1974_Motorola_Discrete_Semiconductor_Series_A_Vol3_Non Registered_Type_Numbers 1974 Motorola Discrete Semiconductor Series A Vol3 Non Registered Type Numbers

User Manual: 1974_Motorola_Discrete_Semiconductor_Series_A_Vol3_Non-Registered_Type_Numbers

Open the PDF directly: View PDF PDF.
Page Count: 1483

Download1974_Motorola_Discrete_Semiconductor_Series_A_Vol3_Non-Registered_Type_Numbers 1974 Motorola Discrete Semiconductor Series A Vol3 Non-Registered Type Numbers
Open PDF In BrowserView PDF
Volume 3
DISCRETE PRODUCTS

Series A

Data Sheets For:

• Motorola Non-Registered
Type Numbers

THE
SEMICONDUCTOR
DATA LIBRARY
SERIES A
VOLUMEm

prepared by
Technical I nformation Center

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility
is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of semiconductor
devices any license under the patent rights of any manufacturer identified in this library.

Nous n'acceptons aucune responsabilite'en ce qui concerne les erreurs qui auraient pu s'introduire dans cette
edition, en depit des soins minutieux apportes sa preparation et sa revision; nous esperons toutefois que les
renseignements fournis sont fiables. De plus, il est bien entendu que ces renseignements ne permettent pas a'
I'acheteur de dispositifs semiconducteurs d'utiliser les brevets des fabricants mentionnes dans ce catalogue.

a

a

Die in diesem Buch enthaltenen Angaben wurden sorgfiiltig UberprUft und sind nach unserer Meinung voll ig
zuverliissig. Wir konnen jedoch fUr die Genauigkeit dieser Angaben keine Verantwortung ubernehmen. Daruber
hinaus wird dam Kaufer von Halbleiterelementen mit Angaben, die in dieser Bibliothek genannt werden, keine
unter die Patentrechte eines Herstellers fallende Lizenz erteilt.

i1. t:tti.j'tJi~l;tt~~ l:t~HH i1. t: to) -C dO ~, jgtA L i{f'-' to) -C T 1;', JJ-~~ ~ 0) dO -:> t:~-g-li. ~ O)'HH' A
l'l -tt /c, ;J: t:*.O)tti;t,j'tJi~I:}; L' -c ~~i1.-Cl' '-' ""Ut; J: Uit1.lo) ;l-1J -O)H~Hil:? L' -c ~O)jf!llI:jf£ItlT '-' lifIJj1!~~
I:IIIIL-Ct, ""U1;t~O).jx~AL'';-tt/c,

*.I:~cit;e.

Series A
INC., 1974
"All Rights Reserved"

© MOTOROLA

Printed in U.S.A.

VOLUMEm
This volume contains complete data sheets for
Motorola non-registered devices. Data sheets are in
alphanumeric sequence according to device type number
except for those data sheets that cover several devices
with different type numbers. The alphanumerical index
in front of the book permits the user to quickly locate
the page number of the data sheet for any device
characterized in the book.

Econocap, Epibase, Epicap, Glassivated, Isothermal, *k-Pak, MeMOS, Meg-A-Life II, MDTL,
MECL, MECL 10,000, MHTL, Micro-T, MIDA, MRTL, mW MRTL, MTTL, Multi-Cell II,
RamRod, Surmetic, Surmetic 20, Surmetic 30, Surmetic 40, Thermopad, Thermowatt, Unibase,
Unibloc and Uniwatt are trademarks of Motorola Inc.
Annular Semiconductors and Field-Relief Electrode are patented by Motorola Inc.

ii

ALPHA-NUMERIC INDEX
Devices characterized in Volume III show the page reference
only. Devices characterized in Volume I and Volume II are
referenced by volume and page number.
DEVICE

VOL

UoM2.4A2
UoM2.7A2
UoM3.0A2
UoM3.3A2
UoM3.6A2
UoM3.9A2
UoM4.3A2
UoM4.7A2
UoM5.1A2
UoM5.6AZ

PAGE
2

DEVICE
.5M2.52S
.5M2.72S
.5M3.02S
.5M3.32S
.5M3.62S
.5M3.92S
.5M4.32S
.5M4.72S
.5M5.12S
.5M5.6ZS

VOL

PAGE

II

1-20

DEVICE
1M3.6A210
1M3.9A210
1M4.3A210
1M4.7A210
1M5.1A210
1M5.6A210
1M6.2A210
1M6.SA210
1M7.5A210
1M6.SZ

UoM6.2A2
UoM6.SZ
UoM7.5Z
UoMS.2Z
UoM9.12
UoM102
UoM11Z
UoM12Z
UoM13Z
UoM14Z

.5M6.0ZS
.5M6.22S
.5M6.S2S
.5M7.5ZS
.5MS.22S
.5MS.72S
.5M9.12S
.5M10ZS
.5M11ZS
.5M12ZS

1M7.5Z
1MS.22
1M9.12
1M10Z
1M112
1M12Z
1M132
1M152
1M162
1M1S2

UoM152
UoM162
UoM17Z
UoM1SZ
UoM19Z
UoM20Z
UoM22Z
UoM24Z
UoM25Z
UoM27Z

.5M132S
.5M142S
.5M152S
.5M16ZS
.5M17ZS
.5M1SZS
.5M192S
.5M20ZS
.5M222S
.5M24ZS

1M202
1M222
1M24Z
1M272
1M30Z
1M332
1M36Z
1M392
1M432
1M472

UoM302
UoM33Z
UoM36Z
UoM39Z
UoM43Z
UoM45Z
UoM472
UoM50Z
UoM52Z
UoM56Z

.5M252S
.5M27ZS
.5M2SZS
.5M30ZS
.5M33ZS
.5M362S
.5M39ZS
.5M43ZS
.5M47ZS
.5M51ZS

1M51Z
1M562
1M62Z
1M6S2
1M752
1MS22
1M91Z
1M1002
1 M1102
1M1202

UoM62Z
UoM6SZ
UoM75Z
UoMS2Z
UoM91 Z
UoM100Z
UoM1052
UoM1102
UoM120Z
UoM1302

.5M56ZS
.5M60ZS
.5M62ZS
.5M6SZS
.5M75ZS
.5MS2ZS
.5MS7ZS
.5M91ZS
.5M100ZS
.5M1102S

11111130Z
1M150Z
1M1602
1M1S0Z
1M200Z
1M3.32S10
1M3.6ZS10
1M3.9ZS10
1M4.3ZS10
1M4.7ZS10

UoM140Z
UoM150Z
UoM175Z
UoM200Z
.4M.64FR10
.4M1.36FR5
.4M1.36FR2
.4M2.04FR5
.4M2.04FR2
.5M2.4ZS

.5M120ZS
.5M130ZS
.5M140ZS
.5M150ZS
.5M160ZS
.5M170ZS
.5M1S0ZS
.5M190ZS
.5M200ZS
1M3.3AZ10

1 M5.1ZS10
1M5.6ZS10
1M6.22S10
1M6.SZS10
1M7.52S10
1MS.2ZS10
1M9.12S10
1M10ZS10
1M112S10
1M122S10

I

2
1-10

! !
I

II

1-10
1-20

II
I

iii

1-20
1-59

VOL

PAGE

I

1-59

1-59
1-100

I

1-100

DEVICE
lM13ZS10
lM15ZS10
1M16ZS10
lM18ZS10
1 M20ZS1 0
1 M22ZS10
lM24ZS10
lM27ZS10
1 M30ZS1 0
1M33ZS10

VOL

PAGE

I

1-100

DEVICE
5M75ZS
5M82ZS
5M87ZS
5M91ZS
5Ml00ZS
5Mll0ZS
5M120ZS
5M130ZS
5M140ZS
5M150ZS

VOL

PAGE

II

1-30

DEVICE
50M13Z
50M14Z
50M15Z
50M16Z
50M 17Z
50M18Z
50M19Z
50M20Z
50M22Z
50M24Z

lM36ZS10
1M39ZS10
1 M43ZS10
1M47ZS10
lM51ZS10
1 M56ZS1 0
1 M62ZS10
1 M68ZS1 0
lM75ZS10
lM82ZS10

5M160ZS
5M170ZS
5M180ZS
5M190ZS
5M200ZS
10M6.8Z
10M7.5Z
10M8.2Z
10M9.1Z
10Ml0Z

1 M91 ZSl 0
lM100ZS10
1M110ZS10
lM120ZS10
lM130ZS10
1M150ZS10
1 M160ZS1 0
lM180ZS10
1 M200ZS1 0
5M3.3ZS

10Ml1 Z
10M12Z
10M13Z
10M14Z
10M15Z
10M16Z
10M18Z
10M19Z
10M20Z
10M22Z

50M51Z
50M52Z
50M56Z
50M62Z
50M68Z
50M75Z
50M82Z
50M91Z
50Ml00Z
50Ml05Z

5M3.6ZS
5M3.9ZS
5M4.3ZS
5M4.7ZS
5M5.1ZS
5M5.6ZS
5M6.0ZS
5M6.2ZS
5M6.8ZS
5M7.5ZS

10M24Z
10M27Z
10M30Z
10M3'3Z
10M36Z
10M39Z
10M43Z
10M47Z
10M50Z
10M51Z

50Mll0Z
50M120Z
50M130Z
50M140Z
50M150Z
50M160Z
50M175Z
50M180Z
50M200Z
BB105A,B,G

5M8.2ZS
5M8.7ZS
5M9.1ZS
5Ml0ZS
5M11ZS
5M12ZS
5M13ZS
5M14ZS
5M15ZS
5M16ZS

10M52Z
10M56Z
10M62Z
10M68Z
10M75Z
10M82Z
10M91Z
1 OMl OOZ
10Ml05Z
10Ml10Z

BU105
BU108
MA202
MA206
MA4404
MA4404A
MAC5-1
MAC5-2
MAC5-3
MAC5-4

5M17ZS
5M18ZS
5M19ZS
5M20ZS
5M22ZS
5M24ZS
5M25ZS
5M27ZS
5M28ZS
5M30ZS

10M120Z
10M130Z
10M140Z
10M150Z
10M160Z
10M180Z
10M200Z
50M3.9Z
50M4.3Z
50M4.7Z

MAC5-5
MAC5-6
MAC5-7
MAC5-S
MAC6-l
MAC6-2
MAC6-3
MAC6-4
MAC6-5
MAC6-6

5M33ZS
5M36ZS
5M39ZS
5M43ZS
5M47ZS
5M51ZS
5M56ZS
5M60ZS
5M62ZS
5M68ZS

50M5.1Z
50M5.6Z
50M6.2Z
50M6.8Z
50M7.5Z
50M8.2Z
50M9.1Z
50Ml0Z
50Ml1Z
50M12Z

I
II

II

1-100
1-30

1-30

II

1-30
1-44

1-44
1-41

I

iv

1-41

VOL

PAGE

I

1-41

I

lAl
4

50M25Z
50M27Z
50M30Z
50M33Z
50M36Z
50M39Z
50M43Z
50M45Z
50M47Z
50M50Z

MAC6-7
MAC6-8
MAC10-1
MAC10-2
MAC10-3
MAC10-4
MAC10-5
MAC10-6
MAC10-7
MAC10-8

364
6
12
12
14
14
16

I

16
20

20

DEVICE

VOL

MAC11-1
MAC11-2
MAC11-3
MAC11-4
MAC11-5
MAC11-6
MAC11-7
MAC11-8
MAC37-1

PAGE
20

j
20
24

MAC37-2
MAC37-3
MAC37-4
MAC37-5
MAC37-6
MAC37-7
MAC38-1
MAC38-2
MAC38-3
MAC38-4
MAC38-5
MAC38-6
MAC38-7
MAC92,A-1
MAC92,A-2
MAC92,A-3
MAC92,A-4
MAC92,A-5
MAC92,A-6
MAC93,A-1
MAC93,A-2
MAC93,A-3
MAC93,A-4
MAC94,A-1
MAC94,A-2
MAC94,A-3
MAC94,A-4
MAC40688
MAC40689
MAC40690
MAC40797
MAC40798
,MAC800-02,A,B
MAC800-05A,B
MAC800-10,A,B
MAC800-20A,B
MAC800-40A, B
MAC800-60A,B
MAC800-80,A,B
MBD101

24
28

!

28
32

l

32
36

~
36

"

2-164
2-164
2-164

II
II

2-186
2-186
40

II
II

1

40
44

MBD102
MBD103
MBD501
MBD502
MBD701
MBD702
MBI-101
MBR320M
MBR330M
MBR340M

46
48
50
52
50
52
54
56
56
56

MBR1520
MBR1530
MBR1540
MBR2520
MBR2530
MBR2540
MBR4020
MBR4020PF
MBR4030
MBR4030PF

60
60
60
64
64
64
68
72
68
72

DEVICE

VOL

MBR4040
MBS100
MBS4991
MBS4992
MCA1911N,P
MCA1912N,P
MCA1913N,P
MCA 1914N,P
MCA1921N,P
MCA1922N,P

PAGE
68
76
78
78
82

DEVICE
MCR39-40
MCR39-50
MCR39-60
MCR051
MCR052
MCR053
MCR054
MCR80-0.5
MCR80-10
MCR80-20

MCA 1923N,P
MCA1924N,P
MCA1931N,P
MCA 1932N,P
MCA 1933N,P
MCA1934N,P
MCA2011N,P
MCA2012N,P
MCA2013N,P
MCA2014N,P

MCR80-30
MCR80-40
MCR80-50
MCR80-60
MCR80-70
MCR80-80
MCR81-0.5
MCR81-10
MCR81-20
MCR81-30

MCA2021N,P
MCA2022N,P
MCA2023N,P
MCA2024N,P
MCA2031N,P
MCA2032N,P
MCA2033N,P
MCA2034N,P
MCA2111N,P
MCA2112N,P

MCR81-40
MCR81-50
MCR81-60
MCR81-70
MCR81-80
MCR82-0.5
MCR82-10
MCR82-20
MCR82-30
MCR82-40

MCA2113N,P
MCA2114N,P
MCA2121N,P
MCA2122N,P
MCA2123N,P
MCA2124N,P
MCA2131N,P
MCA2132N,P
MCA2133N,P
MCA2134N,P

MCR82-50
MCR82-60
MCR82-70
MCR82·80
MCR101
MCR102
MCR103
MCR104
MCR106-1
MCR 1 06·2

MCA2211N,P
MCA2212N,P
MCA2213N,P
MCA2214N,P
MCA2221N,P
MCA2222N,P
MCA2223N,P
MCA2224N,P
MCA2231N,P
MCA2232N,P

MCR106-3
MCR 1 06·4
MCR 1 06·6
MCR106-8
MCR107-1
MCR107·2
MCR107·3
MCR107-4
MCR107·5
MCR107·6

MCA2233N,P
MCA2234N,P
MCL 1300
MCL 1301
MCL1302
MCL 1303
MCL 1304
MCL TC6010
MCLTC6025
MCLTC6050

82
84

l

84
85

l

MCLTC6100
MCR32-05
MCR32-20
MCR32-30
MCR32-40
MCR32-50
MCR32-60
MCR39-05
MCR39-20
MCR39-30

85
87

!

87
91
91
91

v

MCR107·7
MCR107·8
MCR115
MCR120
MCR154-10
MCR154·20
MCR154·30
MCR154·40
MCR154·50
MCR154·60
MCR155-10
MCR155·20
MCR155·30
MCR155·40
MCR155·50
MCR155·60
MCR156-10
MCR156·20
MCR156·30
MCR156-40

VOL

PAGE
91
91
91
93

~

93
97

r
97

99
101

I

101
103

103
105
105
107

107

DEVICE
MCR156-50
MCR156-60
MCR157-10
MCR157-20
MCR157-30
MCR157-40
MCR157-50
MCR157-60
MCR158-50
MCR158-60

VOL

PAGE
107

107
111

MCR158-70
MCR158-80
MCR158-90
MCR158-100
MCR158-110
MCR158-120
MCR159-50
MCR159-60
MCR159-70
MCR159-80

MCR380-40
MCR380-50
MCA380-60
MCA380-70
MCA380-80
MCA380-90
MCR380-100
MCR380-110
MCR380-120
MCR380-130

MCR159-90
MCR159-100
MCR 159-11 0
MCR159-120
MCR201
MCR202
MCR203
MCR204
MCR205
MCR206

MCR380-140
MCR380-150
MCR380B-l0
MCR380B-20
MCR380B-30
MCR380B-40
MCR380B-50
MCR380B-60
MCR380B-70
MCR380B-80

MCR235-10
MCR235-20
MCR235,30
MCR235-40
MCR235-50
MCR235-60
MCR235-70
MCR235-80
MCR235-90
MCR235-100
MCR235-110
MCR235-120
MCR235-130
MCR235-140
MCR235-150
MCR235A-l0
MCR235A-20
MCR235A-30
MCR235A-40
MCR235A-50

111
115

I

115
119

119
123

PAGE
125

j
125
129

DEVICE
MCR470-110
MCR470-120
MCR470-130
MCR470-140
MCR470-150
MCR470C-l0
MCR470C-20
MCR470C-30
MCR470C-40
MCR470C-50

129
133

MCR380D-l0
MCD380D-20
MCR380D-30
MCR380D-40
MCR380D-50
MCR380D-60
MCR380D-70
MCR380D-80
MCR380D-90
MCR380D-l00

MCR550C-70
MCR550C-80
MCA550C-90
MCR550C-l00
MCR550D-l0
MCR550D-20
MCR550D-30
MCR550D-40
MCA550D-50
MCA550D-60

MCR235C-20
MCR235C-30
MCR235C-40
MCR235C-50
MCR235C-60
MCR235C-70
MCR235C-80
MCR235C-90
MCR235C-l00
MCR320-1

MCR470-10
MCR470-20
MCR470-30
MCR470-40
MCR470-50
MCR470-60
MCR470-70
MCR470-80
MCR470-90
MCR470-100

PAGE

,

141

141
145

MCR470D-80
MCR470D-90
MCR470D-l00
MCR470E-l0
MCR470E-20
MCR470E-30
MCR470E-40
MCR470E-50
MCA470E-60
MCR470E-70
MCR470E-80
MCR470E-90
MCR470E-l00
MCR470E-120
MCR550C-l0
MCR550C-20
MCR550C-30
MCA550C-40
MCR550C-50
MCR550C-60

MCR380D-l10
MCR380D-120
MCR406-1
MCR406-2
MCR406-3
MCR406-4
MCR407-1
MCR407-2
MCR407-3
MCR407-4

VOL

MCR470C-60
MCR470C-70
MCR470C-80
MCR470D-l0
MCR470D-20
MCR470D-30
MCR470D-40
MCR470D-50
MCR470D-60
MCR470D-70

MCR380C-l0
MCR380C-20
MCR380C-30
MCR380C-40
MCR380C-50
MCR380C-60
MCR380C-70
MCR380C-80
MCR380C-90
MCR380C-l00

MCR235A-60
MCR235B-l0
MCR235B-20
MCR235B-30
MCR235B-40
MCR235B-50
MCR235B-60
MCR235B-70
MCR235B-80
MCR235C-l0

123
125

VOL

DEVICE
MCA320-2
MCA320-3
MCA320-4
MCA320-5
MCA320-6
MCA320-7
MCA320-8
MCA380-10
MCA380-20
MCR380-30

133
135

~

135
139

~

139
141

141

vi

MCA550D-70
MCA550D-80
MCA550D-90
MCA550D-l00
MCA550D-ll0
MCA550D-120
MCA649-1
MCA649-2
MCA649-3
MCA649-4
MCR649-5
MCR649-6
MCR649-7
MCA729-5
MCR729-6
MCR729-7
MCR729-8
MCA729-9
MCR729-10
MCR800-10

145
147

147
149

j
149
152

I

152
154

DEVICE
MCR800-20
MCR80e-30
MCR800-40
MCR800-50
MCR800-60
MCR800-70
MCR800-80
MCR800-90
MCR80e-100
MCR800-110
MCR800-120
MCR800-130
MCR800-140
MCR800-150
MCR846-1
MCR846-2
MCR846-3
MCR846-4
MCR1336-5
MCR1336-6
MCR1336-7
MCR1336-8
MCR1336-9
MCR1336-10
MCR1718-5
MCR1718-6
MCR1718-7
MCR1718-8
MCR1906-1
MCR1906-2
MCR1906-3
MCR1906-4
MCR1907-1
MCR1907-2
MCR1907-3
MCR1907-4
MCR1907-5
MCR1907-6
MCR2315-1
MCR2315-2

VOL

PAGE
154

154
158

i

158
160

j

,

160
162

162
164

~

164
166

!

166
169

MCR2315-3
MCR2315-4
MCR2315-5
MCR2315-6
MCR2614L-1
MCR2614L-2
MCR2614L-3
MCR2614L-4
MCR2614L-5
MCR2614L-6
MCR3818-1
MCR3818-2
MCR3818-3
MCR3818-4
MCR3818-5
MCR3818-6
MCR3818-7
MCR3818-8
MCR3835-1
MCR3835-2
MCR3835-3
MCR3835-4
MCR3835-5
MCR3835-6
MCR3835-7
MCR3835-8
MCR3918-1
MCR3918-2
MCR3918-3

169
171

j
171
173

173
171
171
171

DEVICE

VOL

MCR3918-4
MCR3918-5
MCR3918-6
MCR3918-7
MCR3918-8
MCR3935-1
MCR3935-2
MCR3935-3
MCR3935-4
MCR3935-5

PAGE
171

~

171
173

MCR3935-6
MCR3935-7
MCR3935-8
M0708.A,B
M0708F,AF,BF
M0918,A,B
M0918F,AF,BF
M0982,F
M09B4
M0985,F

DEVICE
MOA922-1
MOA922-2
MOA922-3
MOA922-4
MDA922-5
MDA922-6
MDA922-7
MDA922-8
MDA922-9
MOA942-1

173
175
175
178
178
181
183
185

MDA942-2
MOA942-3
MDA942-4
MDA942-5
MDA942-6
MDA952FR-1
MDA952FR-2
MDA952FR-3
MDA952FR-4
MDA952FR-5

M0986,F
M01120,F
M01121
M01122
M01123
M01129,F
M01130,F
M02218.A,F.AF
M02219.A,F,AF
M02369.A,B,F ,A F
,BF

187
189
189
189
191
193
191
195
195
200

MDA970-1
MDA970-2
MDA970-3
MDA972-1
MDA972-2
MDA972-3
MDA972-4
MDA972-5
MDA980-1
MDA980-2

M 02904.A,F ,A F
M02905.A,F,AF
M03250.A,F ,AF
M03251.A,F .AF
M03409
M03410
M03467,F
M03725,F
M03762,F
M04957

204
204
209
209
213
213
215
219
223
227

M05000,A,B
M06001,F
M06002,F
M06003,F
M07000
M07001,F
M07002.A,B
M07003,F
M07003A,AF
M07003B

231
233
233
233
238
240
242
244
244
244

M07004,F
M07007,A,B
M07007F
M07021,F
M08001
M08002
M08003
MOA100
MOA101
MOA102

246
248
248
250
252
252
252
254

MOA104
MOA106
MOA108
MOA110
MOA800
MOA801
MOA802
MOA804
MOA806
MOA920

J

254
256

!

256
260

vii

MDA980-3
MDA980-4
MDA980-5
MDA980-6
MDA990-1
MDA990-2
MDA99e-3
MDA990-4
MDA990-5
MDA990-6
MOA1200
MDA1201
MDA1202
MDA1204
MDA1206
MDA1330H
MDA1331H
MDA1332H
MDA1333H
MOA1505-1

VOL

PAGE
262

262
266

j
266
270

l

270
271
271
271
266

~

266
275

275
279

!

279
283

~

283
266

MOA1505-2
MDA1505-3
MDA1505-4
MDA1505-5
MDA1505-6
MDA1591-1
MDA1591-2
MDA1591-3
MDA1591-4
MDA1591-5
MDA1591-6
MDA3551
MDA3552
MDA3661
MDA3662
MFE130
MFE131
MFE132
MFE590
MFE591

266
287

~

287
796
796
796
289
289

DEVICE

VOL

PAGE

DEVICE

VOL

PAGE

DEVICE

MFE823
MFE824
MFE2000
MFE2001
MFE2004
MFE2005
MFE2006
MFE2007
MFE2008
MFE2009

295
297
299
299
301
301
301
303
303
303

MJ450
MJ480
MJ481
MJ490
MJ491
MJ802
MJ900
MJ901
MJ920
MJ921

378
380
380
382
382
384
386
386
388
388

MJ4646
MJ4647
MJ4648
MJ5415
MJ5416
MJ6257
MJ6302
MJ6700
MJ6701
MJ7000

MFE2010
MFE2011
MFE2012
MFE2093
MFE2094
MFE2095
MFE3001
MFE3002
MFE3003
MFE3004

305
305
305
307
307
307
308
310
311
312

MJ1000
MJ1001
MJ1200
MJ1201
MJ1800
MJ2249
MJ2250
MJ2251
MJ2252
MJ2253

386
386
388
388
393
395
395
397
397
399

MJ7160
MJ7161
MJ7260
MJ7261
MJ8100
MJ8101
MJ9000
MJE 105
MJE 105K
MJE 170

MFE3005
MFE3006
MFE3007
MFE3008
MFE3020
MFE3021
MFE4007
MFE4008
MFE4009
MFE4010

312
314
314
314
320
320
322

MJ2254
MJ2267
MJ2268
MJ2500
MJ2501
MJ2801
MJ2840
MJ2841
MJ2901
MJ2940

399
401
401
403
403
405
407
407
405
409

MJE171
MJE 172
MJE 180
MJE 181
MJE 182
MJE200
MJE205
MJE205K
MJE210
MJE220

~J2941

MJE221
MJE222
MJE223
MJE224
MJE225
MJE230
MJE231
MJE232
MJE233
MJE234
MJE235

j

MFE4011
MFE4012
MFE5000
MHQ918
MHQ2221
MHQ2222
MHQ2369
MHQ2483
MHQ2484
MHQ2906

322
328
330
332
332
334
336
336
338

MJ2955
MJ3000
MJ3001
MJ3026
MJ3027
MJ3028
MJ3029
MJ3030
MJ3040

4'09
411
403
403
415
415
417
419
419
421

MHQ2907
MHQ3467
MHQ3546
MHQ3798
MHQ3799
MHQ4001A
MHQ4002A
MHQ4013
MHQ4014
MHQ6001

338
340
342
344
344
346
346
348
348
350

MJ3041
MJ3042
MJ3101
MJ3201
MJ3202
MJ3260
MJ3430
MJ3480
MJ3583
MJ3584

421
421
395
423
423
425
429
6
2-537
2-537

MHQ6002
MHQ6100
MHQ6100A
MHW559
MHW560
MHW561
MHW562
MHW709
MHW710
MJ105

350
352
352
354
355
356
357
358
361
364

MJ3585
MJ3701
MJ3760
MJ3761
MJ3771
MJ3772
MJ3773
MJ4030
MJ4031
MJ4032

MJ400
MJ410
MJ411
MJ413
MJ420S
MJ421S
MJ423
MJ424
MJ425
MJ431

368
370
370
372
374
374
372
376
376
372

MJ4033
MJ4034
MJ4035
MJ4200
MJ4201
MJ4210
MJ4211
MJ4240
MJ4502
MJ4645

I
I
I

2-537
399
431
431
437
437
442

T

,

447
449

I

viii

449
2-537
454
456

MJI'240
MJE241
MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254

VOL

PAGE
456
456
456
2-499
2-499
437
442
458
458
460
462
462
466
466
468
468
470
472
472
475

j
475
479
483
483
479
486

I

486
490

490

MJE340
MJE340K
MJE341
MJE341K
MJE344
MJE344K
MJE350
MJE370
MJE370K
MJE371

494
494
497

MJE371K
MJE520
MJE520K
MJE521
MJE521K
MJE700
MJE701
MJE702
MJE703
MJE710

505
508
508
511
511
514

t

497
500
502
502
505

~

514
516

DEVICE

VOL

MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE801
MJE802
MJE803
MJE1090

PAGE
516
516
518
518
518
514

~

514
520

MJE1091
MJE1092
MJE1093
MJE1100
MJEll01
MJE1102
MJE1103
MJE 1290
MJE1291
MJE 1660

520
523

~

MJE1661
MJE2010
MJE2011
MJE2020
MJE2021
MJE2050
MJE2090
MJE2091
MJE2092
MJE2093

523
525

~

525
527
520

MJE2100
MJE2101
MJE2102
MJE2103
MJE2150
MJE2160
MJE2360
MJE2361
MJE2370
MJE2480

520
527
528
530
530
532
534

MJE2481
MJE2482
MJE2483
MJE2490
MJE2491
MJE2520
MJE2801
MJE2801K
MJE2901
MJE2901K

534
536
536
538
540
540
543
543

MJE2955
MJE2955K
MJE3055
MJE3055K
MJE3370
MJE3371
MJE3439
MJE3440
MJE3520
MJE3521

546
546
549
549
502
505
552
552
508
511

MJE3738
MJE3739
MJE4918
MJE4919
MJE4920
MJE4921
MJE4922
MJE4923
MJE5190
MJE5191

~

I
I
I
I
I
I
II
II

554
554
2-872
2-872
2-872
2-876
2-876
2-876
2-67
2-67

DEVICE
MJE5192
MJE5193
MJE5194
MJE5195
MJE5655
MJE5656
MJE5657
MJE5974
MJE5975
MJE5976

VOL

PAGE

PAGE

II

2-67
2-71
2-71
2-71
2-237
2-237
2-237
2-374
2-374
2-374

MM3007
MM3008
MM3009
MM3053
MM3726
MM3734
MM3735
MM3736
MM3737
MM3903

607
609
609
611
613
617
617
621
621
625

2-378
2-378
2-378
2-382
2-382
2-382
2-386
2-386
2-386
2-408

MM3904
MM3905
MM3906
MM4000
MM4001
MM4002
MM4003
MM4005
MM4006
MM4007

625
630
630
635

MM4008
MM4009
MM4010
MM4018
MM4019
MM4030
MM4031
MM4032
MM4033
MM4036

638
638
638
640
642
646

MJE5977
MJE5978
MJE5979
MJE5980
MJE5981
.MJE5982
MJE5983
MJE5984
MJE5985
MJE6040
MJE6041
MJE6042
MJE6043
MJE6044
MJE6045
MLED50
MLED55
MLED60
MLED90
MLED92

DEVICE

VOL

II

I

2-408
557
557
559
559
561

,

635
636
636
636

~

646
648

MLED440
MLED445
MLED500
MLED600
MLED610
MLED640
MLED655
MLED660
MLED900
MLED910

563
565
567
569
571
573
575
577
579
581

MM4037
MM4049
MM4052
MM4208
MM4208A
MM4209
MM4209A
MM4257
MM4258
MM4261H

650
652
654
656

MLED930
MLS10l
MLS102
MLS103
MLS104
MLS105
MLS201
MLS202
MLS203
MLS204

583
585

MM5005
MM5006
MM5007
MM5189
MM5262
MM6427
MM8000
MM8001
MM8006
MM8007

670
670
670
672
674
676
678
678
680
680

MLS205
MM439
MM1500,A
MM1501
MM1505
MM1553
MM1748,A
MM1803
MM1941

585
587
589
589
591
593
597
2-425
599

MM8008
MM8009
MM8010
MM8011
MMCM918
MMCM930
MMCM2222
MMCM2369
MMCM2484
MMCM2857

684
688
684
684
691
693
695
697
693
729

MMCM2907
MMCM3798
MMCM3799
MMCM3903
MMCM3904
MMCM3905
MMCM3906
MMCM3960A
MMD70
MMD6050

699
738
738
743
743
747
747
753
701
702

I

MM2005-2
MM2258
MM2259
MM2260
MM3000
MM3001
MM3002
MM3003
MM3005
MM3006

601
603
603
603
606

~

606
607
607

ix

t

656
658
658
662

DEVICE

VOL

PAGE

VOL

DEVICE

PAGE

DEVICE

VOL

PAGE

706

MPF112
MPF130
MPF131
MPF132
MPF161
MPF256
MPF820
MPF970
MPF971
MPF4391

795
796
796
796
800
802
803
805
805
809

MPS3397
MPS3398
MPS3563
MPS3638,A
MPS3639
MPS3640
MPS3646
MPS3693
MPS3694
MPS3702

881
881
869
883
885
887
890
894
894
896

MMT70
MMT71
MMT72
MMT73
MMT74
MMT75
MMT76
MMT806
MMT807
MMT808

708
709
710
712
714
716
716
718
720
722

MPF4392
MPF4393
MPI-3401
MPM5006
MPN3401
MPN3402
MPN3411
MPN3601
MP0918
MP01000

809
809
813
815
817
817
819
821
823
825

MPS3703
MPS3704
MPS3705
MPS3706
MPS3707
MPS3709
MPS3710
MPS3711
MPS3826
MPS3827

896
898
898
898
900

MMT809
MMT918
MMT930
MMT2222
MMT2369
MMT2484
MMT2857
MMT2907
MMT3014
MMT3546

724
691
693
726
697
693
729
731
734
736

MP01050
MP02221
MP02222
MP02369
MP02483
MP02484
MP02906
MP02907
MP03303
MP03467

827
332
332
334
829
829
338
338
831
833

MPS4354
MPS4355
MPS4356
MPS5172
MPS6507
MPS6511
MPS6512
MPS6513
MPS6514
MPS6515

904
904
904
908
910
912
914

MMT3798
MMT3799
MMT3823
MMT3903
MMT3904
MMT3905
MMT3906
MMT3960
MMT3960A
MMT8015

738 .
738
741
743
743
747
747
751
753
756

MP03546
MP03725,A
MP03762
MP03798
MP03799
MP03904
MP03906
MP04003
MP04004
MP06001

342
835
838
840
840
842
844
846
846
849

MPS6516
MPS6517
MPS6518
MPS6519
MPS6520
MPS6521
MPS6522
MPS6523
MPS6530
MPS6531

MOC2000
MPll0
MP110B
MP500
MP501
MP502
MP504
MP505
MP506
MP600

761
763
765
767

MP06002
MP06100
MP06100A
MP06501
MP06502
MP06600,A
MP06700
MPS404
MPS404A
MPS706,A

849
851
851
849
849
851
853
855
855
859

MPS6532
MPS6533
MPS6534
MPS6535
MPS6539
MPS6540
MPS6541
MPS6543
MPS6544
MPS6545

918
920
922
924
926
928
928

MPS708
MPS753
MPS834
MPS835
MPS918
MPS2369
MPS2712
MPS2714
MPS2716
MPS2923

861
863
865
867
869
871
873
875
873
877

MPS6546
MPS6547
MPS6548
MPS6560
MPS6561
MPS6562
MPS6563
MPS6565
MPS6566
MPS6567

930
932
934
936
940
936
940
944
944
948

MPS2924
MPS2925
MPS2926
MPS3390
MPS3391
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396

877
877
879
881

MPS6568,A
MPS6569,A
MPS6970,A
MPS6571
MPS6573
MPS6574
MPS6575
MPS6576
MPS6580
MPS8000

950
950
950
954
957

MMD6100
MMD6150
MMD7000
MMD7001
MMFl
MMF2
MMF3
MMF4
MMF5
MMF6

MP601
MP602
MP603
MP1613
MP2000A
MP2060
MP2061
MP2062
MP2063
MP2100A
MP2200A
MP2300A
MP2400A
MP3730
MP3731
MPC1000
MPF102
MPF108
MPF109
MPF111

702
702
702
704
706

I

I

767
769

!

771
773
777

~

777
773

~

773
781
781
783
789
790
792
794

I

881

x

~

900
902
902

914
916

~

916
918

j

~

957
959
961

DEVICE

VOL

PAGE

VOL

DEVICE

PAGE

DEVICE

VOL

PAGE

970
976
976
982
985

MPS-U05
MPS-U06
MPS-U07
MPS-U10
MPS-U31
MPS-U45
MPS-U51,A
MPS-U52
MPS-U55
MPS-U56

1087
1087
1089
1091
1095
1099
1103
1105
1107
1107

MR811
MR812
MR814
MR816
MR817
MR818
MR820
MR821
MR822
MR824

MPS-A13
MPS-A14
MPS-A16
MPS-A17
MPS-A18
MPS-A20
MPS-A42
MPS-A43
MPS-A55
MPS-A56

987
987
990
990
992
997
1001
1001
976
976

MPS-U57
MPS-U60
MPS-U95
MPT20
MPT28
MPT32
MPU131
MPU132
MPU133
MPU6027

1109
1111
1113
1117
1119
1119
1121
1121
1121
1125

MR826
MR830
MR831
MR832
MR824
MR836
MR840
MR841
MR842
MR844

1159
1167

MPS-A65
MPS-A66
MPS-A70
MPS-A92
MPS-A93
MPS-001
MPS-002
MPS-003
MPS-004
MPS-005

1003
1003
1006
1010
1010
1012
1014
1016
1018
1020

MPU6028
MPZ5-16
MPZ5-32
MPZ5-180
M0930
M0982
M01120
M01129
M02218,A
M02219,A

1125
1129
1129
1129
1131
181
189
193
195
195

MR846
MR850
MR851
MR852
MR854
MR856
MR860
MR861
MR862
MR864

1167
1168

MPS-006
MPS-051
MPS-052
MPS-053
MPS-054
MPS-055
MPS-056
MPS-H02
MPS-H04
MPS-H05

1022
1012
1014
1016
1018
1020
1022
1025
1028
1028

M02369
M02484
M02904
M02905A
M03251
M03467
M03725
M03762
M03798
M03799,A

200
1131
204
204
209
215
219
223
1134
1134

MR866
MR870
MR871
MR872
MR874
MR876
MR1030
MR1031
MR1032
MR1033

1176
1181

MPS-H07
MPS-H08
MPS-H10
MPS-H11
MPS-H17
MPS-H19
MPS-H20
MPS-H24
MPS-H30
MPS-H31

1032
1032
1036
1036
1039
1041
1043
1046
1049
1049

M06001
M06002
M07001
M07003
M07004
M07007
M07021
MR1-1200
MR1-1400
MR1-1600

233
233
240
244
246
248
250
1138
1138
1138

MR1034
MR1035
MR1036
MR1038
MR1040
MR1120
MR1121
MR1122
MR1123
MR1124

MPS-H32
MPS-H34
MPS-H37
MPS-H54
MPS-H55
MPS-H81
MPS-H83
MPS-H85
MPS-K20
MPS-K21

1053
1057
1060
1062
1062
1066
1068
1072
997
997

MR250-1
MR250-2
MR250-3
MR250-4
MR250-5
MR327
MR328
MR330
MR331
MR501

1141

MR1125
MR1126
MR1128
MR1130
MR1205FL
MR1209FL
MR1215FL
MR1219FL
MR1235FL,SL
MR1239FL,5L

MPS-K22
MPS-K70
MPS-K71
MPS-K72
MPS-L01
MPS-L51
MPS-U01,A
MPS-U02
MPS-U03
MPS-U04

997
1006
1006
1006
1074
1078
1082
1084
1086
1086

MR502
MR504
MR506
MR508
MR510
MR751
MR752
MR754
MR756
MR810

MPS8001
MPS8907
MPS8098
MPS8099
MPS8598
MPS8599
MPS-A05
MPS-A06
MPS-A09
MPS-A12

963
965
970

~

,
I

I

!

1141
1-50

t

1-50
1143

I

1143
1149

~

1149
1154

xi

MR1245FL,SL
MR1249FL,SL
MR1265FL
MR1269FL
MR1337-1
MR1337-2
MR1337-3
MR1337-4
MR1337-5
MR1366

1154

j
1153
1159

!

!

1168
1176

l

!

I

I

1181
1-98

1-98
1187

1187
1191
1191
1194
1194
1198
1198
1201
1201
1203
1203
1205

!

I

1205
1-64

DEVICE

VOL

MR1376
MR1386
MR1396
MR1815SL
MR1819SL
MR2000S
MR2001S
MR2002S
MR2004S
MR2006S

PAGE
1-69
1-74
1-79
1194
1194
1208

I

DEVICE

VOL

PAGE

DEVICE

MRF226
MRF230
MRF231
MRF232
MRF233
MRF234
MRF304
MRF305
MRF401
MRF501

1285
1287
1291
1295
1299
1303
1307
1311
1315
1318

MV1632
MV1634
MV1636
MV1638
MV1640
MV1642
MV1644
MV1646
MV1648
MV1650

1318
1320
1324
1330
1332
1335
1339
1339
1343
1347

MV1652
MV1654
MV1656
MV1658
MV1660
MV1662
MV1664
MV1666
MV1803
MV1805C

MR2008S
MR2010S
MR2083HA
MR2266
MR2271
MR2272
MR2273
MR2500
MR2500S
MR2501

1208
1212
1214
1-107
1216
1214
1218
1224
1218

MRF502
MRF509
MRF511
MRF603
MRF607
MRF618
MRF619
MRF620
MRF621
MRF628

MR2501S
MR2502
MR2502S
MR2504
MR2504S
MR2506
MR2506S
MR2508
MR2508S
MR2510

1224
1218
1224
1218
1224
1218
1224
1218
1224
1218

MRF816
MRF817
MRF818
MRF5174
MRF5175
MRF5176
MRF5177
MRF8004
MSD6100
MSD6101

1350
1353
1357
1361
1364
1367
1370
1374
1376
1378

MV1809C1
MV1858D
MV1860D
MV1862D
MV1863D
MV1864D
MV1865D
MV1866
MV1866D
MV1868

MR2510S
MR2525
MR2525R
MR5005
MR5010
MR5020
MR5030
MR5040
MRA133,B
MRA163,B

1224
1228
1228
1233

1233
1235
1237

MSD6102
MSD6150
MSD7000
MU851
MU852
MU853
MU2646
MU2646M
MU4891
MU4892

1380
1382
1384
1386
1386
1386
1388
1390
1392

MV1868D
MV1870
MV1870D
MV1871
MV1872
MV1874
MV1876
MV1877
MV1878
MV2101

MRA333,B
MRA363,B
MRD14B
MRD150
MRD300
MRD310
MRD360
MRD370
MRD450
MRD500

1239
1241
2-264
1243
1247
1247
1251
1251
1255
1259

MU4893
MU4894
MUS4987
MUS4988
MV104
MV109
MV205
MV206
MV209
MV830

1259
1263

MV831
MV832
MV833
MV834
MV835
MV836
MV837
MV838
MV839
MV840

II

MRD510
MRD601
MRD602
MRD603
MRD604
MRD810
MRD3050
MRD3051
MRD3052
MRD3053
MRD3054
MRD3055
MRD3056
MRF207
MRF208
MRF209
MRF215
MRF216
MRF221
MRF225

~

1263
1267
1269

I

II

1269
1273
1273
1273
1277
1280
2-443
1283

~

1392
1394
1394
1398
1400
1402
1402
1404
1406

,

1406

MV1401
MV1403
MV1404
MV1405
MV1620
MV1622
MV1624
MV1626
MV1628
MV1630

1408

1408
1410

I

1410

xii

VOL

PAGE
1410

1410
1411

I

1411
2-425
1413
1415
1417

!

1417
1421
1417
1421
1417
1421
1417
1421

l

1421
1425

MV2102
MV2103
MV2104
MV2105
MV2106
MV2107
MV2108
MV2109
MV2110
MV2111
MV2112
MV2113
MV2114
MV2115
MV2201
MV2203
MV2205
MV2209
MV2301
MV2302
MV2303
MV2304
MV2305
MV2306
MV2307
MV2308
MV3102
MV3103
MV3140
MV3141

1425
1429
"

1429
1431

1431
1433
1433
1435
1435

DEVICE
MV3142
MV3501
MV3502
MV3503
MV3504
MV3505
MV3506
MV3507
MVAM-1
MVI-2097

VOL

PAGE
1435
1437

I

1437
1439
1441

MVI-2098
MVI-2099
MVI-2100
MVI-2101
MVI-2102
MVI-2103
MVI-2104
MVI-2105
MVI-2106
MVI-2107
MVI-2108
MVI-2109
MVS460
MZ500-1
MZ500-2
MZ500-3
MZ50Q-4
MZ500-5
MZ500-6
MZ500-7

DEVICE

VOL

MZ821,A
MZ823.A
MZ825.A
MZ827.A
MZ840
MZ935,A,B
MZ936.A,B
MZ937,A,B
MZ938,A,B
MZ941,A,B

1452

~

1452
1449
1452

MZ942,A,B
MZ943,A,B
MZ944.A,B
MZ1000-1
MZ1000-2
MZ1000-3
MZ 1 000-4
MZ1000-5
MZ1000-6
MZ1000-7
1441
1445
1447

MZ1000-18
MZ1000-19
MZ1000-20
MZ1000-21
MZ1000-22
MZ1000-23
MZ1000-24
MZ1000-25
MZ1000-26
MZ1000-27

MZ500-18
MZ500-19
MZ500-20
MZ500-21
MZ500-2<'
MZ500-23
MZ500-24
MZ500-25
MZ500-26
MZ500-27

MZ 1 000-28
MZ1000-29
MZ 1 000-30
MZ 1 000-31
MZ 1 000-32
MZ 1 000-33
MZ1000-34
MZ1000-35
MZ1000-36
MZ1000-37

MZ500-28
MZ500-29
MZ500-30
MZ500-31
MZ500-32
MZ500-33
MZ500-34
MZ500-35
MZ500-36
MZ500-37

MZ2360
MZ2361
MZ2362
MZ3154.A
MZ3155.A
MZ3156.A
MZ4614
MZ4615
MZ4616
MZ4617

MZ500-38
MZ500-39
MZ500-40
MZ605
MZ610
MZ620
MZ640
MZ805
MZ810
MZ820

MZ4618
MZ4619
MZ4620
MZ4621
MZ4622
MZ4623
MZ4624
MZ4625
MZ4626
MZ4627

I

1449

1452
1460

MZ 1 000-8
MZ1000-9
MZ1000-10
MZ1000-11
MZ1000-12
MZ1000-13
MZ1000-14
MZ1000-15
MZ1000-16
MZ1000-17

MZ500-8
MZ500-9
MZ500-10
MZ500-11
MZ500-12
MZ500-13
MZ500-14
MZ500-15
MZ500-16
MZ500-17

1447
1449

PAGE

1460
I
I
I

xiii

I

1-10
1-10
1-10
1452
1452
1452
1-89

I

1-89

DEVICE
MZ5555
MZ5556
MZ5557
MZ5558

VOL

PAGE
1462

~

1462

..

IN -HOUSE NUMBERED
DEVICE SPECIFICATIONS
DIODES
OPTOELECTRONICS
MODULES
POWER VARACTORS
RECTIFIERS
RECTIFIER ASSEMBLIES
THYRISTORS & TRIGGERS
TRANSISTORS

I

II

.4M.64FR10
.4Ml. 36FRS
.4Ml. 36FR2
.4M2.04FRS
.4M2.04FR2
For Specifications, See I N816 Data, Volume 1.

.SM2. 4lS thru .SM2001S
For Specifications, See IN5221 Data, Volume II.

1M3.3AI thru 1M7.SAZ
For Specifications, See IN3821 Data, Volume 1.

1M3.31S thru 1M200ZS
For Specifications, See IN4728 Data, Volume 1.

1M6.81 thru 1M200Z
For Specifications, See I N3821 Data, Volume 1.

5M3.3ZS thru 5M200ZS
For Specifications, See IN5333 Data, Volume II.

10M6.8Z thru 10M200Z
For Specifications, See IN2970 Data, Volume 1.

50M3.9Z thru 50M200Z
For Specifications, See IN2804 Data, Volume 1.

1/4M2.4AZ thru 1/4M200Z (SILICON)

1/4W
2.4 - 200 V

Hermetically sealed, all-glass case with all external surfaces corrosion resistant. Cathode end, indicated by color band, will be
positive with respect to anode end when operated in the zener
region. These devices are in the same 400 mW glass package as the
IN746 and IN9S7 Series, but designated 1/4 Watt to allow characterization at a different test current level.

CASE 51
(00-7)

MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C
D C Power Dissipation: 1/4 Watt (Derate 1. 67 mW;oC Above 25°C)
The type numbers specified have a standard voltage (VZ) tolerance of ±20%.
For closer tolerances, add suffix "10" for ±10% or "5" for ±5%. (3%, 2%, 1%
tolerances also available. )
ELECTRICAL CHARACTERISTICS ITA

TYPE NO.

NOMINAL
ZENER
VOLTAGE@ln
(V z) VOLTS

TEST
CURRENT
(lzr)mA

= 25°C, VF = 1.5 V max @

MAXIMUM
ZENER
IMPEDANCE
(Zn)@ lIT
ohms

MAXIMUM
DC ZENER
CURRENT
(lZM) mA

100 mAl

REVERSE LEAKAGE CURRENT
I, MAX
(J1A}

TEST VOLTAGE Vdc *
VR1
VR2

2.4
2.7
3.0
3.3
3.6

10
10
10
10
10

60
60
55
55
50

70
65
60
55
52

75
75
50
50
50

1
1
1
1
1

10
10
10
10
10
10

50
45
35
25
20
15

49
46
42
39
36
33

1
1.5
1.5
1.5
1.5
3.5

9.2
8.3
7.6
6.9
6.3

7.0
8.0
9 .. 0
10
11

33
. 30
26
24
21

25
25
10
5
5
5
150
75
50
25
10

1
1.5
1.5
1.5
. 1. 5
3. 5

1!4M6.8Z
1/4M7.5Z
1/4M8.2Z
1!4M9.1Z
1/4M10Z

3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
9.1
10

5.2
5.7
6.2
6.9
7.6

4.9
5.4
5.9
6.6
7.2

1!4M11Z
1!4M12Z
1!4M13Z
1!4M14Z
1!4M15Z

11
12
13
14
15

5.7
5.2
4.8
4.5
4.2

13
15
18
20
22

19
18
16
15
1.4

5
5
5
5
5

8.4
9. 1
9'.9
10.6
11. 4

8.0
8.6
9.4
10.1
10.8

1!4M16Z
1/4M17Z
1!4M18Z
1!4M19Z
1!4M20Z

16
17
18
19
20

3.9
3.7
3.5
3.3
3.1

24
26
28
30
33

13
12.5
11.5
11. 0
10.5

5
5
5
5
5

12.2
13.0
13.7
14.4
15.2

11.5
12.2
13.0
13.7
14.4

1!4M22Z
1!4M24Z
1/4M25Z
1!4M27Z
1!4M30Z

22
24
25
27
30

2.8
2.6
2.5
2.3
2.1

1!4M2.4AZ
1/4M2.7AZ

1!4M3.0AZ
1!4M3.3AZ
1!4M3.6AZ
1!4M3.9AZ
1!4M4.3AZ
1!4M4.7AZ
1!4M5.1AZ
1!4M5.6AZ
1!4M6.2AZ

16.7
5
9.5
40
18.2
5
9.0
46
19.0
5
50
8.0
20.6
5
7.5
58
22.8
5
7.0
70
*VR1 - Test Voltage for 5% Tolerance Device
VR2 - Test vOltage for 10% Tolerance Device
No Leakage Specified as 20% Tolerance Device

2

1
1
1
1
1

15.8
17.3
18.0
19.4
21.6

1/4M2.4AZ thru 1/4M200Z

(continued)

ELECTRICAL CHARACTERISTICS (TA

TYPE NO.

NOMINAL
ZENER
VOLTAGE@ III
(V,) VOLTS

1/4M33Z
1/4M36Z
1/4M39Z
1/4M43Z
1/4M45Z
1/4M47Z
1/4M50Z
1/4M52Z
1/4M56Z
1/4M62Z

33
36
39
43
45
47
50
52
56
62

1/4M68Z
1/4M75Z
1/4M82Z
1/4M91Z
1/4M100Z

68
75
82
91
100

1/4M105Z
1/4M110Z
1/4M120Z
1/4M130Z
1/4M140Z
1/4M150Z
1/4M175Z
1/4M200Z

TEST
CURRENT
(llT)mA

105
110
120
130
140

1.9
1.7
1.6
1.5
1.4
1.3
1.2
1.2
1.1
1.0
0.92
0.83
0.76
0.69
0.63
0.60
0.57
0.52
0.48
0.45

150
175
200

0.42
0.36
0.31

= 25 C. VF = 1.5 V max
Q

MAXIMUM
ZENER
IMPEDANCE
(Zll)@l ll
ohms

MAXIMUM
DC ZENER
CURRENT
(I'M) rnA

@ 100 mA) (continued)

REVERSE LEAKAGE CURRENT
I. MAX
(/LA)

TEST VOLTAGE Vdc *
VR2
VR1

350
450
550
700
900

6.5
6.0
5.0
4.8
4.5
4.3
4.1
4.0
3.8
3.3
3.0
2.8
2.5
2.3
2.0

5
5
5
5
5
5
5
5
5
5
5

5
5
5

51. 7
56.0
62.2
69.2
76.0

23.8
25.9
28.1
31. 0
32.4
33.8
36.0
37.4
40.3
44.6
49.0
54.0
59.0
65. 5
72.0

1000
1200
1500
1900
2200

1.9
1.8
1.7
1.5
1.4

5
5
5
5
5

79.8
83.6
91. 2
98.8
106.4

75.6
79.2
86.4
93.6
100.8

2500
3300
4300

1.3
1.1
1.0

5
5
5

114.0
133.0
152.0

108.0
126.0
144.0

85
100
120
140
150
160
180
200
230
290

*VHI - Test Voltage for 5% Tolerance Device

5

25. 1
27.4
29.7
32.7
34.2
35.8
38,0
39.5
42.6
47.1

VH2 - Test Voltage for 10% Tolerance Device

No Leakage Specified as 20% Tolerance Device
SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

1 - Nominal zener voltages between those shown.

2

~. ~~~hoerd ~~;:: u(;i\~nf~~r~e~~~e~aonnCne:c~~~ =;~t~~pe~i~i'~Jot'O~~~~~~' :nlt~~~ ~~ft:~~~n~e~i~svo,.:,t:~1!,3rs~~~j~ake

possible higher

zener voltages and provide lower temperature coefficients, lower dynamic impedance and greater power handling ability.
b. Two or more Units matched to one another with any specified tolerance.

3 - Tight voltage tolerances: 1.0%.2.0%.3.0%.

3

881 05A (SILICON)
881058
88105G

I

vvc -.IfVOLTAGE VARIABLE
CAPACITANCE DIODES
SILICON EPICAP OIODES

30 VOLTS

· .. designed in the new low-inductance mini-L package for high
volume requirements of UHF and VHF TV tuning and AFC. general
frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.
• Guaranteed Minimum 0 Values at VHF and UHF Frequencies
• Controlled and Uniform Tuning Ratio
• Guaranteed Matching' Tolerance From Diode to Diode and Group
to Group
• Upon request, diodes are available In matched sets of any number or in
matched groups. All diodes in a set or group can be matched for capacitance
to your specified conditions along the entire tuning range.
If you require BB150A and 881058 matched to ±1.6% between 3.0 and
26 Volts. add "M" to the device title {i.e., BB105BML BB105G can be
ordered matched to ±3.0% by adding M to the device title. For any other

matched tolerances or conditions. plealB contact your local Motorola Repr.
!(I8ntative.

MAXIMUM RATINGS
Roting
Reverse Voltage

Symbol

Value

Unit

VR

30

Volts

Forward Current

IF

200

rnA

Device Dissipation til T A - 25°C
Derate above 25°C

Po

400

4.0

mW
mW/oC

Junction Temperature

TJ

+125

°c

T stg

-65 to +150

°c

Storage Temperature Range

~~q

fTN

I

L

20
18

~ 16

-

~

i'-..

14

12

H

iJr

I

TT,

.......

===rJ==.,------h

~J-+c

"'-

§

10

~

8.0

Q

6.0

IS

4. 0

o

S

I

w

g

ILL! E ERS

f"'1.0MHz

0.5

MI.

MAX

A

3.88

C

1.91
0.64
0.08

4.11
318
>16

0 ..
0.18

13D

1.55

0."

0.89
4.32
2.62

D

F

II
II

o

DIM

•

TA"'250 C

2.0

0.3

•

FIGURE 1 - DIODE CAPACITANCE

t---

H
J

•
•
l

1.0

2.0

3.0

5.0

10

20

YR. REVERSE VOLTAGE (VOLTS)

30

29'

....
2.36

112

R

0.19

S

1.99
1.14
0.43

T

•

1.37
1.04

12.15
140

0."

I H
MAX
MI.
0.152 0.162
0.115 0.125

0,015

0

0.025

0035

0.003
0.051

0.007

0025
0.160

0.035
0.110

0.093
0....
0.031
0.472
0.045
0.011

CASE 226

4

0.061

.

0.103

"'54
.041
."

0.055

.27

PIN 1 CATHODE
2 ANODE

BB105A, BB105B, BB105G (continued)

ELECTRICAL CHARACTERISTICS

(T A

= 2SoC unless otherwise notedl

Characteristic·AII .Types
Reverse Breakdown Voltage
(lR = 10ltAdei

Symbol

Min

BVR

30

-

Vde

-

50.0
0.5

nAde
ItAde

Max

Unit

Reverse Voltage Leakage Current
(VR = 28 VI
(VR = 28 VI T A = 60Dc

IR

Series Inductance

LS

-

3.0

nH

TCC

-

400

ppm/DC

(I

= 250 MHzl

Diode Capacitance Temperature Coefficient

(VR

= 3.0 Vdc. I = 1.0 MHzl

CT

Device
Type

VR

= 25Vdc
pF

Q
I -100MHz
CT=9pF

RS
Ohm.

Ridge
Stripe

Min

Max

Min

Max

Min

Max

Color

2.3

2.8

225

0.8

4.0

5

Blue

8Bl05B

2.0

2.3

225

0.8

4.5

White

1.8

2.B

150

1.2

4.0

6
6

Yellow

BB105G

Green

White

1600

I

0

FIGURE 3 - DIODE CAPACITANCE

/

~ 1000
o
~ 800

I

~

BB105A.B

::>

to

u:: 600

..... V
400
f"""
f--- . /V
200

/

L

/

~

'/

/

f=100MHz
1200

;x

/

4.0

VR = 3.0 Vdc

~ 1.00
>-

. . .V

<:;

:

BB105G

0.99

/

~
~ 0.98

........... V

.....

o

~O.97

u

8.0

12

16

20

24

28

0.96
-75

32

·50

VR. REVERSE VOLTAGE (VOLTS)

BU105

......... .......-

w
u

f--

o
o

1.02

o

!!! 1.01

/

/'

1.03

::;

i

,/

./

Color
White

1.04

V

Or-- r- TA = 25 C

140

d

Body

BB105A

FIGURE 2 - FIGURE OF MERIT

>-

Stripe on

C3/C25

-25

+25

+50

+75

TA. AMBIENT TEMPERATURE (DC)

For Specifications, See MHOS Data.

5

+100

+125

aUl08 (SILICON)
MJ3480

HORIZONTAL DEFLECTION SILICON
TRANSISTORS
.

5.0 AMPERE

· .. designed for use in large screen color television receivers.

TRIPLE DIFFUSED
POWER TRANSISTORS
NPN SILICON

•

Coliector·Emitter Voltage VCER = 1500 Vdc

•

Collector Current IC = 5.0Adc

•

Fall Time @ IC = 4.5 Adc tf = 0.71ls (Typ) • tf = 1.0 IlS (Max)

1300. 1500 VOLTS
56 WATTS

MAXIMUM RATINGS
Symbol

BU108

MJ3480

Unit

Collector·Emitter Voltage

Rating

VeEO

750

700

Vdc

Collector-Emitter Voltage
(ReE = 100 nl

VeER

1500

1300

Vdc

Collector-Base Voltage

Vee

1500

1300

Vdc

Eniitt,r-Base Voltage

VEe

5.0

7.0

Vdc

Collector Current - Continuous
- Peak

Ie

5.0
10

Base Current

Ie

4.0

Adc

Total Device Dissipation@Tc::::25OC

Po

56

Watts

0.625

w/oe

TJ.Tstg

-65 to +115

De

Derate Above 25°C
Operating and Storage Junction

Adc

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

FIGURE 1 - POWER DERATING

56

~
""
~

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLL£CTOR

......

.......

48

DIM

.......

40

........

z

A
B
C
0

0

~
iii
0

'"~

Ie
~

32

.......

24

.........

E

16

........

8.0

o20

F
G
H
J
K

.......
......

.......

Q

30

40

50
60
70
80
90
TC. CASE TEMPERATURE (OC)

100

110

6

120

R

MILLIMETERS
MIN MAX

-

(NCHES
MIN
MAX

39.37
1.550
0.830
21.08
7.62 0.250 0.300
1.09 0.039 0.043
3.43
0.135
.29.90 30.40 1.177 1.197
10.67
11.18 0.420 u.44O
5.33
5.59 0.210 0.220
16.64 17.15 0.655 0.675
11.18 12.19 0.440 0.480
3.64
4.09 0.151 0.161
26.67
1.050
Collector connected to case.
eASE 11
6.35
0.99

BU108, MJ3480

(continued)

ELECTRICAL CHARACTERISTICS (Tc = 250 C unl ..s otherwise noted.)

I

I

Characteristic

Symbol

I

Min

Typ

Max

750
700

-

-

-

-

1.0
1.0

.-

-

1.0

-

-

5.0

-

-

1.5

200

-

-

-

7.5

-

-

125

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
IIC = 10 mAde, IB = 0)

Collector Cutoff Current
(VeE
IVeE

= 1500 Vde,
= 1300 Vde,

VBE
VBE

= 5.0 Vde,

mAde

ICES

= 0)
= 0)

BU108
MJ3480

Emitter Cutoff Current
IV BE

Vde

VCEOlsus)
BU10B
MJ3480

mAde

lEBO

= 01

Ie

ON CHARACTERISTICS

Collector-Emitter Saturation Voltage
IIc

= 4.5

Ade, IB

Base Emitter Saturation Voltage
IIC

= 4.5 Adc,

IB

Vde

VeElsat)

= 2.0 Ade)

Vde

VBElsat)

= 2.0 Ade)

Second Breakdown Collector Current with Base
Forward Biased
(t = 1.0 s, VCE = 100 Vde)

mAde

ISlb

DYNAMIC CHARACTERISTICS

Output Capacitance
IVCB

= 10 Vde,

IE

MHz

IT

Current-Gain - Bandwidth Product (2)
IIC = 0.1 Ade, VCE = 5.0 Vde, f tes! = 1.0 MHz)

Cob

= 0, f = 0.1

pF

MHz)

SWITCHING CHARACTERISTICS
Fall Time
IIC = 4.5Ade,IBl

= 1.8 Ade,

LB

= 10l'H, See

Figure 2)

111

Pulse Test: Pulse Width 300 I'S, Duty Cycle", 2.0%
(2) fT = Ihfel - f test

FIGURE 2 - TEST CIRCUIT

100
lOW

LF

8 mH

+80 V

1.0I'F~

0.0051'F
1.5 k

CR

251'F

II

Ly
250l'F
150 V

MR11600

Cs
20l'F
600 V

Vjn

51

300

51

RB

500l'F
15 V

DRIVER TRANSFORMER ITl)
Ly
mH

IC

Motorola part number 25D68782A05-1/4" laminate "E" iron
core. Primary 1nductance-39 mH, Secondary I nductance-O.22 mH,
Leakage inductance with primary shorted-2.0 J.LH. Primary 260

A

turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG
enamel wire.

3.5

18

2.5

0.0133

4.5

1.0

2.5

0.02

TEST CIRCUIT OPTIMIZATION
transistor that is of fundamental importance. Once the required
transistor operating current is determined, fixed circuit values
may be selected from the table. Factory testing is performed by
reading the current meter only, since the input power is pro·
portional to current. No adjustment of the test apparatus is required.

The test circuit and operating waveforms for the BU108 and
MJ3480 transistors are shown in Figures 2 and 3. The test circuit
may be used to evaluate devices in the conventional manner, Le.,
to measure fall time, storage time, and saturation voltage. How~
ever, this circuit was designed to evaluate devices by a simple
criterion, power supply input. Excessive power input can be
caused by a variety of problems, but it is the dissipation in the

7

BU108, MJ3480 (continued)

BASIC CONSIDERATIONS

be 8 times the 130-volt power supply voitage or approximately 1000 volts, but may be varied slightly by adjusting retrace time and flyback tuning. For this reason, high
voltage devices are particu larly useful in cost conscious
solid-state receivers as they permit the use of an off-theline half wave power supply.
The power supply used in the circuit of Figure 2,
was chosen to produce approximately a 1000 V collector
pulse on the transistor, a conservative value, recommended
for unregulated applications_
The values of yoke inductance (L V). flyback primary
inductance (LFl. retrace capacitor (CR) and "S" shaping
capacitor (CS) are shown for operating collector currents
of 3_5 A which is suitable for 900 color and 1100 large
screen black and white receivers, and 4.5 A for 1100
color receivers_ Peak collector currents to 10 A may be
handled by these transistors. The most efficient application results when the power supply voltage is held constant_ Adjustments of the amount of deflection can then
be 'made by raising or lowering Ly and LF. Lyly is constant for the fixed voltage situation, and actual deflection
is proportional to IYJIY. Values of Cs and CR must
be varied inversely with Ly to maintain retrace and "s"
shaping periods.
.
,

The primary consideration when choosing a deflection
transistor for a conventional (parallel·connected) circuit,
as shown in Figure 2, is voltage capability. The flyback
voltage that the device will be subjected to is a relatively
predictable value with respect to the main power supply
voltage. This voltage pulse, shown in Figure 3, will usually

FIGURE 3 - TEST CIRCUIT WAVEFORMS

TEST CIRCUIT VALUES

The driver power supply and driver transistor type
can be selected according to convenience. A TO-5 or
plastic power type will generally be needed. For testing
convenience, the Darlington arrangement of the driver
transistor shown in Figure 2 was used to produce a wide
range of IB1 current values. Once the driver circuitry is
chosen, the turns ratio of the driver transformer can be
selected to produce 4 to 5 volts peak-to-peak at the base
of the output device. Tight coupling between windings is
recommended on early designs to allow optimizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The
RB and its bypass electrolytic, often called the "speed
up" circuit, allows adjustment of IB 1 (or IB "end of scan"
or IB end) while still providing a low AC impedance for
good turn-off of the output device.
In Figure 4, the effects of varying LB and IB1 on
total power input to a deflection circuit requiring an IC
of 4.5 A are shown. Note that an optimum LB can be
found which will produce low dissipation over a wide
range of' IB1. This is desirable in order to produce efficient operation over a wide range of circuit component
tolerances. Likewise, best LB also gives the least sensitivity to output transistor hF E.
The best value of LB found in Figure 4 is 12 MH. This
is the sum of the actual leakage inductance of the driver
transformer (secondary inductance with primary shorted)
and an external L if necessary. The value of IB1 is approximately 1.75 A achieved in a typical device by using
RB ~ 2.3 n, which was derived experimentally. These
are the choices recommended for the test fixture when
the transistor is used at ICM = 4.5 A.

Fundamental waveforms of a simplified horizontal
deflection cirCUit.

FIGURE 4 - RELATIONSHIP OF POWER DISSIPATION
TO LB WITH CHANGING IBVICM = 4.5 A
IS
171\

g«
~
z

17

0

;::
~

ill

16

~.

Ii:

,\
\\

~712 1\ \

i5

'"
~

14

./

15

~
14
0.5

7.6

\

LS" 2.0"H

/

/
r\.

J

~\

"- /
\1\\\ 'v ~ ....:..,/ ....~ ~ t:><
-..,
5.9'- ~"'"
1.0

-~

1.5

--

2:0

......
~
2,5

IB, BASE CURRENT (AMP)

8

BU108, MJ3480 (continued)

Today many TV receivers operate with an leM of
approximately 3.5 A. Figure 8 shows the relationship of
power dissipation to LB. with changing IB1. when Ie of
3.5 A is required.
The best value of LB. found in Figure 9 is 22 .uH. This
value is the sum of the driver transformer leakage induct·
ance and an external inductance if necessary. The best
value of IB1 is approximately 1.15 A. with an RB of
3.2 n. These are the choices recommended for the test
fixture when the transistor is used at I eM = 3.5 A.

For other values of leM the drive circuit components
must be changed. Figures 5. 6 and 7 show the values of
LB and IB1 which should be used. The value of RB which
will be required to produce the corresponding IB1 is also
given. but. it is not an independent variable.
PERFORMANCE
Shown in Figures 9 and 10 are the typical results that
will be obtained with the test circuit at various operating
conditions.

INTERRELATION OF BASE RESISTANCE.
BASE INDUCTANCE AND
BASE CURRENT

FIGURE 5 - OPTIMUM BASE RESISTANCE

FIGURE 6 - OPTIMUM BASE INDUCTANCE
0

4.0

f""....

~ 3.5

S

f'.....

w

~

5['....

~

3.0

~

~

2. 5

~

2,0

I'-.

t....."

0

~

r----....

i'-..
~

5
...............

~

..............

f'...

f'..,.

...........

1""''50
30

1.5
3.5

3.0

4.0

4.5

5.0

35
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)

ICM. COLLECTOR CURRENT (AMP)

FIGURE 8 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IB1.ICM = 3.5 A

FIGURE 7 - OPTIMUM BASE CURRENT

2.0

./

ii:' 1.75

15

V

LB

iilf-

,/'

'"

~

~

/'

f-

~ 1.50

>=
~

/V

~ 125

V

0.75
3.0

~

'"
~

/'

1.0

13

c;

./

;;'i

~

j

12

11
3.5
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)

5.0

9

5.9

V
.L.

V

V /
II'y. '/

~

7.6

12

~

0iJ [K
~

~

/

2.0"H

V V V r-

0

110

~

/

14

z

./

'"
~

5.0

19
27

"'>c:::

-22

o

1.0

1.5
lB. BASE CURRENT (AMP)

2.0

25

BU108, MJ3480 (continued)

FIGURE 9 - INTERRELATION OF tf. FALL TIME
AND ts. STORAGE TIME
2.2 5

1.1 5"""-

-- --

1

r--

5

0.7 5
~

FIGURE 10 - EFFECT OF COLLECTOR CURRENT
ON INPUT POWER

-

ts

r---....

8.0

VCEIM

;::

6.0 ~

3

o
t;

2

4.0 $

./'

1~

2.0
5.0

3.5
4.0
4.5
ICM. COLLECTOR CU RRENT (AMP)

.......- ......-

9.0
3.0

~

5.0

FIGURE 12 - "ON" VOLTAGES

1.2

""- .'-

25 0 C

10

VCE =S.O V

r-

I

z

7.0

"

/

1.4
TJ =100 0 C

5.0

en
c:;

1.0

~
w

0.8

o

I'"\

<.>

g

L

V

3.5
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)

FIGURE 11 - DC CURRENT GAIN
20

iii
g§

1000 IV

w
:E

0

0.2 5
3.0

<
'">-

=

]

.'"

tf

-

7

6

'"~

0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0

VCE(sat)@ IC/IS - 2

0.05 0.07 0.1

5.0

I-'"'V
i-"""100 oC

/

1

10~OC

>

O. 2

=-Ltsoc ~ ....: /

1--""

0.6

o

2.0
0.05 0.07 0.1

=.:- r--

,; 0.4

\

3.0

VBE(sat)@ IC/IS

o

'\.

~

1

TJ

/

.A'
·Jsoc i,..---"

0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0

5.0

FIGURE 13 - ACTIVE REGION SAFE OPERATING AREA

10kf~ J1 1~ :j!i!;li!lIl!l!j !ili !l~! f1

S.Ok

®

d';O.OS

 10 0

8
0} 10 0

/'

B

IL

/'

ffi

V
./

BU10B - VCB = 1500 Volts
'" 3D0 - MJ3480 - VCB = 1300 Volts

.;,

I-

1.0 k

~ ov

25 0lC

./'

/

./

8
10- 1 REVERSE
-01

~

FORWARD
+0.1
+0.2
+0.3
+04
VBE, BASE·EMITTER VOLTAGE (VOLTS)

+0.5

+0.6

50

o

20

40
SO
TJ, JUNCTION TEMPERATURE (OC)

FIGURE 17 - CAPACITANCE
20 k
10 k

TJ

50k

:e 2V

25°C

-Gib

k

~ 1.0 k

;::
G

;t
~

-

500

200
100
0

Cob

_.

r-

20
0.5

10

20

5.0
10
20
50
100
VR REVERSE VOLTAGE (VOLTS)

11

200

500

80

100

MA202, MA206 (GERMANIUM)
Germanium PNPtransistor designed for high-voltage
applications in the audio frequency range, such as neon
driver, solenoid or relay driver applications.

{).\

CASE 31(1)
(TO-5)

,

All I•• ds isol.ted ,from cas.
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

MAXIMUM RATINGS (TA

= 250 C unless otherwise noted.)

Rating

Symbol

MA202

MA206

Collector-Base Voltage

VCB

105

SO

Vdc

Collector-Emitter Voltage

VCE

105

SO

Vdc

Emitter-Base Voltage

VEB

10

Collector Current

IC

Emitter Current

Unit

10

Vdc

200

mAdc
mAdc

IE

200

Operating and Storage Junction
Temperature Range

TJ,Tstg

-65 to +100

°c

Thermal Resistance

R9JA

0.5

°C/mW

Po

150
2.0

mW
mW/oC

Collector Dissipation @TA = 25 0 C
Derate above 250 C

ElECTR ICAl CHARACTER ISTICS (T A

= 250 C unless otherwise noted.)

Symbol

Characteristic
Collector-Base Cutoff Current
(VCB = 105 V, IE = 0)
(VCB = SO V, IE = 0)

ICBO

Min

Typ

Max

Unit

12
12

50
50

5.0

14

/LA

/LA

Collector-Base Cutoff Current
(VCB = 2.5 V, IE = 0)

ICBO

-

Emitter-Base Cutoff Current
(VEB = 10 V, IC = 0)

lEBO

-

3.0

50

/LA

Collector-Emitter Saturation Voltage
(lc = 5.0 mAdc, IB = 0.25 mAdc)

VCE(sat)

-

0.11

0.35

Vdc

Base-Emitter Saturation Voltage
(lc = 5.0 mAdc, IB = 0.25 mAd c)

VBE(sat)

-

0.22

0.40

Vdc

20
40

-

-

DC Current Ga.in
(lc = 5.0 mAde, VCE

MA202
MA20S

hFE

= 0.35 Vdc)

MA20S
MA202

DC Collector-Emitter Punch-Through Voltage
(VCB necessary to obtain VEB of -1.0 V max,
using instrument with Zin > 11 M.I1 to
MA202
measure VBE)
MA20S

VPT

Small-Signal Short-Circuit Forward Current Transfer
Ratio Cutoff Frequency
(VCB = S.O Vdc, IE = 1.0 mAdc)

fOb

12

-

-

Vdc

105

-

60

-

-

1.0

-

MHz

MA202,MA206 (continued)

DC CHARACTERISTICS
(TJ= 25°C unless otherwise noted)

"ON" VOLTAGES

CURRENT GAIN
200

II
TJ

I

VeE~

IV

100
z

~
>;

!

TJ

-

50

1

06

IIIIIII

100°C

·

~

-

wc

~

~

~J ~I~ssoc

~

20

1\

10
0.5

1.0

2.0

5.0

10

20

50

100

~

....
o

200

1.0

"..

20

5.0

1.~I\mA

~

;
~

~

160

f//
'1/

120

80

.!J
40

-;"

/. ,-

!J./

,.,

~

12

I

-

10

rOly

~

50

20

100

200

V

/

8

OIOV

/

6

~

V

/'-'"

-

".

./

Z
0.4

/

COLLECTOR HIGH VOLTAGE REGION

~ rnA

02

10

olO~

Ie. COLLECTOR CURRENT ImAI

COLLECTOR SATURATION REGION

~

VCEl.at)@IC/IB

.....

Ie. COLLECTOR CURRENT ImAI

200

f1' I II

V

0.2

}

'\~
02

vrur

ffi

~

J

I I II

0.4

:::

1-' .. -

0.1

I

06

08

o
o

10

,...,...

V

i-- ..-

m

m

O~

I

I
I

..:vI/

004V

I

0.02 V

I. I

..J,../:/

w w

~

7V'~ ~O

m

~

VeE. COLLECTOR·EMIITER VOLTAGE (VOLTSI

VeE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

13

~

m

~

MA4404, MA4404A (GERMANIUM)

PNP GERMANIUM SWITCHING TRANSISTORS
PNP GERMANIUM
SWITCHING
TRANSISTORS

.. designed for medium·speed saturated switching and chopper
applications.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) ~ 0.2 Vdc (Max) @ IC = 24 mAde
~ 0.25 Vdc (Max) @ IC = 200 mAde

•

High Ern Itter-Base Breakdown Voltage @ IE = 100/lAdc BVEBO = 12 Vdc (Min) - MA4404
~ 25 Vdc (Mm) - MA4404A

MAXIMUM RATINGS
Symbol

MA4404

MA4404A

VCES

24

35

Collector-Base Voltage

VCB

25

40

Vdc

EmItter-Sase Voltage

VEB

12

25

Vdc

Rating
Collector-Emitter Voltage

Collector Current-Continuous
Total Power Dlsslpation@TA"'250C

= 2SoC

IC

350

mAde

200
2.67

mW
mW/oC

PD

300
4.0

mW
mW/oC

Derate above 2SoC
Operating and Storage Junction

Vdc

PD

Derate above 2SoC
Total Power DISslpatlon@ TC

Unit

TJ.Tstg

-

-65 to +100 ---.-..

MA4404
MA4404A

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction
to Ambient

ReJA

375

°CIW

Thermal Resistance. Junction

ReJC

250

°CIW

to Case
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
-10 V

+5.0V

1.0 k

390
10",F

:,-::1£
GENERATOR
<20 ns
tf<20 ns

tr

tw~5.0,",s

Duty Cycle

< 2.0%

T-

n

Output

5.0 k

OSCI LLOSCOPE
tr

<15 ns

Rin;;a: 10 Megohms

Cin ~7.0 pF

AlIJEDECdlm.nslonsandnotlSapply.
CASE 31-03
TO·S

14

MA4404, MA4404A

(continued)

ELECTRICAL CHARACTERISTICS IT A

<

250 C unless otherwise noted)

Characteristic

Min

Symbol

TV.

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

Vdc

BVCES

MA4404,
MA4404A

(Ie = 100J,lAdc, 18 = 0)

Collector-Base Breakdown Voltage
(Ie = 20 ,u.Adc, Ie = 0)

24
35
Vdc

BVCBO
MA4404,
MA4404A

25
40

Emitter-Base Breakdown Voltage

Vdc

BVEBO
MA4404.
MA4404A

(Ie = 100 /.lAde. Ie'" 0)

12
25

Collector Cutoff Current
(Vea = 12 Vdc, Ie = 0)

.,Adc

leBO

10
500

(Ves = 12 Vdc, Ie '" D, TA '" BOOC)
Emitter Cutoff Current
(VES = 2 5 Vdc, Ie'" 01

",Adc

lEBO

0.5

5.0

ON CHARACTERISTICS
DC Current Gain

hFE

tiC = 12 mAde, VeE = 0.2 Vdcl
(Ie = 24 mAde, VeE = 0.2 Vdcl

80
70

30
24

Collector-Emitter Saturation Voltage

Vdc

VeE(sat)

0.09
0.09

(Ie = 12 mAde, IS = 0.4 mAde)
(Ie = 24 mAde, IS = 1.0 mAdel
(Ie"" 200 mAde, IS = 20 mAdel

Sase-Emitter Saturation Voltage
(lC"" 12mAdc,IB=04mAdcl
(lc"" 24 mAde, 18 "" 1.0 mAde)

0.20

0.13

0.20
0.25

027
0.30

0.40

Vdc

VSE(satl

0.38

SMALL·SIGNAL CHARACTERISTICS
Alpha Cutoff Frequency
(IE'" 1.0 mAdc, Ve8: 6.0 Vdc)

MHz

fhfb

1.0

Output Capacitance
{Ves '" 6.0 Vdc, IE '" 0, f = , 0 MHz}

20

pF

Cob
MA4404

(Ves '" 6 0 Vdc, IE '" 1.0 mAde, f '" 2.0 MHz)

25

MA4404A

4.0

25

Input Impedance
{Ie"" 1.0 mAdc, VCE "" 6.0 Vde, f "" 1.0 kHz}

h,.

4.0

kohm

Voltage Feedback Ratio
(Ie"" 1.0 mAdc, VCE "" 6.0 Vdc, f '" 1.0 kHz)

h,.

8.5

Xl0-4

Smail-Signal Current Gain
(Ie"" 1.0 mAde, VeE = 6.0 Vde, f'" 1.0 kHz)

hf.

145

Output Admittance
(Ie = 1.0 mAdc, VCE = 6.0 Vdc, f = 1.0 kHz)

hoe

50

~mhos

SWITCHING CHARACTERISTICS
Delay Time
Rise Time

(Vee = 10 Vdc,IC~ 10 mAdc)
VSE(oft) = 50 Vdc, ISl ~
1 0 mAdcl (Figure 1)

Storage Time
Fall Time

(Vee'" 10 Vde, IC~ 10 mAde,
ISl = 182 ~ 10 mAde)
{Figure 1}

Total Control Charge (Figure 2)

MA4404

Id

0.13

MA4404

I,

040

MA4404

I,

110

MA4404

If

060

MA4404

°T

3000

.,.'

3600

.'
.'

pC

FIGURE 2 - TOTAL CONTROL CHARGE TEST CIRCUIT
Capacitor C, is adjusted to a minimum
value whJch will produce a turn-off waveform simllar to the one shown where

-6.0 V

Cl

C, "" Copt.

TURN-OFF WAVEFORM

560

QT = Copt V ln

0 .0 " .
C, - Copt

_:.~VIn

~,
TIME-

OSC I L LOSCOP E

GENERATOR

tr

t r <20 ns
tf <20 ns

':'

A ln

<;'5

ns

~'O Megohms

Cin ~7.0 pF

t w >5.0IJ.s
Dutv Cvcle <2.0%

15

MACS
MAC6

SERIES

(SILICON)

SERIES

TRIACS
(THYRISTORS)
SILICON BIDIRECTIONAL THYRISTORS

10 AMPERES RMS

.. designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies;

25 THRU 600 VOLTS

or wherever full-wave silicon gate controlled solid-state devices are
needed. Triac type thyrostors switch from a blocking to a conducting
state for either polaroty of applied anode voltage with positive or

MAC 5

negative gate triggering.
•

Glass Passivated Junctions

•

Low "on" Voltage - VTM

•

Four Mode and Isolated Stud Versions Available
(2N6139 Series)

=

1.3 V (Typ) @ 14 A Peak

flf~
f- ~,!. ~,
§

~~

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Off-State Voltage (1)

ITJ

= 1000 CI

MACS and MAC6

-1
-2
-3
-4
-S
-6
-7
-8

On-State Curren' RMS ITC = 7SoCI

Peak Surge Current
lOne Full cycle, 60 HZ,Tr -40 to +1000 CI
Circuit Fusing Considerations

ITJ = -40'0 +1000

Value

Unit

Volts

VDRM
2S
SO
100
200
300
400
500
600

STYLE 2.
PIN I. GATE
2. MAIN TERMINAL!
STUD:,MAIN TERMINAL 2

CASE 86

10·J2UNf.ZA

MIlliMETER
INCHE
DIM MIN
MAX
11.10
0.437
A
7.87
0.310
C
1.78TYP
0.070TYP
F
2.29
2.79 0.0900.110
G
1
11.48 0.422 0.452
16.16
0.660
15.49
0.610
NOTE:
1. DIM "G" MEASURED AT CAN.

MAce

ITIRMSI

10

Amp

ITSM

100

Amp

12,

40

A 2s

~

.---:
. .
p

L+

I'
N

e, t = 1.0 to 8.3 msl

Peak Gate Power
Average Gate Power
Peak Gate Current

Operating Junction Temperature Range
Storage Temperature Range
Stud Torque, MACS
(1) Ratings apply for open gate conditions.

PGM

10

Watts

PGIAVI

O.S

Watt

IGM

2.0

Amp

TJ

-40,0 +100

Tstg
-

-40'0 +lS0

°e
°e

lS

In.

lb.

Thyristor devices shall not be tested

With a constant current source for blocking capability such that the voltage
applied exceeds the rated blocking voltage.

STYlE 2:
PIN 1. GATE
2 MAIN TERMINAL!
3. MAIN TERMINAL 2

DIM

MILLIMETERS
MI.
AX
10.92
8.
5.97
0.16 0.86
5.33
2.79
33.53
3t.50TYP
165 1.91

22'

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

eJC

2.0

°C/W

Thermal Resistance, Case to Ambient

eCA

SO

°C/W

Characteristic

16

3.43
457
3D
CASE 87l

3.68
5.0B

.,N

INCHES
MAX
0.430

0.2
0.030
.1
D.D9
I.
1.2

"'

0.1
0.180
1.2

NOTES
1. DIM "G" MEASURED AT CAN
2 LEAD NO 3 *7.50 DISPLACEMENT.

MAC5 series, MAC6 series (continued)

ELECTRICAL CHARACTERISTICS 1Te = 25 0 e unless otherwISe notedl
Symbol

Min

Typ

Max

Unit

IORM

-

-

2.0

mA

VTM

-

1.3

1.8

Volts

IGT

-

-

50

mA

Gate Trigger Voltage, Continuous de
Main Terminal Voltage = 12 Vdc, RL == 100 ohms
MT21+)GI+); MT21-)GH

VGT

-

10

2.5

Volts

Gate Trigger Voltage, Continuous de - All Modes
Main Terminal Voltage = Rated VORM. RL == 100ohms. T J == lOOoe

VGO

0.2

-

-

Volts

IH

-

-

50

mA

ton

-

1.5

-

M'

dv/dt

-

5.0

-

VIM'

Characteristic
Peak Blocking Current (Either Direction)

Rated VORM @ TJ = lOOoe. Gate Open
On-State Voltage (Either Direction)

ITM = 14 A Peak

Gate Trigger Current, Continuous de
Main Terminal Voltage == 12 Vdc, RL == 100 ohms
MT21+)GI+); MT2HGH

Holding Current (Either Direction)
Main Terminal Voltage == 12 Vdc, Gate Open,
Initiating Current = 100 rnA
Turn-On Time
ITM = 14 Ade. IGT

= 100 mAde

Blocking Voltage Application Rate at Commutation
@ VORM. T J = 75 0 e. Gate Open

QUADRANT DEFINITIONS
Trigger devices are recommended for gating on Triacs. They provide:
MT2(+)
QUADRANT II

QUADRANT I

MT21+1. GH

MT21+1. G(+)

1. Consistent predictable turn-on points.
2. Simplified circuitry.
3. Fast turn-on time for cooler, more efficient
and reliable operation.

ELECTRICAL CHARACTERISTICS of RECOMMENDED
BIDIRECTIONAL SWITCHES
GH - - - - - - - + - - - - - - - G ( + )
QUADRANT III

QUADRANT IV

MT2H. GI-I

MT21-1. GI+I

General

USAGE
PART NUMBER

MBS4991

V<:

6.0 -10 V

IS

350 IJA Max

0.5 V Max
VSl -VS2
Temperature Coefficient 0.02%/ o

Lamp Dimmer
MBS4992
7.5

~

9.0 V

MBSloo
3.0 - 5.0 V

120 MA Max

100 - 400 MA

0.2 V Max

0.35 V Max

e Typ

See AN-526 for Theory and Characteristics of Silicon Bidirectional Switches.
MT2H

17

MAC5 series, MAC6 series

...

(continued)

-

FIGURE 1 - AVERAGE CURRENT DERATING

100

u

~

'"

90

"''"=>
t-

~

illt-

3"'
<3

t-

100

80

~

.....

l~ ~ ~ ~
'\ ~ ~ ~
30
0

0: ""

60 0

I

~

70

~

~~

90

":::::::

"''"

:>

150 0

~

-I.

<3

70

.........

1800

~

-I.

t-

a- CONDUCTION ANGLE

60

o

=

~

~

~

30 0

/;0 0_

-...;::. t:-<:",

0:

w

1800

s:::::----...

80

ill
t-

a-C01DUcT1DN ANTLE
60

::::::::::: ~ :---...

t-

r-;~ t-120 0

90 0

FIGURE 2 - RMS CURRENT DERATING

20

4.0

6.0

8.0

10

o

I

I

I

2.0

4.0

6.0

B.O

ITIAV),AVERAGE ON·STATE CURRENlIAMP)

ITIRMS), RMS ON·STATE CURRENT lAMP)

FIGURE 3 - POWER DISSIPATION

FIGURE 4 - POWER DISSIPATION

10

16

g 12 --~
-I.

lJOO

120 0

'"

~

'"~

a:

"''"

-

.-300

8.0

~>

'":;;

~

;OO~

.-CONOUCTION ANGLE -600

.,

/'~

V0"

~~

4.0

~

L

"

~~

~

~

o
o

2.0

4.0

6.0

10

8.0

2.0

ITIAV), AVERAGE ON·STATE CURRENT lAMP)

3.0

§

N

2.0

'"o

~

"''"
o~

1.0

>

ffi

'"

'"t-

----

::;

'"~

'",.:
>'"

10

3.0
2.0

-..........

0

~

VTM-12V
_ _ RL-l00"

t-

~
=>

-

ir
w
to<

B.O

N

::;
~

6.0

FIGURE 6 - TYPICAL GATE TRIGGER CURRENT

FIGURE 5 - TYPICAL GATE TRIGGER VOLTAGE

ffi

4.0

IHRMS), RMS ON·STATE CURRENT lAMP)

1.0

r--.. ---....

'"'
'"w
'"
'"
ir

VTM-12V
RL -100"

......

~ 0.5

O.S

!;;:
0.3
-50

-

..........

......

'",.:

-25

+25

+50

+75

!E 0.3
-50

+100

TJ,JUNCTION TEMPERATURE 10C)

-25

+25

+50

TJ,JUNCTION TEMPERATURE 10C)

18

+75

+100

MAC5 series, MAC6 series

(continued)

FIGURE 7 - MAXIMUM ON·STATE CHARACTERISTICS
60
50

'/'

.d- ......

30

~

20

FIGURE 8 - TYPICAL HOLOING CURRENT
3.0

~
N
~

/

ffi

,.

25°C

§

70

~

5.0

0

I

-

~N~~~A~~~~

CURRENT" 100 mA
APPLIES TO EITHER DIRECTION
-25

+25

+50

+75

+100

TJ.JUNCTION TEMPERATU RE 10C)

I

=>

u

'"~

.::::::::::,

0.5 -VTM"12V

0.3
-50

II

~
-.....

"~

I I

5:

1.0

'"'"=>
u
'"z

10
0::-

~

0

~
I-

~
TJ" 100 0CiJ

"

20

'"

~

1
1 I

3.0

~

III

z
~ 2.0
.t:-

II

0

FIGURE 9 - MAXIMUM ALLOWABLE SURGE CURRENT

I

~

BO

~

60

5:

o. 7
0.5

.......

r-

-

-r-r-

r- t'--,

=>

u

'">

'I

'"as

II

'"in
'"~

I

0.3

I

I I

0.2

---

100

0.5

40
TJ" -40 to +100 0 C

20

t---

fi 6oH ,

a
1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0

2.0

4.0

3.0

5.0

6.0 7.0 B.O

10

NUMBER OF FULL CYCLES

VTM. ON·STATE VOLTAGE IVOLTS)

FIGURE 10 - THERMAL RESPONSE

a

'"~
~
~-

~o

o. 5

o. 3

-

I--"

o. 2

~

~~

f5:i o. 1
"",

1-'"
1- 0
~o.o 5

ffi

~
~

0.03

I-

0.0 2
0.0 1
0.1 x 10-3

O.h 10-3

1 x 10-3

3 x 10- 3

10 x 10-3

0.03
t. TIME lsi

See AN-292 for details on using transient thermal response curve.

19

0.1

0.3

1.0

3.0

10

MAC 10-1 thru MAC 10-8 (SILICON)
MAC11-1 thruMAC11-8

o~

TRIACS
(THYRISTORS)
10 AMPERES RMS

SILICON BIDIRECTIONAL THYRISTORS

25 THRU 600 VOLTS

· .. designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies;
or wherever full·wave silicon gate controlled solid·state devices are
needed. Triac type thyristors switch from a blocking to a conducting
state for either polarity of applied anode voltage with positive or
negative gate triggering.
• All Diffused and Passivated Junctions for Greater Parameter Uni·
formity and Stability
• Small, Rugged, Thermopad Construction for Low Thermal
Resistance, High Heat Dissipation and Durability
• Gate Triggering Guaranteed in Two (MACll) or Four Modes
(MAC10)
MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Off-State Voltage, Note 1
-1
(TJ'I00o CI
-2
-3
-4
MAC10/ll
-5
-6

-7
On-State Current RMS (TC

=750 CI

lOne Full cycle, 60 Hz, T J

=-40'0 +100o C)

Circuit Fusing Considerations
ITJ =-40 '0 +1 OOoC, ,= 1.0 '0 8.3 msl
Peak Gate Power
Average Gate Power

. Unit
Volts

25
50
100
200
300
400
500
600

-8
Peak Surge Current

Value

VDRM

IT(RMSI

10

Amp

ITSM

100

Amp

12,

40

A2s

PGM

10

Watts

PGIAV)

0.5

Watt

Peak Gate Current

IGM

2.0

Amp

Oper,ating Junction Temperature Range

TJ

-40'0+100

Ts,g

-40 to +150

°c
°c

Storage Temperature Range
Mounting Torque (6-32 Screw), Note 2

-

in. lb.

B

STYLE 4:
PIN 1. MT 1

2. MT2
3. GATE

DIM
A

B
C
D

NOTES,
1. Ratings apply for open gate conditions. Thyristor devices shall not be tested
with a constant current source for blocking capability such that the voltage
applied exceeds the rated blocking voltage.
2. Torque rating appl ies with use of torque washer (Shakeproof WD 19522 #6
or equ iva lent) . Mounting torque in excess of 8 in. Ibs. does not appreciably
lower case·to-sink thermal resistance. Anode lead and heatsink contact pad
are common.
For soldering purposes (either terminal connection or device mounting). soldering temperatures shall not exceed +2000 c. For optimum results, an activated
flux (oxide removing) is recommended.

20

F
G
H
J
K
M
Q

R
U

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51 3.76
4.22 BSC

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
·0.166 BSC
0.105 0.115
"0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255

2.67~
0.813
15.11
90
4.70 4.95
1.91 2.16
6.22 6.48

CASE 90·05
NOTE:
1. LEADS WITHIN .005" RAD OF TRUE
POSITION (TPI AT MMC

MAC10-l thru MAC10-8/MACll-l thru MACll-8 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

IDRM

-

-

2.0

mA

On-State Voltage (Either Direction)
ITM = 14 A Peak

VTM

-

1.3

1.8

Volts

Gate Trigger Current, Continuous de

IGT

-

50

-

-

75

-

0.9

2.0

-

Characteristic
Peak Blocking Current (Either Direction)

Rated V DRM @ T J = l000C, Gate Open

mA

Main Terminal Voltage = 12 Vdc, RL = 100 ohms
MT2(+)G(+); MT2HGH
MAC10, MACll
MT2(+)G(-); MT2HG(+)

MAC10

Gate Trigger Voltage, Continuous de

Volts

VGT

Main Terminal Voltage = 12 Vdc, RL = 100 ohms
MT2(+)G(+); MT2HGH
MAC10, MACll
MT2(+)G(-); MT2(-)G(+)

1.0

2.5

VGD

0.2

-

-

Volts

IH

-

-

50

mA

ton

-

1.5

-

j.lS

dv/dt

-

5.0

-

V/j.ls

Thermal Resistance, Junction to Case

8JC

-

°CIW

eCA

-

2_0

Thermal Resistance, Case to Ambient

50

°CIW

MAC10

Gate Trigger Voltage, Continuous de - All Modes

Main Terminal Voltage = Rated VDRM, RL = 100ohms, TJ = 100°C
Holding Current (Either Direction)

Main Terminal Voltage = 12 Vdc, Gate Open,
Initiating Current = 100 mA
Turn-On Time

ITM = 14 Adc, IGT = 100 mAde
Blocking Voltage Application Rate at Commutation
@ VDRM, T J

= 75°C, Gate Open

MBS4991/MBS4992
Recommended for Triac Triggering

Triggers Provide:
1. Consistent predictable turn-on points.

2. Simplified circuitry.
3. Fast turn-on time for cooler, more efficient and reliable
operation.

Electrical Characteristics

Symbol
VSIS
VSl

~

VS2=

MBS4991

MBS4992

6 10V

7.5 9.0 V

350j.lA Max

120 j.lA Max

0.5 V Max

0.2 V Max

Temperature Coefficient = 0.02%/ o C Typ
(For light dimmer applications the MBS100 is recommended)_
See AN-526 for Theory and Characteristics of Silicon Bidirectional
Switches.

21

MAC10-1 thru MAC10-8/MAC11-1 thru MAC11-8 (continued)

FIGURE 1 - AVERAGE CURRENT DERATING
100

~
w

I~ ......

'"

90

'":0

I-

~

15

~
ex= 30
0

70

0

1"( ~ ~ ~

--

16

~
I«
~

12

'"~

~

w

to

900

'"

:0

,,~

120 0

t-....

150 0

~

BO
a'"

w

lBOo

.~

oj

70

I-

0_

'i::. K'-...

15

I-

0

..........

t80 0

iJ\y
-I

Q

~

•

.-C~NDUCiION A~GLE

60

o

2.0

4.0

6.0

B.O

-

·0

10

2.0

6.0

4.0

B.D·

IT(AV), AVERAGE ON·STATE CURRENT (AMP)

IT(RMS), RMS ON·STATE CURRENT (AMP)

FIGURE 3 - POWER DISSIPATION

FIGURE 4 - POWER DISSIPATION

-iJ\y

lJOO

p~

-I.

.-30 0

B.O

10

120 0

~o

.-CONOUCTION ANGLE -60 0

{/'

/'~ ~

V)0 V

«

ffi

>
«
:;
«

~ ~ t-~ ~ :--....... /;030

I-

-I.

-

~~

90

.- C01DUCTItN AN~LE
60

FlqURE 2 - RMS CURRENT DERATING

w

..;:::: ~

60 0

I

w

~

~~

u

"
iJ\y

BO

I-

5

100

.,

~~

4.0

~

~

L

~

o
a

2.0

4.0

6.0

B.O

10

2.0

IT(AV), AVERAGE ON·STATE CURRENT (AMP)

3.0

0.3
-50

r-- t---

-25

VTM-12V
RL -100 n

+25

+50

+75

6.0

B.O

10

FIGURE 6 - TYPICAL GATE TRIGGER CURRENT

FIGURE 5 - TYPICAL GATE TRIGGER VOLTAGE
3.0

--

4.0

IT(RMS), RMS ON·STATE CURRENT(AMP)

0.3
-50

+100

TJ,JUNCTION TEMPERATURE (OC)

--

r---. i'--

-25

VTM -12 V
RL-l00n

.......

+25

-----

+50

TJ,JUNCTlDN TEMPERATURE (OC)

22

+75

+100

MAC10-1 thru MAC10-8/MAC11-1 thru MAC11-8

FIGURE 7 - MAXIMUM ON-STATE CHARACTERISTICS

60
50

FIGURE 8 - TYPICAL HOLDING CURRENT

~

~

~V

30

./

20

l/

I-

-VTM=12V
GATE OPEN
-INITliTING CURrENT' 100

I II
II

50

~
13'"
I"'

-........

-.....

25°C

I

7.0

:!.

~
........

10

'"

~

(f
TJ = 1000r/,

0:

(continued)

-25

.............

r

+25

+50

+75

+100

TJ,JUNCTION TEMPERATURE lOCI

3.0

t?'"

""

"

I I

/
FIGURE 9 - MAXIMUM ALLOWABLE SURGE CURRENT

I II

2.0

II

.!:"

I

10
0.)

0:

'"

~

'">
"'

I

40

~

20 -

"v;,.

I I
0.5

r-

60

'"

1:'i

I
I

0.2

r--

=>

I

0.3

80

:!.

I II

0.5

--- ----- -- --

100

TJ = -40 to +100 oC
f 60Hz

l

o
1.0

1.5

2.5

2.0

3.0

3.5

4.0

1.0

3.0

2.0

5.0

70

10

NUM8ER OF FULL CYCLES

VTM, ON·STATE VOLTAGE IVOLTSI

FIGURE 10 - THERMAL RESPONSE
1.0

"'
~
~~'"~

~~
ffi

0.5

0.3

«

x"

,.--

0.2

...- ...-

O. 1

1-00
1- 0

~ ~O.05

v;
~

0.03

I-

0.02

:E

0.0 1
0.1,10-3

0,3,10-3

,,10- 3

10,

w-3

0.03
t, TIME

See AN·292 for details on using transient thermal response curve.

23

0.1

lsi

0.3

1.0

3.0

10

MAC37-1 thru MAC37-7
MAC38-1 thru MAC38-7

(SILICON)

SILICON BIDIRECTIONAL THYRISTORS
· .. designed primarily for industrial and military applications for the
control of ac loads in applications such as light dimmers, power supplies, heating controls, motor controls, welding equipment and power
switching systems; or wherever full-wave, silicon gate controlled
solid-state devices are needed.
• Glass Passivated and Center Gate Fire
• 25 Amperes RMS @ TC = 67 0 C
• Isolated Stud Available

TRIAC
(THYRISTORS)
25 AMPERES RMS
25 thru 500 VOLTS

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Off-State Voltage (1)
ITJ = 110 0 CI
-2
-3
MAC37
-4
MAC38
-5

Value

Unit

Volts

VORM
25

r'

50

100
200
300
400
500

-6
-7
ITIRMSI

25

Amp

ITSM

225

Amp

12,

210

A2 s

Peak Gate Power (2)

PGM

5.0·

Watts

Average Gate Power

.PGIAVI

0.5

Watt

IGM

2.0

Amp

Operating Junction Temperature Range

TJ

-401o +110

Storage Temperature Range

Tstg

-4010+150

°c
°c

-

30

in. lb.

On-5tate Current RMS
Peak Surge Current

lOne Full cycle, 60 Hz,
TJ = -40 '0 +1100 CI
Circuit Fusing Considerations

ITJ = -40 10 +11 O"C,
I = 1.0 10 8.3 msl

Peak Gate Current (2)

Stud Torque

MAC37

(1)For either directi.on of blocking yoltage. VORM for all typas can be applied on a con-

tinuous de basis without incurring damage. Ratings apply for open gate conditions.
Thyristor devices shall not be tested with a constant current source for blocking capability such that the voltage applied exceeds the rated blocking voltage.
(2)T J = 110o C. 1.0 second maximum duration; 6.0% duty cycle. ITM "" 10 Amp.

THERMAL CHARACTERISTICS

MAC38

Characteristic

Thermal Resistance. Junction to Case

24

MAC37-1 thru MAC37-7/MAC38-1 thru MAC38-7 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

Unit

Peak Blocking Current (Either Direction)
Rated VORM @ T J = 1100 C

IORM

-

-

2.0

mA

On-8tate Voltage (Either Oirection)
ITM =35APeak

VTM

-

1.4

1.9

Volts

IGT

-

20

75

mA

Gate Trigger Current, Continuous de (1)
Main Terminal Voltage = 7.0 Vdc, R L = 47 ohms
MT2(+)G(+); MT2HG(-)

mA

Gate Trigger Voltage, Continuous de (11
Main Terminal Voltage "" 7.0 Vdc, R L = 47 ohms
MT21+)GI+); MT2HGI-)

VGT

-

1.0

3.0

Volts

VGO

0.2

-

-

Volt

Holding Current (Either Direction)
Main Terminal Voltage:::; 7.0 Vdc, Gate Open,
I nitiating Current:::: 150 rnA

IH

-

10

75

mA

Turn·On Time
ITM = 25 Adc, IGT = 200 mA

ton

-

1.0

-

1-"

dv/dt

-

100

-

V/~s

Gate Trigger Voltage, Continuous dc - MT2(+) G(+); MT2H GH
Main Terminal Voltage = Rated VORM, RL = l00olims, TJ" l100C

Critical Forward VOltage Application Rate (Exponential Rise
of Voltage)
@VORM,TJ=1100 C, Gate Open
(1)AII voltage polarity reference to main terminal 1.

FIGURE 1 - MAXIMUM THERMAL RESPONSE
1.0
~
wZ

MAC 37

0,5

~~

~~ 0.2
w~

c«

~~ 0.1

MAC 38

~

~~

~

MAC 38

---

~

,.......

8Je· 1.00 eIW MAX

MAC 37

a: 1-0.05
c Z

z!!!
?~

""«
:= 0.02
0.0 1
0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

500

1000

t, TIME (ms)

PIN 1 MTl
PIN 1 MTI

2 GArE
CASEMT2

2 GATE
MT2

CAS~

DIM

A
B

C
D
E

F

0505
0475
0380
0068

0065

0090
0510
0097
0800

G

J
K

ri

INCHES
MIN
MAX

0501
0465
0330
0035

0080

J~
9650

.!.~
IS..

-

2040

1400
1650
2290
10670

2280
12950
2460
20320

AIiJEOECdlmenSIClnsBndllolesapplv

CASE 174·02
TO·203
MAC37

CASE 175
MAC38

25

2000

MAC37-1 thru MAC37-7/MAC38"1 thru MAC38-7 (continued)

-"

-

FIGURE 2 - AVERAGE CURRENT DERATING
110

~

'"'
=>
'"

Q

~

70

I-

50

\.

ill
w

:>

-...... .......

1200

900

'"'
W

'"
=>

180 0

~

7

ill
....

50

~

~~

0-

-

4D -

•• CONDUCTION ANGLE

'"=>

a=

0

10

o

5.0

10

20

15

25

o

5.0

"'"" f"...

'\ "'-. ~ -..........: t---.

70

\

50

30

.............
...........

\

100 I----t::s~~:!-.dl-_+-+-+-

"'\ 60

"

SOo

r-...
i"---

~

90~-~~--;~~~~~~--_r--_r--_r--~

~

80~--~~r_~---+~~~~~~~~--_r--~

=>

~ 70

160 0

1200.......

~, 60

ill

0

~

50

5

40

U

....

-10

10 o·CONDUCTION ANGLE
5.0

30~--r_--,r_--,---.--~

20~~---+--_r---r--+--r_~---+-_r~

I
10

15

IOLO--L-~-~-~-~-L--L-~2~0--L-~2·5

25

20

IT (AV), AVERAGE ON·STATE CURRENT (AMP)

IT (RMS), RMS ON-STATE CURRENT (AMP)

FIGURE 6 - POWER DISSIPATION versus AVERAGE CURRENT
40

@

!

~

Ii!
w

600 / .

0~30~ ~

ffi

r
~

~

~
....
«

1800

f---

j;

10

Ii:"

o~

a

30
25

w

20

'"ffi
>

0" CONOOCTION ANGLE

15

«

'>
«
0::

~

5.0

35

'"~

Ii!

./. ~ ~
~P'"
~

>
«

«

90"

o· CONOUCTION ANGLE

20

'"
S

J

1200

-10

'"3;:

FIGURE 7 - POWER DISSIPATION versus RMS CURRENT
40

-J0t+

30

25

FIGURE 5 - RMS CURRENT DERATING

~\a.300
I

~

20

15

10

IT (RMS), RMS ON·STATE CURRENT (AMP)

MAC'38 -

r::::::--

w

~

30 0

r

110 _=---,---,--,--,----,,--.--,---,---,

I~ ~

90

~

ill
I-

I

~ 30

o"CONDUCTION ANGLE

w

I-

-lif.' L?< 0 t.::::
-sht' V ?' "'
"-6~[' V

-10

FIGURE 4 - AVERAGE CURRENT DERATING

~

"':;::; ~ ~

~

IT (AV). AVERAGE ON·STATE CURRENT (AMP)

110

M}C37- ~

IIIIIIIIIII! ~

0
0-

w

-I.

30

0

Q

.............

'-

100

~

U

10

"""-

a=30 0\

~

I-

.......... 1--........... ~ ..........

'\

W

I-

MAL7-

"'-." :::s :::::::::: t--.

90

FIGURE 3 - RMS CURR.ENT DERATING

........

110

10
5.0
0

10

15

20

0

25

2.5

5.0

7.5

10

12.5

15

17.5

IT (RMS), RMS ON·STATE CURRENT (AMP)

IT (AV), AVERAGE ON·STATE CURRENT (AMP)

26

20

22.5

25

MAC37-1 thru MAC37-7/MAC38-1 thru MAC38-7 (continued)

FIGURE 9 - MAXIMUM MULTI-CYCLE SURGE RATING

FIGURE 8 - MAXIMUM ON-STATE CHARACTERISTICS

300

..--~

200

./

TJ = 25°C

/'

100
70

,.
~

~

o

..........

.........

-:;:; ~50C

""

0

.........

0

/

1

30

:--....

0
10

II

2.0

3.0

5.0

7.0

10

20

30

50

70 100

FULL CYCLES AT 60 Hz

'I

10

f'.~

0

Ii

20

w

~Z

,......- .--

1//

50

0::

~

250

~

"'~

7. 0

~

5.0

«

AGURE10-TY~CALHOLrnNGCURRENT

to

~

:;;
"

.!:"

3.

0

3.0
~~ 2. 0

..........

u'"
~E

2. 0

r-..........

",0

;5~ 1. 0

~

,"0

000

1. 0

~~ o. 7

""'-

:::;>-

~§ o. 5

0.7

o

0.5
0.3

'".i=
1.0

1.4

loB

2.2

2.6

3.0

3.B

3.4

4.2

4.6

-

o. 3

o. 2

5.0

~~:c~~~~!llg~~A~EJTERISTICS
-50

50

~

2. 0

0

G

w

'"
'"
~

1. 0

~

o

z

o. 3

-

w

~

'"'"
~

1.0

w
!;;:

I'..

"" f'.,..

t - ~~:c~~7~!llg~!'R~CETERISTICS

o. 2

2. 0

>

~ o. 7
B'N : o. 5
:::;

.0

o

00

w

«

w

'"~

..........

00

- 50

50

100

FIGURE 12 - TYPICAL GATE TRIGGER VOLTAGE

FIGURE 11 - TYPICAL GATE TRIGGER CURRENT

3.

-....

TJ, JUNCTION TEMPERATURE 1°C)

VTM, INSTANTANEOUS ON-STATE VOLTAGE (VOLTS)

~

..........

'"

~:::; o. 5

~

"

o
z

TJ, JUNCTION TEMPERATURE (oC)

f--.
F'"'"

f - ~~:c~~~~~llg~~AWTERISTICS

.3

o. 2

100

-

0.7

50

50
TJ , JUNCTION TEMPERATURE 1°C)

27

100

MAC92·1 thru MAC92·6 (SILICON)
MAC92A·l thru MAC92A-6

MT2

o----tii~:I!~
.......

TRIACS
(THYRISTORS)

G-...OMTI

0.45 AMPERE RMS
30-400 VOLTS

SILICON BIDIRECTIONAL THYRISTORS
· .. designed for use in solid state relays, TTL logic and light industrial applications. Supplied in an inexpensive plastic TO·92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC92 Series)
or Four Modes (MAC92A Series)
•

One·Piece, Injection-Molded Unibloc Package

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Off-State Voltage
ITJ = -40.to +100oCI
% Sine Wave 50 to 60 Hz, Gate Open
MAC92 and MAC92A - 1
-2
-3
-4
-5

STYLE 12:

PIN 1. ANODE I
2. GATE
3. ANODE 2

Amp

IT(RMSI

Full Cycle Sine Wave 50 to 60 Hz,
(TC = +6QoCI

Peak Non-Repetitive Surge Current

Volts

30
60
100
200
300
400

-6
On-State RMS Current

Unit

Value

VDRM

0.45
Amp

ITSM

(One Full Cycle, 60 Hz, T C = +60o CI
preceded and fOllowed by rated

DIM
6.0

A
B

current
Circuit Fusing Considerations
(TJ =-40 to +100o C, t= 1.0toS.3 mol

12t

A 2s
0.15

F

Average Gate Power

PG(AVI

0.1

Watt

Peak Gate Current

IGM

1.0

Amp

Operating Junction Temperature Range

Storage Temperature Range

C
D

MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.48;

L
N

1.150

P

6.350
3.430
2.410
2.030

TJ

-40 to +100

°c

Q

T stg

-40 to +150

°c

R
S

1.390
1.270
2.670
2.670

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.' 16
0.019

0.045
0.250
0.135
0.095
0.080

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

R8JC

75

°C/W

Thermal Resistance, Junction to

R6JA

200

°C/W

Ambient

28

CASE 29-02
TO-92

0.055
0.050
0.105
0.105

MAC92-1 thru MAC92-6, MAC92A-1 thru MAC92A-6 (continued)

ELECTRICAL CHARACTERISTICS (TC = 2SoC unless otherwise noted)
Characteristic

Symbol

Peak Blocking Current (Either Direction)
Rated VDRM @ T J = 100oC. Gate Open

Min

Max

-

100

-

1.7

Peak On-State Voltage (Either Direction)
ITM = 0.7 A Peak; Pulse Width = 1.0 to 2.0 ms. Duty Cycle.s;;;2.0%

IlA
Volts

VTM

Gate Trigger Current, Continuous de

mA

IGT

Main Terminal Voltage = 7.0 Vdc. RL = 100 Ohms
All Devices
MT2 H). G(+); MT2H. GI-)
MAC92A-1 thru MAC92A-6
MT2(+). GH; MT2H. GI+)

-

Gate Trigger Voltage, Continuous de

Volts

.-

Main Terminal Voltage = Rated VDRM. RL = 10 k ohms. TJ = 125°C
All Devices
MT2 (+1. GI+); MT2H. GH
MT21+). GI-); MT2H. GI+)
MAC92A-1 thru MAC92A-6
Holding Current (Either Direction)
Main Terminal Voltage = 7.0 Vdc, Gate Open; } TC=2SoC
Initiating Current = 20 rnA
TC=-40oC

~ 1.6
~ 1.4

;::
i5

1.2

~

1. 0

>

-

w

O. 6

~

0.4

f-

'"

«
..s

UUADRANT 4

t-- ::r2ann-

r- r--

f-

-..::

o

-40

-20

+20

r+40

~

=::::::::::: ~

~ O. 2
-60

0.1
0.1

-

-

10
20

rnA

50

..............

~ O. 8
f-

3.0
3.0

FIGURE 2 - TYPICAL GATE TRIGGER
CURRENT

...........

to

-

IH

FIGURE 1 - TYPICAL GATE TRIGGER
VOLTAGE

1. 8

2.0
2.0

-

MT2 (+). GI+); MT2H. GH. TC = -40°C
All Devices
MT2(+). GH; MT2H. G(+) T C = - 400C MAC92A-1 thru MAC92A-6

~

5.0
15

VGT

Main Terminal Voltage = 7.0 Vdc. RL = 100 Ohms
Minimum Gate Pulse Width = 2.0 IlS
All Devices
MT2 1+). G(+); MT2H. GI-)
MAC92A-1 thru MAC92A-6
MT2(+). GH; MT2H. G(+)

2. 0

Unit

IDRM

+60

'"
B
'"gw

-+80

+100


"'
'""

w 70

'""
'""

60

\190°:4

50

o

t\

160

BO

240

o ...... 111;;;
o

~~~~

-"

~~

.--lS00

\.

"- 'b.

50

4S0

560

o

so

""

FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

lS0b~ (".,

d';-"

:-..... l"'-- :-..... -.......
."- ,,~

""-

160

240

400

320

i'..
560

4S0

100

~ 90

90

~
w

~ 80f---+---'''"''~n-____1f---

SO

::>
"'
~
~
''""""
~

::>

~ 70f---+---r~~~~r--7---r--+-_;

'""

~ 60 f---+---r:-:-::-9i<=-cYl~"""".j<

'""

~ 50f---+---r---+~____1~~~~-r-_+-_;

.

.. 40f---+---r--+-~f----'~~~~_+-_;

...

30~-+_--r--+-~~-+_~_?~~~~

'""

0;

70
60
50

0;

40

'"

30
20
0

160

FIGURE 7 - ON-5TATE POWER DISSIPATION
700

I

I

/
• - 30°--t/600- '"/ / /

600

I

3"

/90 0

.; 50 0
~ 400

/
V

w

to

30 0

/

/

:;; 20 0

0:

100

o~

// /
/ "/ /'
/. "/
Z

/

~

~

~V

t..fJ!! ::r

~

'"

3"E
~

I
TJ ,'1000C -

~

-

~320

I
400

I

I

I
I

-~
~"_

I
4S0

-

40 0

to

~.-

240

I

;- 50 0=

,L-- 1-1S00

I
160

600

=
. ' CONDUCTION ANGLE-

~ ......

so

1'1

/-- !--r- 1200

:r---

240

2S0

320

FIGURE 8 - ON-STATE POWER DISSIPATION
700

A

1/

200

IT(RMS). RMS ON-STATE CURRENT (rnA)

IT(AV). AVERAGE ON-STATE CURRENT (rnA)

.
.

~ ~ l 'I::"~ i'-.. r-.... r-.... .......

FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

100=---.------,---,-------,,---.,------,---,-----,

ffi
:;;:

0

ITlRMS). RMS ON-STATE CURRENT (rnA)

IT(AV). AVERAGE ON-STATE CURRENT (rnA)

~

~ 1e90

0- ", CONDUCTION ANGLE

400

320

/60 0

120'0')."

~
~.-

0-

'\

\

n= 30 0

""~;:;:::::~

-

"' CONDUCTION ANG LE -

1\ \.'\: r0
"- 30°.-'1
\. I'( "- 1<"""1200
1\ 600 -'
""

1:i

3u

~"

~

\. ~ ~
0: ~

SO

10

-J"r- '~'

~

'" '\ ~

FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

~

:;;:

300

. ' CONDUCTION ANG LE

I

100

I

o
o

560

IT(AV). AVERAGE ON-STATE CURRENT (rnA)

a= 180 0

---, -/

120°--,
90° .,/.

L

I

W /.

# ~ :,#. 0 :::;..- :.,...-

........

V

P"

V

'60°

400

4S0

./

~ ~ ~ i-"'"
~

80

160

240

320

IT(RMS). RMS ON-STATE CURRENT (rnA)

30

/' /'
/'

/ '/ K V V
y- V. V V / '
~ / . . / K V ---300

TJ'1000C

:;; 200
'~

de-

560

MAC92-1 thru MAC92-6, MAC92A-1 thru MAC92A-6

FIGURE 9 - MAXIMUM ON-STATE
CHARACTERISTICS

-

6.0
4.0

~

.... 10""

FIGURE 10 - TYPICAL HOLDING CURRENT

7.0

s.0

1
>-

/,~

TJ = lOOoC
2.0

~

/, Visoc

J.

1.0

(continued)

I
I
GAT~ OPEN 1
APPLIES TO EITHER DIRECTION

I"-..

"'- '""-

3.0

13

y

'"
z 2.0

-...........
..........

§
o

r--.....

'":;E

O. 6

ii:'

"
~
=>

II/

:":
>- 0.4

'"

0.2

W

~Z

O. 7

'/

-60

-40

-20

+20

+40

+60

+80

+120 +140

I
FIGURE 11 - MAXIMUM ALLOWABLE
SURGE CURRENT

'"2: o. 1

"'z

er

10

~

0.06

~
....
~

1;;
z

:":

:t: 0.04

--

7.0
5.0

=>

'"w

0.02

~ 3.0

i>l

'"~

0.0 1

TJ

2.0

2.8

3.6

1.0

6.0

S.2

4.4

100 0 C

Surge is preceded and followed by rated current

'"

1.2

=

r--

f =60 Hz

2.0

~
0.00 6
0.4

+100

TJ. JUNCTION TEMPERATURE (OCI

o

:i

...........

1.0

2.0

1.0

3.0

S.O

VT.INSTANTANEOUS ON-STATE VOLTAGE (VOLTSI

II II

10

30

so

III

100

NUMBER OF CYCLES

FIGURE 12 - THERMAL RESPONSE

ffi

.
"

1.0

N

:::;

a:

O.S

o

f- r-

~

"''"z
~
iiia:
-'

~

02

V-

rZOJC(tI = rltl • ROJC

0.1
0.05

:ll
'"....

5 0.02
~

:=

0.01
2.0

5.0

10

20

50

200

100

t, TIME (msl

31

500

1.0 k

2.0 k

5.0 k

10 k

20 k

MAC93-1 thru MAC93-4 (SILICON)
MAC93A-l thru MAC93A-4

MT2

O-----li~i:!~--G-OMT1

TRIACS
(THYRISTORS)
0.65 AMPERE RMS
30-200 VOLTS

SILICON BIDIRECTIONAL THYRISTORS
... designed for use in solid state relays, TTL logic and light indus·
trial applications. Supplied in an inexpensive plastic TO-92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC93 Series) or Four
Modes (MAC93A Series)
• One-Piece, Injection-Molded Unibloc

Package

SEATING

MAXIMUM RATINGS
Rating
Repetitive Peak Off-State Voltage

ITJ = -40 to +1250 t)
% Sine Wave 50 to 60 Hz, Gate Open
MAC93 and MAC93A - 1
2
3
4
On-State RMS Current
Full Cycle Sine Wave 50 to 60 Hz,

Svmbol

Unit

Value

Volts

VDRM

Amp

ITIRMS)
0.65

Amp

ITSM
6.0

Average Gate Power
Peak Gate Current

A 2s

12,

ITJ = -40 '0 +125 0 C, t = 1.0 to 8.3 ms)

0.15
PG AV

0.01

Watt

IGM

1.0

Amp

°c
°c

Operating Junction Temperature Range

T

-40 to +125

Storage Temperature Range

T stg

-40 to +150

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Aesistance, Junction to Case

ReJC

75

°C/W

Thermal Resistance, Junction to
Ambient

ReJA

200

°C/W

Characteristic

STYLE
PIN 1.
2.
3.

32

L

~

12:
MAIN TERMINAL 1
GATE
MAIN TERMINAL 2

o

30
60
100
200

preceded and followed by rated
current
Circuit Fusing Considerations

H

PLANE F -

ITC = +60o C)
Peak Non-Repetitive Surge Current
(One Full Cycle, 60 Hz, T C = +60o C)

It:frlB
A
p~rJ
'~

3~

ItR

K

~

~

MILLIMETERS
DIM MIN
MAX
A
4.32
5.33
B
4.44
5.21
C
3.18
4.19
D
0.41
0.56
F
0.48
0.41
G
1.40
1.14"
H
2.54
J
2.41
2.67
K 12.70
L
6.35
N
2.03
2.92
P
2.92
R
3.43
0.41
S
0.36

C

SECT. A-A

INCHES
MIN
MAX
0.170 0.210
0.175 0.205
0.125 0.165
0.016 0.022
0.016 0.019
0.045 0.055
0.100
0.095 0.105
rr.500
0.250
0.080 0.115
0.115
0.135
0.014 0.016

All JEDEC dimensions and notes apply.
CASE 29-02
TO-92

MAC93-1 thru MAC93-4,MAC93A-1 thru MAC93A-4 (continued)

ElECTR ICAl CHARACTERISTICS

ITC ~ 25°C unless otherwISe noted I

Characteristic

Symbol

Peak Blocking Current (Either Direction)
Rated VDRM@TJ = 125°C, Gate Open

Min

Max

-

100

Peak On-State Voltage (Either Direction)
ITM ~ 0.92 A Peak; Pulse Width ~ 1.0 to 2.0 ms, Duty Cycle";; 2.0%

-

1.85

Volts

VTM

Gate Trigger Current, Continuous de

mA

IGT

Main Terminal Voltage = 7.0 Vdc, RL = 100 Ohms
Minimum Gate Pulse Width = 2.0 /olS
MT2 1+1, GI+I; MT21-1, GI-I
All Devices
MT2I+I, GI-I; MT21-1, GI+I
MAC93A-l thru MAC93A-4

-

5.0
12

-

Gate Trigger Voltage, Continuous de

Volts

VGT

Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width = 2.0 JIS
MT2 1+1, GI+I; MT21-1, GI-I
MT21+1, GH; MT2H, GI+I

= 100 Ohms

-

All Devices
MAC93A-l thru MAC93A-4

20
2.0

MT2 1+1, GI+I; MT21-1, GI-I TC ~ -40°C
All Devices
MT21+1, GI-I; MT2H, GI+I TC ~ -40°C MAC93A-l thru MAC93A-4

-

2.5
3.0

Main Terminal Voltage = Rated VORM. RL = 10 k ohms, TJ = 125°C
MT2 1+1, GI+I; MT2I-I, GI-I
All Devices
MT21+1, GI+I; MT21-1, GI-I
MAC93A-l thru MAC93A-4

0.1
0.1

-

Holding Current (Either Direction)
Main Terminal Voltage ~ 7.0 Vae, Gate Open, }
Initiating Current = 20 rnA

~ 1. 8

~ 1. 6

>

~

1. 0

'"'"

O. 8

ii'

;....

~ O. 6
~

FIGURE 2 - TYPICAL GATE TRIGGER CURRENT

--

;;:

QUADRANH

~
r-!-

--..;;

f=::::= ~

r- I-..

> O. 2
-20

+20

+40

0

~

0

~

7. 0
5. 0

~

r--==::

-

'"i§
w

~

r---...

t;;

-40

0

.s
'"""

'" O. 4
0
-60

10
20

-

r-....

to-- .............

I. 2

-

0

~ 1. 4

o~

mA

IH
TC ~ 25°C
TC ~ -40°C

FIGURE 1 - TYPICAL GATE TRIGGER VOLTAGE

2. 0

Unit

IlA

IDRM

+60

+80

+100

r--...

.............

2 and 3

3. 0

1

2. 0

r--

'"

"'

QUAD1RANT

+120

+140

-60

-

........

t'----.

:E 1. 0
O. 7
O. 5

1

- 40

-20

+20

+40

+60

+80

TJ,JUNCTION TEMPERATURE lOCI

TJ. JUNCTION TEMPERATURE lOCI

33

+100

+120 +140

MAC93-1 thru MAC93-4,MAC93A-l thru MAC93A-4(continued)

FIGURE 3 - AVERAGE CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

5~~--~10~0--~10~0--~3~0~0--~~~~~~~~7±00~~BOO
ITlAV), AVERAGE ON·STATE CURRENT (rnA)

IT(RMS),AVERAGE ON·STATE CURRENT (rnA)

FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

"''"=>

w

'"=>
~ 90~--~----~~~~~~--4---~----4---~

~ 90~---+----r---+~~~~~~~~~-'

~

I-

I-

~

I-

~

~
«
(5

~;;;

70~--~----r_--~~~~~~--~~--4---~

70

::E

«

50 ~--~----t-

(5

50
G

30

3~~--~5~0--~10=0--~~--~L-~~~~L-~~~400

0

ITlAV), AVERAGE ON·srATE CURRENT (rnA)

=

-.ju~

CONOUCTION ANG lE

100

150

300

IT(RMS), RMS ON·STATE CURRENT (rnA)

FIGURE 8 - ON-STATE POWER DISSIPATION

FIGURE 7 - ON-STATE POWER OISSIPATION

1.0,-----,-------r----,---,----,----,----;ror--;;'"
~ 0.8

~ 0.8

i

i

~ O,6~--~-­

~

~

'"ffi

O.S

~

w

"''"ffi

O.4~--~-----,h~7iS'c..-11-

:>

O.41---~----r_--_b~<_,.17t''''''''"'';;r;---'

~

«

~ 0.2 ~--~M"r_--+--~I-

--+---+--~

~ O.21---~--~Is_~~~"'__I---

IT(RMS), RMS ON-STATE CURRENT (rnA)

IT(AV),AVERAGE ON·STATE CURRENT (rnA)

34

MAC93-1 thru MAC93-4,MAC93A-1 thru MAC93A-4(continued)

-

FIGURE 9 - MAXIMUM ON-STATE CHARACTERISTICS

6.0

~

4.0

A~

2.0

I
I
GAT~ OPEN I
APPLIES TO EITHER OIRECTION

r--...

"'--

.........
............

/, I"

1.0

...........

I

0.6

I

1.0

'/

O. 7

JI

0.4

c..

5. 0

/, ~
/. ~5OC

TJ = 125°C

,.

FIGURE 10 - TYPICAL HOLDING CURRENT

7.0

5

-60

-20

-40

+20

+40

r--...

+60

I"'---

+80

I'--

+100

+120 +140

>-

~=>

TJ, JUNCTION TEMPERATURE 1°C)
0.2

I

u

'">-

FIGURE 11 - MAXIMUM NON-REPETITIVE SURGE CURRENT

~2:

O. I

o

10

fsr

~

=>
o
~

~

0.06

5

~

7.0

>-

z

~

~ 0.04

;;;

50

-I--.

=>

u

.t::::

'"~

0.02

=>

3.0

TJ = 125°C
f = 60 Hz
Surge IS preceded and followed by rated current.

~

'"~

2.0

'"

0.0 I

E
1.0

0.006
0.4

2.0

1.2

2B

3.6

4.4

5.2

6.0

10

2.0

~::i

30

5.0

10

30

50

100

NUMBER OF CYCLES

VT, INSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

FIGURE 12 - THERMAL RESPONSE
1.0

'"

il§

~

0.5

f- f-

j..--

ZOJClt) =,Itl. ROJC

I

2
1
5.0

10

20

50

100

200
t, TIME Im'l

35

500

1.0 k

2.0 k

5.0 k

10 k

20 k

MAC94-1 thru MAC94..4 (SILICON)
MAC94A·l thru MAC94A-4

TRIACS
(THYRISTORS)

SILICON BIDIRECTIONAL THYRISTORS

0_8 AMPERE RMS
30-200 VOLTS

· .. designed for use in solid state relays, TTL logic and light industrial applications. Supplied in an inexpensive plastic TO-92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC94 Series) or Four
Modes (MAC94A Series)
•

One-Piece, Injection-Molded Unibloc

Package

MB

MAXIMUM RATINGS
Rating

Repetitive Peak Off-State Voltage

Symbol

Value

Unit
Volts

VDRM

(T J = -40 to +1250 Ci

Ya Sine Wave 50 to 60 Hz, Gate Open
MAC94 and MAC94A - 1
2
3
4

On-State RMS Current

Amp

IT(RMS)

Full Cycle Sine Wave 50 to 60 Hz,

SEATINGP~F1~~
PLANE

30
60
100
200

D3~

O.S
Amp

ITSM

(One Full Cycle, 60 Hz, T C = +600 C)
preceded and followed by rBted
12t

(T J = -40 to +1250 C, t=1.0to S.3 m~

Average Gate Power
Peak Gate Cu rrent

0,01

Watt

IGM

1.0

Amp

Operating Junction Temperature Range

TJ

-40 to +125

Storage Temperature Range

T stg

-40 to +150

°c
°c

MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A
4.32
5.33 0.170 0.210
B

C
D
F
G

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

ROJC

75

°C/W

Thermal Resistance, Junction to

ROJA

200

°C/W

Ambient

H
J
K
L
N
P

4.44
3.18
0.41·
0.41
1.14

5.21
4.19
0.56
0.48
1.40
2.54
2.67

0.175
0.125
0.016
0.016
0.045

0.205
0.165
0.022
0.019
0.055
0.100
0.105

2.41
0.095
12.70
0.500
6.35
.Jili!I
2.03
2.92 0.080 0.115
2.92
0.115
R
3.43
0.135
S
0.41 0.014 0.016
0.36
All JED EC dimensions and notes apply.
CASE 29-02

TO-92

36

C

SECT. A·A

~

A',
0.15

PG(AV)

.

K

~

IiR

6.0

current
Circuit Fusing Considerations

T L

F~_ ~

STYLE 12:
PIN 1. MAIN TERMINAL 1
2. GATE
3. MAIN TERMINAL 2

ITC = +SOoC)
Peak Non-Repetitive Surge Current

A

MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)

ELECTRICAL CHARACTERISTICS (TC ' 25°C unless otherwise notedl
Characteristic

Symbol

Peak Blocking Current (Either Direction)
Rated VDRM@TJ' 125°C, Gate Open
Peak On-State Voltage (Either Directionl
ITM' 1.12A Peak; Pulse Width = 1.0 to 2.0 ms, Duty Cycle':; 2.0%

Gate Trigger Current, Continuous de
Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width"" 2.0/.ls
MT2 (+1, G(+I; MT2(-1, G(-I
MT2(+I, G(-); MT2(-1, G(+)

-

Volts

-

All Devices
MAC94A-l thru MAC94A-4

~

o

>

2

~

l. 0

'"~

O. 8

I-

~ O. 6

t!:I

'"

-..........

- --40

0.1
0.1

-

-

10
20

mA

IH
TC' 25°C

TC = -40°C

FIGURE 2 - TYPICAL GATE TRIGGER
CURRENT

-20

;;0
.§

UUAORANT4

~
2 and 3

~

~ O. 2

o

3.0
3.0

-

0

0.4

-60

2.0
2.0

-

2.0

~ 1.4

5.0
10

VGT

= 100 Ohms

FIGURE 1 - TYPICAL GATE TRIGGER
VOLTAGE

~

1.5
mA

All Devices
MAC94A-l thru MAC94A-4

Initiating Current = 20 rnA

~ 1. 6

IGT

= 100 Ohms

Holding Current (Either Direction)
Main Terminal Voltage = 7.0 Vdc, Gate open,}

I'....

2.0
Volts

Main Terminal Voltage = Rated VDRM, RL' 10 k ohms, TJ = 125°C
MT2 (+1, G(+I; MT2(-), G(-)
All Devices
MT2(+I, G(+I; MT2(-), G(-I
MAC94A-I thru MAC94A-4

1. 8

-

Unit
mA

MT2 (+), G(+I; MT2(-1, G(-I TC = -40°C
All Devices
MT2(+I, G(-I; MT2(-I, G(+) TC' -40o C MAC94A-l thru MAC94A-4

~

Max

VTM

Gate Trigger Voltage, Continuous de
Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width = 2.0 J,l.S
MT2 (+), G(+); MT2(-1, G(-I
MT2(+I, G(-I; MT2(-1, G(+I

Min

IDRM

+20

-..;;;

=::::::::: ::::::,....

-- -+40

+60

+80

~

=>
~

r.-::::::

0
0

r-..

aUAORANT4

I

............

0

7. 0
~ 5. 0

2and3

~

~

3. 0

1

w

!;{ 2.0

r-

+100

"'"-

'"

~

+140

-60

.......

-

~

1. 0

O. 7
O. 5
+120

-

-40

-20

+20

+40

+60

+80

TJ, JUNCTION TEMPERATURE (OCI

TJ, JUNCTION TEMPERATURE (OCI

37

+100

+120 +140

MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)

FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

FIGURE 3 - AVERAGE CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

~ 1101--+--fS::S~R,oC'~
w

a:
~ 100

~ 901---+---+-~

ai

~ 80
«

~-t,t­

~.~

u~ 70

'"

'"

a = CONDUCTIO NANG LE ---I---I----+------"i~-----""I

60

500L-~-----:-!-=---:.l:::----c40~0--5~0c::-0----:6:-!-DO=---:7±OO:--~BOO
ITIRMS). RMS ON-STATE CURRENT ImA)

InAV). AVERAGE ON-STATE CURRENT ImA)

Iwl-

FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
130
120

'"'w
::>
'"

r....

~

110

~~ ~

90

~
ai

600
70

iii

.

'"'"

'"

-

40

o

."'-. ~~ i------ 12oO

200

100

300

400

70

a:;

60

~

50 -

'"

~
~.-

o

100

200

"'" ,-'"

...........

" "- , ''-

-......: ........ '-

........

40 - . = iDNDUrlDN JNGLE
30

500

/,600

,,,,

0

§'"

'"«

30°

~ ~ ~ b<900
IBOO~ K" ~ ~
de --'"
~ ......:........
~ -.......:

0

~

\ \. 1\.." _"---l-IBOO
\. "'-.1"...

~.

120°..---'

i

~

~ ~I-...

~ ~ ;::::.....

~ 10 0

".l ~"
~
\.

50

Or-..

11 0

w

a" CONDUCTION ANGLE-

~

90°

60

30

12

~

a"'300~ ~ ::--..

BO

'"'"a5

~a-

~~

100

!;(

~

130

.........

300

400

500

ITIRMS). RMS ON-8TATE CURRENT ImA)

InAV).AVERAGE ON-STATE CURRENT ImA)

FIGURE 7 - ON-STATE POWER DISSIPATION

FIGURE 8 - ON-STATE POWER DISSIPATION

1.0,---r----,-----,----,,-------,-;.-----------..----------o...----y--,

g
~
'"~

O_B

S

O_B t---j----j---t---I--;,---,'-ho"-----oA--"c----f---1

~
0:

0_6

~

~

to

w

:::;
'"

0_6

~

w

TJ = 125°C

0.4

'"~

>

«

~

0.4
I--~--I-~~~~~~~~-+-~~-~

~ 0_21--~-----o...,.~~;.£~=--I----""--__+_-~-~
1-~~~------1'---+---+- a = CONDUCTION ANGLE
200

300

400

~-W.~~1~00--20LO--3~00-~4~00:--~L---~LO--7~0-0-~BOO

BOO

InRMS). RMS ON-8TATE CURRENT (rnA)

'TIAV). AVERAGE ON-STATE CURRENT (rnA)

38

MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)
FIGURE 9 - MAXIMUM ON-STATE
CHARACTER ISTICS

FIGURE 10 - TYPICAL HOLDING CURRENT

.0

7. 0

~

-""!: j::"'"

.0

k;::: ~

.0

~

3. 0

~

V/250C

=>
'-'

;)

.0

'"

;;:
.§

~

TJ = 125°C

I

5. 0

CI

z

2.0

~

I

GAT! OPEN 1
APPLIES TO EITHER OIRECTION

'"

..........

...........
..........

o

i'--.

x
~

~

06

",

~

0

.4

~

13
w
f-

~

O. 2

'"i'--.

1.0

I

I

O. 7
-60

/I

-40

-20

+20

/I

+40

+60

+80

+100

+120 +140

TJ,JUNCTION TEMPERATURE (OCI

:z
o

FIGURE 11 - MAXIMUM NON·REPETITIVE SURGE CURRENT

~

=>

~

o. 1

10

z
~ 0.0 6

''""

c::

"
~

~

70

",

c- 0 a4

=:::::::: r-.....

5.0

~

=>

'-'
w

'"
0;

0.0 2

~

'"
~

0.006
0.4

TJ = 115°C
f = 60 Hz I

rr r

10

SlrgellS , re e e( nd fOllOWer by

'"

0.0 1

r-...

30

rar ed crrrT t

I-

);
1.0
1.1

1.0

28

10 •

4.4

3.6

1.0

30

50

VT, INSTANTANEOUS ON·STATE VOLTAGE (VOLTS)

II II
10

10

30

50

100

10k

10 k

NUM8ER OF CYCLES

FIGURE 12 - THERMAL RESPONSE

~
N

1.0

'"

05

~

02

:::;

~

--

~
<{

~

~

01

~

'"~

0.05

- --

ZOJC(t) = r(t) • ROJC

f-

E 0.02
in
:
I-

001

2.0

5.0

10

20

50

100

100

500

10k

10k

5.0 k

t, TIME (m,)

MAC40688 thru MAC40690
For Specifications, See 2N5441 Data, Volume II.

MAC40797, MAC40798
For Specifications, See 2N5571 Data, Volume II.
39

MAC800, A, B(SILICON)
Series

MT20~MTI

SENSITIVE GATE
TRIACS
(THYRISTORS)
4 AMPERES RMS

SILICON BIDIRECTIONAL THYRISTORS
· .. designed primarily for full·wave ac control applications, such as light
dimmers, motor controls, heating controls and power supplies; or wherever
full·wave silicon gate controlled solid-state devices are needed. Triac type
thyristors switch from a blocking to a conducting state for either polarity
of applied anode voltage with positive or negative gate triggering.

25 thru 800 VOL TS

• Sensitive Gate Triggering (A and B versions) Uniquely Compatible for
Direct Coupling to TTL, HTL, CMOS and Operational Amplifier
I ntegrated Circuit Logic Functions.
• Gate Triggering 2 Quadrants - MAC800 Series
4 Quadrants - MAC800A,B Series
• Blocking Voltages to 800 Volts
• All Diffused and Glass Passivated Junctions for Greater Parameter Uni·
formity and Stability
• Center Gate Fire for High di/dt Capability
MAXIMUM RATINGS
Rating
R epetl tive Pea k Off -State Voltage, Note 1
MAC800.A,B-02
ITJ = 1250 CI
-05
-10
-20
-40
-60
-80

RMS On-State Current
TC = 95°C
IFull Cycle Sine Wave 50 to 60 Hzl
Peak Non-Repetitive Surge Current
10na Full cycle, 60 Hz, T = -40 to +1250 CI
Circuit F using Considerations
ITJ • -40 to +1250 C, t = 1.0 to 8.3 msl

Peak Gate Power
IMaximum Pulse Width

Value

Unit

Volts

VORM
25
50
100
200
400
600
800
ITIRMSI

4.0

Amp

ITSM

40

Amp

12t

6.5

A 2s

PGM

10

Watts

PGIAVI

0.5

Watt

VGM

5.0

Volts

TJ

-40 to +125

°c

T stg

-40 to +150

°c

= 10 !lsi

Average Gate Power

Peak Gate Voltage
IMaximum Pulse Width

Symbol

= 10 !Is)

Operating Junction Temperature Range

Storage Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

ReJC

5.0

°C/W

Thermal Resistance. Case to Ambient

ReCA

150

°CIW

NOTES:
1. Ratings apply for open gate conditions. Thyristor devices shall not be
tested with a constant current source for blocktng capability such that
the voltage applied exceeds the rated blocking voltage.
2. For soldering purposes, soldering temperatures shall not exceed +230o C
for 10 seconds.

40

MILLIMETERS
MIN MAX
B.B9 9.40
B B.OO B.51
C 6.10 6.60
D 0.406 0.533
E
0.229 3.lT
F
0.406 0.483
G
4.83 5.33
H 0.711 0.864
0737 1.02
J
K 12.70
L
6.35
450 NOM
M
1.27
P
Q
90' NOM
R 254
-

DIM
A

INCHES
MAX
MIN
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.1J09 0.125
0.016 0.019
0190 0.210
0.028 0.034
0029 0.040
0.500
0250
45' NOM
0.050
90' NOM
0100

-

STYLE 4:
PIN 1. MAIN TERM. 1
2. GATE
3. MAIN TERM. 2
All JEDEC notes and dimensions apply.

CASE 79-02
TO·39

MAC800,A,B series (continued)
ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted 1
Symbol

Min

Typ

Max

Unit

Peak Blocking Current (Either Direction)
Rated VDRM @ T J = 125°C, Gate Open

IDRM

-

0.5

2.0

mA

Peak On-State Voltage (Either Direction)

VTM

-

-

2.0

Volts

Characteristic

ITM = 6.0 A Peak, Pulse Width ';;300~s, Duty Cycle ';;2.0%.

Peak Gate Trigger Voltage

Volts

VGTM

Main Terminal Voltage = 12 Vde, R L = 100 Ohms, T J = -4o"C
Minimum Gate Pulse Width = 8.3 ms
MT2 1+1, GI+I; MT21-1, GI-I All Types
MT21+1. GI-I; MT21-1, GI+I MAC800A,B Series

-

Main Terminal Voltage = Rated VDRM, R L = 10k ohms, TJ = 125°C
Minimum Gate Pulse Width::. 8.3 ms
MT21+I, GI+I; MT21-1, GI-I All Ty·pes
MT21+1. GI-I; MT21-I, G(+I MAC800A,B Series

0.2
02

=

12 Vdc, Gate Open, T J

Initiating Current = 1.0 Adc
TJ = -40°C

TJ = 25°C

2.5
2.5

-

-

-

mA

IH

Holding Current (Either Direction)

Main Terminal Voltage

1.4
1.4

=

-40°C

-

-

-

70
30
30
15

tgt

-

1.0

2.0

/-"

dv/dt

-

5.0

-

VI",

MAC800 Series
MAC800A,B Series
MAC800 Series
MAC800A,B Series

Gate Controlled Turn-On Time (Either Direction)
Rated VDRM,ITM = 14 Ade,lGT = 100 mAde

Cntlcal Rate of Rise of Off-State Voltage
Rated VORM, Exponential Waveform, TC

=

95°C, Gate Open

IGTM* (mAl for the following Quadrants

(See Definition Below)

Junction
Temperature

Device
Peak Gate Tngger Current
Main Terminal Voltage = 12 Vdc, RL
Minimum Gate Pulse Width

= 8.3

= 100 ohms

I

II

III

IV

-

30

-

60

-

C

30

-40°C

60

MAC800A

+25 O C

5.0

5.0

5.0

10

Series

-40°C

20

20

20

30

MAC800B

+25 0 C

3.0

30

30

5.0

Series

_40°C

15

15

15

20

+25 0

MAC800
Series

ms

*The values listed are Maximum Values.

QUADRANT DEFINITIONS
MT2(+1
QUADRANT II

QUADRANT I

MT2(+\, G(-)

MT2(+), G(+)

Trigger devices are recommended for gating on Tnacs

They provide

Consistent predictable turn-on POints
Simplified CircUitry
Fast turn-on time for cooler, more effiCient
and relrable operation

ELECTRICAL CHARACTERISTICS of RECOMMENDED
BIDIRECTIONAL SWITCHES

MBS4991

MBS4992

MBS100

Vs

60-lOV

75 - 9.0 V

30-50V

IS

350 "A Max

120 "A Max

100 - 400 "A

!VS1 -VS2!

05 V Max

02 V Max

PART NUMBER

QUADRANT IV

QUADRANT III

MT2(-), G(+)

MT21-I, GI-I

LampDlmmer

General

USAGE
G(-I-------~I-------- GI+I

Temperature
Coefficient

0.02%/ o C Typ

0.35 V Max
0.05%/ o C Typ

See AN-526 for Theory and Characteristics of Silicon BIdirectional SWitches

MT21-1

41

MAC800,A,B series (continued)

fiGURE 2 - POWER DISSIPATION

fiGURE 1 - RMS CURRENT DERATING

- 8.0,--,---,---y--,---,----,---y----,

~

~ 7.0J---+---+----+---+----+--+----+-~

120J--+--""'~~2"""=-+---1'-----+--+~'--i

-~ 6.0

~ 1151---+--+-~-k=''';;~;;;:c---'''''+-=----"f-=-+--w

:3

1101---+--+--+---~...-~...F""""-=--cI/-=""'l~--

; : !:f-

105J--+---+--+--+--=1""-~-.I.-7':..d---'1

~
~ 100

5

~

~
jJ~~

95

CONOUCTION ANG LE

90

~

~ 5.0

C
0:

4.0

w

3.0J---+--+--+_--t....-;,L-h~=--+_\ _"'i""--_j

~

o~

CONDUCTION ANGLE

..

'"

~ 20J---+--+-~~~~~~~~,-t_~_+--~

>
«
'>

--I--+--+---IJ--~

10f----+---:~:e::;.-:;;.r."""'=--+---+--=-t----+--I

~ O~~~:---_~-__;_~-~:___:---~-~~-~--:~
o
1.5
2.0
2.5
3.5
4.0

85o!---~---;-l,;---,l;----;;2l,;.0---;;2J,.5---;;3!;;.0:-----;;3!;,5-~4.0

IT(RMS). RMS DN·STATE CURRENT (AMP)

IT(RMS). RMS ON·STATE CURRENT (AMP)

fiGURE 4 - TVPICALGATE·TRIGGER CURRENT

FIGURE 3 - TYPICAL GATE·TRIGGER VOLTAGE

~ 3.0

I

::;

I

~
z

w

'::;
o 1. 0
>

r-- r-- I---"-

w

'"'"co
fw

~

7
O. 5

iB

-

'"

w

-..;;

"

1"--.

1'--

1. 0

o. 7

~

O. 5

«

..........
i'...

r--...

i"'---.

'"

'"

"

f-

'" O. 3
>
-60

"-

~

I

DFF·STATE VOLTAGE~ 12 Vdc
ALL QUADRANTS

2. 0

o

o

""~
'"

I

:l

OFF·STATE VOLTAGE< 12 Vdc
ALL QUADRANTS

~ 2. 0

.0

~

I

t;
-40

-20

20

40

60

80

100

120

140

O. 3

-60

-40

20

-20

40

60

80

100

120

140

TJ. JUNCTION TEMPERATURE (OC)

TJ. JUNCTION TEMPERATURE (OC)

SAMPLE APPLICATION:
TTL·SENSITIVE GATE 4 AMPERE TRIAC
TRIGGERS IN QUADRANTS II AND III

IC LOGIC
FUNCTIONS

I

TTL
HTL

CMOS (NAND)

FIRING QUADRANT
III
II
MAcaOOA
MACaOOA
Senes
Series
MACaOOA
MAcaOOA
Series
Series

MACaOOe

MACaQOB

Series

Series

CMOS (Buffer)

60 Hz

Operational
Amplifier

Zero Voltage
Switch

42

IV

MACaQOe
Series

MACaOOe

MAC800A
Series

MAC800A

Series

MAC800A

MAcaOOA

Series

Series
Series

MAC800,A,B series

(continued)

FIGURE 6 - TYPICAL HOLDING CURRENT

FIGURE 5 - MAXIMUMON·STATE CHARACTERISTICS
40

3.0

~
-:;....--

I

1\

0

V

0

t7'

7

II

0

0

.......
.............

..........

5

I

TJ= 125 0 C

""

0

H
0

IN EITHER OIRECTION

f',.

~

20

~~~e~~~~LlEJ FORCIONOUJTION

\..

