peak
Total DeVIce DISSIpation
Po
T C - 25°C
@
Derate above 2SoC
Operating and Storage Junction
--
TJ,Tstg
Temperature Range
Vdc
-65 to +200 - - -
G
DC
STYLE 1
PIN 1. EMITTER
2. BASE
N 3. COLLECTOR
THERMAL CHARACTERISTICS
Cllaracteristic
Thermal ReSIstance, Junction to Case'
FIGURE 1 - POWER DERATING
A
"" "" ""
~ 4.0
i
~ 3.0
i
iiic
2.0
B
C
o
E
F
G
H
r-....
J
L
"
1.0
o
o
K
"-
'"~
""
I?
DIM
.......,
5.0
20
40
60
80
100
120
140
TC, CASE TEMPERATURE lOCI
160
.......,
""
200
456
8.B9
9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83
5.33
0.711 0.864
0.131 1.02
12.10
6.35
M
450 NOM
P
1.21
90' NOM
2.54
Q
180
MILLIMETERS
MIN MAX
R
AU JEOEC dimensions and notes apply.
CASE 79·02
TO·39
MJ4645 thru MJ4648 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)
I
I Symbol
Characteristic
Min
Typ
Max
200
300
400
350
-
-
-
-
200
300
-
400
-
350
-
-
BVEBO
5.0
-
-
Vde
ICEX
-
-
10
/lAde
20
-
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage (11
(lC = 10 mAde, IB = 01
Vde
BVCEO
MJ4645
MJ4646
MJ4647
MJ4648
Collector-Base Breakdown Voltage
-
Vde
BVCBO
MJ4645
MJ4646
MJ4647
MJ4648
(Ie = 100 /lAde, IE = 01
Emitter-Base Breakdown Voltage
-
(IE = 100/lAde, IC = 01
Collector Cutoff Current
(VCE = 200 Vde, VBE(offi = 0.5 Vdel
ON CHARACTERISTICS
DC Current Gain
--
hFE
(lC = 100 mAde, VCE
= 10 Vdel(11
25
-
= 500 mAde, VCE
= 10 Vdcl (1)
20
-
-
-
0.5
0.6
0.75
1.0
1.2
1.5
40
30
-
-
-
-
80
60
td
-
-
100
ns
tr
-
-
100
ns
toff
-
-
720
ns
(Ie = 10 mAde, VCE = 10 Vdel
(lC
Collector-Emitter Saturation Voltage
(lC = 500 mAde, IB = 100 mAde)
Vde
VCE(satl
MJ4645
MJ4646
MJ4647 MJ4648
-
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 70 mAde, VCE = 20 Vde, f
Output Capacitance
(VCB = 20 Vde, IE
= O. f
MHz
fT
= 20 MHz I
MJ4645, MJ4646
MJ4647, MJ4648
pF
Cob
= 100 kHzl
MJ4645
MJ4646, MJ464 7, MJ4648
SWITCHING CHARACTERISTICS
= 500 mAde,
= 50 mAde, VBE(offl = 5.0 Vdel
(VCC = 100 Vde, IC = 500 mAde,
Delay Time
(VCC = 100 Vde, IC
Rise Time
IBl
Turn-Off
Time
IB 1 = IB2 = 50 mAde, Pulse Width = 1.0/lsl
(1) Pulse Test: Pulse Width ~ 300 JJS. Duty Cycle S; 2.0%.
FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA
l.°m~J.mm.
__
0.1
0.5
i5
t-
~
13
~
c
~
1.0ms lOa",
"
5.0 m
O. 3r--+-+~+Htr~r-rt++Hfl
2 T =2 IJOC
dct-o
O.
SEC NOARY
1'.
BREA!m!lWN LIMITED
o. 1
BONDING WIRE
0.01 - 0.0 5 ____ ~~M~,:~~LLY LIMITEDI.'
There are two limitations on the power handling ability of a
r, \
__, _1_
1 1
transistor:
~~~~
\
I;
1\
The data of Figure 2 is based on T J(pkl
2.0 3.0 5.0 1.0 10
20 30
50 10 100
= 2000C;
T C is
variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pkl .;; 2000C. At
high
:~~::::: 1 .IRl !UTUI E~IO_B_VC4rE:-°-:h-IJl:I:L:,.uI~ J,~!§64~t==~~:=:l~~-hl-111J
1.0
VeE limits of the
transistor must not be subjected to greater dissipation than the
curves indicate.
8 0.03r-__r-+-rT~C~=+25~OHC~(S~ING~L~E~PU~L~S~E)rrH++-'~r-~~++tH
I CURVES APPLY ~~'~4645_ ,
E :.::
average junction temperature and second breakdown.
Safe operating area curves indicate Ie -
transistor that must be observed for reliable operation; i.e., the
200 300 500
case
temperatures, thermal limitations will reduce the power
that can be handled to values less than the
limit~ions
by second breakdown. (See AN-415)
1000
VCE, COLLECTOR·EMITIERVOLTAGE IVOLTSI
MJ5415, MJ5416 (SILICON)
For Specifications, See 2N3439 Data, Volume I.
457
imposed
MJ6257 (SILICON)
MJ6302 (SILICON)
For Specifications, See MJ3771 Data.
For Specifications, See MJ3773 Data.
MJ6700, MJ670 1. (SILICON)
7 AMPERE
POWER TRANSISTORS
PNPSILICON
MEDIUM-POWER PNP SILICON TRANSISTORS
· .. designed for switching and wide-band amplifier applications.
•
60-80 VOLTS
60 WATTS
Low Coliector·Emitter Saturation Vpltage - VCE(sat) = 1.2 Vdc
(Max) @ Ie = 7.0 Adc
• DC Current Gain Specified to 5 Amperes
•
Excellent Safe Operating Area
• Packaged in the Compact, High Dissipation TO·59 Case
•
Isolated Collector Configuration - 700 V Breakdown
MAXIMUM RATINGS
Symbol
MJ6700
MJ6701
Unit
Collector..emitter Voltage
VCEO
60.
80
Vdc
Coliector·Base Voltage
Vce
60
80
Vdc
Emitter-Base Voltage
VEe
5.0.
Vdc
IC
7.0.
Adc
Ie
1.0.
Adc
Po
60.
Watts
343
mW/OC
Rati",
Collector Current - Continuous
Base Current
Total Device Dissipation
O.rate above 25°C
@
T C = 25°C
Operating and Storage Ju nction
Temperature Range
TJ, T stg
~5
OC
to +200
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
FIGURE I - POWER-TEMPERATURE DERATING CURVE
DIM
60
B
C
E
G
H
............
"-
0
~
..............
J
K
L
..........
~
N
............
0
40
60
80
100
120
140
~
160
180
TC. CASE TEMPERATURE (OC)
Safe Area Curves are indicated by Figure 2. All limits are applicable and must be observed.
458
200
INCHES'
MIN
MAX
0.424 0.437
0.320 0.468
0,090 0.150
0.lB5 0.215
0.Q78
Q.400 0.455
0.570 0.765
0.090 0.110
~I-
4.80
~
1.65
10.065
9.65
10.380
S
4.310
10.1697
T
~.65 .".10
.MR..
All JEDEC dimenSions and nbtes apply
Collector isolated from case.
.'
.
P
0
R
t'--...
0
20
MILLIMETERS
MIN MAX
10.71 11.10
B.13 11.B1!
2.29 3.Bl
4.70 5.46
1.98
10.16 11.56
14.46 19.38
2.29 2.79
4.14
1.02
8.08
4.212
CASE 160-0.3
·(T0,59')· .
MJ6700, MJ6701 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
60
80
-
-
-
100
100
-
10
10
1.0
1.0
-
10
-
100
25
25
15
180
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (H
(lc = 50 mAde,lS = 0)
VCEO(sus)
MJ6700
MJ6701
Collector Cutoff Cu rrent
(VCE = 55 Vde, IS = 0)
(VCE = 75 Vde, IS = 0)
ICEX
= 55 Vde, VSE(off) = 1,5 Vde)
MJ6700
= 75 Vde, VSE(off) = 1,5 Vde)
MJ6701
= 55 Vde, VSE(off) = 1,5 Vde, TC = 1500C) MJ6700
= 75 Vde, VSE(off) = 1.5 Vde, TC = 1500C) MJ6701
Collector Cutoff Current
(VCS = Rated VCS, IE
jlAde
mAde
jlAde
ICSO
= 0)
Emitter Cutoff Current
(VEB
jlAde
ICEO
MJ6700
MJ6701
Collector Cutoff Current
(VCE
(VCE
(VCE
(VCE
Vde
-
jlAde
IESO
= 5.0 Vde, Ie = 0)
ON CHARACTERISTICS 111
DC Current Gain
(lC
(lC
(lc
Collector-Emitter Saturation Voltage
(lC
(lC
-
hFE
= 500 mAde, VCE = 2.0 Vde)
= 2.0 Ade, VCE = 2.0 Vde)
= 5.0 Ade, VCE = 2.0 Vde)
Vdc
VCE(sat)
= 2.0 Ade, IS = 0.2 Ade)
= 7.0 Ade, IS = 0.7 Ade)
-
0.7
1.2
-
Base-Emitter Saturation Voltage
(lC = 2.0 Ade, IS = 0.2 Ade)
(lC = 7.0 Ade, IS = 0.7 Ade)
Vde
VSE(sat)
-
1.2
2.0
30
-
-
300
-
1250
-
100
100
ns
-
1.0
jlS
150
ns
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 500 mAde, VCE = 10 Vde, f
Output Capacitance
(VCS
MHz
IT
= 10 MHz)
pF
Cob
= 10 Vde, IE = 0, f = 100 kHz)
Input Capacitance
(VSE = 2.0 Vde, IC
pF
Cib
= 0, f = 100 kHz)
SWITCHING CHARACTERISTICS
= 40 Vde, VSE(off) = 4.0 Vde,
= 2.0 Ade, lSI = 200 mAde)
Storage Time
(VCC = 40 Vde, IC = 2.0 Ade,
Fall Time
lSI = IS2 = 200 mAde)
III Pulse Test: Pulse Width = 3OOP5, Duty Cvcle = 2.0%
Delay Time
(VCC
Rise Time
ld
IC
tr
to
tf
FIGURE 2 - ACTIVE·REGION SAFE OPERATING AREA
ns
FIGURE 3 - SWITCHING TIME TEST CIRCUIT
0
0
~
The Safe Operating Area Curves
indicate Ic-VeE limits below
which the device will not enter
secondary breakdown. Collector load lines for specific circuits
must fall within the applicable
Safe Area to avoid causing a
catastrophic failur:e. To insure
operation below the maximum
T J. power-temperature derating
must be observed for both steady
state and pulse power conditions.
100,(.(5
~
~ 20
t.Oms
0
z
a
d,
05
o=
'!---TJ.211lJOC
==SECONDARY BREAKDOWN LIMITED j o. t---= --BONDING
WIRE LIMITED
80.0
5
APPLY BELO,!, RATEO VCEO
~
1~
5.0 ms ~
~:~RVES
00 ,
0,0
1'1
I
1
1.0
2.030
5070
10
MJ67OQ~
MJ6701~
20
30
50
70
100
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
459
INPUT PULSE
1---1--10 ~s
-37:~lS
+11.6 V
25~F
~
1
51
tr,tf~IO~S
D.C. - 2.0%
-=
+3,3
V
MJ7000 (SILICON)
30 AMPERE
POWER TRANSISTOR
HIGH-POWER NPN SILICON TRANSISTOR
NPN SILICON
. . . designed for use in industrial power amplifier and switching
circuits applications.
100 VOLTS
150 WATTS
• High DC Current Gain hFE = 20-100@IC=lOAdc
•
High Collector-Emitter Sustaining Voltage VCEO(sus) = 100 Vdc (Min) @ IC = 100 mAdc
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 1.7 Vdc (Max) @ IC = 30 Adc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VeEO
100
Vdc
Collector-B ... Voltage
VeB
100
Vdc
Emitter-Base Voltage
VEB
7.0
Vdc
Ie
30
Adc
Collector·Emitter Voltage
Collector Current - Continuous
Base Current - Continuous
IB
10
Adc
Total Device Dissipation @ T C = 25°C
Derate above 25°C
Po
150
0.B55
Watts
wIDe
TJoTstg
-65 to +200
DC
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
SEATING
PLANE
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
160
~
140
-
B
"- ..........
120
C
E
"""
80
C
ffi
60
~
6?
40
G
H
J
...........
~ 100
fa~
0
o
o
DIM
A
25
50
75
100
K
L
"""
N
'" '"
125
TCo CASE TEMPERATURE (DC)
150
P
n
S
T
""
175
200
460
MILL
MIN
21.72
18.92
12.19
2.29
12.32
11.68
23.80
6.10
7.06
1.52
7.127
19.B9
5/16·24 UNF 2A
(COATED)
rERS
MAX
22.23
19.69
13.59
4.24
13.0
2'.67
12.57
26.16
6.BO
7.B2
7.92
2.B7
7.249
22.23
INC IES
MIN
MAX
0.855
0.875
0; 46 .lI.716
0.480
0.585
0.090
0.167
0.4
O. 1
0.460
0.937
0.240
-
0.495
1.030
0.2BO
0.300
1=
~
~
~
0.875
All JEDEC notes and dimensions apply
CASE 188
TO-63
MJ7000 (continued)
ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted)
Symbol
Min
Max
Unit
VCEOlsus)
100
-
Vdc
ICEO
-
10
"Adc
ICEX
-
5_0
"Adc
Collector-Base Cutoff Current
(VCB = 100 Vdc, IE = 0)
ICBO
-
5_0
"Adc
Emitter-Base Cutoff Cu,re"t
(VBE = 7_0 Vdc, IC = 0)
lEBO
-
5_0
"Adc
20
-
20
100
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 111
(lc = 100 mAdc, IB = 0)
Collector-Emitter Cutoff Current
(VCE
= 50 Vdc, IB = 0)
Collector-Emitter Cutoff Current
(VCE
=90 Vdc, VEB(off) = 1_5 Vdc)
ON CHARACTERISTICS 111
DC Current Gain
-
hFE
= 1.0 Adc, VCE = 4_0 Vdc)
(lc = 10 Adc, VCE = 4.0 Vdc)
(lc = 30 Adc, VCE = 4.0 Vdc)
(lC
Collector-Emitter Saturation Voltage
10
-
-
1.0
-
1.7
-
1.7
2.25
-
1_5
Vdc
tr
30
-
MHz
Cob
-
600
pF
Vdc
VCE(sat)
= 10 Adc, IB = 1.0 Adc)
(lC = 30 Adc, I B = 4.0 Adc)
(lC
Base-Emitter Saturation Voltage
Vdc
VBE(sat)
= 10 Adc, IB = 1.0 Adc)
(lC = 30 Adc, IB = 4.0 Adc)
(lC
Base-Emitter On Voltage
(lC = 10 Adc, VCE = 4_0 Vdc)
VBE(on)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 1_0 Adc, VCE = 5.0 Vdc, f = 20 MHz)
Output Capacitance
(VCB = 10 Vdc, IE
= 0, f = 100 kHz)
11) Pulse Test: Pulse Width~ 300 1'5, Duty Cycle~2.0%.
461
MJ7160 (SILICON)
MJ7161
8_0 AMPERE
TRIPLE DIFFUSED
POWER TRANSISTORS
HIGH-POWER!HIGH-VOLTAGE TRIPLE 01 FFUSED
NPN SILICON ANNULAR TRANSISTORS
NPNSILICON
300-400 VOLTS
140 WATTS
· •. designed for high-frequency. line-operated switching applications.
•
Excellent Switching Times - IC = 5.0 Adc
ton 200 ns (Typ)
toff = 1200 ns (Typ)
=
• Collector-Emitter Saturation Voltage VCE(sat) = 3.0 Vdc (Max) @ IC = 8.0 Adc
• Excellent Safe Operating Area Capability ISlb 0.2 Adc @ VCE 100 Volts
=
=
MAXIMUM RATINGS
Rating
Symbol
MJ7160 MJ7161
Unit
VCEO
300
400
Vdc
Collactor-B_ Voltaga
VCB
325
425
Vdc
Emitter-B ... Voltage
VEB
6.0
Vdc
IC
8.0
10
Adc
Collactor-Emittar Voltage
Collector Current - Continuous
Peak
Base Current
IB
2.0
Adc
Total Daviee Dissipation @TC = 2So C
Darate abovo 25°C
Po
140
0.80
Watts
Wf'C.
TJ.Tstg
-65 to +200
°c
Operating and Storage Junction Temperature
lr~
r~K
ESEATlN(~
I
PLANE
Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
STYLE 1:
PIN
FIGURE 1 - POWER DERATING
140
..........
,...,.
A
" "-
0
B
C
D
.......
I":
" --..;;:
0
20
40
60
BASE
NOTE:
1. DIM
MILLIMETERS
DIM MIN MAX
" .......
0
i.
2. EM IHER
CASE: COLLECTOR
60
100
120
140
TC. CASETEMPERATURE (OC)
160
""""
lBO
200
462
6.35
0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84
R
"Q"
IS DIA.
INCHES
MIN
MAX
39.37
21.08
7.62 0.250
1.09 0.039
_.
3.43
30.40 1.177
11.18 0.420
5.59 0.210
17.15 0.655
12.19 0.440
4.09 0.151
26.67
CASE 11
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.460
0.161
1.050
MJ7160, MJ7161 (continued)
ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Max
300
400
-
-
100
500
5.0
10
-
100
100
-
100
Unit
OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage
(lc = 10mAdo, IS = 0)
(lC = 10 mAde, IS = 0)
MJ7160
MJ7161
Collector Cutoff Current
(VCE = 300 Vde, VSE(off)
(VeE = 400 Vde, VSE(off)
(VCE = 300 Vde, VSE(off)
(VCE = 400 Vdo, VSE(off)
MJ7160
MJ7161
MJ7160
MJ7161
Vdo
VCEO(sus)
ICEX
=
=
=
=
1,5
1.5
1.5
1.5
Vde)
Vde)
Vdo, TC = 150°C)
Vde, TC = 150°C)
Collector Cutoff Current
(VCS = 325 Vde, IE = 0)
(VCS = 425 Vde, IE = 0)
mAde
/JAde
ICSO
MJ7160
MJ7161
Emitter Cutoff Current
(VES = 6.0 Vdo, IC = 0)
/JAde
/JAde
IESO
ON CHARACTERISTICS (1)
DC Current Gain
(lc = 0.5 Ade, VCE = 5.0 Vde)
(lc = 3.0 Ade, VCE = 5.0 Vde)
(lc = 8.0 Ade, VCE = 5.0 Vde)
Collector-Emitter Saturation Voltage
(lc = 3.0 Ade, IS = 0.3 Ado)
(lC = 8.0 Ade, IS = 1.6 Ado)
(lc = 8.0 Ade, IS = 3.2 Ade)
35
25
10
5.0
=3.0 Ade,
= 8.0 Ado,
100
Vde
VCe(sat)
-
MJ7160,MJ7161
MJ7160
MJ7161
-
Base-Emitter Saturation Voltage
(lC
(lC
-
hFE
MJ7160,MJ7161
MJ7160,MJ7161
MJ7160
MJ7161
1.0
3.0
3.0
Vde
VSE(sat)
IS = 0.3 Ade)
IS = 0.8 Ade)
-
-
1.0
1.5
fT
30
-
Cob
-
150
pF
Cib
-
2000
pF
DYNAMIC CHARACTERISTICS
Current·Gain - Sandwidth Product (2)
(lC = 0.5 Ado, Vce = 10 Vde, l tast = 10 MHz)
Outpu t Capacitance
(VCS = 50 Vdo, Ie
= 0, f = 100 kHz)
I nput Capacitance
(VES
= 5.0 Vde,
IE = 0, f
= 100 kHz)
MHz
SWITCHING CHARACTERISTICS (Figure 2)
Rise Time
Storage Time
(VCC = 200 Vde, IC = 3.0 Ade,
lSI = IS2 = 0.3 Ado)
Fall Time
tr
-
200
ns
ts
-
2.0
/JS
tf
-
300
ns
(1) Pulse Test: PulseWidth';;300/Js, Duty Cyele';;2.0%.
(2) ~ = I hfel- f test·
FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
Vee
200 V
Re
68 Ohms
~'::B--l~-+i
10 /Js
--+-----l
t"tf ~ 10ns
Duty Cycle = 1.0%
Scope
-4.0 V
"'Values for RS and RC are varied
to obtain the information for
Figure 4.
463
MJ7160, MJ7161 (continued)
FIGURE 3 - THERMAL RESPONSE
1.0
~
o. 1 f::D - O.S
~_ O.S
-
we
::"w3 o. 3f::=:
r5:i o. 2
in'"
e--
20
«2
- -
0.2
~'"
pmsL
I-
0.1
I-io-'
~: O. 1=.o..oS
~ ~ 0.01=.0.02
~ ~ 0.0 S
:z ~ 0.03 -
......
AC
~J
0.01
DUTY CYCLE, 0
>=
c::: OJCItI • rltl OJC _
r- 0JC· 1.2SoC/W Max
CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpkl - TC· Plpkl 8JClti
q/t2
r-~
0.0 2 - SING LE PU LSE
0.0 1
0.01
I II
I
0.02 0.03
O.OS
01
02
03
0S
20
1.0
II II
30
SO
II
II
10
20
30
So
I
100
200
300
SOD
1000
t. TlMElmsl
FIGURE 4 - ACTIVE·REGION SAFE OPERATING AREA
10
S.O
~
~
2.0
i
1.0
......
2001'S
1'\
de
There are two limitations on the power handling ability of a
I"\.
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation, i.e., the transistor must
.0.5
i3
-
r-TJ-2000C
.0.2 - - - BONDING WIRE
LIMITED
~
0.1
- - - - THERMALLY LIMITED
8 D.DS
@TC:2soCISINGLE PULSEI
~
- - SECOND BREAKDDWN
LIMITED
.0.02
CURVES APPLY BELOW RATED VCED
0.01
10
20
So
100
'"e
~
not be subjected to greater dissipation than the curves indicate.
lmi
The data of Figure 4 is based on T Jlpkl = 200o C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pkl .;; 20o"C. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown (See AN-4151.
10
:'\.
5.0ms
200
'"1'\
I
SOD
1000
VCE, CDLLECTOR·EMITTER VOLTAGE IVDLTSI
FIGURE 5 - DC CURRENT GAIN
100
10
2
;;:
'"....
SO
.......
1ii
'"
'"
i3
30
~
20
'"e
-
FIGURE 6 - "ON" VOLTAGES
2.8
t--...
r-TJ: 2SoC
I
r--- -TJ:2SoC
2.4
..........
~C
r\.
~
w
1.6
'"«
!:; 1.2
e
>
>- 0.8
:\
VCE: S.O V
2.0
0.4
10
0.1
0,2
0.3
O.S
0,7
1.0
2.0
3,0
S.O 7..0
o
10
VBElonl @VCE : 5.0 V
r--- r-r- VBElsati
@ICilB - 10
r---
I
/
I I I
r--- r- VCElsatl@ ICIIB - 10
0.1
0.2
0.3
0.5 0.7
V
1.0
2.0
3.0
IC, COLLECTOR CURRENT IAMPI
IC, COLLECTOR CURRENT IAMPI
464
5.0 7.0
10
MJ7160, MJ7161 (continued)
FIGURE B - CAPACITANCE
FIGURE 7 - SWITCHING TIMES
10,000
5000
2000
1000
]
....~
~.
500
200
100
~~
---
1ft
~ :::::; I,
3000
IBI =IB2
IcllB -10
TJ 25°C
I,
I"'
.
..
Cob
~ 200
<.i
100
III
0.2
0.3
0.5 0.7
1.0
2.0
3.0
r--..
70
50
Id iii' VBE(olf) - 5.0 v
20
TJ = 25°C
-
~ 300
..........
50
10
0.1
Cib
u:- IOOO
~ 100
~ 500
-r--.
iii' VCC-200V
II
2000
5.0 7.0
30
0.3 0.5
10
IC, COLLECTOR CURRENT (AMP)
1.0
2.0 3.0 5.0
10
20 30
50
VR, REVERSE VOLTAGE (VOLTS)
465
100
200 300
MJ7260 (SILICON)
MJ7261
HIGH-POWER/HIGH-VOL TAGE TRIPLE DIFFUSED
NPN SILICON ANNULAR TRANSISTORS
30 AMPERE
TRIPLE DIFFUSED
POWER TRANSISTORS
· .. designed for high-frequency, line operated switching applications.
• Excellent Switching Times @ IC
ton = 200 ns (Typ)
toft = 1200 ns (Typ)
=
5.0 Adc -
NPN SILICON
300,400 VOLTS
175 WATTS
• Coliector·Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 15 Adc
• Excellent Safe Operating Area Capability
ISlb = 1.0 Adc @ VCE = 50 Vdc
MAXIMUM RATINGS
Rating
Symbol
Collector-Emllter Voltage
Umt
MJ7260 MJ7261
I.
I
400
Vd,
425
Vd,
VCfQ
300
Collector-Base Voltage
VeB
325
Emitter-Base Voltage
VEa
60
Vd,
Collector Current - Continuous
Peak
Ie
15
30
Ado
Base Current
1a
50
Ad,
Po
175
10
WaIlS
TJ,T stg
-65 to +200
Total Device DISSlpatlon@ Te ~ 2S0C
Derate above 2SoC
Operating and Storage Junction
Temperature Range
w/oe
'e
Lr~
THERMAL CHARACTERISTICS
CharacteristIC
Thermal ReSistance, Junction to Case
ELECTRICAL CHARACTERISTICS ITe - 15°C unle~s otherWise noted I
I
Chafactenstlc
Symbol
Mm
1 Max
Umt
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 10 mAde, Ie ,. OJ
Collector Cutoff Current
(VeE = 300Vdc, VeEloff) =
(VCE = 400 Vdc, VeE(offl =
{VeE" 300 Vdc, VeEloff} =
(VCE" 400Vdc, VSE/off)'"
Vd,
VCEQ(sus)
MJ7260
MJ7261
Vdcl
Vdc)
Vdc, TC = ISOoCI
Vdc, TC = lS0oC)
Collector Cutoff Current
(Vce = 325 Vdc, Ie = 0)
{VCS = 425 Vdc, IE = OJ
'CSO
mAde
~Adc
100
100
MJ7260
MJ7261
EmItter CutDff Current
IV Ee -60Vdc, Ie" OJ
.uAdc
100
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
DC Current Gain
= 5 0 Vdcl
(lc = 5 0 Adc. VCE '" 5 0 Vdcl
IIC" 15 Adc. VCE" 5 0 Vdc)
Collector· EmItter SaturatIon Voltage
IIC" 5 0 Adc. IS = 500 mAdcl
(Ie = 15 Adc, IS = 50Adel
DIM
Sase·Emitter SaturatIon Voltage
lie " 5 0 AcIc. IS " 600 mAclcl
lie" 15 Adc, 'e .. 1 5 Adcl
Current· GaIn - BandwIdth Product
ttc ~ 1 0 Ade, Vce " 10 Vdc, f " 10 MHz)
Output CapacItance
(Vce " 50 Vdc. IE "0. f " 0 1 MHz)
input Capacitance
(VEe" 5 0 Vdc. IC " 0, I ~ 0 I MHzl
SWITCHING CHARACTERISTICS
I--"'--I-;'-'-'-;""::'''-t--'''---l
VSEloffl ~5.0 Vdc)
NOTE:
1. DIM
MILLIMETERS
MIN MAX
A
B
C 6.35
D 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.B4
R
-
DYNAMIC CHARACTERISTICS
(Vec" 200Vdc, Ie '" 5.0 Adc, IB1 "'82'" 06 Adc,
I
E SEATING
PLANE
~Adc
100
500
50
10
MJ7260
MJ7261
MJ7260
MJ7261
ON CHARACTERISTICS
lie" 500 mAde, VeE
r~,
300
400
ICEX
-1 5
-15
-1 5
-1 5
~
-
39.37
21.0B
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE"
466
"(1"
IS DlA.
INCHES
MIN
MAX
0.250
0.039
-
1.177
0.420
0.210
0.655
0.440
0.151
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ7260, MJ7261 (continued)
FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
10 0
50
,.0:-
0
I-
10
5. 0
~
~
=>
'-'
~
0
~
8
There are two limitations on the power handling ability of a
transistor:
de
2. O~
200~,
.1.0
0.5
BONDING WIRE LIMITE
0.2
O. 1
THERMALLY LIMITED
@TC-250C(SINGLEPULSE)
SECOND BREAKDOWN
LIMITED
depending on conditions. Second breakdown pulse limits are valid
for duty cycle, to 10% provided TJ(pk) .;;; 200°C. At high ca'.
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. (See AN-415).
5.0 ms
0.02 CURVES APPLY BELOW RATED VCEO
0.01
1.0
2.0
5.0
10
20
50
100
200
500
average junction temperature and second breakdown.
Safe operating areB curves indicate 'e-VeE limits of the transistor
that must be observed for reliable operation, i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on TJ(pkJ = 200°C, TC is variable
1000
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)
FlGUR~
FIGURE 2 - DC CURRENT GAIN
20
100
0
........
O~ I-""'
~o
1\
2
2:
=5.0 V
>--- I-- VBE(sat!@ IC/IB' 10
'"«
~ 0.8
>
>-
\
0
0.5
0.7
1.0
20 3.0
5.0
IC, COLLECTOR CURRENT (AMP)
7.0
10
o
0.2
20
LI I I III
o~ Io.'d @VBE(off) ~ 5.0 Vde
100
-
T
200OF-- ts
I
500 =
,.
30 0
""1--
~
.......
....
___
l4
10
-9.0 V
~
100
IJS
20
n
1 N4933
-4.0 Volts
0.5
0.7
1.0
20
7.0
10
20
Scope
Duty Cycle = 1 %
0.3
I
20 3.0
5.0
07 1.0
Ie, COLLECTOR CURRENT (AMP)
tr,tf~10ns
0
0
30
0,2
05
~J1~V (~RB~
Ktf
;:: 200
0.3
VCC=200V
VCC' 200 V
IcllB 10
t--IB1' IB2 t--TJ • 25°C
700
]
3.0/
1"
FIGURE 5 - SWITCHING TIMES TEST CIRCUIT
FIGURE 4 - SWITCHING TIMES
3000
1/
--t'"
>--- I-- VCE('at)
0.3
V
~
ICIIB'1O/
04
7. 0
w
-
VBE@VCE' 5.0 V
w
0
500.2
~~J.J50J
6
O - f-- TJ • +25 0C
VCE
3 _. ON VOL TAGES
3.0
5.0 7.0
10
20
NOTE:
IC, COLLECTOR CURRENT (AMP)
467
For information on Figure 4,
R Band RC were varied to obtain
desired test conditions.
MJ 81 00 (SILICON)
MJ8101
5 AMPERE
POWER TRANSISTORS
MEDIUM-POWER PNP SI LICON TRANSISTORS
. designed for switching and wide band amplifier applications.
PNP SILICON
• Low Collector·Emitter Saturation Voltage VCE(sat) ~ 1.2 Vdc (Max) @ Ie ~ 5.0 Amp
60 - 80 VOLTS
10 WATTS
• DC Current Gain Specified to 5 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact T0-39 Case for Critical Space-Limited
Applications.
MAXIMUM RATINGS
Symbol
MJ8100
MJ8101
Unit
"ceO_
60
SO
Vdc
Coliector·Sase Voltage
~
60
80
Vdc
Emitter-Base Voltage
VEa
5.0
Vdc
IC
5.0
Adc
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Base Current
Total Oevice Oissipation
Derate above 2SoC
@
la
1.0
Adc
Po
10
57.2
Watts
mW/oC
TJ.Tstg
-65 to +200
°c
T C • 25"<:
Operating and Storage Junction
Temperature Range
I~;~
-r;--- -SEATING
PLANE
/'
Q
FIGURE 1- POWER-TEMPERATURE DERATING CURVE
I'"i',
""",
0
~
"-
0
~
~
I
PIN 1. EMITTER
2. BASE
3. COLLECTOR
~
INCHES
MILLIMETERS
MIN MAX
MIN MAX
0.350 0.370
8.89 9.40
0.315 0.335
8.00 8.51
6.10 6.60
0.240 0.260
0.406 0.533 0.016 0.021
0.229 3.18
0.009 0.125
F
0.406 0.483 0.Q16 0.019
G
4.83 5.33
0.190 0.210
H
0.711 0.864 0.028 0.034
J
0.737 1.02
0.G29 0.040
K 12.70
0.500
L
6.35
0.250
0
0
M
45 NOM
45 NOM
P
1.27
0.050
Q
90 0 NOM
900 NOM
R
2.54
0.100
All JEDEC dimensIOns and notes apply.
CASE 79-02
TO-39
DIM
A
B
C
D
E
"' f',
~
.-1
-.iN
Thermal Resistance, Junction to Case
0
__
~I--D I STYLE 1
~
THERMAL CHARACTERISTICS
Characteristic
~
_:::::::.uK
~
m m
~
~
~
~
TC. CASE TEMPERATURE lOCI
Safe Area CurvtS are indicated by Figure 2. All limits are applicable and must be ob.Ned.
468
MJ8100, MJ8101 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Svmbol
Characteristic
Min
Max
60
80
-
-
100
100
-
-
10
10
1.0
1.0
-
10
-
100
25
25
15
lBO
-
0.7
1.2
-
-
1.2
1.B
30
-
-
300
-
1250
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
Collector Cutoff Current
MJBloo
MJ8101
Collector Cutoff Current
=
=
=
=
55
75
55
75
Vde,
Vde,
Vde,
Vde,
VBE(olfl
VBE(off)
VBE(off)
VBE(off)
'CEX
=
=
=
=
"Ade
'CEO
(VCE = 55 Vde, IS = 0)
(VCE = 75 Vde, 'B = 0)
(VCE
(VCE
(VCE
(VCE
Vde
VCEO(sus)
MJ81 00
MJ8101
(lC = 50 mAde,lS = 0)
MJBloo
1.5 Vde)
1.5 Vdc)
MJ8101
1.5 Vde, TC = 1500C) MJ81 00
1.5 Vdc, TC = 1500 C) MJB10l
Collector Cutoff Current
(VCB = Rated VCB, 'E = 0)
'CSO
Emitter Cutoff Current
'EBO
"Ade
mAde
"Adc
I'Ade
(VBE = 5.0 Vde, IC = 0)
ON CHARACTERISTICS 111
-
DC Cu rrent Gain
(lC = 500 mAde, VCE = 2.0 Vdc)
(IC = 2.0 Adc, VCE = 2.0 Vdc)
(lc = 5.0 Adc, VCE = 2.0 Vde)
hFE
Collector-Emitter Saturation Voltage
VCE(sad
Vde
(lc = 2.0 Adc, 'B = 0.2 Adc)
(lc = 5.0 Adc, I B = 0.5 Adc)
Base-Emitter Saturation Voltage
-
Vdc
VBE(sat)
(lC = 2.0 Adc,IB = 0.2 Adc)
(lC = 5.0 Adc, 'B = 0.5 Adc)
OYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
MHz
IT
(lC = 0.5 Adc, VCE = 10 Vde, f = 10 MHz)
Output Capacitance
pF
Cob
(VCS = 10 Vdc, 'E = 0, f = 100 kHzl
Inpu t Capacitance
(VBE = 2.0 Vdc, IC = 0, 1= 100 kHz)
pF
Cib
SWITCHING CHARACTERISTICS
Delay Time
(VCC = 40 Vdc, VBE (off) • 4.0 Vdc,
td
-
100
Rise Time
IC = 2.0 Adc, 'B 1 = 0.2 Adc)
tr
-
100
ns
Storage Time
(VCC
ts
1.0
I'S
Fall Time
'B1 = 'B2 = 0.2 Adc)
-
150
ns
= 40 Vdc, IC -
2.0 Adc,
tf
111 Pulse Test: PUIH Width ~ 300 J,J.5. Duty Cycle ~
2.0%
FIGURE 3 - SWITCHING TIME TEST CIRCUIT
FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA
100",
The Safe Operating Area Curves
INPUT PULSE
f..---.I-- 10 ~s
indicate Ie-VeE limits below
which the device will not enter
secondary breakdown.
Collec-
tor load lines for specific circuits
must fall within the applicable
Safe Area to avoid causing a
catastrophic failure. To insure
operation below the maximum
TJ. power·temperature derating
must be observed for both steady
state and pulse power conditions.
0.01
1.0
2.0 3.0
5.0
TO
2Q
30
50
VeE, COLLECTOR-EMITTER VOLTAGE (VOL IS)
ns
100
r
ov-,
+11.6 V
-40 V
-37V---L-J
25 ~F
~
1
tr,tf~10~S
D.C. - 2.0%
51
"::"
+3.3 V
469
Vcc
MJ9000 (SILICON)
10 AMPERE
POWER TRANSISTOR
HIGH-VOLTAGE NPN SILICON TRANSISTOR
NPN SILICON
700 VOLTS
125 WATTS
· .. designed for single unit use in color horizontal deflection output
circuits in television receivers.
D53157
• High Coliector·Emitter Voltage - VCES = 700 Vdc
• Fast Fall Time - tf = 1.1 Jls (Max)
@
IC = 6.0 Adc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Coliector·Emitter Voltage
VeEO
325
Vd.
Coliector·Emitter Voltage
VeES
700
Vd.
Emitter-Base Voltage
VEB
5.0
Vd.
Collector Current - Continuous
Ie
10
Ad.
Total Device Dissipation @ T e = 25°C
. Derate above 25°C
PD
125
1.0
Watts
TJ.Tstg
-55 to +150
°e
Oparating and Storage Junction
Temperature Range
wfOc
lr~
r~K
Es~1
THERMAL CHARACTERISTICS
PLANE
Ch.......ristlc
Thermal Resistance, Junction to Case
STYlE I:
PIN I. BASE
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise notedl
I
.....-
OFF CHARACTERISTICS
Collector-Emitter Braakclown Voltage (1)
UC"O.1Adc,IB"OI
CoJlector Cutoff Current
I
Symbol
I
Mi.
BVCEO
326
IceS
-
Max
Unit
2.EMITIER
CASE: COLLECTOR
MILLIMETERS
DIM MIN MAX
Vdc
I .•
(VCE - 700 Vdc, VEa - 0)
mAde
A
B
C
·D
6.35
0.99
-
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
ON CHARACTERISTICS
Collector-Emitter Saturation Voltaga
tic -a.DAde,l, -1.8Adc)
SWITCHING CHARACTERISTICS
Fall Time (See Flgufll 3)
Q
(VCC=80 Vdc.IC = a.DAde.IS'" 1.6 Adc)
R
470
NOTE:
3~84
-
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE
1. DIM "Q" IS 01.'0.
INCHES
MAX
MIN
--
0.2!lO
0:039
",.
1.117
0.420
0.210
0.655
0.440
0.151
11
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050
MJ9000 (continued)
FIGURE 1 - ACTIVE-REGION DC SAFE OPERATING AREA
10
7.0
5.0
~ 3.0
~ 2.0
@TC=25 0 C
.....
.....
!z 1.0
~ 0.7
~ 0.5
~ 0.3
~ 0.2
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be ob-
......
......
~. - - - Secondarv Breakdown Limited
0.1
Bonding Wire Limited
0.07 ~E - - - - Thermallimitations
~ 0.05 ~
:: 0.03
II
I
0.02
I I " "
0.01
5.0 7.0 10
20
50 70 100
200 300
30
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
~
served for both steady state and pulse power conditions.
c:
II
III
500
FIGURE 2 - TEST CI RCUIT FOR FALL TIME
150llF
f1J
to HP 212 A
TRANSISTOR
UNDER TEST
T
TO
r-----,
I
SCOPE
I
I
!
I
50
15
IL- _ _ _ _ ...JI
II
92V
OUTPUT WAVEFORM ON SCOP!!
~~
-=-
to 90%
(1) HP 212A: Set for 10 J.I.' wide pulses at 2000 pulses per sec. (500 J's Intervals). Adjust for 181 '" 1.6 A.
Bias: Adjust to 1.5 V on a VTVM across the 200 n Pot.
T: Pul.. Transformer: Motorola Part No. 25D68782A01.
471
MJ E10 5(SILICON)
MJE105K
MEDIUM-POWER PNP SILICON TRANSISTORS
5 AMPERE
POWER TRANSISTORS
· .. for use as an output device in complementary audio amplifiers
up to 20-Watts music power per channel.
PNPSILICON
• High DC Current Gain - hFE = 25·1oo@ IC = 2.0 A
• Thermopad
50 VOLTS
65 WATTS
High·Efficiency Compact Package
• Complementary to NPN MJE205, MJE205K
• Choice of Packages - MJE105 - Case 90
MJE105K - Case 199
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
VCEO
50
Vdc
Collector-Base Voltage
VCS
50
Vdc
Emitter-Base Voltage
~
4.0
Vde
Collector Current
IC
5.0
Adc
Base Current
IS
2.5
Adc
POll)
65
0.522
Watts
W/oC
TJ, T stg
-55 to +150
DC
Symbol
Max
Unit
8JC
1.92
°C/W
Total Device Dissipation @ T C = 2SoC
Derate above 25°C
Operating and Storage Junction
MJE105
~
Temperature Range
THERMAL CHARACTERISTICS
CASE 90-05
Characteristic
Thermal ReSistance, Junction to Case
(1) Safe Area Curves are indicated bV Figure 1. 80th limits are applicable and must be observed.
ELECTRICAL CHARACTERISTICS tT c
IOFF CHARACTERISTICS
Characteristic
=<
I
Collector-Emitter Breakdown Voltage (2)
(lC = 100 mAde, IS = 0)
Collector Cutoff Current
(VCB
(VCS
= 50 Vde,
IE
= 50 Vdc, IE
= 0)
= 0, TC = lSOOC)
Emitter Cutoff Current
(VSE = 4.0 Vdc, IC = 0)
~mbol
I
Min
IMax
50
-
-
-
0.1
2.0
IESO
-
1.0
Unit
Vde
BVCEO
ICBO
I
mAde
mAde
ON CHARACTERISTICS
DC Current Gain
(lC =2.0 Ade, VCE
S...·Emitter Voltaga
(lc = 2.0 Adc, VCE
MJE105K
25°C unless otherwise noted)
= 2.0 Vde)
= 2.0 Vde)
I
,
CASE 199-04
-
hFE
25
100
-
1.2
Vdc
VSE
(2) Pulse Test: Pulse Width ::S;;:300 IolS, Duty Cycle <;:2.0%.
472
MJE105, MJE105K (continued)
FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
I0
1. O~TJ= 151JOC
5. 0
Ie
100",
......
~
~ 3. 0
-"
I-
~ 2.0
B
~ ~:
transistor; average junction temperature and second breakdown.
Safe operating area curves Indicate Ie - VeE limits of the tranSistor
that must be observed for reliable operation; I.e., the transistor must
not be subjected to greater diSSipation than the curves indicate.
1\
1.0p-----THERMAL LlMIT@TC= 250C
'"
There are two limitations on the power handling ability of a
'"
l\li.o~s
1~---BONOINGWIRE LIMIT
5
SECOND BREAKDOWN LIMIT
The data of Figure 1
3.0
5.0
1.0
vanable
breakdown_
(See A N-4151
.J
-.11 J 1
2.0
IS
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitatIons Imposed by second
11
MJEI05. MJEI05K
O. I
1.0
based on TJ(pkl = 150°C; TC
lor duty cycles to 10% provided T J(pkl s:1500C. At high case
d,
8 o. 3
Eo. 2
IS
dependmg on conditions. Second breakdown pulse limits are valid
--
10
20
30
50
VCE. COLLECTOR-EMITTER VOLTAGE (VOLTSI
FIGURE 2 - "ON" VOLTAGES
FIGURE 3 - DC CURRENT GAIN
50
2.0
1I11
I.S
~o
>
=-
'"~
ffi
TJ = 25°C
I. 6
I.2
0.8
:;:::::P'"
VBE(satl @IclIB = 10 ""'\.
o
I
I V~E~~t; ~ 'lclIB = 10
1.0
~
0.7
l-"
r--
-55°C
60
1"\
0
1'0.
;
O. I
0.01
2.0 3.0 5.0
0.02 0.03
0.05
0.1
0
"'-
"
MJEI05. MJEI05K
"-
"I,,
0
0
"25
0.2 0.3
0.5 0.1 1.0
IC. COLLECTOR CIJRRENT (AMPS)
~
0
r.. .
r...."
03
FIGURE 4 - POWER DERATING
65
.......
'-'
o 0.2
V
0.02 0.03 0.05
0.1
0.2 0.3 0.5
1.0
IC. COLLECTOR CURRENT (AMPSI
25°cJ.
I--'
~ 0.5
'"
B
0.4 I-- VSE @VCE = 2.0 V
0.01
----
I'...
I-
1 I II
o
> 0.6
0.2
~
o
;
VCE=2.0V -
TJ .115OO,C
~
I.4
1.0
3.0
N
::J
.. 2.0
50
15
100
TC. CASE TEMPERATURE (DC)
473
125
"
150
115
2.0 3.0 4.0
MJE105, MJE105K (continued)
MJE105
MJE105K
STYLE 1:
PIN I. BASE
2. CO LLECTO A
3. EMITTER
STYLE 2:
PIN I. EMITTER
2. COLLECTOR
3. BASE
MILLIMETERS
DIM MIN
MAX
A
B
C
D
F
G
H
J
K
M
Q
R
U
INCHES
MIN MAX
INCHES
MIN MAX
16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51
3.76
4.22 BSC
2.67
2.92
0.813 0.864
15.11 16.38
90 TYP
4.70 4.95
1.91
2.16
6.22 6.49
R
S
T
CASE 90-05
U
NOTE:
I. LEADS WITHIN .005" RAO OF TAUE
POSITION ITP) AT MMC
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100BSC
0.105 0.115
0.017 0.027
0.580 0.590
0.085 0.095
30 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255
I. DIM "G"IS TO CENTER LINE OF LEADS.
CASE 199-04
474
MJE170 thru MJE172 PNP (SILICON)
MJE180 thru MJE182 NPN
COMPLEMENTARY PLASTIC SILICON
POWER TRANSISTORS
3 AMPERE
designed for low power audio amplifier and low current, high
speed switching applications.
•
POWER TRANSISTORS
COMPLEMENTARY SILICON
Collector· Emitter Sustaining Voltage VCEO(sus): 40 Vdc - MJE170, MJE180
: 60Vdc - MJEl71, MJE181
: 80 Vdc - MJEl72, MJE182
•
DC Current Gain hFE: 30 (Min) @ IC : 0.5 Adc
: 12 (Min) @ IC: 1.5 Adc
•
Current·Gain - Bandwidth Product tr: 50 MHz (Min) @ IC: 100 mAde
•
Annular Construction for Low Leakages ICBO: 100nA(Max)@RatedVCB
4()'6()'80 VOLTS
12.5 WATTS
MAXIMUM RATINGS
Rating
MJE170 MJE171
MJE180 MJE181
Symbol
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
MJE172
MJE182
Unit
VeB
60
80
100
Vdc
VeEO
40
60
80
Vdc
VEB
----7.0-
Vdc
Ie
-3.0-6.0----
Adc
Base Current
IB
Total Device Dissipation @ T A"" 2SoC
PD
1.0_ -_ _ 1 . 5 _
Watts
---0.012_
__
Watts
Collector Current ~ Continuous
Peak
Derate above 2SoC
Total Device Dissipation @TC-2SoC
Dera1te above 2SoC
~12.5--
PD
Operating and Storage Junction
- - - - 0.1 - - - _-65to+150 _ _
TJ,T stg
Adc
w/oe
w/oe
°e
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Thermal Resistance, Junction to Case
eJC
10
°e/w
Thermal Resistance, Junction to
eJA
83.4
°C/W
Unit
Ambient
S-H~l--D
1l
~GC
MJ~-t
I
MILLIMETERS
FIGURE 1 - POWER DERATING
DIM
MIN
MAX
A
8
10.80
7.49
11.05
7.75
2.67
0.66
3.0
c
U)
~
2412
D
F
h
"-
~ 2.010
G
"-
2
o
~ 1.68.0
iii
.....
01.26.0
r-..
""
~
~c
I"
r--.,
~ 0.84.0
I'
0.420
H
J
K
M
I"
r-...
" :"
.......
40
60
80
2.41
0.6
16.64
30 TYP
n
3.76
4.01
R
S
1.14
1.40
0.89
U
"
2.16
0.38
15.38
0.64
3.68
3.94
........ ~
o 0
20
2.41
0.51
2.92
2.36 Bse
100
120
~
140
160
T, TEMPERATURE (OC)
475
CASE 77-03
MJE170, MJE171, MJE172, MJE180, MJE181, MJE182 (continued)
ELECTRICAL CHARACTERISTICS (T C; 25 0 C unless otherwise notedl
I
I
Characteristic
Symbol
Min
Max
40
60
80
-
-
0.1
0.1
0.1
0.1
0.1
0.1
-
0.1
50'
30
12
250
-
0.3
0.9
1.7
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC; 10 mAde, IB = 0)
Collector Cutoff Current
(VCB =
(VCB =
(VCB =
(VCB =
(VCB =
(VCB=
Vde
VCEO(susl
MJE 170, MJE 180
MJE171, MJE181
MJEI72, MJE182
/lAde
ICBO
60 Vde, IE = 0)
80 Vde, IE = 0)
100 Vde, IE = 0)
60 Vde, IE = 0, TC = 150°C)
80 Vde, IE = 0, TC = 150°C)
100Vde,IE =0, TC; 150°C)
MJE 170,
MJE171,
MJEI72,
MJE 170,
MJE171,
MJE 172,
MJE 180
MJE181
MJE182
MJE 180
MJE181
MJE 182
Emitter Cutoff Current
(VBE = 7.0 Vde, IC = 0)
mAde
/lAde
lEBO
ON CHARACTERISTICS
DC Current Gain
-
hFE
(lC; 100 mAde, VCE = 1.0 Vde)
(lC; 500 mAde, VCE = 1.0 Vde)
(IC = 1.5 Ade, VCE ; 1.0 Vde)
Collector-Emitter Saturation Voltage
Vde
VCE(sa')
(lc = 500 mAde, I B = 50 mAde)
(lC = 1.5 Ade, IB = 150 mAde)
(lC = 3.0 Ade, IB ; 600 mAde)
-
-
Base-Emitter Saturation Voltage
Vde
VBE(sati
-
(lC = 1.5 Ade, IB = 150 mAdcl
(lc = 3.0 Ade, I B = 600 mAde)
Base-Emitter On Voltage
(lc = 500 mAde, VCE = 1.0 Vde)
-
1.5
2.0
-
1.2
50
-
-
50
30
Vde
VBE(on)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (1)
Output Capacitance
pF
Cob
(VCB· 10 Vde, IE • 0, f = 0.1 MHz)
(I)
MHz
fT
(lC; 100 mAde, VCE = 10 Vde, f test = 10 MHz)
MJEI70/MJEI72
MJE180/MJE182
-
fT = Ihle ,e I test
FIGURE 2 - SWITCHING TIME TEST CIRCUIT
H
FIGURE 3 - TURN-ON TIME
vcc
30 0
+30 V
200
10
RC
+~'J __ 1__ ,
!w
51
-=
VCC-30V _
r-ICIIB =10
VB E(olf) =4.0 V
Tr 25°C':: ~
,-,,"
O~
=1==
SCOPE
RB
-9.0 V
tr,tf~10ns
I II
'>="
0,
~-
50
0
'
0
."' .....
...
..........
$'
......
td
-=
0
-4V
DUTY CYCLE = 1.11%
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
7JJ
5.0
Dl MUST BE FAST RECOVERY TYPE, .g:
MBD5300 USED ABOVE IB =100 mA
MSD6100 USED BELOW IB =100 mA
3.0
0.03
For PNP test circuit, reverse all polarities.
PNP MJE170/MJE172
I I I I I I I NP~ MJ~'80/MiE'~2
0.05 0.07 0.1
0.2
0.3
0.5
0.7
1.0
IC, COLLECTOR CURRENT (AMP)
476
2.0
3.0
MJE170, MJE171, MJE172, MJE180, MJE181, MJE182 (continued)
FIGURE 4 - THERMAL RESPONSE
I.0
O. 7~O=0.5
O. 5
...,,::,
...-
i~ o. 3 r - - _0.2
8JCIt) = rlt)8JC
8JC' 10oC/W Max
"'«
~~ O.2 r - - -0.1
.... 0
~
~~
±JUl
0.05
Ci)~ o.
~~o.o ;~ ~0.02
........
::'0.01
2~o.o 5~
~a::0.03
-
~~~
~O (rINTL~ p~LrEi
I I
0.0 I
0.02
III
0.05
I- I -~ Jlplt)
DUTY CYCLE, D = '1/'2
0.02
II 1111
I
0.1
0.2
0.5
1.0
D CURJES A~PL ~ F~RI POWER =
1= F
~
f= PULSE TRAIN SHOWN
2.0
5.0
=~
1= f-READTIMEAT'I
1-
I TC i P1pr) ~JClltll
I
10
-
I I III
50
20
100
200
t, TIMElms)
ACTIVE·REGION SAFE OPERATING AREA
FIGURE 6 - MJEI80, MJE181, MJE182
FIGURE 5 - MJEI70, MJEI71, MJE172
0
.., 5.
10
0
~ 2.0
....
~
a
"\. f\
de
~·t
500ps
..,
5.0
~
'"
....
2. 0
~
1. 0
::::>
2- I",
~ ::
o
~o.o
1/
..........
0
1.
O. 5
a::
100
.....
-
- - - -
5~
0.0 2
0.0 I
1.0
2.0
3.0
u
TJ = 150°C
5.0ms
BONDING WIRE LIMITED
THERMALLY LIMITED @ "~
TC = 25°C IS1NGLE PULSE)
SECOND BREAKDOWN LIMITED
CU RVES APPLY BELOW
RATED VCEO -MJE170
MJE171
MJEI72
5.0
10
20
30
O. 5
a::
~
....
.....
--
2 - _____
CURVES APPL \ i~W
RATED VCEO
MiEI80
200
~
~
r-....
i"-
100
70
50
,
........
i:L
"-
.....
.e-
...
0.2
0.3
.......
0.7
1.0
'"....
U
30
<5
20
10
0.5
3.0
IC, COLLECTOR CURRENT (AMP)
.......
PNPMJEI70/MJE172 I-NPN MJEI80/MJEIB2 f-
II
Cib
"- .....
z
r---
2.0
-
I"-....
...........
I .......
I-0.5
100
TJ- 25 0 C-f-
........
50
u
r- I I I I I tN rYMJEi82
0.05 0.07 0.1
i'i'-
70
~
0.03
70
FIGURE 8 - CAPACITANCE
-=
of- - - - PNP MJE170/MJEI72
50
30
to values less than the limitations imposed by second breakdown.
(See AN-415)
VCC - 30 V_
ICIIB·1O
IBI-IB2 TJ < 25°C
0
I0
20
100
ts
......
10
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)
FIGURE 7 - TURN-OFF TIME
~f
5.0 7.0
3.0
variable depending on conditions. Second breakdown pulse limits
are valid fordu'y cycles to 10% provided TJ(pk) < IS00C. TJ(pk)
may be calculated from the data in Figure 4. At high case tempera·
ture, thermal limitations will reduce the power that can be handled
transistor - average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·
sistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The da.a of Figures Sand 6 is based on T J(pk) = ISo"C; T C is
300
~~~~:~
I I II
2.0
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
There are two limitations on the power handling ability of a
1000
70 0
500
TJ < 150°C
BONDING WIRE LIMITED
THERMALLY lIMITED@
TC = 25°C ISINGLE PULSE)
SECOND BREAKDOWN LIMITED
"-
O.
0.0 1
1.0
100
~
de
0.02
50
500ps
V
t'--
5.0 ms
_ o. 1:===
8 5=
.=?o.o
I II
1001-'~m
r ....
0.7
1.0
2.0
.......
3.0
Cob
5.0
7.0
- r- -
10
VR, REVERSE VOLTAGE IVOLTS)
477
i""- t--
20
30
50
MJE170, MJE171, MJE172, MJE180, MJE181, MJE1:82 (continued)
NPN
PNP
MJE180. MJE181. MJE182
MJE170. MJE171. MJE172
FIGURE 9 - DC CURRENT GAIN
200
i--
i - r-I-TJ= 110~C
rt- I--
0
...'"z
0
-I-
-55°C
0
~
0.05 0.07 0.1
0.2
0.3
0
~
i3
50
c
30
u
0
10
0.03
I--
25°C
z \0 0
VCE - 1.0 V
.....
::t.
25°C
0
- r-....
200
VCE,1.0V
.T]Ji50oC
0.5 0.7
10
r-
-55°C
~
"\
......
"- ~
0
~
\\,
2.0
~
"
I0
0.03
3.0
0.05 0.07 0.1
0.2
0.3
0.5 0.7
1.0
2.0
3.0
IC, COLLECTOR CURRENT lAMP)
IC, COLLECTOR CURRENT lAMP)
FIGURE 10 - "ON" VOLTAGES
4
1.4
I- TJ' 25°C
~
1.
0
V~EI~') ~ :clIs - 10
c
~ o.s
'~"
o.6 i- VSE@VCrl.0V
1. 2
./
0.05 0.07 O. I
0.2
0.3
O. S
'";5;0
O.6 - VISE
2.0
1.0
....,
I
v
./
...
I 11111
O. 2
IC/IS-50
0.5 0.7
f ~Cllll~
....-
>- O. 4
./
IclIs~
f-- VCElsat)
0
0.03
~
>
. / ./
O. 2
VSE(~ti@IICIIB= \0
~
/
L
V
'/ .
;:;; 1.0
/
>
;;;.- O.4
/
I-- TJ =25 0 C
-
1. 2
VCElsa,)@IC/ls=5.0and \0
0
0.03
3.0
0.05 0.07
0.2
0.1
IC, COLLECTOR CURRENT lAMP)
0.3
0.5 0.7
1.0
2.0
3.0
IC, COLLECTOR CURRENT lAMP)
FIGURE 11 - TEMPERATURE COEFFICIENTS
U
+2.0
"->
~ +1.0
~
II
II
'APPliES fO R Iclis '" hfE/2
II II
II II
~
ttr
~
25°C to 1500C~
BvS fOR VSE
~ -2. 0
...
i
-3.0
0.03
,/
0.2
0.3
0.5
0.7
II II
*
/'
-55 0 q to 25 0 C
~
~ -2. 0
3.0
IC, COLLECTOR CURRENT lAMP)
./
-3.0
0.03
BVB fOR VBE
-550C to 25°C
I j 11
II II
0.05 0.07
I I III
0.1
0.2
0.3
I III
0.5 0.7
IC, COLLECTOR CURRENT lAMP)
478
/
250Cto~
-
...
i
V
1111../ V
V
~ -1.0
~
2.0
l-J-fttf
'BVC fOR VCElsa')
w
V
1.0
250C to 150 0 C
13
It!
11'1
0.05 0.07 0.1
111111
111111
II II
~
-55°C to +25 0C
ILL
II I
'APPliES fOR IC/IB '" hfE/2
i3
I ffll
§i-I.0
+2.0
;; +1.0
~
-550C to 250 C
w
./
....-
250C to 1500 C
'BVC fO R VCE(sa!)
i3
u
3:E
1.0
2.0
3.0
MJE200 NPN (SILICON)
MJE210PNP
COMPLEMENTARY SILICON POWER
PLASTIC TRANSISTORS
5 AMPERE
designed for low voltage, low-power, high-gain audio amplifier
applications.
•
Collector-Emitter Sustaining Voltage VCEO(sus) = 25 Vdc (Min) @ IC = 10 mAdc
•
High DC Current Gain -
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.3 Vdc (Max) @ IC = 500 mAde
= 0.75 Vdc (Max) @ IC = 2.0 Adc
•
High Current-Gain - Bandwidth Product fT = 65 MHz (Min) @ IC = 100 mAdc
•
Annular
POWER TRANSISTORS
COMPLEMENTARY SILICON
25 VOLTS
15 WATTS
hFE = 70 (Min) @ IC = 500 mAdc
= 45 (Min) @ IC = 2.0 Adc
= 10 (Min) @ IC = 5.0 Adc
Construction for Low Leakage - ICBO =100 nAdc@RatedVCB
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCB
40
Vdc
VCEO
25
Vdc
VEB
8.0
Vdc
IC
5.0
10
Adc
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous
Peak
Base Cu rrent
Total Device Dissipation @TC
IB
1.0
Adc
= 25°C
PD
15
0.12
Watts
W/oc
= 25°C
PD
1.5
0.012
Watts
W/oC
TJ,Tstg
-65 to +150
°c
Derate above 25°C
Total Device Dissipation @ T A
Derate above 2SoC
Operating and Storage JUnction
Temperature Range
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance, Junction to Case
eJC
8.34
°C/W
Thermal Resistance, Junction to Ambient
eJA
83.4
°C/W
Characteristic
FIGURE 1 - POWER DERATING
6
1.6
r--.
2
.........
1
.........
I'-
0
~
.........
0
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 10.80 11.05 0.425 0.435
B
7.49
7.75 0.295 0.305
C
2:41
2.67 0.095 0.105
0
0.51
0.66 0.020 0.026
F
2.92
3.00 0.11
.1
G
2.36 SSC
0.093 BSC
H
2.16
2.41 0.005 0.095
I
0.3B
0.64 0.015 0.025
K 15.3B 16.64 0.605 0.655
M
3 TVP
3'TYP
n 3.76 4.01 0.148 0.158
R
1.14
1.40 0.045 0.055
S
0.64
0.89 0.025 0.035
U
3.68
3.94 0.145 0.155
0
.........
NOTE:
1.
0
20
40
60
80
100
120
"140
0
160
T, TEMPERATURE (OCI
479
MT~
MAIN TERMINAL
CASE 77-03
MJE200, MJE210 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25 0 C unle.. otherwise noted)
I·
I
Characteristic
Symbol
Min
Ma,.
Unit
VCEO(sus)
25
-
Vde
-
100
100
nAde
/lAde
-
100
70
45
10
180
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lc = 10 mAde, IS = 0)
Collector Cutoff Current
(VCS = 40 Vde, IE = 0)
(VCS = 40 Vde, IE =, 0, TJ = 1250 C)
ICSO
Emitter Cutoff Current
(VSE = 8.0 Vde, IC = 0)
IESO
nAde
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 2.0 Ade, VCE = 1.0 Vde)
(lC = 5.0 Adc, VCE = 2.0 Vdc)
-
hFE
Collector-Emitter Saturation Voltage (1)
(I C = 500 mAdc, IS = 50 mAdc)
(lC = 2.0 Adc, IS = 200 mAde)
(lc = 5.0 Adc, IS = 1.0 Ade)
VCE(sat)
Base-Emitter Saturation Voltage (1)
(lc = 5.0 Adc, IS = 1.0 Adc)
Sase-Emitter On Voltage (1)
(lc = 2.0 Ade, VCE = 1.0 Vde
Vdc
-
0.3
0.75
1.8
VSE(sat)
-
2.5
Vdc
VBE(on)
-
1.6
Vde
IT
65
-
MHz
-
80
120
DYNAMIC CHARACTERISTICS
Current·Gain - Sandwidth Product (2)
(lC = 100 mAde, VCE = 10 Vde, I test
= 10 MHz)
Output Capacitance
(VCS= 10Vdc,IE =0,1=0.1 MHz)
pF
Cob
MJE200
MJE210
(1) Pulse test: Pulse Width = 300 /lS, Duty Cycle'" 2.0%.
(2) IT = hlel • f test
I
FIGURE 3 - TURN-ON TIME
FIGURE 2 - SWITCHING TIME TEST CIRCUIT
300
+30 V
VCC
I~~~: ~~ V _
200
RC
TJ" 25 0 C100
SCOPE
RB
;::
'"
w
51
""
tr,tf~10ns
DUTY CYCLE" 1.0%
-4 V
.......
30
20
r""
'-.
"
-1'd l@IVrrO ff j5.0(' ' ....
7.0
0, MUST BE FAST RECOVERY TYPE, eg
MBD5300 USED ABOVE IB ~100 mA
MSD6100 USED BELOW IB ~100 mA
Ir
70
50
10
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVelS
"
.....
t-.
-.
....
MJE200INPN)
MJE210 IPNP)
5.0
3.0
0.05 0.07 0.1
FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES
0.2
0.3
0.5
0.7
1.0
IC, COLLECTOR CURRENT (AMP)
480
2.0
3.0
5.0
MJE200, MJE210 (continued)
FIGURE4 - THERMAL RESPONSE
1. 0
z
o. 7~
o. 5
~a
o.31--- -0.2
o. 21--- -0.1
~
~
fa
"w
~~
~~
D =0.5
~
O.~
o. I
-
....
f-- 1-10-
~ -I-OJC(t} =r(t} OJC
kl
- - OJC = B.34 oC/W Max--
p(
as gO.D5
~
,..----
~
0.0 3'---
-"
0.0 2
....
'2
t-
~(iI0.D1
1111
I I
0.1
0.05
:::0 CURVES APPL Y FOR POWER;::
-PULSE TRAIN SHOWN
READ TIME AlII
==
~
12
-
DUTY CYCLE. 0 = 1)112
(SiNGLE PULSEI
0.0 1
0.02
1 1 1 1 1 11
p
:: ~ 0.0 7
0.5
0.2
1.0
2.0
t. TIME (msj
I I
II I
5.0
10
Yi
Ptj1tJC(11
I
I
I
TJtlj
20
f--
I I
100
50
200
FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
1. 0
500ps
7. 0
.... 5.0
~
....
3. 0
15
0:
2. 0
a:
13
0:
o
~
_
8
p....., 100ps':=
1.0m
.....
't r:1
There are two limitations on the power handling ability of a
transistor
average Junction temperature and second breakdown.
Safe operatmg area curves Indicate le·VeE limits of the transistor
that must be observed for reliable operation, I.e., the transistor
must not be subjected to greater diSSipation than the curves indicate.
The data of F .gure 5 IS based on T Jlpkl = 1500 C; T C IS variable
depending on conditions Second breakdown pulse limits are valid
.~
0
"-
'"
J fft-::' I'\. r\
de
TJ = 150 0C
1.0
BONDING WIRE LIMITED
0C
o. 7~--- THERMALLYLIMITEO@TC=25
(SINGLE PULSEI
0.5
~--- SECOND BREAKDOWN LIMITED
E ---
r-
for duty cycles to 10% provIded T Jlpkl';; 15o"C. T J(pkl may be
~~~~~SV~~OLY BELlOW I
!:? 0.3
calculated from the data In Figure 4. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitatiOns Imposed by second breakdown
"-
0.2
(See AN·4151
O. I
1.0
2.0
3.0
5.0
7.0
10
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTSI
20
30
FIGURE 7 - CAPACITANCE
FIGURE 6 - TURN-OFF TIME
100 0
70 0
50 0
300
I--
200
~.
]
~ 100
~. 70
0
0
O
10
'"
----
-
200
=
=
I-t-
VCC - 30 V'
IcllB -10
IBI = IB2 _
r-+-
Is
...
TJ=250~_
~
.... j-...
:--..
MJE200 (NPNI
MJE210 (PNPI
1'--,
t-itf
-
1"'-::
.....
w
'-'
1-.
-
Z
~
u
t-
10 0
I"-
0
-~
2.0
3.0
5.0
481
t..::
-
I-
Cob
- - - MJE200 (NPNI
""MJTr
0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMPI
t J 5 0C I--
T"'-t--.
,...;
0
0
II
0.05 0.07 0.1
- ri--~
+-
1-1-
20
0.4
0.6
1.0
l
4.0 6.0
2.0
10
VR, REVERSE VOLTAGE (VOLTSI
I-~
20
40
MJE200, MJE210 (continued)
NPN
PNP
I
MJE200
MJE210
FIGURE 8 - DC CURRENT GAIN
400
z
200
25 C
J
.........
I
~~
<
to
....
~
'"
'-'
::>
J
-55 C
100
80
'-'
60
~
40
'"
400
TJ • 1500t
z
"
~ '\
II I
20
0.05 0.07 0.1
ffi
i:l
2.0
'-'
~.
3.0
100
80
c
60
~
40
'l\'
~
-
.. 25JC
....
.""
"
0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)
200
<
to
~
- - VCE= 1.0 V
- - - VCE=2.0V
II I
i}= 150JC
C'\r\
-55 0C
r-;;,
\"\.
r--. :\-\. .......\',
- - VCP1.0V
- - - VCE = 2.0 V
II I
20
0.05 0.07 0.1
5.0
"\
1,,1\
0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)
2.0
3.0
5.0
FIGURE 9 - "ON'"VOLTAGE
2.0
2.0
ITl !l50C
~
'"
2:
to
'"~
'"
>
0.8
:>
0.4
o
~
~V
1.2
"'
tl~12~oC
1.6
1.6
VSE(satl@IC/lS.-l0
--
Vlft VC l1.1 V
)c~!satl @iC/lsl" 10
0.05 0.07 0.1
'"2:
~
t:::;:::::'F-""
1.2
"'
to
~'">
O.B
>"
I-"'"
0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)
/.
2.0
3.0
o
5.0
-
V
.--
JcW)@ IC)I) 10
0.05 0.07 0.1
~ ;::::;-'
.!
LJ UCE -11.0 ~
V
0.4
~
VSE("t) @IC/IS = 10
0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)
20
~
/
3.0
f7'
V
5.0
FIGURE 10 - TEMPERATURE COEFFICIENTS
u-
S;
~
....
ffi
+2.5
+2.0
8
~
eVC for VCE(..t) . . .
~
-2.0
/
25 0C to 150 0C ,/'
evB for VBE
IIII
-2. 5
0.05 0.07 0.1
-H1"T 1 .........
V
~ +0. 5
8
IJ
~
::>
....
/
~
....
-55°C to 250 C
2.0
3.0
-0:5
~ -1. 0
i
I I
0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)
+1.0
~~P~~IES
F6R 11)1 '" l I
I
I I B I FEI3
-1 5
-2 0
.lovc
12150C 101150
II'
LV~E(sat)
n:
J.7 LH/
-
1...- /"
-550C to 25°C
I II
I I I
25 0C to 150 0C........-:
V /'
::::.V
I
I I I
0.2
0.3
0.5 0.7
1.0
2.0
IC, COLLECTOR CURRENT lAMP)
482
P
/
-55 DC to 250C
OVB for VSE
-2 5
0.05007 0.1
5.0
V
I
I I I
u
......... /
25 0C to 150 0C
./
~ -1.0
as'
/17
-5~0~ !012~oc
-0.5
~ -1.5
+2 0
..§. +1. 5
+1.5
~ +0. 5
i
£1;;:
+1.0
U
"'~
+2. 5
.IAWES FO~ IcllB '" h1FE/31
3.0
5.0
MJ E2 05 (SILICON)
MJE205K
MEDIUM-POWER NPN SILICON TRANSISTORS
5 AMPERE
POWER TRANSISTORS
... for use as an output device in complementary audio amplifiers
up to 20·Watts music power per channel.
NPN SILICON
- High DC Current Gain - hF E = 25-100@ IC = 2.0 A
-Thermopad High-Efficiency Compact Package
50 VOLTS
65 WATTS
-Complementary to PNP MJE 105, MJE105K
- Choice of Packages - MJE205·Case 90
MJE205K-Case 199
MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage
Symbol
Value
Unit
VCEO
50
Vde
Collector-Base Voltage
VCB
50
Vde
Emitter-Base Voltage,
VEB
4.0
Vde
Collector Current
IC
5.0
Ade
Base Current
IB
2.5
Ade
Pot
65
0.522
Watts
wflc
TJ, Tstg
-55 to +150
°c
Total Device Dissipatfon@Tc-25vC
Derate above 2SoC
Operating-and Storage Junction
Temperature-Range
MJE205
-
CASE 90-05
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case
Symbol
Max
Unit
8JC
1.92
°CIW
I
J
tSafe Area Curves are indicated by Figure 1. 80th limits are applicable and must be observed.
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
I
Characteristic
OFF CHARACTERISTICS
COllector-Emitter Breakdown Volt8get.
I
Symbol
I
Max
I
Unit
Vde
50
-
-
0.1
2.0
-
1.0
25
100
-
1.2
m~dc
ICBO
(VCB = 50 Vde, IE = 01
(VCB = 50 Vde, IE = 0, TC= 150°C)
Emitter Cutoff Current
(VBE = 4.0 Vde, IC = 01
Min
BVCEOt
IIc = 100 mAde, IB = Ol
Collector Cutoff Current
I
CASE 199-04
ON CHARACTERISTICS
hFE
Base·Emitter Voltage
(lC = 2.0 Ade, VCE = 2.0 Vdel
VBE
,
mAde
lEBO
DC Current Gain
(lC = 2.0 Ade, VCE = 2.0 Vde)
I
MJE205K
Vde
:t:Pulse Test: Pulse Width~300 tJs, Duty CycleEt;;2.0%.
483
MJE205, MJE205K (continued)
FIGURE 1 -ACTIVE REGION SAFE
OPERATING AREA
0
). 0t=TJ" 1500C
5. 01-_ ~-I--
_
i
3. 0
!Z
20
~
.
..,
a
1.
~
O.
Note 1:
- . ......
....
I- 1- -
100",
......
~.Om•
7F -
not be subjected to greater dissipatiOn than the curves indicate.
The data of Figur. 1 is based on TJ(pkl = ISOoC; TC IS variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) ,;;1500 C. At high case
BONDING WIRE LIMIT
SECOND BREAKOOWN LIMIT
5
de
-J
8 o. 3
~
that must be observed for reliable operation; Le., the transistor must
1\
It~
op _____ THERMAL LIMIT @lTC • 250C
.., O.
There are two limitations on the power handling ability of a
transistor; average junction temperature ~nd second breakdown .
Safe operating area curves Indicate Ie . VeE limits of the transistor
MJE205. MJE205K
o. 2
temperatures, thermal limItations Will reduce the power that can be
handled to values less than the limitations Imposed by second
1\
breakdown.
(See AN·4151
\
1
o.1
1.0
2.0
5.0
3.0
).0
10
50
30
20
veE. COLLECTOR·EMITTER VOLTAGE (VOLTSI
FIGURE 2 - "ON" VOLTAGES
20
1.8
Ei
w 3.0
Tp 250C
~
CD
«
1.4
1.2
1.0
~ 0.8
0
>
::;
-I- ..-
VBE".!I@lleilB· 10
0.6
0.4
0.2
o
0.01
r;::::V
II
0.020.03 0.05
0.1
..
0
1.0
..,~
0.5
1:l
0.3
'-'
Q
i-'"
25°C
~~
0.1
om
2.0 3.0 5.0
0.02 0.03 0.05
0.1
FIGURE 4 - POWER DERATING
...t=
~
50
~
z
40
::
ill
..,
30
...~cl
...
I
~
.~
1
1
'"
MJE205. MJE205K
.......
.....
"'-
"
CI
20
10
25
I .......
:55.J
0.2 0.3
0.5 0.7 1.0
Ie. COLLECTOR CURRENT (AMPS)
;;;
I"-
0.2
Ie. COLLECTOR CURRENT (AMPSI
65
60
........
ul
.ll'
1.0
VCE-2.0,! -
~
0.1
co
....... 1'
t1JU
0.5
a'"
./
II !I
0.2 0.3
~
V.
..,
VBE @lVCE • 2.0 V
VeE(sa!) @lIe lB' 10
~
2.0
TJ"150·C
~I--
N
1.6
0
~
w
FIGURE 3 - DC CURRENT GAIN
5.0
III
""'-
50
15
100
125
TC. CASE TEMPERATURE (OC)
484
"'"
150
115
2.0 3.0 4.0
MJE205, MJE205K (continued)
MJE205
MJE205K
ll~"'-~
STYLE 2:
PIN 1. EMITIER
2. COLLECTOR
3. BASE
~~C
-It
DIM
MIN
MAX
A
B
16.08
12. 7
3.18
16.33
12.83
3.43
0.51
0.76
C
D
F
G
H
J
K
M
N
n
R
S
T
U
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
3.61
3.86
2.548SC
2.67
2.92
0.43
0.69
14.73 14.99
.1
.41
JOTYP
1.47
1.73
4.78
5.03
1.91
2.16
0.81
0.86
6.99
7.24
6.22
6.48
NOTE:
1. LEADS WITHIN .005" RAO OF TRUE
POSITION ITP} AT MMC
1. DIM "G" IS TO CENTER LINE OF LEADS.
CASE 90·05
CASE 199-04
MJE210 (SILICON)
For Specifications, See MJE200 Data.
485
MJE220 thru MJE225 NPN (SILICON)
MJE230 thru MJE235 PNP
COMPLEMENTARY PLASTIC SILICON
POWER TRANSISTORS
4 AMPERE
POWER TRANSISTORS
. designed for low power audio amplifier and low current, highspeed switching applications.
•
COMPLEMENTARY SILICON
Low Collector-Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - MJE220/MJE222
MJE230/MJE232
= 60 Vdc (Min) - MJE223/MJE225
MJE233/MJE235
40,60 VOLTS
15 WATTS
•
High Current-Gain - Bandwidth Product fr = 50 MHz (Min) @ IC = 100 mAdc
•
Annular Construction for Low Leakage ICBO = 100 nAdc (Max) @ Rated VCB
•
DC Current Gain Specified at 200 mAdc and 1.0 or 2.0 Adc
•
Collector-Emitter Saturation Voltage Specified at 500 mAdc and
1.0, 2.0 and 4.0 Adc.
MAXIMUM RATINGS
Rating
Symbol
MJE220
MJE221
MJE222
MJE230
MJE231
MJE232
MJE223
MJE224
MJE225
MJE233
MJE234
MJE235
Unit
VCB
60
80
Vdc
VCEO
40
60
Vdc
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
VES
7.0
Vdc
IC
4.0
8.0
Adc
Base Current
IS
1.0
Adc
Total Device Dissipation @ T c:= 25°C
Po
15
0.12
Watts
W/oC
Po
1.5
0.012
Watts
W/oC
Collector Current - Continuous
Peak
Derate above 25°C
Total Device Dissipation
. Derate above 2S0C
@
TA
= 2SoC
Operating and Storage Junction
Temperature Range
-65 to +150
TJ.T,tg
°c
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
BJC
8.34
°C/W
Therm1i' Resistance, Jl!.nction to Ambiel;lt
BJA
83.4
°C/W
3. BASE
FIGURE 1 - POWER DERATING
•........
2
"-
,
,
,
"
I'
r-....
.
I'...
"
100
T,TEMPERATURE (OC}
F
I
" G
H
J
K
M
,
,
"'-
"
1
'"
'"
n
R
s
u
,
,
'"
CASE 77-03
486
MJE220 thru MJE225, MJE230 thru MJE235 (continued)
ELECTRICAL CHARACTERISTICS (Tc
I
~ 2soe unl... otherwise noted)
I
Characteristic
Symbol
Min
Max
40
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 10 mAde, IB = Ol
Collector Cutoff Current
(VCB = 60 Vde, IE = 0)
60
ICBO
(VCB
= 80 Vde,
IE
= Ol
(VCB
= 60 Vde,
IE
= 0, Te = 125°C)
(VCB
= 80 Vdc,
IE
= 0, TC = 125°C)
= 7.0 Vde,
IC
-
MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE225,
MJE233,MJE234,MJE235
MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE225,
MJE233,MJE234,MJE235
0.1
/lAde
0.1
0.1
mAde
0.1
Emitter Cutoff Current
(VBE
Vde
VCEO(sus)
MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE22S,
MJE233,MJE234,MJE235
/lAde
lEBO
= 01
-
0.1
MJE220,MJE230,
MJE223,MJE233
MJE221,MJE231,
MJE224,MJE234
MJE222,MJE232,
MJE225,MJE235
MJE221,MJE231,
MJE224,MJE234
MJE222,MJE232,
MJE225,MJE235
40
200
40
150
MJ"22U,MJ"2~0,
20
ON CHARACTERISTICS
DC Current Gain
(IC = 200 mAde, VCE
(lC
(IC
= 1.0 Ade,
= 2.0 Ade,
VCE
VCE
-
hFE
= 1.0 Vde)
= 1.0 Vdel
= 1.0 Vdcl
25
20
10
MJE223,MJE233
Collector-Emitter Saturation Voltage
(lC = 500 mAde, I B = 50 mAde)
(Ie = 1.0 Ade, IB = 100 mAdel
(lC
= 2.0 Adc, IB = 200 mAde)
(Ie
= 4.0 Ade,
IB
= 2.0 Ade,
18
-
= 1.0 Adcl
0.3
V.Il
0.8
2.5
Base·Emltter Saturation Voltage
(lC
Vde
VCE(satl
All Types
MJE221, MJE231,
MJE224, MJE234
MJE220, MJE230,
MJE223, MJE233
All Types
Vde
VBE(satl
= 200 mAdel
Base-Emitter On Voltage
(lC = 500 mAde, VCE = 1.0 Vde)
-
1.8
-
1.5
50
-
Vde
V8E(onl
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC
= 100 mAde, VCE = 10 Vde,
f test
Output Capacitance
(VC8
= 10 Vde,
IE
= 0, f = 0.1
MHz
fT
= 10 MHzl
pF
Cob
MJE220/MJE225
MJE230/MJE235
MHzl
50
70
-
-
FIGURE 2 - SWITCHING TIME TEST CIRCUIT
FIGURE 3 - TURN·ON TIME
500
Vee = 30 v_
ICIIB = 10
TJ=15 oe-t -
300
100
SCOPE
RS
]
w
51
01
'"
;::
~
..'t--
50
......
td @VBE(off) - 5.0 V.....
10
1.0%
t,
70
30
t r• tf~lO ns
OUTY CYCLE
100
t-
t-,
llll
10
7.0
01 MUST BE FAST RECOVERY TYPE, 'g
MBD5300 USED ABOVE 'B_100 rnA
MSD6100 USEO BELOW IB""100 rnA
f=
=
- - -MJE110/MJE115
MJE130/MJE235
5.0 I0.04 0.06
FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES
01
'--- I - -
--"~
-4V
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
.......
"';:::t::,..
:-....
0.1
NPN
PNP
04
0.6
1.0
Ie, COLLECTOR CURRENT (AMPI
487
20
4.0
MJE220 thru MJE225, MJE230 thru MJE235 (continued)
FIGURE 4 - THERMAL RESPONSE
1.0
~
0.7
Z
0.5
:::::::: 0=0.5
0.3
-
~
f:3
~0.2
~S 0.2 f--- f--O.l
:IE!::!
"",..
~
....
~~ 0.1
:: ~ 0.07
1li~0.05 ~
in
f--Z
0.01
i::i 0.03 f--IsjN1Li Py~sp
~ 0.02
c(W
"'
--
dUL
.- 10001-"
PI kl
I
0.0 1
0.02
1
~UTY
II II
0.1
0.05
I
t
~~.02
P
...
--&JcltI=rltl8JC
- - 8JC • B.34 oCIW Max -
P
0.5
0.2
2.0
t. TIMElms)
1.0
~
t2
CYCLE. 0 = \J/12
II
5.0
I I I I II
-
j
TJtll- T{ PIT(JClt'
I
10
~
:::0 CURVES APPLY FOR POWER=:
-PULSE TRAIN SHOWN
READ TIME At tl
20
I I
50
100
f--
200
FIGURE 5 - ACTIVE· REGION SAFE OPERATING AREA
10
~
~
~
5.0
.Oms
2.0
I
1. 0
50
...
....
\01'
~
.
100/IS
/IS
.....
...
O. 5
Safe operatmg area curves mdlcate le·VeE limits of the tranSistor
that must be observed for reliable operation; I.e, the tranSistor
must not be subjected to greater diSSipation than the curves mdlcate
The data of Figure 5 IS based on T J(pk) = 150°C; T C IS variable
t===F=
f::.
•
TJ = 150 0 C
de
BONDING WIRE LlMITEDI-----THERMALLY LlMITED@TC=25 0 C
'" 21ISINGLE PULSE)
~ O. -SECOND
8REAKDOWN LIMITED
_ O.
CURVES
APPLY BELOW
l~E
o
RATED VCEO
~ 0.0
::>
<..>
There are two limitations on the power handling ability of a
transistor. average Junction temperature and second breakdown.
..... 1-\. ,1\
"-
depending on conditions Second breakdown pulse limits are valid
for duty cycles to 10% prOVIded T JlpkJ .;;; 150°C. T Jlpk) may be
calculated from the data In Figure 4 At high case temperatures,
thermal limitations Will reduce the power 1hat can be handled to
values less than the limitations Imposed by second breakdown
\.1\
5r==~
f-+
MJE220/22.MJE230/32
0.0 2
I I I I MJE2P/25.~JE233/35 r-
0.0 1
1.0
2.0
3.0
5.0
7.0
10
20
30
--
50
IS.e AN·4151
70
100
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI
FIGURE 7 - CAPACITANCE
FIGURE 6 - TURN·OFF TIME
2000
ve~=3bv- ~
.!,
1000
le/IB = 10
IBI = IB2 ==
TJ =25 0 C= ~
~
F=
700
500
]
W
'"
;::
-'
300 ~
200
I'
"
tf
100 I70
50
30
~
"': ......
r- - -M.IE220/MJE225 -
20
0.04
- - -MJE220/MJE225 NPN
--MJE230/MJE235 - PNP
NPN
--MJE230/MJE235 - PNP
0.06
0.1
0.2
10~~~--~~~~~~~~--~~~~~
0.4
0.6
1.0
2.0
1.0
4.0
2.0
3.0
5.0
7.0
10
20
30
VR. REVERSE VOLTAGE (VOLTS)
Ie. COLLECTOR CURRENT lAMP)
488
50
70 100
MJE220 thru MJE225, MJE230 thru MJE235 (continued)
NPN
PNP
I
MJE220 thru MJE225
MJE230 thru MJE235
FIGURE 8 - DC CURRENT GAIN
400
z
200
'"
w
...'"::>'"
.
100
i}'150dC
...
~~OC
IZ
10
<1
I-
ill
50
...
30
...::>'"'"
Q
~
.~
~ 50
...
~
"
30
0.1
0.2
0.4
0.6
1.0
r-...
~
-55°C
'"""'l:::
20
:-.:
~~
\'; ~
10
0.04
4.0
2.0
,
25°C
10
'"
~,
Q
20
0.04 0.06
100
z
-
I VC~=1.0IL
--VCE = 2.0 V
11
--Vcp2.0V
25°C
<1
200
Ii JvcJ'l.ol~_
It'15~OC
300
0.06
0.2
0.1
0.4
0.6
1.0
'~
2.0
4.0
IC. COLLECTOR CURRENT (AMP)
IC. COLLECTOR CURRENT lAMP)
FIGURE 9 - "ON" VOLTAGES
2.0
f-
2.0
V~Joc
I-
1.6
J
/- V
~
0
?
1.2
w
'"~
....
0
>
>'
I-
o
~
VSE{sat)@ Iclle = 10
O.S
0.4
Tll
i5 bc
1.6
V,ej jlCE = ,1.0
~
LVCE{,.t)@
JJ Iclle = 10
0.04 0.06
0.2
0.1
k::: V
-
0.4
V
.........
0.6
1.0
~
0
?
1.2
-"~
w
V
'"'~"
0
:>
f- -riEtllcE = \0 V;.
0.4
o
4.0
J
VeE{,.t)@ Iclle = 10
O.S
>
I- -U{l.l)l@
2.0
,A"
17
0.04 0.06
ICII~ lb
=
0.1
IC. COLLECTOR CU RRENT (AMP)
V
t....---'
0.2
0.4
0.6
1.0
4.0
2.0
IC. COLLECTOR CURRENT (AMP)
FIGURE 10 - TEMPERATURE COEFFICIENTS
+2.5
~
>
+2.5
'APPLIES FOR Iclle'; hFE/3
~
+2.0
>
reffi
re
i:5
• OVC FOR VCE{sati
...o
~ -0.5
~~
-1.0
!l
-1.5
~
-2.
...
5 -" 0.06
0.04
25°C to 15~ I--""
-5~olc ~ol t50C
t--
orti7iW-
-2.
r7
.§ +1.5
.§ +1.5
+1.0
U
~ +0.5
'APPLIES FOR Ic/le'; hFE/3
+2.0
"0.1
,
V
J
I-- I- 25iC to 150 0
U
./
II
+1.0
tt
+0.5
8
0
250C to 1500C .-'
'eVC FOR VCE{,.t)
V
-5~0~ tl ~51~
~
~
2~~
~
-1.0
-1.5
I-
0rel F~ R VeE
:> -2.0
...
0.2
0.4
0.6
1.0
2.0
-2.5
0.04 0.06
4.0
489
V
V
1!
0.2
0.4
0.6
1.0
IC. COLLECTOR CURRENT (AMP)
IC. COLLECTOR CURRENT (AMP)
1/
-55°C to 250C
II
0.1
./
V
__ I--
I-
1551c 1° 125tf
""""
w
~ -0.5
v l/
P
.J....H-
w
1A""
./
2.0
4.0
MJE240 thru MJE244 NPN (SILICON)
MJE250 thru MJE254 PNP
COMPLEMENTARY SILICON POWER
PLASTIC TRANSISTORS
4 AMPERE
. designed for low power audio amplifier and low-current, highspeed switching applications.
•
High Collector-Emitter Sustaining VoltageVCEO(susl = BO Vdc (Min) - MJE240/2, MJE250/2
= 100 Vdc (Min) - MJE243/4, MJE253/4
•
High DC Current Gain @ IC = 200 mAdc
hFE = 40-200 - MJE240, MJE250
= 40-120 - MJE241,243, MJE251,253
= 25 (Min) - MJE242,44, MJE252,54
•
Low Collector-Emitter Saturation VoltageVCE(sat) = 0.3 Vdc (Max) @ IC = 500 mAdc
•
High Current Gain Bandwidth Product fT = 40 MHz (Min) @ IC '" 100 mAdc
POWER TRANSISTORS
COMPLEMENTARY SILICON
SO, 100 VOLTS
15 WATTS
• Annular Construction for Low Leakages
ICBO = 100 nAdc (Max) @ Rated VCB
MAXIMUM RATINGS
MJE240
MJEN,
MJE242
Symbol
MJE2S0
MJE251
MJE252
MJE243
MJE244
MJE253
MJE2&4
Unit
VCEO
80
100
Vdc
Collector-Ba" Voltage
VCS
SO
100
Vd.
Emitter-B. . Voltage
Ves
7.0
Vdc
IC
4.0
8.0
Ad.
Collector-Emitter Voltage
Collector Current
....
Continuous
a.-Current
IS
Total Device Dissipation@TC"26oC
Detat9 abOve 25°C
Po
Total Device Dissipation
Derate abOve 25°C
Po
II)
TA ... 25°C
I.
1.0
Ad.
0.12
w/oe
1.5
W....
Wt"C
~65
TJ,T,ttI
A
t-
Watts
0.012
Operating .-ad Storage J,unction
M
K
DC
to +150
TemperatUre Range
S
THERMAL CHARACTERISTICS
STYLE 1
Thermal Raistance, Junction to Case
PIN 1. EMITIER
Thermal Raistance, Junction to Ambient
2. COLLECTOR
3. BASE
FIGURE 1 - POWER DERATING
I .6
6
I'""-2
~
0
"
I
"-
0
O
20
40
60
80
"'~
"
100
t"120
...... ~
140
0
160
CASE 77.03
T, TEMPERATURE lOCI
490
MJE240 thru MJE244, MJE250 thru MJE254 (continued)
ELECTRICAL CHARACTERISTICS (TC
I
= 25°C unle.. otherwise nOled)
Symbol
Characteristic
Min
Max
80
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 10 mAde, la = 0)
VCEO(sus)
MJE240,MJE241,MJE242,
MJE250,MJE251,MJE252
MJE243,MJE244
MJE253,MJE254
100
Collector Cutoff Current
(Vca
= ao Vde,
(Vca
= 100 Vde,
(VCE
= ao Vde,
(VCE
= 100 Vde,
= 0)
IE
IE
= 0)
= 0,
IE
IE
TC
= 125°C)
= 0, TC = 125°C)
.Icao
MJE240,MJE241,MJE242,
MJE250,MJE251,MJE252
MJE243,MJE244,
. MJE253,MJE254,
MJE240,MJE241,MJE242
MJE250,MJE251,MJE252,
MJE243,MJE244
MJE253,MJE254
Emitter Cutoff Current
(VaE
= 7.0 Vde,
IC
0.1
-
0.1
-
0.1
-
0.1
-
0.1
40
200
40
120
JolAdc
mAde
IlAdc
IEaO
= 0)
-
Vde
ON CHARACTERISTICS
DC Current Gain
IIc = 200 mAde, VCE
-
hFE
= 1.0 Vde)
MJE240,MJE250
MJE241,MJE251,
MJE243,MJE253
MJE242,MJE252,
MJE244,MJE254
MJE241,MJE251, }
MJE243,MJE253
MJE242,MJE252
MJE 244,MJE254
MJE240,MJE250
II
IIc = 1.0 Ade, VCE
= 1.0 Vde)
IIc = 1.0 Ade, VCE = 1.0 Vde)
IIc
= 2.0 Ade,
VCE
}
= 1.0 Vde)
Collector-Emitter Saturation Voltage
IIc = 500 mAde, I a = 50 mAde)
lie = 1.0 Ade, la = 100 mAde)
IIc
IIc
= 2.0 Ade,
= 4.0 Ade,
VCE(s.,)
All Types
MJE24I,MJE251,
MJE243,MJE253 }
MJE240, MJE250
All Types
la = 200 mAde)
IS = 0.8 Ade)
Base-EmItter Saturation Voltage
IIc = 2.0 Ade, IS
Base-Emitter On Voltage
lie = 500 mAde, VCE
VaE(on)
= 1.0 Vde)
-
20
-
10
-
15
-
-
0.3
0.6
Vde
-
0.8
-
2.5
-
1.8
-
1.5
40
-
-
50
70
Vde
VSE(sal)
= 200 mAtle)
25
Vde
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 100 mAde, VCE = 10 Vde, f ,es'
Output Capacitance
(VCS = 10 Vde, IE
= 0, f = 0.1
fT
= 10 MHz)
Cob
MJE240/MJE244
MJE250/MJE254
MHz)
FIGURE 3 - TURN·ON TIME
500
+30 V
VCC
200
SCOPE
10 0
I-
I'..
./
0
0
51
.:
t,. tf!S10 ns
DUTY CYCLE = 1.0%
TJ-25 0 C- I VCC =30V- f IC/IB= 10 _
300
RC
RB
pF
-
FIGURE 2 - SWITCHING TIME TEST CIRCUIT
MHz
0
.........
0
-4V
...
........
Ir-
.......
.......
F= ---=~~~~=::m~!~~~
7. 01=
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
-
NdIIVBE(iff) = rO V
-
10
01 MUST BE FAST RECOVERY TYPE, ego
MBD5300 USED ABOVE IB ~IOO mA
MSD6100 USEO BelOW IB ~IOO mA
5.0
0.04
0.06
0.1
0.2
0.4
0.6
1.0
FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES
IC, COLLECTOR CURRENT (AMP)
491
2.0
4.0
MJE240 thru MJE244, MJE250 thru MJE254 (continued)
FIGURE 4 - THERMAL RESPONSE
1.0
o. 7=== 0=0.5
0.5
w
'Z"'
~
ff3
0.3
~o 0.2
~~
-
O;!,.-
"'-'
~~ o. 1
---...
~0.2
r-O.I
.",
"r.r-uL
""
PI k)
p
t I-:=J
~ ~o.o 7
a1 0.05::::: ~0.02
0.01
0.03 D ISINGLE PULSE)
>-' 0.02
~"'
a:.
-E
0.0 1
0.02
12
OUTY CYCLE. 0 = 11/12
I
0.1
0.05
=-
1
I I I I III
0.5
0.2
1.0
2.0
I, TIME (m.)
-
I II
I
10
5.0
-r-9JcIO=rlt)8JC
- r - 9JC=B.340CIWMax-t-I I I I I II
=0 CURVES APPLY FOR POWER~
-PULSE TRAIN SHOWN
..
READ TIME AlII
r',
TJlpk) - TC • Plpk)8JCIt)
I,
jell
r-
I I I I I II
50
20
100
200
FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
0
5.0
~
2.0
S;
1.0
w
tOjS
..... I"-
-. ~t:
E==~TJ -150°C
de
5.0
5 _ _ BONDING WIRE LIMITED
ms
---THERMALLY lIMITEDIIHC' 250C
2
ISINGLE PULSE)
O.
"\
1 ~ESECONO BREAKDOWN LIMITED
~ O.
b=FCYRVES APPLY BELOW
-'
RATEO VCEO
80.05
!}
0.02
- ~}E~~MJ~242, MJE2501MJE2 2
MJE2431MJE244, MJE2531MJE254
0.0 1
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70
'"a:
'"'
'"
~
::>
There are two limitations on the poWer handling ability of a
transiStor: average junction temperature and second breakdown.
Safe operating area curves ,ndlcate le'VeE limits of the transistor
""'1' .. t'\sn,:
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
Thedala of F,gure 5 is based on T Jlpk) = 1500 C; TC "variable
depenchng on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provIded T Jlpkl E;; 15o<'C. T Jlpk) may be
calculated from the data In Figure 4. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.
ISee AN·4151
O.
I
100
VCE, COllECTOR·EMITTER VOLTAGE (VOLTS!
FIGURE 6 - TURN-OFF TIME
2000
=F=
1000
700
500
:!
i>-
300
200
.:
100
FIGURE 7 - CAPACITANCE
200
TJ -250C_ f-VCc-30V
Ic/18= 10
181=182
==
100
Is
r-..
"....... ......
70
50
"'
1
30 _ ---~E240/MJE244INPN)
E2501MJE254 PNP)
20
0.04 0.06
0.1
0.2
D.4
0.6
1.0
0
"
2.0
O
0
I0
4.0
1.0
IC, COllECTOR CURRENT lAMP)
---
T}.
r- I"r--Clio
-
r0-
I'-~
- - -MJE2401MJE244INPN)
-MJE2501MJE254 PNPI
2.0
3.0
0:-"'"
+t_
5.0 7.0
II
10
......
20
VR, REVERSE VOLTAGE (VOLTS)
492
25~C
30
50
70 100
MJE240 thru MJE244, MJE250 thru MJE254 (continued)
NPN
PNP
I
MJE240 thru MJE244
MJE250 thru MJE254
FIGURE 8 - DC CURRENT GAIN
500
..:c
200
300 -
~
30
20
j
~
~5~f
...'"z
...
'"'"u::>
---VCE-2.0V
200
100
70
50
=
z
;0;:1=11
~
::....
...
~
20
-550C
~
~~
1""..."'"
i:l
~
~
25°C
70
50
I30
iii
u
co
~
i
ViCE =11.0 V '--Vce- 2.O V ' -
-
T -1500C
100
-560C
10
7.0
5.0
0.04 0.06
. I II
VCE"I.O~_
T -Isooe
10
7.0
5. 0
~
~
"
...
3. 0
0.1
0.2
0.4
0.6
2.0
1.0
2.0
0.04 0.06
4.0
0.2
0.1
IC. COLLECTOR CURRENT (AMP)
0.4
0.6
2.0
1.0
4.0
IC. COLLECTOR CURRENT (AMP)
FIGURE 9 - "ON" VOLTAGES
1.4
I-
/;l
1.2HH-++++-+--t--t-HH-++++-+-"V-7'9--l
d'
1.0H-t-t+t+-t--lf-+H-+t+++t-:,......~
..... fZ-+-H--l
~
0.8 VBE(!", @lIC/IB - 10
~
~.,
II
VBE@VCE=I.OV._+--f-lH++++I-_+-+--AW~
~
~
w
o.8
>
>.
~-HH++-~1-~~~~1BI~~~~~.0~-r-i
~I
1.0
0.1
0.2
0.4
0.6
1.0
2.0
II
II
II
IcllB = 10
VBE@VCE=I.OV
---
I
I
I
/
//
-
5.0
-
"",~LLL
-VeE(sat)
0.04 0.06
'"
h
f-,-",
le/18=IO h
IJd::IV
o
4.0
.....-:::
o.4
o.2
I
o~-~~~LVtCEt~~'t):j~~:t:r:Etlttlttl~~t=:t:j
0.04 0.06
I
I
I
VBE(sa')@
'"
.,~ o.6
~~ O.4HI-+++++-t-+--t-HI-+++++-h~~<-+-i
0.2
~
.,
.....-
0.6
iJ! ~5'oC
I. 2
0.1
0.2
IC. COLLECTOR CURRENT (AMP)
0.4
0.6
II J J
1.0
4.0
2.0
Ie. COLLECTOR CURRENT (AMP)
FIGURE 10 - TEMPERATURE COEFFICIENTS
+2.5
+2.5
£
+2.0
>
"AP LIE
R IcIIB'" hFEI3
:;-
oS +1.5
~
ffi
-I
+1.0
t:;
~ +0.5
250 C '0 150°C _ _
-55 0C'0 25°C
~ -D.5
II
1.0
! . 1-5
i
V
"BvC FOR VCEfI.,)
8w
a. .
"APPLIES FOR IcIIB<:hFE 3
~ +2.0
250~
:~
-2.
-2.
0.04 0.06
0.1
0.4
0.6
+1.0
t:;
e:
;
25 0C10 1500C ..... 1---"
"BVC FOR VCE(sa,
H"1T1
w
-5tC 10 25"C
~ ..0,5
V V
~
a::
~
-1.0
'"' -I.5
~
:> -2.0
-550C '0 25 0C
...
2.0
+0.5
8
..Lk:::: :.-~
1.0
+1.5
~
[!!
-~
II
0.2
..s
/
I
I
4.0
-2.5
1
r-250 ,10 1500J
i
ByBtiRIIBIEII II
0.04 0.06
0.1
?
493
/
/
........ L
/
./ /'"
V
-t I !'"1 iI
5 C 2 C
0.2
0.4
0.6
1.0
IC. COLLECTOR CURRENT (AMP)
Ie. COLLECTOR CURRENT (AMP)
/
2.0
4.0
MJ E340 (SILICON)
MJE340K
0.5 AMPERE
POWER TRANSISTOR
PLASTIC MEDIUM POWER NPN
SILICON TRANSISTOR .. '
NPN
SILICON
.. ' 300VO.LTS
" . 20:8 and 3Q WATTS
· .. designed for power output'stage;; for. television, ~adio, ph'onograph
and other consumer product applications.
• SUitable for Transformerless, Line·Operated:Equipment:
·.C.
• Thermopad Construction Provides High Power DissipatiOn Rating
for· High Reliability
MJE340
• Choice of Packages - MJE340 - Case 77
.
MJE340K - Case 199
MAXIMUM RATINGS
Rating
COII~tor·Emitter
Emitter.B~.
Voltage
Symbol
Value
VCEO
300
Voltage
Unit·
Vde
...
VEB
3.0
Vde.
IC
500
mAde
COlleCtor Current - Continuous
'ASE-77-03
I
. MJE3;40 MJE340K
Po
Total Device Dissipation @TC:: 2SoC
Derate above 25°C
Operating and Storage Junction
Temper-sture Range
T J, Tstg
20.8
0.167
I
Watts
W/oC
3(l
0.24
-65 to +150
°C·
MJE340K
THERMAL CHARAc:rERlgTICS
Characteristic
Thermal Resistance, Junction to Case
,
,
ELECTRICAL CHARACTERISTICSrrC =. 250 C unless otherwise noted)
I
.
Charactaristlc
I.
Symbol
I
Min
I
Max
I
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 1.0 mAde,
= Ol
18
Emitter Cutoff Current
(VEB = 3.0 Vde;'lc ~ 0)
VCEO(sus)
Vdc
300· '
ICBO
100
"Ade
lEBO
100
"Add
ON CHARACTERISTICS
DC Current Gain .
(lC = 5,0 mAde, VCE = 10 Vdel
494
CASE 199-04
"i",
".
MJE340, MJE340K (continued)
FIGURE 1 - POWER TEMPERATURE DERATING
2
8
-
FIGURE 2 - "ON" VOLTAGES
1.0
..........
""",
""'" "
"'"
4
......
B
2
~
0
........
L
to
f"-.
0.4
,/
0
>
,;
:--.....: t--...
VCE(sall
IcilB= 10
0.2
~
100
120
80
80
TC, CASE TEMPERATURE (OC)
40
/
VSE@VCE=lbv
0.6
W
:;
'"
" "MJE340K
0
20
"..,V6A
lL
~
MJE34!I~
0
IL
11
~B~ (Sat) '@ \~I~ = 10
'j TI"ITL
TJ=~50C
O.S
~
140
IL
Icra' j'0
o
180
./"
.....
20
10
30
100
50
200
300
500
IC, COLLECTOR CURRENT (mA)
ACTlVE"REGION SAFE OPERATING AREA
FIGURE 3 - MJE340
FIGURE 4 - MJE340K
I.0
1.0
I
...
0.&
5 0.3
'" 0.2
B
'"
~
0,
S
TJ = 150·
10",~
..
I.~~
~
) )l\.
I
0.06
~ 0.03
-----
500",
_
K:"f-
~-
Z
W
O.2
a
O. 1
::;
'"o
SECOND BREAKDOWN LIMIT
- BONDING WIRE LIMIT
THERMAL LIMIT 41 TC = 25°C
t;
~
'\.
o
'"'
!J
0.02
I
0.0I
I I I
I I
III
I\,
100
200
20
3D
50
VCE, COLLECTOR EMITIERVOLTAGE (VOLTS)
10
0.05
0.03
"~
- ------
~
SECOND BREAKDOWN LIMIT
BONDING WI RE LIMIT
THERMAL LIMIT 41 T = 250C
-
lSi
1S:::t-
500",
~
I--- I- TJ' 150·
0.3
I-
'\
10",
1.0ms
O•5
'\.
0.0 2
0.0 I
300
10
30
20
100
50
300
200
VCE, COLLECTOR·EMITTER·VOLTAGE (VOLTS)
There ara two limitations on the power handling ability of a transistor: average junction temperatura and second breakdown. Safe operating
area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected
to greater dissipation than the curves indicate.
Th. data of Figures 3 and 4 is based on T JJpk) = 1500 C; TC is variable depending on conditions. Second breakdown pulse limits,are valid
for duty cycles to 10% provided T J(pk) S 150"C. At high case temperatures, thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown. (See. AN"415)
FIGURE 5 - DC.CURRENT GAIN
3DO
200
I
'"
...z
...'"::>
..
'"'ul
70
50
CI
~
3D
20
10
_t:::t:- I=:-
I
z
C 100
I-
---Vce=10V -
I
J
TJ = \500
+IOOoC
--- -I"'"
+25oC
'"'""
..-- ....-rf--
1.0
"55°C
2.0
I"""'"
~
- ",
-"",
--
t--
r=-
~....-;;
~
- - .- c\.-;~-'\. -..... ~
-
3.0
-- --- -
-VCE=2.0V
t'~ ~
~
5.0
7.0
10
20
3D
IC, COLLECTOR CURRENT (mAde)
495
50
70
100
200
~
[". ~ ~.......
300
500
MJE340, MJE340K (continued)
MJE340
MJE340K
M
T
I-J
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER
s
STYLE 1
PIN I. EMITTER
2. COLLECTOR
3. BASE
DIM
A
B
DIM
A
8
C
D
f
G
H
J'
K
M
Q
R
S
U
C
MI LL IMETE RS
MIN MAX
1080 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.00
2.31
2.46
2.16
2.41
0.38
0.64
15.38 16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94
D
F
G
MILLIMETERS
MI
MAX
16.08 16.33
12.57 12.83
3.18 3.43
0.51 0.76
3.61 3.86
2.54 Bse
H
2.67
2.92
J
0.43
0.69
K
L
M
N
Q
R
T
14.73 14.99
2.16 2.41
3 TV
1.47
4.78
1.91
0.81
6.9
6.22
1.73
5.03
2.1
.86
7.2
6.48
1. DIM "6" ISTO CENTER LINE OF LEAOS.
CASE 199.04
CASE7HJ3
496
MJE341 MJE341K(SILICON)
MJE344 MJE344K
PLASTIC NPN SILICON
MEDIUM-POWER TRANSISTORS
· •. designed for power output stages in television, radio, phonograph
and other consumer product applications.
• Recommended for 1.5 W Class A Output in Transformer Coupled,
Line-Operated Equipment - MJE341
• Ideal for Audio Output Circuitry in Black and White Television
Receivers - MJ E344
• Choice of Packages - MJE341 , MJE344 - Case 77
MJE341K, MJE344K - Case 199
0.5 AMPERE
POWER TRANSISTORS
NPN SILICON
150-200 VOLTS
20.8 and 30 WATTS
MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage
Coliector~Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Base Current
Total Oeviee Oissipation@Tc=250 C
Derate above 2SoC
Operating and Storage Junction
Temperature Range
Symbol
MJE341
MJE341K
VCEO
Vce
VEe
IC
Ie
150
200
175
200
3.0
5.0
-500--_260_
Vde
Vde
Vde
mAde
mAde
Po
MJE341
MJE341K
MJE344
MJE344K
20.8
30
0.167
0.24
_-65to+150_
Watts
wl"c
°c
TJ,T stg
MJE344
MJE344K
MJE341,MJE344
Unit
CASE 77-03
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Symbol
MJE341
MJE344
MJE341K
MJE344K
Unit
6JC
6.0
4.167
°CIW
FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
MJE341 K, MJE344K
1.0
600",
1
- -
- - -
\.1.0 ..
~
SECOND BRfAKDo\\w Lim
- - -
(011)
"
TJ'" 1500 Ci
BONDING \\IRE LIMIT
THERMAl LIMIT OTc = 25'C
(all)
I\.
ck:
MJE341,344
'ii'i,
0.D2
0.01
10
20
30
40
I
\
1111
2IJO
300
VCE. CDLLECTDR-EMITTER VOLTAGE (VOLTS!
There era two limitations on the power handling ability of 8
transistor: lVerage Junction temperatura and second breakdown.
Safe operating area eurv.. indicate IC-VCE limits of the transistor
that must be obsoJ'vad for reliabl. operation; i.e., the transistor
must not be subjected to greater dissipation than the curvas indicate.
Tho data of Figure 1 i. baaed on TJ(pk) • 15o"C; TC is
_iable depending on cOnditions. Second b ....kdown pul .. limits
. . valid for dutY eyel .. to 10% provided T J(pk) <; l5O"c. At
high e_ temperatures, thermal limitations will redueo tha power
that can ba handled to values I... th,n tho limitations Impoaad by
IOCOnd breakd_n. (See AN-415)
497
CASE 199-04
MJE341, MJE341 K, MJE344, MJE344K (con~iniJed)
ELEcTRICAL cHARAcTERISTICS (Te = 250 e unless otherwise noted)
Symbol
Min
M...
150
200
-
-
1.0
-
1.0
-
0.3
-
0.1
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 1.0 mAde, IB = 0)
Collector Cutoff Current
(VeE = 150 Vde, IB = 01
MJE341,K
MJE344,K
Collector Cutoff Current
(VCB = 175 Vde, IE = 0)
(VCB
mAde
,ICBO
MJE341,K
MJE344,K
= 200 Vde, IE = 0)
mAde
ICEO
= 0)
(VCE = 200 Vde, IB
Vde
VCEO(susl
MJE341,K
MJE344,K
mAde
Emitter Cutoff Current
(VES = 3.0 Vde, IC = 01
MJE341,K
-
0.1
= 5.0 Vde, IC = 01
MJE344,K
-
0.1
20
-
25
30
200
300
20
-
-
1.0
-
2.3
VSE(on)
f-r
(VES
lEBO
ON CHARACTERISTICS
DC Current Gain
(lC = 10 mAde, VCE
(lC
MJE341,K
MJE341,K
MJE344,K
MJE341,K
= 150 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage
(lC = 50 mAde, IB 3 5.0 mAdel
(lC
-
hFE
= 10 Vdel
(lc = 50 mAde, VCE = 10 Vde)
Vde
VCE(setl
All Types
MJE341,K
= 150 mAde, IS = 15 mAdel
Base-E mitter On Voltage
(lC = 50 mAde, VCE = 10 Vdel
1.0
Vde
15
-
MHz
Cob
-
15
pF
hfe
25
-
-
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 25 Vde, f = 10 MHzl
OutpUt C8pecitance
(VCB = 20 Vde, IE - 0, f
= 100kHz)
Small-8ignal Current Gain
(lC = 50 mAde, VCE = 10 Vde, f = 1.0 kHzl
FIGURE 2 - DC CURRENT GAIN
30tI
VCE'10V
200
.,
~
1011
C
co
.
.
--- VCE =2.OV
TJ' +1600C
Ii:
10
a:
a:
50
oil
~
30
FIGURE 3 - "ON" VOLTAGES
1.0
"
~
""'
20
- r\'
~
r,
; 0.4
c
',>
D.2
I"
\
i"""
10
1.0
2.0 3.0
5.0 7.0 10
OVI
VaE. VCE' 1
..
rr
~~~~ .....
20 30
50 70 1011
r- ~CE(IIIlICnB • lu
"
r-
....
Icna ~ 5.0
o
200 30tI 6011
10
IC, COLLECTOR CURRENT (IlIA)
1.ll~
-
20
30
50
...... ....;
/
/
-/
./
1011
IC, COLLECTOR CURRENT (mAl
498
II
-ri' ..Lk--: '1"
.~ 0.&
+250C
::0
I I II
vat(!'.'IJI
O.8
TJ' +250C_
I I
200
3011
I
5011
MJE341, MJE341K, MJE344, MJE344K
(continued)
MJE341,
MJE344
MJE341K,
.. MJE344K
B
M
T
tSTYLE 1:
PIN 1. SASE
2. co LLECTO R
3. EMITTER
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3.8ASE
DIM
MILLIMETERS
MIN MAX
16.0S 16.33
B 12.57 12.83
e 3.18 3.43
0.51
D
0.76
F
3.61 3.86
2.54 SSC
G
2.92
H
2.67
0.43 0.00
J
K 14.73 14.99
L
.16
.41
M
30 TYP
N
1.47
1.73
Q
4.78
5.03
2.16
R 1.91
S
0.81
0.86
T 6.99
7.24
6.48
U 6.22
A
MILLIMETERS
DIM MIN MAX
A 10.80 11.05
8
7.49
7.75
C
2.41
2.67
o -0.51 0.66
F
2.92
3.00
G
2.31
2.46
H
2.16
2.41
.. J
0.38
0.64
K 15.38 16.64
M
3 TYP
Q
3.76
4.01
R
1.14
1.40
S
0.64
0.89
U
3.68
3.94
INCHES
MIN MAX
0.633 0.643
0.485 0.5050.125 0.135
0.020 0.030
0.142 0.152
0.100 SSC
0.105 0.115
0.017 0.027
0.580 0.590
.085 0.095
3 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255
I. DIM '"G" IS TO CENTER LINE OF LEADS.
NOTE:
1. MT' MAIN TERMINAL
CASE 199{)4
CASE7HJ3
499
MJE350
(SILICON)
PLASTIC MEDIUM POWER PNP
SILICON TRANSISTOR
· .. designed for use in line-operated aud io and telev ision applications
and as low power, lin~operated series pass and switching regulators.
•
High COllector-Emitter Sustaining Voltage VCEO(sus) = 300 Vdc@lIC = 1.0 mAdc
•
Excellent DC Current Gain hFE =30-240 @lIC = 50 mAdc
•
Plastic Thermopad Package
0.5 AMPERE
POWER TRANSISTOR
PNPSILICON
300 VOLTS
20 WATTS
MAXIMUM RATINGS
Rating
COllector-Emitter Voltage
Emitter-Sase Voltage
Collector Current - Continuous
Total Device DiSSipation @TC = 2SoC
Derate above 2SoC
Operating and Storage Junction
Symbol
Value
Unit
Vceo
Ves
IC
300
3.0
Vde
Vde
mAde
Po
20
0.16
-65 to +150
500
T J.Tstg
watt.
A
wf'c
°c
t-
Temperature Range
K
THERMAL CHARACTERISTICS
Thermal Resistance,Junction to case
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
I
3. BASE
ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Ch_....lltic
I
Symbol
I
Min
I
MIX
I
Unit
OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltogo
(lC· 1.0 mAde. IS • 01
VCEOlsusl
300
-
Vdc
Collector Cutoff Current
(VeB· 300 Vde, IE ·01
leBO
-
100
,.Ado
Emitter Cutoff Current
lEBO
-
100
pAde
(VEB • 3.0 Vdc, Ie· 01
F
G
H
J
K
M
0.
R
ON CHARACTERISTICS
DC Curront Geln
(lC - 50 mAde. VCE.· 10 Vdel
DIM
A
8
C
D
30
240
S
U
MILLIMETERS
MIN MAX
10.80 11.05
748
7.75
2.41
2.67
0.5
0.66
3.00
2.92
2.31
2.4&
2.16
.41
0.38 0.64
16.64
15.38
3 rYP
3.76 4.01
1.40
1.14
0.64 0.89
3.68
3.94
INCHES
MIN MAX
0425 0.435
0.295 0.305
0.095 0.105
10.020 0.026
O. 15 O.l1B
0.091 0.097
0.085 I 0.095
0.015 0.025
0.605 0.&55
3u TYP
0.14B 0.158
0.045 0.055
0.025 0.035_
0.145 0.155
CASE 77-03
500
MJE350 (continued)
FIGURE 2 - "ON" VOL TAGES
FIGURE 1 - DC CURRENT GAIN
200
z
100
to
0
;;:
§
..,~
co
ul
~
1.0
TJ'1500C
r- r-...
J5lc
"
~
-!ls~c
50
.......,
I II
VCE" 2.0 V
- - - VCC'10V
0
10
5.0 7.0
~
w
to
""- '\" '~
III
0
'"
~
""
III
"
50 70 100
20
30
IC. COLLECTOR CURRENT (mA)
10
1~J~~Joc
o. 8
"
~
'">>'
~ '\~.:',,~
200
~
"'::>
~
'"t;
O. 2
V~
j
8
0
!-}
20
Y
VCE(satl
0
5.0 7.0
IC1118" ~.o
10
"'
'de
........
~
100",
I'..
10
20
.
-
TJ,1500C
+0.
E +0.
BONOING WIRE LIMITED
THERMALLY LIMITED iii TC' 25°C
IISEC?NO ~RE~KOIDwr \1~ITED
30
500
: Jill
+25 0 C to +l000 C ,
I...-'V
'OVC for VCE(",)
0
500#.
-55°C '0 +250C'"
4
'\tOm '......
I'..
300
II +100dC'0 +1500C
"Applies for Iclia -
3.0
~
2.0
... ...
dc'" ...
I
TJ=15O'C
i~
1.0
a:
o
r-- t--
1.0m.+-
--
- I-
ii: 5.0
...
5.0 ms
..,~
FIGURE 2
10
!>-
~
a
...........
'"
.- MJE3701(
f-j--
I-..,-.::t--s;
1.0ms
...
5.nm.~
~r--.
3.0
2.0
1.0,1:::==-
dC~r-
TJ=150'C
0
....~ o. 5
- -
8~ o. 3
~
SECONO BREAKDOWN LIMITED
BONDING WIRE LIMITED
THEJMALi Y LtlD
o. 2
ticI t
8
c
~
II
O. 1
1.0
2.0
3.0
5.0
0.5
02
10
30
20
~E±t-
1---111
0.1
- r-H
SECOND BREAKDOWN LIMITED
- - BONDING WIRE LIMITED
--THERI.tALLYLIMITED@TC=25'C
-
OJ
10
5.0
3.0
2.0
VeE. COLLECTOR·EMITTER VOLTAGE IVOLTS)
- l - r-- r-
I I
10
10
30
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS'
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
The d~ta of Figures 1 and 2 based en T J(pk) -;:: 150°C, TC IS
variabl.e depending on conditions. Se~Qnd breakdown pulse limjt$
are ... ~lId for duty cycles to 10% provided T J)pk) ~ 150°C. At
high case t0moeraturA$h thermal limitations will reduce the POwer
Safe operating area curves indicate Ie - VeE limi~ of the transistor
that must be observed for reliable operation; i.e., the transistor
must natbe subjected to greater dissipation than the curves indicate.
t~e
that can be handled to \lalues less than
limitations imposed by
second braakdown. (Sf'te AN-41S)
FIGURE 3 - DC CURRENT GAIN
.
1000
700
500
FIGURE 4 - "ON" VOLTAGE
5
l.OV
-
f-- -
'i11"
•
VeE
,
'T:rr-;T1
I,
TJ~WC
2
lith I
;!; 300
'" 200
is
±j
....... r-,
+150·C
TJ
!Ii!
G 100
9
150
I i II
:U'j
6
~
10
VBf[utl@Ic/I B
+2S·C
g 70
~
I
'V,,@VeE ~ 2 ~V
55°C
30
V
II
3
20
VCE [,atl@I C /I,-10
ill
I0
2.0 3.0 5.0
20 30 50
100
200 300 500
Ie, COlLECTOR CURRENT (lIlA)
10
1000
2000
O2.0 30 5.0
10
20 30 50
100
200 300 500
Ie, COLlECroR·CU~RENT (mA)
1000
2000
FIGURE 5 - THERMAL RESPONSE
_
1.0
~
1
0.7
0
5.0
0.5
0.2
.... 0.3
~
-'~ o. I
i<= 0.07
0.05
g
!i:
0.1
0.2
0.03
e: 0.02
I"'""
-
~
i-""
1JUL
0.01
~ 0.0I
om
I-
0.05
i,...--""
~I'~
t,
SINGLE PULSE
DUTY CYCLE, 0
0.05
0.1
I,ll,
I I II
..111111
0.02 0.03
9Jc(r)- r(t)9JC
9JC =5.0 CIW Max
MJE370, MJE3370
9JC= 3.125'CIWMax MJE370K
oCURVESAPPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk)-TC p(pk)oJClt)
'r!:?'
0.2
0.3
0.5
1.0
2.0
3.0
5.0
I,TIME Imsi
503
11111
I I
10
20
i
30
50
I
I
100
I
200
i
300
500
1000
MJE370, MJE370K MJE3370 (continued)
F
M
T
tK
s
\-.0
GJ:!
MJE371
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE
E9r=I
M-n:::;
C
""T
MJE3371
STYLE 3
PIN 1. BASI?
2. COLLECTOR
3. EMITTER
D~L
Li../it--ill
~~i
DIM
A
DIM
A
B
C
D
F
G
H
J
K
M
Q
R
S
U
B
C
MILLIMETERS
MIN MAX
1080 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.
2.31
2.46
2.16
2.41
0.38
0.64
15.3B 16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
O.SS
3.68
3.54
D
F
G
H
J
K
M
N
Q
R
S
T
MJE370K
STYlE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER
MILLIMETERS
MIN MAX
16.08
12.57
3.18
0.51
3.61
2.54
2.67
0.43
14.73 1
3DT
6.99
1.73
.03
2.16
0.86
7. 4
6.2
6.4
1.47
4.78
1.91
0.81
1. DIM "6"15 TO CENTER LINE OF LEADS.
NOTE:
1. MT = MAIN TERMINAL
CASE 199.(J4
CASE 77-113
504
MJ E371 (SILICON)
MJE371K
MJE3371
4 AMPERE
POWER TRANSISTORS
PLASTIC MEDIUM-POWER PNP
SI LICON TRANSISTORS
PNP SILICON
40 VOLTS
40 and 60 WATTS
. • . designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 20 Watt audio amplifiers utilizing complementary symmetry circuitry.
• DC Current Gain - hFE = 40 (Min) @ IC = 1.0 Adc
• MJE371, MJE371K and MJE3371 are Complementary with NPN
MJE521, MJE521K and MJE3521
• Choice of Packages- MJE371, 40W - Case 77 (E-C-S)
MJE3371, 40W-Case 77 R (S-C-E)
MJE371 K, 60 W - Case 199
MJE3371
Style 3
MJE371
Style 1
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
40
Vde
Collector-Sase Voltage
VCB
40
Vde
Emitter-Base Voltage
VEB
4.0
Vdc
4.0
Ade
Rating
Collector-Emitter Voltage
Collector Current - Continuous
IC
CASE 77-03
8.0
- Peak
Base Current - Continuous
2.0
18
Ade
::liN711 I MJE371K
Total Device Dissipation @TC= 2So C
40
320
Po
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ, Tstg
I
Watts
mW/oC
60
480
MJE371K
°c
-65 to +150
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS (TC = 25°C unle.. otherwise noted)
I
Characto
~
0.1
0.01
0.02 0.03 0.05
0.1
0.2 0.3
0.5
1.0
60
V.
0;
I'-
-55°C
40
TJ=250C
1.6
r--
20
I
TJ" 25°C
~ 3.0
S.O 10
FIGURE 4 -'''ON'' VOLTAGE
2.0
7.0 r-r5.0
6.0
4.0
The data of Figure. 1 and 2 based on T J(pk) "" 150°C; TC Is
variable depending on conditions. Second breakdown pulse limits
er. valid for duty eyel" to 10% provided T J)pk).oS 1150o C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to vsluet leu than the limitations imposed by
second breakdown. (Se. AN-415)
10
I-
l-
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI
There are two limitations on the power handling ability of a
transistor: averagE!! junction temperature and second breakdown.
Safe operating area curves indicate Ie - Vee limits of the transistor
that must be' Observed for reliable operation; i.e.,. the transistor
must not be SUbjeC~~ to g~.&ter dissipation than the curves indicate.
;;:
-
de--,
.... - --Thermal Limit @TC - 250 C
VCE, COLLECTOR·EMITTER VOLTAGE (VOL TSI
~
\
0.2
0.2
5l
"
Bonding Wire limit
Secondary Breakdown
-" -
F'
I
5.0 m~"\
II
0.4
"'
2.0 3.0 4.0
0.005
~
VSE@ VCE • 1.0 V
~6~(sall @IClIs= 10
0.01
IC, COLLECTOR CURRENT (AMPI
0.02 0.03 0.05
0.1
0.2 0.3 0.5
IC, COLLECTOR CURRENT'(AMPI
~
1.0
2.0 3.04.0
FIGURE 5 - THERMAL RESPONSE
1.0 I=:.-:E:F-
-wo 0.7 ~D=0.5
O.5
N
)-._... ::;
~~ 0.3 1--
_.
0.2
",-
.... w
~~
-
-
-.-
-
--
-
r-- f- O.l
0.1 l:= -0.05
rO.02
~ ~ 0.07
:::: ~ 0.05 ~
~
:;;::;'
w-,
rO.Ol
f.1{1- ..",. -
L
f-::: ~
r==
'"'\1
~i 003 1-"2
r--~
--
~2
.:;;a:
:i il
.
1::1
Single Pulse
0.02
I-
0.01
0.01
8JCltI=,ltI8JC
'"~ ~ ~rn'. ~""'
P
(pkl
11
12
8JC = 2.0aoCIW Max - MJE371 K
0 CURVES APPLY FOR POWER
SINGLE 'PUlSE TRAIN SHOWN
PULSE REAO TIME AT 11
DUTY CYCLE, 0 = 11/12
I
0.02 0.03
I II
0.05
I I I I IIIILI
0.1
0.2
0.3
0.5
1.0
2.0
3.0
5.0
I, TIME OR PULSE WIDTH (msl
506
10
TJ(pk) - TC = P(pk18JCltl
I I J I I IIIIII . I I I
100
20
50
zoo
500
1000
MJE371, MJE371 K, MJE3371 (continued)
M
K
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
MJE371
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE
MJE3371
STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITTER
MILLIMETERS
DIM
MIN
A
10.BO
7.49
2.41
0.51
2.92
2.31
2.16
0.38
15.38
B
C
D
F
G
H
J
K
M
n
R
S
U
MAX
11.05
7.75
2.67
0.66
3.00
2.46
2.41
0.64
16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94
DIM
A
a
INCHES
MIN
MAX
0.425
0.295
0.095
0.020
0.115
0.435
0.305
0.105
0.026
0.118
0.091
0.085
0.015
0.605
30 T
0.148
0.045
0.025
0.145
C
D
F
G
H
I
J
K
L
M
N
n
R
S
T
0.158
0.055
0.035
0.155
U
MILLIMETERS
MIN
MAX
INCHES
MIN MAX
16.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61
3.86
2.54 asc
2.67
2.92
0.43 0.69
14.73 14.99
2.1
2.41
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.1008SC
0.105 0.115
0.017 0.027
0.580 0.590
0.085 0.0 5
3 TYP
0.058 0.068
0.188 0.198
0.D75 0.085
0.032 0.034
0.275 0.285
0.245 0.255
30 TYP
1.47
4.78
1.91
0.81
6.99
6.22
1.73
5.03
2.16
0.86
7.24
6.48
1. DIM "G"IS TO CENTER LINE OF LEADS.
NOTE:
1. Mr= MAIN TERMINAL
CASE 199'()4
CASE 77-fJ3
507
MJE520(SILICON)
MJE520K
MJE3520
3 AMPERE
POWER TRANSISTORS
PLASTIC MEDIUM-POWER NPN
SILICON TRANSISTORS
NPNSILICON
30 VOLTS
25 and 40 WATTS
· . . designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 10 Watt audio amplifiers utilizing complementary symmetry circuitry.
•
•
=
=
DC Current Gain - hFE 25 (Min) @ IC 1.0 Adc
MJE520, MJE520K and MJE3520 are Complementary with PNP
MJE370, MJE370K and MJE3370
• Choice of Packages - MJE520, 25 W - Case 77 (E·C·S)
MJE3520, 25 W - Case 77 (S·C·E)
MJE520K, 40 W - Case 199
MJE520
MJE3520
Style 1
Style 3
MAXIMUM RATINGS
Symbol
Value
Unit
Coliector·Emitter Voltage
Rating
VCEO
30
Vdc
Coliector·Base Voltage
VCB
30
Vdc
Emitter·B.... VoitaQe
VEB
iC
4.0
Vde
3.0
Ado
Collector Current - Continuous
- Peak
Base Current - Continuous
IB
2.0
@l
T C = 25°C
Po
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ. Tag
Adc
:i3SCa I
25 -r 40
0.2
0.32
E
Total Device Dissipation
CASE 77-03
7.0
MJE528K
-65 to +150
Watts
W/oC
°c
MJE520K
THERMAL CHARACTERISTICS
Characteristic
Thertnal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS (TC = 2SoC uniess otherwise notedl
Characteristic
I Symbol
Min
Max
30
-
Vde
ICBO
-
100
pAdc
leBO
-
100
pAdo
Unit
OFF CHARACTERISTICS
Coliector·Emitter Su ...ining Voltage (11
IiC· 100 mAde,IB· 01
Coliector·B... Cutoff Current
(VCB * 30 Vdo, iE ·0)
VCEO(susl
Emitter-Base Cutoff Current
IVEB • 4.0 Vdc, IC· 01
ON CHARACTERISTICS
DC Current Gain (11
IiC· 1.0 Ado, VCE = 1.0 Vdcl
I
hFE
(1) Pulse -ra.t: Pulae Width S300/JI, Duty Cycle ~2.0".
508
CASE 199-04
MJE520, MJE520K, MJE3520 (continued)
ACTIVE-REGION SAFE OPERATING AREA
10
_.
FIGURE 1 - MJE520 MJE3620
--r- - -
f-
5.0
Q;
!
2. 0
.
i
'"
t.)
'" 1.0
~...
........
5.0
!
3.0
~
2.0
~......
8
.§
O. 2
I
O. 1
1.0
I I III
3.0
2.0
10
5.0
20
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
Safa operating are. curves indicate Ie . VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
3.0
0.2
I
2.0
1.
20
10
30
1.5
Ve
$ 300
~
~B1
FIGURE 4 - "ON" VOLTAGE
FIGURE 3 - DC CURRENT GAIN
g-
5.0
3.0
are valid for duty cycles to 10% provided (T Jpk) E;;;; 150°C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to values Ie.. than the limitations imposed by
second breakdown. (See AN -415)
must not be subjected to greater dissipation than the curve. indicate.
15
tsl-
VCE. CDLLECTOR·EMITIER VOLTAGE (VOLTS)
average junction temperatura and second breakdown.
1000
700
SO0
--=:.1.0 ml-
The data of Figures 1 and 2 based on TJ(pk) = 150o e; TC is
variable depending on conditions. Second breakdown pulse limits
Ther. a,e two limitations on the power handling abilitv of a
transistor:
- ..
SECOND BREAKDOWN LIMITED
- BONDING WIRE LIMITED
THERMALLY LIMITED. TC' 25°C
-
0.5
O. 1
1.0
30
- MJE620K
~
TJ = 150°C
~ 1.0
SECOND BREAKDOWN LIMITED
--
.....
&.O ...~~
'"::>
BONDING WIRE LIMITED
- - THERMALLY
LIMITED III TC =25°C
o. 5
~ o. 3
CI
Q;
!z
d......
TJ 151jC
::>
-~
tOms-I-
.
.oml-·
3.0
~
FIGURE 2
10
-I-d-I-t.
TJ - 25'C
1.2
1.0 V
1.
IZ
200
"
TJ -ISO'C
100
0
0
25'C
~
VIEI ..t,@lell.=IO
V.. @Ve.=2.0V
-55'C
0
IL
0.3
0
I0
2.0 3.0 5.0
Ve., ..t,@lell.=IO
III
10
20 30
50
100
200 300 SOD
o
1000 2000
2.0 3.0
5.0
10
Ie. COLLECTOR CURRENT (mAl
20 30
SO
100
200 300 SOO
1000 2000
Ie. COLLECTOR CURRENT (mAl
FIGURE 5 - THERMAL RESPONSE
~
1.0
0.7
'" 5.0
i
D- 0.5
c::>
0.2
~ 0.3
t.)
z 0.2
~
m
'" O. I
~ 0.07
-
-
0.1
0.01
~ 0.05 _
w
ill 0.02
~ 0.0 I
;
'r
0.01
MJE520.
~J~~:Vl::~c:.. ~~'OR ~~~::K
I-'"
0.05
i!: 003 i..--'"
lE'
8JChl- ,(1I8JC
8JC - 5.D°C/w Ma.
MJE352D
PULSE TRAIN SHOWN
READ TIME ATtl
TJ(pkl- Te· P(pk)8JC(tl
~
~~~
SINGLE PULSE
DUTY CYCLE, 0 = I,ll,
IIIIII
0.02 0.03
0.05
0.1
I I II I
0.2
0.3
0.5
1.0
3.0 5.0
t, TIME Imsl
2.0
509
IIIII
I I
10
20
30
SO
100
200
300
500
1000
~,
MJE520, MJE520K, MJE3520(continued)
-.
M
tK
D~L
MJE520
MJE3520
STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITIER
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3: BASE
DIM
,A
B
'C
D
F
G
J
'K
M
Q
R
S
U
MILLIMETERS
MIN MAX
10.BO 11.05
7,49
7.75
2,+1
2.67
0.66
0.51
2,92
300
2.31
2.46
2,16
2.41
0.3B
0.64
15.36' 16.64
30TYP
3.76' 4.m
1.14 ·1.40 .
0.64 .0.B9
3.68 . 3.94
DIM
MILLIMETERS
MIN MAX
16.06 16.33
12.57 12.B3
3.1B 3.43
o 0.51 0.76 .
F
3.61' 3.B6
G. . " 2.S4 8se
H
2.67 2,92
J
0:43' 0,69
K 14.73 14.99
.L
.1
.41
M
3 TYP
N 1.47
1.73
Q
4.7B
s.oa
R
1.91
,16
S O.Bl
0.86
T
6.99
7,24,
6.48
U 6.22
..
0.095
0.025
0,655
P
0.156
0.055
0.035
0.155
NOTE:
1. MT = MAIN TERMINAL
1. DIM "G" IS TO CENTER LINE OF LEADS.
CASE 199-04
CASE 77-03
510
MJE520K
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3, EMITIER
A
B
C
INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.11
0.148
0,045
0.025
0.145
--Ik-J
MJE521 (SILICON)
MJE521K
MJE3521
PLASTIC MEDIUM-POWER NPN
SI LICON TRANSISTORS
4AMPERE
POWER TRANSISTORS
NPNSILICON
· .. designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 20 Watt audio amplifiers utilizing complementary symmetry circuitry.
40 VOLTS
40 and 60 WATTS
• DC Current Gain - hFE = 40 (Min) @ IC = 1.0 Adc
• MJE521, MJE521 K and MJE3521 are Complementary with PNP
MJE371, MJE371K and MJE3371
• Choice of Packages - MJE521, 40 W - Case 77 (E-C-B)
MJE3521, 40 W - Case 77 (B-C·E)
MJE521K, 60 W - Case 199
MJE521
MJE3521
Style 1
Style 3
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
40
Vde
Collector-Base Voltage
VCB
40
Vde
Emitter-Base Voltage
VEB
4.0
Vde
IC
4.0
Ade
Rating
Coliector~Emitter
Voltage
Collector Current - Continuous
-Peak
8.0
Base Current - Continuous
Total De.... ice Dissipation
Derate above 25°C
@
T C = 2So C
::3",1
MJE521 K
40
320
480
Po
Operating and Storage Junction
Temperature Range
I
60
-65 to +150
TJ, T stg
CASE 77-03
Ade
2.0
IB
Watts
mW/oC
°c
MJE521K
lHERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS (TC
Characteristics
= 25°C unless otherwise noted)
I
Symbol
Min
Max
Unit
VCEO(sus)
40
-
Vde
Collector·Base Cutoff Current
(VCB 40 Vde, IE = 0)
ICBO
-
100
"Ade
Emitter-Base Cuto,f Current
lEBO
-
100
"Ade
OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage(1
(lC = 100 mAde, IB = 0)
=
(VEB
=4.0 Vde, IC =0)
ON CHARACTERISTICS
DC Current Gain (11
(lC' 1.0 Ade, VCE = 1.0 Vde)
(1) Pulse Test: Pulse Width ~O IJI, Duty Cycl.
<2.0".
511
CASE 199-04
MJE521, MJE521 K, MJE3521' (continued)
ACTIVE-REGION SAFE OPERATING AREA
FIGURE 2 - MJE521K
FIGURE 1 - MJE521, MJE3521
10
1--- r~
5.0
....
3.0
5
~
a
2.0
0
1.0
'"
~
too---
1--'
100",
....
.
~
~
...
5.0 ms
i
2.0
de'\.
---
~
1.0
I~
.... 3.0
a
t::::= ---- Second
Breakdown Limit
Thermal limit
0.5
8
E
@Te-250C
II I III
4.0
6.0
20
10
40
...
::;
~
l - I-
2.0
z
;;:
to
....
!
i-
1.0
0.7
0.5
t--
TJ - 25°C
60
I I
TJ-250C
1.6
r-.
~o
-55~(
\I
1.2
~
2w
to
;
0.8
VBElsal)@IC/IBir
0.4
III
~
VB @VCE·2.0V
g
::>
~
'-' 0.3
u
1'\
0
;
40
FIGURE 4 - "ON" VOLTAGE
VCE-1.0V-
rI-
20
:s:
150°C
~ 3.0
0
10
6.0
The data of Figures 1 and 2 based on T J(pk) ,.. 150°C; TC is
variable depending on conditions. Second breakdOwn pulse limits
are valid for duty cycles to. 10% provided TJ)pk)
150°C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to values tess than the limitations Imposed by
second breakdown. (See AN-415)
average junction temperature and second breakdown.
2.0
0:
~
Bonding Wire Limit
Secondiry Breakdown
4.0
FIGURE 3 - DC CURRENT GAIN
ffi
5.0ms
VCE. COLLECTOR·EMITTERVOLTAGE (VOLTS)
Ther. are two limitations on the power handling abilitv of a
N
r-t-100",
" de
-. -
0.1
2.0
60
Safe operating area curves indicate Ie - v CE limits of the transistor
that must be observed for reliable operation; I•••• the transistor
must not be subjected to greater dissipation than the curves Indicate.
10
7.0
5.0
--
- - --Ther",,' limit@Te .. 250 C
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
transistor:
,
0.3
0.2
0.2
0.1
2.0
1:0~
-TJ =lSOoC
~_ 0.5 I
--Bonding Wire Limit
I-'-'
~ 0.3
r--- to!":'"
i:' 5.0
1.Oms
TJ -lSOoC
~
....
10
0.2
IJciElsaU@lcllB"10
IIi
I-'
0.1
0.01
0.02 0.03 0.05
0.1
0.2 0.3
0.5
1.0
2.0 3.0 4.0
0.005
0.01
IC. COLLECTOR CURRENT (AMP)
2.0 3.04.0
0.02 0.03 0.05
0.·1
0.2 0.3 0.5 1.0
IC. COLLECTOR CURRENT (AMP)
FIGURE 5 - THERMAL RESPONSE
1.0
0.7 ~O-0.5
0.5
~
u;
z
~~
....~~
~
~~
:z i
w~
0.3
0.2
-
0.2
-
-0.1
~i=
il!
0.03
Z
0.02
~
-
--: .....
o. 1~ =0.05
--
0.0 7 =
!:::!w 0.05
o
,.-
- ::
0.01
0.01
"JC - 3.12"CIW Max
MJE521. MJE3521
~
~
::;;>
0.02
~h-:-l
I,
-"JC - ~:O~_C.!W MIX ~ JMJE521KJ
D'CU V SAPPlv ORP
PULSE TRAIN SHOWN
READ TIME AT 11
TJ(pk) - TC-P(pk) "JC(I)
I
E
DUTY CYCLE. D= I,ll,
"'I
-0.01
SinglaPulsa
I
0.02 0.03
II
0.05
1111
0.1
0.2
0.3
0.5
1.0
2.0
3.0
5.0
I. TIME OR PULSE WIDTH Ims)
512
10
.1 I J I I I
20
30
50
100
200 300
500
1000
MJE521, MJE 521 K, MJE3521 (continued)
M
T
II
tMJE521
1=:
LI
A-
-~
0--!tL
Li.r-.--&1
-L.l
STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITTER
DIM
MILLIMETERS
MIN MAX
16.0B 16.33
12.57 12.B3
3.1B 3.43
0.51 0.76
3.61 3.B6
2.54 BSC
2.67 2.92
0.43 0.69
K 14.73 14.99
.16 2.41
3 TYP
M
N 1.47
1.73
n 4.78 5.03
2.16
R 1.91
S
0.81
0.86
T 6.99
7.24
6.48
U 6.22
A
B
C
D
F
G
H
J
INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.118
0.091 0.097
0.085 0.095
0.015 0.025
0.605 0.655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
....1h-J
MJE521K
~~i
MJE3521
E::.Jrl C
M-J~ t
~S
K
~I--D
ltt!
rR!
G
MILLIMETERS
DIM MIN MAX
A 10.80 11.05
B
7.49
7.75
2.41
C
2.67
0
0.51
0.66
F
2.92
3.00
2.46
G 2.31
H
2.16
2.41
J
0.64
0.38
K 15.38 16.64
30 TYP
M
n 3.76 4.01
R
1.14
1.40
S
0.64
0.89
U
3.94
3.68
il
~---}
K
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE
+
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER
INCHES
MIN MAX
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100BSC
0.105 0.115
0.017 0.027
0.5BO 0.590
0.OB5 0.095
~I
0.lB8
0.075
0.032
0.275
0.245
1. DIM "G" IS TO CENTER LINE OF LEADS.
NOTE:
1. MT= MAIN TERMINAL
CASE 199'()4
CASE7NJ3
513
MJE 700 thru MJE 703 PNP (SILICON)
MJE800 thru MJE803 NPN
4.0 AMPERE
PLASTIC MEDIUM-POWER
COMPLEMENTARY SILICON TRANSISTORS
... designed to replace discrete driver and output stages in comple·
mentary audio amplifier applications.
•
High DC Current Gai n hFE = 750 (Min) @ IC = 1.5 and 2.0 Adc
•
Monolithic Construction
•
Three Lead Design - Emitter·Base Resistors to Prevent Leakage
Multiplication are Built-In.
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON
60-80 VOLTS
40 WATTS
~
MAXIMUM RATINGS
MJE702
MJE703
MJE802
MJE803
VCEO
MJE700
MJE701
MJE800
MJE801
60
Collector-Base Voltage
Ve8
60
Emitter-Base Voltage
VE8
5.0
Vdc
Collector Current
IC
4.0
Adc
Base Current
18
0.1
Adc
Po
40
0.32
Watts
WloC
TJ. Tst9
-55 to +150
°c
Symbol
Rating
Collector·Emltter Voltage
Total Device Dissipation @TC
Derate above 25°C
= 2SoC
Operating and Storage Junction
Temperatlng Range
THERMAL CHARACTERISTICS
80
Vdc
80
Vdc
3.13
Thermal Resistance. Junction to Case
I"--
"'"
......
i'-.
~
0
..........
..........
0
50
75
100
TC. CASE TEMPERATURE{OCI
1--0
L--ILJ
GJ:i
125
PIN 1. EMITTER
1. CO llECTOR
3 BASE
INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0,105
0.020 0.026
0.115 0.118
~
~
"
~
~
P
0.148
0.045
0.025
0.145
0.158
0.055
0.035
0.155
CASE 77'()3
...... i'-.
0
25
K
MILLIMETERS
DIM MIN MAX
A 10.80 11.05
7.49
7.75
B
2.41
2.67
C
0.51
0.66
D
2.92
3.00
f
2.46
2.31
G
2.16
2.41
H
0.64
J
0.38
K 15.38 16.64
30 TYP
M
Q
4.01
3.76
1.40
R
1.14
0.89
S
0.64
3.94
U
3.68
FIGURE 1 - POWER DERATING
40
s
tH
E3r=1-r
M-JI...
Max
Characteristic
Unit
"'-.
150
514
When mounting the device, torque not to
exceed 6.0' In.-lb.
If lead bending is required, use suitable
clamps or other supports between transistor
case and point of bend.
MJE700 thru MJE703 PNP/MJE800 thru MJE803 NPN (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Characteristit
OFF CHARACTERISTICS
Collector-Emitter Breakdow~ Voltagel1,
(lC = SOmAde,lB = 0)
Max
Min
Vde
BVCEO
MJE700,MJE701,MJE800,MJE801
MJE702,MJE703,MJE802,MJE803
Collector Cutoff Current
(VCE = 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 0)
ICEO
MJE700, MJE701, MJE800, MJE801
MJE702, MJE703, MJE802, MJE803
Collector Cutoff Current
(VeB = Rated BVCEO, IE = 0)
(VCB = Rated BVCEO, IE = 0, TC = 100o e)
leBO
Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)
lEBO
Unit
-
60
80
-
-
500
500
-
0.2
2.0
!lAde
mAde
-
2.0
mAde
ON CHARACTERISTICS
De Current Gain(l)
(lC = I.SAde, VCE = 3.0Vde)
(Ie = 2.0 Ade, VCE = 3.0 Vde)
MJE700,MJE702,MJE800,MJE802
MJE701,MJE703,MJE801,MJE803
Collector-Emitter Saturation Voltage( 1)
(Ie = I.SAde,IB = 30 mAde)
(Ie = 2.0Ade,IB =40mAdc)
MJE700,MJE702,MJE800,MJE802
MJE701, MJE703, MJE801, MJE803
Base-Emitter On Voltage(1)
(lC = 1.5 Adc, VCE = 3.0 Vde)
(Ie = 2.0 Ade, VCE = 3.0 Vde)
MJE700,MJE702,MJE800,MJE802
MJE701, MJE703, MJE801, MJE803
-
hFE
VCE!sat)
750
750
-
-
2.5
2.8
-
2.5
2.5
Vde
,ae
BE (on)
DYNAMIC CHARACTERISTICS
Small-5ignal Current Gain
(Ie = 1.5 Ade, VCE = 3.0 Vde, f = 1.0 MHz)
Pulse Width '.'5: 300 /Js, Duty Cycle ~ 2.0%.
(1 )Pulse Test:
FIGURE 2 - DC SAFE OPERATING AREA
5.0
I
~
0:
~
1.0
0:
~
0.3
~
.......
2.0
0.7
O. 5
c
'-'
I.....
3.0
-
-
O. 1
0.07
0.05
1.0
Bonding Wire Limit
Thermal Limit at TC - 250 C
Secondary Breakdown limit
TC I•
O. 2
.... ....
r ....
There are two limitations on the power handling ability of a
transistor: average junction temperature and secondary breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
2~DJ
that must be observed for reliable operation; e.g., the transistor
must not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed by secondary breakdown. (See AN-415)
1\
MJE700,70! ...
MJE800, 801
fr\
MJE702,703_
MJE802,803
2.0
3.0
5.0 1.0
10
20
30
50
70 100
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
FIGURE 3 - DARLINGTON CIRCUIT SCHEMATIC
PNP
MJE700
thru
MJE703
Collector
r------1
1
1
NPN
MJE800
-,
. - - -......
thru
MJE803
1
I
B,,,
Base
Collector
r---------,
:
1
I
1
1
1
1
1
I
I
I
1
1
I
_.J
1
_.J
Emitter
Emitter
515
MJE71 0 (SILICON)
MJE711
MJE712
PNP SILICON MEDIUM-POWER TRANSISTORS
1.5 AMPERE
POWER TRANSISTORS
PNP SILICON
· .. designed for use in low power amplifiers, as drivers in high-power
amplifier and medium-speec:t switching circuits.
40, 60, 80 VOLTS
20 WATTS
• De Current Gain -
hFE = 40 (Min) @ Ie = 150 mAdc
=20 (Min) @ Ie =500 mAdc
• Collector-Emitter Sustaining Voltage VCEO(sus) = 40, 50, 80 Vdc (Min) @ Ie = 50 mAdc
• Complement to NPN Types MJE72O, MJE721 , MJE722 Series
• Equivalent to the Specifications of the Pro-Electron
B0166, BOl68 and B0170 Transistors
MAXIMUM RATINGS
Rating
Symbol
Collector-Emitter Voltage
MJE 710 MJE 711 MJE7t2
40
VeEO
60
80
80
Collector-B... Voltage
VeB
Emitter-Base Voltage
VEB
40
60
_5.0
Collector Current
Continuous
Ie
-1.6
Base Current
IB
-0.5
Total Device Dissipation IiITA - 26°C
Po
-1.26
20
-'0.16
Derate above 26°C
Operating and Storage Junction
..
..
-0.008
Po
Vde
Vde
Vde
Ade
Ade
.
Derate above 25°C
Total Device Dissipation iii T e = 26°C
Unit
Watt
wf'e
Watts
wf'e
TJ. Tstg - - B 5 t o + I 6 0 -
°e
Tamperatura Rangs
THERMAL CHARACTERISTICS
,Symbol
Max
Unit
Thermal Resistance, Junction to ease
8Je
6.25
°efW,
Thermal Resistance. Junction to Ambian
8JA
100
°efW
Characteristic
STYLE I
PIN 1. EMITTER
2. COLLECTOR
3. BASE
FIGURE 1 - ACTIVEoftEGION SAFE OPERATING AREA
10
i
5
Ii
'"a:tl
a:
5.0 -~-
.
TJ'I6QOC
--- -- .... .... .. .. ,
~--
3.0
2.0
...
..
1.0
l00~
1.0 . .
~
...
",6.0 ..
"\
~
0.2
0. 1
6.0
I PL..sEl:dRVESAPkY~!
I
RATED VCEO
MJE 710
I III
7.0
10
I
I
20
:::m
30
A
I
1\
G
H
J
~
:-8£ 0 IREAK OWN
de
LIMITED
U - - - 10NOING WIRE LIMITED
---THERMAL~Y L1MITED.TC '25"C
B 0.3
DIM
K
M
::-...
10.80
7.48
2.41
11.05
1.
2.81
0.51
.2
0.68
.
2.36 SSC
2.16
2.41
0.38
O.
15.38 16.64
TYP
R
3.16
1.14
4.01
1.40
S'
U
0.64
3.68
0.89
3.94
Q
50
MILLIMETERS
MIN
MAX
CASE 77.1)3
VeE, COLLECTDR.£MlmR VOLTAGE (VDLTSI
516
MJE710, MJE711, MJE712 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Min
Max
40
60
-
Unit
OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage
(lC = 50 mAde, IB = 0)
Vde
VCEO(sus)
MJE710
MJE711
MJE712
Collector Cutoff Current
(VCE = 20 Vde, IB = 0)
(VCE ~ 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 0)
ICEO
MJE710
MJE711
MJE712
Collector Cutoff Current
(VCE = 4OVde, VBE(off)
(VCE = 60 Vdc, VBE(off)
(VCE = 80 Vdc, VBE(off)
(VCE = 40 Vdc, VBE(off)
TC = 1250 C)
(VCE = 60 Vde, VBE(off)
TC= 1250 C)
(VCE = 80 Vde, VBE(off)
TC = 1250 C)
-
80
-
-
500
500
500
"Ade
-
ICEX
=
=
=
=
1.5 Vdc)
1.5 Vdc)
1.5 Vde)
1.5 Vde,
MJE710
MJE711
MJE712
MJE710
= 1.5 Vde,
= 1.5 Vde,
"Ade
-
-
100
100
100
500
MJE711
-
500
MJE712
-
500
-
Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)
1.0
lEBO
mAde
ON CHARACTERISTICS
DC Current Gain
(lC = 150 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 1.0 Ade, VCE = 1.0 Vde)
hFE
Coliector·Emittar Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)
(lC = 500 mAde, IB = 50 mAde!
(lC = 1.5 Ade, IB = 300 mAde
VCE(satl
Basa·Emitter Saturation Voltage
(lC = 1.5 Ade, IB = 300 mAde!
VBE(satl
Basa·Emitter On Voltage
(I C = 500 mAde, V CE = 1.0 Vde)
FIGURE 2
1000
3DO
co
200 -
ffi
::1
......
- DC CURRENT GAIN
c
o.8
t-- I""- ,.... TJ = 1500C
1l' 30
!"
10
30
50
100
200
300
500
Vde
O. 6
~~
O.4
r--
J1 II
VIBE~;) ~IIJ"B =
~~
0
~
1000
o
2000
I
VBE(on)@VCE= 1.0 Ydc
20
J
1
V
VCE(sot) .Ic/IB = 10
30
50
100
200
,.,..
300
i-"
500
1000
2D00
IC. COLLECTOR CURRENT (mA)
Note 1:
limitatio~s
Vde
O. 2
IC, COLLECTOR CURRENT (mA)
There are two
1.3
,;
r--.
2D
20
~o
~
w
0
55°C
-
FIGURE 3 - "ON" VOLTAGES
250
w
-
0.15
0.4
1.0
0.95
1.0
VCE"1.0Vdc- t -
100
:::>
-
VBE(on)
500
z
Vde
TJ = 25°C
;;:
40
20
8.0
The data of Figure 1 is basad on T J(pk) = 15oDc; TC is variable
depending on conditions. Second breakdown pulse limits arB valid
for duty cycles to 10% provided T J(pk) Sl5oDc. At high casa
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by sacond
breakdown. (See AN-415)
on the power handling ability of a
transistor; average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be obsarved for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
517
MJE720 (SILICON)
MJE721
MJE722
NPN SILICON MEDIUM-POWER TRANSISTORS
1.5 AMPERE
POWER TRANSISTORS
NPN SILICON
... designed for use in low-power amplifiers, as drivers in high-power
amplifier and medium-speed switching circuits.
40, 60, 80 VOLTS
20 WATTS
•
DC Current Gain hFE = 40 (Min) @ IC = 150 mAdc
= 20 (Min) @ IC = 500 mAdc
•
COllector-Emitter Sustaining Voltage VCEO(sus) = 40, 60, 80 Vdc (Min)
•
Complement to PNP Types MJE710, MJE7", MJE712 Series
•
Equivalent to the Specifications of the Pro-Electron BO 165,
B0167, and B0169 Transistors
@
IC = 50 mAdc
THERMAL CHARACTERISTICS
Symbol
Rating
MJE720 MJE721 MJE722
Unit
VCEO
40
60
80
Vdc
Collector-Base Voltage
VCB
40
60
80
Vdc
Emitter-Ba.se Voltage
VEB
Collector-Emitter Voltage
Collector Current
Continuous
.
.
5.0
Vdc
Adc
IC
'--1.5
Base Current
IB
-0.5
Total Device Dissipation @T A =25°C
Po
-1.25
-0.008
wf'c
Po
-20
Watts
-0.16
wf'c
Derate above 25°C
Total Device Dissipation@Tc"" 25°C
Derate above 25°C
Operating and Storage Junction
TJ, Tstg -
Adc
Watt
-65 to + 1 5 0 -
°c
Temperature Range
MAXIMUM RATINGS
Symbol
Max
Unit
Thermal Resistance, Junction to Case
8JC
6.25
°CIW
Thermal Resistance. Junction to Ambia"
8JA
100
°CIW
Characteristic
STYLE I
PIN I. EMITTER
2. COLLECTOR
3. BASE
FIGURE 1 - ACTIVE· REGION SAFE OPERATING AREA
10
0:
'"$
5.0
TJ -15OOC
-,,- -
-- ----
--.;:
3.0
~
l-
~
...
...
ia
0
SECOND BR EAKDDWN
LIMITED
i
i
de
0.5
BONDING WIRE LIMITED
- - - - THERMALLY LIMITED@TC'25oC
0.3
'"
~
8
!J
1.Oms
......
~
....
~,5.0ms
~
D
'\
F
G
-
~!MJE 720
O.2 ~fURVESAPPLY
RATED VCEO
I
O. I
5.0
A
~
2.0
1.0
DIM
l00p.s
7.0
10
I
20
H
J
K
M
"
...... ~
Q
R
s
MJE721
MJE 722
30
u
50
70
100
See Note 1
VCE , COLLECTOR·EMITTER VOLTAGE (VOLTS,
518
CASE 77·03
MJE720, MJE721, MJE722 (continued)
ELECTRICAL CHARACTERISTICS (TC s 250C unl... otherwise not.1I
Min
Mu
40
60
BO
-
-
500
500
500
MJE720
MJE721
MJE722
MJE720
-
-
100
100
100
500
MJE721
-
500
MJE722
-
500
-
1.0
40
20
-
Unit
OFF CHARACTERISTICS
Collactor-Emitaor Sultllinlng Voltage
(lC· 50 mAde, lB· 0)
Vde
VceO(sus)
MJE720
MJE721
MJE722
Collactor Cutoff Current
(VCE = 20 Vde, IB = 0)
(VCE = 30 Vde,lB = 0)
(VCE ·40 Vde, IB s 0)
I£Ade
ICEO
MJE720
MJE721
MJE722
Collector Cutoff Current
(VCE • 40 Vde, VBE(off) = 1.5 Vde)
(VCE· 60 Vde, VBE(off) = 1.5 Vde)
«VCE • 80 Vde, VBE(off) = 1.5 Vde)
(VCE -40 Vdc, VBE(off) -1.5 Vdc,
TC = 12&oC)
(VCE· 60 Vdc, VBE(off)· 1.6 Vdc,
TC = 12SoC)
(VCE = 110 Vdc, VBE(off) - 1.& Vdc,
TC -12&oC)
-
I£Ade
ICEX
-
Emitaor Cutoff Current
(VBE =5.0Vde,IC = 0)
lEBO
mAde
ON CHARACTERISTICS
-
DC Current Gain
(lC s 150 mAde, VCE = 1.0 Vde)
IIc = 500 mAde, VCE = 1.0 Vde)
IIc = 1.0 Ade, VCE = 1.0 Vde)
hFE
Collactor-Emitter Saturation Voltage
IIc = 150 mAde,IB = 15 mAde)
IIc = 500 mAde, IB = 50 mAde)
IIc = 1.5 Ade,lB = 300 mAde
VCE(sat)
-
0.15
0.4
1.0
_Emitter Saturation Voltage
IIc = 1.5 Ade,lB =300 mAde
VBE(sat)
-
1.3
Vde
Base-Emitter On Voltage
IIc = 500 mAde, VCE = 1.0 Vde)
VBE(on)
-
0.95
Vdc
B.O
Vde
-
FIGURE 2 - DC CURRENT GAIN
FIGURE 3 - "ON" VOLTAGES
1000
1.0
VCE -1.0 Vdc
500
0.8
z 300
...........
<
'" 200
TJ=150oC
....
z
w
.
~ ......
~ 100
~
::I
o
~
50
-550C
HtTH
50
VBE(sa,)@ICIiB' 10
~
:;:::
~-,::
~
VBE(on) @VCE - 1.0 V
~ 0.6
""
~
ri i
w
c:~>
0.4
/
>'
30
20
"'
0.2
1,,\
10
20
30
50
100
200
300
500
1000
VCE(.. ,)@ICIIB - 10
o
2000
20
30
50
100
100
300
500
1000
1000
IC. COLLECTOR CURRENT (mA)
IC, COLLECTOR CURRENT (mA)
Not. 1:
There are two limitations on the power handling ability of a
transistor; average junction temperature and second breakdown.
Safe operating area curves indicatelc - VCE limits of the trensistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipetion than the curves indicate.
The data of Figure 1 is based on TJ(pk)
= 150o C; TC
is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) S 15aGC. At high case
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown.
(See AN-415)
MJE800 thru MJE803 (SILICON)
For Specifications, See MJE700 Data,
519
MJE1090 thru MJE1093 PNP (SILICON)
MJE2090 thru MJE2093
MJE 1100 thru MJE 1103 NPN
MJE 2100 thru MJE2103
5.0 AMPERE
PLASTIC MEDIU!VI-POWER
COMPLEMENTARY SILICON TRANSISTORS
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON
60·80 VOLTS
70 WATTS
Designed for use in driver and output stages in complementary
audio amplifier applications.
• High DC Current Garn hFE = 750 (Min) @ IC
= 3.0 and
4.0 Adc
• True Three Lead Monolithic Construction - Emitter·Base Resistors
to Prevent Leakage Multiplication are Built in.
•
Available in Two Packages - Case 90 or Case 199
MJE1090
MJE1091
MJE1092
MJE1093
MJE1100
MJE1101
MJE1102
MJE1103
MAXIMUM RATINGS
Rating
Symbol
Collector-Emitter Voltage
MJE1090
MJE1091
MJEll00
MJE1101
MJE2090
MJE2091
MJE2100
MJE2101
MJE1092
MJE1093
MJEll02
MJE1103
MJE2092
MJE2093
MJE2102
MJE2103
Unit
CASE 90-05
VCEO
60
80
Vdc
COllector-Base Voltage
VCS
60
80
Vdc
Emitter-Base Voltage
VES
50
Vdc
IC
5.0
Adc
Collector Current
IS
01
Adc
PD
70
0.56
Watts
WloC
TJ. T stg
-55 to +150
°c
Base Current
Total Device DISSIpation
Derate above 25°C
@
T C ." 25°C
Operating and Storage Junction
Temperatmg Range
THERMAL CHARACTERISTICS
Characteristic
MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101
MJE21Q2
MJE2103
Max
Thermal Resistance, Junction to Case
1.8
FIGURE 1 - POWER DERATING
0
0
"'"
0
0
.~
CASE 199-04
"'"
0
0
0
~
~
~
0
0
20
40
60
80
100
12il
. . . r--.,.
140
TC, CASE TEMPERATURE I'C)
520
160
MJE1090 thru MJE1093 PNP/MJE1100 thru MJE1103 NPN (continued)
MJE2090 thru MJE2093 PNP/MJE2100 thru MJE2103 NPN
ELECTRICAL CHARACTERISTICS (TC
=
25°C unl... otherwise notedl
Symbol
Min
Max
60
60
80
80
-
-
500
500
500
500
-
0.2
2.0
2.0
750
750
750
750
-
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown VOltage(1)
= 100 mAde,
(lC
la
= 01
MJE1091,
MJE2091,
MJE 1093,
MJE2093,
MJE1100,
MJE2100,
MJE 1102,
MJE2102,
MJEll0l
MJE2101
MJE 1103
MJE2103
MJE1090,
MJE2090,
MJE1092,
MJE2092,
MJE 1091,
MJE2091,
MJE1093,
MJE2093,
MJE 1100,
MJE2100,
MJEll02,
MJE2102,
MJE 1101
MJE2101
MJE1103
MJE2103
Collector Cutoff Current
(VCE
= 30 Vdc,
la
= 01
(VCE
= 40 Vdc,
la
= 01
ICED
Collector Cutoff Current
(Vca = Rated aVCEO, IE
(VCR = Rated BVCEO, IE
= 5.0 Vde,
IC
"A de
mAde
Icao
= 01
= 0, Tr. = l000CI
Emitter Cutoff Current
(V BE
Vde
aVCEO
MJE1090,
MJE2090,
MJE1092,
MJE2092,
lEaD
= 01
mAde
ON CHARACTERISTICS (11
DC Current Gain
(lC = 3.0 Ade, VCE
= 3.0 Vdel
= 4.0 Ade,
= 3.0 Vdel
(lc
VCE
MJE1092,
MJE2092,
MJE1093,
MJE2093
MJEll.00,
MJE21oo,
MJE1101,
MJE2101
MJEll02
MJE2102
MJEll03
MJE2103
Collector-Emitter Saturation Voltage
(lC = 3.0 Ade, IS
= 12 mAdei
= 4.0 Ade,
= 16 mAdei
(lC
IS
VCE (satl
MJE1090,
MJE2090,
MJE1091,
MJE2091
MJE1092,
MJE2092
MJE1093,
MJE2093
MJE1100,
MJE2100
MJE1101,
MJE2101
MJEll02
MJE2102
MJE1103
MJE2103
MJE1090,
MJE2090
MJE1091,
MJE2091,
MJE1092,
MJE2092,
MJE1093,
MJE2093,
MJE11oo,
MJE21oo,
MJE 1101,
MJE2101,
MJEll02
MJE2102
MJE 1103
MJE2103
Base-Emitter On Voltage
= 3.0 Ade,
(lc
VaE ionl
VCE = 3.0 Vdel
(lC = 4.0 Adc, VCE
-
hFE
MJE1090,
MJE2090,
MJE1091,
MJE2091
= 3.0 Vdcl
Vde
-
2.5
2.5
2.8
2.8
-
2.5
2.5
2.5
2.5
Vde
DYNAMIC CHARACTERISTICS
Small--5ignal Current Gain
(lC = 3.0 Adc, VCE = 3.0 Vdc, f
(1)Pulse Test: Pulse Width
:e:; 300
= 1.0 MHzI
JJ.S,
Duty Cycle ~ 2.0%.
FIGURE 2 - DC SAFE OPERATING AREA
0
.0
a::
'"
,.;
>-
I
.of-·
2
0
~
.1
-
O. 3
~
"
O~ ~~~~~~~~ ~;~~:e~o:nT~~I~;doc
o
~
·+·-t·-t-+H+H·
30
-.--
=j~;:~::: !
=j~;:::~:
~~;~:~::; I
=jg:~~:~;
\
\
.5
O. 2
o.1
1.0
TC
2.0
=
25°C
3.0
There are two limitations on the power handling ability of a
tram.lstar
JunctIOn temperature and secondary breakdown Safe
operatIng area curves ,nd,cate IC··VCE 1II111ts of the tranSIstor that
mu!.t be Observed for rel,able operatIon, e.g., the transIstor l11u!.t
not be subjected to greater dISSIpatIOn than the curves md,cate
At hIgh case temperatures, thermal limItatIOns will reduce the
power that can be handled to values less than the IImltat10ns
Imposed by seconddry breakdown. (See AN-415J
1\
Bonding Wife Limited
5.0
7.0
10
20
1\
30
50
70100
VeE, COLLECTOR EMITTER VOLTAGE (VOLTS)
FIGURE 3 - DARLINGTON CIRCUIT SCHEMATIC
PNP
MJE1090
thru
MJE1093
MJE2090
thru
MJE2093
r------,
I ~o."...'
.-t;;I;~ II
L
_ _ _ _ _ -l
NPN
MJE1100
thru
MJEII03
MJE2100
thru
EmItter
MJE2103
521
··-:cs:s
,------,
L
I ~o"'.".'
I
I
_ _ _ _ _ -l
EmItter
MJE 1090 thru MJE1093 PNP/MJE1100 thru MJE 1103 NPN (continued)
MJE2090 thru MJE2093 PNP/MJE2100 thru MJE2103 NPN
MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101
MJE2102
MJE2103
MJE1090
MJE1091
MJE1092
MJE1093
MJE1100
MJE1101
MJE1102
MJE1103
STYLE 1:
PIN 1. BASE
2. CO LLECTO R
3. EMITTER
STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
DIM
MilliMETERS
MIN MAX
INCHES
MIN MAX
A
B
C
D
F
G
H
J
16.08 16.33
0.633 0.643
0.495 0.505
12.57 12.83
3.18 3.43
0.125 0.135
0.51
0.76
0.020 0.030
3.61
0.142 0.152
3.86
2.54 8SC
0.100 BSC
2.67
2.92
0.105 0.115
0.43 0.69
0.017 0.027
0.580 0.590
K 14.73 14.99
V6 2.41 0.085 0.095
30 TYP
M
3" TYP
1.73
0.058 0.068
N 1.47
Q
0.188 0.198
4.78
5.03
2.16
0.075 0.085
R 1.91
0.81
0.86
0.032 0.034
S
0.275 0.285
T 6.99
7.24
6.48
0.245 0.255
U 6.22
1. DIM "G"IS TO CENTER LINE OF LEADS.
F
G
H
J
K
M
Q
R
NOTE:
1 LEAOS WITHIN .005" RAO OF TRUE
POSITION ITP) AT MMC
CASE
90·05
CASE 199'()4
522
MJE1290, MJE1291 PNP (SILICON)
MJE1660, MJE1661 NPN
15 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
COMPLEMENTARY SILICON
MEDIUM·POWER TRANSISTORS
40-60 VOLTS
· .. designed for use in power amplifier and switching applications.
•
High Collector Current IC= 15Adc
•
High DC Current Gain hFE = 10 (Min) @ IC = 15 Adc
90 WATTS
MAXIMUM RATINGS
Symbol
MJE1290
MJE1660
MJEl291
MJEl661
VCEO
40
60
Vdc
Collector-Base Voltage
Vca
40
60
Vdc
Emitter-Base Voltage
VEa
5.0
Vdc
'C
15
Adc
Base Current
la
5.0
Adc
Total Device Dissipation @TC:= 25°C
Derate above 25°C
Po
90
0.72
Watts
W/oC
TJ. T,t9
-65 to +150
°c
Rating
Collector-Emitter Vottage
Collector Current-Continuous
Operating and Storage Junction
Unit
Temperature Range
THERMAL CHARACTERISTICS
Max
Characteristics
Thermal Resistance, Junction to Case
1.39
STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
FIGURE 1 - POWER TEMPERATURE DERATING CURVE
DIM
0
""
0
0
0
A
B
C
0
F
G
""
H
0
-"
J
K
M
0
'-
0
"
0
0
0
25
50
75
100
Q
R
U
INCHES
MIN MAX
0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.13B 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0,075 0.085
0.245 0.255
CASE 90·05
~
125
MILLIMETERS
MIN
MAX
16.13 16.36
12.57 12.B3
3.18 3.43
1.09 1.24
3.51 3.76
4.228Se
2.67 2.92
0.813 0.864
15.11 16.38
90 TYP
4.70 4.95
1.91 2.16
. 6.22 6.48
150
When mounting the device, torque not
to exceed 8.0 in.-Ib.
175
If lead bending is required. use suitable
clamps or other supports between transistor case and point of bend.
TC. CASE TEMPERATURE (DC)
523
MJE1290, MJE1291 PNP/MJE1660. MJE1661 NPN(continuedJ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
I
Symbol
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage fit
(lc = 200 mAdc, IB = 0)
ICEO
Collector Cutoff Current
ICES
= 40 Vdc, VBE = 0)
= 60 Vdc, VBE = 0)
MJE1290, MJE1660
MJE1291, MJE1661
Collector Cutoff Current
(VCB = 40 Vdc, IE = 0)
(VCB
Max
40
60
-
-
1.0
-
-
0.7
0.7
ICBO
MJE1290, MJE1660
MJE1291, MJE1661
= 60 Vdc, IE = 0)
-
0.7
0.7
Emitter Cutoff Current
(VBE = 5.0 Vdc, IE = 0)
lEBO
-
1.0
20
10
100
-
1.8
-
2.5
3.0
-
25
-
Unit
Vdc
VCEO(sus)
MJE 1290, MJE 1660
MJE1291, MJE1661
Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)
(VCE
(VCE
Min
mAdc
mAdc
mAdc
mAdc
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 5.0 Adc, VCE = 4.0 Vdc)
IIc = 15 Adc, VCE = 4.0 Vdc)
-
hFE
Collector-Emitter Saturation Voltage (11
(lC = 15 Adc, IB = 1.5 Adc)
VCE(sat)
Base-Emitter on Voltage III
(IC = 15 Adc, VCE = 4.0 Vdc)
VBE(on) .
-
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 Adc, VCE = 10 Vdc, f
= 1.0 MHz)
Small-Signal Current Gain
(lC = 1.0 Adc, VCE = 10 Vdc, f
= 1.0 kHz)
MHz
for
hfe
-
(U Pulse Test: Pulse Width'S 300+,1. Duty Cycle'S. 2.0%.
FIGURE 2 - DC SAFE OPERATING AREA
100
&::
·50 =rJ -150°C
~ 20
t;: 10
.
.
~--
....
~ ~.o
'-'
o
~....
-- I -
- - - - Secondary Breakdown limited
- - - - - Thermally limited. TC:: 25 0 C
- - - - Bonding Wire Limh:ed
2. 0
1.0
8 o.5
!t
O.2
o. I
-MJE1291
~ .-- MJE1661\ \
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power-temperature derating must be observed for both steady state and pulse power conditions.
MJEI290, MJEI660
IIII
I.b
2.0
3.0
5.0 7.0
10
20
30
50
70 100
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
524
MJE2010, MJE2011 PNP (SILICON)
MJE2020, MJE2021 NPN
5.0 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON
COMPLEMENTARY SILICON
MEDIUM-POWER TRANSISTORS
4O-GOVOLTS
BOWATTS
• .• designed for use in general-purpose amplifier and switching
applications.
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 3.5 Adc
• High DC Current Gain hFE = 25-125@lIC= 1.0 Adc
MAXIMUM RATINGS
Symbol
MJE201 0
MJE2020
MJE2011
MJE2021
Unit
VeEO
40
60
Vdc
Collector-Base Voltage
VeB
40
60
Vdc
Emitter-B... Voltage
VEB
Rati",
Collector-Emitter Voltage
Colt'ector Current - Continuous
Ie
Base Current
'B
Po
Total Device Dissipation@Te=25o e
Derate above 260 e
Operating and Storage Junction
Temperatura Range
TJ.Tstg
---
6.0
5.0
3.0
60
0.64
--
Vdc
Adc
Ado
Watts
wf'e
_-65to+150~
°e
THERMAL CHARACTERISTICS
Ch.racterlstic
Thermal Resistance, Junction to Case
i=1l lC
~
_.
-11
R
FIGURE 1 - POWER TEMPERATURE DERATING CURVE
DIM
80
A
70
e
80
Q
50
!z
~
~
Q
'"~
2
e
"""'" i'-..
40
B
C
D
'I'..
30
20
10
o
o
20
40
60
80
F
G
H
"'-
J
K
'"
100
MILLIMETERS
MIN MAX
18.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61 3.86
2.54 BSC
2.67 2.92
0.43 0.69
14.73 14.99
.41
M
N
Q
li'-..
120
R
S
T
~
140
U
STYLE 1:
PiN 1. BASE
2. COLLECTOR
3. EMiTTER
TYP
1.47
4.78
1.91
0.81
6.99
6.22'
1.73
5.03
2.16
0.86
7.24
6.48
160
1. DIM "G"ISTO CENTER LINE OF LEADS.
TC. CASE TEMPERATURE (DC)
CASE 199-04
525
MJE2010, MJE2011 PNP/MJE2020, MJE2021 NPN (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
40
60
-
-
0.7
-
0.4
-
0.4
'-
0.4
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(1)
(IC = 200 mAde, IS = 0)
Collector Cutoff Current
(VCE
= 30 Vde,
IS
ICEO
= 0)
Collector Cutoff Current
(VCE = 40 Vde, VSE = 0)
MJE2010, MJE2020
= 60 Vde, VSE = 0)
MJE2011, MJE2021
(VCE
Vde
VCEO(sus)
MJE2010, MJE2020
MJE2011, MJE2021
-
mAde
ICES
Collector Cutoff Current
mAde
ICSO
= 40 Vde, IE = 0)
(VCS = 60 Vde, IE = 0)
(VCS
MJE2010, MJE2020
-
0.4
-
1.0
25
125
15
-
-
1.0
-
1.5
VSE(on)
-
1.6
Vde
IT
3.0
-
MHz
hIe
20
MJE2011, MJE2021
Emitter Cutoff Current
(VSE = 5.0 Vde, IC = 0)
mAde
IESO
mAde
ON CHARACTERISTICS
DC Current Gain(l)
Collector-Emitter Saturation Voltage( 1 J
(lC
(lC
= 3.5 Ade,
= 5.0 Ade,
IS
Ie
Vde
VCE(sat)
= 350 mAde)
= 800 mAde)
Base-Emitter On Voltage
(I C = 3.0 Ade, V CE
-
hFE
= 1.0 Ade, VCE = 4.0 Vde)
(lC = 3.0 Ade, VCE = 4.0 Vde)
(lC
= 4.0 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.5 Ade, VCE = 10 Vde, I
= 1.0 MHz)
Small-Signal Current Gain
(lC = 0.5 Ade, VCE = 10 Vde, I
= 1.0 kHz)
-
(1)Pulse Test: Pulse Width ~ 300 /J.s, Duty Cycle S'2.0%.
FIGURE 2 - DC SAFE OPERATING AREA
10
5.0
,.
2.0 I-- TJ = 150 0 C
I-
1.0
~
~
~
'"u:::>
'"
0
~
S
iL MJE2011
\ '\
0.5
0.2
0.1
MJE2021
The Safe Operating Area Curves indicates Ie-VeE limits below
which the device· will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power~temperature derating must be observed for both steady state and pulse power conditions.
MJE2010
MJE2020
===
Secondary Breakdown.Limited
250 C
Bonding Wire Limited
~ - - - - - Thermally limited@Tc
0.05 ~
~
0.02
II II
0.01
1.0
2.0
3.0
5.0 7.0
10
20
30
50
70
100
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS).
526
MJE20S0 NPN
MJE21S0 PNP
(SILICON)
Advance In:forInation
5.0 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON
25,45 VOLTS
15 WATTS
COMPLEMENTARY SILICON POWER TRANSISTORS
... designed to be used in conjunction with the MC1385P audio
driver integrated circuit to produce a Class B audio amplifier suitable
for auto radio applications.
MAXIMUM RATINGS
Symbol
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous
Operating and Storage Junction
Temperature Range
MJE2150
I
45
Unit
Vde
25
4.0
Vde
IC
5.0
10
Ade
Po
15
0.12
Watts
W/oC
TJ,Tstg
-65 to +150
°c
Peak
Total Power Dissipation @TC=25oC
Derate above 2SoC
I
MJE2050
VCER
VEB
\.--0
GlJ
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
I
I
Symbol
R6JC
I
I
Max
8.34
I
I
°elW
I
Unit
Unit
E::3ri-f
M-JI...; t
ELECTRICAL CHARACTERISTICS ITc = 25°C unless otherwise noted!.
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
IIc
=0.2 Adc, RBE = 1.0 k Ohms)
iSymbol
I
:I I
MJE2050
MJE2150
BVCER
Min
45
25
ON CHARACTERISTICS
DC Current Gain
IIc
= 1.8 Adc, VCE = 1.0 Vde)
I
I
I I I
hFE
50
Max
Vdc
-
c
o
F
G
-
-
H
J
.o
K
R
s
u
CASE 77.4)3
This is advance ,"formation on a new introduction and specifications are subject to change without notice.
527
STYLE I.
PIN 1 EMITTER
2. COLLECTOR
3. BASE
MJE2090 thru MJE2093 (SILICON)
For Specifications, See MJEI090 Data.
MJE2100 thru MJE2103 {SILICON}
For Specifications, See MJE1090 Data.
MJE2160
{SILICON}
PLASTIC MEDIUM-POWER NPN
SILICON TRANSISTOR
1.5 AMPERE
POWER TRANSISTOR
NPN SILICON
· .. designed for line operated audio output amplifier applications
in television and radio receivers; as medium power line operated seriespass and switching regulators.
•
300 VOLTS
50 WATTS
High Collector-Emitter Sustaining Voltage VCEO(sus) = 300 Vdc (Min) @ Ie = 10 mAdc
• Excellent DC Current Gain hFE = 3()'240@ IC = 500 mAde
• Thermopad Construction: Case 199 - for Metal-to-Metal
Mounting
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
300
Vde
Emitter-Base Voltage
VEB
5.0
Vde
Collector Current - Continuous
IC
1.5
Ade
Total Device Dissipation @ T C = 25°C
Derate above 25°C
PD
50
0.4
Watts
W/oC
TJ,Tstg
-6Sto+150
°c
Rating
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Thermal Resistanco, Junction to C...
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otharwiso noted)
I
Clmacterlsti.
I I!vmbol I
Min
I Typ I
Max
VCEO(sus)
300
-
-
Vde
BVCEO
300
-
-
Vde
'CBO
-
-
100
/lAde
'EBO
-
-
100
/'Ade
30
10
-
240
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 100 mAde (inductive),
L -50mH)
Collector-Emitter Breakdown Voltage
(lc = 1.0 mAde, lB· 0)
Collector Cutoff Current
(VCB = 300 Vde, IE • 0)
Emitter Cutoff Current
(VEB - 5.0 We, IC· 0)
ON CHARACTERISTICS
DC Current Gain
IIC· 500 mAde, VCE - 10 Vde)
IIC = 1.0 Ado. VCE - 10 Vde)
hFE
-
-
Collector-Emitter Saturation Voltage
lie - 500 mAde, 'B· 50 mAde)
VCE(sat)
-
-
3.5
Vde
Base-Emitter On Voltage
(lC - 500 mAde, VCE = 10 Vde) ,
VBE(on)
-
-
1.2
Vde
-
1.94
2.14
Base-Emitter Voltage Temperature
Coeffleiont
IIC· 60 mAde, VCE = 10 Vde)
_65°C to +250 C
+250 C to +ISOOC
BVB
-
528
mVfOC
mVfOC
.tfRi
~I
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
MILLIMETERS
DIM MIN
AX
A 16.08 16.33
B 12.57 12.83
3.18 '3.43
C
0.51 0.76
D
3.61 3.86
F
2.548SC
G
H
2.67 2.92
0.43 0.69
J
K 14.73 14.99
2.41
L
.1
TVP
M
1.73
N 1.47
Q
4.78
5.03
2.16
R 1.91
0.81
0.86
S
7.24
T 6.99
6.48
6.22
tDiM "G" IS TO CENTER LINE OF LEADS.
CASE 199.04
MJE2160 (continued)
FIGURE 1 - DC CURRENT GAIN
200
100
70
z
;;: 50
co
....z 30
W
0:
0:
..
~
-
c
~
10
7.0
5.0
- - - VCe-IOV
- - - VCE"2.0V
-
I
I
TJ" 250C
3.2
250C
20 --55 0
=>
...
I"-
TJ = 1500C
FIGURE 2 - "ON" VOLTAGES
4.0
.'- ,-
~
h
I VCEI~t)
~
5.0-_
~ 2•4
I'
w
~o
'.
~
"l" . .
>
,;
VBE@
'.S
/
0.8
3.0
2.0
20
50 70
30
100
200
""
:\.\
300
JIC/IBI'IO _
500 700 1000
o
2000
20
...... ,.....
50
30
70 100
200
!/
iT'jV-
~
/
f...-' VBi'itl,ilfB-'r300
500 700 1000
2000
IC. COLLECTOR CURRENT ImA)
IC. COLLECTOR CURRENT ImA)
FIGURE 3 - ACTIVE·REGION SAFE OPERATING AREA
4. 0
3.0
2.0
""~
....
O.lms,,1.0 ms 1\.
....
...
5.0~~
'-
f ..I,
'\.
1.0
~ o. 6
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; I.e., the transIstor
must not be subjected to greater diSSipation than the curves Indicate.
The data of Figure 3 IS based on TJ(pk) = 150°C; TC IS vanable
015ms~
de
0:
a
~
t;
~
-'
o
~J = J,50 0
SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMALLY L1MITEO@TC'250&
(SINGLE PULSE)
0.4
0.3
-
o. 2
- - - -
~ o. I
0.0s
0.0410
20
50
30
70
depending on conditions. Second breakdown pulse limits are valid
for duty cycle! to 10% provided TJ(pk) .;; 150°C. At high case
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
.'\
100
breakdown. (See AN·415)
200
300
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)
FIGURE 5 - SUSTAINING VOLTAGE
TEST CIRCUIT
FIGURE 4 - POWER DERATING
50
"-
~ 40
!;;:
z
~
"
'\.
~
0
50mH
30
""'-
gj
i5
20
"
0:
~
~
~ '0
o
o
20
40
so
80
'"
""'-
100
TC. CASE TEMPERATURE 10C)
.::i1
.=... S.OV-
" ""'120
"
140
300
160
529
1.0
MJE2360 (SIUCON)
MJE2361
NPN SILICON HIGH-VOLTAGE TRANSISTOR
· •. designed for use in line operated two·watt audio output amplifier
applications in televisions and radios.
•
High Coliector·Emitter Sustaining Voltage VCEO(sus) = 350 Vdc (Min) @ IC = 2.5 mAdc
•
Excellent DC Current Gain hFE = 40 (Min) @ IC = 100 mAdc - MJE2361
0.5 AMPERE
POWER TRANSISTORS
NPN SILICON
350 VOLTS
30 WATTS
• Current-Gain-Bandwidth Product fj" = 10 MHz (Typ) @ IC = 50 mAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
350
Vde
Collector-Base Voltage
VCB
315
Vde
Emitter-Base Voltage
VEB
6.0
Vde
Collector Current - Continuous
IC
0.5
Ade
Base Current
IB
0.25
Ade
Total Device Dissipation @TC=2SoC
Po
30
0.24
Watts
W/oC
TJ,Tstg
-65 to +150
°c
Collector-Emitter Voltage
Derate above 25°C
Operating and Storage Junction
Temperature Range
STYLE 1:
PIN 1. BASE
2. CO LLECTO R
3. EMITTER
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
DIM
MILLIMETERS
MIN MAX
A 16.0B 16.33
12.57 12.B3
3.18 3.43
0.51
0.76
3.61
3.86
F
2.54 SSC
G
2.67
2.92
H
0.43 0.69
J
14.73
14.99
K
L
Z.16
2.41
30TYP
M
N 1.47
1.73
0
4.78
5.03
2.16
R 1.91
0.81
u.86
S
7.24
T
6.99
6.48
U 6.22
B
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
40
C
D
.........
.........
0
......... r-..,
.........
0
........ r-..,
0
.........
0
20
40
60
80
100
120
r-..
140
INCHES
MIN MAX
0.633
0.485
0.125
0.020
0.643
0.505
0.135
0.030
II
,!!;W~
~
~
~
0.095
0.085
3"TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255
1. DIM "G·' ISTO CENTERLINE OF LEADS.
160
CASE 199-04
TC, CASE TEMPERATURE IOC)
530
MJE2360, MJE2361 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
VeEOlsus)
350
-
-
Vde
ICEO
-
-
0.25
mAde
ICEX
-
-
0.5
mAde
ICBO
-
-
0.1
mAde
lEBO
-
-
0.1
mAde
MJE2360
MJE2361
25
50
200
250
MJE2360
MJE2361
40
-
Characteristic
Max
Unit
OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage( 1)
lie
= 2.5 mAde, Ie = 0)
Collector Cutoff Current
IVCE
= 250 Vde, Ie = 0)
Collector Cutoff Current
IVCE
= 375 Vde, VEeloff) = 1.5 Vde)
Collector Cutoff Current
IVce
= 375 Vde, IE = 0)
Emitter Cutoff Current
IVeE
= 5.0 Vde,
IC = 0)
ON CHARACTERISTICS
DC Current Gain (1)
lie = 50 mAde, VCE
IIc = 100 mAde, VCE
-
hFE
= 10 Vde)
= 10 Vde)
15
-
Coliector·Emitter Saturation Voltage(1)
IIc = 100 mAde, Ie = 10 mAde)
VCElsatl
-
-
1.5
Vdc
Base·Emitter On Voltage
IIc = 100 mAde, VCE = 10 Vdc)
VBElon)
-
-
1.0
Vdc
fT
-
10
-
MHz
Cob
-
20
-
pF
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIc
= 50 mAde, VCE = 10 Vde, f = 1.0 MHz)
Output Capacitance
(VCB = 100 Vdc, IE
= 0, f = 100 kHz)
(1)Pulse Test: Pulse Width ~ 300 IJ.s, DutV Cvcle ~2.0%.
FIGURE 2 - DC SAFE OPERATING AREA
1.0
;;::
0.5
~ 0.3
ffi
0.2
a:
a:
- - - Secondary Breakdown limited
- - - Bonding Wire Limited
~ O. I
a:
o
1\
The Safe Operating Area Curves indicate IC-VCE limits below
t;
,
j 0.05
B 0.03 r--TJ = ISooC
~O.O 2
0.0 I
1.0
i
2.0
I I
1
5.0
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be observed for both steady state and pulse power conditions.
10
20
50
1110
200
I
500 1000
VCE, COLLEGTOR·EMITTERVOLTAGE (VOLTS)
531
MJE2370 (SILICON)
3.0 AMPERE
POWER TRANSISTOR
PNP SILICON MEDIUM·POWER TRANSISTOR
PNP SILICON
40 VOLTS
40 WATTS
· .. designed for use in general· purpose amplifiers as drivers and as
switches.
• Low Coliector·Emitter Saturation Voltage
VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc
• High DC Current Gain hFE =40·200@ IC =0.2 Adc
• Complement To NPN MJ_E2520
MAXIMUM RATINGS
Roti",
Coliector·Emitter Voltage
COliector·a... Volt.
Emitter·a_ Voltage
Collector Current - Continuous
_Current
Total Deltice Oi.ipation • TC ~ 25u C
01,.,. Ibova 250 C
Operating .nd Stor. Junction
Temperature Range
Symbal
v.....
Unit
VCEO
Vca
VEa
IC
40
40
Vdc
'Vdc
5.0
Vdc
3.0
Adc
la
1.0
Adc
Po
40
0.32
-65 to +150
Wans
WJOC
TJ,Tstg
B
M
T
s
°c
-JI--J
THERMAL CHARACTERISTICS
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
Thermal Rasilllnce,Junctlon to ca.
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
40
e
i
35
0
25
..
20
z
~
ia0
;
f
e
" "'"
30
15
10
A
B
C
D
F
""',
'" "'-
5.0
o
o
G
H
J
K
L
M
N
60
BO
100
120
160
0.51
3.61
2.
2.67
0.43
14.73
T
U
6.22
6.4B
S
140
3.18
5.03
R
f'..
16.08
12.57
.1
3
1.47
4.78
1.91
.81
6.99
0.
~
20
DIM
1.73
2.16
0.86
7.24
1. DIM "G"ISTO CENTERLINE OF LEADS.
CASE 199-04
532
MJE2370 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
I
CharlCteristlc
Symbol
Min
Max
40
-
-
0.3
-
0_2
-
1.0
40
10
200
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining VOltagall 1
(lc = 50 mAde, 18 = 01
Vdc
VCEOlsusl
Collector Cutoff Current
IVCE = 30 Vdc,IB = 01
ICED
Collector Cutoff Current
NCE = 40 Vdc, VBE =01
ICES
Emitter Cutoff Current
IVEB 5.0 Vdc, IC = 01
lEBO
=
mAde
mAde
mAde
ON CHARACTERISTICS
DC Current Gainlll
(lC = 0.2 Ade, VCE
IIC = 1.0 Ade, VCE
-
hFE
= 4_0 Vdcl
=
4.0 Vdcl
-
Collector-Emitter Saturation Voltagelll
(lC = 1.0Ade,IB = 125 mAdel
VCElsatl
-
0_7
Vdc
Base-Emitter On Voltage
IIC = 1.0 Adc, VCE = 4.0 Vdel
VBElonl
-
1.3
Vdc
Current-Gain-Bandwidth Product
IIC = 0.5 Adc, VCE = 10 Vdc, f = 1.0 MHzl
fT
3.0
-
MHz
Small-Signal Current Gain
IIC = 0.5 Ade, VCE = 10 Vdc, f = 1.0 kHz)
hfe
20
-
-
DYNAMIC CHARACTERISTIC
1llPut.. T.st: Put .. Width ~ 300 ,.s, Duty Cycte ~2.0".
FIGURE 2 - DC SAFE OPERATING AREA
10
5.0
0:
'..."'
...z
5
=
=
1'l
...=
0
!!l-'
0
'"'~
'
2.0
TJ'150oC
1.0
....
~
0.5
0.2
0.1
~
0.05 :::.:
- - - Secondary Breakdown limited
__ - - Thermally Limited@Tc =250 C
-
\
Bonding Wire Limited
0.02
0.01
1.0
The Safe Operating Area Curves indicate IC-VCE limits below
which the davice will not enter secondary breakdown. Collector
load lin.. for specific circuits must fall within the applicebl. Safe
Area to avoid causin\l" catastrophic fallure_ To insure operation
below the maximum T.to power-temperature derating mUlt be obterved for both steedy state and pulse power conditions.
2.0
3.0
5.0
IIIII
7.0
10
20
30
50
70
100
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
533
MJE2480, MJE2481 (SILICON)
MJE2482, MJE2483
4.0 AMPERE
NPN SILICON MEDIUM-POWER TRANSISTORS
POWER TRANSISTORS
NPN SILICON
· .. designed for use in general-purpose amplifier and switching
applications.
•
Low Coliector·Emitter Saturation Voltage VCE(sat) ~ 0.7 Vdc (Max) @ IC ~ 1.5 Adc
•
DC Current Gain hFE ~ 20-100@ IC
~
40-60 VOLTS
60 WATTS
2.5 Adc
• Current·Gain-Bandwidth Producttr ~ 2.0 MHz (Min) @ IC ~ 1.0 Adc
MAXIMUM RATINGS
Symbol
MJE2480
MJE2482
MJE2481
MJE2483
Unit
VCEO
40
60
Vdc
Coliector·Base Voltage
VCB
40
60
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
4.0
Adc
Base Current
IB
2.0
Adc
Total Device Dissipation@Tc= 25°C
Derate above 25°C
Po
60
0.48
Watts
W/oC
TJ.Tstg
-65 to +150
°c
Rating
Collector-Emitter Voltage
Collector Current
Continuous
Operating and Storage Junction
Temperature Range
D~L
THERMAL CHARACTERISTICS
~~
Characteristic
--- =-f-r
Thermal Resistance, Junction to Case
FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
A
B
C
0
F
G
H
J
80
~
!z
c
70
80
'"'"
50
~
40
5
a:
30
c
20
!:i
..!Il
~
'"'"
"'""
""'" .......,
10
o
o
........
20
40
60
DIM
80
100
120
I'-...
140
160
TC. CASE TEMPERATURE (OCI
534
MILLIMETERS
MIN MAX
16.08 16.33
12.57 12.83
3.18 3.43
~I--J
STYlE 1:
PIN1.BASE
2. COllECTOR
3. EMITIER
INCHES
MIN MAX
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
3.61
0.142 0.152
2.54
0.100 BSC
0.105 0.115
2.67
0.43
0.017 0.027
K 14.73 1
0.580 0.590
L
2.16
2.41
0.085 0.095
M
JC TYP
3" TYP
N 1.47
1.73
0.058 0.068
Q
4.78
0.188 0.198
5.03
R 1.91
2.16
0.075 0.085
0.81
0.032 0.034
S
0.86
T 6.99
7.24
0.275 0.285
U 6.22
6.48
0.245 0.255
1. DIM "G·· IS TO CENTER LINE DF LEADS.
CASE 199-04
." i
MJE2480, MJE2481, MJE2482, MJE2483 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
40
-
Unit
OFF CHARACTERISTICS
CollectorMEmitter Sustaining Voltage(1)
(lC = 100 mAde, IB = 01
Collector Cutoff Current
(VCE = 20 Vdc, IB = 0)
MJE2480, MJE2482
= 30 Vde, IB = 0)
MJE2481, MJE2483
(VCE
1.0
-
0.1
-
0.1
All Types
40
-
MJE2480, MJE2481
20
100
MJE 2482, MJE2483
20
100
-
0.7
-
1.4
-
1.5
= 60 Vde,
MJE2481, MJE2483
= 5.0 Vde,
IC
1.0
mAde
ICBO
= 0)
Emitter Cutoff Current
(VBE
mAde
-
MJE2480, MJE2482
IE
60
ICEO
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
(VCB
Vde
VCEO(susl
MJE2480, MJE2482
MJE2481, MJE2483
lEBO
= 0)
0.1
mAde
ON CHARACTERISTICS
OC Current Gain(l)
(IC = 1.0 Ade, VCE
Collector-Emitter Saturation Voltage(1)
= 1.5 Adc,
(lC = 4.0 Ade,
(lC
-
hFE
= 4.0 Vdc)
(lC = 1.5 Ade, VCE = 4.0 Vde)
(IC = 2.5 Ade, VCE = 4.0 Vde)
Vde
VCE(sat)
= 0.15 Ade)
IB = 1.0 Ade)
IB
Base-Emitter On Voltage
(lC = 1.5 Ade, VCE = 4.0 Vde)
VBE(on)
Vde
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(I C
= 1.0 Ade, V CE = 10 Vde, f = 1.0 MHz)
(1) Pulse Test: Pulse Width
s: 300 #ls,
Duty Cycle S 2.0%.
FIGURE 2 - DC SAFE OPERATING AREA
0
5. 0
0
- - - Secondary Breakdown Limited
O§ ___
5~
-
ThermallyLimited@Tc 250C
Bonding Wire Limited
...
_\
MJE2480.82
2
MJE248 1,83
l\
V
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power·temperature derating must be ob·
served for both steady state and pulse power conditions.
, 1\
1\
1
5
-TJ-150oC
0.0 2
0.0 1
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70 100
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
535
MJE2490 (SIUCON)
MJE2491
3.0 AMPERE
POWER TRANSISTORS
PNP SILICON MEDIUM-POWER TRANStSTORS
PNPSILICON
. designed for use in general-purpose amplifiers as drivers and
as switches.
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 1.2 Vdc (Max) @ IC = 3.0 Adc
•
High DC Current Gain hFE = 20-100@ IC = 1.0 Adc
•
Complements to NPN MJE2522 and MJE2523
40-60 VOLTS
60 WATTS
MAXIMUM RATINGS
Rating
Svmbol
MJE2490
MJE2491
Unit
VeEO
40
60
Vdc
Collector-Sase Voltage
Ves
40
60
Vdc
Emitter-Base Voltage
VES
Ie
Collector-Emitter Voltage
Collector Current - Continuous
Base Current
IS
Total Oevice Dissipation @TC == 25°C
Po
--
3.0
-
Derate above 25°C
Operating and Storage Junction
Temperature Range
5.0
TJ.Tstg
1.0
60
--
Vdc
Adc
-
Adc
Watts
-0.48-
wf'e
--65to+150-
°e
THERMAL CHARACTERISTICS
STYLE 1:
PIN 1. 8ASE
2. COLLECTOR
3. EMITTER
Characteristic
Thermal Resistance. Junction to Case
DIM
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
80
i
70
00
z
o
0
:::
40
i5
0
;::
iii
'"~
~
~
..........
"'" ""
20
""t--..
0
"t--..
0
20
40
60
80
100
120
""i'..
140
MILLIMETERS
MIN MAX
16.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61
3.86
2.54 BSC
2.67
2.92
0.43 0.69
K 14.73 14.99
L
2.16
2.41
3 TYP
M
N
1.47
1.73
n 4.78 5.03
2.16
R 1.91
0.81
0.86
S
7.24
T 6.99
6.48
U 6.22
A
B
C
0
F
G
H
J
INCHES
MIN MAX
0.633 0.643
0.485 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100 B C
0.105 0.115
0.017 0.027
0.580 0.590
0.085 0.095
30 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255
1. DIM "0" IS TO CENTER LINE OF LEADS.
160
TC. CASE TEMPERATURE (OCI
536
CASE 199·04
MJE2490, MJE2491 (continued)
ELECTRICAL CHARACTERISTICS (Tc = 250 C unless otherwise noted)
Symbol
Characteristic
Min
Max
40
60
-
-
0.3
-
0.2
20
100
8.0
-
-
0.6
-
1.3
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(l)
(lc = 50 mAde, IS = 0)
Collector Cutoff Current
(VCE
=
30 Vde, IS
ICEO
ICES
= 40 Vde, VSE = 0)
(VCE = 60 Vde, VSE = 0)
(VCE
MJE2490
MJE2491
Emitter Cutoff Current
= 5.0 Vde,
IC
mAde
= 0)
Collector Cutoff Current
(VES
Vde
VCEO(sus)
MJE2490
MJE2491
IESO
mAde
0.2
1.0
mAde
= 0)
ON CHARACTERISTICS
DC Current Gain(l)
(lC = 1.0 Ade, VCE
-
hFE
= 4.0 Vde)
(I C = 3.0 Ade, V CE = 4.0 Vde)
Coliector·Emitter Saturation Voltage(1)
Vde
VCE(satl
= 1.0 Arlo, is = 100 mAde)
(I C = 3.0 Ade, I B = 375 mAde)
(lC
Base-Emitter On Voltage
1.2
Vde
VBE(on)
= 1.0 Ade, VCE = 4.0 Vde)
(lc = 3.0 Ade, VCE = 4.0 Vde)
(lC
1.8
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.5 Ade, VCE = 10 Vde, I = 1.0 MHz)
IT
3.0
-
MHz
Small-Signal Current Gain
(lC = 0.5 Ade, VCE = 10 Vde, I = 1.0 kHz)
hfe
20
-
-
(1)Pulse Test: Pulse Width ~300 #Ls, Duty Cycle~ 2.0%.
FIGURE 2 - DC SAFE OPERATING AREA
10
5.0
...
ii:
::E
!>
l-
~
a
'"
2.0
-
~ ~:
8
~
\ \
- - - Secondary Breakdown limited
t. o E~
Thermally Limited@Tc - 25·C
5~'
Bonding Wire Limited
o.
MJE2490
2
MJE2491
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be observed for both stead V state and pulse power conditions.
V
\
1
0.0 5
I---- TJ = 150·C
0.02
0.0 1
1.0
2.0
3.0
5.0 7.0
10
20
30
50
70 100
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)
537
MJE2520 (SILICON)
3.0 AMPERE
POWER TRANSISTOR
NPN SILICON MEDIUM·POWER TRANSISTOR
NPN SILICON
· .. designed for use in general·purpose amplifiers as drivers and as
switches.
40 VOLTS
40 WATTS
•
Low Coliector·Emitter Saturation Voltage
VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc
•
High DC Current Gain hFE = 40-200@ IC = 0.2 Adc
•
ComplementTo PNP MJE2370
MAXIMUM RATINGS
Rati",
Coliector·Emitter Voltage
Symbol
V.....
Unit
VCEO
Vde
Collector-Bose Voltage
VCB
40
40
Emitter-Bose Voltage
VEB
5.0
Vde
Ade
Collector Current
Continuous
Ie
3.0
Base Current
IB
1.0
Ade
Total Device Dissipation@TC=250C
Der....bove 250 e
Po
40
Watts
0.32
wfGc
TJ.Tstg
-65 to +150
°e
Operating and Storage Junction
B
Vdc
M
T
1-5
Temparature Range
l-J
THERMAL CHARACTERISTICS
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER
Thennal Resistance.Junction to case
FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
40
I.
z
ijjj
""
35
30
20
5
I
~
""
15
10
5.0
o
o
20
40
60
80
"'
'""
100
120
MILLIMETERS
MIN MAX
A 16.0B 16.33
8 12.57 12.83
3.18 3.43
C
0.51
0.76
D
F
3.61 3.86
2.54 BSC
G
2.67 2.92
H
J
D.43 0.69
K 14.73 14.99
L
2.16
2.41
M
30 TYP
1.73
N 1.47
Q
4.78
5.03
2.16
R 1.91
0.81
S
0.86
T 6.99
7.24
6.
U 62
.",
25
DIM
i'--.
140
180
TC. CASE TEMPERATURE 10C)
INCHES
MIN MAX
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100 BSC
0.105 0.115
0.017 O.D27
0.580 0.590
0.085 0.095
3"TVP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 O. 55
1. DIM "6" IS TO CENTER LINE OF LEADS.
CASE 199.()4
538
MJE2520 (continued)
ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted)
I
Characteristic
Symbol
Min
Unit
OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage(11
(lC ~ 50 mAde, IS = 0)
Collector Cutoll Current
(VCE = 30 Vde, IS = 0)
ICEO
Collector Cutoff Current
ICES
(VCE
= 40 Vde, VSE = 0)
Emitter Cutoff Current
(VES
= 5.0 Vde,
IESO
= 0)
IC
Vde
VCEO(susl
40
-
-
0.3
-
0.2
-
1.0
40
200
mAde
mAde
mAde
ON CHARACTERISTICS
DC Current Gain( 1)
(lC = 0.2 Ade, VCE = 4.0 Vde)
Coliector·Emitter Saturation Voltage(1}
(lc
= 1.0 Ade,
10
-
VCE(sati
-
0.7
Vde
VSE(on)
-
1.3
Vdc
fT
3.0
-
MHz
hIe
20
-
-
= 4.0 Vde)
(lC = 1.0 Ade, VCE
-
hFE
IS = 125 mAde)
Sase-Emitter On Voltage
(lC = 1.0 Ade, VCE = 4.0 Vde)
DYNAMIC CHARACTERISTIC
Current·Gain-Bandwidth Product
(lc
=0.5 Ade, VCE ~ 10 Vdc, I = 1.0 MHz)
Small·Signal Current Gain
(lC =0.5 Adc, VCE = 10 Vde, 1= 1.0 kHz)
(1)Pulse Test: Pulse Width ~ 300 ~s, Dutv Cvcle ~2.0".
FIGURE 2 - DC SAFE OPERATING AREA
10
5.0
.......
0:
'"
~
a
!!
I-
2.0
0.5
'"
t;
0.2
;
0.1
8
0.05
0
~
\
TJ: 150DC
1.0
Breakdown limited
§F _ --- - Secondary
Thermally Limited TC : 25 C
@
D
The Sale Operating Area Curve. indicata IC-VCE limits below
which the daviea will not antar secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safa
Araa to avoid causing a catastrophic failure. To insura operation
below tha maximum T J, power-tamperatura darating must ba ob·
\
Bonding Wire limited
served for both steady state and pul. power conditions.
0.02
I 1111
0.01
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
VCE, COLLECTOR·EMITTER VOLTAGE (VOL TSI
539
MJE2801(SILICON)
MJE2801K
10 AMPERE
POWER TRANSISTORS
HIGH-POWER NPN SILICON TRANSISTOR
NPNSllICON
60 VOLTS
90 WATTS
. . . for use as an output device in complementary audio amplifiers
up to 35·Watts music power per channel.
MJE2801
• High DC Current Gain - hFE = 25·100@ IC = 3.0 A
• Thermopad High·Efficiency Compact Package
• Complementary to PNP MJE2901. MJE2901 K
• Choice of Packages - MJE2801·Case 90
MJE2801K·Case 199
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
60
Vde
Coliector·B... Voltage
VCB
60
Vde
Emitter-Base Voltage
VEB
IC
4.0
Vde
10
Ade
IB
5.0
Ade
Pot
90
0.12
-55 to +150
Watts
Rating
Collector-Emitter Voltage
Collector Current
Base Current
Total Device Dissipation @TC = 25°C
Derate above 2SoC
Operating and Storage Ju netio"
TJ. Tst9
CASE 90-05
wf'c
°c
Temperature Range
MJE2801K
THERMAL CHARACTERISTICS
Charact_lllic
Thermal Resistance. JUr'ction to Case
tSafe Area Curves are indicated bv Figure 1. 80th limits are applicable and must beobserved.
ELECTRICAL CHARACTERISTICS (TC = 2S oC unless otherwise noted)
I
Characteristic
I
Symbol
I
Min
I Max I
60
-
-
0.1
2.0
Unit
OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (11
(lC = 200 mAde. IB = 0)
Coliector·Cutoff Current
(VCB = 60 Vde. IE = 0)
(liCB =60 Vde. IE - O. TC • 15o"C)
ICBO
Emitter Cutoff Current
lEBO
(VBE
=4.0 Vde. IC •
Vde
BVCEO
0)
mAde
CASE 199-04
mAde
-
1.0
25
100
-
1.4
ON CHARACTERISTICS
-
hFE
DC Current Gain
(lc = 3.0 Adc. VCE
= 2.0 Vde)
B...·Emitter 'IIoltaga
(I C = 3.0 Ade. VCE
= 2.0 Vde)
Vd.
VBE
(1) Pul .. T_: Pul.. Width <;300 "'•• Duty Cyel. <;2.0%.
540
MJE2801, MJE2801 K (continued)
FIGURE 1 - ACTIVE REGION
SAFE OPERATING AREA
10
7. 0
5.o
!
3. 0
::
a
1.o
!...t-
~ 2. 0
.
o
"~\I. ~...;
TJ -150OC
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i ,e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on T Jlpk) = ISo"C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T Jlpk) .;;; ISo"C. At high ca..
temperatures, thermal Iimitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown. lSee AN·415)
\\
==--'
~
BO'NDING WIRE LIMITED
O.7 =-----THERMALLY L1MIT@TC'ZSOC
5
SECONDARY BREAKDOWN LIMITED
~ o.
8 o.3
~
o.2
MJE2BDI. MJE2801K
O. 1
1.0
2.0
3.0
5.0
7.0
1 1
1 1
1
20
3D
10
50 6D
VCE. COllECTOR-EMITTER VOLTAGE IVOLTS)
FIGURE 2 - "ON" VOLTAGES
FIGURE 3 - DC CURRENT GAIN
500
1.4
1.2
TJ' 250 C
300
1
1
~1.0
~ o.8
VBE @VCE =2.0 V
.
.a
30
1.1 l i
1.1 ..l1
....
0
~
20
z
I
L
w
co
~ o.6
o
>
,; O.4
I I
o.2
C 100
'-"" .....-
V8EI..t)@ICilB' 10
~
0.2
0.3
0.5
1.0
2.0
25 6e
50
....
55 0 C
3.0
5.0
0.01
10
5.0
0.02
0.05
IC. COllECTOR CURRENT lAMP)
0.1
0.2
0.5
1.0
2.0
Ie. COLLECTOR CURRENT lAMPS)
FIGURE 4 - POWER DERATING
90
i!!
....
~
"'
80
70
z
0
;:: 60
~ 50
ill
c
.
40
...
...ci
20
.....
"
MJE2801. MJE2801 K
~
~ 3D
0
o
"
~
~
"-~
10
o
......
10
-I--""
o
0.1
.....,........t""
....
/
II
VCEI..!)@ICiIB' 10
VCE' 2.0 V
T "~C
200
25
100
50
75
125
TC. CASE TEMPERATURE (DC)
541
150
175
5.0
10
MJE2801, MJE2801 K (continued)
MJE2801
MJE2801K
M
~~i
DIM
A
B
C
DIM
A
0
F
G
H
J
K
L
G
H
J
K
M
N
M
n
n
R
R
U
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
LI-hr--ill
STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
S
T
6.22
NOTE:
1. LEAOSWITHIN .005" RAD OF TRUE
POSITION (TP) AT MMC
U
MILLIMETERS
MIN MAX
INCHES
MIN MAX
16.0B 16.33
12.57 la.03
3.18 3.43
0.51
0.76
3.86
3.61
2.548SC
2.67 2.92
0.43 0.69
14.73 14.99
2.16 2.41
TYP
1.47
1.73
5.03
4.78
2.16
1.91
0.81
0.86
6.99
7.24
6.48
6.22
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100BSC
0.105 0.115
0.017 0.027
0.580 0.590
0.085 O. 95
3 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.~5
0.245 0.255
1. DIM "G" IS TO CENTER LINE OF LEAOS.
CASE 90-05
CASE 199-04
542
MJ E2901 (SILICON)
MJE2901K
HIGH-POWER PNP SILICON TRANSISTORS
10 AMPERE
POWER TRANSISTORS
· .. for use as an output device in complementary audio amplifiers
up to 35-Watts music power per channel.
•
High DC Current Gain - hFE = 25·100@ IC = 3.0 A
•
Thermopad
•
Complementary to NPN MJE2801, MJE2801K
•
Choice of Packages - MJE2901 - Case 90
MJE2901K - Case 199
PNPSILICON
60 VOLTS
90 WATTS
High Efficiency Compact Package
MJE2901
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
60
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
Collector Current
IC
10
Adc
Base Current
IB
5.0
Adc
Pot
90
Watts
0.72
W/oC
TJ, T,tg
-55 to +150
°c
Collector~Emitter
Voltage
Total Device Dissipation
@I
T C = 2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range
CASE 90-05
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
tSafe Area Curves are tndicated by Figure 1. Both limits are applicable and must be observed.
MJE2901K
ELECTRICAL CHARACTERISTICS (TC
= 25°C unless otherWISe noted)
Characteristic
Symbol
I Min I Max I
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc = 200 mAde, IB = 0)
BVCEO(1)
Collector-Cutoff Current
(VCB
(VCB
=60 Vdc, IE = 0)
=60 Vdc, IE = 0, TC = 15o"C
Emitter Cutoff Current
IVBE = 4.0 Vdc, IC
= 0)
60
Vdc
mAde
ICBO
0.1
2.0
1.0
lEBO
mAde
ON CHARACTERISTICS
DC Current Gain
(lc = 3.0 Adc, VCE
25
100
= 2.0 Vdc)
Base-Emitter Voltage
(lC
CASE 199-04
hFE
= 3.0 Ade, VCE = 2.0 Vdc)
VBE
1.4
(1 )Pulse Test: Pul.. Width <;300 Ii', Outy Cycle<2.0%.
543
Vdc
MJE2901, MJE2901 K
(continued)
FIGURE 1 - ACTIVE-REGION SAFE
OPERATING AREA
10
...
7.0 I-TC'25"C
I
3.0
~ 1.0
a:
,\1
\
\d'\
F __: __ ~~~~~NAWI~~TL~M~~:0250C
~ 0.7 ~
0.5
The data of Figure I is based on T J(pk) = 15o"C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
SECONDARY BREAKDOWN LIMITED
:l
~
There are two limitations on the power handling ability of 8
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie' VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
... I "S.O l1li.-'
TJ= 15 Doc
t;: 2.0
w
a:
a:
B.
oo~:
5.0
for duty cycles to 10% provided T J(pk)o;;;I500 C·. At high case
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown. (See AN-415)
1\
0.3
MJE2901. MJE2901 K
0.2
O. 1
1.0
2.0
3.0
5.0
1.0
I
1
10
20
\
50 60
30
VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)
FIGURE 2 - "ON" VOLTAGES
FIGURE 3 - CURRENT GAIN
500
2.0
300
Tp 250C
1.6
~
0
~
ZOO
z:
W
to
«
:;
0
;(
.IV
1.2
VBEI"'I@ICIIB = I~
0.8
-
j
0.2
2sbC
50
...
i
/.
0.3
0.5
1.0
20 3.0
IC. COLLECTOR CURRENT IAMPI
...-....
W
""...:::>
,;'
vCEiJ@'lclll 10
0.1
100
Z
.....:
-55°C
~
30
CI
I -I I', I I I
0.4
to
~~
VBE@VCE =3.b ~
>
>'
o
:;:::::;;-
...
VCE' 2.0 V
TJO 150°C
10
5.0
5.0
0.01
10
0.02
0.05
02
0.1
0.5
1.0
2.0
IC. COLLECTOR CURRENT lAMPS)
FIGURE 4 - POWER DERATING
0
0
0;
10
i
0
z
o
0
:t
40
;::
iJi
c
"
""
0
"
~
20
&?
0
0
"
MJE2901. MJE2901 K
""
""
"'-
25
r-...
20
50
100
125
15
TC. CASE TEMPERATURE (DC)
544
""
150
175
5.0
10
MJE2901, MJE2901 K (continued)
MJE2901
MJE2901K
M
STYLE 1:
STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
PIN 1. BASE
2. COLLECTOR
3. EMITTER
MIL LlMETERS
DIM
A
B
MILLIMETERS
DIM MIN
A
16.13
B
C
D
F
12.57
.18
C
D
F
G
H
J
K
1.09
G
H
J
K
M
M
Q
N
R
Q
U
R
S
NOTE:
1. LEADS WITHIN .005" RAD DF TRUE
POSITION (TP) AT MMC
T
u
MIN
MAX
16.0B 18.33
12.57 12.83
3.18 3.43
0.51
0.7&
3.81
3.88
2.MBse
2.67
2.92
0.43
0.&9
14.73
.1
14.99
.41
3 TYP
1.47
4.78
1.91
0.81
6.99
.2
1.73
5.03
2.1&
0.86
7.24
.4
1. DIM "6" IS TO CENTER LINE OF LEADS.
CASE91J.05
CASE 199'()4
545
MJE2955 (SILICON)
MJE2955K
HIGH POWER PNP SILICON TRANSISTORS
... designed for use in general-purpose amplifier and switching
applications.
10AMPERE
POWER TRANSISTORS
PNPSILICON
• DC Current Gain Specified to 10 Amperes
• High Current-Gain - Bandwidth Product - tr = 2.0 MHZ (Min)
@ IC = 500 mAdc
• Thermopad High-Efficiency Compact Package
• Complement to NPN MJE3055, MJE3055K
• Choice of Packages - MJE2955-Case 90, MJE2955K-Case 199
60 VOLTS
90 WATTS
MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Symbol
Value
Unit
VCEO
60
Vdc
Vdc
Collector·Base Voltage
Vce
70
Emitter-Base Voltage
VEe
5.0
Vdc
IC
10
Adc
Base Current-Continuous
IS
6.0
Adc
Total Device Dissipation@TC=250 CI1I
Derate above 25°C
Po
90
Watts
0.718
wf'c
TJ.T stg
-55 to +150
DC
Collector Current-Continuous
Operating and Storage Junctic;m
Temperature Range
MJE2955
THERMAL CHARACTERISTICS
CASE 90-05
Characteristic
Thermal Resistance, Junction to Case
FIGURE I - ACTIVE REGION SAFE OPERATING AREAS
0
1.0ms~10D~s
0
t
50"" ~
5.0
~
... 3 0
ifi
~
Iii
~
o. S
8 o.3
\
\ .\ \
MJE2955. MJE2955K
0
07
MJE2955K
'\.
0
.a ,
o
\
d'
-
-,-of--
!}
2
TJ"150'C
- - - SECOND BREAKDOWN LIMITED
-
- - - THERMAllY LIMITED
, I I
TC"25 0 CfO"OH
o
5.0
\
- - - - BONDING WIRE LIMITED
70
10
I
20
30
50 60
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)
CASE 199-04
TIMf..... I _ hmom.on. on ttle po_ hl"dlln, ab,lity of • tranS'"lor .......... ,,,"... On
templlrelur. end _ond b.Mkdown S ... Op"".tlng .... Cu ..... IndlC." 'C VCE ' ..n,tt of
the u ......tor tMl must boo ob_v.d '0...... bl. operatIon. ' •. t .... ".n..stOt mult not b.
Mlb' ... tedto .....*dl..'p.tlonth.nth.curvaslnd'c••
Th. o.t. of F'gur. 1 's bft8d on TJ(pk) '" 150"C. TC It II..,IIbI. d.pand.ng on conchtlant Second b ..... do ..... pUlM I,m'tt.,. v.lld for duty eycl. to 10,. prOll'_ TJ(pk)
5 1l10Ge At h,ghc_
the.mII' I,m,t.t.ona w,1I ... du.c:. ttl. pow.. th" c.n b.
h.nd" to ".'un , _ th.n the IIm".t'onl 'mpoNd by 1IK0nd br..kdown !S.. AN "'l1)
."""'.81\1....
(1)Safe Ar. Curves are Indicated by Figure 1 - Both thermal and safearea
limits ere applicable and must be obterY8d.
546
MJE2955, MJE2955K (continued)
ELECTRICAL CHARACTERISTICS (TC
I
=
25°C unless otherwise noted)
I
Characteristic
Symbol
Min
Max
60
-
-
700
-
1.0
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
(lc
Vde
VCEO(sus)
= 200 mAde, IB = 0)
Collector Cutoff Current
pAdc
ICED
(VCE = 30 Vdc, IB = 0)
Collector Cutoff Current
mAdc
ICEX
(VCE = 70 Vde, VEB(off) = 1.5 Vde)
(VCE = 70 Vdc, VEB(off)
= 1.5 Vdc, TC = 1500C)
Collector Cutoff Current
= 70 Vde,
mAde
= 0)
(VCB = 70 Vdc, IE = 0, TC = 1500C)
(VCB
IE
Emitter Cutoff Current
(VBE
= 5.0 Vde,
IC
5.0
ICBO
-
1.0
-
5.0
20
70
5.0
-
-
1.1
-
8.0
-
1.8
10
mAde
lEBO
= 0)
ON CHARACTERISTICS
DC Current Gain (1)
-
hFE
= 4.0 Ade, VCE = 4.0 Vde)
(lC = 10Ade, VCE = 4.0 Vde)
(lC
Colleetor-Emitter Saturation Voltage (1)
Vdc
VCE(sat)
= 4.0 Adc, IB = 0.4 Adc)
(lC = 10 Adc, IB = 3.3 Adc)
(lC
Base-Emitter On Voltage ( 1)
(IC
Vdc
VBE(on)
= 4.0 Adc, VCE = 4.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwkhh Product
(lC
= 500 mAdc, VCE = 10 Vdc, f =500 kHz)
(1)Pulse Test: Pulse Width ~300 /ols, Duty Cycle ~2.0%.
FIGURE 2 - DC CURRENT GAIN
FIGURE 3 - "ON" VOLTAGES
SOO
2.0
TJ = 25°C
300
200
z
~
...
100
~
so
::'i
13
u
30
i
20
c
...-
-
VeE" 2.0 V
TJ" ISOoC
u;
1.6
':;
c
~ 1.2
2SoC
~
to
~SsoC
~
........
>'
F'"
0.4
10
S.O
0.01
r--o
0.02
0.05
0.1
Ie.
0.2
O.S
1.0
2.0
COLLECTOR CURRENT (AMP)
S.O
0.1
10
--
VaE(",) iii' IcJla - 10
~ 0.8
V~E ~ VFE =)3.0 IV
vJE(L)~leJla llo
0.2
0.3
0.5
b:::;O ~""
/
......
I--1.0
2.0
Ie, COLLECTOR CURRENT (AMP)
547
3.0
5.0
10
MJE2955, MJE2955K (continued)
MJE2955
MJE2955K
F
M
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER
STYLE 2:
PIN 1. EMITIER
2. COLLECTOR
3. BASE
DIM
A
B
C
0
F
G
H
J
K
M
N
Q
R
S
T
NOTE:
1. LEADS WITHIN .005" RAO OF TRUE
POSITION lTP) AT MMC
U
MIN
MAX
16.08 16.33
12.57 12.83
.18 3.43
0.51 0.76
3.61 3.86
2.54 BSC
2.67 2.92
0.43 0.69
14.73 14.99
2.41
TYP
1.47
1.73
4.78 5.03
1.91
2.16
.86
0.81
6.99
7.24
6.48
6.22
1. DIM "G"IS TO CENTER LINE Of LEADS.
CASE90.Q6
CASE 199.04
548
MJE3055 (SILICON)
MJE3055K
HIGH POWER NPN SILICON TRANSISTORS
10 AMPERE
POWER TRANSISTORS
• .• designed for use in general·purpose amplifier and switching appli·
tions.
NPNSILICON
60 VOLTS
•
DC Current Gain Specified to 10 Amperes
•
High Current Gain - Bandwidth Product for 2.0 MHz (Min) @ IC 500 mAdc
=
90 WATTS
=
• Thermopad
High·Efficiency Compact Package
•
Complement to PNP MJE2955. MJE2955K
•
Choice of Packages - MJE3055 - Case 90
MJE3055K - Case 199
MJE3055
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
60
Vdc
Coliector·B_ Voltage
VCB
70
Vdc
Emittor·B_ Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
10
Ade
a_ Current -
IB
6.0
Ade
Po
90
0.718
W/oC
-56 to +150
Dc
Reting
Coliector·Emitter Voltago
Continuous
Total OllYieo Oillipation @TC - 25°C {ti
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ,Tstg
Watts
CASE 90-05
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
MJE3055K
e1} Sef. Ara. Curves.,. Indicated by Figur. 1 - Both thermal and ..fa area
limits .r. applicable and must be observed.
FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
0
1.8ms't.1OO".
.0 .. 'r---' I-
..
0
~
"\.
0
MJE3OH. MJE3G55K
0
\ ,\1\
7
•-f--I3
111
0. I
U
CASE 199-04
7,0150'0
- - - SECOND BREAKDOWN LIMITED
- _ ... - ION DING WIRE LIMITED
- - - - THERMALLY LIMITED
70:3"010 0 0.11
1.0
~
1
50 ••
10
20
3D
VeE. COLL£CTOR·EMITTER VOLTAGE (VOLTSI
There .... two limnallons on tIM pGWllr handling ability of II "anllstor ....., . . JunCllon
t.fnp.k.tu,• •nd .-cOnd br. .kdown. S.fe O~'.tin• • r. . curves In~flc.te IC'VCE limits of
UW Uanilitor tha' m ...st be obMrv.d for r.liabla operation, i .•.• the ".nu,to, must nOt be
subjected 10 .e.ter diSllp.llon th.n the curve, Indic."
TM da.. of F .... r. 1 IS baed on TJfpkl .. l~C. TC i, ...a'iebledepending on condl'
tion,. Second breakdown pul"limllS .,. ..... Iid fot duty eyel. . 10
providlld TJ(pkl
:! 150o C. AI high c ... tempetatl.lr... thermal IImltadon, Will '''!,Ie. the power that can be
h.ndled to .... ,1.1.. ,... than Ih. limitations Impo..cf by wc::ond breakdown (S. . AN 4151
'0'"
549
MJE3055, MJE3055K (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
DI.racteristic
I
Symbol
Min
Max
Unit
VCEO(sus)
60
-
Vdc
Collector Cutoff Current
(VCE = 30 Vdc,IB ~ 0)
ICEO
-
700
I'Ade
Collector Cutoff Current
(VCE = 70 Vdc, VEB(off) = 1.5 Vdc)
(VCE = 70 Vdc, VEB(off) = 1.5 Vdc, TC = lsoDC)
ICEX
-
1.0
5.0
Colltector Cutoff Current
(VCB = 70 Vdc, IE = 0)
(VCB = 70 Vdc, IE = 0, TC = 1500C)
ICBO
-
-
1.0
10
Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)
lEBO
-
5.0
20
5.0
70
-
1.1
8.0
-
1.8
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lc = 200 mAde, IB = 0)
mAdc
mAdc
mAde
ON CHARACTERISTICS
OC Current Gain (1)
(lC = 4.0 Ade, VCE = 4.0 Vde)
(lC = 10 Adc, VCE = 4.0 Vdc)
-
hFE
Collector-Emitter Saturation Voltage (1)
(lC = 4.0 Ade, IB = 0.4 Ade)
(lC = 10 Adc, IB = 3.3 Adc)
VCE(satl
Base-Emitter On Voltage (1)
(lC = 4.0 Ade, VCE = 4.0 Vde)
VBE(on)
Vde
Vde'
DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product
(lC = 500 mAde, VCE = 10 Vdc, f = 500 kHz)
(1) Pulse Test: Pulse Width.::5300 IlS, Dutv CycleS2.0%.
FIGURE 2 - DC CURRENT GAIN
FIGURE 3 - "ON" VOLTAGES'
500
[
300
TJ: 150°C
200
z
;;:
'"
~
100
...-1"'""
=
'"c
30
/
w
-55°C
~
......
[
!:j O•6
'",;>
20
VBE@VCE : 2.0 V
o.4
[
0.2
10
5.0
0.01
......
VSE(..t)@lICilS-IO
~ 0.8
50
~
[
[
~ 1.0
25°C
I-
B
TJ: 25°C
1.2
VCE - 2.0 V
0.02
[
,./
[ [
VCE(..ti@lICilB =10
1.--1"'""
o
0.05
0.1
0.2
0.5
1.0
2.0
IC, COLLECTOR CURRENT (AMP)
5.0
10
0.1
0.2
0.3
0.5
1.0
2.0
IC, COLLECTOR CURRENT (AMP)
650
3.0
5.0
10
MJE3055, MJE3055K (continued)
MJE3055K
MJE3055
STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE
STYlE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER
DIM
MilliMETERS
lNCHES
DIM MIN
MAX MIN MAX
A
16.38 0.635 0.645
B
12.83 0.495 0.505
C
3.43 0.125 0.135
D
0.043 0.049
0.138 0.148
0.166 BSC
G
H
0.105 0.115
0.032 0.034
J
0.595 0.645
K
M
90 TYP
Q
0.185 0.195
0.075 0.085
R
0.24 0.255
MilliMETERS
MIN MAX
A
B
C
D
F
G
16.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61
3.86
2.54 SSC
H
2.67
2.92
J
0.43 0.69
K 14.73 14.99
L
2.16
2.41
M
30TVP
N
1.47
1.73
Q
4.78
5.03
R 1.91
2.16
S
0.81
0.86
T
6.99
7.24
U 6.22
6.48
NOTE:
1.LEAOS WITHIN :005" RAO OF TRUE
POSITION (TP) AT MMC
1. DIM "6" IS TO CENTER LINE OF LEADS.
CASE 90-05
CASE 199-04
551
MJE3370 (SILICON)
For Specifications, See MJE370 Data.
MJE3371 (SILICON)
For Specifications, See MJE371 Data.
MJE3439, MJE3440 (SILICON)
0.3 AMPERE
NPN SILICON HIGH·VOLTAGE POWER TRANSISTORS
· .. designed for use as video output amplifiers in television receivers
and in line operated audio output amplifiers.
NPN SILICON
POWER TRANSISTORS
250-350 VOLTS
15 WATTS
• High DC Current Gain hFE = 4O-160@lc=20mAdc
• Current·Gain-Bandwidth Product fT = 15 MHz (Min) @ IC = 10 mAdc
•
Low Output Capacitance Cob = 10 pF (Max) @ f = 1.0 MHz
MAXIMUM RATINGS
Rating
Symbol
MJE3439
MJE3440
Unit
VeEO
350
250
Vdc
Collector-Base Voltage
Vee
450
350
Vdc
Emitter-Base Voltage
VEe
_6.0
Ie
-0.3
ase Gurrent
Ie
_150_
mAde
otal OevicoOissipation@Te=25 e
Derate above 2SoC
Po
15
0.12
wfOe
Collector~Emitter
Voltage
ICOllector Current
Continuous
luporatong and :storago Junction
Temperatura Range
-
TJ.Tstg
--
Vdc
Adc
Watts
-=-65 to +150-
°e
L--LJ
THERMAL CHARACTERISTICS
Characteristic
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
harmsl Resistance. Junction to Case
3. BASE
FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
16
14
~
~
~
z
t--
DIM
A
......
t-....
12
0
t=
::
10
11i 8.0
B
C
"
C
'" 6.0
~
:i!
J?
D
F
"'"
4.0
'"
G
H
J
K
~
2.0
o
M
n
R
S
I'-.
U
"r-..,
o
20
40
60
80
100
120
140
INCHES
MILLIMETERS
MIN MAX MIN MAX
10.80 11.05 ( M26 0435
7.49
7.75 0.295 0.305
2.41
2.67 0.095 0.105
0.51
0.66 0.020 0.026
2.92
3.00 0.115 0.1 B
2.46 0.091 0.ll97
2.31
2.41 0.085 0.095
2.16
0.38
0.64 0.015 0.Ql!5
16.64
15.38
0.605 0.655
JUTYP
3 TVP
4.01 0.148 0.158
3.76
1.14
1.40 0.045 0.055
0.89 0.025 0.035
0.64
3.94 0.145 0.155
3.68
160
CASE 17-63
Te. CASE TEMPERATURE (OC)
552
MJE3439, MJE3440 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
I
Characteristic
Symbol
Min
Max
350
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 5.0 mAde, 18 = 0)
(lC = 50 mAde, IS = 0)
MJE3440
Collector Cutoff Current
(VCE = 300 Vde, IB = 0)
MJE3439
(VCE = 200 Vde, IB = 0)
MJE3440
Collector Cutoff Current
(VCE = 450 Vde, VEB(off)
(VCE = 300 Vde, VEB(off)
Vde
VCEO(sus)
MJE3439
250
I'Ade
ICEO
-
20
-
500
500
-
20
30
-
50
I'Ade
ICEX
= 1.5 Vde)
= 1.5 Vde)
MJE3439
MJE3440
Collector Cutoff Current
I'Ade
ICBO
= 360 Vdc, IE =0)
(VCB = 250 Vde, IE = 0)
(VCB
MJE3439
MJE3440
Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)
lEBO
20
2Q
I'Ade
ON CHARACTERISTICS
DC Current Gain
(lC = 2.0 mAde, VCE
(lC
-
hFE
= 10 Vde)
= 20 mAde, VCE = 10 Vde)
40
160
VCE(satl
-
0.5
Vde
Base-Emitter Saturation Voltage
(lc = 50 mAde, I B = 4.0 mAde)
VBE(sat)
-
1.3
Vde
Base-Emitter On Voltage
(lC = 50 mAde, VCE = 10 Vde)
VBE(on)
-
0.8
Vde
fT
15
-
MHz
Cob
-
10
pF
hfe
25
-
-
Collector-Emitter Saturation Voltage
(lC
= 50 mAde, I B = 4.0 mAde)
OYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 10 mAde, VCE = 10 Vde, f
= 5.0 MHz)
Output Capacitance
(VCB
= 10 Vde,
IE
= 0, f = 1.0 MHz)
Small-Signal Current Gain
(lC
= 5.0 mAde, VCE = 10 Vde, f = 1.0 kHz)
FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA
~
!t;
1.0
0.7
0.5
0.3
0.2
!-
~
0.1
a'"
0.05
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collec:tor
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power-temperature derating must be observed for both steady state and pulse power conditions.
0.07
'"
o
0.03
g-, 0.02
0.01
S 0.007
<3 0.005
- 0.003
0.002
'-.
MJE3439'
MJE3440
0.00 1
1.0
2.0 3.0 5.0 7.0 10
20 30
50 70 100
200 300500
1000
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)
553
MJE3520 (SILICON)
For Specifications, See MJE520 Data.
MJE3521 (SILICON)
For Specifications, See MJE521 Data.
MJE3738 (SILICON)
MJE3739
0.5 AMPERE
NPN SILICON HIGH·VOLTAGE TRANSISTORS
POWER TRANSISTORS
NPN SILICON
· .. designed for use in line-operated equipment such as audio output
amplifiers, low-current, high-voltage converters, and AC line relay
applications.
225-300 VOLTS
30 WATTS
• DC Current Gain hFE = 40-2oo@ IC = 100 mAdc
• Current-Gain-Bandwidth Product fT = 10 MHz (Typ)@ IC = 50 mAdc
MAXIMUM RATINGS
Rating
Symbol
MJE3738
MJE3739
Unit
VCEO
225
Vde
Collector-Ba.. Voltage
VCB
250
300
325
Emitter-Ba.. Voltage
VEB
IC
Collector-Emitter Voltage
Collector Current - Continuous
Base Current
IB
Total Device Dissipatlon@TC= 25°C
carata above 25°C
Po
Operating and Storage Junction
TJ,Tstg
---
Vde
6.0-
Vde
0.5-
Ade
Ade
0.5.30
--0.24-
Watts
wf'c
- - 6 5 to +150-
°c
Temperature Range
THERMAL CHARACTERISTICS
STYLE 1:
PIN I. BASE
2. COLLE{;TOR
3. EMITTER
a.-t8riltic
Thermal Resistance. Junction to Case
DIM
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
40
35
i.
Q
25
~
20
;::
iii
Q
'"~
~
e
f
6
30
H
.........
J
""-
15
K
L
M
N
""""-",
10
........
5.0
o
A
B
C
D
o
20
40
60
80
100
R
S
T
.......
120
U
.........
r-....
140
MILLIMETERS
MIN MAX
16.08 16.33
12.57 12.83
3.18 3.43
0.51 0.76
3.61
3.86
2.54 BSC
2.67 2.92
0.43 0.69
14.73 1 .99
.16 2.41
30 TYP
1.47
1.73
4.78
5.03
1.91
2.16
0.81
0.86
7.24
6.99
6.22
6.
1. DIM "S"ISTO CENTERllINE OF LEADS.
160
TC. CASETEMPfRATURE (OCI
CASE 199-04
554
MJE3738, MJE3739 (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise notedl
I
Characteristic
Symbol
Min
Typ
Max
225
300
-
-
-
-
0.25
-
-
0.25
-
0.5
-
-
-
-
0.1
-
-
0.1
30
-
-
40
-
200
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage I 1)
IIc = 30 mAde,lB =0)
IIc = 20 mAde,lB = 0)
Collector Cutoff Current
= 125 Vde,
IVCE = 200 Vde,
IVCE
Vde
VCEOlsus)
MJE3738
MJE3739
ICEO
= 0)
IB = 0)
MJE3738
IB
MJE3739
Collector Cutoff Current
mAde
mAde
ICEX
= 250 Vde, VEBloff) = 1.5 Vdc)
IVCE = 325 Vde, VEBloff) = 1.5 Vde)
MJE3738
IVCE
MJE3739
Collector Cutoff Current
0.5
mAde
ICBO
= 250 Vde, IE = 0)
IVCB = 325 Vde, IE = 0)
IVCB
MJE3738
.
MJE3739
Emitter Cutoff Current
IVBE = 6.0 Vde, IC = 0)
lEBO
0.1
mAde
ON CHARACTERISTICS
DC Current Gainl 1)
IIc = 50 mAde, VCE
hFE
= 10 Vde)
IIc = 100 mAde, VCE = 10 Vde)
IIc = 250 mAde, VCE = 10 Vde)
25
Collector-Emitter Saturation Voltage(1)
VCElsat)
-
2.5
Vde
IIc = 250 mAde, IB = 25 mAde)
Base-Emitter On Voltage
IIc = 100 mAde, VCE = 10 Vde)
VBElon)
-
-
1.0
Vdc
IT
-
10
-
MHz
Cob
-
20
-
pF
OYNAMIC CHARACTERISTICS
Current~Gain-Bandwidth
Product
IIc = 50 mAde, VCE = 10 Vde, f = 1.0 MHz)
Output Capacitance
IVCB
= 100 Vde, IE = 0, f = 100 kHz)
(1)Pulse Test: Pulse Width ~300 IJ.s, Duty Cycle S'2.0%.
FIGURE 2 - DC SAFE OPERATING AREA
1.0
0",
0:
'"
~
:;
f-
13
'"
0.5
500",
"\. "I
0.2
1.Oms
"\.
0.1
The Safe Operating Area CUNes indicate IC-VCE limits below
which the devlca will not enter secondary breakdown. Collector
load lines for specific circuits must fell within the applicable Safe
de
0.05
0
~
8
!d
0.02 ~ - - - - Secondary BrBakdown Limited
Bonding Wire Limited
0.01 E= - - 0.005
0.002
~
TJ o I50·C
=
Curves Apply lfelow Rated VCEO
MJE3738
MJE3739
0.001
1.0
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power-temperature derating must be observed for bOth steedy state and pulse power conditions.
2.0 3.0 5.0
10
20 30
50
100
ZOO 300 500
1000
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
MJE4918 thru MJE4920 (SILICON)
For Specifications, See 2N4918 Data, Volume 1.
MJE4921 thru MJE4923 (SILICON)
For Specifications, See 2N4921 Data, Volume L
555
MJE5190
thru
MJE5192
(SILICON)
For Specifications, See 2N5190 Data, Volume II.
MJE5193
thru
MJE5195
(SILICON)
For Specifications, See 2N5193 Data, Volume II.
MJE5655
thru
MJE5657 (SILICON)
For Specifications, See 2N5655 Data, Volume II.
,"
MJE5974
thru
MJE5976 (SILICON)
For Specifications, See 2N5974 Data, Volume II.
MJE5977
thru
MJE5979 (SILICON)
For Specifications, See 2N5977 Data, Volume II.
MJE5980
thru
MJE5982 (SILICON)
For Specifications, See 2N5980 Data, Volume II.
MJE5983
thru
MJE5985 (SILICON)
For Specifications, See 2N5983 Data, Volume II.
MJE6040
thru
MJE6045 (SILICON)
For Specifications, See 2N6040 Data, Volume II.
556
MLED50, MLED55
VISIBLE RED LIGHT-EMITTING DIODES
... designed for applications requiring high visibilitY,low·drive power
and high reliability. These devices can be used as circuit status indio
cators, panel indicators in large matrix displays, and for film anno·
tation. The MLED50 is a high intensity point source in a clear
plastic package. The MLED55, because of its diffusing red plastic
package appears as a large area light source with wide viewing angle.
LIGHT-EMITTING DIODE
VISIBLE RED
GALLIUM
ARSENIDE PHOSPHIDE
120 MILLIWATTS
.
.
.
MLED50 - 1.0 mcd (Typ)
• High Luminous Intensity - MLED55 _ 0.6 mcd (Typ)
• Solid State Reliability
• Compatible with IC's - Low Drive Current
•
Economical Plastic Package - Clear or Diffusing Red
•
Resistant to Shock and Vibration
• Easy Cathode Indentitication - Wider Lead
• Visible Red Emission -660 nM (Typ)
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current·Cohtinuous
Total Device Oissipation@TA=250C
Derate above 25°C
Operating and Storage Junction
Symbol
Value
Unit
VR
3.0
Volts
IF
50
rnA
POI1l
120
2.0
rWN
mWI"C
MLED60 - CI•• r Plastic
MLED55 - Diffusing Red Plastic
-4010 +85
TJ,Tstg (21
Temperature Range
THERMAL CHARACTERISTICS
Charectaristic
Symbol
Thermal Resistance, Junction to Ambient
Solder Tamperature
8JA(11
J
1
. 26O"C for 3 sec.
MIX
I
Unit
500
I
oelW
-
1/16" from C...
(1) Printed Circuit Board Mounting
(2) Hen: Sink ,hou1d be applled to leads during soldering to prevent Ca .. Temperature
exceed.,.. 85°C.
FIGURE 1 - TYPICAL NORMALIZED LIGHT OUTPUT
_INSTANTANEOUS FORWARD CURRENT
M
100
...r
It::1TJ' 2SOC
Note 2
o
0
I
--
DIM
10
100
1000
A
134
.1
F
H
1.57
0.20
K 11.30
L I.
M
'F. INSTANTANEOUS FORWARD CURRENT ImAI
MILLIMETERS
I
X
II
J
0.0 I
1.0
PIN 1. ANODE
2. CATHODE
2.611
INCHES
MI
0.1192
o.
1.83
.30
11.
ID.
II
19
0.0
0
CASE 234-02
557
0.102
o·
I
.0
0.450
.1
11
MlED50, MlED55 (continued)
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted}
Fig. No.
Symbol
Min
Typ
-
IR
-
100
Max
-
Unit
Reverse Leak_ Current
IVR =3.0 V.RL = 1.0 Megohml
Reverse Breakdown Voltage
(lR -100ItAI
-
BVR
3.0
-
-
Volts
Forward VOltage
(IF" 2OmA)
2
VF
2.0
Volts
T otel Capacitence
(VR = 0 V. f · 1.0 MHz)
-
CT
a..-Istic
OPTICAL CHARACTERISTICS
-
150
pF
ITA = 250 C unless otherwise noted)
Characteristic
Axial Instantaneous
Luminous Intensity
(IF = 20 mAl Note 1
1.6
nA
Fig. No.
Symbol
Min
Typ
Max
MLED50
MLED55
Unit
moo
10
1
1
0.5
0.3
1.0
0.6
-
Peak Emission Wavelength
O\!'
660
nM
Spectral Line Half Width
60\
10
nM
TYPICAL CHARACTERISTICS
FIGURE 2 - FORWARD CHARACTERISTICS
..
0
lllill
1
TJ-250C
2
a
FIGURE 3 - AXIAL LUMINOUS INTENSITY
.enus JUNCTION TEMPERATURE
:1
~~
2. 4
~~
--
~ ~ 1.•
~- g o.
~
2.0
•
5.0
10
20
50
100
200
5001000
zooo
IF. INSTANTANEOUS FORWAR,D CURRENT (mAl
lJ. JUNCTION TEMPERATURE (DC)
FIGURE 4 - AXIAL LUMINOUS INTENSITY
versus CONTINUOUS FORWARD CURRENT
0
FIGURE.5 - SPATIAL RADIATION PATTERN
J
TA=ZSOC
0
MLED50
MLE055
0
0
0"
2.0
V
3.0
V
5.0 1.0
10
20
30
IF. CONTINUOUS fORWARD CURRENT (mAl
50
NOTES:
1. Axial Luminous Intensity (10) 'is measured using a elE Corrected Photometer and a measurement
solid angle of 0.003 Steradian. The
spatial radiation pattern and 10 fully define the light emitting characteristics of an LED.
As seen from the specification, the MLE050 has a much higher 10 than the MLE055 because of the diffusing nature of the encapsulant used
for the MLED55. The result is a large uniform field of emitted light for the MLED55 and a sharp intense field for the MLED50 as shown in Fig·
ure 5.
2. To estimate output level under non continuous current drive at junction temperature ,other than 25°C, fir~t'the average junction temperature
can be calculated from
TJ(av)=TA+OJA" VF)( IF)( 0
where 0 is the duty cycle of the applied current (IF). Then the normalized luminous intensity at this junction temperature can be read from
Figure 3 .. Use of the above method should b~ restricted to drive conditions employing pulses of less than 10 J.lS duration to avoid errors caused
by high peak junction temperatures.
-I nternational Commission on Illumination
558
MLED60
MLED90
INFRARED-EMITTING DIODES
· .. designed for applications requiring high power output, low drive
power and very fast response time. This device is used in industrial
processing and control, light modulators, shaft or position encoders,
punched card and tape readers, optical switching, and logic circuits.
It is spectrally matched for use with silicon detectors.
•
INFRARED-EMITTING DIODES
900nM
PN GALLIUM ARSENIDE
120 MILLIWATTS
High Intensity - 550IlW/str (Typ)@ IF = 50 mA - MLED60
350IlW/str (Typ)@ IF = 50 mA - MLED90
•
Infrared Emission - 900 nM (Typ)
•
Low Drive Current - Compatible with Integrated Circuits
• Unique Molded Lens for Durability and Long Life
• Economical Plastic Package
• Small Size for High Density Mounting
•
Easy Cathode Identification - Wider Lead
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
VR
3.0
Volts
Reverse Voltage
IF
80
mA
PO(1)
120
2.0
mW
mW/oC
TJ,Tstg
-40 to +85
°c
Forward Current-Continuous
Total Device DISSipation @ T A = 250C
Derate above 25 0 C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
OIaracteristic
Thermal Resistance. Junction to Ambient
Solder Temperature
M
(1 )Printed CirCUit Board Mounting
FIGURE 1 -INSTANTANEOUS AXIAL RADIANT
INTENSITY versus FORWARD CURRENT
z
20
10
i5
5.0
.....
;i
~'"
~~
'" E
~-
,,>-
TJ=250C
==
MlED60
2.0
./
MlED90
1.0
I---
A
B
~~ 0.5
zz
~~
zz 0.2
"'~
52
DIM
C
D
F
0.1
0.05
0.02
2.0
5.0
10
20
50
100
200
500
1000 2000
IF. INSTANTANEOUS FORWARD CURRENT (mA)
H
J
K
L
M
MILLIMETERS
MIN
MAX
2.34
2.11
2.39
0.66
0.48
1.57
0.20
11.30
10.29
90
2.59
2.36
!.ti4
0.71
0.53
1.83
0.30
11.43
10.41
11 0
INCHES
MIN MAX
0.092
0.083
0.0.4
0.026
0.019
0.062
0.008
0.445
0.405
90
CASE 234·02
559
0.102
0.093
O.IU'
0.028
0.021
0.072
0.012
0.450
0.•10
11"
MLED60, MLED90
(continued)
ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)
Fig. No.
a...--iltic
Symbol
Reverse Leakage Current
(VR = 3.0 V, RL = 1.0 Megohm)
Min
IR
Typ
50
Mal<
Unit
-
nA
-
-
Volts
Reverse Breakdown Voltage
(lR = loojtA)
-
BVR
3.0
For_rd Voltage
(IF =50mA)
2
VF
-
1.2
1.5
Volt.
Total Capacitance
(VR = OV, f = 1.0 MHz)
-
CT
-
150
-
pF
OPTICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)
CIuIr_istlcs
Fig, No.
Symbol
1
10
Axial Radiant Intensity
-
Peak Emission Wavelength
2.0
...
~
TJ =25°C
~
~
~
ffi
~..:
900
40
-
nM
-
nM
..
f-'"
1.2
0.8
2.0
r-.....
.........
~
r--....
~
l!t
~
1.0
~
0.7
Q
O.S
........
~
z
..
:il
z
~
-
3.0
/
-
1.6
~
~
-
FIGURE 3 - RADIANT INTENSITY versus
JUNCTION TEMPERATURE
J
1111
~
550
350
Ap
FIGURE 2 - FORWARD CHARACTERISTICS
~
Unit
400
200
.loA
Spectral Line Half Width
Max
jtW/str
MLED60
MLED90
(IF =50mA)
Typ
Min
i'..
Ii;
0.4
>
2.0
, ......
;:!i
S.O
10
20
100
SO
ZOO
SOO
0.3
-7S
1000 ZOOO
-50
-25
2S
50
7S
100
150
TJ, JUNCTION TEMPERATURE (OCI
IF, INSTANTANEOUS FORWARD CURRENT (mA)
FIGURE 5 - SPATIAL RADIATION PATTERN
FIGURE 4 - CONTINUOUS POWER OUTPUT
versus FORWARD CURRENT
=TA=2S0C
.,.
./
..... ,.,
MLED~ ~ED90
0
I,;'" V
V
0
2.0
4.0
6.0
10
20
40
60 80 100
IF,CONTINUOUS FORWARD CURRENT(mA)
Output saturation effects .r. not evident at currents up to 2 A 81 shown on F igur. 1. However. power output decrea., due to heating of the
semiconductor a. Indicated by Figura 3. To estimate output level, average junction temperature may be calculated from:
TJ(AVI = TA + 0JA VFIFD
where 0 is the duty cycle of the applied current. IF- Use of the above method should be restricted to drive conditions employing pulses of
'a.. th~n 10 III duration to avoid errors caused by high peak junction temperatures.
560
MLED92
INFRARED·EMITTING DIODE
LOW COST
INFRARED·EMITTING DIODE
PN GALLIUM ARSENIDE
· .. designed for industrial processing and control applications such
as light modulators, shaft or position encoders, end of tape detectors,
and optical coupler applications. Supplied in TO·92 package for ease
of mounting and compatibility with ex isting automatic insertion equ ipment.
• High Power OutputPo = 150 IJW (Typ) @ IF = 50 mA
.!l. (Typ)
•
Infrared-Emission - 9000
•
One-Piece, Unibloc Package for High Reliability
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current-Continuous
Total Power Dissipation @TA = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
Symbol
Value
Unit
VR
IF
PO!I)
3.0
100
215
2.86
-65 to +100
Volts
mA
TJ,Tstg
mW
rrlNl"c
Ole Placement Will Be
Wlthm the Boundaries
of the Dotted Circle
°c
THERMAL CHARACTERISTICS
I
Characteristic
I
Symbol
Thermal Resistance Junction to Ambient
I
Max
I
R8JA!I)
I
350
Unit
°C/W
(1) R6JA(1) is measured with the device soldered into 8 typical printed circuit board.
FIGURE 1 - RELATIVE SPECTRAL OUTPUT
1.0
/'
IF=50mA
O.B r-TA = 250C
I
-
>-
~
......,
\
/
0.6
~
/
0.2
J
\
\
/
01---BOOO
8400
DIM
A
\
I
0.4
\
\
w
>
;::
STYLE 20:
PIN 1. N.C.
2. CATHODE
3. ANODE
C
,
0
f
..... t--.
B800
9200
9600
10,000
~,WAVELENGTH (A)
L
N
P
a
R
S
MILLIMETERS
INCHES
MIN
MAX MIN
MAX
4.450
5200 0.175
0.205
4.
.1
O. 65
4.320 5.330 0.110
0.210
0.021
0.407
0.533 0.016
0.019
0.482 0.016
0.407
1.150
6.350
3.430
2.410
2.030
-
1.390
1.20
-
2.670
2.670
0.045
CASE 29.02
T0-92
561
-
0.250
0.135
0.095
0.080
0.055
0.050
-
0.105
0.105
MLED92 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Fig. No.
Symbol
Min
Typ
Max
Unit
Roverse Leakage Current
(VR = 3.0 V, RL = 1.0 Megohm)
Characteristic
-
IR
-
50
-
nA
Rove... Breakdown Voltage
(lR = 100 "A)
-
BVR
3.0
-
-
Volt.
Instantaneous Forward Voltage (Note 3)
(IF =50mA)
2
vF
-
1.2
1.5
Volts
Total Capac:itance
eVR =0 V, f = 1.0 MHz)
-
CT
-
150
-
pF
OPTICAL CHARACTERISTICS ITA = 250 C unless otherwISe noted)
Chwacteristic
Fig. No.
~mbol
Min
Typ
Max
3, 4
Po
50
150
-
"W
10
-
0.66
-
mW/steradian
900
-
nM
40
-
nM
Total Power Output (Notes 1 and 3)
(IF=50mA)
Radiant Intensity (Not. 2)
(iF = 5OmA)
Peak Emission Wavelength
1
N>
Spectral Line Half Width
1
C
TJ.Tstg
-65 to +85
°c
Rating
Total Power Dissipation
Derate above 25°C
@
T A = 25°C
Operating and Storage Junction
Temoerature R.nat!
K
Characteristic
Thermal Resistance Junction to Ambient
NOTE:
1. CATHOOE
2. ANODE
e3=fF
THERMAL CHARACTERISTICS
Unit
Max
SYmbol
AOJAII)
I
1000
11) R9JA is measured with the device socket mounted, with 1/8" lead
from device to socket plane.
I
°C/W
MILLIMETERS
MIN MAX
3.68 3.94
B
2.92 3.18
C
4.95 5.21
D
0.38 0.48
E
0.76 1.02
F
0.20 0.30
G
2.41 2.67
J
1.78 2.03
K
12.70
DIM
A
INCHES
MIN MAX
0.145 0.155
0.115 0.125
0.195 0.205
0.015 0.019
0.030 0.040
0.m8 0.012
0.095 0.105
0.070 0.080
0.500
CASE 292'()1
563
MlED440
(continued)
E LECTRICA L CHARACTERISTICS (TA • 2So C unl... ot"-ia noted)
CMr_.i.ie
Rever_ Breakdown Voltage
(lR -100pA)
Forward Voltage (2)
(IF-20mA)
OPTICAL CHARACTERISTICS (TA
Unit
Volts
1.6
2.0
Volts
Min
Typ
Mex
Unit
0.3
1.2
-
-
660
-
-
Fig. No.
Symbol
3,4
10
1
e
-
vF
-
Symbol
Mex
Min
4.0
Typ
BVR
F" No.
-
2So C unless oth_ia noted)
C....eci.iltics
Axial Luminouslntenoitv (1)
(IF -20 mAl
-
Peek Eml.. ion Wavelength
Spectral Lina Half Width
-
AP
HI
"A
mod
nm
nm
(1 )Axial Luminouslntansltv (10) is mea.ured USIng a Spectra Mleroeandela Loght-Emlttlng D,oda (LED) Photometer IncorporatIng a photometrIC
senSOr (d",ector and filter) matched to the ClEO standard obar_. eve respona. 10 il defined as the ratio of the luminous flux ilmitled by a
source to an incremental on axis safid angle subtended by a sensor; i.e., candela=- lumens/stera:lian. Since '0 is I photometric measur.ement.
it provides an accurate indieationof the visibility of an LED that includes the physieal characteristics of the package such al encapsulant and lenl
design.
(2) Pulse Test: Pulse Width" 300 /IS, Dutv Cvcle "2.0% .
• , nternational Commission on I flumination.
TYPICAL CHARACTERISTICS
FIGURE 1 - FORWARD CHARACTERISTICS
1.84
FIGURE 2 - SPATIAL RADIATION PATTERN
,/
TJ·25DC
./
./
./
6
,.
2
V
V
../
..... i-""
1.44
3.0
4.0
6.0
8.0
10
20
15
30
iF. INSTANTANEOUS FORWARD CURRENT (mA)'
AXIAL LUMINOUS INTENSITY
FIGURE 3 - EFFECTS OF CONTINUOUS FORWARD CURRENT
3.0
1
iI!!
2.0
1.0
.
::>
0.3
~
.....
0.2
co
~
...
I
..,... i-"""
TA -25DC
........
0.7
0.6
!!
I
0.1
........
0
.,...
t-....
........
0
......
7
5
'/
......
3
0.7
Z
~ D.5
0.3
2.D
FIGURE 4 - EFFECTS OF JUNCTION TEMPERATURE
1
4.0
B.O
10
20
40
-20
o
+20
+40
+60
TJ. JUNCTION TEMPERATURE (DC)
IF. CONTINUOUS FORWARO CURRENT (mA)
564
........
+80
+100
MLED445
MINIATURE
LIGHT EMITTING DIODE
VISIBLE RED
PNGALLIUM
ARSENIDE PHOSPHIDE
VISIBLE RED LIGHT-EMITTING DIODE
... designed for panel mount applications where small size and
plug-in package are desirable.