./

30

..........

O. 3

-60

!

-40

-20

20

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE IOC)

/I

'/
0

FIGURE 7 - MAXIMUM NON·REPETITIVE SURGE CURRENT
25 0 C

40

II

0

7

I

o. 5

~

34

~

"'"

32

'"
'"~

30

'"

24 t---

E

I

I

36

w

I

o. 1

~

.~

III

o. 2

,.

38

'"~

I
II

o. 3

0::

28

r-

""'" ~ I"--

't-..

TJ "'-40 to+1250C
f = 6~ Hz

'"

I

26

,",met-·

SURG~ IS PREC~OEO ANO FOLLOWEO
BY RATED CURRENT

22

f"...

,
r--

20

1.0
1.0

2.0
3.0
4.0
5.0
NUMBER OF FULL CYCLES

5.0

4.0

3.0

2.0

7.0

10

IIT,INSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

FIGURE 8 - THERMAL RESPONSE
0

7

-

o. 5
;i §

03

~;i

,.

02

~~

1

~ ~

0.05

,.~

"f-

~

ZOJClt) = rltl o ROJC

V

'"
f-O

~ ~ 007 c--.

:g ~

003
002

om

01

02

05

1.0

2.0

5.0

10

20
t, TIMElms)

43

50

100

200

500

10k

2.0 k

5.0k

10k

MBD 101 (SILICON)

SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)
SILICON HOT-CARRIER
UHF MIXER DIODE

... designed primarily for UHF mixer applications but suitable also
for use in detector and ultra·fast switching circuits. Supplied in an
inexpensive plastic package for low·cost, high·volume consumer
requ irements.
• The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact
•

Low Noise Figure - 7.0 dB Max @ 1.0 GHz

• Very Low Capacitance - Less Than 1.0 pF
•

@

Zero Volts

High Forward Conductance - 0.48 Volts (Typ) @ IF = 10 mA

MAXIMUM RATINGS
Rating

MB

Symbol

Value

Unit

Reverse Voltage

VR

4.0

Volts

Forward Power Dissipation @I T A = 25°C
Derate above 250 C

PF

280
2.8

mW
mW/oC

Junction Temperature

TJ

+125

°c

T stg

-65 to +150

°c

Storage Temperature Range

A

P~fr1::frl

SEATING
PLANET
F-

.

L

~K

l

A

~1:1
IsECT A·A

ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)

r--J-R

Symbol

Min

Typ

Max

Unit

V(BR)R

4.0

5.0

-

Volts

CT

-

O.BB

1.0

pF

VF(11

-

0.48

0.60

Volts

Noise Figure
(f= 1.0 GHz. Nota 2)

NF

-

6.0

7.0

dB

Reverse Leakage
(VR = 3.0 V)

IR

-

0.02

0.25

itA

Series Inductance (Note 3)

LS

-

6.0

-

nH

Cc

-

0.18

-

pF

Characteristic
Reverse Breakdown Voltage
(lR = IOI'Al

Diode Capacitance
(VR =0. 1= 1.0 MHz. Note 1)
Forward Voltage

Case Capacitance (Nota 1)
If = 1.0 MHz. Lead Length"" 1116"')

2. CATHODE
N

DIM

(IF=10mA)

(I =250 MHz, Lead Length"" 1/16"')

~LE1:
~
PIN 1. ANODE
,0"-0,
N

..

(1) Matched sets available. Contact Motorola Sale. Office with specific requirements.

44

MILLIMETERS
MIN
MAX

4.32
5.33
S 4.45
5.21
C 3.18 4.19
D U.Jbti 0.533
0.407 0.482
F
1.27 SSC
G
H
1.27
J
2.54 BSC
K 12.70
L
6.35
N 2.03
2.66
P
!.93
R 3.43

A

INCHES
MIN
MAX

0.110
0.175
0.125
0.014
0.01.
0.05

0.210
0.205
0.1
0.021
J.Dl.

BSG
0.0
0.100 BSC

U.bUU

0.250
O.UIIO 0.1U~

0.115
0.135

CASE 182·02

C

MBD101 (continued)

TYPICAL CHARACTERISTICS
(T A = 25°C unless noted)

FIGURE 2 - FORWARD VOLTAGE

FIGURE 1 - REVERSE LEAKAGE
100

1.0
0.7
0.5

50

-

<"
.3
~

0.2

;

o. I

;2
w

ffi

-VR=3.0Vdc

1

V

....

./
/

0.0 7

'"

5.0

~

2.0

~

"

0.0 2

10

~~
~

~ 0.05

./

20

/

1.0

!£. o. 5
0.2

0.0 1
30

O. 1

40

50

60

10

80

90

100

110

120

0.2

130

0.4

0.3

TA. AMBIENT TEMPERATURE (OC)

FIGURE 3 - CAPACITANCE

o. 9

9. 0

~

!XI

...........

w

-..............
O.B

i"--..

U

;t
;oj
",'

0.1

---

0.1

FIGURE 4 - NOISE FIGURE
1
0

'"2

0.6

VF. FORWARO VOLTAGE (VOLTS)

1.0

~

0.5

~

7. 0
6.0

I'---

~

LhcAt

o!cll~A~JJ FREJuEJCyl = ).0 G1Hl
(Test circuit Figure 5J

'" "-

8.0

"'u:::w

::>

\..

.......

5.0

5
2

I.L~

2

4. 0
3. 0
2.0

0.6

1.0

o

1.0

2.0

3.0

0.1

4.0

VR. REVERSE VOLTAGE (VOLTS)

0.2

0.5

1.0

2.0

5.0

10

PLO. LOCAL OSCILLATOR POWER (mW)

FIGURE 5 - NOISE FIGURE TEST CIRCUIT

LOCAL
OSCILLATOR

NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge

~
UHF
NOISE SOURCE
H.P.349A

I------

OIOOE IN
TUNEO
MOUNT

{Boonton Electronics Model 75A or equivalend.

Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adiusted
for 1.0 mW. I F amplifier NF = 1.5 dB, f = 30 MHz,

-

see Figure 5.

J
NOISE
FIGURE METER
H.P.342A

IF AMPLIFIER
NF =1.5 dB
f =30 MHz

Note 3 - LS is measured on a package having a short- instead of a
die. using an impedance bridge (Boonton Radio Model
250A R X Meter!'

45

MBD 102 (SILICON)

SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)

SILICON HOT-CARRIER
UHF MIXER DIODE

· .. designed primarily for UHF mixer applications but suitable also
for use in detector and ultra-fast switching circuits. Supplied in the
low-inductance Mini-L package for low·cost, high-volume consumer
requirements.

• The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact
• Low Noise Figure - 5.5 dB Typical @ 1.0 GHz
• Very Low Capacitance - Less Than 1.0 pF @ Zero Volts
• High Forward Conductance - 0.48 volts (Typ) @IF = 10 mA
•

Mini·L Ridge Clearly Identifies Cathode Lead for Easy Handling
. and Mounting

MAXIMUM RATINGS (TJ

= 125 0 C unless otherwise noted)

Rating

Symbol

Value

Unit

Reverse Voltage

VR

4.0

Volts

Forward Power Dissipation @TA - 2SoC

PF

400
4.0

rnW
rnW/oC

TJ

+125

°c

Tstg

-65 to +150

°c

Derate above 2SoC

Junction Temperature

Storage Temperature Range

~q
n=~L

f

L

S

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Characteristic
Reverse Breakdown Voltage

Symbol

Min

Typ

Max

Unit

VIBR)R

4.0

5.0

-

Volts

CT

-

1.0

pF

(lR = 101lA)
Diode Capacitance
IVR=O,f= 1.0MHz, Note I)

0.8

DIM
A
B
C

Forward Voltage
(IF = lOrnA)

VF(I)

-

0.48

0.60

Volts

Noise Figure
If = 1.0 GHz, Note 2)

NF

-

6.0

7.0

dB

0
F

Reverse Leakage
IVR = 3.0 V)

IR

-

0.02

0.25

Il A

H
J
K
L

Series Inductance (Note 31
If = 250 MHz, Measu'ed at Lead
Stop ",I 18")

LS

-

3.0

-

nH

N
R

Case Capacitance INote I)
If = 1.0 MHz)

Cc

-

0.1

-

(1) Matched sets available. Contact Motorola Sales Office with specific requirements.

46

pF

S
T
U

MILLIMETERS
MIN
MAX

INCHES
MAX
MIN

3.86
4.11
2.92
3.18
1.91, 2.16
0.64
0.89
0.18
0.08
1.55
1.30
0.64
0.89
4.06
4.32
2.36
2.62
1.12
1.37
0.79
1.04
1.99 12.75
1.14
1.40
0.43
0.69

0.152
0.115
0,075
0,025
0.003
0.051
0.025
0.160

0.162
0.125
0.085
0.035
0.007
0.061
0.035
0,170

ft
.
0.045
0,017

CASE 226

0.054
0.041
0.502
0.055
0.027

B

MBD102 (continued)

TYPICAL CHARACTERISTICS
(TA = 25°C unless noted)

FIGURE 1 - REVERSE LEAKAGE
1.0
0.7
0.5

~

0,3

~

0.2

~w

0.1

;2

~

FIGURE 2 - FORWARD VOLTAGE
100
50

r--- I--VR

3.0 Vdc

,/
.,/

./

20

~

10

a~

5.0

~

0.07

~ 0.05

'" 0.03
0.02

~

~-~--

./

~

1--- f---

~

r---? ~-

./
/

20
1.0

u: 0.5

_.- - -

)---

0.2

0.0 1
30

o. I
40

50

60

70

80

90

100

110

120

0.2

130

0.4

0.3

TA, AMBIENT TEMPERATURE (OC)

FIGURE 3 -DIODE CAPACITANCE

I\.

LbcAL

10

.e
w

f" 1.0 MHz

!g

'-'

""
'-'
"
w
c

~

f-

i3

;t

O.S

c

Q

...:

--

""-

0.7

'-'

0.6

o

o!cll!A~JJ FREJUE~Cv'";O G1HZ
(Test circUit FIgure 5)

90

TA" 2(OC

0.9

0.7

FIGURE 4 - NOISE FIGURE

10

"-

0.6

05

VF, FORWARO VOLTAGE (VOLTS)

'-'

"-

8.0
70

u:

6.0

~

5.0

i'...

.....

w

I--"-

u: 4.0
z

3.0

2.0

1.0

2.0

1. 0
0.1

4.0

3.0

0.2

VR, REVERSE VOLTAGE (VOL TSI

03

0.5

1.0

2.0

3.0

5.0

10

PLO, LOCAL OSCILLATOR POWER (mWI

FIGURE 5 - NOISE FIGURE TEST CIRCUIT

LOCAL
OSCILLATOR

NOTES ON TESTING AND SPECIFICATIONS
Note 1 -

l
UHF
NOISE SOURCE
H.P_ 349A

I----

DIODE IN
TUNED
MOUNT

I---

IF AMPLIFIER
NF= 1.5 dB
f = 30 MHz

and CT are measured using a capacitance bridge
(Boonton Electronics Model 75A or equivalent).

Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. I F amplifier NF = 1.5 dB, f = 30 MHz,
see Figure 5.

-

t
NOISE
FIGURE METER
H.P.342A

Cc

Note 3 - LS is measured on a package having a short instead of a
die, using an impedance bridge (Boonton Radio Model
250A R X Meter).

-47

MBD103

(SILICON)

SILICON HOT-CARRIER DIODE
(SCHOTTKY BAR'RIER DIODE)
SILICON HOT-CARRIER
... designed primarily for microwave mixer applications but suitable
also for use in detector and ultra·fast switching circuits.
•

Supplied in Hermetic Ceramic Pill Package with low package
parasitics

•

The Rugged Schottky Barrier Construction Provides Stable
Characteristics by Eliminating the "Cat-Whisker" Contact
Cathode

•

Low Noise Figure - 6.0 dB Typ

•

Very Low Capacitance - Less Than 1.0 pF

•

High Forward Conductance - 0.35 Volts (Typ)

@

MICROWAVE MIXER DIODE

1.0 GHz
@

B

Zero Volts
@

IF = 100 IJA

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

Reverse Voltage

VR

4.0

Volts

Forward Power Dissipation @TA = 2SoC
Derate above 2SoC

PF

280
2.8

mW
mW/oC

+125

°c

-65 to +150

°c

Junction Temperature

TJ
T stg

Storage Temperature Range

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Svmbol

Min

Tvp

Max

Unit

V(BR)R

4.0

5.0

-

Volts

CT

-

0.88

1.0

pF

VF

-

0.48

0.60

Volts

Noise Figure
If = 1.0 GHz, Note 21

NF

-

6.0

7.0

dB

Reverse Leakage

IR

-

0.016

0.25

~A

Characteristic
Reverse Breakdown Voltage
(lR =

IO~A)

Diode Capacitance
(VR=O,f= 1.0MHz, Note 1)

Forward Voltage
(IF = 10mAI

(VR = 3.0 VI

Series I nduetaoce (Note 3)

DIM

LS

(1= 250 MHz)

Case Capacitance (Note 1)
(I = 1.0 MHz)

STYLE 1PIN 1. CATHODE
2 ANODE

Cc

..

-

-

0.8

-

nH

0.15

-

pF

•
B
C

0
F
H

MILLIMETERS
MIN
MAX
2.97
3.30
1.96
221
3.78
4.09
1.52
1.68
1.50
1.65
1.78
1.93

INCHES
MIN
MAX
0117

0.077
0.149
0.060
0.059
0.070

CASE 45·01

48

0.130
0.087
0.161
0066
0.065
0.D76

MBD103 (continued)

TYPICAL CHARACTERISTICS

ITA = 25°C unless noted)

FIGURE 2 - FORWARD VOLTAGE

FIGURE 1 - REVERSE CURRENT

1.0
0.7

100

t--- VR = 3.0 Vdc

50

" 0.5
.3

ffi

./

0.3

./

~

0.2
~
~ 0.1
«
~ 0.07
~ 0.05

>

~

5.0

/'

10

'"=>

~ 2.0

/'

0.03

~ 0.02

'"

20

~

./

lli

ffi

"

./

/

0.0 1
20

'"~

1.0

~

0.5

~

40

60

80

100

/

o. 2
o. 1

120

0.38

0.30

0.46

TA, AM81ENT TEMPERATUR E (DC)

12
11

o. 9

"'uz
~

~

............
...............
0.8

U

::
;:;
u

-- ---

r--

\

~

8.0

(L~C;I(O;""ato~ F';QUencv' = 1.~ G~z

r

-

I-- ,---

1.0

20

"

J'.,.

7.0

5.0
0.1

4.0

3.0

VR. REVERSE VOLTAGE (VOLTS)

(FIgure 5, Note 2)

'\.

6.0

o

0.70

I II
I II
I II

---'
9.0

~~

\

10

"'
~
~

07

0.6

062

FIGURE 4 - NOISE FIGURE

FIGURE 3 - CAPACITANCE
1.0

~

0.54

VF, FORWARD VOLTAGE (VOLTSJ

0.2

"

0.3
05 0.7 1.0
20
3.0
PLO, LOCAL OSCILLATOR POWER (mWJ

50

70

10

FIGURE 5 - BLOCK DIAGRAM FOR NOISE FIGURE

LOCAL
OSCILLATOR

NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge

~
UHF
NOISE SOURCE
H.P.349A

DIODE IN
TUNED
MOUNT

(Boonton Electronics Model 75A or equivalent).

Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. IF amplifier NF = 1.5 dB, f = 30 MHz,

f--

see Figure 5.

t
NOISE
FIGURE METER
H.P.342A

Note 3 - LS is measured on a package having a short instead of a

I---

IF AMPLIFIER
NF= 1.5 dB
f = 30 MHz

die. using an impedance bridge (Boonton Radio Model

250A R X Meter!.

I-

49

MBDSO 1(SILICON)
MBD701
o -....~~~o

HIGH-VOLTAGE
SILICON HOT-CARRIER
DETECTOR AND SWITCHING.
DIODES

SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)

50-70 VOLTS

I~DfrlB

· .. designed primarily for high-efficiency UH F and VH F detector
applications. Readily adaptable to many other fast switching RF and
digital applications. Supplied in an inexpensive plastic package for
low-cost, high-volume consumer and industriallcommerical requirements.
• The Schottky BarrierConstruction Provides Ultra-Stable Characteristics By Eliminating the "Cat-Whisker" or "S-Bend" Contact
•

Extremely Low Minority Carrier Lifetime - 100 ps (Max)

•

Very Low Capacitance - 1.0 pF

•

High Reverse Voltage - to 70 Volts

•

Low Reverse Leakage - 200 nA (Max)

-r....l",--H

SEATING
PLANE

•

F

MAXIMUM RATING (TJ

A

o .:l1i~--

.:J a, 1-=

Symbol

Reverse Voltage

Value

Unit

Forward Power Dissipation@TA = 25°C

PF

Operating Junction Temperature Range
Storage Temperature Range

mW
mWloC

TJ

-55 to +125

,DC

T stg

-65 to +150

DC

0

S~CT A-A
C

::t:t,-

MIN

o

500
5.0

I

R

OIM

50
70

Derate Above 25°C

J

-I

MIllIMETERS

Volts

VR
MBD501
MBD701

K

r-r
~-t-i

= 1250 C unless otherwise noted)

Rating

1
L

______1

STYLE 1:
PIN 1. ANOOE
2. CATHOOE

A

CASE 182-1

F

MAX

432

5.33

445
18

521
.1
0533

O.
27
127
2Jl4BSC

121

R

343

0135

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)
Characteristic

~mbol

Reverse Breakdown Voltage

(lR = 101'Ade)

Min

~

Max

50
70

-

-

CT

-

0.5

1.0

pF

T

-

15

100

ps

-

7.0
9.0

200
200

VF

-

1.0

1.2

Vde

LS

-

6.0

-

nH

Cc

-

0.18

-

pF

MBD501
MBD701

Total Capacitance, Figure 1

Unit
Volts

V(BR)R

(VR = 20 Volts, 1 = 1.0 MHz)
Minority Carrier Lifetime, Figure 2
(I F = 5.0 mA, Krakauer Method)
Reverse Leakage, Figure 3

(VR = 25 V)
(VR = 35 V)

nAdc

IR
MBD501
MBD701

Forward Voltage, Figure 4

(IF = 10 mAde)
Series Inductance

(1= 250 MHz, Lead Lenth",1116")
Case Capacitance
(1= 1.0MHz, Lead Lenth""1116")

50

MBD501, MBD701

(continued)

KRAKAUER METHOD OF MEASURING LIFE TIME

CAPACITIVE
CONDUCTION

STORAGE
CONDUCTION

FORWARD
CONDUCTION

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - MINORITY CARRIER LIFETIME

FIGURE 1 - TOTAL CAPACITANCE
500

20

-

.
.....
w

u

Z

>-

12

U

;t
j

0.8

b

>-

is

I

1.6

f

=

"[
:; 400

,.

1.0 MHz f-----

~

1\
\

KRAKAUER METHOD

~ 300

\

~

~ 200

I'---

"'

t---

o

~ 100

0.4

"
5.0

/

>>-

10

15

20

25

30

35

40

45

---

./

f--

10

50

/

20

30

40

50

60

70

80

90

100

IF, FORWARD CURRENT (mA)

VR, REVERSE VOLTAGE (VOLTS)

FIGURE 4 - FORWARD VOLTAGE

FIGURE 3 - REVERSE LEAKAGE
100

0
TA

11000C

0

-

TA
1

1

TA

75°C

1
>-

5. 0

;:;

2. 0
1. 0

~

\

I--

.
~

-

25°C

o
o

~

~

10

O. 2
O. 1

10

20

30

40

50

VR, REVERSE VOLTAGE (VOLTS)

o

0.4

0.8

1.2

1.6

2.0

VF, FORWARD VOLTAGE (VOLTS)

51

=

0.05
0.02
0.01

0.00 1

VALUES SHOWN ARE
STEADY STATE.
TYPICAL PRINTED
CIRCUIT BOARD
MOUNTING

5

2.4

2.8

MBD502 (SILICON)
MBD702
O--II~aI------40

HIGH-VOLTAGE
SILICON HOT-CARRIER
DETECTOR AND SWITCHING
DIODES

SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)

50-70 VOLTS

· .. designed primarily for high·efficiency UHF and VHF detector
applications. Readily adaptable to many other fast switching RF
and digital applications. Supplied in the low·inductance Mini·L package for low-cost, high·volume consumer and industrial/commercial
requirements.
MBD502 Marked with Orange ColorStripe
MBD702 Marked with Brown Color Stripe

• The Schottky Barrier Construction Provides Ultra-Stable Character·
istics by Eliminating the "Cat-Whisker" or "S-Bend" Contact
•

Extremely Low Minority Carrier Lifetime - 100 ps (Max)

~q

• Very Low Capacitance - 1.0 pF
•

High Reverse Voltage - to 70 Volts

•
•

Low Reverse Leakage - 200 nA (Max)
Mini·L Ridge Clearly Identifies Cathode Lead for Easy Handling
and Mounting

n=~L

iJr

Symbol

Reverse Voltage

Unit

Operating Junction Temperature Range
Storage Temperature Range

MILLIMETER
DIM MIN
MAX
4.11
A 3.86
8
2.92
3.18
C
1.91
2.16
0.64
0
0.89
0.08
0.18
F
H
1.30
1.55
0.64
J
0.89
4.32
K 4.06
L
2.36
2.62
1.12
1.37
1.04
R 0.79
1.99 12.75
S
T 1.14
1.40
0.69
U 0.43

Volts

VR
50
70

Forward Power Dissipation @TA = 25°C
Derate Above 25°C

TJ

T stg

mW

400
4.0

mW/oC

-55 to +125

°c

~5

°c

PF

1.ANOOE

K

Value

MBD502
MBD702

PIN 1 CATHODE

~
~-+c
T+~

= 1250 C unless otherwise noted)

Rating

B

S

j

MAXIMUM RATING (TJ

I

L

to +150

•

INCHES

MI.
0.152
0.115
0.075
0.025
0.003
0.051
0.025
0.160
0.093
0.044

0.031
0.472
0.045
0.017

MAX

0.162
0.125
0.085
0.035
0.007
0.061
0.035
0.110
0.103
0.054
0.041
0.502
0.055
0.027

CASE 226

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)
Characteristic

Symbol

Reverse Breakdown Voltage
IIR

= 10jlAdei

MBD502
MBD702

Diode Capacitance. Figure 1
IVR

= 20 Volts, f = 1.0 MHzl

Minority Carrier Lifetime, Figure 2

II F

(VR
(VR

= 25 VI
= 35 VI

Max

Unit

Volts

-

-

50
70

-

-

CT

-

0.4B

1.0

pF

T

-

15

100

ps

-

7.0
9.0

200
200

1.0

1.2

Vde

nAdc

IR
MBD502
MBD702

Forward Voltage, Figure 4

VF

-

LS

-

3.0

-

nH

Cc

-

0.1

-

pF

= 10 mAdel

Series Inductance
(f = 250 MHz, Measured at Lead Stop"" 1/8"1

Case Capacitance
(f

Typ

=5.0 rnA, Krakauer Methodl

Reverse Leakage, Figure 3

IIF

Min

VIBRIR

= 1.0 MHzl

52

MBD502, MBD702

(continued)

KRAKAUER METHOD OF MEASURING LIFE TIME

STORAGE
CONDUCTION

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - DIODE CAPACITANCE

FIGURE 2 - MINORITY CARRIER LIFETIME

2.0

500
TA ='25 DC

u..

I

1.6

f

f--

=1.0 MHz r--

w
u

'"

~
U

KRAKAUER METHOD

1.2

1

~

;3
w

'"'"
c
li

0.8

~

......"

r--

0.4

0

-

0

0

0
5.0

10

15

20

25

30

35

40

45

-I--

50

VR. REVERSE VOLTAGE (VOLTS)

V

- --

/

/

I-- I--

IF.PEAK FORWARD CURRENT (mA)

FIGURE 3 - REVERSE LEAKAGE

FIGURE 4 - FORWARD VOLTAGE

0

100
50
TA _IIOODC

;;:

0

.§
I-

~

-

TA=J5DC

r--

1

1

u

~

~

-

TA=25 DC

~

i-

10

20

30

40

5.0
2. 0
1. 0

50

VR. REVERSE VOLTAGE (VOLTSI

VALUES SHOWN ARE
STEADY STATE.
TYPICAL PRINTED
::
CI RCUIT BOARD
MOUNTING

=

O. 5
O. 2
O. 1
0.0 5
0.02
0.0 1
0

I

0.00 1

o

:::>

0
10

0.4

O.B

1.6

2.0

VF. FORWARD VOLTAGE (VOLTS)

53

2.4

2.B

MBI-l0l (SILICON)

SILICON HOT-CARRIER MICRO-I DIODE
(SCHOTTKY BARRIER DIODE)

SILICON HOT-CARRIER
UHF MIXER
MICRO-I DIODE

... designed primarily for UHF mixer applications but suitable also
for use in detector and ultra·fast switching circuits.
•

The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact

•

Low Noise Figure - 7.0 dB Max@ 1.0 GHz

•

Very Low Capacitance - Less Than 1.0 pF @ Zero Volts

•

High Forward Conductance - 0.48 Volts (Typ) @ IF = 10 rnA

•

Supplied in Space Saving Miniature Package

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VR

4.0

Volts

PF

200
2.0

mW/oC

TJ

+125

°c

Tstg

-65 to +150

°c

Reverse Voltage

Forward Power Dissipation @TA

= 25°C

Derate above 25°C
Operating Junction Temperature

Storage Temperature Range

Device Marked With Yellow Top.

mW

~ KJlo
--.i

ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)
Characteristic

Reverse Breakdown yoltage
(lA= lO I'Al
Diode Capacitance
(VA = O. f= 1.0 MHz. Note 1)
Forward Voltage

L K-

Symbol

Min

Typ

Max

Unit

V(BA)R

4.0

5.0

-

Volts

CT

-

0.88

1.0

pF

VF(ll

-

0.48

0.60

Volts

NF

-

6.0

7.0

dB

'A

-

0.02

0.25

I'A

LS

-

3.0

-

nH

OIM

Cc

-

0.15

-

pF

C

(IF = 10 rnA)
Noise Figure

(f = 1.0 GHz. Note 2)

Reverse Leakage

STYLE 1:
PIN 1. ANODE
2. CATHOOE

iA-j

,~EJ~ tit
1
t
4

I

(VR = 3.0 V)
Series Inductance (Note 3)

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

1.98
1.22
0.25
0.10
0.51
0.03
4.19
0.89
0.38

0.078
0.048
0.010
0.004
0.020
0.001
0.165
0.035
0.015

(f = 250 MHz. Lead Length'" 1/16")
Case Capacitance (Note 1)

(f = 1.0MHz. Lead Length'" 1116")
(1) Matched sets available. Contact Motorola Sales Office with specific requirements.

TYPICAL HIGH DENSITY MOUNTING TECHNIQUE

~00~5
~
PC

===::a=:r

0
F
H
J
K
l
N

2.34
1.47
0.41
0.15
0.76
0.08
4.45
1.14
0.64

0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025

Optional Package with Raised
Circular Tab Available; Specify
Case 166·01.

0025

BOARD MOUNTING

A

t

MaXimum Solder Temperature
2S0 oC for lOs

CASE 166·02

54

MBI-101 (continued)

TYPICAL CHARACTERISTICS
(T A = 25°C unless noted)

FIGURE 1 - REVERSE LEAKAGE

FIGURE 2 - FORWARD VOLTAGE
100

1.0

07

50

05

-

;;'

./

-VR,3.0Vdc

V

.3

~
~

~w

/'
./

0.1

~

10
50

~

10

13

~ 0.0 7

"~

~ 0.0 5

'"

10

....

IL"

0.2

;;'
.§

'"
-

"

0.0 1

/
/

/

1.0

~

05
01

00 1
30

01
40

50

60

70

80

90

100

110

110

0.1

130

0.3

TA, AMBIENT TEMPERATU RE 1°C)

04

FIGURE 3 - CAPACITANCE
1\.
10

LbcAL

O~CIIL!A~JJ FREJUE~Cyl,)o G1HZ
(Test Circuit F1gure 5)

9.0

.."....

0.9

w

I'---.-

u

U

~

0.8

u

w

o
o

i5

~

...............

-- ---

0.7

FIGURE 4 - NOISE FIGURE

1.0

't;.

0.6

05

VF, FORWARD VOLTAGE (VOLTS)

r:o

8.0

~

70

'"u:

6.0

'"
<3

5.0

::>

t---

"-

"'- ..........

w

.
..

~.

0.7

4.0
3.0
1.0

0.6

o

1.0
1.0

1.0

3.0

0.1

4.0

VR, REVERSE VOLTAGE (VOLTS)

0,1

0.5

10

1.0

5.0

10

PLO, LOCAL OSCILLATOR POWER (mW)

FIGURE 5 - NOISE FIGURE TEST CIRCUIT

NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge
1800nton Electronics Model 75A or eqUIvalent).
Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. IF amplifier NF = 1.5 dB, f = 30 MHz,

see Figure 5.
Note 3 - LS is measured on a package having a short instead of a
die, using an impedance bridge (Boonton Radio Model
250A RX Meterl.

55

MBR320M
MBR330M
MBR340M

SCHOTTKY
BARRIER
RECTIFIERS

HOT CARRIER POWER RECTIFIERS

3 AMPERE

. emploYing the Schottky Barner pnnclple in a large area metal-ta-sillcon power

diode. State of the art geometry features epitaxial construction with oXide passiva-

20, 30,40 VOLTS

tion and metal overlap contact. Ideally sUited for use as rectifiers In low-voltage,
high-frequency Inverters, free wheeling diodes, and polarity protection diodes .

•

Extremely Low vF

•

Low Power Loss/High Efficiency

•

Low Stored Charge, MaJonty

•

High Surge Capacity

Carner Conduction

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage

Average Rectified Forward Current

Symbol

20

30

40

Volts

VRSM

24

36

48

Volts

10

VR(equiv)";; 0.2VR (de), TC = 65°C
VR(equiv),,;;0.2 VR,(dcl. TL = 90°C
( ReJA = 25 0 C/W, P.C. Soard
Mou nt i "9, See Note 31
Ambient Temperature
Rated VR(dc), PF(AV) = 0
ReJA = 25 0 C/W
Non-Repetitive Peak Surge Current

..

1-'

°c
65

60

55

I

~

L

Amp

500 (for 1 cycle)

~

- - -65 to +125 _

C

r

°c

Temperature Range (Reverse
Voltage applied)

Peak Operating Junction Temperature

TJ(pk)

(Forward Current Appl ied)

.

..

150

A
B

Thermal Resistance, Junction to Case

C
D
K

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherWISe noted.)
Symbol

Min

Typ

Max

-

-

TC = 25°C
TC = 100°C

-

-

-

-

10
75

-

11.43
8.89
7.62
1.17 1.42
24.89

INCHES
MIN
MAX

-0.046
0.980

MECHANICAL CHARACTER ISTICS
FINISH: All external surfaces corrosion-resistant
and the terminal leads are readily
solderable.
POLARITY: Cathode to c ....
MOUNTING POSITIONS: Any

(1) Pulse Test: Pulse Width =300"s, Duty Cycle = 2.0%.

56

0.450
0.350
0.300
0.056

CASE: Welded, hermetically sealed construction.
mA

IR

MILLIMETERS
MIN
MAX

CASE 60

0.450

Currerit@rateddeVoltage(11

STYLE 1:
PIN 1. CATHODE
2. ANODE

Unit
Volts

vF

Voltage (1)
(iF = 5.0 Amp)
Maximum Instantaneous Reverse

L,
DIM

Characteristic

Maximum Instantaneous Forward

K

°c

THERMAL CHARACTERISTICS

Characteristic

o

K

IFSM

TJ,Tstg

~,

Amp
15_
3.0_

TA

(surge applied at rated load conditions, halfwave, single phase 60 Hz)
Operating and Storage Junction

MBR320M MBR330M MBR340M Unit

VRRM
VRWM
VR

MBR320M, MBR330M, MBR340M (continued)

NOTE 1: OETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibil ity of thermal runavvay
must be considered when operating th is rectifier at reverse voltages
above 0.1 VRWM.
of equation III:
TAlmaxl
where

Proper derating may be accomplished by use

of 1150 C. The data of Figure. 1, 2 and 3 iobased upon dc condi·

= TJlmaxl

- R8JA PFIAVI - R8JA PRIAVI

III

T A(max) '" Maximum allowable ambient temperature

tions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative
design; Le.:
VRlequivl

T J(max) == Maximumallowable junction temperature
11250 C or the temperature at which ther·

= VINIPKI

x F

141

The Factor F is derived by considering the properties of the various
rectifier circu its and the reverse characteristics of Schottk V diodes.

mal runaway occurs, whichever is lowest).
PF(AV) = Average forward power dissipation

Example:

PR(AV) = Average reverse power dissipation

Find TAlmaxlfor MBR340M operated in a 12·Volt dc

10 A IIFIAV) = 5 A), IIPKI/IIAVI
Vlrmsl. R9JA = 100 CIW.

supply using a bridge circuit with capacitive filter such that IDe

R8JA = Junction-ta-ambient thermal resistance
Figures 1, 2 and 3 permit easier use of equation (1) by taking
reverse power dissipation and thermal runaway IOta consideration.
The figures solve for a reference temperature as determined by
equation 121:
TR

when forward power is zero. The transition from one bou ndary
condition to the other is evident on the curves of Figures 1, 2 and
3 • a difference in the rate of change of the slope in the vicinity

= TJlmaxl - R8JAPRIAVI

121

Find VRlequivl. Read F = 0.65 from Table I :.
VRlequiv) = 11.411110110.65) = 9.2 V
Find TR from Figure 3. Read TR = 117o C@ VR =
9.2 V & R9JA = lO o C/W.
Find PFIAVI from Figure 4. Read PFIAVI = 6.3 W

Step 1:
Step 2.
Step 3

Substituting equation 12) into equation (1) yields.
TAlmaxl = TR - R9JA PFIAVI

@IIPKt 10 & IFIAVI = 5 A
IIAVI
Find':: AI \Y.ax I from equation 131. TAl maxI = 117·1101
16.3) - 54 C.

131

Inspection of equations (2) and (3) reveals that TR IS the ambient
temperature atwhich thermal runaway occurs or where TJ =- 12S o C,

=

= 10, Input Voltage = 10

Step 4'

TABLE I - VALUES FOR FACTOR F
Circuit

Half Wave
Resistive _1 ~apacitive (1)

Load

0.5
0.75

Sine Wave
Square Wave

I

Resistive

Capacitive

Resistive

0.5

0.65

1.0

1.5

0.75

0.75

1.5

J-;-;:-r-- N
......
~ t"'-... .........
f"""'-.....""""":
'"~ 105 -.........: :---.:
, , =' i"'r-..." r--...
i". . . . . . r--.,.,
.....
.........
r-...
........... 1'-...,
t--.'
~ 95

,r--..

ROJA IOCM') = 71i' ~I:...
I>("r-,.
60
./
'X~
50
40
. / 'X ~r30
"",)4.
25 20
/15
-1 10'"

1!i
>-

~ 85

r--... ><

iii

i

r-....'

75

~ 65

,

55
2.0

3.0

'j"

E~

RaJA IOC/WI

'"=>>-

105

~

95

w
'-'

85

1!i
>-

~
...

'"

,

~~

w

;:--...;

.....

55
3.0

4.0

5.0

~

" "........

LX :-............. "-

15

10 ....

~~ ~

10
15
7.0
VR, REVERSE VOLTAGE IVOLTSI

"'

~

20

FIGURE 4 - FORWARO POWER DISSIPATION

~

.........

~........

_L

55
7.0

,,~

...........'2'" ~~ K.~ !"..
............ ~. ~ K
./

:'.2' t'.L'>

/"'.">

"

......

:.'-.. .".. .'-l"\'
:-.: ~ ."l"\"
.......
~ ~

10
15
20
VR. REVERSE VOLTAGE IVOLTSI

'"'

30

40

IFIAVI. AVERAGE FORWARO CURRENT lAMP)

57

......

~x.~ ['.2'.. ~
I/'.x.~ ~ ........

"'

~
...........

310 25 ."
,
20 1510 """
5.0

~
r-..,."
~L".L-.. 1>-..."')...

I'X.X ~... "- I\...

" , " " """ .,
" r-. ......-'"

60
50
40

65

4.0

,

" "-"' "".....
'-

...........
...........
r-...'
.......... .........
........ ........

'..
r-~K
3.0
I:::' 1"'"":::;:::--

~.A. ~

................

I Capacitive

I

(2)Use line to center tap voltage for Vin.

FIGURE 1- MAXIMUM REFERENCE TEMPERATURE - MBR320M
125
7.0 5
~L' ',4.0
~115
3.0

,~l:"~~~~..... ..... r--.
,

Center Tapped 111,121

1.3

111 Note that VRIPKI""2 VinlPKI

w

Full Wave,

Full Wave, Bridge

........

'-

30

MBR320M, MBR330M, MBR340M (continued)

THERMAL CHARACTERISTICS
FIGURE 5 - THERMAL RESPONSE
1.0
W

<.>

z

~
iii

0.7
0.5

.--

0.3

~ C 0.2
.. !:::!

«W

a: ....
~ ~

:: g;

Ji:J1

_f-"

o. 1

tp

0,07

~ ~ 0.05

~
?

""

_

f-tl----1

0;

>-

ZeJCIt! • R'JC • rlt!

DUTY CYCLE, 0 • tp/ll
PEAK POWER, Ppk, is peak of an
equivalent square power pulse.

Pk
TIME

'" TJC· Ppk . ROJC 10 + II - O!· rIll + tp! + rltp!-rll1l1
0.03

where
l:l TJC

0.02

rlt)

0.0 1
0.5

1.0

2.0

5.0

10

20

50

100
t, TIME

200

Pk

500

1-----11---1

2.0 k

1.0 k

10 k

5.0 k

20 k

50k

NOTE 3 - MOUNTING DATA
Data shown for thermal resistance junction-to-ambient
(RaJA) for the mountir.gs shown is to be used as typical
guideline values for preliminary engineering.

Ppk

tp

': the increase in junction temperature above the case temperature
normalized value of transient thermal resistance at time, t, from Figure 5, i.e.:
r(tl + tp) '" normalized value of transient thermal resistance at time, 11 + tp.

1m,!

NOTE 2 - FINDING JUNCTION TEMPERATURE

J=tjL

=

DUTY CYCLE, 0 " tp/q
PEAK POWER, Ppk. IS peak of an
equivalent square power pulse

TYPICAL VALUES FOR ReJA IN STILL AIR
LEAD LENGTH, L liN!

TIME

To determme maximum Junction temperature of the diode 10 a given Situation,
the following procedure is retommended.
The temperature of the Clse should be measured uSing a thermocouple placed
on the case at the temperature reference pomt (see Note 3). The thermal mass
connected to the case IS normaily large enough so that It will not Significantly
respond to heat surges generated in the dIOde ala result of pulsed operation once
staady-state conditions are achieved. USlIlg the measured value of TC. the junction
temperature mavbedetermmed by
TJ'''TC+6TJC
where 0. TJC IS the IIlcrease In Junction temperature above the case temperature
It may be determined by
t:. TJC = Ppk 'R6JC [0+(1- Ol . r(q +tpJ +r(tpl-r(I111
where
r(tl'" normalized value of tranSient thermal resistance at time, t, from Figure
51' ..
r (tl + tpl ~ normaflzed value of tranSient thermal resistance at time tl + tp

MOUNTING
METHOD

1/4

1

ReJA

1

55

60

°C/W

2

65

70

°C/W

25

3

°C/W

MOUNTING METHOD 3
P. C. Board with
2 1/2" x 2 1/2" copper surface

FIGURE 6 - APPROXIMATE THERMAL CIRCUIT MODEL
ReCA
70 0 C/W
ReS(Al

ReLlA!
40 0 C/W/IN
ReLIK!
40 0 C/W/IN

Use of the above model permits calculation of average
junction tem",erature for any mounting situation. Lowest
values of thermal resistance will occur when the cathode
lead Is brought as close as possible to a heat dissipator; as
heat conduction through the anode lead is small. Terms
In the model are defined as follows:
·Ca.. temperature reference
I, at cathode end.

TEMPERA,URES

TA =
T A(Al =
T A( K) =
TL(A) =
TL(K)=
TJ =

ReSIK!

THERMAL RESISTANCES

AaCA = Case to Ambient
Ambient
ReS(A):::; Anode Lead Heat Sink to Ambient
Anode Heat Sink Ambient
Cathode Heat Sink Ambient RaS( K) = Cathode Lead Heat Sink to Ambient
L(A) = Anode Lead
Anode Lead
RaL(K)= Cathode Lead
Cathode Lead
Junction
AOCL = Case to Cathode Lead
AOJC = Junction to Case
R8J(A) = Junction to Anode Lead (S bend)

Rn

58

MBR320M, MBR330M, MBR340M (continued)

FIGURE 7 - TYPICAL FORWARD VOL TAGE
200

~J5DC

100

:.,....-

./
100DC-

70

...z
a:

~

20

700

~

500

::>

u

f = 60 Hz

...........
...........

w



G
it

"...
:::;

L

0:
30

Prior to surge, the rectifier is operated such
that TJ = 100DC; VRRM may beapplied be·
tween each cvcle of surge .

0:

/

50

~

--

FIGURE 8 - MAXIMUM SURGe CAPABILITY
1000

80

12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)

NOTE 4 - HIGH

FREQU~NCY

MBRl20M
MBR330M
-MBR340M
32

36

20 V
30 V
40.V
40

OPERATION

2500
2000
1500

~ :::1'---

TJ = 25 0C

......

t.... ..... :--.,

~ 1000
z

MBRl20M -

... rated de Voltaga (1)

TC

= l000C

Min

Typ

Max

vF

-

-

Unit

MECHANICAL CHARACTERISTICS

Volts

CASE: Welded, hermetically ..aled
FINISH: All external surfaces corrosion resistant
and terminal lead is readily solderable.

0.550
mA

IR

-

-

-

-

10

75

POLARITY: Cathode to Case
MOUNTING POSITION: Any
STUO TORQUE: 15 in .. lb. max

(1) Pulse Test: Pulse Width = 300 1'5, Duty Cycle = 2.0%:

60

MBR1520, MBR1530, MBR1540 (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibil ity of thermal runaway

3 as a difference in the rate of change of the slope in the vicinitY
of 115°C. The data of Figures 1. 2 and 3 is based upon dc condi·
tions. For use in common rectifier circuits, Table I indicates sug-

must be considered when operating this rectifier at reverse voltages
above 0.2 VRWM. Proper derating may be accomplished by use
of equation 111:
TAlmaxl = TJlmaxl- R8JA PFIAVI- ReJA PRIAVI
III

where
T A(max)
TJlmaxl

gested factors for an equivatent dc voltage to use for con.rvative
design; i.e.:
VRlequivl = VinlPKI x F

= Maximum allowable ambient temperature
= Maximum allowable junction temper.turel125 0 C
or the temperature at which thermal runaway

Example:
Find TA(max) for MBR1540 operated in a 12·Voltdc
supply using a bridge circuit with capacitive filter such that! DC =
10 A (IFIAVI = 5 AI. I(PKI/IIAV) = 20. Input Voltage = 10
Vlrmsl. R8JA = 5 0 C/W.

occurs, whichever is lowest).
PFIAVI = Average forward power dissipation
PRIAVI = Average reverse power dissipation

Step 1:

R8JA = Junction-to~ambient thermal resistance
Figures 1. 2 and 3 permit easier use of equation III by taking
reverse power dissipation and thermal runaway into consideration.

Find VR(equivl. Read F = 0.65 from Table I:.
VRlequivl = (1.411110110.651 = S.18 V
Find TR from Figure 3. Read TR = 121 0 C @ VR = 9.18
& R8JA = 5 0 C/W
Find PF(AVI from Figure 4. Read PFIAVI = 10.5 W
I(PKI
@1(AVI=20& IFIAV)· 5 A

Step 2:

The figures solve for a reference temperature as determined by
equation 121:
TR = TJlmaxl- R8JA PRIAVI

141

The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.

Step 3:
121

Substituting equation 121 into equation 111 yields:
TAlmaxl = TR - R8JA PFIAVI
131
Inspection of equations 12) and (3) reveals that TR is the ambient

Step 4:

Find T:,(max.\ from equation (31. TAlmaxl = 121-151
110.51 - 68.5 CI.

temperatureatwhich thermal runaway occurs or where TJ = 12SoC,
when forward power is zero. The transition from one boundary
condition to the other is eviuent on the curves of Figures 1,2 and

TABLE I - VALUES FOR FACTOR F
Circuit

Half Wave

Load

Resistive

Sme Wave
Square Wave

0.5
0.75

Full Wave.

Full Wave. Bridge

Capacitive( 11 Resistive
1.3
1.5

Center Tapped I 11(2

Capacitive

Resistive

Capacitive

0.65
0.75

1.0
1.5

1.3
1.5

0.5
0.75

(21 Use line to center tap voltage for Vin-

111 Note that VR(PKI ""2 VinlPKI

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - MBR1520 FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - MBR1530

125

~~
roo
'"' 115 -==:r::::::: :-~:--::r--- ::::::t::'
~
a:
r-..... i'" ............. r-..... ...... ~
~

a: 105

.......

...........

~
>-

........

.......

"

....

~ 95

~a:

85

'- .......

3.0

4.0

.....

.....

3.5+~5.0

'I'..

"

~ 115

I-v<::.

!;;:

3il'

a:
=>

ffi

I'.
"'\to I\."'\.

......

......~

r-...

5.0

,

cr

t'<'. . . .~]><~.0

'"'-, ,'"
......

~
>-

7.0

'"

10

~

VR. REVERSE VOL TAGE (VOLTSI

15

~a:

~

~ 115
=>

~
=

105

...

11l

~
'"
....

~
...'"

95

75

........

...... r-.,

105

...........

"

'"

85

75
3.0

20

r-..

2.5

,
...
.....

.....
r-.... .......
~

5.0

"

20"\.
30",

"I'\.

10

,

I'......

1'-..,

"'-

i"
......

......

I'\.
:'\ "'\. ~
I'\.
\\

""
"""" "
'""

...............

"

'I\.
30

r\

"\.

2~r-..

~

"\

.'\ "\. \ \

'\ "I"'\. "-

"

15
20
7.0
10
4.0
5.0
"No external heat sink. VR. REVERSE VOLTAGE (VOLTSI

30

FIGURE 4 - FORWARD POWER DISSIPATION

""I" "- "\1\
'I\.

20

20r----.----,----,----,--,-r----r--r-r----,

.).; -"'. :"'\

ReJA IOCIWI • 50' .........

\.
"\. I\.

"'\.

15

1~

.~5

7.O-

VR. REVERSE VOLTAGE IVOL TSI

~=
2.5
J~
r- -t-'" ~~K35
5.0
r-..... r-.. . . . :. . . . . . . . . . . . . . . . . "><~1.. . 7.0
'r-...

1

~

'1~

,i~

'- ......
7.0

1'.."""""":: <.. . . . . X

......

ReJA (OCIW) • 50'

4.0

3.5

c:--......~ ~5.0

f..,.

,
85

.......... ......... ~

>-

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR1540

125

........ r--- r-.... ...

~ 95

I'\.

21 ' " "'\.

-t-

....

'J 11\.'1\. I\. "\
r....."'\.

ReJA (OelW! • 50'

75
2.0

125
2.5

,"- 1"\r\

30

u

40

u

U

U

10

IF(AV). AVERAGE FORWARD CURRENT lAMP!

61

MBR1520, MBR1530, MBR1540 (continued)

FIGURE 5 - TYPICAL FORWARD VOLTAGE
200

FIGURE 6 - MAXIMUM SURGE CAP.o.BILITY
1000

V
TJ' 25°C

100

V
,/"

1/ /"

I
'fI

0::

',.."
~

:! 20

B
~

'"'"

500

B

100°C

r

~
...........

w

>

'"~
:r
"

300

-

.......

~

W-

-'

"'"

r--.
!'....

200

~

.........

~

1/

10

700

~

1/

30

"...

~

70
50

Prior to surge. the rectifier is operated such
that TJ '" tOODe; Vfl RM may be applied be~e~~ e~~h cycle surge .

0::

V

.........
..... 1'-1--

100
1.0

20

3.0

"

~ 7.0

5.0

10

20

30

50

100

NUMBER Of CYCI ES

~

'""

5.0

I
I

~

2!

",..z

";!:t;

3.0

FIGURE 7 - CURRENT DERATING

I

2.0

"...
~

:! 14

.If

I

1.0

16

0::

12

B

10

c

«
'"
~ 8.0

0.7

~
w

6.0

0.&

'"

0.3

"~ 2.0

0.2

ffi
>

o

0.2
0.4
0.6
0.8
1.0
1.2
VF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

4.0

SINEWAVE ~'20
,CAPAC,ITIVE ~OADS , IIAV) ,
-+---jf--+---"'~~
CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE

0
75

1.4

105
95
TC. CASE TEMPERATURE 1°C)

85

115

125

FIGURE 8 - THERMAL RESPONSE

w

1.0
0.7

~

0.5

~
iii

- --

0.3

~ i5: 0.2

-

;i~

=-'
w

< 0.1
,,"
~ ~ 0.07

tpJ L I T P k
I-tl---1
TIME

~ ~O.05
z
~
0.03
I0.02

~

0;

DUTY CYCLE. D = tp/tl
PEAK POWER, Ppk. is peak of an
equivalent square power pulse.

:::

TJC' Ppk' ROJC [D + 11- D)· rlq +tp) + rltp)-rlq)]

where

11 TJC "" the mcreaH In junction temperature above the case temperature
r(t) = normalized value of uansient thermal resistance at time, t, from Figure 8, i.e.:
r(t1 + tp) =normalized value of transient thermal resistance at time, t1 + tp.

~

0.0 1
0.115

ZOJCIW ROJC • rlt)

0.1

0.2

0.5

1.0

2.0

5.0

10

20

t. TIME 1m,)

62

50

100

200

500

1.0 k

2.0k

5.0k

MBR1520, MBR1530, MBR1540 (continued)

FIGURE 10- TYPICAL REVERSE CURRENT

FIGURE 9 - NORMALIZEO REVERSE CURRENT

5.0

200

i5

3.0 t-VR =VRWM

N

:::;

2.0

.

1.0

w

,.a:.
0

~

~
a:
a:

::>

'"w
'"a:w

~

IE

./
./

0.2
0.1
0.07

-::::

10

~'1000C

~

75°C

V
~

'"

2.0
10

105

1--

..... :....

- -

~.

o

125

....

0.5
02

65
85
TC. CASE TEMPERATURE (OC)

~

I--- 25°C

- --

- ..- .-- - -

.- ::;.-

w 5.0

'"a:w
~

~

45

~

20

13

v

-

<
E.

50

..

./

0.7
0.5
0.3

125°C

TJ

100

V

4.0

8.0

12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)

M8R1520 20 V
M8R1530 30 V
M8R1540 40 V
32

36

40

FIGURE 11-CAPACITANCE

2500
2000
1500

........
.........

NOTE 2 - HIGH FREQUENCY OPERATION

......

~

...'"

w

z

U

~
U

t-..

1000

1'.,

Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed

TJ' 25°C

M8R1520 1-1--

by using a model consisting of an ideal diode in parallel with a

variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative

700
M8R1530

."

500
400
300
250
0.040.06 0.1

M8R 1540

waveform rectification efficiency IS approximately 70 per cent at
2.0 MHz, e.g., the ratio of dc power to RMS power In the load IS
0.28 ~t this frequency, whereas perfect rectification would Yield
0.406 for sine wave Inputs
However, In contrast to ordinary
Junction diodes, the loss In waveform efficiency IS not Indicative of
power loss; It IS simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.

I'~

I IIII
0.2

0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

63

MBR2520
MBR2S30
MBR2S40

SCHOTTKY
BARRIER
RECTIFIERS

HOT CARRIER POWER RECTIFIER

25 AMPERE
20, 30, 40 VOLTS

· .. employing the Schottky Barrier principle in a large area metal·to·
silicon power diode. State of the art geometry features epitaxial can·
str'uction with oxide passivation and metal overlap contact. Ideally
suited for use as rectifiers in low·voltage, high·frequency inverters,
free wheeling diodes, and polarity protection diodes.
•

•

Extremely Low vF

•

Low Stored Charge, Majority
Carrier Conduction
•

Low Power Loss/H igh
Efficiency
High Surge Capacity

MAXIMUM RATINGS

Non·Repetitive Peak Reverse Voltage
Average Rectified Forward Current

VR(equiv.) ';;;0.2 VR(dc), TC

VRRM
VRWM
VR
VRSM
10

= 80°C

Ambient Temperature

Rated VR(dc), PF(AV)
ReJA = 3.5 0 C/W

@J

Symbol MBR2520 MBR2530 MBR2540 Unit

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

=0

Non-Repetitive Peak Surge Current

20

30

40

24

36
25

48

85

80

•

Volts
Volts

•

Amp

STYLE 1:
1. CATHODE
2. ANODE

uc

TA
90

Amp

IFSM

(surge appl ied at rated load
conditions, halfwave, single phase,

800 (for 1 cycle)

60 Hz)
Operating and Storage Junction

TJ, T stg

-4---65to+125~

°c

Temperature Range (Reverse
voltage applied)

Peak Operating Junction Temperature
(Forward Current Applied)

TJ (pk)

..

..

150

°c

THERMAL CHARACTERISTICS
Characteristic

MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 10.77 11.10 0.424 0.437
0.405
10.29
C
0
6.35
- 0.250
1.91
4.45 0.075 0.175
E
0.060
F
1.52
J
10.72 11.51 0.422 0.453
0.800
K
20.32

Thermal Resistance. Junction to Case

CASE 245.01

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwISe noted.)

-

Symbol.

Characteristic

MaxlmufTl Instantaneous Forward

Voltage (1)
(iF = 25 Amp)
Maximum Instantaneous Reverse Current
@

Rated dc Voltage (11 (TC = lO00C)

(1) Puis. Test: Pulse Width

Min

Typ

Max

IR

Unit

Volts

vF

-

-

0.550

-

20
150

= 300 I'S, Duty Cycle = 2.0%.

64

mA

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistance and terminal lead is
readily solderable.

POLARITY: Cathode to Cose
MOUNTING POSITIONS: Any
STUO TOROUE: 15 in. lb. Max

MBR2520, MBR2530, MBR2540 (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS
Raverse power dissipation and the possibility of thermal runaway

when forward power is zefO. The transition from one boundary
condition to the other is evident on the curves of Figures 1, 2 and
3 .. a difference in the rat, of change of the slope in the vicinity
of 1150 C. The data of Figures I, 2 and 3 is based upon dc condi-

must be considered when operating this rectifier at revena voltages
above 0.2 VRWM.
of equation (1):

Proper derating may be accomplilhed by use

TA(max) = TJ(max) -R6JA PF(AV) - R8JA PR(AV)
where
T A(max) = Maxi"1um allowable ambient temperature

tions. For use in common rectifier circuits, Table I indicates sug.
gested factors for an equivalent dc voltage to use for conservative
design; i.e.:

(I)

VR(equiv) ~ Vin(PK) x F

TJ(max) = Maximum allowable junction temperature (125 0 C
or the temperature at which thermat runaway

(4)

The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottk.y diodes.

occurs. whichever is lowesd.

Example:

Find TA(max) for MBR2540 operated in a 12·Voltdc

PF(AV) = Average forward povver dissipation

supply using a bridge circuit with capacitive filter such that I DC

PR(AV) = Average reverse power dissipation

16 A (IF(AV) = 8 A), I(PK)/I(AV) = 20, Input Voltage = 10
V(rms), R6JA = 5 0 CIW.

ROJC ;;; Junction-to-ambient thermal resistance
Figures I, 2 and 3 permit e..ier use of equation (1) by taking

Step 1:

reverse power dissipation and thermal run8\Nay into consideration.
The figures solve for a reference temperature as determined by

Step 2:

equation (2):
(2)

Step 3:

Substituting equation (2) into equation (1) yields:
TA(max) = TR - R8JA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR is the ambient

Step 4:

temperature at which thermal runaway occurs or where TJ ;;; 125°C.

=

Find VR(equiv)' Read F = 0.65 from Table I :.
VR(equiv) = (1.41)(10110.65) =9.18 V
Find TR from Figure 3. Read TR = I 1~C @ VR = 9.18
& R6JA = 5 0 C/W
Find PF(AV) from Figure 4. Read PF(AV) = 14.8 W
I(PK)
@1(AV)=20& IF(AV) = 8 A
Find T A(max) from equation (3). TA(max) = 113-(5)
(14.8) = 3QoC

TABLE I - VALUES FOR FACTOR F
Circuit

HalfW...

Load

Resistive

Sine Wave

0.5
0.75

Square Wave

I Capacitive(1)

I

I
I

Resistive

1.3
1.5

I

0.5
0.75

~

......

:::>

~

~ 105

1!i
...
~

95

!
_

" r-... r-......... '"" ,"'-

i'.....

"- "

t-.....

-r-...'

I'-........

"'-

"

85

u
~ 115 ........

r-.. ~5""'"
3.5

or
w 105

.""

"

~

~
....
w

'"

r-,. 20"- r-.. "-

ffi

7.0

10

'\..

15

VR, REVERSE VOLTAGE (VOLTS)

""

95

~
cc. 85

"'\
"' 30'" I"- r-..'\..
~'\. .~ "'
5.0

..,

e..115
w
or
:::>

~

~105

1!i
...

~ 95

~

~_

....

-

r:::- r~

I"--,

I'....

"

"
I'-.

I'....
I'-.

85

-...;

r:::::

..... i'I"i'~

"-

"

"

ROJA = (oCIW) = 5i?'

75
4.0

5.0

7.0

-r-......

.........

I"--,

t'....

.......

"'"

b.., i'-

"

0"
10

"""-

~

"
I"- I\.

'"

=

5.0

7.0

10

VR, REVERSE VOLTAGE (VOLTS)

15

'\.

r-SI~EWLE 1 1 1

1

""

WAVE

./ ./

"
"-

"

/

// /

/ ' c......

4.0

8.0

>(

TJ

12

~

V
LOAD

125 0 C
16

65

-

L
1 1 1
20

IFIAV), AVERAGE FORWARD CURRENT (AMP)

*No ftxternal heat sink

de

~I~S~:;'~:EE-

./

i--"""

b :...::; ~
~ Fi""'"

40

I/:

./

V hV
..&

L

'V

V

/

/

.

l'Y
1/ /
/SQU~RE

/

/

2

'\"\

30

[\.. \.

20

5.0

/

10

/

~

\.

VR, REVERSE VOLTAGE (VOLTS)

/

"' " '\
'\.. '\..
20

3.~

!'~
i',.
"'
!',~"
ROJAIoCIW) 50......

4.0

US

2.5' ~

I\. \.
~.ot~
'\.. r-,." \
10
):'\.. '\ \

II

~
15

~"

/

"- I"\.. '\..

~15"",,-

:--.20.",-

'\.."

",,,~

...................

"
"
~'" " ""

r-,.

r-........

r--,.1.75

........... ~.5'"
...........
5.0 '\..
7.0

"- r"-.. 10"

r--"

.........

r-... ........... t"-.,. 2.5 t'-.,."['..
~

1.3
1.5

I

CAPACITIVE I(PK) = 20
LOAOS
IIAV)

l"'--.

Capacitive

FIGURE 4 - FORWARD POWER DISSIPATION

C'............
-- r-....

~"

"

75
3.0

20

8

-

........

....or

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR2540

125

I
I

~r--;~...:::r--::::::::-r-.
~
'-..

r--~~.75-

f'.... I'...
~ .~ '\..
r-.... r"-.. i"- ~ '\..'\..
,'\.. r-,."
!'- }

4.0

3.0

1.0
1.5

(2)Use hne to center tap voltage for Vin.

ROJA(oCIW) = 50"

75
2.0

Resistive

0.65
0.75

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - MBR2530
125

t- - _r-;;F::::-t--.. -.. ,t-- .......... ,I.
I""--.. ........

Capacitive

I

(1) Note that VR(PK) "" 2 Vin(PK)
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE- MBR2520
125
U
e.. 115
w
or

Full Wave,
Center Tapped (I), (2)

Full Wav., Bridge

24

28

MBR2520, MBR2530, MBR2540 (continued)

FIGURE 5 - TYPICAL FORWARD VOLTAGE

20 0

T}:25~C

7

V

100

1000 C
0

1""-1.'

FIGURE 6 - MAXIMUM SURGE CAPABILITY

--..,.

1000

~

....
15
~

- -

..............

>

Prior to surge, the rectifier is operated sue

~ 200

that TJ::: lOQDe; VRRM may be applied
between each cycle of surge

~

JI
I

i-lin

!

100
1.0

0

............

r--.

«

II

0

....... r--.

~ 300

/

0

t---..

500

13
w

..IV
~

0

.......

700

2.0

I

5.0
10
20
NUMBER OF CYCLES

50

100

0
0

0

II II
II

28
0::

~

~_

2. 0

FIGURE 7 - CURRENT DERATING

..............

~

20

SINE WAVE' h.::::"
RESISTIVE /
~ 16
LOAD

~~

O. 7

t - - t-SINEWAVE

;(

u::
O. 20

8.0

~4.0 I - - t- ~APAGITIVE
LOADS

0.3

0.2

0

1.4

0.4
0.6
0.8
1.0
1.2
vF,lNSTANTANEOUS FORWARD VOLTAGE IVOLTSI

l'..

-...... i"""'o......o.. ........ "- I,

-r-- --.

12

w

ffi

. / dc, CONTINUOUS IMAX lOG: 39.3 AI_

r-.,

,

t--

to

O.5

'<

~

13

1. 0

I"

J....-SUUARE
WAVE

24

.

IIPKI :
IIAVI

"r-,... V"'I'..
177V- ........ -"..'\1\.
20 10 5.0
::--.::: ~\
I

'\.

-

I

~
~

CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
75
85
95
105
115
TC, CASE TEMPERATURE IOGI

125

FIGURE 8 - THERMAL RESPONSE

...Jo
«w
~~
w«

1.0
O. 7
O. 5
O. 3

ZOJCIII - ROJC • rill

~~ D, 2

./

.... 0

ffi~

U; w

z<.>

V

O. 1

Pk

_

1-_ 11---1

~iO'O5

TIME

DUTY CYCLE, 0 : Ip/ll
PEAK POWER, Ppk. IS peak of an
equivalent square power pulse

,; TJC: Ppk • ROJC [0 + II - 01· rllJ + tpl + rltpl-rllJll

c: 0.0 3

where
t" TJC " the mcrease

0.0 2
0.0 1
0.05

J1:JL

tp

~ ~ 0.0 7

In

junction temperature above the case temperature

r(t) = normalized value of tranSient thermal resistance at time, t, from FigureS, I.e

r(ll + tpl::: normahzed value of tranSient thermal resistance at time, tl + tp

0.1

0.2

0.5

1.0

2.0

5.0

10
t,TIMElmsl

66

20

50

100

200

500

1.0 k

2.0 k

5.0 k

MBR2520, MBR2530, MBR2540 (continued)

FIGURE 10 - TYPICAL REVERSE CURRENT

FIGURE 9 - NORMALIZED REVERSE CURRENT
5.0

ffi

N

SOD
./

3.0 I-VR=VRWM

~ 2.0

!Z

w

./

ffi

~

!E

0.3
0.2
O. I
0.07
0.05

~

50

0.7

-

,.....

10

~

5.0

!E

2.0

w

i'

~

O.5
65
85
TC. CASE TEMPERATURE (OC)

105

o

125

FIGURE 11 - CAPACITANCE

4.0

B.O

.

-

--

--

j - - 25°C ....

1.0

45

25

....

V-

~

-~
100°C

75°C
~ ~"""

20

g§ 0.5

a~

~

1 100 v

./

a:

~ 1.0

--

TJ = 125°C

:.m

V

t;.

-.-

--

-

MBR2520 20VMBR2530 - 30 V
- - - - - - MBR2540-40V=
36
40
12
16
20
24
28
32
VR. REVERSE VOLTAGE (VOLTS)

==

NOTE 2 - HIGH FREQUENCY OPERATION

8ODO
6000
4DD0

l""'-

~3000

III

r-...

TJ

r-

Since current flow in a Schottky rectifier is the resu It of majority
carrier conduction, it is not subject to junction diode forward and

reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed

t-. "'r---.

w
u

:i 2000

by using a model consisting of an ideal diode in parallel with a

variable capacitance. (See Figure 111.

"'~ 9'

t-

~ 1500

~
;;'1000

Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz, e.g., the ratio of dc power to RMS power an the load is
0.28 at this frequency, whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the de output voltage.

MB~Z5Z0

i'..

MBR2~30

800

MBR2540

600
4DD
0.040.06 0.1

=2ioC

t-....
1'",

IIIII
0.2

0.4 0.6 1.0

2.0

4.0 6.0

10

20

40

VR. REVERSE VOLTAGE (VOLTS)

67

MBR4020
MBR4030
MBR4040

SCHOTTKY
BARRIER
RECTIFIERS
HOT CARRIER'POWER RECTIFIER

40 AMPERE
2O.ao.4O VOLTS

· .. employing the Schottky Sarrier principle in a large ,rea metal·to·silicon power
diode. State of the art oee0metry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for UI8 • rectifiers in low-voltage.
high-frequency inverters, free wheeling diodes. and polarity protection diodel.

•

Extremely L_ vF

• Low Stored Charge. Majority

•

low Power Loss/High Efficiency

•

High Surge Capacity

Carrier Conduction

dl

I

MAXIMUM RATINGS
Rating

Symbol MBR.4020 MBR4030 MBR4040 Unit

Peak Repatitiv. Rav«H Voltage
Working Paak.R"""... Voltag.
DC Blocking Vol~

VRRM
VRWM
VR

Non·Repetitiv. Paak Rov.... Voltage

VRSM

Average Rectified Forward Currant
VR(equivl SO.2 VR(dcl. TC = 700C

10

Ambient T_rature
Rated VR(dcl. PFCAVI • O.
RBJA • 2.0o CIW

TA

Non·Repetitive Peak Surge Current
(surge applied at rated loed conditions
hllfwav.. single ph_. 60 H~I

20

30

40

24

36

4B

•
100

40

95

Volts

.

90

Volts
Amp

oC

IFSM

_900 (for 1 cyclel_

Operating and Storage Junction
T.mp.ratura Rango (R"""...
voltage appliedl

TJ.Tstg

_ _ -66 to + 1 2 5 _

Amp

OIM

°c

8
C
0
E
F

Peak Operating Junction Temp.rature
(Forward Currant Appliedl

TJ(pkl

_150_

"C

Thermol Resistance. Junction to C_

2.9
-

11.43
9.53

-

11.51
25.

I.
10.72

IIJ§

5.08
2.03

-

jE5
-

-

-

0.115

0.667
0.450
0 5
O.

-80 O.QlO
0.422 O.
1.0lI0
0.152
0.20 0.411

D().6

ELECTRICAL CHARACTERISTICS

(Tc

= 25 0 C unle.. otherwise noted.1

Symllol

Maximum Instantaneous Forward

Min

Typ

Max

Maximum Instantaneous Reverse
Current@ rated dc Voltage (11
TC = l000 C

-

-

0.630

-

-

20
150

mA

IR

Duty

Unit
Volts

vF

Voltage (11
{iF =40Ampl

(11 Pulse Test. Pulse WIdth - 300 ....

J
K
L

Ii!1L IMETERS
MIN
MAX
16.94 I .45

5.58
8.32
~.
0.140 0.1 5
0
3.5&
4.45
NOTES:
1. Dim. .n·'P'·ildilnm•.
2. All JEOEC dlnoooooionsand ....... pply.
CASE 257.01

THERMAL CHARACTERISTICS

Characteristic

A

-

Cycle - 2.0%.

68

MECHANICAL CHARACTERISTICS
CASE: Welded, h.rmetlcally _ed

FINISH: All extornal ..rfKes corrosion rasislant
and terminal Iud is raadlly _
...
POLARITY: Cathode to C_
MOUNTING POSITION: Any
STUD TORQUE: 2Ii in. lb. Max

MBR4020, MBR4030, MBR4040 (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS
Rev.... power dissipation and the possibility of therm. runM8\'
must be considered when operating this rectifier at rev .... voltllglll
above 0.2 V RWM. Prop.r d.rating may be eccqmplished by use
of equation (1):
TA(max)· TJ(max) -RUA PF(AV) - RSJA PR(AV)
(1)
where

wh.n forward powar is zaro. Tha transition from one boundary
condition to tha other is evidant on the curves of Figures I, 2 and
3 . . . difference in the rate of change of tha slopa in the vicinity
of 1150 C. Tha data of Figures 1, 2 and 3 is b-.l upon dc cond~
tlons. For use in common rectifiar Circuits, Tabla I indicates SUII'
gasted factors for an equiv.ant de voltage to use for conservative
design; i.a.:
VR(equiv) = Vin(PK) x F
(4)
The Factor F is derived by considering the properties of the various
ractifier circuits and tha reve... characteristics of Schottky diodes.

T A(max) = Maximum allowable ambient temperature
TJ(max)· Maximum.lowabl.junction temp.ratur. (125 0 C
or the temperature at which th.rm. runMOV
occurs, whichev.r is lowest).

Example: Find TA(max) for MBR4040 operated in a 12·Voltdc
supply using a bridge circuit with capacitive filter such that loC =
30 A IIF(AV) = 15 A), I(PK)/I(AV) = 10, Input Voltage = 10
V(rms), RSJiII = 3 0 CIW.

PF(AV) = Av.rage forward power dissipetion
PR(AV) = Av.rage rev.... pow.r dissipation
RUC = Junction·to-ambient thermal resistance
Figures I, 2 and 3 permit e..iar use of equation (1) by taking
reverse power diaipation and thermal runawav into consideration.
Tha figures solva for a referance temperature as datermined by
equation (2):
TR = TJ(max) - RSJA PR(AV)

Step 1:

Find VR(equiv)' R.ed F = 0.65 from Table I .:.
VR(equiv) = (10)(1.41)(0.65) = 9.18 V
FindTR from Figure 3. Read TR.= lISOC@ VR = 9.18 V
& R8JA = 3 0 CIW
Find PF(AV) from Figure 4. Read PF(AV) = 25 W
I(PK)
@1(AVi 10 &IF(AV)=15A

Stap 2:

(2)

Step 3:

Substituting equation (2) into equation (1) yialds:
TA(max) =TR - RSJAPF(AV)
(3)
Inspection of equations (2) and (3) revaals that TR is the ambient
temperatu re at wh ich tharmal ru n_ov occurs or where TJ = 1250 C,

Step 4:

Find T A(l!)ax) from equation (3), T A(max) = 118·(3)
(25) = 43 C.

TABLE I - VALUES FOR FACTOR F
Circuit

HaifWav.

Load

Resistiv.

Sine Wave
Square Wave

0.5
0.75

I Capacitiva (1)
I 1.3

J

1.5

Resistive

Capacitiv.

Resistiv.

0.5
0.75

0.65
0.75

1.0
1.5

(1) Note that VR(PK) "" 2 Vin(PK)

~ 115 :::0:

=>

:c
0:

~

105

~
w

u

z
w

5

~
W

0:

.....:

5

75
2.0

r-.... r- ~ r-..

~ I'

~

I"

I""

...... t"--"
......

...... t"-" ~

r-.... ..... ~~

""
.........

t'.
"-

g

1.0

115

r"-,.... -..........:: r-...~

~

i'-

0:

~

"- ~~'\

"-

~ 105
~
....
w

i".."
"'" I""- " ",," " I"'"
"" r-..i".."-"~
I"'"
" ~~"- "~

~

,....,

~.O

u

ffi

~

'" 5.0 "

0:

15.~

R8JA (OCIW) = 40'"

3.0

4.0

5.0

7.0

3;j'..

.....:

'\

10

I

1.3
1.5

I

FIGURE 2 -MAXIMUM REFERENCE TEMPERATURE -MBR4030

125

-

I Capacitiv.

(2)Use line to center tap voltage for Yin.

FIGURE I-MAXIMUM REFERENCE TEMPERATURE -MBR4020

125

Full Wav.,
Canter Tapped (1),(2)

Full Wave, Bridge

I'

r--..
b

-..:::: -.,
~

I"-- r-....
t-....

r-... .....

r-.....-'::::::: ~

"

1'...'

1.0

'" ",,- '"

~

.\

...........

~

"-

r-.... . . . . .
~ t-....
......... ....... r-.... ......
........
r-..... ........

"-

95

I'

......

.......

r-.....

85

r-....

1"- ' "

R8JA (OCIW) = 40~"

75
3.0

20

........

4.0

5.0

" "'"

~ k~
2.0

"- '" '\ I~O

'"

5.0.

'\

.......

1:,\30 ' \ 20'\,15 I~
7.0
10
15
20
VR, REVERSE VOLTAGE (VOLTS)

I~

30

FIGURE 4 - FORWARD POWER DISSIPATION

4
6
SINE lAVE .
CAPACITIVE I(PK)

o LOAOS

I(Av)

69

-

L 1/

/ / ./.

0
0

10

)

6

'"'"

L

/

20J

II /

2
4

'No external heat sink VR, REVERSE VOLTAGE (VOLTS)

=

/
~

/
V V

5J

/

SINE WAVE
RESIST7
LOAO

/
~

~V

V

VSIlUARE

,/
TJ

~
de

~

125 0 C

V~ ~ to-'
8.0

16
24
32
IF(AV), AVERAGE FORWARO CURRENT (AMP)

40

MBR4020, MBR4030, MBR4040 (continued)

FIGURE 5 - TYPICAL FORWARD VOLTAGE
200

FIGURE 6 - MAXIMUM SURGE CAPABILITY
1000

t....-- ~
TJ = 25 0C

100

V

L
70

I-'"

lOOoC

0::

~~

'..."'

~

1:'0:i

I- -

::>

'"
pr.

...>

~
<[

'"""

lt1

0

I

............

<.>

'/

0

-.....

500

0:

L.~

50

=--- r:---"

700

300

Prior to surge, the rectifier is operated sue .
that TJ = 1000C; VRRM may beappliad
between each cvcle of surge

200

~

/1/

!

,rill

100
1.0

0

r--

2.0

5.0

1

10
20
NUMBER OF CYCLES

50

100

0
0

II 11

FIGURE 7 - CURRENT DERATING

0

...
~

2.0

0:

aco
0:

i

1. 0
.7

~
~ 16r---~~=-+----i-=~~=---~-~~~~t----l

.5

~>
": B.O

~

.3

if
.2

0.2

0.4
0.6
O.B
1.0
1.2
vF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
066

1.4

.74

B2

90
9B
106
114
TC, CASE TEMPERATURE 10C)

130

FIGURE 8 - THERMAL RESPONSE
0
7

5

3

....-

I-

2

_r-

I

29JC(t) = R9JC

~

Ji:TIPk
Ip I TIME
11--'

7

PEAK POWER, Ppk,

IS

peak of an

equivalent square power pulse.

IITJC= Ppk . ROJC 10+11-0)· rllJ+lp)+rltp)-r(ll)]
where
!:::. TJC :: the Increase in junction temperature above the case temperatura
r(tl = normalized value of transient thermal resistance at time, t, from Figure 8, I,e.~
r{tl + tp) - normalized value of transient thermal resistance at time, q + tp.

3
2
0.0 1
0.1

.-dt)

DUTY CYCLE, 0 = tpltl

I II III
0.2

0.5

1.0

2.0

5.0

10

20
50
I,T1MElms)

70

100

I

I
200

111111
500

1.0k

I I
2.0 k

I II
5.0k

10 k

MBR4020, MBR4030, MBR4040 (continued)

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 10 - TYPICAL REVERSE CURRENT

5.0

500

ffi

3.0 r-VR= VRWM

~

2.0

N

./

V

200
0 .....

/

~ 1.0

I-

a'a:i

E 0.7
::l

a:

i:l

0.5

w

::>

~

0.3

'"
ffi

0.2

~

a:

!IE O. I

......
...... ....

'"ffi

'"

V"

105

65
85
TC, CASE TEMPERATURE (OC)

125

~300o

I"'-,

2.0

TJ - 25°C

~

~ 1500

~

«
~ 1000

MBR4~0

so0
600
400
0.040.06 0.1

r-

t-.. I'-i'.

~ 2000

MB,,4020

,

2.0

L

,

4.0

8.0

~

MBR4020

___

20 V -

MBR4030-30~~

~ 1===-- - - -- MBR4D40-40V =
12

16

20

24

28

32

36

40

4.0 6.0

2.0 MHz, e.g., the ratio of dc power to RMS power in the load is

"10

20

HIGH FREQUENCY OPERATION

0.28 at this frequency. whereas perfect rectification would yield
Q.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.

II II
0.4 0.6 1.0

V

25°C

Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. F or example, relative
waveform rectification efficiency is approximately 70 per cent at

,[;

MBR4D40
0.2

r--

- ---

--

,

Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a
variable capacitance. (See Figure 11).

I....... t-

w

--

NOTE 2

r-.

<.)

.....

VR, REVERSE VOLTAGE (VOLTS)

FIGURE 11- CAPACITANCE

t--.
I'"

t---- 75°C
~

~ 5.0

!i

800 0

4000

0

O.5
45

100°C ~

O~

I.0

0.07
0.05
25

6000

O~

-

-- --

r-

,

110

./

'"a:

TJ = 125°C

40

VR, REVERSE VOLTAGE (VOLTS)

71

MBR4020PF
MBR4030PF

SCHOTTKY,
BARRIER
RECTIFIERS

.HOTCARRIER POWER RECTIFIER

40 AMPERE
20,30, VOLTS

· .. employing the Schottky Barriin principle in a large area metalto-silicon power diode. State of the art geometry features epitaxial
construction with oxide passivation and metal overlap contact.
'Ideally suited for use as rectifiers in low-voltage, high-frequency
inverters, free wheeling diodes, .and polarity protection diodes .
•. Extremely Low VF·

•
•

Low Stored Charge, Majority,. Carrier Conduction
Low Power Loss/High Efficiency

• High Surge Capacity

MAXIMUM RATINGS
Symbol MBR4020PF MBR4030PF

Rlltlng
Peak Repetitive Reverse Voltage
. Working Peak Rev.rse Voltage

"VRRM
VRWM
VR'

DC Blocking Voltage
Non·Repetltlve Peak Aevana Voltage

~

-

24

VRSM

Average Reclified Forward Current
VR(eQuiv) ';;;0.2 VR(dc), TC ~ 500 C

Ambient Temperature
Rated VR(dc)' PF(AV)
R8JA = 2.~CIW

20

10

0,

Non·Repetitive Peak Surge Current

IFSM

-

30

Volts

36

Volts

40-

Amp

96

DC,

100

TA

Unit

8QO (for 1 cyel.)-

Amp

(surge applied at fated load conditions

halfwava, ,ingle pha .. , 60 Hz)
Operating and Storage Junction
Temperature Range (Reverse

DC

TJ,Tstg
--65to+125-

DIM

voltage applied)
Peak Operating Junction Temperature

-,50-

TJ(pk)

DC

(Forward Current Applied)'

A
B
C
D
E
F

MILLIMETERS
MI.
AX

15.494 16.256 0.610
12.725 12.821 11.501
5118
635 0.20
1.193 1.346 0..'
10.11
2.032

452
J
K

THERMAL CHARACTERISTICS
Symbol

Characteristic

Thermal Reailtanca, Junction to Case

R8JC

ELECTRICAL CHARACTERISTICS (TC
Characteristic
Maximum Instantaneous Forward

Current@rateddcVoltage (11
TC -100°C

I

I

Max

Unit

Min

Typ

Max

vF

-

0.67

-

0.500

0.10

-

CASE 43-02
00-21

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed

Volts

FINISH: All external surfaces corrosion resistant
and terminal lead is readily solderable.

mA

-

-

Unit

0.630

IR

-

4.826 0.080
0
0
3.556

12.70

0.640
0.50fi
0.25
0.03
D••
0.1

°CIW

1.3

= 25 0 C unless otherwise noted.)

Symbol

Voltage (1)
(iF -40 Amp)
Maximum Instantaneous Reverse

I

INCHES
MIN MAX

20
150

(11 Pulse Test: Pulse Width - 300 liS, Duty Cycle = 2.0%.

72

POLARITY: Cathode to C_
MOUNTING POSITION: Any
WEIGHT: 9 grams IApproximately)

MBR4020PF, MBR4030PF (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runavvav
must be considered when operating this rectifier at reverse voltages

when forward power is zero. The transition from one boundary

condition to the other is evident on the curves of Figures 1 and
2 as a difference in the rate of change of the slope in the vicinity
of 115°C. The data of Figure, 1 and 2 is bosed upon dc condi-

above 0.2 VRWM. Proper derating may be accomplished by use
of equation (1 J:
TA(max) = TJ(max) - R9JA PF(AV) - R9JA PR(AV)
(1)
where
T A(maxl

tions. For use in common rectifier circuits, Table I indicates sug.gested factors for an equivalent dc voltage to use for conseNative
design; i.e.:
VR(equiv) = Vin(PK) x F
(4)
The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.

= Maximum allowable ambient temperature

TJlma)(~ = Maximum allovvabfejunction temperature (125 DC
or the temperature at which thermal runaway
occurs, wh ichever is lowest).

Example: FindTA(max) for MBR4030PF operated in a 12-Volt dc
supply using a bridge circuit with capacitive filter such that IDe =
30 A (iF(AV) = 15 A), I(FM)/IIAV) = 10, Input Voltage = 10
V(rms), RaJA = 3 0 C/W.

PF(AV) = Average forward power dissipation
PRIAV) = Average reverse power dissipation
R8JA := Junction-to-ambient thermal resistance
Figures 1 and 2 permit easier use of equation (1) by taking
reverse power dissipation and thermal ru naway into consideration.
The figures solve for a reference temperature as determined by
equation (2):
TR = TJ(max) - R9JA PR(AV)

Step 1:

Find VR(equiv). Read F = 0.65 from Table I :.
VR(equiv) = (10)(1.41)(0.65) = 9.18 V
FindTR from Figure 2. ReadTR = 118o C@VR=9.18V
& R9JA = 3 0 C/W
Fond PF(AV) from Figure 3. Read PF(AV) = 25 W

Step 2:

(2)

Step 3:

Substituting equation (2) Into equation (1) vields:
TAlmax) = TR - RaJA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR IS the ambient
temperature at which thermal runaway occurs or where TJ = 1250 C,

@ I(FM)/I(AV) = 10 & IF(AV) = 15 A
Step 4:

Find T A(max) from equation (3),
T A(max) = 118-(3) (25) = 43°C.

TABLE I - VALUES FOR FACTOR F
Circuit

Half Wave

Load

Resistive

Sine Wave
Square Wave

0.5
0.75

I Capacitive (1 )
I 1.3
I

Full Wave,
Center Tapped (1).(21

Full Wave, Bridge

I

Resistive

1.5

Capacitive

Resistive

0.65
0.75

1.0
1.5

L

0.5
0.75

I

I
I

Capacitive
1.3
1.5

I

(2)Use line to center tap voltage for Vm

(1) Note that VR(RM) ""2 Vin(PK)

FIGURE 1- MAXIMUM REFERENCE TEMPERATURE-MBR4020PF FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE-MBR403OPF
125
125

5t-::

- r--.. -.: .::::::- ........
.........

......... i"-

5

5

f"""-.
~

75
2.0

I'..

""

1"'-

......

""-

= 40:"-

115

""-"""

"'-"'\.
,,,,-

i'

"-

-.....: :-. r-..
g r-.- r- ....::::
..........
r--............
'"

~

r-.."""

i'..

......

ROJA IOCIW)
30

I"- r--

""- ""I"
"- ""
"
i'..

5

:--.. r--

~

........

......

.........

"'

...........

"

:::>

1.3

~

,,~

~ 105

'\

15
....
w

~.O

2~"'\.

r-......

..........

"- ........

r-.. .

"-

'" 85

.... 300

~

0

,

........

700

5

- -

. 100°C
70

FIGURE 5 - MAXIMUM NON·REPETITIVE SURGE CAPABILITY

,.,. ,.,.

;;
'"

1/

~

~
~

!i

Prior to surge, the rectIfier IS operated such

200

that TJ '" 100 oC, VRRM may be applied
between each cycle of surge

"
~

III

~

100
1.0

0

20

3.0

50

rrrn

7.0 10
20
NUMBER OF CYCLES

30

50

70

100

0

[I

I

FIGURE 6 - CURRENT DERATING

II
2.0

1.0

o. 7
o. 5
SINEWAVE
CAPACITIVE
LOADS

o.3

i

I
(FM) = 20 -10
I(AV)

CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE

o. 2

0.2

0.4
a6
0.8
1.0
1.2
vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

14

50

60

70

80
SO
100
110
TC, CASE TEMPERATURE (OC)

120

130

FIGURE 7 - THERMAL RESPONSE
1.0

........

i-"'"
ZOJCltl

J1:jl

tp

I

_

I-

..-

6 TJC

-

-I

11

=Ppk • ROJC

equlvalenl square power pulse.

10 + 11 - 0) . r(1l + tp) + r(lp) - r(ll) I

I 1'1 (1111
0.2

TIME

=ROJC. r(l)

DUTY CYCLE, 0 = Ip/ll
PEAK POWER, Ppk. IS peak of an

where
6 TJC '" the mcrease m junctIOn temperature above the case temperature
r(11 '" normalized value of transient thermal resistance at time, t. from Figure 7, i.e.:
((q + tpl:: normalized value of transient thermal resistance at tIme, t1 + tp

0.0 1
0.1

Pk

.5

1.0

2.0

.0

10

20
SO
I,TIME(ms)

74

100

I I
200

I I IIIIII
500

1.0k

I I
2.0 k

[ II
5.0 k

10

MBR4020PF, MBR4030PF (continued)

FIGURE 8 - NORMALIZED REVERSE CURRENT

FIGURE 9 - TYPICAL REVERSE CURRENT

5.0

~
3.0 f-VR'VRWM
N
~

./

V

2.0

~

./

co:

~
~

500
300
200

"<

.5

....
iii
a:

./

1.0

o.7

l:i

~

0.3

~
...
~
co:

0. I
0.0 7
0.05
25

~

joo"'"

"'-

!E

~

75 0 C

~-

5.0
3.0 ~
2.0

250 C

.....
MBR402DPF
MBR4D3OPF

....-L

2OV30V~

0.5
45

65
86
TC, CASE TEMPERATURE (OC)

105

125

"

i... 300a

r---

:"'-.

Rectification efficiency measurements show that operation will

i.......

S1500

1/

~

~IOO 0

Since Clm.nt flow in. SchottkV rectifier il the relult of majority
carrier CIInduction, it il not lubject to junction diode forward and
reve. . reco_V trlnli.ntl due to minority Clll'rler injection Ind
stored charge. Setllflctorv circuit .""Iylil worlc may be performed
bV uling I model CIInliotlng of an ideal diode in parall.1 with I
varleble capacltlnce. (Se. Figure 10),

t-

"

'"z 2000

30

NOTE 2 HIGH FREQUENCY OPERATION

TJ =25 0 C

1"'0.

26

10
14
18
22
VR, REVERSE VOLTAGE (VOLTS)

6.0

2.0

FIGURE 10 - CAPACITANCE

4D0 O

E

1.0

BOD0
BOD0

10

a:
w
>
w
a:

."

O. 2

!E

=>

\:.J

'"

I"

IllJOOC

100
50
3D
20

a:

0.5

=>

TJ =12~C

be satilfectory up to llveral megahertz. For .xampl., relltive
wlveform rectification .ffici.ncy is Ipproximately 70 par cent It
2.0 MHz, •. g., the ratio of dc power to RMS power in the loed is
0.28 at this frequency, where.s parf.ct rectification would yi.ld

MBR~~2DPF
,~

MBR.tsOPF

80 0

0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of

so0

power 10.. ; it is simply a result of reverse curr.nt flow through the
diode clpacitance, which lowers th. dc output voltage.

400
0.040.06 0.1

0.2

0.4 0.6 1.0

2.0

4.0 6.0

10

20

4D

VR, REVERSE VOLTAGE (VOLTS)

MOUNTING INFORMATION
Recommended procadures for mountlng.re "' follows:
1. Drill I hal. in the heat sink 0.499 t 0.001 inch in diameter.
2. Break the hal. edge al .hown to provide a guld. Into the hoi.
and prevent lhearlng off the knurled lid. of the rectifier.
3. The d.pth Ind width of the brelk should be 0.010 Inch
maximum to retain maximum heat sink surface contact.

4. To prevant daml91 to the rectifier during pre..·in, the
presling force Ihould be Ipplied only on the shoulder ring
of the rectifier case.
6. The preaing forca .hould be applied evenly ebout the
shoulder ring to avoid tilting or centing of the rectifier case
in the hole during the prell·ln oparetlon. AIIO, the use of •
thermlilubricint luch II D.C. 340 will be of conliderlble lid.
For more informetlon see: Mounting T.chnique. for M.tll Pick.
1ged Power Semiconductors, AN·69B.

TYPICAL THERMAL
IIESISTANCE, CAst
TOSINK.8CS-Q.2oCIW

M

SHOULO .. AI.o./'

1

...T

..t....f~.01NOM

I ".

...,,.,
.

NOM

~ 01' ~'EAT.i.'1%f4.
--I

t-- ..... , O.IXII "A.

HeAT SINK MOUNTINQ

ADDITIONAL
HEAT SINK PLATE

IIIVET

........
INTIMATE
CONTACT AREA

,./
CQMPLETE KNUIIL
CONTACT AREA

THIN·CHASSIS MOUNTINQ

75

THIN
CHASSIS

Mas 100 (SILICON)

A1 OO--+C@"'MI:PIG+--oOA2
SILICON
BIDIRECTIONAL SWITCH
(PLASTIC)
3to5VOLTS
500mW

SILICON BIDIRECTIONAL SWITCH

· .. designed specifically for low cost lamp dimmer and small motor
speed controls. Supplied in an inexpensive plastic TO·92 package
for high-volume requirements, this low-cost plastic package is readily
adaptable for use in automatic insertion equipment.

•
•
•
•

Low Switching Voltage - 4.0 Volts Typical
Uniform Characteristics in Each Direction
Minimizes "Flash-On" in a Lamp O'immer
Minimizes "Cogging" in a Motor Speed Control'

STYLE 12:
PIN 1. ANODE 1
2. GATE

MAXIMUM RATINGS

3.
Symbol

Value

Power Dissipation

Po

500

mW

DC Forward Anode Current

IF

200

mA

DC Gate Current (off·state only)

IGloffi

5.0

mA

Repetitive Peak Forward Current
(1.0% Duty Cycle, 10'1'5 Pulse

IFMlrep)

2.0

Amp

Rating

IFMlnonrep)

6.0

Amp

TJ

-55 to +125

°c

T stg

-65 to +150

°c

10 ~s Pulse Width, T A • 25°C
Operating Junction Temperature

Range
Storage Temperature Range

DIM
A

B

Width, T A • l000C)
Non·Repetitive Forward Current

ANODE 2

Unit

C
0
F
.L
N

P
Q

R
S

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

4.450
3.180
4.320
0.407
0.407
1.
1-.150

5.200
4.190
5.330
0.533
0.48

0.17!i
0.125
0.170
0.816
J.016

'l[2ll5"

1.390
1.270

0.045

0.055
0.050

6.350
3.430
2.410
2.030

2.670
2.670

0.250
0.135
0.095
0.080

CASE 29-02
TO-92

76

0.165
0.210
0.021
0.019

0.105
0.105

MBS100 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Symbol

Min

Typ

Max

Switching Voltage

Characteristic

Vs

3.0

4.0

5.0

Vdc

Switching Currant

IS

100

-

400

"Adc

Unit

IVS1-VS21

-

0.35

Vdc

Holding Currant

IH

-

1.0

mAde

Forward On-State Voltage
(IF 175 mAdc)

VF

-

-

2.0

Vdc

Voltage Switchback
(IF 10mAdc)

I>.V

2.0

2.8

-

Vdc

Switching Voltage Differential

=
=

FIGURE 1 - FULL RANGE CONTROL CIRCUIT

APPLICATION NOTE
The circuit shown in Figure 1 is for full range control and may

be used as a lamp dimmer or small motor speed control. Lamp
"flash-on" and motor "cogging" is minimized. Suggested triaes

listed below give power capacity available for each davice. The inrush current andlor motor locked rotor current must be within the
maximum multlcycle surge rating for the triaes suggested.

TRIAC RECOMMENDATIONS
TriltC
MAC77-4/2N6071
MACll-4
MAC37-4
MAC38-4

Package
Type

Cue 77
(Plastic)
Cue9\!

(Plastic)
C_174
(Praufltl
Cue 175
(Stud)

Maximum
Limp Load
500 Watts

Maximum
Motor Load
1/2 HP

Maximum Single

l!iOO Watts

1-1/2 HI'

!INA

3000 Watts

3HP

225 A

3000 Watts

3HP

225 A

77

Cycle Surge
30A

MBS4991 (SILICON)
MBS4992

o

o
SILICON
BIDIRECTIONAL SWITCH
(PLASTIC)
6.0-10 VOLTS
500mW

SILICON BIDIRECTIONAL SWITCH

• •. designed for full-wave triggering in Triac phase control circuits,
half-wave SCR triggering application and as voltage level detectors.
Supplied in an inexpensive plastic TO-92 package for high-volume
requirements, this low-cost plastic package is readily adaptable for use
in automatic insertion equipment.

• Low Switching Voltage - 8.0 Volts Typical
• Uniform Characteristics in Each Direction
• Low On-State Voltage - 1.7 Volts Maximum
• Low Off-State Current - 0.1 J.l.A Maximum
• Low Temperature Coefficient - O.02%/OC Typical

STYLE 12:
PIN 1. ANODE 1
2. GATE
3. ANODE 2

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

mW

Power Dissipation

Po

500

DC Forward Anode Current

IF

200

mA

DC Gate Current (off-state onlyl

IG(off)

5.0

mA

Repetitive Peak Forward Current
(1.1)% Duty Cycle, 10 ". Pulse
Width, TA = lCOOC)

IFM(rep)

2.0

Amp

Non-Repetitive Forward Current

IFM(nonrap)

6.0

Amp

Operating Junction Temperature
Range

TJ

-55 to +125

uc

Storage Temperature Range

Tstg

-65 to +150

°c

DIM

INCHES
MIN
MAX

5.200 0.175
4.19fi 0.125
5.330 0.170
0.533 0.016
0.462 0.016

1rnJ5
0.165
0.210
0.021
0.019

L
N

1.150

1.390
1.270

0.055
0.050

P

6.350
3.430
2.410
2.030

C

10 ". Pulra Width, T A = 25°C

MILLIM TERS
MN
MAX

4,450
3.180
4.320
0.407
0.407

A
B
0
F

R
S

-

2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO-92

78

-

0.105
0.105

MBS4991, MBS4992 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol

Characteristic

Min

Typ

Max

6.0
7.5

B.O
B.O

10
9.0

-

175
90

500
120

-

-

0.3
0.1

0.5
0.2

-

-

100

-

0.7
0.2

1.5
0.5

O.OB
2.0
0.08
6.0

1.0
10
0.1
10
1.7
1.7

Unit

Vs

Switching Voltage

Vdc

MBS4991
MBS4992
IS

Switching Current

MBS4991
MBS4992
Switching Voltage Differential

)VS1-VS21

Vdc

MBS4991
MBS4992
Gate Trigger Current
(VF = 5.0 Vdc RL

"Adc

IGF

= 1.0 K ohm)

MBS4992

"Ade

IH

Holding Current

MBS4991
MBS4992

mAdc

IB

Off-State Blocking Current
(VF = 5.0 Vdc, T A = 25°C)
(VF = 5.0 Vdc, T A = B50C)
(VF = 5.0 Vdc, T A = 25°C)
(VF = 5.0 Vdc, T A = 10oDC)

"Adc

-

MBS4991
MBS4991
MBS4992
MBS4992

-

VF

Forward On-5tate Voltage
MBS4991
(IF = 175 mAdc)
MBS4992
(I" = 200 mAde)
Peak Output Voltage (CC = 0.1 "F, RL = 200hms, (Figure 7)

-

1.4
1.5

Vdc

Vo

3.5

4.B

-

Vdc

Turn-On Time (Figure B)

ton

-

1.0

-

lIS

Turn-Off Time (Fiwrp. 9)

toff

-

30

-

Temperature Coefficient of Switching Voltage (-50 to +125 0 C)

TC

-

+0.02

-

-

us
%/oC

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 2 - SWITCHING CURRENT versus TEMPERATURE

FIGURE 1 - SWITCHING VOLTAGE versus TEMPERATURE

8.0

1.04

ffi
N

1.03

~

1.02

:::;

o

~

w

~

1.01

to

~

o

1.00

j..--- I---"

>
9

~

7. a

N

:::;

--

V

""

V

~
~

~

=>

-25

+25

+50

4.0

'"'
to

3.0

~

2. 0

~

1.0

1\

Z

~

-50

5. 0

>-

0.97
0.96
-75

6.0

+75

+100

0
-75

+125

"'"
-t"'-.

-50

-25

+25

+50

TA,AMBIENTTEMPERATURE IOC)

TA, AMBIENT TEMPERATURE (DC)

79

+75

+100 +125

MBS4991. MBS4992 (continued)

FIGURE 4 - OFF-5TATE BLOCKING CURRENT
v........ TEMPERATURE

FIGURE 3 - HOLDING CURRENT versus TEMPERATURE
10.0

B.O

ffi

i

7.0
Normalized
to
-

N
~

« 6.0
~
0

<0

~

\

5.0

250 C

z

~

~

2.0

'" -

w
t-

o
-50

-25

+25

+50

/

0.1

~

I'-...

~
1.0
~
-75

VF-5.0V- f - -

1.0

to

=> 3.0

§

/

~

'"'"=><.>

."'..

4.0

<.>

~

t-

r--

~

0.01
+75

+100

-50

+125

./
-25

TA. AMBIENT TEMPERATURE (OC)

+25

+50

FIGURE 5 - ON·STATE VOLTAGE.arsus FORV'!ARD CURRENT

7.0

-

~

6.0

~
w
to

5.0

0

~

0

4.0

>

t-

~

3.0

=>

0

'"~

2.0

V

V

--

1-"

..-f--

"~

V
V

~

~RL=500n

"

~RL=100n
RL = 50 n

RL = 20 n
iL'rll

.; 1.0

>
0.0 1
2.0

3.0

+100 +125

FIGURE 6 - PEAK OUTPUT VOLTAGE (FUNCTION OF RL AND Cel

10

1.0

+75

TA. AMBIENT TEMPERATU RE (OC)

4.0

5.0

0.01

0.02

VF. FORWARO ON-STATE VOLTAGE (VOLTS)

0.05

0.1

0.2

I

0.5

TA=25 0 C
1.0

2.0

5.0

Cc.CHARGING CAPACITANCE {,tFI

FIGURE 7 - PEAK OUTPUT VOLTAGE TEST CIRCUIT

10K

O.U.T.

80

+mv

10

MBS4991, MBS4992 (continued)

FIGURE 8 - TURN-ON TIME TEST CIRCUIT
MERCURY RELAY

1.0kn
ANODE
VOLTAGE

-=-

12V

1.0kn 0.01

Vs

D.U.T.

~F

VF
Vf+O.1 (VS-VF)

Turn-on timeismeasuredfromthetime

Vs is achieved to the time when the anode vOlt~gedrops to within 90% of the difference between Vs and VF'

FIGURE 9 - TURN-OFF TIME TEST CI RCUIT

lOon
S.OV

-=-

ANODE
VOLTAGE

SOD n

~----~~~----~A2

MERCURY
RELAY
(N.O.)

D.U.T.

L-________~--------------~ Al

With the SSS in conduction and the relay contacts open, close the contacts to cause anode A2 to be driven negative. Decrease C until the sas
just remains off when anode A2 becomes positive. The turn-off time, toff. is the time from initial contact closure and until anode A2 voltage

reaches zero volts.

FIGURE 10 - DEVICE EQUIVALENT CIRCUIT, CHARACTERISTICS AND SYMBOLS
+1

A2

A2

~---.~~----r---~=r~------~+V

Al
CI RCUIT SYMOO L

Al

-I

EQUIVALENT CIRCUIT

CHARACTERISTICS

81

MCA 1911 N, Pseries MCA20 11 N, Pseries
6.8 Volts

(SILICON)

8.6 Volts

MCA2111 N, Pseries
9.5 Volts

MCA2211 N, Pseries
11 Volts

REFERENCE AMPLIFIERS

REFERENCE AMPLIFIERS

OS 6039 Rl

· .. designed for use in regulated power supplies as a combination
voltage reference element and error voltage amplifier, providing tern·
perature compensation for excellent reference voltage stability.
• Available With Either PNP or NPN Polarity for Versatility of
Circuit Design
• Specified With a Variety of Reference Voltage Stability Factors
Allowing for a Wide Selection of the Most Economical Device
to Meet Circuit Requirements
• Available for Operation in Three Different Test Temperature
Ranges: 0 to +75 0 C, -55 to +1000 C, -55 to +1500 C
• Guaranteed Maximum Impedance
• "I n·Line" Leads - Ideal for Automatic Insertion

MAXIMUM RATINGS
Rating
Zener Current

Collector Current
Collector-Emitter Voltage
Operating and Storage Junction Temperature Range

Symbol

Value

Unit

IZ

20

mA

IC

20

mA

VCEO

30

Volts

TJ, T stg

435 to +175

°c

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)
Characteristic
Nominal Reference Voltage
(lZ= 5.0mA, VCE = 3.0 V,IC= 2501'AI
Maximum Reference Voltage Change with Temperature
(lz = 5.0 mA, VCE = 3.0 V,IC = 2501'AI

(lZT = 5.0 mA, lac = 10% IZI
MCA1911N, P; MCA2011N,P; MCA2111N,P;Series
MCA2211N,P Series

Collector-Emitter Breakdown Voltage

Value

Unit

VREF

6.8 -11
(Noml
(Table 11

Volts

AVREF

(Table 11

Volts

T

+

r-

~

- ---I
d-~
~
F

J\'!IIx
ohms

ZZT

BVCEO

-

40
120

30

-

Volts

STYLE
1
PIN 1 ZENER

ICBO

hFE

"A

-

0.05
10

50

300

life

6500

82

3 BASE

4 COLLECTOR

Oi
MILLIMETERS
MIN
MAX

A

•

9.65
1.62

10.41
'.1

f
G

2.29
1.02
.68
9.53

2.79
1.5
4.

•
K

$tmhas

2 EMITTER

~.

DIM

(lC = 250 "A, VCE = 3.0 VI
Small·Signal Transconductance
(VCE = 3.0 V, IC - 250 "A, f = 1.0 kHz)

--j

G

(VCB=45 VI
(VCB = 45 V, T A = 1500CI

DC Current Gain

A

~~,,;;'n3nt""'"
01-

(lC= 250"AI

Collector-Cutoff Current

rSEATING
PLANE

Symbol

Min

Zensr Impedance

Series uses onlv zener
diode and transistor.

(1) MeA 1911

INCHES
MIN
MAX
0.380 0.410
D.
.30
.1
0.090 0.110
0.0

0.375

CASE 212·(2)
(Form_ly Case 181)

-

MCA1911 N,Pseries, MCA2011 N,P series, MCA2111 N,Pseries, MCA2211 N,Pseries(contmued)

TABLE 1 - ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise specified)
Type
Number
(Note 11

Max Voltage
Change
(Note 21

Reference
Voltage

Test
Temperature
(oCI

@



1-

2.0

~ -2.5
~ -3.0
::; -3.5

10

E
~ +100

Normalized tol31 Vdc

to

Input Voltage

..

+B0

w

+6 0

~

+40

TJ

z

5

= 250 C

to

"\

c

i ~:

'\
\

20

FIGURE 3 - EFFECTS OF TEMPERATURE
ON REFERENCE VOLTAGE.

S

'"

\

\

30
40
50
60
VIn , INPUT VOLTAGE (VOLTS)

-40

a:::
~

-6 0

70

t

6.0
5. 0

~

4.0

~ 3. 0

~

2.0

....

1. 0

ii:
'!O

-60


1. 0
c

MCLTC6025 -

-20
0
+20
+40
+60
TA, AMBIENT TEMPERATURE (OC)

~ -4. 0

Reverse

u

..... r-.,.

MCLTC6010

I:::::::::::,

o

0

<

MCLT~

>

J

0

.............

-40

+2. 0

I
J

1 !'

~ -20

MCLTC6025

FIGURE 5 - EFFECTS OF LOAD RESISTANCE
ON REFERENCE VOLTAGE

l

0

~

r--

MCLTC6100.............

FIGURE 4 - TYPICAL CURRENT REGULATING
CHARACTERISTICS (Current Regulator Only)
7. 0

~

--.,..

r::-:::

~ -80
> -10 0

BO

V

- -

V

I.--:::

0

MCLTC~050-

MCLTC6102..--~

0

~

5

.....r-

Nurmalized to -550C
Vin = 31 Vdc

(No;. 2)

II
10

Temperature range -55 to 1000 e
(Nots: Typical6.VREF Isnegetive) -

111

20
30
50
40
Vin, INPUT VOLTAGE (VOLTS)

60

70

BO

(3) Figure 4 applies only to' the F ET portion of the device (from
Input to Reference).

mV or -16 mV for MCLTC6050.

86

MCR32 SERIES (SILICON)

THYRISTORS
7 AMPERES RMS
5()'600VOLTS

SILICON CONTROLLED RECTIFIERS
· .. designed primarily for industrial applications. Ideally suited for
capacitor·discharge ignition, systems, power switching and power con·
trol.
• Glass Passivated for High Reliability
•

Low Profile Hermetic Package for Tight
Printed Circuit Board Applications

•

High di/dt Capability

MAXIMUM RATINGS
Rating

Symbol

Peak Reverse Blocking Voltage

MCR32· ·05
20
30
40
50
60
Forward Current RMS (See Figures 4 & 5)
(All Conduction Angles)
Peak Forward Surge Current, T A
(1/2 cycle, Sine Wave, 60 Hz)

Value

Unit
Volts

VRRM

= 2SoC

Circuit Fusing Considerations, TA
(t ~ 1.0 to 8.3 m.)

= 25°C

Forward Peak Gate Power, TA == 25°C
Forward Average Gate Power, TA - 2SoC
Forward Peak Gate Current, T A - 2SoC

50
200
300
400
500
600

STYLE 3
PIN 1. CATHODE
2. GATE

3.ANODE

Reverse Peak Gate Voltage

Storage Temperature Range

7.0

Amps

ITSM

80

Amps

12 t

0.15

A2.

PGM

10

Watts

PGF(AV)

0.5

Watt

IGFM

10

Amps

VGRM
T

4.0

Volts

-40 to +135

°c

T.tg

-40 to +150

°c

THERMAL CHARACTERISTICS
Symbol

Max

Thermal Resistance, Junction to Case

ReJC

5.0

Thermal Resistance, Junction to Ambient

ReJA

150

Characteristic

~

/'

I
N

IT(RMS)

(3001", 120 PPS)
Operating JunctIon Temperature Range

a

I

Unit

°C/W

I

°C/W

MILLIMETERS
MIN MAX
8.89 9.40
B
8.00 8.51
6.10 6.60
C
D
0.406 0.533
E
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K
12.70
L
6.35
45 0 NOM
M
P
1.27
Q
90 0 NOM
R
2.54

DIM
A

INCHES
MIN
MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.D19
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
45 0 NOM
0.050
900 NOM
0.100

All JEDEC dimensions and notes apply.
CASE 79·02
TO·39

87

MCR32 series (continued)

ELECTRICAL CHARACTERISTICS
Characteristic

Max

Min

Symbol'

Peak Forward Blocking Voltage (1)

Unit

Volts

VoRM
MCR32-05
MCR32-20
MCR32-30
MCR32-40
MCR32-50
MCR32-S0

-

50
200
300
400
500
SOO

-

-

-

Peak Forward Blocking Current
(Rated VoRM @TC ~ 135°C)·

loRM

-

1.0

mA

Peak Reverse Blocking Current
(Rated VRRM @TC ~ '13S oC)

IRRM

-

1.0

mA

Forward "On" Voltage (2)
(lTM ~ 30 A peak @ TC ~ 25°C)

VTM

-

2.S

Volts

Gate Trigger Current (Continuous de)
(Anode Voltage ~ 12 Vdc, R L = 30 Ohms, T C = 25°C)

IGT

-

20

mA

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 12 Vdc, RL ~ 30 Ohms, TC

VGT

-

1.5

Volts

VGo

0.1

-

Volts

IH

-

20

mA

Gata Non-Trigger Voltage
(Anode Voltage = Rated VoRM, RL
Holding Current
(Gate Open, TC

= 25°C)

= 30 Ohms, TC~

135°C)

= 25°C) .

(1) Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the
anode.

When checking forward or reverse blocking capability. thyristor devices should not be tested with a constant current

SOUTce

in a

manner that the voltage applied exceeds the rated blocking voltage.
(2) Forward current applied for 1.0 ms ma,ximum duration, duty cycle :==:;;;1.0%.

FIGURE 2 - TYPICAL GATE TRIGGER CURRENT

FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT
300

III

III

~

100
0
cc
cc
0

\.

0

11I111

OFF-STATE VOLTAGE = 12 V

!

.~
~

~

0

~

1\

['...

0

.

'"cc

r-

TJ = -1i5 DC

1"-

25JC

w

2.0

10

20

w

......

!;[

........

,.:
!E

50

100

3. 0
-60

200

PULSE WIDTH (m.)

-40

-20

20

40

60

80

TJ,JUNCTION TEMPERATURE (DC)

88

V-

r-..

~ 7.0

5.0

J

i'-- ~

0

.. 5.0

1.0

I

OFJSTATJVOLT1GE.

co

100DC
0.5

I

i'....

::>

1"-

7.0
5. 0

3.0
0.2

.........

cc

::>

'"

0

I-

!i:
w

I

100

.......'"
120

140

MCR32 series (continued)

FIGURE 4 - AVERAGE CURRENT DERATING
IREFERENCE. CASE TEMPERATURE)

FIGURE 3 - MAXIMUM ON-STATE POWER DISSIPATION

8.0,-----,----.----,--,--,------,---,----,-----:..-:-:::::;;---r

140

~

70

""~

60

o"""lllll!!!!! ~
13

~

f-

~

~ 50

"

~

~
w

<.0

15>

~ ~ r-....
~~

w

~

40

12

0

'\. ~"

~ 110

"":; 10

;3

0:-

f-

U

""

,

"~CONOUCTION

~ ..........

".-......:'\. f\.

a5

30

~
-jaf-

100
a"

1.0

60 0

30 0

.......

'""- "-

o

05

IfIAV), AVERAGE fORWARD CURRENT lAMP)

10

1.5

10

-

t-....

~

"'-

:"'-.. ~
'1 l'-..
110 I
180

90 0

15

-

ANGLE

0

90

-

30

0

35

40

45

50

IfIAV), AVERAGE fORWARD CURRENT lAMP)

FIGURE 6 - AVERAGE CURRENT DERATING (REFERENCE.
AMBIENT TEMPERATURE. TYPICAL P.C. BOARD MOUNTING)

FIGURE 5 - AVERAGE CURRENT DERATING IREFERENCE.
AMBIENT -rEMPERATURE 4 in. sq. P.C. BOARD)

14 0
13

O~

~12 0 w

w

~ 110f--t---t--'...,.1Iili!l=~""'-+--

~ 11 0

~

100

~

100

as

90

r5

90

f-

f-

~ t-.....
~ ~ :-.....
~ ~ t-..
~

f-

f-

~ 80

EEl 80

~ 70

~ 70

""

""~

~ 60

~

ROJA ~ 150 0 C/W

"~CONOUCTION

60 0 ~

120 0

~ 0: ~ ~
~ ~

90°

60

50f--f--f--+--f--r--~.-+_~~~~~

50

4~~-f~~-~-----:~~~~~~-~~~~.

40

\
o

0.1

::'\:

"

180 0

""<.de

l"\: ~

"'"

0,4

0.3

0.2

ANGLE

-

r-...

0: "

30 0

~
-jaf-

~.

~
........

'\.

0.5

0.6

0.7

IT(AV), AVERAGE ON-STATE CURRENT (AMP)

FIGURE 8 - TYPICAL HOLDING CURRENT

FIGURE 7 - TYPICAL GATE TRIGGER VOLTAGE
1. I

g
o

1. 0 .........

2:
~

O. 9

~

O.8

~

'"

0

OFF-STATE VOLTAGE ~ 12 V - I - -

.........
........

;;c
g

.......

t-

~
a'"

w

~
ii:

O. 7

w

O. 6

z

§

.........

0

...........

~ O. 5
>
0.4
-60

-40

-20

20

40

60

80

""

0

<.0

......

f-

~
<.0

OFf·STATE VOLTAGE = 12 V

0'

100

'"~

..........

120

0

1'.....

~
.........

7.0

5, 0

140

-60

TJ. JUNCTION TEMPERATURE (OC)

-40

-20

W

~

W

........
M

TJ, JUNCTION TEMPERATURE (OC)

89

~
~

lW

1~

MCR32 series (continued)

FIGURE 10 - MAXIMUM NON-REPETITIVE SURGE CURRENT

FIGURE 9 - MAXIMUM ON-STATE CHARACTERISTICS
100

100

70

./
~ V"

50

_ su!g, is

10
1.0

I

j Ii

5.0

7.0

10

20

30

50

70 100

NUMBER OF CYCLES

1/
I
I

w

2. 0

~
~

=>

:il

~ 1.0

FIGURE 11 - CHARACTERISTICS AND SYMBOLS

t

TYPICAL I·V CHARACTERISTICS

,

-v :

o.7

ON.STATE
1M

I

I

I

VORM

A-

o.5

BLOCKING
STATE

~+

,
-----,
,

VRRM

z

!!;
.~

3.0

/I

5: 3.0

~

2.0

I

~

r--- r--r-.

~receded and followed by

raTTntTvori

7.0

G

i'-

TJ • 135°C
f= 60 Hz

TJ = 135°C ;/25 0 C

10

h

r--..........

V

~ 5.0

~

t-....

#V

20

I-

;-ICYCLE

........

f-""

/.- r

30

~
~_

",
",

+V

I

I

0.3

I

o. 2

o. 1
o

II

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

45

5.0

vF,lNSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

FIGURE 12 - THERMAL RESPONSE
1.0

O. 7
O. 5

-,8
~ ~

o. 3

~

o. 2

ffi

"''''

1-",
1-0

~ ~

f.-"'

---

ZOJClt

=

rlt). ROJC

V

o. I

~ ~ 0.07

~ ~

0.05

:g ~

0.03

0.0 2
0.0 1
0.1

0.2

0.5

1.0

2.0

5.0

10

20

t, TIMElm~

90

50

100

200

500

l.ok

2.0 k

5.0 k

MCR39 SERIES

(SILICON)

Advance InforIllation
THYRISTORS

G

AO-_.*"""~-OK

7 AMPERES RMS
50-600 va LTS

SILICON CONTROLLED RECTIFIERS

· .. designed for CD ignition and crowbar applications requiring
high repetitive di/dt.

• Glass Passivated for High Reliability
•

180 Amp Repetitive di/dt

•

Low Profile Hermetic Package for Tight Printed Circuit
Board Applications.

I~Jj-=:=
:
--

C
L
_~K

4

SEATING
PLAN E

MAXIMUM RATINGS
Symbol

Rating

Peak Reverse Blocking Voltage
MCR39·

.()5

50
200
300

N

400
500
600
'TSM

180

Amps

Peak Forward Gate Power - T A = 25°C

PGFM

10

Watt.

PGF(AVI

0.5

Watt

VGRM
TJ

5.0
-65 to +135

Volts

Tstg
di/dt

-65 to +200

TA -25°C

Operating Junction Temperature Range@
Rated VRRM and VDRM(1I
Storage Temperature Range
'Critical Rate-of-RiseofOn-5tateCurrent

PIN 1. CATHODE
2. GATE
3. ANODE

Volts

Peak Forward Current, TC = 125°C
P.W. = 101", Duty Cycle =0.1%

Peak Reverse Gate Voltage

~I-~
D STYLE 3

Unit

Value

VRRM
-20
-30
-40
-50
-60

Average Forward Gate Power

t

°c
uc
Amp/l"

500

during Turn-On Interval

THERMAL CHARACTERISTICS .
Characteristic
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

This is advance information on a new introduction and specifications are subject to
change without notice.

91

MILLIMETERS
MIN MAX
8.89 9.40
B
8.00 8.51
C
6.10 6.60
D
0.406 0.533
E
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
M
45 0 NOM
P
1.27
Q
900 NOM
R
2.54

DIM
A

INCHES
MIN
MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
45 0 NOM
0.050
900 NOM
0.100

All JEDEC dimensions and notes apply.
CASE 79-02
TO·39

MCR39 series (continued)

ELECTRICAL CHARACTERISTICS (RGK ; 1000 Ohms)
Symbol

Characteristic
Peak Forward Blocking Voltage (Note 1)
(TC = 135°C)

Min

Max

50
200

-

Unit
Volts

vORM
MCR39-05
MCR39-20
MCR39.JO
MCR39-40
MCR39-50
MCR39-60

300
400
500

-

600

-

IORM

-

2.0

mA

Peak Reverse Blocking Current
(Rated VRRM@TC=I35o C)

IRRM

-

2.0

mA

Forward "On" Voltage (Note 2)
(lTM = 50 A peak @ TA ='250 C)

VTM

-

3.5

Volts

1.0

15
30

mA

1.25
1.5

Volts

1.0

-

Peak Forward Blocking Current
(Rated VORM@TC=I350C)

Gate Trigger Current (Continuous dc) (Note 3)
(Anode Voltage = Rated VORM)

TC = 2SoC
TC = -4o"C

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = Rated VORM)

TC = 2SoC
TC = -4Q°C

VGT

0.25

mA

Holding Current
(Anode Voltage = 7.0 Vdc. Gate Open. TC = 135°C)

IH

Turn-On Time
(lTM = lBOA. Rated VORM. C = 1.0I'F. 10to 90%)

ton

-

500

ns

Critical Exponential Rate of Rise
(Rated VORM. Gate Open, TC = 135°C)

dvldt

50

-

VII'S

1. Ratings apply for zero or negative gate voltage but positive gate voltege shall not be applied concurrently with a negative potential on the
anode. When checking forward or reverse blocking capability. thyristor devices should not be tested with a const8.nt current source in a
manner that the voltage applied exceeds the rated blocking voltage.
2. Forward current applied for 0.1 ms maximum duration. duty cycle.:; 0.1%.
3. RGK current is not included in measurement.

FIGURE 2 - MAXIMUM ON-STATE POWER DISSIPATION

FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT

300

\
0
0
0
w

!;(

0

'"
""

~

.

IIII

IIII

8.0r--,--,--....,--,--.--r---,--,--~=~

111111

OFF·STATE VOLTAGE

1\

=12 V

§

7.01--f--1--1---1---1--+--++~"--+""",.."I

"--+--I--I---1~

co B.Or

.......

1\

'"w
~

r---

=-55 DC

TJ

ill

J

f'.- r--.

0

~

IE 7. 0

I

~

;,3.0

~

2.0

(

I

~

-jaf-

11--~~!iF"~+-+-+- a= CONDUCTION ANGLE

100 DC

5. 0

5.011-~-I---I---:

4.011---I---I--...."-+~.4.L..-!.,£..-+- TJ= 135 DC.

3.0

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

1.5

2.0

2.5

IF(AV). AVERAGE FORWARD CURRENT (AMP)

PULSE WIOT~ (m.)

92

5.0

MCR051 (SILICON)
thru

MCR054

A

o------tl~~~-G-O

K

MICRO·T
PLASTIC SILICON
CONTROLLED RECTIFIERS
0.25 AMPERE RMS
15 thru 100 VOLTS

PLASTIC THYRISTORS
· .. Annular PNPN devices designed for applications such as relay
and lamp drivers, small motor controls, gate drivers for larger thy·
ristors, and sensing and detection circuits.
•

Sensitive Gate Trigger Current - 200 IlA Maximum

•

Low Reverse and Forward Blocking Current 50 IJ.A Maximum, T A = 1250 C

•

Low Holding Current - 5.0 mA Maximum

•

Passivated Surface for Reliability and Uniformity

•

Small Size for High Density Packaging

MAXIMUM RATINGS
Symbol

Rating
Peak Reverse Blocking Voltage

Value

Unit

vo ts

VRRM
15
30
60
100

MCR051
MCR052
MCR053
MCR054

K

ITIRMS)

0.25

Amp

Peak Forward Surge Current, T A = 2SoC
11/2 cycle, Sine WINe, 60 Hz)

ITSM

6.0

Amp

Circuit Fusing Considerations, T A = 2SoC
It = 1.0 to 8.3 ms)

12t

0.15

A 2s

PGM

0.1

VJatt

PGF(AV)

0.01

Watt

IGFM

1.0

Amp

VGRM

4.0

Volts

DIM
A

TJ

-65 to +125

°c

B
C

Tstg

-65 to +150

-

+230

Forward Current RMS (See Figure 31
(All Conduction Angles)

Peak Gate Power - Forward. T A - 2SoC
Average Gate Powsr - Forward. T A'" 26°C

Peak Gate Current - Forward, T A
(300,.., 120PPSI

= 2SoC

Peak Gate Voltage - Reverse
Operating Junction Temperature Range @ Rated

VRRM and VDRM

Storage Temperature Range
Lead Solder Temperature
1<1/16" from case, 10. maxi

uc
°c

I

STYLE 8:
PIN 1. CATHODE
2. GATE
3. ANODE

r¥-__1iM .

EF=="T;1H

o

F
H
J
K
M

MILLIMETERS
MIN
MAX
1.98
2.34
0.38
0.64
1.24
1.55
0.25
0.41
0.10
0.15
0.51
0.76
0.03
0.09
4.19
4.45

30

7"

INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175

30

CASE 28·01

93

,-.1

70

MCR051 thru MCR054 (continued)

ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Svmbol

Characteristic
Peak Forward Blocking Voltage (Note 1)
(TA

= 125°C)

Min

Max

15
30
60
100

-

MCR051
MCR052
MCR053
MCR054

Peak Forward Blocking Current

Unit
Volts

VORM

IORM

-

50

itA

IRRM

-

50

itA

VTM

-

1.3

Volts

(Rated VORM@TA=1250C)

Peak Reverse Blocking Current
(Rated VRRM @TA = 125°C)
Forward "On" Voltage (Note 2)
(lTM = 0.25 A peak @ T A = 25°C)
Gate Trigger Current (Continuous del (Note 3)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohmsl

TC = 25°C

IGT

-

200

itA

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohms)
(Anode Voltage = Rated VORM, R L = 100 Ohms)

TC = 25°C
TC = -6SoC
TC = 125°C

VGT

-

0.8
1.2

Volts

Holding Current
(Anode Voltage = 7.0 Vdc, initiating current = 20 rnA)

TC = 25°C
TC = -6SoC

VGO

0.1

-

IH

-

mA

-

5.0
10'

-

500

°CIW

8JA

Thermal Resistance, Junction to Ambient

2.

1. Ratings apply for zero or negative gat8 voltage but positive
gate voltage shafl not be applied concurrently with a negative

Forward current applied for 1.0 ms maximum duration, duty
cycle S 1.0%.

potential on the anode. When checking forward or reverse
blocking capability, thyristor devices should not be tested

3.

with a constant current source in a manner that the voltage
applied exceeds the rated blocking voltage.

94

RGK current is not included in measurement.

MCR051 thru MCR054 (continued)

FIGURE 1 - POWER DISSIPATION
0.50
0::0::

0.4 5

'"~
o

~-

~ ~

0.4 Of-0.3 5 f - -

"' ....
~~ 0.3 0
~~

0.2 5

"'~ ....~

0.20

:::E. Ci

0.1 5

~

0.10

~~

:;

~

./

V

~I"' b-::" r0.0 5AO!! la

...-

01'- ~
25
50

75

100

125

~

150

90"

/'

L.I"'

3.0

L

V
~

200

V
TJ ~ 125"C

2.0

180"

~ o. 7

....
~

225

'"~

IFIAV). AVERAGE FORWARD CURRENT ImA)

D. 5

25"C-

1.5

2.0

r--

/1.

I II

O. 3

I

~

~

/ :/

1/

i3

250

!/ V

fl

1.0

~

175

L--"'::
/~ V

60..L'"

- -

/ . / /.V
V./ ../'
V

~V

°/
V L

30

L

./

L L.

HALF·WAVE

r-- OPERATION

IL

FIGURE 2 - FORWARD VOLTAGE
5.0

I

O. 2

~
~

z

~ O. 1
z
;: 0.07

I I

0.05

I I
J

0.03

L

0.0 2

J

1/

0.0 1

I

0.5

1.0

VF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

FIGURE 3 -CURRENT DERATING
130

O~

o

~

"""ii ~

~ ['......
"\

I

~~
"\.~ ~

\

0
0
0

30

o

25

50

I~

1\ ~'"
\

~

;"--

"" .""
600'\

1\

75

60 Hz
HALF-WAVE - t - OPERATION
f

I~ l'..

lX=30o \

0

t--

-J.l- t - -

100

"-

"- f'..
NSO"

'\,.90"
r-...
125
150

IFIAV). AVERAGE FORWARO CURRENT (rnA)

95

"'175

de

200

2.5

MCR051 thru MCR054 (continued)

TYPICAL CHARACTERISTICS
FIGURE 4 -GATE TRIGGER VOLTAGE

FIGURE 5 -GATE TRIGGER CURRENT

0.8

~

o.

~ 100

'" "'

o

~

~

~
>

w

!;(
,.:

:3


~

o. 5

0.3
-50

50

50

75

100

125

"'

2.0
1.0

w

'"'""
!;(

o. 5

'",..:.

O•2

.......

.5? O. 1
150

-75

-50

-25

25

FIGURE 6 -HOLDING CURRENT

TYPICAL V - I CHARACTERISTICS
N

~

2.0

il!

.............

0

~

"'"

1.0

B

0.7

~

'"z

§
0

--

VRRM

t

I--

A-

=
25

50

75

150

175

ON-STATE

IH

~+
I

I

I

'"
:#
-25

125

/;:i~~~V~::~~:-::-::-;=-==-J'~ ~

~

0.5

0.3
-50

100

FIGURE 7 -CHARACTERISTICS AND SYMBOLS

3.0

§

75

50

TJ, JUNCTION TEMPERATURE 1°C)

TJ.JUNCTION TEMPERATURE 10C)

100

125

150

TJ, JUNCTION TEMPERATURE 10C)

SELECTED THYRISTOR-TRIGGER
APPLICATION NOTES
AN-240

seR

AN-295
AN-422

Suppressing RFI in Thyristor Circuits

AN-453

Zero Point Switching Techniques

Power Control Fundamentals

Testers for Thyristors and Trigger Diodes

To obtain copies of these notes list theAN number(s)
on your company letterhead and send your request to:
Technical Information Center

Motorola Semiconductor Products, Inc.
P.O. Box 20924
Phoenix, Arizona 85036

96

V----<
VORM

BLOCKING
STATE

MCR80 series (SILICON)
MCR81 series
MCR82 series
~(F-_G_OK

THYRISTORS
PNPN

AO........_ ...

80 AMPERES RMS
50 thru 800 VOLTS

SILICON CONTROLLED RECTIFIERS

MeR80 SER IES

· .. designed for high power industrial and consumer applications in
power and speed controls such as welders, furnaces, motors, space
heaters and other equipment where control of high current is needed.
• Glass Passivated Junctions with Center Gate Fire for Greater
Parameter Uniformity and Stability.
• All Devices are Hermetically Sealed
•

'~Flll.
J

Epoxy Encapsulated for Long Voltage Creepage Path

• MCR82 Series Internally Isolated with 5000 Volt Dielectric
Strength
•

@f~ ~
II '

I,

STYLE 1
TERM. I. CATHODE
2. GATE

Flexible Leads are Optional - Consult Factory

3. CASE. ANODE

MIlliMETERS
INCHES
DIM MIN MAX
MIN
MAX
19.0& 11.300.150 0.160
1.21 1.86011500.085
3.
0.145
.155
5.11 61202350245
9.&3
365
1.41 1.425 1. 15
25.40 28.67 1.1100 t 050
4.83 5.21 0 190 0.

CASE 287·01

MAXIMUM RATINGS

MeR81 SERIES

Aating
Repetitive Peak Reverse Blocking
Voltage 'MCR8()'
MCR81·
MCR82·

Average On-State Current IT C :::: 75°C)
Peak Non-Repetitive Surge Current
lOne Cycle, 60 Hz) ITC = 7SOC)

Circuit Fusing Considerations
ITJ

= -40 to +1250 C)

It

-0.5
-10
-20
-30
-40
-50
-60
-70
-80

Symbol

Value

Unit

VRRMlll

50
100
200
300
400
500
600
700
800

Volts

Peak Gate Power

ITIAV)

50

Amp

ITSM

1000

Amp

12 t

4150

A 2s

PGM

15

Watts
Watts

PGIAVI

3.0

Peak Forward Gate Current

IGM

4.0

Amp

Peak Reverse Gate Voltage

VGM

5.0

Vol"

TJ

-40 to +125

T,to

-40 to +150

°c
°c

-

130

in. lb.

Operating Junction Temperature Range
Storage Temperature Range
Stud Torque (3)

MILLIMHERS
MIN
MAX

A 29.12

= 1.5 to 8.3 msl

Average Gate Power

INCHES
MIN
MAX
1.110 1.190
126.4227.061040 1.0&5
C 4U4 4318 1.800 17
f
t.27
US 0050 D.
H 3.611
3.940.145
155
J
21.5922,480.8508.885
K 22.86 2794 0800 liDO
L 5.08 9.530.200 0.375
N 11.15 20.98 0.675 0825
Q
4.13 5.21 0.190 02
1\
2.18 2.410.
0
S
112-20UNF- A
T 25.27 25.78 0.9951015

DIM

STYLE 1.

TERM. 1. tATHODE
2. &ATE
STUD. ANODE

30.2

CASE 288-01

MCR82 SERIES

MIL 1M TERS
DIM MIN MAX

A

THERMAL CHARACTERISTICS

•

Characteristic

29.12

30.23
26.42 21.115
45.724818
1.27
to
3.61

3.1M

2.19

Thermal Resistance, Junction to Case

INCHES
MIN
MAX
1.1701.180
1.
1.086
1.
,

....

0.145 1U16
11100.110

.SO
22."

U8
.1

(1) Ratings apply for zero or negative gate voltage. Devices should not be tested for blocking
capability In a manner such that the voltage applied exceeds the rated blocking voltage.

11.43

(2) Devices should not be operated with a positive bias applied to the gate concurrent with a
negative potential applied to the anode.

STYLE 1:
PIN 1. CATHODE
2. GATE

(31 Reliable operation can be impaired if torque rating is exceeded, terminal tubes bent,
or seal broken.

S. AIODE
STUD. ISOLATED

97

R
T

CASE 29H)1

2.18

21.14

0.900

U30.
1
11

1.100
0.5
10
0.41

52'
41

1 -lOU

,

-

MCR80 Series, MCR81 Series, MCR82 Series (continued)

ELECTRICAL CHARACTERISTICS (TC

= 25°C unless otherwise noted.)

Characteristic
Peak Forward Blocking Voltage (1)
(TJ = 125°C)
MCR80MCR81MCR82-

-0:5
-10
-20
-30
-40

Symbol

Min

VORM

50
100
200
300
400
500
600
700
800

-50
-60
-70
-80

Typ

Unit

Max

Volts

-

-

-

-

-

-

-

Peak Forward Blocking Current
(Rated VORM, with gate open, TJ = 125°C)

IORM

-

-

Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 125°C)

IRRM

-

-

4.0

rnA

Peak On-5tate Voltage (2)
(lTM = 160 A Peak)

VTM

-

-

1.55

Volts

Gate Trigger Current, Continuous de

IGT

-

-

70

mA

VGT

-

-

3.0

Volts

IH

-

-

70

mA

VGO

0.25

-

,-

Vorts

tq

-

70

-

!,s

dvldt

-

100

-

V/!'s

(VAK

= 12 V, RL = 3.0 Ohms)

Holding Current
(VAK = 12 V, Gate Open)
Non-Trigger Gate Voltage
(Anode Voltage = Rated VOM, RL = l00ohms, TJ

= 125°C)

Circuit Commutated Turn-Off Time
(IT

mA

= 12 V, RL = 3.0 Ohms)

Gate Trigger Voltage, Continuous de

(VAK

4.0

= 50A,IR = 20A, TJ = 125°C)

Critical Rate of Rise of Off-State Voltage
(Rated VORM, Exponential Waveform, T J

= 125°C, Gate Open)

(1) Ratings apply for zero or negative gate voltage. Devices should not be tested with a constant current source for forward or reverse blocking

capability such that the voltage applied exceeds the rated blocking voltage.
(2) Pulse Te": Pulse Width ';;;300 !,S, Duty Cycle ';;;2.0%.

FIGURE 2 - ON-STATE POWER DISSIPATION

FIGURE 1 - AVERAGE CURRENT DERATING
12
u

o

5~~

w

~11

~

-1+-

120;..-...... , /

0

\. ~ ~ r-....
\ "\ t'-... r-.....
1\ '\., .'...; t'--.. r-.......
............ de
\ '\'\.,I"
I\, '\. ~'r-... ...........

,"

0-

w

5

:::I

~

1800

0

• = CONDUCTION ANG LE

~10 5

...

~

'\l~::s:::-.

5

ffi

5

0

5

:}

1
75 0

a: '" 300

5.0

10

15

20

"

'"II

90
60·1
25
30
35

a= 30D

0
0

/

0

r-.... . . .

0

120.1 18~
50
40
45

/

.L:: ~

/~ ~
~ ~ ,./

a~

.",

10

./

'"/ ' ~

TJ""'125DC

--101-

• = CONDUCTION ANGLE

15

20

25

30

3~

40

IT(AV), AVERAGE ON-STATE CURRENT (AMP)

98

-

~

~

~~
5.0

IT(AV), AVERAGE ON-STATE CURRENT (AMP)

~~

60·"

0

45

50

MCR101

(SILICON)

thru

MCR104

PLASTIC SILICON
CONTROLLED RECTIFIERS
0.8 AMPERE RMS
15 thru 100 VOLTS

PLASTIC THYRISTORS
· .. Annular PNPN devices designed for low cost, high volume con·
sumer applications such as relay and lamp drivers, small motor
controls, gate drivers for larger thyristors, and sensing and detection
circuits. Supplied in an inexpensive plastic TO·92 package which is
readily adaptable for use in automatic insertion equipment.
• Sensitive Gate Trigger Current - 200 p.A Maximum
•

Low Reverse and Forward Blocking Current 100 p.A Maximum, TC = 850 C

•

Low Holding Current - 5.0 mA Maximum

• Passivated Surface for Reliability and Uniformity

MAXIMUM RATINGSI11
Symbol

Ratina
Peak Reverse Blocking Voltage

Value

Unit
Volts

VRRM
MCRIOI
MCRI02
MCRI03
MCRI04

15
30
60
100
ITIRMS)

0.8

Amp

Peak Forward Surge Current, T A = 2SoC
11/2 cycle, Sine Wave, 60 Hz)

ITSM

6.0

Amp

Circuit Fusing Considerations, T A = 2SoC
It = 1.0 to 8.3 ms)

12,

0.15

A2,

0.1

Watt

Forward Current RMS (See Figures 1 & 2)
(All Conduction Angles)

Peak Gate Power - Forward, T A

= 2SoC

Average Gate Power - Forward, T A

= 2SoC

PGM
PGIAV)

Peak Gate Current - Forward, TA = 2SoC
1300 1", 120 PPS)

IGM

Peak Gate Voltage - Reverse

VGM

Operating Junction Temperature Range@ Rated

0.01

Watt

1.0

Amp

4.0

Volts

TJ

-65 to +85

°c

T,to

-65 to +150

-

+230

°c
°c

VRRM and VORt.I

Storage Temperature Range
Lead Solder Temperature
1<1/16" from case, 10. max)

STYLE 10:
PIN I. CATHODE
2. GATE
3. ANOOE

DIM

A
B

C
D

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance Junction to Case

L
N
P

Thermal Resistance. Junction to Ambient

Q

R
S

(1) Temperature reference point for all case temperature is center of flat
portion of package.
(T C "" +85 0 C unless otherwise noted.)

99

MI LLIMETERS
INCHES
MIN
MAX MIN
MAX
4.450
0.205
5.200 0.175
4.1
0.120
0.165
.1
0.210
4.320
5.330 0.170
0.407
0.021
0.533 0.016
.4
nJ:l!Tlf if.lfW
I.
1.150
1.390 0.045
0.055
0.050
1.270
0.250
6.350
3.430
0.135
0.105
2.410
2.670 0.095
0.105
2.030
2.670 O.OBO
CASE 29-02
TO·92

-

MCR101 thru MCR104 (continued)

ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Characteristic

Svmbol

Peak Forward Blocking'Voltage (Not,,'ll
(TC = 85°C)

Min

Max

15
30
60
100

-

MCR10l
MCR102
MCRI03
MCRI04

Unit
Volt.

VDRM

Peak Forward Blocking Current
(Rated VDRM @TC=850C)

IDRM

-

100

,..A

Peak Reverse Blocking Current

IRRM

-

100

,..A

VTM

-

1.7

Volt.

(Rated VRRM @TC

=85°C)

Forward "On" Voltage (Note 2)
(lTM = 1,0 A peak@TA = 25°C)
Gate Trigger Current (Continuou. dc) (Note 3)
(Anode Voltage = 7.,0 Vdc, R L = 100 Ohm.)

TC = 25°C

IGT

-

200

,..A

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohm.)

TC = 25°C
TC = -65°C
TC = 85°C

VGT

-

0.8
1.2

Volts

VGD

0.1

-

IH

-

5.0
10

TC = 25°C
TC = -65°C

Holding Current
(Anode Voltage = 7.0 Vdc, initiating current = 20 mAl

1. "ORM and VRRM forall types can beappliad on a continuous

2. Forward current applied for 1.0 rns maximum duration, duty
cycle :S:' 1.0%.

When checking forward or reverse blocking capability. thyris-

3.

tor devices should not be tasted with a constant current source

FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

RGK current Is not Included in

measurement."

FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

N

90

a- COINOUCTlbN
ANGLE
CASE MEASUREMENT

~ I!;;:::,...

~ ~ ;::-- r-..
~ ~~

I

POINT - CENTER OF
......... ~ATPORTION

r--...." 0

\.

~

\ "~' ~

.......

Q'"

300

9~

60·

0.1

0.2

0.3

IF(AV),AVERAGE FORWARD

I

~~

~

~~
120·

o

mA

in a manner that the voltage applied exceeds the rated blocking
voltage.

de basis without incurring damage. Ratings apply for zero or
negative gate voltage but positive gate voltage shall not be
applied concurrently with a negative potential on the anode.

10

-

0.4

180·

100~--~--~0~.1~--~--~~--~~~----~~~

0.5

C~RRENT (AMP)

IF(AV), AVERAGE FORWARD CURRENT (AMP)

100

MCR 106-1 (SILl.CON)
thru

MCR106-4
MCR1 06-6,MCRl 06-8
THYRISTORS
4.0 AMPERES RMS
30 thru 600 VOLTS

SILICON
CONTROLLED RECTIFIERS
. . . Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliability of oper·
ation is important.

•

Annular Passivated Surface for Reliability and Uniformity

• Power Rated at Economical Prices
• Practical Level Triggering and Holding Characteristics
•

Flat, Rugged, Thermopad Construction for Low Thermal Resist·
ance, High Heat Dissipation and Durability.

MAXIMUM RATINGS
Rating

Symbol

Peak Reverse Blocking Voltage

(Note 11

MCR 106-1
·2
·3

VRRM

-4

-6

(All Conduction Anglesl
Average Forward Current

TC - 930C
TA - 300C

Unit

Volts
30
60
100
200
400
600

·8
AMS Forward Current

Value

IT(RMSI
IT(AVI

4.0

Amp
Amp

Peak Non-Repetitive Surge Current
(1/2
cle,60 Hz, T = -40 to +1100CI

ITSM

2.66
0.68
25

Circuit Fusing Considerations
(T --40to+l100C,t-l.0t08.3msl
Peek Gate Power

'1 2t

2.6

A2s

PGM
PG(AVI
IGM
VR M
T

0.5
0.1
0.2
6.0
-40 to +110
-40 to +150
6.0

Watt
Watt
Amp
Volts

Symbol

Max

Unit

'!uc.

3.0
75

°CIW
°CIW

Average Gate Power

Peak Forward Gate Current

Peek Reverse Glte Voltage
0 atin Junction Temperature Range
Storage Temperature Range

Tot

Mounting Torque (Note 21

Amp

°c
°c
in. lb.

Thermal Rasistance, Junction to ca..
Thermal Resistance, Junction to Ambient

Pin 1. Cathode
2. Anode
3. Gate
DIM
A
B
C
D
E
F

G
H

THERMAL CHARACTERISTICS
Choraa_lotIc

HEAT SINK

CONTACT AREA
(BOnOMI

R8JA

101

J
K
L

CASE 77·02

MCR106-1 thru MCR106-4 (continued)
MCR106-6, MCR106-8

ELECTRICAL CHARACTERISTICS (TC

= 2So C unless otherwise noted. RGK = 1000 ohms.)
Symbol

Characteristic
Peak Forward Blocking Voltage
(TJ = 1100 C. Note 1)

Min

Typ.

Max

MCR106-1
-2
-3
-4

Unit
Volts

VORM
30

-

-

-

-

P.ak Forward Blocking Current
(Rated VORM. T J = 110°C)

IORM

-

-

200

"A

Peak Reverse Blocking Current

'RRM

-

-

200

"A

Forward "On" Voltage
(lTM = 4.0 A P.ak)

VTM

-

-

2.0

Volts

Gat. Trigg.r Current (Continuous dc)
(VAK = 7.0 Vdc. RL = 100 ohms)
(VAK = 7.0 Vdc. RL = 100 ohms. TC

IGT

-

-

200

-

SOO

60
100
200
400
600

-6
-8

(Rat.d VRRM. T J = 110°C)

Gate Trigger Voltage (Continuous dcl
(V AK = 7.0 Vdc. RL = 100 ohms. TC
Gat. Non-Trigger Voltage
(VAK = Rated VORM. RL
Holding Current
(VAK = 7.0 Vdc. TC

= -4QDC)

"A

1.0

VGT

= 2SoC)

VGO

0.2

Volts
Volts

= 100 ohms. TJ = 110°C)
'H

= 25"C)

Forward Voltaga Application Rate
(TJ = 110°C)

dv/dt

-

10

5.0

rnA

-

V/"s

NOTES:
1. Ratings apply for zero or negative gate voltage but positive
gate voltage shall not be applied concurrently with a negative
. potential on the anode. When checking forward or reverse

2. Torque rating applies with use of torque washer (Shakeproof
W019523 or equivalent). Mounting torque in excess of 6 in. lb .
does not appreciably lower case-to-sink thermal resistance. Anode

blocking capability, thyristor devices should not be tested with

lead and heatsink contact pad are common. (S.e AN-290 B)

a constant current source in a manner that the voltage applied

For soldering purposes (either terminal connection or device
mounting), soldering temperatures shall not exceed +22SoC. For
optimum results, an activated flux (oxide removing) isrecommended.

exceeds the rated blocking voltage:

CURRENT DERATING
FIGURE 1 - MAXIMUM CASE TEMPERATURE

~

FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE

110

::!
:::>

I-

«
cc
~
w

:E
IW

...~
~

.,

;;
j

«

'"

:::>

'"x

«
:E

..;

I-

IT(AV). AVERAGE FORWARD CURRENT (AMP)

IT(AV). AVERAGE FORWARD CURRENT (AMP)

102

MCR107-1 thru MCR107-B (SILICON)

PLASTIC SILICON
CONTROLLED RECTIFIERS
4.0 AMPERES RMS

PLASTIC THYRISTORS
(PLASTIC SILICON CONTROLLED RECTIFIERS)

30 thru 600 VOLTS

· .. Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliabil ity of oper·
ation is important.

•

Annular Passivated Surface for Reliability and Uniformity

•

Power Rated at Economical Prices

•

Practical Level Triggering and Holding Characteristics

•

Flat, Rugged, Thermopad Construction for Low Thermal Resist·
ance, High Heat Dissipation and Durability

MAXIMUM RATINGS
Svmbol

Rating
Peak Reverse Blocking Voltage

INote 11 MCR107-1

VRRM

-2

-3
-4
-5
-6
-7
-8

Value

Unit
Volts

30
60
100
200
300
400
500
600

=1 UBr-~ t

tH
Amp

Peak Forward Surge Current

ITSM

25

Amp

12 t

2.6

A2 s

E!:3- C
M--J~·'T

PGFM

0.5

Watt

MILLIMETERS
DIM MIN
MAX
A 10.80 11.05

TJ" -40 to +1100 CI
IT J " -40 to +llO oCI
t" 1.0t08.3m.1

PGFIAV)

0.1

Watt

Peak Gate Current· Forward

IGFM

0.2

Amp

Peak Gate Voltage - Reverse

VGRM

6.0

Volts

Range

TJ

-40 to +110

°c

Storage Temperature Range

Tstg

-40 to +150

°c

8.0

in. lb.

Average Gate Power - Forward

Operating Junction Temperature

Mounting Torque (4-40)

-

INote21

G
H
K
M
Q

THERMAL CHARACTERISTICS
Svmbol

Ma.

Unit

Thermal Resistance, Junction to Case

9 JC

3.0

°CIW

Thermal Resistance, Junction to Ambient

9 JA

75

°C/W

Characteristic

103

K

!~D
GJJ
7.49
2.41
0.51
2.92
2.31
2.16
0.38
15.38

7.75
2.67
0.66
3.00
2.46
2.41
0.64
16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94

rj

tL--lLJ

ln~

4.0

Peak Gate Power· Forward

A

~

ITIRMSI

Circuit Fusing Considerations

+-

~a
'Ii

':" + '

U

Forward Current RMS
(All Conduction Anglesl
(% cycle, 60 Hz,

M

F

STYLE 2
PIN 1. CATHODE
2. ANODE
3. GATE
INCHES
MIN
MAX

0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.118
0.091 0.097
0.085 0.095
0.015 0.025
0.605 0.655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155

CASE 77·03

MCR107-1 thru MCR107-8 (continued)

ELECTRICAL CHARACTERISTICS (TC

= 25°C unless otherwise noted,

Characteristics
Peak Forward Blocking Voltage
ITJ = 1100 CI (Note 11 MCR107

Symbol

RGK

= 1000 ohms)
Min

VORM
1

30

-2

60

-3
-4
-5

100
200

300

-6
-7
-8

400
500

Peak Forward Blocking Current
(Rated VORM, T J = 1100 CI

IORM

Peak Reverse Blocking Current

IRRM

(Rated VRRM, T J = 11o"C)

Forward "On" Voltage
(lTM = 4.0 A Peak I

VTM

Gate Trigger Current (Continuous de)
(Anode Voltage = 70 Vdc. RL = 100 ohms, TC = 25°C)

IGT

Typ

-

-

Max

-

Unit
Volts

-

-

-

-

-

600

-

-

-

-

200

-

-

200

-

-

2.0

-

-

20

-

1.5

0.2

-

-

-

20

-

10

-

~A

~A

Volts
rnA

Gate Trigger Voltage !Continuous de)

Volts

(Anode Voltage = 7 0 Vdc, RL = 100 ohms, TC = 25 0 CI
(Anode Voltage = Rated VORM, RL = 100 ohms, T J = 110°C)

VGT
VGO

Holding Current
(Anode Voltage = 7.0 Vdc, ~= 250 CI

Forward Voltage Application Rate

rnA

IH
dv/dt

IT J = 1100 CI

V/~s

(1)0085 not Include current through AGK resistor.

NOTES:

(1) Ratings apply for zero or negative gate voltage. Devices shall
not have

III

positive bias applted to the gate concurrently with

a negative potential on the anode. Devices should not be tested
with 8 constant current lOurce for forward or raverse blocking
capability such that the voltage applied exceeds the rated
block Ing voltage.

(2) Torque rating applies with us. of torque washer (Shakeproof
W019523 or equivalent). Mounting torque in excess of 6 in.
lb. does not appreciably lower case-to-sink thermal resistance.
Anode lead and heatslnk contact pad are common.
For soldering purposes (either terminal connection or device
mounting), IOldering,temperatllres shall not exceed +225~C.

CURRENT DERATING DATA
FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE

FIGURE 1 - MAXIMUM CASE TEMPERATURE

11o . .- - . - - - - , , - - - , - - - - , - - - - , - - - - , - - - - , - - - - ,

30~0----~--~0.~2--~~--~~~~--~--~--~~

IF(AV),AVERAGE FORWARD CURRENT (AMP)

IF (AV), AVERAGE FORWARD CURRENT (AMP)

104

MCRl15 (SILICON)
MCR120

o~~~-o

PLASTIC SILICON
CONTROLLED RECTIFIERS
0.8 AMPERE RMS
100 and 200 VOLTS

PLASTIC THYRISTORS
· .. Annular PNPN devices designed for high volume consumer
applications such as relay and lamp drivers, small motor controls, gate
drivers for larger thyristors, and sensing and detection circuits.
Supplied in an inexpensive plastic TO-92 package which is readily
adaptable for use in automatic insertion equipment.
• Sensitive Gate Trigger Current - 200llA Maximum
• Low Reverse and Forward Blocking Current 100llAMaximum, TC= 1100 C
• Low Holding Current - 5.0 rnA Maximum
• Passivated Surface for Reliability and Uniformity

MAXIMUM RATINGS(ll
Rating

Svmbol

Peak Reverse Blocking Voltage

Value

MCR115
MCR120
Forward Current RMS (See Figures 1 & 2)

Unit
Volts

VRRM

IT(RMS)

150
200
0.8

Amp

'TSM

6.0

Amp

12 t

0.15

A2.

(All Conduction Angles)
Peak Forward Surge Current, T A

= 25°C

(112 cycle, Sine WINe, 60 Hz)
Circuit Fusing Considerations, T A
(t = 1.0 to 8.3 m.)
Peak Gate Power - Forward, T A

Average Gate Power

= 25uC

Forward, T A

Peak Gate Current Forward, T A
(300 It., 120 PPS)

Peak Gate Voltage

= 25u C

= 25u C

= 25 C

Reverse

Operating Junction Temperature Range@ Rated

PGM

0.1

Watt

PGF(AV)

0.Q1

Watt

IGFM

1.0

Amp

DIM
A

VGRM

5.0

Volts

TJ

-65 to +110

°c

C
D
F

B

VRRM and VDRM
Storage Temperature Range
Lead Solder Temperature

STYLE 10:
PIN 1. CATHODE
2. GATE
3. ANODE

K

Tstg

-65 to +150

uC

+230

vc

«1/16" from case, 10. maxi

L
N
P
Q

R
S

(') Temperatur. r.ference point for all case temperatura. In center of flat portion
of package. (TC = +110o C unle.. otherwise notad.)

105

MILLIMETERS
MIN
MAX
4.450
5.200
3.1HU
4.1"0
5.330
4.320
0.407
0.533
0.482
0.407
IVUU
1.150
1.390
1.270
6.350
3.430
2.410
2.670
2.030
2.670

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.210
0.170
0.021
0.016
0.019
0.016
J.~UU

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO-92

0.055
0.050
0.105
0.105

MCR 115, MCR 120 (continued)

ELECTRICAL CHARACTERISTICS (RGK

=

1000 Ohms)
Symbol

Characteristic
Peak Forward Blocking Voltage (Note 1)
(TC = 110o C)

Min

Max

MCR115
MCR120

Unit
Volts

VDRM
150
200

-

Peak Forward Blocking Current
(Rated VDRM @ T C = 110o C)

IDRM

-

100

!LA

Peak Reverse Blocking Current
(Rated VRRM@TC= 110o C)

IRRM

-

100

!LA

VTM

-

1.7

Volts

Forward "Dn" Voltage (Note 2)
(lTM = 1.0 A peak @ T A = 25 0 C)
Gate Trigger Current (Continuous de) (Note 3)
(Anode Voltage = 7.0 Vdc. RL = 100 Ohms)

TC = 250 C

IGT

-

200

IlA

Gate Trigger Voltage (Continuous del

TC = 250 C
TC = -650 C
TC = 1100 C

VGT

-

0.8
1.2

Volts

VGD

0.1

-

IH

-

5.0
10

Thermal Resistance. Junction to Case

OJC.

-

75

°C/W

Thermal Resistance, Junction to Ambient

°JA

-

200

°CM

(Anode Voltage = 7.0 Vdc. RL = 100 Ohms)
(Anode Voltage = Rated VDRM. RL = 100 Ohms)
Holding Current
(Anode Voltage

>=

TC=25 0 C
TC = -650 C

7.0 Vdc, initiating current == 20 rnA)

1. VORMsndVARMforall types can be applied on a continuous
de basis without incurring damage. Ratings apply for zero or
negative gate voltage but positive gate voltage shall not be
applied concurrently with a negative potential on the anode.

in a manner that the voltage applied exceeds the rated blocking
voltage.
2. Forward current-applied for 1.0 ms maximum duration. duty
cycle S 1.0%.

When checking forward or reverse blocking capability. thvristor devices should not be tested with a constant current source

3. RGK current is not included in measurement.

FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
11 0

~

100

110

~ ~ r--.

~"

0
0

==

0

POINT - CENTER OF

o

0.1

~ ~ 801----+--\:-P~~~......::>.j.::--+--____i~-_+-_i
j~

~ ~ 701----+---l\......:~~~ct_-~"k-____i1_-_+---I

"" "'" "
90·

AC
or- CA:EN~~!SUREMENT
:~FliTPORTN

w<>

ex: ~ 90 I---+~~IQ.."-=~;:--+==+=---t--+---I

"'f'..: '"

a= CONOUCTION

3

FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

"'~ ~ ~ ...............
.............. ......... de
~~
r---....
'\
I'::'
a 300
I
~
~

0

rnA

I
0.2

0.3

"'120·

0.4

~~

x

I-

«2:

60

.:ri 501----+--+--\-,1_~=+-.....:~~c:..-1_----'~-:E W

180·

401--4--~-~r-~~~~~~--+~~

0.5

0.1

IFIAV). AVERAGE FORWARD CURRENT lAMP)

0.2

0.3

IFIAV). AVERAGE FORWARO CURRENT lAMP)

106

0.4

MCR154, MCR155 (SILICON)
MCR156, MCR157

THYRISTORS
SILICON CONTROLLED RECTIFIERS

THYRISTORS
PNPN

· .. designed for high frequency power switching applications such as

110 AMPERES RMS
100 thru 600 VOLTS

inverters, choppers, transmitters, induction heaters, cycloconverters
and high frequency lighting.
•

High Voltage Application Rate dv/dt = 200 Voltsf!.1S (Min). MCR 154. 156

•

Fast Turn-Off Time tq = 10 !.Is (MaxI. MCR154. MCR 156

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Voltage

ITJ - +125 0 C)
MCR154.155.156.157

-10
-20
-30
-40
-50
-60

Non-Repetitive Peak Reverse Blocking Voltage
It';;;; S.O ms)
MCR154. 155. 156,157

VDRM (1)
and
VRRMll)

Unit
Volts

100
200
300
400
500
600

Volts

VRSM

-10
-20
-30
-40
-50
-60

Average On-State Current

Value

200
300
400
500
600
650
ITIAV)

70

Amp

ITSM

1800

Amp

IT C = 65°C. 180 Conduction Angle)
Peak Surge Current
(One cvcle, 60 Hz) IT J - 40 to +12SoC)

ILt

Circuit Fusing Considerations
ITJ - -40 to +1250 C)

h= 8.3 msl

Peak Gate Power

A's

PGM

15

Watts

PGIAV)

3.0

Watt

Peak Forward Gate Current

IGM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0

Volts
°c

Average Gate Power

Operating Junction Temperature Range

TJ

-40 to +125

Storage Temperature Range

T sto

-40 to +150

°c

150
175

in.lb.

Stud Torque 12)

MCR156, MCR157
SERIES
CASE 246
TO-83

9,500
13.000

It- 1.5 msl

-

Kg - em

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
(1) Ratings apply for zero or negative gate voltage. Devices shall not have a positive bias
applied to the gate concurrently with a negative potential on the anode. Devices should
not be tested with a constant current source for forward or reverse blocking capability
such that the voltage applied exceeds the rated block ing voltage.
(2) Reliable operation can be impaired if torque rating is exceeded, terminal tubes bent, or
seal broken.

107

MCR154, MCR155
SER IES
CASE 219
TO-94

MCR154, MCR155, MCR156, MCR157 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Characteristic
Peak Forward Blocking Current

Symbol

Min

Typ

Max

Unit

IORM

-

-

10

mA

IRRM

-

-

15

mA

VTM

-

-

3.0

Volts

IGT

-

150
200
120

mA

-

50
100
30

-

-

3.0

(Rated VORM, with gate open, TJ = 1250 C)
Peak Reverse Blocking Current

(Rated VRRM,with gate open, TJ = 1250 C)
Forward "On" Voltage
(lTM = 500 A Peak, Duty Cycle = 0.01%)
Gata Trigger Current

(Anode Voltage = 6 V, RL =3.0 ohms, tp;;' 20 jJs)

TJ=25 0 C
TJ = -40o C
T J = +125 0 C

Gate Trigger Voltage
(Anode Voltage = 6.0 V, RL =3.0 ohms, T J = -40o C)
(VORM = Rated, RL = 1000 ohms, TJ = +1250 C)

Volts

VGT

Holding Current

IH

0.25

-

-

-

30

200

mA

( Anode Voltage = 24 V, Gate Open, Initiating Current = 2.0 A)
Circuit Commutated Turn-Off Time

jJS

tq

(VR= 50 V (Min); VORM = Rated;TJ = +125 0 C;
diR/dt = 5.0 A/",s; Repetition Rate = 1.0 pp,;
ITM = 50 A; Duty Cycle ';;0.01%; Gate
Bia, during Turn·Off Interval = 0 V, 100 ohm,;
Rate of Rise of Reapplied Forward Blocking Voltage = 20 VI""
MCR154,156
MCR155,157

Linear)

Critical Exponential Rate of Rise of

-

-

-

-

dv/dt

Forward Blocking Voltage
(VORM = Rated, TJ = 1250 C, Gate Open)

MCR154,156
MCR155,157

200
100

10
20

-

-

-

VI""

FIGURE 1 - THERMAL RESPONSE

_

~

D. 3

I---

~ O. 1

~+-

'z"'

<[

ffi

!!....

,...,

<[

~

"

:: 0.0 1

V

i-'

z
w
z

in
<[

0:
1- 0.00

3
D.DDDI

0.001

0.01

0.1

SIlUARE WAVE PULSE WIDTH (S)

108

1.0

10

MCR154, MCR155, MCR156, MCR157 (continued)

FORWARD POWER DISSIPATION
FIGURE 2 - SQUARE WAVE

FIGURE 3 - SINE WAVE

S

240

DC

~ 200
z

180

o

~

~160

-:;0

o
ffi

120

..'"'"'

80

;=
~

~~ /

h

30

=>

x

40 r--

~

~

~

h

:E

S

0;

~
20

/

./

~/ V

j
I

/"

I~O

i

V

I~O

~ 160

~

./

~
o

t'

'h / '

180

JUL

V

lOU'

120

'"~

~

~

'"

I
I

/M ~I

80

V/:. W-

I

40

~

~

180'

0'

I

~

10

120

p-

E

~

I

/. :;@

~

40
BO
80
100
ITIAV). AVERAGE FORWARD CURRENT lAMP)

BO/$

30

=>

"x
"":;;

V

/

80

10

20
30
40
50
BO
ITIAV). AVERAGE FORWARD CURRENT lAMP)

CURRENT DERATING
FIGURE 5 - SQUARE WAVE

FIGURE 4 - FORWARD CONDUCTION CHARACTERISTICS
140

. 1000
5000

2000

V

1000

~

200

.

'\

:i

B0

....

100

........
~
.........

15

........

BOO

.......

.........

-""
90' 120'

II

0

I---l-CONDUCTIDN
ANGLE

"'"' "
300

<3

/

ffi

'"
~

w

'" 80
;3

/
V

~

~ t-..,..............
'\., ~

~ 100

....

"=>
"x

JUL

~~

g

V

/

500

i---t-3BO 'C

~ 120 ~
=>

/'
./

t'-...

.......

1800

13Bo'

I

I

30
45
BO
15
90
105
ITlAV). AVERAGE FORWARD CURRENT lAMP)

120

o

'"

~ 50

FIGURE 6 - SINE WAVE

~

140

~
20

10

~
w

I

§

~fi

120

"""""
"'-"
~

100

~

"-

w

'";3

5.0

'=>"
":ix

2.0

80

-

~

0'

-

180'

~ ::---..
~ t--......
.......
'\.
~ l""'-......

"" , "'
30'

-BO'

.........
r-~ h2O'
~-

B0

~
40

1.0

o

1.0
2.0
3.0
4.0
5.0
VTM. MAXIMUM FORWARD VOLTAGE DROP IVOLTS)

o

B.O

109

10

20
30
40
50
60
ITIAV). AVERAGE FORWARD CURRENT lAMP)

10

80

MCR154, MCR155, MCR156, MCR157 (continued)

rA~
ljTerminal2

~ 1~
B

d

t

YL~
G

Terminal 1

..J LR

~Q

El~
r-

V

1
K

Terminal 4
1/2.20.UNF.2A ,(Coated)
~ \

S./-'\

Lw

MILLIMETERS
DIM MIN
MAX
A
B
C
0
E
F

H

J
K
L
N

P
Q

R

S
T

26.19
-

STYLE 1:
TERM. 1. GATE
2. CATHOOE
3. CATHODE
INCHES
4. ANODE
MIN
MAX

31.16
27.00 1.031
63.50
11.10 16.50 0.437
4.40 12.70 0.170
0.215
5.46 7.62
3.17
0.797
20.25 21.00
174.0 190.5
6.850
6.35
0.250
26.18
10.80 12.67 0.425
7.87 0.260
6.61
5.775
146.7 159.1
11.73 ·11.874 0.4619
3.81 0.140
3.56

DIM
A

1.227
1.063

2.500
0.650 .
0.50n
0.300
0.125
0.827
7.500

26.19

D
E
F

4.4
4.58

H
J
K
L
N

P
Q

R
S
T
U
V

All JEDEC dimenSions and nates apply

-

B

G

1.031
0.499
0.310
6.265
0.4675
0.150

MILLIMETERS
MIN MAX
31.16
27.00
16.51
12.70

14.60
3.17
20.25 21.00
45.97
0.31
1.27
26.18
10.80 12.67
4.58
6.60
2.93
4.06
11.733 11.874
1.53
2.03
1.53
2.92
11.9
9.2

Terminal 3
STYLE 1:
TERMINAL 1. GATE
2. CATHODE
INCHES
3. ANODE
MIN MAX

1.031
0.170
0.180

1.227
1.063
0.650
0.500

0.575
0.125
0.827
1.810
0.012 0.050
1.031
0.425 0.499
0.180 0.260
0.115 0.160
0.4619 0.4675
0.060 0.080
0.060 0.115
0.360 0.470

0.797

-

All JEDEC dimenSions and notes apply

CASE 219

CASE 246

T0-94

TO·B3

110

MCR158 (SILICON)
MCR159

INTEGRATED GATE THYRISTORS
SILICON CONTROLLED RECTIFIERS

INTEGRATED GATE
THYRISTORS
PNPN

designed for high frequency applications which require high
di/dt such as inverters, choppers, transmitters, induction heaters,
crowbars, cycloconverters and high frequency lighting.
•

10 kHz Sine Wave Operation

•

5 kHz Rectangular Waveform Operation

110 AMPERES RMS
500 thru 1200 VOLTS

•

Critical Rate-of-Rise of On-State Current - di/dt ~ 800 Amp/p.s (Max)'

•

Critical Exponential Rate - dv/dt ~ 200 V/p.s (Min)

•

Low Switching Losses at High Frequency

•

Integrated Gate Permits Soft-Fire Gate Control

o

o

MAXIMUM RATINGS
Symbol

Rating
Repetitive Peak off-State Voltage

ITJ = +1250 CI MCR158,159

Value

- 50
-60
-70
-80
-90
-100
-110
-120

Non-Repetitive Peak Reverse

VRRM

500
600
700
SOO
900
1000
1100
1200
Volts

VRSM

Block Voltage
It';;5.0msl MCR158,159

-50
-60
-70
- 80
-90
- 100
-110
-120

Average Forward Current, T C :: 65°C

Unit

Volu

VDRMlll

600
720
840
960
1080
1200
1300
1400

MCR159
SERIES

CASE 246
T0-83

ITIAVI

70

Amp

ITSM

1600

Amp

lSOoC Conducted Angle
Peak Surge Current

lOne cycle, 60 Hzl IT J = -40 to +1250 CI

ITJ = -40 to +1250 CI

A2 ,

12,

Circuit Fusing Considerations

Peak Gate Power

MCR158

5200
10,500

It= 1.5msl
It = 8.3 msl

SERIES

CASE 219

PGFM

15

Watts

PGFIAVI

3.0

Watt

Peak Forward Gate Current

IGFM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0

Volts

TJ
T stg

-4Oto +125

°c
°c

-

150
175
800

Average Gate Power

Operating Ju nction Temperature Range

Storage T-emperature Range

Stud Torque 121
Critical Rate-of-Rise of Oo-State Current during

di/dt

-4Oto +150

Turn! On Interval

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
·With 0.05 "F and 20 ohm snubber circuit.

111

in.lb. '
Kg-em

Amp/!,s

TO-94

(1) Ratings apply for zero or negative gate voltage.

Devices shall not have a positive bias applied to
the gate concurrently with a negative potential
on the anode. Devices should not be tested with
a constant current source for forward or reverse
blocking capability such that the voltage applied
exceeds the rated blocking voltage.
(2) Reliableoperation can be impaired if torque rating
is exceeded. terminal tubes bent. or seal broken.

MCR158, MCR159 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

Unit

Peak Forward Blocking Current
(Rated VORM, with gate open, T J = 1250 C)

IORM

-

-

10

mA

Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 1250 C)

IRRM

-

-

15

mA

Forward "On" Voltage
(lTM = 500 A Peak, Duty Cycle ~ 0.01%)

VTM

-

-

3,0

Volts

Gate Trigger Current

IGT

-

-

150

mA

VGT'

-

-

3.0

Volts

IH

-

20

500

mA

VGOM

0.15

-

-

Volts

tq

-

-

30

I-'S

ton

-

2.0

-

I-'S

-

-

10

I-'S

200

-

-

(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Gate Trigger Voltage
(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Holding Currant
(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 A)

Non-Triggering Gate Voltage
(Anode Voltage = Rated VORM, RJ. = 1000 Ohms, T.J.. = 125°C)
Circuit Commutated Turn-Off Time
VR = 50 V (Min); VORM = Rated; TJ = +12S o C;
diR/dt = 5.0 A/I-'s; Repetition Rate = 1.0 pps;
ITM = 150 A; Duty Cycle ~0.01%; Gate
Bias during Turn-Off Interval::: 0 V, 100 ohms;
Rate of Rise of Reapplied Forward Blocking Voltage::: 20 V/J,J.s Linear
Turn-On Time
(lTM = 50 A, VORM = Rated)
10 V open ~ircuit, 20 Ohm
Gate Supply =
0.1 I-'S (Max) rise time

Gate Pulse Width Necessary to Trigger
5.0 V open circuit, 5.0 Ohm
0.1 I-'S (Max) rise time

Gate Supply =

Critical Exponential Rate of Rise

dv/dt

V/I-'s

(VORM = Rated, Gate open, TJ = 125°C)

ALLOWABLE PEAK ON-STATE CURRENT
FIGURE 1 - SQUARE WAVE

FIGURE 2 - SINE WAVE

2BO
w

~oz

240

240~----+-~--+-+-~+++-----+---r-+-+-rt1HH

200

"";;:

"'"
w>-

,It .$ 160

~

~ffi
~ ~ 120

~

0:::>

j'-'
"
BO

:E

E

40

o

50

FZ)

-

........
~

~

50% Duty Cycle
di/dt = 25 Alp'
BOO Volt Blocking
TC = 65 0C

r

100

200

~

120 +-t+t+-----t--+-Hr-++1'-N
- I B O o Conduction H-HI+--+-+-!---iH+t-H
BO - S O D Volt Blocking H+t+---+--+.....JI-Hr+-Hi
-~C=650C

o

I

I

I I
500

1000

2000

5000

f, FREQUENCY (Hz)

f, FREOUENCY (Hz)

112

MCR158, MCR159 (continued)

FORWARD POWER DISSIPATION
FIGURE 3 - SQUARE WAVE

FIGURE 4 - SINE WAVE

0

V

0
180
120

0

Vl"

90

0
0

1/

~

16 o

~

C

1--- r~ t-

0

180
1180

'""'

3:
~

:;;

90/12 0
30

80

:;;

~

:;;

4o

:;
40

60

60

80

100

O~

..-,.. ~
~

10

120

~~

t"-

V

~
~- t-- t"-

~~ ~

=>

~

20

12~ IL

~

L(

v/ V ~ '360
~ rL V ~
31~V/ V
I//- ~ V
V

O~ ~
or--

/L

-

i

DC

180·

D·

r& ~

t-- t"-

Ii?'

20

30

60

50

40

BO

70

IT(AV). AVERAGE FORWARD CU RRENT (AMP)

IT(AV). AVERAGE FORWARD CURRENT (AMP)

CURRENT DERATING
FIGURE 5 - FORWARD CONDUCTION CHARACTERISTICS

FIGURE 6 - SQUARE WAVE

10.000

-

5000
125·C

L-

2000

V-

100 0

V

IL

500

/
V

E 200

V

~

=>
'-'

.......

1i1

100

~

0

~

IT(AV). AVERAGE FORWARD CURRENT (AMP)

FIGURE 7 - SINE WAVE

1

~
J

20

1

10

~
"'~

120~~~--~----+----+----r--

~~

100~--4-~~~~~~~--~----+----+--~

~
lBO·

I-

"'
~,.

5.0

80

=>
:;;

.

x

2.0

:;;
U

90·

120·

180·

60

I-

1.0

o

0
1.0

2.0

3.0

4.0

5.0

6.0

VTM. MAXIMUM FORWARD VOLTAGE DROP (VOLTS)

0

10

20

30

40

50

60

IT(AV). AVERAGE FORWARD CURRENT (AMP)

113

70

80

MCR158, MCR159 (continued)

FIGURE 8 - THERMAL RESPONSE

!
w
u

o. 3

~

o. 1

z

--

-

~ 7.0
::>
Q

~

5.0

z

--

J\....f\..

-l

r-....

r----... ........

>

.4

"

2.0

.2

'"'"

~

~

1.0

1.0

2.0

3.0

0

5.0

1.0

10

20

1200

30

50

10 100

sob.

900

V/

///

300

~ .//
~ ,............
~~~

/

~~

F-

0.1

0.2

0.3

0.4

IF(AV). AVERAGE I'ORWARD CURRENT (AMP)

NUMBER OF CYCLESATSO Hz

116

18~

L /
.,/
/ / / ///
:; / / 0
./ -'de

Q=

TA=250 C

~ 3.0

l:'

~

= ~ON-;jCt;~~NGLJ
s - •"
.
I

1--1 CYCLE

;::

~

FIGURE 2 - POWER DISSIPATION

.8

0

0.5

MCR201 thru MCR206 (continued)

FIGURE 4- CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

FIGURE 3 - FORWARD VOLTAGE
5.0

3. a

/ L

II

1.0

~

150C _

r--

o

'"U
....

~

\

40

10

Ct'

I

100

o. 1

0.05

J J

0.03

II

""

I

150

300

400

450

500

-J.I-I
I

~~
~ t:"--......

" "-

"\

I

.= CONDUCTION ANGLE
f =60 Hz

~ ..........

'"

I II

"\
1\

I
1.0

1.5

2.0

0.=300'\

1.5
15

VF.1NSTANTANEOUS FORWARD VOLTAGE (VOLTS)

50

100

75

........

~

1'-.. ........

\

0.5

1800

350

A-

I

1/

600\ 900\!10 0\ '

100

110

:: 0.0 7

0.01

~

\"\. I"\.

= 30 0

150

b-,.

FIGURE 5 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

z

0.0 1

50

.......

"\

\

o

..........

""\ '"\ 1"\l'\."' ."-

30

I

;'!'
z

\

60

• =CONDUCTION ANGLE
f =60 Hz

IF(AV). AVERAGE FORWARD CURRENT (rnA)

I
I

0.2

'"
~
=>

• r--

~~
~ I- 50

I

~

o

~!;: 70

/J

o. 3

~

~=>

'"~

--./L..
---I . ' - r--

0
~ ~ ...........
\"' ~ ~ ['--.,

o~

/ /

~

=>

u

~

~e...
3:: I.LJ 80

::::I 0..

I

~ O. 5

~~

100

~G 90

O. 7

I-

110
w

1/ V

TJ = moc

1.0

~

~

V

110

l./:

V

~

"-

"\

I'---.
de

r--......

r--...
1"-.."'

0
0
0
60 " " 90 ",," 180 " " "
115
150
175
100

IF(AV). AVERAGE FORWARD CURRENT (rnA)

FIGURE 6 - THERMAL RESPONSE

....

as
~

1.0
o.7
O.5

'"

~~ 0.3

_V

wZ

:::~ 0.2

~~

8JCIt)

~r--

:ff3

:t ~ o. 1

=r(t)8JC

~ ~ 0.01

N",

~ ~ 0.05

:5

z

-E

0.03
0.02

~

0.01
0.0001

0.0003 0.0005

0.001

0.003 0.005

0.01

0.03

0.05

t. TIME (SECONDS)

117

0.1

0.3

0.5

1.0

3.0

5.0

10

MCR201 thru MCR206 (continued)

TYPICAL CHARACTERISTICS
FIGURE 8 - GATE TRIGGER CURRENT

FIGURE 7 - GATE TRIGGER VOLTAGE
0.8

~

~ 100

0.7 ""-.

~

0

~
w

'"

'" ""-.

s""
0

>

w

I-

0.5

""'"

r;

>

25

5.0

MCR201

20

MCR204

50

75

100

TJ. JUNCTION TEMPERATURE 10C)

10

Iw

05

~

'"

125

thru

'"'"
ii'

"- "-25

10

~
~

1""-.

I"i MCR205. MCR206

-

I-

=>
'-'

0.4

0.3
-50

50
20

!O

"r--.

O.S

::::i

""

o~

eO

'3

........

2
-50

-25

:J

""~

\.

~

=>
'-'

~

§
!i!

VRRM

1.0

""-:::::~
......

0.7
0.5

-

........

I

A-

-25

25

50

75

ISO

""t--

~II

BLOCKING
STATE

----I

II
I

V~

VORM

LOAD

Mcf~
100

175

ON.STATE
IH

A--~o------V~------,

............ J

MCj205.

125

~~=;f;===~==,~+V.

-V', .-=E'
MCR201
thru ---: MCR204 -

~
0.3
-50

t

~V

.............

0

~
I-

100

FIGURE 10 - CHARACTERISTICS AND SYMBOLS
TYPICAL V - I CHARACTERISTICS

2.0

75

50

25

TJ. JUNCTION TEMPERATURE 1°C)

FIGURE 9 - HOLDING CURRENT

N

E===

MC R201 thru MC R204-

3.0

§

MCR205. MCR20S

o1

-75

ISO

......

125

ISO

TJ.JUNCTION TEMPERATURE 10C)

118

MCR235 SERIES (SILICON)

BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS

BEAM-FIRED
INTEGRATED GATE
THYRISTORS

. designed for high power industrial and consumer applications
in power and speed controls such as weiders, furnaces, motors, space
heaters and other equipment where cOl>trol of high current is needed.
In addition, the entire series employs the unique Beam·Fired gate
design to allow high di/dt and to reduce turn-on losses.

235 AMPERES RMS

100 thru 1500 VOLTS

• Critical Rate-of·R ise of On·State Current di/dt = 1000 Ampllls (Max)"
• Critical Exponential Rate - dv/dt = 200 VIllS (Min)
• low Switching losses at High Frequency
• Integrated Gate Permits Soft·Fire Gate Control
·Wlth 0.05 IJF and 2().ohm snubber circuit

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Qff.stete Voltaga
ITJ =+12SoCI MCR235

Value

Volts

VORM(1)

-10
-20
-30

....,

VRRM

-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
Non-RepetitIVe Peak Reverse

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

-10
-20
-30
-40
-50
-70
-80
-90
-100
-110

-120
-130
-140
-150
Average FOIWard Current, TC .. 7SoC

IT(AVI

150

'TSM

1800

,2,

Clrclut FUSing Conllderatlons
IT J = -40 to +12S 0 CI

(1= 1Sms!
(t=83ms)

Amp
Amp
A2.

9500
13,000
15

W....

30

Watts

Peak Forward Gafa Current

IGFM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0

Volh

TJ

-40 to +125

Tot,

-40 to +150

"c
"c

1000

'b.

dl/dt

1000

Amp/J's

OperatIng JunctIon Temperature Range
Storage Temperature Range
MountIng Force
Cntlcal Rate-of-Rlse of On-State Current dUring
Tum-On Interval !Non-RepetttIlffJ Rattng)

rF
1'-..1

"

j-' : ; ) "I':';,..
E

\

~2'GATE
3. CATHOOE

,: . n
I

AL

SEATING PLANE

4. CATHOOE

K

PGFIAV}

Average Forward Gate Power

'1

TERMINAL 3

PGFM

Peak Forward Gate Power

r--;::. ~ -:::;-1

:;:'~.
~
fct4
_
.
.
~.~
~T
~M

{1aCO Conduction Anglel
Peak Surge Currant
lOne cycle, 60 Hz, T J = -40 to +12S 0 Cl

Wi!
"

200
300
400
500
600
720
840
960
to90
1200
1300
1450
1550
1650
1800

....,

R

~

r

Volts

VRSM

Block Voltage
ttS:S.Omsl MCR236

Unit

THERMAL CHARACTERISTICS
Characteriltic
Thermal Reststance, Junctton to CaM

119

T~P

I

0

NOTE,
N
1. OIM "K" APPLIES TO BOTH LEAOS
MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A 36.07 43.1B 1.420 1.700
B 18.54 29.59 0.730 1.165
C 12.45 15.24 0.490 0.600
0
4.72
4.85 0.186 0.191
0.25
2.54 0.010 0.100
E
0.35
0.48 0.014 0.019
F
2.54
0.100
H
J
6.22 19.30 0.245 0.760
K 202.69 206.12 7.980 8.115
7.62
L
- 0.300
M 200
500
'20·
50 0
N 15.49 28.58 0.610 1.125
Q
3.48
3.89 0.137 0.153
R
1.27
3.18 0.050 0.125
3.12
S
3.68 0.12l 0.145
T
4.72
7.92 0.186 0.312
U
1.27
1.78 0.050 0.070
V 2.92
3.56 0'.115 0.140
W
0.25
0.51 0.010 0.020
V
1.45
1.50' 0.057 0.059
0.64
1.65 0.025 0.065
Z
CASE 221).03
(1) Ratings apply for zero or negative gate voltage.
Devices shall not have a positive bias applied to
the gate concurrently with a negative potential
on the anode. Devices should not be tested with
a constant current source for forward or reverse
blocking capability such that the voltage applied
exceeds the rated block ing voltage_

MCR235 series (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic

Min

Typ

Max

Unit

IORM

-

-

15

mA

IRRM

-

-

15

mA

Forward "On" Voltage
(lTM ='220 A Peak. Pulse Width = 8.3 ms. Outy Cycle :51.0%)

VTM

-

-

.1.6

Volts

Gate Trigger Current

IGT

150

mA

Symbol ..

Peak ForWard Blocking Current

(Rated VORM. with 90te open. TJ

= 125°C)

Peak Reverse Blocking Current

(Rated VRRM. with gate open. TJ

(Anode Voltage

= 125°C)

= 6.0 V. RL = 3.0 Ohms)

Gate Trigger Voltage
(Anode Voltage = 6.0 V. R L

= 3.0 Ohms)

Holding Current
(Anode Voltage = 24 V. gate open. Initiating Current = 2.0 A)

.

Non·Triggering Gate Voltage
(Anode Voltage = Rated VORM. RL = 1000 Ohms. TJ = 1250 C)

Turn·On Time
(lTM = 50 A. Rated VORM)
Gate Pulse

{.10
0.1

VGT

-

-

3.0

Volts

.IH

-

20

500

mA

VGOM

0.15

-

ton

-

2.0

-

p.s

-

-

10

p.s

200

-

-

VII's

'! open circuit, 20 Ohm Source
IJ,S

(Max) rise time

Gate Pulse Width Necessary to Trigger
Gate Pulse

.volts

{500 V open circuit, 5.0 Ohm Source
0.1 }lS (Max) rise time

Critical Exponential Rate of Rise

dv/dt

(VORM = .Rated VORM. gate open. TJ = 125°C)

FIGURE 1 - SQUARE WAVE

CURRENT DERATING
(f = 50 to 400 Hz)
FIGURE 2 - SINE WAVE

u
o
w

j

'"

110

~

r--;~~~~~+-~r--+~~~

:

90r----+~~~~,,~~-+~~4_----~--_+----~

5
~
'" 70r-~-r--~r--\-f~~r-~~----~~-+--~
~
~

iT(AV). AVERAGE DN.sTATE FORWARD CURRENT (AMP)

iT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)

120

MCR235 series (continued)

FORWARD POWER DISSIPATION
(f = 50 to 400 Hz)

FIGURE 3 - SQUARE WAVE

FIGURE 4 - SINE WAVE
400'--"--'--TT--r-.-'--"r--'~-'

i
::i

i

~ 300

300f--+--f--+--P

;0

~

~

W

W

to

ffi

to

«

2ool---+--I---7'f--~4F:TS4-..."""'t---+----1

~

~
~

>
«
~

200 f--+--t-+----It'--------,t<----7'+--t---+-----I

~

~

~ 100f--+-~~~~~~t_-~

~ 100f--+~~~~4---t_-­

~

~

:>
«
a:::

:>
«
a:::
50

100

150

200

50

IT(AV), AVERAGE ON·STATE FORWARD CURRENT (AMP)

100

FIGURE 5 - MAXIMUM ON-8TATE
CHARACTERISTICS

1000

V

1000

/'

800
600

/

V

400

..:
~ 300
S

/

I-

~

/

II

200

TJ -125°C

G
~

/

«

~

:;:

100

'"

80

r-

I

60
40
30
20

o

1.0

150

IT(AV), AVERAGE ON·STATE FORWARO CURRENT (AMP)

3.0

20

4.0

VTM, MAXIMUM FORWARD VOLTAGE (VOLTS)

121

5.0

200

MCR235 series (continued)

FIGURE 6 - TRIGGERING CHARACTERISTICS
10

~ 3.0~=R=+rn+m=+:h

...5 2.01r-~~~~++~~

iii
~

G

~ ::~I=t=~E~

'"

s@ U•• r----r-• ..-

VG. GATE VOLTAGE (VOLTS)

FIGURE 7 - THERMAL RESPONSE
0.14

-

0.12

.-

0.10
O.OB

v

0.06

.--

0.04

.;'

.-

.-

0.02

o

0.001

O.ODZ

0.DD5

0.01

0.02 0.0l

0.D5 0.D7 0.1

0.2

0.3

t. TIME

122

0.5 0.7 1.0
I~

2.0

3.0

5.0 7.0 10

20

30

50

70 100

MCR23SA
MCR23SB
MCR23SC

SERIES (SILICON)
SERIES
SERIES

Advance InforIDation.
BEAM-FIRED
INTEGRATED GATE
THYRISTORS

BEAM-FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS

235 AMPER ES RMS

... designed for high-current, high-frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•

•
•
•
•

Low SWitching Losses - @ 3.0 I'S with 30 I'S Pulse, Ip = 100 A
MCR235A Series = 3.0 Volts
MCR235B Series = 6.0 Volts
MCR235C Series = 6.0 Volts
Critical Rate-of-Rise of On·State Current di/dt = 1000 Amp/l's (Max)'
Critical Exponential Rate - dv/dt = 200 VII's (Min)
Integrated Gate Permits Soft-Fire Gate Control
Fast Turn·Off Time - 10 to 20 I's

·With 0.05 #F and 20 ohm snubber circuit,

MAXIMUM RATINGS
Repetitive Peak Off-State
Voltage (TJ = +125o CI

VORM,VRRM
Volts

Device Type

Non-Repetitive Peak

Reverse Blocking Voltage
VRSM

Volts

Tu rn-Off Time"" 10 IlS Max
MCR235A

-10
-20
-30
-40
-50
-60

Turn-Off Time = 15

MCR235B

,",S

TERMINAL 2

100
200
300
400
500
600

200
300
400
500
600
700

Max

-10
-20
-30
-40
-50
-60
-70
-80

JJO~~f
W
f.:+T

TERMINAL 3

100
200
300
400
500
600
700
800

200
300
400
500
600
700
800
900

100
200
300
400
500

200
300
400
500
600
700
800
900
1000
1100

Turn-Off Time - 20 IlS Max

MCR235C

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100

MM

T~P

o.

~TI

600

700
800
900
1000

N
I DIM "K" APPLIES TO BOTH LEADS

MILLIMETERS
DIM MIN MAX
A 36.07 43.18
B 18.54 29.59
C 12.45 15.24
D
4.72
4.85
E
0.25
2.54
0.48
F
0.35
H
2.54
J
6.22 19.30
K 202.69 206.12
L
7.62
M 2D"
50·
N 15.49 28.58
Q
3.48 3.89
R
1.27 3.18
S
3.12
3.68
T
4.72
7.92
1.27
1.78
U
V
2.92
3.56
W
0.25
0.51
Y
1.45
1.50'
Z
0.64
1.65

INCHESMIN MAX
1.420 1.700
0.730 1.165
0.490 0.600
0.186 0.191
0.010 0.100
0.014 0.019
0.100
0.245 0.760
7.980 8.115
0.300
20·
50·
0.610 1.125
0.137 0.153
0.050 0.125
0.123 0.145
0.186 0.312
0.050 0.070
0.115 0.140
0.010 0.020
0.057 0.059
0.025 0.065

CASE 220·03
This is advance information on a new introduction and specifications are subject to change without notice.

123

MCR235A series, MCR235B series, MCR235C series (continued)

MAXIMUM RATINGS
Rating

Average Forward Current, T C = 60°C
(180° Conduction Angle)
Peak Surge Current

(One Cycle, 60 Hz, TJ = -40 to +125 0 C)
Circuit Fusing Considerations

Symbol

Value

Unit

IT(AV)

150

Amp

ITSM

1600

Amp

12t

10,500

A2s

(TJ = -40 to +125 0 C, t = lo5-8.3ms)
Peak Forward Gate Power

PGFM

15

.Watts

PGF(AV)

3.0

Watts

Peak Forward Gate Cuhe'nt

IGFM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0

Volts

TJ,

-40 to +125

°c

T stg

-40 to +150

°c

-

looO±200

Ibs

di/dt

200
1000

Amp/itS

Average Forward Gate Po",:,er

Operating.Junction Temperature Range
Storage Temperature Range

Mounting Force
C:ritical Rate-af-Rise of On-State Current - Repetitive
Non-Repetitive

THERMAL CHARACTERISTICS
Max

Characteristic

0.13

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Typ

Max

Unit

Peak Forward Blocking Current
(Rated VORM, with gate o"en, TJ = 125°C)

Symbol
IORM

-

-

15

mA

Peak ,Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 125°C)

IRRM

-

-

15

mA

Forward "On" Voltage
(iTM=220A Peak, PulseWidth=8.3 ms, Outy Cycle=~l.O%, TJ =25 0 C)

VTM

-

-

1.85

Volts

Gate Trigger Current
(Anode Voltage ='6.0 V, RL = 3.0 Ohms)

IGT

-

-

150

mA

Gate Trigger Voltage
(Anode Voltage =,6.0 V, RL = 3.0 Ohms)

VGT

-

-

3.0

Volts

IH

-

50

500

mA

VGOM

0.15

-

-

-

Characteristic

Holding CUrrent
(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 AJ
Non· Triggering Gate Voltage
(Anode Voltage = RatedVORM, RL = 1-000 Ohms, TJ = 125°C)
Circuit Commutated Turn-Off Time

(VR = 50 V(Min); Rated VORM, TJ = +125 0 C,
diR/dt = 20 A/I's; Repetition Rate = 1.0 pps;
ITM = 1,50 A dv/dt = 20 VII'S)
Transient Turn·On Voltage
(VORM = 100 V, ITM = 200 A, PW = B.O I'S,
Gate Oriv,e = 600 mA, rise = O.ll's, test point = 4.0 I's)

Min

Volts

tq
MCR235A
MCR235B
MCR235C
MCR235A
MCR235B
MCR235C

Critical Exponential R'ate of Rise'
(Rated VORM, gate open, TJ = 125°C)

VTO

dv/dt

124

ItS

-

-

10
15
20

-

5.0
8,0
8.0

Volts

-

200

-

-

VII'S

MCR320 SERIES

(SILICON)

G

A

O>----1.~~--O

THYRISTORS

K

7 AMPERES RMS
5()'600VOlTS

SILICON CONTROLLED RECTIFIERS
· .. designed primarily for industrial applications. Ideally suited for
capacitor-discharge ignition, systems, power switching and power control.
•

Glass Passivated for High Reliability

•

low Profile Hermetic Package for Tight
Printed Circuit Board Applications

•

High di/dt Capability

MAXIMUM RATINGS
Symbol

Rating

Peak Reverse Blocking Voltage

Value

MCR320 -1
-2
-3

Unit
Volts

VRRM
25
50
100
200
300

--4

-5
~

400

-7
--8

500
600

PIN I. CATHODE
2 GATE
3. ANODE

N

Forward Current RMS ISee Figures 4 & 5)
IAII Conduction Angles)

'T(RMS)

7.0

Amps

Peak Forward Surge Current, T A - 2SoC
(112 cycle, Sine Wave, 60 Hz)
Circuit Fusing Considerations, TA = 25u C

'TSM

80

Amps

I"t

0.15

A 2s

PGM
PGIAV)
IGM

10
0.5
10

Watts

VGM
TJ
Tsta

4.0
-4010+100
-40 to +150

Volts

It· 1.0 to 8.3 ms)
Forward Peak Gate Power. TA

= 2SoC

Forward Average Gate Power, TA = 25°C
Forward Peak Gate Current, T A
(300 I'S,

= 2SoC

Watt

Amps

120 PPS)

Reverse Peak- Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range

°c
°c

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

RSJC

Thermal Resistance. J,unction to Ambient

ASJA

5.0
150

°CIW
°CIW

Charact.. istic

MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
F
0.406 0.483
G 4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
45 0 NOM'
M
P
1.27
11
900 NOM
R .2.54

DIM
A
B
C
D
E

All JEOEC dimensiDnsand notesapply.

CASE 79-02
TO-39

125

MCR320 series (continued)

ELECTRICAL CHARACTERISTICS
Max

Min

Svmbol

Characteristic
Peak Forward Blocking Voltage (1)

Unit
Volts

VORM
MCR320-1
MCR320-2
MCR320-3
MCR320-4
MCR320-S
MCR320--6
MCR320-7
MCR320-8

25
50
100
200
300
400
,500
600

-

-

Peak Forward Blocking Current
(Rated VORM @TC = l00DC)

IORM

-

1.0

mA

Peak Reverse Blocking Current

IRRM

-

1.0

mA

VTM

-

2.6

Volts

IGT

-

20

mA

VGT

-

I.S

Volts

VGO

0.1

-

Volts

IH

-

20

'rnA

(Rated VRRM@TC = l00DC)
Forward "On" Voltage (2)
(lTM = 30 A peak @TC = 2So C)
Gate Trigger Current (Continuous de) (3)
(Anode Voltage = 12 Vdc. RL = 30 Ohms, TC

= 2S o C)

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 12 Vdc, RL = 30 Ohms, TC

= 2S oC)

Gate Non-Trigger Voltaga
(Anode Voltage = Rated VORM, RL

= 30 Ohms, TC = 10oDC)

Holding Current

(Gate Open, TC

= 2S oC)

(1) Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the

anode.

When checking forward or reverse blocking capability, thyristor devices should not be tested with a constant current source in a

manner that the voltage applied exceeds the rated blocking voltage.

(2) Forward current applied for 1.0 ms maximum duration, duty cycle ";;1.0%.

FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT
300

c

.sI~

\

"'
::0
w

30

.

~

~

30

II IIII

1

OFF-STATE VOLTAGE = 12 V

...."'

100
70
50

'-'

III

FIGURE 2 - TYPICAL GATE TRIGGER CURRENT

........

r-......

........

::0

........
\

ffi

I-

1,·0

1.0

2.0

5.0
PULSE WIDTH

10
(m~

20

........

'"'

~

......

~ 0.5

.......

!::

100DC
0.5

r-.... i'-

I-

25JC

5.0

10

'"'" 7.0

TJ= ...\l)OC

......... r--.

10

3.0
0.2

20

~

OIFF-sfATE1VOLtAGEI'12 IV

50

100

200

0.3
-40

-20

20

40

so

TJ,JUNCTION TEMPERATURE (OCI

80

r---.
100

MCR320 series

(continued)

FIGURE 4 - AVERAGE CURRENT DERATING
(REFERENCE. CASE TEMPERATURE)

FIGURE 3 - MAXIMUM ON·STATE POWER DISSIPATION
100

~

70

~

6.0

.
>-

'"~

~~
~ ~ r-....
'"w
~ ~ :---......
'":::> 80
~ ............

w

5.0

"- ~"

~

4.0

>

30

iii>-

;;;

1.0

~

::i

w

,,~

0:=

1.0

<>~

70

1.5

10

2.5

5.0

>~
.,;

'".<1
>-

o

0.5

Or-.

10

90

~
w

80

'":::>

70

~

60

iii>-

1.0

0

of-1

0

~

:Ii
;5

40

30
20

o. 9

'"~

0.4
ITlAV), AVERAGE ON·STATE CURRENT (AMP)

~

>

o.8

""'- r--..

o. 7

~

~

0.1

'" "

-

~"fANGLE

0.2

0.3

0.4

0.5

"

0.6

0.7

OFF·STATE VOLTAGE = 12 V

I'-:-.... t-.....

I'
.........

w

o. 6

........

r-......

0

I'--

!'-..
!""';;;;

f-

7. 0

>'"
O. 5
-20

5.0

"~CONDUCTION

\ ''-': ~'\

o

0

!;(

-40

4.5

FIGURE 8 - TYPICAL HOLDING CURRENT

t-.....

>~

4.0

0

'"w

'"~

3.5

~ ~ k--12O•
r\ ~ ~ l-- k 18O•
90· , /
\ ~~
' - de

0

1'....

""" ........

3.0

ITIAV), AVERAGE ON·STATE CURRENT lAMP)

OFF·STATE VOLTAGE =12 V

......

~.

6~.-

40

20

w

2.5

R8JA = 150·CIW

0:::300\

>-

.,;

Or---..

2.0

'I ~ ~

FIGURE 7 - TYPICAL GATE TRIGGER VOLTAGE

~

1.5

-~

0

30

1.

180·

~

as 50

50

0

"'-

~

FIGURE 6 - AVERAGE CURRENT DERATING (REFERENCE.
AMBIENT TEMPERATURE, TYPICAL P.C. BOARD MOUNTING)

:::>

iii>-

120·

:-.......

IFIAV), AVERAGE FORWARD CURRENT (AMP)

100

'"~

""

~

CONDUCTION ANGLE

FIGURE 5 - AVERAGE CURRENT DERATING (REFERENCE:
AMBIENT TEMPERATURE 4 in. sq. P,C, BOARD)

'"

"" ......

~

90·

IFIAV), AVERAGE FORWARD CURRENT lAMP)

!;(

"~CONDUCTIDN

60·

50

0
0

w

~

"- "-'\

300

~ 60

0::

~

~"fANGLE

0

~

.'"
.
.

~

90

20

40

60

80

5. 0

100

-40

TJ, JUNCTION TEMPERATURE (·C)

-20

20

40

60

TJ, JUNCTION TEMPERATURE (.C)

127

80

100

MCR320 series (continued)

FIGURE 9 - MAXIMUM ON·STATE CHARACTERISTICS

FIGURE 10 - MAXIMUM NON·REPETITIVE SURGE CURRENT

100

100

0

v

./ V

0

b

;;:

0

~_

7. 0

~=>

50

TJ' 100°C

If

...

,/

~

V

'"

< 20
~

250C

"

~

i"'-

TJ'100oC
t· 60 Hz

iil

f-

'I'

~u~e is ~receded and followed by

rated current and voltage.

I I I 1'1111
2.0

3.0

5.0 7.0 10
20
NUMBER OF CYCLES

30

50

70 100

/I

~ 3. 0

III
I
1/

2. 0

o
=>
"'

5l

~ 1. 0
z
~ O.7
!!O
.':f. o. 5

FIGURE 11 - CHARACTERISTICS AND SYMBOLS

t-----+

ON.STATE
IH
~+

TYPICAL I·V CHARACTERISTICS
VRRM

l-

VORM
A---Q~---V~----,

I
I

o. 2

BLOCKING
STATE

-V~~,::::::~~::::::::~:~+~

I

o. 3

o. 1
o

..........

~ 30

h _

r-......

I

w

~

r-....

w

10
1.0

~ 5.0

:-lCYCLE

'-'

~

z

--

~

j V

0

~

70

.......:::: V

0

I-

Ii

LOAD

1/,
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

vF,lNSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

FIGURE 12 - THERMAL RESPONSE
1. 0

O. 7
O.5
~c
<[ w

O. 3

~ ~

"',.

O. 2

~ ~

O. 1

,.!::!

1-",
1-0

--

V

41JC(t) • 'It} 0 RUC

~ ~ 0.0 7

~ ~
~~

0.05
b.03

0.02 0.0 1
0.1

i
0.2

0.5

1.0

2.0

5.0

10

20
t,TIMElms)

128

50

100

200

. 500

1.0 k

2.0 k

5.0 k

MCR380 SERIES (SILICON)

BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS

BEAM-FIRED
INTEGRATED GATE
THYRISTORS

· .. designed fer high pewer industrial and censumer applicatiens in
pewer and speed centrels such as welders, furnaces, moters, space
heaters and ether equipment where centrel 'If high current is needed.
In additien, the entire series empleys the unique Beam-Fired gate
design t<;l allew high di/dt and to reduce turn-en lesses.
• Critical Rate-ef-Rise 'If On-State Current di/dt ~ 1000 Amp/p.s (Max)'

380 AMPERES RMS
100 thru 1500 VOLTS

• Critical Expenential Rate - dv/dt ~ 200 V/p.s (Min)
• Lew Switching Lesses
• Integrated Gate Permits Seft-Fire Gate Centrel
·With 0.05 IJF and 20·ohm snubber circuit.

MAXIMUM RATINGS
Rating

Svmbol

Repetitive Peak Oft-State Voltage
ITJ .. +12SoC) MCR380

VRRM

-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
Non-Repetitive Peak Reverse
Block Voltage
(t ~5.0 msl MCR380

Value

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

-70
-80
-90
-100

-110
-120
-130
-140
-150
Average Forward Current IT C = 7T'CI

t!
UoJ

CirCUit

ITJ = -40 to +12SoCI

Peak FOfWard Gate Power
Average Forward Gate Power

ITSM

3500

Amp

Peak Forward Gate Current
Pellk Reverse Gate Voltage
Operating Junction Temperature Range

Storage Temperature Range

15
3.0

Watts
Watt

IGFM

4.0

Amp

VGRM

5.0

Volts

TJ

-40 to +125

THO

-40 to +150

°c
°c

Mounting Force
CritICal ASle-of-Rise of On-Stete Current dUring
Turn-On Interval INon-Repetltive Rating)

A2.

32,000
50,000
PGFM

dl/dt

I

"l~4.
-( .~: g~i~DDE

SEATING PLANE

TER~~ S~"

I,

MILLIMETERS

Amp

PGFIAVI

E

STYLE l'
PIN.!. ANODE

CATHODE

0M~

TYP
: /
NOTE
)(N
I DIM "K" APPLIES TO BOTH LEADS

250

(t= 1.5ms)
(t= 8.3ms)

'

";;r='

J

tT(AV)

12,

Fusing ConSiderations

IL
f' "

fi¥3 ft.;:,
,):~n

(1800 Conduction Anglel

Peel< $urgeCurrent
(One cycle, 60 Hz, T J = -40 to +12S o CI

C

TERMINAL 1

200
300
400
500
600
720
840
960
1060
1200
1300
1450
1550
1650
1800

-so

lIt r~ ~ c4'
(I

Volts

VRSM

-10
-20
-30
-40
-50

Unit

Volts

VDRM(1)

-10
-20

1000

lb.

1000

Amp/j.ls

THERMAL CHARACTERISTICS
Char-=teristic
Thermal Resistance, Junction to Case

129

INCHES

DIM MIN MAX
MIN
A 36.07 43.18 1.420
B 18.54 29.59 0.730
C 12.45 15.24 0.490
D
4.72
4.85 0.186
E
0.25
2.54 0.010
F
0.35
0.48 0.014
H
1.54
0.100
J
6.22 19.30 0.245
K 202.69 206.12 7.980
L
7.62
M 200
50 0
20 0
N 15.49 28.58 0.610
n 3.48 3.89 0.137
R
1.27
3.18 0.050
S
3.12
3.68 0.123
T
4.72
7.92 0.186
U
1.27
1.78 0.050
V
2.92
3.56 0.115
W 0.25
0.51 0.010
Y
1.45
1.50 0.057
Z
0.64
1.65 0:025
CASE 220·03

MAX
1.700
1.165
0.600
0.191
0.100
0.019
0.760
8.115
0.300
50 0
1.125
0.153
0.125
0.145
0.312
0.070
0.140
0.020
0.059
0.065

(1) Ratings apply for zero or negative gate voltage_
Devices shall not have a pOSitive bias applied to
the gate concurrently with a negative potential
on the anode_ Devices should not be tested with
a constant current source for forward or reverse
block ing capabi lity such that the va Itage applied
exceeds the rated blocking voltage_

MCR380 series (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Peak Forward B)ocking. Current
(Rated VORM, whh gate open, T J = 1250 C)

IORM

-

-

15

mA

Peak Reverse Blocking' Current
(Rated VRRM, with gate open, TJ = 1250 C)

IRRM

-

-

20

mA

Forward "On:' Voltage
(ITM = 1000 A Peak, Pulse Width = B.3 ms,Outy Cycles 1.0%)

VTM

-

-

.2.4

Volts

Gate Trigger Current

IGT

-

-

150

mA

VGT

-

-

3.0

Volts

IH

-

20

500

mA

VGOM

0.15

-

ton

-

2.0

-

!'s

-

-

10

!"

200

-

-

Characteristic

(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Gate Trigger Voltage
(Anode Voltage =.6,0 V,.RL = 3.0 Ohms)
Holding Current

(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 A)
Non·Triggering Gate Voltage
(Anode Voltage = Rated VORM, RL = 1000 Ohms, T J = 1250 C)
Turn-On Time

Volts

(ITM = 50 A, Rated VORM)
Gate Pulse

{10 V ?pen circuit, 20 Ohm Source
. 0.1 !,s (Max) rise time

Gate Pulse Width Necessary to Trigger
{5.0 V open circuit, 5.0 Ohm Source
Gate Pulse
0.1 !,S (Max) rise time
dv/dt

Critical Exponential Rate of Rise

V/!'s

(Rated VORM, gate open, T J = 125°C)

CURRENT DERATING
(f

= 50 to 400 Hz)

FIGURE 2 - SINE WAVE

FIGURE 1 - SQUARE WAVE

'"
'"
'"
~

~i= 11O~--".:-?oo.:-""<~=----+--~-+---1
~
a I-

o

~

110~~~~~~~~~---+~--

ffi

~

1:i

~ 90~---+~~~~~~~~----~.---~--~----~

'<.l"

I-

1800

,~ 90~---+~\-~~--~~~----~----~---+----~
;:3

5
'"::>
'"~

00

CONDUCTION ANGLE

'"
'~"
'~"
::>

70~--~---\t-~~~\-t---~~--+---~~--4
0'= 30 0
500~---L--~10~O~--~~~~--~--~~~~--~400

IT(AV), AVERAGE ON·STATE FORWARD CURRENT lAMP)

70r---~----f\---f\---~\-~'---+----+----4

ITIAV), AVERAGE ON·STATE FORWARD CURRENT (AMP)

130

MCR380 series (continued)

FORWARD POWER DISSIPATION
(f

= 50 to 400 Hz)

FIGURE 3 - saUAR!' WAVE

i

~OOOr----r----r----r----T7---r

80°1--__---I--____1---__---I--__+--I--+-+-_____

Ci

Ci

ffi

FIGURE 4 - SINE WAVE

3:
~

--t 3600 I-

rm

'~"" 2001---+~'---7f7'~£f------I---

FZ1

-1,,1-

"'"

r---"""~~~~-+----+-----+ CONOUCTION ANG LE

:>
~

~ D~~~__~~__~__~~__~__~~__~__~

o

~

m

~

200

100

IT(AV). AVERAGE ON-STATE FORWARO CURRENT (AMP)

IT(AV). AVERAGE ON-STATE FORWARO CURRENT (AMPI

FIGURE 5 - MAXIMUM ON-STATE VOLTAGE

3000

V

200 0

V

V
1000

80 0

600

/

TJ: 125 0 C

/

0
0

I

I

0

I

/

100
80
60
40

30

o

I

1.0

2_0

3.0

4.0

VTM. MAXIMUM FORWARO VOLTAGE (VOLTS)

131

5.0

400

MCR380 series (continued)

FIGURE 6 - TRIGGERING CHARACTERISTICS

!EU.• ,-r-.tT-

1.0
VG. GATE VOLTAGE (VOLTS)

FIGURE 7 - THERMAL RESPONSE
0.14
0.12
~

'" _
~

0.10

!i!~

::

~

zw
wu

0.08

- -

~ ~ 0.06

"'w

~~ 0.04

§

-I--

0.02

o

0.001

0.002

0.005

0.01

-

0.02

~

-

I-

i-"'"

0.05

0.1

0.2

0.3

t. TIME I,)

132

0.5 0.7 1.0

2.0

3.0

5.0 7.0

10

20

30

50

70 100

MCR380B SERIES (SILICON)
MCR380C SERIES
MCR380D SERIES
Advance Infor:rn.ation
BEAM·FIRED
INTEGRATED GATE
THYRISTORS

BEAM·FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS
... designed for high·current. high·frequency applications in inverters,
ch.oppers, cycloconverters, induction heating and high·frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•

•
•
•
•

380 AMPERES RMS

Low Switching Losses - @ 3.0 ps with 30 ps Pulse, Ip = 150 A
MCR380B Series = 3.0 Volts
MCR380C Series = 6.0 Volts
MCR380D Series = 6.0 Volts
Critical Rate·of·R ise of On·State Current di/dt = 1000 Amp/ps (Max)'
Critical Exponential Rate - dv/dt = 200 VIps (Min)
Integrated Gate Permits Soft·Fire Gate Control
Fast Turn·Off Time - 15 to 30 ps

·With 0.05 J,LF and 20 ohm snubber circuit.

MAXIMUM RATINGS

Device Type

Rapetitive Peak Off·Stata
Voltaga (TJ = +125o C)
VORM, VRRM
Volts

Non-Repetitive Peak
Reverse Blocking Voltage
VRSM
Volts

100
200
300
400
500
600
700
800

200
300
400
500
600
700
800
900

100
200

200
300
400
500
600
700
800
900
1000
1100

Turn·Off Time = 15 ,",5 Max

MCR380B

-10
-20
-30
-40
-50
-60
-70
-80

Turn-Off Time = 20 IJS Max

MCR380C

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100

300
400

500
600
700
800
900
1000

Turn-Off Time· 30 lIS Max

MCR380D

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120

100
200
300

400
500
600
700
800
900
1000
1100
1200

200
300

400
500
600
700
800
900
1000
1100
1200
1300

MILLIMETERS
DIM MIN MAX
A 36.07 43.18
8 18.54 29.59
C 12.45 15.24
4.72
4.85
0
0.25
2.54
E
0.35
0.48
F
H
2.54
J
6.22 19.30
K 202.69 206.12
L
7.62
M 200
500
N 15.49 28.58
Q
3.48
3.89
R
1.27
3.18
S
3.12
3.68
T
4.72
7.92
U
1.27
1.78
V
2.92
3.56
W
0.25
0.51
Y 1.45
1.50'
Z
0.64
1.65

INCHES
MIN MAX
1.420 1.700
0.730 1.165
0.490 0.600
0.186 0.191
0.010 0.100
0.014 0.019
0.100
0.245 0.760
7.980 8.115
0.300
200
50 0
0.610 1.125
0.137 0.153
0.050 0.125
0.123 0.145
0.186 0.312
0.050 0.070
0.115 0:140
0.010 0.020
0.057 0.059
0.025 0.065

CASE 220·03
This is advance information on a new introduction and specifications are subject to change without notice.

133

MCR380B series, MCR380C series, MCR380D series (continued)

MAXIMUM RATINGS
Symbol

Value

Unit

ITIAV)

250

Amp

Peak Surga Current
lOne cycle, 60 Hz, T J = -40 to +125 0 C)

ITSM

3500

Amp

Circu it Fusing Considerations
ITJ = -40 to +125 0 C, t = 1.5 - 8.3 ms)

12 t

50,000

A2s

Rating
Average Forward Current, T C - 60°C
1180° Conduction Angle)

Peak Gate Power

Average Gate Power
Peak Forward Gate Current
Peak Reverse Gate yoltage .,...
Operating Junction Temperature Range

Storage Temperature Range
Mounting Force

Critical Rate-ot-Rise of On-State Current - Repetitive
Non-Repetitive

PGFM

15

Watts

PGFIAV)

3.0

Watts

IGFM

4.0

Amp

VGRM

5.0

Volts

TJ

-40 to +125

°c

T stg

-40 to +150

°c

-

l000±200

lb.

di/dt

200
1000

Amp/j!s

THERMAL CHARACTERISTICS
Max

Characteristic

Thermal

R~istance.

Junction to Case

0.095

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Peak Forward Blocking Current
I Rated VORM, with gate open, T J = 125Dc!

IORM

-

-

15

mA

Peak Reverse Blocking Current
IRated VRRM, with gate open, TJ = 1250 C)

IRRM

-

-

15

mA

Forward "On" Voltaga
IITM = 1000 A Peak, Outy. Cycle S 0.01", TJ = 25°C!

VTM

2.65

Volts

Gate T r ' - Current
IAnode Voltaga = 6.0 V, RL = 3.0 Ohms!

IGT

150

mA

Gate Trigger Voltage
IAnode Voltage = 6.0 V, RL = 3.0 Ohms)

VGT

3.0

Volts

50

500

mA

0.15

-

-

Volts

-

-

15
20
30

-

-

Volts

-

-

5.0
8.0
8.0

200

-

-

V/j!s

Characteristic

Holding Current
IAnode Voltaga = 24 V, gate open, Initiating Current ='2.0 A)

IH

Non·Triggering Gate Voltaga
IAnode Voltaga = Rated VORM, RL = 1000 ohms, TJ = 125°C)
Circuit Commutated Turn·Off Time
IVR = 50 V IMin); Rated VORM, TJ ~'~1250C;
diR/dt = 20 A/jJs, Repetition Rate = 1.0 pps,
ITM = 250 A; dv/dt = 20 V/j!s)

Transient Turn-On Voltage

= 100 V, ITM = 300 A, PW = 8.0 j!S,
Gate Drive = 600 mAo rise = 0.1 ,",5, test point = 4.0 j.ls)

IVORM

VGOM
tq

MCR3BOB
MCR380C
MCR3800
MCR380B
MCR380C
MCR3800

Critical Exponential R ate of R iSB
IRated VORM, Gate open, TJ = 125°C)

VTO

dv/dt

134

-

JJS

-

MCR406-1 (SILICON)
thru

MCR406-4

PLASTIC 81 LICON
CONTROLLED RECTIFIERS
PLASTIC THYRISTORS
· .. Annular PNPN devices designed for high volume consumer
applications, such as temperature, light, and speed control, process
and remote control, and warning systems where reliability of opera·
tion is important. Sensitive gate trigger permits operation as a switch
directly from low level sensors.

4.0 AMPERES RMS
30 thru 200 VOLTS

• Annular Passivated Surface for Reliability and Uniformity
• True Power Rated - 4.0 Amp@Tc

=

97 0 C

= 200!lA @ T A = 25 0 C

•

Low Level Gate Characteristics - IGT

•

Higher Surge Current Rating - ITSM = 30 Amp

•

Flat, Rugged, Thermopadtt Construction - for Low Thermal
Resistance, High Heat Dissipation, and Durability

MAXIMUM RATINGS
Rating

Symbol

Peak Reverse Blocking Voltage

(Note 1)

MCR40.6-1
MCR406-2
MCR40.6-3
MCR40.6-4

Forward Current RMS
(All Conduction Angles)

Peak Forward Surge Current
(112 cycle, 60. Hz, T J = -40. to +11 o.°C)
Circuit Fusing Considerations

(T J

Unit
Volts

VRRM

30
60.
10.0.
20.0.
4.0.
Amp

ITSM
30.
12 t

A 2s
3.6

PGFM

0..5

Watt

PGF(AV)

0.1

Watt

Peak Gate Current - Forward

IGFM

0..2

Amp

Peak Gate Voltage - Reverse

VGRM

6.0.

Volts

TJ

-40. to +110.

°c

T stg

-40. to +150.

Average Gate Power - Forward

Operating Junction Temperature

Range

Storage Temperature Range
Mounting Torque (6-32 screw) (Note 2)

STYLE 1:
PIN 1. CATHODE
2. ANOo.E
3. GATE

Amp

IT(RMS)

=-40. to 11 o.°C, t =1.0. to 8.3 ms)

Peak Gate Power - Forward

Value

-

8

°c

in. lb.

MILLIMETERS
MIN
MAX
A 16.13 16.38
B
12.57 12.83
C
3.18 3.43
D
1.09 1.24
F
3.51 3.76
4.228SC
G
H
2.67 2.92
J
0.813 0.864
15.11 16.38
K
M
90 TYP
n
4.70 4.95
R
1.91 2.16
U
6.22 6.48

DIM

INCHES
MIN MAX
0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255

CASE 90.·0.5

NOTE:
1. LEADS WITHIN .005" RAD OF TRUE
POSITION (TP) AT MMC

135

MCR406-1 thru MCR406-4 (continued)

ELECTRICAL CHARACTI;RISTICS (TC = 25°C unless otherwise noted, RGK = 1000 Ohms)
Characteristic

Min

Symbol

Peak Forward Blocking Voltage
(TJ = 110o C) Note 1

Typ

Max

Unit
Volts

VORM
MCR406-1
MCR406-2
MCR406-3
MCR406-4

Peak Forward Blocking Current
(Rated VORM @TJ= IlOo C)

IORM

Peak Reverse Blocking CUrrent
(Rated VRRM @TJ = IlOo C)

IRRM

Forward "On" Voltage
IITM = 4.0 A peak)

VTM

Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vde, R L = 100 Ohms)

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vde, R L = 100 Ohms)

VGT

(Anode Voltage = Rated VORM, RL = 100 Ohms, T J = 110°C)

-

-

-

100

-

-

100

-

-

2.2

-

-

200

-

-

0.8

0.2

-

-

3.0

jlA
jlA
Volts
jlA
Volts

VGO

Holding Current
(Anode Voltage = 7.0 Vde)

30
60
100
200

mA

IH

Turn-On Time

ton

Turn-Off Time

toff

Forward Voltage Application Rate

Circuit Dependent. Consult Manufacturer.
V/jls

dvldt

IT J = 110o C)

-

10

-

Thermal Resistance, Junction to Case

9JC

-

-

2.0

°CIW

Thermal Resistance. Junction to Ambient

9JA

-

-

50

°C/W

NOTES:
1.

VORM and VRRM for all types can be applied on a continuous
de basis without Incurring damage. Ratings apply for zero or

negative gate voltage but positive gate voltage shall not be applied
concurrently with a negative potential on the anode. When checking forward or reverse blocking capability. thyristor devices should
not be tested with a constant current source in a manner that
the voltage applied exceeds the rated blocking voltage.

FIGURE 1 - CASE TEMPERATURE versus CURRENT
w

'"'"
~
'"~
....'ww"'

70

j

'"x

'"'
"
....'< I'-..

~ 10

00(

..........

OEVICE MOUNTEO OJ
HEAT SINK

>

0.0 2

I

PRIOR TO SURGE
SCR OPERATED AT
RATEO LOAD CONDITIONS
TJ 0 -IOoC TO +110.C
PULSE REPETITION
FREDUENCY 0 60 Hz -

20

10

30

40 50 60

NUMBER OF CYCLES

VF.INSTANTANEOUS FORWARD "ON" VOLTAGE IVOLTS)

FIGURE 6 - THERMAL RESPONSE
1.0

i---

~

...... .... i'"

VI
0.1

10

1.0

t.TIMElms)

137

100

1000

10.000

MCR406-1 thru MCR406-4 (continued)

FIGURE 7 - TVPICAL GATE TRIGGER CURRENT

FIGURE 8 - TYPICAL GATE TRIGGER VOLTAGE'
10

30

E 10

..

VAKI=7.0~~

"-

'":::>
'"
<..>

W

co
~

RGK=I.Qk

:li
co

...........

co 1.0
0:

'"
co
co
0:

..
..
IW

W

~

1.0

I-

~

.......

co

ffi

r---

W

I-

N

VAK-7.0V _
RGK=I.0k

0

>

DOES NOT INCLUDE'CURRENT:
THROUGH GATE·CATHOOE
_
(RGK) RESISTOR

co

ffi

.............

O. 1

N

::;

&!!

&!!
o
z

0

z

0.0 1

-75

-so

0.1

--a

100

50

-75

125

-50

-25

-25

FIGURE 9 - TYPICAL HOLDING CURRENT
10

12

'":::><..>'"

-......

co

z

o

VAK = 7.0 V
RGK = l0001l

.......

'W

§

-

......

...........

1.0

:z:

ffi
N

..
'""
::;

r-

o
z

0.1

-75

50

75

TJ, JUNCTION TEMPERATURE (DC)

TJ, JUNCTION TEMPERATURE (DC)

-so

25

50

100

125

TJ,JUNCTION TEMPERATURE (DC)

SILEeTaD THYftISTOfI-Tflf4GEfi APf'LICATION N01'U
AN-240' - SCR Power Control Fundamentals
AN-29GB - Mounting Procedure for, and Thermal Aspects of,
Thermopedt t Plastic Power Devices
AN-295 - Suppressing RFI in Thyristor Circuits
AN-453 - Zero Point Switching Techniques.
To obtain copias of these n.otas list the AN numbeds)
on your company letterhead and send your requilst to:
Technical I nformation Center
Motorola Semiconductor Products, Inc.
P.O. Box 20924
Phoenix, Arizona 85036

138

100

125

MCR407-1 (SILICON)
thru

MCR407-4

AO

~G

OK

THYRISTORS

4.0 AMPERES RMS
30 thru 200 VO LTS

PLASTIC SILICON CONTROLLED RECTIFIERS

... Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliability of oper·
ation is important.

• Annular Passivated Surface for Reliability and Uniformity
• Power Rated at Economical Prices
• Practical Level Triggering and Holding Characteristics
• Flat, Rugged, Thermopad Construction··for Low Thermal Re·
sistance, High Heat Dissipation and Durability

MAXIMUM RATINGS
Rating
Repetitive Peak Reverse Blocking Voltage

Symbol

Value

INole 11 MCR407·1
·2
:3
·4

Unit

Volts

VRRM

RMS On-State Current
(All Conduction Angles)

ITIRMS)

30
60
100
200
4.0

Average On-State Current

ITIAV)

2.55

Amp

ITSM

20

Amp

121

1.6

A2,

PGFM
PGFIAV)
IGFM
VGRM
TJ

0.5
0.1
0.2
6.0
-4010 +110
-4010 +150
8.0

ITC = 890 C)
Peak Non-Repetitive Surge Current

Amp

(One cycle, 60 Hz.

STYLE 1:
PIN 1. CATHODE
2.ANODE
3. GATE

TJ= -4010 +1100C)
Circuit Fusing Considerations

IT J = -40 10 +1100C)
1= 1.010 8.3 m,)
Peak Gate Power
Average Gate Power

Peak Gate Current
Peak Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range
Mounting Torque (6-32 Screw)

T stg

-

INole 2)

Watt

Watt
Amp

DIM

Volts

B
C

uc
°c
in. lb.

A

D
F
G

H
J

THERMAL CHARACTERISTICS

K
M

Characteristic

Q

Thermal Resistance. Junction to Case

R
U

Thermal Resistance. Junction to Ambient

MILLIMETERS
MIN
MAX

INCHES
MIN MAX
16.13 16.38 0.635 0.645
12.57 12.83 0.495 0.505
3.18 3.43 0.125 0.135
1.09 1.24 0.043 0.049
3.51 3.76 0.138 0.148
4.22 sse
0.166 SSC
2.67 2.92 0.105 0.115
0.813 0.864 0.032 0.034
15.11 16.38 0.595 0.645
90 TYP
90 TYP
4.70 4.95 0.185 0.195
1.91 2.16 0.075 0.085
6.22 6.48 0.245 0.255
CASE 90·05

NOTE:

1. LEADS WITHIN .005" RAD OF TRUE
POSITION ITP) AT MMC

139

MCR407·1 thru MCR407·4 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted, RGK = 1000 ohms)
Typ

Min

Symbol

Characteristic

Peak Forward Blocking Voltage
(TJ - 110°C) Note 1

Unit

Max

Volts

VORM
30
60
100
200

-

-

-

-

-

-

IORM

-

-

100

I'A

IRRM

-

-

100

I'A

Peak On-State Voltage
(lTM= 4.0A)

VTM

-

-

2.6

Volts

Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vdc, R L = 100 ohms)

IGT

-

-

500

I'A

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vdc, R L = 100 ohms)
(Anode Voltage = Rated VORM, RL = 100 ohms, T J = 1100 C)

VGT

-

1.0
5.0

mA

-

VII's

MCR407-1
-2
-3
-4

Peak Forvvard Blocking Current

(Rated VORM, TJ = lOOoC)
Peak Reverse Blocking Current

(Rated VRRM, T J = 11 oDC)

Volts

IH

-

-

dvldt

-

10

0.2

Holding Current

-

(Anode Voltage = 7.0 Vdc)
Forward Voltage Application Rate
(TJ= 1100 C)

NOTES:
1. VORM and VRRM for all types can be applied on a continuous de
basis without incurring damage. Ratings apply for zero or negative

gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the anode. When checking
forward or reverse blocking capability, thyristor devices should not

be tested with a constant current source in a manner that the
voltage applied exceeds the rated blocking voltage.

2. Torque rating applies with use of torque washer (Shakeproof
WD19522 #6 or equivalent). Mounting torque in excess of 8 in.
Ibs. does not appreciably lower case-to-sink thermal resistance.
Anode lead and heatsink contact pad are common.
For soldering purposes (either terminal connection or device
mounting), soldering temperatures shall not exceed +22SoC. For
optimum results,8:18ctivated flu)( (oxide removing) isrecommended.

CURRENT DERATING

'"\" \

FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE

FIGURE 1 - MAXIMUM CASE T"MPERATURE
.110

;:--..:

~ 100

...g;
~

II!

~

.

60

i

50

r--

A~ ~

60 0

01=300 \

~

~100 ~ ......
'"i=
~~
~ 90

~ f-----'

\80 0

~ 90'--

80

70

~

~

~~ t'......

90

....

~

~

'G 110

.'"
ffi

a

a .. Conduction Angle

40

\' ~"\

CQ

60

,.!!i

50

x
;!

\ \ '\ ,'\.

o

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IT(AVI, AVERAGE ON-5TATE CURRENT (AMPI

......

\\

,

~

40

30

• - 300

o

0.1

\

i'-,.

600\ 900 \

120~80~

0.2

0.4

0.5

0.8

" r-...
de

0.7

0.8

0.9

IT(AV),AVERAGE ON·STATE CURRENT (AMP)

140

~

...... i'-,.

"\\

0.3

a

a .. Conduction Angle

\
\ I'\.
\ 1\ \ 1\

ii1i

20

........

\.

\

±!t=

"-

"
\ ,\

,. 80
~
>- 70

1.0

1.1

MCR470 SERIES (SILICON)

BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS
. designed for high power industrial and consumer applications in
power and speed controls such as welders, furnaces, motors, space
heaters and other equipment where control of high current is needed.
In addition, the entire series employs the unique Beam·Fired gate
design to al!ow high dildt and to reduce turn·on losses.
• Critical Rate·of·Rise of On·State Currentdildt = 1000 Amp//1s (Max)"
• Critical Exponential Rate - dv/dt = 200 Vl/1s (Min)

BEAM-FIRED
INTEGRATED GATE
THYRISTORS
470 AMPERES RMS

100 thru 1500

va LTS

• Low Switching Losses
• Integrated Gate Permits Soft·Fire Gate Control
·With 0,05 JJ.F and 20 ohm snubber Circuit.

MAXIMUM RATINGS
Rating

SVmbol

Repet!tlve Peak Off-State Voltage
fTJ" +12S0C) MCR470-

-130
-140
150
Non-Repetitive Peak Aeverse

Volts

VRSM

Block Voltage
It ~5 0 ms) MCR47Q-

- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
-100

200

300
400
500
600
720
840
960
1080
1200
1300
1450
1550
1650
1800

-110
-120
-130
-140

150
Average Forward Current
USOO Conduction Angle, Te = 7SoCJ
Peak Surge Current
(Ona cycle, 60 Hz • T J = -40 to +12S0CI

'TIAV)

300

Amp

ITSM

5500

Amp
A2,

, t

Circuit FUSlllg ConSiderations
(t=

1 5msl

50,000

(t=8.3msl

Peak Forward Gate Power

PGFM

Average Forward Gate Power
Peak Forward Gate Current

Peak Reverse Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range

PGF(AVI
IGFM
VGRM
TJ

T~

Mounting Force
Cntlcal Rate·ot·Rlse of On·State Current dunng
Turn· On Interval (Non·Repetltlve RatlOgl

Umt
Volts

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

-110
-120

(T J '" -40 to +12S0C)

Value

VORM(l)
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
-100

dl/dt

120,000
15

Watts

30
40

Watts
Amp

50
-40 to "'125
-40 to "'150
1000

Volts

1000

Amp/~J

°c
°c

'b.

THERMA L CHARACTER ISTICS
CharacteristiC
Thermal ReSistance, Junction to Case

111 Ratings apply for zero or negative gata voltage DeviCes shall not have a positive bias applied to the gata concur·
rently with a negative potential on the anode DeviCes should not be tested with a constant current source for
forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage

MILLIMETERS
INCHES
MIN MAX
DIM MIN MAX
A 36.07 43.18 1.420 1.700
B 18.54 29.59 0.730 1.165
C 12.45 15.24 0.490 0.600
4.85 0.186 0.191
D
4.72
2.54 0.010 0.100
0.25
E
0.35
0.48 0.014 0.019
F
2.54
0.100
H
6.22 19.30 0.245 0.760
J
K 202.69 206.12 7.980 8.115
0.300
7.62
L
50 0
M 200
500
200
N 15.49 28.58 0.610 1.125
Q
3.48
3.89 0.137 0.153
1.27
R
3.18 0.050 0.125
S
3.12
3.68 0.123 0.145
4.72
T
7.92 0.186 0.312
1.27
1.78 0.050 0.070
U
V
2.92
3.56 0.115 0.140
0.51 0.010 0.020
W 0.25
Y
1.45
1.50 0.057 0.059
0.64
1.65 0.025 0.065
Z

CASE 220·03

141

MCR470 series (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Peak Forward Blocking Current
(Rated VORM. with gate open. TJ = 125°C)

IORM

-

-

15

mA

Peak Reverse Blocking Current
(Rated VRRM. with gate open. TJ = 125°C)

IRRM

-

-

15

mA

Forward "On" Voltage
(ITM = 1000 A Peak. Pulse Width = 8.3 ms. Duty Cycle S; 1.0%)

VTM

-

-

1.9

Volts

Gate Trigger Current
(Anode Voltage =6.0 V. R L

IGT

-

-

150

mA

VGT

-

-

3.0

Volts

IH

-

20

500

mA

VGOM

0.15

-

-

Volts

ton

-

2.0

-

J.lS

-

-

10

J.lS

200

-

-

V/".s

Characteristic

= 3.0 Ohms)

Gate Trigger Voltage
(Anode Voltage =6.0 V. R L = 3.0 Ohms)
Holding Current
(Anode Voltaga'; 24 V; gate open. Initiating Current = 2.0 A)
Non·Triggering Gata Vol tag..
(Anode Voltage = Rated VORM. RL = 1000 Ohms. T J = 1250 C)
Turn·On Time
(lTM = 50 A. Rated VORM)
10 V open circuit. 20 Ohm Source
Gate Pulse
0.1 J.lS (Max) rise time

{

Gate Pulse Width Necessary to Trigger
5.0 V open circuit. 5.0 Ohm Source
Gate Pulse
0.1 J.lS (Max) rise time

{

Critical Exponential Rate 01 Rise

dv/dt

(Rated VDRM. gate open. TJ = 125°C)

CURRENT DERATING
(I = 50 to 400 Hz)
FIGURE 2 - SINE WAVE

FIGURE 1 - SQUARE WAVE

~

--I

3600

130

f--

~ ~

'"'
'"~

~~

~
~

w

~
~

\

90

i

70r---+--t---+-~t--~-~t-~-+~~

""

\

=>

X

70
50

IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)

r\.

\ '\

a=300 ~

....<3
500~--L-~1~OO~-~--~~~~-~~--~--~

- l a I-CONDUCTION
ANGLE

1,\"'- ~ t-.....

,.'"

;!
~

110

,.'"

~

~ 901---t--+-~+-~~~~d-~c-+-~~~~4

~
00
1800

~~

W

~ 1101---t""""r"'('~~""""",.q:c--+---l a f--

'=>"'

~

Q

o

100

\

1',.

I"",''-

I'...
"'-'
90~

60~
200

180)...,

\

""

300

IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)

142

400

MCR470 series

(continued)

FIGURE 4 - SINE WAVE

FIGURE 3 - SQUARE WAVE

00

1800

a I-CONDUCTION
ANGLE

-l

300
100
200
IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)

IT(AV). AVERAGE DN·STATE FORWARD CURRENT (AMP)

FIGURE 5 - MAXIMUM ON·STATE VOLTAGE
4000

V

i/
2000

/

V
0
0

o.

/

/

0

TJ: 125 0 C

/

100
80

I

0

II
1.0

2.0

3.0

4.0

VrM. MAXIMUM FORWARD VOLTAGE (VOLTS)

143

5.0

400

MCR470 series (continued)

FIGURE 6 - TRIGGERING CHARACTERISTICS
10 _

__

VG, GATE VOLTAGE (VOLTS)

FIGURE 7 - THERMAL RESPONSE

~

.
~
w

(.)

z

0.14
0.12
0.10

!!

~

0.08

~
....

0.06

~

~ 0.04

~

.-I-

..... 0.02

-

--

...-

?

U

~ O~OOl

0.002

0.005

0.01

0.02

0.05

0'.1

0.5 0.7 1.0

0.2

t,TIME(,)

144

2.0

5.0 7.0

10

20

50

70 100

MCR470C SERIES (SILICON)
MCR470D SERIES
MCR470E SERIES
Advance Infor:rnatlon
BEAM-FIRED
INTEGRATED GATE
THYRISTORS

BEAM-FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS
· .. designed for high-current, high· frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•

•
•
•
•

470 AMPERES RMS

Low Switching Losses - @ 3.0 /-IS with 30/-IS Pulse, Ip = 150 A
MCR470C Series - 3.0 Volts
MCR470D Series - 6.0 Volts
MCR740E Series - 6.0 Volts
Critical Rate-of-Rise of On-State Currentdi/dt = 1000 Amp//-Is (Max)'
Critical Exponential Rate - dv/dt = 200 V//-Is (Min)
I ntegrated Gate Perm its Soft-F ire Gate Control
Fast Turn·Off Time - 20 to 40/-ls

·With 0.05 ",F and 20 ohm snubber circuit.

MAXIMUM RATINGS

Device Type

R.petiti •• POIIk Off-Stet.
Voltag. ITJ = +125"1:1
VORM, VRRM
Volts

Non-R.petitiv. P.ak
R...... Blocking Voltage
VRSM
Volts

Turn-Off Tlma 'Q 20 IJS Max

MCR470C

-10
-20
-30
-40
-50
-60
-70
-80

100
200
300
400
500
600
700
800

200
300
400
500
600
700
800
900

100
200
300
400
500
600
700
800
900
1000

200
300
400
500
600
700
800
900
1000
1100

100
200
300
400
500
600
700
800
900
1000
1100
1200

200
300
400
500
600
700
800
900
1000
1100
1200
1300

Turn-Off Tima .. 30 I'S Max

MCR4700

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100

~

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120

"1

r

I

"
I

E

..L...I..J

ILl

2 GATE

~3.
CATHODE
4. CATHODE

SEATING PLANE

]i'

~T Jp

TERMINAL 3

:~n
0

MM

NOTE:

This Is advance Information on a new introduction and ,pacifications are subject to chal1Qt1 without notice.

145

rF

mtfl;f= ~ ~,. "

Turn-Off Time" 40 ",I Max

MCR470E

r-;::.~ -=;-J

~

N
1 DIM "~" ""PLIES TO. BOH LEAQS

DIM
A
B
C

. 0
E
F
H
J
K
L

M
N
Q

R
S
T
U

V
W
y

Z

INCHES
MILLIMETERS
MIN MAX
MIN MAX
36.07 43.18 1.420 1.700
18.54 29.59 0.730 1.165
5.24 0.490 0.600
12.45
4.72_ 4.85 0.186 0.191
0.25 • 2.54 0.010 0.100
0.48 0.014 0.019
0.35
0.100
2.54
6.22 19.30 0.245 0.760
202.69 206.12 7.980 8.115
0.300
7.62
50·
20·
20·
50·
15.49 28.58 0.610 1.125
3.48
3.89 0.137 0.153
1.27
3.18 0.050 0.125
3.12
3.68 0.123 0.145
4.72
7.92 0.186 0.312
1.27
1.78 0.050 0.070
2.92
3.56 0.115 0.140
0.51 0.010 0.020
0.25
1.45
1.50 0.057 0.059
0.64
1.65 0:025 0.065
CASE 220-03

MCR470C series, MCR470D series, MCR470E series (continued)

MAXIMUM RATINGS
Rating
Average Forward Current, T C • 60°C
(1 SOOConduction· Angle)
Peak Surge Current
(One cvcle, 60 Hz, TJ = -40 to +1250 C)
Circuit Fusing Considerations

Symbol

Value

Unit

.lnAV)

300

Amp

ITSM

4500

Amp

12 t

B4,OOO

A2.

(TJ • -40 to +125 0 C, t = 1.5 - 8.3 ms)
PGFM

15

Wetts

PGF(AV)

3.0

Watts

Peak Forward Gete Current

IGFM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0 .'

Volts

Peek Forwerd Gate Power
Average Forward Gate Power

Opereting Junction Tempereture Range

TJ

-40 to+125

Storege Temperature Range

Tstg

-40 to +150

°c

-

l000±2oo

Ibs

di/dt

200
1000

Amp/"s

Mounting Force
Critical Rete-of-Rise of OnoState Current - Repetitive
Non-Repetitive

°c

THERMAL CHARACTERISTICS
Characteristic

Max

Thermal Resistance, Junction to Case

0.08

ELECTRICAL CHARACTERISTICS (TC = 25°C unl ... otherwise noted)
Symbol

TVp

Max

Unit

IORM

-

-

15

mA

IRRM

-

-

15

mA

VTM

-

-

2.30

Volts

Gate Trigger Current
(Anode Voltage =6.0 V, RL =3.0 Ohms)

IGT

-

-

150

mA

Gate Trigger voltage
(Anode Voltage = 6.0 V, RL = 3.0 Ohms)

VGT

3.0

Volts

Holding Current
(Anode Vortage = 24 V, gate open, Initiating Current = 2.0 A)

IH

500

mA

Characteristic

Peak Forward Blocking Current
(Reted "ORM, with gate open, TJ

= 1250 CI

Peak Reverse Blocking Current
(Reted VRRM, with gate open, TJ· = 125°C)
Forward "On" Voltage
(tTM = 1000 APeak, outy Cvcle:!::O.OI%, TJ

= 25°C)

Non-Triggering Gate Voltage
(Anode Voltage = Rated VORM, RL •. 1000 Ohms, TJ
Circuit Commutated Turn-Off Time
IVR = 50 V.(Min); RatedVORM, TJ = +125 0 C,
diR'dt = 20 A/"s; Repetition Rete = 1.0 pps;
ITM = 250 A; dvldt = 20 VI".)
Transient Turn·On Voltage

"S

(VORM = 100 V, ITM = 300 A, PW = B.O
Gate Ori.ve = 600 mA, rise = 0.1 "s, test point = 4.0 "s)

VGSM

= 125°C)

Min

50
0.15

Volts

tq

-

MCR470C
MCR4700
MCR470E
MCR470C
MCR4700
MCR470E

Critical Exponential Rate of Rise .
(Rated VORM, gate open; TJ = 125°C)

VTO

-

dvldt

146

-

200

-

-

-

"s
20
30
40

5.0
B.O
8.0

Volts

-

V/"s

MCR550C series
MCR550D series
Advance InforIDation
BEAM·FIRED
INTEGRATED GATE
THYRISTORS

BEAM·FIRED INTEGRATED GATE
FAST SWITCHING THYRISTORS

550 AMPERES RMS

· .. designed for high·current, high·frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency lighting. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•
•
•
•

Critical Rate-of-Rise of On-State Currentdi/dt = 1000 Amp/ils (Max)
Critical Exponential Rate - dv/dt = 200 V IllS (Min)
Integrated Gate Permits Soft-Fire Gate Control
Fast Turn-Off Time - 20 and 30 IlS

MAXIMUM RATINGS

Device Type

Voltage ITJ = +125o CI
VORM,VRRM
Volts

Non-Repetitive P••
Reverse Blocking Voltage
VRSM
Volts

Tum-Off Time - 20 /olS Max
MCR550C

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100

'--t
IflH~~.jI
3t!] r~'L
z

Repetitive Peak Off-State

100
200

300
400
500
600
700
800
900
1000

200
300
400
500
600
700
800
900
1000
1100

1

-10
-20
-30

-40
-50

-60
-70
-80.
-90
-100
-110
-120

SEATING PlANE

if
-': ~n
, ~, !, ' ,~~t-~
lE;:.~
4 CATHODE

NOTE:
1. OIM "K" APPLIES TO. 80TH LEAOS

DIM

Turn-Off Time = 30 IJS Max
MCR5500

E

INCHES
MILLIMETERS
MAX
MIN MAX MIN

A

100
200

300
400
500
600
700
800
900
1000
1100
1200

200
300
400
500

600
700
800

900
1000
1100
1200
1300

55.88
B 6.19
C 25.40
D 4.72
E 0.78
F 0.35
H
3.18
J
6.22
K 2
L
15

-

S

3.48
127
3.1

U
V

1.27
29

Y
Z

1.45
0.64

R

6150
38.1

2.2no

2.5
1 31 1 0
1.000 I- 5
4.8& o:iliif .1
.19 11[030
0
0.48 10.014
9
10.125
19.30 0.245 0.760
208.12 7.980 .1 5
7.82
o.3DD
15
5
1.435
.137
0 oRn
3.88
.1 3
.9
1.78
3.&6
.11 '.1

27.05

-

i.M

1
1.65

0.025 0.084

CASE 220-02
This is advance Information on a new Introduction and specifications are subject to change without nOtice.

147

MCR550C Series, MCR550D Series (continued)

MAXIMUM RATINGS
Rating
Average On-State Current, T C = so"c
(180" Conduction Angle)

Peak Non-Repetitive Surge Currant
(One cycle, 60 Hz, T J

= -40 to +1250 C)

Circuit Fusing Considerations
(TJ = -40 to +1250 C, t = 1_5 - 8.3 ms)
Peak Gate Power
(Maximum Pulse Width

= 401's)

Average Gate POVV8r
Peak Forward Gate Current

Symbol

Value

Unit

IT(AV)

350

Amp

ITSM

5500

Amp

12 t

120,000

A 2s

PGFM

200

Watts

PGF(AV)

3.0

Watts

IGFM

4.0

Amp

VGRM

10

Volts

TJ

-40 to +125

°c

T stg

-40 to +150

°c

-

2000± 200

Ibs

200
1000

Amp/l's

(Maximum Pulse Width = 401's)
Peak Reverse Gate Voltage

Operating Junction Temperature Range
Storage Temperature Range
Mounting Force

Critical AateMof-Rise of On-State Current - Repetitive
(R

= 20 Ohms, C = 0.05I'F)

di/dt

Non-Repetitive

THERMAL CHARACTERISTICS
Characteristic

Symbol

Thermal Resistance, Junction to Case

Unit

ROJC

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Symbol

Min

Typ

Max

Unit

IORM

-

-

30

mA

Peak Reverse Blocking Current
(Rated VRRM, with gate open, T J = 125°C)

IRRM

-

-

30

mA

Peak On-State Voltage
(lTM = 1000 A Peak, Pulse Width ";2.0 ms, Outy Cycle ";0.01%,
TJ = 2sOC)

VTM

-

-

2.4

Volts

Gate Trigger Current, Continuous de

IGT

-

-

150

mA

Gate Trigger Voltage, Continuous de

VGT

-

-

3.0

Volts

-

0.15

Volts

-

50

500

mA

-

-

20
30

-

-

-

10

200

-

-

Characteristic
Peak Forward Blocking Current
(Rated VORM, with gate open, TJ

= 125°C)

(Anode Voltage = 6.0V, RL = 3.0 Ohms)
(Anode Voltage = 6.0 V, RL

= 3.0 Ohms)

Non-Trigger Gate Voltage
(Anode Voltage = Rated VORM, R L = 1000 ohms, T J
Holding Current
(Anode Voltage = 24 V, gate open, Initiating Current

VGOM

= 125°C)
IH

= 2.0 A)

Circuit Commutated Turn~ff Time
(VR = 50 V (Min); Rated VORM, TJ = +1250 C,
diR/dt = 20 AIl's; Repetition Rate = 1.0 pps,
ITM = 250 A; dv/dt = 20 VII's)

I'S

tq
MCR550C
MCR5500

Transient Turn-On Voltage
(VORM = 100 V,ITM =,300 A, PW= 8.01's,
Gate Orive = 600 mA, rise = 0.1 I'S, tast point = 4.0 I's)

VTO

Critical Exponential Rate of Rise of Off-State Voltage
(Rated VORM, Gate open, T J = 125°C)

dv/dt

-

148

Volts

VII's

MCR649-1 thru MCR649-7 (SILICON)

~~
,

(D (;)
o

0

~,

o

'

@,

CASE 61

CASE 54

(TO-41)

(TO-3 Modified)

PIN 1. GATE

Industrial-type, silicon controlled rectifiers in a
"diamond" package for applications requiring a high
surge-current rating or low thermal resistance.
For units with pins (TO-3) specify devices MCR649P-l
thru MCR649P-7.

0

PIN 1 ANODE

2. CATHODE
CASE ANODE

2. GATE
CASE CATHODE

MAXIMUM RATINGS

(TJ" 100'C unless otherwise noted)

Rating

Symbol

Peak Reverse Blocking Voltage*
MCR649-1
-2
-3
-4
-5

VROM *

-6
-7
Forward Current RMS
(All Conduction Angles)

It

Value

Volts
25
50
100
200
300
400
500
20

Amp
A2s

12t

Circuit Fusing Considerations
(T J = -40 to +lOOoC; t ;;; 8.3 ms)

Unit

275

Peak Forward Surge Current
(One Cycle, 60 Hz, TJ = -40 to +1000 C)

IFM(surge)

Peak Gate Power - Forward

Amp
260

P GFM

5.0

Watts

PGF(AV)

0.5

Watt

Peak Gate Current - Forward

IGFM

2.0

Amp

Peak Gate Voltage - Forward

VGFM
VGRM

10

Volts

5.0

TJ

-40 to +100

°c

Tstg

-40 to +150

°c

Average Gate Power - Forward

Reverse
Operating Junction Temperature Range
Storage Temperature Range

*VROM for all types can be appUed on a continuous dc basis without incurring damage.
VROM ratings apply for zero or negative gate voltage.

149

MCR649·1 thru MCR649·7 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic
Peak Forward Blocking Voltage
(T J = 100°C)

Symbol
VFOM

MCR649-1
-2
-3
-4
-5
-6
-7

Peak Forward Blocking Current
(Rated VFOM with gate open, TJ = 100°C)

IFOM

Peak Reverse Blocking Current
(Rated VFOM with gate open, T J = 100°C)

IROM

Min

Typ

Max

25'
50
100
200
300
400
500

-

---

--

Volts

rnA

- -

5.0

- -

5.0

rnA

Gate Trigger Current (Continuous de)
(Anode Voltage = 7Vdc, RZ = 50 S"l)

IGT

-

30

80

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7 Vdc, RL = 50 S"l)

VGT

-

1.0

3.5

rnA

-

-

20

-

1.1

1.5

Volts

. VGNT

0.3

Holding Current
(Anode Voltage. = 7 Vdc, Gate Open)

IHO

Forward On Voltage
(IF = 20 Adc)

VF

-

Turn-On Time (~ + ~)
(IG = 50 mA, IF = 10 A)

tan

-

1.0

-

Turn-Off Time
(IF = 10 A, IR = 10 A, dv/dt = 20 V/ /loS min, T J =1000C)
(V FXM = rated voltage)
,

toff

-

25

-

(Anode Voltage = Rated VFOM' RL = ,50n, T J = 100°C)

Units

rnA
Volts

Ips
/loS

(VRXM = rated voltage)
Forward Voltage Application Rate
(Gate open, TJ = 100°C)
MCR6·49-1 thru MCR649-4

-

MCR649-5 thru MCR649-7,
Thermal Resistance (Junction to Case)

8JC

150

V/ /loS

dv/dt

-

20

-

30

-

1.0

1.5

°C/W

MCR649·1 thru MCR649·7

(continued)

F~R~l~~~tH~~~mT GATE TRIGGER CHARACTERISTICS
IsHot = 2 AMP :::3.
2.0

MAXIMUM ALLOWABLE NON·RECURRENT
SURGE CURRENT
-

300

l

~OAMJ

RJsj
T, = -40 10 +100·C

!5

"-....

<>

1

200

r-----. r----- r---

r-----.. r-----.

i

~

~ 150

IB

0.1

.J

.05

I

I

~~ '"~ ~

II
I

~~~

L
-

.02

100
10

40

20

I

WITHIN THIS
AREA

I

.0001 ....

0.3

100

I

LL

t - - - TYPICAL --...

~

1/ /

~MAXIMUM6"

e...

::>

<>

~

~
~

i

I

2.0

I I

1.0

I

S5

~

JUNCTION TEMPERATURE _

IV

I TJ = lOQ·C
TJ 25·~

~

75

I I!

0.2

65

l '1/

0.1
0.5

0.0

9

10

1~:r-

0.]

r-...·CONDUCTION ....

1----4--+- .60~~"'''

ANGLE

.90~~

.120~'\~

~-f-"""f-"""f--t--+ .1SO.>--p.~,,+~-+--j

1.0

1.5

2.0

~.....,f--+--+---r--+---r--+---r--~~--~
DC

2.5

10

~ 1.2

v

~

<>

~ 1.0

~

/

i3

~ O.S

;j
ffi

I

0.6

V

!5in

~ 0.4

e:

V

0.2

~
.001

V

.002

.01

.02

14

0

z

12

~

10

~

.05

"""

Q

~0

0.1

4 ~

9,c

0.2

20

0.5

.J.

""

"\

"\

_ TJ1m •• r - Te _

p ••k -

IS

WITH UNIT MOUNTED
ON THE MS·I0 HEAT SINK
USING DC4· AND FREE
CONVECTION COOLING
ASSUMING MAXIMUM F01:::1:-VOLTAGE AND 9,0 = 1.5,
8cs = 0.2 AND 8.. = 3.0·C/W

...
...•

1 1 1
.005

~

~

p

'\

16

CURVE DEFINES TEMP RISE OF
JUNCTION ABOVE CASE FOR
SINGLE LOAD PULSE OF OURA·
TlON I. PEAK ALLOWABLE DIS·
SIPATION IN RECTIFIER FOR
TIME I, IF STARTING FROM
CASE TEMP., EQUALS lOO·C
(MAX. T,) MINUS MAXIMUM
CASE TEMP, OIVIDED BY THE
TRANSIENT THERMAL RESIST·
ANCE,

f

l\.

IS

/

g..

16

t,,! -l.•.J'Mrt

20

V

14

POWER DERATING CURVE

1.6

1.4

12

IFI"" AVERAGE FORWARD CURRENT IAMPI)

MAXIMUM TRANSIENT THERMAL RESISTANCE
JUNCTION TDCASE

0.0

8

0--

~

.30~ ~'"

'F, INSTANTANEOUS FORWARD ON VOLTAGE IVOLTS)

~

7

70 ~.....,--+--+-~-+-.....,f--+--r~;-~

0.5

.~

i!=

6

I I

Iso

i! 5.0

.,::>'"~

i~
5

~

90

Yif //

10

I

4

VG , GATE VOLTAGE (VOLTS)
2S·C - ANODE @ 7VOLTS)

95~~

50

20

1-40·C -150 mAl
MAXIMUM AllOWABLE FORWARD .............
GATE VOLTAGE 10 VOLTS

MAXIMUM ALLOWABLE CASE TEMPERATURE

100

~

s...-

GATE CURRENT REQUIRED
TO TRIGGER ALL UNITS
(100°C - 50 rnA I

ITJ =

LOW CURRENT LEVU

~

- -:;;8 ~P-;ES~I;M;;

I

~,ri. ~~I~~~:

~----oI i 2 3

60

CYCLES AT 60 Hz

AS A TRIGGER CIRCUIT DESIGN CRITERIA
ALL UNITS WILL TRIGGER AT ANY VOLTAGE
AND CURRENT WITHIN THIS AREA

-I

APPROXIMATELY

'"
1

I

~ !:: ~I
~~
i~ II

t---.

~

~

~ ..:( ALL UNITS

~~~
~~~

~

50.2

~ 250

f?
_

3.SVOLTS~
MINIMUM
GATE VOLTAGE
RE~II~~rRTO
I

1.0

o
1.0

I, TIME Is)

151

·DC4 IS DOW CORNING NO.4
SILICONE LUBRiCANT

I

I

I

I

~

~

~

~

"\
"\

I'\.
o

10

ro
ro
TA , AMBIENT TEMPERATURE (OC)

ro

~

~

MCR729-5 thru MCR729-10 (SILICON)

Fast-switching, high-voltage silicon controlled rectifiers especially designed and characterized for radar,
proximity fuse, beacon and similar pulse applications.

PIN 1 CATHODE
2 GATE
3 STUD ANODE

CASE 63

MAXIMUM RATINGS (T J = lOS·C unless otherwise noted)

Symbol

Value

Unit

VROM(rep) *

50

Volts

2.0

Amp

IFM(pulse)

100

Amp

Average Forward Power

PF(AV)

5.0

Watts

Peak Gate Power - Forward

P GFM

20

Watts

PGF(AV)

1.0

Watt

Peak Gate Current - Forward

IGFM

5.0

Amp

Peak Gate Voltage - Forward

VGFM
VGRM

10

Volts

10

Operating Junction Temperature Range

TJ

-65 to+ 105

Storage Temperature Range

Tstg

-65 to + 150

°c

Stud Torque

-

15

in. lb.

Rating
Peak Reverse Blocking Voltage*
Forward Current RMS

If

Repetitive Pulse Current
(PW = lOllS)

Average Gate Power - Forward

Reverse

°c

*Characterized for unilateral applications where reverse blocking capability is not important. Higher
VROM rated units available on request.

152

MCR729·5 thru MCR729·10 (continued)
ELECTRICAL CHARACTERISTICS

fTc = 25°C unless otherwise noted)

Characteristic
Peak Forward Blocking Voltage*
(T J = l05 0 C)

Symbol
MCR729-5
-6
-7
-8
-9
-10

Peak Forward Blocking Current
(Rated VFOM ' T J = 105 0 C, gate open)

I FOM

IGT

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 100 ohms)

VGT

Holding Current
(Anode Voltage

I HO

7 Vdc, gate open)

Forward On Voltage
(If = 2 Adc)

VF

Dynamic Forward On Voltage
(0.5 /.Is after 50% pt, IG = 200 mA,
Ipulse = 30 Amps)

Typ

Max

300
400
500
600
700
800

--

-

-

0.2

2.0

-

10

50

-

0.8

1.5

5.0

15

-

-

1.1

1.5

V FOM *

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 100 ohms)

=

Min

mAdc

Volts

Volts

15

25
ns

ton

-

-

Turn-On Time Variatign
(T J = +25 0 C to +105 C and _65°C to +25 0 C)

Ll.t

on

200

-

400

-

±50

-

-

Pulse Turn-Off Time
t off(pulse)
15
Test Conditions: PFN discharge; Forward Current = 30 A pulse; Reverse Current = 5 A;
Rep. Rate = 100 pps; Duty cycle = 0.05%; Forward Voltage = rated VFOM;
TC = 85·C; dv/dt = 250 V! /lS; Reverse anode voltage applied during turn-off
interval = rated VFOM;
Reverse gate bias during turn-off interval = -6 V;
Gate Trigger Pulse: 200 rnA, 1 jlS wide, 2 ns rise time.
Turn-off time measured from 90% pt. of forward, current decay to 10% pt. of reapplied forward voltage.
Forward Voltage Application Rate
(T J = 105 0 C, gate open)

dv/dt

Thermal Resistance (Junction to Case)

9 JC

*Other voltage units available upon request.

153

mA

Volts

-

(Ipulse = 100 Amps peak)

Volts

mA

VF(on)

Turn-On Time (td + t r )
(IG = -200 mAl
(Ipulse = 30 Amps peak)

Units

50

-

-

-

-

3.0

ns

/.IS

V//.IS

°C/W

MeR800

series (SILICON)

BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS
· .. designed for high power industrial and consllmer applications in
power and speed controls such as welders, 'furnaces, motors, space
heaters and other equipment Where control of high current is needed.
In addition, the entire series emp'Ioys the unique Beam·Fired gate
design to allow high di/dt and to reduce turn-on losses.
• Critical Rate·of·Rise of On-State Currentdi/dt ~ 1000 Amp/p.s (Maxl(2)

BEAM-FIRED
INTEGRATED GATE
THYRISTORS
BOO AMPERES RMS
100 thru 1500 VOLTS

• Critical Exponential Rate·of·Rise of Off·State Voltagedv/dt ~ 200 Vlp.s (Mini
•
•

Low Switching Losses
Integrated Gate Permits Soft·Fire Gate Control

MAXIMUM RATINGS
Value

Unit
Volts

Repetitive Peak Off·State Voltage
(T J .. +125o CI MCRSCIO-

100
200
300
400

500
600
700

800
900
1000

1100
1200
1300
1400

1500
Volts

Non·Repetltlve Peak Reverse
Block Voltage
(t <5.0 msl MCRSOQ-

200

300
400

500
600
720
840

960
lOBO
1200
1300
1450
1560

STYLE 1:
l.ANODE
2. GATE
3. CATHOOE
4. CATHOOE

16SO

Average On-State Current
11800 Conduction Angle, Tr. = 75°C)
Peak Surge Current
(Onl evel. 60 Hz. T = -40 to +125 o C)

lBOO
500

Amp

7000

Amp

Circuit FUllng Conlld8l"8tlon,
IT J • -40 to +1250 CI

(t"1.5ms)
(t- 8.3 mIl

Pak Forward Gata Power
Average Forward G,te Power
Peek Forw.rd Gate Current

Puk Rever. Gate VOltaga
Oper.,mg Junction Temperature Renge
Storage Temper.ture Range
Mounting Foret
Criticel Rate-of·Rise of On-State Current during
Turn-On Interval (Non-Aepetltiva Altln 1 (21

100,000
200.000
25
5.0
8.0
10
-40 to +125
-40 to +150
2000
1000

DIM

MILLIME ERS
MAX

.,.

.,.

A

U' 63.60

,. '00

• .7

W.ttt

•

.78

Amp

•

..

127

154

19.30

"0'

,.

.11

O.

.1
DJ.. &'80

•.300
1.435

1.27
3.1

, 2
Thermal Rlsistance, JunctIOn to C..
R8JC
0.08
°cm
m Ratinll' apply for lero or negetiva geM volt8g8. Devices shell not hew I positive b •• applied to the gate concur·
rently with I negative potlntial on the .nod.. Devices should not be tetted with • consUlnt current 1CMJrc8 for
forw.-d C»" revenI blocking CllPability such that the vcNYgllPplled exceed. the retld blocking voltege.
(21 With O.OS,..F Ind 20 ohm snubber circuit.

.7.

89' 7.8212

lb•.

THERMAL CHARACTERISTICS

•

1.
0.1

14

.22

·c
Arnp/~s

27.

3.18

Volu

1

ID

1

2i.4D
Wetts

INCHES
AX

....

'.1l6

.1'

1.7
11

1.'

1.65

0.025 0.084

CASE 220.Q2

MCR800 series (continued)

ELECTRICAL CHARACTERISTICS

ITC = 25°C unless otherwise noted)
Symbol

Characteristic
Peak Forward and Reverse Blocking Current

IRated VORM, with gate open)
IRated VRRM, with gate open, T J = 125°C)

Peak On-State Voltage
IITM = 1000 A Peak, Pulse Width

= 6.0 V,

RL

= 3.0 Ohms)

Gate Trigger Voltage, Continuous de

IAnode Voltage
IAnode Voltage

Typ

-

-

30

VTM

-

-

1.55

Volts

IGT

-

-

150

rnA

-

-

3.0

-

100

500

rnA

-

4.0

-

"S

-

-

10

"S

200

-

-

V/"s

Max

Unit
rnA

15

= 8.3 ms, Duty Cycle'; 1.0%)

Gate Trigger Current, Continuous de

IAnode Voltage

Min

IORM
IRRM

= 6.0 V, RL = 3.0 Ohms)
= Rated VORM, RL = 1000 Ohms, T J =

VGT
12SoC)

Volts

0.15

Holding Current

IH

-

(Anode Voltage == 24 V, gate open, Initiating Current = 2.0 AI
Gate Controlled Turn-Dn Time

tgt

IITM = 50 A. Rated VORM)
Gate Pulse

{

10 V open circuit, 20 Ohm Source

0.1 J.l5 (Max) rise time

Gate Pulse Width Necessary to Trigger
Gate Pulse

{

5.0 V open circUit, 5.0 Ohm Source
0.1 j.l5 (MaxI rise time

Critical Exponential Rate of Rise of Off·State Voltage

dv/dt

IRated VORM, gate open, TJ = 125°C)

CURRENT DERATING
If

= 50 to 400 Hz)

FIGURE 1 - SQUARE WAVE

FIGURE 2 - SINE WAVE

~
w

•

~ lIDr---+~,-"...p~~t:---t--+---t ~

s

!!'
_

1li
~

1.

• I--

CONDUCTION
ANGLE
9Dr---+--4-~-~~~~~~~-r---t---4

~

"=>

.."

~ 7Dr---+--4---~--t-~+-~.-~~-t~-~
~-

5DD~---L--~15~D----L-~~~--L-~~~~L---~
ITIAV), AVERAGE ON-8TATE CURRENT (AMP)

155

MCR800 series

(continued)

FORWARD POWER DISSIPATION

FIGURE 4 - SINE WAVE

FIGURE 3 - SQUARE WAVE

i800r-__

~ ~r- ~~~~,f~,f~~__~~
__

__

z

~ 600r---~--~~---HL-~h"--.,f-",,'---1f"7"<-"""'L..~

~
i:i
C

ffi400~--~--~~~~~~~~~~~~--~--~

~

'~" 200~--~---,~1Iiil!~=t---~~--~ -.J

~

~.I-

~

cO~~~~~ON

ir:

150

300

450

600

150

IT(AV!. AVERAGE ON·STATE CURRENT (AMP)

300

FIGURE 5 - MAXIMUM ON·STATE VOLTAGE
4000

./

/

2000

/

;;:- 1000

'>-"

5

800

~

600

1l
w

I

I

I

400

>«

>-

/

~

0

'"

200

TJ'

moc

I

.!:"

I

100
80
60
40

o

1.0

450

IT(AV). AVERAGE ON·STATE CURRENT (AMP)

3.0

2.0

4.0

VTM. MAXIMUM ON·STATE VOLTAGE (VOLTS)

156

5.0

600

MCR800 series (continued)

FIGURE 6 - TRIGGERING CHARACTERISTICS

10
7.0
5.0

=

~I:X.

LLOV

:UR

l<;'<0-.

ii:
~ 3.0

i
"'
a

2.0
1.0

- Al IEVI'CE
WILL FIRE

~ O. 7 •

~ 0.5

~~~~_~!~:S

ci
- 0.3

~'\.

~~~

~$~~
:AL_OEVII.,r-I
E
~_;
f--f,i
THIS

~

-LIN

l~'::

0.2

o. 1
0.1

liit
:;;:
I ~I

o

03

.0

.0

30

5

VG. GATE VOLTAGE (VOLTS)

FIGURE 7 - THERMAL RESPONSE

~

0.14

~ 0.12
z

~'"

0.10

;!l
-'

~ 0.08

i=
al

0,06

-

I-

~ 0.04

;;'i
1-_

0.02

I-

5

~ O~OOl

0.002

0.005

om

-

0.02

0.05

0.1

I-

0.2
t. TIME (s)

157

0.5 0.7 1.0

2.0

5.0 7.0 10

20

so 70 100

MCR846 series (SILICON)

Silicon controlled rectifiers for low-power switching
and control applications requiring blocking to 200 volts
and load currents to 2 amp.

PIN 1. CATHODE

2. GATE
3. STUD ANODE

CASE 63

MAXIMUM RATINGS (TJ

= 105°C unless otherwise noted)

Rating

Symbol

Peak Reverse Blocking Voltage

VROM(rep)

MCRB.6-1
-2
-3

-4
Forward Current RMS (all conduction angles)

It

Value

Volts
25
50
100
200
2.0

12t

Circuit Fusing Considerations
(T J = -65 to +105 0 C; t ;;i B.3 ms)

Unit

Amp
A""s

35

Peak Forward Surge Current
(One Cycle, 60 Hz, T J = -65 to + 105 0 C)

IFM(surge)

Peak Gate Power - Forward

P GFM

5.0

Watts

PGF(AV)

0.5

Watt

Average Gate Power - Forward

Amp
30

Peak Gate Current - Forward

IGFM

2.0

Amp

Peak Gate Voltage - Forward

VGFM

10

Volts

Reverse

VGRM

10

TJ

-65 to +105

U

Storage Temperature Range

Tstg

-65 to +150

°c

Stud Torque

-

15

in -lb.

Operating Junction Temperature Range

158

c

MCR846 series

(continued)

ELECTRICAL CHARACTERISTICS· (TC = 2S0C unless otherwise noted)
Characteristic
Peak Forward Blocking Voltage
(T J = 1050 C)
MCR846-1
-2

Max

25
50
100
200

-

---

-

-

2.0

- -

2.0

-

10

50

-

0.8

1.5

-

15

-

-

1.3

1.6

ton

-

0.5

-

taft

-

'6.0

~

VFOM

-3
-4
Peak Forward Blocking Current
(Rated VFOM with gate open, T J

=

1050 C)

Peak Reverse Blocking Current
(Rated VROM with gate open, T J

=

1050 C)

IFOM
IROM

Gate Trigger Current (Continuous de)
(Anode Voltage = 7 Vdc, RL = lOon)

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7 Vdc, RL = lOOn)

VGT

Holding Current
(Anode Voltage

IHO

=

7 Vdc, Gate Open)

Forward On Voltage
(IF = 2 Adc)

VF

Turn-On Time (td + t r )
(IG = 50 rnA, IF = 2 A)
Turn-Off Time
(IF = 2 A, IR
(VFXM
(VRXM

=

10 A, dv/dt

=

50V//.Is)

= rated voltage)
= rated voltage)

Forward Voltage Application Rate
(TJ = l05 0 C gate open)
Thermal ReSistance (Junction to Case)

159

Min

Typ

Symbol

dv/dt

50

9JC

-

Units
Volts

-

mA
mA
mA
Volts
mA
Volts
/.IS
/.IS

-

-

V//.IS

3.0

°C/W

MCR 1336-5 (SILICON)
thru

MCR1336-10
Fast switching, high-voltage thyristors especially
designed for pulse modulator applications in radar and
other similar equipment.
PIN 1. CATHODE
2. GATE
3. inuo ANODE

CASE 63-02

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VROM(rep)*

50

Volts

IFM(rep)

300

Amp

Current Applic·ation Rate**

di/dt**

1000

Alp.s

Peak Gate Power- Forward

P GFM

20

Watts

PGF(AV)

1.0

Watt

Peak Gate Current-Forward

IGFM

5.0

Amp

Peak Gate Voltage-Forward

VGFM
VGRM***

7.0

Volts

TJ

-65 to +105

°c

Tstg

-65 to +200

°c

-

15

in. lb.

Peak Reverse Blocking Voltage*
(T J = 105°C)
Repetitive Peak Forward Current
(pw = 3.0 p.s, Duty Cycle = 0.6%,
TC = 85°C max)

Average Gate Power-Forward

Reverse***
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque

7.0

*Characterized for unilateral applications where reverse blocking capability is
not important. Higher voltage units available upon request. VROM(rep) may
be applied as a continuous dc voltage for zero or negative gate voltage but
positive gate voltage must not be applied concurrently with a negative potential
on the anode. When checking blocking capability, do not permit the applied
voltage to exceed the rated voltage.
**Minimum Gate Trigger Pulse: iG = 500 mA, PW = 1.0 p. s, tr = 20 ns.
***Do not reverse bias gate during forward conduction if anode current exceeds
10 amperes.
160

MCR1336-S thru MCR1336-1 0

(continued)

ELECTRICAL CHARACTERISTICS (T c = 25 0 C unless otherwise noted)

Characteristic

Symbol

Peak Forward Blocking Voltage(TC = 105'C)
MCR1336

Peak Forward and Reverse Blocking Current
(Rated V FOM and VROM ' TC = 105'C, gate open)

r

VFOM

-6
-7
-8
-9
-10

-

I FOM
IROM

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, T C = 25 'C)

IGT

(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = -65'C)
Gate Trigger Voltage (Continuous dc)
(Anode Voltage = rated VFOM' RL = 100 ohms, TC = 105'C)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC

VGT

rHO

(Anode Voltage = 7.0 Vdc, gate open, TC = 25°C)
Forward "On" Voltage
(If = 1. 0 Adc, PW = 1. 0 ms max, Duty cycle s 1. 0%)

VF

Dynamic Forward "On" Voltage
(0.5 I's after 50% decay point on dynamic forward voltage waveform)
Forward Current: 100 A pulse (PFN discharge circuit)
Gate Pulse: at 500 mA, PW = 1. 0 I'S, tr = 20 ns

--

Volts

-

--

2.0

mA

-

-

300
400
500
600
700
800

0.2

-

2.0
mA
40
100

-

Volts

1.25
2.0
rnA

-

-

50

-

-

2.0

1.0

Volts

Volts

td
t
r

Rise Time

Unit

VF(on)

Turn-On Time

Delay Time

Max

-

= 25'C)

(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = -65,'C)
Holding Current
(Anode Voltage = 7.0 Vdc, gate open, TC = 105'C)

Typ

Min

45

-

75
75

-

-

7.0

-

250

-

-

-

-

2.5

-

ns

Forward Current: 100 A Pulse (Capacitor discharge circuit)
Gate Pulse: at 500 rnA, PW = 1. 0 I'S, tr = 20 ns

Pulse Turn-Off Time
Test Conditions: PFN discharge; Forward Current == 100 A pulse;
Reverse Current = 5.0 A, TC = 85'C, dv/dt = 250 VI,", to Rated VFOM ;

toff(pulse)

I'S

Reverse anode voltage during turn-off interval = 0 Vi
Reverse gate bias during turn-off interval = 6. 0 V.

Forward Voltage Application Rate (Linear Rise of Voltage)
(TC = 105 'c, gate shorted)

dvldt

Thermal Resistance (Junction to Case)

eJC

VII'S
°C/W

*VFOM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate
voltage. When checking forward or reverse blocking capability, these devices should not be tested with a constant current
source in a manner that the voltage applied exceeds the rated blocking voltage. Other voltage units aVailable upon request.

161

MCR 1718-5 (SILICON)
thru

MCR1718-8

THYRISTORS
PNPN

THYRISTORS
SILICON CONTROLLED RECTIFIERS

25 AMPERES RMS

300 thru 600 VOLTS
· .. fast switching, high-voltage thyristors especially designed for
pulse modulator applications.
•
•
•
•

High-Voltage Capability from 300 to 600 Volts
Repetitive Pulse Current to 1000 Amp
Pulse Repetition as High as 4000 pps
Current Application Rate as High as 1000 A/",s

MAXIMUM RATINGS
Symbol

Rating
Peak Reverse Blocking VOltagel 1)
MCR1718-5

-8
Non-Repetitive Peak Reverse Voltage

Peak Forward Surge Current

Volts

VRsM

400
500
600
700

-8
Forward Current RMS

Volt.
300
400
500
600

-6
-7

(Transient) (Non~Recurrent 5 ms (max)
MCR1718-5
-6
-7

Unit

Value

VRRM

ITiRMS)

25

Amp

ITsM

1000

Amp

di/dt

1000

A/!'s

12t

250·

A2.

PFIAV)

30

Watts

PGM

20

Watts

11-10!'. Pulse Width)

Current Application Rate
lup to 1000 Adc peak)

Circuit Fusing Considerations
ITJ = -65 to +1250 C; t ;:;; 1.0 m.

Dynamic Average Power

STYLE 1:

Pili 1. CATHODE
2. GATE
3. ANODE

ITC= 650 C)
Peak Gate Power - Forward
Average Gate Powar - Forward

PGIAV)

1.0

Watt

Peak Gate Current· Forward

IGM

5.0

Amp

Peak Gate Voltage

VGM

10

Volts

Operating Junction Temperature Range
Storage Temperature Range'

TJ

-65 to +125

T.tg

-65 to +150

°c
uc

30

in.-Ib

Stud Torque

(1)VRRM for all types can be applied on a continuous de basis without incurring damage.
Ratings apply for zero or negetive getO voltage.

MILLIMETERS
INCHES
I
MIN
MAX
MAX
15.34\15.60 aS04\ O.SI'
14.00 14.20 M51 0.559
2S.67 30.23 1.050 1.190
F
3.43 4.06 0.135 0.160
H
2.29 REF
0.090 REF
10.67 11.5
0.420 0.455
J
K
15.75 11.02 a620 0.S70
O.
L
7.S
1.
R
1. R
O. 5 EF
T
12.73 12.83 o.!iOl 0.505

DIM
A

THERMAL CHARACTERISTICS

Characteristic

CASE 263.(12

Thermal Resistance, Junction to Case

162

MCR1718·5 thru MCR1718·8 (continued)

ELECTRICAL CHARACTERISTICS

(Tc = 2So C unless otherwise noted I

Symbol

CharKteristtc

Peak Forward Blocking Voltage (11
(TJ = 12So CI

Min

Typ

Max

300
400
500
600

-

--

-

-

-

-

8.0

-

-

8.0

-

1.1

1.3

-

30
5.0

-

-

10

50

-

0.8

I.S

0.2S

-

-

5.0

-

IS
6.0

-

-

20

-

-

100

-

VORM
MCRI718-S
·6
·7
·8

Peak Forward Blocking Current
(Rated VORM with gate open, TJ = 12So CI
Peak Reverse Blocking Current
(Rated VRRM with gate open, TJ = 12So CI
Forward "On" Voltage
(IF = 25 Adcl
(lGT = SOO mA, Ipul se = SOO Ampsl
(1.0I's after start (10% ptJ of Ipulsel
(S.O lOS afterstart (10% pt.1 of Ipulsel

IORM
IRRM
VTM

Gate Trigger Current (Continuous de)

-

VGT
VGO
IH

Circuit Commutated Turn·Off Time
(IF = SOO A, IR = 10 A, dv/dt = 20 V/l'sl

Volts

mA
mA
Volts

mA

IGT

(Anode Voltage = 7.0 Vdc, RL = 500hmsl
Gate Trigger Voltage (Continuous dcl
(Anode Voltage = 7.0 Vdc, R L = SO Ohmsl
(Anode Voltage = Rated VORM, RL = 500 Ohms, TJ = 12So CI
Holding Current
(Anode Voltage = 7.0 Vdc, Gate Open I
(Anode Voltage = 7.0 Vdc, Gate Open, T J = 125 0 CI

Units

Volts

mA

lOS

tq

(Conductive Charging Circuit - Circuit dependend
(Gate Open, T J

VII'S

dv/dt

Cri tical Exponential Rate of Rise

= 12So CI

(1)VORM for all types can be supplied on a continuous de basis without incurring damage.

Ratings apply for zero or negative gate voltage.

163

MCR 1906-1 thru MCR 1906-4 (SILICON)

THYRISTORS
SILICON CONTROLLED RECTIFIERS

PNPN
1.6 AMPERES RMS
25 thru 200 VOLTS

... designed for applications in control systems and sensing circuits
where low·level gating and holding characteristics are necessary.

•

Low·Level Gate Characteristics IGT = 1.0 mA (Max) @TC= 250 C

•

Low Holding Current - I H = 5.0 mA (Max) @ TC = 2So C

•
•

Anode Common to Case
Glass·to·Metal Bond for Maximum Hermetic Seal

MAXIMUM RATINGS IT J

=

1000C unless otherwise noted.1
Symbol

Rating
Peak Reverse Blocking
Voltage INote 1 I

Value

25

MCR1906-1
MCRI906-2
MCR1906-3
MCRI906-4

Forward Current RMS

50
100
200
ITIRMSI

1.6

Amp

ITSM

15

Amp

IAII Conduction Angle,)
Peak Forward Surge Current
lOne Cycle. 60 Hz. T J = -40 to +1 OOoC)

Unit
Volts

VRRM

No Repetition Until Thermal Equilibrium

is Restored

Peak Gate Power-Forward

PGM

0.1

Watt

PGF(AV)

0.01

Watt

Peak Gate Current-Forward

IGM

0.1

Amp

Peak Gate Voltage

VGM

6.0

Volt

TJ

-65 to +100

T stg

-65 to +150

°c
°c
°c

Average Gate Power-Forward

Operating Junction Temperature Range
Storage Temperature Range

Lead Solder Temoerature

-

+230

(>1/16" From case, 10, max.)

All JEOEC dimenstonsand notes apply_
CASE 31·03
TO-5

164

MCR1906.1 thru MCR1906·4 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted, RGK = 1000 ohms.)
Symbol

Characteristic
Peak Forward Blocking Voltage (1)

Min

Unit

Max

Volt

VORM
MCRI906·1
MCR1906·2
MCR1906-3
MCR1906·4

-

25
50
100
200

-

IORM

-

500

"A

Peak Reverse Blocking Current (3)
(Rated VRRM, TJ = 100°C)

IRRM

-

500

"A

Forward "On" Voltage (Pulsed, 1.0 ms max, Duty Cycle ";;1.0%)
(IF = 1.0 Adc peak)

VTM

-

1.75

Volt

IGT

-

1.0

mAde

(Anode Voltage = 7.0 V, R L = 100 ohms)

VGT

-

1.0

(Anode Voltage = Rated VORM, RL = 100 ohms, TJ = 100°C)

VGO

0.1

-

IH

-

5.0

Peak Forward Blocking Current

-

(Rated VORM, T J = 100°C)

Gate Trigger Current (2) (Continuous de)
(Anode Voltage = 7.0 V, RL = 100 ohms)

Volt

Gate Trigger Voltage (Continuous del

Holding Current

mA

(Anode Voltage = 7.0 V)
Turn-On Time

ton

Turn-Off Time

toft

(1)

Circu it dependent,
consult manufacturer

VRRM and VORM can be applied for all types on a continuous de basis without incurring damage. Thyristor devices shall not be tested
with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

(2)

RGK current is not included in measurement.

(3)

Thyristor devices shall not have a positive bias applied to the gate concurrently with a negative potential applied to the anode.

FIGURE 2 - AMBIENT TEMPERATURE versus CURRENT

FIGURE 1 - CASE TEMPERATURE versus CURRENT

100 .....::--,---r--,----,---r--,----,---,

100

...

~

,.«a;

w

3
w
-'

'"~ "w
j ...::>'"

" 1li~
"«x ...
"~
«

::>

1800

«
'"

"
~ 60

«

~

w
-'

so I--+---+--t-

80

~ ...:il 40
" ...~
"«x 20
"....;:
::>

::>

50~---t---~~--1---~----1-~·~----~

40~---t---~~--1---~----1---~----+---~

0.2

0.4

O.S

0.8

10

1.2

1.4

1.S
IFIAV), AVERAGE FORWARD CURRENT lAMPS)

IFIAV), AVERAGE FORWARD CURRENT IAMPSI

165

MCR 1907-1 thru MCR 1907-6 '(SILICON)
PINt CATHODE

2. GATE

\

3, STUD ANODE

~1

Fast turn-on, fast turn-off silicon controlled rectifiers for high-frequency applications requiring blocking to 400 volts and load currents to 25 amp.

CASE 64
(TO·48)

MAXIMUM RATINGS (T.r:::::: 125°C unless otherwise noted)
Rating

Symbol

Peak Reverse Blocking VoltageMCR1907-1
-2
-3
-4
-5

VROM(rep)

Value

-

-6
Peak Reverse Blocking Voltage
(Non-Recurrent 5 ms (max.)
MCR1907-1
-2

Unit
Volts

25
50
100
200
300
400
Volts

VROM(non_rep)
35
75
150
300
400
500

-3
-4
-5
-6
Forward Current RMS
(All Conduction Angles)

It

25

12t

Circuit Fusing Consideration~
(T J = -65 to+125 0 C; t ;a 8.3 ms)

Amp
A2s

75

Peak Forward Surge Current
(One Cycle, 60 Hz, TJ = -65 to +125 0 C)

IFM(surge)

Peak Gate Power - Forward

Amp
150

P GFM

5.0

Watts

Average Gate Power - Forward

PGF(AV)

0.5

Watt

Peak Gate Current - Forward

IaFM

2.0

Amp

Peak Gate Voltage - Forward

VGFM
VGRM

10

Volts

5.0

Reverse
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque

TJ

-65 to +125

°c

Tstg

-65 to +150

°c

-

30

-VROM(rep) for all types can be applied on a continuous dc basis without incurring damage.
Ratings apply for zero or negative gate voltage.

166'

in. lb.

MCR1907·1 thru MCR1907·6 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)

Symbol

Characteristic
Peak Forward Blocking Voltage*
(T J = 125 0 C)
MCR1907-1
-2
-3
-4

Min

Typ

Max

25
50
100
200
300
400

-

-

-

-

-

4.0

- -

4.0

V FOM *

-5
-6
Peak Forward Blocking Current
(Rated V FOM with gate open, T J = 1250 C)

I FOM

Peak Reverse Blocking Current
(Rated VROM with gate open, T J = 125°C)

IROM

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 501'1)

IGT

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 50 12)

VGT

(Anode Voltage = Rated V FOM ' RL = 501'1, TJ = 125°C)

VGNT

Units
Volts

mA
mA
mA

-

15

30

-

1.5

0.25

-

-

12

-

-

1.4

1.7

Volts

-

Holding Current
(Anode Voltage = 7 V dc, Gate Open)

I HO

mA

Forward On Voltage
(IF = 20 Adc)

VF

Turn-On Time
(IG = 200 mA, IF = 10 A)

ton

-

0.5

-

Turn-Off Time
(IF = 10 A, IR = 10 A, dv/dt = 30 V//-IS min.)

toff

-

-

12

dv/dt

30

-

-

V//-IS

8JC

-

1.0

1.7

°C/W

Volts

/-IS

/-IS

(VFXM = rated voltage) T J = 1250 C
(VRXM = rated voltage)
Forward Voltage Application Rate
(TJ = 125 0 C, gate open)
Thermal Resistance (Junction to Case)

*VFOM for all types can be applied on a continuous dc basis without incurring damage.