•
•
•
•
•
High Luminous Intensity
Solid State Reliability
Water Clear Lens
IC Compatible - Low Power Consumption
Wide Viewing Angle '- 400
-
t--
L~
r
MAXIMUM RATINGS
Symbol
Value
Unit
Reverse Voltage
VR
4.0
Volts
Forward Current-Continuous
IF
30
Po
60
1.0
mA
mW
mWf'C
DC
Rating
Total Power Dissipation @TA = 2So C
Derate Ibcwe 250 C
Operating and Storage Junction
TJ.T stv
~5
to +85
tt..l
NOTE:
1. CATHODE
2. ANODE
6=fF
THERMAL CHARACTERISTICS
ChIIr_istic
~
K
Temperature Range
Thermal ResistWlce Junction to Ambient
A
B
Symbol
Max
Unit
RSJAlll
1000
°CIW
(1) R9JA is measured with the device socket mounted, with 1/8" lead
from device to socket plane.
DIM
A
B
C
D
E
F
G
J
K
I LI
168
2.92
4.95
0.38
0.18
0.20
2.41
1.18
12.70
AS
MAX
194
3.18
5.21
0.48
1.02
0.30
2.17
2.03
CASE292-GI
565
INCHES
MAX
0.155
0.125
MIN
0.145
0.115
0.195
0. 15
0
O.
O.
.00
0.205
0.019
0.040
0.01
0.105
DB
MLED445 (continued)
E LECTRICA L CHARACTERISTICS (TA = 250 C unless otherwise notedl
Charact.i.ic
Fig. No.
Symbol
BVR
Min
4.0
Typ
-
-
Moox
-
Unit
Volts
1
vF
-
1.6
2.0
Volts
Fig. No.
Symbol
Min
TVp
Moox
3.4
10
Unit
mcd
0.8
2.2
-
-
AP
-
660
10
-
Reverse Breakdown Voltage
(lR = 100 /lA1
Forward Voltage (21
fiF=20mAI
OPTICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Charact.lstics
Axial luminous Int,ns!ty (1)
(IF =20mA)
Peak Emission Wavelength
Spectral Line Half Width
6A
nm
nm
{UAxial Luminous Intensity (10) is measured using a Spectra Mlcrocandela Ltght~EmlttlOg Diode (LED) Photometer incorporating a photometnc
sensor (detector and filter) rn8tched to the CIE* standard observers eye response. 10 is defined as the ratio of the luminous flux emitted by a
source to an incremental on axis solid angle subtended by a sensor; Le., candela =. lumens/steradian. Since '0 is a photometric measurement.
it provides an accurate indication of the visibility of an LED that includes the physical characteristics of the package such as encapsulant and lens
design.
(2) Pulse Test: Pulse width';; 300 /.IS. Duty Cycle';; 2.0 %
*International Commission on Illumination.
TYPICAL CHARACTERISTICS
FIGURE 1 - FOflWARD CHARACTERISTICS
1.64
~
~
~~
1.60
CI:I 0
1.5 6
...."''''
1.5 2
~c.
TJ = 25°C
/"
/'
Ww
~!:i
"0
;;0:
\if
L
/'
1.48
......
1.44
3.0
lL
"'"
V-
1;;>
V
FIGURE 2 - SPATIAL RADIATION PATTERN
"""
6.0
4.0
8.0
10
30
20
15
iF. INSTANTANEOUS FORWARD CURRENT (mA)
AXIAL LUMINOUS INTENSITY
FIGURE 4 - EFFECTS Of JUNCTION TEMPERATURE
FIGURE 3 - EFFECTS OF CONTINUOUS FORWARD CURRENT
10
4.0
1
rTA = 25°C
.......-
2. 0
r-'
~
7.0
~ 5.0
..
-
.,/
~ 3.0
~ 2.0
0'10
......
2. 0
.2
0.06
/
.......
!Z o. 7
/
~ 0.5
o
~
~ 0.1 0
0.04
2.0
.........
~ 1.0
V
z
~
...............
>....
0.60
g
~
......
o. 3
.......
3 o. 2
3.0
5.0
7.0
10
20
30
40
O. 1
-40
-20
o
+20
+40
+60
TJ.JUNCTION TEMPERATURE (OC)
IF. CONTINUOUS FORWARD CURRENT (rnA)
566
........
+80
+100
MLED500
LOW COST
LIGHT EMITTING DIODE
VISIBLE RED
PN GALLIUM
ARSENIDE PHOSPHIDE
VISIBLE RED LIGHT-EMITTING DIODE
... designed for applications requiring visible indication of circuit
status. Supplied in popular TO·92 package for ease of mounting into
printed circuit board applications.
•
•
•
•
Solid State Reliability
Diffusing Red Lens
IC Compatible - Low Power Consumption
One·Piece, Injection·Molded Unibloc Package for High Reliability
Ole Placement Will Be
Within the Boundaries
of the Dotted Circle
I
li
,
MAXIMUM RATINGS
Allting
Reverse Voltage
Forward Current-Continuous
Total Device Oisslpation.@ T A = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
Symbol
Value
Unit
VR
4.0
Volts
IF
100
rnA
POW
215
0.285
rnW
rnWt"C
TJ,T,tg
-65 to +100
DC
THERMAL CHARACTERISTICS
CNo,_istic
Thermal Resistance Junction to Ambient
I
Symbol
R8JA(1)
I
Mo.
Unit
350
°CIW
(1) R9 JA is measured with the device soldered into a typical printed circuit board.
DIM
A
B
C
D
F
L
N
P
Q
S
MILLIMETERS
MAX
MIN
4.450
5.200
3.1 0
.190
4.320
.330
0.407
0.533
, 407
482
1150
-
6.350
3.4
2.410
2.030
-
1.390
INCHES
MAX
MIN
0175.
0170
0.016
.
0019
0.045
1.270
-
2.670
2.670
0.250
0.135
0095
0080
CASE 29-02
TO·92
567
-
-
0055
0050
0105
0105
MLED500 (continued)
ELECTRICAL CHARACTERISTICS
(TA = 250 C unless otherwise noted)
Fig. No.
Symbol
Min
Typ
Max
Unit
Reverse Breakdown Voltage
(lR = l00jAA)
-
BVR
4.0
-
-
Volts
Forward Voltage
(IF =20mA)
1
VF
-
1.6
2.0
Volts
Symbol
Min
Typ
Max
Unit
mcd
0.1
0.3
Charact.. istic
OPTICAL CHARACTERISTICS (T A = 250 C unless otherwIse noted)
Charoc:t.. iotics
Axial Luminous Intensity (1)
(IF=20mA)
Fig. No.
-
Peak Emission Wavelength
Spectral Line Half Width
(1)
10
2.3
-
kp
A/>,
660
10
-
-
-
nM
-
nM
Axial Luminous Intensity (10) is measured using a CIE* corrected Photometer and a measurement solid angle of 0.003 steradian. The
spatial radiation pattern and 10 fully define the light emitting characteristics of a LED.
*1 nternational Commission on Illumination.
TYPICAL CHARACTERISTICS
FIGURE 2 - AXIAL LUMINOUS INTENSITY
versus JUNCTION TEMPERATURE
FIGURE 1 - FORWARD CHARACTERISTICS
1.85
10
5-
T; =
250~
5
./
--
'"
./'
1.0
2.0
I
i
!.
'"
........ .....
~ 1.0
.........
........
~ O. 7
~ 0.5
o
.........
~ 0.3
3
I"
O. 2
~
3.0
5.0 7.0
10
TA = 25°C
V
Q2
30
20
50
70
100
-
i;'
O. 1
~ 0.05
:::>
:;'0.03
0.02
3.0
5.0 7.0
10
20
30
50
1
-20
o
+20
+40
+60
TJ. JUNCTION TEMPERATUR E (OC)
70
100
IF. CONTINUOUS FORWARD CURRENT (rnA)
568
.......
+80
FIGURE 4 - SPATIAL RADIATioN PATTERN
~ 0.07
2.0
r-....
~
........ ~
0.3
0.0 1
1.0
5.0
~ 2.0
FIGURE 3 - AXIAL LUMINOUS INTENSITY
versus CONTINUOUS,FORWARD CURRENT
-
~
~
IF. INSTANTANEOUS FORWARD CURRENT (mA)
1.0
o.7
0.5
7. 0
'" 3.0
f-""
1.35
ffi
"
+100
MLED600
VISIBLE RED LIGHT-EMITTING DIODE
· .. designed for applications requiring high visibility, low drive power
and very fast response time. This device is used in panel and circuit
condition indicators, light modulators, shaft or position encoders,
punched card readers, optical switching, and logic circuits.
LIGHT-EMITTING DIODE
VISIBLE RED
PNGALLIUM
ARSENIDE PHOSPHIDE
120 MILLIWATTS
• High Brightness - 1100 fL (Typ)
A (Typ)
•
Visible Red Emission - 6600
•
Low Drive Current - 10 mA for 200 fL (Typ)
•
Unique Molded Lens for Durability and Long Life
•
Economical Plastic Package
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward
Current~Continuous
Total Device Dissipation
I Oarate above 25°C
@
TA
= 25°C
Symbol
Value
Unit
VR
4.0
Volts
IF
50
mA
POll)
120
2.0
mW
mWf'C
-40 to +85
°c
TJ,Tstg(2)
rCrJerating and Storage Junction
~
Temperature Range
i
"'===t1G
C
i=======::,2
o
THERMAL CHARACTERISTICS
IDLE 2.
PIN 1 ANODE
Characteristic
2. CATHODE
Thermal Resistance Junction to Ambient
f
(1) Printed Circuit Board Mounting
(2) Heat Sink should be applied to leads during soldering to prevent Case Temperatur.
exceeding 850C.
c
I
Lead 2 indicated bV squarl bonding
pad on bottom of·device.
FIGURE 1 - TYPICAL DRIVE CIRCUIT
MPS6515
OIM
A
C
VOLTAGE
SOURCE
II
MLED600
RE
'------~---III)---......
0
F
H
K
n
MILLIMETERS
MIN
MAX
3.56
4.06
4.57
5.33
0.48
0.33
0.23
0.28
1.27
1.02
I
6. 5
1.9 NOM
INCHES
MIN
MAX
0.140
0.180
0.013
O. 0
O.
0.250
0.07 NOM
Cathode indicated by square bonding pad
on bottom of device.
CASE 171
569
0.160
0.210
0.019
0.0 1
MLED600 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise notedl
Fig. No.
Symbol
Min
-
IR
-
Typ
100
Max
-
Unit
nA
R..... Break_ Voltage
(lR = l00,.A.)
-
BVR
4.0
-
-
Volts
Fo.-d Voltage
(IF·20mA)
2
VF
-
1.6
2.0
Volts
Totlll Capacitance
(VR - OV. f = 1.0MHzl
-
CT
-
150
-
pF
Charawiltlc
Rave... L....... Curl1lRt
(VR = 4.0 V. RL • 1.0 Megohm)
OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise notedl
Cher_istico
Axiallftltant8naous
Luminous Intensity
(IF = 20 mAl
Fig. No.
Min
Typ
Max
Unit
10
1.0
3.0
-
mcd
-
660
-
nM
Symbol
-
Peek E mission Wavelength
4
~f
Spectral Line Half Width
4
~~
10
nM
NOTES:
1. Output saturation effacts are not evident at pulse currents up to 2 A. However, saturation does occur due to heating of the semiconductor
as Indicated by Figure 5. To .stimate output leval, average junction temperature may be calculated from:
TJ(AV) = T A
+ 9JA ,VF'FD
whet. D is the duty cycle of the applied current, IF' Use of the above method should be
I... than 10 ~s duration to avoid error. caused by high peak junction temperatures.
res~ricted
to drive conditions employing pulses of
2. Axial Luminous Intensity (10) is measured using a CIE* corrected Photometer and a measurement solid angle of 0.003 Steradian.
*International Commission on Illumination.
FIGURE 2 - FORWARD CHARACTERISTICS
FIGURE 3 - LUMINOUS INTENSITY
4.0
/
TJ = 2JOC
3.2
10
7.0
I
V
-
~
~
US 2.0
2.4
ffi
.,""
r-
1.6
~
1.0
i5
0.7
~ 0.5
:3.§
0.8
-- -
5.0
3.0
-
r--
P.C. BOARD MOUNTING
O. 3
0.2
o
0.1
2.0
10
5.0
20
50
100
200
500
5.0
1000 2000
7.0
IF. if,ISTANTANEOUS FORWARO CURRENT (mA)
0.8
~
~
0.8
J
/
V
./
0.2
o
ffi 5.0
I \
I \
II
\
TA -25"C
...~
S
...or: 0.4
10
7.0
Ir-..
-IF'=20J
N
~ 3.O
~ 2.0
o
f"",..
\
~ 1.0
;
\
6600 6700
.......
0.1
!! 0.5
\
'"g
1"6500
1f=20mA- t-
.......
~
/'
6100 6200 6300 6400
50
FIGURE 5 - LUMINOUS INTENSITY
versus JUNCTION TEMPERATUR E
FIGURE 4 - RELATIVE INTENSITY
1.0
10
20
30
IF. CONTINUOUS FORWARD CURRENT (mA)
6800
z
"'
0.3
ii 0.2
~
6900
:3
pO.l
-50 -40 -30 -20 -10
7000 7100
~ WAVELENGTH (A)
0
+10 +20 +30 +40 +50 +60 +70 +80 +90
TJ. JUNCTION TEMPERATURE (DC)
570
MLED610
VISIBLE RED LIGHT-EMITTING DIODE
... designed for applications requiring high visibility, low drive power
and very fast response time. This device is used in panel and circuit
condition indicators, light modulators, shaft or position encoders,
punched card readers, optical data links, optical switching, and
logic circu its.
•
LIGHT-EMITTING DIODE
VISIBLE RED
PN GALLIUM
ARSENIDE PHOSPHIDE
350 MILLIWATTS
High Intensity - 3.0 mcd (Typ) - 1100 tL(Typl
• Visible Red Emission - 6600
A(Typ)
•
Low Drive Current - 10 mA for 200 fL (Typ)
•
Hermetic Pill Package for Durability, Long Life and Reliability
• Pill Package Allows Printed Circuit Board Assembly
• Small Size for High Density Mounting
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
4.0
Volts
IF
75
mA
POIlI
TJ,Tstg
350
3.5
-65 to +125
rrN'I
mWfl_C
°c
Symbol
M..
Unit
8JA
286
°CIW
Reverse Voltage
Forward Current-Continuous
Total Device Dissipation
Derate above 2SoC
@
TA
=
25°C
Operating and Storage Junction
Temperature
Ra~ge_
THERMAL CHARACTERISTICS
OIaracteristic
Thermal Resistance. Junction to Ambient( 1)
Q~
(1)Thermal resistance, junction to case is typically 80° C/W.
The
mounting conditions determine the junction to ambient thermal
L~
resistance. For example, when soldered in a copper printed circuit
board through a 1/8" diameter pad on the top to a 1/4" x 1/4" pad
~~,~
on the bottom surface, values of the 1600 e/W will occur. If both
pads are 1/8" in diameter, thermal resistance is typically 2500 C/W;
the limit of 286 0 C/W is specified for the laner mounting condition.
FIGURE 1 - TYPICAL DRIVE CIRCUIT
STYLE 2:
TERM I. ANODE
2. CATHODE
MPS6515
wumO
SOURCE
fQ
II
~~ MLED610
RE
DIM
A
B
C
D
F
H
K
L
MILLIMETERS
MIN MAX
2.79 3.30
1.47 1.57
0.71 1.02
0.41 0.61
0.13 0.25
0.48 0.53
2.11 2.36
0.20 0.30
INCHES
MIN MAX
0.100 0.130
0.058 0.062
0.028 0.040
0.016 0.024
0.005 0.010
0.019 0.021
0.083 0.093
0.008 0.012
III
CASE 81A'()S
571
MLED610 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Max
Fig. No.
Symbol
Min
Typ
-
IR
-
100
-
nA
BVR
4.0
-
-
Volts
VF
-
1.6
2.0
Volts
CT
-
150 '
-
pF
Reverse Leakage Current
(VR =4.0 V, RL = 1.0 Megohm)
Reverse Breakdown Voltage
fiR = 100jtA)
Forward Voltage
(IF =20mA)
2
Total Capacitance
(VR = 0 V, f = 1,,0 MHz)
-
Unit
OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Chor-._
Fig. No.
Symbol
Axial Instantaneoul
Luminous Intensity
10
Min
Typ
Max
Unit
o.s
3.0
-
mcd
Peak Emission Wavelength
4
Ap
-
660
-
nM
Spectral Line Half Width
4
AA
-
10
-
nM
NOTE:
1. Output saturation effects are not avident at currents up to 2 A as shown on Figure 3. However, saturation does occur due to heating of the
semiconductor as indicated by F Igur. 5. To astlmata output lavel. average junction tamperatur. may be calculated from:
TJ(AV) - TA + 8JA VFIFD
whare 0 Is the duty cycle of the applied currant, 'F' Use of the above method should ba restricted to drive conditions employing pulse. of
lass than 10 III duration-to .void .rrors caused by high peek junction temperatures.
2. Axial Luminous Int.ns~ (10' II rnenured ullng I CIE· corrected Photometer ... d a measurement,IOUd angl. of 0.003 Stet::adlan.
-International CommitliOn on Illumination.
FIGURE 3 - INSTANTANEOUS INTENSITY
FIGURE 2 - FORWARD CHARACTERisTICS
..
4.0
I
!::;
~
...
3.2
~
2.4
~o
i
~
/
TJJoC
-
1.6
!!l
o
...
~
500
200
1
100
~
20
;
5.0
i
:.,..
fii
IE
0.8
...
10
2.0
5.0
10
20
50
100
200
500
0.5
2.0
1000 2000
1.0
0.8
...
...S
rr:
i!!
,
0.6
;>0
j
0.4
/
i/
0.2
V
5.0
I \
I \
II
TA-25OC
1\
\
6100 6200 6300 6400
6600 6700
50
100
200
500
1000 2000
r--.
'"
7
5
.........
\
O. 1
-50 -40 -30 -20 -10
t"-....
6500
20
,.....
0
~
/
10
FIGURE 6 -INTENSITY v...... JUNCTION TEMPERATURE
J~
f-IFI'20J
5,0
IF, INSTANTANEOUS FORWARD CURRENT (mA)
FIGURE 4 - RELATIVE INTENSITY
l-
/'
2.0
IF, iNSTANTANEOUS FORWARD CURRENT (mA)
...~
/'
1.0
~
;>0
50
6800
6900
7000 7100
}., WAVELENGTH (A)
572
0 +10 +20 +30 '140 +50 +tiO +70 +80 +9G
TJ. JUNCTION TEMPERATURE (OC)
MLED640
PANEL MOUNT
LIGHT EMITTING DIODE
VISIBLE RED
PH GALLIUM
ARSENIDE PHOSPHIDE
VISIBLE RED LIGHT-EMITTING DIODE
... designed for panel mount indicator applications. Ideally suited
for mounting in panels to 0.125" thick using plastic snap·in reteiner.
• High Luminous Intensity
• Economical Plastic Package
• Solid State Reliability
• White Diffusing Lens
MAXIMUM RATINGS
Roti",
Symbol
V.lue
Unit
VR
4.0
VOlts
IF
60
100
1.67
mA
Reverse Volulge
Forward Current·Contlnuous
TOlal Device DISSipation" T A - 25°C
Derate above 25°C
POlll
Operating and Stor. Junction
Temperalure Ronge
TJ.T stg
-40 to
rrIIY
mWf'C
+as
°c
THERMAL CHARACTERISTICS
C....._ilti.
Thermal Resistance JunCtion to Ambient
Symbol
Max
RBJA(1l
600
I
Unit
°CIW
, )Mounted in meta' panel (see Figure 11
STYLE 1:
PIN 1. CATHODE
Z.ANODE
FIGURE 1 - HARDWARE DIMENSIONS
.UIlITtIilGeu'
.
W
• DTOJtDLA"'RTIIO~
UCSlG1ll9AODI
CKAIIISUIJ3.IIIO.QI/I.IZ5)TNK
IIOTFUIItISHEOM'NItIT
IU. IA
IItLEARAItCi HOLE
MILLIMETERS
GNT EMlnHlG DIODE
HI Il:lI!lo,.
Ji-RUMIUIiINii
IIIN
MAX
A
5.72
4,95
8.38
0.41
5.97
5.Z1
C
D
F
.8
J
K
.
MOTOROLA MRT ItO.
,
:
DIM
•
MOTOROLA CAlI NO. m
IlOT FUIIIIISKEDWITN KIT
:
R
.... Z1f.t
0.30
44
Z.44
lZ.57
2.54
8••
0.51
0.41
1.14
2.54
'3.21
Z.I.
CASE 2711-01
573
INeMU
IIIN
MAX
O.Z25
0.235
OolD. .J!.!!!!!.
O.nlt --"'D!!.
0.011 _IYlZD
25
0.0
o.olZ 0.011
0.104
0.011
0.011
0.180
0._
0.1 ... .0.110
MLED640 (continued)
ELECTRICAL CHARACTERISTICS (TA
= 25°C unless otherwise notedl
Fig. No.
Symbol
Min
Typ
Reverse Breakdown Voltage
-
BVR
4.0
-
Max
-
Volts
(lR = l00IAAI
Forward Voltage
(IF = 20 mAl
2
VF
-
1,6
2.0
Volts
Symbol
Min
Typ
Max
Unit
2.0
-
'Xp
O.B
-
AX
-
660
10
.-
Charact..istic
Unit
OPTICAL CHARACTERISTICS (T A = 25°C unless otherwise noted I
Charact.-istics
Fig. No.
Axial Luminous Intensity (11
(IF = 20 mAl
3.4
-
Peak Emission Wavelength
Spectral Line Half Width
mcd
10
-
nM
nM
(1) Axial Luminous Intensity (10) is measured using a CIE- corrected Photometer and a measurement solid angle of 0.003 Steradium.
*International Commission on 111~mination.
TYPICAL CHARACTERISTICS
FIGURE 3 - AXIAL LUMINOUS INTENSITY
versus JUNCTION TEMPERATURE
FIGURE 2 - FORWARD CHARACTERISTICS
10
1.85
ffi 7.0
:t 5.0
1 .1
,.
<[
51-- TJ = 250 C
~
5
./
5
1.35
1.0
--
""
/
i:5
'~
g
.....
.........
:l
I-""
.§ 0.2
70
100
.0~TA=250C
.0
io""
.0
V
./
.0
./
.7
.5
/
V
3.0
5.0 7.0 10
20 30
50
. IF, CONTINUOUS FO'RWARO CURRENT (mAl
O. 1
-40
-20
o
+20
+40
+60
TJ,JUNCTION TEMPERATURE (OCI
+80
FIGURE 5 - SPATIAL RADIATION PATTERN
0
2.0
........
1.0
!!: 0.7
0.5
z
:E 0.3
FIGURE 4 - AXIAL LUMINOUS INTENSITY
_illS CONTINUOUS FORWARD CURRENT
0. \.0
............
I-
2.0 3.0
5.0 7.0 10
20 30
50
IF. INSTANTANEOUS FORWARD CURRENT (rnA)
.2
........
lll;
1---' .....
.0
3.0
z'
;: 2.0
/V
70
100
574
+100
MLED655
PANEL MOUNT
LIGHT EMITTING DIODE
VISIBLE RED
PN GALLIUM
ARSENIDE PHOSPHIDE
VISIBLE RED LIGHT-EMITTING DIODE
· .• desi!1led for panel mount indicator applications. Ideally suited
for mounting in panels to 0.125" thick using plastic snap·in retainer.
• High Luminous Intensity
• Economical Plastic Package
• Solid State Reliability
• Red Diffusing Lens
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current-Continuous
Total Device DISSipatiOn
@
Symbol
Value
Unit
VA
40
Volts
IF
TA
=:
25°C
60
mA
POll)
100
1.67
mW
mw/oe
T J.T 519
·40 to +85
°e
Symbol
Ma.
Unit
°JAI1)
600
°e/W
Derate above 250 C
Operattng and Storage Junction
Temoerature Ranae
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance Junction to Ambient
(1)Mounted In metal panel (see Figure 1)
STYLE 1
PIN 1. CATHODE
2. ANODE
FIGURE 1 - HARDWARE DIMENSIONS
MOUNTING CLIP
MOTOROLA PART NO
42CS807!89ADOI
rn
-""""":43
ClEARANCEHOlEA~
648 (0255)OIA
CHASSIS~
07!1/318 !D0311O 1251 THIC
NOT FURNI8HED WITH KIT
]-:IGHT EMlnlNG DIODE
~
nil fRO
DIM
A
~
/
:
:
MOTOROLA CASE NO 219
B
NOT FURNISHED WITH KIT
C
D
E
F
G
RETAINER RING
MOTOROLAPARTNO
42CSB01989AOO2
J
K
R
MILLIMETERS
MIN
MAX
S.72
S.97
4.9S
S.21
8.38
8.89
O.Sl
0.41
0.64
0.89
046
0.30
2.64
2.44
2.44
2.54
12.S7
13.21
254
2.79
Mlt2791
CASE 279'()1
575
INCHES
MIN
MAX
0.23S
0.22S
0.195
0.20S
0.350
0.330
0.020
0.D16
0.025
0.03S
0.012
0.D18
0.096
0.104
0.100
0.095
0.520
0.495
0.110
0.100
MLED655 (continued)
ELECTRICAL CHARACTERISTICS (TA = 2So C unle.. oth_ise notedl
Charectwillie
R_se BreakdOwn VOltage
(lR = 1001'041
Forwwd Voltage
(IF = 20 mAl
Fig. No.
Symbol
-
BVR
2
VF
Typ
Max
-
-
Unit
Volts
1.6
2.0
Volts
Min
Typ
Max
Unit
mal
0.8
2.0
660
10
-
Min
4.0
OPTICAL CHARACTERISTICS (T A = 250 C unless oth_lse notedl
Cherectwiltics
Axial Lumlnouslntenlity (11
(IF =20mAI
Fig. No.
Symbol
3,4
10
-
~p
-
"'~
-
Peek Eminion Wavelength
Spectral Line Half Width
-
nM
nM
-
(1) Axial Luminous Intensity (101 is measured using a ClEO corrected Photometer and a measurement solid angle of 0.003 Steredian. The
spatial radiation pattern and 10 fully define the light emitting characteristics of a LED.
*International Commission on Illumination.
TYPICAL CHARACTERISTICS
FIGURE 3 - AXIAL LUMINOUS INTENSITY
venus JUNCTION TEMPERATURE
FIGURE 2 - FORWARD CHARACTERISTICS
10
1.85
S 7.0
250~
5 - T] =
"""'
.....
~
i!
'"!iii
-
-......
0.7
3.0
5.0 7.0
10
20
3D
50
70
1
lDD
0·-40 -30 -20 -10
.....
0
./
0
/"
./
/
/
3.0
5.0 7.0
10
20
30
50
+10 +20 +30 +40 +50 +60 +70 +80 +90 +100
FIGURE 5 - SPATIAL RADIATION PATTERN
0~TA·25.C
0
0
TJ, JUNCTION TEMPERATURE (DC)
0
0
7
5
"'" .........
0.3
30.2
~
FIGURE 4 - AXIAL LUMINOUS INTENSITY
_ _ CONTINUOUS FORWARD CURRENT
U
........
i
IF, INSTANTANEOUS FORWARD CURRENT (mA)
o.~.~
"'
1.0
Q
~I-"
2.0
Z
........
~ 0.5
i"""
.3
..
!. 2.0
/~
1.0
5.0
3.0
~
V
1.3&
~
70
100
IF, CONTINUOUS FORWARO CURRENT (mA)
576
MLED660
PANEL MOUNT
LIGHT EMITTING DIODE
VISIBLE REO
PN GALLIUM
ARSENIDE PHOSPHIDE
VISIBLE RED LIGHT-EMITTING DIODE
. designed for panel mount indicator applications. Intended for
mounting in standard 0.125" panels using plastic snap-in retainer.
• High Luminous Intensity
• Economical Plastic Package
• Solid State Reliabilitv
• Wide Viewing Angle - 90°
• High On/Off Contrasting Red Diffused Lens
DEEP RED
CONTRASTING LENS
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current·Continuous
Symbol
Value
Unit
VR
4.0
Volts
IF
Total Power Dissipation @ T A"" 25°C
60
mA
POIII
100
1.67
mW
mWI"C
TJ.T,tg
-4010 +85
°c
Symbol
Mox
R8JA(11
600
Derate above 25°C
Operating and Storage Junction
Temperature Range
CSl
11c
THERMAL CHARACTERISTICS
I
Chllracteriltic
Thermal Resistance Junction to Ambient
I
Unit
~I
°CfW
r-fq
(HMounted in metal panal (se. Figure 1)
SEATING
PLANE
K
~
l.JtL D
G ---I
FIGURE I - HARDWARE DIMENSIONS
MOUNTINIiCL"
IIOTOIIOLAPART N O ' i j J '
42CSI019I8AOOI
i
i
i
\
CHASSISO.1S/3.18 I0.D311O.125) THK
/URNlSH£DWlTHKIT
'------',-h-,--""
CLEARANCE HOLE
..IJ
:
!
MKns.,
r~LtF
~
'a. ". ir
Ha,.d
IiOIA
.JL.
DIM
m
A
8
C
.L"~~YlJ ~.¥&
~
i:I! (!:!Iii)".'" I
'
Ji
8.13 0lA
h'A....
.
0
E
RETAllfERf.DB
fU#,R.
RETAINEIIRIItG
MOTOROLA PART NO.
."..."..,.,
I--
Hlr-l 1.1
~llo-
ETAINER
RING
Hfo'IA
- ~
I----
If,
F
r:::=:::-;:;:;----,
IrDtMEMIION:
n:
III
,V':=::'::15"'" ,
577
G
J
K
R
STYLE 'PIN I CATHODE
2. ANODE
MILLIMETERS
MIN
MAX
5.72
5.97
4.95
5.21
8.38
B.89
0.41
0.51
0.64
0.89
0,30
0.46
.44
2.64
2.44
2.54
12.57
13.21
2.54
2.79
CASE 279-01
INCHES
MIN
MAX
0.225
0.235
0.195
0.205
0.330
0.350
0.016
0.020
0.035
0.025
0.012
0-018
0.09& 0.104
0.100
0.096
0.495
0.520
0.100
0."0
MLED660 (continued)
E LECTRICA L CHARACTERISTICS (TA = 250 C unle.. otherwise noted I
Charm_l.ti.
Re_se Breakdown Voltage
(lR = l00,.A1
Fig. No.
Symbol
Min
Typ
Max
-
BVR
4.0
-
-
Unit
Volts
vF
-
1.6
2.0
Volts
Symbol
Min
Typ
Max
Unit
mod
0.4
0.8
1.4
-
2
Instantaneous Forward Voltoge (21
(iF = 20 mAl
OPTICAL CHARACTERISTICS (T A -- 250 C unless otherwise notedl
Charaet_Isti.s
Axial Luminous Intensity (11
(IF = 20 mAl
(IF -50 mAl
Peak Emission Wavelength
Spectral Line Half Width
Fig. No.
4,5
10
-
-
A
6600
I.P
-
"I.
100
-
A
(1) Axial Luminous Intensity (1 0 ) is measured using a Spectra Microcandela LightMEmitting Diode (LED) Photometer incorporating a photometric
sensor (detector and filter) matched to the CIE- standard observers eye response. 10 is defined as the ratio of the luminous flux emitted by a
source to an incremental on axis solid angle subtended by a sensor; i.e., candela = lumens/steradian. Since 10 is a photometric measurement,
it providess" accurate indication aftha visibility of an LED that includes the physical characteristics of the package such as encapsulant and lens
design.
(21 Pulse Test: Pulse Width E;;3001's, Duty Cycle E;;2.0%.
FIGURE 2 - FORWARO CHARACTERISTICS
FIGURE 3 - SPATIAL RADIATION PATTERN
1.86
T}'250~
6r-
6
V
6
1.36
1.0
""
/'
-2.0
i..-"~
3.0
6.0 7.0
10
20
30
60
70
100
iF, INSTANTANEOUS FORWARD CURRENT (mAl
FIGURE 5 - EFFECTS OF JUNCTION TEMPERATURE
FIGURE 4 - EFFECTS OF FORWARD CURRENT
3.0
2.0
I
= 0.5
I!:!
-
10
I
--
I--TA=25oC
1.0
~
0.7
~
0.2
~
O. 1
_
~
3.0
.2
..........
.......
;: 2.0
.........
i);
f5
r
1. 0
I-
!: O. 7
~ O.
o 6
z
iii
0.115
4.0
6.0
10
20
30
40
60
578
"
2
.1
IF, CONTINUOUS FORWARD CURRENT (mAl
......
o. 3
"'.;0.
~ 0.07
0.03
3.0
7.0
l-
!! 0.3
z
ffi
~ 5.0
~
f0-
-20
o
+20
+40
+60
TJ,JUNCTION TEMPERATURE (OCI
+60
+100
MLED900
INFRARED-EMITTING DIODE
900nM
PN GALLIUM ARSENIDE
INFRARED-EMITTING DIODE
120 MILLIWATTS
· .. designed for applications requiring high power output, low drive
power and very fast response time. This devioe is used in industrial
processing and control, light modulators, shaft or position encoders,
punched card readers, optical switching, and logic circuits. It is
spectrally matched for use with silicon detectors.
•
High Power Output - 550 p.W (Typ)
IF
@
=
50 mA
• Infrared Emission - 9000 A (Typ)
•
Low Drive Current - 10 mA for 120 p.W (Typ)
•
Unique Molded Lens for Durability and Long Life
•
Economical Plastic Package
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current-Continuous
Total Device Dissipation @TA
Derate above 25°C
=
250C
Symbol
Valas
Unit
VR
3.0
Volts
IF
80
rnA
Po(11
120
2.0
rnW
rnW/oC
-40 to +85
°c
TJ,Tstg (2)
Operating and Storage Junction
Temperature Range
=t
"'======tG'i=======.2
THERMAL CHARACTERISTICS
Characteristic
Symbol
I
Thermal Resistance, Junction to Ambient
Max
I
8JA
o
Unit
I
500
STYLE 2:
PIN I. ANODE
2. CATHODE
°C/W
(1) Pnnted CirCUit Board Mounting
(2) Heat Sink should be applied to leads during soldering to prevent Case Temperature
exceeding 85°C.
t
FIGURE 1 - RELATIVE SPECTRAL OUTPUT
1.0
I
I
/"
IF=50mA
0.8 -TA=250C
-'-
o
1\
\
\
1\
\
I
0.4
0.2
j
..........
/
0.6
-
8000
/
/
DIM
A
C
0
F
\
H
r--..
./
8400
C
K
r8800
9200
9600
10.000
'. WAVELENGTH (A)
579
Q
MILLIMETERS
MIN
MAX
3.56
4.51
0.33
0.23
1.02
6.35
1.91
4.06
5.33
0.48
O. 8
1.2
-
INCHES
MIN
MAX
0.140 0.160
0.180 0.210
0.013 0.019
O.Ous I U.UlI
0.040 I u.u:.u
0.250
NOM
CASE 171
-
MLED900 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Fig. No.
Symbol
Min
Typ
Max
Unit
Reverse Leakage Current
(VR = 3.0 V. RL = 1.0 Megohml
-
IR
-
50
-
nA
Reverse Breakdown Voltage
(IR = 100 ItA)
-
BVR
3.0
-
-
Volts
Forward Voltage
(IF =50mA)
2
VF
-
1.2
1.5
VOlts
Total Capacitance
-
CT
-
150
-
pF
Unit
a..ract.. istic
(VR = OV, f = 1.0 MHz)
OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristics
Fig. No.
Symbol
3,4
Po
Total Power Output (Note 11
(I" = 50 mAl
Radiant Intensitv (Note 2)
(In- 5OmA)
Min
Typ
Max
200
550
-
-
2.4
-
I'W
10
mW/steradian
Peak Emission Wavelength
1
/..P
-
900
-
nM
Spectral Line Half Width
1
2
§
2.0
t:-....
N
::;
,......
~
........
b"
o
;
1.0
.......
~
;r
,..
8
-""
g o. 7
~
'"w
.........
~ 0.5
4
.E
u.
>
0
2.0
5.0
10
20
50
100
200
500
0.3
-75
1000 2000
IF, INSTANTANEOUS FORWARD CURRENT (mAl
-50
-25
25
50
75
100
150
TJ, JUNCTION TEMPERATURE (OCI
FIGURE 4 - INSTANTANEOUS POWER OUTPUT
versus FORWARD CURRENT
FIGURE 5 - SPATIAL RADIATION PATTERN
20
i
TJ=250C
10
~
,..
5.0
~
2.0
~
~
1.0
~
0.5
./
=>
V
V
ffi
~ 0.2
~
0.1
z
~ 0.05
0.02
2.0
5.0
10
20
50
100
200
500
1000 2000
IF. INSTANTANEOUS FORWARO CURRENT (mAl
Output saturation effects are not evident at currents up to 2 A as shown on Figure 4. However, saturation does occur due to heating of the
semiconductor as indicated by Figure 3. To estimate output level, average junction temperature may be calculated from:
TJ(AV) = T A
+ 8JA VFIFD
where 0 is the duty cycle of the applied current, IF' Use of the above method should be restricted to drive conditions employing pulses of
less than 101./.5 duration to avoid errors caused by high peak junction temperatures.
580
MlED910
INFRARED-EMITTING DIODE
· .. designed for applications requiring high density mounting, high
power output, low drive power and very fast response time. This
device is used in industrial processing and control, light modulators,
shaft or position encoders, punched card and tape readers, optical
switching, and logic circuits. It is spectrally matched for use with
silicon detectors.
• High Power Output - 150 I1W (Typ)
•
Infrared-Emission - 9000
INFRARED-EMITTING DIODE
900nM
PN GALLIUM ARSENIDE
350 MILLIWATTS
IF = 50 mA
@
A(Typ)
•
Low Drive Current - lamA for 32 I1W (Typ)
•
Low Profile Pill Package Allows Printed Circuit Board Assembly
• Sub-M iniature Package for High Density Mounting
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current-Continuous
Total Device Dissipation@TA::::2SoC
Derate above 2SoC
Operating and Storage Junction
Symbol
Value
Unit
VR
3.0
Volts
IF
150
rnA
PO(I)
350
3.5
rnW
rnW/oC
TJ,Tstg
-65 to +125
°c
Q~
Temperatu're Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
(1) Thermal resistance, junction to case is typically 80 o C/W. The mounting conditions determine the junction to ambient thermal resistance.
F or example, when soldered in a copper
printed circuit board through a 1/8" diameter pad on the top to a 1/4" x 1/4" pad on the bottom
surface, values of 1600 CIW will occur. If both pads are 1/8" in diameter, thermal resistance
is typically 2500 C/W; the limit of 28SoC/W is specified for the latter mounting condition.
Lr '\
~
/' ........
1F-50mA
0.8 f--TA = 25"e
/
0.6
0.4
/
o~
8000
\
DIM
A
B
C
D
\
F
H
\
......
8400
\
\
/
/
0.2
STYLE 2:
TERM 1. ANOOE
2. CATHODE
\
I
8800
9200
t
". . . . r---....
9600
10,000
'" WAVELENGTH (A)
581
1
A
,2]
FIGURE 1 - RELATIVE SPECTRAL OUTPUT
1.0
1
K
L
MILLIMETERS
MIN MAX
2.79 3.30
1.47 1.57
0.71 1.02
041 0.61
0.13 0.25
0.48 0.53
2.11 2.36
0.20 0.30
INCHES
MIN MAX
0.100 0.130
0.058 0.082
0.028 0.040
0.016 0.024
0.005 0.010
0.019 0.021
0.083 0.ll93
0.008 0.012
CASE alA-05
MLED910 (continued)
ELECTRICAL CHARACTERISTICS
(T A =
250 C unless otherwise
noted)
Fin. No.
Svmbol
Min
TVD
Max
Unit
-
IR
-
50
-
nA
Reverse Breakdown Voltage
(lR=l00IlAl
-
BVR
3.0
-
-
Volts
Forward Voltage
(IF = 50 rnA)
2
VF
-
1.2
1.5
Volts
Total Capacitance
(Va= 0 V:f = 1.0 MHz)
-
CT
-
150
-
pF
Fig. No.
Svmbol
Min
TVD
Max
Unit
3,4
Po
50
150
-
IlW
10
-
0.66
-
mW/steradian
Reverse Leakage Cu rrent
(VR = 3.0 V, RL =
1.0 Megohm)
OPTICAL CHARACTERISTICS
un ess ot aMlse noted)
(T'A =
Characteristic
Total Power Output (Note
1)
I~ =~DmA
Radiant Intensity (Note
(IF = 50 rnA)
2)
Peak Emission Wavelength
1
I-p
-
900
-
nM
Sooetral Line Half Width
1
al-
-
40
-
nM
NOTE:
1. Power Output, po. is the total power radiated by the device into a solid angle of 27T steradians. It is measured by directing all radiation
leaving the device, within this solid angle, onto a calibrated silicon solar cell.
2.
Irradiance from a Light Emitting Diode (LED) can be calculated by:
H
= 10
d2
where H is irradiance in mW/cm 2 , 10 is radiant intensity in mW/steradian;
d is distance from LED to th~ detector in em.
FIGURE 3 - POWER OUTPUT versus JUNCTION TEMPERATURE
FIGURE 2 - FORWARD CHARACTERISTICS
go
2.0
1111
Co
«
~
~
en
:::>
/
TJ = 25°C
w
to
C;
o
>
~
1.6
~
1.2
3.0
/
ffi
«
..,.,
~
I-
1.0
~
:::>
0
0.7
'"~
0.5
~
0.4
.......
""
r.....
..........
..........
.E
u:
>
2.0
5.0
10
20
50
100
200
500
0.3
-75
1000 2000
IF, INSTANTANEOUS FORWARD CURRENT (mAl
-50
-25
25
50
75
100
150
TJ, JUNCTION TEMPERATURE (OC)
FIGURE 5 - SPATIAL RADIATION PATTERN
FIGURE 4 -INSTANTANEOUS POWER OUTPUT
10
5.0
I-
~ 2.0
o
1.0
;
0.5
'"
.,~
i'..
I-
0.8
~
:::>
.........
«
~
~
I
........
:::;
~
z
!z
2.0
N
-
TJ - 25°C
~ 0.2
~ 0.1
z
~ 0.05
z
~0.02
0.0 1
2.0
5.0
10
20
50
100
200
500
1000 2000
IF, INSTANTANEOUS FORWARD CURRENT {mAl
Ou~put saturation effects are not evident at currents up to 2 A as shown on Figure 4. However, saturation does occur due to heating of the
semiconductor as indicated by Figure 3. To estimate output level, average junction temperature may be calculated from:
TJ(AVI = T A + 0JA VFIFD
where 0 is the duty cycle of the applied current, IF. Use of the above method should be restricted to drive conditions employing pulses of
less than 10 Ils duration to avoid errors caused by high peak junction temperatures.
582
MLED930
INFRARED-EMITTING DIODE
· .. designed for applications requiring high power output, low drive
power and very fast response time. This device is used in industrial
processing and control, light modulators, shaft or position encoders,
punched card readers, optical switching, and logic circuits. It is
spectrally matched for use with silicon detectors.
•
High-Power Output - 650,!,W (Typ) @ IF = 100 rnA
•
Infrared-Emission - 9000
•
Low Drive Current - 10 rnA for 70!'W (Typ)
•
Popular TO-18 Type Package for Easy Handling and Mounting
•
Hermetic Metal Package for Stability and Reliability
INFRARED-EMITTING DIODE
900nM
PN GALLIUM ARSENIDE
250 MILLIWATTS
A (Typ)
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Reverse Voltage
VR
3.0
Volts
Forward Current-Continuous
IF
150
mA
Total Device Dissipation @ T A
= 25°C
250
2.5
-65 to +125
Poi1l
Derate above 2SoC
Operating and Storage Junction
TJ,Tstg
~A
B
L
mW
mW/oC
°c
Temperature Range
~
f1= .,
-i
f1c
F
~EATIN"
~LA~E
THERMAL CHARACTERISTICS
K
Characteristics
Thermal Resistance, Juntion to Ambient
Symbol
Max
Unit
9JA
400
°C/W
o~1--
~
(1)Printed Circuit Board Mounting
H
M
FIGURE 1 - RELATIVE SPECTRAL OUTPUT
1.0
I
I
/
IF"50mA
0.8 I-- TA "25 0 C
I
!;
~w
\
1/
>
/
>=
g 0.4
0---8000
\
/
0.6
0.2
""""" 1\
/
\
J
\
\.
8400
8800
9200
X, WAVELENGTH
9600
.............
10,000
~~;-o
~>
583
I
PIN 1. ANODE
PIN 1. CATHODE
PIN 2 INTERNALLY CONNECTED
TO CASE
MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
5.31 5.84 0.209 0.230
A
8
0.178 0.195
4.52 4.95
0.200 0.250
C
5.08 6.35
D
0.41 0.48 0.D16 0.019
F
0.51 1.02 0.020 0.040
G
2.54 asc
0.100 asc
H
0.039 0.046
0.99 1.17
J
0.84 1.22 0.033 0.048
0.500
K 12.70
L
3.35 4.01
0.132 0.15Jl.
450 asc
M
45 0 asc
209-01
(A)
G
J
MLED930 (continued)
ELECTRICAL CHARACTERISTICS
(T A = 250 C unless otherwise noted)
Fia. No.
Symbol
Min
Typ
Max
Unit
-
IR
-
50
-
nA
Reverse Breakdown Voltage
(lR=l00"A)
-
BVR
3.0
-
-
Volts
Forward Voltage
(IF = 50mA)
2
VF
-
1.2
1.5
Volts
Total Capacitance
(VR = 0 V;f = 1.0 MHz)
-
CT
-
150
-
pF
Characteristic
Reverse Leakage Current
(VR = 3.0 V, RL = 1.0 Megohm)
OPTICAL CHARACTERISTICS
(TA = 250 C unless otherWise noted)
Characteristic
Unit
Fig. No.
Symbol
Min
Typ
Max
3,4
Po
200
650
-
"W
10
-
1.5
-
mWIsteradian
Total Power Output (Note 1)
(iI: =50mA)
Radiant Intensity (Note 2)
!iF= 100 rnA)
Peak Emission Wavelength
1
J..p
-
900
-
nM
Spectral Line Half Width
1
dJ..
-
40
-
nM
NOTE:
1. Power Output, po. is the total power radiated by the device into a solid angle of 21T steradians. I t IS measured by directing all radiation
leaving the device, within this solid angle, onto a calibrated silicon solar cell.
2.
Irradiance from a Light Emitting Diode (LEO) can be calculated by:
H;;; 10
d2
where H is irradiance in mW/cm 2 ; 10 is radiant intensity in mW/steradian;
d is distance from LED to the detector in em.
FIGURE 3 - POWER OUTPUT versus JUNCTION TEMPERATURE
FIGURE 2 - FORWARD CHARACTERISTICS
~o
2.0
Jill
?
TJ = 25 0 C
w
to
«
--
1.6
~
o
>
/
3.0
J
§
t--...
2.0
N
:J
,......
«
~
........
I'....
""",
0
;:0
1.0
....
i<
....=>
0
0.7
'"~
0.5
~
........
""'" ..........
.E
0.3
u:
>
5.0
2.0
10
20
50
100
200
500
1000 2000
-75
IF, INSTANTANEOUS FORWARD CURRENT (mAl
-50
-25
25
50
75
100
150
TJ, JUNCTION TEMPERATURE (DC)
FIGURE 4 - INSTANTANEOUS POWER OUTPUT
FIGURE 5 - SPATIAL RADIATION PATTERN
versus FORWARD CURRENT
~
....
20
10
=1=
Tr25 0 C
~ 5.0
=>
~ 2.0
~
~
1.0
'"~
0.5
z
~ 0.2
z
~ 0.1
z
./
~O.05
0.02
2.0
5.0
10
20
50
100
200
500
1000 2000
IF,INSTANTANEOUS FORWARO CURRENT (rnA)
Output saturation effects are not evident at currents up to 2 A as shown on Figure 4. However. saturation does occur due to heating of the
semiconductor as indicated by Figure 3. To estimate output level, average junction temperature may be calculated from:
TJ(AVI
= TA + 0JA
VFIFD
where D is the duty cycle of the applied current, IF' Use of the above method should be restricted to drive conditions employing pulses of
less than 10 fJs duration to avoid errors caused by high peak junction temperatures.
584
MLS10l thru MLS 105 (SILICON)
MLS201 thru MLS20S
Advance Information
LIGHT ACTIVATED
SILICON
CONTROLLED RECTIFIERS
250, 400 mA RMS
15 thru 200 VOLTS
LIGHT SENSITIVE THYRISTORS
· .. Annular PNPN devices designed for applications such as
optoelectronic couplers, relay and lamp drivers, small motor
controllers, drivers for larger thyristors, and in sensing and detection
circuits.
• Sensitive Gate Trigger 35 mW/cm2 (Typ) - MLS10l thru MLS105
10 mW/cm2 (Typ) - MLS201 thru MLS205
•
Low Reverse and Forward Blocking Current 100J.tA (Maxl. TC = 1000C
•
Low Holding Current - 2.0 mA (Max)
•
Passivated Surface for Reliability and Uniformity
•
Choice of PackagesPlastic TO·92 - MLS10l thru MLS105
Metal TO·1S - MLS201 thru MLS205
CASE 29-01
TO·92
MLS10l thru
MLS105
MAXIMUM RATINGS
MLS10l1 MLS201
Rating
Symbol
Peak Reverse Blocking Voltage
MLS101,
MLS102,
MLS103,
MLS104,
MLS105,
Series
Unit
Volts
MLS201
MLS202
MLS203
MLS204
MLS205
15
30
60
100
200
Forward Current RMS
IT(RMS)
(All Conduction Angles)
Peak Forward Surge Current, T A
Series
VRRM
==
2SoC
250
I
400
mA
5.0
Amp
IGF(AV)
25
mA
IGFM
500
mA
VGRM
6.0
Volts
TJ
·40 to +100
°c
Tstg
-40 to +100
°c
Symbol
Max
Unit
8JA
200
°C/W
8JC
150
·C/W
ITSM
(112 cycle, Sine Wave, 60 Hz)
Average Gate Current - Forward, T A == 25°C
Peak Gate Current - Forward, T A :::: 2SoC
(300 ItS, 120 PPS)
Peak Gate Voltage - Reverse
Operating Junction Temperature Range
@
Rated
VRRM and VORM(l)
Storage Temperature Range
CASE 82
TO·18
THERMAL CHARACTERISTICS
Dlaracteristic
Thermal Resistance, Junction to Ambient
MLS10l Series
Thermal Resistance, Junction to Case
MLS201 Series
This is advance information on a new introduction and specifications are subject to change without notice.
585
MLS201 thru
MLS205
MLS10l thru MLS105, MLS201 thru MLS205 (continued)·
·ELECTRICAL CHARACTERISTICS
(RGK = IS k Ohms, TC = 2So C unless otherwise noted)
Characteristic
Symbol
Peak Forward Blocking Voltage (Note 1)
Min
Max
(TC = 100°C
MLS10l,
MLS102,
MLS103,
MLS104,
MLS10S,
MLS201
MLS202
MLS203
MLS204
MLS20S
IS
-
30
-
60
100
200
Peak Forward Blocking Current
Unit
Volts
VDRM
-
IDRM
-
100
itA
IRRM
-
100
itA
-
1.8
-
1.1
(Rated VDRM @TC= 100°C)
Peak Reverse Blocking Current
(Rated VRRM @TC = 100°C)
Forward "On" Voltage (Note 2)
(lTM = 2S0 mAl
(lTM=400mA)
Volts
VTM
MLS10l thru MLS10S
MLS201 thru MLS20S
Light Sensitivity
mWlcm 2
HET
(V AK = 7.0 V, Tungsten Source@ 27800 KI
-
MLS10l thru MLSlOS
MLS201 thru MLS20S
Gate Trigger Current (Continuous de) (Note 3)
-
SO
20
IGT
-
100
itA
VGT
VGD
-
0.8
Volts
0.1
-
IH
-
2.0
(Anode Voltage = 7.0 Vdc, RL = 100 Ohms, TC = 2S0C)
Gate Trigger Voltage (Continuous de)
(Anode Voltage =.7.0 Vdc, RL = 100 Ohms)
Holding Current
(Anode Voltage
TC = 2SoC
TC = 100°C
TC = 2SoC
=
7.0 Vdc, initiating current = 20 mA)
mA
1. Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a nega~ive potential on the
anode. When checking forward or reverse blocking capability. thyristor devices should not be tested with a constant current source in a
manner that the voltage applied exceeds the rated blocking voltage.
2. Forward current applied for 1.0 ms maximum duration, duty cycle ~ 1.0%.
3. RGK current is not included in measurement.
'--A
'"'''"~lrrJ
D3t
PLANE
K
~
~.
,
__
G
DIM
C
D
E
G
J
K
L
M
J
0
B
MLS101 thru
MLS105
CASE 29-01
TO-92
L
D-I-
H~
""J
Pin 1. Cathode
2, Gate
3. Anode
DIM
A
J '
NOTES:
1. LEADS WITHIN .13 mm (.005) RADIUS
OF TRUE POSITION AT SEATING
PLANE,AT MAXIMUM MATERIAL
CONDLTlON.
2. PIN 3·INTERNALLY CONNECTED TO
CASE.
586
CASE 82
TO·18
I
~~
M
INCHES
MIN
MAX
0.175
0.185
0.016
0.D19
0
5 NOM
0.045
0.055
0.085
0.095
0.500
0.050 TP
0.003
0.013
K
~
I
MI LLIMETERS
MIN
MAX
4.450
4.700
0.407
0.482
50 NOM
1.150
1.390
2.1611
2.420
12.700
1.270 TP
0.076
0.330
-t
SEATING
PLANE
Pin 1. Gate
2, Anode
3. Cathode
MLS201 thru
MLS205
~
~rc
B
C
D
F
G
H
J
K
L
M
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
5.31 5.84
4.52 4.95
5.08 6.35
0.41 0.48
0.51 1.02
2.54 BSC
0.99 1.17
0.84 1.22
12.70
3.35 4.01
450 BSC
0.209 0.230
0.178 0.195
0.200 0.250
0.016 0.019
0.020 0.040
0.100 BSC
0.039 0.046
0.033 O.04B
0.500
0.132 0.158
450 asC
-
MM439
(SILICON)
Advance Inf'orIDation
PNPSILICON
RFNHF AMPLIFIER
TRANSISTOR
PNP SILICON ANNULAR
RFNHF AMPLIFIER TRANSISTOR
· .. designed for use in RF and VHF amplifier applications.
• Collector-Emitter Breakdown Voltage BVCEO = 15 Vdc (Min) @ IC = 2.0 mAdc
•
High Current-Gain-Bandwidth ProductfT = 1000 MHz (Typ) @ IC = 3.0 mAdc
•
Low Collector-Base Capacitance Ccb = 0.4 pF (Typ) @ VCB = 12 Vdc
•
High Common·Emitter Amplifier Power Gain GpE = 22 dB (Typ) @ IC = 3.0 mAdc
•
Excellent Electrical Replacement for Germanium Mesa Technology
MM5000 Series
I
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
VCEO
15
Vdc
Vdc
Collector-Base Voltage
VCB
30
Emitter-Base Voltage
VEe
3.0
Vdc
Collector Current - Continuous
IC
50
mAde
Total Power Dissipation @ T A = 2SoC
PD
250
1.43
mW
mW/oC
PD
400
2.28
mW
mW/oC
TJ,T stg
-65 to +200
°c
Derate above 25°C
Total Power Dissipation@Tc= 2sOC
Derate above 25°C
Operating and Storage Junction
Temperature Range
STYLE 10
PIN 1
EMITTER
2
3
BASE
COLLECTOR
4-
CASE
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance. Junction to Case
INCHES
MIN
MAX
Symbol
Ma.
Unit
ReJA(ll
700
°C/W
ReJC
438
°C/W
0.230
0195
0210
1)021
0.030
0016 0.019
0100BSC
0.036 0046
0028 0.1)48
0.500
0.250
45 BSC
0050BSC
0050
(1) A6JA is measured with the device soldered into a typical printed circuit board.
All JEOEC dImenSIons and notes apply
CASE 20-03
TO·72
This.s advance information on a new Introduction, and specifications are subject to change without notice.
587
MM439 (continued)
I
ELECTRICAL CHARACTERISTICS
(TA ~ 25°C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Colleetor·Emitter Breakdown Voltage (1)
(IC ~ 2.0 mAde, IB ~ 0)
BVCEO
15
-
-
Vde
Collector-Base Breakdown Voltage
BVCBO
30
-
-
Vde
BVEBO
3.0
-
-
Vde
IT
800
1000
-
MHz
Ceb
-
0.4
0.6
pF
rb'C e
-
2.9
3.5
ps
NF
-
2.5
3.5
dB
Characteristic
OFF CHARACTERISTICS
(lC ~ 100 "Ade, IE ~ 0)
Emitter-Base Breakdown Voltage
(IE ~ 500 "Ade, IC ~ 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lC ~ 3.0 mAde, VCE ~ 12 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lc~3.0mAde, VCE~ 12Vde,l~
100 MHz)
Collector-Base Capacitance
(V C8 ~ 12 Vde, I E ~ 0, I ~ 1.0 MHz)
Collector-Base Time Constant
(IE ~ 3.0 mAde, VC8 ~ 12 Vde, I ~ 31.8 MHz)
Noise Figure
(lC = 3.0 mAde, VCE ~ 12 Vde, I ~ 200 MHz)
FUNCTIONAL TEST (Figure 1)
Common-Emitter Amplifier Power Gain
(VCC ~ 12 Vde, IC ~ 3.0 mAde, I ~ 200 MHz)
(1) Pulse Test: Pulse Width';;; 300 I'S, Duty Cycle';;; 2.0%.
FIGURE 1 - 200 MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT
T1
0.7-9.0 pF·
Output
RL
Shield
0.7-9.0 pF·
500hms
2.0·8.0 pF
470 pF
Input
RS
50 Ohms
470
2.0·8.0 pF
O.OOlI'F
NOTES:
L1
% inch inside diameter, % inch length, 4 turns #20 solid copper wire, center tapped.
T1
% inch inside diameter. close wound, 3 turns #26 solid copper wire. 1: 1 ratio
bifiller wound.
High Quality piston type capacitor.
Distance from eminer contact of transistor to ground side of bypass capacitor
should be kept minimum.
588
MM 1500, A(SILICON)
MM1501
NPN silicon RF power transistors designed for
UHF amplifier, frequency multiplier, and oscillator
applications.
MM1500
MM1501
MM1500A
@
@
STYLE 1
PIN 1. EMITIER
PIN 1. EMITIER
2. BASE
3. COLLECTOR
CASE 23
CASE 24
(TO-107)
2. BASE
3. COLLECTOR
(TO-102)
MAXI MUM RATI NGS
(TA'" 25°C unless otherwisenotedl
Symbol
Value
Unit
VCEO
15
Vdc
Collector-Base Voltagee
VCB
30
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
Collector Current
IC
200
mAdc
Total Device Dissipation @ TC '" 25°C
Derate above 25°C
Po
3.5
20
Watts
mW/oC
TJ , Tstg
-65 to 200
°c
Symbol
Max
Unit
9JC
50
°C/W
Rating
Collector-Emitter Voltage
Operating and storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
589
MM1500,A, MM1501 (continued)
ELECTRICAL CHARACTERISTICS (T"
=25"C unless otherwise noted)
Symbol
Charatftristic
Min
Typ
Max
Unit
-
-
Vde
OFF CHARACTERISTICS
CoUector-Em1tter SwltaInIDg Voltage
10 mAde, Is = 0)
BVCEO(SU8)
Uc •
Collector-Base Breakdown Voltage
(Ic = 100 "Ade, IE • 0)
BVcso
Emitter-Base B _ Voltage
(~= 0.1 mAde, IC' 0)
BVEBQ
I
15
30
--
4.0
Collector Cutoff Current
(Vcs ' 20 Vde, ~. 0)
ICBO
-
(VCB ' 20 Vde, IE - 0, TA -150'C)
Vde
Vile
"Ade
0.1
100
DYNAMIC CHARACTERISTICS
Current-Gain - B8Ddw1dth Product
(Ie' 100 mAde, VCE = 15 Vde, f • 200 MHz)
fT
_1500, A
_1501
Outp,l C__ ltance
Cob
(VCB • 20 Vdc, ~. 0, f • 100 kHz)
CoUector-Base TIme COMtant
~ • 100 mAde, VCB • 15 Vdc, f = 31.8 MHz)
--
r 'c
b
MM15OO,A
MM1501
--
3.2
5.0
7.0
10
--
MHz
pF
-
c
FUNCTIONAL TEST
Power 0u1put, Figure 1
(VCD - 20 Vdc, RL = 50 ohm.. f - 1500 MHz)
1500
1000
pa
MM15OO,A
MM1501
FIGURE 2- CAPACITANCES
FIGURE 1- POWER OUTPUT TEST CIRCUIT
10
·1
T,-25"C
I!!!!!!!!
"'"
l- I--.
::-,;,·;.0;...
t"-
r- t"-
:--'1"-
I"~
:~~~~~
~~
i'-~
...... j'-..
"
2"
r--..
RFC
I"-
~
~~r-.
Jc..
r-. N
@I.,-O
3
c..'
,
r--..
I'
....
"I'
2
0.1
-VEE
Vcc=20V
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
COU£CTOII VOlTAGE (YOllS)
590
20 30
MM1505
(SILICON)
NPN SILICON SWITCHING TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR
... designed primarily for high·speed, saturated switching applications.
•
High Speed Switching Times @
ton';; 12 ns (Max)
toff ';;12 ns (Max)
Ie =
10 mAdc -
*MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage (1)
VCEO
6.0
Vde
Collector-Emitter Voltage
VCES
11
Vde
Collector-Base Voltage
Vce
15
Vde
Emitter-Base Voltage
VEe
4.0
Vde
IC
50
mAde
Po
0.30
1.71
rrNVl"C
TJ, Tstg
-65 to +200
°c
TL
300
°c
Collector~urrent
- Continuous
Total Power Dissipation@ TA = 25°C
Derate above 2SOC
Operating and Storage Junction
Temperature Range
Lead Temperature
(Soldering, 60 second time limit)
Watt
STYLE 1:
PIN 1. EMITIER
2. BASE
3. COLLECTOR
f---#----t
A
E
*Indicates JEOEC Registered Data.
(11 applicable from 0.01 mAde to 10 mAde (Pulsedl.
C
K
FIGURE 1 - TURN·ON AND TURN'()FF
TIME TEsT CIRCUIT
'"
+S.OV
L
Vep-lOV
O%~n
~
V1n'"+6.0V
OSCilLOSCOPE
VCC=+1.0V RISETIME"O.4ns
INPUT Z =
son
50
VOUI
500
f-'M.-oVoul
'"
1l1",F
GENERATOR
""
RISETIME< 1.0 ns
OUTPUT Z = 50n
PULSE WIDTH " 200ns
VBB = +5.0 V
Vm =-4.0V
.'.O~'o%V,"
DIM
A
B
C
0
10"
FIGURE 2 - CHARGE.sTORAGE TIME
TEST CIRCUIT
U
5.31
4.52
2.92
~
+3.0 V
-3.3 V
INCHES
MIN
MAX
5.84
0.209 0.230
4.95
0.178 0.195
3.81
0.115 0.150
0.021
0.533
E
0.762
0.030
F
0.406 0.483 0.016 0.019
G 2.54 BSC
0.914 1.17
0.046
H
0.711 1.22
0.048
J
K 12.70
L
6.35
0.250
M 45" BSC
450 BSC
1.27 BSC
N
0.050 BSC
p
1.27
0.050
CASE 27·02
T0-52
All JEDEC dimensions and notes apply
90%Vout
GENERATOR
RISE TIME < 1.0 tIS
OUTPUT Z,. son
PULSEWIOTH"200ns
MILLIMETERS
MIN MAX
50
OSCillOSCOPE
RISETIME-O.4ns
INPUTZ ",son
591
MM1505 (continued)
*ELECTRICAL CHARACTERISTICS (TA" 25°C unless otherwise rioted.)
I
Characteristic
Symbol
Min
Max
6.0
-
11
-
15
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
Vde
VCEO(sus)
(lC" 10 mAde, IS " 0)
Collector-Emitter Breakdown Voltage
Vde
SVCES
(lC" 10/lAde, VSE" 0)
Collector-Base Breakdown Voltage
Vde
SVCSO
(lC" 10/lAde, 'E" 0)
Emitter-Base Breakdown Voltage
Vde
SVESO
(IE" 10 /lAde, IC" 0)
4.0
Collector Cutoff Current
'CES
(VCE" 11 Vde, VSE "0)
(VCE" 5.0 Vde, VSE "0)
(VCE" 5.0 Vde, VSE" 0, TA " +8SOC)
/lAde
-
10
0.1
5.0
-
10
15
25
15
125
-
Base Cutoff Current
'Sl
/lAde
(VCE" 11 Vde, VEB(ol!) " 0)
ON CHARACTERISTICS (1)
DC Current Gain
Collector-Emitter Saturation Voltage
(lC"
(lC"
(lC"
(lC"
-
hFE
(lC" 1.0 mAde, VCE " 0.4 Vdc)
(IC" 10 mAde, VCE" 0.4 Vde)
(I C " 30 mAde, V CE " 0.4 Vde)
VCE(satl
1.0 mAde, IS" 0.1 mAde)
10 mAde, IS" 1.0 mAde)
30 mAde, IS " 3.0 mAde)
10 mAde, IS " 1.0 mAde, TA " 85°C)
Vde
-
Base-Emitter Saturation Voltage
(lC" 1.0 mAde, IS" 0.1 mAde!
(lC" 10 mAde, IS" 1.0 mAde!
(lC" 30 mAde, IS" 3.0 mAde!
-
0.25
0.25
0.38
0.4
Vde
VSE(sat)
0.68
0.75
-
0.85
0.95
1.3
600
-
-
3.0
-
2.0
-
12
-
12
-
6.0
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC" 10 mAde, VCE" 4.0 Vde, I" 100 MHz!
IT
Output Capacitance
(VCS" 5.0 Vde, 'E" 0, I" 140 kHz!
Cob
Input Capacitance
Cib
(VSE" 0.5 Vde, 'C" 0, 1·140 kHz!
MHz
pF
pF
SWITCHING TIMES
Turn-On Time (Figure 1)
(VCC" 1.0 Vde, VSE(off) " 1.0 Vde, IC" 10 mAde,
'SI'" 2.0 mAde)
ton
Turn·Off Time (Figure I!
tofl
(VCC" 1.0Vde, 'C" 10 mAde, 'Bl ""'B2",1.0mAde)
Charge Storage Time (Figure 2)
(lC" 'SI"" IS2" 5.0 mAde)
ns
ns
ns
ts
*Indicates JEO'EC Registered Data.
(I) pulse Test: Pulse Length" 300 /lS; Duty Cycle ';;2.0%)
592
MM 1553 (SILICON)
75 W -150 MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPNSILICON
... designed for VHF power amplifier applications in military and in·
dustrial equipment. Particularly suited for use in Class AB, B, or C
amplifier applications to 175 MHz.
•
High Output Power Capability 90 Watts Peak Output for 13.5 Watts (Max) Input@f = 150 MHz
•
Balanced Emitter Construction to Assure Ruggedness and Resist
Transistor Damage Caused by Load Mismatch
• Stripline Packaging for Lower Lead Inductance and Better
Broadband Capability
I
[T
t l=-
r:tE
MAXIMUM RATINGS
Rating
10·32 UNF 2A
Svmbol
Value
Unit
Collector-Emitter Voltage
VCEO
70
Vdc
Collector-Base Voltage
VCB
100
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
Collector Current - Continuous
IC
8.0
Adc
Total Device Dissipation @TC=500C
Derate above sOOC
Po
80
533
Watts
mW/oC
-65 to +200
°c
Operating and Storage Junction
A
TJ, Tstg
Temperature Range
This device is designed for R F operation. The total device dissipation
rating applies only when the device is operated as an R F amplifier.
593
WRENCH FLAT
DIM
MILLIMETERS
MIN MAX
A 12.45
B 10.41
·C 21.21
0 8.51
E 1.78
F 4.19
H 22.86
J
0.10
K 11.43
L 1.65
M 40u
P
R
S
T
U
-
9.78
4.11
2.16
2.54
12.95
10.92
21.45
8.76
2.03
4.45
23.62
0.15
11.81
1.91
50"
1.27
10.03
4.42
2.41
3.30
INCHES
MAX
MIN
0.490
0.410
0.835
0.335
0.070
0.165
0.900
0.004
0.450
0.065
40u
0.385
0.162
0.085
0.100
CASE 145C·Ol
0.510
0.430
0.845
0.345
0.080
0.175
0.930
0.006
0.465
0.075
5(jll
0.050
0.395
0.174
0.095
0.130
MM1553 (continued)
ELECTRICAL CHARACTERISTICS (TC ~ 250 C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
BVCEO
70
-
-
Vde
BVCES
100
-
-
Vde
BVEBO
4.0
-
-
Vde
'CBO
-
-
2.0
mAde
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc ~ 50 mAde,lB = 01
",
5'"
0« 400
w!::
~
~'"
I'-..
'::-Cm
;;:
•
is
-200
-400
105
45
35
40
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
110
115
120
125
130
---r-135
140
145
t, FREaUENCY (MHz)
FIGURE 6 - PARALLEL EQUIVALENT OUTPUT
CAPACITANCE versus FREQUENCY
160
I
r- VCE = 22 Vdc
140
Pout=25W
-V~E=22Jdc
Pout=25W
t-
-
0
8
Rin
O. 2
115
lW
1~
1~
g5
140
120
~~
tOO
~~
80
«w
>'"
...........
~'"
j~
~'"
4
110
vt
I"" """-..
FIGURE 5 - PARALLEL EQUIVALENT INPUT
RESISTANCE versus FREQUENCY
105
5.0
Pout = 25 W
~: 200
~«
~'"
r-
o
4.0
800
~.s
f--
10
1000
z
wu.
3.0W
20
S
0':
/
50 I-- t= lJMHz
~
'"
~
3.0
FIGURE 4 - PARALLEL EQUIVALENT INPUT
CAPACITANCE versus FREQUENCY
60
40
v:-
Pin, INPUT POWER (WATTS)
FIGURE 3 - POWER OUTPUT versus
COLLECTOR-EMITTER VOLTAGE
i
~ t--. ~ ~ V
V
'0 ~
1.0
Pin, INPUT POWER (WATTS)
~
./'" ~
~~/
...
22V,!---
3.0
118 ~Hz .....
136MHz _
150 MHz ......
'"3;:
~
----
V
20
r--- JCE = 2J Vdc
~
/
0
~
..----- ~
60
40
j
20
145
105
t, FREGUENCY (MHz)
-----
-
Cout
~
110
115
120
125
130
t, FREaUENCY (MHz)
595
135
140
145
MM1553
(continued)
FIGURE 7 - SAFE-OPERATING AREA
FIGURE 8 - POWER·TEMPERATURE DERATING CURVE
10
100
7.0
,.
~
~
>-
~
a
'"
'"
~8
~
5.0
""'"
3.0
2.0
0
1\
1.0
0.7
0
........
~
0.5
0.3
I~
0
~
........
0.2
0.1
0
1.0
2.0
3.0
5.0
7.0
10
20
50
30
70
25
100
50
75
100
125
150
~
175
200
TC, CASE TEMPERATURE (OC)
VCE, COLLECTOR·EMIITER VOLTAGE (VOLTS)
FIGURE 9 - 150 MHz TEST CIRCUIT
CI3
C2
VCE = 22 Vdc or 44 Vdc
Pout
L1
CI
C5
L1
15 Ohm, 1/2 W Carbon Compo
3/4" x 1/4" x 0,040" Copper Strap
L2
1 Turn #16 AWG Tinned Wire, 1/4" 1.0.
L3
Closewound (3/4" Total Length)
10 TUrns #18 AWG Coated Wire, 518" 1.0.
Closewound (1" Total Length)
RI
C3
L4
CI
C2
C3
C4
C5,C9
VK 200 Ferrite Bead, 2·112 TurnS#22AWG
1.5-15 pF ARCO 460 or Equivalent
6,8 pF Glass
2.7-30 pF ARCO 461 or Equivalent
12 pF Glass
22 pF Glass
FIGURE 10 - 150 MHz TEST CIRCUIT LAYOUT
Circuit Built on 1/4" Copper Plate
596
C6,CB
C7
CIO
9.0-IBO pF ARCO 463 or Equivalent
4.7 pF Glass
2000 pF Mica
Cll
0.Q1 liF Ceramic
CI2
CI3
5.0,uF. 50 V Fail Electrolytic
1200 pF Ceramic Feed-Thru
MM1748, A (SILICON)
NPN SILICON
SWITCHING
TRANSISTORS
NPN SILICON ANNULAR SWITCHING TRANSISTORS
· .. designed for low-voltage, high-speed saturated switching applications.
•
Collector-Emitter Sustaining Voltage VCEO(sus) = 6.0 Vdc (Min) @ IC = 10 mAde
•
DC Current Gain Specified @ 10 mAde and 30 mAde
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Typ) @ IC = 3.0 mAde
•
High Current-Gain-Bandwidth Product fT = 850 MHz (Typ) @ IC = 5.0 mAde - MM 1748A
•
Fast Switching Times @ IC = 10 mAde
ton = 15 ns (Max)
toft = 15 ns (Max)
MAXIMUM RATINGS
Symbol
Value
Unit
VCEOlsus)
6.0
Vdc
Collector-Base Voltage
VCB
15
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
IC
150
mAde
Po
300
1.71
mW
mW/oC
TJ,T stg
-65 to +200
°c
Rating,
COllector-Emitter Voltage
Collector Current - Continuous
Total Power Dissipation @ T A = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
I
I
Symbol
R9JAI1l
I
I
Max
I
Unit
583
I
°C/W
(1) R8JA is measured with the device soldered into a typical printed circuit board.
STYLE 1:
PIN 1. EMITIER
2. BASE
3. COLLECTOR
MILLIMETERS
INCHES
DIM MIN MAX MIN MAX
A
5.31 5.84
0.209
B
4.52 4.95
0.178
C
2.92 3.81
0.115
0
0.533
0.162
E
F
0.408 0.483
G
2.54BSC
H
0.914 1.17
0.03610:046
J
0.711 1.22 0.028 I 0.048
K 12.10
0.500
L
6.35
0.250
M 450 SSC
45' sse
N
1.27 sse
0.050 sse
p
1.27
0.050
All JEOEC dimensions and notes apply
-
~:~~~
-
-
CAse 27
T0-52
597
MM1748,A (continued)
ELECTRICAL CHARACTERISTICS (TA = 260C unles50therwi.. noted.)
I
I
Symbol
Min
Typ
Max
Unit
VCEO(sus)
6.0
-
-
Vde
Collector-Ba.. Braakdown Voltege
(lC = 10l'Ade,IE = 0)
BVCBO
15
-
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
4.0
-
-
Vde
-
-
50
nAde
-
-
5.0
5.0
I'Ade
20
30
10
15
50
VCE(sat)
-
0.2
0.3
Vde
V8E(satl
0.7
0.78
0.S5
IVde
600
800
750
850
-
Cob
-
2.0
3.0
pF
Cib
-
1.8
2.0
pF
Turn-OnTime (Figure 1)
(VCC = 1.0 Vdc, VBE(off) = 1.0 Vdc, IC = 10 mAde,
IBI = 2.0 mAde, IB2 = 1.0 mAde)
ton
-
12
15
ns
turn-Off Time
(VCC = 1.0 Vde,lc = 10 mAde,lBl = IB2 = 1.0 mAde)
toff
-
12
15
ns
ts
-
4.0
6.0
ns
Characteristic
OFF CHARACTERISTICS
Colleetor·Emitter Sustaining Voltege (1)
(lC = 10mAdc,IB = 0)
(IE
= lOI'Ade,lc = Ol
Collector Cutoff Current
(VCB = 5.0 Vde, IE = 0)
(VCB
= 5.0 Vde,
IE
ICBO
= 0, TA =
-
MM1748
MM1748A
Both Devices
1500 c)
ON CHARACTERISTICS (1)
DC Current Gain
= 10 mAde, VCE = 0.5 Vde)
(lC
(lC
= 10 mAde, V CE = 0.5 Vde, T A = -550C)
= 30 mAde, VCE = 1.0 Vde)
MM1748
MM1748A
Both Devices
Both Devices
Collector-Emitter Saturation Voltage
(lC
-
hFE
(lC
120
90
55
20
20
-
-
= 3.0 mAdc,lB = 0.15 mAde)
Base-Emitter Saturation Voltage
(lC = 3.0 mAde, IS = 0.15 mAde)
OYNAMIC CHARACTERISTICS
Current-Gain-Sandwidth Product
(lC = 5.0 mAde, VCE = 4.0 Vde, f
Output Capacitance
(VCB = 5.0 Vdc, IE
MM1748
MM174SA
= 0, f = 140 kHz)
I nput Capacitance
(VBE = 0.5 Vde, IC = 0, f
MHz
fT
= 100MHz)
= 140 kHz)
-
SWITCHING CHARACTERISTICS
Storage Time (Figure 2)
(VCC = 3.0 Vde, IC = 5.0mAdc, IBI
= IS2 = 5.0 mAde)
(1) Pulse Test: Pulse Width <;;3001'5, Duty Cycle <;;2.0%.
FIGURE 1 - TURN-ON AND TURN'()FF TIMES
TEST CIRCUIT
vee+ 1.Ov
FIGURE 2 - STORAGE TIME TEST CIRCUIT
Vee +3.0 V
+5.2 V
50
34
V,nT
1
O.II'F
O.lI'F
50
~Vout
500
500
I---'w-o
O.lI'F
PW;;'200 ns
2.0 k
530
2.0k
-3.3 V
50
O.II'F
330
toff
Vee = +5.0 Vde
Vln = -4.0 V
ton
Vee m -1.0 V
Vln = +6.0 V 0
t, <;; 1.0 ns
tof1
MM1803 (SILICON)
For Specifications, See 2N3l37 Data, Volume I.
598
430
MM 1941 (SILICON)
1 ~3
\COllector connected to case
~
NPN silicon annular transistor for high-frequency
power oscillator, multiplier and driver applications.
CASE 22
(TO·IS)
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
MAXIMUM RATINGS (TA=25 0 Cunlessotherwisenoted)
Rating
Symbol
Value
Unit
Collector-Base Voltage
VCB
30
Vdc
Collector-Emitter Voltage
VCES
30
Vdc
VEB
3.0
Vdc
Base Current
~
30
mAde
Collector Current - Continuous
IC
200
mAde
Input Power
P.
100
mW
Output Power
Pout
250
mW
Power Dissipation @ T C = 25' C
Derate above 25'C
PO*
600
4.0
mW
mW/"C
Power Dissipation @ T A - 25' C
Derate above 25' C
.
P D*
300
2.0
TJ
175
mW
mW/'C
·C
Tstg
-65 to +175
'C
Emitter-Base Voltage
m
Junction Temperature
Storage Temperature Range
*See Safe Area Curve
ELECTRICAL CHARACTERISTICS (TA = 250(; unless otherwise notetu
Characteristic
Symbol
Collector-Emitter III
Sustain Voltage
VCES{sus)
Colleetor- Base
Breakdown Voltage
BVCBO
Collector Emitter-Open
Base Sustain Voltage (11
BVCEO{sus)
Collector Cutoff Current
ICBO
Test Conditions
30
40
IC = 100 /LAde, IE = 0
30
40
IC - 15 mA, IB - 0
20
-
-
-
0.01
0.1
-
25
/LAdc
-
0.1
10
/LAde
25
50
-
-
6.0
8.0
-
-
2.5
pF
-
mW
VCB - 15 vdc, IE = 0
= 15 Vde,
IE
= 0,
TC = 100'C
Emitter Cutoff Current
lEBO
V EB = 3 Vdc, IC = 0
DC Current Gain
hFE
IC
Ihfel
VCE - 10 Vde, IC - 10 mAde
f=lOOmc
Collector Output
Capacitance
Cob
VCB - 15 Vdc, IE
Power Output
P
Pin - 20 mW max, f - 175 MHz
Power Gain
Ge
(IiPulse Test: PW = 100
/LS;
out
Typ ~ax Unit
IC = 15 mA, RBE = 0
VCB
AC Current Gain
Min
= 10
VCC
mAde, VCE
= 13.6 Vdc,
DC - 2%
599
= 10 Vde
= 0,
f - 100 kHz
IC (max) = 25 mA
-
-
100
-
7.0
9.0
Vdc
Vdc
Vdc
dB
MM 1941 (continued)
(continued)
ELECTRICAL CHARACTERISTICS
Test Conditions
Symbol
Characteristic
Power Output
(Oscillator)
Min Typ Max Unit
f = 80 MHz , VCC = 13.6 Vde,
Pout
-
50
-
mW
-
3.0
-
dB
IC(typ) - 20 mAde
Power Gain (Multiplier)
Ge
fin - 80MHz, fout - 240MHz
VCC - 13.6 Vdc, Pout'" 30 mW
IC(typ) - 25 mAdc
*Pu!se Test: PW = 100
/LS;
DC = 2%
POWER OUTPUT ,ersus FREQUENCY
POWER OUTPUT versus FREQUENCY
300
300
ie,
VCE=jVdC
250
~
I
!
J
~
2{)0
"""
ISO
250
!..
'"
P;, = loom~
~,=8Omw
P;n::;;;:60mW~
~
200
~
150
l<
100
S
100
",-'\ " I
~ ~;,=~mw
50
100
o
500
200
500
200
100
50
t. FREQUENCY rMH,)
f, FREQUENCY ~MHz)
INPUT AIID OUTPUT IMPEDAIICE HI'SIIS
SAFt OPERATIIIC AREA
COLLECTOR CU.RENT PARALLn EQUIVALENT
700
1000
t 175 MHz
10V
Ve
Te=2S·C
600
5
~
S
~.9
500
"
\
400
o
~
I
J
0.5_ PUlSE WIDTH _
~OUTYCYCLE
DC~ r-o
W
U
-
M
i'-.
100
~
~
U
50
!1i
.........
I
RtWt - R.V..
200
S
........
"i'...
200
500
I'"
e
\.
300
100
~
10
2{)
I
R.YI.
o
10
20
30
~
i...
;;
VeE _ 13.6 Vdc
1=150 MHz
250
..
g
200
S
V
100
50
~
~
V
~
J
/r
/
o
o
250
2{)
~
~
50
80
p;,. POWER INPUT (mW)
TO
80
80
~f-'
./
200
V
150
100
50
W
50
POWER OUTPUT CHARACTERISTICS
300
VeE - 8Vdc
150
r--
Ie. COLLECTOR CURREIIT (mAl
f:::::250 MHz
g
S
-
T-+-
20
POWER OUTPUT CHARACTERISTICS
300
R;,
r--
VeE. COLLECTDR·EMlmR VOLTAGE !VOLTS)
..
p;,=Jmw
o..'i
50
cg
= 13hdc
80mW
p;,=20mw~~
~
...
/p;,
V
V
o
~
600
o
n
V
2{)
V
~
~
50
50
P;,. POWER INPUT (mW)
TO
80
80
~
MM200S-2 (SILICON)
PNPSILICON
AMPLIFIER
TRANSISTOR
PNP SILICON ANNULAR TRANSISTOR
. . . designed for use in general·purpose amplifier and switching
applications.
•
Electrically Similar to 2N2906, 2N2907.
SEATING
PLANE
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
VeEO
20
25
4.0
600
400
2.28
1.4
8.0
Vdc
mw/oe
-65 to +200
°e
Collector-Base Voltage
VeB
Emitter-Base Voltage
VEB
Collector Current - Continuous
Ie
= 25°C
Po
Total Power Dissipation@Tc= 25°C
Derate above 25°C
Po
Total Power Dissipation @TA
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ,T stg
Vdc
Vdc
mAde
mW
mW/oe
Watts
DIM
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
STYLE I:
PIN I. EMITTER
2. BASE
3. COLLECTOR
I ROJA(1) I
I
438
I
R8Je
12.5
(1) R8JA is measured with the device soldered into a typical printed circuit board.
Unit
oem
oem
INCHES
MIN
MAX
5.84
0.209 0.230
4.95
0.178 0.195
5.33
0.170 0.210
0.533 0.Q16 0.021
0.030
0.762
0.406 0.483 0.Q16 0.019
0.100BSC
2.54 BSC
0.036 0.046
0.914 1.17
0.0:/8 0.048
J
0.711 1.22
0.500
K 12.70
0.250
L
6.35
M
45° BSC
45° BSC
N
0.050 B.~
1.27 SSC
P
1.27
0.050
All JEDEC notes and dimensions apply.
A
I
Max
Symbol
MILLIMETERS
MIN
MAX
B
C
0
E
F
G
H
5.31
4.52
4.32
0.406
-
CASE 22·03
(TO·1S)
601
MM2005-2 (continued)
I
*ELECTRICAL CHARACTERISTICS (T A = 250 C unle.. otherwise noted.)
I
Symbol
Min
Typ
M.x
Unit
Colleetor·Emitter Breakdown Voltage (1)
(lC = 10mAde.IB = 0)
BVCEO
20
-
-
Vde
·Coliector·Ba.. Breakdown Voltage
(lC = 1001'Ade.IE = 0)
BVCBO
25
-
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
4.0
-
-
Vde
ICBO
-
-
0.5
I1Ade
DC Current Gain
(lC = 150 mAde, VCE = 10 Vde)
hFE
100
200
400
-
Collector-Emitter Saturation Voltage
VCE(sat)
-
0.3
1.0
Vde
VBE(sat)
-
0.7
2.0
Vde
IT
-
300
-
MHz
Output Capacitance
(VCB = 10 Vde, IE = 0, I = 100 kHz)
Cob
-
6.0
15
pF
I nput Capacitance
Cib
-
20
-
pF
ton
-
20
45
I1S
toll
-
85
100
I'S
Characteristic
OFF CHARACTERISTICS
(IE = l00I'Ade.IC = 0)
Collector Cutoff Current
(VCB = 15 Vde,IE = 0)
ON CHARACTERISTICS (1)
(lC = 150 mAde,lB = 15 mAde)
Base-Emitter Saturation Voltage
(lc = 150 mAde, IB = 15 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 20 Vde, 1= 100 MHz)
(VBE = 0.5 Vde, IC = 0, I = 100 kHz)
SWITCHING CHARACTERISTICS
Turn-On Time
(Vec = 30 Vde,lc = 150 mAde, IBI = 15 mAde) (Figure la)
Turn·OII Time
(Vec = 6.0 Vde, IC = 150 mAde,lBl = IB2 = l i mAde) (Figure lb)
(1) Pulse Test: Pulse Width'; 300 I'S, Duty Cycle'; 2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
lb - TURN-OFF TIME
1. - TURN-ON TIME
·30
INPUT
Zo=&OS!
PRF = 150 PPS
RISE TIME" 2.0 ns
+1& V
INPUT
Zo=&O"
PRF = 1&0 PPS
RISE TIME" 2.0 '"
200
1.0 k
......
r
~
O.:LJ
TO OSCILLOSCOPE
RISE TIME" &.0 ns
.j
&0
602
,
~J
lN916
200n.l-
-=
-=
37
r
1.0 k
&0
-
1.0 k
0:u-
-J200nsL
·6.0
-=
-=
TO OSCILLOSCOPE
RISE TIME" &0 n.
MM2258 (SILICON)
MM2259
MM2260
NPN silicon transistors designed for video output circuitry in transistorized television receivers.
CASE 31
(TO-S)
Collector connected to case
MAXIMUM RATINGS
Value
Rating
Symbol
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
MM2258
MM22S9
MM2260
Unit
VCB
120
175
Vdc
VCEO
120
175
Vdc
VEB
Collector Current -Continuous
Total Power Dissipation @ TA
IC
= 25°C
PD
Derating Factor Above 25 ° C
Total Power Dissipation @ TC
500
300
1.0
5.71
= 25°C
PD
Derating Factor Above 25°C
5.0
mAdc
Watt
mW/oC
Watt
28.6
mW/oC
TJ
+200
°c
Tstg
-65 to +200
°c
ROJA
175
°C/W
ROJC
35
°C/W
Junction Temperature, Operating
storage Temperature Range
Vdc
~.O
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to
Ambient
Thermal Resistance, Junction to Case
603
MM2258, MM2259, MM2260 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristics
Symbol
Collector Cutoff Current
(V CB = 75 Vde, IE = 0)
(VCB = 75 Vde, IE = 0, T A = 150°C)
ICBO
Emitter Cutoff Current
(V EB = 4 Vde, IC = 0)
lEBO
Collector-Base Breakdown Voltage
(IC = 10 !
<.)
<.)
0
30
~
--
t-
I-
r--.
C,b
ALL TYPES
0
T,
I-"
........ ..... ~
ll-
50
125°C
100
z: 70
FIGURE 2 - JUNCTION CAPACITANCE VARIATIONS
25°C
I
T,
0
I
=
II
-55°C
Cob
....
MM2258
7
5
MM2259, MM2260
3
20
ALL TYPES
Veo = 2V
10
20
30
50
i'"
2
I I II
10
....
I
70 100
0.1
0.3 0.5
1.0
3.0 5.0
REVERSE BIAS (Yde)
Ie, COLLECTOR CURRENT ImAde)
604
10
30
50
100
MM2258, MM2259, MM2260 (continued)
SMALL SIGNAL h PARAMETER CHARACTERISTICS
(VeE
= 10 V, TA = 25°C, f = 1 kHz)
FIGURE 3 - CURRENT GAIN
FIGURE 4 - OUTPUT ADMITTANCE
400
50
200
20
MM2258. MM226~ ~
,....1-'
MM2258. MM226~
V
~
......... 1--"
....
,.....
- ~
50
. / I--"
I"'"
~
"
~~
'"'"
MM2259
~
i-"""
,.
i,....--'
~~
MM2259
~
2.0
0
0.1
0.5
0.2
1.0
5.0
2.0
\.0
0.1
10
1.0
2.0
5.0
10
Ie. COLLECTOR CURRENT (mAde)
FIGURE 5 - INPUT IMPEDANCE
FIGURE 6 - VOLTAGE FEEDBACK RATIO
50
20
1\
or\
0.5
0.2
Ie. COLLECTOR CURRENT (mAde)
~
"-
r\.
Of\. 1\
I"
" I'
0
I'
I'
"
1'1
MM2259
0
0
'"
l\ 1\
MM2258, MM2260
MM2258. MM2260
~
0
I"
r\
r\ f\
MM2259
r\ l\
1.0
0
1"-
O. 7
"
1. 0
"-
1'\
I"
r-..
~
~
o. 5
O. 4
0.1
0.2
0.5
1.0
2.0
5.0
O. 5
0.1
10
Ie. COllECTOR CURRENT (mAde)
0.2
0.5
\.0
2.0
Ie. COLLECTOR CURRENT (mAde)
605
5.0
10
MM3000 thru MM3003 (SILICON)
NPN silicon epitaxial transistors designed for general-purpose, high':'voltageapplication s.
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
CASE 79
{TO· 39)
MAXIMUM RATINGS
Rating
Collector-Emitter
Vo~tage
Emitter-Base Voltage
Symbol
MM3000
MM3001
MM3002
MM3003
VCEO
100
150
200
250
VEB
Collector Current -Continuous
Total Power Dissipation @ T A
5.0
200
Ie
= 25°C
PD
= 25°C
Derate above 25°e
ELECTRICAL CHARACTERISTICS
50
mAdc
Watt
mW;oe
5.0
Watts
28.6
mW;oC
. -65 to +200
T J , T stg
(T,
50
5.71
PD
Operating and Storage Junction
Temperature Range
Vdc
Vdc
1.0
Derate above 25°C
Total Power Dissipation @ TC
200
Unit
°e
= 25'C unless otherWISe noted)
Characteristic .
Symbol
Min
BVCEO
100 •
100
150
200
250
Max
Unit
OFF CHARACTERISTICS
Colleetor-Enlitter Breakdown Voltage (1)
(IC = 10 mAde, IB = 0)
MM3000
MM3001
MM3002
MM3003
Emitter-Base Breakdown Voltage
(IE = 10 I'Ade,' IC = 0)
BVEBO
= 100 Vde,
IE
= 0)
Vde
1.0
MM3001
-
MM3002, MM3003
-
5.0
150
-
-
7.0
15
MM3000
I CBO
Vde
-
5.0
Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
(VCB = 75 Vde, IE = 0)
(V CB
--
I'Ade
1.0
ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC
= 10 mAde,
VCE
Output Capacitance
(VCB = 20 Vde, IE
fT
= 20 Vde, f = 100 MHz)
= 0,
f
= 100 kHz)
MM3000, MM3001
MM3002, MM3003
(1) Pulse Test. Pulse Wldthe300l's, Duty Cycle 2.0%
606
Cob
MHz
pF
MM3005 (SILICON)
MM3006
MM3007
NPN SILICON
AUDIO TRANSISTORS
NPN SI.LlCON ANNULAR TRANSISTORS
· .. designed for high·voltage audio driver amplifiers and general·
purpose switching and oscillator applications.
•
High Coliector·Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 10 mAde (MM3007)
•
Low Output Capacitance Cob = 15 pF (Max) @VCB = 10 Vdc
•
Excellent Gain Linearity - 1.0 to 250 mAde
•
Complements to PNP MM5005. MM5006. MM5007
MAXIMUM RATINGS
Svmbol
MM3005
MM3006
MM3007
Unit
VCEO
60
BO
100
Vdc
Collector-Base Voltage
Vce
BO
100
120
Vdc
Emitter-Base Voltage
VEB
Rating
Collector-Emitter Voltage
Collector Current
Continuous
Total Power Dissipation @TA
IC
=25°C
Po
=25°C
Po
Derate above 25°C
Total Power Dissipation @TC
•
..
Vdc
2.5-
Adc
1.05.71
Watt
mW/oC
B.O
_45.6
Derate above 25°C
Operating and Storage Junction
.
5.0
TJ.Tstg
~
-65 to
•
•
+200~
Temperature Range
607
Watts
mW/oC
°c
MILLIMETERS
INCHES
MIN
MAX
MIN MAX
0.350 0.370
B.B9 9.40
0.315 0.335
B.OO 8.51
6.10 6.60
0.240 0.260
D
0.406 0.533 0.016 0.021
E
0.009 0.125
0.229 3.18
F
0.406 0.483 0.016 0.019
0.190 0.210
G
4.83 5.33
H
0.711 0.864 0.028 0.034
0.737 1.02
0.029 0.040
J
0.500
K 12.70
0.250
L
6.35
M
45" NOM
45" NOM
P
1.27
0.050
Q
90" NOM
90" NOM
R
2.54
0.100
All JEDEC dimenSions and notes apply.
CASE 79-02
TO·Jg
DIM
A
8
C
MM3005, MM3006, MM3007 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
Min
Max
60
80
100
-
80
100
120
-
-
5.0
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)
Collector-Base Breakdown Voltage
(lC
= 100 !lAde, IE = 0)
Vde
BVCBO
MM3OO5
MM3OO6
MM3OO7
Emitter-Base Breakdown Voltage
(IE
Vde
BVCEO
MM3005
MM3006
MM3OO7
BVEBO
Vde
= 100 !lAde, IC = 0)
Collector Cutoff Current
(VCB = 60 Vde, IE = 0)
MM3005
= 80 Vde, IE = 0)
MM3006
(VC8
(VCS = 100 Vde, IE = 0)
nAde
ICBO
-
100
-
100
All Types
40
-
MM3007
Emitter Cutoff Current
(VBE = 4.0 Vde, IC = 0)
lEBO
100
100
nAde
ON CHARACTERISTICS
DC Current Gain
= 1.0 mAde, VCE = 1.0 Vde)
(lC = 150 mAde, VCE = 1.0 Vde)
(lC = 200 mAde, VCE = 1.0 Vde)
(lC = 250 mAde, VCE = 1.0 Vde)
(lc
MM3OO5
50
250
MM3006
50
250
MM3007
50
250
VCE(sat)
-
0.35
Vde
VBE(on)
0.60
0.75
Vde
IT
50
-
MHz
Cob
-
15
pF
Collector-Emitter Saturation Voltage
(lC
-
hFE
= 150 mAde, IB = 15 mAde)
Base-Emitter On Voltage
(lC = 150 mAde, VCE = 1.0 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, I = 20 MHz)
Output Capacitance
(VCB
= 10 Vde, IE = 0, I = 100 kHz)
(1) Pulse Test: Pulse W,dth .. 300 !lS, Duty Cycle .. 2.0%.
608
MM3008 (SILICON)
MM3009
High-voltage NPN silicon transistors designed for
video output circuitry in transistorized television receivers.
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
CASE 79
(TO-39)
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous,
Symbol
MM3008
VCEO
120
MM3009
Unit
180
Vde
VEB
6.0
Vde
IC
400
mAde
Total Power Dissipation @ TA = 25"C
Derate above 25"C
Po
1.0
5.71
Watt
mW/"C
Total Power Dissipation@ TC = 25"C
Derate above 25"C
Po
4.0
22.8
Watts
mW/"C
TJ,T stg
-65 to +200
"C
Operating & Storage Junction
Temperature Range
ELECTRICAL CHARACTERISTICS
(T.
=2S"C unless otherwise noted)
Characteristic
Symbol
Min
Max
120
180
-
6.0
-
-
0.1
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage*
(IC = 10 mAde, IB = 0)
MM3008
MM3009
Emitter-Base Breakdown Voltage
~ = 10 /LAde IC = 0)
BVEBO
Collector Cutoff Current
(VCB = 120 Vde, IE = 0)
MM3008
= 180 Vde,
MM3009
(VCB
~
BVCEO*
"0)
Emitter Cutoff Current
(VBE =4.0 Vde, IC = 0)
ICBO
lEBO
Vde
Vde
"Ade
0.1
0.1
"Ade
ON CHARACTERISTICS
DC Current Gain
= 1. 0 mAde, VCE = 10 Vde)
(IC = 10 mAde, VCE = 10 Vde)
hFE
Uc
(~
=30 mAde,
VCE
30
-
50
-
-
3.0
-
20
30
40
= 10 Vde)
-
DYNAMIC CHARACTERISTICS
Current-GaIn-Bandwidth Product
(IC =20 mAde, VCE = 20 Vde, f
fT
=20 MHz)
Collector-Base Capacitance
(VCB =20 Vde, IE = 0, f = 100 kHz)
C cb
Input Capacitance
(VBE = 0.5 Vde, ~
C ib
Puise Test:
= 0, f = 100kHz)
Pulse Width:$ 300 /L8, Duty Cycle:$ 2. 0%.
609
MHz
pF
pF
MM3008, MM3009 (continued)
FIGURE 1- CURRENT GAIN
20'0'
II
TJ = 25°C
VCE = 10' V
z
10'0'
«:
C!I
I-
z
.......
.... ~
70'
<>::
<>::
=>
U
.... i'i-'
50'
---
hie
--
i--" I"""
........
~
-
@ 1.0' kHz
......-
hFE
~
~
""~
"\ \
,
\
3D
20'
0.5 0'.7
1.0'
2.0'
3.0'
5.0'
7.0'
20'
10'
50'
3D.
Ic. COLLECTOR CURRENT (rnA)
FIGURE 2- CAPACITANCE
10'
7.0'
G::
..9.......
u
5.0'
.............
Z
a...
l=>
0
~
u
2.0'
1.0'
1.0'
2.0'
3.0'
5.0'
7.0'
10'
.........
r--.. ..... ....
20'
3D
VR• REVERSE VOLTAGE (VOLTS) .
610
-
r... r....~ ...
50'
,
70'
10'0'
MM30S3
(SILICON)
NPN SILICON ANNULAR
NPN SILICON
SWITCHING AND AMPLIFIER
TRANSISTOR
TRANSISTOR
. . . designed for medium current, medium power amplifier and
switching applications.
•
High Gollector-Emitter Breakdown Voltage
B\(CEO = 50 Vdc (Min)
•
Similar to 2N3053 in an easy to handle TO-39 Package
•
Collector Current - Continuous
IC= 1.0Adc
STYLE 1
PIN 1. EMITTER
I
2. BASE
3. COLLECTOR
...---1
/'
Q
MAXIMUM RATINGS
Symbol
Rating
N
Value
Unit
Collector-Emitter Voltage
VeEO
50
Vdc
Collector-Base Voltage
VeBO
80
Vdc
Emitter-Base Voltage
VEBO
6.0
Vdc
Collector Current - Continuous
Ie
1.0
Adc
Total Power Dissipation @ T A = 2SoC
Po
1.0
5.72
Watt
mW/oe
Po
5.0
28.6
Watts
mw/oe
TJ,T,tg
-65 to +200
DC
Derate above 25°C
Total Power Dissipation @ T C
Derate above 2SoC
= 2SoC
Operating and Storage Junction
Temperature Range
MILLIMETERS
INCHES
MIN MAX
MIN MAX
0.350 0.370
8.89 9.40
0.315 0.335
B
8.00 8.51
6.10 6.60
0.240 0.260
C
D
0.406 0.533 0.016 0.021
E
0.009 0.125
0.229 3.18
0,406 0.483 0.016 0.019
F
0.190 0.210
G
4.83 5.33
H
0.711 0.864 0.028 0.034
J
0.737 1.02
0.029 0.040
K 12.70
- 0.500 0.250
L
6.35
45 0 NOM
45 0 NOM
M
P
1.27
0.050
0
0 NOM
90
NOM
90
n
R
2.54
- 0.100
All JEOEC dimenSions and notes apply.
CASE 79-02
DIM
A
TO-39
611
MM3053 (continued)
ELECTRICAL CHARACTERISTICS (TA ~ 250 C unless otherwise noted I
Characteristic
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage (11
(lC = 1.0 mAde,lB ~ .01
BVCEO
5.0
-
Vde
CoII.etor-Base Breakdown Voltage
(lC = 100 "Ade, IC =.01
BVCBO
8.0
Vde
Emitter-Base Breakdown Voltage
(Ie = 100 "Ade, Ic ~ .01
BVEBO
6_.0
Vde
OFF CHARACTERISTICS
COllectOr Cutoff Current
(Vce = 5.0 Vdc, IE =01
ICBO
100
nAde
Emitt.r Cutoff Current
(VBE = 4.0 Vde, IC = .01
lEBO
loa
nAdc
ON CHARACTERISTICS
DC Current Gai n
(lC = 1.0 mAde, VCE ~ 10 Vdel
(lc =150 mAde, VCE ~ 1.0 Vdel(11
hFE
CollectorMEmitter Saturation Voltage
(lC ~ 15.0 mAde, IB = 15 mAdel
VCE(satl
0.6
Vde
Base-Emitter Saturation Voltage
(lC =15.0 mAde, IB = 15 mAdel
VBE(satl
1.2
Vde
-
MHz
1.0
pF
8.0
pF
35
40
-
-
300
DYNAMIC CHARACTERISTICS
Current·Gain - Bandwidth Product (11,(21
(lC = 5.0 mAde, VCE = 1.0 Vde, f = 2.0 MHzl
fT
Output Capacitance
(Vce
= 1.0 Vde,
IE ~
a, f
Cob
= 1..0 MHzl
Input Capacitance
(Vee ~ .0.5 Vde, IC
Cib
= .0, f = 1.0 MHz)
(1) Pulse Test: Pulse Width::S;;: 300 IJs. Duty Cycle ~ 2.0%.
12)
1.0.0
fT = "'fel· f test
612
-
MM3726 (SILICON)
PNP silicon annular transistor designed for
medium-current, high-speed saturated switching and
core driver applications, and for complementary circuitry with NPN type MM3725.
Collector connected to cale
CASE 31
(TO·5)
MAXIMUM RATINGS
(TA = 25°C unless otherwise noted)
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous
Symbol
Value
Unit
VCEO
50
Vdc
VEB
5.0
Vdc
IC
1.5
Adc
Total Power Dissipation @ TA
Derate above 25°C
=25°C
Po
1.0
5.71
Watt
mW/oC
Total Power Dissipation @ TC
Derate above 25°C
=25°C
Po
5.0
28.6
Watts
mW/oC
~J" TSM
-65 to -1'200
°c
Operating and storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal ReSistance, Junction to Case
R6JC
35
°C/W
Thermal Resistance, Junction to Ambient
R'.JA
175
°C/W
Characteristic
613
MM3726 (continued)
, ';
...
ELECTRICAL CHARACTERISTICS
','
,,'~';
~.
(T A = 2SoC unless otherwise noted)
Characteristic
Fig. No.
OFF CHARACTERiStiCS
..
-
Collector···Emltter Breakdown'Voltage (1)
(Ic· 10 mAde, 1a = 0)
Emitter-Base Breakdown Voltage
(IE = 10 ~Ade, IC = 0)
Collector Cutoff Current
(VcB ' 40 Vde, IE = 0)
Max
BVCEO
BVEBO
5.0
ICBO
VcIc
-
50
-
0.1
30
120
15
-
-
0.6
,V~c
"Ade
ON CHARACTERISTICS t1I
DC Current Gain
(lC = 500 mAde, VCE = 2 Vde)
9
hFE
(IC = lAde, VCE = 5 Vde)
Collector-Emitter Saturation Voltage
(IC = 500 mAde, 1a = 50 mAde)
10,11
, .. Vdc
VCE(s.t)
(IC = lAde, 1a = 100 mAde)
Base-Emitter Saturation Voltage
(IC = 500 mAde, 1a = 50 mAde)
11
".
"
-
1.2
0.8
1.1
-
1.3
200
-
-
10
Vde
VBE(sat)
(lC = lAde, 1a = 100 mAde)
DYNAMIC CHARACTERISTICS
Current· Gain - Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, I = 100 MHz)
Collector-Base Capacitance
(VCB
:=
-
IT
3
Ceb
10 Vdc, IE = 0, f = 100 kHz, emitter guarded.)
Emitter-Base Capacitance
(VSE "" 0.5 Vdc,
Ie = 0,
Turn-On Time
(VCC = 30 Vde, VBE(ofl) = 2 Vde, IC = 500 mAde,
1al = 50 mAde,
Ra = 200 ohms,
Cob
1,5,8
ton
2,7,8
toff
1,5,6
ton
Turn-Off Time
(VCC = 30 Vde, IC = lAde, 1a1 =·1az = 100 mAde,
2,7,8
toft
Ra
Ra = 100 ohms,
..
pF
80 ,'.'
-,,-
no
RL = 60 ohms)
Turn-On Time
(VCC = 30 Vde, VBE(ofl) = Z Vde, IC = lAde,
1al = 100 mAde,
= 100 ohms, . RL = 30 ohms)
pF
-
RL = 60 ohms)
Tum-Off Time
(VCC = 30 Vde, IC = 500 mAde, 1a1 "1a2 = 50 mAde,
Ra = 200 ohms,
3
f = 100 kHz, collector guarded)
MHz
RL = 30 ohms)
-
30
-
90
-
35
-
60
-
no
..
.-
.;'-
(1}Pulse Test: Pulse Width ~300 /Js, OU,ty Cycle ~ 2.0%.
SWITCHING TIME EQUIVALENT TEST CIRCUITS
FIGURE 1- TURN-ON TIME
FIGURE 2- TURN-GFF TIME
'=ti
- 30 V o--"VIII,----,
RL
I
V"
::*::Cs' < SOpF
R,
+2V
I
o
-108---
I,::J
_..J
I,
+9V±=lf''" V;.-)30_V..R'V·~ri:~""'-~"1I-" SOO'E
Vi. 0
-I1V~',
IN916
.,'
':
1.0.< t, < 500 p'
'" < 50$
< 2ns
0.2 < t, < SOO!"
DUTY CYCLE ::::: 2%
DUTY CYCLE::::: 2%
'TOTAL SHUNT CAPACITANCE Of TEST JIG, CONNECTORS, AND OSCILLOSCOPE.
614
""l' Cs' < 50 pF
I
_.J,
. :!
MM3726 (continued)
TRANSIENT CHARACTERISTICS
-25'C
--- 150'C
FIGURE 3- CAPACITANCES
FIGURE 4- CHARGE DATA
100
-
0
0
50
7. o=vee
5.O-Ie/l•
c..
3~oV
V
3.0
0
'it 2. 0
0
,-
l.,.-
~
1. 0
~ O. 7
o. 5
ee...
t"-
0
iii
i
Or
0
O.3
0
Q,..
0.2
3.0,
2.00.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
20 30
O. I
50
10
20
30
REVERSE VOLTAGE IVOLTS)
50
70
100
200
300
500 700 1000
Ie, COlLECTOR CURRENT ImAl
FIGURE 6- RISE TIME
FIGURE 5- TURN·oN TIME
100
Vee 30V
le/l.- 10
0
["
50
~
0
I"~
0
7.0
20
30
200
1--'
-
200
300
500 700 1000
100
......
r-. t.....
~Ioo
i
100
FIGURE 8- FALL TIME .
FIGURE 7. - STORAGE TIME
-
70
Ie, ColLECTOR CURRENT ImAl
Ie, COlLECTOR CURRENT (mAl
300
50
-
Vee-'30V
0
I, =1.. ,
50
".
I'
0
~
(e/l. - IO - ~i""i
I I
lell.-2O ~~
50
;; 30
"
: ....
Icll.= U).J
IZ'
t--.
-
1eI1, = 20
20 f--I.,-I..
0
1,'=1,-"'''
0
I0
10
20
30
50
70
100
200 300
500 700 1000
0
20
30
50
70· 100
200
Ie. COUECTOII CURRENT ImAl
Ie. COUECTOII CURRENT ImAl
6,15
300
500 700 1000
MM3726 (continued)
STATIC CHARACTERISTICS
FIGURE 9- CURRENT GAIN
300
--
~0
--
-
20
---- - ..,J-- p,
-- ::'r,
--::::: ~ -
~-~-
25°C
-
-
~~
~-f-
- -,
55°C
,,,,:=>
r--.
.~
'"""
~
~
,t"
Vc,= IV
V'rlO V
r-- --j
0
--,",
-I-'
--- - - - - ---- - - JIl2('._
- -- ~}J_.!!~£.
-- --------
200
2,0
3,0
5.0
7,0
10
20
50
30
70
100
200
300
500
700
1000
Ic, COLLECTOR CURRENT (mAl
FIGURE 10 - SATURATION REGION
1,0
\
\
500mA
100mA
Ic = 10mA
1\
\.
\
1
\
o0.1
,
I""-t-.
'\
\.
. . . 1"-
IA
............
'I'-.
I""'- ~
0.2
0.3
0,5
0.7
2,0
1.0
3.0
TJ = 25°C
5.0
7,0
10
20
30
50
70
1 1001
200
IL BASE CURRENT (mAl
FIGURE 12 - TEMPERATURE COEFFICIENTS
FIGURE 11 - "ON" VOLTAGES
1.2
+1.0
1.0
~
V"(N'I @(cll, = 10
f-
J..:.I-r"
V"I.~I@IVc,=
0
1,0
tH+:-W.
t?
~
(-55°C I. 25°CI
~-I,0
;;;
OV
~ -2.0
1/
0,2
'III(25°C 1.I75°CI
II
8vc for VCE(N'I
i-"
I-"
r-.
/Iv,forV..
iC'("'11@1cil~ ~I ~L.
II
2.0
5.0
10
20
50
100
200
500
1000
-3.0
1,0
Ic. COllECTOR CURRENT (mAl
616
2,0
5,0
10
20
50
100
Ic, COLLECTOR CURRENT (mAl
200
500
1000
MM3734 (SILICON)
MM3735
NPN SILICON
CORE DRIVER
TRANSISTORS
NPN SILICON ANNULAR
CORE DRIVER TRANSISTORS
... designed for use in core driver applications and high speed, high·
current switching applications.
•
Coliector·Emitter Breakdown Voltage BVCEO = 30 Vdc (Min) - MM3734
= 50 Vdc (Min) - MM3735
•
Low Coliector·Emitter Saturation Voltage VCE(sat) =0.29 Vdc (Typ) @ IC = 1.0 Adc
High Current·Gain-Bandwidth ProductfT = 400 MHz (Typ) @ IC = 50 mAdc
•
•
Fast Switching Times ton = 16 ns (Typ) @ IC = 1.0 Adc
toff =2B ns (Typ) @ IC = 1.0 Adc
•
Devices Electrically Similar to 2N3734 and 2N3735
JJIa
R
~
MAXIMUM RATINGS
Rating
Symbol
MM~34 MM~35
Unit
50
Vdc
75
Vdc
Collector-Emitter Voltage
VCEO
30
Collector-Base Voltage
Vca
50
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
1.5
Ado
Total Power Dissipation @ TA = 25°C
Po
1.0
5.71
mW/oC
4.0
22.8
mW/oC
-65 to +200
°c
Dera .. abo"" 25°C
Total Power Dissipation @ T C = 2SOC
Dera .. abo"" 2SOC
Operating and Storage Junction
Po
TJ,T st9
SEATiNG
PLANE
B
:::::
rP f .
A
---Tn
__
~K
--II_~
STYlE 1:
PIN 1. EMITIER
2. BASE
3. COLLECTOR
N
Watt
Watts
Temperature Range
DIM
A
B
MILLIMETERS
MIN MA
C
0
THERMAL CHARACTERISTICS
Charecteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance. Junction to case
F
Symbol
MIX
Unit
RSJA(lI
175
°CIW
RSJC
44
°CIW
(1) A6JA is measured with the device soldered into a typical printed circuit board.
G
H
J
K
L
M
P
Q
R
INCHES
MAX
0.350 0.370
0.315 0.335
0.240 0.2BO
0.016 0.0 1
0.1
O.
O.OIB
. 19
0.19
0.21
0.0
0.029 0.Q40
0.5
O.
4
OM
0.050
9 NOM
0.100
MIN
CASE 79
TO-39
617
MM3734, MM3735 (continued)
I
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
Characteristic
Symbol
Min
Typ
Max
30
50
-
-
50
75
-
5,0
-
-
-
40
50
35
25
20
25
20
85
100
65
35
35
30
30
Unit
OFF CHARACTERISTICS
, Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde',11! = 0)
Collector-Base Breakdown Voliage
(lC= 10"Ade,IE = 0)
Emitter-Base
Breakdo~n
Vde
BVCEO
MM3734
MM3735
MM3734
MM3735
Voltage
BVEBO
Vde
BVCBO,
I
-
Vde
500
75
;lAde
(IE, = 10 "Ade,lc = 0)
Collector Cutoff Current
(VCB = 30 Vde,IE = 0)
(VCB
ICBO
= 30 Vde,IE = 0, TA = l00oC)
-
nAdc
ON CHARACTERISTICS (1)
DC Current Gain
(lc = 10 mAde, VCE = 1.0 Vde)
(lC = 100 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1,0 Vde)
(lC = 1.0 Ade, VCE = 1.5 Vde)
(I C = 1.5 Ade, VCE = 5,0 Vde)
-
hFE
MM3734
MM3735
MM3734
MM3735
Collector-Emitter Saturation Voltage
-
100'
100
-
Vde
VCE(sat)
(lC = 10 mAde,lB = 1,0 mAde)
(lC = 100 mAde, IB = 10 mAde)
(lC = 500 mAde, IB = 50 mAde)
(lC = 1.0 Ade, IB = 100 mAde)
-
0,15
0,16
0.20
0.29
0,25
0.30
0,5
1.0
0,8
0,9
0,8
0.65
0.75
0.86
0.94
200
400
'.,
M!'iz
-
7,3
15
pF
Cib
-
72
90
pF
Turn.()n Time
(VCC· 30Vde, VBE(off) = 2.0 Vde,.IC = 1.0Ade,IBl = l00mAdel
ton
-
16
35
' ns
Turn.()ff Time
(VCC· 30 Vde,
tofl
-
28
60
ns
-
Base-Emitter Saturation Voltage
Vde
VBE(sat)
-
(lC= 10 mAde,lB = 1.0 mAde)
(lC = 100 mAde,lB = 10mAde)
(lC = 500 mAde, IB = 50 mAde)
(lC = 1.0 Ade, IB = 1 00 mAde)
1.2
1.4
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 10 Vde, f = l00MHz)
IT
Output Capacitance
(VCB = 10 Vde,lE = 0, I
I "put Capacitance
(VBE = 0,5 Vde,lc
Cob
= 1.0 MHz)
= 0, I = 1,0 MHzl
;
SWITCHING CHARACTERISTICS (FIgure 111
Ie· 1.0 Ade, IBI = IB2 = 100 mAde)
(I) Pulse Wldt,,: Pulse WIdth ';;;300;lS, Duty Cycle ';;;2.0%.
618,
MM3734, MM3735 (continued)
FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
...
3_0
'I.
~
~
1.0
~
O. 7
~
o. 5
~
0_3
~
o.2
200
1'1\
1£: 2_0
\
I.om.~
'
--
- CURRENT LIMIT
- THERMAL LlMIT'@TC - 25°C
ISINGLE PULSE)
SECONO BREAKOOWN LIMIT
3
0.0 0.5 0.7 1.0
5.0 7.0
2.0 3.0
0.07
0.05
-r-.
z
~ lOo";~t=
~100 r-
de
25 C
z>-
.
~
0
'"o
0,...-
a'"
"- '\ 1\
'\. 1\ 1\
8
~ O. I
10 ••
~
o
O.6
.......
~
0
MM3734
MM3735
10
20
30
.--
2010
50
20
30
1.0
TJ = 25°C
~
~
w
r--::f-"
VBEI..!)@lclIB=lo
II. II
II
IC=20mA
100mA
II
500 mA
TJ = 25°C
I.OA·
0.8
~
\
~ 0.6
VBE @VCE" 1.0 V
:i 0.4
"
~
~
:j
VCEI"I)@IC/IB=IO
\
20
30
50 70 100
200 300
IC. COLLECTOR CURRENT ImA)
"-
r--
0.2
0.5
500 700 1000
FIGURE 5 - TEMPERATURE COEFFICIENT
+2.0
~
is
Ll
'Applies for ICIIB < hFE/3
j
200
tt:
1"
10
a
!<0:
f0-
eVB for VBE
r'
'"
-~
r-
r-..
Air'"
...... Ia"'"
A
~
0
V
///
8 o. I
~
II
20
Afi9'
Vcp4lJV
25 V
10V
a
8
-3.0
10
100
~
~
'eVC for VCEI"')
w
~ -1.0
~
50
- VBEloff) = 2.0 V
>-
m100
0
-2.0
2.0
5.0
10
20
lB. BASE CURRENT ImA)
FIGURE 6 - COLLECTOR CUTOFF CURRENT
u
~
1.0
-
1000
TJ = -550 C10 125°C
.§. +1 0
~
.
"- i"'--t--
'1\
8
0
10
>-
250mA
'"
~
O. 2
!
500 700 1000
co
~ O.
$
50 70 100
200 300
IC.COLLECTOR CURRENTlmA)
FIGURE 4 - COLLECTOR SATURATION REGION
2!
w
co
~
"-
.ll'
FIGURE 3 - "ON" VOLTAGES
o.8
J
-55°C
ul
VCE. COLLECTOR-EMITTER VOLTAGE IVOLTS)
I.0
V~E 11.
TJI'12~C
'I.
~
~,
FIGURE 2 - DC CURRENT GAIN
30
50
70
100
200
300
500 700 1000
0.0 1
o
20
4lJ
60
80
100
120
140
TJ.JUNCTION TEMPERATURE 1°C)
IC. COLLECTOR CURRENT ImA)
619
160
180
200
MM3734, MM3735 (continued)
DYNAMIC CHARACTERISTICS
FIGURE 8 - CAPACITANCE
FIGURE 7 - CURRENT-GAIN-BANDWIDTH PRODUCT
100
I- JcJ-lll.~
.........
Cib
50
........
,/'
0
/
/
TJ = 25"e
0
f-l00MH,
T -25"C
0
I-
,)~
0
Cob
7.0
4,0
6.0
100
20
40 60
IC, COLLECTOR CURRENT (mAl
1
200
5.00.1
400
0.2
100
~
/'
30
20 tr@lYCC'10Y
~.
10
100
!
~
~
!
r--
Id @I YaE(olll' 2.0 v
7.0
5.0
30
50 70 100
200 300
Ie. COLLECTOR CURRENT (mAl
50
20
1ilil
r'>c(
70
If@lVCC=10V,lella=10-
50
-
r-....
30
0
0
500 700 1000
If ~ yJc! 3b ~,lldla =110
and YCC =10,lc/la' 20
>-
_r-
.....
r-
...... 1,@llella=20
lellB= 10
20
30
200 300
50 70 100
Ie, COLLECTOR CURRENT (mAl
500 700 1000
FIGURE 11 - SWITCHING TIME TEST CIRCUITS
Tu,n-Qn Time
+30 V
Turn·Off Time
+30 V
30
P,W. 0;;; ZOO n.
RIM TI .... o;;;z n.
Duty Cycle 0;;; Z"
n
+". ,V
Scope
Scope
Vln
100
1.. la2
TJ' 250 C
If@lYCC-'Y'I C a
........
0-
I I I III
20
'Z
0
Oy'
3.0
2·~0
300
..... o
"- .......,l"'
!
10
FIGURE 10 - TURN'()FF TIME
200
70
50
5.0
500
leila- 10
TJ = 250C
Ir@lYCC,30Y
2.0
VR, REVERSE YOLTAGE (VOLTSI
FIGURE 9 - TURN'()N TIME
200
1.0
0.5
100
lN91S
Vln_j __ -\:.: 0
11 - 1.01"
-Z.OV
12 <5
n.
13>11"
DUIV Cycle - Z"
620
-4.0 V
-:
MM3736, MM3737 (SILICON)
NPN SILICON ANNULAR MEMORY DRIVER
. designed for 1 Ampere, high·speed switching applications such
as ferrite core memory and hammer drivers.
NPNSILICON
MEMORY DRIVER
TRANSISTOR
• Coliector·Emitter Breakdown Voltage BVCEO =30 Vdc (Min) @ IC = 10 mAdc - MM3736
.. 50 Vdc (Min) @ IC = 10 mAdc - MM3737
• Guaranteed DC Current Gain hFE =30·120@ IC = 1.0 Adc - MM3736
= 2(1.80@ Ie = 1.0 Adc - MM3737
• Guaranteed Switching Time @ IC" 1.0 Adcton =45 ns (Max) toff" 65 ns (Max)
*MAXIMUM RATINGS
Svmbol
Rating
MM3736 MM3737
Unit
VCEO
30
50
Vdc
CollflCtor·Sa.. Voltage
VCS
50
75
Vdc
Emitter· Base
VES
5.0
Collector Current - Continuous
IC
1.5
Adc
Total Device Dissipation@TA = 2SoC
Po
0.5
Collector·Emitter Voltage
Voltage
2.86
Watt
mW/oC
Po
2.0
11.4
Watts
mW/oC
TJ.Tstg
-65 to +200
°c
D
>' 0.4
0
10
I-- TJ = 25°C
1.2
VCE-l.0V
1000
500
~VCElsatl @IC IB = 10
10
50
20
IC. COLLECTOR CURRENT ImAI
100
500
200
1000
IC. COLLECTOR CURRENT ImAI
FIGURE 4 - COLLECTOR SATURATION REGION
g
~
w
O.S
;;
O.6
'"
~
o
300~
Ic=150mA
L¥
a:
~
:j
0.4
\
I'-
0.2
500mA 8D0 1
mA
\
\
\
~
:IE
, I
I III
1.0
\
"- ....
"'---
8
W
....
>
o
0.5
1.0
2.0
5.0
1111 TJ = 25°C
obl~~
10
-
20
100
50
200
5DO
lB. BASE CURRENT ImAI
~
+2.0
.!
+1. 5
1000
<
3
w
<:;
ft
....
z
'APPLIES FOR ICIIB< hFE/2
e
w
a:
a:
I-'
+1.0
.
~
....
....
~
~
..(1.5
~
-1.0
~
~
i
10
0
w
o
....
w
a:
I:!
"- ~I--'
-1. 5 f--sVB FO R VBE
-2.0
-2.5
10
.....
A
100
....
L.-I--' I---
+0.5 f--'svc FOR VCElsatl
~
~ 1=
1.0
fil
""
:::j
....0
f:l
0.1
I,.
0.01
30
50
100
200
300
SOD
1000
,
o
m
30
10~ ~
40
DO
~
8D
~
m
~
TJ. JUNCTION TEMPERATURE lOCI
IC. COLLECTOR CURRENT ImAI
623
v
~
f-- I-VCE =60
~
20
...e:
FIGURE 6 - COLLECTOR CUTOFF CURRENT
FIGURE 5 - TEMPERATURE COEFFICIENTS
+2. 5
~
~
~
MM3736, MM3737
(continued)
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 8 - CAPACITANCE
FIGURE 7 - CURRENT GAIN - BANDWIDTH PRODUCT
~ 500
VCE" 10 Vdc
f" 100 MHz
TJ" 25°C
~
t;
:>
c
~
100
70
300
I'-....
V
/"
'"
::; 200
........
'-'
z
~
"
V
20
<3
~
Z
10
'-'
<.i
;f
13
J:'
.......
30
w
;;: 100
~
...... Cib
~
oS
~
~I
TJ" 25°C
50
7.0
--
Cob
5.0
70
50
4.0
S.O
20
10
40
SO
100
200
3.0
0.1
400
1.0
0.5
0.2
IC. COLLECTOR CURRENT (rnA)
100
10
50
20
200
Ic/lB "10
TJ" 25°C
~
5.0
100
FIGURE 10 - TURN.QFF-TIME
FIGURE 9 - TURN.QN TIME
200
2.0
VR. REVERSE VOLTAGE (VOLTS)
100
1"-
VC~" Jo ~d~
If@ICIIB"10
"lcIIB-20
Tr 25 0lC
50
!w
'";::--
......
....
20
I,@ VCC " 10 Vdc
VCC" 30 Vdc
.~ V
70
!w
~
';::"
~~
10
"
50
Id@VBE(off)'OV
VBE(off) " 2.0 Vdc
VCC" 30 Vdc
......
I
2.0
10
50
20
100
10
200
500
.
j'..,
30
V
./
20
5.0
1,@ICIIB"20
/ IC/IB" 10
.....
1000
v:-
10
Vl/
V
20
30
IC. COLLECTOR CURRENT (rnA)
.......
"
50
100
200
TURN-ON TIME
R(SE TIME'" 2.,
Vi~:lVQ
TURN-OFF TIME
+30V
30n
DUTY CYCLE'" 2%
-2Vj-- -C
30!1
+ll.lV
Vi,
_v'"
300
IC. COLLECTOR CURRENT (rnA)
+30V
lOon'
-=
t-
lOon
Vi,
IN916
t]~
1 /oIS 1#$
DUTY CYCLE" 2%
624
l"-
I-'
FIGURE 11 - SWITCHING TIME TEST CIRCUIT
P. W. '" 200..
/
500
1000
MM3903 (SILICON)
MM3904
NPNSILICON
SWITCHING AND AMPLIFIER
TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS
· .. designed for general purpose switching and amplifier applications.
Direct replacement for plastic 2N3903 and 2N3904.
•
Hermetic Low Profile TO-52 Metal Package for High Reliability
•
High Voltage Ratings - BVCEO
•
Current Gain Specified from 100 JJ.A to 100 mA
•
Complete Switching and Amplifier Specifications
= 40 Volts (Min)
~A-
l'c~-+;' I I'
']-1L
~ F
- --- K
I
SEATING
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-B... Voltage
Emitter-Base Voltage
PLANE
Symbol
Value
Unit
VeEO
40
Vde
VeB
60
Vde
VEB
6.0
Vde
Collector Current - Continuous
Ie
200
mAde
Total Power Dissipation @TA = 2SoC
Po
360
2.06
mW
mwfOe
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ. Tstg
-55 to +200
~~
Characteristic
DIM
°e
A
Svmbol
Max
Unit
RaJA
490
°CM
N N
I
MVZV J
THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Ambient
1--- 0
STYLE 1:
PIN 1. EMITIER -jG
2. BASE
3. COLLECTOR
J
I
B
C
D
E
F
G
H
J
K
L
M
N
p
MILLIMETERS
MIN MAX
5.31
4.52
2.92
5.84
4.95
3.81
- 0.533
0.762
6.406 0.483
2.548SC
0.914 1.17
0.711 1.22
12.70
6.35
45° BSC
1.27 BSC
1.27
INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0.115 0.150
0.021
0.030
0.D16 0.019
0.100 BSC
0.036 0.046
0.028 0.048
0.500
0.250
450 BSC
0.050 SSC
- 0.050
All JEDEC dimensions and notes apply
CASE 27·02
TO·52
625
I
MM3903, MM3904 (continued)
ELECTRICAL CHARACTERISTICS
(TA
= 2S'C unless otherw;,. noted)
Characteristic
Fig. No.
Symbol
Min
Mal(
60
-
40
-
6.0
-
Unit
OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(Ie = 10 ""dc, IE = 0)
-
Collector-Emitter Breakdown Voltage (11
(IC = 1.0mAdc, IB =0)
-
BVCEO
-
IBEV
Emitter-Base Breakdown Voltage
(~ = 10 ""de, IC = 0)
Collector Cutoff Current
(VCE = 30 Vde, VEB(ol!) = 3.0 Vdc)
Base Cutoff Current
(VCE = 30 Vdc, VEB(ofl) = 3.0 Vde)
BVCBO
BVEBO
ICEV
-
Vde
Vde
Vde
nAde
50
llAac
50
ON CHARACTERISTICS 111
DC Current Gain
(IC = 0.1 mAde, VCE = I. 0 Vde)
15
hFE
(IC = 1.0 mAde, VCE = 1.0 Vde)
1011013903
1011013904
35
70
---
(IC = 10 mAde, VCE = 1.0 Vde)
1011013903
MM3904
50
100
150
300
(IC = 50 mAdc, VCE = 1.0 Vde)
1011013903
MM3904
(IC = 100 mAde, VCE = 1.0 Vde)
1011013903
MM3904
30
60
10
15
--
MM3903
1011013904
16, 17
Collector-Emitter saturation Voltage
(Ic = 10 mAde, IB = 1.0 mAde)
VCE(sat)
(IC = 50 mAde, IB = 5.0 mAde)
17
Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)
(Ie = 50 mAde, IB = 5.0 mAde)
VBE(sat)
20
40
-
-
Vde
0.2
0.3
Vde
0.65
0.85
-
0.95
250
300
--
SMALL·SIGNAL CHARACTERISTICS
-
IT
Output Capacitance
(VCB = 5.0 Vde, IE = 0, 1= 100 kHz)
3
Cob
-
5.0
Input Capacitance
(V BE = 0.5 Vde, IC = 0, 1= 100 kHz)
3
C ib
-
10
0.5
1.0
8.0
10
0.1 x 10- 4
0.5 x 10- 4
.5xlO-4
8 x 10-4
50
100
200
400
1.0
40
--
6.0
5.0
Current-Gain-Bandwidth Product (1)
(IC = 10 mAde, VCE = 20 Vde, f = 100 MH~)
1011013903
1011013904
Input Impedance
(IC = 1.0 mAde, VCE = 10 Vde, f = I. 0 kHz)
13
1011013903
1011013904
Voltage Feedback Ratio
= 1.0 mAde, VCE = 10 Vde, 1= I. 0 kHz)
(Ie
14
hre
11
hIe
1011013903
1011013904
Small-Sign~
Current Gain
(IC = 1.0 mAde, VCE = 10Vde, 1= 1. 0 kHz)
MM3903
1011013904
Output Admittance
(IC = 1.0 mAde, VCE = 10 Vde, 1= 1.0 kHz)
12
Noise Figure
(IC = 100 ""de, VCE = 5.0 Vde, Rs = 1.0 k ohms,
f = 10Hz to 15.7 kHz)
hie
9, 10
hoe
NF
1011013903
1011013904
101Hz
pF
pF
kohms
!JIIlhos
dB
SWITCHING CHARACTERISTICS
Delay Time
(VCC = 3.0 Vde, VBE(ofl) = 0.5 Vde,
Rise Time
IC = 10 mAde, IBI = 1.0 mAde)
Stor.Time
(VCC = 3.0 Vde,
Ie = 10 mAde,
MM3903
MM3904
IBI = IB2 = 1. 0 mAde)
Fall Time
ns-+!
td
-
35
ns
tr
-
35
ns
2, 7
ts
175
200
n.
50
ns
2, 8
111 Pulse Test: Pulse Width "300 1lS, Duty Cycle "2.0%.
FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT
300
14DUTY CYCLE = 2'0~+10.6 V
I, 5
I, 5, 6
tl
--
FIGURE 2 - STQRAGE AND FALL TIME
EQUIVALENT TEST CIRCUIT
10 < I, < 500 p.'-i I, I:!:-+ 10 9 V
DUTY CYCLE = 2 . 0 : . r r :
-O.SV
< 1.0 ns
-9.lVJU.ons
'Total shunt capacitance of test jig and connectors
626
MM3903, MM3904 (continued)
TRANSI ENT CHARACTER ISTICS
- - - TJ = 25°C ----- TJ = 125°C
FIGURE 3 - CAPACITANCE
FIGURE 4 - CHARGE DATA
W
~
V~-~OV
3000 -Iella- IO
7.0
5. 0
-
~ 700
I
....... C;b
........ ..........
Cob
2. 0
-
_v
500
/
d 300
...............
-, ,
200
..........
1.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
REVERSE BIAS VOLTAGE (vOLTSI
-'
-I-
100
70
50
1.0
20 30 40
,
Or
IlA
2.0 3.0
5.0 7.0 10
20 30
Ie. COLLECTOR CURRENT (mAl
!
~
il!
lella- IO
200
"
l'
70
SO
I'
300
"-"-
100
~
i'
"
20
10
7.0
5.0
1.0
."- -'" t,@Vcc -3.0
........
-""i
td@VEB(off)
.....: Ic?'f'
;"
"
"'
100
'70
",
~
OV
.; 30
I~ ::::!i
0
10
0
2. V
2.0
3.0
5.0 7.0 10
20 30
Ie. COllECTOR CURRENT (rnA)
50 70 100
'5.01.0
200
2.0
3.0
500
r-~+--r+-rrHK+-1-+--r~r~-~-~.
IJ
1"-1,,
'Iell~-I~
200 1-++-c±=±::t:~,j;tI=*-"i_=_:"
__
:"
.
---- - -- = -
!IOO
70
il! 50
~
~
~
,:
--
r
300
-
IIlell, -I 20
:~.
~
!
200
~
"",
lella-20
lelia
20
20
10
10
50 70 100
\;,t-I"I-40L
V
50
g4 30
5.0 7.0 10
20 30
Ie. COLLECTOR CURRENT (rnA)
SO 70 100
"l" ~
100
30
3.0
"
, ,
~
lell
2.0
""'; :"
200
20~~
I--+--+--t-+-+-++++l-+-+--I--+-++ lell, ,t"W-
5.0
1.0
"
F.IGURE 8 - FALL TIME
500
I
"
-
~
5.0 7.0 10
20 30
Ie. COllECTOR CURRENT (rnA)
FI.GURE 7 - STORAGE TIME
300
200
Vee -40V
lella- IO
~ 50
30
50 70 WO
FIGURE 6 - RISE TIME
"-
200
/
/
,
500
"- I,
300
V
./
FIGURE. 5 - TURN-ON TIME
SOD
,-
1000
-
0
-
,
2000
5.0
1.0
200
627
lelia_Ill""
20
, ,
,;;:,
lelia -10 ~
..
-- =-
2.0
3.0
5.0 7.0 10
20 30
50
Ie. COLLECTOR CURRENT (rnA)
70 100
I'-
200
MM3903, MM3904 (continued)
AUDIO SMALL SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
VCE = 5.0 Vdc, TA = 25°C
FIGURE 9
2
I
I
o \
14
1
I
~ ~lc=1.0mA
FIGURE 10
1~=1.0mA/I"(1 II
2
~ lLJI
SOURCE RESISTANCE = 200!l
~ 8.0
liu:::
I
\V
r'\.
6.0 '
~ 4.
" ""'"
I T" '"
1
O~
2.o
""')<
~
SOURCE RESISTANCE = ZoO!l
le=O.SmA
.
./
I"-...
:::t-
~
4.0
c-- Ie - 100 pA
SOURCE RESISTANCE = 1.0 kohm I
1c=50pA
I
1.0 2.0
4.0
0.2
0.4
10
f. FREQUENCY (kHzI
o
0.1
40
0
0.1
100
0.2
0.4
h PARAMETERS
VCE" 10 Vdc, f" 1.0 kHz, TA" 250C
FIGURE 11 - CURRENT GAIN
100
200
50
f-
15100
~
i
..-
i"'"
7oV
-
50pA
1/ .I
-
/
:.1
./
1.0
2.0
4.0
10
20
Rs. SOURCE RESISTANCE Dc ohms)
40
100
FIGURE 12 - OUTPUT ADMITTANCE
300
I
V
~
'"'
2.0
20
/
/
100pA . /
IL
..... :2
~ 1.. SOURCE RESISTANCE Soo!l
/
/
/
11 L
/
o~
-
I
o.?mAl
/
0
I
.....
,. /
10
-.l
IIII
I
t- f=II.OkHz
V
J.-
./
'"
"""'0
......
50
2.0
30
0.1
·0.2
5.0
0.5
1.0
2.0
Ie. COLlECTOR CURRENT !mAl
1.0
10
0.1
FIGURE 13 - INPUT IMPEDANCE
10
10
10
t....
-"
'"
1
.: 5.0
j
~
5.0
FIGURE 14 - VOLTAGE FEEDBACK RATIO
.....
20
0.5
1.0
2.0
Ie. COLLECTOR CURRENT !mAl
0.2
"
0
r-....
2.0
"
~ 1.0
0
~
r-.....
i
0
0.5
7
0.2
0.1
0.2
0.5
1.0
2.0
Ie. COLLECTOR CURRENT !mAl
,',
5.0
O.5
0.1
10
628
0.2
-- '"
0.5
1.0
2.0
Ie. COLlECTOR CURRENT (mAl
,/
5.0 .
10
MM3903, MM3904 (continued)
STATIC CHARACTERISTICS
FIGURE 15 - NORMALIZED CURRENT GAIN
2.0
z:
..J,
......
~ 0.7
§
........
~
I
~ 0.3
~
-......
"' ~
.......
-SS·C
I----'"' I-f-
t-.....
1-0.
-
!---""
c..> 0.5
r-- r---.
~r--
-
1.0
i
-I---.
""I
t'-.....
I"-
If
... 0.2
0.1
= 1.0 V
VeE
TJ= JI2S.A
I~
I'
"\ l\.
0.1
0.2
0.5
0.3
0.7
1.0
2.0
3.0
5.0
7.0
10
Ie, COLLECTOR CURRENT (mAl
20
30
50
70
""'- R'
100
200
FIGURE 16 - COLLECTOR SATURATION REGION
1.0
TJ = 25'C
f3
~
~
g
0.8
Ie = 1.0 rnA
30mA
lOrnA
lOOmA
\
\
O.6
~
i!i
l!5 O. 4
~
~
>
\..
O. 2
0
.01
.02
........
r"...
r-
.03
.05
.07
i'-I--
0.2
0.3
O.S
18, BASE CURRENT (mAl
0.1
FIGURE 17 - "ON" VOLTAGES
1.2
O.8
~
g
O.6
~
0.4
g
L!
~
-
Hi: :.rtf'
~
~ f- Y.~Q VeE=1.0Y
0
i
5.0
10
20
50
Ie, COLLECTOR CURRENT (mAl
3.0
5.0
7.0
10
-I 'Sl
100
~IJS·J-
eve for VeE,,,,) ~ J J _111
r-r-r- 1--.. 5l.cITol+2~.JTl:r-
r--
+25'C TO +12S·C
VVi-'"
40
60
80
100
120
140
(e, COLLECTOR CURRENT (mAl
629
(-(-
11v. for V.EI ..I)
0'
-2. 0 20
200
I-"""
-S5'C TO +2S'C
c..>_I.0
~ I--"
2.0
t-t-
~-O.5
VeE".I) @Ie/l. = 10
1.0
l-
~
L
o
2.0
I-
o.5
I?
L
O.2
1.0
FIGURE 18 - TEMPERATURE COEFFICIENTS
V I ~I ~ II !I~ 10
'E, .. Jl~
1.0
0.7
1.0
LI LLil
T.'= i5'C
iil
"- I""'-
'\
160
180 200
MM3905 (SILICON)
MM3906
. PNP SILICON ANNULAR TRANSISTORS
PNPSILICON
SWITCHING AND AMPLI FI ER
TRANSISTORS
..• designed for general purpose switching and amplifier applications.
Direct replacement for plastic 2N3905 and 2N3906.
•
Hermetic Low Profile TO-52 Metal Package for High Reliability
•
High Voltage Ratings - BVCEO ; 40 Volts (Min)
•
Current Gain Specified from 100 IlA to 100 mA
•
Complete Switching and Amplifier Specifications
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
Vca
40
Vdc
Emitter-aase Voltage
VEa
5.0
Vdc
Collector Current - Continuous
IC
200
mAde
Total Power Oissipation @ TA = 25°C
Del"ate above 25°C
Po
360
2.06
mW
mWfOC
TJ. Tstg
-55 to +200
°c
. Collector-Emitter Voltage
Operating and Storage Junction
Temperature Range
THERMAL CHARACtERISTICS
Cha_istic
Symboi
Max
Unit
Thermal Resistance. Junction to
Ambient
R9JA
490
.,oCIW
MILLIMETERS
INCHES
DIM MIN MAX MIN MAX
5.31 5.84 0.209 0.230
A
B
4.52 4.95
0.178 0.195
0.115 0.150
.C
2.92 3.81
0.533
0
- 0.021
0.762
0.030
E
0.406 0.483 0.016 0.019
F
0.100 asc
G 2.54 BSC
0.036 0.046
H ·0.914 1.17
0.028 0.048
J ·0.711 1.22
0.500
K 12.70
0.2511 .
L
6.35
450 asc
M 450 asc
1.27 asc
0.050aSC
N
p
1.27
0.050
All JEDEC dimenSions and notes apply
-
-
CASE 27'()2
TO-52
630
-
MM3905, MM3906 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25·C "'ess otherwISe noted)
Characteristic
OFF CHARACTERISTICS
-
Collector-Base Breakdown Voltage
(IC = 10 /JAde, IE = 0)
Collector-Emitter Breakdown Voltage t 11
(IC = 1.0 mAde, IB = 0)
-
Emltter-Base Breakdown Voltage
(IE = 10 /JAde, IC = 0)
-
Collector Cutoff Current
(VCE = 30 Vde, VBE (off) = 3.0 Vde)
-
Base Cutoff Current
(VCE = 30 Vde, VBE(oll) = 3.0 Vde)
-
BVCBO
BVCEO
BV EBO
I CEV
I BEV
Vde
40
-
40
-
5.0
-
-
50
-
50
30
60
-
Vde
Vde
nAde
nAde
ON CHARACTERISTICS (II
IX: Current Gain
hFE
(IC = 0.1 mAde, VCE = 1.0 Vde)
MM3905
MM3906
(IC = 1. 0 mAde, VCE = 1.0 Vde)
MM3905
MM3906
40
80
VCE = 1.0 Vde)
MM3905
MM3906
50
100
150
300
(IC = 50 mAde, VCE = 1. 0 Vde)
MM3905
MM3906
30
60
(IC = 100 mAde, VCE = 1. 0 Vde)
MM3905
MM3906
10
15
-
(IC
= 10 mAde,
15
16, 17
Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)
VCE(sat)
(IC = 50 mAde, IB = 5.0 mAde)
17
Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)
VBE(sat)
(IC = 50 mAde, IB = 5.0 mAde)
-
-
-
Vde
-
0.25
0.65
0.85
-
0.95
200
250
-
·
5.0
-
10
0.5
2.0
8.0
12
0.1 x 10-4
1 x 10-4
5 x 10- 4
10 x 10-4
50
100
200
400
1.0
3.0
40
60
·
·
5.0
4.0
0.4
Vde
SMALL-SIGNAL CHARACTERISTICS
-
Currenl-Gain-Bandwidlh Product (1)
(IC = 10 mAde, VCE = 20 Vde, I = 100 MHz)
MM3905
MM3906
Output Capacitance
(VCB = 5.0 Vde, IE = 0, f • 100 kHz)
3
Input Capacitance
(V BE = 0.5 Vde, IC = 0, 1= 100 kHz)
3
Input Impedance
(IC = 1. 0 mAde, VCE = 10 Vde, I = 1. 0 kHz)
13
MM3905
MM3906
14
Voltage Feedback Ratio
(IC = 1. 0 mAde, VCE = 10 Vde, I = 1. 0 kHz)
MM3905
MM3906
11
Small-Signal Current Gain
(IC = 1. 0 mAde, VCE = 10 Vde, I = 1. 0 kHz)
MM3905
MM3906
Output Admittanee
(IC = 1.0 mAde, VCE = 10 Vde, I = 1. 0 kHz)
12
MM3905
MM3906
Noise Figure
(IC = 100 /JAde, VCE = 5.0 Vde, RS = 1. 0 k ohm,
1= 10 Hz to 15.7 kHz)
9, 10
IT
. Cob
C 1b
hie
hr.
hie
hoe
MHz
Pl!"
pF
k ohms
.
.
J.Unho$
NF
MM3905
MM3906
dB
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Storag,,:
~ime
,Fall Time
1, 5
td
-
35
1, 5, 6
tr
·
35
ns
MM3905
MM3906
2, 7
ts
-
200
225
ns
MM3905
MM3906
2, 8
tl
-
60
75
ns-
(VCC = 3.0 Vde, VBE(off) = 0.5 Vde,
IC = 10 mAde, IBI = 1. 0 mAde)
(VCC = 3.0 Vde, IC = 10 mAde,
IB1 = IB2 = 1. 0 mAde)
·
·
ns
(11 Pulse Test: Pulse Width = 300 /JB, Duty Cycle = 2.0%.
FIGURE 2 - STORAGE AND FALL TIME
EQUIVALENT TEST CIRCUIT
FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT
+~9lV~"'<10",
! j~
30V
< 1.0 "'
+OSV
mQ
10k:
.lS.< 40pF"
-106V~
1-300ns
:J'
OUTVCYCl[= 20% -=-
10k -30V
o
IN916
*Total shunt capacItance of test JIg and connectors
631
IO
"'- "'-
I.!@Vo,=O
2.0
3.0VV
"
100
0
0
I~~
......
50
FIGURE 6 - RISE TIME
500
30O~
,7
5.0
10
20
Ie. COlLECTOR CURRENT (mAl
2.0
FIGURE 5 - TURN-ON TIME
500
V
....... I--""
"
100
70
50
1.0
50
-- -
500
200
1.0
,
,,
Cob
10
20
~
~
2.0 3.0
20 30
50
5.0 7.0 10
Ie. COLLECTOR CURRENT (mAl
- :.---
t::=
100
200
MM3905, MM3906
(continued)
AUDIO SMALL SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
VCE = 5.0 Vdc, TA = 25°C
FIGURE 10
FIGURE 9
12
V
f-f~11.0kHZ
10
=
~
IC=1.0mA
8.0
~
~
""
~
~z
'"
6.0
!2'
4.0
""
1i:
~
~
~
!2'
2.0
Ii
/
/
/
~
I
"'\. '\..
-......;;
""-
~ .;'
./'
100pA..,
/
/
II
1/ /
/ /
/ 1/
./ ./
c:::... >
/
/ / "'-...50pA
0.5mA
?
o
0.1
100
0.2
0.4
1.0
2.0
4.0
10
20
40
100
Rs, SOURCE RESISTANCE Ik ohms)
h PARAMETERS
f, fREQUENCY 1kHz)
(VCE = 10 Vdc, f = 1.0 kHz, TA = 25°C
FIGURE 12 - OUTPUT ADMITTANCE
FIGURE 11 - CURRENT GAIN
100
300
70
200
l.- I--
~
~
aJ
~E
50
V
.:J.
V
~
~
30
~
;;;
5i! 20
100
/
/
1./
~
~
§
70
J
50
v
10
7.0
30
0.1
0.2
0.5
1.0
2.0
5.0
5.0
0.1
10
0.5
0.2
Ie, COLLECTOR CURRENT lmA)
10
5.0
10
0
"" i'
7. 0
'\.
~ 5. 0
'\.
0
"" r--.
0
2.0
FIGURE 14 - VOLTAGE FEEDBACK RATIO
FIGURE 13 - INPUT IMPEDANCE
20
1.0
Ie, COLLECTOR CURRENT lmA)
"\
0
]\
~
I'-
I"
r-..... r-- i...-
0
o.5
vY
o. 7
0.2
0.1
0.2
0.5
1.0
2.0
Ie, COLLECTOR CURRENT ImA)
5.0
0.5
0.1
10
633
0.2
0.5
2.0
1.0
Ie, COLLECTOR CURRENT ImA)
5.0
10
MM3905, MM3906
(continued)
STATIC CHARACTERISTICS
FIGURE 15 - NORMALIZED CURRENT GAIN
2.0
TJ
z:
;;;:
'"
ffi
"":::>""
'-'
-
I +12~'C
r-.....
+25~C
1.0
I.VCE 1.0
JV
551,C
0.7
~
~
..............
0.5
~
fa
N
~
i!i
0
0.3
J
0.2
"- ~~
z:
j\ ~
~
"\:
0.1
0.1
0.2
0.3
0.5
0.7
1.0
2.0
5.0
7.0
10
3.0
Ie. COLLECTOR CURRENT (rnA)
20
30
50
70
100
~
200
FIGURE 16 - COLLECTOR SATURATION R.EGION
1.0
\
~ 0.8
...~
Ic=1.0mA
10mA
~
\
o.6
ill
!::
\
\
1,\
ai
"" 0.4
~
\.
8
.. 0.2
~
o
0.02
0.01
"0.03
0.05
0.07
-r--
0.2
0.3
0.5
la, BASE CURRENT (rnA)
0.1
0.7
-H:H:ml
VaE@VcE
~
hl=I_15hllo
+0.8
2.0
ffw
'" '"
r-
--
BVB for VBE(sat)
-2.0
1 .1 ...I-t"
50
5.0
10
20
Ic, COLLECTOR CURRENT (rnA)
I---"r'
-0.4
~ -1.6
VCE(... ) @ Ic/la = 10
1.0
10
1~5.JC I
~ -0.8
c::;
-1.2
o
V
III
7.0
r;
/
O. 4
0
5.0
3.0
BVC for VCE(sat)
0.6
1111'
..
I II
+0.4
1.0 V
3;
.§
,...
0.2
I--
FIGURE 18 - TEMPERATURE COEFFICIENTS
VaE(...) @ 'clla ~ 10.......:
o.8
,..... ..... 1---
2.0
1.0
+1.2
. TJ=25'C
~
~
r-
FIGURE 17 - "ON" VOLTAGES
~
1\
",
i"
1.0
...~
100 mA
\ 30mA
~
~
L! 2~'t
\
\
-2.4
100
200
-2. 8
0.1
0.2
0.5
1.0
2.0
5.0
10
20
IC, COLLECTOR CURRENT (rnA)
634
50
100
200
MM4000 thru MM4003 (SILICON)
High-voltage PNP silicon annular transistors for"
use in general-purpose, high-voltage applications.
2
Collector connected to case
STYLE 1:
PIN 1. EMITTER
2. BASE
~
l~;_~/
MAXIMUM RATINGS
3. COLLECTOR
Rating
CASE 79
(T0-5)
Symbol
MM4000
MM4001
MM4002
MM4003
Unit
100
150
200
250
Vde
Collector-Emitter Voltage
VCEO
Collector-Base Voltage
VCB
100
150
200
250
Vde
Emitter-Base Voltage
VEB
4.0
4.0
4.0
4.0
Vde
Collector Current - Continuous
100
500
500
500
mAde
0.6
1.0
1.0
1.0
Watt
3.42
5.71
5.71
5.71
mWj"C
3.0
5.0
5.0
5.0
Walts
17.2
2B.6
2B.6
2B.6
IC
Pn
Total Power Dissipation@ T A = 25" C
Derate above 25" C
Pn
Total Power Dissipation @T C = 25°C
Derate above 25"C
Operating and Storage Junction
Temperature Range
ELECTRICAL CHARACTERISTICS
(T. = 25"C ",."
mW/oC
°c
-65 to +200
T J' T stg
oth.,.". ,o'.d)
Characteristic
Symbol
Min
Max
100
150
200
250
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Bre;1kdown Voltage
(IC = 10 mAde, IB = 0)
(1)
Collector-Base Breakdown Voltage
(IE = 0, IC =lo.o/lAde)
MM4000
MM4001
MM4002
MM4003
MM4000
MM4001
MM4002
MM4003
Emitter-Base Breakdown Voltage
(IE = 100 /lAde, IC = 0)
Collector Cutoff CUrrent
(V CB = 50 Vde, IE = 0)
(V CB = 75 Vde, IE = 0)
(V CB = 150 Vdc, ~ = 0)
BV CEO
BV CBO
BV EBO
MM4000
ICBO
Vde
-
Vde
100
150
200
250
-
4.0
-
-
1.0
Vde
/lAde
MM4001
-
1.0
MM4002, MM4003
-
5. 0"
20
-
-
0.6
5.0
-
6.0
10
20
ON CHARACTERISTICS'
DC Current Gain 111
(IC = 10 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage fU
(IC = 10 mAde, IB = 1. 0 mAde)
hFE
MM4000, MM4001
MM4002, MM4003
VCE(sat)
Vde
DYNAMIC CHARACTERISTICS
Output Capacitance
(V CB = 20 Vde, IE = 0, f = 100 kHz)
MM4000
MM4001
MM4002, MM4003
I1IPulae Test: PW" 300 lis, Duty Cycle s 2%
635
Cob
pF
-
-
MM4005 (SILICON)
thru
MM4007
PNPSILICON
AMPLIFIER TRANSISTORS
PNP SILICON ANNULAR AMPLIFIER
•.. designed for use in general·purpose amplifier applications .
•
Collector-Emitter Breakdown Voltage @ IC = 10 mAdc
BVCEO 60 Vdc (Min) - MM4005
= 80 Vdc (Min) - MM4006
= 100 Vdc (Min) - MM4007
•
Current-Gain-Bandwidth ProductfT ~ 250 MHz (Typ) @ IC ~ 50 mAde
=
~~?
A
R
B
rP
_I---~
re- ---=Tri
~K
SEATiNG
PLAN E
MAXIMUM RATINGS
Rating
Coliector·Emittar Voltage
Coliector·B ... Voltage
Emittar-8ase Voltage
Collector Current Continuous
Total Power Oisoipation @TA ~ 25°C
Oerata ebove 25°C '
Total Power Dis&i~tion @aTe=250C
Oerata above 25°C
Operating & Storage Junction
THERMAL CHARACTERISTICS
Charact.istic
Thermal Resistance, Junction to
Symbol
Vceo
VCB
VEB
IC
Po
MM4OO61 MM4006I MM4007
60 1 80 1 100
60 1 80 1 100
Po
TJ.T,tg
Unit
Vdc
Vdo
Vdc
Adc
Watt
mWflC
Watts
mWflc
°c
5.0
1.0
1.0
5.71
7.0
40
-65 to +200
Symbol
R8JA (1 )
Max
Unit
175
°c/w
R8JC
25
°C/W
Ambient
Thermal Resistance,:Junction to Case
(1) R9JA is measured with the device soldered into a typical printed circuit board.
____
--11-- 0
1
STYLE 1
PIN 1. EMITTER
2. BASE
3. COLLECTOR
MILLIMETERS
MIN MAX
8.BS 9.40
8.00 8,51
C
6.10
.60
D
0.406 0.533
E
0,229 3.18
F
0.406 0.483
G
4,83 5,33
H
0,711 0.8 4
J
0.737 1.02
K 12.70
L
6.35
M
450 NOM
DIM
A
B
P
Q
R
INCHES
MIN MAX
1.27
900 OM
2.54
All JEDEC dimensions and notes apply.
CASE 79·02
TO-39
636
MM4006, MM4006, MM4007 (continued)
ELECTRICAL CHARACTERISTICS
Chllractaristic
Symbol
Min
Typ
Max
Unit
60
-
-
Vde
-
Vde
OFF CHARACTERISTICS
Collector·Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)
MM4005
MM4006
MM4007
. BVceo
Colleetor·Base Breakdown Voltage
(lC = l00,.Ade, Ie = 0)
MM4006
MM4006
MM4007
BVCBO
80
100
80
BVEBO
ICBO
MM4005
MM4006
MM4007
Emitter Cut()ff Currant
(VBE = 3.0 Vde, IC = 0)
leBO
-
-
5.0
-
-
-
100
Emitter·Ba.. Breakdown Voltage
(IE = loo,.Ade, IC = 0)
Collector Cutoff Current
(VCB = 60 Vdc, Ie = 0)
(VCB = 60 Vde, Ie = 0)
(VCB = 80 Vde, IE = 0)
60
-
-
-
Vde
nAde
100
100
100
100
nAde
ON CHARACTeRISTICS (1)
DC Current Gain
hFe
(lC = 1.0 mAde, Vce = 1.0 Vde)
(lC = 160mAdc, Vce = 1.0 V~c)
40
-
-
50
90
150
Collector·Emitter Saturation Voltage
(lC = 160 mAde, IB = 16mAdc)
VCE(sat)
-
0.1
-
Vdc
Base·Emitter Saturation Voltage
(lC = 160 mAde, IB = 15 mAde)
VBE(sat)
-
0.7
-
Vdc
Current-Gain-Bandwidth PrOduct (1)
(lC = 50 mAde, Vce = 10 Vd., I = 20 MHz)
IT
60
260
-
MHz
Output Capacitance
(VCB = 10 Vde, IE = 0, I = 1.0 MHz)
Cob
10
-
pF
I nput Capacitance
Cib
100
-
pF
DYNAMIC CHARACTERISTICS
(VBe = 0.5 Vde, IC = 0, I = 1.0 MHz)
(1) Pulse Test: Pul .. Width.; 300 ,.S, Duty Cycle'; 2.0%.
637
-
MM4008 (SILICON)
thru
MM4010
PNP SILICON ANNULAR AMPLIFIER
TRANSISTORS
PNPSILICON
TRANSISTORS
· •. designed for use in high voltage amplifier and switching
applications.
• Coliector·Emitter Breakdown Voltage @ fC = 10 mAde
BVCEO = 60 Vdc (Min) - MM4008 '
= 80 Vdc (Min) - MM4009
= 100 Vde (Min - MM4010
•
High Current·Gain-Bandwidth Product fT = 325 MHz (Typ) @ IC = 20 mAde
r~
MAXIMUM RATINGS
Rating
Symbol MM4008 MM4009 MM4010
Collector-Emitter Voltage
VCEO
60
Unit
80
100
Vdc
Collector-Base Voltage
VCB
60
80
100
Vdc
Emitter-Base Voltage
VEB
5,0
5.0
5.0
Vdc
Collector Current
Continuous
IC
500
mAde
Total Power 0 issipetion @ T A "" 25°C
Derate above 25°C
Po
600
3,43
,mW
mW/oC
Total Power Dissipation@ T C = 25°C
Derate above 25°C
Po
2,0
1.4
mW/oC
-65'0 +200
°c
Operating and Storage Junction
Temperature Range
TJ,Tstg
..
~
SE~[lNNGE ~'~
lJK
STYLE I:
PIN l.EMIITER
2, BASE
3, COLLECTOR
D
Watt
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
R6JA(1)
330
°C/W
R6JC
11.5
°CIW
(1) R8JA is measured with the device soldered into a typical printed circuit board.
0,007
All JEDEC dimensions and notes apply.
CASE 31·03
TO·S
638
MM4008, MM4009, MM4010 (continued)
ELECTRICAL CHARACTERISTICS (TA : 250 C unless otherwise noted.)
I
Characteristic
Symbol
Min
1:yp
60
80
100
-
Max
Unit
-
Vde
OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (1)
(lC: 10 mAde, IB: 0)
MM4oo8
MM4009
MM4010
BVCEO
Collector-Base Breakdown Voltage
MM4008
MM4009
MM4010
BVCBO
60
80
100
BVEBO
5.0
(lC: 100l'Ade, IE: 0)
Emitter-Base Breakdown Voltage
-
-
Vde
Vde
(IE: 1001'Ade,lc: 0)
Collector Cutoff Current
(VCB: 50 Vde, IE: 0)
(VCB: 60 Vde, IE: 0)
(VCB: 80 Vde, IE: 0)
nAdc
ICBO
lEBO
-
-
hFE
75
125
-
-
VCE(sati
-
0.2
-
Vde
VeE(sati
-
0.7
-
Vde
-
MM4008
MM4009
MM401 0
Emitter Cutoff Current
-
100
100
100
100
nAde
(VBE: 3.0 Vde, IC: 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lC : 10 mAde, V CE : 1.0 Vde)
Collector-Emitter Saturation Voltage
(lC: 10 mAde, IB: 1.0 mAde)
.Base-Emitter Saturation Voltage
(lC: 10 mAde, Ie: 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC: 20 mAde, VCE: 10 Vde, I : 100 MHz)
MM4008
MM4009/10
IT
-
325
150
-
MHz
Output Capacitance
MM4008
MM4009/10
Cob
-
6.0
10
-
pF
MM4oo8
MM4009/10
Cib
-
20
-
pF
(Vce: 10 Vde,IE: 0, I : 100 kHz)
Input Capacitance
(VeE: 0.5 Vde, IC: 0, I : 100 kHz)
(1) Pulse Test: Pulse Width .. 3001'5, Duty Cycle .. 2.0%.
639
125
MM40 18 (SILICON) .
PNPSILICON
RF POWER
TRANSISTOR
PNP SILICON RF POWER TRANSISTOR
• .. designed for amplifier, frequency multiplier or oscillator appli·
cations in military and industrial equipment. Suitable for use as
Class A, B, or C driver, or pre-driver stages in VHF applications.
• Power Output - Pout = 0.5 W (Min) @f= 175 MHz
• High Current·Gain - Bandwidth ProductfT = 900 MHz (Typ) @ IC = 50 mAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
20
Vdc
Collector·aase Voltage
Vca
40
Vdc
Emitter-Base Voltage
VEa
4.0
Vdc
IC
0.4
Adc
Po
5.0
28.6
Watts
mW/DC
TI. Tstg
-65 to +200
Collet::tor-Emitter Voltage
Collector Current - Continuous
Total Device Dissipation @TC
Derate above 250 C
= 2SoC
Operating and Storage Junction
Temperature Range
DC
STYLE 1
PIN 1. EMITIER
2. BASE
FIGURE 1 - 175 MHz OUTPUT POWER TEST CIRCUIT
N
3. COLLECTOR
-12.5 Vdc
DIM
L3
L2
RG=50n
Cl
C4
MILLIMETERS
MIN MAX
INCHES
MIN MAX
RL"50n
L1
40 pF
C3
C2
L
M
P
Cl, C2
C3, C4
L1
L2
L3
0.250
45 0 NOM
0.050
900 NOM
Q
3.0 - 30 pF, ARCO 461 OR EQUIVALENT
B.O - 80 pF, ARCO 462 OR EQUIVALENT
100 nH, HURNS NO. 18 AWG, 114" 1.0., 5/8" LENGTH
40 nH. 2 TURNS NO. 18 AWG. 114" 1.0.. 1/2" LENGTH
200 nH, 8 TURNS NO. 18 AWG, 114" 1.0.. 7/8" LENGTH
R
0.100
All JEDEC dimensions and notes apply.
CASE 79-02
TO·39
640
MM4018 (continued)
ELECTRICAL CHARACTERISTICS (T A = 2SoC unless otherwise noted)
C....lICteriltlc
Symbol
Min
Collector-Emitter Brllkdown Voltage
(lC· 5.0 mAde, lB· 0)
BVCEO
20
Collector-Base Brllkdo_ Voltage
(lC· .5.0 mAde, IE· 0)
BVCBO
Emitter-Base Brelkdown Voltlgt
(IE· 1.0 mAdc, IC· 0)
MIX
Unit
-
-
Vdc
40
-
-
Vde
BVEBO
4.0
-
-
Vdc
Collector Cutoff Current
(Vce· 15 Vdc, IB • 0)
ICEO
-
-
20
"Adc
Collector Cutoff Current
(VCE • 40 Vd., VBE • 0)
ICES
-
-
0.1
mAdc
Collector Cutoff Current
(VCB· 15 Vdc, Ie • 0)
ICBO
-
-
10
"Adc
fT
-
900
-
MHz
Cob
-
3.5
-
pF
Pout
0.5
-
-
Watt
45
55
-
%
OFF CHARACTERISTICS
ON CHARACTERISTICS
OC Current Gain
(lC - 50 mAde, VCE· 5.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC· 50mAdc, VCE· 15 Vdc, f- 100 MHz)
Output Capaciten..
(VCB· 12.5 Vdc, Ie = 0, f
= 100 kHz)
FUNCTIONAL TEST
Power Output
(Figure 1)
(Pin· 50mW, Vee = 12.5 Vdc, f- 175 MHz)
Collector Efficiancy (Figure 1)
(Pin = 50 mW, Vec· 12.5 Vdc, f = 175 MHz)
'I
FIGURE 3 - PARALLEL EQUIVALENT OUTPUT
CAPACITANCE versus FREQUENCY
FIGURE 2 - POWER OUTPUT versus POWER INPUT
o.7
+20
0.6
@
!
I
o.5
ffi
~
0.2
./
f-175MH,
o.4
O.3
~
---
~12.5 Vd.
Vcc =
/'
-
VCC - -12.5 Vdc
0
-
0
/'
Pout =O.5W
01-'"
O.1 /
o
V
o
10
20
30
40
50
-20
100
60
150
Pin' PIlWER INPUT (mWI
60
+100
Vcc' -12.5Vdc
Vcc = -12.5 Vdc
0
.. +SO
.s
Or-.
0
w
------
"z
;!
t--....
i3
-....... r-.....
:.
~
I-
~
p. ut ~0.5W
100
150
200
-50
u~-100
0
o
300
FIGURE 5 - PARALLEL EQUIVALENT INPUT
CAPACITANCE versus FREQUENCY
FIGURE 4 - PARALLEL EQUIVALENT INPUT
RESISTANCE versus FREQUENCY
0
200
f. FREQUENCY (MHz)
-150
100
300
~
150
------
Pout "'O.5W
200
f. FREOUENCY (MHz)
f. FREQUENCY (MHz)
641
300
MM40 19 (SILICON)
PNPSILICON
RF POWER
TRANSISTOR
PNP SILICON RF POWER TRANSISTOR
..• designed for use as complement to NPN 2N3553 in VHF and
UHF amplifier applications for military and industrial equipment.
• Power Output - Pout = 2.0 W (Typl @ Pin = 0.5 W, f = 400 MHz
• Power Input - Pin = 0.25 W (Maxl@Pout= 2.5 W, f = 175 MHz
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vdc
VCB
60
Vdc
Collector Current - Continuous
Ie
1.0
Adc
Total Device Dissipation @TC=250C
Derate above 250 e
Po
5.0
28.6
Watts
mW/oC
TJ,Tstg
-65 to +200
°e
Collector·Emitter Voltage
Collector·Ba.. Voltage
Operating and Storage Junction
Temperature Range
V"'-H
DIM
A
B
C
D
E
F
G
H
J
K
L
M
P
Q
R
MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
45 0 NOM
1.27
900 NOM
2.54
INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
45 0 NOM
0.050
900 NOM
0.100
-
All JEDEC dimensions and notesepply.
CASE 79·02
TO·39
642
MM4019 (continued)
ELECTRICAL CHARACTERISTICS IT A = 250 unless otherwise noted)
I
Symbol
Min
Typ
BVCEO
40
-
Collector-Base Breakdown Voltage
IIC = 10 mAde, IE = 01
BVCBO
60
-
-
Vde
Emittar-Basa Breakdown Voltage
liE = 0.1 Ade,lc = 01
BVEBO
4.0
-
-
Vde
Collector Cutoff Current
(VCE = 30 Vdc, IB = 01
ICEO
-
-
0.1
mAde
Emitter Cutoff Current
lEBO
-
-
0.1
mAde
hFE
10
-
-
-
VCE(satl
-
-
1.0
Vde
fr
-
750
-
MHz
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
IIc = 10 mAde, IB = 01
(VBE
= 4.0 Vde, IC = 01
ON CHARACTERISTICS
DC Current Gain
IIC = 250 mAde, VCE = 5.0 Vdel
Colleetor·Emitter Saturation Voltage
II C = 250 mAde, I B = 50 mAdel
MI.
Unit
Vde·
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIC = 100 mAde, VCE
Output Capacitance
(VCB = 30 Vde, IE
= 28 Vde, f =
100 MHzl
FUNCTIONAL TEST
Power Input
(Pout = 2.5 W, VCC
Power Output
(Pin = 0.5 W, VCC = 28 Vde, f
50
TJ
= 175 MHzl
-
Watt
Watts
2.0
Pout
=400 MHzl
Collector Efficiency
(Pout = 2.5 W, VCC = 28 Vde, f
0.25
Pin
= 28 Vde, f = 175 MHzl
pF
7.5
Cob
= 0, f = 100 kHzl
-
%
FIGURE 1 - 175 MHz TEST CIRCUIT
.--------:=-------<..-----..---0 -28 Vdc
L3
TL_5_00_p_F_~I~---...JT 0.01 j.lF
L4
C3
CI, C2
C3
C4, C5
LI
L2
L3
L4
C5
C4
3.0·30 pF, ARCO 461 or equivalent.
40 pF
5.0-80 pF, ARCO 462 or equivalent.
80 nH, 3 Turns #18 AWG, 1/4"1.0., 1/4" Length
Ferrite Choke, VK-200 Ferroxcube, Q < 5
0_15j.lH, RF Choke
27 nH, 2 Turns #18 AWG, 1/4"1.0., 3/8" Length
643
MM4019 (continued)
FIGURE 2 - POWER OUTPUT v...... FREQUENCY
FIGURE 3 - POWER OUTPUT ...rsus POWER INPUT
3.5
.
3.0 t-VCC.J8 Vd.
f= 175 MHz
~
2.5
i
2.0
0
;'"
..
0
A-
1.5
/
1.0
}
0.5
0~________- L___
0._05_W__~____~__~~__~__~
100
150
200
V
/'
//
/
o
o
400
300
~
/
./
i
I::>
.
'~,
'
0.05
0.1
0.2
0.15
0.25
f. FREQUENCY (MHz)
Pin. POWER INPUT (WATTS)
FIGURE 4 - PARALLEL EQUIVALENT
INPUT RESISTANCE ..., .... FREQUENCY
FIGURE 5 - PARALLEL EQUIVALENT INPUT
CAPACITANCE versus FREQUENCY
20
0.3
200
VCC = 28 Vd.
~
:z:
S
15
t---: F=:: ~ r- r-
~
ill~
'"
r---.:::::::
J
~
3.0W-
10
~.5
"- .........
~.5 W- r---
I-
vct =28 Vd.
"'-
r---..
i'- r---. ....... r--.,
,
r-.:::
~t·3.0W
........
5.0
'.
'"
50
70
150
100
200
300
100
70
50
f. FREQUENCY (MHz)
u-
...
...;f~
...-<
w
15
Z
0
j
300
FIGURE 7 - OUTPUT CAPACITANCE
varsu.COLLECTOR VOLTAGE
V,cC" 28 Vd.
..........
r---..
........
u-
.s
~
10
25
w
r--.. ...... ..........
.,
I-
~::>
200
30
I'...
"'
150
f. FREQUENCY (MHz)
FIGURE 6 - PARALLEL EQUIVALENT OUTPUT
CAPACITANCE versus FREQUE.NCY
.s
~~
o
o
20
~
1.5W
~
~
i \
Pout"3.0W
~
l.SW
5.0
20
15
~ t:::-....
~
10
3
5.0
::>
0:>
.....
"-
-----
-I-.
o
50
70
100
150
200
o
300
f. FREQUENCY (MHz)
-5.0
-10
-15
-20
VC8. COLLECTOR·8ASE VOLTAGE (VOLTS)
644
-25
-30
MM4019 (continued)
FIGURE 8 - CURRENT·GAIN-BANDWIDTH PRODUCT
~100 0
~
t;
"
:800
Q
f-"
~
i:
Q
~
~I
800
-
/ ' Vrr--VCC"I~ / '
Z
C
~ 400
/'
ffi
'"
"'"u,.:200 V
-
~V
10
~~dc
I
30
20
50
70
200
100
300
IC. COLLECTOR CURRENT (mAde)
FIGURE 9 - MM4019/2N3553 COMPLEMENTARY 175 MHz AMPLIFIER CIRCUIT
CI. C2
C3
C4. C5
L1, L2
L3
3.0·30 pF, ARCO 461 orequivalenl
O.I/!F. ATC·200 Chip Capacitor or equivalent
1.5·15 pF. ARCO 460 or equivalent
1·1/2 Turns 118 AWG, 118" Length, 1/4"1.0 .• 36 nH
7 Turns 118 AWG, 112" Length. 1/4" 1.0 .• 140 nH
O.OOI/!F
r---~~--'-------~~6V
0.002/!F
O.I/!F
T
RL = 50 Ohms
RG =50 Ohms
L3
L2
II
C2
IS pF
C5
Q<5
FIGURE 10 - POWER OUTPUT versus POWER INPUT
FOR COMPLEMENTARY CIRCUIT
5.0
e
~
...
"
I!:
_VC~'56JdC
V
V
f=115MHz
4.0
V
V
3.0
V
"
V
Q
a:
~
2.0
...
Q
/'
;l
o'! 1.0
/'
o
o
100
200
300
Pin. POWER INPUT (mW)
645
400
500
MM4030 (SILICON)
thru
MM,4033
PNP SILICON
SWITCHING TRANSISTORS
PNP SILICON ANNULAR SWITCHING TRANSISTORS
· .. designed for use in general-purpose amplifier and switching
applications.
• Collector Emitter Breakdown Voltage @ IC = 10 mAdc
BVCEO = 60 Vdc (Min) - MM4030, MM4032
= 80 Vdc (Min) - MM4031, MM4033
•
DC Current Gain - 100 pAdc to 1.0 Adc
•
Low Collector-Emitter Saturation Voltage VCE{sat) = 0.5 Vdc (Typ) @ IC = 1,0 Adc
•
Fast Switching Time @ IC = 500 mAde
ton = 55 ns (Typ)
toff = 340 ns (Typ)
JdId
R
B
rP
-~~~:
A
~
re- ---=rTT
~K
SEATING
PLANE
~_--.1
--11-0
MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Symbol
MM4030 MM4031
MM4032 MM4033
Unit
VCEO
60
80
Vdc
Colleetor-Ba.. Voltage
VCB
60
80
. Vde
Emitter~BaS8
VES
5.0
IC
1.0
Adc
T A = 25°C
Po
1.0
5,71
Watt
mW/oC
Total Power Di ..ipation @ T C = 25°C
Dera.. above 25°C
Po
7.0
40
Watts
mW/oC
DIM
A
8
TJ,Tstg
-65 to +200
°c
C
D
Voltage
Collector Current - Continuous
Total Power Dissipation
Dera.. above 25°C
@
Operating and Storage Junction
Temperature Range
Vdc
E
F
G
H
THERMAL CHARACTERISTICS
Ch....ct.istic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
J
Symbol
Max
Unit
R8JA(11
175
°C/W
R8JC
25
°CIW
(1) A6JA is measured with the device soldered into a typical printed circuit board.
K
L
M
P'
Q
R
MILLIMETERS
MIN MAX
8.89 9.40
8,00 8,51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5,33
0.711 0.864
0.737 1.02
12.70
6.35
450 NOM
1.27
900 NOM
2.64
-
INCHES
MIN MAX
0,350 0,370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0,210
0.028 0.034
0,029 0.040
0,500
0.250
450 NOM
- 0.050
900 NOM
0,100
All JEDEC dimensionsaooootesappl..,.
CASE 79·02
TO·39
646
MM4030 thru MM4033 (continued)
ELECTRICAL CHARACTERISTICS IT A" 26°C unle .. otherwi .. noted'!
I
Characteristic
Symbol
Unit
Min
Typ
Max
60
80
-
-
60
80
-
-
-
-
-
50
50
50
50
IJAdc
-
10
).lAde
30
75
40
100
25
70
15
10
40
25
15
40
50
110
80
150
40
100
35
30
60
50
-
-
-
-
0.1
0.3
0.5
0.15
05
1.0
-
07
0.9
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
IIC" 10 mAde, la" 01
Vde
aVCEO
MM4030, MM4032
MM4031, MM4033
Collector-Base Breakdown Voltage
aVCBO
IIc '10~Ade, IE" 01
MM4030, MM4032
MM4031, MM4033
Emitter·Base Breakdown Voltage
5,0
aVEaO
-
Vde
Vde
liE" 10~Ade, IC" 01
Collector Cutoff Current
IVCB"
IVCB"
IVCB"
IVca"
50
60
50
60
Vde,
Vde,
Vde,
Vde,
IE"
IE"
IE"
IE"
leBO
MM4030, MM4032
MM4031 , MM4033
MM4030, MM4032
MM4031 , MM4033
01
01
0, T A" 1500 CI
0, TA" 1500 CI
Emitter Cutoff Current
lEBO
nAdc
nAdc
~Adc
IVaE" 5.0 Vde, IC" 01
ON CHARACTERISTICS 111
DC Current Gam
-
hFE
IIC" 100~Ade, VCE" 5.0 Vdel
MM4030,
MM4032,
MM4030,
MM4032,
MM4030,
MM4032,
MM4030
MM4031
IIC" 100 mAde, VCE" 5.0 Vdel
IIC" 500 mAde, VCE" 5.0 Vdel
IIC" 1.0Ade, VCE" 5.0Vdel
MM4031
MM4033
MM4031
MM0433
MM4031
MM4033
MM4032
MM4033
(lC " 100 mAde, VCE" 5.0Vde, TA" -550 CI MM4030, MM4031
MM4032, MM4033
Collector-Emitter Saturation Voltage
Base-Emitter Saturation Voltage
-
Volts
VaElonl
-
-
1.1
1.2
100
150
250
300
400
500
Ceb
-
10
20
pF
Cob
-
100
125
pF
ton
-
40
100
ns
toff
-
240
-
ns
ts
-
200
350
ns
All Devices
MM4030, MM4032
(lC" 500 mAde, VCE" 0.5 Vdel
IIC" 1.0 Ade, VCE" 1.0 Vdel
-
Vde
VaEI,.tl
All DeVices
(lC " 150 mAde, IB " 15mAdei
Base·Emltter On Voltage
120
300
Vde
VCEI,.,I
All DeVices
AU Devices
MM4030, MM4032
(lC" 150 mAde, I a" 15 mAdel
(lc" 500 mAde, la" 50 mAde 111
(lC" 1.0 Adc, la" 100 mAdel
-
DYNAMIC CHARACTERISTICS
Current-Gam-Bandwidth Product (1'
MHz
fT
(lC" 50 mAde, VCE" 10 Vde, f" 100 MHzl
MM4030, MM4031
MM4032, MM4033
Collector-Base Capacitance
IVCB" 10 Vde, IE" 0, f" 1.0 MHzl
Input Capacitance
IV BE "0.5 Vde, IC" 0, f" 1.0 MHzl
SWITCHING CHARACTERISTICS (Figur.'1
Turn-On Time
(VCe" 30 Vde, VBEloffl" 3.8Vde, IC" 500 mAde, IB1" 50 mAde I
Turn-Off Time
Storage Time
IVeC" 30Vde, IC" 500 mAde, IB1"IB2" 50mAdei
I
(1) Pulse Test: Pulse Width" 300
jJ.S,
Duty Cycle" 2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
VBB = +3.8 V
t
iOlJ
tr.tf~20ns
V
Zin=50n
Pulse Width = 10 #-1
Duty Cycle <2.0% -9.7 V
1.0k
10"F
+
50
647
Vee
= -30 V
60
Scope
100
Zln> 100 kilohms
tr
~
10 ns
MM4036 (SILICON)
PNPSILICON
PNP SILICON ANNULAR SWITCHING TRANSISTOR
SWITCHING TRANSISTOR
· .. desi!Jled for use in general purpose amplifier and switching
applications.
Breakdown Voltage • Coliector·Emitter
IC = 10 mAde
BVCEO = 65 Vc;Ic (Min)
• DC Current Gain - 100 /JAde to 500 mAde
Coliector·Emitter Saturation Voltage • LowVCE(sat)
= 0.3 Vdc (Typ)
IC = 150 mAde
Times IC = 150 mAde
• FasttonSwitching
= 90 ns (Typ)
@
II
@
@
toff = 450 ns (Typ)
~
-r;--I
ELK
--
SE::l~~
MAXIMUM RATINGS
R~tjng
Symbol
Value
Unit
VCEO
65
Vdc
Collector-Base Voltage
Vce
90
Vdc
Emitter-Base Voltage
VEe
5.0
Vdc
I
Coliector·Emitter Voltage
Collector Current - Continuous
IC
1.0
Adc
Base Current - Continuous
Ie
500
mAde
Total Power Dissipation @TA "" 25°C
Derate above 25°C
Po
1.0
5.71
Watt
mWt"C
TC = 25°C
Po
7.0
40
Watts
mW/oC
-65 to +200
°c
Total Power Dissipation
Derate above 25°C
@
Operating and Storage Junction
Temperature Range
TJ.Tstg
Characteristic
Thermal Resistance. Junction to Case
Symbol
Max
Unit
R~JA(11
175
°CM
R~JC
25
°CM
(O~'
Ih; -
N
~~¥J
PIN 1. EMITTER
2. BASE
3. COLLECTOR
DIM
A
8
C
0
E
F
G
H
J
K
L
M
p
(1) R8JA is measured with the device soldered into a typical printed circuit board.
I
I
STYLE 1:
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient
F
-11-0
n
R
MILLIMETERS
MIN MAX
8.89
8.00
6.10
0.406
0.229
0.406
4.83
0.711
0.737
12.70
6.35
450
-
900 NOM
2.54
INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
~
0.100
~
All JEDEC dimensions and notesappty.
CASE 79-02
TO·39
648
MM4036 (continued)
I
ELECTRICAL CHARACTERISTICS (TA = 25°C unle.. otherwi.. noted.)
I
Symbol
Min
Typ
M.x
Unit
Collector· Emitter Breakdown Volt.ge (1)
(lc = 10 mAde,lB = 0)
BVCEO
65
-
-
Vde
Coliector·B... Breakdown Voltage
OC= l00"Adc,IE= 0)
BVCBO
90
-
-
Vde
Emitter·Ba.. Breakdown Voltage
Of:= l00"Ade,lc= 0)
BVEBO
5.0
-
Vde
Collector Cutoff Current
(VCB = 60 Vde, IE = 0)
ICBO
-
-
250
nAde
Emitter Cutoff Current
lEBO
-
-
250
nAde
250
100
nAde
"Ade
Cheract..istic
OFF CHARACTERISTICS
(VBE = 3.0 Vdc, IC = 0)
Collector Cutoff Current (2)
(VeE = 60 Vde, VBE(off) = 1.5 Vde)
(VCE = 30 Vde, VBE(off) = 1.5 Vde, TC = 150°C)
ICEV
-
-
-
-
20
20
40
20
50
60
90
ON CHARACTERISTICS (1)
DC Current Gain
OC=
Oc =
Oc =
Oc Q
hFE
l00"Ade, VCE= 10Vdc)
150 mAde, VCE = 2.0 Vde)
150 mAde, VCE = 10 Vde)
500 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage
VBE(sat)
-
VCE(s.t)
(IC* 150 mAde,lB = 15 mAde)
B...·Emitt.r Saturation Voltage
(lC = 150 mAde, IS = 15 mAde)
-
200
140
-
40
0.3
0.65
Vde
1.0
1.4
Vde
DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, f = 20 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time
(VCC = 30 Vde,lc = 150 mAde,
IBI = 15mAde)
(Figure la)
ton
-
40
75
ns
Turn·Off Time
(VCO = 6.0 Vde, IC = 150 mAde,
IBl = IB2= 15 mAde)
(Figurelb)
toff
-
110
175
ns
(1) Pul.. Test. Pul.. Width .. 300 ,,5, Duty Cycle .. 2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
FIGURE 1. - TURN'()N TIME
FIGURE lb - TURN'()FF TIME
,
-30
INPUT
Zo =5011
PRF = 150 PPS
RISE TIME .. 2.0 ns
O_:LJ
INPUT
Zo=5011
PRF = ISO PPS
RISETIME"2.0,..
200
-
1.0 k
L
~
i
+15 V
) TO OSCI LLOSCOPE
RISE TIME .. 5.0 ns
50
37
Uk
0:U-
~)
1.0 k
50
-J l-
--1200nsL
-6 O
~
IN916
200ns
-=
-=
""=
649
-=
""=
TO OSCI LLOSCOPE
RISE TIME .. 5.0 ns
MM4037 (SILICON)
PNPSILICON
TRANSISTOR
PNP SILICON ANNULAR
AMPLIFIER TRANSISTOR
· .. designed for use in general·purpose amplifier and switching
applications.
•
•
Coliector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 10mAdc
Low Collector· Emitter Saturation Voltage VCE(sat) = 0.3 Vdc (Typ) @ IC = 150 mAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vde
Collector-Base Voltage
VCB
VEB
60
5.0
1.0
500
1.0
5.71
7.0
40
-65 10+200
Vde
Emitter-Sase Voltage
Collector-Emitter Voltage
Collector Current - Continuous
IC
Base Current
IB
Total Power Dissipation t A = 25°C
Derate above 25°C
Total Power Dissipation T C = 2S"C
Derate above 25°C
Po
Po
Operating & Storage Junction
Temperature Range
TJ.Tstg
STYLE I
PIN 1. EMITTER
2. BASE
3. COLLECTOR
Vde
Ade
mAde
Watt
mW/oC
Watts
mW?C
°c
DIM
A
B
C
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
I
I
Thermal Resistance, Junction to Case
I
Symbol
Max
ReJA(I)
175
25
ReJC
I
I
I
Unit
°C/W
°C/W
(1) R6JA is measured with the device soldered into a typical printed circuit board.
o
E
F
G
H
J
K
L
III
P
Q
R
MILLIMETERS
P/lIN MAX
8.B9 9.40
B.OO 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.4 6 0.483
4.B3 5.33
0.711 0.B64
0.737 1.02
12.70
6.35
45' N01\1
1.27
90. NOM
2.54
All JEOEC dimensions and notes apply,
CASE 79-02
TO-39
650
MM4037 (continued)
I
ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted!.
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage(l)
(lC = 10mAdc,IB = 0)
BVCEO
40
-
-
Vde
Collector-Base Breakdown Voltage
(lC = 10 "Ade, IE = 0)
BVCBO
60
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = 1.0 "Ade, IC = 0)
BVEBO
5_0
-
-
Vde
ICBO
-
-
250
Ade
lEBO
-
-
1_0
nAde
15
50
50
75
250
VCE( ..t)
-
0.3
1.4
Vde
VBE(on)
-
0.8
1.5
Vde
f,-
60
100
-
MHz
20
30
pF
60
-
pF
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 60 Vde, IE = 0)
Emitter Cutoff Current
(VEB = 5.0 Vde, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain
(lc
(lc
Collector~Emitter
(lC
-
hFE
= 1.0 mAde, VCE = 10 Vde)
= 150 mAde, VCE = 10 Vde)
Saturation Voltage
= 150 mAde, IB = 15mAde)
Base-Emitter On Voltage,
(lC = 150 mAde, IB = 10 mVde)
-
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, f = 20 MHz)
Collector-Base Capacitance
(VCB = 10 Vde, IE = 0, f
Ceb
= 1.0 MHz)
Input Capacitance
(VBE
= 0.5 Vde,
IC
-
Cib
= 0, f = 1.0 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time
(IC
= 150 mAde, IB = 15 mAde)
Turn...()ff Time
(lc = 150 mAde, IBI
ton
-
40
75
ns
toff
-
110
175
ns
(Figure la)
= 15 mAde, IB2 = 15 mAde)
(Figure lb)
(1) Pulse Test: Pulse Width ';;;300 "s, Duty Cycle ';;;2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
lb - TURN-DFF TIME
1. - TURN-DN TIME
-30
INPUT
Zo=50<2
PRF = 150 PPS
RISE TIME" 2.0 n,
+15 V
INPUT
Zo=50<2
PRF = 150 PPS
RISE TIME" 2.0 '"
200
1.0 k
1.0 k
TO OSCI LLOSCOPE
RISE TIME" 5 0 n'
O_lJ
-6.0
37
1.0 k
TO OSCI LLOSCOPE
RISE TIME" 5.0 os
0:U-
50
50
lN916
-j200n,l-
--J200n,L
-::-
-::-
-::-
651
-::-
-::-
MM4049 (SILICON)
The RF Line
4.0 GHz
@
20 mAde
HIGH FREQUENCY
TRANSISTOR
PNP SILICON HIGH-FREQUENCY TRANSISTOR
PNPSILICON
· .. designed for use as a high-frequency current mode switch. Because
of the extremely high Current-Gain-Bandwidth this transistor also
makes an excellent RF amplifier and oscillator.
• High Current·Gain-Bandwidth Product fT =4.0 GHz (Min) @ IC =20 mAdc
•
Low Collector·Base Capacitance Ccb = 1.25 pF (Max) @ VCB = 5.0 Vdc
I
MAXIMUM RATINGS
Rltlng
Coliector~B8se
-
Voltage
Emitter-B... Voltage
Collector Current
~M
Value
10
Unit
VCEO
VCI!
15
Vde
VEB
4.6
Vde
IC
30
mAde
Po
200
1.14
mW"
mW/oC
TJ.Tstg
-66 to +200
DC
Symbol
Collector-Emitter Voltago
Continuous
Totel Device Dialpation@TA =25°C
Derate above 25°C
Operating and Storage Junction
Vde
Temperature Range
STYLE 10
PIN1. EMITTER
2., BASE
3. COllECTOR
4
FIGURE 1 - CURRENT-GAIN-BANDWIDTH PRODUCT
:J:
5.0
!!!
t;
5
~
4.0
~
3.0
..!
2.0
~
t
~
-
--:::-
CASE
Vca. 510 Vdc-
I
Vca· 2.0 Vdc-
~
~
a
!O
1.0
o
o
5.0
10
15
20
25
30
35
40
AlLJEOECdllnlnsionsandnOlisapply
IC. COLLECTOR CURRENT (mAdel
CASE 20·03
TO·72
652
MM4049 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Max
Unit
Symbol
Min
Collector·Emitter Breakdown Voltage
(lC = 2.0 mAde, IB = 0)
BVCEO
10
Collector·Base Breakdown Voltage
(lC = 100 "Ade, IE D 0)
BVCBO
15
-
Vdc
Emitter·Base Breakdown Voltage
(IE = 100 "Adc, IC = 0)
BVEBO
4.5
-
Vdc
ICBO
-
10
nAdc
fT
4.0
Collector·Ba.. Capacitance (Figure 2)
(VCB = 5.0 Vde, Ie = 0, f = 1.0 MHz)
Ccb
-
1.25
pF
Emitter-Base Capacitance (Figure 2)
Ceb
-
1.25
pF
'b'Ce
-
15
ps
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB· 10 Vdc, IE = 0)
Vdc
ON CHARACTERISTICS
DC Current Gain
(lC = 25 mAde, VCE = 2.0 Vdci)
OVNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product (Figur. 1)
(lC 20 mAde, VCE = 5.0 Vdc, f • 500 MHz)
=
(VeB
=0.5 Vdc, IC = 0, f = 1.0 MHz)
Collector·Base Time Constant (Figure 3)
(Ie = 15 mAde, VCB = 5.0 Vde, f = 63.6 MHz)
FIGURE 3 - COLLECTOR·BASE TIME CONSTANT
FIGURE 2 - CAPACITANCES
2. 0
5
1
1.8
~
1. 6
~ 1.4
...~
1. 2
5
1.0
It
0.8
~
GHz
u O. 6 .......
0.4
0.1
:IE
.....
;:
3
~....
Ccb
ci:
I--... r -
.......r-
C.b
8
"-
O. 2
o
...8
20
5
Vca
=2.0 Vde
....-1
<~.OVdC
............
-
10
5.0
.j
'If!
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7.0
10
5.0
VR, REVERSE VOLTAGE (VOLTS)
10
15
20
25
IC. COLLECTOR CURRENT (mAde)
653
30
35
40
MM4052 (SILICON)
PNP SILICON
CHOPPER AND SWITCHING
TRANSISTOR
PNP SILICON ANNULAR TRANSISTOR
· .. designed for bilateral switching and high· level chopper appli·
cations such as servo·loop circuitry and control amplifiers for motor
drive systems. These transistors can also be used as replacement
devices for alloy-type transistors where high BVEBO is required.
•
High Emitter-Base Breakdown Voltage BVEBO = 30 Vdc (Min) @ IE = 100 /JAdc
•
Inverted DC Current Gain - 3.0 (Min) @ IC = 150 mAde
•
Low Emitter-Collector Offset Voltage VEC(ofs) = 2.0 mVdc (Max) @ I B = 1.0 mAdc
•
Low "ON" Series Resistance rec(ON) = 2.0 Ohms (Max) @ IB = 10 mAde
\
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
VeEO
30
Unit
Vdc
Emitter-Collector Voltage
VEe
30
Vdc
Collector-Base Voltage
V eB
30
Vdc
Emitter-Base Voltage
V EB
30
Vdc
Collector Current - Continuous
Ie
500
mAde
Total Power Dissipation @ T A = 25° C
Po
0.5
2.86
Watt
mw/oe
Po
1.75
10
mW/ C
-65 to +200
°c
Derate above 25° C
Total Power Dissipation
@
T C = 25 C
Derate above 25 C
Watts
Operating and Storage Junction
Temperature Range
TJ. T stg
AIIJEDEC dImenSIOns and nOl8sapply
CASE 26·03
TO·46
654
MM4052 (continued)
ELECTRICAL CHARACTERISTICS IT A = 250 C unless otherwise noted)
Characteristic
Svmbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage 111
(lC = 10 mAde, 'B = 0)
BV CEO
30
-
Vde
Emitter-Collector Breakdown Voltage 111
BV ECO
30
-
Vde
BV CBO
30
-
Vde
BV EBO
30
-
Vde
'CBO
-
0.5
nAdc
'EBO
-
0.5
nAde
20
15
3.0
-
VEC(ofsl
-
2.0
mVde
Cob
-
10
pF
-
5.0
20
3.0
-
(IE
= 10 mAde, IB = 0)
Collector-Base Breakdown Voltage
= 0)
(lC = 100 IJAde, 'E
Emitter-Base Breakdown Voltege
(IE
= l00lJAde, 'C = 0)
Collector Cutoff Current
(V CB =15 Vde, 'E = 0)
Emitter Cutoff Current
(V EB = 15 Vde, 'C
= 0)
ON CHARACTERISTICS
DC Current Gain 111
-
hFE
(lC = 10 mAde, VCE = 1.0 Vdc)
(lC = 150 mAde, VCE = 1.0 Vde)
(lC = 150 mAde, VCE = 1.0 Vde) (Inverted.
Offset Voltage
(lB = 1.0 mAde, 'E = 0)
SMALL-SIGNAL CHARACTERISTICS
Output Capacitence
(V CB
= 10 Vde, 'E = 0, 100 kHz";f ";1.0 MHz)
Input Capacitance
(V EB
= 10 Vde, 'C = 0, 100 kHz s
C ib
f ~ 1.0 MHz.
Small-Signal Current Gain
(lC
= 10 mAde, VCE - 1.0 Vde, f = 4.0 MHz)
(lB = 10 mAde, f· 1.0 kHz)
-
hfe
(lC = 10 mAde, VCE = 1.0 Vde, f = 1.0 kHz)
"ON" Series Resistance
pF
-
655
Ohms
rec(ON)
(1) Pulse Test: Pulse Width'$; 300 #£1, Duty Cycle'S 20%
-
2.0
MM4208, MM42I08,A (SILICON)
MM4209, MM4209A
PNP SILICON
SWITCHING
TRANSISTORS
PNP SILICON ANNULAR TRANSISTORS
... designed for applications requiring very high-speed switching at
low voltage for computer logic circuits.
•
Fast Switching Times - @ IC = 50 mAde
ton = 15 ns (Max)
toff = 20 ns (Max)
•
High Current-Gain-Bandwidth Product fT 1300 MHz (Typ) @ IC 10 mAde
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.18 Vde (Max) @ IC = 10 mAde
=
=
MAXIMUM RATINGS
Rating
Symbol
MM4209
MM4208A
MM4209A
VeEO
12
12
15
15
Collector-Emitter Voltage
Colleetor-Sa.e Voltage
Emitter~Base
VeB
VEB
Ie
Voltage
Collector Current - Continuous
Total Power Dissipation@TA = 250 e
Derate above 2Soe
Po
Total Power Dissipation @Te=250 e
Derato above 250 e
Po
Operating and Storage Junction
Temperature Range
TJ,Tstg
MM~208
4.5
200
0.36
2.06
Unit
6.86
Watts
mW/oe
-65 to +200
°c
1.2
SEATING
PLANE
Vde
Vde
Vde
mAde
Watt
mW/oe
DIM
5.84
4.95
5.33
0.533
0
E
- 0.762
F 0.406 0.483
G
2.548Se
H 0.914 ·1.17
0.711 1.22
J
K 12.70
L
6.35
M
45' BSC
N
1.27 a e
P
1.27
A
a
C
SELECTOR GUIDE
BVeEO
hFE
@le=10mA,VeE-0_3V
Type
Volts
Min
Min.lMax
MM4208
MM4208A
MM4209
MM4209A
12
15
12
15
30/120
30/120
50/120
50/120
MILLIMETERS
MIN
MAX
5.31
4.52
4.32
0.406
-
INCHES
MIN
MAX
0.209
0.178
0.170
0.D16
-
0.D18
0.1
0.036
0.028
0.230
0.195
0.210
0.021
0.03C
0.019
esc
0,046
0.048
--
0.250
45 ase
0.050 as
0.050
All JEDEC notes and dimensions apply.
CASE 22-03
(TO-IS)
656
MM4208, MM4028A, MM4209, MM4209A (continued)
ELECTRICAL CHARACTERISTICS (T A = 2SoC unless otherwise noted)
I
Characteristic
Symbol
Min
BVCEO
,.
TV'
....
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltagel')
(Ie = 3.0 mAde, '8 '" 0
Collector·Emltter Breakdown Voltage
He = 100,uAdc. Vse = 0)
Vd<
BVCES
12
15
MM4208,MM4209
MM4208A,MM4209A
Collector-Base Breakdown Voltage
(Ie ""OO,uAdc. Ie = 0)
Vdc
12
MM4208,MM4209
MM4208A,MM4209A
Vdc
BVCBO
12
15
MM4208,MM4209
MM420BA,MM4209A
Emitter-Base Breakdown Voltage
BVEBO
4 .•
Vdc
(Ie'"' 100,uAdc, Ie = OJ
Collector Cutoff Current
ICES
10
10
5.0
5.0
MM4208,MM4209
(Vee" 6.0 Vdc, Vse = 0)
(VeE = 8.0 Vdc, Vse = 0)
(VeE" 6.0 Vdc, VeE" 0, T A = 125°C)
MM4208A,MM4209A
(VeE =8.0Vdc, Vee =0, TA -=125 0 CI
MM4208A,MM4209A
MM4208,MM4209
Base Current
(VeE = 6.0 Vdc, VeE'" 0)
MM420B,MM4209
(VCE ., 8.0 Vde, VSE = OJ
MM4208A,MM4209A
nAdc
,Adc
nAde
'8
1.0
1.0
ON CHARACTERISTICS
DC Current GIIin
IIc = 1.0 mAde, VCE '" 0.5 Vdc)
hFE
MM4208,MM4208A
MM4209,MM4209A
15
35
(lc = 10 mAde, VCE = 0.3 Vde)
MM420B,MM4208A
MM4209,MM4209A
30
(lC'" 10 mAde, VCE = 0.3 Vde, T A = -5SoCl
MM4208,MM4208A
MM4209,MM4209A
(lC = 50 mAde, VCE = 1.0 Vdc)(1)
MM4208,MM4208A
MM4209,MM4209A
120
120
50
12
20
30
40
Colleetor·Emitter Saturation Voltage
tiC" 1.0 mAde, le=0.1 mAde)
Vdc
VCEfsat}
0.16
tiC =- 10 mAde, IS" 1.0 mAdel
0.18
OS
(IC = 50 mAde, Ie" 5.0 mAdelll1
Base·Emitter Seturatlon Voltage
(lC" 1.0 mAde, Ie" 0.1 mAde)
Vdc
VSElsatl
0.8
IIc" 10 mAde, 'e" 1.0 mAde)
0.85
0.7
1.5
(lc" 50 mAde, 'e" 5.0 mAde)11)
SMALL SIGNAL CHARACTERISTICS
IT
Current-Gain Bandwidth Product
lie'" 10mAde, Vee "10 Vdc, f"100MHz)
850
1300
MHz
Output Capacitance
(Vce'" 5,0 Vdc, Ie '" 0, f .. 140 kHz)
Cob
3.0
pF
Input Capacitance
(VeE" a,s Vdc, IC '" 0, f '" 140 kHzl
Cib
3.5
pF
Turn·On Time IFigure 11
(VCC = 3.0 Vdc,lC "50mAdc,IS1 =5.0mAdcl
ton
,.
Turn-Off Time
(VCC =3.0 Vde, 'c=50mAdc,'S1 '"'S2=5.0mAdcl
toff
20
Storage Time
iVCC = 3.0 Vdc, IC~10mAdc,IBl "'S2s=:.10mAdc)
t,
SWITCHING CHARACTERISTICS
17
(1JPulse Test: Pulse WidthS 300 ~I, Duty Cycle'5. 1.0%.
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
Vee
Vaa
Rl
+ - - - - - O V OU l
R3
01
ton
toft
1,
Vin VBB
Volts Volts
-12.8 +4.0
+20 -11.3·
+9.0
-10
Vee
Volts
-3.0
-3.0
-3.0
Rl
R2
R3
R4
R5
01
Ohms Ohms Ohllt'S Ohms Ohms
55
55
100
100
270
510
2.0k
2.0 k
390
100
100
info
info
info
51
*At Point A (ptA) 01 must be fast recovery type. e.g" MSD6100
657
no
yes
no
20
MM4257
MM4258
(SILICON)
SWITCHING
TRANSISTORS
PNP SILICON ANNULAR TRANSISTORS
· .. designed for applications requiring high speed switching at
low voltages.
PNPSILICON
• Coliector·Emitter Saturation VoltageVCE(sat) ; 0.15 Vdc (Max) @ IC; 10 mAdc
• SwitchingTimes@ IC; 10 mAdcton; 10 ns (Typ)
toff ; 10 ns (Typ)
•
Hermetic Constructed Version of 2N4257 and 2N4258
• Complement to 2N2369
MAXIMUM RATINGS
Rating
Symbol
MM4257
MM4258
Unit
VeEO
6.0
12
Vde
Collector-Base Voltage
Vea
6.0
12
Vde
Emitter-Base Voltage
VEa
4.5
Vde
Collector Current - Continuous
Ie
80
mAde
Total Power Dissipation @
TA = 250 e
Derate above 2SoC
Po
360
2.06
mW
mW/oe
Total Power Dissipation @
Te = 250 e
Derate above 2SoC
Po
1.2
6.86
Watts
mWfOe
Collector-Emitter Voltage
Operating and Storage Junction
Temperature Range
°e
TJ,Tstg
-65 to +200
SEATING
PLANE
PIN I. EMITTER
2. BASE
3. COLLECTOR
DIM
A
S
e
0
G
H
J
K
M
N
INCHES
MIN
MAX
MILLIMETERS
MIN
MAX
5.31
5.84
4.52 4.95
4.32 5.3
.48
0.41
2. I SSC
1.17
0.91
1.22
0.71
12.70
45 BSe
1.27 BSe
0.209
0.178
0.170
.1
0.111
0.230
0.195
0.210
!]l9
bSC
o·r:
O'O~~I 0.4
BSe
0.05 BSe
Collector Connected to Case
CASE 22
TO-18
658
MM4257, MM4258 (continued)
ELECTRICAL CHARACTERISTICS (TA
I
= 250 C unless otherwise noted)
I Symbol
Characteristic
Unit
Min
Typ
Ma.
6.0
12
-
-
6.0
12
-
-
6.0
12
-
4.5
-
-
-
0,01
5.0
15
30
30
-
-
-
120
-
-
-
-
0.15
0.5
0.75
-
0.95
1.5
500
700
-
-
-
Ceb
-
-
3.0
pF
Cib
-
-
3.5
pF
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lc = 3.0 mAde, IB = 0)
Collector-Emitter 8reakdown Voltage (1)
(lC = 100 "Ade, VBE = 0)
-
Vde
BVCES
MM4257
MM4258
Colleetor-Ba.. Breakdown Voltage
(lC = 100 "Ade, IE = 0)
Vde
BVCBO
MM4257
MM4258
Emitter-Base Breakdown Voltage
(IE
Vde
VCEO(sus)
MM4257
MM4258
BVEBO
-
Vde
= 100 /lAde, IC = 0)
Collector Cutoff Current
"Ade
ICES
(VCE = 6.0 Vde, VBE = 0)
(VCE = 3.0 Vde, V8E = 0, T A = +650 C)
ON CHARACTERISTICS (11
DC Current Gain
-
hFE
(lC = 1.0 mAde, V CE = 0.5 Vde)
(lC = 10 mAde, VCE = 0.3 Vde)
(lc = 50 mAde, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage
Vde
VCE( ... )
(lC = 10 mAde, IB = 1.0 mAde)
(lC = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage
Vde
VBE( ..t)
(lC = 10 mAde, 18 = 1.0 mAdel
(lC = 50 mAde, IS = 5.0 mAde)
-
DYNAMIC CHARACTERISTICS
Current-Gain - Sandwidth Product (2)
(lC = 10 mAde, VCE = 5.0 Vde, 1= 100 MHz)
(lC = 10 mAde, VCE = 10 Vdc, I = 100 MHz)
MHz
IT
MM4257
MM4258
Collector-Base Capacitance
(VCS = 5.0 Vde,IE = 0, I = 100 kHz)
I nput Capacitance
(VSE = 0.5 Vde, IC = 0, I = 100 kHz)
SWITCHING CHARACTERISTICS (Figure 5)
ton
-
10
15
ns
'd
-
5.0
10
ns
tr
-
5.0
15
ns
MM4257
MM4258
toff
-
12
16
15
20
ns
MM4257
MM4258
'.
6.0
8.0
15
ns
MM4257
MM4258
tl
6.0
8.0
10
10
Storage Time
(lc "" 10 mAde, lSI ,.,10 mAde, IS2 "" 10 mAde) MM4257
MM4258
Is
-
15
20
Turn~nTime
Delay Time
Rise Time
(VCC = 1.5 Vdc,
VSE(olf) = 0,
IC = 10 mAde, lSI
=1.0 mAde)
Turn'()lf Time
Storage Time
(VCC = 1.5 Vde,
IC = 10 mAde,
181 = IB2 1.0 mAde)
=
Fall Time
-
(2) fT is defined as the frequency at which I hfe I extrapola.. s to unity.
659
ns
ns
-
(1) Pulse Test: Pulse Width.;;; 300 "', Du'y Cycle';;; 2.0%.
20
-
MM4257. MM4258 (continued)
TYPICAL TRANSIENT CHARACTERISTICS
FIGURE 1 - CURRENT-GAIN - BANDWIDTH PRODUCT
FIGURE 2 - CAPACITANCE
~ 3000
7.0
1 1 II
11 II
i!
....
~ 2000
Q
Q
IE
~
~
~
."
1000
........
i'
0
700
~
500
r-- t-I-
Cob
II:
II:
~~
V
~ 3O~.6
-
1.0
::>
0.1
1.0
2.0
3.0
5.0 7.0
10
20
30
o.7
50
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7Jl
10
20
VR. REVERSE VOLTAGE IVOLTS)
IC. COllECTOR CURRENT (mA)
FIGURE 3 - TURN-ON TIME
FIGURE 4 - TURN-OFF TIME
100
100
70
50
Ie/IS =10
TJ,250 C
30 1"'...'
!
Tl'·250 C_ I-MM4258
--
0
,
z
C
5.0
U1LJJ257
VCE -10 V MM4258
TJ - 25"C
20
r-::: ............,
w
!.... 10
70
50
!
r-:::
20
.......
~.VCC·'.
10
.,.... 7.0
5.0
"""i..
3.0
Id II VSElo!l) • 0
3.0
TJ' 250 C
!
1,II VCC·1.5V
2.0
2.0
" I'.
w
-- 7.0
5.0
1.0
1.0
181"182
IC/IS" 10
30
I II
5.0 7.0
10
3.0
j"'--..
20
2.0
30
50
70
1.0
1.0
100
2.0
--
..!!
f-"'"
..... .....
3.0
IC. CO LLECTOR CURRENT lmA)
5.0 7.0. 10
20 30
. IC. COLLECTOR CURRENT I.....)
50
70
100
FIGURE 5 - SWITCHING TIME TEST CIRCUIT
VCC
Rl
Ion
R2
Ioff
O.I/1f
Vin o--.....
Zin,50n
1,<1.0 n.
son
tw= 240 ns
R3
-U'-...-...JVVY-----jH
Vout
Zin;>l00kll
1,< 1.0 os
I.
660
Vin
Volts
-5.8
+9.8
+9.0
V8S
Volts
GNO
-8.0
-10
VCC
Volts
-1.5
-1.5
-3.0
Rl
Ohm.
130
130
270
R2
R3
Ohms
Ohms
2.2k
2.2k
510
5k
5k
390
IC
mA
10
10
10
lSI
mA
1.0
lJl
10
182
mA
-
1.0
10
MM4257, MM4258 (continued)
DC CURRENT GAIN
FIGURE 7 - MM4258
. FIGURE 6 - MM4257
200
z
100
w
ac
a:
....z
70
.....
I
TJ = ~5&t
TJ' 250 C
50
CI
.l!'
~
0.5 0.7
1.0
a:
a:
..
tl
I'-.,r--
0.5V
30
20
VCE-5.0V
50
1.0V
-~
ffi
---
1.0V
-
0
z
IVCEI. 5!0!
:c
co
:>
100
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (mA)
20
30
0;"3
CI
10
50
0.5 0.7
2.0
1.0
I/f""
TJ.250 C
I-: :;;....
VsE(~) .ICII~ = Id
VBEI!IVCE·1.0V
~ 0.8
w
~
~-
0.4
O.2
0.5 0.7
1.0
2.0
3.0
--
........ 1--'
~
\lCE(at) IiIIClis' 10
o
3.0
5.0 7.0
10
IC. COLLECTOR CURRENT (mA)
FIGURE 8 - "ON" VOLTAGES
~
1""--...;
.l!' 20
1.0
0.8
::-
0.5 V
5.0 7.0
10
IC. COLLECTOR CURRENT (mA)
661
20
30
50
20
30
50
MM4261 H(SILICON)
High Reliability Products
PNPSILICON
SWITCHING TRANSISTOR
PNP SILICON ANNULAR TRANSISTOR,
· .. designed for high reliability, low·level switching applications and
general usage for radiation resistant requirements.
• Off-the-Shelf Availability of Extensive High Reliability Processing
• High Tolerance to Neutron Radiation @ IC = 10 mA,
hFE Degradation Typically Less Than 50% after
5 x 1014 Neutronslcm 2 (Figure 13}
• High Current-Gain-Bandwidth ProdlJct fT = 3500 MHz (Typ} @ IC = 10 mA
•
Low I nput and Output Capacitance Cib and Cob = 2.5 pF (Max}
• Excellent Current-Mode Performance tr = 0.5 ns (Typ} @ IC = 10 mA
0.9 ns (Typ} @ IC = 30 mA
rF'1
~I"~
",). ~ ,
MAXIMUM RATINGS
Collector-Emitter Voltage
Collector-Ba.. Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation @ T A
~
PLANE
Rating
= 25°C
Symbol
Value
Unit
VeEO
15
Vdc
Veil
15
Vdc
VEB
4,5
Vdc
Ie
30
mAdc
Po
200
1,14
mW
mwf'e
TJ, Tstg
-65 to +200
°e
Derate above 25°C
Operating and Storage Junction
Temperature Range
--11--0
STYLE 10
N PIN 1.
2.
rNI 3,
EMITIER
BASE
COLLECTOR
I~HJ1--l G 4. CASE
2
M
V~Jtt
MILLIMETERS
MIN MAX
5,31 5.B4
A
B
4.52 4,95
4,32 5.33
C
0,41 0.53
0
E
0.76
F
0.41 0.48
2,54 BSC
G
0,91
H
1.17
J
0.71
1.22
K
12.70
6,35
l
M
45 0 BSC
1.27 BSC
N
P
1,27
DIM
INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0,170 0,210
0.016 0,021
0,030
0.D16 0,019
0,100 BSC
0.036 0.046
0,028 0.048
0,500
0.250
45 BSC
0.050 BSC
0,050
ALL JED EC dimensions and notes apply
eASE 20·03
TO-72
662
MM4261 H (continued)
.
HIGH RELIABILITY
PROCESSING SEQUENCE
GROUP A INSPECTION
The lot is 100% inspected in the sequence
shown below
+
SAMPLE INSPECT ELECTRICAL PARAMETERS per TABLE I
summary data provided
INTERNAL VISUAL INSPECTION
SUBGROUP 1
LTPD = 5
Not81
SCREEN ELECTRICAL PARAMETERS
Table I
G,R
VISUAL and MECHANICAL
MIL-STD-750
Method 2071
R
HIGH TEMPERATURE STORAGE
T A;:' 2000C, t;:' 24 hours
SUBGROUP 2
LTPD = 2
TEMPERATURE CYCLING
MI L-STD-202, Method 102, Condition C
ELECTRICAL TEST
Table I
G,R
10 cycles, t (extreme) ~15 minutes
SUBGROUP 3
LTPD = 3
CONSTANT ACCELERATION
MIL-STD-750, Method 2006
Yl axis 20,000 G
ELECTRICAL TEST
Table I
G,R
FINE LEAK
MIL-STD-202, Method 112, Procedure Ilia
Condition C, P = 50 psig. t
=4
hours
SUBGROUP 4
LTPD = 5
Leak rate :s: 1 x 10-8 atm. eelsec
R
ELECTRICAL TEST
Table I
G,R
GROSS LEAK
MI L-5TD-202, Method 112, Condition A
Ethylene Glycol, T = 100o C, t :><15 sec.
R
SUBGROUP 5
LTPO = 5
MARK DEVICES
Motorola Symbol, MM4261H, seal date
code
ELECTRICAL TEST
Table I
G,R
ELECTRICAL TEST Table II (initial)
RR,R
SUBGROUP 6
LTPD = 7
BURN-IN TA = 250 C, t = 168 hours
Po = 200 mW, VCB:S: 5.0 V
ELECTRICAL TEST
Table I
G,R
ELECTRICAL TEST Table II (end points)
POA = 10
RR,R
SUBGROUP 7
LTPD = 7
Option 1
Burn·ln Data with Delta Calculations
(see Option Data Provisions)
ELECTRICAL TEST
Table I
G,R
Samples are randomly selected from the lot
for Group A, Group S, and Group C inspec-
tion. Sample size for s8ch Subgroup shall be
determined from Sampling Plan Table and
R - Remove Rejects
G- Go-No-Go
RA - Read and Record
shall meet the specified LTPD or lambda
requ irements.
NOTE 1: Internal Visual Inspection
Each device will be inspected under
magnification for defects in material and
workmanship which do not comply with
Motorola's visual inspection procedures.
663
I
MM4261H (continued)
GROUP B INSPECTION
..________..~I
I
SAMPLE INSPECT ENVIRONMENTAL and LIFE
summary data provided
L
IIII________..
I
,,
SUBGROUP 1
LTPD =20
PHYSICAL
DIMENSIONS
per OUTLINE
DRAWING
TO-72 Package
,,
SUBGROUP 2
LTPD= IS
SUBGROUP 3
LTPD = 15
SUBGROUP 4
LTPD = 20
SUBGROUP 7
~ = 7
ELECTRICAL TEST
Table III
ELECTRICAL TEST
Table III
LEAD FATIGUE
MIL-STD-750
Method 2036
ELECTRICAL TEST
Table IV
SOLDERABILITY
MIL-STD-750
Method 2026
SHOCK
MI L-5TD-750 .
Method 2016
1500 G. 0.5 ms
5 blows each Xl. Yl.
Y2.Z1
20 blows total
Condition E
TEMPERATURE
CYCLING
MIL-STD-750
Method 1051
Condition C
THERMAL SHOCK
MI L-5TD-750
M.thod 1056
Condition A
HERMETIC SEAL
MI L-5TD-202
Method 112
FINE LEAK
Procedure Ilia
Condition C
Leak rate
~ 1 • 10-8 cc/lSC
GROSS LEAK
Condition A
VIBRATION FATIGUE
MIL-STD-750
Method 2046
VIBRATION VARIABLE
FREOUENCY
MI L-5TD-750
Method 2056
CONSTANT
ACCE LE RATION
Method 2006
20 kG in XI.
Y2. ZI axes
'n.
ELECTRICAL TEST
Table III
G
ELECTRICAL TEST
Table III
G
GROUP C INSPECTION
SUBGROUP 1
LTPD= 10
NEUTRON FLUX
RADIATION EXPOSURE
fluenc. = 1 x 1015
tronsl cm2
(E>10keVI
.
neu
ELECTRICAL TEST
Table V
RR
G - Go-No-Go
R R - Read and Record
664
SUBGROUPS
LTPD = 20
SALT ATMOSPHERE
MI L-5TD-750
Method 1041
SUBGROUP 6
~ = 7
HIGH TEMPERATURE
STORAGE LIFE
MI L-5TD-750
Method 1031
Tstg' 2000 C
ELECTRICAL TEST
Table IV
STEADY STATE
OPERATION
MIL-5TD-750
Method 1026
VCB = 10V
TA = 250 C
Po = 200mW
ELECTRICAL TEST
Table IV
MM4261 H (continued)
TABLE I: GROUP A INSPECTION (TA
~ 250 C unless otherwise noted)
MIL-STO-750
Method
Examination or Test
SUBGROUP 1
Visual and Mec;:hanical Examination
2071
SUBGROUP 2
Collector-Base Cutoff Current
(VCB ~ 10 Vde, IE ~ 0)
Symbol
ICB01
Collector-Cutoff Current
(VCE ~ 10 Vde, VBE(off) ~ 2_0 Vde)
3041A
ICEVI
Collector-Cutoff Current
(VCE ~ 10 Vde, VEB(on)
3041 A
= 0.4 Vde)
Emitter-Base Breakdown Voltage
(IE = 10 "Ade, IC = 0)
30260
Collector-Base Breakdown Voltage
(lC = 10 "Ade, IE ~ 0)
30010
Collector-Emitter Breakdown Voltage (1}
(lC ~ 10 mAde, IB ~ 0)
3011D
Unit
LTPO
-
-
5
-
ICEV2
nAde
-
5_0
-
5_0
-
50
4.5
-
15
-
15
-
nAde
nAde
BVEBO
Vde
Vde
BVCBO
Vde
BVCEO
3
~
3066B
VBE(on)1
3066B
VBE(on)2
1.0 Vde)
Base-Emitter On Voltage
(lC ~ 10 mAde, VCE ~ 1.0 Vde)
Collector-Emitter Saturation Voltage
(lC ~ 1.0 mAde, IB ~ 0.1 mAde)
3071
Collector-Emitter Saturation Voltage
(lC ~ 10 mAde, IB ~ 1.0 mAde)
3071
DC Current Gain
(lC ~1.0mAde, VCE
3076
~
3076
DC Current Gain
(lC ~ 30 mAde, VCE ~ 2.0 Vde)
3076
SUBGROUP 4
Current-Gain-Bandwidth Product
(lC ~ 5.0 mAde, VCE ~ 4.0 Vde, f
Current-Gain-Bandwidth Product
(lC ~ 10 mAde, VCE ~ 10 Vde, f
-
O.B
-
1.0
-
0.15
-
0.35
25
-
30
150
20
-
Vde
Vde
VCE(sad2
Vde
-
hFEl
-
hFE2
-
hFE3
5
MHz
fT1
~
100 MHz)
1500
-
2000
-
-
2.5
-
2.5
MHz
fT2
~
Vde
VCE(sat) 1
1.0 Vde)
DC Current Gain
(lc~ 10 mAde, VCE ~ 1.0 Vde)
100 MHz)
Output capacitance
(VCB ~ 4.0 Vde, IE ~ 0,100 kHz:5: f:5: 1.0 MHz)
3236
Input capacitance
(VEB ~ 0.5 Vde, IC ~ 0, 100 kHz:;;: f:5: 1.0 MHz)
3240
SUBGROUP 5 (See Figure 1)
Collector-Base Time Constant
(lC ~ 5.0 mAde, VCE ~ 4.0 Vde)
Cob
Cib
pF
pF
5
rb'Cel
Collector-Base Time Constant
(lC ~ 10 mAde, VCE ~ 10 Vde)
'b'Ce2
ps
-
60
-
50
ps
7
SUBGROUP 6
DC Current Gain
(lC ~ 1.0 mAde, VCE ~ 1.0 Vde, TA ~ -55°C)
-
hFE4
15
-
15
-
-
5.0
ton
-
5.0
ns
toft
-
5.0
ns
DC Current Gain
(lC ~ 10 mAde, VCE ~ 1.0 Vde, TA ~ -55°C)
hFE5
Collector-Base Cutoff Current
(VCB ~ 10 Vde, IE ~ 0, TA ~ 1500C)
ICB02
/lAde
7
SUBGROUP 7 (See Figure 2)
Turn-On Time
Turn-Off Time
(11 'Pulse
Mex
2
3036D
SUBGROUP 3
Base-Emitter On Voltage
(lC ~ 1.0 mAde, VCE
Min
Test: Pulse Width S 300 lIS, Duty CycleS 2.0%.
665
MM4261H (continued)
TABLE II: ELECTRICAL INSPECTION
ITA = 25°C unless otherwise noted)
Examination or Test
Collector-Base Cutoff Current
IVCB = 10 Vde, IE = 0)
DC Current Gain fli
(lC = 10 mAde, VCE
MIL-8TD-750
Mathod
Symbol
30360
ICBol
3076
= 1.0 Vde)
~ICBOl
DC Current Gain
~hFE2
MIL-8TD-750
Method
Symbol
30360
ICB01
Collector-Base Cutoff Current
IVCB = 10 Vde, IE = 0)
3076
= 1.0 Vde)
TABLE IV: ELECTRICAL INSPECTION
ITA
DC Current Gain \ 11
(lC = 10 mAde, VCE
30
150
-
±20%
Min
Max
-
5.0
30
150
Min
Max
-
5.0
10
30
20
150
lBO
-
nAde
-
Unit
nAde
-
hFE2
MIL-8TD-750
Method
Symbol
30360
ICBOl
Initial
End Point
3076
= 1.0 Vde)
5.0
= 25 0 C unless otherwise noted)
Examination or Tast
Collector-Base Cutoff Current
IVCB = 10 Vde, IE = 0)
-
Unit
ITA = 250 C unless otherwise noted)
Examination or Tast
DC Current Gain 111
(lC = 10 mAde, VCE
Max
hFE2
Collector-Base Cutoff Current
100% or 5.0 nAde whichever is greater
TABLE III: ELECTRICAL INSPECTION
Min
nAde
-
hFE2
Initial
End Point
Unit
-
Collector-Basa Cutoff Current
100% or 5.0 nAde whichever is greater
~ICBOl
DC Current Gain
~hFE2
-
MIL-8TD-750
Method
Symbol
Min
Max
30360
ICBOl
-
10
-
0.5
12
-
±20%
-
TABLE V: ELECTRICAL INSPECTION ITA = 250 C unless otherwise noted)
Examination or Tast
Collector-Base Cutoff Current
IVCB =10 Vde, IE = 0)
(I)
Collector-Emitter Saturation Voltage \11
(lC = 10 mAde, IB = 1.0 mAde)
3071
DC Current Gain II)
(lC = 10 mAde, VCE
3076
= 1.0 Vde)
Pulse Test: Pulse Width:S300 1'5, Duty Cyele:S2.0%.
666
VCElsat)2
Unit
I'Ade
Vde
-
hFE2
MM4261H
(continued)
FIGURE 1 - COLLECTOR·BASE TIME
CONSTANT TEST CIRCUIT
CAL
RS
~
FIGURE 2 - TURN·ON TIME AND TURN·OFF
TIME TEST CIRCUIT
_ _ _ _--,
0.1 "F
50n @7-..,..---CH-~-- 10 koV)
I-- I-"
3~~ I-- I~
3Xl~5
10
~.
r
~(nvt) En-r 11~ ~.~
~~7~~
60
FIGURE 15 - TYPICAL COLLECTOR-EMITTER SATURATION
VOLTAGE va.... FAST NEUTRON DOSAGE
100
0
5.OFVCB--1SV
0
I-TJ" 25°C
0
0
5
0
l;ii'
F F
POST·IRRAOIATION ICBO
5.0
~
2
/~
0
2.0
1
'
~~
TJ.250 C_
if
(E>10 kaY)
0
5
o.5
PRE·IRRADIATION ICBO
O. 1 3.1014
0.0 1
1013
1014
~.
1015
o
1016
FAST NEUTRON OOSAGE (E > 10 koV)
IclIB=10= t==
3x 1013
o. 2r-l014 -
0.02
3.1015
U)
100
"K
\"" 1010
200
300
400
VCE(sat). SATURATION VOLTAGE (mV)
neutronslcm2
Devices Stocked in Motorola Bonded Warehouaa
STANDARD DATA PROVISIONS
1. Motorola will keep on file 1 copy of all aseociated
data for a minimum of 3 yeers from date of purchaaa order.
2. One copy of Summary data shall accompany each
shipment of devices from following steps.
a. Burn-In Test par Table II
b. Group A Inspection per Table I
c. Group B Inspection per Tables III and IV
d. Group C Inspaction per Table V
Foam Tray Packaging per MIL-5-19491
Option 2
100% Rediographic Inapection per MILoSTD-202.
Method 209 (aae Option Data Provisions)
OPTION DATA PROVISIONS
1. Motorola will provide burn-in delta data on control
parameters for the lot as well as for Group B. Subgroup 6 and 7. and Group C. Subgroup 1.
2. Motorola will X-ray the aarialized devices prior to
shipping and provide films only if this is required
by purchase order.
669
500
600
MM5005 (SILICON)
MM5006
MM5007
PNP SILICON ANNULAR TRANSISTORS
PNPSILICON
AUDIO TRANSISTORS
· .. designed for high-voltage audio driver amplifier and general purpose
switching and oscillator applications.
•
•
High Coliector·Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 10 mAdc (MM5007)
Low Output Capacitance Cob = 20 pF (Max) @ VCB = 10 Vdc
•
Excellent Current Gain linearity - 1.0 to 250 mAdc
•
Complements to NPN MM3005, MM3006, MM3007
~11-=:=:
~
MAXIMUM RATINGS
Rating
Symbol
MM5005 MM5006 MM5007
Unit
VCEO
60
80
100
Vdc
Collector-Sase Voltage
VCS
80
100
120
Vdc
Emitter-Base Voltage
VES
_5.0_
Vdc
Collector Current - Continuous
IC
_2.0_
Adc
Total Power Dissipation@TA ~ 2SoC
Po
_1.5_
_8.57_
Watts
mWI"C
Po
_8.0_
_45.7_
mWI"C
Collector-Emitter Voltage
Derate above 2SoC
Total Power Dissipation @TC = 25°C
Derate above 250 C
Operating and Storage Junction
Temperature Range
TJ,Tstg
_
-65 to +200_
SEATING
PLANE
--
L
~K
- __
---11--0
.....---i
./
I
Q
~l
STYLE 1
PIN 1. EMITTER
2. BASE
3. COLLECTOR
N
Watts
°c
DIM
A
B
MILLIMETERS
MIN
MAX
9.40
8.51
6.60
0.533
3.18
0.483
5.33
0.864
1.02
INCHES
MIN
MAX
0.350 0.370
0.315 0.335
C
0.240 0.260
D
0.016 0.021
E
0.009 0.125
F
0.016 0.019
G
0.190 0.210
H
0.028 0.034
J
0.029 0.040
K
0.500
L
- 0.250 M
45u NOM
45 0 NOM
P
1.27
0.050
Q
900 NOM
900 NOM
R
2.54
0.100
All JEDEC dimensions and notes apply.
CASE 79-02
TO-39
670
8.89
8.00
6.10
0.406
0.229
0.406
4.83
0.711
0.737
12.70
6.35
MMSOOS, MMS006, MMS007 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol
Min
Max
60
80
100
-
80
100
120
-
5.0
-
MMSooS
-
200
MMSOO6
-
200
-
100
Characteristic
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lc = 10 mAdc,lB = 0)
Collector-Base Breakdown Voltage
(lC = 100 "Adc, IE = 0)
(VCB
(VCB
= 80 Vde, IE = 0)
= 100 Vde, IE = 0)
Vdc
BVCBO
MM500S
MMS006
MMS007
Emitter-Base Breakdown Voltage
(IE = 100 "Adc, IC = 0)
Collector Cutoff Current
(VCB = 60 Vdc, IE = 0)
Vdc
BVCEO
MM5OO5
MMSOO6
MMS007
BVEBO
ICBO
MMS007
Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 0)
lEBO
Vdc
nAdc
200
nAdc
ON CHARACTERISTICS
DC Current Gain
(lc = 1.0 mAde, VCE
hFE
= 2.S Vdc)
All Types
40
-
= lS0 mAde, VCE = 2.S Vde)
(lc = 200 mAde, VCE = 2.S Vde)
MM500S
SO
2S0
MMS006
50
2S0
(lC = 2S0 mAde, VCE = 2.S Vde)
MMS007
SO
250
(lC
Collector-Emitter Saturation Voltage
(lC = lS0 mAde, IS = lS mAde)
VCE(satl
Sase-Emitter On Voltage
(lc = 150 mAde, VCE = 2.S Vde)
VBE(on)
0.6S
fT
30
O.S
Vde
0.8
Vde
DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product (1)
(lc
= SO mAde, VCE = 10 Vde, f = 20 MHz)
Output Capacitance
(VCS = 10 Vdc, IE
Cob
= 0, f = 100 kHz)
11) Pulse Test. Pulse WIdth .. 300 "s, Duty Cycle .. 2.0%.
671
MHz
20
pF
MM5189 {SILICON}
NPN SILICON
HIGH CURRENT AMPLIFIER
AND CORE DRIVER
TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR
• .• designed for use in high·current, high speed switching, and core
driver applications.
•
Collector·Emitter Breakdown Voltage BVCES = 55 Vdc (Min) @ IC =,1.0 mAdc
•
Low Collector·Emitter Saturation Voltage VCE(sat) = 0.29 Vdc (Typ) @ IC = 1.0 Adc
•
High Current·Gain-Bandwidth Product fT = 350 MHz (Typ) @ IC = 50 mAdc
•
Fast Switching Time @ I C = 1.0 Adc
ton = 16 ns (Typ)
toff = 28 ns (Typ)
•
Device Electrically Similar to 2N5189
jl1-~:
~ --I
L
~K
,
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
40
'(de
Collector-Emitter Voltage
VCES
55
Vdc
Collector-Base Voltage
VCB
60
Vdc
~mitter-Base
VEB
5.0
Vdc
IC
2.0
Adc
Voltage
Collector Current - Continuous
Total Power Dissipation
Derate above 25°C
@
T A = 2SOC
Po
1,0
5.71
Watt
mWf'C
Total Power Dissipation
Derate above 26"C
@
T C = 26°C
Po
4.0
22.8
Watts
mWf'C
-66 to +200
°c
Operating and Storage Junction
TJ,Tstg
Temperature Rangs
- .=.1
SEt(.!:~
MILLIMETERS
DIM
A
B
C
D
E
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance. Junction to Ambient (1)
R8JA
175
°CIW
Thermal Resistance, Junction to Case
ReJC
44
°CIW
Characteristic
-""-0
STYLE 1:
PIN 1. EMITTER
, 2, BASE
G 3, COLLECTOR
N
F
G
H
J
K
L
M
P
n
R
MIN
8.89
B,OO
6.10
0,406
0.229
O. 6
4.B3
0.711
0.737
12,70
6.35
INCHES
MAX MIN MAX
9,40
0,350 0.370
B,51
0.315 0.335
B,60
0.240 0.260
0.533 0.016 0,021
3,IB
0.009 0.125
0,483 0.016 O. ~.L
0.190 0,210
5.33
0.B64 0.028 0.034
0,029 0.040
1.02
0,500
0.250
-
4IjDNOM
4IjoNOM
-
1.27
9 NOM
2,54
-
-
0.050
N M
0,100
-
All JEDEC dimensions and notes apply.
(1) R6JA is measured with the device soldered into a typical printed circuit board.
672
CASE 79-02
TO·39
MM5189 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
I
I
Max
Symbol
Min
Collector· Emitter Breakdown Voltage (11
(lC· 10 mAde, IB = 0)
BVCEO
40
Coliector·Emitter Breakdown Voltage
(lC = 1.0 mAde, VBE = 0)
BVCES
55
Coliector·Base Breakdown Voltage
(lC = 10/lAdc, IE = 0)
BVCBO
60
Emitter·Base Breakdown Voltage
(IE = 10/lAde, IC = 0)
BVEBO
5.0
-
-
Vde
ICES
-
-
100
/lAde
Char_Istic
Typ
Unit
OFF CHARACTERISTICS
Collector Cutofl Current
(VCE = 55 Vde, VBE
Vdc
-
-
Vdc
Vdc
= 0)
Collector Cutoff Current
(VCB = 60 Vdc, IE = 0)
ICBO
100
/lAde
Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)
lEBO
10
/lAde
35
-
-
VCE(setl
0.29
1.0
Vdc
VBE(setl
0.94
1.6
Vdc
360
-
MHz
-
pF
ON CHARACTERISTICS (1)
DC Current Gain
(lC
hFE
Collector-Emitter Saturation Voltage
(lC = 1.0 Ade, IB = 100 mAde)
Base-Emitter Saturation Voltage
(lC
20
= 1.0 Ade, VCE = 1.0 Vdc)
= 1.0 Adc, IB = 100 mAde)
DYNAMIC CHARACTERISTICS
Current·Gain Bandwidth Product
(lC· 60 mAde, VCE = 10 Vdc, 1= 100 MHz)
IT
-
Output Capacltanca
(VCB = 10 Vdc, IE· 0, I = 1.0 MHz)
Cob
7.3
Input COpacltance
(VBE· 0.6 Vdc, IC· 0, I = 1.0 MHz)
Cib
72
pF
SWITCHING CHARACTERISTICS
Turn-On Time
Turn-OII Time
(1) Pulse Test: Pulse Width"; 300 /lS, Duty Cycle"; 2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUITS
Vee
Input Pulse
'tr ... 2 nl
td = 100 ns
= 10.7 V
100
Vee· 10.7 V
-,Jf. ~: '
'T'"
'tf = 2 ns
td= 100ns
Vee = 6 V
673
MM5262
(SILICON)
NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
HIGH CURRENT AMPLIFIER
AND CORE DRIVER
TRANSISTOR
· .. designed for use in high-current, high-speed current switching
and core driver applications.
• Collector-Emitter Breakdown Voltage BVCES = 60 Vdc (Min) @ IC = 1.0 mAdc
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.29 Vdc (Typ) @ IC = 1.0 Adc
• High Current-Gain-Bandwidth ProductfT = 350 MHz (Typ) @ I C = 50 mAdc
•
Fast Switching Times@ IC = 1.0 Adcton = 16 ns (Typ)
toff = 28 ns (Typ)
1~
R
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VeEO
50
Vdc
Collector-Emitter Voltage
VeES
60
Vdc
Collector-Base Voltage
VeB
VEB
75
Vdc
5.0
Vdc
Collector Current - Continuous
Ie
2.0
Adc
Total Power Dissipation @TA :: 2SoC
PD
1.0
5.71
Watt
mw/oe
PD
4.0
22.S
mwJOe
-65 to +200
°e
Emitter-Base Voltage
Derate above 2SoC
Total Power Dissipation@ TC::: 2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ,Tstg
Characteristic
Thermal Resistance. Junction to Case
p
--I
t
~K
--.1
SE:;.n.:~ -J~o
Watts
STYLE 1
PIN 1. EMITTER
2 BASE
3. COLLECTOR
DIM
A
8
C
THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Ambient
r.-
8
_....
Svmbol
Max
Unit
RSJAll)
175
RSJC
44
°elW
uCIW
(1) R8JA is measured with the device soldered into a typical printed circuit board.
o
E
F
G
H
..
K
L
M
P
MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.
0.40& 0.533
0.229 3.18
0.406 0.48
4.83 5.33
0.711 0.864
.737 1.
12.70
6.35
45 NOM
1.27
M
2.54
All JEDECdimansionund nOlts.pply.
CASE 79-02
TO-39
674
MM5262 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)
I
I
Svmbol
Min
TYJI
Max
Unit
Coliector·Emitter Breakdown Voltage (11
(lc = 10 mAde, IS = 0)
BVCEO
50
-
-
Vde
Collector-Emitter Breakdown Voltage
BVCES
60
-
-
Vde
SVCBO
75
-
-
Vde
BVEBD
5.0
-
-
Vde
ICES
-
-
10
... Ade
ICBO
-
-
100
... Ade
lEBO
-
-
100
pAde
35
40
25
100
65
35
-
VCE( .. t)
-
0.29
0.8
Vde
VSElsati
-
0.94
1.4
Vde
IT
-
350
-
MHz
Cob
-
7.3
-
pF
Cib
-
72
-
pF
Charact..-istie
OFF CHARACTERISTICS
(lC = 1.0 mAde, VSE = 0)
Collector-Base Breakdown Voltage
(IC. = 10 ...Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 ... Ade,lc = 0)
Collector Cutoff Current
(VCE = 60 Vde, VBE = 01
Collector Cutoff Current
IVCB = 75 Vde, IE = 0)
Emitter Cutoff Current
IVR. = 5.0 Vde, Ie. = 0)
ON CHARACTERISTICS 11)
DC Current Gain
-
hFE
(lC = 100 mAde, VCE = 1.0 Vde)
(I C = 500 mAde, V CE = 1.0 Vde)
(lC = 1.0 Ade, VCE = 1.0 Vdc)
Collector-Emitter Saturation Voltage
-
(lC= 1.0Ade,IB= lOOmAdc)
Base-Emitter Saturation Voltage
(lC = 1.0 Ade, IS = 100 mAde
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 50 mAde, VCE = 10 Vdc,l = 100 MHzI
Output Capacitance
IVCB = 10 Vde, IE = 0, I = 1.0 MHz)
Input Capacitance
IVSE = 0.5 Vdc, IC = 0, I = 1.0 MHz)
SWITCHING CHARACTERISTICS
Turn-Off Time
111 Pulse Test: Pulse Width';;; 300 !", Duty Cycle';;; 2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUITS
Turn-On Time
Turn-Off Time
+30 V
+30
P.W.~200ns
Rise Time ~2 ns
Duty Cycle ~ 2%
n
+ll. lV
Vin-j--2.0 V
Scope
vln
-t: 0
100
lN916
t1
:=:
1.0j.l.S
t2 <5 ns
'3 >1,,,
Duty Cycle'" 2%
675
-4.0V
-:.-
v
MM6427
(SILICON)
NPN SILICON ANNULAR DARLINGTON
TRANSISTOR
NPN SILICON
DARLINGTON TRANSISTOR
· .. designed for use as high-gain amplifiers for audio, chroma, and
control circuits; drivers for displays, lamps, buzzers and solenoids.
• Collector-Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @IC= 1.0 mAdc
• DC Current Gain specified @ 10 mAdc and 100 mAdc
• Monolithic Construction
MAXIMUM RATINGS
Symbol
Rating
Collector-Emitter Voltage
Unit
Value
VCEO
40
Vde
Collector-ease Voltage
Vce
50
Vdc
Emitter-Base Voltage
VEe
12
Vde
IC
300
mAde
Po
i'
375
2.14
mW
W/oC
M
Po
1.25
7.15
Watts
W/oC
-65 to +200
°c
Collector Current - Continuous
Total Power Dissipation @TA
=2SoC
Derate above 25°C
Total Power Dissipation @ T C = 25°C
Derate above 2SoC
Operating and Storage Junction
TJ.Tstg
~
N
'_;-.
~
G
J
STYLE "
PlN1.EMlnER
2. Bj\SE
3. COLLECTOR
THERMAL CHARACTERISTICS
Symbol
Thermal Resistance. Junction to Ambient
I
I
Thermal Resistance. Junction to Case
j
Characteristic
Max
RaJA
I
I
RaJC
j
140
467
I
I
°CIW
I
°C/W
Unit
DIM
A
B
C
D
E
F
G
H
J
L
M
P
MILLIMETERS
MIN
MAX
5.31
4.52
4.32
0.406
5.84
U5
5.3
O.
- 0.162
0.406 D.
2.54BSe
0.914 1.17
0.111 1.22
12.1
6.
4 sse
1. B
1.21
-
INCHES
MIN
MAX
0.209
O.17B
0.1
0.016
-
0.230
0.195
0.21
0 1
0.030
.1
0.0 6
.0
4
0
-
0
-
e
.5
All JEOEC notes and dimension. apply.
CASE Z2·03
(TO·'I)
676
MM6427 (continued)
I
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)
Charlcteristic
Symbol
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage( 1I
BVCEO
IIC ~ 1.0 mAde, IB = 0)
Collector-Base Braakdown Voltage
BVCBO
(lC = 100 ,.Ade, IE = 0)
Emitter-Ba.. Breakdown Voltage
BVEBO
liE = 10 ,.Ade, Ie = 0)
Collector Cutoff Current
ICBO
(VCB = 30 Vde, IE = 0)
Emitter Cutoff Current
lEBO
(VBE = 10 Vde, Ie = 0)
ON CHARACTERISTICS (1)
DC Current Gain
hFE
(lC· 10 mAde, VCE = 5.0 Vde)
(lC = 100 mAde, VCE = 5.0 Vdcl
Colleetor-Emitter Saturation Voltage
VCE(satl
(lC = 100 mAde, IB = 0.1 mAde)
B.....Emitter On Voltage
VBE(on)
(lC 100 mAde, VCE = 5.0 Vde)
SMALL-8IGNAL CHARACTERISTICS
High Frequency Currant Gain (1)
hie
IIC· 10 mAde, VCE - 5.0 Vde, I = 100 MHz)
Output Capecitance
Cob
(VCB • 10 Vde, IE = 0, f· 100 kHz)
Input Capacltanca
Cib
(VBE • 0.6 Vdc, IC • 0, f - 100 kHz)
I
=
(1) Pulse Test: Pulse Width <300 ,.,; Outv Cycle <2.0%.
677
Min
Max
Unit
40
-
Vde
50
-
Vde
12
-
Vde
-
100
nAde
-
100
nAde
5000
-
10,000
-
1.5
Vde
-
2.0
Vde
1.26
B.O
pF
15
pF
MM8000 (SILICON)
MM8001
NPN silicon high-frequency transistor designed for
high-frequency CATV amplifier applications. Suitable
for use as output driver or pre-driver stages in VHF and
UHF equipment.
CASE 79
(TO-39)
STYLE 1:
PIN 1. EMInER
2. BASE
3. COLLECTOR
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
V CEO
30
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
3.5
Vdc
IC
0.4
Adc
PD
3.5
20
Watts
mW/oC
T J , T stg
-65 to +200
°c
Collector-Emitter Voltage
Collector Current
Total Device Dissipation @T C
Derate above 25° C
= 25°C
Operating and Storage Junction
Temperature Range
678
MM8000, MM8001
(continued)
ELECTRICAL CHARACTERISTICS (TC
=25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
30
-
-
40
-
-
3.5
-
-
-
-
20
-
--
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(IC = 5.0 mAdc, IB = 0)
VCEO{sus)
Collector-Base Breakdown Voltage
(IC = O. 1 mAdc, ~ = 0)
BV CBO
Emitter-Base Breakdown Voltage
(IE = O. 1 mAde, IC = 0)
BV EBO
Collector Cutoff Current
(V CE = 28 Vdc, IB =0)
I CEO
Vdc
Vdc
Vdc
/LAde
ON CHARACTERISTICS
DC Current Gain
(IC = 50 mAdc, VCE = 15 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 25 mAdc, V CE = 15 Vdc, f = 200 MHz)
fT
MM8000
MM8001
550
700
(IC = 50 mAdc, VCE = 15 Vdc, f = 200 MHz)
MM8000
MM8001
700
900
(IC = 100 mAdc, VCE = 15 Vdc, f = 200 MHz)
MM8000
MM8001
700
900
--
-
-
3.5
-
2.7
-
Output Capacitance
(VCB = 30 Vdc, ~ = 0, f = 1. 0 MHz)
Cob
Figure 1 Test Circuit
Noise Figure
(IC = 10 mAdc, VCE = 15 Vdc, f = 200 MHz)
NF
-
-
pF
FUNCTIONAL TESTS
Common-Emitter Amplifier Power Gain Figure 1 Test Circuit
(I C = 10 mAdc, V CE = 15 Vdc, f = 200 MHz)
FIGURE 1 - 200 MHz TEST CIRCUIT
Cl.C2,C3:
C4:
C5:
CS, C7:
C8:
1.0-30pF
1.0 - 20 pF
10,000 pF
1000 pF
0.01 ~F
Ll: 4·1/2 'urns, No. 22
AWG wire, 3/1S" 1.0.
4: 3·1/2 ,urns, No. 22
AWGwire, 3/1S" 1.0.
L2, L3: 0.82 ~H RFC
Rl: 240 ohms, 2 wa'ts
Cs
679
MHz
dB
MM8006 (SILICON)
MM8007
NPN SILICON RF SMALL-8IGNAL TRANSISTORS
NPNSILICON
RF SMALL·SIGNAL
TRANSISTORS
· .. designed primarily for use in highllain. low·noise. small'signal
amplifiers in military and industrial equipment. Suitable for use in
video wideband and general high·frequency amplifier applications
of 50 to 1000 MHz.
•
t
Low Noise Figure NF = 2.2dB (Typl @f= 200 MHz - MM8006
• High Power Gain Gpe = 25 dB (Typl @f = 200 MHz - MM8006
• High Current·Gain-Bandwidth Product fT = 1000 MHz (Mini @ IC = 5.0 mAde
MAXIMUM RATINGS
Roting
Symbol
Value
Unit
VCEO
10
Vde
Collector·B... Voltage
VCB
15
Vde
Emitter·B... Voltage
VEB
3.0
Vde
Collector·Emltter Voltage
Collector Current - Continuous
IC
20
Total Device Disslpation@TA • 25°C
Po
200
mW
1.14
mWfDC
Denne above 25°C
Operating and Storega Junction
Tamperature Range
TJ.Tstg
-65
to
mAde
+200
°c
STYLE 10
PIN~: ::~~TER
~
1
.
,
M
~~
N
3. COLLECTOR
4. CASE
G
J
MILLIMETERS
MIN MAX
5.31 5.84
B
4.52 4.95
C
4.32 5.33
o 0.41 0.53
E
0.76
FOAl 0.48
G
2.54 BSC
H
0.91
1.17
J
0.71 1.22
K
12.70
L
6.35
M
45 BSC
N
1.27 BSe
P
1.27
DIM
A
INCHES
MIN
MX
0.209
0.178
0.170
0.016
ALL JEOEC dimensions and notas apply
CASE 20-03
TO-72
680
MMS006, MMS007 (continued)
ELECTRICAL CHARACTERISTICS IT A ~ 25°C unless otherwise noted)
I
I
Symbol
Min
Typ
Max
Unit
COliector·Emitter Breakdown Voltage
(lC = 1.0 mAde, IB = 0)
BVCEO
10
-
-
Vde
Collector· Base Breakdown Voltage
(lC = 0-01 mAde, IE = 0)
BVCBO
15
-
-
Vde
Emitter·Base Breakdown Voltage
(IE' 0-01 mAde, IC = 0)
BVEBO
3.0
-
-
Vde
ICBO
-
1.0
10
nAdc
fT
1000
-
3500
MHz
Cob
-
1.1
1.5
pF
rb'Ce
-
5.0
-
ps
-
1.5
1.9
2.2
2.7
-
-
3.S
5.0
30
25
20
-
-
-
-
Charactet'istic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 6.0 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 1.0 mAde, VCE = 6.0 Vde)
DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product
(lC = 5.0 mAde, VCE = 6.0 Vde, f= 100 MHz)
COllector· Base capacitance
(VCE = 6.0 Vde, IE = 0, f = 0.1 MHz)
Collector-Base Time Constant
(lC = 10 mAde, VCE = 6.0 Vde, f=31.S MHz)
Noise Figure
(lC= 1.0 mAde, VCE =6.0 Vdc,f=60 MHz)
(lC= 1.0 mAde, VCE=6.0 Vdc,f=2OO MHz)
t(lC= 1.0 mAde, VCE =6.0 Vde,f=450 MHz)
NF
dB
MMSOO6
MM8007
MM8006
MMSOO7
-
MMSOO6
MM8007
-
FUNCTIONAL TEST
tCommon-Emitter Amplifier Power Gain
dB
Gpo
(lC = 1.0 mAde, VCE =6.0 Vde, f = 60 MHz)
(lC = 1.0 mAde, VCE =6.0 Vdc, f = 200 MHz)
Both TVpes
MMSOO6
MMS007
-
(I C = 1.0 mAde, V CE = 6.0 Vde, f = 450 MHz)
MM8006
MM8007
14
12
-
tTuned for minimum noise.
FIGURE 1 - POWER GAIN AND NOISE FIGURE TEST CIRCUIT
FIGURE 2 - COLLECTOR-BASE CAPACITANCE venus VOLTAGE
2. 5
I
~HIElOIGROUNDED)
2.0
IE = 0
1.5
Cl,C2,C4,C1-0.8-10pF
C8-0.5-35pF
C3,C5-500pF
Rl-0-10k
Joh."son
Joh_
Button Type
Trlmpol
R2-27k
114 VI8tt 5%
114 watt S%.
L,··1/4" BraaRod.SaldarPlalld.l·1/8"10f1Q.
l'I.ced518"'romthelllCketandmpllfillel
Wllhtheshleld,wlllchblSel:lStlwlsoctel
Th. ungrounded sid. Ismld .... d dlrKllylo
R3-1.0_
th'UfIgI'oundtdsideolC2
L2-0Z2,.,H
l'-..
1.0
..
o.5
L3-I/4"Br.srRod,SaldlrPlaml,I·m",fHIg.
"'lcad,n"fromthesotkltandlnPlRln"
""tIIsllllld,wh.cllbiJedsthesocltllt
Thtu""oundldsidelllQldereddlrectlyto
tMUngI'oun!ledsid,ofCl0ulpulllllllS
15116 Irom ground
L4-1f2TllfnlI6.5116 u lboveL3Ind5l8u
11IIIg.I_Lal.
0
U
2.0
4.0
6.0
8.0
10
12
14
16
VCB, COLLECTOR·8ASE VOLTAGE (VOLTS)
681
18
20
MM8006, MM8007
(continued)
FIGURE 4 - 511 AND 522
FIGURE 3 - CURRENT-GAIN-BANDWIDTH PRODUCT
1.6
~
:r
~ 1.5 _ VCEI. 6.0 Jde
.,,/
t;
5
1.4
f
1.3
I
o
:r
~
i
~
1. 1
~
1.0
z
/
1.2
;;' O. 9
to
~
0.8
.to
0.6 0
-
-
~
MMB007
./
/
/
11
II
1/
'" /if
a
O.
2.0
4.0
6.0
B.O
10
12
14
16
18
20
IC. COLLECTOR CURRENT (mAdel
FIGURE 5 - 512
FIGURE 6 - 521
682
MMS006, MMS007 (continued)
FIGURE 8 - POWER GAIN versus FREQUENCY
FIGURE 7 - NOISE FIGURE versus FREQUENCY
S. 0
0
-
5 t-
5.0
w
.,/
'"to
=> 4. 0
u:
z
'""" :--.,.
0
",V
~.
z
-
/"
~
2. 0
1. 5
o
50
60
70 80 90100
MM8007
"'~
./
3. 0
./
~
.§
./'
I-
200
300
400
500
100
70
40
j
w
./
,./
20
bie
10
'"
«
....V
r---
./'
200
300
400
l=
r1
;;;
./
«
~
boy
4. 0
l-
=>
_I-'
o
~e
500
./
6. 0
e
V
Vfo""
i.-
z
/
30
~ 2. 0
700
0
100
1500
1000
VCE: 6.0 Vde
IC: 1.0 mAde
-
1=
;;;
r--.,.
91.
30
'"
~
20
l-
e
-~
-tl'
",-
~
-!
0
100
300
400
500
700
6.6
I-'
0
IL
j
0
I'
V
./
'\
0
i\
\
r----
0
--
i"
gra
........ ....
r\
.............
bit .......
"'I'-
0
150
1000
Vdc
_ VCE :
IC: 1.0 mAde
40
10
- I-'
200
150
1--
fu':
FIGURE 12 - REVERSE TRANSFER
ADMITTANCE ve....s FREQUENCY
0
r--
...... V
I, FREQUENCY (MHz)
50
E
'"~
500
8. 0 - VCE: 6.6 Vde
IC: 1.0 mAde
FIGURE 11 - FORWARD TRANSFER
ADMITTANCE 'versus FREQUENCY
~
300
~
1Vde I
r--- _ VC~IC:: 6.0
1.0 mAde
I. FREQUENCY (MHz)
~
150
200
I, FREQUENCY (MHz)
0
150
«
"
FIGURE 10 - OUTPUT ADMITTANCE versus FREQUENCY
o
~
" ", "-~~~
"- """"-
FIGURE 9 -INPUT ADMITTANCE versus FREQUENCY
~
.§
z~
~A~~006
50
~
!
MAXIMUM
;;; ~ ~
NOISE
lI-
ii
e
«
T~NEh FOR
MM8007T~~I~~~R ......
V
w
'"«z
........
GAIN
I. FREQUENCY (MHz)
~
...... ~ ........
T~:~I~~~R,./
5
.........MM800S
TUNED FOR
MINIMUM
~I'..NOISE
MM80~
~
~
~ ~MB006
VC~ : 6.~ Vd~
IC: 1.0 mAde
a>
(5
r---
VCIE :blVde
IC : 1.0 mAde
r-
200
300
400
500
700
150
1000
200
300
400
f, FREQUENCY (MHz)
t, FREQUENCY (MHz)
683
500
700
1000
MM8008 (SILICON)
MM8010
MM8011
NPN SILICON RF POWER TRANSISTORS
NPNSILICON
RF POWER
TRANSISTORS
· .• designed primarily .for oscillator, frequency multiplier, and UHF
amplifier applications in military and industrial equipment.
•
High Power Output (Oscillator) Pout = 300 mW (Min) @ f = 2.0 GHz (MM8008)
200 mW (Min) @f= 2.0 GHz (MM8010)
100 mW (Min) @f= 2.0 GHz (MM8011)
•
High Current-Gain~Bandwjdth Product fT = 1000 MHz (Typ) @ IC = 50 mAdc
•
Ideal for Radio Sonde Applications Pout (Oscillator) = 550 mW (Typ) @f= 1.68 GHz (MM8008)
450 mW (Typ) @ f = 1.68 GHz (MM8010)
300mW (Typ)@f= 1.68GHz.(MM8011)
•
Wide Flange Case for Easy Mounting in Cavity Circuits
•
Multiple Emitter Construction for Excellent High-Frequency
Performance
~
..,."'"
~:1H-
f
*
fTFJ\I
.1
t
---1
SEATING
PLANE
MAXIMUM RATINGS
Rating
Collector-Eminer Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Davice Dissipation@ T C = 250 C
Derate above 25°C
.
Operating and Storage Junction
F
Symbol
Value
Unit
VCEO
VCB
VEB
IC
30
35
3.0
100
Vdc
Vdc
Po
3.5
20
-66 to +200
TJ,Tstg
-11-0
I.
REFERENCE
PLANE
G
N
Vdc
S~';!'tEMITTER
2_BASE
3. COLLECTOR
mAde
TemperaWre Range
K
watts
. mWfOC
°c
DIM
A
B
D
E
F
G
H
J
K
L
N
p
MILLIMETERS . INCHES
MIN MAX
MIN MAX
B.13 B.88
5.08 5.46
0.407 0.533
0.76
0.407 0.482
2.54 SSC
4.07 4.32
1.15 1.62
2.70
6.35
1.27 BSC
-
-
-
0.320
0-200
0-016
0.350
0.215
0.021
•
0.019
BSC
0.170
0-0111
O.
0.500
0.250
0.050 BSC
-
0.1m; U.l3li
2.87 3.42
All J!;DEC dunenSlon, and noles applv
.
CASE 23
TO-l07
H
684
MMSOOS, MMS010, MMS011 (continued)
ELECTRICAL CHARACTERISTICS (TC
= 250C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage
(lc = 5.0 mAdc,lB = 0)
BVCEO
30
-
-
Vdc
Collector-Base Breakdown Voltage
(lC = 100 "Adc, IE = 0)
BVCBO
35
-
-
Vdc
Emitter-Base Breakdown Voltage
(IE = 100 "Adc, IC = 0)
BVEBO
3.0
-
-
Vde
ICEO
-
-
100
"Ade
fT
-
1100
-
MHz
Cob
-
1.3
3.0
pF
0.3
0.2
0.1
-
-
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCE = 20 Vdc,IB = 0)
ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
(lc = 100 mAde,lB = 10 mAilc)
DYNAMIC CHARACTERISTICS
Currant-Gain-Bandwidth Product
(Ie = 50 mAde, VCE = 15 Vde, f = 100 MHz)
Output Capacitance
(VCB = 30 Vde, IE
= 0, f
= 1.0 MHz)
FUNCTIONAL TEST
Oscillator Power Output (Figure 1)
(lC= 100 mAde, VCE =20Vdc,f=2.0GHz) MMBOOB
MM8010
MM8011
Watt
Pout
-
-
FIGURE 1 - 2.0 GHz OSCILLATOR TEST CIRCUIT
B+20V
(Supply Floating)
Cl-1.0-10pFJohansonCap.#3901
C2 - 4.0-6.0 pF Johanson Cap. # 4640
C3, C4 - SOD pF Button Feedthru Cap.