Ratings apply for zero or negative gate voltage. These devices should never be tested
with a constant current source for forward or reverse blocking capability such that
the voltage applied exceeds the rated blocking voltage.

CURRENT DERATING
125

......"

110

I

'\ ~ ~

\.'

00

-.1,

I

DC. 116. 34>, 616, CIRCUIT
I
RESISTIVE OR INDUCTIVE LOAD, 50 TO 400 Hz-

~ :::-- .....

,~
30·>

r---...... ......
~

50

,

"'"' ~, ,

.......

60·'

~ 70
,2

90·'

w

i'--

.......

120·'

o

O·

r---......

u

u

"

IFIAVI AVERAGE FORWARO CURRENT lAMP)

167

I

LD

180·

~

'CONDUCTION ANGLE

.......

:-......

180·'

~

I

"- .....
DC

u

ro

n

M

U

MCR1907·1 thru MCR1907·6

(continued)

TURN·OFF TIME TEST CIRCUIT t

TYPICAL TURN·OFF TIME varsus
PEAK FORWARD CURRENT AND JUNCTION TEMPERATURE
14
12 -

llOV

01

...-t-+-'-~I-O

60 H, ""~-=~=-r'-+t-!-:"

(SELECTED
RECOVERYDIO[)£)

SCOPEIVOLTAGEI

~1O
,.

I, ~ lOA

'F~20A

I

dv/dt~30V/l"min

J---

---

I---- I--tlsTANDARD TEST VALUEl

'~ :J---

>=

~

,-~ ,-~

IF

~

IF

I
-65 -50

-25

25

50

75

100

125

T" JUNCTION TEMPERATURE (OCI

FORWARD CONDUCTING CHARACTERISTICS

::-,.
:I:==~TI~.E~--'~~======~'-'-----~~~=--­
~ili!

TYPICAl~.r

~.~

I I
Forward conduction current is passed through the device
(SCR, and test device triggered on). The anode is then
driven negative (SCR. triggered on), causing reverse current
to flow. The anode-to-cathode potential goes negative with
a decrease in reverse current. Forward voltage is then ap~
plied to the anode of the device (SCR. triggered on). The
device has fully recovered when it regains its ability to block
the reapplied forward voltage.

0.5

1.0

D6--

MAXIMUM

---TJ 125"C====
TJ 25"C -

1.5

2.0

'F. INSTANTANEOUS FORWARD ON VOLTAGE (VOlTSI

t Consult manufacturer for further circuit mformation.

168

2.5

MCR2315 SERIES (SILl.CON)
MCR2614L SERIES
SILICON CONTROLLED RECTIFIERS
· .. designed for applications requiring blocking voltages through 400
volts and rms currents through 8.0 amperes. These devices are avail·
able in a choice of space-saving, economical packages for mounting
versatility.

SI LICON CONTROLLED
RECTIFIERS

B.O AMPERES RMS
25 thru 400 VOLTS

• Low Forward Voltage Drop - Typically 1.0 Volt at 5.0 A at 25 0 C
• Fast, Stable Switching Times - Typically 1.0 j.ls Turn·On, 12 j.ls
Turn·Off at 250 C
• AII·Diffused Junctions for Greater Parameter Uniformity
• Fatigue·Free Solder Construction
• Glass·to·Metal Hermetic Seal

jt~

flf~I

MCA2315
CASE 86

MAXIMUM RATINGS
Rating

Symbol

r

Peak Reverse Blocking Voltage

11)

Value

Unit

Volts

VRRM

Forward Current RMS
(All Conduction Angles)
Peak Forward Surge Current
lOne cycle. 60 Hz,
TJ=-40to+l00o C)
Forward Polarity

ITSM

Circuit Fusing Considerations

12 t

A
C

,
G

Amp
Amp

SEATING PLANE

~=

DIM

8.0

ITIRMS)

-----.

J

STUD ANODE

25
50
100
200
300
400

-2
MCR2315
-3
MCR2614L -4
-5
-6

L

I,
ill
I
_
==

STYLE'
PIN I GATE
2 CATHODE

MILLIMETERS
MIN MAX

T032UNf-2A

INCHES
MAX

MIN
-

0437
0.310
O.070TYP
0090 0110
0.4220.452

1110
7.87
1.78lYP
229
2.79
1072 11.48
1616
1549

"GO
0.610

NOTE
1. DIM "6" MEASURED AT CAN.
CASE 86

80
A 2s

ITJ = -40 to +1000C; t "';8.3 ms)
Forward Polarity

Peak Gate Power - Forward

40
PGM

5.0

Watts

Average Gate Power - Forward

PGMIAV)

0.5

Watt

Peak Gate Current - Forward
Peak Gate Voltage
Operating Junction Temperature

IGM

2.0

Amp

VGM

10

Volts

TJ

-40 to +100

°c

T stg

-40 to +150

I i,:N

U¥~

ro::~r=rl
-----.ii~ t

lL __

MCR2614L
CASE 87L

Range

Storage Temperature Range

.-~

Stud Torque IMCR2315 series)

15

°c
in. lb.

(1) VRRM for all types can be applied on a continuous de basis without incurring damage.

Ratings apply for zero or negative gate voltage.
Oevices should not be tested with a constant current source for forward or reverse
blocking capabilitv such that the voltage applied exceeds the rated blocking voltage.

j

STYLE I
PIN 1 GATE
2 CATHODE

B

3.ANODE

DIM

MI.

X

c A

10.92

-

THERMAL CHARACTERISTICS
Characteristic

Symbol

Thermal Resistance, Junction to Case

MCR2614L

Max

1.5
1.8
ReCA

Unit
°CIW

ReJC

MCR2315
MCR2614L

Thermal Resistance, Case to Ambient

Typ

50 (2 )

2.7

Q

3.0

-

°CIW

(2) Applies for the worst·cas. conditions of: (0) highest ReCA peckage configuration, Ib)

leads terminated at end points, Ic) temperature measured at hottest spot on device
(center of case bottom), and (dl still air mounting.

169

•

--

INCHES

MILLIMETERS

2.29

3.63
1.
1.B5
.43
4.57

&.97
.S
.3
.79

-

TVP

1.91
3.
6.08

-

-

-30
.D

,

D.l
1

D.430_

-

NOTES:
1. DIM. "G" MEASURED AT CAN.
2. LEAD NO.3 :t7.50 DISPLACEMENT.

CASE 87L·01

MCR2315 series, MCR2614L series (continued)

ELECTRICAL CHARACTERISTICS ITJ = 25 0 C unless otherwise noted)
Apply to all case types unless otherwise noted
Symbol

ClwHteristic

....(TJ'0"'""
.,.... "'_ '" { -1
= 100°C)
MCR2315
MCR2614L

-2
-3
-4
-5
-6

Peak Forward Blocking Current
(Ratad VORM, TJ = l000C, gata opan)

IORM

Peak Reverse Blocking Current
(Ratad VRRM, T J = l000C, gate opan)
Forward On Voltage
(IF = 5.0 Ade)

IRRM

Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vde, RL = lOOn)

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vde, RL = 100 n)
(Anode Voltage = 7.0 Vdc, RL = 100 n, TJ
Holding Current
(Anode Voltage

VTM

Typ

Max

Unit
. Volts

25
50
100
200
300
400

-

-

-

3.0

-

-

3.0

-

1.0

1.6

-

10

40

0.2

0.6

1.5

-

-

-

10

50

-

1.0

-

-

15
30

-

-

50

-

-

-

-

-

mA
mA
Volts
mA
Volts

VGT
VGO

= 100°C)

IH

= 7.0 Vdc, gate opan)

Turn·On Time
(IF = 5.0 Ade,lGT

Min

\tORM

ton

= 20 mAde)

Circuit Commutated Turn-Off Time
UF = 5.0 Adc, IR = 5.0 Adc)
(IF = 5.0Adc,IR = 5.0 Adc, TJ = 100°C)
Critical Exponential Rate of Rise
(TJ = 100°C)

mA
#,S

tq

#,S

dv/dt

V/!"s

(1) VORM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate voltage.

Devices should not be tested with a constant current source for forward or reverse blocking capability in 8 manner that the voltage
applied exceeds the rated blocking voltage.

FIGURE 2 - TYPICAL PARAMETER VARIATIONS
versus TEMPERATURE

FIGURE 1 - CURRENT DERATING - HALF WAVE

1.6,.--,----,-------,---,----,----,
NORMALIZED IGT, VGT.IH

W

II:

::>

I-

...w~
'"w

I-

~
~
~

j

«

'"
'"x.«
::>

.;

I-

IH

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0·~1..0---~25:---7-----J2'-5---:5'::0---:::75:--~100

8.0

IT, JUNCTION TEMPERATURE (DC) .

IF(AV), AVERAGE FORWARD CURRENT (AMP)

170

MCR3818-1 thru MCR3818-8 (SILICON)
MCR3918-1 thru MCR3918-8

THYRISTORS
PNPN

THYRISTORS
SILICON CONTROLLED RECTIFIERS

20 AMPERES RMS
25 thru 600 VOLTS

· .. designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder con·
trois.
•

Economical for a Wide Range of Uses

•

High Surge Current - ITSM = 240 Amp

•

Low Forward "On" Voltage - 1.2 V (Typ) @ ITM = 20 Amp

MCR3818 Series

• Practical Level Triggering and Holding Characteristics 10 mA (Typ) @ TC = 25 0 C
Rugged Construction in Either Pressfit or Stud Package

•

STYlE 1

TERM 1 CATHODE
2. GATE

MAXIMUM RATINGS
Symbol

Rating

Repetitive Peak Reverse Blocking
Voltage
MCR3818
MCR3918

Non·repetitive Peak Reverse
Blocking Voltage Its 5.0 m',)
MCR3818
MCR3918

r
r

= -40 to +100"C)

K

0,501
0.465
0.330
0.100
0,035
0.080

-

-

N

n

0.065

CASE 174'()2
TQ.203AA

IT(RMS)

20

Amp

ITSM

240

Amp

12t

235

A2,

(t= 1.0te 8.3 m,!

Peak Gate Power
Average Gate. Po'Mtr

Peak Forward Gate Current
Peak Gate Voltage
Forward

Reverse
Operating Junction Temperature Range

Storage Temperature Range
Stud Torque (MCR3918Serie,!

PGM

5.0

Watt

PG(AV)

0.5

Watt

IGM

2.0

Amp

VGFM

10
10

STYLE 1
TERM 1 CATHODE
2 GATE

Volt,
VGRM
TJ

-40 to +100

T,tg

-40 to +150

-

°c
°c
in. lb.

30

A
B
C

15.34
14.00
20.70

F

1.40

H

2,29
10,67
9J8
6.99
2.03
1.65
12.70

K
L

(1) VRRM for all typel can be applied on a contlnuou. de basi. without Incurring damage,

n

Ratings apply for zero or negative gam voltage. Device. 'hall not have a pOtltive biu applied to the gate concurrently with. negative potential on the anode.

R
T

R
11.56
10,54
7J5
2.41
REF
12.83
CASE 175

171

0.505
0.475
0.3lI0
0.068
0,097
0.800
0.510
0.090

All JEDEC dimensions and notes apply

75
150
300
400
500
600
700

-7

(TJ

12.726 12.827
11.811 12.065
8.39
9.65
2.54
1.72
0.89
2,46
2.04
- 20.32
12,95
1.66
2.28

J

35

-6

Circuit Fusing Considerations

A
C
E
F

Volts

INCHES
MIN
MAX

MILLIMETERS
MAX
MIN

DIM

B

VRSM

-2
-3
-4
-5

Peak Surge Current (one cycle, 60 Hd
ITJ : -40 to +1 oo"C)

Unit
Volts

25
50
100
200
300
400
500
600

-2
-3
-4
-5
-6
-7
-8

-8

Forward Current RMS

Value

VRRM(I)

MCR3818-1 thru MCR3818-8, MCR3918-1 thru MCR3918-8 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Svmbol

Characteristic
Peak Forward Blocking Voltage (TJ

MCR3818
MCR3918

Peak Forward Blocking Current

= 1Oo"CI

r

= 100°C)

Peak Reverse Blocking Current

(Rated VRRM, with gate open, T J = 10o"CI
Forward "On" Voltage (lTM

= 20 A Peak)

Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 V. RL = 100 n)
Gate Trigger Voltage (Continuous del
(Anode Voltage = 7.0 V, RL = 100 n)

(Anode Voltage

= Rated

VORM, R L

Holding Current IAnode Voltage

= 100 n, T J = 1000 CI

= 7.0 V, gate open)
= 40 mAde)

Turn-On Time (td +trl (lTM = 20 Adc, IGT

, Turn-Off Time
(lTM
(lTM

Max

25
50
100
200
300
400
SOO
600

-

-

-

Unit

--

-

10RM

-

1.0

S.O

mA

IRRM

-

1.0

5.0

mA

VTM

-

1.2

I.S

Volts

IGT

-

10

40

mA

VGT
VGD

-

0.7

I.S

Volts

0.2

-

-

IH

-

10

SO

mA

ton

-

1.0

-

/-IS

-

15
25

-

dv/dt

-

50

-

eJC

-

toff

= lOA, IR. = 10 A)
= 10 A,IR = 10 A, TJ = 10o"C)

Forward Voltage Application Rate (TJ

Typ

Volts

-2
-3
-4
-5
-6
-7
-8

(Rated VORM, with gate open, TJ

Min

VORM(11

= 100°C)

Thermal Resistance, Junction to Case

/-IS

MCR3818
MCR3918

V//-Is

°C/W

-

1.5
1.6

(1) VORM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate voltage.
Devices should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds
the rated blocking'voltage.

FIGURE 1 - CURRENT DERATING

FIGURE 2 - POWER DISSIPATION
28

kc"
,/

HALF·WAVE OPERATION
180 0

0

/ 'L~

900

L

V~ ~
.=~i'~ ~ V
~o

0
0

2.0,

4.0

6.0

8.0

10

12

14

16

18

o~
o 2.0

20

IT(AV). AVERAGE FORWARD CURRENT lAMP)

~~

~

4.0

6.0

8.0

10

12

14

16

ITIAV), AVERAGE FORWARD CURRENT lAMP)

172

18

20

MCR3835-1 thru MCR3835-8 (SILICON)
MCR3935-1 thru MCR3935-8

THYRISTORS
PNPN

THYRISTORS
SILICON CONTROLLED RECTIFIERS

35 AMPERES RMS
25 thru 600 VOLTS
· .. designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder
controls.

MCR3835 Series

• Economical for a Wide Range of Uses
• High Surge Current - ITSM = 325 Amp
• Low Forward "On" Voltage - 1.2 V (Typ) @ ITM = 35 Amp
•

Practical Level Triggering and Holding Characteristics 10 mA (Typ) @TC= 25 0 C

• Rugged Construction in Either Pressfit or Stud Package
STYLE 1
TERM I CATHODE
2 GATE

MAXIMUM RATINGS
Rating
Repetitive Peak Reverse Blocking
Voltage

MCR3835
MCR3935

Symbol

r

MCR3835
MCR3935

-6

A

K

N
Q

-6
-7
-8

MILLIMETERS
MIN MAX

INCHES
MIN
MAX

12.726 12.827 0.501
11.811 12.065 0.465
8.39 9.65 0.330
2.54
0.100
0.89
1.72 0.035
2.04 2.46 0.080
20.32
- 12.95
1.66 2.28 0.065

0.505
0.475
0.380
0.068
0.097
0.800
0.510
0.090

All JED EC dImensions and notes apply
CASE 174.(J2
TO·203AA

35
75
150
300
400
500
600
700

[

Forward Current RMS

DIM
B
C
E
F
J

VQlts

VRSM

-1
-2
-3
-4
-5

Peak Surge Current

Unit

Volts
25
50
100
200
300
400
500
600

-2
-3
-4
-5
-7
-8

NonMRepetitive Peak Reverse
Blocking Voltage
(t:<:5.0 ms)

Value

VRRM(I)

IT(RMS)

35

Amp

ITSM

325

Amp

12t

435

A 2s

PGFM

5.0

PGF(AVI

0.5

Watts
Watt

IGFM

2.0

Amp

VGFM
VGRM

10
10

Volts

(One cycle, 60 Hz) (TJ =-40to+l000 C)

Circuit Fusing Considerations
(TJ=-40to+l000 C) (10 1.0 to 8.3 msl
Peak Gate Power
Average Gate Power

Peak F orW8rd~Gate Current
Peak Gate Voltage - Forward
Reverse

Operating Junction Temperature Range
Storage Temperature Range
Stud Torque (MCR3935 Series)

SfATINGl'lANf

TJ

-4010+100

QC

Tstg

-40 to +150

°C

-

30

in. lb.

(1)VRRM for all typas can ba applied on a continuous de bali, without incurring damag•.
Ratingl apply for zero or negative gate voltage. Oevlce' shall not have a positive bla' applied

to the gate concurrentlv with a negative potential on the anode.

STYLE 1.
TERM.1.·CATHODE
2 GATE

MILLIMETERS
DIM MIN MAX
A 15.34 15.60
B 14.00 14.20
C 20.70 24.13
F
1.40 1.65
H
2.29 REF
1 . 7 11.56
K 9.78 10.54
L
.99 7.75
Q
2.03 2.41
R
1.65 REF
T 12.70 12.83
CASE 175

173

MCR3835·' thru MCR3835·8, MCR3935·' thru MCR3935-8 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

Typ

Min

Symbol

Peak Forward Blocking Voltage
(TJ = l00"C)

Max

Unit
Volts

VORM(I)
25
50
100
200
300
400
500
600

-

-

-

IORM

-

1.0

5.0

mA

IRRM

-

1.0

5.0

mA

Forward "On" Voltage
(ITM = 35 A Peak)

VTM

-

1.2

1.5

Volts

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7.0 V, RL = 100 n)

IGT

-

10

40

mA

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7.0 V, RL = 100 n)

VGT

0.7

1.5

Volts

r
-2

MCR3B35
MCR3935

-3

-4
-5
-6
-7

-8

Peek Forward Blocking Current
(Rated VORM, with gate open, TJ

=

Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ

= l000C)

l00o C)

-

-

-

-

-

(Anode Voltage = Rated VOM, RL = lOOn, TJ

= l000 C)

VGO

0.2

-

-

Holding Current
(Anode Voltage = 7.0 V, gete open)

IH

-

10

50

mA

Turn·On Time (td + t r )
(ITM = 35 Adc, IGT = 40 mAdc)

ton

-

1.0

-

itS

Turn-Off Time
(ITM = 10A,IR

tott

-

15

-

25

-

dv/dt

-

50

-

VIItS

6JC

-

-

1.2
1.3

°C/W

= lOA)
(ITM = 10 A,IR = 10 A, TJ = l00"C)

Forward Voltage Application Rate
(TJ = l00"C)

Thermal Resistance, Junction to Case

MCR3B35
MCR3935

ItS

-

(1) VORM for all types can be applied on a continuous de basis without incurring qamage. Ratings apply for zero or negative gate voltage. Devices
should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the
rated blocking voltage.
'

FIGURE 2 - TYPICAL POWER DISSIPATION

FIGURE 1 - CURRENT DERATING
50

100

~

'"~

90

~C3

80

ii~

70

f

j~

<",

"'w
:>""
",,,,

~~

40

i~

..
......

0-

V.

30

~

w9

80

~~

50

~~

20

'"

S

f

30

/. V

/
1/ i
- //V//
/. ' l ' /

10

J118~

W ::..---

o~V
o

ITIAV), AVERAGE FORWARO CURRENT lAMP)

60.- 90' /

t--- ~a'~ 3D'

"5

....<3

L

180' /

~~

.,~

0:>

de

I

4.0

fa
8.0

12

16

20

24

'= CONOUCTION ANGLE
28

32

ITIAV), AVERAGE FORWARD CURRENT (AMP)

174

36

40

MD708, F (SILICON)
MD708A, AF
MD708B, BF
NPN SIL1CON ANNULAR MULTIPLE TRANSISTORS
· .. designed for use as differential amplifiers, dual high·speed
switches, front end detectors and temperature compensation ap·
plications.
•

•

Excellent Matching Characteristics @ IC = 10 mAdc
hFE1ihFE2 = 0.9 (Min) - MD70BA,AF
= 0.8 (Min) - MD7088,BF

MD708
MD708A
MD708B

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.20 Vdc (Max) @ Ie = 10 mAde

•

DC Current Gain Specified from 500 /.lAde to 150 mAde

•

High Current·Gain-Bandwidth Product IT = 300 MHz (Min) @ IC = 20 mAde

•

NPN SILICON
MULTIPLE TRANSISTORS

I

STYLE "
PIN 1. COLLECTOR

Fast Switching Time ton = 35 ns (Max)
toft = 75 ns (Max)

2 BASE

3. EMITTER
4. OMITTED
S.EMITTER
6. BASE

7.COLLECTOR
a.OMITTED

MAXIMUM RATINGS
Rating
COllector-Emitter Voltage

Symbol

Value

Unit

VCEO

15

Vdc

COllector-Base Voltage

VCB

40

Vdc

Emitter~Base

VEB

5.0

Vdc

IC

200

TJ,Tstg

-65 to +200

mAde
DC

Voltage

Collector Current

Continuous

Operating and Storage Junction
Temperature Range

One Die

Both Die

Equal Power
Total Power Dissipation @TA = 25°C

550
350

600
400

3.13
2.0

3.42
2.2B

1.4
0.7

2.0
1.4

B.O
4.0

11.4
B.O

One Die

Both Die
Equal Power

mW/oC

Derate above 2SoC
MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD70BBF

Total Power Dissipation @TC= 25°C

MD70BF
MD70BAF
MD70BBF

Watts

PD

MD70B,MD70BA,MD70BB
MD7OBF,MD7OBAF,MD70BBF

CASE 654-01

mW

PD

MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD7OBB F

mW/oC

Derate above 25°C
MD70B,MD7!J8A ,MD70BB
MD7OBF,MD7OBAF,MD7OBBF

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction
to Ambient

Symbol
R8JAI11

MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD7OBBF

Thermal Resistance, Junction to Case
MD7OB,MD708A,MD708B
MD708F,MD7OBAF,MD7OBBF

°CIW
319
500

STYLE 1.

292
438

PIN 1 BASE

125
250

Ambient

87.5
125

%
83
75

40
0

(1) R()JA IS measured With the deVice soldered Into a tYPical printed CirCUit board.

MILLIMETERS

DIM

MIN

A

6.10

MAX
1.36

22

406

0.6
036
11.08

0.48
0.15

•

Junction to
Ca ..

Coupling Factors

5 BASE

2 EMITTER

4. EMITTER

°CIW

R8JC

Junction to

MD7OB,MD7OBA,MD7OBB
MD7OBF,MD7OBAF,MD7OBBF

Unit

C
0
F
G
H
K
N

•

-

2.03

1.27BSC
0.89

381
2.548SC
127

-

1 COLLECTOR
9. COLLECTOR
INCHES

MIN
0.240

-

CASE 610A·03

175

MAX

0.290
0.115 0.1
0030 0.080
0014 0019
0.0
0.00
OD50BSC
0.035
0150
DIOOase
0.050

MD708, F,A,A F,B,BF (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip deVices, coupling of heat between die occurs.
The Junction temperature can be calculated as follows:

Assuming equal thermal resistance for each die, equation (11
simplifies to:

131 ~TJl "ROIIPOI + K02 P02)

II) ~TJI "ROI POI + R02 K02 P02
Where llT Jl

IS

the change

In

junction temperature of die 1

Ro 1 and R02 IS the thermal resistance of die 1 and die 2

POl and P02
K82

IS

IS

the power dissipated

10

die 1 and die 2

the thermal coupling between die 1 and die 2.

An effectIve package thermal resistance can be defined as
follows'

Where PDT

I

For the conditions where Po 1 = P02 = POT == 2 PO. equation
(3) can be further si mplifled and by substituting Into equation (2)

results In:

IS

141 ROIEFFI" ROIl)

+ K021/2

Values for the coupling factors when either the case or the
ambient IS used as a reference are given In the table on page 1.

the total package power diSsipation.

ELECTRICAL CHARACTERISTICS ITA" 25 0 e unless otherwise notedl.

I

Characteristic

Svmbol

Min

Max

Unit

BVeEO

15

-

Vde

BVeBO

40

-

Vde

BVEBO

5.0

-

Vde

-

15
30

nAde
/lAde

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage( 1)

(lC "30 mAde, IB

= 01

Collector-Base Breakdown Voltage

(Ie" 10 I'Ade, IE

= 01

Emitter-Base Breakdown Voltage

liE

= 10l'Ade, IC = 01

Collector Cutoff Current

IVCB
IVCB

= 20 Vde,
= 20 Vde,

IE = 01
IE" 0, TA

ICBO

= 1500 CI

-

ON CHARACTERISTICS
DC Current Gainlll
IIC = 500 /lAde, VCE = 1.0 Vde)
(lC = 10 mAde, V CE = 1.0 Vdel
(lC = 100 mAde, VCE = 5.0 Vdel
(lC = 150 mAde, VCE = 5.0 Vdel

hFE

Collector-Emitter Saturation Voltage

VCElsat)

(lC
(lC
(Ie

40
40
35
20

= 10 mAde, IB = 1.0 mAdel
= 50 mAde, IB = 5.0 mAde)
= 100 mAde, IB = 10 mAdel

Bsse-Emitter Saturation Voltage

-

200

-

Vde

-

0.20
0.35
0.50

0.65

0.85
0.95
1.10

Vde

VBElsatl

(lC" 10 mAde, IB = 1.0 mAdel
(lC = 50 mAde, IB " 5.0 mAdel
(lC = 100 mAde, IB = 10 mAdel

-

(11 Pulse Test: Pulse Width'" 300 I'S, Duty Cycle'" 2.0%.

176

-

MD708,F ,A,AF ,B,BF (continued)

ELECTRICAL CHARACTER ISTICS (continued)
Svmbol

Min

Max

Unit

tr

300

-

MHz

Output Capacitance
(VCB = 10 Vde, 'E = 0, f = 100 MHz)

Cob

-

5.0

pF

Input Capacitance

Cib

-

7.0

pF

0.9
O.B

1.0
1.0

-

5.0
10

-

10
20

DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product
(lC = 20 mAde, VCE = 10 We, f

= 100 MHz)

(VBE = 0.5 Vde, IC = 0, f = 100 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time (Figure 11
Turn-Off Time (Figure 2)
Storage Time (Figure 2)
MATCHING CHARACTERISTICS
DC Current Gain Ratio(2}
(lC = 10 mAde, VCE = 1.0 Vde)

-

hFE1/hFE2
M07OBA,AF
MD7OBB,BF

Base Votlage Differential

mVdc

i'lBE1- V BE2i
MD70BA,AF
MD70BB,BF

(lC = 10 mAde, VCE = 1.0 Vde)

Base-Emitter Voltage Differential Change

liVBE1 IVBE2 i
6TA

MD7OBA,AF
MD7OBB,BF

(lC = 10 mAde, VCE = 1.0 Vdc,
T A = _55°C to 125°C)

-

I'Vdc

(2) The lowest hFE reacting IS taken as hFE1 for this ratio.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - STORAGE TIME TEST CIRCUIT
+10 V

+3.0 V

160
280

0.11'F

....~1'Y.O""kv--Ir-<> Scope

0.11'F

- ........1"'.5"'k..--Ir-<> Scope
5.0 k

50
toff
VB"" +16 V

5.0 k

870

-:,li

-:9li

o{l" ,,:00
+11 V

177

MD918, A, B(SILICON)
MD918F, AF, BF

NPN SILICON
MULTIPLE TRANSISTORS·

MULTIPLE SILICON ANNULAR TRANSISTORS
· .. designed for use as differential amplifiers, dual high frequency
amplifiers, front end detectors and temperature compensation
applications.

•

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Max) @ IC = 10 mAdc

•

DC Current Gain - 50 (Min)

•

High Current·Gai n - Bandwidth Product fT = 600 MHz @ IC = 4.0 mAdc

@

I

IC = 3.0 mAdc
MD918
MD918A
M09188

STYLE 1:
PIN 1. COLLECTOR
2. BASE
3. EMITIER

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

4. OMITTED

Symbol

Value

Unit

VCEO

15

Vdc
Vdc.

Collector-Base Voltage

VCB

30

Emitter-Base Voltage

VEB

3.0

Vdc

IC

50

mAde

Collector Current - Continuous

Total Power DISsipatIon @ T A = 25°C

Total Power DISsipation @ T C "" 25°C
MD918,A,B
MD918F,AF,BF
Derate Above 25°C
MD918,A,B
MD918F,AF,BF
Operatmg and Storage Junction

MILL

DIM
A
B

One Die

AIiDio

550
350

600
400

mW

3.14
2.0

3.42
2.28

mW/oC

1.4
0.7

2.0
1.4

Watts

8.0
4.0

11.4
8.0

mW/oC

Po

M091B,A,B
M0918F,AF,BF
Derate Above 2SoC
MD918,A,B
M0918F,AF,BF

5. EMITTER
6. BASE

1. COLLECTOR
B. OMITTED

CASE 664-()7

E S

K

I
X
8.S1 9.40
1.15 8.51
.81 '.10
0."
0.53
5.088st
0.11 0.86
0.74 1.14
12.10

M
N

45
2.54BSC

C
D

G
H
J

Po

T J,T stg

-65'0 +200

MD918F
MD918AF
MD9188F

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to
Ambient
MD918,A,8
MD918F,AF,BF

Thermal Resistance,Junction to Case
MD918,A,B
MD918F,AF,BF

Symbol

On8 Die

All Dio'
Equal Power

319
500

292
438

125
250

87.5
125

°CIW

R9JC

Junction to
Ambient

DIM
STYlE 1:
PIN 1. BASE
2. EMITTER
•. EMITTER

Junction to

c..

5. BASE

%

Coupling Factors

MD918,A,B
MD918F,AF,BF

Unit

°C/W

R9JA(1)

83
75

40
0

(11 ReJA is measured with the device soldered into 8 typical printed circuit board.

178

7. COLLECTOR
9. COLLECTOR
CASE 810A-03

A
B
C
0
F

G
H

K
N
R

MILLIMETERS
MIN MAX
6.10
1.36
0.16

..

2.

~36

M8

O.

~Iti

1.21 SSC
U9
3. I
2.

B

1.1

MD918,A,B. MD918F,AF,BF (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices. coupling of heat between die occurs.

where: PDT is the total package power dissipation.
Assuming equa' thermal resistance for each die, equation 11)

The junction temperature can be calculated as follows:

simplifies to
(3) AT Jl = R81 (POI + KB2 P02)

Where ~T J1 is the change in junction temperature of die 1
R81 and R82 is the thermal resistance 01 die 1 and die 2
POI and P02 is the power dissipated in die 1 and die 2
k62 is the thermal coupling between die 1 and die 2

For the conditions where POI = P02, PDT = 2PD,

equation (3~ can be further simplified and by substituting Into
equation (2t results in

An effective package thermal resistance can be defined as
lollows:
Values for the coupling factors when either the case or the

(2) R8IEFF) ~ AT Jl/PDT

ambient is used as a reference are given in the table on page 1.

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.)

I

Characteristic

Symbol

Min

Typ

BVCEO

'15

-

BVCBO

30

-

BVEBO

3.0

Max

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage(1)
IIc

= 3.0 mAde,

IB

= 0)

Collector-Base Breakdown Voltage
IIc

Vde
Vde

= 1.0 "Ade, IE = 0)

Emitter-Base Breakdown Voltage
liE

-

Vde

= 10"Ade,lc = 0)

Collector Cutoff Current
IVCB
IVCB

= 15 Vde,
= 15 Vde,

IE
IE

ICBO

= 0)
= 0, TA = lSOoC)

-

-

-

10
1.0

50

165

-

VCE(sat)

0.09

0.2

Vde

VBElsatl

0.86

0.9

Vde

1150

-

MHz

Cob

1.1

1.7

pF

Cib

1.15

2.0

pF

6.0

dB

nAdc
"Ade

ON CHARACTERISTICS

DC Current Gain
IIc

hFE

= 3.0 mAde, VCE = 5.0 Vdcl

Collector-Emitter Saturation Voltage
IIc

= 10 mAde,

IB = 1.0 Ade)

Base-E mitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product
(lC

= 4.0 mAde,

VCE

fy

Output Capacitance
IVCB = 10 Vde, IE

= 0, 1= 100 kHz)

Input Capacitance
IVBE = 0.5 Vde, IC

= 0, I = 100 kHz)

Noise Figure
(lC

600

= 10 Vde, 1= 100 MHz)

NF

= 1.0 mAde, V CE = 6.0 Vde, RS = 400 n, f = 60 MHz)

MATCHING CHARACTERISTICS
DC Current-Gain Ratio' 21
(lC = 1.0 mAde, VCE = 5.0 Vde)

hFE1/hFE2
MD918B,BF
MD918A,AF

Base-Emitter Voltage Differential
(lC

= 1.0 mAde,

VCE

= 5.0 Vde)

Base-Emitter Voltage Differential Gradient
(lC = 1.0 mAde, VCE = 5.0 Vde,
TA = -55 to +12SoC)

IVBE1,VBE21
MD918B,BF
MD918A,AF
<.IVBE1-VBE21
MD918B,AF,BF
L>TA
MD918A

II) Pulse Test: Pulse Width ';;;300 "s, Duty Cycle ';;;2.0%.
(2) The lowest hFE reading is taken as hFEl lor this ratio.

179

0.8
0.9

-

1.0
1.0

-

-

10
5.0

-

-

20
10

-

mVde

"V/de

°c

MD918,A,B, MD918F,AF,BF (continued)

FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
0

1.0

-r-I-

,

TJ = 150~C

z

1-'

~

~
'"

ag'"
~

-

200

--

O. 8

~

~

~

40

I

1.0

I

c

>

,;

~ y~,

- - VCE=5.0V
- - - VCE=10V -

I 1111

I I

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT ImAI

20

~~

'\

30

I II

."
:z:

Ij5h~ 10 15~OC t--+-++l+l++--+--+--+A--l

:::>

I-

t;

V

c

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT ImAI

lc!J})

TJ = 250C
f=I00MHz

~ 1000

~G -1. 4t--++t-t+----jHi--+-+-+-+++4+-1--/-¥----j---1-j
/
1

.....

.:'-

:z:

....

20

30

-

c

'":::>

z

50

........

~ 700
z
~ 50
0/
I

~

~ -t.6H--H+t--f-+-f-+-H+I.I4V
-+--f--IC--H

\"

Y

;;:

; -1.8 emrSE_
!;(

~

III
1.0

FIGURE 4 - CURRENT-GAIN
BANDWIDTH PRODUCT

2000

~

I..-

VCElsal) Q IC IB = 0

0
0.5 0.7

50

-1.0 rT"T-rTT---r--,---r--'-T"""T""l""TTT-'--'---'-"""'-'j

~

1/

O. 2

FIGURE 3 - BASE·EMITTER
TEMPERATURE COEFFICIENT

~

~

VaElonl@VCE= 6.0 V

~ D. 6
w

r-..... -'l

-550C

-1.2

------

~

:; 0.4

60

20
0.5 0.7

~

VBElj') ·IIC~.i!

;;;

f'" ~

250C
100
0

I I. .! l.l

II
TJ = 250C

to

~ 300
~
~

-2.0 L....I.-11T.L..L.J,",-l_-,--",---,--,-.i.-..l.,",",",".L.L---'--'_-'--J.......J
2.0 3.0
5.0 7.0 10
50
0.5 0.7 1.0
20 30
IC. COLLECTOR CURRENT ImAI

J::'

200
3.0

0.5 0.7

1.0

2.0

FIGURE 5 - CAPACITANCE
3. 0

I I

2.0

--

~

..,w
~

~
..;

=1250~

Cob

'-

1.0

Cib

t:
..,
~

TJ

O.7
O.5

O.3

0.05

0.1

0.2

0.5
1.0
2.0
5.0
VR. REVERSE VOLTAGE IVOLTS)

180

10

20

50

3.0

5.0 7.0

10

20

30

MD 982 (SILICON)
MD'982F
MQ982
MULTIPLE SILICON ANNULAR TRANSISTORS

PNPSILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors, and temperature compensation
applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 150 mAdc

M0982

• DC Current Gain Specified 100llAdcto 150mAdc
•

I

High Current-Gain-Bandwidth Product fT = 320 MHz (Typ) @ IC = 50 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

50

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

Total Power Dissipation @TC :: 2SoC

B

C
SEMITTER

600

IC

OneDie
Total Power Dissipation @TA :: 2SoC
MD982
M0982F
M0982
Derate above 25°C
M0982
MD982F
M0982

A

mAde

S8A5E

7CollEtTOil
80MITIED

All Oi.

Po

mW
600
350
400

650
400
600

3.42
2.0
2.28

3.7
2.28
3.42

2.1
1.25
1.0

3.8
2.5
4.0

12
7.15
5.71

17.2
14.3
22.8

CASE 654-01

Po

-65 to +200

TJ.Tstg

DIM
SfYLEl
PlHJBASE

:::¥~:

1 COllECTOR
• COllECTOR

°C,

Symbol

MD982
MD982F
M0982

All Oi.
On.Oie Equal Powe,

ROJAll)

M0982
M0982F
M0982

Thermal Resistance, Junction to Case

270
438
292

83.3
140
175

58.3
70
43.8

D
F
G

CASE 610A-03

R

Unit

Junction to

STYLE!
PlN1CDllECToR

Ce..

211ASE

%

85
75
57
55

40
0
0
0

1 EMITTER
:

~~M~~NECTED

6 BASE

~ ~m~gg:
gBAS£
10 EMITTER
J1NCTCONNECTEO

l~ :~~T£l1
14 COLLECTOR

DIM
A
C
D
F
G
H
J
K
L

N

(1) RSJA is measured with the davice soldered into a tvplcal printed circuit board.
CASE 607·04

181

MILLIMETERS
MIN MAX

6.10
2.92
0.76
0.36
D.DB
1.27

7.36
4.0
203
0.48
0.15

asc

D.B9

3.81
2.54

sse
1.27

INCHES
MIN
MAX
0240 0290
0115 0.1
0030 0.080
0.014 0.019
0003 0.006
0.050BSC
0.035
0.150
010BSC
0.050

MQ982

°CIW

ROJC

Coupling Factor

(01-02)
jOl-Q3 or 01-04)

c

°CIW
292
500
438

Junction to
Ambient
MD982
MD982F
M0982

A
B

H
K
N

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to Ambient

K
M
N

Watts

mW/oC

Charact.. istic

H
J

mW/oC

M0982
M0982F
M0982
Derate above 25°C
M0982
MD982F
M0982
Operating and Storage Junction
T emoerature R anae

D
G

R
S

M0982, M0982F, M0982 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(1) ATJl - RBI POI

where:

+ R82 K82 P02 + RB3 KB3 P03

+RB4 KB4 PQ4

(31 ATJl = RBI (POI + KB2 P02 + Ke3 P03 + K84 P04,

Where ~,Jl is the change in junction temperature of die 1
ReI thru 4 is the thermal resistance of die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

For the conditions where POI = P02 = P03

=P04, PDT =4PO

equation (3) can be further simplified and by substituting into
equation (21 results in

(41 RB(EFFI

An effective package thermal resistance can be defined as
follows:

PDT is the total package pOlA/er dissipation.

Assuming equal thermal resistance for each die, equation (1)
simplifies to

= RB111

+ K82 + KB3 + K841 /4

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.

(21 Re(EFFI = ATJ1/POT

ELECTRICAL CHARACTERISTICS (TA

= 25°C unless otherwise noted.)

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage 111
(lC = 10 mAde,lB = 01

BVCEO

50

-

-

Vde

Coliector·Base Breakdown Voltage
(lC = IOI'Ade,lE = 01

BVCBO

60

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = lOI'Ade,lc = 01

BVEBO

5.0

-

-

Vde

--

-

0.020
20

20
25
35
40

50
75
90
60

-

OFF CHARACTERISTICS

Collector Cutoff Current

IVCS = 50 Vde, IE
(VCS = 50 Vde, IE

ICBO

= 01
= 0, TA = 1500 CI

I'Ade

ON CHARACTERISTICS III
DC Current Gai n

-

hFE

(lc = 0.1 mAde, VeE = 10 Vdel
(Ie = 1.0 mAde, VCE = 10 Vdel
(lC = 10 mAde, VCE = 10 Vdel
(lC = 150 mAde, VCE = 10 Vdel

-

-

Collector-Emitter'Saturation Voltage
(Ie = 150 mAde, IS = 15 mAdei

VCE(sati

-

0.25

0.5

Vde

Base-Emitter Saturation Voltage
(lC = 150 mAde, IS = 15 mAdei

VBE(sati

-

0.88

1.4

Vile

IT

200

320

-

MHz

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHzI

Cob

-

5.B

8.0

pF

Input Capacitance
(VSE = 2.0 Vde, IC = 0, f = 100 kHzI

Cib

-

16

30

pF

DYNAMIC CHARACTERISTICS
Current-Gain -Bandwidth Product
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHzI

(1) Pulse Test: Pulse Width ";;300 I'S, Duty Cycle";; 2.0%.

182

MD984

(SILICON)

MULTIPLE SILICON ANNULAR

TRANSISTOR
PNP SILICON
MULTIPLE TRANSISTOR

... designed for use as differential amplifiers. dual general·purpose
amplifiers. front end detectors and temperature compensation appli·
cations.
•
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.18 Vde (Typ) @ IC = 10 mAde
High Current-Gain-Bandwidth Product fT = 550 MHz (Typ) @ IC = 20 mAde

iF:b

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

20

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAde

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Total Power Dissipation

@

Derate above 2SoC
@

575
3.29

625
3.57

1.8

2.5
14.3

Derate above 2SoC

PLANE

=q

-lLo

mW/oC

Watts
10.3

TJ.T stg

SEATING

mW

Po

TC - 25°C

Operating and Storage Junction
Temperature Range

Both Die
Equal Pow",

Po

TA=250C

Total Power Dissipation

One Die

'\

mW/oC
°c

-65'0 +200

STYLE 1:
PIN 1. COLLECTOR
2. BASE

3.EMITIER
4.0"UTTED

THERMAL CHARACTERISTICS
Symbol

One Die

Both Die
Equal Power,

Thermal Resistance. Junction to
Ambient

RaJAI1)

304

280

°C/W

Thermal Resistance, Junction to Case

RaJC

97

70

°C/W

Characteristic

Unit

Junction to Junction to
Ambient
Ca..
Coupling Factor

84

44

DIM
A
8
C
D

G
H
J
K
M

N

MIN MAX
Ul
9.40
7.75 B.51
3.81 4.70
0.41 0.53
5.0B BSC
0.71 0.B6
0.74 1.14
12.70
45' BSC
2.54

%
CASE 654.(17

(1) R6JA is measured with the davice soldered into 8 typical printed circuit board.

183

5. EMITIER
6. BASE
1. COLLECTOR
B. OMITTED

MD984 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.

The junction

temperatur~

where:

can be calculated as follows:

PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1)
simplifies to

Where .o.TJ 1 is the change in junction temperature of die 1

(3) "'T J1 = Re1 1P01 + Ke2 P02)

Re1 and Re2 is the thermal resistance 01 die 1 and die 2
P01 and P02 is the power dissipated in die 1 and die 2
k82 is the thermal caupl ing between die 1 and die 2

For the conditions where P01 = P02, PDT = 2PO,
equation (3) can be further simplified and by substituting into
equation (2) results in

An effective package thermal resistance can be defined as
follows:

(4) Re(EFF)

= Re1

(1 + Ke2)/2

Values for the coupling factors when either the case or the
ambient is used as

ELECTRICAL CHARACTERISTICS

I

(TA

,8

reference are given in the table on page 1.

= 250 C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

BVCEO

20

-

-

Vde

Collector-Base Breakdown. Voltage
(IC = 10"Ade,IE = 0)

BVCBO

40

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

5.0

-

-

Vdc

-

-

25
30

nAde
"A de

25

75

-

-

-

0.18
0.38

0.3
0.5

0.8

0.9

Characteristic

OFF CHARACTERISTICS

(IE = 10"Ade, IC

= 0)

Collector Cutoff Current

(VCB
(VCB

ICBO

= 20 Vde, IE =·0)
= 20 Vde, IE = 0, TA = 15o"C)

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 10 mAde, VCE

hFE

= 10 Vde)

Collector-Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAde)

(lc

= 50 mAde, IS = 5.0 mAde)

Vde

VCE(sat)

(1)

8ase-E mitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)

VBE(sat)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Produetl1)
(IC = 20 mAde, VCE = 20 Vde, 1 = 100 MHz)
(1) Pulse Test: Pulse Width ';;;;300"., Duty Cycle ';;;;2.0%.

184

Vde

MD985 (SILICON)
MD985F

MULTIPLE SI LICON ANNULAR TRANSISTORS

NPN/PNP SILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
switches and amplifiers, front end detectors, and temperature com·
pensation amplifiers.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 150 mAdc

M0985

• Fast Switching Times ton = 25 ns (Typ) and toff = 75 ns (Typ)
• DC Current Gain Specified 0.1 mAde to 150 mAde
•

High Current·Gain-Bandwidth Product fT = 320 MHz (Typ) @ Ie = 50 mAde

STYlE'
PIN 1
2
3
4
5.
6

COLLECTOR
BASE
EMITTER
OMITTEO
EMITTER
BASE
7 COLLECTOR
8.0MITTEO

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

500

mAde

Operating and Storage Junction
Temperature Range

TJ,Tstg

Collector-Emitter Voltage

Total Power 0 issipation

@

T A - 25°C

-65'0 +200

A
B
C
D
G
H

J

One Die

Both Die
Equal Power

575
350

625
400

3.29
2.0

3.57
2.28

1.8
1.0

2.5
2.0

10.3
5.71

14.3
11.4

One Die

Both Die
Equal Power

304
500

280
438

K
M
N

851
940
775 851
31 4.70
0.41
053
508BSC
071
074

086
114

1270
451l BSC
254BSC

CASE 654-07

mW

Po

M0985
M0985F

mW/oC

Derate above 25°C
M0985
M0985F

Total Power Dissipation

°c

DIM

@

T C = 25°C

Watts

Po

M0985
M0985F
Derate above 2SoC
M0985
M0985F

mW/oC

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
M0985
M0985F

Thermal Resistance, Junction to Case
M0985
M0985F

Svmbol

°CIW

R8JAI11

°C/W

R8JC
97
175

70
87.5

Junction to

Junction to

Ambient
Coupling Factor
M0985
M0985F

Unit

ease
44
0

(1) R6JA is measured with the device soldered into a typical printed circuit board.

5 BASE

7 COLLECTOR
9 COLLECTOR

MILLIMETERS

%

84
75

STYLE 1
PIN 1. BASE
2. EMITTER
4. EMITTER

DIM

MIN

A

6.10
2.2
076
0.36

B
C
D

,
G
H
K
R

D."

MAX
7.36
40

203
0

0
1.27B

-

"9

381
2.54B81:
1.27

INCHES
NAX

MIN
0.240
0.115
0.030
0014

0"

MBO

0.01

.06

0.050B8C

0.035
0.150
O.I00BSC
0.050

CASE 610A·03

185

0.290
0.1

M0985,F (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:

where:

PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1)

simplifies to
(3) "T Jl = RBI IPOI + KB2 P02)

Where .o.T J1 is the change in junction temperature of dte 1
RBI and R82 is the thermal resistance of die l'and die 2
Po 1 and P02 is the power dissipated in die 1 and die 2
k82 is the thermal coupling between die 1 and die 2

For the conditions where POI = P02, PDT = 2Po,
equation (3t can be further simplifie(t'and by substituting into

equation (2) results in

An effective package thermal resistance can be defined as
follows:
(2) RBIEFF)

Values for the coupling factors when either the case or the
ambient is used as 8 reference are given in the table on page 1.

6TJ1/POT

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.)

I

Characteristic

Symbol

'I

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (1)
lie ~ 10 mAde,lB = 0)

BVCEO

30

-

-

Vde

Collector·Base Breakdown Voltage

SVCBO

60

-

-

Vde

BVEBO

5.0

-

-

Vde

-

-

20
20

nAde
"Ade

20
25
35
40

50
75
90
90

-

VCElsatl

-

0.3

0.5

Vde

VBElsat)

-

1.0

1:4

Vde

fT

200

320

-

MHz

Output Capacitance
IVeB = 10 Vde, IE = 0, f = 100 kHz)

Cob

-

5.8

S.O

pF

Input Capacitance

Cib

-

20

-

pF

ton

-

25

-

ns

toff

-

75

-

ns

IIc = 10"Ade,IE = 0)
Emitter·Base Breakdown Voltage
liE = 1O"Ade,lc = 0)

Collector Cutoff Current

ICBO

(YCB = 50 Vde, IE = 0)
IVCB = 50 Vde, IE = 0, TA = +150o C)
ON CHARACTERISTICS

DC Current Gain
(lC =
(lC·
(Ie =
(lC =

-

hFE

0.1 mAde, VeE = 10 Vde)
1.0 mAde, VCE= 10Vde)
10 mAde, VCE = 10 Vde)
150 mAde, VCE = 10 Vde)

Collector·Emitter Saturation Voltage
(lC = "50 mAde, IB = 15 mAde)

Base·Emitter Saturation Voltage
1Ir.= 150 mAde, IS = 15 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain'-Bandwidth Product
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)

MD985

IVBe= 0.5Vde,lc= O,f= l00'kHz)
SWITCHING CHARACTERISTICS

Turn·On Time
(VCC= 30 Vc;I.e,IC= 150 mAde, IBI = 15 mAde)
Turn-Qff Time
IVCC= 30 Vdc,IC· 150 mAde,lBl = IB2= 15 mAde)
(1) Pulse Test: Pul. Width <;300,,5, Duty Cycle <;2.0%.

186

MD986 (SILICON)
MD986F

MULTIPLE SILICON ANNULAR TRANSISTORS

NPN/PNP SILICON
MULTIPLE TRANSISTORS

· .. designed for use as switches, dual general'purpose amplifiers,
front end detectors and in temperature compensation applications.
•
•
•
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.3 Vde (Max) @ IC = 10 mAdc
DC Current Gain hFE = 25 (Min)@ IC = 10 mAdc
High Current·Gain-Bandwidth Product fT = 200 MHz @ IC = 20 mAde
Fast Switching Time@ IC= 150 mAde
ton = 28 ns (Typ)
toff = 72 ns (Typ)

MD986

I

MAXIMUM RATINGS
SymbOl

Value

Unit

Collector-Emitter Voltage

Rating

VCEO

15

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

200

mAde

Coliector Current - Continuous

IC

Total Power Dissipation@TA = 25°C
MD98B
MD98BF
Dorat. Above 25°C
MD98B
MD98BF

Po

Totol Power Dissipation@Tc= 25°C
MD986
MD9B6F
Derate Above 2SoC
MD98B
MD986F

Po

Operating and Storage Junction

One Die

Both Dia
EquaJPoww

550
350

BOO

3.14
2.0

3.42
2.2B

1.4
0.7

2.0
1.4

8.0
4.0

11.4
8.0

STYLE 1:
PIN 1,COLLECTOR
2. BASE
3. EMITTER
4. OMITTED
5, EMITTER
6. BASE
1. COLLECTOR
8. OMITTED

~~M~'~LL~'~~5~~~

l-DIM M
A
8.51 9.40
B 1.15 8.51
C
3.81 4.70
D 0.41 0.53
G
5.08 SSC
H 0.11 0.86
J
0.74 1.14
K 12.0

mW

II
I

400

B
2.54BSC

CASE 854-07

mW/oC

Watts

mWI"C

TJ.T.tg

-65 to +200

°c

Temperature Range

THERMAL CHARACTERISTICS
Both Die
Cllllracteriitic

Thermal Resistance, Junction to Ambient
MD98B
MD9B6F

Thermal Rllistance. Junction to Case
MD98B
MD9B6F

SymbOl

One Die

~qu"Pow..

Unit

°CIW

RSJA(1)
319
500

292
438
°CIW

RSJC
125
250

87.5
125

Junction to Junction to
Ambiont
eo.
Coupling Factors
MD98B
MD9B8F

~

~r -

%
83
75

40
0

(1) RSJA ilmeuurad with tho device loldered into a typical printed circuit bOard.

187

STYLE 1:
PIN 1. BASE
2. EMITTER
4. EMITTER
5. BASE
1. COLLECTOR
9. COLLECTOR

MlLLlIlETERS

0111

1111

MAX

A
I
C
D

S.10
U
0.16

1.38

•

D.38
121

H

I

CASE B1C1A-03

D.8B

M0986,F (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(1) ATJl

= RBl

POl

(3) ATJl = RBl (POl + KB2 P021

+ RB2 KB2 P02

Where 4.T J1 is the change in junction temperature of die 1
RBl and RB2 is the thermal resistance of die 1 and die 2
POl and P02 is tho pOwer dissipated in die 1 and die 2
KB2 is tho thermal coupling between die 1 and die 2.

An effective package thermal resistance can be defined as
follows:
(2) RB(EFF)

Assuming equal thermal resistance for each die, equation (1)
simplifies to:
For the conditions where POl = P02 = PDT = 2 PO, equation
(3) can be further simplified and by substituting into equation (2)

results in:
(4) RB(EFFI

= RBl (POl

+ KB2 P021

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.

= AT JllPOT

Where PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS

(TA = 250 C unless otharwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
IIc = 10 mAde, IB = 0)

BVCEO

15

-

-

Vdc

Collector-Base Breakdown Voltage
IIc = 10"Adc,IE = 0)

BVCBO

40

-

-

Vdc

Emitter-Base Breakdown Voltage
liE = 10"Adc,IC = 0)

BVEBO

5.0

-

-

Vdc

-

-

Characteristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 20 Vdc,lE = 0)
(VCB = 20 Vdc, IE = 0, TA

ICBO

-

-

25
30

nAdc
"Adc

25

-

-

-

-

0.3
0.5

VBE(set)

-

0.9

Vdc

fT

200

320

-

MHz

Cob

-

-

4.0

pF

= 15O"C)

ON CHARACTERISTICS
DC Current Gain
IIC= 10 mAde, VCE

hFE

= 10 Vde)

Collector-Emitter Saturation Voltage
IIc = 50 mAde, IB ~ 10 mAde)

Base-Emitter Saturation Voltage
(lC

Vdc

VCE(sat)

(Ie ~ 10mAde,IB = 1.0 mAde)

= 10 mAde, IB = 1.0 mAde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwldth Product
IIc = 20 mAde, VCE = 20 Vde, f
(lC = 20 mAde, VCE = 10Vde, f

= 100 MHz)
= 100MHz)

M0986F

Output Capacitance
(VCB: 10 Vde,lE = 0, f

= 100 kHz)

(1) Pulse Test. Pulse Width 0;;;3OO"s, Duty Cycle 0;;;2.0%,

188

I

MD 1120I MD 1120F(SILICON)
MDl121
MDl122
MQl120
MULTIPLE SILICON ANNULAR TRANSISTORS

NPN SILICON
MULTIPLE TRANSISTORS

.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.
•

Excellent Temperature Tracking - Dual Devices
"'IVBEI . VBE21 = O.B mVdc (Max) @-55 to +25 0 C
= 1.0 mVdc (Max) @+25 to +125 0 C

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = BO mVdc (Typ) @IC= 10 mAdc

•

DC Current Gain Specified - 10pAde to 10 mAde

•

High Current·Gain-Bandwidth Product fT = 250 MHz @ IC = 20 mAde

MD1120
MD1121
MD11221
~-

DIM
A

•

MAXIMUM RATINGS
Rating

Value
30

Unit

VCB

60

Vdc

VEB
IC

5.0

Vdc

500

mAde

Symbol

Collector-Emitter Voltage

VCEO

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Vdc

STYlE I
PIN 1 COLLECTOR

28ASE
lEMITTER
OMITTEIl

~

One Die

~ ~:1~TEII
lCOLlECTU!I
8 OMITTED

CASE 654-07

C
D
G
H
J
K
M

AU Die

IMD1120F

Equal
Power
Total Power Oisipatlon @ T A - 2SoC
MOI120.MOI121.MOI122
M01120F
M01120
Derate Abo\le 25°C
MOI120.MOI121.MOI122
MD1120F
M01120
Total Power DIssipation @ T C - 2SoC
MOI120.MDI121.MOI122
M01120F
M01120
Derate Above 2SoC
MOI120.MDI121.MOI122
MD1120F
M01120
Operating and Storage Junction

1

N

Po
575
350
400

625
400
600

mW

3.29
2.0
2.28

3.57
2.28
3.42

mwroc

1.8
1.0
0.9

2.5
2.0
3.6

Watts

10.3
5.71
5.13

14.3
11.4
20.5

mW/oC

MILLIMETERS

Po

~5

TJ, T stg

DIM
STYLE I
BASE
2 EMITTER
4 EMInER
saME
1 COLLECTOR
9CIlLLECTIlR

PIN I

CASE 610A·03

°c

to +200

A

•

MIN
610
2.91

INCHES

MAX

MIN

736
406
103

0240 0290
0115 0.1 0
0.030 0080
0.014 0019
0.003 0.006
0050 BSC
0035
0.150
0100BSC
0.050

C
D
F

0.76

G

H
K
N

127BSC
0.89
3.81
254 BSC

R

127

036

0.48

OOS

015

MAX

Temperature Range

THERMAL CHARACTERISTICS
All Die
Characteristic
Thermal Aesistance. Junction to Ambient

MD1120,MDI121.MDI122
M01120F
M01120
Thermal Resistance, Junction to Case
MDI120,MDI121.MOI122
M01120F
M01120

Symbol

One Die Equal Power

ReJAlll
304
500
438

280
438
292

°C/W

ReJC
97
175
195

Junction to
Ambient

70
B7.5
48.8
Junction to

STYlfl
PIN I COLLECTOR
2 BASE

JEMITTER

Unit
%

84
75
57
55

44
0
0
0

(1IA 9 JA IS measured with the device soldered Into a tVPlcal pnnted CirCUit board.

189

j

I

Ca..

Coupltng Factors

MOI120.MOI121.MOI122
MD1120F
M01120 101-02)
101-03 or 01-04)

Unit

°CIW

~ Er~~~:NECTEO
1 COLLECTOR
: ~~~~ECTOR

:1 ~~J:mNECTEU
!lBASE
I_COLLECTOR

DIM

•
C
D

F
G
H

J

•

L

N
R
CASE 607·04

S

0.38
762

8.38

.1
0.300

0.330

MD1120, MD1120F, MD1121 ,MD1122, MQ1120

(contjl)lJed)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die. equation (1)
simplifies to
The junction temperature can be calculated as follows:

In multiple chip devices, coupling of heat between die occurs.
(11 "TJl

= R81

(3) "TJl

POl + R92 K92 P02 + R83 K83 P03

= R91

(POl + K92 P02 + K93 P03 + K94 P04

= P02 = PD3 = PD4, PDT = 4PO

For the conditions where POl

+R84 K84 PD4

equation (3) can be further simplified and by substituting into
equation (2) results in

Where .0.1J1 is the change in junction temperature of die 1
R91 thru 4 is the thermal resistance of die 1 throu~ 4
POl thru 4 is the power dissipated in die 1 through 4
K82 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

(4) R9(EFF)

= R91 (1

+ K92 + K93 + K94) 14

Values for the coupling factors when either the case or the

ambient is used as a reference afe given in the tabJe on page 1.

An effective package thermal resistance can be defined as
follows:
(2) R8(EFF) = "TJ1IPOT

where:

PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS ITA

= 25°C unless otherwise

Characteristic

OFF

noted)

Symbo'

Min

Typ

Max

Unit

CHARACTERISTICS

Collector-Emitter Breakdown Voltage(1)
IIC

BVCED

= 10 mAde, IB = 0)

Collector-Base Breakdown Voltage
IIC

Collector Cutoff Current

= 50 Vde,
= 50 Vde,

IE
IE

= 3.0 Vde, IC = 0)

-

5.0

-

-

-

-

-

-

10
10

-

-

10

20
30
40
50

40
50
60
65

100
120
160
200

-

BO

100

-

700

B50

200

250

-

-

3.5

B.O

O.B
0.9

-

1.0
1.0

-

-

10
5.0

Vde
nAde

Base-Emitter Saturation Voltage

-

mVde
mVde

VBElsat)

= 10 mAde, IS = 1.0 mAdcl

jtAde
nAdc

VCElsatl

= 10 mAde, IS = 1.0 mAde)

Vde
Vde

hFE

Collector-Emitter ,Staruation Voltage

(lC

-

lEBO

ON CHARACTERISTICS
DC Current Gain (1)
IIC ~ 10 /lAde, VCE = 10 Vdc)
lic = 100 /lAde, VCE = 10 Vde)
lic = 1.0 mAde, VCE = 10 Vdc)
IIC = 10 mAde, VCE ~ 10 Vdc)
lic

60

ICBO

= Q)
= 0, TA = 150°C)

Emitter Cutoff Current
(VEB

-

BVEBD

= 10 jtAde, IC = 0)

IVCB
IVCB

-

BVCBO

= 10jtAde,IE = 0)

Emitter-Base Breakdown Voltage
liE

30

DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product I 1)
lic = 20 mAde, VCE = 20 Vde, f

Output Capacitance
IVCB

MHz

fT

= 100 MHz)

pF

Cob

= 10 Vdc, IE = 0, f = 100 kHz)

MATCHING CHARACTERISTICS (MDl120 MDl120F MDl121 MDl122)
DC Current Gain Ratio (2)
lic
lic

= 100 /lAde, VCE = 10 Vde)
= 1.0 mAde, VCE = 10 Vde)

hFE11hFE2
All Devices
MOl122

Base-Emitter Voltage Differential
(lc
(lC

= 100 /lAde, VCE = 10 Vde)
= 1.0 mAde, VCE = 10 Vde)

~ase-Emitter

IVBE1-V BE21
All Devices
MD1122

Voltage Differential Change

mVdc

"IVBE1- V BE21

mVde

Due to Temperature - M01121, MOl122
(lC = 100/lAde, VCE
lic = 100 /lAde, VCE

= 10 Vde, T A = -55 to +25 0 C)
= 10 Vde, TA = +25 to +12S o C)

(1) Pulse test: Pulse Width <;;300 jtS, Duty Cycle <;; 2.0%.
(2) The lowest hFE reading is taken as hFEl for this ratio

190

-

.-

-

-

O.B
1.0

MDl123 (SILICON)
MDl130
MDl130F
MULTIPLE SI LICON ANNULAR

TRANSISTORS

PNPSILICON
MULTIPLE TRANSISTORS

.. designed for use as differential amplifiers, dual general-purpose
amplifiers, front end detectors and temperature compensation
applications.

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.18 Vdc (Typ) @ IC = 10 mAdc

•

DC Current Gain Specified - 10 !lAde to 10 mAde - MD 1130,F

•

High Current-Gain-Bandwidth Product fT = 600 MHz @ IC = 20 mAde - MDl123

,
A

MD1123
MD1130

8

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vdc

STYlE!
PIN 1. COLLECTOR

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAde

2. BASE
3 EMITTER
40MlnED
5. EMITTER
6 BASE
1 COLLECTOR
• OIlITTEO

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Total Power DISSipation @ T A = 2SoC
MD1123, MD1130
MD1130F

Operating and Storage Junction

All Die

575
350

625
400

mW

3.29
2.0

3.57
2.28

mW/oC

1.8
1.0

2.5
2.0

Watts

10.3
5.71

14.3
11.4

mWfDC

-65 to +200

~DIM

G

PD

T J.T stg

+N'N
~
r;;~M~IL~'~'M~n~E~RslJ~~~ V'Y.",-;;:-, G
H

PD

Derate Above 2SoC
MD1123.MD1130
MD1130F
Total Power Dissipation@Tc =: 2SoC
MD1123. MD1130
MD1130F
Derate Above 2SoC
MD1123. MD1130
MD1130F

One Die

-ll.o

H 011
J
014
IC 1210

M

"

MIN MAX
851
940
115 851
381 41D
041 0.53
5088S

•

>-

D88
1.14

45 8 C

CASE 654-07

254BSC

°c

Temperature Range

THERMAL CHARACTERISTICS
AU Die

Characteristic

Thermal Resistance. Junction to
Ambient

Symbol

Coupling Factors
MD1123. MD1130
MD1130F

Equal Power

Unit

°C/W

ROJA(1)

MD1123. MD1130
MD1130F

Thermal Resistance.Junction to Case
MD1123, MD1130
MD1130F

One Die
304
500

280
438

97
175

70
B7.5

Junction to
Ambient

Junction to

°C/W

ROJC

ca ..

STYlE 1
PIN I BASE
2 EMITTER
4 EMITTER

Unit
%

B4
75

44
0

S BASE
1 COLLECTOR
!l COLLECTOR

R8JA is measured with the device soldered into a typical printed circuit board.

191

C

MILLIMETERS
MIN
MAX
610 1.36

2924.06

II

01
036
0.08
12

K
l

.81
1054

o
F

H
MD1130F
CASE 610-A03

(1)

DIM
A
1

2.
0.48
0.15
ISC

..
-

2.54ISC
1.27

MD1123, MD1130, MD1130F (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, equation (1)
simplifies to

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:

(3) ATJl = R81 IPDl + K82 PD2 + K83 PD3 + K84 PD4,

111 6TJl = R81 PD1 + R82 K82 PD2 + R83 K83 PD3

For the conditions where PDl = PD2 = PD3 = PD4, PDT = 4PD

+R84 K84 PD4

Where

~TJl

equation (3) can be further simplified and by substituting into

is the change in junction temperature of die 1

equation (2) results in

R01 thru 4 is the thermal resistance of die 1 through 4

POl thru 4 is the power dissipated in die 1 through 4

(4) R81EFFI = R8111 + K82 + K83 + K841 14

K02 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

Values for the coupling factors when either the case or the

ambient is used as a reference are given in the table on page 1.

An effective package thermal resistance can be defined as
follows:
121 R81EFFI = bTJ1/PDT

where:

PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherWISe noted.1

I

Symbol

Min

Typ

Max

Unit

COllector-Emitter Breakdown Voltage (1)
(lC = 10 mAdc, IB = 0)

BVCEO

40

-

-

Vdc

Collector-Base Breakdown Voltage

BVCBO

60

-

-

Vde

BVEBO

~.O

-

-

Vdc

-

-

10
10

"Adc

-

-

10

nAdc

MDl130,F

60

100

-

MDll23
MDl130,F

30
100

80
170

120
300

(Ie = 1.0 mAdc, VCE = 10 Vde)

MDl130,F

100

180

-

IIC= 10 mAde, VeE = 10Vdcl

MDl123
MDl130,F

50
100

75
150

200

VeElsat)

-

0.18

0,25

Vdc

VSElsat)

-

0,8

0.9

Vdc

250
200

600
550

_.
-

MHz

-

3.5

4.0

pF

0.8
O,g

-

1.0
1.0

-

-

-

-

Characteristic
OFF CHARACTERISTICS

(lC = 10"Adc, IE = 0)

Emitter-Base Breakdown Voltage
(IE = 10 "A dc, Ie = 0)

Collector Cutoff Current

ICBO

IVCB = 50 Vdc, IE = 01
IVCB = 50 Vdc, IE = 0, TA = 150°C)

Emitter Cutoff Current

IESO

nAdc

IVSE = 3,0 Vdc, IC = 01
ON CHARACTERISTICS
DC Current Gam 111
IIC= 10"Adc, VCE = 10Vdcl
(Ie = 100"Adc, VeE = 10 Vdc)

hFE

Collector-Emitter Saturation Voltage

-

-

(lC= 10mAdc, IS = 1.0Adel

Base-Emitter Saturation Voltage
(lC = 10 mAde, IS = 1.0 mAdel
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(lC = 20 mAde, VCE = 20 Vde, I = 100 MHzl

Output Capacitance

MDl123
MD1130,F

IT

MDl130,F

Cob

IVCS = 10 Vdc, IE = 0, I = 100 kHz)
MATCHING CHARACTERISTICS

DC Current-Gain Ratio (2)
MDl123
MDl130,F

Base-Emitter Voltage Differential
(lC = 100 "A dc, VeE = 10 Vdc)
(lC = 1.0 mAdc, VeE = 10 Vdc)

MDl123
MDl130,F

10
5.0
mVdc

LlIVBE1!VSE21

Due to Temperature - MD1121, MD1122
(lC = 100 "Adc, VCE = 10Vdc, TA =+25 to +1250 C)
MDl130,F

-

(1) Pulse test: Pulse Width <;;;3OO"s, Duty Cycle <;;;2,0%,
IS

mVdc

IVBE 1!VBE21

Base-Emitter Voltage Differential Change

(2) The lowest hFE reading

-

hFE l/hFE2

(lC = 100 "Adc, VCE = 10 Vdcl

taken as hFE 1 for this ratio.

192

-

10

MDl129(SILICON)
MDl129F
MQl129
MULTIPLE SILICON ANNULAR

TRANSISTORS
NPN SILICON
MULTIPLE TRANSISTORS

.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation applications.
Excellent Temperature Tracking - MDl129,F
LlIVBEl - VBE21 = 0.8 mVde (Max) @ -55 to +250 C
= 1.0 mVdc (Max) @ +250 C to +125 0 C
• Low Collector-Emitter Saturation Voltage VCE(sat) = 0.09 Vde (Typ) @ IC = 10 mAde - MDl129,MQl129
• DC Current Gain Specified at Low Collector Currents hFE = 60 (Min) @ IC = 10llAde
•

•

MDl129

I

High Current-Gain-Bandwidth Product fT" 250 MHz (Typ) @ IC = 20 mAde

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

SVmbol

Value

Unit

"cEO
VCB
VEB
IC

30
60
5.0
500

Vde
Vdc

One Die
Total Powsr Dissiaption
MDI129
MDII29F
MOl 129
Derate above 25°C
MDl129
MDI129F
MOl 128

@

TA

= 25°C

Total Power Dissipation @ T C = 25°C
MDI129
MDII29F
MOl129
Derate above 250C
'MD1129
MDI129F
MOl129
Operating and Storage Junction
Temperature Range

Po

Po

Vdc
mAde

"IIDie
Equal Power

o

STVLE,

"11"COLLECTOR

!i~~~~

3.29
2.0
2.28

3.57
2.28
3.42

mW/OC

1.8
1.0
0.9

2.5
2.0
3.6

Watts

14.3
11.4
20.5
-65 to +200

MILLIMETERS

mW/oC

DIM
A
B
C

°c

o
F
G

Symbol

Thermal Resistance, Junction to Ambient
MDI129
MDll29F
MOl 129

RSJA
(II

Thermal Resistance, Junction to Case
MDI129
MDII29F
MOII29

RSJC

Ona Die

All Die
Equal Power

Unit

CASE 61DA-03

MAX

MIN

736
40
2.03
0.48
0.15

0.240

0.290

0.115
0.030
0.014

0.1
0.080
0.019

sse

H

0.89

K
N

3.81
2.54 Bse
1.27

R

INCHES

MIN
6.10
2.92
0.76
0.36
0.08
121

0.003

0.050

MAX

0.006

sse

0.035
0.150

0.100

sse
0.050

Ma1129
°CIW

304
500
438

280
438
292

97

70
87.5
48.8

°CIW
175

195

Junction to Junction to
Ambient
CI..

Unit

PIN : ~~~EtTOR

%
84
75
57
55

44

0
0
0

(1) ReJA is measured with the device soldered into a typical printed circuit board.

4 NOTCOh'h'ECTED

;giK::OR

: ~mECTOR

rOEMrTTER
11 NOTCONNECUO
It EMITTER
::

ro~~ECTOR

CASE 601·04 ,

193

INCHES
MfN
MAX

STVLEr

aE"'TTER

Coupling Factors
MDI129
MDI129F
MOI129IQI·02)
(01·03 or 01·04)

J(

N

MIN MAX
8.51 9.40
7.75 8.51
3.Bl 4.10
0.41 0.53
5.08BSC
0.11 0.86
0.74 1.14
12.70
45° BSC
254BSC

mW
625
400
600

THERMAL CHARACTERISTICS
Characteristic

G
H
J

M
CASE 654-07

575
350
400

10.3
5.71
5.13
TJ,T,tg

MILLIMETE

DIM
A
B
C

0.240 0.275
.D3D O.
.01
0.019
.00
0.006
0.050BSC
0.005 0.035
0.015
0.250
0.740
0.010

A

C
0
F
G
H
J
K
L
N
R
S

7.62

'0.
B.38

f

0.30

O.

MDl129, MDl129F, MQl129 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat batw"" die occurs.
The junction temperature can be calculated as follows:

(11 oTJl = ReI POI + Re2 Ke2 P02 + Re3 Ke3 P03

where:

POT is the total package power dissipation.

Assuming equal thermal resistance for each die. equation (1),

simpl ifies to

+Re4 Ke4 PD4

(3) oTJl = ReI (POI + K82 P02 + Ke3 P03 + Ke4 P()4l

Where ~TJl is the change in junction temperature of die 1
R61 thru 4 is the thermal resistance of die 1 through 4

POI thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.
An effective package thermal resistance can be defined" as

follows:

For the conditions where POI = P02 = P03 = P04, POT = 4PO
equation (3) can be further simplified and by substituting into
equation (2) results in

(4) Re(EFF) = ReI (1 + Ke2 + Ke3 + Ke4) 14
Values for the.coupling -factors when either the case or the
. ambient is used as a reference are given in the table on page 1.

(2) Re(EFFi = oTJ1/POT

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Symbol

.1

Typ

Max

.30

-

-

60

-

-

5.0

-

-

-

-

-

10
10

-

-

10

60

-

300
-

Min

Unit

OFF CHARACTERISTICS
Collector-E mitter Breakdown Voltage (11
(lc = 10 mAde, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
(lC ~ 10"Ade,IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 10"Ade,lc = 0)

BVEBO

Collector Cutoff Current
- (VCB = 50 Vde, IE = 0)
(VCB = 50 Vdc, IE = 0, TA = 150°C)

-ICBO

Emitter Cutoff Current
(VBE ~ 3.0 Vde, IC = 0)

lEBO

Vde
Vdc
Vdc

-

nAdc
"Ade
nAde

ON CHARACTERISTICS
OC Current Gain (1)
(lC
(lC
(lC
(lC

hFE

= 10 "Ade, VCE = 10 Vde)
= l00"Ade, VCE = 10 Vdel
= 1.0 mAde, VCE = 10 Vde)
= 10 mAde, VCE = 10 Vde)

100
100
100

Collector-E mitter Saturation Voltage

(lC

(lC

-

Vde

VCE(sat)

= 10 mAde,lB = 1.0 mAde)

Base~E mitter

120
140

M01129,MQl129
MOl129F

Saturation Voltage

-

0.09

-

0.1
0.15

-

0.7

0.85

200

250

-

-

3.5

8.0

0.9
0.9

-

-

1.0
1.0

-

-

5.0
5.0

-

-

O.B
1.0

Vde

VBE(satl

= 10 mAde,lB = 1.0 mAde)

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 20 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f

fT

pF

Cob

= 100 kHz)

MHz

MATCHING CHARACTERISTICS (MD1129, MD1129F)
OC Current Gain Ratio (2)
(lC = 100 "Ade, VCE = 10 Vde)
(lC = 1.0 mAde, VCE = 10 Vdc)
Base~Emjtter Voltage Differential

mVde

IVBE1-VBE21

(lc 100 "Ade, VC6.= 10 Vde)
(lC = 1.0 mAde, VCE = 10 Vdc)
Base-Emitter Voltage Differential Change Due to Temperature

(lC = 100 "Ade, VCE
(lC = 100 "Ade, VCE

-

hFE1/hFE2

mVde

",IVBE1-VBE21

= 10 Vde, TA = -55 to +250 C)
= 10Vde, TA ='+25 to +1250 C)

(1) Pulse Test: Pulse Width';;; 300 "s, Outy Cycle';;; 2.0%
(2) The lowest hFE reading is taken as hFEl for this ratio.

MDl130
MDl130F

For Specifications, See MD 1123 Data.

194

MD2218, MD2218A (SILICON)
MD2218F, MD2218AF
MD2219, MD2219A
MD2219F, MD2219AF
MQ2218,A,MQ2219,A
MULTIPLE SILICON ANNULAR

TRANSISTORS

NPNSILICON
MULTIPLE TRANSISTORS

· .. designed for use as differential amplifiers, dual general-purpose
amplifiers, front end detectors and temperature compensation applications.

MD2218,A
MD2219,A

•

Fast Switching - MD2218A,AF, MD2219A,AF
td = 15 p.s (Max) tr = 30 p.s (Max)
ts = 250 p.s (Max) tf = 60 p.s (Max)

•

Low Collector-Emitter Saturation Voltage - MD2218AF, MD2219AF
VCE(sat) = 0.3 Vdc (Max) @ IC = 150 mAdc
DC Current Gain Specified - MD2218,A, MD2219,A
0.1 mAdc to 300 mAdc

•
•

High Current-Gain-8andwidth Product
fT = 250 MHz (Typ) @ IC = 20 mAdc

I

-ll-D

;t:
~
,N

H,>;

'<

V,,~;I

G

MILLI
DIM
A

MIN
8,51

C

3.81

!lB~l7!.7'~!8·i51~
o

• ""'"

! ~itCJOR

MAXIMUM RATINGS
M02218.A.F
MD2219,A,F
MQ2218.A
MQ2219.A

M02218AF
MD2219AF

Unit

VCEO

30

40

Vdc

Collector-Base Voltage

VCB

60

75

Vdc

Emttter-Base Voltage

VEB

50

Rating
Collector-Emitter Voltage

Collector Current - ContinUOus

Svmbol

60

One 0 ..

AllOil

Equ"row.
Total Power Dlsslpatlon@TA"'250C

Po

MD221B.A,MD2219.A

MD2218F .AF, MD2219F,Af
M02218,A, MQ2219,A
Derate Above 25 0 C
M02218,A,MD2219,A
M02218F,AF ,MD2219F,AF
MQ2218,A,M02219,A
Total Power Dlsslpatlon@Tc=-250C

625
400
600

mW

329
20
22B

357
2.28
342

mW/oC

18
10
09

25
20
3.6

Watts

MQ2218,A,MQ2219,A
Derate Above 250C
MD221B,A,MD2219,A
MD2218F ,AF ,MD2219F ,AF
M02218,A,MQ2219,A

103
571
513

143
114
205

mW/oC

N

~:~! ~:~
2.54 BSC

I

.:;1 j

.~.L

~

r-q;r'lf~. ~
u:::::=,__
DIM

....,

2 EMITTER

A
B

4 (MInER

C

1 COLLECtOR

D

• COLUCtDIL

F
G
H
K
N

CASE 610A-03

R

MILLIMETERS
MIN MAX
6.10
2 2
0.16
0.36

1.36
4.

2.03
0.48

0.08
0.15
1.21 BSe

INCHES
MIN
MAX
0.240 0.290
0.115
.1
0.0 0 0.080
0.014 0.019
aD
0.006
0_050 BSe

0.89

3.81
2.548Se
1.27

aC

-65 to +200

TJ,Tstg

~

4.10
0.41 0.53
'.08 sse

K 12.0
M
450 BSC

:'

STYlE.
PlltlWE

Po

MD2218,A,MD2219.A
MD2218F ,AF,MD2219F ,AF

Operating and Storage Junction
Temperature Range

575
350
400

G

MD2218F,AF
_ _.....- ; , - - - - , MD2219F,AF

Va,
mAde

500

'C

CASE 664-01

TES

MAX
9_40

0.035

al5IJ

0100 sse
0.050

M02218,A
MQ2219,A

THERMAL CHARACTERISTICS
CharacterIStic
Thermal ReSistance, Junction to
Ambient

Svmbol

Unit

°C!W
304
500
438

280
438
292

97
175
195

87.5
48.8

°CfW

RfjJC

Junction to
Ambl8nt
Coupling Factors
M02218,A,M02219,A
MD2218F ,AF ,MD2219F ,AF
M02218,A,M02219,A (01,02)
(01·03 or 01·04)

All Ole
Equal Power

R8JA(11

MD2218,A,MD2219,A
MD2218,F ,AF ,MD2219,F,AF
MQ2218,A,M02219,A
Thermal ReSistance, JUllCtlOn to Case
MD2218,A,MD2219,A
MD2218F ,AF,MD2219F ,AF
M02218,A.M02219,A

One Ole

70

STYlE.
PlN.COLLECTOft
2 BASE
3EMITTEA
'NOTCONllEtTEO

: ::~TEII

Junction to

84
75
57
55

CaM

44
0
0

1 COllECTOR

%

1: :~~:OR
g ~~~~~:"ECTEO
13 lASE
14 COllECTOR

D1M
A
C

o

F
G
H
J

K

6.3'

L

18.80

NO.2'
R

(1) R8JA IS measured With the device soldered Into a typical printed CirCUit board

CASE 607-04

195

S

0

7.62

a

.1

0.300

0.330

MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
I n multiple chip devices, coupling of heat bet\'Veen die occurs.

where: PDT is the total package power dissipation.
Assuming equal thermal resistance for each die. equation
simplifies to

The Junction temperature can be calculated as follows:
III ATJl = ROl PD1 + Rn K02 PD2 + R03 K03 PD3

(1)

131 t.TJl = ROl IPDl + K02 PD2 + K03 PD3 + K04 PD41

+R04 K04 PD4

= P03 = P04, PDT

Where .\.TJ1 is the change in junction temperature of die 1
Rel thru 4 is the thermal resistance of die 1 through 4
POt thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

equation

An effective package thermal resistance can be defined as

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.

follows:

For the conditions where POl'" P02
(2)

results in

141 RolEFFI = R0111 + K02 + K03 + K041 14

121 ROIEFFI = "TJ1/PDT

'ELECTRICAL CHARACTERISTICS

ITA = 25°C unless otherwise noted I

Characteristic

Symbol

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Collector- Emitter Breakdown Voltage {1)
IIc = 10 mAde, IS = 01

30
40

Vde

60
75

-

-

BVEBO

MD2218,A,F, MD2219,A.F. M02218,A: M02219,A
MD2218AF, MD2219AF

Collector Cutoff Current
(VCE = 50 Vde, VEBloff) = 3.0 Vdel

-

BVCBO

MD2218,A,F,MD2219,A,F,M02218,A,MD2219,A
MD2218AF, MD2219AF

Emitter-Base Breakdown Voltage
liE = 10 "Ade, IC = 01

Vde

SVCEO

MD2218,A,F, MD2219,A,F, M02218,A, M02219,A
MD2218AF, MD2219AF

Collector-Base Breakdown Voltage
IIc = lO"Adc, IE = 01

Vde

5.0
6 ..0

-

-

nAdc

ICEV

MD2218,F,MD2219,F,M02218,A
M02218A,AF,MD2219A,AF,M02219,A

20
15

-

-

-

-

30

-

-

20
35

50
45

-

25
50

55
55

-

MD2218,A,F,AF,M02218,A
MD2219,A,F ,AF ,M02219,A

35
75

65
85

-

(lC = 150 mAde, VCE = 1.0 Vdel
MD2218,A,F,AF,M02218,A
MD2219,A,F,AF,M02219,A

20
50

65
65

-

(lC = 150 mAde, VCE = 10 Vdel
MD2218,A,F,AF ,M02218,A
MD2219,A,F,AF,M02219,A

40
'100

30
120

120
300

25
30

75
75

-

Base Cutoff Current
IVCE = 50 Vde, VEB(off) = 3.0 Vdel

ON

CHARACTERIST~CS

nAdc

18L

(1)

DC Current Gain
(lC = 0.1 mAde, VCE =,10 Vde)
MD2218,A,F,AF,M02218,A
MD2219,A,F ,AF ,M02219,A

= 4PO

equation (3) can be further simplified and" by substituting into

-

hFE

(lC - 1.0 mAde, VCE ~ 10 Vdcl
MD2218,A,F,AF,M02218,A
MD2219,A,F,AF,M02219,A

IIc = 10 mAde, VCE = 10 Vdel

-

IIc = 300 mAde, VCE = 10 Vdel
MD2218,A,M02218,A
M02219,A,M02219,A

196

-

MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A

Symbol

Characteristic

Max

Typ

Min

Unit

ON CHARACTERISTICS (continued) (1)
Collector-Emitter Saturation Voltage

Vde

VCE(,.t)

IIc: 150mAdc,IS: 15 mAde)
MD221B,A,F,MD2219,A,F,MQ221B,A,MQ2219,A
MD221BAF, MD2219AF
(lC : 300 mAde, IS: 30 mAde)
MD221B,A,F,MD2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF

-

0.2

-

0.35

-

Base-Emitter Saturation Voltage

0.4
0.3

-

1.2
0.9

-

Vde

VSEI,.tl

IIC: 150 mAde, IS: 15 mAde)
MD221B,A,F ,MD2219,A, F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF
(lC : 300 mAde, IS: 30 mAde)
MD221B,A,F ,MD2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF

0.6
0.6

0.95
1.0

1.3
1.2

-

-

-

2.0
I.B

200

250

-

-

3.5

B.O

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

MHz

IT

(lC: 20 mAde, VCE : 20 Vde, I : 100 MHz

Output Capacitance
IVCB: 10 Vde, IE: 0, I : 100 kHz)

Cob

Input Capacitance
IVEB : 0.5 Vde, IC: 0, I : 100 kHz)

Cib

pF

pF

-

-

15
18

30
25

td

-

-

20
15

jlS

tr

-

-

40
30

jlS

ts

-

-

280
250

jlS

-

70
60

jlS

MD221B,A,F ,M D2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF

SWITCHING CHARACTERISTICS
Delay Time

(VCC: 30 Vde, Ie : 150 mAde,
VBEloll): 0.5 Vde, lSI: 15 mAde)
(Figure 11)
MD221B,F,MD2219,F
MD221BA,AF ,MD2219A,AF
MD221B,F,MD2219,F
MD221BA,AF ,MD2219A,AF

Rise Time
Storage Time

(VCC: 30 Vde, Ie: 150 mAde,
lSI: IB2: 15 mAde)
(Figure 12)
MD221B,F,MD2219,F
MD221BA,AF,MD2219A,AF
MD221B,F,MD2219,F
MD221BA,AF,MD2219A,AF

Fall Time

11) Pulse Test: Pulse Width <0;300

jlS,

tl

-

-

Duty Cycle <0; 2.0%.
FIGURE 1 - NORMALIZED DC CURRENT GAIN

4.0

§

3.0

N

::;

'"a~

'z"

;;:

'"....

- -

TJ=j?50L
20

-I-

I

1.0

!O~

- -

-55°C

-

iii 0.7

"'

"'
13

0.5

u

a

~

-1-

-

I-

J

-

-

--

-

-

- --

- - - - '~

-"

0.7

1.0

2.0

3.0

5.0

7.0

10

20

30

IC, COLLECTOR CURRENT ImA)

197

50

70

100

-

t'-

- "'
........

0:

0.3
0.2
0.5

I
CE ~ 1.0 V
-VCE=10V

200

-

'"

\

-"I
~

300

500

MD2218, MD2218A, MD2218F, MD2218AF(continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - TEMPERATURE COEFFICIENTS

1.4

+1.6

II
II
evc L)CE~salt)

TJ =Z50C
G

I.Z

~
2!

3; +0.8

.5

1. 0

UJ

0.8

VBE(jat)@IC/IB -10

'"~

0.6

VaE@VCE

o

>

I--::;:..

e-

V

15

G

0

~

-0.8

~

1.0 V

IIII
(Z50C to 1750C)

(-55°C to IZ50C )

=>

:> 0.4
O. Z

o
1.0

Z.O

5.0

0VB for VSE

~ -1.6

VCE(,.t)@ Iclla = 10
0.5

..... 1./

§

I IIIIIII
I IIIIIII
10

ZO

50

---

100

II 1

e-

:>

~

ZOO

500

~

IIJl....--'1

-Z.4
0.5

1.0

Z.O

5.0

IC, COLLECTOR CURRENT (mA)

10

ZO

il

50

100

ZQO

500

IC, COLLECTOR CURRENT (mA)

NOISE FIGURE
= 10 Vdc, T A = 25°C)

(VCE
FIGURE 4 - FREQUENCY EFFECTS

FIGURE 5 - SOURCE RESISTANCE EFFECTS

6.0

10

5.01'\.

w

'"

=>

IC = 10"A
AS, 4.3 kil

0 1"

~ 3. 0

z
z

~.

1\

Z. 0

I"'-

II
1'1"---1'

0.5

O.Z

1.0

Z.O

5.0

10

ZO

f'

II

50

O
0.1

100

~

0.2

VCE = ZO V
TJ = Z50C
t= 100MHz

~

z

50

"i'

«

~

1'"

cl

0

"

30

~

0

V

1'1'

:---

.0

to

J:'

TJ = 25°C

t-b

,:.

~

100

Cib

100

~

50

J 11l

V
70

20

t-l'

0

y

:l:
o

10

FIGURE 7 - CAPACITANCES

j..-I-'

ZO0

«

5.0

2.0

0

t; 30Ot--

'"e-o

1.0

0.5

RS, SOURCE RESISTANCE (k OHMS)

500

'"~

V

t-

FIGURE 6 - CURRENT-GAIN-BANOWIDTH PRODUCT

5o

II

"

Z. 0

t, FREnUENCY (kHz)

N

V
f'.

z

I. 0
0
0.1

4.0

~.

IC = 100"A
AS = 1.0 kil

I)

'\

w

Y111

;~~I

-'-

V

'"
u:

5z

llJll
100"A

Ic=1.0mA

~ 6.0
=>

I-

w

'"o

J",.

B.O

I'-

~ 4.

I

t= 1.0 kHz

........

.0

.....

/
10
0.1

O.Z 0.3
,

0.5

1.0

2.0

3.0

5.0

10

20

3.0
0.1

30

0.2

0.3

0.5

1.0

2.0

3.0

REVERSE VOLTAGE (VOLTS)

IC, COLLECTOR CURRENT (mAde)

198

5.0

10

20

MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
MQ2218, MQ2218A, MQ2219, MQ2219A

SWITCHING TIME CHARACTERISTICS

FIGURE 9 - CHARGE DATA

FIGURE 8·- TURN-ON TIME

200

"\

10,000

11t,@5V

I\.

100 :\. I\v

r-,:-2,V

td@VEB(oH)'-O

10
3.0

"

'"' 500

~

'\

200

~

10

10 a

1/

~

r-.

. . . V 1.-- ....

~ ......
5.0

Vee

I-

200

100

-

50

t-.

20
30
50
Ie, COLLECTOR CURRENT (mAl

./

1000

'\

~<'
-

lellB.

2000
Vee -, 30 V
UNLESS NOTED

I"

20

TJ -- 25"C
10
5V(UNLESS NOTEDI

-f-

- I-

td@VEB(onl

30

=~

5000

TJ 25"C
lefl, --10

~

HIGH GAIN TYPES
L?WGAIN TY PES

v--

./

Vee - 30V

~

-GA, ACTIV\~~~~~t: ALL TYPES

II II

20

300

QT, TOTAL CONTRO~~
CHARGE

3.0

5.0

7.0

I

10

20
30
50 70
Ie, COLLECTOR CURRENT (mAl

zoo

100

300

FIGURE 10 - TURN-OFF BEHAVIOR

300

" ......

200
~

~ 100
>=
::j

c::

70

Q

"'"

300 ..........

,- -l'

"

,.,

~

i lel l,

+i

~

10

"'-

20

I,

11 1
20

~

10

a
a

~~

20

......

..........

............

.......

70

200

100

300

TJ

10

i

......

l"-

---

I,

......

25 C

"I

20

30

50

70

200

100

300

Ie, COLLECTOR CURRENT ImAI

Ie, COLLECTOR CURRENT ImAI

FIGURE 12 - STORAGE TIME AND FALL
TIME EQUIVALENT TEST CIRCUIT

FIGURE 11 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT

GENERATOR RISE TIME'; 2.0 ns
PW'; 200 ns
DUTY CYCLE' 2.11%

-

n H GAIN TYPES

o

50

10

0

I>

1

30

~

0

..............

[>:

20 -

lel l,

......

lell,

.........

~

"" "',

lell, -10

0"'-

......

LOW GAIN TYPES
r---- TJ ~ 25"C
10
10

~

t-.

I

~

lell,

r-o

..........

30

t--- lell,

......

:l' 50

t,

ZO a

+30 V

RISE TIME'; 2.0 ns
DUTY CYCLE· 2.0%

+30 V

200
200

9. 9V

n

SCOPE
0-

o_L-L

619

SCOPE
Rio> 100 k ohms
Cin'; lZ pF
RISE TIME.; 5.0 ns

+16ZVR;

Ain> 100 k ohms
Cin'; 12 pF
RISE TIME'; 5.0 ns

> zooOn:...J-- - -

-j--

1.0 k

lN916

-13.8 V
-3.0 V

199

MD2369, A, B(SILICON)
MD2369F, AF, BF
MQ2369
MULTIPLE SILICON ANNULAR TRANSISTORS

NPN SILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
switches and amplifiers, front end detectors, and temperature com·
pensation amplifiers.
• Low Collector-Emitter Saturation Voltage -'
VCE(sat) = 0.25 Vdc (Max) @ IC = 10 mAdc
•

Fast Switching Times
ton = 15 ns (Max)
toff = 20 ns (Max)

•

DC Current Gilin hFE = 40 (Min) @ IC = 10 mAdc

•

@

~;~1 :=:/A-

IC = 10 mAdc

.....,

1EAT1..

-II-D

High Current-Gain-Bandwidth Product fT = 800 MHz (Typ) @ IC = 10 mAdc

N

MAXIMUM RATINGS
Rating

Value

Symbol

Unit

VCEO

15

Vdc

Collector-Base Voltage

VCS

40

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

IC

500

mAde

Coliector·Emitter Voltage

Collector Current - Continuous

One Die
Total Power Dissipation @ T A := 2SoC
M02369,A,S
M02369F,AF ,SF
MQ2369
Derate above 2SoC
M02369.A,S
M02369F ,AF ,SF
MQ2369

Po

Total Power Dissipatlon@ TC

Po

=

25°C

All Die
Equal Power

550
350
400

600
400
600

3.14
2.0
2.28

3.42
2.28
3.42

1.4
0.7
0.7

2.0
1.4
2.8

Operating and Storage Junction

.....
'CO,,",..

I RITTER

80MrtTiO

8.0
4.0
4.0

11.4
8.0
16

-65 to +200

MD2369F ,AF ,SF

"~"L
~u..,/
rLJdKl r; ~
~,
rr~~Ei~~:

.....

, COLUCTOR
'COllECTOR

°c

THERMAL CHARACTERISTICS

CASE 610A..(l3

Symbol

One Die

All Die

'

A
B
C
D
F
G
H
K
N

Temperature Range

Characteristic

!I~I~!!

DIM

mW/oC

TJ,T stg

!=~~

CASE 664.07

Watts

Derate above 2SoC
M02369,A,S
M02369F,AF ,SF
MQ2369

PlMlCOI,.UCToa

mW

mW/oC

M02369.A.S
M02369F ,AF .SF
MQ2369

"''''

R

MILLIMETERS
MIN MAX
6.10
7.36
4.06
2.2
0.76
2.03
0.36
0.48
0.15
0.08
1.27 sse
0~9

3.81
2.54 SSC
1.27

Unit

Thermal Resistance. Junction to Case
M02369,A.S
M02369F ,AF ,SF
MQ2369

°C/W

R8JA(1)

M02369,A,S
M02369F ,AF ,SF
MQ2369

319
500
438

292
438
292

125
250
250

87.5
125
62.6

Junction to
Ambiant

Junction to

°C/W

R8JC

M02369,A,S
M02369F,AF ,SF
MQ2369
IQ1-02)
(Q1-Q3 or Q1-Q4)

STYUl

!'1M ~ ~~~EtTOII

34 EMITTER
NOTCOMNECTEO

Ca ..

Coupl ing Factor

%

83
75
57
55

40
0
0
0

(1) R8JA is measured with the device soldered into a typical printed circuit board.

200

~150

MQ2369

Equal Power

Thermal Resistance, Junction to Ambient

INCHES
MI.
MAX
0.240 0.290
0.115
.1
O. 0 o. 0
0.014 0.019
0.00
O.
0.050 SSC
0.035

;m~C:OR

• COLUtTOA

1:

:~~TER

:~ :~iJ~:"Emo
138ASE
14COLLECTOII

CASE607..()4

Mil IMETERS
DIM MIN
MAX
6.10 6.99
A
C 0.16 2.03
0
0.25 0.48
F
0.08 0.15
1.21BSC
G
H
0.13 0.89
J
O.
K
6.35
L 18.80
0.25

•
R
S

1.B2

B.38

0.1008S
0.050

MD2369,A,B, MD2369F,AF,BF, MQ2369 (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows'
(1)

Assuming equal thermal resistance for each die, equation (1)

simplifies to
131 ATJl = Rel IPOl + Ke2 P02 + Ke3 P03 + K84 P041

ATJl = R81 POl + R82 K82 P02 + R83 K03 P03

For the conditions where POl'" P02

+Re4 Ke4 P04
Where L!.TJl IS the change

ROl thru 4 IS
POl thru 4 IS
K02 thru 4 IS
die 2 through

In

= PD3

'" P04. POT

4PD

=

equation (3) can be further simplified and by substituting into
equation (21 results In

junction temperature of die 1

the thermal resistance of die 1 through 4
the power dissipated in die 1 through 4

141 RelEFFI ~ R8111 + Ke2 + Ke3 + Ke41 14

the thermal coupling between die 1 and

Values for the coupling factors when either the case or the
ambient IS used as a reference are given In the table on page 1

4.

An effective package thermal resistance can be defined as
follows'
121 RelEFFI = ATjl/POT

where

I

PDT

15

the total package power diSSipation

ELECTRICAL CHARACTERISTICS leaeh sidel ITA = 25°C unless otherWISe noted.1

I

Characteristic

Collector-Emitter Breakdown Voltage (1)

I

Min

Typ

Max

Unit

SVCEO

15

-

-

Vde

SVCBO

40

-

-

Vde

BVEBO

50

-

-

Vde

-

-

0.03
30

40
20

95

140

Symbol

IIC= lOmAde,IB= 01
Collector-Base Breakdown Voltage

IIc = lO!,Ade, IE = 01
Emitter-Base Breakdown Voltage

liE = 10!,Ade, IC = 01
Collector Cutoff Current

!,Ade

ICSO

IVCS= 20Vde, IE = 01
IVCS= 20Vde, IE= 0, TA= +150o CI
ON CHARACTERISTICS 111
DC Current Gain

-

hFE

IIc = 10 mAde, VCE = 1 0 Vdel
IIC = 10 mAde, VCE = 1.0 Vde, TA = -550 CI
Collector-EmItter Saturation Voltage

VCElsatl

-

--

0.25

Vde

VBElsatl

0.7

-

0.85

Vde

IT

500

800

-

MHz

IIc = 10 mAde, IB = 1.0 mAdel
Base-Emitter Saturation Voltage

IIc = 10 mAde, IB = 1 0 mAdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)

IIc = 10 mAde, VCE = 10 Vde, I = 100 MHzl
Output Capacitance

Cob

-

-

40

pF

C,b

-

-

40

pF

ts

13

ns

ton

15

ns

toff

20

ns

IVCB = 50 Vde, IE = 0, I = 100 kHzl
I nput Capacitance
IVBE = 1.0 Vde, IC = 0, I = 100 MHzl
SWITCHING CHARACTERISTICS
Storage Time (Figure 1)

IVCC = 10 Vde, IC = 181 = 182 = 10 mAdel
Turn-On Time (Figures 2,4)

IVCC = 3.0 Vde, V8Eloffi = 1.5 Vde, IC = 10 mAde,
IBl = 3.0 mAdel
Turn-Off Time (Figures 3,5)

IVCC = 30 Vde, IC
IB2 = 1 5 mAdel

~

10 mAde, IBl

= 3.0 mAde,

MATCHING CHARACTERISTICS
DC Current Gain Ratio (2)

M02369A, M02369AF
M023698, M023698F

Base Voltage Differential

IVBE l,V8E21

IIC ~ 3 0 mAde, VCE = 1.0 Vdel

M02369A, M02369AF
M02369B, M023698 F

Base Voltage Differential Gradient

-

10
1.0

-

-

5.0
10

mVdc

!lV/oC

l>IVSE l,VSE21
l>TA

(1) Pulse Test. Pulse WIdth ~ 300 J.lS, Duty Cycle';;;; 2 0%.
IS

0.9
0.8

-

IIC = 3.0 mAde, V CE = 1.0 Vde, T A = -55 to +125 0 CI
MD2369A, M02369AF
M02369B, M023698F

(2) The lowest hFE readIng

-

hFE1/hFE2

IIc = 3.0 mAde, VCE = 1.0 Vdel

taken as hFE1 for this test

201

-

-

10
20

MD2369,A,B, MD2369F,AF,BF, MQ2369 (continued)

FIGURE 1 - STORAGE TIME TEST CIRCUIT

+10 V

980
e---=

.......

10

70
50

70
5.0
td@VBEloffi= 1 5 V

30
10
10

-I

20

Scope

I

30

50 7.0

10

T'I

20

30
20

I

30

50

70 100

-

I-10

1.0

30

ts

5.07010

20

30

50

70

100

IC. COllECTOR CURRENT ImAI

IC. COllECTOR CURRENT ImAI

FIGURE 5 - TURN-OFF TEST CIRCUIT

FIGURE 4 - TURN-ON TEST CIRCUIT

VCC= 3.0V

VCC=3.0V

270

e---._-. 0.4

- - - VCE=1.0V
- - - VCE=5.oV

0.5

1.0

2.0

5.0

10

20

50

100

o

200

0.5

0.2

11111

1.0

"ffi
t:
~

...
IC= lOrnA

-

.

0.4

~

100 rnA

JJIIjI.1
250C to 1500C ........
'OVC tor VCEI ..!)-+-t+ttftt--++.l-t.ld-ttrl-ti"itrrl;l;o-£....j

r-

$

200 rnA f-

-550Cto 250C

"-

0.2

0
0.05

~ -1.0t-H-ti-t+tt--+-+-I-+t+t+t--+--+-+1+1+1+I +111+-1-;
-!

........ I-

i\.

ILWTI
"'~ t=tlj~~~~:l:ttt~~~~2:5°tCltolll5000tC~~
~

ill-2.0

:--r-

W

>

r--

200

8

"
g
8

30rnA

100

I'I'I"Illrr1111'---'
!.1.01-H+11-tt11tt-111-+++t+tttt--+-t+1++
II++!
1111+:----\1

0.8

0.6

50

l3 +2.0 r---;"APP'L'IE'SrTFOTTR-I-c/-la'",-hF'E"-/3."-0TTTTr--~"',

TJ=250C

c

~
w

I I
2.0
5.0
10
20
IC. COLLECTOR CURRENT (rnA)

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - COLLECTOR SATURATION REGION

g 1.0

V

VCE("t)@ leila = 10

o. 2 =-

IC. COLLECTOR CURRENT (rnA)

;'"

70 100

1.2

200

..'"'"'"

50

30

TJ= 25°C

I-

300

15

20

10

FIGURE 9 - "ON" VOLTAGES

500

'"...

5.0 7.0

IC. COLLECTOR CURRENT (rnA)

...

i
0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

la. aASE CURRENT (rnA)

~

Ova lor VaE

~~~~III#III~4-++~~~f~=;-55~~~bh

'--'-:'-:'-~IIIII,::----O,::-'--'-::!~-+---'--rlu.,.HJ...L.J.·lf.u,.,.111r-----,-,J.

_3.0,::--F
0.2

0.5

1.0

2.0

5.0

10

20

IC. COLLECTOR CURRENT ImA)

203

50

100

200

MD2904, MD2904A (SILICON)
MD2904F, MD2904AF
MD2905, MD2905A
MD2905F, MD2905AF
MQ2904 ,MQ2905A
MULTIPLE SI LICON ANNULAR TRANSISTORS

PNPSILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors, and temperature compensation
amplifiers.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAde

•

Fast Switching Timeston = 45 ns (Max) and toff = 130 ns (Max)

•

DC Current Gain Specified 0.1 mAde to 500 mAde

•

High Current-Gain-Bandwidth Product fT = 320 MHz (Typ) @ IC = 50 mAde

MD2904,A
MD2906,A

I

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

MD2904,F
MD2906,F
MQ2904

MD2904A,AF
MD2906A,AF
MQ2906A

Unit

VCEO

40

60

Vde

DIM

A

Collector-Base Voltage

Ves

60

Vde

Emitter-Base Voltage

VES

5.0

Vde

Collector Current

Continuous

600

IC
0 ... 010

Totlll Po_ Dillipetion • T A - 25"c
M02904,A, M02906,A
M02904F ,AF, M02906F .AF
MQ2904. M02905A

Po

-

AnDie

.......

575
350
400

625

3.29
2.0
2.28

3.57
2.28
3.42

Total Power Oissipotion@Tc=25u C
M02904,A, M02905,A
M02904F,AF. M02905F,AF
M02904. M02905A

1.8
1.0
0.9

2.5
2.0
3.6

Po

Derate above 25°C

TJ.T stg

~ ,,~'u

.L.__~-"----r
r

Thermal Resistance. Junction to

IIY-'

~~::"r

STYlE I
PIN 1 WE
2EMITTEft

: ::r

Ell

~ ~gtt~gg:

304
438

280
438
292

97
175
195

70
87.5
48.8

500

MIN

MAX

A

6.10

7.36

B
C

2.92
0.76

4.0
2.0

D
F

0.36
0.08

O.
0.1

G

CASE 610A·03

H
K
N
R

1.27 Bse

0.89

3.81
2.54 Bse
1.21

MQ2904
MQ2906A

°CIW

ReJC

Junction to
Ambient
Coupling actor
M02904,A. M02905,A
M02904F .AF. M02905F ,AF
M02904. M02905A
(01-02)
(01-03 or 01·04)

..-

DIM

°CIW

ReJA(lI

Ambient
M02904.A. M02905.A
M02904F,AF, M02906F,AF
M02904, M02906A

Thermal Resistance, Junction to Case
M02904,A. M02906.A
M02904F,AF, M02905F,AF
M02904. M02905A

0 ... _

MD2904F,AF
MD2906F,AF

~---'Ir--~-+------~

Temperature Range

THERMAL CHARACTERISTICS

K
M

CASE 654-07

DC

-65.to +200

G
H
J

Watts

14.3
11.4
20.5

10.3
5.71
5.13

&':'~,'."\:~,',:""

~ r:~~~~

PlN1COLUCTOfl

L

mWflC

M02904,A. M02906,A
M02904F,AF. M02905F,AF
M02904, M02905A

Operating and Storage Junction

...
mWflC

M02904.A, M02905,A
M02904.F,AF. M02905F,AF
M02904, M02906A

o

mAde

400
600

Derate above 25°C

o

C
STVLE!

snlEI
PIN I COLlECTOR

Junction to

2 eASE

Case
%

84
75
57
55

44
0
0
0

(11 R6JA IS measured With the device soldered Into 8 typical printed CirCUit board.

a EMmER
4 NOT CONNECTED

: ~~~~m
1 COllECTOR
BCttLLEtTOR

1~ :~:"ER

11 NOTCDNNECTED

12 EMITTER
13 eASE

'.COLLECTO"

CASE 607·04

204

DIM

A

C
0
F
G
H
J
K
L
N
R

S

MILLIMETERS
MI.
MAX
~IO
6.99
0.76 2.03
0.25
.46
0.08 0.15
1.27 BSe
0.13 0.99
0.31
6.5
18.00
0.26

7.62

8.31

O.

I
0.330

MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
MQ2905A

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
Assuming equal thermal resistance for each die. equation (1)
simpl ifias to

The junction temperature can be calculated as follo~:

II) "TJl : ReI POI + R82 K82 P02 + Re3 Ke3 P03

(3) "TJl : ReI IPOI + Ke2 P02 + Ke3 P03 + Ke4 P04)
For the condition. where POI

+Re4 Ke4 PD4
Where l\TJ1
R91 thru 4
POl thru 4
K62 thru 4

= P02: P03 :

PD4, PDT: 4PO

equation (3) can be further simplified and by substituting into
equation (2) results in

is the change in junction temperature of die 1
is the thermal resistance of die 1 through 4
is the power dissipated in die 1 through 4
is the thermal coupling between die 1 and

14) ReIEFF) : ReI II + Ke2 + K83 + Ke4) 14
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.

die 2 throult! 4.

An effective package thermal resistance can be defined as
follows:
(2) ReIEFF) : "TJ1/POT

where:

PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS ITA: 250 C unless otherwise noted.)
(Characteristics apply to corresponding flat package, and quad type number.)

Ct.ract.istic

Symbol

Min

Typ

Max

40

-

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breekclown Voltage 11)
(lC: 10 mAde,IB: 0)
M02904, M02905
M02904A, M02905A

BVCEO
60

-

-

Coliector·B... Bre.kdown Voltage
IIC = 10 I'Ade, IE : 0)

BVCBO

60

-

-

Vde

Emitter-Ba.. Breekdown Voltage
(IE =10jAAde, IC: 0)

BVEBO

5.0

-

-

Vde

-

-

0.020

-

-

30

20
40

50
70
70
150

-

Collector Cutoff Current
IVCB : 50 Vde, IE : 0)
IVCB : 50 Vde, IE : 0, T A : 15o"C)

IceO

Emitter Cutoff Current

lEBO

-

Vde

I'Ade

-

30
nAde

IVBE : 3.0 Vde, IC: 0)
ON CHARACTERISTICS 11)
DC Current Gain
(lC: 0.1 mAde, VCE : 10 Vde)

(lC: 1,0 mAde, VCE: 10 Vde)

(lC

~

10 mAde, VCE: 10 Vde)

(lC = 150 mAde, VCE
(lC

=10 Vde)

= 500 mAde, VCE :

10 Vde)

-

hFE
M02904
M02904A
M02905
MD2905A

35
75

M02904
M02904A
M02905
M02905A

25
40
50
100

35
40

MD2904
MD2904A
M02905
M02905A

75
100

MD2904.A.
MD2905.A

40
100

M02904
M02904A
M02905
M02905A

20
40
30
50

Collector-Emitter Saturation Voltage
(lC: 150 mAde, IB = 15 mAde)
IIC: 500 mAde, IB : 50 mAde)

VCElsat)

B...·Emitter Saturation Voltage
(lC: 150 mAde,lB : 15 mAde)
(lC = 500 mAde, IB : 50 mAde)

VBElsat)

II) Pulse Test: Pul .. Width ';;300 I'S, Duty Cycle ';;2.0%

205

75
75
100
175
90
90
110
200
90

200
60

-

-

-

-

-

-

-

120
300

-

BO
130
150

-

-

-

0.25
0.5

0,4
1.6

-

0.88
1.0

1.3
2,6

Vde

Vde

MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
MQ29 05 A

ELECTRICAL CHARACTERISTICS (continuedl
DYNAMIC CHARACTERISTICS
Current·(l"ain-Bandwidth ProduC1l( 11
(lc ·50 mAde. VCE - 20 Vde. I· 100 MHzl
Output Capacitance
(Ves s 10 Vdc. IE = O. 1 ~ 100 kHzl
Input Capacitance
(VSE s 2.0 Vdc.le = 0;1 -IOOkHzl

IT

200

Cob

-

5.S .

S.O

pF

16

30

pF

-

-

-

-

45
12
35
130
100
40

ns
ns
ns
ns
ns
ns

Cib

SWITCHING CHARACTERISTICS
Turn.()n Time
(Vee s 30 Vde. VSE(olll = 0.5 Vdc.
Delay Time
IC -150 mAde.
(Figun. 121
Ri.Time
IBI = 15 mAdel
Turn'()ll Time
(Vce = 30 Vde.
Ie = 150 mAde.
Storage Ti me
lSI = IS2 - 15 mAdel
(Figura 131
Fall Time

t..n
td
tr
toll
to.
tl

MHz

320

-

-

-

-

-

(11 Pulse T..t: Pulse WIdth" 300 /.IS. Duty. Cycle" 2.0%.

FIGURE 1 - DC CURRENT GAIN
2.0

--

Q

~I -

-- -- - - --

~

:::;

I-'

iII:

1.0

;;:

0.7

'"z~
C!\

....
i5

II:
II:

'"

~

0.3

--

TJ =+1750 C

-- -- - -'- -r-.
-- - - - -- - -

r-r--"

-... ......

+25'C

--- .- - --

0.5

:::>
u
u

-

""""

-.-

r-- _

-

'Iii'

~

'\

.......

......

1

--VeE-IOV
---- VeE - 1.0V

"
55'C

.... ...

"

........

....

\
0.2
0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

20

30

Ie. COLLECTOR CURRENT (mAl

206

50

70

100

200

300

500

MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
M02905A

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - TEMPERATURE COEFFICIENTS

2.0

II
Y.. lSAT1mw' ~

1.2

~

[ -55·C
I III
I
TO +25·C

~

I~I

0.8

~

i~F~J~I~T:

+1.0

1.1 ~

!

Y.. @Yc,

1111 I

!11I

yl_12J·!
J
11

1.6

~

+2.0

1.0Y

+25·C TO +175·C

~Jv~11111

J

II III.I.LU

I-==r-

+25"C TO +175·C
'j -I

0.4

-2.0

~rll11li

i,...o'

10

YCElSATI @ lell,

o

-3.0

0.5

1.0

2.0

5.0

10

20

50

100

0.5

500

200

1.0

2.0

5.0

20

10

50

200

100

500

Ie, COlLECTOR CURRENT \mAl

Ie, COllfCTOR CURRENT (mAl

NOISE FIGURE
VCE

= 10 V, TA· 250 C

FIGURE 4 - FREQUENCY EFFECTS

FIGURE 5 - SOURCE RESISTANCE EFFECTS

10

I I lUll

1\ 1111111
5.0

,

1\

8.0
iii

:s

I-N-+-I++H++-H-t-Hfflrt+-+l--f-t-I-ttlti

4.0

~

le- IO ,.A

3.0

2.0

t=tt=t1f!tttt:t3:~~RisB-~4.1~kk~la~3:~~
po..H-t-l++Htt-H-t-t

&.0

::>

'"u::
~

i

4.0

....z

I.b

Ie IlIA
Rs-O.Ha

o
0.1

.

II 1111
0.2

0.5

1.0

2.0
5.0
I, FREQUENCY IkHzl

I
20

0

100

50

600

II

::>
Q
Q

1\

1\
1''''
lmA
0.1

0.2

f

20

w

~I--'

~200

~

'"~

!:

V

!

/

~100

..:.

I?'

""II
I;'

VeE = 10 Vd.

Tf=l2~Cl

~

0.5

1.0

Ii

2.0

5.0

10

20

1111
50

-- -

-

10

-... ......
-... ......

C!b -

-

~J 1.1~!e
f • 100 kHz

t-..... 'e~
~

5.0

80

0.7

1.0

2.0 3.0
5.0 7.0 10
IC.COLLECTOR CURRENT (MA)

r-

c5f 7.0

/'

a:

80
0.5

100

FIGURE 7 - CAPACITANCE

30

I I

:z:

1::

I\~

~

RS,SOURCE RESISTANCE (k OHMS)

VCE = 20 Vd.
I ' 100 MHz
TJ • 25 0 C

'"i!400

.t:

IL
l00pA

FIGURE 6 - CURRENT·GAIN BANDWIDTH PRODUCT

:z:

:

10

I'

,

'a

V
V

l-l.0kHz

1\

2.0

1.0 HH-t----R"I"+'II+H-+-H-++
IIH
III-HIIIH
11-4-+4-++1#1
le-IOO,.A
I-H-+-I++H++-H-t-+ Rs -1.2 +-+-i-Htttt

IC·10;.A

20

30

3.0
0.2

50

207

0.3

0.5 0.7 1.0
2.0 3.0
5.0
VR, REVERSE VOLTAGE (VOLlSI

7.0 10

r--.
20

MD2904, MD2904A, MD2904F, MD2904AF. (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
M02905A

FIGURE 8 -

TURN ON TIME

FIGURE 9 -

",

~

~IOO

t..

so

,

,

,

" ",
~;

30
20

2000

!

700

d

500

1/

300

:".
~

- --

...

I'
5.0 7.0

20

10

30
so 70 100
Ie, COLLECTOR CURRENT ImAl

FIGURE 10 -

200

300

200

100

500

300

III

I

200

t',-ts-lIBtl

~

~

.

~

... r-..,

...

'1Iri B- 21

10
5.0 7.0

10

20

30
50 70 100
Ie, COLLECTOR CURRENT ImAl

200

300

70

SO

ICIIB = 20
1c!IB = 10"'

i"

--

-

~

10
5.0 7.0

SOD

FIGURE 12 - DELAY AND RISE
TIME TEST CIRCUIT
•
P.W. > 200 ns
tr .;;; 2.0 ns
Duty Cycle'" 2.0%.

"

100

20

III

10

20

30
50 70 100
Ie, COLLECTOR CURRENT ImAl

200

300

FIGURE 13 - STORAGE AND FALL
TIME TEST CIRCUIT
P.W. R:l1.0tJ.s

-30 V

-30 V

os

tr '" 2.0
Duty Cycle" 2.0%.

200

209
Scope

Scope

1.0 k

-3.0 V

208

500

VCC=lOV _
IBI = IB2
TJ=250 C-

30

,

300

~Ll~
"

:g

f=

200

FALL TIME

...

200

;:1:

.

30
50 70 100
Ie, COLLECTOR CURRENT ImAl

-.l -.l_Ll

300

:::i

.....

20

10

500

IBI = IB2
TJ=250 e

t111,
l.f'

llJl

5.0 7.0

FIGURE 11 -

I

1c!IB" 10 _

~

QA,ACTIVE REGION CHARGE

STORAGE TIME

III

20

Vce'lO V
:J' 250 C

1/ QT, TOTAL CONTROL CHARGE

~1000

...

500

30

~

3000

~

70

10

I

----vee =30 v, VBEloffl =2.0 V- - vee = 10 v, VBEloffl = 0 ~ le/lB = 10 .
TJ = 25 0 e

200

~

I

I III

300

>=

CHARGE DATA

SOOO

500

500

MD3250, A, F, AF (SILICON)
MD3251, A, F, AF
MQ3251
MULTIPLE SILICON ANNULAR

TRANSISTORS
PNPSILICON
MULTIPLE TRANSISTORS

.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.
•

•

Excellent Temperature Tracking - Dual Devices
LlIVBE 1 . VBE21 = O.B mVdc (Maxi @-55 to +250 C
= 1.0 mVdc (Maxi @+25 to +125 0 C

MD3250,A
MD3251,A

Low Collector· Emitter Saturation Voltage VCE(satl =O.lB Vdc (Typl @ IC =50 mAdc

•

DC Current Gain Specified - 10 /LAdc to 50 mAdc

•

High Current·Gain·Bandwidth Product fT = 600 MHz (Typl @ IC = 10 mAdc - M03251

I

MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Symbol

Value

Unit

VCEO

40

Vdc

Vce

50

Vdc

VEe

5.0

Vdc

IC

50

mAde

OnaDia

Total Power Dissipation @ T A == 2SoC

All Die
EqualPowar

Po

MD3250,A, MD3251 ,A
M03250F .AF. M03251 F .AF
M03251

!::1~~:

A
B
C
D
G
H

.....

IlIItlTTER
1 COUECTOR
IOIllITTEO

J

K
M
N

CASE 664-07

8.51
940
775 8.&1
3.81
470
0.41
0.53
5.08 Bse
0.71
0.86
0.74
114
12.70
450 BSe
2.54BSC

676
350
400

625
400
600

3.29
2.0
2.28

3.57
2.28
3.42

1.8
1.0
0.9

2.5
2.0
3.6

10.3
5.71
5.13

14.3
11.4
20.5

MD3260F,AF
MD326IF,AF

mW/oC

M03250,A, M03251,A
M03260F,AF, M03251F,AF
M03261

Po

Watts

Derate Above 25°C

DIM

mWtDC

M03250,A, M03251,A
M03250F,AF, M03251F,AF
M03251

Operating and Storage Junction
Temperature Range

snut
,.MICOLtlCTOR

mW

Derate Above 25°C

Total Power Dissipation@ TC::= 2SoC
M03250.A, M03251 ,A
M03250F,AF, M03251F,AF
M03251

MILLIME
S
Dill MIN MAX

TJ,T"9

-65 to +200

STYlE I
"Nt WE
2 EMtnER
: ::~lR
'COLLECTOR
• COLUCTOR

A
B
C

0
F
G
H
K
N

°c
CASE 610A·03

R

MILLIMETERS
MI. MAX

INCHES
MIN
MAX

6.10

0240

2.9

7.36
4.06

0.76
0.36

2.03
0.48

0030
0014

0.08

0.15
1.27 BSC

0.89
3.8-J
2.54 BSe
1.27

.115

0.290

0.1
0.080

0.019
Q003 0006
0.050 SSC
Q035
0.150
0100 BSe
0.050

THERMAL CHARACTERISTICS
All Di.

Characteristic
Symbol
Thermal Resistance, Junction to Ambient R8JA(I)
M03250,A, M03251,A
M03260F,AF, M03261F,AF
M03251

Thermal Resistance, Junction to Case
M03251,A, M03251 ,A
M03260F,AF, M03251F,AF
M03251

One Die

Equal Power

304
500
438

280
438
292

97
175
195

70
87.5
48.8

Junction to
Ambient

Junction to

°C/W

R8JC

$TVtEI

ptNICOLLECTOR
21f1SE

....,

3 EllllnER
4 NOTCOIIIIECTEO
, EM'TTER

ca.

Coupling Factors
MP3260,A, MD3261 ,A
MD3250F ,AF, MD3261 F ,AF
M03251 (01-02)
(01-03 or 0 1-04)

Unit
°C/W

%

84
75
57
55

44
0
0
0

, ...,

'COLLECTOR
ICQLLECTOR

ll1P1lnEIL
IINDTtoJIIIECTfD
12 EMITTEII
IJI4SE
14CIIlllCTOR

CASE 607-04

U) R6JA" measured with the device soldered Into a typical pnnted Circuit board.

209

INCHES
MILLIMETERS
DIM MIN MAX
MIN
MAX
A
S.10 6.9S 11.240 0.215
C o.n 2.03 0.030
0
0.25 0.41 0.010 0.019
F

0.08

G
N

0.13

0.15

0.0113 0.00II
O.05OSSC
O. 5

1.27BSC

0.89

0.006

.01

j

K
L

0.25
0.1
0.010

S.5
I.

N
R

0.25

S

I.

a.

O.

D. 0

M03250,A,AF,F, MQ3251,A,AF,F, MQ3251 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.

Assuming equal thermal resistance for each die. equation (1)
simplifies to

The junction temperature can be calculated as follows:

(31 ATJl : ROl (POl + K02 P02 + K03 P03 + K04 P041

(11 ATJl : R81 POl + R82 Ke2 P02 + R83 K03 P03

For the conditions where POl: P02 = P03: P04, PDT: 4PO

+R04 K04 P04
Where 6T Jl
AlI1 thru 4
POl thru 4
K62 thru 4

equation (3) can be further simplified and by substituting into

is the change in junction temperature of die 1
is the thermal resistance of die 1 through 4
is the power dissipated in die 1 through 4
is the thermal coupling between die 1 and

equation (2) results

10

(41 RO!EFFI : R01(1 + K02 + Ko3 + K041 /4
Values for the coupling factors when either the. case or the
ambient is used as a reference are given in the ta~e on page 1.

die 2 through 4,

An effective package thermal resistance can be defined as
follows:
(21 RO(EFFI : ATJ1/ POT

where:

PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS (TA

= 25°C unless otherwise noted'!

Characteristic

OFF CHARACTERISTICS
Colleetor·Emitter· Breakdown Voltage (1 I
(lC = 10 mAde, IB = 01

BVCEO

Collector~Base

BVCBO

Breakdown Voltage

(lC: lO/lAde, IE: 01
Emitter~Base

Vde
40

-

-

50

-

-

5.0

-

-

-

-

10
10

nAdc

-

-

-

10

nAde

Vde
Vde

BVEBO

Breakdown Voltage

(IE: 10 /lAde,lc: O)
Collector Cutoff Current
(VCB = 40 Vde, IE = 01
(VCB = 40 Vde, IE: 0, T A = 1500 CI

ICBO

Emitter Cutoff Current
(VBE = 3,0 Vde, IC = 01

lEBO

/lAde

ON CHARACTERISTICS (1)
DC Current Gain
(lC = 10 /lAde, VCE : 5.0 Vdel

hFE
M03250,A,F,AF
M03251,A,F,AF

25
50

75
100

-

M03250,A,F ,AF
M03251,A,F,AF
M03251

50
80
80

82
170
170

150
300

(lC: 100 /lAde, VCE = 5.0 Vde, T A: -55°C I
M03250,A,F ,AF
M03251 ,A,F,AF

25
50

35
75

-

M03250,A,F ,AF
M03251 ,A,F,AF
M03251

50
100
100

87
180
180

150
300

M03250,A,F ,AF
M03251,A,F,AF
M03251

50
100
100

92
190
190

M03250,A,F ,AF
M03251,A,F,AF
M03251

15
30
30

50
90
90

(lC: 100 /lAde, VCE = 5.0 Vde)

(lC

= 1.0 mAde, VCE :

(lC

= 10 mAde, VCE :

(lC

5.0 Vdel

5,0 Vdel

= 50 mAde, VCE = 5.0 Vdel

Collector-Emitter Saturation Voltage

-

300

-

Vde

VCE(sat)

(lC= 10mAde,IB = 1.0 mAdei
(Ie: 50 mAde, IB: 5,0 mAde)
Base~Emitter

-

-

-

Saturation Voltage

0.11
0.18

0.25
0.5

0.78
0.8B

0.9
1.2

Vde

VBE(sati

= 10 mAde, IB: 1.0 mAdei
(lC = 50 mAde, 'B: 5.0 mAde)

0.6

(Ie

-

(II Pulse Test: Pulse Width ";;300 I'S, Duty Cycle ";;2.0%

210

MD3250,A,AF,F, M03251,A,AF,F, M03251 (continued)

ELECTRICAL CHARACTERISTICS (continued)
Characteristic

Symbol

Min

Typ

200
250
300

600
600
600

-

-

2.5

6.0

-

6.0

B.O

0.9
0.9

-

1.0
1.0

-

3.0
5.0
5.0

Max

Unit

DYNAMIC CHARACTERISTICS
Current~Gain-Bandwidth

Product
(lC = 10 mAde, VCE = 20 Vdc, 1= 100 MHz

MHz

IT
MD3250,A,F ,AF
MD3251,A,F,AF
MQ3251

Output Capacitance
(VCB = 5,0 Vde, IE = 0, 1= 100 kHz)

Cob

Input Capacitance

Cib

pF
pF

IVBE = 1.0 Vde, IC = 0, I = 100 kHz)

MATCHING CHARACTERISTICS (MD3250A AF MD3251A AF only)
DC Current Gain Ratio 121
IIC = 100 /lAde, VCE = 5.0 Vde)
(lC = 1.0 mAde, VCE = 5.0 Vde)

hFE1/hFE2

Base-Emitter Voltage Differential
(lc = 100 /lAde, VCE = 5.0 Vdel
(lC = 10 /lAde, VCE = 5.0 Vde)
Ilc = 10 mAde, VCE = 5.0 Vde)

IV eEl Ned

Base-Emitter Voltage Differential Change
Due to Temperature

C.IVBE1 N eE21

mVde

-

-

-

mVdc

-

IIC = 100 "Adc, VCE = 5.0 Vde, TA = -55 to +25 0 C)
(lc = 100 /lAde, VCE = 5.0 Vde, TA = +25 to +125 0 C)

-

0.8
1.0

-

(2) The lowest hFE reading is taken as hFE1 for this ratio

FIGURE 1 - CAPACITANCE

FIGURE 2 - CURRENT·GAIN BANDWIDTH PRODUCT

1000

0

TJ - 25°C

G

::>

7. 0

g

-I-

~ 5. 0

f

...........

C3 3. 0

e
§
e
z

............

0.2

0.5

1.0

2.0

5.0

10

~
a

I--r-

20

100
0.2

50

/'

,/

;;;:
~ 200

Cob

1.0

V
./

Z

2. 0

1.0
0.5

400

;;;

.....

~

u'

l-

Gib

...........

:t

.....

60

:t:

.....

"'z
;:
u

-

80o-VCE - 20 Vdc
f=100MHz
0 - TJ=250C

VI' "
0.3

0.5

1.0

2.0

3.0

5.0

7.0

10

20

NOISE FIGURE VARIATIONS
IVCE = 6.0 V, T A = 25°C)
FIGURE 3 - EFFECTS OF FREQUENCY

FIGURE 4 - EFFECTS OF SOURCE RESISTANCE

SO

10

II

f = 1.0 kHz

'\.

8.0

1\

~

~

4.0

"- ......

::>

"'u:

"'
~
"'u:
"'

Rs=4.3kn
IC = 10"A

"'
~

~

6.0
10"A

~ 4.0

.......

~

2.0

Rs-1.Skn
Ic = 100"",

II

o
0.1

0.2

0.4

1.0

2.0

4.0

10

20

40

o

0.1

100

f, FREQUENCY 1kHz!

1\

........

........ ~
0.2

0.4

v ./L
V

,/

1.0

2.0

1/
'I

I'~

10O"A

I-"

4.0

10

Rs. SOURCE RESISTANCE IkOHMS)

211

'I

I

_\

.

.......

I/,

J.

IC= 1.0 mA /

I"\"

~

~- 2.0

I

II

20

40

100

MD3250,A,AF,F, MQ3251 ,A,AF,F, MQ3251 (continued)

FIGURE 5 - DC CURRENT GAIN
2.0

TJ • 125'C

........
@
N

~

'"
o

lc
1.0

""-

;;:

to

>-

~

05

=>

u

u

o

~

NORMALIZED AT IC' 10 rnA. VCE' 1.0 V
S3 - MD3250.A.F.AF

0.3

02
01

0,3

02

TYPICrFE

II

0,5

0,)

1,0

"'""

........ ~

-~5'C

~ ·0.1

z'

I'...

--

~

1

16) - MT51.AtF•
3,0

20

iQT I

50

),0

20

10

"'".....'\r-,.

~

\

30

50

IC. COLLECTOR CURRENT (rnA)
FIGURE 7 - TEMPERATURE COEFFICIENTS

FIGURE 6 - "ON" VOLTAGE

1.0

-

IITJ'25'C

It JI

0,8

VBE(sat

~

@ Icils

- 10

f..-r'""

o

;:: 0,6
w

to

~

o

>

0, 4

:>
0, 2

-

VCE("t) @ IcllB • 10

o

II
0,5 0.1 10

2,0

3,0

5,0 ),0

10

20

30

50

IC. COLLECTOR CURRENT (rnA)

MD3250

IC. COLLECTOR CURRENT (rnA)

FIGURE 8 - COLLECTOR SATURATION REGION

1,0 rTrTTTTTTrT""----,----,-.--rnrrrr---t-,--,---n-rrnr---,

\

II III

to

~ 0,6
<5

o 0.6

10mA_

~25mA

'"

~

0

02

\

~

-

0

u

ul

0.02

0.05

0.1

~
~ O. 4

\

--

0.5
1.0. 2,0
0.2
lB. BASE'CURRENT (mAl

't;" o.
~

2

8
w
u

0

o

5.0

10

>

20

212

\

\
,~

"-

~

om

(

~50mA

w

~ 0.4

>

Ic·2.0mA

>

'"w

u

.

~

25 rnA -------\
\ 50 rnA) +t++tt-----t

II
((

TJ' 25'C

w

>

'"
~

(

~ 0.8

to

10 mA

\

~

g
o,sl-+l+H-Iti++--+-+-t+++++t--1rl--+ ~J! J5W r-~
I
IC',
20 m.
A-

MD3251. MQ3251

1.0

0,02

0,05

0.1
0.2
0.5
1.0
lB. BASE CURRENT (mA)

\

\

-

........

2.0

5.0

10

MD3409 (SILICON)
MD3410

NPN SILICON ANNULAR

MULTIPLE TRANSISTORS

NPN SILICON
MULTIPLE TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.

,

• Excellent Temperature Tracking - MD3410 61 VBE1,VBE21 = 0.8 mVdc (Max) @TA = -55 to +25 0 C
= 1.0 mVdc (Max) @ TA = +25 to +125 0 C
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.15 Vdc (Max) @ IC = 10 mAdc

•

Low DC Current Gain hFE = 20-100@ IC = 10 /lAdc - MD3410

•

High Current-Gain-Bandwidth Product fT = 250 MHz (Typ) @ IC = 20 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

SOD

mAde

TJ,Tstg

-65 to +200

°c

Collector-Emitter Voltage

Collector-Current
Operating and Storage Junction

Temperature Range

= 2SoC

Total Power DIssipatIon @TA

PD

Derate above 2SoC
Total Power Dissipation @ TC

= 2SoC

PD

Derate above 25°C

One

Both Die

Die

Power

575
3.29

3.57

mW
mW/oC

1.8
10.3

2.5
14.3

Watts
mWfOC

Equal
625

STYL"-,
PIN' COLLECTOR
2 BAS"-

THERMAL CHARACTERISTICS

3 "-MITUR

One
Characteristic
Thermal ReSIstance, Junction to Ambient

Thermal Resistance. JunctIon to Case

4 OMITIED

Both Die

Equal

Symbol

Die

ROJA(I)

304

Power
280

°C/W

97

70

°CIW

ROJC

(1) R9JA

IS

84

44

measured With the device soldered into a typical printed circuit board.

213

"-MITTER
BASE

COLl"-CTOR
OM1TTEO

Unit
DIM MIN
A 851
B 115

MAX
940
851

C

381
410
041 053
503BSC
0.11 0.86
J
014 114
II. 1210
M 450 BSC
N
S4BSC

o

Junction Junction
to Ambient to Case

Coupling Factors

5
6
1
8

G
H

%

CASE 654-07

MD3409, MD3410 (continued)

THERMAL CDUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as fOllows:·

Assuming equal thermal resistance for each die, equation (1)
simplifies to:

(3) -

I---- VBf(sat)~O

100

200

1

"Applies for leIla'" hFE/4

1000e to 1750e

S+o 8
~ . t-- ·'eve'tor Ve'E(sa~)

~

o

25 DC to 1000

i3

-l-

~

.£>(1

-55 DC to 250C

0

8

«

w

VBE(on)@ VCE = 1.0 V

>

~ 0.4
0.2 I----

~.OA

">

1.2

~ 0.6 I----

400 mA

TJ = 25°C

FIGURE 4 - TEMPERATURE COEFFICIENTS
+1. 6

TJ=250C

~O.8

\

\

14

>

100mA

JJl
Jl

0.6

>
5.0

IIII
Illl

Ic=20mA

~

~

2.0

II I
II I

>

o

r-

-55°

1.0

~
o

. . r:::~

V

~

z 100

FIGURE 2 - COLLECTOR SATURATION REGION

en

VC~(sat) ~ ICiI'B

~-o. 8

~

I
I

~-1. 6.

j..--

'10 '

....

30

III

?

II
20

-55DC to 250 C

0VB for VBE

W

-24

50 70 100
200 300
IC. COLLECTOR CURRENT (mA)

10

500 700 1000

20

30

2.0

~
....

O. 6

'"~

O. 2

~ 0.4

1""-...
r------ TJ =200 0 e

-

o

~

O. 1

de

-Bonding Wire Limit

Second Breakdown limit

...........
t-"

'~

~ 0.06 ~(Note:

~~~r~~~a~~~i~~~"l ~e:r~:~ be

EO.04
0.02
2.0

4.0
6.0
8.0 10
20
VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)

217

I 25 0e to TOOoe

50 10 100
200 300
Ie. eOLLECTOR eUR RENT (mA)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA

0:: 1.0

--

...~

=-"'i oooe to 175 0e

40

I I

11

500 700 1000

MD3467 ,F, MQ3467 (continued)

FIGURE 6 - TURN'()N TIME
200

100

r-..

FIGURE 7 - RISE AND FALL TIME
200

lc/lB'10

I~

'\,

.
w

'"

1=

30

"' "- .......

20

20

30

"

w

"

1,@VCC·l0V

~

........

N-+l

""'-~ .....

1= 30

r--....

VCC' 30 V

........

10
10

500 100 1.0 k

20

30

200

- r--

i-?' <::

TJ·25'C

- --

--

-

') Ic/IB' 20

IC/IB'10?

0

---

TJ'150'C
100

20

30

70

;

50

~ 1'.

I'-. "

...,.

Ic/1B'10 :.-

'"
50 10 100
200 300
Ic. COLLECTOR CURRENT (mAl

20

20

500 100 1.0 k

30

59

Rise Time ~5 ns

Pulse Width'" 0.5 IlS
Dutv Cycle"" 2%

O.lIlF

~

1

-30U

50

~

30

z

lN916o'

n

oquiv.

-=

::s.

--

f'. t-

r-

50 10 100
200 300
IC. COLLECTOR CURRENT (rnA)

"Cii;-.

50

n

.5

300 n

-

500 100 1.0 k

FIGURE 11 - CAPACITANCE

IB1: IB2: 50mA

300n

Ic/lB-io

10

-30 V

+27.7 V

f-TJ • 150'C
"I

1-<'

........

"'-

Vec' .10 V
IB1' IB2

TJ' 25'C

-

'.

..... "

FIGURE 10 - SWITCHING TIME TEST CIRCUIT
Ie: 500mA

500 100 1.0 k

-

.......... "-

,,;. 30

t's trT/Btf

20
10

-

50 10 100
200 300
COLLECTOR CURRENT (rnA)

I'-l. . .,

:E

lBl- IB2

0

~

.

.~

......

0

1,/

-.u.

FIGURE 9 - FALL TIME

FIGURE 8 - STORAGE TIME

0

~ r-..

IC/rli

I'-..

50 10 100.
200 300
IC. COLLECTOR CURRENT (mAl

400

II

......... r---..

20

2.0 v..........

Id@IVBE/,ffl;,
10
10

0

.

1

~

- 25'C

I-TJ-150'C

0

1,@VCC-30V

~

"-

~I-- I-TJ

--

~~,

100

10
-;;

.5 50

~,

TJ·25'C

TJ 25'e

I--.....

20

~

~

;'\
u'

In

,
'r--

10
1.0
0.04 0.06 0.1

Out

218

I--0.2

0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

MD3725 (SILICON)
MD3725F
MQ3725
NPN SILICON
MULTIPLE
TRANSISTORS

MULTIPLE SILICON ANNULAR TRANSISTORS
· .. designed for use as differential amplifiers, dual high·current
amplifiers, switching and temPerature compensation applications.
•

Collector-Emitter Breakdown Voltage BVeEO = 40 Vdc (Min) @ Ie = 10 mAde

•

Guaranteed Fast Switching Times @ Ie = 500 mAde
ton = 20 ns (Typ)
toff = 50 ns (Typ)

•

Guaranteed DC Current Gain hFE = 30 (Min) @ IC = 500 mAde

MD3725

MAXIMUM RATINGS
Ratin.
Voltage
Collector-Base Voltage
Coliector~Emitter

Emitter-Base Voltage

Collector Current - Continuous
Operating and Storage Junction
Temperature Range

ISvmbol

Value

Unit

VCEO

40

V"R

65

Vdc
Vdc

V~R

6.0

Vdc

Ie

1.0

Adc

T J,Tstg

-6510 +200

°c

DIM
A

B
C

o

STYLE 1

PIN ~ ~~~ECTOR
3EMInER
40MITTEO

5 EMITTER

Total Power Dissipation @ T A::: 2SoC
MD3725
MD3725F
M03725
Derate above 25°C
MD3725
MD3725F
M03725

PD

Total Power Dissipation @ T A == 2SoC

PD

K

M

N

MD3725F

mW
600
350
400

650
400
600

3.42
2.0
2.28

3.7
2.28
3.42

2.1
1.25
1.0

3.0
2.5
4.0

Watts
DIM
STYLE 1
PIN1BASE
!EMtTTER

:=~ER

mW/oC
12
7.15
5.71

MD3725
MD3725F
M03725

~ ~mm~:

17.2
14.3
22.8

A
B
C
0
F
G
H
K

N
CASE 610A·03

THERMAL CHARACTERISTICS
Svmbol

On. Die

433
83.3
140
175

58.3
70
43.8

Junction to

Junction to
Ca..

500

1.03
0.48

076
0.36
0.08

0.15

1.21

sse

INCHES
MIN
MAX
0.240 0.291)
0115 0160
0.030 0080
0014 0019
0003 0.006
0.050 sse

0.035

OB9
3.81
2.54 Bst
1.21

0.150
0100

sse
0.050

M03725

Unit

SHU1

PIN I COLLECTOR
lBASE

3 EYITTEA

%

(01·02)
101-03,01-04)

7.36
4.06

6.10
2.92

°C/W

ReJC

Ambient
Coupling Factor
MD3725
MD3725F
M03725

"

MILLIMETERS
MIN MAX

°C/W
270
438
292

292

MD3725
MD3725F
M03725

AU Die
Equal Power

ReJA(I)

MD3725
MD3725F
M03725

Thermal Resistance, Junction to Case

0

BSC

1210
450 SSC
254 sse

AU Die.
Equal Power

Derate above 2SoC

Thermal Resistance, Junction to Ambient

9.40
8.51
410
0.53

mW/oC

MD3725
MD3725F
M03725

Characteristic

8.51
1.75
381
041
508

! ~~~~mOR t~~e~g~:~:~~'t~:j:!

CASE 654-07

One Die

G

I

MllLiMET R
MIN
MAX

85
75
57
55

40
0
0
0

: ~~:T~~:N£mo
6 BASE
1 COLLECTOR
: :~~ECTOA

:~ ~~~Ti~:NECTEO

H~~~l:::OA

(1) R6JA is measured with the device soldered into a typical printed circuit board.
CASE 607·04

219

INCHES
MAX
0.175
0030 0.080

DIM

MIN
0.240

•
C
D
F
G

0.010

H
J
K
L

0.005

S

0035
0.015

0.250
0.740
0.010

•

"

0.019

0.003 0.006
0.050Bse

1.62

8.38

0.300

.01
0.330

MD3725,F, MQ3725 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, equation (1)
In multiple chip devices, coupling of heet bet_n die occurs.
The junction temperature con be calculated as follows:
simplifies to
(1I4TJI ~ RBI POI + RB2 Ke2 P02 + RB3 Ke3 P03
+ RB4 Ke4 PD4

Where ATJl is the change in junction temperature of die 1
RBI thru 4 Is the thermal re.istance of die I through 4
POI thru 41. the power dissipation in die I through 4
Ke.2 thru 4 i. the thermal coupling between die I and
die 2 through 4.

(3) 4T Jl = RBI (POI

+ Ke2 P02 + K83 P03 + K84 P04)

For the conditions where POI = P02 = P03 = P04, PDT = 4PO
equation (3) can be further simplified and by substituting into
equation (2) results in
(4) R8(EFF) = R81 (1 + Ke2

+ Ke3 + K84) /4

Values for the coupling factors when either the case or the
An effective package thermal resistance can be defined as
ambient is used as a reference are given in the table on page 1. If
follows:
significant power is to be dissipated in two die. die at the opposite
(2) R8(EFF) = 4TJ1/POT
endlot the package should be used so that lovvest possible junction
temperatures will result.
Where: PDT is the total package povver dissipation.

ELECTRICAL CHARACTERISTICS (TAITC = 25°C unless otherwise noted).

I

I

Characteristic

Typ

Max

Unit

-

Vde

Symbol

Min

BVCEO

40

BVCES

65

BVCSO

65

-

-

Vde

BVESO

6.0

-

-

Vde

ICBO

-

0.12

1.7

-

-

120

I'Ade
I'Ade

50

-

150

30

-

-

-

-

0.19
0.30

0.26
0.45

-

-

0.80

-

0.86
1.2

tr

200

-

-

MHz

Cob

-

-

10

pF

eib

-

-

65

pF

20

45

ns

50

75

ns

OFF CHARACTERISTICS
Collector·Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

Collector-Emitter Breakdown Voltage
(lc = 10 I'Adc, VBE = 0)
Collector-Base Breakdown Voltage
(lC = 100l'Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 I'Ade, IC = 0)
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
(VCB = 40 Vde, IE = 0, TA = 100°C)
ON CHARACTERISTICS (1)

-

Vde

M03725F

DC Current Gain
(IC = 100 mAde, VCE = 1.0 Vde)
(Ie = 500 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage
(Ie = 100 mAde, IB = 10 mAde)
(lC = 500 mAde, IB = 50 mAde)
Base-Emitter Saturation Voltage
(Ie = 100 mAde, IS = 10 mAde)
(le.= 500 mAde, IS = 50 mAde)
DYNAMIC CHARACTERISTICS

-

hFE

Vde

VeE(sat)

VBE(sot)

Current-Gain - Bandwidth Product
(lC = 50 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance,
(VeB = 10 Vde, IE = 0, f = 100 kHz)
Input Capacitance
(VBE = 0.5 Vde, Ie = 0, f = 100 kHz)

Vde

SWITCHING CHARACTERISTICS
Turn-On Time (Figures 7 and 8)
(Vee = 30 Vdc, Ie = 500 mAde, IBI = 50 mAde, VSEloff) = 3.8 Vde)

ton

Turn-Off Time
(Vee = 30 Vde, Ie = 500 mAde, IB1 = IS2 = 50 mAde)

toff

(1) Pulse Test: Pulse Width ";300l's, Duty Cycle ";2.0%.

220

-

MD3725,F, MQ3725 (continued)

TYPICAL DC CHARACTERISTICS

FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
400

14

200

"

"'"

t--- t-

l-

I
u
0

~

100
80

t--- f--

60

-

25°C

~

i '~

-55°C

-TJ·250C

12

VCE ·1.0 V

iJ • 1250C

~

10

-

0.0

w

'"~

0.6 =VOElsa'i ""elia' 10

0

>
,; 0.4

,.....

40

f.-'

--I-""

0.2

o

20
10

50

20

100

200

300

-VCEI",) ""Cllo -10

10

500 . 700 1000

20

~
~

w

«
'"
!:::;
0
>

'"w
l-

"'
~8

~

:>

TJ'250C

300

~

\

0.6

\

\
\

0.4

"'

0.2

1~'100mA

I
'APPLIES FOR IC/IO< hFE/2

~
0
0.5

1.0

2.0

5.0

10

20

w
~

8rOmA

ffi

500 rnA

....

-0.5

I-

-1.0

I--f-

~ -1.5 r--6VO FOR VOE

300 rnA

'"

,....

0 5 f--'6VC FOR VCElsa'i
.

1000 rnA

50

+1.0

1+

I I

....

'-

500 700 1000

+2.0

E. +1.5
~

0

>

200

FIGURE 4 - TEMPERATURE COEFFICIENTS

0.8

I-

~

100

+2.5

I

0

70

Ie. COLLECTOR CURRENT ImAI

FIGURE 3 - COLLECTOR SATURATION REGION
1.0

50

30

IC. COLLECTOR CURRENT (mAl

.-

I-

~ -2.0

-2.5
100

200

500

10

" IS. 8ASE CURRENT (mAl

20

30

50

100

200

300

IC. COLLECTOR CURRENT ImAI

221

500

1000

MD3725,F, MQ3725 (continued)

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 6 - CAPACITANCE

FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT
~ 500

VCE' 10 Vdc
f· 100 MHz
TJ= 25 0 C

!.

g
~ 300

"
b

V

200

~

~z

100
70

..-

..............

.s

30

z

20

w
u

"'-

;'!:
U

V

~

~ 100

i

I'-... Cib

I"--

~

........

10

U

7.0

l-

B
.l:'

Tr 25 0 C

50

--

Cob

5.0

70
50
4.0

6.0

10

20

40

60

100

200

3.0
0.1

400

05

0.2

10

IC. COLLECTOR CURRENT (mAl

100

~

100
50

;:::
'"
w

!w

,.

VCC' 30 Vdc

r-..

20
10

Id@VBE(off}-OV

.....

50

1,@IC/IB-20
/IC/IB 10

oJ

r-....

30

50

100

200

300

/

500

10

1000

~

20

30

200

300

Ii

Vln = +9.7

l-

15
11'F

f--o

1k

1000

....

1000

+30 V

Pulse Generator
tr.tf~1 ns

500

FIGURE 10 - COLLECTOR CUTOFF CURRENT

FIGURE 9 - SWITCHING TIME TEST CIRCUIT

P.W. ~1.01l'
Zin = 50 n
D.C.<2%

100

50

IC. COLLECTOR CURRENT (mA)

IC. COLLECTOR CURRENT (mA)

-3.8 V

.......

V !"'..

Vi/
V
V
10

20
20

-

.....