L1. L2 - Microstrip line 1.03" Long and
0.013" Wid.
L3, L4 - 0.68 ,H RF Choke
L2
Hf---p-~F-'------1p---f--)--< ~~t~~z
50 Ohms
Cl
L5 - Microstrip 0.620" Long and
0.018" Wid.
Rt - 2.0 k ohms Pot (Miniature)
1/1S" Microstrip Board
B- 20iV
685
L5
MMSOOS, MMS010, MMS011 (continued)
FIGURE 3 - SIDE VIEW - 2.0 GHz OSCILLATOR TEST CIRCUIT
FIGURE 2 - TOP VIEW - 2.0 GHz OSCILLATOR TEST CIRCUIT
FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT
~ 1250
l!S
t;
co
~
~ 1000
~
~I
z:
:;;: 750
:!
Iil
~
/
/
---
----
:::>
V
L5V
vcE
~
~
'\
:::>
'"
.t:"
500
10
20
30
40
50
60
IC. COLLECTOR CURRENT (mAdc)
70
90
80
100
FIGURE 5 - OUTPUT CAPACITANCE versus VOLTAGE
4.0
u.
.s
"- ~
w
...:i'" 3.0
0:;
~
~!:;
~~
2.0
co
...
--
I----
&
1.0
o
5.0
10
15
VCB. COLLECTOR·BASE VOLTAGE (VOLTS)
686
20
25
30
MMSOOS, MMS010, MMS011 (continued)
OSCILLATOR OUTPUT POWER versus CURRENT
(SEE FIGURE 1 FOR TEST CIRCUIT)
FIGURE 6 - f = 2.0 GHz
MM8008
400
~
VCE·30~
300
~
~
~
~
~ 200
~
I!:
::>
o
------
--
;
re 100
o
----
~OV~ ~
r15 Vde
MM8008
800
700
5600
-
~
or
w
500
~
~300
-----
o
200
100
75
50
100
10 Vde
---- --~
,..,. ........-
..,./"
~
!;
150
o
;
,e
100
50
MM8010
800
VCE· 30 Vde
f50
~ 200
/"
-/
700
5600
or
~ 500
--
~
::>
400
J300
200
100
75
100
----
/ V--
o
10 Vde
~
:.---
--
50
IC. COLLECTOR CURRENT (mAde!
'"w
~150
I!:
g
100
----..--- --- -VCP30 Vde
~ 200
..s
------
20 Vde
15 Vde
~
J
50
50
75
IC. COLLECTOR CURRENT (mAde)
-
~
15 Vdc
~Vde
75
IC. COLLECTOR CURRENT (mAde!
100
MM8011
MM8011
250
~
20 Vde
/
....::>
15 Vde
~
VCE· 30 Vde
~
~
50
....::>
100
75
IC. COLLECTOR CURRENT (mAde!
MM8010
'"w
15 Vde
50
IC. COLLECTOR CURRENT (mAde!
300
-
20 Vdc
~~
~ 400
::>
-
2
---
~
~
....::>
~
10 Vde
FIGURE 7 - f = 1.68 GHz
500
'"
~
~
300
,....... ~ r-
~ 200
5
20 Vde
.....-- ~
~
;
,e
100
100
------VCE' 30 Vde
~400
..s
50
10 Vde
75
Ie. COLLECTOR COR RENT (mAde)
687
100
MM8009 (SILICON)
NPN SILICON RF POWER TRANSISTOR
NPN SILICON
RF POWER
TRANSISTOR
· .. designed for amplifier, frequency multiplier, or oscillator applications in military and industrial equipment. Suitable for use as output,
driver, or pre-driver stages in UHF equipment and as a fundamental
frequency oscillator at 1.68 GHz.
• High Output Power - Pout =0.9 Watt (Min)
@f
=1.0 GHz
• . High Current-Gain-Bandwidth Product fT = 1000 MHz (Min) @ IC = 50 mAdc
• Ideal for Radio Sonde ApplicationsPout (Oscillator) =300 mW (Typ) @ f =1.68 GHz
JJI1-=:=
-r;-- : e
L
~K
-~
SEt~~~ --11-0
MAXIMUM RATINGS
Pin 1. Emitter
2. Base
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter·Ba.. Voltage
COllector Current - Continuous
Total Oevica Oissipation@Te ~ 25°C
Oerata above 25°C
Operating and Stoi-aga Junction
Temparature Range
Symbol
Value
Unit
3. Collector
VeEO
VeB
50
Vde
Vde
N
VEB
Ie
3.0
400
3.5
20
-65 to +200
Po
TJ,Tstg
55
Vde
mAde
Watt
mwfOe
°e
DIM
A
B
C
D
E
F
G
H
J
K
L
M
P
Q
R
MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
45 0 NOM
1.27
900 NOM
2.54
INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 .040
0.500
~
45 0 N
0.1 0
-
All JEOEC dimensions and notes apply.
CASE 79-02
TO·39
688
MM8009 (continued)
ELECTRICAL CHARACTERISTICS (TC
I
=25°C unless otherwise noted)
I
I
Svmbol
Min
TVp
Max
Unit
OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(lc = loo"Adc,IE = 0)
BVCBO
55
-
-
Vdc
Emitter-Base Breakdown Voltage
(IE = 100 "Adc, IC = 0)
BVEBO
3_0
-
-
Vdc
Collector Cutoff Current
(VCE = 15 Vdc, IB = 0)
ICEO
-
-
100
"Adc
Collector Cutoff Current
(VCE = 50 Vdc, VBE = 0)
ICES
-
-
10
"Adc
Current-Gain-Bandwidth Product
(lc = 50 mAdc, VCE = 15 Vdc, f = 100 MHz)
fT
1000
-
-
MHz
Output Capacitance
(VCB = 30 Vdc, IE
Cob
-
1.8
3.0
pF
Pout
0.9
-
-
Watt
Pout
-
0.3
-
Watt
"
35
-
-
%
ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
(lc = 100 mAde,lB = 10 mAdc)
DYNAMIC CHARACTERISTICS
= 0, f = 1.0
MHz)
FUNCTIONAL TEST
Po_r Output (Figure 1)
(Pin = 316 mW, VCE = 28 Vdc, f
= 1.0 GHz)
Power Output (Oscillator) (Figura 2)
(VCE = 20 Vde, VEB = 1.5 Vdc, f = 1.68 GHz)
(Minimum Efficiencv = 15%)
Collector Efficiencv
(Pin = 316 mW, VCE
= 28 Vdc, f
= 1.0 GHz)
FIGURE 1 - 1.0 GHz POWER AMPLIFIER TEST CIRCUIT
FIGURE 2 - 1.68 GHz POWER OSCILLATOR TEST CIRCUIT
VCC" ...28v
BIAS
+Vcc
-Vee
"'2.0 V
.......----il'
v"
L4
I
"I,
I
L_ JL _______ _
"
I
Ll.L2-1/16"t,IIlCmltlpBalrtl L1n.areO.IS"
wide and I 31" king.
L3-I/1& .. MiuostrlpBoardO.lr ......nd
o.&S"IIIIIII·
L4-AFChoke,3.6,.Hy
CI-OApF-6DpFJo...... 4840
C2-1'OpF-l0pF ........ 435S
C3,C4-2!ipFF....'hru
R-2kOllmsi'ollMlniatllftl
I
/I
I
.JL_...J
BIAS
TEE
W~lI<"-~N--·OUTPUT
dl: 1"lnputlinI.Unlerc:ondutlorwidth"O.280"
d2' 1"DutpUlliN,c",tarcofl!luctorwidth:D.12S"
a.2N5108
R.3.90hms
ii, n. Microlab Double Stub Tuner, or Equivalent
BmTee. MicrGlabOBN,orEquivalent
TransistorMoLlnt.1/32"MlCronripbOird
689
MM8009 (continued)
FIGURE 3 - POWER OUTPUT versus POWER INPUT
1.2
_
e
!....
~
I
1.1
1.0 _ VCE -28 Vd.
t= 1.0 6Hz
0.9
/
~
I'
./
0.8
!....
./
0.1
g 0.6
ffi
~
FIGURE 4 - POWER OUTPUT venus FREQUENCY
2.0
f!:
:::>
0
...
0.2
0.1
o
Pin'" 310 mW
1.0
~
./'"
tE
0.5
0
o
0.1
0.2
0.4
0.3
0.6
0.5
0.7
FIGURE 5 - POWER OUTPUT venus VOLTAGE
o. 5
1. 1
I- t
/'
in 1.0 I-- Pin = 0.31 W
9
t= 1.0 6Hz
./
3
0
~r--
40
60
80
100
120
FIGURE 8 - COLLECTOR·BASE CAPACITANCE versus VOLTAGE
4.0
1.1
/
I;
0.9
\
--...
v
:x: 1.0
IpO
VCE = 15 Vd.
"'1'- I..........
/
0.8
I
~
VCE =15 V
IC, COLLECTOR CURRENT (mAd.)
FIGURE 7 - CURRENT-GAIN-BANDWIDTH PRODUCT
co
"
20
30
~ 1.3
~
~ 1.2
z
;;;: 0.7
/ . I-"
~
~ V ..... V
0
5.0
10
15
20
25
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
~
~~
!.,.? t/'"
~V
1
o. 2
o. 1
V
V V ..... V
2
/'
~ o.4
} o. 3
~
V
/'
ffi o. 5
1.0
IVCE=I~
/'
g o.6
z
~ 1.68 ~HZ
4
./
o.
o. 8
.... 7
~ o.
«
~
0.9
FIGURE 6 - OSCILLATOR POWER OUTPUT versus CURRENT
1.2
~
0.8
t, FREQUENCY (6Hz)
Pin, POWER INPUT (WATTS)
g
g;
t-::--....,
~
,/
J 0.3
---r---
VCP28Vd.
'"~
/
0.4
r--- ~
:::>
./
1,/
0.5
1.5
II
/
r-.....
0.6
B 0.5
.!:'
0·\0
20
30
40
50
60
70
80
90
100
5.0
IC, COLLECTOR CURRENT (mAd.)
10
15
20
VCB, COLLECTOR·BASE VOLTAGE (VOLTS)
MM8010 (SILICON)
MM8011
For Specifications, See MM8008 Data.
690
25
30
MMCM918 (SILICON)
MMT918
MICRO-T
NPN SILICON
AMPLIFIER
TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS
· .. designed for VHF and UHF amplifier, mixer and oscillator
applications.
• Space Saving Micro-Miniature Packages
;t]~
MMCM918
•
High Current-Gain-Bandwidth Product - fT = 600 MHz (Min)
•
Low Capacitance - Cob = 1.7 pF (Max)
•
MMT918 - One-Piece, Injection-Molded
Reliability
STYLE 1
PIN 1 BASE
Package for High
.L1:~1
c
1
2. EMITTER
3. COLLECTOR
IT
MMCM918 - Ceramic Package for Hermeticity
SEATING
PLANE
DIM
A
B
C
D
F
K
NOTE
A Toieranci of .25 mm (.010) must be allowad
at pomt Indsprolrudetrompackag.forglass
run over.
CASE 176
MAXIMUM RATINGS
Rating
Symbol
Collector-Emitter Voltage
MMCM918
MMT918
Unit
VCEO
15
Vdc
Collector-Base Voltage
Vce
30
Vdc
Emitter-Base Voltage
VEe
3.0
Vdc
Collector Current - Continuous
Ie
Total Power Dissipation
Po
@
T A = 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
TJ,Tst9
50
200
1.14
~~)~
I'
A
~ 2
MMT918
mAde
225
2.05
-65 to +200 -55 to +135
mW
mw/Oe
°e
j
STYLE 1
PIN1
2. EMITTER
3 COLLECTOR
""
Characteristic
CJ~
E£I-~
TF
THERMAL CHARACTERISTICS
Thermal Resistance,Junction to Ambient
J
3
Svmbol
ROJA
MMCM918 JMMT918
875
I
490
Unit
°e/W
MILLIMETERS
MI.
MAX
2.34
0.38
0.84
C 1.24 1.55
D 025
0.41
DIM
A
B
'"
F 0.10
0.51
H
J
K
M
0.03
4.19
3
0.15
0.76
0.08
4A'
,
- INCHES
MI.
MAX
0.018 0.092
0.015
0.020
0.001
0.025
0.061
0.016
0.006
0.030
0.003
0.1
0.176
0.049
0.010
0.1lO4
3'
CASE 28-01
691
,
H
MMCM918, MMT918 (continued)
ELECTRICAL CHARACTERISTICS (TA ~ 250 C unlass otherwise noted)
Symbol
Min
Typ
Collector-Emitter Breakdown Voltage
IIc = 3.0 mAde, IB = 0)
BVCEO
15
-
Collector-Base Breakdown Voltage
IIc= 1.0j.lAde,IE = 0)
BVCBO
30
-
~
Emitter-Base Breakdown Voltage
liE =10j.lAde,Ic =0)
BVEBO
3.0
-
-
Vdc
ICBO
-
-
10
nAde
hFE
20
-
-
-
-
0.4.
Vde
-
1.0
Vde
MHz
Max
Unit
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 15 Vde, IE = 0)
Vdc
Vde
ON CHARACTERISTICS
DC Current Gain(l)
IIc = 3.0 mAde, VCE = 1.0 Vdc)
Collector-Emitter Saturation Volt_III
IIC = 10 mAdc,lB = 1.0 mAde)
VCE(sat)
Base-Emitter Saturation Volt_(I)
IIc = 10 mAde,IB = 1.0 mAde)
VBE(satl
-
for
600
-
-
-
-
1.7
DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product
(VCE = 10 Vdc,IC = 4.0 mAde, f = 100 MHz)
Output Capacitance
(VCB= 10 Vdc,IE =0, f~O,1 MHz and~I.0 MHz)
pF
Cob
-
(VCB = O,IE· 0, f~.1 MHz and~I.0 MHz)
I nput Capacitance
(VBE =0.5 Vde,IC=O, f2:0.1 MHzend:51.0 MHz)
Cib
Noise Figura ,(Figure 1)
IIC = 1.0 mAde, VCE = 6.0 Vde, RS = 400 ohms, f = 60 MHz)
NF
-
Common-Emitter Amplifier Power Gain (Figure 2)
(VCC· 12Vdc,lc=6.0mAde, f= 200 MHz)
Gpe
Power Output (Figure 3)
(VCB = 15 Vde,lc=8.0mAdc, f = 500 MHz)
Collector Efficiency (Figure 3)
(VCB- 15Vde, IC =8.0 mAde, f= 500 MHz)
-
3.0
2.0
pF
-
6.0
dB
-
23
-
dB
Pout
-
60
-
mW
'I
-
50
-
%
FUNCTIONAL TESTS
,
(1) Pulse Test. Pulse W,dth S 300 1'1, Duty Cycl.~ 2.0%.
FIGURE 1 - NOISE FIGURE TEST BLOCK DIAGRAM
NOISE FIGURE METER
HEWLETT·PACKARD 342A
(OR EQUIVALENT)
INPUT
POWER SUPPLY
CONSTANT Ie AND VeE
(60 MHz)
The test fixture shan consist of a 60 MHz tuned amplifier and suitable
'biasing circuits. It shbuld be constructed utilizing good very· high· frequency
design techniques.
"
The effective source susceptance should be tuned for each device being
tested to obtain minimum noise filiur•. Note that because the HP 343A has
a SO·ohm output resistance. a suitable impedance transformer must be used
to obtain an effective source conductance of 2.5 mmho at the transistor
with minimum losses.
FIGURE 3-5OOMHzOSCILLATOR TEST,CIRCUIT
FIGURE 2 - NEUTRALIZED 200 MHz POWER AMPLIFIER
GAIN TEST CIRCUIT
1000 pi'
l2
I
-Ve.
692
MMCM930, MMT930 (SILICON)·
MMCM2484, MMT2484
MICRO·T
NPN SILICON ANNULAR TRANSISTORS
NPN SILICON
AMPLIFIER
TRANSISTORS
· .. designed for low·level, low noise amplifier applications.
• MMT Plastic Micro-T
• MMCM Hermetic Ceramic Micro-T
• Space Saving Micro·Miniature Packages
•
High Breakdown Voltages VCEO(sus) 45 Vdc (Min) @lIC 10 mAdc
(MMT930, MMCM930)
= 60 Vdc (Min) @lIC = 10 mAdc
(MMT24B4, MMCM2484)
=
=
MMCM930
MMCM2484
STYLE 1:
PeN 1. BASE
2.EMlnn
3. COLLECTOR
•
High DC Current Gain hFE = 800 (Max) @lIC = 10 mAdc
•
MMT930, MMT24B4 - One-Piece, Injection-Molded Unibloc
Package for High Reliability
MMCM930, MMCM24B4 - Ceramic Package for Hermeticity
NOTE:
ATo....nee of .25 mm (.D101 mu. III .11....
.. PDint ...... JRllrudehumPlCk... totaJrun ....
CASE 178
MAXIMUM RATINGS
Rating
Symbol
COllector-Emitter Voltage
VCEO
I
Unit
I
Vdc
MMCM930 MMCM2484
MMT930
MMT2484
45
60
Collector-Base Voltage
VCB
60
Vdc
Emitter-B_ Volyge
VEB
6.0
Vdc
50
mAde
Collector Current - Continuous
IC
MMT930
MMCM930
MMCM2484 MMT24B4
Total Power Dissipation@TA
= 2SoC
Po
Operating and St\Jrage Junction
Temperature Range
200
1.14
Derate above 25°C
225
2.05
mW
mW/oC
TJ,Tstg
-65 to +200 -55 to +135
°c
Symbol
MMCM930
MMT930
MMCM24B4 MMT24B4
Unit
~
~
MMT930
MMT2484
STYLE I:
PIN 1. BASE
2. EMITTER
3
COLLECTOR
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance,Junction to Ambient
ROJA
875
490
°C/W
DIM
...
I....
ilLUME
MAX
,
•• ,1." ....
• ,. 0.4,, ",
U4
A
H
OS,
4.1
lUll.
u. a
U
IIA
0JI82
0.0'
0JI31I
'"
1
CASE .....'
693
MMCM930, MMT930/MMCM2484, MMT2484 (continued)'
ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Symbol
Characteristic
Min
Max
45
60
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(l)
(lc = 10 mAde, IB = 0)
Vde
VCEO(sus)
MMCM930,MMT930
MMCM24B4,MMT2484
Colleetor-Base Breakdown Voltage
(lc = 10 "Ade, IE = 0)
BVCBO
60
-
Vde
Emitter~Base
BVEBO
6.0
-
Vde
Collector Cutoff Current
(VeB = 45 Vde, IE = 0)
ICBO
-
0.Q1
"Ade
Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)
lEBO
-
0.Q1
"Ade
Breakdown Voltage
(IE = 10 "Ade, IC = 0)
ON CHARACTERISTICS
DC Current Gain
(lc = 100 "Ade, VCE = 5.0 Vde)
-
hFE
(I C = 500 "Ade, V CE = 5.0 Vdc)
(lc = 1.0 mAde, VCE = 5,0 Vde)
-
MMCM930,MMT930
MMCM2484,MMT2484
100
175
MMCM930,MMT930
MMCM2484,MMT2484
125
200
-
MMCM930,MMT930
MMCM2484,MMT2484
150
250
-
-
-
800
Collector~Emitter
VCE(satl
-
0.35
Vde
Base-Emitter 'On Voltage
(lc = 100 "Ade, VCE = 5.0 Vde)
VBE(on)
0.5
0.7
Vde
fT
60
-
MHz
Cob
-
6.0
pF
Cib
-
6.0
pF
-
3.0
(lC = 10 mAde, VCE = 5.0 Vde)(I)
All Types
Saturation Voltage
(lc = 1.0 mAde, IB = 0.1 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 500 "Ade, V CE = 5.0 Vde, f = 30 MHz)
Output Capacitance
(VCB = 5.0 Vdc, IE = 0)
I nput Capacitance
(VBE = 0.5 Vde, IC = 0)
Noise F ig~re
(lC= 10"Ade, VCE = 5.0 Vde, RS" 10 k ohms,
f= 10 Hz to kHz, Power Bandwidth = 15.7 kHz)
(1 )Pulse Test: Pulse WidthS 300
,",5,
NF
MMCM24B4,MMT2484
Duty Cycle '52.0%.
694
dB
MMCM2222 (SILICON)
MICRO-T
NPN SILICON
SWITCHING
TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS
. . . designed for high-speed switching circuits and DC to VHF
amplifier applications.
•
Space Saving Micro-Miniature Packages
•
High DC Current Gain Range IC Specified from 1.0 mA to 300 mA
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAde
•
Ceramic Package for Hermeticity
!
K
A
____
ll
II_,J
I a
MAXIMUM RATINGS
Rating
Collector~Emitter
Collector~Base
Voltage
Voltage
Emitter-Base Voltage
Total Power Dissipation @ T A :: 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Rangt.
Symbol
Value
Unit
VCEO
30
Vdc
Vca
60
Vdc
VES
5.0
Vdc
Po
200
1.14
mW
mW/oC
-65 to +200
°c
TJ,Tstg
Characteristic
n-~1
PLANE
STYlE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DIM
A
B
C
0
THERMAL CHARACTERISTICS
Thermal Resistance.Junction to Ambient
F
~
-Z--.t:
Symbol
Max
Unit
ROJA
875
°CIW
F
K
NOTE:
MILLIMETERS
MIN
MAX
2.03
2.67
0.51
0.76
1.27
2.03
0.25
0.41
0.08
0.15
4.57
4.06
INCHES
MIN
MAX
0.080 0.105
0.020 0.030
0.050 0.080
0.010 0.016
0.003 0.006
0.160 0.180
A Tolerance of .25 mm (,010) must be allowed
at point leads protrude from package for glass
. run over.
CASE 176
695
MMCM2222.(continued)
ELECTRICAL CHARACTERISTICS
(TA = 25°C unless otherwise noted)
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)
BVCEO
30
-
-
Vde
Collector-Base Breakdown Voltage
BVCBO
60
-
-
Vde
BVEBO
5.0
-
-
Vde
ICBO
-
-
0.05
/lAde
50
-
-
Characteristic
OFF CHARACTERISTICS
(lC = 10 /lAde, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)
Collector Cutoff Current
(VC8 = 50 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 1.0 mAde, VCE = 10 Vde)
-
hFE
(lC = 10 mAde, VCE = 10 Vde)
75
(lc = 150 mAde, VCE = 10 Vde)(I)
100
(lc = 300 mAde, VCE = 10 Vde)ll)
30
Collector-Emitter Saturation Voltage( 1)
(lC = 150 mAde, 18 = 15 mAde)
300
Vde
VCE(sat)
-
0.9
0.4.
1.6
-
0.85
1.3
-
1.4
2.6
IT
200
-
-
MHz
Cab
-
3.5
8.0
pF
Cib
-
-
30
pF
(lc = 300 mAde, 18 = 30 mAde)
Base-Emitter Saturation Voltage(l)
(lc = 150 mAde, IB = 15 mAde)
0.2
Vde
VBE(satl
(lC = 300 mAde, IB = 30 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lc=20mAde, VCE =20Vde, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 MHz)
Input Capacitance
(VBE = 0.5 Vde, IC = 0, f = 100 MHz)
SWITCHING CHARACTERISTICS
Turn·On Time (Figure 1)
Turn·Off Time (Figure 2)
(1)PulseTest: Pulse Width"'S300 IJ.$, Duty Cycle 'S. 2.0%.
FIGURE 2 -SATURATED TURN·OFF SWITCHING
TIME TEST CIRCUIT
FIGURE 1 -SATURATED TURN·ON SWITCHING
TIME TEST CIRCUIT
Vee = +30 V (adjust for
150 rnA)
IL
o~
VCC"+30 V (adjust for
150mA)
~r
oU~!j_-"'v
OUTPUT TO
SAMPLING
SCOPE
6V
PW=200:t.l0ns
1.0k
1.Ok
OUTPUT TO
SAMPLING
SCOPE
lN916
10JjS 100 k ohms
Cin,;;12pF
trs5.Dns
MMCM2369 (SILICON)
MMT2369
MICRO-T
NPN SILICON
SWITCHING
TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS
... designed for high·speed, low current switching applications where
high·density packaging is required.
tt]~
MMCM2369
•
Space Saving Micro·Miniature Packages
•
Ideal for Thick Film Digital Circuit Applications
•
MMT2369 - One·Piece, Injection-Molded Unibloc
High Reliability
STYLE 1.
PI" 1. BASE
2. EMITTER
3. COLLECTOR
Package for
1.1:~1
c
1
IT
MMCM2369 - Ceramic Package for Hermeticity
SEATING
PLANE
•
•
C
•
F
NOTE:
ATolll'lnct of .25 mm (.0101 mlilt b••lIowed
atpointllldsprolfudafromplCklll,fotgl. .
runoq',
CASE 176
MAXIMUM RATINGS
Rating
Symbol
Collector-Emitter Voltage
MMCM2369
MMT2369
Unit
VCEO
15
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
4.5
Vdc
IC
200
mAde
Collector Current - Continuous
Total Power Dissipation
Derate above 25°C
@
TA
=::
25°C
Operating and Storage Junction
Po
200
1.14
225
2.05
TJ,T,tg
-65 to +200 -55 to +135
Symbol
MMCM2369 MMT2369
~
1
K
~
ft
MMT2369
mW
mW/oC
°c
Temperature Range
STYLE 1
PIN 1
2
3
BASE
EMITTER
COLLECTOR
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance,Junction to Ambient
RaJA
875
490
Unit
°CIW
MllLtilETERS
MAX
2.34
••38 0."
1.55
12'
0.41
F
0.10
0.16
0.51
J
O.
0
4.19
DIM MIN
1.98
••
••
"
•
"
697
02.
INCHES
MI.
MAX
O,01B 0.1182
0.015 •.025
... .....,.
U.,
0... '
.018
0....
0.020 0.030
1
•. 1
o.n5
3
CASE 28·01
,
MMCM2369, MMT2369 (continued)
ELEcTRicAL cHARAcTERISTICS (T A = 2So C unless otherwise noted)
Symbol
Min
Max
Unit
Collector·Emitter Breakdown Voltage(l)
(lC = 10 mAde,lB = 0)
BVCEO
15
-
Vde
Colleetor·Base Breakdown Voltage
(lC = 10 "Ade, IE = 0)
BVCBO
40
-
Vdc
Emitter-Base Breakdown Voltage
BVEBO
4.5
-
Vde
ICBO
-
100
nAdc
Characteristic
OFF CHARACTERISTICS
(IE = 10 "Ade, IC = 0)
Collector Cutoff Current
(VCS = 20 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain (1 )
(lC = 10 mAde, VCE = 1.0 Vde)
-
hFE
40
20
120
VCE(sat)
-
0.25
Vde
VBE(sat)
0.70
0.85
Vde
f-r
500
-
MHz
Cob
-
4.0
pF
12
ns
(lC = 100 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage
-
(lC = 10 mAde, IS = 1-0 mAde)
Base-Emitter Saturation Voltage
(lC = 10 mAde,lS = 1.0 mAde)
SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 10 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(VCS = 5.0 Vde, IE = 0, f = 140 kHz)
SWITCHING CHARACTERISTICS
Turn-On Time
(VCC = 3.0 Vde, VBE(off) = 1.5 Vde,IC = 10 mAde,lBI = 3.0 mAde)
tan
Turn·Off Time
(VCC=3.0Vde,lc= 10mAde,IBI = 3.0 mAde,IS2 = 1.5 mAde)
taff
-
lB
ns
Storage Ti me
tS(TS)
-
13
ns
(lC = IS1'= IB2 = 10 mAde)
(1)Pulse Test: Pulse Width'5:300 ,",5, Duty Cycle:5:2.0%.
FIGURE 1 - ton CIRCUIT
+lO':~C---l
f-
FIGURE 2 - toff CIRCUIT
3.0 V o--'\M.~~.,
'1
270
-1.5 V
~
<1.0ns
3.3 k
PULSE WITH hi) = 300 ns
DUTY CYCLE = 2.0%
PULSE WIDTH I',) = 300 ns
DUTY CYCLE = 2.0%
"Total shunt capacitance of test jig and connectors.
MMCM2484 (SILICON)
For Specifications, See MMCM930 Data,
MMCM2857
(SILICON) (CERAMIC PACKAGE)
For Specifications, See MMT2857 Data.
698
MMCM2907 (SILICON)
MICRO-T
PNPSILICON
SWITCHING AND AMPLIFIER
TRANSISTORS
PNP SILICON ANNULAR TRANSISTORS
... designed for general·purpose switching and amplifier applications,
where high·density packaging is required.
•
Space Saving Micro·Miniature Packages
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0_4 Vdc (Max) @ IC = 150 mAdc
•
High Voltage Rating - BVCEO = 40 Vdc (Min)
•
DC Current Gain Specified from 1.0 mAdc to 300 mAdc
•
MMT2907 - One-Piece, Injection-Molded Unibloc
High Reliability
MMCM2907 - Ceramic Package for Hermeticity
Package for
f
K
____ ll
,]
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
Collector-Emitter Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
600
mAde
Total Power Dissipation @ T A = 25°C
Po
200
1.14
mW
mWt"C
TJ,Tstg
-65 to +200
°c
O....te above 25°C
Operating and Storage Junction
Temperature Range
ITHERMAL CHARACTERISTICS
Characteristic
Thermal ResistanCe,Junction to Ambient
Symbol
Max
Unit
R8JA
875
°CIW
Ll~l1
C
IT
SEATING
PLANE
STYLE 1:
PIN 1. BASE
2. EMITTER
3. CO LLECTOR
DIM
A
B
C
D
K
NOTE:
A Tolerance of ,25 mm 1.010) must be allowed
at point leads protrude from package for glass
run over.
CASE 176
699
MMCM2907 (continued)
ELECTRICAL CHARACTERISTICS (T A = 2So C unless otherwise noted)
I
I
Symbol
Min
Typ
Max
Collector-Emitter Breakdown Voltage(1)
(lc = 10 mAde. IB = 0)
BVCEO
40
-
Collector-Base Breakdown Voltage
(lC = 10 "Ade. IE = 0)
BVCBO
60
-
Emitter-Base Breakdown Voltage
(IE = 10 "Ade. IC ~ 0)
BVEBO
5.0
-
-
ICBO
-
-
50
50
75
100
30
-
Characteristic
Unit
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 50 Vde. IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lc = 1.0 mAde. VCE = 10 Vdc)
(lC = 10 mAde. VCE =10 Vde)
(lc = 150 mAde. VCE =10 Vde)!l)
(lC = 300 mAde. VCE = 10 Vde)!l)
Vde
Vde
nAde
-
hFE
Collector-Emitter Saturation Voltage(l)
(lC = 150 mAde. IB - 15 mAde)
(lC =300 mAde. IB = 30 mAde)
VCE(sa!)
Basa-Emitter Saturation Voltage
(lC = 150 mAde.IB = 15 mAde)!l)
(lc 300 mAde, IB 30 mAde)
VBE(sa!)
=
Vde
-
300
0.2
-
-
0.4
1_6
-
0.85
-
1.3
2.6
260
-
MHz
4.8
8_0
pF
-
30
pF
-
Vde
Vde
-
=
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)
-
tr
200
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 MHz)
Cob
Input Capacitance
(VBE ·2.0 Vde, IC = 0, f -.100 MHz)
Cib
-
SWITCHING CHARACTERISTICS
Turn-on Time (Figure 1)
Turn-off Time (Figura 2)
(1 )Pul .. Te.. : Pulse Width ~ 300 "', Duty Cycle ~ 2.0%.
FIGURE I-SATURATED TURN-oN SWITCHING
TIME TEST CIRCUIT
-30 V
FIGURE 2-SATURATED TURN-oFF SWITCHING
TIME TEST CIRCUIT
(Adjust for
150 mAde)
-30 V
200
200
loOk
0~6V
50 PW$2oo ••
H
-16.3 V
50
II
'1++'2
OUlPUTTO
SAMPLING SCOPE
50k
Zin>loo kohms
'3
10"'<11<100,,,
12<5.0 ..
-=
.. +3.0 V
C;.~12pF
1r~5.0
..
DUTY CYCLE$ 2.0'li
MMCM3798, MMCM3799
(SILICON) (CERAMIC PACKAGE)
For Specifications, See MMT3798 Data.
MMCM3903, MMCM3904 (SILICON) (CERAMIC PACKAGE)
For Specifications, See MMT3903 Data.
700
MMCM3905, MMCM3906 (SILICON) (CE.JlAMIC PACKAGE)
For Specifications, See MMT390S Data.
MMCM3960A (SILICON) (CERAMIC, PACKAGE)
For Specifications, See MMT3960A Data.
MMD70 (SILICON)
MICRO-MINIATURE
SILICON EPITAXIAL
SWITCHING DIODE
SILICON EPITAXIAL SWITCHING DIODE
· .. designed for general·purpose, high·sPeec:! switching applications.
,
•
High Breakdown Voltage .,:'
V(BR) = 50 Vdc (Min) @ I(BR) = 100!,Adc
•
Space·Saving Micro·Miniature Package
•
One·Piece,lnjection·Molded Unibloc Package for High Reliability
•
Characteristics Similar to MMD6050
jA"1
i~
MAXIMUM RATINGS
Rating
Symbol
Valu.
Unit
VR
50
Vde
IF
200
mA
IFMlsurgel
500
mA
Reverse Voltage
Peak Forward Recurrent Current
Peak Forward Surge Current
\Pulse Width
=10,,51
Po
225
2.05
mW
mWI"C
Operatf~g and Storage Junction
TJ,T5tg
-55 to +135
°c
Temperature Range
Symbol
Min
Mox
Unit
VISRI
50
-
Vde
IR
-
100
nAdc
VF
0.75
1.2
Vdc
Capacitance
IVR = 01
C
-
2.5
pF
Reverse Recovery Time
trr
-
15
ns
Reverse Current
IVR = 30 Vdel
Forward Voltage
~
KJtD
(IF = 100 mAdel
MI LIMETERS
DIM MIN MAX
1.98
C
1.22
D
F
H
J
K
L
0.25
0.10
0.51
0.03
4.1s
U9
0.39
N
lti
2.34
1.47
0.41
0.15
0.76
0.08
4,45
1.14
0.64
INCHES
MIN MAX
0.078
0.048
0.010
0.004
0.020'
0.0111
0.165
0.035
0.015
CASE 16&02
701
t
STYLE 1:
PIN 1. ANODE
2. CATHODE
A
(IF -IR - 10 mAde, VR = 15 Vde,
irr = 1.0 mAdel
~
8'
t
ELECTRICAL CHARACTERISTICS (TA =25 0 C unless otherwise noted)
Characteristic
L 'f
K
Power Dissipation @I T A :;:z 2SoC
Derate, above 2SoC
Breakdown Voltage
(lIBRI = 100 "Adel
-.i
0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025
MMD6050 (SILICON)
MMD6100
MMD6150
Silicon epitaxial micro-miriiature .switching diodes single, series and dual diodes designed for general-purpose,
MMD7000
high-speed switching applications.
MMD6050 - Case 166
MMD6100 - Case 28 (2)
MMD6150 - Case 28 (3)
MMD7000 - Case 28 (4)
MAXIMUM RATINGS
(each diode)
Rating
Symbol
Value
Unit
Reverse Voltage
VR
70
Vdc
Peak Forward Recurrent Current
IF
200
rnA
FM(surge)
500
rnA
Peak Forward Surge Current
(Pulse Width = 10 Jls)
I
Power Dissipation @T A = 25° C
Derate above 25° C
PD
225
2.05
mW
mW/oC
Operating and Storage Junction
Temperature Range
T J , Tstg
-55 to +135
°c
Optional Package with Raised
:Circular Tab Available; Specify
MMD6050
MMD61 00
(Style 2)
IC... 166·01.
MMD6150
(Style 3)
MMD7000
(Style 4)
~.
I (J
1/1
2
~
1
K
~
K
STYLE 1:
PIN 1. ANODE
I
~ 2.CATH~
t
====t--B-t=====r-4;;;;;;;;;;:tir---7-:H
t""
MILLIMETERS
DIM MIN
MAX
A
C
D
F
H
J
K
L
N
INCHES
MIN
MAX
1.98
2.34
0.078
1.22
1.47
0.048
0.010
0.25
0.41
0.10
0.15
0.004
0.51
0.76
0.020
0.001
0.03
0.08
4.19
4.45
0.165
0.89
1.14
0.035
0.38
0.64
0.015
CASE 166-02
l
STYLE 2:
PIN 1.
2.
3.
STYLE 3:
PIN 1.
2.
3.
STYLE 4:
PIN 1.
2.
3.
0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025
702
ANOOE 2
ANOOE 1
CATHDOE
CATHOOE 2
CATHODE 1
ANODE
CATHODE
ANODE
COMMON
CATHODE
ANODE
fr-~-1
I
tlH
MILLIMETERS
MIN
MAX
A
1.98
2.34
B 0.38
0.64
C 1.24
1.55
D 0.25
0.41
F 0.10
0.15
H 0.51
0.76
J
0.03
0.08
4.45
K 4.19
M
3"
7"
CASE 26·01
DIM
INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
3"
7"
MMD6050, MMD6100, MMD6150, MMD7000 (continued)
ELECTRICAL CHARACTERISTICS (T =25'C unless otherwISe noted)
A
Symbol
Characteristic
Breakdown Voltage
(I(BR) = 100 I'Ade)
IR
Forward Voltage
(~ = 1. 0 mAde)
VF
t
/
20
10
I
7.0
5.0
-
-
-
0.1
0.55
0.7
0.85
-
-
1.2
2.0
-
1.5
5.0
1.1
pF
rr
ns
FIGURE 2 - REVERSE LEAKAGE CURRENT
versus TEMPERATURE
I
TJ
=
125'C
V
/
V 25'C /
3.0
2.0
~
~El
/-55'C
I
!
/ /
I
/ /
I
0.2
~
-
-VR= 70/
0.4
VR=IO/
./"'" ./"'"
,,/
.01
.001
1.2
1.0
0.8
0.6
--
1.5
~
'is.
3.0
~
TJ = 25'C
~
-
i-
-
!
r--
2.0
0.5
1.0
0.3
O.S 0.7 1.0
2.0
125
100
3.0
TJ =2S'C 1,= loomA
~
5.0 7.0 10.0
r-
1.0
0.5
~
......
- r--
I, = 50mA
I,
1.5
0.2
-
.J
0.7
0.1
75
FIGURE 4 - REVERSE RECOVERY TIME
4.0
C
Operating and Storage Junction
TJ,T stg
-55 to +135
°c
Peak Forward Surge Current
(Pulse Width a 10 "s)
1
B
Symbol
K
.L........-"'"-=-F=~
K
I
Temperature Range
STYLE 4:
PIN 1. CATHODE
2. ANODE
3. COMMON
CATHODE
ANODE
Common
Anode
Cathode
Cathode
DIM
A
B
C
0
F
H
J
K
M
Anode
SERIES
MILLIMETERS
MAX
MIN
2.34
1.98
0.64
0.38
1.24
1.55
0.41
0.25
0.10
0.15
0.76
0.51
0.03
0.08
4.45
4.19
7°
3"
INCHES
MIN
MAX
=I
0.004
0.020
0.001
0.165
3°
CASE 28-01
704
~
~
~
0.016
0.006
0.030
0.003
0.175
7°
MMD7001 (continued)
ELECTRICAL CHARACTERISTICS (T A ~ 25°C)
Characteristic
Breakdown Voltage
Symbol
Min
Max
Unit
V(BR)
45
-
-
Vde
IR
-
-
01
/lAde
Typ
(I(BR)' 10/lAde)
Reverse Current
(VR
= 30 Vde)
Forward Voltage
(IF
(IF
(IF
VF
C
-
2.5
3.5
pF
Os
-
-
50
pC
trr
-
3.2
-
ns
0.75
-
Capacitance
(VR = 0)
Total Control Charge
(IF
= 10 mAde)
Reverse Recovery Time
(IF
= IR = 10mAde, VR = 5.0Vde, i rr = 1.0 mAde)
FIGURE 1 - RECOVERY TIME EaUIVALENT TEST CIRCUIT
500
50
100 ns < q
1,0 ns (max)
Vde
-
= 100 mAde)
= 300 mAde)
= 500 mAde)
< 100 IlS
DUTY CYCLE
=
2,0%
705
0.9
1.05
1.15
MMF 1thru MMF6 (SILICON)
MATCHED SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS
. consists of two individual 2N3823 device types which have been
carefully matched for critical applications, such as differential amplifier service. Each matched pair is packaged in a metal clip for pair
identity and each device is marked with the basic 2N3823 type number
and a date code for further identification in the event of removal
from the clip.
•
Guaranteed Temperature Tracking - (DOC to 1000C)
DoIVGSl - VGS21/ DoT = 10 p.v/oe - MMF1, MMF2
25 jJ.V /oe - MMF3, MMF4
50jJ.V/oe - MMF5, MMF6
•
Excellent Gate-Source Voltage Match 1VGSl - VGS21 = 5.0 mVdc (Max)
•
Tight I DSS Match DoIDSS = 5.0% (Max) - MMF1, MMF2
•
Low Noise Figure - NF = 2.5 d8 (Max) @ 100 MHz (Each Device)
MATCHED
JUNCTION FIELD-EFFECT
TRANSISTORS
TYPE A
MAXIMUM RATINGS (TA -- 25°C)
Svmbol
Value
Unit
Drain-Source Voltage
VOS
30
Vde
Drain-Gate Voltage
VOG
30
Vde
Gate-Source Voltage
VGS
30
Vde
Drain Current
10
20
mAde
Gate Current
IG
10
mAde
Total Device Dissipation @ T A ::: 25°C
Po
300
2.0
mW
mWloC
TJ,T stg
-65 to +175
°c
Rating
Derate above 25°C
Operating and Storage Junction
0390
0183
ifi85
'Om-30 MAX
TAB
SCRIBE
MARK -
Temperature Range
TABLE I - DIFFERENTIAL GATE-SOURCE VOLTAGE
CHANGE WITH TEMPERATURE
ORAIN
GATE
CASE
Conditions:
VOG: 15 Vde
MMF1, MMF3, MMF5 - 10
=300 !lAde
0005x45°
IRAOIUS OPTIONAl}
MMF2, MMF4, MMF6 - 10
= 750 !lAde
BURR fREE
INSIDE MUST BE
Device Type
OOc to+25oC
+25 0 C to +1000 C
MMF1,MMF2
0.250 mVde
0.750 mVde
MMF3, MMF4
0.625 mVde
1.875 mVdc
MMF5, MMF6
1.250 mVde
3.750 mVde
~-,.--rt.~~T
0245
ii"i55
' - - _ ' - - . . . . L - _....
TWO TO·72 CASE 20 III
STYlE IN CLIP
SCRIBE MARK INDICATES
LOCATION Of DEVICE TAB
706
-L
MMF1 thru MMF6 (continued)
ElECTR ICAl CHARACTERISTICS
I
(each 2N3823) (TA = 250 C unle.. otherwise noted)
I
I
Min
Typ
Max
Unit
V(BR)GSS
30
-
-
Vdc
Gate·Source Voltage
(10 = 0.4 mAdc, VOS = 15 Vdc)
VGS
1.0
-
7.5
Vdc
Gate·Source Cutoll Voltage
(10 = 0.5 nAdc, VOS = 15 Vdc)
VGS(off)
0.2
-
8.0
Vdc
-
-
0.5
500
-
S500
Characteristic
Symbol
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(lG = 1.0 "Adc, VOS = 0)
Gate Reverse Current
nAdc
IGSS
(VGS = 20 Vdc, VOS = 0)
(VGS = 20 Vdc, VOS = 0, TA
= 150o C)
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current< 1)
(VOS = 15 Vdc, VGS = 0)
DYNAMIC CHARACTERISTICS
#lmhos
Forward Transfer Admittance
(VOS = 15 Vdc, VGS = 0, I = 1.0 kHz)(l)
(VOS = 15 Vdc, VGS = 0, I = 200 MHz)
I nput Conductance
Ivlsl
3500
R.(VI~)
3200
-
-
Re(Vis)
-
-
800
IVosl
Re(vo.)
-
35
-
200
Ciss
-
-
S.O
pF
Crss
-
-
2.0
pF
NF
-
-
2.5
dB
",mhos
(VOS = 15 Vdc, VGS = 0, I = 200 MHz)
Output Conductance
(VOS = 15 Vdc, VGS = 0, 1= 1.0 kHz)!l)
""mhos
(VOS = 15 Vdc, VGS = 0, I = 200 MHz)
I nput Capacitance
(VOS = 15 Vdc, VGS = 0, I = 1.0 MHz)
Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, I
=
1.0 MHz)
Common-Source Spot Noise Figure
(VOS = 15 Vdc, VGS = 0, RS = 1.0 k ohm, I = 100 MHz)
MATCHING CHARACTERISTICS (MMFl thru MMFS, See Note 2)
Zero-Gate-Voltage Drain Current Ratio
(lOSSl is the lower 01 the two values)
MMF1,MMF2
MMF3,MMF4,MMF5,MMFS
(VOS = 15 Vdc, VGS = 0)
-
10SSl
Forward Transfer Admittance Ratio
IOSS2
0.95
0.90
-
-
1.0
1.0
-
IVlsll
(IVlsll is the lower 01 the two values)
IVIs12
(VOG = 15 Vdc, 10 = 300 "Adc)
MMFl
MMF3,MMF5
0.98
0.95
-
1.0
1.0
(VOG = 15 Vdc, 10
MMF2
MMF4,MMFS
0.98
0.95
-
-
1.0
1.0
-
-
1.0
=
750 "Adc)
Oilferential Output Conductance
(VOG = 15Vdc,I0 = 750,..Adc, 1= 1.0 kHz)
MMF1,MMF3,MMF5
(VOG = 15 Vdc, 10 =300,..Adc, 1= 1.0 kHz)
MMF2,MMF4,MMFS
Oilferential Gate-Source Voltage
MMF1,MMF3,MMF5
(VOG = 15 Vdc, 10 = 750 "Adc)
MMF2,MMF4,MMFS
Differential Gate Reverse Current
(VOG = 15Vdc, 10 = 750 "Adc, TA = 1000 C)
Differential Gate-50urce Voltage Chango with Temperature
= 100 ml,
-
-
-
5.0
-
1.0
10
1.0
10
1.0
mVdc
5.0
nAdc
IIG1-IG21
(VOG = 15Vdc,10~3oo"Adc, TA =1000C)
(1)Pulse Tast: Pulse Width
IVGS1-VGS21
= 15 Vdc, 10 =300 "Adc)
(VOG
"mho
Ilvosil -lvosl21
See TABLE I
Duty Cycle ~10%.
(2)Matchlng characteristics apply only to pairs of device. originally packaged 8S a matched pair.
707
MMY 70 (SILICON)
NPN SILICON ANNULAR TRANSISTOR
MICRO-MINIATURE
... designed for low· level. low-noise amplifier applications.
•
Space Saving Micro-Miniature Package
•
One·Piece.lnjection Molded Unibloc Package for High Reliability
NPN SILICON
AMPLIFIER
TRANSISTOR
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
VCB
VEB
IC
20
25
5.0
50
225
2.05
-55 to +135
Vde
Vde
Vde
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current
Po
Total Power Dissipation@TA - 25u C
Derate above 2SoC
Operating and Storage Junction
TJ.Tstg
mAde
mW
mW/oC
°c
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
.-),Li
ELECTRICAL CHARACTERISTICS (T A
B
joi
i (¥*=1====::J=$tt
=25 0 C unless otherwise noted)
Characteristic
K
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
IIc = 10 mAde. IB
= 0)
BVCEO
20
-
-
Vde
BVCBO
25
-
-
Vde
BVEBO
5.0
ICBO
-
-
50
nAdc
I
(1)
Collector-Base Breakdown Voltage
IIc = 10 ~Ade. IE = 0)
Emitter-Base Breakdown Voltage
Vde
liE = 10 ~Ade. IC = 0)
Collector Cutoff Current
(VCB = 15 Vde. IE = 0)
ON CHARACTERISTICS
f±EJ~Mtl
c
.-l
,
I
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DC Current Gain
IIC= 2.0 mAde. VCE = 5.0 Vde)
OYNAMIC CHARACTERISTICS
Output Capacitance
8.0
pF
8.0
pF
(VCB = 5.0Vde.IE =0. f= 1.0MHz)
Input Capacitance
Gib
(VBE = 0.5 Vde.lc =0. f= 1.0MHz)
Noise Figure
IIc = IO~Ade. VCE = 5.0 Vde.
RS = 10kohms. f = 10 Hzto 15.7 kHz
NF
1.0
dB
(1) Pulse Test: Pulse Width .. 300 ~s. Duty Cycle .. 2.0%.
INCHES
MILLIMETERS
MIN
MAX
MIN
MAX
A 1.98
B 0.38
C 1.24
D 0.25
F 0.10
H 0.51
J
0.03
K 4.19
M
30
2.34
0.64
1.55
0.41
0.15
0.76
0.08
4.45
70
0.078
0.015
0.049
0.010
0.004
0.020
0.001
0.092
0.025
0.061
0.016
0.006
0.030
0.003
DIM
CASE 28·01
708
H
MMT.71 (SILICON)
PNP SILICON ANNULAR TRANSISTOR
MICRO-MINIATURE
... designed for low-level, low-noise amplifier applications.
PNP SILICON
AMPLIFIER
TRANSISTOR
•
Low Noise Figure - NF ~ 1.5 dB (Typ) @ f ~ 1.0 kHz
•
Low Output Capacitance Cob ~ 2.0 pF (Typ) @ VCB
•
One-Piece, Injection-Molded Unibloc Package for High Reliability
•
Characteristics Similar to 2N5086
~
5.0 Vdc
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Symbol
Value
Unit
Vceo
20
25
4.0
50
100
225
2.05
-55 to +135
Vde
Vde
Vde
VCB
Emitter-Base Voltage
Collector Current - Continuous
Peak
Total Power Dissipation@TA
= 2SoC
Derate above 25°C
Operating and Storage Junction
T J,Tstg
mAde
mW
mW/oC
°c
Temperature Range
1
-.Jl{B n
U3
K
THERMAL CHARACTERISTICS
Characteristic
1 Symbol J
Max
R8JA
490
1
Thermal Resistance, Junction to Ambient
I
I
Unit
°C/W
A
2
t
ELECTRICAL CHARACTERISTICS (TA ~ 25 0 C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
I
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC
~
10 mAde, IB
~
(lC ~ 10 ~Ade, Ie ~ 0)
Emitter-Base Breakdown Voltage
(Ie
~
10
~Ade,
Ic
~
BVceo
20
-
-
BVCBO
25
-
-
Vde
BVEBO
4.0
-
-
Vde
ICBO
-
-
50
nAdc
Vde
0)
Collector-Base Breakdown Voltage
0)
Collector Cutoff Current
IVCB ~ 15 Vde, Ie ~ 0)
fu
tD
150
-
-
-
Output Capacitance
IVCB ~ 5.0 Vde, Ie" 0, f" 1.0 MHz)
Cob
-
2.0
6.0
pF
DIM
Input Capacitance
IVBe "0.5 Vde, IC" 0, f" 1.0 MHz)
Noise Figure
Cib
-
-
10
pF
A
B
C
SMALL-SIGNAL CHARACTERISTICS
NF
1.5
dB
(lC ~ 100~Ade, VCe" 10 Vde,
IRS" 3.0 kohm5, f" 1.0 kHz)
II) Pulse Test: Pulse Width <:; 300,,5, Duty Cycle <:; 2.0%.
T;1H
STYLE 1
PIN 1 BASE
2. EMITTER
3 COLLECTOR
hFE
(lC" 2.0 mAde, VCe" 5.0 Vde)
1-.1
1tM
ON. CHARACTERISTICS
DC Current Gain
D
F
H
J
K
M
MILLIMETERS
MIN
MAX
2.34
1.98
0.38
0.64
1.24
1.55
0.41
0.25
0.15
0.10
0.76
0.51
0.03
0.08
4.45
4.19
70
30
INCHES
MIN
MAX
0.078
0.015
0.049
0.010
0.004
0.020
0.001
0.165
30
CASE 28-01
709
1
K
0.092
0.025
0.061
0.Q16
0.006
0.030
0.003
0.175
70
MMT72 (SILICON)
MICRO-MINIATURE
NPN SILICON
SWITCHING
TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR
· .. designed for high·speed, low·current switching applications where
high-density packaging is required.
•
Ideal for Thick Film Digital Circuit Applications
• One-Piece, Injection-Molded Unibloc Package for High Reliability
K
JDI
IT>~F===$tt
B
I(
MAXIMUM RATINGS
Rating
Collector~Emitter
Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current-Continuous
Total Power Dissipation @ T A :::: 25°C
I(
Symbol
Value
Unit
VCEO
VCES
VEB
IC
10
12
4.0
200
225
2.05
-55 to +135
Vdc
Vdc
Vdc
Po
Derate above 25°C
Operating and Storage Junction
TJ, Tstg
j
mAde
mW
mW/oC
°c
Temperature Range
STYLE I:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
THERMAL CHARACTERISTICS
Characteristics
Thermal Resistance, Junction to Ambient
I
Symbol
I
Max
I
Unit
1
RSJA
1
490
1
°C/W
DIM
A
B
C
D
F
H
J
K
MILLIMETERS
MIN MAX
1.98
2.34
0.38
0.64
1.24
1.55
0.25
0.41
0.10
0.15
0.51
0.76
0.03
0.08
4.19
4.45
INCHES
MIN
MAX
0.078 0.092 '
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
-0.020 0.030
0.001 0.003
CASE 28-01
710
MMT72 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(IC = 10 mAde_IB = 0)
BVCEO
10
-
Vde
Collector-Emitter Breakdown Voltage
(lC = 10 "Ade, VBE = 0)
BVCES
1<
Emitter-Base Breakdown Voltage
BVEBO
4.0
-
Vde
ICBO
-
100
nAdc
Characteristic
OFF CHARACTERISTICS
Vde
(IE = 10 "Ade, IC = Q)
Collector Cutoff Current
(VCB = 10 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
30
hFE
-
-
0.3
Vde
-
MHz
6-:lr
pF
(lC = 10 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage
VCE(s.t)
(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
400
fT
(lC= 10mAde, VCE= 10Vde, f= looMHz)
Output Capacitance
\:"ob
(VCB = 5_0 Vde, IE=O, f= 1.0 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time
(VCC= 3.0Vde, VBE(off) = 1.5 Vde.
ton
-
20
ns
toff
-
30
ns.
IC= 10 mAde, IBI =3.0mAde)
Turn-Off Time
(VCC = 3.0 Vde, IC = 10 mAde,
IBI = 3.0 mAde, 182 = 1.5 mAde)
(1) Pulse Test: Pulse Width
~
300 J,l.S, Duty Cycle
~
2.0%.
FIGURE 2 - toff CIRCUIT
FIGURE 1 - ton CI RCUIT
+1O.6V
n.-l
11
14-
270
I
0---1.5 V
~
..
....
_.L_
100 k OHMS
tr < 5.0 ns
~
130
-=
VBB
Vdc
ton
Vin
Vdc
-5.8
IC
mA
181
mA
182
mA
Gnd
VCC
Vdc
-1.5
toff
+10
10
1.0
1.0
-8.0
-1.5
10
1.0
1.0
713
MMT74 (SILICON)
MICRO-MINIATURE
NPN SILICON
RF AMPLIFIER
TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR
· .. designed for high-gain, low-noise amplifier, oscillator and mixer
applications.
•
High Current·Gain-Bandwidth Product fT = 1000 MHz (Typ) @ IC = 4.0 mAde
•
Low Collector - Base Capacitance
Ccb z 1.0 pF (Typ) @ VCB = 10 Vdc
• One·Piece, Injection Molded Unibloc Package for High Reliability
,1
I~'
I
n
K
!
3 2
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation@TA""250C
Derate above 2SoC
Operating and Storage Junction
Symbol
Value
Unit
VCEO
VCB
VEB
IC
PD
12
20
3.0
Vdc
Vdc
Vdc
T J,Tstg
40
mAde
225
2.05
-55 to +135
mW
mW/oC
Max
Unit
490
°C/W
°c
Temperature Range
K
I
fu
to
.-J
1CM
THERMAL CHARACTERISTICS
Characteristics
Thermal ReSIstance, Junction to Ambient
Symbol
ROJA
I
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DIM
A
B
C
0
F
H
J
K
M
MILLIMETERS
MAX
MIN
1.98
0.38
1.24
0.25
0.10
0.51
0.03
4.19
3"
2.34
0.64
1.55
0.41
0.15
0.76
0.08
4.45
7"
t1
INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.Q16
0.004 0.006
0.020 0.030
0.001 0.003
0.165 .0.175
7"
3"
CASE 28·01
714
1
H
MMT74 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol
Min
Collector-Emitter Breekdown Voltage (1)
(lC = 3.0 mAde, IB = 0)
BVCEO
12
Vde
Collector-Base Breekdown Voltage
(lC = 100 "Ade, IE = 0)
BVCBO
20
Vde
Emitter-B... Breakdown Vdltaga
(IE = 10 "Ade, IC = 0)
BVEBO
3.0
Characteristic
Typ
Max
Unit
OFF CHARACTERISTICS
ICollector Cutoff Current
-
Vde
100
ICBO
nAde
(VCB = 10 Vde, IE = 0)
ON CHARACTERISTICS
I
25
DC Current Gain
(lc=3.0mAde, VCE
= 1.0 Vde)
DYNAMIC CHARACTERISTICS
Current~Gain
700
fr
Bandwidth Product
(lC=4.0 mAde, VCE = 10 Vde,
f = 100 MHz)
Collector-Base Capacitance
1000
Ceb
1.0
NF
4.0
MHz
3.0
pF
(VCB = 10 Vde, 'E =0, f= 1.0 MHz)
Noise Figure
(lC· 1.5 mAde, VCE = 10 Vde,
RS = 50 ohms, f = 450 MHz)
dB
FUNCTIONAL TEST
Common Emitter Amplifier Power Gain
(lC = 1.5 mAde, VCE = 10 Vde, f = 450 MHz)
(1) Pulse Test: Pulsa Width .. 300 "S, Duty Cycle .. 2.0%.
FIGURE 1 - TEST CIRCUIT FOR NOISE FIGURE AND POWER GAIN
Capacitance values in pF
L1. L2 - Silver plated brass rod, 1-1/2"'ong and 1/4" dis. Install at least
1/2" from nearest vertical chassis surface.
L3 - 1/2" turn 116 AWG wire. located 1/4" from and parallel to L2.
IOOkohms
Cm <12pF
tr<50ns
MMT2222 (continued)
FIGURE 3 - DC CURRENT GAIN
400
200
z
~
§
~-
~
r\
I
\
-~
100
-
.55°~~
40
...
20
0.3 0.5
...
1.0
g
o
~
g
r,
--
VBE(sat)iii Ic/lB -10
ITllll
0.6
VBE(on) III VCE = 10V
~
5.0
10
20 30
50
0.4
o. Z
~
o
100
/'
VCEh.,) IIIIC/IB • 10
---VCE=,li~v
2.0 3.0
i;"
V"
w
~
VCE= 10V
I
·I I fill
0.8
'\
~
~
i J ~ ~~!~
co
60
ul
~
1.0
}J~1150bc
'"
i:l
~
FIGURE 4- "ON" VOLTAGES
0.3 0.5
200 300
1.0
2.0 3.0 5.0
10
20 30
50
100
200 300
IC. COLLECTOR CURRENT (rnA)
IC. COLLECTOR CURRENT (rnA)
FIGURE 5 - CURRENT -GAIN - BANDWIDTH PRODUCT
~ 400
~
t;
=>
o
o
....
V
g: 200
...o
%
~
V
z
<
::l:
100
co
,.:.
80
~
60
i:l
.I:'
40
:;;:
-
..... f--
VCE=ZOV
r-i~~lJ~HZ
-/
V
V
0.3
0.5
0.7
1.0
Z.O
3.0
5.0 7.0
10
ZO
30
IC. COLLECTOR CURRENT (rnA)
FIGURE 6 - TURN-ON·TIME
500
30
ZOOo
FIGURE 7 - TURN-OFF·TIME
1.0 k
.......
VCC-IOV-
~~/~B2s01~
"
-
..
30
w
IBI-IBZ TJ=Z5°C -
I,
70
50
YttfB="~OV=
300
.........
!
;::
.: Z0
,...
.......
td@VEB(om=O
0
100
~ 70
r--.....
5 50
........
......
-
"
ZOO
100
!
700
500
I'
30
tf
ZO
7. 0
0
5. 3.0
5.0 7.0
10
10
20
30
50
70
100
ZOO
3.0
300
5.0 7.0
10
ZO
30
50
70
IC. COLLECTOR CURRENT (rnA)
IC. COLLECTOR CURRENT (rnA)
MMT2369 (SILICON)
For Specifications, See MMCM2369 Data.
MMT2484 (SILICON)
For Specifications, See MMCM930 Data.
728
100
ZOO
300
MMT2857 (SILICON)
MMCM2857 (CERAMIC PACKAGE)
NPN silicon annular micro-miniature transistor designed
for high-gain, low-noise amplifier, oscillator and mixer
applications.
MMT2857
MAXIMUM RATINGS
CASE 28(1)
Symbol
Value
Unit
VCEO
15
Vdc
Collector-Base Voltage
VCB
30
Vdc
Emitter-Base Voltage
Rating
Collector-Emitter Voltage
MMCM2857
CASE 176
VEB
3.0
Vdc
Collector Current -Continuous
IC
40
mAdc
Total Power DiSSipation @TA = 25° C
Derate above 25°C
PD
225
2.05
mW
mW;oC
T J' Tstg
-55 to +135
·C
Operating and Storage Junction
Temperature Range
ELECTRICAL CHARACTERISTICS
ITA' 25°C and case grounded unless otherwise noted)
Symbol
Characteristic
Typ
Max
15
-
-
30
-
-
3.0
-
-
-
-
50
1,000
1,300
-
-
0.5
1.0
-
8.0
-
-
3.8
-
Min
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 3.0 mAdc, IB = 0)
BVCEO
Collector-Base Breakdown Voltage
(IC = 10 ItAde, ~ = 0)
BVCBO
Emitter-Base Breakdown Voltage
~ = 10 ItAdc, IC = 0)
BVEBO
Collector Cutoff Current
(YCB = 15 Vdc, ~ = 0)
ICBO
Vdc
Vdc
Vdc
nAdc
ON CHARACTERISTICS
I
DC Current Gain
(IC = 3.0 mAdc, VCE = 1. 0 Vdc)
30
DYNAMIC CHARACTERISTICS
Current-Gain-BandWidth Product
(IC = 4. 0 mAdc, VCE = 10 Vdc, f = 100 MHz
fT
Collector-Base Capacitance
(V CB = 10 Vdc, ~ = 0, f = o. 1 to 1. 0 MHz)
Ccb
MHz
pF
(Emitter and Case Guarded)
r b 'c c
Collector-Base Time Constant
~ = 4. 0 mAdc, VCB = 10 Vde, f = 31. 9 MHz)
Noise Flgure*
(IC 1.5 mAde, VCE = 10 Vdc, RS
=
=50 ohms,
NF*
f = 450 MHz)
FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (Figure 1)
(IC = 1.5 mAdc, VCE = 10 Vdc, f = 450 MHz)
*Measured In circuit of Figure 1 With no connections for Input cirCuit losses or post ampllfler contribution.
729
ps
dB
MMT2857, MMCM2857 (continued)
FIGURE 1 - TEST CIRCUIT FOR NOISE FIGURE AND POWER GAIN
VOUI
RS = 50n
Capacitance values in pF
Ll, l2 - Silver-plated brass rod, 1·1/2" long and 1/4" dia. Install at least
112" from nearest vertical chassis surface.
L3 - 112 turn 616 AWG wire, located 1/4" from and parallel to L2.
G)- 'External
Neutralization Procedure:
(A)
Connect 450·MHz signal ge:nerator (with RS
=
50 ohms) to input
terminals of amplifier.
(8)
interlead shield to isolate collector lead from emitter
(e)
and base leads.
Connect 50-ohm RF voltmeter across output terminals of amplifier.
Apply VEE. and with signal generator adjusted for 5 mV output
from amplifier, tune Cl, C3, and C4 for maximum output.
MMT2857
(01
Interchange connections to signal generator and RF voltmeter.
(E)
With sufficient signal applied to output terminals of amplifier,
adjust C2 for minimum mdication at Input.
(F)
Repeat steps (A), (B), and IC) to determine if retuning is necessary.
MMCM2857
-.*' ~
f
1
K
K
A
L
A
2
J
STYLE 1:
PIN 1. BASE
2. EMITTER
3. co LLECTOR
K
r
STYLE 1.
PIN I. BASE
2 EMITTER
3. COLLECTOR
_
r-'(a
I--K
ll
J
__
LB
F
ct~~
rrE¥='~
t1
IT
H
DIM
A
B
MILLIMETERS
DIM MIN MAX
A
1.98
2.34
B 0.38
0.64
C 1.24
1.55
0 0.25
0.41
F 0.10
0.15
H
0.51
0.16
J
O.OJ
0.08
K 4.19
4.45
M J'
1".-
~2
C
0
F
INCHES
MIN MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 O.OOJ
0.165 0.175
J'
7'
K
SEATING
PLANE
MILLIMETERS
MIN
MAX
2.03
2.67
0.51
0.76
1.27
2.03
0.41
0.25
0.08
0.15
4.57
4.06
1
INCHEt
MIN
MAX
0.080 0.105
0.020 0.030
0.050 0.080
0.010 0.016
0.003 0.006
0.160 O.IBO
NOTE:
A Tolerance of .25 mm (.010) must be aHowed
at point leads protrude from package for glass
run over.
CASE 176
CASE 28·01
730
MMT2907 (SILICON)
MICRO-T
PNPSILICON
SWITCHING AND AMPLIFIER
TRANSISTOR
PNP SILICON ANNULAR TRANSISTOR
... designed for general·purpose switching and amplifier applications.
where high-density packaging is required.
•
Space Saving Micro-Miniature Package
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAdc
•
DC Current Gain Specified from 1.0 mAdc to 300 mAdc
1K
n
11
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Symbol
Value
Unit
VCEO
40
Vdc
VCS
60
Vdc
PIN 1
VES
5.0
Vdc
Collector Current - Continuous
IC
300
mAde
Total Power Dissipation @TA = 25°C
Po
225
1.8
mW
mW/oC
-55 to +150
°c
Emitter-Base Voltage
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ,Tstg
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
K
Svmbol
Max
Unit
ROJA
555
C/W
I
STYLE I
BASE
2
EMITTER
3
COLLECTOR
MILLIMETERS
DIM
MIN
A
B
C
0
F
H
J
K
M
1.98
0.38
1.24
0.25
0.10
0.51
0.03
4.19
3
MAX
2.34
0.64
1.55
0.41
0.15
0.16
0.08
4.45
7'
INCHES
MIN
MAX
0.078 0.092
0.005
0.049
0.010
0.004
0.020
0.001
0.165
3'
CASE 28-01
731
0.025
0.061
0.016
0.006
0.030
0.003
0.175
7
MMT2907 (continued)
ELECTRICAL CHARACTERISTICS
(T A = 25 0 C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage( 1)
(lC = 10mAde,Ia = 0)'
BVCEO
40
-
-
Vde
Collector-Base Breakdown Voltage
BVCBO
60
-
-
Vde
BVEBO
5.0
-
-
Vde
ICBO
-
-
50
nAde
50
-
75
-
-
100
-
OFF CHARACTERISTICS
(lC
= 10"Ade,IE = 0)
Emitter-Base Breakdown Voltage
(IE
= 10 !lAde, IC = 0)
Collector Cutoff Current
= 50
(VCB
Vde, IE
= 0)
ON CHARACTERISTICS (1)
DC Current Gain
(lC = 1.0 mAde, VCE
-
hFE
= 10 Vde)
(lC = 10 mAde, VCE = 10 Vde)
(lC = 150 mAde, VCE = 10 Vde)
(lc = 300 mAde, VCE = 10 Vde)
30
Collector-Emitter Saturation Voltage
VCE(sat)
= 150 mAde, IB = 15 mAde)
(lC = 300 mAde, IB = 30 mAde)
(I·C
Vde
-
Base-Emitter Saturation Voltage
300
0.15
0.24
0.4
1.6
Vde
VBE("t)
(lC
= 150 mAde,lB = 15 mAde)
(I C
= 300 mAde, 18 = 30 mAde)
-
0.87
1.3
0.94
2.6
tr
200
340
-
MHz
Cob
-
4.8
8.0
pF
Cib
-
-
30
.pF
Ion
-
20
-
ns
tott
-
120
-
ns
OYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 20 mAde, VCE = 10 Vde, t
= 100 MHz)
Output Capacitance
(VCB
= 10 Vde,
IE = 0, t
= 100 MHz)
Input Capacitance
= 2.0 Vde,
(VBE
IC
= 0, f
= 100 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time (Figure 1)
(VCC = 30 Vde, IC
IBl = 15 mAde)
= 150 mAde, VBE(off) = 0,
Turn-Off Time (Figure 2)
(VCC
= 30 Vde,
IC
= 150 mAde, IBI = IB2 = 15 mAde)
(1 )Pulse Test: Pulse Width
"5. 300
f,ls, Duty Cycle '5. 2.0%.
FIGURE 2 - TURN-OFF TIME TEST CIRCUIT
FIGURE 1 - TURN-ON TIME TEST CIRCUIT
(Adjust for
-30 V
ISO mAde)
200
1.0 k
°LLS.9V
50 PW<200 ns
H
lN91S
50
"" +3.0 V
732
OUTPUT TO
SAMPLING SCOPE
SOk
Zin>100 k Ohms
'":" Cin~12 pF
tr~5.0ns
MMT2907
(continued)
FIGU RE 3 - DC CURRENT GAIN
300
TJ:
z
~
2S'C
I-
~
13
u
e
~
H1f
100
::::;"'.SS'C
70
0
-....
-
il+ - --;~~.
200
FIGURE 4 - "ON" VOLTAGES
1.0
l'~ri'C
----
1--
-
-
,\
-
2.0 3.0 S.O
10
......
~
e
20 30
100
0, 6
'"«
~
>
O.4
VBElonl @VCE: 10 V
--
VCElsal1 @'CIIB: 10
l.--""
,..---
~B~+~"~'ICI'B: 10
./
V
1111111
>'
O. 2
--1
m~,l.0V
SO
2:w
""~,
-;- I I I
1.0
O.B
....
VCE: 10V
30
0.3 O.S
1111111
0 I
0,3 D,S
200 300
1.0
'c, COLLECTOR CURRENT (mAl
2,0 3.0 S.O
10
20 30
SO
100
200 300
'c, COLLECTOR CURRENT ImAI
FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT
~
400
II
~
G
"
e
e
g:
l- I--
VCE: 10 V
f: 100MHz
200 f-- TA: 2S'C
V
/'
:c
le
~
/
z
~
100
~
80
z
I-
~
'"
13
.I:'
60
V
40
0,3
O.S 0,7
1.0
2.0 3.0
S,O 7,0
'c, COLLECTOR CURRENT ImAI
10
200
!w
'">=
~.
100
70
50
"'
......
=
VCC: 30 VIcllB =10'
'Bl: 'B2 TJ:25'C -
SOO
.....
300
I,
200
I"
Is
100
......
30
VBElolfl : ';;'
20
II
10
5,0
3,0
1.0 k
700
VCC:30V I--- r-ICilB: 10
TJ: 2S'C I--- r--
I
30
FIGURE 7 - TURN·OFF·TIME
FIGURE 6 - TURN·ON·TlME
SOD
300
20
5.0 7.0
10
20
......
70
50
........r-.,
30
If
0
........
0
50
70
100
200
10
3,0
300
IC. COLLECTOR CURRENT (mAl
5,0 7.0
10
20
30
SO
IC. COLLECTOR CURRENT ImAI
733
70
-
100
200
300
MMT30 14 (SILICON)
MICRO-MINI.ATURE
NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR
· .. designed for high-speed, saturated switching applications where
high-density packaging is required.
•
High-Speed Switching Times ton + toff = 41 ns (Max) @ IC = 30 mAdc
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.22 Vdc (Max) @ IC = 30 mAdc
•
Space Saving Micro-Miniature Package
•
Ideal for Thick Film Digital Circuit Applications
•
One-Piece,lnjection-Molded Unibloc Package for High Reliability
_,_~/B
A
-
jD~
6ir=l===:4..l.=$
l
t1
K
j
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
VCEO
20
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
200
mAde
Total Power Dissipation @TA :: 2SoC
PD
225
2.05
mW
mW/oC
TJ,Tstg
-55 to +135
°c
Derate above 2SoC
Operating and Storage Junction
Temperature Range
STYLE 1:
PIN 1. BASE
2. EMITTER
3 COLLECTOR
THERMAL CHARACTERISTICS
DIM
Characteristic
A
B
C
D
F
H
Thermal Resistance, Junction
to Ambient
J
K
M
MILLIMETERS
MIN
MAX
1.98
0.l8
1.24
0.25
0.10
0.51
O.Ol
4.19
lO
2.l4
0.64
1.55
0.41
0.15
0.76
0.08
4.45
70
INCHES
MIN
MAX
0.078
0.D15
0.049
0.010
0.004
0.020
0.001
0.165
CASE 28-01
734
0.092
0.025
0.061
0.D16
0.006
O.OlO
O.OOl
0.175
MMT3014 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
Symbol
Min
Max
Unit
BVeEO
20
-
Vde
BVeBO
40
-
Vde
BVEBO
5.0
-
Vde
leBO
-
100
nAde
50
200
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
lie: 10 mAde, IB: 01
Collector-Base Breakdown Voltage
IIC: 100 ",Ade, IE : 01
Emitter-Base Breakdown Voltage
liE: 100 ",Ade, IC: 01
Collector Cutoff Current
(VCB: 20 Vde, IE: 01
ON CHARACTERISTICS
-
hFE
DC Current Gain (11
II C : 30 mAde, VeE: 0.4 Vdel
25
-
VCE(sati
-
0.22
Vde
VBE(satl
0.70
0.9
Vde
Current-Gain-Bandwidth Product (11
lie: 30 mAde, VCE : 10 Vde, f: 100 MHzl
tr
350
-
MHz
I nput Capacitance
(V BE : 0.5 Vde, Ie : 0, f: 1.0 MHzl
eib
-
8.0
pF
Output Capacitance
Cob
-
5.0
pF
Turn-On Time
(V CC : 2.0 Vde, I C : 30 mAde, I B 1 : 3.0 mAdel
ton
-
16
ns
Turn-Off Time
(VCC: 2.0 Vde, Ie = 30 mAde, IB1 : 3.0 mAde,
I B2 = 3.0 mAde I
toff
-
25
ns
TS
-
18
ns
IIc: 100 mAde, VeE: 1.0 Vdel
Collector-Emitter Saturation Voltage
IIC: 30 mAde, IB: 3.0 mAde I
Base-Emitter Saturation Voltage
II C : 30 mAde, I B : 3.0 mAdel
SMALL-5IGNAL CHARACTERISTICS
(VCB: 5.0 Vde, IE: 0, f: 1.0 MHzl
SWITCHING CHARACTERISTICS
Charge Storage Time
IIC: IB1 = IB2= 10mAdei
111
Pulse Test: Pulse Width'" 300 J,ls, Duty Cycle'5 2.0%.
FIGURE 2 - CHARGE STORAGE TIME
CONSTANT TEST CIRCUIT
FIGURE 1 - TURN-ON AND TURN-OFF
TIME TEST CIRCUIT
"A"
Vee
V,"
i'k Vout
OlpF
.-.,.
500
Dl.llF 10k
+60V
~
R2
R1
890
~
91
500
Pulse Gel'ler~tor
Vln Rise Tune " 1 0"
Source Impedance = ~O~!
R4
I
56
OOD23.uF
OOOl3/.1F
I
'.1/-
"\,'
10pF
10IIF
To O~cliloscope
Input Impedance
''i'lOV
Rise Time = IOns
Vm Au:e Time less than 1 Gns, PIN = 30G ns, Duty Cycle = 2 0',
INPUT PULSE
SWITCHING TEST CIRCUIT VALUES
Test
Vin
I
VBB
I
Vec
R1
I
R2
ton
7.0
-13
I
I
GND
7.0
I
R3
R4
tr
OHMS
VOLTS
toff
I
I
I
2.0
2.0
100
1 1 I
62
100
735
2.0k
<1.0
I
I
I
tf
Pulse Width
ns
-
I
>200
50!1
MMT3546 (SILICON)
PNP SILICON ANNULAR TRANSISTOR
MICRO-MINIATURE
PNPSILICON
SWITCHING TRANSISTOR
· .. designed for high-speed, low-level switchi.ng applications, where
high-density packaging is required.
• Space Saving Micro-Miniature Package
• Ideal for Thick Film Digital Circuit Applications
• Total Switching Time = 60 ns @ IC = 50 mAdc
• One-Piece, Injection-Molded Unibloc Package for High Reliability
I~I
1
B
~=~
MAXIMUM RATINGS
Rating
Value
Unit
VCEO
12
Vdc
Collector-Base Voltage
VCB
15
Vdc
Emitter-Base Voltage
VEB
4.5
Vdc
Collector Current - Continuous
IC
250
mAde
Total Power Dissipation @TA = 25°C
Derate above 25° C
PD
225
2.05
mW
mW/"C
TJ,T stg
-55 to +135
°c
Symbol
K
K
Collector-Emitter Voltage
Operating and Storage Junction
Temperature Range
I
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DIM
THERMAL CHARACTERISTICS
I
Characteristic
IThermal Resistance, Junction to Ambient
A
Symbol
R8JA
Max
Unit
490
·C/W
I
I
8
&
0
F
H
J
K
M
736
MILLIMETERS
MIN
MAX
1.98
0.38
1.24
0.25
0.10
0.51
0.03
4.19
3D
INCHES
MIN
MAX
2.34
0.Q15
0.64 0.D78.
1.55 0.049
0.41
0.010
0.15 0.004 0.006
0.76 0.020 0.030
0.08 0.001 0.003
4.45 0.165 0.175
7D
7D
3D
CASE 28·01
MMT3546 (continued)
ELECTRICAL CHARACTERISTICS
(TA
=25'C unless otherwise noted)
Characteristic
Symbol
Min
Max
12
-
15
-
4.5
-
-
100
-
100
30
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage III
(IC = 10 mAde, IB = 0)
BV CEO
Collector-Base Breakdown Voltage
(IC = 10 ).IAdc, IE = 0)
BV CBO
Emitter-Base Breakdown Voltage
(IE = 10 ).lAde, IC = 0)
BV EBO
Collector Cutoff Current
(V CB = 10 Vde, IE = 0)
I CBO
Emitter Cutoff Current
(VEB = 3.0 Vdc, IC = 0)
lEBO
Vde
Vde
Vde
nAde
nAde
ON CHARACTERISTICS III
DC Current Gain
(IC = 10 mAdc, VCE = 1. 0 Vde)
hFE
(Ie = 100 mAde, VCE = 1. a Vde)
15
Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAdc)
VCE{sat)
VBE{sat)
Vde
-
0.15
0.7
0.9
-
1.6
700
-
-
6.0
-
8.0
(IC = 100 mAde, IB = 10 mAdc)
Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)
-
0.5
Vde
(IC = 100 mAde, IB = 10 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 10 mAde, VCE = 10 Vdc, f = 100 MHz)
MHz
fT
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1. 0 MHz)
Cob
Input Capacitance
(VBE = O. 5 Vde, IC = 0, f = 1. 0 MHz)
Cib
pF
pF
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
(V CC = 3.0 Vde, VBE = 2. a Vde,
td
-
10
ns
IC = 50 mAde, IB1 = 5.0 ·mAde)
t
r
-
15
ns
s
-
20
ns
tf
-
15
ns
Storage Ti me
t
(V CC = 3.0 Vde, IC = 50 mAde,
Fall Time
IBI =IB2 = 5.0 mAde)
III Pulse Test: Pulse Width = 300 ).IS, Duty Cycle < 2.0%.
FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT
FIGURE 2 - STORAGE AND FALL TIME
EQUIVALENT TEST CIRCUIT
-3.0 V
-3.0 V
55
55
Vin
+ 2 . 0_
V
_ _l j v
-10.8 V
0Ft+8~
V _ _ _ Vin
2.0k
Vin o--'IIIIV-+-f
Vin
-11.3 V
lN916
'" OSCilLOSCOPE RISE TIME s 1.0 os
737
I
;t;
I
I
PULSE WIDTH -200 ns
RISE TIME $ 2.0 ns
DUTY CYCLE <10%
PU LSE WI DTH - 200 ns
RISE TIME. 2.0 ns
DUTY CYCLE < 10%
o--'Io2"'.0....
k---1H-f..
-:;l::-
CS< 20 pF
MMT3798, MMT3799 (SILICON)
MMCM3798, MMCM3799 (CERAMIC PACKAGE)
MMT3798
~"
PNP silicon annular micro-miniature transistors designed for low-level, low-noise amplifier applications.
CASE 28-01
A
MMCM~~::~
MMCM
CASE 176
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
60
Vdc
. Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEB
3.0
Vdc
Collector c'urrent - Continuous
Ie
50
mAdc
Total Power Dissipation@ T A =25°C
Derate above 25°C
PD
225
2.05
TJ,T stg
-55 to +135
mW
mW/"e
°c
Symbol
Max
Unit
490
°C/W
Collector-Emitter Voltage
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction
to Ambient
Re JA
738
MMT3798, MMT3799, MMCM3798, MMCM3799
ELECTRICAL CHARACll::l'(lSTICS
(T A
(continued)
=25"C unless otherwise noted)
Characteristic
Symbol
Collector-Emitter Breakdown Voltage (1)
BVCEO
Min
Typ
Max
Unit
OFF CHARACTERISTICS
(IC
= 10 mAde,
IB
= 0)
Collector-Base Breakdown Voltage
(IC = 10 I'Ade, IE = 0)
BVCBO
Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
I CBO
Emitter Cutoff Current
(V BE = 3.0 Vde, IC = 0)
lEBO
ON CHARACTERISTICS
DC Current Gain
(IC = 10 I'Ade, VCE
Vde
-
60
60
-
-
-
-
50
-
-
50
nAde
nAde
11)
hFE
Collector-Emitter Saturation Voltage
(IC = 1. 0 mAde, IB = 100 I'Ade)
VCE(sat)
-
-
Base-Emitter Saturation Voltage
(IC = 1.0 mAde, IB = 100 I'Ade)
VBE(sat)
-
-
0.8
40
40
120
150
--
-
2.0
4.0
-
-
8.0
-
8.0
16
-
re
-
2.0
4.0
-
hie
-
275
475
-
= 5.0 Vde)
MMT3798
MMT3799
75
150
(IC
= 100 I'Ade,
VCE
= 5.0
Vde)
MMT3798
MMT3799
150
300
(IC
= 1.0 mAde,
VCE
= 5.0 Vde)
MMT3798
MMT3799
150
300
(IC
= 10 mAde,
MMT3798
MMT3799
125
250
= 5.0 Vde)
VCE
Vde
-
-
450
900
-Vde
0.25
Vde
SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 500 I'Ade, VCE = 5.0 Vde, f
= 20
Output Capacitance
(VCB = 5.0 Vdc, ~
= 0,
f
= 100 kHz)
Input Capacitance
(VBE = O. 5 Vde, IC
= 0,
f
= 100 kHz)
Input Impedance
(IC = 1.0 mAdc, VCE
MHz)
= 10 Vdc, f = 1. 0 kHz)
Cib
MMT3798
MMT3799
= 1.0 kHz)
MMT3798
MMT3799
Small-Signal Current Gain
(IC = 1.0 mAde, VCE = 10 Vdc, f
= 1. 0 kHz)
MMT3798
MMT3799
Output Admittance
(IC = 1. 0 mAde, VCE
= 10 Vde, f = 1. 0 kHz)
MMT3798
MMT3799
Noise Fignre
(IC = 100 I'Ade, VCE
= 10 Vde,
MMT3798
MMT3799
RS
= 3.0 k ohms,
h
oe
NF
f = 100 Hz)
MMT3798
MMT3799
(IC = 100 I'Ade, VCE = 10 Vde,
MMT3798
MMT3799
= 3.0 k ohms, f = 10 kHz)
(IC = 100 I'Ade, VCE = 10 Vde,
Rg
h.
Ie
h
= 100 I'Adc, VCE = 10 Vde,
RS = 3.0 k ohms, 1= 1. 0 kHz)
RS
fT
Cob
Voltage Feedback Ratio
(IC = 1. 0 mAdc, VCE = 10 Vde, f
(IC
11)
MMT3798
MMT3799
= 3.0 k ohms, BW
= 10 Hz
to 15.7 kHz)
MMT3798
MMT3799
Pulse Test; Pulse Width" 300 1'8, Duty Cycle" 2.0%.
739
MHz
pF
pF
k ohms
X 10-4
-
-
-
18
30
-
1.5
0.8
--
1.0
0.8
-
2.5
1.5
3.5
2.5
4.0
2.5
I'mhos
dB
MMT3798, MMT3799, MMCM3798, MMCM3799 (continued)
MMT3798
MMT3799
MMCM3798
MMCM3799
KB
1
~
0 2
A
J
STYLE 1:
PIN 1. BASE
2. EMITTER
3. CO LLECTOR
K
j
STYLE 1
PIN 1
2
3
-K
~1=.
1
rr~t
BASE
EMITTER
COLLECTOR
fu
1r
~
MILliMETERS
DIM MIN
MAX
A 1.98
2.34
B 0.38
0.04
C 1.24
1.55
0 0.25
0.41
F 0.10
0.15
H 0.51
0.76
J
0.03
0.08
K 4.19
4.45
M 3°
7°
~I
, ~'Jf
K
-.--1
M
~
PLANE
fiH
DIM
A
INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
3°
7°
B
C
D
F
K
MILliMETERS
MIN
MAX
2.67
2.03
0.76
0.51
2.03
1.27
0.25
0.41
0.15
0.08
4.57
4.06
INCHES
MIN
MAX
0.080 0.105
0.020 0.030
0.050 0.080
0.010 0.016
0.003 0.006
0.160 0.180
NOTE:
A Tolerance of .25 mm (.010) must be allowed
at point leads protrude from package for glass
run over.
CASE 28·01
CASE 176
740
MMT3823 (SILICON)
MICRO·T
SILICON N·CHANNEL
JUNCTION FIELD·EFFECT TRANSISTOR
MICRO·MINIATURE
JUNCTION
FIELD·EFFECT
TRANSISTOR
Depletion Mode (Type A) Field-Effect Transistor designed for RF
amplifier and mixer applications where high density packaging is
required_
SYMMETRICAL
SILICON
N-CHANNEL
Type A
•
Low Cross-Modulation and Intermodulation Distortion
•
Drain and Source Interchangeable
•
Low 100-MHz Noise Figure - 2_0 dB (Typ)
•
Low Transfer and Input Capacitances
Crss = 1_0 pF (Typ); Ciss = 4_0 pF (Typ)
•
Space Saving Micro-Miniature Package Circuit Applications
Ideal for Thick Film
=4
1
MAXIMUM RATINGS
Symbol
Value
Unit
Orain-50urce Voltage
VOS
30
Vdc
Drain-Gate Voltage
VOG
30
Vdc
Gate-5ource Voltage
VGS
-30
Vdc
Rating
Gate Current
Total Power Dissipation @ T A
Derate above 2SoC
= 25°C
Operating and Storage Junction
IG
10
mAde
Po
225
2_05
mW
mW/oC
TJ, T stg
-55 to +135
°c
Temperature Range
r-t.:!}==B
K
I
~_1rM
-.!
~~VH
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DIM
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to
Symbol
ReJA
Max
Unit
490
°CIW
Ambient
A
8
C
0
F
H
J
It
M
MILLIMETERS
MAX
MIN
1.98
0.38
1.24
0.25
0.10
0.51
0.03
4.19
3D
2.34
0.64
1.55
0.41
0.15
0.76
0.08
4.45
7u
INCHES
MIN
MAX
0.078
0.015
0.049
0.010
0.004
0.020
0.001
0.165
3D
CASE 28-01
741
0.092
0.025
0.061
0.016
0.006
0.030
0.003
0.175
7D
MMT3823 (contintled)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise rioted)
Symbol
Min
Typ
Max
-30
-
-
-
-
-1.0
-
-
-8.0
-1.0
-
-8.0
3000
-
8000
-
4000
-
-
500
-
-
25
-
-
125
-
-
4.0
-
-
1.0
-
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
UG - -1.0 "Adc, VOS = O}
Vdc
V(BR}GSS
Gete Reverse Current
(VGS = -20 Vdc, VOS = O)
IGSS
Gate-Source Cutoff Voltage
Uo = 1.0 nAdc, VOS = 15 Vdc}
VGS(off}
Geta-Source Voltage
Uo = 0.5 mAdc, VOS = 15 Vdc}
VGS
nAdc
Vdc
Vdc
ON CHARACTERISTICS
Zaro-Geta-Voltage Drain Current Oi
(VOS = 15 Vdc, VGS = O)
DYNAMIC CHARACTERISTICS
Forward Transfer Admittance
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz) 01
IYfsl
(VOS = 15 Vdc, VGS = 0, f = 200 MHz)
I nput Conductance
Re(Yis}
(VOS = 15 Vdc, VGS = 0, f = 200 MHz)
Output Conductance
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz) 01
(VOS = 15 Vdc, VGS = 0, f = 200 MHz)
IYosl
Re(yos}
I nput Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1.0 MHz)
Ciss
Reverse Transfer CapaCitance
(VOS = 15 Vdc, VGS· 0, f-l.0 MHz)
Crss
Common-Source Spot Noise Figure
(VOS = 15 Vdc, VGS· 0, RS,= l000ohms,f= 100 MHz)
NF
111 'Pulse Test: Pulse Width = 100 mi, Duty Cycle:S: HI%.
\
"mhos'
742
"mhos
"mhos
pF
pF
-
dB
2.0
-
MMT3903, MMT3904 (SILICON)
MMCM3903, MMCM3904 (CERAMIC PACKAGE)
MICRO-T
NPN SILICON ANNULAR TRANSISTORS
· .. designed for general purpose switching and amplifier applications
and for complementary circuitry with PNP type MMT390S and
MMT3906 where high·density packaging is required.
NPN SILICON
SWITCHING AND AMPLIFIER
TRANSISTORS
• High Coliector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 1.0 mAdc
•
DC Current Gain Specified from 100 /lAdc to 10 mAdc
•
Low Output Capacitance Cob = 4.0 pF (Max) @ VCB = S.O Vdc
MMT3903
MMT3904
CASE 28-01
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
Vee
60
Vdc
Emitter-Base Voltage
VEe
6.0
Vdc
Collector-Current - Continuous
Ie
200
mAde
Total Power Dissipation
Derate above 25°C
Po
225
1.8
mW
mW/oC
-55 to +150
°c
Collector-Emitter Voltage
@
T A'" 25°C
Operating and Storage Junction
Temperature Range
TJ,Tstg
MMCM3903
MMCM3904
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Ambient
I Symbol I
Max
Unit
RaJA
556
°elW
CASE 176
743
MMT3903, MMT3904, MMCM3903, MMCM3904 (continued)
I
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Coliector·Emitter Breakdown Voltage (1)
(IC= 1.0mAde,IB= 0)
BVCEO
40
-
-
Vde
Coliector·Base Breakdown Voltage
(lc = IOI'Ade,lE = 0)
BVCBO
60
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = IOI'Ade,lc= 0)
BVEBO
6.0
-
-
Vde
ICBO
-
-
50
nAde
lEBO
-
-
50
nAde
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
Emitter-Cutoff Current
(VEB = 4.0 Vde, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain
-
hFE
(lC= 100l'Ade, VCE= 1.0Vde)
MMT3903
MMT3904
20
40
-
-
(lC = 1.0 mAde, VCE = 1.0 Vde)
MMT3903
MMT3904
35
70
-
(lC = 10mAde, VCE = 1.0 Vde)
MMT3903
MMT3904
50
100
-
Collector-Emitter Saturation Voltage
VCE(sat)
-
-
VBE(sat)
-
250
300
150
300
0.2
Vde
-
0.85
Vde
-
-
(lC = 10 mAde,lB = 1.0 mAde)
Base-Emitter Saturation Voltage
(lC=10mAde,IB= 1.0mAdc)
SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC= 10mAde, VCE= 20Vde,l= 100MHz)
MHz
IT
MMT3903
MMT3904
Output Capacitance
Cob
-
-
4.0
pF
Cib
-
-
8.0
pF
NF
-
3.0
-
dB
(VCB = 5.0 Vde, IE = 0, I = 100 kHz)
Input Capacitance
(VEB = 0.5 Vde, IC = 0, I = 100 kHz)
Noise Figure
(lC= 100l'Ade, VCE= 5.0Vde,Rs= 1.0kohms
Noise Bandwidth - f = 10Hz to 15.7 kHz)
SWITCHING TIME TEST CIRCUITS
FIGURE 1 - TURN·ON TIME
0., ".".
FIGURE 2 - TURN·OFF TIME
'~fI---j
300 n. I
+10.9 V
-2.0 V
<1.0n.
1-
10=
100
70
50
1.0
2.0
3.0
5.0 7.0
10
20
30
IC. COLLECTOR CURRENT (rnA)
FIGURE 7 - TURN-QFF TIME
500
]:
i'.
.......
150
~ 100
,.:.
70
V
200
'f
z
l/V
,.:.
'"
B
VCE = 20 V
f=100MHz
g:
I""--
~
z
~ 100
_I T~ = ~5bJ 11
::I
500
IC~~= ~~oC-
C'....
....... .......
.......
30
20
10
7.0
5.0
2.0
]
w
.......
.......
'>="
'r@VCC-3.0Y F-
........ i.......
oJ
~t~ ~
....... ~
........
5.0 7.0
10
20
30
50
70
100
....... ......., I'-.
100
70
50
le/lB=~
30
10
7.0
5.0
2.0
200
IC. COLLECTOR CURRENT (mAl
745
II Ic/le I-10
20
'f@lclle=?;j'>
20
~.O~r-.
VBE(Offl->'"
3.0
,', ,,·1/8'fVCC=3.0V IS1=IS2 _
TJ=250 C _
300
200
............
i'r-.
:--.
-I--
3.0
20
30
50
5.0 7.0 10
IC. COLLECTOR CURRENT (rnA)
70
100
2UO
MMT3903,MMT3904,MMCM3903,MMCM39Q4 (continued)
FIGURE 8 - DC CURRENT GAIN
FIGURE 9 - ''ON'' VOLTAGE
500
1. 0
300
z
~ 100
0-
a'l
~
'"'"c
~
J
Tr 11250
-
200
I::O-'F'
70
50
-I'.
--
V8E(Oo)@VCIE -
~.
7.0
5.0
0.2
0.5
1.0
2.0
5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)
100
1.0
>
0:
lOrnA
50 rnA
~
~....
8
~
>
5.0
10
20
E
~+1.0
~
100 rnA
lllill
JJlill
o.2
~
'evc for VCE(sa!)
0
-550C10 25b C---
"'
2~~
1
.
~ -1. 0
1\
"
O
0.01 0.02
.
8VB for V8E
~
..l.l...Ll
~
I- l-:tsl;JiJ !~OC..c-
~ -2. 0
I"'
t0.05 0.1
0.2
0.5 1.0 2.0
5.0. 10
18. BASE CURRENT (rnA)
20
MMT3903
MMT3904
II II
-3. 0
50 100
0.2
0.5
1.0
2.0
5.0
10
20
IC. COLLECTOR CURRENT (rnA)
fllllH
IIIIIII100
50
MMCM3903
MMCM3904
_.~B
A
2
3
~I
~2 ._:U
1
K
A
~
A
B
C
0
F
H
J
K
M
MILLIMETERS
MIN MAX
1.98
2.34
0.38
0.64
1.24
1.55
0.41
0.25
0.10
0.15
0.51
0.76
0.03
0.08
4.19
4.45
30
70
'J
0
I
F
C
f£:-~~
t1
DIM
__
1i
LBt ~K -.i
~
IT
1
K
STYLE l'
PIN 1. BASE
2. EMITTER
3. COLLECTOR
200
8
~
l'
100
JllWi
0:
o.4
150
1 111111
'APPLIES FOR Ic/IB" hFEn.o
~
~
iii
2.0
+2. 0
U
Ic=I.0mA
1.0
FIGURE 11 - TEMPERATURE COEFFICIENTS
13"
TJ = 25 0C
O.6
0.5
IC. COLLECTOR CURRENT (rnA)
"' O. 8
'"
~c
VCE(sal)@ ICIlB = 10
0
0.2
200
J111
~~
/
o.2
FIGURE 10 - COLLECTOR SATURATION REGION
_
\.o'v
4
--VCE=1.0V ~
---VCE=5.0V
10
~
6
~~
20
~
J.IlIT
o.8
- -
-550C
-
-
3D
~
250C
JJJ(~!)@lcJIBM
TJ=250C
STYLE 1:
PIN 1. BASE
2. EMITTER
3.COLLECTOR
SEATING
PLANE
DIM
A
8
C
D
H
INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
30
70
F
MILLIMETERS
MIN
MAX
2.67 .
2.03
0.51
0.76
1.27
2.03
0.25
0.41
0.08
0.15
4.06
4.57
INCHES
MIN
MAX
0.080 0.105
0.020 0.030
0.050 0.080
0.010 0.016
0.003 0.006
0.160 0.180
K
NOTE:
A Tolerance of .25 mm (.010) must be allowed
at point leads protrude from package for glass
run over.
CASE 176
CASE 28·01
746
200
MMT390S ,MMT3906 (SILICON)
MMCM3905, MMCM3906 (CERAMIC PACKAGE)
MICRO-T
PNPSILICON
SWITCHING AND AMPLIFIER
TRANSISTORS
PNP SILICON ANNULAR TRANSISTORS
· .. designed for general purpose switching and amplifier applications
and for complementary circuitry with NPN types MMT3903 and
MMT3904 where high·density packaging is required.
MMT3905
MMT3906
• Space Saving Micro·Miniature Package
• Coliector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 1.0 mAdc
• DC Current Gain Specified from 100 /.LAdc to 10 mAdc
•
Low Output Capacitance Cob= 4.5 pF (Max)@VCB= 5.0 Vdc
CASE 28-01
MAXIMUM RATINGS
Ratin~
Collector-Emitter Voltage
Symbol
Value
Unit
VCEO
40
Vdc
Vdc
Collector-Base Voltage
VCS
40
Emitter-Sase Voltage
VES
5.0
Vdc
Collector Current - Continuous
IC
200
mAde
Total Power Dissipation @ T A = 25°C
Derate above 2SoC
Po
225
1.8
mW
mWf'C
TJ.Tstg
-5510 +150
°c
Operating and Storage Junction
MMCM3905
MMCM3906
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
I
Symbol
ROJA
I
Max
556
747
I
Unit
°C/W
CASE 176
MMT3905, MMT3906, MMCM3905, MMCM3906 (continued)
ELECTRICAL CHARACTERISTICS (TA: 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lC: 1.0mAdc, IB: 0)
BVCEO
40
-
-
Vdc
Coliector~Base
BVCBO
40
-
-
Vdc
BV EBO
5.0
-
-
Vdc
Collector Cutoff Current
(VCB: 30 Vdc, IE: 0)
ICBO
-
-
50
nAdc
Emitter Cutoff Current
(VBE(ofl) : 4.0 Vdc, IC: 0)
lEBO
-
-
50
nAdc
30
60
40
80
50
100
-
Characteristic
OFF CHARACTERISTICS
Breakdown Voltage
(lC: 10!lAdc, IE: 0)
Emitter-Base Breakdown Voltage
(IE· 10 !lAde, IC: 0)
ON CHARACTERISTICS (1)
DC Current Gain
(lC = 100 !lAde, VCE : 1.0 Vdc)
-
hFE
MMT3905
MMT3906
MMT3905
MMT3906
MM,T3905
MMT3906
-
Collector·Emltter Saturation Voltage
(lC = 10 mAde, IB: 1.0 mAde)
VCE(,at)
-
-
Base-Emitter Saturation Voltage
(lC· 10 mAde, IB = 1.0 mAde)
VBE(sat)
-
-
0.85
200
250
-
-
Cob
-
-
4.5
pF
Cib
-
-
10
pF
NF
-
1.0
-
dB
(lC· 1.0mAdc,VCE= 1.0Vdc)
(lC = 10 mAde, V CE = 1.0 Vdc)
150
300
0.25
Vdc
Vdc
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 20 Vde, 1·100 MHz)
MHz
IT
MMT3905
MMT3906
Output Capacitance
-
(VCB = 5.0 Vde, IE • 0, I = 100 kHz)
I nput Capacitance
(VEB = 0.5 Vde, IC = 0, f = 100 kHz)
Noise Figure
(lc = 100 !lAde, VCE = 5.0 Vde, RS = 1.0 k ohms,
Noise Bandwidth - f • 10Hz to 15.7 kHz)
(1) Pulse Test: Pulse Width = 300 !lS, Duty Cycle = 2.0%.
748
MMT3905, MMT3906, MMCM3905, MMCM3906
(continued) ,
FIGURE 2 - CAPACITANCE
FIGURE 1 - CURRENT-GAIN-BANDWIDTH PRODUCT
~
~
t;
:::>
c
c
70 0
f - TJ - 250 C
20 V
50Of- VCE"
f-l00MHz
f
~ 300
~
:If
~
L-"'"
~
,.:.
10 0
TJ - 25'C
7.0
.......
~
0
clb
0
200
'l'
~
-
.- .....
./
0
V
~
0
I\.C,b
........
'":::>
.., 70
.t:
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7.0
10
20
1. 0
0.04
30
0.1
0.2
300
;::
30
......
~~
20
IcliB -10
TJ-25'C
1,@VCC-40V
r-...
:I!
-'
1'-.....1-
20
40
500
500
!
10
4.0
FIGURE 4 - TURN-OFF TIME
FIGURE 3 - TURN-ON TIME
100
70
50
2.0
YR. REVERSE VOLTAGE (VOLTS)
IC. COLLECTOR CURRENT (mA)
200
1.0
0.4
r--
..... 1::::,
;::
........ .........
~T'rC[TI
i'-...
10
7. 0
5.0 7.0
10
Id@VBE(,ff) - 0
50
20
30
IC. COLLECTOR CURRENT
30
2.0 V
T7"'
-10.9 V
70
100
2.0
200
3.0
5.0 7.0
f--
10
20
30
50
70
100
IC. COLLECTOR CURRENT (mA)
(mA)
FIGURE 6 - TURN-OFF SWITCHING CIRCUIT
+0'
I
-..I
~
r-..
0
-3.0 V
o
ICliB-IO
7. 0
5.0
FIGURE 5 - TURN-ON SWITCHING CIRCUIT
+0.5 V
........
0
......
(s- Is -1IBlf
VCC-40V
IB1- IB2
IC/IB - 20
If@IC/IB- 10
:I!
.......
r-.
3.0
~IB-201-e-
~
100
0
.".
.5
0
w
I.......
5.0
2.0
300 ...........
20 0
JO'"'
-40 V
3.9 k
10 k
>--AA~>+---I
'Ok
-.I
\.-300 ns
I..
Duty Cycle == 2.0%
10<'1<5001"
Duty Cycle"" 2.0%
749
-10.9 V lN91S
200
MMT3905, MMT3906, MMCM3905, MMCM3906(c'ontimied)
FIGURE 7 - DC CURRENT GAIN
500
TJ"1250C
300
200
z
I::-r-
'"......
......
-=:-::
l-
""'I"
100 ~
70
w
a: 50
a:
<
-
I'~ 1-1-
25°C
FIGURE 8 - "ON" VOLTAGES
1.0
~ O•6~E(on)@VCE·1.0Y
w
-550C
'"
~
'"
-~
30
!\
20
>
,;
- - - VCP 1.0 V \
- - - VCE=5,OV
.ll'
10
7.0
5,0
0.2
VBE(.. ,) @1~118 = 10
~
::>
'"ul
.....
11 Jill
o.8
~~
0,4
/
VCE( .. ,)@ IC IB = 10
0,4
2,0
1.0
4.0
10
20
100
40
0
0.2
200
I I
2.0
1.0
0.4
g 1.0
..
TJ=250C
Q
...
oS +1.0
o. 8
iii
Ic·1.0mA
lOrnA
:SOmA
u
100 rnA
20
'APPLIES FOR IC/18 "hFE/2,O
111111
125°C '0 1250C
tttttr
)-5~0~~~
III~
w
a:
o.4
~
8 o.2
~
\
ul
::
~
\
r--
-1.0
!... -2.0
~
~
§; 0
0.0050,01 0.02
0,05 0,1 0.2
0,5 1.0 2.0
lB. BASE CURRENT (rnA)
5.0
10
20
-3,0
0.2
50
25°C '0 110C
I-- ~
BY8 FOR VSE
IIIIII
II 1111
111111
0.5
1.0
2.0
MMCM3905
MMCM3906
-·K B
STYLE 1:
PIN 1. BASE
2. EMITIER
3. COLLECTOR
K
!
STYLE 1:
PIN 1. BASE
2, EMITTER
3, COLLECTOR
0
F
H
J
K
M
so
L1:~l1
C
DIM
I
A
20
f--K
IT
fr-~~
~H
B
C
10
· rJ¥
2
3
DIM
5,0
~,I
1
K
MILLIMETERS
MIN MAX
2,34
1.98
0,38
0.64
1,24
1,55
0,41
0.25
0,15
0.10
0,51
0.76
0,03
0.08
4.19
4.45
7"
3°
-550C '0 250C
I 11111
j
IC. COLLECTOR CURRENT (rnA)
MMT3905
MMT3906
A
100
IIIIII
II 1111
II 1111
8
'"
40
'evc FO R VCE(.at)
~
~
~
10
FIGURE 10 - TEMPERATURE COEFFICIENTS
+2.0
~
~
'"~ o.6
4.0
IC. COLLECTOR CURRENT (mA)
FIGURE 9 - COLLECTOR SATURATION REGION
~
I
/
O.2
IC. COLLECTOR CURRENT (rnA)
a'"
./
TJ=25OCIIII
A
B
C
0
F
INCHES
MIN
MAX
0.078 0,092
0,015 0.025
0,049 O,OBI
0,010 0.016
0,004 0.006
0,020 0,030
0,001 0.003
0,165 0.175
3"
7°
SEATING
PLANE
MILLIMETERS
MIN
MAX
2,03
2.67
0.51
0.76
1.27
2.03
0,25
0,41
0,08
0.15
4,06
4.57
INCHES
MIN
MAX
0,080 0.105
0,020 0.030
0.050 0.080
0.010 0,016
0.003 0,006
0,160 0,180
K
NOTE:
A Tolerance of .25 mm (.010) must be allowed
at point leads protrude from package for glass
run over.
CASE 176
CASE 28·01
750
100
200
MMT3960 (SILICON)
NPN SILICON ANNULAR
MICRO-T'''
TRANSISTOR
NPN SILICON
HIGH-SPEED SWITCHING
TRANSISTOR
· .. designed for high-speed current-mode logic switching applications.
•
High Current-Gain-Bandwidth Product fT = 2250 MHz (Typ) @ IC = 10 mAde
•
Low I nput and Output Capacitance Cob = 1.3 pF (Typl @ VCB = 4.0 Vdc
Cib = 1.2 pF (Typ) @VBE = 0.5 Vdc
•
Excellent Current-Mode Performance tr = 0.65 ns (Typ)
•
Low Collector-Base Time Constant rb'C c = 15 ps (Typ) @ IC = 30 mAde
•
One-Piece, Injection-Molded Unibloc Package for High Reliability
1
K
~
MAXIMUM RATINGS
Symbol
Rating
Collector-Emitter Voltage
Value
3.0
5.0
3.0
225
2.05
-55 to +135
VCEO
Collector-Base Voltage
VCB
Emitter-Base Voltage
VEB
Po
Total Device Dissipation@TA "" 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
Unit
TJ,Tstg
STYLE 1
PIN 1
Vdc
2
3.
Vdc
Vdc
mW
mW/oC
°c
INCHES
MIN MAX
O.07B 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
70
3
MILLIMETERS
DIM MIN MAX
A 1.98
2.34
8 0.38
0.64
C 1.24
1.55
0 0.25
0.41
F 0.10
0.15
H 0.51
0.76
J
0.03 0_08
K 4.19
4.45
M
30
70
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
CASE 28
FIGURE 1 - TWO INPUT ORINOR Eel GATE
Vee· GNO
RISE AND FALL TIMES
PROPAGATION DELAY
OUTPUT
M
INPUT
.";:\~ ~~
tP:-~:Pd+
U
INPUT
22
22
120
330
"NOR"
__
A INPUTS B
VEE. -5.2
All Transistors are MMT3960 Types
tpd+
751
tr
r_o:J:~T
10%
tf
INPUT PULSE
"\
I
O%
50%
L __
tpd-
,-1.6V
L-J____
tr 8Rdtf<1.0ns
-O.BV
MMT3960 (continued)
ELECTRICAL CHARACTERISTICS (T A = 250C unless otherwise noted)
I
I
Symbol
Min
Typ
Max
Unit
BVCEO(1l
3.0
-
-
Vde
Colleetor·Base Breakdown Voltage
(lC = 10 jlAde, IE = 01
BVCBO
5.0
Emitter-Base Breakdown Voltage
BVESO
3.0
-
-
Vde
ICED
-
-
10
jlAde
Collector Cutoff Current
(VCB = 3.0 Vde, IE = 0)
ICBO
-
-
100
nAde
Emitter Cutoff Current
(VEB = 1.5 Vde, IC = 0)
lEBO
-
-
100
nAde
100
-
200
>
Characteristic
OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltagel11
(lC = 10 mAde, IB = 0)
Vde
(IE = 10 jlAde, IC = 0)
Collector Cutoff Current
(VCE = 2.0 Vde, IB = 0)
ON CHARACTERISTICS
DC Current Gain(l)
(IC = 10 mAde, VCE = 1.0 Vde)
hFE
80
(I C = 30 mAde, V CE = 1.0 Vde)
Collector-Emitter Saturation Voltage(1)
(lc = 10 mAde, IB = 1.0 mAde
VCE(sa!)
-
Base-Emitter Saturation Voltagel1)
(lC = 10 mAde, IS = 1.0 mAde)
VBE(sat)
0.7
0.2
Vde
0.85
Vde
DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product
MHz
fT
(lC = 5.0 mAde, VCE= 2.0 Vde, f = 100 MHz)
-
(lC = 10 mAde, VCE = 2.0 Vde, f = 100 MHz)
(lC = 30 mAde, VCE = 2.0 Vde, f = 100 MHz)
1600
2000
-
2250
2600
-
Output Capacitance
(VCB = 4.0 Vde, IE = 0, f = 140 kHz)
Cob
-
1.3
2.0
pF
I "put Capacitance
Cib
-
1.2
3.0
pF
rb Ce
-
15
-
ps
td(on)
-
0.95
-
ns
tr
0.65
-
ns
td(off)
-
1.05
-
ns
tf
-
0.75
-
ns
(VBE = 0.5 Vde, IC = 0, f = 140 kHz)
Collector-Base Time Constant
(IE = 30 mAde, VCB = 2.0 Vde, f = 100 MHz)
SWITCHING CHARACTERISTICS (Figure 1)
Turn-On Delay Time
Rise Time
Turn·Off Delay Time
Fall Time
(1)Pulse Test: Pulse Widths; 300 JJs, Duty Cycle S 2.0%.
752
MMT3960A (SILICON)
MMCM3960A (CERAMIC PACKAGE)
NPN SILICON ANNULAR TRANSISTOR
MICRO-MINIATURE
· .. designed for high-speed current-mode logic switching applications.
NPN SILICON
HIGH-SPEED SWITCHING
TRANSISTOR
• High Current-Gain-Bandwidth Product fT = 2250 MHz (Typ) @ IC = 10 mAdc
MMT3960A
• Low Input and Output CapacitanceCob = 1.3 pF (Typ) @ VCB = 4.0 Vdc
Cib = 1.2 pF (Typ) @ VBE = 0.5 Vdc
• Excellent Current-Mode Performance tr = 0.75 ns (Typ)
~
• Low Collector-Base Time Constant rb'Cc = 15 ps (Typ) @ IC = 30 mAdc
• One-Piece, Injection-Molded Unibloc Package for High
Reliability
CASE 28-01
MAXIMUM RATINGS
Symbol
Value
Unit
vCEO
B.O
Vdc
Collector-Base Voltage
VCB
15
Vdc
Emitter-Base Voltage
VEB
3.0
Vdc
PD
225
2.05
mW
mW/oC
T J , T stg
-55 to +135
°c
Rating
Collector-Emitter Voltage
Total Power Dissipation @TA = 25° C
Derate above 25° C
Operating and Storage Junction
Temperature Range
MMCM3960A
X
CASE 176
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
FIGURE 1 - TWO INPUT OR/NOR ECl GATE
PROPAGATION DELAY
U' ,
Vee = GND
RISE ANO FALL TIMES
OUTPUT INPUT
"OR"
tpd- OR
OUTPUT
22
I~PUT~
}Ff
90%
50%
tpd+
10%
tr
\
330
22
,
-I
120
-tf
INPUT PULSE
r---
'---1____
tr and tf<1.0 ns
VEe"'" -5.2
All Transistors are MMT3960A Types
753
-1.6 V
-0.8 V
MMT3960A, MMCM3960A (continued)
ELECTRICAL CHARACTERISTICS
(TA
=2SoC unless otherwise noted)
Symbol
Characteristic
Min
Typ
Max
8.0
-
-
15
-
-
3.0
-
-
-
-
50
-
-
50
30
-
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (II
(IC = 10 mAdc, IB = 0)
BV CEO
Collector-Base Breakdown Voltage
(IC = 10 /LAdc, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(~ = 10 /LAdc, IC = 0)
BVEBO
Collector Cutoff Current
(V CB = 10 Vdc, ~ = 0)
ICBO
Emitter Cutoff Current
(VEB = 1.5 Vdc, IC = 0)
~BO
ON CHARACTERISTICS
Vdc
Vdc
Vdc
nAdc
nAdc
(11
~E
DC Current Gain
(IC = 1. 0 mAdc, VCE = 1. 0 Vdc)
(IC = 10 mAdc, VCE = 1.0 Vdc)
-
200
30
-
-
-
-
0.2
0.75
-
0.9
-
2000
-
2250
-
1600
2500
-
-
1.3
2.0
-
1.2
3.0
-
15
-
-
1.0
-
30
(IC = 30 mAdc, VCE = 1.0 Vdc)
Collector-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1. 0 mAdc)
VCE(sat)
Base-Emitter Saturation Voltage
(IC =·10 mAdc, IB = O. 5 mAdc)
VBE(sat)
-
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(IC = 5.0 mAdc, VCE = 4. 0 Vdc, f = 100 MHz)
(IC = 10 mAdc, VCE = 5.0 Vdc, f = 100 MHz)
fT
(IC = 30 mAdc, VCE = 2. 0 Vdc, f = 100 MHz)
Output Capacitance
(VCB =4.0Vdc, ~ =0, f = 140kHz)
Cob
Input Capacitance
(V BE = O. 5 Vdc, IC = 0, f = 140 kHz)
Cib
r b 'c c
Collector-Base Time Constant
(~ = 30 mAdc, VCB = 2.0 Vdc, f = 100 MHz)
MHz
pF
pF
SWITCHING CHARACTERISTICS
Turn-On Delay Time
(Figure 1)
ton(delay)
Rise Time
(Figure 1)
tr
Turn-Off Delay Time
(Figure 1)
Fail Time
(Figure 1)
toff(delay)
tf
(1IPulse Test: Pulse Width" 300 /LS, Duty Cycie" 2. 0%.
754
-
0.75
1.1
0.85
-
ps
ns
ns
ns
ns
MMT80 15 (SILICON)
NPN SILICON MICRO-T
RF SMALL-SIGNAL
TRANSISTOR
NPN SILICON RF SMALL-SIGNAL TRANSISTOR
· . . designed for low·noise, highilain, small·signal microwave
amplifiers. Ideal for microstrip circuits where high density packaging
is requ ired.
•
Unneutralized Power Gain GpE = 12 dB (Typ) @f= 1.0 GHz
•
Low Noise FigureNF = 3.5 dB (Typ) @f= 1.0 GHz
•
Characterized with Scattering Parameters
1
~'l==B=4=$
!-
K
I
MAXIMUM RATINGS
Rating
Svmbol
Value
VCEO
10
Vde
Coliector·Bose Voltage
VCB
15
Vde
Emitter-Base Voltage
Collector-Emitter Voltage
Unit
VEB
3.0
Vde
Collector Current - Continuous
IC
15
mAde
T otol Power 0 issipotion @ T A = 25°C
Derate above 250C
Po
200
2.05
mW
mW/OC
TJ,T stg
-55 to +135
°c
Operating and Storage Junction
Temperature Range
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
MILLIMETERS
MIN
MAX
1.98
2.34
0.38
0.64
1.24
1.55
o 0.25 0.41
F 0.10
0.15
H 0.51
0.76
J
0.03
0.08
K 4.19
4.45
DIM
A
B
.C
M
30
7"
INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
3"
70
CASE 28·01
756
MMT8015 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Svmbol
Min
TVp
Max
Unit
Collector-Emitter Breakdown Voltage
(lc = 1.0 mAde, IB = 01
BVCEO
10
-
-
Vde
Colleetor-Bese Breakdown Voltage
(lC = 0.01 mAde, IE = 01
BVCBO
15
-
-
Vde
Emitter-Base Breakdown Voltage
(I E = 0.01 mAde, IC = 0)
BVEBO
3_0
-
-
Vde
ICBO
-
1.0
10
nAde
hFE
25
-
300
-
Collector-Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAdel
VCE(sa!)
-
0.35
-
Vde
Base-Emitter Saturation Voltage
VBE(sa!)
-
1.0
-
Vde
iT
1000
2000
-
MHz
Ceb
-
0.50
1.0
pF
rb'C e
-
4.0
-
ps
NF
-
3.2
4.0
dB
Common-Emitter Amplifier Power Gain (1) (Figure 1)
(VCE~6.0Vde,lc= 1.0 mAde, I = 1.0GHz)
Gpo
6.0
7.5
-
dB
Common-Emitter Amplilier Power Gein (2) (Figure 1)
(VCE = 6.0 Vde, IC = 6.0 mAde, I = 1.0 GHz)
Gpe
10
13
-
dB
OFF CHARACTERISTICS
Collector Cutoff CurrAn.
(VCB = 6.0 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 1.0 mAde, VCE = 6.0 Vde)
(lc = 10 mAde,lB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 6.0 mAde, VCE = 6.0 Vde, f = 250 MHzl
Collector-Base Capacitance
(VCB = 6.0 Vde, IE = 0, f = 100 kHz)
Colleetor-Bese Time Constant
(IE = 6.0 mAde, VCB = 6.0 Vdc, f = 31.8 MHz)
Noise Figure (l)(Figure 1)
(lC = 1.0 mAde, VCE = 6.0 Vde, RS
= 50 ohms, f =
1.0 GHz)
FUNCTIONAL TEST
(1) Biased For Minimum Noise
(2) Blated For Optimum Gain
FIGURE 1 - POWER GAIN AND NOISE FIGURE TEST CIRCUIT
757
MMT8015 (continued)
FIGURE 2 - COLLECTOR-BASE CAPACITANCE
versus VOLTAGE
FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT
1.0
x
~ 1.8
t;
".s
z~
;;
i5
o. 81\.
u
" """- r-
if
~ 0.6
w
~
ci: 0.4
~
j
----
fx
b
i
~
I'-..
-:--- r--
::;
j
:::>
'-'
2.0
4.0
6.0
8.0
10
12
14
16
VcE" 6.0 Vde
1.6
1.4
1.2
1. 0
...-
--
18
.i-
20
O. 2
0
1.0
2.0
VCB' COLLECTOR·BASE VOUAGE (VOLTS)
30
f-- VCE =6.10 Vde
=1.0 mAde
25
00
--..,
............. ~
:s
z
4.0
;;:
r---..
r"'--
20
r<.....
"-
to
u:
'"
w
3:
~
W
~ 3. 0
z
-
"-
z
2.0
1.0
0.1
0.2
........
'"
1,..;'"
:l!
to
15
0.1
0.3
0.2
(CIRCUIT A~JUSTED.)
4.0
\
3.0
/
to
~
)(
/'
FOR
__
MjIMUM~ GA)N
----
V
...-
~OISE FIGURE
............... I
~CIRCUIT ADJUSTED FOR
MINIMUM NOISE
1
12~
'!'
1 c:
z
z
1o ~
9.0
....
'f!
:a
8.0
~
7.0
~
'"
..:
z
6.0 :a
5.0
2. 0
~
z
~
4.0
1.00
0.4
0.5
f, FREo.UENCY (GHz)
f= 1.0GHz
5. 0 VCe-6.O Vde
az
"
""-
"-
1.0
2.0
3.0
4.0
IC' COLLECTOR CURRENT (mAde)
758
'"'"
I'-
FIGURE 6 - NOISE FIGURE AND GAIN versus CURRENT
. (See Test Circuit Figure 1)
u:
:>-
I
f, FREo.UENCY (GHz)
~
w
g;
........ r-,..
I--,BIASEO FOR MINIMUM NOISE./'
VCE" 6.0 Vde'
.
10 ric = 1.0 mAde
1.0
6. 0
20
I'..
5
0.5
0.3
10
BIASED FOR O'PTIMUM GAIN
VCE = 6.0 Vde
IC = 6.0 mAde
/
t'-.....
00
:s
w
a:
:::>
to
7.0
FIGURE 5 - UNNEUTRALIZED POWER GAIN
versus FREQUENCY
6.0
f--IC
5.0
3.0
IC' COLLECTOR CURRENT (mAde)
FIGURE 4 - NOISE FIGURE versus FREQUENCY
5.0
......
r-
: o.8
~ o. 6
~ o. 4
8 o. 2
o
o
2.0
5.0
3.0
6.0
~
0.7
1.0
1.5
MMT8015 (continued)
511,522, INPUT AND OUTPUT REFLECTION
COEFFICIENTS
VCE
~
6.0 Vde,I C = 1.0 mAde
FIGURE 7
FIGURES
VCE = 6.0 Vde, IC = 6.0 mAde
FIGURE 9
FIGURE 10
759
MMT8015 (continued)
S12, REVERSE TRANSMISSION COEFFICIENT
S21. FORWARD TRANSMISSION COEFFICIENT
Vee = 6.0 Vde, Ie = 1.0 mAde, ZG = ZL = 50 Ohms
FIGURE 11
FIGURE 12
veE = 6.0 Vde, Ie = 6.0 mAde, ZG = ZL = 50 Ohms
FIGURE 13
FIGURE 14
760
MOC2000
Advance InforIDation
HERMETIC
OPTOELECTRONIC COUPLER
PHOTOTRANSISTOR/IR LED
COUPLED PAIR
NPN PHOTOTRANSISTOR AND
PN INFRARED EMITTING DIODE
· .. Gallium Arsenide LED opticallv coupled to a Silicon Photo Transistor designed for applications requiring electrical isolation, highcurrent transfer ratios, small package size and low cost; such as
interfacing and coupling systems, phase and feedback controls, solidstate relavs and general-purpose switching circuits.
•
High Voltage Electrical Isolation - 1500 V Min
•
•
•
Hermetically Sealed Package
Fast Switching - 2.811S (Tvp)
Excellent Coupling Characteristic
ICL = 0.5 mA (min) @ IF = 15 mA
ICL = 1.6 mA (Min) @ IF = 35 mA
3~4~
BE
MAXIMUM RATINGS (TA = 25°C unless otherwise noted.1
I
Rating
Symbol
I
Value
Unit
PIN 1. ANOOE
2. CATHOOE
3. COLLECTOR
Volts
4. EMITTER
INFRARED EMITTING DIODE MAXIMUM RATINGS
3.0
Reverse Voltage
VR
Forward Current·Continuous
IF
80
mA
Forward Current-Peak
(1.01" Pulse, 300 ppsl
IF
3.0
Amp
I
~=d
1
K
--r
t
F
~~
-11--0
PHOTOTRANSISTOR MAXIMUM RATINGS
Collector-Emitter Voltage
VCEO
30
Volts
Emitter-Collector Voltage
VECO
7.0
Volts
Collector-Base Voltage
VC80
70
Volts
Po
150
1.5
mW
mWf'C
Junction Temperature Range
TJ
-55 to +125
°c
Storage Temperature Range
T stg
-55 to +150
°c
10
,ec
NOTE:
POLARITY DOT ON PACKAGE
OENOTES PIN 1.
TOTAL DEVICE MAXIMUM RATINGS
Total Device Dissipation @ T A
Derate above T A = 25°C
Lead Soldering Time
T = 24O"C, 1/16" from case
=
25°C
DIM
A
B
C
0
E
F
G
K
MILLIMETERS
MAX
MIN
4.70
4.95
4.32
4.06
4.95
5.21
0.51
0.38
0.36
0.46
30.48
26.67
1.27 BSC
20.32
24.13
INCHES
MIN
MAX
0.185
0.195
0.160
0.170
0.195
0.205
0.015
0.020
0.014
0.Q18
1.050
1.200
0.050 SSC
0.800
0.950
CASE 271-02
This is advanca information on a new introduction and specifications are subject to change without notice,
761
MOC2000 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwISe noted,)
Symbol
Min
Typ
Max
Unit
IR
-
-
100
"A
VF
-
-
1.5
Volts
Ci
-
150
-
pF
ICEO
-
-
25
nA
Collector-Emitter Breakdown Voltage
(lC 1.0 mA, Base Open)
BVCEO
30
-
-
Volts
Emitter-Collector Breakdown Voltage
(IE 100 IJ.A, Base Open)
BVECO
7.0
-
-
Volts
hFE
-
200
-
-
Collector light Current
(VCE = 50 V, IF = 15 mAl
ICll
0.5
-
-
mA
Collector Light Current
(VCE = 5.0 V, IF = 35 mAl
ICl2
1.6
-
-
mA
Isolation Voltage (1)
(SO Hz)
-
1500
-
-
Volts
Isolation Resistance (1)
(V = 500 V)
-
-
10 13
-
Ohms
-
-
0.3
Volts
Characteristic
lED CHARACTERISTICS
Reverse Leakage Current
(VR = 3.0 V, Rl = 1.0 M
n
Forward Voltage
(IF
= 50 mAl
Input Capacitance
(VR = 0, f = 1.0 MHz)
PHOTOTRANSISTOR CHARACTERISTICS
Collector-Emitter Dark Current
(VCE
= 30 V,
IF
= 0, Base Open)
=
=
DC Current Gain
(VCE = 5.0 V, IC
= 100 "A)
COUPLED CHARACTERISTICS
COllector-Emitter Saturation Voltage
(lC
VCE(sat)
= 1251J.A, IF = 15 mAl
(11 For this test, LED pms 1 and 2 are common, and PHOTOTRANSISTOR pins 3 and 4 are common.
762
MP 110 (GERMANIUM)
(;)
o
'
0
@.
PNP germanium power transistor designed for
high-gain power amplification in the audio range.
STYlE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
CASE 11
MAXIMUM RATINGS (TC = 25°C unless otherwise noted)
Rating
Symbol
MPllO
Unit
VCEX
65
Vdc
Collector-Emitter Voltage
VCER
40
Vdc
Collector-Emitter Voltage
VCES
50
Vdc
Ie
7.0
15
Adc
Collector-Emitter Voltage
Collector Current-Continuous
Peak
Base Current
Total Device Dissipation @ T C
Derate above 25 0 C
=
25 0 C
Operating and Storage Junction
Temperature Range
IB
2.0
Adc
PD
106
1.25
Watts
W/oc
TJ,T stg
-65 to +110
°c
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Symbol
Max
Unit
8JC
0.8
°C/W
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 25 mAdc, VBE (off) = 2 Vdc
BVCEX
Collector-Emitter Breakdown Voltage
(IC = 0.6 Adc, RBE = 68 ohms)
BV CER
Collector-Emitter Breakdown Voltage
(IC = 0.2 Adc, VBE = 0)
BVCES
Collector
(VCB =
(VCB =
(V CB =
Cutoff Current
2.0 Vdc, IE = 0)
40 Vdc, IE = 0)
40 Vdc, IE = O,TJ = 75 0 C)
65
-
-
40
-
-
50
ICBO
Emitter Cutoff Current
(VBE = 20 Vdc, IC =' 0)
lEBO
Floating Potential
(V eR = 40 Vdc, IF. = 0)
VFL
-
-
Vdc
Vdc
Vdc
mAdc
0.2
2.0
15
mAdc
-
-
60
74
-
250
8,0
Vdc
0,8
ON CHARACTERISTICS
DC Current Gain (See Note)
(IC = 50 mAdc, VCE = 2 Vdc)
(IC = 1.0 Adc, VCE = 2.0 Vdc)
hFE
-
Vdc
Collector-Emitter Saturation Voltage
(IC = 2.0 Adc, IB = 0.2 Adc)
VCE(sat)
-
-
0.5
Base-Emitter "On" Voltage
(IC = 1.0 Adc, VCE = 2.0 Vdc)
VBE(on)
-
-
0.5
SMALL SIGNAL CHARACTERISTICS
Current-Gain Bandwidth Product
(IC = 1.0 Adc, VCE = 2.0 Vdc)
763
Vdc
MPll0
(Continued)
@
fiGURE 1- POWER· TEMPERATURE DERATING CURVE
nl~
J1-s:-+--Is:~Jil---+-------i1
t
~0--------~25--------~50~------~7~5------~I~OO~~11~0--~125
Te, CASE TEMPERATURE ('CI
fiGURE 2 - DC '!IPRcNT GA!N
200
nr-'l
j =I
TJ
z
~
~
g
i
Ve.
=1
2.J
vi
-
90
80
70
'"
i
;
\
\
~
i:i
..... f',
~
0.5
0.5
0.7
1.0
2.0
3.0
0.3
I
/
II
/
/
5.0 7.0
I
II
/
II
/
0.2
0.1
Ie. COLLECTOR CURRENT (AMP)
fiGURE 4 - ACTIVE REGION SAfE OPERATING AREA
5
10
m:'-
70
/
/
/
5.0
;
~
~
30
"-de '\
:$
~
1.5
"'-
1.0
0.7
.9
05
i
a
~
~
20
/
02
2.0
/
I
/
1.0
3.0
5.0
70
10
20
30
/
/
0.15
2.0
V
55'e
70
5.0
3.0
1.0
V
/
L 25,C L
10
03
01
/
/
V
TJ = loo'e
2.0
8
0.7
fiGURE 5-INPUT ADMITTANCE
50
3.0
0.6
100
7.0
ii:
0.5
0.4
0.3
V". BASE·EMITTER VOLTAGE (VOLTS)
IS
..
V
/
II
0.1
0.3
/
25'C
i
55'C
02
50
/
0.7
'~
0.2
V
V
/
1.0
.9
"
/
/
1/
2.0
r'\
-I-
0.1
/
V
TJ = 100'C /
-55'C
60
I - Vc.- 2.0V
3.0
25'C
100
5.0
100'C
r---~
fiGURE 3- TRANSCONDUCTANCE
7.0
40
/
/
/
II
/
01
Ve., COLLECTOR·EMIITER VOLTAGE IVOLTSI
0.2
0.3
0.4
0.5
V", BASE·EMITTER VOLTAGE {VOLTSI
h ..
COLOR CODE
NOTE: Transistors are color coded to identify gain ranges as
shown. No guarantee is made of gain distribution.
le= I Adc, Vo.=2Vdc
Max.
74
III
orange
100
yellow
119
145
179
133
164
red
green
blue
764
Min.
200
250
0.6
MP 11 OB (GERMANIUM)
PNP GERMANIUM POWER SWITCHING TRANSISTOR
25 AMPERE
... designed for high·current switching applications requiring low
saturation voltages, fast switching times and good safe operating area.
PNP ADE GERMANIUM
POWER TRANSISTOR
• Alloy-Diffused Epitaxial Construction
90 VOLTS
106 WATTS
• Low Saturation Voltage VCE(sat) = 0.5 Vdc @ IC = 5.0 Adc
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
V CEO
40
Vdc
Collector-Base Voltage
V CB
90
Vdc
Emitter-Base Voltage
V EB
2.0
Vdc
IC
25
Adc
Base Current - Continuous
IB
5.0
Adc
Total Device Dissipation @TC = 25' C
Derate above 25' C
PD
106
1. 25
Watts
W/"C
T J , Tstg
-65 to +110
'c
Collector Current - Continuous
Operating and Storage Junction
Temperature Range
C
SEATING PLANE
/
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case
FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT
DIM
A
MilliMETERS
MIN MAX
-
B
C
-
D
1.0
la
I-20Hz
Duty Cycle' 0.5"
1.22
E
F
G
H
J
10
K
LJ~~--~~~~~4
.
-----C~I11....___Ad_!...~:'lIII"'a-·-~--_¥3.""O._----'
Q
R
29.90
10.67
5.33
16.64
S.13
3.S4
-
39.37
21.08
7.62
1.32
3.43
30.40
11.18
5.59
17.15
10.67
4.09
26.67
CASE llA
765
INCHES
MIN MAX
0.048
1.177
0.420
0.210
O. 55
0.320
0.151
1.550
0.830
0.300
0.052
0.1 5
1.197
0.440
0.220
.67
D.420
0.161
1.050
MP1108 (continued)
ELECTRICAL CHARACTERISTICS
(Tc =
Characteristic
25°C unless otherwise noted)
Symbol
I
Min
Max
40
-
40
-
2.0
-
-
10
-
20
-
200
65
100
150
55
120
200
300
-
0.5
-
0.45
500
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 100 mAdc, IB = 0)
BV CEO
Collector-Emitter Sustaining Voltage
(IC = 5.0 Adc) (See Figure 1)
V
CE(sus)
Emitter-Base Breakdown Voltage
(IE = 100 mAdc, IC = 0)
BV EBO
Collector-Emitter Cutoff Current
(V CE = 50 Vdc, REB = 100 Ohms)
ICER
Collector Cutoff Current
(V CE = 90 Vdc, VBE (off)
I CEX
= O. 2 Vdc)
Collector Cutoff Current
(V CB = 2. 0 Vdc, IE = 0)
ICBO
Vdc
Vdc
Vdc
mAdc
mAdc
/lAdc
ON CHARACTERISTICS
DC Current Gain
(IC = 1. 0 Adc, VCE
= 2. 0 Vdc)*
= 5.0 Adc,
= 2.0 Vdc)
(IC
VCE
hFE
Red
Green
Blue
Collector-Emitter Saturation Voltage
(IC = 5.0 Adc, IB = 100 mAdc)
VCE(sat)
Base-Emitter On Voltage
(IC = 1. 0 Adc, VCE = 2.0 Vdc)
V
BE (on)
(IC
= 5.0
Adc, VCE
= 2.0 Vdc)
-
Vdc
Vdc
0.60
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = O. 5 Adc, V CE = 10 Vdc)
fT
*For desired hFE range, specify color code.
766
kHz
MP500 thru MP502 (GERMANIUM)
MP504 thru MP506
(D ~)
PNP germanium power transistors for high- gain,
high-power amplifier and switching applications in high
reliability industrial equipment.
STYLE 1
PINl BASE
;
~~~TL~~~OR
CASE 7
(CONNECTED TO
CASEI
MAXIMUM RATINGS
Rating
MP500
MP504
45
Symbol
MP501
MP505
60
MP502
MP506
75
Volts
Unit
Collector-Base Voltage
VCB
Collector-Emitter Voltage
VCES
45
60
75
Volts
Collector-Emitter Voltage
VCEO
30
45
60
Volts
Emitter-Base Voltage
VEB
25
30
40
Volts
60
60
60
Amp
Power Dissipation at T C = 25 0 C
Ie
PD
170
170
170
Watts
Junction Temperature Range
TJ
Collector Current
,
POWER-TEMPERATURE DERATING CURVE
POWER DERATING
~ 175
<
~ 150
The maximum continuous power is related to maximum
junction temperature by the thermal resistance factor.
This curve has a value of 170 Watt. at case temperatures
of 25"C and i. 0 Watts at 1I0'C with a linear relation b'etween the two temperatures such that:
~
f
170 WATTS MAXIMUM
" r-....
125
100
75
~
o
["0...
......
I :~
= 110' - To
allowable P D
°c
-65to+ll0 -
0.5
tf
t-....
0
10
20
30 40 50 60 70
80
Te. CASE TEMPERATURE (OC)
"'"
90 100 110
SAFE OPERATING AREA
0
0
0
0
0
;
!
I
u
0
\
,,,"
~ l'-.
Ie (MAX:)
_~'215~
~
MP504
"170·WATT
POWER DISSIPATION AT
25°C CASE TEMPERATURE
I
de
/
0
500~s
5
50#-,5
_
3
ORLESS
2
~
l'\.'" "" ~ It'- I
Ic(MA~
"- ~
-!:ml ~
""" ~10
!"'-,.
'"
;
500~s
i
iil
1--250",
i"'o.
110-WATT
POWER DISSIPATION AT
25°C CASE TEMPERATURE
Je/
••
0, I
20
30
40
COlLECTOR-EMITTER VOLTAGE (VOLTSI
50
'"
5
2
170-WATT
~
~
_'\~
7-
/'
....t--.l
~
Y
POWER DISSIPATION ,...
I
I--
500~s
~ ~ --250
•• ,_
~
de
~
\ \ OR LESS
25°C CASE TEMPER.,UH
0,5
,
!--50 ••
OR LESS
0,4
0.3
0,2
O. 2
10
10
-
~ ~ -Sm.1m. r _ _
~~
1m.
=~~:
~ l\.
\\
20
Ie (MAX.)- I--
,,,-
~
Sms
0,5
0,4
0,3
o.2
0, I
:~!8A -
~
I
'~
0, S
0, 4
0, 3
40
30
'c(MAX.i-
~
0"
I--;SO",'
~~
50
o '\'\
0
1m;
60
0
0
Sm.
\'"
"'- l1 ~ ~
4
3
2
'c(MAX:I- IMPSOO - f -
'\\
~
.'l
2N2152
S
"-
MP5G2. MP.
MP50!. MP585
MP500. MP504
10
20
30
40
50
COLLECTOR.[MITTER VOLTAGE (VOLTS)
The Safe Operating Area Curves indicate IeVeE limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.
767
60
70
U
0
10
20
30
40
50
60
70
80
90
COLI£CTOR-EMITTER VOLTAGE (VOlTS)
(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.
MP500 thru MP502
MP504 thru MP506(continued)
ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Characteristic
(VCB' -4~ V, IE " 0)
(VCB - -60 V, IE" 0)
(VCB" -7~ V, IE" 0)
MP~OO
MP501
MP.02
IeBOI
MP504
MP.O.
MP506
Collector-Base eutott CUrrent
(VcJl" VCBm"", IE" 0, TC " +71"<:)
Collector-Base Cutoff Current
MP~OI
MP502
lEBO
MP.04
MP.05
MP506
lEBO
MP~04
MP~OI
MP50~
MP.02
MP~01!
MP~OO
MP504
MP501
MP502
MP~O.
Collector-Emitter Breakdown Voltage (11
(IC " 1.0 A, IB • 0)
MP500
MP501
MP504
MP~02
MP506
DC Current Transfer Ratio
(Ie " 15 A, VCE " 2 V)
MP.OO
(11
mAde
-
60
200
0.2
0.2
0.2
4.0
4.0
4.0
2.7
I~
-4.
-60
-7.
--
mAde
mAc1c
-
1.0
1.0
1.0
30
.0
12
47
63
20
60
100
VCE(sat)
-
0.11
0.2
0.2
0.4.
VBE(sat)
-
-
0.7
2.0
2.~
2.0
3.6
-
hFEI
hFE
f:"e
Common Emitter Cutoff Frequency
(Ie " I~ A, VCE " 2 V)
10
-
MP~O~
MP~04
(IC" ~OA, VCE " 2 V)
Collector-Emitter Saturation Voltage
(Ie " I. A, IB " I A)
(Ie " ~O A, IB " ~ A)
Base-Emitter Saturation Voltage
(IC " I~ A, IB " I A)
(Ie " .0 A, IB " ~ A)
4.0
-
VEBF
through MP502
through MP506
All Types
4.0
4.0
4.0
-30
-45
-60
MP506
Floating Potential
(VCB" 45V,IE" 0)
(VCB" 60 V, IE" 0)
(VCB" 75 V, IE" 0)
0.9
0.9
0.9
-
BVCEO
Ua"
/lAde
BVCES
MP.OO
11.,
mAde
--
leBO
MP.OO
Till
-
ICBO
(VCB" -2 V, IE " 0)
Emitter-Base Cutoff Cu.rrent
(VEB" -2. V, Ie " 0)
(VEB" -30 V, Ie " 0)
(V EB " -40V,lc- 0)
Emitter-Base eutott Current
(VEB " VEBmax,'c" O,T C " mOc)
Collector-Emitter Breakdown Voltage (1)
(IC " 300 rnA, VEB" 0)
Mito
SIJIIIItI
Collector .. Base Cutoff Current
--
Vde
Vde
Vde
-
_ Vdc
Vde
1.0
kHz
To avoid excessive heating of collector junction,
perform this test with a sweep method.
INPUT AND TRANSFER CHARACTERISTICS
60
COLLECTOR CURRENT
DC CURRENT GAIN
versus BASE·EMITTER VOLTAGE
versus COLLECTOR CURRENT
r
I
VeE
/
2V
50
MP504·506
ii:
'"....
~
~
1:l 30
~
20
10
o
z
~
~1:l
MP500 - 502
Q
i
o
./
80Hr:--'oi---t--""""r----t---f----i
601----"II--"~----1r----+---+---i
~
g 40 1---+--~~---1~~-+---+---i
II
.2
rr--r---,----,---,-----,--....,
100 1-+---+---+---+--+-----l---4
V
/;V
'"
8
/1
VI
40
VI
120
i
I(V
1.0
1.5
0.5
2.0
V", BASE-EMITTER VOLTAGE (VOLTSI
2.5
10
768
20
30
40
Ie, COLLECTOR CURRENT (AMPI
50
60
MP600 (GERMANIUM)
thru
PNP Germanium power transistors designed for highcurrent switching applications requiring low saturation
voltages, short switching times and good sustaining voltage capability.
• Alloy Diffused Epitaxial Construction
• Low Saturation Voltages VCE(sat) = 0.75 Vdc (Max) @ IC = 25 Adc
VBE(sat) = 1.2 Vdc (Max) @ IC = 25 Adc
MP603
STYLE l'
PIN 1. BASE
1. EMITTER
CASE' COLLECTOR
CASE 11A
MAXIMUM RATINGS
Symbol MP600 MP601 MP602 MP603
Rating
Unit
VCEO
50
60
70
80
Vdc
Collector-Base Voltage
VCB
75
75
90
90
Vdc
Emitter-Base Voltage
VEB
1.5
Vdc
Collector Current - Continuous
IC
25
Adc
Base Current - Continuous
IB
5.0
Adc
Total Device Dissipation @T C =25°C
Derate above 25°C
PD
85
1.0
Watts
WjOC
T J , T stg
-65 to +110
°c
Collector-Emitter Voltage
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Symbol
eJC
Characteristic
Thermal Resistance, Junction to Case
Max
Unit
1.0
°C/W
FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT
Vertical
1.0
f
=20 Hz
Duty Cycle = 0.5%
U
10
0-150
~~Push~T.e~st
~
A_d~jUv~~I~B_=_~_~____~~______~
_______
**Close Switch S, for IC = 25A Test
769
5.0
3.0
MP600 thru MP603 (continued)
ELECTRICAL CHARACTERISTICS
(Te
=25'C unless otherwISe noted)
Characteristic
Symbol
Min
Max
50
60
70
80
-
50
60
70
80
-
30
40
40
50
-
-
1.5
-
-
0.4
-
10
-
10
-
200
-
5.0
50
-
-
0.75
-
1.2
-
0.6
1.0
-
-
6.0
!lS
-
13
/.Is
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC " 100 mAdc, IB " 0)
BV CEO
MP600
MP601
MP602
MP603
Collector-Emitter Sustaining Voltage (See Figure 1)
(IC " 5.0 Ade)
MP600
MP601
MP602
MP603
Floating Potential
(V CB = 60 Vdc, IE
Collector Cutoff Current
(V CE = 75 Vdc, VBE (off) "0. 2 Vdc)
= 90
Vdc, V BE (off)
MP602, MP603
= O. 2 Vde)
Collector Cutoff Current
(V CB = 2.0 Vdc, IE = 0)
I CBO
Emitter Cutoff Current
(V EB = O. 5 Vdc, IC = 0)
lEBO
-
-
mAdc
I CEX
MP600, MP601
-
Vdc
V EBF
= 0)
-
Vdc
BV EBO
Emitter-Base Breakdown Voltage
(IE" 100 mAdc, IC = 0)
Vdc
VCE(sus)
MP600
MP601
MP602
MP603
(IC "25 Adc)
(V CE
Vdc
!lAdc
mAdc
ON CHARACTERISTICS
DC Current Gain
(IC = 5.0 Adc, VCE
= 2.0
hFE
Vdc)
Collector-Emitter Saturation Voltage
(IC = 25 Adc, IB = 1. 25 Adc)
VCE(sat)
Base-Emitter Saturation Voltage
(IC = 25 Adc, IB = 1. 25 Adc)
VBE(sat)
Emitter-Base On Voltage
(IC = 5.0 Adc, VCE = 2.0 Vdc)
VEB(on)
Vdc
Vdc
Vdc
Joule
PET
Pulse Energy Test (See Figure 2) tH
(I C = 3. 3 Adc, V CE = 30 Vdc)
SWITCHING CHARACTERISTICS
t
Rise Time
(VCC
Storage Time
= 22
Vdc,
Ie = 15
Adc, 1B1
= 1B2
" 1.5 Adc)
t
See Figure 3
Fall Time
r
s
1
10
!ls
I11Puise Test: Pulse Width = 10 ms, Duty Cycle = 2. 5%.
FIGURE 3 - SWITCHING TIME TEST CIRCUIT
FIGURE 2 - PULSE ENERGY TEST CIRCUIT
1.5
TUT
Adj for
IC=3.3A
Adj for
0.10
_1~O/.lS-A+15V
Adjfor
U
VCE =30 V
:=O--Jow. . . .
100/.ls
Input Puis.
tr ,tf< 10 ns
PRF = 60 Hz
*C. P. Clare HGSM1011 Or Equivalent
Adj for 10 ms, Pulse Width
and 2.5% Duty Cycle
770
22 V
10
-15.5
Ie = 15A
1.5
t+--I
Input
MR830
TUT
MP 1613 (GERMANIUM)
Ol
o
~
@I
0
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE COLLECTOR
Medium-current germanium PNP power transistor,
designed for use in 12 Volt vertical deflection circuits
in television receivers; features: high breakdown
voltage, low leakage current, and low saturation voltage.
CASE 11
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
v CEO
75
Vdc
Collector-Emitter Voltage
VCES
90
Vdc
Collector-Base Voltage
v CB
100
Vdc
Emitter-Base Voltage
VEB
50
Vdc
IC
7.0
Adc
15
Adc
2.0
Adc
Collector Current - Continuous
- Peak
Base Current - Continuous
Total Device DiSSipation @ TC
IB
=
25°C
PD
Derate above 25°C
Operating and Storage Junction
Temperature Range
85
Watts
1.0
W/"C
T J' T stg
-65 to +110
°c
Symbol
Max
Unit
IIJC
1.0
°C/W
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
=2SOC unless otherwise noted)
ELECTRICAL CHARACTERISTICS
(Tc
I
Symbol
I
Characteristic
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltagt.(1)
(IC = 300 mAde, IB = 0)
BVCEO
Collector-Emitter Breakdown Voltaget 1)
BVCES
('c =250 mAde,
VBE
= 0)
Collector Cutoff Current
(VCE = 37.5 Vde, IB = 0)
Collector Cutoff Current
(VCE = 90 Vde, VBE = 1. 0 Vde, TC
IC
mAde
10
mAde
ICBO
=2.0 Vde, 'E =0)
= VCB max, 'E =0)
= 12 Vde,
mAde
30
ICEX
= +100"C)
0.06
5.0
Emitter Cutoff Current
(V BE
Vde
90
ICEO
Collector Cutoff Current
(VCB
(VCB
Vde
75
'EBO
=0)
100
""de
ON CHARACTERISTICS
IX: Current Gain
=50 mAde, V CE
('c
(IC
= 1.0 Ade,
V CE
hFE
=2.0 Vde)
=2.0 Vde)
120
40
Collector-Emitter Saturation Voltage
(IC =3.0 Adc, IB = 300 mAde)
VCE(sat)
tU SWeep Test: 1/2 sine wave, 60 Hz.
771
200
70
Vde
0.25
MP 1613 (continued)
-
200
DC CURRENT GAIN versus COLLECTOR CURRENT
r---
!--
TJ= +IOO'C
---- --
-r++++25'C
rr-
-40'C
0.01
0.015 0.02
0.03
0.05
0.1
Vee = l.OV
0.15
0.2
-
t--.
l-
r-- t:--
0.5
0.3
Ie-leBo
I, +Ielo'-
h"
1.0
2.0
1.5
5.0
3.0
10.0
Ie. COLLECTOR CURRENT (AMPS)
POWER·TEMPERATURE DERATING CURVE
~i
;::!
~i
!=
,sfl5
... ~
11
. 0
~*'~t
25
50
75
Te. CASE TEMPERATURE I'CI
100 HO
SAFE OPERATING AREAS
20
IS
10
7.0
1 ;
125
=
I
2.0
1.0
~ 0.7
.Ji 0.5
0.3
0.2
0.1
"-
"- ."\.
'\.~.oms
de'{'\.
3.0
~
10 , VOE limits below which the device will not go into secondary breakdown. Collector load lines for specific cir·
cuits must fall within the applicable Safe Area to avoid
causing a collector-emitter short. (Case temperature and
duty cycle of the excursions make no significant change
in these safe areas.) The load line may exceed the BVCES
voltage limit only if the collector current has been reduced
to 20 mA or less before or at the BVOES limit; then and
only then may the load line be extended to the absolute
maximum voltage rating of BVOBO' To insure 'operation
below the maximum T J • the power-temperature derating
curve must be observed for both steady state and pulse
power conditions.
"-.SOILS
SODILS
'\.
5.0
<> 1.5
NOTE: - The Safe Operating Area Curves indicate
""-
'\
~
-
"-
~
"\
'\...
EXPANDED ~.""
LOW CURRENT AREA
(SEE NOTE)
V
Lr1
AREA
"-
I~" ~
'\.
'\.\
"
I'\.
'\.
20 A
~J
o
10
75
=
20
"-
100/1
30
40
\
"'I'\.
50
60
Ve" COLLECTOR·EMITTER VOLTAGE (VOLTSI
'"
70
80
12 VOLT VERTICAL DEFLECTION CIRCUIT
100
2.0k
+
100
500 -15 V
MPS6517
600 ILF
lOV
1.2 k
600ILF
3.0 V
+12 V
772
MP2000A (GERMANIUM)
MP2100A
MP2200A
MP2300A
MP2400A
PNP GERMANIUM POWER TRANSISTORS
25 AMPERES ADE
POWER TRANSISTORS
. . . designed for high·voltage switching. and power converter
applications.
•
Alloy-Diffused Epitaxial Construction
•
Low Saturation Voltages VCE(sat) = 0.6 Vdc (Max)
VSE(sat) = 1.0 Vdc (Max)
@
@
30-120 VOL T8
106WATT8
IC = 25 Adc
IC = 25 Adc
•
Fast Switching Timeston = 11IJ.s (Typ) @ IC = 10 Adc
toff = 21IJ.s (Typ) @ IC = 10 Adc
•
Guaranteed Excellent Safe Operating Area
MAXIMUM RATINGS·
Rating
Symbol MP2000AIMP2100AIMP2200AIMP2300AIMP2400A Unit
Collector-Emitter VOltage
80
100
120
Vdc
30
60
VCEO
Emitter-Base Voltage
2.0
Vdc
VEe
Collector Current-Continuous
25
Adc
IC
tsase (;urrent Continuous
5.0
Adc
Ie
Po
Total Device Dissipation
@TC·250C
Watts
W/OC
106
1.25
Derate above 25°C
°c
65to+110
Operating and Storage Junction TJ, Tstg
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR
FIGURE 1 -POWER-TEMPERATURE DERATING
14 0
OIM
A
B
00
C
D
..........
"
0
G
'"
H
J
K
.........
Q
"
o
40
-
1.22
E
F
.........
20
MILLIMETERS
MIN MAX
60
80
R
'"
120
TC. CASE TEMPERATU RE IOC)
773
-
-
-
0.048
1.177
0,420
0.210
0.655
0.320
0.151
1.550
0.830
0.300
0.052
0.135
1.197
0.440
0.220
0.675
0,420
0.161
1.050
CASE l1A
..........
100
29.90
10.67
5.33
16.64
8.13
3.84
39.37
21.08
7.62
1.32
3,43
30,40
I1.1B
5.59
17.15
10.67
4.09
26.67
INCHES
MIN MAX
(1)For devices with Lugs (TO·41) contact
your local Motorola sales office.
MP2000A, MP2100A, MP2200A, MP2300A, MP2400A (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
Min
TVp
Max
30
60
80
100
120
-
-
Unit
OFF CHARACTERISTICS
Coliector~Emitter
Breakdown Voltage
Vde
SVCEO
IIc = 0.1 Ade,IS = 0)
MP2oo0A
MP2100A
MP2200A
MP2300A
MP2400A
Collector-Emitter Sustinaing Voltage (Figure 7)
-
-
-
Vde
VCE(,u,)
IIc = 8.0 Ade)
-
-
MP2000A
MP2100A
MP2200A
MP2300A
MP2400A
60
80
90
100
120
-
MP2oo0A
MP2100A
MP2200A
MP2300A
MP2400A
60
70
75
80
90
-
2.0
-
-
-
-
10
10
10
10
10
25
25
25
25
25
ICSO
-
-
200
j.tAdc
hFE
25
-
-
-
Collector-Emitter Saturation Voltage
(lC = 25 Ade, IS = 2.5 Ade)
VCE(,.,)
-
-
0.6
Vde
Base-Emitter Saturation Voltage
VSE(sal)
-
-
1.0
Vde
VBE(on)
-
-
0.8
Vde
IIc = 25 Ade)
Emitter-Base Breakdown Voltage
BVEBO
-
-
-
-
-
-
Vde
(IE = 0.5 Adc, IC = 0)
Collector Cutoff Current
(VCE = 60 Vde, VSE(off) = 0.2 Vde)
(VCE = 80 Vde, VSE(off) = 0.2 Vde)
(VCE = 100 Vde, VSE(off) = 0.2 Vdc)
(VCE = 120 Vde, VSE(off) = 0.2 Vdc)
(VCE = 140 Vde, VSE(off) = 0.2 Vdc)
(VCE = 60 Vdc, VSE(off) = 0.2 Vde ,TC = 850 C)
(VCE = 80 Vde, VSE(off) = 0.2 Vde ,TC = 85 0 C)
(VCE = 100 Vde, VSE(off) = 0.2 Vde ,TC = 85 0 C)
(VCE = 120 Vde, VBE(off) = 0.2 Vde ,TC = 85 0 C)
(VCE = 140 Vde, VBE(off) = 0.2 Vde ,TC = 85 0 C)
mAde
ICEX
MP2oo0A
MP2100A
MP2200A
MP2300A
MP2400A
MP2000A
MP2100A
MP2200A
MP2300A
MP2400A
Collector Cutoff Current
-
(VCS = 2.0 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gam
(lC = 8.0 Ade, VCE = 2.0 Vde)
(lC = 25 Ade, IS = 2.5 Adcl
Base-Emitter On Voltage
(lC = 8.0 Ade, VCE = 2.0 Vde)
DYNAMIC CHARACTERISTICS
430
kHz
Current-Gain
IT
Turn-On Time (Figure 2)
(lC = 10 Ade, IS1 = 1.0 Ade)
ton
-
11
-
~,
Turn-Off Time (Figure 2)
(lC= 10Ade,IS1 = IS2= 1.0Ade)
Iofl
-
21
-
~,
Bandwidth Product
(lC = 0.5 Ade, VCE = 5.0 Vde, f = 100 kHz)
FIGURE 3 - SWITCHING TIMES
FIGURE 2 - SW)TCHING TIME TEST CIRCUIT
VCC=-30V
100
RC
50
Scope
g
InpurPulse
tr, tf~ 100 ns
PRF = 60 Hz
MR830
~
;::
20
==
-
~
VCC 30 V
181=182 IcllO
-
I,
V
Is
/- f-
r-
10
If
5.0
Note: RB and RC are varied
to obtain desired test
conditions.
2.0
1\
~
V
1.0
0.1
0.2
0.5
1.0
2.0
5.0
10
IC, COLLECTOR CURRENT (AMP)
774
20
\
50
100
MP2000A, MP2100A, MP2200A, MP2300A, MP2400A (continued)
FIGURE 4 - THERMAL RESPONSE
1.0
1=0 0.5
§N
- -- .......
?
O.5
:J
«
'"
0.2
ti);:U-
011
~:5 0.2
wz
Zu
-
~ ~ 01
r-r-
1===0.05
5~
:= ~ 0.05 1---0.02
"'~
«
..J;!!l-
'"~ 002
r-
0.01
0.1
-
~NGLE PULSE
02
~
f-
05
I IIIIII
10
2.0
50
10
20
50
100
30
10
..'"
~
2~
==F
-
~
5. 0
~_
3.0
8
TJ <; 110 0 C r--
::} 2.0
MP2200A
MP2300A
MP2400A
20
10
5.0
10
1
The data of Figure 5 is based on TJ(pk)
100
200
10
50 70
20
30
50
J, ve~su;
0.8
:z:
0.6
z
:1i
2: 0.4
:;;:
to
a:i
""""
a
J:'
0.2
---
0
0.1
V
::;:::: r.---
.....
70 100
Vc!@ Ic:
2.0
c&J11
10mH
"
~""
5.0
ICADJ
IOn
Outy Cycle = 50%
3.0
H
0~51}
MP2000A·2200A
.. MP2300A
MP2400A
~p24rOAI
1.0
300
Scope
C
~
fOOA.2200~~
MP2300A
0.5
200
FIGURE 8 -CLAMPED INDUCTIVE SAFE OPERATING
AREA TEST CI RCUIT
~~ ~
0.2
100
values less than the limitations imposed by second breakdown.
(See AN-415)
2DPPS
trrirYE,T,V
70
thermal limitations will reduce the power that can be handled to
II I
;[!'
g:
I
calculated from the data in Figure 4. At high case temperatures,
= 1100 C; TC is variable
10
50
30
140V -
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(Pk):S1100 C. TJ(pk) may be
VCE, CO LLECTO R·EMITTER VO LTAGE IVOLTS)
30
I
20
..... 120 V
VCE,COLLECTOR-EMITTERVOLTAGE (VOLTS)
FIGURE 7 -CURRENT·GAIN-BANDWIDTH PRODUCT
20
MP2000A
MP2100A - MP2200A
MP2300A
MP2400A
1.0
50
There are two limitations on the power handling ability of a
10
~ 1.0
\
1\
a 7.0
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
...
5000 10,000
1\'1\
Test CirCUit
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)
iii
c
I
2000
1000
1
See Figure 8 for
t-
dc~5.0ms
0.1
2.0
b
500
20
:;
2.0 - - - THERMAL LIMIT, TC =
.......
1.0 --SECOND BREAKDOWN
LIMIT
1== MP2000A
0.5
MP2100A
0.2
t;
200
FIGURE 6 -CLAMPED INDUCTIVE SAFE OPERATING AREA
l~ri~-
...... 1.0m"
'r-.
=> 5.0
g=>
II II
30
:'>
~
~~j
I
PULSE WIDTH 1m,)
FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
~
8
prJUl
==
-
TJlpk) - TC = 'JC rll), 0) Ppk 10 = 0)
100
'"
'"""
DUTY CYCLE, 0 = 1)/12
-
Read Time At q
I),
..'"
;
=
0Jcll) = rll)) 0JC
oJC = 0 80 C/W Max
o Curves Apply For Power
Pulse Tram Shown
V
~
:.--
r--
10
775
AOJ
CLAMP
VOLTAGE
0-5.0
ADJUST 18=IC/IO
IC, COLLECTOR CURRENT (AMP)
II
PUSH TD TEST
-AdiUst wch that
IS>IC
MP2000A, MP2100A; MP2200A, MP2300A, MP2400A
FIGURE 10-COLLECTORSATURATION REGION
FIGURE 9 - DC CURRENT GAIN
300
--
10 0
D
~o
VCE: 1.0 V t -
f-
(continued)
~
O. 5
II
II.
IC: 1.0 A
~ o. 4
lI-TJ: -55°C
'"~
""-
0
15°C
0
"\
~,
Ilbobc
ITI! \
10
0.03 0.05
0.1
0.3 0.5
3.0 5.0
1.0
10
~
D. 1
~
O. I
_
1\
o
1\
f\..
~
>
30
'"
:;
0.02
0.05
0.1
-
0.4
~
+5.0
0.1
0.5
1.0
VSE(on) @VCE: 2.0 V
I
1/
2.0
5.0
10
;;
..s +3.0
....
~
./
8
10
50
-1.0
~
-1.0
iii
....
-3.0
II
II
0vs'for VSE(sat)
II II
II II
-5.0
0.1
100
=>
0
'"j
1.0
8
~ 0.1
0.01
+0.5
TJ:l00oC
- -- --
......
I
0.2
0.5
1.0
r-
--- --
-
_. -
--
--
+0.3
+0.2
+0.1
5.0
10
20
50
100
FIGURE 14 - EFFECTS OF BASE EMITTER RESISTANCE
VCE: 0.5 SVCEO
'If
I,
20
-r-......
'I ' "
5
2.5'
.......
~~ :;-~
~
IC
\"'"
/'
1.25 ICES
"'"
~~
.......
-...::::
......:
-0.2
-0.3
-0.4
'-
.......
~
i-.
For Values of ICES See Fig. 13
f- FORWARD BIAS-I---::-
-0.1
~
.........
- - - VCE 0.5 BVCEO
VCE 2.0V=
,y
500Cr-REVERSE BIAS-1--::-\ 15°C
+0.4
2.0
IC. COLLECTOR CURRENT (AMP)
fJI
."
75°C
1::
I--
aVC for VCE(sat)
w
~
100.000
",7
10
'"
'"
....
IC:ICES
10
+2.0
FIGURE 13 - COLLECTOR CUTOFF REGION
APPROXIMATE LOCUS
_
100 =,WHERE IC: ICBO - ,
5.0
APPLIES FOR IC/IB
>'
1
....
0.5
U
0.6
0.2
0.1
FIGURE 12 - TEMPERATURE COEFFICIENTS
O.BI---1HH-t+tt+f---+--++H-I-H-I--+-++I+I++I
II
«
0
r-- Ir--
....... ......
IS. SASE CURRENT (AMP)
JO~++-I+++--+-+-+++H++--+-+-++++HI
w
-r-.
0
0.01
FIGURE 11 - "ON" VOLTAGES
r - TJ
\..
1\
'"
IC. COLLECTOR CURRENT (AMP)
~
10 A
> O. 3
0
~
0
10 A
'"
~
o
0
1.0
I
5.0 A
1.0
10
-0.5
20
30
40
. 50
60
70
80
TJ.JUNCTION TEMPERATU.RE (OC)
VSE. BASE·EMITTER VOLTAGE (VOLTS)
776
90
-
100
110
MP2060 thru MP2063 (GERMANIUM)
g)~
PIN I. BASE
CAS~·: ~~I~ic~OR
PNP germanium power transistors for audio amplifier
applications.
CASE 11
MAXIMUM RATINGS
Rating
Symbol MP2080 MP2061 MP2062 MP2063
Collector-Emitter Voltage
VCES
VCEO
Collector-Emitter Voltage
(Open Base)
Collector-Base Voltage
VCB
Emitter-Base Voltage
Peak Collector Current
(PW;; 5 ms)
Base Current (Continuous)
Storage Temperature
60
75
Vdc
25
35
50
60
Vdc
40
60
75
90
Ie
Ie
...
IB
..
11
TC
PD
Total Device Dissipation
@I'c = 25 0 C
Derate above Z5 0 C
45
..
Tstg
Operating Case Temperature
30
..
VEB
Collector Current (Continuous)
Junction to Case
Thermal Resistance
20
...
7.0
•
Vdc
Vdc
15
•
Mc
Mc
2.0
..
Mc
.
•
...
-65 to +110
...
- 65 to +110
•
85
1.0
~
Thermal Resistance
Unit
°c
°c
Watts
W/OC
BJC
1.0
°C/W
BCA
32.7
°C/W
Case to Ambient
POWER· TEMPERATURE DERATING CURVE
Tc
100
85
80
~Tc
60
~TA
--- r---::::::::
...........
............ r--......
40
20
o
o
........
50
75
TEMPERATURE (Oe)
25
777
-
~
100
110
125
MP2060 thru MP2063
(continued)
ELECTRICAL CHARACTERISTICS
fTc = 25°C unless otherwise ~tedt
Cllal'lCllrl$tlts
Sy*I
DC Forward Current Gain (Note I)
(IC = 3 Ade, VCE = Z Vde)
Collector-Emitter Saturation Voltage
= 3.0 Ade, IB
= 0.3 Ade)
Base-Emitter saturation Voltage
(Ie
= 3.0 Ade,ls = 0.3 Ade)
-
ISO
-
600
-
VCE(a.t)
-
-
0.Z5
VBE(a.t)
-
-
0.70
3.0
-
-
--
--
--
-
gFE
= 3.0 Ade, VCE' Z Vde)
Collector.. EmItter Breakdown Voltage-
(Ie •
250 mAde)
MPZ060
MPZOSI
MP206Z
MPZ063
Collector-Emitter Sustalnlng Voltage*
(Ie = 500 mAde)
MPZ060
MPZ061
MPZ06Z
MP2063
Collector-Base Breakdown Voltage
(IC = 20 mAde)
MP2060
MP2061
MP2062
MP2063
BVCES *
60
75
VCEO(sua)*
60
BVCBO
40
60
75
90
MP2060
MP2061
MP2062
MP2063
Collector-Emitter eutott Current
(VCE
= 30 Vde,
= 45 Vde,
(VCE
(VCE
(VCE
Vde, TC
VBE(ofl)
=I
=I
Vde, TC
= 1000C)
= 100OC)
=60 Vde,
VBt(off)
=I
Vde, TC
= 1000C)
= 75 Vde,
VBE(off)
=I
Vde, TC = 1000C) MP2063
VBE(off)
MP2060
(VBE = 20 Vde)
=
-
-
-
---
-
-
-
----
Vde
Vde
mAde
0.060
1.0
1.0
1.0
1.0
-
10
10
10
lEBO
-
-
1.0
hie
-
25
-
-
3.0
10
mAde
ohms
%
~
(IC =-500 mAde, VCE = -12Vde,RS = 30ohma,R L = 25 ohms,
RE (unbypassed) = 0.33 ohm, Pout = 2 watts)
Vdc
-
-
Distortion
mhos
mAde
-
1 mAde, f = I kHz)
kc
Vde
-
Input Impedance
(IC =-500 mAde, VCE = -12Vde, ib
-
Ulit
Vde
IeEX
MP2061
MP2062
Emitter-Base Cutoff Current
Z5
35
40
leBO
= 2 Vde)
= 25 Vde)
= 35 Vde)
= 40 Vde)
= 60 Vde)
30
45
Collector-Base Cutoff Current
(VCB
(VCB
(VCB
(VCB
(VCB
MIl
30
DC Transconductance
(Ie
TJp
IT
CUrrent Gain-Bandwidth Product
(Ie = 0.5 Ade, VCE = IZ Vde)
(Ie
lila
b FE
-
·Sweep Test: 1/2 sine wave, 60 Hz
NOTE: upon customer's request the
transistors will be numerically coded to identify matched pairs. The
dc current transfer ratios are sorted into approximately 1: 1. 5 ranges.
Any two devices within a bracket
constitute a matched pair. No guarantee is made of gain distribution.
IC
= 3 Adc,
Bracket
Min
Max
-1
30
40
50
60
45
60
75
90
120
150
-2
-3
-4
VCE = 2 Vdc
778
-5
80
-6
100
MP2060 thru MP2063
(continued)
NORMALIZED COLLECTOR·BASE CURRENT
COLLECTOR·EMmER CURRENT versus BASE·EMITTER RESISTANCE
300
500
200
[...--"""
300
I
200
100
I
/'
/
/
/
/
---
./
TJ =100·':--
J
IL
.....
/
/
/
/
I
/
TJ
70·C
./
Ye.=¥..YeEO
1
.001
.003 .005 .01
.03.05 0.1
0.3 0.5 1
RIE, BASE.£MITTER RESISTANCE (K OHMS)
COLLECTOR CURRENT versus BASE·EMITTER VOLTAGE
!:g
-40·C
8
I
I
I
0.3
I
/ / I
0.2
/I
0.1
0.2
0.5
~
TJ
/
/
/
100·C
I
'70.C
/
/
I
/
0.1
0.05
0.03 -TJ
0.02
Ve.=2Y
I
/
.J! 0.3
0.2
I
I
3:0 f=TJ
2.0
~
~ 1.0
I
0.5
/
1 50
I13
J
/
10
c/+I!
TJ = +100·C
1.0
V/
/ /
50
30
20
/
VI V
2.0
125
100
50
75
TJ, JUNCTION TEMPERATURE (·CI
100
'//
/
3.0
_
./
.//
5.0
;
Ve,=2V
300
200
~
A:
25
/
COLLECTOR CURRENT versus BASE·EMITTER VOLTAGE
10
~
/
o
3 5 10
/
2S·C
vc.= 'hVCEO
V
0.01
0.4
0.6
0.8
1.0
0.2
0.3
v.., BASEiMITTER VIltTAGE (VOLTS)
0.1
-0.1
-0.2
-0.3
V... BASE·EMITTER VOLTAGE (VOLTS)
DC CURRENT GAIN versus COLLECTOR CURRENT
100
~
1li
150
z
~100
u
i
--
V
~
---- - -f--
50
o
010
.030
-!
f--
.
"-r-
I
-,....
Ve.=2V
TJ= 100·C
I'--.
TJ
t--
.010
TJ
0.1
0.5
0.3
Ic, COLLECTOR CURRENT (AMPI
779
1.0
hFl_lc-lclo
- 1,+ lelo
r--- t:- ---......
2S·C
t-
4O·C
3.0
5.0
MP2060 thru MP2063 (continued)
COLLECTOR-EMITTER SATURATION VOLTAGE VARIATIONS
v,rsus JUNCTION TEMPERATURt'
,
\
,
I
,I
~~
.1\
,
,
I
I
I
-'"
'~
I~
~ l\.r"'-, ',.
~
25'C TJ
- - - lOO'C
-----4O'C
.......
-- ..
'~"- t'-....
~~
- -- r_-- - - ----- --..........
~
~~
....
~
....
"-
...
;;: IeTIA
20
10
so
30
70
100
200
I" BASE CURRENT (mAl
300
15
15
""so,..
r--........
10
i'.....
500!,-,
.......
:--..
""-.,.
De'
-
...........
0.2
0.15
1:J\
'
~LlMIT
J
~~
o
0.1
--r
o
~...l
i
\ \
"
2
B 1.5
! 1
1,\ \
~
0.7
~
0.3
0.2
0.15
0.1
10
20
15
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
25
f'....
'-DC
W
"-
10
b~l;
l
iii
"-
3
OC~
~ 2
~ 1.5
~
1
8 0.7
JJ 0.5
0.3
0.2
_015
0.1
"'5ms
~
~LOW EXPANDED
~
CURRENT AREA
~ 1~~'1
o
o
I
10
60
75/
,
'\.
\.
""
1\
\
\
40
45
MP2063
20
15
10
~
'\
"'\ I"
-""
" ",,,-
'"
"-""
~LlMITL
b~
\.\
10
15
20
25
30
35
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
5OO!,-s ..:--"
l
.\
f*"'". --;/
30
~ ........ SOlo'S
" J".,
'"I"
20mA
7
'\
-,\",
'"
EXPANDED
"LOW CURRENT AREA
MP2062
20
15
........
"," ~
V.
~ 0,5
'\.
~.$
"'\.
"5m,
~ 3
s
40/1
30
2000
1000
5OO!,-$
"-
..l
L'--.. ~ '\ .li
~LOW EXPANDED
.:"..
CURRENT AREA
0.3
~
_
""
""'I.'" 50
......
~
~5m'
.
rr
20
J
" "-
Ic==7 A
---=
MPZ061
20
10
~-
700
500
MP2060
t- -
}"
~
~
~50!,-s
5OO1o's,
I'\.~m'
r".
'"
'\.
~
20
30
40
50
VeE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
"'-
1,\ "-
.....
V EXPANDED ~.'"
~ LOW CURRENT AREA
~
""
"'\
DC~
"I"
"
"
I"
0_3
0.2
'\
-"'"
~""1
AREA
'"
75
_\.
~
20 A
~"'"5 )
J
"'-\
90/
'\
~
10
780
'\.
~
0.1
60
"- .....
20
30
40
SO
60
VeE, COLLECTOR-EMITTER VOLTAGE (VOlTS)
70
80
MP2100A, MP2200A, MP2300A, MP2400A (GERMANIUM)
For Specifications, See MP2000A Data.
MP3730 (GERMANIUM)
MP3731
5 and 10 AMPERE
POWER TRANSISTORS
PNP GERMANIUM POWER TRANSISTORS
PNP GERMANIUM
EPITAXIAL BASE
200-320 VOLTS
56 WATTS
PNP Germanium power transistors with the MP3730 designed
primarily for medium-power, vertical deflection amplifier applications
in television receivers and the MP3731 designed for horizontal amplifier applications_
•
Low Co IIector Cutoff Current 'CES =5.0 mAde (Max) @ VCE =200 Vde MP3730
=10 mAde (Max) @ VCE =320 Vde MP3731
•
Low Collector Emitter Saturation Voltage VCE(sat) • 0.5 Vde (Max) @ IC • 50 mAde MP3730
= 0.5 Vdc (Max) @ IC =6.0 Adc MP3731
•
Low Base·Emittar Saturation VoltageVSE(sat) =0.8 Vde (Max) @ IC • 6.0 Adc
MP3731
·MAXIMUM RATINGS
Rating
Symbol
MP3730
MP3731
Unit
VCES
200
320
Vdc
Coliector·Ba.. Voltage
VCB
200
320
Vdc
Emitter-Base Voltage
VEB
Collector-Emitter Voltage
Collector Current - Continuous
Ie
Total Device Dissipation,@Tc= 25°C
Po
Derate above 25"c
Operating & Storage Junction
Temperature Range
TJ, T stg
Vdc
2.0
5.0
10
Adc
STYLE I:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
56
Watts
0.67
wf'c
DIM
-65 to +110
°c
A
8
C
D
E
F
G
H
THERMAL CHARACTERISTICS
Charact.. istic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
6JC
1.5
°CIW
J
K
II
R
NOTE:
1. DIM "Q"15 DIA.
MILLIMETERS
MIN MAX
INCHES
MIN MAX
38.37
22.23
11.43
1.08
3.43
6.35
0.97
28.90 30.40
10.87
5.21
18.84
11.18
3.B4
-
11.18
5.72
17.15
12.19
4.08
26.87
1.550
0.875
-
1.177
0.420
0.205
0.655
0.440
om
CASE 11·03
781
.450
0.250
0.038
L
0.1)43
0.135
1.197
0.440
0.225
0.875
0.480
O.161
1.1150
MP3730, MP3731 (continued)
ELECTRICAL CHARACTERISTICS (TC = 2So C unless otherwise noted)
I
I
Characteristic
Unit
Min
Max
-
5.0
10
-
0.4
-
50
50
'10
15
15
200
-
0.5
0.75
0.5
VBE(satl
-
0.8
Vde
VBE(on)
-
0.6
Vde
Symbol
OFF CHARACTERISTICS
Collector Cutoff Current
(VCE = 200 Vdc, VBE
(VeE =320 Vde, VBE
MP3730
MP3731
= 0)
Collector Cutoff Current
(VCB
= 10 Vde,
IE
mAde
ICES
= 0)
ICBO
= 0)
E mi ttor Cutoff Cu rrent
(VBE = 0.5 Vdc, IC = 0)
(VBE = 2.0 Vdc, IC = 0)
mAde
lEBO
MP3730
MP3731
mAde
ON CHARACTERISTICS
(lc
IIC
(lC
= 50 mAde, VCE = 4.0 Vde)
= 2.25 Adc, VCE = 4.0 Vde)
= 6.0 Ade. VCE = 3.0 Vde)
MP3730
MP3730
MP3731
= 50 mAde. IB = 5.0 mAde)
= 2.25 Ade, IB = 150 mAdcl
= 6.0 Ade, IB = 400 mAde)
= 6.0 Ade,
IB
= 400 mAde)
MP3731
Base-Emitter On Voltage
(lc
Vdc
MP3730
MP3730
MP3731
Base-Emitter Saturation Voltage
(lc
-
VCE(satl
Collector-Emitter Saturation Voltage
(lC
(lc
(lC
-
hFE
DC Current Gain
= 0.5 mAde, VCE = 4.0 Vdcl
MP3730
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(I C
= 0.5 Ade, V CE = 5.0 Vde)
SWITCHING CHARACTERISTICS (Figur. 1)
Fall Time - MP3731
(VCE = 300 V (Peak). IC
IBl
= 0.5 A
(Pe.k),IB2
= 5.0 A, (Peak)
= 2.2 A (Peak)
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
+25.V
I
Ie PROBE
I
1_
PKle-
saUARE WAVE
INPUT
IB(ONI" O.5A
PEAK TURN OFF PULSE", 2.2 A
PEAK Ie" 5.0 A
ADJUST INPUT
TO SET Ie (on) CONDITION
T1: Motorola 125D68782AOI.IJ
NOTE:
If
II
If transformer is not readily available, it may be simulated as follows:
Material: % inch thick EI stack·IQmlnated soft iron. Center leg % inch
by % inch. (No air gap.) Primary: 260 turns No. 30 (AWG)
Secondary: 22 turns No. 24 (AWG)
782
111%
911%
MPC1000
HIGH POWER POSITIVE VOLTAGE REGULATOR
VOLTAGE REGULATOR
The MPC1000 is a positive voltage regulator designed to deliver
load current to 10 Adc. Output current capability can be in·
creased further through use of one or more external pass transistors. The MPC1000 is specified for operation over the junction
temperature range (-55 to +1750 C)
HIGH-CURRENT
10 AMPERE
• 100 Watt Power Capability
• Output Voltage Adjustable - 2 to 35 Vdc
• Output Current to 10 Adc Without External Pass Transistors
• 0.1 % Line and Load Regulation
• Temperature Stabi lity 0.005%/oC Typ
• Adjustable Overload Protection
T
SEATING
PLANE
MAXIMUM RATINGS ITC = +250 C. unless otherwise noted.1
Symbol
Rating
Pulse Voltage from Vin2 to
Vee
Value
Unit
(50 ms)
Vin21pl
50
Vpeak
Vee
Vin2
40
Vdc
Vinl'VO
60
Vdc
'L
10
Adc
Continuous Voltage from Vin2 to
Input·Qutput Voltage Differential
Output Current
Iref
15
rnA
Po
Watts
1/R8JC
100
0.667
TJ
-55 to +175
Storage Temperature Range
T"g
-65 to +175
Operating Case Temperature Range
TC
-55 to +150
Current from V ref
Internal Power Dissipation
@
T C == 25°C
Derate above T C = 25°C
Operating Junction Temperature Range
WloC
°c
°c
°c
FIGURE 1 - CIRCUIT SCHEMATIC
Case Vin1
NOTE:
1. LEADS WITHIN 0.13 mm 10.005)
DlA OF TRUE POSITION AT
MAXIMUM MATERIAL CONDITION.
CASE &62-01
SOCKET/WASHER NOTE:
Mica Insulating Washer: 'Electronic
Essentials Part No. MI·9·1000
Socket: Electronic Essentials
Part No. MS-9-1000
Electronic Essentials, Inc.
49 Bleeker Street
New York, New York 10012
vref
Non·
Inverting
Input
Vee
The Case 662-01 pin configuration is
compatible with 9-pin miniature vacuum
tube sockets.
Inverting
Input
783
MPC1000 (continued)
ELECTRICAL CHARACTERISTICS ITc =250 C, vinl =vin2 = 12 Vde, VEE = 0, Va = 5,0 Vde, IL = 10 mAde, unless otherwise noted.}
Characteristic
Figura No.
Nota
Symbol
Min
Max
Unit
Input Voltage Range
2
1
Vin2
9.5
40
Vde
Output Voltage Range
2
-
Va
2.0
35
Vde
I nput-Output Voltage DIfferential
IlL = 10 mAde}
2
2
Vinl-VO
Vin2' VO
Vinl-VO
Vin2- VO
-
60
38
Vdc
3.0
5.0
-
IlL = 4.0 Adc}
2
2
-
Reference Voltage
2
3
Vrel
6.8
7.5
Vde
Standby Current Drain
IlL = 0, Vinl = Vin2
2
8
liB
-
5.0
mAde
2
2
2,6
2,6
Ragin
Regin
-
0.1
0.5
%VO
%VO
2
2,4,7
Regload
-
0.1
%VO
Line Regulation
IVinl = Vin2
IVinl = Vin2
= 30 Vde,
Va
= 5.0
Vde}
= 12 Vde to 15 Vdel
= 12 Vde to 40 Vdel
Load Regulation
IlL = 100 mAde to IL
= 4.0 Ade, pulsedl
TEMPERATURE PERFORMANCE IlL = 10 mAde Va = 50 Vde VEE =0 unless otherwiSe noted I
Characteristic
Line Regulation
IVinl = Vin2 = 12 Vde to 15 Vdel
TC = -55°C
TC = +125 0 C
Load Regulation
IlL = 100 mAde to 4.0 Ade, Vinl
TC = -55°C
TC = +125 0 C
Figure No.
Note
Symbol
2
2,6
Ragin
2,4,7
2
Max
Unit
0.5
0.5
%VO
%VO
0.6
0.6
%VO
%VO
Regload
= Vin2 = 12 Vdel
Temperature Coefficient of Output Voltage
2
IVinl = Vin2 = 12 Vde, IL = 1.0 Ade, ATC
T C = _55°C to + 1250 Ci
2,4,5
0.015
TCVO
= 180°C,
°c
TYPICAL CIRCUIT CONNECTIONS
FIGURE 2 - Vo Vref
Vin 1o-....,----icase
Vin1o-.....- - - - j Case
O.'~F:J
0.1
Vin20--.-----I
~F:J
9r-----;
Vin20-....- - - - - l
A3
MPC10QO
MPC1000
10f----;
10f---1r~
Al
1000 pF
L-_-r__
Parameter Values for Best Results
Al
~
R2 (Vref
A3
Al
10k
I-
~ -20 0
0
-50
--
~~
+125'C
40
- ;;;t:---
~'C
~
.""".
-55°C
+1250 C _
~
"
ffi
~
-.....;;::;:::
o
100
~
FIGURE 11 - LOAD REGULATION CHARACTERISTICS
WITHOUT CURRENT LIMITING
4
0
~
I--
10
FIGURE 10 - LOAD TRANSIENT RESPONSE
.sz
--
TA = -55'C
15
50
75
100
125
150
-0.15
200
175
t. TIME (",)
10
2.0
10. OUTPUT CURRENT (AMP)
3.0
4.0
FIGURE 13 - 5 VOLT. 50 AMPERE POWER REGULATOR
WITH REMOTE SENSE
FIGURE 12 - 5 VOLT. 10 AMPERE HIGH
EFFICIENCY REGULATOR
lOOk
Input 1
2N56,,8_5_--t'_"- 5 0 Volt
+8.0 V
Input 2
5.0 Volt
Output
+12 V
I
100
~F
+4 0
k
r<>''---,-'N>--------1
1000 pF
(2) R6 + R7::::: VO/10 mA
(31~=~
A2
15 k
A6
3
A7
1
330
+
R7
Isc Rsc
n
Values of R sc ' R6 and R7 shown give I FB "" 6A and Isc = 2A.
V051----------~
Ise
/l
=2
A
'FB
'=
To design a foldback circuit, first find Rsc using Equation (1),
then determine the quantity (A6 + R7) using Equation (2).
Substitute the value of (R6 + R7) into Equation (3) and solve
for R7.
... For Va
Finally obtain the value for R6 from
> V ref use the typical connections shown in
with the additions of R6 and A7 shown above.
6 A
10
787
Equation (2) .
Figure 3
MPC1000 (continued)
FIGURE 17 -1S·VOLT REGULATOR WITH
REMOTESHUTOOWN
+
L
:--.1
Case
6
0.1 iJF
r- 2
+
Rsc
+
500l'F
9
2.7 k
MPC1000
4k
10
VO: 15 V
1000 pF
~1
7
10 k
r
Pulse
MPS3646
3
-
Inhibit
1
-
If short circuit protection is not needed, remote shutdown
can be accomplished using the internal currant IImltn; transistor
bV grounding Pin (9), disconnecting Pin (8) and driving Pin (8)
with an external 1 mA current source during the shutdown mode.
FIGURE 19 - HEATSINK MOUNTING HOLE PATTERN
FIGURE 18 - HEATSINK MOUNTING HOLE PATTERN
.219 DIA 2 PL
.125 ± .002 DIA 9 PL
ON .468 DIA BC
1.177
1.177
1.197
1.197
Mounting Hardware - A Motorola standard mountmg hardware
kit for the MPC1000 is available as a separately purchased item.
This kit is designated by the Motorola part number MK662 and
consists of one socket, one mica Insulating washer and other
associated hardware.
Mounting InformatIon - The MPC1000 must be heat sinked to
operate at maximum ratings. Figures 18 and 19 provide two options for heat sink mounting hole patterns. The option shown in
FIgure 18 results in a lower case·to-sink thermal resistance but is
more complex than the pattern shown in Figure 19.
788
MPF 102 (SIUCON)
Silicon N-channel junction field-effect transistor
designed for VHF amplifier and mixer applications_
MAXIMUM RATINGS
(TA
= 25'C unless otherwise noted)
Rating
Symbol
Value
Unit
VOS
25
Vdc
Oraln-Gate Voltage
VOG
25
Vdc
Gate-Source Voltage
Oraln-Source Voltage
STYLE 5:
PIN I. DRAIN
2. SOURCE
3. GATE
CASE 29
(TO-92)
VGS
25
Vdc
Gate Current
IG
10
mAdc
Total Oevlce Olsslpatlon @ TA • 25'C
%"1
310
mW
2.82
mW/oC
125
°c
-65 to +150
°c
Derate above 2SoC
Drain and Source
may be interchanged
T J lll
Operating JWlction Temperature
Storage Temperature Range
Tstg
ELECTRICAL CHARACTERISTICS (TA = 2S'C unless otherwise noted)
Characteristic
Symbol
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG
= 10 ~Adc,
VOS
BVOSS
= 0)
2S
Gate Reverse Current
IGSS
(VGS •
15 Vdc, VOS • 0)
(VGS •
15 Vdc, VOS
Min
= 0,
T A • 100' C)
Gate-Source Cutoff Voltage
(VOS = 15 Vde, 10 = 2.0 "Ade)
VOS(of!)
Gate-Source Voltage
(V OS = 15 Vde, 10 = 0.2 mAde)
Vos
-
Max
Unit
-
Vdc
2.0
nAdc
-
2.0
~Ade
-
8.0
0.5
7.5
2000
7500
Vde
Vde
ON CHARACTERISTICS
Zero-Gate- Voltage Drain Current 111
(VOS = 15 Vde, VGS = 0 Vde)
lOSS
DYNAMIC CHARACTERISTICS
Forward Transfer AdmIttance' (1)
(VOS = 15 Vde, VGS = 0, ! = 1 kHz)
IYf.1
Input Capacitance
(VOS = 15 Vde, VGS = 0, ! = 1 MHz)
e iss
Reverse Transfer Capacitance
(VOS =15Vdc, VGSoO, !=IMHz)
erss
Forward Transfer Admittance
(VOS = 15 Vdc, VGS = 0, ! = 100 MHz)
IY!. I
Input Conductance
(VOS = 15 Vdc, VGS = 0, !
= 100
Re(Yis)
MHz)
OUtput Conductance
(VOS = 15 Vde, VGS = 0, ! = 100 MHz)
·Pulse Test: Pulse WIdth
:$
p.mhos
pF
-
7.0
-
3.0
pF
-
1600
Jlmhos
-
800
-
200
~mhos
Re(yos)
630 rns; Duty Cycle :$ 10%
(1) Continuous package improvements have enhanced these g.uaranteed MaXImum Ratings as follows·
Derate above 2SoC - B.O mW/oC, T J::O -65 to +150 o C. ()JC = 125° C/W.
789
Jlmhos
Po
=
1.0 W @TC == 2SoC.
MPF 108 (SILICON)
JUNCTION
FIELD-EFFECT
TRANSISTOR
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR
SYMMETRICAL
SILICON
N-CHANNEL
Depletion mode (Type A) transistor designed for VHF amplifier
and mixer applications.
Type A
• Devices are Classified and Identified in 2: 1 I DSS Ranges
• Low Cross-Modulation and Intermodulation Distortion
• Guaranteed 100 M Hz Parameters
• Drain and Source Interchangeable
• Low Transfer and Input Capacitance Crss = 1.2 pF (Typ) @ VDS = 15 Vdc
Ciss = 5.0 pF (Typ) @ VDS = 15 Vdc
• Low Leakage Current
r
• Unibloc Plastic Encapsulated Package
MAXIMUM RATINGS
Symbol
Value
Unit
Drain-Source Voltage
VDS
25
Vdc
Drain-Gate Voltage
VDG
25
Vdc
Gate-Source Voltage
VGS
-25
Vdc
IG(f)
10
mAdc
P D llI
310
2.82
mW
mW;oC
T J I11
-65 to +135
°c
-65 to +150
°c
Forward Gate Current
Total Device Dissipation @T A
Derate above 25 0 C
= 25° C
Operating Junction Temperature
Range
Storage Temperature Range
Tstg
(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings as
follows: PD = 1.0 W @TC= 2SoC. Derate above 2SoC - 8.0 mW;OC. T J = -65 to +150 o C,
8 J C = 12SoC/W.
~
K
D~rcr~
~~
PIN 1.
"n"
2
DRAIN
SOURCE
GATE
3
DIM
A
B
C
D
F
1.150
p
6.350
3.430
2.410
2.030
R
S
s
B
--I ~=rr
MILUm
INCHES
MIN
MIN
MAX
4.450
0.175
0.205
3llilf 4.190.
0.165
4.320
5.330 0.170
0.210
0.407
0.533 0.016
0.021
0.407
0.482 10.016
0.019
L
N
Q
J.. J,!
-
-
1.390
1.270
-
-
2.670
2.670
0.045
-
0.250
0.135
0.095
0.080
CASE 29·02
TO·92
790
1
.,,'""~jj
PLANE
Rating
A
0.055
0.050
-
0.105
0.105
MPF108 (continued)
ELECTRICAL CHARACTERISTICS (T, = 25·C unless otherwise noted)
Characteristic
Symbol
Min
Max
-25
-
0.5
B.O
-
1.0
-1. 0
2000
7500
1600
-
-
75
-
200
-
BOO
-
6.5
-
2.5
-
2.5
-
3.0
Unit
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 IlAde, VDS = 0)
V(BR)GSS
Gate-Source Cutoff Voltage'
(VDS = 15 Vde, ID = 10 IlAde)
V GS(off)
Gate Reverse Current
(VGS = -15 Vde, VDS = 0)
IGSS
(V GS = -15 Vde, VDS = 0, T A = 100·C)
,
Vde
Vde
nAde
IlAde
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current*
(VDS = 15 Vde, VGS = 0)
SMAll·SIGNAl CHARACTERISTICS
,
Forward Transadmittance*
(VDS = 15 Vdc, VGS = 0, f = 1. 0 kHz)
Yls
Forward Transadmittance
(VDS = 15 Vdc, VGS = 0, 1= 100 MHz)
I Yisl
Output Admittance
(VDS = 15 Vdc, Vas = 0, 1= 1.0 kHz)
IYosl
Output Conductance
(VDS = 15 Vdc, Vas = 0, I = 100 MHz)
Re(yos)
Input Conductance
(VDS = 15 Vde, Vas = 0, 1= 100 MHz)
Re(y iS )
Input Capacitance
(VDS = 15 Vde, VGS = 0, I = 1. 0 MHz)
C.
Reverse Transfer Capacitance
(VDS = 15 Vdc, Vas = 0, 1= 1.0 MHz)
C
ISS
Common-Source Noise Figure
(VDS = 15 Vde, Vas = 0, Ra = 1. 0 Megohm, I = 1. 0 kHz)
rss
NF
(VDS = 15 Vde, V GS = 0, Ra = 1. 0 k ohm, f = 100 MHz)
Ilmhos
I'lmhos
Ilmhos
I1mhos
}.1mhos
pF
pF
dB
*To characterize these devices to narrower limits, regarding IDSS, VaS(off) and Yfs, the entire production lot is tested
and divided into color-coded groups, with each ,color dot representing a relatively small range compared with the total
min-max limit of the whole distribution. The color codes and their associated limits are given in the following table.
When 'packaged for shipment, the colors are randomly selected and no speCific color distribution is implied or guaranteed.
Color
Orange
Yellow
Green
Blue
Violet
VG5(off)
IDSS
1. 5
2.5
4.0
7.0
12
mAde'
mAde
mAdc
mAde
mAde
Min, 3.0 mAdc Max
Min, 5.0 mAde Max
Min, B.O mAdc Max
Min, 14 mAde Max
Min, 24 mAde Max
0.5
0.5
1. 0
1. 0
2.0
791
Vde
Vdc
Vdc
Vdc
Vde
Min,
Min,
Min,
Min,
Min,
5.0
5.0
7.0
7.0
B.O
y"
Vde
Vde
Vdc
Vdc
Vde
Max
Max
Max
Max
Max
2000
2000
2500
2500
3000
to
to
to
to
to
6500
6500
7000
7000
7500
Il mhos
Il mhos
Il mhos
Ilmhos
Ilmhos
MPF 109 (SILICON)
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR
JUNCTION
FIELD-EFFECT
TRANSISTOR
Depletion mode transistor designed for general-purpose audio
and switching applications.
SYMMETRICAL
SILICON
N-CHANNEL
• Devices are Classified and Identified in 2: 1 Zero-Gate Voltage
Drain Current Ranges (2: 1 I DSS Ranges)
• Drain and Source Interchangeable
• High AC Input Impedance
• High DC Input Resistance
• Low Transfer and Input Capacitance
• Low Cross-Modulation and Intermodulation Distortion
• Unibloc Plastic Encapsulated Package
r
A-
SEATINGY~ 0 ~
~
MAXIMUM RATINGS
L-
PLANE
Rating
Symbol
Value
Unit
Drain-Source Voltage
VDS
25
Vdc
Drain -Gate Voltage
VDG
25
Vdc
Gate-Source Voltage
VGS
-25
Vdc
Forward Gate Current
IG(f)
10
mAdc
Total Device Dissipation @ T A = 25 'c
Derate above 25'C
P D 111
310
2.82
mW
mW;oC
Operating Junction Temperature
Range
T J 111
-65 to +135
'c
-65 to +150
'c
storage Temperature Range
Tstg
(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings as
follows: Po '" 1.0 W @ T C = 25°C, Derate above 25°C - 8.0 mwflc, T J = -65 to + 150°C,
eJC = 125 0 C/W.
K
--.l
D~rcf-h
R~
1°r-.l
~
STYLE 5:
PIN 1.
DRAIN
2. SOURCE
3.
GATE
DIM
A
B
C
D
00.
B
MILLIMETERS
MIN
MAX
S
INCHES
MIN
MAX
4.450
3.180
4.320
0.407
0.407
5.2 0 0.175
.1
5
5.330 0.170
0.533 0.016
0.482 10.016
0.205
O. 5
0.210
0.021
0.019
L
N
1.150
1.390
1.270
0.055
0.050
P
0
6.350
3.430
2.410
2.030
f
R
S
-
-
2.670
2.670
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO·92
792
S
--I =rr
-
0.105
0.105
MPF109 (continued)
ELECTRICAL CHARACTERISTICS
(T,
= 25"C unless otherwise noted)
Characteristic
Symbol
Min
Max
-25
-
0.2
8.0
-
-1. 0
800
6000
-
75
-
7.0
-
3.0
-
2.5
Unit
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 ~Adc, VOS = 0)
V(BR)GSS
Gate -Source Cutoff Voltage.
(VOS = 15 Vdc, ~ = 10 IIAdC)
VGS(off).
Gate Reverse Current
(VGS = -15 Vdc, VOS = 0)
IGSS
Vdc
Vdc
nAdc
ON CHARACTERISTICS
Zero-Gate Voltage Orain Current(VOS = 15 Vdc, VGS = 0)
SMALL·SIGNAL CHARACTERISTICS
Forward Transadmlttance*
(VOS = 15 Vdc, VGS = 0, 1= 1.0 kHz)
YIB *
Output Admittance
(VOS = 15 Vdc, VGS = 0, 1= 1. 0 kHz)
YOB
Input Capacitance
(VOS = 15 Vdc, VGS = 0, 1= 1. 0 MHz)
C iss
Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, 1= 1. 0 MHz)
Crss
Common-Source Noise Figure
(VOS = 15 Vdc, VGS = 0, RG = 1. 0 Megohm, 1= 1. 0 kHz)
NF
~mhos
~mhos
pF
pF
dB
*To characterize these devices to narrower limits, regarding Inss, VGS(off) and Yfs, the entire production lot is tested and
divided into color-coded groups, with each color dot representing a relatively small range compared with the total min-max
limit of the whole dis~ribution. The color codes and their associated limits are given in the following table.
When packaged for shipment, the colors are randomly selected and no specific color distribution is implied or guaranteed.
I DSS
Color
White
Red
Orange
Yellow
Green
Blue
Violet
O. 5
0.8
1. 5
2. 5
4.0
7. 0
12
mAdc
mAdc
mAdc
mAdc
mAdc
mAdc
mAdc
Min,
Min,
Min,
Min,
Min,
Min,
Min,
1. 0 mAdc Max
1. 6 mAdc Max
3.0
5.0
8.0
14
24
Yfs
VGS(off)
mAdc
mAdc
mAdc
mAdc
mAdc
Max
Max
Max
Max
Max
0.2
0.4
0.4
1. 0
1. 0
2.0
2.0
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
793
Min,
Min,
Min,
Min,
Min,
Min,
Min,
2.0
4.0
4.0
6.0
6.0
8.0
8.0
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Max
Max
Max
Max
Max
Max
Max
800 to
1000 to
1000 to
1500 to
1500 to
2000 to
2000 to
3200
4000
4000
5000
5000
6000
6000
Ilmhos
Ilmhos
Ilmhos
Ilmhos
11 mhos
Ilmhos
11 mhos
MP F111 (SILICON)
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR
N-CHANNEL JUNCTION
FIELD-EFFECT
TRANSISTOR
Depletion Mode device designed for general-purpose amplifier
and switching applications.
•
•
Low Transfer Capacitance - Crss = 1.5 pF (Typ) @ VDS = 10 Vdc
Low I nput Capacitance - Ciss = 4.5 pF (Typ) @ VDS = 10 Vdc
•
Unibloc Plastic Encapsulated Package
•
Drain and Source Interchangeable
MAXIMUM RATINGS
Symbol
Value
Unit
Drain-Source Voltage
VOS
20
Vdc
Drain-Gate Voltage
VOG
20
Vdc
Gate-Source Voltage
VGS
-20
Vdc
Gate Current
IG
10
mAde
Total Device Dissipation@TA '" 25°C
Po (2)
200
2.0
mW
mW/oC
125
°c
°c
Rating
Derate above 25°C
T J (2)
Operating Junction Temperature
Storage Temperature Range
-65 to +135
Tst9
ELECTRICAL CHARACTERISTICS (T A
Characteristic
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
IIG=-1O!lAdc, VOS = 0)
Gate Reverse Current
=25 0 C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
BVGSS
-20
-35
-
Vdc
IGSS
-
0.1
VGSloll)
-0.5
-4.0
100
SEATlNGJt
PLANE
1
L-
nAdc
IVGS=-10Vdc, VOS = 0)
Gate-Source Cutoff Voltage
-10
Vdc
(Vns = 10Vdc,IO = 1.0 !lAde)
STYLE 5:
PIN 1.
2.
3.
ON CHARACTERISTICS
Zero-Gate-Voltage Drain Current
G)
(VOS = 10 Vdc, VGS = 0)
DYNAMIC CHARACTERISTICS
c
z
0.3
-bas
8
:i ~
"~
o
./
1.5~
/
.
5
/"
0.2
-
0.1
1.o~
O.5~
~
gos
.--""
o
o
300
2.0i
/'
30
40
FIGURE 5 - GAIN REDUCTION
SO
80
100
f. FREUUENCY (MHz)
300
200
FIGURE 6 - CONVERSION POWER GAIN
25
-'
10
iii 20
::;!
z
SOMHz
c
30
~
z
40
t
;;:
'"
50
SO
70
·2.0
~
,
...
...
...
rtr~
r"
--60MHz
.........-
- --
200 MHz
/,
f!
,
I
-
.--""
-
r---
200 MHz
f---
15
+2.0
+4.0
+6.0
VG2. GATE 2 TO GROUND VOLTAGE (VOLTS)
e."
z
0.015
z
80.01 0
o
3,0 ~
/'
E
E
-b rs
c
I
0.020;:;:;
./
~0.015
300
-i--t__rY~~~~
.,p
1 Vrms
56
RF
60,200
MHz
l2
100 k
Rl
60 MHz
Rl
10k
200 MHz
1.0 k
270
-=
I
0.001
~F
L1
l2
l3
l4
10 Turns #22 Enameled
15 Turns #26 Enameled 4 Turns #26 Enamelod
0.331lH
on MI llER 4500-4 Core DELEVAN
on MillER 4500·1 Core Oil Same Core as l3
15 Turns #26 Enameled 4 Turns #26 Enameled
2 1/2 Turns
3 1/2 Turns #18, 1/4"
#18,3/8" Dia., on MillER 4500-1 Core on Same Core as L3
Cia" 1/2" long
1/2" long
All F.edthrough Capacitors 1000 pF.
All Variable Capacitors JOHANSON JMC2951, 3.0-15 pF.
799
MPF 161 (SILICON)
P-channel junction field-effect transistors depletion
mode (Type A) designed for general-purpose amplifier
applications.
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain-Source Voltage
VDS
40
Vdc
Drain-Gate Voltage
VDG
40
Vdc
VGS(r)
40
Vdc
lD
20
mAde
Reverse Gate-Source Voltage
Drain Current
STYlE 7:
PIN 1. SOURCE
2. DRAIN
3. GATE
CASE 29
(10-92)
Forward Gate Current
lG(f)
10
mAdc
Total Oevice Dissipation @ T A = 25 'c
Derate above 25'C
P D 111
310
2.82
mW
mW/'C
-65 to +150
'c
-65 to +135
'c
T stg
Storage Temperatore Range
Till
J
Operating Junction Temperature Range
(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings 8'
follows: Po '" 1 ,0 W @ T C ... 25°C. Derate above 25°C - 8.0 mwflc, T J = -65 to + 150°C.
6JC - 125 0 CIW.
ELECTRICAL CHARACTERISTICS
(TA
=2S'C unless otherWise noted)
Characteristic
Symbol
Min
Max
Unit
-
Vdc
40
0.2
8.0
-
10
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 I'Adc, VDS = 0)
V(BR)GSS
Gate-Source Cutoff Voltage"
(VDS = 15 Vdc, lD = 1. 0 I'Ade)
VGS(off)'
Gate Reverse Current
(VGS = 30 Vdc, VDS = 0)
Vdc
lGSS
nAdc
ON CHARACTERISTICS
:!ero-Gate Voltage Drain Current'
(VDS = 15 Vdc, VGS = 0)
mAdc
SMALL·SIGNAL CHARACTERISTICS
Forward Transadmittance *
(VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)
IYfsl'
Output Admittance
(VDS = 15 Vdc, VGS = 0, f = 1. 0 kHz)
I'mhos
800
6000
IYosl
-
75
Input Capacitance
(VDS = 15 Vdc, VGS = 0, f = 1.0 MHz)
Ciss
-
7.0
Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1. 0 MHz)
C rss
-
2.0
-
2.5
-
115
Common-Source Noise Figure
(VDS = 15 Vdc, VGS = 0,
RG = 1. 0 M ohm, f = 1. 0 kHz, BW = 1. 0 Hz)
NF
Equivalent Short-Circuit Input Noise Voltage
(VOS = 15 Vdc, VGS = 0,
e
n
I'mhos
pF
pF
dB
nV/J'Hz
f = 1. 0 kHz, BW = 1. 0 Hz)
*To characterize these devices to narrower limits, regarding VGS(off), lOSS andlYfsl, the entire production lot is tested and divided Into color-coded groups, with each color dot representing a relatively small range compared with the total min-max limit of
the whole distribution. The color codes and their associated limits are given in the following table.
When packaged for shipment, the colors are randomly selected and no specific color distribution is implied or guaranteed.
lDSS
VGS(off)
Color
White
Red
Orange
Yellow
Green
Blue
0.2 Vdc
0.4 Vdc
0.4 Vde
1. 0 Vdc
1. 0 Vdc
2.0 Vde
Min,
Min,
Min,
Min,
2.0 Vdc
4.0 Vdc
4.0 Vdc
6.0 Vde
Min, 6.0 Vdc
Min, 8.0 Vdc
Max
Max
Max
Max
Max
Max
O. 5 mAdc
0.8 mAdc
1.5 mAde
2. 5 mAde
4.0 mAde
7.0 mAdc
800
Min,
Min,
Min,
Min,
Min,
Min,
1. 0 mAdc Max
1.6 mAdc Max
3.0 mAde Max
5. 0 mAde Max
8.0 mAdc Max
14 mAdc Max
IYfsl
800 to 3200 I'mhos
1000 to 4000 I'mhos
1000. to 4000 I'mhos
1500 to 5000 I'mhos
1500 to 5000 I'mhos
2000 to 6000 Mmho.
MPF 161
(continued)
DRAIN CURRENT versus GATE·SOURCE VOLTAGE
FIGURE 1
1.0
.
.sI-
0.9 - DEJ'CES JARKEJ
0.8
0.7
~ 0.6
V~S=15Ivffi
"'~
II:
'" '"
~
II:
c. 0.3
0.2
O. 1
o
o
0.1
0.2
~
~
TA = 125°C
~K
~D
"
0.3
0.4
0.5
E
-55°C
I--.
0.6
['... ~
c. 0.6
25°C
r.....::::: r--
\
r\.
1.0
"l\'
0.8
1.2
0.8
0.9
r-.......
o
1.0
TA = 125°C
~
0.2
:y-..j.
0.7
..........
0.4
o
0.2
0.4
VGS. GATE-8DURCE VOLTAGE (VOLTS)
4.0
.sIa'i
2.5
...:>z
2.0
II:
1.5
!fJ
1.0
II:
II:
;(
c
6.0
Z
w 5.0
"-
."'-
~
..........
...........
az
/
;(
2JoC
.::::::..../
II:
C
125°C
!fJ
"""- ~ ~
0.4
0.6
0.8
1.0
1.2
1.4
1.6
;A = -55°C
4.0
3.0
1.8
25°C
125°C
-
-.......: ~
o
o
2.0
1..-
...... ~
2.0
1.0
~ !!!tIoo..
0.2
"'" <
II:
II:
TA = -55°C
0.5
1.0
~
1.5
10
9.0 \:. DEvicES
" ,II'
'Y
7.0
~ 6.0
a
z
5.0
!fJ
3.0
~ 4.0
c
['\..
i"',.
["'-...
"'.
2.0
14 \ '
112
.......
25°C
D~V'CES
z
: 6.0
..I tv'
........
c
K . . . . t-....
!fJ
I
\
B B.O
125°C
3.0
2.0
2.5
1.0
1.5
VGS. GATE-80URCE VOLTAGE (VOLTS)
4.0
1
4.0
'"
I'-...
2.0
A = -55°C
25°C
1\./
~ 1/
3.5
801
0
-.......;:::
o
4.0
125 C
'~ ~
o
0.5
3.5
3.0
VDS=15V-
JAR KED iLUE
"- '\. L./
I-
~ 10
~ ~....... t---..
1.0
o
o
VDS'\5V-
TA = -55°C
.......... t--.,..........
2.5
FIGURE 6
16
MA~KEO G+N
.......
2.0
VGS. GATE-80URCE VOLTAGE (VOLTS)
FIGURE 5
!z
2.0
VDS=15V-
DE)'CES MArKED YElLOW
VGS.GATE·SOURCE VOLTAGE (VOLTS)
.s
1.8
I-
0.5
:( 8.0
T
1
7.0 -
VOS=15V-
i
.......
o
o
-55°C
8.0
.11
"'\
.......
C
FIGURE 4
~ARKE~ ORAJGE
3.5 t- DEl'CES
.//25i
0.6
0.8
1.0
1.2
1.4
1.6
VGS. GATE·SOURCE VOLTAGE (VOLTS)
FIGURE 3
:( 3.0
1
VDS=15V-
1.6
&
0.5
T
JARKE~ RED
1.8 - OEJ'CES
11.4 \
~ 0.4
E
WH'T~
~\
II:
~
FIGURE 2
2.0
1.0
2.0
3.0
~ ....
4.0
5.0
6.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)
7.0
8.0
MPF256
(SILICON)
Advance InforIll.ation
JUNCTION
FIELD-EFFECT
TRANSISTOR
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR
SILICON
N-CHANNEL
· .. depletion mode junction field-effect transistor designed for low
noise general amplifier applications.
•
Low Noise - Less Than 2.0 dB at 100 MHz, 4.0 dB at 400 MHz.
•
High Gain - Typically 21 dB at 100 MHz, 12 dB at 400 MHz.
MAXIMUM RATINGS
Symbol
Value
Unit
Drain-Source Voltage
VOS
±30
Vdc
Drain-Gate Voltage
VOG
30
Vdc
VGSR
30
Vdc
IGF
10
mAde
Po
350
2.73
mW
mW/oC
TJ,Tstg
-65 to+150
°c
Rating
Reverse Gate-Source Voltage
Forward Gate Current
Total Device Dissipation
Derate above 2SoC
@
TA
= 26°C
Operating and Storage Junction Temperature Range
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
I Min I Typ I Max I
Unit
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
V(BR)GSS
25
-
-
Vdc
VGS(off)
0.5
-
7.5
Vdc
IGSS
-
-
5.0
nAde
(lG = 10 /lAde, VOS = 0)
Gate-Source Cutoff Voltage
(VOS = 15 Vdc, 10 = 200 /lAde)
Gate Reverse Current
SEATINGJ~L-~
PLANE
IVGS = 15 Vde, VOS = 0)
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
1VOS = 15 Vde, VGS = 01
mAde
lOSS'
Red
Green
Violet
3.0
6.0
11
-
-
7.0
13
18
SMALL-SIGNAL CHARACTERISTICS
Forward Transadmittance
IVOS = 15 Vde, VGS = 0, t = 1.0 kHz)
Output Capacitance
1VOS= 15Vde,IO= 10mAde,t= 1.0kHz)
I "put Capacitance
STYLE 5:
6.0
Reverse Transfer Capacitance
Power Gain
Noise Figure
1VOS = 15 Vde,Rs = 500bmsl
100 MHz
400 MHz
3.
pF
-
2.0
-
-
3.0
-
-
1.2
-
pF
DIM
A
B
C
pF
C,..s
Gps
1VOS = 15 Vde, RS = 50 Ohms)
100 Mhz
400 MHz
2.
-
Ciss
IVos = 15 Vdc, 10 = 10 mAde, t= 1.0 MHz)
Smal'~Signal
-
Coss
IVos = 15 Vde, 10 = 10 mAde, t= 1.0MHzl
PIN 1
mmhos
yls
0
F
dB
20
12
-
-
-
NF
-
-
·To characterize these devices to narrower limits, the entire production lot is tested
divided into color-coded groups, with each color dot representing an ID$S range.
and
When packaged for shipment. the colors are randomly selected and no specific color distribution is implied or guaranteed.
This is advance information on a new introduction and specifications are subject to change without notice.
802
U.~UU
K
!.IUU
1.150
1.390
1.270
0.045
6.350
3.430
2.410
2.030
-
0.250
0.135
0.095
0.080
R
S
2.0
4.0
INCHES
MIN
MAX
0.175
0.205
0.125
".165
0.170
0.210
0.016
0.021
0.D19
"."1.
L
N
P
a
dB
MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.4"7
".4.,
2.670
2.670
CASE 29-1l2
TO-92
0.055
0.050
-
0.105
0.105
MPF820 (SILICON)
Advance In:forIllation
JUNCTION
FIELD-EFFECT
TRANSISTOR
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR
SILICON
N-CHANNEL
· .. depletion mode junction field-effect transistor designed for low
noise grounded gate RF amplifier applications.
•
Low Noise - Less Than 4.0 dB at 100 MHz
•
High Gain - Typically 18 mmhos at 100 MHz
MAXIMUM RATINGS
Symbol
Value
Unit
Drain·Source Voltage
VOS
Drain-Gate Voltage
VOG
25
25
Vde
Vde
Rating
Reverse Gate-Source Voltage
Forward Gate Current
Total Device Dissipation
Derate above 25°C
@
TA
VGSR
IGF
25
Vde
10
mAde
Po
625
5.0
mW
mWfOC
TJ,Tstg
-65 to+150
°c
= 25°C
Operating and Storage JUnction Temperature Range
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted I
I
Characteristic
I Max I
Symbol
Min
TVp
Unit
V(BR)GSS
25
-
-
Vde
VGS(off)
-
-
5.0
Vde
IGSS
-
-
5.0
nAdc
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(lG = 10 /LAde, VDS = 0)
Gate-Source Cutoff Voltage
(VDS = 15 Vde, ID = 200 /LAde)
Gate Reverse Current
IVGS = 15 Vde, VOS = 0)
-~
SEATING~~L1PLANE
O-jI~H-~
=::jR~
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
(VOS = 15 Vde, VGS = 0)
SMALL-SIGNAL CHARACTERISTICS
Yfs
-
20
-
mmhos
Output Capacitance
(VDS = 15 Vde, ID = 10mAde, f= 1.0kHz)
Coss
-
3.5
-
pF
I nput Capacitance
(VDS = 15 Vdc, ID = 10mAde, f= 1.0MHz)
Ciss
-
15
-
pF
Reverse Transfer Capacitance
(VDS = 15 Vdc,ID = 10mAde,f= 1.0 MHz)
Crss
-
3.5
-
pF
gig
-
16
-
mmhos
gog
-
16
~mhos
Vfg
-
-
mmhos
Forward Transadmittance
(VDS = 15 Vde, VGS = 0, f = 1.0 kHz)
Common~Gate I "put Conductance
(VDS = 15 Vde, ID = 10mAdc, f= 100 MHz)
Common-Gate Output Conductance
(VDS = 15 Vde, ID = 10mAde, f= 100MHz)
Common-Gate Forward Transadmittance
J-7~
~F r
18
(VDS = 15 Vde, ID = 10mAde, f = 100MHz)
Common-Gate Reverse Transadmittance
(VDS = 15 Vde, ID = 10mAde, f= 100MHz)
Yrg
-
-
130
",mhos
Small--5ignal Power Gain
(VDS = 15 Vde, ID = 10 mAde, See FigureS)
G pg
-
11
-
dB
Noise Figure
(VOS = 15 Vde, ID = 10mAde,See FigureS)
NF
-
-
4.0
dB
r
l
--
3.0
'"u:w
>--
.sw
..,
0'" 2.0
z
z
10
1=
~
:i
z
7.0
«
~
......
1.~ kHz
1!
V
...
:!!
w
t=
~
",
«
'"
5.0
l-
u:
z
ii::
~
1.0
~
~
o
0.1
0.4
0.3
0.2
0.6
0.8
1.0
3.0
~
2.0
0.1
/"
0.5
0.2
FIGURE 4 -OUTPUT AND REVERSE
TRANSFER CAPACITANCE
FIGURE 3 -INPUT CAPACITANCE
2.0
20
" "C~
t'=1.0MHl-
........
......
1.6
.......
!'-....
0
.ew
---
..,z
............
1.2
r"-.
~
r--
<3
§
0.8
"
o
-2.0
-1.0
-3.0
o
o
-4.0
4.0
VGS,GATE·SOURCE VOLTAGE (VOLTS)
"""'- -..
Coss
........
0.4
o
f=l< r-
40
>
-"'"
8.0
~2:
w
~
STYLE 5:
PIN 1.
2.
3.
to
gj
4.0 >
50
60
70
0
lOSS. ZERO·GATE VOLTAGE ORAIN CURRENT ImAI
The Zero-Gate-Voltage Drain Current (lOSSI, is the principle determinant of
other J-FET characteristics. Figure 1 shows the relationship of Gate-Source
Off Voltage IVGSloff11 and Drain-Source On Resistance Irdslonll to lOSS'
Most of the devices will be within ±10% of the values shown in Figure 1.
This data will be useful in predicting the characteristic variations for a given
part number.
For example:
Unknown
rds(on) and VGS range for an MPF970
The electrical characteristics table indicates that an MPF970 has an lOSS
range of 15 to·60 mAo Figure 1 shows rds(on) "" 110 Ohms for lOSS:: 15
mA and 56 Ohms for lOSS:: 60 mAo The corresponding VGS values are 4.1
volts and 10.8 volts.
805
DIM
A
MILLIMETERS
MIN
MAX
4.450
IS
J.IHU
C
0
F
4.320
0.407
0.40
K
~./UU
L
N
1.150
P
6.350
3.430
2.410
2.030
Q
R
S
INCHES
MIN
MAX
5. 00
4.190
5.330
0.533
0.482
0.175
u.ll>
0.170
0.016
0.016
1.390
1.270
-
0.045
0.205
u.165
0.210
0.021
0.019
U.~UU
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29'()2
TO-92
0.055
0.050
0.105
0.105
MPF970, MPF971 (continued)
ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwISe noted)
I
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)GSS
30
-
-
Vde
5.0
1.0
-
12
7.0
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(lG
= 1.0l'Ade, VOS = 0)
Gate-Source Cutoff Voltage
(VOS = 15 Vde, 10 = 10 nAde)
Gate Reverse Current
(VGS = 15 Vde, VOS = 0)
(VGS = 15 Vde, VOS = 0, T A
Vde,
Vde,
Vde,
Vde,
VGS
VGS
VGS
VGS
-
IGSS
-
= 150oC)
Drain-Cutoff Current
(VOS = 15
(VOS = 15
(VOS = 15
(VOS = 15
Vde
VGS(ofl)
MPF970
MPF971
= 12 Vde)
= 12 Vde, T A = 15oCC)
= 7.0 Vde)
= 7.0 Vde, T A = 15oCC)
-
-
1.0
1.0
nAde
I'Ade
10(011)
-
MPF970
MPF970
MPF971
MPF971
-
10
nAdc
10
10
10
)lAde
nAde
)lAde
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current (1)
(VOS = 20 Vde, VGS = 0)
mAde
lOSS
MPF970
MPF971
Drain-Source "ON" Vpltage
(10 = 10 mAde, VGS = 0)
(10 = 1.5 mAde, VGS = 0)
VOS(on)
Static Drain-Source "ON" Resistance
(10 = 1.0 mAde, VGS = 0)
rOS(on)
MPF970
MPF971
15
2.0
-
-
-
-
1.5
1.5
-
-
100
250
-
-
100
250
-
12
12
-
5.0
5.0
3.5
5.0
8.0
10
-
2.0
3.0
5.0
5.0
-
13
88
25
120
-
9.0
15
80
-
60
30
Vde
Ohms
SMALL-SIGNAL CHARACTERISTICS
Drain-Source "ON" Resistance
(VGS = 0, 10 = 0, f = 1.0 kHz)
-
Input Capacitance
(VGS = 12 Vde, VOS = 0, I = 1.0 MHz)
(VGS = 7.0 Vde, VDS = 0, f= 1.0 MHz)
pF
Ciss
MPF970
MPF971
-
-
Reverse Transfer Capacitance
pF
Crss
(VGS = 12 Vde, VOS = 0, 1= 1.0 MHz)
(VGS = 7.0 Vde, VOS = I = 1.0 MHz)
?,
-
MPF970
MPF971
SWITCHING CHARACTERISTICS (See F,gure 6, RK
= 0)
-
(1)
Turn-On Time
ns
ton
(lO(on) = 10 mAde, VGS(oll) = 12 Vde)
(lO(on) = 1.5 mAde, VGS(off) = 7.0 Vde)
-
MPF970
MPF971
-
Rise Time
(lO(on) ~ 10 mAde, VGS(oll) = 12 Vdc)
(lO(on) = 1.5 mAde, VGS(off)' = 7.0 Vde)
Turn-Off Time
(lO(on) = 10 mAde, VGS(oll)
(lO(on) = 1.5 mAde, VGS(off)
Ohms
rds(on)
MPF970
MPF971
ns
Ir
-
MPF970
MPF971
ns
loll
= 12 Vde)
= 7.0 Vde)
MPF970
MPF971
Fall Time
(lO(on) = 10 mAde, VGS(oll) = 12 Vde)
(lO(on) • 1.5 mAde, VGS(off) • 7.0 Vde)
MPF970
MPF971
II
(1) Pulse Test: Pulse W,dth <1001's, Outy Cycle <1.0%,
806
ns
68
MPF970, MPF971 (continued)
FIGURE 3 - RISE TIME
FIGURE 2 - TURN·ON DELAY TIME
..
w
0
;::
0
5w
Q
Z
Q
~
:::>
>-
g
"§
100
'100
70
50
.........
RK = Ro'
......
50
RK =,0
0
;::
0
w
MPF970
3.0
2.0
:!
w
..
r--.... I""'-
7. 0
5.0
~
I-
,.;
....... MPF971
......... ......
7.0
5. 0
RK = o
MPF970
r--
MPF971
3.0
I
MPF971
R • Ro'
0
I'-.. MPF971
10
Tchannel" 2S0 C':::::::E
VGS(offl'12 V (MPF9701
7.0 V(MPF9711
D
Tchannel"" 25 0 C .J-4---+VGS(offl = 12 V (MPF97017.0 V MPF971'-
MPF970
2.0
MPF97Q1. 0
0.2 0.3
111
0.5 0.7
1. 0
1.0
2.0 3.0
5.0 7.0
'0, DRAIN CURRENT (mAl
10
20
0.2
0.3
0.5 0.7
500
..... l.....
300
.
;::
>
~
Q
u.
u.
0
~
:::>
>-
j
200
100
70
50
I"'.
~
-.......;: ~
300 I"...:
Tchannel "" 250~d:VGS(offl = 12 V (MPF9701
7. V MPF9711
RK = RO'
200
II
]
.
w
20
~
.......
RK = 0.1-'
0.5
0.7
1.0
2.0
~
"
r--...
10
20
-VOO
Ro
INPUT
:1:
30
'"
20
_ ~,.±;ch.nn'l = 2SoC
- RO
VGS(off)= 12 V (MPF9701
MPF971
7.0 V (MPF9711
I--+-
,,~
r....
~
RK =0'
MPF970-
.......
......
,......
r-.
-
.......
0.2 0.3
0.5 0.7
1.0
2.0
3.0
5.0
7.0
10
20
paralle' combination of effective load impedance (R'OI and
son
Draln~Source Resistance (fds). During the turn~ff. this charge
flow is reversed.
Predicting turn~n time is somewhat difficult as the channel
resistance 'cis is a function of the gate-source voltage. While Cgs
-=- VGG
PU LSE WIDTH· 2.0~.
DUTY CYCLE< 2.0%
20
discharges through the series combination of RGen and RK. Cgd
must discharge to VOS(on) through RG and RK in series with the
OUTPUT
n.
10
NOTE 1
The switching characteristics shown above were measured using a
test circuit similar to Figure 6. At the beginning of the switching
interval, the gate voltage is at Gate Supply Voltage (+VGGI. The
Orain·Source Voltage (VOSI is slightly lower than Drain Supply
Voltage (VOOI due to the voltage divider. Thus Reverse Transfer
capacitance (erss ) or Gate-Drain Capacitance (Cgd) is marged to
VGG + VOS·
During the turn-on interval, Gate-Source Capacitance (Cgs )
FIGURE 6 - SWITCHING TIME TEST CIRCUIT
INPUT PULSE
tr<0.2S
tf-I V
MPF971
;::
MPF970
,.......
30
10
7.0
5.0
2.0
FIGURE 5 - FALL TIME
FIGURE 4 - TURN·OFF DELAY TIME
500
!w
1.0
10, DRAIN CURRENT (mAl
discharges, VGS approaches Z8ro and rds decreases. Since Cad
discharges through 'ds. turn~n time is non-tinear. During turn-o'(
the situation is reversed with fds increasing as Cgct charges.
The above switching curves show two impedance conditions; 1)
RK is equal to RO, which simulates the switching behavior of
cascaded stages where the driving source impedance is normally
the load impedance of the previous stage, and 21 RK = 0 (low
RGG> RK
RO' = Ro(Rr-SOI
Ro-Rr-SO
impedance) the driving source impedance is that of the generator.
807
MPF970, MPF971 (continued)
FIGURE 8 - TYPICAL CAPACITANCE
FIGURE 7 - TYPICAL FORWARO TRANSFER ADMITTANCE
i
"Ii
~
5.0
~
3.0
il
.....
7. 0
MPF97V ./
z
~
l-
e
i'"
V
Hj:j/
2.0
Tchannel =25°C
\11S is negljgblel
3.0
1.
~
1.0
2.0
3.0
5.0
7.0
......
III
0.1
0.2 0.3 0.5
2.0 3.0
1.0
5.0
10
20 30
VR. REVERSE VOLTAGE (VOLTS)
20
10
I'..
III
2.0
0.03 0.05
0.5 0.7
,
r-(Us= Cgd
5.0
oV v,v
0.2 0.3
'"
7.0
Tchannel =' 260 C
VOS = 20 V
MPF970
/1.1'
.7
I-.
10
V
~
'"~
0
'0. DRAIN CURRENT (mA)
FIGURE 10 - EFFECT OF TEMPERATURE ON DRAIN·SOURCE
ON-STATE RESISTANCE
FIGURE 9 - EFFECT OF GATE·SOURCE VOLTAGE
ON DRAIN·SOURCE RESISTANCE
28
°H:oSS=
7.5 mA
o I
I
II
0
0/
01-0
I
I
/
1/
./
I--
1.0
.....-
40 mA
I
I
/
-/
30mA
I
I
II
I
II15 mA I20 mAI
IO~ l.O~A
VGS =0
[/,v
6
/
,/V
7
V
./
/'
/'
2.0
8r--
1.
[I
I
/
-
2. 0
I
SOmA
./
V
Tchannel =25°C
3.0
4.0
V
I-'" I-'"
0.4
5.0
-60
VGS. GATE·SOURCE VOLTAGE (VOLTS)
-30
30
60
90
Tehann.', CHANNEL TEMPERATURE (DC)
FIGURE 11 - LOW FREOUENCY CIRCUIT MODEL
~.
YIS=jWC 1SS
Vos = 1/ross+ Iweoss
Vb'" IYfsl
Cgs
'/
V V
Yrs=-lwC rss
ros
CISS = Cgd + Cgs
Crss = Cgd
Coss = Cgd + Cds. Cds"" 0
808
120
150
MPF4391, MPF4392, MPF4393 (SILICON)
SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS
N-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS
Depletion Mode (Type A) Junction Field-Effect Transistors designed
for chopper and high·speed switching applications.
•
Low Drain·Source "ON" Resistancerds(on) = 30 Ohms (Max) - MPF4391
= 60 Ohms (Max) - MPF4392
= 100 Ohms (Max) - MPF4393
•
Low Reverse Transfer Capacitance Crss = 3.5 pF (Max)
Guaranteed Fast Switching Times ton = 15 ns (Max) - All Types
toft = 20 ns (Max) - MPF4391
= 35 ns (Max) - MPF4392
= 55 ns (Max) - MPF4393
•
SEATING.J~
t
~
PLANE
MAXIMUM RATINGS
Symbol
Value
Unit
VOS
30
VOG
30
Vdc
Vdc
STYLE 5.
PIN 1.
Gate-Source Voltage
VGS
30
Vdc
Forward Gate Current
IGlfl
50
mAde
2.
3.
Po
625
5.0
mW
mW/oC
Rating
Orain~Source
Voltage
Drain-Gate Voltage
Total Device Dissipation @TA - 25°C
Derate above 2SoC
Operating and Storage Channel
T channel. T stg
~5
to +150
Temperature Range
°c
DIM
A
B
C
0
MILLIMETERS
MAX
MIN
4.450
3.18
4.320
0.407
X
~.407
11./UU
L
N
1.150
P
6.350
3.430
2.410
2.030
A
Q
R
S
5.200
4.190
5.330
0.533
u...,
INCHES
MIN
MAX
0.175
0.I2b
0.170
0.016
u.u16
u.suu
1.390
1.270
2.670
2.670
0.045
0.250
0.135
0.095
O.OBO
CASE 29-02
TO·92
809
0.205
U.165
0.210
0.021
u.ul.
0.055
0.050
0.105
0.105
MPF4391, MPF4392, MPF4393 (continued)
ELECTRICAL CHARACTERISTICS
I
(TA = 250 C unless otherwise noted)
Characteristic
Symbol
Min
V(BR)GSS
30
Typ
Max
Unit
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(lG = 1.0 !lAde, Vas = 0)
Gate-Source Voltage
(Vas
= 15
Vde, 10
Vde
VGS
= 10 nAde)
MPF4391
MPF4392
MPF4393
Gate Reverse Current
(VGS
(VGS
Vde
4.0
2.0
0.5
-
-
10
5.0
3.0
IGSS
= 15 Vde, Vas = 0)
= 15 Vde, Vas = 0, TA =
-
1000C)
Drain-Cutoff Current
(Vas = 15 Vde, VGS = 12 Vde)
(Vas = 15 Vde, VGS = 12 Vde, TA = 1000 C)
-
1.0
0.2
nAde
!lAde
1.0
0.1
nAde
!lAde
I a (of!)
-
-
-
-
60
25
5.0
-
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current (1)
(Vas = 15 Vde, VGS = 0)
Drain-Source "ON" Voltage
(10 = 12 mAde, VGS = 0)
(10 = 6.0 mAde, VGS = 0)
(10 = 3.0 mAde, VGS = 0)
mAde
lOSS
MPF4391
MPF4392
MPF4393
-
130
75
30
-
-
0.4
0.4
0.4
-
-
-
-
30
60
100
-
20
17
12
-
-
-
30
60
100
-
6.0
10
-
2.5
3.2
3.5
3.0
4.0
6.5
15
15
15
1.2
2.0
2.5
5.0
5.0
5.0
20
-
10
20
37
-
7.0
15
15
20
-
29
35
Vde
VOS(on)
MPF4391
MPF4392
MPF4393
Static Drain-Source "ON" ReSistance
(10 = 1.0 mAde, VGS = 0)
-
-
Ohms
rOS(on)
MPF4391
MPF4392
MPF4393
SMALL-SIGNAL CHARACTERISTICS
Forward Transfer Admittance
(Vas = 15 Vde, 10 = 60 mAde, f = 1.0 kHz)
(VOS= 15 Vde,lo =25 mAde,f= 1.0kHz)
(Vas = 15 Vde, 10 = 5.0 mAde, f = 1.0 kHz)
Drain-Source "ON" ReSistance
(VGS
= 0,10
= 0, f
Ohms
rds(on)
= 1.0 kHz)
MPF4391
MPF4392
MPF4393
I nput Capacitance
(VGS = 15 Vde, Vas = 0, f
mmhos
yfs
MPF4391
MPF4392
MPF4393
Ciss
= 1.0 MHz)
Reverse Transfer Capacitance
Rise Time (See Figure 2)
(lO(on) = 12 mAde)
(lO(on) = 6.0 mAde)
(10 (on) = 3.0 mAde)
Turn·Off Time (See Figures 3 and 4)
(VGS(off) = 12 Vde)
(VGS(off) = 7.0 Vde)
(VGS(off) = 5.0 Vdcl
-
ns
-
-
n.
tr
-
MPF4391
MPF4392
MPF4393
-
-
ns
toff
-
MPF4391
MPF4392
MPF4393
Fall Time (See Figure 4)
IVGS(off) = 12 Vde)
(VGS(off) = 7.0 Vde)
I VGS(off) = 5.0 Vdel
-
ton
MPF4391
MPF4392
MPF4393
35
55
ns
tf
MPF4391
MPF4392
MPF4393
(1 \ Pulse Test: Pulse Width";;; 1.00 !l', Outy Cycle ";;;1.0%.
810
pF
pF
Crss
(VGS = 12 Vde, Vas = 0, f = 1.0 MHz)
(Vas = 15 Vde,lo = 10 mAde, f = 1.0 MHz)
SWITCHING CHARACTERISTICS IS ee F'Igure 5 , R'K = 0)
Turn..Qn Time (See Figures 1 and 2)
(lO(on) = 12 mAde)
(IO(on) = 6.0 mAde)
(IO(on) = 3.0 mAde)
-
MPF4391, MPF4392, MPF4393 (continued)
TYPICAL SWITCHING CHARACTERISTICS
FIGURE 1 - TURN-ON DELAY TIME
FIGURE 2 - RISE TIME
1000
1000
500
Jw
'"
;:
>-
RK = Ro'
200
r-.....
100
.AI
TJ - 25 0 C
••••••••• MPF4391 VGS(offl = 12 V
f- - - - MPF4392
=7.0 V
---MPF4393
=5.0 V
500
....... MPF4391 :VGS(offl 12 V
=--kd,....,.RK = Ro' - - - MPF4392 _
= 7.0 V
200 R-+.dr++.....
~
--MPF4393
= 5.0 V
100 .
50
!w
50
z
20
;:
20
~
10
~
5.0
RK - 0
;SO
2.0
.. ~~... ......
~
'"
Q
<;>
w
'-
:::>
~
a;
.::
10
5.0
oS
1.0
0.5 0.7
1.0
3.0
2.0
5.0 7.0
2.0
20
10
30
..... ::: ... "'" .... ''1'
1.0
0.5 0.7 1.0
50
2.0
5.0 7.0
3.0
10
20
30
50
10, DRAIN CURRENT (mAl
10, DRAIN CURRENT (mAl
FIGURE 3 - TURN-OFF DELAY TIME
FIGURE 4 - FALL TIME
1000
500
.-i?'RK - RO' - 200
:;
w
'"
;:
20H-H~~+:-+--4~~+t-+t+-I-t--t-t--j
_ ...........
""=,,,.
5'1°!II~I~RK~-~-0~~~'II~II~II~
....
..
',0:.
~
~
'"
VGS(offl = 12 V
MPF4393: ~:~ ~
100
50
">:--
~
~
:.::.::~ =~~:m
20
10
o..?-
RK =
'"
'.. , '..:::. .
5.0
'0,
.... ..:,
"•
0 ••
_.
2.0H+++l--+-+---+---1--++t-+t+-"-'~4:_,..,..:.""t ..:.
.. ,.
. ....,
2.0 H+f-H--+--+--+--+--+-++-+++-+--+-+-+~
1.0 L..J....u..u..-.l....:.I-....,.L-'....,.L:-1.:':-'-L':--'---:!:--::---I.-:.
0.5 0.7 1.0
2.0
3.0
5.0 7.0 10
20 30
50
1.0 LL..Ll.LL.._L--.L....,.L-'-,l-,..LJLLU-.....JL....,!,--,J,.....J.....,I
0.5 0.7- 1.0
2.0 3.0
5.0 7.0 10
20
30
50
10, DRAIN CURRENT (mAl
10, DRAIN CURRENT (mAl
NOTE 1
FIGURE 5 - SWITCHING TIME TEST CIRCUIT
The switching characteristics shown above were measured using a
test circuit similar to Figure 5. At the beginning of the switching
interval, the gate voltage is at Gate Supply Voltage I-VGGI. The
Drain·Source Voltage IVDSI is slightly lower than Drain Supply
Voltage IVDD) due to the voltage divider. Thus Reverse Transfer
CapacItance ICrssl or Gate·Drain Capacitance (Cgd) IS charged to
VGG + VDS·
-VOD
RO
SET VDS(off) = 10 V
INPUT
RK,
OUTPUT
SOl!
50H
INPUT PULSE
Ir'->O 25 ns
il,,05ns
PULSE WIDTH
~201JS
DUTY CYCLE <20',
During the turnwon interval, GatewSource Capacitance (Cgs ) discharges through the series combination of RGen and RK- Cgd
must discharge to VOS(on) through RG and RK in series with tne
parallel combination of effective load impedance (R'D) and DrainSource Resistance (rdsl. During the turn-off, this charge flow is
reversed.
Predicting turn-on time is somewhat difficult as the channel
resistance rds is a function of the gate-source voltage. While Cgs
discharges, VGS approaches zer and rds decreases. Since Cc:;d
discharges through rds. turn-on time is non-linear. During turn-orf.
the situation is reversed with rds increasing as Cgd charges.
The above switching curves show two impedance conditions; 1)
RK is equal to RD' which simulates the switching behavior of
cascaded stages where the driving source impedance is normally the
load impedance of the previous stage, and 2) R K = 0 (low impedance) the driving source impedance is that of the generator.
811
MPF4391, MPF4392, MPF4393 (continued)
FIGURE 7 - TYPICAL CAPACITANCE
FIGURE 6 - TYPICAL FORWARD TRANSFER ADMITTANCE
0
0
MPF439
1. 0
1.-- ~~
UF1!l
t:/
,.,
15
"/
'l
............
Tchannel = 25 0 C
VDS-15V
3.0
1.0
3.0
0.1
10
1.0 3.0
5.0 1.0 10
ID, DRAIN CURRENT ImA)
1.0
30
100
160
~
Zen
~~ 120
I
"'=>w
0'-'
/ /
'?Z
BO
ow
"''''
§~
I
I
'-'0
;((1
I 15mA/100mAI
/ I
I
I I
I
I
I /
/
/ /
IDSS 25mA
-10
rnA
I
/
/ /
/ / "/
40
;:::::::.. -:
~
o
o
J
J
1.0
-........
1.0
I
1.0
.... w
,?!::!
0.3 0.5
1.0
/
10
3.0 5.0
30
=-=.J
ID - 1.0L
VGS - 0
./
1.6
/
Z~
0":
w'"
'-'"'
0:0
=>z
0-
/
/
~~
<<(
1.4
./
1.1
1.0
-2[:3 O.B
,/
0",
5.0
1.0
6.0
"':!?"
0.6
0.4
-10
B.O
V
...............
o!!!
2rC -
7
7'
...............
"'I-
./'
4.0
I.B
w
..:0
Tchinne, '"
3.0
0.1
FIGURE 9 - EFFECT OF TEMPERATURE ON DRAIN-SOURCE
ON-5TATE RESISTANCE
....-
V
./
...........
VR, REVERSE VOLTAGE IVOLTS)
125mA
50 mA
I----
IIIII
1.0
0.D3 0.05
50
FIGURE 8 - EFFECT OF GATE-50URCE VOLTAGE
ON DRAIN-50URCE RESISTANCE
z<
Tchannel = 25°C
(Cds is neglig ibis)
1. 5
1.0
0.5
....w
..:
I"-.
~ ......
5.0
~ /'
5.o~
Cgs
......
1.0
y
-
0
MPF4391
-----
-40
-10
20
50
BO
110
140
110
Tehannel, CHANNEL TEMPERATURE 1°C)
VGS, GATE·SOURCE VOLTAGE IVOLTS)
FIGURE 10 - EFFECT OF lOSS ON DRAIN-SOURCE
RESISTANCE AND GATE-50URCE VOLTAGE
100
80
~-;r 70
~:e 60
"'w
~~
r---..
§
~
40
30
......... 1-'"
.) ~
V
10
o
10
10
'"
~
V
20
NOTE 2
9.0
V< r-
N
~~ 50
'?..:
1
The Zero-Gate-Voltage Drain Current (lOSS), is the principle deter8.0 w
Figure 10 shows the
minant of other J-FET characteristics.
relationship of Gate-Source Off Voltaso IVGSloff)) and Orain7.0 ~
Source On Resistance (rds(on)) to lOSS. Most of the devices will
o
........ V
6.0 >
be within ±10% of the values shown In Figure 10. This data will
~(i) be useful in predicting the characteristic variations for a given
VGSloff) - r- f- 5.0 §!:i
part number.
0 0
For example:
4.0 ~~
Unknown
3.0
rdslon) and VGS range for an MPF4392
.;
1'"'-1The electrical characteristics table indicates that an MPF4392
2.0 ~
has an lOSS range of 25 to 75 mAo ·Figure 10, shows rdslon)
1.0
= 52 Ohms for lOSS = 25 mA and 30 Ohms for lOSS = 75 mAo
The corresponding VGS values are 2.2 volts and 4.8 volts.
0
80 90 100 110 110 130 140 150
V
/rOSlon @VGS- 0
[\..
OE
:= t;;
I
I
w
S
/
Tchannel'" 25°C
90
30
40
50
60
10
IDSS, ZERO·GATE·VOLTAGE ORAIN CURRENT ImA)
812
MPI-3401 (SILICON)
SILICON PIN MICRO-I DIODE
SILICON PIN
SWITCHING
MICRO·I DIODE
... designed for industrial/communications applications where space
is at a premium. May be used at VHF frequencies for band switch·
ing and general·purpose attenuator circuits.
•
•
Electrically Similar to MPN3401
Rugged PI N Structure Coupled with Wire Bond Construction for
Optimum Reliability
• Supplied in Space·Saving Miniature Package
MAXIMUM RATINGS
Symbol
Value
Unit
Reverse Voltage
VR
35
Volts
Forward Power Dissipation @TA =2SoC
Derate above 2SoC
PF
200
2.0
mW
mWloC
Operating Junction Temperature
TJ
+125
°c
T stg
-65 to +150
°c
Rating
Storage Temperature Range
Device marked with white top.
f-- A --l
I
I
I
Symbol
Min
Typ
Max
Unit
V(BRIR
35
-
-
Volts
Diode Capacitance (Note 11
(VR = 2C) Vdc, f = 1.0 MHz)
CT
-
-
1.0
pF
Series Resistance (F Igure 5)
RS
-
-
0.7
Ohms
IR
-
-
0.1
p.A
Series Inductance (Note 2)
(f = 250 MHz) (Measured at Lead
Stop'" 118")
LS
-
3.0
-
nH
Case Capacitance
Cc
-
0.15
-
pF
Reverse Breakdown Voltage
(lR =
10~A)
PIN 1. ANODE
I
IL
2. C:l0E
1f
ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)
Characteristic
STYLE I:
U
)}:::=:K::=::::;::!J
C::::::=:=L===f,
(IF = 10 rnA)
Reverse Leakage Current
(VR
(f
= 25 Vdc)
= 1.0 MHz'
A
NOTES
1. CT is measured using a capacitance bridge (Boonton Electronics Model 75A or
equivalent) .
2.
DIM
L~ is measured on a package having a short instead of a die, using an impedance
bridge (Boonton Radio Model 250A RX Meter).
MIllIMETERS
MAX
MIN
INCHES
MIN
MAX
1.98
0.078
0.048
0.010
0.004
0.020
0.0111
0.165
0.035
0.015
C
1.22
0
0.25
0.10
0.51
0.03
4.19
0.89
0.38
F
H
J
K
L
N
2.34
1.47
0.41
0.15
0.76
0.08
4.45
1.14
0.64
0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025
TYPICAL HIGH DENSITY MOUNTING TECHNIQUE
Optional Package with Raised
Circular Tab Available; Specify
C='in:=I
Case 166·01.
DD2~
PCBOAROMOUNTlN~
CASE 166'()2
813
to
MPI·3401 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - SERIES RESISTANCE
FIGURE 2 - FORWARD VOLTAGE
1.6
50
I
1.4
in
"....
~
:: 1.2
ew
..,'"z
\
1.0
~ 0.8
iii
'"
13
~
:2
.§
TA' 25'C
~
'"~
\
\.,.
0.6
I
I
40
30
TA' 25'C
Q
r---.......
0.4
'"
~
20
!i-
10
I
I
~
/
0.2
o
o
2.0
4.0
6.0
8.0
10
12
14
V
o
16
0.5
0.6
IF. FORWARD CURRENT (rnA)
FIGURE 3 - DIODE CAPACITANCE
5. 0
15
TA-25'C
U
2.0
C
/
10
.... 4.0
;!:
Ii
VR' 25 VOLTS
1
~
1.0
RGURE4-LEAKAGECURRENT
10
7.0
5
w
g
0.9
100
40
~
~
0.8
VF. FORWARO VOLTAGE (VOLTS)
20
z
0.7
~
1.0
~
0.4
ffi
O. 1
>
1.0
o.7
L
/
L
~ 0.04
~
0.5
./
0.0 1
0.004
0.2
+3.0
-3.0
-6.0
-9.0
-12
-15
-18
-21
-24
0.00 1
-60
-27
I'
-20
+20
+60
+100
+140
TA. AMBIENT TEMPERATURE ('C)
VR. REVERSE VOLTAGE (VOLTS)
FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHOD
10pF
H,
2. Use a short length of wire to short the test circuit from
point "A" to "B", Then connect the power supply providing 10 mA of bias current to the test circuit.
SOOn
o-----I~(--....,!~--'''''''~--o+
Boonton
Model 33A or B
C
LoO
All measurements@ 100 MHz
A
~
0 UT
3. Adjust the capacitance scale arm of the bridge and the "G"
zero control for a minimum null on the "nUll meter".
The nuli occurs at approximately 130 pF.
PowerSupp1v
i~"ure'leadSSh'Uld be~-
4. Replace the wire short with the device to be tested, Bias
the device to a forward conductance state of 10 rnA.
5. Obtain a minimum null on the "nUll meter". with the
capacitance and conductance scale adjustment arms.
6. Read conductance IG) direct from the scale. Now read
the capacitance value from the scale (~13O pF) and subtract 120 pF which yields capacitance ICI. The forward
resistance (RS) can now be calculated from:
short as possible.
To measure seri~s resistance, a 10 pF capacitor is used to reduce
the forward capacitance of the circuit and to prevent shorting of
the external power supply through the bridge. The smali signal
from the bridge is prevented from shorting through the power
supply by the 500-0hm resistor. The resistance of the 10 pF
capacitor can be considered negligible for this measurement.
2.533G
RS=--C2
1. The RF Admittance Bridge (Boonton 33A or B) must be
initially balanced, with the test circuit connected to the
bridge test terminals. The conductance scale will be set at
zero and the capacitance scale will be set at 120 pF, as required when using the 100 MHz test coil.
Where:
G - in micro mhos,
C - in pF.
RS - in ohms
814
MPM5006 (SILICON)
NPN SILICON
RF AMPLIFIER
TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR
· .. designed for television, AM/FM, and general-purpose RF amplifier
appl ications.
• Low Capacitance - Cob = 1.6 pF (Max) @ VCB = 10 Vdc
•
High Power Gain - PG = 20 dB (Min) @f = 100 MHz
• High Collector-Emitter Sustaining Voltage BVCEO(sus) = 40 Vdc (Min) @ IC = 1.0 mAdc
•
Low Noise Figure - NF = 5.5 dB (Typ) @ f = 100 MHz
• Forward AGC Characteristic
r
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
VCEO
40
Vdc
SEATlNG~i~
~
PLANE
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
Collector Current - Continuous
IC
100
mAdc
Total Power Dissipation @TA = 25'C
Derate above 25' C
PD
310
2.81
mW
mW!'C
Total Power DisSipation @TA = 60' C
Derate above 60' C
PD
210
2.81
mW
mW!'C
Operating Junction Temperature Range
TJ
-55 to +135
'c
THERMAL CHARACTERISTICS
STYLE I,
PIN I, EMITTER
lor
~: ~~~iECTOR
DIM
A
B
C
D
p
0
R
S
...
0
MILLIMETERS
MIN
MAX
4.450
•
S
B
3.180
4.320
0.407
0.407
12.700
1.150
-
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
5,20
0.175
4.190' r 0.125
5.330 0.170
0.533 0.016
0.462 I O]JTS-
-
1.390
1.270
-
-
2.670
2.670
0.045
0.250
0.135
0.095
0.080
CASE29'()2
TO-92
815
I
~..---1.
--Is=rT
K
L
N
Thermal Resistance, Junction to Ambient
~Fr
D~~~
F
Characteristic
l
A
O. 05
I!:l6D
0.210
0.021
Il:lIfIr
-
0.055
0.050
0.105
0.105
MPM5006 (continued)
ELECTRICAL CHARACTERISTICS
(TA
=25"C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
40
-
-
40
-
-
4.0
-
-
-
1.0
50
-
5.0
30
70
-
-
-
2.0
-
-
0.98
-
1.1
1.6
4.0
6.0
-
-
5.5
-
35
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Vollage(l)
(IC =1. 0 mAdc, IB =0)
VCEO(sus)
Collector-Base Breakdown Voltage
(IC =100 "Adc, ~ =0)
BVCBO
Emitter-Base Breakdown Vollage
(~ =100 "Ade, IC =0)
BVEBO
Collector Cutoff Current
(VCB =20 Vdc, ~ =0)
(VCB =20 Vde, ~ =0, T A
I CBO
=65"C)
Vdc
Vdc
Vde
nAde
I'Ade
ON CHARACTERISTICS
DC Current Gain (1)
(IC =4. 0 mAde, V CE
hFE
=10 Vde)
Collector-Emitter Saturation Voltage
(IC =10 mAde, IB =5.0 mAde)
VCE(sat)
Base-Emitter Saturation Voltage
(IC =10 mAde, IB =5. 0 mAde)
VBE(sat)
Vdc
Vde
SMAll·SIGNAl CHARACTERISTICS
Output Capacitance
(VCB =10 Vde, ~
Cob
=0, f =100 kHz)
Small-Signal Current Gain
(Ic =4. 0 mAde, VCE =10 Vde, f
hfe
=100 MHz)
Noise Figure (See Figure 2)
(IC =4.0 mAde, V CC =15 Vdc, RS
pF
-
NF
=100 ohms, f =100 MHz)
dB
FUNCTIONAL TESTS
Power Gain
(IC =4. 0 mAde, V CC
(IC =4. 0 mAde, VCC
(Figure 1)
28
-
=4.0 mAde,
(Figure 2)
20
26
-
6.0
9.0
12
(IC
=12 Vde, f =455 kHz)
=12 Vde, f =10.7 MHz)
VCC =12 Vde, f =100 MHz)
PG
Automatic Gain Control
(IC for which PGAGC =PG -30 dB) (Figure 2)
(l)Pulse Test: Pulse Width
=300 I's,
Duty Cycle
dB
AGC
mA
=1. 0%.
FIGURE 1 - 10.1 MHz UNNEUTRALIZED AMPLIFIER TEST CIRCUIT
.12 V
1.1~H
l1~H
300
5.0 k
L2
C, and C2 AReO 1465
L1" 111'H (0.9 inch of 1632 AIRQUX COIL)
Input Tap at 2.9 T from cold side.
O.... tput Tap at 3.66 T from cold side
50n
OUTPUT
200pF
±50pF
L2 = 1.1 /lH (1.5 inches of #608AIROUX COlLI
Input Tap at 2.3 T from cold side
Output Tap at 0.6 T from cold side
0.5~F
All resistors are 112 Watt.
Typical gain at Ie = 4.0 mAde is 34 dB.
FIGURE 2 - 100 MHz AGC, POWER GAIN AND NOISE FIGURE TEST CIRCUIT
270 ·VCC=12V
r--:? 1
2.2 k
1000 pF
T1
-=
Ballun Core
1/4" 1.0 •• 1/8" Long
5 turns primary
5 turns secondary
1000 pF
1132 Bifilar W1re
T2
0.7-10 pF
1/4" 1.0.
5" 2 turns tapped
up 1/2 turn.11S
Buss Wire
3lI0
816
12 pF
OUTPUT
MPN3401 (SILICON)
MPN3402
SILICON PIN
SWITCHING DIODE
SILICON PIN DIODE
· .. designed primarily for VHF band switching applications but also
suitable for use in general·purpose switching and attenuator circuits.
Supplied in an inexpensive low·inductance plastic package for low
cost, high-volume consumer and industrial requirements.
•
Rugged PIN Structure Coupled with Wirebond Construction for
Optimum Reliability
•
Both 1 pF and 2 pF Devices for Design Selectivity
•
Very Low Series Resistance at 100 MHz - 0.34 Ohms (Typ)
@IF=10mAdc
•
Low Inductance Mini-L Package
•
Mini-L Ridge Clearly Identifies Cathode Lead for Easy Handling
and Mounting
C"hod'~
;!tIT
MAXIMUM RATINGS
Rating
Symbol
Valu.
Unit
Roverse Voltage
VR
35
Volts
Forward Power Dissipation @TA - 25°C
Dorata above 25°C
PF
400
4.0
mW
mW/oC
TJ
+125
°c
Tstg
-65 to +150
°c
Junction Temperature
Storage Temperature Range
MPN3401 - BROWN RIDGE
MPN3402 - BROWN RIDGE,
RED BODY STRIPE
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Reverse Breakdown Voltage
IIR = 10"AI
Symbol
Min
Typ
MIX
Unit
VIBR)R
35
-
-
Volts
-
-
1.0
2.0
pF
-
-
0.7
0.6
Ohms
-
Diode Cepacitance INote 1) MPN3401
IVR = 20 Vdc, f = 1.0 MHz) MPN3402
CT
Series Resistance (Figure 5) MPN3401
(IF = 10mA)
MPN3402
RS
Reverse Leakage Current
IR
-
-
0.1
"A
LS
-
3.0
-
nH
IVR
=25 VdG)
Series Inductance (Note 2)
-
A
If = 250 MHz) IMeasured at Lead
Stop"" 1/8")
CaM Capacitance
•
C
D
F
Cc
-
0.1
-
pF
If = 1.0 MHz)
H
J
K
L
N
R
S
T
U
NOTES
•
I
DIM
III. MAX
186
tl2
1.91
0.64
0.118
1.30
0.64
'.06
2.36
1.12
0.19
1.89
1.14
0.43
4.11
3.18
2.16
0.89
0.18
1.65
0.89
'.32
2.
1.37
1.04
IU5
1.40
0.89
I. H
MAX
MI.
~152
0.115
817
~125
~
U25
0.003
U&1
U26
0.035
0.007
0.0&1
0.
0.110
0.103
0.054
~1611
~D93
0.1144
0.031
0.412
0.Q45
0.017
1. eT is measured using a capacitance bridge (Boonton Electronics Model 75A or
equivalent).
2. LS is measured on a package having a short Insteed of • die, using an Impedance
bridge (Boonton Radio Model 250A RX Meter).
0.162
~07&
CASE 228
D.lMI
0.502
0.0&&
0.027
PIN 1. CATHODE
2. ANODE
MPN3401, MPN3402 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - SERIES RESISTANCE
FIGURE 2 - FORWARD VOLTAGE
1.6
50
1
1
1
U
1.4
0;
e'"
"'uz
'"to
:<
1.2
:J:
\
1.0
0.8
~
~
..s
....
15
=25°C
\
30
~
~
;"
t:l 0.6
if
TA
TA = 25°C
"'"
~
t'--
0.4
40
I
20
I
'"
~
!i-
J
10
If
0.2
a
a
2.0
4.0
6.0
8.0
10
12
,-/
a
14
16
0.5
0.6
IF. FORWARD CURRENT (rnA)
0.7
0.9
0.8
1.0
VF. FORWARD VOLTAGE (VOLTS)
FIGURE 3 - DIODE CAPACITANCE
FIGURE 4 - LEAKAGE CURRENT
lOa
20
a
VR = 25 VOLTS
a
~
5.a
TA
;:r:
25°C
13
~
/
:>
1.0
2i
L
I. a
"'"'ffi o. 1
MV3402
<:3
li
4.a
~ O. 4
2. a
g"'
a
i....
~
~ 7.0
~ 0.0 4
0, 7
0, 5
'"
MV~401
-
./
0.0 I
0.004
O. 2
+3.0
-3.0
-6.0
-9.0
-12
-15
-18
-21
-24
0.00 I
-60
-27
-20
+20
+60
+100
+140
TA. AMBIENT TEMPERATURE 10C)
VR. REVERSE VOLTAGE (VOLTS)
FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHOD
10 pF
2. Use a short length of wire to short the test circuit from
point "A" to "8". Then connect the power supply providing 10 mA of bias c~rrent to the test circuit.
3. Adjust the capacitance scale arm of the bridge and the "G"
zero control for a minimum null on the "null meter".
The null occurs at approximately 130 pF.
4. Replace the wire short with the device to bt.'~sted. Bias
the device to a forward conductance state of 10 mAo
~. Obtain a minimum null on the "nuli meter", with the
capacitance and conductance scale adjustment arms.
6. Aead conductance' (G) direct from the scale. Now read
the capacitance value from the scale (:::::: 130 pF) and sub-,
500!l
Hi o-----jlf-(------j!~----'''''''',..---O+
Boonton
Mod,1 33A or B
Lo 0
I
A
~
DUT
.
Power Supply
Le~.~,.~ ~-
All measurements@100MHz
short as possible.
To measure series resistance, a 10 pF capacitor is used to reduce
the forward capacitance of the circuit and to prevent shorting of
the external power supply through the bridge. The small signal
from the bridge is prevented from shorting through the power
tract 120 pF which yields capacitance (C). The forward
resistance (AS) can now be calculated from:
supply by the 50Q-ohm resistor. The resistance of the 10 pF
capacitor can be considered negl'igible for this measurement.
2.533G
RS=---
1. The RF Admittance Bridge (Boonton 33A or B) must be
initially balanced, with the test circuit connected to the
C2
Where:
G - in micromhos,
C - in pF,
RS - in ohms
bridge test terminals. The conductance scale will be set at
zero and the capacitance scale will be set at 120 pF, as required when using the 100 MHz test coil.
818
MPN3411
(SILICON)
PIN ATTENUATOR DIODE
SILICON PIN
ATTENUATOR
DIODE
· .. designed primarily as a general purpose attenuator diode. Sup·
plied in popular low·inductance, Mini·L plastic package for low cost,
high·volume consumer and industrial requirements.
•
Rugged PIN Structure Coupled with Wirebond Construction for
Optimum Reliability
•
Characterization of Forward Resistance @ 5, 20, 50 and 100 MHz
for Greater Design Flexibility
•
Low Inductance Mini·L Package
•
Mini·L Ridge Clearly Identifies Cathode Lead for Easy Handling
and Mounting
.
•
Can be used for AGC in T and Pi configurations.
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
Reverse Voltage
VA
25
Volts
Forward Power Dissipatton @ T A - 2SoC
PF
400
4.0
mW
mW/oC
+125
°c
-65 to +150
°c
Derate above 25°C
Junction Temperature
TJ
Storage Temperature Range
T stg
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.1
Symbol
Min
Typ
Max
Unit
VIBAIA
25
100
-
Volts
Diode Capacitance (Note 1)
(VA = 20 Vdc, f = 100 MHzl
CT
-
-
0.45
pF
Forward Resistance
MPN3411
IIF = lamA, f= 100MHzI MPN3412
AF
-
10
15
Ohms
-
-
-
3.0
-
nH
Characteristic
Reverse Breakdown Voltage
OA = 10 "AI
Series Inductance (Note 2)
2 ANODE
LS
C
Cc
-
0.1
-
pF
0
F
H
J
K
L
N
R
S
T
U
NOTES
1
DIM
A
B
If = 250 MHzl IMeasured at Lead
Stop ""/8'"1
Case Capacitance
If = 1.0 MHzl
PIN 1. CATHODE
MILLIMETERS
MIN
MAX
3.86
4.11
2.92
3.18
1.91
2.16
0.64
0.89
0.18
0.08
1.30
1.55
0.64
0.89
4.06
4.32
2.36
2.62
1.12
1.37
0.79
1.04
11.99 12.15
1.14
1.40
0.43
0.69
INCHES
MAX
MIN
0.152 0.162
0.115 0.125
0.075 0.085
0.025 0.035
0.003 0.007
0.051 0.061
0.025 0.035
0.160 0.170
0.093 0.103
0.044 0.054
0.031 0.041
0.472 0.502
0.045 0.055
0.017 0.027
CT is measured uSing a capacitance bridge (Boonton Electronics Model 75A or
equivalent).
2. LS is measured on a package having a short instead of a die, using an Impedance
bridge (Boonton Radio Model 250A AX Meter).
819
CASE 226
MPN3411 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FORWARD RESISTANCE vorsus CURRENT
FIGURE 2 - MPN3412
FIGURE 1 - MPN3411
10 k
S.O
TJ = 2SoC
.........
; 1.0 k
'"
'"
~ 100
~
50
~ 100
~~
20
z
I=JIk
~ 200
ii
~
10
S.O
0.01
0.02
O.OS
f= 100MHz
'l~O MHz
'!J20 MHz
S·OMHz
~2.0 k
81.0 k
~ 700
~ SOO
~
~ 200
~ 500
T = 2S oC
S.O k
f=IOOMHz
I. SO MHz
20 MHz
5.0 MHz
2.0
0.1
0.2
O.S
1.0
IF, FORWARD CURRENT (mAl
2.0
5.0
~
a:
i!
SO
~
20
10
0.01
10
.......
t-.;;:::
0.02
O.OS
0.1
0.2
O.S
1.0
2.0
IF. FORWARD CURRENT (mAl
S.O
10
FIGURE 3 - FREQUENCY versus CAPACITANCE
2. 0
0
7
V =0
TA=2SoC
""
i'...
S
t'-
0.3
0.2
1.0
2.0 3.0 S.O
20 30 SO
10
f, FREUUENCY (MHzI
100
200 300 SOO
1000
FIGURE 4 - FORWARD RESISTANCE TEST METHOD
10 pF
2. Use a short length of wire to short the test circuit from
point "A" to "S". Then connect the power supply providing 10 mA of bias current to the test circuit.
SOO II
HI o-----j(~-_!---'\vv...---O+
Boonton
Model 33A or B
IA~.
L--I
LoO
All measur-ements@100MHz
0 U.T.
B
1
For test Ii"u", leads should be
short as possible.
3. Adjust the capacitance scale arm of the bridge and the "G"
zero control for a minimum null on the "null meter".
The null occurs at approximately 130 pF.
4. Replace the wire short with the deVice to be tested. Bias
the deVice to a forward conductance state of 10 rnA.
5. Obtain a minimum null on the "null meter", with the
capacitance and conductance scale adjustment arms.
6. Read conductance (Gl direct from the scale. Now read
the capacitance value from the scale (~130 pF) and subtract 120 pF which yields capacitance (e). The forward
resistance (RF) can now be calculated from:
Power Supply
~
To measure forward resistance, a 10 pF capacitor is used to reduce
the forward capacitance of the circuit and to prevent shorting of
the external power supply through the> bridge. The small signal
from the bndge IS prevented from short; ng through the power
supply by the 50hm reSistor. The resistance of the 10 pF
capacitor can be considered negligible for this measurement.
1. The RF Admittance Bridge (Boonton 33A or BI must be
initially balanced, with the test circuit connected to. the
bndge test terminals. The conductance scale will be set at
zero and the capacitance scale will be set at 120 pF , as reQuired when using the 100 MHz test coil.
Where:
G - in micro mhos,
C in pF,
RF - in ohms
820
K - frequency dependent
constant - Boonton 75A
instruction manual.
MPN3601
(SILICON)
MICROWAVE SILICON PIN DIODE
· .. designed for band switching, general-purpose switching, and
attenuator applications where a hermetic low parasitic package
is desirable.
•
Supplies in Ceramic Pill Package for Microwave Applications
•
Rugged PIN Structure Coupled with Wirebond Construction for
Optimum Reliability
•
Very Low Series Resistance @ 100 MHz RS = 0.34 Ohms (Typ) @ IF = 10 mA
•
Low Series Inductance LS = 3.0 nH (Typ) @f = 250 MHz
•
Completely Switched at VR
MICROWAVE
SILICON PIN
SWITCHING DIODE
Cathode
= -2 V
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Reverse Voltage
VR
35
Volts
Forward Power Dissipation @TA - 2SoC
Derate above 2SoC
PF
400
4.0
mW
mW/oC
TJ
+125
Tstg
-651o +150
°c
°c
Junction Temperature
Storage Temperature Range
ELECTRICAL CHARACTERISTICS (T A
Characteristic
Reverse Breakdown Voltage
=25
0
C unless otherwISe noted)
Symbol
Min
V(BR)R
35
Typ
Max
Unit
Volts
IIR'10!'A)
Diode Capacitance (Note 1)
CT
1.0
pF
0.7
Ohms
0.1
!'A
IVR ' 20 Vdc, f ' 1.0 MHz)
Senes ReSIstance (Figure 5)
IIF' 10 mA, f, 100 MHz)
RS
Reverse Leakage Current
IR
0.34
(VR ' 25 Vdc)
Senes I nductanee (Note 2)
LS
nH
0.8
If' 250 MHz)
Case Capacitance
(f, 1.0 MHz)
STYlE 1
PIN 1 CATHODE
2. ANODE
Cc
pF
0.15
NOTES
1. CT is measured using a capacitance bridge (Boonton Electronics Model 75A or
equivalent).
2.
INCHES
MILLIMETERS
LS IS measured on a package haVing a short Instead of a die, using an impedance
bndge (Boonton Radio Model 250A AX Meter).
821
DIM
MIN
MAX
MIN
MAX
A
B
C
0
F
2.97
1.96
3.78
3.30
2.21
4.09
0117
0.130
0.087
1.52
1.68
1.50
1.78
1.65
1.93
0060
0.059
0.070
H
0.077
0.149
CASE 45·01
0.161
0.066
0.065
0.076
MPN3601 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - SERIES RESISTANCE
FIGURE 2 - FORWARO VOL TAGE
1.6
50
I
I
1.4
0;
":z:
w
'-'
\
1.0
z
«
l;; O.B
~
fZ
~
II
oS
TA = 250C
1= 100 MHz
\
>-
~
a'"
1"'-
0.6
~
«
~
r----
0.4
if
40
;;{
1.2
S
!I
30
TA=25 0 C
I
20
/
5:
~
/
10
0.2
o
o
I-"'"
o
2.0
4.0
B.O
60
12
10
14
16
05
07
0.6
IF, FORWARO CURRENT (mAl
O.B
FIGURE 3 - DIODE CAPACITANCE
FIGURE 4 - LEAKAGE CURRENT
40
VR
10
w
'-'
7.0
=
15 VOLTS
L
a
0
z
~
1.0
100
20
0..
09
VF, FORWARO VOLTAGE (VOLTSI
TA - 25 0C
0
3. 0
U
;t
2.0
;J
L
1
w
§
c;
ci
1.0
7
5
L
4
L
00 1
0.00 4
O. 3
O. 1
'30
-30
-6.0
-90
-11
-15
-18
-21
-24
000 1
-60
-27
l"""
-20
+10
+60
+100
+140
TA, AMBIENT TEMPERATURE (OCI
VR, REVERSE VOLTAGE (VOLTSI
FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHOD
10 of
HI
2. Use a short length of wire to short the test CircuIt from
POint "A" to "B". Then connect the power supply proVid,ng 10 rnA of bias current to the test cIrcuit.
500"
~If-(-----16~----'VVI.~--O+
Boonton
Model33A orB
Lo 0
I
~ 0 UT
L.e. .",. .,,~
All measurements@ 100 MHz
A
3. Adjust the capacitance scale arm of the bridge and the "G"
zero control for a minimum null on the "null meter".
The null occurs at approximately 130 pF.
4. Replace the wire short wIth the device to be tested. Bias
the deVice to a forward conductance state of 10 rnA.
5. Obtain a minimum null on the "null meter", with the
capacitance and conductance scale adjustment arms.
6. Read conductance (G) direct from the scale. Now read
the capacitance value from the scale (:::::::: 130 pF) and subtract 120 pF which yields capacitance (e). The forward
resistance (RS) can now be calculated from:
Power Supply
short as possible
To measure series resistance, a 10 pF capacitor is u.sed to reduce
the forward capacitance of the circuit and to prevent shorting of
the external power supply through thE' bridge. The small signal
from the bridge is prevented from shorti n9 through the power
supply by the 500-ohm resistor. The resistance of the 10 pF
capacitor can be considered negligible for thiS measurement.
2.533 G
RS=---
1. The RF Admittance Bridge (Boonton 33A or BI must be
initially balanced, with the test cirCUit connected to the
bridge test terminals. The conductance scale will be set at
zero and the capacitance scale will be set at 120 pF , as required when using the 100 MHz test coil.
C2
Where:
G - in micromhos,
C - in pF,
RS - in ohms
822
MPQ918
(SILICON)
QUAD DUAL IN-LINE
NPN SILICON ANNULAR HIGH
FREQUENCY AMPLIFIER TRANSISTORS
QUAD DUAL IN-LINE
NPN SILICON HIGH
FREQUENCY AMPLIFIER
TRANSISTORS
· .. designed for low·level, high-gain amplifier applications.
•
Low Noise Figure - @ I C = 1.0 mAdc
NF = 4.0 dB (Typ)
•
High Current·Gain-Bandwidth Product fT = 850 MHz (Typ) @ IC = 4.0 mAdc
•
Transistors Similar to 2N91 8
•
TO-116 Package - Compact Size Compatible with IC Automatic
Insertion Equipment
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
15
Vdc
Collector-Base Voltage
VCB
30
Vdc
Emitter-Base Voltage
VEe
3.0
Vdc
IC
50
mAde
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Four
each
Transistor
EqualPowar
Transiston
Power Dissipation @ T A = 25°C (1)
Derate above 2SoC
Po
500
4.0
900
7.2
mW
mW/oC
Povwr Dissipation @ T C = 25°C
Derate above 25°C
Po
6.7
0.B25
2.4
19.2
mW/oC
Operating and Storage Junction
Temperature Range
TJ,Tstg
Watts
-55 to +150
°c
THERMAL CHARACTERISTICS
C_
Junction to
Ambiant
Unit
Effective, 4 Die
151
52
250
134
°CIW
°CIW
01-04 or 02-Q3
01-02 or Q3-04
34
2.0
70
26
%
%
Junction to
Characteristic
Each
Thermal Resistance
Coupling Factors
oi.
MILLIMETERS
DIM
A
•
MIN
MAX
1803
1879
60'
660
-%- Pl-t_457
38
51
+
CONNECTION DIAGRAM
H
INCHES
-~~~-Wo
140
160
260
180
m~jJj[:
065
1-~~-dn{.!L
040
~\oDBSC
132
183
-+- r-tk+-t&
K
+
~J81
_
100
N
T
54
U
V
&4 RAn
13
38
89
10 TYP
051
011
-~
115
IJ5
290
-
..
015
310
I
'"
10 TYP
025 RAD
01'
DimenSIon L wleadcrntllllntwllen
lormed parallel
c
B
B
CASE 646
TO-116
c
823
MPQ918 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for eaen die, equation (1)
simplifies to
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(31 "TJl = RO 1 (POl + K02 P02 + K03P03 t K04 P041
(11 "TJl = ROl POl + R02 K02 P02 + R03 K03P03
+ R04 K04 P04
For the conditions where POl
follows:
(21 RO(EFFI = ATJ1/POT
IS
=
4 PO'
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.
An effective package thermal resistance can be defined as
where: PDT
= P02 = P03 = P04. PDT
equation (3) can be further simplified and by substltutmg Into
equation (2) results in
Where & T J1 is the change In junction temperature of die 1
ROl thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated in die 1 through 4
K02 thru 4 is the thermal coupling between die 1 and
die 2 through 4.
the total package power diSSIpation.
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted I
I
I
Symbol
Min
TVp
Max
Unit
BVCEO
15
-
-
Vde
Coliector·Base Breakdown Voltage
(lC = 1.0"Ade,'E = 01
BVCBO
30
-
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
3.0
-
-
Vdc
'CBO
-
-
10
nAdc
-
110
80
-
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 3.0 mAde, IB = 01
(IE
= 10 "Ade. IC = 01
Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)
ON CHARACTERISTICS (1)
DC Current Gain
20
Collector-Emitter Saturation Voltage
(lC
-
hFE
(lC = 0.1 mAde, VCE = 1.0 Vdel
(lC = 3.0 mAde, VCE = 1.0 Vdel
(lC = 10 mAde. VCE = 1.0 Vdcl
= 10 mAde, IB = 1.0 mAde)
Base-Emitter Saturation Voltage
-
50
-
VCE(sati
-
0.11
0.4
Vde
VBE(sat)
-
0.84
1.0
Vde
IT
600
850
-
MHz
Cob
-
0.75
1.7
pF
Cib
-
1.1
2.0
pF
NF
-
4.0
6.0
dB
(IC= 10mAdc,'B = 1.0mAdei
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, 1= 100 MHzI
Output Capacitance
(VCB = 10 Vde, IE = 0, 1= 140 kHz)
Input Capacitance
(VBE = 0.5 Vde,lc = 0, f = 140 kHzI
Noise Figure
(lC = 1.0 mAde, VCE = 6.0 Vde, RG = 400 Ohms, I = 60 MHzI
(II Pulse Test: Pulse Width ";;3oo!J.S, Duty Cvele ";;2.0%.
824
MPQ1000
QUAD DUAL-IN-LINE NPN LED DISPLAY DRIVER
QUAD DUAL-IN-LiNE
NPN LED DISPLAY DRIVER
· .. designed for DC to VHF amplifier applications.
•
DC Current Gain Specified - 10 to 150 mAdc
•
Low Coliector·Cutoff Current ICBO = 50 nAdc (Maxi @ VCB = 30 Vdc
•
Collector Breakdown Voltages BVCEO = 20 Vdc (Mini BVCBO = 40 Vdc (Mini
•
TO·llB Packaging - Compact Size Compatible With IC
Automatic Insertion Equipment
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
20
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
IC
500
mAde
Rating
Common-Emitter Voltage
Collector Current ~ Continuous
Four
Each
Transistors
Transistor
Equal Power
= 2SoC
Po
650
5.18
1250
10
mW
mW/oC
Power Dissipation @TC "" 2SoC
Derate above 2SoC
Po
1.0
8.0
3.0
24
mW/oC
Operating and Storage Junction
TJ,Tstg
Power Dissipation @ T A
Derate above 25°C
Watts
°c
-55 to +150
Temperature Range
C::::::Q
~A
II-p
~r.'~
u
A
1~ ~G~ ~~D";::" ~J~
NC
K
NOTES:
1. LEAOSWITHIN 0.13 mm
(0.005) RAOIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "L'· TO
CENTER OF LEADS
WHEN FORMEO
PARALLEL
THERMAL CHARACTERISTICS
Junction to
Junction to
Ca..
Characteristic
Ambient
Unit
Thermal Resistance (1)
Each Die
Effective, 4 Die
125
41.6
193
100
°C/W
°C/W
Coupling Factors
01·04 or 02-03
01·02 or 03-04
30
2.0
60
24
%
%
(1) R6JA is measured with the device soldered into a typical printed circuit board.
CONNECTION DIAC3RAM
C
BEE
B
C
'~:: =&il
c
8
E
B
OIM
A
B
C
0
F
G
H
J
K
L
M
N
P
Q
MILLIMETERS
MAX
MIN
18.16 18.80
6.60
6.10
4.51
4.06
0.38
0.51
1.52
1.02
2.54 BSC
1.83
1.32
0.30
0.20
3.43
2.92
1.31
1.81
100
0.51
0.13
0.51
1.02
0.38
0.16
CASE 646
TO-116
C
825
MPQ1000 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip davie., coupling of hut between die occur•.
The junction temperatures can be calculated 8S foflows:
Assuming equal thermal resistance for e8ch die, equation (1)
simplifies to
(31 .o.TJI = ROI (POI + K02 P02 + K03P03 + K04 P041
(11 .o.TJI = ROI POI + Rn K02 P02 + R03 K03P03
+ R04
For the condItIons where Po I = P02 = P03
K04 P04
= P04,
POT
=4 PO'
equation (3) can be further simplified and by substituting into
equation (2) results In
Where D. T J1 is the change in junction temperature of die
R81 thru 4 is the thermal resistance of die 1 through 4
P01 thru 4 is the power dissipated in die 1 through 4
K02 thru 4 is the thermal coupling between die 1 and
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.
die 2 through 4.
An effective package thermal reSistance can be defined as
follOWS:
(21 RO(EFFI =.o.TJI/POT
where: PDT IS the total package power dissipation.
ELECTRICAL CHARACTERISTICS
(T A = 25 0 C unl ..s otherwise noted I
Characteristic
Symbol
Min
Typ
Max
Unit
Colleetor·Emitter Breakdown Voltage(1 I
(lC = 10 mAde, IB = 01
BVCEO
20
-
-
Vde
Collector-Base Breakdown Voltage
BVCBO
40
-
-
Vde
BVEBO
4,0
-
-
Vde
ICBO
-
-
50
nAdc
lEBO
-
-
50
nAdc
OFF CHARACTERISTICS
(lc = 10 /lAde, IE = 01
Emitter-Base Breakdown Voltage
(IE = 10/lAde, IC = 01
Collector Cutoff Current
(VCB = 30 Vde, IE
= 01
Emitter Cutoff Current
(VEB
= 2.0 Vde,
IC
= 01
ON CHARACTERISTICS (1)
DC Current Gain
-
50
50
40
Collector-Emitter Saturation Voltage
(lC = 150 mAde,lB
-
hFE
(Ie = 10 mAde, VCE = 10 Vdel
(lC = 50 mAde, VCE = 10 Vdel
(lC = 150 mAde, VCE = 10 Vdel
VCE(sati
= 15 mAde)
Base-Emitter Saturation Voltage
Vde
-
-
0.5
-
-
1.3
IT
175
-
-
MHz
Cob
-
-
B,O
pF
Cib
-
-
30
pF
Vde
VBE(sati
(lC= ISO mAde,lB = 15 mAdei
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC
= 20 mAde, VCE = 20 Vde, I =
100 MHzI
Output Capacitance
(VCB
= 10 Vde,
IE
= 0, 1= 100 kHzI
Input Capacitance
(VBE = 0.5 Vde, Ie
= 0, 1= 100 kHzI
(II Pulse Test: Pulse Width .. 300 /lS, Outy Cycle .. 2.0%.
826
MPQ 1050 (SILICON)
QUAD DUAl-IN-LiNE NPN SILICON
QUAD DUAl-IN-liNE
NPN SILICON
HIGH-CURRENT
SWITCHING TRANSISTOR
HIGH-CURRENT SWITCHING TRANSISTOR
designed for high-current, high-speed switching applications.
•
Low Collector· Emitter Saturation Voltage VCE(sat) ~ 0.45 Vdc (Max) @ IC ~ 500 mAde
•
High Current·Gain - Bandwidth ProductfT ~ 200 MHz (Min) @ IC ~ 50 mAde
•
Fast Switching Speeds @ IC ~ 500 mAdc
ton ~ 35 ns (Max)
toft ~ 45 ns (Max)
•
TO-116 Package - Compact Size Compatible with IC Automatic
I nsertion Equipment
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
30
Vdc
Collector-Emitter Voltage
VCES
50
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
10
Collector Current - Continuous
•
Adc
Four
Each
Total Power Disslpation@TA
Derate ahove 25°C
= 25°C
Total Power Dissipation @ T C :: 25°C
Derate above 2SoC
Operating and Storage Junction
Temperature Range
Po
Po
Transistor
Transistors
Equal Power
750
5.98
1700
13.6
mW/oC
1.25
10
3.2
25.6
Watts
mW/oC
mW
-55 to +150
TJ.Tstg
°c
NOTES
1. LEAOSWtTHINO.13mm
(0.005l RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "l" TO
CENTER OF LEADS
WHEN FORMED
PARAllEL
THERMAL CHARACTERISTICS
Characteristic
Junction to Junction to
Ca..
Ambient
Unit
Effective, 4 Die
100
39
167
73.5
°C/W
°C/W
01-04 or 02-03
01-02 or 03-04
46
5.0
56
10
%
%
Thermal Resistance (1)
Each Die
Coupling Factors
A
•
C
0
CONNECTION DIAGRAM
F
B
INCHES
MILLIMETERS
DIM
G
H
J
K
L
M
N
p
Q
MAX
MIN
18.1S 18.80
S.lO
aGO
4.57
4.06
0.38
0.51
1.02
1.52
2.54 BSe
1.32
1.83
0.20
0.30
3.43
2.92
7.7
7.87
10<>
0.51
1.02
0.13
0.38
0.76
0.61
MI.
0.715
0.240
016
0.015
CASE 646
TO-116
(1) R8JA is measured with the device soldered into a typical printed circuit board.
827
MAX
0.740
0_26
0.180
0.020
~04ll
0.060
0.10DBSe
0.052 0.072
0.008 0.012
0.115 0.135
0_ 1
~290
- 10'
0.020 0.040
0.005 O. I
0.020 0.030
MPQ1050 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming eQtlal thermal resistance for each die, equation
In multiple chip devices, ccupling of heet be~.n die occurs.
The junction temperatures can be calculated as follows:
slmpl if teS to
(1)
13) 6TJl = RellPDl + Ke2 PD2 + Ke3P03 + Ke4 P04)
For the conditIon. where POI = P02' P03 = P04, PDT =4 PO'
equation (31 can be further simplified and by substituting into
equation (21 results In
= ReI POI + Re2 K92 P02 + R83 K83 P03
+ R84 K84 P04
Where 11TJl il the change in junction temperature of die
ReI thru 4 is the thermal resistance 01 die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
11) 6TJl
Values for the coupling factors when either the, case or the
ambient is used as a reference are given in the tabte on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will resul t.
die 2 through 4.
An effective package thermal resistance can be defined as
lollows:
(2) RSIEFF) = 6T Jl/POT
where: PDT IS the total package power diSSipatiOn.
ElECTR ICAl CHARACTER ISTICS ITA: 25°C unless otherwise noted.)
Choracteristic
Symbol
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltagell)
BVCEO
IIc = 10 mAde, IB = 0)
Coliector·Emitter Breakdown Voltoge
BVCES
IIc : 100 /lAde, VBE : 0)
Emitter·Base Breakdown Voltage
BVEBO
liE = 10 /lAde, IC : 0)
Collector Cutoff Current
ICBO
IVCB : 30 Vde, Ii: : '0)
ON CHARACTERISTICS (1)
DC Current Gain
hFE
IIC: 100 mAde, VCE: 1.0 Vde)
IIc = 500 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage
VCElsall
IIc : 500 mAde, IB : 50 mAde)
I
I
Min
Max
Unit
30
-
Vde
50
-
Vde
5.0
-
Vde
-
500
nAde
40
30
-
0.45
Vde
VBElsat)
0.8
1.0
Vde
IT
200
-
MHz
Cob
-
10
pF
Cib
-
80
pF
Turn-On Time
ton
-
35
ns
IVCC: 30Vdc,IC: 500 mAde, VBElofl): 3.8Vdc,IB1: 50mAde)
Turn-Off Time
IVCC : 30 Vde, IC: 500 mAde, IBl : IB2: 50 mAdcl
tolf
-
45
ns
Base-Emitter Saturation Voltage
IIc : 500 mAde, IB = 50 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
-
IIc : 50 mAde, VCE : 10 Vde, I : 100 MHz)
Output Capacitance
IVC8 ~ 10 Vdc, IE : 0, I : 100 kHz)
Input Capacitance
IVEB: 0.5 Vde, IC: 0, f: 100 kHz)
SWITCHiNG CHARACTERISTICS (FIgure 1)
11) Pulse Test: Pulse WIdth ";;300 /lS, Duty Cycle";; 2.0%.
FIGURE 1 - TURN·ON AND TURN'()FF TIME TEST CIRCUIT
30 V
1511
9.7 V
n
--.J
tr,tt..;;:.ons
Pulse Width ~ 1.0 JJs
Zin = 50 0.
D.C. <2.0%
1.0/lF
To
E----o Sampl jng
Oscilloscope
4311
L
10011
1.0/lF
T211
-=
1.0k11
-3.8 V
MPQ2221 (SILICON)
MPQ2222 For Specifications, See MHQ2221 Data,
828
2in ;;;'100 k11
t r <1.0n5
MPQ2369 (SILICON)
MPQ2483
MPQ2484
For Specifications, See MHQ2369 Data.
(SILICON)
QUAD DUAL IN·LlNE
NPN SILICON ANNULAR
AMPLIFIER TRANSISTORS
QUAD DUAL IN-LINE
NPN SILICON
AMPLIFIER TRANSISTORS
... designed for low·level. high·gain amplifier applications.
•
Low Noise Figure -@ IC = lO/lAdc
NF = 3.0 dB (Typ) - MP02483
= 2.0 dB (Typ) - MP024B4
•
Transistors Similar to 2N24B3 and 2N2484
• TO·116 Package -- Compact Size Compatible with IC Automatic
Insertion Equipment
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEB
6.0
Vdc
IC
50
mAde
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Four
Transistor
Transistors
Equal Power
PD
500
4.0
900
7.2
mW
mW/oC
Power Dissipation @ T C = 25°C
Derate above 25°C
PD
0.825
6.7
2.4
19.2
mW/oC
Operating and Storage Junction
TJ.T'IQ
each
Power Dissipation @ T A = 25°C (11
Derate above 25°C
Watts
-55 to +150
°c
Temperatu re Range
(11 Second Breakdown occurs at power levels greater than 3 times the power dissipation rating.
THERMAL CHARACTERISTICS
Characteristic
Junction to Junction to
Ca..
Ambient
Unit
Thermal Resistance
Each Di.
Effective, 4 Die
151
52
250
134
°C/W
°C/W
Coupling Factors
01·04 or 02-03
01-02 or 03-04
34
2.0
70
26
%
%
CONNECTION DIAGRAM
B
B
'1570 TYP
64
70 TYP
64 An
025 RAD
13
DD5
015
OlmI!1l1l0n"L"!ole.dclnt.rlmlwhen
formed/!ll ••11eI
"
CASE 646
TO-116
C
B
E
B
C
829
MPQ2483, MPQ2484 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices,coupling of he.t between die occurs.
Assuming equal thermal resistance for each die, equation (U
The junction temperature can be calculated os follows:
simplifies to
(11 ATJl
(31 aT Jl = R81 (POI + K82 P02 + K83P03 + K84 P041
Forthe conditions where POI = P02 = P03 = P04, PDT = 4 PO'
= RBI POI + R82 K82 P02 + R83 K83P03
+ R84 KB4 P04
equation (3) can be further simplified and by substituting into
Whore ATJ 1 is the change in junction temperature of die 1
equation
RBI thru 4 is the thermal resistance of die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
KB2 thru 4 is the thermal coupling between die 1 and
die 2 throuWl 4.
An effective package thermal resistance can be defined as
follows:
(21 RB(EFFI = aT Jl/POT
results in
Values for the coupling factors """"en either the case or the
ambient is used as 8 reference are given in the table on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of tile peckage should be used so thet lowest possible junction
temperatu ras will result.
where: PDT is the total package power dissipation.
ELECTRICAL CHARACTERISTICS (TA
(2)
= 250 C unless otherwise noted I
Characteristic
Symbol
Min
Typ
Collector-Emittar Braekdawn Voltage(11
(lC· 10 mAdc, IB • 01
BVCEO
40
-
-
Vde
Coliector·Ba.. Breakdown Voltage
(lC· 10 ,.Adc, IE ·01
BVCBO
60
-
-
Vde
Emitter·Base Breakdown Voltage
(IE ·'0"Adc,IC· 01
BVEBO
6,0
-
-
Vdc
Collector Cutoff Current
(VCB • 46 Vdc, IE ·01
ICBO
-
-
20
nAdc
Emitter Cutoff Current
(VBE • 3.0 Vdc, IC = 01
lEBO
-
-
20
nAdc
100
-
Unit
OFF CHARACTERISTICS
ON CHARACTERISTICS
DC Current Gain( 11
(lC· 0,1 mAdc, VCE· 5.0Vdcl
(lC
hFE
MP02483
MP02484
MP02483
MP02484
MP02483
MP0246.4
= 1.0mAdc, VCE· 5.0 Vdcl
(lC = 10 mAdc, VCE
= 5.0 Vdcl
-
-
-
.-
-
-
-
0.13
0.15
0.35
0.5
-
0.58
0.70
0.7
0.8
IT
50
100
-
MHz
Cob
-
1.8
6.0
pF
Cib
-
4.0
8.0
pF
-
3.0
2.0
-
200
150
300
150
300
Coliector·Emitter Saturation Voltage
(lC·'.0mAde,IB -0.1 mAdcl
(lC = 10 mAdc, lB· 1.0 mAdcl
VCE(sati
a-Emitter On Voltage (11
(lC· 100 "Ade, VCE • 5.0 Vdcl
(lc· 10 mAdc, VeE· 5.0 VdcI
VBE(onl
-
-
-
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Cumnt-Gain-Bandwidth Product
(lc· 500 ,.Adc, VCE = 5.0 Vdc, f
Coliector·Ba.. Capacitance
(VCB • 5.0 Vde, IE = 0; f
= 20 MHzl
= 100 kHzl
Input Capacitance
(VBE • 0.5 Vde, IC = 0, f = 100 kHzl
Nolle Figure
(lc· 10 "Ade, VCE ·5.0 Vde, RS· 10 k ohms,
f· 10 Hz to 15.7 kHz, BW. 10 kHzl
NF
MP02483
MP02484
MPQ2906I MPQ2907 (SILICON)
For Specifications, See MHQ2906 Data.
830
dB
MPQ3303
(SILICON)
QUAD DUAL·IN·LlNE
NPN SILICON ANNULAR
LOW·VOL TAGE HIGH·CURRENT TRANSISTORS
QUAD DUAL·IN·LlNE
NPN SILICON
LOW VOLTAGE
HIGH CURRENT
SWITCHING
TRANSISTORS
· .. designed for high·current, high-speed switching, and MOS translator applications.
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc
• High Current-Gain-Bandwidth Product fT = 400 MHz (MinI @ IC = 100 mAdc
• Fast Switching Speeds at High Currentston = 15 ns (Max) @ IC = 1.0 Adc
toff = 25 ns (Max) @ IC = 1.0 Adc
• Transistor Similar to 2N3303
• TO-116 Package - Compact Size Compatible with IC Automatic
Insertion Equipment
• Collector-Emitter Breakdown Voltage BVCEO = 25 Vdc with appropriate parameter modifications as
a special
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
12
Vdc
Collector-Base Voltage
Vce
25
Vdc
Emitter-Base Voltage
VEe
4.0
Vdc
IC
1.0
Adc
Collector-Emitter Voltage
Collector Current - Continuous
Total Power Dissipation
Four
Transistors
Equal Power
@
TA
= 2SoC
Po
650
5.2
1250
10
mW
mW/oC
@
TC:: 25°C
PD
1.0
8.0
3.0
24
Watts
mW/oC
Derate above 25°C
Total Power Dissipation
Derate above 2SoC
Each
Transistor
Operating and Storage Junction
-55 to +150
TJ.Tstg
°c
Temperature Range
'
r-" A"--\
~
j - --- ::
F
SEATING -
THERMAL CHARACTERISTICS
PLANE
G
Characteristic
Thermal Resistance
Junction to Junction to
C_
Ambient
-
T
- - --- . ...J...
-
-
I
--1 !:iro
'M
J
Unit
Effective. 4 Die
125
41.6
193'
100'
°CIW
°C/W
01-04 or 02-03
01-02 or 03-04
30
2.0
60
%
%
Each Die
-
OIM
A
Coupling Factors
25
•
C
o
F
G
H
CONNECTION DIAGRAM
J
K
l
M
N
T
U
V
DUl'llnlllCln"L"talNdclIIlIlfltnlwtMn
IOfl".dPllflllll
CASE 646
TQ·116
·R6JA is measured with the device soldered into a typical printed circuit board.
831
J-\I-
MPQ3303 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip dllvices coupling of heat between die occurs.
The junction temperatures can be calculated as follows:
(1) ATJl
= ReI
+ R04
Assuming equal thermal resistance for each dMt. equation (1)
simplifies to
(3) AT Jl = ROI IPOI + K02 P02 + K03P03 + Ke4 P04)
For the ronditions where POI =P02 = P03 = P04, PDT =4 PO'
equation (3) can be further simplified and by substituting into
POI + Re2 K02 P02 + R03 K03P03
K04 P04
\Nhere f'j. T J1 is the change in junction temperature of die
ROI thru 4 is the thermal resistance of die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
Ko2 thru 4 is the thermal coupling between die 1 and
equation (2) results in
Values for the coupling factors when either the case or the
ambient is used as a reference are _ven in the table on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.
die 2 through 4.
An effective package thermal resistance can be deftned as
follows:
(2) ROIEFF) = AT Jl/POT
where: PDT is the total package power dissipation.
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter BreakdQwn Voltage
(lC = 10 mAdc, IB = 0)
BVCEO
12
-
-
Vde
Collector-Base Breakdown Voltage
(lc = l00"Ade, IE = 0)
BVCBO
25
-
-
Vde
Emitter-Ba.. Breakdown Voltege
(IE = 100 "Ade, IC = 0)
BVEBO
4.0
-
Vdc
ICES
-
-
100
"Adc
30
40
45
55
200
-
0.22
0.52
0.33
0.7
-
0.87
1.04
1.1
1.4
CMractwistic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCE = 15 Vdc, VBE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 100 mAdc, VCE· 0.5 Vdc)
(lC = 300 mAdc, VCE = 0.5 Vdc)
hFE
Collector-Emitter Saturation Voltage
(Ic· 300 mAde, IB = 30 mAdc)
(lC = 1.0 Ade, lB· 0.1 Adc)
VCE(set)
Base-Emitter Saturation Voltege
(lC· 300 mAdc,lB = 30 mAde)
IIc ·'.0Ade,IB = 0.1 Adc)
VBE(setl
-
Vdc
-
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ie = 100 mAdc, VCE = 5.0 Vdc, f = 100 MHz)
IT
400
600
-
MHz
Output Capacitance
(VCB 5.0 Vde, IE = 0, f
Cob
-
5.0
10
pF
= 1.0 MHz)
Input Capacitance
(VBE 0.5 Vdc, IC = 0, f
Cib
-
22
30
pF
= 1.0 MHz)
Ion
-
12
15
ns
toff
-
18
25
ns
=
=
SWITCHING CHARACTERISTICS IFigure 1)
Turn-On Time
IVCC = 12 Vde,IC = 1.0 Ade, VBE(off)
=4.0 Vde, IBI = 100 mAdc)
Turn·Off Time
IVCC = 12 Vdc,IC = 1.0 Adc, IBI = IB2 = 100 mAdc)
FIGURE 1 - TURN-ON AND TURN·OFF TIME TEST CIRCUIT
Voo -4.0V
Vcc
+12V
11
1.0k
PULSE WIDTH = lOOns
:1:JL
PULSE SOURCE
tr=tfo;;;T.Ons
Zjn"'50n
PRFlOkn
Cin<50pF
MPQ3467
(SILICON)
QUAD DUAL IN-LINE
PNP SILICON ANNULAR
MEMORY DRIVER TRANSISTORS
QUAD DUAL-IN-L1NE
PNP SILICON
MEMORY DRIVER
TRANSISTORS
· .. designed for medium-current, high-speed switching, ferrite core
and plated wire memory driver, and MOS translator applications.
•
Low Collector-Emitter Saturation VoltageVCE(sat) = 0.5 Vdc (Max) @ IC = 500 mAdc
•
High Collector-Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 10 mAdc
• Fast Switching@ IC = 500 mAdc
ton = 40 ns (Max)
toff = 90 ns (Max)
• Transistor Similar to 2N3467
•
TO-116 Package - Compact Size Compatible with IC Automatic
I nsertion Equipment
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEe
5.0
Vdc
IC
1.0
Adc
Common-Emitter Voltage
Collector Current - Continuous
Four
Transistor
Transistors
Equal Power
750
5.98
1700
13.6
mW/oC
1.25
10
3.2
256
Watts
mW/oC
Each
Power Dissipation @ T A '" 25°C
Derate above 25°C
Po
Power Dissipation @TC
Po
=
25°C
Derate above 2SoC
Operating and Storage Junction
mW
-55 to +150
TJ,T stg
°c
Temperature Range
~~r-H
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance (11
Coupling Factors
Junction to Junction to
Ambient
Case
Effective, 4 Die
100
39
167
73.5
01-04 or 02-03
01-02 or 03-04
45
5.0
55
10
Each Die
(1 J ROJA is measured with the device soldered into a typical printed circuit board.
U-----_--I
.
SEATING
Unit
PLA:'
~I--o
%
%
DIM
---------L
J
K .M
MILUMETERS
MIN
MAX
A
1803
B
609
660
C
D
F
406
38
102
457
-51
165
l
M
N
T
U
V
1879
2fl4BSC
J
K
132
23
292
737
183
36
343
787
ioo
64
89
70 TYP
64AAO
13
38
DImenSion "L"to lead
lormedparallel
~entelhnewhen
CASE 646
TO-116
833
-~!
°CIW
°C/W
G
H
CONNECTION DIAGRAM
A
rr'iT
N
J
-\1-
MPQ3467 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperatures can be calculated as follows:
Assuming equal thermal reSistance for each die, equation (1)
simplifies to
(3) t.T J1 = Ro 1 (P01 + K02 P02 + K03P03 + K04 P04)
(1) t. TJ1 = Re1 P01 + R02 K02 P02 + Re3 KU3 P03
+ R04 K04 P04
For the conditions where P01 = P02 = P03 = P04, POT = 4 PO'
equation (3) can be further simplified and by substltutmg Into
Where ,'\TJl is the change in junction temperature of die
R81 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated in die 1 through 4
K02 thru 4 is the thermal coupling between die 1 and
. equation (2) results
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest pOSSIble JunctIon
temperatures will result.
die 2 through 4.
An effective package thermal reSistance can be defmed as
follows:
(2) RO(EFF) =t.TJ1/POT
where: PDT
IS
the total package power diSSipation
ElECTR ICAl CHARACTERISTICS
In
IT A " 25°C unless otherWISe noted)
Characteristic
OFF CHARACTERISTICS
BVCEO
40
-
Collector-Base Breakdown Voltage
IIC = 10 I'Ade, IE = 0)
BVCBO
40
-
Emitter-Base Breakdown Voltage
liE = 10 I'Ade, IC = 0)
BVEBO
50
-
-
Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
ICBO
-
-
200
nAdc
Emitter Cutoff Current
(Vse = 3,0 Vde, IC ='0)
lEBO
-
-
200
nAdc
20
-
-
-
0.23
0.5
-
0.90
1.2
IT
125
190
Cob
-
10
25
pF
Cib
-
55
SO
pF
Turn-On Time
(VCC = 30 Vde, IC = 500 mAde, IB1 = SO mAde, VSE(off) = 3.8 Vde)
ton
-
-
40
ns
Turn-Off Time
!off
-
-
90
ns
Collector-Emitt~r,a.r~.akdown Voltage(1)
IIC = 10 mAde, IB = 0)
Vde
Vde
Vde
ON CHARACTERISTICS (1)
DC Current Gain
hFE
IIC = 500 mAde, VCE = 1.0Vde)
Collector-Emitter SaturatIon Voltage
II C = 500 mAde, I B = 50 mAde)
VCE(sat)
Base-Emitter Saturation Voltage
IIc = 500 mAde, IB 0 50 mAde)
VBE(sat)
Vdc
Vde
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 50 mAde, VCE = 10 Vdc, f = 100 MHz)
Output Capacitance
(VCS = 10 Vde, IE
= 0, f =
100 kHz)
I nput Capacitance
(VSE = 0.5 Vde, IC
= 0, I = 100 kHz)
MHz
SWITCHING CHARACTERISTICS IFigure 1)
(Vec = 30 Vde, I·C = 500 mAde, IBI = IB2= 50 mAde)
(1)Pulse Test: Pulse Width OS; 300 IlS, Duty Cycle~ 2.0%
FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT
-30 V
15
PULSE GENERATOR
tr,tf <; 1.0 ns
r;-;>"--">NI"-"'-i~ TO SAMPLING
1.01'F
PW:::::: 1.01Js
Zin:::::: 50n
Dutv Cycle
OSCILLOSCOPE
Zin;;:= 100 kn
< 2.0%
t r <1.0n$
+3.8 V
834
MPQ3546 (SILICON)
For Specifications, See MHQ3546 Data.
MPQ3725 (SILICON)
MPQ3725A
NPN SILICON ANNULAR QUAD
CORE DRIVER TRANSISTORS
QUAD DUAL·IN-LiNE
· .. designed for medium·current, high speed switching and driver
applications.
•
Coliector·Emitter Breakdown Voltage @ IC = 10 mAdc BVCEO = 40 Vdc (Min) - MP03725
= 50 Vdc (Min) - MP03725A
•
Fast Switching Times @ IC = 500 mAdc ton = 20 ns (Typ)
toff = 50 ns (Typ)
NPN SILICON
CORE DRIVER
TRANSISTORS
MAXIMUM RATINGS
Rating
Symbol
MPQ3725
Voltage
VeEO
40
Collector-Emitter Voltage
VeES
60
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continous
Ie
1.0
Adc
Operating and Storage Junction
Temperature Range
TJ, Tstg
-55 to +150
°e
Collector~Emitter
MPQ3725A
Unit
50
Vdc
70
Vdc
Four
Ono
Transistor
Po
Total Power Dissipation @TA "" 2SoC
Derate above 2SoC
Transistors
Equal Power
1.0
8.0
2.5
20
Watts
mW/oe
'
~
-+ F
THERMAL CHARACTERISTICS
I Symbol
Characteristics
Max
Unit
Thermal Resistance.Junction to Ambient*
*RSJA
IS
measured with the device soldered
I
R8JA
Into 8
For Four
Transistors
125
typical printed
50
CirCUit
board.
-
-
-
-
°elW
DIM
-
~L--I
T
----- -.l
- --- -r
K MJ
.,.
MILUM T
MAX
1819
&.10
1803
."".
,
38
CONNECTION DIAGRAM
-
'LA:'--I ~I-o
Effective
Qna
Transistor
SEATING
rH
m
.
,
" ,'65"
"2 183
K
L
2.92
731
H
M
N
T
U
23
36
343
.
'""
.
IT'(P
TV'
.. A
' " 'A DIS
V
13
36
OlmlnSion "L·o,o Indclntarhnewllin
formld(llrlUIl
CASE 646
TO·116
835
,-11-
MPQ3725,MPQ3725A (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
40
-
-
Vde
-
-
Vde
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)
MP03725
MPQ3725A
BVCEO
Collector-Emitter Breakdown Voltage
MP03725
MPQ3725A
BVCES
(lC = 100 /lAde, VBE = 0)
50
60
70
BVEBO
5.0
-
-
Vde
ICBO
-
-
0.5
/tAde
35
40
25
30
75
80
45
50
200
VCE(sat!
-
0.32
0.45
Vde
VBE(sati
0.8
0.9
1.0
Vde
for
250
200
275
250
-
MHz
Cob
-
5.1
10
pF
Cib
-
62
80
pF
Turn-On Time (Figure 1)
(lC = 500 mAde, IBI = 50 mAde, VBE(oll) = 3.8 Vdc!
ton
-
20
35
ns
Turn-Olf Time (Figure I!
(lC = 500 mAde, IBI = IB2 = 50 mAde)
toft
-
50
60
ns
Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
ON CHARACTERISTICS (1)
DC Current Gain
(lC = 100 mAde, VCE = 1.0 Vde)
hFE
MPQ3725
MPQ3725A
(lC = 500 mAde, VCE = 2.0 Vde)
MP03725
MPQ3725A
Collector-Emitter Saturation Voltage
-
-
-
-
(I C = 500 mAde, I B = 50 mAde!
Base-Emitter Saturation Voltage
(lC = 500 mAde, IB = 50 mAde!
DVNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lr. = 50 mAde, Vr.F = 10 Vdc, 1= 100 MHz!
MPQ3725
MPQ3725A
Output Capacitance
-
(VCB = 10 Vde, IE = 0, I = 100 kHz!
Input Capacitance
(VBE = 0.5 Vde, IC = 0, I = 100 kHz!
SWITCHING CHARACTERISTICS
(1) Pulse Test: Pulse Width :S;;;;300 IJS, Duty Cycle ~2.0%.
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
-3.8 V
+30 V
15
43
100
Pulse Ganerator
t r • tf ~ 1.0 ns
PW ~1.0~.
Zin = 50 n
Duty Cycle';;; 2.0%
836
1.0/lF
f----<> To
1.0k
Sampling
Oscilloscope
Zin ;'100 Hl.
tr <1.0 ns
MPQ3725,MPQ3725A (continued)
FIGURE 2 - DC CURRENT GAIN
100
:!:~c
to
I-
~
70
~
u
0
c
:
-....
L-
~ 100
-.........:
~
-
-~50C
P'"
V I=-"'"'
10
10
LdJ
~
~
w
I
.......
'"
r-..,......
1.0
TJ" 15 0C
0
- - - VCE"1.0V
"
0
FIGURE 3 - COLLECTOR SATURATION REGION
I I V~EI,
I
to
O.B
I
«
Ic'100mA
C;
> 0.6
500 rnA
'"
.....
""
\
~
....... ":-1
al
'""'
.....
:3
~
0.4
I\,
I--
~
>
10
30
50
70
100
100
300
500 700 1000
0.5
1.0
1.0
5.0
~
? 0.6
50
100
~
500
u
:;
2.
...... f-I--"
--
~
2150C
+1.0
r- 'OVC For VCE lsatl
ffi
VBE{sall@ICIIB" 10
u
~o 15JoC
-550C to 250C
:3
w
«
C;
-550C to 250C
~ -1.0
o 04
>
>'
02
VCE{satl@ICIIB" 10
II II
30
50
100
V
100
~
,/
--+-tI f-
f-0VB For VBE
~ -2.0
I-
~
300
500
'APPLIES FOR
20
30
50
FIGURE 6 - CAPACITANCE
BO
TJ
r-
25 0C
C,b
.......
0
~
w
~
g
20
~
...; 10
B. 0
Cob
6. 0
4.0
0.1
0.2
100
200
300
IC.COLLECTOR CURRENT {mAl
IC. COLLECTOR CURRENT {mAl
0
0.5
10
2.0
5.0
VR. REVERSE VOLTAGE (VOLTS)
837
~ < hFE
IB
1
-3.0
10
1000
~
I-
~
w
10
200
FIGURE 5 - TEMPERATURE COEFFICIENTS
to
10
20
+20
TJ" 25 0C
-
10
lB. BASE CURRENT {mAl
FIGURE 4 - "ON" VOLTAGES
O.B
~
.......
.............
0.2
IC. COLLECTOR CURRENT {mAl
10
\
1.0 A
20
50
100
500
1000
MPQ3762 (SILICON)
QUAD DUAL IN·LlNE
PNP SILICON ANNULAR
MEMORY DRIVER TRANSISTOR
· .. designed for high·current, high·speed
•
QUAD DUAL·IN·LINE
PNPSILICON
MEMORY DRIVER
TRANSISTOR
s~itchin9.
Low Collector· Emitter Saturation Voltage VCE(sat) = 0.55 Vdc (Max) @ IC = SOO mAdc
• Coliector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 10 mAdc
•
Fast Switching @ IC = 1.0 Adc
ton = SO ns (Max)
toff = 120 ns (Max)
• Transistor Similar to 2N3762
• TO·116 Package - Compact Size Compatible with IC Automatic
Automatic Insertion Equipment
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
1.5
Adc
Rating
Common-Emitter Voltage
Collector Current - Continuous
Four
Each
Transistor
Equal Power
Transistors
Power Dissipation @ T A = 2SoC
Derate above 2SoC
Po
750
5.98
1700
13.6
mW
mW/oC
Power Dissipation @ T C = 2SoC
Derate above 2SoC
Po
1.25
10
3.2
25.6
mW/oC
Operating and Storage Junction
TJ,Tstg
Watts
-55 '0+150
°c
Temperature Range
NOTES:
1. LEADS WITHIN 0.13 mm
(0.D05) RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "L" TO
CENTER OF LEADS
WHEN FORMED
PARALLEL
THERMAL CHARACTERISTICS
Characteristic
Junction to Junction to
Case
Ambient
Unit
Thermal Resistance (1)
Each Die
Effective. 4 Die
100
39
167
73.5
°CIW
Coupl ing Factors
01·04 or 02·03
01·02 or 03·04
46
5.0
56
10
%
%
°C/W
DIM
(1) R9JA is measured with the device soldered into a typical printed circuit board.
CONNECTION DIAGRAM
A
MILLIMETERS
MIN
MAX
o
18.16
6.10
4.06
0.38
18.80
8
C
F
.1.02
1.52
G
H
J
K
L
M
N
,
Q
6.60
4.57
0.51
2.54 SSC
1.32
I.S3
0.20
2.92
7.'¥l
0.3D
3.43
7.87
10.
0.51
0.1
0.51
1.02
0.38
0.76
CASE 646
TO·"6
838
MPQ3762 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip davle_. coupling of heat between die occurs.
Assummg equal thermal resistance tor each die, equation (1)
simplifies to
The junction temperatures can be calculated as follows:
131 aTJ1" ROllPOl + K02 P02 + K03P03 + K04 P041
111 aTJ1" ROl POl + R02 K82 P02 + Ra3 K03 P03
For the conditions where POl = P02
+ R04 K04 P04
Where 1\ T J1
15
=:
P03
= P04. PDT
= 4 PO'
equation (3) can be further simplified and by substituting mto
equation (2) results In
the change in junction temperature of die
R81 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated In die 1 through 4
K02 thru 4 is the thermal coupling between die 1 and
141 ROIEFFI " Ru 111 + K02 + K03 + K041/4
die 2 through 4.
An effective package thermal resistance can be defmed as
follows'
121 ROIEFFI "aTJ1/ POT
where. PDT IS the total package power diSSipation
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power IS to be dissipated in two die, die at the oPPosite
ends of the package should be used so that lowest possible lunctlon
temperatures will result.
ELECTRICAL CHARACTERISTICS ITA = 250 C unless otherwise noted.!
I
Characteristic
S~mbol
Min
Typ
Max
Unit
BVCEO
40
-
-
Vde
BVCBO
40
-
-
Vde
BVEBO
5.0
-
-
Vde
ICBO
-
-
100
nAde
lEBO
-
-
100
nAdc
35
30
20
70
65
35
-
-
-
0.3
0.6
0.55
0.9
-
0.9
1.0
1.25
1.4
IT
150
275
-
MHz
Cob
-
9.0
15
pF
Cib
-
55
80
pF
50
ns
120
ns
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
IIC
= 10 mAde,lB = 01
Collector-Base Breakdown Voltage
II C = 10 I'Ade, IE
= 01
Emitter-Base Breakdown Voltage
liE
= 10 I'Ade,lc = 01
Collector Cutoff Current
(VCB" 30 Vde,IE
= 01
Emitter-Cutoff Current
IVEB
= 3.0 Vde, IC"
0)
ON CHARACTERISTICS (11
DC Current Gain
-
hFE
IIC = 150 mAde, VCE = 1.0 Vdel
IIc = 500 mAde, VCE = 2.0 Vdel
IIC " 1.0 Ade, V CE = 2.0 Vdel
Collector-Emitter Saturation Voltage
II C
IIc
Vde
VCElsatl
= 500 mAde, I B " 50 mAdel
= 1.0 Ade,IB = 100 mAdel
Base-Emitter Saturation Voltage
Vde
VBE(satl
(I C = 500 mAde, I B = 50 mAdel
IIc = 1.0 Ade,IB; 100 mAdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
IIC; 50 mAde, VCE" 10 Vde, I
= 100 MHzl
Output Capacitance
IVCB; 10 Vde, IE" 0, I ; 100 kHz I
I nput Capacitance
(VEB; 0.5 Vde, IC" 0, f ; 100 kHzl
SWITCHING CHARACTERISTICS
Turn-On Tim. (Figure 11
IVCC = 30 Vde,lc" 1.0 Ade,lBl " 100 mAde, VBE(offl; 2.0 Vdel
Tu[n-Off Tim. (F igur. 21
(VCC = 30 Vde,IC" 1.0 Ade,lBl " IB2; 100 mAdel
ton
-
toff
-
(1) Pulse Test: Pulse Width ";3001's, Duty Cycle ";2.0%.
EQUIVALENT TEST CIRCUITS
+2'OV1f~
0-
-
S .9V
o
30
Scope
100
-11.1 V
PW= 200n.
Rise Time :s;;,;;;2.0 ns
DC";2.0%
iR
FIGURE 2 - TURN-OFF
FIGURE 1 - TURN-ON
-30 V
-1'.1V
I
:
1
1
~
'2
I
Scope
100
I--
1+-1
10<'1 < 5001"
t2 <:[ 10 ns
'3>1.01'5
839
30
- - 1"1 -
1'1
'3
-=-
-30 V
1N916
+4.0 V
MPQ3798
MPQ3799
(SILICON)
QUAD DUAL·IN·LlNE
PNP SILICON ANNULAR
AMPLIFIER TRANSISTORS
QUAD DUAL·IN·LlNE
PNP SILICON
AMPLIFIER TRANSISTORS
· .. designed for low·level, low·noise amplifier applications.
•
DC Current Gain Specified -10 !lAde to 10 mAde
hFE = 150 (Min) @ IC = 500 !lAde - MPQ3798
= 300 (Min) @ IC = 500 !lAde - MPQ3799
•
Low Capacitance Cob = 2.3 pF (Typ) @ VCB = 5.0 Vdc
•
Low Noise Figure -NF = 1.5 dB(Typ)@ IC = 100 !lAde - MPQ3799
•
Transistors Similar to 2N3798 and 2N3799
•
TO·116 Package - Compact Size Compatible with IC
Automatic Insertion Equ ipment
MAXIMUM RATINGS
Rating
Symbol
MPQ3798
MPQ3799
Unit
Collector-Emitter Voltage
VCEO
40
60
Vdc
Collector-Base Voltage
Vce
60
Emitter-Base Voltage
VEe
5.0
Vdc
IC
50
mAde
Collector Current - Continuous
Vdc
Four
Po
Power Dissipation @ T A:: 25 0 C( 1)
Derate above 25°C
Power Dissipation @ T C = 25°C
Derate above 25°C
Po
Operating and Storage Junction
TJ' Tstg
Each
Transisto"
Transistor
Equal Power
500
~.O
900
7.2
mW
mW/oC
0.825
6.7
2.4
19.2
Watts
mW/oC
°c
-55 to +150
Temperature Range
(1) Second breakdown occurs at power levels greater than 3 times the power
dissipation rating.
k'~1--"
THERMAL CHARACTERISTICS
Junction to Junction to
Ca..
Ambient
Unit
Thermal Resistance
Each Die
Effective, 4 Die
151
52
250
134
°CIW
°CIW
Coupling Factors
01·04 or 02·03
01·02 or 03·04
34
2.0
70
%
%
Characteristic
~L
-I -L
------
F
PLA;~ ~r-o
SEATING
26
-
-
-
-
-
-
~
T
-
1 MJ
---
CONNECTION DIAGRAM
DlmallSlOn "L"IO leadctflterltnewhen
formed parallel
B
B
CASE 646
TO-116
C
840
~
J-\\-
MPQ3798, MPQ3799 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices. coupling of heat between die occurs.
The junction temperatures can be calculated as follows'
Assuming equal thermal reSistance for each die, equation (1)
simplifies to
131 ~TJl = ROl (POl + KfJ2 P02 + KH3P03 + KII4 P041
III ~TJl = ROl POl + R02 KII2 P02 + RH3 KH3P03
+ R04 K04 P04
Forthecondltlonswhere P01
=
P02 '" P03 = P04. PDT = 4 PO'
equation (3) can be further simplified and by substituting Into
equation (2) results In
Where 1\ T J 1 IS the change In Junction temperature of die 1
Ra 1 thru 4 is the thermal reSistance of die 1 through 4
POl thru 4 is the power cilssipated in die 1 through 4
K02 thru 4 IS the thermal coupling between die 1 and
die 2 through 4.
141 ROIEFFI
R0111 + K02 + K03 + K041/4
0
Values for the coupling factors when either the case or the
ambient IS used as a reference are given In the table on page 1 If
significant power IS to be diSSipated In two die. die at the opposite
ends of the package should be used so that lowest possible Junction
temperatures will result.
An effective package thermal resistance can be defined as
follows'
121 ROIEFFI = ~T Jl/POT
where PDT IS the total package power dissipation
ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherWISe notedl
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage( 1)
(lC
= 10 mAde,
= 01
IB
Collector-Base Breakdown Voltage
(lC
= 10 /.lAde,
-
--
Vde
--
-
Vde
40
60
-
BVCBO
60
BVEBO
50
= 01
IE
Emitter-Base Breakdown Voltage
(IE
Vde
BVCEO
MPQ3798
MPQ3799
= 10/.lAde,IC = 01
Collector Cutoff Current
IVCB
= 50
Vde, IE
Emitter Cutoff Current
IVBE
= 30 Vde,
ICBO
-
lEBO
-
10
nAdc
-
20
nAdc
-
-
= 01
I C = 01
ON CHARACTERISTICS 111
DC Current Gain
VCE
= 5,0
Vdel
(lC = 500 /.lAde, VCE
= 5.0
Vdel
(lC
= 100 /.lAde,
(lC = 10 mAde, VCE
= 5.0
hFE
MPQ3798
MP03799
(lC = 10 /.lAde, VCE = 5,0 Vdel
225
150
300
MPQ3798
MP03799
MPQ3798
MPQ3799
MPQ3798
Vdel
100
150
300
125
-
-
-
-
-
0.12
0.15
0.25
-
0.58
0.7
0.66
0.8
IT
60
130
-
Cob
-
2.3
4.0
pF
Cib
-
5.5
8.0
pF
-
2.5
-
Mpn~7QQ
?~n
Collector-Emitter Saturation Voltage
Vde
VCElsatl
(lC = 100 /.lAde, I B = 10 /.lAdel
(lC = 1.0 mAde,lB = 100/.lAdel
Base-Emitter Saturation Voltage
0.2
Vde
VBElsatl
(lC = 100 /.lAde, IB = 10 /.lAdel
(lC = 1,0 mAde, IB = 100/.lAdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ie =
1.0 mAde, VCE
=
5.0 Vde, I
MHz
= 100 MHzl
Output Capacitance
(VCB = 5.0 Vde, IE = 0, I = 100 kHzl
I nput Capacitance
(VBE = 0.5 Vde, IC = 0, I
= 100 kHzl
Noise Figure
(lC = 100 /.lAde, VCE = 10 Vde, RS = 3.0 k Ohms,
f = 10 Hz to 15.7 kHzl
NF
MPQ3798
MPQ3799
(11 Pulse Test: Pulse Width ';;;300 /.lS, Duty Cycle = 2.0%.
841
dB
1.5
MPQ3904
(SILICON)
QUAD DUAL-IN-LiNE
QUAD DUAL-IN-L1NE
NPNSILCON
AMPLIFIER/SWITCH
TRANSISTOR
NPN SILICON ANNULAR
AMPLI FI ER!SWITCH TRANSISTOR
. designed for low current amplifier and switching applications.
•
Transistors Similar to 2N3903, 2N3904, 2N3946
•
Low Collector· Emitter Saturation Voltage VCE(satl = 0.2 Vdc (MaxI @ IC = 10 mAde
•
Collector· Emitter Breakdown Voltage BVCEO = 40 Vdc (Mini @ IC = 1.0 mAdc
•
DC Current Gain Specified - 0.1 to 10 mAdc
• TO·116 Plastic Package - Compact Size Compatible with
IC Automatic I nsertion Equipment
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
Vce
60
Vdc
Emitter-Base Voltage
VEe
6.0
Vdc
IC
200
mAde
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Four
Each
Transistor
Transistors
Equal Power
Total Power Dissipation @ T A '" 25°C
Derate above 2SoC
Po
500
4.0
900
7.2
mW
mW/oC
= 25°C
Po
825
6.7
2.4
19.2
mW/oC
Total Power Dissipation @ T C
Derate above 2SoC
Operating and Storage junction
Temperature Range
Watts
-55 to +150
TJ,Tstg
°c
THERMAL CHARACTERISTICS
Junction to
Ca..
Junction to
Ambient
Unit
Effective, 4 Die
151
52
250
139
°C/W
°C/W
01·04 or 02·03
01·02 or 03·04
34
2.0
70
26
%
%
Characteristic
Thermal Resistance
Coupling
Fact~rs
Each Die
CONNECTION DIAGRAM
OmlenllDn'l"toleadcentellmewhen
fOfmedjlafaliel
B
CASE 646
TO-116
c
842
MPQ3904 (continued)
THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupl ing of heat between die occurs.
The junction temperature can be calculated as follows:
Assuming equal thermal resistance for each die, equatIOn (1)
simplifies to
131 AT Jl = ROI (POI + K82 Po2 + K03P03 + K04 P041
Forthe oond,ltons where Po 1 = Po2 = Po3 = P04. PDT = 4 PO'
III ATJl = ReI POI + Rn K02 Po2 + R03 K03Po3
+ R04 K04 Po4
v.'here .:1 T J 1 is the change in junction temperature of
di~
equation (31 can be further simplified and by substituting ,nto
1
equation (2) results 10
R81 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated in die 1 through 4
K82 thru 4 is the thermal coupling between die 1 and
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest possible junclion
temperatures will result.
die 2 through 4.
An effective package thermal resistance can be defined as
follows:
121 ROIEFFI =.o.T Jl/POT
where: PDT 15 the total package power dissipation.
ELECTRICAL CHARACTERISTICS ITA = 25 0 C unless otherwise notedl
f
I
Characteristic
Symbol
Min
TVp
Max
Unit
Collector· Emitter Breakdown Voltage 111
IIc = 1.0 mAde, IB = 01
BVCEO
40
-
-
Vde
Collector-Base Breakdown Voltage
(lC = 10 "Adc, IE = 01
BVCBO
60
-
-
Vde
Emitter-Base Breakdown 80ltage
liE = 10 "Ade, IC = 01
BVEBO
6.0
-
-
Vde
ICBO
-
-
50
nAde
lEBO
-
-
50
nAde
OFF CHARACTERISTICS
Collector Cutoff Current
IVCB = 40 Vde, IE = 0)
Emitter Cutoff Current
IVBE = 40 Vde, IC = 01
ON CHARACTERISTICS III
DC Current Gain
IIc = 0.1 mAde, VCE = 1.0 Vdel
IIc = 1.0 mAde, VCE ='1.0 Vdel
(lC = 10 mAde, VCE = 1.0 Vdcl
hFE
Collector-Emitter Saturation Voltage
(lC = 10 mAde, 18 = 1.0 mAdel
Base-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAdel
-
30
50
75
90
160
200
-
VCElsatl
-
0.1
0.2
Vdc
VBElsatl
-
0.65
0.B5
Vdc
fT
250
300
-
MHz
Output Capacitance
IVce = 5.0 Vdc, Ie = 0, f = 140 kHzl
Cob
-
2.0
4.0
pF
Input Capacitance
IVBE = 0.5 Vdc, IC = 0, f = 140 kHzl
Cib
-
4.0
8.0
pF
ton
-
37
-
ns
toff
-
136
-
ns
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIc = 10 mAde, VCE = 20 Vde, f = 100 MHzl
SWITCHING CHARACTERISTICS
Turn-On Time
(lC
IFigure 1)
= 10 mAde VBEloff) = 0.5 Vde, IBI
= 1.0 mAde)
Turn·Off Time IFigure 2)
IIC = 10 mAde, IBI = IS2 = 1.0 mAde I
11) Pulse Test: Pulse Width" 300 "s, Duty Cycle" 2.0%
FIGURE 2 - STORAGE ANO FALL TIME
EQUIVALENT TEST CIRCUIT
FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT
300 nS-1i
f+-
10 < I, < 500l-'s-l I, i:!::.....+10 6V
DUTY CYCLE = 2%~+10'6V
-O.SV
<1.0ns
DUTY CYCLE = 2 % : E
.Is < 4.0 pf'
C
0
.:r'
-9.1 V--il- < 1.0 ns
T
-1Totalshunt capacitance-of test jig end connectors
843
MPQ3906
(SILICON)
QUAD DUAL-IN-lINE
PNP SI LICON ANNULAR
AMPLIFIER/SWITCH TRANSISTOR
QUAD DUAL-IN-L1NE
PNP SILICON
AMPLIFIER/SWITCH
TRANSISTOR
· .. designed for low current amplifier and switchirlg applications.
•
Transistors Similar to 2N3905, 2N3906, 2N3250
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 10 mAdc
•
Collector· Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 1.0 mAdc
•
DC Current Gain Specified - 0.1 to 10 mAdc
•
TO·116 Plastic Package - Compact Size Compatible with IC
Automatic Insertion Equipment
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
200
mAde
Collector-Emitter Voltage
Collector Current - Continuous
Four
Each
Total Power Dissipation @ TA "" 25°C
Po
Derate above 25°C
Total Power Dissipation @ T C "" 25°C
Derate above 25°C
Operat.ng and Storage Junction
Temperatu fe Range
Transistor
Transistors
Equal Powe
500
4.0
900
7.2·
mW/oC
825
6.7
2.4
19.2
Watts
mW/oC
Po
mW
°c
-55 to +150
TJ,T'IQ
THERMAL CHARACTERISTICS
Characteristic
Junction to Junction to
Case
Ambient
Unit
Effective. 4 Die
151
52
250
139
°C/W
°C/W
01·04 or 02-03
01-02 or Q3.Q4
34
2.0
70
26
%
%
Thermal Resistance
Each Die
Coupling Factors
CONNECTION OIAGRAM
Olmen$ll)n"l"loleadtenwhne~hen
fo.ml!'dp..alkll
CASE 646
TO-116
844
MPQ3906 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, equation (1)
In multiple chip devices,coupling of heat between die occurs.
The junction temperature can be calculated as follows:
simplifIes to
131 "T Jl = Re 1 IPOl + K02 P02 + K 03 P03 + K04 P041
For the condItions where POl'" P02"'" P03 = P04. PDT'" 4
(11 .. TJl = Rel POl + Re2 Ke2 P02+ R03 Ke3P03
+ R04 Ke4 P04
Where &. T Jl
Po
equation (3) can be further simplified and by substituting mto
equation (2) results In
the change in junction temperature of die 1
R01 thru 4 IS the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated In die 1 through 4
K02 thru 4 is the thermal coupling between o1le 1 and
IS
Values for the coupling factors when either the case or the
ambient IS used as a reference are Qlven in the table on page 1. If
significant power IS to be dissipated In two die. die at the opposite
ends of the package should be used so that lowest possible Junction
temperatu res will result.
die 2 through 4.
An effective package thermal resistance can be defined as
follows
(21 ROIEFFI = "T Jl/POT
where PDT IS the total package power diSSipation
ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherwISe noted.1
I
I
Characteristic
Symbol
Min
Typ
Max
BVCEO
40
-
-
Vde
BVCBO
40
-
-
Vde
BVEBO
5.0
-
-
Vde
ICBO
-
-
50
nAdc
lEBO
-
-
50
nAdc
40
60
75
160
180
200
-
VeE(satl
-
0.1
0.25
Vde
VBE(satl
-
0.65
0.85
Vde
IT
200
250
-
MHz
eob
-
3.3
4.5
pF
C,b
-
4.8
10
pF
Turn-On Time (Figure 1)
(Ie = 10 mAde, VSE(offl = 0.5 Vde, IBl = 1.0 mAdel
ton
-
43'-
-
ns
Turn·Off Time (Figure 21
(Ie = 10 mAde, IBl = IB2 = 1.0 mAdel
toff
-
155
-
ns
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 01
COllector-Base Breakdown Voltage
(Ie = 10 /lAde, IE = 01
Emitter-Base Breakdown Voltage
(IE = 10/lAde, IC = 01
Collector Cutoff Current
(VCB = 30 Vde, IE = 01
Emitter Cutoff Current
IVBE = 4.0 Vde, Ie = 01
ON CHARACTERISTICS (11
DC Current Gain
hFE
(lC = 0.1 mAde, VeE = 1.0 Vdel
(Ie = 1.0 mAde, VCE = 1.0 Vdel
(Ie = 10 mAde, VCE = 1.0 Vdel
Collector-E mitter Saturation Voltage
-
-
-
(lC = 10 mAde, IB = 1.0 mAdel
r-aa~-Emitter Saturation
Voltage
(Ie = 10 mAde, IB = 1.0 mAdel
DYNAMIC CHARACTERISTICS
Current-Gain -Bandwidth Product
(lC = 10 mAde, VeE = 20 Vde, 1= 100 MHzl
Output Capacitance
(VCB = 5.0 Vde, IE
=
0, 1= 140 kHzl
I nput Capacitance
(VBE = 0.5 Vde, Ie = 0, f = 140 kHzl
SWITCHING CHARACTERISTICS
(11 Pulse Test: Pulse W,dth .,;3OO/l', Outy Cycle ";2.0%.
FIGURE 2 - STORAGE AND FALL TIME
EQUIVALENT TEST CIRCUIT
FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT
05v
'
:'J1.,~:' ~W.
rt
-,
~<
-\06V ~
IOns
10D~'C~C~~!'~%
100- 3OOn.
DUTY CYCLE - 2%
-+I I,
F- IO.6V
*Total shunt capacitance of test jig and connectors
84&
MPQ4003 (SILICON)
MPQ4004
NPN SILICON ANNULAR QUAD
CORE DRIVER TRANSISTORS
NPNSILICON
DUAL-IN-L1NE
CORE DRIVER
TRANSISTORS
.. designed for medium current, high·speed switching and driver
applications.
•
High Coliector·Emitter Breakdown Voltage @ IC
BVCEO = 40 Vdc (Min) - MPQ4003
=50 Vdc (Min) - MPQ4004
•
Fast Switching Times @ IC = 500 mAdc -
= 10 mAdc -
ton = 25 ns (Typ)
toff = 60 ns (Typ)
MAXIMUM RATINGS
Symbol
MPQ4003
MPQ4004
Collector-Emitter Voltage
VeEO
40
50
Vdc
Collector-Emitter Voltage
VeES
60
70
Vdc
Rating
Unit
VEe
5.0
Vdc
Collector Current - Continuous
Ie
1.0
Adc
Operating and Storage Junction
Temperature Range
TJ.T stg
-55 to +150
°e
Emitter...f3ase Voltage
Equal
One
TllInsistar.
Tranlistor
Equal Pow ...
1.0
8.0
2.5
Watts
20
rrlNf'e
Po
Total Power Dissipation @ T A = 25"e
Derate Above 2SoC
THERMAL CHARACTERISTICS
I
Charocteristic
Thermal Resistance, Junction to Ambient·
I
Mox
Symbol
R9JA
Unit
Effective
For Four
One
Transistor
Transistor.
125
50
°elW
*R8JA is measured with the device soldered into a typical printed circuit boird.
CONNECTION DIAGRAM
T
10
U
Y
y,
14 A
CASE 646
TO·H6
846
AD
:II
0115
015
OIlMqo" .. l .. to ..... cem...""wMn
IOflftld ..,atIeI
13
MPQ4003,MPQ4004 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
Characteristic
Symbol
Min
40
50
Typ
Max
-
-
Vde
-
-
Vde
0.5
"Ade
Unit
OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)
MPQ4003
MPQ4004
BVCEO
Collector-Emitter Breakdown Voltage
(lC = 100 "Ade, VBE = 0)
MPQ4003
MPQ4004
BVCES
Vde
60
70
Emitter-Base Breakdown Voltage
5.0
BVEBO
(IE = 10 "Ade, IC = 01
Collector Cutoff Current
(VCB = 40 Vde, IE = 01
ICBO
ON CHARACTERISTICS (11
DC Current Gain
(lC = 100 mAde, VCE = 1.0 Vde)
-
hFE
35
(lC
= 500 mAde, IB = 50 mAde)
Base-Emitter Saturation Voltage
(lC
= 500 mAde, I B = 50 mAde)
200
25
45
-
VCE(sati
-
0.32
0.45
Vde
VBE(sat)
0.8
0.9
1.0
Vde
IT
200
250
-
MHz
Cob
-
5.1
10
pF
Cib
-
62
80
pF
25
40
ns
60
75
ns
(lC = 500 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage
75
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 10 Vde, 1= 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
Input Capacitance
(VSE = 0.5 Vde, IC = 0, f = 100 kHz)
SWITCHING CHARACTERISTICS
Turn-On Time (Figure 1)
ton
(IC = 500 mAde, IB1 = 50 mAde, VBE(otf) = 3.8 Vde)
~.
Turn-Off Time (Figure 1)
-
toff
(lC ~ 500 mAde, IB 1 = IS2 = 50 mAde)
(1) Pulse Test. Pulse Width';; 300 IlS, Duty Cycle';; 2.0%.
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
-3.8 V
+.JU V
15
+9. 7V
n
--.J
L
°pulseGenerator
t r , tf:S;;; 1.0 ns
43
T-
PW ~l.0JJs
Zjn = 50.n
Duty Cycle"" 2.0%
1.01lF
100
1.0JJF
t---o To
1.0k
Sampling
Oscilloscope
2in ~100
kn
tr <1.0 ns
62
_
-
847
MPQ4003,MPQ4004 (continued)
FIGURE 2 - DC CURRENT GAIN
200
~V~EI"L olJ
TJ" ~oc
-
0
--
-i50 C
0
b,.:: F-""'"'
~
-, - - - VCE"2.0V
r-......: :'
L
0
FIGURE 3 - COLLECTOR SATURATION REGION
w
'""
:;
"' "
200
\
'"
~
"'
~
8
I'
0.4
0
~
100
500mA
I-I--
" r r--t\
70
IC"IJom~
w
~~
i'-.:
""",I'
50
30
DB
> 06
300
02
500 700 1000
10
0.5
r-50
2.0
vi-"
~
? 06
VBE(sat)
@ ICIIB"
10
200
500
+1.0
25°C to 1500C
"Ove For VCE(sat)
;:;
--::t:
~
o
'"
>
100
G
">
~
:li
w
~o
50
+2.0
-II-f-
20
FIGURE 5 - TEMPERATURE COEFFICIENTS
TJ" 25°C
I--
10
lB. BASE CURRENT (mA)
FIGURE 4 - "ON" VOLTAGES
O.B
~
I'
0
IC. COLLECTOR CURRENT (mA)
10
\
1.0 A
'I"--
j
>
20
TJ" 25°C
0
?
0
0
20
10
10
-55°C to 250C
'-'
w
04
~ -1.0
0.2
~
;>
VCE(sati
@
ICIIB" 10
V-
I--
~
20
30
50
i
100
l--t- !---
-2.0
I--
II II
10
-550C to 150 0C
OVB For VBE
200
300
500
"Applies for
-3. 0
10
1000
20
IC. COLLECTOR CURRENT (mA)
100
200 300
30
50
IC. COLLECTOR CURRENT (mA)
FIGURE 6 - CAPACITANCE
BO
60
~
r--.
40
C,b
r---
'-'
z
~ 20
;:;
;t
;3
u~
10
B.O
Cob
-...
6.0
4.0
0.1
0.2
0.5
1.0
2.0
5.0
10
VR. REVERSE VOLTAGE (VOLTS)
848
20
50
100
~< h~E
1.1
500
1000
MPQ6001 (SILICON)
MPQ6002
MPQ6S01
MPQ6S02
QUAD DUAL-IN-LiNE
SILICON
COMPLEMENTARY PAIR
TRANSISTORS
QUAD DUAL-IN-LiNE
SILICON ANNULAR
COMPLEMENTARY PAIR TRANSISTORS
designed for hlgh·speed sWitching CirCUitS, DC to VH F amplifier
applications and complementary circuitry.
•
DC Current Gain Specified - 1.0 to 300 mAdc
•
High Current·Gam -Bandwidth Product
IT " 400 MHz (Typ) @ IC ~ 50 mAdc
•
NPN TranSistor Similar to 2N2218 or 2N2219
•
PNP TranSistor Similar to 2N2904 or 2N2905
•
TO-116 Package - Compact Size Compatible with IC Automatic
Insertion Equipment
•
MP06501, MP06502 Matching Characteristics Available
as Specials on 01-04 and 02-03.
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VeEO
30
Vdc
Collector-Bas8 Voltage
Vee
60
Vdc
Emitter-Base Voltage
VEe
50
Vdc
Ie
500
mAde
Collector*Emltter Voltage
Collector Current - Continuous
Power Dissipation @ T A = 2SoC (1)
= 2SoC
Four
Transistors
Equal Power
650
5.18
1250
10
mW
mW/oC
PD
1.0
8.0
3.0
24
mW
mW/oC
-55.to +150
TJ,Tstg
INCHES
DIM MIN MAX
MIN MAX
18.16 18.80 0.71& 0-740
B
6.10
6.60 0.240 0.260
O.lBO
4.06
4.57 0.16
C
0.51 0.015 0.020
D
0.38
F
1.02
1.52 0-040 0-060
0.1008SC
G
2.54 BSC
H
1.32
1.8 0.052 0.072
D.3O 0-008 0.012
I
0-20
3.43 0.115 0.135
K
2.92
7.B7 0.290 0.310
L
7.37
10'
10'
0.51
1.02 0.020 0.040
0.13
0.38 0.005 0.015
Q
D. 1 0.76 0-020 0.030
•
Transistor
Derate above 2SoC
Operating and Storage Junction
Temperature Range
MILLIMETERS
Po
Derate above 2SoC
Power Dissipation @ TC
Each
°c
.
•,
(1) Second Breakdown occurs at power Jevelsgreater than 3 times the power dissipation rating.
-
NOTES:
1. LEADS WITHIN 0.13 mm
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance
Coupling Factors
(0.0051 RAOIUS OF TRUE
Junction to
Ambient
Unit
125
°C/W
°C/W
Each Die
Effective. 4 Die
41.6
193
100
01-04 or 02-03
01-02 or 03-04
30
2.0
60
24
MP06001, MPQ6oo2
POSITION AT SEATING
Junction to
Case
%
%
CONNECTION DIAGRAM
849
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "L" TO
CENTER OF LEADS
WHEN FORMED
PARALLEL
CASE 646
MP06501, MPQ6502
MP06001, MP06002, MP06501, MPS6502 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, eq~tton (1)
simplifies to
In multiple chip devices. coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(3) "TJl =RSl (POl + KS2 P02+ KS3P03+'KS4 PO.v
Forthe oonditionswhere POl = P02 = P03 = P04. PDT = 4 Po
(1) "TJl = Rel POl + RS2 KS2 P02 + RS3 KS3P03
+ RS4 KS4 P04
equation (3) can be further simplified and by substituting into
Where lI. T J1 is the change in junction temperature of die 1
equation (2) results
R01 thru 4 is the thermal resistance of die 1 through 4
P01 thru 4 is the power dissipated in die 1 through 4
K02 thru
4. is the thermal coupling
between die 1 and
Values for the coupling factors vvhen either the case or the
die 2 through 4,
An effective package thermal resistance can be defined as
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of the package should be used so that lowsst possible junction
temperatures will result.
'
follows:
(2) RS(EFF) = "'TJ1/POT
where: PDT is the total package power diSSipation.
ELECTRICAL CHARACTERISTICS IT A
In
C
2SoC unlenotherwlse noted I
By_I
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage(1)
(Ie = 10mAde,IB'= 0)
Min
Ma.
TV.
Unit
BVCEO
30
Vd,
Collector-Base Breakdown Voltage
IIc = 10/.lAde, IE = 01
.BVCBO
61l
Vd,
Emltter·Base Breakdown Voltage
(IE = 10/.lAde,lc" 0)
BVEBO
50
Vd,
Collector Cutoff Current
(VCS '" 50 Vde, Ie = 0)
ICBO
30
nAde
Emitter Cutoff Current
(VEB'" 3.0 Vde, IC '" 0)
lEBO
30
nAde
ON CHARACTERISTICS
DC Current Gainl1J
IIC = 1.0 mAde, VCE = 10 Vde
(lC = 10 mAde, Vee = 10 Vctc)
(Ie = 150 mAde, VCE = 10 Vde)
IIC
=300 mAde, VCE =10 Vdel
hFE
MPQ6001,6501
MPQ6002,6502
MPQ6001,6501
MP06002,6502
MPQ6001,6501
MP06002,6502
25
50
35
35
65
50
90
75
40
100
20
30
MPQ6001,6501
MP06002,6502
Collector-Emitter Saturation Voltage (11
(Ie" 150 mAde,'S = 15 mAde)
HC = JOOmAde,lB = 30mAdel
VCElsatl
Sase-Emitter Saturation Voltage 111
(Ie = 150 mAde, 'S = 15 mAde I
IIC = 300 mAde, 'I B = 30 mAde)
VBElsatl
65
120
2.
35
Vd,
0,2
0.
0,35
I.
Vd,
M
1,3
LO
2,0
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (11
tiC" SO mAde, Vce = 20 Vde, f .. 100 MHz)
IT
Output Capaclta~e
(VCB = 10 Vde, Ie = 0, f "100kHz)
MH,
350
Cob
.NP
N.N
Input Capacitance
IVES = 2 0 Vde,IC = 0, f = tOO kHz)
200
pF
6,0
4,5
8,0
8,0
20
17
30
30
pF
Cib
PNP
NPN
SWITCHING CHARACTERISTICS
Turn·On Time
(Vee· 30 Vde, VBE(off) = 0.5 Vde, Ie - 150 mAde,
ISl = 15 mAde. FIgure 11
'on
Turn-Off Time
tVec = 30 Vde, IC" 150mAdc,
181" IB2 " 15 mAde, FIgure 2)
'off
30
225
{1lPulse Test· Pul .. Wldth-s;300/.l" DutV,Cycle. 2%
NPN SATURATED SWITCHING TIME TEST CIRCUITS
For PNP Switching Tests, reverse the diodes, voltage polarities, and input pulses.
FIGURE 1 - NPN TURN-ON TIME
FIGURE 2 - NPN TURN·OFF TIME
GENERATOR
Ri.. Time S 2.0 nt
PW:S:200nl
DutY Cvcl. ":2,0%
·Cs IS totll shunt capacItance of oscilloscope and test ftxture
j ---t;:= 10
to
:~O +16.2~<5.0
619
+30 V
100
n.
+9.9TI
-
-
RC
200 +30 V
1000
C.':S:12pF
0-
"I
0
-
'-~1"'N"9-1-6-'---T Jl/PDT
Por IS
the total package power diSSipation.
ELECTRICAL CHARACTERISTICS (T A
I
PD2
==
P03
=
P04. POT
=
4 PO'
In
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.
die 2 through 4.
where:
=
equation (3) can be further simplified and by substituting mto
Where 6.TJ1 is the change in junction temperature of die 1
R01 thru 4 is the thermal resistance of die 1 through 4
P01 thru 4 is the power dissipated in die 1 through 4
= 25°C unless otherwise noted.)
I
Characteristic
ColiectorMEmitter Breakdown Voltage(11
(lC = 10 mAde, IS = 0)
MP061 00,6600
MPOS100A,SSOOA
CollectorMBase Breakdown Voltage
Symbol
Min
Typ
Max
Unit
SVCEO
40
45
-
-
Vde
-
SVCSO
SO
-
-
Vde
BVEBO
5.0
-
-
Vde
ICBO
-
-
10
nAdc
(lC = 10 /lAde, IE = 0)
EmitterMBase Breakdown Voltage
(IE = 10/lAde, IC = 0)
Collector Cutoff Current
(VCS = 50 Vde, IE = 0)
ON CHARACTERISTICS (1)
DC Current Gain
(lC = 100 /lAde, VCE = 5.0 Vde)
(lC = 500 /lAde, VCE = 5.0 Vde)
(lc = 1.0 mAde, VCE = 5.0 Vde)
(lC = 10 mAde, VCE = 5.0 Vde)
-
hFE
50
100
75
150
75
150
SO
125
95
200
140
300
140
300
110
275
-
VCE(sat)
-
0.1
0.25
Vde
VSE(sat)
-
0.65
0.8
Vde
IT
50
125
-
MHz
-
1.2
1.8
4.0
4.0
-
5.5
6.0
8.0
8.0
-
4.0
-
MP06100,SSOO
MPQ6100A,SSOOA
MPQ6100,S600
MPQS100A,SSOOA
MPQ6100,SSOO
MPQ6100A,S600A
MPQ61 00,6600
MPQS100A,6600A
Collector-Emitter Saturation Voltage
(I C = 1.0 mAde, IS = 100 /lAde)
BaseMEmitter Saturation Voltage
(lc = 1.0 mAde, IS = 100/lAde)
DYNAMIC CHARACTERISTICS
CurrentMGain-Bandwidth Product
(lC = 500 /lAde, VCE = 5.0 Vde, 1= 20 MHz)
Output Capacitance
(VCS = 5.0 Vde, IE = 0, I = 100 kHz)
I nput Capacitance
(VBE = 0.5 Vde, IC = 0, 1=.100 kHz)
pF
Cob
PNP
NPN
pF
Cib
PNP
NPN
Noise Figure
NF
(lC = 100 /lAde, VCE = 5.0 Vde, RS = 10 kohms,
1= 10 Hz to 15.7 kHz, BW = 10 kHz)
(l)Puke Test: Pulse Width ";;;300/ls, Duty Cycle .. 2.0%.
852
dB
MPQ6700 (SILICON)
QUAD DUAL-IN-LiNE
SILICON ANNULAR
COMPLEMENTARY PAIR TRANSISTOR
QUAD DUAL·IN·LlNE
SILICON
COMPLEMENTARY PAIR
TRANSISTOR
designed for DC to VH F amplifier applications and complementary circuitry.
e. DC Current Gain Specified - 0.1 to 10 mAdc
e Current-Gain - Bandwidth Product fT = 200 MHz (Min) @ IC = 10 mAde
e NPN Transistor Similar to 2N3903 or 2N3904
e PNP Transistor Similar to 2N3905 or 2N3906
•
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
50
Vdc
IC
200
Collector-Emitter Voltage
Collector Current
~
Continuous
mAde
Four
Power DISSipation @ T A'" 25°C (1)
Po
Derate above 25°C
Power Dlsslpatlon@Tc
Derate above 25°C
'=
25°C
Operating and Storage JunctIOn
Po
Each
Transistors
Transistor
Equal Power
500
40
900
7,2
mW/oC
825
6.7
2400
19.2
mW
mW/oC
mW
°c
-55 to +150
TJ,Tstg
Temperature Range
(11 Second Breakdown occurs at power levels greater than 3 times the power diSSipation rating
THERMAL CHARACTERISTICS
Junction to
Characteristic
Case
Junction to
Ambient
Unit
°C/W
°C/W
Thermal Resistance
Each Ole
Effectlve,4 Ore
151
52
250
134
CouplIng Factors
01-04 or 02-03
01-02 or 03-04
34
2,0
70
26
CONNECTION DIAGRAM
%
%
MILLIMETERS
DIM
A
B
e
0
F
G
H
J
K
L
M
N
p
Q
MIN
MAX
18.16 18.80
6,60
6.10
4.06
4.57
0,38
0.51
1.01
1.51
1.548Se
1.31
1.83
0.30
0.10
1.91
3.43
7,37
7.87
10'
0.51
1.01
0,13
0.38
0,51
0.76
INCHES
MAX
MIN
0.715
0,140
0.160
0.015
0.040
0.1
0.051
0.008
0,115
0.190
0.010
0.005
0.010
CASE 646
c
c
853
MPQ6700 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
Assuming equal thermal resistance for each die. equation (1)
simplifies to
(1) aTJl = R91 POl + R92 Ke2 P02 + R83 K93 P03
(3) aT Jl = R91 (POl + K82 P02 + K83 P03 + K84 P04)
+ R94 Ke4 P04
For the conditions where POl = P02 = P03 = P04, POT = 4PO,
equation (3) can be further simplified and by substituting into
Where AT J1 is the change in junction temperature of die 1
R81 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipation in die 1 through 4
K82 thru 4 is the thermal coupling between die 1 and
equation (2) results in
(4)R9(EFF)= R81 (1 + Ke2+ K83+ K84) /4
die 2 through 4.
An effective package thermal resistance can be defined as
lollows:
(2) R9(EFF) = aTJ1/POT
Where: PDT is the total package power dissipation.
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
Characteristic
Symbol
Min
Typ
Max
Unit
BVCEO
40
-
-
Vde
BVCBO
40
-
-
Vde
BVEBO
5.0
-
-
Vde
ICBO
-
-
50
nAdc
lEBO
-
-
50
nAde
30
-
70
70
120
160
VCE(sat)
-
0.1
0.25
Vde
VBE(sat)
-
0.75
0.9
Vde
IT
200
400
-
MHz
Cob
-
1.5
4.5
pF
-
7.0
4.5
10
8.0
OFF CHARACTERISTICS
COllector-Emitter Breakdown Voltage (11
(lC = 10 mAde,lB = 0)
Collector-Base Breakdown Voltage
(lC = 10 "Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10"Ade,IC = 0)
Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain
-
hFE
(lc = 0.1 mAde, VCE = 1.0 Vdc)
(lC = 1.0 mAde, VCE = 1.0 Vdc)
(lC = 10 mAde, VCE = 1.0 Vde)
50
Collector-Emitter Saturation Voltage
-
(lC = 10 mAde, I B = 1.0 mAde)
Base-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 20 Vdc, I = 100 MHz)
Output Capacitance
(VCB = 5.0 Vde,l E = 0, I = 100 kHz)
Input Capacitance
(VEB = 0.5 Vde, IC = 0, I = 100 kHz)
pF
Cib
PNP
NPN
(1) Pulse Test: Pulse Width <;;;300 "S, Outy Cycle ";;2.0%.
854
MPS404 (SILICON)
MPS404A
PNP SILICON ANNULAR TRANSISTORS
PNP SILICON
CHOPPER TRANSISTORS
· .. plastic encapsulated package designed for medium·speed chopper
applications in industrial and computer equipment. Intended for operation in applications replacing the 2N404 and 2N404A transistors.
•
High Emitter-Base Breakdown Voltage BVEBO = 12 Vdc (Mini - MPS404
25 Vdc (Mini - MPS404A
50 Vdc (Typl - MPS404, MPS404A
•
Full Design Curves
MAXIMUM RATINGS
MPS404 MPS404A
Symbol
Rating
Vceo
24
Collector-Base Voltage
VCB
25
Emitter-Base Voltage
VeB
12
Collector-Emitter Voltage
Collector Current - Continuous
Total Power Dissipation @ T A
= 2SoC
Vdc
40
Vdc
Vdc
25
......-150 ------.
Po
"""-350--"
mW
"'--2.8~
mW/oC
Po
Derate above 2SoC
Operating and Storage Junction
Temperature Range
Unit
35
IC
Derate above 2SoC
Total Power Dissipation @ T C - 25°C
I
I
I
TJ, T stg
mAde
. - - 1 . 0 - - - - . . Watt
........- 8.0--'--' mWtDC
4 - -55 to + 150---.
°c
STYLE 1
PIN 1 EMITTER
2 BASE
3 COLLECTOR
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to
Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
R a JA(1)
357
°CIW
125
°C/W
RaJC
DIM
A
B
C
D
F
~
(1) R8JA is measured with the device soldered into a typical printed circuit board.
L
N
P
Q
R
S
MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
0.407
INCHES
MIN
MAX
5100
4.190
5330
0.533
0.48
0175
0.125
0.170
0.Q16
"."16
0105
0165
0210
0011
0.019
1.390
1.170
0.045
-
0.055
0.050
0.250
0.135
0.095
0.080
0.105
0.105
l:,{1J1L
1.150
6.350
3.430
2.410
2.030
2.670
2.670
CASE 29-02
TO-92
855
MPS404,A (continued)
ELECTRICAL CHARACTERISTICS
I
(TA ~ 25°C unless otherwise noted)
I
Characteristic
I
Symbol
Typ
Min
Unit
Max
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
Vde
BVCEO
(IC = 10 mAde, IB ~ 0)
MPS404
MPS404A
Collector-Base Breakdown Voltage
(lc = 10 )lAde, IE = 0)
24
35
-
-
25
40
-
-
-
-
12
25
50
50
-
-
-
100
-
-
100
30
100
400
-
0.1
0.12
0.15
0.20
-
0.7
0.74
0.85
1.0
4.0
-
-
-
6.8
20
43
-
Vde
BVCBO
MPS404
MPS404A
Emitter-Base Breakdown Voltage
(IE = 10)lAde,lc= 0)
Vde
BVEBO
MPS404
MPS404A
Collector Cutoff Current
nAdc
ICBO
(VCB ~ 10 Vde, IE ~ 0)
Emitter Cutoff Current
(VBE ~ 10 Vde, IC ~ Q)
nAdc
lEBO
ON CHARACTERISTICS
DC Current Gai n
-
hFE
(lC ~ 12 mAde, VCE = 0.15 Vde)
Collector-Emitter Saturation Voltage
Vde
VCE(sat)
(lc = 12 mAde, IB = 0.4 mAde)
(lc = 24 mAde. I B = 1.0 mAde)
Base-Emitter Saturation Voltage
(IC
(IC
~
~
12 mAde, IB
24 mAde, IB
~
~
Vde
VBE(sat)
0.4 mAde)
1.0 mAde)
OYNAMIC CHARACTERISTICS
Common-Base Cutoff Frequency
(IC ~ 1.0 mAde, VCB ~ 6.0 Vde)
fOb
Output Capacitance
Cob
MHz
pF
(VCB ~ 6.0 Vde, IE = 0)
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Storage Time
Fall Time
(Vec= 10Vde.lc= 10mAde,IBl ~
1.0mAde, VBE(off)= 1.4 Vde) (Fig. 11,13)
'd
(Vec = 10 Vde, IC = 10 mAde, IBl ~
IB2= 1.0mAde(Figures 12and 13)
ts
If
Total Conlrol Charge (Figure 14)
(Ie ~ 10 mAde, IB = 1.0 mAde)
(1)
Pulse Test: Pulse Width
~
300 .us, Duty Cycle
~
I I
I I
'-'I-
j~
0",
'-10
40
r--
I-- -
"'IW'-'
I-W
!::j
"'0
w'-'
-IC/IIB=
J.o
i-+-
,0
-1-1-
o
10
I I
2.0
3.0
ns
ns
ns
pC
/
-,
1400
FIGURE 2 - BASE "ON" VOLTAGE
~cn
0':;
?
0
w~
-
"'>
0",
I-w
"''''
~~
~:~l:::: :~;::: ~ r-
_f.-f>'
V
--
0.5 8
c.3~
>=>
VEC("t)@IE/IB=2.0
5,0 7.0 10
20
30
IC, COLLECTOR CURRENT (rnA)
IE, EM lITER CURRENT (rnA)
0.66
ow
~~~
so
70 100
856
/
TJ = 2SoC
~~ 0.74
,.
,/
0.82
10 0
'-'
B0
- -
__ .TJ
125°C
I--r-
:;0 5 0
;;;
"'ft,:...
I-
u
"-
"
60 0
"
~
~~
u
'r--.
20
-55°C ....
a 3.0
~
" "-''It-.
30
~
25°C ....
I-
10
10
~
.t--~~
'" 5. 0
'-'
"
t--
TJ" 25°C
~
"2:
~
"~
"
~ 0.4
'"~
0.4
"~
50mA
lOrnA
IC" 2.0 mA
0.3
§; 03
0.2
8j 0.2
~
"-
O. I
"
~
>
II I
II I
IE "0.5 mA
TJ" 25°C
1
I
2.0mA
1
50 mA
lOrnA
00
"
B
ill
III
~
~
!
0.5
O
0005
001
0.02
0.05
0.1
1'-- ......
00
u
~
w
~
t0.2
~
0.5
1.0
2.0
>
5.0
o. I
0
0.05
lB. BASE CURRENT (mAl
I'- r0.1
0.2
0.5
-
1.0
\
2.0
5.0
IB, BASE CURRENT (mAl
857
10
20
50
MPS404,A (continued)
FIGURE 10 - CAPACITANCE
FIGURE 9 - EMITTER-COLLECTOR "ON" RESISTANCE
100
,
70
p
50
z
-NOTE: The dynamic resistance between the emitter and collector
~.
is measured with th8devicelorerate~ in t~e Inverted Mode.
"-
II
~
I
IIII
I--
.
w
z
....
7.0
u
~ 5.0
,.....
;:\
I'--
0
3.0
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0 7.0
2.0
0.05
10
FIGURE 11 - TURN'()N TIME
0.5
VCC'loV
ICIIB -10
TJ' 25 0 C
.........
-ld@VBE(olf)
1.4V
3D
20
1.0
2.0
3.0
L
-
""-
100
70
50
r10
5.0
20
50
5.0 7.0
10
'\
w
~ 300
a--r
RB
-- -
20
30
~
50
70
100
1.0
100
1.0
-
ton. tdlnd tr
toff,tsandtf
Vin
(Volts)
-12
+20.6
VBB
(Volts)
+1.4
-11.6
30
5.0
7.0
10
10
30
50
70
100
IC. COLLECTOR CURRENT (rnA)
FIGURE 14 - STORED BASE CHARGE TEST CIRCUIT
(_~.~~) o-_RC,,(,.,56"'0_nl_...._ _ _ _ _ _ _--
OUTPUT
TO SCOPE
10k
fl
i\
f'.
VCC -IOV
Vin
"
II
100
FIGURE 13 - SWITCHING TIME TEST CIRCUIT
RBB
1.0k
............
I--'"
IC. COLLECTOR CURRENT (rnA)
0.1'"
IOV
lellB -10
IB1· IB1
TJ • 15°C
VCC
...... is
1"-
500
Ir
_
"-
700
SOD
200
2.0
FIGURE 12 - TURN-OFF TIME
700
~
1.0
1.0 k
1.0 k
;::
1\
VR. REVERSE VOLTAGE (VOLTS)
2.0 k
300
~
II
0.2
0.1
lB. BASE CURRENT (rnA)
g
'\.
II
7.0
5.0
0.1
UOC
Cob
<.>
U
"e
i}J
~
10
~
1,'1001'11 RMS
1'1.0 kHz
TJ" 25 0 C
IE' 0
"- "-
-
20
-=
0
Voltage Wave10rms
MEASUREMENT PROCEDURE
IVin \>5.0"'1 Ir• II < 15 ns
Cl is increased until the toff time of 60 V
the output waveform is decreased to .
:
I
0.2 jJ.S, aS IS then calculated by
Cl Vin.
I
Us3 or 0s7 by B·Line ElectrOnics 6.0 V
or equivalent may also be used.
t--'oll
Voltages and resistor values shown
as·
afe for Ie:: 10 rnA, Iclls = 10
and IS 1 =182. Resistor values
changed to obtain curves in
Figures 11 and 12.
858
MPS706, MPS706A (SILICON)
NPN SILICON
NPN SILICON ANNULAR SWITCHING TRANSISTORS.
SWITCHING TRANSISTORS
· .. designed for use in high-speed switching applications.
•
Collector-Emitter Breakdown Voltage BVCEO = 15 Vdc (Min) @ IC = 10 mAdc
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.3 Vdc (Typ) @ IC = 10 mAdc
•
Fast Switching Times @ IC
ton = 40 ns (Max)
toff = 75 ns (Max)
= 10 mAdc
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
(RSE = 10 Ohm,)
Symbol
Value
Unit
VCER
20
Vdc
Collector-Base Voltage
VCB
25
Vdc
Emitter-Base Voltage
VEB
5.0
Vde
Collector Current - Continuous
IC
200
mAde
Total Power Dissipation @ T A"" 25°C
Derate above 2SoC
Po
350
2.8
mW
mW/oC
Total Power Dissipation @ T C = 2SOC
Derate above 2SoC
Po
1.0
8.0
Watt
mWfOC
TJ.T,tg
-55 to +150
°c
Operating and Storage Junction
STYLE 1:
PINt. EMlnER
2. BASE
3. COLLECTOR
Temperature Range
DIM
A
B
THERMAL CHARACTERISTICS
Ch..actaristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
R6JA(1l
357
°C/W
R6JC
125
°C/W
(1) R8JA is measured with the device soldered into a typical printed circuit board.
C
D
F
L
N
p
Q
R
S
MILliMETERS
MIN
MAX
INCHES
MIN
MAX
4450
3180
4.320
0407
0.407
1.
1.150
5.200
4.190
5.330
0.533
0.4'2
0.175
0.125
0.170
0.016
0.D16
0.205
0.165
0.210
0.021
u.u'"
1.390
1.270
0.045
0055
0.050
-
6.350
3.430
2.410
2.030
-
2.670
2.670
CASE 29-02
TO-92
859
-
0.250
0.135
0.095
0080
-
0.105
0.105
MPS706,MPS706A (conti nuedl
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Collector-E mitter Breakdown Voltage( 1)
(lC = 10 mAde, IB = 0)
Collector-Emitter Breakdown Voltage 111
(IC = 10 mAde, RBE = 10 Ohms)
BVCEO
15
-
-
Vde
BVCER
20
-
-
Vde
Collector-Base Breakdown Voltage
BVCBO
25
-
-
Vde
BVESO
5.0
-
-
Vde
-
-
0.5
10
-
10
-
-
10
10
20
20
50
45
SO
-
0.3
O.S
0.7
0.8
0.8
0.9
0.9
tr
200
SOO
-
MHz
Cob
-
1.5
S.O
pF
eib
-
3.4
-
pF
rb
-
-
50
pF
ton
-
35
40
ns
toll
-
55
75
ns
ts
-
20
20
25
60
ns
Characteristic
OFF CHARACTERISTICS
(lc
= 100 IlAde.
= 0)
IE
Emitter-Base Breakdown Voltage
(IE
= 10 IlAde, IC = 0)
Collector-Cutoff Current
(VeB
(VeB
= 15 Vde.
= 25 Vde,
IE
IE
MPS70S
MPS706A
Collector Cutoff Current
(VeE
= 20 Vde,
RBE
MPS70SA
leER
= 100 kHz)
Emitter Cutoff Current
(VBE
(VSE
= 3.0 Vde,
= 5.0 Vde,
Ie
IC
IlAde
ICBO
= 0)
= 0)
!lAde
IlAde
IESO
= 0)
= 0)
-
MPS706
MPS706A
ON CHARACTERISTICS
De Current Gain( 1)
(Ie = 10 mAde, VCE
MPS70S
MPS706A
Collector-Emitter Saturation Voltage( 1)
(Ie
VCE(sat)
= 10 mAde, IB = 1.0 mAde)
Base-Emitter Saturation Voltage(1)
(Ie
-
hFE
= 1.0 Vde)
Vde
VBE(sat)
= 10 mAde, IB = 1.0 mAde)
MPS70S
MPS70SA
Vde
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(Ie
= 10 mAde,
VCE
Output Capacitance
(VeB = 10 Vde·, IE
= 15 Vde, I = 100 MHz)
=' 0, I = 100 kHz)
MPS706
I nput Capacitance
(VBE
= 1.0 Vde,
Ie
= 0, I = 100 kHz)
Extrinsic Base Resistance
(VeE = 15 Vde, IE = 10 mAde, I
= 300 MHz)
SWITCHING CHARACTERISTICS
(Figure 1)
Turn-On Time
(Vee
= 3.0 Vde,
VSE(off)
Turn-Off Time
(Vec = 3.0 Vde, Ie
= 2.0 Vde,
IC
= 10 mAde, lSI = 3.Q mAde)
(Figur.')
= 10 mAde, IBI = IB2 = 3.0 mAde)
MPS70SA
MPS706
(Figure 2)
Storage Time
(Vec = 10 Vde, IC = 10 mAde,
IBI = IB2 = 10 mAde)
(1) Pulse Test: Pulse Width ';;12 ns, Duty eyele ';;2.0%.
FIGURE 2 - STORAGE TIME TEST CIRCUIT
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
Vee
Vee = 3.0 Vdc
(Adjust for 10 mAl
270
+7.0Vn
1.0 k
+5.0Vn
Scope
2.0 k
oV
-2.0 V
::J -- -l.: o----'VVv---JH
= 10.3 Vdc
(Adjust for 10 mA)
Scope
390
o
V
-3.1 V
860
.::1-- -l.:. o----"''''''"-IH
MPS708
(SILICON)
NPN SILICON
SWITCHING
TRANSISTOR
NPN SILICON ANNULAR SWITCHING TRANSISTOR
· .. designed for use in high-speed switching applications.
•
Collector-Emitter Breakdown Voltage BVCER = 20 Vdc (Min) @ IC = 30 mAde
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.21 Vdc (Typ) @ IC = 10 mAde
•
MPS70S Electrically Similar to 2N70S - TO-1S Package
I
SEATINGJ~ ~
MAXI MUM RA TI NGS
Symbol
Rating
Value
Unit
VCEO
15
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Contmuous
IC
200
mAde
Total Power DISSlpatlon@ TA '" 25°C
Derate above 2SoC
Po
350
2.8
mW
mW/oC
Total Power Dissipation @ T C
Po
1.0
8.0
mW/oC
-55 to +150
°c
Collector-Emitter Voltage
::=
25°C
Derate above 25°C
Operatmg and Storage Junction
TJ.Tstg
PLANE
STYLE l'
PIN 1
2
3
Watt
Temperature Range
DIM
A
B
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
C
D
ReJA(11
357
°C/W
F
K
ReJC
125
°C/W
(1) ReJA IS measured with the device soldered into a typical printed circuit board.
~
L
N
P
Q
R
S
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
4.450
3.180
4.320
0.407
0.407
1.0
1.150
5.200
4.190
5.330
0.533
0.482
0.175
0.125
0.170
0.016
0.016
0
0.045
6.350
3.430
2.410
2.030
-
-
1.390
1.270
2.670
2.670
-
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
861
0.205
0.165
0.210
0.021
0.Q19
0.055
0.050
0.105
0.105
MPS708 (continued)
ELECTRICAL CHARACTERISTICS (TA : 250 C unless otherwise noted.1
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (11
(lC: 30 mAde, IS: 01
SVCEO
15
-
-
Vde
Collector-E mitter Breakdown Voltage
SVCER
20
-
-
Vde
SVCSO
40
-
-
Vde
SVESO
5.0
-
-
Vde
ICSO
-
-
25
nAdc
IESO
-
-
80
nAdc
15
30
35
50
120
VC~(S8tl
-
0.21
0.4
Vde
VSE(satl
0.68
0.7
0.78
Vde
Current-Gain-Bandwidth Product
(lC: 10 mAde, VCE: 10Vde,f: 100MHzI
fT
300
600
-
MHz
Output Capacitance
(VCS: 10 Vde, IE : 0, f : 140 kHzl
Cob
-
2.4
6.0
pF
Characteristic
OFF CHARACTERISTICS
(lC: 30 mAde, RSE : 10 Ohmsl
Collector·Base Breakdown Voltage
(lC: 1.0I'Ade, IE: 01
Emitter-Base Breakdown Voltage
(IE: 10"Ade, IC: 01
Collector Cutoff Current
(VCS: 20 Vde, IE : 01
Emitter Cutoff Current
(VSE : 4.0 Vde, IC : 01
ON CHARACTERISTICS (11
DC Current Gain
(lC: 0.5 mAde, VCE : 1.0 Vdel
(lC: 10 mAde, VCE : 1.0 Vdel
-
hFE
Collector-Emitter Saturation Voltage
(lC: 10 mAde, IS: 1.0 mAdel
Base-Emitter Saturation Voltage
(lC: 10 mAde, 18: 1.0 mAdel
DYNAMIC CHARACTERISTICS
SWITCHING CHARACTERISTICS (FIgure 1)
Storage Time
(VCC: 3.0 Vde, IC: 10 mAde, ISl : IS2: 10 mAde)
(1) Pulse Test: Pulse Width ';;;300 ItS, Duty Cycle ';;;2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
1.0 k
.....-:>..----~~----o V out
270
50
VBB:
+11 V
=
862
Vcc: 3 .OV
MPS753
(SILICON)
NPNSILICON
SWITCHING
TRANSISTOR
NPN SILICON ANNULAR SWITCHING TRANSISTOR
· .. designed for use in medium-voltage high-speed switching applications.
•
Collector-Emitter Breakdown Voltage BVCER = 20 Vdc (Min) @ IC = 10 mAde
•
High Current-Gain-Bandwidth Product fT = 600 MHz (Typ) @ IC = 10 mAde
•
Fast Switching Times
ton = 40 ns (Max)
toft = 75 ns (Max)
MAXIMUM RATINGS
Rating
Coliector~Emitter
Voltage
(RBE = 100hmsl
Symbol
Value
Unit
VCER
20
Vdc
Vdc
Collector-Base Voltage
VCB
25
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
200
mAde
Total Power Dissipation
T A ::: 25°C
Po
350
2.8
mW
mW/oC
Total Power Dissipation @TC "" 25°C
Derate above 25°C
Po
1.0
8.0
Watt
mW/oC
TJ.Tstg
-55 to +150
°c
@
Derate above 25°C
Operating and Storage Junction
Temperature Range
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
2
3
DIM
A
B
C
D
THERMAL CHARACTERISTICS
Characteristic
STYLE 1
PIN 1
Symbol
Max
Unit
R8JA(11
357
°CIW
R8JC
125
°C/W
(1) R8JA is measured with the device soldered into a typical printed circuit board.
F
K
L
N
p
a
R
S
EMITTER
BASE
COLLECTOR
MILLIMETERS
INCHES
MIN
MAX
MAX
MIN
4.450
5200
0.175
0.205
0.165
3.1
41
0125
0170
0210
4320
5330
0407
0533
0.016
0021
0.019
0.407
.482 I 0.016
0
.00
1.150
1.390
0.045
0055
1.270
0.050
6350
0.250
3.430
0135
0105
2.670
2.410
0.095
2.030
2.670
0.105
0.080
CASE 29
TO-92
863
MPS753 (continued)
E LECTR I CA L CHARACTER I STiCS (T A = 250 C unless otherwise noted.)
I
Characteristic
Symbol
Min
Typ
Max
Unit
SVCEO
15
-
-
Vde
SVCER
20
-
-
Vde
ICER
-
-
10
)lAde
-
-
OFF CHARACTERISTICS
Collector·Emitter Breakdown Voltage (1)
(lC = 10 mAde, IS = 01
Collector-Emitter Sreakdown Voltage (11
IIC= 10 mAde, RSE = 100hmsl
Collector Cutoff Current
(VeE = 20 Vde, RSE = 100 k Ohmsl
Collector Cutoff Current
)lAde
leso
-
-
0.5
10
IESO
-
-
10
)lAde
hFE
40
100
120
-
VCE(satl
-
0.3
0.6
Vde
VSE(satl
0.7
0.8
0.9
Vde
fT
200
600
-
MHz
Cob
-
1.5
5.0
pF
Turn-On Time (Figure 11
ton
-
30
40
ns
Turn-Off Time (Figure 11
toff
-
60
75
ns
Storage Time (Figure21
ts
-
30
35
ns
(Ves = 15 Vde, IE = 01
(Ves = 25 Vde, IE = 01
Emitter Cutoff Current
(VSE = 5.0 Vde, Ie = 01
ON CHARACTERISTICS (11
DC Current Gain
(lC = 10 mAde, VCE = 1.0 Vdel
Collector·Emitter Saturation Voltage
(lC = 10 mAde, IS = 1.0 mAdel
8ase-E mitter Saturation Voltage
IIC = 10 mAde, IS = 1.0 mAdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 10 mAde, VCE = 15 Vde, f = 100 MHzl
Output Capacitance
(VCS = 5.0 Vde, IE = 0, f = 140 kHzl
SWITCHING CHARACTERISTICS
(11 Pulse Test: Pulse Width ';;300 )lS, Duty Cycle ';;2.0%.
FIGURE 2 - STORAGE TIME TEST CIRCUIT
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
Vee= 3.0 Vdc
270
II
ov-.d---t
+7,0 V
Vee = 10 Vdc
980
(Adjust for
10mA)
2.0 k
-2.0V
864
(Ad)ustfor
10mA)
MPS834 (SILICON)
NPN SILICON
NPN SILICON ANNULAR SWITCHING TRANSISTOR
SWITCHING TRANSISTOR
· .. designed for use in high·speed switching applications.
•
Collector· Emitter Breakdown Voltage BVCEO = 30 Vdc (Min) @ IC = 10 mAdc
•
High Current-Gain-Bandwidth Product
fT = 600 MHz (Typ) @ IC = 10 mAdc
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Typ) @ IC = 10 mAdc
•
Fast Switching Times @ IC = 10 mAdc
ton = 16 ns (Max)
toft = 30 ns (Max)
•
Excellent Predriver for N-MOS clock drivers.
Use with 2N5845 and MPS3638 Active Pull-Up and Pull-
Down Transistors.
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Vceo
30
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Ba~e
VeB
5.0
Vdc
Collector Current - Continuous
IC
200
mAde
Total Power Dissipation @ T A"" 25°C
Po
350
2.8
mW
mW/oC
Po
1.0
8.0
mW/oC
-65 to +150
°c
Collector-Emitter Voltage
Voltage
Derate above 25°C
Total Power Dissipation
Derate above 25°C
@
T C = 25°C
Operating and Storage Junction
Temperature Range
TJ.Tstg
STYLE 1
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
(1) R9JA
IS
2 BASE
3 COLLECTOR
DIM
A
B
THERMAL CHARACTERISTICS
Character istic
PIN 1 EMITIER
Watt
c
Symbol
Max
Unit
RBJA(1)
357
°C/W
RBJC
125
°C/W
D
F
K
L
N
P
measured with the device soldered into a typical printed circuit board.
Q
R
S
MILLIMETERS
MIN
MAX
4450
5200
3.180
4190
4320
5.330
0407
0.533
0407
0482
12700
1150
1390
1270
6350
3430
2410
2670
2.670
2030
INCHES
MIN
MAX
0175
0.205
0165
0125
0210
0170
0021
0016
0019
0.016
5
0.055
0.045
0050
0250
0135
0095
0105
0105
0080
CASE 29·02
TD·92
865
MPS834 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25"C unless otherwise noted.)
I
Symbol
Min
TVp
Max
Unit
Colleetor·Emitter Breakdown Voltage (1)
(lC= 10mAde, IB= 0)
BVCEO
30
-
-
Vde
Collector·Base Breakdown Voltage
(lC= 10J'Ade, IE = 0)
BVCBO
40
-
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
5.0
-
-
Vde
ICES
-
-
10
I'Ade
ICBO
-
-
0.5
"Ade
hFE
25
-
-
-
0.2
0.3
0.25
0.4
VBE( .. t)
-
0.7
0.9
Vde
Current·Gain-Bandwidth Product (1)
(IC = 10 mAde, VCE = 20 Vde, I = 100 MHz)
IT
350
600
-
MHz
Output Capacitance
Cob
-
1.5
4.0
pF
Cib
-
3.4
-
pF
ton
-
12
16
ns
toll
-
25
30
ns
ts
-
18
25
ns
Characteristics
OFF CHARACTERISTICS
(IE = 101'Ade, IC= 0)
Collector Cutoff Current
(VCE = 30 Vde, VBE = 0)
Collector Cutoff Current
(VCB= 20Vde, IE= 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lc = 10 mAde, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage
Vde
VCE( ..t)
(lC = 10 mAde, IB = 1.0 mAde)
(I C = 50 mAde, I B = 5.0 mAde) (1)
Base-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
(VCB = 10 Vde, IE = 0, 1= 100 kHz)
Input Capacitance
(VEB = 10 Vde, IC = 0, I = 100 kHz)
SWITCHING CHARACTERISTICS
See Figure 1
Turn-On Time
(VCC= 3.0 Vde, VBE(olf) = 4.0 Vde, IC = 10mAde, IBl = 3.0 mAde)
Turn-OII Time
(V CC = 3.0 Vde, I C = 10 mAde, I B 1 = 3.0 mAde) See Figure 1
Storage Time
(VCC= 10Vde,lc= 10mAde, IBl = IB2= 10 mAde) See Figure2
(1) Pulse Test: Pulse Width "';300 "s, Duty Cycle "';2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
TI
FIGURE 2 - STORAGE TIME TEST CIRCUIT
o-u--
Turn-On
Vaa = -4.0 V
Vin=+ 21
0-
-
-
+3.0 Vdc:
-10 V
-
280
0.1 "F
f---oSCope
5.0k
0.1 "F
1
5.0 k
o-u-Turn-Off
Vaa
=
+16 V
Vln = -19 V
866
500
500
+', V
+10 V
160
MPS835 (SILICON)
NPN SILICON ANNULAR SWITCHING TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR
· .. designed for high·speed saturated switching applications.
•
Collector-Emitter Breakdown Voltage BVCEO = 20 Vdc (Min) @ IC = 10 mAdc
•
High Current-Gain-Bandwidth Product fT = 600 MHz (Typ) @ IC = 10 mAdc
•
Fast Switching Times ton = 15 ns (Max)
toff = 30 ns (Max)
I
r
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
20
Vdc
Collector-Base Voltage
VCS
25
Vde
Emitter-Base Voltage
VES
3.0
Vde
IC
200
mAde
Po
350
2.8
mW
mW/oC
Po
1.0
8.0
Watt
mW/oC
TJ,T,tg
-55'0 +150
°c
Coliector~Emitter
Collector-Current
Voltage
Continuous
Total Power Dissipation
Derate Above 25°C
@
Total Power Dissipation
@
TA "" 25°C
T C = 25°C
Oerete Abo,", 25°C
Operating and Storage Junction
SEATlNG~ic
PLANE
K
r
~
°-jIH-
=l r'-~
STYLE 1:
PIN 1. EMITTER ~
2. BASE
3.
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
R9JA(1)
357
°CIW
R9JC
125
°CIW
(1) R8JA is measured with the device soldered into a typical printed circuit board.
,
"
MILLiMETERS
MIN
MAX
5.200
4.19
5.330
0.533
F
4.450
3.1
4.320
0.407
0.407
L
1.150
1.390
1.270
P
6.50
3.430
2.410
2.030
C
D
R
S
B
-
-
-
2.670
2.670
INCHES
MIN
MAX
0.175
0.1
0.170
0.016
6
0.205
0.045
0.055
.050
-
0.250
0.13
0.095
O.OBO
CASE 29
TO-92
867
S
--1sTT
DIM
A
Characteristic
a
COLLECTOR~.-l
<000
Temperature Range
THERMAL CHARACTERISTICS
1
A
0.210
0.021
.1
-
0.105
01 5
MPS835 (continued)
ELECTRICAL CHARACTERISTICS (TA
I
~ 250 C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lC ~ 10 mAde, I B = 0)
BVCEO
20
-
-
Vde
Collector-Base Breakdown Voltage
(lC = 10"Ade,IE = 0)
BVCBO
25
-
Vde
Emitter-Base Breakdown Voltage
(I E = 10 "Ade, IC = 0)
BVEBO
3.0
-
-
Vde
Collector Cutoff Current
(VCE = 30 Vde, VBE = 0)
ICES
-
-
10
IIAde
Collector Cutoff Current
(VCB ~ 20 Vde, IE = 0)
ICBO
-
-
0.5
",Ade
hFE
20
35
-
-
-
0.20
0.30
VBE(sat)
-
0.78
0.9
Vde
fT
300
600
-
MHz
Cob
-
1.5
4.0
pF
ton
-
15
20
ns
tolf
-
30
35
ns
t.
-
28
35
n.
Characteristic
OFF CHARACTERISTICS
ON CHARACTERISTICS
DC Current Gain
(lC ~ 10 mAde, VCE ~ 1.0 Vdc'
Collector~emjtter
(lC
Saturation Voltage
Vde
VCE(sa!)
= 10 mAde, IB = 1.0 mAde)
Base-Emitter Saturation Voltage
(lC = 10 mAde,lB ~ 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC ~ 10 mAde, VCE ~ 20 Vde, f = 100 MHz)
Output Capacitance
(VCB ~ 10 Vde, IE ~ 0, f
~
100 kHz)
SWITCHING CHARACTERISTICS
Turn-On Time (Figure 1)
(VCC = 3.0 V, V8E(off)
I B2 ~ 1.0 mAde)
= 2.0 V, IC ~
10 mAde, 18 1 ~ 3.0 mAde,
Turn-Off Time (Figure 2)
(VCC ~ 3.0 V, IC ~ 10 mAde, 181 ~ 3.0 mA, 'B2
= 1.0 mAde)
Storage Time (Figure 2)
(VCC ~ 10 V,IC ~ 10mAde,IBl ~ IB2~ 10 mAde)
(1) Pul •• Test: Pulse Width';; 300",., Duty Cycle';; 2.0%.
FIGURE 1 - TURN-ON AND TURN-OFF TIME
TEST CIRCUIT
FIGURE 2 - STORAGE TIME TEST CIRCUIT
+30Vdc
+10Vdc
280
01j.lF
,-.o-'W'.,....-jE-o V,",
15k
50
V"
' A n " .. _~
ton VBB~
OV
----.
V Ill "-19Vdc
tolf VBB=+'SV~
Vm "+21Vdt
ov---,-'
+11 V
---.
868
MPS918 (SILICON)
MPS3563
NPN SILICON ANNULAR TRANSISTORS
NPNSILICON
· . . designed for VHF/UHF low-level amplifier, and oscillator
applications.
AMPLIFIER
TRANSISTORS
• One-Piece, Injection-Molded Plastic Unibloc
Reliability
•
Package for High
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 10 mAdc
MAXIMUM RATINGS
Retina
Symbol
MPS918 MPS3663
Unit
Collector·Emitter Voltage
VCEO
15
12
Vdc
Collector·Base Voltage
VCB
30
30
Vdc
Emitter·Base Voltage
VEB
3.0
2.0
Vdc
Collector Current - Continuous
IC
50
mAde
Total Power Dissipation
Derate a bove 25°C
T A"" 25°C
Po
350
2.B
mW
mW/oC
Total Pavvsr Dissipation @ T C = 25°C
Derate above 25°C
Po
1.0
8.0
Watt
mW/oC
TJ,T,tg
-55 to +150
°c
@
Operating and Storage Junction
Temperature Range
Characteristic
Thermal Resistance, Junction to Ambient
Symbol
Ma.
Unit
ROJA(1)
357
°C/W
ROJC
125
°CIW
Thermal Resistance, Junction to Case
~ INPUT IMPEDANCE'
~
1000
-VEE
005,,:1
lU
'0
OIM
A
B
C
0
Ohm,
1000 pF
VITRAMON
'/"
100
~OO1"
1
L~
II - 3 5 TURNS NO 16TINNED COPPER WIRE, 5/16' OIA.
7/16" LONG TURNS RATIO "" 4 til 2
l2 - 8 TURNS NO 16 TINNED COPPER WI FIE, 1/8" OIA.
7IB" LONG TURNS RATIO"" 8 TO 1
L3 - MILLER #4303 (04-0 65 ~H)
12
Ji
15-;~pF ~!
~OOOl'F
-=
AFC
+VCC
OOl "
-=
K
-=::jR~
F
30-12pF
~
O-jI~~L
3.
FIGURE 1 - 200 MHz POWER GAIN TEST CIRCUIT
~
"""JrtJ~ ~ {1
or
l t:ff±-1..
I
STYLE l'
PIN 1. EMITTER
2. BASE
(1) R8JA is measured with the deviced soldered into a typical printed circuit board.
[
A
PLANE
THERMAL CHARACTERISTICS
-=
r 1
K
L
N
P
Q
R
S
.J, J,
~
---I ~I=J-T
COLLECTOR
MILLIMETERS
MIN
MAX
4.450
5.200
4.190
3.180
4.320
5.330
0.533
0.407
0.482
0.407
1 . 00
1.390
1.150
1.270
6.350
3.430
2.670
2.410
2.030
2.670
-
INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.D16
0.D19
u.~uu
0.045
0.250
0.135
0.095
0.080
OUTPUT IMPEDANCE" 50 Ohms
CASE 29-02
TO-92
869
B
0.055
0.050
-
0.105
0.105
MPS918, MPS3563 (continued)
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)
a...-Istic
Symbol
Min
Max
15
12
-
-
30
30
-
3.0
2.0
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltaga(2)
(lC = 3_0 mAde, IB = 0)
Collector-Base Breakdown Voltage
(lC = 1.0,.Ade, IE - 0)
(lC = 100 ,.Ade, IE ·0)
E mittar-Baoe Breakdown
(IE = 10 "Ade, IC = 0)
Vde
BVCBO
MPS91B
MPS3563
V~ltage
Collector Cutoff Current
(VCB = 15 Vde, IE = 0)
Vde
BVCEO
MPS91B
MPS3563
Vde
BVEBO
MPS91B
MPS3563
ICBO
MPS91B
MPS3563
-
nAde
10
50
ON CHARACTERISTICS
OC Current Gain (2)
(lC = 3.0 mAde, VCE = 1.0 Vdc)
(lC = 8.0 mAde, VCE = 10 Vde)
MPS91B
MPS3563
Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
MPS91B
B.......Emltt.r Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
MPS91B
hFE
VCE(satl
VBE(sat)
20
-
20
200
-
0.4
-
1.0
600
600
-
Vde
Vde
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product(2)
(lc = 4.0 mAde, VCE = 10 Vde, f = 100 MHz)
(lC = 8.0 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(Vce = 0 Vde, IE = 0, f = 140 kHz)
(Vce = 10 Vde, IE = 0, f = 140 kHz)
(Vce = 10 Vdc, IE = 0, f = 1.0 MHz)
for
MPS91B
MPS3563
MHz
1500
pF
Cob
-
MPS91B
MPS918
MPS3563
I nput Capacitance
(VEe = 0.5 Vde, IC = O. f = 140 kHz)
MPS918
Smell-8ignal Currant Gain
(lC = B.OmAde, VCE = 10 Vde, f= 1.0kHz)
MPS3563
Noise Figura
(lc = 1.0 mAde, VCE· 6.0 Vde, RS=400ohms,f=60MHz)
MPS91B
-
3.0
1.7
1.7
-
2.0
20
250
-
6.0
15
14
-
30
-
25
-
-
pF
Cib
-
hfe
NF
de
FUNCTIONAL TEST
Common-Emittar Amplifier Power Gain (:;ee Figura 1)
(lc = 6.0 mAde, Vce = 12 Vde, f = 200 MHz)
(lC = B.O mAde, VCE = 10 Vdc, f = 200 MHz)
(Gfd + Gra < -20 d8)
de
Gpa
MPS91B
MPS3563
Power Output
(lC = 8.0 mAde, Vce = 16 Vde, f = 600 MHz)
MPS918
Oscillator Collector Effiei.ncy
(iC=8.0 mAde, VCB = 15 Vdc,Pout -30mW, f=500MHz)
MPS91B
mW
Pout
%
11
(2) Pulse Tes" Pulse Width ,;; 300 "s, Duty Cycle';; 1.0%.
870
MPS2369 (SILICON)
NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR
· .. designed for use in high-speed, low-current switching applications.
•
Low Output Capacity
Cob = 4.0 pF @ VCB = 5.0 Vdc
•
Fast Switching Time @ IC = 10 mAdc
ton = 12jls (Max)
toff= lBns (Max)
•
High Current-Gain-Bandwidth Product
fT = 500 Ml-iz @ IC = 10 mAde
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCES
40
Vdc
Collector-Emitter Voltage
VCEO
15
Vdc
Collector-S... Voltage
VCS
40
Vdc
Emlttar·Ba .. Voltage
VES
4.5
Vdc
Collector Current - Continuous
IC
200
mAde
Total Power Oiuipation
Derate above 2SoC
@
Po
350
2.8
mW
mWI"C
Total Power Dissipation
Derata above 2SoC
@
Po
1.0
8.0
Watt
mW/oC
TJ,Tstg
-55 to +150
°c
T A "" 26°C
TC:: 2SoC
Operating and Storage Junction
Temperature Range
~
SEATING.Jt
PLANE
~
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Symbol
Max
Unit
R8JA(1)
357
°CIW
R8JC
125
°C/W
Thermal Resistance, Junction to Case
(1) ReJA is measured with the device soldered into a typical printed circuit board.
~"I--
30Vo--"",,~-,
.1005V__~
""-1 ~
PULSE WIDTH (tl)
FIGURE 1 - ton CIRCUIT
.T'
10 "'
=
300
_..: CS-<40pF
33k
liS
DUTY CYCLE: 2 o,,~
--l "
DIM
A
I--
30 V 0---",,___- . ,
tl075 V n _ _ _ _
0
FIGURE 2 - toff CIRCUIT
-415V----=:l--~
l:=<110ns
PULSE WIDTH (10"
no
11-.6OV[11
0
F
Jl.
l
300 ns
r-4lOVo--"",~-,
980.,...,....___
-
-40 V
< 1 0 ns
\..PULSE WIDTH (11) '" 300 ns
DUTY CYCLE" 2 0%
B
C
33k
DUTY CYCLE" 2 0%
0- - -
STYlE 1:
PIN 1 EMITTER
2. BASE
3. COLLECTOR
>--"""""OO\.-H
;~;
-~ Cs·
< 3D pF
FIGURE 3 - STORAGE TEST CIRCUIT
MllLlM~
MIN
4.450
4.190
3.18"
4.320
5.330
0.407
0.533
0,.0
u.482
_Hel ""
1.150
1.390
1.270
I
~
-
S
2.670
2.670
r4-f-4-
INCHES
MIN
MAX
0.175
0.205
0.125
".lti5
0.170
0.210
0.016
0.021
O.Ul.
0.500
"."'"
0.045
0.055
0.050
0.250
0.135
0.095
0.080
CASE 29-02
TO·92
*Totalshunt capacitance of 1ts1llgandconnlctors.
871
-
0.105
0.105
MPS2369
(continued)
ELECTRICAL CHARACTERISTICS(TA = 2S'C unless otherwise noted)
Symbol
Characteristic
Min
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage'lli
= 10 mAde,
(Ie
IB
BVCEO
= 0)
= 10 !LAde,
V BE
= O)
Collector-Base Breakdown Voltage
(IC
= 10 I'Ade,
IE
= 10 I'Ade,
IC
40
-
40
-
4.5
-
Vde
BVCBO
= 0)
Emitter-Base Breakdown Voltage
(IE
-
BVCES
Collector-Emitter Breakdown Voltage
(IC
Vde
15
Vde
BV EBO
= O)
Collector Cutoff Current
Vde
ICBO
(VCB
=20 Vde,
IE
= O)
(VCB
= 20 Vde,
IE = 0, T A
= 125°C)
!LAde
-
0.4
-
30
40
120
20
20
-
-
0.25
ON CHARACTERISTICS
DC Current Gain (11
(IC
(IC
(IC
Collector-Emitter Saturation Voltage (11
(IC
= 10 mAde,
IB
= 10 mAde,
IB
Vde
VCE(sat)
= 1. 0 mAde)
Base-Emitter Saturation Voltage (1)
(IC
-
hFE
= 10 mAde, VCE = 1. 0 Vde)
= 10 mAde, VCE = 1. 0 Vde, TA = -55"C)
= 100 mAde, VCE = 2.0 Vde)
Vde
VBE(sat}
= 1.0 mAde)
0.70
0.85
SMALL SIGNAL CHARACTERISTICS
Ontput Capacitance
(VCB
= 5.0 Vde,
pF
Cob
IE
= 0,
f
= 140 kHz)
-
Ihre I
Small-Signal Current Gain
(IC = 10 mAde, VCE
= 10 Vde,
f
= 100 MHz)
4.0
-
5.0
SWITCHING CHARACTERISTICS
Turn-On Time
IBI
IC
= 10 mAde,
-
Turn-Ofr Time
IB2
IB1
= IB2 = IC = 10 mAde)
ns
= 3.0 mAde,
Storage Time
(I B1
12
t ofr
= 3.0 Vdc, IC = 10 mAde,
(Figure 2)
= 1. 5 mAde)
(VCC
os
ton
= 3.0 Vde, VBE (off) = 1. 5 Vde,
(Figure 1)
= 3.0 mAde)
(VCC
t
(Figure 3)
(11 Pulse Test: Pulse Width = 300 !LB, Duty Cycle = 2.0%
872
B
-
18
-
13
ns
MPS2712 (SILICON)
MPS2716
NPN SILICON
AMPLIFIER
TRANSISTORS
NPN SILICON ANNULAR AMPLIFIER TRANSISTORS
· .. designed for use as a general-purpose amplifier.
• Coliector·Emitter Breakdown Voltage BVCEO = 18 Vdc (Min) @ IC = 1.0 mAde
•
Low Output Capacitance Cob = 2.0 pF (Typ) @ VCB
I
= 10 Vdc
r
MAXIMUM RATINGS
Symbol
Rating
Collector-Emitter Voltage
MPS2712
VCEO
I
Unit
18
Vdc
Collector-Base Voltage
VCB
18
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
100
I
25
mAde
= 25°C
Po
350
2.6
mW
mW/oC
Total Power Dissipation @ T C "" 2SoC
Derate above 2SOC
Po
1.0
8.0
Watt
mW/oC
TJ,Tstg
-55 to +150
°c
Total Power Dissipation@TA
Derate above 25°C
Operating and Storage Junction
Temperature Ran ge
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
L-
Max
Unit
R8JA(1I
357
°C/W
R8JC
125
°C/W
(1) R8JA is measured with the device soldered into a typical printed circuit board.
-F
D=lf-Lr~
lor
STYLE I
PIN I
EMITTER
-000
S
B
~sTT
DIM
A
B
C
D
MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
L
N
1.150
P
0
6.350
3.430
2.410
2.030
R
S
INCHES
MIN
MAX
5.200 0.175
4.190 0.125
5.330 0.170
0.533 0.016
u.48 I u.Ol.
0.205
0.165
0.210
0.021
0.019
1.390
1.270
0.055
0.050
-
-
2.670
2.670
0.045
0.250
0.135
0.095
0.080
CASE29.()2
TO·92
873
I
~"-1..
~ ~~~iECTOR
. U.4Ut
Symbol
1
SEATING~iFC1
PLANE
MPS2716
A
-
-
0.105
0.105
MPS2712, MPS2716 (continued)
I
ELECTRICAL CHARACTERISTICS (TA = 25°C unl••• otherwi.. noted.)
I
Symbol
Min
Typ
Max
Unit
BVCEO
lB
-
-
Vde
Collector Cutoff Current
(VCB = 18 Vde, Ie = 01
(VCB = 18 Vde, IE = 0, TA = l000 CI
ICBO
-
-
0.5'
15
I'Ade
Emitter Cutoff Current
(VBe = 5.0 Vdc, IC = 01
lEBO
-
-
0.5
lOA de
Cheracteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 01
ON CHARACTERISTICS
DC Current Gain
(lC = 2.0 mAde, VCE
=
4.5 Vdel
MPS2712, MPS2716
SMALL-8IGNAL CHARACTERISTICS
Output Capacitance
(VCB 10 Vde,le
=
=0, f = 1.0 MHzl
MPS2712
MPS2716
(11 Pulse Test: Pulse Width ';;;300 lOS, Duty Cycle ';;;2.0%.
874
MPS2714 (SILICON)
NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR
... designed for use in low· level swi\ching applications.
•
Low Output Capacitance Cob = 2.5 pF (Typ) @ VCB = 10 Vdc
•
Fast Switching Time@ IC
ts = 12 ns (Typ)
•
High Current· Gain-Bandwidth Product
fT = 250 MHz (Typ) @ IC = 10 mAdc
= 10 mAdc
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
18
Vdc
Collector-Base Voltage
VCB
18
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
200
mAde
PD
350
2.8
mW
mW/oC
PD
1.0
8.0
mW/oC
-55 to .150
°c
Rating
Collector-Emitter Voltage
Collector Current
Continuous
Total POlNer Dissipation @ T A "" 2SoC
Derate above 2SoC
Total Power Dissipation @ TC = 2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ,Tstg
Watt
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
ReJAllI
357
°C/W
ReJC
125
°C/W
(1) R6JA is measured with the device soldered into a typical printed circuit board.
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
DIM
A
B
C
0
F
K
L
N
p
Q
R
S
INCHES
MIN
MAX
0.205
5.200 0.175
4.190 '1[f25 Ir. 65
0.210
5.330 0.170
0.533 0.016
0.021
0.019
0.482 0.016
0.500
1.390 0.045
0.055
0.050
1.270
- 0.250
0.135
2.670 0.095
0.105
0.105
2.670 0.080
MILLIMETERS
MIN
MAX
4.450
3.1 0
4.320
0.407
0.407
12.700
1.150
6.350
3.430
2.410
2.030
CASE 29.02
TO-92
875
MPS2714 (continued)
ELECTRICAL CHARACTERISTICS (continued)
Characteristic
ON CHARACTERISTICS
DC Current Galn
(Ie • 2 mAde, VCE =4.5 Vde)
-
hFE
CoUeetor-Emltter Saturation Voltage
(Ie • 50 mAde, IB • 3 mAde)
VCE(sat)
Base-Emltter Saturation Voltage
(Ie • 50 mAde, IB • 3 mAd.)
VBE(sat)
75
150
225
-
0.16
0.3
0.6
0.75
1.3
Vde
Vde
SMALL SIGNAL CHARACTERISTICS
Small Signal Current Galn
(Ie = 2 mAde, VCE • 4.5 Vde, f
-
life
= 1 kHz)
80
Current-Galn- Bandwidth Product
(Ie • 10 mAde, VCE • 10 Vdc, f • 100 MHz)
OUtput Capacitance
(VCB = 10 Vdc, IE
fT
Cob
= 0, f = 100 kHz)
Input Impedance
(Ie = 0.5 mAde, VCE
= 1 Vdc, f =
lite
1 kHz)
-
250
2.5
3000
300
-
MHz
pF
ohms
SWITCHING CHARACTERISTICS
Delay Time
Ie = 10 mA, IB1 =
3 mA, VCC
td
= 10 V
Rise Time
Storage Time
FaU Time
t.
Ie •
10 mA, IB1 • 3 mA, IB2
VCC.10 V
t.
= 1 mA,
It
876
-
-
7.0
6.0
12
9.0
-
ns
ns
DB
DB
MPS2923 thru MPS2925 (SILICON)
NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR
· .. designed for use in medium·speed general·purpose amplifier and
oscillator applications.
• Collector· Emitter Breakdown Voltage BVCEO = 25 Vdc
• Small Signal Current Gain hfe = 90-180 MPS2923
150-300 MPS2924
235-470 MPS2925
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
25
Vdc
Collector-Base Voltage
VCS
25
Vdc
Emitter-Base Voltage
VES
5.0
Vdc
Collector Current - Continuous
IC
100
mAde
Total Power Dissipation
Derate above 25°C
T A = 25°C
Po
350
2.8
mW
mW/oC
= 2SoC
Po
1.0
8.0
Watt
mW/oC
TJ,Tstg
-55 to +150
°c
Rating
Collector-Emitter Voltage
@
Total Power Dissipation@ TC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
STYLE 1:
PIN 1
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal ResIstance, Junction to Case
Symbol
Max
Unit
ReJA(lI
357
°C/W
ReJC
125
°C/W
(1) RaJA is measured with the device soldered into a typical printed circuit board.
EMITTER
2. BASE
3. CO LLECTO R
DIM
A
B
C
0
F
K
L
N
P
Q
R
S
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
4.450
3.180
4.320
0.407
0.407
1 .700
1.150
6.350
3.430
2.410
2.030
0.175
0.125
0.170
0.016
0.016
5.200
4.190
5.330
0.533
0.482
-
1.390
1.270
-
2.670
2.670
-u:.rnr
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
877
0.205
0.165
0.210
0.021
0.019
-
0.055
0.050
-
0.105
0.105
MPS2923 thru MPS2925 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Characteristic
Collector Cutoff Current
VCB = 25 V, IE = 0
ICBO
VCB = 25 V, ~ = 0, TA = 100°C
Emitter Cutoff Current
VEB = 5 V
~BO
Small Signal Current Gain (f = 1 kHz)
VCE =10V,IC =2mA
MPS2923
MPS2924
MPS2925
hfe
Collector Capacitance
VCB = 10 V, IE = 0, f = 1
Cob
Min
Max
-
0.5
-
15
J.l.A
-
0.5
J.l.A
J.l.A
90
150
235
180
300
470
-
12
MHz
(1) Cpntinuoul package improvements have enhanced these guaranteed Maximum Ratings 8' follows:
T C = 2SoC. Derate above 25°C - 8.0 mWr'C, T J =- -65 to +150 o C. 6 JC = 12SoC/W.
878
Unit
PO" 1.0 W @
pF
MPS2926 (SILICON)
NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
AMPLIFIER
TRANSISTOR
... designed for use in amplifier applications.
• Collector-Emitter Breakdown Voltage BVCEO = 1B Vdc
• Small-Signal Current Gain hfe = 35-470
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
18
Vdc
Collector-Base Voltage
VC8
18
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
100
mAd~
Total POlNer Dissipation @ T A "" 25°C
Po
350
2.8
mW
mW/oC
Po
1.0
8.0
Watt
mW/oC
TJ,T stg
-55 to +150
°c
Symbol
Max
Unit
ReJAlll
357
°C/W
ReJC
125
°C/W
Collector-Emitter Voltage
Derate above 2SoC
Total Power Dissipation@ TC "" 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
STYLE 1:
PIN 1
2.
3.
(1) R6JA is measured with the device soldered into a typical printed circuit board.
DIM
A
B
C
D
F
EMITTER
BASE
COLLECTOR
MILLIMETERS
MIN
MAX
4.450
:1.180
4.320
0.407
0.4U7
K
~.700
L
N
P
1.150
a
R
S
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
5.200
4.19U
5.330
0.533
0.175
U.l 5
0.170
0.016
U.016
0.205
0.165
0.210
0.021
U.U19
1.390
1.270
0.045
0.055
0.050
u.4B
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
879
0.105
0.105
MPS2926 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristics
Symbol
Min
Typ
Collector Cutoff Current
(VCB =18 Vdc, IE = 0)
(VCB =18 Vdc, IE =0, TA
ICBO
--
-
lEBO
-
-
0.5
Current Gain - BandWidth Product
(IC = 4 mA, VCE = 5 V)
fT
-
300
-
Output Capacitance
(VCB = 10 V, IE = 0, f
Cob
-
-
3.5
35
-
470
=100'C)
Emitter Cutoff Current
(V EB =5 Vdc, IC = 0)
=1 MHz)
Small Signal Current Gain
(VCE = 10 V, Ie =2 mAo f = 1 kHz)
Max
Unit
J.LA
0.5
15
J.LA
MHz
pF
-
hfe
(1) Continuous package improvements have enhanced the .. guaranteed MaXimum Ratings as follows:
Derate above 25°C - 8.0 mWf'C, T J '" -&5 to +150o C. 8 J C:Z: 125 0 C/W.
Po
= 1.0
W
@
TC "" 2SoC,
Each unit will be branded with the MPS2926 type and also by color code to identify the different A-C beta
categories. A-C beta Is broken down into five groups, and typical values of DC beta are listed for guidance.
Color Code
Brown
Red
Orange
Yellow
Green
hie
(VcE =lOV,lc =2mA,f=1 KHz)
hFE
(VCE = 4.5 V, Ic = 2 mAl
Min
Max
Typ
35
55
90
150
235
70
110
180
300
470
36
62
115
155
215
880
MPS3390 (SILICON)
thru
MPS3398
NPN SILICON
AMPLIFIER
TRANSISTORS
NPN SILICON ANNULAR AMPLIFIER TRANSISTORS
· .. designed for use in general-purpose and high-gain amplifier or
driver applications.
•
Collector-Emitter Breakdown Voltage BVCEO ~ 25 Vdc (Min) @ IC = 1.0 mAdc
•
DC Current Gain Specified at 2.0 mAdc hFE ~ 400-800 - MPS3390
250-500 - MPS3391
150-300 - MPS3392
9D-180 - MPS3393
55-110 - MPS3394
150-500 - MPS3395
90-500 - MPS3396
55-500 - MPS3397
55-800 - MPS3398
MAXIMUM RATINGS
Symbol
Value
Unit
VeEO
25
Vdc
Collector-Base Voltage
Ves
25
Vdc
Emitter-Base Voltage
VES
5.0
Vdc
COllector-Current - Continuous
Ie
100
mAde
Total Power Dissipation @ T A == 2SoC
Po
350
2.8
mW
mWflC
Po
1.0
8.0
Watt
mWfOC
-55 to +150
°c
Rating
Collector-Emitter Voltage
Derate above 2SoC
Total Power Dissipato" @TC= 25°C
Derate above 25°C
Operating and Storage Junction
TJ,Tstg
Temperature Range
STYLE 1:
PIN 1
2.
3.
DIM
A
B
C
0
F
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Unit
L
N
357
°c/w
Q
125
°C/W
R
S
Symbol
Max
ReJAll)
ReJC
P
MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
0.407
5.200
4.190
5.330
0.533
0.482
1.150
6.350
3.430
2.410
2.030
1.390
1.270
2.670
2.670
INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.021
0.016
0.019
u.ul.
0.045
0.250
0.135
0.095
0.080
(1) ReJA is measured with the device soldered into a typical printed circuit board.
CASE 29-02
TO-92
881
0.055
0.050
0.105
0.105
MPS3390 thru MPS3398 (continued)
I
ELECTRICAL CHARACTERISTICS
(TA = 250 C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Collector·Emitter Breakdown Voltage (1)
IIC· 1.0 mAde, IB= 0)
BVCEO
25
-
-
Vde
Coliector·Base Breakdown Voltage
IIC· O.hAde, IE = 0) ,
BVCBO
25
-
Vde
Emitter·Base Braakdown Voltege
liE· O.II'Ade,lc= 0)
BVEBO
5.0
-
-
Vde
Collector Cutoff Current
(VCB· 18 Vde, IE = 0)
ICBO
-
-
0.1
I'Ade
Emitter Cutoff Current
lEBO
-
-
0.1
I'Ade
Characteristic
OFF CHARACTERISTICS
(YEB • 5.0 Vde, I C = 0)
ON CHARACTERISTICS
DC Current Gain
IIC· 2.0 mAde, VCE • 4.5 Vde)
hFE
MPS3390
MPS3391
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396
MPS3397
MPS3398
-
-
400
250
150
90,
55
150
90
55
55
80
-
500
800
-
2.0
10
400
-
1250
800
500
400
300
800
-
-
-
-
800
500
300
180
110
500
500
SMALL-SIGNAL CHARACTERISTICS
Output Capacitance
(YCB = 10 Vde, IE = 0, I
Cob
= 1.0 MHz)
Small-Signal Current Gain
IIC = 2.0 mAde, VCE = 4.5 Vde, I
-
hIe
=1.0 kHz)
MPS3390
MPS3391
MPS3392
MPS3393
MPS3394
MPS3395
MPS3398
MPS3397
MPS3398
250
150
90
55
150
90
55
55
(1) Pulse Test: Pulse Width 0;;;3001'1, Duty Cycle 0;;;,2.0%.
MPS3563 (SILICON)
For Specifications, See MPS918 Data.
882
pF
-
-
800
800
1250
MPS3638 (SIUCON)
MPS3638A
NPN SILICON ANNULAR TRANSISTORS
· .. designed for high-current switching applications.
•
NPN SILICON
SWITCHING
TRANSISTORS
Collector-Emitter Sustaining Voltage VCEO(sus) = 25 Vdc (Min)
•
DC Current Gain Specified - 1.0 mAdc to 300 mAdc
•
Fast Switching Time @ IC = 30 mAdc
ts = 140 ns (Max)
•
Current·Gain-Bandwidth Product fT= 150 MHz (Min) @ IC = 50 mAdc MPS3638A
•
Electrically Similar to 2N3638,A
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
VCES
25
Vdc
Collector-Emitter Voltage
Rating
VCEO
25
Vdc
Ccllector-Ba. Voltage
VCB
25
Vdc
Emittar-Ba. Voltage
VEB
4.0
Vdc
Collector Currant - Continuoul
IC
500
mAde
Total Power Dlaipation @ T A - 2SoC
Darat. above 2S<>C
Po
350
2.B
mW
mW/oC
TC = 2SoC
Po
1.0
8.0
Watt
mW/OC
TJ,Tstg
-55 to +150
°c
Total Power Dlaipation
o.rlta above 2SoC
@
Operating and Storage Junction
J J~
1 r--;f
L....:....-
SEATINGJt
PLANE
D-jl~~
=::jR~
Temperature Range
l°r-.l
,,>IT>, ~'
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance. Junction to Case
Symbol
Max
Unit
R9JAil)
357
°CIW
R9JC
125
OC/W
K
STYlE 1:
PIN 1.
2. BASE
3. COllECTOR
(1) R8JA is measured with the device soldered into a typical printed eircuit board.
DIM
A
B
C
0
F
L
N
P
Q
R
S
S
--l 3 t
MILLIMETERS
MIN
MAX
S
INCHES
MIN
MAX
4.450
3. 80
4.320
0.407
U.4tl/
1.
1.150
5.200 0.175
4.19U I u.125
5.330 0.170
0.533 0.016
u.4., ~
6.350
3.430
2.410
2.030
0.250
0.135
0.095
0.080
1.390
1.270
2.670
2.670
0.045
CASE 29'()2
TO-92
883
0.205
u. 65
0.210
0.021
....!!oO..!!!.
0.055
0.050
0.105
0.105
MPS3638, MPS3638A (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector-EmItter Sustalmng Voltage (11
(Ie = 10 mAde, IB = 0)
VCEO(SllS)
CoUector-Emltter Breakdown Voltage
(I C = 100 MAde, V BE = 0)
BV CES
Collector-Base Breakdowil Voltage
(IC 100 MAde, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(IE = 100 MAde, IC = 0)
BV EBO
Collector Cutoff Current
ICES
(V CE =15Vde. VBE=O)
(VCE = 15 Vdc. VBE = 0, TA = +65T)
Base Current
(V CE = 15 Vde, V BE = 0)
Vde
25
Vde
25
25
-
Vdc
Vde
4.0
-
,u.Ade
0.035
2.0
MAde
IB
0.035
ON CHARACTERISTICS I')
DC Cunent Gam
(IC = I mAde, VCE = 10 Vde)
MPS3638A
hFE
80
-
(IC = 10 mAde, VCE = 10 Vde)
MPS3638
MPS3638A
20
100
(IC = 50 mAde, VCE = 1 Vde)
MPS3638
MPS3638A
30
100
-
(Ie = 300 mAde; VCE =2Vde)
MPS3638
20
20
-
MPS3638A
Collector-Emltter SaturatIOn Voltage
(IC = 50 mAde, IB = 2. 5 mAde)
0.25
-
(IC = 300 mAde. IB = 30 mAde)
1.0
Vdc
VBE(s.t)
(IC = 300 mAde, IB = 30 mAde)
Vde
VCE(s.t)
Base-Emltter Saturation VoltagE'
(Ie = 50 mAde, IB = 2. 5 mAde)
-
1.1
0.80
2.0
100
150
-
-
20
10
DYNAMIC CHARACTERISTICS
Current-Gain-BandWldth Product
(VeE = 3 Vdc, Ie = 50 mAde, f = 100 MHz)
MPS3638
MPS3638A
Output CapacItance
MPS3638
MPS3638A
(V CB = 10 Vde. IE = 0, f = 140 KHz)
Input Capacltance
(V BE = 0.5 Vdc, IC = 0, f = 140 "Hz)
Small-Signal Current Gam
(Ie = 10 mAde, VCE = 10 Vdc/ f
= 1. 0 KHz)
Output Conductance
(Ic = 10 mAdc, VeE
= 1.0 kHz)
= 10
Vdc, f
MPS3638
MPS3638A
MPS3638
MPS3688A
Input Resistance
(Ie = 10 mAde, VCE = 10 Vde, 1 = 1.0 kHz)
Voltage Feedback RatIo
(Ie = 10 mAde, VCE = 10 Vde, f
MPS3638
MPS3638A
= 1. 0 kHz)
MPS3638
MPS3638A
fT
COb
MHz
pF
C ,b
pF
65
25
h re
25
100
180
-
mmhos
hoe
-
1.2
hie
-
1500
2000
-
26
15
h re
Ohms
XlO- 4
SWITCHING CHARACTERISTICS
Delay TIme
Vce = 10 Vde. Ie = 300 mAde,
Rlse TIme
lin = 30 mAde. VBE(olf) = 3. I ~dc
Storage TIme
Vee::: 10 Vdc, Ie = 300 mAde.
Fall TIme
IBI
Turn-On Tlme
Ie - 300 mAde, lSI - 30 mAde
Turn-Oil TIme
Ie": 300 mAde, lSI
(1)
==
30 mAdc. IS2
'd
,
r
= 30 mAde
=30 mAde,
=30 mAde
Pulse Test: Pulse Width s 300 I'S, Duty Cycle" 2.0%
884
ns
70
ns
's
140
'1
70
on
75
tuff
170
\
IB2
20
ns
MPS3639 (SIUCON)
PNP SILICON ANNULAR TRANSISTOR
PNP SILICON
· .. designed for use in low·current, high-speed switching applications.
•
SWITCHING
Collector-Emitter Breakdown Voltage BVCES= 6.0 Vdc (Min)
TRANSISTOR
•
Fast Switching Time @ IC = 50 mAdc
ton = 25 ns (Max)
toff = 25 ns (Max)
•
Low Output Capacitance Cob = 3.5 pF (Ma,,) @ VCB = 5.0 Vdc
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
6.0
Vdc
Collector-Base Voltage
VCB
6.0
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
Collector Current - Continuous
IC
80
mAde
Total Power Dissipation
Derate above 25°C
T A :::: 25°C
Po
350
2.8
mW
mW/oC
Total Power Dissipation @ T C = 25°C
Derate above 25°C
Po
1.0
8.0
Watt
mW/oC
TJ.T stg
-55 to +150
°c
Rating
Collector·Emitter Voltage
@
Operating and Storage Junction
Temperature Range
SEATINGJt
PLANE
L-
THERMAL CHARACTERISTICS
Ma.
Symbol
Characteristic
Unit
~
D-jIP[-+L
-=1Rf.."=-
357
Thermal Resistance, Junction to Ambient
Thermal Resistance. Junction to Case
°C/w
125
ROJC
lQr
(l) ROJA IS measured with the device soldered into a typical printed circuit board.
SWITCHING TIME TEST CIRCUITS
Vbb"
1.& V
v
~
Vbb=
-6V
"-6
5K
110
1K
0.1
~Vout
)J.F ~ To sampling scope
V1n1f~. 6~~~ ~ Ri~~:!~:~n~
Vee"
-5V
130
0.1
"F ~ To sampling scope
Vln11E-~ ~~ \3.. Ri~~t~!e~cl~On~
51
STYLE 1.
PIN 1. EMITTER
2. BASE
3. COLLECTOR
DIM
A
B
C
0
F
L
N
51
P
PULSE SOURC;
Rise time c I na
PW ~100 na
'='
~.~
1-_~ 1-7~F1~
PULSE SJURC;
Rise Ume 5 1 ns
PW lI! 200 ns
Q
R
S
~.~
Fall time c1 ns
Fall time d
NOTES: (1) Collector C\l.rrent .. 50 rnA
(2) Turn~On and Turn-Off Base
Currents. 5 rnA
NOTES: (1) Collector Current s 10 rnA
(2) 'l'um·On and Tum-Off Base
Currents .. 0.5 rnA
885
~
--I =rt
1 2 ,
000
..J.
S
8
S
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
4.450
3.180
4.320
0.407
0.407
1 .7
1.150
0.175
0.125
0.170
0.016
0.016
0.205
'1,165
0.210
0.021
0.019
0.045
0.055
0.050
6.350
3.430
2.410
2.030
5.200
4.190
5.330
0.533
0.482
1.390
1.270
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
0.105
0.105
MPS3639 (continued)
ELECTRICAL CHARACTERISTICS
(TC = 250 C unleSl otherwise noted.1
Characteristic
Collector·Emitter Susteining Voltage (I)
(lS=0,lc·l0mA)
Collector·Emitter Breakdown Voltage
(lC= 100 "A, VBE = 01
Collector-Base Breakdown Voltage
(lC = 100 "A, IE = 0)
Emitter-Ba.. Breakdown Voltage
(Ie = 100 "A, IC = 01
Collector Cutoff Current
(VCE=3V,VEB=01
(VCE = 3 V, VEB = 0, TA = +650 CI
Base Current
(VCE=3V,VEB=01
Forward Current Transfer Ratio (11
(VCE=0.3V,IC= lOrnA)
(VCE = 1.0 V, IC = 50mAI
Symbol
Min
VCEO(susl
6.0
-
V
BVCES
6.0
-
V
BVCBO
6.0
-
V
BVEBO
4.0
-
V
-
-
0.01
1.0
-
10
30
20
120
-
0.16
0.5
0.23
ICES
IB
MIX
VCE( ..tl
Base-Emitter Saturation Voltage (11
(lC = 10 rnA, IB = 0.5 rnA)
(lc=10mA,IB=lmA)
(lC = 50 rnA, IB = 5mAI
Small-5ignal Current Transfer Ratio
(VeE = 5 V, IC = 10 rnA, f = 100 MHz)
(VCB = 0, IC = 10 rnA, f = 100 MHzl
Output Capaictance
(IE = 0, VCB = 5 V, f = 140 kHzl
VBE(sat)
"A
nA
-
hFE
Collector-Emitter Saturation Voltage (11
(lC= lOrnA, IB= 1 mAl
(lC = 50 rnA, IB= 5mA)
(lC= 10mA,IB- 1 mA,TA=+650 CI
Unit
-
-
V
V
0.75
0.8
-
0.95
1.0
1.5
5.0
3.0
-
hfe
-
Cob
-
3.5
pF
Cib
-
3.5
pF
Delay Time
(VCC = 6V, IC = 50 rnA, IBI = 5 rnA, VBE(off) = 1.9 VI
td
-
10
ns
Rise Time
tr
30
ns
20
ns
12
ns
Input Capacitance
(VBE = 0.5 V, IC = 0, f = 140 kHzl
(Vec = 6 V, IC,= 50 rnA, IBI = 5 rnA, VBE(off) = 1.9 VI
Storage Time
(VCC = 6 V, IC = 50 rnA, IBI = IB2= 5 mAl
Fall Time
(Vec= 6 V, IC = 50 rnA, IBI = IB2= 5mA)
ts
-
tf
Turn-On Time
(lC = 50 rnA, lSI = 6 rnA, VBE(off) - 1.9 VI
(Ie = lOrnA, IBI = 0.5mAI
ton
Turn-Off Time
(Ie = 50 mA, VBE(off) = 1.9 V, IBI = IB2 = 5 mAl
(lC = 10 rnA, IBI = IB2 = 0.5 mAl
taff
ns
-
25
60
-
25
60
ns
-
(11 Pulse Test: Pulse Width" 300,,5, Duty Cycle" 2.0%.
886
MPS3640
(SILICON)
PNPSILICON
SWITCHING
TRANSISTOR
PNP SILICON ANNULAR TRANSISTOR
· .. designed for general'purpose, low-level switching applications.
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.2 Vdc@ IC = 10 mAdc
•
Output Capacitance Cob = 3.5 pF (Max) @Vce= 5.0 Vdc
•
Fast Switching Time@lc= 50 mAdc
ton = 25 ns (Max)
toff = 35 ns (Max)
MAXIMUM RATINGS
Symbol
Value
Unit
VeEO
12
Vdc
Coliector·Base Voltage
VeB
12
Vde
Emitter-Base Voltage
VEB
4.0
Vde
Collector Current - Continuous
Ie
BO
mAde
Total Power Dissipation @ T A::: 25°C
Po
350
2.B
mW
mwf'e
Po
1.0
Watt
8.0
mw/oe
Rating
Cdllector~Emitter
Voltage
Derate above 25°C
Total Power Dissipation@ TC::: 25°C
Derate above 25°C
Operating and Storage Junction
TJ,T stg
-55 to +150
STYlE 1:
°e
PIN 1.
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
EMITTER
2. BASE
3. COLLECTOR
Temperature Range
Symbol
Max
Unit
ROJA(11
357
R6Je
125
°elW
°elW
(1) R8JA is measured with the device soldered into a typical printed circuit board.
DIM
A
B
C
D
F
L
MILliMETERS
MIN
MAX
4.45l1
5.200
3.180
4.19
4.320
5.330
Q.407
0.533
7
.4
1.150
N
P
a
R
S
6.350
3.430
2.410
2.030
1.390
1.270
2.670
2.670
INCHES
MIN
MAX
0.175
0.205
0.15
0.165
0.170
0.210
0.016
0.021
•.• '9
0.045
0.250
0.135
0.095
0.080
CASE 29'()2
TO·92
887
0.055
0.050
0.105
0.105
MPS3640 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
I
Symbol
Min
VCEO(suI)
12
-
Vdc
Collector-Emitter Breakdown Voltage
(lc ·l00I'Adc, VBE = 0)
Collector-B... Breakdown Voltage
(lc a l00I'Adc,IE a 0)
BVCES
12
-
Vdc
BVCBO
12
-
Vdc
Emilter-Ba.. Breakdown Voltage
(IE = l00I'Adc,IC= 0)
BVEBO
4.0
-
Vdc
Charact«iotic
Unit
MIX
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(Ie = 10 mAdc,ls = 0)
Collector Cutoff Current
(VCE = 6.0 Vde, VBE = 0)
(Vel"· 6.0 Vde, VRE - 0, TA
ICES
Reverse Base Current
(VCE = 6.0 Vde, VBE = 0)
I'Ade
-
0.01
1.0
-
10
30
20
120
-
0.2
0.6
0.25
0.75
0.8
-
0.95
1.0
1.5
IT
500
-
MHz
Cob
-
3.5
pF
Cib
-
3.5
pF
-
25
-
60
10
ns
30
ns
-
35
-
75
= 650 C)
IB
nAde
ON CHARACTERISTICS (1)
DC Current Gain
(lC = 10 mAde, VCE'= 0.3 Vde)
(I C = 50 mAde, VCE = 1.0 Vde)
Coliector·Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAde)
(lC= 50mAde,IB= 5.0 mAde)
(lC = 10mAde,IB = 1.0 mAde, TA = 650 C)
Base-Emitter Saturation Voltage
(lC = 10 mAde, IB = 0.5 mAde)
(lC = 10mAde,IB = 1.0mAde)
(I C = 50 mAde, I B = 5.0 mAde)
-
hFE
Vde
VCE( ..t)
Vde
VBE( ..tl
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 10 mAde, VCE = 5.0 Vde, I = 100 MHz)
Output Capacitance
(VCB = 5.0 Vde, IE = 0, I = 140 kHz)
Input Capacitance
(VB I" = 0.5 Vde, IC = 0, I = 140 kHz)
SWITCHING CHARACTERISTICS
Turn-Cln Time
(V CC = 6.0 Vde, IC = 50 mAde, V BE(oll) = 1.9 Vde, I B 1 = 5.0 mAde)
(Figure 1)
(VCC = 1.5 Vde, IC = 10 mAde, IBl = 0.5 mAde) (Figure 2)
Delay Time
I
Rise Time
I
Id
(VCC = 6.0 Vde, IC = 50 mAde, VBE(off) = 1.9 Vde,
IBl = 5.0 mAde)(Figur. 1)
Ir
Turn-Off Time
(V CC = 6.0 Vde, I C = 50 mAde, 181=IB2=
IBl = IB2 = 5.0 mAde) (Figure 1)
(VCC = 1.5 Vde, IC = 10 mAde, IBl = IB2 = 0.5 mAde) (Figure 2)
Storage Time
Fall Time
I
I
ns
ton
'off
(VCC = 6.0 Vde, IC - 50 mAde, IBl = IB2 = 5.0 mAde)
(Figur.l)
Is
If
ns
-
20
ns
12
ns
(1) Pulse Test: Pulse Width ";3ool's, Duty Cyele";2.0%.
VBB =+1.9 V
VBB =-6.0 V
VCC = -6.0 V
110
-:.JS
PULSE SOURCE
Rise Time~ 1.0 ns
1.0 k
Vini
0.1 pF
Vout
TO SAMPLING SCOPE
Input Z
~100
k
:n
PULSE SOURCE
VCC-I.5V
130
5.0 k
vino-'i~tF
51
Vout
5.0 k
TO SAMPLING SCOPE
Input Z
~100
k
Rise Time:::. 1.0 os
Rise Time==:1.0 ns
Pulse Width ~200 os
lin = 50 Ohms
NOTES: Collector Curr.nt .. 10 rnA, Turn·On and Turn·Off Tim.
Fall Time::: 1.0 ns
Base Currents = 0.5 rnA.
Rise Time::: 1.0ns
Pul.. Width ::100 ns
=50 Ohms
NOTES: ColI.ctor Curr.nt = 50 rnA, Turn·On and Turn·Off Time
fall Time:::: 1.0 ns
Base Cumnts = 5.0 rnA.
lin
888
MPS3640 (continued)
FIGURE 3 - DC CURRENT GAIN
FIGURE 4 - "ON" VOLTAGES
200
1.4
VCE'I.0V
g 1.0
-:1 25OC
-
II
~ o. a
VaElo") @VCE - 1.0 V
"''"~ o. 6
o
I"-
IIIII
IIIII
>
->
O. 4
O. 2
0.5
0.2
1.0
2.0
5.0
10
50
20
0
100
0.1
0.2
0.5
o. a
J
ill
II
5.0 rnA
20 rnA
Ic" 1.0 rnA
'"
~r;;
~ ~ O. 6
II
I
I II I
f-
'ovc FOR VCEI"t)
ffi
~
\
~ 0.4
O. 2
0.05
0.02
-55 0J:"250C
-0.5
'"
~
-1.0
~
25°C to 1250C
-
Bva FOR VSE
~
2.0
5.0
-2.0
0.1
10
L
0.2
FIGURE 7 - CURRENT-GAIN-BANDWIDTH PRODUCT
2000 TJ - 25°C
~
t, 100 MHz
VeE' 10 V
o
o
1000
'"6 aoo
;li,
V
600 V
v
V
L
z
iii
,.:.
-
Tri-II
~
0.5
1.0
2.0
5.0
10
IC. COLLECTOR CURRENT ImA)
20
-.. r-.....
1.0 V
t-
50
100
FIGURE 8 - CAPACITANCE
5.0
I
to
=>
r-_~c
f-
0.1
0.2
0.5
1.0
'B. BASE CURRENT ImAI
i
Z
WL12510 c
~ -1.5
'-
0
0.01
3:
o
100
w
I'
'"'>
:f
I I I
20
50
1\
00
~
'APPLIES FOR Ic/la'; hFE/4
3;
G
t;~
>
G
E
aOmA
"'>
0
-
j
+0.5
TJ' 250C
III
5.0
10
1.0
2.0
IC. COLLECTOR CURRENT ImA)
FIGURE 6 - TEMPERATURE COEFFICIENTS
FIGURE 5 - COLLECTOR SATURATION REGION
I
I I
I I
.l..-K
IIIII
IC. COLLECTOR CURRENT !mAI
1.0
I
I
_lUII~t) @1~/la ~ lb
0
10
0.1
I I
VaEI",)@ 'eila';:'
__ -t'"
o
-
0 - __ 55°C
0
WI
1. 2
0
0-
t
t-TJ =25 0
T~,lmJc
TJ-250C
3. 0
0
r:--::
......
1"'-_
Cob
C,b
0
400
~
O. 7
'"
=>
'"'. 200
1.0
.t:-
2.0
3.0
5.0 7.0 10
20
30
IC. COLLECTOR CURRENT ImA)
50
O. 5
0.2
70 100
889
0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0
VR. REVERSE VOLTAGE IVOLTS)
10
20
MPS3646 (SILICON)
NPN SILICON
MEDIUM
SWITCHING TRANSISTOR
NPN SILICON ANNULAR SWITCHING TRANSISTOR
· .. designed for use in fast switching applications.
• Collector· Emitter Breakdown Voltage BVCES = 40 Volts (Min) @ IC = 100 pAdc
• DC Current Gain Specified - 30 mAde to 300 mAde
•
Low Collector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 300 mAde
•
Fast Switching Time
ton = 16 ns (Typ)
toff = 23 ns (Typ)
@
IC= 300 mAdc
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
15
Vdc
Collector-Emitter Voltage
VCES
40
Vdc
Collector-Base Voltage
VCB
40
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
300
500
mAde
25°C
PD
350
2.8
mW
mW/oC
Total Power Dissipation @ T C = 25°C
Derate above 25°C
PD
1.0
B.O
Watt
mW/oC
TJ,T stg
-55 to +150
°c
Rating
Collector Current - Continuous
-
10~s
Pulse
Total Power Dissipation @TA
Derate above 2SoC
::=:
Operating and Storage Junction
Temperature Range
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
PIN 1
Symbol
Max
Unit
R8JAll)
357
°CIW
R8JC
125
°C/W
(1) R6JA is measured with the device soldered into a typical printed circuit board.
EMITTER
2
3
DIM
A
4.450
3.180
C
4320
0407
7
1.
1.150
L
N
P
0
R
S
BASE
COLLECTOR
MILLIMETERS
MIN
MAX
B
0
THERMAL CHARACTERISTICS
Characteristic
STYLE 1
6.350
3.430
2.410
2.030
0175
1.390
1.270
0.045
-
2.670
2.670
0.125
0.170
0.016
.16
0.250
0.135
0.095
0.080
CASE 29·02
TO·92
890
INCHES
MIN
MAX
5.200
41
5.330
0.533
.4
0.205
0.165
0.210
0021
0 19
-
0.055
0.050
-
0.105
0.105
MPS3646 (continued)
ELECTRICAL CHARACTERISTICS (TA =
250 C unless otherwise noted).
I
Symbol
Min
Typ
Max
Unit
BVCEO(sus)
15
-
-
Vde
Collector-Emitter Breakdown Voltage
(lC = 100 /LAde, VBE = 0)
BVCES
40
-
-
Vde
Coliector·Base Breakdown Voltage
(lC = 100 /LAde, IE = 0)
BVCBO
40
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = 100 /LAde, IC = 0)
BVEBO
5.0
-
-
Vde
-
-
-
-
0.5
3.0
30
25
15
65
48
20
120
-
0.15
0.20
0.33
0.20
0.2
0.28
0.5
0.3
-
0.78
0.85
0.95
0.95
1.2
1.7
Characteristic
OFF CHARACTERISTICS
Colleetor·Emitter Sustaining Voltage (1)
(lC = 10 mAde, IB = 0)
Collector Cutoff Current
/LAde
ICES
(VCE = 20 Vde, VBE = 0)
(VCE = 20 Vde, VBE = 0, TA
= 650 C)
Base Current
IB
0.5
/LAde
ON CHARACTERISTICS (11
DC Current Gain
-
hFE
(lc = 30 mAde, VCE = 0.4 Vde)
(lC = 100 mAde, VCE = 0.5 Vde)
(lC = 300 mA, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage
(IC = 30 mAde, IB = 3.0 mAde)
(lc = 100 mAde. IB = 10 mAde)
(IC = 300 mAde, IB = 30 mAde)
(lC = 30 mA, IB = 3.0 mA, T A = 65°C)
VCE(sat)
Base-Emitter Saturation Voltage
VBE(sat)
(lC = 30 mAde, IB = 3.0 mAde)
(lc = 100 mAde, IB = 10 mAde)
(lc = 300 mAde, IB = 30 mAl
Vde
Vde
0.73
DYNAMIC CHARACTERISTICS/SMALL.sIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product
(lc = 30 mAde, VCE = 10 Vde, I = 100 MHz)
IT
350
600
-
MHz
Output Capacitance
Cob
-
2.5
5.0
pF
I nput Capacitance
(VBE = 0.5 Vde, IC = 0, I = 1.0 MHz)
Cib
-
8.8
-
pF
Turn-On TIme
ton
-
16
18
ns
td
7.0
10
ns
9.0
15
ns
taff
-
23
28
ns
tf
-
7.0
15
ns
18
ns
(VCB = 5.0 Vde, IE = 0, 1= 1.0 MHz)
Delay Time
(VCC = 10 Vde, VBE(aff) = 3.0 Vde, IC = 300 mAde,
IBI = 30 mAde, Figure 1)
Rise Time
Turn-Off Time
Fall Time
tr
(VCC = 10 Vde, IC = 300 mAde, IBI = IB2 = 30 mAde,
Figure 1)
Sto rage Ti me
(VCC = 10 Vde, IC = 10 mAde, IBI = IB2 = 10 mAde, Figure 2)
ts
(1) Pulse Test: Pulse Width ';;300 /LS, Duty Cycle';; 2.0%.
FIGURE 2 - CHARGE STORAGE TIME TEST CIRCUIT
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
-3.0 V
+10 V
+1' V
+10 V
10% Pulse
1.0 k
+7.6 V i l
-.J
L
0.1
o
Vin1
tr,tf
1.0 ns
Pulse Width ~ 240 ns
50
Zin = 50n
_
<
120
33
500
To Sampling Scope
t r <1.0ns
2in"" 100 k!l
0~1
-10 V
Vin
t r <1.0n5
Pulse Width ::= 300 ns
Duty Cycle = 2.0%
Zin = 50 n
891
56
-=
500
"A"
MPS3646 (continued)
FIGURE 3 - DC CURRENT GAIN
100
70
-
f-
TJ
=125'C
;;:
'"
..
....'"
'"
'"'"
:::>
...,
""
'";
I I
50
L.- ~
Fff
..........
03
r-
I-f-
J5.1C I...-- V
20
i-- I-t-"
_f-- ,...-
i5'~
30
10
r-
~
. . . J...... f0.5
0.7
2.0
1.0
3.0
5.0
7.0
10
IC, COLLECTOR CURRENT (mA)
FIGURE 4 - "ON" VOLTAGES
~
.
<0
o. 6
1111
~
g II 11111 I
>
J
08 UUill
i...-"
~
to
Jib v
lL
IC = 2.0 mA 10mA
~
<0
"
100
~
"""-
200
300
50 rnA
1111
TJ = 25°C
llil
200 mA
> 0.6
'"
J::'"
!
to
~
70
II
<0
2:
o. 4
<0
>
>'
50
30
~
FIGURE 5 - COLLECTOR SATURATION REGION
VeE('at) @Ic/le - 10
VeE(,n)@VCE
20
1.0
I
I
TJ = 25'C
......
VCE =1.0 V
1. 0
o.8
~
1"'-0.
0.4
I~
D
t;
......... V
VCE('at)@lclle=10
2
j
11111
0
D
11111
0.3 0.50.7 1.0
"
t--
02
2.0
""~
I
5.070 10
20
50 70 100
>
200300
0
o 04 0.06 0.1
0.2
IC, COLLECTOR CURRENT (mA)
~
:>
E
....
t--
0.4 0.6 1.0
20
4.0 6.0
IC, COLLECTOR CURRENT (mA)
FIGURE 6 - TEMPERATURE COEFFICIENTS
+1 6
"APPlIESFORlc/le"'hFE=3.0/5
+1. 2
II
I II
11
0 4 f-±++;++
III:I--I--t-+++++trt--- ~50J tolllM: ttt:::::;:;oo-i"'"'"
+0.8
1~'O~V~C~fo~rV~C~E{~sa~t)~~~~~~~I~~~~r-~~~
-55°C to 250C
ffi +. OF
U
~
8
-0.4 H-H-+tt+--+-+-H-t++++---+--+-++++Itt---+--
~
-0.8 H-H-+ttt--+--+-H-+t+-tt---+--+-++++Itt---+--1
:::>
....
~
=
25'C to 125°C ~~
~ -1.6 Hov-te-tf-tor-HVfteE--+-+-+-t-tlitt--t-~-r-t-r~d::I$~=+--1
-1.2
~ :~~t1z.+++111t1111~*;f9+tittr"T-:;-i(50_50ff 1° mi-0.3 0.5
10
2.0 3.0 5.07.0 10
20 30
IC, COLLECTOR CURRENT {mAl
892
50 70 100
"r---
1""-
200300
10
20
40
MPS3646 (continued)
FIGURE 7 - COLLECTOR·BASE TIME CONSTANT
FIGURE 8 - CAPACITANCE
20
15
VCE= 5.0 V
f = 31.8 MHz
TJ = 25°C
1\
.......
~ 7.0
\
4
TJI=25~CI
10
z
1\
r-....
C,b
S
5.0
II
"- t'....
3.0
j
t3 3.0
/
...... V
...... r-.
2.0
;t
5.0
7.0
10
20
30
t-
50
70
100
1.50.5
0.2
0.5
FIGURE 9 - CltC1m'NT·GAIN·- BANDWIDTH PRODUCT
~10k
~-'
700
VCE
;;
~ 300
1.0
,LP'
'\.
~ 200
100
~
70
.;,
50
10 V
V'-
'\:
'\
I
j;
~
;;:
"'
~
'"=>
~
30
20
TJ = 25°C
f= 100MHz
I IIII
100.3 0.50.7 1.0
1.0
2.0
5.0
VR, REVERSE VOLTAGE (VOLTSI
1:; 500
2.0 3.0 507.0 10
20 30 5070 100
IC, COLLECTOR CURRENT (mAl
893
i-
r--.
0.1
Ic, COLLECTOR CURRENT (mAl
E!
~b
2.0
200
10
20
50
MPS3693 (SILICON)
MPS3694
NPN SILICON
~NNULAR
TRANSISTORS
NPN SILICON
AMPLIFIER
TRANSISTORS
... designed for use in RF amplifier applications and AM/FM
receivers.
•
•
Coliector·Emitter Sustaining Voltage VCEO(sus) = 45 Vde (Min) @ IC = 10 mAde
Current·Gain-Sandwidth Product fT = 200 MHz (Min) @ IC = 10 mAde
Capacitance • LowCobOutput
= 3.5 pF (Max) @VCS= 10 Vde
MAXIMUM RATINGS
Symbol
Value
VCEO
45
Ydc
Collector-Base Voltage
VCB
45
Vdc
Emitter-Base Voltage
Rating
Collector-Emitter Voltage
Unit
VEB
4.0
Vdc
Collector Current - Continuous
IC
50
mAde
Total Power Dissipation @ T A = 2SoC
Derate above 25°C
Po
350
2.8
mW
mW/oC
Total Power Dissipation @ TC = 25°C
Derate above 25°C
Po
1.0
8.0
Watt
mW/oC
TJ.Tst9
-55 to +150
°c
Symbol
Max
Unit
Operating and Storage Junction
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
R6JA(1)
357
°C/W
R9JC
125
°C/W
~FI
PLANE
U
o-jlf-LI-h
=:::jR~
Temperature Range
THERMAL CHARACTERISTICS
J!
f.-1
-~
SEATINGJ~~
i
STYlE 1:
PIN I.
~~~~TER
1°r~
2.
3. COLLECTOR
(1) R9JA is measured with the device soldered into a typical printed circuit board.
DIM
A
B
C
o
F
MILLIMETERS
MAX
MIN
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.482 I
L
N
1.150
P
6.350
3.430
2.410
2.030
Q
R
S
m=t
Xp--r
1.390
1.270
2.670
2.670
B
INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.016
0.0 9
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO·92
894
0.055
0.050
0.105
0.105
MPS3693, MPS3694 (continued)
ELECTRICAL CHARACTERISTICS (TA
= 2SoC unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
45
-
-
45
-
-
4.0
-
-
-
50
-
-
-
5.0
200
-
-
-
-
3.5
-
-
55
-
4.0
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(2(
(IC =10 mAde, IS =0)
VCEO(sus)
Collector-Base Breakdown Voltage
(IC =100 /lAde, ~ =0)
BV CBO
Emitter-Base Breakdown Voltage
(~ =10 /lAde, IC =0)
BV EBO
Collector Cutoff Current
(V CB =35 Vde, ~ =0)
(V CB
=35 Vde,
~
=0,
ICBO
TA
=65·C)
Vde
Vde
Vde
nAde
/lAde
ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE = 10 Vde)
MPS3693
MPS3694
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC =10 mAde, V CE =15 Vde, f =100 MHz)
Output Capacitance
(VCB =10 Vde, ~
fT
Cob
=0, f =100 kHz)
Collector-Base Time Constant
(~ =10 mAde, V CB =15 Vde, f
Noise Figure
(IC =3.0 mAde, V CE
r'C
b e
=31. B MHz)
=10 Vde, Kg =300 ohms, f =1. 0 MHz)
(2):Pulse Test: Pulse Width 5 300 /lS, Duty Cycle 51.0%.
895
NF
MHz
pF
ps
dB
MPS3702 (SILICON)
MPS3703
PNP SILICON ANNULAR TRANSISTOR
PNP SILICON
AMPLIFIER
TRANSISTOR
... designed for use in low-current, large-signal amplifier applications.
•
Device Similar Electrically to 2N3702, 2N3703
MAXIMUM RATINGS
Roting
Symbol MPS3702 MPS3703
Unit
Collector·Emitter Voltage
VCEO
25
30
Vdc
Collactor-Base Voltage
Vce
40
50
Vdc
Emitter-Base Voltage
VEe
5.0
Vde
Collector Current - Continuous
IC
200
mAde
Total Power Dissipation @ T A = 26°C
Derate above 25°C
Po
350
2.8
mW
mW/oC
T C = 2SoC
Po
1.0
8.0
Watt
mWtDC
TJ.Tstg
-55 to +150
°c
Total Povver Dissipation
@
Derate above 25°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Aesistance, Junction to Case
(1)
Symbol
Max
Unit
ReJA(1)
357
°C/W
ReJC
125
°C/W
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
R8JA is measured with the deviced soldered into a typical printed circuit board.
0
MILLIMETERS
MIN
MAX
4.450
.180
4.320
0.407
F
Jl..4QL
L
N
1.150
P
6.350
3.430
2.410
2.030
DIM
A
B
C
Q
R
S
I
~
INCHES
MIN
MAX
0.175
0.l05
O.~ ~
0.170
0.210
0.021
0.016
~
~
~
1.390
1.270
0.045
0.250
0.13~
2.670
2.670
0.095
O.oao
CASE 29-02
TO-92
896
0.055
0.050
0.105
0.105
MPS3702, MPS3703 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol
Characteristic
Min
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Sreakdown Voltage'"
(IC = 10 mAde, IS = 0)
Collector-Base SreaJ
'"
u:
w
1"-
~-
~ 6.0
=>
100.A
'"u:
/
4.0
'"~
2.0
i'-
"
/
i'
5
'"
'"
i
4.0
~-
10
5.0
2.0
10
50
20
r--..
100
10
20
50
100
RS. SOURCE RESISTANCE (k OHMS)
"
500
1.0k
2.0k
5.0k
10k
FIGURE 4 -- CAPACITANCES
FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT
10 0
~
VCE = 10 Vde
t; 240
50
g
TA
a
25°C
200
'"
i;
V
".-
;: 160
........
/'
>'-
--
.....-
40
-'
0
'\.
/'"
~
~ 120
I
z
~ 80
~
200
f. FREQUENCY (Hz)
'" 280
g:
"
~ Ic lIon iii iil~
o
-0.5
0.2
r--.
2. 0
o
0.1
I"\..
w
V
./
/
.
IC = 1.0mA.Rs = 300 n
VCE = 1.0 Vde
-
Cob
TJ - 2S"C
........
0
Ceb
~
.......
'\..
2.0
=>
'"
.f
0
2.0
5.0
10
50
20
100
1.0
0.1
200
1.0
0.5
0.2
IC. COLLECTOR CURRENT (mAde)
VCC -30Yt,
500
300
200
"f!
;;; 100
'>="
~
"
~td @VaE(oH) = 5.0 V
-
0
30
50
100
_s.:LJ° foVin '" -9.7 Vdc
lin'" 50 Ohms
Pulse Width = 1.0.,
tr < 2.0 AS
r-;;
200
300
50
20
100
-30 Vde
~--+--+ SCOPE
1.0.F
~ t-....
20
10
1.0 k
r-....
I.::::...
20
0
10
+3.8 Vde
Ic/fa - 1~.;:E
lal -la2.;;TJ = 25°C
tf
0
5.0
FIGURE 6 - SWITCHING TIME TEST CIRCUIT
FIGURE 5 - SWITCHING TIMES
1000
2.0
VR. REVERSE VOLTAGE (VOLTS)
500
1000
IC. COLLECTOR CURRENT (rnA)
906
Ra = 100
I .
~~ ,Cs < 12 pF
lt
+
___ I
-=
*T olal shunt capacitance of test jig, connectors, and oscilloscope.
MPS4354, MPS4355, MPS4356 (continued)
TYPICAL DC CHARACTERISTICS
DC CURRENT GAIN
FIGURE 7 - MPS4354. MPS4356
1000
500
z
;;: 100
-
'"....z
--
.-
TJ=1150C
r-
--
Ii'""
-
15'C
~ 10 0
f--
l-
-
=>
u
~
50
-55°C
10
-
........
10
0.1
0.5
0.1
-
-
-
I
I
I I
5.0
1.0
10
"'t~
VCE=10V
VCE = 1.0 V
~t--
1--1 II
10
10
50
500
100
100
1000
lC. COLLECTOR CURRENT ImAI
FIGURE 8 - MPS4355
1000
-
500
z
~
....
g
TJ - 115°C
_ 100
-
c
~
-
r-
r-
l-
f--
-I-
-
---
-!'"
r-
..........
~-
-55'C
B
u
- 1--
15°C _
::::-::::- --
200
-~
~~
50
-
-
-
10
0.1
0.1
0.5
~
Lm=1.0V
I
1.0
10
'" ["':~
VCE=10V
10
5.0
10
10
100
50
100
500
1000
IC. COLLECTOR CURRENT ImAI
FIGURE 9 - "ON" VOL TAGES
1.0
O. S
l! c~
2:
0.6
'"
~
o
II IIII
II IIII
-::::-
-V~E(SH!c~~I_llo
-
'- VSE(,nl
-
w
FIGURE 10 - DC SAFE -OPERATING AREA
1.0
....-:
0: 0.5
'"5
~
~ ~~E = 1.0 V
"
O. 1
8
~
VCE(sat)@ ICIIS = 10
5.0
10
10
50
100
100
500
1000
IC. COLLECTOR CURRENT ImAI
"I
I
DI.
'" "-
"-
TC 15°C
- - - THERMAL LIMITS
BONDING WIRE LIMIT
- - - SECOND SREAKDOWN LIMIT
,
I- - - 0.01
o
2.0
T
~
::l 0.05
i
I
I,
"-
TA = 15'C
o
0.4
1.0
0.2
=>
u
a:: 0.1
>
>'
~
"
....
0.0 1
1.0
1Jp~~354. ~~~m~ r--- ~r-:
1.0
5.0
10
20
50
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
907
100
MPS5172 (SILICON)
NPN SILICON
AMPLIFIER TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR
· .. designed for general-purpose,low·level amplifier applications.
•
High DC Current Gain hFE = 100 - 500@ IC = 10 mAdc
•
Low Collector-Emitter Saturation Voltag&VCE(sat) = 0.25 Vdc (Max) @ Ie = 10 mAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
25
Vdc
Collector-Base Voltage
VCB
25
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
100
mAde
Total Power Dissipation @ T A"" 2SoC
Derate above 2SoC
Po
350
2.81
mW
mW/oC
Total Power Dissipation @ T C :: 25°C
Derate above 25°C
Po
1.0
B.O
Watt
mW/oC
Coliector·Emitter Voltage
Collector Current - Continuous
Operating and Storage Junction
TJ, T stg
-55 to +150
Temperature Range
SEATlNG.J~
PLANE
Symbol
Max
Unit
Thermal Resistance, Junction to
Ambient
R8JA
357
°CIW
D
Th,ermal Resistance, Junction to
R8JC
e
.£.
125
K
STYLE 2
PIN 1. EMITIER
2. BASE
3. COLLECTOR
DIM
A
B
°C/W
Case
}~
°c
THERMAL CHARACTERISTICS
Characteristics
,
~
K
L
N
P
Q
R
S
MILLIMETERS
MI
MAX
4.450
~lBO
4.320
0.407
0.407
5. 00
4.190
5.330
0.533
0.482
INCHES
MIN
MAX
U.175
0.205
0.1 5
O.lli.
0.170
0.016
0.210
0.021
.1
0.045
-
0.055
0.050
O.OBO
0.105
0.105
~.700
1.150
6.350
3.430
2.410
2.030
1.390
1.270
-
2.670
2.670
0.250
0.135
0.095
CASE 29'()2
TO-92
908
-
-
MPS5172 (continued)
ELECTRICAL CHARACTERISTICS (T A
~
25°C unless otherwise noted)
Characteristic
Syinbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage
(lc ~ 10 mAde, IB ~ 0)
BVCEO
25
-
-
Vde
ICES
-
-
100
nAde
-
-
100
nAde
-
10
"Ade
lEBO
-
-
100
nAde
hFE
100
-
500
-
VCE(sati
-
-
0.25
Vde
Base-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)
VBElsati
-
0.75
-
Vde
Base-Emitter On Voltage
(lC =10 mAde, VCE = 10 Vde)
VBE(on)
0,5
-
1.2
Vde
fT
-
120
-
MHz
Ceb
1.6
-
10
pF
hfe
100
-
750
-
OFF CHARACTERISTICS
Collector Cutoff Current
(VCE ~ 25 Vde, VBe = 0)
Collector Cutoff Current
(VCB = 25 Vde, IE = 0)
(VCB = 25 Vde, IE = 0, TA
ICBO
= 100o C)
Emitter Cutoff Current
IVBE = 5.0 Vde, IC = 0)
ON CHARACTERISTICS
OC Current Gain (11
IIC = 10 mAde, Vce. = 10 Vde)
Collector·Emitter Saturation Voltage
IIc
= 10 mAde, Ie = 1.0 mAde)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
IIc =' 2.0 mAde, VCE = 5.0 Vde}
Collector-Base Capacitance
(Vce = 0, Ie = 0, f = 1.0 MHz)
Small-Signal Current Gain
(lc = 10 mAde, VCE = 10 Vde, f
= 1.0 kHz)
11) Pulse Test: Pulse Width ';;;300 "S, Outy Cycle ';;;2.0%.
909
MPS6507 (SILICON)
NPN SILICON
VHF/UHF AMPLIFIER
TRANSISTOR
NPN SILICON ANNULAR VHF/UHF
AMPLIFIER TRANSISTOR
... designed for use in VHF/UHF amplifier applications.
•
High Collector Emitter Breakdown Voltage BVCEO = 20 Vdc (Min) @ IC = 1.0 mAdc
•
High Current·Gain-Bandwidth ProductfT = 800 MHz (Typ) @ IC = 10 mAdc
•
Low Output Capacitance Cob = 1.25 pF (Typ) @ VCB
= 10 Vdc
r
MAXIMUM RATINGS
Symbol
Rating
Collector-Emitter Voltage
Value
Unit
VeEO
20
Vdc
ColiectorMBase Voltage
Vee
30
Vdc
Emitter-Base Voltage
VEe
3.0
Vdc
Ie
100
mAde
Po
350
2.e
mW
mW/oC
Po
1.0
8.0
Watt
mW/oC
TJ,T stg
-55 to +150
°c
Collector Current - Continuous
Total Power DiSSipation @TA - 2SoC
Derate Above 2SoC
Total Power Dlsslpatlon@Tc
=
25°C
Derate Above 2SoC
Operating and Storage Junction
Temperature Range
Characteristic
Thermal Resistance. Junction to Case
Symbol
Max
Unit
R8JA(1)
357
R8JC
125
°cm
°cm
(11 A6JA is measured with the device soldered into a typical printed circuit board.
1
SEATlNG4Dac
PLANE
. .
K
~
°-j!I-'-I-!-L
::::jR~
PIN
1~'.l.'
r--1
a
STYLE 1:
1.
1.
3.
EMITTER
BASE
COLLECTOR
--I
s
L
N
1.150
P
6.350
3.430
2.410
2.030
R
S
1.390
1.270
2.670
2.670
0.045
0.250
0.135
0.095
O.OBO
CASE 29-02
TO·92
910
B
S
INCHES
ETERS
MAX MIN
MAX
O. 05
.200 0.17
.1
.165
4.19
0.210
5.330 0.170
0.533 0.016
0.021
.1
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient
A
0.055
0.050
0.105
0.105
MPS6507 (continued)
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Min
Typ
Max
Unit
BVCEO
20
-
-
Vde
BVCBO
30
-
-
Vde
BVEBO
3.0
-
-
Vde
-
-
50
-
1.0
nAde
I'Ade
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(I C: 1.0 mAde, I B : 0)
Collector-Base Breakdown Voltage
IIC: lOOI'Ade,IE: 0)
Emitter-Base Breakdown Voltage
(IE: 100 I'Ade, IC: 0)
Collector Cutoff Current
ICBO
(VCB: 15 Vde, IE: 0)
(Vce: 15 Vde,IE: 0, TA: SOoC)
ON CHARACTERISTICS
DC Current Gain (1)
(lC: 2.0 mAde, VCE: 10 Vde)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC: 10 mAde, VCE: 10 Vde, I: 100 MHz)
IT
700
800
-
MHz
Output Capacitance
(VCB: 10 Vde, IE : 0, I: 100 kHz)
Cob
-
1.25
2.5
pF
Small-Signal Current Gain
hie
20
-
-
-
IIC: 2.0 mAde, VCE: 10 Vde, I: 44 MHz)
(1) Pulse Test: Pulse Width';;; 300 I'S, Duty Cycle';;; 2.0%.
..I
911
MPS6511
(SILICON)
NPN SILICON
VHF/UHF AMPLIFIER
TRANSISTOR
NPN SILICON ANNULAR VHF/UHF
AMPLIFIER TRANSISTOR
· .. designed for use in VHF/UHF amplifier applications.
•
High Collector Emitter Breakdown Voltage BVCEO = 20 Vdc (Min) @ IC = 0.5 mAdc
•
Low Output Capacitance Cob 1.25 pF (Typ) @ VCB
=
=10 Vdc
MAXIMUM RATINGS
Symbol
Valul
Unit
Collector-Emitter Voltage
VCEO
20
Vdc
Collector-Emitter Voltage
VCES
30
Vdc
VEe
3.0
Vdc
'C
100
mAde
Total Power Dissipation @ T A" 2S0C
Derate Above 2SoC
Po
350
2.8
mW
mW/oC
Total Power Dissipation@Tc "" 25°C
Po
1.0
8.0
Watt
mWf>C
TJ.Tstg
-55 to +150
°c
Rating
Emitter-Base Voltage
Collector Current - Continuous
Derate Above 2SoC
Operating and StorsSJ! Junction
Temperature Range
D
STYLE 2:
PIN 1. EMITTER
2. BASE
3.
~
<0,,'"'' ~---!
s=rt
s
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, JUnction to Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
R9JA(1)
357
°CIW
R9JC
125
°CIW
(1) R8JA is measured with the device soldered into a typical printed circuit board.
r
fL!!Q
0.533
L
1.150
P
8.350
3.430
2.410
2030
1.390
INCHES
MIN
MAX
0.175
0.25
.1
.1
0.210
0.170
0.016
0.021
.1
0.045
1.
Q
R
S
2670
2.670
0.250
0.1 5
0.09
0.080
CASE 29.02
TQ·92
912
0.055
0.050
0.105
0.105
MPS6511 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted.1
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lC = 0.5 mAde, IB = 01
BVCEO
20
-
-
Vde
Colleetor·Emitter Breekdown Voltage (1)
(lC = 100 "Ade, VEB = 01
BVCES
30
-
-
Vde
ICBO
-
-
50
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB= 15Vde,Ie = 0)
ON CHARACTERISTICS
DC Current Gain (1)
!lC= 10mAde, VCE
= 10Vdc)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 10 Vdc, Ie
= 0, f = 100 kHz)
FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain
(lC = 10 mAde, VCB = 12 Vde, f = 45 MHz)
(11 Pulse Te.t: Pulse Width ';;300"., Duty Cvcle ';;2.0%.
913
nAde
MPS6512 thru MPS6515 NPN (SILICON)
MPS6516 thru MPS6519 PNP (SILICON)
SILICON
COMPLEMENTARY
AMPLIFIER
TRANSISTORS
SILICON ANNULAR TRANSISTORS
· •. designed for general·purpose amplifier applications and for
complementary circuitry.
•
Narrow DC Current Gain Ranges - 2:1
•
Complementary Types for Each Gain Range
•
Low Noise Figure - 2.0 dB Typ
•
Low Output Capacitance - 3.5 pF Max - NPN
4.0 pF Max - PNP
MAXIMUM RATINGS ITA = 25°C unless otherwise noted. I
Collector~Emitter
Rating
Symbol
Voltage
VCEO
MPS6512. MPS6513
MPS6514. MPS6515
MPS6516 thru MPS6518
MPS6519
Collector-Base Voltage
PNP
Unit
Vde
30
25
-
-
-
40
25
40
-
Vde
Vce
MPS6512 thru MPS6515
MPS6516 thru MPS6518
MPS6519
Emitter-Base Voltage
NPN
-
40
25
VEe
4.0
4.0
Vde
Collector Current - Continuous
IC
100
100
mAde
Total Power Dissipation @ T A': 25°C
Po
350
2.8
350
2.8
mW
mWloC
Po
1.0
8.0
1.0
8.0
Watt
mWloC
Derate above 25°C
Total Power Dissipation @TC= 25°C
Derate above 2SoC
Operating Junction Temperature Range
-5510 +150
TJ
°c
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to case
Symbol
Max
Unit
RSJA
357
°CIW
RSJC
125
°CIW
STYLE 1:
PIN 1.
2.
3.
DIM
A
e
C
0
F
L
N
P
a
R
S
MILLIMETERS
MIN
MAX
4.450
.1
4.320
0.407
0.407
5.200
4.1
5.330
0.533
0.48,
1.150
1.390
1.210
6.350
3.430
2.410
2.030
2.670
2.670
INCHES
MIN
MAX
0.17.
O. 05
0.1
.1
0.170
0.210
0.021
0.016
0.016
0.019
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
914
0.055
0.050
0.105
0.105
MPS6512 thru MPS6515/MPS6516 thru MPS6519
(continued)
MPS6512 thru MPS6515 (NPN)
ELECTRICAL CHARACTERISTICS
(T.=
25·Cun,... ot,.",;,.notod)
Characteristic
Symbol
I Min
Typ
Unit
Max
OFF CHARACTERISTICS
Vde
Collector-Emitter Breakdown Voltage
(~= 0.5 mAde,
= 0)
In
30
25
MPS6512, MPS6513
MPS6514, MPS6515
Vde
Emitter-Base Breakdown Voltage
= 10.,Ado, IC = 0)
('E
Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)
(VCB = 30 Vde, IE = 0, TA
4.0
0.05
=60"C)
1.0
ON CHARACTERISTICS
DC Current Gain
(IC
=2. 0 mAde,
VCE
= 10 Vde)
hFE
MPS6515
50
90
150
250
MPS6512
MPS6513
MPS6514
MPS6515
30
60
90
150
MPS6512
MPS6513
MPS65 14
(IC
= 100 mAde,
VCE
= 10 Vde)(11
Collector-Emitter SaturatIon Voltage
(Ie"" 50 mAde, IB '" 5.0 mAde)
VCE(sat)
--Vde
-
-
-
100
180
300
500
-
0.5
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(~ = 2.0 mAde, VCE = 10 Vde)
(~
= 10 mAde,
MPS6512. MPS6513
MPS6514. MPS6515
= 10 Vde)
VCll
IT
330
480
MPS6512. MPS6513
MPS6514, MPS6515
Output Capacitance
(VeB = 10 Vde,
Cob
Noise Figure
(~ = 10.,Adc, VCE = 5.0 Vde, HS = 10 k ohms,
Power Bandwidth = 15.1 kHz, 3.0 dB points @
NF
'E =0, I = 100 kHz)
MHz
250
390
pF
3.5
da
2.0
10 Hz and 10 kHz)
• Pulse Test: Pulse Width;; 30 ps, Duty Cycle;:i 2. 0%.
MPS6516 thru MPS6519 (PNP)
ELECTRICAL CHARACTERISTICS
(T.
= 25'C "',,,ot'O',,,, oot"')
Symbol
Characteristic
Min
Typ
Max
40
25
--
-
4.0
-
-
-
0.05
-
0.05
100
IBO
300
500
30
60
90
150
--
-
VCE(sat)
-
-
0.5
IT
--
200
340
-
270
420
-
-
-
4.0
-
2.0
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc = 0.5 mAde, Ia = 01
MPS6516 thru MPS6518
BV CEO
MPS6519
Emitter-Base Breakdown Voltage
= 10 IlAde, IC = 0)
BV EBO
('E
Collector Cutoff Current
(Vca = 30 Vde, IE = 0)
(Vca = 20 Vde, IE = 0)
(Vca
(Vca
'E =0,
'E = 0,
= 30 Vdc,
= 20 Vde,
MPS6516 thru MPS6518
ICBO
MPS6519
TA
TA
= 60"C)
= 60"C)
MPS6M6 thru MPS6518
MPS6519
-
Vde
Vde
IlAde
1.0
1.0
ON CHARACTERISTICS
DC Current Gain
(IC
= 2.0 mAde,
VCE
= 10 Vde)
(IC
= 100 mAde,
VCE
= 10 Vde)(11
MPS6516
MPS6517
MPS6518
MPS6519
hFE
MPS6516
MPS6517
MPS6518
MPS6519
Collector-Emitter Saturation Voltage
(IC = 50 mAde, Ia = 5.0 mAde)
50
90
ISO
250
-
---
Vde
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwldth Product
(IC • 2.0 mAde, VCE = 10 Vde)
(IC
= 10 mAde,
VCE
= 10 Vde)
MPS6516, MPS6517
MPS651B, MPS6519
MPS6516, MPS6517
MPS65 18, MPS6519
Output Capacitance
(Vca = 10 Vde,
Cob
'E = 0, I = 100 kHzI
Noise Figure
(IC
= 10 .,Ade,
VCE
Power Bandwidth
==
= 5.0 Vdc,
NF
lis = 10 k ohms,
15.7 kHz, S.O dB points @
10 Hz and 10 kHz)
{1) Pulse Test: Pulse Width:; SO lIS, Duty Cycle ~ 2.0%.
915
MHz
pF
dB
MPS6520, MPS6521NPN (SILl.CON)
MPS6522, MPS6523 PNP
SILICON COMPLEMENTARY
AMPLIFIER TRANSISTORS
SILICON ANNULAR TRANSISTORS
· .. designed for general·purpose amplifier applications and for com·
plementary circuitry.
• High DC Current Gain hFE = 150 (Min) @IC= 100llAdc - MPS6521. MPS6523
•
Low Noise Figure NF = 1.8 d8 (Typ) @ IC = 10/lAdc
•
Low Output Capacitance Cob = 3.5 pF (Max) @VCB = 10 Vdc
J
!
-7
L1
~
~Fl
SEATING4
PLANE
MAXIMUM RATING
Rating
Symbol
Collector-Emitter Voltage
PNP
Collector-Base Voltage
25
Vdc
VCB
40
VEB
Collector Current - Continuous
@
T A =2S oC
IC
Po
Derate above 2SoC
Total Power Dissipation @ T C "" 25°C
Derate above 2SoC
Operating Junction Temperature Range
Po
TJ
4.0
100
350
2.81
1.0
8.0
150
25
4.0
100
350
2.81
1.0
8.0
150
Vdc
mAde
mW
mWt"C
Wan
mW/oC
°c
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient
(Printed Circuit Board Mounting)
ReJA
357
°C/W
Thermal Resistance, Junction to Case
ReJC
125
°ctw
Characteristic
D~Pp~
25
MPS6520.MPS6521
MPS6522.MPS6523
Emitter-Base Voltage
Unit
Vdc
VCEO
MPS6520.MPS6521
MPS6522.MPS6523
Total Power Dissipation
NPN
.
STYLE 1:
PIN 1. EMITTER
2. BASE
1°r J
w
1 ,
,
......
3. COLLECTOR
--I
S
S
B
INCHES
MILLIMETERS
DIM
MIN
MAX
MIN
MAX
A
4.450
3.16U
4.320
0.407
5.200 0.175
4.190 10.125
5.330 0.170
0.533 0.016
0.482 I U.UI6
I 0.500
1.390 0.045
1.270
0.250
0.205
0.165
0.210
0.021
B
C
D
K
L
N
p
o
R
S
u.4O
12.700
1.150
6.350
3.430
2.410
2.030
U.019
0.055
0.050
0.135
2.670
2.670
0.095
O.OBO
CASE 29'()2
TO·92
916
=r-r
0.105
0.105
MPS6520, MPS6521, MPS6522, MPS6523 (continued)
MPS652~MPS6521
(NPN)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage
(IC = 0.5 mAde, IB = 0)
BVCEO
25
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = 10/LAde, IC = 0)
BVESO
4.0
-
-
Vde
-
-
0.05
1.0
400
600
-
-
0.5
390
480
-
-
Cob
-
-
3.5
pF
NF
-
1.B
3.0
dB
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB· 30 Vde, IE = 0)
(VCB = 30 Vde, IE = 0, T A = 6oDC)
ICBO
-
/LAde
-
ON CHARACTERISTICS
DC Current uain
(lC = l00/LAde, VCE = 10 Vde)
(lC = 2.0 mAde, VCE = 10 Vde)
nFE
100
150
200
MPS6520
MPS6521
MPS6520
MPS6521
300
Collector-Emitter Saturation Voltage
(lC = 50 mAde, IB = 5.0 mAde)
VCE(satl
-
Vde
DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product
(lC = 2.0 mAde, VCE = 10 Vde)
I'f
(Ie = 10 mAde, VCE· 10 Vde)
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
Noise Figure
(le= 10/LAde, VCE= 5.0Vde, RS= 10k Ohms,
Power Bandwidth = 15.7 kHz, 3.0 dB points@>
10 Hz and 10 kHz)
MHz
MPS6522. MPS6523 (PNP)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage
(lC· 0.5 mAde, IB = 0)
BVCEO
25
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = lOjlAde, IC = 0)
BVEBO
4.0
Charactaristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 20 Vde, IE = 0)
(VCB = 20 Vde, IE = 0, TA = 6oDC)
ICBO
-
Vde
/LAde
-
0.05
1.0
ON CHARACTERISTICS
DC Current Gain
(lC= l00/LAde, VCE = 10Vde)
(lC = 2.0 mAde, VCE • 10 Vdc)
hFE
MPS6522
MPS6523
MPS6522
MPS6523
-
-
-
400
600
-
-
0.5
-
340
420
--
100
150
200
300
Collector-Emitter Saturation Voltage
(lC = 50 mAde, IB = 5.0 mAde)
VCE(satl
DYNAMIC CHARACTERISTICS
Current--Gain BandwIdth Product _.
(lC = 2.0 mAde, VCE· 10 Vde)
(lC = 10 mAde, VCE = 10 Vdc)
t-r
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
-
-
MHz
Cob
Noise Figure
(lC = 10jlAdc, VCE = 5.0 Vdc, RS = 10 k ohms,
Power Bandwidth = 15.7 kHz, 3.0dS points@>
NF
-
1.B
c'
10 Hz and 10 kHz)
917
Vde
3.5
pF
3.0
dB
MPS6530
MPS6531
MPS6532
MPS6533
MPS6534
MPS6535
NPN (SILICON)
PNP (SILICON)
NPN/PNP SILICON ANNULAR TRANSISTORS
NPN/PNP SILICON
COMPLEMENTARY
AMPLIFIER
TRANSISTORS
· .. designed for use in complementary amplifier applications.
•
Collector-Emitter Breakdown @ IC = 10 mAde
BVCEO = 40 Vdc (Min) MPS6530,6531,6533,6534
30 Vdc (Min) MPS6532,6535
•
DC Current Gain Specified - 10 mAdc to 500 mAdc
•
Current-Gain-Bandwidth Product @ IC = 50 mAde
fT = 390 MHz (Typ) NPN
260 MHz (Typ) PNP
MAXIMUM RATINGS
Rating
Collector-Base Voltage
Symb
0.210
0.021
1.390
1.210
0.045
0.055
O. 50
-
2.610
2.610
0.250
0.135
0.095
0.080
*Indicates JEDEC Registered Data
(1) ROJA is measured with the device soldered into a typical printed circuit board.
CASE29.(J2
TO·92
928
-
-
-
0.105
0.105
MPS6544, MPS6545 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
I
Symbol
Min
Typ
Max
Unit
Coliector·Emitter Breakdown Voltage (1)
(tC = 1.0 mAde,lB = 0)
BVCEO
46
-
-
Vde
Coliector·Base Breakdown Voltage
(tC = IOI'Ade,lE = 0)
BVCBO
60
-
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
4.0
-
-
Vde
ICBO
-
-
500
nAde
hFE
20
100
-
-
Collector-Emitter Seturation Voltage
(I C = 30 mAde, I B = 3.0 mAde)
VCE(sat)
-
0.2
0.5
Vde
Base·Emittar On Voltage (1)
(lC = 10 mAde, VCE = 10 Vdc)
VBE(on)
-
0.7
0.95
Vde
Yo.
-
-
0.10
.mmhos
-
0.55
0.5
0.65
0.58
1.0
-
-
Characteristic
OFF CHARACTERISTICS
(IE
= IOI'Ade,lc = 0)
Collector Cutoff Current
(VCB
= 35 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 30 mAde, VCE
= 10 Vde)
DYNAMIC CHARACTERISTICS
Output Admittance
(IC = 10 mAde, VCE
= 10 Vde, f = 45 MHz)
Common-Emitter Reverse Transfer Capacitance
(VCB
= 10 Vde, IE = 0, f = 100 kHz)
Output Voltage
(Vin (RMS) = 15 mVde, f
pF
Cre
MPS6544
MPS6545
V out
= 46 MHz)
(1) Pulse Test: Pulse Width ';;3001'5, Duty Cyel. ';;2.0%.
FIGURE 1 - OUTPUT VOLTAGE TEST CIRCUIT
+25 Vdc
1N60
r------.~~--._~~.~~~~~
8.2 k
12
4.7
5.1 k
":'"
All Capacitors in Pica-Farads Unless
Otherwise Shown
T1 - Primary: 7 Turns #26 Wirs,
1/4" I.D., Tapped 5 Turns
From Collector.
Secondary: 10 Turns #26 Wire, 1/4"1.0.
Core: ARNOLD Iron Powder, Part No. A1-10
For MPS6545 Shield is Connected to Ground.
929
Vde
MPS6546 (SILICON)
NPN SILICON
VHF MIXER TRANSISTOR
NPN SILICON ANNULAR VHF MIXER TRANSISTOR
... designed lor use in VHF mixer applications.
•
Collector Emitter Breakdown VoltageBVCEO = 25 Vdc (Min) @ IC = 1.0 mAde
•
High Current Gain-Bandwidth Product
IT = 1000 MHz (Typ) @ IC = 10 mAde
•
Low Feedback Capacitance Cre = 0.4 pF (Typ) @ VCB
= 10 Vdc
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
25
Vdc
Collector-Base Voltage
VCB
35
Vdc
Emitter-Base Voltage
VEB
3.0
Vdc
IC
50
mAde'
Po
350
2.8
mW
mW/oC
Po
1.0
8.0
Watt
mW/oC
-55 to +150
°c
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Total Power Dissipation @ T A::; 2SoC
Derate Above 2SoC
Total Power Dissipation@Tc '" 2SoC
Derate Above 2SoC
TJ,T stg
Operating and Storage Junction
STYLE 2
PIN 1
2
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
RaJA!I)
357
°CIW
RaJC
125
°C/W
--l
S
~
_1 I
MILLIMETERS
MAX
MIN
4.450
c
4.320
0.407
L
N
1.150
P
6.350
3.430
2.410
2.030
o
R~
~~~~TER 13t,:
~r ~
3. COLLECTOR
DIM
A
Temperature Range
r'-f-!.L
o
5. 0
4.1
5.330
0.533
.4
Thermal Resistance, Junction to Ambient
Thermal Resistance. Junction to Case
(11 R8JA
IS
measured with the device soldered into
8
typical printed circuit board.
Q
R
S
.390
1.27
2.670
2.670
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TQ·92
930
0.055
0.050
0.105
0.105
MPS6546 (continued)
ELECTRICAL CHARACTERISTICS (TA
250 C unless otherwise noted.)
=
I
Characteristic
Symbol
Min
Typ
Max
Unit
BVCEO
25
-
-
Vde
BVCBO
35
-
-
Vde
BVEBO
3.0
-
-
Vde
ICBO
-
-
100
nAde
lEBO
-
-
1.0
!'Ade
hFE
20
60
-
-
VCE(sat)
-
0.15
0.35
Vde
VBE(on)
-
0.7
0.95
Vde
IT
600
1000
-
MHz
Cre
-
0.4
0.45
pF
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(IC
= 1.0 mAde,
IB
= 0)
Collector-Base Breakdown Voltage
(lC
= 10 "Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 100 "Ade, IC = 0)
Collector Cutoff Current
(VCB
= 25 Vde, IE = 0)
Emitter Cutoff Current
(VBE
= 2.0 Vde, IC = 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 2.0 mAde, VCE
= 5.0 Vde)
Collector-Emitter Saturation Voltage
(lC
= 10 mAde,
IB
= 1.0 mAde)
Bas.·Emitter On Voltage (1)
(lC = 10 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC
= 2.0 mAde,
VCE
= 10 Vde, f = 100 MHz)
Common-Emitter Reverse Transfer Capacitance
(VCB
= 10 Vdc,
IE
= 0, I = 100 kHz)
FUNCTIONAL TEST
Power Output (Figure 1)
(VCE = 12.5 Vde, I = 118 MHz)
(11 Pulse Test: Pulse Width ';;300"s, Duty Cycle ';;2.0%.
FIGURE 1 - OSCILLATOR POWER OUTPUT
TEST CIRCUIT
2.0pF
15 of
1.0 k
3.0 k
L1 = 51/2 Turns *18 Wire
Winding Length 1/2"
5/16" I.D.
-Vee
931
MPS6547 (SILICON)
NPN SILICON
RF AMPLIFIER TRANSISTOR
NPN SILICON ANNULAR RF AMPLIFIER
TRANSISTOR
· .. designed for use in RF amplifier applications.
•
Coliector·Emitter Breakdown Voltage BVCEO = 25 Vdc (Min) @ IC = 1.0 mAdc
•
High·Current·Gain-Bandwidth Product fT = 1000 MHz (Typ) @ IC = 2.0 mAdc
•
Low Feedback Capacitance Cre = 0.3 pF (Typ) @ VCB = 10 Vdc
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
25
Vde
Collector-Base Voltage
VCB
35
Vde
Emitter·Base Voltage
VEB
3.0
Vde
IC
50
mAde
PD·
350
2.\1
mW
mWt"C
Po
1.0
8.0
Watt
mW/oC
TJ,T stg
-55 to +150
°c
Rating
Collector-Emitter Voltage
Collector Current
Continuous
Total Power Dissipation @ T A "" 2SoC
Derate above 25°C
Total Power Dissipation@Tc"" 25°C
Derate above 2SoC
Operating and Storage Junction
Temperature Range
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
DIM
A
B
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case
C
Symbol
Max
Unit
R8JA(1)
357
°C/W
R8JC
125
°CIW
(1) ReJA is measured with the device soldered into a typical printed circuit board.
0
F
K
L
N
P
a
A
S
MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
0.407
!.700
1.150
6.350
3.430
2.410
2.030
5.200
4.190
5.330
0.533
u.4H2
1.390
1.270
2.670
2.670
INCHES
MIN
MAX
0.175
0.1 5
0.170
0.G16
U.UI6
I 0.500
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO·92
932
0.205
0.165
0.210
0.021
0.019
-
0.055
0.050
0.105
0.105
MPS6547 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 C unle.. otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 0)
BVCEO
25
-
-
Vde
Collector-Base Breakdown Voltage
(lC· 10l'Ade,Ie = 0)
BVCBO
35
-
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
3.0
-
-
Vde
Collector Cutoff Current
(VCB = 25 Vde, Ie = 0)
ICBO
-
-
100
nAde
Emitter Cutoff Current
leBO
-
-
1.0
I'Ade
hFE
20
60
-
-
VCE(sat)
-
0.1
0.35
Vde
VBE(on)
-
0.7
0.95
Vde
Current-Gain-Bandwidth Product
(lC = 2.0 mAde, VCE = 10 Vde, I = 100 MHz)
IT
600
1000
-
MHz
Common-Emitter Reverse Transfer Capacitance
Cre
-
0.3
0.35
pF
Gpo
20
25
-
dB
Characteristic
OFF CHARACTERISTICS
(Ie = 100'~Ade, IC = 0)
(VBe = 2.0 Vde. IC = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 2.0 mAde, VCE = 5.0 Vde)
Collector-Emitter Saturation Voltage
IIC= 10 mAde,lB = 1.0 mAde)
eose-Emitter On Voltage (1)
IIC = 10 mAde, VCE = 10 Vde)
DVNAMIC CHARACTERISTICS
(VCB = 10 Vdc, IE = 0, f = 100 kHz)
Conversion Gain
(lC = 4.0 mAde, VCE = 10 Vde (Test Circuit Figure 1)
1= 100 MHz to 10.7 MHz)
(1) Pulse Test: Pul .. Width ';;300 I'S, Duty Cycle ';;2.0%.
56 kHz
108MHZ
RS
= 60 n
10 mV
L
5.6 pF
,,
,,
L2
,
H
O_OlI'F
25-280
-::- 1-30 pF
pF
-::-
I
118'7MHZ~
RS - 50 n
l0.7MHZ
RL=50n,
15 pF
BOOmV
L 1 ... 3 Turns #20 Wire,
10 Vdc
1/4" 1.0., Air Wound,
Base Tapped 1/2 Turn
From Ground.
L2 = 37 Turns #28 Wire,
Wound on 1/4" 1.0. Coil Form.
933
-::-
o .o1 1'F
Bandwidth ~ 500 kHz
MPS6548
(SILICON)
NPN SILICON
VHF/UHF OSCILLATOR
TRANSISTOR
NPN SILICON ANNULAR
VHF/UHF OSCILLATOR TRANSISTOR
· .. designed for use in VHF/UHF common·base oscillator applications.
•
High Coliector·Emitter Breakdown Voltage BVCEO = 25 Vdc (Min) @ IC = 1.0 mAde
•
High DC Current Gain hFE '= 125 (Typ) @ IC = 4.0 mAde
•
High Current·Gain-Bandwidth Product fT = 1500 MHz (Typ) @ IC = 4.0 mAde
•
Low Coliector·Base Capacitance Ccb= 0.5 pF (Typ)@ VCB = 10 Vdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
25
Vde
VCB
30
Vde
VEB
3.0
Vde
IC,
50
mAde
T A = 2Slc
Po
350
2.8
mW
mW/oC
= 2SoC
Po
1.0
8.0
mW/oC
-55 to +150
°c
Collector·Emitter Voltage
Coliector~Base
Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation
Derate above 2SoC
@
Total Power Dissipation @TC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
TJ,T stg
Watt
STYLE 2:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
INCHES
Max
Unit
DIM
A
R6JA(I)
357
°C/W
C
R6JC
125
°C/W
Symbol
MIN
0.175
B
0.170
0.016
0.016
D
(1) R8JA is measured with the device soldered into a typical printed circuit board.
F
L
N
P
Q
R
S
1150
6,350
3.430
2.410
2.030
1.390
1.270
2.610
2.670
0045
0250
0135
0.095
0080
CASE 29-02
TO-92
. 934
MAX
0.205
0165
0.210
0.021
1
0055
0050
0.105
0.105
MPS6548 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
Symbol
Min
TVp
Max
Unit
Collector-Emitter Breakdown Voltage (I)
(lc = 1.0 mAde, IB = 0)
BVCEO
25
-
-
Vde
Coliector~Base
BVCBO
30
-
-
Vde
BVEBO
3.0
-
-
Vde
ICBO
-
-
100
nAde
lEBO
-
-
100
nAde
hFE
25
125
-
-
VCE(sat)
-
-
0.5
Vde
VBE(sat)
-
-
0.95
Vde
fT
650
1500
-
Ceb
-
0.5
0.7
rb'C e
-
-
9.0
Characteristic
OFF CHARACTERISTICS
(IC
Breakdown Voltage
= 100!,Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE
= 10!,Ade, IC = 0)
Collector Cutoff Current
(VCB
= 25 Vde, IE = 0)
Emitter Cutoff Current
(VBE
= 2.0 Vde, IC = 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 4.0 mAde, VCE
= 10 Vde)
Collector-Emitter Saturation Voltage
(lC
= 4.0 mAde, IB = 0.4 mAde)
Base-Emitter Saturation Voltage
(lC
= 4.0 mAde, IB = 0.4 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC
MHz
= 4.0 mAde, VCE = 10 Vde, f = 100 MHz)
Collector-Base Capacitance
(VCB
pF
= 10 Vde, IE = 0, f = 100 kHz)
Collector-Base Time Constant
(IE = 4.0 mAde, VCB = 10 Vde, f = 31.8 MHz)
(I) Pulse Test: Pulse Width <;;3ool's, Duty Cycle <;;2.0%.
935
ps
MPS6560 NPN
MPS6562 PNP
(SILICON)
SILICON ANNULAR AUDIO
TRANSISTORS .
NPN/PNP SILICON
AUDIO TRANSISTORS
... designed for complementary symmetry audio output applications.
• Excellent Gain Linearity From 10 mAde to 100 mAde
•
Low Collector· Emitter Saturation Voltage VCE(sat)'= 0.5 Vde (Max) @ IC = 500 mAde
r
MAXIMUM RATINGS
Rating
COllector-Emitter Voltage
Symbol
Value
Unit
VCEO
25
Vdc
Collector-Base Voltage
VCB
25
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
500
mAde
Collector-Current - Continuous
Total Device Dissipation
@
T A = 25°C
PD
Derate above 25°C
Total Device Dissipation @ T C = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
PD
TJ T st9
625
5.0
mW
mW/DC
1.5
12
mW/DC
Watts
-55to +150
DC
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient
ReJAI1)
200
°C/mW
ReJC
83.3
°C/mW
Thermal Resistance. Junction to Case
(1) ROJA
IS
measured with the device soldered into a typical printed circuit board.
A
l
SEATlNG4~j
~
PLANE
K
--..l
D-jll-'-kL
=lR~
STYLE 1
PIN 1 EMITTER
2
3
BASE
......1
COLLECTOR
DIM
A
B
C
D
F
0
~
~
INCHES
MIN
MAX
5200
4.190
5330
0533
482
0175
0125
0170
0016
16
0205
.165
0210
0021
019
1390
1270
0.045
0055
0.050
1 .100
L
N
1150
P
6350
3430
2.410
2.030
0
R
S
2670
2.670
0.250
0.135
0.095
O.OBO
CASE 29·02
TO·92
936
B
-1sbr
MILLIMETERS
MIN
MAX
4.450
31BO
4320
o4{}7
o4{}7
r'
h-n\-j-
-
0.105
0105
MPS6560, MPS6562 (continued)
ELECTRICAL CHARACTERISTICS ITA = 250 C unless otherwise noted.)
I
I
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage (1)
IIc=10mAde,IB=0)
BVCEO
-
25
Vde
Collector-Base Breakdown Voltage
BVCBO
-
25
Vde
BVEBO
5.0
-
Vde
ICEO
-
100
nAdc
ICBO
-
100
nAde
lEBO
-
100
nAde
35
50
50
200
VCEls.t)
-
0.5
Vde
VBElon)
-
1.2
Vdc
IT
60
-
MHz
Cob
-
30
.pF
Characteristic
OFF CHARACTERISTICS
IIC= 100~Ade, IE= 0)
Emitter-Base Breakdown Voltage
II E = 100 ~Adc"IC = 0)
Collector Cutoff Current
IVCE = 25 Vde, IB = 0)
Collector Cutoff Current
IVCB = 20 Vde, IE = 0)
Emitter Cutoff Current
IVEBloff) = 4.0 Vde, IC = 0)
ON CHARACTERISTICS 11)
DC Current Gain
-
hFE
!"IC = 10 mAde, VCE = 1.0 Vde)
IIc = 100 mAde, VCE = 1.0 Vde)
IIc = 500 mAde, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage
-
IIc = 500 mAde, IB = 50 mAde)
Base-Emitter On Voltage
IIc = 500 mAde, VCE = 1.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIc = 10 mAde, VCE = 10 Vde, f = 30 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, I = 100 kHz)
(1) Pulse Test: Pulse Width ';;300 ~s, Duty Cycle ';;2.0%
TYPICAL CHARACTERISTICS
MPS6562PNP
MPS6560 NPN
FIGURE 1 - COLLECTOR SATURATION REGION
$1. a
:;
'"
~
~ O. 8
<{
:;
1111
1111
~Cl~'~A 25~A
1111
1111
\
Ilrid~'A_
II
~ o.6
~AI
t'.i a
>
0.05
~
w
U~mA- r-
"'~
o
~
~
I\.
\
-
0.1
I'-.
0.2
I
IIII
I 1111
O.8
III TJ = 250
I
III
I
1
III
I III
Ie =lOmA 25mA
l00mA 250 mA 50OmA
o. 6
:::
\
0.4
o
o
'\
o
8~ o. 2
:;
LI III
25b
o
:::
~
v; 1.
'1IITJ=250C
.......
0.5
1.0
2.0
5.0
IB, BASE CURRENT ImA)
-----
10
'-
20
0.4
"'
~-' o.
2
8
I'....
t'.i a
>
0.05
50
937
-
1\
0.1
0.2
I--I-
0.5
1.0
2.0
5.0
IB, BASE CURRENT (mA)
10
r20
50
MPS6560, MPS6562 (continued)
TYPICAL CHARACTERISTICS (continued)
MPS6562 PNP
MPS6560 NPN
FIGURE 2 - DC CURRENT GAIN
40 0
400
VCE = 1.0 V
---
~ 300
:::;
«
~ 200
~
z'
;;'
"'I-
~ 10 0
:::>
'"
'"'"
;
TJ = 125°C
~J
I-
-
VCE = 1.0 V
'"~ 300
TJ = moc
I
:::;
.«
"
25°C
'z" 200
-.........;
I
-J50~
Z
~
\
~
Ii:
~ 100
a
'"
'"~
ao
60
-
60
-
"i''-
tt
-
a0
-..
I
~501c
~
40
40
O.S
1.0
2.0
5.0
10
20
SO
100
IC. COLLECTOR CURRENT ImAI
200
0.5
500
1.0
2.0
5.0
10
10
50
IC. COLLECTOR CURRENT ImA)
100
200
500
FIGURE 3 - "ON" VOLTAGE
1.0
TJ = 25°C
II I
o. a
~
VSElsatl@ Iclia = 10
~
'" o.6
:::
"'"'
~
~
--
11,1
VSElonl@VCE = 1.0 V
1.0
........ ~
TJ=250C! IIII1
11111
o.a
~
~ 0.6
........
-
VB Elsa') @IClls- 10
I--
VBElonl @VCE = 1.0 V
w
"'~
0.4
o 0.4
>
>-
>-
-
o.2
VCElsa'l@ ICIIS = 10
o
0.5
1.0
2.0
5.0
10
20
50
100
IC. COLLECTOR CURRENT ImAI
o.1
-
./
VCElsa'1 @ICIiS = 10
o
100
0.5
500
1.0
2.0
5.0
10
20
50
100
./
200
500
IC. COLLECTOR CURRENT ImA)
FIGURE 4 - BASE·EMITTER TEMPERATURE
COEFFICIENT
-o.S
'0. a
~
0
~-(.)-1 .2
2
w
.. e..
4
~~-1.
W Z
V
I-W
./
6
0
--
LIII
1.0
I
2.0
~~
V
........
8VS for VBE
~ ~-1. 6
w ....
-55 0 C to 25 0 C
8
0.5
:;>
I
4
-2. 2
-1.0
:::>
~
C-
IIIII
5.0
10
20
50
IC. COLLECTOR CURRENT ImAI
~
IIII
100
200
8VS for VSE
IIII
1.0
2.0
5.0
10
20
50
IIII
11111
IC. COLLECTOR CURRENT ImA)
938
V
;..--- .
./
250C to 1250C
-2. 0
-2. 2
0.5
500
-1550Cto2Ek
(.)-1.8
.,;
250C to 1250
100
I
200
I
500
MPS6560, MPS6562 (continued)
TYPICAL CHARACTERISTICS
MPS6562 PNP
MPS6560 NPN
-
TJ = 25 0C
t= 30 MHz
VCE = 10V
.;
FIGURE 5 - CURRENT·GAIN - BANDWIDTH PRODUCT
"
~ 300
~
TJ}250~
I
t =30 MHz
VCE =10 V
~
~ 200
\
""
"~
/
~
z
V
/
.:, 70
i
/
;;:
II
'-?
20
5.0
10
20
50
100
IC, COLLECTOR CURRENT (mA)
200
.t:'
500
50
300.5
10
2.0
5.0
10
20
50
Ic, COLLECTOR CURRENT (mA)
FIGURE 6 - CAPACITANCE
70
t
30
20
r-
~
~ 10
13
-
;i:
~ 7.0
5.0
l
25 C
0
f-
f-.
....
I'--~
-......
--r-
Cob
100
.1
L
+J = 256C
'"
....
0.5
0.7
1.0
2.0
3.0
5.0 7.0
10
20
0.2
VR, REVERSE VOLTAGE (VOLTS)
939
0.3
0.5
1
~
7.0
0.3
500
1
10
..... r-.,
200
i'-- "":ib
~
0
r-...
u'
=
C,b
-......:..
"'z
u
3.0
0.2
\
100
;;\
1.0
"- \
~
~
0.7 1.0
2.0 3.0
5.0 7.0
VR, REVERSE VOLTAGE (VOLTS)
10
20
MPS6561 NPN (SILICON)
MPS6S63 PNP
SILICON ANNULAR AUDIO
TRANSISTORS
NPN/PNP SI LICON
AUDIO TRANSISTORS
... designed for complementary symmetry audio output applications.
• Excellent Gain Linearity From 10 mAde to 100 mAde
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 350 mAde
MAXIMUM RATINGS
Symbol
Value
Unit
VceOlsus}
20
Vdc
Collector-Base Voltage
Vce
25
Vdc
Emitter-Base Voltage
VEe
5.0
Vdc
Collector-Current - Continuous
IC
600
mAde
Total Povver Dissipation @TA = 25°C
Derate above 2SoC
PD
625
5.0
mW
mW/oC
T C = 2SoC
PD
1.5
12.0
Watt
mW/oC
TJ,T stg
-55 to +150
°c
Rating
Collector-Emitter Voltage
Total Power Dissipation
Derate above 2SoC
@
Operating and Storage JunctIon
Temperature Range
STYLE 1
PIN 1
1
3
DIM
A
THERMAL CHARACTERISTICS
C
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient
ROJAllI
200
°CIW
ROJC
83.3
Thermal ResIstance, Junction to Case
D
(1) RaJA is measured with the device soldered into a tYPical printed circuit board.
4450
3.18
4320
0407
40
+1
+
L
°CIW
MILLIMETERS
MIN
MAX
--*4J.....
1.150
INCHES
MIN
MAX
'.200
4.190
5.330
0.533
42
0175
15
0.170
0016
016
0.205
16
0.210
0.021
01
1390
1270
0.045
0055
0.050
-
2.670
2670
-
0.250
0135
0.095
0.080
CASE 29·02
TO·92
940
-
0.105
0.105
MPS6561, MPS6563 (continued)
ELECTRICAL CHARACTERISTICS ITA" 25°C unless otherwise noted.!
Unit
Symbol
Min
VCEOlsus)
20
-
Vde
BVCBO
20
-
Vde
BVEBO
5.0
-
Vde
ICEO
-
100
nAdc
Collector Cutoff Current
IVCB = 20 Vde, IE = 01
ICBO
-
100
nAdc
Emftter Cutoff Current
IVEB = 4.0 Vde, IC" 01
lEBO
-
100
nAdc
Character istic
Max
OFF CHARACTERISTICS
Collector-Emitter ~reakdown Voltage (1)
(lC" 10mAde,IB" 0)
Collector-Base Breakdown Voltage
(lC" 100!,Ade,iE = 0) .
Emitter-Base Breakdown Voltage
(lE~ 100!,Ade,lc= 0)
Collector Cutoff Current
(VCE = 20 Vde, IB = 0)
ON CHARACTERISTICS 111
DC Curren't Gain
(lC = 10 mAde, V CE " 1.0 Vdel
(lC" 100 mAde, VCE" 1.0Vdel
(lC" 350 mAde, VeE" 1.0 Vdel
-
hFE
-
35
50
50
200
Collector-Emitter Saturation Voltage
IIC" 350 mAde, IB = 35 mAde)
VCE(satl
-
0.5
Vde
Base-Emitter On Voltage
VBE(onl
-
12
Vde
IT
60
-
MHz
Cob
-
30
pF
IIc = 350 mAde, VCE = 1.0 Vdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIc = 10mAde, VCE = 10Vde, I" 30 MHzl
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)
(11 Pulse Test: Pulse Width';; 300 !,S, Duty Cycle';; 2.0%
TYPICAL CHARACTERISTICS
MPS6563 PNP
MPS6561 NPN
FIGURE 1 - COLLECTOR SATURATION REGION
c;; 1.0
:;
o
2:-
~ O. 8
:;
""
1111
IIII
W
IIII
~Clbl~A
2S
~A
~
>
0
III
:;
>
-
I-.....
0.2
I III
ii
~~~mA- -
;o
I
I III
I
0.8
IC =IOmA 2SmA
II III
III
TJ = 25.
III
II III
lOOmA 2S0 mA SOD mA
~
\
0.1
1.0
o
~ 0.6
1\
I
0.05
II
(7)
\
~ 0.4
ci:
0.2
IIITJ=2S.C
1\
~
~
II
I\JoI~IA_ 2sb~AI
~
'" O.6
8:
\
0.5
1.0
2.0
5.0
IB, BASE CURRENT (mAl
!
--10
20
0.4
_ 0.2
r--.
S
~
>
50
941
0
O.OS
--
\
~
...........
0.1
0.2
---
0.5
1.0
2.0
5.0
IB, BASE CURRENT ImAI
10
20
50
MPS6561, MPS6563 (continued)
TYPICAL CHARACTERISTICS (continued)
MPS6563 PNP
MPS6561 NPN
FIGURE 2 - DC CURRENT GAIN
400
400
TJ
VCE'1.0V
~ 300
:::;
~
~ I-
<
;: 200
12SOC
o
I
:::;
z-
-Jso~
f-"""'
«
-.........:~
I
Z
'">u
o
~
TJ~1250C
1.0 V
n
t-
Z
~so\c
.
Z
~
r\
~ 100
B
~
300
'"'" 200
:5
"
dsot
o
VCE
~
~ 80
80
u
o
60
I-
~ 6O
40
0.5
t-
tt
~ l-
>Z
~ 100
,
40
1.0
2.0
5.0
10
20
50
100
200
0.5
500
1.0
2.0
5.0
10
50
20
100
200
500
IC. COLLECTOR CURRENT (rnA)
IC. COLLECTOR CURRENT (rnA)
FIGURE 3 - "ON" VOLTAGE
1. 0
TJ
o. a
~
2SoC
II II
II II
VBE(sat)@ Iclla ~ 10
.....-
~
II
6
-
1.0
TJ
o.8
I I III
IIIII
-
VBE( .. t)@lclla· 10
~
~ o. 6
VBE(on)@ VCE ~ 1.0 V
~ 2SoC
V
-
VBE(on) @VCE' 1.0 V
w
'"
~o o.4
>
4
>-
-
o. 2
o
o.s
I-- VCE("!)@ ICIIB ~ 10
1.0
2.0
5.0
10
20
50
100
IC. COLLECTOR CURRENT (rnA)
o. 2
I,..;
-"
VCE(sat) @IcllB ~ 10
200
0
0.5
SOO
1.0
2.0
5.0
10
20
so
100
200
500
IC. COLLECTOR CURRENT (rnA)
FIGURE 4 - BASE·EMITTER TEMPERATURE
COEFFICIENT
-0. 8
-0. a
W
0:
0
=>
~ G-1. 2
o.e.
2
"'>
I
4
4
~~-1.
wZ
\./
~~
/'
6
8
OVB for VSE
0
IIII
1.0
I
2.0
-
~
I-
)
i ~-1. 6
w~
-550C to 250C
-2. 2
0.5
-1, 0
~
Ww
~ 8-1.a
V
250C to 125 0
C-
IIIII
IIIII
I
I
5.0
10
20
so
IC. COLLECTOR CURRENT (rnA)
100
200
.,;
~
IIII
1.0
2.0
5.0
10
I
I
I Inl
I IIII
20
so
IC. COLLECTOR CURRENT (rnA)
942
/\....-
~
250C to 12SoC
-2. 0
-2.2
O.S
500
-15 soC to ~oc
0VB for VBE
100
"1
I
200
soo
MPS6561, MPS6563 (continued)
TYPICAL CHARACTERISTICS
MPS6561 NPN
0
0
-
TJ ~ 25 0C
f~ 30 MHz
VCE~ 10V
,;'
MPS6563PNP
FIGURE 5 - CURRENT·GAIN - BANDWIDTH PRODUCT
~ 300
~
""' '\
VCP 10 V
~
"....o
~
I
f~30MHz
~ 200
o
/
0
TJ~1250~
....
"""
V
\
100
1\
'"
~
.:, 70
0
;;:
II
<.0
0
0
1.0
2.0
5.0
10
20
50
100
IC. COLLECTOR CURRENT (rnA)
200
500
~
50
G
.t:
300.5
1.0
2.0
5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)
100
200
500
FIGURE 6 - CAPACITANCE
0
t~
0
h
25 C
0
0
r-..
0
- -
0
.....
5. 0
3.0
0.2
~ ....... r-.,
0.3
0.5
0.7
1.0
3.0
II
r-..
0--'
t'......
0
Cob
r---- ~ib
. . . 1'-.
5.0 7.0
10
~
0
...... .......
7. 0
0.2
20
0.3
0.5
0.7
1.0
2.0
3.0
5.0
VR. REVERSE VOLTAGE (VOLTS)
VR. REVERSE VOLTAGE (VOLTS)
943
I
I+J~25bc
1':--
.....
2.0
-
7.0
10
20
MPS6565 (SILICON)
MPS6566
NPN SILICON ANNULAR TRANSISTORS
NPN SILICON
AMPLIFIER
TRANSISTORS
· .. designed for low·current amplifier applications.
•
Coliector·Emitter Breakdown Voltage BVCEO = 45 Vdc (Min) @ IC = 1.0 mAde
•
Output Capacitance Cob = 3.5 pF (Max) @ VCB = 10 mAde
•
Full Designers Curves
MAXIMUM RATINGS
Symbol
Value
VCEO
45
Vdc
Collector-Base Voltage
VCS
60
Vdc
Emltter·Base Voltage
VES
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Ie
Unit
4.0
Vdc
200
mAde
= 2SoC
Po
350
2.8
mW
mW/oC
Total Power Dissipation @ TC = 25°C
Derate above 2SoC
Po
1.0
8.0
mW/oC
T J.T stg
-55 to +150
°c
Symbol
Max
Unit
R8JAI1l
357
°C/W
R8JC
125
°C/W
Total Power Dissipation @ T A
Derate above 2SoC
Operating and Storage Junction
Watt
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
STYLE 1:
PIN 1.
EMITTER
2. BASE
3. COLLECTOR
(1) AOJA 15 measured With the devIce soldered into a typical printed circuit board.
DIM
A
B
C
0
F
L
MI LLiMETERS
MIN
MAX
4.450
3.180
4.320
0.407
0.40
12.
1.150
N
P
a
R
S
6.350
3.430
2.410
2.030
INCHES
MAX
MIN
5.200
4.190
5.330
0.533
0.175
0.1 5
0.170
0.D16
l.4HZ
U.Ul~
1.390
1.270
0.045
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29·02
TO·92
944
0.205
0.165
0.210
0.021
U.019
0.055
0.050
0.105
0.105
MPS6565, MPS6566 (continued)
ELECTRICAL CHARACTERISTICS
(T.
= 25'C '""H ,,",,,,,,, .;.,...,
Characteristic
Symbol
Min
Typ
Max
-
-
4.0
-
-
-
-
100
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(Ic = I mAde, IB = 0)
BVCEO
Collector-Base Breakdown Voltage
('c = 100 I'Ade, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(IE = 100 I'Ade, 'c = 0)
BVEBO
45
60
Collector CutoH Current
(VCB = 30 Vde, IE = 0)
'cBO
-
Vde
Vde
Vde
nAde
ON CHARACTERISTICS
DC Current Gain ( 11
('c = 10 mAde, VCE = 10 Vde)
MPS6565
hFE
MPS6566
Collector-Emitter Saturation Voltage
('c = 10 mAde, IB = I mAde)
40
100
VCE(••t)
-
COb
-
-
160
-
400
Vde
0.1
0.4
-
3.5
3.7
-
-
-
I'mhos
60
-
ohms
500
2.5
-
4.0
-
SMAll·SIGNAl CHARACTERISTICS
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
Input Capacitance
(VBE = 0.5 Vde,
Ie
C1b
= 0, f = 100 kHz)
Small Signal Current Gain
(IC = 10 mAde, VCE = 10 Vde, f = 100 MHz)
"te
Output Admittance
(IC = 10 mAde, VCE = 10 Vde, f = 1 kHz)
hoe
Input Impedance
(IC = 10 mAde, VCE = 10 Vde, f = I kHz)
~.
Voltage Feedback Ratio
(IC = 10 mAde, VCE = 10 Vde, f = I kHz)
hre
Noise Figure
('c = 100 I'Ade, VCE = 5 Vde,
lis
NF
= 1000 ohms, f= 10 Hz
to 15.7 kHz)
(1) Pulse Test: Pulse Width';; 300 /LS, Duty Cycle';; 2.0%.
945
2.0
-
pF
pF
-
X 10- 4
dB
MPS6565, MPS6566 (continued)
SMALL SIGNAL CHARACTERISTICS
NOISE FIGURE
Va
= 5Vdc, TA = 2S-C
FIGURE 2- SOURCE RESISTANCE EFFECTS
FIGURE 1 - FREQUENCY EFFECTS
12
10
I II
II
I
I
I
I
~ r - SOORCE RESISTANCE -
200 II
I
\
I\:Ie-lmA
&15
~
!
;
8
-"- r-....
Ii 4 ~
i
_
0
0.1
I'\.
I
17"" """ ...
r
"f...
t:'--
10
./
SOURCE RESISTAftCE - 200 II
Ic - 0.5mA
"
-
I'\.. V
:t-
"
4
L SOURCE RESISTANCE 500 II
t-- Ic 100 pA
SOORCE RESISTANCE - 1kll
I
Ic - 50 pA
I
10
0.4
20
40
o
100
0.1
hPARAMETERS
= 1 kHz. TA =
/
.....
/
./
/'
10
1.0
2.0
4.0
Rs. SOORCE RESISTANCE Iklll
0.4
20
40
100
2S-C
FIGURE 4 - OUTPUT AOMmANCE
300
100
200
0
-
I- ~
15100
50pA
/
/
~
FIGURE 3 - CURRENT GAIN
I
Ic
Vic - 100 p.A/
~
0.2
/
/
/
1/
.......
/
/
/
I
/
/
Vet = lOY, f
j
I I II
/1/1 II
/ .
::---
,...:1:="
-.- 1-"'..... b"'i
l$ " 0.5
:::;;;
....
;:;..
~ V r..:. ">:: -"?f::
1~
~ .......
::..-I~ 0.3 ~ .... -..:::- ~ r-- -... ..... rc
.-
--
V
0.2
0.1
.-
f--
-r--
-..: ~
--
.-.:::=
~
-~
----- 1---r-_
--
~
::::- f--
~-
0.3
0.5
0.7
1'\:\
- - VCE = 10V
-VcE=IV
2.0
3.0
5.0
7.0
Ic, COLLECTOR CURRENT (mAl
10
...
~
""'" -2S"C
1.0
.....
-..;:
...::::::.... 2S"C
I
0.2
IC::!..-
I
I
20
lO
~
50
70
,\1\
1\
100
FIGURE 8 - COLLECTOR SATURATION REGION
1.0
TJ = 2S"C
i
0.8
Ie
Ic= lmA
~
=
Ie = 100mA
Ie = 30mA
IOmA
\
:;: 0.6
\
~
i
~
,.~
0.4
l\.
'\
I\. ......
0.2
o
.01
.02
f'.....
--I-
.03
.05
.07
0.1
1""-0 1-1-
r-..
--0.2
O.l
0.5
I" SASE CURRENT (mAl
0.7
2.0
1.0
FIGURE 9- TRANSCONDUCTANCE
l.O
5.0
7.0
10
FIGURE 10 - CAPACITANCES
100
10
70
IL
50
~
I
30
L
-
r-- TJ = 125°C J
20
1/
/
8
2
II
3.0
I
~
25°C
5
2.0
j
L
0.4
I-
......
....... ....... _Cib
. -"'-....l
Cob
......
I
I-
IL
/
0.5
3.0
-
2.0
J
/
f-f-
-I-
...
~
I
TJ =2S"C
7.0
L
/
5.0
l/2soc
/
10
7.0
5.0
1.0
II
75"C /
B
®.
=
I
1.0
0.6
0.7
0.8
0.9
1.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
REVERSE VOLTAGE (VOLTSI
V... BASE·EMITIER VOLTAGE (VOLTSI
947
20 30 40
MPS6567 (SILICON)
NPN SILICON
AMPLIFIER/MIXER
TRANSISTOR
NPN SILICON ANNULAR
AMPLIFIER TRANSISTOR
· .. designed for use in high-frequency amplifier and mixer applications_
•
High Collector-Emitter Breakdown Voltage BVCEO = 40 Vd~ (Min) @ IC = 1.0 mAdc
•
Low Feedback Capacitance Cre = 0.5 pF (Typ) @ VCB = 10 Vdc
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Symbol
Value
Unit
VCEO
40
Vdc
VEB
5.0
_.50
Vdc
mAde
Collector Current - Continuous
IC
Total Power Dissipation @ T A"" 25"C
Derate above 2SoC
Po
625
5.0
mW
mW/oC
Total Power Dissipation @ TC .,. 2SoC
Derate above 2SoC
'PO
1.5
12
Watts
mW/oC
TJ,T stg
-55'0 +150
°c
Operating and Storage Junction
STYLE 2:
PIN I.
2.
3.
Temperature Range
DIM
.A
B·
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Max
Unit
C
0
R8JA(I}
200
°CIW
F
R8JC
83.3
°CIW
L
N
P
Symbol
(1) R6JA is measured with the device soldered into a typical printed circuit board.
Q
R
S
MILLIMETERS
MIN
MAX
4.450
3.
4.320
0.407
0.407.
5.200
4.1
5.330
0.533
0.48
1.150
1.390
1.270
-
6.350
3.430
2.410
2.030
--
2.670
2.670
INCHES
MIN
MAX
i=P.i=
.16
~
0.021
0.016
0.019
0.045
0.055
0.050
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
948
-
0.105
0.105
MPS6567 (continued)
I
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)
I
Symbol
Min
Typ
Collector-Emitter Breakdown Voltage (1)
(IC = 1.0 mAde, IB = 01
BVCEO
40
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = 10 !,Ade, IC = 01
BVEBO
5.0
-
-
Vde
ICBO
-
-
25
100
-
Characteristic
Max
Unit
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 35 Vde, IE = 0)
500
nAde
ON CHARACTERISTICS
DC Current Gai n (1)
(lC = 10 mAde, VCE = 5.0 Vde)
hFE
-
Collector-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)
VCE(sati
-
0.2
0.5
Vde
Base-Emitter On Voltage (1)
(IC = 10 mAde, VCE = 5.0 Vde)
VBE(on)
-
0.65
O.B
Vde
DVNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 10 Vde, f = 100 MHz)
fT
600
BOO
-
MHz
Common-Emitter Reverse Transfer Capacitance
Cre
-
0_5
0.7
pF
Roep
100
-
-
kOhms
(VCB= 10Vde,IE=O,f= 100kHz)
Output Resistance
(lC = 2.0 mAde, VCE
= 10 Vde, f = 10.7 MHz)
(1) Pulse Test: Pulse W,dth ... 300 !,S, Duty Cycle'; 2.0%.
949
MPS6568, A(SILICON)
thru
MPS6570, A
NPN SILICON ANNULAR TRANSISTORS
... designed for VHF·RF and video IF stages in TV receivers.
•
Guaranteed Noise Figure
NF = 3.3 dB(Max) @ 200 MHz-MPS6568,A
6.0 dB(Max) @45 MHz-MPS6569,A. MPS6570.A
•
Guaranteed AGC Characteristics
NPN SILICON
VHF TRANSISTORS
•
External Shielding for Optimum RF Circuit Performance
•
Complete v·Parameter Curves at Both 45 MHz and 200 MHz
•
Guaranteed Power Gain
Gpe = 20 dB(Min) @ 200 MHz-MPS6568,A
22.5 dB(Min) (Unneutralized) @45 MHz-MPS6529,A.
MPS6570,A
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage·
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation T A - 2SoC
Symbol
Value
Unit
VeEO
Ves
20
Vdc
Vdc
VES
Ie
Po
3.0
Vdc
50
mAde
20
350
2.8
mW
mW/oe
Po
1.0
8.0
mW/oe
TJ.Tstg
-55 to +150
°e
Derate above 25°C
Total Power Dissipation @TC = 2SoC
Derate above 2SoC
TO·92
MPS6565A
MPS6569A
MPS6570A
MPS6568A
MPS6669A
MPS6570A
Watt
SEATINGJt
Operating and Storage Junction
Temperature Range
TO·92 WITH SHIELD (1)
MPS65'68
MPS6569
MPS6570
PLANE
i
~
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case (2)
Thermal Resistance. Junction to Ambient
Symbol
Max
Unit
ReJC
ReJA
125
°e/w
357
°e/W
STYLE 1.
PIN 1
2.
3.
(1) Device and shield supplied without shield being attached.
(2) RaJA is measured with the device sOldered into a typical printed circuit board.
MILLIMETERS
DIM MIN MAX
A
5.03 5.18
4.01
4.27
B
4.70
~D 4.45
0.254 0.381
300 TYP
E
F
0.229 0.279
G
1.14 1.40
H
0.406 0.483
J
0.787 RAD
K 12.70
L
1.27 T.P
N
0.330 I 0.331
P
0.254 TYP
Q
4.01 I -4.27
INCHES
MIN MAX
0.198 0.204
0.158 0.168
0.175 0.185
0.010 0.015
300 TYP
0.009 I 0.011
0.045 0.055
0.U16 I 0.019
0.0 1 RAD
0.500
0.050T.P
0.013 I 0.015
0.010 TYP
0.158 0.168
MPS6568
MPS6569
MPS6570
DIM
A
B
e
K
CASE 29A
TO-92
oil
FI
~
B
H-U-
L
_~.
T
~
N
ST;I':/ EMITTER
2. BASE
L
3. COLLECTOR
3
G
950
0
F
K
L
N
P
Q
R
S
MILLIMETERS
INCHES
MIN
MAX MIN
MAX
4.450
5.200 0.175
0.205
3.180
4.11!ll 0.15
0.165
4.320
5.330 0.170
0.210
0.407
0.533 0.016
0.021
0.407
0.48 nJ]Jl6 """"lJ:lIl9
1 .700
! 0.500
1.150
1.390 0.045
0.055
1.270
0.050
6.350
0.250
3.430
0.135
2.410
2.670 0.095
0.105
2.030
0.105
2.670 0.080
CASE 29-02
TO-92
MPS6568,A thru MPS6570,A (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
20
-
20
-
3.0
-
-
50
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC = 1.0 mAde, IB = 0)
BVCEO
Collector-Base Breakdown Voltage
BVCBO
(lC
= 100 "Ade,
IE
= 100 "Ade,
IC
Vde
= 0)
Emitter-Base Breakdown Voltage
(IE
Vde
Vde
BVEBO
= 0)
Collector Cutoff Current
(VCB = 10 Vde, IC = 0)
nAde
ICBO
ON CHARACTERISTICS
DC Current Gain
(lC = 4.0 mAde, VCE
Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 5.0 mAde)
VCE(sat)
Base-Emitter Saturation Voltage
VBE(sat)
(lC
= 10 mAde,
IB
-
hFE
= 5.0 Vde)
= 5.0 mAde)
20
200
0.1
0.3
-
0.96
375
300
800
800
0.25
0.5
-
0.65
-
3.3
-
6.0
20
27
22.5
28.5
4.0
5.0
4.4
5.2
5.4
6.2
Vde
Vde
SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, I = 100 MHz)
MPS6568A
MPS6569A, MPS6570A
IT
Collector-Base Capacitance
Ceb
(Vee::; 10 Vdc, 'E = 0, f = 1.0 MHz, emitter guarded, with shield)
MPS6568/6570
(VCB = 10 Vde, IE = 0, I = 1.0 MHz, emitter guarded)
MPS6568A/6570A
pF
NF
Noise Figure
(VAGC
MHz
dB
= 1.4 Vde, RS = 50 ohms, I = 200 MHz, Figure 9)
MPS6568,A
(VAGC = 2.75 Vde, RS = 50 ohms, f = 45 MHz, Figure 10)
MPS6569A, MPS6570A
FUNCTIONAL TEST
Gpe
Power Gain
(V AGC
= 1.4 Vde, RS = 50 ohms, I = 200 MHz,
Figure 9)
MPS6568,A
(V AGC = 2.75 Vdc, RS = 50 ohms, I = 45 MHz, Figure 10)
MPS6569,A, MPS6570,A
Forwarcj AGC Voltage
(Gain Reduction = 30 dB, RS = 50 ohms, f
MPS6568,A
(Gain Reduction = 30 dB, RS = 50 ohms, f
MPS6569,A
MPS6570,A
Vde
VAGC
= 200 MHz, Figure 9)
= 45 MHz, Figure
dB
10)
AGC CHARACTERISTICS
Vee ~ 12 Vdc, Rs ~ 50 OHMS, SEE FIGURES 9 AND 10
-f~45MHz
FIGURE 1- POWER GAIN
25
z
,/
/
20
~
15
I
10
/'
,
""
12
\"" \
~
\
,i/
~:..
-5
FIGURE 2- NOISE FIGURE
14
30
~
f~200MHz
--
\
2.0
3.0
4.0
\
~
<3
:i
\
1\
5.0
o
6.0
o
I
I
\
z
I\.
\
1.0
'"'"
\\
/
/
~
~
\
o
I
10
/
I--'
"-
10
2.0
3.0
/
,./
4.0
5.0
VAGC, AUTOMATIC GAIN CONTROL VOLTAGE (VOLTS)
VAGC, AUTOMATIC GAIN CONTROL VOLTAGE (VOLTS)
951
6.0
MPS6568,A thru MPS6570,A (continued)
COMMON-EMITTER Y PARAMETERS
VeE ~ 12 Vdc, T. ~ 25°C
FIGURE 3-INPUT ADMITTANCE
f ~ 45 MHz
-
100
80
60
~
-g
/
/
.§
~
jE 40
,.~
..... ~ ............
~
20
~
~
~
.....;
z
--
",
./
..,'"
;-,/J I
k.'
,I
/
4.0
6.0
8.0
--
-b".f
I~
0,;-....".
~
g,l
120
1
~ 100
~ 80
«
;
~ 60
Q
~ 40
~
~ 20
/
/
"""
/
/
/
/
. . . -b,. "
/
1/
'j
-bfe
,...;-
2.0
--.