30

......

~~~(~f~~ ~:~2 Vdc

10

100

TJ' 25 0 C

ICIIB' 20

I

20

50

50

VC~ .10 ~d~

If~ICIIB'1O

;:::

.....

~ ."...

3.0

20

70

tr@VCC=10Vdc

30

10

200

ICIIB'10
TJ' 25 0 C

~

50

FIGURE 8 - TURN·OFF TIME

FIGURE 7 - TURN·ON TIME
200

20

VR. REVERSE VOLTAGE IVOLTS)

~

o

To Sampling
43 Oscilloscope

.A. 17"
100
10

§
~

~
8

100

I--

~

VCES·60

r== ==

3~,.

10.,-

~~

1.0

1.0""
0.1

Zfn ;;'100 kn
t r <1.0nl

0.0 1

~

~

00

~

~

rn

~

TJ. JUNCTION TEMPERATURE (DC)

222

~

~

~

MD3762 (SILICON)
MD3762F
MQ3762
MULTIPLE SILICON ANNULAR TRANSISTORS

PNPSILICON
DUAL TRANSISTORS

· .. desilJled for use as differential amplifiers, dual general-purpose
amplifiers, and temperature compensation amplifiers• Collector-Emitter Breakdown Voltage - .
BVCEO = 40 Vdc (Min) @ IC = 10 mAdc
• Low Collector-Emitter Saturation Voltage VCE(sat) 0.62 Vdc (TVp) @ IC 1.0 Adc

=

MD3762

=

I

• DC Current Gain Specified hFE = 20 (Min) @ IC = 1.0 Adc
• Fast Switching Times@ IC = 1.0 Adc
ton = 40 ns (Max)
toft = 110 ns (Max)

MILUM
DIM MIN MAX
A
B.51 9.40

~ ~.a~7i.75aI8'i5Iff
g
:1'

MAXIMUM RATINGS

+

I

H'Y. \,-

Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitt.-Base Voltage

Collector Current - Continuous

Symbol

Value

VCEO
VeB
VEB
IC

40
40
5.0
1.5
OnaDio

Total Power Dissipation@TA- 25°C
Mo3762
Mo3762F
M03762
Derate above 26°C
Mo3762
MD3762F
M03762
Total Power Dissipation@Tc"" 25°C
Mo3762
Mo3762F
M03762

Unit
Vdc
Vdc
Vdc
Adc

AUDio
EqualP_
mW

Po
600
350

400

650
400
600
3.7
2.28
3.42

2.1
1.25
1.0

3.0
2.5
4.0

3E11ITTER
4 OMITTED

12
7.15
5.71

:~m

J
K

CASE 664-07

M
•

0.~.~8 B~~

1.1,

OJ'
12.0
'SO SSC
2.54BSC

.t'.__,-r--,.----.
r
L

~

1'1'11:,-.I ~

~

~,=:Jt.
DIM

ST~~i=::

.....

17.2
14.3
22.8

-65 to +200

TJ.Tstg

~::! ~:~~

=

r.----rr=-.~-H-._ - 1

mW/oC

Mo3762
Mo3762F
M03762

~

1 COUlCTDA
t OMITTED

:

Watts

Po

Derate above 2SoC

Operating and Storage Junction
Temperature Range

1'I11~ ~eCTOA

mW/oC
3.42
2.0
2.28

N

~);;I

STYLE'

JCOLLECTOR
• COLLECTOR

°c

INCHES

MI.

MAX

MI.

MAX

6.10

7.36

B
C

2.92

0.240
.115
0.030
0.014

0.290
0.1 0

0
F
G
H
K

CASE 610A·03

MILLIMETERS

A

N
R

0.76
0.36

..

2.03
0.8

0.15
1.27 BSe

0.08

lBl

0.B9

2.54 BS
1.27

n

Thermal Resistance. Junction to

ea.

Symbol
R8JA(11

OnaDio

AUoi.
Equal Power

0.0

nlso

292

500

Unit

270
438
292
°C/W

R8JC

Mo3762
Mo3762F
'M03762

....,

'EilITTER

: ::JJ~:IIEmD

eoll

Coupling Factors
MD3762
MD3762F
M03762 (01-021
(01-03,01-041
(,) RtJA is measured with the device IOldarad into

85
75
57
55
8

40
0
0
0

typical printed circuit board.

223

, ...,

STYUI
1'111 1 COLLECTOR

83.3
58.3
140
70
175
43.8
Junction to Junction to
Amblent

"

1
•
•
II

COLLECTOR
COUECTOR
"H
EMITTER
11 IIOTCOMECTED
12 EMITTER

''''''

14 COLLECTOR

CASE 607-04

DIM
A
C
D
F
G
H
J
K
I.
L II.BO

•

US

S

7.12

R

1.38

0.035

0100 BS
0.050

uCIW

438

0.019

0.050BSC

THERMAL CHARACTERISTICS
Charicterilli.
Thermal Resistance. Junction to Ambient
MD3762
Mo3762F
M03762

0.080

0.300

MD3762,F, MQ3762 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip device., coupling of heat between die occur••
Assuming equal thermal resistance for each die, equation (1)
The junctiOn temp8ratur. can be calculated es follows:
slmpllfie.to
(I)ATJ1- RBI POI +RB21<82P02+RB31<83P03

(3) AT J1

= RB1

(POI + 1<82 P02 + 1<83 P03 + KB4 P04)

+ RB4 1<84 P04
For the conditions whore POI = P02 = P03 - P04, PDT = 4PO
equation (3) can be further simplified and by substituting into

Whore ATJl i. the change in junction temperature of die 1
RB 1 thru 4 is the thermal resistence of 

10
20
50
100
200
IC. COLLECTOR CURRENT (rnA)

+1. 6
G

~

~ 1.0
o

1--1-

VBf(sat)@ICIIB= 10

J...-I-

0.2

o

10

100

200

I

'Applies for ICIIB'; hFE/4

1000C to 1750C
250C to 1000~
-550C to 25 0C

8
w

~-O.8

1I
I I

I

f-

50

ffi

VBE(on) @VCE = 1.0 V

>

0,4

2.0
5.0
10
20
lB. BASE CURRENT (rnA)

'eVc for VCE(sat)

iii
u

l-

'"

~

1.0

~
.5+0.8

1.2

~ 0.6 I--

0.5

FIGURE 4 - TEMPERATURE COEFFICIENTS

TJ= 250C

I--

"'"

"

0
0.2

500 1000

1.4

>

:\1.0 A

~

8j 0.2
5.0

Ir

400 rnA

iii

I--

I---'

2.0

TJ = 250C

;; 0.6

FIGURE 3 - "ON" VOLTAGE

~O.8

100mA

Ic=20mA

8

20
1.0

\ II

IIII
IIII

ILl I

>
~ 0.8

~

.-

VC~(sati ~ ICli B-110 I

...~-1.

30

6

II

~

I I
20

-550Cto 250C

eVB for VSE

50 70 100
200 300
IC. COLLECTOR CURRENT (rnA)

500 700 1000

20

10

30

50 70 100
200 300
IC. COLLECTOR CURRENT (rnA)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA

2. 0

.1"-....

1.0

i... ~

6

ffi o.41--- TJ = 200 0C
~

~ o.

'"

~

de

---Bonding Wire limit
2
Second Breakdown Limit

...........

,....
t-...

.1
~(Note:

80.06 ~

Thermililimitations need to be

incorporated in SOA Curve'!

.:lo.o4
0.02
2.0

I

I

4.0
6.0
8.0 10
20
VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

225

1250C to 1000C

II

-2.4

40

100:
1000C to 175 0C

I
I

500 700 1000

MD3762,F, MQ3762 (continued)

FIGURE 6 - TURN-oN TIME

FIGURE 7 - RISE AND FALL TIME

200

100

....

!~

"-

"'

;:::

!

I

N. I'. r-.....

"'I'-...

0

";:::

I'

rt+l

50

I'..~ .....

30

IC/IS·'~

"'"

10
10

500 700 1.0k

. j 1
20

30

FIGURE 8 - STORAGE TIME

200

---

-

200

TJ=lS00C
100

-IIC/IS=l?

)IC/IS' 20
0

~

r- -":: ~~

"~

0

,',

['..

,""' "

~. I'

I'-

0

t's"'tr 1/8tf

30

50 70 100
200 300
IC. COLLECTOR CURRENT (mA)

10
10

500 700 1.0 k

20

""

f-

-

~

~

50 70 100
200 300
Ie. COLLECTOR CURRENT (mA)

-30 V

70

RlseTlme";Snl

"

Pul .. Width = 400 n.

Duty Cvcl. - 2%

~

150n

T

500 700 1.0 k

Tr 2SoC

c;;...

150n

-30lJ

r-

FIGURE 11 - CAPACITANCE

50

O.I1'F

1'-1""~

30

~o .

1"<

f'...

l

vec" ov
IS1- IS2

FIGURE 10 - SWITCHING TIME TEST CIRCUIT
+27.3 V

T1' 1500C

lells'

lells"0

'" 3

20

500 700 1.0 k

TJ = 25°C

-

i"

r...1'

50
0

IS1=I.S2

r-

70

~

0
0

50 70 100
200 300
COLLECTOR CURRENT (mA)

FIGURE 9 - FALL TIME

1- ro- TJ = 25°C
k~ i""=

I,'t

~J"o.,

VCC = 30 V

Id @IVSEI(OIf -0
I
20
30
50 70 100
200 300
IC. COLLECTOR CURRENT (mA)

400

If

~ I' r-.....

20

2.0 V,,",

I-T = 1500C

70

w

~lr@VCC=10V

.....

0

10
10

~

Ir@VCC'- 30 V

-

~~,

100

~

-t-- rTJ-2SOC

,~

TJ - 25°C

0

~ 50

'"

200

IClls =10

~

1N916 or

equiv.

'I'
10

Ie· 1.0 Amp
'S1· IS2 = 100 rnA

7.0
0.04 0.06 0.1

226

I"0.2

0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

MD4957 (SILICON)
Dual PNP silicon annular transistor designed for high-frequency
amplifier, oscillator, and mixer applications.

CASE 654-07

Pin Connections. Bottom View

All leads electrically isolated from case

MAXIMUM RATINGS (each side)

Rating

Symbol

Collector-Emitter Voltage

Unit

Value

VCEO

30

Vdc

Collector-Base Voltage

VCB

30

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

IC

30

mAde

-65 to +200

°c

Collector Current
Operating and Storage Junction
Temperature Range

T J' Tstg

One Both
Side Sides
Total Power DisSipation @ TA '" 25°C
Derate above 25°C

PD

200
1.15

mW

400
2.3

mW/oC

TYPICAL NOISE FIGURE vs. FREQUENCY
6.0
5.0
65
~
w

4.0

G:
w

=>
'"
'"
'"
C5

3.0

:

2.0

z:

Vee = 10 Vdc

./

Ie = 2.0 mA

~

......

./'

V

V

./

1.0

o

0.1

0.2

0.3

0.4

f, FREQUENCY IGHz)

227

0.5

0.6

0.7

0.8 0.9 1.0

MD4957

(continued)

ELECTRICAL CHARACTERISTICS

(TA

=2S"C unless otherwISe noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAde, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
(IC = 100 !lAde, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 !lAde, IC = 0)

BV EBO

Collector Cutoff Current
(VCB = 20 Vde, IE = 0)

ICBO

30

-

-

30

-

-

3.0

-

-

-

-

0.1

1000

1500

-

-

0.4

0.8

20

-

200

-

4.0

8.0

-

2.6

-

-

18

-

13

Vde
Vde
Vde
/lAde

ON CHARACTERISTICS
DC Current Gain
(IC = 2.0 mAde, VCE = 10 Vde)

DYNAMIC CHARACTERISTICS
'Current-Gain- Bandwidth Product
(IC = 2.0 mAde, VCE = 10 Vde, f

iT

= 100 MHz)

Collector-Base Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)

Ceb

Small-Signal Current Gain
(IC = 2.0 mAde, VCE = 10 Vde, f

= 1.0 kHz).

hfe

Collector-Base Time Constant
(IE = 2.0 mAde, VCB = 10 Vde, f

= 63.6

Noise Figure
(IC = 2.0 mAde, VCE

= 450

(IC

= 2.0 mAde,

VCE

= 10 Vde,
= 10 Vde,

f

r
MHz)

b

'c e

pF

ps

NF
MHz) Figure 1

RS = 50 ohms, f = 1. 0 GHz)

MHz

5.0

dB

FUNCTIONAL TESTS
Corhmon-Emitter Amplifier Power Gain
(VCE = 10 Vde, IC = 2.0 mAde, f = 450 MHz)
(VCE = 10 Vde, IC = 2.0 mAde, RS = 50' ohms, f

Gpe

= 1. 0 GHz)

dB

-

FIGURE 1- NOISE FIGURE AND POWER GAIN TEST CIRCUIT

• Button type capacitors
•• Variable air piston type capacitors
1. L1 . silver plated brass bar, 1.0
in. Ig by 0.25 in od.
2. L2· silver plated brass bar, 1.5
in. Ig by 0.25 in od. Tap is
0.25 in. from collector
3. L3· 14 turn of AWG No. 16 wire
0.25 in. from and parallel to
L2.
4. The noise source is a hot·cold body
(All type 70 or equivalent) with a
test receiver (AI L type 136 or
equivalent).

228

MD4957

(continued)

COMMON 'EMITTER Y PARAMETER VARIATIONS
YPARAMETERS VS FREQUENCY
VeE = 10 Vdc
Ie = 2.0 rnA.

YPARAMETERS VS CURRENT
VeE = 10Vdc - - VeE = 15Vdc - - f

FIGURE 2 - INPUT ADMITTANCE
16

!i 14
~

2

.§

~

0

--- -- -

V

.-- ~

5i!

~ 6.0

....

,J 4.0
2. 0

o
!i 80

i

~

~

~

~ 6.0

.

g"

>

0

~

0

~

~~

01----

f...--....

c

~

i

~

f-" f-,

i

.§

2. 0

~

I

-b"

-,-- .-

0

0

V

b.,

0

~

....

1!i

V

V

/

17

~

b..

-

if.

0

4. 0

3. 0

.~

0

FIGURE 4 - OUTPUT ADMITTANCE

O!---

fiGURE 1- FORWARD TRANSFER ADMITTANCE

~

0

4. 0

i"""

~

u

~

o

gr:.-

~ f--

-

--

k:::::" F- lo-"

1
..... r-

~

-,
b"

o

ii,

0

i

4.0

!i 80

70

~

10

~
- 8. 0

FIGURE 3 - FORWARD TRANSFER ADMITTANCE

lE 60
~

12

.§

---- I--

!-.-'

14

i

V

b"

,. 8. 0

=450 MHz

FIGURE &-INPUT ADMITTANCE

6

FIGURE 8- OUTPUT ADMITTANCE

f0-

r- I - .- , -

3.0

rb••

0

J..---

0

goo
g••

0

0

FIGURE 5- REVERSE TRANSFER ADMITTANCE

!i

FIGURE 9- REVERSE TRANSFER ADMITTANCE

I. 6

4

2

2

1 1.4
~

~

1.
,. I. 0

5i!

~ o.6
~

4__

~

O.

~

o. 2

ffi

b"

./

ffi O. 8
-b"

~

I-

0

V

~

<0.01

8

-i,,~

6.0

to

u:
'"0
·2
W

2.0 """'H-+-++-tH+t-+-~H- Ie = 1.0 mA
Rs =0.7 k!l

r-

1.0

4.0

0.5

1.0

2.0
5.0
f. FREQUENCY (kHzl

10

50

1mA

o0.1

100

0.2'.

FIGUR" 6 - CURRENT·GAIN BANDWIDTH PRODUCT

..,:z:
:>

'"'"IE

30
III
VCP 20 Vd,
f = 100 MHz
TJ • 25 0 C

" ....

:z:

1:;200

~

2

~
2
~Ioo

'i5"
a:
a:

V

~

......
0.5

VCE' 10 Vdc
2 C
I

Tl rl

1.0
2.0
5.0
10
20
RS.SOURCE RESISTANCE (k OHMS)

II I
50

-

20

----r--.

I r-.. r--.
r-.. r--. 'i:o~
r--....
Cib -

0.5

1.0

100

I I III
TJ • 25 0C
f· 100 kHz I-

./
~.

.......

5.0

.......

80

a 60
.t::'

./

I

V

FIGURE 7 - CAPACITANCE

600

~400
t;

'f

/1'

1'."

2.0

20

",

~I\

I--H-+-++-tH+t-+-~H- ~: 10fffi +--H+ttttl
0.2

V V

100.A

\~

2

111111

I~

\

~.

OL-LL-LLL~~~.-L~UUll-~-L~~

0.1

V
1/

I

2.0 3.0
5.0 7.0 10
IC.COLLECTOR CURRENT (MA)

20

30

3.0
0.2

50

236

0.3

0.5 0.7 1.0
2.0 3.0
5.0 7.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

MD6001 ,F, MD6002,F, MD6003, F, M06001, M06002 (continued)

FIGURE 8 -

TURN ON TIME

FIGURE 9 -

Ii II

300

,,

~

I

I

~
~

70

t"

"'

30
20

10

,

,

50

5.0 7.0

,

~
d

,

'" ......., ,

10

20

""

30

II

2000

~ 100

i!

- -50

70

I.III'OT' TOTAL CONTROL CHARGE

1000

700
SOD

200

100

200

300

100

500

I'"
OA, ACTIVE REGION CHARGE

II II
5.0 7.0

20

10

II

"

200

FIGURE" -

I

30

10
5.0 7.0

,

II
10

20

30

so

70 100

Ie, COLLECTOR CURRENT

200

300

100

~

70

..:3

50

IC/IB -10

ICIlB -'0

,

-

20

10

500

-

.......

5.0 7.0

10

(mA)

20

30

50

70

100

200

300

Ie, COLLECTOR CURRENT ImA)
FIGURE 13 - STORAGE AND FALL
TIME TEST CIRCUIT

·30

-30 V

100

tr~2.0ns

Duty Cycle < 2.0%

0:U-

500

VCC =30V _
IB,=IB1 _
TJ=25 DC

"'

FIGURE 12 - DELAY AND RISE
TIME TEST CIRCUIT

P.W.> 200ns

300

I

30

.",

'1'I'll a = 2j

~

'";:::

-t--.,

101"

20 ~

200

FALL TIME

",

~

=~

~

t111, .....

100

I I

200

70
IClla='O_

70

,

300

la, = IB2
TJ 25 DC

li;!
100
;:::

50

500

I

,'s-'s-lIB',

~

30

Ie, COLLECTOR CURRENT ImAl

STORAGE TIME

300

50

i

300
~

500

~
5ij

VCC- 30V
J = 25DC

1/

Ie, COLLECTOR CURRENT (mA)

FIGURE 10 -

....,.

3000

----vce -30 v, VBEloff) =2.0 V--Vce=10V,VBEIDff)=OV Ic/la = 10
TJ = 25 DC

200

~

CHARGE DATA

5000

500

, 0k

TO OSCILLOSCOPE
RISE TIME

~

5.0 ns

.-_cfT
-:1>100ns~

tr"'2.0ns
Duty Cycle" 2.0%.
For NPN Test CirCUits, Reverse
Diode and all Voltage Polantles.

237

100
t------oSCOPE
4

Ok v - ,-+--f
o-V
'vv

lN9'S

-3.0 V

500

MD7000

(SILICON)

MULTIPLE SILICON ANNULAR

TRANSISTOR
NPN SILICON
MULTIPLE TRANSISTOR

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation appli·
cations.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Typ) @ IC = 150 mAdc

•

DC Current Gain Specified 1.0 mAdc to 300 mAdc

•

High Current·Gain·Bandwidth Product fT = 250 MHz (Typ) @ IC = 20 mAdc

MAXIMUM RATINGS
Rating
Collector~Emitter

Voltage

Coliector·Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Symbol

Value

Unit

VCEO

30

Vdc

VCS

50

Vdc

VES

5.0

Vdc

IC

500

mAde

One Die

Total Power Dissipation
TA = 25°C

~~:~
,

K

"SEATING
PLANE

-JLo

Both Die

@

Po

Derate above 250C
Total Power Dissipation @

TC = 25°C
Derate above 25°C

Operating and Storage Junction,

Po

575

625

mV'/

3.29

3.57

mW/oC

1.8

2.5

Watts

10.3

14.3

mW/oC
°c

TJ. Tstg
-65 to +200

Temperature Range

STYLE I:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
4.0MITTEO

OIM
A

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to

Symbol

One Die

Both Di.

R8JA(1)

304

280

°CIW

97

70

°CIW

MILLIMETER
MIN MAX
9.40
8.51

Unit

Ambient

Thermal Resistance. Junction to Case

R8JC

84

44

(1) R6JA is measured with the device soldered into a typical printed circuit board.

K
M

N

Junction to Junction to
Ambient
Ca..
Coupling Factor

I

%

CASE 654'()7

5. EMITTER
6. BASE
7. COLLECTOR
B. OMITTEO
INCHES
MIN MAX
0.335 0.370
0.305 0.335
0.150 0.185
0.016 0.021
0.200 BSC
0.028 0.034
0.029 0.045
0.500
45' BSC
0.100 BSC

MD7000 (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:

where:

PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1)
simplifies to

13) "T Jl

Where ll.T Jl is the change in junction temperature of die 1

R81 and R82 is the thermal resistance of die 1 and die 2

= ROI

(POI + K02 P02)

For the conditions where POI = P02, POT = 2PO,
equation (3) can be further simplified and by substituting into
equation (2) results in

Po 1 and P02 is the pow... dissipated in die 1 and die 2
k82 is the thermal coupling between die 1 and die 2
An effective package thermal resistance can be defined as

14) RO(EFF) = RO 1 11 + K02) 12

follows:

Values for the coupling factors when either the case or the

ambient is used as a reference are given in the table on page 1.

ELECTRICAL CHARACTERISTICS

Min

Typ

Max

30

-

-

50

-

-

5.0

-

-

-

-

100

40

60

lic = 150 mAde, VCE = 10 Vdc)

70

80

lic = 300 mAde, V CE = 10 Vdc)

30

50

-

-

0.2

0.4

-

0.95

1,3

200

250

-

-

3.5

8.0

-

15

30

Characteristic

Symbol

Unit

OFF CHARACTERISTICS IT A = 25 0 C unless otherwise noted)
Collector-Emitter Breakdown Voltage (1)

Collector-Base Breakdown Voltage

Vde

BVEBO

liE = 10 /tAdc, IC = 0)

Collector Cutoff Current

Vde

BVCBO

lic = 10 /tAde, IE = 0)

Emitter-Base Breakdown Voltage

Vde

BVCEO

IiC = 10 mAde, IB = 0)

nAdc

ICBO

(VCB = 40 Vde, IE = 0)
ON CHARACTERISTICS
OC Current Gain (1)

Collector-Emitter Saturation Voltage

Vde

VCElsad

lic = 150mAde,IB = 15 mAde)

Base-Emitter Saturation Voltage

-

hFE

lic = 1.0 mAde, VCE = 10 Vdc)

Vde

VBE(sat)

lic = 150mAde,IB = 15 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product

Output Capacitance

pF

Cob

(Vce = 10 Vdc, IE = 0, 1= 100 kHz)

lnput Capacitance

MHz

IT

lic = 20 mAde, VCE = 20 Vdc, 1= 100 MHz)

pF

Cib

(VEB = 2.0 Vde, IC = 0, f = 100 kHz)

(1) Pulse Test: Pulse Width ';;;300 /tS, Outy Cycle';;; 2.0%

239

MD7001 (SILICON)
MD7001F
MQ7001
MULTIPLE SILICON ANNULAR

TRANSISTORS

PNP SILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·
purpose amplifiers, front end detectors, and temperature
compensation applications.
•

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAdc

•

DC Current Gain Specified 1.0 mAdc to 300 mAdc

•

High Current·Gain·Bandwidth Product fT = 320 MHz (Typ) @ IC = 20 mAdc

MD7001

I

MAXIMUM RATING
Symbol

Rating
Collector-Emitter Voltage

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

VCB

50

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

600

mAde

Collector Current - Continuous

One Die

Total Power Dissipation @ T A = 2SoC
MD7001
MD7001F
M07001
Dera.. above 25°C
M07001
M07001F
M07001

Po

Total Power Dissipation @TC:: 2SoC
MD7oo1
MD7oo1F
M07001
Derate above 2SoC
M07oo1
M07001F
M07oo1

Po

Operating and Storage Junction
Temperature Range

mW
350
400

650
400
600

3.42
2.0
2.28

3.7
2.28
3.42

2.1
1.25
1.0

3.8
2.5
4.0

600

mW/oC

Watts

DIM

mW/oC
12
7.15
5.71
TJ, Tstg

STYLE!.
Pl1tl aME
2EMlTTER
4 EMITTER

17.2
14.3
22.8

-65 to +200

seASE

1 COLLECTOR
IWLLECTOR

°c

A
B
C
D
f
G
H

6.10
.92
0.76
0,3

7.36
4.
2.03
O.

O.

0,

K

3.81

1.27 SC
0.89
2.54BSC

Symbol

Thermal Resistance. Junction to Ambient
MD7001
MD7001F
M07001

R6JA(11

Thermal Resistance. Junction to Case

R6JC

M07001
MD7001F
M07001

Coupling Factor

3 EMITTER
, OMITTEO

CASE 664-01

All Die

THERMAL CHARACTERISTICS
Characteristic

STYLE I
f'lH~ :'~ECTOR

One Die

All Die

Equal Power

292
500
438

270
438
292

83.3
140
175

58.3
70
43.8

Unit

M07001

°CIW

°CIW

, oIunctlon to

"unction to

Ambient

Case
%

M07001
MD7oo1F
M07001 (01·021
(01·03 or 01·041

1.27

CASE 61DA·D3

85
75
57
55

40
0
0
0

STYLE I
PIN ~ m~ECTO"
3EMITTEA
4 NOTCONNECTEO
& EMITTER
68",S£
1COLLEcrOll
a COLLECTOR
98115£
10 EMITTER
IIltOTCONNECTED

IZ EMllUR
13 lASE

(11 ReJA is measured with the device soldered into a tvpical printed circuit board.

"

COLlECTO~

CASE 601·04

240

DIM
A
C
D
f
B
H
J
K
L
N
R

S

1.82

8.

MD7001, MD7001F, MQ7001 (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE

In multiple chip devices. coupling of heat between die occurs.

where:

PDT is the total package power dissipation.

The junction temperature can be calculated as follows:

(1) l>TJl • RSI POI + RS2 KS2 P02 + RS3 KS3 P03

Assuming equal thermal resistance for each die, equation (11
simplifies to

+RS4 KS4 P04

(3) "TJl = ReI (POI + Ke2 P02 + KS3 P03 + KS4 P04)

Where ATJ1 is the change in junction temperature of die 1

RSI thru 4 is
Po 1 thru 4 is
KS2 thru 4 is
die 2 through

the thermal resistance of die 1 through 4
the power dissipated in die 1 through 4
the thermal coupling between die 1 and

= P02 = P03 = P04, POT = 4PO

equation (3) can be further simplified and by substituting into
equation (2) results in

4.

(4) Re(EFF) = Rel(l + Ke2 + Ke3 + KS4) /4

An effective package thermal resistance can be defined as
follows:
(2) Re(EFF)

For the conditions where POI

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the tab'e on page 1.

= "TJ1/POT

ELECTRICAL CHARACTERISTICS (TA

2S0C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage
(lC = 10 mAde, IB = 0)

(1)

BVCEO

Coliector·Ba.. Breakdown Voltage
(lC = 10"Ade,IE = 0)

BVCBO

Emitter·Ba.e Breakdown Voltage
(IE = 10 "Ade, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)

ICBO

30

-

-

50

-

-

5.0

-

-

-

-

100

40
70
30

50
90
60

-

-

0.25

0,4

-

0.B8

.1.3

200

320

-

-

5.8

8.0

-

16

30

Vde
Vde
Vde
nAde

ON CHARACTERISTICS (1)
DC Cu rrent Gain

hFE

(lC = 1.0 mAde, VCE = 10 Vde)
(lC = 150 mAde, VCE = 10 Vde)
(lC = 300 mAde, VCE = 10 Vde)
Collector· Emitter Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)

VCE (satl

Base·Emitter Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)

VBE(sat)

-

-

Vdc
Vde

DYNAMIC CHARACTERISTICS
Current·Gain·Bandwidth Produet(1)
(lC = 20 mAde, VCE = 20 Vde, f = 100 MHz)
Output Capeeitance
(VCB = 10 Vde, IE = 0, f

=100 kHz)

Input Capecitance
(VBE· 2.0 Vde, IC = 0, f

=100 kHz)

MHz

fT
Cob
C;b

(1) Pulse Test: Pulse Width ";300"s, Duty Cycle ";2.0%,

241

pF
pF

MD7002 (SILICON)
MD7002A
MD7002B

NPN SILICON ANNULAR MULTIPLE TRANSISTORS
NPN SILICON
MULTIPLE TRANSISTORS'

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
.
applications.

•

Excellent Matching Characteristics@ IC = 100/lAdchFE1/hFE2 = 0.75 (Min) - MD7oo2A
= 0.85 (Min) - MD7002B

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.35 Vdc (Max) @ IC = 10 mAdc
DC Current Gain Specified @ 100 /lAde and 10 mAde

•
•

I

High Current·Gain-Bandwidth Product fT = 260 MHz (Typ) @ IC = 5.0 mAdc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vdc

Coliector·Base Voltage

VCB

SO

Vdc

Emitter·Base Voltage

VEB

S.O

Vdc

IC

30

mAde

TJ,T,tg

-85 to +200

°c

Rating
Coliector Emitter Voltage
8

Collector-Current

Operating and Storage Junction

Temperature Range
One Die

Both Ole
Equal Pow..

=25°C

Po

575
3.29

625
3.57

mW
mW/oC

Total Power Dissipation@ T C =250 C
Derate above 2sOC

Po

1.B
10.3

2.5
14.3

Watts
mWJOC

Total Power Dissipation@ TA
Derate above 25°C

3. EMITTER
. 4.0MITTEO

THERMAL CHARACTERISTICS
C.a_lotio

Symbol

One Die

Both Die
EquelPower

Thermal Resistance. Junction to Ambient

RSJA(lI

304

280

°CIW

RSJC

97

70

°CIW

Thermal Resistance, Junction to Case

Unit

Junction to Junction to
Ambient
ea.
Coupling Factors

84

44

(1) R8JA is measured with the device soldered into a typical printed circuit board.

STYLE 1:
PIN 1. COLLECTOR
2. BASE

S. BASE

7. COLLECTOR
B. OMITTED

MILL!
A
B
C

o
%

5. EMITTER

G
H

J

K

8.51 9.40
7.75 B.51
3.81 4.70
.41 0.53
5.08 SSC
0.71 O.
0.74 1.14
2.

M

45 B

N

2.54SSC

CASE 654-07

242

MD7002, MD7002A, MD7002B (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices. coupling of heat between die occurs.
The junction temperature can be calculated as follows:

Assuming equal thermal resistance for each die, equation (1)
simplifies to:

(3) 
«
;; 0.2

~

0

..........

SURGE APPlIEO AT
RATED LOAD CONDITIONS
t--VRRM APPllEO AFTER SURGE

NY\

1--1.0 CYCLE

f---l

I
50

70

60

2.0

80
90
100
110
TA. AMBIENT TEMPERATURE (DC)

3.0

5.0 7.0 10
20
NUMBER OF CYCLES

30

50

70

100

SINGLE DIODE CHARACTERISTICS
FIGURE 3 - MAXIMUM FORWARD VOLTAGE
0:

~

50

t-

0

~

10

~

B

5.0

Q

'"
~

2. 0

~

1.0

./

-

....-

FIGURE 4 - JUNCTION CAPACITANCE

- -

100
70
50
~

.e

r-TJ -15QDC

"

/

..,Zw

0

=c~

0

~

25DC

:::>

TJ =25 DC

0-

I""-

7.0

~. 5.0

53 o. 5
z

~ o.2
~ o. 1
~

3.0
2.0

I

.~o.o 5

1.2
1.0
1.4
1.6
1.8
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

0.8

0.6

1.0
0.1

2.0

FIGURE 5 - FORWARD RECOVERY TIME
20

r~

j

,.
;::

E or1.

j

L...

I

~,

Q

-- --

~

*

~

,., ,..,.

,

0.2
0.1

0.2

0.3

2.0 3.0
0.5 0.7 1.0
IF. FORWARD CURRENT (AMP)

ffi
fa

5.0

'"ffiw

3.0

>

~

0

100

t-tO

..........

i"'-

1.0
0.1

10

255

TJ = 25DC
0.1 

fo-i-'

0.3

I"10

;::

'r,

~ o. 7
'"
'"~ o.5

r-.....

j

vtr=2.0V
TJ = 25 DC

>

0.5
1.0
2.0
5.0
10
VR, REVERSE VOLTAGE (VOLTS)

FIGURE 6 - REVERSE RECOVERY TIME

2. 0
w

0.2

0.2

0.3

2.0 3.0
0.5 0.7 1.0
IR/IF. DRIVE CURRENT RATIO

5.0 7.0

10

MDA800, MDA801
MDA802, MDA804
MDA806
Designers Data Sheet
F",LL WAVE BRIDGE RECTIFIER ASSEMBLIES
SI NG LE-PHASE
FULL-WAVE BRIDGE

· . , utilizing inidvidual hermetically sealed metal case rectifiers interconnected and then encapsulated in plastic to provide a single rugged
package. Devices are available with voltages from 50 to 600 Volts
with these additional features,

8.0 AMPERE
50 thru 600 VOLTS

• Slip On Terminals
• High Surge Capability
• Output Current Ratings for Iloth Case and Ambient Conditions
Designers Data for "Worst Ca." Conditions
The Designers Data sheets permit the design of 'most circuits entirely from the
information presented. Limit curves - representing boundaries on device character·
istics - are given to facilitate "worst case.:' design.
.

I

MAXIMUM RATINGS (TC = 25°C
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Vortage
DC Blocking Voltage
RMS Reverse Voltage

~~ ~~

MDA MDA MDA
800
eo1 802

VAAM
VAWM
VA

50

100

200

400

600

VA(AMS)

35

70

140

280

420

30

62
100

124
200

250
400

380
600

DC Output Voltage
Resistive Load

Vdc

Capacitive load

50

Average Rectified Forward Current
TA
TC

.-

•
•

= 55°C
= 1000C

Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions)

Operating and Storage Junction

IFSM

Unit

Volts

Volts
Volts

r-----

Amp

10

...

(Single phase bridge, resistive load,
60 Hz)

I

un Ie.. otherwise noted,)

3.5

.

8.0
200

Amp

I
l

R_I

TJ,T stg

~-65to+175~

°c

Temperature Range

Characteristic
Each Die
Effective Bridge
Thermal Resistance, Junction
to Case

Each Die
Effective Bridge

ELECTRICAL CHARACTERISTICS
Characteristic
Instantaneous Forward Voltage (1)

= 18.9 A)
(iF = 18.9 A, TJ = 175°C)

(TC

Symbol

Max

A8JA

40

°CIW

A8JA(EFF)

23

°C/W

A8JC

16

°CIW

A8JC(EFF)

5.6

°C/W

Symbol

Typ

Max

Volts

vF

IA

Unit

0.9

1.0

-

0.85

-

0.5

mA

=1c

A

B
C
D
f
G

H
J
K
L
Q

(1) Pulse Test: Pulse Width .. 3001'1, Duty Cycle .. 2.0%.

R

MECHANICAL CHARACTERISTICS

CASE: Transfer-molded plastic case witn epoxy fill.
POLARITY: Terminal-designation embossed on case
+DC Output
-DC Output
AC not marked
MOUNTING POSITION: Anv. highest heat transfer efficiency accomplished throuWt the
surface opposite the terminals.
WEIGHT: 40 grams (approx.)
TERMINALS: Readily solderable. corrosion resistant. suitable for slip-on terminals.

256

1.7
VB

o~i-I f
DIM

= 25°C unless otherwise noted.)

(iF

Reverse Current
(Rated VR applied to ac terminals,
+ and - terminals open)

Unit

Val

~i~VO
0 +~:/

lH

THERMAL CHARACTERISTICS
Thermal Aesistance, Junction
to Ambient

A-

J::=-J -

MILLIMETERS
INCMS
MAX
MIN
MAX
MIN
47.75 48.89 1.880 1.925
37.21
1.465
36.20
15.37 16.38
0.645
3.78
0.149
3.43
0.470
10.92 11.94
0.920
22.35 23.37
0.648
15.95 16.46
2 BSC
33.32 SSC
0.547
12.88 13.89
7.24
7.49
0.295
3.94
4.19
0.165
31.90 32.92
1.296

NOTES:
1. DIM "L" IS 6.35 (0.250) OEEP,
DIM "Q" IS THRU HOLE.
2. MOUNTING HOLES WITHIN 0.25 mm
(0.010) Dill OF TRUE POSITION AT
MAXIMUM MATERIAL CONDITIOft.
CASE 298·01

MDABOO, MDAB01, MDAB02, MDAB04, MDAB06 (continued)

FIGURE 1 - FORWARDVOLTAGE

200

FIGURE 2 - MAXIMUM SURGE CAPABILITY

. / I-"'"

TJ =25 DC

/

100

V

30 0

I-"'""

V

V-

0

~UR~E APJLlEJ @I I I I

.....

MAXIMUM

f'.

0
TYPICAL
0

TJ = 175DC

V

I

I

.......

0

I--

I /

0

1'1"-

Of-- f- I-60Hz

IL

0

RATEO LOAD CONDITIONS
VRRM APPLIED AFTER
SURGE

r-- t-...

0

II II

fr\rJ\
I

I-30

~1.0CYCLE
I

1 'I
2.0

1.0

0

I'--

I

111

3.0

5.0

7.0

10

20

50

30

70 100

NUMBER OF CYCLES

0

I

0

II

0

+1. 5

I

1. 0

I. 0

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

I

G

3; +0. 5

II

.5
>ffi
u

o. 7

~
8

o. 5
o. 3
O. 1
0.6

l
lLL

+1. 0

I

II

0
TYPICAL

-0. 5

RANG~

-I. 5

I

)--

-1. of-

0.8

1.0

14

1.2

1.6

1.8

0.1

1.0

V

V

I--

I

I
./

~-1. 0

0.5

1.0

10

5.0

10

10

50

100

100

'F, INSTANTANEOUS FORWARD CURRENT lAMP)

VF, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

FIGURE 4 - TYPICAL THERMAL RESPONSE
I. 0
O. 7

o. 5
~

V

ffi

o. 3
"'~
ffi -
I"- ........ f::::: ~
~ 2.5

I
I
I
I
I
I
I
~ =. (RESISTIVE & INDUCITVE LOADS)

1

2.0

i!

~ 1.5

'"~ 1.01--

TJ ~ 175°C
NOTE: Th.I(FM)/I(AV) ratio
referstoa single diode and
IF(AV) refers to the

80

60

100

:(FM) = .(RESISTIVE & INDUCTIVE LOAOS)

2 .....

(Ay~

........

1

0 .......

1/5.0 } CAPACITIVE
10
LOADS

'"SO.51--1I j"'dTrenj" I I
'" 0
!F
40

1

1

" r--:: ~~r'.l. ~

a:

~

FIGURE 6 - CASE TEMPERATURE DERATING
4

1.1.

........

.0 ......

~

I'J".,.

......

'"

.0

f"": ~1!Io.
1""'<'111

120

~

r--.

5.0 } CAPACITIVE
10
LOADS
20

..... c-....

.......
........

~

,..,L

~

]"-.. ["'-.. ~
~

o ~bTJ:7~oh~ I(FM)iI(AV) ralio
the load curjent.
0
40

180

I........ ~

..... ~

refers to a smglediode
and IF(A VI refers to

.0

'h

160

140

/

L ]

1'..

L

140
80
100
120
TC. CASE TEMPERATURE (OC)

60

TA. AMBI ENT TEMPERATUR E (OC)

160

180

TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)
FIGURE 7 - RECTIFICATION WAVEFORM EFFICIENCY
0
0

FIGURE 8 - CAPACITANCE
60 0

I T~ }2~OJ
IF(AV) = 1.0 A

r-- ::::.~

~~

0

....... 1'
0
0

JV\;-

JlJ1.J

0~1.:1 :l :I-~~

6.0
1.0

.......

1\

CURRENT INPUT WAVEFORM
I--

B.

t'-...

300

0

01-

TJ=250C

400

2.0

3.0

5.0

7.0

-

-

-

-

o

10

20

30

3

50

70 100

11111

0.5

1111111

1.0

2.0

f. FREQUENCY (kHz)

FIGURE 9 - REVERSE RECOVERY TIME

~

.3

~
....

~
10

.......

~

a:

3.

0

2.0

.;

r--.

1f'10A
IF

0~Lr°'25IR

r-...
.......

ffi

8~

LOA

~ ~ ....... 1'5.0 A'

1 1

I-lfr-l

>

t'-...

.......... r--..

0.3

o
a:

,,'

i

500

i!

I""

1 1 1

0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
IRtIF. RATIO OF REVERSE TO FORWARD CURRENT

/

,......

/

7.0

O.

10

258

.j--""'""

-

1-1-

.,,/' . - Vfr= 1.0 V

0.2

I-lrr
1.0
0.1

I

UF

w

7.0

~

~

0.7

;:: 0.5
>

5.0

200

TJ - 25°C

. ~~
~

]

TJ=250C

..........

50
100
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)

1.0

II

i:;
~

o

I....

1111111

FIGVRE 10 - FORWARD RECOVERY TIME

20

t'-...

ALL OEVICES
APPLICABLE FOR RATEO VOLTAGE

40

1~
1.0

~

.....

I--- r-2'r

2.0
3.0
5.0
IF. FORWARD CURRENT (AMP)

7.0

10

MDASOO, MDAS01, MDAS02, MDA804, MDAS06 (continued)

FIGURE 11 - POWER DISSIPATION FIGURE
8

-

./

r-/
(
(
(
(
(
IFM) =_(RESISTIVE &
r-IIAV)
INDUCTIVE LDA~S

0 - f-CAPACITIVE } ~~
fLDADS
20 ..... :--......

/

/

/

......... /

~

L

0;(. /.
.... ......... ......... . / ./.
:y Y Z

-

6

././ h
:0

2

V

D

'A'

TJ ~ 175°C
NOTE: The IIFM)/IIAV) ratio
refarsto a single diode
and IF(AVI referstD the

h ~
AlIIiIiP'
II""'"

0

I

0/

I

1°'1 CU'TI.

10
4.0
6.0
B.O
2.0
IFIAV). AVERAGE FDRWARD CURRENT IAMPI

I

I

12

14

NOTE 1 - THERMAL COUPLING ANO EFFECTIVE
THERMAL RESISTANCE
Where: POT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation 111

I n multiple chip devices where there is coupling of heat between

die, the junctlon temperature can be calculated as follows:
II) <>TJl = ROI P02 + R02i<62 P02 + R03K03P03
+ R04 K04 P04

simplifies to

(3) ATJl = ROllPOl + K02 P02 + K03 P03 + K84 P04)
For the condition where POI = P02 = P03 = P04, POT = 4POI
equation (3) caR be further simplified and by substituting into
equation (2) results in
(4) R8(EFF)' ROI II + K82 + Ke3 + K841/4

Where 8 T J1 is the change in junction temperature of diode 1
ROI thru 4 is the thermal resistance of diodes 1 through 4.

P01 thru 4 IS the power dlssipat~d in diodes 1 through 4
K82 thru 4 is the thermal coupling between diode 1 and
diodes 2 through 4.

For the MDA800 rectifier assembly, thermal coupling between

opposite diodes is 10% and between adjacent diodes is 15%when
the case temperature is used as a reference. Similarly for ambient
mounting thermal coupling between opposite diodes is 40% and
between adjacent diodes is 45%.

An effective package thermal resistance can be defined as
follows:

121 ROIEFF) = ~TJ1/POT

NOTE 2 - SPLIT LOAO OERATING INFORMATION

from Figure11,for an average current of lOA and an I(FM}/
IIAV) ~ 9.2 read POTIAV) = 21 watts or 5.25 watts/diode. Thus
POl = P03 = 5.25 watts.
Similarly, for aloed current IB of 5.0 A, diode #2 and diode #4
each see 2.5 A average resulting in en IIFM)/IIAV) = 14.
Thus, the package power dissipation for 5.0 A is 10 watts or
2.5 wattsl diode .. :P02 = P04 = 2.5 watts.
The maximum junction temperature occurs in diodes #1 and
#3. From equation (3) for diode #1 "TJl = 16 [5.25 + 0.1
12.5) +0.1515.26) +0.1512.5)]

Bridge rectifiers are used in two basic configurations as shown
in circuits A and B of Figure 12. The current derating data of

Figures 5 and 6 apply to the standard bri!lge circuit (A) where
IA = lB' For circuit B where IA;tdB, derating information can be
calculated as follows:
(5) TRJMAX) = T JIMAX) - "T Jl
Where TR(MAX) is the reference temperature (either case or
ambient)
AT J1 can be calculated using equation (3) in Note 1.

ATJl "" 1060 C
Thus TCIMAX) = 175·106 = 690 C
The total package dissipation in this example is:
PDT = 2 X 5.25 + 2 X 2.5 = 15.5 watts.

For example, to determine TCIMAX) for the MOABOO with
the following capacitive load conditions:

IA

= 10 A average with. peak of 46 A

IB

= 5.0 A average with a

peak of 35 A

First calculate the peak to average ratio for IA' IIFM)liIAV) =
46/5.0 • 9.2 INote thet the peak to average retio is on a per diode
besis and aech diode provides 5.0 A ..erage).
FIGURE 12 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS
load 1

JII·

Load

Load 2

CIRCUIT A

CIRCUIT 8

259

SILICON,
.
MINIATURE DIODE ASSEMBLIES

MDA920 series

CASE 108

CASE 109

MDA920

MDA920A

Miniature Integral Diode Assemblies (MIDA ) are low-current rectifier circuit
configurations designed with a high output-current/size ratio for applications
where space is at a premium. MIDA packages are available with flat ribbon
leads and with round leads. For round leads, add sUffix "A" to type number.
Example, MDA920A-1.
ELECTR ICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)

Characteristic

Symbol
V
F

Maximum Forward Voltage Drop per Cell
(IF = 500 mA ContinJlous)
Maximum Reverse Current (Figure 2)
25°C
(VR = Rated VRM)
100°C

Value

Unit
Vdc

1.2
ILAdc.

IR

60
600

MECHANICAL CHARACTERISTICS

CASE: Transfer molded plastic encapsulation.
FINISH: All external surfaces are corrosion,resistant,
terminals are readily solderable.

POLARITY: Embossed symbol on 4·lead devices.'
. Terminal designation by color dots on 3·lead devices:
AC input ,..... yellow
SINGLE PHASE FULL WAVE BRIDGE
+DC output - red
AC<>---~
-DC output - white

MOUNTING POSITION: Any.

WEIGHT (approx.kO.4 gram.
AC <>--'---46'

ABSOLUTE MAXIMUM RATINGS

MOTOROLA
TYPE NO.

DEVICE
MARKING
LETTER
SYMBOLS

CT" - 2S'C unless otherw,se noted)
.,

DC OUTPUT
VOLTAGE

PEAK REVERSE
VOLTAGE PER CELL

SINE WAVE
RMS INPUT
VOLTAGE

(DC or RECURRENT)

(LINE to LINE)

Res.
Load

VIM
Volts

V..
Volts

Volts

Vout'

DC OUTPUT
CURRENT
Cap.
Load @ 75'C AMBIENT
V...
lout
Volts
Amp

MDA920-1

BA

25

18

15

25

-2

BB

50

3S

30

50

-3

Be

100

70

62

100

-4

BD

200

140

124

200

-5

BE

300

210

185

300

-6

BF

400

280

250

400

-7

BG

600

420

380

600

260

LO

PEAK FUll WAVE
. PEAK FULL WAVE
ONE CYCLE
REPETITIVE
SU.RGE CURRENT
NON-REPETITIVE FORWARD CURRENT
(SINUSOIDAL 60 cps) (NONSINUSOIOAL 60 cps)
If:Mfsurq.1

IFMlr.pl

Amp

Amp

32.0
.!,

5.0

MINIATURE DIODE ASSEMBLIES

FIGURE 1 -

(continued)

FIGURE 2 -

TYPICAL FORWARD CHARACTERISTICS

I. u

TYPICAL REVERSE CHARACTERISTICS

1000

J
II
r-- -tJ
N "1/
I 1/
/I
II,
/ II
/ 1/
I

O. 9
O. 8

55°C_

25°C ...

O. 7

150°C ...

i!
~

O.6

is

~ o.5

~~

0.4

~

O.3
O. 2
O. I

o
o

./
0.2

0.4

0

O. I

~/

0.6

0.0 I

1.0

0.8

--

1.2

1.4

o

-

FIGURE 3 -

0.5

MAX ALLOWABLE SURGE CURRENT

4
0

"'

"'-

\

./

1.5

~
\

CYCLE

6

"

\\
\

4

~

2
T.

~

""'"'-

25°C

8

I

25°C

10

8

r:=ll l

"-

55'C

MAX ALLOWABLE DC OUTPUT CURRENT

0

I""I~

6

o

FIGURE 4 -

II I

6

8

I

V./V ..... NORMALIZED VOLTAGE

40

2~

/""
lOO'C

-

V,. FORWARD VOLTAGE DROP IVDLTS)

1
j

1--"'"

I~~

100

6

8 10

20

\
~

0.2

\

'r--.
40

o

o

60 80100

NUMBER Of CYCLES AT 60 H.

25

50

75

100

125

T•• AMBIENT" TEMPERATURE 1°C)

261

ISO

\
175

200

MDA922-1 (SILICON)
thru

MDA922-9
Designers Data Sheet
SINGLE-PHASE
FULL-WAVE BRIDGE

MINIATURE INTEGRAL DIODE ASSEMBLIES

1.8 AMPERES
25-1000VOLTS

passivated, diffused-silicon dice interconnected and transfer
molded into void less hybrid rectifier circuit assemblies.
•

Large Inrush Surge Capability - 100 A (For 1.0 Cycle)

•

Efficient Thermal Management Provides Maximum Power Handling
in Minimum Space
Designers Data for "Worst Case" Conditions
The Designers Data Sheet permits the design of most circuits entirely from

the information presented.

Limit curves - representing boundaries on device

characteristics - are given to facilitate "WOTst case" design.

MAXIMUM RATINGS
Rating (Per Legl

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

VRRM
VRWM

DC Blocking Voltage

VR

DC Output Voltage
Resistive load
Capacitative Load

Vdc
Vdc

Sine Wave RMS Input Voltage

-1 -2 -3

-4

-5

-6

-7

-8

-9

Unit

25 50 100 200 300 400 600 800 1000 Volts

1530 62 124 185 250 380 500 620 Volts
25 50 100 200 300 400 600 800 1000 Volts

VRIRMS) 1835 70 140 210 280 420 560 700 Volts

Average Rectified Forward
Current
(smgle phase bridge
resistive load. 60 Hz,
see Figure 6, T A = 56 o C)

10

Non-Repetitive Peak Surge
Current, (see Figure 2)
rated load, T J = 175°C
no load, T J =25°C

IFSM

60 (for 1 cycle I
100 I for 1 cycle)

TJ, T stg

-55 to +175

Operating and Storage Junction
Temperature Range

1.8

Amp

Am~

°c

ELECTRICAL CHARACTERISTICS
Characteristic
MaXimum Instantaneous Forward Voltage Drop

(Per Leg) (IF

= 0.75 Amp, TJ = 25°C) Figure

Maximum Reverse Current (Rated de Voltage
across ac terminals, T = 25 0 CI

Symbol

Max

Unit

VF

1.1

Volts

IR

20

"A

Characteristic

+

""--SEATING PLANE

DIM
Symbol

Max

Unit

ReJA

40

°C/W

A
B

0
F
G

MECHANICAL CHARACTERISTICS
CASE: Transfer-molded plastic encapsulation.
POLARITY: Terminal-designation embossed.
on case +DC output
-DC output
-ACmput

~=p'

1

THERMAL CHARACTERISTICS)
Thermal Resistance, Junction to Ambient
(Full-Wave Bridge Operation,
Typical Printed Circuit Board Mounting)

[~J
t
-l'G

MOUNTING POSITION: Any
WEIGHT: 1.0 gram (approx)
TERMINALS: Readily solderable
connections, corrosion resistant.

262

K
L

MILLIMETERS
MIN MAX

INCHES
MIN
MAX

6.10
6.73
4.06
4.70
0.89
1.27
0.46
0.76
2.84 NOM
6.60
7.11
1.27
1.78

0.240 0.265
0.160 0.185
0.035 OO~Q
0.018 i 0.030
0.112 NOM
0.260 I 0.280
0.050 0.070

CASE 216

F

MDA922-1 thru MDA922-9 (continued)

FIGURE 1 - FORWARD VOLTAGE (PER LEG)

FIGURE 2 - MAXIMUM SURGE CAPABILITY

100

100

~

/'

50
TYP/
30

V

,/

::;
>--

/'

~
'"i3
'""'

/MAX
20

I /

'"
=>
'"

TJ,250C

I

10

'"~

~

~

"'"
~
~

'"=>
5l
z

50

I"'-

...........
l"-

N {\

30

20

I

.............

r---.....

t-----

I--

2.0

1.0

5.0

II II

10

"l"-

I

10 CYCLE

SURGE APPLIED AT RATED~
LOAD CONDITIONS (TJ' 175°C)
VRRM APPLIED AFTER SURGE

10

5.0

SURGE APPLIED AT N?:t.i:t
LOAD CONDITIONS (TJ' 25°C)
VRRM APPLIED AFTER SURGE

......

~

'">--

::;

'"
i3

.......

70

.........

.........

20

50

100

NUMBER OF CYCLES AT 60 Hz

3.0
2.0

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

1.0
+3.0

-z

~

0.5

~

0.3

'"

+20

0.2

TYPICAL RANGE

0.1

0.03
0.5

--

-1.0

0.05

1.0

1.5

2.0

2.5

3.0

3.5

-2. a
0.1

4.0

VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

0.5

0.2

1a

""...
I

i
2.0

5.0

10

20

IF, INSTANTANEOUS FORWARD CURRENT (AMP)

FIGURE 4 - TYPICAL THERMAL RESPONSE

0.002

V
.....

7

0.005
t, TIME OR PULSE WIDTH (SECONDS)

263

50

100

MDA922-1 thru MDA922-9 (continued)

FIGURE 6 - CURRENT DERATING

FIGURE 5 - POWER OISSIPATION
2.0

8.0

~
,..
«
~

z

6.0

<::

",..

:;

~
c;

"'~

li:
~

5

I':
=>

3.0

~

1.0

""

Ipk

0.4

o

0

,~

/

-..;;::~

I,vg

~

(PER LEG)

o

0

'10

RESISTIVE·INDUCTIVE
LOADS

i/" ~ ~

1/

lpk = 10 lavg

u

"~

1

l1A' 18

......... ~ ~

f--CAPACITIVE LOApS/
Ipk • 5.0 lavg

0.8

c
2.0

FULL WAVE BRIOGE OPERATION

.............. ~ ~

1.2

"'
13

4.0

«

:;
,..

~

5.0

~

........
t'--..
...... ........... ~

0: 1.6

c

;::

'"

7.0

10 , (I,vy), DC OUTPUT CURRENT (AMP)

20

60

40

80

100

120

140

TA, AMBIENT TEMPERATURE (DC)

"

160

180

200

FIGURE 7 - BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

Load 1

Load 2

CIRCUIT B

CIRCUIT A

APPLICATION NOTE
The Data of Figure 4 applies for typical wire terminal or printed
circu it board mounting conditions in still air. Under these or simi-

mal coupling between the individual semiconductor die in the
MDA922 assembly, the maximum ambient temperature is given

lar conditions. the thermal resistance between the diode junctions
and the leads at the edge of the case is a small fraction of the ther-

closely by

mal resistance from junction to ambient. Consequently. the lead

TA

temperature is very close to the iunction temperature. Therefore.
it is recommended that the lead temperature be measured when the
diodes are operating in prototype equipment, in order to d~termine
if operation is within the diode temperature ratings. The lead having
the highest thermal resistance to the ambient will yield readings
closest to the junction temperature. By measuring temperature as
outlined, variations of junction to ambient thermal resistance.
caused by the amount of surface area of the terminals or printed
circuit board and the qegree of air convection, as well as proximity
of other heat sources cease to be important design cOr:"lsiderations.
Bridge rectifiers are used in two basic circuit configurations as
shown by circuits A and B of Figure 7. The current derating data
of Figure 6 applies to the standard bridge circuit (Al, where IA

= T J(max)

-ROJA PT

where PT is the total average powEr dissipation in the assembly.
For the circuit of Figure B, use of the above formula will yield
suitable rating information. For example to determine T Almax)
for the conditions:
IA
IB

= 2.0A,
= ,.OA,

IpK
IpK

= 8.0 lavg
= 18 lavg

From Figure 5: For lA, read PTA"'" 4.2W
For I B, read PTB "" 2.2W

= lB·

PT

The derating data considers the thermal response of the junction
and is bas~d upon the criteria that the junction temperature must
not exceed rated T J(max) when peak reverse voltage is applied.
However, because of the slow thermal response and the close ther·

= (PTA + PTB) -4- 2 = 3.2W

(Division by 2 is necessary as data from Figure 5-is for full wave
bridge operation.) :. TA(':"ax)

264

= 1750

-

(40) (3.2)

= 47 o C.

MDA922-1 thru MDA922-9 (continued)

TYPICAL DYNAMIC CHARACTERISTICS (PER LEG)
FIGURE 9 - REVERSE RECOVERY TIME

FIGURE 8 - FORWARD RECOVERY TIME

2. 0
~

~

,.;::
w

1. 01==

ffi
>

O. 7f=

~
~

~

:r

20

TJ=250C

-2fj

I

]

L-

!

w

'"

;::

Vir

/

O. 5

ffi

>

V

i---"

0.3

-

0.2

O. 1

0.1

0.2

0.5

0.3

0.7

~

i""Vlr= 1.0 V

w

~
~

1.0

2.0

~
E

2.0V

3.0

"'"

5.0 7.0

"'"

3.0
2.0

1.0
0.1

10

t-teJ

r-...

5.0

w

lTV

~

10
7.0

I

[IF

a

r-....

0.2

0.3

0.5

0.7

d
I.J A~~

TJ = 25 0
0.1 < IF <

.......
2a

1.0

3.0

1.0

a ,.....!'-

O. 5f- 10.4

TJ = 25°C

a

f'.

1-n1'f~ ~

l>-.

TJ = 175°C

...

~

f':::::

I---

o. 21---

-

J\f'vJ1JL----

25°C

~

O. 1
1.0

2.0

3.0

20

5.0 7.0 10

30

l'

a

'I"

"

CURRENT INPUT WAVEFORM

.......

1' ...

"""'i!I~

0.3

11111

~

k:: I~EiURED DATA

10

FIGURE 11 - CAPACITANCE

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY

I--- I-- I--DATA NORMALIZED P'l",

5.0 7.0

IR/IF, DRIVE CURRENT RATIO

IF, FORWARD CURRENT (AMP)

o. 71--- I-- +--TO 1.0 kHz VALUE

I-....

50 70 100

""-i'...

a

I

7. a

~

5. a
0.2

200

I'...
0.5

1.0

2.0

5.0

10

20

50

100

200

VR, REVERSE VOLTAGE (VOLTS)

REPETITION FREQUENCY (kHz)

RECTIFIER EFFICIENCY NOTE
FIGURE 12 - SINGLE-PHASE FULL-WAVE
BRIDGE RECTIFIER CIRCUIT

,,2RL

8

alsine) = --·100% = -·100%= 81.2%
V2m
,,2

121

V2m
For a square wave
mput of amplitude V m,
the efficiency factor
The rectification efficiency factor
calculated using the formula:

(J

becomes:

shown in Figure 10 was

RL
alsquare) = - - . 100% = 100%
V2m

(3)

RL
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, resultIng in an increasing ac voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor G, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data
was obtained by measuring the ac component of Vo with a true
rms ac voltmeter and the dc component with a dc voltmeter. The
data was used in Equation 1 to obtain points for Figure 10.

V2oldc)
Pldcl
RL
V2o ( d c ) . 100%
a = p(rms) =v2olrmsl' 100% = V2o (ac) + V20ldcl
(1)

RL
For a sine wave input Vm sin (wt) to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:

265

SILICON
MOLDED ASSEMBLY RECTIFIER BRIDGES
Single-Phase Full-Wave Bridge

MDA942 SERIES (l.5 AMPS DC)
MDA972 SERIES (16.0 AMPS DC)
MDA1591 SERIES (4.0 AMPS DC)
Three-Phase Full-Wave Bridge
MDA 1505 SERIES (8.0 AMPS DC)

MDA942
CASE 110

MDA942A
CASE 111

CASE 116

Molded assembly rectifier bridges are individual hermetically sealed rectifiers interconnected and encapsu lated in molded assemblies for use as single-phase and
three-phase full-wave bridge configurations, with output
current from 1.5 to 16 amps, peak reverse voltage from
50 to 600 volts.

MDA1591

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic

Symbol

Maximum Forward Voltage Drop per Cell

= O. 75 Ade)
= 5.0 Ade)
(IF = 4.0 Ade)
(IF = 2.0 Ade)

Value

VF

(IF

MDA942 series

1.1

MDA972 series

1.0

MDA1505 series

1.0

MDA1591 series

1.0

(VR

= Rated VRM)

mAde

IR

MDA942 series

0.01

MDA972 series

1.0

MDA1505 series

1.0

MDA1591 series

1.0

266

Unit
Vde

(IF

Maximum Reverse Current per Cell

CASE 112

RECTIFIER BRIDGES

(continued)

s9}
r
I

I~

:

LA-L K

f

I

2

11

S

'N

fK

L G

.!.!

!

CASE 116·02

E C

'~l
L=

f

.J

K

l
G

~
[2A1

o

80

7

0

0

0

o

~

-1.030
0.245

0.585
l285
1.034
l255
1.100

MDA942

MILLIMETERS
MAX
MIN

INCHES
MAX
MIN
- 0.687
0.260
0.468
0.029 0.035
0.114NOM
0.147 0.153
0.125 NOM
0.500
0.750

MDA942A

CASE 111·01

MILLIMETERS
INCHES
MIN
MIN
MAX
MAX
A 176.28 177.80 6.940 7.000
8 150.88 152.40 5.940 6.000
C 28.96 34.29 1.140 1.350
E 10.67 12.70 0.420 0.500
F 14.61 15.88 0.575 0.625
G 116.84 121.92 4.600 4.800
H 32.26 34.29 1.270 1.350
3.66 NOM
0.144 NOM
J
K
7.11
8.13 0.280 0.320
L 66.04 68.58 2.600 2.700
N
25.40 26.67 1.000 1.050
Q
8.89
9.40 0.350 0.370
NOTES: R 11.68 12.70 0.460 0.500
1. TERMINALS HAVE MILLED SLOTS
1.17 mm (0.046) WIDE ANO 4.37 mm
(0.172) OEEP.
DIM

STYLE 1.
PIN 1. +
2. OPEN
3. AC
4. OPEN
5. 6. OPEN
7. AC
8. OPEN
COLOR CODED

L

..!Lsi-

14.35
7.24
0.86
6.48
27.94

A
- 17.45
6.60
8
11.89
C
0.89
D 0.74
2.90 NOM
F
3.89
G 3.73
3.18 NOM
H
J 12.70
K 19.05

"ftt
>~Q "
t=
l!j r- =!1
r;=g
F! · ·
~ .!

0.76
6.22

CASE 110·01

DIM

11

'-;;1

A

EEl!

K

NOTE:
1. POLARITY INK MARKEO ON CASE.

D

THREE..pHASE
FULL-WAVE BRIDGE

D
G

s

I

SINGLE-PHASE
FULL-WAVE BRIDGE

A
B

I

f'T~~
L
1
A

G

INCHES
MIN
MAX

MILLIMETERS
DIM MIN MAX

DIM
A
B

C
G
K

L

MILLIMETERS
MIN MAX
- 32.13
7.75
8.00
20.32 21.72
17.32 17.58
31.27 32.89
34.24 35.31

INCHES
MIN
MAX

-

0.305
0.800
0.682
1.231
1.348

1.265
0.315
0.855
0.692
1.295
1.390

CASE 112·03

04

0

5

'i'l

I .AJ
f<':'~ ' . )
~.w~,lt.
;:
0

/~

' "\::,;;/

I

D

I

L
i---J-

CASE 114--01

267

MILLIMETERS
INCHES
MIN
MAX
MIN
MAX
2.270
57.66
43.18
44.45
1.700
1.750
0.870
C
21.08
22.10
0.830
3.56
0.140
D
F
13.84
14.48
1.1
G
28.588SC
H
22.10
J
43.948SC
1.730 sse
K
5. 8
6.22
6.48
0.245
0.255
L
Q
O.lou
3.81
0.130
3.30
44.20
1.740
R
NOTES:
1. DIM "L" IS 3.18 mm (0.125) DEEP;
DIM "(1" IS THRU HO LE

OIM
A
8

O.54~
4

RECTIFIER BRIDGES

(continued)

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
DC DUTPUT
VOLTAGE
Rls. . Cap•.
Load
Load
Volts
Volts

~55°C

PEAK FULL WAVE
ONE CYCLE
SURCE CURRENT

'MPS

AlDp.

PEAK FULL WAVE
RECURRENT
FORWARO CURRENT

PEAK REVERSE
VQlTACE
(DC or RECURREND
Volts

SINE WAVE
RMS INPUT
VOlTACE
CliNE 10 LINE!
Volts

-2
-3
-4
-5
-6·

50
100
200
300
400
600

35
70
140
210
280
420

30
62
124
185
250
380

50
100
200
300
400
600

1. 50
1. 50
1. 50
1. 50
1. 50
1. 50

25
25
25
25
25
25

6.0
6.0
6.0
6.0
6.0
6.0

2

MDA972-l
-2
-3
-4
-5

50
100
200
300
400

35
70
140
210
··280

30
62
124
185
250

50
100
200
300
4QO

16.0
16.0
16.0
16.0
16.0

250
250
250
250
250

60
60
60
60
60

3

MDA1591 -1
-2
-3
-4
,.
-5
-6

50
100
200
300
400
600

35
70
140
210
280
420

30
62
124
185
250
380

50
100
200
300
400
600

4.00
4.00
4.00
4.00
4.00
4.00

100
100
100
100
100
100

25
25
25
25
25
25

4

MDA1505 -1
-2
-3
-4
-5
-6

50.
100
200,
300
400
600

35
70
140
210
280
420

47
95
190
285
380
570

50
100
200
300
400
600

8.00
8.00
8.00
8.00
8.00
8.00

200
200
200
200
200
200

45
45
45
45
45
45

'riPE NO.

,

MDA~42-1

ru cm.

DC OUTPUT
CURRENT
BIENT

(80

Hz,

(80 Hz'

AlWps

,

Maximum Operating and Storage Temperature: -65°C to ...150°C (AlI1'ypes)

·,.

'"
~""

/
II

0

50

w

1/ I

0

70

'"
'"
a

I

20

30

50

70

100

NUMBER OF CYCLES

0

I
I

0

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

1/

0

0

L

VI

-0.5

0

/

'-'

3.s -1.Or-

TYPICAL
RANGE,

~

1.0

r;

O. 7

~

O. 5

8

:>

~

tr

/1'

l1

1-1-

V

-2.0

...... 1-

O. 3
O.2

o

r---

.~

-1. 5

I--'

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-2. 5
0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

iF, INSTANTANEOUS FORWARD CURRENT lAMP)

VF, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

·FIGURE 4 - TYPICAL THERMAL RESPONSE

§N

1.0

~

,0. 7

g;
~

O. 5

~

o.2

...... V

to

i:i

'"

Z8JClt) = rlt) • R8JC

f-"'"

O. 3

vI-

O. 1

~ 0.07

ffi

0.0 5

,

!I:

~ 0.0 3

-I--"

z

i* 0.02

:=~ 0.0 I
?

2.0

~
5.0

10

20

50

100

200

500
t,TIME

272

1.0k
(m~

2.0k

5.0k

10k

20 k

50k

lOOk

200k

MDA970-' thru MDA970-3 (continued)

MAXIMUM CURRENT RATINGS, BRIDGE OPERATION

..

FIGURE 5 - CASE TEMPERATURE
DERATING
0

~ 9. o

~

8.

a:

o

. . . r--...:r---.:"
-"

~ 7.0

:il

6. 0

~

5. 0

~

4.0

w

to

ffi

3.0

~ 2.0

V, I I I
i.-- 5 }CAPACITIVE

r--...I"~k . . . . I---~~
...... r--...~~

......

......;:

r-....."t'~ ..... 150
~ ;<:20
a
i'--~
ffi

.

~

~ 2.

~ !IIi..

~

~

~ 1.0

:f"

0
20

en

40

80

100

-

a: 3.0
a:
5
~ 2.

LOADS

Noh: T1hel(PK)iI(AV) ratio
reters t~ a linlyle di~de.

~~ (RESISTIVE & INDUCTIVE LOADS)

S 3. 5t':::-.-

~~

TJ~150oC

-

.'"

~ =" (RESISTIVE & INDUCTIVE LOADS)

........ 1:'-.

FIGURE 6 - AMBIENT TEMPERATURE
DERATING
4.0

,

~
wi.5
to

..ffiSO.
>

I".

140

110

(4". x 4" Copper
PC Biard)

~

160

I

I

I

CAPACITIVE
LOADS

r<:~~

ROJA = 22oC/w

o

}

,,~~

I

TJ~

~

150°C

1.0

NOTE: Thel(PK)iI(AV) ratio
refers to a single diode.
5 - 1-

~~

I I I I I I

0
10

en

40

TC. CASE TEMPERATURE (OC)

80

"'"

120

100

,
160

140

TA. AMBIENT TEMPERATURE(OC)

TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)

-

FIGURE 7 - RECTIFICATION EFFICIENCY
100

""-:::-

10

r-

N:.

70

~......

~
~

15
U

TJ = 15°C

~

"

a:

rvv-'

30

ruu --2.0

3.0

5.0

\

'"ffi

~

1\

\
7.0

10

10

a

1

5.0

t

30

3. a
2.OI-

O~
0.1

0.1

500

I'.

........

300
~

1.0

2.0

3.0

VF~
- 1- Vfr-I I

-

5.0

I-- Tj=250C

7.0

10

,

w

~ O. 5r-

Tj = 25°C

200

/
/

tfr

/'

>-

ffi
>

100

§a:

70

~

~~

c;j 50

0.3

O. 2

V-

30

20
1 ____
O.

10

1.0

1.0

3.0

I

O. 7 -

'"'z

~

0.5 0.7

1.0

700

~

" "'" I'........... i'.r-... I"- l"""""

FIGURE 10 - FORWARD RECOVERY TIME

FIGURE 9 - JUNCTION CAPACITANCE
1000

w

0.3

.........

l......

L

trr

......

IRiIF. RATIO OF REVERSE TO FORWARD CURRENT

REPETITION FREQUENCY (kHz)

~

-I

IR

1. a
70 100

......
........

~~.-

f-

1\
50

Tj = 15°C

'I"-

IF = 5A

w

\

20
1.0

§

\

............

~
~ 7.0

Tj=1"750C

\

\

CURRENT INPUT
WAVEFORM.

>
;::

~

'";::

"'"'"",
""..........

Jw

~

"

I

50

w

FIGURE B - REVERSE RECOVERY TIME
30

5.0

7.0

10

10

30

50

70 100

1.0

--

--

.........-

V

1.0

/

--3.0

Vfr= I V

Vfr= 1 V

II

5.0

iF. FORWARD PULSE CURRENT (AMP)

VR. REVERSE VOLTAGE (VOLTS)

273

-

~r--

- -

. 7.0

10

MDA97o-1 thru MDA970-3 (continued)

°H
: fW) =:

FIGURE 11 -

.1

0:

~

CAPACITIVE

~u; 14 LOADS

1=

to

ffi~

I

" ,"

I

6& ~

~~

..A ~

~
.",~

a
o

1.0

",

2.0

/1./'::

]1

/ ...... ~V

~~

4.a
2. a

I

FIGURE 12 - BASIC CIRCUIT USES FOR
BRIDGE RECTIFIERS

;"./::;>5:V

-, "'''

e~ 6.0

~

I

{I~~
20

12

~~ 8. a
So

I

(RESISTIVE & INDUCTIVE LOADS))<

>z 10
<0

!'!.

POWER DISSIPATION

3.0

4.0

5.0

TJ~

15a·c

Load

CIRCUIT A

NOTE: The I(PK))I(AV) ratio refers to a single diode;
PDTIAV) referst. the package dissipation.
6.0

7.0

B.O

9.0

10

IFIAV).AVERAGE FORWARD CURRENT (AMP)

CIRCUIT B

NOTE 1: THERMAL COUPLING AND EFFECTIVE THERMAL

NOTE 2: SPLIT LOAD DERATING INFORMATION

RESISTANCE
In multiple chip devices where there is coupling of heat between
die, the junction temperature can be calculated as follows:

Bridge rectifiers are used in two basic configurations as sh,own
by circuits A and B of Figure 12. The current derating data of
Figures 5 and 6 apply to the standard bridge circuit (A) where
'A = 'B. For circuit B where IA :;6 IB' derating information can be
calculated as follows:

11) "TJl = Rei POI + R82 Ke2 P02 + Re3 Ke3P03
+ Re4 Ke4 P04

(6) TRIMAX) = T J(MAX) - "T Jl
Where TR(MAXI is the reference temperature (either
ambient)

Where 6 TJl is the change in junction temperature of diode 1
R81 thru 4 is the thermal resistance of diodes 1 through 4
POI thru 4 is the power dissipated in diodes 1 through 4
Ke2 thru 4 is the thermal coupling between diode 1 and
diodes 2 through 4.

case or

I!..T Jl can be calculated using equation (3) in Note 1.

For example. to determine T C(MAX) for the following load
conditions:

An effective package thermal resistance can be defined as
follows:
(2) R8IEFF) = "TJ1/POT
where: PDT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation (1)
simplifies to

IA = 3.1 A average with a peak of 11.2 A
18 = 1.55 A average with a peak of 6.B A
First calculate the peak to average ratio for IA. I(PK)/I(AV) =
11.2/1.55 = 7.23 INote that the peak to average ratio is on a per
diode basis.)

(3) "TJl =R81 (P01,+Ke2P02+Ke3P03+K84P04)
For the conditions where POI = P02 = P03 = P04. PDT = 4 PO'
equation (3) can be further simplified and by substituting into
equation (2) results in

From Figure 11. for an average current of 3.1 A and an I(PK)/
IIAV) = 7.23 reed PTIAV) = 4.8 watts or 1.2 watts/diode :.
POI = P03 = 1.2 watts.
Similarly. for a load current IS of 1.55 A. diode #2 and diode
#4 each see 0.775 A average resulting in an I (PK)/I (A VI "" B.B.

(4) ReIEFF) = Rel(1 + Ke2 + K83 + Ke4)/4

Thus, the package power dissipation for 1.55 A is 2.3 watts or
0.575 watts/diode:. P02 = P04 = 0.575 watts.
The maximum junction temperature occurs in diode #1 and #3.
From equation (3) for diode #1 "T Jl = 9[1.2 +.65(.575) +.725
(1.2) + .725 1.575)J

For this rectifier assembly, thermal coupling between opposite
diodes is 65% and between adjacent diodes is 72.5% when the case
temperature is used as a reference. When the ambient temperature
is used as the reference, the coupling is a function of the mounting
conditions and is essentially the same for opposite and adjacent
diodes.

"TJl "" 260 C
Thus TCIMAX) = 150-26 = 1240 C

The effective bridge thermal resistance, junction to ambient,
is (from equation 4).

The total package dissipation in this example is:

(5) ROIEFF)JA = R8JAII +3KOIAV)JA)/4

PJ = 2 X 1.2 + 2 X 0.575'" 3.6 watts

Where: K8IAV)JA "" IKO(AV)JC ROJC + ReCAIiROJA
and K8(AV)JC is approximately 70%. ReCA is the case to
ambient thermal resistance.

(Note that although maximum R8JC is lOoC/watt. gOC/watt is
used in this example and on the derating data as it IS unlikely that
all four die in a given package would be at the maximum value.)

NOTE 3
Under typical wire terminal or printed circuit board mounting
conditions, the thermal resistance between the diode junctions
and the leads at the edge of the case is a small fraction of the thermal'resistance from junction to ambient. Consequently. the lead
temperature is very close to the junction temperature. Therefore,
it is recommended that the lead temperature be measured when the
diodes are operating In prototype eqUipment, in order to determine

if operation is within the diode temperature ratings. The lead having
the highest thermal resistance to the ambient will yield readings
closest to the junction temperature. By measuring temperature as
outlined, variations of junction to ambient thermal resistance,
caused by the amOunt of surface area of the terminals or printed
circuit board and the degree of air convection, as well as proximity
of other heat sources cease to be important design considerations.

MDA972 series
For Specifications, See MDA942 Data_

274

MDA980-1
MDA990-1

thru
thru

MDA980-6
MDA990-6

Designers Data Sheet

SINGLE-PHASE
FULL-WAVE BRIDGE

INTEGRAL DIODE ASSEMBLIES

12 and 30AMPERES
50 thru 600 VOLTS

passivated, diffused silicon dice interconnected and transfer
molded into voidless hybrid rectifier circuit assemblies. The MDA990
series incorporates an electrically insulated aluminum disc for im·
proved heat dissipation when mounted directly on a metal chasis
or heat sink .
•

Large surge capability - 300 A

•

Efficient Thermal Management Provides Maximum Power Handling
In Minimum Space

~~

Designers Dat8 for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

Symbol
l'1Iek Repe1lt,veReverse Voltage

Worlung Puk Reverse Voltage
DC81oeklngVoltage
RMS ReVllrseVoltaga

DC Output Voltage
ReSlS1lve Loed

. ..

.,

MAXIMUM RATI NGS (T C .. 25 0 C unless otherwise noted)
VRRM
VRWM
VR

50

100

200

V.R!AMS

36

70

140

Vd,

,.

210

<00

600

280

<20
Volt$

62

185

12'

250
400

ClIpileluwl.Q1td

380

(Smgle pha!lll bridge rHlstlve lolid,
60 Hz, TC - SSoe)

CASE 179.01

MDA980Serie.

C>
~
,

Am,

MOA990

Aluminum
Disc

0.8750Ia.

CASE 179·02
MOA 990 Series

12

MOA980

Non·Repetlt.ve PeliIk Surge Current
ISurveapphed at rated load 

ffi
z

,~.

5.0

;!:

~

3,0

!

2.0

v

-

0.3

~

0.2
0.6

0.8

1.0

1.2

1.4

1.B

1.8

2.0

2.2

-

TYPICAL
RANGE,

-1.0 " -

~

I-

V

).;1
1

f"

~

-2.0

2.B

2.4

-2. S
0.2

YF. INSTANTANEOUS FORWARD VOLTAGE IVOLTSI

0.5

1.0

5.0

2.0

10

20

50

100

200

, iF. INSTANTANEOUS FORWARD CURRENT IAMPI

FIGURE 4 - TYPICAL THERMAL RESPONSE

.

1.0

w

z
~

fa
'"..

'\

30

FIGURE 8 - JUNCTION CAPACITANCE

"',-

r-

100

30

50

10
1.0

70 100

2.0

3.0

5.0

FIGURE 9 - REVERSE RECOVERY TIME
30
20

].
!:i1 10

t'--.

f'.. I'..

;::

"-I'-I'

~
;::

~

~ 3.0
2.0

If~~~1

......

, IA,

.......

-~
=O~

_I In

I.

1.0

0.1

0.2

0.3

'" ...........
I'...

0.5 0.7

Ie

........... 'I'...

"
2.0

II-

1_

t.

3.0

0.2

_I

- t--

30

50

70 lOa

t
v,.

5.0 7.0

,0.1
10

---

1.0

l.iI" RATIO Of REVERSE TO FORWARD CURRENT

277

1/

/

..........

V

TJ~25'C

L
~

L
v.~IV

~

$

r--..

1.0

0.5

~

"-. "

L

20

I

~Vf~1

~ 0.3

>,

5.0

I

l-

0.7

].

TJ ~ 25'C

~ 7.0

~

10

FIGURE 10 - FORWARD RECOVERY TIME
1.0

i"""- t--..

7.0

V., REVERSE VOLTAGE (VOLTS)

REPETITION FREQUENCY (kHz)

~

~

2.0

k--::'"
3.0

-

r--~

vfr=2V

11
5.0

if, FORWARD PULSE CURRENT (AMPS)

7.0

10

MDA980-1 thru MDA980-6, MDA990-1 thru MDA990-6 (continued)
FIGURE 11 - POWER DISSIPATION
70
50

'"~

3D

IIPK) = "'IRESISTIVE &
IIAV)
INDUCTIVE LOADS

30

dA~!CITI~E

~;;;211

~S

ffi~ 10
>z
~ e7.0

:::::

1~"""

LOADS
IIPK) =
IIAV)

~

r-.

Ogj

~i53.0

~

0.7

1.0

'"'
~

S

2.0

3.0

I-

20

B

15

-...........

I-

5.0 7.0

10

3D

20

~ MDA99~

-~
--r-... ~

r-...

~

=> 10

TJ ~ 1750 C
NOTE: TheIIPK)/IIAV) ratio refers to a single diode; POT(AV)
refers to the package dissipation:_

p1.0
0.7
0.5

Ii::

~ i~
~ r--.;:

~

2.0

LNIT MriUNTEDION A 8 ~ 8 x 1181INCH
ALUMINUM PLATE IN VERTICAL
POSITION IN STILL AIR
rESISTIVE -INDUCTIVE LOAO

25

P'

---

~ ~5.0

j

FIGURE 12 - CURRENT VERSUS AMBIENT TEMPERATURE

0

u

°ES.O

50

""

..... ~

5.0

25

45

IFIAV). AVERAGE FORWARD CURRENT lAMP)

65

105

85

125

~~

145

165

185

TA. AMBIENT TEMPERATURE IOC)

NOTE 1 - THERMAL COUPLING AND EFFECTIVE
THERMAL RESISTANCE

Where: PDT is the total package power dissipation.

In multiple chip devices where there is coupling of heat between

die, the junction temperature can be calculated as follows:

Assuming equal thermal resistance for each die, equation (1)
simplifies to
(3) ~TJl = R811POl + K82 P02 + K83 P03 + Ke4 P04)

(1) 6TJl = R81 P02 + R82 K82 P02 + R83 K83P03
+ R84 K84 P04
\Ntiere ~T J1 is the change in junction temperature of diode 1

For the condition where POl = P02 = P03 = P04, PDT = 4POI
equation (3) can be further simplified and by substituting into
equation (2) results in

RS1 thru 4 is the thermal resistance of diodes 1 through 4.
Po 1 thru 4 is the power dissipated In diodes 1 through 4

(4) RO(EFF)

K82 thru 4 IS the thermal couplmg between diode 1 and
diodes 2 through 4.

=

R81 11 + K02 + Ke3 + Ke4114

For the MDA980 rectifier assembly, thermal coupling between
opposite diodes is 42% and between adjacent diodes is 50% when
the case temperature is used as a reference. Similarly for the
MDA990, thermal coupling between opposite diodes is 12% and

An effective package thermal resistance can be defmed as
follows:

(2) R8(EFF) = ~TJ1/POT

between adjacent diodes is 20%.

NOTE 2 - SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown

From Figure 11.for an average current of 20 A and an I(PK)I
I IA V) = 8.6 read POTIA V) = 40 watts or 10 watts/diode. Thus
POl = P03 = 10 watts.
Similarly, for a load current 16 of 10 A, diode #2 and diode 114
each see 6.0 A average resulting in an I IPK)/I IAV) '" 14.4
Thus, the package power dissipation for 10 A is 20.2 watts or
6.05 watts/diode_ .: P02 = P04 = 6.05 watts.

in circuits A and B of Figure 13. The currant derating data of
Figures 5 and 6 apply to the standard bridge circuit (A) where
IA:::; lB. For circuit B where IA*IB. derating information can be
calculated as follows:
(6) TRIMAX) = T JIMAX) - 6T Ji

The maximum junction temperature occurs in diodes #1 and

Where TR(MAX) is the reference temperature (either case or
ambient)

113. From equation (3) for diode #1 ~TJl = 5.6 [10 + 0.12
15.05) + 0.2 (10) + 0.216.0611.

6T Jl can be calculated using equation (3) in Note 1.

"TJ1 '" 760 C
Thus T CIMAX)

For example. to determine TCIMAX) for the MOA990 with
the following capacitive load conditions:

= 175-76 = 99 0 C

The total package dissipation in this example is:

IA = 20 A average with a peak of 86 A
16 = lOA average with a peak of 72 A

PJ

=2 x

10+ 2 x 5.06 '" 30.1 watts

INote that although maximum ReJC is 6 0 C/W. 5.60 C/watt is
used in this example and on the derating data as it is unlikely that
all four die in a given package would be at the maximum value).

First calculate the peak to average ratio for IA. I(PK)ilIAV) =
86/10 = 8.6. INote that the peak to average ratio is on a per diode
basis and each diode provides lOA average).

FIGURE 13 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS

Jil

Load 2

Load

CIRCUIT B

CIRCUIT A

278

MDA1200, MDA1201
MDA1202, MDA1204
MDA1206
Designers Data Sheet
FULL WAVE BRIDGE RECTIFIER ASSEMBLIES
SINGLE·PHASE
FULL·WAVE BRIDGE

· .. utilizing inidvidual hermetically sealed metal case rectifiers inter·
connected and then encapsulated in plastic to provide a single rugged
package. Devices are available with voltages from 50 to 600 Volts
with these additional features.
•
•

12 AMPERE
50 thru 600 VOLTS

Slip On Terminals
• High Surge Capability
Output Current Ratings for Both Case and Ambient Conditions
Designers Data for

·~or.t C••••

Conditions

The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves -" representing boundaries on device character-

istics - are given to facilitate "worst case" design.

MAXIMUM RATINGS ITIC = 25°C un ess ath erwi18 noted.
Rating

Symbol

Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
AMS Reverse Voltage

DC Output Voltage

MDA
1200

MDA MDA
1204 lZ06

MDA MDA
1201 1202

50

100

200

400

600

VRIRMS}

35

70

140

280

420

30
50

62
100

124
200

250

380
600

Volts
Volts

Vdc

Resistive Load

Capacitive Load
Average Rectified Forward Current
(Single phase bridge, resistive load,
60 Hz)
TA = 55°C
TC - 1000C

Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions)
Operating and Storage Junction
Temperature Range

10

IFSM
TJ.Tstg

Unit

Volts

VRRM
VRWM
VR

....
..

400

Amp

..
..

4.5
12
300

Amp

~-65to +175~

Q

"C

THERMAL CHARACTERISTICS
Symbol

Characteristic
Thermal Resistance, Junction
to Ambient

Unit

Max

Each Die
Effective Bridge

R8JA

28

°C/W

R8JAIEFF}

17.15

°C/W

Each Die
Effective Bridge

ROJC

10

ROJCIEFF}

3.75

°C/W
°C/W

Thermal Resistance, Junction I
to Case

ELECTRICAL CHARACTERISTICS ITC = 25°C unle" otherwise noted.}
Characteristic
Instananeaus Forward Voltage (Per Diode) (1)
(iF
(iF

= 18.9 A)
a

18.9A, TJ

Symbol

Typ

(I) Pula Te.. : Pula Widlh

'R

Unit
Volts

0.94

= 17s"C)

Reverse Current
(Rated VA applied to ac terminals.
+ and - terminals open)

Max

vF

-

1.05
0.9
0.5

< 300 "', Duty Cycl. < 2.0%.

MECHANICAL CHARACTERISTICS
CASE: Transfer-molded plastic ca.. with epoxy fill.
POlARITV: Termlnal.- ..

!iii! o. 1
i~ 0.01

<:i!

0.05

'l::' a:

0.02

~i 0.03

0.0 1·

.....
5.0

10

i'""""

Z6JC tl

....

=r I)

. R6JC

-

l/
20

50

100

200

500

1.ok

2.ok

t.TIME(m~

280

S.ok

10k

20k

SDk

lOOk

200k.

Sook

MDA1200, MDA1201, MDA1202, MDA1204, MDA1206 (continued}

MAXIMUM CURRENT RATINGS, BRIDGE OPERATION

FIGURE 5 - AMBIENT TEMPERATURE DERATING
~

~
ffi

5. O~
4. 5~

... 4.0 ......... c-..;:: t:-...

'"g;
'"'~
~
c

3. 5 .........
3.0

~ 1.5

~

:::>

~

r-

0.:
40

w S.0 -

oo

~

I F(A V) refllrs to the load current.

so

60

100

120

ffi 6. 0

t-..

140

r-...:t--.

-,mic
r-.....

TJ

/

5.0 } CAPACITIVE

t":t'. ~~~ LOADS)
r-.... )' ~
r---.. r--.J. r-...... ~ ~

......... ~ ~

-....;: ~

NOTE: The I(FM)Ii(AV) rotio
refers to a single diode and
IF(AV) refers to the load current.

>

r"

:~:~: - .(RESISTIVE & INDUCTIVE LOADS)

.........

r---..

~ 10

~

......

~:e~E~o ~~i~~~~I:~~Aa~~ ratio

4
2

'-'

«

~~

TJ" 175 0 C

to

S

~1 6 r--..

r-...: ~ ~
R 8S~

~ 2.0

« 1.0

~1 SI""---

~~
V 1...- 5.0 } CAPACITIVE
r-.... ...... ~ I::x1-/ v~~ LOADS

2. 5

~

FIGURE 8 - CASE TEMPERATURE DERATIIIIG
~ 2O~

I
/. . 1
~ - .(RESISTIVE & INDUCTIVE LOADS)-

« 4.0 -

S

~2.0

......

~

"""

o

160

40

ISO

60

SO
100
120
140
TC. CASE TEMPERATURE (DCI

TA.AMSIENT TEMPERATURE (DC)

160

ISO

TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)
FIGURE 8 - CAPACITANCE

FIGURE 7 - RECTIFICATION WAVEFORM EFFICIENCY
60
40

'"
t;
c

CURRENT INPUT WAVEFORM

:1:

...
'-'

20 f--

~

~

f--


'"~
'"'"

LOA

.......... ~ ......... t-..
5.0 A'

..........:

II IIII

"-

111111

100
5.0
10
20
50
VR. REVERSE VOLTAGE (VOLTS)

200

Tr 250 C

"I'
~~

~

5.0

2.0

"-

ALL DEVICES
APPLICABLE FOR RATED VOLTAGE

O. 7"F

"' o.
'" 5 r

w

'">-

-

1.0

t

TJ-25D

;:: 7.0
~

-

500

FIGURE 10 - FORWARD RECOVERY TIME

.......

~ r--- ...........

-

r--. ....... 1"-

i

.......

0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
IR/IF. RATIO OF REVERSE TO FORWARD CURRENT

0.3

I- tf, --l

V

0.2

~

7.0

1l-0'1.0

10

281

....,..

/'

--

,....

r--

-r-

I-

V
...... Uf;-1.0V

I--- r2'r

2.0
3.0
5.0
IF. FORWARD CURRENT (AMP)

7.0

10

MDA1200, MDA1201, MDA1202, MDA1204, MDA1206

(continued)

FIGURE 11 - POWER DISSIPATION

40

I- :(FMI."
I(AVI

(RESISTIVE &
INDUCTIVE LDADSI

2
CAPACITIVE
8 r-LOAOS

-x...

5.0 .....

~

I? ........

4

2~,

0

/ h

6

/
J

7. ~

/

7> 'Y
~

~ f7

2

/~ ~

0
0/

~

2.0

/

./

V ' / /'
r,!... / /. /'

-,

TJ"'" 115DC

DTE: Til! I(FMlnl(AVI rat~ refeB

~:':~I~~=~VJ.tion

~

and IF(AVI refeB to til! load current.

4.0

6.0

8.0

10

14

12

16

18

20

IHAVI. AVERAGE FORWARD CURRENT (AMPI
NOTE 1 - THERMAL COUPLING AND EFFECTIVE
THERMAL RESISTANCE

Where: PDT is the total package power dissipation.

I n multiple chip devices where there is coupling of heat between
die, the junction temperature can be calculated 8S follows:

Assuming equal thermal resistance for each die, equation (1)
simplifies to
(31 AT J1 = R81(P01 + K82 P02 + K83 P03 + K84 P041
For the condition where POI = P02 = P03 = P04. PDT = 4POI
equation (3) can be further simplified and by substituting into
equation (2) results in

(11 liT J1 = R81 P02 + R82K82P02 + R83 K83P03
+ R84 K84 P04
Where .6T J 1 is the change in junction temperature of diode 1
R81 thru 4 is the thermal resistance of diodes 1 through 4.
Po 1 thru 4 IS the power dlsslpat~d In diodes 1 through 4
K62 thru 4 IS the thermal coupling between diode 1 and
diodes 2 through 4.

(4) Re(EFFI= R81 (1+K82+K83+Ke4114
For the MOA 1200 rectifier assembly. thermal coupling between
opposite diodes is 10% and between adjacent diodes is 20% when
the case temperature is used as a reference. Similarly for ambient
mounting, thermal coupling between opposite diodes is 45'% and
between adjacent diodes is 50%.

An effective package thermal resistance can be defined as
follows'

NOTE 2 - SPLIT LOAD DERATING INFORMATION
Bridge rectifiers are used in two basic configurations as shown
in circuits A and B of Figure 12. The current derating data of
Figures 5 and 6 apply to the standard bridge circuit (AI where
IA = IS' For circuit B where IA~IB' derating information can be
calculated as follows:

From Figure 11. for an average current of lOA and an I(FMI/
I(AVI = 9.2 read POT(AVI = 21 watts or 5.25 watts/diode. Thus
POI = P03 = 5.25 watts.
Similarly. for aloed current IS of 5.0 A. diode #2 and diode #4
each see 2.5 A average resulting in an I(FMI/I(AVI = 14.
Thus, the package power dissipation for 5.0 A is 10 watts or
2.5 watts/diode .. : P02 = P04 = 2.5 watts.
The maximum junction temperature occurs in diodes #1 and
#3. From equation (31 for diode #1 .:3.TJl = 10 [5.25 + 0.1
(2.51 + 0.2 (5.251 + 0.2 (2.511.

(51 TR(MAXI = TJ(MAXI - ATJl
Where TR(MAX) ·is the reference temperature (either case or
ambient)
D.T J1 can be calculated uSing equatIon (3) in Note 1.

.:3.TJl '" 700 C
Thus TC(MAXI = 175 - 65= 106"C
The total package dissipation in this example is:
PDT = 2 x 5.25 + 2 x 2.5 = 15.5 watts

For example. to determine TC(MAXI for the MOA1200 with
the following capacitive load conditions:
IA = 10 A average with a peak of 46 A
IS = 5.0 A average with a peak of 35 A
First calculate the peak to average ratio for IA' I(FMI/I(AVI =
46/5.0 = 9.2. (Note that the peak to average ratio is on a per diode
basis and each diode provides 5.0 A averagel.

FIGURE 12 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS

]1·

JI1

Load

CIRCUIT B

CIRCUIT A

282

HIGH VOLTAGE SILICON RECTIFIER MOLDED ASSEMBLIES

MDA1330H
MDA1331H
MDA1332H
MDA1333H
Compensated series-connected rectifier cells for high-voltage,single-phase,
half-wave circuit applications. Each cell in the series string is shunted by a
high-voltage capacitor and resistor for equal voltage distribution.
NOTES:
1. MDA 1330H and MDA 1331 H, add suffix "C" for common cathode,
"U" for common anode, "D" for voltage doubler.
2. MDA 1332H and MDA 1333H, reverse polarity available by adding
suffix "R".

MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
CD
(Rated Current, Over Operating Temperature Range)
RMS Reverse Voltage
(Rated Current Over the Complete Operating
Temperature Range)
DC Blocking Voltage
(Over Operating Temperature Range)

MDA1330H MDA1331H MDA1332H MDA1333H

Units

VRRM

5,000

10,000

5,000

10,000

Volts

VR(RMS)

3,500

7,000

3,500

7,000

Volts

VR

3,000

6,000

3,000

6,000

Volts

10

1.0

1.0

2.5

2,5

Amps

0,3

0.3

0.5

0.5

25

25

250

250

®

Average Half Wave Rectified Forward Current
(Resistive Load, 180" Conduction Angle,
60cps, Free Convection Cooling)
TA = 40"C
T A = 100"C
Peak 1 Cycle Surge Current
(TA = 40"C, Superimposed on Rated
Current at Rated Voltage)
Operating Frequency Range

I FSM

Operating and Storage Temperature Range

Amps

DC to 400

cps

-55 to +110

"C

CD

VRM(rep) ratings of 5,000 or 10,000 volts peak are both the maximum repetitive
and non-repetitive ratings. Where voltage transient suppression is employed,
these assemblies can be reliably operated at the maximum ratings.

®

The DC Blocking Voltage rating (VR)' is established by the continuous power
dissipation ratings of the shunting reslstors and is not a function of the series

rectifiers.

ELECTRICAL CHARACTERISTICS
Rating

Symbol

MDA1330H MOA1331H MDA1332H MDA1333H

Units

Maximum Full-Cycle Average Forward Voltage Drop
(Half-Wave, Resistive Load, Rated Current and
Voltage, T A=40"C)

VF(AV)

5.0

10.0

5.0

10.0

Volts

Maximum Full-Cycle Average Reverse Current
(Half-Wave, Resistive Load, Rated Current and
Voltage, T A=40" C)

IR(AV)

0.2

0.2

3.0

3.0

rnA

Note: Ambient temperatures are measured at the cold air source point i. e. immediately below the rectifier legs under convection cooling and on the cool air
side with forced air cooling.

283

HIGH VOLTAGE SILICON RECTIFrERS(c6i1:tinUed)'

,

"

~'

ELECTRICAL DESIGN NOTES

1. .. For slngle-'phase',full-wave circuits using "Series 1300" stacks, multiply
the current ratings given for the half-wave by two.
2. For three-phase,full-wave and half-wave circuits, multiply given current
ratiQgs for single-phase,half-wave by two and one half.
3. For capacitive loads, sufficient surge and capacitor . inrush current protection must be employed. Recurrent peak currents up to six times the singlephase average output-curreI).t ratings can be safely sustained when the average
value of these peaks are held at or below the rated average output. Nonrepetitive peak currents must be held to the maximum surge ratings.

TYPICAL FORWARD CHARACTERISTICS
(TJ = 25°C)
4.0

,

8.0

I

7.0

i

i1!
~

3.0

i

I .
~

I
.L

~

MOA1330H

2.0

I

I

1.0

o

MOA1331H

/
o

5.0

I
5?

4.0

i

3.0

.~

12

o
14

16

MOA1333H

2.0

I

LO

/
10

MOA1332H

~
·z

II

/

:::

~

I

6.0

18

v, INSTANTANEOUS FOIIWARO VOLTAGE (VOLTS)

o

I

II

I
10

12

14

16

v, INSTANTANEOUS FORWARD VOLTAGE (VOlTS)

284

18

HIGH VOLTAGE SILICON RECTIFIERS

(continued)

MAXIMUM SURGE CURRENT
RATED CONDITIONS
MOA1330H and MOA1331H

MOA1332H and MOAl333H

300

30

,..i1!

\.

;
I

\.
TA. = 40°C

I\.

'\.

"

\

\

200

~
e

I

Ol

"

......... ......

T. - 4O'C

\..

!@

i"'I

\,

'"

100

j

r--..
........... ......

I"

...... ....

o

o
4

I

6810
20
CYCLES AT60 CPS

40

; 8 10
20
CYCLES AT 80 CPS

I

6080100

40

60 80100

MAXIMUM AVERAGE HALF·WAVE RECTIFIED CURRENT
(RESISTIVE OR INDUCTIVE LOAD. 180· CONDUCTION ANGLE, 60 CPS)
MOA1330H and MOA1331H
1.0

FREE
CONVENTION \looLfr\
COOLING

MDA1332H and MOAl333H

\!OOOJM

\ \ \
\ \
\ \
\
\

IrL~

\.

500LfM

\.

\

f-

FREE
CONVENTION
COOLING

"

I

o

o

o
20

40

60

\.

\.

100

120

T. AMBIENT TEMPERATURE t'CI

\.

\

\

'\

'" "- \ \.'\
"

o

20

40

60

80

T. o AMBIENT TEMPERATURE I"CI

o

285

~
~

100

120

HIGH VOLTAGE SILICON RECTIFIERS
MECHANICAL DESIGN INFORMATION AND OUTLINE 01·
MENSIONS FOR THE BASIC MDA1330H AND MDA1331H
RECTIFIER LEGS.

1 r-

(continued)
MECHANICAL DESIGN INFORMATIOt4 AND OUTLINE 01·
MENSIONS FOR THE BASIC MDA1332H AND MDA13331t
RECTIFIER LEGS.

0.50 NOM

0 50MAX
,

--.L

MOUNTING BARS,
SEE NOTE 1
OFFSET MOUNTING
TABS, SEE NOTE 2

A

(4)

0.260 HOLES
0.275

3/4

=

POlARITY DOTS: RED +DC OUTPUT

Device

ADim

BDim

t

CDim

Device

DDim

BDim

ADim

MDA1330H 4. 25max 3.70±O.05 3. 25 max 3.00nom

MDA1332H

MDA1331H 7. 00 max 6. 39±0.05 6.00max 5. 25nom

MDA1333H 11-1/4 nom 6-l/2±1/16 2-3/8 nom

NOTES: These basic rectifier legs are suitable for chassis
mounting and connection into multiple leg circuits. Center
tapped versions of the MDAI330H and MDA\33IH are
also available for use in lower voltage, Center tapped and
Voltage Doubler applications. The center tapped versions
of the MDAI330H and MDA\331H are designated by a
different suffix letter' as follows: instead of "H" specify
"C" for common cathode, center tap
"U" for common anode, center tap
"D" for voltage doubler.
1<1> TOP VIEW

NOTE I. Insulated mountinll bars are supplied
with all Series I300 stacks and tbe smgle umt bar is
shown above. For multiple leg Circuits, mom,ting bars are
available in lengths suitable for 2 or 3 legs mounted side
by side. In addition, the mounting arrangement used is also
suitable for mounting legs top and bottom on the same bar
with stand·offs employed for support of the assembly.
NOTE 2. Offset mounting taps are used to provide more
compact multiple leg assemblies. When top & bottQm or
side by side mounting is employed. reverse polarity legs
are often required in some circuits. Legs of reverse polarity
to that shown above are designated by an "R" suffix, i.e.
MDAI332HR.

t
6·718 MAX

141 0.260HOLES
0275

_

5-5/8 nom 3-1/4

CDim

1/16 1-1/8 nom

1+-518 NOM
I

I

3¢ DR TOP VIEW

141 0.260 HOLES
0275

1'·718 NOM

I---

~L::::==::::::::!H::::::41T

6· 112 ± 1/16---/

8·1/8 MAX

~~+--------~~--~~
2 NOM

f + - - - - - - - 1 3 MAX--------<001

1<1> AND 3¢ SIDE VIEW

-.i..

AC

1-------13MAX------.j

286

MDA1505 series

For Specifications, See MDA942 Data.

MDA1591

For Specifications, See MDA942 Data.

MDA3551, MDA3661, MDA3552, MDA3662
VOLTAGE
TRIPLERS

HIGH VOLTAGE TRIPLER ASSEMBLIES

30,000 VOLTS
3 MILLIAMPERES

... designed for use in horizontal deflection circuits of black and
white and color television, and in high resolution CRT terminals tal
supply high voltage to the picture tube .
•

30,000 Volt Output

•

Excellent Regulation With Changing Load

IN

~

GNO
MAXIMUM RATINGS
Rating

Symbol

Value

Unit

I nput Voltage, Peak·to·Peak

Vlnl p_p )

10,000

Volts

Average Forward Output Current

IFIAV)

3.0'

mA

IF IA VHfocu,)

0.5

mA

60

,

3.0

Minutes

TA -

750 C,

V out - 25 kV

Average Forward Focus Current
TA -750 C, V out - 25 kV
",rclng \-apao, ,ty
30 kV, 1 arcl,

-

Short Circuit Overload

Output to chassis ground

MDA3551, MDA3552

IN~~~
GNO~~~~OUT
FOCUS
MDA3661, MDA3662

.

Operating Temperature, Ambient

75

TA

°c

Derate to zero output with Vout -- 30 kV.

CASE 281

ELECTRICAL CHARACTERISTICS
Characteristic
Output Voltage (11 IJ,S pulse width,

Symbol

Typ

Max

30,000
25,000

-

vF

-

150

Volts

IR

-

1.0

I'A

1,800

-

Volts

Vout

Unit
Volts

15.75 kHz repetition rate I
Vin::;: 10 kV. 'out = 0
Vin = 8.5 kV, lout = 1.5 mA

Forward Voltage, iF

2.0mA

Reverse Current, VR - 30,000 V

va tage

egu atlon
Vin = 8500 Volts,
lout = 1ool'A to 1.0 mA

Focus Terminal Voltage

lout = 1.5 mA, Vin

-

'" out

V(focus)

8,000

Volts

MDA3551, MDA3661

= 8.5 kV
CASE 280

MECHANICAL CHARACTER ISTICS
CASE: Housing and epoxy fill are self-extinguishing and arc-tracking resistant. Case
and epoxy fill are SEQ rated.

FINISH: All external surfaces are corrosion resistant. Terminals are readily solderable.
POLAR lTV: Polarity designation is indicated by position in the outline drawing marked
on C8J8.
MOUNTING POSITION:

Any. Terminals must be adequate distance from ground pOlential.
Case may be mounted on the chassis.

WEIGHT: (approximate) 9.7 oz. for Case 280; 11.7 oz. for Case 281.
MDA3552. MDA3662

ANODE CONNECTOR: Hobson Bros., Type P125-23

287

OUT

FOCUS

MDA3551, MDA35q2, MDA3661, MDA3662 (continued)
';,'.,

DIM
A
B

C.
STYLE 1:
TERM. 1.
2.
3.
4.

INPUT
GROUND
FOCUS
OUTPUT

D
F

G
H
J
K
L
N
Q
R
S
T

MILLIMETERS
MAX
MIN
107.29 108.56
41.02 41.53
53.72 54.23
3.68
3.94
9.40
9.65
31.12 ,31.37
3.94
3.68
3.81
5.08
304.80 381.00
21.31 21.56
31.50 32.00
4.70
4.95
6.10
6.60
85.60 85.85
69.85 70.10

" ,INCHES
MIN
MAX
4.224 4.274
1.615 1.635
2.115 2.135
0.145 0.155
0.370 0.380
1.225 1.235
0.145 0.155
0.150 0.200
12.000 15.000
1.075 1.085
1.240 1.260
0.185 0.195
0.240 0.260
3.370 3.380
2.750 2.760

"'Length and type of lead may be specified, consul~ factory,
I'

Caso 280
MDA3552. MDA3662

STYLE 1:
TERM. 1.
2.
3.
4.

.• Length and WR8 of lead may be specified. consult factory,

ease 281
MDA3551. MDA3661

288

INPUT
GROUND
FOCUS
OUTPUT

INCHES
MILLIMETERS
MIN
MAX
MIN
MAX
A
98.68 100.20 3.885 3.945
B
53.09 53.59 2.090 2.110
C
49.28 49.78 1.940 1.960
D
3.56
3.94 0.140 0.155
4.50' 5.00 0.177 0.197
E
F
9.62 0.2l10 '0.380
5.08
G 34.04 34.54 ' 1.G40 1.360
H
6.10
6.60 0.240 0.260
5.08 0.150 0.2011
J
3.81
K 304.80 381.00 12.000 15.000
L, 21.84 22.35 0.860 0,880
N
1.37
1.87 0.290 0.310
Q
4.70
4.95 0.185 0.195
R
4.83
5.33 0.190 0.210
68.71 69.22 2.705 2.725
S
T
43.94 44.45 1.730 1.750

DIM

MFE130 thru MFE132
MFES90
MFE591

For Specifications, See MPF 130 Data.

(SILICON)

N·CHANNEL
DUAL GATE

N·CHANNEL DUAL·GATE
SILlCON·NITRIDE PASSIVATED
DMOS FIELD·EFFECT TRANSISTORS

DOUBLE·DIFFUSED METAL
OXIDE FIELD·EFFECT
TRANSISTORS (DMOS)

Enhancement mode (Type C) dual gate double·diffused metal
oxide transistors designed for UHF amplifier and mixer applications.
Especially suited for UH F TV tuner applications.
This series features high·volume production capability using ion
implantation techniques. Characteristics of major importance are:
•

High UHF Power Gain @ 900 MHzG ps = 12.5 dB (Min) MFE591
= 10.5 dB (Min) MFE590

•

Low UHF Noise Figure @ 900 MHzNF = 6.0 dB (Max) MFE591
= 8.0 dB (Max) MFE590

•

Low Input Capacitance @ 1.0 MHz Ciss = 3.0 pF (Max) MFE591
= 3.5 pF (Max) MFE590

•

Low Output Capacitance@ 1.0 MHz Coss = 2.0 pF (Max) MFE591
= 2.5 pF (Max) MFE590

•

Diode Protected Gates

•

Ion Implanted

Gps @ 900 MHz -15.3 dB (Typ)
N F @ 900 MHz - 4.4 dB (Typ)

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VOS

25

Vdc

VOGI
VOG2

30
30

Vdc

Drain Current

10

30

mAde

Gate Current

IGI
IG2

10
10

mAde

Po

300
1.71

mW

A

mW/oC

·65 to +200

°c

C
0
E

D~ain·Source Voltage
Drain-Gate Voltage

Total Power Dissipation
Derate above 2SoC

@

T A = 2SoC

Operating and Storage Channel
Temperature Range

T channel.
T stg

SUBSTRATE

AND CASE

DIM

Thermal Resistance. Junction to Ambient

B

F

G
H
J

THERMAL CHARACTERISTICS
Characteristic

DRAIN
GATE 2
GATE 1
SOURCE.

K

Symbol

Max

Unit

ReJA

585

°C/W

L
M
N
P

MILLIMETERS
MIN MAX
5.31 5.84
4.52 4.95
4.32 5.33
0.41
0.53
0.76
0.41 0.48
2.54 8SC
0.91
1.17
0.71
1.22
12.70
6.35
45 0 BSC
1.27 BSC
1.27

INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0.170 0.210
0.016 0.021
0.030
0.016 0.019
0.1008SC
0.036 0.046
0.028 0048
0.500
0.250
4~BSC

0050 BSC
0.050

CASE 20-03

TO·72

289

MFE590, MFE591

(continued)

ELECTRICAL CHARACTERISTICS IT A = 25 0 C unless otherwise noted.1 Substrate Connected to Source
Characteristic

Symbol

Min

Typ

Max

Unit

V(BRIOSS

25

-

-

Vdc

V(BRIG1S

10

-

-

Vdc

V(BRIG2S

1;/

OFF CHARACTERISTICS
Drain-Source Breakdown Voltage

liD = 1.0 !lAde, VG1 = Vcn = 01
Gate 1 - Source Breakdown Voltage

IIG1 = 10!lAdc, VG2S = 01
Gate 2 Source Breakdown Voltage
IIG2= 10 !lAde, VG2S~ 01
"Off" Drain Current
(VOS~ 15Vde, VG1S~ VG2S= 01

-

1.0

!lAde

IG1SS

50

nAde

IG2SS

50

nAde

mmhos

10(0111

Gate 1 Reverse Leakage Current

-

Vdc

(VG1S = 5.0 Vde, VG2S = 0, VOS = 01
Gate 2 Reverse Leakage Current

(VG2S = 5.0 Vde, VG1S = 0, VOS = 01
ON CHARACTERISTICS

Gate Source Threshold Voltage
(VOS = VG1S, VG2S = 10 Vde, 10 = 1.0 !lAdel
(VOS = VG2S, VG1S = 4.0 Vdc, 10 = 1.0 !lAdel
SMALL-SIGNAL CHARACTERISTICS
MFE591
(VOS ~ 15 Vdc, VG2S = 10 Vdc, 10 = 10 mAde, I = 1.0 kHzl MFE590

Forward Transfer Admittance

I "put Capacitance

MFE591
MFE590

Output Capacitance
(VOS= 15Vde, VG2S= 10Vde,
VG 1 = 2.5 Vde, I = 1.0 MHzl

MFE591
MFE590

Reverse Transfer Capacitance
(VOS = 15 Vde, VG2S = 10 Vde,
VG1 = 2.5 Vde, I = 1.0 MHzl

MFE591
MFE590

Coss

-

20
20

-

-

3.0
3.5

-

-

2.0
2.5

-

-

-

-

0.02
0.025

-

4.4
4.4

6.0
8.0

12.5
10.5

15.3
15.3

-

pF

pF

pI'

Crss

NF

Common-Source Noise Figure (Figure 14)

MFE591
MFE590

dB

dB

Gps

Common-Source Power Gain (Figure 14)

(VOS= 15Vde,VG2S= 10Vde,
10 = 10 mAde, I = 900 MHzl

10
8.0

Ciss

(VOS = 15 Vde, VG2S = 10 Vde,
VG1 = 2.5 Vde, I = 1.0 MHzl

(VOS = 15 Vde, VG2S = 10 Vde,
10 = 10 mAde, I = 900 MHz 1

Vis

MFE591
MFE590

290

-

MFE590, MFE591 (continued)

COMMON-SOURCE CHARACTERISTICS
{VOS

= 15 Vdc, V G2S =

10 Vdc, 10 = 10 mAde, T channel = 250 CI

FIGURE 2 - REVERSE TRANSFER ADMITTANCE - Y12

FIGURE 1 - INPUT ADMITTANCE - VII
100

0

70

~S

~~
~

ii

~~
g~

cu

0

50

A

30

./V

20

7

~ ~ 5.0

~~

/
/ . / jbrs

0

~ ~ 7.0

5

jbis/"
3.0

~~ 2.0
1.0
50

/

./

9rs)

0

7

10

/

0

""
70

/'1

gis

}

100

200

300

/'

3
2

II
SOD 700 1000

2000 3000

./

/

./

1
300

5000

500

2000

0

V

""

V

100
0
0
0

0

./

0

0
0

./

0

- jbfs

0
0

jbos

0
0
5

'\

3
200

500

700

3000

FIGURE 4 - OUTPUT ADMITTANCE - Y22

FIGURE 3 - FORWARD TRANSADMITTANCE - Y21
30

0

1000

700

f, FREUUENCY (MH')

f, FREUUENCY (MHzl

gls

./ /

1000

2000 3000

1. 0
50

5000

""

V
70

100

V

200

f, FREUUENCY (MHzl

""

300

'"
gos

500 700 1000

2000 3000

5000

f, FREUUENCY (MHzl

POWER GAIN AND NOISE FIGURE CHARACTERISTICS
{VOS

= 15 Vdc, VG2S =

10 Vdc, f = 900 MHzl

FIGURE 5 - POWER GAIN

FIGURE 6 - NOISE FIGURE

6

8.0

r":

1/

4

V
12

/

~

1'\\

10

J

II

1\
\

6.0

~

1\

I

)

i5

z 5.0
~z

\

II

7.0

w

"'"'"u::

I
I

\

i..o--

.........

4.0

8.0

o

I

3.0

4.0

8.0

12

16

20

o

4.0

--V

"
8.0

12

10, DRAIN CURRENT {mAl

10, DRAIN CURRENT (mAl

291

V

16

20

MFE590, MFE591 (continued)

S PARAMETERS

(Vos = 15 Vdc, VG2S = 10 Vde, 10 = 10 mAde)
FIGURE 8 - S'2

FIGURE 7 - S"

FIGURE 10 - S22

FIGURE 9 - S21

292

MFE590, MFE591

(continued)

DRAIN CHARACTERISTICS

FIGURE 11 - FORWARD TRANSFER ADMITTANCE

13

I.s

12

~

11

w
'-'

.
c

'"""

........

/~

J

1/

......

........

/'

"\

I'\.
\..
\

w

'"
z

10

~

I(voy 15 vde'i G2
1

I-

~

Y

l0te'i' l.ikHll

9.0

~

~~ 8.0
>"
5.0

7.0

15

9.0
11
13
lOS, DRAIN CURRENT (mAl

20

24

""::i!
I-

16

.s

~

:::>

'-'
w
'-'

.""
:::>

"I

8.0

"""

c 4.0
.;

E

,/

VGIS
2.4 VOLTS

1/

~

2.2

r

[jj

"""":::>
'-'

1.8

1/

w

1.6

II
Y..

1.2
1.0

25

8.0

"""

4.0

c
.;

30

0.5

293

/
/

./

/

./

E

0.8
5.0
15
20
10
VOS, ORAIN·SOURCE VOLTAGE (VO LTSI

12

~
~
z

1.4

J

/

/

I-

2.0

Iv

16

.s

V-

12

z

19

FIGURE 13 - EFFECTS OF GATE 1 VOLTAGE ON
DRAIN-SOURCE CURRENT

FIGURE 12 - DRAIN-SOURCE CURRENT

20

17

1.0
1.5
2.0
2.5
VGIS, GATE I SOURCE VOLTAGE (VOLTSI

3.0

MFE590, MFE591

(continued)

FIGURE 1,!\- 900 MHo TEST FIXTURE

Gate 2

1~\C6
\~J

}

R2

* rf--

L3

---i -iE-

j-L1~j 0 " :
?I-~~ 0

--@)
Drain

¢

Gate 1

il

L

e-

..J

Rl

..J

u

OJ

........

C2

.--

Cl

,rJ

5
0

II)

.,..,.

~@-~_Jo./'
~-'

C3

C5

C4 -.,l.,

T

-.J..,

T

RFC
-r'("' ..~'
\'~I

C7

I
I

/

Shield Thru
Dielectric

I

C8
Rl,R2
RFC

1/16" Teflon@FiberglassCopper Clad 2 Sides

1000 pF Bare Ceramic Disc

10 kfl
10!,H

Ll
L2
L3
L4

0.6S"

1.62"

Note' All components mounted on opposite side using
cutouts in ground plane.

Cl,C2,C3,C4

0.8-10 pF JOHANSON 5201 or Equivalent

@Registered Trademark of E. 1. DuPont, De Nemours & Co., Inc.

C5,C6,C7

100 pF Feedthru

0.5.0"
1.62"

All Width 0.125"

CAPACITANCE CHARACTERISTICS
(V OS = 15 Vdc, VG2 = 10 Vdc, f = 1.0 MHz)

FIGURE 15 - GATE ONE

FIGURE 16 - GATE TWO
3.0

3.0
2.8
Ciss

2.6

V

2.4
~
~

2.2

"'z

2.0

~

1.6

'-'

28

I.,...- I--

1---" .....

26

I

2.4

C'SS

~

22

"''-'z

2.0

'"

«
>u 1.8

>- 18

U

;t
;5

c,:.- /

1.4

1.2

1.6
14

Coss
1.2

--

L..-- V

1.0

1.0

a

1.0

2.0
3.0
4.0
5.0
VG1S, GATE·ONE VOLTAGE (VOLTS)

6.0

a

7.0

294

1.0

2.0
3.0
4.0
5.0
6.0
7.0
VG2S, GATE TWO VOLTAGE (VOLTSI

8.0

9.0

10

MFE823

(SILICON)

SILICON P-CHANNEL

P-CHANNEL
MaS FIELD-EFFECT
TRANSISTORS

MaS FIELD-EFFECT TRANSISTORS

Enhancement Mode (Type C) MOS Field-Effect Transistors designed
for use in smoke detector circuits .

•

Low Gate Reverse Current IGSS = 1.0 pAdc (Maxi @ VGS = 10 Vdc

•

High Sensitivity VIs = 1.0 mmho (Mini @ VDS = 10 Vdc

fAl

MAXIMUM RATINGS
Symbol

Rating

Value

Unit

Vdc

DraIn-Source Voltage

VOS

25

Gate..source Voltage

VGS

±10

Vdc

ID

30

mAde

PD

300

mW
mWfJC

Dram Current
Total Power DISSipation @ T A

= 2SoC

Derate above 25°C
Operatmg and Storage Junction

1.71

TJ. Tstg

-65 to +200

°c

""'~~
~·~-U
B

PLA)

--H-o
STYlE 11
PIN T DRAIN

Temperature Range

2 GATE
3 SOURCE,SUBSTRATE
AND CASE

THERMAL CHARACTERISTICS
Characteristic

Thermal ReSIstance, Junction

Symbol

Unit

Max

R8JA

584

°C/W

R8JC

250

°C/W

to AmbIent

Thermal Resistance, Junction

MILLIMETERS

DIM

to Case

••
C

0
E
F

HANDLING PRECAUTIONS:
MOS field-effect transistors have extremely high input resistance. They can be damaged
by the accumulation of excess static charge. Avoid possible damage to the devices while
handling, testing. or In actual operation. by follOWing the procedures outlined below'
1. To avoid the build·up of static charge. the leads of the devices should rema,"
shorted together With a metal ring except when being tested or used.
2. Avoid unnecessary handhng. Pick up devices by the case instead of the leads.
3. Do not Insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.

295

G
H
J

K
L
M
N

p

MIN

MAX

531

584
495
533

452
432
0406

0533
0.762
0406 0483
254BSC
0.914 1.17
0711 122
1270

-

635
45 0 Bse
127 Bse

127

INCHES

MIN

MAX

0209
0118
0170
0016

0230
0195
0210
0021
0.030
0016 0019
0100 BSe
0.036 0046
0028 0048

0

0250
45 as
0050 as
0050

AIIJEDEC nousand dimensIOns applv
CASE 22·03

(TO·1S)

MFE823 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)
Characteristic

Symbol

Min

Max

Unit

BVOSS

-25

-

Vde

lOSS

-

-20

nAdc

IGSS

-

1.0

pAde

VGS(TH)

-2.0

-6.0

Vde

10(on)

-3.0

-

mAde

VIs

1000

-

#mhos

Cis!

-

6.0

pF

erss

-

1.5

pF

OFF CHARACTERISTICS
Drain·Source Breakdown Voltage

(10 = -10 /lAde, VGS = 0 Vde)
Zero·Gate Voltage Drain Current

NOS = -10 Vde, VGS = 0)
Gate Reverse Current

(VGS = -10 Vde, VOS = 0)
ON CHARACTERISTICS

Gate-Source Voltage
(VOS = -10 Vde, 10 ~ -10/lAde)

Drain Current
(VOS= -10Vde, VGS= -10Vde)
SMALL·SIGNAL CHARACTERISTICS
Forward Transfer Admittance

(VOS = -10 Vde, 10 = -2.0 mAde, I = 1.0 kHz)
I nput Capacitance

(VOS = -10 Vde, VGS = -10 Vde, I = 1.0 MHz)
Reverse Transfer Capacitance

(VOS = -10 Vde, VGS = -10 Vde, 1= 1.0 MHz)

296

MFE824

(SILICON)

SI LICON N-CHANNEL

N-CHANNEL
MOS FIELD-EFFECT
TRANSISTORS

MOS FIELD-EFFECT TRANSISTORS

Depletion-Enhancement Mode (Type B) MOS Field-Effect Transistors designed for use in smoke detector circuits.
•

Low Gate Reverse Current IGSS = 1.0 pAdc (Max) @ VGS = 10 Vdc

•

High Sensitivity Yf1; = 1.0 mmho (Min) @VDS= 10 Vdc

MAXIMUM RATINGS
Symbol

Rating

Value

Unit

Vdc

Drain-Source Voltage

VOS

20

Gate-5ource Voltage

VGS

±10

Vdc

10

30

mAde

Po

300

Drain Current

Total Power Dissipation
Derate above 25°C

@

T A = 25°C

Operating and Storage Junction

mW
mW/oC

1.71
TJ. Tstg

-65 to +200

°c

Temperature Range

STYlE 2
PIN I SOURCE. SUBSTRATE.CASE
2 GATE
3

THERMAL CHARACTERISTICS
Character istic

Thermal Resistance, Junction

Symbol

Max

DRAIN

Unit

ROJA

584

°CIW

ROJC

250

°C/W

to Ambient

Thermal ReSistance, Junction

MILLIMETERS

to Case

DIM

MOS field-effect transistors have extremely high input resistance. They can be damaged
by the accumulation of excess static charge. Avoid possible damage to- the devices while
handling. testing, or in actual operation, by following the procedures outlined below:
1. To avoid the build-up of static charge, the leads of the devices should remain
shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.

297

INCHES

MAX

MIN

5.B4
4.95
5.33
0.533
0.162
0.406 0.4B3
2.54 BSe
H
0.914 1.17
0.111 1.22
J
K 12.10
L
6. 5
M
45° BSe
N
1.21 BSe
p
1.21

0.209
O.17B
0.170
0.016

A
B
e
D
E
F
G

HANDLING PRECAUTIONS:

MIN

5.31
4.52
4.32
0.406

MAX

0.230
0.195
0.210
0.021
0.030
0.016 0.019
0.100 BSe
0.036 0.046
0.02B 00411

ro:smr

-

0.250
45 BSe
.050
0.050

AU JED EC notes and dimensions applv.
CASE 22·03
(TO·1S)

MFE824 (continued)

ELECTRICAL CHARACTERISTICS IT A = 250 C unless otherwise noted)
Min

Max

VIBR)OSX

20

-

Vde

Vas

-

-6.0

Vde

-

1.0

pAde

1.0

4.0

mmhos

Ciss

-

4.0

pF

Crss

-

0.7

pF

Co ..

-

2.5

pF

Symbol

Characteristic

Unit

OFF CHARACTERISTICS
Drain·Source Breakdown Voltage

lie = 1.0 /lAde, Vas = -8.0 Vde)
Gate-Source Voltage
IVOS = 10 Vdc,lO = 1.0 nAdc)
Gate Reverse Current

IVGS

IGSS

= 10 Vdc, VOS = 0)

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
IVOS = 10 Vde, Vas = 0)

SMALL-SIGNAL CHARACTERISTICS

Forward Transfer Admittance
IVOS = 10 Vde, VGS = 0, I
Input Capacitance
IVOS = 10 Vdc, VGS

VIs

= 1.0 kHz)

= 0, I = 1.0 MHz)

Reverse Transfer Capacitance

IVOS

= 10 Vde, Vas = 0, f =

Output Capacitance
IVOS = 10 Vde, VGS

= 0, f

1.0 MHz)

= 1.0 MHz)

298

MFE2000 (SILICON)
MFE2001
Silicon N-channel junction field-effect transistor
designed for VHF/UHF amplifier applications.

\

MAXIMUM RATINGS

Rating

Symbol

CASE 20
(TO-72)

Active elements
isolated
from case

Unit

25

Vdc

Drain-Gate Voltage

VDG

25

Vdc

Gate-Source Voltage

VGS

25

Vdc
mAdc

Drain Current

ID

30

Total Device Dissipation @TA = 25'C
Derate above 25'C

PD

300

mW

2.0

mW/'C

Operating & Storage Junction
Temperature Range

STYLE 1
PIN 1. SOURCE
2. ORAIN
3. GATE
4. CASE LEAD

Value

VDS

Drain-Source Voltage

ELECTRICAL CHARACTERISTICS

(fA

T J' T stg

'c

-65 to +175

= 25'C unless otherwise noted)

Symbol

Characteristic

Min

Typ

25

-

-

Max

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = -1.0 !lAde, Vos = 0)
Gate-Source Voltage
(10 = 0.5 mAde, VOS = 15 Vde)

V(BR)GSS

MFE2000
MFE2001

Gate Reverse Current
(VGS =-20Vde, VOS=O)
(VGS = -20 Vde, VOS = 0, T A = l50'C)

VGS

IGSS

Vde
Vde

0.5
3.0

-

-

4.0
7.5

-

-

100

-

-

200

-

6000
8000

pAde
nAde

ON CHARACTERISTICS
Zero-Gate Voltage Orain Current
(VOS = 15 Vde, VGS = 0)

MFE2000
MFE2001

SMAll·SIGNAl CHARACTERISTICS
Forward Transfer Admittance
(VOS = 15 Vde, VGS = 0, f = 1. 0 kHz)
Output Admittance
(VOS = 15 We, VGS = 0, f = 1.0 kHz)

MFE2000
MFE2001
MFE2000
MFE2001

Input Capacitance
(Vns = 15 Vde, VGS = 0, f = 1.0 MHz)

I Yf.1

IYosl
C isS

Output Capacitance
(VOS = 15 Vde, VGS = 0, f = 1.0 MHz)

COBS

Reverse Transfer CapaCitance
(VOS = 15 Vde, VGS = 0, f = 1.0 MHz)

C rss

Small-Signal Power Gain (Figure 1)
(VOS = 15 Vde, 10 = 4.0 mAde, f = 100 MHz)

Gps

(VOS = 15 Vde, 10 = 4.0 mAde, f = 400 MHZ)
(Figure 1)
Noise Figure
(VOS = 15 Vde, 10 = 4.0 mAde, f = 100 MHz, RG
(Vns = 15 Vde, 10 4.0 mAde, f = 400 MHz, RG

=

= 1. 0 k ohm)
= 1.0 k ohm)
299

NF

Ilffihos
2500
4000

-

--

Ilffihos
50
75
pF

-

5.0

-

-

2.0

-

-

1.0

18

23

10

14

-

-

1.6

2.0

3.3

4.0

pF
pF
dB

dB

MFE2000, MFE2001

(continued)

FIGURE 1 - 100 MHz and 400 MHz NEUTRALIZED AMPLIFIER

NOTE:
The noise source is a hot-cold body
(AIL type 70 or equivalent) with a
test receiver (AIL type 136 or
equivalent).

ADJUST VGS FOR
ID = 5.0 rnA
VGS < 0 VOLTS

Reference
Designation

C1
C2
C3
C4
C5
C6
C7
L1
L2
L3

VALUE
100 MHz

400 MHz

7.0 pF

1. 8 pF

1000 pF

27 pF

3.0 pF

1. 0 pF

1-12 pF

0.8-8.0 pF

1-12 pF

0.8-8.0 pF

0.0015 iJ.F

0.001 fJ.F

0.0015 fJ.F

0.001 iJ.F

JJ.H*
0.25 JJ.H*
O. 14 JJ.H*
3.0

0.2 JJ.H**
0.03 JJ.H**
O. 022 JJ.H**

17 turns (approximately-- depending on circuit layout),
AWG #28 enameled copper wire, close wound on 9/32"
ceramic coil form. Tuning provided by a powdered
iron slug.
4-1/2 turns, AWG #18 enameled copper wire, 5/16" long,
3/8" I; D.
3-1/2 turns, AWG #18 enameled copper wire, 1/4" long,
3/8" I. D.
6 turns approximately -(depending on circuit layout),
AWG #24 enameled copper wire, close wound on 7/32"
ceramic coil form. Tuning provided by an aluminum
slug.
1 turn, AWG 1116 enameled copper Wire, 3/8" I. D.
1/2 turn, AWG 1116 enameled copper Wire, 1/4" I. D.

300

MFE2004 (SILICON)
MFE200S
MFE2006

Silicon N-channel depletion mode (Type A) junction
field-effect transistors designed for chopper applications.

MAXIMUM RATINGS

Rating

CASE 22
(T0·1S)
2

10

Symbol

Value

Unit

Drain-Source Voltage

VDS

30

Vdc

Drain-Gate Voltage

VDG

30

Vdc

Gate-Source Voltage

VGS

30

Vdc

Forward Gate Current

IG(f)

10

mAdc

Total Device Dissipation @ T C = 25° C
Derate above 25° C

PD

1.8
10

Watts
mW/oC

Operating Junction Temperature Range

TJ

-65 to +175

°c

Tstg

-65 to +200

°c

3

STYLE 4:
PIN 1. SOURCE
2. DRAIN
3. GATE &CASE

Storage Temperature Range

ELECTRICAL CHARACTERISTICS (TA = 250 (: unless otherwise noted)

Characteristic

Symbol

Min

Max

30

-

-

0.2

-

0.4

-

0.2

-

0.4

8.0
15
30

-

1.0
2.0
5.0

6.0
8.0
10

-

1.0
0.4

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 1. 0 /lAdc, VDS = 0)

V(BR)GSS

Gate Reverse Current
(V Gs =20Vdc, Vns=O
(V GS = 20 Vdc, VDS = 0, TA = 150°C)

IGSS

Drain Cutoff Current
(VDS = 20 Vdc, VGS = 12 Vdc)

ID(off)

(VDS = 20 Vdc, VGS = 12 Vdc, T A = 150°C)

Vdc
nAdc
/lAdc
nAdc
/lAdc

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current 111
(VDS = 20 Vdc, VGS = 0)

MFE2004
MFE2005
MFE2006

Gate-Source Voltage
(VDS = 20 Vdc,
= 50 /lAdc)

1J

MFE2004
MFE2005
MFE2006·

IDSS

VGS

mAdc

Vdc

Vdc

VGSF

Gate-Source Forward Voltage
(IG = 1. 0 mAdc, VDS = 0)

Vdc

Drain-Source "ON" Voltage
(I D = 3.0 mAde, VGS = 0)
(ID = 6.0 mAde, VGS = 0)

MFE2004
MFE2005

-

(ID = 10 mAde, VGS = 0)

MFE2006

-

0.4

-

80
50
30

Static Drain-Source "ON" Resistance
(ID = 1. 0 mAdc, VGS = 0)
CllPulse Test: Pulse Width ~ 300 /lS, Duty Cycle

MFE2004
MFE2005
MFE2006
~

3. 0%.

301

VDS(on)

rDS(on)

0.4

Ohms

MFE2004, MFE200S, MFE2006 (continued)
ELECTRICAL CHARACTERISTICS (continued)

I

Symbol

Characteristic

Min

Max

Unit

SMALL-SIGNAL CHARACTERISTICS
static Orain-Source "ON" Resistance
(V GS = 0, 10 = 0, f = 1. 0 kHz)

MFE2004
MFE2005
MFE2006

Input Capacitance
(VOS = 0, V OS = -12 Vde, f = 1. 0 MHz)

rds(on)

Ohms

--

80
50
30

-

C.

C

pF

ISS

-

16

rss

-

5.0

pF

Reverse Transler Capacitance
(VDS = 0, V-A-lH~---'-~
GENERATOR'
OR NOISE
~
10 k
SOURCE

FROM 50n
1000
SIGNAL ">-A-lH~~--'~-+
GENERATOR'
OR NOISE
~
10 k
SOURCE

:r: .

::r: .

All upacltanca va!uelare in pF; all rllllstanet V81uesara In ohms.
el. C3, C4: Johanson Type 29&1 or 8qulVllIant
C2: Cantralab Type 82S-0.N. or aqulvalan1
LI: 5 Tums',6 AWG Wire (Internal diamata, 5/1S", Length 518")
L2: 5 Tul'l'll ',8 AWG Wire (Internal diamater 31B". Length 5/8")

All cepecitance valunare in pF;.lIresistancevaluas.reinohml.
Cl, C3, C4: Johanson Tvpe 2951 or equlvelent
C2: JohanlOn Typa 3908 or equivelent
Ll: 4 TurOl',8 AWG Wire tlnternal diameter 114", Langth3/4'1
L2: 5 TurRI "6 AWO Wfre (Internal diameter 114", Length 3/4'"
Overall bandwidth' 9.5 MHz 11-3.0 dB
14 MHz@-6.0dB

FIGURE 3 - CONVERSION POWER GAIN

FIGURE 6 - CONVERSION POWER GAIN

0....1bandwidth =3.0 MHz II -3.0 dB
4.6 MHz" -6.0 dB

~~--~~----~~VOD
+15V

TO 30 MHz
IF AMPLIFIER
150n INPUn

TO 30 MHz
IF AMPliFIER
l50n INPUT)

~-+--E~~

r-:---I---tl---«~

FROM 50G

FROM50n

~~::~ ~&;U~:::;;::;;~

~~:AH~ )-A.,j.j~;::;::;:t=;

GENERATOR

GENERATOR

1 1

1000

2000

All capacitance values a7a in pF; all r$istance val~as are in ;hms. L1: 2 Turns '16 AWG Wire (Internal diameter 1/4", Length 1/4"1
12: 25 Turns #32 AWG Wire wound on 1/4" 0.0. ceramic form
l3: 4 Turn.I2S AWG Wire wound on top of and at dc stJpply end of L2
Cl: Johanson capacitor Type 3908 ar equivalent
C2, &3: Johanson Capacitor Type 2950 or equill8lent

All capacitance valuas are in pF; all i-asistance valuas are in ohms.
Ll: GTums 116 AWG Wire (lntarnal diameter 5/1S",lengtb 1/16")
L2: 25 Tums ta2 AWG Wire wound on 114" 0.0. ceramic form
L3: 4 Turn.126AWG Wire wound on top of and at dc supply and of L2
Cl: Johanson Capacitor Type 3908 or equivalent
C2, C3: Johanson Capacitor Type 2950 or aquiwtBnt

316

MFE3006 thru MFE3008

(continued)

CIRCUIT PERFORMANCE
FIGURE 8 - NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 7 - POWER GAIN versus SOURCE RESISTANCE
0

5.0

-- - -

6

,'"

~ 22
to

'"

~
a

18

...

V

"

4.0

1-1-

w
::>

'"

3.0

-

,.-

r-

w

'"0z

2.0

~.

== ~~~~~~~: ~~~ ~~:-

-

10
150

200

300

1.0

t-. TEST CI RCUITS

FIGURE~ 1 AND 4

400 500
700
1.0 k
RS.SOURCE RESISTANCE (OHMS)

2.0 k

-

-

160

200

o

3.0 k 4.0 k

18

. /~
20

fil

'"z
<1

80

/

Parfo1rmance is

I

~ot

l:;!

u::

10

'"0z

8.0

w

_

u:
z

o

2.0

+2.0

+4.0

+8.0

/

,/'./

11.

/.

/' /

//
. / .;'

,//
/

1/',.'

/. 10-

,.

~,.

~

......-:::

1-- ....

o

5.0

10
GAIN REDUCTION (dB)

VG2S. GATE 2T0 SOURCE VOLTAGE (VOLTS)

15

a

:s
20

<1

co

'"
~

15

:5:
z

.....

0

~

10

...

5.0

w
>
z

.....

,.".

,.-

o
0.5

-~
~1

w
-'

:5'"

40

r-.....

'x"
«
co'
'"
«
'"

3.0

317

-

-

1 L

......

VOS=15V
VG2S = 4.0 V
lo=10mA

i"'-..

>

«
~

1 I

IUfsl 2
MAG = 4IUisl~..1

......

<1

~~-

1.0
1.5
2.0
2.5
LOCAL OSCILLATOR INJECTION LEVEL AT VG2 (Vrm.)

I
50

z
<1
co

0

a
co

20

FIGURE 12 - MAXIMUM AVAILABLE POWER GAIN

FIGURE 11 - CONVERSION POWER GAIN
25

!z

3.0 k 4.0 k

/ ' ~,.

- - - MFE3006@f=100MHz
- - MFE3007@f=200MHz

8.0
4.0

-2.0

_

12

::>

co

frequency dependent.

80

400 600
700
1.0 k
2.0 k
Rs. SOURCE RESISTANCE (OHMS)

I

1

'"

TEST CIRCUITS . _
FIG~RES2A~D5

0

300

TESTeI RCUITS

-FIGURE~ 1tNDl4

TES~
CI RCUI~S
FIGURES2AND5

14

/

z

40

16 t---

/

:s
'"

- - - MFE3006@100MHz_
I I MF~300l @200 MH~

FIGURE 10 - COMMON SOURCE NOISE FIGURE
versus GAIN REDUCTION

FIGURE 9 - GAIN REDUCTION

co

/

"':-

co

z
14

::>

/'

u::

to

...;::

~

"- ~

:s
'"

"

30

- - -

r-....
.....

20

.....
10
50

70

100

200
f. FREQUENCY (MHz)

300

..........

400

500

MFE3006 thru MFE3008 (continued)

COMMON-SOURCE ADMITTANCE PARAMETERS
(VDS = 15 Vde, VG2S =4.0 Vde, 10 = 10 mAde)
FIGURE 13 - INPUT ADMITTANCE

FIGURE 14 - REVERSE TRANSFER ADMITTANCE

'ii

14

0.07

~
12

j

e

.§

lL

10

I~jbi' r---

w

'"z

«

I::
:iii

/

8.0

...~

.

~

0.05

/
-jbrs

~ 0.04

~ 2.0

o

-

50

...-

I,....-

l,../

gis

......-r

~ 0.0

~

I
200
I. FREQUENCY (MHz)

100

70

1-......

w

8.

400

300

500

./

I-"

1,-- r-

4. 0

z

~

2. 0

'"
~

0

>=

-3.0

a:

-"""

I--'"

-

"""

~ ~

-g"
70

'ii

~
:i!
I::

" I,

«
'"

r-

...

'"
~
'"
~

'\
300

400

400

500

12

10

./

8.0

:iii

\'\
200
I. FREQUENCY (MHz)

300

~

I'..

......gl.

100

200
I, FREQUENCY (MHz)

FIGURE 16 - OUTPUT ADMITTANCE

1\

70

100

14

............

'"
~ -2. 0
50

.--

,./

0
50

I
-j~• r -

...........

0

:iii 6. 0
~
a:
~

~

V

0.03

...a:~« 0.02

V'

FIGURE 15 - FORWARD TRANSFER ADMITTANCE
1
0

~

I-L

L

a:

w
u.
~

./

4.0

~

~

:iii

V

6.0

'"
«

.§ 006

/'

-jbos

/

6.0

4.0
2.0

r-

....... +-

I'
go.

or500

50

318

1/

70

100

200
I. FREQUENCY (MHz)

300

400

500

MFE3006 thru MFE3008 (continued)

COMMON-SOURCE CIRCUIT DESIGN DATA AS A
FUNCTION OF THE STERN "K" FACTOR
(VDS = 15 Vde. VG2S = 4.0 Vde. ID = 10 mAde)
FIGURE 18 - SOURCE ADMITTANCE

FIGURE 17 - TRANSDUCER POWER GAIN
34

10

"'

~

z

;;:

30

"

to

'"3:w
~

~

'-'

z

...'"'",.:

22

IB
2.0

B.O

"§

oS

..
w

'-'

'"......... i'--..

to

I
-iBS

"ii

- - - MFE3007@200MHz

z

""

26

=>
~

_..2_ MFE~006@IJOMHz_

\

'

...... ..........

...t:
'"co

-- -- ---

-

6.0

'"

4.0

w

t--

'-'

'"

~

2.0

o
4.0

6.0

B.O

-

2.0

10

-

I
1

- MFE3006@100MHz_
MFE 007 @200 MHz
-iBS
GiS

=>
~

r-- r--_

-

"K" FACTOR

- 4.0

;::;;;;

Gs

I
6.0

8.0

10

"K" FACTOR

FIGURE 19 - LOAD ADMITTANCE
5.0

ioS

........
.

r

-

3.0

-

co

determining the transducer gain and the proper source and load

2.0

@200 MHz

-

-1I

..:;
> 1.0

GL

i-

2.0

4.0

6.0

admittances required for a given stability (Stern "K" factor*),
The Stern 10K" factor has been defined to determine the stability of a practical amplifier terminated in finite load and source
admittances. If "K" is greater than 1.0, the circuit will be stable.
If less than 1.0, the circuit will be unstable. For further details.
see Application Note AN-215.
As the Crss of the MFE3006-7 is comparable to the distributed
capacitance of the circuit where it is used, a feedback capacitance
of 0.1 pF has been used throughout these calculations.

MFE~006 @100 MHz_
-jBL

g'"

o

-

MFE~007

~

co

Figures 17-19 are included to assist the circuit designer in

r

w

'-'
z

DESIGN NOTE

-jBL

4.0

GL
B.O

l-

·"Stability and Power Gain of Tuned Transistor Amplifiers,"

Arthur P. Stern, Proc. I.R.E., March 1967.

10

"K" FACTOR

319

MFE 30 20 (SIUCON)
MFE3021

DUAL P-CHANNEL
MOS FIELD-EFFECT
TRANSISTORS

DUAL P-CHANNEL
MOS FIELD-EFFECT TRANSISTORS

(TYp8CI

Enhancement Mode (Type C) MaS Field-Effect Transistors designed primarily for low-power, chopper or switching applications.

• Low Reverse Gate Current IGSS~10 pAdc@ vGS = -25 Vdc
• Low Drain-Source "ON" Resistance rds(on) = 250 Ohms (Max) @VGS

= -15 Vdc (MFE3021)

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Drain·Source Voltage

VOS

-25

Vdc

Drain-Gate Voltage

VOG

-25

Vdc

Reverse Gate-Source Voltage

VGSR

+25

Vdc

Forward Gate-Source Voltage

VGSF

-25

Vdc

Drain Current

10

200

mAde

Total Device Dissipation@TA=2SoC

Po

0.6
4.0

Watt
mW/oC

T stg

-65 to +200

TJ

-65 to +175

°c
°c

Derate above 2SoC
Storage Temperature Range

Operating Junction Temperature Range

STYLE 1,
PIN 1. DRAIN 1
2. NOT USED
3. GATE 1
4. SUBSTRATE
5. GATE 2
6. NOT USED
1. DRAIN 2
8. SOURCE 1

All JECEC dimensions and notes apply
NOTE,
1. DIM "0" & "R"· STAND·DFF
CASE 642-02

(TO·761

320

MFE3020, MFE3021 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

Symbol

Min

Max

Unit

Drain-Source Breakdown Voltage
(10 = 10 "Ade, VGS = 0)

V(BR)OSS

-25

-

Vde

Source-Drain Breakdown Voltage
(IS = 10 "Ade, VGO = 0)

V(BR)SOS

-25

-

Vde

ZerowGate Voltage Source Current
(VSO = -15 Vde, VGO = 0)

ISOS

-

10

nAde

Zero-Gate Voltage Drain Current (!)

lOSS

-

10

nAde

IGSS

-

10

pAde

VGS(th)

-2_0

-6.0

Vde

10(on)

10

75

mAde

-

Characteristic
OFF CHARACTERISTICS

(VOS

= -15 Vde, VGS = 0)

Gate Reverse Current
(VGS = -25 Vde, VOS

= 0)

ON CHARACTERISTICS
Gate-Source Threshold Voltage
(VOS = -15 Vde, 10 = 10 "Ade)
"ON" Drain Current
(VOS = -15 Vde, VGS

= -15 Vde)

SMALL-5IGNAL CHARACTERISTICS
Drain-Source "ON" Resistance
(VGS = -15 Vde, 10 = 0, f = 1.0 kHz)
Forward Transadmittanee (j)
(VOS = -15 Vde, VGS = -15 Vde, f

= -15 Vde, VGS = -15 Vde, f = 1.0 MHz)

Reverse Transfer Capacitance
(VOS

500

-

IJmhos

Giss

-

7.0

pF

Crss

-

1.5

pF

CSU

-

5.0

pF

COU

-

5.0

pF

td
t,

-

20
30

toff

-

50

ns
ns
ns

= -15 Vde, VGS = 0, IS = 0, f = 1.0 MHz)

Drain-Substrate Capacitance
(VSU

IYfsl

= 0, VGS = 0, f = 1.0 MHz)

Source-Substrate Capacitance
(VOU

-

500
250

= 1.0 kHz)

Input Capacitance
(VOS

Ohms

'ds(on)
MFE3020
MFE3021

= -15 Vde,

VGS

= 0, IS = 0, f = 1.0 MHz)

SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Turn-Off Time

 10 7 Ohms
Input Capacitance';;;; 1.5 pF

90%
I

Input

90%

I

I
-:-

~PulseWidth~

Output

r--Input PulseiAlse Time

1.4k
Input

...

.,
I

1

L- - - - - VGS(on)
:

~'nput Pulse Fall Time

toft

~

I
I

51

I
10%

321

10%

MFE4007 (SILICON)
thru

MFE4012
P-CHANNEL JUNCTION FIELD-EFFECT TRANSISTORS
• depletion mode (Type A) Field-Effect Transistors designed for
general-purpose amplifier applications.

P-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS

• Tightly Specified I DSS Ranges - 2: 1 for All Types
• High Gate-Source Breakdown VoltageV(BR)GSS 40 Vdc (Min) for All Types

=

• New Designers Data Sheet with Min/Max Curves for Ease in Design

LIMIT DATA FOR "WORST CASE" DESIGNS
The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves - representing boundaries for device characteristics - are
given to facilitata "worst case" design.

MAXIMUM RATINGS

Value

Unit

Drain-Source Voltage

VDS

40

Vdc

Drain-Gate Voltage

Voo

40

Vdc

VGS(r)

40

Vdc

In

20

mAdc

Rating

Reverse Gate-Source Voltage
Drain Current

Symbol

Forward Gate Current

IG(f)

10

mAdc

'fotal Device Dissipation@ TA = 25·C
Derate above 25·C
storage Temperature Range

PD
Tstg

200
1.33
-65 to +200

mW
mW/"C
·C

Operating Junction Temperature Range

TJ

-65 to +115

·C
All JEDEC dimellliGnslnd ootH apply
CASE 2(1..03

10·72

322

MFE4007 thru MFE4012

(continued)

ELECTRICAL CHARACTERISTICS

(Tc

=2S'C unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

-

Vdc

40

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 /LAdc, Vns = 0)
Gate-Source Cutoff Voltage
(VOS = 15 Vdc, ID = 1. 0 /LAde)

V(BR)GSS

MFE4007, MFE400B
MFE4009, MFE4010
MFE4011, MFE4012

Gate Reverse Current
(VGS = 20 Vdc, Vns = 0)
(VGS = 20 Vde, Vns = 0, T A = 150'C)

VGS(off)

IGSS

-

-

Vdc
3.0
6.0
B.O
nAdc
2.0

-

2.0

0.5
O.B
1.5
2.5
4.0
7.0

1.0
1.6
3.0
5.0
B.O
14

0.3

1.5

MFE400B

0.4

2.0

MFE4009

1.0

4.0

MFE4010

1.0

4.0

MFE4011

2.0

6.0

MFE4012

2.0

6.0

900
1000
1500
2000
2200
2500

2700
3000
3500
4000
4500
5000

/LAdc

ON CHARACTERISTICS
Zero-Gate Voltage Orain Current
(VOS = 15 Vdc, VGS = 0)

Gate-Source Voltage
(Vos = 15 Vdc,
= 50 /LAdc)
(VOS = 15 Vdc,
= BO /LAde)
(Vos = 15 Vdc,
(VDS
(VOS

=15 Vdc,
=15 Vdc,

(VOS = 15 Vdc,

10
10
10 =150 /LAdc)
10 = 250 /LAde)
10 = 400 /LAde)
10 =700 /L Adc )

lOSS

MFE4007
MFE400B
MFE4009
MFE4010
MFE4011
MFE4012

VGS

MFE4007

mAdc

Vdc

SMALL·SIGNAL CHARACTERISTICS
Forward Transadmittance
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz)

Forward Transconductance
(VOS = 15 Vdc, VGS = 0, f = 100 MHz)

IYfsl

MFE4007
MFE4008
MFE4009
MFE4010
MFE4011
MFE4012

Re(yfS )

MFE4007
MFE4008
MFE4009
MFE4010
MFE4011
MFE4012

Output Admittance
(Vos = 15 Vdc, VGS = 0, f = 1.0 kHz)

IYosl

lnput Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1. 0 kHz)

CiSS

Reverse Transfer Capacitance
(Vns =15VdC, VGS=O, f=I.0MHz)

Cras

Common-Source Noise Figure
(VDS = 15 Vdc, VGS = 0, RG = 1.0 Megohm, f = 100 Hz,

/Lmhos

800
900
1400
1700
1900
2100

---

Ilmhos

-

75

-

7.0

-

2.0

pF
pF

NF

BW = 1.0 Hz)
Equivalent Short-Circuit Input Noise Voltage
(VDS = 15 Vde, VGS = 0, f = 100 HZ, BW = 1.0 Hz)

e

323

n

/Lmhos

dB

-

2.5

-

115

nV//Hz

MFE4007 thru MFE4012

(continued)

TRANSFER CHARACTERISTIC CURVES FOR MIN/MAX lOSS LIMITS
FIGURE 1

FIGURE 2
2.5

1...
~

1.2

-550C

r-..'\.
0.9

~

z

~ 0.6

c

~::::

0.3

o
o

,
~,

,

1250C

-

.s...

- - MIN

2.0

~

1.5

z

1.0

ii:

12~~

'.!i.

12

25 0C........ liS::..

0.5

" '.......

-

o
o

1.25

- - - MIN

......

r'\.

""

. . . . r-.......-........;~

~

- 2 50e
t&,

1.0
0.25
0.5
0.75
VGS. GATE·SOURCE VOLTAGE (VOLTS)

"

---MAX

'\.

1250C

CJ

MFE400S
VOS'15V-

~r~ \.

i3

~.:1--

550Cf-'"""

«

_ _ _ MAX

250C

1'-.." ~

'"
i3

\/Joc

MFE4007
VOS'15V-

550e

il

'\.

25 0C ""

~

i3

moc...........

~ 2.0

"12

-550C

S.O

1.0

o
o

'-

«

.s...

_ _ MAX

'"

~ r-..... 250C.........

"-

7.0

MFE4009
VOS'15 V-

./

~ 3.0

~~
0.5

=>

. ,

u

-.

....

4.0

ii:

3.0

12

2.0

1.0
1.5
2.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)

o

2.5

"-

10.5

t-..., ......

o

~~(
..,;:

~

0.5

§ 7.5
~

z

~
f.......... )(..
' .... ~~ .........
~"-

4.5

-"I" ~

1.5

o

o

1250e

~

........

-..;;::

~-

~

---MIN

-55 0C

........

3.0

«
.s...

--MAX

""'- )(
25~

c

12

MFE4011
VOS'15 Vdc_

.......... ~

~ 6.0
z

u

1.0
1.5
2.0
2.5
3.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)

3.5

~0

1.0
2.0
3.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)

r-zr~ /

12

"-

z

~

8.0

CJ

4.0

-

~

~

.....

324

MFE4012
VOS'15Vdc-

,

""

r-.....

250C

r--.....

"

"'/..":-...

.... ..... .... ,

0C

_ _ MAX

.........

,. -.::-

o 125
o

4.0

-55 0e

16

'"i3

1250C

--

-

.~
- ~F=-..
FIGURE 6

20

-550e

-j>"

« 9.0
.s

_ _ _ MIN

moe

FIGURE 5
12

--MAX

55 0C

~~250C

.....J..

!!oooo.

MFE4010
VOS '15 Vdc

1"'- "'- v'
f'....
~
i-.. .:'"V
j',(

1.0 250C~

~
-.;;:!

!i550C

250C'<:
5.0

CJ

--... ~

1'"-

"'-

6.0

z

......

....... ...............

:"il"----

1250C 550C

~

---MIN

i'-.

2.0

FIGURE 4

I

4.0

io-.

0.5
1.0
1.5
VGS. GATE·SOURCE VOLTAGE (VOLTS)

FIGURE 3
5.0

1
...

-

~

moc
~l::::~l

125 0C

4--

-.......;".

......

:----

-..../.. ......;.

.J... ....... ""f..........

...:::- ....
'-"'

--- MIN

-;5 0C

:::::o;,:;!

'- -"-

1-:' ~

1.5
3.0
4.5
VGS, GATE·SOURCE VOLTAGE (VOLTS)

"'"""-6.0

MFE4007 thru MFE4012

(continued)

TYPICAL AND MINIMUM FORWARD TRANSFER ADMITTANCE
FIGURE 7

1i

2000

1

V ~

w

~ 1000
~
;; 700
e

~

500

-

FIGURE 8

I-t-

S

I

Typ

In

w
'-'

;;
e

../

700

~

500

./

~

300

200

z
~

300

~
«

20a

....

VOS'15Vf'1.°r Z -

;:

V
~
./

~

e
~

0.1

0.3

0.2

0.5

0.7

1.0

2.0

VOS'15Vf '1.0 kHz

3000

w

~

2000

!---""

;;

i
z

I----

I--"
V V

e

1000

~

Typ

t--

!

700 a

z

500a

'-'

~

Min

;;
~

-

300a

'"

lj; 200a

100

500

e
'" 100a

VOS·15V_
f·1.0 kHz

!

300

~ 200

0.5

0.7

2.0

1.0

3.0

I-

~

70a

i!'

50 a
0.5

4.0

0.7

2.0

1.0

FIGURE 11

~

'"w
lj;

i

MFE4011

z

300 a

;:i

....
e

'"

1000

_

700

~

10

MFE401 2
1

7000

w

'-'

500a

200a

7.0

FIGURE 12

w

~

5.0

"" 10,000

1 7000
z

3.0

10, DRAIN CURRENT (rnA)

1i 10,000

;;

Min

VOS'15V
f '1.0 kHz

10, DRAIN CURRENT (mAl

'-'

Typ

I-

..- f..-

I-f-'

....~

0.3

2.0

MFE4010

w

0.2

1.0

sJO,ooa

MFE4009

--

'"

!

0.7

FIGURE 10

;:i
....
e

0.5

10, DRAIN CURRENT (mA)

FIGURE 9
"" 400a

1-

-I
0.3

0.2

0.1

10, DRAIN CURRENT (mAl

i

MFE4008

....-

~
' ] 100

100

>

:!ITyp

Jjnl

'"

~

i.

100a

~

~

~

~.-

z

«

z

....

2000

1

MFE4007 -

.-1--

.-

---

I--

- -

-I--

~

Min

5000

;;;
e
«

300a

'"w
lj;

200a

Typ

z

«

Typ

~I-'"

'"

~ 1000

VOS'15 V
f -1.0 kHz

!

~

~ 500

-r-

I-

700

,..- H-

r--

.........

Min

1

I

VOS ·15 V
f·1.0 kHz

~ 500

0.5

0.7

1.0

2.0

3.0

5.0

7.0

0.5

10

10, ORAIN CURRENT (mA)

0.7

1.0

2.0

3.0

10, DRAIN CURRENT (rnA)

325

5.0

7.0

10

MFE4007 thru MFE4012

(continued)

TYPICAL CURVES
FIGURE 14 - CAPACITANCE versus
DRAIN·SOURCE VOLTAGE

FIGURE 13 - OUTPUT RESISTANCE
versus DRAIN CURRENT
1000

i
:r:

10
lOSS' 0.7 mA

500
300

~

20o

iii~

100

~

50

o

30

.

!

9.0

8.0

t-

~

o

~

VOS=15V
t-'= 1.0 kHz

\.

ii: 7.0
oS

r-... .....1.5mA

~

!;:; 5.0
5 4.0
~

No
-19.bmA
0.2

1.0

0.5

2.0

C",

10

10

O'S='IJ
VGS=OV

B.O

7.0

lJJ

i5

6.0
5.0
4.0

z
~ 3.0

J~s11H

8.0

VGS'OV
f= 1.0 kHz

1.0

~

6.0

:::>

~ 5.0

1\

1'\

w

1'\

S
z

l'

z

[!b

1.0

II

o
20

50

100

500

200

1000

2000

1.0

5000 10.000

10
100
Rs. SOURCE RESISTANCE (k OHMS)

f. FREQUENCY (Hz)

FIGURE 17 - DRAIN CURRENT TEMPERATURE
COEFFICIENT versus DRAIN CURRENT
-11.5

+0.01

i

!Z
w

-11.01

8

-11.03

"-

;:;

$ -0.02
w

1.0M

FIGURE 18 - TEMPERATURE COEFFICIEN1
versus DRAII'lI CURRENT
r-"....,...,-,-rnrrrr--,--,..-rr-,-,..,.,-rrr---r-,-,rrrrrrm

VOS' 15 V

..........

"-

........

i'..

'"

~ -11.04

ffi
1:11 -11.05

" r-......
r--......

..........

~ -0.06

;

-

is

-11.07

I

2.0

I

1.0

4. 0

u: 3.0

,

2.0

0
10

9.0

CD

:2

w

~

40

FIGURE 16 - NOISE FIGURE versus
SOURCE RESISTANCE

~

J

9.0

~
to

30

VOS. ORAIN·SOURCE VOLTAGE (VOLTS)

FIGURE 15 - NOISE FIGURE versus FREQUENCY

:g

2D

10

10. DRAIN CURRENT (mA)

;;;

c... r---

...........

o
o

10

5.0

Cia

G

1.0

II I

0.1

-

\.

3.0
2.0

10

I'-

.

4.5mA

20

......

6.0

o

2.0

4.0

6.0

B.O

10

12

14

~ O~~~~~~~~~~~~~~~~~
0.01

16

10. DRAIN CURRENT (mA)

0.02

0.05

0.1

0.2

.0.5

1.0

10. DRAIN CURRENT (mA)

326

2.0

5.0

10

MFE4007 thru MFE4012

(continued)

FIGURE 19 - EaUIVALENT LOW FREaUENCY
CIRCUIT

VGS(max) - VGS(min)

1.9 Vdc - 0.8 Vdc

10(max) - 10(min)

(l.25mA -0.75mA)

AS=-=~~--~~~

= 2.2 k Ohms

Common Source
YPlrlmetersforFnlquencln
Below 30 MHz

10(max) VGS(min) - 10(min) VGS(max)

VG=--------------~--------

Yls=IWC1SS
Yos=JwCos p *+ 1/ross

10(max) - 10(min)

'ffs=IYfsl

Vrs" -IWens

1.25 X 0.80 - 0.75 X 1.9
·CospiICossinparallelWlIIiSerIHCombinatlonofCifl.ndCus.

0.5

= -0.9 Vdc

In Figure B the maximum allowable value for R 1 will be determined
by loading due to gate reverse current. Gate reverse current variations with temperature follow the pattern of all silicon devices. and.
as a rule, we can assume that it will double with each 1 SoC temperature rise. Therefore. we can assume a maximum reverse current of

approximately 0.5 !lAde at 1250 C. based on the specified maximum
2.0 !lAde reverse at lS00C. The variation in V G bias versus tem·
perature will not be too great if we chose a value for R1 which re-

BIAS NETWORK DESIGN
FOR WORST CASE lOSS VARIANCE

sults in a bias network current H 1 in Figure B) greater than 5 times
the maximum reverse current. Assuming a value for R 1 of 9.1 Megohms. R2 can be solved from the equation:

This Designers Data Sheet has been published to assist the circuit
designer in optimizing his "worst case" design. The following example illustrates the use of the forward transfer characteristics

curves (Pigures 1 thru 6) in the design of a typical bias network.
VG
VOO
Given:
to +1250 C

= -30 Vdc.

10

= 1.0 ± 0.25

mAde from -550 C

ffi

~
~
z

~
o

-30A2
""----- IIgnoring IG)
9.1 + A2

A2"" 300 k Ohms

Procedure: The MFE4010 "worst case" bias conditions across the
temperature range (from Figure 4) are reproduced in Figure A.
The first step in the bias network design is to determ ine the value
of the source resistance (AS! necessary to hold the ± 0.25 mAde
10 bias tolerance. To solve AS. plot 10(max) and 10(min) on
Figure A and calculate AS. and VG.

1
....

= -0.9 Vdc

USing the above values of R1 and R2. the variation in VG can be
computed for IG = 0 to IG = 0.5 !lAde. VG will vary from 0.81 Vdc
at IG = 0.5 !lAde to 0.96 Vdc @ IG = O. This variation will have a
minimal effect on 10. as can be seen from Figure A by plotting load
lines with a slope equal to liAS from VG = 0.81 Vdc and 0.96 Vdc
respectively.

5.0
4.0

3.0
2.0

o ID(max)

-

-1.0

-0.5

AS'
2.2 k

1.0

IOlmin)

t

0.5
1.0
1.5
2.5
VGS(min)
VGS(max)
VGS. GATE·SOURCE VOLTAGE (VOLTS)

3.0

FIGURE A

FIGURE B

327

MFESOOO (SILICON)

SILICON P-CHANNEL ENHANCEMENT
MOS FIELD EFFECT QUAD TRANSISTOR

MOS FIELD-EFFECT
QUAD TRANSISTOR
P-CHANNEL

•

Monolithic Construction Provides
Improved Temperature Tracking

•

Four Field Effect Transistors in One Package
Cut Assembly Costs

•

Diode Protected Gates

•

Motorola's High Reliability Dual In-Line
Ceramic Package

FIGURE 1 - SCHEMATIC OIAGRAM
SUBSTRATE

~
4

81

,

7

--II-oJ

DIM
A

B

MAXIMUM RATINGS

Symbol

Value

Unit

C
D
F

Drain·Source Voltage

VOS

-25

Vdc

G

Orain·Gate Voltage

VOG

±40

Vdc

J

For Each 1ndlvidual DeVIce

Rating

Gate-Source Voltage
Drain Current

VGS

±40

Vdc

10

50

mAde

Each

Total

Device Package
Device Dissipation @TA

= 25°C

Po

Derate above 25°C
Operating and Storage Junction

TJ,Tstg

250
1.66

450
3.0

-65 to +175

Temperature Range

328

H
K
L
M
N

MIN

B

.1

F

MAX

19.05 19.81
6.22
6.99
4.32
5.08
0.41
0.51
1.45
1.60
2.54 BSe
1.91
2.29
0.20
0.30
3.18
4.06
7.62 BSe
15"
0.51
0.76

0.780
0.275
0.200
0.020
0.063
BSC

0.090
0.012
0.125 0.160
0.300 BSe
15"
0.020 0.030

mW
mW/oC

NOTE:
1. DIMENSION "L"TO CENTER OF
LEADS WHEN FORMED PARALLEL

°c

CASE 632-03

MFE5000 (continued)

ELECTRICAL CHARACTERISTICS

(TA = 25°C unless olherwlse nOledl For Each FET

Characteristic

OFF CHARACTERISTICS
Drain-Source Breakdown Voltage
(VGS = 0, 10 = -10/lAdel

= -10 Vde,
= -10Vde,

VOS
VOS

= 01
= 0, TA = 1250 CI

Gate-Drain Breakdown Voltage
(VOSU = O,IG = -10 )lAde)

Vdc

25

IGSS

-

-

-

10
1.0

nAdc
/lAde

V(BR)GOS

50

100

125

Vde

Gate Leakage Current
(VGS
(VGS

-

V(BRIOSS

-

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
(VOS
(VOS

= -10
= -10

Vdcl, VGS = 01
Vdc, VGS = 0, T A

"ON" Drain Current
(VOS = - 5.0 Vdc, VGS

-

lOSS

= 1250 CI

= -10

1010ni

10

10

nAdc

-

1.0

10

.uAtlc

10

-

50

mAde

Vdel

Dram-Source "ON" Voltage
(10 = 5.0 mAde, VGS = -10 Vdel

VOSlonl

-

10

15

Vde

Gate-Source Threshold Voltage
(VOS = -10 Vde, 10 = -101'Adcl

VGS'(lh)

10

40

5.0

Vdc

-

175
75

225
110

Ohms

rds(onJ2

C ISs

-

50

60

pF

C'55

-

06

2.0

pF

Forward Transfer Admittance
(VOS = -10 Vdc, VGS = -10 Vdc, 1 0 1 0 kHzl

I Vis I

2000

5000

8000

/-ImhOS

Output Admittance
(VOS = -10 Vde, VGS = -10 Vdc, f

I Vos I

-

400

1000

,umhos

SMALL-SIGNAL CHARACTERISTICS
Drain-Source Aeslstance
(VGS = -10 Vde, 10 = 0, f
(VGS = -25 Vdc, 10 = 0, f

= 1.0 kHzl
= 1 0 kHzl

rds(onJ1

Input Capacitance
(VOS

= -10

Vdc, VGS

= 0,

f

0

1.0 MHz 1

Reverse Transfer Capacitance
(VOS

= 0,

VGS

= 0, f = 1 0

MHzl

= 1.0 kHzl

SWITCHING CHARACTERISTICS
Turn-On Delay Time

Rise Time

1VOO

Turn-Off Oelay Time

= -15

VGSloffl

Vde, 10

= 0,

= 10 mAde,

VGSlon)

'dlonl

-

30

10

ns

'r

-

10

20

ns

= 10 Vdc,

See F,gure 1)

'd(om

-

50

10

ns

'I

-

40

60

ns

Fall Time

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

VOO

1.3 k

PULSE
GENERATOR
(50 Ohms)

L_--EZ:::;~:f1---T...J
r

INPUT----.

CoaxIal
Cable

TEKTRONIX
~;:.:..------'l-=---VGSlon)

567

-EE~=f8SAMPLING
SCOPE DR
tt

1_

Id(on)-~l---;~_ _~~=~~

EQUIVALENT

-=
INPUT PULSE

Fall rime < 3.0 ns
Rise Time < 3.0 ns

VGSloffl

50 Ohm

OUTPUT---""';'1

-=

I,

Nominal Value of "on" Pulse Width = 300 ns

329

MHQ918 (SILICON)

QUAD DUAL IN·LlNE
NPN SILICON HERMETIC ANNULAR
HIGH FREQUENCY AMPLIFIER TRANSISTORS

QUAD DUAL IN·LINE
NPN SILICON HIGH
FREQUENCY AMPLIFIER
TRANSISTORS

· .. designed for low-level, high·gain amplifier appl.ications.
•

Low Noise Figure - @ IC: 1.0 mAdc
NF: 4.0 dB (Typ)

•

High Current·Gain-Bandwidth Product fT: 850 MHz (Typ) @ IC : 4.0 mAde

•

Transistors Similar to 2N918

• TO-116 Ceramic Package - Compact Size, Compatible with IC
Automatic Insertion Equipment

MAXIMUM RATINGS
Symbol

Value

Unit

VeEO

15

Vde

Collector-8ase Voltage

Ves

30

Vde

Emitter-Base Voltage

VES

3.0

Vde

Ie

50

mAde

Rating
Collector· Emitter Voltage

Collector Current - Continuous

Each
Transistor

Total
Device

Po

0.65
3.72

1.9
10.88

Watts
mW/oe

Power Dissipation @ T C ::: 2SoC

Po

1.3
7.43

4.6
26.3

Watts
mW/oe

Operating and Storage Junction
T emperatu re Range

TJ,Tstg

-65 to +200

'gg:: :~I
8

E

E.8

~

1

F

°e

MILLIMETERS
DIM MIN
MAX
A 18.8
19.9
B 5.59
7.11
C
5.08
D 0.381 0.584
F
0.77
1.77

CONNECTION DIAGRAM

c

~
-11-0

Power Dissipation @ T A = 25°C
Detate above 2SoC

Derate above 25°C

.S1

4

G
J
K
L

0.203

2.54 8SC

M
N
P

0.51

0.381

2.54
7.828SC
150
0.78
8.25

All JEOEC dimensionsa,ll: notes apply.
eASE 632'()2
TO·116

C

330

MHQ918 (continued)

ELECTRICAL CHARACTERISTICS IT A

I

~ 25°C unless otherw,se noted

I

Characteristic

I

Symbol

Min

Typ

Max

Unit

Collector·Emitter Breakdown Voltage (1)
(lC = 3.0 mAde, IS = 0)

SVCEO

15

-

-

Vde

Collector-Base Breakdown Voltage

SVCSO

30

-

-

Vde

BVESO

3.0

-

-

Vde

ICSO

-

-

10

nAdc

-

110
80

-

OFF CHARACTERISTICS

(lC = 1.0"Ade, IE = 0)
Emitter-Base Breakdown Voltage

(IE = 10"Ade, IC = 01
Collector Cutoff Current
IVCS = 15 Vde, IE = 0)

ON CHARACTERISTICS III
DC Current Gain
(lC = 0.1 mAde, VCE = 1.0 Vdel
(lC = 3.0 mAde, VCE = 1.0 Vde)
(lC = 10 mAde, VCE = 1.0 Vde)

-

hFE
20

-

50

-

Collector-Emitter Saturation Voltage
(lC = 10 mAde, IS = 1.0 mAde)

VCEI .. t)

-

0.11

0.4

Vde

Base-Emitter Saturation Voltage
IIC = 10 mAde, IS = 1.0 mAde)

VSEI .. tl

-

0.84

1.0

Vde

IT

600

850

-

MHz

Cob

-

0.75

2.0

pF

Input Capacitance
IVSE = 0.5 Vde, IC = 0, I = 140 kHz)

Cib

-

1.4

2.5

pF

Noise Figure
(lC = 1.0 mAde, VCE = 6.0 Vdc, RS = 400 Ohms, I = 60 MHz I

NF

-

4.0

6.0

dB

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, 1= 100 MHz)
Output Capacitance

IVCS = 10 Vde, IE = 0, 1= 140 kHzl

11) Pulse Test: Pulse Width <;;300 p.s, Duty Cycle <;;2.0%.

331

MHQ2221, MHQ2222 (SILICON)
MPQ2221, MPQ2222

QUAD DUAL-IN-L1NE
NPN SILICON ANNULAR
GENERAL-PURPOSE TRANSISTORS

QUAD DUAL-IN-L1NE
NPN SILICON
GENERAL-PURPOSE
TRANSISTORS

· .. Designed for general-purpose switching circuits and DC to VHF
amplifier applications.
•

Choice of Ceramic or Plastic Package

•

DC Current Gain Specified - 10 to 300 mAdc·

•

Low Collector-Cutoff Current ICBO = 50 nAdc (Max) @VCB = 50 Vdc

•

High Collector Breakdown Voltages BVCEO = 40 Vdc (Min) BVCBO = 60 Vdc (Min)

CONNECTION DIAGRAM

•

Transistors Similar to 2N2218 thru 2N2222 Series

•

TO-116 Packaging - Compact Size Compatible With I C
Automatic Insertion Equipment

•

MH02221 Available With BVCEO = 60 Vdc on Specified Request
C

MAXIMUM RATINGS
Symbol

Rating

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCS

60

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

IC

500

mAde

Collector-Emitter Voltage

Collector Current - Continuous

B

B

~MOO~~''''=
,.~ ¥~
CERAMIC

Each
Transistor

Total Power Dissipation @TA
Derate above 2SoC

:=.

25°C

PD

0.65

Operating and Storage Junction MHQ2221.22
Temperature Range
MPQ2221.22

mW/oC

10.88
15.2

5.2
TJ.Tstg

Watts

1.9

3.72

MHQ2221. MHQ2222
MPQ2221. MPQ2222

Total
Device

°c

-65 to +200
-55 to +150

~

4

8~
8 P

CASE 632·02
TO-116

7~

1

-11-0

F

MP02221. MPQ2222
CASE 646

MILLIMETERS

PLASTIC PACKAG E

DIM

A
B
C
0
F
G

NOTES
1 LEAOSWITHINO.13mm
iO.0051 RADIUS OF TRUE
POSITION ATSEATING
PLANE AT MAXIMUM
MATERIAL CONOITION.

2. DIMENSION "l" TO
GENTER OF LEADS

WHEN FORMED
PARAllEL

H
J
K
L
M

N
p

n

MILLIMETERS
MIN
MAX

18.16
6.10

18.80

6.60
4.06 4.57
0.51
038
1.02
1.52
2.S4BSC
1.32
1.83
0.30
0.20
2.92
3.43
7.37
7.87

INCHES

MIN
0.715
0.240
OISO

0.040
0.052
0.008
0.115
0.290

0.072
0.012
0135
0,310

0.020
0.005
0020

0.015
0.030

0.015

a.looase

10"

10"

0.51
0.13
O.SI

101
0.38
0.76

MAX

0.740
0.260
0.180
0.020
0060

332

0.040

C

DIM MIN
MAX
A 16.8
19.9
B 5.59
7.11
C
5.08
o 0.381 0.584
F
0.77
1.77
G
2.54 Bse
J
0.203 0.381
K 2.54
L
7.62 BSe

M
N
P

0.51

150
0.76
8.25

AIIJEOEC dlmensionsandnotesapplv.

NOTE.
DIMENSION "l" TO CENTER OF
LEADS WHEN FORMED PARALLEL

MH02221, MH02222, MP02221, MP02222
ELECTRICAL CHARACTERISTICS

(continued)

(TA = 25 0 C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

Colieetor-Emitter Breakdown Voltage(l)
(lC = 10 mAde, IB = 0)

BVCEO

40

-

-

Vde

Collector-Base Breakdown Voltage
(IC = 10 "Ade, IE = 0)

BVCBO

60

Emitter-Base Breakdown Voltage

BVEBO

5.0

-

-

ICBO

-

-

50

nAde

lEBO

-

-

50

nAde

35
75

-

-

-

-

-

-

-

-

0.4
1.6

-

-

-

1.3
2.6

IT

200

350

-

Cob

-

4.5

8.0

pF

Cib

-

17

30

pF

ton

-

25

-

ns

toft

-

250

-

ns

OFF CHARACTERISTICS

(IE = 10 "Ade, IC

= 0)

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
Emitter Cutoff Current
(VSE = 3.0 Vde, IC = 0)

Vde
Vde

------

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 10 mAde, VCE 0 10 Vde)

hFE
MH02221,
MH02222,
MH02221,
MH02222,

(lC = 150 mAde, VCE = 10 Vdc)
(lC = 300 mAde, VCE = 10 Vdc)

MP02221
MP02222
MP02221
MPQ2222

40
100

MH02221, MPQ2221
MH02222, MP02222

20
30

Collector-Emitter Saturation Voltage

VCE(sat)

(lC = 150 mAde, IB = :5 m!\de)
(lC = 300 mAde, I B = 30 mAco)

."

Base-Emitter SaturatIon Voltage
(lC = 150 mAde, IS = 15 mAde)
(lC = 300 mAde, 18 = 30 mAdcl

VBE(sat)

-

-

-

Vde

-

Vde

DYNAMIC CHARACTERISTICS

Current-Gain -Bandwidth Product \ 1)
(lC = 20 mAde, VCE = 20 Vde, f = 100 MHz)

Output Capacitance

MHz

(VCB = 10 Vde, Ie = 0, f" 100 kHz)

Input Capacitance
(VSE 00.5 Vde, IC = Q, f =.100 kHz)
SWITCHING CHARACTERISTICS (F,gure 1)
Turn-On Time
(VCC 0 30 Vde, VBE(offi = 0.5 Vde,
IC" 150mAde, lSI = 15mAde) (Figure 1)

Turn-Off Time
(VCC = 30 Vde, IC = 150 mAde,
IB1 = IS2 = 15 mAde) (Figure 2)
(1)Pulse Test- Pulse Width

S

300 Jls, Duty Cycle == 2%.

FIGURE 2 - STORAGE TIME AND FALL
TIME EQUIVALENT TEST CIRCUIT

FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT

GENERATOR RISE TIME.;; 2.0 ns
200 n.
DUTY CYCLE = 2.0%

f'W"

DUTY CYCLE = 2.0%

+30 V

l-frr~ ~~.::s

+30 V

+1602vn

99

o

J \

4

619

~n--'ll'lllr--+-0.5 V

'

Ok

,1>-J\3
a,:f\l\r9'6-.-+--I

SCOPE
Rin> 100 k ohms
Cin,,12pF
RISE TIME" 5.0 ns

J

~ 500~sl

333

-3.0 V

SCOPE

Rin > 100 k oh...
Cin,,'2pF

RISE TIME" 5.0 ns

MHQ2369 (SILICON)
MPQ2369

QUAD DUAL-IN-LiNE
NPN SILICON ANNULAR
SWITCHING TRANSISTORS
· .. designed for low-current. high-speed switching and space saving
applications.
•

Choice of Ceramic or Plastic Package

•

High Current-Gain-Bandwidth Product fT = 550 MHz (Typ) @ IC = 10 mAdc

•

Fast Switching Times ton = 9.0 ns (Typ)
toff = 15 ns (Typ)

@

QUAD DUAL-IN-LiNE
NPN SILICON
SWITCHING
TRANSISTORS

VCC = 3.0 Vdc
CONNECTION DIAGRAM

•

Low Saturation Voltage VCE(sat) = 0.25 Vdc (Max)

•

Each Transistor Similar to 2N2369

•

TO-116 Package - Compact Size Compatible With IC
Automatic Insertion Equ ipment

@

IC = 10 mAdc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

15

Vdc

Collector-Sa.. Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

IC

500

mAde

Rating
Collector-Emitter Voltage

Collector Current - Peak

Total Device Dissipation@TA = 25°C
Derate above 2SoC

Temperature Range

Total

Transistor

Device

0.5

1.5

Watts

2.86
4.0

8.58
12

mW/oC

PD

MH02369
MPQ2369

Operating and Storage Junction MH02369

Each

°c

-65 to +200
-55 to +150

TJ.Tstg

MP02369

-

MHQ2369

.S1

~
,
't:J
4

-ll-o

CERAMIC
CASE 632-02

TO-116

F

MPQ2369
CASE 646

PLASTIC PACKAGE

INCHES

DIM
A

•
C

o

F

G
H

J
NOTES:
1. LEADSWITHINO.13mm

{D.DObl RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.

2. DIMENSION ItL" TO
CENTER OF LEADS

WHEN FORMED
PARALLEL

K
L
M

Q

MIN
MAX
0.115 0.740
0.240 0.260
0.1600.180
0.015 0.020
0.040 0.060
O.l00BSC
0.052 0.012
0.008 0.012
O.t15 0.135
0.
0.310
10'
0.020 0.040
0.005 0.015
0.020 0.030

334

All JEDEC dimenslOm:a'ld notes applv.
NOTE:

DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL.

MH02369, MP02369 (continued)

ELECTRICAL CHARACTERISTICS ITA = 250 C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Typ

Max

Unit

Colleetor·Emitter Breakdown Voltagell)
(lC = 10 mAde, IB - 0)

BVCEO

15

-

-

Vde

Coliector·Base Breakdown Voltage
(lC = 10 /lAde, IE = 0)

BVCBO

40

-

-

Vde

Emitter·Base Breakdown Voltage

BVeBO

4.5

-

-

Vde

Collector Cutoff Current
IVCB = 20 Vde, IE = 0)

ICBO

-

-

0.4

/lAde

Emitter Cutoff Current
IVBE = 3.0 Vde, IC = 0)

lEBO

-

-

0.5

/lAde

40
20

-

-

-

-

0.25

-

-

0.9

fT

450

550

-

MHz

Cob

-

2.5

4.0

pF

Cib

-

3.0

5.0

pF

-

9.0

-

-

15

-

OFF CHARACTERISTICS

(IE = 10 /lAde, IC = 0)

ON CHARACTERISTICS
DC Current Gain(1)
(lC = 10 mAde, VCE = 1.0 Vde)
(lC = 100 mAde, VCE = 2.0 Vde)

hFE

Collector-Emitter Saturation Voltage

VCElsat)

-

Vdc

(lC = 10 mAde, IB = 1.0 mAde)

Base-Emitter Saturation Voltage

-

Vde

VBElsat)

(lC = 10 mAde, 18 = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product (1)
l'c= 10 mAde, Vr." = 10 Vde, f = 100 MHz)

Output Capacitance
IVCB = 5.0 Vde, 'E = 0, f = 140 kHz)

I nput ,Capacitance
IVBE = 0.5 Vde, IC = 0, f = 140 kHz)
SWITCHING CHARACTERISTICS
Turn·On Time
IVCC = 3.0 Vde, VBEloff) = 1.5 Vde,
= 10 mAde,lBl = 3.0 mAde)

ton

Turn·Off Time
IVCC = 3.0 Vde; IC = 10 mAde,
181 =3.0mAde,IB2= 1.5 mAde)

toff

ns

'c

(1)Pulse Test: Pulse Width.s; 300 /Js, Duty Cycle

ns

= 2%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

--lilt--

FIGURE 1 - ton CIRCUIT

+10.SV

nil

3.0 V

_..,.'It---,
270

0---1.5 V

-1

<1.0ns

PU LSE WIDTH (q) = 300 n.
DUTY CYCLE· 2.0%

FIGURE 2 - toff CIRCUIT
3.0 v

+1O'7:~__
__
-9.15 V

3.lk

I

J..t-< loOns
PULSE WIDTH Ill) = 300 n.
DUTY CYCLE' 2.0%
"'Total Shunt Capacitance Df test jig and connectors.

335

_IIN_--,
270

MHQ2483 (SILICON)
MHQ2484

QUAD DUAL-IN-LINE
NPN HERMETIC SILICON ANNULAR
AMPLIFIER TRANSISTORS

QUAD DUAL-IN-L1NE
NPN SILICON
AMPLIFIER
TRANSISTORS

· .. designed for low-level, high-gain amplifier applications.
•

Low Noise Figure -@ IC = 10 !lAdc, f
NF = 3.0dB (Typ) - MH024B3
= 2.0dB (Typ) - MH02484

= 10 Hz to 15.7 kHz

• Transistors Similar to 2N2483 and 2N24B4
• TO-116 Ceramic Package - Compact Size Compatible with IC
Automatic I nsertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

40

Vdc

Collector-Base Voltage

Vee

60

Vdc

Emitter-Base Voltage

VEe

6.0

Vdc

Ie

50

mAde

Collector-Emitter Voltage

Collector Current - Continuous

Power Dissipation @ T A == 25°C
Derate above 25°C

PD

Power Dissipation @ T C = 2SoC
Derate above 25°C

PD

Ope{ating and Storage Junction

TJ,Tstg

Each
Transistor

Total
Device

0.6
3.42

1.8
10.3

1.2
6.85

4.2
24

-65 to +200

Temperature Range

Watts
mW/oe

Watts
mW/oe
°e

. .S1

~
-II-oJ

7~

,

CASE 632-02
TO·116

F

CONNECTION DIAGRAM

DIM

A
B
C
D
F
G
J
K
L

M
N
P

MILLIMETERS
MIN
MAX

19.9
7.11
- 5.08
0.381 0.584
0.77
1.77

16.8
5.59

INCHES
MAX
MIN

0.660
0.220

0.785
0.280
0.200
0.023
0.070

O.of5
0.30
0.100 sse
0.203 0.381 0.008 0.015
0.100
2.54
0.300 BSC
7.62BSC
15'
0.76 0.020 0.030
0.51
0.325
8.25
2.548SC

I"

AlIJEOEC dimensionsElndnotesapplv
NOTE·
DIMENSION "l" TO GENTER OF

LEADS WHEN FORMED PARAllEl.

336

MH02483, MH02484 (continued)

ELECTRICAL CHARACTERISTICS ITA

=

250 C unless otherwise noted)

Characteristic

Max

Unit

-

-

Vde

60

-

-

Vde

BVEBO

6.0

-

-

Vde

ICBO

-

-

20

nAde

lEBO

-

-

20

nAdc

-

Svmbol

Min

Colieetor·Emitter Breakdown Voltage(1)
IIC = 10 mAde, IB = 0)

BVCEO

40

Coliector~Base

BVCBO

OFF CHARACTERISTICS

IIC

Breakdown Voltage

= 10 pAde, IE = 0)

Emitter~Base

Breakdown Voltage

liE = lOI'Ade,lc

=0)

Collector Cutoff Current

(VCB = 45 Vde, IE

=0)

Emitter Cutoff Current
(VeE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
OC Current Gain(1)
IIC = 0.1 mAde, VCE

-

hFE

= 5.0 Vde)

MHQ2483
MHQ2484

100
200

= 5.0

(lC

= 1.0 mAde,

Vde)

MHQ2483
MHQ2484

150
300

-

(lc

= 10 mAde, VCE = 5.0 Vde)

MHQ2483
MHQ2484

150
300

-

-

-

0.13
0.15

0.35
0.5

-

0.58
0.70

0.7
0.8

iT

50

100

-

MHz

Ceb

-

1.8

6.0

pF

4.0

8.0

pF

3.0
2.0

-

VCE

Collector-Emitter Saturation Voltage(1)

-

8ase-E mitter On Voltage

(Ie
(lc

Vde

VCE(sat)

IIC= 1.0mAde,IB =0.1 mAde)
IIC = 10 mAde, IB = 1.0 mAde)
VBE(on)

= 100 I'Adc, VCE = 5.0 Vdc)
= 10 mAde, V CE = 5.0 Vdc)

Vde

-

OYNAMIC CHARACTERISTICS
Current~Gain-Bandwidth

(lc

Product

= 500 I'Ade, VCE = 5.0 Vdc, f = 20 MHz)

Collector-Base Capacitance

(VCB = 5.0 Vdc, IE

= 0, f

= 100 kHz)

Input Capacitance

IVBE

= 0.5 Vdc,

IC

eib

= 0, f = 100 kHz)

Noise Figure

(lC = 10 I'Adc, VCE = 5.0 Vdc, RS = 10 k ohms,
f = 10 Hz to 15.7 kHz, BW = 10 kHz)

.~

NF

dB

-

MHQ2483
MHQ2484

~

337

MHQ2906, MHQ2907 (SILICON)
MPQ2906, MPQ2907

QUAD DUAL-IN-LINE
PNP SILICON ANNULAR
GENERAL-PURPOSE TRANSISTORS

QUAD DUAL-IN-LINE
PNPSILICON
GENERAL-PURPOSE..
TRANSISTORS

· .. designed for general-purpose switching circuits and DC to VHF
amplifier applications.
• Choice of Ceramic or Plastic Package
• High Collector-Base Breakdown Voltage BVCBO = 60 Vdc (Min) @ IC = 10 IlAdc
• DC Current Gain Specified - 10 to 300 mAdc
•

CONNECTION DIAGRAM

High Current-Gain-Bandwidth Product tr = 350 MHz (Typ) @ IC = 50 mAdc

• Transistors Similar to 2N2906 and 2N2907
•

TO-116 Packaging - Compact Size Compatible With IC
Automatic Insertion Equipment

MAXIMUM RATINGS
Symbol

Value

Unit

VeEO

40

Vdc

Collector-Base Voltage

VeB

60

Vd"

Emitter-Base Voltage

VEe

5.0

Vdc

Ie

600

mAde

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Each
Transistor

Total Device Dissipation @TA ,.. 25°C

Po

Derate above 25°C MHQ2906. MHQ2907
MPQ2906. MPQ2907
Operating and Storage Junction MHQ2906,07
Temperature Range
MPQ2906.07

TJ.Tstg

MHQ2906.MHa2907

_

CERAMIC
CASE 632-02
TO-llG

Total
Device

0.65

1.9

Watts

3.72
5.2

10.88
15.2

mw/oe

-65 to +200
-55 to +150

4

B P

~

1

°e

~

~
.•

-11-0.:1 F

MP029OS. MPQ2907
CASE 646

PLASTIC PACKAGE

DIM

MIN

MAX

A 16.8
8
5.
C
D
F
G

J
K
L

M
N
NOTES:
1. lEADS WITHIN 0 13 mm
{O.OOS, RADIUS Of TRUE
POSITION AT SEATING
PLANE AT MAXIMUM

P
2. DIMENSION "l"TO
CENTER OF lEADS
WHEN FORMED
PARALLEL

AU JECEC dlmeoSionSllfld Rutesapp1v
NOTE'
DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL

MATERIAL CONDITION.

338

MH02906, MH02907 (continued)
MP02906, MP02907
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Typ

Max

40

-

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(l)
(Ie = 10 mAde, IB = 0)

BVeEO

Collector-Base Breakdown Voltage
(Ie = 10 /lAde, IE = 0)

BVCBO

60

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)

BVEBO

5.0

-

-

Vde

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)

leBO

-

-

50

nAde

Emitter Cutoff Current
(VCR = 3.0Vde, IE = 0)

lEBO

-

-

50

nAde

MHQ2906, MPQ2906
MHQ2907, MPQ2907

35
75

-

-

-

MHQ2906, MPQ2906
MHQ2907, MPQ2907

40
100

-

MHQ2906, MPQ2906
MHQ2907 MPQ2907

30
50

-

-

-

-

-

0.4
1.6

-

-

1.3
2.6

f,-

200

350

-

MHz

Output Capacitance
(VCS = 10 Vde, IE = 0, f = 100 kHz)

Cob

-

6.0

8.0

pF

I nput Capacitance

Cib

-

20

30

pF

Turn-On Time
(VCC = 30 Vdc, IC = 150 mAde,
IBI = 15 mAde) (Figure 1)

ton

-

30

-

ns

Turn-Off Time
(VCC = 6.0 Vde, IC = 150 mAde,
lSI = 182= 15 mAde) (Figure 2)

toff

-

100

-

n.

Vde

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 10 mAde, VCE = 10 Vde)
(lC = 150 mAde, VCE = 10 Vde)
(lC = 300 mAde, VCE = 10 Vde)

-

hFE

Coliector·Emitter Saturation Voltage (1 )
(Ie = 150 mAde, IB = 15 mAde)
(lC = 300 mAde, IB = 30 mAde)

VCE(sat)

Base-Emitter Saturation Voltage (1)
(Ie = 150 mAde, IB = 15 mAde)
(Ie = 300 mAde IR = 30 mAde)

VBE(satl

-

-

Vde

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product ( 1 )
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)

(VSE = 2.0 Vde, IC = 0, f = 100 kHz)
SWITCHING CHARACTERISTICS

(llpulse Test: Pul.. Width,. 300 /ll, Duty Cvcl.

= 2%.

FIGURE 1 - DELAY AND RISE
TIME TEST CIRCUIT

FIGURE 2 - STORAGE AND FALL
TIME TEST CIRCUIT

-30

INPUT
ZO'50n
PRF' ISO PPS
RISE TIME <; 2.0 .s

+15 V

INPUT
Zo'50n
PRF' ISO PPS
RISETIME <;20",

200

TO OSCILLOSCOPE
RISE TIME

~

-s.O

1.0 k

37

TO OSCI LLOSCOPE
RISE TIME <; 5.0 .s

1.0 k

5 0 ns

0:u50

IN91S

J200.sl

-::-

-=
339

-=

MHQ3467 (SILICON)

QUAD DUAL-IN-LiNE
PNP HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS

QUAD DUAL-IN-LiNE
PNPSILICON
MEMORY DRIVER
TRANSISTORS

· .. designed for medium·current. high-speed switching. ferrite core
and plated wire memory driver. and MOS translator applications.
•

Low Collector-Emitter Saturation Voltage VCE(satl ~ 0.5 Vdc (Maxi @ IC ~ 500 mAdc

•

Collector-Emitter Breakdown Voltage BVCEO ~ 40 Vdc (Mini @ IC ~ 10 mAdc

• Transistors Similar to 2N3467
• TO-116 Ceramic Package - Compact Size Compatible With IC
Automatic I nsertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCS

40

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

IC

1.0

Collector·Emitter Voltage

Collector Current - Continuous

Power Dissipation @ T A

= 25°C

Po

Derate above 25°C
Power DisSipation @ T C
Derate above 25°C

= 25°C

Operating and Storage Junction
Temperature Range

Po
TJ.T stg

Adc

Total

Each
Transistor

Device

0.9
5.14

2.7
15.4

mVV/oC

1.8
10.3

6.3
36

Watts
mW/oC

-55 to +200

Watts

°c

~
4

.~
B P
~

1

......1l-oJ

CASE 632-02

TO·116

F

CONNECTION DIAGRAM

DIM

MILLIMETERS
MIN
MAX

A 16.8
B
5.59
C
D
F
G
J
K

19.9
1.11
5.08
0.381 0.584
0.17
1.77
2.54 ase

L
M

0.203 0.381
2.54
I.B2Bse
15°

N

0.51

P

0.76

8.25

AUJEOEC dimensIOns and notes apply

NOTE
DIMENSION "l" TO CENTER OF
LEADS WHEN FORMED PARALLEL.

340

MH03467 (continued)

ELECTRICAL CHARACTERISTICS (TA

= 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Colleetor·Emitter Sreakdown Voltage(l)
(lC = 10 mAde, IS = 0)

SVCEO

40

-

-

Vde

Collector-Base Breakdown Voltage

SVCSO

40

-

-

Vde

SVESO

5.0

-

-

Vde

ICSO

-

-

200

nAde

lEBO

-

-

200

nAde

20

-

-

-

0.23

0.5

-

0.9

1.2

fT

125

190

Cob

-

10

25

pF

Cib

-

55

80

pF

ton

-

-

40

ns

taff

-

-

90

ns

Characteristic

OFF CHARACTERISTICS

IIC

= 10 "Ade, IE = 0)

Emitter-Base Breakdown Voltage

(IE

= 10 "Ade, IC = 0)

Collector Cutoff Current

(VCS

= 30 Vde,

IE

= 0)

Emitter Cutoff Current
(VSE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
OC Current Gain(ll
IIC

Collector-Emitter Saturation Voltage (1)

(lC

Vde

VCE(sat)

= 500 mAde, IB = 50 mAdcl

Base-Emitter Saturation Voltage (1 )

(lC

--

hFE

= 500 mAde, VCE = 1.0Vde)

Vde

VBE(,atl

= 500 mAde, I B = 50 mAde)

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth Product, ( 11
(IC = 50 mAde, VCE = 10 Vde, f = 100 MHz)

Output Capacitance
(VCS

= 10 Vde,

IE

= 0, f = 100 kHz)

I nput Capacitance

(VSE

= 0.5 Vde,

IC

=0, f = 100 kHz)

MHz

SWITCHING CHARACTERISTICS (Figure 1)

Turn-On Time
(lc = 500 mAde, lSI
Turn·Off Time

= 50 mAde)

(lC = 500 mAde, lSI = IS2 = 50 mAde)
(1 )Pulse Test: Pulse Width.s;; 300 MS, Duty Cycle == 2%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
+3.8 V

-30 V

1.0"F

E----o To Sampling Oscilloscope

1.0k

Zin ;;'100 kn
tr <1.0 ns
1.0 "F

':LJt
Pulse Generator
t r , tf t;;;;; '.0 ns

100

-=

PW""1.0"s
Zin"" 50.n
DC<2.0%

341

MHQ3546 (SILICON)
MPQ3546

QUAD DUAL-IN-LiNE
PNP SILICON ANNULAR
SWITCHING TRANSISTORS

QUAD DUAL-IN-LiNE
PNPSILICON
SWITCHING TRANSISTOR

· .. designed for low-level, high-speed switching applications.
•

Choice of Ceramic or Plastic Package

•

High Current·Gain-Bandwidth Product fT = 1000 MHz (TVp) @ IC = 10 mAdc

•

Fast Switching Times
ton = 15 ns (TVp)
toff = 25 ns (TVp)

CONNECTION DIAGRAM

•

Transistor Similar to 2N3546

•

TO-116 Packaging - Compact Size Compatible With IC
Automatic I nsertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

12

Vdc

Collector-Base Voltage

VeB

15

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

Ie

200

mAde

Collector-Emitter Voltage

Collector Current

Continuous

Each
Transistor
Total Device Oissipation@TA=2SoC

Derate above 2SoC

Po

MHQ3546
MP03546

Operating and Storage Junction MH03546
Temperature Range
MP03546

TJ,Ts'g

Total
Device

0.5

1.5

Watts

2.86
4.0

8.58
12

mwf'e

ue

-65 '0 +200
-55'0 +150

.,

MHQ3546

.S1

~
4·

CERAMIC
CASE 632-02
TO-116

7~

,

-11-0

F

MP03546
CASE 646

PLASTIC PACKAGE

MILLIMETERS
MIN
MAX
19.9
7.11
C
5.08
0
0.381 0.584
F
0.77
1.77
2.54BSC
G
J
0.203 0.381
K
2.54
7.62 BSC
L
M
- 15"
0.76
N 0.51
p
8.25

DIM

A 16.8
B 5.59

NOTE$:

1. lEADS WITHIN 0.13 mm
(0.005) RADIUS OF TRUE

POSITION AT SEATING
PLANE AT MAXIMUM

INCHES
MI.
MAX

0.785
0.280
0.200
0.015 0.023
0.030 0.070
0.1008SC
O.oIUl 0.015
0.100
0.300BSC
15"
0.020 0.030
- 0.325

0.660
0.220

-

AIIJEOEC dimensionsand notes apply.
2. DIMENSION "L" TO
CENTER OF LEADS

WHEN FORMED
PARALLEL

NOTE·
DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL

MATERIAL CONDITION.

342

MH03546, MP03546 (continued)
ELECTRICAL CHARACTERISTICS IT A

=

250 C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage(l)
(lC = 10 mAde,lB = 0)

BVCEO

12

-

-

Vdc

Collector-Base Breakdown Voltage
(lC = 10 I'Ade, IE = 0)

BVCBO

15

-

-

Vdc

Emitter-Base Breakdown Voltage

BVEBO

4.5

-

-

Vdc

ICBO

-

-

0.1

I'Ade

lEBO

-

-

0.1

I'Ade

Characteristic
OFF CHARACTERISTICS

(IE

= 10 I'Ade, Ie = 0)

Colieetor Cutoff Current
(VCB

= 10 Vde,

IE

= 0)

Emitter Cutoff Current
(VBE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
De eurrent Gain( 1)

-

hFE

(lC

= 10 mAde, VCE = 1.0 Vde)

30

-

(lC

= 100 mAde,

15

-

VCE(sat)

-

-

0.25

Vde

VBE(sat)

-

-

0.9

Vde

fT

600

1000

-

MHz

eob

-

2.0

6.0

pF

Cib

-

3.5

8.0

pF

Turn-On Time
(Vee = 2.0 Vde, VBE(off) = 3.0 Vde,
Ie = 30 mAde, IBI = 1.5 mAde)

ton

-

15

-

ns

Turn-Off Time
(Vee = 2.0 Vde, Ie = 30 mAde,
IBI = IB2 = 1.5 mAde)

toft

-

25

-

ns

VeE

= 1.0 Vde)

Collector-Emitter Saturation Voltage
(IC

= 10

mAde, IB

= 1.0 mAde)

Base-Emitter Saturation Voltage
(Ie

= 10 mAde,lS = 1.0 mAde)

-

DYNAMIC CHARACTERISTICS
Current-Galn-Bandwidth Product(1)

(Ie

= 10 mAde,

VeE

Output Capacitance
(VeB = 10 Vde, IE

= 10 Vde, f = 100 MHz)

= 0, f = 1.0 MHz)

Input Capacitance
(VBE

= 0.5 Vde,

IC

= 0, f = 1.0 MHz)

SWITCHING CHARACTERISTICS (F,gure 1)

(1)Pulse Test

Pulse W1dth

~ 300 jJs, Duty Cycle = 2%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

VBB

-2.0 V

....Vin:P

'""1

...OVout·

PU LSE WIDTH> 200 ns
RISE TIME < 1.0 ns
Zin=50~!

_L

'T' c, .: 10 pF

I
-b
"'Oscilloscope Rise Time~;' 1 0 ns

343

ton. VBB = +3.0 V, Vin = -7.0 Vdc
toff. VBB = -4.0 V, V," = +6.0 Vdc

MHQ3798 (SILICON)
MHQ3799

QUAD DUAL-IN-LlNE
PNP HERMETIC SILICON ANNULAR
AMPLIFIER TRANSISTORS

QUAD DUAL-IN-LlNE
PNPSILICON
AMPLIFIER TRANSISTORS

· .. designed for low·level, low·noise amplifier applications.
• Low DC Current Gain Specified - 10 !lAdc to 10 mAdc
hFE = 150 (Min) @ IC = 500 MAdc - MH03798
= 300 (Min) @ IC = 500 !lAdc - MH03799
• Low Capacitance Cob = 2.3 pF (Typ) @ VCB = 5.0 Vdc
• Low Noise Figure - NF = 2.5dB (Typ) @ IC = 100 !lAdc
• Transistors Similar to 2N3798 and 2N3799
• TD·116 Ceramic Packaging - Compact Size Compatible With IC
Automatic I ns..rtion Equipment

MAXIMUM RATINGS
flating
Collector-Emmer Voltage

Symbol

MHC3798

VCEO

40

MHC3799

Unit

60

Vdc

I

Collector-Base Voltage

VCB

60

Emitter-Base Voltage

VEB

5.0

Vdc

IC

50

mAde

Collector Current - Continuous

Vdc

Each
Transistor

Total
Device

Total Device Dlssipatlon@TA = 25°C
Derate above 25°C

PD

0.5
2.B6

1.5
8.58

Watts
mW/oC

Total Device Dlssipation@Tc=250C
Derate above 25°C

PD

1.0
5.71

3.5
20

Watts
mW/oC

Operating and Storage Junction
Temperature Range

T J.T stg

-65 to +200

CASE 632-02

°c

TO-11S

r--

A

-t_.l CJ

_

J

CONNECTION DIAGRAM

...lc'

Hi-...lGi-

'K'.:i J~\--

SEATING
PLANE

INCHES
MILLIMETERS
MAX
MIN
MAX
MIN
19.9
0.660 0.785
16.8
B
5.59
7.11 0.220 0.280
0.200
5.08
e
0
0.381 0.584 0.015 0.023
0.77
1.77
0.030 0.070
F
0.1008se
2.54BSe
G
J
0.203 0.381 0.008 0.015
K
2.54
0.100
0.3008Se
L
7.628se
M
15°
15°
0.76
0.030
N 0.51
0.020
8.25
0.325
P

DIM
A

AIIJEOEC dimensiansand nates apply.
NOTE

DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARAllEL

344

,

-:Tl ,II :
~II~II

MH03798, MH03799 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(1,
(lc = 10 mAde, IB = 0)

Vde

BVCEO

-

BVCBO

40
60
60

BVEBO

5.0

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)

ICBO

Emitter Cutoff Current
(VBE = 3.0 Vde, I C = 0)

lEBO

MHQ3798
MHQ3799

Collector-Base Breakdown Voltage

-

-

Vde

-

-

Vde

-

-

10

nAdc

-

-

20

nAdc

.100
225

-

150
300
150
300
125
250

-

-

-

-

0.2
0.25

-

-

0.7
0.8

IT

-

130

-

MHz

Cob

-

2.3

-

pF

Cib

-

5.5

-

pF

-

2.5

-

1.5

-

(lC = 10 !lAde, IE = 0)
Emitter-Base Breakdown Voltage

(IE = 10 !lAde, IC = 0)

ON CHARACTERISTICS
OC Current Gain(1)
(IC = 10 !lAde, VCE = 5.0 Vde)
(lc = 100 !lAde, VCE = 5.0 Vde)
(lC = 500 !lAde, VCE = 5.0 Vde)
(lC = 10 mAde, VCE = 5.0 Vde)

hFE

MHQ3798
MHQ3799
MH03798
MH03799
MH03798
MH03799
MH03798
MH03799

Collector-Emitter Saturation Voltage

-

Vde

VCE(sat)

(lC = 100 !lAde, IB = 10 !lAde)
(lC = 1.0 mAde, IB = 100!l Ade)
Base-Emitter Saturation Voltage

Vde

VBE(sat)

(lC= 100 !lAde, IB= 10 !lAde)
(lC = 1.0 mAde, I B = 100/lAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 mAde, VCE = 5.0 Vde, I = 100 MHz)
Output Capacitance

IVCB = 5.0 Vde, IE = 0, I = 100 kHz)
I nput Capacitance

NBE = 0.5 Vde, IC = 0, 1= 100 kHz)
Noise Figure

IIC = 100 /lAde, VCE = 10 Vde, RS = 3.0 k Ohms,
1= 10 Hz to 15.7 kHz)

NF
MH03798
MHQ3799

(, )Pulse Test: Pulse Width'S 300 p.s, Duty Cycle"" 2%.

345

dB

MHQ4001A (SILICON)
MHQ4002A

QUAD DUAL·IN·LlNE'
NPN HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS
QUAD DUAL·IN·LlNE
NPN SILICON
MEMORY DRIVER
TRANSISTORS

· .. designed for high current, high speed switching, ferrite core and
plated wire memory driver, and MOS translator applications.
•

Fast Switching Timeston = 40 ns (Max)
toff = 75 ns (Max)

•

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.95 Vdc (Max) @ IC = 1.0 Adc

• DC Current Gain Specified 100 mAdc to 1.0 Adc
• Transistors Similar to 2N3725
• TO·116 Ceramic Package - Compact Size Compatible
with IC Automatic Insertion Equipment

MAXIMUM RATINGS
Rating

Symbol

MHO
4001A

MHO
4002A

Unit

Collector-Emitter Voltage

VCEO

40

45

Vdc

Collector-Emitter Voltage

VCES

60

70

Vdc

60

70

Vdc

Collector-Base Volt ~ge

VCB

Emitter-Base Voltage

VEe

6.0

Vdc

IC

1.5

Adc

Collector Current - Continuous

Each
Transistor

Q
4

,

-lI--oJ

~
8 P

't:J
F

Four

Transistors
Equal Power

Total PO\M!f Dissipation@ T A = 25°C

Po

750
4.3

2500
14.3

mW
mW/oC

Po

1.2
6.86

4.0
22.8

Watts
mW/oC

Derate above 25°C
Total Power Dissipation @ T C = 25°C
D~rate above 2SoC
Operating and Storage Junction

TJ,Tstg

-55 to +200

°c

Temperature Range

MilLIMETERS
DIM

MIN

MAX

A 16.8
8
5.59

CONNECTION DIAGRAM

e

o

F
G
J
K
L

19.9
7.11
5.08
0.381 0.584
0.77
1.77
1.54 ase
0.103 0.381
1.54
7.61 asc

M

N
P

150

0.51

0.76
8.25

NOTE
DIMENSION "L" TO CENTER OF
LEA OS WHEN FORMEO PARALLEL.

CASE 632.()2
TO·116
All JEDEC dimeoslOnsand notes appl'l.

346

MHQ4001A,MHQ4002A (continued)

ELECTRICAL CHARACTERISTICS

(T A

= 25°C unless otherwise noted)
Symbol

Characteristic

Collector-Emitter Breakdown Voltage (1)
(lC

= 10 mAde,lB = 0)
= 10 I'Ade,

VSE

= 0)

= 10 I'Ade,

Ie

= 0)

= 10 I'Ade,

IC

MH04001A
MH04002A

-

-

-

-

60
70

-

-

-

60
70

-

-

6.0

-

-

-

-

500

50
30
20

100
60
45

250

-

0.14
0.23
0.36

0.26
0.52
0.95

-

0.75
0.88
1.0

0.86
1.1
1.7

200

275

-

-

5.0

10

-

55

70

-

30

40

-

60

75

Vde

Vde

Vde

ICBO

= 30 Vde, Ie = 0)

Unit

Vde

SVeso

= 0)

Collector Cutoff Current
(VCS

40
45

SVCSO

Emitter-Base Breakdown Voltage
(Ie

Max

SVCES

MHQ4001A
MH04002A

Collector-Base Breakdown Voltage
(lC

Typ

BVCEO

MHQ4001A
MHQ4002A

Collector-Emitter Breakdown Voltage
(lC

Min

nAde

ON CHARACTERISTICS (1)

DC Current Gain
(lC
(IC
(lC

Collector-Emitter Saturation Voltage
(lC
(lC
(lC

= 100 mAde,
= 500 mAde,

= 1.0 Ade,

IS

IS
IS

VCe(s.t)

= 10 mAde)
= 50 mAde)

= 100 mAde)

Base-Emitter Saturation Voltage
(lC
(IC
(lC

-

hFe

= 100 mAde, Vce = 1.0 Vde)
= 500 mAde, Vce = 1.0 Vde)
= 1.0 Ade, VCE = 5.0 Vde)

VSe(s.t)

= 100 mAde, IS = 10 mAde)
= 500 mAde, IS = 50 mAde)
= 1.0 Ade, IS = 100 mAde)

Vde

Vde
0.8

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(IC = 50 mAde, Vce = 10 Vde, 1= 100 MHz)

Output Capacitance
(VCB

pF

Cob

= 10 Vde, Ie = 0, I = 100 kHz)

Input Capacitance
(Vse = 0.5 Vde, IC

MHz

IT

Cib

= 0, I = 100 kHz)

pF

SWITCHING CHARACTERISTICS (F,gure 1)

Turn-On Time
(VCC = 30 Vde, IC

= 0.5 Ade, VSE(off) = 3.8 Vde,

ton
lSI = 50 mAde)

Turn-Off Time
(VCC

toff

= 30 Vde, IC = 0.5 Ade, IS 1 = IB2 = 50 mAde)

ns
ns

(11 Pulse Test: Pulse Width ';;300 I'S, Duty Cycle';; 2.0%

FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT

~

1.0"F

~~L;;~~NERAToTf----....

100

43
15
,.-;:::>.--J\IIIV------""""M~-<>+30V

-J\II".,.--t-l

tr, tf'" 1.0 ns
PW"", 1.0,l.ls
Zin" 50ll
Duty Cycle = 2.0%

62

_
-

SAMPLING

TO
OSCILLOSCOPE

1.0 k

2m~

100kH
tr<1.0 ns

-3.BV

347

MHQ4013
MHQ4014

(SILICON)

QUAD DUAL-IN-L1NE
NPN HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS

QUAD DUAL-IN-L1NE
NPN SILICON
MEMORY DRIVER
TRANSISTORS

· .. designed for high current. high speed switching, ferrite core and
plated wire memory driver, and MOS translator applications.
•

•

Fast Switching Times ton = 35 ns (Max)
toff = 60 ns (Max)
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.95 Vdc (Max) @ IC = 1.0 Adc

•

DC Current Gain Specified 100 mAdc to 1.0 Adc

•

Transistors Similar to 2N3725

• TO·116 Ceramic Package - Compact Size Compatible with IC
Automatic Insertion Equipment
MAXIMUM RATINGS
Symbol

MHQ4013

MHQ4014

Unit

Collector·E mitter Voltage

VeEO

40

45

Vdc

Collector·Emltter Voltage

VeES

60

70

Vdc

Collector-Base Voltage

Vee

60

70

Vdc

Emitter-Base Voltage

VEe

6.0

Vdc

Ie

1.5

Adc

Rating

Collector Current - Continuous

Four
Each

Transistor
Total Power Dissipation
Derate above 2SoC

@

TA == 2SoC

Total Power Dissipation @TC'" 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range

Po
Po
TJ,T stg

Transistors
Equal Power
2500
14.3

mW
mw/oe

1.2
6.86

4.0
22.8

Watts
mw/oe

-55 to +200

4

7~

1

4.3

750

Q .S1
-R-oJ

F

°e

CONNECTION DIAGRAM
MILLIMETERS
DIM MIN
MAX
A IS.8
19.9
B
7.11
5.59
C
5.08
D
0.381 0.584
F
0.77
1.77
2.54 Bse
G
J
0.203 0.381
K
2.54
L
7.S28SC
M
15'
N
0.51
0.76
P
8.25

INCHES

MIN
O.SSO
0.220

MAX
0.785
0.280
0.200
0.015 0.023
0.030 0.070
0.100 BSC
0.008 0.015
0.100
0.300 BSC
15'
0.020 0.030
0.325

-

AIIJEOEC rlimenSlonsand notes apply.

NOTE.
DIMENSION "'L"' TO CENTER OF
LEADS WHEN FORMED PARALLEl.
CASE 632.()2
TO·116

348

MHQ4013, MHQ4014 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)

I

I

Characteristic

Symbol

Min

Typ

Max

40
45

-

-

-

60
70

-

-

-

-

60
70

-

-

Unit

OFF CHARACTERISTICS
Collector-E mitter Breakdown Voltage (1)

(IC = 10 mAde, 18

MHQ4013
MHQ4014

Collector-Emitter Breakdown Voltage
(lc

Vde

SVCES

= 1OI'Ade, VBE = 0)

MHQ4013
MHQ4014

Collector-Base Breakdown Voltage
(lC = 10l'Ade,IE = 0)

Vde

SVCBO
MHQ4013
MHQ4014

Emitter-Base Breakdown Voltage
(IE

Vde

SVCEO

= 0)

SVESO

6.0

-

Vde

500

nAdc

= 10 I'Ade,lc = 0)

Collector Cutoff Current
(VCS

= 50

ICBO

= 0)

Vde, IE

ON CHARACTERISTICS (1)

DC Current Gain
(lc
(lC
(lC

Collector-Emitter Saturation Voltage
(lC
(lc
(lc

60
35
25

100
65
50

250

-

0.14
0.23
0.36

0.26
0.52
0.95

-

0.75
0.88
1.0

0.86
1.1
1.7

fT

200

275

-

MHz

Cob

-

5.0

10

pF

Cib

-

50

70

pF

ton

-

20

35

ns

toff

-

50

60

ns

-

Vde

VCE(sat)

= 100 mAde, IS = 10 mAde)
= 500 mAde, IS = 50 mAde)
= 1.0 Ade, IS = 100 mAde)

-

Base-Emitter Saturation Voltage
(IC
(lC
(lC

-

hFE

= 100 mAde, VCE = 1.0 Vde)
= 500 mAde, VCE = 1.0 Vde)
= 1.0 Ade, VCE = 5.0 Vde)

Vde

VSE(sat)

= 100 mAde, IS = 10 mAde)
= 500 mAde, I B = 50 mAde)
= 1.0Ade,IS = 100 mAde)

0.8

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, f = 100 MHz)

Output Capacitance
(VCS

= 10 Vde, IE = 0, f = 100 kHz)

Input Capacitance
(VSE

= 0.5

Vde, IC

= 0, f = 100 kHz)

SWITCHING CHARACTERISTICS
Turn..on Time

IC

= 0.5 Ade,

VSE(off)

Turn-Off Time
(VCC = 30 Vde, IC

= 0.5 Ade,

IBI

(VCC

= 30 Vde,

= 3.8 Vde,

lSI

= 50 mAde)

= IS2 = 50 mAde)

(1) Pulse Test: Pulse Width ';;;300 I'S, Duty Cycle ';;;2.0%.

FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT

JL

10llF

100

43
15
r.:::><--~

o

1.0:1
500

480

-410MHz

40

/

S

10

~

ffi
so

8.0

~

t-

~ 6.0
t-

::>

0

~

20

440 to 410 MHz
Pin set for 7.5W
Pout at 12.5 V

~

4.0

2.0
10

11

--------12

13

v---- i

Pin'IOOmW
V,, 12.5 V

16

ffi

12

~I-

440M./"

~ 8.0
t-

::>
0

~

,e

14

4.0

o
o

15

!/

6.0

Pin'" l00mW
V,, 12.5V

Q:'

0.20

~

o

'"
!Z
8

440 MHz

./

0.15

~
'"::>'"
'-'

0.10

~

0.05

A

~

~

........-:::::~
~HZ

z

j

o
o

9.0

9.0

S.O

3.0
V,~

GAIN CONTROL VOLTAGE (VOLTS)

359

12

,...

12

Vsc, GAIN CONTROL VOLTAGE (VOLTS)

FIGURE 5 - GAIN CONTROL CURRENT versus VOLTAGE

!

".,- ~
~OMHZ

//

3.0

V, VOLTAGE (V,, Vsc)

0.25

140

FIGURE 4 - QUTPUT POWER v.....u. GAIN
CONTROL VOLTAGE

FIGURE 3 - OUTPUT POWER versus VOLTAGE
12

120

100
80
Pin,lNPUT POWER (mW)

60

f, FREQUENCY (MHz)

15

15

MHW709 (continued)

UH F Power Module Test Information

FIGURE 1 - TEST CIRCUIT

FIGURE 2 - UHF POWER MODULE TEST FIXTURE
PRINTEO CIRCUIT BOARD
~--------~~-----------4" ----------------------~

Teflon Glass Board
t = 0.062"
ER = 2.56

Mount Board and module on 1/2" thick aluminum block
for heat sinking and electrical ground. Pins 2, 4 and 6 are

PIN 3

PI N 7

not directly connected to ground in this test fixture.
Ground is provided through module heat sink.

FIGURE 3 - UHF POWER MODULE TEST SETUP

12.5 Vdc

125 Vdc

Signal

Generator

Z1, Z2
L 1, L2
el, C4

50.n Mlcrostrlpllne
Ferroxcube VK200-20J4B
1.0 ~F Tantalum 25 V

C2, C3

Rl

NOTE- No Internal D.C. blockmg on input pin.

360

0 1 /-IF Ceramic

100 Ohm Pot, 2W, Linear Taper

MHW710

The RF Line
UHF POWER MODULE
13 W,12.5 V
400·470 MHz

UHF POWER MODULE
· .. designed for Land Mobile Communications equipment in the
UHF band.
•

Frequency Range 400 to 470 MHz

•

Power Gain Gp = 19.4 dB (Min)

•

Output Power Pout = 13 W (Min)

ELECTRICA L CHARACTERISTICS \Vs and
Characteristic
Frequency Range (1)

Output Power

Vsc

set at 12 5 Vdc unless

otherWise

noted.}

Symbol

Min

Max

Unit

-

400

470

MHz

Pout

13

-

Watts

Gp

19.4

-

dB

~

35

-

%

-

-

-40

dB

Zoo

-

2 1

VSWR

-

-

03

dB

(Pin = 150 mWI
Power Gain

Efficiency

(Pout" 13 WI
Harmonics

(Pout::; 13 W, Reference)
Input Impedance

(Pout"" 13 W, 50 Ohm Reference)
Power Degradation

IP out " 13 W. TC" 25 0 CI
(T C " OOC to BOoCI
Power Degradation

-

-

-

No degradation

0.7

dB

(Pout = 13 W. TC " 25 0 CI
ITC "OoC to BOaC I
Load Mismatch
IVSWR = 00, Vs = 15 Vdc, Pout

=

In

Pout

13 WI

Stability

(Pin:: 50 to 200 mW, load Mismatch 2: 1
50 ohm reference, Vs = 8.0 to 16 Vdc,

-

All SpUriOUS outputs more than

70 dB below desired signal

Vsc adjusted for Pout = 5.0 to 16 W)

(11 Frequency Range is covered in two bands:
MHW710·1 400·440 MHz
MHW71Q.2 440·470 MHz

361

MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 67.06 67.56 2.640 2.660
8 52.32 52.83 2.060 2.080
C 8.51
8.89 0.335 0.350
E 2.54
2.79 0.100 0.110
F
2.67
2.92 0.105 0.115
61.09 SSC
2.405 SSC
G
H 47.88 48.64 1.885 1.915
10.67
11.18
0.420
0.440
J
7.62 0.230 0.300
K
5.84
L 45.34 46.10 1.785 1.815
N 40.26 41.02 1.585 1.615
n 3.45 3.71 0.136 0.146
R 20.32 20.57 0.800 0.810
S 17.02 17.53 0.670 0.690
3.24 0.1175 0.1275
T 2.98
U 12.32 13.08 0.485 0.515
V 9.78 10.54 0.385 0.415
5.46 0.185 0.215
W 4.70
2.92 0.085 0.115
X 2.16
CASE 700·02

MHW710 (continued)

TVPICAL PERFORMANCE CURVES
IMHW71G-2)

FIGURE 1 - INPUT POWER. EFFICIENCY AND
VSWR versus FREQUENCY

FIGURE 2 - OUTPUT POWER versus INPUT POWER
5

225

22.

Pout = 13 Witts

0 V.-V.. -12.5 V
~

in 20

VI"'"

..,

-'-

V

-

PiQ.......

~

F"'<

0

440

420

V

~

1

~

12.5

/'

5

/
/

61 0

I-"""

r-'

5

VszV~·'2.5V

S
! 17.5

I--i-'"

5

5 INPUT VSWR <2:1

r

'!SWR

fo'

460

7.

0

1

5

80

f. F,REOUEN,CY (MHz!

J

6

i...

~o_

.

~

f2

°v
0

/'

V

~

~

V

in

i

..,

~
....

16

12

~ 8.0

o
0

12
13
V. VOLTAGE (V,-VIC!

14

15

..,~
..,g;
....
..,....o

0.1 5

3.0

6.0
9.0
12
V... GAIN CONTROL VOLTAGE (VOLTS!

~~

B

0.1 O

z

:c

j

0.05

0

3.0

6.0
9.0
12
VIC. GAIN CONTROL VOLTAGE (VOLTS!

362

...

;;
V

~

p-

160

r~
V/
V

FIGURE 5 - GAIN CONTROL CURRENT versus VOL TAGE
0.25
Pin' 150 mW
V"12.5 V

i.5 0.20

140

/" ~

V,, 12.S V

0
11

100
120
Pin. INPUT POWER (mWl

o Pin' 150mW

440 to 470 MH,
,
Pin set for l3W
Pout at 12.5 V
Input VSWR < 2:1 for voltage
from 10 to 15 V.

4

V

FIGURE 4 - OUTPUT POWER versus GAIN
CONTROL VOLTAGE

FIGURE 3 - OUTPUT POWER versus VOLTAGE

18

47lMHZ

I--~

5fi

1

480

~

V/

1i

re

2.0:1

V

/'

V

~

15

15

MHW710 (continued)

UHF Power Module Test Information

FIGURE 1 - TEST CI RCUIT

FIGURE 2 - UHF POWER MOOULE TEST FIXTURE
PRINTED CIRCUIT BOARD

1-------

4 ..

-----l~1

!

u...:...:~~_p~..l....---~~~~l-..~~~ ~O

Teflon Glass Board
t'" 0.062"
ER"" 2.56

..

Mount Board and module on 1/2" thick aluminum block
for heat sinking and electrical ground. Pins 2, 4 and 6 are
PIN 7

not directly connected to ground In this test fixtur •.
Ground is provided through module heat sink.

FIGURE 3 - UHF POWER MODULE TEST SETUP

50 Ohm

Lo""

Signa'
Generator

Z " Z2

50 n MicfO$tnpline

L " l2

Ferroxt:ube VK2OQ-20/48

C1. C4

1.0"F Tantalum 25 V

C2. C3
R1

NOTE: No Internel D.c. blocking on inpllt pin.

363

0.1 #IF Ceramic
100 Ohm Pot, 2 W. linear Taper

MJ105 (SILICON)
BU105

HORIZONTAL DEFLECTION SILICON
TRANSISTORS

2.5 AMPERE

· .. designed for use in line operated black and white (19 and 20 inch
1100 deflection circuits) or color (11 and 14 inch 900 deflection
circuits) television receivers.
•

High Collector· Emitter Volt~ge VCER (Peak) = 1400 Vdc ';'·MJl05.
= 1500 Vdc --' Bl;lJ,05' :

•

Collector· Emitter Saturation Voltage.:':;
VCE(sat) = 5.0 Vdc (Max) @ IC =2:5 Adc

•

Fall Time @ IC = 2.0 Adc tf = 0.5 lIS (Typ)
= 1.0 I1s (Max)

POWER TRANSISTORS
NPN SILICON
1400,1500 VOLTS
10 WATTS

", ....

....

MAXIMUM RATINGS
Symbol

Rating

MJ105

Collector-Emitter Voltage

VCEO

Collector-Emmer Voltage - Contmuous
(ABE = 100 nl
Peak

veER

750
1400

veB

750
1400

Collector-Base Voltage _ Continuous
Peak

Unit·

BU10S

750

I
I

Vdc

750
1500

v

750
1500

v

Emitter-Base Voltage

5.0

Vdc

Collector Current - Continuous

2S

Adc

25

Adc

'B

Base Current - POSitive
Negative

15
10

Total Device DISSipation @ TC '" gOOe
Derate above gooe

0.4

Operating and Storage Junction Temperature
Range

TJ,Tstg

-65to+115

THERMAL CHARACTERISTICS
O1aract,rlstic
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherWise noted}
t

OIaractaristic

Symbol'

Min

BVCEO(sus)

750

TVO

Max

Umt

OFF CHARACTERISTICS

Collector-Emitter Sustalnmg Voltage (1)
lie'" 100mAdc,IB"'O)
Collector Cutoff Current
(VCE = 1400 Vdc, VBe '" 0)

MJ105

(VCE = 1500 Vdc, VBe = 0)

BU10S

Emitter-Base Voltage
(IE = 100 mAdc, Ie

Vdc
mAde

ICES

'" O)

1.0
10
.BVEBO .

5.0

DIM
Vdc

ON CHARACTERISTICS

Collector-Emitter Saturation Voltage
(lC = 2.5 Adc, Ie = 1.5 Adc).
Base-Emitter Saturation Voltage
(lC"" 2.5 Adc, 'B '" 1.5 Adcl
DYNAMIC CHARACTERISTICS
Current-Gam-Bandwidth Product (2)
lie = 0 1 Adc, VCE = 5.0 Vdc, f test '" 1.0MHz)
Output Capacitance
(VCB = 10Vdc, Ie =0, f = 01 MHz)

SWITCHING CHARACTERISTICS (Figure 1 and text)
Fall TIffi8
UC=2.0 Adc,'Bl = 1.5 Adc, LB=12J.1H,
AS = 2.5, Non-opttmum values to comply
with aUl05 specification)
11 Pulse Test· Pulse Width 300 j.ls, Duty Cycle ~2.0%"
(2) fT = !hf.l.ft8St

364

MILLlMHERS
MIN MAX

INCHES
MAX
MIN

39.37
A
21.08
B
7.62 0.250
C 6.35
1.09 0.039
D 0.99
3.43
E
30.40 1.177
F 29.90
11.18 0.420
G 10.67
5.59 0.210
H 5. 3
J 16.64 17.15 0.655
12.19 0.440
K 11.18
Q
4.09 0.151
3.84
26.67
R
NOTE:
1. DIM "0" IS OIA.
CASE" ,

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ105, BU105 (continued)

CIRCUIT OPTIMIZATION
Test/application circuit and operating waveforms for BU1051
MJ105 are shown in Figure 1. It may be used to evaluate devices
in the conventional manner, i.e., to measure fall time, storage time,
and saturation voltage. However, the circuit was designed with operating effiCiency in mind, so that it could be used to evaluate devices

can be caused by a variety of problems. but it is the dissipation itself
that is of fundamental importance. Once the transistor operating
point has been established, fixed circuit values may be selected
for the test fixture. Factory testing may then be made with one

meter reading, without adjustment of the test apparatus.

by one simple criterion, supply power input. E>eC8ssive power input

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS
+ 50 Vd,
I.B k

Ly

La

Tl==

Cs
1.0.F

600 Vd,

40
.F
200
Vd,

RB

BASE CIRCUIT VALUES

Switching Test
Optimum

RB
2.5
7.0

LB

12.0
15.0

DESCRIPTION OF SPECIAL COMPONENTS
DRIVER
INPUT
SIGNAL

IB

-5.0V

to

-28.,- 1---35.,-

DUMMY YOKE INDUCTOR (Lyl

r---

2.0 mH, 52.5 turns, #16 AWe;, enamel wire 15 turns per layer,
3.5 layers on 1.376 Inch diameter bobbin, enclosed In a Ferroxcube,
cup core K535221-B2A, With a 0.687 Inch diameter core, with

I Bl

1,-

v.:

-

r-90%

IC

VCE

VBE

to
to

0.003 inch core gap. Use a nylon bolt and nut to hold cup halves
together.

r

DUMMY HIGH VOLTAGE AND HORIZONTAL SCAN
TRANSFORMER (LFI
5.5 mH, 121 turns, #20 AWG enamel wire 33 turns per layer,
3.6 layers 1 mil mylar Insulation between layers wound on 1 leg
of Allen Bradley 0.5 Inch square Fernte "u" core (21·W03 material
with 0.007 Inch gap in each leg. Core halves held together with
plastic.

ICM

-If

VCEM

q

DRIVER TRANSFORMER (nl
Motorola part number 25D68782A05-1/4" laminate "E" iron
core. Primary Inductance - 39 mH, Secondary Inductance 0.22 mH, leakage .inductance with primary shorted· 2.0 IlH. Pri·
mary 260 turns, 1128 AWe;, enamel wire, Secondary 17 turns,
#22 AWG enamel wire.

It

--l

I,

~

BASIC CONSIDERATIONS.
The primary consideration when choosing a deflection tra(lslstor
for a conventional (parallel connected) circuit, as shown in Figure
1, IS one of voltage capabIlity. The flyback voltage to which the
deVice will be subj.ect~d is a relati.vely predictable value with
respect to the main power supply voltage. This voltage pulse,
shown in Figure 1, will usually be about 8 times the value of V+,
but may be varied somewhat by adjusting retrace time and fly back
tuning. For this reason these high voltage devices are particularly
useful in cost conscious solid state receivers, as they permit the

to
FUNDAMENTAL WAVEFORMS OF A SIMPLIFIED
HORIZONTAL DEFLECTION CIRCUIT

use of an off-lhe-line half wave power supply.

365

MJ105/BU105 (continued)

COLLECTOR CIRCUIT VALUES
The power supply ul8d in the circuit of Figure I, _ chosen
to produce a 1000 volt collector pulse on the transistor, a' conserva·
tive value, recommended for unregulated applications. The values
of yoke (LVI, flybeck primary (LFI, retrace capecitor (CRI, and
"s" shaping capacitor (CsI shown, will result in a peak collector
current of 'about 2.0 A. This is sufficient to deflect (and provide
high voltage forI large screen' 110" black and white or smell 90"
color receivers. Peak collector currents to 2.5 A ma-" be handled
by the SUI05/MJI05. Holding the supply constant for most effi·
cient application. adjustment of amountofdaflection may be made
by raising or lowering LV and LF. Remember that LV IV is constant
for tho fixed voltage situatio,n. and actual daflection is proportional
to IV
VaiuBS of Cs and CR must be varied inversely with
LV to meintein retrace and "5" shaping periods.

FIGURE 3-INTERRELATION OF RB, LB. AND la1
50

2.5

~

.",

l\ "'
\
\

0

~

.JLY.

FIGURE 2 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IBI. IC· 2.0 A PEAK

:::: ~ ~27
~

~

'"

~

!a
/38

6.0

0.5

/..

20
k::;,;; ~7.6
15

1.0

1

-.........

-"La- t-Ra- t--

1.5
2.0
ICM,COLLECTOR CURRENT lAMP)

o

3.0

2.5

FIGURE 4 - INTERRELATION OF tf. FALL TIME
AND t l • STORAGE TIME
5.0

4.0

4.0

0

2.0

o

,......,

LS/2.0pH

i

~

~181

~~

"....V ......... t--

0

0

~ 8.0

"

0

1

0.2

0.4

0.6
0.8
1.0
1.2
lal. SASE·CURRENT lAMP)

1.4

1.6

1.8

2.0

's- t--

V-

/

"-"

V

t--

.: 2.0

BASE CIRCUIT VALUES
The driver power supply and driver transistor type ~n be
selected according to convenience. A TO-5 or Uniwatt type will
generally 'be 'needed. Once this is done, the turns ratio of the

1.0

driver transformer can be picked to produce about 4 to 5 volts

o

peak to peak at the base of the output dowice. Tight coupling be·

0.5

1.0

tween windings is recommended on early deSigns to allow optimizing

'1- c--

V

......

1.5
2.0,
ICM, COLLECTOR CURRENT lAMP)

2.S

3.0

I..kage inductance by adding inductance externally. Later, tho leakage can be "designed in" to the transformer. The R8 and its bypess

electrolytic. often called the "speed up" circuit f allows adjustment
of lSI lor IS "end of scan" or IS endl while still providing a low
ac impedance for good turn..,ff of the output device. In Figure 2,
the effects of varying LB and 'lSI on the total power input to the
daflection, circuit are "shown. Note that an optimum LS can be
found which will produce low dissipetion over a wide range of IS 1.

FIGURE 5 - PIN. POWER DISSIPATION, WITH DEVIATIONS
OF VCEM AND ICM

a.0

This is desirable in order to produce efficient operation oyer a wide

.,so

range of circuit component tolerances. Likewise, be.~ LS
Qives
the least sensitivity to output transistor hFE.
.
.
Tho best value of LB found in Figure 2 is 15 pH. Remember
that this is the sum of the actual leakage- inductance of the trans·
former (secondary inductance with primary shorted> and an ex·
ternal L, if necessary. Tho boist value of IS1 is 0.8 A achieved'in
the typical device by using R8 = 7 n, derived experimentelly.
These are the choices recommended, for the test fixture, when
the transistor is used at leM = 2.0 A. Fo'r other values""f ICM ,tie
drive circuit, components must be· changed. Figura 3 showS the
velues of LS and lSI wh"ich should be used.
'
The value of RS which will be required to produce the IS1 is
also given. but of course, it is not an independent variable.

ll00~IOOOV

7.0

VCEM

~ 6.0

~
'"

4.0

~

3.0

~

2.0

z

~v

5.0

~

~

:LI

V 900 V

/.

~~

0

V-

1.0

PERFORMANCE
~~own in Figures 4 and 5 are the results which will be typically
obtained with the test circuit at various operating conditions. _

0
0.5

366

1.0

1.5
2.0
,ICM, CO~LECTOIt ~URRENT (AMP)

2.5

3.0

MJ105. BU105 (continued)

TYPICAL TRANSISTOR CHARACTERISTICS

FIGURE 1 - DC CURRENT GAIN
20

II
TJ -IOOoC

z

~
....
z
~

'"
i3

~

0

j.f

FIGURE 2 - "ON" VOLTAGES
5.0

V

7.0",", "2'5oc

-

~

II

4.0

1i)-IOOoc ...

ill

0

II

I\,

\.

5. 0

\\

3. 0

11
VBE(..t)" Ic/lB = 2.0

I.0

1\
0.05

0.1

02 0.3
0.5
1.0
IC. COLLECTOR CURRENT (AMP)

~51J

I!I"?C

\

2.0

2.0

0
0.03

3.0

25JC ...

·1

VCEloat)t!lIc!IB-2.0

0

_\

~

0.03

II

VCIE =J.OV

FIGURE 3 - SAFE OPERATING AREA

0.05

0.1

J

W

'

'{l

~

0.2 0.3
0.5
1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0

FIGURE 4 - COLLECTOR CUTOFF CURRENT
1000

l....
~
'"

'"
i3

......

~

'"

~

50O~ !=BUI05 - VCB =1500 VOLTS
I- MJI05 - VCB = 1400 VOLTS
300

r--

200
100

0

:l
o

30

~

0

..,

~

-

"

I0

o

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

367

20

40
60
TJ. TEMPERATU RE (DC)

BO

100

MJ400 (SILICON)
High-voltage NPN silicon transistor designed for video
output circuitry in color television receivers.

o
CASE 80

PIN 1. BASE
2 EMITTER

(TO·66)
Collector connected to case

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

325

Vdc

Collector-Base Voltage

VCB

350

Vdc

Emitter-Base Voltage

V EB

5

Vdc

250

mAde

Colleci:or- Emitter Voltage

,

Collector Current-Continuous

IC

Peak

1000

Base Current

Is

Total Device Dissipation @ TA = 25°C

PD.

Derate above 25°C

200

mAde

2.5

Watts
wjOc

0.0167

Total Device Dissipation @ TC = 75°C

PD

Operating and storage Junction
Temperature Range

0.067

Watts
wjOc

-65 to +175

°c

6.67

Derate above 75°C
. T J , Tstg

THERMAL CHARACTERISTICS

Symbol

Max

Unit

Thermal ReSistance, Junction to Case

8JC

15

°cjw

Thermal ReSistance, Case to Ambient

8CA

60

°cjw

Characteristic

FIGURE 1- POWER·TEMPERATURE DERATING CURVE
10

;

~

~

8.0

.............
......... Te, CASE TEMPERATURE

~ 6.0

~
~
Q

ieE

4.0

2.0

.............
.............

-

............

............

TA. AMBIENT TEMPERATURE

i"-.....

I

o

25

50

75

100
TEMPERATURE (OC)

368

125

150

:::--.....
175

MJ400 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted I

Symbol

Characteristic

. Min

Max

Unit

-

Vde

-

Vde

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
(IC '1.0 mAde. I H • 0)

HVCEO(sUB)

Collector-Base Breakdown Voltage
(IC • 0.1 mAde, IE • 0)

HVCHO

Emitter-Base Breakdown Voltage
(IE' O. 1 mAde, IC • 0)

HV EHO

325
350
5.0

ICEO

Collector Cutoff Current
(VCE' 325 Vde,
0)

Is'

Vde
mAde

-

1.0

30

300

ON CHARACTERISTICS
DC Current Gain

hFE

(IC • 50 mAde, VCE • 10 Vde)

Vde

Collector-Emitter Saturation Voltage
(IC • 50 mAde,
5 mAde)

VCE(B.t)

-

5.0

Base-Emitter On Voltage
(IC • 50 mAde, VCE • 10 Vde)

VHE(on)

-

1.0

15

-

-

10

25

-

Is •

Vde

SMALL SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC' 50 mAde, VCE ' 25 Vde, f-1O MHz)

fT

Output Capacitance

Cob

(VCH • 20 Vde, IE' 0, f· 100 kHz)
Small Signal Current Gain
50 mAde, VCE • 10 Vde, f • 1 kHz)

hf.

(Ie •

MHz
pF

-

(11 Pulse Test: PW " 300 ~s. duty cycle '" 2%

FIGURE 2- CURRENT GAIN CHARACTERISTICS
100

VeE 10V
Te 25'C

70
50

V

-

r- T;=2~'C

20

~

i"'"

FIGURE 3- OUTPUT CAPACITANCE
30

h,.@lkHz

h"

r-- l -

t'--...
~
tl
z:

5if:

10

........

'"

r--- ......

5 7.0

C;'

...........

20
5.0

3.0

10

1.0

2.0

3.0

5.0 7.0

10

20

30

50

70

1.0

100

2.0

3.0

5.0

7.0

10

20

REVERSE VOlTAGE (VOLTS)

Ie. COLLECTOR CURRENT ImAdel

369

30

50

70

100

MJ41 0(SILICON)
MJ411

HIGH VOLTAGE NPN SILICON TRANSISTORS
. designed for medium to high voltage Inverters, converters,
regulators and switching circuits.
•

•
•

High Coliector·Emitter Voltage VCEO = 200 Volts - MJ410
300 Volts - MJ411

5 AMPERE
POWER TRANSISTORS
NPN SILICON
200-300 VOLTS
100 WATTS

DC Cllrrent Gain Specified @ 1.0 and 2.5 Adc
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.8 Vdc @ IC = 1.0 Adc

MAXIMUM RATINGS
Symbol

MJ410

I

MJ411

U!Ii'

Vceo

200

I

300

Vd.

CQII8l;tor·Base Voltage

VCB

200

300

Vd.

Emitter·Base Voltage

VEB

5.0

Vde

IC

5.0
10

Ad.

Rating
Collector-Emitter Voltage

CQllector Current - Continuous
Peak
Stile Curr.nt

IB

2.0

Ad.

Total Device Dissipation@Tc :t 75°C
Derate above 75°C

Po

100
1.33

wl"c

Operating Junction Temperature Range
Storage Temperature Rilnge

~65

TJ
Tltg

Watts

to +150

°c

-65 to +200

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS (Tc '"' 25°C unless otherwise noted)

I

Characteristic

SVmbol

I Min

Ma.

Unit

OFF CHARACTERISTICS

FOllector.Emltter Sustaining Voltage
tiC = 100 mAde, la = 0)
!collector Cutoff Current
(Vee = 200 Vdc. Ie '" 0)
(Vce = 300 Vdc. 'a '" 01

200
300
mAde

ICEO

0.25
0.25

MJ410
MJ411

ollector Cutoff Current
IVeE ""200Vdc, VEBloff) = 1.5 V$, MJ410
Te" usOe)
(Vee = 300 Vdc, VeB(offl·1.5 Vdc. MJ411
Te =1250 el
Emitter Cutoff C\,Irrent
(VES = 5.0 Vdc,lC = 0)

Vd.

VCEOlsus)
MJ410
MJ4t1

mAde

Icex

0.5
0.5
5.0

lEBO

MI LlMETERS
DIM MIN MAX
mAde

ON CHARACTERISTICS
toe Current Gain
IIC'" 1.0 Adc. VCE "'5.0 Vdcl
(IC" 2.5 Adc, VeE" 5.0 Vdcl
~lIector-Emitter ~aturation Voltage
lie'" 1.0 Adc,lS = 0.1 Adcl

· Base-Emitter Saturation Voltage
tic" 1.0 Adc. IS =. 0.1 Adcl

"FE

30
10

BO

VCElsatJ

0.8

V~.

VaElsatJ

1.2

Vd.

DYNAMIC CHARACTERISTICS
Current·Galn-Bandwidth Product
tic" 200 mAde. veE'" 10 Vdc.
f"'.OMHz)

39.37
21.08
B
7.62 0.250
C 6.35
1.09 0.039
D 0.99
3.43
E
f 211.90 30.40 1.177
0.420
.67 11 •
G
O. 1
5.5
.3
J 16.64 . 1 .15 0.655
0.440
K 1.18 12.1
Q 3.84
4.09 0.151
26.67
R
NOTE:
1. DIM "Q" IS DIA.

A

CASE II

370

INCHES
X
MIN

1.550
0.830
0.043
0.135
1.197
0.440
0.22
0.675
0.480
0.161
1.050

MJ410, MJ411 (continued)

FIGURE 1 - ACTIVE REGION SAFE OPERATING AREA
10

i
:5

TJ

J. " ' \

=1500 e

5.0 m.

10

_

r-____

~ 02

~

o. I

8

005

'\

There are two limitations on the power handling abifity of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 150°C; TC is variable
depending on conditions. Pulse curves are valid for duty cycles of
10% provided TJ(pk)~ 150°C. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown. (See
AN-415)

de

0.5

a

~~

1.0m~500".

5.0
0:
" 2.0

Secondary Breakdown Limited
Bonding Wire Limited

- - - - - - Thermal Limitation at Te = 750 C

"'

!}

'\.

"'"

Curves Apply Below Rated VCEO

-

MJ410_
0.02

I

0.0 I
5.0

10

I

20

50

if

I

100

200

500

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

100

20
TJ-150·C

0
50

"
ffi

::

30

a'"'"

20

'"'c
~

".......

I
l---' r-

;z

2r

/"'"

"

~ VCE

e

10

=5.0 Vde

"

...... ~

....... f-"
/"'" ~

!""" -55°C

~

Tr 150oe~

7.0
5.0
0.05

0.2

0.1

0.3

'-'-'-TTT-----r--'-"-"""-"T"I"TlII'---'----",rr-"
Tp 25°C
I II

2.0

1.0

0.5

3.0

\'I
5.0
IC, COLLECTO R CU RRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 4 -SUSTAINING VOLTAGE TEST LOAD LINE

FIGURE 5 -SUSTAINING VOLTAGE TEST CIRCUIT

500
50mH

;( 400

S

....

ffi

",~I

~ 300

a
'"c

~

-

200

.......
VCEO(.u.) IS ACCEPTABLE WHEN
VeE;;' RATEO VCEO,AT IC -IOOmA

8

\

-=-6.0 V

\

!} 100

o

\

MJ4\0MJ411

o

100

200

300 "

300

400

500

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

371

1.0 !l

MJ413 (SILICON)
MJ423
MJ431

High-voltage NPN silicon transistors designed
for medium-to-high-voltage inverters, converters, regulators and switching circuits.

CASE 11

~~
o

@2

STYLE 1:
PIN 1. BASE

0

CAS~': ~~Z~:C~OR

@.

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emuter-Base Voltage

Unit

Symbol

MJ413

MJ423

VCEX

400

400

400

Vdc

Vca
VEB

400

40U

4UU

VdC

•• u

•• u

•• U

,ac

MJ431

IC

lU

10

lU

Adc

Base Current

Ia

2.0

2'.0

2.0

Ade

Total Device Dissipation @ T C = 25 C
Derate above 25·C

PD

~~g

~i~~

Operation Junction Temperature Range

TJ

-65 to +150

·C

Continuous

Collector Current

Storage Temperature Rsnge

-6. to +200

Tstg

·C

THERMAL CHARACTERISTICS

Characteristic

Max

Thermal'Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS

1.0
(Tc = 2S'C unl... o"o.w". noted)

Symbol

Characteristic

Min

Max

325

-

Unit

OFF CHARACTERISTICS
Collector-Emitter SUstaining Voltage 111
(IC = 100 mAde, Ia = 0)
Collector Cutoff Current
(VCE = 400 Vdc, VEB(off) = 1. 5 Vd~
(VCE= 400 Vdc, VEB(off) = 1. 5 Vde,
TC = 125·C)
Emitter Cutoff Current'
(VBE = 5.0 Vde, IC = 0)

aVCEO(S~)
MJ413, MJ423
MJ431
MJ413, MJ423
MJ431
MJ413, MJ423
MJ431

I CEX

--

-

Vdc
mAde

0.25
2.5
0.5
5.0

~BO

--

5.0
2.0

hFE

20

80

15

-

30

90

mAde
mAde

ON CHARACTERISTICS
DC Current Gain III

MJ413

(IC = 0.5 Ade, VCE = 5.0 Vde)
(Ic = 1.0 Ade, VCE = 5.0 Vde)

MJ423

(IC = 1.0 Ade, VCE = 5.0 Vde)
(Ie= 2.5 Adc, VCE

=5.0 Vde)
MJ431

(IC = 2. 5 Ade, VCE = 5.0 Vde)
(IC = 3.5 Adc, VCE

=5.0 Vdc)

Collector-Emitter Saturation Voltage
(Ic = O. 5 Adc,
= 0.05 Ade)
(Ic = 1.0 Ade,
(IC = 2. 5 Ade,

Ia
Ia = O. 10 Ade)
Ia = O. 5 Ade)

Base-Emitter Saturation Voltage'(ll
(IC = O. 5 Ade,
= 0.05 Ade)
(Ic = 1.0 Ade,
= 0.1 Ade)

Ia
Ia
(IC = 2. 5 Ade, Ia = 0.5 Adc)

(11

MJ413

VCE(sat)

MJ423
MJ431
MJ413
MJ423
MJ431

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 200 mAde, VCE = 10Vdc,
f = 1.0 MHz)
(II PW " 300 I

50

30

10

~
~

hFE

"....

.........

".

7.0

-

Cob
C"

--...;

"

i3

g:

;3 3.0
u'

.....

2.0

1.0
10

20
0.5

:::::-

z
>- 5.0

V

ul

.la'

---

0;;;:::::::;

hfe@1.0kHz

z

;;:

1.0

5.0
10
2.0
Ie, COLLECTOR CURRENT (mAd,)

20

50

2.0

3.0

5.0 7.0

10

2r

30

50

VCB, COLLECTOR·BASE VOLTAGE (VOLTS)

MJ423
For Specifications, See MJ413 Data.
375

70

100

MJ424 (SILICON)
MJ425

HIGH VOLTAGE NPN SILICON TRANSISTORS

5 AMPERE
· .. designed for use in high voltage applications in deflection circuits,
switching regulators, inverters, and line operated amplifiers.

POWER TRANSISTORS
NPN SILICON

• High Collector-Emitter Voltage VCEX =; 700 Vdc

350-400 VOL TS '
100 WATTS

• Excellent DC Current Gain hFE = 10 (Min) @ IC = 2.5 Adc
• Low Collector-Emitter Saturation Voltage VCE(sat) = 0.8 Vdc (Max) @ IC = 1.0 Adc

MAXIMUM RATINGS
Rating

I
I

MJ425

Unit

400

Vdc

Symbol

MJ424

Collector-Emitter Voltage

VCEO

350

Collector-Emitter Voltage

VCEX

700

Vdc

Collector-Base Voltage

VCR

700

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

5.0
10

Adc

Collector Current - ContinUous

Peak
Base Current

I.

Total Device Dissipation@Tc = 7SoC

PD

Operating Junction Temperature Range

Storage Temperature Range

Adc

2.0
100

Watts

1.33

WIDe

TJ

-65 to +150

DC

T"9

-65to+200

DC

Derate above 7SoC

THERMAL CHARACTERISTICS
Characteristic

Max

Thermal ReSistance, Junction to Case

0.75

ELECTRICAL CHARACTERISTICS (Tc z. 2SoC unless

I

Characteristic

Symbol

otherWise

I

Min

noted)
Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaming Voltage

(Ie'" 100 mAde, IS:= 0)

Vdc

VCEO(sus)

MJ424

350
400

MJ425
Collector Cutoff Current
(VCE = 350 Vde, IS '" 0)

MJ424

0.25

(VCE '" 400 Vde, IS '" 01

MJ425

0.25

Collector Cutoff Current

mAde

ICED

ICEX

0.5

mAde

leBO

5.0

mAde

(VCE '" 700 Vdc, VSEloff) '" 1.5 Vde)
Emitter Cutoff Current

IVBE

~

6.0 Vdc. Ie

~

Ol

ON CHARACTERISTICS
DC Current Gain
(lC == 1.0 Ade, VCE == 5.0 Vdc)

hFE
30

(Ie:: 2.5 Adc, VCE '" 5.0 Vdc)

90

10

Collector-Emitter Saturation Voltage
(Ie"" 1.0 Adc, 18"" 0.1 Adcl

VCElsat)

0.8

Vdc

Base-Emitter Saturation Voltage
(Ie"" 1.0 Adc, Ie = 0.1'Ade)

VSE(sat)

1.2

Vdc

MILLlMl'TERS
DIM MIN MAX
A
B
C
D
E
F
G
H
J
K

n

R

DYNAMIC CHARACTERISTICS

6.35
0.99
29.90
,lu.67
5.33
18.64
11.18
3.84

-

39.37
21.08
7.62
1.09
3.43
30;40
11.18
5.59
17.15
12.19
4.09
26.67

NOTE:
1. DIM

Current-Gain-Bandwidth Product
lie'" 200 mAde, VeE" 10 Vdc.
f=1.0MHzI

INCHES
MAX
MIN

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

"0" IS OIA.

CASE 11

376

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ424, MJ425 (continued)

FIGURE 1 - SAFE OPERATING AREA
10
5.0

,

'"~

2.0

~

1.0

TJ=150 0 C

'\.<'o<>,~o-f<>',

di:-

There are two limitations on the power handling ability of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate I C-VCE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on T J(pk) == 150°C; TC is variable
depending on conditions. Pulse curves are valid for duty cycles of
10% provided TJ(pk)~ 150o C. At high case tempera~u.res, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown. (See

....

B0.5


,;
~

0
0.05

5.0

0.1

0.2

0.3

0.5

1.0

2.0

5.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 4 - SUSTAINING VOLTAGES TEST LOAD LINE

FIGUFIE 5 - SUSTAINING VOLTAGE TEST CIRCUIT



::;

-< 0.5
~

11111
TJ'" 25°e

1.6
1.4

rJ

1.2
1.0

I-"

VaE(saII@IC/IS= 10

0.8

V
V
J

0.6
VBE@ VCE" 2.0 V

0.3

0.4

~ 0.2

~: ~I"~~O
IClli'~

vi II

~.2

o

O. 1
0.03 O.S

0.1

0.2 0.3 O.S

1.0

2.0 3.0 S.O

20 30

10

0.03 0.05

0.1

0.2 0.3

O.S

1.0

2.0 3.0 S.O

10

20 30

IC. COLLECTOR eURRENT IAMPI

IC, COLLECTOR CURRENT IAMPI

FIGURE 4 - THERMAL RESPONSE

.."

1.0
0.1
O.S

o -O.S

..~~

O. 3

IJ.2

.. z

>""

!!:~ 0.2

0.1

~

~~
!::!ffi

V

I

0. I

0.05

~ ~ 0,01

~

0

:

t: 0.0S
..
~ 0.03

'r"":= 0.02
0.0 1 .........
0.01

STEADY STATE VALUES
ITYPI
0.alS0CIWIMAXI
'JCIII = rltl.JCI~)
'Jcl~1 = D.l'lW

""" In

~
SINGLE
PULSE

Plpkl

0.01

L
-I--

'"""'"
0.02

0.1

0.2

n

~CURVESAPPLYFORPOWER
L!ULSE TRAIN SHOWN

1!lm

t~J ::"::::""W '
DUTY CYCLE. 0 = 11/12

I
0.05

J U

O.S

1.0

2.0

S.O

I. TIME OR PULSE WIOTH Imsl

379

10

20

so

100

200

SUO

1000

MJ480 (SILICON)
MJ481

NPN SILICON POWER TRANSISTORS

4AMPERE
POWER TRANSISTORS
NPN SI.LlCON

. designed for general·purpose and 5 to 20 Watt audio amplifier
. applications.

40-60 VOLTS.
87.5 WATTS

•

Current-Gain-Bandwidth Product tr = 4.0 MHz (Min) @ IC = 1.0 Adc

•

DC Current Gain hFE = 30-200@ IC = 1.0 Adc

•

Complements to PNP MJ490 and MJ491

MAXIMUM RATINGS
Rating

Symbol

MJ480

MJ481

Unit

VeEO

40

60

Vdc

Collector-Base Voltage

VCB

40

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

4.0
7.0

Adc

Base Current

'B

1.0

Adc

Total Device Dissipation @TA =2SoC
Derate above 25°C

Po

5.0
28.6

mWfOC

Total Device Dissipation@TC=2SoC
Derate above 2SoC

Po

87.5
500

mw/oe

-65 to +200

°e

Collector-Emitter Voltage

Collector Current - Continuous
Peak

Operating and Storage Junction
Temperature R 8nge

TJ,Tstg

.Watts
Watts

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
10
1.0

~ 5.0
S
~

3.0

~ 2.0

de

~ 1.0 ~
~ O.1
j 0.5 I - - -

r==--I--

8 0.3 f::::::=
~O.2

f---

.......

MJ480

DIM

1.0ms

A
B
C

5.cims·

.1:

TJ o 200'C
SECONDARY BREAKDOWN LIMITED
THERMALLY LIMITED
Tco 25'C (SINGLE PULSEI
CURVES APPLY BELOW
RATED VCEO

100fJ.S

MJ481

O. 1
1.0

2.0

3.0

5.0
7.0
10
20
VCE, CDLLECTOR·EMITIER VOLTAGE (VOLTS)

The Safe OperatIng Area Curves mdlcate Ie -VeE I,mlts below

wh,,::h the dev,ce w,1I not enter secondary breakdown Collector
load hneoforspac,f,cclrcu'tsmustfallw,thmthaapphcableSala

30

50

70

Area 10 avo,d causong 8 c~tastroph'~ failure To ,nsure operat,on
below the ma,,,mum TJ, pawertemperdlu,e de,a"ng must beob
servedforbolhsteadY5t&teandpulsepawercond't,on.

380

0

MILLIMETERS
MIN MAX

6.35
0.99

39.37
21.08
7.6
1.09
3.43
30.40
11.18
5.59
17.15
12.19'
4.09
26.67

INCHES
MIN
MAX

-

1.550
0.830
0.300
_. 0.043
0.135
1.177 1.197
0.420 0.440
'0.210 0.220
0.655 0.675
0.440· 0.480
0.151 0.161
1.050
0250
0.039

E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
0 3.84
R
NOTE:
.1. DIM "0" IS DIA.
CASE 11

MJ480, MJ481 (continued)
ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

40
60

-

-

1.0
5.0

-

1.0

50

-

30

200

10

-

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lc = 0.2 Ade, la = O)
Collector Cutoff Current

= Rated
(Vca = Rated

(VCB

Vca, IE
VCB, IE

Vde

BVCEO

MJ480
MJ481

mAde

ICBO

= O)
= 0, TC = 1500 C)

Emitter Cutoff Current
(VaE = 5.0 Vde, IC = O)

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(I C = 50 mAde, V CE
(lC
(lc

= 1.0 Ado,
= 3.0 Ado,

VCE
VCE

Collector-Emitter Saturation Voltage
(lc = 1.0 Ado,IB = 0.1 Ado)
(lC = 3.0 Ado,IB

-

hFE

= 2.0 Vde)
= 2.0 Vdo)
= 2.0 Vdo)

= 0.3 Ade)

Base-Emitter Saturation Voltage
(lC = 1.0 Ado,la = 0.1 Ade)
(lc = 3.0 Ado, la = 0.3 Ado)

VaE(,at}

Base-Emitter "On" Voltage
(lc = 1.0 Ado, VCE = 2.0 Vde)

VaE(on}

(lc

= 3.0 Ade,

Vdo

VCE(,at}

VCE

= 2.0

-

0.4

-

1.2
Vdo

1.0

-

1.5

-

1.2

-

1.5

Vde

Vde)'

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 1.0 Ade, VCE = 10 Vde, f = 1.0 MHz)

Output Capacitance
(Vca = 10 Vde,IE

t-r

4.0

-

MHz

Cob

-

200

pF

= 0, f = 0.1 MHz)
FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - NORMALIZED DC CURRENT GAIN

Z

10
8.0
6.0

!:

4.0

;;:

~

a:

i3

2.0

-

...---

2.0

r--

:::J

TJ' 1+1750C -

~
~

I
-550C

ffi ~:O8

.1:: o.

.............

>S
~

4

~

25'C

V

1.2

i"

0.8

r-

Z

0.01

0.02

0.04

0.1

0.2

0.4

1.0

2.0

0
0.005

4.0

III
~ll ,@I /I ~IO
:Ililu"1 I ll..l-!0.01

2.0V

V,,@Vc •

0.4

~ O. 2

~

10

VBEt •• tj@Ic/la

........

o

0.004

TJ

l'5

O. 6

O. 1

I
I

1.6

+25 0 C

<.>

N

=

VCE '2.0 Vdc

0.02 0.03 0.05

0.1

0.2 0.3 0.5

",'
1.0

2.0 3.0 5.0

200 300

500 700 1000

Ie. COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 4 - TRANSIENT THERMAL RESISTANCE

Q

1.0

~ 0.5

D 0.5

..r 0.3

0.2

~

~

~

r=
1il r--0.05
~ 0.1
~
ffi
~

0.2

0.1

SINGLE
PULSE
~ t:;:;'

1.

I-"'"

l..-

t,;-J
DUTY CYCLE. D:l1/t2

0.01

8Jc(U"'r(U8JC

0.5

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT II

~ (SINGLE PULSE)
~O.03

!Z

TJ/pkJ- TC=P/ llkJ6JC/ t J

~O.02

;:;
.... 0.0 I
';:: 0.01

'jl]il

P!pk)

0.02 0.03

0.05 0.07 0.1

0.2

0.3

0.5 0.7 1.0

2.0

3.0

5.0 7.0 10

t, PULSE WIOTH (m,)

381

~

LU lL

I J

I I I I I I I 1111

LJ

ILL

I I

20

30

I

50 70 100

MJ490 (SILICON)
MJ491

PNP SILICON,POWER TRANSISTORS

4 AMPERE
POWER TRANSISTORS

... designed for general'purpose and 5 to 20 Watt audio amplifier
applications.

PNPSILICON
40-60 VOLTS
87.5 WATTS

• Current·Gain-Bandwidth Product for = 4.0 MHz (Min) @ IC = 1.0 Adc
• DC Current Gain hFE = 30-200@ IC = 1.0 Adc
• Complements to NPN MJ480 and MJ481

MAXIMUM RATINGS
Rating

Svmbol

MJ490

MJ491

VCEO

40

60

Vdc

Coliector·a... Voltage

Vca

40

60

Vdc

Emitter·aase Voltage

VEa

5.0

Vdc

IC

4.0
7.0

Adc

Coliector·Emitter Voltage

Collector Current

Continuous

Peak

Unit

Base Current

la

',0

Adc

Total Device Dissipation iiilTA =25°C
Derata above 25°C

Po

5.0
28.6

Watts
mW/oC

Total Device Dissipation iiilTC =25°C
Oarata above 25°C

Po

87.5
500

mW/oC

-65 to +200

DC

Operating and Storage Junction
Temperature Range

TJ.Tstg

Watts

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
I0

100J,ll

7,0

~ 5.0
1.6m.

~ 3.0

~ 2.0

de

~ 1.

==
TJ 200'C
:= O.0
7 t:::::=-- SECONOARY BREAKDOWN LlMITEO
o

; o.5 r-8 o.3 t:::::=
~o. 2

r--

-

"

5.rim•

3.0

MJ4S0

20
5.0
7,0
10
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI

Ie-Vee

The Saf. Oparatlng A,.. CUI'Vei IndlClit.
lImits below
which the dev,e, Will not ~nler $lCondary breakdown ,Collector
loiildhnH'or1lPaclricclrc ... ltsrnusll~I""lhll'llh.apphcabl,Sale

C
D
E

-6. 5
0.99

F 29.90

THERMALLY LIMITED
TC' 25'C (SINGLE PULSEI
CURVES APPLY BELOW
RATED VCEO

2.0

A
B

......
r

MJ491

0, 1
1.0

MILLIMETERS
DIM MIN MAX

30

Area to .... ood t;8Us.ng a c.1Mlroph,e

fa,lut~

50

70

To Insure operation

below the m...,mum T J. powur-lemplll'alure dflral'"g must be abterued for bolh ste$iV stale and pulse powet condltlons

382

G 10.ti7
H 5.33
J 16.64
K 11,18
n 3.84
R

-

39.37
21.08
7.62
1,09
3.43
30.40
11.18
5,59
17.16
12,19
4.Q9
28.67

INCHES
MIN
MAX

--

0.250
0.039

-

1.177
0,420
0,~10

0,665
0.440
0,151

-

NOTE:
1. DIM "n" IS OIiI.
CASE

11 .

1,550
0.830
0.300
0,043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ490, MJ491 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

40

-

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Vole.

SVCEO

MJ490
MJ491

(lc - 0.2 Ade, 'a - 01

Collector Cutoff Current
(VCS - Rated VCS, 'E = 01
(VC~ - Rato<:t VCS, IE • 0, TC -lSOoCI

Icao

Emitter~utoff

IESO

Current

mAde

-

(VSE - 5.0 Vde, IC ~ 01

Vdc

-

60

1.0
5.0
1.0

mAde

ON CHARACTIORISTICS
DC Current Gain
/lc = 50 mAde, VCE = 2.0 Vdel

hFE

(lc = 1.0 Ade, VCE = 2.0 Vdel

30

/lc • 3.0 Ade, VCE = 2.0 Vdel.

10

Collector-Emitter Saturation Voltage

VCE(satl

Base-Emitter Saturation Voltage
(lc =

1.b Adc, IS = 0.1

(lC = 3.0 Adc,

'e =

VSE(sa"

0.3 Adcl
VeE(onl

1.2
Vdc
1.0
1.5
Vde

-

(lC = 1.0 Adc, VCE = 2.0 Vdel

1.2

-

1.5

IT

4.0

-

MHz

Cob

-

200

pF

= 2.0 Vdel

(lc • 3.0 Ade, VCE

0.4

-

Adcl

Base-Emitter "On" Voltage

Vde

-

/lC'- 1.0 Ade, IS = 0.1 Adel
/lc = 3.0 Ade, IS = 0.3 Adcl

-

200
-

50

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 Adc, VCE = 10 Vdc, 1= 1.0 MHz!

Output Capacitance
(Vee' 10 Vdc,IE

=0, f

= 0.1. MHzl

FIGURE 3 - "ON" VOLTAGE

FIGURE 2 - NORMALIZED DC CURRENT GAIN

,.

1.5

10

Z

~

0
6.0

5
~ 2.0
...
0
N

~

!o
z
i

r-.. ......
r-..

.....

0:

;

=

VCE =2.0 Vd.

4.0

1.2

V

+25~C

1O.8

TJ-2S'C

+~ ~1+1750~_
9

~

VIE (N'I @'ell,= 10

-550C

o. 6
o.4

6

VIE@V",=2.0V

........

V

O.3

o.2

VeElu•• @lell,-IO
O. 1

0.004

0.01

0.02

0.04

0.1

0.2

0.4

1.0

2.0

4.0

D2.0 3.0 5.0

20 3D

10

'e. COLLECTOR CURRENT (AMPI

50

200 300 SOD

100

1000 2000

Ie. COlLECTOR CURRENT (mAl

FIGURE 4 - TRANSIENT THERMAL R~ISTANCE

!!l!.0

i~ 0.5
oJ

1
i

Ii

0.2

0.3

02

i

D-O.S

0.1

F=

0.1

~0.05

_f-'

-

SINGLE

PULS'

~

Plptl

L

......

'JCIII-ri1I'JC
oCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATI1

0.5
3 ~ (SINGLE PULSE)'

jO.o

10.02
S
":0.01
-.: 0,01

t~j

DUTY CYC:LE. D -111tz

0.01

TJlpk) - TC· '(Pkl'Jc(d

I I I II I 1111

II
0.02 0.03

0.050.07 0.1

0.2

0.3

0.5 0.7 1.0

2.0 3.0
5.0 7.0 10
~ PULSE WIDTH (ms)

383

20

3D

50 70 100

I I I
200 300

500 700 1000

MJ802 (SILICON)

30 AMPERE
POWER TRANSISTOR
HI-GH-POWER NPN SILICON TRANSISTOR

NPN SlkiCON
100 VOLTS
200 WATTS

· .. for use as an output device in complementary audio amplifiers to
1~O-Watts music power per channel.

•

High DC Current Gain - hFE

•

Excellent Safe Operating Area

= 25-100@ IC = 7.5 A

• Complement to the PNP MJ4502

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

Value

Unit

VCER

100
100
90
4.0

Vdc

30
7.5
200
1.14

Adc

Collector-Base Voltage

VCS

Collector-Emitter Voltage

VCEO

Emitter-Base Voltage

VES

Collector Current

IC

Base Current

IS

Total Device Dissipation@Tc

= 25°C

Po

Derate above 2SoC
Operating anm Storage Junction

Es~i

Vdc
Vdc

PLANE

. Adc
Watts
W/oC

°c

. -65 '0+200

TJ. T sts

Lr~
r~,

Vdc

Temperature Range

THERMAL CHARACTERISTI"S
Chara~ristic

Thermal Resistance, Junction to Case

MILLIMETERS
DIM MIN MAX

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

200

...........

S
~

150

...........

z

c

ill~

,

'.

~

100

C

'"~
~

A
B
C
D
E

~ .......

'"

~

i'-..

~

o

o

20

40

60

30

29.90
G _10.67
II 5.33
J 16.64
K 11.18
Q
3.84
R

F

50

100

120

140

-

-

6.35
0.99

~
160

TC. CASE TEMPERATURE (OCI

384

~

180

200

39.37
21.0B
7.62
1.09
3.43
30.40
n.18
5.:m
17.15
12.19
4.09
26.67

INCIIES
MIN
MAX

-

0250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
·0.161
1.050

MJ802 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250C unless otherwise notedl
Characteristic

Svmbol

Min

Max

Unit

100

-

Vde

90

-

Vde

-

1.0
5.0

IESO

-

1.0

mAde

hFE

25

100

-

Base-Emitter "On" Voltage(l)
(lc = 7.5 Adc, VCE = 2.0 Vde)

VBE(on)

-

1.3

Vdc

Collector-Emitter Saturation Voltage fl)
(lc = 7.5 Ade, IR = 0.75 Adcl

VCE(sat)

-

0.8

Vdc

Base-Emitter Saturation Voltage ft,

VBE(sati

-

1.3

Vdc

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

SVCER

= 200 mAde, RSE = 100 Ohms)

(lc

Collector-Emitter Sustaining Voltage (1)

VCEO(sus)

= 200 mAde)

(lc

Collector-Base Cutoff Current
(VCS = 100 Vde, IE = 0)
(VCS = 100 Vde, IE = 0, TC

mAde

ICSO

= 150°C)

Emitter-Base Cutoff Current
(VSE = 4.0 Vde, IC = 01
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 7.5 Ade, VCE

(lC

= 2.0 Vde)

= 7.5 Adc, IB = 0.75 Ade)

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product
(lC = 1.0 Adc, VCE = 10 Vde, f

= 1.0 MHz)

(I)

Pulse Test: Pulse WidthS: 300 ,",s. Duty Cycle s:'2.0%.

FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - DC CURRENT GAIN

'";;:co

3.0

2.0

2.0

1.8

I

1.6

T) 2Jod

I-

al
a:

1.0

a:

il!!

CI

z

~

1.4

'"

1.2

(!:I

1.0

~

0.8

;

o. 31---

VBE(..t)@ICII8= 10

Ilil . L

~ O. 6

f'

0.2

0.1

0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)

10

II I
Wll
VCE(..t) @lelI8 - 10

O. 2

o

20 30

....

......

f.-'

JL

.i.

V8E@VCE=2.0V

0.4

Data shown is obtained from pulse tests bH--f+l+--t~~........

O.,.,=,:::-!:;'~,::-a...Jnr,--:a;,:dj'ju:,":ii:,::d..J.tT°-:!-,.nlu;-,-I IiJ. .J~ii~:-f.ct...J-t--:f!-::
c;' iIC.1.:TB~!-: .-'-:';;'--U-':'::--'-:!:-J:!!
0.03 0.05

~

!L

w

-55°C

:;

<

~
~

o. 7
'CIW"'
o.
5
N

::>

0.03 0.05

0.1

r-

r-

0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)

10

20 30

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA
100

50

~

-:- ... ,

0:

~ 20

de

I-

~ 10
~ 5.0

a:

'" 2.0

t;

j

-

.....

-

..::--.,'00,..1.0ms
~

5.0ms

I--- TJ = 200°C

1.0 ~ .

The SefiI Operating Area Curves Indicate IC - VeE limits below
which the device Will not enter secondary breakdown Collector
load lines for specific CirculH must fall within the applicable Safe
Area to avoifil cau.ing. catastrophic failure. To insure operation
below the maximum TJ. power-tempereture derating must be ob·
served for both steady stete and pulse power conditions.

Secondary Breakdown Limited

F
- Bonding Wire Limitad
'"~ 0.5 ~ - - - - Thermal LimitadonsTC =250 C
I---

Pulse Duty Cycle < 10%

0.2

O. 1
1.0

2.0

3.0

5.0
10
20
30
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

385

50

100

MJ900, MJ901 PNP (SILICON)
MJ1000, MJ100l NPN
8.0 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS
· .. for use as output devices in complementary general purpose
amplifier applications.

60-80 VOLTS
90 WATTS

= 6000 (Typ) @ IC = 3.0 Adc

•

High DC Current Gain - hFE

•

Monolithic Construction with Built-In Base-Emitter
Shunt Resistors

MAXIMUM RATINGS
Rating

Svmbol

Collector-Emitter Vo tage

VeEO

MJ900 MJ901
MJ1OO0 MJ1oo1
60
80

Unit
Vdc
Vdc

Collector-Base Voltage

Vee

Eminer-Base Voltage

VEe

5.0

Vdc

Ie

8.0

Adc

Base Current

Ie

0.1

Adc

Total Device Dissipation@Tc "'" 25°C

Po

90
0.515

Watts
w/oe

TJ.Tstg

-55 to +200

°e

Collector Current

60

Derate above 25°C
Operating and Storage Junction

80

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case

FIGURE 1-DARLINGTON CIRCUIT SCHEMATIC

STYLE 1:
PIN 1. BASE

PNP
MJ900
MJ901

Collector

r-------I
I

--.,

.------<1--,

I

I

I
I
I
I
I
I

Ba..

NPN
MJIOOO
MJIOOI

--.,

,---+-,

Base

I

I

I
I
I
I
I
I
I

__ --1

__ --1

DIM
A
8

C
D
E
F

MILLIMETERS
MIN MAX

-

-

US
0.97

39.37
22.23
11.43
1.119

INCHES
MIN MAX

0.250
0.038

3.43

0
R

2&.67

I
Emitter

I. DIM "0" IS DIA.

.40 1177
11.18 0.420
5.72 0.205
17.15 0.855
12.19
3.94. 4.D9
.11

B
H

Emitter

NOTE:

2. EMITTER
CASE: COLLECTOR

Collector

K

10.
5.21
18.84
11.18

CASE 11-03

386

1.551L
0.875
0.460
0.D43
0.1
1.197
0.440
0.225
0.675
0.4BD
10.161
1.050

MJ900. MJ901. MJ1000. MJ100l (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

I

Ch.acterittic

Symbol

Ma.

Min

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage III

Vdc

BVCEO

MJ900. MJ1000
MJ901,MJ1001

(Ie = 100 mAde. IS;;; 0)

60
80
mAde

Collector Emitter Leakage Current
(Ves;;; 6QVdc. RBe '" t.Ok ohm)

MJ900. MJ1000

(Vee'" 80 Vdc, RBe = t.Ok ohm}

MJ901, MJ1001

1.0
1.0
5.0
5.0

(VCS;;; 60Vdc. ABe "'.Ok ohm, TC = 1500CI MJ900, MJtOOO

(Ves = 80Vdc, RBe = t.Ok ohm, TC;;; 1SOCCI MJ901. MJ1001

2.0

Emitter Cutoff Current
(VSE '" 5.0 Vdc, Ie;;; 0)

mAde
~Adc

Collector-Emitter Leakage Current
(VeE'" 30 Vdc, Ie '" 0)

MJ900. MJ1000

(VeE;;; 40 Vdc, IS'" O)

MJ901.MJ1001

500
500

ON CHARACTERISTICS
DC Current Gain(1)
(Ie;;; 3.0 Adc, VeE;;; 3.0 vdcl
(Ie'" 4.0 Adc, VeE = 3.0 Vdc)
Collector-Emitter Saturation Voltage(1)

Vdc

(Ie = 3.0 Adc,IS = 12 mAde)

2.0

(Ie = 8 0 Ade, Ie '" 40 mAde)

4.0

Base-Emitter Voltage(1)
flc = 3.0 Adc, VCE = 3.0 Vdc)

2.5

Vdc

(1)Pulse Test: Pulse WIdth $300 P.S, Duty Cycle'S 2.0%.

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 -SMALL-8IGNAL CURRENT GAIN
3000

50,00 0

2000
z
<1
~ 1000

20,000
TJ -1500 C

10,000

z

ffi

<1'5000

co
t-

~ 200 0

25 0 C

'" 1000
B
'" 50 0

to

200

i

100

500

~

~f5~C

./

200
100
50
0.01

300

z

Q

~

'"~
'";;!

J

VCE = 3.0 Volts

./
0.05

0.1

0.2

0.5

1.0

2.0

5.0

TC - 25 0 C

50
30
103

10

104

IC, COLLECTOR CURRENT (AMP)

t, FREQUENCY (Hz)

FIGURE 4 - "ON" VOLTAGES
3. 5

I
I

3.0

_

~
o

~
w
to

~

FIGURE 5 -DC SAFE OPERATING AREA
10

I
I

1.0

I

'"

;: 3.0

z

I

~ 2. 0

=>

VB~(..t! @Ic/lB = 250........

~ 1.

o

1- 5

o
>
>' I.0

0
0.01

~

_j'Bj@IIEI=~ 1/

8

~

i

VC~(sat)1 @llcrlf 12~10

o. 5
0.02

0.05

0.1

TJ=200·C

«

1 1

2. 0

~~

~ 5.0

i

TJ 25 0lC

2. 5

1\

VCE = 3.0 Vdc
IC = 3.0 Adc

I I II IIII
0,2
0.5
1.0

2.0

5.0

10

~
SECONOARY BREAKDOWN LIMITATION
THERMAL LIMITATION @TC=250 C
BONDING WIRE LIMITATION

:

1~.

..5 - - -

MllOho

o. 3
o. 2

r.L9Dd,
I I I I
MJ901, MJIOOI

o. 1

~~~~

1.0

IC, COLLECTOR CURRENT (AMP)

il\.

dc:

~.o

3.0

5.0 1.0

10

20

-

30

50

10

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the po_r handling abilitv of a
transistor: average junction temperature and secondary breakdown.
Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; e.g., the transistor

must not be subjected to greater dissipation than the curves indicate.
At high casa temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed bV secondary breakdown. (See AN·415l

387

MJ920,MJ921 PNP (SILICON)·
MJ1200, MJ1201 NPN

DUAL SI LICON POWER DAR LlNGTON TRANSISTORS
· .. designed for hammer driver, regulator and amplifier applications.
• High DC Current Gain hFE =3000 (Typ) @ IC =4.0 Adc
• Coliector·Emitter Sustaining Voltage VCEO(sus} = 60 Vdc - MJ920, MJ1200
= 80 Vdc - MJ921 , MJI201
• Total Monolithic Construction
Dual transistors in the same chip, yielding like electrical char·
acteristics. Collectors are common .

DUAL DARLINGTON
8 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
60,80 VOLTS
160 WATTS

MAXIMUM RATINGS
Symbol

Rating
Collector·Emitter Voltage
Collector-Basa Voltage

Emitter-Base Voltage
Collector Current - Continuous

VCEO

60

VCS·
VES

60

IC

-Peak

Base Current
otal Device Dissipation@TC·250C
Derate above 25°C

MJ920 MJ921
MJI200 MJ1201
80
80

Unit

Vde
Vde

5.0

Vde

S.O
16

Ade

IS

120

mAde

Po

160
0.91

Watts

120
0.68
-65 to +200

Watts
wf>c
°c

wf>c

(Equal power in both transistors)
Single Transistor Dissipation @TC'" 2SoC

Po

Derate above 25°C
Operating and Storage Junction, Temperature

T J,T stg

Range

THERMAL CHARACTERISTICS
Symbol

Characteristic
Thermal Resistance, Junction to case
Single Transistor

8JC

Effective, equal power both transistors
Thermal Coupling Factor

K8

Ma.