.
,:;
10
4.0
"
",
",
7
-- --- ---,.--~SH:7=
12
4.0
2.0
..-
-
WITHOUT $HIELD
6.0
8.0
10
12
Ie, COLLECTOR CURRENT (mA)
FIGURE 6- OUTPUT ADMITTANCE
3. 0
2. 5
-\-\
\~
.....
.......
.......
......
8.0
--- ---
~I.
--- ---
boo
- ~.10
~:J
5
,~ I~
.......
6.0
/~
-b"f..
o. 1
\
"1
gfe '
--- .........
:::i
V-\
/
g
-~+ ..........
..- WITH SHIELD
-g'~~/
FIGURE 5- FORWARD TRANSFER ADMITTANCE
140
£_WITHOUT SHIELD
0.2
Ie, COLLECTOR CURRENT (mAl
160
--1'
ffi 0.3
\
2.0
-- --- --
5i!
-20
o
FIGURE 4- REVERSE TRANSFER ADMITTANCE
,.~
r"-.b,:-..,
-40
0.5
~ 0.4
-..... ..............
--::::::: ~
/
~
.................
- - f ~ 200 MHz
0.6
O. 5
0
12
~I~UT SHIELD
r-__ _.
WITH SHIELD
WITHOUT 'SHIELD
-
;::- Ie=::
~
4.0
6.0
8.0
Ie, COLLECTOR CURRENT (mA)
. Ie, COLlECTOR CURRENT (mA)
952
,,/
.....
,-- --- -g~ l.--- ~
2.0
---
-- ---
Iii
A
:::::.t
CITHSHIELD
~",
10
..,..
12
MPS6568,A thru MPS6570,A (continued)
FIGURE 7- DC CURRENT GAIN
FIGURE 8- COLLECTOR-BASE CAPACITANCE
0
50
Ve• ~ IOVdc
-TA~25°C
V
0
.........
(C,b~C,,@I.~O)
-
O. 7
~
0-----
-
r-r-.
5
--
I
-..... ........
........
\
3
\
\
7. 0
"'"
WITH SHI ElD~
\
0
I III h ~ 25°C-
WITHOUT SHIELD
2
5. 0
3. 0
0.1
O. 1
0.2
0.3
0.5 0.7 1.0
2.0 3.0
Ie, COllECTOR CURRENT (rnA)
5.0 7.0 10
20
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
Vea, COllECTOR-BASE VOLTAGE (VOLTS)
20
30
FIGURE 10 - 45 MHz FUNCTIONAL TEST CIRCUIT
(UNHEUTRALIZED)
FIGURE 9- 200 MHz FUNCTIONAL TEST CIRCUIT
(NEUTRALIZED)
Vee~12V
Vee
270n
lolW
RF BEADS
I( 1000 PFJ.
~
12V
270n
lolW
I( 1000 PFJ.
son
1000pF
OUTPUT
>----ir--e
I~
2.2 k!J
lolW
1000PF11'
390n
lolW
T, ~ FERRITE CORE INDIANA GEN. CORP. F-684
T, ~ 6 TURNS #16 BUSS WIRE, ID ~ \14", l ~ 0/4".
T, ~ TOROID 4J RATIO} #22 WIRE
8T-PRI2T-SEC
953
son
OUTPUT
MPS6571 (SILICON)
NPN SILICON ,ANNULAR TRANSISTOR
NPN SILICON
AMPLIFIER
TRANSISTOR
... designed for preamplifiers in audio amplifier applications.
•
Collector-Emitter Breakdown Voltage BVCEO = 20 Vdc @ IC = 1,0 mAde
•
Low Noise Figure NF = 1.2 dB (Typ)
@
IC = 100 IlAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
20
Vdc
Collector-Base Voltage
VCB
20
Vdc
Emitter-Base Voltage
VEB
3,0
Vdc
Col rector Current - Continuous
IC
50
mAde
Total Power Dissipation @ T A::: 25°C
PD
350
2,8
mW
mW/oC
PD
1.0
8,0
Watt
mW/oC
TJ,Tstg
-55 to +150
DC
Collector·Emitter Voltage
Derate above 25°C
Total Power Dissipation @ TC
=::
2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
(1) RaJA
IS
Symbol
Max
Unit
ReJA (1)
357
°C/W
ReJC
125
°C/W
STYLE I:
PIN L EMITTER
2. BASE
3, COLLECTOR
measured with the device soldered rnto a typical printed circuit board.
DIM
A
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
4.450
3.180
4.320
0.407
u.407
5,1110
4.19U
5,330
0,533
,48'
0.115
L
N
1.150
1.390
1.270
0,045
P
6.350
3.430
2.410
2.030
B
C
D
F
Q
R
S
2.670
2.670
0.12~
0.110
0.016
u.u16
0.250
0,135
0.095
0.080
CASE 29'()2
TO-92
954
0,205
u.lij5
0,210
0.021
0,019
0,055
0,050
0.105
0,105
MPS6571 (continued)
ELECTRICAL CHARACTERISTICS
(TA
Characteristic
=25°C unless otherwise noted)
I Symbol
Min
Typ
20
-
-
25
-
-
-
-
50
-
-
50
250
-
1000
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAdc, IB = 0)
BVCEO
Collector-Base Breal '" <>
COLLECTOR
....j s
B
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
4.450
3.180
4.320
0,407
0.407
12.70
1.150
5.200
4.190
5.330
0.533
.4 2
0.175
0.125
0.170
0,016
0.016
0.105
0.165
0.110
0.011
0.019
1.390
1.270
0.045
0.055
0.050
6.350
3.430
2.410
1.030
-
2.670
1.670
0.150
0.135
0.095
0.080
CASE 29-02
TO-92
959
/:::It
0.105
0.105
MPS6580 (continued)
I
ELECTRICAL CHARACTERISTICS (T A
=
250 C unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lc = 1.0 mAde, I B =0)
BVCEO
25
-
-
Vde
Collector-Base Breakdown Voltage
(lc = 10jLAde.IE = 0)
BVCBO
30
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = 10jLAde, IC = 0)
BVEBO
3.0
-
-
Vde
Collector Cutoff Current
(VCB = 20 Vde, IE = 0)
ICBO
-
-
100
nAde
Emitter Cutoff Current
(VBE = 2.0 Vde, I C = 0)
lEBO
-
-
100
hAde
hFE
20
80
-
-
VCE(satl
-
0.2
0.5
Vde
250
450
-
MHz
-
0.5
1.0
pF
Characteristic
OFF CHARACTERISTICS
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 2.0 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage
(lc = 2.0 mAde, IB = 0.2 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 2.0 mAde, VCE = 10 Vde, f
Collector-Base Capacitance
(VCB = 10 Vde, IE =0, f
IT
=100 MHz)
Ceb
=100 MHz)
(1) Pulse Test: Pulse Width ';;3OOjLs, Duty Cycle ';;2.0%.
960
MPS8000
(SILICON)
NPN SILICON ANNULAR
RF TRANSISTOR
625 mW - 27 MHz
RF DRIVER
TRANSISTOR
designed for use in Citizen-Band Communications equipment
operating to 30 MHz. High current gain available for driver applications. This device is designed to be used with the MPS8001 RF
oscillator and the MPS-U31 RF power output.
NPN SILICON
MAXIMUM RATINGS
Symbol
Value
Unit
VCES
60
Vde
VEB
3.0
Collector Current - Continuous
IC
500
mAde
Total Power Dissipation @ T A = 2SoC
Derate above 2SoC
Po
625
5.0
mW
mW/oC
Total Povver Dissipation @ T C :::: 25°C
Derate above 25°C
Po
1.5
12
mW/oC
-55 to +150
°c
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Operating and Storage Junction
TJ,Tstg
Vde
Watt
Temperature Range
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance. Junction to Case
R&JC
B3.3
°C/W
Thermal Resistance, Junction to Ambient
R&JCllI
200
°CIW
Characteristic
(1) Typical printed circuit board mounting.
0-:111-'-1-1- L
=lRf..:-
or
l ~~
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.1
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)
BVCES
-
60
Vde
(lC =·50 mAde, VBE = 01
Emitter-Base Breakdown Voltage
STYLE
PIN 1.1 EMITTER
2. BASE
3.
-
BVEBO
3.0
ICBO
-
10
hFE
30
-
VCEI,at)
-
0.3
!lAde
(VCB = 50 Vde, IE = 0)
-
(lC = 100 mAde, VCE = 2.0 Vdel
Collector-Emitter Saturation Voltage
F
L
N
P
FUNCTIONAL TEST
a
Gpe
12
-
dB
350
-
mW
IP out = 350 mW, VCC = 13.6 Vde, , = 27 MHz I
Power Output
C
0
K
Vde
IIc = 100 mAde, IB = 10 mAde)
Common-Emitter Amplifier Power Gain
DIM
A
B
ON CHARACTERISTICS
DC Current Gain (2)
Pout
.
1 3
00
R
S
MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4:190
4.320
5.330
0.407
0.533
0.407
0.482
1 .7
1.150
1.390
1.270
6.350
3.430
2.410
2.670
2.030
2.670
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
961
B
INCHES
MIN
MAX
0.175
0.205
0.165
0.125
0.170
0.210
0.021
0.016
0.019
0.016
(Pin = 21.8 mW, VCC = 13.6 Vde, '·27 MHz)
(2) Pulse Test' Pulse WIdth <;;;300 ~', Duty Cycle· 2.0%.
5
Vde
(IE = 1.0 mAde, IC = 0)
Collector Cutoff Current
I
--1-;- =:rT
·0 0
COLLECTOR
0.055
0.050
-
0.105
0.105
MPS8000 (continued)
",,
TYPICAL CHARACTERISTICS
FIGURE 1 - DC CURRENT GAIN
FIGURE 2 - ON VOL TAGES
200
1.0
...
TJ = 25'C
VCE = 2.0 V
z
;;: 100
g
'"
'"c
C; 0.4
>
>'
0
0.2
30
VCE("t}@ IcllB = 10
20
0.5
o
2.0
1.0
5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)
100
200
500
0.5
1.0
2.0
FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT
'" 400
IIII
~
g
~
VCE= 10V
200
~
c
2.0V
~
100
z
;1i 80
I
60
Z
,~
B
.t'
5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)
-
100
200
500
FIGURE 4 - CAPACI'TANCE
100
IIII
TJ = 25'C
~
;;:
~
VBE(,n}@VCE= 10 V
«
'"
,/
~
'"
..... .....
1111
VBE(sat)@ IcII8 = 10
I- -f-tt!m
w
50
II
-
0.6
0
2:
70
II IIII
TJ = 25'C
0.8
I-
~
a
I III
.......
70
50
i'.
30
1\
~
~
1\
~
~
-
-
7.0
5.0
TJ =25 0 C
-Cob
",'
1\
40
20
w
'"'"
«
I10
Cib
3.0
2.0
1\
20
0.5
1.0
2.0
5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)
100
200
1.0
0.1
500
0.2
0.5
1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)
50
FIGURE 5 - 27 MHz TEST CIRCUIT
+13.6 Vdc
VCC
~
0.0041l F
C1
C2
C3.C4
5.0 to 8.0 pF ARea 462 or equivalent
9.0 to 180 pF AReo 463 or equivalent
25 to 280 pF ARea 464 or equivalent
=
1SIlH
0.221lH
Output
Input
T.U.T.
C3
RF Ferroxcube
5659065/38
962
100
MPS8001
(SILICON)
NPN SILICON RF ANNULAR TRANSISTOR
RF OSCILLATOR
designed for use in Citizen-Band communications equipment
operating to 30 MHz, with low feedback capacity for stable operation_ This part is designed to be used with the MPSBOOO driver and
the MPS-U31 RF power output_
TRANSISTOR
NPN SILICON
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Symbol
Value
VCEO
25
Vde
VEB
3_0
Vde
Unit
Collector Current - Continuous
IC
100
mAde
Total Device Dissipation @ T A '" 2SoC
Derate above 25°C
Po
350
2_8
mW
mW/oC
= 2SoC
Po
1_0
8_0
Watt
mW/oC
TJ,T,tg
-55 to +150
°c
Symbol
Max
Unit
RBJC
125
°C/mW
RBJA'
357
°C/mW
Total Device Dissipation @ T C
Derate above 25°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
*RO JA is measured with the device soldered Into a typical printed Circuit board.
ELECTRICAL CHARACTERISTICS ITA
I
Characteristic
=
25°C unless otherwise noted.)
Symbol
Min
Max
Unit
BVCEO
25
-
Vdc
BVEBO
3.0
-
Vde
ICBO
-
1.0
jtAde
hFE
40
-
-
VCElsat)
-
0.4
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(1}
IIc
= 1.0 mAde,
IB
= 0)
Emitter-Base Breakdown Voltage
liE = 10jtAde, IC = 0)
COllector Cutoff Current
IVCB = 25 Vde, IE = 0)
Coliector·Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
DIM
A
B
C
F
Vde
L
N
P
Q
R
DYNAMIC CHARACTERISTICS
S
Current· Gain - Bandwidth Product (1)
IIc =4.0 mAde, VCE = 10 Vde,
I: 100 MHz)
IT
Collector·Emitter Capacitance
IVCE = 10 Vde, IE = 0, I = 1.0 MHz)
Cce
(l)Pulse Test:
2.
3.
0
ON CHARACTERISTICS
DC Current Gain
IIc = 10 mAde, VCE • 1.0 Vde)
STYlE 1:
PIN 1.
MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
0.40,
0.482
1.150
6.350
3.430
2.410
2.030
INCHES
MAX
MIN
0.175
O. 05
.125
0.165
0.210
0.170
0.021
0.016
u.u19
0.016
•
1.390
1.270
2.670
2.670
0.045
0.250
0.135
0.095
0.080
MHz
100
-
0.65
Pulse WIdth ~300 J,ls, Duty Cycle ~ 2.0%.
963
pF
CASE 29-02
TO-92
0.055
0.050
0.105
0.105
MPS8001 (continued)
FIGURE 2 - "ON" VOLTAGE
FIGURE 1 - DC CURRENT GAIN
200
iJ =
1.0
1~5DC
--j:-
.......
25 DC
~ 70
a
'"
::::-
~ 30
20
- -
10
0.5
r---
'"1"--..- ['..
VCE=1.0V
10
m=
II
II II
0.7
~
~
-55D~
50
'"c
~ JsJ(s~tlllc/lsl- ld
0.8
~ 100
to
r
I,..-
TJ = 25 DC
VSE @VCE = 10 V
~ 0.6
"f' ~
to
r-....
>
w
«
!:i
o
0.4
=>
0.2
~
1.0
2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)
20
30
50
0.5 0.7
2.0 3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (mA)
1.0
:J:
to;
~
~
50
FIGURE 4 - CAPACITANCE
TJ = 25 DC
t= 1.0 MHz
.....
700
2.0
......
50 0
"""
I-I--"
300
~
100
0.03
0.05 0.07 1.0
IlT
2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)
20
~
1.0
~
O. 7
_
VCE= 10V
t= 100MHz_ ~
TJ = 25 DC
4: 20 0
r-
\':l
z
I
z
'":>
'"'"
J:'
30
3.0
100 0
t;
i5
o
g:
-~
VCE(..tl@IClIs= 10
o
FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT
¥
i..-- I- ~ I--~
Cab
Ccb
I-
-C~ I
ee
0.5
30
I
0.5 0.7
964
I
1.0
2.0 3.0
5.0 7.0 10
VR, REVERSE VOLTAGE NOLTS)
"20
30
MPS8097 (SILICON)
NPN SILCON ANNULAR
LOW-NOISE, HIGH-GAIN AMPLIFIER TRANSISTOR
... designed lor use in low-level, low·noise amplilier applications.
•
Colieetor·Emitter Breakdown Voltage BVCEO = 40 Vde (Min) @ IC = 10 mAde
•
High DC Current Gain hFE = 250 (Min) @ IC = 100j.lAde
•
High Current·Gain - Bandwidth Product IT = 200 MHz (Min) @ IC = 10 mAde
•
Low Noise Figure NF = 2.0 dB (Max) @ IC = 100 !lAde,
1= 10 Hz to 15.7 kHz
1
r
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
V CEO
40
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
V EB
6.0
Vdc
Collector Current - Continous
IC
200
mAde
Total Power Dissipation @ T A:: 25°C
PD
350
2.8
mW
mW/oC
1.0
8.0
Watt
Rating
Derate above 2SoC
Total Power Dissipation @
NPN SILICON
LOW NOISE, HIGH GAIN
AMPLIFIER
TRANSISTOR
PD
TC = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ,Tstg
-55 to +150
PLANE
Symbol
Ma.
Unit
ReJAlll
357
°C/W
Thermal Resistance, Junction to Case
ReJC
125
°C/W
D--Jlf-L~L
STYLE 1
PIN 1
2.
3
IOta a typical printed circuit board.
DIM
A
B
C
D
F
L
N
P
Q
R
S
Q
_
~
~
MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
0...,7
:.1UU
1.150
6.350
3.430
2.410
2.030
i
u.4.2
INCHES
MIN
MAX
0.175
0.125
0.170
O.ot6
O.ul.
0.205
U.165
0.210
0.021
0.019
U.~UU
1.390
1.270
2.670
2.670
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO·92
965
r
=lR~
EMITTER
~
BASE
COLLECTOR
~~
K
111 RaJA is measured with the device soldered
~~ijtJ
°c
Thermal Resistance, Junction to Ambient
Characteristic
"",,"4~
mWPC
THERMAL CHARACTERISTICS
1
A
0.055
0.050
0.105
0.105
MPS8097 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)
Charect.istic
I
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAdc, IB
Vdc
BVCEO
=0)
Collector Cutoff Current
(VCB = 40 Vdc, IE 0)
(VCB ~ 60 Vdc, IE = 0)
ICBO
Emitter Cutoff Current
lEBO
=
(VBE = 6.0 Vdc, IC = 0)
40
-
-
30
10
-
20
250
700
0.45
0.65
200
-
1.0
4.0
-
10
250
800
-
2.0
-
8.0
-
32
nAdc
"Adc
nAdc
ON CHARACTERISTlCS(!)
DC Current Gain
(lC
hFE
=1()() "Adc, VCE = 5.0 Vdc)
Base-Emitter on Voltage
(lC
VBE(on)
=100 "Adc, VCE = 5.0 Vdc)
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(lC = 10 mAdc, VCE = 5.0 Vdc, f = 100 MHz)
IT
Output Capacitance
(VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz)
Cob
Emitter-Base Capacitance
Ceb
(VBE = 0.5 Vdc, IC = 0, f = 1.0 MHz)
Small-Signal Current Gain
pF
pF
hfe
(lC = 100 "Adc, VCE = 5.0 Vdc, f = 1.0 kHz)
Noise Figure
(lC= 100 "Adc, VCE= 5.0Vdc,
RS = 10 kOhms, f = 10 Hz to 15.7 Hz)
NF
(lC = 100 "Adc, VCE = 5.0 Vdc,
RS = 10 kOhms, f = 100 Hz, BW= 1.0 Hz)
Equivalent Short Circuit Noise Voltage
VT
(lC = 100 "Ado, V CE = 5.0 Vdc,
RS = 10 kOhms, f = 100 Hz, BW = 1.0 Hz)
(1) Pulse Test: Pulse Width <0;300 "s, Duty Cycle <0;2.0%.
(2) fT is defined as the frequency .t which Ihlel extropolates to unity.
966
MHz
dB
nV/..rHz
MPSS097 (continued)
FIGURE 1 - TRANSISTOR NOISE MODEL
1-----------1
I
I
Ideal
Transistor
I ___________ JI
L
NOISE APPLICATION NOTE
For a transistor, total noise at the input may be
expressed
as:
[
] y,
VT = e~ + 4KT RS + i~ R~
(1)
NF
or
(See Figure 1)
Where:
VT
K
T
RS
total noise voltage
20 1091O noise voltage contributed
by the Source Resistance
y,
NF = 20 10910 [
total noise voltage at the transistor input
(Volts/J"Hz)
noise voltage of the transistor referred to
the input (Figures 2 and 3)
noise current of the transistor referred to
the input (Figure 4)
Boltzman's constant (1.38 x 10- 23 j/OK)
temperature of the source resistance (OK)
source resistance (Ohms)
.
(2)
)
\4 KT RS
Noise figure can be calculated for the above example as
fOIlOW~:F = 20 1091O 1(7·2 x 10-9)~ ~ 4.9 dB
L
J
16.6 x 1O- 18
This checks with the value read from Figure 7 of 5.0 dB.
To minimize noise in a transistor stage, one might use
Figure 7 and deduce that noise is minimized when Noise
Figure is minimum. This is not necessarily true as shown
by Figure 6 where the total noise voltage is a minimum at
small values of source impedance. This can be seen from
equation (1) which shows that total noise is a direct
function of source resistance.
Noise over a frequency band can be handled in one of
two ways depending upon whether total transistor noise is
constant or variable over the bandwidth of interest:
Example:
Find the total noise at the input of an MPS·8097 for a
collector current of 1.0 mA and a source impedance of
1.0 Kilohm at a frequency of 100 Hz and at a temperature
of 25 0 C.
Read en = 4.6 nV/JHZ from Figure 2 or Figure 3.
(Note that this is for a one cycle bandwidth)
Read in = 3.6 pA/J'Hz. from Figure 4.
VT = [(4.6 x 10-9 )2 + (4)( 1.38 x 1O-23U300)
(1 x 10 3 ) + (3.6 x 10- 12)2 (1 x 103 )2 1(, =
For Constant transistor noise, multiply, VT by the
square root of bandwidth. i.e., V-r = VT • ~f~
J
7.2 nV/.[Hz
2. For variable transistor noise, plot VT (where ~f =
1.0 Hz) versus frequency over the bandwidth and
integrate the result.
This checks with the value shown in Figure 6.
Example:
Read VT = 7.2 nV/,JH; at IC
RS = 1.0 kn.
Noise figure is defined as:
VT 2
Total noise voltage at the output of the transistor stage
can be found by multiplying VT or
by the voltage lIain
of the stage.
1.0 mA imd
vi
967
MPS8097 (continued)
NOISE CHARACTERISTICS
(VCE = 5.0 Vdc, T A = 25°C)
NOISE VOLTAGE
FIGURE 2 - EFFECTS OF FREQUENCY
0
~
w
'"«
~
o
I .I~WdWid~h
~
20
\
1111
li~1 = 10lmA
RS
=: 1:.J
FIGURE 3 - EFFECTS OF COLLECTOR CURRENT
30r-~~"nTmr--'-'-rn~~-'-.-rrmTn
~Ba~Wi~t~=~.~~I~~~+H~~~~~
~! I
20~-+-+~H+~--~~HH~~~~~rH+H
~
0
~
10
>
w
~
o
7. o
"-
3.0 mA
z
l
-
1.0 mA""'!-.
5.0
r-- .unt-.l
11111300~
3. 0
10
20
SO 100
100 k~;
3.0 '---'--'-~u..Lw..__-'--'-L...I..Ju.JJU--'---""""'''''''''''''''
0.01 0.02
O.OS 0.1
0.2
O.S
1.0
2.0
S.O
10
IC. COLLECTOR CURRENT (mA)
200
SOO 1.0 k 2.0 k S.O k 10 k 20 k SO k 100 k
f. FREnUENCY (Hz)
FIGURE 5 - WIOEBAND NOISE FIGURE
FIGURE 4 - NOISE CURRENT
10
7.0
20
Bandwidth - 1.0 Hz
Ic-lOmA
"'N-I.
3.0mA
S.O
i
3.0
t--.
~ 20
~
~
0.7
~
0.5
-
~
"""
a 10
~
~
16
~
w
~
~
12
u::
w
'"~
300.A
,.....
8.0
~
10
20
z
SO
o
10
100 200
SOO 1.0k 2.0k S.Ok 10k 20k SDk lOOk
f. FREQUENCY (Hz)
SOO.A
1-
~
./
lO.A
0
IC = 1.0 mA
i'
4.0
30.A
r-..
RS~
0.1
11111111
~
'i-I.
11.OmA
lro:;I
0.2
11111111
11111111 I
Bandwidth:::; 10 Hz to 15.7 kHz
u:
0.3
11111111 I
~ l~o.
20
SO
100 200 SOO 1.0k 2.0k S.Ok 10k 20k SOk lOOk
RS. SOURCE RESISTANCE (OHMS)
100 Hz NOISE DATA
FIGURE 7 - NOISE FIGURE
FIGURE 6 - TOTAL NOISE VOLTAGE
300
II
200
IC = 110 ~~
:>
.5 100
~
~
o
>
io'=
Bandwidth
~
16
V
~O
'"w
1.0
mA
50
~ 12
'"u::
w
'"
oz B.O
I Ill:
~
30
20
/
10
/1/
~
6
....
11/
1/
mA
1.0 Hz
ii
«
20
~A~
//
~O,O,J.l
30.A
10"':
~.
z
I 1111111
Ic=10mA
~
~
'\
AIIIII
'\
~
~ l\I" ~
1.0mA
K
~ 7.0
S. 0
3. 0
10
20
SO 100 200
SOO 1.0k 2.0k S.Ok 10k 20k
RS. SOURCE RESISTANCE (OHMS)
SOk lOOk
968
RS, SOURCE RESISTANCE (OHMS)
MPS8097 (continued)
FIGURE 8 - DC CURRENT GAIN
2.0 k
~~~I =
5.01V
~ 1.0k
'"
i
700
'"~
500
I-- f-
TJ
=1250C
25 0C
./
W1
1-15 °C
./
1........-
Q
i
300
.....-
/'
V
200
0.01 0.02
0.05 0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
IC. COLLECTOR CURRENT {mAl
FIGURE 10 - TEMPERATURE COEFFICIENTS
FIGURE 9 - "ON" VOLTAGES
1.0
0.8
E!'
c:
-0.4
II III
~ 1= ~5Jcl
~-o. B
f-I J I I II
0.6
:>E
"'-
~~E{;n; ~ VCE =5.0 V
wI-
1= :li -1.2
~E
2:
w
'"~
",w
~
0.4
8-1. 6
TJ = 25 0C to 125 0C
-i 1-
~. ~
o
>
>'
>'"
0.2
a
<:t>
V~E{~tl ; 11~:rll ~
0.01 0.02
0.05 0.1
0.5
1.0
2.0
5.0
10
20
-550 C to 250 C
nn liT
"~ -2.4
~
0.2
U?
~-2.0
50
0.01 0.02
100
0.05
0.1
IC. COLLECTOR CURRENT {mAl
6.0
~
w
'"z
4.0
3.0
--
....
I-
Ccb
c(
~U
~
- ....... -ill
I-
<:;
Cob
"'"
"-
......... Cob
TJ
to
'"
30 a
Q
C,b
~
~
:I:
IQ
.!:;;:
1.0
2.0
20
0/
"
/"
V
/'
\
5.0
10
20
10 a
'"~ 7 f- VCE - 5.0V
aI-- TJ = 250C
'"
I--
-
- -I--
-
-5!i1'C
1--1-
I-- 1-1-
I--
_t-"
25°C
k- f-ff"
--
I-
I-- r-I-
~ I--
.........
\
'~
.......
'"
1\ \
60
\
40
0.2
0.3
0.5
0.7
1.0
~ 2.0
1111
II II11
TJ =25°C
O.S
~
0
~
0.6
w
'"'"
~
0
>
>"
III
o
~
-
VSE(sa,)@IClIs= 10
30
50
70
\
100
200
FIGURE 9 - COLLECTOR SATURATION REGION
FIGURE 8 - "ON" VOLTAGES
1.0
20
3.0
5.0
7.0
10
IC, COLLECTOR CURRENT (rnA)
2.0
~
w
~
o
1.6 r-
I JII
I
III
I
III
I
III
I III
100 rnA
200 rnA
IJ10mA 20mA
1\
~ 1.2
r- VSE@VCE = 5.0 V
50 rnA
t
~
0.4
"'
0.8
8
0:4
~
TJ = 25°C
o
0.2
00.2
0.5
1.0
~
.....
VCE(..!)@ Icils = 10
2.0
5.0
10
20
IC. COLLECTOR CURRENT (rnA)
ul
;;
50
100
:-... ,....
200
0.02
0.05
0.1
-1.4
/
c:;
u:
t::; -1.S
8
-
w
'"~
-
eVS FOR VSE
I-"
-55°C TO 1250C
-2. 2
~
~
.;
~
-2. 6
-3''11.2
0.5
1.0
2.0
5.0
10
20
50
IC, COLLECTOR CURRENT (rnA)
974
"-
0.2
0.5
1.0
2.0
IS. SASE CURRENT (rnA)
"
~
,g
;:;
\
0
FIGURE 10 - BASE·EMITTER TEMPERATURE COEFFICIENT
_ -1.0
I-
1\
100
200
5.0
-
10
20
MPS8098,MPS8099 NPN/MPS8598,MPS8599 PNP (continued)
PNP
MPS8598. MPS8599
FIGURE 11 - DC CURRENT GAIN
300
TJ =
1250~
r--
z .200
"
to
~
~ 100
'"c
~
-
~
I-
70
J
VCE=5.0V
........
J- 25 C
-
"- r-.;
~I--
i'...
~
-55°C
~
1,\
\.
50
\
300.2
0.3
1\
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
IC. COLLECTOR CURRENT (mAl
20
50
30
Ui 2.0
c
~
mIT
II
~
w
IIII
II
:;
1.6
IC = 10 mPi
:;
~
f:
alci:
0.4 f-f-+++ttH--+--++++H+f--+-+-+++++Hf--l
1.2
~
0.1
0.2
FIGURE 14 - BASE·EMITTER TEMPERATURE COEFFICIENT
">
/
E
;: -1. 4
J
G
~ -1. a
c
..
r
:>
~
m
...-
Ova FOR VaE
-550C TO 1250C
2
2
.
-2. 6
.?
0
-3. 0.2
0.5
1.0
2.0
5.0
10
20
IC, COLLECTOR CURRENT (mAl
975
0.5
1.0
50
100
200
-
2.0
IS. SASE CURRENT (mAl
-1.0
ffi
u:
1\
~
r-....
TJ - 25 C
0
0.05
0.02
>
100 rnA
mr
200 rnA
\
\
\
\
~ 0.4
O~~~~~~-L~~~~~~~~~~
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
IC. COLLECTOR CURRENT (mAl
I IIII
T
\
0.8
~
VCE(sa'l@ IcllS - 10
'"w
200
1\
c
0.2 HH-t-H+t+--+--H++++I1f--+--+-+++++H-/--,."'!
\
SOmA
20 rnA
c
G
100
FIGURE 13 - COLLECTOR SATURATION REGION
FIGURE 12 - "ON" VOLTAGES
-
70
-
'5.0
10
20
MPS-AOS, MPS-A06NPN· (SILICON)
MPS-ASS, MPS-AS6PNP
COMPLEMENTARY SILICON ANNULAR
AMPLIFIER TRANSISTORS
COMPLEMENTARY SILICON
AMPLIFIER TRANSISTORS
· .. designed for use as medium·power driver and low-power outputs.
•
High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc - MPS-A05, MPS-A55
= 80 Vdc (Min) @ IC = 1.0 mAdc - MPS-A06, MPS-A56
•
Excellent Current-Gain Linearity 1.0 mAdc to 150 mAdc - MPS-A55, MPS-A56
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 100 mAdc
•
MAXIMUM RATINGS
Symbol
MPS-A05
MPS-A55
MPS-A06
MPS-A56
Unit
VCEO
60
80
Vdc
Collector-Base Voltage
Vce
60
80
Vdc
Emitler-Base Voltage
VEe
4.0
Vdc
Collector Current - Continuous
IC
500
mAde
Total Power Dissipation@TA - 25°C
Derate above 2SoC
Po
625
5.0
mW
mW/oC
Total Power Dissipation@Tc= 2SoC
Po
1.5
12
mW/oC
-55 to +150
°c
Rating
Collector-Emitter Voltage
Derate above 2SoC
Operating and Storage Temperature
TJ,Tstg
Watts
Temperature Range
3
Thermal ResIstance, Junctton to Ambient
Thermal Resistance, Junction to Case
l ~-!r
Q
COLLECTOR
-4SPt
THERMAL CHARACTERISTICS
Characteristic
STYLE 1
PIN 1 EMITTER
2 BASE
Max
Unit
ROJA(1)
200
°C/W
ROJC
83.3
oC/W
Symbol
(1) RaJA IS measured with the device soldered Into a tYPical printed circuit board.
MILLIMETERS
DIM
MIN
MAX
A
4.450
5.200
B
3.180
4.19
4.320
C
5.330
D
0.407
0.533
F
0.407
0.482
L
N
P
Q
R
S
1.150
-
6.350
3.430
2.410
2.030
-
1.390
1.270
2.670
2.670
INCHES
MIN
MAX
0.175
o. 05
0.1 5
.165
0170
0.210
0.016
0.021
I 0.D16
0.01'
lJh'>llil.
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
976
-
-
0.055
0.050
-
0.105
0.105
MPS-A05,MPS-A06 NPN/MPS-A55,MPS-A56 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.1
Characteristic
Max
Min
Svmbol
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB - 01
Vde
BVCEO
60
80
-
BVEBO
4.0
-
Vde
ICEO
-
0.1
!lAde
-
0.1
0.1
50
50
-
VCE(sat)
-
0.25
Vde
VBE(onl
-
1.2
Vdc
MPS-A05, MPS-A55
MPS-A06, MPS-A56
Emitter-Base Breakdown Voltage
-
(IE = 100!lAde,lc= 01
Collector Cutoff Current
(VCE = 60 Vde, IB = 01
Collector Cutoff Current
!lAde
ICBO
(VCB = 60 Vde, IE = 01
(VCB= 80Vde,IE= 0)
MPS-A05, MPS-A55
MPS-A06, MPS-A56
ON CHARACTERISTICS (1)
DC Current Gain
-
hFE
(lC = 10 mAde, VCE = 1.0 Vdel
(IC= 100 mAde, VCE= 1.0Vde)
Collector-Emitter Saturation Voltage
(lC = 100 mAde, IB = 10 mAde)
Base-Emitter On Voltage
(lC= 100 mAde, VCE= 1.0Vdcl
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (21
(IC = 10 mAde, VCE = 2.0 Vde, f = 100 MHz)
(1) Pulse Test: Pulse Width ';;;300!ls, Outy Cycle ';;;2.0%.
(21 fT is defined as the frequency at which jhfel extrapolates to unity.
FIGURE 1 - SWITCHING TIME TEST CIRCUITS
Turn-on Time
-1.0V
Turn-off Time
Vee
+VBB
+40V
100
100
-,or:::--,,--.. Output
Vin
tr"" 3.0 ns
--,
I ~!lF
L-.J
100
--15.0 !lsI-tr;;: 3.0 ns
·Total Shunt Capacitance of Test Jig and Connectors
For PNP Test C,ircuits. Reverse All Voltage Polarities
977
100
MPS-A05,MPS-A06 NPN/MPS-A5.5,MPS-A56 (continued)'
NPN
PNP
MPS·A05. MPS·A06
MP8-A55. Mps·A56
FIGURE 2 - CURRENT-GAIN-BANDWIDTH PRODUCT
300
:z:
~ 200 r::>
VCP 2.0 V
TJ: 25°C
Q
~
100
'f
z
0
.
15z
~~
a'"'"
J:'
it;
r\
I
JI
f- VCE=2.0V
V
TJ=250C
::>
~100
\
V
:z:
I:i
200
-
I II
"N
:z:
!;
0
/
~
~ 50
I
z
~
0
~
0
~
0
2.0
3.0
5.0 7.0 10
20
30
50
IC. COLLECTOR CURRENT (rnA)
70 100
a
J:'
200
20
2.0
50
5.0 7.0 10
20
30
IC. COLLECTOR CURRENT (rnA)
3.0
70
100
200
FIGURE 3 - CAPACITANCE
0
100
70
0,,40
..
w
~
20
I-
13
;t
~
10
U
S.O
Cib
r-...,
-
, Cib
-
r--.
r-..
Cob
0.5
1.0
2.0
5.0
10
VR. REVERSE VOLTAGE (VOLTS)
20
Cob
........
0
0.2
.TJ: 25°C
......
r-...
6.0
4.0
0.1
50
TJ = 25°C
7.0
50
5. O.
0.1
100
1.0
2.0
5.0
10
0.5
VR. REVERSE VOLTAGE (VOLTS)
0.2
20
50
100
FIGURE 4 - SWITCHING TIME
1.0k
1.0 k
700
500
300
~
100
>=
70
0
0
0
'r--..
~
200
:!
700
500
ts
~
~
'"
10
r--..
0
0
11
I
VCC=40V
IC/ls: 10
lSI: IS2
TJ = 25°C
10
5.0 7.0
200
"-
0
td@ VSE(off) = 0.5 V
I r II
ts
"-
300
f"'-..
20
30
50 70 100
IC. COLLECTOR CURRENT (mA)
t,
0
,/
0
r200
300
0
5.0
500
978
:
"'- ......
"-
...........
.......
~
tf
td@VSE(off) = 0.5 V
VCC= 40 V
Ic/lS = 10
lSI = IS2
TJ = 25°C
7.0
10
......
"-
20 30
50
70
100
Ic. COLLECTOR CURRENT (rnA)
t,
r--..r200
300
500
MPS-A05,MPS·A06 NPN/MPS-A55,MPS·A56 (continued)
FIGURE 5 - THERMAL RESPONSE
~
~
1.0
0.7
~
O.S
c(
c~
;;
D zO.5
~
0.3
~
0.2
~
-
0.1
O.
I-
O. 1
0.0 71-- ~--'= .01
~ 0.05 I-- P SINGLE PULSE
i
E0.03
t-
pfJUL
t~j
DUTY CYCLE. D I1/t2
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT I1ISEE AN-469)
TJlpk) - TC z P(pk) ZOJC(t)
,~i""
'"
z
0.02 f..--' ~
~
1
0.01.0
~
-
I-- f- 0.2
S~GILE Ju ~sJ
ZeJClt) z ,It). ROJC
I
2.0
S.O
10
20
100
50
200
500
t,TIMElm,)
"
i"i -
't
~Jtlt)" jlt) •LRO~~
1.0 k
2.0 k
IPk ) ~T
S.O k
10 k
'j PIP1 Z~Al)li
20 k
50 k
lOOk
FIGURE 6 - ACTIVE - REGION SAFE OPERATING AREA
MPS-A05, MPS-A06
MPS-A55, MPS-A56
1.0 k
1.0 k
700
50 0
;{
.s
t-
~
a'"
30 0
200
soo
1.0ms
1'.
"-
1.01,
- ...
70
50 f-
-- --
8
30
E
- Thermal Limit
- - Second Breakdown Limit
20
~
10
1.0
~
'"
TA =2SoC
:5
~
1 300
1\
TC =2SoC "-
......
100
100.,
700
100.,
,
Current limit
III
....
a 100
'"
~ ~~
,"',
8
30
~ 20
MPS-AOS
MPS-A06
2.0 3.0
5.0 7.0 10
20
30
50
VCE, COLLECTOR-EMITTER VOLTAGE IVOLTS)
200
10
70
100
1.0
......
1.0m;'j
I..........
....
"-b..l.~,
TC = 25°C
I....
1' ....
Tr 2SoC
- - - - Current limit
- Thermal limit
- - Second Breakdown Limit
, ,
....
MPS-ASS= ~~
MPS·AS6
2.0 3.0
S.O 7.0 10
20
30
50
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)
The safe operating area curves Indicate Ie-VeE limits of the transistor that must
be observed for reliabJe operation. Collector load lines for specific circuits must fall
below the limits indicated by the applicable curve.
The data of Figure 6 is based upon T J(pk) == 150°C; T C or T A IS variable depending
upon conditions. Pulse curves are valid for duty cycles to 10% provided T J(pk) ~
150o C. TJ(pk) may be calculated from the data In Figure 5. At high case or ambient
temperatures, thermal Iimitations will reduce the power that can be handled to values
less than the limitations imposed by the secondary breakdown. (See AN-415A)
979
,
~
70
100
MPS-A05,MPS-A06 NPN/MPS-A55, MPS-A56 (continued)
NPN
MPS-A05, MPS-A06
FIGURE 7 - DC CURRENT GAIN
400
-- - TJ
z
.
;;: 200
to
Z
~
-
~
---
'":::>'-'
'-'
co
~
100
80
.....
-
11250c
--
250C
~
-550C
..- r---
i-"
-l-
~
-I-
VCE 1.1.0V
lot,..
"
-
--... ~
~
~
"-
60
40
0.5
~
0.7
1.0
2.0
3.0
5.0
FIGURE 8 - "ON" VOLTAGES
1.0
~~ ~1250C
II
~
r:---
l::±±J::!::m=-r-
i
0.6
11'111
g
..-
~
f-'
0,8
IIII
III~I~ \0 rnA 5~
rnA
w
to
~
o
~SE:on: ~ J~i ~11.0 v
>
~~
0.4
300
>-
~
o. 2
VCEI';'t)@ IC/IS • 10
-i -j I 1'1111
z.O
500
I II
11~J~A- z;o~l
II
T/.
z;Oc l
11500m~-
0.6
0.4
a:
>
1.0
200
a:
co
0
0.5
100
FIGURE 9 - COLLECTOR SATURATION REGION
IIII
II IIII
VBElsat)@ IC/IS = 10
~
w
to
70
1.0
o. B
~co
50
7.0
10
20
30
IC. COLLECTOR CURRENT ImA)
8
~
5.0
10
ZO
50
IC. COLLECTOR CURRENT ImA)
100
\
O.Z
200
~
>
500
0
0.05
0.1
-0.2
r--
0.5
1.0
Z.O
5.0
IC. COLLECTOR CURRENT ImA)
FIGURE 10 - BASE-EMITTER TEMPERATURE COEFFICIENT
-0.8
~
:>
.s
-1.2
5;:; -1.6
v
u::
It
8
w
.",
/.
IVS lor VSE
-z.O
I--- r-
:::>
S -2.4
~
.
~
.;
~
-2.8
0.5
1.0
Z.O
5.0
10
20
50
IC. COLLECTOR CURRENT ImA)
980
100
200
-
:--
i'---
:---1-
500
10
zo
50
MPS-A05,MPS-A06 NPN/MPS-A55,MPS-A56 (continued)
PNP
MPS-A55, MPS-A56
FIGURE 11 - DC CURRENT GAIN
400
I
TJ = 125°C
r--
z
iii
200
25°C
~
'"u=>
2:
i
VC~=1.0V
---......
i'-.
'~ t\.
-55°C'
100
80
--"'1"'-
~
0
40
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
20
30
IC. COLLECTOR CURRENT (rnA)
FIGURE 12 - "ON" VOLTAGES
1.0
~~I~ 25°C
:.
0
~
.
VBE(on)
~
~ Jc~ ~
~
0
:.-- r-
l.-I--l-±::l±ttI-- I-
0.6
~
n
0
\
o. 6
>
Iv
Ic=10rnA- 50rnA
'"
~
0.4
I-
0.2
VCE(sa')@ IcllB = 10
1.0
2.0
~
f--
5.0
10
20
50
100
IC. COLLECTOR CURRENT (rnA)
w
200
>'"
500
0
0.1
-
0.2
--
r--..
5.0
1.0
2.0
0.5
lB. BASE CURRENT (rnA)
FIGURE 14 - BASE·EMITTER TEMPERATURE COEFFICIENT
-0.8
u
3;
-1.2
.5
I-
1/
::5
C3 -1.6
~
8
~
'"~
~
0VB for VBE
-2.0
-2.4
~
/'
---
I-
~ -2.8
~
0.5
1.0
2.0
5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)
981
500 rnA
1\
2
0
0.05
I
100 rnA-\ 250 rnA
~ 0.4
o
5.0
500
TJ = 25°C
0
>
>-
300
200
o. 8
"'to
:.'"
to
:.
100
FIGURE. 13 - COLLECTOR SATURATION REGION
vI--'
VBE(sat)@IC/IB= 10
0;
70
1.0
II III
II III
0.8
50
100
200
500
1\
I-10
I-
20
50
MPS·A09 (SILICON)
NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
AMPLIFIER
TRANSISTOR
... designed for preamplifier applications in audio amplifiers.
Breakdown Voltage • Collector-Emitter
BVCEO = 50 Vdc (Min)
IC = 1.0 mAdc
Figure • LowNFNoise
= 1.4 dB (Typ) IC = 100 /lAdc
@
@
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
50
Vdc
Collector·Base Voltage
VCB
50
Vdc
Emitter-Base Voltage
VEB
3.0
Vdc
IC
50
mAde
= 25°C
Po
350
2.8
mW
mW/oC
= 2SoC
PD
1.0
8.0
mW/oC
TJ,T stg
-55 to +150
°c
Collector-Emitter Voltage
Collector Current - Continuous
Total Power Dissipation @ T A
Derate above 25°C
Total Power Dissipation@ TC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
Watt
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
ROJA (1)
357
°C/W
ROJC
125
°C/W
STYLE 1.
PIN 1. EMITTER
2. BASE
3. COLLECTOR
(1) AOJA is measured with the device soldered into a typical printed circuit board.
DIM
A
B
C
D
L
N
P
a
R
S
MILLIMETERS
INCHES
MAX MIN
MAX
MIN
4.450
5.200 0.175
0.205
3.18
4.190 0.125
0.165
5.330 0.170
4.320
0.210
0.407
0.533 0.016
0.021
0.407
0.482 .0.016
0.019
.7
I.~UU
1.150
1.390 0.045
0.055
1.270
0.050
6.350
0.250
3.430
0.135
2.410
2.670 0.095
0.105
2.030
2.670 0.080
0.105
CASE 29-02
TO-92
982
MPS-A09 (continued)
ELECTRICAL CHARACTERISTICS
(TA
Characteristic
= 25°C unless otherwise noted)
Symbol
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
{IC = 1. 0 mAde, IB = 0)
(1)
Collector-Base Breakdown Voltage
(Ic = 0.1 mAde, IE = 0)
BVCEO
BVCBO
Collector Cutoff Current
(VCB = 25 Vdc, ~ = 0)
ICBO
Emitter Cutoff Current
(V BE = S.O Vdc, IC = 0)
~BO
50
-
-
50
-
-
-
-
100
-
-
100
100
-
600
Vdc
Vdc
nAdc
nAdc
ON CHARACTERISTICS
DC Current Gain
(IC = O. 1 mAde, VCE
hFE
= 5.0Vdc)
Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)
VCE(sat)
-
-
0.9
Base-Emitter On Voltage
(IC = 1. 0 mAde, VCE = 5.0 Vdc)
VBE(on)
-
-
1.0
SO
80
-
-
-
5.0
-
1.4
-
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = O. 5 mAde, VCE = 5.0 Vdc, f
Output Capacitance
(VCB = 5.0 Vdc, IE
Cob
= 0, f = 100 kHz)
Noise Figure
(IC = O. 1 mAde, VCE
RS
fT
= 20 MHz)
= 5. 0
NF
Vdc,
= 6. 8 k ohms, f = 1. 0 kHz)
(1) Pulse Test: Pulse Width.;; 300 /..IS, Duty Cycle';; 2.0%.
983
MHz
pF
dB
MPS-A09 (continued)
FIGURE 1 - DC CURRENT GAIN
---
4.0
~ 3.0
~ 2.0
~
--
o
z
z
;;: 1.0
'"
I-
~ 0.1
B0.5
g
-
VCE = 5.0 Volts
N
0.4
f..---
~ 0.3
0.2
0.01
0.02
0-03
~
---
0.05
TA = I(SOC
~
~f-SSoc
0.1
~
0.2
0.3
0.5
IC. COLLECTOR CURRENT (mAl
_
1.4
1.3
1. 2
w 1. I
?
~
I 111111
I I jllil
I
I
Ic=O.lmA
1.0mA
"
t;
~ 160
_\.
"
b
\
\
~"
z
=
a
0.1 0.2
0.5
1.0 2.0
5.0
V
50
100 200
10
500 1000
V ............
5.0V
V
/'
~ 40
B
20
80
;;:
'">'-
........
-
10
5.0
~V
120
3:
o
0.4
0.3
S 0.2
~ 0.1
---
./
VCE = 15 V
~
\.
~
I-
II
II
t- TJ = 2S0lC
f=20MHz
~
I\:
~
O. 9
0.8
~ O. 7
~ 0.6
tE: 0.5
~
'"""
3.0
2.0
'" 200
IO~AI
5.0~AI
1.0
&:I:
>
.I
I
I
1
1.0
~ f-
FIGURE 3 - CURRENT GAIN-BANDWIDTH
PRODUCT
FIGURE 2 - COLLECTOR SATURATION REGION
~
--
r-
f- I-"
V
0.1
lB. BASE CURRENT (.AI
./
0.2
0.5
2.0
1.0
IC. COLLECTOR CURRENT (mAl
5.0
10
NOISE FIGURE
(VCE
= 5.0 Vdc, T A = 25°C)
FIGURE 4 - FREQUENCY EFFECTS
14
12
I\'"
\
CD 10
:s
w
~ 8.0
'"u:
~
6.0
u..~
4.0
oz
z
1IIIi~I'.0~A IR~!lli~h
' IJoO.~
100.A
I'i
r\
a
0.010
~SI=, ~IJ kn
II WJlls.OV~It~J
RS =OPTIMUM SOURCE
RESISTANCE
TA=2SoC
til ,iii'
120~~ IRlsl;li2kn
\
2.0
~S ~ ~.h' ~g
FIGURE 5.- SOURCE RESISTANCE EFFECT
"
"""
-
'"-
.........
0.100
1.0
10
100
RS, SOURCE RESISTANCE (OHMSI
f, FREQUENCY (kHz)
984
MPS-A 12 (SILICON)
NPN SILICON DARLINGTON TRANSISTOR
NPN SILICON
DARLINGTON
TRANSISTOR
· .. designed for preamplifier input applications requiring input
impedance of several megohms.
•
Excellent Current-Gain Linearity from 1.0 mA to 100 mA
•
Features Extremely High Current Gain 20,000 (Min) @ IC = 10 mAdc
•
Monolithic Construction
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VeES
20
Vde
Collector Current - Continuous
VES
Ie
10
500
mAde
Total Device DISSipation @TA -2SoC
PD
625
mW
TJ,T stg
-55 to +150
°e
Collector-Emitter Voltage
Emitter-Base Voltage
Vde
Derate above 25°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
(1) ROJA
IS
measured with the device soldered rnto a typical printed circuit board.
ELECTRICAL CHARACTERISTICS
Characteristic
I Symbol
Min
Typ
Max
20
-
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc
= l00I'Ade, IS = 01
Collector Cutoff Current
(VCE
= 15 Vde, VSE = 0)
Collector Cutoff Current
'CES
ICBO
(VCS = 15 Vde, 'E = 0)
Emitter Cutoff Current
Vde
SVeES
'ESO
(VEB = 10 Vdc, IC = 0)
nAdc
-
-
100
-
-
100
-
-
100
nAdc
nAdc
DIM
A
ON CHARACTERISTICS
DC Current Gain
(Ie = 10 mAde, VCE
=5.0 Vde)
Collector-Emitter Saturation Voltage
B
(lC
= 10 mAde, VCE = 5.0 Vdc)
-
hFE
VCE(s."
(IC = 10 mAde, IS = 0.01 mAde)
Base-Emitter On Voltage
VSE(onl
20,000
-
-
-
-
1.0
-
-
Vde
Vde
1.4
(VCB = 10 Vde, 'E
=0, I = 100 kHz
Small-5ignal Current Gain
(lc
pF
Cob
= 10 mAde, VCE = 5.0 Vde,
-
8.0
-
-
35
-
e
o
MILLIMETERS
MIN
MAX
4.450
5.200
3.1Bu
4.190
4.320
5.330
0.407
0.533
0.407
0.4B2
K
12.700
L
N
p
1.150
Q
SMALL-SIGNAL CHARACTERISTICS
Output Capacitance
STYLE 1:
PIN I. EMITTER
2. BASE
3. COLLECTOR
R
S
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.Ul6
u.ul"
0.500
1.390
1.270
2.670
2.670
0.045
0.250
0.135
0.095
0.080
-
hie
1= 1.0 kHz)
985
CASE 29-02
TO-92
0.055
0.050
0.105
0.105
MPS-A 12
(continued)
FIGUR'E 2 - "ON" VOLTAGES
FIGURE 1 - DC CURRENT GAIN
200k
~J ~ :~5'C
100 k
70 k
"-
:,.....,..
..-
.......
1.6
,
«
~
i"o.
30 k
0
10 k
.c
5.0 k
~
"'"'
«
':; 1.0
i3
:s
IIII
IIII
>
>-
-55'C
O.B
VCE-5.0V -r--
io+1""
3.0 k
II
2.0 k
5.0
7.0
50 70 100
20
30
lC. COLLECTOR CURRENT (mA)
200
300
~
o~
>
3.0
2.5
II I II 11
II I II II
r:C I
1~~~ 5~~A
=
~
JlI II
III II
~~O ~~
IIIII
IIIII
50
100 200
'"~
~
"'
i3
1.0
O.B
.~
~
;;
r'va for VaE
......- V-
J..I..I+-t'"
-I--
-550C to 250C
1111
-6. 0
500 1000
5.0
7.0
10
20
30
50 70 100
IC. COLLECTOR CURRENT (mA)
-
I
200
300
500
FIGURE 6 - CAPACITANCE
,/
.111
. . . r-..
liJI:
l5'C
10
V
~
z
0.6
:;;i 0.4
5
Cob
u
~
1.0
2.0
0.5
10
20
50
100
IC. COLLECTOR CURRENT (mA)
200
.......
J. 0
2. 0
0.04
500
986
cC,b
5. O
;i;
l
0.2
0.5
7. 0
-J..J...LJ.J..LL.-L.......I...L.LJ.J..uL..J...J.-L.LW..J.JJJ
2.0
5.0 10 20
lB. BASE CURRENT (PA)
---
-550 Cto 25°C
S
S
1.0
.-
~
ffi
t:; -3. 0
1.0
0.5
"'8ve for VCE(sat)
~ -2.0
5~ ~ll+--++-I-++++++I
~ H+N++t~.t-I-+++Httf-"l.d.....-+*I+tIIH+-++H+H1
0.2
I
-
20
30
50 70 100
IC. COLLECTOR CURRENT (mAl
'APPLIES FOR Iclla'" hFE/3.0
u
1.5 H-f-Httttit--H-+++H\tH-f-Htttttt-++-+++1rttt1
0.1
1-;::: .....
FIGURE 4 - TEMPERATURE COEFFICIENTS
2.0 H-f-H++I+I---H-+++t+++H-HH+++++l-++-+-++1f.1Hj
>
10
-1. 0
ffi
1::
I
0.6
5.0 7.0
500
FIGURE 3 - COLLECTOR SATURATION REGION
~
I I
I I
VCE(",)@ICIIB= 1000
I I
10
-
v
~ ~ I-""
VBE(,n)@ VCE = 5.0 v
0
~ 7.0k
~
ITiT
1.2
~
20k
I I
I I
~BIEi~t) @I~/IB 11000
[i25'C
!; 50 k
"'
~
I-
IIII
TJ=25'C
1.4
0.1
0.2
0.4
1.0
2.0
4.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
40
MPS-A 13 (SILICON)
MPS-A14
NPN SILICON
DARLINGTON
TRANSISTORS
NPN SILICON DARLINGTON
AMPLIFIER TRANSISTORS
· . . designed for pre·amplifier input applications requiring high
input impedance.
•
High DC Current Gain @ IC = 10 mAdchFE = 5,000 (Min) MPS·A 13
10,000 (Min) MPS·A 14
•
Coliector·Emitter Breakdown Voltage BVCES = 30 Vdc (Min) @ IC = 100/JAdc
•
Low Noise Figure NF = 2.0 dB (Typ) @ IC = 1.0 mAdc
•
Monolithic Construction
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCES
30
Vdc
Collector-Base Voltage
Vca
30
Vdc
Emitter-Base Voltage
VEa
10
Vdc
ColiectorMEmitter Voltage
Collector Current
Continuous
Total Power Dissipation @ T A = 25u C
IC
500
mAde
Po
625
5.0
mW
mW/oC
Po
1.5
12
Watts
mW/oC
TJ,T stg
-55 to +150
°c
Derate above 2SoC
Total Power Dissipation@Tc- 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
0-:111-'-1-1- L
~R~
3.
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient (1)
R8JA
200
°CIW
Thermal Resistance, Junction to Case
R8JC
83.3
uCIW
(1) R9JA is measured with the device soldered into a typical print" circuit board.
lor
STYLE 1:
PIN 1. EMITTER
2. BASE
DIM
A
MILLIMETERS
MIN
MAX
C
0
F
U.401
L
N
P
0
R
S
1 ,
.7
1.150
6.350
3.430
2.410
2.030
•
-000
COLLECTOR
4.450
3.1BO
4.320
0.407
B
~
--1 =rt
5.200
4.190
5.330
0.533
u... 2
1.390
1.270
2.670
2.670
B
S
INCHES
MIN
MAX
0.175
0.1>0
0.170
0.D16
0.016
0.205
0.165
0.210
0.021
0.019
0.045
0.055
0.050
0.250
0.135
0.095
0.080
CASE 29'()2
TO-92
987
~
S
0.105
0.105
MPS-A13,MPS-A14 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
BVCES
30
-
-
Vde
Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
ICBO
-
-
100
nAde
Emitter Cutoff Current
lEBO
-
-
100
nAde
MPS-A13
MPS-A14
5000
10,000
-
-
MPS-A13
MPS-A14
10,000
20,000
-
-
Collector-Emitter Breakdown Voltage
(lC = 100"Ade,IB = 0)
(VBE = 10 Vde, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain
-
hFE
(lc = 10 mAde; VCE = 5.0 Vde)
(lC = 100 mAde, VCE = 5.0 Vde)
-
VCE(satl
-
0.75
1.5
Vde
"BE (on)
-
1.29
2.0
Vde
High Frequency Current Gain(2)
(lC = 10 mAde, VCE = 5.0 Vde, f = 100 MHz)
IhFEI
1.25
2.0
-
MHz
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
Cob
-
5.4
-
pF
Noise Figure
(lC = 1.0 mAde, VCE = 5.0 Vde, RS = lOOk ohms, f= 1.0 kHz)
NF
-
2.0
-
dB
Collector~Emitter
Saturation Voltage
(lC = 100 mAde, IB = 0.1 mAde)
Base-Emitter On Voltage
(lC = 100 mAde, VCE = 5.0 Vde)
SMALL-SIGNAL CHARACTERISTICS
(1) Pulse Test: Pulse Width .. 300 "S, Duty Cycle" 2.0%.
(2) fT = Ihfel. f test
988
MPS-A 13,MPS-A 14
(continued)
FIGURE 2 - "ON" VOLTAGES
FIGURE 1 - DC CURRENT GAIN
3. 0
~
N
2. 0
:::;
"
T~; 112~OC
~
O. 7
~_
~
'"~
3
0
0.2
'"
uJ
~
O. 1
0.0 7
0.0 5
~>
t......
i=-550C
:>
f--/-
VCE-5.0V
10
20
30
50 70 100
IC. COLLECTOR CURRENT IrnA)
200
JOO
IIII 11
ITII
O.B
~ 2.5
"''"
o~
II
II
II
III
II! II
:C~ 1~~A 5~~A
III II
III II
IIIII
IIIII
I II
1.5
~
i*
25°C to 125°C
~~
.....
IIII
1.0
2.0
5.0 10 20
lB. BASE CURRENT .,A)
50
100 200
500 1000
~
~
fl
~
I-'VB lor VBE
7
J-
-
-550C to 250C
-6.0
50
HIT T
7.0
10
50 70 100
20
30
IC. COLLECTOR CURRENT ImAI
200
300
500
FIGURE 6 - CAPACITANCE
0
VCE=5.0V
1= 100 MHz
TJ= 25°C
,/
-
r-...
2. 0
0
11111
'iJ IJ J50C
,/
0
10
~ O. B
Cii
I
-S .0
FIGURE 5 - HIGH FREQUENCY CURRENT GAIN
4. 0
z
i.- ....
J.W.t.--r .......----
0
~
i
0.5
500
--- ....
·i~ .......
--+-
>-
0.50.1 0.2
300
2(o~11 250~
-550C to 250C
-4.
O
200
~
C3 -3. 0
2.0
r
~
20
30
50 70 100
IC. COLLECTOR CURRENT ImAI
+8VC for VCE(sat)
~ -2. 0
~~O ~~ 5~~~ll
I\,
-
P
I
10
"APPLIES FOR ICIIB" hFE13.0
G
TJ= 25°C
>
~
I I
-1. 0
'"
~
~~
FIGURE 4 - TEMPERATURE COEFFICIENTS
FIGURE 3 - COLLECTOR SATURATION REGION
3.0
--
.....
VBElon)@VCE = 5.0 v
0.6
5.0 7.0
500
~ ;.,...
~
1.0
VCEI ..tI@ICIIB= 1000
0.03
5.0 7.0
~
I
?IE\it)@I~ ;;...
1.2
w
'""
fl
u
I I
I I
11111.
25°C
~ O. 5
'"
IIII
TJ= 25°C
1.4
1o
i'1!
r--..
I--
.....t-
1.6
C,b
O. 6
f-
...... ~b
0
j
~ O.4
3. 0
O. 2
0.5
1.0
20
0.5
10
20
50
100
IC. COLLECTOR CURRENT ImA)
200
2. 0
0.04
500
989
0.1
0.2
0.4
1.0
2.0
4.0
YR. REVERSE VOLTAGE (VOLTSI
10
20
40
MPS-A 16 (SILICON)
MPS-A17
NPN SILICON ANNULAR TRANSISTORS
NPN SILICON
CHOPPER
TRANSISTORS
... designed for use in moderate speed switching and clipping applications that require large input voltage capability.
•
High-Emitter-Base Breakdown Voltage BVEBO = 12 Vdc (Min) @ IE = 0.1 mAdc - MPS-A 16
= 15 Vdc (Min) @ IE = 0.1 mAdc - MPS-A 17
MAXIMUM RATINGS
Rating
MPSA16
Symbol
Collector-Emitter Voltage
12
VEB
Collector Current - Continuous
Total Power Dissipation @TA - 25°C
Derate above 2SoC
Total Power Dissipation @TC = 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
MPSA17
Unit
40
VCEO
Emitter-Base Voltage
I
I
Vde
Vde
15
IC
100
mAde
Po
350
mW
Po
1.0
8.0
mW/oC
-5.0 to +150
°c
TJ.Tstg
Watt
THERMAL CHARACTERISTICS
SEATING.J~L-i
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
PLANE
(1) R8JA is measured with the device soldered into a typical printed circuit board.
D-jIPM-L
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
I
Min
I
Max
Unit
-
Vde
=:]R~
lor
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)
IIC = 1.0 mAde, IB = 0)
BVCEO
Emitter-Base Breakdown Voltage
liE =0. I mAde, IC =0)
BVEBO
Vde
12
15
-
ICBO
-
100
nAdc
lEBO
-
100
nAdc
MPS-A16
MPS-A17
Collector Cutoff Current
40
IVBE = 10 Vde, IC = 0)
h~E
200
600
-
VCElsat)
-
0.25
Vde
IIC= 10 mAde, IB = 1.0mAdc)
Current-Gain-Bandwidth Product (2)
100
80
Cob
-
4.0
IVCB = 10Vde, IE =0, f= 100 kHz)
(2)
P~lse
K
~./UU
1.150
Q
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
0.175
0.205
u.125
u.l.5
0.170
0.210
0.016
0.021
U.Ul.
u.Ol.
O.~UO
1.390
1.270
-
2.670
2.670
0.045
0.250
0.135
0.095
0.080
MHz
fT
MPS-A16
MPS-A17
B
S
S
MILLIMETERS
MIN
MAX
4.450
5.200
3.1 0
4,1'-,,4.320
5.330
0.407
0.533
U...,
0.40
L
N
P
R
S
DYNAMIC CHARACTERISTICS
Output Capacitance
DIM
A
B
C
F
COllector-Emitter Saturation Voltage
IIC= 5.0 mAdc;VCE ~ 10Vde,
f = 100 MHz)
3. COLLECTOR
0
ON CHARACTERISTics
DC Current Gain (2)
IIC = 5.0 mAde, VCE = 10Vde)
J
~
--I =r-r
1 , 3
... 0 0
-
IVCB = 30 Vde, IE = 0)
Emitter Cutoff Current
STYLE I:
PIN 1. EMITTER
2. BASE
Test: Pulse Width", 300 IJ,S, Duty Cycle'" 2.0%.
990
pF
CASE 29-02
TO-92
0.055
0.050
-
0.105
0.105
MPS-A 16, MPS-A 17
(continued)
FIGURE I-DC CURRENT GAIN
-
500
- ---
TA - 2;OC
VCE 10 Vdc
--
300
z
~
f-
~
200
-I-
=>
u
u
c
ul
~
100
- I--
t-
V f--
e--
!
;>
,.,./ ,........ i-""'"MPS·A16
/'
100
0.1
0.3
0.5
II
I
1. 6
500
=> 400
-'
1
1. 8
IMPU17 1
1.4
1. 2
8 - I--
VSE(onl
o. 6
o.4
O. 2 - VCE(ltl
o
0.7
1.0
3.0
5.0
7.0
2.0
1.0
10
=>
...
c
~
10 0
"cf-
~
z
;;l
I
z
.-
-
f---
MP~'A161
~
w
10
~
<3
~
~
~
...............
2. 0
.......... ........
1.0
2.0
100
5.0
10
1.0
0.4
20
i--
MPS' A1
MPS'A17~
=>
u
0.5
IIIII
.....
30
0.2
50
4.0
5f-
TA = 25°C
VCE =.10 Vdc
o
20
20
TA = 25°C I
U
Z
"-
<.0
~
30
V
7.0
MPS.A1T"
,.:.
~
A
FIGURE 5 -OUTPUT CAPACITANCE
70
50
.1-
0
:;;.--
:;;:
MPS·AI6
IC. COLLECTOR CURRENT (mAl
FIGURE 4 -CURRENT·GAIN-BANDWIDTH PRODUCT
"
1!\
t;
5.0
V
~ 1-'1-
~ ~SAI6
~ IC/IS = 10
3.0
IC. COLLECTOR CURRENT (mAl
" 200
-
1.0
0.7
1.0
2.0
4.0
7.0
10
VR. REVERSE VOLTAGE (VOLTSI
IC. COLLECTOR CURRENT (mAl
991
20
40
MPS-A18 (SILICON)
NPN SILICON ANNULAR
AMPLIFIER TRANSISTOR
NPNSILICON
AMPLIFIER
TRANSISTOR
· .. designed for use in low-level, low-noise amplifier applications
with excellent gain linearity from 10 /lAdc to 10 mAdc.
• DC Current Gain hFE = 580 (Typl @ IC = 10/lAdc
= 1100 (Typl@ IC= 1.0 mAdc
•
Noise Figu;e NF = 4.0 dB (Typl @f= 100 Hz
= 0.5 dB (Typl@f= 10 Hz to 15.7 kHz
1
r
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
"VCEO
45
Vdc
Collector-Base Voltage
V CB
45
Vdc
Emitter-Base Voltage
V EB
6.5
Vdc
IC
200
mAde
= 2SoC
Po
350
2.8
mW
mWI"C
= 2SoC
Po
1.0
8.0
Watt
mWI"C
COllector-Emitter Voltage
Collector Current - Cont!nuous
Total Power Dissipation, T A
Derate above 2SoC .
Total Power Dissipation, TC
Derate above 2SoC
Operating and Storage Junction
"femperature Range
TJ,T stg
-55 to +150
A
1
SEATlNG4~~
~
PLANE
K
--.-l
O-jlrc~L
STYLE 1
PIN 1
2
3
°c
r_...J.
:::::] RIo';-
r
EMITTER .....
BASE
COLLECTOR
,
Q
,
3
OJ''
B
.....j;=n
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal ResIstance, Junction to Ambient
ReJAlll
357
°CIW
Thermal Resistance, Junction to Case
ReJC
125
°CIW
11) ReJA is measured
With the device soldered. IOta a typical printed CirCUit board.
DIM
A
B
C
MILLIMETERS
MIN
MAX
F
4.450
3.18u
4.320
0.407
0.407
K
l!,1UU
0
L
N
1.15D
P
6.350
3.430
2.410
2.030
Q
R
S
-
INCHES
MIN
MAX
5.200 0.1 5
4.190 0.125
5.330 0.170
0.533 O.ot6
0.482 I 0.0 6
1.390
1.270
-
2.670
2.670
0.045·
0.250
0.135
0.095
0.080
CASE 29·02
TO·92
992
0.205
0.165
0.210
0.021
o D19
0.055
0.050
-
-
0.105
0.105
MPS-A18 (continued)
ELECTRICAL CHARACTERISTICS iT A" 25°C unless otherwise noted.)
I
Symbol
Min
TVp
Max
Unit
BVCBO
45
-
-
Vde
Collector-Emitter Breakd~n Voltage 11)
(lC" 10 mAde, IB" 0)
BVCEO
45
-
-
Vde
Emitter-Base Breakdown VolfBge
BVEBO
6.5
-
-
Vde
ICBO
-
1.0
SO
nAdc
400
500
500
500
580
850
1100
1150
-
Characteristic
I
OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(lC" 100/LAde, IE ,\0)
liE" 10jLAde, IC" 0)
Collector Cutoff Current
IVCB" 30 Vde, IE" 0)
ON CHARACTERISTICS 11)
DC Current Gain
IIC"
IIc =
lie =
(lC =
-
hFE
10 /LAde, VCE = S.O Vde)
100jLAde, VCE" 5.0 Vde)
1.0 mAde, VCE = 5.0 Vde)
10 mAde, V CE = 5.0 Vde)
Collector-Emitter Saturation Voltage
1500
Vde
VCElsat)
-
-
-
0.08
0.2
0.3
VBElon)
-
0.6
0.7
Vde
IT
100
160
-
MHz
Ceb
-
1.7
3.0
pF
Emitter-Base Capacitance
IVEB = 0.5 Vde, IC = 0, I " 1.0 MHz)
Ceb
-
5.6
6.5
pF
Noise F igu re
(Ie = 100jLAde, VCE = 5.0 Vde, RS = 10 kn, I" 10 Hz to 15.7 kHz)
IIc = 100 "Ade, V CE " 5.0 Vde, RS = 1.0 kn, I = 100 Hz)
NF
-
0.5
4.0
1.5
Equivalent Short Circuit Noise Voltage
VT
-
6.5
-
(lC = 10 mAde, IB = 0.5 mAde)
(lC = 50 mAde, I B = 5.0 mAde)
Base Emitter On Voltage
(lC = 1.0 mAde, V CE = 5.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 mAde, VCE = 5.0 Vde, 1= 100 MHz)
Collector-Base Capacitance
IVCB = 5.0 Vde, IE = 0, I = 1.0 MHz)
IIc = 100 JLAde, VCE " 5.0 Vde, RS = 1.0 kn, I = 100 Hz)
11) Pulse Test: Pulse Width <300 "s, Duty Cyele < 2.0%.
993
dB
nVt,JHi
MPS-A 18
(continued)
FIGURE 1 - TRANSISTOR NOISE MODEL
,-----------1
I
I
RS
~-V~--~~ in
Ideal
Transistor
I
I
L ___________ .J
NOISE APPLICATION NOTE
For a transistor, total noise at the input may be
expressed
= [
+ 4KT RS +
] y,
(1)
a~T
e~
NF
I~ R~
Of
(See Figure 1)
Where:
VT
K
T
RS
20 1091O
NF = 20 log 10
lOtal noise voltage at the transistor input
(Volts/.jHZ)
nOise voltage of the transistor referred to
the input (Figures 2 and 3)
nOise current of the transistor referred to
the input (Figure 4)
Boltzman's constant (1.38 x 10- 23 j/oK)
temperature of the source resistance (OK)
source rElSistance (Ohms)
%
VT 2
)
(2)
\ 4 KT RS
follows:
NF
= 20 10910
[
9 ~ Y, .
(7.2 x 10-)
= 4.9 dB
16.6 x 10- 18
This checks with the value read from Figure 7 of 5.0 dB.
To minimize rioise in a transistor sta!Jl', one 'Tlight use
Figure 7 and deduce that noise is minimized when Noise
Figure is minimum. This is not necessarily true as shown
by Figure 6 where the total noise voltage is a minimum at
small values of source imped~nce. This can. be seen from
equation (1) which shows that total noise is a direct
function of source resistance.
Noise over a frequency band can be handled in one of
two ways depending upon whether total transistor noise is
constant or variable over the bandwidth of interest:
Read en = 4.6 nV/..{HZ from Figure 2 or Figure 3.
(Note that this is for a one cycle bandwidth)
Read in = 3.6 pA/.jHZ from Figure 4.
VT = [(4.6 x 10- 9 )2 + (4)( 1.38 x
(1 x 10 3 ) + (3.6 x 10- 12 )2 (1 x
I.
7.2nV/~
For Constant transistor noise, multiply, VT by the
square root of bandwidth. i.e., V'T = VT • ~f~
2. For variable transistor noise, plot VT (where ~f =
1.0 Hz) versus frequency over the bandwidth and
integrate the result.
in Figure 6.
Example:
Read VT = 7.2 nV/~ at IC
RS = 1.0 kn.
noise voltage contributed
by the Source Resistance
NOise figure can be calculated for the above example as
Example:
Find the total noise at the input of an MPS·A 18 for a
collector current of 1.0 mA and a source impedance of
1.0 Kilohm at a frequency of 100 Hz and at a temperature
of 25 0 C.
This checks with the value shown
I.
total noise voltage
---,..--~~
Total noise voltage at the output of the transistor stage
can be found by multiplying VT or VT by the voltage gain
of the stage.
1.0 mA and
Noise figure is defined as:
994
MPS-A 18
(continued)
NOISE CHARACTERISTICS
(VCE = 5.0 Vdc. T A = 25°C)
NOISE VOLTAGE
FIGURE 3 - EFFECTS OF COLLECTOR CURRENT
FIGURE 2 - EFFECTS OF FREQUENCY
30
~
IIII
\
20
~
"z
i
~ BLw,U= ~.~Uz
0
RS
~
0
RS
~
w
'"
\
~
">w
I~!~dWldt~ =: 1:.d ~!
I
Ili~1 = 10 Im~
w
'"
<
30
f=IOHz /
'"
"
~
3.0 rnA
~ 7. O~
r-- u.rnt-J.
r-
111111300~
20
50 100
3.0
0.01
200
500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k
f. fREQUENCY (Hz)
I
16 ~
Ic-l0mA
'H-IJ
"-
3.0
r-.
2.0
3.0mA
........
........
...........
g'"
11.0mA
~
BandwIdth = 10 Hz to 15.7 kHz
12
w
~
0.3
~ 8.0
u:
RS
~
20
50
500lJ,A
"fml.
o10
100 200
500 1.0k 2.0k 5.0k 10k 20k 50k lOOk
f. fREQUENCY (Hz)
20
50
00
IIIII
III
!IIII
00
~1 00
w
'"< 70~
II
I
I
FIGURE 7 - NOISE FIGURE
V
1.0
50
<5 20
i/
<
I-
V
~
....
~
/ V
1/
: Bandwidth ' 1.0 Hz
z
">-
II~~
10
v:
V......
,,
""'
7.0
5.0
3.0
10
20
50
100 200
500 1.0k 2.0k 5.0k 10k 20k
RS. SOURCE RESISTANCE (OHMS)
50k lOOk
RS. SOURCE RESISTANCE (OHMS)
995
'1°~ 0 ~
100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k
RS. SOURCE RESISTANCE (OHMS)
100 Hz NOISE DATA
FIGURE 6 - TOTAL NOISE VOLTAGE
~
~
./
10"A
0.1
10
Ic=1.0mA
i'.
40
To::[
0
~
z
100 ",A
r--.
0.2
~
10
u:
300 "A
~. 0.5
">w
I
w
'1-
1.0
0.7
5.0
II IIIII I IIIIIIII
IIIIIIII THIIIII
1.0 Hz'-
Bandwidth
5.0
100 kH;
0.1
0.2
0.5
1.0
2.0
IC. COLLECTOR CURRENT (mAl
FIGURE 5 - WIOEBAND NOISE FIGURE
20
7.0
~
0.05
10 kHz
14Jfffi
V
0.02
FIGURE 4 - NOISE CURRENT
=>
~
V
Jr- 5. O~ ~
1.0mA~
5.0
V
100 Hz
w
7.0 ~
10
I
1I
0
~ 10
>
10
3.0
10
~
~
MPS-A 18 (continued)
FIGURE 8 - DC CURRENT GAIN
3000
200Of--
V~E! J.J ~I
I--ITJ ~
i2~btl
25°C
1000 - - - -
-55°C
~ 700
~ 500
D-
~
30
~
20O
"
Q
i
100
0
0
0
0.01 0.02
005 0 I
0.2
0.5 1.0 2.0
5.0 10
IC. COLLECTOR CURRENT (mA)
FIGURE 9 - "ON" VOLTAGES
10
08
~
'"
06
100
FIGURE 10 - TEMPERATURE COEFFICIENTS
~ I, i5iCI
~-o. 8
III
3>
E
"'w>t= ~-1 1
~~E(~ni ~ vep 5 0 V
:E U
~
wU::
w
'"""~
50
-0. 4
I III
,J,
20
w"~ 8- 1.6
~w
0.4
TJ '" 25°C to 125°C
~f ~
>'"
>
o
IVCE(j": ~ )If;:r
0.01 0.02
')1
10
20
50
100
.,
~ 1'.
. . . . . .r-m r--.
Ccb
0
r--.
Jl
O. 8
01
TJ .1250~
g 300
r-....
'"'"
g;
%
:;
b
;;;'"
C,b
Ceb [\
0.5
50 100
20
LV
,/
i"
/'
0"......-
3<
z
;;;:
~ r--.
0.2
10
500
~
J
1. 0
0.1 0.2
0.5 10 1.0
5.0 10
iC, COLLECTOR CURRENT (mAl
%
~r--...
Cob
0.05
FiGURE 12 - CURRENT-GAiN-BANDWiDTH PRODUCT
H-
or-- t--
I f I III
0.01 0.01
FiGURE 11 - CAPACITANCE
Ot---
"
-550C to 250C
'"~ -2. 4
f-
0.05 0.1 0.2
0.5 1.0 2.0
50
IC. COLLECTOR CURRENT (mA)
8. 0
0
U?
~ ~-2 .0
02
1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)
'"~
~
50
100
996
'"
"
.t:'
100
r- VCE 5.0 V
7o'-- TJ' 250C
0
1.0
, I
2.0
3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (mAl
3D
50
70 100
MPS-A20 (SILICON)
MPS-K20, MPS-K21,
MPS-K22
NPN SILICON
AMPLIFIER
TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS
..• designed for use in audio, radio, and television applications.
•
MPS-K20, MPS-K21, MPS-K22 are 3, 5 and 9
Transistor Kits Available in Varied hFE RangesSee Table 1
•
High Breakdown Voltage BVCEO = 40 Vdc (Min)
•
Low Collector-Emitter Saturation Voltage VCE{sat) = 0.25 Vdc (Max) @ IC = 10 mAdc
•
Low Output Capacitance Cob = 4.0 pF (Max) @ VCB = 10 Vdc
@
IC
= 1.0 mAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
COllector-Emitter Voltage
VeEO
40
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
Ie
100
mAde
Po
350
2.8
mW
mW/oe
Po
1.0
8.0
Watt
mW/oC
TJ.T stg
-55 to +150
°e
Collector Current - Continuous
Total Power Dissipation @TA - 2SoC
Derate above 2SoC
Total Power Dissipation @TC
=
2SDC
Derate above 25°C
Operating and Storage Junction
Temperature Range
SEATINGJ~ 1
PLANE
~
STYlE I:
PIN 1.
2.
3.
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case
(1) ROJA is measured with the device soldered into a typical printed circuit board.
DIM
A
B
C
D
K
L
N
P
Q
R
S
MILLIMETERS
MIN
MAX.
4.450
3.1"0
4.320
0.407
0.407
.7UU
1.150
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
5.200
4.190
5.330
0.533
0.4"2
0.175
0.1l>
0.170
0,016
u.016
1.390
1.270
0.045
u.~uu
-
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29-02
TO·92
997
0.205
u.165
0.210
0.021
0.019
0.055
0.050
0.105
0.105
MPS-A20, MPS-K20, MPS-K21, MPS-K22 (continued)
ELECTRICAL CHARACTERISTICS
(TA
= 25"C unless otherwise noted)
Characteristic
Max
Min
Symbol
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)
(IC = 1. 0 mAdc, IB = 0)
BVCEO
Emitter-Base Breakdown Voltage
(~ = 100 !LAde, Ic = 0)
BVEBO
Collector Cutoff Current
(V CB = 30 Vdc, ~ = 0)
40
-
4.0
-
-
100
.40
400
ICBO
Vdc
Vdc
nAdc
ON CHARACTERISTICS
DC Current Gain ('2)
(IC = 5. 0 mAdc, V CE = 10 Vdc)
hFE
Collector-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1. 0 mAdc)
-
VCE(sat)
0.25
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(IC = 5.0 mAde, VCE = 10 Vdc,f = 100 MHz)
fT
Output Capacitance
(V CB = WVdc, IE = 0, f = 100 kHz)
Cob
(2) Pulse Test:
Pul~
125
-
-
4.0
MHz
pF
Width.;;; 300 /loS, Duty Cycle';;; 2.00/0.
FIGURE 1 - SIMPLIFIED AC EQUIVALENT CIRCUIT (Common Emitter)
BASE
Ccb
'b'
COLLECTOR
C.
Co
FIGURE 2 - SMALL SIGNAL CURRENT GAIN
Note:
Data for MPS-A20 is presented in ferms of the equivalent
circuit shown in Figure "1. Values for its components may be
found or calculated as follows:
rb • - See Figure 8
re = 26 mVllE
Ce
1
= 2.. f t re
Ccb· Cob - 0.2 pF (See Figure 6)
gm = 1/r.
Ue = (hfe +1) hob (See Figures 2 & 7)
Co = 0.2 pF
Low frequency h parameters may be found from:
hie = 'b' + (hfe +1) re
hfe = See Figure 2
700
z 500
;;:
co
ffi
300
'"
..,g;
- r-.TAf=1.0kHz
= 250 C
200
yNIT#3
--'
I
~ 100
UNIH2
<
z
--'
;;! 70
UNIT#I
~ 50
40
I
30
25
0.3
hre = Negligible
hoe· (hfe + 1) hob
998
I
0.5
0.7
2.0
3.0
IC. COLLECTOR CURRENT (mAdel
1.0
5.0
7.0
10
MPS-A20, MPS-K20, MPS-K21, MPS-K22 (continued)
FIGURE 4 - "SATURATION" AND "ON" VOLTAGES
FIGURE 3 - NORMALIZEO DC CURRENT GAIN
1.0
2.0
z
;;;:
'"
~
1.0
O.S
~
~
'-' 0.6
o
o
~
~ 0.4
w
\
<
~
~
to
1\
o. 3
0.2
0.2
0.5
1.0
2.0
5.0
10
20
50
100
I I
I I
III!
I III!
1-"'"
VaE(...) (lielis = 10
o. 7
VSE(on) II!> VCE = 10 V
O.6
O.5
~
O. 4
>
O.3
o
\,
iA~J501cl
O.a
~o
= .,
..'"
O.9 -
JCIEIJ \OV _
TA = 25°C
1.5
O.2
VCE(sat) II!>lells = 1~
0. 1
0
0.1
200
j
III I
0.2 0.3 0.50.71.0
IC, COLLECTOR CURRENT (mAde)
2.03.0
I
20 30
5.07.010
5070100
IC, COLLECTOR CURRENT (mAde)
FIGURE 5 - CURRENT -GAIN-BANDWIDTH PRODUCT
FIGURE 6 - CAPACITANCES
400
0
:J:
~ 300
t;
:::>
g
g:
:J:
....
o
ill
7.0
z
100
SO
.l:
60
:i
;;;:
'"
'"
~
'":::>
TA-250C -
200
i""'"
........
V
~ 5.O
VCE=lOV
TA"25DC -r--
-r-....
w
-
'-'
z
;!:
~
r--....
30
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
1.0
0.4
50
2.0
0.6 O.S 1.0
FIGURE 1- OUTPUT ADMITTANCE
~
:J:
170
-r--
W
'-'
VCE = 10 V
f=1.0kHz
TA=250C
~
160
40
r----.
Z
<
I;;
i..-'
1= o. 1
r--.... t-
20
....
~
o.2
6.0 S.O 10
FIGURE 8 - BASE SPREADING RESISTANCE
o.5
]
4.0
........
VR, REVERSE VOLTAGE (VULTS)
1.0
~
r--
40
IC, COLLECTOR CURRENT (mAde)
,j
:--..
r- Cob
U 3.0
c$ 2.0
~ 2~.5
C-
Cib
~
.... i-"
150
.......
VCE = 10V
f = 1.0 kHz
TA = 25°C
to
Z
;;;
C
o
~
~ 0.05
:::>
3;
o
~
r=:::>
140
I"
w
~ 0.02
0.0 1
0.1
130
'.e
0.2
0.5
1.0
2.0
IC, COLLECTOR CURRENT (mAde)
5.0
120
0.1
10
999
0.2
0.3
0.5
2.0
3.0
1.0
IC, COLLECTOR CURRENT (mAde)
5.0
10
MPS-A20, MPS-K20, MPS-K21, MPS-K22 (continued)
MP8-K20, MP8-K21 and MPS-K22are three, five
and nine transistor kits consisting of MPs-A2Q's
with various hFE selections_
Table 1
MPS-K20 - Three Transistor Kit
hFE OIC ~ 5_0 mAde, VCE = 10 Vde
Quantity Par Kit
Color Code
Min
Max
1
Red
40
1
1
White
Blue
80
120
400
400
300
MPS-K21 - Five Transistor Kit
=
hFE OIC· 5_0 mAde, VCE 10Vde
Min
Max
Quantity Par Kit
Color Code
3
1
1
Red
40
Green
Yellow
100
150
I
400
200
300
MP8-K22 - Nine Transistor Kit
Quantity Par Kit
4
2
2
1
Color Code
hFE 0 IC - 5_0 mAde, VCE • 10 Vde
Min
Max
Red
40
400
White
Green
Yellow
BO
400
200
1000
100
150
300
MPS-A 42 (SILICON)
MPS-A43
NPN SILICON ANNULAR TRANSISTORS
. designed for general·purpose applications requiring high break·
down voltages, low saturation voltages and low capacitance.
•
•
•
NPN SILICON
HIGH VOLTAGE
TRANSISTORS
High Coliector·Emitter Breakdown Voltage @ IC = 1.0 mAdcBVCEO = 300 Vdc (Min) - MPS·A42
200 Vdc (Min) - MPS·A43
Low Coliector·Emitter Saturation VoltageVCE(sat)=0.18 Vdc (Typ) @ IC = 20 mAde
Complements to PNP Types MPS·A92 and MPS·A93
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-S•• VOltage
Emitter-Base Voltage
Collector Current
Continuous
Symbol
MP5-A42
VCEO
300
200
Vd,
Ve.
300
200
Vd,
VEe
60
6.0
Vd,
Total Device Dissipation OTC· 250C
Derate above 25°C
625
'.0
1.5
12
Po
Operating and Storage Junction
Temperature Range
mW
mWJOC
W.",
mWfOC
-65 to +150
TJ,Tstg
Unit
mAde
500
Ie
Po
Total Device Dissipation@TA .. 25"C
Derate above 26°C
MP8-A43
°e
r
THERMAL CHARACTERISTICS
Ch....cterinlc
1
A
I
Thermal Resistance, Junction to case
Thermal Resistance, Junction to Ambient
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)
I
Char....ilt:ic
Symbol
I
SEATING-1t
Min
Max
Unit
PLANE
BVCEO
Coltector·8aIe Sr_down Vol...
BVCBO
IIC:-1OO1J,Adc.le "0)
MPS-A42
Emitter-BaIt Breakdown Voltage
(Ie" 100 "Ade, IC '" 01
Vd,
300
200
STYLE 1:
6.0
Mps·A42
MJ>S.A43
Emttter Cutoff Current
IVSE .. 6.0 Vdc, IC" 01
IVSE .. 4.0 Vdc, IC - 0)
MPS-A42
MJ>S.A43
pAd,
ICBO
0.1
0.1
CoIlector..£mitter Satunltlon Volt.ge
tiC" 2OmAdc, IS" 2.0mAdcl
Both Types
0.1
0.1
DIM
Mps·A42
Mps·A43
25
40
40
50
DYNAMIC CHARACTERISTICS
.,.
Cumnt-Gtin Blndwldth Product
(lC -10mAdc. VCE - 20 Vdc,f-1OOMHz)
Collector·S_ CepeeiUll'lce
(Vcs-20Vdc,'e -O,f-1.0MHz)
MPS-A42
MPS-A43
Vdc
0.'
0.4
VBEIAt)
,
S
B
S
0 .•
Vd,
pF
3.0
4.0
C11Pul.. TIIIt: Pul.. Width S300 "', Dutv Cvel~2.0%,
1001
INCHES
MIN
MAX
0.175
0.125
0.170
0.016
U.' 1~
0.205
0.165
0.210
0.021
0.u19
L
N
1.150
1.390
1.270
0.045
0.055
0.050
p
6.350
3.430
2.410
2.030
0
R
S
2.670
2.670
0.250
0.135
0.095
0.080
MH,
50
Ceo
MILLIMETERS
MIN
MAX
5.200
4.190
5.330
0.533
0.482
F
200
VCEltat)
a.e-Emltter Satumion Vol.,.
UC"20mAdc,IS '"' 2.0 mAde}
1 ,
·000
4.450
3.180
4.320
0.407
0.407
B
C
D
hFE
Both Typ.
MPS-A42
Mps·A43
~
--I =r-T
pAd,
'eBO
ON CHARACTERISTICS
Uc·1.0mAdc, VCE -10Vdcl
Uc·10mAdc. VCE -10Vdcl
IIC-30mAdc, Vee -10Vdcl
PIN 1. EMITTER
2. BASE
3. COLLECTOR
).
DCCu"'ntG~n
l or .-l
Vd,
BVEBO
Collector Cutoff Current
IVcs -200Vdc,le -01
IVce-160Vdc,IE -"'01
~R~
Vd,
300
200
MP&A43
K
~
D~I!..!.I-+L
OfF CHARACTERISTICS
Collector-Emltter Bra.stdown Voltagel1)
MPS-A42
lie· 1.0 mAde. IS ·0)
MP5-A43
~
1
L-
CASE 29-02
TO·92
0.105
0.105
MPS-A42, MPS-A43 (continued)
FIGURE 1 - DC CURRENT GAIN
2 0 0 r - - ,I,
VCE = 10 Vdc
_I---............
I
I
IC, COLLECTOR CURRENT (mA)
FIGURE 3 -CURRENT·GAIN-BANDWIDTH PRODUCT
FIGURE 2 - CAPACITANCES
~ 100
10 0
~ 80
t;
0
g
~
20
'"
'"
10 -
w
;0
~ 60
............
Cob
V
"
\; 40
/
~
~ 30
U
;t
.:,
<.i
~ 20
>'-
55. 0
Ccb"
2.0
.........
r-
1.0
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
V
TJ = 25°C
'"'l' '
~
~
..: 10
1.0
VR, REVERSE VOLTAGE (VOLTS)
2.0
500 ~
IIII
in
':;
11'11
!.I IJ
VeE(sat)@ Ic/le =·10
c
0.6
.
0.4
2!
w
'"':;
-
--
-
'<
E
~
.....
o
0.05
8
VCE(sa!) @ICIIB = 10
I III
III
II
0.1
0,2
0,5
~
1--....
1.0
2.0
100
"
<
./
""""'-"'·""'t·
625 mW THERMAL
.
~~IMITATION@TA=250C
/
.......
100",
·1.0m;-~
=>
~
-UJl.
100
50
1.5 WATT THERMAL
.......
~ 50
_
0.2
~OO
~
c
>
>'
20
FIGURE 5 - ACTIVE·REGION SAFE
OPERATING AREA
TJ = 25°C
O.B
10
5.0
IC, COLLECTOR CURRENT (m'A)
FIGURE 3 - "ON" VOL TAGES
1,0
r-..
L..-
,/
5.0
10
20
50
IC, COLLECTOR CURllENT (mA)
......
.......
~
.........
20
tIMITATI~
- - - BONDING WIRE
"
10 - - SECOND BREAK~OWN.
~IMITATION
.MPS·A43
TJ-150oC
MPS·A4
.5.0
3,0
5.0
20
30
50
10
\.
"100
VCE,COLLECTOR-EMITTER VOLTAGE (VOLTS)
MPS-A55 (SILICON)
MPS-A56
For Specifications See MPS-AOS Data.
1002
200
300
MPS-A6S (SILICON)
MPS-A66
PNPSILICON
DARLINGTON
TRANSISTORS
PNP SILICON DARLINGTON
AMPLIFIER TRANSISTORS
· . . designed for pre·amplifier input applications requiring high
input impedance.
•
High DC Current Gain hFE = 50,000 (Min) @ IC = 10 mAdc (MPS·A65)
75,000 (Min) @ IC = 10 mAdc (MPS·A66)
•
Collector·Emitter Breakdown Voltage BVCES = 30 Vdc (Min)@ IC = 100l.lAdc
•
Low Noise Figure NF = 2.0 dB (Typ) @ IC = 1.0 mAdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCES
30
Vdc
Collector-Base Voltage
VCS
30
Vdc
Emitter-Bass Voltage
VES
8.0
Vdc
Collector Current - Continuous
IC
300
mAde
Total Power Dissipation
T A = 25°C
Po
625
5.0
mW
mW/oC
= 2SoC
Po
1.5
12
mW/oC
Collector-Emitter Voltage
@
Derate above 2SoC
Total Power Dissipation @ TC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
TJ,T'I9
5510 +150
STYLE 1:
PIN 1.
2.
3.
Watts
°c
DIM
A
B
C
o
F
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal 'iiesistance, Junction to Ambient
R8JA
200
°C/W
Thermal Resistance, Junction to Case
R8JC
83.3
°CIW
L
N
P
Q
R
S
MILLIMETERS
MIN
MAX
4.450
3.1 0
4.320
0.407
0.40
.7
1.150
6.350
3.430
2.410
2.030
5.200
4.19
5.330
0.533
_0.~2
INCHES
MIN
MAX
0.175
0.12.
0.170
0.016
0.016
u.l"5
0.210
0.021
0.019
u.•uu
1.390
1.210
2.670
2.670
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO·92
1003
0.205
0.055
0.050
0.105
0.105
MPS-A65, MPS-A66
(continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
I
I
Symbol
Min
Typ
Max
Unit
BVCES
30
-
-
Vdc
Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)
ICBO
-
-
100
nAdc
Emitter Cutoff Current
(VeE = B.O Vdc, IC = 0)
IEeO
-
-
100
nAdc
MPS-A65
MPS-A66
50,000
75,000
-
MPS-A65
MPS-A66
20,000
40,000
-
-
VCE(satl
-
0.9
1.5
Vdc
VBE(on)
-
1.45
2.0
Vdc
IT
100
175
MHz
2.5
pF
Chlracteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC= 100 "Adc, IB' 0)
ON CHARACTERISTICS (1)
DC Current Gain
(lC = 10 mAdc, VCE = 5.0 Vdc)
(lC = 100 mAdc, VCE = 5.0 Vdc)
hFE
Collector-Emitter Saturation Voltage
-
-
(lc = 100 mAdc,lB = 0.1 mAdc)
Base-Emitter On Voltage
(lc = 100 mAdc, VCE = 5.0 Vdc)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(lC = 10 mAdc, Vce = 5.0 Vdc, I = 100 MHz)
Output Capacitance
(VCB = 10 Vdc, Ie = 0, I = 100 kHz)
Cob
Noise Figure
(lC = 1.0 mAdc, VCE = 5.0 Vdc, RS = 100 kohms, 1= 1.0 kHz)
NF
(1) Pulse Test: Pulse Width ';;;300 "s, Duty Cycle ';;;2.0%.
(2) fT = ihlei • ftest
1004
-
2.0
-
dB
MPS-A65, MPS-A66 (continued)
FIGURE 1 - DC CURRENT GAIN
1.5
ffi
Tl=2~DJ
...
N
:::;
~ 1.6
tllJ
I
1.0 f-VCE = 5.0 Vdc
0.7
'c"'
FIGURE 2 - BASE-EMITTER "ON" VOLTAGE
c 1.5
2
w
to
~
M S·A 5
......
0.5
~
";;:
to
0.3
I-
P
V
L
~
a 0.2
1.4
c
> 1.3
Z
:::;
t:
1.1
~
1.0
li
~
<..>
c
? 0.9
;
,/
1.2
..-
ill
0.1
0.1
0.2
0.5
1.0
5.0
2.0
10
20
-
---
~ 0.8
50
100
0.1
0.2
0.5
1.0
IC. COLLECTOR CURRENT ImAI
14 -
"'-
1
~100
~ 10
70
u::
z
~ 50
z
'"~
to
0.0
w
..:
;;::
Z
I-
~ 30
r\.
20
0.02
."
w
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
\
6.0
4.0
'"
......
........
2.0
r--....
t =1
T
0.3
20
18
~
'"0z
..............
S.O
u: 6.0
z
w
......
10
~.
10
20
50
100
200
500
1.0 k
2.0 k
5.0 k
o
10 k
7.0
1005
=1.0 !Jz ....... ~
"-
2.0
t, FREaUENCY 1Hz)
..... t
7.0
10
~
6.0
4.0
II
o
5.0
~100H'
I"--
'"oz S.O
..........
N--+-L
2,0
2.0
3.0
0.5 0.7 1.0
IC, COLLECTOR CURRENT ImAI
,
....... IC=1.0mAdc
4.0
_I--'
r.......
=>
u:
......
-
IC = 100.Ado
14
w
.. 12
IC = 100.Adc
to
10
,/
VCE~5.L~c I
......
16
16
" ....
/'
V
FIGURE 6 - EFFECTS OF SOURCE RESISTANCE ON
NOISE FIGURE
VCE = 5.0 Vdc
RS = 100 k Ohms
12
f-"""
I
l - r-
0.2
0.1
s..
14
oHz
i= 1.0 Ik~zl
o
20
to
Ii:
w
100
~
FIGURE 5 - EFFECTS OF FREQUENCY ON
NOISE FIGURE
os
50
VCE = 510 Vdc I
RS = 100 k Ohms
t, FREaUENCY IMHzl
.,
20
12
c
18
10
16
200
20
5.0
FIGURE 4 - EFFECTS OF COLLECTQR CURRENT ON
NOISE FIGURE
FIGURE 3 - EFFECTS OF FREQUENCY ON
TRANSCONDUCTANCE
"
~
20
IC, COLLECTOR CURRENT ImAI
10
20
r-
200 300
30
50 70 100
RS, SOURCE RESISTANCE Ik OHMSI
500 700 1000
MPS-A70 (SILICON)
MPS-K70, MPS-K71
MPS-K72
PNP SILICON ANNULAR TRANSISTORS
PNPSILICON
AMPLIFIER
TRANSISTORS
· .. designed for general purpose use in audio, radio, and television
applications.
•
MPS-K70, MPS-K71, MPS-K72 are
3, ~ and 9 Transistor Kits Available in
Varied hFE Ranges - See Table 1
•
High Breakdown Voltage BVCEO = 40 Vdc (Min) @lIC= 1.0 mAdc
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @lIC= 10 mAdc
•
Low Output Capacitance Cob = 4.0pF (Max,) @l VeB = 10 Vdc
r
A
l
Jl~
SEATINGJ~~-FI
i --7
MAXIMUM RATINGS
PLANE
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous
Symbol
Value
Unit
VCE,O
VEB
IC
40
4,0
Vdc
Vdc
100
350
2,8
25°C
Po
Total Power Dissipation@Te:=250C
Po
1.0
8,0
TJ.T,tg
-55 to +150
Total Power Dissipation @TA
:=
Derate above 25°C
Derate above 25°C
Operatjng and ,Storage JUnction
O~IPH-~
~R~
mAde
mW
mWl"c
Watt
mWI"C
°c
THERMAL CHARACTERISTICS
Characteristic
DIM
A
B
Thermal Resistance, Junction to case
C
(1) R8JA is measured with the device soldered into 8 typical printed circuit board.
0
F
~.407
L
N
1.150
P
6,350
3.430
2,410
2.030
Q
R
S
--I
MILLIMETERS
MIN
MAX
4,450
3,180
4,320
0.407
r
Q
S
B
~=rf
INCHES
MIN
MAX
5,200
4,190
5.330
0.533
0,48.
0,175
0.125
0.170
0.D16
0.U16
0.205
0.165
0.210
0.021
U,UI9
1.390
1.270
0.045
0,055 .
0.050
2,670
2.670
0.250
0.135
0,095
0.080
CASE 29·02
TO-92
1006
I
~---1.
1 , ,
-.. ....
3, COLLECTOR
Temperature Range
Thermal Resistance, Junction to Ambient
l
STYLE
PIN 1.1: EMITIER
2,BASE
0.105
0.105
MPS-A70, MPS-K70, MPS-K71, MPS-K72 (continued)
ELECTRICAL CHARACTERISTICS
(TA
= 25"C unless otherwise noted)
Characteristic
Symbol
Min
Max
40
-
4.0
-
-
100
40
400
-
0.25
125
-
-
4.0
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAdc, IB = 0)
BV CEO
Emitter-Base Breakdown Voltage
(~ = 100 /.IAdc, IC = 0)
BVEBO
Collector Cutoff Current
(V CB = 30 Vdc, ~ = 0)
I CBO
Vdc
Vdc
nAdc
ON CHARACTERISTICS
DC Current Gain
(IC = 5.0 mAdc, VCE = 10 Vdc)
Collector-Emitter Saturation Voltage
(IC = 10 mAdc, IB'= 1.0 mAdc)
hFE
VCE(sat)
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 5.0 mAdc, VCE = lO'Vdc, f = 100 MHz)
fT
Output Capacitance
(V CB = 10 Vdc, ~ = 0, f = 100 kHz)
Cob
MHz
pF
FIGURE 1 - SIMPLIFIED AC EQUIVALENT CIRCUIT (Common Emitter)
BASE
'b
Ceb
FIGURE 2 - SMALL SIGNAL CURRENT GAIN
Note:
Data for MPS-A70 is presented in terms of the equivalent
circuit shown in Figure 1. Values for its components may be
found or calculated as follows:
fb' - See Fi~ure 8
re
Ccb = Cob - 0.2 pF (See Figure 6)
= 26 mVIlE
gm = I/r.
1
go = (hfe + 1) hob (See Figures 2 & 7)
Co = 2" f t re
Co = 0.2,pF
Low frequency h parameters may be found from:
'100ai-_
'" 700
I 1,0 kHz
TA =25 0 C_
;;:
'" 500
~
r--
UNIT#3
UNIT#2
B300 a:
....
::l:
'"0;
200
....
....
«
hie = 'b'+(hfe+11 'e
~ 100
hfe= See Figure 2
j
UNIT #1
70
h,e = Negligible
hoa = (hie
50
0,5
+ Ilhob
0,7
1.0
2,0
3.0
IC, COLLECTOR CURRENT {mAdel
1007
5.0
7,0
10
MPS-A70, MPS·K70, MPS·K7', MPS·K72 (continued)
FIGURE 3 - NORMALIZED DC CURRENT GAIN
FIGURE 4 - "SATURATION" AND "ON" VOLTAGES
1.0 .--T'""1rT"T'""1-rrrr.,..--r.,....=,.,.-nT-r-rTT....rn"'"
2.0
1.5
'"ffi
1.0
0.9
I-
I-
a:
a:
=>
~
e
i ~ ~50~ Htttl-:"f-++l+:-I+,II~I~1111't-t-++b!-"T':PI'fH
I-- A
VBElsa!)@IC/IB' 10
O.B I-H+t+t+ttt+-r--f-H-"H"Tt:I;*""'f::io+'Ft+tttH
VCE = 10 V
TA=250C
z
;;:
O. 7
~ 0.5 t-t-"I+-Hr+Ht+t-r+-H++t+t-Ht-t-t-t++t+t1ffi
'\
ffi
\
NO.5
:::;
~
>
<
::;;
a:
0.4 t-'f---,H-t-IH--HTtt-H---H-t--t-t+tttt--t-t-t-t--t-t-tl1it1
,; 0.3 t-t-I+-Hr+Ht+t---t--H++t+t-Ht-t-t-t++t+tHtl
~ 0.3
0.2 t-'t-cH-t-IH--HTtt-H---':-'-'--'-:!-:'-t.....,::-t-t-t-t-tl"fllit1
VCEI..t)@ Ic/lB = 10
r-
~
~+I++::J:14:j#:=Rm=!=ttmH11tttM1t1
0.1
0.2
0.2
0.5
1.0
2.0
5.0
10
so
20
100
O~~~~~~~~~~lli~li~~~~~.
200
0.1
0.2 0.3 0.50.7 1.0
FIGURE 5 - CURRENT .(lAIN-BANDWIDTH PRODUCT
~
t;
200
"
IS 0
g:
l-
e
~ 100
z
V
j..--
......
I
VCE=10V
'TA=ZSOC
I
z
0
z
~
0
~
0
'"
20
;;:
Cib
7.Or-.
-"
0
I-t-
TA=250C-
"
0
0
;:!i
=>
J::'
0.5
Cob
!'-..
1.0
2.0
3.0
5.0
10
20
30
1. 0
0.4
50
0.6 0.8 1.0
2.0
FIG URE 7 - OUTPUT ADMITTANCE
30
40
::;;
'"
"w
i= 1.0 kHz
o. 31- TA=250C
8140
./
o. 1
Y\;E; 16v
'"
/
w
~ili
,/
~~:i~:~
130
'"
'"oz
<
~ 0.05
;:li
o 0.03
!l;
1
;:!i
I-
0.0 1
0.1
20
150
O. 5 VCE = 10 V
g
6.0 8.0 10
FIGURE 8 - BASE SPREADING RESISTANCE
1.0
'"
9
4.0
--
VR. REVERSE VOLTAGE IVOLTS)
IC. COLLECTOR CURRENT ImAde)
iii
r-
" 1'""
2.0
w
SO 70 100
.-
10
=>
g
20 30
FIGURE 6 - CAPACITANCES
40 0
300
"
2.0 3.0 5.07.0 10
IC. COLLECTOR CURRENT ImAde)
Ic. COLLECTOR CURRENT ImAde)
~
1-'1-'"
~~ 0.6~
0.7 t:t~~~mtfl!jtnnmV~BE~{o:n~)@~V~C~E~'~10~V~
120
r---~
a:
'r--
~ 11 0
t:
0.2
0.5
1.0
2.0
5.0
10
IC. COLLECTOR CURRENT ImAde)
100
0.1
0.2
0.3
0.5
1.0
2.0
3.0
IC. COLLECTOR CURRENT (mAde)
1008
5.0
10
MPS-A70, MPS-K70, MPS-K71, MPS-K72 (continued)
MPS·K70, MPS·K71and MPS·K72 are three, five
and nine transistor kits consisting of MP5-A70's
with various hFE selections.
Table 1
MPS·K70 - Three Transistor Kit
hFE @ ..c= 5.0 mAde, VCE = 10 Vde
Quantity Per Kit
1
1
1
Color Code
Red
White
81ue
Min
Max
40
80
120
400
400
300
MP5-K71 - Five Transistor Kit
hFE @IC=5.0mAde, VCE· 10 Vde
Min
Max
Quantity Per Kit
Color Code
3
1
1
Red
40
Green
Yellow
100
150
400
200
300
MP5-K72 - Nine Transistor Kit
Ouantity Per Kit
4
2
2
1
Color Code
Red
White
Green
Yellow
1009
hFE @ IC = 5.0 mAde, VCE • 10 Vde
Min
Max
40
80
100
150
400
400
200
300
MPS-A92 (SILICON)
MPS-A93
PNP SILICON ANNULAR TRANSISTORS
. designed for general·purpose applications requiring high break·
down voltages, low saturation voltages and low capacitance.
PNPSILICON
HIGH VOLTAGE
TRANSISTORS
• High Coliector·Emitter Breakdown Voltage@ IC = 1.0 mAdcBVCEO = 300 Vdc IMin) - MPS·A92
200 Vdc IMin) - MPS·A93
• Low Coliector·Emitter Saturation Voltage VCElsat)= 0.12Vdc ITyp) @ IC = 20 mAdc
• Complements to NPN Types MPS·A42 and MPS·A43
MAXIMUM RATINGS
Rating
Symbol
Collector-Emitter Voltage
Collector·Base Voltage
IW'S-A92J MPS·A93
VCEO
300
Ves
300
Unit
Vd,
200
Vo,
200
VEB
5.0
Vo,
Ie
500
mAde
Total Device Disslpatlon@TA - 2So C
Derate above 25°C
Po
625
5.0
mwflC
T9tal DevIce Di~ipation @TC-2SoC
Derate above 2SoC
Po
1.5
12
T~,Tstg
-55 to +150
Emitter-Base Voltage
ColiactOl"Currtlnt
Continuous
Operating and Storage Junction
mW
Watts
mWf'C
DC
Temperature Range
THERMAL CHARACTERISTICS
-~ J!
i
~ ~-7
~Fl
Characteristie
Thermal Resistance, Junction to Case
Thermal Resistance, JunctIon to Ambient
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwIse noted)
Svmbol
Characteristic
Mi.
Mox
Unit
SEATINGJt
PLANE
O-jIPK~
=lR~
OFF CHARACTERISTICS
Collector Emitter Breakdown Voltage(1)
(Ie" 1 QmAde.IS "01
MPS-A92
MPS-A93
8Vceo
Collector-Base Breakdown Volta9l!
IIC'" 100 /.lAde. IE = 01
BVCBO
200
Vd,
Vd,
BVEBO
5.0
Collector Cutoff Current
(VCS"200Vdc.le =0)
MPS-A92
WCB = 160Vdc,IE = 0)
MPS·A93
pAd,
ICBO
Emitter Cutoff CUrTent
(VBe = 3.0 Vdc, IC = 01
0.25
Both Types
Both Types
IIc=30mAdc. VeE = 10Vdc)
MPS·A92
Mps·A93
25
40
25
30
B
C
0
•
150
Vd,
VCE(satl
0.5
04
MPS-A92
Mps.A93
D."
VBE(satl
Vd,
Product
IIC" 10 mAde, VCE '" 20 Vde. f"'201MHzl
tr
Pulse Width'S 300/.11. Duty CycleS 2 0%
S
B
S
1.150
P
6.350
3.430
2.410
2.030
a
1.390
1.270
2.670
2.670
INCHES
MIN
MAX
0.175
0.205
U.IZ~
0.165
0.170
0.210
0.016
0.021
u.uh ~019
0.045
0.250
0.135
0.095
0.080
MH,
50
pF
Ceb
MPS-A92
MPS-A93
MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
u.407
0.4..
L
N
R
S
DVNAMIC CHARACTERISTICS
CurTent.Qain~Bandwidth
-000
pAd,
hFE
Base-Emitter Saturation Voltage
(IC'"20mAdc,IB-2.0mAdel
(1)PulseTftt
COLLECTOR
DIM
A
0C .. l0mAde, VCE '" 10Vdc)
Collector-Base Capacitance
{VCB =20 Vdc. Ie "o,f"1.0MHzl
3.
-.l
~
--l =rt
1 2 3
2.
BASE
0.1
ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
(IC-20mAdc,IB"'2.0mAdel
STYLE I:
PIN 1. EMITIER
0.25
lEBO
DC Current Gain (1)
(lc"'1.0mAde. Vee = 10Vdc)
lor
300
200
MPS-A92
MPS-A93
Emitter-Base Breakdown Voltage
liE'" 10 /.lAde. IC = 0)
Vd,
300
6.0
B.O
CASE 29·02
To·92
0.055
0.050
0.105
0.105
MPS-A92, MPS-A93 (continued)
FIGURE 1 - DC CURRENT GAIN
150
I
100
z
«co
I-
ili
'"'":::>
'"
'"
V~E -lo.Jc
TJ =+1250C
"""
1---+250C
70
~
.........
50 t---- 55OC
~~
r\ ~t-..
Q
~
30
"' 1"\
20
15
1.0
2.0
5.0
3.0
7.0
10
20
30
50
I"'.
80
100
IC.COLLECTOR CURRENT (rnA)
FIGURE 3 - CURRENT -GAIN-BANDWIDTH PRODUCT
FIGURE 2 - CAPACITANCES
~. 100
100
oS
w
20
~
U
~
",-
60
iE
-I-
z
I-
Q
40
Z
30
~
..........
10
" "\
:::>
Cib
~
..'"
.
'"
Tr 25°C
80 I-vcp 20 Vdc
'"~
50
f-
;;\
./
\
./
V
I
z
5.0
«co
"2.0
1.0
0.1
r-- Cfb ,
0.2
0.5
1.0
2.0
5.0
10
20
50
100 200
20
~'.
:::>
500 1000
.c:'"
0
1.0
5.0
2.0
VR. REVERSE VOLTAGE (VOLTS)
500
" - -II
8
VB~ @JCE '= 10 ~
r-- 6
"-
4
0
1.0
'"~"
01""--
"-
1.5 WATT THERMAL ......
LlMITATlON@TC=250C
625 mWTHERMAL
LlMITATION@TA=250C
o. 2
I--f-"
VCE( ..t}@ICIlB = 10
10
II II
2.0
5.0
10
20
100
50
20
FIGURE 5 - ACTIVE-REGION SAFE
OPERATING AREA
FIGURE 4 - "ON" VOLTAGES
1. 0
10
IC. COLLECTOR CURRENT (rnA)
50
~
"-
'.
3.0
5.0
10
20
30
1011
~
MPS.A9~ ~
'1'..
MPS·A92~
~
so
"-
100
VCE.COLLECTOR·EMITTER VOLTAGE (VOLTS)
I C. CO LLECTO R CU RRENT (mA)
0(00",\
i\
"-
- - -BONOING WIRE LIMITATION
SECOND BREAKDOWN
LIMITATION TJ - 1500C
S.O
100
1.0m,
\.
~
200
300
MPS·DOl NPN
MPS·DSl PNP
(SILICON)
COMPLEMENTARY
SILICON
TRANSISTORS
COMPLEMENTARY SILICON ANNULAR TRANSISTORS
· .. designed for use in electronic calculators using gas discharge
tubes.
• Coliector·Emitter Breakdown Voltage BVCEO = 200 Vdc (Min) @ IC = 1.0 mAdc
• Complete Typical Design Curves
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
VCEO
200
Vde
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
VCB
200
Vde
VEB
IC
4.0
Vde
100
mAde
Total Device Dissipation @TA = 25°C
Derate above 2SoC
Total Device Dissipation @TC = 25°C
Derate above 25°C
Operating and Storage Junction
Po
625
5.0
mW
mW/oC
Po
1.5
12
mWf'C
-55 to +150
°c
TJ, T stg
Unit
Watts
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Aesistance, Junction to Case
(1)R8JA is measured with the device soldered into a typical printed circuit board,
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherWISe noted.)
I
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)
IIC = 1.0 mAde,lB
= 01
Collector-Base Breakdown Voltage
Symbol
BVCEO
BVCBO
I
Min
I
Max
Unit
200
-
200
-
Vde
4.0
-
Vde
Vde
IIc = lO)lAde,IE = 0)
Emitter-8ase Breakdown Voltage
BVEBO
(IE=10)lAde,IC=0)
Collector Cutoff Current
ICES
IVCE = 80 Vdc, VSE = 01
IVCE = 80 Vde, VBE = 0, T A = 7Soc)
Collector Cutoff Current
-
0.1
4.0
ICBO
(VeB = 80 Vde,IE = 0)
(VCB • 80 Vde, Ie = 0, TA • 750 CI
)lAde.
DIM
A
4.450
.1
4.320
0.407
7
520
0
5.330
0.533
L
N
1.150
1.300
1. 0
P
6.350
3.43
2.410
2.00
C
D
/SAde
-
0.1
4.0
-
ON CHARACTERISTICS
Q
DC Current Gain (2)
IIc = 10 mAde, VCE " 10 Vdel
IIC' 30 mAde. Vce = 10 Vde)
MILLIMETERS
MIN
MAX
R
S
-
INCHES
MIN
MAX
If
~
~
0.045
0.055
0.050
~ ~
-
2.670
2.670
0.250
0.13
0.095
O.OBO
DYNAMIC CHARACnRISTICS
CASE 29·02
TQ-92
Current-Gain - Bandwidth Product (2)
IIC = 10 mAde, VeE' 20 Vde, f =
2P MHzl
(2) Pulse Test: Pulse Width..;; 300 ItS, Duty Cycle";; 2.0%.
1012
0.15
0.021
...!'..".!.:!.
-
-
0.105
0.105
MPS-OOl NPN, MPS-051 PNP (continued)
NPN
MPS·D01
PNP
MPS·D51
FIGURE 1 - DC CURRENT GAIN
200
f--
z
~
~
a
'"'
~
50
TJ=1250C
0
"1\
Jc
-
100
~ 70 _
'"
100
TJ:12~OJ
I'\.
25°C
0
1\
0
1\
0
VCE = 10 V
VCE = 10 V
0
20
1.0
2.0
3.0
5.0 7.0 10
20
30
IC,COLLECTOR CURRENT (mA)
50
70
10
1.0
100
2.0
3.0
50
5.0 7.0 10
20
30
Ie, COLLECTOR CURRENT (mA)
70
100
70
100
FIGURE 2 - "ON" VOLTAGES
1.4
1. 4
1.2 I-- TJ = 25°C
1.21-- TJ = 25°C
~~
0;
!::; 1.0
'"~w
...'"!::;
0.8
'">
0.6
B
10
.L
11
VBE(~tl ~ lellB = 10
l
/
_Ll
O. 4
le/le = 10
t - VeE(sat)
1-"
1.0
2.0
3.0
5.0 7.0 10
20
30
IC, COLLECTOR CURRENT (mA)
50
70
0
1.0
100
I I
'"f
10
~
50
~
z
:i
I
Z
~
co:
co:
=>
'"
.t:
30
./
-
.....
.....
-
./
/'
,,-
~
~
\ \
U
;'
~
/
20
10 ~
Cob
- - - Mps·DOl (NPN)
- - - - MPS.Jl5l (PNPI
3.0
5.0
7.0
10
20
30
10
20
30
50
50
--
3.0
I
1.0
0.2
Ie, COLLECTOR CURRENT (mAl
1013
LU
Mps·DOl (NPN)
- - - Mps·D51 (PNP)
7.0
2.0
70 100
TJ = 25°C
......
~~ 5.0
2.0
7.0
-
eib
~ 30
20
1.0
5.0
FIGURE 4 - CAPACITANCE
100
70
50
:r
)CE .120 V 1
!=20MHz
TJ=250C
3.0
IC, COLLECTOR CURRENT (mA)
-;:; 200
~
II
2.0
FIGURE 3 - CURRENT -GAIN - BANDWIDTH
PRODUCT
gc 100 I-I--
""'"
O. 2
I-
VCE(sat)@ ICIIB = 10
o
L
..1-1'"
5.0
0.2
~.
II
/
6 VBE@VCE-l0V
VBE ~ V~E = 10 V
0.4
I
i
I I
I I
0
VBE(sat)@IC/IB
>'
I I
0.5
1.0
=
=
!'o."
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)
r50
100
200
MPS-D02 NPN
MPS-DS2 PNP
(SILICON)
COMPLEMENTARY
SILICON
TRANSISTORS
COMPLEMENTARY SILICON ANNULAR TRANSISTORS
, ... designed for use in high voltage amplifier and driver applications.
•
Coliector·Emitter ,Breakdown Voltage BVCEO = 140 Vdc (Min) @ IC = 1.0 mAdc
•
Excellent for'Nixie® Driver Applications
•
I deal for Calculator Display Design
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Vr.Fn
140
Vde
Collector-Base Voltage
Vr.R
140
Vde
Emitter-Base Voltage
Collector Current - Continuous
VFR
4.0
Vde
Collector-Emitter Voltage
I"
50
mAde
Po
350
2,8
mW.
inwtc
Po
1.0
8.0
Watt
mWtC
TJ, T stg
-55 to +150
"C
Total DeVice DisSipation @ T A = 25° C
Derate above 25° C
Total DeVice DissipatIOn @ T C ::: 25° C
Derate above 25° C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERI.STICS
Characteristic
Thermal Resistance, Junction
to Ambient
Thermal Resistance, Junction to Case
(1) R8JA is measured with the device soldered into a typical printed circuit board.
ELECTRICAL CHARACTERISTICS ITA=25"C unless othe,wlSe noted.J
I
I
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)
IIc
= 1.0 mAde.IB = 0)
Collector-~se
areakdown Voltage
IIc = 100 ~Ade. IE = OJ
Emitter-Base Breakdown Voltage
liE = 10 ~Ade. IC = OJ
Collector Cutoff Current
IVCE = 80 Vde. VBE = 0)
Collector Cutoff Current
(VeB = 80 Vde. IE = OJ
ON CHARACTERISTICS
Symbol
I
Min
I
Max
BVCEO
140
-
Vde
BVCBO
140
-
Vde
BVEBO
4,0
-
Vde
fMtTTER
BASE
COLlEC10R
MILL!
DIM
A
B
C
ICES
ICBO
I'Ade
-
0.1
-
0.1
D
P
Q
R
S
INCHES
MIN
4.450
3 0
4,320
040'
1.150
I'Ade
6350
3430
2410
2.030
1.390
1.270
2670
2670
MIN
01
012
0170
0.016
1
MAX
0045
0.055
0,050
=
(2) Pulse Test: Pulse Width'; 300,",s, Duty Cycle'; 2.0%.
Trademark of Burroughs Corporation
1014
"
0.165
0.210
0.021
.0
0.250
0.135
0095
0105
0080
0.105
CASE 29-02
TO·92
Current· Gain - Bandwidth Product (2)
lie" 10 mAde. VCE 20 Vde, f ·100 MHzJ
®
PIN t
2
1
DC Current Gam (2J
IIc = 10 mAde, VCE = 1,0 VdeJ
II = 30 mAde. V
= 10 VdeJ
DYNAMIC CHARACTERISTICS
=
Unit
MPS-002 NPN, MPS-052 PNP (continued)
PNP
MPS-OS2
NPN
MPS-002
FIGURE 1 - DC CURRENT GAIN
400
z
~ 200
200
I II
VCE' 10 v
LUL
....
-
II
ffi
'"~'"
25°C
g
100
.#
80
TJ=125°C
VCE' 10 V
~~o~
~
~ 100
....... r-..,.
'"
-......,
"\
~ 80
a
~
"\
.\
60
\\
\
\
~ 40
'\
60
\\
40
0.5 0.7
1.0
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (rnA)
20
30
20
0.5 0.7
50
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (rnA)
1.0
20
30
50
FIGURE'2 - "ON" VOLTAGES
1.0
TJ' 25°C
o. 0
~
~
o. 6
-
..-
I II
P
VaE(sat} @ICliO' 10
TJ = 25°C
i5
0.6
VaE(on}@VCE= 10 V
'"~
0.4
~
VaE(on} @VCE= 10 V
~
w
'";0
>
>'
0.0
I II
VaE(sat} @Ic/la- 10
I-
w
i5
-
1.0
V
_I-"
0.4
I-"
""I-"
--
V
,..
I
I
o
-
0.2
VCE(sat} @Ic/la' 10
o
II
0.5 0.7
1.0
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (rnA)
20
>
>'
30
Ic/la ' 1 0 /
0.2
l-
o
2.0 3.0
5.0 7.0. 10
. IC. COLLECTOR CURRENT (rnA)
1.0
FIGURE 3 - CURRENT-GAIN BANDWIDTH PRODUCT
VCE=20V
TJ'25°C
7.0
-
1--"""
~ t:::
0
1-
-~
".... :\
~5.0
~.
OOTH
-
"""""-.
30
50
OEVIC~S
TJ .25°C
r-....
Cib
;0
....
~
---..
~ 3.0
\.
0
,i 2.0
- - MPS·002 NPN
....
."'--- MPS·052 PNP
Cob
0
r-:::: ::...o~
MPS·002 NPN
----- MPS·052 PNP
0
20
FIGURE 4 - CAPACITANCE
10
0
5J..-
I II
0.5 0.7
50
........ ..-
VCE(sat}
0.5
0.7
1.0
2.0 3.0
5.0 7.0
IC. COLLECTOR CURRENT (rnA)
10
20
1.0
30
1015
0.2
0.5
1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)
50
100
200
MPS-D03 NPN
MPS-D53 PNP
(SILICON)
COMPLEMENTARY SILICON ANNULAR
COMPLEMENTARY
SILICON
TRANSISTORS
TRANSISTORS
· .. designed for use in high voltage amplifier and driver applications.
•
Coliector·Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 1.0 mAde
•
Excellent for Nixie ® Driver Applications
•
Ideal for"Calculator Display Design
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
VeEO
Vee
VEe
IC
Po
100
100
4.0
50
350
2.8
1.0
8.0
·55 to +150
Vde
Vde
Vde
Collector·Emltter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Device Dlsslpatlon@TA - 2SoC
Derate above 25° C
Total DeVice Dlsslpatlon@Tc - 2SoC
PD
Derate above 25° C
Operatmg and Storage Junction
TJ, Tstg
mAde
mW
mWI"C
Watt
mWI"C
e
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Ambient
r
""'''~
L-~p
PlANE
Thermal ReSistance, Junction to Case
I
I
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)
Symbol
I
Min
2 BAse
Max
Unit
BVCEO
100
-
Vdc
BVCBO
100
-
Vdc
BVEeO
4.0
-
Vde
-
0.1
-
0.1
(lC = 1.0 mAde,le = 01
Collector-Base Breakdown Voltage
I
(lC = 100 "Ade, IE = 01
Emitter-Base Breakdown Voltage
(IE = 10 ~Adc,IC'=OI
Collector Cutoff Current
ICES
(VCE = 80 Vde, VBE = 01
Collector Cutoff Current
ICBO
(Vce = 80 Vde,le ~ 01
ON CHARACTERISTICS
DC Current Gam (2)
(lC = 10 mAde, VCE = 10 Vdel
(lC' 30 mAde, VCE -10 Vdel
DYNAMIC CHARACTERISTICS
Current Gain - Bandwidt·h Product(2)
(lC 10 mAde, VCE - 20 Vde, f = 100
=
~Ade
~Ade
®
,COlLECTOR
DIM
A
B
C
o
MHz
Trademark of Burroughs Corporation
1016
a
rJ
L
MIL I
MIN
4.450
31
4.320
0.407
1150
N
P
a
MHz
1
~;
R
S
(2) Pulse Test: Pulse Width .. 300 /J.S, Duty Cycle .. 2.0%.
D-:lHRH-l
==l et--
Pitt I EMITTER
ELECTRICAL CHARACTERISTICS ITA = 2S·C unless otherwISe noted.1
1
A
6.350
3.30
2.410
2.030
2.670
2.670
CASE 29-02
TO·92
0.105
0105
MPS-003 NPN, MPS-053 PNP (continued)
PNP
MPS·D53
NPN
MPS·D03
FIGURE 1 - DC CURRENT GAIN
400
200
II II
VCE'IOV
-
z
~ 200 TJJ,W
ffi
II
a
25'C
~
~
100
i
80
TJ"25'C
VCE' 10 V
~5l~
~
~ 100
r--... r-.....
'"
r--.. ~
~
80
a
60
"\.
\
\
u
\
'"
~ 40
\
60
\
\
40
0.5 0.7
1.0
2.0 3.0
5.0 7.0 10
'C, COLLECTOR CURRENT (rnA)
20
30
20
0.5 O}
50
1.0
2.0 3.0
5.0 7.0 10
Ie. COLLECTOR CURRENT (rnA)
20
30
50
FIGURE 2 - "ON" VOLTAGES
1.0
1.0
TJ' 25'C
I II
0.8
VBE(sa')@IC/'B· 10
J
~ 0.6
VBE(,n) @VCE' 10 V
VBE(,n)@VCE 10 V
V
-
II II
0.8
r-- f-
VBE(sa,) @lc/'B- 10
~
TJ' 25'C
V
_..-" ,......1---
,.....
I-- ..-" >-f-
w
'"~
II
~ 0.4
>
>.
-
0.2
VCE(sa,)@IC"B' 10
o
I
0.5 0.7
I I
"1.0
2.0
3.0
5.0
7.0
10
20
'c, COLLECTOR CURRENT (rnA)
30
N
0.5 0.7
~
~ 20 0
VCE=20V
TJ'25'C
I-::--: :::::i -
:I:
b
~ 100
-
f"
...
I'
z
~;;:
70"
ffi
50
85.0
w
:'\
.......
,....
Cib
I.... .....
~
- - - - Mps·053 PNP
r----.....
~ 2.0
~
-I-I-;-~· M~05~ PNP
0.7
1.0
2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (rnA)
20
.....
Cob
r-:::: ~
Mps·003 NPN
0.5
- - Mps·003 NPN
....
~ 3.0
~
<.>
50
TJ = 25'C
'-'
<;>
::>
30
.......... BOTH bEVI CES
7.0
I-f-
0
3 0.3
20
10
'"
~
.f
2.0 3.0
5.0 7.0 10
'c, COLLECTOR CURRENT (rnA)
1.0
FIGURE 4 - CAPACITANCE
300
....
I
I
IIII
o
50
5
~
VCE(sa,)
FIGURE 3 - CURRENT·GAIN BANDWIDTH PRODUCT
:I:
y
IC/IB' lIy~
0.2
l-
1.0
30
1017
0.2
0.5
1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)
. 50
100
200
MPS-D04 NPN
MPS-DS4 PNP
(SILICON)
COMPLEMENTARY DARLINGTON SILICON
ANNULAR TRANSISTORS
COMPLEMENTARY
SILICON
DARLINGTON
TRANSISTORS
... designed for use in high gain driver applications.
•
Excellent LED Digit'Driver
•
DC Current Gain Specified - 10 mAdc to 300 mAdc
•
Monolithic Construction
MAXIMUM RATINGS
Symbol'
Value
Unit
Collector-Emitter Voltage
VCES
25
Vde
Emitter-Base Voltage
VEB
10
Vde
I~
300
mAde
Total Power Dissipation @ T A = 25°C
Derate above 25°C
Po
625
5.0
mW
mW/oC
Total Power Dissipation @TC = 25°C
Derate above 25°C
Po
1.5
12
mW/oC
TJ,Tstg
-55to +150
°c
Rating
Collector Current - Continuous
Operating and Storage Junction
Temperature Range
~.
~P
.~
NPN
Watts
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient (1)
R8JA
200
°C/W
Thermal Resistance, Junction to Case
R8JC
S3.3
°C/W
Characteristics
(1) A8JA is measured with the device soldered into a typical printed dr.cuit board.
ELECTRICAL CHARACTERISTICS (T A
I
Characteristic
=25°C unless otherwise noted 1
I
Symbol
I
Min
I
Max
Unit
OFF CHARACTERISTICS
Collector-Em.itter Breakdown Voltage
(lC= loo)lAde, VSE = 01
BVCES
25
-
Vde
Emitter-Base Breakdown Voltage
(Ie = 10)lAde, Ie = 01
SVEBO
10
-
Vde
STYlE' 1
3
Collector Cutoff Current
(VCE = 20 Vde, V'BE = 01
ICES
-
1.0
,u.Adc
Collector Cutoff Current
(VCB = 20 Vde, IE = 01
ICBO
-
1.0
~Ade
Collector~Emitter
Saturation Voltage
(lC = 100 mAde, IS· 0.1 mAde 1
EMITTER
BASE
COllECTOR
MILLIMETERS
ON CHARACTEfllSTICS (21
DC Current Gain
(lc = 10 mAde, VCE = 5.0 Vdel
(lC = 100 mAde, VCE = 5.0 Vdel
, (I C = 300 mAde; V CE = 5.0 Vdel
PIN 1
2
hFE
1000
2000
1000
VCE(satl
-
-
-
P
-
DYNAMIC CHARACTERISTICS
l
MIN
4.450
3,1 0
4.320
0.401
MAX
5.200
,19
5330
0.533
42
1150'
1,390
1.270
N
-
1.0
DIM
A
B
C
D
Q
Vde
R
S
6.350
3.430
2.410
2.030
2,670
2.61
0.045
0.250
0.135
0,095
0.080
CASE 29-02
High Frequency Current Gain"(2)
(IC = 10 mAde, VCE ·5,0 Vde,
f = 100 MH,zl
TO·92
(21 Pulse Test, Pulse Width ';;300 ~s, Duty Cycle ';;2.0%.
1018
0.055
.050
0.105,
0.105
MPS-004 NPN, MPS-OS4 PNP (continued)
TYPICAL CHARACTERISTICS
I
NPN
MPS-D04
PNP
MPS-D54
FIGURE 1 - DC CURRENT GAIN
200 k
20 k
~~~" 5.0~
VCP 5.0V
iJ ;125~C
I-
100 k
z 10k
~ 7.0 k
~
g
~
s:
........ 1--
r\
TJ -125°C
to
ffi
5.0 k
\
30 k
L
~ 20 k
25°C
....
3.0 k
::>
g
~
\
25°C
/
'-'
/'
2.0 k
./
z 70 k
« 50 k
«
ffi
II
10 k
\'
5.0 k
i-'
3.0 k
1.0 k
0.3
0.5
1.0
2.0 3.0 5.0
10
20 30 50
Ie. COLLECTOR CURRENT (rnA)
100
2.0 k
0.3
200 300
0.5
S
o
6
.L
V
VaE(sa')@ Iclla - 1000
4
to
~
o
1.2
VaE(",)@lclla" 1000
2
VaE(on) @VCE " 5.0 V
>
>- 1.0
O.a
Jc~(~~)I~IIClla "1 100:.
~
1.0
2.0 3.0 5.0
10
20 30 50
IC. COLLECTOR CURRENT ImA)
100
O. 6
0.3 0.5
200300
Vce=S.ov
t= 100MHz
TJ = 25°C
~ 3.0
:::i
~: 2.0
t--f.•...1--
;'
:::i
~:;;: ....
~
a 1.0
i
~ O. a
--
-
1--..., I~
I-- r:::::
-
I
UoI'ffT
100
200 300
+1" 25"~
........ ::--..
...
~
r-.
= =
- - MPS-D04 NPN
- - - MPS-054PNP
2.0
1.0
I
I
MPS·004 NPN
MPS-054 PNP _
i:
0.5
5100
1111111
2.0 3.0 5.0
10
20 30 50
Ie. COLLECTOR CURRENT (rnA)
Cib
~ O.6
4
o. 3
0.3
ICII8"1~~'-
t~
10 ~
'\
::I
'-'
I
FIGURE 4 - CAPACITANCE
"-
I..... ""
1.0
15
11 U
4.0
-
VCE("'I
FIGURE 3 - HIGH FREQUENCY CURRENT GAIN
6.0
Z
./
O.a
I I
0'0.3 0.5
VaE(on)@VCE" 5.0 V
0
I
1111111
6
«
200 300
I.8
US' 1.6
«
100
TJ" 25°C
TJ" 25°C
I.8
1.4
2.0 3.0 5.0
10
20 30 50
IC. COLLECTOR CURRENT (rnA)
FIGURE 2 - "ON" VOLTAGES
2. 0
2. 0
~
1.0
2.0 3.0 5.0
10
20 30 50
Ie. COLLECTOR CURRENT (mA)
100
1.5
0.2
200 300
1019
......
II II
0.3
0.5
0.7 1.0
2.0 3.0
5.0 7.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
MPS·DOS NPN
MPS·D5S PNP
(SILICON)
COMPLEMENTARY SILICON
ANNULAR TRANSISTORS
COMPLEMENTARY
SILICON
TRANSISTORS
· .. designed for use in general purpose amplifier applications.
•
•
Excellent LED Digit Driver
DC Current Gain Specified - 50 mAdc to 500 mAdc
MAXIMUM RATINGS
Rating
Collector~Emitter
Voltage
Symbol
Value
Unit
VeEO
25
Vde
VeB
25
Vde
Ie
500
mAde
Collector-Base Voltage
Collector Current - Continuous
TA
= 2SoC
Po
350
2.8
mW
mW/oe
Total Power Dissipation@ TC
= 2SOC
Po
1.0
8.0
Watt
mW/oe
TJ,Tstg
-55to +150
°e
Total Power Dissipation
@
Derate above 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient (1)
Thermal Resistance, Junction to Case
(1) RaJA is measured with the device soldered into a typical printed circuit board.
ELECTRICAL CHARACTERISTICS (TA " 25°C unless otherwise noted.1
Characteristic
I
Symbol
I
Min
I
Max
Unit
-
Vde
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC" 1.0 mAde, IB" 01
BVCEO
25
Collector-Base Breakdown Voltage
8VCBO
25
l ~-!r
STYLE 1
PIN 1 EMITTER
2 BASE
3 COLLECTOR
a
Xth
Vde
(lC" 101'Ade,IE" O)
Collector Cutoff Current
(VCE" 20 Vde, VBE "O)
ICES
Collector Cutoff Current
(VCB" 20 Vde, IE" O)
Emitter Cutoff Current
(VEB = 3.0 Vde, Ie" O)
ICBO
lEBO
1.0
#Adc
-
1.0
I'Ade
-
100
nAdc
Collector~Emitter
Saturation Voltage
(Ie" 100 mAde,18" 10 mAde)
-
hFE
50
80
30
VeE(s.t}
C
D
ON CHARACTERISTICS Il}
DC Current Gain
(lC" 50 mAde, VeE" 5.0 Vde)
(Ie" 100 mAde, VCE" 5.0 Vdc)
(lC" 500 mAde, VCE" 5.0 Vde)
MILLIMETERS
DIM
A
B
0.5
L
N
P
a
R
S
MIN
4:450
.1
4.320
0.401
O.
1.150
-
MIN
0.115
1.390
0.045
1.270
6.3!i0
1430
2.410
2.030
-
2.670
2.610
Product
(lC" 50 mAde, VCE " 10 Vde,
f" 100 MHz)
(1) Pulse Test: Pulse Width ';;300 1", Duty Cycle ';;2.0%.
1020
-
0.250
0.13!i
0.095
0.080
29~02
TO~92
Current~Gain-8andwidth
0.110
G.016
.1
Vde
CASE
DYNAMIC CHARACTERISTICS
INCHES
MAX
5.20
4.1
5.330
0.533
MAX
.05
.15
0.210
0.021
-
0.055
0.050
-
0.105
0.105
MPS-D05 NPN, MPS-D55 PNP (continued)
TYPICAL CHARACTERISTICS
NPN
MPS-D05
PNP
MPS-D55
I
FIGURE 1 - DC CURRENT GAIN
500
500
VCE-5.0V
VCE - 5.0 V
Il25o~
TJ - I250C
z
-
300
:;;:
'"I--
~
a
200
.....
-
'25oc
'" 200
I--
,~
~ 100
a'"'"
u
c
t.LilOO
1\
70
20
30
50 70 100
IC, COLLECTOR CURRENT (rnA)
200
300
~
25 0C
ili
l\~
c
10
-
r-- .....
:;;:
u
50
5.0 7.0
TJ
300
z
:::::
'~
70
505.0 7.0
500
10
50 70 100
20
30
IC, COLLECTOR CURRENT (rnA)
200
300
500
FIGURE 2 - "ON" VOLTAGES
1.0
~Bf(~~) ~ IC/I~ 1~
0.8
~
c
..,. ......
f--- ~
--
-
VBE(on)@VCE=5.0V
? 0.6
1.0
~ ......
TJ=250CI
~
~
>0.2
...........
5.0 7.0
10
20
30
50 70 100
IC, C.DLLECTOR CURRENT (rnA)
200
300
~
VCE(sat)@IC/IB-IO
VCE(sa!) @lcIIB- 10
o
o
5.0 7.0
500
10
FIGURE 3 - CURRENT-GAIN-BANDWIDTH
PRODUCT
20
30
50 70 100
IC, COLLECTOR CURRENT (mA)
200
30
!.
-
t; 400
",.
300
:I:
200
-
.... ,
20
'"~
\
I 100
z
:;;:
80
~
60
'"
~
40
.to'
30
r:::::. ~
"'-:::
.....
Cob
5.0 7.0
10
MPS·005 NPN
- - -- MPS-O 55 PNP
20
30
50 70 100
IC, COLLECTOR CURRENT (mA)
200
300
\
3.0
0.3
500
1021
0.5 0.7
r.:::
MPS·005 NPN
- - - - . MPS-055 PNP
V
r-
5.0
VCE = 10V
f=IOOMHz
TJ = 2SOC
500
TJ = 250C
1-1-
" -,
\
~
300
~,
1',
\.
..... V
FIGURE 4 - CAPACITANCE
~ 600
'"
_I--'
>
0.2
b
--
~
I....-r--
~ OA
c
0.4
>-
g
J
-""'"
w
~
:f
I
IC/IB =
VBE(on) @VCE = 5.0
~ 0.6
w
~
V~E:(~!)IJ
0.8
---
TJ = 25 0C
-...
r--_
1.0
2.0 3.0
5.0 7.0 10
VR, REVERSE VOLTAGE (VOLTS)
20
30
MPS-D06 NPN
MPS-DS6 PNP
(SILICON)
COMPLEMENTARY
SILICON
TRANSISTORS
COMPLEMENTARY SILICON ANNULAR TRANSISTORS
· .. designed for use in low voltage amplifier/driver circuits.
• Excellent LED Segment Driver
•
Excellent Mini·Florescent Driver
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Symbol
Value
Unit
VCEO
25
4.0
Vdc
50
350
2.8
1.0
8.0
-55 to +150
mAde
V~R
Collector Current - Continuous
IC~
Total Power Dissipation @ T A = 2SoC
Derate above 25°C
Po
Total Power Dissipation@ TC = 25°C
Derate above 25°C
Po
Operating and Storage Junction
TJ, T stg
Vdc
mW
mWfOC
Watt
mWfOC
°c
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to case
(1) ROJA is measured with the device soldered into a typical printed circuit board.
ELECTRICAL CHARACTERISTICS (T A" 25°C unless OtherWISe noted 1
I
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)
(lC = 1.0 mAde, IB
=
I
Symbol
I
Min
I
Max
Unit
Emitter-Base Breakdown Voltage
PIN 1 EMITTER
2 BASE
3. COLLECTOR
BVCEO
25
-
Vde
BVEBO
4.0
-
Vde
ICES
-
1.0
"Adc
DIM
A
ICBO
-
1.0
"Ade
C
D
-
L
N
1.150
P
6.35
3.430
2. 10
2.030
01
(IE " 10 "Ade, IC = 01
Collector Cutoff Current
(VCE = 20 Vde, VBE = 01
Collector Cutoff Current
ON CHARACTERISTICS
IIc = 1.0 mAde, VCE = 5.0 Vde)
IIc = 10 mAde, VCE" 5.0 Vdel
IIc ~ 50 mAde, V CE = 5.Q Vde)
Collector·Emitter Saturation Voltage
IIC" 50 mAde, IB " 5.0 mAde)
hFE
VCE(satl
4.450
~180
(VCB = 20 Vde, IE = 01
DC Current Gain (2)
MILLIMETERS
MAX
MIN
40
50
50
-
-
0.3
a
R
-
S
4.320
0.407
5.200
4.190
5.3311
0.533
-
1.390
INCHES
MIN
MAX
O. 5
0.175
.1
0.110
0.016
0.045
1.270
-
2.670
2.670
0.250
0.135
0.095
0.080
Vde
CASE 29'()2
DYNAMIC CHARACTERISTICS
TO~92
Current~Gain-Bandwidth Product (2)
IIc = 10 mAde, V CE = 5.0 Vde,
f" 100 MHz)
(2) Pulse Test: Pulse Width.;; 300/.ls, Duty Cycle';; 2.0%.
1022
.1
0.210
0.021
O. 19
-
0.055
0.050
-
0.105
0.105
MPS-D06 NPN, MPS-D56 PNP (continued)
NPN
MP5-006
PNP
MPS-056
FIGURE 1 - DC CURRENT GAIN
400
400
VCE = S.OV
--
~ 200
~
0:
0:
- ---
TJ=12SoC
2sbc
~
c
.., 100
1111
VCE = S.O v
TJ = 12S oC
z
~
.....
r--_
II
~ 200
.WC
r--
~
glaD
~ 80
j!- 80
so
60
40
O.S 0.7
1.0
2.0 3.0
S.O 7.0 10
IC. COLLECTOR CURRENT ImA)
20
30
40
so
-
.....
ul
O.S 0.7
1.0
2.0 3.0
S.O 7.0 10
IC. COLLECTOR CURRENT ImA)
20
3D
v
I--
so
FIGURE 2 - "ON" VOLTAGES
1.0
1.0
TJ = 2S oC
;c
~
W
to
II
O.S
-
VSElsa')@ IClls = 10
VSElon)@ VCE = S.O v
O.S
TJ = 2S oC
.",..
,.....-v
I II
f"""_
O.S
VSElsat)@ IClls = 10
--
!--
-I-
~
~ O. S VSElon)@VCE= S.O V
~
«
:>
c
W
to
'" 0.4
>
~
O. 4
>
>"
,...-
0.2
VCElsatl@lelIS-l0
o
O.S 0.7
1.0
2.0 3.0
S.O 7.0 10
IC. COLLECTOR CURRENT ImA)
20
3D
VCEI ..,)@IC/IS 10
o
so
O.S 0.7
1.0
%
i!l'
t;
7. 0
i530D
'"
if
....... 1-'
S. 0
~ 200
./
~
~
~100
~
~
V
70
0:
~
.....-..--
500.5 0.7
--
!---
1.0
.........
,
0
--,
--
.......... >< 1--, .......
...... "
....
Cob, ~
-~
3.0
--
-1-
- - Mps·DOS N N
I I
2.0
so
Cib
0
I
3D
TJ=2SoC-
=
MP8-00SNPN
MP8-056PNP
III
::>
3.0
S.O 7.0 10
20
IC. COLLECTOR CURRENT ImA)
0
VCE=S.OV
t= 100MHz
TJ = 2SoC
c
2.0
FIGURE 4 - CAPACITANCE
FIGURE 3 - CURRENT -GAIN - BANDWIDTH
PRODUCT
." SOD
-
O. 2
S.O
7.0
10
20
30
0
1. 0.3
50
IC.COLLECTOR CURRENT ImA)
1023
1IIInrT
O.S 0.7
1.0
2.0 3.0
S.O 7.0
VR. REVER~E VOLTAGE IVOLTS)
10
20
30
MPS·D51
(SILICON)
For Specifications, See MPS-DO 1 Data.
MPS·D52 (SILICON)
For Specifications, See MPS-D02 Data.
MPS-D53 (SILICON)
For Specifications, See MPS-D03 Data.
MPS-D54 (SILICON)
For Specifications, See MPS-D04 Data.
MPS·D 55 (SILICON)
For Specifications, See MPS-DOS Data.
MPS-D56 (SILICON)
For Specifications, See MPS-D06 Data.
1024
MPS·H02 (SILICON)
NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
VHF TRANSISTOR
. . . designed for a common-emitter VHF-RF amplifier stage in
TV receivers.
•
Low Collector-Base Capacitance Ccb = 0.5 pF (Max)
•
Guaranteed Noise Figure NF = 3.3 dB (Max) @ f = 200 MHz
•
Guaranteed AGC Characteristics
•
Complete v-Parameter Curves from 50 MHz to 300 MHz
•
Guaranteed Power Gain Gpe = 20 dB (Min) @ f = 200 MHz
MAXIMUM RATINGS
Rating
conector~Emitter
Voltage
Symbol
Value
Unit
VCEO
20
Vd.
Vd.
Coliector-aalO Voltaga
VCB
20
Emitter-Base Voltage
VEB
3.0
Vd.
Collector Current - Continuous
IC
30
mAde
Total Power OiSlipatlon @ TA = 25°C
Oorate above 25°C
Po
350
2.8
mW
mW/oC
Total Power Dissipation Gil TC" 2SoC
Oerata lbove 2sOC
Po
1.6
12
WItt
mWfOC
TJ,T,tg
-55 to +150
"c
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resl'tanca, Junction to Ambient
Thermal Resiltance. Junction to Call
Symbol
MIx
Unit
R8JAf1I
200
°C/mW
R8JC
83.3
°C/mW
(1) R8JA is mealured with the device soldered into a typical printed circuit board.
SEATINGJ~ 1
PLANE
~
STYLE 2:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DIM
A
B
C
0
F
L
N
P
a
R
S
MILLIMETERS
MIN
MAX
4.450
5.l0U
3.180
4.320
5.3 0
0.407
0.533
U.4!li
0.482
1.150
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
U.175
O.lOb
.1
0.170
0.210
0.016
0.021
O.UI,
u.u'"
1.390
1.270
0.045
0.055
0.050
-
0.250
0.135
0.095
0.080
2.670
2.670
CASE 29'()2
TO-92
1025
0.105
0.105
MPS-H02 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
I
Syml;lol
Min
COllector-Emitter Braakdown Voltage
(lC = 1_0 mAde,lB = 01
BVCEO
20
-
Vde
COllector-Base Braakdown Voltage
(lC = 100 "Ade, IE • 01
BVCBO
20
-
Vde
Emitter-Base Braakdown Voltage
(IE = 100 "Ade, IC· 01
BVEBO
3.0
-
Vde
ICBO
-
50
nAde
fT
375
-
MHz
Ccb
-
0.5
pF
NF
-
3.3
dB
Gpe
20
-
dB
VAGC
4.0
5.0
Vdc
Chal'8C1llristic
Unit
OFF CHARACTERISTICS
COllector Cutoff Current
(VCB· 10 Vde, IE = 01
ON CHARACTERISTICS
DC Current Gain
(lC = 4.0 mAde, VCE • 10 Vdel
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vdc, f
COllector-Base Capacitance
(VCB = 10 Vde. IE = 0, f
Noise Figure (Figure 91
(VAGC = 1.4 Vdc, RS
= 100 MHzl
= 1.0 MHzl
= 50 Ohms, f =200 MHzl
FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (Figure 91
(VAGC = 1.4 Vdc, RS = 50 Ohms, f =200 MHzl
Forward AGC Voltage (Figure 91
(Gain Reduction =30 dB, RS = 50 Ohms, f
=200 MHzl
AGC CHARACTERISTICS
(Vce
= 12 Vde,
= 50 Ohms, f = 200 MHz, See Figure 9)
RS
FIGURE 1 - POWER GAIN
FIGURE 2 - NOISE FIGURE
14
30
25
~
~
20
10
'"
5.0
is 8.0
IIi
6.0
3.0
2.0
5.0
4.0
o
6.0
o
2.0
1.0
(Ie
0
0
40
B
] o.8
/
w
....~ o.6
/
~
V
v
V
V
60
80
100
/
/
.. o.
;;;
-bre
Q
~
200
6.0
FIGURE 4 - REVERSE TRANSFER ADMITTANCE
I
L
5.0
1.0
/gie
0
4.0
= 4.0 mAde, VeE = 10 Vde, TA = 25 0 q)
FIGURE 3 -INPUT ADMITTANCE
0
3.0
VAGc, AUTOMATIC GAIN CONTROL VOLTAGE (VOLTS)
COMMON-EMITTER V PARAMETERS
0
"
2.0
VAGC, AUTOMATIC GAIN CONTROL VOLTAGE (VOLTSI
0
/
\I\..
4.0
i\
\
1.0
V
~
\
o
J
~
i
-5.0
/
10
~
\
15
i
12
~
(
~
bie
"
300
./'
4
!ll
~
.... o.2
!
400
f, FREQUENCY (MHz)
1026
r-'
0
40
-
60
...
80
"
V
./
1Ire
100
~O
f, FREQUENCY (MHz)
300
400
MPS·H02 (continued)
COMMON·EMITTER V PARAMETERS
(lc = 4.0 mAde, VCE = 10 Vdc, TA = 25°C)
FIGURE 5 - FORWARD TRANSFER ADMITTANCE
~
~
:i
I:
r-....
80
iii 60
~
....
~ 40
:><
V
r""oo.
2
........
~fe
"'
~
:: 20
Q
0:
60
80
100
./
/
I'\.
4
300
200
.....
4D
i;'
1Ioe ....
V
,."
~
i--"'"
D
400
/
bo~
8
\.
0
oj, M2040
J
V
6
"..
0:
itt
FIGURE 6 - OUTPUT ADMITTANCE
2.0
... 120
.lil
.!100
80
60
100
20D
3DD
40D
f. FREIlUENCY (MHz)
f. FREIlUENCY (MHz)
FIGURE 7 - DC CURRENT GAIN
FIGURE 6 - COLLECTOR·BASE CAPACITANCE
0
1.3
Ve,-IOVd,
t- T. - 25'C
...
30
O~
--
f-'""
111111
1.2
(C,b-CN@I,-Ol
T. - 25'C
i\
\
\
0
-
7.0
r-
0.5
r--.... r-....
5.0
['..
0.3
3.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
Ie. COllECTOR CURRENT ImAdel
0.1
20
0.2 0.3
0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
VeL COLLECTOR· SASE VOLTAGE IVOLTSI
FIGURE 9 - 200 MHz FUNCTIONAL TEST CIRCUIT
(NEUTRALIZED)
Vcc- 12V
270
*W
lOOOpF
50 OHMS
INPU'T
T'
T, - FERRITE CORE INDIANA GEN. CORP. F·684
T, - &TURNS #16 8tJSSWIR~ 10 - IIo".L-!l"
1027
"
20 30
MPS-H04 (SILICON)
MPS..H05
NPN SILICON
TRANSISTORS
NPN SILICON ANNULAR TRAN$ISTORS
... MPS·H04 is designed for RF amplifier applications in AM receivers .
. . . Mps·H05 is design8!l for mixer ,oscillator, autodyne CQnverter, and
IF amplifier applications in AM receivers.
• High Breakqown Voltage - BVCEO =80 Vdc (Min)
• Low Coliector·Base Capacitance - Gcb = 1.0 pF (Typ)
• Low O\.ltput Admittance - hoe =5.0llmhos (Max)
• Low Noise Figure - NF = :2.0 dB (Max) - MPS'H04
• Complements to PNP Tvpes MPS·H54 and Mps·H55
J
!
SEATINGJ~L1·- ~~
. . Fl
PLANE
1--1
D-I-f' H-L
-R~
MAXIMUM RATINGS
Ratl'"
Collector.Emitter Voltage
Ernitter-8_ Voltage
Collector Current - Continuous
Total Po_ Oillipa.ion .. TA • 25u C
D_._2SOC
Total P _ Qiuipation OTC = 250C
Derate _
26°C
SV..... I
Value
VCEO
VEB
IC
80
Opemi", and SIOI'8ge Junction
T"""",rature Ra"",
TJ,Tstg
Po
Po
4.0
100
360
2.8
1.0
8.0
-66 to +160
Unit
Vdc.
Vdc
mAd!;
mW
m~', '1i~
--l
PIN 1. EMITTER
2. BASE
3. COLLECTOR
mWf>c
Watt
mWf>c
OC
TH"RMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient
DIM
A
0
1. .l.
MILL M TERS
INCHES
M N MAX MIN
MAX
4.450
. 0 O. 175
0.205
B
180
. 80
0.125
0.165
C
D
4.
0.407
5.
O. 33
.170
0.016
O. 10
0.021
F
D.4O/
• liZ
D.Dlti
U;UI9
L
N
1.150
1.39u
1. 0
0.046
0.055
0.050
P
6.350
oR
2.410
2.030
. s:
0.250
O~
.4
2.670
2.670
0.085
O.OBO
CASE 28-02
TO·92
1028
B
5
S
0.105
0.105
MPS-H04, MPS-H05 (continued)
ELECTRICAL CHARACTERISTICS (T A =25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Coliector·Emitter Breakdown Voltage (1)
(IC = 1.0 mAde, IB = 0)
BVCEO
80
-
-
Vdc
Coliector·Ba.. Breakdown Voltage
(IC = 100 pAdc, IE = 0)
BVCBO
80
-
-
Vdc
Emitter·B..... Breakdown Voltage
(IE = 100 pAdc, IC = 0)
BVEBO
4.0
-
-
Vdc
Collector Cutoff Current
(VCB" 60 Vdc, IE = 0)
ICBO
-
-
50
nAdc
Emitter Cutoff Current
(VEB = 3.0 Vdc, IC = 0)
lEBO
-
-
50
nAdc
30
120
150
Characteristic
OFF CHARACTERISTICS
ON CHARACTERISTICS
DC Current Gain
(IC = 1.5 mAde, VeE = 10 Vdc)
-
hFe
30
70
70
VCE(satl
-
0.12
0.25
Vdc
Current·Gain-Bandwidth Product
(IC = 1.5 mAde, VCE = 10Vdc, f= 100 MHz)
fT
80
180
-
MHz
Coliector·Base Capecitance
(VCB = 10 Vdc, I = 1.0 MHz)
Ccb
-
1.0
1.6
pF
Output Admittance
(IC" 1.5 mAde, VCE = 10 Vdc, f = 1.0 kHz)
hoe
-
2.0
5.0
pmhos
Noise Figure
(IC= 1.5 mAde, VCE = 10Vdc, Rs=50ohms,l= 1.0MHz) MPS·H04
NF
-
1.7
2.0
dB
MPS·H04
MPS·H05
Coliector·Emitter Saturation Voltaga
(IC = 10 mAdc,lB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
(1) Pulse Tast: Pul .. Width" 300 p', Duty Cvda " 2.0%.
FiGURE 1 - SIMPLIFIED AC EQUIVALENT CIRCUIT (Common Emitter)
BASE
rb
COLLECTOR
V Parameters may be determined from the following calculation.:
1/1e
c,
Note:
Data lor MPS·H04 and MPS-H05 i. presented in terms 01 the
equivalent circuit shown in Figure 1. Values for its components
may be lound or calculated .. follows:
rb''''' 15 Ohms
ra =26mV!IE
Ccb, See Figure 5
Um = 1Ire
!Ie: = (hie + 1) hob (S.e Figuras 3 and 6)
Co =0.2pF
rb'c = (~fe + 1) re
Low frequency h parameters may be found from:
hie = 'b' + rb'c
hle "'1.1 hFE(See Figure 2)
hre = Negligible
hoe = (hie
+ 1) hob
1029
MPS-H04, MPS-H05 (continued)
ELECTRICAL CHARACTERISTICS (VCE
= 10 V. T A =25°C unless otherwise noted)
FIGURE 3 - "ON" VOLTAGES
FIGURE 2 - NORMALIZED DC CURRENT GAIN
1.0
3.0
§
N
::;
---
2.0
-
'"~
'"
:!l
z
<
'"
...
~
'"
B
u
'"
1.0
0.7
0.5
~
L--
0.3
0.1
II II
II II
TA = 125°C
O.B
VBE @VCE
I----
-
- -
--
0.5
0.2
1.0
~
25°C
~H-
'"
0.6
~
W
to
:;
'"
-55°C
0.4
'">
~
VCE(sat)@
0.2
0.1
10
0.2
0.3
FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT
~
z
'"~
--
V
V
I---
~
oV
-t--t--
~
15
ffi 100
8 o. 7
'"'"::>
j
3.0
4.0
5.0
7.0
10
r-...
1.0
2.0
,1= 1.~ kHlz
;'!:
...'"'"'"'
::>
::>
0.03
'"
j
0.02
0.01 5
0.5
100
50
FIGURE 7 - NOISE FIGURE
j
0.0 7
!:: 0.05
;=
20
[7
j 0.1
....
~
10
5.0
VCB COLLECTOR·BASE VOLTAGE (VOLTS)
FIGURE 6 - OUTPUT ADMITTANCE
z
t--
o. 5
IC. COLLECTOR CURRENT (mAde)
0.1 5
10
2. 0
w
2.0
5.0
0:;
~
u
50
1.0
3.0
~ 3. 0
'"t'-
.t?
2.0
,= 1.0 MHz
u
i.--
'"
'"t;j 1.0
u
I
5. 0
-"
w
<
z
1.0
FIGURE 5 - COLLECTOR·BASE CAPACITANCE vat'SUs VOLTAGE
.
'" 200
0.5
IC COLLECTOR CURRENT (mA)
-;:; 300
:x:
l!l
t;
250
lC
iB
=10
IIIIII
o
5.0
2.0
IC. COLLECTOR CURRE,NT (mAde)
15
f'"
i:
=10 V
V
./
1/
V
"
V
~
0.7
1.0
2.0
3.0
5.0
0.05
IC. COLLECTOR CURRENT (mAde)
0.1
0.2
0.3
0.5
0.7 1.0
RS. SOURCE RESISTANCE (kohms)
1030
2.0
3.0
5.0
MPS·H04, MPS·H05 (continued)
AM RADIO DESIGN INFORMATION
FIGURE 8 - 1.0 MHz AMPLIFIER TEST CIRCUIT
L1
L2
CI
RG
=
L1 90 turns of 7 x 41 Utz Wife on 1/4" form,
50 n
tapped 4 turns from ground end. Turns
ratia of call"", 22, unloaded n, Qu "" 130
Loaded D, UL ~ 60
L2 90 turns of 7 x 41 Lltz wire on 1/4" form,
tapped 21 turns from high end. Turns
ratio of cOIl"., 1.3, unloaded Q, Qu "" 130,
Loaded D, DL ~ 60
CI 25-280 pF Vanable
C2 100-400 pF Variable
50
15 k
13 k
+12 V
FIGURE 9 - 1.0 MHz MIXER TEST CIRCUIT
L1
CI
FL
L1 90 turns of 7 x 41 Lltz wire on 1/4" form,
tapped 4 turns from ground end. Turns
0.1 pF
-
r
100
CI
1.5k
Bias Supply
(0·30V)
+12 V
FIGURE 10 - AMPLIFIER POWER GAIN
39
f-~
z
~
....
'"
35 f--
~
to
29
0:.
TA = 25°C
VCE" 10 Vde
j= I 0 MHz
k = 5.0
--
z
.-/
1.0
22
&:
20
~
0
Figure 8, as they are reoptimized.
27
'"'"
z
I
I
I
I
I
2.0
-
I
iii
...-? ....
~
z
Ie
16
14
'"
12
10
4.0
1.0 mAde
./
-
V /'
V': I--
~
"'/
~3.oTAde
0.5 rnA'de
10
5.0
=
./ A
/ V-
18
8
~
I
3.0
28 _VCE=IOVde
TA = 25'C
26
;;: 24
~~ccu~;r~~ ~~t~~~~rV:~~nf~~ ~Ct~o:e0o~Ad c, -
......
,.....
0.7
:s
V
./"
.-/
25
0.5
.
L
33
I
FIGURE 11 - CONVERSION POWER GAIN
30
I I
37 f--
Loaded 0, DL ~ 60.
25·280 pF Varoable
FL 455 kHz Filter
0.01
1.455 MHz
-::-
ratiO of coil"" 22, unloaded 0, Gu "'" 130.
1.5 k
RG '" 50 S~
15
20
(Fl Losses Not Included)
30
40
50
OSCILLATOR INJECTION VOLTAGE (mVdel
IC, COLLECTOR CURRENT (mAde)
1031
70
100
MPS-H07 (SILICON)
MPS-H08
NPN SILICON
. FMNHF TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS
· .. designed for common-base FMNHF RF amplifier applications.
•
•
Guaranteed Noise Figure NF = 3.2 dB (Max) @f= 100 MHz
= 3.5 dB (Max) @f = 200 MHz
MPS-H07
MPS-H08
Guaranteed Forward AGC Characteristics
•
Complete v-Parameter Curves at Both 100 MHz and 200 MHz
•
Guaranteed Power Gain Gpb = 18 dB (Min) @f= 100 MHz
= 14 dB (Min) @f = 200 MHz
•
MPS-H07
MPS-H08
Low Feedback Capacitance AllOWing Stable Unneutralized
Operation
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
30
Vde
Coliector·Ba.. Voltage
Vce
30
Vde
Emitter-Base Voltage
VEe
3.0
Vde
Collector Current - Continuous
IC
30
mAde
Totel Power Dissipation @ T A = 25°C
Dorat. above 25°C
Po
350
2.8
mW
mW/oC
Total Power Dissipotion @ TC = 25°C
Oerate above 250 C
Po
1.0
8.0
Wott
mW/oC
T J,T stg
-55 to +150
°c
Collector· Emitter Voltege
Operating end Storage Junction
Temperature Range
STYLE 1:
PIN 1. EMITIER
2. BASE
3. COLLECTOR
DIM
A
B
C
D
F
G
THERMAL CHARACTERISTICS
. Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
Max
Unit
R6JA(I)
357
R6JC
125
°CM
°CIW
(1) R8JA is measured with the device soldered into a typical printed circuit board.
1032
H
J
K
L
MILLIMETERS
MIN MAX
5.03 5.18
4.01 4.27
4.44 4.70
0.41 0.48
0.26 0.38
1.14 1.40
1.40 1.65
0.23 0.28
12.70
0.33 0.38
INCHES
MIN MAX
0.198 0.204
0.158 0.168
0.175 0.185
0.016 0.019
0.010 0.015
0.045 0.055
0.055 0.065
0.009 0.011
0.500
0.013 0.015
CASE29A
PLASTIC TRANSISTOR
WITH SHIELD
-
MPS-H07. MPS-H08 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Max
Unit
Colleetor-€mitter Breakdown Voltage
IIC = 1.0 mAde, IB = 0)
BVCEO
30
-
Vde
Coliector·Ba.. Breakdown Voltage
IIc = l00/lAde, IE = 0)
BV CBO
30
-
Vde
Emitter·Ba.. Breakdown Voltage
(IE = l00/lAde, IC = 0)
BV EBO
3.0
-
Vde
ICBO
-
50
nAde
DC Current Gain
IIC = 3.0 mAde, VCE = 10 Vde)
hFE
20
-
-
Ba..-€mitter On Voltage
IIc = 3.0 mAde, VCE = 10 Vde)
VBE(on)
-
0.9
Vde
400
500
-
-
0.3
Characteristic
OFF CHARACTERISTICS
Collector Cutofl Current
(VCB = 15 Vde, IE = 0)
ON CHARACTERISTICS
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
MHz
IT
IIC = 3.0 mAde, VCE = 10 Vde, I =·100 MHz)
MPS·H07
MPS·HOB
Cee
(Crb)
CoUector-Emitter Capacitance
(V CE = 10 Vde, I B =0, I = 1.0 MHz, base guarded)
pF
dB
NF
Noise Figure (Figure 9)
(lC = 3.0 mAde, VCB = 10 Vde,
RS = 50 Ohms, I = 100 MHz)
IIc = 3.0 mAde, VCB = 10 Vde,
RS = 50 Ohms, I = 200 MHz)
MPS·H07
-
3.2
MPS·HOB
-
3.5
FUNCTIONAL TEST
Common-€mitter Amplilier Power Gain (Figure 9)
IIc = 3.0 mAde, VCB = 10 Vde, RS = 50 Ohms
1= 100 MHz)
IIc = 3.0 mAde, VCB = 10 Vde, RS = 50 Ohms,
1= 200 MHz)
dB
G pb
MPS-H07
MPS-HOB
lB
-
14
mAde
I AGC
Forward AGC Current (Figure 9)
(Gain Reduction = 30 dB, RS = 50 Ohms
1= 100 MHz)
(Gain Reduction = 30 dB, RS = 50 Ohms,
1= 200 MHz)
MPS·H07
5.0
B.O
MPS·HOB
5.0
B.O
AGC CHARACTERISTICS
Vee
= 10 Vdc, RS =50 Ohms, See Figure 9
--1= l00MHz
---1=200MHz
FIGURE 1 - POWER GAIN
0
FIGURE 2
10
-
I
9.0
z
01-
'"
i
!z
i8 -20
.g,
-
r-- ~ ~
!
3.0
7.0
w
0:
~~
...........",
=>
'"il:
'"'
'"
-40
17
il
II
8.0
~
;;:
5.0
6.0
4.0
IAGC' AUTOMATIC GAIN CONTROL CURRENT (mA)
::l
(5
""
6.0
II
5.0
4.0
z
u.:
z 3.0
NOISE FIGURE
~
.......
2.0
/'
-
,,' '/
1.0
o0
7.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
IAGC' AUTOMATIC GAIN CONTROL CURRENT (mA)
1033
9.0
10
MPS·H07, MPS·H08 (continued)
COMMON·BASE V PARAMETERS
V CB = 10 Vdc. T A = 25°C
-f
= 100 MHz
- - - f "" 200 MHz
FIGURE 4 - REVERSE TRANSFER ADMITTANCE
FIGURE 3 - INPUT ADMITTANCE
'S'
~
oS
W
~
....
~
~
z
80
60
40
-
20
-20
~
-40
~
r--.....
oS
-1-- !- -
1-'
~~,
'-
1.0
~
0.4
~..
0.3
z
0.2
.
~
....
c
'" "'" -
o
-g 0.5
I
~ -60
8'" -80
~-100
-
~.
J
....::..
~
Z
v .......r.....
/£. .
100
2,0
V~-
'7
,..- --
-g~/
- -
0:
W
ffi
B.O
9.0
o
1.0
2.0
-g 100
~
W
60
c
20
...
J
bib.....
,,/V"
40
~
z -20
"'
-40
0:
~
1i:
"' ....
1--"'-
-60
~
7
....~ :-:-....
2.0
.::: t--
-........-
glb
1..... ......
/'
/
k
~
:iii
;:
0.8
~
!; 0.6
c
.g
V
>-
f'..i-. "/
3.0
4.0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (mAl
S.O
9.0
1.4
1.2
1.0
c
/
91b
~
10
~
~
1000
900
;
_
3.0
2.0
'9.0
10
........ i-.
o
1.0
2.0
V
....t-'"
......... ~b
3.0
4.0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (mAl
S.O
9.0
10
......, -
BOO
TAl = 250cI
VCE = 10Vd,_ I----
l:i
600
c
500
9.0
10
400
~
300
iii
200
a
100
~
S.O
gl
J.b_
.,....V
700
~z
/
3.0
4.0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (mAl
_
IE
i
/
.; 1.0
----
1--
%
/
........
2.0
......
i5
c
/
8
0
/
V
~ 4.0
D:
~
t;
TA:'-25 0 C I
Ves = 10 Vd,
6.0
5.0
B.O
FIGURE 8 - CURRENT -GAIN BANDWIDTH PRODUCT
;s
w
~
-~rb
.~
.....
1.0
10
8.0
t- .....
I--
0.2
9.0
8 7.0
;::
rb-
l
I-_bOb_
bob
-
0.4
FIGURE 7 - COLLECTOR-BASE TIME CONSTANT
~
-
3.0
4.0
5.0
6.0
7.0
IC' CO LLECTOR CURRENT (mAl
-" -
)1.6
t:.::..
-- -
i'...
-SO
1.0
:!
...
--."L 1--
..,/
I.S
I-bib
,,'V
1:i
...c~
1--
2.0
BO
'"'z
~
-
FIGURE 6 - OUTPUT AOMITTANCE
FIGURE 5 - FORWARO TRANSFER ADMITTANCE
oS
,.::~
f--- 1--
o
10
-
0.1
~
3.0
4,0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (rnA)
f--
.i-
1034
00
V
I--
'- :--....
'" I'-...
1.0
2.0
3.0
4.0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (mAl
8.0
9.0
10
MPS-H07. MPS-H08 (continued)
FIGURE 9 - 100·MHz AND 200-MHz COMMON·BASE AMPLIFIER
O.l IlF:J;
1000 pF
INPUT~
1000 pF
~OUTPUT
10.1
FREQUENCY
100 MHz - u- 11 TURNS NO. 16 AWG, 'Au 1.0.,
TAPPED l4 TURNS FROM COLD END.
200 MHz - L2 - 6 TURNS NO. 16 AWG, 'Au 1.0.,
TAPPED l4 TURNS FROM COLO ENO.
1035
1lF
MPS-H 10 (SILICON)
MPS·Hll
NPNSILICON
VHF/UHF TRANSISTORS
NPN SILICON EPITAXIAL TRANSISTORS
· . . designed for use in VHF/UHF common base oscillator
applications.
• High Current·Gain~Bandwidth Product fT =650 MHz (MinI @lIC =4.0 mAde
•
Low Coliector·Base Time Constant ~'Ce =!l.0 ps (MaxI @lIC =4.0 mAde
•
Feedback Capacitance Crb = 0.35-0.66 pF - MPS·Hl0
0.6-0.9 pF - MP$·H 11
r1
A
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
25
Vde
Collector-lla.. Voltage
Vca
30
Vdc
Emitter~8ase
VEa
3.0
Vdc
Total Power DisSipation liiIT A = 25°C
Derate above ~C
Po
350
2.8
rrfN
rrfNf'c
t c =25°C
Po
1.0
a.o
tJ. Tstg
-85 to +150
Walt
mWf'C
DC
Collector-Emitter Voltage
Voltage
Total Power Dissipation @
Derate above 2s<'C
Operating and Storage Junction
Temperature Range
SEATING~nB~
PLANE
L---
D~H-Rl-tl
=::j
STYLE 2
PIN!. BASE
2. EMITTER
3.
~
r
r-
a
COLLECTOR~".-l
000
Symbol
Valua
Unit
Thermal Resistance. dunction to Ambient
R8JA
357
°C/W
Thermal Resistance. Junction to Case
R8JC
125
°C/W
B
MI IMETERS
INCHES
MIN
DIM
MAX MIN MAX
4.450
A
0.205
502110 lo.m
3.1
B
4.1 0
.1
4.320
C
5.330 0.110
0.210
D
0.401
0.021
0.533 0.016
l
p
1.150
6.350
Q
430
R
2.410
2.030
S
1.390
1. 10
-
-
2.61
2.610
0.045
0.250
0.1
0.085
O.OBO
CASE 29-02
TO·92
1036
S
-ls::::rT
THERMAL CHARACTERISTICS
Characteristic
K
-
0.055
.050
-
0.105
0.105
MPS-H10, MPS-H11 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 e unless otherwise noted)
Svmbol
Min
Collector-Emitter Breakdown Voltage
(lC = 1.0 mAdc,lB = 01
"vCEO
.."
Collector-Base Breakdown Voltage
(lC = 100 "Ade, IE = 01
aVCRO
30
-
Vdc
Emitter-Base Breakdown Voltage
(IE = 10 "Adc, IC = 01
BVEBO
3.0
-
Vdc
Collector Cutoff Current
IVCB = 25 Vdc, IE = 01
ICBO
-
100
nAdc
Emitter Cutoff Currant
!VBE = 2.0 Vde, IC = 01
lEBO
-
100
nAdc
hFE
60
-
-
Colleetor-Emitter Saturation Voltage
IIC = 4.0 mAde, I B - 0.4 mAdel
VCElsatl
-
0.5
Vde
Base'Emiuer On Voltage
(lc = 4.0 mAde, VCE = 10 Vdcl
VBElonl
-
0.95
Vdc
IT
650
-
MHz
Cob
-
0.7
pF
0.35
0.6
0,65
0.9
-
9.0
Characteristic
OFF CHARACTERISTICS
Max
Unit
vae
ON CHARACTERISTICS
DC Current Gain
IiC = 4.0 mAde, VCE = 10 Vdel
DYNAMIC CHARACTERISTICS
Currant-Gain-Bandwidth Product
IiC= 4.0 mAde, VCE = 10 Vde, f = 100 MHzl
Collactor-Base Capacitanca
!VCB = 10 Vde, IE = 0, f = ,1.0 MHzI
Common-Base Feedback Capacitance
IVCB = 10 Vdc, IE = O. f = 1.0 MHzl
em
MP5-Hl0
MP5-Hl1
Collector-Base Time Constant
IiC = 4.0 mAde, VCB = 10 Vde, f = 31.8 MHzl
pF
rb'Cc
po
COMMON-BASE y PARAMI:TERS versus FREQUENCY
(VCB = 10 Vdc, Ie =4.0 mAdG. T A = 25°C)
Yib. INPUT ADMITTANCE
FIGURE 1 - RECTANGULAR FORM
80
Iis
...z
~
10
...........
:Ii
......
-10
9lb
60
i'..
w
g
50
-bib
40
c
:::>
FIGURE 2 - POLAR FORM
30
0.
!!: 20
-20
""
I-r---
'i
,...... ....
i'..
r'\
~
1
.......
10
200
300
400
500
100
."
-50
'\
100
-1000 MHz
-30
"
100
...........
400
2f- 1OO
--l-
I
I
-60
1000
10
f. FREQUENCV (MH"
20
30
40
!liblmmho,'
1037
50
10
80
MP8-H10, MPS·H11 (continued)
COMMON·BASE Y PARAMETERS versus FREQUENCY
(VCB = 10 Vdc, IC =4.0 mAde, T A =25°C)
Yfb, FORWARD TRANSFER ADMITTANCE
---
--
FIGURE 3 - RECTANGULAR FORM
1
oS
.,.
~
:z
<
70
60
50
40
Q
30
'"
20
.
10
<
~
z
~
Q
'"
i~
FIGURE 4 - POLAR FORM
60
bfb
r- ...........
.......
50
1
,,'b
.......
"-
""
0
·10
~
400
100
r--.... '-...
600,,"
700""-
j
40
!
t
"
30
"'
1000 MHz
20
-20
'\
~ -30
100
200
300
400
I, FREQUENCY (MHz)
500
700
10
1000
70
60
50
40
30
20
10
-10
-20
-30
1.2
1.6
2.0
!lib (mmhos)
Yrb, REVERSE TR.ANSFER ADMITTANCE
FIGURE 5 - RECTANGULAR FORM
FIGURE 6 - POLAR FORM
/
Jf'S.~l1 1--
100
/
·brb
/'
./
.....---::::::.
200
100
i
/
f-""
-2.0
400
~ -3.0
-brb
iPS'T
200
1
"" I-
./
./
........ V
/'
·1.0
I-
O
700
-4.0
I-
lIrb
300· 400
500
I, FREQUENCY (MHz)
1000 MHz
-5.0
700
1000 .
-2.0 -1.6
-1.2
-O.B
-0.4
0.4
O.B
grb (mmhos)
Yob, OUTPUT ADMITTANCE
FIGURE 8 - POLAR FORM
FIGURE 7 - RECTANGULAR FORM
10
j
9.0
E
B.O
~
7.0
oS
z
..g
.~
Q
<
:0
V
I
l/l0ooMHZ
B.O
V
l' 6.0
6.0
5.0
bob
4.0
3.0
0
!
10
:1.0
1.0
100
---
1
V
~
l..
,/
V
~
200
300
400
I, fREQUENCY (MHz)
-
500
4.0
I
700
f'i
200
2.0
..... V
700
100
1000
2.0
4.0
6.0
gob (mmho.)
1038
B.O
10
MPS-H17
(SILICON)
Advance Inforxnation
NPN SILICON
TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS
· .. designed lor CATV converter applications.
•
Low Collector-Base Capacitance Ccb = 0.9 pF (Max)
•
High Current-Gain - Bandwidth Product IT = 800 MHz (Min) @ IC = 5.0 mAdc
•
Low Noise Figure NF = 6.0 dB (Max)
@
I
= 200 MHz
l
j
~
i :i
SEATINGJt
PLANE
~
D-jl~~
=lR~
MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Collector Base Voltage
M
Emitter-Base Voltage
Total Power Dissipation @ T A = 25°C
Symbol
Value
Unit
VCEO
15
Vdc
VCB
20
Vdc
VEB
3.0
Vdc
PD
625
5.0
mW
mW/oC
TJiTstg
-55 to +150
°c
Derate above 25°C
Operating and Storage Ju nction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
(Printed Circuit Board Mounting)
K
I
Symbol
R8JA
I
Max
Unit
200
°C/W
lor
tgt~
STYLE
2: BASE
PIN 1.
2. EMITIER
1 2 3
000
3. COLLECTOR
DIM
A
B
C
D
F
--l
MILLIMETERS
MIN
MAX
S
5.200 .0.175
4.1HU 0.125
5.330 0.170
0.533 0.016
".482 "."16
L
N
1.150
1.390
1.270
P
6.350
3.430
2.410
2.030
D.5OU
R
S
2.670
2.670
0.045
0.250
0.135
0.095
0.080
CASE 29-112
TO-92
This is advance information on a new introduction and specifications are subject to change without notice.
1039
S
B
INCHES
MIN
MAX
4.450
3.1su
4.320
0.407
".4U7
°
=r-r
0.205
0.165
0.210
0.021
"."1'
0.055
0.050
0.105
0.105
MPS-H17 (continued)
ELECTRICAL CHARACTERISTICS (TA = 2So C unless otherwise noted)
I
Characteristic
I
Symbol
Typl
Min
Max
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage
(lc = 1.0 mAde, IB = 0)
BVCEO
Coliector·Base Breakdown Voltage
(lC = 100 "Adc, IE = 0)
BVCBO
Emitter·Base Breakdown Voltage
(IE = 10"Adc, IC =0)
BVEBO
Collector Cutoll Current
(VCB = 15 Vdc, IE = 0)
Vdc
IS
-
-
20
-
-
3.0
-
-
-
-
100
25
-
250
-
-
0.5
800
-
-
0.3
-
0.9
30
-
-
-
-
6.0
Vdc
Vdc
ICBO
nAdc
ON CHARACTERISTICS
DC Current Gain
(IC =5.0 mAde, VCE = 10 We)
hFE
Coliector·Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
VCE(sat)
Vdc
DYNAMIC CHARACTERISTICS
Current·Gain - Bandwidth Product
(lC = 5.0 mAde, VCE = 10 Vdc, I = 100 MHz)
IT
Coliector·Base Capacitance
(VCB = 10 Vdc, I = 1.0 MHz)
Ccb
Small-Signal Current Gain
(lC = 5.0 mAde, VCE = 10 Vdc, 1·1.0 kHz)
hIe
Noise Figure (Figure 1)
(IC = 5.0 mAde, VCC
NF
= 12 Vde, AS = 50 ohms, I = 200 MHz)
MHz
pF
dB
FUNCTIONAL TEST (Figure 2)
Common-Emitter Amplifier Power Gain
(Ie = 5.0 mAde, Vee = 12 Vdc, AS = 50 ohms, 1= 200 MHz)
FIGURE 1 - 200 MHz FUNCTIONAL TEST CIRCUIT
(NEUTRALIZED)
VAGC
VCC" 12 V
270
1/2W
FIGURE 2 - TYPICAL COMMON EMITTER POWER
.
GAIN AND NOISE FIGURE
I
30
~
z
;;: 24
co
0:
~
~
""
.......
If
8.0
t"-....
II
12
\.. 1--
z
--
'-NF
-' -'"
:IE
:IE
.,
0
T"
J
1000PF11'
2.0
4.0
6.0
8.0
10
12
14
IC. COllECTOR CURRENT (mAl
390
1I2W
TI "FERRITE CORE INOIANA GEN. CORP. F·684
T2" 6 TURNS#16 BUSSWIRE.IO" 114", L" 3/4"
1040
u::
w
o
4.O!!!
z
RS"50n
~
1=200MHz-2.0
VCC" 12V
6.0
o
o
6.O~
::>
co
l ' r-...
0
50 OHMS
INPUT
iii
:g
........... I
IB
0:
~:IE
-.....Gp.
/'
16
18
o
20
MPS-H 19 (SILICON)
NPN SILICON EPITAXIAL TRANSISTOR
... designed for VHF mixer applications in TV receivers.
•
NPNSILICON
VHF TRANSISTOR
Excellent Conversion Gain - 15 dB (Min) @2ooMHz
=0.65 pF (Max)
•
Low Collector·Base Capacitance - Ccb
•
High Current·Gain-Bandwidth Product fT 300 MHz (MinI
•
Complete y·Parameters @ 4.0 mA
=
MAXIMUM RATINGS
Rating
Symbol
V.•I~e
Unit
VCEO
25
Vde
Ulliector-Ba.. Voltage
VCB
30
Vde
Emltter-Bese Voltage
VEB
PD
3.0
Vde
350
2.73
mW
mWf'C
-56 to +150
°c
Coliector·Emitter Voltage
Total Power Dlnlpation .. T A - 25°C
Darate above 250 C
Operating and Storage Junction
Temparature Range
TJ,Tstg
THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Ambient
ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
I
Min
Max
Unit
BVCEO
25
-
Vde
Collector-lIMe Breakdown Voltage
(lC - 100 ,.Adc, IE ·01
BVCBO
30
-
Vde
Emitter-B... Breakdown Voltage
liE - 10 ,.Adc, IC· 01
BVEBO
3.0
-
Vde
ICBO
-
100
nAde
Cher_istic
OFF CHARACTERISTICS
Collector-Emitter Braekdown Voltage
(IC = 1.0 mAde,lB =01
Collector Cutoff Current
(VCB = 15 Vdc, IE = 01
Symbol
ON CHARACTERISTICS
DC Cumlnt Gain
(lC =4.0 mAde, VCE - 10 Vdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth PrOduct
(lC = 4.0 mAde, VCE - 10Vdc, f - 100 MHzl
STYLE 2:
PIN 1.
2.
3.
~
A
B
C
0
F
fT
300
-
MHz
Collector-lIMe Capacitance
(VCB· 10 Vde, IE • O~ f· 1.0 MHzl
Cob
-
0.65
pF
Conversion Gain (Figu.ras I and 21
(213 MHz to 45 MHzi
IIC = B.O mAde, VCC = 20 Vde,
GpC
15
-
L
N
P
a
R
S
~
3.180
4.320
0.407
0.401
1.150
6.350
3.4~
2.410
2.030
INCHES
MAX MIN
MAX
5.200 0.175
O.~5
4.190 . 0.125
0.165
5.330 0.1
0.210
0.021
0.533 0.016
0.019
0.482 0.016
1.390
1.270
2.670
2670
0.045
0.250
o.!~)
0.095
0.080
dB
Oscillator Injection· 150 mVrms)
1041
CASE 29-02
T0-92
-
0.055
0.050
-
0.105
0.105
MPS-H19 (continued)
CONVERSION GAIN CHARACTERISTICS
(TEST CIRCUIT FIGURE 2)
(fsig· 213 MHz, fif - 4& MHz, B.W.· 6.0 MHz)
FIGURE 1 -CONVERSION GAIN
FIGURE 2 - VHF MIXER TEST CIRCUIT
40
60n
INPUT
1.&-.20
35
;a 30
:s
z
~
Z
5
Q
20
!I;!
15
i:i
z
8
l;!
0
'"
5. 0
........
~
./
~
I
~
I\.
\
ALL CAPACITANctVAL~S IN pF.
+20 V
L1 =3 TURNS #16 AWG, TAPPEO 112 TURN.
-VEE
L2. 10 TURNS #26AWGWITH ARNOLD At·10CORE.
0
2.0
4.0
6.0
8.0
10
14
12
16
18
20
IC. COLLECTOR CURRENT(mA)
COMMON·EMITTER y PARAMETERS
(VCE = 10 Vde. IC = 4.0 mAde, TA = 2SoC)
FIGURE 3 - INPUT ADMITTANCE
FIGURE 4 - REVERSE TRANSFER ADMITTANCE
j
20
1.0
e
.s
~
z
2
~
./
V
./
~
4.0
~
~
Y
~
:E
Q
O.S
/
""
~
-'
:l 0.4
'"w
'"ffi o.2
1---.....
60
80
100
200
gre
0
300
30
40
60
f. FREQUENCY (MHz)
FIGURE S - FORWARD TRANSFER ADMITTANCE
0
_ 2.0
1
~ 1.S
'i
-
l-
40
200
so
"'r-!" ........
L
~
L
L
.L.
L
1.2
~
t-....
~
~ O.8
'"!
100
boo
:E
t
80
300
2.4
w
I- r-
0
30
100
FIGURE 6 - OUTPUT ADMITTANCE
2.8
0
80
f. FREQUENCY (MHz)
0
-
L
./"
-f-" ....
1:;
'"!
40
V
-bre
~
o
30
o. 8
~
200
f. FREQUENCY (MHz)
k'"
r"""
o.4
0
30
300
V
goo
40
so
80
100
f. FREQUENCY (MHz)
1042
200
300
MPS-H20 (SILICON)
NPN SILICON EPITAXIAL TRANSISTORS
NPN SILICON
VHF TRANSISTOR
· .. designed for VHF mixer applications in TV receivers.
•
Excellent Conversion Gain - 23 dB (TVp I
•
Low Collector-Base Capacitance - Ccb = 0.65 pF (Max)
•
High Current-Gain-Bandwidth Product -
•
Complete v-Parameter Curves from 50 to 300 MHz
•
One-Piece, Injection Molded Unibloc Package
IT =400 MHz (Min)
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
30
Vdc
Collector-Sa.e Voltage
VCB
40
Vdc
Emitter-Sase Voltege
VES
4.0
Vdc
IC
100
mAde
= 25°C
Po
625
5.0
mW
mW/oC
T C = 25°C
Po
1.5
12
Watt
mW/oC
T J, T.tg
-55 to +150
°c
Rating
Collector-Emitter Voltage
Collector Current - Continuous
Total Power Dissipation @TA
Oerate above 25°C
Total Power Dissipation
Oerate above 25°C
@
Operating and Storage Junction
Temperature Range
PIN 1.
BASE
2. EMITTER
3
THERMAL CHARACTERISTICS
Symbol
Mex
Unit
Thermal Resistance, Junction to
Ambient
R8JA
200
°c/w
Thermal Resistance, Junction to
Case
R8JC
Characteristic
83.3
°C/W
COL,LECTOR
DIM
A
C
D
F
MILLIMETERS
MIN
MAX
..
0
.1
'.3ZO
0.407
L
1.150
P
6.350
3.'30
2.410
2.030
Q
S
-
.20
.9
5.3
0.533
-
1.390
1. 0
-
2.670
2.670
INCHES
MIN
MAX
0.1
0.125
0.1 0
0.016
.1
.2
.1
.110
0.021
9
0.045
0.055
.050
-
0.250
.1
.095
0.080
CASE 29·02
TO·92
1043
-
0.105
0.105
MPS·H20 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
I
I
ChIo-mtio
Symbol
I
Min
Typ
Max
Unit
OFF CHARACTERISTICiI
Colle.tor-Emltter Sreakdown Voltage (1)
(lC = 1.0 mAd.,IB = 0)
,
SVCEO
30
-
-
Vde
Collector-S... Sreakdown Voltage
(lC • l00I'Adc, IE ·0)
SVCBO
40
-
-
Vdc
Emltter-S... Sreakdown Voltege
(IE • 10l'Adc, IC· 0)
SVEBO
4.0
-
~
Vdc
ICSO
-
-
50
nAdc
fy
400
620
-
MHz
Cob
-
0.6
0.66
pF
Collector-BaH Time Constant
(IE = 4.0 mAde,VCS- 10 Vdc, f=31.S MHz)
'b'Cc
-
10
-
PI
,Conversion Gain (21310 45 MHz)
(I C = 4.0 mAde, VCE • 10 Vde, Oscillator
Injection = 200 mVdc, See Figures 1,2 and 9)
GpC
IS
23
-
dS
Collector Cutoff Current
(VCS· 16 Vde, IE ·0)
ON CHARACTERISTICS
DC Current Gain (1)
(lC· 4.0 mAde, VCE • 10 Vde)
SMALL41GNAL CHARACTERISTICS
Current-Gain-Bandwldth Product (1)
(Ie· 4.0 mAde, VCE 10Vdc,f-l00 MHz)
=
Collector-S... Capacltanca
(VCS = 10 Vdc, IE ·0, f· 1.0 MHz)
(11 Pulse Taft: Pul. Width
< 3001", Duty Cycl. < 2.0".
CONVERSION GAIN CHARACTERISTICS
(TEST CIRCUIT FIGURE 9)
FIGURE I - VARIATION WITH COLLECTOR CURRENT
50
VcJ ·10 v~e
45
I
40
Osclllator,lnjection = 200 mV
f... • Z58 MHz
iz
36
fslg"213MHZ
flF =45MHz
~
30
co
z
25
.
20
in
a:
FIGURE 2 - VARIATION WITH INJECTION LEVEL
40
I
iz
C
-
V
~
z' 15
co
CD
z
20
~
z
15
in
a:
B
...cl
'"
6.0
o
1.0
2.0
3.0
Ie, COLLECTOR CURRENT (mAdel
4.0
V
V
/
~
V
10
5.0
, 0
o
Ic·4.0mAdo
fslg'213MHz
flF" 45 MHz
25
co
I;! 10
'"
~veIE'10vL
35
30 _
5.0
o
100
200
300
VI, OSCILLATION INJECTION (mV)
400
COMMON·EMITTER y PARAMETERS
(lC" 4.0 mAde. VCE
= 10 Vde, TA = 25°C)
FIGURE 3 -INPUT ADMITTANCE
28
.
z
I
/i
24
IE
.s...
//1;1- r-
20
/
./
E
16
co
12
:&
fsig =213 MHz, lose =275 MHz _
&!
0
&!
Osc Inj = 150 mVrms
o
2.0
4.0
6.0
/"
20
~
10
o
z
;;:
co
z
8
"'
.".. I--"
>
z
z
8
fsig'" 60 MHz, fOst '" 104 MHz
30
~
8.0
I
/
-
10
IC =8.0 mAde
co
10
12
14
100
16
IC, COLLECTOR CURRENT (mAde)
lsig =213 MHz, lose =275 MHz_
200
Vi, OSCILLATOR INJECTION (mV)
1047
300
400
MPS-H24 (continued)
COMMON·EMITTER y PARAMETERS
(VCE 15 Vdc, TA 250 C}
=
=
FIGURE 4 - REVERSE TRANSFER ADMITTANCE
FIGURE 3 - INPUT ADMITTANCE
1 o.1
50
I.
g
40
w
z
..
:::>
i.
-'
.,/
20
t-
~
-
30
:IE
0
~
---213MH,
- - &OMH,
-
/
,
10
I
0.06
'"
W
8.0
B.O
l!i
-b"
II:
..::= k
0.04
II:
....
ll!
ffi
.~
i;;
bla "--- r=
12
14
CURR~NT
(mAde)
10
16
gre < -0.01 mmho
g
?
-
I---"
lC. COLLECTOR
~ 0.08
g
110
1---
bit
:::::.o :::::.
o 2.0 4.0
.....
f=45MH'
1
".""
18
0.02
oc
o
20
o
2.0
200
/'
~ 120
II:
W
~
80
Vile
t-
ooc
io
40
.;.
0
./'
/
...
V
14
16
18
20
f'45MH,
)
go.....
iii 0.4
o
'"
~~
/'
/'
,/
12
!
/
.
10
1! 0.6
"'\.
V
~
B.O
FIGURE 6 - OUTPUT ADMITTANCE
0.8
r--.....
..........
"45MH,
!I!! 1&0
6.0
IC. COLLECTOR CURRENT (mAde)
FIGURE 6 - FORWARD TRANSFER ADMITTANCE
j
4.0
V
0.2
~
/b"
/"
V
7
V
....--
boa
V'
o
L'
2.0
4.0
6.0
8.0
10
12
14
16
18
2.0
20
4.0
6.0
B.O
10
12
14
16
18
20
IC. COLLECTOR CURRENT (mAde)
IC. COLLECTOR CURRENT (mAde)
FIGURE 7 - VHF MIXER TEST CIRCUIT'
(fil = 44 MHz, B.W. = 6.0 MHz)
fig
IIOMH,
ll. MH'
OIl:
IUIMH,
258 MH.
15-ZO.F
B.1J.12pF
1.5-ZO.F
Cl
C2
C3
C4
C5
Ll
L2
l.3
1.5·20 pF
lJ.O.&opF
IJ.O.8OpF
3.0·35.F
1.5-ZOpF
ST•••"26
Air. Tap ITurn
10 T""" 126
Ai.
OhmlttZ235
-
L2
Cl
C4
RL -son
O.U~
pF - 60MH.
C2
TRAP
3T.... II8
Ai•• TIp II T.m
10T.... 126
A.noldAl·l0
Core
~
-VEE
1048
470
pF
~ <20 V
MPS-H30 (SILICON)
MPS-H31
NPNSILICON
IF AMPLIFIER
TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS
· . . designed for first and second video IF stages in TV receivers.
• Guaranteed Noise Figure NF = 6.0 dB (Max) at 46 MHz
• Guaranteed AGe Characteristics
• Complete y·Parameter Curves at 46 MHz
• Guaranteed Power Gain Gpe = 22.6 dB (Min) (Unneutralized) at 46 MHz
J 1~
MAXIMUM RATINGS
Rating
Collecto,·Emitt., Voltege
SymbD.
Volua
Unit
VCEO
20
Vde
Collector-Base Voltage
VCS
20
Vdc
Emitter·Be .. Volt"",
Vea
3.0
Vd.
Collector Current - Continuous
IC
50
mAde
Totel Po"", Dillipation .. T A • 2sOc
Derate above 26"C
Po
350
2.a
mW
mWI"C
Tote. Po_ Dissipation" TC D 25°C
Derate above 26°C
Po
1.0
a.o
Wett
mW/OC
TJ.TII1I
-55 to +150
OC
..,.....
Mall
Unit
Thermal Resistance, Junction to Ambient
R9JA(1I
357
OCIW
Thermal Resistance. Junction to Ca_
. R8JC
126
OC/W
Operating and Storage Junction
Tamperature Range
THERMAL CHARACTERISTICS
Chor_ittic
-7
~
~
SEATINGJt
PLANE
(11 R8JA is m.asured with tho doviCllOldered into a typical printed cl'cult board.
-F!
U
D-H-
-- RH-L
t--
STYLE 2:
PIN 1.
EMITTER
2. BASE
3. COLLECTOR
1°r
J
~
0
0
0
S
MIL IMETERS . INCHES
DIM MIN
MAX MIN
MAX
• A
4.Q
O.lUD
UUU U.IID
4.32
6.330
0.40
0.533
L
N
1.1
1.390
120
P
6.350
S
.430
.410
2.030
C
D
O.17U
0.016
U. 10
0.021
U.UI9
0.045
0056
.06
0.250
0.1;)5
2.670
2.610
.09
0.090
CASE 29.Q2
TO-92
1049
s a
0.105
0.105
MPS-H30, MPS-H31
(continued)
ELECTRICAL CHARACTERISTICS
(TA
= 25'C unless otherwise noted)
Symbol
Characteristic
Collector -Emitter Breakdown Voltage
(IC = 1.0 mAde, IB = 0)
BVCEO
Collector-Base Breakdown Voltage
(IC = 100 "Ade, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage_
(IE = 100 "Ade, IC = 0)
BVEBO
Collector Cotoff Current
(VCB = 10 Vdc, IE = 0)
ICBO
Min
Max
Unit
-
Vde
20
-
Vde
20
3.0
-
-
50
20
200
0.1
3.0
-
0.96
Vde
nAdc
ON CHARACTERISTICS
DC Current Gain
(IC = 4.0 mAdc, VCE = 5.0 Vde)
hFE
Collector-Emitter saturation Voltage
(IC = 10 mAde, IB = 5.0 mAde)
VcE(sat)
Base-Emitter saturation Voltage
(IC = 10 mAde, IB = 5.0 mAde)
VBE(sat)
Vde
Vde
SMALL·SIGNAL CHARACTERISTICS
Current-G_andwidth Product
(IC = 4. 0 mAde, VCE = 10 Vde,. f = 100 MHz)
fT
Collector-Base Capacitance
(VCB = 10 Vde, ~ = 0, f = 1. 0 MHz, emitter guarded)
Ceb
Noise Figure
(V AGC = 2.75 Vde, RS = 50 ohms, f = 45 MHz, Figure 9)
NF
MHz
300
800
-
0.65
-
6.0
22.5
31
4.4
5.2
5.4
6.2
pF
dB
FUNCTIONAL TESTS
Power Gain
(V AGe = 2.75 Vde, RS = 50 ohms, f = 45 MHz, Figure 9)
Gpe
Forward AGC Voltage
(Gain Reduction = 30 dB, RS = 50 ohms, f = 45 MHz, Figure 9)
VAGC
MPS-H30
MPS-H31
dB
Vdc
AGC CHARACTERISTICS
Vee
=
12 Vdc, AS
=
50 Ohms, f
=
45 Ml:lz, See FIgure 9
FIGURE 2- NOISE FIGURE
FIGURE 1-POWER GAIN
4
0
5
V
I
0
-5
,
/
0
o
II
1.0
5'
3
\
/
5
2
........
1\
~
8.0
I
6.0
!I!.
4.0
\
2.0
1\
3.0
4.0
5.0
YAGC, AUTOMATIC GAIN CONTROL YOlTAGElVOlTS)
I
0
/
\
J
./
L..--'
2.0
0
6.0
1050
1.0
5.0
2.0
3.0
4.0
YAse,AUTOMATIC GAIN CONTROL YOlTAGEIYOlTS)
6.0
MPS-H30, MPS-H31 (continued)
COMMON-EMITTER y PARAMETERS
VeE =12 Vdc, TA '" 26oC, f= 45 MHz
FIGURE 3-INPUT ADMITTANCE
FIGURE 4- REVERSE TRANSFER ADMITTANCE
100
0.3
80
0.250
/
),.{
----
./
2
V
2.0
4.0
8.0
6.0
10
~
12
2.0
~
120
~/
I 100
~
g
i!i
80
~
60
"'~"
/
V
I
~
;i 40
~
~ 20
/
-\
f
/'
/
/
.,/
2.0
1/
4.0
8.0
12
10
FIGURE 6-0UTPUT ADMITTANCE
0.9
0.8
I
\
\
I''""
8.0
0.7
~
0.6
~
O. 5
~
J
by
5: 0.4
.~
6.0
6.0
1.0
-\
-bfe
4.0
Ie, COLLECTOR CURRENT (mAdel
FIGURE 5- FORWARD TRANSFER ADMITTANCE
140
- ---
V
Ie, COLLECTOR CURRENT (mAdel
160
;;
I
0.05
o
1/
-b~
b,:---""
-::::::-
-20
-40
-In/
0
~
10
0.3
/
..-
"'" /
V
~ V
0.2
O. I
0
12
Ie, COLLECTOR CURRENT (mAdel
~
2.0
----
4.0
6.0
;;./
8.0
Ie, COLLECTOR CURRENT (mAdel
1051
/
J
10
12
MP~-H30,
MPS-H31 (continued)
FIGURE 7- DC CURRENT GAIN
50
Ve,= 10Yde
TA = 25°C
30
--I
~
.,-
.... ~
----
-
1.2
~1.1
\
i
\
IS 10
1
(C,b=C.. @I,=o)
TA = 2SoC-
'i
\
20
FIGURE 8- COLLECTOR-BASE CAPACITANCE
1.3
~ 1.0
7.0
-
~ 0.7
S
\
r-.....
J
0.5
r-.
~
5.0
3.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
20
0.3
0.1
0.2 0.3
Ie. COLLECTOR CURRENT (mAde)
0.5 0.7 1.0
5.0 7.0 10
Ve.. COlLECTOR· BASE VOLTAGE !VOLTS)
FIGURE 9 - 45 MHz FUNCTIONAL TEST CIRCUIT
(UNNEUTRAUZEDj
RF BEADS
,lOOOpF
2.0 3.0
I~
Uk
!U
4.0-30pF
T, = TOROI04,IRATIO } #22 WIRE
8T.f'RI2T-SEC
1052
"
20 30
MPS·H32 (SILICON)
NPNSILICON
VHF TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR
• .. designed for first and second video IF $tages in TV receivers.
• LoiN Coliector·Base Capacitance - Ccb = 0.22 pF (MaxI
• Maximum Unilateralized Power Gain Gum" 44 dB (Tvpl
• Low Noise Figure - NF .. 3.3 dB (Tvpl
@
f = 45 MHz
• Forward AGC Characteristics
• Complete v·Parameter Curves at 45 MHz
• Guarant4led Power Gain Gpe" 22.5 dB (MinI (Unneutralizedl
@
f =45 MHz
MAXIMUM RATINGS
Rati",
SymbDl
Value
Unit
Vdc
VCEO
30
Collector·ease Voltage
Vce
40
Vdc
Emitter·Base Voltage
VEB
4.0
Vdc
Po
310
2.81
mW
mW/oC
TJ T.tg
-55 to +135
°c
Characteristic
SymbDl
Max
Unit
Thermal Resistance. Junction to Case
R8JC
0.137
°C/mW
Coliector·Emitter Voltage
Total Power Dissipation @TA = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
. Thermal Resistance. Junction to Ambient
R8JA
INCHES
MIN
MAX
.1
0.357
0.05
.1
°C/mW
5.330 0.170
0.533· O. 16
0.210
0.021
1.390
1.
0.055
0.050
.1
p
Q
S
6.350
3.4
2.410
2.030
2.60
.610
0.045
0.250
.1
0.095
0.060
CASE 29.Q2
TO·92
1053
0.1 5
0.105
MPS·H32 (continued)
ELECTRICAL CHARACTERISTICS ITA
=25°C unless otherwise noted)
Min
TVp
Max
Unit
-
Vde
-
Vde
OFF CHARACTERISTICS
Collector-Emitter B....kdown Voltage
IIC= 1_0 mAde,lB D 01
BVCEO
30
Collector-Base B....kdown Voltage
IIC = loo,.Ade,IE = 01
BVCBO
40
-
Emitter-B.... Breakdown Voltage
liE = loo"Ade,lc· 01
BVEBO
4_0
-
-
Vde
ICBO
-
-
50
nAde
hFE
27
35
200
Collector-Emitter Saturetlon Voltage
IIC = 10 mAde, IB = 5_0 mAdel
VCE(satl
-
1_5
3_0
Vde
Base-Emitter Saturation Voltega
(lC = 10 mAde, IB = 5.0 mAdcl
VBE(satl
-
O.g
1.2
Vde
f,-
300
440
-
MHz
Cob
-
0.2
0.22
pF
NF
-
3.3
-
dB
Gpe
22.5
25
-
dB
VAGC
-
5.5
-
Vdc
6.0
-
mmhos
Collector Cutoff Current
(VCB = 10 Vde, IE = 01
ON CHARACTERISTICS
DC Current Gain
(lC = 4_0 mAde, VCE
=5_0 Vdcl
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, 1= 100 MHzl
Collector-Base Capacitance
(VCB = 10 Vde, IE • 0, I
= 1_0 MHzl (Emitter Guardedl
Noise Figure (Figure 101
(lE"'4.0 mAde, VCE""9.3 Vdc, VAGC
RS = 50 Ohms, I = 45 MHzl
= 2.75 Vde,
FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (Figure 101
(lE""4.0 mAde, VCE""9.3 Vde, VAGC = 2.75 Vde,
RS = 50 Ohms, I • 45 MHzl
Forwerd AGC Voltaga (Figure 101
(Gain Reduction· 30 dB, RS = 50 Ohms, f = 45 MHzl
SUMMARY·COMMON EMITTER PARAMETeRS (VCE
=
10 Vde, IC = 4.0 mAde, f
I nput Conductance
gie
I nput Capacitance
Cie
Forward Transler Admittance Magnitude
IVlel
=
45 MHzl
-
33
Feedback Capecitance
ere
-
Output Conductance
90e
-
20
Output Capacitance
Cae
-
1.4
Maximum Unilateralized Power Gain
Gum
-
44
Forward Transfer Admittance Phase Angle
~Yfe
IVfel 2
Gum = - - 4gie9oe
1054
pF
110
-
mmhos
-22
-
Degrees
0.2
pF
,.mhos
pF
dB
MPS·H32 (continued)
AGC CHARACTERISTICS
Vee
= 12 Vdc. RS = 50 Ohms. f = 45 MHz. See Figure 10
FIGURE 1 - POWER GAIN
FIGURE 2 - NOISE FIGURE
B.O
30
25
.
20
:!i!
z
15
0:
10
:cco
~
/
v
7.0
""'"
\
:!i!
~ 5.0
I\.
I
~ 5.0
~
~ 4.0
~
..:
\
\
o
3.0
z 2.0
-5.0
-10
\
:::>
co
I\.
I
co
/
.. 6.0
V
.....
1.0
1,\
2.0
1.0
3.0
5.0
4.0
VAGC. AUTOMATIC GAIN CONTROL VOLTAGE (VOLTS!
"
V
/
2.0
1.0
6.0
4.0
3.0
5.0
6.0
VAGC. AUTOMATIC GAIN CONTROL (VOLTS)
COMMON-EMITTER y PARAMETERS
VCE = 10 Vdc. f = 45 MHz. TA = 25°C
FIGURE 3 - INPUT AOMITTANCE
FIGURE 4 - REVERSE TRANSFER ADMITTANCE
"i
60
~
/
/
o
-;::::::::.::::::-
o
2.0
/ -
oS
~
z
~
gia
/
,.
!:: 0.2
~
0:
W
.'"
u..
z
bie
e:
..--:::: ~
--
0.3
~
0:
W
G;
~
6.0
B.O
IC. COLLECTOR CURRENT (mAde)
10
0
o
12
2.0
160
~
140
~
"li
~
120
~
~
I-
o
111.
100
80
40
f2
20
!
0
~
V
60
0:
B.O
4.0
6.0
IC. COLLECTOR CURRENT (mAde!
10
0.6
g
~
gra
.,..
" "'---
V-bf'
/
o
/
V
/ .,../
/'"
2.0
t-......
4.0
6.0
B.O
IC. COLLECTOR CURRENT (mAde!
0.5
~
oS
~
0.4
~ 0.3
\
~
.
i
o
l-
r-.
f
I-
0.2
/
:::>
r--
"!
o.1
o
10
12
FIGURE 6 - OUTPUT ADMITTANCE
FIGURE 5 - FORWARD TRANSFER ADMITTANCE
"li
-/-
.-/
0:
4.0
/
0.1
~
12
1055
o
2.0
-----
PI
~
~.
/
4.0
B.O
6.0
IC. COLLECTOR CURRENT (mAde!
10
12
MPS-H32 (continued)
FIGURE 8 - COLLECTOR-BASE CAPACITANCE
FIGURE 7 - DC CURRENT GAIN
1.0
80
40
z
~
i
iw
r- JCE"llO~d~
30
\.
20 i"""
\
'"'"
~
.c
~
0.3
I--,;,
0.2
~
-t--
~ 0.1
6.0
4.0
3.0
0.2
0.5
i
~
'" 10
~B.O
Cob· c,. IPIE" 0
0.7
'"
~
8
j
0.3
0.5
1.0
2.0
3.0
5.0
10
0.07
0.05
0.3
20
0.5 0.7
IC. COLLECTOR CURRENT (mAdel
1.0
2.0 3.0
5.0 7.0 10
VCB. COLLECTOR·BASE VOLTAGE (VOLTSI
20
30
FIGURE 9 - CURRENT-GAIN-BANDWIDTH PRODUCT
isoo
-~
a!
t:::>
g
g:
VCE" 10Vd,
300
........
.......
"-I'\.
1
200
'\
~I
I'"
Z
;;: 100
~
w
~
:::>
'"
.t:
""
70
50
1.0
2.0
5.0
3.0
IC. COLLECTOR CURRENT (mAd.1
FIGURE 10 - 46 MHz FUNCTIONAL TEST CIRCUIT
lUNNEUTRALIZEDI
''''
tllDOpF
vce-Uy
IIFUAOl
m
•• w
~
-
10."",
"''''' "
...
In
II T1
Uk
1/2W
n
~
_I~
Inw
l 1-
~
n.T.oRtHD4:1U.TIO!
IT.pRI2T.stlC
1056
1Z2W4RE
......
au"",
7.0
10
MPS-H34 (SILICON)
NPN SILICON EPITAXIAL TRANSISTOR
NPN SILICON
... designed for third·stagevideo I F applications in television receivers.
•
High Collector-Emitter Breakdown Voltage BVCEO = 45 Vdc (Min)
•
High Collector-Base Breakdown VoltageBVCBO = 45 Vdc (Min)
•
Low Collector-Base CapacitanceCcb = 0.32 pF (Max) @ VCB = 10 Vdc
•
Complete v-Parameter Curves @ 45 MHz
IF TRANSISTOR
MAXIMUM RATINGS
SYmbol
Value
Unit
VCEO
45
Vdc
Collector-Base Voltage
VCB
45
Vdc
Emitter-Base Voltage
VEB
4.0
Vdc
Collector Current - Continuous
IC
100
mAde
Total Power Dissipation @ TA = 25°C
Derate above 25°C
Po
625
50
mW
mW/oC
Total Power Dissipation @ TC - 2sOC
Derate above 25°C
Po
1.5
12
Watt
mW/oC
TJ.T,tg
-55 to +150
OC
Rating
Collector-Emitter Voltage
Operating and Storage Junction
STYLE 2:
PIN 1. BASE
2. EMITIER
3. COLLECTOR
Temperature Range
DIM
Symbol
Max
Unit
A
8
C
R8JAll)
200
°C/W
F
R8JC
83.3
°C/W
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance. Junction to Case
(1) R8JA is measured with the device soldered into a typical printed circuit board.
o
K
L
N
p
a
R
S
MILLIMETERS
MIN
MAX
4.450
J.1HU
4.320
0.407
u.407
!.700
1.150
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
5.200 I 0.175
4.19u I U.110
5.330 0.170
0.533 0.016
0.482 __ u.ul0
__U.~UU
1.390 0.045
1.270
0.250
0.135
2.670 0.095
2.670 0.080
CASE 29-02
TO-92
1057
~._~~
.0.165
0.210
0.021
_u.ul._
0.055
0.050
0.105
0.105
MPS-H34 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
Characteristic
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage 11)
(lC = 1.0 mAde, IB = 0)
Collector-Base Breakdown Voltage
(lC
= lOO/lAde,IE = 0)
Emitter·Base Breakdown Voltage
liE = 10 /lAde, IC = 0)
Collector Cutoff Current
IVCB = 30 Vde, IE = 0)
Symbol
Min
BVCEO
45
BVCBO
45
BVEBO
4.0
ICBO
-
-
50
40
15
-
-
Typ
Max
Unit
Vde
-
-
Vde
Vde
nAde
ON CHARACTERISTICS
DC Current Gain 11)
(lC = 7.0 mAde, VCE = 15 Vde)
(lc = 20 mAde, VCE = 2.0 Vde)
hFE
Collector-Emitter Saturation Voltage
(lc
= 20 mAde,lB = 2.0 mAde)
Base-Emitter On Voltage
(lC
= 7.0 mAde, VCE = 15 Vde)
VCElsat)
0.5
Vde
VBElon)
0.95
Vde
DYNAMIC CHARACTERISTICS
Current·Gain Bandwidth product 1,1)
(lc = 15 mAde, VCE = 15 Vde, f = 100 MHz)
Current·Gain - Bandwidth Ratioll)
(lC = 15mAdc to IC = 20mAdc, VCE
f-r
f-r15
-
= 15Vde, f = 100 MHz)
= 0, f =
720
-
-
1.6
-
-
0.25
0.32
pF
MHz
f-r20
Collector-Base Capacitance
IVCB = 10 Vde, IE
500
Ceb
1.0 MHz)
11) Pulse Tast: Pulse W,dth .. 300 /lS, Duty Cycle .. 2.0%.
FIGURE 1 - CURRENT·GAIN - BANDWIDTH PRODUCT
0
FIGURE 2 - POWER GAIN
r- VC~ = 15 vide
6 I---
TA = 25 0 C
TA = 250 C
2 b f =45MHz
0
-r---..
V
0
(See Circuit Figure 7)
b-"
/
0
1/
/
"~
I
1
10
12
14
16
18
'"
1'\
-~
1\
16
B.O
-..;.
0
0
6.0
-
V
4
"
4.0
/'
B
I'.
J
2.0
v6c = 15 [Vde
20
IC, COLLECTOR CURRENT (mAde)
o
2.0
4.0
6.0
8.0
10
12
14
IC, COLLECTOR CURRENT (mAde)
1058
16
18
\
20
MPS-H34 (continued)
COMMON-EMITTER Y PARAMETERS
(f = 45 MHz, VeE = 15 Vdc, TA
FIGURE 4 - REVERSE TRANSFER ADMITTANCE
FIGURE 3 - INPUT ADMITTANCE
v
B.O
....
1oS
.- /
60
.
w
'-'
~
c
"
~
iE 4.0
!:
~
r--
2. 0
/
--
i
o. 1
1
,.~
0.08
-bra
~
V
~ 0.06
bie
":li
/
gre < -0.01 mmho
~
~ 0.04
/
I-
tlj
ffi
~
0.02
'"
0
2.0
=25°C)
4.0
6.0
B.O
12
10
14
16
18
o
o
20
2.0
4.0
1
,/
oS
w 160
g
"'"
I-
~
~
~
~
L
80
40
/'
/gl.
,J
~
iE
V
c
0.4
-
<[
=>
:=
10
12
14
20
)
go.
l-
g
~
8.0
18
w
'-'
/ble
6.0
16
'"
/'
4.0
14
~
0.2
/'
-,;;7
..... /
2.0
12
10.6
./
'"
w
z
"
/
~
10
0.8
r---....
V
'" 120
~
v
8.0
FIGURE 6 - OUTPUT ADMITTANCE
FIGURE 5 - FORWARD TRANSFER ADMITTANCE
~ 200
6.0
IC, COLLECTOR CURRENT (mAde)
IC. COLLECTOR CURRENT (mAde)
16
18
2.0
20
4.0
6.0
8.0
.---10
12
FIGURE 7 - 45 MHz FUNCTIONAL TEST CIRCUIT
(UNNEUTRALIZED)
VCC=ISV
270
RF BEADS
1I2W
1000PFI~
son
OUTPUT
2.a
1I2W
sonr
~ .~.
INPUT
T1 = TOROID 4:1 RATIO} #22 WIRE
BURl, 2T·SEC
1059
,;'
boe
14
IC, COLLECTOR CURRENT (mAde)
IC, COLLECTOR CURRENT (mAde)
/
16
18
20
MPS-H37 (SILICON)
NPN SILICON ANNULAR TRANSISTOR
. designed for 4.5 MHz sound IF applications in TV receivers.
•
High Breakdown Voltage BVCEO = 40 V (Min) @ IC = 1.0 mAdc
•
High Output Resistance
@
NPN SILICON
IF AMPLIFIER
TRANSISTOR
4.5 MHz -
__(1_ _) = 100 k Ohms (Min)@le=2.0mAdc
Yoe real
•
Low Reverse Feedback Capacitance ere = 0.7 pF (Max) @ VCB = 10 Vdc
• Complete y·Parameter Curves @ 4.5 MHz
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Symbol
Value
Unit
VCEO
40
Vdc
VEB
5.0
Vdc
IC
50
mAde
Po
350
2.8
mW
mWt"C
Po
1.0
8.0
Watt
mWt"C
TJ.Tstg
-55 to +150
°c
Collector Current - Continuous
Total Power Dissipation @TA - 25u C
Derate above 2SoC
Total Power Dissipation @TC
=2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
o
Thermal Resistance, Junction to Cese
ELECTRICAL CHARACTERISTICS (fA = 2S·Cunless otherwIse noted)
I
Characteristic
I
Symbol
I
Min
Max
Unit
OFF CHARACTERISTICS
Colleetor~Em1tter
BVCEO
Emitter~Baae
BV EBO
Breakdown Voltage
(Ie'" 1.0 mAde, ~ '" 0)
(IE =
Breakdown Voltage
10 pAdc. Ie '" 0)
Collector Cutofi Current
(VeB'" 35 Vdc, IE = 0)
40
Vdc
'.0
ICBO
0.'
b FE
Collector-Emitter Saturation Voltage
(IC '" 10 mAde, IB = 1. 0 mAde)
VCE(sat)
Base-Emitter On Voltage
(IC " 5.0 mAde, VCE '" 10 Vde)
VBE(on)
"""'"
Vdc
D••
Vdc
0.'
Common-Emitter Reverse Transfer Capacitance
(VCB = 10 Vdc, IE = 0)
Real Part of Output Resistance
(Ie =2.0mAde, VCE = 10Vdc, f = 4.5 MHz)
IT
B
C
L
N
P
Q
R
S
MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
u.407
1.150
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
5.200 0.175
0.205
4.190 . I U.l 5
U.165
5.330 0.170
0.210
0.533 0.016
0.021
U.46l U.U1ti
0.01.
1.390
1.270
2.670
2.670
0.045
0.250
0.135
0.095
0.080
MHz
300
pF
Cr.
0.7
1
Yoe(real)
DIM
A
0
F
••
DYNAMIC CHARACTERISTICS
Current-Gain- Bandwidth Product
(IC = 5.0 mAde, VCE = 10 Vde, f = 100 MHZ)
2. EMITIER
3. COLLECTOR
Vdc
ON CHARACTERISTICS
DC Current Gain
(Ie:= 5.0 mAde, Vr~ = 10 Vdc)
STYLE 2:
PIN 1. BASE
k ohms
100
CASE 29-02
TO·92
1060
0.055
0.050
0.105
0.105
MPS-H37 (continued)
COMMON-EMITTER y PARAMETERS
, ~ 4.5 MHz, TA ~ 25°C
FIGURE 1-INPUT ADMITTANCE
8.0
I I
VeE~
"jg
~
g;•
.§
!Ii
4.0
:>!
2.0
~
~
./V
10Vdc
6.0
i
FIGURE 2 - REVERSE TRANSFER ADMITTANCE
~
~
0.04
~
~e
V .---- ~
i-"""
.§
!Ii
0.03
;
0.02
~
0.01
~
:iii
!Z
15Vdc
V
10Vdc _
V
I
b;,
-
~
1.0
2.0
3.0
4.0
5.0
6.0
7.0
15Vdc
-b«O.OI
i
15Vdc
o
8.0
9.0
o
10
o u
u
u
Ie. COLLECTOR CURRENT (rnAl
~ 150
~
~
;
~
o
.,./
/
,:i
o
-b,. /"
-- --1
1.0
2.0
3.0
5.0
e 0.15
==
~
15Vdc
E
:IE
~
5
~
.!
6.0
7.0
8.0
9.0
0,10
i=""'"""
15Vdc
ftoo
o
1.0
2.0
I--- f-
I I
~
\';l
1.0
<3
OJ
5l1:
30
-- 1-- tffi-
t-
5.0
6.0
7.0
8.0
-
9.0
10
I I I
I
VeE~IOV
TJ ~ 125°C
C;b
1--_
t-- r-_
4.0
FIGURE 6- DC CURRENT GAIN
50
I
-
3.0
Ie, COllECTOR CURRENT (rnA j
FIGURE 5- CAPACITANCES
2.0
f-- bo, - -
0.05
o
10
-
VeE =!O Vdc
Ie, COllECTOR CURRENT (rnAl
3.0
W
0.20
-;::::;;-
V
4.0
M
.§
10Vdc -
/
50
U
~
~
)t'
~
u
:§
81,/ I'"
100
co
~
12
10Vdc
~
V
u
FIGURE 4 - OUTPUT ADMITTANCE
FIGURE 3 - FORWARD TRANSFER ADMITTANCE
VeE~
u
Ie, COLLECTOR CURRENT (rnAl
200
I
-b~
VeE ~ 10Ydc
~
c~@
z
iii
iii
20
~
lli
i3
g
1.=0
........
.i
-
~
.--
WC
.---
25°C
.---
-25°C
---~
W
0.5
7.0
0.3
5.0
0.1
0.2 0.3
0.5 OJ 1.0
2.0 3.0
5.0 7.0 W
20 30
1.0
2.0
3.0
5.0
7.0
10
Ie, COllECTOR CURRENTImAl
REVERSE VOLTAGE (VOLTSI
1061
20
30
MPS-H54 (SILICON)
MPS-H55
PNPSILICON
TRANSISTORS
PNP SILICON ANNULAR TRANSISTORS
· .. MPS·H54 is designed for RF amplifier applications in AM receivers.
· .. MPS·H55 is designed for mixer, oscillator, autodyne converter, and
I F amplifier applications in AM receivers.
= 80 Vdc
•
High Breakdown Voltage - BVCEO
•
Low Collector· Base Capacitance - Ccb = 1.0 pF (Typ)
(Min)
•
Low Output Admittance - hoe = 15jlmhos (Max)
•
Low Noise Figure - NF = 2.0 dB (Max) - MPS·H54
•
Complement to NPN MPS·H04, MPS·H05
MAXIMUM RATINGS
Rating
Collector~Emitter
Voltage
Emitter-Base Voltage
Collector Current ..... Continuous
Symbol
Value
Unit
VCEO
80
4.0
Vdc
100
mAde
VEB
IC
Vdc
Total Power Dissipation @TA = 25~C
Derate above 2SoC
Po
350
2.8
mW
mW/oc
Total Power Dissipation @TC = 25°C
Derate above 2sOC
Po
1.0
8.0
Watt
mW/oC
TJ.Tstg
-55to+150
°c
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
STYLE 1:
PIN 1.
2.
3.
DIM
A
B
C
0
F
Characteristic
Thermal Resistance, Junction to Ambient
K
Thermal Resistance, Junction to case
L
N
(1) R8JA is measured with the device soldered into a typical printed circuit board.
P
Q
R
S
MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
D.""'
1 :.lUU
1.150
6.350
3.430
2.410
2.030
INCHES
MIN
MAX
5.200
4.190
5.330
0.533
0.175
0.125
0.170
0.016
0.016
0.205
0.165
0.210
0.021
0.019
1.390
1.270
0.045
0.055
0.050
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29'()2
TO·92
1062
0.105
0.105
MPS-H54, MPS-H55 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage
(I C = 1.0 mAde, I B = 0)
BVCEO
80
-
-
Vde
Collector-Base Breakdown Voltage
(lC = 100 "Ade, IE = 0)
BVCBO
eo
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = 100 "Ade, IC = 0)
BVEBO
4.0
-
-
Vde
Collector Cutoff Current
(VCB = 60 Vdc, IE = 0)
ICBO
-
-
50
nAdc
Emitter Cutoff Current
lEBO
-
-
50
nAde
30
120
150
Characteristic
OFF CHARACTERISTICS
(VEB = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 1.5 mAde, VCE = 10 Vde)
-
hFE
30
70
70
VCE(sat)
-
0.16
0.25
Vde
Current-Gain-Bandwidth Product
(lC = 1.5 mAde, VCE = 10Vde, 1= 100 MHz)
IT
80
185
-
MHz
Collector-Base Capacitance
Ceb
-
1.0
1.6
pF
Output Admittance
(lc = 1.5 mAde, VCE = 10 Vde, I = 1.0 kHz)
hoe
-
6_6
15
",mhos
Noise Figure
(lc = 1.5 mAde, VCE = 10 Vde, RS =500hms, 1= 1.0 MHz) MPS-H54
NF
-
1.5
2.0
dB
MPS-H54
MPS-H55
Collector-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
(VCB = 10 Vdc, I = 1.0 MHz)
FIGURE 1 - SIMPLIFIED AC EQUIVALENT CIRCUIT (Common Emitter)
Go'
c,
COLLECTOR
c,
y Parameters may be determined from the following calculations:
Nota:
Data lor MPS-H04 and MPS-H05 is presented in terms 01 the
equivalent circuit shown in Figure 1. Values for its components
mev be lound or calculated as follows:
rb',., 15 Ohms
re =26 mV/lE
Ceb, See Figure 5
gm =
lIre
9c = (hfe+l) hob (See Figure.3and 6)
1
Cg=--
27fft re
Co = 0.2 pF
rb'e = (hfe + 1) re
Low frequency h parameters may be found from:
rb'+rb'e +jwC )( jwCcb )
( --,-,e
rb rb c
hie = rb' + rb'e
hfe""I.1 hFE(See Figure 2)
hre = Negligible
hoe- (hfe+ 1) hob
1063
MPS-H54, MPS-H55 (continued)
ELECTRICAL CHARACTERISTICS (VCE = 10 V, T A = 25°C unless otherwise noted)
FIGURE 2 - NORMALIZED DC CURRENT GAIN
2.0
TA=1250 C
ffi
N
:::;
<[
'a:"
"
l!;
1.0
f.- I-"
V
to
z
w
a:
a:
=>
..."
~
0.6
0.4
0.3
d5 0
-
0.8
..." ....z
FIGURE 3 - "ON" VOLTAGES
1.0
I "
~~E~VCE210~
0.8
~
"~.,
w
'"
-55°C
--
:,...-
........
I "
J
~
0.6
0.4
">>'
0.2
Y1E,t) @ 1~!lB = 10
./"
I I
o
0.2
0.1
0.2
0.5
1.0
2.0
0.2
0.1
10
5.0
0.3
FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT
....
~
....
~
.
~
~
........
200
a:
a:
a
.i-
.....
~
3.0
b-..
~
~
1.0
"j
0.7
~
100
2.0
3.0
4.0
7.0
5.0
0.5
1.0
10
i'.
2.0
IC, COLLECTOR CURRENT (mAde)
5.0
0.5
j
5.0
t=l~Ok~z
/
z
~ 0.2
c
10.07
--
-
0.05
0.5
0.7
1.0
I
V
a:
=> 3.0
to
u:
0.5 mAde
III
V
0 2.0
z
......
....
z
1.0
o
2.0
3.0
IC = 5.0 mAde /
w
./
;;;
"
"
4.0
iii
~
0.1
100
50
t = 1.0 MHz
0.3
"
20
FIGURE 7 - NOISE FIGURE
I I
~
~~
10
VCB, COLLECTOR·BASE VOLTAGE (VOLTS)
FIGURE 6 - OUTPUT ADMITTANCE
...
5.0 7.0 10.0
"
..........
" 2.0
. / i-"'"
50
1.0
3.0
t= 1.OMHz
w
~ 150 V
z
W~
5.0
oS
t;
"
II:
2.0
FIGURE 5 - COLLECTOR·BASE CAPACITANCE
" 300
:c
250
1.0
IC, COLLECTOR CURRENT (mAde)
IC, COLLECTOR CURRENT (mAde)
iil
0.5 7.0
5.0
0.05
~mA~e
V
2.0 mAde
:J.. ........ ",....
I-
,I
V
1.0 mAde
0.5 mAde ....
1064
.l\
Ht\
)-
/
i·oliiel
0.1
0.2
0.3
0.5
0.7 1.0
RS,SOURCE RESISTANCE (k ohm~
IC, COLLECTOR CURRENT (mAde)
A
~O~d~
2.0
3.0
5.0
MPS-H54, MPS-H55 (continued)
AM RADIO DESIGN INFORMATION
FIGURE 8 - 1.0 MHz AMPLI FIER TEST CI RCUIT
L1
L2
n4
Cl
C2
O.OI.F
n3
RG=50n
L1. L2 = 80 .H, Unloaded Coil, a ~ 200
~
300
1.0mV@1.0MHz
10.1.F
"::'
~=2.8
n3
Cl, C2 - 200-480 pF
f"
15 k
1.3 k
-12 V
"::'
*~13
50
1.5 k
"::'
FIGURE 9-1.0 MHz MIXER TEST CIRCUIT
L1
Cl
FL
L1-80.H, Unloaded Coil, a ~ 200
RG=50n
O.l.F
RG =50n
r
1.0mV@
100
0.01
... 1.0 MHz
8iasSupply
"::'
10-30V)
-10V
"::'
r'
~.:
to
......-
3
to
......-
1
1..0-""'
I-'"'
9
7
./
V
25
0.5
VCE = 10 Vde
TA = 250 C
8
-
0:
"::'
0
I
TA=25 0 C I
7~~E= 10Vde
I t= 1.0 MHz
5 - Stern Stability = 5.0
;;:
C1-200-480 pF
FL-455 kHz Filter
FIGURE 11 - CONVERSION POWER GAIN
FIGURE 10 - AMPLIFIER POWER GAIN
9
,.
~=::13
nl
1.5 k
i.--'""""
...-:::::
4
--
2
0
8
At currants other than Ie '" 1.0 mAdc,circuit constants vary from thon of _
Figure 8, as they are readjusted f0T-optimum gain. I
I· I
6
~
~
1/ . / :...-\ 1/ /r\
V
IC' 0.5 mAde
./'
./
~Ad~
IIC = 11.0
J...........
6
-
IFL La.... Not Included)
\
3.0 mAde
41:'?\
1.0 mAde
2
0.7
1.0
2.0
3.0
4.0
10
10
5.0
IC, COLLECTOR CURRENT ImAde)
15
20
30
40
50
OSCILLATOR INJECTION VOLTAGE ImVrmsi
1065
70
100
MPS-H8l
(SILICON)
PNP SILICON EPITAXIAL TRANSISTOR
· .. designed for use in UHF/VHF oscillator applications.
•
Complete y.Parameter Curves
•
Low Coliector·Emitter Capacitance Cce = 0.65 pF (Max) @ VCB = 10 Vdc
High Current Gain - Bandwidth Product - @ IC = 5.0 mAde
fT = 600 MHz (Min)
= 1250 MHz (Typ)
•
PNP
SILICON
TRANSISTOR
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
20
Vde
Collector-Base Voltage
Vce
20
Vde
Emitter-Base Voltage
VEe
3.0
Vde
PD
350
2.81
mW
mW/oC
TJ.Tstg
-55 to +150
°c
Rating
Collector-Emitter Voltage
Total Power Dissipaton @ T A
Derate above 25°C
= 2SoC
Operating & Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
J 1~
Thermal Resistance, Junction to Ambient
ELECTRICAL CHARACTERISTICS (TA
I
Characteristic
I
=
25°C unless otherwise noted)
Symbol
I
Min
I
Typ
I
Max
Unit
Collector-Emitter Breakdown Voltage
(lC
= 1.0 mAde. Ie = 0)
BVCEO
20
Collector-Base Breakdown Voltage
(lC = 101'Ade.IE = 0)
eVceo
Emitter-Base Breakdown Voltage
BVEBO
(IE = IOI'Ade.IC
= 0)
Collector Cutoff Current
(VCB
= 10 Vde.
(VBE
= 2.0 Vde.
IC
=0)
-
20
-
-
3.0
-
-
-
-
100
-
-
100
ICBO
IE = 0)
Emitter Cutoff Current
-
= 10 Vde)
COllector-Emitter Saturation Voltage
(Ie = 5.0 mAde. I B = 0.5 mAde)
ease·Emitter On Voltege (1)
(Ie =5.0 mAde. VeE = 10 Vde)
DIM
hFE
60
-
-
-
-
0.5
-
-
0.9
Vdc
VCE(sat)
Vde
VeE(on)
DYNAMIC CHARACTERISTICS
Current·Gam-Bandwidth Product (1)
(lC = 5.0 mAde. VeE = 10 Vde.
1= 100 MHz)
Collector-Base Capacitance
MHz
IT
600
1250
-
-
-
0.85
-
-
0.65
Ceb
(VCB = 10 Vde. IE = O. 1= 1.0 MHz)
Coliector~Emitter
(lB = O. VCB
Capacitance
= 10 Vde. I = 1.0 MHz)
STYLE 2:
PIN 1.
EMITTER
2. BASE
3. COLLECTOR
nAdc
lEBO
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 5.0 mAde. VeE
lor
tgt"J
Vde
nAdc
Cee
~
~F r
D-:lIP~
=lR~
Vde
Vde
1-
~
SEATINGJt
PLANE
OFF CHARACTERISTICS
A
"
C
D
MILLIMETERS
MAX
MIN
4.450
3.180
4.320
0.407
0.401
o
R
S
1.150
6.350
3.430
2.410
2.030
5.200
4.1.0_'
5.330
0.533
D.4OL
(1) Pulse Test: Pulse Width .. 300,.. •• Duty Cycle .. 2.0%.
1066
B
INCHES
MIN
MAX
0.175
0.125
0.170
0.016
0.016
0.205
.1 5
0.210
0.021
0.019
U.bUU
1.390
1.270
2.670
2.670
0.045
0.250
0.135
0.095
0.080
pF
pF
S
--.-r
--Is~1 I
:.1UO
L
N
P
000
CASE 29.02
TO·92
0.055
0.050
0.105
0.105
MP8-H81 (continued)
TYPICAL COMMON·BASE V·PARAMETERS
(VCB = 10 Vdc. TA = 25°C. Frequency Points in MHz)
FIGURE 1 - INPUT ADMITTANCE
·30
930~~~."""" ~MHz
'"
-40
-;;; -60
oS
'"
-10
P..0
I
"\. " .~
-50
~
FIGURE 2 - REVERSE TRANSFER ADMITTANCE
~O
-90
.~
\
",
12~
-100
""'\
20
40
60
80
·3.0
1-4·0
\
.........
-110
-20
"il
\ 100 MHz
~
i'l..
"'" t-t-J
-2.0
8.0mA
.,/ :,/
-6.0
~
120
-8.0
-2.4
140
-2.1
-1.8
-1.5
90
"il
80
ii
~MHZ
10
~
60
oS
-
\
..........
:J_'"..A
~
,
........
I .........
\
....... ""-. 450
..............
oS
6.0
/. V
j
-0.3
~---
930
I-"'"
12mA
Aff
4. 0
II. ~5450
250
2.0
.J.J.j 100 MHz
......... '
30
20
-120
8. 0
~
...........
40
a
,\:130
I
IC =4.0 mA
ii
..,... ..\..
I
Ic=4.0mA
VL y
10
I
8171--
\
50
-0.6
2
~
\.
\
930
14
110
\
-0.9
',I
FIGURE 4 - OUTPUT ADMITTANCE
FIGURE 3 - FORWARD TRANSFER ADMITTANCE
100
-1.2
IC = 4.0 mA
grb.(mmhos)
Uib.lmmhosl
120
- \ 450
f
--
V V
:..,:::-- .....,.- - -
-1.0
100
250
12my {OmA
1-5.0
\
\
·,100MHZ
l"\""'
Ic=4.0mA
I
1250 MHz
!~
~
-1.0
;--.......
~
·100
-80
-60
-40
-20
20
-2. 0
-0.5
40
0.5
1.0
!lfb.(mmhos)
1.5
gob. (mmhos)
FIGURE 5 - CURRENT·GAIN - BANDWIDTH PRODUCT
-
~ 1400
t'" 1300
61200
~
0..
/
1100
900
I
800
;;\
z
I
I
;;: 100
'"~""
-
-to-
V-
'"t-o> 1000
~z
V
VCE" 10 V
/= loo,MHZ
I
600
'"
::> 500
'"'. 400
J:"
0
2.0
4.0
6.0
8.0
10
12
14
IC. COLLECTOR CURRENT (mA)
1067
16
18
20
2.0
2.5
3.0
3.5
MPS-H83 (SILICON)
PNPSILICON
UHF TRANSISTORS
PNP SILICON ANNULAR TRANSISTORS
. . . designed for common-base UHF RF amplifier applications.
•
Guaranteed Noise Figure NF =4.2 dB (TVp) @ f = 850 MHz
•
Guaranteed Forward AGC Characteristics
•
Complete v-Parameter Curves from 400 MHz to 900 MHz
•
Guaranteed Power Gain Gpb 16 dB (TVp) @ f
•
Low Feedback Capacitance Allowing Stable Unneutralized
Operation - Cce = 0.3 pF (Max)
=
=850 MHz
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Total Power Oissipalton @ T A
Derate above 25°C
= 250 e
Operating and Storage Junction
Temperature Range
Symbol
Value
VeEO
30
Vdc
VeB
30
Vdc
Unit
VEB
3.0
Vdc
,PO
350
2.S1
mW
mWf'e
TJ. T stg
-55 to +150
Dc
STYLE 1:
PIN 1.
DIM
A
B
C
D
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to
Symbol
Max
Unit
R8JA
357
°elW
Ambient
EMITTER
2. SASE
COLLECTOR
3.
F
G
H
J
K
L
MILLIMETERS
MIN MAX
5.03 5.18
4.01 4.27
4.44 4.70
0.41 0.48
0.25 0.38
1.14 1.40
1.40 1.65
0.23 0.28
12.70
0.33 0.38
INCHES
MIN MAX
0.198 0.204
0.158 0.168
0.175 0.185
0.016 0.019
0.010 0.015
0.045 0.055
0.055 0.065
0.009 0.011
O.SOO
0.013 0.015
CASE29A
PLASTIC TRANSISTOR AND
UNATTACHED SHIELD
SUPPLIED
1068
MPS-H83 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
BVCEO
30
-
-
Vde
BV CBO
30
-
-
Vdc
BV EBO
3.0
-
-
Vdc
ICBO
-
-
100
600
950
-
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
IIC = 1.0 mAde, IB=OI
Collector-Base Breakdown Voltage
IIc
= l00/IAdc,IE = 01
Emitter-Base Breakdown Voltage
liE
= l00PAde,lc = 01
Collector Cutoff Current
nAdc
(VCB = 15 Vdc, IE = 01
ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
MHz
IT
(lc=2.5mAde, VCE = 10Vde, f= 100 MHz)
Coliector-Emitter Capacitance
(VCE
-
Cce
(C'b)
= 10 Vde, IB = 0, I = 1.0 MHz, base guarded)
Noise Figure (F igure 9)
(lC = 2.5 mAde, VCB = 10 Vde,
RS = 50 Ohms, f = 850 MHz)
-
pF
0.3
dB
NF
-
6.5
4.2
FUNCTIONAL TEST (Using shield as shown in dimensional information)
Common-Base Amplifier Power-Gain (Figure 9)
(lC = 2.5 mAde, VCB = 10 Vde, RS = 50 Ohms
1= 850 MHz)
dB
G pb
Forward AGC Current (Figure 9)
(Gein Reduction = 30 dB, RS = 50 Ohms
f = 850 MHz)
10
16
-
4.5
5.6
7.5
I AGC
mAde
AGC CHARACTERISTICS
VCB = 10 Vde, RS = 50 Ohms, I = 850 MHz, Date from Figure 9
represents device shielded similar to that shown in outl ine dimensions.
FIGURE 2 - NOISE FIGURE
FIGURE 1 - POWER GAIN
+20
16
C; +1 5
:s
~
'" "-
+1 0
'"~ +5.0
~
!
~
'"~
'"~
.,
\
-5.0
-10
2.0
3.0
4.0
/
~
/
:::>
'"u::
w
\
co -15
-20
1.0
12
:s
I\.
0:
5.0
8.0
'"i3z
u."
z
'\
\
6.0
4.0
o
o
7.0
,
V
r---....
1.0
2.0
3.0
/
4.0
IAGC,AUTOMATIC GAIN CONTROL CURRENT (mAl
IAGC, AUTOMATIC GAIN CONTROL CURRENT(mAI
1069
5.0
MPS·H83 (continued)
COMMON-BASE y PARAMETERS
(VCB
= 10 Vdc. T A = 250 C.Frequencv Points in MHz)
FIGURE 4 - REVERSE TRANSFER ADMITTANCE
FIGURE 3 -INPUT ADMITTANCE
j-o.3
1oS
w
u
z
-101---+----I----+---+-~.=ii_-~
1
-20
:i -0.4
:::;;;
-3~
gOO
;!:
I- -40
;;;
I:>
« -50
600
~ -0.5
~
~
..;
~
IC -1.0to 5.0 mA
I:>
«
I-
!;
450
~
Data represents units
I-
-60
~ -0.6 shielded similar to that
shown in outline dimensions
~
-70
-80'-_ _-'-_ _-'-_ _-'-_ _....J._ _ _L-_---'
o
gOO
1-0.7
00
-0.4
-0.2
-0.3
9ib.INPUT ADMin ANCE (mmhos)
gol--~oo
~ 8. 0
~
80y 8 ! - - f . /
oS 7. 0
w
IC=l.~mA
u
~
B. 0
;;;
5.0
I:>
I-
~
~
400·
2.0
1. 0
0.4
9fb. FORWARD TRANSFER ADMITTANCE (mmhos)
800
V
j('-ICI" 2.0 mAl
500
flD
400
0.8
1.2
2.0
gob. OUTPUT ADMITTANCE (mmhos)
FIGURE 8 -CURRENT-GAIN-BANDWIDTH PRODUCT
FIGURE 7 -COLLECTOR·BASE TIME CONSTANT·
"N 2000
7.0
'"
~
vCELoJ - If= 100MHz
t;
S
!ill
;::
5.
:::>
'"
:il
0",
.. 1000
1
o
D:: 4. 0
~
j
8
I-- rsoo
700,,<: 7 0 0 700
/500')#500
'" 3.0
.~
/
4.0
:::>
6.
"'
~
I)
...............
---V
r-
3.0
~ 2.0
t().4
J BOV BOY-BOO", I '5.0 mA
«
~
+0.3
FIGURE 6 - OUTPUT ADMITTANCE
g. 0
!
t().2
grb. REVERSE TRANSFER ADMITTANCE (mmhos)
FIGURE 5 - FORWARD TRANSFER ADMITTANCE
JI-
t().1
-0.1
1.0
~
800
!
600
~
"' I'\.
I
Z
;;: 400
:f
iii
~
:::>
u
2.0
3.0
4.0
5.0
B.O 7.0
.t-
200
1.0
2.0
3.0
lC. COLLECTOR CURRENT(mA)
IC. COLLECTOR CURRENT (mA)
1070
4.0
5.0
MPS-H83 (continued)
FIGURE 9 - 850 MHz COMMON BASE POWER GAIN
ANO NOISE FIGURE TEST FIXTURE
4[70PF
(vec
470
0.5.20 pF
RFC
'-"
50 Ohm
RFC: 12 TU RNS #26 AWG
WOUND ON #42
S FROM VPARAMETERS
SII =
II-Vll)11 +Y22) + YI2 Y21
0
S
I1+Vll)1I-Y22) + Y21 VI2
22'
0
In converting from V to S parameters, the V parameters must first be multiplied
by Zo, and than substituted in the equations for conversion to S parameters.
-2Y12
SI2=-0-2V21
S21=-0Wh.re 0 = II +Vll) II +Y22) - (YI2Y21)
FIGURE 10 - DC CURRENT GAIN
FIGURE 11 - CAPACITANCES
100
10
VCE = 10 Vdc- fTJ=25 0C - f-
0
5.0
2.0
r--..
1.0
Cib
~
0
.s
w
'z"'
0
~
U
r--
~
Crb
O. 2
2.0
3.0
5.0
7.0
'-
§c.S o.5
0
10
1.0
r-- r--~
O. I
0.4 0.5
10
IC, COLLECTOR CURRENT ImA)
0.7
1.0
2.0
3.0
4.0
VR, REVERSE VOLTAGE (VOLTS)
1071
7.0
10
MPS-H8S (SILICON)
Advance InforIllation
PNP SILICON
VHF TRANSISTOR
PNP SILICON ANNULAR TRANSISTOR
Gpb @ 200 MHz> 14 dB
.•. designed for common base VHF RF amplifier applications.
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
30
Vdc
Collector-Bese Voltage
VCB
30
Vdc
Emitter-Base Voltage
VEB
3.0
Vdc
Total Power Dissipation @ T A = 26"C
Derate above 250 C
Po
350
2.81
TJ,Tstg
-65 to +150
Collector-Emitter Voltage
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
,
mW
mW/oC
,
Max
Symbol·'
357
RSJA
Dc
Unit
°CIW
ELECTRICAL CHARACTERISTICS (T A = 25°C unle.. otherwi.. noted).
Characteristic
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage
(lC = 1.0 mAdc,IB = 0)
BVCEO
30
-
Vdc
Collector-Ba.. Breakdown Voltage
(lC = IOI'Adc,lE = 0)
BVCBO
30
-
Vdc
Emitter·B... Breakdown Voltage
(IE = 10 "Adc, IC - 0)
BVEBO
3.0
-
Vdc
ICBO
-
100
nAdc
hFE
20
-
-
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 15 Vdc, IE - 0)
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 mAde, VCE
= 10 Vde)
A
B
DYNAMIC CHARACTERISTICS
Current Gein - Bandwidth Product
(lC =2.5.mAde, VCE = 10 Vde,f= 100 MHz)
Collector-Emitter Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)
Noi.. Figura (Figure 6)
(lC = 2.5 mAde, VCE = 20 Vdc, fa 200 MHz)
DIM
for
360
-
MHz
Ceo
-
0.2
pF
NF
-
6.5
dB
-
dB
C
D
F
G
H
J
K
L
MILLIMETERS
MIN MAX
5.03 5.18
4.01 4.27
4.44 4.70
0.41 0.48
0.25 0.38
1.14 1.40
1.40 1.65
0.23 0.28
12.70
0.33 0.38
INCHES
MIN MAX
0.198 0.204
0.158 0.168
0.175 0.185
0.016 0.019
0.010 0.015
0.045 0.055
0.055 0.065
0.009 0.011
0.500
0.013 0.015
FUNCTIONAL TEST (Using shield as shown in dimensioned information).
Common-Emitter Amplifier Power Gain
(lC· 2.5 mAde, VCC = 20 Vde, f =200MHzI
(Figure 61
Gpb
14
This I. advance Information on 8 new introduction and spacifications are subject to change without notice.
1072
CASE 29A
PLASTIC TRANSISTOR AND
UNATTACHED SHIELD
SUPPLIED
MPS-H85 (continued)
COMMON BASE Y PARAMETERS
(VCB = 10 Vdc. TA = 2SoC. Frequency Points in MHz)
Data represents units shielded similar to that shown in outl ina dimensions.
FIGURE 1 - INPUT ADMITTANCE
FIGURE 2 - FORWARD TRANSFER ADMITTANCE
j
1.s
1
1
'0
500 MHz
~
IC=4.0mA
~ -20
1=
'"
400
300MHz_
100MHz /
1
14OO ,H/,
.. -30
~
~
Y
1
1
-50
~
100 MHz
~ 20
I:>
a:
500 MHz
-60
I
~ -0.1
1::>!
~
-0.2
z
>-
I--
w
ffi -0.3
I
~
.~-O.4
500
-0.5
-0.4
-0.3
-0.2
-3~
-20
-10
+10
+20
+30
1 4.0
w
'"~
..
'" 2.5)----+--t-'7'!--'o"I:>
~
I!:
5
400 M1z
MH~
500 MJz
-0.1
+0.1
3.0 )----+----I--"""'!"--I'-I----+---fj-=
1=
I
I
-40
1 3.5)----+----1-
100MHl---; 100M)Z
I
200MHr- 200 MHz
I
IC = 1.0-4.0 mA300 MHz
300 Miz
400 MHz
-50
300 MHz
.;I 400 MHz
FIGURE 4 - OUTPUT ADMITTANCE
..,.....-"1
I - - Ic=7o!mA
\
500 MH;
~5r---'----.----.---'----.----.----r---'
I
a:
1\ 200 MHz
YIb. FORWARD TRANSFER ADMITTANCE (mmho.)
FIGURE 3 - REVERSE TRANSFER ADMITTANCE
~e
'" ~~ MHz I
A
1
0
.sw
"-i500MHZ_ ~
Ic=7.0mA
9ib.INPUT ADMITTANCE (mmhos)
a:
1/
IC' 4.0 mA
1
1
i 10
~
.i -70
o
..*
100 MHz
IC = 2.5 mA
500 MHz
400 MHz
>-
400MHz
)
:r-..
~OMHZnl.
./
"-
a:
w
l!1
y
1
/
~ 30
300MHz
400 MIHZ
200 MHz
'"
I
J
300 MHz
IC = 2.5 mA
.~ -40
~
1
Y200MHz
~H~
300
200 MHz
'" 40
{ZOO MHz
fo::r/
~
-t
50
e
.sw
1-. T100 MHz
100 Mhz "1
~MHZ ..!
t--"'-..T
500 MHz
I:>
Ic=7.0mA
1
2.0 )---+-,---,J<-+-1----I--+-H---1----I
1.5)---+"",-)+---1----1--+--1'-1---1----1
.~ 1.0 )-~.t!--...
O~
+0.2
__
o
+0.3
~
__- L____L -__
~
0.1
0.2
0.3
__- L ____L -__
~
0.5
0.4
0.6
__
~
0.7
gob. OUTPUT ADMITTANCE (mmhos)
grb. REVERSE TRANSFER ADMITTANCE (mmhos)
AGC CHARACTERISTICS
.,
~
FIGURE 5 - POWER GAIN AND NOISE FIGURE
POWER GAIN
15
~
a:
~
IIAGC
'\
\.
7.5
O.I"Fr
1000 pF
/
~ 5.0
z
~ 2.5
~
1=200MHz
.........
V
g 12.5
~ 10
...:
FIGURE 6 - AGC TEST CIRCUIT
17.5
~
\
NOISE FIGURE
0
0-8.0 pF
INPUT
\
-2.5
2OOT~;:ED ~;u~~~~:~:OcJ~:~={·I.D..
rff -7.5
1.0
2.0
3.0
4.0
5.0
6.0
L1
1000 pF
~OUTPUT
1.0k
\
~-5.0
o
~
7.0
IAGC. AUTOMATIC GAIN CONTROL CURRENT (mA)
1073
VCC
rO.,.F
0.8
MPS·K20, MPS·K21, MPS·K22 (SILICON)
For Specifications, See MPS-A20 Data.
MPS·K70, MPS·K71, MPS·K72 (SILICON)
For Specifications, See MPS-A 70 Data.
MPS-LO 1(SILICON)
HIGH VOLTAGE
NPN SILICON
AMPLIFIER TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR
... designed for general-purpose, high-voltage amplifier applications .
•
•
High Breakdown Voltages BVCEO = 120 Vdc (Min), BVCBO = 140 Vdc (Min)
Low Saturation Voltage
VCE(sat) = 0.30 V (Max) @ IC = 50 mA
SEATlNG~~~
MAXIMUM RATINGS
PLANE
Rating
COllector·Emitter Voltage
Symbol
Value
Unit
Vdc
VCEO
120
COllector·Sase Voltage
Vce
140
Vdc
Emitter-Base Voltage
VEe
5.0
Vdc
Collector Current - Continuous
IC
150
mAde
= 2SoC
Po
625
5.0
mW
mW/oC
Total Power Dissipation @TC= 25°C
Derate above 2SoC
Po
1.5
12
Watts
mW/oC
TJ,T stg
-55 to +150
°c
Total Power Dissipation
@
TA
Derate above 2SoC
Operating and Storage Junction
Temperature Range
K
0*
LJi(/-M
,-- .
~
12'
G
J
I
STYLE 1
PIN 1. EMITTER
2. BASE
3. COLLECTOR
THERMAL CHARACTERISTICS
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient (1)
R8JA
200
°C/W
Thermal ReSistance, Junction to Case
R8JC
83.3
°C/W
Characteristic
o
E
G
J
K
L
(1) R6JA is measured with the device soldered into a typical printed circuit board.
M
CASE 29·01
1074
M~S-L01 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
120
-
140
-
5.0
-
-
1.0
-
100
50
300
-
0.20
-
0_30
-
1.2
60
-
-
8.0
30
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(lc = 1_0 mAde, IB"; 01
BVCEO
Collector-Base Breakdown Voltage
(lc = 100 "Ade, IE = 01
BVCBO
Emitter-Base Breakdown Voltage
(IE = 10 "Ade, IC = 0)
BVEBO
Collector Cutoff Current
(VCB = 75 Vde, IE = 01
ICBO
Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 01
lEBO
Vde
Vde
Vde
"Ade
nAde
ON CHARACTERISTICS
DC Current Gain (II
(lc = 10 mAde, VCE = 5.0 Vde)
-
hFE
Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAdel
Vde
VCE(setl
(lC = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAdel
Vde
VBE(satl
(lC = 50 mAde, IB = 5.0 mAdel (1)
1.4
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHzI
Cob
Small-Signal Current Gain
(lc = 1.0 mAde, VCE = 10 Vde, f = 1.0 kHz)
hfe
(1) Pulse Test: Pulse Width
MHz
fy
pF
-
= 300 "S, Duty Cycle = 2.0%.
FIGURE 1 - THERMAL RESPONSE
1.0
- -
O. I
o.5 f-o = 0.5
3
F
2 ....
~
-
0.2
....0T) 0.05
1
-
Pt~nmL~
I~
-
BUl---
I
ZaJc(tl = r(tl ROJC
ROJC = 83.3 CIW Max
Plpkl
SINGLE PULSE
I
5
3
0.02
~~~
Duty Cycl•• 0 =11/12
0.0 1
0.1
0.2
0.5
1.0
2.0
50
10
20
50
100
I. TIMElmsl
1075
200
500
- - -
Z'JAIt)= rlt) RaJA
RaJA = 200·CIW Max
o CU RVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpkl - TC = Plpkl ROJCltl
1.0 k
2.0 k
5.0 k
10k
MPS·L01 (continued)
FIGURE 2 - DC CURRENT GAIN
500
300
200
-25°C
z
;;:
'"
....
~
::>
'-'
-TJ= 125°C
-...
-I"-
100
7o r---- -55°C
50
VCE= 1.0 V
VCE=5.0V
I_I'-
""<;
'-'
<>
0
~
0
~
....::
0
7. 0
5.0
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
IC. COLLECTOR CURRENT (mA)
FIGURE 3 - COLLECTOR SATURATION REGION
-
!:l<>
~
w
~
1.0
~
0.9
0.7
<>
Ic=I.0mA
> 0.8
~
!
~
'-'
:!
8
L
T].J50
\
\
0.8
\ 10mA
loomA
30mA
\
0.5
0.4
1\
0.3
\
0.2
\...
----- .....
w o. 1
!;; 0
0.01
0.005
0.02
1"-",,0.03
0.05
0.1
0.2
0.3
0.5
1.0
r-.....
"2.0
3.0
5.0
10
20
lB. BASE CURRENT (mA)
FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA
200
~
....
ffi
'"'"
a
'"
~
~'-I.J
100
70
0
0
i~CI=250C
0
TA = 25°C
Of= .
of=
f-
3. 0
2. 0
2.0
100",
rThere are two limitations on the power handling
ability of a transistor: junction temperature and
secondary breakdown. Safe operating area curves
indicate Ie-VeE limits of the transistor that must be
observed for reliable operation; i.e., the transistor
. must not be subjected to greater dissipation than
the curves indicate.
The data of Figure 6 is based on TJ{pkl '" 150 0 C
Te is variable depending on conditions. Pulse tums
are valid for duty cycles of 10% provided TJ(pk) iii;
5.0ms
10
1.
~ 5.
E
I-
II
""
I,
......
~~gOu:~' loTJ~tk~i;:a!et:~!:~~:~~ar:~I~:=
BONDING WIRE LIMIT
THERMAL LIMIT
TJ=1500C
I I I I I II
3.0
I
I
5.0 7.0 10
20
30
50 70 100
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
tions will reduce the power that can be handled to
values less than the limitations imposed by secondary
breakdown.
I
200
1076
30
50
MPS-L01 (continued)
FIGURE 5 - "ON" VOLTAGES
1.0
r-
0.8
S 0.6
0
2:
w
'"'"
:;
0
r-
-
FIGURE 6 - TEMPERATURE COEFFICIENTS
2.5
U2~O~
1111
I
I II
1111
I
JB~(2t! ~ IM'B J10
2.0
15
1.0
~
0.5
U
II
I
:111
I~J f~j m(sa~)
w
....'"=>
0.4
~
~
....
0.2
0.2 0.3 M
1.0
-0.5
·1.0
BVS for VSE(sat)
·1.5
ttt-r
~ -2.0
VCE(sat)@ICIIB= 10
0.1
~o I~O~
I111111
8
>
>'
o
Tll_15W
oS 1.5
....
_i--
-
1
It>
2.0 3.0 5.0
10
20 30
50
·2.5
0.1
100
II III
0.2 0.3 0.5
1.0
2.0 3.0 5.0
10
20 30
50
100
IC, COLLECTOR CURRENT (rnA)
IC. COLLECTOR CURRENT (rnA)
FIGURE 7 - SWITCHING TIME TEST CIRCUIT
FIGURE 8 - CAPACITANCES
20
V8B
-8.8 V
r-
VCC
30 V
10
I
II
I
TJ = 25°C
1111
C,b
100
~ 7. 0
3.0k
w
~
Scope
5.1 k
~
3. 0
(.3
2. 0
;3
tr• tf" 10ns
100
Duty Cycle = 1.0%
5. 0
i'--
"u....
-
....
cy
Valuei Shown are for le@10rnA
0.5
FIGURE 9 - TURN·ON TIME
=
500 0
ICIIS= 10
TJ = 250 C, "
'tr@,VCC- 12OV
I--
.~@ VCC = 120 V
3000
tr@VCC=131~V
'2
>
1000
200
,.;::
~
i-'
w
'"
.>
30
td@ VES(off)
VCC=120V
~
0.5 V
I......
tf@VCC=30'V
500
300 ts@VCC-120V
20 0
'"
V
"-
~
100
20
10
0.2 0.3 0.5
III
1.0
I
2.0 3.0
200
~
/
;::
50
100
IS1- IS2 Iclis = 10
TJ - 25°C
2000
300
;;; 100
2.0
50
10
20
50
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 10 - TURN-OFF TIME
1000
500
1.0
50
5.0
10
20 30
50
100
200
IC, COLLECTOR CURRENT (rnA)
0.2 0.3 0.5
1.0
2.0 3.0
5.0
10
20 30
IC. COLLECTOR CURRENT (rnA)
1077
50
100
200
MPS-LSI (SILICON)
HIGH VOLTAGE
PNP SILICON ANNULAR TRANSISTOR
· .• designed for general·purpose, high·voltage amplifier applications.
•
High Breakdown VoltagesBVCEO = 100 Vdc (Min), BVCBO = 100 Vdc (Min)
•
Low Saturation Voltage
VCE(sat) = 0.30 V (max) @lIC= 50 mA
PNPSILICON
AMPLIFIER TRANSISTOR
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
100
Vdc
Collector-Base Voltage
Vca
100
Vdc
Emitter·Base Voltage
Rating
Collector-Emitter Voltage
VEa
4.0
Vdc
Collector Current - Continuous
IC
600
mAde
Total Power Dissipation
Derate above 2SoC
@
T A "" 2SoC
Po
625
5.0
mW
mWflC
Total POMr Dissipation
Derate above 26°C
@
TC = 25°C
Po
1.5
12
Watt
mW/oC
TJ,T,tg
-55 to +150
°c
Operating and Storage Junction
Temperature Range
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Max
Unit
AeJAllI
200
°CIW
AeJC
83.3
°C/W
Symbol
(11 ASJA is measured with the device soldered into a typical printed circuit board.
~F
PLANE
O-jI~I-+-~
:::::JR~
lor
STYLE 1:
PIN 1. EMITTER
2. BASE
DIM
A
B
C
D
W
1 ,
3
"00
3. COLLECTOR
THERMAL CHARACTERISTICS
l~
.7
r
_~
SEATINGJ~~
1--
--I
MILLIMETERS
MIN
MAX
4.450
3.1MU
4.320
0.407
0.4u7
5.200
4.90
5.330
0.533
1.150
1.390
1.270
U.4IIl
S
J
=r-r
S
a
INCHES
MIN
MAX
0.175
0.125
0.170
0.D16
I u.ul6
0.205
0.165
0.210
0.021
0.0; 9
0.045
0.055
0.050
K
L
N
P
o
R
S
6.350
3.430
2.410
2.030
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29·02
TO-92
1078
0.105
0.105
MPS-L51 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
100
-
100
-
4.0
-
-
1.0
-
100
40
250
0.25
0.30
Vde
-
1.2
1.2
Vde
-
60
-
-
8.0
20
-
Unit
OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage 111
(lC = 1.0 mAde, IB = 0)
BVCEO
Coliector·Base Breakdown Voltage
(lC = 100 /LAde, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(Ie = 10 /LAde, IC = 0)
BVEBO
Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
ICBO
Emitter Cutoff Current
(VBE = 3.0 Vde, IC = 0)
lEBO
Vdc
Vde
Vde
/LAde
nAdc
ON CHARACTERISTICS
DC Current Gain (11
(lC = 50 mAde, VCE = 5.0 Vde)
-
hFE
Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
(lC = 50 mAde, IB = 5.0 mAde)
VCE(satl
Base·Emitter Saturation Voltage (1)
(lC = 10 mAde, IB = 1.0 mAde)
(lC = 50 mAde, IB = 5.0 mAde)
VBE(sat)
DYNAMIC CHARACTERISTICS
Current·Galn·Bandwldth Product 11)
(lC = 10 mAde, VCE = 10 Vde, f = 100 MHz)
fT
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)
Cob
Small-8ignal Current Gain
IIc = 1.0 mAde, VCE = 10 Vdc, f= 1.0 kHz)
hfe
MHz
pF
-
(11 Pulse Test: Pulse Test = 300 I'S. Duty Cycle = 2.0%
FIGURE 1 - THERMAL RESPONSE
E
~~ ~
1.0
0.7 rD =0.5
0.5
."".,.....
0.3 r--0.2
~ ~ 0.2 C--O.I
tit;
tt ~
o. I
0.05
L
~
--
~r-
~ ~ 0.07 0.0
~ ~ 0.05 ~Ol SING~E PIU\~
..ow
vi
~ i= 0.03
'"~
~
0.02
p--
1--
-
l-
II II
0.002
0.005
0.01
BU1
t~j
........ SINGLE PU LSE
0.0 I
0.001
DUTY CYCLE, D = 11112
0.02
0.05
0.1
0.2
0.5
I, TIME (SECONDS)
1079
1.0
2.0
_ _ ROJC(I) =(t)8JC
ROJC =100"CIW Max
- _RSJA(I) =r(I)8JA
ROJA = 357"CIW Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATtI
TJ(pk) - TC =P(pk) 8JCIt)
5.0
10
20
50
100
MPS·L51 (continued)
FIGURE 2 - DC CURRENT GAIN
200
I
150
-
~ 100
'"
!Z
::l
12~OC
~...::tT 1=
-
70
II:
::>
..
~
50
--
--
!--
-
250 C
---
1
-1
J5 0 C
30
1 - -f::~
20
0.1
.-4--......- ~ r0.3
0.2
I--
'-:
-
~
r- r--
~
,..-
-,-
.:::.I- roo-
,.. - '- '- ,-I-1--.-
!-f-- I -
~-
r-.
r-.;:r-..\
-VCE"1.0
_ _ VCE-5.0V
3.0
2.0
5.0
IC. COLLECTOR CURRENT (mAl
1.0
0.5
-r- ~ -
30
20
10
"
50
100
FIGURE 3 - COLLECTOR SATURATION REGION
g 0,91.0
I
'"~
0.8
0.7
0
> D.6
Ic=1.DmA
0.5
II:
0
.~.
0
-
0.2
.,;; D.l
>
D.OD5
0,01
\
D.D5
D.D2
D.l
1
~
lDl
~
IC = ICES
::>
.. 100
~
j
750 C
-
~'0'2
~REVERSE
~
0.1
0
0,1
0.2
0.3
0.4
0.5
VBE. BASE·EMITIER VO LTAGE (VO LTSI
50
~
0.6
0.7
~
IC= 10xi ES
r-...
"
......
~
......
r-...
,.....,
104
8
.,;;103
-
~
0 10
1080
VCE-30V-
le=lcES
~
....
10-3
0.2
20
r....
IC = 2 x leES
:0;
"i 105
FORWARD
r--..
""" ......
~ 106
/
25 0 C
0.3
10
5.0
........
107
~
iii
/
10-1
8
2.0
FIGURE 6 - EFFECTS OF BASE-EMITTER RESISTANCE
z
TJ'1250 C
I--
r--
!e loB
f-VCE=30V
II:
II:
"'
-
D.2
D.5
1.0
lB. BASE CURRENT (mAl
FIGURE 4 - COLLECTOR CUT-OFF REGION
102
~
I' -
103
j
IDDmA
3DmA
~
\
0.3
\
\
\
\ 10mA
:0;
"i 0.4
\
\
\
\
\
II:
~
\
\
0
~
w
-(TYPICAL ICES VALUES OBTAINED FROM FIGURE 91- I-20
30
40 50 60 7D 80 9D 100 110 120 130 140
TJ. JUNCTION TEMPERATURE (OCI
MPS-L51 (continued)
FIGURE 7 - TEMPERATURE COEFFICIENTS
FIGURE 6 - "ON" VOLTAGES
1.0
TJ=2SoC
2.5
II 1111
II 1111
0.9
, """
O.B
TJ = -55 0 C to lS00 C
~ 2.0
:>
.§ 1. 5
-~
--
ffi
1. 0
H:
O. 5
o
0
~
~
-0. S
~"0.3
: -t 0
II:!
a5 -t 5
en 0.7 I - - r~O.6
i!
VBE(SAT) @ Ic/lB = 101-
t-"
~O.5
... 0.4
U
w
'"w
L-
8VC FOR VCE(SAT)
o
I - - f--
0.2
VCE(SAT) @-IClir 1~
....
i
0.1
II 1111
o
0.1
0.2 0.3 O.S
1.0
2.0 3.0 S.O
10
20 30
IC. COLLECTOR CURRENT (mA)
SO
100
-
eVB FOR VSE(SAT)
-2.0
-2. 5
0.1
II IIII
0.2 0.3
0.5
1.0
2.0 3.0 5.0
10
IC. COLLECTOR CURRENT (mA)
20 30
100
TJ=250 C
70
SO
VCC
30 V
B.BV
100
FIGURE 9 - CAPACITANCES
FIGURE 8 - SWITCHING TIME TEST CIRCUIT
VBS
50
3.0 k
30
~ 20
I!l
z
RC
100
Vout
--
I--
;: 10
~
7.0
:5 6.0
"Cib
r- ICOb~
","
3.0
Values Shown
.ra'orlc@10mA
2.0
Ir.I,"'O ••
OUly Cyel. = 1.0%
1.0
0.2
0.3
0.5 0.7 '.0
2.0
3.0
5.0 7.0
YR. REVERSE VOLTAGE (VOLTS)
FIGURE 11 - TURN-OFF TIME
FIGURE 10 - TURN-ON TIME
1000
200 0
700 _!CIIS = 10
SOO -TJ-2S0 C
1000
Ir@VCC=120V-
1'\
300
!
200
rx'
~
~
'"""
~
....
100
., 70
700
SOD
tr@VCC=30V
\
]300
"I TI-'
-+ t,@VCC.=30V
.,
l\.
100
IIIYfC= 12rv II
O.S
1.0
2.0 3.0 S.O
10
20 30
IC. COLLECTOR CURRENT (mA)
SO
......
100
~
1\
70
50
30
20
'-
t.@VCC= 120 V
>=
SO
10
0.2 0.3
"- ~,Il VCC = lJO V
T}=~sJl
IC/IB = 10
~ 200
td@VSE(OFF) = 1.0 V
20
10
30
20
0.2 0.3
200
1081
O.S
1.0
20 30
2.0 3.0 5.0
10
IC. COLLECTOR CURRENT (mA)
SO
100
200
MPS-UO 1(SILICON)
MPS-U01A
NPN SILICON ANNULAR TRANSISTORS
· .. designed for complementary symmetry audio circuits to 10 Watts
output.
NPN SILICON
AUDIO TRANSISTORS
• Excellent Current Gain Linearity - 1.0 mAdc to 1.0 Adc
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = O. 5Vdc (Max) @ IC = 1.0 Adc
• Complements to PNP MPS·U51 and MPS·U51A
• Un iwatt Package for Excellent Thermal Properties 1.0 Watt@TA = 250 C
MAXIMUM RATINGS
Symbol
MPS·UOI
MPS-UOIA
Unit
VCEO
30
40
Vdc
Collector-Base Voltage
Vce
40
50
Vdc
Emitter-Base Voltage
VEe
5.0
IC
2.0
Adc
T A = 26°C
PD
1.0
8.0
Watt
mW/oC
Total Power Dissipation@ TC'" 26°C
Derate above 25°C
PD
10
80
Watts
mWfOC
-55 to +150
°c
Rating
Collector~Emitter
Voltage
Collector Current - Continuous
Total Power Dissipation
Derate above 25°C
@
Operating and Storage Junction
Temperature Range
TJ.Tstg
Vdc
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to
Ambi~nt
Symbol
Max
Unit
R8JC
12.6
°CIW
DIM
R8JA(1)
125
°C/W
A
B
C
(1) R6JA is measured with the device soldered into a typical printed circuit board.
Uniwatt packages can be To-S lead formed by adding -5 to the device title and tab formed for
flush mounting by adding -1 to the device title.
o
F
G
H
~
LN
Q
R
MILLIMETERS
MIN
MAX
9.14
6.60
5.41
0.38
3.18
9.53
7.24
5.66
0.53
INCHES
MIN
MAX
0.360
0.260
0.213
0.015
0.125
4~8~S~e~~~0.~10TO~BS~e~
~4~.1~9~~0.~15~5~0~.1~65~
+.'l~~:~g~~~~:"!,~~e:~~~:~':!~H
0.200 ase
EtB2",,~5e·~53~i~Oa·9~8:;;:5~f~1;;;·MOrO~5"i
2.69
0.094 0.106
1.40
0.045
CASE 152·02
1082
0.315
0.285
0.223
0.021
0.131
0.055
MPS-U01,MPS-U01A
(continued)
ELECTRICAL CHARACTERISTICS (T A
I
= 25 0 C unless otherwise noted)
Symbol
Characteristic
Min
Max
30
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
IIC = 10 mAdc, IB = 0)
Vdc
BVCEO
MPS-UOI
MPS-UOIA
Collector-Base Breakdown Voltage
40
Vdc
BVCBO
MPS-UOI
MPS-UOIA
IIC? 100 "Adc, IE = 0)
Emitter-Base Breakdown Voltage
5.0
-
-
0.1
-
0.1
-
0.1
55
40
50
BVeBO
Vdc
= 100 "Ade, IC = 0)
liE
Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)
(VCB
= 40 Vdc,
Ie
= 0)
MPS-UOIA
Emitter Cutoff Current
(VBE
= 3.0 Vdc,
IC
ItAdc
ICBO
MPS-UOI
lEBO
= 0)
"Adc
ON CHARACTERISTlCS(I)
DC Current Gain
50
-
VCE(satl
-
0.5
Vdc
VBE(on)
-
1.2
Vdc
fT
50
-
MHz
Cob
-
20
pF
60
Collector-Emitter Saturation Voltage
= 1.0 Adc, IB = 0.1
(lC
-
hFE
= 10 mAdc, VCE =1.0 Vdc)
IIC = 100 mAde, VCE '" 1.0 Vdc)
IIc = 1.0 Adc, VCE = 1.0 Vdc)
IIc
Adc)
Base-Emitter On Voltage
(lc = 1.0 Adc, VCE = 1.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lc = 50 mAdc, VCE = 10 Vdc, f = 20 MHz)
Output Capacitance
(VCB
= 10 Vdc,IE = 0, f =
1.0 MHz)
(1)Pulse Test: Pulse Width S300 #ls, Duty Cycle '$.2.0%.
FIGURE 1 - DC CURRENT GAIN
FIGURE 2 - "ON" VOLTAGES
500
"
'"
~
300
;;:
1.0
r---
~ J
I II
I- TJ 25 C
~CE l1.0 V~C
TJ = 250C
Q
200
~
~~
g
I-
i--'"
VSE(sat)@IC/IB-1O
O.S
VBE @VCE = 1.0 V
2
0.6
'"C;'"
>
'">-
0.4
w
a
r-.
U
Q
~
100
0.2
VCE(sat)@ ICIIB = 10
70
10
20
50
r-
o
50
100
200
500
10
1000
20
30
50
100
200
300
500
1000
IC, COLLECTOR CURRENT (rnA)
IC, COLLECTOR CURRENT (rnA)
FIGURE 3 - DC SAFE OPERATING AREA
2.0
0;
~
:oS
i
'"t;'"
~
8
'{.
IjJ.
1.0
Tr 150°C
0.7
BONDING WIRE LIMIT
I---'-- THERMAL LlMIT@TC-25 0C
0.5
SECOND BREAKDOWN LIMIT
There are two limitations on the power handling ability of a transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate IC-VCE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
I
1-
I"\.
0.3
0.2
~
'"=
MPS·UOI
MPS-i 01A
0.1
2.0
4.0
6.0
10
20
::::::!
The data of Figure 3 is based on TJ(pk) = 1500C; TC is variable
depending on conditions. At high case temperatures. thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown_
~
40
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
1083
MPS-U02 (SILICON)
NPN silicon annular amplifier transistors designed for
general-purpose amplifier and driver applications. Complement to PNP MPS-US2.
.
MAXIMUM RATINGS
Rating
Symbol
CASE 152
PIN·!.
EMITTER
2. BASE
3. COLLECTOR
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
Collector-E mitter Voltage
STYLE 1:
Value
VEB
5.0
Vdc
Collector Current - Continuous
IC
BOO
mAde
Total Power Disslpation@ TA = 25·C
PD
Derate above 25·C
Total Power Dissipation@ TC = 25·C
Derate above 25·C
Ope rating and Storage Junction
Temperature Range
1.0
Watt
B.O
mW/OC
Watts
PD
10
80
TJ • T stg
-55 to +150
mW/"C
·C
THERMAL CHARACTERISTICS
Max
Symbol
Characteristic
Unit
Thermal ReSistance, Junction to Case
R6JC
12.5
'C!W
Thermal ReSistance, Junction to Ambient
ReJA
125
°C/W
ELECTRICAL CHARACTERISTICS (T.. = 25·C unless otherwise noted)
I
Characteristic
Symbol
Min
Max
Unit
-
Vdc
40
60
-
-
100
OFF CHARACTERISTICS
Collector-Emitter Sreakdown Voltage
(IC =1. 0 mAde, IS =0)
SVCEO
Collector-Sase Breakdown Voltage
(IC =l00j.lAdc, IE" 0)
SV CBO
Collector Cutoff Current
(VCB .= 40 Vdc, ~ .. 0)
ICBO
Vdc
nAdc
ON CHARACTERISTICS
DC Current Gain
(IC =10 mAde, VCE =10 Vdc)
(IC = 150 mAde, VCE =10 Vdc)
(IC
= 500 mAde,
VCE
hFE
=10 Vdc)
50
50
3D"
300
-
Collector-Emitter Saturation Voltage
(Ic = 150 mAde, IS = 15 mAde)
VCE(sat)
-
0.4
Base-Emitter Saturation Voltage
(Ic =150 mAde, IB = 15 mAde)
VSE(sat)
-
1.3
150
-
-
10
-
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Sandwidth Product
(IC = 20 mAde, VCE =20 Vdc, f
OutJl!lt Capacitance
(VCS =10 Vjic, ~
fT
= 100 MHz
Cob
=0, f =100 kHz)
1084
MHz
pF
MPS-U02 (continued)
FIGURE 2 - COLLECTOR·EMITTER
SATURATION VOLTAGE versus BASE CURRENT
FIGURE 1 - NORMALIZED DC CURRENT GAIN
~.: -r- IcIJUI~A~H+tI-t+I.IJJII--!++I+H1f+H-+-I-H+H+f
.. ;; o.sl--l--Fl+t+ftI----+-1-tH loo mA H++HfHtt-+++IftHIt
......
~ g 0.71-++++Hffi--IH-I+IFHH-+-II 250 mA -I~r-+-++HfH!I
2~ ~ 0.6
~~
500mA
\V
0.5
a~ o.41-++t+HttI--1H-I+tffilt-+~tftftft--r''''''''f-oIF:t:I:I:!!l
~>
...::.~
!..
... =>
$'
~
0.31-+++'H+ti+---1H-t+ttAW--+-++-ftffil--H-H+H!t
S 0.21-++++Nti+---1H-t+HfiIl-~~H+tttHf"'oood--H-t+HtI
"
r-
0.1 t-++++ttttP""
......
::+-+++tt-Ht--H"H-ttHt--t--H-t+HtI
O~~LL~~-4~~~~~~ww_~~~
0.01
0.1
FIGURE 3 - BASE·EMITTER VOLTAGE
versus COLLECTOR CURRENT
5.0
4.0
/'
O.B
3.0
~
...
'"~
-~
oS
2.0
z
;
III
'--
"-
...u
/"
0.7
g
100
FIGURE 4 - CAPACITANCE versus VOLTAGE
0.9
~o
10
1.0
lB. BASE CURRENT(mA)
IC. COLLECTOR CURRENT (mA)
V
0.6
r----.. ......
,--
5
r-...... ...... '" \C
~
~
u
c.i
0.5
1.0
.......... .....
0.7
>
0.4
5"r
II
0.5
0.1
1.0
100
10
1.0 A
1.0
0.1
100
10
REVERSE VOLTAGE (VOLTS)
Ic. COLLECTOR CURRENT (mA)
FIGURE 5 - CURRENT·GAIN·BANDWIDTH PRODUCT
FIGURE 6- ACTIVE REGION DC SAFE OPERATING AREA
versus COLLECTOR CURRENT
2.0
1000
~
~ 700
t;
1'\
=>
11.0
o
...~
500
...o'"
/"
~3OD
z
:i
z
/
;;:
...
'" 200
.
'"=>
u
100
~
'"~
o'"
'"\
o
~ 0.2
'\.
'\
r- -
r-- _
/
1.0
0.1
0.5
t;
; 0.3
V
iii
.t:'
VCE -20 V
0.1
10
100
IC. COllECTOR CURRENT (mA)
1.0 A
1085
1.0
'\
- - - Thermal limitation
- - Secondary Breakdown Limitation
"\.
I I I I IILlI J
2.0
3.0
5.0
7.0
10
20
VCE. COllECTOR·EMITTER VOLTAGE (VOLTS)
'\
30
50
MPS-U03 (SILICON)
MPS-U04
STYLE 1:
PIN 1. EMITTER
NPN silicon annular plastic transistors designed for
video output circuits utilizing an emitter-follower driver
and for horizontaJ driver applications in television receivers.
2. BASE
3. COLLECTOR
CASE 152·02
Collector connected to tab
MAXIMUM RATINGS
MPS-U03 MPS-U04 Unit
Symbol
Rating
VCEO
120
180
Vdc
Collector-Base Voltage
VCB
120
180
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
1.0
Adc
Total Power Dissipation @ T A = 25°C
PD
1.0
8.0
mW/"C
Collector-Emitter Voltage
Derate above 25°C
10
80
PD
Total Power Dissipation,@ TC = 25°C
Derate above 25°C
T J , T stg
Operating and Storage Junction
Temperature Range
ELECTRICAL CHARACTERISTICS
(T.
-55 to +150
Watt
Watts
mW/"C
°c
=2S'C unless,olherwise noted)
Symbol
Characteristic
Min
Max
120
180
--
120
1BO
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC =1. 0 mAde, IB = 0)
Collector-Base Breakdown Voltage
(IC =100 /LAde, ~ = 0)
MPSU03
MPSU04
MPSU03
MpgU04
Emitter-Base Breakdown Voltage
= 100 /LAde, IC = 0)
Collector Cutoff Current
(VCB =100 Vdc,
=0)
MPSU03
= ISO Vdc,
MPSU04
'E
=0)
IE
BVCBO
BVEBO
('E
(VCB
BV CEO
ICBO
S.O
-
Vdc
Vdc
Vdc
/LAde
0.1
0.1
ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE
hFE
= 10 Vdc)
40
-
Collector-Emitter Saturation Voltage
(IC =200 mAde, IB =20 mAde)
VCE(sat)
-
0.5
Base-Emitter On Voltage
(IC =200 mAde, VCE = 1. 0 Vdc)
VBE(on)
-
1.0
100
-
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ie =50 mAde, VCE = 20 Vdc, f
Ontput CapaCitance
(VCB = 10 Vdc, ~
fT
=100 MHz)
Cob
=0, f =100 kHz)
Input Capacitance
(VBE = 0.5 Vdc, IC
Cib
=0, f = 100 kHz)
1086
-
MHz
pF
12
pF
110
MPS-U05 (SILICON)
MPS-U06
NPN SILICON
AMPLIFIER TRANSISTORS
NPN SILICON ANNULAR
AMPLIFIER TRANSISTORS
· .. designed for general-purpose, high-voltage amplifier and driver
applications.
•
High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc - MPS-U05
80 Vdc (Min) @ Ie = 1.0 mAdc - MPS-U06
• High Power Dissipation - PD = lOW
@ TC =
25 0 C
• Complements to PNP MPS-U55 and MPS-U56
F________
H
~A-
R
I
r- B -
J
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Symbol
VeEO
VeB
VEe
Collector Current - Continuous
.!.Q.
Total Power Dissipation @ TA = 2sOe
Po
Derate above 2SoC
Total Power Dissipation@TC= 250C
Po
Derate above 2SoC
Operating and Storage Junction
TJ, Tstg
MPS-U05 MPS-U06
60
60
80
80
4.0
2.0
1.0
8.0
10
80
-55 to +150
Unit
Vdc
Vdc
Vdc
Adc
Watt
mW!Oe
Watts
mW!Oe
°e
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to case
Thermal Resistance. Junction to Ambient
Symbol
Max
Unit
R9JC
12.5
°eiw
R8JAll)
125
°e!W
(1) R8JA is measured with the device soldered into a typical printed circuit board.
3 2
,-~ ~JJ
l:.±
N
STYLE 1:
---Il-J
PIN 1. EMITTER
2. BASE
3. COLLECTOR
MILLIMETERS
DIM MIN MAX
A 9.14 9.53
B 6.60
1.24
e
5.41
5.66
D 0.38
0.53
F __ 3.18
3.33
G
2.54 Bse
H 3.94
4.19
J
0.36 0.41
r-JL
R
r---!i--
r-4--
~
R
.
25.53
BSe
2.69
1.40
INCHES
MIN MAX
0.360 0.315
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 BSe
0.155 0.165
0.014 0.016
0.475 0.500
•
.
CASE 152-02
1087
BSe
0.106
0.055
MPS-U05, MPS-U06 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
I
Min
TVp
Max
60
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc=1.0mAde,IB=0)
Vde
BVCEO
MPS-U05
MPS-U06
Emitter-Sase Breakdown Voltage
BVEBO
-
BO
-
-
4.0
-
-
-
-
-
-
100
100
SO
60
-
-
125
100
. 55
-
O.lS
0.1
0.4
Vde
(IE = 100 "Ade, IC = 0)
Collector Cutoff Current
IVCB = 40 Vde; IE = 0)
IVCB = 60 Vde, IE = 0)
nAde
ICBO
MPS-U05
MPS-U06
ON CHARACTERISTICS
DC Current Gain (1)
(lc = 50 mAde, VCE = 1.0 Vde)
(lc = 250 mAde, VCE = 1.0 Vde)
(lc=500mAde, VCE = 1.0Vde)
-
hFE
-
Collector-Emitter Saturation Voltagell)
(lC = 250 mAde, IS = 10 mAde)
(I C = 250 mAde, I B = 25 mAde)
VCElset)
Base-Emitter On Voltage 11)
(lc = 250 mAde, VCE = 5.0 Vde)
VBElon)
-
0.74
1.2
Vde
fT
50
170
-
MHz
Cob
-
6.0
12
pF
Vde
-
SMALL-5IGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product 111
(lc" 200 mAde, VCE = 5.0 Vde, f = 100 MHz)
Output Capacitance
IVCB = 10 Vde, IE = 0, f = 100 kHz)
(1 )Pulse Test: Pulse Width
~300
JJ.S, Duty Cycle
~2.0%.
FIGURE 1 - DC CURRENT GAIN
3lJ0
FIGURE 2 - "ON" VOLTAGES
.0
_~~EI·'roVd'
TJ"2&OC
200
-t.!,,!
IIIIIII
v:EI.~) ~ "I,: ~',~'
........
f--
0
.....
.U.J+ttr:: .....
.S
VBE(on)@VCE=5.0Vdt
6
4
0
0
2
VCE(sal)@le fl B"'0
30
'.0
10
20
50
0
t.O
,00
200
100
20
5.0
Ie, COLLECTOR CURRENT (rnA)
FIGURE 3 - DC SAFE OPERATING AREA
~
~
~
~
o
~
~ 300
1O~~.
~
Tp'15D OC
- - - Second Breakdown limited
0.2 _ _ _ Bond!llgWlrfllrmlted
_ _ _ TllermaILlmnallons@Tc .. 250C
11.1
Ap{lhcableTo BVCEO
:'\ MPS.J06
Mps·U05 '\
=++++
~005
[l.O~';;-0--:!2';;-0-1-1","'o:"-,..u""'O--:!20;;-..1....""',"'oV.Jl...J.IV.....",,,oo
200
'00
FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT
2.0.---r-......,.......--."''TT,---,---r--r-rT'TTn
05
10
20
50
100
Ie. COLLECTOR CURRENT (rnA)
"
./"
20 0
l!'
~
~
\
100
l;;
0
"
0
.t:-
0
3 .
r
veE. COlLECTOR·EMITTER VOLTAGE (VDLTS)
Thp~", 'i ...
tvvv limitations on the power handling ability of a
junction' temperature and second breakdown. Safe
operating area curves indicate Ie - VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater diSSipation than the curves indicate.
VCE=5.0Vdc
50
I
[Jli""
10
20
50
100
Ie, COLLECTOR CURRENT (rnA)
200
'00
The data of Figure 3 is based on T Jlpk) = 150°C; T C is variable
depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed bV second breakdown ..
tran~idor:
1088
MPS-U07 (SILICON)
NPN SILICON
AMPLIFIER TRANSISTOR
NPN SILICON ANNULAR
AMPLIFIER TRANSISTOR
... designed for general·purpose, high·voltage amplifier and driver
applications.
•
High Coliector·Emitter Breakdown Voltage BVCEO = 100 Vdc (Min)@ IC = 1.0 mAde
•
High Power Dissipation - PD = 10 W@TC=250C
•
Complement to PNP MPS-U57
F
3 2
MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipaton . @ T A "" 25°C
Symbol
Value
Unit
VCEO
VCS
VES
IC
Po
100
Vdc
100
4.0
2.0
1.0
8.0
Vdc
Vdc
Adc
Watt
mW/oC
Po
10
80
mW/oC
-55 to +150
°c
Derat. above 25°C
Total Power Dissipaton@ T C = 25°C
Derat. above 25°C
Operating and Storage Junction
Temperature Range
TJ,Tstg
Thermal Resistance. Junction to Case
Thermal Resistance. Junction to Ambient
STYLE I:
PIN I. EMITIER
2. BASE
3. CllLLEeTOR
Watts
iIIlLLIMETERS
DIM MIN MAX
A
B
C
D
THERMAL CHARACTERISTICS
Characteristic
o
Symbol
Ma.
Unit
R9JC
12.5
°C/W
125
°C/W
R9JA(1)
(1) R6JA is measured with the device soldered into a typical printed circuit board.
F
G
H
J
K
L
N
Q
R
9.14
9.53
6.60
7.24
5.41
5.66
0.38
0.S3
3.18
3.33
2.54 ase
3.94
4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 ase
2.39
2.69
1.14
1.40
INCHES
MIN
MAX
0.360
0.260
0.213
0.01S
0.125
ft
0.165
0.016
0.475 0.500
0.985 1.005
0.200 BSC
0.094 0.106
0.D45 0.055
CASE 152·02
1089
0.375
0.235
0.223
0.021
0.131
MPS-U07 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lc = 1.0 mAde, 'B = 0)
BVCEO
100
-
-
Vde
Emitter·Base Breakdown Voltage
(IE = l00"Ade,lc = 0)
BVEBO
4.0
-
-
Vde
ICBO
-
-
100
DAde
60
30
110
65
-
-
33
-
-
0.18
0.1
0.4
0.76
1.2
Vde
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VeB = 80 Vde, IE = Ol
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 50 mAde, VCE = 1.0 Vde)
(lC = 250 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage (1)
lie = 250 mAde,lB = 10 mAde)
(I C = 250 mAde, I B = 25 mAde)
Vde
VCE(satl
Base-Emitter On Voltage (1)
(lc = 250 mAde, VCE = 5.0 Vde)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(IC = 200 mAde, VCE = 5.0 Vde, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
(1)PulseTest:
VBE(on)
-
f,-
50
175
-
MHz
Cob
-
6.0
12
pF
FIGURE 2 - "ON" VOLTAGES
FIGURE 1 - DC CURRENT GAIN
,
1.0
, ~CE·l.DJd'
D.
TJ=25 0C
100
~
Ui
D.'
o.7
~
o. 'F""
~
04
:;
~
~
-
Pulse Width ~300IJs. Dutv CycleS2.0%.
200
z
-
hFE
70
il , 0
,\
~
j!-
"'"'
TJ' 250C
,,
, ,,
,
-
VBE(sat)@lc/1e=lD
......
VeE(on)@VCE=5.0Vdc
D.'
>'.0.3
0.2
3D
j;
VCE(sat)@ICIlB=IO
D. 1
20
5.07.0
10
5070100
20
200
III
o
500
1.0
5.0
2.0
Ie. COLLECTOR CURRENT (mA)
FIGURE 3 - DC SAFE OPERATING AREA
i
200300500
l'\.
\
~ lOll
~:~:~~:!~:j~:~TC.250C
~ 01~~~.~~I~~S'~"~'d~'~~~k~d'~·'~"f;m:"~d~~~~~~
~z'
I
:::: 0.05
Applicable To 8VCEO
,
""
/'
200
~
O.2-TJ=150oC
",'02
100
if
0'
8
50
~300
'"
2.0
I~1"D~"!III
_
2D
FIGURE 4 - CURRENT -GAIN-BANDWIDTH PRODUCT
5.D~EEEm~alm
'"
10
Ic, COLLECTOR CURRENT(mA)
"'"
O.Ol~~~~~~~~~~~~tt~i1~
2.0
5.0
10
20
50
100
O.no5,~
1.0
.f
VeE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
10
50
305.0 7.0
VCE-5.0Vdc
TJ=25 0e
"II
10
,
2D
5070100
200
500
Ie, COLLECTOR CURRENT (mA)
The data of Figure 3 is based on T J(pk) =150 0 C; TC is variable
dapending on conditions. At high case temperatures, thermal
limitations will reduce the _
that can be handled to values lass
than the limitations imposed by second breakdown,
There are two limitations on the power handling ability of a
transistor: junction temperature and second breakdown. Safe
operating area curves indicate Ie - Vee limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
.1090
MPS-U 10 (SILICON)
NPN SILICON
HIGH VOLTAGE
AMPLIFIER
TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR
· .. designed for high·voltage video and luminance output stages in
TV receivers.
•
High Collector·Emitter Breakdown Voltage BVCEO = 300 Vdc (Min) @ IC = 1.0 mAdc
•
Low Coliector·Emitter Saturation Voltage VCE(sat) =0.75 Vdc (Max) @ IC = 30 mAdc
•
Low Coliector·Base Capacitance Ccb = 3.0 pF (Max) @VCB = 20 Vdc
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEn
300
Vdc
Collector-Base Voltage
VCB
300
Vdc
Emitter-Base Voltage
VEB
6.0
Vdc
Collector Current - Continuous
Ir.
500
mAde
Total Power Dissipation
Po
1.0
8.0
mW/oC
Collector-Emitter Voltage
@
T A ;; 25°C
Derate above 25°C
Total power Dissipation @TC= 25°C
Derate above 25°C
Operating and Storage Ju nction Temperature Range
Watt
Po
10
80
Watts
mWJOC
TJ.Tstg
-55 to +150
°c
DIM
A
B
e
o
F
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
R8JC
12.5
°C/W
Thermal Resistance, Junction to Ambient
R8JA(1I
125
°CIW
(1) R8JA is measured with the device soldered into a typical printed circuit board.
G
H
J
K
L
N
n
R
MILLIMETERS
MIN
MAX
9.14
9.53
6.60
7.24
5.41
5.66
0.38
0.53
3.1
3.33
2.54 BSe
3.94 4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 BSe
2.39
2.69
1.14
1.40
CASE 152·02
1091
INCHES
MPS-U10 (continued)
ELECTRICAL CHARACTERISTICS (TA; 25 0 C unless otherwise noted)
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 0)
BVCEO
300
-
Vde
Collector-Base Breakdown Voltage
(lC = 100 I'Ade, IE = 0)
BVCBO
300
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
6.0
-
Vde
Collector Cutoff Current
(VCB = 200 Vde, IE = 0)
ICBO
-
0.2
I'Ade
Emitter Cutoff Current
(VBE = 6.0 Vdc, IC = 0)
lEBO
-
0.1
I'Ade
25
-
Characteristics
OFF CHARACTERISTICS
(IE
= 100 I'Ade, IC = 0)
ON CHARACTERISTICS
DC Current Gain
-
hFE
= 1.0 mAde, VCE = 10 Vde)
(lC = 10 mAde, VCE = 10 Vde)
(lC = 30 mAde, VCE = 10 Vde)
(lc
40
40
-
VCE(sat)
-
0.75
Vde
VBE(on)
-
0.85
Vde
Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 20 Vde, f = 100 MHz)
1,-
60
-
MHz
Collector-Base Capacitance
Ceb
-
3.0
pF
Collector-Emitter Saturation Voltage
(lC
= 30 mAde, IB = 3.0 mAde)
Base-Emitter On Voltage
(lC = 30 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
(VCB
= 20 Vde, IE = 0, f = 1.0 MHz)
(1 )Pulse Test: Pulse Width ~300 IlS, Duty Cycle~ 2%.
FIGURE 1 -DC SAFE OPERATING AFlEA
600
500
400
,
........
""
30 0
"-
0
""
1'"
'I'-
0
........
The Safe Operating Area Curves indicate Ie-VeE limits below
1\
which the device will not enter second breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power·temperature derating must be observed for both steady state and pulse power conditions.
==:
-
Second Breakdown limited
Bonding Wire limited
- - - - Thermal limitations TC 25 0 C
I
o
30
15
20
I
I
I
" I'
30
50
70
100
150 200
VCE, COllECTO R·EMITTER VOLTAGE (VOLTS)
\.
~
300
1092
MPS-U10
(continued)
FIGURE 2-DCCURRENTGAIN
200
---
.....-
~
~
B
0
'-'
o
-
T}=+~ I----I--I -
z
;:;: 100
'"
-
I
VCE -10 Vdc
~
0
20
1.0
.J---
I----
~
I----
25 0 C
I
.L--
-sr c
-
-..........
I---
1'..~l
"-
'\.
\
f\
I
I
\
3.0
2.0
"-
5.0
7.0
10
30
20
70
50
100
IC, COLLECTOR CURRENTlmAI
FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT
FIGURE 3 - CAPACITANCES
;:; 10 0
100
:r
~ 80
t;
0
=>
Cob
~
-S 20
~
:r
r---
t
~
w
'-'
Z
ot-
;:: 1
U
;;:
~
z
5. 0
~
U
1. 0
0.2
0/
1.0
V
TJ = 25 0 C
20
2.0
5.0
10
20
VR, REVERSE VOLTAGE IVOLTSI
50
100
'"'"T"
~=>
r0.5
V
>'-
ccb' t--.
.0
V
40
~ 3
I
'-'
oil 0
1.0
200
2.0
5.0
TJ = 25 0 C
0.8
~
0
2:
0.6
0
I
VBE@VCE = 10 V
w
'"'"
!:;
I
0.4
J
>
>0.2
j...--
VCEI..ti@ ICIIB = 10
II
o
1.0
10
20
IC, COLLECTOR CURRENT ImAI
FIGURE 5 - "ON" VOLTAGES
1.0
1-...
J.,..
0
2.0
3.0
5.0
10
20
IC, COLLECTOR CURRENT ImAI
1093
30
50
100
50
100
MPS-U10
(continued)
APPLICATIONS INFORMATION
The MPS-Ul0 is primarily designed for use in the R, G,and B output
stages of color television receivers and with a high BVCEO, it can
supply the video amplitude requirements of any known system.
The low feedback capacitance provides good video bandwidth with
modest drive current requirements. Typical drive is from an
emitter-follower with a 4.7 k emitter·resistor operated from a
20-Volt supply. It will, therefore, be operable directly from a
number of available chroma demodulators. The low output capac-
itance of this device adds little to the total load capacitance, allowing improved bandwidth 19f a given collector load resistor. Two
typical applications for the MPS-U10 are shown in Figures 6 and 7.
Device dissipation will reach approximately 1.6 Watts under
dissipator of 40.5 0 CIW, or lower. will be required. A black anodized 0.020" thick aluminum plate measuring 1" x 2" can be folded
into a channel shape and formed with "feet" to snap into a printed
circuit panel for support. This will provide the safety factor.
Used as a color difference output. where drive and bandwidth
requirements are less severe, the MPS-U10 can be operated with
27 k ohm load resistors (worst-case dissipation would then be only
0.6 Watts). The device can, therefore, be operated as a colordifference output without any heat radiator in ambient temperatures
to 150-0.6 (125) = 750 C.
In addition the safe operating area of the MPS-U1O will fill the
requirements of the luminance output function with a total
equivalent load of 5.0 kilohms. Worst-case dissipation can reach 3
worst-case signal conditions and some heat sinking is required. At
an operating ambient temperature of 650 C. a thermal resistance
R6JA=150-65/1.6 = 530 C/W will be required.
Watts, this requires a total R6JA of 150-65/3 = 28.4°C/W. This
28.4°C/W means a heat dissipator of 15.90CIW, (approximately 2"
The junction-to-
x 3" aluminum plate) will be required.
case thermal resistance,R6Jc,of the device is 12.50 C/W, thus a heat
FIGURE 6 - MPS-Ul0AS RGB OUTPUT WITH RGB INPUT
+250Vdc
0----......---....--,
, . - - - - - , 9 GREEN
f-o---,---t--{
MC1326
11 REO
OEJ~~~~:rOR H:.=~--.,..---+--+--L
13 BLUE
47k
47k
FIGURE 7 - MPS-Ul0AS RGB OUTPUT, MATRIXING COLOR
DIFFERENCE AND LUMINANCE INPUTS
1 G-Y
4.1k
MC1328
CHROMA
DEMODULATOR
2 R-Y
4.7k
4 B-Y
47.
1094
MPS-U31
(SILICON)
NPN SILICON ANNULAR
RF TRANSISTOR
3.SW - 27 MHz
RF POWER OUTPUT
TRANSISTOR
· .. designed for use in Citizen· Band and other high·frequencv com·
munications equipment operating to 30 MHz. Higher breakdown
voltages allow a high percentage of up·modulation in AM circuits.
This device is designed to be used with the MPS8000 driver and the
MPS8001 RF oscillator.
•
Output Power = 3.5 W (Min)
•
Power Gain = 11.5 dB (Min)
•
High Coliector·Emitter Breakdown VoltageBVCES;;' 65 Vdc
•
DC Current Gain Linear to 500 mAdc
@
NPN SILICON
VCC = 13.6 Vdc
F
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation @ T A
= 2SoC
Symbol
Value
Unit
VCES
65
Vdc
VEe
3.0
Vdc
IC
500
mAde
Po
1.0
8.0
mW(OC
Po
10
80
Watt
mW/oC
TJ,Tstg
-55 to +150
Symbol
Ma.
Unit
R8JA
12.5
°CIW
R8JA(11
125
°CIW
Derate above 25°C
Total Power Dissipation@ TC "" 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
Watt
o
--lI-J
STYLE 1:
PIN 1. EMITTER
2. BASE
3. CO LLECTO R
°c
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Thermal Resistance. Junction to Ambient
A
D
(1) R8JA is measured with the device soldered into a typical printed circuit board.
G
H
J
K
L
N
Q
R
CASE 152·02
1095
MPS-U31 (continued)
ElECTR ICAl CHARACTERISTICS
I
(T A
= 25°C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage (1)
(lc = 150 mAde, VBE = 0)
BVCES
65
-
-
Vdc
Emitter-Base Breakdown Voltage
BVEBO
3.0
-
-
Vde
ICBO
-
-
0.01
mAde
Common-Emitter Amplifier Power Gain
(Pout = 3.5 W, VCC = 13.6 Vdc, f = 27 MHz)
GpE
11.5
-
-
dB
Outpu t Power
(Pin = 350 mW, VCC
Pout
3.5
-
-
Watts
11
-
85
-
%
-
-
85
-
%
Characteristic
OFF CHARACTERISTICS
(IE
= 1.0 mAde, IC = 0)
Collector Cutoff Cllrrent
(VCB = 50 Vdc, IE = 0)
ON CHARACTERISTICS
DC Current Gain (2)
(IC = 100 mAde, VCE = 10 Vdc)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12 Vdc, IE
= 0, f = 1.0 MHz)
FUNCTIONAL TEST (Figure 1)
= 13.6 Vdc, f = 27
Collector Efficiency (3)
(Pout = 3.5 W, VCC = 13.6 Vdc, f
MHz)
= 27 MHz)
Percentage Up-Modulation (4)
(f = 27 MHz)
(1) Pulsed thru 0 25 mH Indicator.
(2) Pulse Test: Pulse Width ";;300 p.s,
Duty Cycle";; 2.0%.
(3) 11 = AF Pout • 100
(VCC) (lC)
(4)
Percentage Up-Modulation is measured in the test circuit
(Figure 1) by setting the Carrier Power (Pc) to 3.5 Watts with
VCC = 13.6 Vde and noting tho power input. Then the Peak
Envelope Power (PEP) is noted after doubling the original power
input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the Vee to 25 Vdc (to simulate the
modulating voltage). Percentage Up-Modulation is then determined
by the relation:
Percentage Up-Modulation
=
EP
[( PpC )
1/2 -1 ] .,00
FIGURE 1 - 27 MHz TEST CIRCUIT
r - - -......-----1~---<) ~i~ Vdc
CI, C2
C3, C4
C5
C6
RFC1
9.0·180 pF ARCa 463 or Equivalent
5.0·80 pF ARCO 462 or Equivalent
O.02J.1F Ceramic DISC
0.1 /-IF Ceramic DISC
4 Turns #30 Enameled Wire Wound on
Ferroxcube Bead Type 56-590·65138
RFC2
26 Turns #22 Enameled Wire (2 Layers13 Turns Each Layer) ""'nner Diameter
0.22.H Molded Choi
'"'"
'"
~
~
25°C
:;;:
5.0
10
50
100
TJ·250C
Va Elsa')
0
0
..'"
w
I---
I
0
V- L-
J
Iclla • 10
V
VaE@VCE"10V
!::; O.4
1:1
>
>'
L-
-55°C
f-""
O.2
VCE'10V
VCEI...)@lc/la· 10
20
0.5
20
-
~
'"
B
FIGURE 2 - SMALL-SIGNAL CURRENT GAIN
10
300
200
F-" FTJ
r---...
125°C
1
W=5.0Vz
i"'-
25 0 C
2.0
~
1.0
"'~
0.5
~
VCE = 5.0 Vd-:TJ = 25°C
f=100MH,
'"
B
20
~
'-'
'"
~
~
-
--
5.0
~
10
7.0
5.0
-55~C
3.0
002
0.05
01
0.5
0.2
1.0
'"~
"
"
\\2.0
'"
0.2
O. 1
0.01
0.02
0.03
FIGURE 3 - "ON" VOLTAGES
5
J
C;
'""'
'"
o~
1. 5 f-
1.0
rBEli")@IC/IB =
I I
50~
_ --
.................
I I
i--
.s>-
..........
-
'"'"
i3
I I
0.03
10
~
-2.0
1/
0VB For VSE
-3.0
8
I I
0.05
-5.0
0.1
0.2
03
0.5
2.0
1.0
0.01
V
./
....... ~
-4.0
i-rEIi"'tt'i'WiO
0.02
0.5
U
e..
>
.....
O. 5 -
o
0.3
-10
VBE @VCE = 5.0 V
>
>'
02
J
f
I I
~
?
0
I
0.1
FIGURE 4 - TEMPERATURE COEFFICIENT
i-~ J25 b
2.0
0.05
IC, COLLECTOR CURRENT lAMP)
IC, COLLECTOR CURRENT lAMP)
2.
~,
-
002
t0.03
0.05
0.1
0.2
0.3
0.5
10
IC, COLLECTOR CURRENT lAMP)
IC, COLLECTOR CURRENT lAMP)
FIGURE 5 - DC SAFE OPERATING AREA
2.0
I'\.
"
'>-"
:>.
1.0
~
0.7
'"
B
'"'"
~8
~
"\
"-
0::
0.5
.'\
0.3
There are two limitations on the power handling ability of p
transistor: junction temperature and second breakdown. Safe
operating area curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
I-- r- TJ=150oC
0.2
1----
---J I
1--0.1
2.0
3.0
7.0
10
The data of Figure 5 is based on T J(pk) = 150°C; TC is variable
depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.
"-
BONDING WIRE LIMITATION
THERMAL LlMITATION@TC=25 0C
SiCOY BiEAiDIiN jlMITATliN
5.0
be subjected to greater dissipation than the curves indicate.
f~
20
30
40
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)
1101
MPS·U45 (continued)
5-WATT AUDIO AMPLIFIER
+20 V
470 k
10.I~F
10.1~
1.8k
02
1.8M
04
INPUT
<>--:l
01
0.47
1000~F.
1.5 k
0.1~
8f!
3.3k
68
-=
0.47
03
3.0M
+
1.5 k
100~F
05
8.2k
01· MPS·A 13 (OARLINGTON)
02· MPS·A70
03· MPS·A20
04· MPS·U45
{COMPLEMENTARY
as· MPS·U95
OARLINGTONS
1102
MPS-U 51 (SILICON)
MPS-U51A
PNP SILICON ANNULAR TRANSISTORS
PNP SILICON
AUDIO TRANSISTORS
· .. designed for complementary symmetry audio circuits to 5 Watts
output.
•
Excellent Current Gain Linearity - 1.0 mAdc to 1.0 Adc
•
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc
• Complements to NPN MPS·U01 and MPS·U01A
•
Uniwatt Package for Excellent Thermal Properties 1.0 Watt@TA = 250 C
F
MAXIMUM RATINGS
Rating
Symbol
MPS·U51
MPS·U51A
VCEO
30
40
Vdc
Collector-Base Voltage
VCB
40
50
Vdc
Emitter-Base Voltage
Collector-Emitter Voltage
Unit
5.0
IC
2.0
Adc
Total Device Dissipation@TA "" 2SoC
Derate above 2SoC
PDIII
Watt
mW/oC
Total Device Dissipation @TC = 2SoC
PD/tl
1.0
8.0
10
BO
mW/oC
-55 to +150
°c
Derate above 25°C
Operating and Storage Junction
Temperature Range
TJ.Tst~1I.
Symbol
Thermal Resistance, Junction to Case
R8JC
Thermal Resistance, Junction to Ambient
R8JA 111.
I
I
D
Watts
THERMAL CHARACTERISTICS
Characteristic
J 2
Vdc
VEB
Collector Current - Continuous
Max
I
12.5
I
I
125
Unit
°CIW
°CIW
(1) R6JA is measured with the device soldered into a typical printed circuit board.
..JI--J
STYLE I:
PIN I. EMITIER
Z. BASE
3. COLLECTOR
MILLIMETERS
DIM MIN
MAX
A
B
C
D
F
G
H
J
K
L
N
R
9.14 9.53
6.60 7.24
5.41
5.66
0.38
0.53
1
33
2.54BSC
3.94 4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 SSC
2.39 2.69
1.14 1.40
INCHES
MIN
MAX
11.360
0.260
0.213
0.1
CASE 152·02
Unlwatt packages can be To-5 lead formed by adding -6 to the device title and tab formed for
flush mounting by adding -1 to the device title.
1103
MPS-U51,MPS-U51A (continued)
ELECTRICAL CHARACTERISTICS (TA = 2SoC unless otherwise noted)
Min
Max
30
40
-
40
50
S.O
-
MPS-USI
-
0.1
MPS-US1A
-
0.1
-
0.1
55
-
Characteristic
Symbol
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc
MPS-USI
MPS-U51A
Collector-Base Breakdown Voltage
(lC = 100 "Ade. IE = 0)
Vde
BVCBO
MPS-USI
MPS-US1A
Emitter-Base Breakdown Voltage
(IE
Vde
BVCEO
= 1.0 mAde.IB = 0)
BVEBO
Vde
= 100 "Ade. IC = 0)
Collector Cutoff Current
(VCB = 30 Vde. IE = 0)
(VCB = 40 Vde.IE
ICBO
= 0)
Emitter Cutoff Current
(VBE
"Ade
lEBO
= 3.0 Vde. IC =0)
"Ade
ON CHARACTERISTICS(l)
DC Current Gain
-
hFE
= 10 mAde. VCE = 1.0 Vde)
(lC = 100 mAde. VCE '" 1.0 Vde)
(lC = 1.0 Ade. VCE = 1.0Vde)
(lC
60
50
-
Collector-Emitter Saturation Voltage
(IC = 1.0 Ade. I B = 0.1 Ade)
VCE(sat)
-
0.7
Vdc
Base-Emitter On Voltage
VBE(on)
-
1.2
Vde
IT
SO
Cob
-
(lC
= 1.0 Ade. VCE = 1.0 Vde)
DYNAMIC CHARACTERISTICS
(;urrent-Gain Bandwidth Product (1)
(lC = SO mAde. VCE = 10 Vde. I = 20 MHz)
Output Capacitance
(VCB
= 10 Vde.IE = O. I = 100 kHz)
MHz
30
pF
(1)PulseTest: Pulse Width S.300,",5, Duty Cycle "f 2.0%.
FIGURE 1 - DC CURRENT GAIN
FIGURE 2 - "ON" VOLTAGES
500
1.0
300 z
'"
~0:
200
13
-
Q
100
'"
~
w
-r--r- -
~
'"
~
5 0.6
'"
~
Q
f---
-
50
100
200
VCE(satl@ICIIB=l!.,..-
-mr
o
500
1000
..ktl
.J-.+1'"
VBE@ VCE = 1.0 V
0.4
0.2
50
20
f---
..-r
>
>-
70
10
-
VBE(sat)@ICIIB"10_
0.8
TJ=25 0 C
;;:
I-
I III
J
-TJL5 C
~CEI= 1.0 JdC
10
20
IC. COLLECTOR CURRENT (rnA)
30
50
100
....
....
200
300
500
1000
IC. COLLECTOR CURRENT (mA)
FIGURE 3 - DC SAFE OPERATING AREA
2.0
ii::
.... ~
'"
1.0
~
0.7
~
I0:
:::J
I",
TJ =150D
C.
0:
Q
g
".....
0.5
'"
0.3
- - - - . Secondary Breakdown limited
- - - - - - Bonding Wire Limited
--'
- - - - Thermal Limitations @ TC=25 0C
8 0.2
-I 1
1 AP1PIi"lbl • iD ~VyEr
9
There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe
operating area curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
"-
The data of Figure 3 is based on T J(pk)
........
I
0.1
2.0
II
3.0
5.0
10
20
30
= 15o"C;
TC is variable
depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by second. breakdown .
40
VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)
1104
MPS-U52 (SILICON)
PNP silicon annular amplifier transistor designed for
general-purpose amplifier and driver applications. Complement to NPN MPS-U02.
CASE 152
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
MAXIMUM RATINGS
COllector connected to tab
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
VCEO
40
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
Collector Current - Continuous
IC
1.5
Adc
Total Power Dissipation @ TA = 25°C
PD"'
1.0
Watt
8.0
mW/"C
Derate above 25'C
Total Power Dissipation @ TC = 25'C
P D f1l
Ope rating and Storage Junction
Temperature Range
Watts
10
80
Derate above 25°C
-55 to +150
mW/'C
·C
Symbol
Max
Unit
R8JC
12.5
T J' T stg"'
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case
Thermal ReSistance, Junction to Ambient
ELECTRICAL CHARACTERISTICS
125
R8JA "'
(T A
°C/W
°c/w
=2S'C unless olherwise noted)
Min
Max
40
-
60
-
-
100
50
-
(1<; = 150 mAdc, VCE = 10 Vdc)
50
300
(I C = 500 mAdc, VCE = 10 Vdc)
30
-
Symbol
Characteristic
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAde, IB = 0)
BV CEO
Collector-Base Breakdown Voltage
(IC =l00/lAdc, IE = 0)
BV CBO
I CBO
Collector Cutoff Current
(VCB = 40 Vdc, IE = 0)
Vdc
Vdc
nAdc
ON CHARACTERISTICS (2)
DC Current Gain
(IC = 10 mAde, VCE = 10 Vdc)
hFE
-
Vdc
Collector-Emitter Saturation Voltage
(IC = 150 mAde, IB = 15 mAde)
VCE(sat)
-
0.4
Base-Emitter Saturation Voltage
(I C = 150 mAdc, IB = 15 mAdc)
VBE(sat)
-
1.3
Vdc
"
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(IC = 20 mAde, VCE = 20 Vdc, f = 100 MHz
iT
Output Capacitance
(V CB = 10 Vdc, IE = 0, f = 100 kHz)
Cob
150
-
-
24
pF
(1) R8JA is measured with device soldered into a typical printed circuit board
(2) Pulse Test: Pulse WidthS300 /ls, Duty CycleS2. 0%
Uniw8tf packages can be To-5 Iud formed by adding -6 to the deviee title and tab formed for
flush mounting by adding -1 to the device title.
1105
MHz
MPS-US2 (continued)
FIGURE 1 - DC CURRENT GAIN
300
TJ -125°C
.. -
-
200
-
-
01-
FIGURE 2 - "ON·' VOLTAGES
1.4
I
- r--.
-.....
H-
J
-
r--,
25 C
b
-55 0
TJ' 25°C
I1.2
~
I',
...
2: 0.8 I- VBE( ..,!@lelIB= 10
'"
to
~
r--.
0
-
1.0
0
0.6 F
VBE ° nl:~VCe=
lov
l-
0
>
\
~
-VCe=I.0V
01-
1-;-;-;-;7"VCE~10~
IIIIII
30
2.0
5.0
10
,,: 0.4
I
20
50
100
200
IC, COLLECTOR CURRENT (mA)
5DD
L
0.2
~
I- t-VCE .. @lelIB=10
o2.0
1000 2000
FIGURE 3 - COLLECTOR SATURATION REGION
0;
5.0
10
20
50
100
200
IC, COLLECTOR CURRENT (rnA)
1DOD 2000
500
FIGURE.4 - DC SAFE OPERATING AREA
2. 0
1.0
TJ = 2
':;
1',
0
2: O.8
'"to
0
<[
':;
0
>
IC = 1 rnA 50mA 150 ...
O. 6
mA
'"
10
7
mA
I:'"
1\
iii o.4
'"
:::j
O.2
0
0.05 0.1 0.2
0.5 1.0
2.0
5.0
10
20
50
100 200
O. 12.0
500
IB, BASE CURRENT (mAl
g
f
FIGURE 6 - CAPACITANCE
II1II
TJ = 250C
t- t-t100
.... ~ I-"""
z
<1100
r--......
/'
Cib
0
I'
v
~
'"
;i!i
01--
,/
t-
O
~
z
~
0
Cob
~ 70
a'"
.i
50
2.0
40
200
VCE=20V
300 I-- I-- TJ=25oC
f= 100 MHz
~ 200
o
\
4.0
6.0
B.O 10
20
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
FIGURE 5 - CURRENT-GAIN BANDWIDTH PRODUCT
"" 500
t;
~
J
ul
"~
~
I
8
>'"'
~
TJ = 150°C
- - - BONDING WIRE LIMIT
3/-- _ _ _ THERMALLIMIHHC=250C
- - SECOND BREAKDOWN LIMIT
2
I--
0
~
.:-.
5
3.0
5.0 7.0 10
20
30
50
IC, COLLECTOR CIIRRENT (mA)
70
100
0
200
1106
r-- 'r---.
0.1
0.2
0.5
1.0
2.0
10
5.0
VR, REVERSE VOLTAGE (VOLTS)
20
50
100
MPS-US S(SILICON)
MPS-US6
PNP SILICON ANNULAR
AMPLIFIER TRANSISTORS
PNPSILICON
AMPLIFIER TRANSISTORS
· .. designed for general-purpose, high-voltage amplifier and driver
applications.
•
High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc - MPS-U55
80 Vdc (Min) @ IC = 1.0 mAdc - MPS-U56
•
High Power Dissipation - Po = 10 W @ TC = 25 0 C
•
Complements to NPN MPS-U05 and MPS-U06
MAXIMUM RATINGS
Rati
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation @ T A ,., 25°C
Dorate ebove 250 C
Total Power Dissipation
Dora.. above 250 C
@
T C '" 25°C
Operating and Storage Junction
Temperature Range
Svmbol
MPS-U55
MPS-U56
Unit
VCEO
V
60
80
Vdc
60
80
Vdc
VEB
4.0
Vdc
IC
2.0
Adc
Po
1.0
8.0
Watt
mW/oC
Po
10
80
TJ,Tstg
-55 to +150
Watts
mW/oC
DC
3.
0
STYLE I
PIN 1. EMITTER
2 BASE
3. COLLECTOR
THERMAL CHARACTERISTICS
S mbol
Max
AeJC
12.5
Unit
INCHES
MIN MA
Thermal Resistance, Junction to Ambient
Thermal Resistance. Junction to Case
0.31
0.285
~
0.213
0.223
1
(1) R6JA is measured with the device soldered into a typical printed circuit board.
125
11
D.l00asc
0.155 0.185
0.014 0.016
0.415 0.500
D.9B5
1.005
G.200BSC
0.0114
0.1011
0.045
O.1Ii5
Collector ConnacMd
to Tab
CASE 152-02
1107
MPS-U55, MPS-U56 (continued)
ELECTRICAL CHARACTERISTICS (T A = 250C unless otherwise noted)
I
I
Ch_1stIc
OFF CHARACTERISTICS
CoII_-Emltter Breakdown Voltage (1)
(lc = 1.0 mAde. lB· 0)
Symbal
I
Typ
60
-
-
4.0
-
-
-
-
-
-
100
100
BO
50
160
130
BO
-
BVceo
MPS-U55
MPS-U56
80
Emitter-Base Breakdown Voltage
(IE =100"Ade. IC· 0)
BVEBO
Collector Cutoff Curr.nt
(VCB· 40 Vde. IE = 0)
(VCB = 60 Vde. IE • 0)
Min
ICBO
MPS-U55
MPS-U56
ON CHARACTERISTICS
DC Currant G.in (1)
(lC· 50 mAde. VCE = 1.0 Vdc)
(lC = 250 mAde. VCE ·'.0 Vdc)
(lC =500 mAde. VCE = 1.0 Vdc)
Collector-Emitter Saturation Voltage( 1)
(lC = 250 mAde. IB = 10 mAde)
(lC =250 mAde. IB = 26 mAde)
Unit
Vde
nAde
hFE
-
-
Vdc
VCE(sat)
B.....Emitter On Voltage (1)
(lC = 250 mAde. VCE - 5.0 Vde)
Vde
0.22
0.15
0.5
VBE(on)
-
0.7B
1.2
Vde
IT
50
100
-
MHz
Cob
-
10
15
pF
-
SMALL-SIGNAL CHARACTERISTICS
Currant-Gain-B.ndwidth Product (1)
(lC = 250 mAde. VCE = 5.0 Vde. f = 100 MHz)
Output Capacitance
(VCB = 10 Vde. IE = O. f = 100 kHz)
(1 )Pulse Test: Pulse W,dth ';;300 "so Duty Cvele ';;2.0%.
FIGURE 1 - DC CURRENT GAIN
300
FIGURE 2 - "ON" VOLTAGES
•t---fJ.J5,J
lM~II.'Vd'
o
TJ"25 C
200
I IIIII
VBEi." ~ ,~,J JIJ
8
...... f'.-
_f-"'"
VBE(onl &1 VeE = 5.0VdCt--
.6
..
•
•
•5.'
~
~
1
~
VCE(sat)"CfIB"'10
3
10
20
50
100
Ie. COLLECTOR CURRENT (mAl
0
200
I..
500
FIGURE 3 - ACTIVE-REGION SAFE
OPERATING AREA
2.'
10
50
20
50
20.
100
5
00
Ie. COLLECTOR CURRENT (mAl
FIGURE 4 - CURRENT -GAIN-BANDWIDTH PRODUCT
......--
t....
"
•
0
VCE"S.OVdc
TJ=25 DC
10
VC£, COLLECTOII-EMITTEII VOLTAGE (VOLTSI
There are two limitations on the power handling ability of a
van.istor: junction temperature and second breakdown. Saf.
operating area eurves indicate IC - VCE limits of the transistor that
must be obsaMId for reliable operation; i.••• the transistor must
not be subjected to greater dissipation than the eurves indicate.
20
50
100
200
500
Ie. COLLECTOR CURRENT (mA)
The date of Figure 3 is based on TJ(pk) = 1SOOC; TC is variabl.
depending on conditions. At high case temperatures. thermal
limitetions wili reduce the power that can be handled to values I_
than the limitations imposed by second breakdown.
(See AN-415A)
1108.
MPS-U57 (SILICON)
AMPLIFIER TRANSISTOR
PNP SILICON ANNULAR
AMPLIFIER TRANSISTOR
PNPSILICON
· .. designed for general-purpose, high-voltage amplifier and driver
applications.
•
High Collector-Emitter Breakdown Voltage BVCEO = 100 Vde (Min) @ IC = 1.0 mAde
•
High Power Dissipation - Po = 10 W@ TC = 25 0 C
•
Complement to NPN MPS-U07
F
MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage
Svmbol
Value
Unit
VCEO
100
Vdc
Vdc
Collector·Base Voltage
VCB
100
Emitter·Base Voltage
VEB
4.0
Vdc
IC
2.0
Adc
2SoC
PD
1.0
8.0
Watt
mW/oC
Total Power Dissipation @ T C = 2SoC
Derate above 2SoC
PD
10
80
Watt
mW/oC
TJ,Tstg
-55 to +150
°c
Collector Current
Continuous
Total Power Dissipation
Derate above 25°C
@ TA -
Operating and Storage Junction
Temperature Range
D
STYLE I:
PIN I. EMITTER
2. BASE
3. COLLECTOR
DIM
MILLIMETERS
MIN
MAX
9.14
6.60
5.41
0.38
INCHES
MIN
MAX
0.360
0.260
0.213
0.015
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, JUnction to Case
R8JC
12.5
°C/W
Thermal Resistance, Junction to Ambient
R8JA!11
125
°C/W
(1) RSJA is measured with the device soldered into a typical printed circuit board.
CASE 152-02
1109
MPS-U57 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
I
Min
Typ
Max
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage (1)
(lC = 1.0 mAde,lB = 0)
BVCEO
100
-
-
Vde
Emitter·Base Breakdown Voltage
= 100 I'Ade, IE = 0)
BVEBO
4.0
-
-
Vde
ICBO
-
-
100
nAdc
60
30
-
140
65
30
-
0.24
0.15
lie
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
ON CHARACTERISTICS (1)
DC Current Gain
-
hFE
(lC = 50 mAde, VCE = 1.0 Vde)
(lC = 250 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage
(lc = 250 mAde, I B = 10 mAde)
(lC = 250 mAde,lB = 2? mAde)
VCE(sat)
Base·Emitter On Voltage
(lC = 250 mAde, VCE = 5.0 Vde)
VBE(on)
-
0.7B
fr
50
100
Cob
-
10
-
-
Vde
0.5
1.2
Vde
-
MHz
SMALL-SIGNAL CHARACTERISTICS
Current·Gain-Bandwidth Product (1)
(lC = 200 mAde, VCE = 5.0 Vde, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f
= 100 kHz)
15
pF
(1) Pulse Test: Pulse Width ... 300 1", Duty Cycle ... 2.0%.
FIGURE 2 - "ON" VOLTAGES
FIGURE 1 - DC CURRENT GAIN
2DO
0
o. 9t-;J.~.cl
~
0
~
~
0
I
1111
y
vJEll,@ l'cJe~ Jo'
o.8
o.7
o.6
W
fi-rrt
VBE(onltD VeE" 5.0 Vdc
; :•
5
0
'\
1111
20
5.0 7.0 10
-> o.3
1\
vee'" T.OVdc
TJ=250C
0
o.2
5070 toO
2DO
0
1.0
500
2.0
Ie, COLLECTOR CURRENT tmAl
FIGURE 3 - DC SAFE OPERATING AREA
i
300
g
200
.
liJ-l.U
g
~
- -
~eco~d ~~k~!.!n
2.0
10
100
200300500
~
......
!
limited
BondingWireUmited
Thermll Limitatlons@TC=2S 0C
Applicable To BVCEO
I 11I111
I
I
50
~ TOO
TJ= ISOoc
2
0.005
\.0
J...----:
IE
.5
.1
20
FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT
0
.2
I
Ie. COLLECTOR CURRENT (mA)
5.0
0
VCE(satl@ICIlB"10 V
.
I
20
~ 70
I
20
VeE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
'"
IDO
Thera ara two limitations on the power handling ability of a
transistor: junction temporature and second breakdown. Safe
operating area curves indicate IC - VCE limits of the transistor that'
must be observed for reliable operation; i.e., the transistor must
not be subjacted to graater diSSipation than the curves indicate.
;
50
13
,t;.
0
3 5.0 7.0
Vce-S.OVdc
l'i'il"C
10
20
50
70 100
200
500
IC. COLLECTOR CURR£NT (mA)
The data of Figure 3 is based onTJ(pk) =150 0 C; TC is variable
depending on conditions. At high case temporaturas, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed by secondbraakdown,
1110
MPS-U60 (SILICON)
PNP SILICON ANNULAR TRANSISTOR
PNPSILICON
HIGH VOLTAGE
TRANSISTOR
. designed for general·purpose applications requiring high break·
down voltages, low saturation voltages and low capacitance.
• Complement to NPN Type MPS·Ul0
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
VCEO
300
Vdo
Collector-Base Voltage
VCB
300
Vdo
Emitter-Base Voltage
VEB
5.0
Vdo
Collector Current - Continuous
Ie
500
mAde
Total Power Disslpatlon@TA=25 0 c
Po
10
B.O
mWf'C
Po
10
eo
Watu
mWflC
TJ,T stg
-55to+150
°e
Collector·Emltter Voltage
Derate above 25°C
Total Power Dlsslpatlon@Tc=250C
Derate above 25°C
Operating and Storage Junction
Watt
Temperature Range
THERMAL CHARACTERISTICS
F
Characteristic
Thermal ReSistance, Junction to Case
Thermal Resistance, Junction to Ambient
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Svmbol
Max
Min
Unit
OFF CHARACTERISTICS
Collector Emitter Breakdown VoltBge,(2)
(Ie'" 1 0 mAde, IR = Ol
BVCEO
Collector-Base Breakdown Voltage
(Ie'" 100 j.lAde, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(IE = 10 j.lAde, IC = 0)
BVEBO
Vdo
300
Vdo
300
Vdc
-ll--J
5.0
Collector Cutoff Current
(Vce = 200Vdc,IE =0)
ICBO
Emitter Cutoff Current
(VBE = 3_0 Vde, Ie = 0)
lEBO
j.lAde
0.2
j.lAde
0.1
STYLE 1:
PIN I. EMITTER
2. BASE
3. COLLECTOR
ON CHARACTERISTICS
DC Current Gain (2)
(Ie" 1 0 mAde, VeE = 10 Vdcl
-FE
25
30
IIc = 10mAdc, VCE = 10Vdc)
30
(Ie = 30 mAde, VCE = 10 Vdel
Collector-Emitter Saturation Voltage
tiC = 20 mAde, IS ""2_0mAdcl
VCE(satl
Base-EmitterSaturation Voltage
(lC =20mAdc, IS = 2,OmAdcl
VSE(sat)
Vdc
0_75
0.9
Vdo
DVNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(lc .. 10 mAde, VCE = 20 Vdc, f = 100 MHz)
Collector-Base Capacitance
(Vee "20Vde,IE =0. f= 1.0 MHzl
(1) R6JA is measured with the device soldered into a typical printed circuit board.
(2) Pulse Test: Pulse Width .. 300 1'5, Duty Cycle .. 2.0%.
1111
CASE 152·02
MPS-U60 (continued)
FIGURE 1-DC CURRENT GAIN
15 0
V~E
TJ=+1250 C
\0
V~c
100
z
;;:
to
I-
~_
"-
_ + 2 5 0e
70
~
50 ~-550e
"
~
.......
~
G
...,
"""" r'\
30
~
'\
~
"
20
'\
15
1.0
2.0
5.0
3.0
10
7.0
20
30
50
80
100
Ie. eOLLEeTO R CU RRENT (mAl
FIGURE 2-CAPACITANCES
FIGURE 3 -CURRENT-GAIN-BANDWIDTH PRODUCT
100
"
TJ C 25 0e
g~
50
Cib
~
w
...,
20
Z
'"
I-
<:;
~
r-t-
~
6"
~
r--....
10
Z
:;
100
I- TJ = 25·C
80 I- VCE = 20 Vdc
"
60
\
/'
40
V
30
I
Z
;'l 5.0
...,-
-
2.0
1.0
0.1
:;;'
to
20
Cfb l
0.2
0.5
1.0
2.0
•. 0
10
20
.0
100 200
5.0
2.0
.00 1000
VR. REVERSE VOLTAGE (VOLTSI
g
~
w
-
JI
O.8
-
r-
FIGURE 5 - DC SAFE OPERATING AREA
500
II
TJ = 25.e
VB~ @JeE I= 10 ~
;;:
oS
I-~
0.6
to
o
1.0
100
"'"
0
1-1-""
II II
10
20
I\.
...,
"~
5.0
....
200
~::>
~...,
2.0
'..,
Z
~ D.4
>-
VeE(satl Ii' ICIIB = 10
300
I-
~
D. 2
100
50
20
IC. COLLECTOR CURRENT (mAl
FIGURE 4 - "ON" VOLTAGES
1. 0
10
50
TJ = 150·C
0
- - - SECOND BREAKDOWN LIMITED
0 - BONDING WIRE LIMITED
- - - THERMALLYLIMITEO@TC=25·C
0
5.0
100
20
30
40
60
80
100
r-...
200
VCE.COLLECTOR-EMITTER VOLTAGE (VOL TSI
IC. COLLECTOR CURRENT (mAl
1112
300
400
MPS-U95 (SILICON)
PNPSILICON
DARLINGTON
TRANSISTOR
PNP SILICON DARLINGTON
AMPLIFIER TRANSISTOR
· .. designed for ampl ifier and driver applications.
• High DC Current Gain hFE = 25,000 (Min) @ IC = 200 mAdc
15,000 (Min) @ IC = 500 mAdc
• Collector-Emitter Breakdown Voltage BVCES = 40 Vdc (Min) @ IC = 100/lAdc
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 1.5 Vdc @ IC = 1.0 Adc
• Monolithic Construction for High Reliability
3
• Complement to NPN MPS-U45
,~
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCES
40
Vdc
Collector-Base Voltage
VCB
50
Vdc
Emitter-Base Voltage
VEB
10
Vdc
Collector Current -Continuous
IC
2.0
Adc
Total Power Dissipation @ TA - 25°C
Derate above 25°C
Po
1.0
8.0
Watt
mW/oC
Total Power Dissipation@ TC = 2SoC
Derate above 2SoC
Po
10
80
mW/oC
TJ,TsIg
-551o +150
°c
Symbol
Max
Unit
Thermal Resistance, Junction to Ambient
R8JA
125
°CIW
Thermal Resistance. Junction to Case
"'8JC (1)
12.5
°C/W
Operating and Storage Junction
Watts
o
Temperature Range
THERMAL CHARACTERISTICS
Characteristic
STYlE 1.
PIN 1. EMITTER
2. BASE
3. COLLECTOR
DIM
MILLIMETERS
MIN
MAX
9.53
INCHES
MIN
MA
Q.360
0.375
0.260 0.285
0.213 0.223
0.01
0.0
12
0.1 1
0.1008SC
0.155
0.165
0.014 0.016
0.475 0.5
0.985 1.005
0.200BSC
0.094 0.1116
0.045 0.055
(1) A8JA is measured with the device soldered Into a typical printed circuit board.
1113
CASE 162-02
MPS-U95 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Olaracteri5tic
Symbol
Min
Typ
Max
Unit
Collector-Emitter Breakdown Voltage
(lC = lOOI'Ade, VBE =1»)
BVCES
40
-
-
Vde
Collector-Base Breakdown Voltage
(lC = 100 I'Ade, IE = 0)
BVCBO
50
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = 10 I'Ade, IC = 0)
BVEBO
10
-
-
Vde
Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
ICBO
-
-
100
nAdc
Emitter Cutoff Current
(VEB = 8,0 Vde, IC = 0)
lEBO
-
-
100
nAde
= 5.0 Vde)
25,000
150,000
(lC = 500 mAde, VCE = 5.0 Vde)
15,000
43.000
41,000
(lC = 1.0 Ade, VCE = 5.0 Vde)
4,000
35,000
-
OFF CHARACTERISTICS
ON CHARACTERISTICS(l)
DC Current Gain
(lC
= 200 mAde, VCE
-
hFE
-
Collector-Emitter Saturation Voltage
(lc = 1.0 Ade, IB = 2.0 mAde)
VCE(sat)
-
1.0
1.5
Vde
Base-Emitter Saturation Voltage
(lC = 1.0 Ade, I B = 2.0 mAde)
VBE(sat)
-
1.85
2.0
Vde
Base-Emitter On Voltage
(lC = 1.0 Ade, VCE = 5.0 Vde)
VBE(on)
-
1.7
2.0
Vde
Small..signal Current Gain (1)
(lC = 200 mAde, VCE = 5.0 Vde, I = 100 MHz)
Ihlel
0.5
1.6
-
-
Collector Base Capacitance
(Vca = 10 Vde, IE = 0, I = 1.0 MHz)
Ceb
-
2.5
12
pF
DYNAMIC CHARACTERISTICS
(l}Pulse Test: Pulse Width ~300 IJs, Duty Cycle ~2.0%.
Uniwatt darlington transistors can be used in any number of low power applications, such as relay drivers, motor control and as general
purpose amplifiers. As an audio amplifier these devices, when used as a complementary pair, can drive 3.5 watts into a 3.2 ohm speaker using
a 14 volt supply with less than one per cent distortion. Because of the high gain the base drive requirement is as low as 1 mA in this application.
They are also useful as power drivers for high current application such as voltage regulators.
1114
MPS-U95 (continued)
FIGURE 1 - DC CURRENT GAIN
FIGURE 2 - SMALL-8IGNAL CURRENT GAIN
10
150
ViE-lOV
z
;;: 5.0
'">-
~100 r-TJ= 125°C
;
70
;;:
=
a
u
c
F" r-2SoC
Ti
0
~
20
I
....
\
"\
'"
\.
i!i
~«
i
~
r-rr
15
0.02
~ 1.0
\
~
0.05
O. 5
o.2
O. 1
0.01
2.0
1.0
0.5
0.2
0.1
TJ = 25°C
f= 100 MHz
~
\.
§ 50
~
~ 2.0
I'\.
'"
~VCE=5.0Vdc
r----
0.02
0.D5
u
2.0
1.5
'"
~
c
1.0
~
w
0.5
1.0
+O.B
TJ = 25°C
o
0.2
FIGURE 4 - TEMPERATURE COEFFICIENT
FIGURE 3 - "ON" VOLTAGES
2.5
s
0.1
IC. COLLECTO RCU RRENT lAMP)
IC.COLLECTOR CURRENT lAMP)
.......-: t::::
VBE@W=S,~V
>'
~ -2.4
~ -3.2
11:
>- -4.0
'i
II
0.05
./
/'
::>
II
0
0.02
BVC FOR VCElsat)
-1.6
!;;:
VCElsat)@ICIIB=SOD
O. 5
ffi -0.8
~
8
./"
II
./
/'
0
U
VBElsa"@ IcllB = SOD
>
sa.
~
0.2
0.1
0.5
-4.B
0.02
2.0
1.0
0.05
---
'"
~VB~ORVrE
0.1
0.2
0.5
1.0
2.0
IC. COLLECTO RCURRENT lAMP)
IC. COLLECTOR CURRENT lAMP)
FIGURE 5 - DC SAFE OPERATING AREA
2.0
....
'\.
'"
;;;
~
1.0
>-
~ 0.7
=
i3
0.5
=
c
~ 0.3
c
~
0.2
There are two
operating area curv~ 5 indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e .• the transistor must not
be subjected to greater dissipation than the curves indicate.
.'\
~
r- ~ TJ=150oC
----
O. 1
2.0
I
I
3.0
The data of Figure 5 is based on T J(pk) = 15o"C; TC is variable
depending on conditions. At high case temperatures, thermal limi-
tations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.
"-
f - - - - BONDING WIRE LIMITATION
r-._ _
THERMAL lIMITATION@TC=2S0 C
SjCON1D BjEAjDiWIN ,IMITATliN
5.0
7.0
10
mitations on the power handling ability of a
transistor: junction temperature and second breakdown. Safe
20
3D
40
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)
1115
MPS-U95 (continued)
5-WATT AUDIO AMPLIFIER
+20
v
470 k
1.8\
10.l P F
10.lpF
02
i.8M
04
INPUT~
01
0.47
1000 pF
1.5k
0.1 pF
8n
3.3 k
68
-=
0.47
03
3.0 M
+
100pF
1.5 k
os
8.2 k
ill· MPS·A13 (DARLINGTON)
02· MPS·A70
03· Mps·A20
04· MPS·U45 {COMPLEMENTARY
U5 . MPS·U95
DARLINGTONS
1116
MPT20 (SILICON)
Plastic silicon 3-layer bilateral triggers are two-terminal
devices that exhibit bi-directional negative resistance
switching characteristics. These economical, durable devices have been developed for use in thyristor triggering
circuits for lamp drivers and universal motor speed controls.
STYLE 3:
PIN 1. MAIN TERMINAL!
2. MAIN TERMINAL2
CASE 182
(Formerly CASE 29 B)
MAXIMUM RATINGS (TA = 2SOC unless otherwise noted)
Rating
Symbol
Peak Pulse Current
(30 /lS duration, 120 Hz
repetition rate)
1
pulse
Power Dissipation @ T A
= -40 to
Value
Unit
Amp
2.0
+25° C
PD
Derate above 25° C
Operating Junction Temperature RangE
Storage Temperature Range
300
mW
4.0
mWjOC
TJ
-40 to +100
°c
Tstlr
-40 to +150
°c
ELECTRICAL CHARACTERISTICS
(TA
=25 °C unless otherwise noted)
Plastic Trigger (MPT) devices have bi-directional characteristics and as such the terminal leads are interchangeable. For purposes of symbol clarification. the leads have arbitrarily been designated 1 and 2. A 12 designation
indicates that terminal 1 is positive with respect to terminal 2. vice versa for a 21 designation. (See Figure 1)
Characteristic
Symbol
Min
Typ
Max
Unit
Breakover (Switching) Voltage both directions
V(BR)12 & V(BR)21
16
20
24
Volt
Breakover (Switching) Current both directions
I(BR)12 & I(BR)21
-
35
100
/lAmp
Switchback (Delta) Voltage both directions
(1 12 =121 = 10 mAdc)
Peak Blocking Current both directions
Voltage Applied = 14 V
Volt
~V 12 & ~V 21
5.0
7.0
/lA
I(BL)12 & I(BL)21
1117
0.5
10
MPT20 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - VOLT-AMPERE CHARACTERISTICS
FIGURE 2 -INSTANTANEOUS "ON" VOLTAGE
u; 17
1(+)
I-
2:
lOrnA
'(BL)21
~
15
w
14
o 50 ns
I(BU1Z
lOrnA
~ 13
REVERSE
g
'"=>
500 ns lSTEADY STATE}
~
SYMBOL
-{>I
~ 0.8
r--.....
~
~ O. 7
o
<
o.5
-20
40
20
100
60
80
100
-40
-20
150 k
0
'">=
50
iii:
40
REJERiE
1'.:.'1'
I'r-.
0.3.F~
= RL'
LOAD
6.010900
WATTS
I,
'ADJUSTED FDR Ip
FOR;::;t-
0
-
117 V AC
0
0
0
0.05
0.1
""
80
L1Q-~~~~------------------~
Ip
90%
io%
20
40
60
TJ. JUNCTION TEMPERATURE (OC)
FIGURE 6 - CONTROL CIRCUIT
"~"'"
TJ = 250C
80
60
" '""'-
:> O. 6
FIGURE 5 - SWITCHING TIMES
0
-"
~ERSE
TJ. JUNCTION TEMPERATURE (OC)
~
2.0
121.h2 = 10 mA
~ 1.5
1.5
w
~
0.5
0.7
1.0
Ip. PEAK CURRENT (AMPERES)
2.0
l!;
:!w
J J
FIGURE 4 - NORMALIZED OUTPUT
VOLTAGE BEHAVIOR
2.0
~
::;
ffi
b::::::::::
~ 9.0
u:
~
g
--
1
> 7.0
0.2
!o
t-t--
500 ns
50ns
to
S
~
TJ= 25 0C
5,6
0.2 0.3
0.5
1.0
ip. PEAK CURRENT (AMPERES)
2.0
3.0
5.0
J
1118
MACI-4
TRIAC
5.0 kll
O.I.F
0.02.F
100
MPT28 (SILICON)
MPT32
Plastic silicon annular 3-layer bilateral triggers,
two-terminal devices which exhibit symmetrical negative resistance switching characteristics. These
economical, durable devices have been developed for
use in thyristor triggering circuits, signal switching and
detection circuits.
CASE 182
(Formerly CASE 29 B)
STYLE 3:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
Rating
Symbol
Peak Pulse Current
(30 Ils duration, 120 Hz
repetition rate)
I
Value
Unit
Amp
pulse
2.0
Power Dissipation @TA = -40 to +25 C
PD
0
Derate above 25°C
Operating Junction Temperature Range
TJ
Storage Temperature Range
T
stg
300
mW
4.0
mW/oC
-40 to +100
°c
-40 to +150
°c
FIGURE 1 - VOLT AMPERE CHARACTERISTICS
I (+)
10 rnA
,I
,
,-
t:N 21
10 rnA
SYMBOL
-I
I (-)
1119
------t>KJ--
MPT28, 32 (continued)
ELECTRICAL CHARACTERISTICS
(TC = 25°C unless otherwise noted)
Symbol
Characteristic
Breakover (switching) Voltage - both directions
MPT28
MPT32
V(BR)12 & V(BR)21
Breakover (switching) Current - both directions
i(BR)12 & i(BR)21
Switchback (delta) Voltage - both directions
MPT28
MPT32
AV 12 & AV 21
Peak Blocking Current - both directions
Voltage Applied. 18 V
\BL)12 & i(BL)21
Breakover (switching) Voltage Temperature
Coefficient, TA = -40'>C to +100°C
Min
Typ
Max
24
28
28
32
32
36
-
20
50
7.0
7.0
10
10
-
-
0.5
10
-
0.03
-
Unit
Volt
/lAmp
Volt
JlA
%/'C
P.lastic trigger devices have symmetrical characteristics and as such the terminal leads are interchangeable.
For purposes of symbol clarification, the leads have arbitrarily been designated 1 and 2. A 12 designation indicates that
terminal! is positive with respect to terminal 2, vice versa for a 21 designation.
FIGURE 2 - TYPICAL CONTROL CIRCUIT
RL
L1Q-~~~-'
LOAD
6 to 900
WATTS
117 VAC
60 Hz
________________________~
150 kll
MACI-4
TRIAC
5.0 kll
0.1 JlF
0.01 /IF
L2O-______~------__4_------------~
1120
MPU131 (SILICON)
thru
MPU133
SILICON
PROGRAMMABLE UNIJUNCTION
TRANSISTORS
40 VOLTS
375mW
SILICON PROGRAMMABLE
UNIJUNCTION TRANSISTORS
designed to enable the engineer to "program" unijunction
characteristics such as RBB, 1), lV, and Ip by merely selecting two
resistor values. Application includes thyristor·trigger, oscillator, pulse
and timing circuits. The MPU131, MPU132 and MPU133 may also
be used in special thyristor applications due to the availability of an
anode gate. Supplied in an inexpensive TO·92 plastic package for
high·volume requirements, this package is readily adaptable for use in
automatic insertion equipment.
• Programmable - RBB, IV and Ip.
• Low On·State Voltage - 1.5 Volts Maximum@ IF = 50 rnA
• Low Gate to Anode Leakage Current - 5.0 nA Maximum
• High Peak Output Voltage - 11 Volts Typical
1),
• Low Offset Voltage -
0.35 Volt Typical (RG = 10 k ohms)
!
SEATING-.r-nBC
PLANE
-1
D-l:tJ-t1
~
L
nY~I~
CATHODE L
GATE
M
3.ANDDLV
PIN 1.
2.
MAXIMUM RATINGS
Rating
Power Dissipation
Derate Above 25°C
DC Forward Anode Current
Symbol
Value
Unit
PF
1I8JA
375
5.0
mW
mW/oC
IT
200
2.67
rnA
mA/oC
IG
±20
rnA
1.0
2.0
Amp
Amp
ITSM
5.0
Amp
VGKF
40
Volt
f-!t-!L
L
M
Derate Above 2SoC
DC Gate Current
Repetitive Peak Forward Current
ITRM
1001.1' Pul,e Width, 1.0% Duty Cycle
201.1' Pulse Width, 1.0% Duty CYcle
Non-Repetitive Peak Forward Current
101.1' Pulse Width
Gate to cathode Forward Voltage
Gate to Cathode Reverse Voltage
VGKR
5.0
Volt
Gate to Anode Reverse Voltage
VGAR
40
Volt
VAK
±40
Volt
TJ
-50 to +100
°c
T,tg
-65 to +150
DC
Anode to cathode Voltage
Operating Junction Temperature Range
Storage Temperature Range
1121
,
__
0
"
G
J
3
I
~ILLIMETERS
DIM
C
D
E
~
MIN
MAX
4.45U
4.700
0.407
0.482
5° NOM
1.390
2.420
12.
TP
0.076
0.330
pEl
CASE 29·01
INCHES
MIN
MAX
0.175
0.185
0.016
0.019
5° NOM
0.045
0.055
1.085
0.095
0.500
0.050 TP
0.003
0.013
MPU131, MPU132, MPU133 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Figure
Symbol
Min
Typ
Max
Unit
MPU131
MPU132
MPUI33
MPU131
MPU132
MPU133
2,9-14
Ip
-
1.25
0.19
0.08
4.0
1.20
0.70
2.0
0.30
0.15
5.0
2.0
1.0
,..A
MPU131
MPU132
MPU133
1
VT
0.2
0.2
0.2
0.2
0.70
0.50
0.40
0.35
1.6
0.6
0.6
0.6
Volts
1,4,5,
IV
-
18
18
270
270
50
25
-
-
1.0
30
5.0
75
-
5.0
50
Characteristic
Peak Current
(VS = 10 Vdc, RG = 1.0 Mnl
(VS
= 10 Vdc, RG = 10 k ohms)
Offset Voltage
(VS = 10 Vdc, RG
(VS
= 10 Vdc, RG = 10 k ohms)
Valley Current
(VS = 10 Vdc, RG
(VS
= 1.0 MO)
-
(All Types)
= 1.9 MU)
/loA
MPU131, 132
MPU133
MPU131
MPU132,133
= 10 Vdc, RG = 10 k ohms)
70
50
Gate to Anode Leakage Current
(VS = 40 Vdc, T A = 250 C, Cathode Open)
(VS = 40 Vdc, T A = 750 C, Cathode Open)
IGAO
Gate to Cathode Leakage Current
IGKS
= 40 Vdc, Anode to Cathode Shorted)
Forward Voltage (IF = 50 mA Peak)
-
nAdc
nAdc
(VS
Peak Output Voltage
(VB = 20 Vdc, Cc = 0.2 ,..F)
PU,lse Voltage Rise Time
(VB
1,6
VF
-
0.8
1.5
Volts
3,7
Vo
6.0
11
-
Volts
3
tr
-
40
80
ns
= 20 Vdc, Cc = 0.2 ,..F)
FIGURE 1 - ELECTRICAL CHARACTERIZATION
+VB
A
R2
~~~.,. -VS - Rl :\2 VB
Rl
lA - PROGRAMMABLE UNIJUNCTION
WITH "PROGRAM" RESISTORS
RiandR2
lB - EQUIVALENT TEST CIRCUIT FOR
FIGURE 1A USED FOR ELECTRICAL
CHARACTERISTICS TESTI NG
(ALSO SEE FIGURE 21 •
lC - ELECTRICAL CHARACTERISTICS
FIGURE.3 - Vo AND t, TEST CIRCUIT
FIGURE 2 - PEAK CURRENT (lp) TEST CIRCUIT
+VB
Ip(SENSE)
ADJUST
-=-
+V
100.V -to nA
VB
510 k
RG - R/2
Vs - VB/2
16 k
Cc
Vo
(See Figure 1)
SCOPE
20U
20
PUT
UNDER
TEST
1122
27k
MPU131, MPU132, MPU133
(continued)
TYPICAL VALLEY CURRENT BEHAVIOR
FIGURE 4 - EFFECT OF SUPPLY VOLTAGE
FIGURE 5 - EFFECT OF TEMPERATURE
1000
500
t - - - TA = 25 0 C
500
f:::: (SEE FIGURE 1)
RG=10kn=
:;:
~ 300
....
~
a
~
«
~
.3
~
200
100 k!l
100
30
20
10
-- -
5.0
I'--..
100
'"
a
50
«
>
20
-
t'-.
~
10
1.0Mn_
10
15
-25
FIGURE 6 - FORWARD VOLTAGE
w
+25
+50
+75
TA 25 0 C
~
0
2.0
~
r--
TA = 250C
(SEE FIGURE 3)
Cc = 0.2"F
20
/'
w
'"~
1.0
g
0.5
'"
«
:;
/,;r
>
~
0.2
~
0.1
""
~
0.05
~
:::>
/
""
«
~
~ 0,02
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
o
o
0.01
om
V
10
0
.j
5.0
.......::
IF. PEAK FORWARD CURRENT (AMPI
-/
f..--
!---
10
5.0
15
20
'~
'lL{'
RS2
ASS=Rl+R2
Al
Al"=~
SI
CIRCUIT SYMBO L
RT
R2
Cc
Bl
TYPICAL APPLICATION
EQUIVALENT CIACUIT
!dO
PRDGRAMMABLE UNIJUNCTION
A
t·
CIACUIT SYMBOL
E
A2
.
P
:
N
G
Al
RSs=Al+A2
".~
Cc
K
Bl
EQUlVALENT CIACUIT
WITH EXTEANAL ''PAOGRAM''
AESISTOAS Al and A2
1123
25
VS. SUPPLY VOLTAGE (VOLTSI
STANDARD UNIJUNCT1DN
P
N
- -
~
/
FIGURE 8 - STANDARD UNIJUNCTION
COMPARED TO PROGRAMMABLE UNIJUNCTION
S2
/"
./
15
0
....
:::>
~
+100
FIGURE 7 - PEAK OUTPUT VOLTAGE
25
o
~
__1.0Mt-
TA. AMBIENT TEMPERATURE (OCI
0
5.0 I
t'-.
VS=10VOLTS
-(SEE FIGURE 11
VS.SUPPLY VOLTAGE (VOLTSI
g
-100kn
5.0
-50
20
--!G = 10kn
.........
~
50
>
200
-
to-
300
TYPICAL APPLICATION
30
35
40
MPU131, MPU132, MPU133 (continued)
TYPICAL PEAK CURRENT BEHAVIOR
MPU131
FIGURE 9 - EFFECT OF SUPPLY VOLTAGE AND RG
FIGURE 10 - EFFECT OF TEMPERATURE AND RG
100
10
50
5.0
~
~
3. 0
~ 2.0
,.~
1.0
~
0.5
~
10
1
~
.......
....... ........
20
VS=llOVOLTS
(SEE FIGURE 2)
........
50
.
I=-----=.RG - 10 kn
~
~
l00kn
1.0Mn
O. 3
0.2
I
I
10
15
0.1
5.0
TA = 25 DC
(SEE FIGURE 21
1.0
100 kn
0.5
1.0Mn
0.2
O. 1
-50
20
........
./
RG -10kn
-
........
~
2.0
+25
-25
VS. SUPPLY VOLTAGE (VOLTSI
+50
+75
+100
TA.AMBIENT TEMPERATURE (DCI
MPU132
FIGURE 11 - EFFECT OF SUPPLY VOLTAGE AND RG
FIGURE 12 - EFFECT OF TEMPERATURE AND RG
10
30
20
5.0
....
~
i
TA = 25 DC
(SEE FIGURE 21 r - - -
2.0
"
~
~
5.0
....
z
~ 1.0
1.0
r--RG
""
10kn
~ 0.5
0.5
!f 0.2
100 k!:l
10
15
20
..........
........
l00kn /"
........
1.oMn
0.05
0.03
-50
1.0Mn
/",
r--RG=10kn
0.1
0.2
0.1
5.0
......
"'
~ 2.0
'"
~
""
VS=10VOLn:I~
(SEE FIGURE 21--"
10
j
+25
-25
+75
+50
+100
TA.AMBIENT TEMPERATURE (DC)
VS.SUPPLY VOLTAGE (VOLTS)
MPU133
FIGURE 13 - EFFECT OF SUPPLY VOLTAGE AND RG
FIGURE 14 - EFFECT OF TEMPERATURE AND RG
1.0
10
0.7
0.5
i....
~
50
RG - 10 kn
0.3
«
100kn
0.2
.... 1.0
~
~ o. 5
I.....
"~ o. 1
~ 0.01
~
0.05
B
~ 0.2
0.02
10
r-- RG = 10kn
15
.., .......
.......
.......
........
100-;;;;
........
1.0l n
l
........
0.02
I
0.01
r-..
0.0 5
TA - 25 DC
(SEE FIGURE 21 r - -
Vs = 10 VOLTS
(SEE FIGURE 2)
........
""
"'
~ O. 1
1.0Mn
0.03
5.0
2.0
3
20
VS.SUPPLY VOLTAGE (VOLTSI
0.0 1
-50
..........
-25
+25
+50
TA. AMBIENT TEMPERATURE (DCI
1124
........
+75
+100
MPU6027, MPU6028 (SILICON)
SILICON
PROGRAMMABLE UNIJUNCTION
TRANSISTORS
,
40 VOLTS
375 mW
SILICON PROGRAMMABLE
UNIJUNCTION TRANSISTORS
\
· .. designed to enable the engineer to "program" unijunction characteristics such as RBB, '7, lV, and Ip by merely selecting two resistor
values. Application includes thyristor-trigger, oscillator, pulse and
timing circuits. These devices may also be used in special thyristor
applications due to the availability of an anode gate. Supplied in an
inexpensive TO-92 plastic package for high-volume requirements, this
package is readily adaptable for use in automatic insertion equipment.
•
Programmable - RBB,1J, IV and Ip.
•
Low On-State Voltage - 1.5 VoltsMaximum@ IF = 50 mA
•
Low Gate to Anode Leakage Current - 10 nA Maximum
•
High Peak Output Voltage - 11 Volts TYPical
•
Low Offset Voltage - 0.35 Volt Typical (RG= 10 k ohms)
SEATINGJ~ ~
PLANE
~
STYLE 10:
PIN 1. CATHODE
2. GATE
3. ANODE
MAXIMUM RATINGS
Rating
Power Dissipatlon(11
Derate Above 25°C
DC Forward Anode Current(2)
Symbol
Value
Unit
PF
375
50
mW/oC
1/8JA
IT
Derate Above 25°C
DC Gate Current
Repetitive Peak Forward Current
Gate to Cathode Forward Voltage
mA
200
267
mA/DC
±50
mA
10
2.0
Amp
Amp
ITSM
50
Amp
VGKF
40
Volt
IG
ITRM
100 I-IS Pulse Width, 1.0% Duty Cycle
20 lAS Pulse Width, 1.0% Duty Cycle
Non-Repetitive Peak Forward Current
10 J,lS Pulse Width
mW
VGKR
-5.0
Gate to Anode Reverse Voltage
VGAR
40
Volt
VAK
±.40
Volt
TJ
-50 to +100
T stg
-55 to +150
°c
°c
Storage Temperature Range
L
N
P
Q
Volt
OperatIng Junction Temperature Range
B
C
D
~
Gate to Cathode Reverse Voltage
Anode to Cathode Voltage
DIM
A
1125
R
S
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
4.450
3.180
4_320
0.407
0.407
12.70
1.150
0.175
0.1 5
0.170
0.016
0.016
0.205
U.165
0.210
0.021
0.019
0.045
0.055
0.050
6.350
3.430
2.410
2.030
5.200
4.190
5.330
0.533
U.482
1.390
1.270
2.670
2.670
0.250
0.135
0.095
0.080
CASE 29-02
TO-92
0.105
0.105
MPU6027, MPU6028 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
~
10 Vdc, RG
Z
Symbol
Ip
Max
1,25
0.08
2.0
0.15
-
4.0
0.70
5.0
1.0
MPU6027
MPU6028
0.2
0.2
0.70
0.50
1.6
0.6
(Both Types)
0.2
0.35
0.6
10 k ohms)
-
MPU6027
MPU6028
1
Offset Voltage
(VS· 10 Vdc, RG· 1.0 MH)
(VS· 10 Vdc, RG· 10 k ohms)
1.4,5,
Valley Current
(VS
= 10 Vdc,
IVS
= 10 Vdc, RG = 10 k ohms)
RG
Min
MPU6027
MPU6028
(VS ~ 10 Vdc, RG - 1 0 Mni
(VS
Figure
2,9,11
Typ
Characteristic
Peak Current
= 1.0 MI1)
IV
"A
-
-
18
18
50
25
MPU6027
MPU6028
70
25
270
270
-
-
"A
Volts
VT
MPU6027
MPU6028
Gate to Anode Leakage Current
Unit
IGAO
nAdc
-
IVS· 40 Vdc, T A = 25°C, Cathode Open)
(VS = 40 Vdc, TA = 75°C, Cathode Open)
-
-
1.0
3.0
10
5.0
50
nAdc
-
-
IGKS
Forward Voltage (IF = 50 mA Peak)
1,6
VF
-
0.8
1.5
Volts
Peak Output Voltage
3,7
Vo
6.0
11
-
Volts
3
tr
-
40
80
ns
Gate to Cathode Leakage Current
(VS = 40 Vdc. Anode to Cathode Shorted)
(VB a 20 Vdc, CC= 0 2 "F)
Pulse Voltage Rise Time
(VB - 20 Vdc, Cc = 0 2 "F)
FIGURE 1 - ElECTRICAL CHARACTERIZATION
+VB
IA
_A
RZ
J..L'~~... -VS· Rl ~IRZ VB
Rl
IS - EQUIVALENT TEST CIRCUIT fOR
fiGURE lA USED fOR ELECTRICAL
CHARACTERISTICS TESTING
(ALSO SEE FIGURE Z)
lA - PROGRAMMABLE UNIJUNCTION
WITH "PROGRAM" RESISTORS
Al and R2
lC - ELECTRICAL CHARACTERISTICS
FIGURE 3 - Va AND tr TEST CIRCUIT
FIGURE 2 - PEAK CURRENT (lp) TEST CIRCUIT
+VS
ADJUST
FOR
-=-
Ip(SENSE)
;-rI _.
1 £1'10
+V
100pV· 1.0 nA
510 k
TURN·OI~
THRESHOLD
-=-
16k
Vo
6V
VB
001 pF
RG • RIZ
Vs • VBIZ
(See Figure 1)
Vo
zan
SCOPE
ZO
PUT
UNDER
TEST
1126
Z7k
0.6 V +;.;...4-..1--------....
I
MPU6027, MPU6028 (continued)
TYPICAL VALLEY CURRENT BEHAVIOR
FIGURE 5 - EFFECT OF TEMPERATURE
FIGURE 4 - EFFECT OF SUPPLY VOLTAGE
1000
50o
50 0
~TA=250C
r==
(SEE FIGURE 11
RG -10kn=
200t'--..
j
0
0
100 kll
0
~
100
'"G
50
~
0
20
10
--
5.0
0
:?
10
15
~
'"
>
~
+75
25
g
TA = 25°C
5.0 I
'"2:w
'"«
2.0
1.0
~
0.5
~
=>
0.2
f-
~
0.1
'"
~'"
0.05
'"
~
Cc = 0.2 pF
TA = 25°C
20
u:
> 0.02
/'"
15
.//
,/'
lO
,/'
5.0
>
0.05
0.1
0:2
0.5
1.0
2.0
o /'"
5.0
o
5.0
-- -/'
/'
10
15
20
FIGURE 8 - STANDARO UNIJUNCTION
COMPAREO TO PROGRAMMABLE UNIJUNCTION
5T ANDARD UNIJUNCTIDN
B2
RT
RI
Rl 1J "R1+R2
BI
CIRCUIT SYMBOL
RB2
P
R2
Er
N y 2 RBS=Rl+R2
Cc
BI
1j
EQUIVALENT CIRCUIT
PRDGRAMMABLE UNIJUNCTION
B2
E
R2
P
N
G
P
N
K
CIRCUIT SYMBOL
RBS" RlI- R2
_ RI
'1- R1 + R2
RI
K
81
EQUIVALENT CIRCUIT
WITH EXTERNAL "PROGRAM"
RESISTORS Rt and R2
1127
TYPICAL APPLICATION
-
=
25
VS.SUPPLY VOLTAGE (VOLTS)
IF. PEAK FORWARO CURRENT (AMP)
'~
/'
7
0
0.02
+100
J - - - (SEE FIGURE 3)
'">f-
«
~
0.01
0.01
+50
+25
FIGURE 7 - PEAK OUTPUT VOLTAGE
FIGURE 6 - FORWARD VOLTAGE
'"2:w
'"
«
-25
-
r-.. 1 . 0 M t -
TA. AMBIENT TEMPERATURE (OCI
VS.SUPPLYVOLTAGE (VOLTSI
10
~
""-
(SEE FIGURE 11
5.0
-50
20
-
100 kn
f--- VS =10VOLTS
10
1.0Mn_
10 kll
_RG
........
;!:
-
f...-
--
30 0
30
~
35
40
MPU6027, MPU6028 (continued)
TYPICAL PEAK CURRENT BEHAVIOR
MPU6027
FIGURE 9 - EFFECT OF SUPPLY VOLTAGE AND RG
FIGURE 10 - EFFECT OF TEMPERATURE AND RG
100
10
50
5. 0
1
3. 0
~
0
2,
........
~
"
20
.3 10
~
~
:: 5.0
~
~
""
1. °f---RG
~ o. 5
~
Vs ='10 VOLTS
(SEE FIGURE 2)
........
........ ........
=>
10kil
~ 2.0
~
100kil
1.0 Mil
O. 3
RG -10m
1.0
TA=250C
(SEE FIGURE 2)
O. 2
10
15
O. 1
-50
20
~
==
..::::",
1.0 Mil
o. 2
50
........
L
100 kn
O. 5
O. 1
'"
..::::",
+50
+25
-25
VS, SUPPLY VOLTAGE (VOLTS)
+75
+100
TA, AMBIENT TEMPERATURE (OC)
MPU6028
FIGURE 11 - EFFECT OF SUPPLY VOLTAGE AND RG
FIGURE 12 - EFFECT OF TEMPERATURE AND RG
1. 0
10
O. 7
5
"
3>-
~
O. 3
50
RG = 10 kil
" 2.0
;: 1.0
~
~ o. 5
100kil
o. 2
~
=>
u
'"
~
~
~
-'"
10
15
.......
/
100r;;
0.05
TA 25°C
(SEE FIGURE 2) t - - -
00 2
VS= 10vaLTS
(SEE FIGURE 2)
.........
~
~ O. 1
1.0 Mil
00 3
0.0 1
5.0
"-
a::.::: 0.2 I--RG-l0kil
1
0.0 7
0.0 5
.....
.:::::::
........
~
~
1.0~il
~
0.0 2
0.0 1
-50
20
VS, SUPPLY va LTAGE (VOLTS)
-25
+25
+50
TA, AMBIENT TEMPERATURE (OC)
1128
."""""
--..
+75
+100
MPZ5-16 series (SILICON)
Silicon power transient suppressor designed for applications
MPZ5-32 series requiring
protection of voltage sensitive electronic devices in
danger of destruction by high energy voltage transients. Indicells are matched to insure current-sharing under high
MPZ5-180 series vidual
current pulse conditions.
MAXIMUM RATINGS
Transient Power Dissipation: 40 kW
Pulse Width: 0.1 ms, (See Figure 1)
DC Power Dissipation: 350 Watts@ T C = 25°C
(Derate 2.33 wfc above 25°C)
CASE 119
Operating Junction & Storage Temperature
Range: - 65° C to +175° C
Polarity:
Anode-to-Case is Standard
Cathode-to-Case Available Upon Request
ELECTRICAL CHARACTERISTICS (TA
MPZf).16A
·16B
-32A
-328
-32C
·1 BOA
-l80B
·1SOC
(VF
=I
5 V max @ 10 A for all types)
Maximum
Device
Nominal
Operating Voltage
(Note 11
Type
= 25°C)
Minimum Zener Voltage Maximum Zener Voltage
Pulse Width = 1.0 ms
Clamping
VOP(PK)
Vd.
VOP(RMS)
Factor
CF = VZ@ IZ (1!!!Ise)
VZ@IZT
Vrms
(Note 2)
Vd.
14
14
28
28
28
165
165
165
10
1.25
1.25
16
16
32
32
32
180
10
20
20
20
117
117
117
Maximum
Reverse Current
IR(max)
VZ(min)
t.25
1.25
1.25
1.14
@
0.4
0.4
0.2
0.2
0.2
0.03
0.03
0.03
'80
1.14
1.14
IZT VZ(max)
Ad.
Vd.
lS0
@
IZlpulso)
Ad.
24
20
50
45
40
250
225
205
200
@VR
=VOP(PK)
!lAd.
~F
50
0.025
0.025
0.011
0.011
0.011
0.0012
200
100
100
100
20
20
20
Typical
Capacitance
C (typ)
@VR =VOP(PK)
1
0.0012
0.0012
FIGURE 1 - MAXIMUM NON-REPETITIVE SURGE POWER
(RECTANGULAR WAVEFORM)
Ill{)
_
70
50
30
20
.......
:s:
......
~ 10
ffi
7.0
~ 5.0
"" 3.0
~ 2.0
;2 1.0
TC
-
TC = 350 C
"-
125"C
~ 0.7
"-Q.5
-
0.3
0.2
O. 1
0.0001
0.0002
0.0005
0.001
0.002
0.005
0.01
0.02
0.05
t, TIME (SEC)
1129
0.1
0.2
0.5
1.0
2.0
5.0
10
MPZ5-16 series, MPZ5-32 series, MPZ5-180 series
(continued)
FIGURE 2 - TYPICAL DYNAMIC ZENER
VOLTAGE CHARACTERISTICS (Note 2)
0
VI I pulSEI wllD~~ ~ 11.0 m~_
V I ITA= -I
25"C
0
0
~
'/
'Ov
1.0
2.0
sent. peak voltage input values VOP(PK) should
be used to select device type.
MPZ5-180 SERIES
0
_0
NOTE 1; Nominal operating voltage is defined as normal
input voltage to device for non-operating condition. If non-sinusoidal wave or de input is pre-
1/
MPz~31 SE ~ Id
"'1
-1"j
Iv
50
5.0 7.0 10
20
30
IZlpulsel. ZENER CURRENT IAI
ratio of
Vz
measured at IZ (pulse) given in the
Electrical Characteristics Table divided by Vz
measured at I ZT under steady stat-e conditions.
This value guarantees the sharpness of the voltage
J
breakdown of individual devices.
V
MPZ5-16 SERIES ....
3.0
NOTE 2: The maximum device clamping factor CF is a
V
Figure 2 de-
monstrates the typical sharpness of the breakdown, and indicates the voltage regulation over
a wide range of currents .
70
100
200
lNZ = VZ@ IZ(pulse) - Vz @ IZT
1130
MQ930 (SILICON)
MQ2484
NPN SILICON
MULTIPLE TRANSISTORS
NPN SI LICON ANNULAR MULTIPLE TRANSISTORS
... designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.35 Vdc (Max) @ IC = 1.0 mAde
•
•
DC Current Gain Specified - 10 !lAde to 10 mAde - MQ2484
High Current·Gain-Bandwidth Product fT = 260 MHz (Typ) @ IC = 5.0 mAdc
MAXIMUM RATINGS
Rating
Symbol
Collector-Emitter Voltage
VCEO
I
M0930 M02484
45
60
Unit
Vdc
. Collector-Base Voltage
Vce
60
Emitter-Base Voltage
VEe
6.0
Vdc
IC
30
mAde
TJ,Tstg
-65 to +200
°c
COllector-Current
Operating and Storage Junction
Temperature Range
Vdc
Die
Power
Total Power OISSlpatlon @ T A '" 25°C
Derate above 2SoC
Po
400
2.28
600
3.42
mW
mW/oC
= 25°C
Po
0.9
5.13
3.6
20.5
Watts
mW/oC
Total Power Dissipation @Te
Derate above 25°C
STYlE 1
PIN 1
2
3
4
5
B
7
8
9
10
11
12
13
14
Four Di
Equal
One
THERMAL CHARACTERISTICS
Four
One
Characteristic
Thermal ReSistance, Junction to Ambient
Thermal Resistance, Junction to Case
Coupling Factors
01-02
01-03 or 01-04
COLLECTOR
BASE
EMITTER
NOTCONNECTEO
EMITTER
BASE
COLLECTOR
COLLECTOR
BASE
EMITTER
NOT CONNECTED
EMITTER
BASE
CDLLECTOR
Symbol
Die
Oi.
Unit
R8JAI1I
438
292
°C/W
R8JC
195
48.8
°C/W
Junction
Junction
to Ambient to Case
57
0
55
0
%
OIM
A
C
D
F
G
H
J
•
L
N
(1) R8JA IS measured with the device soldered into a tYPical printed cirCUit board.
CASE 607-04
1131
MQ930, MQ2484 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat be_n die occurs.
The junction temperatures can be celculated as follows:
(1) 4TJl = R81 POl + R82 K02 P02
+ R84 K04 P04
Assuming equal thermal resistance for each die, equation (1)
simplifies to
(3) 4T Jl = R81 (POl + K82 P02 + K83P03 + K84 P04)
+ R93 K03P03
Fortheconditionswhere POl = P02 = P03 = P04, PDT = 4 Po
equation (3) can be further simplified and bV substituting Into
Where ~ T J1 is the change in junction temperature of die
Rt}1 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
equation (2) results
Values for the coupling factors when either the case or the
8S a reference are gven in the table on page 1.
die 2 through 4.
An effective package thermal resistance can be defined as
In
ambient is used
follows:
(21 R8(EFFI =4TJ1/POT
where: PDT IS the total package power diSSipation.
ElECTR ICAl CHARACTER ISTICS (T A
I
= 25°C unless otherwise noted.)
I
Characteristic
Symbol
Min
VCEO(sus)
45
60
I·
Typ
Max
Unit
-
-
Vde
Vde
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
MQ930
MQ2484
Collector-Base Breakdown Voltage
(IC = lO/lAde,IE = 01
BVCSO
60
-
Emitter-Base Breakdown Voltage
(IE = 10/lAde, IC = 0)
BVEBO
6.0
-
-
Vde
ICBO
-
-
10
nAde
lEBO
-
-
10
nAde
MQ2484
100
250
500
MQ930
MQ2484
100
175
120
120
Vde)
MQ930
MQ2484
125
200
250
250
= 5.0 Vde)
MQ930
MQ2484
150
250
350
350
(lC = 10 mAdc,ls = 01
Collector Cutoff Current
(Vca = 45 Vde, IE
= O)
Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lc = 10/lAde, VCE = 5.0 Vdel
(lC = 100 /lAde, VCE
(I C = 500 /lAde, V CE
= 5.0
= 5.0
Vde)
(lc
= 1.0 mAde,
(IC
= 10 mAde, VCE = 5.0 Vdcl
VCE
-
hFE
-
800
VCE(,atl
-
260
Collector-Emitter Saturation Voltage
(lc = 1.0 mAde, IB = 0.1 mAdel
0.2
0.35
Vde
Base-Emitter On Voltage
(lc = l00llAde, VCE = 5.0 Vde)
VBE(onl
0.5
0.58
0.7
Vde
IT
-
260
-
MHz
Cob
-
2.7
6.0
pF
MQ2484
Cib
-
2.15
6.0
pF
MQ2484
NF
-
2.2
3,0
dB
Both Device
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 5.0 mAde, VCE
= 20 Vde, 1= 100 MHzl
Output Capacitance
(VCB = 5.0 Vdc, IE = 0, I = 100 kHz)
Input Capacitance
(VSE = 0.5 Vdc, IC = 0, I = 100 kHz)
Noise Figure
(IC = 10/lAde, VCE = 5.0 Vde, RS
1= 10 kHz to 15.7 kHz)
= 10 k
ohms,
(11 Pulse Test: Pulse Width ";;300/l', Duty Cycle ";;2.0%.
1132
MQ982 (SILICONJor Specifications, See MD982 Data,
MQ1120 (SILICON)For SpecI'f'lcatl'ons , See MD1120 Data,
MQ1129 (SILICON)For SpeCII'f'cations, See MD 1129 Data,
MQ2218, A (SILICON)
MQ2 219, A For SpecificatIOns,
See
'MD2218
Data,
MQ 2369 (SILICON)
For SpecI'f'lca tl'ons , See MD2369 Data,
MQ2904 (SILICON)
,
MQ2905A For Specificattons,
See MD2904 Data,
MQ3251 (SILICON)
" t ' s See MD3250 Data,
For Speclflca lon,
MQ3467 (SILICON)
'"
See MD3467 Data,
For SpecifIcatIOns,
MQ 3725 (SILICON)
'f' tl'ons , See MD3725 Data,
For Specllca
MQ3762 (SILICON)
'"
See MD3762 Data,
For Speclflcattons,
1133
MQ3798 (SILICON)
MQ3799
MQ3799A
PNP SILICON
PNP SILICON ANNULAR MULTIPLE TRANSISTORS
MULTIPLE TRANSISTORS
• •. designed for use in high·gain. low noise amplifiers; front end
detectors and temperature compensation applications.
• Low Collector·Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 1.0 mAdc
• DC Current Gain Specified - 100 jtAdc to 1.0 mAdc• High Current·Gain - Bandwidth Product tr = 450 MHz (Typ) @ IC = 5.0 mAdc
• Matching Characteristics Available - M03799A
MAXIMUM RATINGS
Symbol
Value
Unit
Coliector·Emitter Voltage
VCEO
60
Vdc
Collector-Base Voltage
VCB
60
Vdc
Emitter-Base Voltage
VEe
5.0
Vdc
IC
50
mAde
TJ.Tstg
-65 to +200
°c
Rating
Collector-Current
Operating and Storage Junction
Temperature Range
One
Die
AIIDio
Equal
Power
25°C
Po
400
2.28
600
3.42
rnW/oC
Total Power Dissipation@Tc = 25°C
Derate above 2SoC
Po
0.7
4.0
2.8
16
Watts
inwl"C
Total Power Dissipation @TA
Derate above 2SoC
STYlE!
PIN 1. COLLECTOR
2- BASE
3 EMITTER
4 NOT CONNECTED
5 EMITTER
6 BASE
1 COllECTOR
B COLLECTOR
9 BASE
10 EMITTER
11 NOT CONNECTED
12 EMITTER
13 BASE
14. COLLECTOR
mW
THERMAL CHARACTERISTICS
One
Char.meristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Coupll!,9 F acto~s
01·02
01·03 or 01.04
~IUI.
Equal
MI
DIM MIN
Symbol
Die
Power
Unit
R8JA(11
438
,292
°CIW
A
C
250
62.6
°CIW
Junction
unction
to Ambient to Case
F
G
R8JC
57
55
0
0
'. %
o
H
J
6.10
0.16
0,25
0.08
RS
MAX
6.99
2.03
0.48
0,15
1.21BSC
0.13
0,89
,38
K 6.5
L lB.80
•
0.25
R
S
1.62
B.
(11 R8JA IS measured with the device soldered Into a typical printed cirCUit board.
CASE 607'()4
1134
O.
MQ3798, MQ3799, MQ3799A (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
I n multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(1) aTJl
Where
Assuming equal thermal resistance for each die. equation (1)
simplifies to
= R91
POI + R92 Ke2 P02 + R93 Ke3 P03
+ R94 Ke4 P04
~T J1
(31 aTJl = R91 (POI + Ke2 P02 + Ke3 P03 + K94 P041
For the conditions where POI
is the change in junction temperature of die 1
= P02 = P03 = P04. PDT = 4PO.
equation (3) can be further simplified and by substituting into
R61 thru 4 is the thermal resistance of die 1 through 4
Po 1 thru 4 is the power dissipation in die 1 through 4
K62 thru 4 is the thermal coupling between die 1 and
equation (2) results in
(41 R9(EFFI
die 2 through 4.
= ReI
11 + Ke2 + K93 + K941/4
Values for the coupling factors when either the case or the
An effective package thermal resistance can be defined as
follows:
ambient is used as a reference are given in the table on page 1.
(21 R9(EFFI
= aTJ1/POT
Where: PDT is the total package power dissipation.
ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherWise noted)
I
Characteristic
Typ
Max
Unit
Symbol
Min
VCEO(sus)
60
Vdc
Collector-Base Breakdown Voltage
(Ie'" lOJ.iAdc. Ie = OJ
BVCBO
60
Vdc
Emitter-Base Breakdown Voltage
(Ie = 10/J.Adc.IC = 0)
BVeBO
5.0
Vdc
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 10 mAdc.le = OJ
Collector Cutoff Current
(VCB = 50 Vdc.le = 0)
Emitter Cutoff Current
(VEa = 4.0 Vde,IC = 0)
Icao
10
nAdc
lEBO
20
nAdc
ON CHARACTERISTICS
DC Current Galn(l)
(lC = 100 j.tAdc. Vce = 5 0 Vdc)
hFE
(Ie = 500 j.tAde. VeE = 5.0 Vdc)
MQ3798
150
300
150
(IC = 1.0 mAde, VCE = 5.0 Vdc)
M03799.A
M03798
M03799A
150
300
MQ3798
MQ3799.A
300
Collector-Emitter Saturation Voltage
(lC'" 100 Io'Adc, IS = 10 J,lAdcl
(lC = 1.0 mAde. IB = 100 J,lAdeJ
VCElsat)
Base Emitter Saturation Voltage
(IC = 100 J,lAde. IS = 10 !JAde I
(lc = 1.0 mAde. IS = 100 J,lAdcl
VaElsat)
Base-Emitter On Voltage
(IC = 100 /J.Adc, VCE = 5.0 Vdc)
VBElon)
375
250
400
260
400
450
900
450
900
450
900
0.08
0.08
0.2
0.25
0.65
0.68
0.64
0.7
0.8
200
Vdc
Vdc
0.7
Vdc
DYNAMIC CHARACTERISTICS
Current-GaIn-Bandwidth Product
(IC = 5.0 mAde, VCE = 5.0 Vdc, f '" 100 MHz)
IT
450
Output CapacItance
(Vca:: 5.0 Vdc, IE = O. f = 100 kHz)
Cob
2.1
40
pF
Input Capacitance
(VEB = 0.5 Vdc, IC = O. f '" 100 kHz)
Cob
5.5
8.0
pF
NOise Figure
flC >= 100~Adc, VCE >= 10Vdc, AS= 3.0kohmsl
f = 10 kHz to 15.7 kHz)
NF
2.0
MH,
dB
MATCHING CHARACTERISTICS (2) MQ3799A
0.9
1.0
DC Current Gain Ration (31
(lC = 100 ~Adc, VCE '" 5.0 Vdc)
hFE/hFE
Base Voltage DIfferential
(lc = 100 ,uAdc, VCE = 5.0 Vde,)
VBE1- VBE2
3.0
mVde
- 20 0
-- -
~
~
.5l,c
-- - ... -
100
0
......
TJ = 125 0C
-'1-
'-
~
25'C
1--
1\',
-~
--~
- 1--1-1-
~
to... ...... ~
r-_
t-
-55'C
l\t--
0
'"
ul 8
~ 60
~\
\..'
~ ""It . .
~I't
0
0
0
1\
0
30
0.5 0.7
1.0
2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mAl
20
30
~J l ~J,c
o. 8
rBE!tlm
~
f.---
VBE(~nl @~CE !5.b V
'" o. 6
~
w
-----
'"
~
.§.
~
~
-
>.
VCE( ..tl@ICIIB= 10
I
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT(mA)
J
V
20
/
7
-l.S
;i
~ -1.8
~
~
>-
~
30
50
-2. 0
0.5 0.7
ftoriBEI
II
1.0
6.0
r'\
-
~ 4.0
f\
II
./
-
-55 DCto 125 De
f-
2.0 3.0
5.0 7.0 10
IC. cOLLECTOR CURRENT (mAl
20
~
z
;'!:
u
\
f
3.0
-
50
TJ=25OC
...........
........
"
C,b
~
2.0
~
Cab
U
........
0
1. 0
0
0.3
30
FIGURE 6 - CAPACITANCE
~
0
0
50
II
-1.4
8. 0
/"
30
=>
>-
V' ,
t- CE I=5'0
TJ= 25'C
f=100MHz
t-
20
-1.2
FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT
500
2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mAl
~
8
1.0
1.0
-1.0
0.4
0.5 0.7
0.7
FIGURE 4 - BASE·EMITTER TEMPERATURE COEFFICIENT
~
o. 2
1\
40
0.5
50
FIGURE 3 - "ON" VOLTAGES
1.0
"~
-
~...
25'C
I"--r.
O.8
2.0 3.0
5,0 7.0
0.5 0.7 1.0
IC. COLLECTOR CURRENT (mAl
10
20
30
0.1
1136
0.2
0.5
1.0
2.0
5.0
10
VR, REVERSE VOLTAGE (VOLTS)
20
50
100
MQ6001 (SILICON)
MQ6002
For Specifications, See MD6001 Data.
MQ7001 (SILICON)
For SpecI.f.lca tl·ons , See MD7001 Data.
MQ7003 (SILICON)
...
See MD7003 Data.
For SpecIfIcatIons,
MQ7004 (SILICON)
For SpeCI·fl·cations , See MD7004 Data.
MQ7007 (SILICON)
..
S MD7007 Data.
For SpeciftcatIons, ee
MQ7021 (SILICON)For SpecI.f.lcatl·ons , See MD7021 Data.
1137
MRl-1200 (SILICON)
MRl-1400
MRl-1600
HIGH VOLTAGE
LEAD MOUNTED
SIL1CON RECTIFIERS
AXIAL LEAD SILICON RECTIFIERS
1200,1400, 1600, VOLTS
1 AMPERE
· .. designed for television "damper" diode service and other high
voltage industrial/consumer applications.
• High Current Handling - 1.0 Ampere at 750 C
• Medium Recovery Characteristics
• Low Forward Voltage
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Symbol
VRRM
VRWM
VR
Average Rectified Forward Current
(Single phase, resistive load,
R9JA = Sf1>CIW, TA = 7f1>cl (1)
Non-Repetitive Peak Surge Current
(surge appl ied at rated load
conditions.)
Operating and Storage Junction
Temperature Range (2)
MR1·
1200
MR1·
1400
MR1·
1600
Unit
'1200
1400
1600
Vdlt's
10
1.0
Amp
IFSM
30 (for 1 cycle)
Amp
TJ,T stg
-65 to +175
°c
r=o
Lit
ELECTRICAL CHARACTERISTICS (TA -- 2f1>C unle.. otherwise noted)
Characteristic
Symbol
Typ
Max
Unit
Maximum Instantaneous Forward Voltage
(iF = 1.0 Amp, T J = 2f1>C)
(iF = 3.14 Amp, TJ = 25°C)
vF
Maximum Reverse Current (rated de voltage)
TJ = 25°C
TJ = 100°C
Capacitance
(VR = 50 volts, f = 1.0 MHz)
IR
Reverse Recovery Time
(IF = 20 rnA, IR = 2.0 rnA)
Forward Recovery Time
(IF = 20 rnA, Vfr = 2.0 V)
trr
17
25
itS
tfr
0.7
1.0
itS
C
K
Volts
0.95
1.1
1.1
1.3
0.2
12
10
100
4.0
7.0
itA
pF
CATHOOE
BANO
1
K
~
OIM
(1) Must be derated for reverse power dissipation. See note on Page 3.
A
B
D
K
(2) Derate as shown in Figure 4.
MECHANICAL CHARACTERISTICS
CASE: Void free, Transfer Molded
MAXIMUM LEAD TEMPERATURE FDR SOLDERING PURPOSES: 350°C, 3/S" from
case for 10 seconds at Sibs. tension
FINISH: All external surfaces are corrosion·resistant, leads are readily solderabole
POLARITY: cathode indicated by color band
WEIGHT: 0.40 Grams (approximetely)
1138
MILLIMETERS
MIN MAX
4.70 5.20
.71
.54
0.76 0.86
27.94
-
INCHES
MIN MAX
0.lB5 0.205
0.100 0.107
0.03{) 0.034
1.100
CASE 5g.01
CONFORMS TO 00·41
-
MR1-1200, MR1-1400, MR1-1600(continued)
FIGURE 1 - FORWARD POWER DISSIPATION
7.0
ffi
II
/
6.0
~~
~~4.0
... z
I
TJ~175oC
W O
..
~~
/
.02.0
1.0
....
r
./
~~
o
~
o
'"«
'"~
L
so:
---
i"--
r--
0.5
1.5
1.0
2.0
-
5
10
20
2.5
H-
~OA~
0.6
to
~
1-
0.4
>
;;
f-
Information)
(See Applications
40
....
50
~
180
'"
'"G
30
~
w
20
w
z
in
~
..
10
..
-He:eCVCl~
--t1= 60Hz
VRRM APPLIED AFTER SURG:~
I
I
I
I
I I I
- - - TYPICALFAILURES
- - DESIGN LIMITS
~ 1.0
5.0
-~ ~
1.0
2.0
3.0
'"
a
~ 160
60
\
---,- ..
!;;:
Ie 140
r- ~
''''t-
ill
....
w
'"
!
~ r- ~
f-r-f--
~
SURGE APPLIED AT RATED
LOAD CONDITIONS
TJ = 175 0 C
5.0 7.0 10
20
NUMBER OF CYCLES
3D
50
........ I:": ~
~
100
SO
70
- --
r-r--.. . .
.............. r-.......
::::-....... c---.
~ r-
::s...
....
liiio..
120
160
140
ISO
r........
........
::>
"--
/
~
....... ~
FIGURE 4 - MAXIMUM REFERENCE TEMPERATURE
SURGE APPLIED AT NO
LOAD CONOITIONS
Tr25 0 C
:--
LOAOS
TA. AMBIENT TEMPERATU RE (OC)
100
iii
l' CAP~CliIVE ff- -
I I I
FIGURE 3 - NON·REPETITIVE SURGE CURRENT
7p
r-- -
} RESISTIVE
LOAD
~
IF(AV). AVERAGE FORWARD CURRENT (AMP)
f
........
_5
10
20
~
.0.2
4.0
3.5
....K
>........
-<
RaJA = S5 0 CIW
~
I I
k
I'....: ><
.......
r--
«
CAPACITIVE
LOADS
3.0
O.S
w
} RESISTIVE-
I(PK)II AV)=w
r--
......
0
/
~ ""'.:
1.0
.
/
i/
I
I~PK)/I(A~) = w
... ....... ........
...." ...... t:'"'"'
...
i""
1.2
~
a'"
./
V
~~3.0
"'
~
I
~
/
L
IL
CI
'"....
/
./
~ r;;5.0
~
FIGURE 2 - CURRENT DERATING
1.4
a::
...... ~
~
~
120
:100
....
-'............. t-- '...... ~
'-
-- -
r--. ...... t'-- .......-- ' r-... r--~
I'-.~ 15
1'-.""",
25-
.... r-...4O~
~60-
r-- ....... ~-
R6JA (OCIW) = 110--"""':
80
150
100
1139
200
lO0
400
500
700
1000
VR. DC REVERSE VOLTAGE (VOLTS)
1500
MR 1-1200, MR 1-1400, MR 1-1600 (continued)
APPLICATIONS INFORMATION
TYPICAL VALUES FOR R'eJA IN ST LLA IR
LEAD LENGTH L(IN)
MOUNTING
METHOD
1/32
3/S
1
ReJA
1
-
60
85
2
73
85
103
°CIW
°CIW
MOUNTING METHOD 1
P.C. Board with 1 %" x 1 %" copper surface
MOUNTING METHOD 2
Vector Push·ln Terminals T·28
Reverse power dissipation and the possibility of thermal runaway
when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figure 4 as a
difference in the rate of change· of the slope in the vicinity of
ISo"C. The data of Figure 4 is basad upon de conditions. For usa
in common re.ctifier circuits, Table 1 indicates suggested factors
for an equivalent dc voltage to use for conservative design: i.e.:
must be considered when operating this rectifier at reverse voltages
above 50 volts. Proper derating may be accomplished by use
of equation (1):
TA(max)
= TJ(max)
- ReJAPF(AV) - ReJAPR(AV)
(1)
where
VR(equiv)
TJ(max) "" Maximum allowable junction temperature
such that IOC = 1.0A, (IF(AV) = 0.5A),I(PK)/I(AVJ = 10,Input
Voltage = 353 V(rms) (line to center tap), ReJA = S(fJC/W.
PF(AV) = Average forward power dissipation
= Average reverse power dissipation
Step 1:
I
R8JA "'" Junction-ta-ambient thermal resistance
- ReJAPR(AV)
= TR
- ReJAPF(AV)
13)
temperature atwhich thermal runaway occurs or where TJ
from Table 1.
Find TR from Figure 4. Read TR = 1170 C @
VR = 555 V@ R6JA = S(fJC/W.
Step 4:
= 17So C
TABLE I - VALUES FOR FACTOR F
Circuit
Half Wave
Full Wave, Bridge
Full Wave
Cento,·Tapped*t
Load
Resistive
Capacitive*
Resistive
Capacitive
Resistive
Sine Wave
Square Wave
0.45
1.11
0.45
0.55
0.90
1.11
0.61
1.22
0.61
0.61
1.22
1.22
"Note that VR(PK) "'2 Vin(PK)
tUse line to center tap voltage for Vin
1140
= O.SW
Find PF(AV) from Figure 1. Read PF(AV)
@ IpK = 10 & IF(AV) = 0.5 A
IAV
Find TA(max) from equation (3), TA(max) = 117
-(SO) 10.6) = Sl o C.
Substituting equation (2) into equation (1) yields:
TA(max)
= 1.11
Step 3:
(2)
Inspection of equations (2) and (3) reveals that TR is the-ambient
Find VR(equiv)' Read F
VR(equiv) - 1.41) (353) (1.11) = 555 V
Step 2:
Figure 4 permits easier use of equation (1) by taking reverse power
dissipation and thermal runaway into consideration. The figure
solves for a reference temperature as determined by equation (2):
= TJ(max)
(4)
supply using a full wave center·tapped circuit with capacitive filter
mal runaway occurs, whichever is lowest.)
TR
x F
Example: Find TA(max) for MR1·1200operated in a 500 Volt de
(175°C or the temperature at which ther-
PR(AV)
= Vin(PK)
The Factor F is derived by considering the properties of the various
rectifier circuits and the rectifiers reverse characteristics.
T A(max) "" Maximum allowable ambient temperature
Capacitive
MR2S0-1
MR2S0-S
thru
High-voltage, low-current rectifiers designed for applications where high-voltages in subminiature packages are
required.
MAXIMUM RATINGS
(T.
=25"C unless otherwise noted)
Symbol
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
MR250-l MR250-2 MR250-3 MR250-4 MR250-5
Unit
VRM(rep)
vRM(Wkg)
1000
2000
3000
4000
5000
Volts
700
1400
2100
2800
3500
Volts
DC Blocking Voltage
VR
RMS Reverse Voltage
Vr
Average Rectified Forward Current
(single phase, resistive load,
10
250
mA
IFM(rep)
2.0
Amp
~M(surge)
15 (for 1/2 cycle)
Amp
T J , Tstg
-65 to +150
·c
60 Hz, T A
= 75'C)
Peak Repetitive Forward Current
(T A = 75'C)
Non-Repetitive Peak Surge Current
(superimposed on rated current
at rated voltage, TA = 75'C)
Operating and Storage Junction
Temperature Range
THERMAL CHARACTERISTICS
Symbol
Characteristics
Thermal Resistance, Junction to Ambient (1 inch lead length),
ELECTRICAL CHARACTERISTICS
(At 60 Hz Sinusoidal, Resistive or Inductive)
Characteristic
Symbol
Full Cycle Average Forward Voltage Drop
VF(AV)
(10
= O. 25 Amp and Rated Vr'
TA
=
Unit
Volts
1.7
75°C, Half Wave Rectifier)
DC Forward Voltage Drop
(IF
Max
= 0.25
Adc, TA
Full Cycle Average Reverse Current
(10
= O. 25 Amp and Rated Vr'
TA
=
Volts
VF
= 25°C)
3.5
f.1.A
IR(AV)
100
75°C, Half Wave Rectifier)
DC Reverse Current
(Rated VR, T A
f.1.A
IR
= 25°C)
10
MECHANICAL CHARACTERISTICS
CASE: Void free, flame-proof silicone polymer case
FINISH: All external surfaces corrosion-resistant and leads readily solderable
POLARITY: Indicated by polarity band
MOUNTING POSITIONS: Any
WEIGHT: 0.40 Gram (approx)
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350·C, %" from case for 10 seconds
1141
MR250-1 thru MR250-5 (continued)
TYPICAL FORWARD CHARACTERISTICS
.....
10
~
~
!
1.0
r- t-
TJ = + 150°C "
c
~
100
60
===
~
/' ./
J--
TYPICAL REVERSE CHARACTERISTICS
-
100
113
~~
TJ= +25°C
~
.01
1.0
0.6
0.4
~
I
~
.001
-
-
.01
o
,.."
....-
~
TJ
....-
.02
.0001
,.."
0.1
.06
.04
~
I
I
TJ=+ 100°C
0.2
15
.~
I--I--
~
2.0
i
'"
~
~
I-- ~+~!OOC
I--
10
6.0
4.0
~
0.1
~
-
40
20
0.2
0.4
0.6
+25°C
0.8
1.2
1.0
VR• VRM,NORMALIZED VOLTAGE (VOLTS)
'" INSTANTANEOUS FORWARD VOLTAGE IVOLTS}
CURRENT DERATING
300
r-
r-
(60 Hz, RESISTIVE OR INDUCTIVE LO~D)
--....
250 ~
INCH LEADS
}--
r-
I
........... ~ ~ INCH LEADS
./ r---... ...........
-.......
,,r---... --......... ........
.......
I liNCH LEADS
J'
--....
............
~
~
I50
.}
I
I
I
Non, LEAD LENGTH IS DEFINED AS THE
DISTANCE BETWEEN THE RECTIFIER
BODY AND THE TERMINATION POINT
AND APPLIES TO BOTH LEADS. -'-'--'-
............
100 f---;
I
I
r--.....
,
-..........: ~ :--....
...:::::::-: :::::-...
I-
-..::: ~
I60
70
80
90
100
120
110
130
.......
140
150
TA , AMBIENT TEMPERATURE (OC)
MAXIMUM ALLOWABLE NON·REPETITIVE SURGE CURRENT
20
0::
~
~
i'l
~
~
z
in
~
18
16
14
12
10
...............
-..........: .......
RECTIFIER OPERATED AT
MAXIMUM RATED CONDITIONS.
VRM(~pJ APPLIED AFTER SURGE,
TA ~ 75°C.
...............
......... ............
.....................
-.......
r---
""~
...............
.-
-..........: ~
[
J
8
10
CYCLES AT 60 Hz
20
r--40
60
MR327, MR328, MR330, MR331
For Specifications, See IN3491 Data, Volume 1.
1142
80
100
MRS01, MRS02, MRS04
MRS06, MRS08, MRS10
Designers Data Sheet
STANDARD RECOVERY
POWER RECTIFIERS
MINIATURE SIZE, AXIAL LEAD MOUNTED
STANDARD RECOVERY POWER RECTIFIERS
100-1000 VOLTS
JAMPERE
· .. designed for use in power supplies and other applications having
need of a device with the following features:
• High Current to Small Size
High Surge Current Capability
• Low Forward Voltage Drop
• Void·Free Economical Plastic Package
• Available in Volume Quantities
•
I
Designer's Data for "Worst Case" Conditions
Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device character~
istics - are given to facilitate "worst case" deSign.
The Designers
MAXIMUM RATINGS
Symbol
Rating
Peak Repetitive Reverse Voltage VRRM
Working Peak Reverse Voltage VRWM
DC Blocking Voltage
MR
501
MR
50;Z
MR
504
MR
506
MR
510
MR
5111
Unit
Volts
100
200
400
600
800
1000
150
250
450
650
850
1050
VR
Non-Repetitive Peak Reverse
Voltage
VRSM
Average Rectified Forward
Current
Amp
10
.
.
(Single phase resistive load, TA ""
95"c,PCBoard Mountingl (11
(EIA Standard Conditions
L = 1/32'", TL = 850 CI
Non-Repetitive Peak Surge
Current (surge applied at
Volts
IFSM
.
.
3.0
8.0
.
100
(one cycle)
STYLE 1:
PIN 1. CATHODE
2. ANODE
Amp
fated load conditions)
Operating and Storage Junction
TJ,Tstg
°c
-65 to +175
-
Temperature Range (2)
DIM
A
8
THERMAL CHARACTERISTICS
D
Characteristic
Thermal Resistance, Junction to Ambient
(Recommended Printed Circuit Board
Mounting, See Note 2 on Page 4).
Symbol
Max
Unit
ReJA
28
°elW
ELECTRICAL CHARACTERISTICS
Symbol
Characteristic
I nstantaneous Forward Voltage 131
IiF =9.4 Amp, T J = 1750 el
IiF =9.4 Amp, T J = 250 CI
vF
Reverse Current (rated dcvoltage) (31
IR
TJ
TJ
=25°C
= l000e
Min
Typ
Max
-
0.9
1.04
1.0
1.1
-
0.1
2.8
5.0
25
Volts
p.A
-
(1) Derate for reverse power dissipation. See Note on Page 2.
(2) Derate as shown in Figure 1.
(31 Pulse Test: Pulse Width
Unit
= 300 p.s, Duty Cycle = 2.0%.
1143
K
MILLIMETERS
MAX
MIN
9.40
4.83
1.22
26.97
9.65
5.33
1.32
27.23
INCHES
MIN
MAX
0.370
0.190
0.048
1.062
0.380
0.210
0.052
1.072
CASE 267·01
MECHANICAL CHARACTERISTICS
Case: Void Free, Transfer Molded
Finish: External Leads are Plated,
Leads are readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for
Soldering Purposes:
300oC, 1/8'" from case for 10 s
at 5.0 lb. tension
MR501, MR502, MR504, MR506, MR508, MR5.10 (continued)
NOTE 1: DETERMINING MAXIMUM RATINGS
Raverse power dissipation and the possibility of thermal runeway
must be considered when oparating this rectifier at reversa voltages
above 200 volts. Proper derating may be accomplished by use
of equation II):
TAlmax)· TJlmaxl- R6JAPFIAVI- R6JAPRIAVI
whera
T Almaxl
e
when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figura 1 es a
dlfferance in the rate of change of theslope in the vicinity of 165o C.
The date of Figure 1 is based upon de conditions. For use in
common rectifier circuits, Table 1 indicates suggested fectors for
an equivalent de voltage to use for conservative design; i.e.:
III
VRlequiv) • VinlPKI x F
(41
The Factor F is derived by considering the properties of the various
rectifier circuits and the rectifiers reverse characteristics.
Maximum allowable ambient temperatura
TJlmaxl = Maximum allowable junction temperatura
I 1750 C or the temperatura at which ther·
mal runewey occurs, whichever is lowest. I
Example: Find TA(maxl for MR510 operated in a 400 Voltdc
supply using a full wave center-tapped circuit with capacitive filter
such that IDC = 6.0A,(lF(AV) = 3.0AI,I(PKI/I(AVI = 10,Input
Voltage = 283 V(rmsllline to canter tapl, RSJA = 280 CIW.
PFIAVI- Average forward power dissipation
PR IAVI = A_age raverse power dissipation
R6JA • Junction-to·ambient thermal resistance
Figura 1 permits aasier use of equatifln III by taking reverse power
dissipation and thermal runaway into consideration. The figure
SteP 1:
Find VR(equivl. Read F = 1.11 from Table 1 :.
VRlequivl = 1.41)(283)(1.111 =444 V
Step 2:
Find TR from Figura 1. Reed TR = 167 0 C 0
VR = 444 V & RSJA = 2rPCIW.
solves for a raference temparatura es determined by equation 121:
Step 3:
TR = TJlmaxl - RSJAPRIAV)
Substituting equation (2) into equation 11) yields:
Find PFIAV) from Figura 8. Read PF(AV)
121
=4 W
IPK
OlAV = 10 & IF(AV) = 3.0 A
TAlmaxl = TR - RSJAPFIAV)
(3)
Inspection of equations 121 and 131 reveals that TR is the ambient
temperatureatwhich thermal runaway occurs orwhare TJ = 17SoC.
Find T Nmaxl from equetion (31. T A(maxl = 167-(281
55 C.
Step 4:
(4) =
TABLE 1- VALUES FOR FACTOR F
HalfWaye
Circuit
Full Wave, Bridge
Loed
Resistive
Capacitive*
Resistive
Capacitiye
Resistive
Sine Wave
0.45
0.61
1.11
1.22
0.45
0.61
0.55
0.61
0.90
1.22
SquaraWeve
10r---.----r---r--~r__,~--r-~~~
:~ ~ ~
175
110
~ 165
~ 160
~
-- -
'"' "
c
~
~p..
40
.......... ~ :"'-
w
~ 150
w
a:
w
--
10
r--.; ..:::-- tI"'" :::::
........
~
... 155
~
';o~
r
-::'
40
... 13
sr"
5
9.0 CAPACITIVE LDAOS II(PK) = 5.0-:-lt--¥---+-7'~h.c.....~
(AV)
B.ol---+--f--+--,H.....+t--7f-~l7"'
7.DI---+--,f-___-F'1--d-T-"'-I....,~..,.S_~b,£..._!
~
6.01---+--f---!1'-7F'--"7I''f-:~6-~~!-::-::=-l
i'
O
!i! ~ 5.01---+--f--t'+--T-+~~1F-:~<:..p~
ffii:
~J 4.01---+--h<--J<-_<.;""",.c..+---+-~t---j
",-"
RSJA (OCIWI;
NOlte 2
U;
~I=
~ ~
w
"'- "'- ~
145
~
~
i
lr f
3.DI---+--.hhh""''''-+2.01----+-7'~1.IIli~'+---+-....:.t_--+--t_-_!
1.01--:;dII.....'-t---if---+---t---j--t---j
O~~~~~~~~~~~~~~~~.
130
100
1.11
1.22
FIGURE 2 - FORWARD POWER DISSIPATION
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE
180
a:
Capacitive
tUse line to center tap voltage for Vin.
"Note that VR(PK) ""2 Vin(PK)
~
w
Full Wave
Center· Tapped*t
200
300
400
600
BOO
1000
VR, DC REVERSE VOLTAGE (VOLTS)
1144
o
W
~
~
IF(AV), AVERAGE FORWARD CURRENT (AMP)
n
u
MR501, MR502, MR504, MR506, MR508, MR510 (continued)
CURRENT DERATING
(Reverse Power Loss Neglected)
FIGURE 6 -
FIGURE 3 - PC BOARD MOUNTING
;;;
4.0
"
z
~ 3.0
. .....
..
CI
2.5
b::
i
2.0
1'-'" '"
a
a:
~
~
a:
~
1.
5
t-
1.0
~ R9JA = 2SoCIW
r--.I ~
~
--
~
..... ~
...
0
40
200
5.0 - - - 10 ...........
20---
-,
..... ~
TJ
-
so
100
120
V
TYPICAL/
140
~
~
~
!/ 1/
J /
20
I
....
160
180
TA. AMBIENT TEMPERATURE (OC)
ill
a:
~
MAXIMUM
/
30
~~
.- ,..., ~
~
70
0
/. ~ ~ ~1 ~
..... ~~
..:::;
60
~ 250~
100
......
...... ....
~ ~ ~~ ~
I(PK)
NOTE: FOR RESISTIVE LOAD I(AV) = w
vI'"
I I
I--
CAPACITIVE LOAOS f0-
..... .1, ,~
t-....
'-,
I I
I(PK)
'w ___
IIAV)
R8JA = 50oCIW'" I"'-
"~ 0.5
~
-
,I'
'"....
~ 3.5
FORWARD VOLTAGE
/
10
CI
~ 7.0
~
~ 5.0
FIGURE 4 - SEVERAL LEAD LENGTHS
ii:' 8.
7.0
w
~
6.0
~
5.0
a
,
Or-...
~
5;
r---.
.......
........
~
~ 4.0
" ," ,~~
~
.......
'"-
~
If
.......
r---. SIS"
~
~
8.0
7.o
r---.", 't-......
r-...
a
~ 5.0
~
~ 4.0
i'"'- t---.
r- r-.. .
w
~ 3. 0
........
N
~
~ 2.0
~
.........
....... -......; ~ ~
o.5
to
o
40
&.
I(AV)
LOAD)
snUAREWAVE
r--.... I'<
I""--
t" t--..
r- r- "
I'-....
CAPACITIVE LOADS :(PK) = 5.0
I
)
I
I (AV)
"6<
100
u
u
u
~
U
-3.2
+5.0
1--1--
+4.0
7
II
~
3> +3.0
oS
....
f5
c::;
u:
~~
l7 r.... R: ~ ~
T' 20 I"" ~ ~
""
~
FIGURE 7 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
BOTH LEADS TO HEA
SINK WITH EnUAL
t"{ENGTHS
120
140
TL, LEAO TEMPERATURE (OC)
SO
0.2
0.4
ISO
vF,lNSTANTANEOUS FORWARD VOLTAGE (VOLTS)
""'III
60
0.3
~~
160
V~(PK) =w(RESISTIVE
I-'"
a:
w
;;
1. 0
1/8" LEAD LENGTH
~
..............
a: 6.0
!:
o. 7
SO
100
120
140
TL, LEAO TEMPERATURE (OC)
FIGURE 5 £'
t; 2. 0
.':f
......::: ~
60
3.0
"
BOTH LEAOSTO HEAT
SINK WITH LENGTHS
f-- AS SHOWN
1.0
40
~
,......., ":". ~
2.0
o
Z
......
!'...
.......,
~ ......
~ 3. 0
ffi~
lil
REslsTlv~ LdAD J
~1132"
~ ......
::0
'"
160
tti
8
i
TYPICAL RANGE"
+1.0
0
-2.010.2
180
1/
::;.0.5
1.0
....
2.0
5.0
10
20
50
iF, INSTANTANEOUS FORWARD CURRENT (AMP)
1145
I
+2. 0
-1.0
~
I
100
200
MR501, MR502, MR504, MR506, MR508, MR510 (continued)
FIGURE 9 - TYPICAL REVERSE CURRENT
FIGURE 8 - MAXIMUM SURGE CAPABILITY
..'"
150
.........
100
r-....
~100
!z
~
a:
80
...>
60
::>
u
~
........
...'"w«
30
'"
20
~
. . . r-.,-...
r-.,
.........'"
f·
15
1.0
2.0
VRRM MAY BE APPLIED
BETWEEN EACH CYCLE
-OFSURGE.TJNDTED IS
- TJ PRIOR TO SURGE
l"Io.
I'-..
~ETlTIVE ~
~ 40
«
:r
IJUt=
~
11i'-r-.,
III
5.0 7.0
3.0
10
...ffi
. . . . r-.,
iii
a:
........
..........
20
VR
0
"g: ::i~g ~gti:~~:"'
20% RATED VOLTAGE~
0
L L
7'
L
~ 5.0
.....
........
,Ur'r--.
60 Hz
i:'i
a:
,........
.J,.250 C"'-- f..(
~~
~
I-
~NON·REPETITIVE
~
~~C
0
./
2. 0
./
1.0
./
~ O•5
30
50
70
./
o.2
o. 1
o
r--....r-.,
100
./
20
40
60
80
100
120
140
160
180
2110
TJ, JUNCTION TEMPERATURE lOCI
NUMBER OF CYCLES
THERMAL CHARACTERISTICS
FIGURE 10 - THERMAL RESPONSE
=
c::
n
,
.
"Orn~~~~IfmBm
-I--;=:::j ~Ppk
.... 0
~~
~~
Ppk
~
0.5
0,3 ....
DUTY CYCLE' tpltl
PEAK POWER, Ppk, is p"k of an
t--t-i-t+++++-+--:bo-F-I--'"-+++-If-I-jl-t--iI-t--t-iH+++++-+--f
TIME equivalent squa.. power pulse.
0.2 .... aTJL' Ppk. ReJL ID + Ii - D) ,
~"
+ 'pl +
LEAD LENGTH· 114"
~tp) - r(tl)[
l---+-+-+-H-H.r-9-"-+-+++-~-I+II--I-+_I-+--II~.j.I-I1-11.j.111-1-+-I
uti~~:~C~=::I':!t-:n~:~::!t':::."!
l,..-f'"
.........re:
i ~ =~J~;:=~~ injunction:te~m~p:.retu:"~ab~O"~'h;e:a:~I!~m!m;m~;~~ii=let:~het~ie~:~is !::~rg::::;
:i
E fa
resista*
iii ~
8.1::
~
:: ,ritl + tp) = normalized value of
0.03 t~ent thermal
~ a: 0.02 ,-II .nnetl + tp, ~
J....n I I III
==
=
10 that it win not significantly respond to heat
surges generated in the diode as a result of pulted -_
operation once _eady-state conditionsn achieved.
Uti", the measured value of TL, the junction tim- p.lllure may be d..~nni:O:~Y:
I III
-
ret) = normalized value of transient thenn.1 resistance
~ 0.05 - at time, t, ie.:
~ t;
-
I I 1111 ~J - TL
I
I JLI I
I 1111
0.0~'~2~~~o.~5.J..t-'--';1;';.0~"""'2t..O'-~~5;';.0~1-LJ';\'0.--L,.-;2!;;O-L-.L.-;5"0"""-'f.,OO~-J..-;200;;--,J.~-;5:!;;1IO;'-'-'-;'':!.07k-l-;2~.O:-:k~'--'::5-:!.0':-k.L...L-'-':,!;-OkC-'-;;;!20 k
t TIMElmsl
NOTE 2 - AMBIENT MOUNTING DATA
Ollte shown for thermal rftist8nc. junction-to·ambient (R.JA)
for the mounting. 1h000n i. to b. ul8d .. typk:.1 guidelln. _u"
for pr.liminary enrgin..,ing or in c ... the ft. point temperllt'ure
cannot be rn,tuur-.d.
FIGURE 11- STEADY-STATE THERMAL RESISTANCE
50
SINGLE LEAD TO HEAT SINK
r-INSIGNIFICANT HEAT FLOW
THROUGH OTHER LEA~.~
X
/ ' ","
./
....... 1"""
v0
0
/'
--,...
1..,,/ ~
1/8
/'
V
....
/
-
_ _ _ MAXIMUM
---TYPICAL -
..- - -- ..,_....
TYPICAL VALUES FOR R8JAIN STILL AIR
L,./ ....
/"
/
~
V
-~
HEAT SINK, EnUAL
LENGTH
•
LEAD LENGTH L (IN)
1/8
50
3
-
3/1
112
5/8
L, LEAD LENGTH (INCHES)
314
MOUNTING METHOD 2
7/8
1146
53
28
..
3/4
RsJA
·CIW
CIW
P.C. Board Wh.... Av.118bt. Copper
Surface are. i. small.
VlICtOr Push·ln T.,."lnels T-28
1/4
1/2
.,
1/4
MOUNTING METHOD 1
1ff~1J
'(,-
.... -BOTH LEADSTD
MOUNTING
METHOD
MOUNTING METHOD 3
P .C. Board with
1-112" III 1-112" Copper Surfac•
MR501, MR502, MR504, MR506, MR508, MR510 (continued)
FIGURE 12 - APPROXIMATE THERMAL CIRCUIT MODEL
THERMAL CI RCUIT MOOEL
(Fo, Hilt Conduction Through the Leads)
T A = Ambient Tempera1'ur.
TL = Lead Temperature
RIJS(K)
T C - C • • Temperature
T J .. Junction Tempereture
RSS "" Thermal Resistance. Heat
Sink to Ambient
RBL'= Thermal Resistance, Lead
to HeetSink
A6'J = Thermal Resinance. JunetiontoCau
Po = Total Power Dissipation ..
PF + PR
P F .. Forward Power Dissipation
P R = Reverse Power Dissipation
(SubscriptS (AI .nd (K) reie, to anode and cathode side. respectivelv.)
Values for thermal re.istance components ere:
= 46o C/W/IN.
RBL
Typically and 480 C/W/IN Maximum.
RfJJ = 100 C/W Typically and 16o C/W Maximum.
The maximum lead temperature m8lY be found •• follows:
TL" TJCm.x)
u . of the ilbOYtl modet permits junction to leed thermal
for any mounting configuration to be 'found. For a
given totlll lead length, 10Wftt velua occur when one side of the
rac:tifler i. brought.s close .. possible to the heat link. Termsln
resisUI~
-b
TJL-PO
where
the mode' signify:
TYPICAL DYNAMIC CHARACTERISTICS
(TJ = 25°C)
FIGURE 14 - REVERSE RECOVERY TIME
FIGURE 13 - FORWARD RECOVERY TIME
1.0
]
w
:II
7~
or--...'
Vff):
;:: 0.51-- tf,
~
8
w
""
""
i
...
L-
W
VI,
I--
1111
D.3
VI,-2.0':-
,..
~
-
Q
0.2
'"
0
8
5.0
~
3.Of-
;:::
~ 7.0
w
>
IF=200mA
w
a:
......."'1-..
"-
il:;
cc:~
Q
E
I"- ~~
]
0.
.;
(Overshoot not significant below
Ip 200 mA/
r
O. 1
0.5 0.7 1.0
2.0 3.0
0.1
0.2 0.3
IF. FORWARD CURRENT (AMP)
5.0 7.0
10
2.0 ,
IR
e-
I
1.0
0.1
FIGURE 15 - RECTIFICATION WAVEFORM EFFICIENCY
""~
0.5
i
U 0.3
u:
::;
.. 0.2
7D
....... D~TlNbMLlho~
......
1.0 kHz VALUE
O.7
IT"rTt" r-_
....
~MEASJRJO A1TA
CURRENT INPUt wlvE~o~J
-VV'v
-
0.1
1.0
0.3
5.0 7.D
2.0 3.0
0.5 0.7 1.0
IR/IF. DRIVE CURRENT RATIO
lD
"""...........
3.0
5.0 7.0 10
20
30
REPETITION FREDUENCY {kHzl
....
5D
~
I'
~~
r--....
j'., .....
10
J1.1U---2.0
i I I I II
0.2
i'
'"
'::::i'
I-..
FIGURE 16 - JUNCTION CAPACITANCE
-
1.0
-~ l'..
..........
W,J
0
50
70
100
1147
7.0
D.l
0.2
D.5
1.0
2.D
5.D
lD
20
VR. REVERSE VOLTAGE (VOLTS)
50
100
MRS01, MRS02, MRS04, MRS06, MRS08, MRS10 (continued)
RECTIFIER EFFICIENCY NOTE
FIGURE 17 - SINGLE-PHASE HALF-WAVE
RECTIFIER CIRCUIT
The rectification efficiency factor
(J
shown in Figure 15 was
calculated using the formula:
V2 o (dc)
RL
P(dc)
0=--=---·100%=
p(rms)
V2 o (rms)
For a square wave input of
amplitude V m • the efficiency
factor becomes:
V2 o (dc)
V2 o (ac) + V2 o (dc)
RL
·100% (1)
(A full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the reverse re-
RL
For a sine wave input Vm sin (wt) to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:
V2m
,,2RL
4
O(sine) = --;;;-. 100% = ,,2· 100% = 40.6%
m
2RL
O(square) =-2-· 100%=50% (3)
Vm
covery time of the diode (Figure 14) becomes significant, resulting
in an increasing ae voltage component across RL which is opposite
in polarity to the forward current, thereby reducing the value of
ttle efficiency factor (1, as shown on Figure 15.
It should be emphasized that Figure 15 shows waveform efficien-
cy only; it does not provide a measure of diode losses. Data was
obtained by measuring the ae component of Vo with a true rms ac
voltmeter and the de component with a de voltmeter. The data was
used in Equation 1 to obtain points for the figure.
(2)
1148
MR751 (SILICON)
MR752
MR754
MR756
Designcr!-l Data Sheet
HIGH CURRENT
LEAD MOUNTED
SILICON RECTIFIERS
HIGH CURRENT LEAD MOUNTED RECTIFIERS
100-600 VOLTS
DI FFUSED JUNCTION
• Current Capacity Comparable To Chassis Mounted Rectifiers
• Very High Surge Capacity
• Insu lated case
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.
MAXIMJM RATINGS
Symbol
Characteristic
Ipeak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
MR751 MR752 MR754 MR756 Unit
VRRM
VRWM
VR
100
200
400
600
Volts
VRsM
120
240
480
720
Volts
70
140
280
420
Volts
Non-Repetitive Peak Reverse Voltage
Ihalfwa"", single phase, 60 Hz peak)
RMs Reverse Voltage
VRIRMs)
Average Rectified Forward Current
10
(single phase, resistive load,
60Hz.) See Figures 5 and 6
Non-Repetitive Peak Surge Current
(surge applied at rated load
conditions)
Operating and Storage Junction
Temperature Range
221TL : 60°C, 1/8" Lead Lengths) Amp
6.01T A :600 C,P.C.
Board mounting)
IFSM
400 Ifor 1 cycle)
-65 to +175
TJ, T stg
Amp
°c
ELECTRICAL CHARACTERISTICS
Charact.. istic and Conditions
Maximum Instantaneous Forward Voltage Drop
Symbol
Max
Unit
vF
1.25
Volts
VF
0.90
Volts
IR
0.25
1.0
mA
(IF: 100 Amp, T J: 25°C)
Maximum Forward Voltage Drop
(IF = 6.0 Amp, T A: 25°C, 3/8 inch leads)
Maximum Reverse Current (rated dc voltage) T J""250C
TJ:l000C
MECHANICAL CHARACTERISTICS
STYLE 1:
PIN 1. CATHODE
2. ANODE
DIM
CASE: Void free, Transfer Molded
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8" from
A
B
case for 10 seconds at 5.0 Ibs. tension
D
FINISH: All external surfaces are corrosion-resistant, leads are readily solderable
K
MI LLIMETERS
MIN
MAX
10.03 10.29
5.94
6.25
1.27
1.35
25.15 25.65
POLARITY: Indicated by diode symbol
WEIGHT: 2.5 Grams lapprox)
CASE 194
1149
INCHES
MIN
MAX
0.395 0.405
0.234 0.246
0.050 0.053
0.990 1.010
MR751, MR752, MR754, MR756 (continued)
FIGURE 2 - MAXIMUM SURGE CAPABILITY,
- - --
FIGURE 1 - FORWARD VOLTAGE
700
500 r--TJ= 250 C
./
100
r-- f-TYPICAL
I
r---..L
!z
-...........:.. ""'O""I/~
::;300
i"""- :?'I't.
.............
'"
~ 200
25 0 C
.......
'"~
50
i""'r--r-.
ffi
r-1.0
2.0
10
5.0
50
20
100
NUMBER OF CYCLES AT 60 Hz
I
10
FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
7.0
+0.5
5.0
z
~
z
3.0
I;;
'"
~
~ ......
80
/I
'"0
~
...............
60
I
20
::>
i
~
III
I
5 30
t-
lr
25 0 C
~ 100
:E
~
Ii"
~'r'I'f
.......
/
I
r--r-.
r--....
J),t. ~tc'
........1'--
I/fP~j--....
W
1/ / '
70
0:
.............
::>
:I:
a;
VRRM MAY BE APPLIED SETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS T PRIOR TYURGE
W
MAXIMUM
V
/
200
...........
~
5400
V
/
300
600
/
G
2.0
3-.§"
-0.5
t-
al
1.0
u
~
-
-1.5
0.3
0.2
0.6
I
O.S
-2.0
1.0
1.2
1.4
1.6
1.S
2.0
2.2
2.4
'--
......
TYPICAL RANGE
-1.0
8
0.5
2.6
0.5
0.2
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
1.0
.......
I,...-
2.0
I?'
5.0
10
20
50
100
200
IF, INSTANTANEOUS FORWARD CURRENT (AMP)
FIGURE 4 - TYPICAL TRANSIENT THERMAL RESISTANCE
20r---.---r-'-.---r--r-r.-,,-r---'---r-'-'---r-'--~~'-r---'---r-'-'---r-'-~I~
~_
~~
10
:= ~ 5.0
!z
OW
~~
~ ~
~~
~ ~
i= .....
~~
=! ffi
§~
~
a::
3.0
-===-!~~~~IL~"~~~L~~!!~~~~~II~~II~ll~n'!
~
~
f---
3/S':=
1/4,1-
HEAT SINK
W"
Both leads to heat sink, with lengths as shown. Variations in
2.01---f--1--+-1--t--t-t-+-+-t-l---t_-::_1""'=t--t--1--+- R6JL(t) be10w 2.0 seconds are independent of lead connections
L.........
of 1/8 inch or greater,and vary only about ±.20%from the values
rshown. Values fortimesgrtater than 2.0 seconds may be obtained
1.0
by drawing a CUM, with the end point (at 70 seconds) taken .
from Figure 8, Dr calculated from the notes, using the given
0.5
curves as a guide. Either typical or maximum values may be
used. For ROJL(t} valuas at pulse widths less than O.I ... ond,
0.3
,.".
the above curve can be extrapolated down to 10 lAS at a can·
,IIfIIII'
-
==
_
:
_
_
0.2.~~~~~:t~==:t~~t;~:t~==:±==~:j=;~:±~E:ltli:.nu~i'j"n~g~~.oj~~·I~__~I~_~I_L-I~I~IL-~I~~-~
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
t, TIME (SECONDS)
1150
5,0
7.0
10
20
30
50
70
MR751, MR752, MR754, MR756 (continued)
FIGURE 6 - MAXIMUM CURRENT RATINGS
FIGURE 5 - MAXIMUM CURRENT RATINGS
28
7.0
'" ...... " ,
I
114"
.........
8""
......
.......
'"
....
0
--
0
20
40
60
80
100
~
6.0
~
~
w
"',
"'
~
"
..
::,.'"
~
Tl' LEAD TEMPERATURE (OCI
50
-
"-
.~
~
..
·l~ ~
.....
\/,
....
~
~ 1.0
""
160
6~(lPK/IAVE
180
g
200
.... ~
o
20
,,~
.",~" ~
/
....
- 6.281
I
I
I
I
I
40
60
80
U
f· 60 Hz- I - -
~ ~j', ~
SEE NOTE
w
- - - I(pkl' 51avg
_______ ••• l(pkl'IO I,vg ____ • l(pkl' 2Olavg-
~
",~
'""10\:
V
I
,... RESISTIVE-INDUCTIVE LOADS
CAPACITANCE LOAOS-l~ ~
..~'"
.(
~~
o
~ 2.0 f-ROJA • 40 C/W,
~,
140
I~""i
3.0
to
~~
120
ReJA • 25oC,IW,
SEE NOTE
..
~ 4.0
...... .......
.......... '" .......
5/8"
6.0
13
LENGTHS -
........
......
............
.......
~
...
:ii
80TH LEADS Til HEAT _
~~~H~~~
.....
~ ,~
0:
RESisTlvE-INDUCJIVE LOt DS
I -
L·1I8"
~
~
100
120
140
.........
160
180
200
TA, AMBIENT TEMPERATURE (OCI
FIGURE 7 - POWER DISSIPATION
NOTES
32
THERMAL CIRCUIT MODEL
!For Heat Conduction Through The Leadsl
...~
~
RflSCKJ
z
0
;::
~
ill
i5
16
'"itw
~
j
Use of the above model permits junction to lead thermal resistance for any
mounting configuration to be found. Lowest values occur when one side of the
~
rectifier is brought as close as possible to the heat sink as shown below. Terms in
the model signify:
TA '" Ambient Temperature
R6S "" Thermal Resistance,HeatSink to Ambient
TL '" Lead Temperature
ReL = Thermal Resistance, Lead to Heat Sink
TC '" Case Temperature
R6J "" Thermal Resistance,Junction to Case
TJ '" Junction Temperature
PF = Power Dissipation
(Subscripts (A' and (K) refer to anode and cathode sides respectively.)
Values for thermal nmstance components are:
R8L'" 400CIWIIN. Typically and 44Q CIWIIN Maximum
R8J '" 20 CIW Tvpically and 4 o C/W Maximum
IF(avgl, AVERAGE FORWARD CURRENT (AMPI
FIGURE 8 - STEADY STATE THERMAL RESISTANCE
Since R8J is so low, measurements of the case temperature, T C. will be approximately equal to junction temperature in practical lead mounted applications.
When used as a 60 Hz rectifier, the slow thermal response holds T J(PKI close to
TJ(AVGI. Therefore maximum lead temperature may be found from: TL '"
17So-RSJL PF. PF may be found from Figure 7.
The recommended method of mounting to a P .C. board is shown on the sketch.
where RSJA is approximately 2SoC/W for a 1-112" x 1-1/2" copper surface area.
Values of 400CIW are typical for mounting to terminal strips or P .C. boards where
available surface area is small.
351---+--+--+--1-----1.
~~30
",u
t;~
ffi~25r----+----~--~~r-~~~~1-----r---~'
"':~20r----+----~--~~~~----1---~~~.
....
",2
~~15r----+--~~~~r----+~~~~~r---~----~
~§10r_--~~~~~~~~~~~~
~~
1/4
3/8
112
5/8
1.0
L, LEAD LENGTH flNCHESI
1151
Recommended mounting for half wave circuit
MR751, MR752, MR754, MR756 (continued)
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 10 - REVERSE RECOVERY TIME
FIGURE 9 - RECTIFICATION EFFICIENCY
-
100
30
":::.~-
~~
70
~
20
~
'\
i
TJ ~ 175'C
50
~
l-
~
;
30 I-
r-
I
1.0
\
\
.i
2.0
1\
\
10
20
"'-
30
50
IF
I
0.2
0.1
0.7
........
~200
0.3
ts
70
.J
50
~
30
.,:#
~ 0.2
20
10
7.0
10
20
30
50
1_ 1,,_1
2.0
1.0
3.0
70 100
-
5.0 7.0
10
TJ~25'C
/
/
v"
-----
1.0
V., REVERSE v()LTAGE IVOlTS)
-
I
--- --
0.1
5.0
0.5 0.7
I
~
~lOO
3.0
i"- ............. ~
~VF~I
c-
~
2.0
0.3
I--
....~ 0.5 c-
TJ ~25'C
iiiE;
!il
1.0
'"
...... 1'-,
FIGURE 12 - FORWARD RECOVERY TIME
1.0
f'.
..........
.............
1./lF, RATIO OF REVERSE TO FORWARD CURRENT
FIGURE 11 - JUNCTION CAPACITANCE
300
........
1.0
70 100
1000
700
......
,
3A"
I~'"
:o?=Jr[
REPETITION FREQUENCY 1kHz)
500
TJ ~ 25'C
......... r--
::>..
"' 3.0 -
\
~
5.0 7.0
.........
i'.
IF~5A
i
1 1 III
3.0
""""""'"
7.0
E;
~ 5.0
1\
ruu --2.0
i!'!
iii
\
\
f\J'v1
.... 10
\ . TJ~25'C
CURRENT INPUT WAVEfORM
j
20
~
~ I"-
/"
,......,. ..-/
V
2.0
V3.0
v,,~IV
---I I
v ,,=2V
5.0
-l-
r-r7.0
10
iF, FORWARD PULSE CURRENT(AMP)
FIGURE 13 - SINGLE-PHASE HALF-WAVE
RECTIFIER CIRCUIT
,,'RL
4
a(sine) = - - . 100% = - . 100% = 40.6%
V' m
,,2
(2)
4RL
For a square WINe input of
amplitude V m. the efficiency
factor becomes:
2RL
U(square) = -2- . 100%= 50% (3)
Vm
RL
(A full wave circuit has twice these efficiencies)
The rectification efficiency factor a shown in Figure 9 was
calculated using the formula:
As the frequency of the input signal is increased, the reverse re·
V'o(dc)
covery
~me
of the diode (Figure 10) becomes significant, resulting
in an increasing ac voltage component across R L which is opposite
in polarity to the forward current, thereby reducing the value of
the efficiency factor 0, as shown on Figure 9.
P(dc)
RL
V'o(dc)
u=--=---'100%=
,100% (1)
p(rms)
V'o(rms)
V2 0 (ac) + V2 0 (dc)
It should be emphasized that F igure 9 shows waveform efficien-
RL
cy only; it does not provide a measure of diode losses. Data was
obtained by measuring the ac component of Vo with a true rms ae
For a sine wave input Vm sin (wt) to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:
voltmeter and the dc component with a dc voltmeter. Tho data was
used in Equation 1 to obtain points for Figure 9.
1152
MR810 thru MR814
MR816thru MR818
FAST RECOVERY
POWER RECTIFIERS
SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS
50-1000 VOLTS
1 AMPERE
. . . designed for special applications such as de power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interfer·
ence and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 200 nanoseconds providing
high efficiency at frequencies to 250 kHz.
--1@l-B
DESIGNER'S DATA FOR "WORST CASE" CONDITIONS
The Designers Data Sheet permits the design of most circuits entirely from the
information presented. Limit curves - representing device characteristic boundaries are given to facilitate "worst case" design.
r=
K
MAXIMUM RATINGS
Rating
Symbol
P..k Repetitive R ......
Voltaga
VRRM
WQrkin; Peak Rever.
VRWM
MR810
Voltage
DC Siocking Voltage
VR
Non--RepetttlvePeak
VRSM
Reverse Voltage
RMSR_Voll8ge
VRRM
AverageRlICtlfllld
'0
ForwardeulT8nttsingie
ph8lll,l'ftistlveIOld.
T
MRS11
MR812
MRSt4
MR813
MAStS
MR817
MA8tS
50
100
'00
300
100
'00
300
400
36
7.
14.
21.
400
800
800
1000
500
800
1000
1200
Votu
420
'60
700
Volts
Amp
,..
L il
n
Unit
Volts
-I
CATHODE/
BAND
"SM
30
ITA = 750 Cl
Operating Junction
Tampll"lrtur$ Range
TJ
-6510 +150
StorageTemp8l'3h.1re
~
T""
-6510+175
Am..
reted 10000condltions)
Aarlge
1
K
1.•
-750 CI
N~::~e(:~;=I~r:
I-D
MILLIMET~RS
DIM
A
THERMAL CHARACTERISTICS
Ctwactarlstic
Thermal R"lmmca, Junction 10 Ambient
(Typical p,.lmtecl Clfeuit Board Mounting)
...,
Symbol
R8JA
I
Un•
C"'
6'
I·
B
0
K
MIN
4.70
2.54
0.76
27.94
INCHES
MIN
MAX
MAX
5.20
.71
0.86
0.185
0.1011
0.030
1.100
0.205
0.10
0.034
CASE 59·01
CONFORM'S TO 0041
ELECTRICAL CHARACTERISTICS
Characterldlc
InstentaneoulFOfWIt'dVoitage
OF - 3t14 Amp, T - 1SOOC)
Forward VoitIgII
U~"1.0Amp, T _260 CI
RIIIIIfR Curnnt (rated de voltage) TA .. 25°C
T -1000C
Symbol
Min
"
TV.
M"
1,1
1.'
VF
1.•
1.•
50
'.
Un.
Volts
"1.
.A
'"
CASE: Void Free, Transfer Mold!!d
FINISH: External leads are plated
and are readily solderable
REVERSE RECOVERY CHARACTERISTICS
Ch..acteriltic
Svmbol
R....... RecovervTlme
(IF" 1.0 Amp to VR" 3OVdcllFlgure211
!IF = 20 mA, IA • 2.0 mA, TektrOniX &PIug-lnHFigure 22)
'.
Aevene AEO\I'8IY eurretlt
(IF = 1.0 Amp to VR ~ 30 Vdel(FiFre 21)
MECHANICAL CHARACTERISTICS
Min
TV.
M"
'00
750
1.•
3 .•
Un.
.'
n.
Amp
'RM(REel
3.0
1153
POLAR lTV: Cathode i ndicatAod by
Polaritv band
WEIGHT: 0.4 Grams (Approximately)
MR810 thru MR814/MR816 thru MR818 (continued)
FIGURE 1 - FORWARD VOLTAGE
0
I I
V
30
/'
./
v-
FIGURE 2 - MAXIMUM SURGE CAPABILITY
..... ....
100
1/
0
TYPICAL
J
.
w'"
VV
0
./'
V
5
-~
a'"
~
"'~
~=
:: ~ 50
z'"
~~ 40 '---
,.
~~ 30 r-
6.0
I
;!:
«
"
I;;
:;:
--~CLE
o
2.0
I
IIIII
II Lli
5.0 7.0 10
3.0
i"'r--
AI
r-
20
3D
50
70 100
NUMBER OF CYCLES AT 60 Hz
I'/
1.0
2.0
1.0
I
III
-
III"
e:::r
10
I
3.0
each cycle of surge•
"NJ
~ 20
~
z
is operated such that TJ. 150oC;
VRRM may be applied between
i'
!;:~ 60
"'w
~
'"ffi
~~rl;: .urge~ the ~t:fi~ I I
i'"
oa:: 70
MAXIMUM
7.0
~
90
;;;80
,/
I - _ TJ=2!i°C
.......... ......
FIGURE 3 - TEMPERATURE COEFFICIENT
4. 5
4.0
o. 7
J
I
O.6
.~
3.5
3.0
i ~:
o.3
~ 1. 5
I
0.2
TYPICAL RANGE
/
~ 1.0
I
r
A
"'1
U 0.5
u:
I
o. 1
1
6
0
tt;.
8
0
.v
-0.5
.1.0
-1.6
-2.0
0.07
0.06
0.4
0.8
1.2
1.6
2.0
2.4
2.8
Yf.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
3.2
-2.5
0.05
FIGURE 4 - FORWARD POWER DISSIPATION
3.2
.1.
1
I(PK) -20I(AV)
2
INDUCTIVE LOAD)
~
~V
2
8
0.8
L~
A ~ ./
6
TJ~15OoC- t--
1.2
1.6
20
2.4
2.8
~o 4~
/ . / 2.0
/. ;r V
/ / ~ V ./
4
~~
0.4
/
8
0
// ~
po
I(PK)=/7
I(AV)
6
/ 1/ h v
~~
60
FIGURE 5 - FORWARD POWER DISSIPATION
~~ESlJTlVJ,
i/ /
5.0
10
20
0.2
0.5
1.0
2.0
iF. INSTANTANEOUS FORWARD CURRENT (AMP)
0
X
I-V~.o/
//
V/
0.1
V
V
de
TJ~150oC
~ "/
~~
4
~ ....
0 .......
0.4
,
0.8
1.2
1.6
2.0
IF(AV). AVERAGE FORWARD CURRENT (AMP)
IF(AV). AVERAGE FORWARD CURRENT (AMP)
1154
2.4
2.8
MR810 thru MR814/MR816 thru MR818 (continued)
MAXIMUM CURRENT RATINGS
(SEE NOTES 1 and 21
SINE WAVE INPUT
SQUARE WAVE INPUT
FIGURE 6 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
£
2.S
~
....
2.4
ffi
0:
~
..,
CI
r-~
.1
2.Or-l~
~
1.61--3/i?"'--
~
w
co
1.
~
ffi
;c
~
r-....
~
~
0.S
60
70
90
SO
" I"
1"-..
'"
5~ r-3/8"
r-...i
f'-.. r.....
1'--. ..........
...
~~
1"--
~
~l'
i:"'--, ~
110
120
130
140
0
50
150
60
70
FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS
--~
~o:
a
IPK
IAVG
.........
2.4
2.0
~
(~ESISTI~ElINDIUCTIVb
l"'-..
-
1.2
w
co
--. ~
..........
r--
: o.S
..... ~
......... ~
........ .......
j
SO
90
100
110 120
fl. lEAD TEMPERATURE (OCI
130
140
'"
150
FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
E:
~
0:
..,~
CI
1.2
"""
1.0
0:
0.8
~
o.6
~
w
~
w
:<
~
~
I<
I'--.
......
-t--
-
......
-
~
0
50
w
~
ffi
;c
~
130
140
150
"
I'--.
140
70
"
150
1155
~
"" " "
."'
~
90
100 110 120
fl. lEAD TEMPERATURE(OCI
SO
130
~
140
150
FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
1.4
1.2
1.
r--.
r--..
1
.....,
........ I'--.
O~ --.........; I'..
f--de
........... ..........
j.."
BJA = 55oCiW- t--
""
CAPACITIVE lOAD
-......; ~
I(PKI • 2.0 10 5.0
:>' s::,."
I(AVI
10~ ~
~
~"
20
D. 6
O.4
0
50
I'..
"""'"
.......... ........;
...........~
~t-..
l~
SO.2
~
i"-,
'"&
60
~
u.
.......
SO
90
100 110 120
TA,AMBIENTTEMPERATURE (OCI
D.4
CI
r--
......
70
130
..........
~
~
~
.. D.S
.........
02
611
...........
~
O.S
"'>""
~
B
~
f'.,
~
CAPACITIVE lOAD
)---- IWKI = 5.0'pc;;, ~
O.4
'IAVI 10
I----::::
~
20
......
0
50
1.2
ffi
8JA = 650 CiW-
~
r--.
~
~
....
".,RESISTIVE·INDUCTIVE
lOAD
1--.
i
i---I(PKI = 20
1.6r---I(AVI
.
1.4
~
2.0
ffi
~
70
~! ;
>
~
60
~~
~
........ de
w
O. 4
f'...: 1"--'
r--.....- 2"
~
......
.........
......... 2.0 to
...... ~O
........... lO"t--.
co
~,
~~
0
50
I""'--...
2.4
CI
.........
2.8
~
....
..,_
w
:<-'-
E:
.~
I'..
,........ K
10 r-....
...........
......
I'.
..... r--..."
FIGURE 9 - 1/8" LEAD LENGTH, VARIOUS LOADS
.......... .:--,
~ 1.6
ft
-1r
r--
SO
90
100 110 120
Tl. lEAD TEMPERATURE (OCI
Tlo lEAD TEMPERATURE (OCI
2.S
"'
r-....... r--.
5
~~
~
100
r---
5/S~ t--
0
."
...... 1"'t....
BOT~
lEAJS TO H'EAT _
SINK WITH lENGTHS
-)---AS SHOWN
o
-
AS SHOWN
--
2t-<~ ...... ~
0
50
r-....
r--....
5" o.4
~
.5H=~,
.1
=~NTKH~I~~DCE~~~~:T -
f'.,
"\
.1
RESISTI~J1~~UCTlVE_
~
I"-.
FIGURE 7 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
&.
~
611
70
90
100 110 120
130
TA. AMBIENT TEMPERATURE (OCI
SO
140
150
MR810 thru MR814/MR816 thru MR818 (continued)
FIGURE 12 - THERMAL RESPONSE
FIGURE 13 - THERMAL RESISTANCE
1.0
80
0 0•7
~ 0.5
~
~
0.3
~~
0.2
----JOTH LElos TO JEAT
EQUAL LENGTH
LEAD LENGTH = 1/4"
~~
0.1
~~ 0.07
-E~ 0.05
-
0
t-
-'
~ 0.02
,...-
V
°v/ ' V
10
./
0.0 1
0.05 0.1 0.2 0.4
1.0 2.0 4.0
10
20 40
o
o
100 200400 10002000 5000
./'"
..........
114
1/8
I,TlME (m.)
Pk
1---11--J
,../'
TYPICAL
f"""
3/8
1/2
5/8
3/4
7/8
NOTE 2
Ppk
Data shown for thermal resistance junction-to·ambient (6JAl for the
mountings shown is to be used as typical guideline values for preliminary
engineering or in case the tie point temperature cannot be measured.
DUTY CYCLE, 0 = Ip/ll
PEAK POWER, Ppk, i. peak .lan
Ip
V
.........V
LEAD LENGTH (INCHES)
NOTE 1
RJL
V
./
(SEE NOTE 1)
~
/'
I
MAXIJUM/
/'
.. <.>
!O,03
SIN~'
equivalent square power pulse.
TYPICAL VALUES FOR 8JA IN STILL AIR
TIME
To dDtermine maximum junction temperature of the diDde in a given situation,
the following procedure is recommended:
4.
The temperature of the case should be measured using a thermocouple placed
on the case as close as possible to the tie point. The thermal mass connected to
the tie point is normally large enough so that it will not significantly respond to
heat surges generated in tilt) diode as a result of pulsed operation once steadystate conditions are achieved. Using the measured value of Te, the junction
temperature may be determined by:
MOUNTING METHOD 1
H t::!=i
MH
TJ=TC+"TJC
where!:::. TJC is the increase in junction temperature above the case temperature.
It may be determined b~:
t. TJC=Ppk 'R9JC 0 + (1-0) ,,(11 +Ip)+,ltp)-,ltli]
where
rh) '" normalized value of transient thermal resistance at time, t, from Figure
12, i.e.:
r (q + tpl ::. normalized value of transient thermal resistance at time 11+ tp.
§
MOUNTING METHOD 3
P. C. Boa,d wilh
J.112"xl·1/2"copperOJ,f.ce
~?!"9=
ptane
FIGURE 14 - THERMAL CIRCUIT MODEL
T A" Ambient Temperature R8S'" Thermal Resistance, Heat Sink to Ambient
Tl = lead Temperature
R8l = Thermal Resistance. lead to Heat Sink
T C '" Case Temperature
R8J" Thermal Resistance, Junction to Case
TJ" Junction Temperature PO" Power Dissipation
(Subscripts (A) and (K) refer to anode and cathode sides respectively.)
Values for thermal resistance components are:
R8L = U:ZOc/w/IN. Typically and 12SOCIW/IN MaXimum
R8J IE 1fPCIW Typically and 3QOCIW Maximum
The maximum lead temperature may be calculated as follows:
Tl"'1SOO-.o.TJl
6TJl can be calculated as shown in NOTE 1 or it may be approximated
asfonows:
6TJL""" ROJL • PF; PF may be formulated for sine·wave operation from
Figure 3 or from Figure 4 for square·wave operation.
Use of the above model permits junction to lead thermal resistance for
any mounting configuration 10 be found. For a given total lead length,
lowest values occur when one side of the rectifier is brought as close as
possible to the heat sink. Terms in the model sig'nify:
POLARITY: Cathode to Case is standard,
Reverse Polarity indicated by
an "R" suffix, i.e" MR871 R.
1156
MR810 thru MR814/MR816 thru MR818 (continued)
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 15 - FORWARD RECOVERY TIME
FIGURE 16 - JUNCTION CAPACITANCE
0.5
~
w
.
0.3
>=
0
-V~r=1.L
_
~ 2
w
u
TJ=25;C
i'- r-. .....
<;
... V
>
~
~
...,
10
z
V
5z 1.0
0:
1
0.05 I
0.1
TJ J5 C
0
~
/
ffi o.2
i'" O.
...'":!i- 0.07
o~
z
.......
=>
~ 5.0
r-.
.."..
0.2
0.5
2.0
1.0
5.0
3.0
1.0
10
5.0
2.0
10
20
50
100
VR, REVERSE VOLTAGE (VOLTS)
IF, FORWARD CURRENT (AMP)
TYPICAL RECOVERED STORED CHARGE DATA
(SEE NOTE 3)
FIGURE 17 - T J
= 25Q C
FIGURE 18 - TJ = 75°C
1. 0
~
w
~
2.0
IFM = 20 A
.3
w
g
'"
'"
\.
......
~ o. 2
~
."
o.5
h ~
o. I
~
V- ""
~
~
~o.o
~ ~ ......
:~ p-2.0
5.0
>
5.0 A
\
w
80:
./. V
O. 2
~
o. 1
10
50
20
0.0 1
10
tOO
FIGURE 19 - TJ
.3.
w
2.0
= 100°C
IF~
1.0
5.0
~~
'"'" 0.02
1.0
V
2.0
5.0
I\A
10
20
1. 0
g
O. 5
~0
~>
~
......
5.0 A
U; ......
L&e :;..-1-'"
.0;
w
t;;
10 A
~ 0.05
50
100
= 1500C
~
,...-: v ......
ffi>. O. 1
8
10
= 20lA
,.,
Bl
10
do/dt, (AMP/ps)
FIGURE 20 - T J
~ o. 5
~
lOA
2.0
~
~ 0.2
r-.... ...... i-"
1.0 A
~ ::::;.V
di/dt IAMP/",)
2.0
i-"
V
5.0A
01/
J
'>
0.0 5
1.0 A
0.0
1.0
~
10 A
"-
V
W
0:
'"w
~
O. 5
'"
Bl
0:
~ 0.05
'FJ=201
1. 0
0:
O. 2
O. 1
lOA
0.05
1.0A
'"'" 0.01
I
50
100
1.0
I
2.0
5.0
10
di/dt (AMP/p')
di/dt, (AMP/ps)
1157
20
50
100
MR810 thru MR814/MR816 thru MR818 (continued)
FIGURE 21 - REVERSE RECOVERY CIRCUIT
NOTE 3
Reverse recovery time is the period which elapses from the
time that the current, thru 8 previously forward biased rectifier
diode, plsses thru zero going negatively until the reverse current
recovers to 8 point which is less than.10% peak reverse current.
Reverse recovery time is 8 direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier. recovery time is very circuit depend·
ent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiersafe rated under a fixed set of conditions
using IF ... 1.0 A, VR '" 30 V. In ordar to cover all circuit
conditions, curves are given for typical recovered stored charge
versus commutation d./dt for various levels of forward current
and for junctlon temperatures of 2SD C. 7SoC. 1ocPC, and
30"
115Vac 10k
60 Hz
2W
!>OW
NON·INDUCTIVE
UNIT
UNDER TEST
+--~[o)A
I.DAde FROM
.,
CONSTANT
VDLTAGESUPftLY
RIPPLE" 3 mVrms MAX
'"
lOW
30 Vdc
CONSTANT VOLTAGE
SUPPLYC>'-+_-<~=_ _
NON· INDUCTIVE
ISo"C.
To use these curves, it is necessary to know the forward
currant level just before commutation, the circuit commutation
dildt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.
Cl
1.0 pF
+-____.3:::00:..;V~_-
and peak reverse recovery current URMIAEC)I can be closely
approximated using the following formulas:
MdlADJUST
Tl
120~VC
60Hz
Q
Cl
T,',
II
'AMIAEC) '" 1.41 )( [QR x dl/d~ 1/2
R1 =50Qhms
R2=250 Ohms
01 = lN4123
02= lN4001
03 = I N0934
SCRI ~ MCR729·10
Cl"'O.!itoSOJ.lF
C2",,4000,uf
Ll = 1.0-27pH
1"2
trr'" 1.41 x [ di/:t1
01
T1 = Vanac AdjUsts I(PK) and dl/dt
T2= 1.1
13= 1.1 (totnggerclrcUlt)
FIGURE 23 - TYPICAL REVERSE LEAKAGE
3
FIGURE 24 - TYPICAL REVERSE LEAKAGE
r- r- f-VR =400 V
r
./
TJ< 15 C
2
100°C
./
1
76°C
1
25~C
10- 1a
100
200
300
400
500
./
600
700
800
900
10-2
20
1000
VR. REVERSE VOLTAGE (VOLTSI
1158
30
.0
50
60 70 80 90 100 110 120 130 140 160 160
TJ. JUNCTION TEMPERATURE (OCI
MR820,MR821,MR822,
MR824,MR826
De!'oligT1PI'!'oI }lata
~hept
FAST RECOVERY
POWER RECTIFIERS
SUBMINIATURE SIZE. AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS
50-600 VOLTS
5.0 AMPERES
designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes_ A complete line of fast recovery
rectifiers having typical recovery time of 100 nanoseconds providing
high efficiency at frequencies to 250 kHz_
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.
MAXIMUM RATINGS
MR820
MR821
MR822
MR824
MA826
Ratl,.
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VRRM
VRWM
VR
50
100
200
400
600
Non-Repetitive Peak Reverse
V.,_
VRSM
15
150
250
450
650
Volts
VRtAMS)
35
10
140
260
420
Volu
RMS Reverse Voltaga
Averet!Ja Rectified Forward
.
.
.
10
Current
(Single ph.... resistive lOad,
5.0
0
TA -55·CIl1l
Non-Repetitive Peak Surge
IFSM
Current
(Surge applied at rated load
conditions)
Operating and Storage Junction
300
0
TJ.Tstg
Umt
Volu
-65 to +175
0
Temperature Range t2)
Amp
STYLE 1:
PIN 1. CATHODE
2. ANODE
Amp
DIM
·c
A
B
D
THERMAL CHARACTERISTICS
K
c_
Therm.. Resistance. Junction to Ambient
IRecommended Printed Circuit Board
Mounting. See Note 6. Page 81 ,
Symbol
Mo.
Unk
RUA
25
·e/W
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
10.03
5.94
1.27
25.15
0.395
0.234
0.050
0.990
10.29
6.25
1.35
25.65
0.405
0.246
0.053
1.010
CASE 194
ELECTRICAL CHARACTERISTICS
Choo_
Symbol
Instantaneous Forward Voltage
Min
Typ
Max
0.16
1.05
IIF -15.7 Amp. TJ ·'600C)
Forward Voltage
0.9
1.0
MECHANICAL CHARACTERISTICS
Volts
VF
(IF· 6.0 Amp. T J - 260 CI
Maximum R..... Current. (rated de voItagel
Unk
Volts
vF
'R
TJ '" 25°C
TJ-lOOOC
5.0
25
o.~
1.0
,.A
mA
Unk
REVERSE RECOVERY CHARACTERISTICS
Cho_.....
Symbol
Min
TY1I
MIl.
t"
-
100
150
200
300
Revane Recovery Time
ifF - 1.0 Amp to VR '" 30 Vdc, Figure 251
IfFM -15 Amp, dildt '" 25 A/jjs, Figure 261
Revene Recovery Current
(IF = 1.0 Amp to VR "" 3OVdc. Figure 25)
'RMIREC)
-
no
-
Amp
2.0
(1 I Must . . der.ted for rev.... po~r dl.-ipMion. S- Now 3
(2) Derllte •• shown I," Figure 1.
1159
CASE: Void Free, Transfer Molded
FINISH: External Surfaces are Corrosion Resistant
POLARITY: Indicated by Diode
Symbol
WEIGHT: 2.5 Grams (Approximately)
MAXIMUM LEAD TEMPERATURE
FOR SOLDERING PURPOSES:
3500 C, 3/S" from case for 10 s
at 5.0 lb. tension.
MR820, MR821, MR822, MR824, MR826'(confinued)
MAXIMUM CURRENT AND TEMPERATURE RATINGS
FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION
TEMPERP...... .........
reverse power'dissipation is also included. ratings vary
with reverse voltage as shown on Figure. 2 thru 5.
.... ~
-....... 10DC/W ...........
......
1'-..
.......
'-...... ~
20~
r-'-...... .......... ::--.. C"'-- ~ -....;,
""
0
0
.........
~?
25 DC,w'"
0
30DC,w'"
400C,w
0
60
NO'I"E1
MAXIMUM JUNCTION TEMPERATUIU. OERATING
ReJA = 5,ODC/W
80
zoo
100
'"
"-
400
300
When current ratings are computed from T J(max) and
SOO
VR• PEAK REVERSE VOLTAGE (VOLTSI
RESISTIVE LOAD RATINGS
PRINTEO CIRCUIT BOAflO MOUNTING - SEE NOTE 6, PAGE II
FIGURE 3 :.... SQUARE WAVE INPUT
, FIGUR,E 2 - SINE WAVE INPUT
a::
7.0
~
lIeJA = Z5 DC,w
;: S.O
...... f:::-.
ffi
0:
r-.....
~ 5.0
Q
0:
~
4. 0
"
~ 3.0
w
~
~
:;c
2.0--:-;
;; 1.0
~ o
" !"
,,
"-
~
~
'"
VR=10V(PKI
......... r-....
"'''
~
.....
........
.....
- :=t-Sor"v V ....... r....... ........ ......
'200 V
"
I
20
40
60
80
.......
100
I-
6,0
!13
5.0
a: 4.0
~
~
100V
~
I........
~
Q
JOV
IS ....
4O~V
r-
7.0
·1
......
...... .......
.......
R~JA
i"...: J-....
.......
3.0
~
'" !'to-..
'\
lZ0
140
>
«
","
ISO
;;
~
2.0
~
r-...
.........
I I
0
20
180
40
01'-..
".....
"- ~
0
'
"'.t'
400 V
~
~ ........
SOOV
40
60
80
....... :::-..
:::>
'"'
Q
50V"
~
.........
-....;,
b- ::-...
.....
120
"'-
r-... i'..
140
f".. l""
160
lBO
TA. AMBIENT TEMPERATURE (DCI
I" :::-..
I
100
140
120
160
180
........
~;;:
1.0
~
0
..... iI'" r-..
200~1'-..1>-.,
-raY
I,/[}.
20
VR = 10 V (pkr
i'- :::-..
I"-
.........
w 2.0
.........
100
,3.0
j
100 V
l"- i<-.
........
")
......
60
R8JA • 400C,w
4.0
~
~ .........
2r
i!Z
w
'l'-
./
FIGURE 6 - SQUARE WAVE INPUT
V!=I~V(~KI
" > ,"
'>
'
100V
5.0
::--:
l"- e:--..
r-....
sov
"K
"(
TA. AMBIENT TEMPERATURE (DCI
R8JA' 4ODC,w
~
r-.... ~
I".........
600 V
60
FIGURE ,4 - SIN!; WAVE INPUT
01"
........
r- OO ~,.,.. .....
1.0 r- ~~400I,/r'-,.
V If' ......
TA. AMBIENT TEMPERATURE (DC I
5.0
c-.. ::-- VR=10V(PKI
~
1/ r-...
w
t'-l
.........
..... ........
= 25DC,w~
........
.......
BOO V
40
sov
r-...; ~
60
100 V
r-.. 'f-..
......
..... r....... / r-... ......
J-.... ......
~ t'-,
"- I"~
80
100
120
140
TA. AMBIENTTEMPERATURE (DCI
1160
~,
r......... i"
160
180
MR820, MR821, MR822, MR824, MR826 (continued)
MAXIMUM ctJRRENT RATINGS
NOTE 2
Current derating data is basad upon the thermal responte data of Figure 29 and the forward power dissipa·
tion data of Figures 19 and 20. Since reverse power dissipation is not considered in Figures 6 thru 11. addi~
tional derating for reverse voltage and for junction to ambient thermal resistance must be applied.
FIGURE 6 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
0::
.
20
RESISTIVE·INOUCTIVE
LOADS
80TH LEADSTD HEAT
SINK WITH lENGTHS AS SHOWN
-
16
....... 1"-....
a:
a
g
FIGURE 7 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
20
~
~
I.
12
I--
~
~
t--
~
w 8.0
4.0
j
0
75
........
1)4"
96
-
115
125
-....
r--
135
~
155
165
~ 0
175
75
85
95
105
TL, lEAD TEMPERATURE (OC)
6
g
~
1
2r--
~
w 8.0
~
~
4.0
j
0
I(PK) =W (RESISTIVE/INDUCTIVE LDADS)
I(AV)
"'- ....... r-.....
r-........ ::---..... ./
it'
r-- :>
--
'-
t---
85
95
~
...........
..... r-.....
6
a::a:
<>
g
"'>
......... r-...... "'<....
--
12
~
~2D
a:
~
./ 0<......:: ~
w
8. 0
~~
4.0
115
105
clPACITI'VE- f - LOADS
/./10
BOTH lEADS TO HEAT SINK
75
I.
0:
....... ~ ........
"-
20
:>
5
-
"'..... ........
125
~
135
145
~
155
l'o.
165 175
j
~
a:
J I
6.0
R9JA·250CN/
a: 5.0
:>
<>
Q
a: 4.0
~
~
w
~w
~
......
........ ="
......
r-3.0
r-
2.0 R9JA •
~
I""-
95
r-. :-- ::::" Ib.
400C~~w'
40
BO
: / 17'" -...; ~ ~
80
~ 5.0
.......
g
r-.;: ~
......
~
120
140
160
~
3.0
~
2.0
~
175
I(PK) = 2 (R!SISTIJE/INOJCTlVE 1& I(AV)
lARGE CAPACITIVE lOADS)
/
5
........
K
105
~
115
125
135
145
156
~
165
175
:--
R9JA = 250CN/
~
K
~~
I""--
K",
-.; I::::- :::-:::-
~~:
I
20
180
de
2.0-5'1 1(PK)
10._
I(AV)
'/20
........ I'<: ........
I (PK) 2.0-5.0
10/
;; 1.0 -1(AVr
20 ....
I I I T....
100
""
........ ......
~
0
20
~
6.0
.. 4.0 -.;
I""-- :-..;:
,
165
~ ~~
........ ~
85
<>
...... .z ~
r---; ~ o.I!.
7.0
w
a:
I(AV)
r-r-I(PK) 5.?,.....
IL
;; 1.0 '-r-'I(AV) 1~/
\ 21
0
~
Itz
...... I:X .......O
r-;::: ~
156
FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
v 5~oti(PKI
/10
145
TL. LEAO TEMPERATURE (OC)
I
t-..;;: < V
-<:::
135
BOTH LEADS TO HEAT SINK
0
75
FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
1.0
125
'>C"": V 1°1 LIGHT CAPACITIVE LOADS
............. 1'.....:'< K; O
. . . . r-........ y...:. t....:: I'-.. de
Tl, LEAD TEMPERATURE (OC)
a:
~
r-:::-- ~ ~
FIGURE 9 -118" LEAD LENGTH, VARIOUS LOADS
0
a:
a
""'" .........
b
........
Tl. lEAD TEMPERATURE (OC)
FIGURE 8 - 118" LEAD LENGTH, VARIOUS LOADS
!
i
--
-....... '-....
115
to HEA~-
SINK ~~T~H~~NGTHS _
,
-- -:-....
~ 5/8"
~
......... ~
145
3/8" -....... ........
~ 4.0
....... :---.,.........
.....
1/4"
b-..
~ 8.0
.........
IBOTH (EAOS
............
12
~
...........
105
L= lJ8"
~ r--....
16
Q
r--... . . . .........
r- ~
~ :-.... ........ t'--....
85
(RESISTIVE/INDubnVE lND,_
LARGE CAPACATIVE LOADS)
'"
:;
'"'
g
~1/8"
~
~
See Note 3.
SQUARE WAVE INPUT
SINE WAVE INPUT
;;:-.;
:::::: ~
80
""10:
,/
/'
I"'\1Ii
F=:::. ~ 110.
i";;;'I
i"IIIi
'11
40
...;:::
...... IiIIIIi ~ ~
..... ~
80
100
120
TA,AMBIENTTEMPERATURE (OC)
TA, AMBIENT TEMPERATURE (OC)
1161
140
160
180
MR820, MR821, MR822, MR824, MR826 (continued)
REVERSE POWER DISSIPATION AND CURRENT
NOTE 3
DERATING FOR REVERSE POWER DISSIPATION
In this rectifier, power loss due to reverse current IS generally not
negtigible. For reliable circuit design. the maximum junction
temperature must be limited to either 175°C or the temperature
which results in thermal runaway. Proper derating may be accom·
plished by use of equation 1 or equation 2.
Equation 1
Where'
TA=T,- 1175-TJtmaxii -PR R6JA
T, = MaXimum Allowable Ambient Temperature
negtectlng reverse power dissipation (from Figures
100r 111
TJlmax) = Maximum Allowable Junction Temper.
ture to prevent thermal runaway or 17S0C. which
ever is lower. (See Fi~re 1).
PR .. Reverse Power DISSipation (From Figure 12
13, adjusted for T Jlmax) as shown below)
Of
R6JA = Thermal Remtance, Junction to Ambient
When thermal resistance, junction to ambient, IS over 2fPC/W.
the effect of th.,.mal response IS negligible. Satisfactory derating
may be found by uSing:
EquatIon 2
T A = T Jlmaxl - (PR + PF) ROJA
PF = Forward Power Dissipation (See Figures 19 & 201
OtheT terms defmed abOve.
The revt!fStt power given on Figures 12 ancI13 IS calculated for
T J = 1S00 e. When TJ IS lower, PR will decrease. its value can be
found bv multiplVlng PR bV the normalized reverse current from.
Figure 14 at the temperature of mterest.
The reverse pOW\lr data IS calculated for half wave rectification
circuits. For full wave rectification uSing either a bridge or a
canter·tapped transformer, the date for reSIstive loaels is equiva-
lent whan Vp is the line to line voltage across the rectifiers. For
capacitive loads, It is recommended that the de case on Figure 13
be used, regardless of input waveform, for bridge circuits. For
capacitlvelv loaded full ~ center·tapped circuits, tha 20:1
data of Figure 12 should be usacl for sine wave inputs and the
capacitive load data of Figure 13 should be used for square wave
mputs regardless of I(pkl/'lav)' For these two cases, Vp is the
voItege across one leg of the transformer.
EXAMPLE:
Find Maxnnum Ambient Temperatu1'1!l for 'AY = 2 A, CapaCitive
Load of 'pK/IAV = 20, Input Voltage = 120 V (rms) Sine Wave,
R8JA = 25o CIW. Half Wave Ciraulo
Solution 1:
Find. Vp; Vp .. J2 Vin = 169 V, VR{pkl = 338 V
Fmd TJ(maxl from Figure 1. Read TJlmaxl = 119°C.
FmdPRlmax) from Figure 12. ReadPR" 770mW@1400C
Find
normalized from Figure 14. Read 'Rlnorm) = 0.4
Correct PR to TJlmax). PR = 'Rlnorml x PR IFlgure 12)
PR '" 0.4 x 770"' 310 rrNV,
Step 6: Find PF,from Figure 19. Read PF = 2.4 W,
Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
'R
Step 7: Compute T A from T A = TJlmax) • (PR + PFI R6JA
T A = 119·10.31 + 2.41 (251
TA=51 o C
~:
Steps 1 Ihru 5 are as above.
Step 6: FlndTA=T,fromFlgure10. ReadTA-1150C.
Step 7: Compute T A from T A = T1 - (175 - IT Jlmax)i . PR R6JA
TA = 115· (175·119)· (0.31)125)
TA = 51 0 e
At times, a discrepancy between methods will occur because
thermal response is factored into Solution 2.
FIGURE 13 - SQUARE WAVE INPUT DISSIPATION
FIGURE 12 - SINE WAVE INPUT DISSIPATION
200o
.~
'"
~_
"';:
/V
CAPACITIVE
100o~tK!=5.
I(AV!
-
70
OK;;lO
50o
20
~~ 300
I--N
~ i= 200
r,'/
~~
I
:>
«
"i:
30
20
o
~
200
100
1
1
1_
~,
Vp
300
400
300OI"-
CAPACITIVE
2000 I-- f--LOAOS
l!l_
JIIELr--' -=
./
V",
100
,70
50
L,...'"
..... RESISTIVE LOAO~_
"'0
~~
5000
-
I:;'
---~
==
TJ= 1400C- I-MAXIMUM::: l ITYr'CA~
I-700
500
600
~~ 1000
V
l"'-. V
v::
"
k"
~
~
~z 100
~~
500
~~
":0
300
«~
~
~
'/
dc-
200
100
70
50
V
TJ = 14j"C_
I
't/
:.;.-
V
-
jilin:}
MAXIMUM
- TYPICAL
o
100
200
300
500
400
000
700
Vp, PEAK APPLIED VOLTAGE (VOLTS)
Vp, PEAK APPLIED VOLTAGE (VOLTS!
FIGURE 15 - TYPICAL REVERSE CURRENT
FIGURE 14 - NORMALIZED REVERSE CURRENT
101
105
.,.-
TJ = 175°C
1/
150°C
125°C
7'
:=::::::VR =400 V
I
3
100°C
/
75°C
2
50°C
1/
1
25°C
1,/
100
20
40
00
80
100
120
140
160
180 200
100
200
300
400
500
VR, REVERSE VOLTAGE (VOLTS)
TJ,JUNCTION TEMPERATURE (OC)
1162
600
700
MR820, MR821, MR822, MR824, MR826 (continued)
STATIC CHARACTERISTICS
FIGURE 16 - FORWARD VOLTAGE
FIGURE 17 - MAXIMUM SURGE CAPABILITY
400 ...........
~
2001- - I - Tr 25 jC
V
~YPI~AL
~ 300 ..........
/1-'
~AXIMUM
V
~
........
~
501-t--t--h/~/I1-+-+++--+-+-+-+--I
IJ
~
~
30
G
20~~-+--~~-+--~~-+--~-r-+--~-r-1
«
~
~~-+--ij-~-+--~~-+--~-t.-+--~~-1
.......... .......T~25IC
rr--. .......
........
..........
r--. ........... r--r-.,
~
~
VRRM MAY BE APPLIED I
BETWEEN EACH CYCLE OF
SURGE. THE TJ NOTED IS
TJ priOR jO SURGE.
...........
~ 200
G
w
~
1NON·REPETITIVE
........
..............
;i 100
........... .......
~ r--r-.
25~C
:0:
0 - REPETITIVE
~
8
~
6
I
0
I
40
1.0
2.0
11O~illnm~nE
7.oH
.......
I
3.0
5.0 7.0
"'-
~C
I
20
10
50
30
70 100
NUMBER OF CYCLES AT 60 Hz
~
FIGURE 18 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
~ 5.0 ~~-+-t-~+-+--~-r-+--~-r-+--~-r-1
+2.5
~
+2.0
!!:
.!f 3.0~-r-+H-~+-+--~-r-+--~-r-+--~-r-1
+1.5
~ +1.0
2.0~~--jj4-~+-+--~~-+--~-r-+--~~-1
.§ +0.5
~
"U
W
0
1.0~HE~HE
0.7~
$-0.5
0.51-+-Il-H-I-+-+-l-+-+-+-l-+-+--I
-1.5
I
TYPICAL RANG~
V
8-1.0
/
-2.0
-2. 5
0.3 '----'-......'--'---"---'---1:--'.,----,--'-,--,,1:--:1-:-"""""',----,1:--:'-:--:-'.
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
0.3 0.5
1.0
2.0 3.0 5.0
10
20 30
50
100
200 300
iF. INSTANTANEOUS FORWARO CURRENT (AMP)
VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
MAXIMUM FORWARD POWER DISSIPATION
FIGURE 20 - SQUARE WAVE INPUT
FIGURE 19 - SINE WAVE INPUT
20
20
h-
II
v
I.;
w
I(PKl~~·O
10
I(AV)
/. ~
20
TJ~
~
~IV
0.3
-' ".
0.2 0.3
!
10
a..
7.0
~"
wo
i
2.0
3.0
5.0 7.0
10
20
0.2
IF(AV). AVERAGE FORWARO CURRENT (AMP)
Jb.:<
~
de
TJ~150'C
V
~",
O. 5
D.3
1.0
2.010 5.0
2.0
0.2
0.2
~
liPK) =20
I(AV)
10
~~
~~ 1.0
~oO.7
f
..,.
0.5 0.7
z v
~~5.0
;=' V~
~
'-'
IFM=20A
~
'"t;
ffi
~p
1~
1.0
2.0
~
....
5.0
>
n..
/.i!:i<'
§
'1.0 A
10
di/dt (AMP/.,)
'"ci:
'"
20
50
100
~ :/
0.1
0.05
002
1.0
~ ~f-'"
2.0
~1.0A
5.0
20
10
di/dt. (AMP/#,)
50
100
50
100
w
~
IFM=20A
I
IDA
~ 0.5
'-'
i:i:l
"
'"
~ 0.2
>
i.-"
FIGURE 24 - TJ = 150°C
w
ffi
~
2. 0
III
.'"
V-
501
I.i!:i<'
FIGURE 23 - T J - 100"C
11.0
v/ . V-
IDA
0.2
i:i:l
2.0
i:i:l
=7SoC
2.0
V
~K
O. 1
ci:
1.0
I--
~
~ r;;,.. ....
2.0
~
O. 2
~>
O. 1
10
20
50
0.0 2
1.0
100
1-
~V
lr
~~
2.0
I
5.0
di/dt. (AMP/.,)
./
./V /"
0
"' 0.0 5
I I
5.0
5.0 A...
§
l.°t
(hr;..'
IFM=20A
IDA
0.5
~
5.0 A
'"'-'~ 0.05
'" 0.02
5
.... ,....
10
20
di/dl (AMP'.,I
NOTE 4
Reverse recovery time is the period which elapses from the
time that the current, thru
8
di/dt
previously forward biased rectifier
diode, passesthru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of oonditions
using IF =' 1.0 A, VR = 30 V. In order to cover all circuit
conditions. curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 2SoC, 7So C, l00"C, and
ISo"C.
To use these curves, it is necessary to know the forward
cunant level just before commutation, the circuit commutation
dildt, and the operating junction temperature. The reverse
covery test current waveform for all Motorola fast recovery
rectifien is shown.
IRM(REC)+----'~
From stored charge curves versus di/dt, recovery time (trrl
and peak reverse recovery current (lRM(RECII can be closely
approximated using the following formulas:
r.
1164
trr= 1.41 x
lRMIRECI
= 1.41
[~
R
'12
dildt
x [OR x di/dt] 112
MR820, MR821, MR822, MR824, MR826 (continued)
DYNAMIC CHARACTERISTICS
FIGURE 25 - REVERSE RECOVERY CIRCUIT
A - TEKTRONIX 545A. K PLUG IN
PRE·AMP. PSIIOO PROBE OR EQUIVALENT
300
50W
NON·INDUCTIVE
115 Vac 10 k
60 Hz
2W
RI .- ADJUSTED FOR 1.40 BETWEEN
POINT 2 OF RELAY AND RECTIFIER
INDUCTANCE ~ 38 ~H
UNIT
UNDER TEST
n.
R2 - TEN· I W.IO
1% CARBON CORE
IN PARALLEL
.....---~)A
30 Vd,
CONSTANT VOLTAGE
SUPPLY
TA' 25 ~1~oC FOR RECTIFIER
R2
I0
lOW
NON.INDUCTIVE
MINIMIZE ALL LEAD LENGTHS
1.0 Adc FROM CONSTANT VOLTAGE SUPPLY
RIPPLE = 3 mVrm.MAX
0-+--+-----..-----40;..:..;...'--4>--.0-
Zout = 1% 0 MAX. DC to 2kHz
FIGURE 26 - JEDEC REVERSE RECOVERY CIRCUIT
RI
RI = 50 Ohm.
R2 = 250 Ohm.
01 = IN4723
02 -IN4DOI
03 -IN4933
SCRI- MCR729·10
CI =0.5to50~F
LI
di/d. ADJUST
T1
120
v J c TI21
I
03
60 Hz
Cl
1:1
C2~4DOhF
LI = 1.0-27~H
oot
I (PK) ADJUST
02
T1 = Variac Adjust. IIPK) and di/dt
T2 =1:1
T3 = 1:1 (to trigger circuit)
01
CURRENT
VIEWING
RESISTOR
FIGURE 28 - JUNCTION CAPACITANCE
FIGURE 27 - FORWARD RECOVERY TIME
10
7.0
j
!
ffi
=
-
5. 0 = = =
w
3.O -
=
"fj+- ===
I-'Ir
100
~TJ=250C
Vfr= 1.1 V
Ufr
Il
2.0
~
Q
--
TJ=25 0C
I--.
0
......... 1--.
V
>
II:
--.
70
1.0
O. 7
i""0
r--r-.
II:
~
0.5
~
0.3
*
0.2
...........
.--
O. 1
1.0
2.0
5.0
10
20
50
I0
1.0
100
IF. FORWARD CURRENT (AMP)
2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)
1165
50
100
MR820, MR821, MR822, MR824, MR826 (continued)
THERMAL CHARACTERISTICS
FIGURE 29 - THERMAL RESPONSE
1.0
7
51-- tI-- t-
~
f-- I-
HEAT SINK
V
I
L-1/4"
,/
I
7
5
3
:g
_l-
0.02
v
0.0 I
0.2
0.5
2.0
1.0
5.0
10
20
50
100
200
500
1000
2000
5000
10,000
20,000
t, TIME (m.)
NOTE 5
NOTE 6
To determine maximum junction temperature of the diode
in a given situation, the following procedure is recommended:
The temperature of the lead should be measured using a
thermocouple placed on the lead as close 8S possible to the tie
pOint. The thermal mass connected to the tie point is normally
large enough so that it will not significantly respond to heat
surges generated in the diode as a result of pulsed operation once
Use of the above model permits junction to lead thermal
resistance for anv mounting configuration to be found. Lowest
values occur when one side of the rectifier is brought as close as
possible to the heat sink as shown below. Terms in the model
signify:
steady-state conditions are achieved. Using the measured value
of TL. the junction temperature may be determined by:
TJ""TL+6. T JL
where 6. T JL is the increase in junction temperature above the
lead temperature. It may be determined by:
T A '"" Ambient Temperature
'" TJL - Ppk • R8JL (0 + (I ·0) • r(I, + Ip) + r(lp) • r(I,))
T L "" Lead Temperature
where r(1) = normalized value of transient thermal resistance at
time t from Figure 29, i.e.:
T C "" Case Temperature
r(t1 + t p ) = normalized value of transient thermal resistance at
time t1 + tp'
T J "" Junction Temperature
r::l Ppk
-::J
tp
Lead
JuncPF +
PR
DUTY CYCLE' tp/tl
PEAK POWER. Ppk. is peak of an
TIME equivalent square power pulse.
~tl~
Heat
PF "" Forward Power DiSSipation
PA = Aeverse Power DiSSipation
I I Ppk
L
C-.J
A8S =- Thermal Aeslstance,
sink to Ambient
A8 L "" Thermal Aesistance,
to Heat Sink
R8J "" Thermal Aeslstance,
tion to Case
Po =- Power Dissipation =
(Subscripts(A) and (K) refer to anode and cathode sides respectively)
Values for thermal resistance components are:
R8L - 400 C/W/IN. Typically and 44o C/W/IN Maximum.
R6J "" 2 0 C/W Typically and 4 0 CIW Maximum.
Since R6J is 10 low. measurements of the case temperature.
T C. will be approximately equal to junction temperature In practical lead mounted applications. When used as a 60 Hz rectifier,
FIGURE 30 - STEAOY·STATE THERMAL RESISTANCE
40
the slow thermal response holds T J(PKI close to T J(AVI. Ther.·
fore maximum lead temperature may be found as follows:
TL -TJ(max) • ",TJL
where
AT JL can be approximated as follows:
.o.TJL ~ A6JL • PO; Po Is the sum of forward and
reverse power dissipation shown in Figures 12 & 19 for
sine wave operation and Figures 13 & 20 for square
wave operation.
The recommended method of mounting to a P .C. board Is
shown on the sketch. where R9JA is approximately 2SoC/W for
8 1-112" x 1-1/2" copper surface area. Values of 40 0 C/W are
typical for mounting to terminal strips or P .C. boards where available surface are. Is small.
118
1/4
3/8
1/2
~--~g
5/8
L, LEAD LENGTH (INCHES)
RlCommanded mounting for hilt W8VI cin:uit
1166
MR830, MR831, MR832
MR834, MR836
MR840, MR841, MR842
MR844, MR846
HERMETICALLY SEALED, AXIAL LEAD
MOUNTED FAST RECOVERY POWER
RECTIFIERS
FAST RECOVERY
POWER RECTIFIERS
50-600 VOLTS
3 AMPERES
. designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low R F interference and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 100 nanoseconds providing
high efficiency at frequencies to 250 kHz.
o
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Symbol
~=~
MR831
MR841
MR832
MR842
MR834
MR844
MR846
SO
100
200
400
600
VRRM
VAWM
VR
Average Rectified Forward Current
ISingle phase, resistive load,
TC = 1000C)
'0
Non-Repetitive Peak Surge Current
'FSM
(surge applied at rated load
conditionsl
Operating Junction Temperature
TJ
MR836
Unit
Volts
.
..
3.0
100
C
.
Amps
.
Amps
- - - - 6 5 to +150 _ _
r
K
L,
DC
Range
STYLE I:
Storage Temperature Range
T".
_ _ _ -65 to +175 _ _
ELECTRICAL CHARACTERISTICS
Characteristic
Forward Voltage
!IF = 3.0 Adc, TA = 2SoCJ
Symbol
Min
Ma.
-
1.1
10,;
VF
Volts
MR830Series
MR840Series
Reverse Current (rated DC Voltage)
TA=2SoC
'R
mA
0.05
0.075
1.5
2.5
-
DIM
A
B
C
L2
-
MR830 Serres
MR840Serle5
TA = 1000C MR830Series
MR840Series
PIN I. CATHODE
2. ANODE
DC
0
K
MILLIMETERS
MAX
MIN
-
11.43
8.89
7.62
1.17 1.42
24.89
INCHES
MIN
MAX
0.046
0.H8U
0.450
0.350
0.300
0.056
CASE 60
REVERSE RECOVERY CHARACTERISTICS
Characteristic
Reverse Recovery Time
(IF" 1.0 Amp to VR = 30 Vdcl
Symbol
t"
MR830 Series
MR840Serles
(IFM = 15 Amp, dl/dt = 25 A/lJsJ MRB30 Series
MR840Senes
Reverse Recovery Current
IIF = 1.0Amp to VR =30 Vdc)
Min
-
-
IRMIRECI
-
T
Ma.
Unit
100
O.S
150
200
1.0
300
1.5
,...'
0.75
.
n,
Amp
-
2.0
1167
MECHANICAL CHARACTERISTICS
CASE: Welded, hermeticallv ..aled
FINISH; All external surfaces corrosion
resistant and leads readily solderable
POLARITY: Cathode to Ca..
WEIGHT: 2.4 Grams (Approximatelvl
MR850,MR851,MR852,'
MR854,MR856
Data Shppt
J)esi~'np]·s
FAST RECOVERY
POWER RECTIFIERS
SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS
50-600 VOLTS
3 AMPERE
. designed
for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 100 nanoseconds providing
high efficiency at frequencies to 250 kHz.
"
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most Clfcuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.
MAXIMUM RATINGS
Symbol
Rating
Peak Repetitive Reve~ Voltage
Working Peek Reverse Voltage
DC Blocking Voltage
VRRM
Non-Repetitive Peak Reverse Voltage
VRSM
MR860
MRB61
MR862
MR854
Unit
MR856
Vol"
VRWM
50
100
200
400
600
76
150
35
70
250
140
3.0
450
280
650
420
VR
RMS Reverse Voltage
VRIRMS)
.
Average Rectified Forward Current
(Single phase resiltive load,
TA-9O"C){11
10
Non-Repetitive Peak Surge Current
IFSM
.
TJ,TItg
...
lturge applied at rated lold
conditiont)
Operating and Storage Junction
Volts
Volts
Amp
.
.
100
lone cycle)
-65 to +176
Temperature Range(2)
STYLE 1:
PIN 1. CATHODE
2. ANODE
Amp
·c
THERMAL CHARACTERISTICS
ChI<_io
Thermal Resistance, Junction to Ambi.nt
Symbol
M..
Unit
R8JA
28
·C/W
IRecommended Printed Circuit Board Mouting,
o
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Instantaneous Forward Voltage
vF
(IF ·9.4 Amp, T J" 1750 CI
Forward Voltage
DIM MIN
A
B
See Note 6, Page 8)
VF
Min
TV.
MOl<
Unk
-
0.9
1.1
Volts
1.04
1.25
Volts
-
2.0
100
10
150
150
200
250
300
.A
-
-
Min
TV.
Mo.
Unit
100
200
300
2.0
Amp
9,40
4.83
t22
K 26,97
MAX
9.65
533
1.32
272
CASE 267·01
ifF ·3.0 Amp. TJ. 250 CI
Reverse Current (rated de voltage) T J • 26°C
TJ" 1000C
{~~:~
'R
-
MR852
MR854
MR866
60
MECHANICAL CHARACTERISTICS
REVERSE RECOVERY CHARACTERISTICS
Characteristic
Symbol
Reverse Recovery Time
!IF' - 1.0Arhp to VA = 3O'Vdc.figure 25)
(IF" 15 Amp,di/dt - 10 Alps, figure 261
Reverse Recovery Current
!IF'" 1.0 Amp to VA" 30 Vdc, Figure 251
150
IRM(REC)
(1) Must b8deratftd for reverse po~r dlnlpatJon. See Note 2. Peg.. 3.
(21 Derate., shown In F laure 1
1168
Case: Void Free, Transfer Molded
Finish: External Leads are Plated,
Leads are readily Solderable
Polarity: Cathode Indicated by Polarity Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for
Soldering Purposes:
300o C, 1/8" from case for las
at 5.0 lb. tension
MR850, MR851, MR852, MR854, MR856 (continued)
MAXIMUM CURRENT AND TEMPERATURE RATINGS
FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION TEMPERATURE
180
Q
e..
...
..
,
.......
170
........
.........
I'.
=> 180
....
.........
.
II:
~
:E
~
28oCfN"-
z 140
;::
130
>5
120
.........
",
.
~
........
-
~JA -100CfN-
NOTE 1
MAXIMUM JUNCTION TEMPERATURE OERATING
2DOC~ ........
" ........ .........
150
'-'
z
.........
.........
II:
500 CfN
I'.
>...
'
r-......
.....
........
I'.
When operating this rectifier at junction temperatures
........
over 1200C, reverse power di..ipation and the possibility of thermal runaway must be considered. The data
of Figure 1 is based upon worst case reverse power and
should be used to derate T Jlmax) from its maximum
value of 17So C. See Note 2 for edditional information
i""'-..
........
........
........
'"
........
on derating for reverse power dissipation.
Whan current ratings are computed from T Jlmax) and
reverse power dissipation is also included, ratings vary
with reverse voltage as shown on Figures 2 thru 5.
........
110
80
80
100
200
30D
400
600
VR,PEAK REVERSE VOLTAGE (VOLTS)
RESISTIVE LOAD RATINGS
Printed Circuit Board Mounting - See Note 6, Page 8
FIGURE 2 - SINE WAVE INPUT
FIGURE 3 - SOUARE WAVE INPUT
TA, AMBIENT TEMPERATURE (DC)
FIGURE 5 - SOUARE WAVE INPUT
FIGURE 4 - SINE WAVE INPUT
2.0
~
1.8
~
1.6
~
=>
1.4
u
Q
II:
~
0.6
II:
...~
........
........
~
l00V,
1.2
~ 1.0
~ 0.8
'"'" '"
i 0.:
75
"'h.
.......
,
.......
..........
"-
115
I\.
125
135
i
1.0
...
0.8
iw
:::
I\-
155
185
'- i'-. N
""'..........
""'..........
...........
I"-
'-IUDV
0.8
l'..
""'-
~
'-..2UDV
l'..
0.4
600 V,,"
175
TA, AMBIENT TEMPERATURE IOC)
75
85
95
105
115
""\
125
135
'\.
145
TA, AMBIENT TEMPERATURE (DC)
1169
.......
t-...
V
"l
"\
r\.
145
i".....VR • 0 - 10 V(PK)
"
'"
'"
'
400
'"
'"
"
i 0.:
.........
400 V
105
1.2
~
" ""- " '\. "- ""-"I"'..
I\.
95
1.4
Q
a
800 V",,85
II:
CI:
R8J~ • 500clw_
I
..........
1.8
~ 1.6 .........
II:
",200 V ......
'\
0.4
0
~R=0-10V(PK)
......
I
R8J~ =50 JfN-
..........
-.........
2.0
155
165
"
175
MR850, MR851, MR852, MR854, MR856 (continued)
MAXIMUM CURRENT RATINGS
Current d • •tlng data i. bated upon the thermal response data of F !gur. 29 and the forward power diSllp8~
tion data of Figures 19 and 20. Since rever_ ppwer dissipation i. not considered in Figures 6 thru 11, addi·
See Note ;Z:.
tional derating for reverse voltage and for junction to ambient thermal resistance must be applied.
SINE WAVE INPUTS
SQUARE WAVE INPUTS
FIGURE 7 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD
FIGURE 6 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD
7.0
~ ~.1/8"
RESISTIVLE~~:SUCTIVE _
~ ~" :--... r....
........... 318" :--....
.......
...........
......
518"
1-0..
i"o...
" ........
-
......
2.0
~
S 1.0
I
.... 6.0
ili
-
~ 5.0
75
95
105
115
i
........
........ ........
~
w
-,
........
........
125
RESISTIVLE~~:SUCTIVE _
~~
BOTH LEADSTO HEAT SINK WITH LENGTHS AS SHOWN
.......
~~
-.........; ~
~
...
135
145
155
165
3.0
I"""'-.
3/8" ~
--
i:l
518"
r-..
175
75
.........;
r-......
I
~
-
~
..........
-....::Ii ~
~
95
85
......
~
....
j
/51
10
~ 1,..-20
..B
:il
.......
:r
--
BOTH LEADS
/ - TOIHEAT ~INK
r--...." ~
ffi
~
105
115
125
135
145
155
165
125
135
145
155
165
175
!.m
,.......
.1.
r-.... 1"-..
r-.... r-....
~
'"
_
J.
IIAV)
.""". ~
I
~.5}LlGHT-
~10
4.0 /-_t---+--+-""'..jf".,2'-...:t'....
'=><~1X720
CAPACITIVELOADS
-
~~
.~
3.0
t--
"'"-"
~
BOTH LEADS -+--+--t--P"'~~-/--t
TO H.EAT SINK-+---/--t---+-~--'~""h:I---I
~ or--+--+-I-+-i-i---r--r-~--t--t~~~~
"
175
75
85
96
105
115
125
135
145
155
165
175
TL. LEAD TEMPERATURE IDC)
FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS
~
IRESISTIVEIINDUCTIVE
LOADS)
S
4.0 r----,r---,--..,---,----,---,--,----,----,--3.51---""ik:--..l'~"+---+--+---+---1__t--_+--__i
§
....
ili
...
~
:::.
::0
Q
Q
i~
i
~
w
co
~
S
~
115
~ l.ol-__/-__ll---+__-+__~__-+__-+__-+~~~~~
FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS
1--/--I-IIAVl •• - - - - -
6.0
~ 2.0 t--
~
95
J"....
w
~~
TL. LEAD TEMPERATURE IDC)
..'"
105
~
.......... t.....
"'::-";:::
I
I
85
~
II CAPACITIVE- rLOADS. r-
.;>< ~
.O/-
'...."
~
~)=.IRESI~IVEI.'NDUC~IVE LO~OS)- r-
.0
S
~
...... ....... .":--...... ~ I'-.
TL. LEAD TEMPERATURE IDC)
....
f""o,.,
,....... r<
0'-
4.0
'"
.......
2.0
S 1.0
~ o
"
........ .......
FIGURE 9 - 1/8" LEAD LENGTH. VARIOUS LOADS
Ot--...
Ii:
:.......
7~~~--~~'---r--'---r--.---r--'--,
Ii:
::--.
l'..
_L . I IRESISTIVEIINOUCTIVE
~ 6.0 f".,.......
de
& LARGE CAPACITIVE
~
I"""'-. '" ./ IPK) =2
LOADS)
i"'-..
0
75
r--.. ........
FIGURE 8 - 1/8" LEAD LENGTH. VARIOUS LOADS
01'-.
.0
-
.......
f""o,.,
TL. LEAD TEMPERATURE IDC)
7.0
r-....
~
~
85
~ ~118'
~ 4.0
-.....;:::
~ o
=
....... ........
r-..
w
'"~
BOTH LEADS TO HEAT
SINK WITH LENGTHS
AS SHOWN
w
~
1.51--~P"1R""...""""-i~d-""~~"""'.__t-_+-~
1.0
ffi 1.0r---r~f--_::!b.:::_f-=~....iiiI:~'5f~~,_+-__I
0.5
S
0
75
~
~
105
115
125
135
145
TA. AMBIENT TEMPERATURE IDC)
0.51---t---c1_-1--t---t--t--t-""'4iiI!1iIi
~~5--~8~5--~--~~1~1~5~1~25~~1~35~~1~45~~~~~~
TA. AMBIENTTEMPERATURE (DC)
1170
MR850, MR851, MR852, MR854, MR856 (continued)
REVERSE POWER DISSIPATION AND CURRENT
NDTE2
DERATING FDR REVERSE POWER DISSIPATION
capacitively loaded full wave center-tapped circuits, the 20: 1
data of Figure 12 should be used for sine wave inputs and the
capacitive load data of Figure 13 should be used for square wave
inputs regardless of l(pk)/ltav). For these two cases, Vp is the
voltage across one leg of the transformer.
Example 1 Find maximum ambient temperature for 'AV '" 2 A,
capacitive load of IpK/lAV "" 20, Input Voltage '"
~~C~itl.rms). sine wave, R9JA '" 2SoeM, half wave
In this rectifier, power loss due to reverse current is generally not
negligible. For retiable circuit design, the maximum junction
temperature must be limited to either 175°C or the temperature
which results in thermal runaway. Proper derating may be accomplished bV use of equation 1 or equation 2.
Equation 1
T A = T 1 - (175 - T Jlmax) - PR R8JA
Where:
T 1 '" Maximum Allowable Ambient Temperature
neglecting reverse power dissipation (from Figures
100r 111
T Jlmax) ;; Maximum Allowable Junction Temperature to prevent thermal runaway or 17SoC, which
ever is lower. (See Figure 11.
Solution 1
(using Equation 1)
Step 1:
Step 2:
~~;iJ J(max) from Figure 1.
Read TJlmax) '"
Step 3:
~i~d@P1~brglg) from Figure 12.
Read PR = 360
Step 4:
Find lR normalized from Figure 14. Read IR(norml
Step 5:
Correct PR to TJ(maxl' PR = IR{norml x PR
(Figure 12) PA = 1.5 x 360 '" 540 mW
Find Vp; Vp "" J2 Vin
= 85 V, VAlpk)
'" 170
PR "" Reverse Power Dissipation (From Figure 12
or 13. adjusted for T J(maxl
8$
shown below)
= 1.5
R9JA "" Thermal Resistance, Junction to Ambient.
When thermal resistance. junction to ambient, is over 200C/W,
the effect of thermal response is negligible. Satisfactory derating
may be found by using:
Equation 2
T A'" T J{max) - (PR + PF) R6JA
Step 6:
Find T A '" T 1 from Figure 10. Read T 1 = 940 e
Step 7:
ComputeTA fromTA =T1 ·1175 -TJ'max) - PR R6JA
T A = 94 ·1175·157) • 10.54)128)
TA '" 61 0 C
PF "" Forward Power Dissipation (See F .gures 19 & 20)
Solution 2
Other terms defined above.
ffi
5
It
ComputeTA fromTA =T Jlmax) -fPR +PF) R6JA
T A = 157 ·10.54 + 3)28
TA == 580 e
The discrepancy occurs because thermal response is factored into
solution 1, and advantage is taken of the cooling time after the
power pulse and before reverse voltage achieves its maximum.
61 0 e is a satisfactory ambient temperature.
FIGURE 13 - REVERSE POWER DISSIPATION, SQUARE WAVE
5000
3000
2000 _CAPACITIVE
LOADS
1000
CAPACITIVE LOADS
p!P!-
(AV) = 10 - 20
300
"
~5
.....
... ....
~,.
I
..
20
I
o
~
~3: 500
ffi E
> - 300
wZ
I
TJ=150oC_ ~VP
MAXIMUM
- - - - - TYPICAL
-'
10
'"~
",0
=
]1q::I~J ::::
--
•7.
30
RESISTIVE
LOAD
•..!::
X
... 0
S
Find PF from Figure 19. Read PF "" 3.0 W
Step 1:
1000
~~ 200
w E
>wz
",0
w>= 100
.. a. 70
ffii
>- 50
"'
Step 6:
FIGURE 12 - REVERSE POWER DISSIPATION, SINE WAVE
700
500
;:
~
(using EquatIon 2)
Steps 1 thru 5 are as Solution 1
The reverse power given on Figures 12 and 13 is calculated for
T J = 150 0 e. When T J is lower, PR will decrease; its value can be
found by multiplying PR by the normalized reverse current from
Figure 14 at the temperature of interest.
The reverse powI!r data is calculated for half wave rectification
circuits. For full wave rectification using either a bridge or a
center-tapped transformer, the data for resistive loads is equivalent when Vp is the line to line voltage &cross the rectifiers. For
capacitive loads, it is recommended that the dc case on Figure 13
be used, regardless of input waveform, for bridge circuits. For
I
200
100
I
I
300
I
400
'--
~::
100
w'"
~a
50
30
20
S
It
I
700
10
o
11)0
!O
1,10
...
...
,
RESISTIVE LOAOS
,.
TJ -150"C .
---MAXIMUM
- - - - - TYPICAL
10
5.0
o
100
200
3DO
-
= ;]Iq::IJ
400
VP~
SOO
600
FIGURE 15 - TYPICAL REVERSE CURRENT
FIGURE 14 - NORMALIZED REVERSE CURRENT
~
.AI
..-:...
V
VP. PEAK APPLIED VOLTAGE (VOLTS)
Vp. PEAK APPLIED VOLTAGE (VOLTS)
20
~
200
",1);
5
600
500
w>=
de LOAOS
lliO
1110
21)0
TJ. JUNCTION TEMPERATURE (DC)
VR. REVERSE VOLTAGE (VOLTS)
1171
700
MR850, MR851, MR852, MR854, MR856 (continued)
STATIC CHARACTERISTICS
FIGURE 17 - MAXIMUM SURGE CAPABILITY
FIGURE 16 - FORWARD VOLTAGE
2IJII
/
1110
50
TYPICAL
...z
W
II:
II:
i:l
T
i51110
Iii
II:
II:
~
......
,...,
~~ITIVE~
11
I
>< 30
I/
7.0
f2
5.0
.I I
r.o
III
¥5
o
w
I5
1.0
r--.
3.0
5.0 7.0
!Z 1.0
U o.5
u::
.
8
0.5
50
70 100
I
1.2
1.6
2.0
2.4
2.8
./
V
-0.5
-1.5
-2.0
-2.5
-3.0
0.2
0.3
0.8
30
TYPICAL RANGE
~
i-1.o
0.4
...... .......
20
10
II
w
.0. 7
o
.......
........... 1....
2.0
...
4.0
3.5
3.0
G 2.5
'l_~ 2.0
1.5
1.0
0.2
........ ~
........ ...... .......
FIGURE 18 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
I
2!
.~
~NON.REPfTITIVf
7'-...
NUMBER OF CYCLES AT 60 Hz
I
ti 2.0
~
20
o
i
175ac
\7~~
~
~
Ir!t~c=
..,.
VRRM MAY BE APPLIED
BETWEEN EACH CYCLE
f-OF SURGE. TJ NOTfD'~
I-TJ PRIOR TO SURGE
P ~~
...... ~
:c
I J
I0
-...
r-....
~ 40
II
20
80
-... !"...
i:l 60
MAXIMUM
cT
30
V'
,
7
70
i5
v
II
T}.u.dC
150
r0.5
1.0
2.0
5.0
10
20
50
100
200
iF. INSTANTANEOUS FORWARD CURRENT (AMP)
VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
SQUARE WAVE INPUT
SINE WAVE INPUT
FIGURE 20 - FORWARD POWER DISSIPATION
FIGURE 19 - FORWARD POWER OISSIPATION
10r---,----r---.----r---r---07---r--~
II:
~
8.0f--+--1--+--+--+~""'.f-""q....".!:...i
~u;
i~
6.0
II:i!
~~
~ ~ 4.01---+--ir--i.I'7IC-*,,-c.--+--+--"<+--i
~~,
<0
~
2.0f--+--ZII~~t---+
It:
IF(AV). AVERAGE FORWARD CURRENT (AMP)
IFlAV). AVERAGE FORWARD CURRENT (AMP)
1172
MR850, MR851, MR852, MR854, MR856 (continued)
TYPICAL RECOVERED STORED CHARAGE DATA
(See Note 3)
1.0
"U
3
w
j
0.5
li!
w
~
lOA
~ 0.2
5.0A~
o. I
5
~ ....
~~
~
~
0.0
:~
1.0
rio..
~ IP'..,.
~
2.0
5.0
~
0.2
...~>
·0. 1
'"
~
LOA
.:
'"
10
di/dt (AMP/#sl
20
II!":
0:
~ 0.05
0:
IFM -20 A
0.5
:;J
~
gO.D
1.0
li!
IFM = 2J A_,
"13
'"t;;
FIGURE 22 - T J ·75"C
2.0
50
100
~ 'r"
lOA
.......
~ V ..,.
0.05
5.0 ~
.b
0.02
1.0
-1.0A
~ ::::;'1""
2.0
5.0
10
di/dt,
20
50
100
(AMP/~sl
FIGURE 23 - T J. 100°C
2.0
j
2.0
ill
1. 0
"U
0:
I
lOA
"''"
'"
~ O.2
ffi
O. I
'"
.:
1.0
~
~
~ ~I""
2.0
5.0
10
20
50
lOA
0.3
0.2
~~
o. 1
0.1
0.05
d
0.03
0.02
1.0
100
~~
5.0 A
~
:.l
0:
.:
LOt
LOV
IFM-20A
0.5
0:
5.0 A
'-'
~ 0.05
'" 0.02
0.7
~
v:: VI,.;
~ k I--'
0:
>
1.0
~
5
IFM=20A
~ O. 5
'"w
.3
w
"'to
J...iJ!!!!!
~A
~~
5.0
2.0
dildt,(AMP/~sl
~
f."'"
10
di/dt (AMP/psl
20
50
NOTE 3
Reverse recovery time is the period which elapses from the
time that the current. thru a previously forward biased rectifier
di/dt
diode, passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse· current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, reoovery time is very circuit depend·
ent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of oonditions
using !F = 1.0 A, VR = 30 V. In order to cover a" circuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 2SoC, 7SoC, l000C, and
1So"C.
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.
IRM(RECI+----'-From stored charge curves versus dUdt, recovery time Itrr )
and peak reverse recovery current (I RM(RECI) can be closely
approximated using the follOWing formulas:
trr
a ~
= 1.41 x [_R_
112
di/dt
IRM(RECI = 1.41 x [OR x di/dt] 112
1173
100
MR850, MR851, MR852, MR854, MR856 (continued)
DYNAMIC CHARACTERISTICS
FIGURE 25 - REVERSE RECOVERY CIRCUIT
MINIMIZE All lEAD lENGTHS
lOll
115V" 10k
60Hz
2W
SOW
A - TEKTRONIX 545A. K PLUG IN
PRE·AMP. PtlOOO PROBE DR EQUIVALENT
NON·INDUCTIVE
UNIT
UNDER TEST
~---fi:>lA
R2
III
lOW
NDN.INDUCTIVE
RI-AOJUSTEO FOR 1.4IlBETWEEN
POINT 2 OF RELAY AND RECTIFIER
INOUCTANCE _ 38l1li
1.0 Ad. FROM
CONSTANT
VOLTAGE SUPPLY
RIPPLE" 3 mVrms MAX
a.
Rz - TEN·I W. 10 1% CARBON CORE
IN PARAllEL
TA' 25 ~Igoc FOR RECTIFIER
CI
.O"F
lOOV
z.,ut-llIIlMAX.
OCto 2 kHz
FICURE 26 - JEDEC REVERSE RECOVERY CIRCUIT
RI
RI-SOOh...
R2 -250 Ohms
DI = IN4723
DZ =IN4001
03-1N4934
SCRI' MCR729·10
Cl =O.5to50~F
C2 ~ 4000"F
L1=1.0-27"H
T1 '" Variac Adjusts I(PKland Mdt
TZ-I:I
L1
dVdt ADJUST
03
C2
CI
I (PK) ADJUST
+
QUI
02
T3" 1:1 Ito trigger circuit)
RZ
01
CURRENT
VIEWING
RESISTOR
FIGURE 28 - JUNCTION CAPACITANCE
FIGURE 1:7 - FORWARD RECOVERY TIME
O.5
100
25dC
r-- I-TJ=
V,,=I.I v
I
O.3
.
O. 2
;::
>II:
~
0
II:
~
$
~I
tl'~
0.07.--
'1
0.05
0.1
t"'-
V
Q
i
0 .............
./
I........V
III
TJ=25DC
0.2
0.3
0.5
0.7
1.0
2.0
1 171
3.0
5.0
r
7.0
""
I0
10
1.0
IF. FORWARD CURRENT (AMP)
2.0
3.0
5.0 7.0
10
..... 1'20
30
VR. REVERSE VOLTAGE (VOLTS)
1174
f"-.""
50
70
100
MR850, MR851, MR852, MR854, MR856 (continued)
FIGURE 30 - STEADY·STATE THERMAL RESISTANCE
FIGURE 29 - THERMAL RESPONSE
1.0
0
II II
II III I I I
5
T~
SINGLE LEAD
HEAT JINK
INSIGNIFICANT HEAT FLOW-.;::THRDUGH DTHER LEAD . /
LEA D LENGTH = 1/4"
3
2
./
/'
I
,,""
/'
5
~
0.0 1
"
2 3 57
2 3 57
100
""
r:; .. - ..
~
",,'
2 3 57
101
2 3 5 7
102
2 3
o
o
57
103
104
V ,,"
" -" - - MAXIMUM
- - - - - TYPICAL
"
.' ""
l--
- --
..- K- --- ..
- ---
......
1/4
1/8
,,,
V
~
112
3/8
BOTH LEADS TO HEAT
SINK, E~UAL LE~GTlj -
3/4
5/8
7/8
L, LEAD LENGTH (INCHES)
t,TIME(ms)
NOTE 4
vvtter. ret) .. norm.hzed .......... of tranlient th.rmal resllbnc8 .It
tim. t from FIgur. 29. I.•.
To determine maxImum junction temperature of the diode
in a given Iltuatlon, the following procedure Is recommended:
rlt1 + tpl = normalized valu. of tran.lant thermal re.i$honea at
tlm.t, +t p .
The temperature of the lead should be measured using a
thermocouple placed on the lead el close a. po_ibl. to the tie
point. The thermal map connected to the tie point is normally
large enough so that it will not significantly respond to heat
surges generated In the diode .s a 'Hult of pulsed operation once
steady-state conditions are achieved. Using the measured value
of TL' the junction temperature may be determined by:
TJ = TL. + tloTJL
where 6 T JL is the increase in junction temperature above the
lead temperature. It may ba determined by:
n
n
PPk
PPk
DUTY CYCLE = tpitl
PEAK POWER, Ppk, is peak of.n
L
~tPC..J
. 1---" ----l
equivalent square power pulse.
TIME
IJ. TJL = Ppk • R6JL [D + II - DJ • dt1 + tpJ + rttpl - r(t1)]
NOTE 6
NOTE 5
Data shown for tharmal resistance Junction·to·ambient (R6JAJ
for the mountings shown is to be uted as typical guideline values
for preliminary engineering or In CIIIe the tie point temp...ature
cannot be measured.
Use of tha above model permits Junction to lead thermal
resistance for any mounting configuration to be found. For a
given total lead 'angth, lowelt values occur when one slda of the
rectifier's brought 8S close as possible to the heat sink. Terms in
the model signify:
T A .. Ambient Temperature Res" Thermal Reslsunce, Heat
Sink to Ambient
T l. = Lead Temperature
Re L '" Thermal Resistance, Lead
to HntSink
TC" Case Temperature
R6J" Tharmal Resistance, Junc·
tion to Case
TJ = Junction Temperature
P D = Total Power Dissipation.
PF + PR
PF = Forward Power Dissipation
PR .. Rever. Power Olsslpatlon
TYPICAL VALUES FOR ROJAIN STILL AIR
MOUNTING
METHOD
LEAD LENGTH L IINI
1/8
1/2
1/4
"'
50
..
3/4
28
3
MOUNTING METHOD 1
P.C. Board Where Available Copper
Surface ar.a Is small.
(Subscripts (Aland (KI refer to anode end cathode sides respac:tively.)
Values for thermal resistance components are:
ReL = 4e o C/W/IN. Typicelly and 48o C/W/IN Maximum.
ReJ .. 100 C/W Typically and 1e o C/W Maximum.
CL-j
f-L:j
lff!~iiii;~;;;;;l'lffl
The maximum lead temperature may be found as follows:
TL""TJlmaxJ-IJ.TJL
where
MOUNTING METHOD 2
Vector Pin Mounting
IJ.TJL can be approxlmeted as follows:
~
AT JL ~ R6JL • PC; Po is the sum of forward
end reverse power dissipation shown In FIGures
2 and 4 for sine wave operation and Figures 3
and 5 for square wave operation.
THERMAL CIRCUIT MODEL
(For Heat Conduction Through the L..ds)
Vector Push·ln 'Tarminals T·28
MOUNTING METHOD 3
P.C. Board with
1-1/2" x 1_1/2"CopparSurfaca
JII[J
1175
RsJA
o~/W
W
°c/w
MR860, MR861,
MR862, MR864,
MR866
~IH:'pt
Data
()P!'->i:,.?,TH'I'!'->
FAST RECOVERY
PoWER RECTIFIERS
STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS
... designed for special applications such as dc power supplies. inverters.
converters. ultrasonic systems. choppers. low RF interference, sonar power
supplies and'free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 100 nanoseconds providing high efficiency
at frequencies to 250 kHz.
50-600 VOLTS
40 AMPERES
Designe,'s Data for 'Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" desigl).
MAXIMUM RATINGS
Symbol
Peak Repetitive Rever. VClItage"
Working Peak Reverse Voltage
DC Blocking VOltage
Non·Repetitive Peak Rever. Voltage
RMS Reve... Voltage
MRSSO
VR
VRSM
VRfRMS)
AVtf'age Rectifted"Forward Current
MRII'
MRW
MRIM
MR8B8
Unit
Volts
VRRM
VRWM
50
lOll
200
400
800
75
35
150
70
250
140
450
280
650
420
10
Volts
Volts
Amps
40
(Single phase. reilltive load,
TC,· l00"C)
Non·RepetitlVe Peak Surge Current
llurgeltpplledat rated load
condit4ons)
Operating Junction Temperature
Range
Star. Temperature Range:
~
~.
TERM. I. ANODE
·Z.CATHODE
Am..
IFSM
350
.
TJ
Tstg _
--65 to +160
DC
-65 to +175
DC
P
1/4·Z8UNF-2A
rermilllil
THERMAL CHARACTERISTICS
Thermal Resistance. JunctIOn to Ca..
ELECTRICAL CHARACTERISTICS
ChanI_iltic
Symbol"
InstantaneoUi Forwerd Voltage
(IF = 126 Amp; T J • 1SOOC)
Forward Voltage
(IF" 40 Amp, TC ·2sOCI
Aevene Current (ratad de VOltage)
TC· 2SoC
Min
vF
VF
TV'
1,3
M..
Unit
1,6
Volts
1,0
".
26
1.0
50
2,0
IR
To =l00"C
Volts
....
mA
Revene Recoverv Tima
(lF;o 1.0 Amp to VR" 30 Vdc, Figure 181
11 ... ·36 Am••• lldt. 2'A/~., Fi~N 171
Rev.rse Recovarv CUmM\t
II .. 1.0 Amp to VR = 30 V6c, Figure t61
Svmbol
'"
iRMIREC)
0.15Z
O.zza O.Z4S
0.1400.115
NOTES.
1. DlmlllSlOn''P'''lsdiarntller.
2. All JEDECdlmanlloosand notaupply.
CA'SE 2$7·01
DO·203AB
3.66
6.32
4.45
MECHANICAL CHARACTERISTICS
REVERSE RECOVERV CHARACTERISTICS
ClYracteriltlc
'86
5.59
Mm
TVD
Mo.
lOll
200
200
2.0
400
3,0
117~
Un.
Amp
CASE: Weld.d. hermetically ••eled
FINISH: All external surfaces corrosion resistant
and readily solderable
POLAR lTV: Cathod. to C_. Reverse Polarity
Indicated by an "Ru suffix •
i.•.•, MR861R
WEIGHT: 17 Gr.ms (Approximately)
MR860, MR861, MR862, MR864, MR866 (continued)
FIGURE 2 - MAXIMUM SURGE
CAPABILITY
FIGURE 1 - FORWARD VOLTAGE
300
V
100
i'
VI
0
.........
I600 C
0
"r-.
(1
0
',I.
I
is operated such that TJ '" lSOOC;
VRRM may be applied between
each cycle of surge.
....
V
TJ=250 C
~iort~ s.r~ ••~ ~HI" I
...........
/
200
-
I
A
-
(\
A
1----\..1 CYCLE
J
II
0
III
0
1.0
rl
2.0
3.0
5.0 7.0
10
20
30
50
70 100
NUMBER OF CYCLES AT 60 Hz
0
NOTE 1
0
RJ1
~k
.~
1---•• _
I
2.0
I
0.4
TIME
The temperature of the case should-be maured using a thermocouple pllC9d
on the tase at the temperature ref.rence point (see Note 31. The thermal mass
connected to. the CII8 is normally large enough .. that It will not agnificantly
respond 10 heat surgugenerated In thad ..de lSI fesult of pulsed opefitlOn once
deady-statecoPditions8ltlcbieved. Usi .. the lllllSUred-valueof Te. the junction
temperature may be determined by:
.
TJ=TC+ 6YJC
where ~ TJC is tlte increase in junction temperature above IhI case temperature.
It may be determined by:
t::. TJC = Ppk 'R8JC ID + 0 - D) . r(tl + lp)+-r{tp} -rlttll
whlft
.
.
r(t) '" normalized value of transient tbermat rasistanct at time. t. from Figure
3, i.e..
~
-,
r (11 + tpl:r. nonnaliztd vatue of transient I,"",mal nsistant:e at tima t,+tp.
I
I I
I
the follOWIng procedure is recommended
0.7
0.5
o
DUTY CYCLE, 0 = 1phl
PEAK POWER, Ppk,lS peak of an
equivalent square power pulse.
To determin.maxlmum Junction temperature of the diode In a given situation,
I
1.0
0.3
Ppk
t
0
0.8
1.2
1.6
2.4
2.0
2.8
VF.INSTANANEOUS FORWARD VOLTAGE (VOLTSI
FIGURE 3 - THERMAL RESPONSE
1.0
~
~
........
0.5
~~ 0.3
. , 0:
:~ 0.2
.... w
w'-'
~~
........
"
0.1
~~
(SEE NOTE'U
!ii~0.05
.;~
"'ii:l 0.03
~0.02
....
0.01
0.001 0.002
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
',TIME(msi
1177
10
20
50
100
200
500 1000 2000
5000 10.000
MR860, MR861, MR862, MR864, MR866 (continued)
SINE WAVE INPUT
SQUARE WAVE INPUT
FIGURE 4 - FORWARD POWER
DISSIPATION
FIGURE 5 - FORWARD POWER
DISSIPATION
0
70
I
CAPACITIVE LOADS
I
/
1/
1/
O-II(PK) I
I--.
-1(AV)'2O/
/
0
/
~
/ /
1~--r
/'
5.0
.b
'f.
./
V
./ V
liD
0
/
I
CAPACITIVE LOADS
I
I
I(PK) =20I(AV)
0
ro
r- w
20
~
z
I
I
~
I
I
~
I
I
~
~
~
00
..""
5.0
10
FIGURE 6 - CURRENT DERATING
..,g;
35
~
30
~
~
20
~
S
~
~
:'......
.............
--.
25
a
~
45
,~
:;
..,
40
35
'"
a:
30
....
40
...........
~
........... t--.,...........
I(PK) =20---~
15 t - - - I(AV)
10 HCAPACITIVE LOADS""'" 10
RESISTIVEIINOUCTIVE LOAD
,
,
~
~
80
90
100
110
120
.
~~
5·0
130
1~
150
TC. CASE TEMPERATURE (DC)
"
ffi"'
15
~
10
~
5.:
45
50
~e
:"-.....
"
.............. ~
"""
10
I(AV)
2.0
~"
~ 0-
~
,
.... ~
90
100
110
120
130
1~
150
160
~::;
!!_ __
1 '1111111.
f=
i
1000C
lOO
;;
....z
750C
~
~ ~50DC
a:
== F I
250C
.I
~
500
~
YR. REVERSE VOLTAGE (VOLTS)
600
10
-
~10-2~1~~~11~~11~!1~111~
1
100
~
35
FIGURE 9 - NORMALIZED REVERSE CURRENT
:::TJ= 1500C
100
o
30
TC. CASE TEMPERATURE (DC)
i-- 1250C
1==
""
80
160
FIGURE 8 - TYPICAL REVERSE CURRENT
104
25
...... ........-........:: :::-.... i'...