Unit
°CIW

1.46
1.10
50

%

FIGURE 1 - POWER DERATING

G
K

•
Q

R

11. BSC
7.11
8.13

7
3.84

C
4.09
26.67

47
0.280 0.
7
0.161

l
1.050

NOTE:
I. LEADS WlTHIN 0.13 mm (0.0061 DIA OF
TRU~ POSITION AT SEATING PLANE AT
MAXIMUM MATERIAL CONDITION.
CASE 263
TC. TEMPERATURE ('CI

388

MJ920, MJ921, MJ1200, MJ1201 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)

I

I

C......ct.. istic

SYmbol

Min

Max

60

-

Unit

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage
(lC· 100 mAde, IB = 01
Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)
(VCE = 40 Vdc, IB = 0)

Vdc

VCEO(sus)
MJ920, MJl200
MJ921 , MJ1201
ICED

mAde

-

MJ920, MJl200
MJ921 , MJl201

Collector Cutoff Current
(VCE· Rated VCB, VBE(off)
(VCE = Rated VCB, VEB(off)
(VCE = Rated VCB, VBE(off)
TC= 1500C)
(VCE = Rated VCB, VEB(off)
TC = 1500C)

-

BO

0.5
0.5

-

mAde

ICEX

= 1.5 Vdc)
= 1.5 Vdc,

MJ920, MJ921
MJ1200, MJ1201
MJ920, MJ921

-

-

0.5
0.5
5.0

1.5 Vdc,

MJl200, MJ1201

-

5_0

-

2.0

750
100

lBOOO

-

= 1.5 Vdc)

=

Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(lc = 4.0 Adc, VCE = 3.0 Vde)
(lC = 8.0 Ade, VCE = 3.0 Vde)

-

hFE

-

Collector-Emitter Saturation Voltage
(lC = 4.0 Adc, IB = 16 mAde)
(lC = 8.0 Ade, IB = 80 mAde)

VCE(sat)

-

2.0
3.0

Base-Emitter Saturation Voltage

VBE(satl

-

4.0

Vde

VBE(on)

-

2.8

Vde

Magnitude of Common Emitter Small-Signal Short Circuit Forward
Current Transfer Ratio
(lC = 3.0 Ade, VCE = 3.0 Vde, f = 1.0 MHz)

Ihlel

4.0

-

-

Output Capacitance
(VCB = 10 Vde, IE

Cob

-

200

300

300

-

(lC

= 8.0 Ade, IB = 80 mAde)

Base-Emitter On Voltage
(lc = 4.0 Ade, VCE = 3.0 Vde)

Vde

DYNAMIC CHARACTERISTICS

=0, f = 0.1

MHz)

Small-5ignal Current Gain
(lC = 3.0 Ade, VCE 3.0 We, f

=

pF

MJl200, MJ1201
MJ920, MJ921
hfe

= 1.0 kHz)

FIGURE 2 - SWITCHING TIMES TEST
CIRCUIT

-

FIGURE 3 - SWITCHING TIMES
5.0
3.0

Vee
-JOV

RS & Ae VARIED TO OBTAIN DESIRED CURRENT lEVElS
0,. MUST BE FAST RECOVERY TYPES, e g.,
MB05300 USED ABOVE 18 '" 100 mA
MSD6100 USED BELOW 18'" 100 rnA

2.0

Re

1.0
O. 7
~ O. 5
;::
O. 3

SCOPE

::-...

~

-'

-...

,...--

It....

;>. ~ ~
~
._

r-I---

forldandl"Ollsdlltonnetled
and V2 '" 0

I,

.-...

O.2 -VCC;:IDV .......
-1c!IB;250 - -+O. 1 =~~I_;2~I!,2C- td@VBElolI);O ~
'--MJ920. MJ921 (PHP)
0.0
~
MJI200. MJ1201 (NPH)
0.0
0.2
0.3
0.5 0.7 1.0
0.1

Ir,lf';: IOns
DUTY CYCLE = 1 0%

......

II

-.

2.0

3.0

Ie. COLLECTOR CURRENT (AMP)
For NPN test circuit, reverse
all polarities.

389

5.0 7.0

10

MJ920, MJ921, MJ1200, MJ1201 (continued)

FIGURE 4 - THERMAL RESPONSE
1.0
O. 7:=0

0.5

O.5

r0-

Cib

70

U

''':

O

I I I ~~11~~' MJI21011~P~)
5.0

'~

..,

MJ920, MJ9211PNp)

0

--

::::::

~

1000

a

Tj =~~oJ

200

1- ____ MJ920, MJ92111PNP)
100

200

30
0.1

500 1000

_f, FREQUENCY IkHzl

-

0.2

-

MJI200, MJ12011NPNI
0.5
1.0
2.0
5.0

10

VR, REVERSE VOLTAGE IVOLTS)

390

20

50

100

MJ920, MJ921, MJ1200, MJ1201

(continued)

I

PNP
M1920,MJ921

NPN
MJ1200, MJ1201

FIGURE 8 - DC CURRENT GAIN
20,000

20,000

~ 310 ~

v'CE
7000
z 5000

;;:

TJ %1500C.....

'" 300 0
>~ 200 0

..... V
r--

G
u 100

"~
-

0

~V
0.1

F== r-- 1---' I-- r"-".
r-- r-- -- I"--

'"

V-

/

25°C

A"

r--

~

I'

G
'-'

t7Z

.v

300
200
05

03

0.7

1.0

2.0

30

50

..

-"-- -

..

_:'5::

_..

-

k:::::

25 0C /

1000

;"

..

t"":

~

2000

500

0.2

--

5000
I---+~
>- 3000 ~:1500C,.......

700
500~,-550C

30
20

I
VCE - 3.0 V

10,000

10,00 0

--

r-

-55°C

~I'

V

7.0 10

01

02

03

05

07

10

20

3.0

50

70

10

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

FIGURE 9 - COLLECTOR SATURATION REGION

en
~

3.0

I III
I III

"

;::
~ 2.6

;

"ffi

II

IC - 2 OA

4.0 A

2.2

~_

1.8

~

1.4

~

'"

25°C

3.0

j LI

~

II

;::
"

6.0 A

'"«

w

">
'">-w

1\

\

IC

°

TJ
4.0A

2.0 A

11

~

14

~

1.0

>

0.3

0.5

0_7

10

20

3.0

5.0

II

2.2

lB

"'-'
70

10

20

30

25°C

26

~

""'

I'-

°

6.0A

r-r--

\

>-

\

"
>

°

~

~

8

TJ

I"\..
I'

1.0
03

0.5

07

10

18, BASE CURRENT ImA)

20

30

50

70

10

20

30

IB, BASE CURRENT ImA)

FIGURE 10 - ON VOLTAGES
3.0

3.0

TJ %25°C

2.5

"
«
'"~
w

">

1.5

>'
1.0

'"
~

;:: 2.0

-

05
0.1

.,

VBE @V CE o30V
I
VBE1s8tl

i

./

"
;::

V

~

03

0.5 0.7

20

30

~
V

I--"
,....... ,.,

VBElsat)@ICIIB-250
10

f.---" r-

VCEI,,') @IC/18 0250

1.0

~ "'"

,.--

1.5 I--VBE@VCE%30V

>'

VCEI,,') @I~/IB - 250
02

20

«
'"

",

V

1

25°C

w

">

Ie/Ii.=: 2 0

=:

2.5

V

g

TJ

05
5.0

70

10

01

IC, COLLECTOR CURRENT lAMP)

02

03

05

07

10

20

30

Ie, CO LLECTO R CURRENT lAMP)

391

50

70

10

MJ920, MJ921, MJ1200, MJ1201 (continued)

I

PNP

MJ920, MJ921

NPN

MJ1200,MJ1201

FIGURE 11 - TEMPERATURE COEFFICIENTS
+5.0

+5.0

II "
'Applies for ICilB

E

~

~ +3.0

f1i

i

>
.§ +3.0

1/

+2.0

'"~

250C 10 1500C

G+2.0

-I

1 -j

~

-2.0

~

-3.0 9VB for VBE- 25°C 10

.1. 1 I,

-550C 1o 250C

>-

0.2

0.1

0.3

'"'"
::::J

f-"".............
-55 DC to 25°C

II II

-5.0

0.5

10

2.0

3.0

5.0

-550C 10 250C

8

f-"
i-'

!--- ?

15~

>-4.0

<:t>

./

7.0

-1.0

:cffi -2.0

OVC for VCE(sal)

~ -3.0
>~ -4.0

OVB for VBE

-5.0

10

7'

. 25°C 10 150°C

$ +1.0

V

..-

-1.0 'UVC for VCE(sal)

>-

*Apphes for le/lB < hFE/3

!Z

U

+10

II

+4.0

k:::::: ;;.;-

~

,/

250CI0150~

:.-+ttI

II II
0.1

0.2

0.3

IC. COLLECTOR CURRENT (AMP)

0.5 0.7

/
/

f-"'" , /

...... """

10

f;:::

2.0

-550C 10 25°C

I
3.0

5.0 7.0

10

+1.2

+1.4

IC. COLLECTOR CURRENT (AMP)

FIGURE 12 - COLLECTOR CUTOFF REGION
10 5
_

10

105

4 =REVERSE =:!: FFORWARO

Ia

1+= REVERSE==<' !;;::::FORWARO

L

1

./
10

3 = VCE-30V

r=VCE=30V

'" 10 2

g
_

10 I

8
E

100

Tr 150°C

r-TJ-1500C

r---

100°C

E=:=

25°C

./

10- I
-0.6

10- I
+0.6

+0.4

+0.2

-0.2

-0.4

-0.6

-0.8

-10

- 12

- 14

I

100°C
25°C
-0.4

-0.2

+0.2

+0.4

+0.6

+0.8

+1.0

VBE. BASE EMITTER VOLTAGE (VOLTS)

VBE. BASE-EMITTER VOLTAGE (VOLTS)

FIGURE 13 - DARLINGTON SCHEMATIC

PNP
MJ920
MJ921

r - - - - -----------,
I

BASE I

NPN
MJI200
MJI201

COLLECTOR

COLLECTOR

I

I
1
I
I
___
_ _ _ _ _ _ .....JI
'--t-~.........,vv--J
EMITTER I

BASE 2

BASEI..,.....,~--....

I
1
I
I
___
_ _ _ _ _ _ .....JI
'--t-~.......,w-'
EMITTER I

EMITTER 2

MJ1000, MJ100l

(SILICON)
For Specifications, See MJ900 Data.

MJ1200, MJ1201 (SILICON)
For Specifications, See MJ920 Data.
392

EMITTER 2

BASE 2

MJ 1800 (SILICON)

HIGH-VOLTAGE NPN SILICON TRANSISTOR

5 AMPERES
POWER TRANSISTOR

· . . designed for use in vertical deflection amplifier circuits in
television receivers.

NPNSILICON
500 VOLTS
100 WATTS

• High Coliector·Emitter Voltage - VCER = 500 Vdc
• Excellent Gain Linearity

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

250

Vdc

VeER

500

Vdc

VEB

5.0

Vdc

Ie

5.0

Adc

Po

100
0.8

Watts
wfDe

TJ,Tstg

-55 to +150

°e

Collector-Emitter Voltage
Collector·Emitter Voltage
Emitter·Base Voltage

Collector Current

Continuous

Total Device Dissipation@Tc=26oC
Derate above 250 e
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS (TC
Ch8nteteristic

= 25°C unless otherwise noted)
Symbol

Min

OFF Ct:lARACTERISTICS

Collector-Emitter Breakdown Voltage
(Ie = 0.1 Adc, Ie" 0)

BVCEO

III

250

-

Unit

Vdc

Collector Cutoff Current
(Vee =-5ODVdc, RBE -1.5 k Ohms)

ICER

200

,Ado

Emitter-Base Leakage Current
(VEe = 5.0 Vdc,lC = 0)

lEBO

'00

~c

DC Current Gain

hFE'

111

35

hFE2

111

40

lie" 0.3 Adc, VeE = 5.0 Vdc)

Gain Lln8lrity

DIM
A
B
C

ON CHARACTERISTICS

DC Current Gain
(Ie" 0.4 Ade, VeE" 5.0 Vdc)

STYLE 1:
PIN I. BASE
2. EMITTER
CASE: COLLECTOR

hFE1 JhFE2

D

MILLIMETERS
MIN MAX

6.35
0.99

E

F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.64
R

'20

0.95

(') 'Pulse Test: Pul.. Width ~ 600 III, Duty Cycl.~ 2.0%.

NOTE:
I. OIM "U" IS OIA.

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
eASE 11

393

INCHES
MAX
MIN

-

0.250
0.039
_.
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ1800 (continued)

FIGURE 2 - NORMALIZED DC CURRENT GAIN

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
100

""-I\.

~

t-

~

75

0

iii

z

;;:

to

50

"-

~

o

o

~

~
~

I'\.

40

60

80

"-

100

120

140

I\.

'\

O. 3

1\

o. 2

1\

~

I\.
20

0.7

ffi
N

!"'-

25

~

1.0

g o. 5

'\,

0

'"~

I
t-

\.

z

;::
;t

2. 0

o. 1
160

180

200

0.05 0.07 0.1

TC. CASE TEMPERATURE (DC)

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

IC. COLLECTOR CURRENT (AMPS)

FIGURE 3 - ACTIVE-REGION DC SAFE OPERATING AREA
10
5.0

~ 3.0
~ 2.0

"-

t-

~ 1.0

The Safe Operating Area Curves'indicate Ie-VeE limits below

~

0.5
~ 0.3

which the device will not enter secondary breakdown. Collector

r-

~ :.21
o

u

-

-

-

Secondarv Breakdown Limited
- Bonding Wire Limited

"'

0.0 5

~o.o3

0.0 2
0.01
3.0

5.0

7.0

10

20

30

50

70

load lines for specific circuits must fall within the applicable 'Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power·temperature derat,ing must be observed for both steady state and pulse power conditions.

"""

100

200 300

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

394

MJ2249 (SILICON)
MJ2250
MJ3101
Medium-power NPN silicon transistors ideal for
use as drivers, switches, amplifiers.
02

o

0

( ; )

CASE 80
(TO·66)

@I

STYLE 1:
PIN 1 BASE
2 EMITTER
CASE: CO LLECTOR

MAXIMUM RATINGS

Symbol

Rating
Collector-Emitter Voltage
Collector-Bast. Voltage
Emitter-Base Voltage

MJ3101 MJ2249 MJ2250

VCEO

40

VCB

50

·•
·

VEB

60

80

60

80

6.0

Collector Current - Continuous
Peak

IC

Base CUrrent

IB

•

0.5

Total Device DiSSipation @ T C = 25°C
Derate above 25°C

PD

•
•

20
0.133

Operating and Storage
Junction Temperature Range

TJ,Tstg

2.0
3.0

Unit
Vdc

.
.
.

Vdc
Vdc
Adc

1

.,

- - 6 5 to+175-

Adc
Watts
wloc
°c

FIGURE 1- POWER· TEMPERATURE DERATING CURVE
20

en

~z:

16

~
en

12

C

8.0

0

..............
............

............

...... r--.....

..............

en

..,
Q:

............
............

:;::
0

"-

Ci
"-

............

4.0

t--....

0
25

50

75

100

125

150

Te , CASE TEMPERATURE (OC)

Safe Area Curves are indicated by Figure 2. Both limits are applicable and
must be observed.

395

""'"

175

MJ2249, MJ2250, MJ3101

(continued)

ELECTRICAL CHARACTERISTICS fTC

=2SoC unless otherwise noted)
Symbol

Characteristic

Min

Max

Unit

OfF CHARACTERISTICS
Collector-Emitter Voltage (1)
Uc • 100 mAde, IS • 0)

svCEO
MJ3101

40

M.J2Z49

60

MJ2250

60

Collector-Base Cutoff Current
(VCS· 50 Vde, IE • 0)

MJ2249

(VCS· 60 Vde,IE' 0, TA' 15oCC)
(VCS • 60 Vde, IE· 0)
(VCS' 80 Vde,IE '

MJ2Z50

0, TA • 15oCC)

Emitter-Baae CutoU Current
(VES • 6.0 Vdo, IC ·0)

lEBO

All Type.

1.0

-

(VCS· SO Vdc,IE • 0, TA • 15oCC)
(VCS· 60 Vdc, IE' 0)

-

2.0
1.0
2.0
1.0
Z.O
mAde
1.0

ON CHARACTERISTICS
DC Current Gain
50 mAde, VCE • 4.0 Vdc)

Uc •
Uc = 100 mAde, VCE (Ie •

hFE

All Type.

25

AU Type.

4.0 Vde)t

All Types

500 mAde, VCE • 4.0 Vde)·

Collector-Emitter SaturaUon Voltage
(Ie ·600 mAde, IS' 50 mAde)

VCE(••t)

All Type.

Uc • 150 mAde, IS • 15 mAde)
Uc =1.0 Ado, lB' 0.1 Ado)

MJ3101

Base... Emltter Saturation Voltages
500 mAde,IS' 50 mAde)

VBE(••t)

(Ie •

All Type.

(Ic ·150 mAde,IS - 15 mAde)

W3101

Uc =1.0 Ade, Is = 0.1 Ade)

MJ2249, MJ2250

-

25

ZOO

25·

200"

-

-

MJ2249, MJ2250

Vdc

mAde

leso

MJ3101

-

-

-

Yd.

1.0
2.5
2.5
Vde
1.2

1.5
1.5

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
Uc = 100 mAde, VCE ' 10 Vde, f • 10 MHz)
(11 PULSE TEST: PW

~

All Type.

500 •• , Duty Cycle S 2. 0%

tColor coded hJrE groups available at 100 mAde

FIGURE 2- ACTIVE REGION SAFE OPERATING AREAS
MI2249, MJ2250, MI3101

'-I.

dc, .......

2.0

11.0

"-

M)2249, MJ2250

1.0m~ .;: t"--".

,

......

~

S

M12250

j'--... __ I-- sOO~

-.... r-..

S.ORlS •

~ 0.6

M13101'

l!i 0.4

;

-'~

""-

--

r.....

~

.Ji 0.2

'M)2249

r-

h........ r-.....

'.

'"'~

MJ2250

0.1
0.06

o

10

-

1--"-

,

70
80
50
60
30
40
VeE. COllECTOR·EMITTER VOlTAGE !VOlTS)
NOTE: For additional design curves, please refer to Type 2N3766.

20

396

The Safe Operating Area Curves indio
cate the Ic·VeE limits below which the
devices will not go into secondary
breakdown. These curves can be used
as long as the average power derat·
ing curve (Figure 1) is also taken
into consideration to insure opera·
tion below the maximum junction
temperature.

MJ2251 (SILICON)
MJ2252
High-voltage NPN silicon power transistors, particularly well suited for power output stages in television,
radio, phonograph and other consumer product applica~
~~ions.
@.
' STYLE I:

CASE 80 0

0

(TO.66)

PIN 1. BASE
2. EMITTER
CASE: COllECTOR

@I

MAXIMUM RATINGS
Rating

Symbol

Value

VCEO

Collector-Emitter Voltage

Vdc
225
300

KJ2251
14J2252

Emitter-Base Voltage

8

Vo

Collector Current

Ie;

Total Device Dissipation
@ TC = 'IO·C
Derate above 'IO·C

PD

Operating and storage
Junction Temperature Range

(TA'"

~

Collector-Emitter Breakdown Voltage
KJ2251
(IC ~ 1 oiAde, lB. 0)

BVCEO

..

225

Collector Cutoff Current
(VCB'" 300 Vdc, IE. 0)

leBO

-

Emitter-Baae Leakage Current
(VEB;' 8 Vde, Ie .. 0)

lEBO

-

DC Current Gain
(Ie" 50 mAde, VCE .. 10 Vdc)

bFE

Small Signal Current Gain
c;;:

~\

de ~

8 0.3

\

I:\._li
~\\

~

.9 0.2

0.1

0.1

10

15

25
30
20
35
VeE, COLLECTOR·EMIITER VOLTAGE IVOLTSI

40

The Safe Operating Area Curves indicate Ie - VeE limits
below which the device will not go into secondary breakdown.
Collector load lines for specific circuits must fall within the ap·
plicable Safe Area to avoid causing a collector·emitter short.

20

25

30
40
45
35
VeE, COLLECTOR·EMIITER VOLTAGE (VOLTS)

50

55

(Duty cycle of the excursions make no significant change in
these safe areas.) To insure operation below the maximum TJ ,
the power·temperature derating curve must be observed for
both steady state and pulse power conditions.

NOTE: For additional design curves, please refer to Type 2N3789.

402

MJ2500, MJ2501 PNP (SILICON)
MJ3000, MJ3001 NPN

10 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS

60-80 VOLTS
150 WATTS

for use as output devices in complementary general purpose
amplifier applications .
•

High DC Current Gain - hFE = 4000 (Typ)

@

IC = 5.0 Adc

• Monolithic Construction with Built-In Base-Emitter
Shunt Resistors

MAXIMUM RATINGS
Rating

Symbol

Collector·Emitter Voltage

VCEO

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

MJ2500 MJ2501
MJ3000 l.I"nnl
60
80
60

BO

Unit
Vdc
Vdc

5.0

Vdc
Adc

Collector Current

IC

10

Base Current

IB

0.2

Adc

Total Device Dissipation@Tc= 2SoC

Po

150
0.857

Watts
W/oC

TJ.Tstg

-55 to +200

°c

Symbol

Max

Unit

°JC

1.17

°C/W

Derate above 2SoC
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to CaS!'!

STYLE 1:
PIN 1. BASE

2. EMITTER
NOTE:
CASE: COLLECTOR
1. DIM

"a" IS OIA.

FIGURE I-DARLINGTON CIRCUIT SCHEMATIC

MILLIMETERS
DIM MIN MAX
PNP
MJ251l0
MJ2S01

Collector

---,

r---+, :
I
I
I
I

Base

Collector

NPN
MJ3000
MJ3001

A

---,
~---

1000

g

500

u

~

2000

z

§

.,; 1.0

VBiiWlll"°':'

0.5

VjC~(i1) j~ jlCIlB •

II
0.02

0.05

0.1

0.2

ilill
0.5
1.0

'"

~

1.5

0.01

.

.

1.0

~

O.7
O. 5

~ O.3
O.2

t

50 I5.0

~

MJ2500, MJ3000 - ~
MJ260l, jJ300,1 -

~

r-~

TJj 200"IC

I
2.0

~

~

1\

- - Secondary Breakdown Limited
Thermally Limnad at TC = 250C
- - - . Bonding Wire Limited

2.

o

-

3.0

0:

1

~ 2.0

-- ---

i o=

2.5

0

'"~

f\

100

100

~

"\

TC' 25°C
VCP3.0 Vdc
IC' 5.0 Adc

~

200

50

Vde

O. I

10

1.0

IC. COLLECTOR CURRENT (AMP)

2.0

3.0

5.0 7.0

10

20

30

50

70 100

VCE, COLLECTOR·EMITIERVOLTAGE (VOLTS)

not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by seCO(1dary breakdown. (See A N-415)

There are two limitations on the power handling ability of a
trensistor: junction temperature and secondary breakdown. Safe
operating area curves indicate IC-VCE limits of the transistor that
must be observed for reliable operetion; a.g., tha transistor must

\.

404

MJ2801 NPN (SILl.CON)
MJ2901 PNP

COMPLEMENTARY SILICON POWER TRANSISTORS
· .. designed for general·purpose amplifier and switching circuit
applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) 1.5 Vdc (MaxI @ IC 8.0 Adc

•

DC Current Gain hFE = 15 (Min) @ IC = 8.0 Adc

=

15 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON
40 VOLTS

115 WATTS

=

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Ba.. Voltage

VCB

Emitter-Base Voltage

VEB
IC

Vdc
Vdc

TJ.Tstg

50
7.0
15
7.0
115
0.657
-65 to +200

Symbol

Max

Unit

9JC

1.52

°CIW

Collector-Emitter Voltage

Collector Current

Continuous

Ba.. Current

IB

Total Devica Dissipation@TC=250C
Derate above 25°C

Po

Operating and Storage Junction

Adc
Adc
Watts

WloC

°c

Tamperature Range
THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

FIGURE 1 - POWER TEMPERATURE DERATING CURVE
NOTE:
1. DIM "O"IS DIA.

140

e

120

I--

115

~ 100

.,z

"'"

~. 80

~

Q

'"~

2

MILLIMETERS
DIM MIN MAX

~

60
40

A
B
C

~
..........

i'....

~ 20

"'"1'--.

o

o

25

50

75

100

125

150

f':
175

200

D
E
F
G
H
J
K
Q

R

-

-

39.37
21.08
7.62
1.09
3.43

29.90
10.67·
5.33
16.64
11.18
3.84

30.40

6.35
0.99

-

11.18
5.59
17.15
12.19
4.09
26.67

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

CASE II

TC. CASE TEMPERATURE (OC)

405

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ2801 NPN, MJ2901 PNP (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

Unit

BVCEO

40

-

Vdc

ICEX

-

5.0

mAdc

-

5.0

lEBO

-

10

mAdc

hFE

15

60

-

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(l)
(lC

= 200 mAdc,

IB = 0)

Collector Cutoff Current
(VCE = 50 Vdc, VEB(off)

= 1.5 Vdc)

Collector Cutoff Current

Emitter Cutoff Current
(VEB

= 7.0 Vdc,

IC

mAdc

ICBO

= 50 Vdc, IE = 0)
(VCB = 50 Vdc,IE = 0, TC = 1500C)
(VCB

= 0)

ON CHARACTERISTICS
DC Current Gain!l)
(I C = 8.0 Adc, V CE = 4.0 Vdc)

10

Coliector·Emitter Saturation Voltage(l)
(lC = 8.0 Adc, IB = 0.8 Adc)

VCE(sat)

-

1.5

Vdc

Base-Emitter On Voltage(l)
(lC = 8.0 Adc, VCE = 4.0 Vdc)

VBE(on)

-

2.2

Vdc

DYNAMIC'CHARACTERISTICS
Current·G.in -Bandwidth Product
(lC = 0.4 Adc, VCE = 10 Vdc, f = 1.0 MHz)
(1)Pulse Test: Pulse Width,:S 300 ",s, Duty Cycle 5,2.0%.

FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA

20

"- I"

t·

ii::' 10

2\

~

;:: 5.0

ffi
~

3.0

250".
500".

f--

~ 2.0 f - -

I

de

~ 1.0

I I
..
F-- Secondary
Breakdown Llmlttd

I

8

f:: -- - Thermal
Limitations, TC =25 C
Pul .. Duty Cycle'; 10%

'"o

G

:} 0.5

I

..

.-/

1.0ms

TJ =2000 C

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must faU within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation

below the maximum T J, power-temperature derating must be ob·
served for both steady state and pulse power conditions.

~ _. _. Bonding Wir, Limited

0

II0.3

Applicable For Rattd BVCEO

0.2
3.0

6.0

10

20

30

40

VeE, COLLECTOR·EMmER VOLTAGE IVOLTS)

406

MJ2840 (SILICON)
MJ2841

10 AMPERE
POWER TRANSISTORS

HIGH-POWER NPN SILICON TRANSISTORS

NPN SILICON
60-80 VOLTS
150 WATTS

· .. designed for use inaudio amplifjercircuits utilizing complementary
symmetry.

•

Excellent Safe Operating Area

•

DC Current Gain hFE = 20 - 100@ IC = 3.0 Adc (MJ2840)
= 4.0 Adc (MJ2841)

•

Complement to PNP MJ2940 and MJ2941

MAXIMUM RATINGS
Rllting

Symbol

MJ2840

MJ2841

Unit

VCEO

60

SO

Vdc

Collector-Sase Voltage

VCS

60

60

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

IC

10

Adc

Collector-Emitter Voltage

Collector Current - Continuous

Base Current

18

4.0

Adc

Total Device Dissipation @TC= 25°C

Po

160
0.S5

Watts

wfDc

TJ.Tstg

-65 to +200

DC

Derete above 250 C

Operating and Storage Junction
Temperature Range

lr~
r~,
ES::?t:
PLANE

i

THERMAL CHARACTERISTICS
Characteristic
Thermal R_istanc8. Junction to Case

STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

NOTE:
1. DIM "O"IS DIA.

160
In

i
z

120

~
If

100

Ili

50

~

........,....

140

DIM

..............

40

t

2D

C

..........

D
E

..............

..............
25

50

75

-

B

.............

80

~

A

MILLIMETERS
MAX
MIN

100

125

150

..............

175

2DD

Te. CASE TEMPERATURE (OCI

6.35
0.99

F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84
R

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

Slife Area Limits are Indicated by Figure 4. Both limits are applicable and must be observed.

407

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ2840, MJ2841 (continued) .
ELECTRICAL CHARACTERISTIC (TC = 25°C unless otherwise noted)

I

I

Min

Max

60
80

-

0.1
2.0

-

1.0

-

Both Types

40

-

(lC = 3.0 Ade, VeE = 2.0 Vde)

MJ2840

(lC = 4.0 Adc, VeE = 2.0 Vde)

MJ2841

20
20

100

B.....Emitter On Voltage~1)
(lC = 3.0 Ade, VCE = 2.0 Vde)

MJ2840

-

IIc = 4.0 Ade, VCE = 2.0 Vde)

MJ2841

-

Characteristic

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltaga(1)
(lC = 200 mAde, IB = 0)

Vdc

VCEO(sus)
MJ2840
MJ2841

Collector-Base Cutoff Current
(VCB" Rated VCB, IE = 0)

mAde

ICBO
Both Types
Both Types

IVCB = Rated VeB, IE = 0, TC = 150OC)
S.....E mittsr Cutoff Current
IVBE = 4.0 Vde, IC = 0)

mAde

lEBO
Both Types

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 50 mAde, VCE = 10 Vde)

-

hFE

100
Vdc

VBElon)

1.3
1.4

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIC = 0.5 Ade, VCE = 10 Vde, f = 1.0 MHz)
(1)Pulsa Teat: Pulse Width S300 ,",5, Duty Cycle'S..2%.

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

500

300
200

z

~

100

0:

10
50

~
:::>

<.>
<.>

'"

30

~ 20

2.0
1.8

VCE = 2.0 Vd,

-

TJ= 175°C

1.6

-I-

6 1.21.4
'"

+250C

2:
w

to

-55°C

:;
"

r-....

'">>'

./

10
7.0
5. 0
0.01

1.0
0.8 _

I--'
k:o::=~

V8Elsat)@ Iclla = 10 Vd,

VaElon)@ VCE = 2.0 Vdc--:

0.6

Till U

0.4

.J...+1"

0.2

VCElsatl@lclia - 10 Vd,

o
0.02 0.03 0.05

0.1

0.2 0.3 0.5

1.0

2.0 3.0 5.0

10

0.1

IC. COLLECTOR CURRENT lAMP)

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0

7.0 10

IC. COLLECTOR CURRENT lAMP)

FIGURE 4 - ACTIVE,REGION SAFE OPERATING AREA
10

0:

d,~.Oms'S.100 ..

5.0

'"5

r--

I-

z
w 2.0 r-~

=

TJ = 200°C

\

~;~~~ ~i:~~wn ~~i~50C

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. powerwtemperature derating must be observed for both steady state and pulse power conditions.

.~

Curves Apply aelow Rated aVCEO

B 1.0
0:

'"

~'" 0.5
<.>

~ 0.2

0.1
1.0

MJ2840 r-~
MJ2841

r-

2.0

3.0 4.0 5.0 7.0

10

20

30 40 50

70 100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

MJ2901 (SILICON)
For Specifications, See MJ2801 Data.
408

MJ2940 (SILICON)
MJ2941

10 AMPERE
POWER TRANSISTORS

HIGH-POWER PNP SILICON TRANSISTORS

PNPSILICON
60-80 VOLTS
150 WATTS

· .. designed for use inaudio amplifier circuits utilizing complementary
symmetry.

•

Excellent Safe Operating Area

•

DC Current Gain hFE = 20 - l00@ IC = 3.0 Adc (MJ2940)
= 4.0 Adc (MJ2941)

•

Complement to NPN MJ2840 and MJ2841

MAXIMUM RATINGS
Rating

Symbol

MJ2940

MJ2941

Unit

VeEO

60

80

Vdc

Collector-Base Voltage

VeB

60

80

Vdc

Emitter-Base Voltage

VEB

4.0

Collector Current - Continuous

Ie

10

Adc

Base Current

IB

4.0

Adc

Total Devica Dissipation @Te =250 e
Derata above 250 e

Po

150
0.85

Watts
w/oe

TJ.Tstg

-65 to +200

°e

Collector-Emitter Voltage

Operating and Storage Junction

Vdc

Temperature Range

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to

c.e

STYLE 1:
PIN 1. BASE
2. EMITTER
NOTE:
CASE: COLLECTOR
1. OIM "a" IS DIA.

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

160
140

............

S 120
~

~

!C

.~

I

~

r-...

100

MILLIMETERS
DIM MIN MAX

............

A
B

..............

80

.............

40

..............

20

..............

o

o

25

50

75

100
TCo CASE TEMPERATURE tOC)

125

6.35
0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
a 3.84

C
D

.............

60

ISO

175

200

-

R

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

Safe Area Limits are Indicated by Figure 4. Both limits are applicable and must be observed.

409

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.3
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ2940, MJ2941 (continued)

ELECTRICAL CHARACTERISTIC (TC = 25°C unless otherwise noted)
Symbol

Characteristic

Min

Max

60
BO

-

-

0_1
3_0

-

1.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(1)
(lC = 200 mAde, IB = 01
Collector-Base Cutoff Current
(VCB = Rated VCB, IE = 01
(VCB

Vde

VCEO(susl

MJ2940
MJ2941

mAde

ICBO

= Rated VCB, IE = 0, TC = 150o C)

Emitter-Base Cutoff Current
(VBE = 4_0 Vde, IC = 01

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 50 mAde, VCE

-

hFE

= 10 Vdel
(lC = 3.0 Ade, VCE = 2.0 Vde)
(I C = 4.0 Adc, V CE = 2.0 Vdel

Both Types

40

-

MJ2940

20
20

100

1.3
1.4

MJ2941

Base-Emitter On Voltage(1)
(lC = 3.0 Ade, VCE = 2.0 Vdel

MJ2940

-

(lC = 4.0 Ade, VCE = 3.0 Vdel

MJ2941

-

100
Vde

VBE(onl

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.5 Ade, VCE = 10 Vde, f

= 1.0 kHzl

(1)Pulse Test: Pulse Width 5300 #ls, Dutv Cycle~ 2%.

FIGURE 2 - DC CURRENT GAIN
100 0
700
500 - -TJ +175°C
z

"

300

'" 200

~

w

~ 100

"

'-'
'-'

'"

~

+25 e

-

FIGURE 3 - "ON" VOLTAGES
2.4

VeE - 2.0 Vdc t

'"~

t"--r-r-.
t"---r-.

-55 e

I I I II II
ITJ .1+25IoCI I III

g 2.0

I I I I

I I II

_ i l f 'ICIIB (FORCEO AGAIN)

VCE" 2., Vi'

w

'"
:;
<[

'">z
'"
~

0
0
0
0

1.6

IA.

1.2

~ ?'

""';l5>--

O.B _VBE(satl

~

0.4

;;:

~
~F

·10

~

VBE

",.

-I-"'"

_VCE!sat)

10

0.01

0.020.03 0.05

0.1

0.2 0.3 0.5

1.0

2.0 3.0 5.0

10

0.1

IC COLLECTOR CURRENT lAMP)

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

IC. COLLECTOR CURRENT (AMPS)

FIGURE 4 - ACTIVE-REGION SAFE OPERATING AREA
10

li:

"">--

dc:::S:; 1.0 ms'3;:.100 "'

5.0

~

a'i

"

'-' 1.0

::'"'-'
w

::::
8

It

2.0

'"'"

F==

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power·temperature derating must be observed for both steady state and pulse power conditions.

[~

TJ • 200 0 C

f=-- Secondary Breakdown limited

f== --- Thermally
Limited
TC' 25°C
0.5 r-Curves Apply Below Rated BV CEO

~ 0.2
0.1
1.0

MJ2940-r
MJ2941,-+
2.0

3.0 4.0 5.0 7.0

10

20

30 40 50

70 100

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

410

MJ2955 (SILICON)

15 AMPERE
POWER TRANSISTOR
PNP SILICON POWER TRANSISTOR

PNP SILICON
60 VOLTS
150 WATTS

· .. designed for general-purpose switching and amplifier applications.

•

DC Current Gain hFE = 20·70 @ IC

= 4.0 Adc

• Collector-Emitter Saturation Voltage,VCE(sat) = 1.1 Vdc (Max) @ IC =4.0 Adc
•

Excellent Safe Operating Area

• Complement to Motorola's "Epi-Base" Transistor, 2N3055

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Eminer Voltage

VeEO

60

Vdc

Collector-Emitter Voltage

VeER

70

Vdc

Collector-Base Voltage

VeB

100

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

Ie

15

Adc

Rating

Collector Current - Continuous
8ase Current

'B

7.0

Adc

Total Device Dissipation @ T C = 2SoC
Derate above 2SoC

Po

150

Watts

Operating and Storage Junction

TJ, T sts

0.86

w/oe

-65 to +200

De

STYLE 1:
PIN 1. BASE
C
2. EMmER
--~~+-j- CASE: COLLECTOR

Temperature Range

THERMAL CHARACTERISTICS
NOTE:
1. OIM "O"IS OIA.

Characteristic
Thermal Resistance, Junction to Case

FIGURE 1 - POWER DERATING
160

I-0

"- '),.

,
DIM

.........

A
8
C

0

"'"

0
0

0

" "'"

0
E
F

0
25

50

75

100

125

G
H
J

...............

150

K

...............
175 200

TC, CASE TEMPERATURE ,oCI

11

R

MILLIMETERS
MIN MAX

-

6.35
0.91

-

29.90
10.67
5.21
18.84
11.18
3.84

311.'7
22.23
11.43
1.119

INCHES
MIN
MAX

-

0.250
0.038

3.43
30.40 un
11.18 0.420
5.72 0.205
11.15 .665
12.19 iD.44O fD.480
4.D9 0.151 0.181
26.11
- 1.050
CASE 11·03

411

1'"
0.815
.450
0.043
D.T!&"
1.191
0.440
0.225
0.615

MJ2955 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unl_ otherwise noted)

I

I

Characteristic

symbol

Min

Collector-Emitter Sustaining Voltage (1)
(lc = 200 mAde. IB = 0)

VCEO(sus)

60

Collector-Emitter Breakdown Voltege (1)
(lC • 200 mAde. RSE = 100 Ohms)

BVCER

70

-

ICEO

-

0.7

Unit

Ma"

OFF CHARACTERISTICS

Collector Cutoff Current
(VCE = 30 Vde.IB = 0)
Collector Cutoff Current
(VCE = l00Vdc. VSE(off)
(VCE - 100 Vde. VSE(off)

= 1.5Vde)
= 1.5 Vdc. TC =

Vde
mAde
mAde

ICEX
150°C)

Emitter Cutoff Current
(VSE = 7.0 Vde.IC = 0)

Vdc

IESO

-

-

1.0
5.0

-

5.0

20

70

mAde

ON CHARACTERISTICS (1)
DC Current Gain
(lC = 4.0 Adc. VCE = 4.0 Vdc)
(lc = 10 Adc. VCE = 4.0 Vdc)

-

hFE

-

5.0

Collector-Emitter Saturation Voltage
(lc = 4.0 Adc. IS· 400 mAde)
(lc = 10 Adc. IS = 3.3 Adc)

VCE(satl

Sase-Emltter On Voltage
(lC = 4.0 Ado. VCE • 4.0 Vdo)

Vdc

-

-

1.1
3.0

VSE(on)

-

1.8

Vde

Current Gain - Bendwidth Product
(lC =0.5Adc. VCE = 10 Vde. f = 1.0MHz)

fT

4.0

-

MHz

Smell-5ignal Current Gain
(lC· 1.0 Adc. VCE = 4.0 Vde. f· 1.0 kHz)

hfe

15

-.

-

Smell-5lgnal Current Gain Cutoff Frequency

f"",

10

-

kHz

DYNAMIC CHARACTERISTICS

(VCE· 4.0 Vdc.IC = 1.0Ade. f= 1.0 kHz)
·Pulse Test: Pulse WidthS" 300 "', Duty Cycl.~ 2.0%.

FIGURE 3 - TURN-ON TIME

FIGURE 2 ...: SWITCHING TIME TEST CIRCUIT
1.0

VCC
-30Y

O.5

......

.......

J

+10iJ-0- - - - -

Ra

SCOPE

0.2

]
~

;::

-10V--~

51
25,.
"
.....''''10 ..
-I4,OY
DUTY CYCLE = 1.0!I
Ra ",d RC YARIED TO OBTAIN DESIRED CURRENT LEVELS

"'1-

.......

I'

o. 1

...

.;

0.05

0.02

0.01

01 MUST aE FAST RECOVERY TYPE. II:
Ma05300 USEO ABOVE IB-l00mA
MSD6100 USED BELOW la -100 mA

.......

YCC-30Y
Ic/la" 10
YaElolI) =3.0 Y
-TJ= 250C

0.1

,
0.2

0.3

0.5

2.0

3.0

IC. COLLECTOR CURRENT (AMP)

412

5.0

10

MJ2955 (continued)

FIGURE 4 - THERMAL RESPONSE
1•0

.:.

o.7 f=D -0.5

1_
o.5
wO
:>::w

~
i~ :~ r-0.1
0.2

,......

in"
ZO

~ r-io-'

",Z

~: o. 1~.0.05
~ ~o.o 7~0.02
~~o.o5
... " ,
..k"' 0.01
:t ~ 0.03
~

SINGLE
PULSE P B l J l

-

-1

f- I

~ 6JC(I) = ,(I) 6JC _

r-- 6JC·I.17 0C/W MIX

DUTY CYCLE. D-11112

D CURVES APPLY FOR POWER
PULSETRAIN S~~~ I I I
READ TIME AlII
TJ(pk) - TC = P(pk) 6Jc(l)

0.02 - SINGLE PULSE
0.0 1
0.01

I II

I

0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0

2.0

II

II II

3.0

5.0

10

20

30

50

I

100

200 300

500

1000

I. TIME (m.)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
20

I!Z

5.0

~

3.0

....
w

r-

.. 2.0

~...

1--

0

H-H

- -- ".l1fm~ ~ f~

.... .....

There ere two limitations on the po_r handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curvas indicate IC,VCE limits of the transistor
that must be observed for reliable operation; i.e .• the transistor
must not be subjected to greater dissipation than the curves indicMe•
The data of Figure S il based on TJ(pk) = 200; TC ilvariable
depending on conditions. Sacond breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pkl"'2000C. TJ(pkl may be
calculated from the data in Figure 4. At his;. c_ tamperatures.
thermal limitations will reduce the power that can be handled to
values lass than the limitations imposed by second breakdown.
(Sea AN-41 Sl

5.0 ms

TJ =200°C
Secondary Breakdown

Limited-500'J.~ k-

- - - - - Bonding Wire Limit

~c\

- - - - - - - Thermal limit at TC =2SDC

1.0

~

8

~

o.5
O.3
0.2
2.0

\
3.0

4.0

6.0

10

20

3D

40

60

VCE. COLLECTOR·EMITT~R VOLTAGE (VOLTS)

FIGURE 8 - TURN-OFF TIME

FIGURE 7 - CAPACITANCE

0

1000

2.0

TJ - 2SOC

VCC-30V

5.0

700

IC~B -10

--

IBI = IB2
TJ = 25°C

~ 500
~

--

Is

-

0.1
0.1

0.2

0.3

0.5

1.0

-""

I=;:,..
~

~
!::3OD

~.. 200

0.5

0.2

"'-

~

If

2.0

3.0

5.0

100
0.1

10

IC. COLLECTOR CURRENT (AMP)

0.2

0.5

1.0

2.0

5.0

.........

III

10

VR. REVERSE VOLTAGE (VOLTS)

413

,

Cob
Cib

I"
20

50

100

MJ2955 (continued)
FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN
200 _ H 4 , .

i--

-1

or-- t-~ I-

-

1

III

r--

TJ -150 DC

~

0

> 1.2

'"
~

"o~

~-'

O. B

\

O.4

~

>
0.3

1.0

0.5

2.0

3.0

5.0

0

10

5.0

10

20

50

IC. COLLECTOR CURRENT IAMPI

TJ - 25DC

>

II I

~

'BVC for VCEI"tl

.§. +1. 5

ffl +1, 0

J.;
VaEI,,!)@lc/la-l0
I I
I
I I I
f - - f-- VaE
@VCE - 4.0 V
O. B

~ 1--.....

S

V

O.4
VCEI"tl@lc/l a- 10

~ +0. 5

w
~

>'

....

1.1

o
0.3

1.0

0.5

-0. 5

3.0

5.0

0.1

10

- 55DC to 25DC

1/

j..- ..... ~

J.u.~ !o'"
II

';.-2.0

~ -2.5 r-

2.0

-

~

Bva for VaE

a5 -1.5

~

0.2

0.3

0.5

1.0

2.0

- 55DC to 25DC

II
3.0

5.0

FIGURE 13 - EFFECTS OF BASE·EMITTER RESISTANCE

FIGURE 12 - COLLECTOR CUTOFF REGION
10.000

VCE -30V

VCP30V

ffi

'"'"
'"'"

10

IC. COLLECTOR CURRENT IAMPI

IC. COLLECTOR CURRENT IAMPI

1
....

5000

25 DCto 150DC

~-1. 0
~

.&.-0.2

2000

j..-V

25DCto 150DC

U

V

>

0.1

1000

'APPLIES FOR Icila< hFE/4

~+2. 0

~ 1.2

o

500

FIGURE 11 - TEMPERATURE COEFFICIENTS

~
'"
;

200

+2 .5

.6

w

100

la. aASE CURRENT (mAl

FIGURE 10 - "ON" VOLTAGES
.0

r-

\

S

0.2

TJ - 25DC

B.OA

~o

k r"t--.

10
0.1

4.0A

w 1.6

,

f - - f---55 DC

II II

II
IC -1.0 A

~

VCE-4.0V

10

0

2.0

o

=

1000
IC

10 x ICES

100

r- TJ -1500C

::>

10

~

I-- r 100DC
1.0

IC -ICES

IC -ICES

o

'"~

O. Ii--

REVERSE_

I-- r-+-25DC

~FORWARD

""""

=

(TYPICAL ICES VALUES
=lOBTAINED FROM FIGURE 121

0.0 1

+11.2

103

+11.1

-0.1

-0.2

-0.3

-0.4

-0.5

20

40

60

80

100

120

TJ.JUNCTION TEMPERATURE (Oci

VaE. aASE·EMITTER VOLTAGE (VOLTSI

MJ3000, MJ3001 (SILICON)
For Specifications, See MJ2500 Data.

414

140

160

MJ3026 (SILICON)
MJ3027

2 AMPERES
POWER TRANSISTORS

VERTICAL OUTPUT
HIGH-VOLTAGE NPN SILICON TRANSISTORS

NPN SILICON
500,700 VOLTS
80 WATTS

... designed for use in class A vertical deflection in television receivers,
where linear hFE is desired to 250 rnA. Intended for use with high
supply voltage (80-120 Vdc); ideal for line operated receivers.

MAXIMUM RATINGS
Rating

Symbol

MJ3026 MJ3027

Unit

Collector-Emitter Voltage

VeEO

275

300

Vdc

Collector-Emitter Voltage

VeER

500

700

Vdc

Emitter-Base Voltage

VE8

5.0

Vdc

Ie

2.0

Adc

Collector Current - Continuous
Base Current

18

1.0

Adc

Total Device Dissipation@Te= 250 e

Po

80

Watts

0.64

wloe

TJ,Tstg

-55 to +150

°e

Derate above 25°C
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Cass

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)

I

Ch.._I....

I

Symbol

I

Min

I

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
UC·O.1Adc,IS",OI
MJ3026
MJ3027

Vd,

VCEO(sus)

275
300

Collector Cutoff Current
(Vee· SOD Vdc,RSE = 1.5 k Ohms) MJ3026
(VeE = 700 Vdc, RBe" 1.6 k Ohms) MJ3027

ICER

Emitter-aase Leakage Current
(VEB - 5.0 Vdc. Ie = 01

lEBO

~Ade

200
200

500

Gain Linearity

A
~Ade

•
D

hFE1

25

hFE2

25

E
F
B

tic ""250 mAde. VeE = 5.0 Vde)

DC Curnnt Galn(1)
Uc-200mAde, VCE "'5.0Vdel

DIM

C

ON CHARACTERISTICS

DC Current Gain! 1)

STYLE 1:
PIN 1. BASE
2. EM lITER
NOTE:
CASE: COLLECTOR
1. OIM "Q"IS OIA.

hFE1/hFE2

H
J
K
II

0.95

R

(1)Pulle Tnt: Pul .. WIdth ~'500 ~s, Duty CYl::le ~2.0".

MILLIMETERS
MIN MAX

-

39.37
22.23
11.43
1.09
3.43
29.90 30.40
10.87 11.18
5.72
521
16.64 17.15
11.18 12.19
3.84 4.09
26.67
6.35
0.97

INCHES
MIN MAX

0.250
0.038

-

1.177
0.420
02115
0.656
O.
0.151

CASE "·03

415

1.550
0.875
0.450
0.043
0.135
1.197
0.440
0.225
0.675
O.
.161
1.

MJ3026, MJ3027 (continued)

FIGURE 2 - DC CURRENT GAIN

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
80

~

"- ~

60

~
z

200

70

t"-.

0

;::

£
ill

40

is

'"~

~

~ 50

'1'..
"-

20

~
20

40

TJ'liooc

100

60

80

'"w
!i<
'"

a'"

0...,0

u

"

100

o

I':

120

~

'~
140

-

25 0 C

I'i
VCE = 5.0 Volts

0

7.0
5. 0

S
\

\

2. 0
160

0.02

0.05

0.1

0.2

0.5

1.0

2.0

IC. COLLECTOR CURRENT IAMPI

TC. CASE TEMPERATURE lOCI

FIGURE 3 - ACTIVE-REGION DC SAFE OPERATING AREA
0

..

1.0ms

5.0

I'(

~ 2.0

....
~

a

1.
O. 5

g

O.2

_

O. 1

'"

Setondary Breakdown Limited
_ .. - Bonding Wire limit
., .. _ .. Thermal limit at Te '" 25°C
Curves Apply 8olow Rated VCEO

o

g 0.05

"-

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·
sistor that must be observed for reliable operation; i.e., the transistor

.A

MJ3026
20

30

50

The data of Figure 3 is based on T Jlpkl = 150°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) " 150°C. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. ISee AN-4151

17'""
de
MJ3027

10

must not be subjected to greater dissipation than the curves indicate.

"\.

5.0 ms

0.02
0.0 1
5.0

50",

"\.

' I...

TJ =1500 C

0

O.5ms

100

:::.x,..

-r

200

300

500

VCE. CO LLECTO R·EMITTER VOLTAGE IVOLTSI

416

MJ3028 (SILICON)

3.5 AMPERES
POWER TRANSISTOR

VERTICAL OUTPUT
HIGH-VOLTAGE NPN SILICON TRANSISTOR

NPN SILICON
700 VOLTS
100 WATTS

. . . designed for use in class A vertical deflection circuits where
linear hFE is desired to 400 rnA. Primarily intended for 1100 color

television receivers.

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

300

Vdc

Collector-Emitter Voltage

VCER

700

Vdc

VEB

5.0

Vdc

IC

3.5

Adc

Rating

Emitt~r-Base

Voltage

Collector Current - Continuous
Base Current

IB

1.0

Adc

Total Device Dissipation@Tc=2SoC

PD

100

Watts

O.B

WloC

TJ.Tstg

-55 to +150

DC

Derate above 25°C
Operating and Storage 'Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC

=250 C unless otherwise noted)

Symbol

Min

Ma.

Unit

Collector-Eminer Breakdown Voltage
(Ie'" 0.1 Adc.ls = 01

VCEO(susl

300

-

Vde

Collector Cutoff Current
(VeE = 700 Vdc, RBe '" 1.5 k Ohms)

leeR

-

200

JlAdc

Emitter-Base Leakage Current
(VEB .. 5.0 Vdc, Ie .. 01

leso

500

.ADe

Characteristic

OFf CHARACTERISTICS

STYLE 1:
PIN I. BASE
2.EMITIER
CASE: COLLECTOR

DIM

ON CHARACTERISTICS
DC Current Gain·
lie = 0.3 Adc, VCE '" 5.0 Vdc)

hFE1*

25

DC Current Gain
tiC - 0.4 Adc. VCE

hFE2

30

Gain Linearity

=

A

MILLIMETERS
MIN MAX

-

B

C
0

5.0 Vdc)

6.35
0.99

E
29.90
G 10.67
H 5.33
J 16.64
K 11.18
a 3.64
R
F

0.95

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

NOTE:
I. aiM "a" IS DlA.
INCHES
MAX
MIN

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

CASE 11

417

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.490
0.161
1.050

MJ3028 (continued)

FIGURE 2 - DC CURRENT GAIN

FIGURE 1-POWER-TEMPERATURE DERATING
100

100

"- r"-........

" ""-

0

0

z
<1

40

1Q10OC

60

-

f-

I"

100

80

70
0

to

0

10

L

100

TC, CASE TEMPERATURE laC)

iji
~

0

'"

10

i3
<.>

"
110

~

"

~

140

"~
i\.

VCE =5.0 Volts

7. 0
5,0

1,0

160

TJ =15 0 C

0.40.5

0.1

0.1

0.5 0.7

1.0

1.0

3.0 4.0

IC, COI.LECTOR CURRENT lAMP)

FIGURE 3 - ACTIVE REGION SAFE OPERATING AREA
7,0
50


10

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.

1.0
de

0.5

<.>
~

'"

~8

0.1
O. 1

Secondary Breakdown Limited

t-- - -

-

Bonding Wire Limited

- - - - - - Thermal Limitation at Te = 250C
Curves Apply Below Rated VCEO

005

0.01I-++I-t+---+-+-+-++H+t---t-+-+-l

o0 ~': -.O.L-I-~1Q:----:'}0:---'--'-::'::50..J1..JILlwl~1!0::----:!10:::"0---I---l5:::!00

Safe operating area curves indicate Ie - VeE limits of the transistor. that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 3 is based on T J(pk) = 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) '" IS0o C. At high case
temperatures, thermal I imitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. ISee AN-415)

VCE, COLLECTOR·EMITTERVOL TAGE (VOLTS)

418

MJ3029 (SILICON)
MJ3030
NPN SILICON HIGH-VOLTAGE TRANSISTORS
5 AMPERE
POWER TRANSISTORS
NPN SILICON

. designed for TV horizontal and vertical deflection amplifier
circuits.
•

High Collector-Emitter Sustaining Voltage VCEO(sus) = 250 Vdc (Min) MJ3029
325 Vdc (Min) MJ3030

•

Fast Fall Time in Horizontal Deflection tf= 1.0j.ls(Max)@Vcc=80Vdc - MJ3030

•

Excellent Gain Linearity for Vertical Deflection hfe@0.4Adc. hfe@0.3Adc= 0.95 (Min) - MJ3029

250-325 VOLTS
125 WATTS

MAXIMUM RATINGS
Symbol

MJ3029

MJ3030

Unit

Collector-Emitter Voltage

VCEO

250

325

Vdc

Collector-Emitter Voltage

VCER

500

-

Vdc

Collector-Emitter Voltage

VCEX

700

Vdc

Rating

VEe

5.0

Vdc

IC

5.0

Adc

Base Current

Ie

1.0

Adc

Total Device Dissipation @TC= 25°C

Po

125
1.0

Watts
W/oC

TJ.Tstg

. -65 to +150

°c

Emitter-Base Voltage

Continuous

Collector Current

Derate above 25°C
Operating and Storage Junction
Temperatura Range

ir~

~,
i

E SEATING
PLANE

I---FI---J-

,
,

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Symbol
8JC

,
,

Max
1.0

,,

i!I~

"
~

75

C

50

0

1li
~

r\.

"-r\.

100

r\.

"II\..

w

J?

25

a

a

25

50

A
B
C
D
E
F
G
H
J
K

r\.

75

100

"I'\.
125

"

150

175

419

200

R

NOTE:
1. DIM "11" IS DIA.

MILLIMETERS
MAX
MIN

-6.35
0.99

-

29.90
10.67
5.33
16.64
11.1B
Q
3.84

TC. CASE TEMPERATURE I"C)

~
~

~-1

DIM

;;:

a:

Vi
I!
"""
~
r
t ~ ../
br
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
125

Unit

°C/W

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

INCHES
MAX
MIN

-

0.250
0.039
1.177
'0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3029, MJ3030 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)

I

Chancterlstlc

Min

Symbol

Mox

Unit

OFF CHARACTERISTICS
Coliector·Emltter Sustaining Voltage(1)
UC=O.1Adc,IS"'OI

Vd,

VCEO(sus)

250
325

MJ3029
MJ3030

Collector Cutoff Current

mAde

leEA

(V CE = 500 Vdc, RBE '" 1.5 k Ohms)

1.0

MJ3029

Collector Cutoff Current

mAd,

IpEX

2.0

MJ3030

(VeE = 700 Vdc. VEBloffl = 1.5 Vdc)

ON CHARACTERISTICS
DC Current Gain
lie'" 0.3 Adc. VeE = 5.0 Vdc)(1)

MJ3029

hFE1

25

lie'" 0.4 Adc. VeE = 5.0 Vdc)(11

MJ3029

hFE2

30

hFE 2

0.95

Gain Linearity
MJ3029

Collector-Emitter Saturation Voltage
lie = 3.0 Adc, IS ... 0.8 Adc)

hFE 1

Vd,

VCE(satl

2.0

MJ3030

SWITCHING CHARACTERISTICS

fall Time
(VCC=80Vdc,IC=3.0Adc,IS1 = O.BAde) Figure 3

MJ3030

(l}PulseTast; Pulse Width ~300~$. Dutv CyclaS2 0%.

FIGURE 2 - DC CURRENT GAIN
100
70
50

z

30

'">-

20

a

10

;;:

~a:

FIGURE 3 - TEST FOR FALL TIME

VCE - 2.0 V

"-

TJ=100~"\ f'\. 251c

7.0
5.0

u

c

~

I'\.

3.0
2.0
1.0
0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0

7.0

*HP 212A: Set for 10 IlS wide pulses at 2000 pulses per S1!C.
(500 IJ.$ intervals). Adjust for IB1 =0.8 A.

10

~~aspur;:~~~~~r~~:o~~t~;~~p~~a:o~~~t~~Thr~t 1.

IC. COLLECTOR CURRENT (AMP)

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA

t-- 10~~~~~~~~~~~~~~~~~~~~~
-+--++-+-+++++

5.0

100

~3.0

"
"
2.0 I--T-J-'-15+0-.C-+--d"'c<++H++1-0-'m"'.'I.
s

S

affi~

0.5
1.0

a:

~

0.3

=

~~~~"EII·~"·~"~I!III

0.2 ~-----------+-Set-.n+d-81-yf-Br0.1 _
_ Bondmg Wire limited

..j-k--jdow+n+L-+im-+it"'.d\."--+-*-+-+++-++

for duty cycles to 10% provided TJ(pk) ~ 1500 C. At high ca.e
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second

8 5 ..,:.=..::..::: Thermal LimitaUon at TC .. 250C
~ ~:OO r-------rCuMsApply Below Rated VCEO
3
0.02
1
0.0
10

I II
20

30

50

70

100

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 4 i. based on T J(pk) = 1500 C; TC is variable
depending on conditions. Second breakdown pulse limits are valid

MJ3029 :...
MJ3030'ft+"I-"t.l-I-++4++1
200

325

breakdown.

500 700 1000

VCE. COLLECTOR·EMITIERVOLTAGE (VOLTS)

420

MJ3040 (SILICON)
thru

MJ3042
Advance Inforll1ation
DARLINGTON
7 AMPERE
POWER TRANSISTORS
NPN SILICON

HIGH VOLTAGE SILICON POWER
DARLINGTONS

300,350 VOL TS
100 WATTS

· .. developed for line operated amplifier, series pass and switching
regulator applications.

•

Collector-Emitter Sustaining VoltageVCEO(sus) = 300 Vdc (Min) - MJ3040, MJ3041
= 350 Vdc (Min) - MJ3042

•

High DC Current Gain hFE = 100 (Min) @ IC = 2.5 Adc - MJ3040
= 250 (Min) @ IC = 2.5 Adc - MJ3041, MJ3042

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 2.2 Vdc (Max) @ IC = 2.5 Adc

•

Monolithic Construction with Built-In
Base-Emitter Shunt Resistors

MAXIMUM RATINGS
Rating

MJ3042

Unit

VCB

400

400

500

Vdc

VCEO

300

300

350

Symbol

Collector-Base Voltage

Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Total Device Dissipation @ T C
Derate above 25°C

= 2SoC

Operating and Storage Junction

MJ3040 MJ3041

Vdc

VEB

-5.0-

IC

-1.0-

Adc

Po

-100-0.8-

Watts

TJ.Tstg

-

-65 to +150-

Vdc

lr~

rLE:B '
ES:?-t;:
PLANE

i

W/oC

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR

Thermal Resistance, Junction to Case

NOTE:
1. OIM "U"IS OIA.

DARLINGTON SCHEMATIC
COLLECTOR

r-------

I

DIM

--,

A
B
C 6.35
D 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R

I

I

I

I

BASE

MILLIMETERS
MIN MAX

I

I
I
I

I
---'
EMITTER

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

This is advance information on a new introduction and specifications are subject to change without notice.

421

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
-

I

0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3040, MJ3041, MJ3042 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted'!
Characteristic

Symbol

Min

Max

300
350

-

-

1.0
1.0
5.0
5.0

-

20

100
250
25
50

-

-

2.2

-

2.5

-

3.0

-

2.5

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 100 mAde, IS = 01

Collector Cutoff Current
(Vca = 400 Vde,
(Vca= 500Vde,
(Vca= 400 Vde,
(VCS=500Vde,

IE
IE
IE
IE

Vde

VCEO(susl
MJ3040, MJ3041
MJ3042

= 01
=01
= 0, TC = 100°C I
=0, TC= 100°C I

mAde

ICBO
MJ3040, MJ3041
MJ3042
MJ3040, MJ3041
MJ3042

-

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 01

mAde

IEaO

ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 Ade, VCE = 5.0 Vdel

-

hFE
MJ3040
MJ3041, MJ3042
MJ3040
MJ3041, MJ3042

(lc = 5.0 Ade, VCE = 5.0 Vdel
Collector-Emitter Saturation Voltage
(lc = 2.5 Ade, I B = 50 mAde I

Vde

VCE(satl

(IC = 5.0 Ade, la = 400 mAdel
Base-Emitter Saturation Voltage
(lC = 5.0 Ade, la = 400 mAdel

VSE(satl

Base-Emitter On Voltage
(lc = 2.5 Ade, VCE = 5.0 Vdel

VSElonl

Vde

Vde

FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA

FIGURE 2 - DC CURRENT GAIN
400

10

30o -VcIE = J:o V
TJ 25·C

5.0

i

ffi
...

'"~

'"o

~o

-

TJ = 150·C

2.0

T

1.0

=

.....

V

0

- -....,

I"'

V

O.5

1\

0
~~·-aONDING

WIRE LIMITED
o.2 ~~- --THERMALLY L1MITED@TC·2S.C
--SECOND BREAKDOWN LIMITED
o. 1

"' ""-

0
0

~ 0.05

0.0 1
5.0

0

MJ304!~
Ft-rIj3040, MJ3041-

0.02
7.0

10

20

30

50

70

100

200

300

20.
0.1

500

VCE, COLLECTOR·EMITIERVOLTAGE IVOLTSI

f
0.1

0.3

0.5

0.7

1.0

2.0

Ic, COLLECTOR CURRENT IAMPI

There are two limitations on the power handling ability of a
transistor - average junction temperature and second breakdown.

Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate.
The data of Figure 1 is based on TJlpkl = 1500C; TC is variable

depending on conditions. At high case temperatures, thermal Iimi~
tations will reduce the power that can be handled to values less
than the limitations imposed bV second breakdown. ISee AN4151.

MJ31 01, (SILICON)
For Specifications, See MJ2249 Data.
422

3.0

5.0

7.0

10

MJ3201 (SILICON)
MJ3202

~~
~

ST~I~EtBASE

2. EMITTER

CASE 80
(TO-66)

CASE, COLLECTOR

High-voltage NPN silicon transistors designed for
use in line-operated equipment such as audio output
amplifiers; low-current, high-voltage converters; and
ac line relays.

MAXIMUM RATINGS

Rating

Symbol

Collector-Emitter Voltage

MJ3201 MJ3202

VCEO
VCB

Collector-Base Voltage
Emitter-Base Voltage

Unit

225

300

Vdc

225

300

Vdc

VEB

3.0

Vdc

Collector Current-Continuous

Ie

100

mAdc

Total Device Dissipation @ T C = 25 0 C
Derate above 25 0 C

PD

15
0.1

Watts
W/oC

T J , Tstg

-65 to + 175

°c

Symbol

Max

Unit

8JC

10

°C/W

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC =256 C unless otherwise noted)

Characteristic

Min

Max

225
300

--

IeBO

--

0.1
0.1

lEBO

-

0.1

30

200

-

5.0

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(IC = 1.0 mAdc, IB = 0)

BVCEO
MJ3201
MJ3202

Collector Cutoff Current
(VCB = 225 Vdc, IE = 0)
(VCB = 300 Vdc, IE = 0)

MJ3201
MJ3202

Emitter Cutoff Current
(VBE = 3.0 Vdc, IC = 0)

Vdc

mAdc

mAdc

ON CHARACTERISTICS
DC Current Gain (11
(IC = 50 mAde, VCE = 10 Vdc)

hFE

Collector-Emitter Saturation Voltage III
(Ie = 50 mAdc, IB = 5.0 mAdc)

VCE(sat)

Base-Emitter On Voltage (11
(Ie = 50 mAdc, VCE = 10 Vdc)

VBE(on)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(Ic = 50 mAde, VCE = 10 Vdc, f = 10 MHz)
(1)

Pulse Test: PW S 300 ILS, Duty Cycle S 2%

423

Vdc
Vdc

1.0

MJ3201, MJ3202

(continued)

FIGURE 1- DC CURRENT GAIN
200
TJ ~ 125'C

-

100
~

70

§

50

~
i

30

-

75'C

,VeE~

-

- -'"

10V

'"

25'C

~

25'C

f'.

"\'r..

~
,-,"",

.'

20

~

.....

\:'

\'

10
2.0

1.0

3.0

5.0

10

7.0

30

20

70

50

100

200

Ie, COLLECTOR CURRENT ImAl

FIGU!lE 3- TRANSCONDUCTANCE .

FIGURE 2- COLLECTOR OUTPUT CHARACTERISTICS
100

t---

t~25lc
".-

...-

l.-0 V ,..-

v-::

..--

~ ,.... V
~ ~ .- f-- f---h ~ ,/'

~ b----:"
~ 1-1.21...- ~

-

1.0
0.8
10.6 -

~ V-

o

-

~

I
1.~0.2mA

'/..

-

I

o

12

16

,I,

VeE~IOV

V

,/'

TJI~ 125~C/ V

V

/

V /

/

wc
70

~

50

f!!

30

.Y

20

8

r-

.. I

100

~

e

I--

I 0.4

12 ~
20

200

1.6

/

2S'C

/

/
/

10
0,4

20

25'C

I

J

/

1
I

I

I

/

0.6

I

/

10

0.8

V", BASE·EMITTER VOlTAGE (VOLTS)

VeE, COLLECTOR,EMITTER VOLTAGE IVOLTS)

FIGURE 4- TYPICAL AUDIO AMPLIFIER

FIGURE 5- AMPLIFIER DISTORTION
10

/

1p.F

o----il---+--+-l

1

/
/

/
./

1.0
R;, '" 6.5kOhms
ViII = 130mV
POWER GAIN tOf
CIRCUIT", 56 dB

.

./

0.8
0,01

0.02

0.05

0.1

0.2

PL, LOAD POWER (WATTS)

424

0,5

1.0

1.5

MJ 3260

(SILICON)

HORIZONTAL DEFLECTION SILICON
TRANSISTOR

6 AMPERE

· .. designed for use in large screen, 21", 23" and 25" color television
receivers, using 90 0 deflection circuits.

POWER TRANSISTOR
NPN SILICON

• Collector-Emitter Voltage VCER = 700 Vdc

700 VOLTS
80 WATTS

•

Collector Current IC = 6.0 Adc

•

Fall Time @ IC = 5.5 Adc tf = O.4)ls ITypl
= 1.0)ls IMaxl

•

Circuit Information Included - Complete Technical Dissertation
on Requirements for Optimum Circuit Performance

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

250

Vd,

Collector-Emitter Voltage
(RBE : 100 nI

VeER

700

Vd,

Collector-Base Voltage

VCB

700

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

6.0

Adc

'B

25

Adc

PD

80
064

WIDe

Rating

Collector Current

Continuous

Base Current
Total Device Dissipation @ TC

2SoC

Derate above 25°C
Operating and Storage Junction Temperature
Range

TJ,Tstg

Watts

e

65 to +150

THERMAL CHARACTERISTICS
Otaracteristic
Thermal ReSistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC

=

2SoC unless otherwise noted!

Otaracteristlc

Symbol

I

Min

TVp

Max

Unit

I

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

VCEOfsus)

Vd,

250

(Ie = 100 mAde, IS"" 0)

Collector Cutoff Current
(VCE : 700 Vdc, VBE : 0)

ICES

Emitter Cutoff Current
(V BE : 5.0 Vdc, IC: 01

lEBO

1.0

mAde

Collector-Emitter Saturation Voltage
lie: 5.5 Adc, 'B: 1.25 Adc)

VCE(satl

6.0

Vdc

Base-Emitter Saturation Voltage
(lc"" 5.5 Adc, IB "" 1.25 Adcl

VBE(satl

1.8

Vdc

mAde

1.0

ON CHARACTERISTICS

DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product (21
(lc = 0.2 Adc, VeE"" 6.0 Vdc, ftest " 1.0 MHz)
Output Capacitance
(VCB;:: 10 Vdc, 'E =0, f = 0.1 MHzl

75
Cob

STYLE 1:
PIN 1. BASE
NOTE:
2. EMITTER
1. DIM "11" IS OIA.
CASE: COLLECTOR

DIM
A
B
C
D
E

SWITCHING CHARACTERISTICS (Figure 1 and textl
Fall Tune
IIC = 5.5 Adc, 'Bl : 1.25 Adc, LB: 2.0pH)
Ra - 1.6 Ohms)

pF

6.35
0.99

29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R

F
180

MI LLlMETERS
MIN MAX
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

(1) Pulse Test: Pulse Width 300"'5. Duty Cycle ~2.0%.,

(2) fT '" Ihf.l- f t85t

425

INCHES
MAX
MIN

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3260 (continued)

CIRCUIT OPTIMIZATION
can be caused by a variety of problems. but it is the dissipation itself
that is of fundamental importance. Once the transistor operating
point has been established, fixed circuit values may be selected

Test/application circuit and operating waveforms for MJ3260
are shown in Figure 1. It may be used to evaluate devices in the

conventional manner, i.e., to measure fall time, storage time, and
saturation voltage. However, the circuit was designed with operating

for the test fixture.

Factory testing may then be made with one

meter reading, without adjustment of the test apparatus.

efficiency in mind, so that it could be used to evaluate devices
by one simple criterion, supply power input. Excessive power input

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS
+80 V

250
1.5 k

15W

25~F

V" >--~+~I--1~-l

40
"F
250

51

Vdc
r----...,PIN

DESCRIPTION OF SPECIAL COMPONENTS
DUMMY YOKE INDUCTOR (Ly)

V"

-50 V

Ie

to

f-28",- '---35",-

V--

,

0.69 mH, 36 turns, #16 AWG enamel Wire, 12 turns per layer, 3
layers, 1 mil mylar Insulation between layers on 1.3 inch plastic
bobbin, enclosed in Ferroxcube cup core No. 4229P387, core
spacing of 0.006 inch.

IBI

I

1,-

to I~

DUMMY HIGH VOLTAGE AND HORIZONTAL SCAN
TRANSFORMER (LF)
0.98 mH, 31 turns, #12 AWG enamel wire, 16 turns per layer, 1.9
layers, 1 mil mylar insulation between layers on 2.0 inch plastic
bobbin, enclosed In a Ferroxcube cup core K5350-11-3E, core spacing of 0.011 inch.

-

-90%

IC

VCE

VeE

to

-1

-If

(,

VCEM

DRIVER TRANSFORMER IT1)
Motorola part number 25D68782A05-1/4" lammate "E" Ifon
core. Primary Inductance - 39 mH, Secondary Inductance 0.22 mH, Leakage Inductance with pnmary shorted - 2.0 ,uH. Primary 260 turns, #28 AWG enamel Wire, Secondary 17 turns,

IL
I,

#22·AWG enametwire.

~

BASIC CONSIDERATIONS
The pnmary conSideratIOn when choosing a deflection transistor
for a conventional (parallel connected) cirCUit, as shown In Figure
1, IS one of voltage capability. The flyback voltage to which the
device will be subjected IS a relatively predictable value with
respect to the main power supply voltage. This voltage pulse, (VCEM),
shown in Figure 1, will usually be about 8 times the value of V+,
but may be vaned somewhat by adjusting retrace time and flyback
tuning and can reduce the voltage pulse by 15 to 30% depending
on the circuit values chosen.

to
FUNDAMENTAL WAVEFORMS OF A SIMPLIFIED
HORIZONTAL DEFLECTION CIRCUIT

426

MJ3260 (continued)

COLLECTOR CIRCUIT VALUES
The power supply used in the circuit of Figure 1, was chosen

to produce a 600 volt collector pLAse on the transistor, recommended

PERFORMANCE
Shown in Figures 4 and 5 are the results which will be typically
obtained with the test circuit at various operating conditions.

for regulated applications. The values of yoke (Lyl, flyback prImary (LFI. retrace capacitor (CR). and "S" shaping capacitor (CS)

FIGURE 3 - INTERRELATION OF RB.LB. ANO IB1

shown, will result in a peak collector current of about 5.5 A. This
is sufficient to deflect (and provide high voltage fod large screen
color television receivers using 900 deflection or small and mediumscreen color television receivers using 1100 deflection. Peak collector currents to 6.0 A may be handled by the MJ3260. Holding the
supply constant for most efficient application, adjustment of amount of deflection may be made by raising or lowering Ly and
LF. Remember that Ly Iy is constant for the fixed voltage situa.tion, and actual deflection is proportional to Iy
Values of
Cs and CR must be varied inversely with Ly to maintain retrace
and "5" shaping periods.

20

A1

f--LB

.fLY.

i\ /"

14

0

::
ffi

"

~~

--..;;~

;::

12

--

C

'"~
~

-

=

..,~

I .0

0.5

F::::::::: ==-5.5

5.0

4.5

4.0

3.5

3.0

2.5

6.5

6.0

ICM. COLLECTOR CURRENT (AMP)

5.9-

FIGURE 4 - INTERRELATION OF .,. FALL TIME
AND ts. STORAGE TIME

2.0
4.0

10

~
3.0

~-

B.O
0.5

1.0

1.5

2.0

2.5

lB. BASE CURRENT (AMP)
BASE CIRCUIT VALUES
The driver power supply and driver transistor type can be selec·
ted according to convenience. A TO·5 or Uniwatt type will
generally be needed. (The Darlington arrangement of the driver
transistors used in Figure 1, produces a wide range of ISl current
values). Once the driver circuitry is chosen, the turns ratio of the
driver transformer can be picked to produce about 4 to 5 volts
peak to peak at the base of the output device. Tight coupling
between windings is recommended on early designs to allow opti·
mizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The RB and
its bypass electrolytic, often called the "speed up" circuit, allows
adjustment of IS1 (or IS "end of scan" or IB end) while still
providing a low ac impedance for good turn·off of the output
device. In Figure 2, the effects of varying LB and ISl on the total
power input to the deflection circuit are shown. Note that an
optimum lS can be found which will produce low dissipation over
a wide range of IS1. This is desirable in order to produce efficient
operation over a wide range of circuit component tolerances. likewise, best La also gives the least sensitivity to output transistor
hFE·
The best value of LS found In Figure 2 is 2.0 }.tH, which is the
leakage Inductance value of the driver transformer, and no external
L is necessary. A lower LS would have reduced the power dissipatlan, over a narrow range of IS 1. However, a leakage inductance
of 2.0 pH is a minimum practical value. The best value of ISl is
2.0 A achieved In the typical device by using RS = 1.6 n. derived
experimentally.
These are the choices recommended for the test fixture, when
the transistor is used at leM = 5.5 A. For other values of leM
the drive circuit components must be changed. Figure 3 shows
the values of LB and IS1 which should be used. The value of RB
which will be required to produce the corresponding ISl is also
given, but of course, it is not an independent variable.

]
w

'"
;::

2. 0

--

"

1.0
'f

o
2.5

I
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ICM. COLLECTOR CURRENT (AMP)

FIGURE 5 - PIN. POWER DISSIPATION WITH DEVIATIONS
OFVCEM AND ICM
0

~
...

VCEM =

5

~

...~

..

.....- /

-- f---

tr

~

0

:::>

:!:
Z
a: 5. 0

o

2.5

....-

;--

3.0

- ---

V

r- /
~
V

./"'"

700V
600 V

,/
~

500 V

V

--- ------

3.5

4.0

4.5

5.0

5.5

IC. COLLECTOR CURRENT (AMP)

427

~
~

o

o
LB = 14~H
12
_7.6

~

m

~B
.........

16

~
z:

I .5

/

~

FIGURE 2 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IB1. IC = 5.5 A PEAK

~
...«

2.0

/"

6.0

6.5

~
.3!

MJ3260 (continued)

TYPICAL TRANSISTOR CHARACTERISTICS
FIGURE 1 - DC CURRENT GAIN

50

z
<1

-

.J='I~OC ,
V

'"
iii 20

..........

~

VzSOC

I-

1.6

i\

..,'"..,'"
::>

~

~ 1.2

~

w

~

\~

c

~

10

C

>
>'

0.1

0.4

0.2

0.6

4.0

2.0

1.0

Iclla~ ~

o.8

VaE(sat)

6.0

0.06

0.2

0.1

0.4

1/

/
s.y ....... v-

~lc/IB=2.0

VC~(sati

o

~f1

leila ~s.n
Iclla=

o. 4

,

7.0
5.0
0.06

~\" 2Sj C

VCE = 5. V

~

.....

30

FIGURE 2 - "ON" VOL TAGE

2.0

I
0.6

1.0

2.0

4.0

6.0

IC. COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 3 - SAFE OPERATING AREA

10
100",

S.O
3.0
~ 2.0

.....

iL
~
w

1.0

..,::>'"

O.S

'"

I"

dcl'\

iJillS00C

"\.

'~"'~

5.0ms

"

'"c

0.2 r-- _---BONDING WIRE LIMITED
- - - -THERMALLY L1MITEO@TC=2So C
~j 0.1
(SINGLE PULSE)
SECONO BREAKDOWN LIMITED
8 0.05

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC·VCE limits of the transistor
that must be observed for reliable operation; Le., the transistor
must not be subjected to greater dissipation than the curves indi-

l.olm~ =

cate.
The dat~ of Figure 3 is based on T J(pk) = 1500 C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pk) ,.;;; 1500 C. At high case
temperatures, thermal limitation,s will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. (See AN,415).

I\."\.

E=::.
F'=

!J
0.02
0.0 1
3.0

IIIII
S.O 7.0

10

I
20

30

SO

)
70

100

200

300

VCE!.~OLLECTOR.EMITTER VOLTAGE (VOLTS)

FIGURE 4 - TEMPERATURE COEFFICIENTS

+3.0

J

'APPLIES FOR 'elia ";hFE/2

G

3.s +2.0

I

TJ =+2s bc to +IS00 C

~

iii

I Y1

c::;

~ +1.0

..,c

,.....1/ t.....r"
~SoC to +2S?C

'BVC forVCE( ..

w

'"

::>

I

!;(

'"

~ -1.0

~ltOYST

l-

i

Bva for VaE
-2.0
0.06

./

1250C 10 +'fo~ V'''''

~

0.1

0.2

0.4

0.6

1.0

.~

Ie, COLLECTOR CURRENT ,(AMP)

428

2.0

4.0

6.0

MJ3430 (SILICON)

HIGH VOLTAGE NPN SILICON TRANSISTOR
.. designed for use in high·voltage inverters, converters, switching
regulators and line operated amplifiers.

5.0 AMPERE
POWER TRANSISTOR
NPN SILICON

= 400 Vdc

•

High Coliector·Emitter Voltage - VCEX

•

Excellent DC Current Gain hFE = 10 (Min) @ IC = 3.5 Adc

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.9 Vdc (Max) @ IC = 2.5 Adc

JOOVOLTS

125 WATTS

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

300

Vdc

Collector-Base Voltage

VCB

400

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

5.0

Adc

Base Current

IB

2.0

Adc

Total Device Dissipation@Tc = 25°C
Derate above 25°C

Po

125
1.0

Watts

Operating Junction Temperature Range

TJ

-65to+150

°c

T stg

-65 to +200

°c

Rating
Collector-Emitter Voltage

Storage Temperature Range

W/oC

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS ITC
Characteristic

0

25°C unless otherwISe noted!

Svmbol

Min

Ma.

Unit

VCEOlsus!

300

-

Vde

-

2.5

mAde

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage

(lc

= 100 mAde, IB =0)

Collector Cutoff Current
IVCE = 300 Vdc, IB =0)

ICEO

Collector Cutoff Current
IVCE = 400 Vdc,

ICEX

= 1.5 Vdc)
=400 Vdc,
VEBlol!) = 1.5 Vde, TC = 125°C!
VEBloff)

mAde

-

1.0

-

5.0

STYLE 1:
PIN 1. BASE
2. EMITIER
NOTE:
CASE: COLLECTOR
1. DIM "U" IS DlA.

IVCE

Emitter Cutoff Current
IVBE = 5.0 Vde. IC =01

lEBO

2.0

mAde

OIM

ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 Adc, VCE

(lc

= 5.0 Vdcl
= 3.5 Ade, VCE = 5.0 Vdcl

Collector-Emitter Saturation Voltage

IIc

= 2.5 Adc, IB = 0.5 Adcl

Base~Emitter

IIc

Saturation Voltage

= 2.5 Adc, IB = 0.5 Adcl

-

hFE
15

45

10

-

VCEIs.tl

-

0.9

Vdc

VBElsati

-

1.5

Vdc

OYNAMIC CHARACTERISTICS

-

6.35
0 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R
C

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

Current-Gain-Bandwidth Product

(lC

A
B

MILLIMETERS
MIN MAX

=0.2 Adc, VCE = 10 Vdcl

429

INCHES
MAX
MIN

-

0.250
0.039
1.177
0.420
0.210
0.655
0.4411
0.151

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3430 (continued)

FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA

0

..

6.0

~

5

2.0

~
a:

1.0

1'l

O.5

~

o.2
o. I

E

0.0 5

a:
o

8

TJ -150°C

.5ms=~

I"..

~5.0ms \..

I

---------

Secondary Breakdown Limi~t-;I
Thermal Limit@Tc=250C de
Bonding Wire Limit
Curves Apply Below Rated VCEO

0.0 2
0.0 1
5.0

"'

1.0m "'

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor

that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figur. 1 is based on TJ(pk) = 1500 C; TC is

"" "- ""

variable depending on conditions. Second breakdown pulse limits

are valid for duty cycles to 10% provided TJ(pk) lsoOC. At high
case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by second
breakdown. (See AN-415)

10

20

30

50

100

200

300

500

VCE.COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - DC CURRENT GAIN

300

2.0

II"

200

iJ

I I " 5.0 Vdc
VCE"

J

TJ- 150 C

0

25°C

0
0

~

I-

-

~
I-

-55°C

1I11
1I11

1.6

10 0
0

~ J~oc

I-

VCE(sa')@ ICIIS - 10 "

~

1. 2

"'
o~

0.8

......

to

\
~ ~I\

>

J

V

VSE(sa,)@ICIIS-l0

II

0.4

V vF\

0.1

0.2

0.3

0.5

1.0

2.0

3.0

VCE(sa')@ ICIIS - 5.0

o

3.0

5.0

0.2

0.05 0.07 0.1

IC. COLLECTOR CURRENT (AMP)

0.3

0.5 0.7

50mH

1 400

",~l

I-

~

~ 300

a:

8
E

tOO

2.0

Of-- VCEO(sus) IS ACCEPTASLEWHEN
VCE;;.300 VAT Ic-l00mA

"

0
100

200

300

..=..6.0V

\
\

'\
400

300
500

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

MJ3480

3.0

FIGURE 5-SUSTAINING VOLTAGE TEST CIRCUIT

FIGURE 4 -SUSTAINING VOL TAGE TEST LOAD LINE

20

1.0

IC. COLLECTOR CURRENT (AMP)

500

~

17

)

:>

5.0
0.05

I--"'

IL vl7

(SILICON)

For Specifications, See BUI08 Data.

430

1.0

5.0

MJ3583 thru MJ3585

(SILICON) For Specifications, See 2N3583 Data.

MJ3701 (SILICON)

For Specifications, See MJ2253 Data.

MJ3760 (SILICON)
MJ3761
HORIZONTAL DEFLECTION SILICON
TRANSISTORS

6.0/8.0 AMPERE

TRIPLE DIFFUSED
POWER TRANSISTORS
NPN SILICON

· .. designed for use in large screen color television receivers.
• Collector· Emitter Voltage VCER = 750 Vdc

750 VOLTS
80 WATTS

• Collector Current IC = 6.0/8.0 Adc
•

Fall Time @ IC = 8.0 Adc tf = 0.51ls (Typ). tf = 0.91ls (Max)

MAXIMUM RATINGS
Rating

Symbol

MJ3760j MJ3761

Unit

Collector·Emitter Voltage

VeEO

550

Vdc

Collector-Emitter Voltage
(RBE = 100 nI

VeER

750

Vdc

Collector·Base Voltage

VeB

750

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

Collector Current - Continuous

Ie

6.0
12.0

- Peak

Sase Current
Tota' Power Dissipation
"Derate above 25°C

@

TC == 25°C

Operating and Storage Junction
Temperature Range

I

8.0
16.0

Adc

IB

4.0

Adc

Po

80
0.638

Watts

-65 to +150

°e

TJ.T"g

w/oe

Lr=':j±t
r~K
ESEATIN(~

I

PLANE

THERMAL CHARACTERISTICS
Characteriltic
Therrpal Resistance, Junction to Case

FIGURE 1 - POWER DERATING
80

"-

70

~

""
!.

60

z 6D
;::
0

;t

~

.
~

:c

40

STYLE I,
PIN 1. BASE
2. EMITTER
CASE COLLECTOR

"'-

MILLIMETERS

"",

30
20

0

0-

"" "-

lD
20

40

60

80

100

TC. CASE TEMPERATURE (DC)

MAX

MIN

MAX

A

-

39.37
21.08
7.6
1.09
3.43
30.40
11.18
5.59
17.1
12.19
4.09
28.61

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
O. 5
D.4lID
0.161
1.050

0
E

6.35
0.99

-

F
9.90
G !l0.67

o

o

MIN

B
C

~

120

5.33
J 16.64
K 11.18
II 3.84
H

"

140

431

160

INCHES

DIM

R

-

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

CASE 11

-

MJ3760,MJ3761 (continued)

ELECTRICAL CHARACTERISTICS (T
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lr. = 10mAdc,IR = 0)

Collector Cutoff Current
(VCE

= 750 Vdc, VBE = 0)

Emitter Cutoff Current
(VBE = 7.0 Vdc, IC = 0)

VCEO(sus)

550

-

-

ICES

-

-

1.0

mAd~

lEBO

-

-

1.0

mAdc

-

-

5.0
5.0

-

-

Vdc

ON CHARACTERISTICS

Collector-Emitter Saturation Voltage
(lc
(lC

= 6.0 Adc,
= 8.0 Adc,

IB
IB

MJ3760
MJ3761

Base-Emitter Saturation Voltage
(lC
(lC

Vde

VCE(sat)

= 2.5 Adc)
= 3.0 Adc)

-

Vde

VBE(sat)

= 6.0 Adc, I B = 2.5 Adc)
= 8.0 Adc, I B = 3.0 Adc)

MJ3760
MJ3761

Second Breakdown Collector Current with Base Forward Biased
(t = 1.0., VCE = 100 Vdc)

ISlb

200

-

fT

-

Cob

1.5
1.5

-

mAde

7.5

-

MHz

-

150

-

pF

tf

-

0.33

0.7

1'5

tf

-

0.5

0.9

!,s

OYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product (1), (2)
(lC = 0.3 Adc, VCE = 5.0Vdc, f test = 1.0 MHz)

Output Capacitance
(Vce

= 10 Vdc,IE = 0, f = 0.1

MHz)

SWITCHING CHARACTER ISTICS
Fall Time: MJ3760
(lC = 5.5 Adc, I B1

= 1.5 Adc,

Fall Time: MJ3761
(lC = 8.0 Adc, IB1

= 2.0 Ade, LB = 20 !,H, See Figure 2)

LB

= 20 !'H, See Figure 2)

(1) Pulse Test: Pulse Width .. 300 !,S, Duty Cycle .. 2.0%.
(2) fT = Ihfel. f test
FIGURE 2 - TEST CIRCUIT
100

TUT

lOW

8 mH

+60 V

0.005 !,F
1.5 k
25 J,lF

MJE

3439

Von
51

300

51

RS

500 IlF
15 V

values

so

below

V

·Selected for 800 Volts

DRIVER TRANSFORMER (T1)

Cs

Ly

Motorola part number 25D68782A05·1/4" laminate "E" iron
core. Primary Inductance-39 mH, Secondary Inductance-O.22 mH,

IC
A

LF
mH

mH

Leakage inductance with primary shorted-2.0 llH. Primary 260

5.5

0.98

0.65

0.03

1.0

8.0

0.57

0.44

0.05

6.0

turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG

enamel wire.

!,F

TEST CIRCUIT OPTIMIZATION
The test circuit and operating waveforms for the
of problems, but it is the dissipation in the transistor that
MJ3760 and MJ3761 transistors are shown in Figures 2
is of fundamental importance. Once the required transistor
and 3. The test circuit may be used to evaluate devices in
operating current is determined, fixed circuit values may
the conventional manner, i.e., to measure fall time, storage
be selected from the table . .Factory testing is performed by
time, and saturation voltage. However, this circuit was
reading the current meter only, since the input power is
designed to evaluate devices by a simple criterion, input
proportional to current. No adjustment of the test ap·
power. Excessive power input can be caused by a variety
paratus is required.

432

MJ3760,MJ3761 (continued)

be 8 times the 8o-volt power supply voltage or approx·
imately 640 volts, but may be varied slightly by adiust·
ing retrace time and flyback tuning. For this reason, high
voltage devices are particularly useful in cost conscious
solid·state receivers as they permit the use of an off-the'
line half wave power supply.
The power supply used in the circuit of Figure 2,
was chosen to produce approximately a 650 V collector
pulse on the transistor, a conservative value, recommended
for unregulated applications.
The values of yoke inductance (LV), flyback primary
inductance (LF), retrace capacitor (CR) and "s" shaping
capacitor (CS) are shown for operating collector currents
of 5.5 A which is suitable for 90 0 color and 1100 large
screen black and white receivers, and 8.0 A for 1100
color receivers. Peak collector currents to lOA may be
handled by these transistors. The most efficient application results when the power supply voltage is held constant. Adjustments of the amount of deflection can then
be made by raising or lowering LV and LF. LVIV is constant for the fixed voltage situation, and actual deflection
is proportional to IV
Values of Cs and CR must
be varied inverselY with LV to maintain retrace and "s"
shaping periods.

BASIC CONSIDERATIONS
The primary consideration when choosing a deflection
transistor for a conventional (parallel connected) circuit,
as shown in Figure 2, is voltage capability. The flyback
voltage that the device will be subjected to is a relatively
predictable value with respect to the main power supply
voltage. This voltage pulse, shown in Figure 3, will usually

FIGURE 3 - TEST CIRCUIT WAVEFORMS

JIY.

TEST CIRCUIT VALUES
The driver power supply and driver transistor type
can be selected accord ing to convenience. A TO-5 or
plastic power type will generally be needed. For testing
convenience, the Darlington arrangement of the driver
transistor shown in Figure 2-was used to produce a wide
range of IBl current values. Once the driver circuitry IS
chosen, the turns ratio of the driver transformer can be
selected to produce 4 to 5 volts peak-to-peak at the base
of the output device. Tight coupling between windings is
recommended on early designs to allow optimizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The
RB and its bypass electrolytic, often called the "speed
up" circuit, allows adjustment of IB 1 (or IB "end of scan"
or IB end) while still providing a low AC impedance for
good turn·off of the output device.
In Figure 4, the effects of varying LB and IB 1 on
total power input to a deflection circuit requiring an IC
of 5.5 A are shown. Note that an optimum LB can be
found which will produce low dissipation over a wide
range of I B1. This is desirable in order to produce efficient operation over a wide range of circuit component
tolerances. Likewise, best LB also gives the least sensitivity to output transistor hFE.
The best value of LB found in Figure 4 is 2.0 J.lH. This
is the sum of the actual leakage inductance of the driver
transformer (secondary inductance with primary shorted)
and an external L if necessary. The value of IBl is approximately 2.5 A achieved in a typical device by using
RB = 0.7 n, which was derived experimentally. These
are the choices recommended for the test fixture when
the transistor is used at IC = 5.5 A.

Fundamental waveforms of a simplified horizontal
deflection Circuit.

FIGURE 4 - RELATIONSHIP OF POWER DISSIPATION
TO L8 WITH CHANGING 181, IC = 5.5 A
11.2

i

110
10.8

z

o
;:: 10.6

;t

~10.4
'"w

~ 10.2
6

lei. 5.~ A
TJ' 25'e

~

ti

I~ ~

Q..l0.0

9.8
0.5

LB-12
10
8.0
6.0
4.0
:'\. 2.0

:r

0.75

~t-..

"

1.0

1.25

1.5

1.75

2.0

2.25

2.5

IB1, BASE CURRENT (AMP)

433

MJ3760,MJ3761 (continued)

A lower value of LS would have reduced the power
dissipation by a small value. However, a leakage inductance of 2.0 IlH is a minimum practical value for
driver transformer manufacturers to meet as the secondary
winding leakage inductance.
For other values of Ie, the drive circuit components
must be changed. Figures 7 and 8 show the values of LS
and IS 1 which should be used. The value of R S, which
will be required to produce the corresponding IS1 value,
is also given; however, it is not an independent variable.
Figures 9 and 10 show the typical results that will be
obtained with the test circu it of Figure 2 at various
operating conditions.

With the increasing usage of the toroidal yoke and the
inherently lower inductance, a much higher collector
current will be demanded from the horizontal output
transistor. Figure 5 shows the relationship of power dis·
sipation to LS with changing I Sl when an Ie of 8.0 amps
is required.
The best value of LS, found in Figures 5 and 7, is
2.0 IlH. The best value of IS1, found in Figure S, is
2.5 amps. In Figure 5, the 2.5 amp base current falls in
the flatter region of the 2.0 IlH base inductance curve.
The optimum base resistance RS in Figure 6 is 0.7 ohms
to produce the I Sl value of 2.5 amps.

INTERRELATION OF SASE RESISTANCE,
SASE INDUCTANCE AND SASE CURRENT
FIGURE 5 - RELATIONSHIP OF POWER DISSIPATION TO
LB WITH CHANGING 'B1

FIGURE 6 - OPTIMUM BASE RESISTANCE
5.5

1

Ic= B.OA

f - - I--TJ = 25"C

I

O~"-.
9 ~"\." I'-..
1\'-" r-....

\~

""-.....

--

t-....

'\ ~

LB~

.....V
L---

~
~

"«

~

~

r-...."-. r-r---

16
1.0

~

z

TJ = 25"C

\

3.5

t;

iii

'"w

tt

\
\

2.5

'\
.--.......

1.5

I'....

.2.0.H

""""

1.5

i
"w
S

1\
4.5 \

2.0
181. BASE CURRENT (AMP)

2.5

0.5
5.0

3.0

6.0

I

2.6

I

TJ = 25"C

j

./'"

~ 2.2

2.2

9.0

S

~

~
B
1.8

"

>-

::> 2.0

"

:!:

/

!

w

~

V

~ 1.4

!11.8

...- f...- I--

//

w

1.6
5.0

B.O

FIGURE 8 - OPTIMUM BASE CURRENT

FIGURE 7 - OPTIMUM BASE INDUCTANCE
2.4

-

7.0

IC. COLLECTOR CURRENT (AMP)

/

TJ =25"C

/

1.0 V

6.0

7.0

8.0

9.0

5.0

6.0

7.0
IC. COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

434

8.0

9.0

MJ3760,MJ3761 (continued)

FIGURE 9 - INTERRELATION OF tt, FALL TIME
AND t .. STORAGE TIME

FIGURE 10 - EFFECT OF COLLECTOR CURRENT
ON INPUT POWER
20

0.6

0.5

....-::::
./

/

~

-- -----

~ 18

's

~

~ 16

~

~

;!;

C
0::

14

TEST CIRCUIT OF FIGURE 2 USING
OPTIMUj LB ANi'Bl. I
I
6.0

1.0
8.0
IC. COLLECTOR CURRENT lAMP)

--- -

12
5.0

0.2
5.0

9.0

FIGURE 11 - DC CURRENT GAIN
1.4

z

TJ=150oC

50

I

§'" 30

I---"
~

u
Q

t

a
1.

VCE 5.0 V
1.2

~
6.0

1.0
8.0
IC.COLLECTOR CURRENT lAMP)

9.0

L
TJ' 25°C

~ 1.0

25°C

0

B

/

i"..

:;:

0:

/

V

FIGURE 12 - "ON" VOL TAGES

100
10

V

0:

V/
0.3

/

/

>-

~

....... 1--'

~

rr

'"~

1\

~
~

~

-5JOC

r-- VBEI,,')@ IC/IB - 5.0

0.6

.0

V

'">

r-.~

~I---

,

.......:V

0.8

>- O. 4
VCEI,,!)@ IC/18 = ~~
O. 2

a

5.0 "
0.01 0.02

o
0.05 0.1
0.2
0.5
1.0
IC. COLLECTOR CURRENT lAMP)

2.0

5.0

0.01

10

~2.0

I
0.02

0.05 0.1
0.2
0.5
1.0
IC. COLLECTOR CURRENT lAMP)

2.0

5.0

10

FIGURE 13 - ACTIVE REGION SAFE OPERA TlNG AREA
10
5.0

~
~

MJ3161.
-MJ3160

2.0

r'
>-

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate Ie - VeE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 13 is based on Te = 850 e. The
thermal pulse limit shown is valid for a duty cycle of
5.0%. For other conditions, TJ(pk) must be calculated and
kept below 1500 e. T J(pk) may be calculated from the
data of Figure 14. At higher case temperatures, thermal
limitations will reduce the power that can be handled to
values less than the limitation imposed by second
breakdown.

100",
DUTY CYCLE ... 0.05
de

O
:::: 0.5
0:

~

0.2

= ==
~
=.

0.1
80.05
~
0.02

0.01
1.0

TC 85°C

BONOING WIRE LIMIT
- - - - THERMAL LIMIT
SECIlIlPJREAKIl'lWN LIMIT

2.0

5.0
10
20
50
100
200
VCE. COLLECTOR·EMITTER VOLTAGE IVOL TS)

500

435

MJ3760,MJ3761 (continued)'

FIGURE 14 - THERMAL RESPONSE
10
0,7
0.5

;;i

L
wC

0,3

\.

>-N

0,2

"-

",w
>-~

2<
w,"
,"'"
2C
-w

~~
........

u~

0,03

tt'"

..,

0.02

'"

0.D1

~m

IS

~ ~ ~ 0'0,5

0,1
0,07
0,05

",-

~

'-'<" "\.

pFflSl

0,2
01
0,05
0,02
0,01
SINGLE PULSE

0.02 0,03

005

O,Z

01

0,3

0,5

1':~t2 j

I
10

2.0

30

5,0

r:

I

~ TJ - 150'C

/

~

20

""~

10

<

1/

FORWARD

w

5,0

2.0

....

~
8

25'C

6

~

-0.2

0

+0.2

50

-

+0.6

+0.4

--

ZO

60
80
100
120
TJ. JUNCTION TEMPERATURE I'CI

40

TJ' 25'C

II

~

...... C,b

100
U 70

u

a
a
2a

0,5

......
1.0

2,0

2000

0.5

......

<

1000

0.2

Cib

~ 300

500

/

1.0

w

S 200

300

./

FIGURE 17 -CAPACITANCE

1000
70 0
~ 500

200

VCS'750V

VSE. BASE·EMITTER VOLTAGE IVOLTSI

2000

100

,/

g;

~

10.1
-0.4

111111

11111

30

FIGURE 16 - COLLECTOR·BASE LEAKAGE CURRENT

«.;; 200

F= != REVERSE

~

I-

TIME (ms)

r-- VCE' 250 V
/

ZO

10

FIGURE 15 - COLLECTOR CUT·OFF REGION

./

f=
r=

DUTY CYCLE, D' I1ltz

t,

100'C

'

I4IJC(tI" rltl ReJC
ReJc' 1.56'CMI Max
o CURVES APPLY FOR
POWER PULSE TRAIN
SHOWN READ TIME
IAT 11
ITJlpkl - TC' P(pkl ZeJCltl

5,0

10

20

50

VR. REVERSE VOLTAGE IVOLTSI

436

100

200

500

140

16D

MJ3771" MJ3772, MJ6257 (SILICON)

20 and 30 AMPERE
POWER TRANSISTORS
NPN SILICON

HIGH POWER NPN SILICON POWER TRANSISTORS

40 and 60 VOLTS
200 WATTS

Select from Epibase transistors for ultimate circuIt performance
based on the design requirements.
EPIBASE - Designed for power amplifier and switching applications.

•

Low Collector-Emitter Saturation Voltage VCElsatl

= 1.0 Vde IMaxl @ IC = 15 Ade - MJ3771
= 0.8 Vdc IMaxl @ IC = 10 Ade - MJ3772
= 0.7 Vde (Max) @ IC = 8.0 Ade - MJ6257

•

Low Leakage 'CBO = 1.0 mAde (Maxi @ Rated VCB

•

High Current-Gain - Bandwidth Product IT = 2.0 MHz (Mini @ IC = 1.0 Adc

MAXIMUM RATINGS
Rating

MJ3772

MJ6257

Unit

Collector-Emitter Voltage

VCEO

40

60

40

Vdc

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base: Voltage

VCEX

50

80

50

Vdc

VCS

50

100

50

Vdc

VES

5.0

7.0

5.0

Vdc

Ie

30
30

30

7.5
15

5.0
15

Collector Current

SVmbol MJ3771

Continuous
Peak

20

Adc

IS

Peak
Total Device Dissipation @TC = 25°C

PD

200
1.14

Watts

T J,T stg

-65 to +200

°e

Operating and Storage Junction

ESEATIN!~

I

PLANE

Adc

Base Current - Continuous

Derate above 25°C

Lr~
r~.

w/oe

Temperature Range
THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction

to

Case
OIM

A

FIGURE 1 - POWER DERATlNG
200

175
150
125

'"

0
E

i'-

F
G

"'-

100

H
J
K

......

75

......

50

Q

R

........

25

o
o

8
C

.........
25

50

75

100

125

150

175

200

TC, CASE TEMPERATURE (OC)

437

MilliMETERS
MAX
MIN

-

INCHES
MIN
MAX

39.31
21.08
1.62 0.250
1.09 0.039
3.43
29.90 30.40 1.111
10.61
11.18 0.420
5.33
5.59 0.210
16.64 11.15 0.655
11.18 12.19 0.«0
3.84
4.09 0.151
26.61
Collector connected to case.
6.35
0.99

CASE 11

1.550
0.830
0.300
0.043
0.135
1.191
0.«0
0.220
0.615
0.480
0.161
1.050

MJ3771, MJ3772, MJ6257 (continued)

ElECTR ICAl CHARACTER ISTICS (T C = 25°C unless otherwise noted.!
Symbol

Characteristic

Min

Max

40
60
40

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 0.2 Adc, IS = 0)

Coliector·Emitter Sustaining Voltage
(lC = 0.2 Adc, VES(off) = 1.5 Vdc,
RSE = 100 Ohms

MJ3771
MJ3772
. MJ6257
MJ3771
MJ3772
MJ6257

Collector Cutoff Current'

Vdc
50
SO
50

-

45
70
45

-

-

2.0
2.0
2.0

-

1.0
1.0
1.0
2.0
2.0
5.0

Vdc

mAdc

ICEO

(VCE = 30 Vdc, IS = 0)
(VCE = 50 Vdc, IB = 0)
(VCE = 25 Vdc, IS = 0)
Collector Cutoff Current
(VCE =50 Vdc, VES(off) = 1.5 Vdc)
(VCE = 100 Vdc, VEB(off) = 1.5 Vdc)
(VCE = 45 Vdc, VEB(off) = 1.5 Vde)
(VCE = 30 Vdc, VES(off) = 1.5 Vdc,
TC = 1500C)
(VCE = 45 Vde, VES(off) = 1.5 Vde,
TC= 1500C)

MJ3771
MJ3772
MJ6257
ICEX
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257

Collector Cutoff Current
(VCS = 50 Vde, IE = 0)

= 100 Vdc,

-

VCER(sus)

= 0.2 Adc, RSE = 100 Ohms)

(VCS

-

VCEX(sus)

Collector-Emitter Sustaining Voltage

(lC

Vdc

VCEO(sus)
MJ3771
MJ3772
MJ6257

mAdc

-

-

mAdc

ICSO

-

MJ3771
MJ6257
MJ3772

IE = 0)

Emitter Cutoff Current

-

1.0
1.0
1.0
mAde

IESO

(VSE = 5.0 Vde, IC = 0)

-

MJ3771
MJ6257
MJ3772

(VSE = 7.0 Vdc, IC = 0)

-

1.0
1.0
1.0

ON CHARACTERISTICS
DC Current Gain
(lC = 15 Adc, VCE = 4.0 Vde)
(lC = 10 Ade, VCE = 4.0 Vdc)
(lc = S.O Adc, VCE = 4.0 Vdc)
(lc = 30 Ade, VCE - 4.0 Vdc)
(lc - 20 Ade, VCE = 4.0 Vdc)

-

hFE
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257

Collector-Emitter Saturation Voltage
(lC = 15 Adc, IS = 1.5 Adc)

VCE(satl
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257

(lC =10 Ade, IS = 1.0 Adc)
(lC = S.O Adc, IS = O.S Ade)
(lC =30 Adc, IS = 6.0 Ade)
(lC = 20 Adc, IS = 4,0 Adc)
Sase·Emitter On Voltage
(IC = 15 Ade, VCE = 4.0 Vdc)
(lC = 10 Adc, VCE = 4.0 Vde)
(lC = S.O Adc, VCE = 4.0 Vde)

15
15
15
5.0
5.0
5.0

60

-

1.0
O.S
0.7
4.0
3.0

60
75

Vde

-

-

3.0
Vdc

VSE(on)

-

1.7
1.5
1.4

t,

-

0.7

ts

-

1.0

tf

-

O.S

MJ3771
MJ3772
MJ6257

DYNAMIC CHARACTERISTICS
Current-Gain - Sandwidth Product
(lC = 1.0 Adc, VCE· 4.0 Vdc, ftost = 1.0 MHz)
SWITCHING CHARACTERISTICS

Rise Time
Storage Time

(VCC· 30 Vde, IC = 10 Adc)
lSI = IS2 = 1.0 Adc)

Fall Time

438

,..S
,..S

,..s

MJ3771, MJ3772, MJ6257

(continued)

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME

VCC
+30 V

5.0

RC

2.0

10

SCOPE

RB

]
w

'">=
51

-~ E
f- I-

VCC
ICIIB
TJ

30 V
10
25°C

VBE(offi = 5.0 V

1.0
O. 5

...

O. 2
O. 1

tr, tfslO ns

OUTY CYCLE = 1 0%

td

0.05

-4 V

RB AND RC ARE VARIED TO SBTAIN DESIREO CURRENT LEVELS
0.0 2
0.0 1
0,3

01 MUST BE FAST RECOVERY TYPE, eg
MBD5300 USED ABOVE IB ~100 mA
MSD6100 USED BELOW IB ~100 mA

0.5

0.7

1.0

2.0

3.0

5.0 7.0

10

20

30

IC, COLLECTOR CURRENT (AMP)

FIGURE 4 - THERMAL RESPONSE
10
0, 7

-'

~
O. 5
~c
::J: UJ O. 3

r-- I -

0=0.5

>-N

0.2

Vi~

0.1

~~ O. 2

f-:::::::: t;;;:;:;;;

'"

PtJUl

"t-~'2--I

0.01
f'INGLE(UiSE

.,.,.

~ mO.D3 -

II

0.0 1
002

0.05

0.1

-

I

,....

~O.O 5_

~'"
w
0.0 2

I
DUTY CYCLE, D = ,,1'2

~~

--

~~ 0.1f-- - f- 0.05
~ ~O.O 7~ ~ 1-0.02

"'-

t

-

i-- I-""

-OJC(') ,(tl OJC
OJC 0.B750C/W Max 1 1 1 _
o CURVES APPLY FOR POWER_
PULSE TRAIN SHOWN
- t-- - READ TIME AT"
- - TJlpk)- TC = P(pk) 0JC(')-

...... Iiiii'

II
0.2.

1.0

0.5

2.0

50

10

I
20

II II
50

100

200

500

1000

2001

',TIME (m,)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
30
MJ3771
20
~

'" 10
:'>

~

"'"
'"
0

I

I

....

....

r-MJT2,t625i

d~""

I.

....

5.0
3.0

-

-

-

TC - 25°C
BONDING WIRE LIMITED

r- - - - THERMALLY LIMITED

r

There are two limitations on the power handling abdlty of a
transistor average junction temperature and second breaKdown.
Safe operating area curves mdlcate I C·V CE limits of the transistor
that must be observed for relIable operation, i.e., the transistor

must not be subjected to greater dissipation than the curves Indicate
The data of Figure 5 IS based on T J(pk) = 200°C; T C IS vanable
depending on conditions. Second breakdown pulse limits are valid

\

I

==

ln

5.0ms

7.0

(SINGLE PULSE) I
2.0 ----SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW
0
RATED VCEO
'"~ 1.0
0.7
-PULSE CURVES APPLY
0.5
-FOR ALL DEVICES
J377
0.3
2.0 3.0
5.0 7.0 10
20
1.0

~

.... 1". 50 OIlS

for duty cycle. to 10% provIded T J(ok) .;; 200°C T J(pk) may be

\

calculated from the data In Figure 4 At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations Imposed by second breakdown.

1' ~j;~;; r-I
r i30

50

(S.e Motorola Application Note AN-415)

70

100

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

439

MJ3771, MJ3772, MJ6257 (continued)

FIGURE 6 - TURN-OFF TIME

FIGURE 7 - CAPACITANCE

100

2000

0

VCC - 30 V
IC/IB 10
IBl = IB2
TJ = 25 0 C

0
0

]

;:: 2. 0

TJ = 250 C

l

~1000 b-

Cib

"z

Co~

w

5. 0

w

::;;

r---.

f--

-

ts

~.

1. 0
O. 5~

tf

..

~ 700
<3

'"

",'

........ r-300

["'-....

O.2

O. 1
0.3

I.......

~ 500

l- I----,

1.0

0.5

2.0

3.0

5.0

7.0

10

20

b,

200

30

0.1

1.0

0.5

0.2

IC. COLLECTOR CURRENT (AMP)

FIGURE 8 - DC CURRENT GAIN

200

25 0 C

z

<
'"
t-

VCE = 4.0 V

r--..

Q

ffi

'"'"
Q

0
30

r--

i"'- ~

a:

0.8

'"
§

0.4

g

r-.. "

10

~

7. 0

>

5. 0

0.3

0.5

0.7

1.0

1.2

1l']

...... i".

l'

~ 20

2.0

3.0

5.0

7.0

10

20

I'
~

0
0.01

30

0.02

I

/)

1.6

r

.

--

W

'"

O.B

VBE(sat)@IC/IB-l0

'::;
Q
>
i"'"VrE ~ ~CE = 4.0 V
>'
0.4

o

0.3

V~E(~tl JIUBI= 10
0.5 0.7

1.0

I2.0

I

~F"

~

1li

~
7.0

~
13
~
8

1.0

2.0

5.0

10

t-

i
10

20

IC. COLLECTOR CURRENT (AMP)

II

.L

./

-550 C to 250 C

+1.0

-1.0

-2.0

11

.llU
lUl
III

-

OVB for VBE

li
0.5 0.7

1.0

VI

~

-'OVC for VCE( ..ti

2.0

250 C to 1500 C

f0-

3.0

l~

_._-

tz'r-'

L

-550 C to 250 C

J.ilill
5.0 7.0

L

"",I""'"

II L

IC. COLLECTOR CURRENT (AMP)

440

/
/

25 0 C to 1500 C

-3. 0
0.3

30

..lJl U

'APPLIES FOR IC/IB" hFE/2

+2.0

w

/

5.0

0.5

+3.0

'"=>

./

,....
3.0

..;.:V II

r--

13

.§

'I

~

0.2

+4.0

3;

A

Q

0.1

FIGURE 11 - TEMPERATURE COEFFICIENTS

TJ = 250 C

~

0.05

IC. COLLECTOR CURRENT (AMP)

FIGURE 10 - "ON" VOLTAGES

1.2

I'

1\

IC. COLLECTOR CURRENT (AMP)

2.0

100

20A

~

-55 0 C

+-

0

TJ = 250 C

lOA

5.0 A

1.6

LU

'"
~
'"

r--..

100

20

II

1111

IC=2.0A

~

ill 70

'"'"=>

II

!:;

TJ = 150 0 C

hi.

10

FIGURE 9 - COLLECTOR SATURATION REGION
2.0

til

500
30 oJ--

5.0

2.0

VR. REVERSE VOLTAGE (VOLTS)

10

-20

L

30

MJ3771, MJ3772, MJ6257

(continued)

FIGURE 12 - COLLECTOR CUTOFF REGION
f--VCE - 30V

F==I==TJ

+100 0 C': !.i+250~

§

+150 OC

1

/

16:= REVERSE

FORWARD

2

w- 3
-04

-0.3

-0.2

-0.1

+0 1

+0.2

+0.3

+0.4

VBE, BASE·EMITTER VOLTAGE (VOLTS)

441

+0.5

+0.6

MJ3773, MJ6302

(SILICON)

16 AMPERE
POWER TRANSISTORS

HIGH POWER NPN SILICON POWER TRANSISTORS
Epibase transistors for ultimate circuit performance based on
the designer's requirement.
EPIBASE

NPN SILICON
120, 140 VOLTS
200 WATTS

- designed for power amplifier and switching
appl ications.

•

Low Collector· Emitter Saturation VoltageVCE(sat) = 0.8 Vdc (Max) @ IC = 8.0 Adc
= 2.0 Vdc (Max) @ IC = 16 Adc

•

Low Leakage ICBO = 1.0 mAde @ VCB = 125 Vdc - MJ6302
= 1.0 mAde @ VCB = 140 Vdc - MJ3773

•

High Current-Gain - Bandwidth Product fT = 1.0 MHz (Min) @ IC = 1.0 Adc

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

Collector-Emitter Voltage
Collector-Base Voltage

veE x

Emitter-Base Voltage
Collector Current - Continuous

VEe

MJ6302

MJ3773

Unit

120
140
140

140
160
160

Vdc

VeEO
Vee

7.0
16
30
4.0
15
200
1.14
-65 to +200

Ie

Peak
Base Current - Continuous

Ie

Peak
Total Device Dissipation
Derate above 25°C

@

T C =25°C

Operating and Storage Junction
Temperature Range

Vdc
Vdc

Po

TJ,T stg

Vdc
Adc
Adc

Watts
wfOe
°e

THERMAL CHARACTERISTICS
Characteristic

MJ3773
MJ6302

Thermal Resistance, Junction to Case

0.875

STYLE 1:
PIN " BASE

2, EMITTER
CASE: COLLECTOR

200

FIGURE 1 - POWER DERATING
NOTE:
" DIM "n"ls DlA.

I"'"
DIM

""'"

0

0

25

"'" r-....

A
B
C

""

"'"

125
50
75
100
TC, CASE TEMPERATURE lOCI

~

150

""
175

D
E
F
0
H
J
K

"

Q

R

MILLIMETERS
MIN
MAX

-

INCHES
MIN
MAX

- 1.550
22.23
- 0,875
11.43 0,250 0,450
1,09 0.038 0.043
3,43
J!..136
29.90 3D,4D 1,177 1.197
10.67 1I.IB 0,420 0,440
5.21
5.72 0.2D5 O.22S
16.84 17.15 0,65 0,675
11.18 12.19 0.440 O.
.151 0,' I
3.84 4
26.61
- 1.D50
39,3)

8.35
0.97

200

442

CASE 11·03

-

MJ3773, MJ6302 (continued)

I

ELECTRICAL CHARACTERISTICS (TC = 2SoC unless otherwise noted.!
Symbol

Characteristic

Min

Max

120
140

-

140
160

-

140
160

-

-

2.0
2.0

Unit

OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage! 11
(lc = 0.2 Ade, IB = 0)
Collector~Emitter

Sustaining'Voltage

Sustaining Voltage

Vde

VCER(sus)
MJ6302
MJ3773

(IC = 0.2 Ade, RBE = 100 Ohms)
Collector Cutoff current
(VCE = 100 Vde, IB = 0)
(VCE = 120 Vde, IB = 0)
Collector Cutoff Current
(VCE = 120 Vde, VEB(off)
(VCE = 140 Vde, VEB(off)
(VCE = 120 Vde, VEB(off)
(VCE = 140 Vde, VEBloff)

Vde

VCEX(sus)
MJ6302
MJ3773

(lC = 0.2 Ade, VBE(off) = 1.5 Vde,
RBE = 100 Ohms)
Collector~Emtiter

Vde

VCEO(sus)
MJ6302
MJ3773

mAde

ICED
MJ6302
MJ3773

-

mAde

ICEX
=
=
=
=

1.5
1.5
1.5
1.5

-

MJ6302
MJ3773
MJ6302
MJ3773

Vde)
Vde)
Vde, TC = 1500 CI
Vde, TC = IS00C)

Collector Cutoff Current
(VCB = 125 Vde, IE = 0)
(VCB = 140 Vde, IE = 0)

-

1.0
1.0
5.0
5.0
mAde

ICBO

-

MJ6302
MJ3773

Em itter Cutoff Current
(VBE = 7.0 Vde, IC = 0)

-

1.0
1.0

-

1.0
1.0

15
15
5.0
5.0

60
60

-

O.B
O.B
2.0
2.0

-

-

I.S
1.5

1.0

-

40

-

mAde

lEBO
MJ6302
MJ3773

ON CHARACTERISTlCS(I)
DC Current Gain

(lc

-

hFE

= B.O Ade, VCE = 4.0 Vde)

MJ6302
MJ3773
MJ6302
MJ3773

(lc = 16 Ade, VCE = 4.0 Vde)
Collector-Emitter Saturation Voltage
(lC = B.O Ade, IB = BOO mAde)

-

Vde

VCE(satl
MJ6302
MJ3773
MJ6302
MJ3773

(lC = 16Ade, IB = 3.2 Ade)
Base-Emitter On Voltage
(lC = B.O Ade, VCE = 4.0 Vde)

Vde

VBE(on)
MJ6302
MJ3773

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 1.0 Ade, VCE = 10 Vde, ftost = 0.5 MHz)

fT

Smell-5ignal Current Gain
(lC = 1.0 Ade, VCE = 4.0 Vde, f = 1.0 kHz)

hfo

(VCC = 30 Vde, IC

= B.O Ade,

IB 1 = IB2 = O.B Ade)

443

MHz

-

MJ3773, MJ6302 (continued)

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
5. 0

VCC

VCC-30V
IC/IB'1O
TJ ~ 25°C

3.0

+30 V

2.0

H
+~] --1--,
v

RC

J

SCOPE

RB

w

!

-9.0

51

'"

1.0

o. 7
o. 5
o.3

lr

r-I'--

O.2
t r• tt::::10

DUTY CYCLE

os
~

1.0%

-4V

- -

Id

-.

-=

~. 1

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

0.0 7
0.05
0.2

Dl MUST BE FAST RECOVERY TYPE. 09:
MBD5300 USED ABOVE IB ~100 rnA
MSD6100 USED BELOW IB ~100 rnA

0.3

0.5

0.7

1.0

--

2.0

3.0

/ i IiTli
B
V

5.0 7.0

50
• V

-

-

10

20

IC, COLLECTOR CURRENT (AMP)

FIGURE 4 - THERMAL RESPONSE
1.0
0.7

;;!

~_ 0.5

-

-

~ffi 0.3

~~

:i~

0:-

..-- iiiII-

0.2

.... N

tz ~

9JCh)' r(~_9JC

0=0.5

0.2

- o.1 --

-

-Inn

I--:::::

u.

ffjO.03

tt;o:
'2

0.02

>- -::::::: [:;;;:F"

_0.05

.,..,.-

pr

11~2~

0.01

~IINGLE{U1SE

II

0.0 1
0.02

PULSE TRAIN SHOWN
:- r--READTIMEAT'1
--TJ(pk) TC = P(pk)9JCh)- r-

DUTY CYCLE, 0 - 11/12

-~.1

_0.02
~ ~O.Q7 ~ " -

§>'"~O.05

~€~~:~;::.~·:ci~ ~OWE~-

0.05

I II

0.1

0.2

1.0

0.5

.2.0

5.0

10

111111
20

'50

100

200

500

1000

t, TIME (m.)

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
100
70
50
0:: 30
20

'"

- --

~
I-

~
0:

:::>
<.>
0:
0
....

~

10
7.0
5.0
3.0
2.0

1.0
0.7
8 0.5
~ 0.3
0.2

he'"

5.011)~ ,;:J.OI~

Tc = 25°C

"'-

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e ... , the transistor
must not be subjected to greater dissipation th,an the curves indicate.
The data of Figure 5 is based on T J(pk) = 200"c; TC is variable
depending on conditions. Second breakdown pulse limits are valid

,",

values less than the limitations imposed by second breakdown.
(See AN-415)

~.-

for duty cycles to 10% provided T J(pk) .;:;;; 200o C. T J(pk) may be

~. _.:= ~~~~~N:L~~RCI~:~~~~~INGLE PULSE)

0.1
2.0

calculated from the data in Figure 4. ·'At high case temperatures,
thermal limitations will reduce the power that can be handled to

- - - - SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCEO

IIIII
3.0

5.0

7.0

10

II
20

30

50

70

II
100

200

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

444

2000

MJ3773, MJ6302 (continued)

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME
200 0

0
30

~c~1J~- ffIc1IB=10 -

20

.=t:=

IB1- IB2._
Tr 25 OC

10

:g

7.0
~ 5.0

's

;::

2.0
1.0

100 0

u:
~

700

z
;:: 500
G

~

-- -- -

3.0

I IIII
TJ = 25°C

_

~

C~

300

r-....

200

i'-

'f

0.7
0.5
0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

100
0.2

20

0.5

1.0

2.0

IC. COLLECTOR CURRENT (AMP)

o

VCE' 4.0 V

1. 1:.

100

200

I-

~

70 =
0
5

g

30

6

-...

- > - 2 50C

"'10 0

IC=4.0A-

-

t=-550C

8

~

~ 20

I'--f-

~

:"

4

!'-...

10
7. 0
5. 0
0.2

03

05

0.7

1.0

20

3.0

5.0

10

0
005 0.07 01

20

0.2

0.3

~rT.Isob

w

">

It

1.6

/

~

c;

5

~

10

08

04

o

0.2

VIBE(,..)@ Ic/lB = 10

S

~i::::=~

7

~BETvfEI-m

JCE(lti ~ IUB 1= 110

3.0

5.0

w
~

II

/

V

./

25'~

~ o. 5 "OVC for VCE sat)

w

>

2.0

"Applies for ICIIS < hFE/2

0

.s

W
12

->

10

25

I-+-

'"«

07

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - "ON" VOL TAGES

I-

0.5

lB. BASE CURRENT (AMP)

IC.COLLECTOR CURRENT (AMP)

0

16 A

8.0 A

2

B

i5

50

TJ=250C

;;:

2.

20

0

30O;;;:::;!~
20

10

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN
50 0

z

50

VR. REVERSE VOLTAGE (VOLTS)

/

0

j55 ·0250C

V

I--'

V

1

-0. 5

I-

~ -l. 0

~

...... ~

-15

i- 2.a

25 to 1500C

_K-r

8VB for VSE

_i-"

-55'0 250C

·25
03

20
3.0
50 70
0.5 07 10
IC. COLLECTOR CURRENT (AMP)

10

o2

20

445

03

0.5

2.0
30
50
IC. COLLECTOR CURRENT (AMP)

07

10

10

20

MJ3773, MJ6302 (continued)

'FIGURE 12 - COLLECTOR CUTOFF REGION

cF ~

TJ = +1500C,/=+10ooC; r=+25 0

I--

VCE = BOV

11--

REVERSE

c -ICES

10- 2
-0.4

-0.3

FORWARD

0 +0.1 +0.2 +0.3 +0.4
-0.2 -0.1
VBE. BASE·EMITTER VOL TAGE (VOLTS)

446

+0.5

+0.6

MJ4030, MJ4031, MJ4032 PNP (SILICON)
MJ4033, MJ4034, MJ4035 NPN
16 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS

60-100 VOL TS
150 WATTS

. . . for use as output devices in complementary general purpose
amplifier appl ications.
•

High DC Current Gain - hFE = 3500 (Typ) @ IC = 10 Adc

•

Monolithic Construction with Built-In Base-Emitter
Shunt Resistor

MAXIMUM RATINGS

VCEO

MJ4030
MJ4033
60

MJ4031
MJ4034
80

MJ4032
MJ4035
100

Collector-Base Voltage

VCB

60

80

100

Emitter-Base Voltage

VEB

5.0

Collector Current

IC

16

Adc

Base Current

'B
Po

0.5

Adc

150
0.857

Watts

-55 to +200

°c

Rating

Symbol

Collector-Emitter Voltage

Total Device Dissipation@TC=250C

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ.Tstg

Unit

Vdc
Vdc
Vdc

W/oC

!=:'
=
:I==t
r~K

l
ESEATIN!~

j

PLANE

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Svmbol

I

I

OJe

Unit

Mox
1.17

I

°C/W

FIGURE 1 -DARLINGTON CIRCUIT SCHEMATIC
Collector

PNP
MJ4030
MJ4031
MJ4031

I

NPN

--,
,..-----<1--.

r------I

I

I
I
I
I
I
I

I
Sase

Collector

MJ4033
MJ4034
MJ4035

--,

.----<4-.

Sase

I

I
I

I
I
I
I

I

I

__ ...J

__ ...J

DIM
B
C
D
E
F
G
H

J
K

n
S
T

INCHES
MAX
MIN

MILLIMETERS
MIN
MAX

6.35
0.97
29.90
10.67
5.11
16.64
7.92
3.84

-

11.23
11.43
1.09
3.43
30.40
11.18
5.72
17.15
4.09
13.34
4.78

0.250
0.038
1177
0.420
0.205
0.655
0.312
0.151

447

-

All JEOEC dImenSIOns and noles apply
CASE 1·03

Emitter

Emitter

0.875
0.450
0043
0.135
1197
0.440
0.225
0675

(TO·3)

0.161
0.525
0188

MJ4030 thru MJ4035 (continued)

ELECTRICAL CHARACTERISTICS ITC = 2S0C unless otherwise noted)

I

I

Characteristic

Max

Min

Symbol

Unit

OFF CHARACTERISTICS
Collector·Emltter Breakdown Voltage(1)
(Ie = 100 mAde, '8 = 01

Vdc

BVCEO

60

MJ4030, MJ4033
MJ4031 , MJ4034
MJ4032. MJ4035

ao
100

Collector Emitter Leakage Current

mAde

'eER

(Vee =60Vdc, ABe'" 1.0kohmJ

MJ4030, MJ4033

(Vee =80Vdc. RBe = 1.0kohml

MJ4031, MJ4034

(Vee = l00V~c. RBe = 1 Okohm"l
(Vee "'OOVdc, ABe = 1.0kohm. TC = 1500 CI

MJ4032, MJ4035

(VCS=80 Vdc, RBe = 1.0kDhm. TC = lS00CI

MJ4031. MJ4034

(Vee = l00Vdc, ABe'" 1 Okohm, TC = 150°C)

MJ4032. MJ4035

1.0
1.0
10
5.0
5.0
5.0

MJ4Q30, MJ4033

Emitter Cutoff Current
(VBE =5DVdc, IC=Ol

5.0

'EBO

Coliector·Emltter Leakage Current

mAde

mAde

iCED

30
3.0
30

MJ4030, MJ4033

(VeE = 30 Vdc, 'S = 0)
(VCE = 40 Vdc, la '" 0)

MJ4031, MJ4034

(VCE = 50Vde,Ia '" 0)

MJ4032, MJ4035

ON CHARACTERISTICS(11

1000

hFE

DC Current Gein
(lC'" 10 Ade, VCE" 3.0 Vde)

Collector-Emittllr Saturation Voltage

vao

VeE(sat)

(lC = 10Ade, la = 40 mAde)

25
40

(lC = 16 Adc, 18 = 80 mAde)

3.0

VaE

Bese-Emitter Voltage
IIC'" 10 Adc, VCE '" 3.0 Vdcl

Vdc

(1)Pulse Test. Pulse WIdth ~300 jJs, Dutv Cycles;2 0%

FIGURE 3 - SMALL-SIGNAL CURRENT GAIN

FIGURE 2 - DC CURRENT GAIN
3000

50,000

2000

20,000

z

;;:

TJ =1500 C

10,000

C!)

~

z

;;: 5000

_

'"

I-

~ 2000

a

1"\

1000

~ 500

~

a-;t

1"\'

25°C

z

200

VCE • 3.0 Vol ..

100
50
0.02

0.05

0.1

0.5

0.2

1.0

2.0

5.0

10

500
300

Cl

200

i

100

j

50

~

-55 0C

1000

104

20

f, FREUUEN~Y 1Hz)

1r.,COLLECTOA CURRENT IAMPI

FIGURE 4 - "ON" VOLTAGES

FIGURE 5 - DC SAFE OPERATING AREA

3.5

50

3.0

~
~

TJ = 25°C

,

2.5

2_ a

w

'"

;
o
>

"> 1_0

~

20
16
10

~

50

ii:'

~ :::

VBE@viiillovolj...

8 o. 2
~

VCElsat)@IChB-250

O. 5

a
0.05

0.1

0.5

1.0

5.0

O. I
10

r-- -

20

1'- ........
MJ4030, MJ403~
MJ4031, MJ4034
''\ ~ MJ4032, MJ4035 -

TJ' 200°C

SECONOARY BREAKOOWN LIMITATION
- - - THERMAL LlMITATlON@TC·250C
- - - BONOING WIRE LIMITATION

0.05
2.0

IC, COLLECTOR CU RRENT lAMP)

-

=

:: 2.0

/

::::

VBElsat)@IC/IB'250

1.5 -

0.02

"-

TC·250C
VCE = 3.0 Vdc
IC =10 Ado

5.0

10

20

50

100

200

VCE, COLLECTOR·EMITTER VOLTAGE IVOL TS)

There are two limitations on the power handling ability of a
transistor: average junction temperature and secondary breakdown_
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; e_g., the transistor

must not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed by secondary breakdown. (See AN-415)

448

MJ4200, MJ4201 NPN (SILICON)
MJ4210, MJ4211 PNP

DUAL DARLINGTON
4 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS

DUAL SILICON POWER DARLINGTON TRANSISTORS
· . . designed for hammer driver, regulator and amplifier
applications.
• High DC Current Gain hFE = 3000 (Typ) @ IC = 2.0 Adc
• Collector-Emitter Sustaining Voltage VCEO(sus) = 60 Vdc - MJ4200, MJ4210
= 80 Vdc - MJ4201, MJ4211
• Total Monolithic Construction
Dual transistors in the same chip, yielding like electrical
characteristics. Collectors are common

60,80 VOLTS
85 WATTS

MAXIMUM RATINGS
MJ4201
MJ4211

Unit

80

Vdc

80

Vdc

VCEO

MJ4200
MJ421 0
60

Collector-Base Voltage

VCB

60

Emitter-Base Voltage

VEe

5.0

Vdc

IC

4.0
8.0

Adc

IB

80

mAde

PDT

85
0.485

W/oC

60
0.343

W/oC

-65°C to +2000 C

°c

Symbol

Rating
Collector-Emitter Voltage

Collector Current - Continuous

- Peak
Base Current
Total Device Dissipation@Tc=25DC

Derate above 2SoC
(Equal power

Watts

both transistors)

In

Single Transistor Disslpatlon@TC=250C

PD

Derate above 2SoC
Operating and Storage Junction Temperature
Range

TJ,T,tg

Watts

r------

THERMAL CHARACTERISTICS
Characteristic

Max

Symbol

Thermal Resistance, Junction to Case

Unit
°C/W

°JC

Single Transistor

2.92
2.06

Effective. equal power both transistors
Thermal Coupling Factor

%

FIGURE 1 - POWER DERATING

I

A
B

-

0-

C
D
E
F
G
K
M
N

P02" 1(Equal Power in
~
......... ~Ol BOfhTransistofs)

,

-........:::: ~--"";:~0.5
--.......;

~

0

~25

""" ~ ~

Q

-....;~

0

o

TJ =TC +OJC (PDI + KO POl)

25

50

75

100

125

TC, TEMPERATURE (DC)

",

150

175

R

200

449

20\

if
eN

2. BASE 2
3. BASEI
4. EMinER I
DIM

0

o

Q)V'~
it- \,i+\3J ~

PIN 1. EMinER 2

41

KO

.
STYLE 1

F-

1

jJ
G

1/
_____ M

MILLIMETERS
MAX
MIN

-

38.61
21.08
8.13
1.09
3.43
29.90 30.40
11.94 BSC
8.13
7.11
72 0 Bse
18 0 BaC
3.84
4.09
26.67

6.35
0.97

INCHES
MIN
MAX

-

1.520
0.830
0.250
320
0.038 0.043
.135
1.177 1.197
0.470 BSC
0.280 0.320
720 sse
18 0 Bse
0.151 0.161
1.050

NOTE:
1. LEADS WITHIN 0.13 mm (0.005) OIA OF
TRUE POSITION AT SEATING PLANE AT
MAXIMUM MATERIAL CONDITION.
CASE 253

1

R

MJ4200, MJ4201, MJ4210, MJ4211 (continued)

E LECTR ICA L CHARACTER ISTI CS (T C = 25°C unless otherwise noted)
Symbol

Min

Max

60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 50 mAde, IB = O)

Vde

VCEO(sus)
MJ4200, MJ4210
MJ4201, MJ4211

Collector Cutoff Current
(VCE = 30 Vde, la = O)
(VCE = 40 Vde, la = 01

BO
ICEO

mAde

-

-

0.5
0.5

MJ4200, MJ4201

-

0.5

(VCE

MJ4210, MJ4211

-

0:5

(VCE

MJ4200, MJ4201

-

5.0

MJ4200, MJ4210
MJ4201, MJ4211

Collector Cutoff Current

mAde

ICEX

(VCE = Rated VCEO' VEa(off)

= 1.5 Vde}

= Rated VCEO, VaE(offl = 1.5 Vde)
= Rated VCEO, VEB(off} = 1.5 Vde, TC = 1500C)
(VCE = Rated VCEO, VaE(offl = 1.5 Vde, TC = 150°C)

MJ4210, MJ4211

Emitter Cutoff Current
(VaE = 5.0 Vdc, IC = O)

lEaD

5.0

2.0

mAde

ON CHARACTERISTICS
DC Current Gain
(lC = 2.0 Ade, VCE
(lc = 4.0 Ade, VCE

Collector-Emitter Saturation Voltage
(lC
(lC

750
100

lBOOO

-

2.0
3.0

= 2.0 Ade, la = B.O mAde)
= 4.0 Ade, la =AO mAde)

Vde

VCE(satl

Base-Emitter Saturation Voltage
(lC

-

hFE

= 3.0 Vdc)
= 3.0 Vde)

VaE(sat)

-

4.0

Vde

VeE(on)

-

2.B

Vde

= 4.0 Ade, Ie = 40 mAdcl

Base-Emitter On Voltage
(lC = 2.0 Ade, VCE = 3.0 Vdc)

DYNAMIC CHARACTERISTICS

-

I hfe I

Magnitude of Common-Emitter Small--5ignal Short-Circuit
Forward Current Transfer Ratio
(lc = 1.5 Ade, VCE = 3.0 Vde, f = 1.0 MHz)
Output Capacitance
(Vce = 10 Vde, IE = 0, f= 0.1 MHz)

4.0

-

-

120
200

300

-

Cob

MJ4200, MJ4201
MJ4210, MJ4211

Small-5ignal Current Gain

pF

hfe

-

(lC = 1.5 Ade, VCE = 3.0 Vdc, f = 1.0 kHz)

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

"J:++R+=t=t==t=t==t++RWVCC:;,ToV
.,=+=1
VCC=~~V--

Vee

5.0 ....

-30V
RS & RC VARIED TO OBTAIN DESIRED CURRENT lEVELS
01. MUST BE FAST RECOVERY TYPES, B.g.,

:~g:: ~~:g ::~~~ I':: ::::

3.01-",p.,j:+~+---+-f--+-f-H++++-IC/IB = 250 - -

2.0

Re
SCOPE

I~

Ir

illI

1.0~ ..
-. r

1[ 0.7

~ 0.5

~
fortdand1r,0, IS disconnected
and V2'" 0

0.3

I~~:~~~c--

l

If

,_1""'-...

'

,-r-

.

0.2I-H+H-l-+-+
-'",,- ....-.2'~+-H+JI:-I-,...-..j....--::-:I:------j'-j
I--H-f-t+t-+-+-..,i'p',.......~-t.'~(Offr

f=
0.1~1=~~-~--~M~J~42~O~0.~M~J4~2~0~1(~N~PN~)~~~llg~~r~~

0.07
MJ4210. MJ4211IPNP} ,
0.05
0.04 0.06
0.1
0.2
0.4 0.6
1.0
IC, COLLECTOR CURRENT lAMP)

For NPN test circuit reverse all polarities.

450

2.0

4.0

MJ4200, MJ4201, MJ4210, MJ4211 (continued)

FIGURE 4 - THERMAL RESPONSE
I, 0

~

o. 7 0

;z

O.5

~

0.3

ffi

0=0.5

ffi~

"''''
:::5
'"
....

~

~

0.1

O.!-- ......

o. I to.05
0.02

0.07

ffi~O.05

u;
~

012

1-0.2

~c 0.2

"w
"'~

0.5

i='"
8JC(t) = r(tle;:;
t 1 1 . n 8 J C = 2 . 9 2 0 C Max
P(pkl
0 CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME AT t1

........: ~

..1

0.05

~~.Ol

0.03 -fIN~L~

P~~SE I--

0.02

0.0 I
0.02

'!:2!-

I L l~

1

0.05

0.1

j

t~

ONE OlE

.....

,I'

0.2

0.5

1.0

2.0

TJl(pkl-TC=PP~18JCI(tl

t2
DUTY CYCLE, 0 - tl/12

OUAL OlE
SINGLE PULSE
COUPLEO RESPONSE
5.0
10
t,TIME(msl

50

20

+K8 PPK2 8JC2!tl
K8 = 0.41

100

200

500

~

F=
~

t:

iii~

1000

2000

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
NOTE

0
5. 0
~

~

~
~

B

71"1
2. DONE
TRANSISTO ~

,V

.....

100;":

.......

......

~............ .........

.~

1. o~ ~QUAL POWER
5 '= BOTH TRANSISTO R

.........

r--,.200ps

BONDING WIRE LIMITED

r--TJ= 2000C
0.02

'" "\.

r--.." 5.0 ms

PPK2 = 50 W }
. .
_ 10
Pulse COlOcident at
tl ms T... Ed
D = 20%
ra. 109
ge

r(t) = 0.58
rlt) ~ 0.35
(from Figure 4)
:.8 JC1(t) = 1.690 C/W :.8 JC2(t) = 1.02o C/W
TJ1(pkl - TC = (801 (1.69) + (0.41) (50) 11,02)
= 135 + 21 = 156°C

Read

Where the side having highest junction temperature is not
obvious, both sides should be checked.

MJ4200, MJ4210
MJ420r MJ4Y I

I

0.0 I
10

Example: PPKI = 80 W
tl = 5 ms
D = 20%

.Oms

~ o. 2 - - - THERMALLY LIMITED @lTC = 25 0[,",\
to
(SINGLE PULSEI
j o. I ~SECOND BREAKOOWN LIMITED
8 0.05f:::::=CURVES APPLY BELOW RATEO VCEO
~

Use TJ1(pkl - TC = PPKI 8JCHtI + Kg PPK2 8JC2(tJ

......... ~ 500jJS

o.

-.

Computing Peak Junction Temperature

20
30
50
70
VCE, COLLECTOR-EMmER VOLTAGE (VOLTSI

100

There are two limitations on the power handling ability of a

depending on conditions. SlitCond breakdown pulse limits are valid

transistor - average junction temperature and second breakdown.

for duty cycles to 10% provided T J(pk) <200°C. T J(pk) mav be
calculated from the data in Figure 4. At hioh case temperatures,
thermal limitations will reduce the power that can be handled to
values leiS than the limitation. imposed by second breakdown.

Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

(See AN-4151.

The data of Figure 5 is basad on T J(pk) = 200°C; T C is variable

FIGURE 7 - CAPACITANCE

FIGURE 6 - SMAll-SIGNAL CURRENT GAIN
4000

2000

..

;!;IOOO
co
10 600
~400

...
I TJ = ~50CI
Vce= 3.0 V
IC= 1.5 A

a:

B
j

300

"

200

'\

~

..,zw

~IOO

5

\
'\

100
BD
40
4.0 6.0

70

20

40 BD 100 200 400 600 1000 2000
I, FREQUENCY (kHz)

....

--'II

50

---MJ4 00, MJ 1 NPN)
MJ4210, MJ4211 (PNPl
10

t--- r-

..
f

200

TJ=250C

1-- - 30

4000

0.1

451

I

02

MJ4200, MJ4201 (NPN)
j42,IOj ~iir (PNPl
0.5

I

r-CII

--

I

1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTSJ

50

100

MJ4200, MJ4201, MJ4210, MJ4211 (continued)

NPN

PNP

MJ4200. MJ4201

MJ4210. MJ4211
FIGURE 8 - DC CURRENT GAIN

20.000

10.000

f-- Vc =13jOIV

......

10.000
7000

~

5000

TJ - 1500

z

~2000

~
..,i3

25 0;"'"

..,:::>

/'

~1000

~

V
200

V

0.04 0.06

in 3.0

0.1

I I III

!:;
c

~
~ 2. 5

IC =1.0 A 2.OA

2.0

4.0

,

~

'"

~
w

3.0 A

to

.

I I
1.0
0.4 0.6
0.2
lC. COLLECTOR CURRENT (AMP)

"

IC = 1.0 A

2. 5

II

1\

2.0 A

13.0 A

4.0

2.0

11

~
~

1\

\

1- 5

\..

'"

8j

1. 0

TJ = 25DC

\

~ 2. 0

iii

g

0.1

~

:II

~ 1. 5

100
0.04 0.06

~ 3.0

TJ = 25 DC

1
\

~
'" 2.0

200

'J.-.-1"

FIGURE 9 - COLLECTOR SATURATION REGION

1\

~

-55 DC

300

V

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

"

25 DCL . "

500

-55DC

300

i-'

1000

c

ul 700

500

"...,

~

..............

I-'

~

/'}

~2000

<
~3000

..,is

TJ - 150DC

z 3000

~5000

~

=YCP3.0V

...... r-..,

"'-

1. 0

8

~

..,ul

> O. 5

> O. 5
0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

0.2

20

10

0.3

0.5 0.7

lB. BASE CURRENT (mA)

1.0
2.0 3.0
5.0
lB. BASE CURRENT (mA)

7.0

20

10

FIGURE 10 - ON VOLTAGES
2.0
1.8 f-

~

2.0

f/

111'1

/,

TJ = 25DC

1.8

ff

1. 6

1.6

~

~ 1.4
w

to

~ 1.2

'"
>

:>

o 1.4

VBE(sat)@ICIIB=250

~
w

--== I=""

1.0 ViEilYI-rov
O. 8

./

IIIIJI
VCE(sa,)@ICIIB=250

O. 6
0.04 0.06

I
0.1

V

'"~

L

11111
11111

VBE(~t\ ~ l~llB = 250

I"'"

IL

1.0
0.8

2.0

lrli'f

~ 1.2 VBE @VCE = 3.0 V
!:;

V

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

11111

r--

V~E(~~I JIC~IB = 250

I I III
0.6
0.04 0.06
0.1

4.0

452

I

"

---

0.2
0.4
0.6
1.0
IC. COLLECTOR CURRENT (AMP)

2.0

4.0

MJ4200, MJ4201, MJ4210, MJ4211 (continued)

NPN

PNP

MJ4200, MJ4201

MJ4210, MJ4211
FIGURE 11 - TEMPERATURE COEFFICIENTS

+5.0

+5.0

'Applies for 'elle < hFE/3

u +4.0
3;

.s +3.0
I-

J

~ +2.0

./ [/

$ +1.0
8w

./

0

2nt1150~ V

~ -1.0

!;(

ffi -2.0
~ -3.0
I-

i-

-~

~BVe. for VeE(rat)

V

-55°C to 250C
250C to 1500C
:..;.
BVB. forVBE

4.0

11I11

-5.0
0.04 0.06

0.1

V V
/

J

1

..5 +3.0

V

I-

ffi +2. 0

U

~ +1.0

8

/

III~

w
~-1. 0

·BVC. for VCE!sat)

~ -2. 0
~
~

II II

-3.0

i-

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

2.0

4.0

4.0

-550C to 250 C

II II

-5.0

0.04 0.06

0.1

-

...I-"r
~
-55°C to 25°C
I
250C to 1500C
~

--:t::::t-

BVB. for VBE

I-

II

,/

5°C to 1500C

0

I-

V

~

-55°C to 250C

'Applies for ICIIB < hFE/3

~+4.0
>

rr
I

/ II
~ f-

V" L r'
V

0.4 0.6
1.0
0.2
Ie. COLLECTOR CURRENT (AMP)

4.0

2.0

FIGURE 12 - COLLECTOR CUTOFF REGION

.L

4~VCE-30V

--

~

0.03 0.05

0.1

f-

0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)

10

20 30

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA

100
50

I

~

-;,

20

~ 10

w

:::~

- -

......

.......

5.0

.....

'" 2.0 -TJ=2000C
~

=
o

~100"'1.0 ms

1.0

~ 0.5

0.2

5.0 ms

.-

The Safe Operating Area Curves mdlCate Ie - VeE hmits below
which the device will not enter secondary breakdown Collector
Ioad lines for specific CircUits must fall within the applicable Safe
Area to avoid CilUSlng a catastrophic failure. To Insure operation
below the maximum T J. power-temperature deratmg must be observed for both steady state and pulse power conditIOns.

Secondarv Breakdown Limited
Bonding Wire limited
- ThermallimitationsTC =25 0 C
Pulse Duty Cycle < 10%

~
==
==

O. 1
1.0

2.0

3.0

5.0
10
20
30
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

455

50

100

MJ464S thru MJ4648 (SILICON)

1.0 AMPERE
POWER TRANSISTORS
PNPSILICON
200-300-350-400 VOL TS
5 WATTS

PNP SILICON POWER TRANSISTORS
designed for high-voltage amplifier and saturated switching
applications at collector currents to one Ampere. Ideally suited for
applications of dc-to-dc converters, relay and hammer drivers, motor
controls, and servo and pulse amplifiers. High·voltage ratings permit
direct-line operation.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = < 1.5 Vdc (Max) @ IC = 500 mAdc

•

High Collector· Emitter Breakdown Voltage BVCEO = 200, 300, 350 and 400 Vdc (Min)

•

DC Current Gain Specified - 10 mAdc to 500 mAdc

MAXIMUM RATINGS
Symbol

Rating

Collector-Emitter Voltage

MJ4645 MJ4646 MJ4647 MJ4648

Unit

Vceo

200

300

400

350

Vdc

Collector-Base Voltage

VCB

200

300

400

350

Vdc

Emitter·Base Voltage

VeB

5.0

IC

0.5
1.0

Adc

5.0

Watts

28.6----

mWf'C

Collector Current

Continuous
Peak

Total DeVIce DISSIpation

Po

T C - 25°C

@

Derate above 2SoC
Operating and Storage Junction

--

TJ,Tstg

Temperature Range

Vdc

-65 to +200 - - -

G

DC

STYLE 1
PIN 1. EMITTER
2. BASE
N 3. COLLECTOR

THERMAL CHARACTERISTICS
Cllaracteristic
Thermal ReSIstance, Junction to Case'

FIGURE 1 - POWER DERATING

A

"" "" ""

~ 4.0

i

~ 3.0

i

iiic

2.0

B
C

o

E
F
G
H

r-....

J
L

"

1.0

o
o

K

"-

'"~
""
I?

DIM

.......,

5.0

20

40

60

80

100

120

140

TC, CASE TEMPERATURE lOCI

160

.......,

""

200

456

8.B9

9.40

8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83
5.33
0.711 0.864
0.131 1.02
12.10
6.35

M

450 NOM

P

1.21
90' NOM
2.54

Q

180

MILLIMETERS
MIN MAX

R

AU JEOEC dimensions and notes apply.
CASE 79·02
TO·39

MJ4645 thru MJ4648 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)

I

I Symbol

Characteristic

Min

Typ

Max

200
300
400
350

-

-

-

-

200
300

-

400

-

350

-

-

BVEBO

5.0

-

-

Vde

ICEX

-

-

10

/lAde

20

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage (11
(lC = 10 mAde, IB = 01

Vde

BVCEO
MJ4645
MJ4646
MJ4647
MJ4648

Collector-Base Breakdown Voltage

-

Vde

BVCBO
MJ4645
MJ4646
MJ4647
MJ4648

(Ie = 100 /lAde, IE = 01

Emitter-Base Breakdown Voltage

-

(IE = 100/lAde, IC = 01
Collector Cutoff Current

(VCE = 200 Vde, VBE(offi = 0.5 Vdel
ON CHARACTERISTICS
DC Current Gain

--

hFE

(lC = 100 mAde, VCE

= 10 Vdel(11

25

-

= 500 mAde, VCE

= 10 Vdcl (1)

20

-

-

-

0.5
0.6
0.75

1.0
1.2
1.5

40
30

-

-

-

-

80
60

td

-

-

100

ns

tr

-

-

100

ns

toff

-

-

720

ns

(Ie = 10 mAde, VCE = 10 Vdel
(lC

Collector-Emitter Saturation Voltage
(lC = 500 mAde, IB = 100 mAde)

Vde

VCE(satl
MJ4645
MJ4646
MJ4647 MJ4648

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 70 mAde, VCE = 20 Vde, f

Output Capacitance
(VCB = 20 Vde, IE

= O. f

MHz

fT

= 20 MHz I

MJ4645, MJ4646
MJ4647, MJ4648

pF

Cob
= 100 kHzl

MJ4645
MJ4646, MJ464 7, MJ4648

SWITCHING CHARACTERISTICS

= 500 mAde,
= 50 mAde, VBE(offl = 5.0 Vdel
(VCC = 100 Vde, IC = 500 mAde,

Delay Time

(VCC = 100 Vde, IC

Rise Time

IBl

Turn-Off
Time

IB 1 = IB2 = 50 mAde, Pulse Width = 1.0/lsl

(1) Pulse Test: Pulse Width ~ 300 JJS. Duty Cycle S; 2.0%.

FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA

l.°m~J.mm.
__

0.1
0.5

i5
t-

~

13
~

c

~

1.0ms lOa",

"
5.0 m
O. 3r--+-+~+Htr~r-rt++Hfl
2 T =2 IJOC
dct-o
O.
SEC NOARY
1'.
BREA!m!lWN LIMITED
o. 1
BONDING WIRE
0.01 - 0.0 5 ____ ~~M~,:~~LLY LIMITEDI.'

There are two limitations on the power handling ability of a

r, \

__, _1_
1 1

transistor:

~~~~

\

I;

1\

The data of Figure 2 is based on T J(pkl

2.0 3.0 5.0 1.0 10

20 30

50 10 100

= 2000C;

T C is

variable depending on conditions. Second breakdown pulse limits

are valid for duty cycles to 10% provided TJ(pkl .;; 2000C. At
high

:~~::::: 1 .IRl !UTUI E~IO_B_VC4rE:-°-:h-IJl:I:L:,.uI~ J,~!§64~t==~~:=:l~~-hl-111J

1.0

VeE limits of the

transistor must not be subjected to greater dissipation than the
curves indicate.