~ 25 -CAPACITIVE LOADS
I
./'" ~
~ 20
I(PK) • 20
-:x ~
5.:
20
FIGURE 7 - CURRENT DERATING
50
~ 45
~
15
IF(AV). AVERAGE FORWARD CURRENT (AMP)
50
a:
"/
L#
IF(AV). AVERAGE FORWARD GURRENT (AMP)
a:
./
...........
~ ;.r
~
RESISTIVE/INDUCTIVE LOAD
~
de
/
I. / "
~
~
/' /'
--7 / ' V
5.0
.// :,-
0"'-
V
./
+/
I
700
1178
10- 3 ':-~-:':---::':-~~~-:--:':-~---,JL...,,.!.,-~--,JL...,~-,J
20
30
40
50
60 70 80 90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE (DC)
MR860, MR861, MR862, MR864, MR866 (continued)
FIGURE 10 - FORWARD RECOVERY
TIME
FIGURE 11 - JUNCTION CAPACITANCE
200
10
7.0
~ 5.0
w
!
ffi
~TJ = 25°C
I
II - - - v~ I
3.0 f - - -
!-'fr
VVfr-1.1 V
>
~
'"~
i
~
~
-
ot---"-
VIr
2.0
1.0
o.7
0
TJ - 25°C
0
0.5
0.3
2 ___
"...
O.
O. 1
1.0
.......
t-
O
5.0
10
20
IF. FORWARD CURRENT (AMP)
2.0
t---...
20
1.0
100
50
2.0
5.0
10
20
50
100
VR. REVERSE VOLTAGE (VOLTS)
TYPICAL RECOVERED STORED CHARGE DATA
(Sae Note 21
FIGURE 12 -TJ = 25°C
1.0
~
I I
IFM = 20 A
o. 5
.3
w
:;;
40 A
:;;
«
13 o. 2
w
'"
'"~'"
FIGURE 13 - TJ ~750C
20
,~
~~
O. 1
g
V~
/
/"
~
~
g 0.0
0.0
'\
~ IP" ......
:~ /""
1.0
2.0
~
lOA
;,:::;
'\
./ 1/
1 OA
0.2
20
~ 5-
1
o
I
50
002
10
100
"/ V
/
~_a; 005
50AI
50
40 A
05
~
~
'"~ 0.0 5
IFM = 20 A
10
~
V
i'---.. ..... ~
IDA
5.0 A
0
LOA
r
tIIIe ~ ......
2.0
5.0
50
20
10
100
di/d •• (AMP/",)
FIGURE 15 - T J = 150°C
FIGURE 14 - T J = 100Dc
0
IF~ = 20lA
31
0
w
:;;
~
0
~
;'
w
g
o. 5
V
~k
'"w~ o. 1
>
§
a;
0.0 2
1.0
~
j..-l-"
~>
~
a;
50 ~
~~V
~ ......
2.0
5.0
1.0 A
10
20
O. 5
/
~
V
lOA
a:: 0.0 5
o
V
/" V
~ o.2
1.../
:;;
40 A
~
J
IFM=40A
0
I
0.05
~
"lOA:-
LOA
/L.
~~
2.0
5.0
10
di/d.(AMP/",)
1179
fY
~
IDA
0.0 2
1.0
100
/
2 1/
'~
O. 1
o
50
7
O. 2
20
50
100
MR860, MR861, MR862, MR864, MR866 (continued)
FIGURE 16 - REVERSE RECOVERY CIRCUIT
A - TEKTRONIX 545A, K PLUG IN
PRE·AMP, PSOOO PROBE OR EaUIVALENT
300
50W
115 Vac 10 k
60Hz
ZW
RI - ADJUSTED FOR 1.4 o BETWEEN
POINT Z OF RELAY AND RECTIFIER
INDUCTANCE ~ 3BlIH
NON·INDUCTIVE
UNIT
UNDER TEST
n.
RZ - TEN·I W, 10 1% CARBON CORE
IN PARALLel
~--~JJA
TA - Z5 ~Igoc FOR RECTIFIER
RZ
~o
MINIMIZE ALLLEAO LENGTHS
lOW ,
30 Vdc
NON.INDUCTIVE
CI
1.0 Adc FROM CONSTANT VOLTAGE SUPPLY
CONSTANT VOLTAGE
1.0pF
RIPPLE - 3 mVrms MAX
SUPPL Yo-+_ _..._ _ _ _-4......_ _ _ _...30_O_V...._--o- Zout - 1% 0 MAX, DC to Z kHz
FIGURE 17 - JEDEC REVERSE RECOVERY CIRCUIT
RI
RI - 50 Ohms
T1
RZ - Z50 Ohms
01 -IN4723
DZ -IN4001
D3 -IN4933
IZOVAC
SO Hz
StRI - MCR729·10
CI-0.5to50pF
CZ ~ 4000pF
LI-1.0-Z7pH
T~ - Variac Adjust. I(PK) and dildt
TZ =1:1
T3 = 1:1 (to trigger circuit)
11
dVdtAOJUST
~ II
TZ
D3
1:1
CZ
CI
+
I (PK) ADJUST
D.uT.
DZ
RZ
DI
CURRENT
VIEWING
RESISTOR
NOTE 2
Reverse recovery time is the period which elapses from the
time that the current, thru a previously fdrward biased rectifier
dildt
diode. passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions
,using IF ;, 1,0 A, VR
= 30
V.
IRM(REC)+:---'--
In order to cover all circuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 25°C, 75°C, l00"C, and
150"C.
From stored charge curves versus di/dt, recovery time
hrr )
and peak reverse recovery curient (I RM(REC)) can be closelV
approximated using the following formulas:
To use these curves, it is 'necessary to know the forward
current levBI just before commutation, 'the circuit commutation
di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.
'0
~ 1/2
trr= 1.41 x [ _R_
di/dt
IRM(REC)
1180
= 1.41
x [OR x
di/d~ 1/2
MR870, MR871,
MR872, MR874,
MR876
FAST RECOVERY
POWER RECTIFIERS
STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS
50-600 VOLTS
50 AMPERES
designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes_ A complete
line of fast recovery rectifiers having typical recovery time of 100
nanoseconds providing high efficiency at frequencies to 250 kHz_
Designe,'s Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device character-
istics - are given to facilitate "worst case" design.
MAXIMUM RATINGS
Rating
Symbol
Ptlak Repetitive Reverse Voltage
VRRM
WOf'"king Peak Reverse Voltage
VRWM
DC Blocl
'";;
~
26
"-
.........
6
..... )'..
40
36
......
5
)'..."'"
..........
30
......
26
61---
20
0
16
6
10
0
6.0
0
0
80
90
130
100
36
40
46
60
'-de
"
'-
....
f'.......-"""'" 1:'.'
I(PK) = 20------' r--~
I(AV) 10--
2.0·6.0
0
80
140
r- CAPACITIVE LOADS
100
90
TC. CASE TEMPERATUR E(oC)
120
110
~ ~
J.-..-----:
-....;
130
~\
~~
~
~
1@
150
160
TC. CASE TEMPERATURE (DC)
FIGURE 8 - TYPICAL REVERSE CURRENT
TJ
30
FIGURE 7 - CURRENT DERATING
I0:
20
IF(AV). AVERAGE FORWARD CURRENT (AMP)
FIGURE 6 - CURRENT DERATING
!L
~
L
F-""
~~
0
~
L
L
~~
0
w
L
10,-
V
g
V
:~:~~ t---~.L.LV
V
[/)V
V
V/
I'V""
b ~V
.L
/ . / "-:;(RESISTIVE
INDUCTIVE -
/ V/ ~
/ ~V
10
0
V V
FIGURE 9 - NORMALIZED REVERSE CURRENT
101
=1600C
VR
I-
=100 V
~
0
1~
2
200
300
400
600
600
700
VR. REVERSE VOLTAGE (VOLTS)
10· 3
20
/'
30
40
50
60
70
60
90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE (DC)
1183
MR870, MR871, MR872, MR874, MR876(cohtinued)
TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 10 - FORWARD RECOVERY TIME
10
7.0
~ 5.0
w
~
3:0
ffi
2.0
>
o
ftl
=
-===
0.5
~
0.3
~
",. O.
-
\-tlr
VIr
I
......
2~
.........
1""- ...
0
-
0
10
10
5.0
20
IF, FORWARD CURRENT (AMP)
2.0
T =250C
0
VVir = 1.1 V
O. 1
1.0
-
~ ~TJ=250C
V~ r-- I-
1.0
O.7
'"o
'"i
FIGURE 11 - JUNCTION CAPACITANCE
100
1.0
100
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)
2.0
100
50
TYPICAL RECOVERED STORED CHARGE DATA
(See Nbte 2)
1.0
FIGURE 13 - T J =750 C
2.0
IFM-20A
j
40A
0.5
w
~
g
./ . / V'v
~ 0.2
~~
o
t; O. 1
/"
~ 0.05
"-
~
gO.02
0.0
V
1~
1.0
2.0
5.0
'\
di/dt
o.5
~w
>
o
40 A
././
0. t>
o. 1
~
0.02
1.0
100
2.0
I
50
20
10
100
FIGURE 15 -TJ -ISOOC
.0
'.~
'iFM=4JA
.0
/.
40A
O.5
.5
./
~
'"~
5.0
di/dt, (AMP/~sl
IF~ =20lA
1.0
co
'"
..,~
LOA
~ ~i-'"
FIGURE 14 -'TJ = 100°C
:iw
'-.1.:-IDA
o'"
50
i-'
./'
5,0 A
(AMP/~s)
2.0
,/'
a:: 0.05
l.°i
20
/. V
~
5.0 A
10
5'"
~
IDA
~ iP
1.0
'"~ o.2
~
~
IFJ =201
.3.
w
co
'v'
~k
~
w O. 1
..,o>
./
~ /1.:--
/
02
V
/'
.2
Vf-"
./
...< ./'
~~
.1
IDA
'~ 0.05
~
0.02
1.0
2.0
5.0
5
10
20
I.DA
/~
'1'0 A
:;..-1-'"
50
r'20A=
IDA
5.0~
~'O'.,.".
><:
100
dildt, (AMP/~s)
1184
0.02
1.0
~r
2.0
5.0
10
di/dt (AMP/~s)
20
·50
100
MR870, MR871, MR872, MR874, MR876 (continued)
FIGURE 16 - REVERSE RECOVERY CIRCUIT
A - TEKTRONIX 545A, K PLUG IN
PRE-AMP, PSOOO PROBE OR EQUIVALENT
300
50W
NON-INDUCTIVE
115Vac 10k
60 Hz
2W
RI-ADJUSTED FOR 1.4 o BETWEEN
POINT 2 OF RELAY AND RECTIFIER
INDUCTANCE ~ 3B I'H
UNIT
UNDER TEST
R2- TEN-I W, 100.1% CARBON CORE
IN PARALLEL
t-----t
Ie.
i
,1//
I
'-'
80
/I
r;:
:II
:5
PHASESTAR
1/
z:
52
100
f
80
iii
c
60
f5
~
40
TJ
!Ii
t;;
!5
...
20
Ii!
=1S0oC I I
I I
I
TJ
iIi!
~
20
10
8.0
,
6.0
4.0
o
0.2 0.4
0.6 0.8 1.0
1.2 1.4
~
o
o
1.6 1.8 2.0
~
DC
/
I) '/ /
J. ~ /
~/
V
PHASE (HALF WAVE _
OR FULL WAVE)
-
T,(150,CTOlrC
20
v,. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
/
'iJ/
!J 1'" ~
40
~
=25°C
/
3 PHASE
(HALF WAVE OR FULL WAVE)
6 PHASE WITH INTERPHASE
~
::>
fa
60 _
J
60
40
100
80
I'(AV). AVERAGE FORWARD CURRENT (AMP)
FIGURE 3 - MAXIMUM CURRENT RATINGS
'80
78.5
~
70
-
60
I--
~
f5
;;:
..~
f5
50
I'"
45.5
'-'
Ie
~
=
40
32
' 30
00-
I--
-
-
I
P~N~l~-ilv~VE i"'-...
I
I
WA~rcI'R~ULL WAV
~ PHASE TH INTiRPHAS~
HALF
==
" "'~ t-....
-
..........
6 PHASE STAR
i
10
~
~
~
,
'\
'\
"'" ........... ~ ~
100
110
12,.0
130
140
ISO
Te • CASE TEMPERATURE (OC)
1192
160
R
'\
~~
I"'-- ...........
20
.".
(16rrJ6bb~r:J~~X~)
170
.
~~
180
190
MR1205FL, MR1209FL (continued)
FIGURE 4 - EFFECTIVE TRANSIENT THERMAL IMPEDANCE
1.0
1\
III
TJ
-
...........s.
I
Tc =R6JCltl PAW;
.... ~
1.&3"
~,....
~
.....
...-
DC
~ f.-""
t-'
..... -l-
----
.... 1--"
~
o
0.002
0.004 0.006
0.01
0.04
0.02
0.1
0.06
I • TIME (SECONDS)
0.4
0.2
0.6
1.0
10
4
FIGURE 5 - MAXIMUM ALLOWABLE SURGE CURRENT
i5
800
~
iii
::>
..,
"-
'"
600
~
...z:
~
;;;
~
II
~U~EIAPUED
AT I
RATED LOAD CONDITIONS
.......
........ 1-0.
r....... ~
t
~
=
...'"
::I
v.... APPLIED AFTER SURGE
Tc '" 150°C
-
400
I
r- r- :--
200
j
100
1.0
6.0
4.0
2.0
8.0 10
20
60
40
80 100
200
400
600
CYCLES AT 60 CYCLES PER SECOND
FIGURE 6 - CURRENT DERATING DATA
0::
~
so
ffi
!;;
~
40
~
I
30
Ie
20
ill!
10
.
~
{~ ..........
r-~
r-.....
i""'-
Co.t"tcr~
~
~~ ~~~~"'r--....
.........
r-....
"
........
..............
........
,"'- "-
"' ""
r-......
.........
......... r-.....
"
r--....
j
20
40
60
80
100
120
T•• AMBIENT TEMPERATURE (OC)
1193
For 6 phase ratlnll multiply
current scale by 0.63.
........
f"'""'-.. r.:::: .........
III
~
CONDITIONS
5 x 5 x ~ copper heat link
fin It ~ 0.9 and mounted parallel
to airllow. 180~ conduction.
For 3 ph_ ratinll multiply
current ..ale by 0.90.
140
"
'..:::: ~ ~
160
~
'"
180
200
MR1215FL, MR1219FL (SILICON)
MR1815SL, MR1819SL
UNIQUE, MULTI·CELL RECTIFIERS OFFERING
HIGHEST ORDER OF RELIABILITY IN
POWER APPLICATIONS
HIGH·CURRENT
SILICON RECTIFIERS
80/100 AMPERE
300, 600 VOL TS
DIFFUSED JUNCTIONS
Designers Data for "Worst Case" Conditions
Motorola DESIGNERS Data Sheets are prepared to facilitate
"worst-case" circuit design entirely from information presented on
these pages. To do this, the usual typical curves which provided
some guidance to the engineer, have been supplemented by limit
curves which are directly applicable to "worst-case" rectifier circuit
design. Limit curves represent boundaries on parameters and does
not necessarily indicate typical rectifier behavior.
CASE 167
MR1215Sl
MAXIMUM RATINGS
.......,
Radng
Peak Repetrtiva RfIYiIlW Voltage
VRRM
Worlcing Peek Ravene Voltage
VRWM
DC Blacking Voltage
MR1219SL,MR1819SL
MR1215SL,MR181&SL'
eoo
Unit
and
MR1219Sl
Volts
VR
Non·R.petitivlt Putt Reverse Voltage
lonahalfwMla.slng'aph• •
VRSM
400
VRIRMSI
210
60 H;r peek)
RMS R.,.,.. Voltage
720
420
Volts
Vatu
A~
Rectified Forwwd CUrrent
(lingle ph• • mlstlve load,
80Hz.... Figure 31 TC·':WOC
TC· 1&OOC
Non·RepetitlYti Peak Surge CUmnu
(IUrge 8pplied at rated 10.1
condltiOl"ll...eFlgul'tl5)
Amp
'0
100
80
2.000lfor 1I2cyCI.I----_
'FSM
_ _ _ _ 1,200 IforslK conleCutlvlcycl•• I _ _ __
Amp
Tc ·,eQOC
Iq Rating l"OM'lPItltive, for 1
IFHttf than 1 Fnland I. .
,0,
_______ 8,300------_
thin 8.3 msl
Operatlng.nd Storage Junction
Temperature Rlngl C. . Figure4
for other conditio....)
_ _ _ _ _ _ -65to+19D _ _ _ _ __
TJ. TMJ
CASE 189
ELECTRICAL CHARACTERISTICS
Unit
Symbol
Full Cycle Av.... Forwerd Voltllgll Drop
1mecl1oand Vr,.lnglaph... 60 H~, TC -1SOOC)
VFIAVI
Full Cycl. Average Rewne Currtn1
hllt8d 10 and Vr ,lIngie ph... 60 Hz, TC-1SOOC)
IRIAVI
0.4
,.
mA
MR1815SL
and
MR1819SL
THERMAL CHARACTERISTICS
Tlwmel Resistance, Junctton 10 c..
Volt
0.40
1194
MR1215SL, MR1219SL/MR1815SL, MR1819SL (continued)
FIGURE 2 - MAXIMUM FORWARD POWER DISSIPATION
FIGURE 1 - MAXIMUM FORWARD VOLTAGE DROP
4000
160
6 PHlsE
2000
0::
"
~
1000
800
600
i"
111
T,
200
/ 1/
i,;
e
""z
~
100
80
TJ
== 25°C
80
/
~
;'!
60
60
z
t;;
40
I
~
20
40
10
8.0
6.0
4.0
20
o
0.2 0.4 0.6 0.8 1.0
o
1.2 1.4 1.6 1.8 2.0
~[:/
de
V
V
1 PHASE (HALF WAVE
OR FUll WAVE)
~V
I
II
.-
JrlJ
WV /
h~ /
100
= 150°C I I
l'i
V
/
3 PHASE
(HALF WAVE OR FULL WAVE)
6 PHASE WITH INTERPHASE
/
400
STA~ J
140
120
~
~
~
~
I
o
V
~
V
40
20
80
60
v,. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
=150°C TO 190°C
T,
100
120
140
160
180
200
I"",. AVERAGE FORWARD CURRENT (AMP)
FIGURE 3 - MAXIMUM CURRENT RATINGS
160
157
"-
"ffi
F=
'"
de
140 ' - -
~
;:;:
~
'"~
~
ffi
ii2
13
"
j
I
J
120 -
100
91
--
80
--I
64
1==
60
1 PHASE (HALF WAVE
OR FULL WAVE)
3 PHASE
(HALF WAVE OR FULL WAVE)
6 PHASE WITH INTERPHASE
~
""
--
~
-.......;
.........
~
~
40 ~
---
o
110
120
130
140
150
160
Te. CASE TEMPERATURE (OC)
1196
'"
~.... ~
20 ~
o
"",
r---..l-...........
'
6 PHASE STAR
I
)
(60 Hz. RESISTIVE OR INDUCTIVE LOAD)
170
~
180
190
200
MR1215SL, MR1219SL/MR1815SL, MR1819SL (continued)
FIGURE 4 - EFFECTIVE TRANSIENT THERMAL IMPEDANCE
0.7
IIII
i, ~ T~ ~6'CI'IP"
~
f...-' ~
r-
~
~
0.002
0.004 0006
001
0.02
0.04
0.06
0.1
.,.-
-
0.2
I--"
--
~
1--" .....
1--" .....
0.4
0.6
~ l14>
~
n
34>
-r
1.0
10
t. TIME (SECONDS)
FIGURE 5 - MAXIMUM ALLOWABLE SURGE CURRENT
2000
............
~
~
~
1500
u
~.,
I
"'-
~
z
...........
'"'"
'"'"
"~
L
I
=
........ .......
~
in
I
SURGE APPLIED AT
RATED LOAD CONDITIONS
v.... APPLIED AFTER SURGE
Tc
150°C
II-
........
1000
~
........
500
............
-
l"- I--
~
1.0
:z.o·
4.0
6.0
8
10
20
40
60
80 100
200
400
FREQUENCY AT 60 (Hz)
FIGURE 6 - MAXIMUM CURRENT DERATING DATA
CONDITIONS
y. copper heat sink
f;; 0.9 and mounted parallel
5x5x
fin
€
to air flow, 1SO- conduction.
For 3 phase ratings multiply
current scale by 0.90.
For 6 phase ratings multiply
current scale by 0.63.
200
TA • AMBIENT TEMPERATURE (OC)
1196
600
MR1215SL, MR1219SLlMR1815SL, MR1819SL (continued)
POLARITY:
Standard polarity devices are CATHODE TO CASE. Reverse
polarity devices are ANODE TO CASE and are designated
by an "R" suffix i.e. MR1215SLR. These devices have a
molded plastic top for mechanical strength and seal.
CASE:
MOUNTING POSITION: Any
All units have a plated copper base and terminal. Molded
external case with internal hermetically sealed, metallic case
rectifier cells
STUD MOUNTING TOROUES:
25 in-Ib min., 30 in-Ib max.
OUTLINE DIMENSIONS
~}
MRI215SL
MRI815SL
and
MRI219SL
MRI819SL
-~
--Jot--
: i
I / iI
Q
l~: !
G
.
.Il
~
I .-
-2
L
lO.32 UNF.2A J
SEATING PLANE
CASE 167
DIM
A
B
C
D
E
F
G
H
J
K
Q
R
MI LLIMETERS
MIN
MAX
31.37
13.72
12.70
2.92
2.fl7
29.21
12.70
10.77
34.93
6.10
-
36.83
32.13
17.91
13.34
3.43
3.43
34.29
~'l
and
NOTES:
1. CRIMPED LUG
2. ANGULA R ORIENTATION
OF LUG UN DEFINED.
MI LLIM ETE RS
INCHES
DIM MIN MAX
MIN
MAX
-
1.235
0.540
0.500
0.115
0.105
1.150
0.500
12.70 0.424
44.45 1.375
6.60 0.240
30.48
-
1.450
1.265
0.705
0.525
0.135
1.135
1.350
0.500
1.750
0.260
1.200
A
B
C
0
E
F
G
H
J
K
Q
R
33.02
31.37
13.72
12.70
2.92
2.67
29.21
12.70
15.06
34.93
6.10
-
36.83
32.13
17.91
13.34
3.43
3.43
34.29
16.76
16.69
44.45
6.60
30.48
@
B
-~
--JOt--
~1>
INCHES
MIN
MAX
1.300
1.235
0.540
0.500
0.115
0.105
1.150
0.500
0.593
1.375
0.240
1.450
1.265
0.705
0.525
0.135
0.135
1.350
0.660
0.657
1.150
0.260
1.200
.12
L3/8-24-UNF2A J
SEATING PLANE
CASE 189
CONSTRUCTIONAL FEATURES
Motorola's unique double-cn"€:, multiple cell
construction offers numerou~ advantages whIch result In rectifiers
posse!.sing "deSigned-in" ruggedness. rehabllity and !.uperior
performance charactenstlcs.
r-"
Cc)mplete
IS
case
seal strength afforded by the outer
thus preventing any excessive stress on the glass-tometal hermetic inner seal.
Void-free, molded external case for added mecham-
cal strength and electrical isolation In addition to
being corrosion resistant. - - - -_ _""'"
Plated copper base and lor stud i
to the inner cases for optimum " ..
rent balance between cells.
ttm,",""""" cur·
,:~?~~~~!tce
to thermal fatigue of each cell is assured
use of double back-up discs and high
temp solder constructlOn to protect the silicon die
against stres~. In addition, the small junction areas
of the individual paralleled cells result in a total
rectifier WhiCh can better resist thermal fatigue because of the smaller excursion of dissimilar bonded
materials as opp()~ed to a large single-junction
rectifier.
1197
MR1235FL, MR1239FL (SILICON)
MR1235SL, MR1239SL
SL CASE 127
FL CASE 134
Silicon power rectifiers designed with double-case, multi-cell
construction for extreme reliability and ruggedness. Available in
two packages which have the same ratings and characteristics.
Desired package can be selected by adding suffix "SL", or "FL"
to type number.
MAXIMUM RATINGS
Rating
Symbol
MR1235
MR1239
Unit
300
600
Volts
Peak Repetitive Reverse Voltage
VRRM
Working Peak Reverse Voltage
DC Blocking Voltage
'RWM
VR
Non-Repetitive Peak Reverse Voltage
(one halfwave, single phase,
60 cycle peak)
VRSM
400
720
Volts
VR(RMS)
210
420
Volts
RMS Reverse Voltage
Average Rectified Forward Current
(single phase, resistive losd,
60 Hz, see' Figure 3) TC = 135·C
10
Non-Repetitive Peak Surge Currents
(surge applied at rated losd
conditions, see Figure 5)
T C ·15,O·C
rt Rating (non-repetitive, for t
greater than 1 ms and less
than 8.3 ms)
Operating and Storage Junction
Temperature Range (see Figure 4
for other conditions)
Amp
300
240
TC = 150·C
5,000 (for 1/2 cycle)
~SM
Amp
3,000 (f or six consecutive cycl es)
12t
A2.
52,000
·C
-65 to +190
TJ' Tstg
ELECTRICAL CHARACTERISTICS
Symbol
Max
Unit
Full Cycle Average Forward Voltage Drop
(rated 10 and VR(RMS)' Single phase, 60 Hz, TC =, 150·C)
VF(AV)
0.4
Volts
Full Cycle Average Reverse Current
(rated 10 and VR(RMSl' single phase, 60 Hz , TC = 150·C)
IR(AV)
35
rnA
Symbol
Max
Unit
R6JC
0.12
·C/Watt
Characteristics and Conditions
THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case
1198
MR1235FL, MR1239FL/MR1235SL, MR1239SL (continued)
MECHANICAL CHARACTERISTICS
POLARITY:
Standard polarity devices are CATHODE.TO.CASE.
Reverse polarity devices are ANODE-TO·CASE and are
designated by an "R" suffix i.e. MR 1235FLR.
MOUNTING POSITION: Any.
STUD AND MOUNTING BOLT TORQUES:
For Stud Mounted "SL" rectifiers. 300 in·lb. min .•
400 in-Ibs max.
For Flat Mounted "FL" rectifiers use \4 inch bolts
CASE:
torqued to 60 in·lbs min., 80 in-Ibs max. Use an alternating
All units have a plated copper base and terminal. Molded
external case with internal hermetically sealed. metallic case
rectifier cells.
procedure when torquing the four bolts and do not tighten
one bolt completely without tightening the others.
FIGURE 1 - MAXIMUM FORWARD VOLTAGE DROP
FIGURE 2 - FORWARD POWER DISSIPATION
6000
500
4000
2000
i
I
S
100
80
60
~
I
.".
i
is
;:::
f 300
=
150°C
/T.
I
3 PHASE
(HALF WAVE OR FULL WAV~ _
~ PHASEtlTH INTERPHAS
/
IE 200
~
.:
2D
o
1.0 1.2 1.4
1.6 1.8 2.0
V}
I7jV
T.
100
o
0.2 0.4 0.6 0.8
/ 1/
/
/
/
VOC
V
IJ.-.: '/ V
~ ~. V
/.~ /
=
~/
i
i
25°C
~V
I PHASE (HALF WAVE
OR FULL WAVE)
c;
=
40
10
B.O
6.0
t--
ilj
I
T.
PHAS~ STAR) 'I
400
I
.,
2
r
16
400
200
e
I.
1000
800
600
;~
/
/
~
o
1500C TO 190°C
~ /'
100
200
400
300
500
1".'1. AVERAGE FORWARD CURRENT (AMPERES)
v,. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
FIGURE 3 - MAXIMUM CURRENT RATINGS
600
C
~
15
'"~
( 60 Hz • JESISTIVE
500
470
~
..........
DC
400
15
...
i.
.
:0
!~'"
1 PHASE (HALF WAVE
OR FULL WAVE)
300
270
200
190
III
~
j
-
~~
--....... ~
~~
PHASE (HALF WAVE OR FULL WAVE)
6 PHASE WITH INTERPHASE
6 PHASE STAR
100
-
90
100
110
""~
oj INDUCTIVE lOAD)
120
130
140
150
Te. MAXIMUM CASE TEMPERATURE (OC)
1199
'"
160
~
170
~
180
190
200
MR1235FL, MR1239FL/MR1235SL., MR1239SL (continuedl
FIGURE 4 - EFFECTIVE TRANSIENT THERMAL IMPEDANCE
_I I 1.1111
6.
Tc ~R8JCltIP"VE
TJ
-----
i--" ~I--
0.01
0.02
0.04
0.06
0.1
1.&3<1>
~
l- I--"'"
-
0.004 0.006
~
~ I-
~
0.4
0.2
DC
I'-"
...
0.6
1.0
10
t. TIME (SECONDS)
FIGURE 5 - MAXIMUM ALLOWABLE SURGE C.URRENT
5000
;;:
~
IE
...........
~
4000
........ .......
~
i3
~ 3000
r-
........ r-...
...3lz
..
~
2000
~
1000
~
-~
SURGE APPLIED AT I ~
RATED LOAD CONDITIONS
~~ l::!~IEDAFTER SURGE _ r-
...
..........."'"
1.0
2.0
4.0
6.0
8.0 10
"""'20
roo ...
40
60
80 100
200
400
600
CYCLES AT 60 CYCLES PER SECOND
FIGURE &- CURRENT DERATING DATA
300
;;:
~
250
~
i;
II! 200
..
!...
.CONDITIONS
f!i
I
8
8 x % .copper heat sink
C"
:=:: 0.9 .nd mounted parallel
to airflow. 1SO- conduction.
150
For 3 ph... retinp multiply
current ...10 by 0.90.
For 6 ph... retinas muHlply
100
current ecolo by 0.63.
~
!l
~
)C
fin
5D
~
.1>
200
TA • AMBIENT TEMPERATURE (·C)
1200
MR1245FL, MR1249FL (SILICON)
MR1245SL, MR1249SL
SL
CASE 128
FL
CASE 135
Silicon power rectifiers designed with double-case, multi-cell
construction for extreme reliability and ruggedness. Available in
two packages which have the same ratings and characteristics.
Desired package can be selected by adding suffix "SL" or "FL"
to type number.
MAXIMUM RATINGS
MR1245
MR1249
Unit
VRWM
VR
300
600
Volts
VRSM
400
720
Volts
VR(RMS)
210
420
Volts
Rating
Symbol
Peak Repetitive Reverse Voltage
VRRM
Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage
(one halfwave, single phase,
60 cycle peak)
RMS Reverse Voltage
Average Rectified Forward
Current
(single phase, resistive load,
60Hz, T C =150°C
400
10
Non-Repetitive Peak 'Surge
Currents
(superimposed on rated
current at rated voltage,
TC = 150°C)
Amperes
8,000 (for 1/2 cycle)
~SM
4, 500 (for six consecutive 1/2 cycles)
12t Rating (non-repetitive for t
greater than 1. 0 ms and less
than 8.3 ms)
12t
133,000
A 2s
Operating and Storage Junction
Temperature Range
T J , T stg
-65 to +190
°c
Amperes
THERMAL CHARACTERISTICS
Symbol
Characteristic
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Max
0.075
R OJC
(T..
=2SoC unless otherwise noted)
Symbol
Max
Unit
Full Cycle Average Forward Voltage Drop
(rated 10 and VR(RMS)' single phase 60 Hz, TC = 150° C)
VF(AV)
0.4
Volts
Full Cycle Average Reverse Current
(rated 10 and VR(RMSl' single phase 60 Hz, TC = 150°C)
IR(AV)
50
rnA
Characteristic
1201
MR1245FL, MR1249FL/MR1245SL, MR1249SL {continued)
FORWARD VOLTAGE CHARACTERISTICS
10,000
8000
SOOO
4000
/,
rl
2000
MAXIMUM FORWARD CURRENT versus MAXIMUM CASE TEMPERATURE
V1
c:
700
0
DC
'"
600
iii
~
I I
Y
0
TJ
;
1500
0
'"
s
I...
ITJ; 250C
0
I
0
0
500 fo-
~
300
~
200
I"
t:.
400
.;
.....
8
6
........
.6"
f-
~
0
.........
3"
~
100
4
D
2
....
o
m
m
ill
I\.
~
(60 ICPS,
\
RESI~TlV£ OR )~DUCTIVE L~)
I"-.
~........ ~
........... ~ [\
~~ ~
"~
m.
~
~
~
~
~
T., MAXIMUM CASE TEMPERATURE (OC)
I
o
0.2 0.4 0.6 0.8 1.0 1.2 1A I.S 1.8 2.0
v" INSTANTANEOUS FORWARD VOLTAG£ (VOLTS)
i
MAXIMUM SURGE CURRENT (Tc
~ 8000
Ii...
'"
7000
:::>
u
6000
~
~
... 5000
z
;;;
i
4000
~
3000
........
= 150·C)
I'....
~"
r"- r-.
""~
r-- r-
1
!
2000
1"-0.
1000
o
1.0
2.0
4.0
6.0
8.0
10
20
40
60
80
100
CYCLES AT 60 CYCLES PER SECOND
MAXIMUM SINGLE·PHASE CURRENT RATING
400
.'"
iii
350
S-
300
ei
i'"
...
Iiil
i5!
...
::>
-......... r-.:,..-..,
...........
SSOl
250
~
200
100
j
50
"
CONDITIONS
8 x 8 x ~ copper heat sink
finE;;:: 0.9 and mounted parallel
to airftow. 180· conduction,
........
"
r--- ~ ..........
......... ~ I'-....
~~
I'EcrlON
........
........
........
For 3 phase 1'lltings multiply
current scale by 0.85.
--...:: h:::--... ~ r-..
150
~
~
~~
~
For 6 phase ratings multiply
current scale by 0.60.
~~
~
.......
o
o
~~
20
40
60
100
120
80
TA• AM81ENT TEMPERATURE IOC)
1202
140
160
ISO
200
MR1265FL, MR1269FL (SILICON)
Silicon power rectifiers designed with double-case,
multi - cell construction for extreme reliability and
ruggedness. Standard cathode-to-case polarity, but
available with reverse polarity by adding suffix "R" to
type number.
CASE 136
MAXIMUM RATINGS
Rating
Symbol
MR1265
MR1269
Unit
VRRM
VRWM
300
600
Volts
VRSM
400
720
Volts
VR(RMS)
210
420
Volts
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
VR
Non-Repetitive Peak Reverse
Voltage
(one half-wave, single phase,
60 cycle peak)
RMS Reverse Voltage
Average Rectified Forward
Current
(single phase, resistive load,
60 Hz, TC = 150°C)
10
Non-Repetitive Peak Surge
Currents
(superimposed on rated current at rated voltage, TC =
150°C)
I FSM
12t Rating (non-repetitive, for t
greater than 1 ms and less than
8.3 ms)
12t
300,000
TJ,T stg
-65 to +190
Operating and Storage Junction
Temperature Range
Amperes
650
12, 000 (for 1/2 cycle)
Amperes
8,000 (for six consecutive 1/2 cycles)
A28
°c
THERMAL CHARACTERISTICS
Symbol
Characteristic
Thermal Resistance, Junction to Case
ROJC
Max
Unit
0.045
°C/Watt
ELECTRICAL CHARACTERISTICS
Symbol
Characteristic
Full Cycle Average Forward Voltage Drop
(rated 10 and VR(RMS), single phase, 60 Hz, TC
= 150·C)
Full Cycle Average Reverse Current
(rated 10 and VR(RMS), single phase, 60 Hz, TC
= 150°C)
1203
VF(AV)
~(AV)
Max
Unit
Volts
0.4
rnA
100
MR 1265FL, MR 1269FL (continued)
FORWARO VOLTAGE CHARACTERISTICS
20 ,000
~
10,000
8000
:::::::
MAXIMUM FORWARD CURRENT versus MAXIMUM CASE TEMPERATURE
8000
1200
I
I
Ii!
I
I
I
2000
(60 Hz, RESISTIVEOR'INOUCTIVE LoAo)
-0,
i"..
oC'\
0
I.
T.=ISOOr! /T.=25 0 C
-ti
1000
800
600
I
...
1100
0
.......
"-'\
3. ........"" ..................
0
400
I
0
II
200
"- '\
.......... ...............
6.
0
100
80
100
60
0
'\.
......r-...... . . . . . . "'.."
...... ~" ~
""""
120
110
40
130
150
140
170
160
~
180
T•• MAXIMUM CASE TEMPERATURE (OC)
'"
190
200
20
10
o
0.2
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
MAXIMUM SURGE CURRENT (Tc
" ,INSTANTAIIEOUS FORWARD VOLTAGE (VOlTS)
12.1l00
~ r-....
.......
r-.... ~
= 15D C)
O
r-...
"'I"-
~r"'-......
..........
~ r-.......
-
r- ... ~
4.0
2.0
6.0
B.O
10
20
40
60
80 100
CYCLES AT 60 Hz
MAXIMUM SINGLE-PHASE CURRENT RATING
700
i:s,.
""
600
!i:
'"
=
400 ............
.
II!
:il
;
e'"
III
:!
~
....~
J
r--.......
500
CONDITIONS
. . . . . . . . r-...........
~Oa~01( ~
~VE~r-.... ~ .............. r-...
300
r-- ~ ~ r-......
200
-...
~~
--
-.:::::
180
r-::::
For 3 phase ratings multiply
current scale by 0.8S.
For 6 phase ratings multiply
current scale by 0,60.
~~
~
o
o
lOx lOx 14 copper heat sink
fin I 5;; 0.9 and mounted parallel
to air flow. 180 0 conduction.
SS0!!At
20
40
60
80
100
120
140
TA , AMBIENT TEMPERATURE (OC)
1204
160
......
180
200
MR 1337-1
MR 1337-5 (SILICON)
thru
Fast recovery silicon rectifiers designed for highfrequency power supply, inverter, and converter applications. Typical recovery time of 100 nsec extends
practical frequency limit of current rectification to
more than 300,000 Hz thus permitting the design of
power supplies with smaller, lighter, and less expensive associated components.
CASE 52
<00-13)
MAXIMUM RATINGS
MR
1337·1
MR
1337·2
MR
1337·3
VRRM
VRWM
VR
50
100
200
300
400
Volts
VRSM
100
200
300
400
500
Volts
VR(RMS)
35
70
140
210
280
Volts
Rating
Symbol
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
(half-wave, single phase,
60 cycle peak)
RMS Reverse Voltage
Average Rectified Forward Current
(single-phase resistive 10ad)TA=25·C
Figure 2
TA=75·C
10
Non-Repetitive Peak Surge Current
Figure 3 (superimposed on rated
current at rated voltage, T A = 75 ·C)
Peak Repetitive Forward Current
(TA = 75·C)
~t Rating
(non-repetitive, for t greater than
1 ms and less than 8. 3 ms)
Maximum Junction Operating
Temperature Range
Maximum Steady State DC
Thermal Resistance
1.0
0.75
Amp
IFSM
30
Amp
~RM
4.0
Amp
~t
3.75
TJ
-65 to +150
Tstg
-65 to +175
ROJA
100
-
so
I
I
1/
2.0'
IJ -ISOoC
,
/
~
i_
O•2
•.of
O. 1
o
~
M
M
U
..........
5
TJ -25°C
,
,
·C/Watt
.............. ~
5
1/
~
~ I.0
O.5
1.50
":/
20
B 5.0
A
2
(rms) s
FIGURE 2 - MAXIMUM AVERAGE FORWARD CURRENT RATING
versus MAXIMUM AMBIENT TEMPERATURE
FIGURE 1 - TYPICAL FORWARD CHARACTERISTICS
10
~
'"'"
----
I.~
~ l"\.
5
U
Unit
·C
Maximum Case Storage
Temperature Range
i
MR
MR
1337-4 1337·5
U
U
U
U
o
o
~
'h INSTANTANEOUS FORWARD VOlTAGE IYOI.TSI
25
50
75
100
TA• AMBIENT TEMP£RATURE (OCI
1205
"
125
ISO
MR1337·1 thru MR1337·5 (continued)
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
VF
1.1
Vdc
Full Cycle Average Forward Voltage Drop
(Io= 0.75 Amp and Rated Vr' TA = 75°C,
Half Wave Rectifier)
VF(AV)
0.55
Volts
Full Cycle Average Reverse Current
(10 = 0.75 Amp and Rated Vr , TA = 75°C,
single phase)
~(AV)
0.75
rnA
~
0.25
rnA
200
ns
DC Forward Voltage Drop
(Ip. = 1.0 Adc, TA = 25°C)
DC Reverse Current
(Rated VR , TA = 25°C)
Maximum Reverse Recovery Time
(IF = 1 Amp min)
t
Maximum Overshoot Current
I
FIGURE 3 - MAXIMUM ALLOWABLE NON·REPETITIVE
SURGE CURRENT
rr
2.0
os
(SUI'£RIMPOSED ON RATED CONDITIONS, V......, API'LI£D AfTER SURGE, T.= 7S'C)
40
L~
I ' I'
FAST RECOVERY
RECTIFIERS GftfAnY
INCR£ASE EFFICIENCY
L
\ I
V
'"
Amp
V
"-
I \
\
/'
Li.
~
~
IlPICAI. LOSISES AT -.."
[,£"
HlGH;FREIIUEHCY WITH
CONVENTiONAl RECTIFIERS
I'r--
TYPICAL RECOVERY PATTERN
l"- I'
0
r---.. I'--.
I'-
t---
0
6
8 10
40
20
60 80.100
ZERO
~~
~~
REFERj-'
t..
,....,
~
L
.-'
J
lAMP
- :r-
I
CYCLES AT 60 CYCLES PER SECOND
FIGURE 4 - t" TEST CIRCUIT
115 VI.
60Hz
10 K
2W
(/
UNIT'
"I
A- TEKIRONIX 545A. K PUJG.IN
PRE-AIIP, P6000 PROBE OR EQ
300
50W
NON-INOUCTIVE
R, - ADJUSTED FOR 1.40 B£1WEEN
POINT 2 OF RELAY AND RECTIFIER.
INDUCTANCE - 38,.10
/
UNDER TEST
R, - ~NpI:u.~' 1% CARBON COMP.
t-----+)A
TA - 25 ~1: 'C FOR RECTIFIER
R,
CONST~~TAGE
13w
NON-INOUCTIVE
IC~'F
SUi'PLY+o-_ _ _ _ _..--'-_ _--4>--_ _ _ _..-_300_V-+--0
1206
+
MINIMIZE All LEAD LENGTHS
:I=-E~:m~,:r:
VOLTAGE SUi'PLY
z... = 'ho MAX, OCto 2 kHz
MR1366
For Specifications, See IN3879 Data, Volume 1.
MR1376
For Specifications, See IN3889 Data, Volume 1.
MR1386
For Specifications, See 1N3899 Data, Volume 1.
MR1396
For Specifications, See IN3909 Data, Volume 1.
MR1815SL (SILICON)
MR1819SL
For Specifications, See MR1215FL Data.
1207
MR2000S
SERIES (SILICON)
MEDIUM-CURRENT SILICON RECTIFIERS
MEDIUM-CURRENT
SILICON RECTIFIERS
20 AMPERE
50-1000 VOLTS
DIFFUSED JUNCTION
compact, highly efficient silicon rectifiers for medium·current
applications requiring:
•
High Current Surge - 400 Amperes @
•
Peak Perforifi'ance @ Elevated Temperature - 20 Amperes @
TJ = 175°C
TC=150oC
• Low Cost
• Compact, Molded Package - For Optimum Ef.ficiency in a Small
Case Configuration.
MAXIMUM RATINGS
MR
Characteristic
Peak Repetjtive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
. Non-Repetitive Peak Reverse
Voltage (halfwave, Single phase,
RMS Forward Current
Non-Repetitive Peak Surge Cur-
MR
MR
MR
MR
2OO6S 008S 2010S Unit
50
100
200
400
600
600
1000
60
120
240
480
720
960
1200
VR
VRSM
I(RMS)
10
IFSM
rent (surge applied @ rated load
conditions, half wave, single
phase, 60 Hz)
Operating and Storage Junction
MR
Volts
VRRM
VRWM
60 Hz oeak)
Average Rectified Forward Curren
(Single phase, resistive load,
60'Hz;1'" -150"C)
MR
Symbol 20008 2OO1S 2002 2004S
TJ,Tstg
Temperature Range
.•
.
.
Volts
40
20
.•
400 (for 1 cvcle)
•
Amp
-65 to +175
•
°c
Amp
Amp
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
ELECTRICAL CHARACTERISTICS
Characteristic and Conditions
Maximum Instantaneous Forward Voltage
Symbol
Max
Unit
vF
.,1.1
Volts
!iF - 63 Amp. TC - 2SoC)
Maximum Reverse Current (rated de voltage) TC = 250C
100
IR
I'A
500
TC - 100°C
MECHANICAL CHARACTERISTICS
CASE:
FINISH:
Void Free, Transfer Molded.
All External Surfaces are CorrOSion-Resistant and the Terminal Lead is Readily
Solder able.
POLARITY: Cathode to Case (Reverse Polarity Units are Available and Designated by an
"R" Suffix I.e., MA200OSR).
MOUNTING POSITIONS: Any
STUD TOROUE:
15 in. [bs. Maximum
MAXIMUM TERMINAL TEMPERATURE FOR SOLOERING PURPOSES:
Seconds
@
MILLIMETERS
DIM MIN MAX
A 12.12 12.70
B 10.77 11.10
C
- 10.29
D
6.35
1.91
E
4.45
1.19
F
1.35
J 10.72 11.51
K
20.32
Q
1.52
INCHES
MIN MAX
0.477 0.500
0.424 0.437
0.405
- 0.250
0.075 0.175
0.047 0.053
0.422 0.453
O.BOO
0.060
27. oC fo, 10
3 Kg Tension.
CASE 283-01
00-4
WEIGHT: 6 Grams (Approximately).
1208
MR2000S series (continued)
FIGURE 2 - NON-REPETITIVE SURGE CURRENT
FIGURE 1 - FORWARD VOLTAGE
700
50o -TJ=25 0 C
/'
........
./
300
f7
I--- f-TYPICAL
,.
07
~ 300
~
;0
:::
J
I
I
.r--r-,
........ 1-...
~'''cl.-l
60
1.0
2.0
5.0
/I
10
50
20
100
NUMBER OF CYCLES
I'
0
1
25°C
80
I
0
r-
' - . t--..
I
f-fL.J\
'"'"
0
............
TJ = 1750 C
~ 100
0
.......
200
~
~
0
..... ....;
'-. ......
ffi
/'
VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz
...........
5 400
/
J
100
MAXIMUM
"7
7
200
--
.........
600
FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
.0
+0.5
0
0
u
0
~
0
~
u
ffi -1.0
O. 5
8
0.2
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
. /~
f'.;
~
-2.0
0.2
2.6
.---~
l\.
-1.5
,
V
TYPICAL RANGE\.
o. 7
0.3
"//
5 -0. 5
I
0.5
1.0
2.0
5.0
10
20
50
100
iF, INSTANTANEOUS FORWARD CURRENT (AMP)
200
vF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)
FIGURE 5 - FORWARD POWER DISSIPATION
FIGURE 4 - CURRENT DERATING
07
~c
40
....,
'"'
5
ffi
2
'"
4
~=2.0
~
~
ilZ
w
16 f----
10
f----
20
ffi
.,
.(SINEWAVE
LOAD)
'-
r-;:,
135
140
145
150
;5
to
TC, CASE TEMPERATURE (OCI
185
24
,/
-
-CAJACITIVE LOADS
16 c - - I(AV) ;
:;;
""'"
170
175
1209
'"
~
0
-
~
--::-
V< , /
~p<:
'-saUARE WAVE
I\-SINIEWAV~_
}O ~ ~
'ltMl = 20
::: 8.0
-~
160
TJ"'" 1750 C
32
ffi
~~
155
40
S
~
.:::::::-: ~
...... ~ ~
~ACIITIVE \OADS
130
i
~
'"w
.........
......
8.0
125
1
.........: .........
;;;
~ o
1
RE;I~TlVE 1 -
.......
5.0
to
:::
.1
~=2(SaUAREWAVE)
:a~
!P"
RESISTIVE
LOAD
,-
~~
../
o
4.0
8.0
12
16
20
24
28
32
IFIAV),AVERAGE FORWARD CURRENT lAMP)
36
40
MR2000S series (continued)
FIGURE 6 - THERMAL RESPONSE
ffi 1.0
~ 0.7
~ 0.5
a:
o
........
!:. 0.3
w
~
.-
0.2
~
ffi
......
0.1
~O.07
~O.O 5
a:
w
:=0.03
~o.o 2b--":'
ReJc(t) = ReJC • ,It)
INOTE 1)
i"""
!li
1
~0.01.0
2.0
3.0
5.0
:J
7.0
10
20
50
30
70
100
I. TIME
'"
FtJL
200
NOTE 1
P",
~~1: ~~~~: gp~,tr.'~~k of an
TIME
500 700
2.0k
1.0k
3.0k
5.0k 7.0k 10k
FIGURE 7 - CAPACITANCE
500
tp
~t1----t
300
Im~
equival.nt square power I"llse.
........
TJ = 2JDC
r-
300
.........
~
To determine maximum }unctIOn temperature of ttl, diode in a given _tuatlon, the following
procedur.IS recomm.nded.
The temperature of the case should be measured uSing I thermocouple placed on the c.. at
the lemp.ralUra refer.nc. pomt(see the outline drawing on p&gll 1). The thermal mIllS connected
to the casa is normally large enough so that ilwill not significantly respond to h•• tsurges
generated In the diodeaS8l'8Sultofpulsedop.rationoncest8ldystatecoliditlonsareachillV.d.
USlIlg the measured value of TC, the junction temperature may be determined by:
TJ"'lC+ 6TJC
where A TJC IS the increase in junction temperature abow the cast temperature. It may be
determined by.
!:::.TJC = Ppk • RflJC [0 + (1 - D~ • rtt1 + tpl + r(tpl- rhllJ
"
~ 200
g
J
~
- - ALL 0 EVICES
- - - ALL DEVICES EXCEPT MR2 000 ' -
c.:i 100
70
wht"
50
0.1
rhl = normalIZed value of transient thermal r!!Slstanee at time, t, from Fj~re 5, i.e.,
r ttl + tpl = normalized value of transient thermll resistance at time 11 + tp.
FIGURE 8 - FORWARD RECOVERY TIME
1.0
.
O. 7r- "F
w
ffi
>
./
0
lrl
O.
a:
I--"""
......... """ 1Jf,' 1.0 V
-
-
20
..-
..
O. 1.0
j
w
i"""
100
~
w 3.0
ill
~ 2.0
I--- t-
a:
2'r
$
7.0
1.0
0.1
10
1210
IJ I
::-..... ...... ..........
10
TJ =25DC
......
8
2.0
3.0
5.0
IF. FORWARD CURRENT lAMP)
50
.......
;:: 7.0
>
a:
~ 5.0
3V"
...--r1~
1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE IVOLTS)
FIGURE 9 - REVERSE RECOVERY TIME
TJ = 25b C
'1'
"" r~
;:: O. 5~ f-II,-l
.i!
0.5
0.2
IF
IF -lOA
I I
0~Lr°'25IR
I t'rr l II
......
...... I""-.
~~
5.0 A/
~OA
......
.......... I"'-- r-... ....
I'
0.2 0.3
0.5 0.7 1.0
2.0
5.0
IR/IF. RATIO OF REVERSE TO FORWARD CURRENT
7.0
10
MR2000S series (continued)
FIGURE 10- RECTIFICAnON WAVEFORM EFFICIENCY
60
I I I
40
T;.M
..,..."
r- ~~
0
r-
w
r-
itw
.;
'"'['\
CURRENT INPUT WAVEFORM
~ 2il
..,>z
RECTIFICATION EFFICIENCY NOTE
FIGURE 11 - SINGLE.f'HASE HALFoWAVE RECTIFIER CIRCUIT
J\.JV-
The rectification afflcianery fector (1 shown in Figure 10 wal
calculated uolng the formula:
I'
J1JL ----
y20(dc)
10
a= Pdc =
RL
.100%=
y20 (dc)
.100%
Prml y20 (""")
y20 (ec) + y20 (dc)
8.0
(1)
RL
2.0
3.0
5.0
7.0
10
f, FREQUENCY (kHz)
20
30
50
70
100
For a .ine wave input Ym lin (wd to tho diode. assume 101lIe.o,
the mS:Kimum theoretical efficiency factor becomes:
y2m
,,2RL
4
(1(sina) =-2- '100%="2 '100%=40.6%
Y m
"
4RL
(2)
For 8 square wave input of amplitude V m~ the efficiency factor
becomes:
Y2m
2RL
"(square) =-2- '100%= 50%
Ym
(3)
RL
(A full wave circuit ha. twice the.. efficiencies)
As the frequency of the input signal is increased, the raverse
recovery time of the diode (Figure 9) becomes Significant, result-
ing in an increasing ac voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor a, as shown on Figure 10.
It should be emphasized that Figur. 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was obtained by measuring the ac component of Va with a
true rms ac voltmeter and the de component with a de voltmeter.
The data was used in Equation 1 to obtain points for Figure 10.
1211
MR2083HA (SILICON)
Multi-cell II, power rectifier diode designed for highcurrent rectifier service to provide single-output, highcurrent dc with forced air cooling.
CASE 159
MAXIMUM DIODE RATINGS
Rating
Symbol
Value
Units
300
Volts
400
Volts
10
7S0
Amperes
r..SM
12,000 for 1/2 cycle
8,000 for 6 cycles
Peak
Amperes
Peak Repetitive Reverse Voltage
VRRM
Working Peak Reverse Voltage
VRWM
DC Blocking Voltage
VR
VRSM
Non-Repetitive Peak Reverse Voltage
(one half-wave, singJe-phase,
60 cycle peak)
Continuous Average Rectified
Forward Current
(singJe-phase, resistive load,
60 Hz, TC = ISO°C)
Non-Repetitive Surge Currents at
Rated Conditions
MAXIMUM CIRCUIT RATINGS (All Types TC ~ 150°C See Figure 1)
Total Diod•• Required
Circuit Configuration
Total Circuit DC Output Current
Three-Phase Half-Wave
(3-1-I-Y)
3 Diodes Either Polarity
2,000 Amperes
Three-Pha.. Full-Wave
(6-I-I-B)
6 Diode. Either Polarity or 3 Diodes Each
Polarity
2,000 Amperes
Six-Phase Star
(6-1-1-S)
6 Diodes Either Polarity
2,600 Amperes
Six-Phase with Interphase,
3~ DoubieWYE (6-I-l-Y)
6 Diodes Either Polarity
4,000 Amperes
Maximum Operating and Storage Temperature: -6SoC to + ISOoC (All Types)
FIGURE 1 - MAXIMUM CIRCUIT RATINGS
z
w
Double WYE,
0::
0::
w
:;;;
a..
~===j::;iMiilFMt:===~....,.--=~..---+--Multiply
IDe
Scale by 2.
1000 LFM
0::
::J
'-' 1500 I1-
::J
a..
60 Hz, Resistive or
Inductive Load.
1-
::J
a
!:: 1000
500 LFM
::J
'-'
0::
C3
w
'"«
500
FREE CONVECTION
0::
w
>
«
:;
~
~
0
20
40
60
80
100
TA, MAXIMUM AMBIENT TEMPERATURE (OC)
1212
120
140 150
MR2083HA (continued)
ELECTRICAL CHARACTERISTICS (All Types)
Characteristic And Conditions
Symbol
Maximum Limit
Units
Fu1l-Cycle Average Forward Voltage
Drop at Rated Load, TC =ISOoC
VF(AV)
0.5
Volts
FuU-Cycle Average Reverse
Current at Rated Load, T C = ISOoC
lR(AV)
80
Milliamperes
4.0
Milliamperes
DC Reverse Current at Rated
Reverse Voltage, VR, TC =25°C
lR
NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bU9-ber
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assemblv case temperature is not allowed to exceed 15o"C.CSee Figur.l).
MECHANICAL CHARACTERISTICS
POLARITY:
Standard polarity devices ere CATHODE-TO-CASE, reverse polarity devices ere ANODE-To-CASE and designated
by an "R" suffix, i.e., MR2083HAR.
MOUNTING POSITION:
Cooling fins vertical for convection cooling or parallel to forced air flow.
MOUNTING CONFIGURATION:
The MR2083HA is designed to be mounted as an intagral part of the current carrYing buo-bar network of the
rectifier system as shown in the outline dimensions. The rectifier diode and finned heatsink are supplied as two separate
pieces under one common type number.
OUTLINE DIMENSIONS
0.25_1
f-!-''----+-+----:l-,
0.281 DiA THRU
4 PLACES
I ~~gr-I ~
_ _ 3.00·
-3.25
""1,.....--------------
t
j
t
2.34± 0.08
1.92±0.0!-•
•
r-
I-------I~
0.25
0.562 OiA THRU
~RECTIFIERDiOOE
I
~____J--L____~
06~.031
1.._ ;J~FI~~~§~§~§~'
0.25
T
BU~AR
~
----
~
~
~~
~
1213
FiNNED HEATSiNK
TOLERANCES UNLESS OTHERWiSE SPECIFIED: 2 PLACES± 0.015
3 PLACES ± 0.010
MR2266 (SILICON)
MR2273
High-voltage, axial-lead, silicon rectifiers, designed
for television "damper" diode service, feature subminiature packages, high current-handling capability,
excellent reliability, and economy. Flame-proof silicone polymer case.
CASE 59
(00-41)
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Symbol
MR2273
MR2266
Unit
VRRM
VRWM
200
800
Volts
140
560
Volts
1.0
0.75
1.0
0.75
VR
RMS Reverse Voltage (Sine wave operation)
VR(RMS)
Average Rectified Forward Current
(single-phase, resistive (75·C Ambient)
(100·C Ambient)
load, 60 Hz )
10
Amp
Peak Repetitive Forward Current
(TA = 25·C)
~RM
10
Non-Repetitive Peak Surge Current
(superimposed on rated current
at rated voltage, T A = 25·C)
~SM
30 (for 1/2 cycle)
T J , TstJr
-65 to +175
Operating and Storage Temperature Range
Amp
Amp
·C
THERMAL CHARACTERISTICS
Thermal ReSistance, Junction to Ambient: 8 JA
ELECTRICAL CHARACTERISTICS (TA = 25OCUhlilssothel'WisenOted)
Charilcteristics
Symbol
Full-Cycle Average Forward Voltage Drop
(Rated Current @ 2S·C, sine wave operation)
VF(AV)
DC Forward Voltage Drop
(1 Amp Continuous DC, 25·C)
VF
(25·C)
(lOO·C)
DC Reverse Current @ Rated Vr
IR
Max
Unit
Volts
0.8
Volts
1.1
0.01
0.05
rnA
Typical
Typical Forward Peak Voltage Overshoot
(Figure 1, Figure 2)
I
I
MR2266, IF - 2 A
Vfo
10
Volts
MR2273, IF = 5 A
Vfo
28
Volts
1214
MR2266, MR2273 (continued)
FIGURE 1 - FORWARD PEAK VOLTAGE OVERSHOOT TEST CIRCUIT
+
500 j.LF
on
HP-214A
PULSE
GENERATOR
OR
EQUIVALENT
]
5Q,5W
NON·INDUCTIVE
1: 1
PULSE
TRANSFORMER
CURRENT SENSE
TEST PROCEDURE:
1. Adjust input pulse from generator to saturate MF812 transistor
2. Adjust battery voltage for the specified forward current
after the voltage overshoot.
IF = 2 Amps, for MR2266
IF = 5 Amps, for MR2273
3. Read peak voltage overshoot across diode under test. (See
Waveform Diagram).
FIGURE 2 -
DIODE UNDER TEST, WAVEFORM DIAGRAM
MR2271
For Specifications, See 1N4933 Data, Volume 1.
1215
DIODE
UNDER
TEST
TEKTRONIX
541 SCOPE
MR2272 (SILICON)
Subminiature axial-lead silicon rectifier designed for
videopower-supplyapplications in low-voltage television
receivers where video supply-voltage is obtained from
horizontal deflection system.
"
CASE 59
(00-41)
I
MAXIMUM RATINGS
(TA = 250 C unless otherwiSe noted)
Symbol
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocldng Voltage
R:MS Reverse Voltage (Sine wave operation)
Average Rectified Forward Current (Sine wave operation)
(75'C Amb(ent)
(100'C Ambient)
Peak Repetitive Forward Current
(TA = 75'C)
Value
400
Volts
VR(RMS)
280
Volts
Amp
10
1.0
0.75
Amp
.IFRM
IFSM
Non-Repetitive Peak Surge Current
(superimposed on rated current
at rated voltage, TA =75'C)
Juction Operatlng and storage Temperature Range
Unit
VRRM
VRWM
VR
TJ , Tstg
10
Amp
30 (for 1/2 cycle)
@80 Hz
-65 to +175
·C
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient: (J JA = lOOoC/W MAX
ELECTRICAL CHARACTERISTICS
(TA· 25°C unless otherwise noted)
Symbol
Characteristics
Forwara v~~e Drop
(1 Amp Continuous DC, 25'C)
~1mum
VF
Maximum Full Cycle Average Forward Voltage Drop
(IO = O. 75 Amps and Rated Vr' TA = 75' C,
Half Wave Rectifier, 60 Hz)
VF(AV)
Maximum Reverse Current @ Rated DC Voltage (25'C)
Ia
Maximum Reverse Recovery Time
(IRR =O. 5 Amp)
trr
Rectification Efficiency (Typical)
RE
1216
Value
Unit
VOlts
1.1
Volts
0.5
0.01
mA
/Ls
1.5
55
%
MR2272
(continued)
TYPICAL REVERSE CHARACTERISTICS
TYPICAL FORWARO CHARACTERISTICS
2.0
.
1.6
ffi
1.2
il'!
I
TJ
I
I
I
I I J
J
J I I
25°C
/
.Jf 0.4
I
I
/ / /
V:..;I . /
0.2
0.4
0.6
I
~
I
50°C
0.8
o
o
J
= 100°C_ - J
:$
~
000
0.8
I
25°C
.01
.
~
0.75
~
~ 0.50
~
w
to
ffi
0.25
>
«
>"
~
0
0
25
RECOVERY TIME TEST CIRCUIT
o
TEKTRONIX
'"'"
100
50
75
125
T... AMBIENT TEMPERATURE (OCI
535A
I
D.UJ.
I~
150
175
501l
4 WATTS
TYPICAL RECOVERY WAVEFORM IN CIRCUIT
10
t. TlMEIJ£S1
LOW VOLTAGE HORIZONTAL DEFLECTION TEST CIRCUIT
MR2273 (SILICON)
For Specifications, See MR2266 Data.
1217
3.6K
15.75 kHz I
1.5
5
CURRENT
PROBE
HEWLm
PACKARD
PULSE
GENERATOR
214.\
(f =
DIODE CURRENT WAVEFORM IN VIDEO SUPPLY OPERATION
4
-
200
400
V•• STATIC DC REVERSE VOLTAGE !VOLTSI
1.2
1.0
MAXIMUM ALLOWABLE DC OUTPUT
gj (Sine Wave Operation, Resistive or Inductive Load)
a~
::::100~=
n
V~ FORWARD VOLTAGE DROP (VOLTSI
!! 1.00
= 150°C
600
MR25 00 SERIES (SILICON)
MfDIUM-CURRfNT SILICON RECTIFIERS
MEDIUM-CURRENT
SILICON RECTIFIERS
· •• compact, highly efficient silicon rectifiers for medium·current
applications requiring:
•
High Current Surge - 400 Amperes @ T J = 1750 C
•
Peak Performance @ Elevated Temperature - 25 Amperes @
TC=l50o C
•
•
Low Cost
Compact, Molded Package - For Optimum Efficiency in a Small
Case Configuration
50 - 1000 VOLTS
25 AMPERES
DIFFUSED JUNCTION
~
MAXIMUM RATINGS
MR
Ch...cterlstic
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage (halfwaY8, single phase,
MR
MR
MR
MR
MR
VR
VRSM
60
10
•
120
240
480
720
960
60 Hz·. TC' 15o"C)
IFSM
Current (surge applied@rated
25
..
1200 Volts
..
60 Hz peak)
Average Rectified Forwarc;t Current
(Single phase, resistive load,
Non-Repetitive Peak Surge
MR
Symbol 2500 2501 2502 2504 2506 2506 2510 Unit
Volts
VRRM
100 200 400 600 800 1000
50
VRWM
400 (for 1 cycle)
.
Amp
Amp
load conditions, half wave,
single phase, 60 Hzl
Operating and Storage Junc::tion
TJ,Tstg
Temperature Range
-
..
-65 to +175
.'
°c
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
(Single Side Cooled)
@
1: '[I=!I
---=t--.-i
ELECTRICAL CHARACTERISTICS
Characteristics and Conditions
Maximum Instantaneous Forward Voltage
Temperature
SVmbol
vF
Max
1.18
Unit
Volts
Reference
Point
liF' 78.5 Amp, Tr.· 25°C)
Maximum Reverse Current (rated de voltage)
TC' 25°C
TC'Z 100°C
IR
100
500
"A
CASE 183-03
MECHANICAL CHARACTERISTICS
CASE: Void Fr.e, Transfer Molded.
FINISH: All External Surfaces are Corrosion Resistant and the Contact Areal Readily
Solderable.
POLARITY: Indicated by dot on Cathode Sida
MOUNTING POSITIONS: Any
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 25o"C
WEIGHT: 1.8 Grams (Approximately)
1218
MILLIMETERS
DIM MIN MAX
A 10.03 10.Z9
4.19 4.45
B
D
5.54 5.64
F
5.94 6.Z5
M
5' NOM
INCHES
MIN MAX
0.395 0.405
0.165 0.175
0.Z18
.ZZZ
O.Z34 O.Z46
50 NOM
MR2500 Series (continued)
FIGURE 1 - FORWARD VOLTAGE
700
FIGURE 2 - NON-REPETITIVE SURGE CURRENT
600
."...
~
500 e--TJ 250C
V
/
300
/
200
1/ V
!----- I-TYPICAL
'"~
~
~
f"""'-....
1'"
0
II
0
1
30
25°C
f""'-",
~,,,,,.~
50
I
r-....
--....... r-...
I
e--fLJ\
60
1.0
20
20
5.0
/I
~
"'"
I""-TJ = 175'C
0
..,
VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz
0
/
J
100
r-...
0
MAXIMUM
V
.............
t:--.
0 ...............
~t-
./
II
10
10
20
50
100
NUMBER OF CYCLES
FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT
~
~ 7. 0
~ 5. 0
+ll.5
'"
>-
~ 3. 0
~
~
2. 0
f,3
:;
V2
.§ -0.5
5U
$-1.0
1. 0
7
o. 5
TYPICAL RANGE",
i-"'"
8
-
-1. 5
o. 3
O. 2
0.6
0.8
1.2
1.0
1.4
1.6
1.8
2.0
2.2
2.4
2.6
-2.0
0.2
0.5
VF, INSTANTANEOUS FORWARO VOLTAGE IVOLTS)
FIGURE 4 - CURRENT DERATING
..,
~
~
40
~
30
_
!
~
~
~
'"
~
1.0
2.0
5.0
10
20
50
100
iF, INSTANTANEOUS FORWARD CURRENT lAMP)
0
11 L
1 ......
1--1-"ic---tl -Ililf.IF;;,;M) =ff ISINE WAVE RESISTIVE LOAD)_
t:---..
1........... 11
I'-
..........
~
IAV)
~
I
....... I
I
I
l~gtCAPACITIVE --!---+-----f
LOADS
J
t':'---- . . . ~ rr~
--.......
Nil'... . . . . . .
- f-t...
10
r--.: ~~
130
135
-~~~
0
~
__~~__~~__~__~~~
140
145
150
155
160
TC, CASE TEMPERATURE 10C)
J
0
....... E§!!ii
0~~--4-
SINEWAVE
0 CAPACITIVE r-;IIFM)=2j 1- 10
IIAV)
LOADS
0
i-t)! .......... ,::::-....~
20:::::--
125
,
./
200
FIGURE 5 - FORWARD POWER DISSIPATION
or--'~~ddee~--'--I.---r--.--.---.--,--,
>-
--- ....-
-1"1
165
170
175
1219
L5 /
/
h
'l
//
V
/
/
de
/ / / V' .......SQUARE_ ; - WAVE
L L 6( / '
/ 1/./ ~ ~ " SINE~AVE
RESISTIVE LOAD1// ~ F'
A~ II""'""
~ jII"""
O~
10
20
30
40
IFIAV), AVERAGE FORWARD CURRENT IAMPI
50
MR2500 Series
(continued)
FIGURE 6 - THERMAL RESPONSE
~
1- 0
~ O. 7
~ o. 5
o
~ o. 3
<..)
z
~
--
o. 2
~ o. 1
~ 0.0 7
ffi
or
I-
~
~
0.05
0.0 3
/"
0.02
""~ 0.0 1
~
ReJC(tl- ReJc· rlt!
NOTE 1
0.05 0.07
0.1
0.2
0.3
0.5
0.7
2.0
1.0
3.0
5.0
I,TIME(ms)
7.0
10
20
t-
DUTY CYCLE, D = tp/t!
PEAK POWER, Ppk. !Speak of an
t
P
TIME
equivalent square power pulse.
I--- " ------I
~
w
"
/-11,-1
i'.
50
0.1
ffi
>
~
O. 3
~
O. 2
~
....-
"I,
/
V
'".5
~
I!f,= 1.0 V
:2
i;
O. 1 ' - - - 1.0
ffi
>
~
5.0
~
3. 0
II:
2. 0
w
2.0
3.0
5.0
IF, FORWARD CURRENT (AMP)
0
>- 1.0
----
----
0.5
1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)
50
1::
2.0V
7.0
,
100
TJ=250C
~ I"'- ..........
IF
0~~0'25IR
;::
L""
----
0.2
FIGURE 9 - REVERSE RECOVERY TIME
i.---1"'"
~
2~OC
0
TJ - 25°C
=:
500
--ALL DEVICES
"
- - - ALL DEVICES EXCEPT MR2500
2. 0
7-~
5
;:: O.
300
r--..,
0
FIGURE 8 - FORWARD RECOVERY TIME
O.
200
TJ =
30O
To determme malClmum juncllon temperature of the diode In a given SItuation, the followmg
procedure IS recommended.
The temperature of the case should be measured uSing a thermocouple placed on the case at
the temperature leference pOtllt (see the outhne drawing on page 11 The thermal mass connected
to the case IS normally large enough $0 that ,tWill not Stgnlflcantly respond to heat StIrges
generated in the dlodeasa result of pulsed operation once steadv state conditions are achieved
USing the measured value 01 TC, the junction tel1lgeratur" may be determined bV
TJ=TC+lHJC
wlN!re 8. TJC IS the Increase in Junction temperature abow the case temperature It may be
determinedbv.
6TJC" Ppk • ROJC [0 + (1 - 01 • r(l1-f Ipl-f ntp) - rft,)]
where
rft) = normalIZed value of tranSIent thermal reSIstance at time, 1. from Figure 6, i.e.,
r(11+tpl=normalizedvalueoftranSientthermalresistanceattim811+tp
1.0
100
500
Ppk
Pk
70
FIGURE 7 - CAPACITANCE
NOTE 1
RS[
50
30
-
IF = lOA
1220
1.0
0.1
"r--..
f-1rr
I'
~~
5.0A
-......
II
r--..
.......... l"'- I'--
)1
i"
;5
10
......
0.2
0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0
IR/IF, RATIO OF REVERSE TO FORWARD CURRENT
10
MR2500 Series (continued)
FIGURE 10 - RECTIFICAnON WAVEFORM EFFICIENCY
0
-
0
-
TJ=250C
,
~
[\
0
I'
CURRENT INPUT WAVEFORM
0
8. 0
6. 0
1.0
J\I'vI ~-~-~ II
2.0
3.0
5.0
7.0
10
20
30
50
70
100
f. FREQUENCY (kHzl
RECTIFICATION EFFICIENCY NOTE
FIGURE 11 - SINGLE-PHASE HALF·WAVE RECTIFIER CIRCUIT
The rectification efficiency factor
calculated using the formula:
(J
For a square wave input of amplitude V m • the efficiency factor
shown in Figure 10 was
becomes:
V2m
V20ldcl
0=
Pdc
RL
.100%=
V20ldel
.,00%
Prm • = v20lrmsl
v20lacl + V20ldel
2RL
0lsquarel = V2m • 100% = 50%
III
RL
RL
(A full wave circuit has twice these efficiencies~
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, result·
iog in an increasing ac voltage component across R L which is
opposite in polarity to the forward cur",,,,t. thereby reducing the
value of the efficiency factor a, as shoV't'n on Figure 10.
I. should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was ob.alned by measuring the ae component of Vo with a
true rma ac voltmeter and the dc component with a de voltmeter.
ob'ain points for. Figure 10.
The deta was used in Equation 1
For a -sine wave input Vm sin (wt) to the diode, assume lossless.
the maximum theoretical efficiency factor becomes:
V2m
,,2RL
4
"Isinel = -2- • 100% ~2
V m
"
4RL
131
• 100% = 40.6%
121
'0
1221
MR 2500 Series (continued)
Exceeding these recommended maximums can result in
electrical degradation of the device.
ASSEMBLY AND SOLDERING INFORMATION
There are tMIO basic areas of consideration for successful
implementation of button rectifiers:
1. Mounting and Handling
2. Soldering
each should be carefully examined before attempting a
finished assembly or mounting operation.
SOLDERING
The butlon rectifier is basically a semiconductor chip
bonded between two nickel·plated copper heat sinks with
an encapsulating material of thermal-setting silicone. The
exposed metal areas are also tin plated to enhance
solderability .
In the soldering process it is important that the tem·
perature not exceed 2500C if device damage is to be
avoided. Various solder alloys can be used for this oper·
ation but two types are recommended for best results:
1. 96.5% tin. 3.5% silver; Melting point is 221 0 C (this
particular eutetic is used by Motorola for its button
rectifier assemblies).
2. 63% tin. 37% lead; Melting point lB3 0 C (eutetic).
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a
flux to assure good wetting of the solder. The type of
flux used depends upon the degree of cleaning to be
accomplished and is a function of the metals involved.
These fluxes range from a mild rosin to a strong acid; e.g .•
Nickel plating oxides are best removed by an acid base
flux while an activated rosin flux may be sufficient
for tin plated parts.
Since the button is relatively light-weight. there is a
tendency for it to float when the solder becomes liquid.
To prevent bad joints and misalignment it is suggested
that a weighting or spring loaded fixture be employed. It
is also important t!1at severe thermal shock (either heating
or cooling) be avoided as it may lead to damage of the die
or encapsulant of the part.
Button holding fixtures for use during soldering may be
of various materials. Stainless steel has a longer use life
while black anodized aluminum is less expensive and will
limit heat reflection and enhance absorption. The assembly
volume will influence the choice of materials. Fixture
dimension tolerances for locating the button must allow
for expansion during soldering as well as allowing for
button clearance.
MOUNTING AND HANDLING
The button rectifier lends itself to a multitude of
assembly arrangements but one key consideration must
always be included:
One Side of the Connections to
the Button Must Be Flexiblel
Strain Relief Terminal
for Button RectIfier
This stress relief to the button ~Copper
should also be chosen for maxitl
Terminal
mum contact area to afford the
~
Button
best heat transfer - but not at
- /
the expense of flexibi!ity. Fo~ an
__ r~::'t
annealed copper term mal a thlckSink
ness of 0.015" is suggested.
Material)
The base heat sink may be of various materials whose
shape and size are a function of the individual application
and the heat transfer requirements.
Common
Materials
Advantages and Disadvantages
Low Cost; relatively low heat conductivity
Steel
Copper
High Cost; high heat conductivity
Aluminum Medium Cost; medium heat conductivity
Relatively expensive to plate and not all
platers can process aluminum.
Handling of the button during assembly must be
relatively gentle to minimize sharp impact shocks and
avoid nicking of the plastic. Improperly designed automatic
handling equipment is the worst source of unnecessary
shocks. Techniques for vacuum handling and spring loading should be investigated.
The mechanical stress limits for the button diode are
as follows:
(29.4 kilograms)
Compression 321bs.
(29.4 kilograms)
Tension
32 Ibs.
6-inch Ibs. (6900 gm-cm)
Torsion
(44.9 kilograms)
Shear
551bs.
HEATING TECHNIQUES
The following four heating methods have their advantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt Furnaces readily handle large or small volumes
and are adaptable to establishment of "on-line"
assembly since a variable belt speed sets the run
rate. Individual furnace zone controls make ·excellent
temperature control possible. Cost ranges from
$20.000 to $30.000.
2. Flame Soldering involves the directing of natural
gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heating-coolingunloading positions. This is the most economical
labor method of soldering large volumes. Flame
solderi ng offers good temperature control but requires sophisticated temperature monitoring systems
such as infrared. Cost ranges from $25.000 to
$40.000.
MECHANICAL STRESS
Compression
~
~
Shear
1222
MR2500 Series (continued)
ASSEMBLY AND SOLDERING INFORMATION (continued)
1. Peel ing or plating separation is generally seen when
a button is broken away for solder inspection. If
heatsink or terminal base metal is present the
plating is poor and must be corrected.
2. Thin plating allows the solder to penetrate through
to the base metal and can give a poor connection.
A suggested minimum plating thickness is 300
microinches.
3. Contaminated soldering surfaces may out-gas and
cause non-wetting resulting in voids in the solder
connection. The exact cause is not always readily
apparent and can be because of:
(a) improper plating
(b) mishandling of parts
(c) improper and/or excessive storage time
3. Ovens are good for batch soldering and are produc·
tion limited. There are handling problems because
of slow cooling. Response time is load dependent,
being a function of the watt rating of the oven and
the mass of parts. Large ovens may not give an
acceptable temperature gradient. Capital cost is low
compared to belt furnaces and flame soldering.
4. Hot Plates are good for soldering small quantities of
prototype devices. Temperature control is fair with
overshoot common because of the exposed heating
surface. Solder flow and positioning can be cor·
rected during soldering since the assembly is exposed.
Investment cost is very low.
Regardless of the heating method used, a soldering
profile giving the time-temperature relationship of the
particular method must be determined to assure proper
soldering. Profiling must be performed on a scheduled
basis to minimize poor soldering. The time-temperature
relationship will change depending on the heating method used.
SOLDER PROCESS MONITORING
Continuous monitoring of the soldering process must
be established to minimize potential problems. All parts
used in the soldering operation should be sampled on a lot
by lot basis by assembly of a controlled sample. Evaluate
the control sample by break-apart tests to view the solder
connections, by physical strength tests and by dimensional
characteristics for part mating.
A shear test is a suggested way of testing the solder
bond strength.
SOLDER PROCESS EVALUATION
Characteristics to look for when setting up the soldering process:
I Overtemperature is indicated by anyone or all three
of the following observations.
1. Remelting of the solder inside the button rectifier
shows the temperature has exceeded 2850 C and is
noted by "islands" of shiny solder and solder
dewetting when a unit is broken apart.
2. Cracked die inside the button may be observed by a
moving reverse oscilloscope trace when pressure is
applied to the unit.
3. Cracked plastic may be caused by thermal shock as
well as overtemperature so cooling rate should
also be checked.
II Cold soldering gives a grainy appearance and solder
build-up without a smooth continuous solder fillet. The
temperature must be adjusted until the proper solder
fillet is obtained within the maximum temperature
limits.
POST SOLDERING OPERATION CONSIDERATIONS
After soldering, the completed assembly must be unloaded, washed and inspected.
Unloading must be done carefully to avoid unnecessary
stress. Assembly fixtures should be cooled to room
temperature so solder profiles are not affected.
Washing is mandatory if an acid flux is used because
of its ionic and corrosive nature. Wash the assemblies
in agitated hot water and detergent for three to five
minutes. After washing; rinse, blow off excessive water
and bake 30 minutes at 1500 C to remove trapped
moisture.
Inspection should be both electrical and physical. Any
rejects can be reworked as required.
III Incomplete solder fillets result from insufficient solder
or parts not making proper contact.
SUMMARY
The Button Rectifier is an excellent building block for
specialized applications. The prime example of its use is
the output bridge of the automative alternator where
millions are used each year. Although the material presented here is not all inclusive, primary considerations for
use are presented. For further information, contact the
nearest Motorola Sales Office or franchised distributor.
IV Tilted buttons can cause a void in the solder between
the heatsink and button rectifier which will result in
poor heat transfer during operation. An eight degree
tilt is a suggested maximum value.
V Plating problems require a knowledge of plating
operations for complete understanding of observed
deficiencies.
1223
MR2 500 S Series (SILICON)
MEDIUM-CURRENT
SILICON RECTIFIERS
MEDIUM·CURRENT SILICON RECTIFIERS
50-1000
DIFFUSED JUNCTION
· .. compact. highly efficient silicon rectifiers for medium-current
applications requiring:
• High Current Swge - 600 Ampares
• Peak Performance at Elevated Temparature 25 Ampares. TC = 1500C
• Low Cost
• Compact Molded Package - For Optimum Efficiency in a Small
Case Configuration
MAXIMUM RATINGS
Rating
Peak Repetitive Rewrse
Voltage
Working Peak Reverse
Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage
(halfwave. single phase,
60 Hz Peak)
RMS Forward Current
Average Rectified Forward
Symbol
VRRM
MR MR MR MR MR
2500 2&01 2602 2&04 2&06
S
S
S
S
S
100 200 400 600
50
MR
800
MR
2510
Unit.
S
1000 Volts
960
1200 Volts
S
VRWM
VR
VRSM
I(RMS)
10
Currant
60
.
•
120
240
480
720
...
50
25
(single phase, resistive
load. 60 Hz. T C =
1500C)
Non-Repetitive Peak Surge
Current
(surge applied at rated
load conditions, half
wave, single ph.se, 60 Hz)
Operating and Storage
IFSM
TJ.Tstg
Junction Temperature
•
.
.
600 (For 1 Cycle)
.
-65'0 +175
Amp
Amp
,
•
DIM
Amp
C
C
D
E
F
J
K
Q
MILLIMETERS
MI. M,X
12.12 12.70
10.77 11.10
- 10.29
6.35
1.91
4.45
1.19
1.35
1.12 11.51
20.32
1.52
INCHES
MI' M'X
0.471 0.500
0.424 0.437
0.406
0250
0.075 0.175
0.047 0.053
0.422 0.453
0.800
.060
-
CASE 283-01
Range
(00·4)
THERMAL CHARACTERISTICS
MECHANICAL CHARACTERISTICS
Cherlctaristic
Thermal Resistance, Junction to Case
CASE: Void Free. Transf.r Molded.
FINISH: All External Surfaces are CorrosionResistant and the Terminal Lead is Readily
ELECTRICAL CHARACTERISTICS
Charecteristic and Conditions
Maximum Instantaneous Forward Voltage
IIF = 79 Amp. TJ
Max
Unit
vF
1.15
Volts
= 2sOC)
Maximum Reverse Current (rated de voltage)
TC' 2sOC
TC = 10o"C
Symbol
~A
IR
100
500
1224
Solderabl•.
POLARITY: Cathod. to Ca.. (R ...r .. Polarity
Units are Available and Designated by an
"R" Suffix i .•.• MR2500sR).
MOUNTING POSITIONS: Any.
STUD TORQUE: 15 in·lbs Maximum.
MAXIMUM TERMINAL TEMPERATURE FOR
SOLDERING PURPOSES: 275"C for 10
Saconds at 3 Kg Tension.
WEIGHT: 6 Grams (Approximately).
MR2500S series (continued)
FIGURE 2 - MAXIMUM SURGE CAPABILITY
FIGURE 1 - FORWARD VOLTAGE
500
I I
V
300
TJ' 25°C
200
cc
100
~
70
"
I-
~
a'"
/
./
1000
.,.'"
V
ii:' 700
~
ffi
/'
/
a
~
::i.
-
Typical
I
« 30
I
~
~
;0
f\ --If\
J I
100
1.0
1"'-1--
1-1 Cycle
I I I
2.0
3.0
5.0
10
20
30
50
70 100
I I
JI
t;
~
f-
i ' ...........
NUMBER OF CYCLES
20
;0
z 10
«
.-
r-
200
""'"
Maximum
1/ II
~
'"~
'"'"
~
z
...........
~
50
Surge .
.....
~ 300
/
I
r----.
~
/V"
TJ'1750C
f· 60 Hz
VRRM May Be Applied
Between Each Cycle of
........
500
FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
2.5
7.0
2.0
5.0
15
I
I
3.0
I
2.0
U
1.0
3;
0.5
Typical Range
D' V
5
IZ
~
-05
~
-1.0
1.0
V
....
-15
-2.0
0.7
-2.5
0.5
0.6
O.B
1.0
1.2
1.6
1.4
0.1
2.0
loB
0.2 05
1.0 2.0
5.0 10 20
50 100 200
iF. INSTANTANEOUS FORWARD CURRENT (AMP)
500 1000
VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
FIGURE 4 - CURRENT DERATING
50
~
~
i''""'
.Ii!!
"""'l de
I(AV)
~
20
'"
>
I(AV)
'11'
CAPACITIVE
i- LOADS
I(FM) .20
i-I(AV)
//
::::::~ ~
:;;
if
1~
1~
1~
1~
150
1~
TC. CASE TEMPERATURE (OC)
1~
1~
1/
~
~
Square Wave
_
Sine Wave ReSistive
load
-
~
I"'..
1~
.;:;I::V/ 1'.... . . . .
10
/- ~
...... ~
~ Capacitive loads
de
/- ?'/
5.0
...........
...\\
10
~
/'
(Sine Wave Resistive Load) _
~~
~~
r---- f-l0
r---- 20
./
TJ ~ 175°C
-
-........:
t'.....
........
5.0
w
..ffi
..
...... "-
•
30
~.
0
!lEMJ • 2.0 (Square Wave)
!lEMJ .2.;;'''''''''
40
FIGURE 5 - FORWARD POWER DISSIPATION
50
1m
./
lH
5.0
10
15
20
25
30
35
40
IF(AV). AVERAGE FORWARD CURRENT (AMP)
1225
45
50
MR2500S series (continued)
FIGURE 6 - THERMAL RESPONSE
ffi
:::;
100
70
illo
30
~
20
N
«
~
z
~
R3
so
10
7.0
~
5.0
...'"
ffi
3.0
2.0
u;
~
ReJClt1 = ReJC • r(11
(Note II
I,...--"t-
~
...
t-
V
........ I--"'"
i--'"
i-""
1.0
1.0
2.0
3.0
S.O
7.0
10
20
30
SO
70
100
200
SOD
300
700
1.0 k
2.0k
3.0k
S.Ok 7.0k 10k
t. TIME (m.1
n
Ppk
nL
Ppk
J"tPL-j
I---t1---1
Time
DUTY CYCLE. 0 = tp/t1
PEAK POWER. Ppk. is peak of an
equivalent square power pulse.
--
700
To determine maximum junction temperature of the diode in
SOD
a given situation, the following procedure is recommended.
The temperature of the case sho uld be measured using a
thermocouple placed on the case at the temperature reference
point (see the outline drawing on pege 1 I. The thermal ma .. can·
nected to the case is normally large enough so that it will not
significantlv respond to heat surges generated in the diode 8S a
result of pulsed operation once steady state conditions are
achieved. Using the measured value of TC, the junction temperature
may be determined by:
w
O.S
3
I-llr~
'>"'
;::
./'"
ill
> 0.3
~
~ 0.2
"'
;:: 7.0
w
rn
7.0
SO
20
FIGURE 9 - REVERSE RECOVERY TIME
ill 5.0
>
5.0
2.0
3.0
iF. FORWARD PULSE CURRENT (AMP)
I"
Ali Devices Except MR2&OO
20
~
-
"'"
All Devices
ill
70
FIGURE B - FORWARD RECOVERY TIME
TJ - 25°C
--
100t- -
4TJC = Ppk. R8JC [0 + (1 -D) • rlt1 +tpl + r(tpl - r(t1)]
where
r(t} = normalized value of transient thermal resistance at time.
t. from Figure 6. i.e.:
r h1 + t p ) = normalized value of transient thermal resistance at
time t1 + tp.
'
~~
I 1
~J = ~so~
0
---
1.0
100
r--.
TJ=TC+4TJC
0.7
I"--..
0
where AT JC is the increase in junction temperature above the case
temperature. It may be determined by:
...
FIGURE 7 - CAPACITANCE
IF = IDA
I,
I--~.
.......,
S.OA
III
........ ........ ~....: ...... 1.0'A'
. . . r---.. ........ ,.... r-~
I"-.
.....
!'
0.2 0.3
2.0 3.0
S.O
0.5 OJ 1.0
IR/IF. RATIO OF REVERSE TO FORWARO CURRENT
7.0
10
MR2500S series (continued)
NOTE 2 - RECTIFICATION EFFICIENCY
FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
60
~f\
0
~
20 -CURRENT INPUT WAVEFORM
-vvv-
a;
~
~
~
w
.-
FIGURE 11 - SINGLE·PHASE HALF-WAVE RECTIFIER CIRCUIT
TJ : 250 C
IF(AV): LOA
~
'"t;
:t
III
- ""
40
10
S.O
tJlfL
f-
6.0
1.0
I
I
I
2.0
3.0
I
1\
-
I
I
The rectification efficiency factor a shown in Figure 10 was
calculated using the formula:
I
V20 (dc)
Tn
5.0 7.0 10
20
f. FREQUENCY (kHz)
30
50
70
100
= -R-L-- .100%=
V20(dc)
.100% (1)
V20 (rms)
V20 (ac) + V20(dc)
Prms
U=~
~
For a sine wave input V m sin fwd to the diode, assumed lossless,
the maximum theoretical etficiency factor becomes:
V2
,,2R~
4
u(sine) =-;-;r- • 100% =-:2 • 100% = 40.6%
V m
"
(2)
4RL
For a square wave input of amplitude V m • the efficiency factor
becomes:
V 2m
2RL
U(squarel = -2- • 100% = 50%
V m
(3)
RL
(A full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ae voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor a, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide. m.... r. of diode losas.
Data was obtained by measuring the ac component of Va with a
true rms ac voltmeter and the de component with 8 dc voltmeter.
The data was used in Equation 1 to obtain points for Figure 10.
1227
MR2S2S
MR2S2SR
POWER RECTIFIER/POWER SURGE SUPPRESSOR
· .. designed for applications requiring a low voltage rectifier with
reverse avalanche characteristics or for use as a reverse power
transient suppressor. Developed to su ppress transients in the automotive system, this device operates in the forward mode as a
standard rectifier or reverse mode as a power zener diode and will
protect expensive mobile transceivers, radios and tape decks from
over-voltage conditions.
AVALANCHE RECTIFIER
25 AMPERE
24-32 VOLTS
• High Power Capability
• Economical
• Non-Standard Voltages Available
• Increased Capacity by Parallel Operation
MAXIMUM RATINGS
Rating
DC Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
RMS Forward Current
Average Rectified Forward Current
Symbol
Limit
VRRM
VRWM
VR
23
Volts
I(RMS)
94
Amp
10
25
Amp
IFSM
600
Amp
Unit
(Single Phase, Resistive Load. T C = 15o"C)
Non·Repetitive Peak Forward Surge Current
(Surge Applied at Rated Load Conditions,
Halfwave, Single Phase 60 Hz)
Repetitive Peak Reverse Surge Current
Amp
IRSM
(Pulse Width = 10 ms, Duty Cyele";;1.0%,
TC = 85°C)
Exponential (See Figure 5)
62
40
$quare Wave (See Figure 4)
Operating and Storage Junction
Temperature Range
TJ,T stg
-65 to +175
°c
THERMAL CHARACTERISTICS
TEMPERATURE
REFERENCE
POINT
Characteristic
Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Min
Max
Unit
Instantaneous Forward Voltage (1)
(iF = 79 Amp, T J = 25"C)
vF
-
1.1
Volts
Reverse Current
IR
-
50
300
IVR = 20 Vde, TC = 25°C)
(VR = 20 Vde, T C: l00"C)
Breakdown Voltage
OR: 100 mAde, TC = 25"C)
Breakdown Voltage (2)
OR =40 Amp, TC ~ 85°C)
I'Ade
BV
BVM
SEATING
PLANE
114-28 UNF·2A
INCHES
MILLIMETERS
DIM MIN
24
32
Volts
-
40
Volts
MECHANICAL CHARACTERISTICS
A 18.29
B 16.99
C
D
0.46
F
H 7.62
J 10.72
K
-
4.44
ease: Void free. transfer molded
MAX
MIN
-
0.720
0.669
17.48
10.67
8.38
0.56
B.13
11.51
30.48
4.70
0.018
0.3
0.422
-
0.175
Finish: All external surfaces are corrosion-resistant and the terminal lead is readily solderable
Polarity: Standard polarity is cathode to case - MR2525
Reverse polarity is anode to case and is designated by an "R" suffix - MR2525A
Mounting Position: Any
Stud Torque: 20 in~lbs maximum
(1) Pulse Te't: Pulse Width ";;3001", Duty Cycle ";;2.0%.
(2) Pulse Test: Pulse Width";; 10 ms, Duty Cyele";;2.0%.
1228
CASE 296-03
MAX
-
0.688
0.420
0.330
0.022
0.320
0.453
1.200
0.185
MR2525, MR2525R (continued)
FIGURE 2 - MAXIMUM FORWARD NON-REPETITIVE
SURGE CURRENT
FIGURE 1 - MAXIMUM FORWARD VOLTAGE
500
1000
~
300
0
200
-"""
~
0
........
r---...
10
/
100
J
I
II
/
0
10 0
1.0
TJ = 175°C
0
~1 c~cl'-I1
2.0
'"
...........
I I
3.0
/250C
I
""'"
!\ /\
0
I
surge.
V
0
0
TJ =175°C
f =60 Hz
VR RM may be applied
between each cycle of
0
5,0
7.0
10
20
30
I
O"ty
C~eIB,
0
~
tpltl
Peak Power, Ppk' IS
0
of
To determine maximum Junction temperature of the
diode In a given Situation, the following procpdure IS
I
I
recommended
I
I
The temperature of the case shou Id be measured uSing a
thermocouple placed on the case at the temperature rof·
erencE' pOint (see the outline drawmg on page 1) The
thermal mass connected to the case IS normally large
enough so that It Will not significantly respond to heat
surges generated In the diode as a result of pul!:.ed
operation once steady-state conditions are achieved Usmg
the measured value of TC, the JunctIOn temperaturp may
be determined by' TJ = TC +J\TJC
where .1.TJC IS the mcrease In Junction temperature above
the case temperature It may be determmed by
.6.TJC"'P pk 'ReJC [0+ (1-D) 'r(q +tpl +r(tp) - r(q)]
where
r(t) '" normalized value of transient thermal resistance
at time, t. from Figure 3, r e ,
r (t1 + tpl '" normalrzed value of transient thermal
resistance at time 11 + tp
I
I
1.0
O. 7
0.5
0.4
pea~
an aquwalentsquare pOwer
pul$~
....-
0.03
0.02
ROJCII) =ReJC 'rlt)
(See Note 1)
.......
~ ~ O. 1
>-'"
!Z g; 0.07
.....
.......... 1-"
0.0 1
1.0
2,0
3,0
5.0
7.0
10
20
30
50
70
100
11, PULSE WIDTH Im,l
1229
200
300
500 700
1,0 k
2.0k
3,Ok
5.0k 7.0k 10k
MR2525, MR2525R (continued)
REPETITIVE REVERSE SURGE CURRENT
(TC = 8SoC, Duty Cycle <;;1.0%)
FIGURE 5 - EXPONENTIAL
FIGURE 4 - SQUARE WAVE
~ 100
200
!!:
..JL
... 70
~
J,.-...i.,-.tl
~
'" 50
a
~ 30
......
20
g< 10
~
j
xz
w
W
",,'"
NotB 2
50
.. '"'
<'"
......
-
'"
O"tL\mit
.~
100
.....
w
w
ivJca,J.r:r
!za:~ ~ 10
iil
~w
I I I I rm
f'
w:O
... - - Typical Failures
- - - - Design limit
"
s:-~ 30
x",
w:o
""r-.
len
rr-., ......
20
"
7. 0
5.0
1.0
5.0
2.0
10
20
50
100
200
500
1.0 k
10
1.0
5.0
2.0
10
20
50
100
1], PULSE WIDTH
1], PULSE WIDTH Ions)
200
500 1.0 k
1m,)
FIGURE 6 - CAPACITANCE
10
NOTE 2
TJ= 250 C t= 1.0 MHz-
Time tl is at the half power point and is defined
as follows:
7.0
I'- t.....
~ 5.0
w
'"'
::l
5
.......
r--....
3.0
;t
r--.
5
c.,:; 2.0
1.0
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0 7.0
10
The time constant of the exponential curve can be
found by multiplying t1 by 1.44.
20
VR, REVERSE VOLTAGE IVOLTS)
FORWARD CURRENT DERATING DATA
FIGURE 8 - FORWARD POWER DISSIPATION
FIGURE 7 - CURRENT DERATING
0
0
0
of--
0_
!JfM) • ~ IResini .. Load)-
.........
r- .......
r-...
.......
~
0
1/ /
/
0
10 } Capacitive Loads
20 )
0
~ f..,L
t..... ~
I""-- :" ~
0
100
0
F:SIo
I".
110
120
130
140
/
7
0
i"'" ~
0
150
160
170
1/ /
7
0
1'. ....... ~
K
0
~.~~~) I I I I ,-
I
TJotI 1750C
~
I/V
j
/
~
/- V J:>S
',h f-...
/ 1'.6
I0i
IJfM) =
~
l
~
0::
500
./
300
..? v
:>
f
200
'"~
70
~
50
~
30
ffi
20
~
i
..
........
600
li:
I,
5 400
~
~
~;:
iLL
VRRM MAY BE APPLIED
BETWEEN EACH CYCLE
OF SURGE.
200
..... t--
.........
....
« 150
I
'"'"
~
I I
~
100 r-
l-
80 r-
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
(\
(\
I,
I
. . . 1'--
r--....
1 CYCLE
1
60
0.6
1 1 1
~
L
0.4
2.0
1.0
3.0
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
5.0 7.0 10
20
30
NUMBER OF CYCLES AT 60 Hz
50
FIGURE 5 - THERMAL RESPONSE
.... 3
1.0
O. 7
o. 5
Recommended procedures for mounting are as follows:
1 Onll a hole In the heat Sink 0.499 ± 0.001 lOch in dIameter
2. Break the hole edge as shown to provide 8 guide Into the
hole and prevent shearmgoff the knurled side of the rectifier .
V
~~ o. 3
....
w< O.2
3
ZoJC(t)
",
=R8JC • ret)
....
.... '"
0
/'
~~ o. 1
~~ 0.07
::~ 0.05
The depth and WIdth of the break should be 0.010 inch
maximum to retain maximum heat sink surface contact.
4 To prevent damage to the rectifier during press-in. the
pnssing force snould be applied only on the shoulder ring
of the rectifier case as shown.
5. The pressing force should be applied evenly about the
shoulder ring to avoid tilting or canting of the rectifier case
m the hole durtng the press-In operation. Also, the use of a
thermallubrtcant such as D.C. 340 Will be of considerable atd.
V
"':E
~~ 0.03
0.02
~
TYPICAL THERMAL
R£SISTANCtCASE
rOSINK.llcs=O,2~C/W/
0.0 1
0.2
0.5
1.0
2.0
5.0
10 20
50
t,TIME(ms)
100 200
80
TJ = 195 0C
'" "
300
::>
Tr1750ch 25 0C
10
7.0
70
FIGURE 4 - MAXIMUM NON· REPETITIVE SURGE CAPABILITY
'-'
z
.~ 5.0
0.2
10
20
30
40
50
60
IF(AV), AVERAGE FORWARD CURRENT (AMP)
./7
~ 100
30
200
180
0::
::>
40
« 20
FIGURE 3 - MAXIMUM FORWARD VOL TAGE
-
70
0
..........
CAPACITIVE
LOADS
~=~ (I¢RESISTIVELOAO)
I(AV) 3.62 (3 ¢ RESISTIVE LOAD)+--f-5,10,20 (CAPACITIVE LOADS)_
5.0
~ 60
.~
""" ~ ~
\.
20
100
I
..... ~ '\
5i~}
~ o
I
~ =.(1¢, RESISTIVE LOAD)
"-
5.0
10
'"~
,L
K
FIGURE 2 - FORWARD POWER DISSIPATION
_ 100
~
~ 90
~
80
500 1.0 k 2.0 k
SHOULDER RING
1_
I
-~
~
-I
~
_I
Ty
1-11- 01 NOM
.01
NOM
.505~
DIA '-BH£A~T'"srNK::::;a"7J')~
I
049!h:OOOIDiA
HEAT SINK MDUNnNG
ADDITIONAL
HEAT SINK PLATE
RIVET '\..
/
INTIMATE
CONTACT AREA
COMPLETE KNURL "'-...... THIN
CONTACT AREA
CHASSIS
THIN·CHASSlS MDUNnNG
1234
70
100
MRA133, MRA133B
(SILICON)
Multi-Cell II, power rectifier diode circuits designed
for high-current rectifier service. The MRA130 series
is an air-cooled, integral rectifier assembly engineered
for optimum diode/heatsink utilization.
MAXIMUM DIODE RATINGS PER CIRCUIT LEG
Rating
Symbol
Peak Repetitive Reverse Voltage
VRRM
Working Peak Reverse Voltage
VRWM
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
(one half-wave, single-phase,
60 cycle peak)
Continuous Average Rectified
Forward Current
(single-phase, resistive load,
60 Hz, TC = IS0°C)
Non-Repetitive Surge Currents at
Rated Conditions
Value
Units
300
Volts
400
Volts
ISO
Amperes
VR
VRSM
10
~SM
3000 for 1/2 cycle
1800 for 6 cycles
Peak
Amperes
MAXIMUM CIRCUIT RATINGS (All Types, TC:S: 150°C, See Figure 1)
Circuit Configuration
Total Diodes Required
Max Total Circuit DC Output Current
Single-Phase, Center Tap
(2-1-1-C)
1 Diode Assembly Either Polarity
300 Amperes
Single-Phase Bridge
(4-1-1-B)
2 Diode Assem bUes, One Each Polarity
300 Amperes
Maximum Operating and Storage Temperature: -6S o C to +IS00 C (All Types)
ELECTRICAL CHARACTERISTICS PER CIRCUIT LEG (All Types)
Symbol
Maximum Limit
Units
FultCycle Average Forward Voltage
Drop at Rated Load, TC = IS00 C
VF(AV)
O.S
Volts
Fun-Cycle Average Reverse
Current at Rated Load, TC = IS00 C
IR(AV)
20
Milliamperes
IR
1.5
Milliamperes
Characteristic And Conditions
DC Reverse Current at Rated
Reverse Voltage, VR, TC = 2S o C
NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bus-bar
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assembly case temperature is not allowed to exceed 15o"C. (See Figure 1).
OUTLINE DIMENSIONS AND MECHANICAL CHARACTERISTICS
POLARITY:
Standard polarity assemblies are CATHODES-TO-HEATSINK, (COMMON CATHODE). Reverse polarity assem·
blies are ANODES-TO-HEATSINK (COMMON ANODE) and are designated by an "R" suffix, i.e.,MRA13:.R. (See
Figure 2.)
MOUNTING POSITION: Diode legs ....ertical for convection cooling or parallel to forced air flow.
FULL-WAVE BRIDGE ASSEMBLIES are available completely assembled with electrically insulated hardware
suitable for easy mounting. The bridge assembly is designated by a "B" suffix, i.e.,MRA133B. The bridges are
composed of one common cathode and one common anode assembly.(S .. Figure 3)
CUSTOM RECTIFIER ASSEMBLIES are available in a variety of current and voltage ranges using the basic
MULTI-CE LL II construction techniques.
1235
MRA 133, MRA 133B (continued)
FIGURE 1 - MAXIMUM CIRCUIT RATINGS
~ 300
1500 LFM
~
1000 LFM
250
I""\
~
~ 200
~
~
"~
500 LFM
150
~
...'"
o
~ 100
U
'"~'"
FREE CONVECTION
50
:(
S
~
25
COND1T1~NS: Singl~asec8nter
I\.
50
75
~
-- ----
Tap or Full-Wave
Bridge Operation
-
60 Hz Resistive or
Inductive Load
-
..
~~
100
~
125
150
175
TA. MAXIMUM AMBIENT TEMPERATURE (OCI
"c" CIRCUIT FOR
SINGLE-PHASE OPERATION
FIGURE 2 - MRA13'3 ("C" CIRCUIT)
CASE 154A
FIGURE 3 - MRA133B (BRIDGE CIRCUIT)
CASE 155A
1t-°·8PL."C~~
'~~
Tolerances unless specified: ±.D.03
RED (CATHODE. DC+)
(ANODE. DC·)
•
CONTACT SURFACE
1236
MRA163, MRA163B
(SILICON)
Multi-Cell II, power rectifier diode circuits designed
for high-current rectifier service. The MRA163 is an
air-cooled, integral rectifier assembly engineered for
optimum diode/heatsink utilization.
MAXIMUM DIODE RATINGS PER CIRCUIT LEG
Rating
Symbol
Peak Repetitive Reverse Voltage
VRRM
Working Peak Reverse Voltage
VRWM
DC Blocking Voltage
Units
Value
SO
100
300
300
400
Volts
75
ISO
400
400
500
Volts
VR
Non-Repetitive Peak Reverse Voltage
(one half~wave, single-phase,
VRSM
60 cycle peak)
Continuous Average Rectified
Forward Current
(single·phase, resistive load,
Amperes
300
10
60 Hz, TC = ISO°C)
Non~Repetitive
~SM
Surge Currents at
Rated Conditions
6000 for 1/2 cycle
3600 for 6 cycles
Peak
Amperes
MAXIMUM CIRCUIT RATINGS (All Types TC': 150°C, See Figure 1)
Total Diodes Required
Circuit Configuration
Max Total Circuit DC Output Current
Singlei'hase, Center Tap
(2-1-1-C)
1 Diode Assembly Either Polarity
600 Amperes
Single-Phase Bridge
(4-1-1-8)
2 Diode Assem blies One Each Polarity
600 Amperes
Maximum Operating and Storage Temperature: -6S oC to +lSOoC (AU Types)
ELECTRICAL CHARACTERISTICS PER CIRCUIT LEG (All Types)
Symbol
Maximum Limit
Units
Full-Cycle Average Forward Voltage
Drop at Rated Load, TC = ISOoC
VF(AV)
0.5
Volts
Full-Cycle Average Reverse
Current at Rated Load, TC = ISOoC
IR(AV)
40
Milliamperes
IR
3.0
Milliamperes
Characteristic And Conditions
DC Reverse Current at Rated
Reverse Voltage, VR. TC = 2S oC
NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bus-bar
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assembly case temperature is not allowed to ex-
ceed 15o"C. (See Flgur. 1).
OUTLINE DIMENSIONS AND MECHANICAL CHARACTERISTICS
POLARITY:
Standard polarity assemblies are CATHOOES-TO-HEATSINK, (COMMON CATHODEI. Reverse polarity assemblies are ANOOES-TO-HEATSINK (COMMON ANODE) and are designated by an "R" suffix, i.e.,MRA163R. (See
Figure 2.)
MOUNTING POSITION:
Cooling fins and diode legs vertical for convection cooling or parallel to forced air flow.
FULL-WAVE BRIDGE ASSEMBLIES are available completely assembled with electrically insulated hardware
suitable for easy mounting. The bridge assembly is designated by a "8" suffix, i.e.,MRA 1638. The bridges are
composed of one common cathode and one common anode assembly. (See Figure 3)
CUSTOM RECTIFIER ASSEMBLIES are available in a variety of current and voltage ranges using the basic
MULTI-CELL II construction techniques.
1237
MRA333, MRA333B (SILICON)
Multi-Cell fi, power rectifier diode circuits designed
for high-current rectifier service. The MRA333 is an
air-cooled, integral rectifier assembly engineered
for optimum diode/heatsink utilization.
MAXIMUM DIODE RATINGS PER CIRCUIT LEG
Rating
Symbol
Peak Repetitive Revetse Voltage
VRRM
Working Peak Reverse,Yoltage
VRWM
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
(one half-wave, single-phase,
60 cycle peak)
Continuous Average RectifJed
Forward Current
(three-phase, resistive load,
60 Hz, TC = 1S0°C)
Non-Repetitive Surge Currents at
Rated Conditions
Value
Units
300
Volts
400
Volts
100
Amperes
VR
VRSM
IF(AV)
~SM
2000 for 1/2 cycle
1200 for 6 cycles
Peak
Amperes
MAXIMUM CIRCUIT RATINGS (All Types, TC';;; 150oC, See Figure 1)
Total Diodes Required
Circuit Configuration
Max T atal Circu it DC Output Cummt
Three-Phase Half-Wave
(3-1-1-Y)
1 Diode A,sem bly, Either Polarity
300 Ampete.
Three-Phase FuUoWave
(6-1-1-B)
2 Diode Assem blies, One Each Polarity
300 Amperes
Six-Phase Star
(6-1-l-S)
2 Diode Assemblies Same Polarity
400 Amperes
Six-Phase with Interphase,
3 \II Double WYE (6-l-l-Y)
2 Diode Assemblies Same Polarity
600 Amperes
Maximum Operating and Storage Temperature: -6S oC to +lS00 C (AU Types)
ELECTRICAL CHARACTERISTICS PER CIRCUIT LEG (All Types)
Symbol
Maximum Limit
Units
Full-Cycle Avetage Forward Voltage
Drop at Rated Load, TC = 1S0oC
VF(AV)
O.S
Volts
Fun-Cycle Average Reverse
Current at Rated Load, TC = 1S0oC
IR(AV)
IS
Milliamperes
IR
1.0
Milliamperes
Characteristic And Conditions
DC Reverse Current at Rated
Reverse Voltage, VR, TC = 2S oC
NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bus-bar
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assembly case temperature is not allowed to exceed 1500C.(Se. Figure 1).
OUTLINE DIMENSIONS AND MECHANICAL CHARACTERISTICS
POLARITY:
Stand.rd pol.rity ....mbli.s .re CATHODES-TO-HEATSINK, (COMMON CATHODE). Reverse polarity assamblies are ANODES-TO-HEATSINK (COMMON ANODE) .nd .re deslgnetad by en "R" suffix, i.e.,MRA333R. (See
Figure 2.)
MOUNTING POSITION: Diode legs vertical for convection coaling or par.llel to forced air flow.
FULL-WAVE BRIDGE ASSEMBLIES .re av.ilable completely .... mbled with electrically insulated hardware
suitable for easy mounting. Th. bridge assembly is designated by • "S" suffix, i.•. ,MRA333S. The bridges are
composed of one common cathode and one common anode assembly. (Sse Figure 3)
CUSTOM RECTIFIER ASSEMBLIES .re avail.ble in a v.riety of current .nd voltage r.nges using the basic
MULTI-CELL II construction techniques.
1239
MRA333, MRA333B (continued)
FIGURE 1 - MAXIMUM CIRCUIT RATINGS
!,.
:;
300
1000 lFM
....
I
!;
~
~
1500 lFM
250
~\
200
150
500 lFM
....
~
g"''"
50
;:;
FREE CONVECTION
>
«
~
25
~
50
75
3-Phase Half-Wave
~rx~;~~:a;:~r.For
-
Multiplv IDe Scale
by 1.33. For 3
DoubleWYE,
Multiply IDe
Scale by 2.
-
'" ~~
~~
--- ----~
~
0
100
CONDITIONS:
100
60 Hz, Resistive or
Inductive Load
125
150
175
TA. MAXIMUM AMBIENT TEMPERATURE (OCI
FIGURE 2 - MRA333 ("Y" CIRCUIT)
"Y" CIRCUIT
FOR POLYPHASE OPERATION
038
CASE 154
0.38
FIGURE 3 - MRA333B (BRIDGE CIRCUIT)
CASE 155
1240
MRA363, MRA363B (SILICON)
Multi-Cell II, power rectifier diode circuits designed
for high-current rectifier service. The MRA363 is an
air-cooled, integral rectifier assembly engineered for
optimum diode/heatsink utilization.
MAXIMUM DIODE RATINGS PER CIRCUIT LEG
Rating
Symbol
Peak Repetitive Reverse Voltage
VRRM
Working Peak Reverse Voltage
VRWM
DC Blocking Voltage
Value
Units
300
Volts
400
Volts
220
Amperes
VR
Non-Repetitive Peak Reverse Voltage
(one half·wave, single-phase,
60 cycle peak)
Continuous Average Rectified
Forward Current
(three-phase, resistive load,
60 Hz, TC = ISO°C)
Non-Repetitive Surge Currents at
Rated Conditions
VRSM
IF(AV)
~SM
5000 for 1/2 cycle
3000 for 6 cycles
Peak
Ampere!!
MAXIMUM CIRCUIT RATINGS (All Types, TC';; 1500 C, See Figure 1).
Circuit Configuration
Total Diodes Required
Max Total Circuit DC Output Current
Three-Phase Half-Wave
(3-1-1-Y)
1 Diode Assembly Either Polarity
650 Amperes
Three-Phase FuU-Wave
(6-1-1-B)
2 Diode Assem blies, One Each Polarity
650 Amperes
SiJ<-Phase Star
(6-1-1-S)
2 Diode Assemblies Same Polarity
870 Amperes
Six-Phase with Interphase,
341Double WYE (6-1-1-Y)
2 Diode Assem blies Same Polarity
1300 Amperes
Maximum Operating and Storage Temperature: -65°C to +150°C (AU Types)
ELECTRICAL CHARACTERISTICS PER CIRCUIT LEG (All Types)
Symbol
Maximum Limit
Units
FuU"Cycle Average Forward Voltage
Drop at Rated Load, TC = 150°C
VF(AV)
0.5
Volts
FuU-Cycle Average Reverse
Current at Rated Load, TC
IR(AV)
40
Milliamperes
IR
3.0
Milliamperes
Characteristic And Conditions
= 150°C
DC Reverse Current at Rated
Reverse Voltage, VR, TC = 25°C
NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bus-bar
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assembly case temperature is not allowed to e)(ceed 150o C.(See Figure 11.
OUTLINE DIMENSIONS AND MECHANICAL CHARACTERISTICS
POLARITY:
Standard polaritv ....mbli .. are CATHOOES-TO-HEATSINK, (COMMON CATHODE). Reverse polarity assembli.. are ANODES-TO-HEATSINK (COMMON ANODE) and are d.. ignated by an "R" suffix, i.e.,MRA363R.( See
Figure 2)
MOUNTING POSITION: Cooling fins and diode legs v.rtical for convection cooling or parallel to forced air flow.
FULL-WAVE BRIDGE ASSEMBLIES are available completely assembled ·with electrically insulated hardware
suitable for easy mounting. The bridge assembly is designated by a "8 u suffix, i.e.,MRA36.3:l. The bridges are
composed of one common cathode and one common anode assembly. I See Figure 3)
CUSTOM RECTIFIER ASSEMBLIES are available in a variety of current and voltage ranges using the basic
MULTI-CELL II construction techniques.
1241
MRA363, MRA363B (continued)
FIGURE 1 - MAXIMUM CIRCUIT RATINGS
700
*'"
:t!
5
I
400
~
0
300
~
100
!;
....
13
"'"'
~
~
";;
~
COND1T10NS,
"-
1500 lFM
600
500
~
1000 lFM
OoubleWYE.
Multiply IOC
Scale bV2.
""'"
~'" ,'\.
500 lFM
--
'~"'0
FREE CONVECT10N
100
15
50
75
3-Phase Half.-Wave
or Full-Wave.
For Silt-Phase Star,
Multiply I DC Scale
by 1.33. For 3 4>
100
----"
60 Hz. Resistive or
Inductive Load
~
~
115
150
175
TA. MAXIMUM AMBIENT TEMPERATURE lOCI
FIGURE 2 - MRA363 ("V" CIRCUIT)
"V" CIRCUIT
FOR POLVPHASE OPERATION
CASE 156
FIGURE 3 - MRA363B (BRIDGE CIRCUIT)
CASE 157
VEL(AC)
~
(ANODE DC-)
~~:jf~~~~~~~
REO
ICATHODE, DC+)
Tolerancesunlessspecified ±003
III
CONTACT SURFACE
MRD 148 (SILICON)
For Specifications, See 2NS777 Data, Volume II.
1242
MRD1S0 (SILICON)
PLASTIC NPN SILICON PHOTO TRANSISTORS
40 VOLT
MICRO-T
NPN SILICON
PHOTO TRANSISTOR
· .. designed for application in punched card and tape readers, pattern
and character recognition equipment, shaft encoders, industrial
inspection processing and control, counters, sorters, switching and
logic circuits, or any design requiring radiation sensitivity, stable
characteristics and high·density mounting.
50 MILLIWATTS
• Economical Plastic Package
• Sensitive Throughout Visible and Near Infra·Red Spectral Range
for Wide Application
• Small Size for High·Density Mounting
• High Light Current Sensitivity (0.20 mAl for Design Flexibility
• Annular+ Passivated Structure for Stability and Reliability
MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Emitter-Collector Voltage
Total Device Dissipation @TA
=2SoC
Symbol
Value
Unit
VCEO
40
Volts
VECO
6.0
Volts
Po
50
0.67
mW
mW/oC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
°c
TJ(I),Tstg -40 to +100
(1) Heat Sink should be applied to leads during soldering to prevent Case
Temperature from exceeding 85°C.
PIN I. EMITTER
2. COLLECTOR
FIGURE 1 - COLLECTOR·EMITTER SENSITIVITY
0.10
'"
t:~
0.08
~~~
I=ffi..!:!
0.06
,.....1-""
:E~
,-""
;;:
WZE
~
..-
V
8~3 0.04
I--' I-
00
w,",
~a:
0.02
o
MIN
"""
f-'~
0.2
0.5
1.0
INCHES
MAX
MIN
0.078 0.092
0.048 0.058
0.010 0.016
0.004 0.006
0.020 0.030
0.160
7D
3D
CASE 173
....... """
0.1
MILLIMETERS
MIN
MAX
1.98
2.34
1.47
1.22
0.41
D 0.25
F 0.10
0.15
0.76
H 0.51
K 4.06
M
3D
7D
DIM
A
C
~
j~;:C
-
II
VCC =20V
CO LO RTEMP =2870 K
TUNGSTEN SOURCE
r4===:--='~~l-M~=====
2.0
5.0
10
H, RADIATION FLUX OENSITY (mW/cm2)
1243
20
MRD150 (continued)
STATIC ELECTRICAL CHARACTERISTICS (TA ~ 25°C unless noted)
Characteristic
Fig. No.
Symbol
Collector Dark Current
(Vee = 20 V; Base Open).
(Note 2)
TA ~ 25°C
TA = 85°C
-
ICEO
Collector-Emitter Breakdown Voltage
(I_e = 100 p.A; Base Open; Note 21
-
Emitter-Collector Breakdown Voltage
(IE = 100 p.A; Base Open; Note 2)
-
Min
Typ
Max
Units
p.A
-
-
0.10
-
5.0
-
40
-
-
6.0
-
-
Min
Typ
Max
0.20
0.45
-
Volts
BVCEO
Volts
BVECO
OPTICAL CHARACTERISTICS (T A ~ 25°C unless noted)
Characteristic
Fig. No.
Symbol
1
IL
Collector Light Current
(Vee = 20 V; RL = 100 ohms; Base Open)
(Note 1)
Units
mA
Photo Current Rise Time (Note 3)
2and3
tr
-
-
2.5
p.s
Photo Current Fall Time (Note 3)
2and3
tf
-
-
4.0
p.s
9
As(typl
-
0.8
-
I'm
Wavelength of Maximum Sensitivity
NOTES:
1. Radiation Flux Density (HI equal to 5.0 mW/cm 2 emitted from
3. For unsaturated response time measurements, radiation is
provided by a pulsed GaAs (gaillum·arsenide) light-emltting
diode (i\. = 0.9 j,tm) with a pulse Width equal to or greater than
10 microseconds (see Figure 2 and Figure 3).
a tungsten source at a color temperature of 2870 K.
2. Measured under dark conditions. (H~O),
FIGURE 2 - PULSE RESPONSE TEST CIRCUIT
FIGURE 3 - PULSE RESPONSE TEST WAVEFORM
VCC
+20V
O.lV- -
-
-
-1 ....- - - - - ' \ 1
-
hv
N.C.o----+--l.
i= 1.0mA
PEAK
I
RL = lOOn
OUTPUT
1244
-
-
-
-90%
MRD150 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 5 - COLLECTOR
SATURATION CHARACTERISTICS
FIGURE 4 - COLLECTOR·EMITTER CHARACTERISTICS
1. 0
«.§.
COLOR TEMP = 2870 K
TUNGSTEN SOURCE
l--- r-
o. 8 /
f-
~ o. 6
'"
13
'"0
~
8
~
-
H -10 mW/cm2
'"~
~
'"
~
7.0
2. 0
1. 8
1. 6
1.4
o
> 1. 2
V-
'"
~
510
o. 4
o. 2
15
.8
o
6
O.
4
"'~
}o
0.5
~
0
>
10
5.0
15
20
CO LOR TEMP = 2870 K
_ o. T~N~srEIN ~o~m"
8 .2
I I 1111111
2.0
1.0
IC=O.l mA
25
I
0
0.1
1.0
j
\
1'\
r---"
11111111
0.2
0.5
1.0
5.0
2.0
10
FIGURE 6 - DARK CURRENT versus TEMPERATURE
5
T~ = 25dc
I-- H=O
0
1=
0
VCE=20V
I-- H 0
0
5
./
0
0
.,,/
0
./
0
0.0 1
-20
-40
20
40
60
100
80
, lL'"
V
10
I
V
0
0
/
\
~
\
/
80
60
40
20
20
40
60
L
0
\
0
80
\
100
0
0.4
/
"
/
0
V
0
II
0
\
/
40
30
20
50
FIGURE 9 - CONSTANT ENERGY SPECTRAL RESPONSE
"-
)
lL
100
..........
1/
~
L
lL'"
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
FIGURE 8 - ANGULAR RESPONSE
0
V
lL:
IL":
0
TA,AMBIENTTEMPERATURE (OC)
100
100
FIGURE 7 - DARK CURRENT versus VOLTAGE
10,000
.1
50
20
H, RADIATION FLUX DENSITY (mW/cm 2)
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
0
100
0.5
1. 0
~
~
\
\
I
1245
~
\
0.5
0.6
0.7
0.8
0.9
X, WAVELENGTH (~m)
ANGLE (Degrees)
,
~
V
1.0
1.1
1.2
MRD150 (continued)
OPTOELECTRONIC DEFINITIONS, CHARACTERISTICS, AND RATINGS
BVCBO
Collector-Base Breakdown Voltage - The minimum de breakdown voltage, collector to base,
at stated collector current and ambient temperature. (Emitter open and H "" 0)
BVCEO
Collector-Emitter Breakdown Voltage - The
minimum de breakdown voltage, collector to
emitter, at stated collector current and ambien t
temperature. (Base open and H "" 0)
BVECO
Emitter-Collector Breakdown Voltage - The
minimum de breakdown voltage, emitter to
collector, at stated emitter current and ambient
temperature. (Base open and H "" 0)
E
Luminous Flux Density(Illuminance) [lumens/
ft. 2 = ft. candles I - The radiation flux density of wavelength within the band of visible
light.
H
Radiation Flux Density (Irradiance) [mW/
cm 21 - The total incident radiation energy
measured in power per unit area.
ICEO
Collector Dark Current - The maximum current through the collector terminal of the device measured under dark conditions, (H "" 0),
with a stated collector voltage, load resistance,
and ambient temperature. (Base open)
Po
Power Dissipation
TA
Ambient Temperature
tf
Photo Current Fall Time - The response time
for the photo-induced current to fall from the
90% point to the 10% point after removal of
the GaAs (gallium-arsenide) source pulse under
stated conditions of collector voltage, load resistance and ambient temperature. (See Note
3 and Figures 2 and 3)
J unction Temperature
Ir
Photo Current Rise Time - The response time
for the photo-induced current to rise from the
10% point to the 90"10 point when pulsed with
the stated GaAs (gallium-arsenide) source under
stated conditions of collector voltage, load resistance. and ambient temperature. (See Note
3 and Figures 2 and 3)
Tstg
Storage Temperature
VCBO
Collector-Base Voltage - The maximum allowable value of the collector-base voltage which
can be applied to the device at the rated temperature. (Base open)
VCEO
Collector-Emitter Voltage - The maximum
allowable value of collector-cmitter voltage
which can be applied to the device at the rated
temperature. (Base open)
Emitter-Collector Voltage - The maximum
allowable value of emitter-collector voltage
which can be applied to the device at the rated
temperature. (Base open)
Wavelength of maximum sensitivity in micrometers.
1246
MRD300 (SILICON)
MRD310
50 VOLT
PHOTO TRANSISTOR
NPN SILICON
NPN SILICON HIGH SENSITIVITY
PHOTO TRANSISTOR
· .. designed for application in industrial inspection, processing and
control, counters, sorters, switching and logic circuits or any design
requiring radiation sensitivity, and stable characteristics.
400 MILLIWATTS
• Popular TO-IS Type Package for Easy Handling and Mounting
• Sensitive Throughout Visible and Near Infra-Red Spectral Range
for Wider Application
• Minimum Light Current 4 mA at H = 5 mV/cm 2 (MRD 300)
• External Base for Added Control
• Annular Passivated Structure for Stability and Reliability
MAXIMUM RATINGS IT A • 25°C unless o.he,wise no.edl
SYmbol
Value
Unit
VCEO
50
Volts
Emitter·Coliector Voltage
VECO
7.0
Volts
COllector-Base Voltage
VCBO
80
Volts
Po
400
2_28
mW
mWf'C
TJ,T stg
-65.0+200
°c
Rating
INote 1)
Coliector·Emitter Voltage
Total Device Dissipation @TA = 2SoC
Derate above 25°C
Operating Junction and Storage
L
SEATING
PLANE
Temperature Range
NOTES:
1. LEADS WITHIN .13 mm (.005) RADIUS
OF TRUE POSITION AT SEATING
PLANE,AT MAXIMUM MATERIAL
CONDITION.
2. PIN 3 INTERNALLY CONNECTED TO
CASE.
MILLIMETERS
DIM MIN
MAX
FIGURE 1- LIGHT CURRENT ••,.us IRRADIANCE
:ro
6
IIII
IIII
/
VCC=20V
TUNGSTEN SD.URCE
CO LO R TEMP = 2870 K
III
0.5
IJ
A
B
C
'~ MR0310
o
/
F
G
1/
4. 0
a
MRD.300
1/
2
0
I
If
i.-'
i-"'
1.0
2.0
~---
H
J
'"
5.0
K
10
20.
50
l
M
5.31 5.84
4.52 4.95
5.0B 6.35
0.41 0.48
0.51 1.02
2.54 BSC
0.99 1.17
0.B4 1.22
12.70
3.35 4.01
45 SSC
CASE B2-01
H, RADIATION FLUX DENSITY ImW/cm21
1247
MRD300, MRD310
(continued)
STATIC ELECTRICAL CHARACTERISTICS
(TA = 25"c unless otherwise noted)
Charocteristic
Symbol
Collector Dark Curren,t
(VCC = 20 V. H""O) TA = 250 C
TA = l000C
Min
Typ
Max
Unit
-
25
4.0
-
na
pA
ICEO
-
-
Coliector·Base Breakdown Voltage
(lC= 100 "A)
BVCBO
BO
Collector-Emitter Breakdown Voltage
(lC = l00pA)
BVCEO
50
-
-
Volts
Emitter-Collector Breakdown Volta!!e
(IE = l00pA)
BVECO
7.0
-
-
Volts
Min
Typ
Max
Unit
4.0
1.0
7.5
2.5
-
-
2.5
0.8
-
-
2.5
'"
-
4.0
".
OPTICAL CHARACTERISTICS
(TA
= 250 C unless otherwise noted)
Device
Type
Charact.-istic
Light Current
(VCC = 20 V. RL
= 100 ohms)
Note 1
Light Current
(VCC = 20 V. RL
= 100 ohms)
Note 2
Volts
Symbol
mA
IL
MRD300
MRD310
IL
MRD300
MRD310
Photo Current Rise Time (Note 3) (RL = 100 ohm.
IL = 1.0 mA peak)
Ir
-
Photo Current Fall Time (Note 3) (RL = 100 ohm.
IL = 1.0 mA peak)
tf
-
NOTES:
1. Radiation flux density (H) equal to 5.0 mW/cm 2 emitted from
a tungsten saUTC9 at a color tamperature of 2870 K.
2. Radiation flux density (H) equal to 0.5 mW/cm 2 (pulsed) from
a GsAs (gallium-arsenide) source at ~~O.9 #Lm.
3. For unsaturated ,aspo".. time melllUramanU. radiation I, provided by pulsed GaA. (gallium-arsenlde) liaht..ml1:ting diode
(A ~ 0.9 ~m)- with • pulse width equal to or greater than 10
mlcrol8Condl (see Flgur. 6) I L = 1.0 mA peak.
1248
mA
-
MRD300, MRD310 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 3 - NORMALIZED LIGHT CURRENT
versus TEMPERATURE
FIGURE 2 - COLLECTOR·EMITTER
SATURATION CHARACTERISTIC
~
~
1.4
1. 2
2.
TUNGSTEN SOURCE
COLOR TEMP' 2870 K
w
~
1.0
ffiN
o
ffi
0.8
1=
:::;
-
1.0mA
~
5.DmA- f--
2.DmA
:iii 0.6
:l::
~
8
w
>'"'
0.4
0.2 t-
o. 1
0.3
m
0.5
.1
_I.
-'
'-
'-
"-
1.0
5.0
3.0
./
1.2
1.0
O. 6
,/
O. 4
O. 2
0
-100
30
10
-75
-50
>=
w
5.0
7.0
'"
....
~
'"
4.0
'":::>
'"'
....
3.0
0
0
Note 3
-
-
2.0
o
0.2
1.0
>=
-'
5.0
~
....
'"
:::>
'"
0'"'
500n-
2.0
5.0
75
-
----
4.0
....
0
10
3.0
100
125
"'"
20
IL. LIGHT CURRENT (mA)
500n
2.0
1.0
o
0.2
0.5
1.0
2.0
250n
~~og_
3.0
5.0
10
IL. LIGHT CURRENT (mA)
FIGURE 6 - PULSE RESPONSE TEST CIRCUIT AND WAVEFORM
VCC
+20V
IL = 1.0 mA- - - - --.~---......
- - - - - - ------90%
h.
N.C.
150
1000n_
~
il:
250n lOOn50n_
-...;:::
50
Note 3
~
:,....
0.5
6.0
-'
lOOOn-
"'-...
il:
.,; 1.0
!w
:E
i--
25
FIGURE 5 - FALL TIME versus
LIGHT CURRENT
7.0
:E
-25
TA.AMBI ENT TEMPERATURE (OC)
FIGURE 4 - RISE TIME ve,sus
LIGHT CURRENT
6.0
./
V
V
H. RADIATION FLUX DENSITY (mW/cm2)
!w
"'"
./
1.4
~ O.8
\
\
rlio
I III
°
1. 81-- VCC = 20 V
Note 1
1. 6
"-
0------1
OUTPUT
1249
20
MR0300, MR0310 (continued)
FIGURE 7 - DARK CURRENT ve....s TEMPERATURE
40
1
10
~
1.0
....
I: H· 0
F
t-- ~ VCE=20V
::>
'-'
~
'"c
rr;.-
~
:j
o. 1
0.01
OJlOl
8
ci
E O.DOD 1
0.00001
-25
-50
25
75
50
125
100
TA. AMBI ENT TEMPERATU RE (DC)
FIGURE 8 - CONSTANT ENERGY SPECTRAL RESPONSE
100
L .........
II
0
J
0
/
0
0
V
/
I\.
\
80
\
\
~
60
>
40
w
;::
0.7
0.9
0.8
~. WAVELENGTH (pm)
I
I
I
I
g
1.0
1.1
o
1.2
'"\
.\
\
\
\
I
20
\.
0.6
I
w
'"z
1\
\
/
0.5
ANGULAR RESPONSE
/
~
o
0.4
S' -
FIGURE
100
\
i
I
40
30
20
10
10
ANGLE (DEGREES)
1250
\
20
30
40
MRD360 (SILICON)
MRD370
NPN SILICON HIGH SENSITIVITY
PHOTO DARLINGTON TRANSISTORS
· .. designed for application in industrial inspection, processing and
control, counters, sorters, switching and logic circuit or any design
requiring very high radiation sensitivity at low light levels.
•
Popular TO·18 Type Hermetic Package for Easy Handling and
Mounting
•
Sensitive Throughout Visible and Near Infra·Red Spectral Range
for Wider Application
•
Minimum Light Current 12 rnA at H = 0.5 mW/cm 2 (MRD360)
•
External Base for Added Control
•
Switching Timestr@ IL = 1.0 rnA peak = 15 p.s (Typ) - MRD370
tf@ I L = 1.0 mA peak = 25 p.s (Typ) - MRD370
MAXIMUM RATINGS
(T A
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
40
Volts
Emitter-Base Voltage
VEBO
10
Volts
Collector-Base Voltage
VCBO
50
Volts
IL
250
mA
Light Current
@
250 MILLIWATTS
= 25°C unless otherwise noted).
Rating (Note 1)
Total Device Dissipation
Derate above 25°C
40 VOLT
PHOTO DARLINGTON TRANSISTORS
NPN SILICON
T A - 25 C
u
Operating and Storage Junction
Po
250
1.43
mW
mW/oC
TJ,Tstg
-65 to +200
°c
SEATING
PLANE
H
G
M
J '
Temperature Range
FIGURE 1 - LIGHT CURRENT versus IRRAOIANCE
1001~~~
50~
;(
f---f---J--f--+-MR0361!loO.,r--<::"'+--+--J-::;;...-I
V
i,...--f-'"
~'" 20/-_+_+_+-~,j.£'--+---::t;....""'M
::
/"
""'MRD370:.--+_--1
.§.
/'
../
10~~~~~~~~~~~~~~~~~~~
~B 5.0~
~
STYLE I:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
STYLE 2:
PIN I. CATHODE
2. GATE
3. ANODE
NOTES:
1. LEADS WITHIN .13 mm ('005) RAOIUS
OF TRUE POSITION AT SEATING
PLANE,AT MAXIMUM MATERIAL
CONDITION.
2. PIN 3 INTERNALLY CONNECTED TO
CASE.
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A
5.31 5.84
0.209 0.230
B
4.52 4.95
O.17B 0.195
C
5.08 6.35
1t.200 0.250
~ ~::: ~:: I~:~:
asc
f---I--t/Y-7/-+--+--i--+- VCP 5.0 V - /
H@2870oK
G
2.54 BSC
I-¥H-+~0~.9;.9+-7'1...
17.-+
I-'!:~-+"'!I~~:~;'O+-"1:....
22.-+
0.046
0.048
1.00!:--=0.~(-fO.2::--:0f:.3:--:0J.,.4--:0'=.5-"J0.1:-6-o:::l.7:--:-/f:.8:--:0,l:.9-~1.0
~:fL;.t::",3;'i;.~3;;'5:'7.·4F..;;;0~I=t
0.158
2.01----j'-",,/1--+-+-1--+-:.:r-=;.:.:---f--!
H, RADIATION FLUX DENSITY {mW/'m2}
M
45" BSC
CASE 82
TO·18
1251
MRD360, MRD370 (continued)
STATIC ELECTRICAL CHARACTERISTICS (TA
~ 250 C unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
Collector Dark Current
(VCE ~ 10 V, H ""'0) TA ~ 25°C
ICEO
-
10
100
nA
Collector-Base Breakdown Voltage
(lC = 1OOjlA)
BVCBO
50
-
-
Volts
Collector-Emitter Breakdown Voltage
BVCEO
40
-
-
Volts
BVEBO
10
-
-
Volts
Symbol
Min
Typ
Max
Unit
12
3.0
20
10
-
-
-
1.0
Characteristic
(lC~100jlA)
Emitter-Base Breakdown Voltage
(IE ~ 100jlA)
OPTICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted.)
OtrliceType
Characteristic
Light Current
VCC~ 5.0V,RL= 100hms(Note 1)
mA
IL
MRD360
MRD370
Collector-Emitter Saturation Voltage
(lL ~ 10 mA, H ~ 2 mW/cm 2 at 28700 K\
Volts
VCE(satl
Photo Current Rise Time (Note 2)
(RL ~ 1000hms
IL ~ 1.0 mA peak)
MRD360
MRD370
tr
-
40
15
100
100
jlS
Photo Current Fall Time (Note 2)
(RL = 100 ohms
IL = 1.0 mA peak\
MRD360
MRD370
'f
-
60
25
150
150
jlS
NOTES:
1. Radiation flux density (H) equal to 0.5 mW/cm 2 emitted from
a tungsten source at a color temperature of 2870 K.
2. For unsaturated response time measurements. radiation is provided by pulsed GaAs (gallium-arsenide) light-emitting diode
(1- "" 0.9 jlm) with a pulse width equal to or greater than 500
microseconds (see Figure 6\ I L ~ 1.0 mA peak.
1252
~
MRD360, MRD370 (continued)
I'
I
I
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - COLLECTOR-EMITTER
SATURATION CHARACTERISTIC
~
FIGURE 3 - COLLECTOR CHARACTERISTICS
1. 5
100
o
~
1. 3
"...
.§
~
'"
~
O. 9
\
'"
~
8
_ o. 7
--
::::-i-
......
~
IL"20mA
lOrnA
5.0mA
2· omi
l
H@2870oK
> O. 5
0.2
0.1
0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0
H. RADIATION FLUX DENSITY (mW/cm2)
...
2. 0
./
1. 0
~ O. 7
~ O. 5
'"
V
V
1
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
g.O
10
O. 3
-40
-20
20
B
0
~
~1.0pA
VCE - 5.0 V
H " 0.5 mW/cm 2 @ 28700 K -
/'
O. 1
-60
100
o
./
:? o. 2
~
«
/"
~
::i
I
01 m~/cm2
FIGURE 5 - DARK CURRENT versus TEMPERATURE
5. 0
~ 3. 0
...
0.2 mW/cm 2
1000
~
'"
I
5. 0
1. o
10
0
o
0.5 mW/cm 2
2. 0
FIGURE 4 - NORMALIZED LIGHT CURRENT
versus TEMPERATURE
;-;
0
0
3. 0
~
~
H" 1.0 mW/cm 2
~
~ 10
a 7. 0
§; 1. 1
~
~H @2870oK
0
40
60
80
100
120
~
100
8
0
~
140
TA. AMBIENT TEMPERATU RE (OC)
H o ==
VCE lOV::
F
~
1. 0
0.1 nA
-10
0
20
40
80
100
60
TA. AMBIENT TEMPERATURE (OC)
120 130
FIGURE 6 - PULSE RESPONSE TEST CIRCUIT AND WAVEFORM
IL"10mA------:r-----.,.,
- - - - - - ------90%
N. c. 0---"+-1
j==
l.OmA
PEAK
j
tf~
OUTPUT
1253
==
=
MR0360, MR0370 (continued)
FIGURE 7 - CONSTANT ENERGY SPECTRAL RESPONSE
100
II
0
j
0
/
"
1. 0
/
\
1/ ~
o. 9
I\.
./
0
0
/
FIGURE 8 - ANGULAR RESPONSE
I
O. 8
\
~
!:
I
J
> 0.4
;::
O. 3
g
\
/
II
O.2
05
06
07
09
08
A, WAVElENGTH (pml
10
11
~20
12
\
V
-16
-12
-8,0
-4.0
+4.0
ANGLE !DEGREESI
SELECTED OPTOELECTRONICS APPLICATION NOTES:
AN-440
Theory and Characteristics of Photo Transistors
AN·50S
Applications of Phototransistors in Electro-Optic Sys-
AN-56l
How to Use Photosensors and Light Sources
tems.
To obtain copies of these notes list the AN numbeds) on your
company letterhead and send your request to:
Technical Information Center
Motorola Semiconductor Products Inc.
p,O, Box 20924
Phoenix, Arizona 85036
1254
\
I
O. 1
0
04
,
J.
5
w
\
\
'1
6
\
1\
I
d. 7
+8.0
+12
~
+16
+20
MRD450
(SILICON)
PLASTIC NPN SILICON PHOTO TRANSISTOR
40 VOLT
PHOTO TRANSISTOR
NPN SILICON
· .. designed for application in industrial inspection, processing and
control, counters, sorters, switching and logic circuits or any design
requiring radiation sensitivity, and stable characteristics.
100 MILLIWATTS
• Economical Plastic Package
• Sensitive Throughout Visible and Near Infra·Red Spectral Range
for Wide Application
• Minimum Sensitivity (0.2 mA/mW/cm2) for Design Flexibility
• Unique Molded Lens for High, Uniform Sensitivity
• Annular Passivated Structure for Stability and Reliability
MAXIMUM RATINGS
Rating (Nota 11
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
40
Volts
Emitter-Collector Voltage
VECO
6.0
Volts
Po
lOU
mW
mW/oC
Total Oevice Dissipation @ T A = 2SoC
Derate above 25°C
Operating Junction Temperature Range
1.3
TJ (11 -40'0 +85
T stg
Storage Temperature Range
°c
STYLE 1:
PIN 1. EMmeR
2. COLLECTOR
(1) Heat Sink should be applied to leads during soldering to prevent Case
Temperature from exceeding 85°C.
t
c
FIGURE 1 - COLLECTOR·EMITTER SENSITIVITY
t
1.0
'"
~~
:;;>
VCC=20V
COLOR TEMP = 2870 K
TUNGSTEN SOURCE
0.8
0.6
DIM
"..
""" ;;:
j~~
Ot-e
'-'«oe
w«
~a:
rv;r
....
LL.Ij::_
~~1
t-w-
I--"
A
C
./' i-""
0.4
o
F
H
K
Q
0.2
o
---
0.1
3.56
4.57
0.33
0.23
1.02
6.35
1.91
4.06
5.33
0.46
0.28
1.27
0.140 0.160
0.160 0.210
0.013 0.019
0.009 L-'!,O
0.040
I
0.5
1.0
2.0
5.0
H. RAOIATION FLUX OENSITY (mW/cm 21
1255
CASE 171
10
20
0.05u
0.250
NOM
MIN
r-0.2
INCHES
MIN
MAX
MILLIMETERS
MIN
MAX
U.Ut! NUM
MRD450 (continued)
STATIC ELECTRICAL CHARACTERISTICS ITA
=
25°C unless otherwise noted)
Characteristic
Symbol
Collector Dark Current
(VCC = 20 V, Note 2)
TA
TA
Typ
Max
Unit
p.A
ICEO
= 250 C
= 850 C
Coliector·Emitter Breakdown Voltage
(lC = 100 p.A; Note 2)
BVCEO
Emitter~Collector
BVECO
(IE
Min
Breakdown Voltage
= 100 p.A; Note 2)
-
-
-
5.0
-
40
-
-
6.0
-
-
Min
Typ
1.0
4.0
-
-
2.5
0.10
Volts
Volts
OPTICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)
Characteristic
Fig. No.
Symbol
1
IL
Collector Light Current I
(VCC = 20 V, RL = 100 ohms, Note 1)
Max
Unit
mA
Photo Current Rise Time (Note 3)
2and3
tr
-
Photo Current Fall Time (Note 3)
2and3
tf
-
-
4.0
p.s
9
Xs
-
0.8
-
p.m
Wavelength of Maximum Sensitivity
p.s
NOTES:
1. Radiation Flux Densitv (H) equal to 5.0 mW/cm 2 emitted from
3. For unsaturated response time measurements, radiation is
a tungsten source at a color temperature of 2870 K.
provided by a pulsed GaAs (gallium-arsenide) light-emitting
diode (A ::::::::0.9 ",m) with a pulse width equal to or greater than
10 microseconds (see Figure 2 and Figure 3),
(H~O).
2. Measured under dark conditions.
FIGURE 2 - PULSE RESPONSE TEST CIRCUIT
FIGURE 3 - PULSE RESPONSE TEST WAVEFORM
Vec
+20 V
0.1 V- -
-
-
-1,.-----""'"\
-
-
-
-
-90%
N.C. o-------1~l.
RL =loon
--10%
OUTPUT
1256
MRD450 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 5 - COLLECTOR SATURATION
CHARACTERISTICS
FIGURE 4 - COLLECTOR-EMITTER CHARACTERISTICS
10
1....
8.0
z
./~
w
~ 6.0
/
..,::>
"'"~
-
~
>
8
o
o
1.2
~
1.0
'"
COLOR TEMP = 2870 K
TUNGSTEN SOURCE
,
\lc'O.lmA
0.8
0.5
1.0
\
\
06
_ 0.4
"'"W 0.2
1.0
10
1\
~
2.0
5.0
1.4
~
5.0
3.0
--
'"~
">
0:
/ ' I""""
§ 2.0
1.8
;;; 1.6
7.0
./~
4.0
~ 2.0
COLOR TEMP =2870 K
TUNGSTEN SOURCE -
-1-
I
~.10mlNlcm
"
~ 0
15
20
25
0.1
0.2
0.5
1.0
2.0
=
1
"
VCE - 20 V
H-O
TA = 25 DC
H= 0
~ 20 -
0:
0:
a~ 15
"'"
L
~
L
1
1/
0.0 1
-40
-20
60
20
40
TA, AMBIENT TEMPERATURE (DC)
80
o
o
100
v
80
~
>
40
20
o
50
40
I
30
..
10
20
V
V':
30
/'
II
20
J
Z
~
'"""1\\
/
w
'"
\
\
\
1
\
10
10
~
~
20
V
80
\
I
I
I
I
I
100
v
V
40
50
FIGURE 9 - CONSTANT ENERGY SPECTRAL RESPONSE
'\.
I
"
V
100
-.......
/
V
~
g
20
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
FIGURE 8 - ANGULAR RESPONSE
100
V
10
"~ 5.0
~
./
V
L
0:
~
10
25
-
w
5.0
FIGURE 7 - DARK CURRENT versus VOLTAGE
FIGURE 6 - OARK CURRENT versus TEMPERATURE
10,000
60
I'...
H, RAOATION FLUX DENSITY (mW/cm2)
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
z
5.0
60
/
\
./
0:
~ 40
1\
;::
~
0:
~
30
0
\
\
/
\.
o
40
0.4
0.5
0.6
0.7
0.8
0.9
~,WAVELENGTH (~m)
ANGLE (DEGREES)
1257
1.0
1.1
1.2
MRD450 (continued)
MRD450
OPTOELECTRONIC DEFINITIONS, CHARACTERISTICS, AND RATINGS
BVCEO
resistance, and ambient temperature.
open)
Collector-Emitter Breakdown Voltage - The
minimum de breakdown voltage, collector to
emitter, at stated collector current and ambient
temperature. (Base open and H "'0)
BVECO
Emitter-Collector Breakdown Voltage - The
minimum de breakdown voltage, emitter to
collector, at stated emitter current and ambient
temperature. (Base open and H ,., 0)
E
Luminous Flux Density(Illuminance) [lumens/
ft. 2 = ft. candles) - The radiation flux density of wavelength within the band of visible
light.
H
Radiation Flux Density (Irradiance) [mW/
cm 2 ) - The total incident radiation energy
measured in power per unit area.
ICEO
Collector Dark Current - The maximum current through the collector terminal of the device measured under dark conditions, (H ,., 0),
with a stated collector voltage, load resistance,
and ambient temperature. (Base open)
PD
Power Dissipation
SRCEO
Collector-Emitter Radiation Sensitivity (mA/
mW/cm 2) - The ratio of photo-induced, collector-emitter current to the incident radiant
energy measured at the plane of the lens of the
photodevice under stated conditions of radiation flux density (H), collector voltage, load
(Base
Ambient Temperature
Photo Current Fall Time - The response time
for the photo-induced current to fall from the
90% point to the 10% point after removal of
the GaAs (gallium-arsenide) source pulse under
stated conditions of collector voltage, load resistance and ambient temperature. (See Note
3 and Figures 2 and 3)
Junction Temperature
Photo Current Rise Time - The response time
for the photo-induced current to rise from the
10% point to the 90% point when pulsed with
the stated GaAs (gallium-arsenide) source under
stated conditions of collector voltage, load resistance, and ambient temperature. (See Note
3 and Figures 2 and 3)
VCEO
Collector-Emitter Voltage - The maximum
allowable value of collector-emitter voltage
which can be applied to the device at the rated
temperature. (Base open)
VECO
Emitter-Collector Voltage - The maximum
allowable value of emitter-collector voltage
which can be applied to the device at the rated
temperature. (Base open)
Wavelength of maximum sensitivity in micro
meters.
1258
MRD500 (SILICON)
MRD510
100 VOLT
PHOTO DIODE
PIN SILICON
PIN SILICON PHOTO DIODE
100 MILLIWATTS
· .. designed for application in laser detection, light demodulation,
detection of visible and near infrared light-emitting diodes, shaft or
position encoders, switching and logic circuits, or any design requiring
radiation sensitivity, ultra high·speed, and stable characteristics.
•
Ultra Fast Response - «1.0 ns Typ)
~
MRD500
.'
.. .
MRD500 (1.2 pA/mW/cm 2 Min)
High Sensitivity - MRD510 (0.3/JA/mW/cm2 Min)
• Available With Convex Lens (MRD500) or Flat Glass (MRD510) for
Design Flexibility
Jl
MR0510
(CONVEX LENS)
CASE 209-1
(FLAT GLASS)
CASE 210-1
• Popular TO·18 Type Package for Easy Handling and Mounting
•
Sensitive Throughout Visible and Near Infrared Spectral Range
for Wide Application
PIN 1. ANODE
• Annular Passivated Structure for Stability and Reliability
PIN 2. CATHODE
PIN 2 INTERNALLY CONNECTED
TO CASE
MAXIMUM RATINGS IT A
Rating
Symbol
Value
Unit
Reverse Voltage
VR
100
Volts
Total Device Dissipation@TA==250 C
Po
100
0.57
mW
mW/oC
Derate above 25°C
Operating and Storage Junction
MILLIMETERS
MIN MAX
5.31 5.84
4.52 4.95
5.DB 6.35
0.41 0.48
0.51 1.02
2.548SC
G
H
0.99 1.17
J
0.84 1.22
= 250 C unless otherwise noted)
TJTstg
~5
to +200
DIM
A
B
C
D
F
CASE 209-01
K
°c
L
M
Temperature Range
F't--t·
1I-'
FIGURE 1 - TYPICAL OPERATING CIRCUIT
SEATING
PLANE
K
D--H--
12.70
3.35 4.01
45° 8SC
INCHES
MIN MAX
0.209 0.230
0.178 0.195
0.200 0.250
0.016 0.019
0.020 0.040
.1 0 B
0.039 0.046
0.033 0.048
0.500
0.132
450 BSC
STYLE 1:
PIN 1. ANODE
2. CATHODE
~
H
4i+;'o
+-----0 V,ilnal
M
50n
~>
CASE 21D-Ol
G
J
I
MILLIMETERS
DIM
A
B
C
0
G
H
J
K
M
1259
MAX
MIN
5.31 5.84
4.52 4.95
4.57 5.33
0.41 0.48
2.54 BSC
0.99 1.17
0.84 1.22
12.70
450 sse
INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0.180 0.210
0.016 0.019
0.100 sse
0.039 0.046
0.033 0.048
0.500
450 sse
MRDSOO, MRDS10 (continued)
STATIC ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Fig. No.
Characteristic
Symbol
Min
Typ
Max
nA
10
Dark Current
Unit
(VR = 20 V. RL = 1.0 megohm; Note 2)
TA = 25 0 C
TA = l00"C
-
4 and 6
-
2.0
-
14
-
Reverse Breakdown Voltage
IIR= 10.uA)
-
BVR
100
200
-
Volts
Forward Voltage
(IF = SOmA)
-
VF
-
-
1.1
Volt.
Series Resistance
(IF = SOmA)
-
R.
-
-
10
ohms
Total Capacitance
(VR = 20 V; f = 1.0 MHz)
6
CT
-
-
4
pF
Fig. No.
Symbol
Min
TVp
Max
OPTICAL CHARACTERISTICS (TA = 25°C)
Characteristic
Radiation Sensitivity
(VR
= 20 V. Note 1)
Sensitivity at 0.8 .um
(VR = 20 V. Note 3)
MR0500
MR0510
2 and 3
S(/,= 0.8.um)
MR0500
MR0510
-
-
Response Time
(VR = 20 V. RL = 50 ohms)
-
Wavelength of Peak Spectral Response
7
1.8
0.42
-
-
6.6
-
.uA/mW/cm2
1.5
-
1. Radiation Flux Density (H) equal to 6.0 mW/cm 2 emitted from
• tungsten source at • color temperature of 2870 K.
(H~
0).
3. Radiation Flux Density (H) equal to '0.5 mW/cm 2 at O.S "m.
1260
-
1.0
NOTES:
2. Me,lured under dark conditions.
-
1.2
0.3
t(resp)
hs
Unit
.uA/mW/cm2
SR
0.8
ns
-
.um
MRDSOO, MRDS10 (continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - IRRADIATED VOLTAGE - CURRENT
CHARACTERISTIC FOR MRD500
50
1....
~
'"
El
....
:z:
FIGURE 3 -IRRADIATED VOLTAGE - CURRENT
CHARACTERISTIC FOR MRD 510
10
I--- TUNGSTEN SOURCE TEMP - 2870 K t---- H= 20 mW/cm2.-
-
5.0
20
10_
10
5.0=-=
5.0
2.0= L...--
1....
'===
~
'"=><.>
I--
0.5
0.5
5.02.0
2.0
1.0
1.0==
0.5-
0.2
0.1
o
10
20
30
40
50
60
70
80
90
o
100
10
20
FIGURE 4 - DARK CURRENT venus TEMPERATURE
H
1000
80
90
100
~50C
~ 0.15
10 0
....
il'i
./
~
.'"
10
G
'"'"
12
1.0
'"'"
0.1
Vf"'"
,.........
V
.,...... V
V
12 0.05
V
o. 1
V
o
0.0 1
25
50
75
100
125
o
150
10
20
3D
TA. TEMPERATURE (DC)
40
50
FIGURE 6 - CAPACITANCE versus VOLTAGE
f =1.0 MHz
80
6. 0
~
5. 0
z
;! 4.o \
~
3. 0 " ' -
g
2. 0
1. 0
0
50
60
100
70
80
90
100
VR. REVERSE VOLTAGE (VOLTS)
40
\
\
0
,/
0
0.2
0.3
"
'-.
0.4
0.5
0.6
~.
1261
,
-.i
/
0
0
1\
/
50
U
40
90
,
/
70
60
30
80
~
L
90
7. 0
20
70
FIGURE 7 - RELATIVE SPECTRAL RESPONSE
100
10
60
VR. REVERSE VOLTAGE (VOLTS)
8. 0
U
70
T=
H= 0 - - t - -
~
£:
60
=20 V I - =0
1
;3
50
0.2
VR
~
~
40
FIGURE 5 - DARK CURRENT versus REVERSE VOLTAGE
10.000
'"'"
=>
30
VR. REVERSE VOLTAGE (VOLTS)
VR. REVERSE VOLTAGE (VOLTS)
ffi
20 mW/cm2-==
K= t=H
10 :::::::::;;:;
'" 0.5
::;
~
1.0- I - -
1.0
!==TUNGSTEN SOURCE TEMP = 2870
....:z:
'"::;
..l 2.0
=
0.7
0.8
WAVELENGTH
(~m)
0.9
1.0
1.1
1.2
MRD500, MRD510 (continued)
MRD500 AND MRD510
OPTOELECTRONIC DEFINITIONS, CHARACTERISTICS, AND RATINGS
BVR
Reverse Breakdown Voltage - The minimum dc
reverse breakdown voltage at stated diode current
and ambient temperature.
CT
Total Capacitance
H
Radiation Flux Density (Irradiance) [mW/cm 2] The total incident radiation energy measured in
power per unit area.
ID
Dark Current - The maximum reverse leakage
current through the device measured under dark
conditions, (H~), with a stated reverse voltage,
load resistance, and ambient temperature.
Po
Power Dissipation
Rs
Series Resistance - The maximum dynamic series
resistance measured at stated forward current and
ambient temperature.
Radiation Sensitivity (}.tA/mW/cm 2) - The ratio
of photo-induced current to the incident radiant
energy measured at the plane of the lens of the
photo device under stated conditions of radiation
flux density (H), reverse voltage, load resistance,
and ambient temperature.
SR
TA
Ambient Temperature
TJ
Junction Temperature
Tstg
Storage Temperature
VF
Forward Voltage - The maximum forward voltage
drop across the diode at stated diode current and
ambient temperature.
VR
Reverse Voltage - The maximum allowable value
of dc reverse voltage which can be applied to the
device at the rated temperature.
As(~m)
Wavelength of peak spectral response in micro
meters.
OPTO DEVICES
AN-50B Applications of Phototransistors in ElectroOptic Systems
AN-440- THEORY AND CHARACTERISTICS OF PHOTO
TRANSISTORS
A brief history of the photoelectric effect is discussed,
followed by a comprehensive analysis of the effect in
bulk semiconductors, pn junctions and phototransistors. A model is presented for the phototransistor.
Static and transient data for the MRD300 provide
typical phototransistor characteristics. Appendices
provide a discussion of the relationship of irradiation
and illumination and define terms specifically related
to phototransistors.
1262
This note reviews phototransistor theory, characteristics and terminology, then discusses the design of
electro-optic systems using device information and geometric considerations. It also includes several circuit
designs that are suited to dc, low-frequency and highfrequency applications.
MRD601, MRD602 (SILICON)
MRD603, MRD604
50 VOLT
NPN SILICON
PHOTO DETECTOR
NPN 81 LICON PHOTO DETECTOR
50 MILLIWATT8
· .. designed for application in card and tape readers, pattern and
character recognition, and shaft encoders, or any design requiring
radiation sensitivity, stable characteristics, and high-density mounting.
•
•
•
•
•
Low Profile Lens Reduces Optical Cross·Talk
Pill Package Designed for PC Board Insertion
Wide Range of Output Currents
Excellent Match to Tungsten and Gallium·Arsenide Sources
Sensitive Throughout Visible and Near Infra·Red Spectral Range
for Wider Application
• Rugged Hermetic Package
• Annular Passivated Structure for Stability and Reliability
MAXI MUM RATI NGS ITA" 25°C unless otherWISe noted)
Symbol
Valua
Unit
Collector-Emitter Voltage
VCEO
50
Volts
Emitter-Collector Voltage
VECO
7.0
Volts
50
0.5
mW
mWf'C
-65 to +125
°c
-65 to +150
°c
Rating
Total Device Dissipation
PD
@TA"250C
Derate above 25°C
Operating Junction
Temperature Range
TJ
Storage Temperature Range
T stg
Soldering Temperature
2400C for 10 seconds
FIGURE 1 - NORMALIZED LIGHT CURRENT
versus RADIATION FLUX DENSITY
0
~
STYlE 2:
TERM 1. ANODE
Tr25'C
VCC =5.0 V
2 CATHODE
f"G,As
SOURCE
MILLIMETERS
DIM
L
V
I
V
NGSTENURCE
0.5
1.0
2.0
5.0
10
20
H. RADIATION FLUX DENSITY ImW/cm2)
1263
MAX
INCHES
MI.
MAX
O.osa
0.062
0.125
0.018
0.008
0.003
0.022
0.012
0.007
0.020
0.093
0.094
0.031
0.20
1.57
3.18
0.56
0.30
0.08
0.18
H
0.36
2.11
0.51
0.014
L
2.08
0.58
2.36
2.39
079
0083
0082
0.023
C
0
E
F
0.46
•
•
./
0.0 I
0.2
•
MI.
1.47
CASE 81A-Qa
STYLE 2
MRD601, MRD602, MRD603, MRD604
(continued)
STATIC ELECTRICAL CHARACTERISTICS (TA: 250 C unless otherwise noted)
Characteristic (Note 11
Collector Dark Current
(Vec'3OV,H:01
Symbol
Min
Typ
Max
-
-
25
nA
1.0
pA
BVCEO
50
-
-
Volts
BVeco
7.0
-
-
Volts
Min
TVp
Max
Unit
Unit
ICEO
TA: 250 e
TA: l00"C
Collector-Emitter Breakdown Voltage
(lC'I00"A,H=OI
Emitter-Collector Breakdown Voltage
(IE '100I'A, H: 01
ELECTRO-OPTICAL CHARACTERISTICS (TA' 250 e unless otherwise noted)
Characteristic
Svmbol
Light Current
(VCC: 5.0 V, R L : 100 ohms,
H: 20 mW/cm 2
MRDSOI
MRDS02
MRD603
MRD604
(Note 1 - Figure 11
IL
Light Current
(Vec' 5.0 V, RL: 100 ohms,
H : 0.5 mW/cm2)
MRDSOI
MRD602
MRDS03
MRDS04
(Note 2 - Figure 1)
IL
0.5
2.0
4.0
7.0
1.5
3.5
S.O
B.5
= 20 mW/cm 21
-
-
-
mA
-
Collector-Emitter Saturation Voltage
(lC' 0.5 mA, H
mA
-
-
O.OB
O.IB
0.30
0.45
VCE(sad
-
0.13
-
-
Volts
(Note 1 - Figure 2)
Rise Time
Fall Time
Rise Time
Fall Time
(Vec: 30 V, IL - BOO pA,
RL = 1000 ohms)
(Note 3 - Figure 101
(Vec: 30 V, IL = 800 pA,
RL: 100 ohmsl
(Note 4 - Figure 10)
tr
-
1.5
-
"s
tf
-
15
-
"s
tr
-
2.0
-
2.B
-
"S
"S
tf
NOTES:
1. Radiation flux Density (H) equal to 20 mW/cm 2 emitted from
a tungsten source at a color temperature of 2870D K.
2. Radiation Flux Densitv (HI equal to 0.5 mW/cm 2 emitted from
a GaAs (gallium-arsenidel source at ?-""900 nM.
3. For this response time measurement, radiation is provided by
a pulsed xenon arc lamp with a pulse width of approximately
1.0"s(see Figure 10).
4. For this response time measurement, radiation is provided by a
pulsed GaAs (gallium arsenide) light emitting diode (?-"" 900 nM)
with a pulse width equal to or greater than
(see Figure 10), I L
= BOO "A.
1264
10
~sec
MRD601, MRD602, MRD603, MRD604 (continued)
TYPICAL CHARACTERISTICS
COLLECTOR·EMITTER SATURATION VOLTAGE versus RADIATION FLUX DENSITY
FIGURE 2 - SATURATION CHARACTERISTICS
WITH TUNGSTEN SOURCE
1.0
z
o
S
O.9
:::>
O.8
>-
FIGURE 3 - SATURATION CHARACTERISTICS
WITH GBAs SOURCE
1.0
T~~8rc~tL
+J J2J.c
:i~
~~o. 5
1.0mA
8• o.
2
~
>'"'
o. 1
2.0
5.0
........
10
20
I
I
""
0.5 rnA
IC=O.1 mA
I I
I I
GoA.
SOURCE
900 nM
5.0mA
1.0mA
D.4
j> o. 3
8 o.2
o. 1
~
50
-
.....
!
II
0.5mA
II
'"''''
IC =02 mA
0
1.0
0.8
"'~~...
5.0mA
~>o. 3
~
II
~~ O.7
1='" o.6
~~
O. 5
.."
~So. 6
9~O.4
O. 9
S
COLOR TE:T =
2870·K
~u;0. 7
z
'"
0
0.2
2.0
1.0
0.5
5.0
10
20
H. RADIATION FLUX DENSITY (mW/cm21
H. RADIATION FLUX DENSITY (mW/cm21
COUPLING CHARACTERISTICS WITH GaAs SOURCE
FIGURE 5 - PULSED LIGHT CURRENT versus DISTANCE
FIGURE 4 - CONTINUOUS LIGHT CURRENT versus DISTANCE
5.0
50
~
SOURCE: MLED9102.0
1.0
!
~_
20
~ K1F(continuous) - 50 mA- -
TA - 25·C
o. 2
i3 o. 1
!i:
~
0.05
~
0.02
r--...
20 rnA
......
'"~
........
o
f5
6.0
8.0
10
~
0.2
........
O. 1
0.05
12
14
o
2.0
4.0
d. LENS t. LENS SEPARATION (mml
FIGURE 6 - DARK CURRENT
TEMPERATURE
versus
'"to
to
...'"
13
VCC - 30 V
H-O
o. 1
§
N
...:::;
~
0.00 1
./
I. 2
~
~
O.8
='
'"~ 0.000 1
/'
/'
O. 6
V
/'
O. 4
~
0.0000 1
·50
./
./
1.4
1. 0
0
'"
RL=100n
.'
_I.
VCC=5.0V
Note 1
1.6
0.0 1
'"'"
14
FIGURE 7 - NORMALIZED LIGHT CURRENT
versus TEMPERATURE
1.8 _
ill
12
10
2.0
1.0
>-
8.0
6.0
d, LENS to LENS SEPARATION (mml
10
j
-...
0.1 A
~ 1.0
4.0
.......
........
:
2.0
:::;
10mA
2.0
TA - 25·c'== E
~ "-- -0.4 A
>-
0.0 1
0.005
"\.
110
>~ 5.0
o. 5
SOURCE: MLED910PULSE WIDTH 10 •• -
IF (pulsedl -1.0 A
O. 2
0
-25
+25
+50
+75
+100
+125
TA. AMBIENT TEMPE RATU RE (·Cl
·100
·75
·25
25
50
75
TA,AMBIENT TEMPERATURE (·CI
1265
100
125
150
MR0601, MR0602, MR0603, MR0604 (continued)
FIGURE 9 - FALL TIME versus
LIGHT CURRENT
FIGURE 8 - RISE TIME versus
LIGHT CURRENT
7.0
J
...
~
...
.,
6.0
--
5.0
c:
4. 0
ffi~
3.0
7.0
LI
Not. 4
Jw
1000n-
';:......"'
500n-
'"'"
....
3.0
0
2.0
r.....
....
:::I
r-...
~ 2.0
if
250n100n50n_
~
.,; 1.0
:f
...
1ii
Note 4
6.0
r1000n_
5.0
4.0
""""-
...
0
500n
---
:::I
~
if
250n
loon
50n
:: 1.0
o
0
01
0.5
1.0
2.0
10
5.0
20
0.2
1.0
0.5
IL, LIGHT CURRENT (rnA)
2.0
5.0
10
20
'L, LIGHT CURRENT (rnA)
FIGURE 10 - PULSE RESPONSE TEST CIRCUIT AND WAVEFORM
VCC
+30 V
IL =800pA -
--,r----__,.
- -
h.
N.C.
"
<:>------1
OUTPUT
100
~
,
V
I,
/
.,w
\jH -:---
1\
/
0
\
z
~
SO
'"
~
40
~
'"
FIGURE 12 - CONSTANT ENERGY SPECTRAL RESPONSE
100
FIGURE 11 - ANGULAR RESPONSE
I
I
I
I
I
0
\
30
0
I
r--
0
10
10
20
/
0
30
0
0.4
40
e, ANGLE (DEGREES)
/
"
\
\
1-
\
\
/
\
0.5
0.6
0.7
0.8
~,WAVELENGTH
1266
i\
/'
0
\
20
1/
'--
\
\
\
\
0
40
~=
\
/
'--
0.9
(pm)
1.0
1.1
1.2
MRD810 (SILICON)
35 VOLTS
NPN SILICON
PHOTO TRANSISTOR
NPN SILICON PHOTO TRANSISTOR
250 MILLIWATTS
. . . designed for application in card and tape readers, optical char·
acter recognition, shaft encoders, industrial inspection, processing and
control, switching and logic circuits or any design requiring radiation
sensitivity, and stable characteristics.
•
Popular TO·1S Type Package for Easy Handling and Mounting
•
Minimum Sensitivity (0.2 mA/mW/cm 2 ) for Design Flexibility
•
Sensitive Throughout Visible and Near Infrared Spectral Range
for Wider Application
•
Annular Passivated Structure for Stability and Reliability
•
Flat Lens for Fiber Optic Coupling
•
Precision Die Location for Minimum Optical Tolerances
MAXIMUM RATINGS ITA
TI
=25°C unless otherwise noted)
Rating
Collector~Emitter
FTB
Voltage
Emitter-Collector Voltage
Symbol
Valua
Unit
VCEO
VECO
35
5.0
250
2.5
-55 to +125
Volts
Po
Total Device Dissipation@TA =25°C
Derate above 25°C
TJ,Tstg
Operating Junction and Storage
SEATING
PLANE
Volts
0--11--
mW
mW/oC
ll
--t
K
~
°c
Temperature Range
FIGURE 1 - COLLECTOR-EMITTER SENSITIVITY
_sus RADIATION FLUX DENSITY
STYLE2:
PIN 1. EMITTER
2. COLLECTOR
0.5
I--
/
0.1
V
~UM
k-" .......
..- ~
DIM
A
B
VcC=20V r RLjlOOn
W
~
~
g
M
~
G
H
J
SOURCE TE~P' 2810 K
TUNjSTEN jOURCj
~
C
0
K
M
ro
A. RADIATION FLUX DENSITY (mWI,m2)
1267
MILLIMETERS
MAX
MIN
INCHES
MIN
MAX
5.31
5.84
4.52 4.95
4.57 5.33
0.41
0.48
2.54 BSe
0.99
1.11
0.84 1.22
12.70
45 0 BSC
0.209 0.230
0.118 0.195
0.180 0.210
0.016 0.019
0.100 BSe
0.039 0.046
0.033 0.048
0.500
45 0 BSC
CASE 210-01
MRD810 (continued)
STATIC ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Symbol
Characteristic
Collector Dark Current
(VCC = 20 V. RL = 100 ohms. Note
Min
Typ
Max
-
-
0.050
10
Unit
I'A
ICEO
2) TA = 250 C
Coliector·Emitter Breakdown Voltage
(lC = 100 /lA. Note 2)
BVCEO
35
50
-
Volts
Emitter·Collector Breakdown Voltage
(IE = 100 /lA. Note 2)
BVECO
5.0
8.0
-
Volts
Symbol
Min
Typ
Max
Unit
IL
1.0
-
-
mA
-
2.0
-
ILS
25
-
I's
-
5.0
I's
6.0
I'S
TA = l000C
OPTICAL CHARACTERISTICS (T A
=
250 C unless otherwise noted)
Characteristic
Collector Light Current
(VCC = 20 V. RL = 100 ohms, Note
1)
Photo Current Saturated Rise Time (Note
3)
tr(sat)
Photo Current Saturated Fall Time (Note
3)
tf(sat)
Photo Current Rise Time (Not. 4)
tr
Photo Current Fall Time (Not. 4)
tf
a pulsed xenon arc lamp with a pulse width of approximately
1.0 microsecond (see Figure 2).
NOTES:
1. Radiation flux density (H) equal to 5.0 mW/cm 2 emitted from
a tungsten source at a color temperature of 2870 K.
4. For unsaturated rise time measurements, radiation is provided
2. Measured under dark conditions. (H:::::::Q).
by a pulsed GaAs (gallium-arsenide) light-emitting diode
(A:::::O.9 JJ.ml witha pulse width equal toor greater than 20 micro-
3. For saturated rise time measurements, radiation is provided by
seconds.
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - COLLECTOR-EMITTER
CHARACTERISTICS
50
".s
1.0
0
u
:?
1.0
--
SOURCE TEMP'" 2870 K
TUNGSTEN SOUR~
0
TA=250C~
~
~
/'
30
2. 0
/
H=50
I
1/
'--H'" I 0
I
H =2.0
~
1il
'~"
10
15
"
10
10
5
,
~
Ic·,0.17 A
o. 1
1.0
1.0
35
30
~=1.0mA
0
8 o. 1
>
5.0
VeE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
FIGURE 4 - DARK CURRENT
versus TEMPERATURE
100
o
10
o
~
~
7.0
10
10
FIGURE 5 - ANGULAR RESPONSE
100
../
/'
80
~
5.0
3.0
H, RADIATION FLUX DENSITYlmW/cm2)
100,000
~
.'\
\,
~
0
>-
_f----
/"'"
>z
~
~
~
H=10mWfcm Z
_?OURCE TEMP'" 2870 K
TUNGSTEN SOURCE
4.0 _TA=250C
FIGURE 3 - COLLECTOR SATURATION
CHARACTERISTICS
r---....
/
/
'"
t\.
\
1\
"\
I
1.0
0
1
00 1
-60
o
-40
-10
20
40
60
80
100
-50
120
-40
-30
-20
-10
10
ANGLE (DEGREES)
TA,AMBIENTTEMPERATURE (OCl
1268
20
30
40
50
MRD3050 (SILICON)
thru
MRD3056
NPN SILICON PHOTO TRANSISTOR
· .. designed for application in industrial inspection, processing and
control, counters, sorters, switching and logic circuits or any design
requiring radiation sensitivity, and stable characteristics.
30 VOLT
NPN SILICON
PHOTO TRANSISTOR
400 MILLIWATTS
•
Hermetic Package at Economy Prices
• Popular TO·l B Type Package for Easy Handling and Mounting
•
Sensitive Throughout Visible and Near Infrared Spectral Range
for Wider Application
•
Range of Radiation Sensitivities for Design Flexibility
•
External Base for Added Control
• Annular Passivated Structure for Stability and Reliability
MAXIMUM RATINGS ITA = 25°C unless otherWISe noted)
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
30
Volts
Emitter-Collector Voltage
VECO
VrRn
5.0
Volts
40
Volts
PD
400
2.28
mW
mWf'C
TJ,Tstg
-65 to +200
°c
Collector-Base Voltage
Total Device Dissipation @ T A = 25°C
Derate above 25°C
Operating and Storage Ju nction
Temperature Range
THERMAL CHARACTERISTICS
SEATING
PLANE
STYLE 1:
PIN 1. EM ITTE R
2. BASE
D
3. COllECTOR
Characteristic
Thermal Resistance, Junction to Ambient
FIGURE I - COLLECTOR·EMITTER SENSITIVITY
0.10
VCC=20 V
SOURCE TEMP: 2810 K
TUNGSTEN SOURCE
II
r-
I
T~P
I--'"
I--'
./
0.02
o0.1
0.2
0.5
1.0
2.0
5.0
10
20
NOTES:
1. LEADS WITHIN .13 mm (.005) RADIUS
OF TRUE POSITION AT SEATING
PLANE,AT MAXIMUM MATERIAL
CONOITION.
2. PIN 3 INTERNALLY CONNECTED TO
CASE.
INCHES
MILLIMETERS
DIM MIN
MIN
MAX
MAX
5.31 5.84
A
0.209 0.230
B
4.52 4.95
0.178 0.195
C
5.08 6.35
0.200 0.250
0
0.41 0.48
0.016 0.019
0.51 1.02
F
0.020 0.040
G
2.54 BSC
08SC
H
0.99 1.17
0.046
J
0.84 1.22
0.048
K 12.70
L
3.35 4.01
M
45 8SC
CASE 82·01
H. RADIATION FLUX DENSITY {mW/cm21
1269
MRD3050 thru MRD3056 (continued)
STATIC ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Unit
Min
Typ
Max
-
-
0.1
5.0
-
BVCBO
40
-
-
Volts
Collector-Emitter Breakdown Voltage
(lC=100"A)
BVCEO
30
-
-
Volts
Emitter-Collector Breakdown Voltage
(IE = 100"A)
BVECO
5.0
-
-
Volts
Min
TVp
Max
0.10
0.20
0.10
0.25
0.625
1.5
2.0
-
-
-
0.40
1.0
2.5
-
-
Symbol
Characteristic
Collector Dark Current
ICEO
(VCC = 20 V. RL = 1.0 Megohm. Note 2) TA = 25°C
TA =B50C
Collector-Base Breakdown Voltage
"A
(lC=100"A)
OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Collector Light Current
(VCC = 20 V. RL = 100 ohms. Note 1)
Fig. No.
Svmbol
1
IL
Unit
mA
MRD3050
MRD3051
MRD3052
MRD3053
MRD3054
MRD3055
MRD3056
-
Photo Current Saturated Rise Time (Note 3)
4
tr(sat)
-
1.0
-
"s
Photo Current Saturated Fall Time (Note 3)
4
tl(5Ot)
-
10
-
/lS
Photo Current Rise Time (Note 4)
4
tr
-
2.0
-
"s
Photo Current Fall Time (Note 4)
4
tf
3.5
-
"s
Wavelength of Maximum Sensitivity
-
As
-
O.B
-
"m
NOTES:
1. Radiation flux density (H) equal to 5.0 mW/cm 2 emitted from
a tungsten source at a color temperature of 2870 K.
2. Measured under dark conditions. (H ~O).
approximately 1.0 microsecond (see Figure 4).
4. For unsaturated switching time measurements, radiation is provided by a pulsed GaAs (gallium·arsenide) light-emitting diode
(~O.9 jJm) with a pulse width equal to or greater than 10 micro-seconds (see Figure 4).
3. For saturated switching time measurements, radiation is provided by a pulsed xenon arc lamp with a pulse width of
1270
MRD3050 thru MRD3056
(continued)
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 -COLLECTOR·EMITTER CHARACTERISTICS
I.0
SOURCETEMP=2870 K
TUNGSTEN SOURCE
-
H= IOmW/cm2
~r-- r--
8
/'
FIGURE 3 - PHOTO CURRENT versusTEMPERATURE
2.0
7.0
6
4
0
3~0
2
2.0
1.0
10
20
25
·50
·25
25
VCC
+20V
h.
"0-----+..,
I
t
RL = lOOn
OUTPUT
FIGURE 5 - DARK CURRENT versus TEMPERATURE
10.000
0
F VCE-20V
I-- H=O
~
0
0
.0
.1
0.0 1
-40
·20
50
TA. AMBIENT TEMPERATURE (DC)
FIGURE 4 - PULSE RESPONSE TEST CIRCUIT AND WAVEFORM
i= LOrnA
PEAK
COLLECTOR·BASE
o
15
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
N.C.
-
~
V
~/
0.5
0
5.0
---- --COJLECTOR.EMITTER
5~0
V-
VCC=210V
NOTE 1
NORMA1UZEO TO Tf = 250 C
20
40
TA. AMBIENTTEMPERATURE (DC)
1271
60
BO
100
75
100
MRD3050 thru MRD3056 (continued)
TYPICAL CIRCUIT APPLICATIONS
(Extracted from Motorola Applications Note AIII·50B. "Applications of Phototransistors in Electro·Optic Systems'"
FIGURE 7 - LIGHT OPERATED SCR ALARM USING
SENSITIVE·GATE SCR
FIGURE 6 - STROBE F LASH SLAVE ADAPTER
9-25 V
+ IIII~__- - - - - o
01
MRD3050/MRD3056
lBk
INPUTTO STROBE
FLASH UNIT
100 mH
RFC
SI
MRD
3050
Rl
1.2 k
02
2N4216
1.0 k
+
FIGURE 8 - CIRCUIT DIAGRAM OF VOLTAGE REGULATOR FOR PROJECTION LAMP.
80 Vrms
±0.5%
01 and Q2: MPS6516
03: MRD3054
Input
105 to
180 Vac
R3
Output Adj.
Potentiometer
(Range 50-80 V)
R5
7.5 k/2 W
Rl
10 k/2 W
R6
2.0 k
82
2N
4870
81
SCR
2N4444*
R2
3.3 k/l W
·2N4444 to be used with a heat sink.
1272
MRF207, MRF208, MRF209 (SILICON)
The RF Line
NPN SILICON RF POWER TRANSISTORS
· .. designed for 12.5 Volt large-signal power amplifier applications
in communications equipment operating at 220 MHz.
• Specified 12.5 Volt, 220 MHz Characteristics Output Power = 1.0 W - MRF207
10W- MRF208
25W - MRF209
Minimum Gain = 8.2 dB - MRF207
10 dB - MRF208
4.4 dB - MRF209
• Balanced-Emitter Construction to provide the designer with the device technology that assures ruggedness and resists transistor
damage caused by load mismatch.
1_0,10,25 WATTS - 220 MHz
NPN SILICON
RF POWER
TRANSISTORS
MRF207
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol MRF2071 MRF208\ MRF209
18
VCEO
Collector-Base Voltage
VCBO
Emitter·Base Voltage
VEBO
IC
Collector Current - Continuous
Total Device Dissipation@Tc=250C(1)
Po
Derate above 2SoC
Storage Temperature Range
Stud Torque(21
0.4
3.5
20
T".
-
-
Unit
Vdc
Vdc
36
Vdc
4.0Adc
I 2.0 I 4.0
50
Watts
37.5
214
286
mWf'C
DC
-65 to +200
in. lb.
6.5
I
I
I
(1) These devices are designed for RF operation. The total device
dissipation rating applies only when the devices are operated as
RF amplifiers.
(2) For Repeated Assembly use 5 in. lb.
MRF208
MRF209
1273
MRF207, MRF208, MRF209 (continued)
E LECTRICA L CHARACTERISTICS (T C = 25 0 C unless otherwise noted)
I
Characteristic
Symbol
Min
Typ
lS
lS
lS
-
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
MRF207
MRF20S
MRF209
Collector-Base Breakdown Voltage
(lc = 2.0 mAde, IE = 0)
(IC = 5.0 mAde, IE = 0)
(lc = 10 mAde. IE = 0)
15 Vde, IE
~
-
-
-
-
Vde
BVEBO
MRF207
MRF20S
MRF209
Collector Cutoff Current
~
Vdc
36
36
36
MRF207
MRF208
MRF209
= 1.0 mAde, IC = 0)
= 2.5 mAde, IC = 0)
= 5.0 mAde, IC = 0)
(VCB
-
-
BVCBO
Emitter-Base Breakdown Voltage
(IE
(IE
(IE
Vde
BVCEO
= 5.0 mAde, IB = 0)
= 15 mAde, IB = 0)
(IC = 20 mAde, IB = 0)
(IC
(lc
4.0
4.0
4.0
-
-
-
-
-
-
-
-
0.1
0.25
0.5
5.0
5.0
5.0
-
-
-
mAde
ICBO
0)
MRF207
MRF20S
MRF209
ON CHARACTERISTICS
DC Current Gam
(IC = 100 mAde, VCE
(IC = 250 mAde, VCE
(I C = 500 mAde, VCE
-
hFE
= 5.0
= 5.0
= 5.0
Vde)
Vde)
Vde)
MRF207
MRF20S
MRF209
-
-
-
-
S.2
10
4.4
12.5
12.5
5.2
-
-
10-jll.5
1.4+j1.4
1.4+jl.S
-
32 -j41
5.7 -j1.3
3.9 - jO.2
-
FUNCTIONAL TESTS
Common-Emitter Amplifier Power Gain
(VCC = 12.5 Vde, Pout = 1.0 W, f = 220 MHz)
(VCC = 12.5 Vde, Pout = 10 W, f = 220 MHz)
(VCC = 12.5 Vde, Pout = 25 W, f = 220 MHz)
Input Impedance
(Pout
(Pout
(Pout
Ohms
Zin
= 1.0 W, f = 220 MHz)
= 10 W, f = 220 MHz)
= 25 W, f = 220 MHz)
MRF207
MRF20S
MRF209
-
Output Impedance
(Pout
(Pout
(Pout
dB
GpE
MRF207
MRF20S
MRF209
Ohms
Zout
= 1.0 W, f = 220 MHz)
= 10 W, f = 220 MHz)
= 25 W, f = 220 MHz)
-
MRF207
MRF20S
MRF209
-
-
-
220 MHz TEST CIRCUIT
FIGURE 1 -MRF207
FIGURE 2 - MRF208, MRF209
+
I
.----_-0C7
C4
L2
C6
Cl
C2, C4
C3
C5
C6
C7
Ll
L2
L3, L4
2.0 - 50 pF
5.0 - 80 pF
1.5 - 15 pF
40 pF
1000 pF
5.01'F
-=
C3
ARCO 461
ARCO 462
ARCO 460
Cl, C2, C3, C4
C5,C6
C7
C8
5.0 - 80 pF
100 pF
10l'F
1000 pF
L1
TANTALUM
L2
L3, L4
#14 AWG, 1%" Long, Straight
, Turn,#14 AWG , 3/8" 10
1 Turn, #20 AWG , 1/4" 10
4 Turns, #20 AWG. 1/4 10
151'H RFC
1274
ARCO 462
TANTALUM
RFC VK200
MRF207, MRF208, MRF209 (continued)
OUTPUT POWER versus INPUT POWER
(Vcc
= 12.5
Vdc. f
= 220 MHzl
FIGURE 3 - MRF207
FIGURE 4 - MRF208
1.6
20
2
V
"
V
,/
8
v
~
15
/
0
./
o.4
':5
,;;
/
V
0
'"
5.0
20
40
80
60
-
V
/
L
0
100
~
L
1.5
1.0
0.5
Pin, INPUT POWER (WATTSI
Pin. INPUT POWER (mWI
FIGURE 5 - MRF209
30
~
en 25
~
~
~
~ 20
E:
ie
I-
5
,,;
,;; 0
V
,/
::>
o
V
/
I-
V J.--
/
5.0
2.0
4.0
6.0
Pm, INPUT POWER (WATTSI
8.0
10
FIGURE 6 - 220·MHz, 25·WATT AMPLIFIER
Performance
Response -
125 Vdc
+
Flat from
219 to 225 MHz
(680 pF 122 I'F
Power Gain - Greater than
24 dB
Harmonics -
2nd 437 dB
all others
~50 dB
Efficiency -
50%
>
L5
O.OOlI'F
~><-___.rv..,..,n....~"'l--cK ~~tts
L1
100 mW )-t+-~"V'fY'-1r-
.....-+1L
C6
C8
40 pF
7.0 pF
L1
L2
L3
L4
L5
L6,L7
1 Turn, #20, 1/4" I D
3 Turns, #20, 1/4" 10
1/3 Turn, #16. 3/8" 10
1/3 Turn, #18, 1/4" 10
1 Turn, #20, 1/8" 10
5 Turns, #20. 1/4" 10
RFCl
RFC2
RFC3
V K200 Ferroxcube
V K20Q Ferroxcube
V K200 Ferroxcube
Cl
C2,C3,C4
C8
1275
2.0-25 pF, ARea 421 or equivalent
7.0-100 pF, ARca, 423 or equivalent
Underwocd or equivalent capacitor which
current without undue heating.
IS
capable of high
MRF207, MRF208, MRF209 (continued)
Jj~
R
B
-----
re- --,
P
L
~K
SEATING
PLANE
-
---=-.:.l
--U-D
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
L ~ I
1<1:]' I
t:T=--=
A
N
~EAT~G
E
-
PLAN]
WRENCH FLAT
DIM
A
8
C
D
E
F
G
H
J
K
L
M
P
Q
R
INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.Q16 0.021
0.009 0.125
0.Q16 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
450 NOM
0.050
900 NOM
0.100
U
*r~
ct-
=1_fU
INCHES
MIN MAX
A 9.40
9.78 0.370 0.385
8
8.13
8.38 0.320 0.330
C 18.03 19.05 0.710 0.750
D 5.59
5.84 0.220 0.230
E
1.78
2.03 0.070 O.II8Q
F
2.79
2.92 0.110 0.115
H 26.42 28.70 1.040 1.130
J
0.10
0.16
10.006
K 13.21 14.35
L
1.40
1.65
O. 5
M
450 NOM
P
1.27
R 7.59
7.80 0.299 0.307
S
4.01
4.52 0.158 li[1~
T
2.16
2.41 0.085 0.095
3.30 0.100 0.130
U 2.54
NOTE:
CASE 145A·OI USE 8·32NC2A STUD
8
All JEDEC dimensions and notes apply.
CASE 79-02
TO·39
CASE 146A·Ol
1276
I
~~
MILLIMETERS
DIM MIN MAX
MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
45 0 NOM
1.27
900 NOM
2.54
J
~
Fo:Fo
S
MRF 215 (SILICON)
The RF Line
20W -175 MHz
CONTROLLED Q
RF POWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
· .. designed for 12.5 Volt VHF large'signal amplifier applications in
industrial and commercial FM equipment operating to 175 MHz.
•
Specified 12.5 Volt, 175 MHz Charactenstics Output Power = 20 Watts
Minimum Gain = 8.2 dB
Efficiency = 60%
• 100% Tested for Load M:smatch at all Phase Angles
with 20: 1 VSWR
•
Characterized With Series Equivalent Large·Signal Impedance
Parameters
•
Built·ln Matching Network for Broad Band Operation
R
STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. EMITTER
4. BASE
FLANGE -ISOLATED
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
18
Vdc
Collector-Base Voltage
VCBO
36
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
IC
2.5
Adc
Po
31
177
Watts
Collector Current
Continuous
Total Device Dissipation
@
T C - 25°C (11
Derate above 2SoC
Storage Temperature Range
T stg
rrW'lIoC
-65 to +200
C
DIM
A
8
24.3H
12.45
C
• o·
0
5.33
5.50
1824
0.10
10.67
4.45
4.06
2.92
3.05
21.34
F
H
(11 These devIces are desIgned for RF operation. The total device diSSipation rating
applies only when the devices are operated as class B or C RF amplifIers
MILLIMETERS
MIN
MAX
J
K
L
N
Q
R
S
INCHES
MIN
MAX
25.15 0.960 0.900
12.96 0.490 0.510
B,-n ?. -n "nn
5.59 0.210 0.220
5.84 1i"7?0 0710
18.59 n71H n
0.15 0.004 0.006
10.92 0.420 0.430
4.70 0.175 0.185
4.45 0.160 0.175
3.18 0.115 0.125
3.30 0.120 0.130
21.84 0.840 0.860
NOTE:
1. DIM. "K" FROM CENTER OF "Q".
CASE 278'()4
1277
MRF215 (continued)
ELECTRICAL CHARACTERISTICS (TC
= 25 0 C unless otherwise noted)
Characteristic
Max
Unit
-
Vdc
-
--
Vde
4.0
-
-
Vde
-
-
8.0
mAde
-
0.5
mAde
-
-
dB
-
-
%
Svmbol
Min
eVCEO
18
eVCES
36
eVEeO
Collector Cutoff Current
(VCE = 15 Vde. VeE = 0, TC = 55°CI
ICES
Collector Cutoff Current
ICBO
-
GpE
8.2
T/
60
TVp
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC
= 20 mAde, Ie = 0)
Collector-Emitter Breakdown Voltage
(lC
= 10 mAde, VeE = 0)
Emitter-Base Breakdown Voltage
(I E
=2.0 mAde, IC = 0)
= 15 Vde,
(VCB
IE
= 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 500 mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output CapaCitance
(VCB
= 15 Vde,
IE
= 0, f = 1.0 MHz)
FUNCTIONAL TEST (Figure 11
Common-Emitter Amplifier Power Gain
(Pout
= 20W, VCC = 12.5 Vde, f = 175 MHz)
Collector Efficiency
(Pout
= 20W, Vee = 12.5 Vde, f = 175 MHz)
Load Mismatch
(Pout = 20 W, VCC = 12.5 Vde, f
VSWR = 20: I, all phase anglesl
-
= 175 MHz
No DegradatIon
In
Output Power
FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC
_L_4_
CS
L------It-----«~2.5
Vdc
Cl0
RF INPUT
RF OUTPUT
Z2
Cl
ZI
C6
L1
C14
C9
L5
Cl,C12
C2,C3
C4
C5,C6,Cl0,C14
C7,CS
C9
Cll,C13
L1
L2
15 pF UNDERWOOD
40 pF UNDERWOOD
0.1 )JF, 100 V, ERIE
10 pF UNDERWOOD
6S0 pF ALLEN BRADLEY Feedthrough
25 pF UNDERWOOD
1.0·10 pF JOHANSEN Type 3201
0.15)JH Choke
2 Turns, #24 AWG, I/S" 10
L3
6 Turn~ #20 AWG, on 390 Ohm, 2 W ReBidor
L4
Forrite Choke, FERRDXCUBE VK·200·10-4B
L5
Ferrite Bead, FERROXCUBE 56-590·85·3B
Rl
390 Ohm, 1/2 W, 10%
R2
2.7 Ohm, 1/4 W, 10%
Z1,Z2
MICROSTRIPLINE -0.275"Wx4,13" L
Board - Gloss Teflon, E = 2.56, t = 0.062"
Input/Output Connectors - Type N
1278
MRF215 (continued)
TYPICAL PERFORMANCE DATA
FIGURE 3 - OUTPUT POWER versus INPUT POWER
FIGURE 2 - OUTPUT POWER versus FREOUENCY
r-- t---
0
I---
-
----
I.Iw- I----
t--- ~ow
r--
I
0.6 1W
i--
-
./ ~
./
5
'l'
//
// /'
1/ ./
JY/
J
I
145
155
0
o
165
o
175
~
i'--
.............
20W
f'....
""'I-...
9.5
90
0.5
.......
1.5
1.0
Pin, INPUT POWER (WATTS)
20
f'....
r--........
VCC = 12.5 Vdc
1.5 +j 0.5
175 + 11.0
20 +j 1 5
8.0
7.5
130
,/
......... t--.Pout'" lOW
10
85
""'-175 MHz
I
t----....
r---...
~ 10.5
z
V
.-
.............
12
1
/'"
155 MHz
140
150
160
170
2.5
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE PARAMETERS
FIGURE 4 - TYPICAL GAIN versus FREQUENCY
11.5
'/'"
.....
.~
f, FREQUENCY (MHz)
12. 5
135 MHz
VCC = 12 5 Vdc
0
Pin - O.4W
VCC = 12.5 Vdc
135
-
l - t---
5
1.6W
180
f, FREQUENCY (MHz)
FIGURE 6 - 175 MHz TEST CIRCUIT LAYOUT
1279
lout
3.0 -12.0
3.5 - j 15
40 - j 1.0
MRF216 (SILICON)
The RF Line
40W -175 MHz
CONTROLLED 0
RF POWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
· .. designed for 12.5 Volt VHF large·signal amplifier applications in
industrial and commercial FM equipment operating to 175 MHz.
• Specified 12.5 Volt, 175 MHz CharacteristicsOutput Power = 40 Watts
Minimum Gain = 6.7 dB
Efficiency = 60%
• 100% Tested for Load Mismatch at all Phase Angles
with 20: 1 VSWR
• Characterized With Series Equivalent Large·Signal Impedance
Parameters
• Built·ln Matching Network for Broad Band Operation
R
STYLE 1:
PIN 1. EMITTER
2. COLLECTO R
3. EMITTER
4. BASE
I FLANGE - ISOLATEO
MAXIMUM RATINGS
Coliector~Emitter
Rating
Symbol
Value
Unit
Voltage
VCEO
18
Vdc
36
Vdc
Vdc
Adc
Coliector·Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Device Di ..ipation@Tc=25°Cll)
VCBO
VEBO
IC
Po
Derate above 25°C
Storage Temperature Range
Tstg
4.0
6.0
75
0.428
·65 to +200
Watts
W/oC
C
(1) These devices are designed for RF operation. The total device diSSipation rating
applies only when the devices are operated as cless B or C RF amplifiers.
L rBi
C
tg£~~
DIM
MILLIMETERS
MIN
MAX
INCHES
MIN
MAX
A I '438
251~
0.~60
B
C
0
F
H
12.95
0.490
J
K
L
N
Q
R
S
12.45
~~.
5.33
5.59
8.24
0.10
10.67
4.45
4.06
2.92
3.05
21.34
I.'
5.59
5.84
18.59
0.15
10.92
4.70
4.45
3.18
3.30
21.84
o~90
Ii:5fiI
n,.. n.nn
0.210
-"""
nl1R
0.220
If,..
n
0.004 0.006
0.420 0.430
O. 5 0.185
0.160 0.17~
0.115 0.125
0.120 0.130
0.840 0.860
NOTE:
1. OIM. "K" FROM CENTER OF "0".
CASE 278·04
1280
MRF216 (continued)
ELECTRICAL CHARACTERISTICS (TC
0
25°C unless otherwISe noted)
Unit
Max
Symbol
Min
Coliector~Emitter
Breakdown Voltage
(lC = 100 mAde, IB = 0
BVCEO
lB
-
-
Vde
Collector-Emitter Breakdown Voltage
(lC = 20 mAde, VBE 0 0)
BVCES
36
-
-
Vde
Emitter-Base Breakdown Voltage
(IE 0 10 mAde, IC 0 0)
BVEBO
4.0
-
-
Vde
ICES
-
-
10
mAde
ICBO
-
-
2.5
mAde
Common-Emitter Amplifier Power Gain
(Pout = 40W, VCC = 12.5 Vde, to 175 MHz)
GpE
6.7
-
-
dB
Collector Efficiency
(Pout = 40 W, VCC = 12.5 Vde, t = 175 MHz)
11
60
-
-
%
Load Mismatch
(Pout = 40 W, VCC = 12.5 Vde, t = 175 MHz,
VSWR = 20:1, all phase angles)
-
Characteristic
Typ
OFF CHARACTERISTICS
Collector Cutoff Current
(VCE
0
15 Vde, VBE = 0, T Co 55°C)
Collector Cutoff Current
(VCB = 15 Vde, IE 0 0)
ON CHARACTERISTICS
DC Current Gain
(lC 0 1.0 Ade, VCE
0
5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB= 15Vde,IE=O, to 1.0MHz)
FUNCTIONAL TEST (Figure 1)
No Degradation in Output Power
FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC
L4
Tc,-C_I_I_ _ _ _
CI_lt-_T
.....;_13_ _ _ _ _ _ _ _
~<-
12.5 Vdc
L~!::=~r7Jt-i~, RF OUTPUT
Cl,10
C2, 3, 4
C5
C6,7
C8
C9
Cll,12
C13
0.1 .F, 100 V Chip
40 pF, UNELCO
L1
6 Turns, #18 AWG, 1/4" Die.
l2
3 Turns. 1/8" Oia on Lead of C5
0.1 pF, 100 V Disc Ceramic
L3, L4 FERRITE Choke. FERROXCUBE VK200·10-4B
21
MICROSTRIPLlNE, 0.300" Wide, 3.20" Long
22
MICROSTRIPLIN E, 0.300" Wid., 0.50" Long
23
MICROSTRIPLlNE,O.300"Wid., 1.90" Long
Board - Glass Teflon, e = 2.56, t '" 0.062"
Input/Output Connectors - Type N
10 pF, UNELCO
25 pF, UNELCO
60 pF, UNELCO
680 pF, ALLEN BRADLEY Feedthru
1.0.F,35 V, TANTALUM
1281
MRF216 (continued)
TYPICAL PERFORMANCE DATA
FIGURE 3 - OUTPUT POWE R versus INPUT POWE R
FIGURE 2 - OUTPUT POWER versus FREOUENCY
-
45
"40
~
«
I-
35
~ 30
'"
~
-
50
155 mHz......
6.0W
t--- r--
~O~
~ 25
f--
I-
'"
~
0
20
}
15
Pin = 2.0W
VCC
~
12.5 Vdc
~«
40
'"
~
30
155
165
A
/" X
12.5 Vdc
-
/'
/
~
t-
"-
175
./
10
V
o
2.0
4.0
6.0
Pin, INPUT POWER (WATTS)
10.5
10
9.5
'"z
~
8.5
r--
8,0
7.5
70
6.5
VCC
~
-
Pout = 40W
r- t--
12.5 Vdc
6.0
---
5.5
130
140
150
160
170
175mHz
./
8.0
FIGURE 5 - SERIES EQUIVALENT IMPEOANCE
PARAMETERS
FIGURE 4 - TYPICAL GAIN versus FREQUENCY
180
t, FREQUENCY (MHz)
FIGURE 6 - 175 MHz TEST CIRCUIT LAYOUT
MRF221 (SILICON)
For Specifications, See 2N6081 Data, Volume II.
1282
......,..
1/. . .
/ V
t, FREQUENCY (MHz)
9.0
V
V
V/
~
g 20
o
145
~
~
-
1U
VCC
10.0
MRF225
(SILICON)
The RF Line
1,5 W - 225 MHz
NPN SILICON RF POWER TRANSISTOR
RF POWER
TRANSISTOR
NPN SILICON
... designed for 12.5 Volt large·signal power amplifier applications
in communication equipment operating at 225 MHz. Ideally suited
for Class E citizens band radio .
• Specified 12.5 Volt, 225 MHz CharacteristicsOutput Power = 1.5 Watts
Minimum Gain = 9.0 dB
Efficiency = 50%
f!
• Characterized With Series Equivalent Large·Signal Impedance
Parameters
MAXIMUM RATINGS
Symbol
Value
Unrt
Collector-Emitter Voltage
VCEO
18
Vdc
Collector-Base Voltage
VCBO
36
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
Collector Current - Continuous
IC
0.25
Adc
Total Device Dissipation
Derate above 25°C
Po
3.5
0.02
Watts
Tstg
-65 to +200
°c
Rating
@
TC = 2SoC (1)
Storage Temperature Range
W/oC
(1) These devices are designed for R F operation. The total device dissipation rating
applies only when the devices are operated as Class C R F amplifiers.
FIGURE 1 - 225 MHz TEST CIRCUIT SCHEMATIC
STYLE 1
PIN 1. EMITTER
2 BASE
3 COLLECTOR
RF
RF
Output
Input
DIM
A
8
C
0
E
C1.2,5
50 pF Dipped Mica
C3
1.5-20 pF ARea 402
C4
CS
4.0-40 pF ARea 403
100 pF Dipped Mica
C7
1000 pF UNELCO
C8
L1
L2
1.0 fJF 35 V Tantalum
0.6 Inch #18 AWG
2 Turns x 0.25 inch 10 #18 AWG
R Fe 1
Ferroxcube V K200
R FC 2
2.2 JJ.H Molded Choke
F
G
H
J
K
L
M
P
Q
R
MILLIMETERS
MIN MAX
889 9.40
8.00 851
6.10 660
0406 0533
0.229 318
0406 0.483
483 5.33
0711 0,864
0.737 102
12.70
6.35
45 0 NOM
1.27
90' NOM
1.54
INCHES
MIN
MAX
0350 0370
0315 0.335
0240 0.260
Om6 0011
0.009 0115
Om6 0.019
0190 0.210
0028 0.034
0.019 0040
0.500
0250
45° NOM
0,050
90' NOM
0.100
-
All JEDEC dimenSIOns and notes apply.
CASE 79·02
TO·39
1283
MRF225
(continued)
ELECTRICAL CHARACTERISTICS (TC= 250 C unlelSotherwl.. noted.)
sYmbol
Min
Max
Unit
Colle.tor-Emitter Breakdown Voltage
ilC= 20mAd.,IB= 0)
BVCEO
18
-
Vdc
Collector-Emitter Breakdown Voltage
IIC = 20 mAde, VBE = 0)
BVCES
36
-
Vdc
Emitter-B... Breakdown Voltage
liE = 1.0 mAde,lc = 0)
BVE80
4.0
-
Vdc
ICBO
-
100
"Adc
GpE
9.0
-
dB
T/
50
-
%
C....._istl.
OFF CHARACTERISTICS
Collector Cutofl Current
(VCB = 15 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
IIC= 100 mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12 Vdc, IE = 0, I = 1.0 MHz)
FUNCTIONAL TEST (Figure I)
Common-Emitter Amplifier POVller Gain
(Pout = 1.5 W, VCC = 12.5 Vdc, I = 225 MHz)
Collector Efficiency
(Pout = 1.5 W, VCC = 12.5 Vdc, I = 225 MHz)
FIGURE 3 - SERIES EOUIVALENT IMPEDANCE
FIGURE 2 - OUTPUT POWER versus INPUT POWER
2.0
~~
#
13.6V#
~ ;;-;-2.5 V
V
.0
V
o
25
50
P'"
'"
1= 225 MH,
75
100
125
150
Pin, INPUT POWER ImWl
175
200
225
1284
MRF226
(SILICON)
TheRFLine
13W-225MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPN SILICON
· .. designed for 12.5 Volt large·signal power amplifier applications
in communication equipment operating at 225 MHz. Ideally suited
for Class E citizens band radio.
•
Specified 12.5 Volt, 225 MHz CharacteristicsOutput Power = 13 Watts
Minimum Gain = 9.0 dB
Efficiency = 50%
•
Characterized With Series Equivalent Large·Signal Impedance
Parameters
•
Designed to Withstand Load Mismatch at all Phase Angles with
20:1 VSWR
MAXIMUM RATINGS
Rating
Collector~Emitter
Voltage
Symbol
Value
Unit
VCEO
18
Vdc
Collector-Base Voltage
VCBO
36
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
Collector Current - Continuous
IC
2.5
Adc
Total Device Dissipation @ T C '" 2sOC (1)
Derate above 2SoC
Po
45
257
Watts
mW/oC
Storage Temperature Range
Tstg
-65 to +200
°c
-
6.5
In. Lb.
Stud Torque (2)
L 1_
19
(1) These devices are designed for RF operation. The total device dissipation rating
applies only when the devices are operated as Class C RF amplifiers.
(21 For repeated assembly. use 5 In. Lb.
l
C12
~~~~~~~~-<+
12.5V
A
B
C
AF
Output
AF
Input
D
E
F
H
J
K
L
Cl.2.B.9
C3
C4.5
C6
C7
Cl0,12
Cl1
18 pF Chip Cap 50 V
15 pF UNELCO
BOpF UNELCO
25 pF UNELCO
7,OpF UNELCO
680 pF Feedthru ALLEN BRADLEY
1.0 ",F, 35 V Tantalum
AFC 1.3 Ferroxcube V K200
AFC 2
O. 15 ~H Molded Choke
Ll
L2
L3
L4
L5
0.15 x 3.15 inch Microstrlp
0.15 x 0.55 inch Mlcrostrip
0.15 x 1.4 inch Microstrip
0.15 x 2.35 Inch Microstrip
0.15 x 0.5 inch Microstrip
Board Is G 10 3 x 5 x 0.062 inch
€A - 5
1285
M
P
R
S
T
U
=ii,1
::::..j ~
MILLIMETERS
DIM MIN MAX
C10 RFC 3
~J ~
I"
=J_fU
WRENCH FLAT
FIGURE 1 - 225 MHz TEST CIRCUIT SCHEMATIC
A
=
E
:EATING PLANE
T'------+---'---«
I -
ti'
--j
9.40
9.78
8.13
8.38
18.03 19.05
5.59
5.84
1.18
2.03
2.19
2.92
26.42 28.70
0.10
0.15
13.21 14.35
1.40
1.65
45 D NOM
1.21
1.59
1.80
4.01
4.5
2.16
.41
3.30
2.54
INCHES
MIN MAX
0.310 0.385
0.320 0.330
0.110 0.150
0.220 0.230
0.010 0.080
0.110 0.115
1.040 1.130
0.004 0.006
0.520 0.565
0.055 0.065
45 D N M
- 0.050.
0.299 0.301
11
8
0.085 O. 95
0.100 0.13
NOTE
CASE 145A·Ol USE 8·32NC2A STUD
CASE 145A·Ol
ts
MRF226 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unle •• otherwise noted.)
I
Symbol
Min
Max
Unit
Collector Emitter Braakdown Voltage
(lC= 15mAde,IB= Q)
BVCEO
18
-
Vde
Collector-Base Breakdown Voltage
(lC = 5.0 mAde, IE = 0)
BVCBO
36
-
Vde
Emitter·Base Breekdown Voltage
(IE = 2.5 mAde, IC = 0)
BVEBO
4.0
-
Vde
ICBO
-
0.25
mAde
GpE
9.0
-
dB
1/
50
-
%
Characteristic
OFF CHARACTERISTICS
Collector Cutoll Current
(VCB = 15 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 250 mAde, VCE = 5.0 Vdc)
FUNCTIONAL TEST (Figure 1)
Common-Emitter Amplifier PO\Ner Gain
(Pout = 13 W, Vee = 12.5 Vde, I = 225 MHz)
Collector Efficiency
(Pout = 13 W, Vee = 12.5 Vde, 1= 225 MHz)
FIGURE 2 - OUTPUT POWER versu.INPUT POWER
22. &
0
. / / .......... ~
~ 17.&
~
'"
~
13.6~
1&
1//
/V
~ 12. 5
!:;
~ 10
"
o
~ 1. 5
o'?
5. 0
//
12.5V
1//
IV
2. 5
o
FIGURE 3 - SERIES EQUIVALENT IMPEDANCE
0.5
1.0
2.0
1.5
2.5
Pin,lNPUT POWER (WATTSI
3.0
3.5
4.0
1286
MRF230
(SILICON)
TheRFLine
1.5 W -90 MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTORS
NPNSILICON
· .. designed for 12.5 Volt, mid·band large'signal amplifier appli·
cations in industrial and commercial FM equipment operating in the
40 to 100 MHz range.
•
Specified 12.5 Volt, 90 MHz Characteristics Output Power ~ 1.5 Watts
Minimum Gain ~ 10 dB
Efficiency ~ 55%
•
100% Tested for Load Mismatch at ali Phase Angles with
30:1 VSWR
•
Characterized with Series Equivalent Large·Signal Impedance
•
Characterized with Paraliel Equivalent Large·Signal Impedance
Parameters
Parameters
N
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
18
Vdc
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Device Dissipation@Tc = 25°C (1)
Derate above 25°C
Storage Temperature Range
VCBO
36
Vdc
VEBO
Vdc
Po
4.0
0.5
5.0
Watts
28.6
mW/oC
Tstg
-65 to +200
Rating
IC
°c
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
I
Symbol
ROJC
I
STVLE 1
PIN 1. EMITTER
2.8ASE
3. COLLECTOR
Adc
Max
I
Unit
35
I
°C/W
(1) These devices are designed for A F operation. The total device dissipation rating applies
onlv when the devices are operated as Class C RF Amplifiers.
MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
M
450 NOM
P
1.27
DIM
A
B
C
D
E
900 NOM
R
2.54
-
INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
450 NOM
0.050
900 NOM
0.100
All JEDEC dimensions and notes apply.
CASE 79-02
TO·39
1287
MR F230 (continued)
I
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
I
Characteristic
Max
Svmbol
Min
BVCEO
18
-
Vde
BVCES
36
-
Vde
BVEBO
4.0
-
Vde
'CBO
-
0.5
mAde
GpE
10
-
dB
1/
55
-
%
Unit
OFF CHARACTERISTICS
ColiectorwEmitter Breakdown Voltage
(lC
= 25 mAde, 'B = 0)
CollectorwEmitter Breakdown Voltage
(lC
= 25 mAde, VBE = 0)
EmitterwBase Breakdown Voltage
(IE
= 0.25 mAde,lc = 0)
Collector Cutoff Current
(VCB = 15 Vde, 'E = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 250 mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB
= 12.5 Vde,
'E
= 0, f = 1.0 MHz)
FUNCTIONAL TESTS (Figure 11
Common-Emitter Amplifier Power Gain
(VCC = 12.5 Vde, Pout = 1.5 W, f = 90 MHz)
Collector Efficiency
(VCC = 12.5 Vde, Pout
= 1.5 W, f = 90 MHz)
>
Load Mismatch
VSWR
30: 1 Through All Phase
Angles in 3 Second Interval
After Which Devices Will Meet
(VCC= 12.5 Vde, Pout = 1.5W,
f = 90 MHz, TC "';;250 C)
GpE Test Limits
FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC
.---~----~--~~------<+
12.5 Vdc
~--~--~----~(-
RF
Output
Cl
C2.C6
C3
C4
C5
5.0·80 pF, ARCO 462
25·280 pF, ARCO 464
260 pF UNELCO
10pFUNELCO
9.0·180 pF, ARCO 463
C9
L1
C7
1000 pF UNELCO
C8
O.471JF ERIE Disc Ceramic
L5
R1
Ferrite Bead, FERROXCUBE 56-590-65-3B
4.7 OHM, 1/2 W. 10% Carbon
20"F, 15 Vdc TANTALUM
L2
2 Turns, #18 AWG, 3/8"1.0. 3/8" Long
2.5 Turns, #20 AWG. on Ferrite Bead.
L3
FERROXCU8E 56-590-65-38
3 Turns, #18 AWO, 3/S" 1.0., 1/2" Long
L4
0.68
~H.
9230-16 MILLER Molded Choke
Input/Output Connectors - Type BNC
1288
MR F230 (continued)
FIGURE 3 - OUTPUT POWER versus FREQUENCY
FIGURE 2 - OUTPUT POWER versus INPUT POWER
2.5
I
50MHz
0
/
5
/
)
5
/'
...-V
V
90~Hz_ r--
~ 2.0
i
/
//
./
e:i
1.5
~~
1.0
~
./
0
---
2.5
J
r-Vce = 12.5 V
/'
V
-------- --
r--
o
':5
rE 0.5
oV
50
100
o
250
200
150
Vee = 12.5 V
50
40
-.......
--
Pin= 150 mW
.......... I-.....
~OmW
"-50mW
60
70
f. FREUUENeY (MHz)
Pin. 'NPUT POWER (mW)
.........
r--- '"
r-80
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
2. 5
r
Pin ='150 mW
- ' f=90MHz
0
ffi
1. 5
~
>~
>-
1.0
::>
o
-- ---
~
V
} 0.5
o
B.O
9.0
10
11
12
13
14
15
16
Vee. SUPPLY VOLTAGE (VOLTS)
FIGURE 5
SERIES EQUIVALENT OUTPUT IMPEDANCE
SERIES EQUIVALENT INPUT IMPEDANCE
ot-+-+-+-J'L-..............-rT
liN
Ohms
4.7·)9.2
4.25·)8.65
3.8i8.9
3.1·j7.35
Vee = 12.5 Vdc
Pou' = 1.5W
~1/1 ttttt:b:t
-t-t-+++4-u..
~ ++I+t:1r:t±
» -t-t-f-+++-I-Ll
, , , ~+-TY-I..j.J,.L
1289
...........
90
.........
100
MRF230
(continued)
FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
.ersus FR EQUENCY
FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
versus FREQUENCY
500
0
r-
VCC' 12.5 Vdc
VCC' 12.5 Vdc
Pout =1.5W
Pou t'l.5W
-- -- -!;;w~
400
~.e
"''''
~~
2~
is
0
o
40
50
60
70
80
90
100
o
100
40
50
60
70
80
90
100
f, FREQUENCY (MHz)
f, FREQUENCY (MHz)
FIGURE 8 - PARALLEL EQUIVALENT OUTPUT RESISTANCE
versus FREQUENCY
FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
.ersus FREQUENCY
100
100,-----.,----,----.----,---,---,
VCC' 12.5 Vdc
Pout= 1.5W
--
VCC' 12.5 Vdc
...
ffiu:
-...-
f--
Pout = 1.5W
~
80
~
w
_co
::>2:
d « 60
w ...
~<3
~:
~
,go
o
40
20
0
50
60
70
f, FREQUENCY (MHz)
80
90
100
1290
40
50
60
70
f, FREQUENCY (MHz)
80
90
100
MRF231
(SILICON)
The RFLine
3.5W - 90 MHz
RF POWER
TRANSISTOR
NPN SI LICON R F POWER TRANSISTORS
NPN SILICON
· .. designed for 12.5 Volt, mid·band large-signal amplifier applications in industrial and commercial FM equipment operating in the
40 to 100 MHz range.
• Specified 12.5 Volt, 90 MHz CharacteristicsOutput Power = 3.5 Watts
Minimum Gain = 10 dB
Efficiency = 55%
• 100% Tested for Load Mismatch at all Phase Angles with
30:1 VSWR
Characterized with Series Equivalent Large-Signal Impedance
Parameters
•
with
• Characterized
Parameters
Parallel Equivalent Large-Signal Impedance
ti'
L j _ ""1
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
18
Vdc
Collector-Base Voltage
VCBO
36
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
Collector Current - Continuous
IC
1.0
Adc
Total Device Dissipation
Derate above 2SoC
Po
10
57.1
Watts
mWI"C
T stg
-65 to +200
°c
-
6.5
In-Lb.
@
TC == 2SoC (1'
Storage Temperature Range
Stud Torque (2)
THERMAL CHARACTERISTICS
Characteristic
Thermal Aesistance. Junction to Case
Symbol
Max
Unit
ReJC
17.5
°CIW
(1) These devices are designed for RF operation. The total device dissipation rsting applies
iR[
L
WRENCH FLAT
=.fJ ~
~~
=ii,
~ I--L
STYLE 1
PIN 1 EMITTER
1 BASE
3 EMITTER
4 COLLECTOR
MILLIMETERS
OIM MIN MAX
A
9.40
B.13
lB.03
5.59
E
1.18
F
2.19
H 26.41
J
0.10
K 13.11
L
1.40
B
C
0
M
R
S
T
(2) For repeated assembly use 5 In-Lb.
I
-~S
E
:EATINGPlANE
P
only when the devices are operated 85 Class C RF Amplifiers.
A
9.18
8.38
19.05
5.84
1.03
1.91
2B.l0
0.15
14.35
1.65
450 NOM
-
1.59
4.01
2.16
1.54
1.21
1.80
4 2
2.41
3.30
INCHES
MIN MAX
0.310 0.385
0.320 0.330
0.110 0.150
0.120 L.!llil!.
0.010 0.080
0.110 0.115
1.040 1.130
0.004 0.006
0.520 0.565
0.055 0.065
~~
-
0.299
0.158
0.085
0.100
.050
0.301
.05
U
0.130
NOTE
CASE 145A·Ol USE 8·31NC1A STUD
CASE 145A·Ol
1291
MRF231 (continued)
ELECTRICAL CHARACTERISTICS
(Te = 2sOe unless otherwise noted.)
I
Symbol
Min
. Max
Unit
eoliector·Emitter Breakdown Voltage
(Ie = 25 mAde, IB = 0)
BVeEO
lB
-
Vdc
Coliector·Emitter Breakdown Voltage
BVeES
36
-
Vdc
BVEBO
4.0
-
Vdc
0.5
mAde
-
dB
Characteristic
OFF CHARACTERISTICS
(lC = 25 mAde, VBE = 0)
Emitter-Base BreakdoWl Voltage
(I E = 0.25 mAde, IC = 0)
Collector Cutoll Current
(VeB = 15 Vdc, IE = 0)
ICBO
ON CHARACTERISTICS
DC Current Gain
(Ie
= 250 mAdc, VeE = 5.0 Vdc)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12.5 Vdc, IE = 0, I = 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)
Common-Emitter Amplifier Power Gain
(Vee = 12.5 Vd., Pout
=
GpE
10
17
55
3.5 W, I = 90 MHz)
Collector Efficiency
%
(Vee = 12.5 Vd., Pout = 3.5 W, I = 90 MHz)
-
Load Mismatch
(VCC = 12.5 Vdc, Pout = 3.5 W,
1= 90 MHz, Te~250e)
VSWR >30:1 Through All Phase
Angles in 3 Second Interval
Alter Which Devices Will Meet
GpE Test Limits
FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC
r---~----'----'--------<+
12.5 Vde
RF
Output
RF
Input
C1,C3
9.0·1S0 pF, ARCO 463
L3
1.5I'H,9230·24 MILLER Molded Choke
C2,C4
C5
C6
25·2S0 pF, ARCO 464
1000 pF, UNELCO
0.047 ,u.F, ERIE Disc Ceramic
L4
L5
3 Turns, #1S AWG, 3/S" 1.0., 1/2" Long
10 Turns, Wound on R2
C7
10,u.F, 15 VdcTANTALUM
R1
15 Ohm, 1/2 W. 10% Carbon
L1
2 Turns, #18 AWG, 3/8" 1.0., 1/2" Long
R2
220 Ohm. 1 W. Carbon
L2
22 ,u.H, 9230-52 MILLER Molded Choke
Input/Output Connectors - Type BNC
1292
MRF231
(continued)
-- -
FIGUR E 3 - OUTPUT POWER versus FREQUENCY
FIGURE 2 - OUTPUT POWER versus INPUT POWER
5.0
Vcc = 12.5 V
50 MHz
~ 4.0
~ 3.0
rE
r"""
en
/'"
i
90 MHz
0::
~
V /'
....
!il
,,/'
./
/'"
~
~
~ 2.0
V
/
~
o
/'
5.0
V
o
~
....
!il
~
0.1
0.2
~
~
~
=>
o
!il
2.0
~ 1.0
-
8.0
,.........
~
9.0
10
-
11
~
12
14
15
r--....
200
'-
...... 1--..
mW-- r-.....
l;:;---
"'"
~
""" r-...
1.0
50
70
60
f, FREQUENCY (MHz)
80
90
FIGURE 5 - SERIES EQUIVALENT fMPEDANCE
.........-
13
F--=r..
VCC = 12.5 V
40
...... ...........
Pin = 300 mW
f = 90 MHz
~ 4.0
~ 3.0
2.0
'i----...
Pin::: 300 mW
o
0.5
0.4
0.3
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
i
3.0
=>
o
Pin, INPUT POWER (WATTS)
5.0
4.0
~
/ /'
/V
1.0
//
oIf'
t--
16
Vcc, SUPPLY VOLTAGE (VOLTS)
1293
100
MR F231 (continued)
FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
versus
FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
versus FREQUENCY
1000
VCC = 12.5 Vdc
Pout = 3.5 W
FREQUENCY
25
Vcc = 12.5 Vdc
Pout = 3.5 W
-
0
0
40
50
60
70
80
90
0
40
100
60
70
80
90
100
f, FREQUENCY (MHz)
f, FREQUENCY (MHz)
FIGURE 8 - PARALLEL EQUIVALENT OUTPUT RESISTANCE
versus FREQUENCY
50
50
r--
FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
v~rsus FREQUENCY
1oo,-----,---,---,-----,-----,---,
+ ___
Vcc =12.5 Vdc
Pout =3.5W
-+__+ __
VCC = 12.5 Vdc+_ _ _ _
+-_ _
Pout" 3.5 W
~_801-----+----t----r---r-~--i
-
ffi~
....
~ 60 i-----t-----i----+----t---r--1
" ~========t=======~======i======t~::~:::j
w ~
u
....
w~
0
~ ~
40i-------j----t----ir---t---t---j
~~
-''''
JC
20~----1----+----r---+---t--,
o:~
0
o
40
50
60
70
f, FR EDUENCY (MHz)
so
90
100
°4O~------~5~0------~6~0------~70~--~80,---~9~0--~loo
f, FREQUENCY (MHz)
1294
MRF232
(SILICON)
TheRFLine
7.5W -90MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTORS
NPN SILICON
... designed for 12.5 Volt, mid·band large .. ignal amplifier appli·
cations in industrial and commercial FM equipment operating in the
40 to 100 MHz range.
•
•
Specified 12.5 Volt, 90 MHz Characteristics Output Power = 7.5 Watts
Minimum Gain = 9.0 dB
Efficiency = 55%
100% Tested for Load Mismatch at all Phase Angles with 30:1
VSWR
•
Characterized with Series Equivalent Large·Signal Impedance
Parameters
•
Characterized with Parallel Equivalent Large·Signal Impedance
Parameters
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VeEO
18
Vdc
Collector-Base Voltage
VeBO
36
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
Collector Current - Continuous
Ie
2.0
Adc
Total Device Dissipation
Derate above 2SoC
Po
20
114
rrNVf'e
-65 to +200
°e
@
TC::: 25°C (1)
Storage Temperature Range
T stg
-
Stud Torque (2)
6.5
L 1_
Ik[
lp
Characteristic
Thermal Resistance, Junction to Case
Symbol
Max
Unit
R~Je
8.75
°e/W
(1) These devices are designed for RF operation. The total device dissipation rating applies
only when the devices are operated as Class C A F Amplifiers.
=B1
~
I--L
STYLE 1
PIN 1 EMITTER
2 BASE
3 EMITTER
4 COLLECTOR
MILLIMETERS
DIM MIN MAX
8
C
0
E
F
H
J
K
L
M
P
R
(21 For repeated assembly use 5 In. Lb.
=~
WRENCH FLAT
A
THERMAL CHARACTERISTICS
I" =.fJ ~
A
=~S
E
SEATING PLANE
Watts
In. Lb.
ti'
-(
S
T
U
NOTE
9.40
8.13
18.03
5.59
1.78
2.79
26.42
0.10
13.21
1.40
9.78
8.38
19.05
5.84
2.03
2.92
28.70
0.15
1435
1.65
45° NOM
7.59
4.01
2.16
2.54
1.27
7.80
4.52
2.41
3.30
INCHES
MIN MAX
0.370 0.385
0.320 0.330
0.710 0.750
0.22
. 3D
0.070 0.080
0.110 0.115
1.040 1.130
0.004 0.006
0.520 0.565
0.055 0.065
450 NOM
- 0.050
0.299 0.307
0.158 O.llll
0.085 0.095
0.100 0.130
CASE 145A 01 USE 8 32NC2A STUD
CASE 145A·01
1295
MRF232 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
I
Symbol
Min
BVCEO
18
-
Vdc
Collector-Emitter Breakdown Voltage
(lC = 50 mAde, VBE = 0)
BVCES
36
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
4.0
-
Vdc
ICBO
-
1.0
mAde
GpE
9.0
-
dB
1/
55
-
%
Choractoristic
Max
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage
(lC = 50 mAde, IB = 0)
liE = 2.5 mAde, IC= 0)
Collector Cutoff Current
(VCB = 15 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
IIC = SOO mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12.5 Vde, IE = 0, f = 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)
Common-Emitter Amplifier POV\l!:T Gain
(VCC = 12.5 Vde, Pout = 7.5 W, f = 90 MHz)
Collector Efficiency
(VCC = 12.5 Vde, Pout = 7.5 W, f = 90 MHz)
-
Load Mismatch
VSWR
> 30: 1 Through All Phase
Angle in a 3 Second Interval
After Which Devices Will Meet
(VCC= 12.5 Vde, Pout = 7.5W,
, = 90 MHz, TC <;;250 C)
GpE Test Limits.
FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC
RF
Output
Cl
L1
RF
Input
C2
C3
Cl,C6
5.O-S0 pF, ARCO 462
Ll
C2,C5
9.0-1S0 pF, ARCO 463
C3,C4
100 pF UNELCO
C7
1000 pF UNELCO
L2
L3
L4
CS
4.7 I'F, 15 Vdc, T ANT ALUM
3 Turns, #18 AWG. 3/S" 1.0., 3/S" Long
FEAROXCUBE VK200-20-4B Ferrite Choke
3 Turns, #18 AWG, 5/16" 1.0., 3/S" Long
10 Turns, #22 AWG, on Rl
Rl
340 Ohm, 1 W Carbon
Input/Output Connectors - Type BNC
1296
MR F232 (continued)
FIGUR E 2 - OUTPUT POWER v...sus INPUT POWER
10
Vee = 12.5 V
9.0
/'
8.0
E
7.0
'"~
6.0
'"3;:
5.0
~
~
/
=> 3.0
0
~
V
./"'
V
V
9.0
2.0
~
./
~=>
-E
'"
~
'"3;:
0.4
0.6
Pin. INPUT POWER (WATTS)
r- Pi~ : ~~~:z
....-
6.0
~ 5.0
5
4.0
0
3.0
:==>
rE"
0.8
1.0
0.25W """'-.
I'--..
4.0
""
"""
..............
......... 1'-.
"
2.0
Vee = 12.5 V
1.0
--
40
--
~
....-V
,..-
2.0
o
9.0
10
11
12
13
Vee. SUPPLY VOLTAGE (VOLTS)
14
15
50
60
70
f. FREQUENCY (MHz)
80
90
FIGURE 5 - SERIES EOUIVALENT IMPEDANCE
1.0
8.0
O.SW
o
0.2
10
7.0
-............
o
FIGURE 4 - OUTPUT POWER versusSUPPLV VOLTAGE
8.0
"""'-.
..............
5.0
Pin'" 0.75 W
"""'-.
~ 3.0
.E
o
~
I-
..............
r--....
............
...............
t:
~MHZ
//
1.0
V
o
9.0
........
b-.,
8.0
/
/'
/ /'
I-
.E
SOMHz
V
I
4.0
.....-1
/
FIGURE 3 - OUTPUT POWER versus FREQUENCY
10
16
1297
100
MR F232 (continued)
FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
varsus FREQUENCY
25
FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
versus FREQUENCY
1000
Vd~
Vee: 12.5
Pout: 7.5W
VCC: 12.5
Vd~
Pout'" 1.5W
- --- -- - ----
20
800
Iz_
.-"
....
w~
~
>w 600
=>2
d"
wI.... <3
......
......
W ..
r--
"'"
....
""I-
""=>
j~
o
40
50
60
70
t, FREQUENCY (MHz)
r--
400
80
90
100
200
40
FIGURE 8 - PARALLEL !'QUIVALENT OUTPUT RESISTANCE
versus FREQUENCY
50
60
70
f, FREQUENCY (MHz)
80
90
100
FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
versus FREQUENCY
25
500
Vec: 12.5 Vdc
Pout'" 7.5W
VCC: 12.5 Vdc
Pout =7.5 W
I- _ 20
z'"
w'"
'"
::;e
....
:;
~
15
dz
w""
.... 1-
w'"
.... ,;;
-' w 10
""""
""I-
;t=>
.,:;~
;;;5.0
--
~ r--
----
o
40
o
50
60
70
t, FREQUENCY (MHz)
80
90
Hill
40
50
--
t--
60
r-70
t, FREQUENCY (MHz)
1298
-
80
90
100
MRF233
(SILICON)
The RFLine
15W-90MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTORS
NPN SILICON
· .. designed for 12.5 Volt, mid·band large·signal amplifier applications in industrial and commercial FM equipment operating in the
40 to 100 MHz range.
•
•
Specified 12.5 Volt, 90 MHz Characteristics Output Power = 15 Watts
Minimum Gain = 10 dB
Efficiency = 55%
100% Tested for Load Mismatch at all Phase Angles with
30:1 VSWR
with Series Equivalent Large-Signal
• Characterized
Parameters
with Parallel Equivalent Large-Signal
• Characterized
Parameters
Impedance
Impedance
Rating
Collector~Emitter
Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current
Continuous
Total Device Dissipation@Tc-25OC(1)
Derate Above 2SoC
Storage Temperature Range
Symbol
Value
Unit
VCEO
VCBO
VEBO
IC
18
36
4.0
3.5
Vdc
Vdc
Vdc
Adc
PD
50
Watts
-
285
-65 to +200
mW/oC
6.5
In-Ib
T,t9
Stud Torque (2)
°c
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
A
Lp
==
16 \
MAXIMUM RATINGS
I
Symbol
Max
I
Unit
I
ROJC
3.5
I
°CIW
E
SEATING PLANE
I
=r J.
I
-
WRENCH flAT
~
I--L
STYlE 1
PIN 1 EMITTER
2 BASE
3 EMITTER
4 COLLECTOR
DIM
MILLIMETERS
MIN MAX
A 9.40
B
8.13
C 18.03
0
5.59
E
1.78
F
2.19
H 26.42
J
0.10
K 13.21
1.40
L
M
450
p
(11 These devices are designed fQr RF operation. The total device dissipation rating
applies only when the devices are operated as Class C RF amplifiers.
(2) For Repeated Assembly use 5 In. Lb.
7J r=ill:
LI_ I
R
S
T
U
-
1.59
4.01
2.16
2.4
9.78
8.38
19.05
5.84
2.03
2.92
28.10
1115
14.35
1.65
NOM
1.21
1.80
4.52
2.41
3.30
INCHES
MIN MAX
0.310
0.320
0.110
0.220
0.010
0.110
1.040
0.004
0.520
0.055
0.3B5
0.330
0.150
0.230
0.080
0.115
1.130
O.OOS
0.565
0.065
45 0 N M
.050
0.299 0.301
0.158
17
0.085
.095
0.10
.130
NOTE
CASE 145A 01 USE 8 32NC2A STUD
CASE 145A·Ol
1299
j
S
MR F233 (continued)
ELECTRICAL CHARACTERISTICS(TC ~ 25 0 C unless otherwise notedl.
I
Characteristic
Svmbol
Min
Typ
Max
Unit
-
Vde
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC ~ 100 mAde, IB ~ 01
BVCEO
18
-
Collector-Emitter Breakdown Voltage
(lC ~ 50 mAde, VBE ~ 01
BVCES
36
-
Emitter-Base Breakdown Voltage
(IE ~ 5.0 mAde, IC ~ 01
BVEBO
4.0
-
Collector Cutoff Current
(VCB ~ 15 Vde, IE ~ 01
ICBO
Vde
-
Vde
1.0
mAde
ON CHARACTERISTICS
DC Current Gain
(lC ~ 1.0 Ade, VCE
~
5.0 Vdcl
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12.5 Vde, IE
~
0, f
~
1.0 MHzl
FUNCTIONAL TESTS (Figure 11
GpE
10
-
Collector Efficiency
(VCC ~ 12.5 VdG, Pout ~ 15 W, f ~ 90 MHzl
'I
55
-
Load Mismatch
(VCC ~ 12.5 Vde, Pout ~ 15 W,
f ~ 90 MHz, TC ":2So CI
-
Common-Emitter Amplifier Power Gain
(VCC: 12.5 Vdc, Pout ~ 15 W, f ~ 90 MHzl
-
%
>
VSWR
30: 1 Through All Phase
Angles in a 3 Second Interval
After Which Devices Will Meet
GpE Test Limits
FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC
r----1~---1>--_.-----<+
12.5 Vdc
~--~~--~-------«-
C4
L4
RF
OUtpUL
RF
Input
>--f-T.~~~~ry,-~~~
C3
C1,C3 9.o-1S0 pF, ARCO 463
C2,C4 25·2S0 pF ARCO 464
C5
1000 pF UNELCO
C6
C7
0.01
~F
L3
L4
2.2"H, 9230·200 MI LLER Molded Choke
2 Turns, };t18 AWG, 3/S" 1.0., 3/S" Long
L5
10 Turns, #16 AWG, Wound On R2.
ERIE Disc Ceramic
1.0 "F, 35 Vdc TANTALUM
L1
2 Turns, #18 AWG. 3/8" I. D., 1/4" Long
L2
0.22 jlH, 9230-04 MI LLER Molded Choke
1300
dB
Rl
15 Ohm, 1/2 W, 10% Carbon
R2
68 Ohm, 1 Watt, 10% Carbon
Input/Output Connectors - Type BNC
MRF233 (continued)
FIGURE 2 - OUTPUT POWER v.rsus INPUT POWER
FIGURE 3 - OUTPUT POWER versus FREQUENCY
25
25
VCC" 12.5 V
V
50 MHz
,..-
V
/
I /
J V
1//
L'
i
..,./
ffi
90 MHz
~....
./"
~
r---
---
o~
15
10
~
o
;
~
5.0
-- --t---,1.5W
Pin=1.0W -
0.5W-
r---.
r---
..............
......
.............
..................
...............
VCC = 12.5 V
'II
0.5
1.0
1.5
Pin. INPUT POWER (WATTS)
50
2.5
2.0
FIGURE 4 - OUTPUT POWER v.rsus SUPPLY VOLTAGE
25
r-
l!!
Pin" 1.5W
1=90MHz
20
~
15
~
....
~
....
10
---
.......... i-'"""
!--
V--
:>
0
;
0':
5.0
o 8.0
9.0
10
11
12
13
14
15
80
90
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
...-
~
'"~
60
70
I, FREUUENCY (MHz)
16
VCC, SUPPLY VOLTAGE (VOLTS)
1301
100
MR F233 (continued)
FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
varsus FREQUENCY
FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
v'"sus FREQUENCY
2000
10
VCC : 12.5 Vdc
Pout'" 15W
VCC: 12.5 Vdc
Pout: 15W
8. 0
0
I---
-I-
0
---
0
- ----
t---
0
0
40
50
60
70
80
90
0
100
40
50
60
70
r-80
90
100
f. FREQUENCY (MHz)
f. FR EQUENCY (MHz)
FIGURE 8 - PARALLEL EQUfVALENT OUTPUT RESISTANCE
versus FREQUENCY
FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
varsus FREQUENCY
20
500
Vce: 12.5 Vdc
Pout = 15W
Vec: 12.5 Vdc
Pout = 15W
0
6
Ot-
0L------
-
0
0
0
40
-
r:----.....
I---
r---
- r-:-I-
0
50
60
70
80
90
100
f. FREQUENCY (MHz)
1302
0
40
50
60
.10
f. FREQUENCY (MHz)
80
90
100
MRF234
(SILICON)
The RFLine
25W -90MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTORS
NPN SILICON
· .. designed for 12.5 Volt, mid·band large·signal amplifier appli·
cations in industrial and commercial FM equipment operating in the
40 to 100 MHz range.
• Specified 12.5 Volt, 90 MHz Characteristics Output Power = 25 Watts
Minimum Gain = 9.5 dB
Efficiency = 55%
• 100% Tested for Load Mismatch at all Phase Angles with
30:1 VSWR.
•
Characterized with Series Equivalent Large·Signal Impedance
Parameters
•
Characterized with Parallel Equivalent Large·Signal Impedance
Parameters
til
L j_ I
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
CollectorMEmitter Voltage
VCEO
18
Collector-Base Voltage
VCBO
36
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
Collector Current - Continuous
Ie
4.0
Adc
Total Device Dissipation @TC- 2SoC (1)
Po
70
400
Watts
mW/oe
T stg
-65 to +200
°c
-
6.5
In. Lb.
Derate above 2SoC
Storage Temperature Range
Stud Torque (2)
Vdc
jk[
l
Characteristic
Thermal Resistance, JUnction to Case
Symbol
Max
Unit
R8JC
2.5
°C/W
(1) These devices Bre designed for RF operation. The total device dissipation rating applies
only when the devices are operated as Class C RF Amplifiers.
=~
WRENCH FLAT
dJ ~
=ij1
:::....j I--L
STYL[1
PIN 1
2
3
4
EMITTER
BASE
EMITTER
COLLECTOR
MILLIMETERS
DIM MIN MAX
A
9.40
8.13
18.03
0
5.59
E
1.18
F
2.79
H 16.42
J
0.10
K 13.21
L
1.40
M
450
8
P
R
S
(2) For repeated assembly use 5 In. Lb.
I
-~S
E
:EATINGPLANE
C
THERMAL CHARACTERISTICS
A
T
U
7.59
4.01
2.16
1.54
9.78
8.38
19.05
5.84
1.03
1.91
28.70
0.15
14.35
1.65
OM
1.27
7.80
4.51
2.41
3.30
INCHES
MIN MAX
0.370
0.320
0.710
0.220
0.070
0.110
1.040
0.004
0.520
0.055
0.385
0.330
0.750
0.230
0.080
0.115
1.130
0.006
0.565
0.065
~°'I.ILM
0.199
0.158
0.085
0.100
0050
O. 07
0.1IB..
0.095
0.130
NOTE
CASE 145A 01 USE 8 31NC1A STUD
CASE 145A·Ol
1303
MRF234 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unle •• otherwise noted.1
I
Symbol
Min
Typ
Max
Unit
BVCEO
18
-
-
Vde
Coliactor·Emitter Breakdown Voltage
(IC = 200 mAde, VBE = 01
BVCES
36
-
-
Vde
Emitter·Basa Breakdown Voltage
BVEBO
4.0
-
-
Vde
ICBO
-
-
1.0
mAde
Common-Emitter Amplifier Power Gain
(VCC = 12.5 Vde, Pout = 25 W, 1= 90 MHzl
GpE
9.5
-
-
dB
Collector Efficiency
(VCC = 12.5 Vdc, Pout = 25 W, I = 90 MHzl
71
55
-
-
%
Load Mismatch
(VCC = 12.5 Vde, Pout = 25 W,
1= 90 MHz, TC ';;250 C
-
Cheracteristic
OFF CHARACTERISTICS
Collector~Emitter
Breakdown Voltage
(lC = 200 mAde, IB = 01
(IE = 5,0 mAde, IC = 01
Collector Cutoff Current
(VCB = 15 Vde, IE = 01
ON CHARACTERISTICS
DC Current Gain
(lC = 1.0 Adc, VCE = 5.0 Vdcl
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB= 12.5Vde,IE = 0,1 = 1.0MHzI
FUNCTIONAL TESTS (Figure 11
VSWR
> 30: 1 Through All Phase
Angles in a 3 Second Interval
After Which Devices Will MeE!!
GpE Test Limits.
FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC
12.5 Vdc
'------<>---1----« -
RF
Output
RF
Input
Cl,C4
C2,C3
5.0-80 pF, AR CO 462
25-280 pF, A R CO 464
lo3
C5
1000 pF UNEloCO
lo5
10 Turns, #18 AWG, 1/4" 1.0., wound on A2
C6
0.047 JlF. EA I E disc ceramic
C7
10/tF,15 VdcTANTAloUM
Rl
15 Ohms. 1/2 W, 10%
R2
47 Ohm, 1 W Carbon
lo4
Ll
1 Turn, #16 AWG, 3/8" 1.0., 1/8" Long
lo2
0.22 /tH, 9230·04 MlloloER Molded Choke
1304
22/tH, 9230-52 MlloloER Molded Choke
2 Turn •• #14 AWG. 3/8" 1.0 .• 1/4" Long
Input/Output Connector - Type BNC
MRF234 (continued)
FIGURE 2 - OUTPUT POWER v",susINPUT POWER
0
I-- Vee
J
12.5 V
0
V
0
FIGURE 3 - OUTPUT POWER versus FREQUENCY
0
V
./
/
/ V
V
/'
-
5
V"
50 MHz
V
Pin= 3.0W
-
90MHz
o~
5
0
01//
I(
r--
..........
~
2.0W
...............
I.OW
~
~
..........
...............
~
Vee= 12.5 v
I5
1.0
2.0
Pin. INPUT POWER (WAITS)
4.0
3.0
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
40
I.
~Pin=3.0W
f= 90 MHz
V
0
°v
.......-V
---
V
V
------
0
9.0
ID
II
12
14
13
Vee. SUPPLY VOLTAGE (VOLTS)
15
40
50
60
70
f. FREQUENCY (MHz)
80
90
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
0
8.0
r--......
16
1305
~
100
MRF234 (continued)
FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
ver...s FREQUENCY
0
FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
ver... s FREQUENCY
2000
I-
t-
Vec' 12.5 Vd,
Pout' 25W
0-- - 0
Vec' 12.5 Vd,
Pout' 25W
1600
:::::::::-:=.
0
----
0
r-.
r---
0
40
50
60
70
f, FREUUENCY (MHz)
80
90
40
100
FIGURE 8 - PARALLEL EQUIVALENT OUTPUT RESISTANCE
versus FREQUENCY
.
Ci)
60
70
f, FREQUENCY (MHz)
80
90
100
FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
versus FREQUENCY
VCC' 12.5 Vd,
t - Vec' 12.5 Vd,
~
50
1000
0
ffi
r--..
o
0
....
-
t - Pout.25W
Pout·25W
8.0
"'"
>0
:;~
,...,.
~ ~ 6.0
~"
j~
,,13
a:: a: 4.0
~
.:~
....
g!::;
~"'""
.-
....r--.
~
a: 02. 0
-- --
i--
-
0
40
50
60
70
f, FREQUENCY (MHz)
80
90
100
1306
40
50
60
70
f, FREQUENCY (MHz)
80
90
100
MRF304
(SILICON)
The RF Line
10W·400 MHz
CONTROLLED "Q"
RF POWER TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPN SILICON
designed primarily for wideband large-signal driver amplifier
stages in the 225-400 MHz frequency range.
•
Specified 28 Volt, 400 MHz CharacteristicsOutput Power = 10 Watts
Minimum Gain = 9.0 dB
Efficiency = 60%
•
Built-In Matching Network for Broadband Operation
• 100% tested for Load Mismatch at all Phase Angles with
30:1 VSWR
R
Q
STYLE 1:
PIN 1. EMITTER
2. CO LLECTOR
3. EMITTER
4. BASE
FLANGE·ISOLATEO
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Coliector·Emitter Voltage
VeEO
33
Vdc
Collector-Base Voltage
VeBO
60
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
Ie
2.0
Adc
Collector Current - Continuous
Total Device Dissipation @ T C
= 2SoC
(1)
Po
Derate above 2SoC
Storage Temperature Range
T5t9
30
Watts
171
mW/oe
-65 to +200
°e
1) These devices are designed for R F operation. The total device dissipation rating
applies only when the devices are operated as RF amplifiers.
rBj ~C
L
Lili:~
DIM
A
B
C
D
F
H
J
K
L
N
Q
R
S
MILLIMETERS
MIN MAX
24.38 25.15
12.45 12.95
5.97 7.62
5.46 TYP
5.08 5.33
18.29 18.54
0.10 0.15
10.67 10.92
3.81 4.06
3.81 4.32
2.92 3.18
3.05 3.30
21.34 21.84
INCHES
MAX
MIN
0.960 0.990
0.490 0.510
0.235 0.300
0.215 TYP
0.200 0.210
0.720 0.730
0.004 0.006
0.420 0.430
0.150 0.160
0.150 0.170
0.115 0.ll5
0.120 0.130
0.B40 0.860
CASE 278·03
1307
MRF304 (continued)
ELECTRICAL CHARACTERISTICS
(TC = 25°C unless otherwise noted I
Symbol
Min
Typ
BVCEO
33
-
Collector-Emitter Breakdown Voltage
(lC = 30 mAde, VBE = 01
BVCES
60
Emitter·Base Breakdown Voltage
(IE = 1.0 mAde, IC = 01
BVEBO
4.0
Characteristic
Max
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage
(lC
= 30 mAde,
Vde
IB = 01
Collector Cutoff Current
(VCB = 30 Vde, IE = 01
vae
ICBO
-
vae
1.0
mAde
ON CHARACTERISTICS
DC Current Gain
(lC = 500 mAde, VCE = 5.0 Vdel
(lC = 2.0 Ade, VCE = 5.0 Vdel
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12.5 Vdc, IE = 0, f = 1.0 MHzl
FUNCTIONAL TESTS (Figure 11
Common-Emitter Amplifier Power Gain
(VCC = 28 Vde, Pout = 10 W, f = 400 MHzl
Collector Efficiency
(VCC 28 Vde, Pout
=
= 10 W, f = 400 MHzl
GpE
9.0
dB
11
tiU
'"
No Degradation in Pout
Electrical Ruggedness
(Pout = lOW, VCC=28 Vde,f =400 MHz, VSWR 30:1,
all phase angles.)
FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
L4
Cll
C13
I
r-(-
28 Vdc
Z2
Cl0
Cl
RF
INPUT
)-1~~I~~==Z[I~;J--~r-------,-ti
C2
Cl,Cl0
C2,C3,C7,C9
C4
C5
C6
C8
C",CI3
C12
Rl
RF
OUTPUT
C3
C8
C4
100 pF A.T.C. Type ATC·l00 B
1.0·20 pF, JOHANSON Type 3906
2,10 pF UNDERWOOD (UNELCOI one on
each side of the base lead
100 pF UNDERWOOD IUNELCOI
2,15 pF UNDERWOOD (UNELCOI one on
L1
each side of the collector lead
0.1 /JF. 100 V Disc Ceramic
ZI
680 pF ALLEN BRADLEY Feed'h,u
1.0 I'F, 35 V TANTALUM
2.7 Ohms, 1/2 W, 10%
Z2
C7
C9
7 Turns, #20 AWG, 1/4" ID
L2
1 Turn, 1/8" 10, lead of C8
L3
L4
L5
7 Turns, #20 AWG, 1/4" 10
FERRITE Choke, FERROXCUBE VK200·20·4B
FERRITE Beed on loed of Rl, FERROXCU8E
56·590·65·3B
MICROSTRIPLINE 0.2" W. 1.6" L,
C2 Mounted 0.3 I "chas From Start
C3 Mounted 1.1 Inches From Start
MICROSTR IPLIN E, 0.300" W • 1.70" L
C7 Mounted at Collector
C9 Mounted 0.4" From End
Board - Glass Teflon, €R "" 2.56, t "" 0.062"
Input/Output Connectors - Type N
1308
MRF304 (continued)
FIGURE 3 - OUTPUT POWER versus INPUT POWER
FIGURE 2 - OUTPUT POWER .ersus FREQUENCY
20
t--
v~c = 28 Vd'
0
I
1
Vec' 28 Vd,
Pin' I.~
r- -r-....
r-~
-
--r-
I'-.
0
-.....
1.0lW
1:-
-- ~
t--
0
0.25W
1225 MJz
5
.,V
/V
0
V
V /
t--
"-
0
40& MHz
V
.//
..... V
/
0
200
I
250
0
300
35D
t, FREIlUENCY (MHz)
400
450
0.4
2.0
1.6
FIGURE 5 - OUTPUT POWER versus
SUPPLY VOLTAGE - 400 MHz
FIGURE 4 - POWER GAIN versus FREQUENCY
16
14
0.8
1.2
Pin, INPUT POWER (WAITS)
0
--
--.
2
r-_
0 - _~ce=28Vd'
P " '=
OI l°i
'"::
~
--.
300
250
k:
'"~
--
~ 10
>-
::l
~o
400
350
--
12
f, FREIlUENey (MHz)
FIGURE 6 - OUTPUT POWER versus
SUPPL Y VOL TAGE - 225 MHz
-
--
....- - ~
--- ....- ----r-.......
o
450
V
.......... .......... ~7
; 5. 0 ..........
.E
8. 0
200
15
16
20
24
Vee, SUPPLY VOLTAGE (VOL TS)
28
32
FIGURE 7 - SERIES EQUIVALENT IMPEDANCE
0
t_l~
5
./
:;~
V V V~ V I---"
0
I--l./:: ~ V
I--I-~V
V
01-i""""
0
12
-
16
O~
.!
H
O.~
20
24
Vee, SUPPLY VOLTAGE (VOLTS)
28
32
5 Hz
300 MHz
+J
20+j30
• -I
~
65-145
350 MHz
45+/45
65-J5.2
-l-f-+-j-+-'Ll~!,/j'l
1309
MRF304 (continued)
400 MHz TI;ST CIRCUIT
FIGURE 8
1310
MRF30S
(SILICON)
The RF Line
30W-400 MHz
CONTROLLED "a"
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPN SILICON
. designed primarily for wideband large·signal driver and output
amplifier stages in the 225·400 MHz frequency range.
•
Specified 28 Volt, 400 MHz CharacteristicsOutput Power = 30 Watt
Minimum Gain = 8.0 dB
Efficiency = 55% (Min)
•
Built·ln Matching Network for Broadband Operation
•
100"10 Tested for Load Mismatch at all Phase Angles
with 30: 1 VSWR
R
MAXIMUM RATINGS
Rating
Symbol
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Total Device Dissipation@Tc::: 25 0 C
(11
VeEO
VeBO
VEBO
Po
Derate above 2SoC
Storage Temperature Range
T stg
Value
Unit
33
4.0
Vdc
Vdc
Vdc
70
0.4
w/oe
-65 to +200
°e
60
STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. EMITTER
4. BASE
FLANG E·ISO LATED
Watts
THERMAL CHARACTERISTICS
DIM
Characteristic
A
Thermal Resistance. Junction to Case
B
C
(1)These devices are designed for RF operation., The total device dissipation rating
applies only when the devices are operated as RF amplifiers.
D
F
H
J
K
L
N
Q
R
S
MILLIMETERS
MAX
MIN
24.38 25.15
12.95
12.45
5.97 7.62
5.46TYP
5.08 5.33
18.29 18.54
0.10 0.15
10.67 10.92
3.81 4.06
3.81 4.32
2.92 3.18
3.05 3.30
21.34 21.84
INCHES
MIN MAX
0.960 0.990
0.490 0.510
0.235 0.300
0.215 TYP
0.200 0.210
o.no 0.730
0.004 0.006
0.420 0.430
0.150 0.160
0.150 0.170
0.115 O.IZD
0.120 0.130
0.840 0.860
CASE 278-03
1311
MRF305 (continued)
ELECTRICAL CHARACTERISTICS (TC
=
250 C unless otherwise notedl
Svmbol
Min
TVp
Max
Unit
Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB = 0)
BVCEO
33
-
-
Vde
Collector-Emitter BreakdQlN" Voltage
(lC = 50 mAde, VBE = 0)
BVCES
60
Vde
Emitter-Base Breakdown Voltage
(Ie = 3.0 mAde, IC = 01
BVEBO
4.0
Vde
ICBO
-
-
2.0
mAde
GpE
8.0
-
-
dB
1]
55
-
-
%
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 500 mAde, VCE = 5.0 Vde)
(lC = 3.0 Ade, VCE = 5.0 Vdcl
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 28 Vde, Ie
= 0, f = 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)
Common-Emitter Amplifier Power Gain
(VCC = 28 Vde, Pout = 30 W, f = 400 MHz)
Collector Efficiency
(VCC = 28 Vde, Pout
= 30 W, f = 400 MHz)
-
Electrical Ruggedness
(Pout = 30 W, VCC
all phase angles)
= 28 Vde, f = 400 MHz, VSWR
-
No Degradation in Pout
30: 1,
FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
L4
Cll
C13
28 Vdc
RF
INPUT
I~--~--~t----1C=~Z~2~~}-~!:-~~
Cl0
Cl
Zl
C2
RF
OUTPUT
L2
C3
CB
C4
C7
C9
Rl
C1,C10
O.018IJF VITRAMON Chip Capacitor
C2 ,C3,C7 ,C9 1.0-20 pF JO HANSO N Type 3906
C4
2,10 pF UNOERWOOD (UNELCO)
one each side of the Base Lead
C5
100 pF UNDERWOOD (UNELCO)
C6
2,20 pF UNDERWOOD (UNELCO)
one each side of the Collector Lead
0.1 /JF. 100 V Disc Ceramic
C8
Cl1,1.3
680 pF ALLEN BRADLEY Feedthru
C12
1.0 I'F, 35 V TANTALUM
Rl
2.7 Ohm, 112 Watt, 10%
3 Turns, #24 AWG, 118" 10
Ll
2 Turns, Lead of ca. 1/S" 10
L2
L3
L4
5 Turns, #20 AWG, 1/4" 10
L5
FERRITE Bead on Lead 0,1 R1,
ZI
Microstrip Line. 0.2" W x 1.7" L
FERRITE Choke, FERROXCUBE
VK200-20-4B
FERROXCUBE 56-590-65-38
Z2
1312
C2 Mounted 0.3" from
C3 Mounted 0.9" from
Microstrip Line, 0.3" W x 1.5" L
C7 Mounted 0.8" from
C9 Mounted 0.2" from
Board - Gla. Teflon fR = 2.56,
t = 0.062 in.
Input Output Connectors Type N
Start
Start
End
End
MRF305 (continued)
FIGURE 2 - OUTPUT POWER versus FREQUENCY
FIGURE 3 - OUTPUT POWER versus INPUT POWER
\
50
50
Vcc - 28 Vdc
i
40
30
:>
20
~
-r-
"-
/"
'"
'"w
......
I-- I--- 3.0W
~
/'
30
/
0
.E"
0.1W
200
250
300
350
f. FREQUENCY (MHz)
400
~
o
o
450
~MHZ
../
.L[&.. V"
10
0.5W
o
~
~ V
IL
:>
V
. / f-"""300 MHz
V V
:>
~ 20
2.0W
t--- i--
S
.E 10
40
~
4.0W
t---
:>
0
g
~ 5.0W
t---
~25MH~
Vcc - 28 Vdc
Pin-
r--
t-..
'"~
....~
--- ---
I--
2.0
1.0
3.0
FIGURE 5 - OUTPUT POWER versus
SUPPLY VOLTAGE - 400 MHz
FIGURE 4 - POWER GAIN versus FREQUENCY
0
2
f-400MHz
1
z
I"----. .......
0
to
'"
~
::e
to
r--..
. Vcc - 28 Vdc
Pout-30W
0
. . . r--.
9. 0
0
8. 0
250
300
350
f. FREQUENCY (MHz)
400
FIGURE 6 - OUTPUT POWER versus
SUPPLY VOLTAGE - 225 MHz
Pin
. / 4.0W
~V
V ..... V
~
12
14
V
---- --- -- - - ...-
0
,../ f-"""
_
~
3.0W
2.0W
f-
16
18
20
22
24
Vcc. SUPPLY VOLTAGE (VOLTS)
12
14
V V
--
V
.-
I-- I-rf - f--
VI"""
f-........... f-
-
16
18
20
22
24
Vcc. SUPPLY VOLTAGE (VOLTS)
26
tOW
28
30
1313
5.0W
4.0W
3.0W
r-- 2.0W
tOW
26
FIGURE 7 - SERIES EQUIVALENT IMPEOANCE
f - 225 MHz
0
~
0
10
450
50
0
k:::: V
0
7. 0
200
Pin
0
.........
;;:
W
5.0
4.0
Pin. INPUT POWER (WATTS)
28
30
MRF305
(continued)
FIGURE 8 - INTERMODULATION DISTORTION vorsus
OUTPUT POWER (PEP)
0
z
o
;::
'"
~Q
z
o
45
f=1400M~~±
"""
........
.... r-....
0
r-.......
~
~
o
TONE SPACE 1.0 MHz
VCC =28 Vdc- r--
35
ffi
..........
1'--...
f'--..
~ 30
c,
r----..
~
5
2151617
18
19202122232425
Pout. OUTPUT POWER (WATTS PEP)
FIGURE 9 - 400 MHz TEST CIRCUIT
1314
MRF401
(SILICON)
The RF Line
25 W PEP - 30 MHz
RF POWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTORS
· .. designed primarily for applications as a high·power linear
amplifier from 2.0 to 75 MHz.
• Specified 28 Volt, 30 MHz Characteristics Output Power = 25 W (PEP)
Minimum Gain = 13 dB
Efficiency = 40%
•
Intermodulation Distortion at 25 W (PEP)
IMD = -32 d8 (Max)
•
Isothermal·Resistor Design Results in Rugged Device
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
Rating
VCEO
30
Vdc
Emitter-Base Voltage
VERn
4.0
Vdc
}b[
L
Collector Current - Continuous
Total Device Dissipation@Tc
= 2SoC(1)
Ir
3.3
Adc
Po
50
28.6
Watts
T stg
-65 to +200
°c
Derate above 2SoC
Storage Temperature Range
W/oC
(11 These devices are designed for R F operation. The total device dissipation fating
applies only when the devices are operated as class B or C R F amplifiers.
L 1_
,
r
d:'-L
]- = -+bT,
E
:EATINGPLANE
WRENCH FLAT
=~S
=~
::::..j I--L
MILLIMETERS
DIM MIN
MAX
INCHES
MIN
MAX
A
9.40
9.78
B
8.13
8.38
C 18.03 19.05
D 5.59
5.84
E
1.78
2.03
F
2.79
2.92
H 26.42 28.70
J
0.10
0.15
K 13.21 14.35
L
1.40
1.65
M
450 N M
P
1.27
R 7.59 7.80
S
4.01
452
T
2.16
2.41
2.54
3.30
NOTE
CASE 145A·OI USE 8·32NC2A STUD
CASE 145A·Ol
1315
MRF401
(continued)
ELECTRICAL CHARACTERISTICS ITc =
250 C unless otherwise noted.)
I
Symbol
Min
Typ
Max
Unit
Colle.tor-Emitter Breakdown Voltage
IIc = 50 mAde, IB = 0)
BVCEO
30
-
-
Vd.
Colle.tor-Emitter Breakdown Voltage
(lC = 10 mAd., VBE = 0)
BVCES
60
-
-
Vd.
Emitter-Base Breakdown Voltage
BVEBO
4.0
-
-
Vd.
Common-Emitter Amplifier Power Gain
(Pout = 25 Watts PEP, IC (max) = 1.12 Ad., VCC = 28 Vd.,
1= 30 MHz)
GpE
13
-
-
dB
Collector Elfieienty
(Pout = 25 Watts PEP, IC (max) = 1.12 Ad., VCC = 28 Vde,
1= 30 MHz)
'I
40
-
-
%
1M
-
-
-32
dB
Characteristic
OFF CHARACTERISTICS
(IE = 10mAde,lc= 0)
ON CHARACTERISTICS
DC Current Gain
IIC =
1.0Ad~,
VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 30 Vd., IE = 0, I = 1.0 MHz)
FUNCTIONAL TEST (Figure I)
Intermodulation Distortion
(Pout = 25 Watts PEP, IC = 1.12 Ade, VCC = 28 Vd.,
11 = 30 MHz, 12 = 30.001 MHz)
FIGURE 1 - 25 WATT, 2-30 MHz BROADBAND AMPLIFIER TEST CIRCUIT
Vss
RFC -2
28 Vdc
'----~I----_+-t-< 25 Watts PEP
RF
INPUT
RF OUTPUT
R1
10
1/2 W
T,
T3 4.1 6 Turns of 2 TWisted Pairs of =26 AWG Enameled
,
Wire (6 Crest Per Inch) Wound on Stackpole 57·9322 =11 Toroid.
T2 4"
4 Turns of 4 TWisted Pairs of =26 AWG Enameled
Wire (6 Crest Per Inch) Wound on Stackpole 57 ·9322 =11 Toroid.
RFC -2 Ferroxcube VK200 19/48 Ferrite Choke
NOTE: Adjust
Ves
for
Ie =
20 mAde with no RF drive present.
1316
MRF401 (continued)
FIGURE 2 - PARALLEL EQUIVALENT INPUT RESISTANCE
versus FR EQUENCY
FIGURE 3 - PARALLEL EQUIVALENT INPUT
CAPACITANCE versus FREQUENCY
5.0
2500
.............
i'---.
~cc ~ 128 vJ,_ r r
..........
r-
ICQ ~ 20 mA
Pout ~ 25 WIPEP)-i-
:--....
I-
a:iu:-
2000
r"-..
~.5
>w
~~
1500
~t::
-......
~~
5 1000
vC~~2L~_±
ICQ ~ 20 mA
Pout ~ 25 W(PEP)-
" "'" ""-
~
:;i
r- 1--.1-
"'I-
o:~
,,'"
G -
0
i""-
""-
500
'r-.
r-f-
o
10
20
30
40
t, FREQUENCY (MH,)
70
50
100
20
10
30
40
f, FREQUENCY (MH,)
70
100
MHz _
-
50
FIGURE 4 - PARALLEL EQUIVALENT OUTPUT
CAPACITANCE versus FREQUENCY
100 0
VC~~2JVd~+
ICQ ~ 20 mA
Pout ~ 25 W(PEP) -
0
0",-
""
0
0
10
I"---.. .......
-I-20
30
40
t, FREQUENCY (MH,)
FIGURE 5 - POWER GAIN versus FREQUENCY
30
I
I
Pout
iii
25
~
Two Tone Test
Z_
0"'-20
-'C
1-":0
..J:JI0":
0 00 -40
.........
-
~
'"3!
a:>-
VCC=28V
VCC = 28 V
1.5
./
V
./
1.0
:::>
./
1=
:::>
0.5
o
V
V
r--. r--.....
...........
r--.
-
I-"
r- r-...
V V
0
J
V
~V
L.---
I--
/
o
V V
40
-- ---r-- t-.
r- t-~
r- t-- -r- t--1
. . . . r- r-
60
80
100
Pin, INPUT POWER (mWI
120
140
o
~
160
50 mW
Pin = 25 mW
I
~
~
~
~
~
rn
I, FREQUENCY (MHz)
1321
5mW
t-- I--.
+--
/
20
.......
I
I
t---¥:.mw
~
~
~
~
MRF509 (continued)
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT
1.25
VCC' 20 Vdt
."
%
~
~ 1.0
",-
Q
Q
If:
i!:
./
0.75
--
--r-..
.........
Q
1§
~ 0.5
I
z
;;:
c;>
ffi 0.25
'":::>
'"
.,
~
300 MHz
400 MHz
500 MHz
0
0
10
20
30
40
50
80
70
IC. COLLECTOR CURRENT (mAl
80
90
100
FIGURE 6 - Sll,lNPUT REFLECTION COEFFICIENT
FIGURE 7 - S22, OUTPUT REFLECTION COEFFICIENT
FIGURE 8 - S12, REVERSE TRANSMISSION COEFFICIENT
FIGURE 9 - S21, FORWARD TRANSMISSION COEFFICIENT
1322
MR F509 (continued)
FIGURE 10 - 400 MHz TEST CIRCUIT
1323
MRF511
(SILICON)
Tbe RF Line
HIGH FREQUENCY
TRANSISTOR
NPN SILICON
NPN SILICON HIGH FREQUENCY TRANSISTOR
• .. designed specifically for broadband applications requiring low
distortion characteristics and noise figure. Specified for use in
CATV applications.
• Specified +50 dB mV Output, 80 mAdc Distortion Characteristics Triple Beat = -65 dB (Max)
Cross Modulation = -57 dB (Max)
Second Order = -50 dB (Max)
• High Broadband Power Gain Gpe = 10 dB (Min) @f= 250 MHz
• Low Broadband Noise Figure NF = 10 dB (Max) @ f = 200 MHz
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VeEO
25
Vdc
Collector-Base Voltage
VeBO
35
Vdc
Emitter-Base Voltage
VEBO
3.5
Vdc
Collector Current - Continuous
Ie
250
mAde
Total Device Dissipation @ T C "" 25°C
Derate above 2SoC
Po
5.0
28.6
Watts
mW/oe
Tstg
-65 to +200
°e
-
6.5
Storage Temperature Range
Stud Torque 11 )
(1) For Repeated Assembly use 5 In. Lb.
In. Lb.
DIM
MILLIMETERS
MIN
MAX
A 7.06 7.26
8
6.25 6.45
C 15.49 16.51
D 0.64 0.89
E
1.40 1.65
F
5.59 5.84
H 26.67 27.18
J
0.10 0.15
K 13.34 13.59
L
8.26 8.51
M 400
500
N 1.40 1.65
p
1. 7
S
3.00 3.25
T 1.40 1.85
U 2.92 3.68
V 100
200
INCHES
MIN
MAX
0.278 0.286
0.246 0.254
0.610 0.650
0.025 0.035
0.055
0.220
1.050
0.004
0.525
0.325
~
0
0.055
0.118
0.055
11
100
CASE 1440-04
1324
2
MR F511 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unl... oth.rwi. noted.)
I
I
Symbol
Min
Typ
M8x
Unit
Collector·Emitter Breakdown Voltage
(lc = 6.0 mAde,IB = 0)
BVCEO
25
-
-
Vde
Collector-B •• Breakdown Voltage
(lC = lool'Ade, IE = 0)
BVCBO
35
-
-
Vde
Emitter-Base Breakdown Voltage
(IE = lool'Ade,lc· 0)
BVEBO
3.5
-
-
Vde
100
pAde
CMr.ctwilli..
OFF CHARACTERISTICS
Collector Cutoff Current
(VCE = 15 Vde, IB = 0)
ICEO
ON CHARACTERISTICS
hFE
25
50
200
VCE(sat)
-
0.2
0.5
Vde
Current-Gain-Bandwidth Product
(lc = 80 mAde, VCE = 20 Vdc, f = 200 MHz)
fT
1.5
2.1
-
GHz
Output Capacitance
(VCB = 20 Vde, IE = 0, f = 1.0 MHz)
Cob
-
3.2
4.5
pF
Noise Figure
(lc = 50 mAde, VCE = 20 Vde, f = 200 MHz)
NF
-
7.3
10
dB
Common-Emitter Amplifier Power Gain
(VCE = 20 Vde, IC = 80 mAde, f = 250 MHz)
Gpe
10
11
-
dB
2nd Order I ntermodulation Distortion
(VCE = 20 Vde, IC = SO mAde, Chn 2 + Chn 13 = 266.5 MHz)
IMD
-
-55
-50
dB
12 Chn XMD
30Chn XMD
-
-57
-
-59
-46
TB
-
-68
-65
DC Current Gain
(lC = SO mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage
(lC· loomAde,ls= 10 mAde)
DYNAMIC CHARACTERISTICS
FUNCTIONAL TESTS (Figure 1)
dB
Cross-Modulation Distortion
(VCE = 20 Vde, V out = +50 dBmV, IC = SO mAde)
Chn 13
Chn R
Triple Beat
(VCE = 20 Vde, IC = 80 mAde, V out = +50 dBmV,
Chn 2 + Chn 3 + Chn E = 261.75 MHz)
dB
FIGURE 1 - 40 to 330 MHz BROADBAND TEST CIRCUIT SCHEMATIC
R4
L4
C6
RF Output
CIRCUIT PERFORMANCE
Input/Output Aeturn Loss
Flatness
Gain
Bandwidth
Cl,C3,C4,CS,C6
0.002 "F Ceramic Disc
Rl
R2
C2
Ll
0.35-3.5 pF JOHANSON 4702
L2
SIlH, Ferrite Choke, MILL.ER
18 Turn., #24 AWG Enamelled, on Farrlta Torrid Core
FERROXCUBE 1041TOSo-4C7
L3
L4
2 Turns, #20 AWG, 118" 1.0.,0.2" Long
5 Turns, #20 AWG, 3116" i.D., 0.35" Long
1325
R3
R4
Min
Typ
-
ladB
+0.3 dB
10dB
-
40-300 MHz
4.7 kn, 1/4W, 10%
27 n,IW,10%
27 n,IW,10%
300 n, 1/4W, 10%.
Input/Output Conneetor, - TVpe F
Zo - 75 Ohms
MR F511 (continued)
FIGURE 3 - OUTPUT CAPACITANCE
FIGURE 2 - CURRENT-GAIN-BANDWIDTH PRODUCT
'N 2800
I
'"
'"t;24O
0
=>
o
f200 0
f--
10
I
9.0
V~E = 20 ~de
'" 1600
I;
8. 0
-.......
",
u.
.e
w
........
.......
/
~
o
7. 0
~ 6.0
~
C3 5. 0 \
§ 4.0
~120o /
z
0-
<800
~
3.0
~..;
2.0
",400
ex:
=>
~ 1.0
~
'"'
J:'
0
0
20
40
60
80
100 120 140
Ic. COLLECTOR CURRENT (mA)
160
180
I'-...
200
~
4.0
FIGURE 4 - INPUT CAPACITANCE
8.0
12
16
20
VCB. COLLECTOR·BASE VOLTAGE (VOLTS)
24
28
FIGURE 5 - BROADBAND NOISE FIGURE
25
13
12
~
.,
20
w
lio-'"'
U
~
~
:
15
10
!!;
..;
is 5.0
-
1-
VC
1: ~g~~~z
10
'"
~ 9. 0
il:
~ 8.0
-
o
z
7.0
u.'
Z
6.0
i,...- I---'"
--
5.0
-;,::;;;;
-
~
4.0
o
o
3.0
1.0
2.0
3.0
VE8. EMITTER·BASE VOLTAGE (VOLTS)
4.0
5.0
o
10
20
30
40
50
60
70
Ie. COLLECTOR CURRENT (rnA)
80
90
100
FIGURE 7 - 12 CHANNEL CROSS-MODULATION
versus COLLECTOR CURRENT
FIGURE 6 - 12 CHANNEL CROSS·MODULATION
versusCOLLECTOR·EMITTER VOLTAGE
30
:!
::!
....
w
Z
~
I
I
0 - '- IC =80 mAde
E. =+50d8mV
ul
z
..
i3
i5
Z
o
z
=>
o
o
0
~=>
~
~
50
o
t-- "-
'"
'"
~
'"
c
I I I
Vce-20Vde
E. = +50 dBmV
40
'"
r-- r--
:g
'"fi
-
z
0
S
30
z
r--.
'o·"'
~ 70
70
15
-
l- i--
60
16
17
18
19
20
21
22
23
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
24
25
1326
50
60
70
80
90
100
IC. COLLECTOR CURRENT (mA)
110
120
MR F511 (continued)
FIGURE 9 - 30 CHANNEL CROSS·MODULATION
ON CHANNEL 2,13,R
FIGURE B - 30 CHANNEL CROSS·MODULATION
ON CHANNEL R
25
0;
2:
30
~
35
z
40
5
45
..
z
z
o
z
50
o
55
~=>
'"'"
'"
lIi
60
65
\
IVCE
~
........ ......
70
d
75
50
60
1
20 ide
2:
~~
I--
I-- I-
20
N'
-'
W
I I I
I"--- r-
~
Z
~ 30
13
Eo = +50 dBmV
z
I"'.. i:'-
2!i 40
r- r-
Eo = +45 dBmV
~
g
...... ~ r-...
CHANNEL 13
i""'-- ~ r-I'--
50
'"
Eo = +40 dBmV
lIi
~
120
110
70
80
90
100
IC, COLLECTOR CURRENT (mA)
VCE = 20 Vde
Eo = +50 d8mV
~ r--....
o
--
"
~
l!i
T T T
......... t-..
'"
;;- 10
1T I
c:;;
'"x
CHANNEL R
r-....
CHANNEL 2
60
50
70
100
80
90
IC, COLLECTOR CURRENT (mA)
60
120
110
FIGURE 10 - 3O-CHANNEL CROSS-MODULATION versus
COLLECTOR·EMITTER VOLTAGE
20
I
I
IC = 80 mAde
Eo = +50 dBmV
~ 30 f..z
.
13
z
z
o
40
g
50
o
~
=>
r-- r-- i--
'o"
~
~
ci 60
l!i
15
16
17
18
19
20
21
22
23
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
0
..).
0
4O - f-
V~:: !~OV:~mv on Channel 2, 3, E
r-
%
'"'"
~
~
01--.
~
. . . r--.
50
!<
60
~
l"- t-.
10
w
i
70
«i
....
80
"'....
80
50
'"'"
~
w
-'
....
«i
....
Ic=80mA
Eo = +50 dBmV on ChanneI2,3,E
%
0
~
~
25
FIGURE 12 - TRIPLE BEAT versus
COLLECTOR·EMITTER VOLTAGE
FIGURE 11 - TRIPLE BEAT versus COLLECTOR CURRENT
i
24
60
100
70
80
90
IC, COLLECTOR CURRENT (mA)
110
120
1327
15
16
17
18
19
20
21
22
23
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
24
25
MRF511 (continued)
FIGURE 13 - SECOND ORDER IMD versus COLLECTOR
CURRENT
FIGURE 14 - SECOND ORDER IMD versus COLLECTOREMITTER VOLTAGE
20
20
r--
VCE" 20Vd,
Eo' +50 dBmV on Channel 2, 13
r---
IC' 80 mAd,
Eo· +50 dBmV on Chann,12, 13
0
(.....0-
....... I'-...
60
-~
r-
70
80
90
100
IC, COLLECTOR CURRENT (mA)
--
~
110
120
0
15
16
I--
17
18
19
20
21
22
23
VCE, COLLECTOR-EMITTER VOLTAGE IVOLTS)
FIGURE 15 -INPUT REFLECTION COEFFICIENT (SII) AND OUTPUT
REFLECTION COEFFICIENT (S22) versus FREOUENCY
1328
24
25
MRF511 (continued)
FIGURE 16 - FORWARD TRANSMISSION
COEFFICIENT (S12) vorsus FREQUENCY
FIGURE 17 - REVERSE TRANSMISSION
COEFFICIENT (S21) versus FREQUENCY
1329
MRF603 (SILICON)
The RFLine
10W -175 MHz
RF POWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
... designed for 12.5 Volt VHF large'signal power amplifier applica·
tions required in military and industrial equipment operating to 300
MHz .
•
Specified 12.5 Volt, 175 MHz CharacteristicsOutput Power = 10 Watts
Minimum Gain = 10 dB
Efficiency = 50%
MAXIMUM RATINGS
Svmbol
Value
Collector·Emitter Voltage
VCEO
18
Vdc
Collector-Base Voltage
VCBO
36
Vdc
VEBO
IC
4.0
Vdc
2.0
30
Adc
Watts
171
W/oC
Rating
Emitter~Base
Voltage
Collector Current - Continuous
Unit
Tot.1 Device Dissipation@Tc·25°C('1
Derat. above 25°C
Po
Storage Temperature Range
T stg
-65 to +200
°c
-
6.5
in. lb.
Stud Torque (21
DIM
A
B
C
0
E
F
H
J
K
L
M
(1) Th• • devices .r. designed for RF operation. The total device dissipation rating
IPPU.. only when the device. ere operated as clas. B or C RF amplifiers,
«2) For rep..ted ....mbly u•• 5 in.lb.
P
R
S
T
U
MILLIMETERS
MIN MAX
9.40
8.13
18.03
5.59
1.78
2.79
26.42
0.10
13.21
1.40
45 0
7.59
4.01
2.16
2.54
INCHES
MIN MAX
9.78 0.370 0.385
8.38 0.320 0.330
19.05 0.710 0.750
5.84 O. 20 0.230
2.03 0.070 0.080
2.92 0.110 0.115
28.70 1.040 1.130
0.15 0.004 0.006
14.35 0.520 0.565
1.65 0.055 0.065
NOM
45 0 N M
1.27
- 0.050
7.80 0.299 0.307
4.52 0.158 10.178
2.41 0.085 0.095
3.30 0.100 0.130
NOTE:
CASE 14SA-Ol USE 8-31NC2A STUD
CASE '45A-Ol
1330
MRF603 (continued)
ELECTRICAL CHARACTERISTICS (Tc
I
= 25 0 C unless otherwise noted.)
I
Characteristic
Symbol
Min
Typ
Max
Unit
BVCEO
18
-
-
Vde
BVCES
36
-
-
Vde
BVEBO
4.0
-
-
Vde
ICES
-
-
8.0
mAde
ICBO
-
-
0.5
mAde
GpE
10
-
-
dB
17
50
-
-
%
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
IIC
= 20 mAde,lB = 0)
Collector-Emitter Breakdown Voltage
IIC
= 10 mAde, VBe = 0)
Emitter-Base Breakdown Voltage
lie
= 2.0 mAde,lc = 0)
Collector Cutoff Current
(Vce
= 15 Vde, VBE = 0, TC = 550 C)
Collector Cutoff Current
(VCB
= 15 Vde,
Ie
= 0)
ON CHARACTERISTICS
DC Current Gain
IIC = 0.5 Ade, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 15 Vde,IE
= 0, f = 0.1
MHz)
FUNCTIONAL TEST (Figure 1)
Common-Emitter Amplifier Power Gain
(Pout = 10 W, VCC = 12.5 Vde, f = 175 MHz)
Collector Efficiency
(Pout
= 10 W, VCC = 12.5 Vdc, f = 175 MHz)
FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC
r-----~------~----~----~----<+
RF
OUTPUT
Cl
L1
RF
INPUT
C2
C4
C3
R2
Cl, C5
C2
C3
C4
L1
L2
5.0-80 pF,ARCO 462 or equivalent
9.0-180 pF, ARCO 463 or equivalent
120pF
25-280 pF, ARCO 464 or equivalent
Coppar Strap, 1-114" L, 114" W, 0.03" Thick
Ferrite Choke VK-20D-20148 FERROXCUBE
(Ferrite 8eed neer Base)
L3
L4
Rl
R2
1331
6 Turns file AWG, Wrapped on Rl
30 nH, 1 Turn file AWG, 1-114" Length, 114" 1.0.
100 Ohms, 2 W
1.5 Ohms, 114 W
MRF607 (SILICON)
The RF Line
1.75 W - 175 MHz
RF POWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
· .. designed for amplifier, frequency multiplier, or oscillator applications in military. mobile. marine and citizens band equipment.
Suitable for use as output driver or pre·driver stages in VHF and
UHF equipment.
•
Specified 12.5 Volt. 175 MHz CharacteristicsOutput Power ~ 1.75 Watts
Minimum Gain ~ 12.5dB
Efficiency ~ 50%
•
Characterized through 225 MHz
Ji~-=:=:
re---SEATING
PLANE
,,~
-----<>---0 STYLE 1:
PIN 1. EMITTER
I
2. BASE
3. COLLECTOR
N
...----I
/"
Q
C
LI
~K
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
16
Vdc
Collector-Base Voltage
VCBO
36
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
Ie
Adc
Po
0.33
3.5
28
Watts
mWloC
Tst9
·65 to +200
°e
Collector Current
~
Continuous
Total Device Dissipation@TC=750C (1)
Derate above 75°C
Storage Temperature Range
DIM
A
B
C
D
E
F
G
H
J
(1) These devices are designed tor RF operation. The total device diSSipation ratm9
applies onlv when the devices are operated as class B or C RF amplifiers.
K
L
M
P
Q
R
MILLIMETERS
MIN MAX
8.89 9.40 .
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
D.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
450 NOM
1.27
900 NOM
2.54
All JEDEC dimensions and notes apply.
CASE 79-02
TO·39
1332
MRF607 (continued)
ELECTRICAL CHARACTERISTICS 1Te= 25"c unless otherwISe noted.)
I
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage
lie = 25 mAde, 18 = 0)
BVeEO
16
-
Vde
Collector-Emitter Breakdown Voltage
IIC = 25 mAde, VBE = 0)
BVCES
36
-
Vde
Emitter-Base Breakdown Voltage
(IE = 0.5 mAde, Ie = 0)
BVEBO
4.0
-
Vde
leEO
-
0.3
mAde
GpE
12.5
-
dB
1'/
50
-
%
Characteristic
OFF CHARACTERISTICS
Collector Cutoff Current
(VCE = 10 Vde, IB = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 50 Ade, VeE
= 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB
= 12
Vde,IE
= 0, f = 1.0 MHz)
FUNCTIONAL TEST (F;gure 1)
Common-Emitter Amplifier Power Gain
Vee
= 12.5
Vde, f
= 175 MHz)
Collector Efficiency
(Pout = 1.75 W, Vec
= 12.5
Vde, f
= 175 MHz)
(Pout
= 1.75 W,
FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC
L3
'---_-+-_--'r< L2
12.5 Vdc
C4
RF
Ll
Cl
Output
RF
Input
C3
C2
Cl
C2
C3,C4
C5
ca
2.7-15 pF, ARCO 461
9_0-180 pF, ARCO 463
5_0-80 pF, ARCO 462
1000 pF UNELCO
51'F, 25 Vdc, TANTALUM
1333
L1
1 Turn #20 AWG, 318" 10
L2
3 Turns #20 AWG, 3/8" 10
L3
L4
0_22 I'H Molded Choke
0_151'H Molded Choke
with FERROXCUBE
56-590-65-38 8ead on
ground Iud
MRF607 (continued)
TYPICAL PERFORMANCE DATA
FIGURE 2 - OUTPUT POWER vorsus FREQUENCY
325
l\.
2.75
g
~
2.0
1.75
\ 1\
\
"
I"
1
1
=> 1.50
0
~ 1.25
'\
I
0.15
50
75
100
125
\
150
175
I\,
\ \
I\.
VCC = 12.5 Vdc
1.0
3.0
.. 2.1 5
[::
~ 2.50
\
Pin = 50 mW ' "
I-
.E
250mW
1,\
I"
1
1
~ 2.25
w
"Ie
200mw,\
loomW'\
2.50
'"
l '
.1
3.0
FIGURE 3 - OUTPUT POWER versus INPUT POWER
3.25
\
250
2.7 5
2.50
V
.,V
0
5
./
0
5
k-'-"
./
V
0.50
0.25
5.0
f = 175 MHz
Pin = 150 mW' -
V
6.0
7.0
9.0
10
11
12
VCC.SUPPLYVOLTAGE (VOLTS)
B.O
1.7 5
0.1 5
275 300
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
5
~
13
14
15
1334
V
L
/
/
1/
/
J
L
o
50
L
V".L.225 MHj
/
V
1.0
f. FREQUENCY (MHz)
5
2.0
l-
\1\
225
2.25
~
=>
o 1.50
~
~ 1.26
1\ '
200
ffi
175 MHz
V
/
VC~ = 12.5 Vdc -
V
100
150
200
250 300
350
Pin. INPUT POWER (mW)
400
450
FIGURE 5 - SERIES EQUIVALENT IMPEOANCE
PARAMETERS
500
MRF618
(SILICON)
The RF Line
15 W -470 MHz
CONTROLLED Q
RF POWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
· .. designed for 12.5 Volt UHF large·signal amplifier applications in
industrial and commercial FM equipment operating to 520 MHz.
•
Specified 12.5 Volt, 470 MHz CharacteristicsOutput Power = 15 Watts
Minimum Gain = 6.0 dB
Efficiency = 60%
•
100% Tested for Load Mismatch at all Phase Angles
with 20: 1 VSWR
•
Characterized With Series Equivalent Large·Signal Impedance
Parameters
•
Built·ln Matching Network for Broad Band Operation
STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. EMITTER
4. BASE
FLANGE·ISOLATEO
NOTE:
1. DIM "Q" IS OIA
DIM "S" IS RAD
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
VCBO
VEBO
IC
18
2.5
Vdc
Vdc
Vdc
Adc
Po
45
0.257
Watts
W/oC
Tst9
-65 to +200
°c
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Device Dissipation
Derate above 2SoC
@
TC
Storage Temperature Range
= 2SoC (1)
36
4.0
(1) These devices are designed for RF operation. The total device diSSipation rating
applies only when the devices are operated as class B or C RF ampllflers
DIM
MILLIMETERS
MAX
MIN
24.51
9.47
5.97
18.29
E 2.16
4.32
F
H 18.29
0.10
J
K 12.19
L
3.05
6.86
N
n 2.79
R 6.10
2.67
S
U
1.65
A
B
C
D
25.15
9.73
7.62
19.311
2.67
4.57
18.54
0.15
12.70
3.30
7.11
3.18
6.60
3.05
1.91
INCHES
MIN
MAX
0.965
0.373
0.235
0.720
0.085
0.170
0.720
0.004
0.480
0.120
0.2 0
0.110
0.240
0.105
0.065
CASE 278-02
1335
0.990
0.383
0.3110
0.760
0.105
0.180
0.7311
0.006
0.500
0.1311
0.280
0.125
0.260
0.120
0.075
MRF618 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
BVCEO
16
-
-
Vde
Collector-Emitter Breakdown Voltage
IIc = 50 mAde, VBE = 0)
BVCES
36
-
-
Vde
Emitter-Base Breakdown Voltage
liE = 50 mAde, IC = 01
BVEBO
4.0
-
-
Vde
ICES
-
-
10
mAde
GpE
6.0
7.0
-
dB
1/
60
-
-
%
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
IIc
= 50 mAde, IB =01
Collector Cutoff Current
(VCE = 15 Vde, VBE = 0, TC
= 55°CI
ON CHARACTERISTICS
DC Current Gain
IIC = 1.0 Ade, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB
= 12.5 Vde,
IE
= 0, f = 1.0 MHzl
FUNCTIONAL TEST (F,gure 11
Common-Emitter Amplifier Power Gain
(Pout = 15 W, VCC = 12.5 Vde, f = 470 MHzl
Collector Efficiency
(Pout = 15 W, VCC
= 12.5 Vde,
f
= 470 MHzl
Electrical Ruggedness
(Pout = 15 W, VCC = 12.5 Vde, f
VSWR = 20: 1, all phase anglesl
=
-
470 MHz,
No Degradation in Output Power
FIGURE 1 - 470 MHz TEST CIRCUIT SCHEMATIC
1000 pF
+
L2
Z2
T
J
RF INPUT >-~~r--'t--I>--L_~Z~l_..J
L1
C6
Cl, C8
C2
C3, C4, C5, C6
C7
C7
C4
100 pF
FERRITE
BEAD
Zl
Z2
100 pF, UNELCO OR EQUIVALENT
1.0·10 pF,JOHANSON 2951
15 pF, UNELCO OR EQUIVALENT
1.0·20pF,JOHANSON3906
0.2"WIDTH x 1.0" LENGTH
0.2B" WIDTH x 1.0" LENGTH
BOARD ISGLASSTEFLDN
3x5 x 0.062 INCH 1 0' COPPER
BOTH SIDES
L1, L2 3TURNS#20AWG,1/8"I.D.
FERRITE BEAD FERROXCUBE 56-590-65-3B
1336
1.0"F
C8
C1
C2
Vee
RF OUTPUT
MRF618 (continued)
TYPICAL PERFORMANCE DATA
FIGURE 3 - OUTPUT POWER versus INPUT POWER
FIGURE 2 - OUTPUT POWER versus FREQUENCY
10
10
Vee - 11.5 V
-
Pm- 3.OW
0
-
1.0W
0
400
410
440
460
480
"
~
~
~
:;:
~>-
10
"
0
J
-
500
'-470MHz
~ 15
>-
r-r--
LOW
o
510
5.0
,/'
V
/'
/
V
o
1.0
f, FREQUENCY (MHz)
1.0
3.0
4.0
50
Pin, INPUT POWER (WATTS)
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
PARAMETERS
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
0
....... ".--
I---ve1e -12.5 tdC
J.
f - - Pin- 3.0W
,- 470 MHz
5
0
/"
V
/
~
/'
0
0
4.0
6.0
8.0
10
12
14
16
VCC, SUPPLY VOLTAGE (Vdc)
FIGURE 6 - 470 MHz TEST
CIRCUIT LAYOUT
The series equivalent impedance values shown in Figure 5 are an
average of a large sample of devices. These impedances are highly
dependent on the following conditions: input power, output
power, supply voltage, harmonic termination and base bias (if any),
These variables can cause changes to ±30% from the typical values
shown.
Application Note AN-548. "Microstrip Design Techniques for
UHF Amplifiers". should be referenced for UHF power amplifier
designs.
1337
MR F618 (continued)
WIDEBAND UHF AMPLIFIER
460 MHz Typical Performance
Pin = 120 mW
Pout = 11 W
Ie = 1.8 A
FIGURE 7-
FIGURE 8RFG4
r
125 V
L2
Cl
RF
Rl
L3
C13
L1
INPUT
C9
C3
RF
OUTPUT
C4
Cl0
Cll
C12
C5
C1, 13, 14, 16 680 pF, All"EN·BRAQlEY FEEDTHRU
C2,10
1 0·11) "F,JOHANSON 2951
C3
10 pF UNDERWOOD OR EQUIVALENT
G4,5
60 pF UNDERWOOD OR EQUIVALENT
C6.8
Hi pF UNDERWOOD OR EQUIVALENT
C7
C9
100 pFUNOERWOOD OR EUUIVALENT
25 pF UNDERWOOD OR EUUIVALENT
GIl
70 pF UNOERWOOD OR EQUIVALENT
G12
C15
50pF UNDERWOOD OR EQUIVALENT
1 O.. F 35 V TANTALUM
l2
a 5 INCH, #24 AWG
a 5 INCH, #18 AWG
L3
0375 INCH, #18 AWG
L1
RFCI 4 TURNS #26 AWG, l/B" I 0 x 114" LONG WITH
FERRITE BEAD {FERRDXCUSE) ON GROUND END
RFC 2,3 5 TURNS #22 AWG, 1/8" lOx 1/4" LONG
RFC 4
FERROXCUBE VK200
Al 27 \! 1/4WATT
RZ 39~1114WATT
CIRCUITBUILTONPC BOARD 20ZCOPPER
FIGURE 9 - WIDEBAND SWEPT RESPONSE
:-.
,~
-Pout= 14W
-Pout=llW
-VSWR = L5
-VSWR = 1.0
'01
f, FREUUENCY (MHzl
SWEPT POWER OUTPUT AND INPUT VSWR Vec = 12.5 V Pin 150 mW
1338
MRF619 (SILICON)
MRF620
The RF Line
25 W - 470 MHz - MRF619
35 W - 470 MHz - MRF620
NPN SILICON RF POWER TRANSISTORS
"CONTROLLED
•
a"
RF POWER
TRANSISTORS
· .. designed for 12.5 Volt UHF large-signal amplifier applications in
industrial and commercial FM equipment operating to 510 MHz.
NPN SILICON
Specified 12.5 Volt, 470 MHz Characteristics Output Power = 25 Watts - MRF619
35 Watts - MRF620
Minimum Gain
= 5.22 dB -
MRF619
4.3 dB - MRF620
Efficiency = 55%
•
100% Tested for Load Mismatch at all Phase Angles with
20:1 VSWR
•
Characterized with Series Equivalent Large-Signal Impedance
Parameters
•
Built-In Matching Network for Broadband Operation
r N1
[21,.,f-r
~---
MAXIMUM RATINGS
Symbol
Value
Unit
VCEO
VCBO
VEBO
IC
Vdc
Vdc
Vdc
Adc
T stg
16
36
4.0
6.0
8.0
115
0.667
-65 to +200
I Symbol I
Max
Rating
Collector - Emitter Voltage
Collector - Base Voltage
Emitter - Base Voltage
Collector Gurrent - COntinuous
MRF619
MRF620
Total Device Dissipation@TC=2Sv C (1)
PD
Derate above 2SoC
Storage Temperature Range
STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. EMITTER
4. BASE
FLANGE-ISOLATEO
4
---
I
JFL
NOTE:
1. OIM "a"ls DIA
DIM "S"IS RAD
Watts
W/oC
DC
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to case
I
1.5
°JC
I
I
(1) These devices are designed for RF operation. The total device dissipation rating
applies only when the devices are operated as class C RF amplifiers.
Unit
uCIW
DIM
A
B
C
0
E
F
H
J
K
L
N
Q
R
S
U
MILLIMETERS
INCHES
MIN
MAX
MIN MAX
24.51 25.15 0.965 0.990
9.47
9.73 0.373 0.383
7.62 0.235 0.300
5.97
lB.29 19.30 0.720 0.760
2.67 0.OB5 0.105
2.16
4.57 0.170 0.180
4.32
18.29 18.54 0.720 0.730
0.10
0.15 0.004 0.006
12.19 12.70 0.480 0.500
3.05
3.30 0.120 0.130
7.11 0.270 -"'.280
6.86
2-79
3.1B 0.110 0.125
6.80 0.240 0.260
6.10
3.05 0.105 0.120
2.67
1.91 0.065 0.075
1.65
CASE 278-02
1339
MRF619, MRF620 (continued)
ELECTRICAL CHARACTERISTICS
I
(Te
= 25 0 e
unless otherwise noted)
I
Typ
Max
Unit
16
-
-
Vde
BVCES
36
-
-
Vde
BVEBO
4.0
-
Vde
Symbol
Min
Breakdown Voltage
0)
BVCEO
Collector-Emitter Breakdown Voltage
(Ie = 50 mAde, VBE = 0)
Emitter-Base Breakdown Voltage
Characteristic
OFF CHARACTERISTICS
Collector~Emitter
(lC
(IE
= 15 mAde, IB =
=5.0 mAde, IC = 0)
Collector Cutoff Current
(VCE = 15 Vde, VBE = 0)
ICES
-
-
20
mAde
Collector Cutoff Current
(VCB = 15 Vde, IE = 0)
ICBO
-
-
20
mAde
5.22
4.3
-
-
55
55
-
ON CHARACTERISTICS
DC Current Gain
(lC = 4.0 Ade, VCE
= 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12.5 Vdc, IE = 0, f = 1.0 MHz)
FUNCTIONAL TEST (F,gure 1)
Common-Emitter Amplifier Power Gain
(Vec = 12.5 Vde, Pout = 25 W, f = 470 MHz) MRF619
(VCC = 12.5 Vde, Pout = 35 W, f = 470 MHz) MRF620
GpE
Collector Efficiency
(Vec = 12.5 Vde, Pout = 25 W, f = 470 MHz) MRF619
(Vee = 12.5 Vde, Pout = 35 W, f = 470 MHz) MRF620
1)
Electrical Ruggedness
-
(Vce = 12.5 Vde,
VSWR = 20: 1,
(VCC = 12.5 Vde,
VSWR = 20:1
dB
%
Pout = 25 W, f = 470 MHz,
All phase angles)
MRF619
Pout = 35 W, f = 470 MHz,
All ohase angles)
MRF620
-
No Degradation
in output power
FIGURE 1 - 470 MHz TEST CIRCUIT
Bead
~------~~----~------O+VCC
C8I_
+
J;C7
L2
RF
INPUT
RF
OUTPUT
C4
Cl, C9
C2,C4
C3,C5
C6
C7
CB
Cl0, C11
1.0-20 pF JOHANSON 3906 or equivalent
25 pF UNELCO or equivalent
15 pF UNELCO or equivalent
, .0-1 0 pF JOHANSON 2951 or equivalent
1.0,uF, 35 V TANTALUM
680 P F F eedth ru
100 pF UNELCO or equivalent
C5
C6
L1
L2
4Turns#22AWG,O.125 1.0.
3 Turns #20 AWG, 0.250 1.0.
ZI
Z2
Z3
0.160'· W X 1.7"' L
0.230" W X 0.9" L
0.340" W X 0.9" L
FERROXCUBE Bead 56·590·65-3B
Board is gtass teflon, ER = 2.56
3" x 5" x 0.062", 1 oz.
COPPER DOUBLE CLAD
1340
C9
MRF619, MRF620 (continued)
OUTPUT POWER versus FREOUENCY
(Vec
= 12.5 Vdc)
FIGURE 3 - MRF620
FIGURE 2 - MRF619
-
5
I-- --l.
0_
5
-r-- r--
45
--
7.~W
12.5W
~
~
- --
r-- I--
0:
450
470
t, FREQUENCY (MHz)
-
lOW
35
~
>~
>-
30
5
25
I-f-
.........
I-- r--
'"0
,;:
430
40
~
6.0W
5
10
410
-- --
Pin: 15W
Pin: lOW
20
410
510
490
- --
5.0W
430
450
470
490
t, FREQUENCY (MHz)
510
OUTPUT POWER versus INPUT POWER
(Vee
= 12.5 Vdc)
FIGURE 5 - MRF620
FIGURE 4 - MRF619
5
.1.
450M~
~
0:
~
~ V"..,...,.
30
-9'/
25
:='"
}
15
10
2.0
/? F-470 MHz
510 MHz
in
>>-
r--
'"
0:
~
>~
!;
0
5
~
AV
~
,;:
~
450 MHz _
35
~
~
~
4.0
40
~
A I"
20
'"o
~ V%
~/
~
>-
45
~V
30
l,..'lV'
25 ~
V
~
-
.... ~ ~
;..---
...........
<::::: "./
"./ --.. 470 MHz
I--
-510MHz
/V'
..,/
20
6.0
8.0
10
7.0
5.0
12
Pin, INPUT POWER (WATTS)
9.0
11
13
15
Pin, INPUT POWER (WATTS)
OUTPUT POWER versus SUPPLY VOLTAGE
(f = 470 MHz)
FIGURE 6 - MRF619
5
~
0:
~
0
,/'
3
>-
~
20
~
~
V
V
0:
/'
L
40
.,.
,./
.,./
~
>~
>-
-
I--
45
~
V
~1 5
10
10
--
"./
25
~
>o'"
"./'
FIGURE 7 - MRF620
50
35
.,./
V
'"
0
Pin: 7.5W
5
,;:
30
p. :13W
'1
-
r-
J
25
11
12
13
14
15
10
11
12
13
VCC, SUPPLY VOLTAGE (Vdc)
VCC, SUPPLY VOLTAGE (Vdc)
1341
14
15
MRF619, MRF620
(continued)
SERIES EQUIVALENT IMPEDANCE
(Vee
= 12.5 Vdcl
FIGURE 8 - MRF619
FIGURE 9 - MRF620
lin
4001.0 + j4.5
--'"-+-1""-450 1.0 + j4.8
4701.1+ j5.5
5101.1 + j5.6
FIGURE 10 - 470 MHz TEST CIRCUIT LAYOUT
1342
MRF621
(SILICON)
The RF Line
45 W -470 MHz
"CONTROLLED a"
RF POWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
... designed for 12.5 Volt UHF large·signal amplifier applications in
industrial and commercial FM equipment operating to 512 MHz.
•
Specified 12.5 Volt, 470 MHz Characteristics Output Power ~ 45 Watts
Minimum Gain ~ 4.8 dB
Efficiency ~ 55%
•
100% Tested for Load Mismatch at all Phase Angles with 20: 1
VSWR
•
Characterized with Series Equivalent Large·Signal Impedance
•
Built·in Matching Network for Broadband Operation.
Parameters
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector· Emitter Voltage
VCEO
Vdc
Collector - Sase Voltage
VCBO
Emitter - Base Voltage
VEBO
16
36
4.0
11
146
0.834
-65 to +200
Collector Current - Continuous
IC
Total Device Dissipation@TC-2SOC(1)
Derate above 25°C
Po
Storage Temperature Range
T stg
Vdc
Vdc
Adc
Watts
WloC
°c
DIM
THERMAL CHARACTERISTICS
Characteristic;
Thermal Resistance, Junction to case
I
Symbol
I
Max
I
Unit
I
ReJC
I
1.2
I
°CIW
A
8
C
D
F
H
J
K
(1) These devices are designed for RF operation. The total device dissipation rating
applies only when the devices are operated as Class C R F amplifiers.
L
N
Q
R
S
MILLIMETERS
MIN MAX
24.38 25.15
12.45 12.95
5.97 7.62
5.46 TVP
5.08 5.33
18.29 18.54
0.10 0.15
10.67 10.92
3.81 4.06
3.81 4.32
2.92
.18
3.05 3.30
21.34 21.84
INCHES
MIN
MAX
0.960 I 0.990
0.490 0.510
0.235 0.300
0.215 TVP
0.200 0.210
0.720 0.730
0.004 0.006
0.420 0.430
0.150 0.160
0.150 0.170
0.115 0.125
0.120 0.130
0.840 0.860
STYLE 1:
PIN 1. EMITTER
2. CO LLECTO R
3. EMITTER
4.8ASE
FLANGE·ISOLATED
CASE 278·03
1343
MR F621 (continued)
ELECTRICAL CHARACTERISTICS (TC= 250 C unless otherwi. noted.)
I
I
Symbol
Min
Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB = 0)
BVCEO
16
Coliector·Emitter Breakdown Voltage
(lC· 15 mAde, VBE = 0)
BVCES
36
-
Emitter·Ba. Breakdown Voltage
(IE = 5.0 mAde, IC = 0)
BVEBO
4.0
-
Vde
ICBO
-
20
mAde
Common-Emitter Amplifier Power Gain
(VCC = 12.5 Vde, Pout = 45 W, IC(max) = 6.5 Ade, 1= 470 MHz)
GpE
4.8
-
dB
Collector Efficiency
(VCC = 12.5 Vde, Pout = 45 W, IC(max) = 6.5 Ade, 1= 470 MHz)
11
55
-
%
Electrical Ruggedness
(VCC = 12.5 Vde, Pout = 45 W, f = 470 MHz,
VSWR = 20: 1, All phase angles)
-
Choracteristic
Max
Unit
OFF CHARACTERISTICS
Collector Cutoll Current
(VCB = 15 Vde, IE = 0)
Vde
Vde
ON CHARACTERISTICS
DC Current Gain
(lC = 5.0 Ade, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12.5 Vde, IE = 0, 1= 1.0 MHz)
FUNCTIONAL TEST (Figure 1)
-
No Degradation
in output power
FIGURE 1 - 470 MHz TEST CIRCUIT
L4
Cl0
1I
C12
I
C11
+
12.5 Vdc
(-
RF OUTPUT
RFINPUT
C13
Cl,C9
C2,C8
C3,C4.C5
C6
C7
Cl0,C12
Cll
C13
Ll
L2
L3
1.0-20 pF JOHANSON Type 3906
100 pF UNELCO
25 pF UNELCO
40 pF UNELCO
5.0 pF UNELCO
680 pF ALLEN BRADLEY Feedthru
1.0 I'F, 35 V TANTALUM
O.lI'F, 100 V ERIE Red Cap
3.9
~H
DELEVAN Molded Choke
7 Turns, #18 AWG, 0.2" lOx 0.5" L..
(0.6 em 10 x 1.3 em L.)
C5
C6
C7
L4
FERRITE Choke, FERROXCUBE
VK200-20-4B
L5
Rl
Zl,Z4
Z2
2 Turns, L.ead of C13, 0.1" 10 (0.25 em)
Z3
Microstrip Line, 0.25" W x 1.5" L
(0.7 em W x 3.8 em L)
C7 Mounted 1.0" (2.5 em) from C5, C6
4.3 Ohm, 1/4 Watt, 10%
Mlerostrlp Line (50 m, O.lBO" W (0.07 em)
Microstrlp Line, 0.25" W x 1.0" L..
(0.7 em W x 2.5 em L)
Board - Glass Teflon, ER ... 2.56, t
FERRITE Bead on Lead of L1
FERROXCUBE 56-590-65-3B
= 0.062"
Input/Output Connectors - Type N
1344
MRF621
(continued)
FIGURE 2 - OUTPUT POWER
5
"""'-If"...
Pin=15W
5
lOW"'--
'470 MHz
!512 MHz
i
!
1
"-
I
'"
420
V
440
460
i
480
500
/
5
~
i
L
5
I"
I
'-
Vee' 12.5 Vde
400
.........
V
/'
...... ~,
I
30
380
FIGURE 3 - OUTPUT POWER ....... INPUT POWER
55
i'-o
I
I
'-
_MI, FREQUENCY
520
540
560
L
f =470 MHz
Vee = 12.5 Vd;-
,
30
6.0
580
/
8.0
10
f, FREQUENCY (MHz)
12
14
16
18
20
Pin, INPUT POWER (WATTS)
FIGURE 4 -OUTPUT POWER vorsus SUPPLY VOLTAGE
57.5
~
12.5 Vde
55
./
., 52.5
~
~
ffi
3:
it
V
50
1/
47.5
/
45
~
42.5
o
40
/
f =470 MHz_
f-Pin = 15W
S
re 37.5
35
32.5
7.0
/
8.0
9.0
/
10
11
12
13
14
15
16
17
Vee, SUPPLY VOLTAGE (VOLTS)
FIGURE 5 - SERIES EQUIVALENT INPUT IMPEOANCE
FIGURE 6 - SERIES EaUIVALENT OUTPUT IMPEDANCE
PDut = 45 w
Pout '"' 45W
Vee = 12.5 Vde
Frequency
MHz
400
450
500
550
Vee = 12.5 Vde
liN
Ohms
1.3+j3.9
1.4+j4.1
1.9+j5.7
3.7 +j4.5
Frequency
MHz
400
450
500
550
2.0
3.0
4.0
5.0
1345
lOL
Ohms
1.9 +j2.3
1.7 +j2.4
1.6+j2.4
1.2+j3.4
22
MRF621 (continued)
FIGUR E 7 - 470 MHz TEST CIRCUIT LAYOUT
""1·_-----------12.~.~-m-----------_t
..1
E
: 1,
RF INPUT
...:
1346
MRF628 (SILICON)
The RF Line
0.5 W • 470 MHz
RFPOWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
· .. designed for 5.0·15 Volt, VHF/UHF large'signal Amplifier/Mul·
tiplier applications in military and mobile FM equipment.
•
Sp~cified
•
Characterized with Series Equivalent Large·Signal
I mpedance Parameters
12.5 Volt, 470 MHz Characteristics
Power Output = 0.5 Watts
Minimum Gain = 10 dB
Efficiency = 50%
I~F]
JJ
MAXIMUM RATINGS
Symbol
Rating
Value
Unit
I
I
-I
VeEO
16
Vde
Collector-Base Voltage
VeBO
36
Vde
Emitter-Base Voltage
VEBO
4.0
Vde
Ie
200
mAde
Po
3.0
17.2
Watts
DIM
rrNilf'e
-65 to +200
°e
A
C
D
H
Total Oevice Dissipation @TC
Derate Above 25°C
Storage Temperature Range
= 25°C
Tstg
SEATING
PLANE
STYLE 1:
PIN I.EMITIER
2. BASE
3. EMITTER
4. COLLECTOR
Collector-Emitter Voltage
Collector Current - Continuous
A
MILLIMETERS
MIN MAX
7.06 7.26
2.82 3.35
5.5
26.67 27.18
0.10 0.1
J
K 1 .34 13.59
M
40'
S 1.40 1. 5
INCHES
MAX
MIN
0.278 0.286
0.115
0.220 10.230
1.050 1.070
.004 O.
O.
40
50'
0.055 0.065
CASE 249·01
1347
1
L\ \
MRF628 (continued)
ELECTRICAL CHARACTERISTICS ITc = 2So C unless otherwise noted)
I
Characteristic
Symbol
Min
Typ
16
-
-
36
-
-
36
-
-
4.0
-
-
-
-
2.0
-
-
0.5
10
-
-
50
-
-
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltege 11)
IIc = 20 mAde, IB = 0)
BVCEO
Collector-Emitter Breakdown Voltage (1)
IIc = 20 mAde, VBE = 0)
BVCES
Collector-Base Breakdown Voltage
IIc = 20 mAde, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
liE: 5_0 mAde, IC = 0)
BVEBO
Collector Cutoff Current
IVCE = 15 Vde, VBE = 0, TC = 25 0 C)
ICES
Collector Cutoff Current
IVCB = 15 Vde, IC = 0)
ICBO
Vde
Vde
Vd.
Vde
mAde
mAde
ON CHARACTERISTICS
DC Current Gain
IIC = 100 mAde, VCE = 5.0 Vde)
20
DYNAMIC CHARACTERISTICS
Output Capacitance
IVca = 12 Vde,lE
.
= 0, f = 1.0 MHz)
FUNCTIONAL TEST
Common-Emitter Amplifier Power
Gain
Iclmax)
= 80 mAde, f =470 MHz)
Collector Efficiency
IVCC = 12.5 Vde,.pout = 0.5 W, Iclmax)
= 80 mAde, f =470 MHz)
IVCC
= 12.5 Vde, Pout = 0.5 W,
GpE
1/
dB
%
11) Pulsed thru 25 mH inductor.
FIGURE 1 - SERIES EaUIVALENT
IMPEDANCE PARAMETERS
FIGURE 2 - OUTPUT POWER versus INPUT POWER
2.0
1.8
S
...
1.0
0
=>
0.8
0
0.6
~
0.4
I!:
=>
0.2
../
../
/'
./
V
20
/
40
60
80
100
120
Pin,lNPUT POWER ImWl
1348
..-/
/"
1.4
1.2
I-
,., ,.,
1.6
.~.,w
,.
J
Vee = 12.5
f = 470 MHz
140
160
180
200
MRF628
(continued)
FIGURE 4 - OUTPUT POWER _ .... VOLTAGE
FIGURE 3 - OUTPUT POWER var...s FREQUENCY
1000
-
900
800
!
70O
~
600
~
!;
I-- Pin
400
o
300
J 200
-
600
410
420
430
440
450
460
470
480
/
V
450
~
....
400
!;
350
~
-
490
500
'"~
0
25 mW
VCC = 12.5 V
550
!
T"-
100
0
400
./
= 75 mW
~-
500
~
......-
650
~
0':
300
./
.,/
f=470MHz
Pin = 50 mW
./
250
200
150
5.0
500
6.0
f, FREQUENCY (MHz)
7.0
8.0
9.0
10
11
12
VCC. SUPPLY VOLTAGE (VOLTS)
FIGURE 5 - 470 MHz TEST CIRCUIT
+12.SVdc
RF INPUT
@~~~~~~~~~~
C2
FIGURE 6 - 470 MHz TEST CIRCUIT SCHEMATIC
C5
L3
C6
12.5 Vdc
~------~----~--«RF
OUTPUT
RF
INPUT
=
Cl,2,3,4
C5.6
C7
11.2
L3
1.0·25 pF ARCO 421 OR EOUIVALENT
1000 pF FEEOTHRU CAPACITOR
1.0.F, 35 V CAPACITOR
7 TURNS #22 AWG. 0.2"1.0.
FERRITE BEAOS FERROXCUBE
56·5911-65·3B AS SHOWN ON Ll
l·CHOKE FERROXCUBE VK·200·20-4B
1349
BOARO·GLASS TEFLON, '!~!-I-{=:1:!::::=}
C1
C1,2,4,5,6
C3
C7,C8
C9
C10
1.0-10 pF, JOHANSON 5201
25 pF, UNELCO
15 pF, ATC, 50.50 Mils
680 pF, ALLEN BRADLEY Foedthru
1.0"F,35 V, TANTALUM
L1
6 Turns, #26 AWG, O~ 1" 1.0., 0.25" Long,
Bead on ground leed
Ferrlta Beed, FERROXCUBE, 56-590-65-38
on L.ead of L1
L2
1351
L3
6 Turns, #22 AWG, 0.1" 1.0.,0.35" Long
Z1
Z2
Z3,Z4
Z5
Mlcrostrlpllne, 0.3" W x 2.0"L
Mlcrostriplina, 0.3" W x 0.5" L
Microstripline, 0.3" W x 0.6" L
Mlcroltripline, 0.3" W x 0.4" L.
Board - Glass Teflon, eR "" 2.56, t = 0.062"
Input/Output connectors - Type N
MRF816
(continued)
FIGURE 3 - OUTPUT POWER v.. sus FREQUENCY
FIGURE 2 - OUTPUT POWER varsuIINPUT POWER
1200
~
1100
V V
ll°O0
S06MHz . /
II:
~ 900
V/
It
~ 800
~ 700
S
re
V
V
600 ......
1200
~~
V vVV
I 1000
75Jw
t--
II:
900 MHz
~ 900
.......
It
~50MHl
~
SOD
50mW
~
./
5
"./
VCC = 12.5 V
500
500
400
40
400
800
60
70
so
90
Pin,lNPUT POWER (mW)
100
110
120
820
840
1100
l1000
II:
~ 900
...........
...........
-+---- ......
Pin= 100 mW
........... ~
It
~ 800
-
f.-- f.--
-
~
..-
......
-
....
5
700
75'!'W
S
Pin=l00mW._
1 900 jHZ
tE 600
1
500
400
10
11·
12
13
VCC, SUPPLY VOLTAGE (VOLTS)
14
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
1352
--
............
r-..
860
880
900
I,FREQUENCY (MHz)
FIGURE 4 - OUTPUT POWER versus SUPPL V VOLTAGE
120 0
--r--
---
I-..
700
S
,e 600
Vcc = 12.5 V
50
~i~ = l00'1W--
1100
...- ~
15
920
~
940
960
MRF817
(SILICON)
The RF Line
2.5 W - 900 MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPN SILICON
... designed for 13.6 Volt UHF large'signal amplifier applications in
industrial and commercial FM equipment operating to 960 MHz.
•
•
Specified 13.6 Volt, 900'MHz CharacteristicsOutput Power = 2.5 Watts
Minimum Gain = 6.2 dB
Efficiency = 50%
Characterized with Series Equivalent Large-Signal Impedance
Parameters
2
~
lL=
Hl
'
K
,
A
•
~
-L~
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Symbol
Value
Unit
VCEO
16
Vdc
Collector-Base Voltage
VeBO
36
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
Collector Current - Continuous
Ie
400
mAde
Total Device Dissipation@Tc=: 25°C (ll
Derate above 25°C
PD
5.0
28.6
Watts
Storage Temperature Range
Stud Torque (2)
WRENCH
-65 to +200
°e
-
6.5
In. Lb.
(1) These devices are designed for A F operation. The total device dissipation rating applies
only when the devices are operated as Class C R F Amplifiers.
1--iT
~_~_lpeJ i C
---i.'
I
1;
I=
fLA:=n ~~
STYLE 1
PIN 1
mW/oe
T stg
(2) For repeated assembly. use 5 In. Lb.
-C tT
8-32 NC 2A
A
EMITTER
2
8ASE
3.
EMITTER
4.
COLLECTOR
o
E
H
J
K
M
P
R
S
T
CASE 244
1353
MRF817 (continued)
ELECTRICAL CHARACTERISTICS (TC= 2SoC unless otherwise noted.)
I
Symbol
Min
ColiectorMEmitter Breakdown Voltage
(lC = 50 mAde, IS = 0)
BVCEO
16
Vde
Collector-Emitter Breakdown Voltage
(lC = 50 mAde, VBE = 0)
BVCES
36
Vde
Emitter-Ba.. Breakdown Voltege
(IE = 1.0 mAde,lc= 0)
BVEBO
4.0
-
Vde
ICBO
-
1.0
mAde
Common-Emitter Amplifier POVller Gain
(VCC = 13.6 Vdc, Pout = 2.5 W, f = 900 MHz)
GpE
6.2
-
dB
Collector Efficiency
(Vec = 13.6 Vdc, Pout = 2.5 W, f = 900 MHz)
17
50
Characteristic
Unit
Max
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 100 mAde, VCE = 5.0 Vdc)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12.5 Vde,IE = 0, f = 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)
%
FIGURE 1 - 900 MHz TEST CIRCUIT
V
R F I nput
>:~-IIR'~IJ
Mlcrostrlp Board
Cl,4
C2,3,5,6
C7
C6
C9
1.IJ.20 pF, JOHANSON 5501
1.0·10 pF, JOHANSON 5201
100 pF UNELCO
6BO pF, ALLEN BRADLEY Fe.dthru
1.01'F,35 V TANTALUM
Ll,2
Ferrite Bead FERROXCUBE 56-59().65·4A
on 1/2", #22 AWG
Board - Glass Teflon, ER = 2.56, t". 0.062"
Input/Output Connectors - Type N
1354
MR F817 (continued)
FIGURE 2 - OUTPUT POWER var.... INPUT POWER
3.25
3.00
5
V
/
0
FIGURE 3 - OUTPUT POWER vsrsus FREQUENCY
V
~ 3.00
~
;; 2.7 5
~
~
/
5
0
/
f:900MH,
5 Vee: 13.6 Vdc
1.5 0
I
1.2 50
100
/
:::>
1=
:::>
V
g
2.75
«
~ 2.50
'"~
~
2.25 I-""
I-
~
2.00
I-
:::>
----
1l2.00
1.7 5
V
VCC: 13.6 V
1.50
600
700
800
-- -12
5
1.2 800
820
840
-- --
...........
--- -- -860
880
900
.1.
Pin: 600 mW-
I'---..
~
~OOmW
920
r----...
940
960
f. FREQUENCY (MH,)
i-- ~
- SERIES EQUIVALENT IMPEDANCE
"~
0"
~
.....
1.50
11
- r--
0':
~ 1.75 r-- r- f:900MH,
Pin: 600 mW
0':
1.25 10
2.25
o
FIGURE 4 - OUTPUT POWER vs,susSUPPLY VOLTAGE
3.25
3.00
2.50
I-
400
300
500
Pin. INPUT POWER (mW)
200
r-- r--
3.25
13
14
15
Vec. SUPPLY VOLTAGE (VOLTS)
1355
MR F8l7 (continued)
TEST CIRCUIT MASK DRAWING
1356
MRF818
(SILICON)
The RFLine
8.0 W - 900 MHz
RFPOWER
TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
· .. designed for 13.6 Volt UHF large-signal amplifier applications in
industrial and commercial FM equipment operating to 960 MHz.
• Specified 13.6 Volt, 900 MHz Characteristics Output Power = S.O Watts
Minimum Gain = 5.05 dS
Efficiency = 50%
• Characterized with Series Equivalent Large,Signal Impedance
Parameters
MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current Continuous
Total Device Dissipation@Te=25V e,(11
Derate Above 25°C
Storage Temperature Range
Stud Torque (21
Symbol
Value
Unit
VeEO
16
Vde
VeBO
36
4.0
Vde
1.5
Ade
15
85.7
Watts
VEBO
Ie
Po
Vde
STYLE I:
PIN I.
2.
3.
4.
mW/oe
T otg
-65 to +200
°e
-
6.5
In·Lb
DIM
A
B
(1) These devices are designed for AF operation. The total device dissipation
rating applies only when the devices are operated as Class C RF amplifiers.
(2) For repeated assembly. use 5 In. Lb.
C
D
E
H
j
K
,
M
R
S
T
U
EMITTER
BASE
EMITTER
CO LLECTO R
MILLIMETERS
INCHE
MIN MAX
MIN
MAX
1.D6 1.26 0.218 0.288
6.25 6.45 0.246 0.254
15.49 16.51 0.610 0.650
0.220 0.230
1.52
0.060 NOM
1.066 1.086
0.D06NoM
13.41
0.528 0.532
45"N
45"NOM
.1.21
4.52 5.03 0.118 0.198
3.00 125 0.118 0.128
1.40 1.65 0.055 0.086
2.92 168 0.115 0.145
'"I
CASE 244
1357
-
MRF818 (continued)
ELECTRICAL CHARACTERISTICS (TC
= 250 C unl ... otherwi.e noted).
I
Symbol
Min
Coliector·Emitter Breekdown Voltage
(Ie = 100 mAde, 18 = 0)
BVCEO
16
-
Vdc
Coliector·Emitter Breakdown Voltage
(Ie = 100 mAde, VRE = a)
BVCES
36
-
Vdc
Emitter·Base Breakdown Voltage
(IE = 2.0 mAde, IC = a)
BVEBO
4.0
-
Vdc
ICBO
-
1.0
mAde
Common-Emitter Amplifier Power Gain
(VCC = 13.6 Vdc, Pout = 8.0 W, f = 900 MHz)
GpE
5.05
-
dB
Collector Efficiency
(VCC = 13.6 Vdc, Pout = 8.0 W, f = 900 MHz)
'1
50
-
%
Characteristic
Max
Unit
OFF CHARACTERISTICS
Collector Cutoff Current
(VCB = 15 Vdc, IE = a)
ON CHARACTERISTICS
= 5.0 Vdc)
Output Capacitance
V
= 12.5 Vdc, I
= 0, f = 1.0 MHz
FUNCTIONAL TESTS (Figure 1)
FIGURE 1 - 900 MHz TEST CIRCUIT
v
A F I nput
>-J~"'I!P~"
Microstrip Board
C1,4
1.0-20 pF, JOHANSON S501
C2,3,5,6 1.0-10 pF, JOHANSON S201
C7
100 pF UNE LCO
680 pF, ALLEN BRADLEY Feedthru
C8
C9
1.0!,F, 35 V TANTALUM
L1,2
Ferrite Bead FERROXCUBE 56-590-65·4A
on 1/2", #22 AWG
Board - G lass Teflon, E'A "" 2.56, t "" 0.062"
Input/O utput Connector. - Type N
1358
MRF818 (continued)
FIGURE 3 - OUTPUT POWER versus FREQUENCY
FIGURE 2 - OUTPUT POWER ••rsus INPUT POWER
10
9.0
.....-V
E
~ 8.0
ffi
~I-
~_
o
~
~
7.0
....V
6.0
/'
5.0
/
--
0
~
~ 8.0
a:
~ 7. 0
~
~ 6.0
V
~
05.0
~
~4. 0
2.0
3.0
2.5
10
_V.--- ---
9.0
-
8.0
~ 7.0
a:
~
6.0
~
0
5.
--
o 4. 0
;
3.
0-
2.0
10
~V
r
~
t'
Pin" 2.5 W
900
11
12
13
VCC,SUPPL Y VOLTAGE (VOLTS)
14
800
820
840
860
-
-- --
880
900
f, FREUUENCY (MHz)
920
r--
940
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
/::
1.0W
3.0
Pin, INPUT POWER (WATTS)
0;
VCC "3.6 V
f-900MHz
r-- VCC'
13.6 Vd,
"
I
1.5
r--
/::
4.0
3.0
Pin· 2.5W-
iii 9.0
15
1359
960
MRF818 (continued)
TEST CIRCUIT MASK DRAWING
-_5.0"--~·1
!o4-1.
1360
MRF5174 (SILrCON)
TheRFLine
2W-400MHz
RFPOWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPNSILICON
... designed primarily for wide band large-signal driver and pre·
driver amplifier stages in the 20()'6oo MHz frequency range.
•
Specified 28,Volt. 400·MHz CharacteristicsOutput Power = 2.0 Watts
Minimum Gain = 12 d8
Efficiency = 50%
• Characterized from 200 to 600 MHz
•
Includes Series Equivalent Impedances
MAXIMUM RATINGS
Rating
Symbol
Vllue
Unit
Collector-Emitter Voltage
VCEO
33
Vdc:
Collector-Base Voltage
VCBO
60
Vdc
Emltter·Base Voltage
VEBO
4.0
Vdc
Collector Current - Continuous
IC
0.5
Adc
Total Device Dissipation'" T A = 25°C (1)
Derate above 25°C
Po
5.0
2B
Watts
mWf'C
Storage Temperature Range
Tstg
-65 to +200
°c
(1) These devices are designed for RF operation. The total device dissipation rating applies
only when the devices are operated al RF amplifiers.
THERMAL CHARACTERISTICS
Chore_lstle
Thermal Resistance, Junction to case
I
Symbol
R8JC
i
Max
I
25
Unit
STYLE 1:
PIN 1. EMITIER
2. BASE
3. EMIITER
4. COLLECTOR
INCHES
MIN
MAX
DIM
A
0.278
0.246
0.810
0.220
B
C
D
E
0.081 NOM
1.055 1.065
0.1105 NOM
0.528 0.5 2
45' NOM
H
J
K
M
,
0.118
0.118
0.055
0.115
°C/W
CASE 244
1361
0.286
0.254
0.650
0.230
0.198
0.128
0.065
0.145
MRF5174 (continued)
ELECTRICAL CHARACTERISTICS (TC= 250 C unless otherwise noted.)
I
I
Symbol
Min
Typ
Max
Unit
V~ltage
BVCEO
33
-
-
Vde
Coliector·Emitter Breakdown Voltage
(lc = 20 mAde, VBE = 0)
BVCES
60
-
-
Vde
Emitter·Base Breakdown Voltage
(IE = 1.0mAde,IC= 0)
BVEBO
4.0
-
-
Vde
ICBO
-
-
0.1
mAde
Common-Emitter Amplifier Power Gain
(VCC = 28 Vde, Pout = 2.0 W, f = 400 MHz)
GpE
12
-
-
dB
Collector Efficiency
(VCC = 28 Vde, Pout = 2.0 W, f = 400 MHz)
1)
50
-
-
%
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown
(lC = 20 mAde, 'B = 0)
Collector Cutoff Current
(VCB = 30 Vde, Ie = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 100 mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 30 Vde, 'E = 0, f = 1.0 MHz)
FUNCTIONAL TESTS (Figure I)
FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
L5
Cll
T
C12
1
Z4
RF
Input
)~~~t1C=~Z~lC=J
Ct
C2
C1,Cl0
Z2
C3
C4
O.OlSI'F VITRAMON Chip
1.0·20 pF JOHANSON Type 3906
100 pF UNDERWOOD (UNELCO)
C6,C7
5.0 pF ATC Chip
CB
O.1J,lF ERIE Disc Ceramic
L4
L5
Cll,C12 6S0 pF ALLEN BRADLEY Feedthru
L1
L2
L3
2S Vdc
RF
Output
C9
C2,C3,C9 1.0·10 pF JOHANSON Type 2951
C4
C5
Cl0
Z3
<-
At
2.7 Ohm, 1/8 Watt, 10%
R2
5.1 Ohm, l/S Wa", 10%
Z1,23
22
Mlcroltrlp Line, 0.'" W x 0.6" L
Microstrip Line, 0.1" W x 0.4" L
Microstrip Line, 0.075" W x 2.5" L.
Z4
3.9 IJH Molded Choke
Ferrite Bead, FEAAOXCUBE 56-590-65-38
4 Turns, #22 AWO. 0.1" 10
6 Turns, #20 AWG, l/S" ID
Ferrit. Choke, FERROXCUBE VK200·20·4B
Board - Glass Teflon, fA
= 2.56, t
... 0.062"
Input/Output Connectors - Tvpe N
1362
MRF5174 (continued)
FIGURE 2 - OUTPUT POWER versus FREQUENCY
3. 0
.......
5
......r--...,
r-...
......... r--,
b...
0
.5
~
'"
I
300
350
400
r-
~OmW
Vee = 28 Vdc
450
~
1"-.
500
5
r -- -- -- ---
550
600
650
1.5
r--
0
50
r-
:>
o
100mW
;l
r:E
1.0
f = 400 MHz
o
18
20
22
24
Vee. SUPPLY VOLTAGE (VOLTS)
26
100
150
Pm. INPUT POWER (mW)
200
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
I-- ~250mW
I-- I-- r-
Vee =28 Vdc
I
5
I-""
../
V600MHz
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
2.0
,.... t V
V
o
.. 1. 0
3.0
ffi
../
V
f. FREQUENCY (MHz)
~
!;
:=
~
b--:
V400MHz
.......
0
V
0
.........
50mW" "
250
V
200 MHz
t---.,250 mW
'"'
200
.L..-- f-'
5
f'....
'r--,
0
150
FIGURE 3 - OUTPUT POWER versus INPUT POWER
3.0
[""---.
28
FIGURE 6 - 400 MHz TEST CIRCUIT
1363
250
MRF5175
(SILICON)
The RF Line
5W -400MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPN SILICON
· .. designed primarily for wideband large·signal driver and predriver
amplifier stages in the 200·600 MHz frequency range.
•
Specified 28·Volt, 400·MHz CharacteristicsOutput Power = 5.0 Watts
Minimum Gain = 11 dB
Efficiency = 50%
•
Characterized from 200 to 600 MHz
•
Includes Series Equivalent Impedances
~
ltt1r
~A~ ~T
MAXIMUM RATINGS
Rating
Coliector~Emitter
Voltage
Value
Unit
WRENCH FLAT
VCEO
33
Vdc
B
Collector-Base Voltage
VCBO
60
Vdc
Emitter-Base Voltage
VEBO
.4.0
Vdc
Adc
Collector Current - Continuous
IC
1.0
Total Device Dissipation@TA== 25°C (11
Po
12
69
Watts
mW/oC
T stg
,65 to +200
°e·
Derate above 25°C
Storage Temperature Range
(1) These devices are designed for RF operati<:>n. The total
device
dissipation rating applies
only when the devices are operated as A F arlJ~lifiers.
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
tT 1R~flpEJ'C
= -+I
~31NC1A
Symbol
Symbol
Max
Unit
ReJC
12
°CIW
~
:LIllE
STYLE 1
PIN 1 EMITTER
2 BASE
3
4
EMITTER
COLLECTOR
DIM
A
•
C
D
E
H
J
K
M
p
R
s
CASE 244
1364
MRF5175 (continued)
ELECTRICAL CHARACTERISTICS (Te· 25°C unle •• otherwise noted.)
I
I
Symbol
Min
Typ
Max
Unit
BVCEO
33
-
-
Vdc
Collector·Emitter Breakdown Voltage
(lC· 30 mAde, VBE· 0)
BVCES
60
-
-
Vde
Emitter-Base Breakdown Voltage
BVEBO
4.0
-
-
Vde
ICBO
-
-
0.5
mAde
Common-Emitter Amplifier Power Gain
(VCC = 2B Vde, Pout· 5.0 W, f • 400 MHz)
GpE
11
-
-
dB
Collector Efficiency
(VCC = 28 Vdc, Pout' 5.0 W, f = 400 MHz)
17
50
-
-
%
Characteristic
OFF CHARACTERISTICS
Coliactor·Emitter Breakdown Voltage
(Ie· 30 mAde, lB· 0)
(IE· 1.0 mAde, Ie· 0)
Collector Cutoff Currant
(VCB· 30 Vde, IE· 0)
ON CHARACTERISTICS
DC Current Gain
(lC· 250 mAde, VCE· 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB· 30 Vde, IE • 0, f · 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)
FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
Cll
C12
T
1
L5
+
Z4
RF
Input
>~~~~r1==~~~
C1
21
C2
Cl0
Z2
C3
0.018
~F
RF
Output
Z3
C4
C9
Rl
Cl.Cl0
28 Vdc
<-
VITRAMON Chip
L4
R2
6 Turns, #20 AWG. 1/S" 10
C2.C3.C91.0·10 pF JOHANSON Type 2951
L5
Ferrite Choke, FERROXCUBE VK200-20-4B
C4
Rl
1.0·20 pF JOHANSON Type 3906
C5
100 pF UNOERWOOO (UNELCO)
C6,C7
CB
5.0 pF ATe Chip
0.1 IJF ERIE Disc Ceramic
C11,C12 680pF ALLEN BRADLEY Feedthru
R2
2.7 Ohm, 1/8 Watt, 10%
5.1 Ohm, 1/8 Watt. 10%
Z1,Z3
Microstrip Line, 0.'" W x 0.5" L
Z2
Microstrip Line, 0.1" W x 0.4" L
Microstrip Line, 0.075" W x 2.5" L
Z4
L1
3.9 IJH Molded Choke
L2
Ferrite Bead, FERROXCUBE 56-590-65-3B
4 Turns, #22 AWG, 0.1" '0
L3
Board - Glass Teflon, €R :: 2.56, t::: 0.062"
Input/Output Connectors - Type N
1365
MRF5175 (continued)
FIGURE 3 - OUTPUT POWER versus INPUT POWER
FIGURE 2 - OUTPUT POWER versus FREQUENCY
6.0
g
5. 5
............
~ 5. 0
o
S
~
6.5
S
.......
r-........
......
3.0
,..........
.........
......
Vcc = 28 Vdc
1. 5
150
~
4.0
1=
i5
3.5
250
300
350
400
450 500
f, FREQUENCY (MHz)
550
600
650
6.0
5.5
-
"
5.0
a:
~ 4. 5
~
~
~ 4.0
5
1=
:::>
3. 5
~ 3. o
100
20
=400 MHz
22
24
Vcc, SUPPLY VOLTAGE (VOLTS)
26
200
Vcc = 28 Vdc
300
400
500
600
700
Pin, INPUT POWER (mW)
800
900
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
--zDfw
f
2.0
1. 5
18
o
400mW
rE 2. 5
600 MHz
/
- --
=---I--
1/
L
2.0
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
6. 5
g
/
/
2.5
"-
/'
V
400 MHz
/
,E
1.5
200
/
/
S 3.0
.........
2.0
5.0
/
/
/
~ 4.5
"-
200mW
100 mW'"i'..
2. 5
~
i',,400mW
i-'
.,/200 MHz
5.5
............
...........
3. 5
V
6.0
r-.....
r-........
~ 4.0
:::>
.......
.......
~ 4. 5
5~
-
--t--....
6.5
28
FIGURE 6 - 400 MHz TEST CIRCUIT
1366
1000
MRF 517 6 (SILICON)
The RF Line
15W -400 MHz
RFPOWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPN SILICON
... designed primarily for wideband large·signal driver and predriver
amplifier stages in the 200·600 MHz frequency range.
•
Specified 28 Volt, 400 MHz CharacteristicsOutput Power = 15 Watts
Minimum Gain = 10d8
Efficiency = 50%
•
Characterized from 200 to 600 MHz
•
Includes Series Equivalent Impedances
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
COllector-Emitter Voltage
VCEO
33
Vdc
Collector-Base Voltage
VCBO
60
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
IC
2.0
Adc
Po
30
170
Watts
mW/oC
Tstg
-65 to +200
°c
Collector Current - Continuous
Total Device Dissipation@ TA
Derate above 2SoC
= 25°C (1)
Storage Temperature Range
STYLE 1.
PIN 1. EMITTER
2. BASE
3. EMITTER
4.
COLLECTOR
(1) These devices are designed for RF operation. The total device dissipation rating applies
only when the devices arB operated as R F amplifiers.
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
I
Symbol
R6JC
I
Max
I
6.0
Unit
°CIW
CASE 244
1367
MRF5176 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted.)
I
I
Max
Unit
-
-
Vde
60
-
-
Vdc
BVEBO
4.0
-
-
Vdc
ICBO
-
-
1.0
mAdc
GpE
10
-
-
dB
11
50
-
-
%
Symbol
Min
Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB - 0)
BVCEO
33
Collector-Emitter, Breakdo~n Voltage
(lC = 50 mAdc, VBE -
BVCES
Emitter-Base Breakdown Voltage
Charlet.-istie
OFF CHARACTERISTICS
or
(IE
= 2.0 mAdc, IC= 0)
Collector Cutoff Current
(VCB = 30 Vdc, IE
= 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 500 mAde, VCE '" 5.0 Vdc)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 30 Vdc, IE = 0, f = 1.0 MHz)
F,UNCTIONAL TESTS (Figure 1)
Common-Emitter Amplifier Power Gain
(VCC· 28 Vdc, Pout = 16W,f· 400 MHz)
Collector Efficiency
(VCC· 28 Vdc, Pout = 115 W, f· 400 MHz)
FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
L5
C12
C13
L...---..4I_---~TI-----«
Cl0
Z4
Z3
RF
Input
ZI
_28 Vdc
RF
Output
Z2
C1
C2
L2
C3
C7
Cl,Cl0 0.01Sj.lF IlITRAMON Chip
C2,C3,C8 1.0·20 pF JOHANSON Type 3906
100 pF UNOERWOOD (uNELCO)
C4
56 pF ATe Chip
C5,C6
0.1
p.F, E R I E Disc Ceramic
C7
I .0-2b pF JOHANSON Type 3906
C9
1.0 j.lF, 35 V TANTALUM
Cll
C12,C13 680 pF ALLEN BRADLEY Feedthru
C9
CS
R2
Rl
LI
3.9 j.lH Molded Choke
Rl
L2
Ferrite Bead, FERROXCUBE, 56-590-65-38
R2
207 n, liS W, 10%
5.1 n, 1/8 W, 10%
L.3
3 Turns, #20 AWG. 0.1" 10
Z1
Microstrip Line, 0.'" W x-'1.2" L
L.4
6 Turns, #20 AWG. 1/4" 10
Z2
Microstrlp L.ine, 0.25" W
L.5
Ferrite Choke, FERROXCUBE, Vt<200·20-4B Z3,Z4 Microstrip Line, 0.075" W x 1.25" L'
Board - Glass Teflon, fR
x 0.7" L
= 2.56, t = 0.062"
Input/Output Connectors - Type N
1368
MRF5176
(continued)
-
FIGURE 3 - OUTPUT POWER versus INPUT POWER
FIGURE 2 - OUTPUT POWER v....u. FREQUENCY
25
22.5
~ 20
~17.5
ffi 15
3:
...~12.5
25
I-...
r-- r-..
~ 10
:::>
o~
-
--
r--
7.5
';
V
22.5
........ ........
Pin = 210W
r--....
........
I.OW
!17.5
.......... ~
-.... -....
I-...
...... r--..,.
c
~
15
12.5
:::>
..........
rE 5.0
'"~
r--....
.............
0.5W
/200MHzV
~ 20
~
~
10
~
7.5
:::>
r-...
tE 5.0
J
V400MHz
/ V
/
V
/
;;;;.0
V
V
~MHZ
VCC = 28 Vdc
VCC = 28 Vdc
2.5
2.5
o
150
200
250
300
350
400
450
500
550
600
650
o
o
1.0
I, FREQUENCY (MHz)
22.5
~17.5
~
ffi
15
..... V
~12.5
.......
~ 10
1=
57.5
~ 5.0
-
---- ..........
.....-
/
...............
l--- '"Pin = 2.0W
----
"'1.0W
-D.5W
1=400 MHz
16
18
20
22
24
26
VCC, SUPPLY VOLTAGE (VOLTS)
28
4.0
FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
25
~ 20
2.0
3.0
Pin, INPUT POWER (WATTS)
30
FIGURE 6 - 400 MHz TEST CIRCUIT
1369
5.0
MRF5177 (SILICON)
The RF Line
30 W. 400 MHz
RF POWER TRANSISTOR
NPN SILICON
NPN SILICON RF POWER TRANSISTOR
... designed for VHF/UHF power amplifier applications. This device
is optimized for rugged performance in 225·400 MHz communications
equipment.
•
Performance @ 400 MHz, 28 Vdc Power Output = 30 W (Min)
Gain = 6.0 dB (Min)
•
Isothermal Design for Rugged Performance Tested at 30: 1 VSWR through all phase angles
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
Rating
VCEO
35
Vdc
Coliector·Ba.. Voltage
VCBO
60
Vdc
Emitter-Base Voltage
VEBO
4.0
Vdc
IC
4.0
Adc
Base Current
IB
1.0
Adc
Total Device Dissipation @ T C = 25°C) (1)
Derate Above 25°C
Po
-
58
0.33
Watts
W/oC
T,tg
-65 to +200
DC
Collector Current '- Continuous
Storage Temperature Range
(1) This device is designed for RF Power operation. The total device dissipation rating
2. BASE
~"1 I ~R
1!!F3~
LA-J1E
3. COllECTOR
B
J
A
H
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case
PIN 1. EMITIER
o
applies only when the device is operated as a Class C AF Amplifier.
Characteristic
STYLE 1:
I
Symbol
9JC
I
Max
I
3.0
Unit.
°C/W
K
l
M
R
1.52
S
T
2.03
2.03
5.38
2.54
0.080
CASE 215
1370
MRF5177 (continued)
ElECTR ICAl CHARACTE RISTICS
I
(T C = 25°C uniess otherwise noted)
I
Characteristic
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB = 0)
BVCEO
35
-
Vde
Collector-Emitter Breakdown Voltage
BVCES
60
-
Vde
BVEBO
4.0
-
Vde
ICBO
-
2.0
mAde
GpE
6.0
-
dB
~
60
%
Psat
36
Watts
OFF CHARACTERISTICS
(lc
= 50 mAde, VBE = 0)
Emitter-Base Breakdown Voltage
(IE
= 2.0 mAde,
iC
= 0)
Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lc = 100 mAde, VCE = 5.0 Vdc)
(I C = 4.0 Ade, V CE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capactiance
(VCB
= 28
Vde, IE
= 0, f = 1.0 MHz)
FUNCTIONAL TESTS (F Igures 1 and 9)
Common-Emitter Amplifier Power Gain
(Pout = 30 W, VCC = 28 Vdc, f = 400 MHz)
Collector Efficiency
(Pout = 30 W, VCC
= 28 Vde, f = 400 MHz)
Saturated Power
(Pin
= 11
W, VCC
= 28 Vdc, f = 400 MHz)
Electrical Ruggedness
(Pout = 30 W, VCC = 28 Vde, f
VSWR > ;roo 1 through all pha.e angle. on a 3 second time onterval,
= 400 MHz, TC';;; 50°C)
After which, devices will meet GpE test limits.
FIGURE 1 - 400 MHz TEST CIRCUIT
(Typical Performance Data for 300-500 MHz Operation)
L1
RF
j--t--::W<--f""r-< OUTPUT
CT.2.3.4.5
C6.C7
CB
C9
Ll,L2
l3
Rt 2.7 ohms, 1/4W, Carbon
Board Material:
1/16" Teflon Fiberglass
1 oz. copper, two-sided
Zl 0.3" Width, x 2.7" Length
Z2 0_3" Width, x 2.7" Length
4.0-40 pF ARCO 422 or equivalent
100 pf ATC or eqUIvalent
10 DOD pF ATC or eqUivalent
1 OJ.lF,35 V Tantalum
4 Turns, #20 AWG, 1/4" 10
Ferrrte Bead, Ferroxcube 56·590-65/38
FIGURE 2 - 200·300 MHz TEST CIRCUIT
(TYPical Performance Data)
r-~------~--------'---------~--"'VCC
RF
OUTPUT
Z2
RF
INPUT
C3
RT
Cl,C2,C3,C4 7.0·100 pF AR CO 423 or equivalent
C5,C6 100 pF Porcelain Chip Capacitor (ATC·100 or equivalent)
C7 10.000 pF Porcelain Chip Capacitor (ATC·100 or equivalent)
_
C8 1.0,u.F.35·VTantalum
- Lt,L27Turns#20AWG.l/4"10
1371
Beeds. Ferroxcube 56·590 65/3B
Rt 2.7 ohms, 1/2W, Carbon
21 0.3" Width x 3.3'" Length
22 0.3" Width x 4.53" Length
Board Materiel:
1116" Glass-Teflon
1 Ol.Copper, 2·sided
MRF5177 (continued)
FIGURE 4 - OUTPUT POWER versus INPUT POWER
FIGURE 3 - OUTPUT POWER versus FREQUENCY
40
E
«
30
'\..
~
0:
~
~
=>
20
l-
I!:
=>
"'"
'"
'-......
8.0W'
6.0W
r---
4.0W
r---
10
200 MHz
/
~
400
300
/
/
/
3.0
1.0
--
0
~
0---
I--
~ I--
-
~
0
I--- ...-
Pin=8.0W
I--- f.---
0
12
-
L---
~z_
5.0
Pin. INPUT POWER (WATTS)
9.0
7.0
--
f.--'" Pin = 3.0,!..
...... l-- ~ 2.0W
0
-
L-V
_V ...... V- I--
0
~
01---
I-----"
I---
-- -I---
-
--
-
1.0W
0
16
20
24
28
12
FIGURE 7
'"
~
........... r-..
..........
!'-....
""r--......
0
50.
100
20
24
FIGURE 8 - SERIES EQUIVALENT IMPEDANCE
RF POWER DERATING
0
16
Vcc. SUPPLY VOLTAGE (VOLTS)
0
0
".
,/
f= 200MHz
VCC SUPPLY VOLTAGE (VOLTS)
r--
./
0
~V
f.-- I-- --rOW
V
FIGURE 6 - OUTPUT POWER versus SUPPLY VOLTAGE
FIGURE 5 -- OUTPUT POWER versus SUPPLY VOLTAGE
f = 400 MHz
300MHZ./ 400 MHz "......
V
500
I
;/
A
/'1
.....
o VCC = 28 Vdc
f. FREQUENCY (MHz)
40
/"
V /' V
/ L/:: ,/"
O~
VCC = 28 Vdc-
200
VA
I'-....
-----
""""-- r--
Pin = 2.0W
o
~
I'-....
~
0
;
~
'\
0
150
~
200
TC. CASE TEMPERATURE (OC)
1372
28
MRF5177 (continued)
FIGURE 9 - 400 MHz CIRCUIT LAYOUT
11-.. -----5.0"----~·1
1373
MRF8004 (SILICON)
The RF Line
3.5W -27 MHz
RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR
NPN SILICON
... designed primarily for use in large-signal output amplifier stages.
Intended for use in Citizen·Band communications equipment operating to 30 MHz. High breakdown voltages allow a high percentage of
up-modulation in AM circuits.
•
Specified 12.5 V.
Power Output
Power Gain
Efficiency
27 MHz Characterisitcs= 3.5 W
= 10 dB
= 70% Typical
MAXIMUM RATINGS
Symbol
Value
Unit
Collector-Emitter Voltage
VCEO
30
Vdc
Collector-Base Voltage
VCBO
60
Vdc
Emitter-Base Voltage
VEBO
3.0
Vdc
Collector Current - Continuous
IC
1.0
Adc
Total Device Dissipation @ T C = 2SoC (1)
Po
5.0
28.6
Watts
mW/oC
-65 to +200
°c
Rating
Derate above 25°C
Storage Temperature Range
T stg
FIGURE 1 - 27 MHz TEST CIRCUIT
INPUT
8.00
E.
F
H
C1,C2
C3, C4
C5
CB
RFCl
9.o-180pF ARCO 463 or Equivalent
5.0-80 pf ARea 462 or Equivalent
O.02"F Ceramic Disc
O.l,uF Ceramic Disc
RFC2
L1
L2
26 Turns 122 Enameled Wire (2 Layers13 Turns Each Layer) '\4" InnlH' Diameter
O.22101H Molded Choke
0.68,11H Molded Choke
4 Turns 130 Enameled Wire Wound on
Ferroxcube Bead Type 58-591).85138
6.10
0.406
0.229
0.406
4.83
0.711
0.737
12.70
6.35
45 0 NOM
M
P
1.27
Q
900 NOM
R
2.54
K
All JEDECdim,n,ions.nd notes.pply.
(1lThis device Is designed for R F operation. The total device dinipatlon rating
applie. only when the device I. operated as an R F amplifier.
1374
CASE 79-02
TO-39
MRF8004 (continued)
ELECTRICAL CHARACTERISTICS (TA
= 25 0 C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
BVCEO
30
-
-
Vdc
Collector-Emitter Breakdown Voltage
(Ie = 200 mAde, VBE = 0)
BVCES
60
-
-
Vdc
Emitter-Base Breakdown Voltage
BVEBO
3,0
-
-
Vdc
ICBO
-
-
0.01
mAde
GpE
10
-
-
dB
1)
62.5
70
-
%
-
-
85
-
%
Rin
-
21
-
Ohms
Cin
-
900
-
pF
e out
-
200
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB = 0)
(IE = 1.0 mAde, Ie = 0)
Collector Cutoff Current
(VCB = 50 Vdc, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(Ie = 400 mAde, VCE
= 2.0 Vdc)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VeB = 12.5 Vdc, IE = 0, 1 = 1.0 MHz)
FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (See Figure 1)
(Pout = 3.5 W, Vec = 12.5 Vdc, 1 = 27 MHz)
Collector Efficiency (2) (See Figur.')
(Pout = 3.5 W, Vce = 12.5 Vdc, 1 = 27 MHz)
Percentage Up-Modulation (1) (See Figure I)
(1= 27 MHz)
Parallel Equivalent Input Resistance
(Pout = 3.5 W, Vee = 12.5 Vdc, 1 = 27 MHz)
Parallel Equivalent I nput Capacitance
(Po~t = 3.5W, Vee = 12.5 Vdc, 1 = 27 MHz)
Parallel Equivalent Output Capacitance
pF
(Pout = 3.5 W, Vee = 12.5 Vdc, 1 = 27 MHz)
(I) Percentage Up-Modulation is measured in the test circuit (Figure 1) by setting the Carrier Power (Pc) to 3.5 Watts with Vee =
12.5 Vdc and noting the power input. Then the Peak Envelope
Power (PEP) is noted after doubling the original power input to
simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the VCC to 25 Vdc (to simulate the modulating voltage). Percentage Up-Modulation is then determined by
the relation:
[(PEP) 1/2
Pc
Percentage Up-Modulation ==
RF Pout
(2) 11 = - - - ·,00
(Vee) (Ie)
]
-1
.100
FIGURE 2 - CIRCUIT TUNED AT 25 V, 25% DUTY CYCLE,
Pout = 15 W PEAK
20
lee.
t
25l Duty
./
1/
0.2
'"
/
,..,....
FIGURE 3 - CIRCUIT TUNED AT 12.5 V,Pout = 4 W
20
~ .....
5-
V
/'
0
./'
o
r
Vee 2.5VI 100% !"'y eyr
0.6
0.4
Pin, INPUT POWER IWATTSI
- Jee • 2J v 25J Duty e~Cle
V
o
O.B
1.0
,
V
-
I"
L
---::;~le'lyv 10jDUrYCI.
0.3
1375
~
0.9
O.B
Pln,lNPUT POWER IWATTSI
1.2
1.5
MSD6100 (SILICON)
Silicon epitaxial dual sWitching diode, designed for use in high
speed switching applications, features high breakdown voltage, low
capacitance and space saving common-cathode configuration.
e
I 2 3 STYLE 3:
PINI.ANODE
--2. ANODE
3. CATHODE
CASE 29
(10-92)
MAXIMUM RATINGS
eTA = 25°C unless otherwise noted)
Rating
Symbol
Value
Unit
Reverse Voltage
VR
100
Vde
Recurrent Peak Forward Current
IF
200
mA
IFM(surge)
500
mA
Power Dissipation @ T A = 25°C
Derate above 25°C
Po
111
310
2.82
mW
mW/oC
Operating Junction Temperature
TJ
111
135
°c
Storage Temperature Range
Tstg
-55 to +135
°c
Peak Forward Surge Current
(Pulse Width = 10 ~see)
111
ELECTRICAL CHARACTERISTICS (TA =250C unless otherwise noted I
Characteristic
Fig. No.
Symbol
Breakdown Voltage
(I(BR) = 100 ~Ade)
-
V(BR)
Reverse Current
(VR = 100 Vde)
(VR = 50 Vde)
(VR = 50 Vde, TA = 125°C)
2
IR
Forward Voltage
(IF = 1 mAde)
(IF = 10 mAde)
(IF = 100 mAde)
1
Capaeitarlee
(VR = 0)
3
Reverse Recovery Time
(IF = IR =10 mAde, VR = 5 Vde,
irr = 1.0 mAde)
4,5
VF
C
trr
(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings as follows:
. Derate above 2SoC - 8.0 mWf'C, T J
= -65 to
+150o C. 0JC
=
12SoCIW.
1376
Min
Max
100
-
-
5.0
0.1
20
0.55
0.67
0.75
0.7
0.82
1.1
-
1.5
Unit
Vde
IlAde
Vde
-
pF
ns
4.0
Po = 1.0 W @TC'" 2S0C,
MSD6100
(continued)
FIGURE 1 -
FORWARD CHARACTERISTICS
FIGURE 2 -
100
REVERSE LEAKAGE CURRENT
100
70
~
so
I
30
~
20
IS
~
Iil!
/
I
TJ = 125'C/
10
II
/
I
~
IS
I
~
I -55'C
25'C /
I
7.0
5.0
2.0
I
1.0
0.2
I
/ /
0.6
v~
'"
~
OJ
1.0
~
0.1
....-
.01
L
..-
V.=IO'!.---
~ ~
.001 25
1.2
l../
so
V•
FIGURE 3 - CAPACITANCE
IV
75
100
125
FIGURE 4 -
REVERSE RECOVERY TIME
5.0
----
4.0
1.1
I,
0.8
!
..........
r-----
!
i
~
t--
~
3.0
1,=loomA
--...........
~
.....
- r---
~
1,= SOmA
2.0
1,-IOmA
-
1.5
0.7
0.6
~
TAo AMBIENT TEMPERATURE ('CI
fORWARD VOlTAGE ORCP 1VOlTS)
1.2
~ 1.0
r-
I
/ /
/
0.4
I--- r- V. = 100j..- ~
1.0
~
.$
3.0
L
10
1.0
0.5
o
1.0
VR. REVERSE VOLTAGE (VOLTSI
FIGURE 5 -
1.11,
RECOVERY TIME EQUIVALENT TEST CIRCUIT
I,
sooo
SOil
1377
1.5
MSD61 01 (SILICON)
e
1 2 3
STYLE 3:
PIN1.ANODE
2. ANODE
3. CATHODE
C> C> C>
CASE 29
(TO-92)
Silicon epitaxial dual discriminator diode designed
for use in FM discriminator applications.
MAXIMUM RATINGS ITA = 26°C unless otherwise noted)
Rating
Symbol
Value
Unit
Reverse Voltage
VR
50
Vdc
Peak Forward Recurrent Current
IF
200
mA
IFM(surge)
500
mA
PDIII
310
2.82
mW
mW/oC
TJ , Tstg III
-55 to +135
°c
Peak ForWard Surge Current
(Pulse Width = 10 j.Ls)
Power Dissipation@ TA =
Derate above 25°C
2~oC
Operati.ng and Storage Junction Temperature
Range
ELECTRICAL CHARACTERISTICS
Characteristic
Breakdown Voltage
(I(BR) = 100 j.LAdc)
Heverse~urrent
= 40 Vdc)
({ = 40 Vdc,
(TA
= 25'C unless otherwise noted)
Fig. No.
Symbol
-
V(BR)
2
(V
TA
= 125°C)
Forward Voltage
(IF = O. 1 mAde)
(IF = 10 mAde)
1
Capacitance
(VR = 0)
3
Reverse Recovery Time
(IF = = 10 mAde, VR
irr = 1. 0 mAde)
Ia
IR
= 5 Vdc,
Forward Voltage Matching Vn - VF2
(I F1 = IF2 = O. 1 mAde)
4, 5
-
VF
C
Min
50
-
-
0.1
100
0.43
0.67
0.57
0.82
-
2.0
Vdc
j.LAdc
pF
ns
trr
L1V F
Unit
Vdc
-
10
-
0.003
(1) Continuous package improvements have enhanc:ed these guaranteed Maximum Ratings as follows:
TC" 26°C, Derate above 2S0C - B.O mWfOC, T J ~ -66 to +150o C, 9JC - 12SoC/W.
1378
Max
Vdc
PO" 1.0 W @
MSD6101
(continued)
FIGURE 1 - FORWARD CHARACTERISTICS
10.0
7.0
5.0
f
is
FIGURE 2 - REVERSE LEAKAGE CURRENT
10.0
..-
,
3.0
2.0
i"'"
I
j.. ~
!!
:; 1.0
0.7
~ O.5
1
-c. +-
~
~
I
/
~
/
U
M
I
/
~
..-
f - TJ = 125·C _
~
./
25·C
........-;-55·C
../
./ ./
~
./
.....< . / '
../
I
- 0.3
O.2
O. I
L
--
..-
I
VR-50V_
........
10~_
--I--- IV
I
U
U
U
~
.00 I
25
50
75
125
100
TA • AMBIENT TEMPERATURE (.c)
V, FORWARD VOLTAGE DROP IVDLTS)
FIGURE 3 - CAPACITANCE
FIGURE 4 - REVERSE RECOVERY TIME
1.2
15
1. I
10
1.-50mA
/
r- IOmA
lmA==
01\..
9~
8
O.7
0.6
-----
J
I
o
0.5
0.75
VR• REVERSE VOLTAGE (VOlTS)
1.0
I,ll.
1.25
FIGURE 5 - RECOVERY TIME EQUIVALENT
TEST CIRCUIT
I.
5000
50D
1379
1.5
MSD61 02 (SILICON)
Silicon epitaxial dual diode designed for use as ahorizontal phase detector for television receivers, and for
similar applications.
e
1 2 3 STYLE 3:
PINl.ANODE
2. ANODE
3. CATHODE
CASE 29
co co co
(10-92)
MAXIMUM RATINGS
(TA
:::
25°C unless otherwi~e noted)
Rating
Symbol
Value
Unit
Reverse Voltage
VR
70
Vdc
Recurrent Peak Forward Current
IF
200
mA
IFM(surge)
500
mA
310
2.82
mW
mW/oC
135
°c
-55 to +135
°c
Peak Forward Surge Current
(Pulse Width = 10/.ls)
Power Dissipation @ T A = 25°C
Derate above 250C
.:<
PD
111
<1r'
Operating Junction Temperature
TJ
Storage Temperature Range
Tstg
111
(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings as follows:
Derate above 25°C - 8.0 mW/oC. T J = -65 to + 150°C, (J JC = 125 0 C/W.
1380
Po" 1.0 W @TC
=
25°C,
MSD6102 (continued)
ELECTRICAL CHARACTERISTICS
Characteristic
(TA
= 2S"C unless otherwise noted)
Min
Symbol
Breakdown Voltage
(I(BR) = 100 !lAdc)
V(BR)
Reverse Current
(VR = 50 Vdc)
IR
Forward Voltage
(IF = 10 mAdc)
VF
Capacitance
(VR = 0)
-
-
0.1
0.67
1.0
-
3.0
trr
I
20
I
Ie
~
7.0
c
-"
I
I
30
10
TJ
100
~
125°C
II
IL
II
I
r------ t-V,~
J
I I-55°C
25°C
2.0
I
1.0
0.4
I
I
/ /
r--
,..,...
V,~10/
,.,.,.... ,.,.,....
/
V,
0.8
1.0
.001 25
1.2
1V
/
50
75
100
TA , AMBIENT TEMPERATURE (OC)
V" FORWARD VOLTAGE DROP (VOlTS)
FIGURE 3 - RECOVERY TIME EQUIVALENT TEST CIRCUIT
500n
I,
son
10 ns (max)
"....-
/"
I
I II
0.6
70;:"'- ~
...-
I
J
3.0
...-
/
10
5.0
0.2
ns
-
100
70
50
B
pF
FIGURE 2- REVERSE LEAKAGE CURRENT
versus TEMPERATURE
100
is
I.lAdc
Vdc
FIGURE 1- FORWARD CHARACTERISTICS
~
Unit
Vdc
70
C
Reverse Recovery Time
(IF = IR =10 mAdc, VR = 5 Vdc,
irr = 1.0 mAdc)
Max
I/" < t, < 1001"
DUTY CYCLE - 2%
1381
125
MSD6150 (SILICON)
SILICON EPITAXIAL
DUAL DIODE
SILICON EPITAXIAL DUAL DIODE
COMMON ANODE
· .. designed for general-purpose consumer applications.
•
High Breakdown Voltage V(BR) = 70 Vdc (Min) @ I(BR)
•
Space-Saving Package with Common Anode Configuration
•
One-Piece, Injection-Molded Unibloc Package
~
= 100}JAdc
1
2
MAXIMUM RATINGS
Symbol
Value
Unit
Reverse Voltage
VR
70
Vde
Peak Forward Recurrent Current
IF
200
rnA
IFM(surge)
500
rnA
PD 111
310
2.82
rnW
rnW/oC
TJ,Tstg 111
-55 to +135
Rating
Peak Forward Surge Current
(Pulse Width = 10 Its)
Total Device Dissipation@TA =25°C
Derate above 2SoC
Operating and Storage Junction
Temperature Range
SEATING.!t
PLANE
°c
STYLE 4:
PIN 1. CATHODE
2. CATHOOE
3. ANODE
ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
V(BR)
70
-
-
Vde
IR
-
-
0.1
/t Ade
VF
-
0.80
1.0
Vde
Capacitance
(VR =0)
C
-
5.0
8.0
pF
Reverse Recovery Time
t"
-
-
100
ns
Characteristic
Breakdown Voltage
(I(BR) = 100/tAde)
Reverse Current
(VR = 50 Vde)
Forward Voltage
(IF = 10 mAde)
~
L-'--
DIM
A
B
C
D
.1'
L
N
P
Q
(IF = I R = 10 mAde, VR = 5.0 Vde,
ire = 1.0 mAde)
(1) Continuous package improvements haVe enhanced these guaranteed Maximum Ratings as
follows: PO'" 1.0 W @ T A "'" 25°C, Derate above 8.0 mWJOC, Po '" 1 0 W @ T C "" 2SoC.
Derete above 80 mWI'C, T J,T stg'" -65 to +150°. 6JC" 12.5 0 CIW, 8JA "" 126°C.
1382
R
S
MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.482
1 . 0
1.150
1.390
1.270
6.350
3.430
2.410
2.670
2.030
2.670
INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.210
0.170
0.016
0.021
0.u19
U.UI6
0.045
I~
CASE 29.(12
TO-92
0.055
~
~
....QJ..!!L
3
MSD6150 (continued)
FIGURE 1 - FORWARD CHARACTERISTICS
FIGURE 2 - REVERSE LEAKAGE CURRENT
100
2000
/'
I
I
70
I
I
II
50
I
I
1000
I
I
500
./
/
30
<
.§
I
/ /I
20
I
I-
~
II
/
10
~ 7.0
I
~
5.0
0.4
/
«
~
'"w'"
10
I
I
I
'" V
/
'"
2.0
I I
1.0
I I
0.5
10 V
~
./'
/
/
/
/
/
I
II
V
5.0
1;;
I
/
./
w
-55°C
I
./
/
20
I
/
/
"''"
/'
0.2
0.1
0.6
0.8
1.0
1.2
25
50
VF. FORWARD VOLTAGE (VOLTSI
75
100
TA. AMBIENT TEMPERATURE lOCI
FIGURE 3 - RECOVERY TIME EQUIVALENT TEST CIRCUIT
+li.2V
J..--"_,I--
1.0",<" < 100",
OUTY CYCLE ~ 2.0%
500
-4.8 V
./
50
I
I
1.0
0.2
~
'"=>
'w"'
VR - 50 V
I
3.0
2.0
1
I-
J
25°C
~
,/
_ 100
I I
TJ=1250C
=>
'"'~
/
./
./
200
~.,-----J
1-
50
trr
10 ns (m.xl
1383
125
MSD7000 (SILICON)
SILICON EPITAXIAL DUAL SERIES DIODE
SILICON EPITAXIAL
DUAL
SERIES DIODE
designed for use in biasing, steering and voltage doubler
applications.
•
High Breakdown Voltage V(BR) = 100 Volts minimum
•
Low Capacitance C = 1.5 pF maximum
@
VR = 0
,m
MAXIMUM RATINGS
Rating
Reverse Voltage
Recurrent Peak Forward Current
Peak Forward Surge Current
(Pulse Width = 10 /A)
Total Device Dissipation @ T A
Derate above 2SoC
= 25°C
Operating Junction Temperature
Storage Temperature Range
Symbol
Value
Unit
VR
100
Vde
IF
200
mA
IFM(surge)
500
mA
Po
350
2.82
mW
mWf'C
TJ
150
°c
T stg
-55 to +150
°c
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise·noted)
Characteristic
Breakdown Voltage
(I(BR) = 100 "Ade)
Reverse Current
(VR 100 Vde)
=
Fig. No.
Symbol
Min
Max
Unit
-
V(BR)
100
-
Vde
2
IR
"Ade·
-
-
100
0.55
0.7
(IF = 10 mAde)
0.67
0.82
(IF = 100 mAde)
0.75
1.1
-
2.0
(VR = 50 Vde)
(VR = 50 Vde, TA = 125°C)
Forward Voltage
(I F 1.0 mAde)
1
=
Capacitance
(VR =0)
Reverse Recovery Time'
(IF = IR = 10 mAde,"VR
irr = 1.0 mAde)
3
4,5
= 5.0 Vde
trr
PIN I.
2.
3.
Vde
VF
C
STYLE 1:
0.5
0.2
-
15
DIM
A
B
C
pF
ns
0
•K
L
N
P
Q
R
S
MILLIMETERS
MAX
MIN
INCHES
MIN
MAX
4.450
3.18U
4.320
0.407
5,200
4.190
5.330
0.533
0.175
0.li!5
0.170
0.016
0.401
MO'
"."lti
12.700
1.150
6.350
3.430
2.410
2.030
1.390
1.270
2.670
2.670
0.500
0.045
0.250
0.135
0.095
0.080
CASE 29-02
TO·92
1384
0.205
0.165
0.210
0.021
0.019
0.055
0.050
0.105
0.105
MSD7000
(continued)
FIGURE 2 - REVERSE LEAKAGE CURRENT
FIGURE 1 - FORWARD CHARACTERISTICS
100
70
50
\
~
i'-.
0.7 a
i
'2.0
4.0
6.0
8.0
8.0 t--
6.0
0.5
10
VR. REVERSE VOLTAGE (VOLTS)
b
--
........... ~F=50mA
--
-
-
r--
t-- ~
0.9
0.7
1.1
1.l
IR/IF. RATIO OF REVERSEANO FORWARD CURRENT
FIGURE 5 - RECOVERY TIME EQUIVALENT TEST CIRCUIT
500
50
1.0 ns(max)
1.5
TA. AM81 ENT TEMPERATURE (OC)
0.7 8
u
I
0.02
0.01
I
1.0
0.2
«
1.0 V~
-'
r'
0.5
2.0
1\
~ 0.74
\
<:;
IV.
100n'c
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - SWITCHING VOLTAGE
FIGURE 2 - SWITCHING CURRENT
9.2
g
8.8
0
8.4
2!
400
w
'""
:;
8.0
0
>
z
7.6
'"
5....
7.2
~
6.8
>
6.4
.,;
6.0
-0.04
/
-0.03
/'
-0.02
V
/"
/"
/'
/
350
~
....
~
300
250
a 200
'"z
B 150
....
~
100
50
'\.
MUS4987
"'- '<
":>-: ~
""""-
MUS498a
-:::::: t::--
o
-0.01
+0.01
+0.02
+0.03 +0.04
-75
TC, TEMPERATURE COEFFICIENT 1%/0&1
-50
-25
+25
+50
+75
TA, AMBIENT TEMPERATURE 10C)
1395
+100
-
+125
MUS4987, MUS4988 (continued)
FIGURE 3 - HOLDING CURRENT
FIGURE 4 - FORWARD BLOCKING CURRENT
400
50
350
§
300
~
250
<.)
200
....
'"=>
r\
"-I"-
150
100
Z
MUr988
~
50
~ O.5
o~
c::; t-- t---.
r-
-50
-25
+25
L
2.0
~ 1.0
o
-75
5.0
i'l
~S4987
./ f".,.. ['-...
0
'"
:£
B
/
VF - 5.0 Volts
to
1"'''- ~'
Z
§
20
~ 10
r\.'\
to
~
....
+50
+75
+100
./
0.2
"-
IE
O. 1
0.05
-50
+125
FIGURE 5 - FORWARD ON·STATE VOLTAGE
1.40
~
1.35
~
./
01.30
V
>
w
~ 1.25
!1
~ 1.20
£'
o
i
1.15
~ 1.10
u:
> 1.05
V
g 6.0
L
V
0
z:w
5.0
to
«
TA=25 0 C
~
L
>
~
4.0
~ 3.0
=>
0
./
-
I--
I.-~
r-
100
125
1\
~
r- RL=500n
RL=100n
c
I-RL=50n
RL = 20 n
r-RL= 5n
r I II
1.0
150
175
200
0.01
IF. FORWARD ON·STATE CURRENT ImAI
FIGURE 7 - REVERSE CURRENT
10
5.0
VR = 30 V
.L.
~ 2. 0
ffi
1. 0
'"~
o. 5
<.)
w
~
o.2
~
o. 1
L
'" 0.0 5
It
0.02
0.0 1
-75
-50
-25
+25
+50
+100
~
> 2.0
75
50
+75
+125
FIGURE 6 - OUTPUT VOLTAGE (FUNCTION OF RL AND Cel
7.0
/
0;
~
+50
TA. AMBIENT TEMPERATURE lOCI
1.45
z:
+25
-25
TA. AMBIENT TEMPERATURE lOCI
+75
+100
+125
TA. AM81ENT TEMPERATURE lOCI
-I
CHARACTERISTICS
1396
MUS4987, MUS4988 (continued)
FIGURE 9 - PEAK OUTPUT VOLTAGE TEST CIRCUIT
10K
(\
FIGURE 10 - TURN·ON TIME TEST CIRCUIT
MERCURY RELAY
...II
I ....
1.0kf!
ANODE
VOLTAGE
:::... 12 v
1.0W 0.01 ~F
..
(
\..
Vs
~O.U .T.
VF
Vf+0.1 (VS-VF)
Turn-on time is measured from the time
Vs
is achieved to the time when the anode voltage drops to within 90% of the difference between
Vs
and VF.
FIGURE 11 - TURN·OFF TIME TEST CIRCUIT
ANODE
VOLTAGE
4Df!
S.OV
-=MERCURY
RELAY
O.U.T.
With the SUS in conduction and the relaV contacts open, the contacts are closed and the anode is driven negative. C is decreased. and when the
anode voltage becomes positive, the SUS remains off. The turn-off time, toff. is the time between initial contact closure and the point where the
anode Yoltage passes through zero volts.
1397
MV104 (SILICON)
vv c ---.! r-DUAL
VOL TAGE-VARIABLE
CAPACITANCE DIODES
SILICON EPICAP DIODES
37-42 pF
32 VOLTS
· .. designed for FM tuning, general frequency control and tuning, or
any top·of·the·line application requiring back·to·back diode configu·
rations for minimum signal distortion and detuning. This device is
supplied in the popular TO·92 plastic package for high volume,
economical requirements of consumer and industrial applications.
•
•
•
•
Guaranteed Capacitance Range - 37-42 pF @ VR = 3.0 Vdc
Dual Diodes - Save Space and Reduce Cost
TO-92 Package for Easy Handling and Mounting
Guaranteed Matching' Tolerance From Diode to Diode and
•
Monolithic Chip Provides Near Perfect Matching - Guaranteed
± 1% (Max) Over Specified Tuning Range.
Group to Group
"Upon request, diodes are available in matched sets of any num~er or in
matched groups. All diodes in a set or group can be matched for capacitance to
± 1.5% or 0.1 pF (whichever is greater) over the specified tuning range.
MAXIMUM RATINGS (Each Device)
Symbol
Value
Unit
VR
32
Volts
Forward Current
IF
200
rnA
Total gower Dissipation q&T A =
25 C Derate above 25 C
Po
280
2.8
mW
rnW/oC
TJ
+125
Tstg
-65 to +150
°c
°c
Rating
Reverse Voltage
Junction Temperature
Storage Temperature Range
FIGURE 1 - OIODE CAPACITANCE lEach Device)
0
.......
DIM
A
0
B
""
0
0
TA '25 0C
f= 1.0 MHz
0
C
0
F
""
K
L
N
P
Q
0
.............
R
S
MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.482
1
1.390
1.150
1.270
6.350
3.430
2.410
2.670
2.030
2.670
INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
U.016
0.D19
0.045
0.250
0.135
0.095
0.080
10
o
0.3
0.5
1.0
2.0
3.0
5.0
10
20
30
VR, REVERSE VOLTAGE (VOLTS)
1398
CASE 29·02
TO·92
0.055
0.050
-
0.105
0.105
MV104 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted, Each Device)
Characteristic-All Types
Symbol
Min
Typ
Max
Unit
BVR
32
-
-
Vdc
-
50
500
nAdc
-
Reverse Breakdown Voltage
IIR = 1Ol'Adc)
Reverse Voltage Leakage Current T A 250 e
(VR = 30 Vdc)
TA = sooe
IR
Series Inductance
(f = 250 MHz,Lead Length"" IllS")
LS
Case Capacitance
ee
-
0.18
-
pF
Tee
-
280
400
ppm/oe
S.O
nH
(f = 1.0 MHz, Lead Length"" IllS")
Diode Capacitance Temperature Coefficient
(VR = 4.0 Vdc, f = 1.0 MHz)
a. Figure of Merit
CT. Diode Capacitance
VR =3.0Vdc, f= 1.0MHz
pF
Device
Min
MV104
37
I
I
CR. Capacitance Ratio
e3/C 30
f = 1.0 MHz
VR = 3.0 Vdc
f = 100 MHz
Max
Min
Min
42
100
2.5
I
J
Max
2.8
TYPICAL CHARACTERISTICS (Each Device)
FIGURE 2 - FIGURE OF MERIT
FIGURE 3 - FIGURE OF MERIT
500
2000
V
V
40 0
100
V
I-
I-
V
"'
~ 300
o
~
::;;
...... V
~
~
'"
./
~ 200
TA=25 0 C . _
f=IOOMHz
./
d
500
r-..
~
w
u:
o~
200
I'
TA = 250 C
VR = 3.0 Vdc
:::>
~ 100
"""
d
100 /
0
~
0
3.0
6.0
9.0
12
18
15
24
21
27
20
10
30
20
30
FIGURE 4 - DIODE CAPACITANCE
1.040
:::;
~ 1.020
o
~ 1.010
~ 1.000
~ 0.990
w
g
i5
0.980
to. 970
- - ?'
~
0.960
-75
-50
~
50
1
--
30V -
NO ~~:;~Zi~~O CT _
V V
V
I-
I
-
w
~
'"
~~
w
-
I
I
25
50
200
300
75
TA=1250 C
20
10
=::::
5.0
750 C
2.0
1.0
0.50
0.20
0.10
-
250 C
0.05
0.02
0.01
-25
100
100
~ /4.0 V
~
./
70
FIGURE 5 - REVERSE CURRENT
VRJ~
c~ 1.030
50
f, FREQUENCY (MHz)
VR, REVERSE VOLTAGE (VOLTS)
100
125
TJ. JUNCTION TEMPERATURE (OC)
o
5.0
10
15
20
VR, REVERSE VOLTAGE (VOLTS)
1399
25
30
MV109 (SILICON)
VVC~r-SILICON EPICAP
VOLTAGE VARIABLE
CAPACITANCE DIODE
DIODE
26-32pF
. designed in the new low· inductance Mini·L package for high
volume requirements in VHF TV tuning, AFC, general frequency
control and tuning applications; providing solid·state reliability in
replacement of mechanical tuning methods.
•
High QWith Guaranteed Minimum Values at VHF Frequencies
•
Controlled and Uniform Tuning Ratio
•
Low Inductance Mini·L Package
•
Guaranteed Matching* Tolerance From Diode to Diode and Group
to Group
·Upon request, diodes are available in matched sets of any number or in matched
groups. All d lodes in a set or group can be matched for capacitance to ±3%
or 0.1 pF (whichever is greater) along the entire 'specified tuning range.
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current
Oevic~ Dissipation
@
TA
= 25°C
Symbol
Value
Unit
VR
30
Volts
IF
200
mA
PD
400
4.0
mW
mW/oC
TJ
+125
T st9
-65 to +150
°c
°c
Derate above 25°C
Junction Temperature
StoraQe Temperature Range
40
36
,
2
~
28
~
24
z
FIGURE 1 - DIODE CAPACITANCE
Tl= ~5JC
j=1.0MHz
"
\
DIM
A
•
U
~
w
o
c
C
Ii
20
16
C
D
f
12
"-
8.0
4.0
o
1.0
2.0
.3.0
H
J
•
l
N
R
S
r-
5.0 7.0
15 20
30
VR, REVERSE VOLTAGE (VOLTS)
50
70 100
T
U
MILLIMETERS
MIN
MAX
38'
292
191
064
008
1.30
0.64
'4.06
2.36
1.12
0.79
1.99
114
0.43
lI.
411
INCHES
MIN ...MA1L
0152 0.162
0.115 0.125
0.075
0.025
0.085
0.035
0.18
1.55
0.89
0.003
0.051
0.007
0.061
0.025
0.035
432
2.62
0.160 0.170
0.093 0.103
0.044 0.054
0031 0.041
0.472 0.502
0.045 0.055
0.017 . 0.027
2.16
089
1.37
1.04
12.75
1.40
0.89
CASE 226
1400
MV109 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unl... otherwise noted)
Characteristic-Ail Types
Symbol
Min
BVR
30
Reverse Breakdown Voltage
Typ
Unit
Max
Vde
OR ' lO~Ade)
Reverse Voltage Leakage Current
IR
0.1
"Ade
(VR = 28 Vdc, T A = 25°C)
Series Inductance
LS
-
3.0
nH
Cc
-
0.1
pF
TCC
-
300
Q.
Figure of Merit
(I = 250 MHz, Measured at Lead Stop",,1/8")
Case Capacitance
II = 1.0 MHz)
Diode Capacitance Temperature CoeffiCient
(VR = 3.0 Vde, I = 1.0 MHz)
CT. Diode Capacitance
VR =3.0Vdc,f= 1.0MHz
pF
I
Device
I
Minj
MV109
26
Nom
1
1 1
32
f--
Min
Min
280
5.0
~
....
,.ffi
~
=25 0 C
1=5OMH,
'"=>
'"
'"
./
~
to
u::
d
10
VR-2oVdc
0.3 1./
0.2
3.0
6.0
9.0
12
15
18
24
21
27
V
V
-60
-20
+20
+60
+100
+140
TA, AMBIENTTEMPERATURE (DC)
DIODE CAPACITANCE
NOTES ON TESTING AND SPECIFICATIONS
1.03
:::i
~ 1.02
VR = 3.0 Vdc
~ 1.01 -f-f= 1.0MH,
o
w
'-'
..........
~ 1.00
....
13
~
./
0.001
30
1.04
~
L
./
0.1
VR, REVERSE VOLTAGE IVOLTS)
FIGURE 4 -
L
1.0
!E 0.01
0.5
o
6.5
YELLOW
13
w
./
1. 0
Calar
RED
./
3. 0
2.0
Color
,/
1
....
~
w
I
Max
FIGURE 3 - LEAKAGE CURRENT
5. 0
o
I
Body Stripe R idga Stripe
100
TA
0
Package
C3/C25
f= 1.0 MHz
FIGURE 2 - FIGURE OF MERIT
0
ppm/oC
CR. Capacitance Ratio
VR = 3.0 Vdc
f=50MHz
Max
29
400
0.99
;3
.,./
~ 0.98
,......
/'"
--
1. LS IS measured on a package having a short Instead of a die. using an
impedance bridge (Boonton Radio Model 250A R X Meter).
........... V"
2. Cc IS measured on a package without a die, usmg a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
3.
a
IS calculated by takmg the G and C readings of an admittance
bridge. such as Boonton Electronics Model 33AS8. at the specified
frequency and substituting in the following equation.
o
i5
iO.97
0.96
-75
2"fC
Q=G
-50
-25
+25
+50
+75
TA, AMBIENTTEMPERATURE (DC)
+100
+125
4. CR is the ratio of CT measured at 3.0 Vde divided by CT measured
at 25 Vdc.
1401
MV205
MV206
(SILICON)
vvc -+I~
VOLTAGE VARIABLE
CAPACITANCE DIODES
SILICON HYPER·ABRUPT TUNING DIODES
••. designed for microwave tuning applications where minimum
package parasitics are required.
•
High Guaranteed Q@ 100 MHzQ = 225 (Min) - MV205
= 150 (Min) - MV206
•
Guaranteed Tuning Ratio, C3/C25
CR = 4.5 (Min) - MV205
= 4.0 (Min) - MV206
•
Supplied in Rugged Hermetic Ceramic Package
@
1.0 MHz -
MAXIMUM RATINGS
Rating
Svmbol
Value
Unit
VA
30
Volts
Forward Current
IF
200
mA
Device Dissipation@Tc= 25°C
Po
5.0
28.6
Watts
mW/oC
TJ,T stg
fs5 to +200
°c
Reverse Voltage
Derate above 25°C
Operating and Storage Junction
Temperature Range
FIGURE 1 - DIODE CAPACITANCE
20
18
~
~
...
16
G
12
5
10
"c
8.0
""
...'"
~
...
~
~
14
"
4.0
DIM
A
8
C
0
F
H
.....
II
III
2.0
o
0.3
~
TA = 25"C
f =1.0 MHz
~ 6.0
t;
STYLE 1:
PIN 1. CATHODE
2. ANODE
0.5
1.0
~
2.0
3.0
5.0
10
20
MILLIMETERS
MIN
MAX
3.30
2.97
1.96
2.21
3.78
4.09
1.52
1.68
1.50
1.65
1.78
1.93
INCHES
MIN
MAX
0.117 0.130
0.077 0.087
0.149 0.161
0.060 0.066
0.059 0.065
0.070 0.076
30
CASE 45·01
VR, REVERSE VOLTAGE (VO-LTSI
1402
MV205, MV206 (continued)
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted,)
Characteristic - All Typas
Symbol
Min
Typ
Max
Unit
BVR
30
-
-
Vde
-
50
0.5
nAde
"A de
LS
-
0.8
-
nH
Cc
-
0.15
-
pF
TC e
-
-
400
ppm/oC
Reverse Breakdown Voltage
OR = 10"Ade)
Reverse Voltage Leakage Current
IR
IVR=28V)
IVR = 28, T A = 6oDC)
Series Inductance (11
(f = self resonant frequency)
Case Capacitance (2)
If = 1.0 MHz)
Diode Capacitance Temperature Coefficient (6)
IVR = 3.0 Vde, f = 1.0 MHz, -55°C to +1250 C)
0(5)
f = 100MHz
CT = 9 pF
CT(2),13)
VR = 25"Vde
pF
Device
Typa
CR (4)
f= 1.0 MHz
C3/C25
Min
Max
Min
Min
MV205
2.0
2.3
225
4.5
6.0
MV206
1.8
2.8
150
4.0
6.0
FIGURE 2 - FIGURE OF MERIT
160Ii
....
V
I
1400 1 - -
TA=250 C
f = 100 MHz
1200
V
ii'
~ 1000
I
~
~
800
MV205
~ 600
/
:J
.... V
400
20
/
f...-"
O~
/
/
V
FIGURE 3 - DIODE CAPACITANCE
1.04
V
/
~
1.0 3
~
1.0 2
:::;
/
VR = 3.0 Vdc
o
~
/
V
Max
w
1.0 I
~
~
u
!;:; 1.00
MV206
~
V
0.9 9
~
o
V-
./V
~
.... V
~
0.9 B
C
:; 0.97
0.96
4.0
16
12
20
24
VR, REVERSE VOLTAGE (VOLTS)
B.O
2B
32
-75
-50
-25
0
+25
+50
+75
TA, AMBIENT TEMPERATURE (DC)
+100
+125
PARAMETER TEST METHODS
1. LS, SERIES INDUCTANCE
5. 0, FIGURE OF MERIT
o is calculated by taking the G and C readings of an admittance
bridge at the specified frequency and substituting in the follow
ing equations:
2nfC
LS is determined from the self resonant frequency and the
junction capacity of the device.
w
1
LS=-2-W
2.
Ce, CASE CAPACITANCE
Cc is measured on an open
Q=--
resCJ
G
(Boonto" Electronics Model 33ASB or equivalent).
6. TC e, DIODE CAPACITANCE TEMPERATURE COEFFICIENT
package at 1.0 MHz using a capaci-
tance bridge (Boonton Electronics Model 75A or equivalent.)
3. CT, DIODE CAPACITANCE
ICT = Cc + CJI. CT is measured at 1.0 MHz using a capacitance
twidge (Boonton Electronics Model 75A or equivalent.)
4. CtI. CAPACITANCE RATIO
CR i. the ratio of CT measured at 3.0 Vde divided by CT
......... d at 25 Vde.
TCe is guarantead by comparing CT at VR = 3.0 Vdc, f • 1.0
MHz, T A = -55°C with CT at VR = 3.0 Vde, f = 1.0 MHz,
T A = +1250 C in the following equation, which deftn.s TCe:
TC e =
ICT(+1250C) - CTI-55"C)1 x 106
155 + 125) CTI25"C)
Aee.... ey limited by CT measurement,
1403
to. 1 pF .
MV209
(SILICON)
vvc~\-SILICON EPICAP
VOLTAGE VARIABLE
CAPACITANCE DIODE
DIODE
26-32 pF
· .. designed for VH F TV tuning, AFC, general frequency control
and tuning applications; providing solid·state reliability in replace·
ment of mechanical tuning methods.
•
High Q With Guaranteed Minimum Values at VHF Frequencies
•
Control/ed and Uniform Tuning Ratio
•
Guaranteed Matching(1) Tolerance From Diode to Diode and
Group to Group
•
Supplied. in One'Piece, Unibloc
Package for High Reliability.
(1)Upon request, diodes are available In matched sets of any number or in
matched groups. All diodes in 8 sat or group can be matched for capacitance
to ±3% or 0.1 pF (whichever is greater) along the entlr. specified
tuning range.
T
p~1EIJ~B
MAXIMUM RATINGS
H
Symbol
Rating
Value
Unit
Reverse Voltage
VR
30
Volts
Forward Current
IF
200
mA
Po
280
mW
mW/oC
TJ
T stg
+125
Po .... r Diaipation @ T A
Derate above 26"C
= 26"C
2.8
Junction Temperature
Storage Temperature Range
SEATING
PLANE
40
36
~
32
u
28
...'"
24
~
20
.s
...
z
A
Q
Q
..:J J 1-=
12
I:i
8.0
R
c
PIN 1. CATHODE
2. ANODE
Ti = ~5JC
...........
i'-
f= 1.0 MHz
INCHES
MIN
MAX
5.33 0.110 0.210
5.21
0.115 0.205
B
4.19
.1 5
C
0.533 0.014 0.021
D
0.412
F
0.05 I BSC
G
1.21
0.050
H
0.100 BSC
J
2.54 BSC
U.500
K 12.10
L
~,3It
DIM
A
\
1.0
MILLIMETERS
MIN
MAX
4.32
4.45
3.18
0.356
0.401
1.21
-
-
1"-..
r-
4.0
o
;:::c
I SECTA.A
~
16
i5
I
~
D-::!i'iiG
r
K
STYLE 2:
i3
5...
l
--.l
FIGURE 1 - DIODE CAPACITANCE
A
.
F
°c
°c
-65 to +150
.
N
z.lJ3.
~
2.0
3.0
5.0 1.0 10
20
30
VR. REVERSE VOLTAGE (VOLTS)
50
10 100
-
-
-
.1
CASE 182-02
1404
--
0.135
R 3.43
All JEDEC dimenSIOns Bnd notes Ipply.
MV209 (continued)
E lECTR ICAl CHARACTER ISTICS (T A " 250 C unless otherwise noted)
Symbol
Min
Typ
BVR
30
-
-
Vde
IR
-
-
0.1
/lAde
Series Inductance (Note 1)
(f = 250 MHz, Lead Length"" 1/8")
LS
-
6.0
-
nH
Case Capacitance (Note 2)
(f" 1.0 MHz)
Cc
-
0.2
-
pF
TCC
-
300
400
ppm/oC
Characteristic
Reverse Breakdown Va'tage
OR" 10 /lAde)
Reverse Voltage Leakage Current
(VR
= 3.0 Vde, f
" 1.0 MHz)
Ct. Diode Capacitance
VR
= 3.0 Vdc, f = 1.0 MHz
pF
I
I
Device
Min
MV209
26
1
I
1
Nom
1
29
0, Figure of Merit
CR. Capacitance Ratio
VR = 3.0Vdc
f = 50 MHz
(Not. 3)
fiN~~.~rz
Min
Min
32
200
5.0
I--- TA = 250 C
I7
f = 50 MHz
1:
7. 0
5.0
/'
~
~
7
1.0
I../'
o
3.0
9.0
6.0
12
15
18
24
21
~27
30
~
w
'"'~
>-
u
if
~
-20
+20
+40
+60
+80
+100
+120 +140
1. LS is measured on a package having a'short instead of a die. using
an impedance bridge (Boonton RadiO Model 250A RX Meter).
VR = 3.0 Vdc
...,/
1.0I f - - t-f= 1.0 MHz
et"'" Cc + Cj
1.00
./
0.99
~
2. Cc is measured on a package without a die, using a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
V
J.....-
3. Q is calculated by taking the G and C readings of an admittance
bridge, such as Boonton Electronics Model 33AS8, at the
specified frequency and substituting in the following equation:
V
./V
;'l
o
-40
NOTES ON TESTING AND SPECIFICATIONS
FIGURE 4 - DIODE CAPACITANCE
o
./
TA. AMBIENTTEMPERATURE (DC)
1.0 4
~
./
0.2
0.1
'" 0.02
- 0.01
0.006
0.002
0.001
-60
VR. REVERSE VOLTAGE (VOLTS)
1.0 2
./
VR=20Vdc
~ 0.06
O. 7
0.5
1.0 3
6.0
~ 0.6
2.0
ffi
6.5
./
20
10
~ ~:~
3.0
N
I
Max
100
60
0
0.3
I
FIGURE 3 - LEAKAGE CURRENT
FIGURE 2 - FIGURE OF MERIT
0.2
CalC25
Max
0
d
Unit
= 25 Vde)
Diode Capacitance Temperature Coefficient
(VR
Max
21rfC
Q=-G
0.98
C
Q..
LeV~1
1.0 GHz
= 2.0 GHz
fin =
f out
15
V
l-
=>
0
....
10
i0
Q..
./
./
Q:
~
Q..
I'"
V
,,;'
".
5.0
/
o
o
V
5.0
10
20
15
Pin, POWER INPUT (WAnS)
1416
25
30
MV1858D ,MV1860D, MV1862D, (SILICON)
MV1863D, MV1864D, MV1865D,
MV1866D, MV1868D, MV1870D
vvc --.I~
VOLTAGE-VARIABLE
CAPACITANCE DIODES
SILICON EPICAP DIODES
1 to 15 pF
60 VOLTS
... designed for electronic tuning and control applications in the UHF
and lower microwave frequency ranges. where extremely high Q and
broad tuning ratio are required.
•
•
•
•
•
Excellent Q Factor @ f = 100 MHz
Low Capacitance Values - as low as 1.0 pF
Wide Tuning Range - to 60 Volts
Complete Typical Design Curves
Microwave Ceramic Package
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current
Total Device Dissipation
Symbol
Value
Unit
VR
60
250
5.0
28.6
-65 to +200
Volts
IF
@ TC
= 25°C
Po
Derate above 2SoC
Operating and Storage Junction
Temperature Range
TJ. Tstg
mA
Watts
mW/oC
°c
THE FOLLOWING PACKAGES ARE AVAILABLE ON SPECIAL REQUEST
e
8
MV1858A
thru
MV1870A
rBl
CATHOOE
~~
""
D
MILLIMET AS
DIM
A
B
C
D
C
MAX
MIN
MAX
3300
2110
1.780
1090
0111
0077
0130
0050
0070
0043
0.037
I"
tD
STYLE 1
1
INCH
MIN
CASE 48
G
thru
MV1870B
B
E
2970
1960
1.270
0940
e··"M'§
""',--I *la--r'r'"
0.1183
DIM
A
B
C
D
E
F
G
MIL~
MIN
2970
1950
5.210
1520
1500
1780
1500
INCHES
MIN
MAX
0117
0077
0130
0087
0205
0225
0060
0059
0070
0059
0066
CASE 46
1417
0065
0016
0065
DIM
A
B
C
D
E
F
MILLIMETERS
MAX
MIN
2.970
3.300
2.210
1.960
3.780
4.090
1.520
1680
1.500
1.650
1780
1.930
CASE 45
INCHES
MIN
MAX
0117
0.130
0.077
0087
0.149
0.161
0.060
0.066
0.059
0.065
0.076
0.070
MV18580, MV18600, MV18620, MV18630, MV18640,
MV18650, MV18660, MV18680, MV18700 (continued)
ELECTRICAL CHARACTERISTICS IT A = 250 C unless otherwise noted)
Characteristic
Symbol
Reverse Breakdown Voltage
(lR = 10 "Adc)
Max
60
-
-
-
-
0.02
20
-
0.8
-
-
0.15
-
IR
"Adc
nH
LS
= selfwresonant frequency I
Case Capacitance 11)
(I = 1.0 MHz)
Cc
CT. Diode Capacitanca (2)
VR = 4 Vdc, I - 1.0 MHz
pF
Device
Unit
Vdc
= 55 Vdc)
= 55 Vdc, TA = 1500 C)
Series Inductance
(f
Typ
BVR
Reverse Voltage Leakage Current
IVR
IVR
Min
CR. Capacitance Ratio
pF
Q.
Figure of Merit
VR =4.0 Vdc
f= 100 MHz
C4/C60
f= 1.0 MHz
Min
Nom
Max
Min
Max
Min
MVI85BD
MV1860D
MVI862D
MV1863D
MVI864D
0.70
1.76
2.97
4.23
6.10
1.0
2.2
3.3
4.7
6.8
1.30
2.64
3.63
5.17
7.50
2.1
2.5
2.6
2.6
2.7
2.7
3.1
3.3
3.3
3.4
350
350
300
300
300
MV1865D
MVI866D
MV1868D
MV1870D
7.38
9.00
10.80
13.50
8.2
10.0
12.0
15.0
9.02
11.00
13.20
16.50
2.7
2.8
2.8
2.8
3.4
3.5
3.5
3.5
300
250
200
200
(1) Case Capacitance = 0.25 pF typical for types MV 1858A thru MV 1870A (case 48),
(2) All CT values 0.11 pF higher for types MV1858A thru MV1870A (case 48). CR is reduced proportionately.
PARAMETER TEST METHODS
1. LS, SERIES INDUCTANCE
LS is determined from the self resonant frequency and the
junction capacity of the device.
4. CR, CAPAC IT ANCE RATIO
CR is the ratio of CT measured at 4.0 Vdc divided by CT
measured at 60 Vdc.
5. RS, SERIES RESISTANCE
RS is calculated from the insertion loss observed when the diode
LS= __I__
w 2 res CJ
is resonated across a 50-ohm transmission line.
2. CC. CASE CAPACITANCE
Cc is measured on an open package at 1.0 MHz using a capaci~
tance bridge (Boonton Electronics Model 75A or equivalent,)
3. CT, DIODE CAPACITANCE
ICT= CC+ CJ}. CT is measured at 1.0 MHz using a capacitance
bridge (Boonton Electronics Model 75A or equivalent.)
1418
25
RS=----~~~--~~-
-1 ( Insertion
10910
20
LOSS) -1
MV1858D, MV1860D, MV1862D, MV1863D, MV1864D,
MV1865D, MV1866D, MV1868D, MV1870D (continued)
FIGURE 1 - DIODE CAPACITANCE varsus REVERSE VOLTAGE
FIGURE 2 - NORMALIZED SERIES RESISTANCE
varsus REVERSE VOLTAGE
100
10
0
or---MV1870D
~
~
;5
i3
~
10
1. 0
5.0
3.0
r-- t=
~
-
MVI858D
Q
'"25
I
r-i-
5.0
3. 0
~
S
MVI864D
~
;;;;
t· 1.0 MHz
~
1.0
~
0.5
~
~
NORMALIZED TO R, @ VR
o. I
O. 1
10
20
40
60
10
20
VR, REVERSE VOLTAGE (VOLTSI
40
60
100
1.0
-2.0
0
~ 2. 0
./
:5
1. 0
~
u
~ -1. 0
i3
~ -2 .0
-3. 0
-4 0
-5. 0
-75
~
.-
....-
~
-
2
50 V
:/
=4 Vdc
-~
8
~ t-
4
1,/
2
/"
-25
25
75
50
100
75
-50
-25
25
50
75
100
TJ, JUNCTION TEMPERATURE lOCI
FIGURE 6 - DIODE REACTANCE varsus FREQUENCY
1000
TA
50 0
30 0
=150De
i
1.0
u
z
O. 1
;
i
75 De
w
~
10 0
[""-0.
.......
0
0
MVI858D
....
Q
'"
is
'"ti:
- 0.00 1
MVI860D
r-.
20
30
0
5. 0
3. 0
25 De
40
50
60
VR. REVERSE VOLTAGE (VOLTSI
1419
1.0
0.1
.Ib-.",
......
~
0.0 1
0.0001
10
~
r-
NORMALIZED TO R,@25'C
6
V
-50
VR
O
f-"_ V./
10
~
100
4
V.- V-lOV
100
~
60
6
-40 V
FIGURE 5 - REVERSE CURRENT
~
'"
B
40
20
8
V
TJ, JUNCTION TEMPERATURE ('CI
~
>-
10
2. 0
4. 0
0
60
FIGURE 4 - NORMALIZED SERIES RESISTANCE
varsus TEMPERATURE
5. 0
~
40
20
VR, REVERSE VOLTAGE (VOLTSI
FIGURE 3 - CAPACITANCE VARIATION versus TEMPERATURE
~
4V
,t 0.3
0.5
3
~MV1864D
"
"
MVI870D ~
I II
0.2
0.3
0.5
2.0
1.0
t, FREQUENCY IGHzI
3.0
5.0
10
MV18580, MV18600, MV18620, MV18630, MV18640,
MV18650, MV18660, MV18680, MV18700 (continued)
EPICAP VOLTAGE-VARIABLE CAPACITANCE DIODE DEVICE CONSIDERATIONS
A. EPICAP NETWORK PRESENTATION
FIGURE 1
The equivalent circuit in Figure 7 shows the voltage capaci·
tance and parasitic elements of an EPICAP diode. For design
purposes at all but very high and very low frequencies. L" RJ,
and Ce can be neglected. The simplified equivalent circuit of
Figure 8 represents the diode under these conditions.
Definitions:
CJ - Voltage-Variable Junction Capacitance
R, - Series Resistance (semiconductor bulk, contact,
and lead resistance)
Ce - Case Capacitance
L, - Series Inductance
RJ - Voltage-Variable Junction Resistance (negligible
above 100 kHz)
R,
L,
FIGURE 8
C,)k
R,
O------~~*r-F-----~~~------~O
CT = Ce + CJ
B. EPICAP CAPACITANCE vs REVERSE BIAS VOLTAGE
The most important design characteristic of an EPICAP
diode is the CT versus V.. variation as shown in equations 1 and
2. Since the desIgner is primarily interested in the slope of CT
versus YR. the Ce. Co. CPr' and 'Y characteristics have been en·
compassed by the simplified equation- 3. Min/max limits on
a can be guaranteed over a specified V. range.
(1)
CT = Ce + __C_.__
(1
(2)
+ ~).,
.
f ..
N(x2)
= 20.8; N(x3) = 34-.8; N(x4) = 62.5
M and N are Constants
1420
(6)
WRSCeq
P
Efficient harmonic generation is possible with Motorola
EPICAPS because of their high cutoff frequency and break·
down voltage. Since EPICAP junctIon capacitance varies in·
versely with the square root of the breakdown voltage,
"",CJRi
RJ
(10)
MV1866, MV1868, MV1870, (SILICON)
MV1871, MV1872, MV1874,
MV1876, MV1877, MV1878
vvc -.!~
VOLTAGE-VARIABLE
CAPACITANCE DIODES
10-47 pF
60 VOLTS
SILICON EPICAP DIODES
· .. a PREMIUM line of epitaxial, passivated, abrupt·junction tuning
diodes designed for electronic tuning, FM AFC and harmonic generation applications into the microwave range providing solid-state
reliability to replace mechanical tuning methods.
•
•
•
•
•
Excellent Unit-to-Unit Uniformity
Typical Design Curves
Guaranteed Temperature Coefficient
Guaranteed Q at Specified Reverse Voltages
Guaranteed Capacitance Slope versus Reverse Voltage
• Guaranteed MinIMax Slope of Capacitance versus Reverse
Voltage Curve (a)
• Complete Design Curves
"I@li
B
D_~
K
CATHODE
BAND
Symbol
Valu.
Reverse Voltage
VR
60
Vdc
IF
250
mAde
RF Power I nput I Note 1)
Pin
5.0
Watts
Total Device Dissipation@TA =250 C
Po
400
2.67
mW
mWf'C
DIM
PL
2.0
13.3
Watts
mWf'C
A
B
0
Total Device Dissipation @TL "" 25°C
Derate above 25°C
Operating Junction Temperature Range
Storage Temperature Range
TJ
+175
DC
Tstg
-65 to +200
DC
b:!:.
K
Unit
Forward Current
Derate above 25°C
rFj
r+.~
L
MAXIMUM RATINGS
Rlting
_I
F
MILLIMETERS
MIN
MAX
5.84
2.16
0.46
7.62
2.72
0.56
1.27
INCHES
MIN
MAX
0.230
0.085
0.018
K 25.40
1.000
All JEDEC dimensions and notes apply
Note 1. The RF power input rating assumes that an adequate heat sink Is provided.
CASE 51-02
00-7
1421
0.300
0.107
0.022
0.050
MV1866, MV1868, MV1870, MV1871, MV1872,
MV1874, MV1876, MV1877, MV1878 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic - All Types
Breakdown Voltage
OR = 10/LAde)
Reverse Current
(VR = 55 Vde)
Symbol
Min
Typ
Max
Unit
BVR
60
75
-
Vde
-
-
0.02
/LAde
IR
(VR = 55 Vde, T A = 150"C)
2.0
nH
5.0
Series Inductance
(1= 250 MHz, Measured at LeadStop",,1/16")
LS
Case Capacitance
(1= 1.0MHz, Lead Length",,1/16")
ee
-
0.17
Diode Capacitance Temperature Coefficient
Tee
-
200
leo
-
45
-
pF
ppm/"C
300
(VR = 4.0 Vde, I = 1.0 MHz)
Cutoff Frequency
(VR = 60 Vde, I = 50 MHz)
Device
MV1866
MV1868
MV1870
MV1871
MVI872
MV1874
MV1876
MVI877
MV1878
CT, Diode Capacitance
VR =4.0Vdc.f= 1.0MHz
pF
Q, Figure of Merit
f = 50 MHz
VR =4.0Vdc VR-60Vdc
-
a. Diode Capacitance
Reverse Voltage Slope
VR =4.0Vdcto VR =60Vdc
See B on Back Page
GHz
CR, Capacitance Ratio
C4.0/C60
1=1.0 MHz
Min
Nom
Max
Min
Min
Min
Typ
Max
Min
Typ
Max
9.0
10.8
13.5
16.2
19.8
24.3
29.7
36.7
42.3
10.0
12.0
15.0
18.0
22.0
27.0
33.0
39.0
47.0
11.0
13.2
16.5
19.8
24.2
29.7
36.3
42.9
51.7
500
500
400
400
400
300
300
300
300
700
700
700
700
700
700
700
700
700
0.42
0.42
0.42
0.42
0.45
0.45
0.45
0.45
0.45
0.44
0.44
0.45
0.45
0.46
0.46
0.47
0.47
0.47
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48
0.48
3.0
3.0
3.0
3.0
3.2
3.2
3.2
3.2
3.2
3.1
3.1
3.2
3.2
3.3
3.3
3.4
3.4
3.4
3.5
3.5
3.5
3.5
3.5
3.5
3.6
3.6
3.6
PARAMETER TEST METHODS
frequency and substituting in the followmg
1. LS. Series Inductance
equations:
Ls IS measured on a shorted package at 250
MHz using an Impedance brtdge (Boonton
2TrfC
Qo--
RadiO Model 25QA AX Meter orequivalent)
G
2. CC. Ca.. Capacitance
(Boonton Electronics Model 33AS8
or equivalent).
Cc IS measured on an open package at 1.0
MHz using a capacItance bndge (Boonton
ElectronIcs Model 75A or eqUivalent).
6. TCc ' Diode Capacitance Temperature
Coefficient
3. CT. Diode Capacitance
TC c IS guaranteed by companng CT at V A
(CT "" Cc + CJL CT IS measured at 1.0 MHz
using a capacitance bridge (Boonton Elec·
tronlCs Model 75A or equivalent).
=
4.0 Vdc, f = 1.0 MHz, T A = -6SoC with CT
at VA = 4.0 Vdc, f = 1.0 MHz, TA = +8S o C
in the follOWIng equation, which defInes TC e :
4. CR. Capacitance Ratio
CT(+85 0 C) - CT(-65 0 Clj
CR is the ratio of CT measured at 4.0 Vdc
divided by CT measured at 60 Vdc.
Te c = j
85 + 65
'06
--CT(250C)
5. Q, Figure of Merit
Accuracy limited by CT measurement to
iO 1 pF.
Q is calculated by taking the G and C read·
ings of an admittance bridge at the specifIed
1422
MV1866, MV1868, MV1870, MV1871, MV1872,
MV1874, MV1876, MV1877, MV1878 (continued)
FIGURE 1 - DIODE CAPACITANCE
FIGURE 2 - FIGURE OF MERIT
200
100
60
MVI866
0
~
100
2!0
...
...... .......
0
.
~
.....
0
f'....
0
t--.
-.....
0
~
6. 0
4. 0
d
~
2.01----
~
f'
f'-.
1.0
1.0
1""
MVI872
2000....
3.0
...
.
2.0
ffi
1000
~
700
0:
500
...
::>
'"u:d
6.0
10
10
20
40
60
100
3000 ......
....... 1">.
4.0
6.0
FIGURE 3 - FIGURE OF MERIT
I"-
2.0
4.0
VR, REVERSE VOLTAGE (VOLTS)
"""" ~
TA' 25°C
1= 1.0 MHz
1.0
..... """
2.0
MVI866
4.0
1. 0
0.6
1./ """
I~
t"'--. ......
7.0
5. 0
!>Y '/
kZ; ~MV1878
TA"'25 0C
I-50 MHz
0
'"
u:
MVI878
"
0
~
c
l'
0
-.,
MVI872
20
40
60
......
......... ..........
~ ~ t"'--
i.--MV1866
MVI872
:--.. :--..
"" ~
300 - TA'250C
_
VR' 4.0 Volts
MV1878/
i"""-,.
""""
200
1
VR, REVERSE VOLTAGE (VOLTS)
100
10
........
~
20
30
40
50
" I.......
70
t:::
i"
100
I, FREQUENCY (MHz)
FIGURE 4 - DIODE CAPACITANCE
FIGURE 5 - REVERSE CURRENT
1.1 2
~
N
.
~
1.08
0:
C
~
~
1.04
./
~
~
1.00
5
0.9 6
...c
Ii
0.9 2
-75
./
/
./
IL
IL
V
100
V
TA -150°C
0
1.0
.1
75°C
VR '4.0 Volts
1'1.0 MHz
0.0 I
!/
0.00 I
25°C
./
-25
+25
+75
+125
0.000 1
+175
10
20
30
40
VR, REVERSE VOLTAGE (VOLTS)
TJ,JUNCTION TEMPERATURE (OC)
1423
50
60
MV1866, MV1868, MV1870, MV1871,MV1872,
MV1874, MV1876, MV1877, MV1878 (continued)
EPICAP VOL TAGE·VARIABLE CAPACITANCE DIODE DEVICE CONSIDERATIONS
FIGURE 7
A. Epicap Network Presentation
The equivalent circuit in Figure 7 shows the voltage capacitance
and parasitic elements of an EPICAP diode. For design purposes at
all but very high and very low frequencies. LS. AJ. and Cc can be
neglected. The simplified equivalent circuit of Figure 8 represents
the diode under these conditions.
Definitions:
CJ - Voltage· Variable Junction Capacitance
RS -
Cc LS RJ -
Series Resistance (semiconductor bulk, contact, and
lead resistance)
Case Capacitance
Series Inductance
Voltage-Variable Junction Resistance (negligible above
100 kHzl
FIGURE 8
C~k'
RS
O~------~/?~r-~------~~~·--------O
(1)
B. Epicap Capacitance v....u. Reverse Bias Voltage
The most important design characteristic of an EPICAP diode is
the CT versus VR variation as shown in equations 1 and 2. Capacitance Ratio. CR, between any two voltage points on curve of equation
(2) is determined from· equations (3) and (4).
C. Epicap Capacitance versus Frequency
Variations in EPI CAP effective capacitance, as a function of operating frequency, can be derived from a simplified equfvalent circuit
similar to that of Figure 7. but neglecting AS and AJ. Theadmittance
expression for such a circuit is given in equation 5. Examination of
equation 5 yields the following information:
At low frequencies. Ceq = CJ; at very high frequencies (f
=
=
00)
Ceq
CC.
As frequency is increased from 1.0 MHz, Ceq increases until it is
maximum at w 2 = 1/LSCJ; and as w 2 is increased from 1/LSCJ
toward infinity, Ceq increases from a very negative capacitance
(inductance) toward Ceq = CC. a positive capacitance.
Very simple calculations for Ceq at higher frequencies indicate
the problems encountered when capacity measurements are made
above 1.0 MHz. As w approaches Wo = I/.Ji scJ. small variations
in LS cause extreme variations in measured diode capacitance.
D. EPICAP Figure of Merit (0) and Cutoff Frequency (feo)
The efficiency of EPICAP response to an input frequency is re·
lated to the Figure of Merit of the device as defined in equation 6.
For very low frequencies. aquation 7 applies whereas at high freQuencies, where RJ can be neglected, equation 6 may be rewritten
into the familiar form of equation 8.
Another useful parameter for EPICAP devices is the cutoff fre·
quency (fcoL and is the frequency point where Q is equal to 1.
Equation 9 gives this relationship.
(2)
(3)
TA Diode =
Cn
CJl + Cc
CT2
CJ2+ Cc
°
Co = CJ at VA =
VA = Aeverse Bias (Volts)
'Y. Diode Power Law. "" 0.44
4>. Contact Potential. "" 0.6 Volt
Cc ",,0.17 pF
Y = jwCeq = jwCc +
jwCJ
---=--
XSeq
0=-ASeq
(6)
wCJA J 2
aLf = - - - - - - AJ + AS(1 + w 2CPAP
1
ahf=--wASCeq
Pin(max) =
(7)
(8)
(9)
fco = af max
M(BVA + 4»2 fin
1424
(5)
1 -w2LSCJ
E. Harmonic Generation Using EPICAPS
Efficient harmonic generation is possible with Motorola EPICAPS
because of their high cutoff frequency and breakdown voltage.
Since EPICAP junction capacitance varies inversely with the square
root of the breakdown voltage. harmonic generator performance can
be accurately predicted from various idealized models. Equation 10
gives the level of maximum input power for the EPICAPand equation
11 gives the relationships governing EPICAP circuit efficiency. In
these equations, adequate heat sinking has been assumed.
(4)
AS
(10)
fco
M(x2) = 0.0285;M(x3) = 0.0241;M(x4) = 0.196
f out
Eff= 1-N fco
N(x2) = 20.8;N(x3) = 34.8;N(x4) = 62.5
M and N are Constants
(Ill
MV2101
(SILICON)
thru
MV2115
vvc --.!rVOL TAGE·VARIABLE
CAPACITANCE DIODES
6.8-100 pF
30 VOLTS
SILICON EPICAP DIODES
· .. designed in the popular PLASTIC PACKAGE for high volume
requirements of FM Radio and TV tuning and AFC. general frequency
control and tuning applications; providing solid·state reliability in
replacement of mechanical tuning methods.
•
High Q with Guaranteed Minimum Values
• Controlled and Uniform Tuning Ratio
• Standard Capacitance Tolerance-10%
• Complete Typical Design Curves
Tm~
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current
Device Dissipation @ T A
Derate above 2SoC
= 25°C
Junction Temperature
Storage Temperature Range
Symbol
Valuo
Unit
VR
30
Volts
IF
200
rnA
Po
280
2.8
mW
mW/oC
TJ
Tstg
+125
°c
°c
-65 to +150
r-
SEATING
PLANE
A
H
K
J
AA
D-nl.;---
JJ L
STYLE 1
PIN 1. ANOOE
2. CATHOOE
~o
!sECT A·A
~
\WI
DIM
A
0
J
K
MILLIMETERS
MIN MAX
4.45
0.41
2.29
12.70
4.10
0.48
2.79
-
INCHES
MIN
MAX
0.175
0.016
0.090
0.500
CASE 182'()3
1425
0.185
0.019
0.110
-
MV2101 thru MV2115 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic-All Types
Symbol
Min
Typ
Max
Unit
BVR
30
-
-
Vdc
Reverse Voltage Leakage Current
(VR ~ 25 Vdc, TA ~ 25°C)
IR
-
-
0.10
"Ade
Series Inductance
(f ~ 250 MHz,Lead Length "" 1116")
Ls
-
6.0
Case Capacitance
(f· 1.0 MHz, Lead Length"" 1116")
Cc
-
0.18
-
pF
TCC
-
280
400
ppml"C
Reverse Broakdown Voltage
(lR ~ 10,.Adc)
Diode Capacitance Temperature Coefficient
nH
(VR = 4.0 Vdc, f = 1.0 MHz)
CT. Diode Capacitance
VR ~ 4.0 Vdc, f ~ 1.0 MHz
pF
Q, Figure of Merit
Nom
TR, Tuning Ratio
C2/C30
f= 1.0MHz
VR· 4.0 Vdc,
f = 50MHz
Device
Min
Min
Min
Typ
Max
MV2101
MV2102
MV2103
MV2104
MV2105
6.1
7.4
9.0
10.8
13.5
6.8
8.2
10.0
12.0
15.0
7.5
9.0
11.0
13.2
16.5
450
450
400
400
400
2.5
2.5
2.5
2.5
2.5
2.7
2.8
2.9
2.9
2.9
3.2
3.2
3.2
3.2
3.2
MV2106
MV2107
MV2108
MV2109
MV2110
16.2
19.8
24.3
29.7
35.1
18.0
22.0
27.0
33.0
39.0
19.8
24.2
29.7
36.3
42.9
350
350
300
200
150
2.5
2.5
2.5
2.5
2.5
2.9
2.9
3.0
3.0
3.0
3.2
3.2
3.2
3.2
3.2
MV2111
MV2112
MV2113
MV2114
MV2115
42.3
50.4
61.2
73.8
90.0
47.0
56.0
68.0
82.0
100.0
51.7
61.6
74.8
90.2
110.0
150
150
150
100
100
2.5
2.6
2.6
2.6
2.6
3.0
3.0
3.0
3.0
3.0
3.2
3.3
3.3
3.3
3.3
Max
PARAMETER TEST METHODS
1. LS, SERIES INDUCTANCE
Ls is measured on a shorted package at 250 MHz using an
impedance bridge (Boonton Radio Model 260A RX Meter).
2.
5. Q, FIGURE OF MERIT
a is calculated by taking the G and C readings of an admittance
bridge at the specified frequency and substituting in the following
equations:
Ce, CASE CAPACITANCE
2wfC
Q=G
Cc is measured on an open package at 1.0 MHz using a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
3. CT, DIODE CAPACITANCE
(CT = Cc + .CJ). CT is measured at 1.0 MHz using a capacitance
(Boonton Electronics Model 33AS8). Usa Lead Length ",,1/16".
6. TCC, DIODE CAPACITANCE TEMPERATURE COEFFICIENT
TCC is guaranteed by comparing CT at VR = 4.0 Vdc, f = 1.0
MHz, T A = -650 C with CT at VR = 4.0 Vdc, f ~ 1.0 MHz, T A •
+8SoC in the following equation which defines Tee:
bridge (Boonton Electronics Model 76A or equivalent).
4. TR, TUNING RATIO
TR is the ratio of ~ measured at 2.0 Vdc divided by ~ measured
at 30 Vdc.
TCC
=
CT(+850 C) - CTI-650 C)
106
85 + 65
. CR(250C)
Accuracy limited by measurement of
1426
Or to ± 0.1 pF.
MV2101 thru MV2115 (continued)
TYPICAL DEVICE PERFORMANCE
FIGURE 1 - DIODE CAPACITANCE versus REVERSE VOLTAGE
TA-250C
f-1.D MHz
300
~
MV2115
.!:
w
MV2111
<.>
z 100
g
~
~
MV2109
50
MV2105
20
w
g
MV2101
10
C
ti
5.0
2.0
1.0
0.4
0.1
4.0
1.0
30
10
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 2 - NORMALIZED DIODE CAPACITANCE
versus JUNCTION TEMPERATURE
1.040
~
VRJ~ ~
1.030
~ 1.020
§
1.010
w
g 1.000
C
~ 0.990
.,.....
~ 0.980
Z
/'" /
0.910
- ?'
- ?'
VRYOV-
NORMALIZED +0 CT_
at
-50
-25
TA =25°C
vy
/'
0.960
-75
--
15
(CURV1EI
50
75
_
50
:1
!;;
~
5
~
-
TA=125oC
0
0
5.0
TA -75°C
2.0
1.
0
~ 0.50
Ii 0.2 0
- 0.1 0
-
0.02
0.0 1
125
o
10
5.0
TJ, JUNCTION TEMPERATURE (OC)
I-
ill
:E
~
0
w
""=>
co
u::
4000
3000
1000
..I-t""'
MV2109
500
I-
1000
ill
500
'"
~
300
200
w
300
200
u::
100
0
MV2115
""=>
co
_I"'""
100
Tr250C
f-50MHz
d
50
d
50
25
1.0
2.0
5.0
10
30
r---
~--
MV2101
r-...
~ TA = 250C
r---,VR = 4.0 Vdc
r-...
20
20
10
30
VR, REVERSE VOLTAGE (VOLTS)
r--..
MV 109
10
20
50
f, FREQUENCY (MHz)
1427
r-...
MVl115
30
30
20
10
20
FIGURE 5 - FIGURE OF MERIT versus FREQUENCY
MV2101
1000
15
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 4 - FIGURE OF MERIT versus REVERSE VOLTAGE
4000
3000
2000
-
TA = 25°C
0.05
100
--
10 0
~ ..........VR=4.0V
R
./
::l
o
FIGURE 3 - REVERSE CURRENT
versus REVERSE BIAS VOLTAGE
100
250
MV2101 thru MV2115 (continued)
EPICAP VOL TAGE·VARIABlE CAPACITANCE DIODE DEVICE CONSIDERATIONS
fiGURE 6
A. Epicap Network Presentation
The equivalent circuit in Figure 6 shows the voltage capacitance
and parasitic elements of an EPICAP diode. For design purposes at
atl but very high and very low frequencies. Lg. RJ. and Cc can be
neglected. The simplified equivalent circuit of Figure 7 rep~nts
the diode under these conditions.
Definitions:
CJ - Voltage·Variable Junction Capacitance
RS - Series Resistance (semiconductor bulk, contact, and
lead resistance)
Cc - case Capacitance
LS - Series Inductance
RJ -
fiGURE 7
C:...lk""
RS
OO~--------/?;fr-~------~~~-------O
Voltage-Variable Junction Resistance (negligible above
100kHz)
(1)
B. Epicap Capacitance versus Reve... Bias Voltage
The most important design characteristic of an EPICAP diode is
the Or versus VR variation as shown in equations 1 and 2. Tuning
Retio, TR. between any two voltage points on curve of equation (2)
isdotarmined from equations (3) and (4).
C. Epicap Capacitance versus frequency
Variations in EPICAP effective capacitance. as a function of operatiAg frequency. can be derived from a simplified equivalent circuit
simn.r to that ot FigureS, but neglecting RS and RJ. Theaciminance
expression for such 8 circuit is given in equation 5. Examination of
equation 5 yields the follOWing information:
Co
CT=CC+----
(1 +'!fJ
TR Junction
At low frequencies. Ceq""CJ; at very high froquencles If"'" CO)
CJI
=-
CJ2
TR Diode""
Cn
CT2
(VR2+4»'r
= --VRl +4>
(3)
CJI + Cc
= --CJ2+ Cc
(4)
Conditions:
°
toward infinity. Ceq increases from a very negative capacitance
Co = CJ.t VR =
VR = Reverse BI.s IVolts)
'Y. Diode Power Law. "" 0.44
4>. Contact Potanti.,. "" 0.6 Volt
Cc ",,0.18 pf
(inductance) toward Ceq = CC. a positive capacitance.
Very simple calculations for Ceq at higher frequencies Indicate
Y • jwCeq = jwCc + - - - ' - -
the problems encountered when capacity measurements are made
I -w 2 LgCJ
Ceq "" CC·
As frequency is increased from 1.0 MHz. Ceq incre. . . until it is
maximum at ",2 = lILSCJ; and os ",2 is increased from lILgCJ
(2)
jwCJ
(5)
abova 1.0 MHz. A. w approaches Wo • II./LScJ. small variations
in
Ls cause extreme variations in measured diode capacitance.
Q=
D. EPICAP FiII"e of Merit IQ) and CutoH Frequency Ifeo)
The efficiency of EPICAP response to an input frequency is re·
lated to the Figure of Merit of the device as defined in equation 6.
For very low frequencies. equation 7 applies whereas at high frequencies, where RJ can be neglected. equation 6 may be rewritten
into the familiar form of equation 8.
Another useful parameter for EPICAP devices is the cutoff frequency (feo ). and is· the frequency point where Q is equal to 1.
Equation 9 gives this relationship.
>
~ :;-r-
~
r--
t-t-
-
N
3.0 _TA'250C
"1.0 MHz
1.0
0.2
1.0
4.0
VR. REVERSE VOLTAGE (VOLTS)
INCHES
MIN
MAX
5.33 0.170 0.210
A 4.32
0.175 0.205
5.21
B 4.45
4.19 0.125 0.165
3.18
e
0.356 0.533 0.014 0.021
D
F 0.407 0.482 0.01. .D19
0.050 BSC
1.27 BSC
G
0.050
1.27
H
0.1008Se
2.54 BSC
J
u.5uu
K 12.70
0.250
L
6.35
2.66
O.OBO I U. 05
N 2.03
p
o. 15
.93
0.135
R
3.43
MILLIMETERS
DIM MIN
MAX
5.0
0.1
~
,0-' "',
N
10
25
CASE 182-02
1429
C
MV2201, MV2203, MV2205, MV2209 (continued)
=25°C unless otherwise noted)
ELECTRICAL CHARACTERISTICS (T A
Ch.racteristic-AII Types
Symbol
Min
BVR
25
Reve... Breakdown Voltage
(lR = 10 "Adcl
Revarse Voltage Leakage CUrrent
(VR = 10 Vdc, T A = 250 CI
(VR = 10 Vdc, TA = 850 CI
IR
0.5
5.0
"Adc
VF
0.65
-
Vdc
Series Inductance
(f = 250 MHz, lead length",,1/16"1
LS
-
6.0
-
nH
Case Capacitance
(f = 1.0 MHz lead lenath ",1116"1
Cc
-
0.18
-
pF
....
Device
Min
Max
Min
Min
Max
5.5
8.5
13
8.0
11.5
17
37
300
1.9
2.0
2.1
2.1
2.3
2.4
2.5
2.5
29
200
200
150
FIGURE 3 - FIGURE OF MERIT .ersus FREQUENCY
4000
3000
MV2201
.... 1000
ill'"
MV2209
500
II:
'"u:
100
=>
-
2000
..J...+o-
.... 1000
300
200
TR, Tuning Ratio
Cl/Cl0
f=1.0MHz
Q, F!gure of Marit
VR = 4.0 Vdc,
f= 50 MHz
MV2201
MV2203
MV2205
MV2209
4000
3000
2000
w
Vdc
-
FIGURE 2 - FIGURE OF MERIT .ersus REVERSE VOLTAGE
"0
Unit
-
-
CT, Diode C.....itance
VR • 4.0 Vdc, f · 1.0 MHz
pF
'"
Max
-
Forward Voltage Drop
(IF = 250 "Adcl
ill
Typ
:5
::!
=>
TA=250C -~§
f=50MHz l -
d
50
'"c;u:
I-
500
300
200
100
50
30
20
r-MV2201
r--..
~TA=250C
2.0
3.0
5.0
7.0
10
20
10
30
r--..
=,VR=4.0Vdc
MV2209 ~
30
20
101.0
r-....
10
20
30
50
70
100
200 250
f. FREQUENCY {MHzl
YR. REVERSE VOLTAGE {VOLTSI
FIGURE 4 - NORMALIZED DIODE CAPACITANCE
.ersus JUNCTION TEMPERATURE
1.040
~ 1.030
VR
z
5
1•020
~ 1.010
w
g 1.000
i5
ffi 0.990
N
~ 0.980
II:
o
Z
0.970
V
V
0.960
-75
.,/"
[,./
-50
V
~
"-
? ~
Vv
NOTES ON TESTING AND SPECIFICATIONS
J
~
-
LS is measured on a package having a short instead of a die, using an
impedance bridge {Boonton Radio Model 250A RX Meterl.
R=4.0V
VRr5V-
-
Cc is measured on a package without a die. using a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
Q is calculated bV taking the G and C readings of an admittance
bridge, such as Boonton Electronics Model 33AS8, at the specified
NORMALIZEO \0 CT _
at TA = 25°C
frequency and substituting in the following equation:
-
2111C
0=-G
-25
25
50
75
100
125
TJ. JUNCTION TEMPERATURE {OCI
1430
MV2301 (SILICON)
thru
MV2308
VVC
--.IIVOLTAGE-VARIABLE
CAPACITANCE DIODES
120-330 pF
20 VOLTS
SILICON EPICAP DIODES
... epitaxial passivated tuning diodes designed for general tuning.
trimming and AFC applications at low radio frequencies.
•
Standard Capacitance Values to 330 pF
•
Maximum Working Voltage of 20 V
•
Excellent Q Factor at High Frequencies
•
Guaranteed Minimum Q and Tuning Ratio
•
Solid·State Reliability to Replace Mechanical Tuning Methods
•
Low·Cost·Plastic Package for Economical Design
r--t-~A
Pt-t
H
T'
SEATING
PLANET
-
F
Reverse Voltage
Symbol
Val ••
Unit
VR
20
Vde
Forward Current
IF
400
mAde
Total Device Dissipation@TA = 25°C
Derate above 25°C
Po
500
5.0
mW
mWI"C
Junction Temperature
TJ
+125
°c
T stg
-65 to +150
°c
Storage Temperature Range
K
I
A
MAXIMUM RATINGS
Rating
L
_ ---.l
..:IJI--=
(>
r-t- R
STYLE
PIN 11 ANODE
2 CATHODE
IsECd" A A
~
0
,..,--
"
N
N
MILLIMETERS
DIM MIN
A
B
C
D
F
G
H
J
-+
-i.-
MAX
5.33
4.32
5.21
4.45
3.18
4.19
0.356 0.533
0.407 0.482
1.27 Ssc
- 1.27
2.' SSC
-:- !
R
3.43
2. 6
-
INCHES
MIN
M
0.170 0.210
0.175 0.205
0.125 1.165
0.014 0.021
0.016
.
11119
-
, .0"-
0.2
0.0
.1
0.135
-
o.u~
0.100 SSC
CASE 182·02
1431
~
D-::!i1iG
-
MV2301 thru MV2308 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
BVR
20
-
-.
Vdc
IR
-
-
0.1
/lAdc
Series Inductance
LS
-
6.0
-
nH
Case Capacitance
Cc
-
0.18
-
pF
Characteristic
Reverse Breakdown Voltage
(lR = 10/lAdc)
Reverse Current
(VR = 15Vdc)
a,
CT. Diode Capacitance
Capacitance Ratio
Figure of Merit
Min
Nom
Max
VR =4.0Vdc,
1- 20 MHz
Minimum
MV2301
108
120
135
250
2.3
MV2302
132
150
165
250
2.3
MV2303
162
180
198
200
2.3
MV2304
180
200
220
200
2.3
MV2305
198
220
242
150
2.3
MV2306
225
250
275
150
2.3
MV2307
243
270
300
100
2.3
MV2308
297
330
363
100
2.3
Device
VR = 4.0 Vdc, I = 1.0 MHz
C2/C20
Minimum
PARAMETER TEST METHODS
1. LS,SERIESINDUCTANCE:
Determined from the self resonant frequency (w o ) and
FIGURE 1 - DIODE CAPACITANCE versus
REVERSE VOLTAGE
1000
..
600
..,z
400
w
r--- f-....:
~ 200
I--
U
::
~ 1~0
~
o
c
- - r--- - -
the junction capacity of the device, CJ.
60
MV2306-
MV2308
I"-'-L
r-
I--
t-
I
Irf-..:
MV2301 I-- MV2303
0
Ii
2. CT, DIODE CAPACITANCE:
Measured at 1.0 MHz using a capacitance bridge (Boonton
r---
Electronics Model 75A or equivalent). (CT = Cc + CJI.
~
3. CAPACITANCE RATIO:
The ratio of CT measured at 2.0 Vdc divided by CT meas·
ured at 20 Vdc.
MV2305-
4.
I
0
FIGURE OF MERIT:
Calculated by taking the G and C readings 01 an admittance bridge at the specified frequency and sUbstituting
Q,
in the following equations:
0
1.0
2.0
4.0
6.0
8.0
10
20
2wIC
Q=-
G
VR. REVERSE VOLTAGE
(Boonton Electronics Model 33AS9 with range extender
or equivalent).
1432
MV31 02 (SILICON)
MV31 03
VVC~r-VOLTAGE VARIABLE
CAPACITANCE DIODES
SILICON EPICAP DIODES
22 pF (Nominal)
30 VOLTS
· . . designed in the new low·inductance Mini·L package for high
volume requirements in VHF TV tuning, AFC, general frequency
control and tuning applications; providing solid·state reliability in
replacement of mechanical tuning methods.
• High Q With Guaranteed Minimum Values at VHF Frequencies
• Controlled and Uniform Tuning Ratio
• Low Inductance Mini·L Package
• Guaranteed Matching' Tolerance From Diode to Diode and Group
to Group
·Upon request, diodes are available in matched set50f any number or in matched
groups. All diodes in a set or group can be matched for capacitance along the
entire specified tuning range,
MAXIMUM RATINGS
Rating
Reverse Voltage
Symbol
Value
Unit
VR
30
Volts
Forward Current
IF
200
mA
Device Dissipation @ T A = 2SoC
Po
400
4.0
mW
mW/oC
TJ
Tstg
+125
°c
°c
Der:ate above 2SoC
Junction Temperature
Storage Temperature Range
-65 to +150
ir
J
I
PIN I. CATHOOE
2 ANODE
I
Tt==qj:r'l
FIGURE 1 - DIODE CAPACITANCE
0
6-
-uw
z
...u"
"~
w
0
0
<5
I:i
2
DIM
A
B
C
D
F
H
"'- ........
8
4
i'-
0
.....
J
K
L
6
2
i'...
TA = 25'C
t= 1.0 MHz
8. 0
4.0
0
0.3
0.5
1.0
2.0
3.0
5.0
10
N
R
S
I'~
20
T
U
MI LLlMETERS
MIN
MAX
3.86
4.11
2.92
3.18
1.91
2.16
0.64
0.B9
0.08
0.18
1.30
1.55
0.64
0.89
4.06
4.32
2.36
2.62
1.12
1.31
0.19
1.04
1.99 12.15
1.14
1.40
0.43
0.69
INCHES
MAX
MIN
0.152 0.162
0.115 0.125
0.015 0.085
0.025 0.035
0.003 0.001
0.051 0.061
0.025 0.035
0.160 0.110
0.093 0.103
0.044 0.054
0.031 0.041
0.412 0.502
0.045 0.055
0.011 0.021
30
CASE 226
VR, REVERSE VOLTAGE (VOLTS)
1433
MV3102, MV3103 (continued)
ELECTRICAL CHARACTERISTICS (T A
~ 250 C unless otherwise noted)
Characteristic-All TVpes
Svmbol
Min
TVp
Max
Unit
BVA
30
-
-
Vdc
IA
-
-
0.1
jlAdc
Series I nductanc~
(f =250 MHz. Measured at Load Stop""l/S")
LS
-
3.0
-
nH
Case Capacitance
Cc
-
0.1
-
pF
TCC
-
300
400
ppm/oC
Reverse Breakdown Voltage
= 10jlAdc)
(lA
Reverse Voltage Leakage Current
(VA
(f
= 25 Vdc. TA =250 C)
= 1.0 MHz)
Diode Capacitance Temperature Coefficient
(VA
= 3.0 Vdc. f = 1.0 MHz)
CT, Diode Capacitance
VR=3.0Vdc.f-l.0MHz
pF
Figure of Merit
VA = 3.0 Vdc
f-50MHz
Q.
CR. Capacitance Ratio
C3fC25
f=1.0MHz
Device
Min
Nom
Max
Min
Min
TVp
Color
MV3102
MV3103
20
19
22
25
26
300
200
4.5
4.0
4.S
Green
-
White
-
FIGURE 3 - LEAKAGE CURRENT
FIGUAE 2 - FIGURE OF MERIT
0
r--
0
100
TA - 250 C
I-50 MHz
V V
IL
~
~
MV3102
2. 0
/
o
1. 0
d
O. 5
w
'"ffi
MV3103
0.1
~
~
'"
./
- 0.01
o.31/
O.2
1.0
a
/
/' ./
w
o
L
L.
VR - 20 Vdc
ill
~
/
3. 0
'"=>
'"
u:
10
!....
0
....
Package
Stripe
1/
0.001
3.0
6.0
9.0
12
15
18
24
21
27
30
-60
VR. REVERSE VOLTAGE (VOLTS)
-20
+20
+60
+100
+140
TA. AMBIENTTEMPERATURE (OC)
FIGURE 4 - DIODE CAPACITANCE
1.04
ffi
~
N
1. LS IS measured on a package having a short instead of a die, using an
1.02
'"o
.. 1.01
~
:!i1.00
....
<3
It
NOTES ON TESTING AND SPECIFICATIONS
1.03
r------
VR - 3.0 Vdc
-1-1.0MH,
."
.--
impedance bridge (Boonton Aadio Model 250A AX Meted.
,......,. V
2. Cc is measured on a package without a die, using a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
V
0.99
5
3.
./""
~ 0.98
a is calculated by taking the G and C readings of an admittance
bridge. such as Boonton Electronics Model 33ASS. at the specified
frequency and substituting in the following equation:
o
...~O.97
0.96
-75
2"fC
Q=G
-50
-25
+25
+50
+75
+100
+125
4. CR is the ratio of CT meesured at 3.0 Vdc divided by CT measured
et 25 Vdc.
TA. AMBIENTTEMPERATURE (OC)
1434
MV3140 (SILICON)
MV3141
MV3142
VVC~rVOLTAGE VARIABLE
CAPACITANCE DIODES
SILICON EPICAP DIODES
30 VOLTS
· .. designed in the new low·inductance mini·L package for high
volume requirements of UHF and VHF TV tuning and AFC, general
frequency control and tuning applications; providing solid·state reli·
ability in replacement of mechanical tuning methods.
• Guaranteed Minimum Q Values at VHF and UHF Frequencies
• Controlled and Uniform Tuning Ratio
• Guaranteed Matching' Tolerance From Diode to Diode and Group
to Group
• Upon request, diodes are available in matched sets of any number or in matched
groups. All diodes in 8 set or group can be matched for capacitance to ±'1.5%
or 0.1 pF (whichever is greater) at all points along the specified tuning range.
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Reverse Voltage
VR
30
Volts
Forward Current
IF
200
mA
Device Dissipation @ T A = 2SoC
Derate above 25°C
Po
400
4.0
mW
mW/oC
Junction Temperature
TJ
+125
°c
Tstg
-65 to +150
°c
Storage Temperature Range
L~~q
IF~L
L
t
S
FIGURE 1 - DIODE CAPACITANCE
20
t-.
18
16
1'..
~ 14
~ 12
~
10
~
8.0
Q
6.0
S
4.0
o
I'
i'
TA'25'C
1-1.0MH,
......
II
II
2.0
o
0.3
MILLIMETERS
MIN
MAX
3.86
4.11
2.92
3.18
1.91
2.16
0
0.64
0.89
0.08
0.18
F
H 1.30
1.55
J
0.64
0.89
4.32
K 4.06
L 2.36
2.62
1.37
N 1.12
R 0.79
1.04
S 1.99 12.75
T 1.14
1.40
0.43
0.69
U
OIM
A
8
C
0.5
1.0
2.0
3.0
5.0
10
20
INCHES
MAX
MIN
0.152 0.162
0.115 0.125
0.075 0.085
0.025 0.035
0.003 0.007
0.051 0.061
0.025 0.035
0.160 0.170
0.093 0.103
0.044 0.054
0.031 0.041
0.472 0.502
0.045 0.055
0.017 0.027
30
CASE 226
VR, REVERSE VOLTAGE (VOLTS)
1435
B
MV3140, MV3141, MV3142 (continued)
ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)
Characteristic-All Types
Symbol
Min
Typ
Max
Unit
Reverse Breakdown Voltage
I1R= lO !lAde)
BVR
30
-
-
Vde
Reverse Voltage Leakage Current
IR
-
-
0.1
!lAde
LS
-
3.0
-
nH
Cc
-
0.1
-
pF
TCC
-
300
400
ppm/oC
IVR = 25 Vde, TA = 25°C)
Series Inductance
If = 250 MHz, Measured at Lead Stop",1/8")
Case Capacitance
If= 1.0 MHz)
Diode Capacitance Temperature Coefficient
IVR = 3.0 Vde, f = 1.0 MHz)
CT. Diode Capacitance
Q, Figure of Merit
CR, Capacitance Ratio
VR = 3.0 Vdc
f = 100 MHz
C3/C25
f=1.0MHz
VR =3.0Vdc VR = 25 V
pF
Package
Stripe
Device
Typ
Max
Min
Min
Color
MV3140
MV3141
MV3142
10.5
10.5
10.5
2.3
3.2
3.2
150
150
50
4.5
4.0
3.5
Blue
White
Orange
TYPICAL MV3140 ELECTRICAL CHARACTERISTICS
FIGURE 2 - FIGURE OF MERIT
FIGURE 3 - LEAKAGE CURRENT
100
1600
ITA = 250l
1400
V
1=100MHz
f-
1200
~ 100 0
800
::>
'"u::d
/
600
V
/'
f-
~
/
::>
w
~
'"w
~
./
0.1
/'
:EO.Q1
V
I-4.0
L
VR 20 Vdc
1-1.0 MHz
1.0
<.>
o
o
10
oS
V
40 0
200
IL
;;;:
/
a;
~
/
0.001
12
8.0
16
20
28
24
-60
32
VR, REVERSE VOLTAGE IVOLTS)
-20
+20
+60
+100
+140
TA, AMBIENTTEMPERATURE 10C)
FIGURE 4 - DIODE CAPACITANCE
1.04
NOTES ON TESTING AND SPECIFICATIONS
ffi 1.03
i
N
1.02
VR = 3.0 Vdc
o
~
1.01
w
<.>
:i
1.00
0:;
~
0.99
~
f-
;3
./
~ 0.98
f.--'"'
~
.-/"
1. LS is measured on a package having a short instead of a die, using an
impedance bridge (Boonton Radio Model 250A RX Meter).
,./
2. Cc is measured on a package without a die, using a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
3. Q is calculated by taking the G and C readings of an admittance
bridge, such as Boonton Electronics Model 33AS8, at the specified
frequency and substituting in the following equation:
,/
o
C
&0.97
0.96
-75
2"fC
Q=-
G
-50
-25
+25
+59
+75
TA,AMBIENT TEMPERATURE 10C)
+100
+125
4. CR is the ratio of CT measured at 3.0 Vde divided by CT measured
at 25 Vdc.
1436
MV3501 (SILICON)
thru
MV3507
vvc-+HVOLTAGE-VARIABLE
CAPACITANCE DIODES
SILICON EPICAP DIODES
6.8-22 pF
30 VOLTS
... designed in the new low-inductance Mini-L package for high·
volume, low·cost frequency control and tuning applications; providing
solid state reliability in replacement of mechanical tuning methods.
•
High Q With Guaranteed Minimum Values@ 100 MHz
•
•
Capacitance Values - 6.B to 22 pF
Ideal for RF and Microwave Applications
•
Controlled and Uniform Capacitance Change
MAXIMUM RATINGS
Rating
Reverse Voltage
Symbol
VaI~.
Unit
VR
30
Volts
Forward Current
IF
200
rnA
Device Dissipation @ T A - 25°C
Derate above 25°C
Po
400
4.0
rnW
mW/oC
TJ
+125
Tstg
-65 to +150
°c
°c
Junction Temperature
Storage Temperature Range
iJr
t
Tt
FIGURE 1 - DIODE CAPACITANCE
PIN I CATHODE
2.ANOOE
C
LJi~,
100
50 MV3501
~
oS
w
30
z
20
~
;!:
U
:;
10
c
c
5.0
I:i
3.0
:3
w
c
r-.
~
MV3503
- -
2.0
1.0
0.1
-
r-- r--r--
MV3501
............
--..
TA"25'C
'"11.0
MI'
0.2
0.5
1.0
2.0
MILLIMETERS
MIN
MAX
3.86
4.11
B
2.92
3.18
C 1.91
2.16
D 0.64
0.89
F
0.08
0.18
H 1.30
1.55
J
0.64
0.89
4.32
K 4.06
L 2.36
2.62
N 1.12
1.31
R 0.79
1.04
S 1.99 12.75
T 1.14
1.40
0.43
U
0.69
DIM
A
5.0
10
20 30
VR, REVERSE VOLTAGE (VOLTS)
CASE 22&
1437
INCHES
MAX
MIN
0.152 0.162
0.115 0.125
0.015 0.085
0.025 0.035
0.003 0.001
0.051 0.061
0.025 0.035
0.160 0.110
0.093 0.103
0.044 0.054
0.031 0.041
0.472 0.502
0.045 0.055
0.011 0.027
MV3501 thru MV3507 (continued)
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Characteristic-All Typ..
Symbol
Min
Typ
Max
Unit
BVR
30
-
-
Vdc
-
0.1
LS
-
3.0
-
nH
Cc
-
0.1
-
pF
Reverse Breakdown Voltage
(fR = 10 "Adc)
Reverse Voltage Leakage Current
(VR = 25 Vdc)
IR
= 25 Vde, T A = 850 C)
(VR
Series Inductance
"Ade
5.0
(I = 250 MHz, measured at lead stop ""'/8")
Case Capacitance
(1= 1.0 MHz)
Figura 01 Marit
VR =4.0Vdc,
f= 100 MHz
CT, Diode Capacitance
VR = 4.0 Vdc, f = 1.0 MHz
pF
CR, Capacitance Ratio
C2/C30
f=I.0MHz
Q,
Package
Stripe
Device
Min
Nom
Max
Min
Min
Color
MV3501
MV3502
MV3503
MV3504
MV3505
MV3506
MV3507
6.1
7.4
9.0
10.8
'13.5
16.2
19.8
6.8
8.2
10
12
15
18
22
7.5
9.0
11
13.2
16.5
19.8
24.2
225
225
200
200
200
175
175
2.7
2.8
2.8
2.8
2.9
2.9
2.9
Brown
Red
Orange
Yellow
Green
Blue
Violet
TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - FIGURE OF MERIT
FIGURE 3 - FIGURE OF MERIT
400 0
3000
200 0
zoo0
MV3S01
700
... SOD
~
'"
.....
III
1000
r
I
...
,..
300
~ 200
L---
w
'""
..
I---"'"
~ 500
,.
J..+-1'
MV3S07
w
30 0
20O
.."'"'"
100ETA 2SaC
o EVR -4.0 Vdc
~
0
-~
'" 100
d 70
SO
--
........
1000
TA"zsac .
f-l00MHz
:E
t=
d
MV3501- t"-
r-...
"
MV3507'
0
20
30
20
10
1.0
2.0
3.0
S.O
7.0
10
20
30
10
VR, REVERSE VOLTAGE (VOLTS)
20
30
SO
70
100
200 250
f, FREQUENCY (MHz)
FIGURE 4 - DIODE CAPACITANCE
1.040
~1.D30
~ 1.020
~
~ 1.010
.
w
~ 1.000
t:
~
~
0.990
w 0.980
~
NOTES ON TESTING AND SPECIFICATIONS
VRlL/:
R
-
./
'"'"2i 0.970 ./" / '
'?'
'?'
b
VRt V -
-50
Ls is measured on a peckage having a short instead of a die, using an
impedance bridge (Boonton Redia Model 250A RX Meter).
NORMALIZED la CT _
at TA " Z5aC
-
2.
Cc is measured on a package without a die, using a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
3.
Q is calculated by taking the G and C readings of an admittance
bridge, such as Boonton Electronics Model 33ASB, at the specified
frequency and substituting in the following equation:
r---I---
21!fC
Q=G
/'
0.980
-75
1.
Vv R=4.0V
-25
25
50
75
TJ,JUNCTION TEMPERATURE (ac)
100
12S
4. CR is the ratio 01 CT measured at 2.0 Vdc divided by CT measured
at 30 Vdc.
1438
MVAM·l
(SILICON)
vvc
---.!~
TRIPLE
SILICON TUNING DIODE
VOLTAGE VARIABLE
CAPACITANCE DIODE
· .. designed for electronic tuning of AM receivers, general frequency
control or systems requiring two or three tightly matched voltage
variable capacitance diodes. Supplied in a rugged four· pin dual in·
line plastic package for the economical requirements of consumer
and industrial applications.
•
High Capacitance Ratio CR = 15 (Min) @VR = 1.0 Vdc to 25 Vdc
•
Guaranteed Diode Capacitance Ct = 400 pF (Min) -- 560 pF (Max) @ VR = 1.0 Vdc, f = 1.0 MHz
•
Ion Implanted Monolithic Triplet for Guaranteed
±1 11,% Matching Over Entire C-V Curve
•
Guaranteed Figure of Merit Q = 150 (Min) - 575 (Typ) @ VR
FOR AM TUNING
= 1.0 Vdc, f = 1.0 MHz
MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current
Power DissIpation
@
T A=< 2SoC
Symbol
Value
Unit
VR
28
Volts
IF
50
mA
PD
350
3.5
mW
mW/oC
TJ.T stg
-65 to +125
°c
Derate above 2SoC
Operating and Storage JunctIon
Temperature Range
L......t---~
FIGURE 1 - TYPICAL AM RADIO APPLICATION
MILLIMETERS
MIN MAX
5.59
5.21
6.60
7.11
3.43
4.06
0.63
0.89
3.94
4.19
0.30
0.20
3.56
2.54
9.27
L
9.02
10·
M
N 1.14
1.40
DIM
A
B
C
D
G
J
K
INCHES
MIN MAX
0.205 0.220
0.260 0.2BO
0.135 0.160
0.025 0.035
0.155 0.165
0.008 0.012
0.100 0.140
0.355 0.365
10·
0.045 0.055
Note: For optimum performance use 01 in
CASE 206·02
the AF stage, 02 in the oscillator and
D3 in the mixer.
1439
MVAM·1 (continued)
ELECTRICAL CHARACTERISTICS IT A = 2S<>C unl... oth.rwise noted. Each Oevice)
Characteristic - All Type
Breakdown Voltage
fiR = 10ltAdel
Reverse Current
(VR = 25 Vde. T A = 25°(;1
Diode Capacitance Temperature Coefficient
(VR = 1.0 Vde. f = 1.0 MHz. T A = -40°C to +850 C)
Case Capacitance
Symbol
Min
Typ
Max
Unit
VIBR)
28
-
-
Vde
IR
-
-
150
nAdc
TCC
-
435
-
ppm/oC
-
0.27
0.04
0.16
0.17
0.03
0.15
-
pF
Cc
Leads 1-2
2-3
1-3
1-4
2-4
3-4
-
-
-
Ct , Diode Capacitance
VR = 1.0Vdc.f= 1.0 MHz
.
pF
I
Device
Min
I
MVAM-l
400
I
I
0, Figure of Merit
480
-
CR. Capacitance Ratio
. C,/C25
f& 1.0 MHz
VR = 1.0VlIc
f=1.0MHz
1
I
Typ
-
Max
Min
560
150
I
I
Typ
Min
575
15
1
Typ
I
26
TYPICAL CHARACTERISTICS
FIGURE 2 - EFFECTS OF REVERSE VOLTAGE ON CAPACITANCE
FIGURE 3 - EFFECTS OF TEMPERATURE ON CAPACITANCE
1.04
100ll
700
500
_=
TA=25'C
1= 1.0 MHz_
30 0
~
10 0
U
0
50
.:1
1.02
'"
~
~
~
~
'"o
w
'-'
z
1.03
g
1.00
~
-0.99
o
o
C -0.9 8
1\ 1\
1.0
2.0 3.0
5.0 7.0 10
VR. REVERSE VOLTAGE (VOLTS)
20
-
1........-
~~~
I--
25 V
/'
,/
,/
-40
-
V
/
...-
-0.9 7'"
30
/
/.
,/
1.0 I
~
0.5 0.7
1
VR -1.0Y........
z
0 CAPACITANCE MATCHING
VR = 1.0 V t. 25 V
0
GUARANTEED ±1.5%
10
0.3
1= 1.0 MHz
::;
.......
200
§N
-20
40
60
20
TJ. JUNCTION TEMPERATURE ('C)
80
FIGURE 4 - FIGURE OF MERIT
0
0-TA=25'C
' - - f=1.0MHz
~
0
V
~
l-
i;;
l\!
0
Q is calculated by taking the G and C readings of an
admittance bridge at the specified frequency and
substituting in the following equation:
V
~
o
V
w
'"=>to
10
i:i: 8. 0
d
6.0
,/
Q = 27TfC
G
(Boonton Electronics Model 33AS8 or equivalent).
4. 0
1.0
Figure of Merit Test Method
V
2.0
5.0
7.0.
3.0
VR. REVERSE VOLTAGE (VOLTS)
10
20
1440
100
MVI-2097 thru MVI-2109 (SILICON)
vvc
--.!~
VOLTAGE-VARIABLE
CAPACITANCE DIODES
SILICON EPICAP MICRO-I
1.0-33pF
30 VOLTS
DIODES
. designed in the popular PLASTIC PACKAGE for high volume
requirements of FM Radio and TV tuning and AFC, general frequency
control and tuning applications; providing solid·state reliability in
replacement of mechanical tuning methods.
•
Electrically Similar to MV2101 Series
•
Controlled and Uniform Tuning Ratio
•
Standard Capacitance Tolerance-l0%
•
Complete Typical Design Curves
•
Supplied in Space Saving Micro-Miniature Package
STYLE 1.
PIN 1. ANODE
2. CATHODE
L
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VR
30
Volts
Reverse Voltage
Forward Current
Device Dissipation @ T A
'F
20
rnA
PD
200
2.0
mW
mW/oC
TJ,Tstg
-55 to +125
°c
= 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
K
DIM
A
C
D
F
H
TYPICAL HIGH DENSITY MOUNTING TECHNIQUE
J
K
L
---.l.
~~OO1'
f==~[:r
o
N
MILLIMETERS
MIN
MAX
1.98
1.22
0.25
0.10
0.51
0.03
4.19
0.89
0.38
2.34
1.47
0.41
0.15
0.76
0.08
4.45
1.14
0.64
INCHES
MIN
MAX
t!
0.004
0.020
0.001
0.165
0.035
0.D15
I 0.092
I 0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025
1J1~
PC BOARD
MOUNTIN~-----y
Optional Package with Raised
Circular Tab Available; Specify
Ma~lmum
Solder Temper3ture
250°C lor lOs
Case 166·01.
CASE 166·02
1441
MVI-2097 thru MVI-2109 (continued)
ELECTRICAL CHARACTERISTICS (T A =25 0 C unless otherwise notedl
Characteristic-All Types
Reverse Breakdown Voltage
OR
~
Symbol
Min
Typ
Max
Unit
BVR
30
-
-
Vdc
20
nAdc
10 ~Adc)
IR
Reverse Voltage Leakage Current
(VR = 25 Vdc)
Series Inductance
(f =
Case Capacitance
(I
=
-
3.0
nH
ee
0.15
pF
Tee
280
LS
250 MHz.Lead Length", 1/16··)
1.0 MHz. Lead Length'" 1/16··)
Diode Capacitance Temperature Coefficient
400
ppmloe
(VR = 4.0 Vdc. I = 1.0 MHz)
CT, Diode Capacitance
VR
= 4.0 Vdc. f = 1.0 MHz
pF
Or Figure of Merit
VR = 4.0Vdc
f= 100 MHz
TR, Tuning Ratio
C2/C 30
f= 1.0MHz
Color Code
Min
Nom
Max
Min
Min
Max
Top
Bottom
MVI·2097
MVI·2098
MVI·2099
MVI·2100
0.8
1.8
2.6
3.7
1.0
2.2
3.3
4.7
1.2
2.7
4.0
5.7
325
325
300
300
2.0
2.0
2.2
2.4
2.4
2.8
2.9
2.9
None
None
None
None
None
Brown
MVI·2101
MVI·2102
MVI·2103
MVI·2104
6.1
7.3
9.0
10.8
6.8
8.2
10
12
7.5
9.0
11
13.2
275
275
275
275
2.5
2.6
2.6
2.6
3.3
3.3
3.3
3.3
None
None
None
None
Yellow
MVI·2105
MVI·2106
MVI·2107
MVI·2108
MVI·2109
13.5
16.2
19.8
24.3
29.7
15
18
22
·27
33
16.5
19.8
24.2
29.7
36.3
275
250
200
200
200
2.6
2.7
2.7
2.7
2.7
3.3
3.3
3.3
3.3
3.3
None
None
Brown
Brown
Gray
White
Brown
Red
Device
Red
Orange
Green
Blue
Violet
None
Brown
PARAMETER TEST METHODS
1. LS. SERIES INDUCTANCE
LS is measured on a shorted package at 250 MHz using an
impedance bridge (800nton Radio Model 250A RX Meter).
5. Q. FIGURE OF MERIT
a is calculated by taking the G and C readings of an admittance
bridge at the specified frequency and substituting in the following
equations:
2"IC
Q=-
2. CC. CASE CAPACITANCE
Cc is measured on an open package at 1.0 MHz using a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
G
(Boonton Electronics Model 33ASS). Use Leed Length ",1/16"
6. TCC. DIODE CAPACITANCE TEMPERATURE COEFFICIENT
3. CT, DIODE CAPACITANCE
(CT = Cc + CJ)' CT is measured at 1.0 MHz using a capacitance
bridge (Boonton ElectrOnics Model 75A or equivalent).
TCe is guaranteed by comparing CT at VR = 4.0 Vdc, f = 1.0
MHz, T A = -65 0 C with CT at VR = 4.0 Vdc, f = 1.0 MHz. T A =
+85 0 C in the following equation which defines TCe:
4. TR, TUNING RATIO
TR isthe ratio of CT measured at 2.0 Vdc divided by CT measured
at 30 Vdc
Accuracy limited by measurement of CT to ± 0.1 pF.
CR
1442
= Capacitance at VR = 4.0 Vdc
MVI-2097 thru MVI-2109 (continued)
TYPICAL CHARACTERISTICS
FIGURE 1 - DIODE CAPACITANCE versus REVERSE VOLTAGE
500
TA - 25DC
f 1.0 MHz
~ 200
MVI·2109
w 100
""z
50
"Ll
MVf-2105
l-
£
20
MVI-~,il1
w
10
MVI-2099
C
5.0
~
c
c
l:i
-
MVI-2097
2.0
1.0
0.5
0.1
0.2
0.3
0.7
0.5
2.0
10
3,0
7,0
5.0
20
10
30
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 2 - NORMALI2ED DIODE CAPACITANCE
versus JUNCTION TEMPERATURE
1.040
g1.020
~ 1.010
w
C
~ 0.990
N
:::;
~ 0.980
o
z 0.970
versus REVERSE BIAS VOLTAGE
VRJ~
w 1.030
""z
g 1.000
FIGURE 3 - REVERSE CURRENT
--
-
~
-50
R ·4.0V
-
I-- ~
I-----
VRr OV -
.... ~
io
... L/ " ?'
0960
-75
~
~
Vv
NORMAliZED
CT_
I----at TA ""250C
1
100
50
1
~
I-
::>
""w
'"w
~ci
~
L
5.0
25
50
75
TA -75DC
2.0
1.0
0.50
0.20
0.10
100
125
o
5.e
TJ, JUNCTION TEMPERATURE (DC)
3000
I
MVI-2101
ffi
1000
'"....c
700
'"::>
500
w
to
u:
d
300
200 b-----:'
100
1.0
~
-
V r-
2.0
---
MVI-209Y
.Y
2000
./
1/
MVI·2109 -
......
20
..........
r-
'"~
1'-:'--
'''''......... ~ I'-
ffi 1000
VI-2097
700
w
~ 500
~
to
u:
7,0
10
20
30
100
10
1443
'"
MVI-2109 "- ~ ~
I
20
30
I
50
70
f, FREQUENCY (MHz)
VR, REVERSE VOLTAGE (VOLTS)
" "'"
~
MVI-2101
ci 300
200
5.0
30
TA' 25 DC - VR' 4.0 Vdc __
.........
I-
-~
3.0
25
FIGURE 5 - FIGURE OF MERIT versus FREQUENCY
V
....-
15
3000
V
I-
10
VR, REVERSE VOLTAGE (VOLTS)
FIGURE 4 - FIGURE OF MERIT v....us REVERSE VOLTAGE
r-TA • 25DC
2000 f---- f· 100 MHz
-
TA·25 DC
0.05
0.02
0.01
-25
125DC
TA
----r
20
10
100
I'\.
"
"
200
300
MVI-2097 thru MVI-2109 (continued)
EPICAP VOL TAGE·VARIABLE CAPACITANCE DIODE DEVICE CONSIDERATIONS
FIGURE 6
A. Epicap Network Presentation
The equivalent CirCUit in Figure 6 shows the voltage capacitance
and parasitic elements of an EPICAP diode. For design purposes at
all but very high and very· low frequencies, LSI RJ, and Cc can be
neglected The simplified equivalent CirCUit of Figure 7 represents
the diode under these conditions.
Definitions
CJ RS -
o
Voltage-Variable Junction Capacitance
Senes Resistance (semiconductor bulk, contact, and
lead resistance)
FIGURE 7
Cc - Case Capacitance
LS RJ -
C~k""
RS
o----------~~r-~--------~~~------~O
Series Inductance
Voltage-Variable Junction Resistance (negligible above
100 kHzl
(11
8. Epicap Capacitance versus Reverse Bias Voltage
The most important design characteristic of an EPICAP diode is
the CT versus VR variation as shown in equations 1 and 2. Tuning
Ratio, TR, between any two voltage points on curve of equation (21
IS determined from equations (31 and (41.
C. Epicap Capacitance versus Frequency
Variations In EPICAP effective capacitance, as a function of operating frequency, can be derived from a simplified equivalent circuit
similar to that of Figure 6, but neglecting RS and RJ. The admittance
expression for such a circuit is given in equation 5. Examination of
equation 5 yields the following information:
At low frequencies, Ceq ~ CJ; at very high frequencies (f
~
Co
CT=CC+----
(1<7
(21
CJ1
(VR2+4»"1
TR Junction = = ---CJ2
VR1 + 4>
(31
00)
Ceq"" CC·
As frequency is increased from 1.0 MHz, Ceq increases until it is
maximum at w 2 = 1/LSCJ; and as w 2 is increased from 1/LSCJ
toward infinity, Ceq increases from a very negative capacitance
(inductance) toward Ceq = CC, a positive capacitance.
Very simple calculations for Ceq at higher frequencies indicate
the problems encountered when capacity measurements are made
above 1.0 MHz. As w approaches Wo = 1/~LSCJ' small variations
in LS cause extreme vanations in measured diode capacitance.
D. EPICAP Figure of Merit (a) and Cutoff Frequency (feD)
The efficiency of EPICAP response to an input fr~quency is related to the Figure of Ment of the device as defined in equation 6.
For very low frequencies, equation 7 applies whereas at high frequencies, where RJ can be neglected, equation 6 may be rewritten
Into the familiar form of equation 8.
Another useful parameter for EPICAP devices is the cutoff frequency (teo), and IS the frequency point where Q is equal to 1.
EquatIOn 9 gives this relationsh ip.
CT1
CJ1 + Cc
TR Diode = - - = - - - CT2
CJ2 + Cc
Conditions:
Co = CJ at VR = 0
VR = Reverse Bias (Voltsl
'Y, Diode Power Law, ~ 0.44
4>, Contact Potential, "" 0.6 Volt
Cc~0.1BpF
jwCJ
(51
Y = jwC eq = jwCc +
1 - w 2 LSCJ
XSeq
0=--RSeQ
(6)
wCJR J 2
OLf= --------------RJ + RS(1 + w 2 CJ 2R J 2
1
Ohf=----wRSCeq
(8)
(91
M(BVR + 4>12 fin
E. Harmonic Generation Using EPICAPS
Efficient harmonic generation is possible with Motorola EPICAPS
because of their high cutoff frequency and breakdown voltage.
Since EPICAP junction capacitance varies inversely with the SQuare
root of the breakdown voltage. harmonic generator performance can
be accurately predicted from various Idealized models. Equation 10
gives the level of maximum input power for the EPICAP and equation
11 gives the relationships govern 109 EPICAP Circuit efficiency. In
these equations, adequate heat sinking has been assumed.
1444
(41
pin(maxl·=
RS
(101
feD
M(x21 = 0.0285; M(x31 = 0.0241; M(x41 = 0.196
f out
Eff= 1-N fco
N(x21 = 20.8, N(x31 = 34.8; N(x41 = 62.5
M and N are Constants
1111
MVS460
Of---I~~l--O
TUNING DIODE
REGULATOR
MONOLITHIC TEMPERATURE COMPENSATED
VOLTAGE REFERENCE DIODE
Highly reliable temperature compensated monolithic integrated
circuit voltage stabilizer designed for use in television and FM radios
that use variable capacitance diode tuners .
•
Low Dynamic Operating Impedance
•
Low Operating Voltage Change over Temperature Range
r-I
S
"".. '!;:fFr-;-,
i
-~
A
PLANE _
F
_ -------.l
MAXIMUM RATINGS
Symbol
Value
Unit
Operating Current for 33 Vz
Rating
IZ
18
rnA
Power DIssipation
PD
625
rnW
Operating Junction Temperature
TJ
150
°c
Storage Temperature Range
T stg
-40 to +150
°c
Symbol
Max
Unit
°JC
0.083
°C/rnW
@
T A = 25°C
THERMAL CHARACTERISTICS
CharacteristiC
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
°C/rnW
0.200
eJA
Characteristic
Operating Voltage
(lZT = 5.0 mAl
Operating Voltage Change
(I ZT = 5.0 rnA, 0 to 700 CI
Operating Dynamic Impedance
liZ = 5.0 mAl
:=
c>
I)
IsECT A-A
r--J--R
STYLE 1:
PIN 1. ANODE
2. CATHODE
Min
Typ
Max
Unit
Vz
31
33
35
Volts
/:,vZ
f',T-
-3.1
-2.3
+1.55
mV/oC
Zz
-
9.0
25
Ohms
,o-I-oZ
N
INCHES
MIN
MAX
4.32
4.45
3.18
0.356
0.407
1.27
0.170 0.210
0.175 0.205
0.125 0.165
0.014 0.021
0.016 .0 9
0.050 SSC
0.050
0.100 sse
u.•uu
0.250
0.080 0.lu5
o. 15
0.135
C
Symbol
~
N
MILLIMETERS
DIM MIN
MAX
B
25°C unless otherWise noted)
I
A
A
ELECTRICAL CHARACTERISTICS (T A
D
F
G
H
J
K
L
N
p
R
5.33
5.21
4.19
0.533
0.482
sse
1.27
2.54 SSC
12.70
6.35
2.03
2.66
1.9:
3.43
CASE 182-02
1445
K
C
MVS460 (continued)
FIGURE 1 - POWER DERATING
~
20
700
18
--
600
z
!;! 500
~C
300
~
200 I--DERATE A80VE 25 DC
-5.0 mW/DC
!--.......
-........
..1
i
w
w
b
......
r--... ~
Vz - 35 V
r--.....
.........
~
10
~
6.0
S
4.0
-........: .........
............
~
~
~
m
00
00
00
0
~
10
20
TA, AMBIENT TEMPERATURE IDC)
25
r'---.
w
:i'"
i3
'"
o~
50
60
70
80
90
100
FIGURE 4 - OPERATING VOLTAGE CHANGE TEST CIRCUIT
~
........
,
t---"W'\,---t--c VZ2
...... ......,.
-50
........
>
~ -7 5
~
",-12 5
:;;
-150
20
30
40
50
60
Til. AMBIENT TEMPERATU RE IDC)
70
--,
I
I
+
100V
I
I
I
I
"- .......
~ -100
To Vll, 2 or 3
,-
,
o
10
40
,.------'lNY--..,--oVZ3
-2 5
o
30
TA, AMBIENT TEMPERATURE IDC)
FIGURE 3 - OPERATING VOLTAGE CHANGE
50
w
::::-.-.
2.0
0
~
""-
S8.0
o
..1
........ r--.... . . . .
12
z
............
............ ............
14
~
............
100
Vz =31 V
1>- '6
400
ffi
~
FIGURE 2 - CURRENT DERATING
800
I
I
L _ _ _ _ _ _ _ -1
"
6"x6"x3" SEALED CARDBOARD TEST BOX
INSIDE OVEN TO ISOLATE FROM AIR
MOVEMENT.
80
FIGURE 5 - OPERATING IMPEDANCE TEST CIRCUIT
R= 13.2 k, ZW
C= 0.05 ~F
FIGURE 6 - OPERATING IMPEDANCE
40
J
~ 35
e
\
30
w
u
~ 25
~
~ 20
0-100 V
'"z
5
~
10
S
o
"\
"'
~5.0
r- r--
-
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
IZ, OPERATING CURRENT ImA)
1446
8.0
9.0
10
MZ500-1
thru
MZ500-40 (SILICON)
Miniature plastic encapsulated zener diodes for regulated power supply circuits, surge protection, arc suppression and other functions in television, automotive
and other consumer product applications.
CASE 51
(00-7)
MAXIMUM RATINGS
Rating
DC Power Dissipation @ TL
=
Value
Unit
400
mW
3.2
mW/oC
-65to+175
°c
50°C
Derate above 50°C
Junction Temperature*
*Maximum lead temperature for 10 seconds at 1/16" from case
=
230°C
FIGURE 1- POWER-TEMPERATURE DERATING CURVE
1.0
Lead temperature taken
at indicated distance
from case.
en 0.8
I-
!;;c
~
z:
C>
~
en
en
0.6
"-
C
cc: 0.4
.....
3:
C>
"-
Lead Length = I"
~ 0.2
0
0
25
75
50
h.
100
125
150
LEAD TEMPERATURE (OC)
MECHANICAL CHARACTERISTICS
CASE: Void free, transfer molded.
FINISH: All external surfaces are corrosion resistant. Leads are readily solderable.
POLARITY: Cathode indicated by color band. When operated in zener mode,
cathode will be positive with respect to anode.
MOUNTING POSITION: Any.
WEIGHT: 0.42 gram (approximately).
1447
175
MZ500·1 thru MZ500-40
(continued)
ELECTRICAL CHARACTERISTICS (To =
Vz
Type No.
Zener Voltage
Volls·
IZT
25'C unl ••• otherwise nOled) V, = 1.5 Vmax
Tesl
Curront
Iii>
Typical
Zzr
Izr
Iii>
IZT
Ohms
. Ma. DC Zenor
Current
IZM
mA
Min
Nom
Ma.
mA
MZ500-1
MZSOO-2
MZ500_3
MZ500-4
MZ50D-5
2.16
2.43
2.7
2.97
3.24
2.4
2.7
3.0
3.3
3.6
2.64
2.94
3.3
3.63
3.96
20
20
20
20
20
35
30
30
30
25
150
135
120
110
100
MZ500-6
MZ500-7
MZ50D-B
MZ500-9
MZ500-10
3.51
3.87
4.23
4.59
5. Of
3.9
4.3
4.7
5.1
5.6
4.29
4.73
5.17
5.61
6.16
20
20
20
20
20
25
25
20
20
15
MZ50D-ll
5.58
6.12
6.75
7.38
8.19
6.2
6.6
7.5
6.2
9.1
6.82
7.48
8.2S
9.02
10.02
20
20
20
20
20
MZ50D-12
MZ500-13
MZ500-14
MZ500-1S
@
200 mA on aillypes
Maximum Reverse
leakage Current .
@
I.
V.
pA Ma.
Volts
Typical
remperature
CoeHicient
%i"C
--
-1
1
-.085
-.080
-.075
-.070
-.06S
95
85
80
70
65
20
5
5
5
5
1
1
1
1
1
-.060
-.050
-.043
1:.030
t.028
10
5
10
10
10
60
55
50
45
40
5
5
5
1
1
1
1
1
+.045
.050
.058
.062
,068
20
20
••
MZ500-16
MZSOO-17
MZ500-1B
MZ500-19
MZ500-20
9.0
9.9
10.8
11.7
13.S
10
12
13
15
11.0
12.1
IS.2
14.3
16.S
20
20
20
9.5
8.5
20
20
30
15
20
36
35
32
30
26
5
5
5
10
10
I
1
I
9.4
10.8
.075
.076
.077
.079
.082
MZ500-21
MZ500-22
MZ500-23
MZ500-24
14.4
16.2
18.0
17.6
19.8
22.0
24.2
26.4
7.8
7.0
6.2
5.6
5 .2
20
25
30
30
35
25
21
19
17
16
10
10
10
10
10
11.S
13.0
14.4
15.8
17.3
.083
.08S
.086
.087
.088
14
13
12
19.4
21.6
23.8
25.9
28.1
.090
.091
.092
.093
.094
II
MZSOO-25
19.8
21.6
16
18
20
22
24
MZ500-26
MZ500-27
MZ500-28
MZ500-29
MZ500-30
24.3
27.0
29.7
32.4
35.1
27
30
33
36
39
29.7
33.0
36.3
39.6
42.9
4.6
4.2
3.8
3.4
3.2
45
50
60
70
80
9.1
10
10
10
10
10
MZ500-31
MZ500-32
MZ500-33
MZ500-34
MZ500-35
38.7
42.3
45.9
50.4
55.8
43
47
51
56
62
47.3
U.7
56.1
61.6
68.2
3.0
2.7
2.5
2.2
2.0
95
110
130
150
190
8.8
7.9
7.4
6.9
6.0
10
10
10
10
10
31.0
33.8
36.7
40.3
44.6
.095
.095
.096
.096
.097
MZ500-36
MZ500-37
MZSOO-38
MZ500-39
MZ500-40
61.2
67.5
73.8
81.9
90.0
68
7.
82
91
100
74.8
82.5
90.2
100.1
110.0
1.8
1.7
1.5
1.4
1.3
240
280
340
400
500
5.5
5.1
4.6
4.2
3.7
10
10
10
10
10
49.0
54.0
59.0
65.5
72.0
.097
.098
.098
.099
.100
*1.
0
II
Nominal voltages other than those stated above, matcbed sets of tight voltage tolerance devices, tigbter Voltage tolerances and double anode Clippers, are
available from the .4M3.3ZS5 series on special request.
2. Voltages to 200 volts are available.
,
FIGURE 2 - TYPICAL ZENER DIODE CHARACTERISTICS and SYMBOL IDENTIFICATION
300
fORWARD
CHARACTERISTIC
TYPICAL
IALL TYPESI
200
•
REVERSE VOLTAGE
IVOLTSI
30
• IF - Forward Current
• Iz - Zener Current
20
• Izt.! - Malimum
1
DC Zener Current
(limIted by Power Dissipation)
II
1110
• In -Zener Test Current
• YF - Forward Voltage
./
10
- -- -- ~_L_.lIn - 4.2mA
0.5
30
1.5
V,IVOLTSJ
10
20
1.0
l-'"
•
REVERSE
CHARACTERISTIC
ITYPICAL fOR
30 VOLT UNIT.
MZ501J.271
1448
• Vz - Nominal Zener Vottage
• Zz - Zener Impedance
• Zzy -Zener Impedance at
Test Current (lzy)
MZ600 SERIES
(SILICON)
6.2 Volts
MZ800 SERIES
8.4 Volts
PRECISION REFERENCE DIODES
... designed, manufactured and tested for applications requiring
a precision voltage reference with ultra-high stability of voltage
with time and temperature change.
PRECISION REFERENCE
DIODES
with
CERTIFIED
ZENER VOLTAGE·TIME
STABILITY
Special test laboratory uses precision measurement equipment,
four-terminal (separate contacts for current and voltage) measurement techniques and voltage standards to provide calibration
directly traceable to the National Bureau of Standards.
CASE 51
(00·7)
~~~TeST
DaTa
1@)1 8
Every Precision Reference Diode is individually
serialized and its test data recorded on a Certificate
of Precision that accompanies the device when
shipped. This data shows:
-Device voltages at each test temperature
(+25, +75 and +1000 C)
-Voltage stability within the measuring
temperature range
-Actual device voltage at 168 hour
intervals during verification test
DIM
A
'84
2.16
7.62
272
0.230
0,"'
0107
0
0.46
0.56
0.018
0.022
•
-Voltage stability throughout the entire
1000 hour test period
INCHES
MIN
MAX
MilliMETERS
MAX
MIN
F
K
25.40
,21
0.300
0.06
1.000
AIiJEDECdlmlnllonsandn'oteSlllply
CASE 51·02
-Certification of Precision
DO·204AA
-All diodes are marked with the device
type number and polarity band
MECHANICAL CHARACTERISTICS,
CI•• ,
Glass, Hermetically Sealed
LI.ds; Dumet
Laid Finish,
~ickel 50·100 ~in. then
gold plated 50-200 ~in.
Weight,
0.2 grams (approx)
1449
MZ600 series, MZ800 series (continued)
OPERATING TEMPERATURE RANGE:* 25 to 100·C.
MZ600 SERIES (Voltage 6.2V ± 5%, In
Type No.
MZ605
MZ610
MZ620
MZ640
= 7.5 mAde t, b.Vz = 2.5 mVdc* *)
Voltage-Time Stability
(!'V /1000 Hours)
30 Maximum
60 Maximum
120 Maximum
240 Maximum
DYNAMIC IMPEDANCE: 10 ohms at I..
MZSOO SERIES (Voltage SAV ± 5%,
Type No.
MZ805
MZ810
MZ820
MZ840
Parts Per Million Change
(ppm/lOOO Hours)
Izr
< 5
<10
<20
<40
= 7.5 mAde, I•• = 0.75 mAo
= 10 mAdet, b.Vz = 3.5 mVdc**)
Voltage·Time Stability
(/LV /1000 Hours)
Parts Per Million Chllnge
(ppm/lOOO Hours)
45 Maximum
90 Maximum
180 Maximum
360 Maximum
<5
<10
<20
<40
DYNAMIC IMPEDANCE: 15 ohms at In = 10 mAde, I.. = 1.0 mAo
NOTES
t TEST CURRENT
*Maximum limits for use as a precision reference device. Limits are
For certification testing of time stability, Motorola maintains 'ZT
well below the maximum thermal limits.
constant and repeatable to ±0.05 "A tolerance. For voltage toler· ··VOLTAGE·TEII/IPERATURE STABILITY: Maximum allowable
ance, impedance and voltage temperature stability 'ZT needs to be
voltage change betwee.n voltages recorded at 25, 75 and 100" C
held to 0.01 mA tolerance only.
ambient.
VOLTAGE·TIME STAB I LITV
(~VZ/l000 Hours).
After this "warm·up" period, the device voltage will be between
the minimum and the maximum voltage of those recorded at the
seven points of the Voltage,Time Stability certification.
The device voltage is read and recorded initially and at 168 hour
intervals through 1000 hours. The maximum change of voltage between readings, taken at any of the seven points, must be less than
MOUNTING
the maximum voltage change per 1000 hours specified as Voltage·
Time Stability.
ing. If necessary, the device may be soldered into a circuit using a
TURN·ON CHARACTERISTICS
Precision Reference Diodes have been tested to determine the
Excellent results have been obtained by using a mechanicel mount·
heat sink.~n the heat source and the body of the diode. A low
thermal EMF solder is recommended.
SPECIAL NOTE
behavior of the device under interrupted power operation.
Voltage toleranca less than 5.0% is available upon special request.
Precision Reference Diodescepable of meeting special requirements
for standard voltages regerdless of required test current, temperatura
range, or test temperatures are available. Custom requirements of
~rticular devices for specific applications are also available.
To insure specified performance, adequate time must be allowed
for the device and its environment to reach thermal equilibrium.
"Warm·up" time may range from 10 to 30 minutes. Thermal equilibrium is reached when the chamber is cycling at the required tempera-
ture with the device energized.
1450
MZ600 series, MZ800 series (continued)
FIGURE 1 - MAXIMUM VOLTAGE CHANGE, IN /IoV AND PPM,
DUE TO CURRENT SUPPLY STABILITY
1000
~
~
~
t= MZ600 SERIES
F
Vz 6.2V
r-10 Ohms
~
IZINO"I ~ 7.5 mA
100
100
.
I
I"
/
PPM CHANGE
10
~
!5!
~
For verification of time stability. and for repeatable operation. Izr should be maintained
with a tolerance of ±0_11'A. Figure 1 will assist in design where
the supply current stability cannot be maintained to better than
0_2 pA deviation_
III
z:
;!;
/
10
~
r----
~
p.V CHANGE
1.0
'"
1.0
1000
~
~
!5!
11111
/"
5
'"z:
5
0.1
100
F
M1800 SERIES
r--Vz 8.4V
t-Zzr 15 Ohms
100 EIZINOMI - 7.5 mA
Ilp~M CHAN~E
10
1
~
~
!5!
~
III
z:
~
~
~
!5!
VOLTAGE-CURRENT
STABILITY
CHARACTERISTICS
E
~
10
~
p.V CHANGE
P'
1.0
~
!i!
5
1.0
V
~
0.1
1.0
0.1
100
10
61.. CURRENT STABILITY 1p.A1
FIGURE 2 - TYPICAL VOLTAGE CHANGE, IN I'V AND PPM,
DUE TO AMBIENT TEMPERATURE STABILITY
VOLTAGE-TEMPERATURE
CHARACTERISTICS
CHOICE OF OPERATING
TEMPERATURE
The stability certification is
performed at 65·C ± O.020 C.
The operating temperature can
be selected within the operating
temperature range. If the desired temperature is not 65·C.
the precise voltage of the device
will be different but the certified
stability will still be observed.
VOLTAGE TEMPERATURE
STABILITY
For verification of time stability and/or repeatable operation,
the ambient temperature should
be controlled to ±O.l·C.
Figure 2 will assist in designs
where ambient temperature
cannot be controlled to better
than 0.2"C deviation.
1000
~
~
~
F
100
MZ600 SERIES
I
100
I I I
L--"
PPM CHANGE
10
~
!5!
~
~
...... f-'" f.-':-J
~
~
~
~
!5!
'"
E
~
10
~
1.0
p.V CHANGE
V-
1.0
II II
!i!
5
0.1
100
1000
~ M1800 SERIES
5§.
i
100
PPM CHANGE
~
!5!
~
~
~
;!;
~
10
~
&
po
10
j;:::::
1.0
.01
!5!
~
I
1.0
1.0
6 TA • AMBIENT TEMPERATURE STABILITY lOCI
1451
~
z:
;!;
'"
1111
0.1
~
;
p.V CHANGE
'"
i
0.1
10
MZ821,A
MZ823,A
MZ825,A
MZ827, A
6.2 VOLTS ± 5%
MZ935,A,B
Desig'nel's Data Sheet
thru
MZ938,A,B
MZ941,A,B
RADIATION HARDENED
TEMPERATUR E·COMPENSATED
ZENER REFERENCE DIODES
MZ944,A,B
Highly reliable reference sources utilizing an oxide·passivated junco
tion for long·term voltage stability. Ramrod construction provides
a rugged, glass-enclosed, hermetically sealed structure.
9.0 VOLTS ± 5%
thru
11.7 VOLTS ±5%
MZ3154,A
thru
MZ3156,A
•
Specified Radiation Effects
•
Low Dynamic Impedance
•
Choice of Temperature Ranges
•
"Box Method" Specifications Guarantee Maximum Voltage Devia·
tion
•
Choice of Four Voltages
8.4 VOLTS ± 5%
Designer's Data for ''Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from
the information presented. Limit curves - representing boundaries on devtc8
characteristics - are given to facilitate "worst case" design.
RADIATION HARDENED
TEMPERATUR E·COMPENSATED
SILICON ZENER
REFERENCE DIODES
liB
@
DMAXIMUM RATINGS
~
K
Junction Temperature: -55 to + 175°C
CATHOOE
BANO
Storage Temperature: -65 to +1750 C
.UFJ
DC Power Dissipation: 400 mW @ T A = 25°C
I
A
r+. ' f
MECHANICAL CHARACTERISTICS
K
CASE: Hermetically sealed, all·glass
CASE 51·02
DO·204AA
DIMENSIONS: See outline drawing
FINISH: All external surfaces are corrosion resistant and leads are
readily solderable and weldable.
DIM
MILLIMETERS
MIN
MAX
L
INCHES
MIN
MAX
POLARITY: Cathode indicated by polarity band.
A 5.84 7.62
0.230 0.300
B
2.16 2.72
0.085 0.107
D 0.46 0.56
0.018 0.022
F
1.27
0.050
K 25.40
1.000
All JEOEC dimensions and notes apply
WEIGHT: 0.2 Gram (approx)
MOUNTING POSITION: Any
1452
MZ821,A, MZ823,A, MZ825,A, MZ827,A, MZ935,A,B thru MZ938,A,B,
MZ941,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Maximum
Maximum
Vol~
Reference
Vol~1It
Test Currant
Vz = 6.2 V ±. 5%
@IZT=7.5mA
Motorola
Type No.
(Note 1)
Temparature
Coefficient
Dc
(Note 2)
%/oC
0.096
0.01
MZ823
0.005
MZ825
0.048
0.Q19
MZ827
0.009
MZ821A
0.096
0.048
-55,0, +25,
+75, +100
0.002
0.001
0.019
0.002
MZ827A
0.009
0.001
MZ935
0.067
0.033
0.005
MZ937
MZ938
0.013
0, +25, +75
0.002
0.001
MZ935A
0.139
0.Q1
MZ936A
MZ937A
0.069
0.005
MZ938A
0.013
MZ935B
MZ936B
0.092
-55,0, +25,
+75, +100
0.027
0.184
0.037
MZ938B
0.Q18
-55,0, +25,
+75, +100, +150
0.002
0.001
0.002
0.088
0.Q1
0.044
0.Q18
0.005
MZ944
0.009
MZ941 A
0.181
@IZT=7.5mA
MZ943A
MZ944A
0.090
0.036
0,+25, +75
0.002
0.001
20
20
30
0.01
-55,0, +25,
+75, +100
0.018
0.005
0.002
0.001
MZ942B
0.239
0.120
0.005
MZ943B
MZ944B
0.047
0.024
MZ945B
0.012
0.0005
MZ946B
0.005
0.0002
MZ941B
20
0.001
MZ942
MZ943
MZ942A
10
0.01
0.005
MZ941
VZ=II.7V±.5%
15
0.01
0.006
MZ937B
Dynamic
Impedance
ZZTOhml
(Note 3)
0.01
0.005
MZ825A
MZ936
@IZT=7.5mA
Ambient Air
Test
Temperaturas
MZ821
MZ823A
Vz = 9.0 V±. 5%
Change
l>VZ (Volts)
(Note 2)
30
0.Q1
-55,0, +25,
+75, +150
0.002
0.001
30
0.Q1
MZ3154
0.130
MZ3155
0.065
-55,0, +25
0.005
MZ3156
0.026
+75, +100
0.002
15
Vz = 8.4 V ±.5%
@IZT=10mA
MZ3154A
0.172
MZ3155A
0.086
-55,0, +25,
0.005
MZ3156A
0.034
+75, +100, +150
0.002
0.Q1
1453
15
MZ821,A, MZ823,A, MZ825,A, MZ827,A, MZ935,A,B thru MZ938,A,B,
MZ941,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued)
EFFECTS OF NEUTRON DOSAGE
FIGURE 1 - EFFECT OF NEUTRON DOSAGE ON REFERENCE VOLTAGE
-1000
-500
-
!-200 TYP IN941 SERIES
~-100
:z:
~ -50
~
c
~
>
~
--
-
TYP IN821 SERIES I-
-20
-10
-5.0
f--
TYP IN935 SERIES
-2.0
~
-1.0
1012
- -
V
TYP ~Z821 SE,RIES'
I----"
1---
f.Hf
_
.....
-
I- ..... 1-"
-
I-"""
Noll
I-
*90% of the units changeless than 2.5 times typical value shown.-
I I III
.... ===
1014
'"
I
I I I I YII
lOiS
FIGURE 2 - TYPICAL EFFECT OF NEUTRON DOSAGE ON TEMPERATURE COEFFICIENT
~
w
co
'"~
0.0 I
0.005
0.002
~TA'
.... 0.00 I
~
U 0.0005
§
8
w
!5
.....
-55°C '0 +1500 C
TYP MZ821 SERIES f-'"
0.0002
----
0.000 I
!;(
~ 0.00005
r-ryp MZ941 SERIES
'" 0.00002 i.~
~O.OOOO I
~
/
....
-
-
........... I-"""
,......
i--'
,/
.....c V
TYP MZ3154 SERIES
TYP MZ935 SERIES
L'
II II
1014
1012
4>. NEUTRONS/cm 2 (E > 10 Kavl
(NOTE: Change may be either positive or negative)
FIGURE 3 - EFFECT OF NEUTRON DOSAGE ON IMPEDANCE'
10
8.0
;
:z:
5.0
~ 3.0
co
:i!
2.0
5
90% of the units change less than 2 timas typical value shown.
V
~
1.0
~ 0.8
~ 0.5
~ 0.3
~
0.2
O. I
10 12
10 13
-
..- ,.
-
......
1014
4>. NEUTRONS/cm2 (E > 10 Kavl
1454
I
TYP MZ3154 SERIES""
4>. NEUTRONS/cm 2 (E > 10 Kevl
u
I
TYP MZ941 SERIES'
TYP MZ935 SERIES'
TYPICAL CHANGE
lOiS
--
I
MZ821,A, MZ823,A,MZ825,A, MZ827,A, MZ935,A,B thru MZ938,A,B,
MZ941,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued)
loOi-i--r--r-=:;;:!;::.::==t==:::;:l
FIGURE 4
MAXIMUM VOLTAGE CHANGE versus
AMBIENT TEMPERATURE
(with IZT = 7.5 rnA ± 0.01 rnA)
75~----1-----~~--t---·--~--~----~
These graphs can be used to determine the maximum voltage
change of any device in the series over any specific temperature
range. For example, a temperature change from 0 to +50o C
will cause a voltage change no greater than +31 mV or - 31
mV for MZ821 0 r MZ821A, as illustrated by the dashed lines
in figure 4. The boundaries given are maximum values. Expanded views of Maximum Voltage Change versus Ambient
Temperature curves are shown on the standard data sheet
1N821,A, 1N823,A, 1N825,A, 1N827,A, 1N829,A.
The maximum voltage change. 6.VZ. in Figures5and 6 is due
entirely to the impedance of the device. If both temperature
and IZT are varied, then the total voltage change may be obtained by adding 6VZ in Figure 5 or 6 to the b..VZ in Figure 4
for the device under consideration. If the device is to be
operated at some stable current other than the specified test
current, a new set of characteristics may be plotted by superimposing the data in Figure 5 or 6 on Figure 4.
-751-------...L----p~--t-----I----~----~
-100b--_---!_---;b---_~==:::::i===±:==::::J
-55
ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE
(At Specified Temperatures) (See Note 5)
MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES
FIGURE 6 - MZ821 A SERIES
FIGURE 5 - MZ821 SERIES
10
+100 0 C
9.0
;;C
.s
>-
~
G
8.0
7.5
7.0
co
w
~
N
6.0
.!:9
5.0
4.0
-75
50
50
"VZ, MAXIMUM VOLTAGE CHANGE (mVI
(Referenced to IZl = 7.5 mAl
oVZ, MAXIMUM VOLTAGE CHANGE (mVI
(Referenced to IZT = 7.5 rnA)
MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT
(See Note 3)
MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES
FIGURE 7 - MZ821 SERIES
FIGURE 8 - MZ821A SERIES
1000
80 0
en 60 0
~ 400
1000
800
~ 600
o
~ 20 O~
O~
60
40
'"zw
0
W
~~
-55°C
:>
100
~
40
ffi
20
~
,.
100'C
25'C
=>
,.
,.~
4.0
:J
N 2.0
N
1.0
1.0
200
~
~ ~~
N
I0
~ 8. 0
,. 6. 0
,.~
400
'"~
~ 1~0
~
~
:J:
~
2.0
4.0
6.0 8.0 10
20
40
60 80100
IZ, ZENER CURRENT (mAl
25'C
~
10
8.0
6.0
~ ~;rr
-55'C
4.0
....;::::,
2.0
1.0
1.0
I
2.0
4.0
6.0 8.0 10
20
IZ, ZENER CURRENT (mA)
1455
40
60 80100
MZ821,A, MZ823,A, MZ825,A, MZ827,A,MZ935,A,8 thru MZ938,A,8,
MZ941,A,8 thru MZ944,A,8, MZ3154,A thru MZ3156,A (continued)
MAXIMUM VOLTAGE CHANGE versus TEMPERATURE
(With IZT
= 7.5 mA ± 0.Q1
mAl
FIGURE 9 - MZ935 thru MZ939
FIGURE 10 - MZ935A thru MZ939A
150
5
50
MZ935
/
~J+:2r71
5_j_l
100
MZ936
'
MZ937
MZ938
,
,I
-50
-75
__
I
a
a
...........
MZ936
:'"
IZT = 7'5 mA
--r--
100
~~ 50
w~
",,\,
~;
§!~
!5~
"'~
;;:--50
:li
----
__L /
/
V
__ L -~
-tOO
-150
-200
-55
-15a
-55
V-
"
--
MZ936B t - - -
8A
=r-U,
MZ938A
MZ937A
""'"
MZ936A
'"
The boundaries given are maximum values. Expanded views
of Maximum Voltage Change versus Ambient Temperature
curves are shown on the standard data sheet 1N935A,B thru
lN939,A.B.
The maximum voltage change, t::,VZ, in Figure 12 is due entirely to the impedance of the device. If both temperature
and IZT are varied, then the total voltage change may be
obtained by adding 6VZ in Figure 12 to the t::.VZ in Figure
9, 10, or 11 for the device under consideration. If the device
is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted
by superimposing the data in Figure 12 on Figure 9, 10, or 11.
MZ937B
MZ938B
MZ939B.
"
I
T
M~::iJB
MZ937B
MZ936B
-
MZ935B
FIGURE 13 - MAXIMUM ZENER IMPEDANCE
versus ZENER CURRENT (See Note 3)
1000 MORE THAN 95% OF THE UNITSAAE IN THE RANGES INDICATED BV THE CURVES
800
'" 600
;;: 400
+25 0 C
+150 0 C
9.0 f----+----+----I-""""'fNj"""!-----.1
+75 0 C
8-
~ 200
z
.. 100
1: 8.01----+--..,.IZ-T--t-----h~--+----I
~ ~g
------
:ll
7.0I_---+----+---::iII~----I_--_I
ffi
ffi
a
N
ffi 6.0 I_---:-:±:---+~~-_+----I_--_I
'"
:>
~
'"
~
N
.!9
=:tMZ939A h
These graphs can be used to determine the maximum voltage
~
""'"
~
MZ937A
change of any device in the series over any specific temperature
range. For example, a temperature change from +25 to +50o C
will cause a voltage change no greater than +22 mV or - 22
mV for MZ935. as illustrated by the dashed lines in Figure 9.
10MORE THAN 96% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES
~
::2
MZ936A
MZ935A
50
100
150
TA, AMBIENT TEMPERATURE (OC)
MZ935B
50
100
150
TA. AMBIENT TEMPERATURE (OC)
FIGURE 12 - ZENER CURRENT versus MAXIMUM VOLTAGE
CHANGE (at specified temperatures) (See Note 5)
I-
~~
~
MZ935
~~
r-~ ~ r-.............
N
~
-10 a
50
75
TA, AMBIENT TEMPERATURE (OC)
150
:;;
---.::
MZ937
FIGURE 11 - MZ935B thru MZ939B
20 a
..sw
'"z
•
MZ938
1
25
V
k.V ~
+
MZ939
~
.vzl=-22.dm~
V
~
....-
Ltd
_l_~
MZ935A
IZT= t5 mA
IZT= t.5 mA
5.0 1__---I__-,~"....j,.L---I__---I__---l
+75 0 C
"N
N
4.0 '--_-4<-""'-L..-"'--"'-_ _-'-_ _ _...L_ _- '
-150
-100
-50
100
50
.VZ, MAXIMUM VOLTAGE CHANGE (mV)
(Referenced to IZT = 7.5 mAl
0
40
20
-55°C
a
6. a
8.1a
~
.... 25°C
4.0
2. a
1.0
0.1
1456
~ ,..,.150 C
10
IZ, ZENER CURRENT (mA)
1.0
100
MZ821,A, MZ823,A, MZ825,A, MZ827,A, MZ935,A,B thru MZ938,A,B,
MZ941,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued)
MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(With IZT = 7.5 mA ± 0.01 mAl
FIGURE 14 - MZ941 thru MZ946
5
/'
MZ941
150
-T---- V
''''""YJ-
MZj42
'j
0
0
,
MZ:44 jZr
MZ945
t
MZ944 MZ943
MZ945
~~
~VZZ-28.~~:~
.:
-100
o
,,/
200
150
'"z
/
«
~~ 50
~~
!:i";;;
o~
> iii
"'~
~ r--.
""
~
'"N
~;
~ --::::
0
~~-50
-100
~
-150
-200
-250
-55
MZt2A
MZ941A
50
100
TA, AMBIENT TEMPERATURE (DC)
MZj41 B
These graphs can be used to determine the maximum voltage
change of any device in the series over any specific temperature
range. For example, a temperature change from +25 to +50o C
MZ942B
...-
will cause a voltage change no greater than +29 mV or - 28
mV for MZ941 , as illustrated by the dashed lines in Figure 14.
The boundaries given are maximum values. Expanded views
of Maximum Voltage Change versus Ambient Temperature
curves are shown on the standard data sheet 1N941,A,B thru
l-MZ9~ MZj41B
lN946,A,B.
• ~MZ944BI J
--.::::: ~z;;f
MZ943B
..............
~
The maximum voltage change, 6VZ, in Figure 17 is due en~
tirely to the impedance of the device. If both temperature
and I ZT are vaired, then the total voltage change may be ob~
tained by adding I'NZ in Figure 17 to the ''NZ in Figure 14,
15, or 16 for the device under consideration. I f the device is
to be operated at some stable current other than the specified
test current, a new set of characteristics may be plotted by
superimposing the data in Figure 17 on Figure 14, 15, or 16.
""'- .......
MZ942B
"'-'\
MZJ41B
50
100
150
TA, AMBIENT TEMPERATURE (DC)
FIGURE 17- ZENER CURRENT versus MAXIMUM VOLTAGE
CHANGE (At specified temperatures) (See Note 5)
FIGURE 18 - MAXIMUM ZENER IMPEDANCE versus
ZENER CURRENT (See Note 3)
MORE THAN 95%OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES
10r---~T--~~~~~~r=~~~rrT7~~
MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES
1000
'"S'"
+75 0 C
::;;
9.0
.."
150 0 C
w
u
;(
.5
B.O
7.5
7.0
u
f-
i
~
--- _..!£~
~.
100
:!!
~
w
~
ill
N
w
ill
N
'\
-20 0
-55
/'
/
100
w~
~
'" '"
-15 0
50
75
TA, AMBIENT TEMPERATURE (DC)
MZ943A
FIGURE 16 - MZ941B thru MZ946B
250
~w
MZr2A
MZ943A
MZ945A MZ944A
......
MZ941
I
I
25
V. . . . . V-
--
0
I
I
MZ941A
~~
MzL2
~\
-7 5
/
/
:~i'--.. ..::::::: ~A~A
• .L
5-1
0
V
/
0
__L
5~
FIGURE 15 - MZ941A thru MZ946A
200
100
6.0
~
.!9
-550 C
10
~
'"x«
5.0
25 0 CL
::;;
N
N
1.0
50
o
100
~VZ,
MAXIMUM VOLTAGE CHANGE
(Referenced to IZT = 7.5 rnA)
1457
1.0
10
IZ, ZENER CURRENT (mA)
100
MZ821 ,A, MZ823,A, MZ825.A, MZ827.A, MZ935,A,B thru MZ938,A,B,
MZ941,A,B thru MZ944,A,B, MZ3154.A thru MZ3156.A (continued)
MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE
(With IZT = 1.0 rnA ± 0.01 rnA)
The maximum voltage change. 6VZ, in Figure 21 is due en~
tirely to the impedance of the device. If both temperature
and IZT are varied, then the total voltage change may be ob~
tained by adding l>VZ in Figure 21 to the l>VZ in Figure 19
or 20 for the device under consideration. If the device is to
be operated at some stable current other than the specified
test current. a new set of characteristics may be plotted by
superimposing the data in Figure 21 on Figure 19 or 20.
These graphs can be used to determine the maximum voltage
change of any device in the series over any specific temperature
range. For example, a temperature change from 0 to +50o C
will cause a voltage change no greater than +42 mV or - 42
mV for MZ3154, as illustrated by the dashed lines in Figure
19. The boundaries given are maximum values. Expanded
views of Maximum Voltage Change versus Ambient Temperature curves are shown on the standard data sheet 1N3154,A
thru lN3157,A.
FIGURE 19 - MZ3154 thru MZ3157
FIGURE 20 - MZ3154A thru MZ3157A
150 r----,----'----,----,----,------,
zoo
IZT=10~A
MZ3154
MZ31154A
150
1001----+----+7'--+---+---+-1
,/
/
/
50
/'
MZ3155A
........-
~
~ ~~
~
-50
t---'l'---f-3o,_____--+""'.::---+----t---!-H
-10 0
-100
f-----+----j-..,.,.,--f-----J---H
-15 0
---""
MZ3156A
,
MZ3157A
r-- r-r--....
......
~
""
-55
MZ3l57A
MZ3156A
~
~
-zo 0
-15~5'=5------,L------,5LO----l.J.00-------'-------'
•
•
MZ3155A_
"
1
1>'l3 54A
50
100
150
TA, AMBIENT TEMPERATURE (DC I
TA, AMBIENT TEMPERATURE (DC I
FIGURE 22 - MAXIMUM ZENER IMPEDANCE
versus ZENER CURRENT (See Nota 3)
FIGURE 21 - ZENER CURRENT varsus MAXIMUM
VOLTAGE CHANGE (at spacified tamparatures) (See Note 5)
100
MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES
~
'":r
;r:
~ r--.;
~
:;;
~
9.0
'"zw
_w
.!9 8.0
'=>"
;;;
'"w
....... "-
w
'-'
z
..st-
'"
a
50
S
11
N
~
N
-550 C
10
......
lOOoC
po ::::: ...... to-
Z5 0 C
5.0
'"«
+100 oC
'N"
N
7.0
-75
1.0
1.0
~VZ.
5.0
10
IZ. ZENER CURRENT (mA)
MAXIMUM VOLTAGE CHANGE (mVI
IReferencad to IZT ~ 10 rnA)
1458
zo
30
40
MZ821,A, MZ823,A, MZ825,A, MZ827,A, MZ935,A,B thruMZ938,A,B,
MZ941 ,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued)
RADIATION EFFECTS
Standard Zener Diodes are inherently radiation resistant because
of high doping levels. This is not the case in Temperature Compensated Zener Reference Diodes because standard diffused, forwardbiased, P-N junctions having negative temperature coefficients arB
utilized to compensate for the positive temperature coefficient of
the zener die. Normally, the characteristic of the toward-biased
P-N junction changes significantly with fast neutron dosage and
makes the composite device sensitive to radiation. Motorola utj..
lizas specially processed P-N junctions to provide devices capable
of meeting the information shown in Figures 1, 2 and 3.
The radiation effects curves were generated based on data obtained
by irradiating devices in a Tri~ Reactor. Note: 3 neutron/cm 2
(Triga Reactor) = 1 neutron/em (1Mev equivalent.)
NOTE 1:
NOTE 3:
The Motorola listed types have electrical specifications identical to
the 1 N ... counterpart, i.e., MZ821 is identical to 1 N821.
Zener hnpedance Derivation
The dynamic zener impedance. ZZT. is derived from the 6()"Hz ac
voltage drop which results when an ac current with an rrns value
equal to 10% of the dc zener current, IZT. is superimposed on IZT'
Curves showing the variation of the zener impedance with zener
current for each series are given. A cathode·ray tube curve·trace
test on a sample basis is used to ensure that each zener characteristic
has a sharp and stable knee region.
NOTE 2:
Voltage Variation (t:.VZ) and Temperature Coefficient
All reference diodes are characterized by the "box method," This
guarantees a maximum voltage variation (t:.VZ) over the specified
temperature range. at the specified test current (lZT). verified by
tests at indicated temperature points within the range. This method
of indicated voltage stability is now used for JEDEC registration
as well as for military qualification. The former method of indi·
eating voltage stability - by means of temperature coefficient accurately reflects the voltage deviation at the temperature ex·
tremes, but is not necessarily accurate within the temperature range
because reference diodes have a nonlinear temperature relationship.
The temperature coefficient, therefore, is given only as a reference.
1459
MZ 1000-1
thru
MZ 1000-37 (SILICON)
MINIATURE PL.ASTIC ENCAPSULATED ZENER DIODES
· .. for regulated power supply circuits, surge protection, arc
suppression and other functions in television, automotive and
other consumer product applications.
1 WATT
ZENER DIODES
SILICON
OXIDE PASSIVATED
• No larger than conventional 250 mW case yet conservatively
rated at 1 watt (to 3 watts dissipation possible).
3.3-100 VOLTS
• 100% oscilloscope tested to assure sharp breakdown
and long-term, reliable operation.
MAXIMUM RATINGS
Rating
DC Power Dissipation
Value
@
Derate above 500 e
T L ::: 500 e
Unit
1.5
8.33
Lead Temperature (11
Watts
mW/oC
°c
-65 to +175
(1) Maximum Lead temperature for 10 seconds at 1/16" from case'" 230°C
FIGURE 1-POWER·TEMPERATURE DERATING CURVE
4.0
3.5
In
S
3.0
~
j!5 2.5 ~
~ 2.0
is
i
I
~
1.5
~
LeadLengtl1~%~
--- ------
-I
1"
~ 1.0
0.5
0
0
25
--
50
I
~~~~d~~~::~:~~n~k~~m
........
'-.....
..........
'----
75
case -
...........
...............
---- ~
~
100
150
125
175
Tc LEAD TEMPERATURE 1°C)
MECHANICAL CHARACTER'ISTICS
CASE: Void free, transfer molded.
NOTE:
1. POLARITY DENOTEO BY
CATHODE BAND
FINISH: All external surfaces are corrosion resistant. Leads are readily solderable.
POLARITY: Cathode indicated by color band. When operated in zener mode,
cathode will be positive with respect to anode.
DIM
A
MOUNTING POSITION: Any.
B
0
F
WEIGHT: 0.42 gram (approximately).
K
MILLIMETERS
MIN
MAX
4.07
2.04
0.71
-
27.94
5.20
2.71
O.BS
1.27
-
INCHES
MIN
MAX
0.lS0 0.205
0.080 0.107
O,02B O. 34
0.050
1.100
-
-
All JEDEC dImensions and notes apply.
CASE 59-03
00-41
1460
MZ1000-1
\
thru MZ1000-37 (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25"C unlessolherwlle noted} V, ""
Vz
Motorola
Type No.
1 5 Vmil~ @200rnAon"Utypes
Zener Voltage
Volts (2)
IZT
Test
Current
Izr
mA
@
Typical
ZZT (@ IZT
Ohms
Max DC Zener
Current
IZM
mA
Maximum Reverse
Leakage Current
VR
IR
@
pA Max
Volts
Temperature
Coefficient
%/"C
Min
Nom
Max
MZIOOO-l
MZI000-2
MZIOOO-3
MZIOOO-4
MZI000-S
2.97
3.24
3.51
3.87
4.23
3.3
3.6
3.9
4.3
4.7
3.63
3.96
4.29
4.73
5.17
76
69
64
58
53
15
15
13,5
13.5
12
276
252
234
217
193
150
150
75
20
20
I
I
I
I
I
-.070
-.065
-.060
-.050
-.043
MZIOOO-6
MZlOOO-7
MZIOOO-8
MZIOOO-9
MZIOOO-lO
4.59
5.04
5.58
6.12
6.75
5.1
5.6
6.2
6.6
7.5
5.61
6.16
6.82
7.48
8.25
49
45
41
37
34
10.5
7.5
3
5.25
6
178
162
146
133
121
20
20
20
20
20
I
2
3
4
5
t.030
t .028
+.045
.050
MZIOOO-ll
MZIOOO-12
MZIOOO.. 13
MZlOOO-14
MZlOOO-15
7.38
8.19
9
9.9
10.8
8.2
9.1
10
II
12
9.02
10.01
II
12.1
13.2
31
28
25
23
21
6.75
7.5
10.5
12
13.5'
110
100
91
83
76
20
20
20
10
10
5.9
6.6
7.2
8.0
8.6
.068
.075
.076
.077
MZlOOO-16
MZIOOO-l'7
MZIOOO-18
MZIOOO-19
MZlOOO-20
11.7
13.5
14.4
16.2
18
13
15
16
18
20
14.3
16.5
17.6
19.8
22
19
17
15.5
14
12.5
15
21
24
30
33
69
61
57
50
45
10
10
10
10
10
9.4
10.8
11.5
13.0
14.4
,079
.082
.083
,085
.086
.058
.062
MZlOOO-21
19.8
MZlOOO-22
MZIOOO-23
MZI000-24
MZI000-25
21.6
24.3
27
29.7
22
24
27
30
33
24.2
26.4
29.7
33
36.3
11.5
10.5
9.5
8.5
7.5
34.5
37.5
52.5
60
67.5
41
38
34
30
27
10
10
10
10
10
15.8
17.3
19.4
21.6
23.8
.087
.088
.090
.091
.092
MZ1000-26
MZI000-27
MZI000-28
MZ1000-29
MZI000-30
32.4
35.1
38.7
42.3
45.9
36
39
43
47
51
39.6
42.9
47.3
51.7
56.1
7
6.5
5.5
5
75
90
105
120
142.5
25
23
22
19
18
10
10
10
10
10
25.9
28.1
31.0
33.8
36.7
.093
.094
.095
.095
.096
MZ1000-31
MZI000-32
MZI000-33
MZ1000-34
MZI000-35
50.4
55.8
61.2
67.5
73.8
56
62
68
75
86
61.6
68.2
74.8
82.5
90.2
4.5
4
3.7
3.3
3
165
177.5
225
262.5
300
16
14
13
12
II
10
10
10
10
10
40.3
44.6
49.0
54.0
59.0
.096
.097
.097
.098
.098
MZI000-36
MZ1000-37
61.9
90
91
100
100.1
110
2.8
2.5
375
525
10
9
10
10
65.5
72.0
.099
.100
6
(2) NoDlinal voltages other than those stated above, matched sets, and tighter voltage tolerances are available as listed on DS 7030 HI (available from your local
Motorola sales office or distributor) ... Motorola IN4728 thru IN4764 series (lM3.3ZS10 thru IMIOOZSIO).
Voltages to 200 volts are available in other package configurations on request.
FIGURE 2 - TYPICAL ZENER DIODE CHARACTERISTICS and SYMBOL IDENTIFICATION
300
FORWARD
CHARACTERISTIC
TYPICAL
IALL TYPESI
• Iz -Zener Current
REVERSE VOLTAGE
IVOLTSI
30
.I
200
-
I
100
• IZT - Zener Test Current
• VF - Forward Voltage
11;~8~mA
.t.._ _
./
10
...
§
20
~30mA
30
• Vz - Nominal Zener Voltage
1.0
0.5
V,IVOLTSI
:;;;
I""
Maximum
OCZenerCurrent
(limited by Power Dissipation)
• IZM -
10
20
--
• IF - Forward Current
.
1.5
• Zz - Zener Impedance
• Zn - Zener Impedance at
Test CUrrent tlZT)
REVERSE
CHARACTERISTIC
ITYPICAL FOR
30 VOLT UNIT.
MZ1000·241
MZ2360
thru
MZ2362
For Specifications, See IN816 Data, Volume I.
MZ4614 thru MZ4627 (SILICON)
For Specifications, See IN4099 Data, Volume 1.
1461
MZ5555 (SILICON)
thru
MZ5558
De~igllerlS
Data Sheet
SILICON POWER
TRANSIENT SUPPRESSORS
SILICON POWER TRANSIENT SUPPRESSORS
are highly reliable voltage regulators specifically designed to withstand high power pulses for protection of voltage transient sensitive
circuits.
• Peak Power Given - 0.01 ms to 1.0 s
•
Low Power Overshoot
• Low Power Loss
• Convenient Size
• Ax ial Lead Package
• Oxide Passivated Junction
Designer's Data for "Worst Case" Conditions
The Designers Data sheets perm it the design of most circu its
entirely from the information presented. Limit curves - representing
boundaries on device characteristics - are given to facilitate "worst
case" design.
~.
1-'
o
K
L
MAXIMUM RATINGS
Rating
Transient Power Dissipation
c
Symbol
MZ5555
MZ5556
MZ5557
MZ5558
Unit
-
9.0
6.5
kW
r
K
L,
Smgle Square Wave Pulse,
Pulse Width = 0.01 ms,
TL = 25°C
DC Power Dissipation
TL = 25°C. L = 0.5·'
Derate above 2SoC
Operating and Storage JunctIon
Temperature Range
Po
5.0
Watts
33.3
mW/oC
TJ,Tstg
-65 to +175
°c
STYLE 1:
1. CATHODE
2. ANODE
DIM
MECHANICAL CHARACTERISTICS
CASE: Metal, hermetically sealed.
FINISH: All external surfaces are corrosion resistant and leads are
readily solderable and weldable.
POLARITY: Cathode indicated by diode symbol.
A
B
C
D
K
MILLIMETERS
MIN MAX
INCHES
MIN
MAX
-
11.43
8.89
7.62
1.17 1.42
24.89
-
0.450
0.046
0.300
0.056
o.
CASE 60-02
146?
~O
_.
,
MZ5555 thru MZ5558 (continued)
ELECTRICAL CHARACTERISTICS ITA
= 25°C unless otherwise noted.)
VF
IR
Vc
Ipp
TC
Clamping
Voltage
Peak, Pulse
Current
T emperatu ra
Coefficient
@Ipp
IVolts)
INote 1)
lAmp)
VF
Forward
Forward
Voltage
@VR
(IlA)
Vz
Breakdown
Voltage
@1.0mA
IVolts)
(VRMS)
Max
Min
Max
Max
Max
Max
21.5
5.0
33
47.5
32
0.093
2.0
2.7
40.3
28.5
5.0
43.7
63.5
24
0.095
2.5
3.2
MZ5557
49
34.5
5.0
54
78.5
19
0.099
2.8
3.8
MZ5558
175
124
5.0
191
265
5.7
0.110
3.5
5.1
Reverse Standoff
leakage Current
VR
Reverse Standoff
Voltage
Type
Number
(Vdc)
MZ5555
30.5
MZ5556
Voltage
INote3)
I%I"C)
@ IF = 100 A
INote2)
IVa Its)
@IF=200A
INote 2)
IVolts)
Max
NOTE 1: The Peak Pulse Curfent is measured on an exponential curve With Ipp defined as follows:
o
102.03.040
Tlme-(ms)
50
60
NOTE 2: The Forward Current (IF) is a non·repetltive sqaure wave pulse With a pulse width of 10 ms.
NOTE 3: Temperature Coefficient
IS
measured at 1.0 rnA over the temperature range of 25°C to 125°C.
FIGURE 2 - EFFECTS OF LEAD LENGTH ON STEADY
STATE THERMAL RESISTANCE
FIGURE 1 - STEADY STATE POWER OERATING
:::"'
~
5.0
4.0
~
~~
"'"
46
........
~
2.0
§l
"«x
"~
"'"
-11/2"
20
BO
@kJ
r- -I
112" 1-
L
L
./"
~
L
1- 1I
""
0
60
rfff-
~
1.0
40
f-
'TL
"'"
3.0
c;
"'
@kJ
i"-,.
100
120
140
~
/'
--
r
-/-
. - f---
f---
./
"'"I'160
2
lBO
TL, LEAD TEMPERATURE IOC)
lB
V
o
V
0.1
""
0.2
0.3
0.4
0.5
0.6
L, LEAD LENGTH (INCHES)
1463
0.1
O.B
0.9
10
MZ5555 thru MZ5558 (continued)
FIGURE 4 - MAXIMUM NON-REPETITIVE EXPONENTIAL
SURGE CURRENT
FIGURE 3 - TYPICAL VOLTAGE CHANGE WITH CURRENT
10 0
go 50
~
10
LU
5.0
o
2.0
~
>
0 .....
0
0 ~1--~""'.....d::-++F'!'I~........
""",~Mr-:...",55'-15~5
0:-
MZ555S
20
'"~
~
Pulsewidth - 300 liS, Duty Cycle
L ~ 3/S"
TL 15 0 C
+-I+H+-I----I---Tt : ~7;'~
!a O§~~~Di~~~~~~~~~~1
r-~
MZ5557
~
MZ555B
~
MZ5 555
7.01--
5,0
MZ555B
3,0
~5557'
~,;; ;~ H'f "ffl'''''',-+-++f!k~
ffi 1.0
ffiNO.5
N
>
= 10k
;t
-~.ri%
o
g5.0
Fi=L..J
1--12----j
0-0
0
D~~lxl00
12
z
~
1.0
0 11 x 100
11
k
~ 500
1.0%
c;
100
a:
100
"~
Fi=L..J
1--11----1
0
~ 1.0 k
~ 500
::i
s:
k
5.00/.,
a:::
~
10%
50
10
1°~
10
0.01 0,01 0.050.1 0.1
0.5 1.0 2.0
5.0 10
10
200
100
"
~
50
~
20
50 100 100 5001.0 k
5.0%
10%
10%
10
0.010.02 0.050.1 0.2 0.5 1.0 1.0
11. PULSE WIDTH 1m,)
5.0 10
10
50 100 100 5001.0 k
11. PULSE WIDTH 1m,)
NON-REPETITIVE SURGE POWER versus TEMPERATURE
(L = 3/S". 0 = 0)
FIGURE S - MZ555S
FIGURE 7 - MZ5555. MZ5556. MZ5557
10 k
10 k
~ 10 k
~ 5.0 k
~ 5.0 k
10 1,0 k
~
z
~
o
;=2.0 k
;t
>=
;t
~,~ ;55 0 C
~
~ 1.0 k
~
~ 200
"~
100
~
0
10
0,010,01 0.05 0,1 0,1
50 0
c;
500
~
1.0 k
"' 200
~
+25 0 C
+125 oC
D,S 1.0 1,0
5,0 10
20
50 100 200
~
100
"~
50
~
20
5001.0 k
11. PULSE WIDTH ImS)
10
0,01 0.02 0,05 0,1 0.2
TL
-55 0 C
rH!...
+25 0 C
Ill~25~
0,5 1.0 2,0
5.0 10
20
It. PULSE WIDTH ImSI
1464
50 100 200
5001.0 k
\
MZ5555 thru MZ5558 (continued)
FIGURE 9 - TYPICAL CAPACITANCE
5.0 k
3.0
kt-2.0 k
iii 1.0 k
~ 700
~ 500
TA
r-
-- --t::t~
r-- r-- I--
MZ5556
MZ5557
~ 300
5
=25°C
MZ5555
r--
MZ5558
r--
200
u'
--
100
70
50
1.0
20
3.0
5.0
7.0
10
20
VR. REVERSE VOLTAGE (VOLTS)
1465
30
50
70 100
...
--------------------NOTES--------------------
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:06:12 16:24:25-08:00 Modify Date : 2017:06:12 17:25:05-07:00 Metadata Date : 2017:06:12 17:25:05-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:8d011258-e3eb-1741-bf68-2047a42b3807 Instance ID : uuid:1f3f050e-94e9-2e4b-91ce-9949d1886c65 Page Layout : SinglePage Page Mode : UseNone Page Count : 1483EXIF Metadata provided by EXIF.tools