8 0.03r-__r-+-rT~C~=+25~OHC~(S~ING~L~E~PU~L~S~E)rrH++-'~r-~~++tH
I CURVES APPLY ~~'~4645_ ,
E :.::

average junction temperature and second breakdown.

Safe operating area curves indicate Ie -

transistor that must be observed for reliable operation; i.e., the

200 300 500

case

temperatures, thermal limitations will reduce the power

that can be handled to values less than the

limit~ions

by second breakdown. (See AN-415)

1000

VCE, COLLECTOR·EMITIERVOLTAGE IVOLTSI

MJ5415, MJ5416 (SILICON)
For Specifications, See 2N3439 Data, Volume I.
457

imposed

MJ6257 (SILICON)
MJ6302 (SILICON)

For Specifications, See MJ3771 Data.
For Specifications, See MJ3773 Data.

MJ6700, MJ670 1. (SILICON)
7 AMPERE
POWER TRANSISTORS
PNPSILICON

MEDIUM-POWER PNP SILICON TRANSISTORS
· .. designed for switching and wide-band amplifier applications.
•

60-80 VOLTS
60 WATTS

Low Coliector·Emitter Saturation Vpltage - VCE(sat) = 1.2 Vdc
(Max) @ Ie = 7.0 Adc

• DC Current Gain Specified to 5 Amperes
•

Excellent Safe Operating Area

• Packaged in the Compact, High Dissipation TO·59 Case
•

Isolated Collector Configuration - 700 V Breakdown

MAXIMUM RATINGS
Symbol

MJ6700

MJ6701

Unit

Collector..emitter Voltage

VCEO

60.

80

Vdc

Coliector·Base Voltage

Vce

60

80

Vdc

Emitter-Base Voltage

VEe

5.0.

Vdc

IC

7.0.

Adc

Ie

1.0.

Adc

Po

60.

Watts

343

mW/OC

Rati",

Collector Current - Continuous
Base Current
Total Device Dissipation
O.rate above 25°C

@

T C = 25°C

Operating and Storage Ju nction
Temperature Range

TJ, T stg

~5

OC

to +200

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

FIGURE I - POWER-TEMPERATURE DERATING CURVE

DIM

60

B
C
E
G
H

............

"-

0

~

..............

J

K
L

..........

~

N

............
0

40

60

80

100

120

140

~
160

180

TC. CASE TEMPERATURE (OC)

Safe Area Curves are indicated by Figure 2. All limits are applicable and must be observed.

458

200

INCHES'
MIN
MAX
0.424 0.437
0.320 0.468
0,090 0.150
0.lB5 0.215
0.Q78
Q.400 0.455
0.570 0.765
0.090 0.110

~I-

4.80
~
1.65
10.065
9.65
10.380
S
4.310
10.1697
T
~.65 .".10
.MR..
All JEDEC dimenSions and nbtes apply
Collector isolated from case.
.'
.

P
0
R

t'--...

0
20

MILLIMETERS
MIN MAX
10.71 11.10
B.13 11.B1!
2.29 3.Bl
4.70 5.46
1.98
10.16 11.56
14.46 19.38
2.29 2.79

4.14
1.02
8.08
4.212

CASE 160-0.3
·(T0,59')· .

MJ6700, MJ6701 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

60
80

-

-

-

100
100

-

10
10
1.0
1.0

-

10

-

100

25
25
15

180

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (H
(lc = 50 mAde,lS = 0)

VCEO(sus)

MJ6700
MJ6701

Collector Cutoff Cu rrent
(VCE = 55 Vde, IS = 0)
(VCE = 75 Vde, IS = 0)

ICEX

= 55 Vde, VSE(off) = 1,5 Vde)
MJ6700
= 75 Vde, VSE(off) = 1,5 Vde)
MJ6701
= 55 Vde, VSE(off) = 1,5 Vde, TC = 1500C) MJ6700
= 75 Vde, VSE(off) = 1.5 Vde, TC = 1500C) MJ6701

Collector Cutoff Current
(VCS = Rated VCS, IE

jlAde
mAde
jlAde

ICSO

= 0)

Emitter Cutoff Current

(VEB

jlAde

ICEO
MJ6700
MJ6701

Collector Cutoff Current

(VCE
(VCE
(VCE
(VCE

Vde

-

jlAde

IESO

= 5.0 Vde, Ie = 0)

ON CHARACTERISTICS 111

DC Current Gain
(lC
(lC
(lc

Collector-Emitter Saturation Voltage
(lC
(lC

-

hFE

= 500 mAde, VCE = 2.0 Vde)
= 2.0 Ade, VCE = 2.0 Vde)
= 5.0 Ade, VCE = 2.0 Vde)

Vdc

VCE(sat)

= 2.0 Ade, IS = 0.2 Ade)
= 7.0 Ade, IS = 0.7 Ade)

-

0.7
1.2

-

Base-Emitter Saturation Voltage
(lC = 2.0 Ade, IS = 0.2 Ade)
(lC = 7.0 Ade, IS = 0.7 Ade)

Vde

VSE(sat)

-

1.2
2.0

30

-

-

300

-

1250

-

100
100

ns

-

1.0

jlS

150

ns

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 500 mAde, VCE = 10 Vde, f

Output Capacitance
(VCS

MHz

IT

= 10 MHz)

pF

Cob

= 10 Vde, IE = 0, f = 100 kHz)

Input Capacitance
(VSE = 2.0 Vde, IC

pF

Cib

= 0, f = 100 kHz)

SWITCHING CHARACTERISTICS

= 40 Vde, VSE(off) = 4.0 Vde,
= 2.0 Ade, lSI = 200 mAde)
Storage Time
(VCC = 40 Vde, IC = 2.0 Ade,
Fall Time
lSI = IS2 = 200 mAde)
III Pulse Test: Pulse Width = 3OOP5, Duty Cvcle = 2.0%
Delay Time

(VCC

Rise Time

ld

IC

tr

to
tf

FIGURE 2 - ACTIVE·REGION SAFE OPERATING AREA

ns

FIGURE 3 - SWITCHING TIME TEST CIRCUIT

0
0

~

The Safe Operating Area Curves
indicate Ic-VeE limits below
which the device will not enter
secondary breakdown. Collector load lines for specific circuits
must fall within the applicable
Safe Area to avoid causing a
catastrophic failur:e. To insure
operation below the maximum
T J. power-temperature derating
must be observed for both steady
state and pulse power conditions.

100,(.(5

~
~ 20

t.Oms

0

z

a

d,

05

o=

'!---TJ.211lJOC
==SECONDARY BREAKDOWN LIMITED j o. t---= --BONDING
WIRE LIMITED
80.0
5
APPLY BELO,!, RATEO VCEO
~

1~

5.0 ms ~

~:~RVES

00 ,
0,0

1'1

I

1
1.0

2.030

5070

10

MJ67OQ~
MJ6701~

20

30

50

70

100

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

459

INPUT PULSE

1---1--10 ~s

-37:~lS

+11.6 V

25~F

~
1

51
tr,tf~IO~S
D.C. - 2.0%
-=

+3,3

V

MJ7000 (SILICON)

30 AMPERE
POWER TRANSISTOR

HIGH-POWER NPN SILICON TRANSISTOR

NPN SILICON
. . . designed for use in industrial power amplifier and switching
circuits applications.

100 VOLTS
150 WATTS

• High DC Current Gain hFE = 20-100@IC=lOAdc
•

High Collector-Emitter Sustaining Voltage VCEO(sus) = 100 Vdc (Min) @ IC = 100 mAdc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.7 Vdc (Max) @ IC = 30 Adc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

100

Vdc

Collector-B ... Voltage

VeB

100

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

Ie

30

Adc

Collector·Emitter Voltage

Collector Current - Continuous
Base Current - Continuous

IB

10

Adc

Total Device Dissipation @ T C = 25°C
Derate above 25°C

Po

150
0.B55

Watts

wIDe

TJoTstg

-65 to +200

DC

Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

SEATING
PLANE
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
160

~

140

-

B

"- ..........

120

C

E

"""

80

C

ffi

60

~
6?

40

G
H
J

...........

~ 100

fa~

0

o
o

DIM
A

25

50

75

100

K

L

"""

N

'" '"

125

TCo CASE TEMPERATURE (DC)

150

P

n
S
T

""

175

200

460

MILL
MIN
21.72
18.92
12.19
2.29
12.32

11.68
23.80
6.10
7.06
1.52
7.127
19.B9

5/16·24 UNF 2A
(COATED)

rERS
MAX
22.23
19.69
13.59
4.24
13.0
2'.67
12.57
26.16
6.BO
7.B2
7.92
2.B7
7.249
22.23

INC IES
MIN
MAX
0.855
0.875
0; 46 .lI.716
0.480
0.585
0.090
0.167
0.4
O. 1

0.460
0.937
0.240
-

0.495
1.030
0.2BO
0.300

1=

~
~
~
0.875

All JEDEC notes and dimensions apply
CASE 188
TO-63

MJ7000 (continued)

ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted)
Symbol

Min

Max

Unit

VCEOlsus)

100

-

Vdc

ICEO

-

10

"Adc

ICEX

-

5_0

"Adc

Collector-Base Cutoff Current
(VCB = 100 Vdc, IE = 0)

ICBO

-

5_0

"Adc

Emitter-Base Cutoff Cu,re"t
(VBE = 7_0 Vdc, IC = 0)

lEBO

-

5_0

"Adc

20

-

20

100

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 111
(lc = 100 mAdc, IB = 0)
Collector-Emitter Cutoff Current

(VCE

= 50 Vdc, IB = 0)

Collector-Emitter Cutoff Current

(VCE

=90 Vdc, VEB(off) = 1_5 Vdc)

ON CHARACTERISTICS 111
DC Current Gain

-

hFE

= 1.0 Adc, VCE = 4_0 Vdc)
(lc = 10 Adc, VCE = 4.0 Vdc)
(lc = 30 Adc, VCE = 4.0 Vdc)
(lC

Collector-Emitter Saturation Voltage

10

-

-

1.0

-

1.7

-

1.7
2.25

-

1_5

Vdc

tr

30

-

MHz

Cob

-

600

pF

Vdc

VCE(sat)

= 10 Adc, IB = 1.0 Adc)
(lC = 30 Adc, I B = 4.0 Adc)
(lC

Base-Emitter Saturation Voltage

Vdc

VBE(sat)

= 10 Adc, IB = 1.0 Adc)
(lC = 30 Adc, IB = 4.0 Adc)
(lC

Base-Emitter On Voltage
(lC = 10 Adc, VCE = 4_0 Vdc)

VBE(on)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 1_0 Adc, VCE = 5.0 Vdc, f = 20 MHz)

Output Capacitance
(VCB = 10 Vdc, IE

= 0, f = 100 kHz)

11) Pulse Test: Pulse Width~ 300 1'5, Duty Cycle~2.0%.

461

MJ7160 (SILICON)
MJ7161

8_0 AMPERE
TRIPLE DIFFUSED
POWER TRANSISTORS

HIGH-POWER!HIGH-VOLTAGE TRIPLE 01 FFUSED
NPN SILICON ANNULAR TRANSISTORS

NPNSILICON
300-400 VOLTS
140 WATTS

· •. designed for high-frequency. line-operated switching applications.

•

Excellent Switching Times - IC = 5.0 Adc
ton 200 ns (Typ)
toff = 1200 ns (Typ)

=

• Collector-Emitter Saturation Voltage VCE(sat) = 3.0 Vdc (Max) @ IC = 8.0 Adc
• Excellent Safe Operating Area Capability ISlb 0.2 Adc @ VCE 100 Volts

=

=

MAXIMUM RATINGS
Rating

Symbol

MJ7160 MJ7161

Unit

VCEO

300

400

Vdc

Collactor-B_ Voltaga

VCB

325

425

Vdc

Emitter-B ... Voltage

VEB

6.0

Vdc

IC

8.0
10

Adc

Collactor-Emittar Voltage

Collector Current - Continuous

Peak

Base Current

IB

2.0

Adc

Total Daviee Dissipation @TC = 2So C
Darate abovo 25°C

Po

140
0.80

Watts
Wf'C.

TJ.Tstg

-65 to +200

°c

Operating and Storage Junction Temperature

lr~
r~K
ESEATlN(~

I

PLANE

Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
STYLE 1:

PIN

FIGURE 1 - POWER DERATING

140

..........

,...,.

A

" "-

0

B
C

D

.......
I":

" --..;;:

0
20

40

60

BASE

NOTE:
1. DIM

MILLIMETERS
DIM MIN MAX

" .......

0

i.

2. EM IHER
CASE: COLLECTOR

60

100

120

140

TC. CASETEMPERATURE (OC)

160

""""

lBO

200

462

6.35
0.99

E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84
R

"Q"

IS DIA.

INCHES
MIN
MAX

39.37
21.08
7.62 0.250
1.09 0.039
_.
3.43
30.40 1.177
11.18 0.420
5.59 0.210
17.15 0.655
12.19 0.440
4.09 0.151
26.67
CASE 11

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.460
0.161
1.050

MJ7160, MJ7161 (continued)

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted.)
Characteristic

Symbol

Min

Max

300
400

-

-

100
500
5.0
10

-

100
100

-

100

Unit

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage
(lc = 10mAdo, IS = 0)
(lC = 10 mAde, IS = 0)

MJ7160
MJ7161

Collector Cutoff Current
(VCE = 300 Vde, VSE(off)
(VeE = 400 Vde, VSE(off)
(VCE = 300 Vde, VSE(off)
(VCE = 400 Vdo, VSE(off)

MJ7160
MJ7161
MJ7160
MJ7161

Vdo

VCEO(sus)

ICEX
=
=
=
=

1,5
1.5
1.5
1.5

Vde)
Vde)
Vdo, TC = 150°C)
Vde, TC = 150°C)

Collector Cutoff Current
(VCS = 325 Vde, IE = 0)
(VCS = 425 Vde, IE = 0)

mAde
/JAde

ICSO
MJ7160
MJ7161

Emitter Cutoff Current
(VES = 6.0 Vdo, IC = 0)

/JAde

/JAde

IESO

ON CHARACTERISTICS (1)
DC Current Gain
(lc = 0.5 Ade, VCE = 5.0 Vde)
(lc = 3.0 Ade, VCE = 5.0 Vde)
(lc = 8.0 Ade, VCE = 5.0 Vde)
Collector-Emitter Saturation Voltage
(lc = 3.0 Ade, IS = 0.3 Ado)
(lC = 8.0 Ade, IS = 1.6 Ado)
(lc = 8.0 Ade, IS = 3.2 Ade)

35
25
10
5.0

=3.0 Ade,
= 8.0 Ado,

100

Vde

VCe(sat)

-

MJ7160,MJ7161
MJ7160
MJ7161

-

Base-Emitter Saturation Voltage

(lC
(lC

-

hFE
MJ7160,MJ7161
MJ7160,MJ7161
MJ7160
MJ7161

1.0
3.0
3.0
Vde

VSE(sat)

IS = 0.3 Ade)
IS = 0.8 Ade)

-

-

1.0
1.5

fT

30

-

Cob

-

150

pF

Cib

-

2000

pF

DYNAMIC CHARACTERISTICS
Current·Gain - Sandwidth Product (2)
(lC = 0.5 Ado, Vce = 10 Vde, l tast = 10 MHz)

Outpu t Capacitance
(VCS = 50 Vdo, Ie

= 0, f = 100 kHz)

I nput Capacitance

(VES

= 5.0 Vde,

IE = 0, f

= 100 kHz)

MHz

SWITCHING CHARACTERISTICS (Figure 2)

Rise Time
Storage Time

(VCC = 200 Vde, IC = 3.0 Ade,
lSI = IS2 = 0.3 Ado)

Fall Time

tr

-

200

ns

ts

-

2.0

/JS

tf

-

300

ns

(1) Pulse Test: PulseWidth';;300/Js, Duty Cyele';;2.0%.
(2) ~ = I hfel- f test·
FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

Vee
200 V

Re
68 Ohms

~'::B--l~-+i
10 /Js

--+-----l

t"tf ~ 10ns
Duty Cycle = 1.0%

Scope

-4.0 V
"'Values for RS and RC are varied
to obtain the information for
Figure 4.

463

MJ7160, MJ7161 (continued)

FIGURE 3 - THERMAL RESPONSE
1.0
~
o. 1 f::D - O.S
~_ O.S

-

we

::"w3 o. 3f::=:
r5:i o. 2
in'"
e--

20

«2

- -

0.2

~'"

pmsL

I-

0.1

I-io-'

~: O. 1=.o..oS
~ ~ 0.01=.0.02
~ ~ 0.0 S

:z ~ 0.03 -

......

AC

~J

0.01

DUTY CYCLE, 0

>=

c::: OJCItI • rltl OJC _
r- 0JC· 1.2SoC/W Max
CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpkl - TC· Plpkl 8JClti

q/t2

r-~

0.0 2 - SING LE PU LSE
0.0 1
0.01

I II

I

0.02 0.03

O.OS

01

02

03

0S

20

1.0

II II

30

SO

II

II

10

20

30

So

I

100

200

300

SOD

1000

t. TlMElmsl

FIGURE 4 - ACTIVE·REGION SAFE OPERATING AREA

10
S.O

~
~

2.0

i

1.0

......

2001'S

1'\

de

There are two limitations on the power handling ability of a

I"\.

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation, i.e., the transistor must

.0.5

i3

-

r-TJ-2000C
.0.2 - - - BONDING WIRE
LIMITED
~
0.1
- - - - THERMALLY LIMITED
8 D.DS
@TC:2soCISINGLE PULSEI
~
- - SECOND BREAKDDWN
LIMITED
.0.02
CURVES APPLY BELOW RATED VCED
0.01
10
20
So
100

'"e

~

not be subjected to greater dissipation than the curves indicate.

lmi

The data of Figure 4 is based on T Jlpkl = 200o C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pkl .;; 20o"C. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown (See AN-4151.

10

:'\.

5.0ms

200

'"1'\

I
SOD

1000

VCE, CDLLECTOR·EMITTER VOLTAGE IVDLTSI

FIGURE 5 - DC CURRENT GAIN

100
10
2

;;:

'"....

SO

.......

1ii

'"

'"
i3

30

~

20

'"e

-

FIGURE 6 - "ON" VOLTAGES

2.8

t--...

r-TJ: 2SoC

I

r--- -TJ:2SoC

2.4

..........

~C

r\.
~

w

1.6

'"«

!:; 1.2
e
>
>- 0.8

:\

VCE: S.O V

2.0

0.4
10
0.1

0,2

0.3

O.S

0,7

1.0

2.0

3,0

S.O 7..0

o

10

VBElonl @VCE : 5.0 V
r--- r-r- VBElsati
@ICilB - 10
r---

I

/

I I I

r--- r- VCElsatl@ ICIIB - 10

0.1

0.2

0.3

0.5 0.7

V
1.0

2.0

3.0

IC, COLLECTOR CURRENT IAMPI

IC, COLLECTOR CURRENT IAMPI

464

5.0 7.0

10

MJ7160, MJ7161 (continued)

FIGURE B - CAPACITANCE

FIGURE 7 - SWITCHING TIMES
10,000
5000
2000
1000
]

....~

~.

500

200
100

~~

---

1ft

~ :::::; I,

3000

IBI =IB2
IcllB -10
TJ 25°C

I,

I"'

.
..

Cob

~ 200
<.i

100

III
0.2

0.3

0.5 0.7

1.0

2.0

3.0

r--..

70
50

Id iii' VBE(olf) - 5.0 v

20

TJ = 25°C

-

~ 300

..........

50

10
0.1

Cib

u:- IOOO
~ 100
~ 500

-r--.

iii' VCC-200V

II

2000

5.0 7.0

30
0.3 0.5

10

IC, COLLECTOR CURRENT (AMP)

1.0

2.0 3.0 5.0

10

20 30

50

VR, REVERSE VOLTAGE (VOLTS)

465

100

200 300

MJ7260 (SILICON)
MJ7261

HIGH-POWER/HIGH-VOL TAGE TRIPLE DIFFUSED
NPN SILICON ANNULAR TRANSISTORS

30 AMPERE
TRIPLE DIFFUSED
POWER TRANSISTORS

· .. designed for high-frequency, line operated switching applications.
• Excellent Switching Times @ IC
ton = 200 ns (Typ)
toft = 1200 ns (Typ)

=

5.0 Adc -

NPN SILICON
300,400 VOLTS
175 WATTS

• Coliector·Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 15 Adc
• Excellent Safe Operating Area Capability
ISlb = 1.0 Adc @ VCE = 50 Vdc
MAXIMUM RATINGS
Rating

Symbol

Collector-Emllter Voltage

Umt

MJ7260 MJ7261

I.
I

400

Vd,

425

Vd,

VCfQ

300

Collector-Base Voltage

VeB

325

Emitter-Base Voltage

VEa

60

Vd,

Collector Current - Continuous
Peak

Ie

15
30

Ado

Base Current

1a

50

Ad,

Po

175
10

WaIlS

TJ,T stg

-65 to +200

Total Device DISSlpatlon@ Te ~ 2S0C

Derate above 2SoC
Operating and Storage Junction
Temperature Range

w/oe
'e

Lr~

THERMAL CHARACTERISTICS
CharacteristIC
Thermal ReSistance, Junction to Case

ELECTRICAL CHARACTERISTICS ITe - 15°C unle~s otherWise noted I

I

Chafactenstlc

Symbol

Mm

1 Max

Umt

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lC = 10 mAde, Ie ,. OJ
Collector Cutoff Current
(VeE = 300Vdc, VeEloff) =
(VCE = 400 Vdc, VeE(offl =
{VeE" 300 Vdc, VeEloff} =
(VCE" 400Vdc, VSE/off)'"

Vd,

VCEQ(sus)

MJ7260
MJ7261
Vdcl
Vdc)
Vdc, TC = ISOoCI
Vdc, TC = lS0oC)

Collector Cutoff Current
(Vce = 325 Vdc, Ie = 0)
{VCS = 425 Vdc, IE = OJ

'CSO

mAde
~Adc

100
100

MJ7260
MJ7261

EmItter CutDff Current
IV Ee -60Vdc, Ie" OJ

.uAdc

100

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

DC Current Gain
= 5 0 Vdcl

(lc = 5 0 Adc. VCE '" 5 0 Vdcl
IIC" 15 Adc. VCE" 5 0 Vdc)

Collector· EmItter SaturatIon Voltage
IIC" 5 0 Adc. IS = 500 mAdcl
(Ie = 15 Adc, IS = 50Adel

DIM

Sase·Emitter SaturatIon Voltage
lie " 5 0 AcIc. IS " 600 mAclcl
lie" 15 Adc, 'e .. 1 5 Adcl
Current· GaIn - BandwIdth Product
ttc ~ 1 0 Ade, Vce " 10 Vdc, f " 10 MHz)
Output CapacItance
(Vce " 50 Vdc. IE "0. f " 0 1 MHz)
input Capacitance
(VEe" 5 0 Vdc. IC " 0, I ~ 0 I MHzl
SWITCHING CHARACTERISTICS

I--"'--I-;'-'-'-;""::'''-t--'''---l

VSEloffl ~5.0 Vdc)

NOTE:
1. DIM

MILLIMETERS
MIN MAX

A
B
C 6.35
D 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.B4
R

-

DYNAMIC CHARACTERISTICS

(Vec" 200Vdc, Ie '" 5.0 Adc, IB1 "'82'" 06 Adc,

I

E SEATING
PLANE

~Adc

100
500
50
10

MJ7260
MJ7261
MJ7260
MJ7261

ON CHARACTERISTICS

lie" 500 mAde, VeE

r~,

300
400
ICEX

-1 5
-15
-1 5
-1 5

~

-

39.37
21.0B
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

CASE"

466

"(1"

IS DlA.

INCHES
MIN
MAX

0.250
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ7260, MJ7261 (continued)

FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
10 0
50

,.0:-

0

I-

10
5. 0

~

~

=>
'-'
~

0

~

8

There are two limitations on the power handling ability of a
transistor:
de

2. O~
200~,

.1.0
0.5

BONDING WIRE LIMITE

0.2
O. 1

THERMALLY LIMITED
@TC-250C(SINGLEPULSE)
SECOND BREAKDOWN
LIMITED

depending on conditions. Second breakdown pulse limits are valid

for duty cycle, to 10% provided TJ(pk) .;;; 200°C. At high ca'.
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. (See AN-415).

5.0 ms

0.02 CURVES APPLY BELOW RATED VCEO
0.01
1.0
2.0
5.0
10
20
50

100

200

500

average junction temperature and second breakdown.

Safe operating areB curves indicate 'e-VeE limits of the transistor
that must be observed for reliable operation, i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on TJ(pkJ = 200°C, TC is variable

1000

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

FlGUR~

FIGURE 2 - DC CURRENT GAIN
20

100
0

........

O~ I-""'

~o

1\

2

2:

=5.0 V

>--- I-- VBE(sat!@ IC/IB' 10

'"«

~ 0.8
>
>-

\

0

0.5

0.7

1.0

20 3.0
5.0
IC, COLLECTOR CURRENT (AMP)

7.0

10

o

0.2

20

LI I I III

o~ Io.'d @VBE(off) ~ 5.0 Vde

100

-

T

200OF-- ts

I

500 =

,.

30 0

""1--

~

.......

....

___

l4

10

-9.0 V

~

100

IJS

20

n

1 N4933

-4.0 Volts

0.5

0.7

1.0

20

7.0

10

20

Scope

Duty Cycle = 1 %

0.3

I

20 3.0
5.0
07 1.0
Ie, COLLECTOR CURRENT (AMP)

tr,tf~10ns

0
0
30
0,2

05

~J1~V (~RB~

Ktf

;:: 200

0.3

VCC=200V

VCC' 200 V
IcllB 10
t--IB1' IB2 t--TJ • 25°C

700
]

3.0/

1"

FIGURE 5 - SWITCHING TIMES TEST CIRCUIT

FIGURE 4 - SWITCHING TIMES

3000

1/

--t'"

>--- I-- VCE('at)
0.3

V
~

ICIIB'1O/

04

7. 0

w

-

VBE@VCE' 5.0 V

w

0

500.2

~~J.J50J

6

O - f-- TJ • +25 0C
VCE

3 _. ON VOL TAGES

3.0

5.0 7.0

10

20

NOTE:

IC, COLLECTOR CURRENT (AMP)

467

For information on Figure 4,
R Band RC were varied to obtain
desired test conditions.

MJ 81 00 (SILICON)
MJ8101

5 AMPERE
POWER TRANSISTORS

MEDIUM-POWER PNP SI LICON TRANSISTORS
. designed for switching and wide band amplifier applications.

PNP SILICON

• Low Collector·Emitter Saturation Voltage VCE(sat) ~ 1.2 Vdc (Max) @ Ie ~ 5.0 Amp

60 - 80 VOLTS
10 WATTS

• DC Current Gain Specified to 5 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact T0-39 Case for Critical Space-Limited
Applications.

MAXIMUM RATINGS
Symbol

MJ8100

MJ8101

Unit

"ceO_

60

SO

Vdc

Coliector·Sase Voltage

~

60

80

Vdc

Emitter-Base Voltage

VEa

5.0

Vdc

IC

5.0

Adc

Rating

Collector-Emitter Voltage

Collector Current - Continuous
Base Current

Total Oevice Oissipation
Derate above 2SoC

@

la

1.0

Adc

Po

10
57.2

Watts
mW/oC

TJ.Tstg

-65 to +200

°c

T C • 25"<:

Operating and Storage Junction
Temperature Range

I~;~

-r;--- -SEATING
PLANE

/'
Q

FIGURE 1- POWER-TEMPERATURE DERATING CURVE

I'"i',

""",
0

~

"-

0
~

~

I

PIN 1. EMITTER
2. BASE
3. COLLECTOR

~

INCHES
MILLIMETERS
MIN MAX
MIN MAX
0.350 0.370
8.89 9.40
0.315 0.335
8.00 8.51
6.10 6.60
0.240 0.260
0.406 0.533 0.016 0.021
0.229 3.18
0.009 0.125
F
0.406 0.483 0.Q16 0.019
G
4.83 5.33
0.190 0.210
H
0.711 0.864 0.028 0.034
J
0.737 1.02
0.G29 0.040
K 12.70
0.500
L
6.35
0.250
0
0
M
45 NOM
45 NOM
P
1.27
0.050
Q
90 0 NOM
900 NOM
R
2.54
0.100
All JEDEC dimensIOns and notes apply.
CASE 79-02
TO-39
DIM
A
B
C
D
E

"' f',

~

.-1

-.iN

Thermal Resistance, Junction to Case

0

__

~I--D I STYLE 1
~

THERMAL CHARACTERISTICS
Characteristic

~

_:::::::.uK

~

m m

~

~

~

~

TC. CASE TEMPERATURE lOCI
Safe Area CurvtS are indicated by Figure 2. All limits are applicable and must be ob.Ned.

468

MJ8100, MJ8101 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Svmbol

Characteristic

Min

Max

60
80

-

-

100
100

-

-

10
10
1.0
1.0

-

10

-

100

25
25
15

lBO

-

0.7
1.2

-

-

1.2
1.B

30

-

-

300

-

1250

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (11

Collector Cutoff Current
MJBloo
MJ8101

Collector Cutoff Current
=
=
=
=

55
75
55
75

Vde,
Vde,
Vde,
Vde,

VBE(olfl
VBE(off)
VBE(off)
VBE(off)

'CEX
=
=
=
=

"Ade

'CEO

(VCE = 55 Vde, IS = 0)
(VCE = 75 Vde, 'B = 0)
(VCE
(VCE
(VCE
(VCE

Vde

VCEO(sus)
MJ81 00
MJ8101

(lC = 50 mAde,lS = 0)

MJBloo
1.5 Vde)
1.5 Vdc)
MJ8101
1.5 Vde, TC = 1500C) MJ81 00
1.5 Vdc, TC = 1500 C) MJB10l

Collector Cutoff Current
(VCB = Rated VCB, 'E = 0)

'CSO

Emitter Cutoff Current

'EBO

"Ade
mAde
"Adc
I'Ade

(VBE = 5.0 Vde, IC = 0)
ON CHARACTERISTICS 111

-

DC Cu rrent Gain
(lC = 500 mAde, VCE = 2.0 Vdc)
(IC = 2.0 Adc, VCE = 2.0 Vdc)
(lc = 5.0 Adc, VCE = 2.0 Vde)

hFE

Collector-Emitter Saturation Voltage

VCE(sad

Vde

(lc = 2.0 Adc, 'B = 0.2 Adc)
(lc = 5.0 Adc, I B = 0.5 Adc)

Base-Emitter Saturation Voltage

-

Vdc

VBE(sat)

(lC = 2.0 Adc,IB = 0.2 Adc)
(lC = 5.0 Adc, 'B = 0.5 Adc)
OYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product

MHz

IT

(lC = 0.5 Adc, VCE = 10 Vde, f = 10 MHz)

Output Capacitance

pF

Cob

(VCS = 10 Vdc, 'E = 0, f = 100 kHzl
Inpu t Capacitance
(VBE = 2.0 Vdc, IC = 0, 1= 100 kHz)

pF

Cib

SWITCHING CHARACTERISTICS
Delay Time

(VCC = 40 Vdc, VBE (off) • 4.0 Vdc,

td

-

100

Rise Time

IC = 2.0 Adc, 'B 1 = 0.2 Adc)

tr

-

100

ns

Storage Time

(VCC

ts

1.0

I'S

Fall Time

'B1 = 'B2 = 0.2 Adc)

-

150

ns

= 40 Vdc, IC -

2.0 Adc,

tf

111 Pulse Test: PUIH Width ~ 300 J,J.5. Duty Cycle ~

2.0%
FIGURE 3 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA
100",

The Safe Operating Area Curves

INPUT PULSE

f..---.I-- 10 ~s

indicate Ie-VeE limits below

which the device will not enter
secondary breakdown.

Collec-

tor load lines for specific circuits
must fall within the applicable
Safe Area to avoid causing a
catastrophic failure. To insure
operation below the maximum
TJ. power·temperature derating
must be observed for both steady
state and pulse power conditions.
0.01

1.0

2.0 3.0
5.0
TO
2Q
30
50
VeE, COLLECTOR-EMITTER VOLTAGE (VOL IS)

ns

100

r

ov-,

+11.6 V

-40 V

-37V---L-J
25 ~F

~
1

tr,tf~10~S
D.C. - 2.0%

51

"::"

+3.3 V

469

Vcc

MJ9000 (SILICON)

10 AMPERE
POWER TRANSISTOR
HIGH-VOLTAGE NPN SILICON TRANSISTOR

NPN SILICON
700 VOLTS
125 WATTS

· .. designed for single unit use in color horizontal deflection output
circuits in television receivers.

D53157

• High Coliector·Emitter Voltage - VCES = 700 Vdc
• Fast Fall Time - tf = 1.1 Jls (Max)

@

IC = 6.0 Adc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Coliector·Emitter Voltage

VeEO

325

Vd.

Coliector·Emitter Voltage

VeES

700

Vd.

Emitter-Base Voltage

VEB

5.0

Vd.

Collector Current - Continuous

Ie

10

Ad.

Total Device Dissipation @ T e = 25°C
. Derate above 25°C

PD

125
1.0

Watts

TJ.Tstg

-55 to +150

°e

Oparating and Storage Junction
Temperature Range

wfOc

lr~
r~K
Es~1

THERMAL CHARACTERISTICS

PLANE

Ch.......ristlc

Thermal Resistance, Junction to Case

STYlE I:
PIN I. BASE

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise notedl

I

.....-

OFF CHARACTERISTICS
Collector-Emitter Braakclown Voltage (1)
UC"O.1Adc,IB"OI
CoJlector Cutoff Current

I

Symbol

I

Mi.

BVCEO

326

IceS

-

Max

Unit

2.EMITIER
CASE: COLLECTOR

MILLIMETERS
DIM MIN MAX

Vdc

I .•

(VCE - 700 Vdc, VEa - 0)

mAde

A
B
C
·D

6.35
0.99

-

E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18

ON CHARACTERISTICS
Collector-Emitter Saturation Voltaga
tic -a.DAde,l, -1.8Adc)
SWITCHING CHARACTERISTICS
Fall Time (See Flgufll 3)

Q

(VCC=80 Vdc.IC = a.DAde.IS'" 1.6 Adc)

R

470

NOTE:

3~84

-

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE

1. DIM "Q" IS 01.'0.

INCHES
MAX
MIN

--

0.2!lO
0:039
",.

1.117
0.420
0.210
0.655
0.440

0.151
11

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ9000 (continued)

FIGURE 1 - ACTIVE-REGION DC SAFE OPERATING AREA
10
7.0
5.0
~ 3.0
~ 2.0

@TC=25 0 C

.....

.....

!z 1.0
~ 0.7
~ 0.5
~ 0.3
~ 0.2

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be ob-

......

......
~. - - - Secondarv Breakdown Limited
0.1
Bonding Wire Limited
0.07 ~E - - - - Thermallimitations
~ 0.05 ~
:: 0.03
II
I
0.02
I I " "
0.01
5.0 7.0 10
20
50 70 100
200 300
30
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
~

served for both steady state and pulse power conditions.

c:

II

III

500

FIGURE 2 - TEST CI RCUIT FOR FALL TIME
150llF

f1J

to HP 212 A

TRANSISTOR
UNDER TEST

T

TO

r-----,
I

SCOPE

I

I

!

I

50

15

IL- _ _ _ _ ...JI

II

92V

OUTPUT WAVEFORM ON SCOP!!

~~

-=-

to 90%

(1) HP 212A: Set for 10 J.I.' wide pulses at 2000 pulses per sec. (500 J's Intervals). Adjust for 181 '" 1.6 A.
Bias: Adjust to 1.5 V on a VTVM across the 200 n Pot.
T: Pul.. Transformer: Motorola Part No. 25D68782A01.

471

MJ E10 5(SILICON)
MJE105K

MEDIUM-POWER PNP SILICON TRANSISTORS
5 AMPERE
POWER TRANSISTORS

· .. for use as an output device in complementary audio amplifiers
up to 20-Watts music power per channel.

PNPSILICON
• High DC Current Gain - hFE = 25·1oo@ IC = 2.0 A
• Thermopad

50 VOLTS
65 WATTS

High·Efficiency Compact Package

• Complementary to NPN MJE205, MJE205K
• Choice of Packages - MJE105 - Case 90
MJE105K - Case 199

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

50

Vdc

Collector-Base Voltage

VCS

50

Vdc

Emitter-Base Voltage

~

4.0

Vde

Collector Current

IC

5.0

Adc

Base Current

IS

2.5

Adc

POll)

65
0.522

Watts
W/oC

TJ, T stg

-55 to +150

DC

Symbol

Max

Unit

8JC

1.92

°C/W

Total Device Dissipation @ T C = 2SoC

Derate above 25°C
Operating and Storage Junction

MJE105

~

Temperature Range

THERMAL CHARACTERISTICS

CASE 90-05

Characteristic

Thermal ReSistance, Junction to Case

(1) Safe Area Curves are indicated bV Figure 1. 80th limits are applicable and must be observed.

ELECTRICAL CHARACTERISTICS tT c

IOFF CHARACTERISTICS

Characteristic

=<

I

Collector-Emitter Breakdown Voltage (2)
(lC = 100 mAde, IS = 0)

Collector Cutoff Current
(VCB
(VCS

= 50 Vde,

IE
= 50 Vdc, IE

= 0)
= 0, TC = lSOOC)

Emitter Cutoff Current
(VSE = 4.0 Vdc, IC = 0)

~mbol

I

Min

IMax

50

-

-

-

0.1
2.0

IESO

-

1.0

Unit

Vde

BVCEO
ICBO

I

mAde

mAde

ON CHARACTERISTICS
DC Current Gain
(lC =2.0 Ade, VCE
S...·Emitter Voltaga
(lc = 2.0 Adc, VCE

MJE105K

25°C unless otherwise noted)

= 2.0 Vde)

= 2.0 Vde)

I

,
CASE 199-04

-

hFE
25

100

-

1.2

Vdc

VSE

(2) Pulse Test: Pulse Width ::S;;:300 IolS, Duty Cycle <;:2.0%.

472

MJE105, MJE105K (continued)

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
I0

1. O~TJ= 151JOC
5. 0

Ie

100",

......

~

~ 3. 0

-"

I-

~ 2.0

B

~ ~:

transistor; average junction temperature and second breakdown.
Safe operating area curves Indicate Ie - VeE limits of the tranSistor
that must be observed for reliable operation; I.e., the transistor must
not be subjected to greater diSSipation than the curves indicate.

1\

1.0p-----THERMAL LlMIT@TC= 250C

'"

There are two limitations on the power handling ability of a

'"

l\li.o~s

1~---BONOINGWIRE LIMIT
5
SECOND BREAKDOWN LIMIT

The data of Figure 1

3.0

5.0

1.0

vanable

breakdown_

(See A N-4151

.J

-.11 J 1
2.0

IS

temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitatIons Imposed by second

11

MJEI05. MJEI05K

O. I
1.0

based on TJ(pkl = 150°C; TC

lor duty cycles to 10% provided T J(pkl s:1500C. At high case
d,

8 o. 3
Eo. 2

IS

dependmg on conditions. Second breakdown pulse limits are valid

--

10

20

30

50

VCE. COLLECTOR-EMITTER VOLTAGE (VOLTSI

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - DC CURRENT GAIN

50

2.0

1I11

I.S

~o
>

=-

'"~

ffi

TJ = 25°C

I. 6

I.2

0.8

:;:::::P'"

VBE(satl @IclIB = 10 ""'\.

o

I

I V~E~~t; ~ 'lclIB = 10

1.0

~

0.7

l-"

r--

-55°C

60

1"\

0

1'0.

;

O. I
0.01

2.0 3.0 5.0

0.02 0.03

0.05

0.1

0

"'-

"

MJEI05. MJEI05K

"-

"I,,

0
0

"25

0.2 0.3

0.5 0.1 1.0

IC. COLLECTOR CIJRRENT (AMPS)

~

0

r.. .
r...."

03

FIGURE 4 - POWER DERATING
65

.......

'-'
o 0.2

V

0.02 0.03 0.05
0.1
0.2 0.3 0.5
1.0
IC. COLLECTOR CURRENT (AMPSI

25°cJ.

I--'

~ 0.5

'"
B

0.4 I-- VSE @VCE = 2.0 V

0.01

----

I'...

I-

1 I II

o
> 0.6

0.2

~

o
;

VCE=2.0V -

TJ .115OO,C

~

I.4

1.0

3.0

N

::J

.. 2.0

50
15
100
TC. CASE TEMPERATURE (DC)

473

125

"

150

115

2.0 3.0 4.0

MJE105, MJE105K (continued)

MJE105

MJE105K

STYLE 1:
PIN I. BASE
2. CO LLECTO A
3. EMITTER

STYLE 2:
PIN I. EMITTER
2. COLLECTOR
3. BASE
MILLIMETERS
DIM MIN
MAX
A
B
C
D
F
G
H
J
K
M
Q

R
U

INCHES
MIN MAX

INCHES
MIN MAX

16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51
3.76
4.22 BSC
2.67
2.92
0.813 0.864
15.11 16.38
90 TYP
4.70 4.95
1.91
2.16
6.22 6.49

R
S
T

CASE 90-05

U

NOTE:
I. LEADS WITHIN .005" RAO OF TAUE
POSITION ITP) AT MMC

0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100BSC
0.105 0.115
0.017 0.027
0.580 0.590
0.085 0.095
30 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255

I. DIM "G"IS TO CENTER LINE OF LEADS.

CASE 199-04

474

MJE170 thru MJE172 PNP (SILICON)
MJE180 thru MJE182 NPN

COMPLEMENTARY PLASTIC SILICON
POWER TRANSISTORS

3 AMPERE

designed for low power audio amplifier and low current, high
speed switching applications.
•

POWER TRANSISTORS
COMPLEMENTARY SILICON

Collector· Emitter Sustaining Voltage VCEO(sus): 40 Vdc - MJE170, MJE180
: 60Vdc - MJEl71, MJE181
: 80 Vdc - MJEl72, MJE182

•

DC Current Gain hFE: 30 (Min) @ IC : 0.5 Adc
: 12 (Min) @ IC: 1.5 Adc

•

Current·Gain - Bandwidth Product tr: 50 MHz (Min) @ IC: 100 mAde

•

Annular Construction for Low Leakages ICBO: 100nA(Max)@RatedVCB

4()'6()'80 VOLTS
12.5 WATTS

MAXIMUM RATINGS
Rating

MJE170 MJE171
MJE180 MJE181

Symbol

Collector-Base Voltage

Collector-Emitter Voltage
Emitter-Base Voltage

MJE172
MJE182

Unit

VeB

60

80

100

Vdc

VeEO

40

60

80

Vdc

VEB

----7.0-

Vdc

Ie

-3.0-6.0----

Adc

Base Current

IB

Total Device Dissipation @ T A"" 2SoC

PD

1.0_ -_ _ 1 . 5 _

Watts

---0.012_
__

Watts

Collector Current ~ Continuous

Peak

Derate above 2SoC
Total Device Dissipation @TC-2SoC
Dera1te above 2SoC

~12.5--

PD

Operating and Storage Junction

- - - - 0.1 - - - _-65to+150 _ _

TJ,T stg

Adc

w/oe
w/oe
°e

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Thermal Resistance, Junction to Case

eJC

10

°e/w

Thermal Resistance, Junction to

eJA

83.4

°C/W

Unit

Ambient

S-H~l--D

1l

~GC

MJ~-t

I

MILLIMETERS
FIGURE 1 - POWER DERATING

DIM

MIN

MAX

A
8

10.80
7.49

11.05
7.75
2.67
0.66
3.0

c

U)

~

2412

D
F

h

"-

~ 2.010

G

"-

2

o

~ 1.68.0

iii

.....

01.26.0

r-..

""

~

~c

I"
r--.,

~ 0.84.0

I'

0.420

H
J
K
M

I"

r-...

" :"
.......

40

60

80

2.41

0.6
16.64

30 TYP

n

3.76

4.01

R
S

1.14

1.40
0.89

U

"

2.16

0.38
15.38

0.64
3.68

3.94

........ ~

o 0
20

2.41

0.51
2.92
2.36 Bse

100

120

~
140

160

T, TEMPERATURE (OC)

475

CASE 77-03

MJE170, MJE171, MJE172, MJE180, MJE181, MJE182 (continued)

ELECTRICAL CHARACTERISTICS (T C; 25 0 C unless otherwise notedl

I

I

Characteristic

Symbol

Min

Max

40
60
80

-

-

0.1
0.1
0.1
0.1
0.1
0.1

-

0.1

50'
30
12

250

-

0.3
0.9
1.7

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

(lC; 10 mAde, IB = 0)

Collector Cutoff Current

(VCB =
(VCB =
(VCB =
(VCB =
(VCB =
(VCB=

Vde

VCEO(susl
MJE 170, MJE 180
MJE171, MJE181
MJEI72, MJE182

/lAde

ICBO

60 Vde, IE = 0)
80 Vde, IE = 0)
100 Vde, IE = 0)
60 Vde, IE = 0, TC = 150°C)
80 Vde, IE = 0, TC = 150°C)
100Vde,IE =0, TC; 150°C)

MJE 170,
MJE171,
MJEI72,
MJE 170,
MJE171,
MJE 172,

MJE 180
MJE181
MJE182
MJE 180
MJE181
MJE 182

Emitter Cutoff Current
(VBE = 7.0 Vde, IC = 0)

mAde

/lAde

lEBO

ON CHARACTERISTICS
DC Current Gain

-

hFE

(lC; 100 mAde, VCE = 1.0 Vde)
(lC; 500 mAde, VCE = 1.0 Vde)
(IC = 1.5 Ade, VCE ; 1.0 Vde)
Collector-Emitter Saturation Voltage

Vde

VCE(sa')

(lc = 500 mAde, I B = 50 mAde)
(lC = 1.5 Ade, IB = 150 mAde)
(lC = 3.0 Ade, IB ; 600 mAde)

-

-

Base-Emitter Saturation Voltage

Vde

VBE(sati

-

(lC = 1.5 Ade, IB = 150 mAdcl
(lc = 3.0 Ade, I B = 600 mAde)

Base-Emitter On Voltage
(lc = 500 mAde, VCE = 1.0 Vde)

-

1.5
2.0

-

1.2

50

-

-

50
30

Vde

VBE(on)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (1)
Output Capacitance

pF

Cob

(VCB· 10 Vde, IE • 0, f = 0.1 MHz)
(I)

MHz

fT

(lC; 100 mAde, VCE = 10 Vde, f test = 10 MHz)
MJEI70/MJEI72
MJE180/MJE182

-

fT = Ihle ,e I test

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

H

FIGURE 3 - TURN-ON TIME

vcc

30 0

+30 V

200
10

RC

+~'J __ 1__ ,

!w
51

-=

VCC-30V _
r-ICIIB =10
VB E(olf) =4.0 V
Tr 25°C':: ~

,-,,"

O~

=1==

SCOPE

RB

-9.0 V

tr,tf~10ns

I II

'>="

0,

~-

50
0

'

0

."' .....

...

..........
$'

......

td

-=

0

-4V
DUTY CYCLE = 1.11%
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

7JJ
5.0

Dl MUST BE FAST RECOVERY TYPE, .g:
MBD5300 USED ABOVE IB =100 mA
MSD6100 USED BELOW IB =100 mA

3.0
0.03

For PNP test circuit, reverse all polarities.

PNP MJE170/MJE172

I I I I I I I NP~ MJ~'80/MiE'~2
0.05 0.07 0.1

0.2

0.3

0.5

0.7

1.0

IC, COLLECTOR CURRENT (AMP)

476

2.0

3.0

MJE170, MJE171, MJE172, MJE180, MJE181, MJE182 (continued)

FIGURE 4 - THERMAL RESPONSE
I.0

O. 7~O=0.5
O. 5

...,,::,

...-

i~ o. 3 r - - _0.2

8JCIt) = rlt)8JC
8JC' 10oC/W Max

"'«

~~ O.2 r - - -0.1

.... 0

~

~~

±JUl

0.05

Ci)~ o.
~~o.o ;~ ~0.02
........
::'0.01

2~o.o 5~
~a::0.03

-

~~~

~O (rINTL~ p~LrEi

I I

0.0 I
0.02

III

0.05

I- I -~ Jlplt)

DUTY CYCLE, D = '1/'2

0.02

II 1111

I
0.1

0.2

0.5

1.0

D CURJES A~PL ~ F~RI POWER =
1= F
~
f= PULSE TRAIN SHOWN

2.0

5.0

=~

1= f-READTIMEAT'I
1-

I TC i P1pr) ~JClltll

I

10

-

I I III
50

20

100

200

t, TIMElms)

ACTIVE·REGION SAFE OPERATING AREA
FIGURE 6 - MJEI80, MJE181, MJE182

FIGURE 5 - MJEI70, MJEI71, MJE172
0

.., 5.

10

0

~ 2.0

....

~

a

"\. f\

de

~·t

500ps

..,

5.0

~

'"
....

2. 0

~

1. 0

::::>

2- I",

~ ::
o
~o.o

1/

..........

0
1.
O. 5

a::

100

.....

-

- - - -

5~

0.0 2
0.0 I
1.0

2.0

3.0

u

TJ = 150°C
5.0ms
BONDING WIRE LIMITED
THERMALLY LIMITED @ "~
TC = 25°C IS1NGLE PULSE)
SECOND BREAKDOWN LIMITED
CU RVES APPLY BELOW
RATED VCEO -MJE170
MJE171
MJEI72
5.0
10
20
30

O. 5

a::

~

....
.....

--

2 - _____

CURVES APPL \ i~W
RATED VCEO
MiEI80

200

~
~

r-....
i"-

100
70
50

,

........

i:L

"-

.....

.e-

...

0.2

0.3

.......

0.7

1.0

'"....

U

30

<5

20

10
0.5

3.0

IC, COLLECTOR CURRENT (AMP)

.......

PNPMJEI70/MJE172 I-NPN MJEI80/MJEIB2 f-

II
Cib

"- .....

z

r---

2.0

-

I"-....

...........
I .......

I-0.5

100

TJ- 25 0 C-f-

........

50

u

r- I I I I I tN rYMJEi82
0.05 0.07 0.1

i'i'-

70

~

0.03

70

FIGURE 8 - CAPACITANCE

-=

of- - - - PNP MJE170/MJEI72

50

30

to values less than the limitations imposed by second breakdown.
(See AN-415)

VCC - 30 V_
ICIIB·1O
IBI-IB2 TJ < 25°C

0

I0

20

100

ts

......

10

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 7 - TURN-OFF TIME

~f

5.0 7.0

3.0

variable depending on conditions. Second breakdown pulse limits
are valid fordu'y cycles to 10% provided TJ(pk) < IS00C. TJ(pk)
may be calculated from the data in Figure 4. At high case tempera·
ture, thermal limitations will reduce the power that can be handled

transistor - average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·
sistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The da.a of Figures Sand 6 is based on T J(pk) = ISo"C; T C is

300

~~~~:~

I I II
2.0

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
There are two limitations on the power handling ability of a

1000
70 0
500

TJ < 150°C
BONDING WIRE LIMITED
THERMALLY lIMITED@
TC = 25°C ISINGLE PULSE)
SECOND BREAKDOWN LIMITED

"-

O.

0.0 1
1.0

100

~

de

0.02
50

500ps

V

t'--

5.0 ms

_ o. 1:===
8 5=
.=?o.o

I II

1001-'~m

r ....

0.7

1.0

2.0

.......
3.0

Cob

5.0

7.0

- r- -

10

VR, REVERSE VOLTAGE IVOLTS)

477

i""- t--

20

30

50

MJE170, MJE171, MJE172, MJE180, MJE181, MJE1:82 (continued)

NPN

PNP

MJE180. MJE181. MJE182

MJE170. MJE171. MJE172
FIGURE 9 - DC CURRENT GAIN
200

i--

i - r-I-TJ= 110~C

rt- I--

0

...'"z

0

-I-

-55°C
0

~
0.05 0.07 0.1

0.2

0.3

0

~
i3

50

c

30

u

0

10
0.03

I--

25°C

z \0 0

VCE - 1.0 V

.....

::t.

25°C

0

- r-....

200

VCE,1.0V

.T]Ji50oC

0.5 0.7

10

r-

-55°C

~

"\

......

"- ~

0

~

\\,

2.0

~

"

I0

0.03

3.0

0.05 0.07 0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

FIGURE 10 - "ON" VOLTAGES
4

1.4

I- TJ' 25°C

~

1.

0

V~EI~') ~ :clIs - 10

c

~ o.s

'~"

o.6 i- VSE@VCrl.0V

1. 2

./

0.05 0.07 O. I

0.2

0.3

O. S

'";5;0

O.6 - VISE

2.0

1.0

....,

I

v

./

...

I 11111

O. 2

IC/IS-50

0.5 0.7

f ~Cllll~

....-

>- O. 4

./

IclIs~

f-- VCElsat)
0
0.03

~
>

. / ./

O. 2

VSE(~ti@IICIIB= \0

~

/

L

V
'/ .

;:;; 1.0

/

>

;;;.- O.4

/

I-- TJ =25 0 C

-

1. 2

VCElsa,)@IC/ls=5.0and \0
0
0.03

3.0

0.05 0.07

0.2

0.1

IC, COLLECTOR CURRENT lAMP)

0.3

0.5 0.7

1.0

2.0

3.0

IC, COLLECTOR CURRENT lAMP)

FIGURE 11 - TEMPERATURE COEFFICIENTS
U

+2.0

"->
~ +1.0

~

II
II

'APPliES fO R Iclis '" hfE/2

II II
II II

~

ttr

~

25°C to 1500C~
BvS fOR VSE

~ -2. 0

...
i

-3.0
0.03

,/

0.2

0.3

0.5

0.7

II II

*

/'

-55 0 q to 25 0 C

~
~ -2. 0

3.0

IC, COLLECTOR CURRENT lAMP)

./

-3.0
0.03

BVB fOR VBE
-550C to 25°C

I j 11
II II
0.05 0.07

I I III

0.1

0.2

0.3

I III

0.5 0.7

IC, COLLECTOR CURRENT lAMP)

478

/

250Cto~

-

...
i

V

1111../ V
V

~ -1.0

~

2.0

l-J-fttf

'BVC fOR VCElsa')

w

V

1.0

250C to 150 0 C

13

It!
11'1

0.05 0.07 0.1

111111
111111

II II

~

-55°C to +25 0C

ILL
II I

'APPliES fOR IC/IB '" hfE/2

i3

I ffll

§i-I.0

+2.0

;; +1.0

~

-550C to 250 C

w

./

....-

250C to 1500 C

'BVC fO R VCE(sa!)

i3

u

3:E

1.0

2.0

3.0

MJE200 NPN (SILICON)
MJE210PNP

COMPLEMENTARY SILICON POWER
PLASTIC TRANSISTORS

5 AMPERE

designed for low voltage, low-power, high-gain audio amplifier
applications.
•

Collector-Emitter Sustaining Voltage VCEO(sus) = 25 Vdc (Min) @ IC = 10 mAdc

•

High DC Current Gain -

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.3 Vdc (Max) @ IC = 500 mAde
= 0.75 Vdc (Max) @ IC = 2.0 Adc

•

High Current-Gain - Bandwidth Product fT = 65 MHz (Min) @ IC = 100 mAdc

•

Annular

POWER TRANSISTORS
COMPLEMENTARY SILICON
25 VOLTS
15 WATTS

hFE = 70 (Min) @ IC = 500 mAdc
= 45 (Min) @ IC = 2.0 Adc
= 10 (Min) @ IC = 5.0 Adc

Construction for Low Leakage - ICBO =100 nAdc@RatedVCB

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCB

40

Vdc

VCEO

25

Vdc

VEB

8.0

Vdc

IC

5.0
10

Adc

Collector-Base Voltage

Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Peak
Base Cu rrent
Total Device Dissipation @TC

IB

1.0

Adc

= 25°C

PD

15
0.12

Watts
W/oc

= 25°C

PD

1.5
0.012

Watts
W/oC

TJ,Tstg

-65 to +150

°c

Derate above 25°C
Total Device Dissipation @ T A
Derate above 2SoC

Operating and Storage JUnction
Temperature Range

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

eJC

8.34

°C/W

Thermal Resistance, Junction to Ambient

eJA

83.4

°C/W

Characteristic

FIGURE 1 - POWER DERATING
6

1.6

r--.

2

.........

1

.........

I'-

0

~

.........
0

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 10.80 11.05 0.425 0.435
B
7.49
7.75 0.295 0.305
C
2:41
2.67 0.095 0.105
0
0.51
0.66 0.020 0.026
F
2.92
3.00 0.11
.1
G
2.36 SSC
0.093 BSC
H
2.16
2.41 0.005 0.095
I
0.3B
0.64 0.015 0.025
K 15.3B 16.64 0.605 0.655
M
3 TVP
3'TYP
n 3.76 4.01 0.148 0.158
R
1.14
1.40 0.045 0.055
S
0.64
0.89 0.025 0.035
U
3.68
3.94 0.145 0.155

0

.........

NOTE:
1.

0
20

40

60

80

100

120

"140

0
160

T, TEMPERATURE (OCI

479

MT~

MAIN TERMINAL

CASE 77-03

MJE200, MJE210 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unle.. otherwise noted)

I·

I

Characteristic

Symbol

Min

Ma,.

Unit

VCEO(sus)

25

-

Vde

-

100
100

nAde
/lAde

-

100

70
45
10

180

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lc = 10 mAde, IS = 0)
Collector Cutoff Current
(VCS = 40 Vde, IE = 0)
(VCS = 40 Vde, IE =, 0, TJ = 1250 C)

ICSO

Emitter Cutoff Current
(VSE = 8.0 Vde, IC = 0)

IESO

nAde

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 2.0 Ade, VCE = 1.0 Vde)
(lC = 5.0 Adc, VCE = 2.0 Vdc)

-

hFE

Collector-Emitter Saturation Voltage (1)
(I C = 500 mAdc, IS = 50 mAdc)
(lC = 2.0 Adc, IS = 200 mAde)
(lc = 5.0 Adc, IS = 1.0 Ade)

VCE(sat)

Base-Emitter Saturation Voltage (1)
(lc = 5.0 Adc, IS = 1.0 Adc)

Sase-Emitter On Voltage (1)
(lc = 2.0 Ade, VCE = 1.0 Vde

Vdc

-

0.3
0.75
1.8

VSE(sat)

-

2.5

Vdc

VBE(on)

-

1.6

Vde

IT

65

-

MHz

-

80
120

DYNAMIC CHARACTERISTICS
Current·Gain - Sandwidth Product (2)
(lC = 100 mAde, VCE = 10 Vde, I test

= 10 MHz)

Output Capacitance
(VCS= 10Vdc,IE =0,1=0.1 MHz)

pF

Cob
MJE200
MJE210

(1) Pulse test: Pulse Width = 300 /lS, Duty Cycle'" 2.0%.
(2) IT = hlel • f test

I

FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
300

+30 V
VCC

I~~~: ~~ V _

200

RC

TJ" 25 0 C100

SCOPE

RB

;::
'"
w

51

""

tr,tf~10ns

DUTY CYCLE" 1.0%

-4 V

.......

30
20

r""

'-.

"

-1'd l@IVrrO ff j5.0(' ' ....

7.0

0, MUST BE FAST RECOVERY TYPE, eg
MBD5300 USED ABOVE IB ~100 mA
MSD6100 USED BELOW IB ~100 mA

Ir

70
50

10

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVelS

"

.....

t-.

-.

....

MJE200INPN)
MJE210 IPNP)

5.0
3.0
0.05 0.07 0.1

FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES

0.2

0.3

0.5

0.7

1.0

IC, COLLECTOR CURRENT (AMP)

480

2.0

3.0

5.0

MJE200, MJE210 (continued)

FIGURE4 - THERMAL RESPONSE
1. 0
z

o. 7~
o. 5

~a

o.31--- -0.2
o. 21--- -0.1

~

~
fa

"w
~~

~~

D =0.5

~

O.~

o. I

-

....

f-- 1-10-

~ -I-OJC(t} =r(t} OJC
kl
- - OJC = B.34 oC/W Max--

p(

as gO.D5
~

,..----

~

0.0 3'---

-"

0.0 2

....

'2

t-

~(iI0.D1

1111

I I

0.1

0.05

:::0 CURVES APPL Y FOR POWER;::
-PULSE TRAIN SHOWN
READ TIME AlII

==

~
12

-

DUTY CYCLE. 0 = 1)112

(SiNGLE PULSEI

0.0 1
0.02

1 1 1 1 1 11

p

:: ~ 0.0 7

0.5

0.2

1.0

2.0
t. TIME (msj

I I

II I

5.0

10

Yi

Ptj1tJC(11

I

I

I

TJtlj

20

f--

I I
100

50

200

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
1. 0

500ps

7. 0
.... 5.0

~
....

3. 0

15
0:

2. 0

a:

13
0:

o

~
_

8

p....., 100ps':=

1.0m

.....

't r:1

There are two limitations on the power handling ability of a
transistor
average Junction temperature and second breakdown.
Safe operatmg area curves Indicate le·VeE limits of the transistor
that must be observed for reliable operation, I.e., the transistor
must not be subjected to greater diSSipation than the curves indicate.
The data of F .gure 5 IS based on T Jlpkl = 1500 C; T C IS variable
depending on conditions Second breakdown pulse limits are valid

.~

0

"-

'"
J fft-::' I'\. r\

de

TJ = 150 0C
1.0
BONDING WIRE LIMITED
0C
o. 7~--- THERMALLYLIMITEO@TC=25
(SINGLE PULSEI
0.5
~--- SECOND BREAKDOWN LIMITED

E ---

r-

for duty cycles to 10% provIded T Jlpkl';; 15o"C. T J(pkl may be

~~~~~SV~~OLY BELlOW I

!:? 0.3

calculated from the data In Figure 4. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitatiOns Imposed by second breakdown

"-

0.2

(See AN·4151
O. I
1.0

2.0
3.0
5.0
7.0
10
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTSI

20

30

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN-OFF TIME
100 0
70 0
50 0
300

I--

200

~.

]
~ 100
~. 70
0
0
O
10

'"
----

-

200

=
=

I-t-

VCC - 30 V'
IcllB -10
IBI = IB2 _

r-+-

Is

...

TJ=250~_

~

.... j-...

:--..

MJE200 (NPNI
MJE210 (PNPI

1'--,

t-itf

-

1"'-::

.....
w
'-'

1-.

-

Z

~
u

t-

10 0

I"-

0

-~

2.0

3.0

5.0

481

t..::

-

I-

Cob

- - - MJE200 (NPNI
""MJTr

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMPI

t J 5 0C I--

T"'-t--.

,...;

0

0

II

0.05 0.07 0.1

- ri--~

+-

1-1-

20
0.4

0.6

1.0

l

4.0 6.0
2.0
10
VR, REVERSE VOLTAGE (VOLTSI

I-~

20

40

MJE200, MJE210 (continued)

NPN

PNP

I

MJE200

MJE210

FIGURE 8 - DC CURRENT GAIN
400

z

200

25 C

J

.........

I

~~

<
to
....

~

'"
'-'
::>

J

-55 C
100
80

'-'

60

~

40

'"

400

TJ • 1500t

z

"
~ '\

II I

20
0.05 0.07 0.1

ffi

i:l

2.0

'-'

~.

3.0

100
80

c

60

~

40

'l\'
~

-

.. 25JC

....

.""
"

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

200

<

to

~

- - VCE= 1.0 V
- - - VCE=2.0V

II I
i}= 150JC

C'\r\

-55 0C

r-;;,

\"\.

r--. :\-\. .......\',

- - VCP1.0V
- - - VCE = 2.0 V

II I

20
0.05 0.07 0.1

5.0

"\

1,,1\

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

2.0

3.0

5.0

FIGURE 9 - "ON'"VOLTAGE
2.0

2.0
ITl !l50C

~

'"

2:
to

'"~

'"
>

0.8

:>
0.4

o

~

~V

1.2

"'

tl~12~oC

1.6

1.6

VSE(satl@IC/lS.-l0

--

Vlft VC l1.1 V

)c~!satl @iC/lsl" 10

0.05 0.07 0.1

'"2:

~

t:::;:::::'F-""

1.2

"'

to

~'">

O.B

>"

I-"'"

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

/.

2.0

3.0

o

5.0

-

V

.--

JcW)@ IC)I) 10

0.05 0.07 0.1

~ ;::::;-'

.!

LJ UCE -11.0 ~

V
0.4

~

VSE("t) @IC/IS = 10

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

20

~

/

3.0

f7'

V

5.0

FIGURE 10 - TEMPERATURE COEFFICIENTS

u-

S;

~
....
ffi

+2.5
+2.0

8

~

eVC for VCE(..t) . . .

~

-2.0

/

25 0C to 150 0C ,/'
evB for VBE

IIII

-2. 5
0.05 0.07 0.1

-H1"T 1 .........

V

~ +0. 5

8

IJ

~
::>

....

/

~

....

-55°C to 250 C
2.0

3.0

-0:5

~ -1. 0

i

I I
0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

+1.0

~~P~~IES
F6R 11)1 '" l I
I
I I B I FEI3

-1 5

-2 0

.lovc

12150C 101150
II'

LV~E(sat)

n:

J.7 LH/

-

1...- /"

-550C to 25°C

I II
I I I

25 0C to 150 0C........-:

V /'

::::.V

I

I I I
0.2

0.3

0.5 0.7

1.0

2.0

IC, COLLECTOR CURRENT lAMP)

482

P

/

-55 DC to 250C

OVB for VSE

-2 5
0.05007 0.1

5.0

V

I

I I I

u

......... /

25 0C to 150 0C

./

~ -1.0

as'

/17

-5~0~ !012~oc

-0.5

~ -1.5

+2 0

..§. +1. 5

+1.5

~ +0. 5

i

£1;;:

+1.0

U

"'~

+2. 5

.IAWES FO~ IcllB '" h1FE/31

3.0

5.0

MJ E2 05 (SILICON)
MJE205K

MEDIUM-POWER NPN SILICON TRANSISTORS

5 AMPERE
POWER TRANSISTORS

... for use as an output device in complementary audio amplifiers
up to 20·Watts music power per channel.

NPN SILICON

- High DC Current Gain - hF E = 25-100@ IC = 2.0 A
-Thermopad High-Efficiency Compact Package

50 VOLTS
65 WATTS

-Complementary to PNP MJE 105, MJE105K
- Choice of Packages - MJE205·Case 90
MJE205K-Case 199

MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage

Symbol

Value

Unit

VCEO

50

Vde

Collector-Base Voltage

VCB

50

Vde

Emitter-Base Voltage,

VEB

4.0

Vde

Collector Current

IC

5.0

Ade

Base Current

IB

2.5

Ade

Pot

65
0.522

Watts
wflc

TJ, Tstg

-55 to +150

°c

Total Device Dissipatfon@Tc-25vC

Derate above 2SoC

Operating-and Storage Junction
Temperature-Range

MJE205

-

CASE 90-05

THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case

Symbol

Max

Unit

8JC

1.92

°CIW

I

J

tSafe Area Curves are indicated by Figure 1. 80th limits are applicable and must be observed.

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

Characteristic

OFF CHARACTERISTICS
COllector-Emitter Breakdown Volt8get.

I

Symbol

I

Max

I

Unit

Vde
50

-

-

0.1
2.0

-

1.0

25

100

-

1.2

m~dc

ICBO

(VCB = 50 Vde, IE = 01
(VCB = 50 Vde, IE = 0, TC= 150°C)
Emitter Cutoff Current
(VBE = 4.0 Vde, IC = 01

Min

BVCEOt

IIc = 100 mAde, IB = Ol
Collector Cutoff Current

I

CASE 199-04

ON CHARACTERISTICS
hFE

Base·Emitter Voltage
(lC = 2.0 Ade, VCE = 2.0 Vdel

VBE

,

mAde

lEBO

DC Current Gain
(lC = 2.0 Ade, VCE = 2.0 Vde)

I

MJE205K

Vde

:t:Pulse Test: Pulse Width~300 tJs, Duty CycleEt;;2.0%.

483

MJE205, MJE205K (continued)

FIGURE 1 -ACTIVE REGION SAFE
OPERATING AREA
0
). 0t=TJ" 1500C
5. 01-_ ~-I--

_

i

3. 0

!Z
20
~
.

..,

a

1.

~

O.

Note 1:

- . ......
....

I- 1- -

100",

......
~.Om•

7F -

not be subjected to greater dissipatiOn than the curves indicate.
The data of Figur. 1 is based on TJ(pkl = ISOoC; TC IS variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) ,;;1500 C. At high case

BONDING WIRE LIMIT
SECOND BREAKOOWN LIMIT

5

de

-J

8 o. 3
~

that must be observed for reliable operation; Le., the transistor must

1\

It~

op _____ THERMAL LIMIT @lTC • 250C

.., O.

There are two limitations on the power handling ability of a
transistor; average junction temperature ~nd second breakdown .
Safe operating area curves Indicate Ie . VeE limits of the transistor

MJE205. MJE205K

o. 2

temperatures, thermal limItations Will reduce the power that can be
handled to values less than the limitations Imposed by second

1\

breakdown.

(See AN·4151

\

1

o.1

1.0

2.0

5.0

3.0

).0

10

50

30

20

veE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

FIGURE 2 - "ON" VOLTAGES
20
1.8

Ei
w 3.0

Tp 250C

~

CD

«

1.4
1.2
1.0

~ 0.8

0

>

::;

-I- ..-

VBE".!I@lleilB· 10

0.6
0.4
0.2

o

0.01

r;::::V

II

0.020.03 0.05

0.1

..
0

1.0

..,~

0.5

1:l

0.3

'-'
Q

i-'"

25°C

~~

0.1
om

2.0 3.0 5.0

0.02 0.03 0.05

0.1

FIGURE 4 - POWER DERATING

...t=
~

50

~

z

40

::
ill
..,

30

...~cl
...

I

~

.~

1
1

'"

MJE205. MJE205K

.......

.....

"'-

"

CI

20
10

25

I .......

:55.J

0.2 0.3

0.5 0.7 1.0

Ie. COLLECTOR CURRENT (AMPS)

;;;

I"-

0.2

Ie. COLLECTOR CURRENT (AMPSI

65
60

........

ul

.ll'
1.0

VCE-2.0,! -

~

0.1

co

....... 1'

t1JU
0.5

a'"

./

II !I
0.2 0.3

~

V.

..,

VBE @lVCE • 2.0 V

VeE(sa!) @lIe lB' 10

~

2.0

TJ"150·C

~I--

N

1.6

0
~
w

FIGURE 3 - DC CURRENT GAIN

5.0

III

""'-

50
15
100
125
TC. CASE TEMPERATURE (OC)

484

"'"

150

115

2.0 3.0 4.0

MJE205, MJE205K (continued)

MJE205

MJE205K

ll~"'-~

STYLE 2:
PIN 1. EMITIER
2. COLLECTOR
3. BASE

~~C
-It

DIM

MIN

MAX

A
B

16.08
12. 7
3.18

16.33
12.83
3.43

0.51

0.76

C
D
F

G
H
J

K
M
N

n

R
S
T
U

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

3.61
3.86
2.548SC
2.67
2.92

0.43

0.69

14.73 14.99
.1
.41
JOTYP
1.47
1.73
4.78
5.03
1.91
2.16
0.81
0.86
6.99
7.24
6.22
6.48

NOTE:
1. LEADS WITHIN .005" RAO OF TRUE
POSITION ITP} AT MMC

1. DIM "G" IS TO CENTER LINE OF LEADS.

CASE 90·05

CASE 199-04

MJE210 (SILICON)
For Specifications, See MJE200 Data.

485

MJE220 thru MJE225 NPN (SILICON)
MJE230 thru MJE235 PNP

COMPLEMENTARY PLASTIC SILICON
POWER TRANSISTORS

4 AMPERE
POWER TRANSISTORS

. designed for low power audio amplifier and low current, highspeed switching applications.
•

COMPLEMENTARY SILICON

Low Collector-Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - MJE220/MJE222
MJE230/MJE232
= 60 Vdc (Min) - MJE223/MJE225
MJE233/MJE235

40,60 VOLTS
15 WATTS

•

High Current-Gain - Bandwidth Product fr = 50 MHz (Min) @ IC = 100 mAdc

•

Annular Construction for Low Leakage ICBO = 100 nAdc (Max) @ Rated VCB

•

DC Current Gain Specified at 200 mAdc and 1.0 or 2.0 Adc

•

Collector-Emitter Saturation Voltage Specified at 500 mAdc and
1.0, 2.0 and 4.0 Adc.

MAXIMUM RATINGS

Rating

Symbol

MJE220
MJE221
MJE222
MJE230
MJE231
MJE232

MJE223
MJE224
MJE225
MJE233
MJE234
MJE235

Unit

VCB

60

80

Vdc

VCEO

40

60

Vdc

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage

VES

7.0

Vdc

IC

4.0
8.0

Adc

Base Current

IS

1.0

Adc

Total Device Dissipation @ T c:= 25°C

Po

15
0.12

Watts
W/oC

Po

1.5
0.012

Watts
W/oC

Collector Current - Continuous

Peak

Derate above 25°C

Total Device Dissipation
. Derate above 2S0C

@

TA

= 2SoC

Operating and Storage Junction
Temperature Range

-65 to +150

TJ.T,tg

°c
STYLE 1
PIN 1. EMITTER
2. COLLECTOR

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

BJC

8.34

°C/W

Therm1i' Resistance, Jl!.nction to Ambiel;lt

BJA

83.4

°C/W

3. BASE

FIGURE 1 - POWER DERATING

•........
2

"-

,
,
,
"

I'

r-....

.

I'...

"

100

T,TEMPERATURE (OC}

F

I

" G
H
J
K
M

,

,
"'-

"

1

'"

'"

n
R

s

u

,
,
'"

CASE 77-03

486

MJE220 thru MJE225, MJE230 thru MJE235 (continued)
ELECTRICAL CHARACTERISTICS (Tc

I

~ 2soe unl... otherwise noted)

I

Characteristic

Symbol

Min

Max

40

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 10 mAde, IB = Ol

Collector Cutoff Current
(VCB = 60 Vde, IE = 0)

60
ICBO

(VCB

= 80 Vde,

IE

= Ol

(VCB

= 60 Vde,

IE

= 0, Te = 125°C)

(VCB

= 80 Vdc,

IE

= 0, TC = 125°C)

= 7.0 Vde,

IC

-

MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE225,
MJE233,MJE234,MJE235
MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE225,
MJE233,MJE234,MJE235

0.1

/lAde

0.1
0.1

mAde

0.1

Emitter Cutoff Current
(VBE

Vde

VCEO(sus)
MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE22S,
MJE233,MJE234,MJE235

/lAde

lEBO

= 01

-

0.1

MJE220,MJE230,
MJE223,MJE233
MJE221,MJE231,
MJE224,MJE234
MJE222,MJE232,
MJE225,MJE235
MJE221,MJE231,
MJE224,MJE234
MJE222,MJE232,
MJE225,MJE235

40

200

40

150

MJ"22U,MJ"2~0,

20

ON CHARACTERISTICS
DC Current Gain
(IC = 200 mAde, VCE

(lC

(IC

= 1.0 Ade,
= 2.0 Ade,

VCE

VCE

-

hFE

= 1.0 Vde)

= 1.0 Vdel
= 1.0 Vdcl

25
20
10

MJE223,MJE233
Collector-Emitter Saturation Voltage
(lC = 500 mAde, I B = 50 mAde)
(Ie = 1.0 Ade, IB = 100 mAdel

(lC

= 2.0 Adc, IB = 200 mAde)

(Ie

= 4.0 Ade,

IB

= 2.0 Ade,

18

-

= 1.0 Adcl

0.3
V.Il

0.8
2.5

Base·Emltter Saturation Voltage
(lC

Vde

VCE(satl
All Types
MJE221, MJE231,
MJE224, MJE234
MJE220, MJE230,
MJE223, MJE233
All Types

Vde

VBE(satl

= 200 mAdel

Base-Emitter On Voltage
(lC = 500 mAde, VCE = 1.0 Vde)

-

1.8

-

1.5

50

-

Vde

V8E(onl

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC

= 100 mAde, VCE = 10 Vde,

f test

Output Capacitance
(VC8

= 10 Vde,

IE

= 0, f = 0.1

MHz

fT

= 10 MHzl

pF

Cob
MJE220/MJE225
MJE230/MJE235

MHzl

50
70

-

-

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN·ON TIME

500

Vee = 30 v_
ICIIB = 10
TJ=15 oe-t -

300
100
SCOPE

RS

]
w

51

01

'"

;::

~

..'t--

50

......
td @VBE(off) - 5.0 V.....

10

1.0%

t,

70

30

t r• tf~lO ns

OUTY CYCLE

100

t-

t-,

llll

10
7.0

01 MUST BE FAST RECOVERY TYPE, 'g
MBD5300 USED ABOVE 'B_100 rnA
MSD6100 USEO BELOW IB""100 rnA

f=

=

- - -MJE110/MJE115
MJE130/MJE235

5.0 I0.04 0.06

FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES

01

'--- I - -

--"~

-4V

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

.......

"';:::t::,..

:-....

0.1

NPN
PNP
04

0.6

1.0

Ie, COLLECTOR CURRENT (AMPI

487

20

4.0

MJE220 thru MJE225, MJE230 thru MJE235 (continued)

FIGURE 4 - THERMAL RESPONSE
1.0
~

0.7

Z

0.5

:::::::: 0=0.5

0.3

-

~
f:3

~0.2

~S 0.2 f--- f--O.l
:IE!::!
"",..
~
....
~~ 0.1
:: ~ 0.07
1li~0.05 ~
in
f--Z
0.01
i::i 0.03 f--IsjN1Li Py~sp
~ 0.02
c(W

"'

--

dUL

.- 10001-"

PI kl

I

0.0 1
0.02

1

~UTY

II II

0.1

0.05

I

t

~~.02
P

...

--&JcltI=rltl8JC
- - 8JC • B.34 oCIW Max -

P

0.5

0.2

2.0
t. TIMElms)

1.0

~

t2
CYCLE. 0 = \J/12

II

5.0

I I I I II

-

j

TJtll- T{ PIT(JClt'

I

10

~

:::0 CURVES APPLY FOR POWER=:
-PULSE TRAIN SHOWN
READ TIME At tl

20

I I

50

100

f--

200

FIGURE 5 - ACTIVE· REGION SAFE OPERATING AREA
10

~
~
~

5.0

.Oms

2.0

I

1. 0

50

...

....

\01'

~

.

100/IS
/IS

.....

...

O. 5

Safe operatmg area curves mdlcate le·VeE limits of the tranSistor
that must be observed for reliable operation; I.e, the tranSistor
must not be subjected to greater diSSipation than the curves mdlcate
The data of Figure 5 IS based on T J(pk) = 150°C; T C IS variable

t===F=
f::.
•

TJ = 150 0 C
de
BONDING WIRE LlMITEDI-----THERMALLY LlMITED@TC=25 0 C
'" 21ISINGLE PULSE)
~ O. -SECOND
8REAKDOWN LIMITED
_ O.
CURVES
APPLY BELOW
l~E
o
RATED VCEO
~ 0.0
::>

<..>

There are two limitations on the power handling ability of a
transistor. average Junction temperature and second breakdown.

..... 1-\. ,1\
"-

depending on conditions Second breakdown pulse limits are valid
for duty cycles to 10% prOVIded T JlpkJ .;;; 150°C. T Jlpk) may be
calculated from the data In Figure 4 At high case temperatures,
thermal limitations Will reduce the power 1hat can be handled to
values less than the limitations Imposed by second breakdown

\.1\

5r==~

f-+

MJE220/22.MJE230/32

0.0 2

I I I I MJE2P/25.~JE233/35 r-

0.0 1
1.0

2.0

3.0

5.0

7.0

10

20

30

--

50

IS.e AN·4151
70

100

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME
2000

ve~=3bv- ~

.!,

1000

le/IB = 10
IBI = IB2 ==
TJ =25 0 C= ~
~

F=

700
500

]
W

'"

;::

-'

300 ~
200

I'
"

tf

100 I70
50
30

~

"': ......

r- - -M.IE220/MJE225 -

20
0.04

- - -MJE220/MJE225 NPN
--MJE230/MJE235 - PNP

NPN
--MJE230/MJE235 - PNP
0.06

0.1

0.2

10~~~--~~~~~~~~--~~~~~

0.4

0.6

1.0

2.0

1.0

4.0

2.0

3.0

5.0

7.0

10

20

30

VR. REVERSE VOLTAGE (VOLTS)

Ie. COLLECTOR CURRENT lAMP)

488

50

70 100

MJE220 thru MJE225, MJE230 thru MJE235 (continued)

NPN

PNP

I

MJE220 thru MJE225

MJE230 thru MJE235

FIGURE 8 - DC CURRENT GAIN

400

z

200

'"
w
...'"::>'"

.

100

i}'150dC

...

~~OC

IZ

10

<1

I-

ill

50

...

30

...::>'"'"
Q

~
.~

~ 50

...

~

"

30
0.1

0.2

0.4

0.6

1.0

r-...
~

-55°C

'"""'l:::
20

:-.:
~~

\'; ~

10
0.04

4.0

2.0

,

25°C

10

'"

~,

Q

20
0.04 0.06

100

z

-

I VC~=1.0IL
--VCE = 2.0 V

11

--Vcp2.0V

25°C

<1

200

Ii JvcJ'l.ol~_

It'15~OC

300

0.06

0.2

0.1

0.4

0.6

1.0

'~

2.0

4.0

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 9 - "ON" VOLTAGES

2.0

f-

2.0

V~Joc

I-

1.6

J
/- V

~

0

?

1.2

w

'"~

....
0

>
>'

I-

o

~

VSE{sat)@ Iclle = 10

O.S

0.4

Tll

i5 bc

1.6

V,ej jlCE = ,1.0

~

LVCE{,.t)@
JJ Iclle = 10

0.04 0.06

0.2

0.1

k::: V

-

0.4

V

.........
0.6

1.0

~

0

?

1.2

-"~

w

V

'"'~"
0

:>

f- -riEtllcE = \0 V;.
0.4

o

4.0

J

VeE{,.t)@ Iclle = 10

O.S

>

I- -U{l.l)l@
2.0

,A"

17

0.04 0.06

ICII~ lb
=

0.1

IC. COLLECTOR CU RRENT (AMP)

V
t....---'

0.2

0.4

0.6

1.0

4.0

2.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 10 - TEMPERATURE COEFFICIENTS

+2.5

~
>

+2.5
'APPLIES FOR Iclle'; hFE/3

~

+2.0

>

reffi

re
i:5

• OVC FOR VCE{sati

...o

~ -0.5

~~

-1.0

!l

-1.5

~

-2.

...

5 -" 0.06
0.04

25°C to 15~ I--""

-5~olc ~ol t50C

t--

orti7iW-

-2.

r7

.§ +1.5

.§ +1.5
+1.0
U
~ +0.5

'APPLIES FOR Ic/le'; hFE/3
+2.0

"0.1

,

V

J

I-- I- 25iC to 150 0

U

./

II

+1.0

tt

+0.5

8

0

250C to 1500C .-'

'eVC FOR VCE{,.t)

V

-5~0~ tl ~51~

~
~

2~~

~

-1.0
-1.5

I-

0rel F~ R VeE

:> -2.0

...

0.2

0.4

0.6

1.0

2.0

-2.5

0.04 0.06

4.0

489

V

V

1!
0.2

0.4

0.6

1.0

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

1/

-55°C to 250C

II
0.1

./

V

__ I--

I-

1551c 1° 125tf

""""

w

~ -0.5

v l/

P

.J....H-

w

1A""

./

2.0

4.0

MJE240 thru MJE244 NPN (SILICON)
MJE250 thru MJE254 PNP

COMPLEMENTARY SILICON POWER
PLASTIC TRANSISTORS

4 AMPERE

. designed for low power audio amplifier and low-current, highspeed switching applications.
•

High Collector-Emitter Sustaining VoltageVCEO(susl = BO Vdc (Min) - MJE240/2, MJE250/2
= 100 Vdc (Min) - MJE243/4, MJE253/4

•

High DC Current Gain @ IC = 200 mAdc
hFE = 40-200 - MJE240, MJE250
= 40-120 - MJE241,243, MJE251,253
= 25 (Min) - MJE242,44, MJE252,54

•

Low Collector-Emitter Saturation VoltageVCE(sat) = 0.3 Vdc (Max) @ IC = 500 mAdc

•

High Current Gain Bandwidth Product fT = 40 MHz (Min) @ IC '" 100 mAdc

POWER TRANSISTORS
COMPLEMENTARY SILICON
SO, 100 VOLTS
15 WATTS

• Annular Construction for Low Leakages
ICBO = 100 nAdc (Max) @ Rated VCB
MAXIMUM RATINGS
MJE240

MJEN,
MJE242
Symbol

MJE2S0
MJE251
MJE252

MJE243
MJE244
MJE253
MJE2&4

Unit

VCEO

80

100

Vdc

Collector-Ba" Voltage

VCS

SO

100

Vd.

Emitter-B. . Voltage

Ves

7.0

Vdc

IC

4.0
8.0

Ad.

Collector-Emitter Voltage

Collector Current

....

Continuous

a.-Current

IS

Total Device Dissipation@TC"26oC
Detat9 abOve 25°C

Po

Total Device Dissipation
Derate abOve 25°C

Po

II)

TA ... 25°C

I.

1.0

Ad.

0.12

w/oe

1.5

W....
Wt"C

~65

TJ,T,ttI

A

t-

Watts

0.012

Operating .-ad Storage J,unction

M

K

DC

to +150

TemperatUre Range

S
THERMAL CHARACTERISTICS
STYLE 1

Thermal Raistance, Junction to Case

PIN 1. EMITIER

Thermal Raistance, Junction to Ambient

2. COLLECTOR
3. BASE

FIGURE 1 - POWER DERATING
I .6

6

I'""-2

~

0

"

I

"-

0

O
20

40

60

80

"'~

"

100

t"120

...... ~
140

0

160

CASE 77.03

T, TEMPERATURE lOCI

490

MJE240 thru MJE244, MJE250 thru MJE254 (continued)

ELECTRICAL CHARACTERISTICS (TC

I

= 25°C unle.. otherwise nOled)

Symbol

Characteristic

Min

Max

80

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 10 mAde, la = 0)

VCEO(sus)
MJE240,MJE241,MJE242,
MJE250,MJE251,MJE252
MJE243,MJE244
MJE253,MJE254

100

Collector Cutoff Current
(Vca

= ao Vde,

(Vca

= 100 Vde,

(VCE

= ao Vde,

(VCE

= 100 Vde,

= 0)

IE

IE

= 0)

= 0,

IE

IE

TC

= 125°C)

= 0, TC = 125°C)

.Icao

MJE240,MJE241,MJE242,
MJE250,MJE251,MJE252
MJE243,MJE244,
. MJE253,MJE254,
MJE240,MJE241,MJE242
MJE250,MJE251,MJE252,
MJE243,MJE244
MJE253,MJE254

Emitter Cutoff Current

(VaE

= 7.0 Vde,

IC

0.1

-

0.1

-

0.1

-

0.1

-

0.1

40

200

40

120

JolAdc

mAde

IlAdc

IEaO

= 0)

-

Vde

ON CHARACTERISTICS
DC Current Gain
IIc = 200 mAde, VCE

-

hFE

= 1.0 Vde)

MJE240,MJE250
MJE241,MJE251,
MJE243,MJE253
MJE242,MJE252,
MJE244,MJE254
MJE241,MJE251, }
MJE243,MJE253
MJE242,MJE252
MJE 244,MJE254
MJE240,MJE250

II

IIc = 1.0 Ade, VCE

= 1.0 Vde)

IIc = 1.0 Ade, VCE = 1.0 Vde)
IIc

= 2.0 Ade,

VCE

}

= 1.0 Vde)

Collector-Emitter Saturation Voltage
IIc = 500 mAde, I a = 50 mAde)
lie = 1.0 Ade, la = 100 mAde)

IIc
IIc

= 2.0 Ade,
= 4.0 Ade,

VCE(s.,)

All Types
MJE24I,MJE251,
MJE243,MJE253 }
MJE240, MJE250
All Types

la = 200 mAde)
IS = 0.8 Ade)

Base-EmItter Saturation Voltage
IIc = 2.0 Ade, IS

Base-Emitter On Voltage
lie = 500 mAde, VCE

VaE(on)

= 1.0 Vde)

-

20

-

10

-

15

-

-

0.3
0.6

Vde

-

0.8

-

2.5

-

1.8

-

1.5

40

-

-

50
70

Vde

VSE(sal)

= 200 mAtle)

25

Vde

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 100 mAde, VCE = 10 Vde, f ,es'

Output Capacitance
(VCS = 10 Vde, IE

= 0, f = 0.1

fT

= 10 MHz)

Cob
MJE240/MJE244
MJE250/MJE254

MHz)

FIGURE 3 - TURN·ON TIME
500

+30 V
VCC

200
SCOPE
10 0

I-

I'..

./

0
0

51
.:

t,. tf!S10 ns
DUTY CYCLE = 1.0%

TJ-25 0 C- I VCC =30V- f IC/IB= 10 _

300

RC
RB

pF

-

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

MHz

0

.........

0

-4V

...

........

Ir-

.......

.......
F= ---=~~~~=::m~!~~~
7. 01=

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

-

NdIIVBE(iff) = rO V

-

10

01 MUST BE FAST RECOVERY TYPE, ego
MBD5300 USED ABOVE IB ~IOO mA
MSD6100 USEO BelOW IB ~IOO mA

5.0

0.04

0.06

0.1

0.2

0.4

0.6

1.0

FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES
IC, COLLECTOR CURRENT (AMP)

491

2.0

4.0

MJE240 thru MJE244, MJE250 thru MJE254 (continued)

FIGURE 4 - THERMAL RESPONSE
1.0

o. 7=== 0=0.5
0.5

w

'Z"'

~
ff3

0.3

~o 0.2

~~

-

O;!,.-

"'-'
~~ o. 1

---...

~0.2

r-O.I

.",

"r.r-uL

""

PI k)
p

t I-:=J

~ ~o.o 7
a1 0.05::::: ~0.02
0.01
0.03 D ISINGLE PULSE)
>-' 0.02

~"'

a:.

-E

0.0 1
0.02

12
OUTY CYCLE. 0 = 11/12

I

0.1

0.05

=-

1

I I I I III
0.5

0.2

1.0

2.0
I, TIME (m.)

-

I II

I

10

5.0

-r-9JcIO=rlt)8JC
- r - 9JC=B.340CIWMax-t-I I I I I II
=0 CURVES APPLY FOR POWER~
-PULSE TRAIN SHOWN
..
READ TIME AlII

r',

TJlpk) - TC • Plpk)8JCIt)

I,

jell

r-

I I I I I II
50

20

100

200

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
0
5.0

~

2.0

S;

1.0

w

tOjS

..... I"-

-. ~t:

E==~TJ -150°C
de
5.0
5 _ _ BONDING WIRE LIMITED
ms
---THERMALLY lIMITEDIIHC' 250C
2
ISINGLE PULSE)
O.
"\
1 ~ESECONO BREAKDOWN LIMITED
~ O.
b=FCYRVES APPLY BELOW
-'
RATEO VCEO
80.05
!}
0.02
- ~}E~~MJ~242, MJE2501MJE2 2
MJE2431MJE244, MJE2531MJE254
0.0 1
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70

'"a:
'"'
'"
~

::>

There are two limitations on the poWer handling ability of a

transiStor: average junction temperature and second breakdown.
Safe operating area curves ,ndlcate le'VeE limits of the transistor

""'1' .. t'\sn,:

that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
Thedala of F,gure 5 is based on T Jlpk) = 1500 C; TC "variable
depenchng on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provIded T Jlpkl E;; 15o<'C. T Jlpk) may be
calculated from the data In Figure 4. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.
ISee AN·4151

O.

I

100

VCE, COllECTOR·EMITTER VOLTAGE (VOLTS!

FIGURE 6 - TURN-OFF TIME
2000

=F=

1000
700
500

:!

i>-

300

200

.:

100

FIGURE 7 - CAPACITANCE
200

TJ -250C_ f-VCc-30V
Ic/18= 10
181=182

==

100

Is

r-..

"....... ......

70
50

"'
1

30 _ ---~E240/MJE244INPN)
E2501MJE254 PNP)
20
0.04 0.06
0.1
0.2
D.4

0.6

1.0

0

"
2.0

O

0

I0

4.0

1.0

IC, COllECTOR CURRENT lAMP)

---

T}.

r- I"r--Clio

-

r0-

I'-~

- - -MJE2401MJE244INPN)
-MJE2501MJE254 PNPI
2.0

3.0

0:-"'"

+t_
5.0 7.0

II

10

......

20

VR, REVERSE VOLTAGE (VOLTS)

492

25~C

30

50

70 100

MJE240 thru MJE244, MJE250 thru MJE254 (continued)

NPN

PNP

I

MJE240 thru MJE244

MJE250 thru MJE254

FIGURE 8 - DC CURRENT GAIN

500

..:c

200

300 -

~

30
20

j

~

~5~f

...'"z
...

'"'"u::>

---VCE-2.0V

200

100
70
50

=

z

;0;:1=11

~

::....

...
~

20

-550C

~

~~

1""..."'"

i:l

~

~

25°C

70
50
I30

iii
u

co

~

i

ViCE =11.0 V '--Vce- 2.O V ' -

-

T -1500C

100

-560C

10
7.0
5.0
0.04 0.06

. I II

VCE"I.O~_

T -Isooe

10
7.0
5. 0

~

~

"

...

3. 0

0.1

0.2

0.4

0.6

2.0

1.0

2.0
0.04 0.06

4.0

0.2

0.1

IC. COLLECTOR CURRENT (AMP)

0.4

0.6

2.0

1.0

4.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 9 - "ON" VOLTAGES

1.4
I-

/;l

1.2HH-++++-+--t--t-HH-++++-+-"V-7'9--l
d'
1.0H-t-t+t+-t--lf-+H-+t+++t-:,......~
..... fZ-+-H--l

~

0.8 VBE(!", @lIC/IB - 10

~

~.,

II

VBE@VCE=I.OV._+--f-lH++++I-_+-+--AW~
~

~
w

o.8

>
>.

~-HH++-~1-~~~~1BI~~~~~.0~-r-i
~I

1.0

0.1

0.2

0.4

0.6

1.0

2.0

II
II
II
IcllB = 10

VBE@VCE=I.OV

---

I
I

I
/

//

-

5.0

-

"",~LLL

-VeE(sat)

0.04 0.06

'"

h

f-,-",

le/18=IO h
IJd::IV

o

4.0

.....-:::

o.4

o.2

I

o~-~~~LVtCEt~~'t):j~~:t:r:Etlttlttl~~t=:t:j

0.04 0.06

I
I
I
VBE(sa')@

'"
.,~ o.6

~~ O.4HI-+++++-t-+--t-HI-+++++-h~~<-+-i
0.2

~

.,

.....-

0.6

iJ! ~5'oC

I. 2

0.1

0.2

IC. COLLECTOR CURRENT (AMP)

0.4

0.6

II J J

1.0

4.0

2.0

Ie. COLLECTOR CURRENT (AMP)

FIGURE 10 - TEMPERATURE COEFFICIENTS

+2.5

+2.5

£
+2.0
>

"AP LIE

R IcIIB'" hFEI3

:;-

oS +1.5
~

ffi

-I

+1.0

t:;
~ +0.5

250 C '0 150°C _ _
-55 0C'0 25°C

~ -D.5

II

1.0

! . 1-5
i

V

"BvC FOR VCEfI.,)

8w

a. .

"APPLIES FOR IcIIB<:hFE 3

~ +2.0

250~

:~

-2.

-2.
0.04 0.06

0.1

0.4

0.6

+1.0

t:;

e:

;

25 0C10 1500C ..... 1---"

"BVC FOR VCE(sa,

H"1T1

w

-5tC 10 25"C

~ ..0,5

V V

~

a::
~

-1.0

'"' -I.5
~
:> -2.0

-550C '0 25 0C

...
2.0

+0.5

8

..Lk:::: :.-~
1.0

+1.5

~

[!!

-~

II
0.2

..s

/

I
I

4.0

-2.5

1
r-250 ,10 1500J
i
ByBtiRIIBIEII II

0.04 0.06

0.1

?

493

/
/
........ L
/

./ /'"
V

-t I !'"1 iI

5 C 2 C

0.2

0.4

0.6

1.0

IC. COLLECTOR CURRENT (AMP)

Ie. COLLECTOR CURRENT (AMP)

/

2.0

4.0

MJ E340 (SILICON)
MJE340K
0.5 AMPERE
POWER TRANSISTOR
PLASTIC MEDIUM POWER NPN
SILICON TRANSISTOR .. '

NPN

SILICON

.. ' 300VO.LTS
" . 20:8 and 3Q WATTS

· .. designed for power output'stage;; for. television, ~adio, ph'onograph
and other consumer product applications.
• SUitable for Transformerless, Line·Operated:Equipment:
·.C.
• Thermopad Construction Provides High Power DissipatiOn Rating
for· High Reliability

MJE340

• Choice of Packages - MJE340 - Case 77
.
MJE340K - Case 199

MAXIMUM RATINGS
Rating
COII~tor·Emitter
Emitter.B~.

Voltage

Symbol

Value

VCEO

300

Voltage

Unit·

Vde

...

VEB

3.0

Vde.

IC

500

mAde

COlleCtor Current - Continuous

'ASE-77-03

I

. MJE3;40 MJE340K

Po

Total Device Dissipation @TC:: 2SoC

Derate above 25°C
Operating and Storage Junction
Temper-sture Range

T J, Tstg

20.8
0.167

I

Watts
W/oC

3(l

0.24

-65 to +150

°C·

MJE340K

THERMAL CHARAc:rERlgTICS
Characteristic
Thermal Resistance, Junction to Case

,

,

ELECTRICAL CHARACTERISTICSrrC =. 250 C unless otherwise noted)

I

.

Charactaristlc

I.

Symbol

I

Min

I

Max

I

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 1.0 mAde,
= Ol

18

Emitter Cutoff Current
(VEB = 3.0 Vde;'lc ~ 0)

VCEO(sus)

Vdc

300· '

ICBO

100

"Ade

lEBO

100

"Add

ON CHARACTERISTICS
DC Current Gain .
(lC = 5,0 mAde, VCE = 10 Vdel

494

CASE 199-04

"i",

".

MJE340, MJE340K (continued)

FIGURE 1 - POWER TEMPERATURE DERATING
2

8

-

FIGURE 2 - "ON" VOLTAGES
1.0

..........

""",
""'" "
"'"

4

......

B
2

~

0

........

L

to

f"-.

0.4

,/

0

>
,;

:--.....: t--...

VCE(sall

IcilB= 10

0.2

~

100
120
80
80
TC, CASE TEMPERATURE (OC)

40

/

VSE@VCE=lbv

0.6

W

:;
'"

" "MJE340K

0

20

"..,V6A

lL

~

MJE34!I~

0

IL

11

~B~ (Sat) '@ \~I~ = 10
'j TI"ITL

TJ=~50C

O.S

~

140

IL

Icra' j'0

o
180

./"

.....

20

10

30

100

50

200

300

500

IC, COLLECTOR CURRENT (mA)

ACTlVE"REGION SAFE OPERATING AREA
FIGURE 3 - MJE340

FIGURE 4 - MJE340K
I.0

1.0

I

...

0.&

5 0.3
'" 0.2
B
'"

~

0,

S

TJ = 150·

10",~

..

I.~~
~

) )l\.

I

0.06

~ 0.03

-----

500",

_

K:"f-

~-

Z
W

O.2

a

O. 1

::;

'"o

SECOND BREAKDOWN LIMIT
- BONDING WIRE LIMIT
THERMAL LIMIT 41 TC = 25°C

t;
~

'\.

o

'"'

!J

0.02

I

0.0I

I I I

I I

III

I\,

100
200
20
3D
50
VCE, COLLECTOR EMITIERVOLTAGE (VOLTS)

10

0.05
0.03

"~
- ------

~

SECOND BREAKDOWN LIMIT
BONDING WI RE LIMIT
THERMAL LIMIT 41 T = 250C

-

lSi

1S:::t-

500",

~

I--- I- TJ' 150·

0.3

I-

'\

10",

1.0ms

O•5

'\.

0.0 2
0.0 I

300

10

30

20

100

50

300

200

VCE, COLLECTOR·EMITTER·VOLTAGE (VOLTS)

There ara two limitations on the power handling ability of a transistor: average junction temperatura and second breakdown. Safe operating
area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected
to greater dissipation than the curves indicate.
Th. data of Figures 3 and 4 is based on T JJpk) = 1500 C; TC is variable depending on conditions. Second breakdown pulse limits,are valid
for duty cycles to 10% provided T J(pk) S 150"C. At high case temperatures, thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown. (See. AN"415)
FIGURE 5 - DC.CURRENT GAIN

3DO
200

I

'"
...z
...'"::>

..

'"'ul

70
50

CI

~

3D
20

10

_t:::t:- I=:-

I

z
C 100

I-

---Vce=10V -

I

J

TJ = \500

+IOOoC

--- -I"'"

+25oC

'"'""

..-- ....-rf--

1.0

"55°C

2.0

I"""'"

~

- ",

-"",

--

t--

r=-

~....-;;

~

- - .- c\.-;~-'\. -..... ~

-

3.0

-- --- -

-VCE=2.0V

t'~ ~
~

5.0

7.0

10

20

3D

IC, COLLECTOR CURRENT (mAde)

495

50

70

100

200

~

[". ~ ~.......
300

500

MJE340, MJE340K (continued)

MJE340

MJE340K
M
T

I-J
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER

s
STYLE 1
PIN I. EMITTER
2. COLLECTOR
3. BASE

DIM

A
B

DIM
A
8
C

D
f
G
H
J'

K
M
Q

R
S
U

C

MI LL IMETE RS
MIN MAX
1080 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.00
2.31
2.46
2.16
2.41
0.38
0.64
15.38 16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94

D

F
G

MILLIMETERS
MI
MAX
16.08 16.33
12.57 12.83
3.18 3.43
0.51 0.76
3.61 3.86
2.54 Bse

H

2.67

2.92

J

0.43

0.69

K
L

M
N
Q

R
T

14.73 14.99
2.16 2.41
3 TV

1.47
4.78
1.91
0.81
6.9
6.22

1.73
5.03
2.1
.86
7.2
6.48

1. DIM "6" ISTO CENTER LINE OF LEAOS.
CASE 199.04

CASE7HJ3

496

MJE341 MJE341K(SILICON)
MJE344 MJE344K
PLASTIC NPN SILICON
MEDIUM-POWER TRANSISTORS
· •. designed for power output stages in television, radio, phonograph
and other consumer product applications.
• Recommended for 1.5 W Class A Output in Transformer Coupled,
Line-Operated Equipment - MJE341
• Ideal for Audio Output Circuitry in Black and White Television
Receivers - MJ E344
• Choice of Packages - MJE341 , MJE344 - Case 77
MJE341K, MJE344K - Case 199

0.5 AMPERE
POWER TRANSISTORS
NPN SILICON
150-200 VOLTS
20.8 and 30 WATTS

MAXIMUM RATINGS
Rating

Coliector·Emitter Voltage
Coliector~Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Base Current

Total Oeviee Oissipation@Tc=250 C
Derate above 2SoC
Operating and Storage Junction
Temperature Range

Symbol

MJE341
MJE341K

VCEO
Vce
VEe
IC
Ie

150
200
175
200
3.0
5.0
-500--_260_

Vde
Vde
Vde
mAde
mAde

Po

MJE341
MJE341K
MJE344
MJE344K
20.8
30
0.167
0.24
_-65to+150_

Watts
wl"c
°c

TJ,T stg

MJE344
MJE344K

MJE341,MJE344
Unit

CASE 77-03

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Symbol

MJE341
MJE344

MJE341K
MJE344K

Unit

6JC

6.0

4.167

°CIW

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA

MJE341 K, MJE344K

1.0

600",

1

- -

- - -

\.1.0 ..

~

SECOND BRfAKDo\\w Lim

- - -

(011)

"

TJ'" 1500 Ci

BONDING \\IRE LIMIT
THERMAl LIMIT OTc = 25'C

(all)

I\.

ck:

MJE341,344

'ii'i,

0.D2
0.01
10

20

30

40

I

\
1111

2IJO

300

VCE. CDLLECTDR-EMITTER VOLTAGE (VOLTS!

There era two limitations on the power handling ability of 8
transistor: lVerage Junction temperatura and second breakdown.
Safe operating area eurv.. indicate IC-VCE limits of the transistor
that must be obsoJ'vad for reliabl. operation; i.e., the transistor
must not be subjected to greater dissipation than the curvas indicate.
Tho data of Figure 1 i. baaed on TJ(pk) • 15o"C; TC is
_iable depending on cOnditions. Second b ....kdown pul .. limits
. . valid for dutY eyel .. to 10% provided T J(pk) <; l5O"c. At
high e_ temperatures, thermal limitations will redueo tha power
that can ba handled to values I... th,n tho limitations Impoaad by
IOCOnd breakd_n. (See AN-415)

497

CASE 199-04

MJE341, MJE341 K, MJE344, MJE344K (con~iniJed)

ELEcTRICAL cHARAcTERISTICS (Te = 250 e unless otherwise noted)
Symbol

Min

M...

150
200

-

-

1.0

-

1.0

-

0.3

-

0.1

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 1.0 mAde, IB = 0)
Collector Cutoff Current
(VeE = 150 Vde, IB = 01

MJE341,K
MJE344,K

Collector Cutoff Current
(VCB = 175 Vde, IE = 0)
(VCB

mAde

,ICBO
MJE341,K
MJE344,K

= 200 Vde, IE = 0)

mAde

ICEO

= 0)

(VCE = 200 Vde, IB

Vde

VCEO(susl
MJE341,K
MJE344,K

mAde

Emitter Cutoff Current
(VES = 3.0 Vde, IC = 01

MJE341,K

-

0.1

= 5.0 Vde, IC = 01

MJE344,K

-

0.1

20

-

25
30

200
300

20

-

-

1.0

-

2.3

VSE(on)

f-r

(VES

lEBO

ON CHARACTERISTICS
DC Current Gain
(lC = 10 mAde, VCE

(lC

MJE341,K
MJE341,K
MJE344,K
MJE341,K

= 150 mAde, VCE = 10 Vde)

Collector-Emitter Saturation Voltage
(lC = 50 mAde, IB 3 5.0 mAdel
(lC

-

hFE

= 10 Vdel
(lc = 50 mAde, VCE = 10 Vde)

Vde

VCE(setl
All Types
MJE341,K

= 150 mAde, IS = 15 mAdel

Base-E mitter On Voltage
(lC = 50 mAde, VCE = 10 Vdel

1.0

Vde

15

-

MHz

Cob

-

15

pF

hfe

25

-

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 25 Vde, f = 10 MHzl
OutpUt C8pecitance
(VCB = 20 Vde, IE - 0, f

= 100kHz)

Small-8ignal Current Gain
(lC = 50 mAde, VCE = 10 Vde, f = 1.0 kHzl

FIGURE 2 - DC CURRENT GAIN

30tI

VCE'10V

200

.,

~

1011
C
co

.
.

--- VCE =2.OV

TJ' +1600C

Ii:

10

a:
a:

50

oil
~

30

FIGURE 3 - "ON" VOLTAGES

1.0

"

~

""'

20

- r\'
~

r,

; 0.4
c
',>

D.2

I"
\

i"""

10
1.0

2.0 3.0

5.0 7.0 10

OVI
VaE. VCE' 1

..

rr
~~~~ .....

20 30

50 70 1011

r- ~CE(IIIlICnB • lu
"

r-

....

Icna ~ 5.0

o

200 30tI 6011

10

IC, COLLECTOR CURRENT (IlIA)

1.ll~

-

20

30

50

...... ....;
/

/

-/

./

1011

IC, COLLECTOR CURRENT (mAl

498

II

-ri' ..Lk--: '1"

.~ 0.&

+250C

::0

I I II
vat(!'.'IJI

O.8

TJ' +250C_

I I
200

3011

I
5011

MJE341, MJE341K, MJE344, MJE344K

(continued)

MJE341,
MJE344

MJE341K,
.. MJE344K

B
M

T

tSTYLE 1:
PIN 1. SASE
2. co LLECTO R
3. EMITTER

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3.8ASE

DIM

MILLIMETERS
MIN MAX

16.0S 16.33
B 12.57 12.83
e 3.18 3.43
0.51
D
0.76
F
3.61 3.86
2.54 SSC
G
2.92
H
2.67
0.43 0.00
J
K 14.73 14.99
L
.16
.41
M
30 TYP
N
1.47
1.73
Q
4.78
5.03
2.16
R 1.91
S
0.81
0.86
T 6.99
7.24
6.48
U 6.22
A

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
8
7.49
7.75
C
2.41
2.67
o -0.51 0.66
F
2.92
3.00
G
2.31
2.46
H
2.16
2.41
.. J
0.38
0.64
K 15.38 16.64
M
3 TYP
Q
3.76
4.01
R
1.14
1.40
S
0.64
0.89
U
3.68
3.94

INCHES
MIN MAX
0.633 0.643
0.485 0.5050.125 0.135
0.020 0.030
0.142 0.152
0.100 SSC
0.105 0.115
0.017 0.027
0.580 0.590
.085 0.095
3 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255

I. DIM '"G" IS TO CENTER LINE OF LEADS.

NOTE:
1. MT' MAIN TERMINAL

CASE 199{)4

CASE7HJ3

499

MJE350

(SILICON)

PLASTIC MEDIUM POWER PNP
SILICON TRANSISTOR
· .. designed for use in line-operated aud io and telev ision applications
and as low power, lin~operated series pass and switching regulators.
•

High COllector-Emitter Sustaining Voltage VCEO(sus) = 300 Vdc@lIC = 1.0 mAdc

•

Excellent DC Current Gain hFE =30-240 @lIC = 50 mAdc

•

Plastic Thermopad Package

0.5 AMPERE
POWER TRANSISTOR
PNPSILICON
300 VOLTS
20 WATTS

MAXIMUM RATINGS
Rating
COllector-Emitter Voltage

Emitter-Sase Voltage
Collector Current - Continuous

Total Device DiSSipation @TC = 2SoC
Derate above 2SoC
Operating and Storage Junction

Symbol

Value

Unit

Vceo
Ves
IC

300
3.0

Vde
Vde
mAde

Po

20
0.16
-65 to +150

500

T J.Tstg

watt.

A

wf'c
°c

t-

Temperature Range

K

THERMAL CHARACTERISTICS
Thermal Resistance,Junction to case

STYLE 1
PIN 1. EMITTER
2. COLLECTOR

I

3. BASE

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Ch_....lltic

I

Symbol

I

Min

I

MIX

I

Unit

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltogo
(lC· 1.0 mAde. IS • 01

VCEOlsusl

300

-

Vdc

Collector Cutoff Current
(VeB· 300 Vde, IE ·01

leBO

-

100

,.Ado

Emitter Cutoff Current

lEBO

-

100

pAde

(VEB • 3.0 Vdc, Ie· 01

F

G
H
J
K

M
0.
R

ON CHARACTERISTICS
DC Curront Geln
(lC - 50 mAde. VCE.· 10 Vdel

DIM
A
8
C
D

30

240

S
U

MILLIMETERS
MIN MAX
10.80 11.05
748
7.75
2.41
2.67
0.5
0.66
3.00
2.92
2.31
2.4&
2.16
.41
0.38 0.64
16.64
15.38
3 rYP
3.76 4.01
1.40
1.14
0.64 0.89
3.68
3.94

INCHES
MIN MAX
0425 0.435
0.295 0.305
0.095 0.105
10.020 0.026
O. 15 O.l1B
0.091 0.097
0.085 I 0.095
0.015 0.025
0.605 0.&55
3u TYP
0.14B 0.158
0.045 0.055
0.025 0.035_
0.145 0.155

CASE 77-03

500

MJE350 (continued)

FIGURE 2 - "ON" VOL TAGES

FIGURE 1 - DC CURRENT GAIN
200

z

100

to

0

;;:

§
..,~
co

ul
~

1.0

TJ'1500C

r- r-...

J5lc

"
~

-!ls~c

50

.......,

I II

VCE" 2.0 V
- - - VCC'10V

0

10
5.0 7.0

~
w
to

""- '\" '~

III

0

'"

~

""

III

"

50 70 100
20
30
IC. COLLECTOR CURRENT (mA)

10

1~J~~Joc

o. 8

"

~

'">>'

~ '\~.:',,~

200

~

"'::>
~
'"t;

O. 2

V~

j
8

0

!-}

20

Y

VCE(satl
0
5.0 7.0

IC1118" ~.o

10

"'

'de

........

~

100",
I'..

10

20

.
-

TJ,1500C

+0.

E +0.

BONOING WIRE LIMITED
THERMALLY LIMITED iii TC' 25°C
IISEC?NO ~RE~KOIDwr \1~ITED
30

500

: Jill

+25 0 C to +l000 C ,

I...-'V

'OVC for VCE(",)

0

500#.

-55°C '0 +250C'"

4

'\tOm '......

I'..

300

II +100dC'0 +1500C

"Applies for Iclia -

3.0

~

2.0

... ...
dc'" ...
I

TJ=15O'C

i~

1.0

a:
o

r-- t--

1.0m.+-

--

- I-

ii: 5.0

...

5.0 ms

..,~

FIGURE 2

10

!>-

~
a

...........

'"

.- MJE3701(

f-j--

I-..,-.::t--s;

1.0ms

...

5.nm.~

~r--.

3.0
2.0
1.0,1:::==-

dC~r-

TJ=150'C

0

....~ o. 5

- -

8~ o. 3

~

SECONO BREAKDOWN LIMITED
BONDING WIRE LIMITED
THEJMALi Y LtlD

o. 2

ticI t

8

c

~

II

O. 1
1.0

2.0

3.0

5.0

0.5

02

10

30

20

~E±t-

1---111

0.1

- r-H

SECOND BREAKDOWN LIMITED
- - BONDING WIRE LIMITED
--THERI.tALLYLIMITED@TC=25'C

-

OJ

10

5.0

3.0

2.0

VeE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

- l - r-- r-

I I

10

10

30

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS'

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.

The d~ta of Figures 1 and 2 based en T J(pk) -;:: 150°C, TC IS
variabl.e depending on conditions. Se~Qnd breakdown pulse limjt$
are ... ~lId for duty cycles to 10% provided T J)pk) ~ 150°C. At
high case t0moeraturA$h thermal limitations will reduce the POwer

Safe operating area curves indicate Ie - VeE limi~ of the transistor
that must be observed for reliable operation; i.e., the transistor
must natbe subjected to greater dissipation than the curves indicate.

t~e

that can be handled to \lalues less than

limitations imposed by

second braakdown. (Sf'te AN-41S)

FIGURE 3 - DC CURRENT GAIN

.

1000
700
500

FIGURE 4 - "ON" VOLTAGE

5
l.OV

-

f-- -

'i11"
•

VeE

,

'T:rr-;T1
I,

TJ~WC

2

lith I

;!; 300

'" 200

is

±j

....... r-,

+150·C

TJ

!Ii!

G 100

9

150

I i II
:U'j

6

~

10

VBf[utl@Ic/I B

+2S·C

g 70

~

I

'V,,@VeE ~ 2 ~V

55°C

30

V

II

3

20
VCE [,atl@I C /I,-10

ill

I0

2.0 3.0 5.0

20 30 50
100
200 300 500
Ie, COlLECTOR CURRENT (lIlA)

10

1000

2000

O2.0 30 5.0

10

20 30 50
100
200 300 500
Ie, COLlECroR·CU~RENT (mA)

1000

2000

FIGURE 5 - THERMAL RESPONSE
_

1.0

~

1

0.7

0

5.0

0.5
0.2

.... 0.3

~

-'~ o. I

i<= 0.07
0.05

g
!i:

0.1

0.2

0.03

e: 0.02

I"'""

-

~

i-""

1JUL

0.01

~ 0.0I

om

I-

0.05

i,...--""

~I'~
t,

SINGLE PULSE

DUTY CYCLE, 0

0.05

0.1

I,ll,

I I II

..111111
0.02 0.03

9Jc(r)- r(t)9JC
9JC =5.0 CIW Max
MJE370, MJE3370
9JC= 3.125'CIWMax MJE370K
oCURVESAPPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk)-TC p(pk)oJClt)

'r!:?'

0.2

0.3

0.5

1.0

2.0
3.0
5.0
I,TIME Imsi

503

11111

I I

10

20

i
30

50

I
I

100

I
200

i
300

500

1000

MJE370, MJE370K MJE3370 (continued)

F

M

T

tK

s

\-.0

GJ:!

MJE371
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

E9r=I
M-n:::;

C

""T

MJE3371
STYLE 3
PIN 1. BASI?
2. COLLECTOR
3. EMITTER

D~L
Li../it--ill

~~i

DIM

A
DIM

A
B
C

D
F
G
H

J
K
M
Q

R
S
U

B
C

MILLIMETERS
MIN MAX
1080 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.
2.31
2.46
2.16
2.41
0.38
0.64
15.3B 16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
O.SS
3.68
3.54

D

F
G
H
J
K
M
N
Q

R
S
T

MJE370K
STYlE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER

MILLIMETERS
MIN MAX
16.08
12.57
3.18
0.51
3.61
2.54
2.67
0.43
14.73 1

3DT

6.99

1.73
.03
2.16
0.86
7. 4

6.2

6.4

1.47
4.78
1.91
0.81

1. DIM "6"15 TO CENTER LINE OF LEADS.

NOTE:
1. MT = MAIN TERMINAL

CASE 199.(J4

CASE 77-113

504

MJ E371 (SILICON)
MJE371K
MJE3371
4 AMPERE
POWER TRANSISTORS

PLASTIC MEDIUM-POWER PNP
SI LICON TRANSISTORS

PNP SILICON
40 VOLTS
40 and 60 WATTS

. • . designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 20 Watt audio amplifiers utilizing complementary symmetry circuitry.

• DC Current Gain - hFE = 40 (Min) @ IC = 1.0 Adc
• MJE371, MJE371K and MJE3371 are Complementary with NPN
MJE521, MJE521K and MJE3521
• Choice of Packages- MJE371, 40W - Case 77 (E-C-S)
MJE3371, 40W-Case 77 R (S-C-E)
MJE371 K, 60 W - Case 199

MJE3371
Style 3

MJE371
Style 1

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vde

Collector-Sase Voltage

VCB

40

Vde

Emitter-Base Voltage

VEB

4.0

Vdc

4.0

Ade

Rating

Collector-Emitter Voltage

Collector Current - Continuous

IC

CASE 77-03

8.0

- Peak

Base Current - Continuous

2.0

18

Ade

::liN711 I MJE371K
Total Device Dissipation @TC= 2So C

40
320

Po

Derate above 25°C

Operating and Storage Junction
Temperature Range

TJ, Tstg

I

Watts
mW/oC

60
480

MJE371K

°c

-65 to +150

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25°C unle.. otherwise noted)

I

Characto

~

0.1
0.01

0.02 0.03 0.05

0.1

0.2 0.3

0.5

1.0

60

V.

0;

I'-

-55°C

40

TJ=250C

1.6

r--

20

I

TJ" 25°C

~ 3.0

S.O 10

FIGURE 4 -'''ON'' VOLTAGE
2.0

7.0 r-r5.0

6.0

4.0

The data of Figure. 1 and 2 based on T J(pk) "" 150°C; TC Is
variable depending on conditions. Second breakdown pulse limits
er. valid for duty eyel" to 10% provided T J)pk).oS 1150o C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to vsluet leu than the limitations imposed by
second breakdown. (Se. AN-415)

10

I-

l-

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI

There are two limitations on the power handling ability of a
transistor: averagE!! junction temperature and second breakdown.
Safe operating area curves indicate Ie - Vee limits of the transistor
that must be' Observed for reliable operation; i.e.,. the transistor
must not be SUbjeC~~ to g~.&ter dissipation than the curves indicate.

;;:

-

de--,

.... - --Thermal Limit @TC - 250 C

VCE, COLLECTOR·EMITTER VOLTAGE (VOL TSI

~

\

0.2

0.2

5l

"

Bonding Wire limit
Secondary Breakdown

-" -

F'

I

5.0 m~"\

II

0.4

"'

2.0 3.0 4.0

0.005

~
VSE@ VCE • 1.0 V

~6~(sall @IClIs= 10
0.01

IC, COLLECTOR CURRENT (AMPI

0.02 0.03 0.05
0.1
0.2 0.3 0.5
IC, COLLECTOR CURRENT'(AMPI

~
1.0

2.0 3.04.0

FIGURE 5 - THERMAL RESPONSE
1.0 I=:.-:E:F-

-wo 0.7 ~D=0.5
O.5
N
)-._... ::;
~~ 0.3 1--

_.

0.2

",-

.... w

~~

-

-

-.-

-

--

-

r-- f- O.l

0.1 l:= -0.05
rO.02
~ ~ 0.07
:::: ~ 0.05 ~
~

:;;::;'

w-,

rO.Ol

f.1{1- ..",. -

L

f-::: ~

r==

'"'\1
~i 003 1-"2
r--~

--

~2

.:;;a:

:i il

.

1::1

Single Pulse

0.02

I-

0.01

0.01

8JCltI=,ltI8JC

'"~ ~ ~rn'. ~""'

P
(pkl

11
12

8JC = 2.0aoCIW Max - MJE371 K
0 CURVES APPLY FOR POWER
SINGLE 'PUlSE TRAIN SHOWN
PULSE REAO TIME AT 11

DUTY CYCLE, 0 = 11/12

I
0.02 0.03

I II
0.05

I I I I IIIILI
0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

I, TIME OR PULSE WIDTH (msl

506

10

TJ(pk) - TC = P(pk18JCltl

I I J I I IIIIII . I I I
100
20
50
zoo

500

1000

MJE371, MJE371 K, MJE3371 (continued)

M

K

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

MJE371
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

MJE3371
STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITTER
MILLIMETERS

DIM

MIN

A

10.BO
7.49
2.41
0.51
2.92
2.31
2.16
0.38
15.38

B
C

D
F
G
H
J
K
M

n

R
S
U

MAX

11.05
7.75
2.67
0.66
3.00
2.46
2.41
0.64
16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94

DIM

A

a

INCHES
MIN

MAX

0.425
0.295
0.095
0.020
0.115

0.435
0.305
0.105
0.026
0.118

0.091
0.085
0.015
0.605
30 T
0.148
0.045
0.025
0.145

C
D
F
G
H

I

J
K
L
M
N

n

R
S
T

0.158
0.055
0.035
0.155

U

MILLIMETERS
MIN
MAX

INCHES
MIN MAX

16.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61
3.86
2.54 asc
2.67
2.92
0.43 0.69
14.73 14.99
2.1
2.41

0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.1008SC
0.105 0.115
0.017 0.027
0.580 0.590
0.085 0.0 5
3 TYP
0.058 0.068
0.188 0.198
0.D75 0.085
0.032 0.034
0.275 0.285
0.245 0.255

30 TYP

1.47
4.78
1.91
0.81
6.99
6.22

1.73
5.03
2.16
0.86
7.24
6.48

1. DIM "G"IS TO CENTER LINE OF LEADS.

NOTE:

1. Mr= MAIN TERMINAL

CASE 199'()4

CASE 77-fJ3

507

MJE520(SILICON)
MJE520K
MJE3520
3 AMPERE
POWER TRANSISTORS

PLASTIC MEDIUM-POWER NPN
SILICON TRANSISTORS

NPNSILICON
30 VOLTS
25 and 40 WATTS

· . . designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 10 Watt audio amplifiers utilizing complementary symmetry circuitry.
•
•

=

=

DC Current Gain - hFE 25 (Min) @ IC 1.0 Adc
MJE520, MJE520K and MJE3520 are Complementary with PNP
MJE370, MJE370K and MJE3370

• Choice of Packages - MJE520, 25 W - Case 77 (E·C·S)
MJE3520, 25 W - Case 77 (S·C·E)
MJE520K, 40 W - Case 199

MJE520

MJE3520

Style 1

Style 3

MAXIMUM RATINGS
Symbol

Value

Unit

Coliector·Emitter Voltage

Rating

VCEO

30

Vdc

Coliector·Base Voltage

VCB

30

Vdc

Emitter·B.... VoitaQe

VEB
iC

4.0

Vde

3.0

Ado

Collector Current - Continuous

- Peak
Base Current - Continuous

IB

2.0

@l

T C = 25°C

Po

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ. Tag

Adc

:i3SCa I
25 -r 40
0.2
0.32
E

Total Device Dissipation

CASE 77-03

7.0

MJE528K

-65 to +150

Watts
W/oC
°c

MJE520K

THERMAL CHARACTERISTICS
Characteristic

Thertnal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 2SoC uniess otherwise notedl
Characteristic

I Symbol

Min

Max

30

-

Vde

ICBO

-

100

pAdc

leBO

-

100

pAdo

Unit

OFF CHARACTERISTICS
Coliector·Emitter Su ...ining Voltage (11
IiC· 100 mAde,IB· 01
Coliector·B... Cutoff Current
(VCB * 30 Vdo, iE ·0)

VCEO(susl

Emitter-Base Cutoff Current

IVEB • 4.0 Vdc, IC· 01
ON CHARACTERISTICS
DC Current Gain (11
IiC· 1.0 Ado, VCE = 1.0 Vdcl

I

hFE

(1) Pulse -ra.t: Pulae Width S300/JI, Duty Cycle ~2.0".

508

CASE 199-04

MJE520, MJE520K, MJE3520 (continued)

ACTIVE-REGION SAFE OPERATING AREA
10

_.

FIGURE 1 - MJE520 MJE3620

--r- - -

f-

5.0

Q;

!

2. 0

.

i

'"
t.)

'" 1.0

~...

........

5.0

!

3.0

~

2.0

~......

8

.§

O. 2

I

O. 1
1.0

I I III

3.0

2.0

10

5.0

20

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
Safa operating are. curves indicate Ie . VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor

3.0

0.2

I
2.0

1.

20

10

30

1.5

Ve

$ 300
~

~B1

FIGURE 4 - "ON" VOLTAGE

FIGURE 3 - DC CURRENT GAIN

g-

5.0

3.0

are valid for duty cycles to 10% provided (T Jpk) E;;;; 150°C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to values Ie.. than the limitations imposed by
second breakdown. (See AN -415)

must not be subjected to greater dissipation than the curve. indicate.

15

tsl-

VCE. CDLLECTOR·EMITIER VOLTAGE (VOLTS)

average junction temperatura and second breakdown.

1000
700
SO0

--=:.1.0 ml-

The data of Figures 1 and 2 based on TJ(pk) = 150o e; TC is
variable depending on conditions. Second breakdown pulse limits

Ther. a,e two limitations on the power handling abilitv of a
transistor:

- ..

SECOND BREAKDOWN LIMITED
- BONDING WIRE LIMITED
THERMALLY LIMITED. TC' 25°C

-

0.5

O. 1
1.0

30

- MJE620K

~

TJ = 150°C

~ 1.0

SECOND BREAKDOWN LIMITED

--

.....

&.O ...~~

'"::>

BONDING WIRE LIMITED
- - THERMALLY
LIMITED III TC =25°C

o. 5
~ o. 3

CI

Q;

!z

d......

TJ 151jC

::>

-~

tOms-I-

.

.oml-·

3.0

~

FIGURE 2

10

-I-d-I-t.

TJ - 25'C

1.2

1.0 V

1.

IZ

200

"

TJ -ISO'C
100
0
0

25'C

~

VIEI ..t,@lell.=IO
V.. @Ve.=2.0V

-55'C
0

IL

0.3

0
I0
2.0 3.0 5.0

Ve., ..t,@lell.=IO

III
10

20 30

50

100

200 300 SOD

o

1000 2000

2.0 3.0

5.0

10

Ie. COLLECTOR CURRENT (mAl

20 30

SO

100

200 300 SOO

1000 2000

Ie. COLLECTOR CURRENT (mAl

FIGURE 5 - THERMAL RESPONSE

~

1.0
0.7
'" 5.0

i

D- 0.5

c::>

0.2

~ 0.3
t.)

z 0.2
~

m
'" O. I
~ 0.07

-

-

0.1

0.01

~ 0.05 _
w

ill 0.02
~ 0.0 I
;

'r

0.01

MJE520.

~J~~:Vl::~c:.. ~~'OR ~~~::K

I-'"

0.05

i!: 003 i..--'"
lE'

8JChl- ,(1I8JC
8JC - 5.D°C/w Ma.
MJE352D

PULSE TRAIN SHOWN
READ TIME ATtl
TJ(pkl- Te· P(pk)8JC(tl

~
~~~

SINGLE PULSE

DUTY CYCLE, 0 = I,ll,

IIIIII
0.02 0.03

0.05

0.1

I I II I
0.2

0.3

0.5

1.0

3.0 5.0
t, TIME Imsl

2.0

509

IIIII

I I

10

20

30

SO

100

200

300

500

1000

~,

MJE520, MJE520K, MJE3520(continued)

-.

M

tK

D~L

MJE520
MJE3520
STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITIER

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3: BASE

DIM

,A
B
'C

D

F

G
J
'K

M
Q

R
S
U

MILLIMETERS
MIN MAX
10.BO 11.05
7,49
7.75
2,+1
2.67
0.66
0.51
2,92
300
2.31
2.46
2,16
2.41
0.3B
0.64
15.36' 16.64
30TYP
3.76' 4.m
1.14 ·1.40 .
0.64 .0.B9
3.68 . 3.94

DIM

MILLIMETERS
MIN MAX

16.06 16.33
12.57 12.B3
3.1B 3.43
o 0.51 0.76 .
F
3.61' 3.B6
G. . " 2.S4 8se
H
2.67 2,92
J
0:43' 0,69
K 14.73 14.99
.L
.1
.41
M
3 TYP
N 1.47
1.73
Q
4.7B
s.oa
R
1.91
,16
S O.Bl
0.86
T
6.99
7,24,
6.48
U 6.22

..
0.095
0.025
0,655
P
0.156
0.055
0.035
0.155

NOTE:
1. MT = MAIN TERMINAL

1. DIM "G" IS TO CENTER LINE OF LEADS.
CASE 199-04

CASE 77-03

510

MJE520K

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3, EMITIER

A
B
C

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.11

0.148
0,045
0.025
0.145

--Ik-J

MJE521 (SILICON)
MJE521K
MJE3521
PLASTIC MEDIUM-POWER NPN
SI LICON TRANSISTORS

4AMPERE
POWER TRANSISTORS
NPNSILICON

· .. designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 20 Watt audio amplifiers utilizing complementary symmetry circuitry.

40 VOLTS
40 and 60 WATTS

• DC Current Gain - hFE = 40 (Min) @ IC = 1.0 Adc
• MJE521, MJE521 K and MJE3521 are Complementary with PNP
MJE371, MJE371K and MJE3371
• Choice of Packages - MJE521, 40 W - Case 77 (E-C-B)
MJE3521, 40 W - Case 77 (B-C·E)
MJE521K, 60 W - Case 199

MJE521

MJE3521

Style 1

Style 3

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vde

Collector-Base Voltage

VCB

40

Vde

Emitter-Base Voltage

VEB

4.0

Vde

IC

4.0

Ade

Rating
Coliector~Emitter

Voltage

Collector Current - Continuous
-Peak

8.0

Base Current - Continuous

Total De.... ice Dissipation
Derate above 25°C

@

T C = 2So C

::3",1

MJE521 K

40
320

480

Po

Operating and Storage Junction
Temperature Range

I

60

-65 to +150

TJ, T stg

CASE 77-03

Ade

2.0

IB

Watts
mW/oC
°c

MJE521K

lHERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS (TC
Characteristics

= 25°C unless otherwise noted)

I

Symbol

Min

Max

Unit

VCEO(sus)

40

-

Vde

Collector·Base Cutoff Current
(VCB 40 Vde, IE = 0)

ICBO

-

100

"Ade

Emitter-Base Cuto,f Current

lEBO

-

100

"Ade

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage(1
(lC = 100 mAde, IB = 0)

=

(VEB

=4.0 Vde, IC =0)

ON CHARACTERISTICS
DC Current Gain (11
(lC' 1.0 Ade, VCE = 1.0 Vde)
(1) Pulse Test: Pulse Width ~O IJI, Duty Cycl.

<2.0".

511

CASE 199-04

MJE521, MJE521 K, MJE3521' (continued)

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 2 - MJE521K

FIGURE 1 - MJE521, MJE3521
10

1--- r~

5.0

....

3.0

5

~
a

2.0

0

1.0

'"

~

too---

1--'

100",

....

.

~

~

...

5.0 ms

i

2.0

de'\.

---

~

1.0

I~

.... 3.0

a

t::::= ---- Second
Breakdown Limit
Thermal limit

0.5

8
E

@Te-250C

II I III
4.0

6.0

20

10

40

...

::;

~

l - I-

2.0

z

;;:

to

....

!

i-

1.0
0.7
0.5

t--

TJ - 25°C

60

I I
TJ-250C

1.6

r-.

~o

-55~(

\I

1.2

~

2w
to

;

0.8

VBElsal)@IC/IBir

0.4

III

~
VB @VCE·2.0V

g

::>

~

'-' 0.3

u

1'\

0

;

40

FIGURE 4 - "ON" VOLTAGE

VCE-1.0V-

rI-

20

:s:

150°C

~ 3.0

0

10

6.0

The data of Figures 1 and 2 based on T J(pk) ,.. 150°C; TC is
variable depending on conditions. Second breakdOwn pulse limits
are valid for duty cycles to. 10% provided TJ)pk)
150°C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to values tess than the limitations Imposed by
second breakdown. (See AN-415)

average junction temperature and second breakdown.

2.0

0:

~

Bonding Wire Limit
Secondiry Breakdown

4.0

FIGURE 3 - DC CURRENT GAIN

ffi

5.0ms

VCE. COLLECTOR·EMITTERVOLTAGE (VOLTS)

Ther. are two limitations on the power handling abilitv of a

N

r-t-100",

" de
-. -

0.1
2.0

60

Safe operating area curves indicate Ie - v CE limits of the transistor
that must be observed for reliable operation; I•••• the transistor
must not be subjected to greater dissipation than the curves Indicate.

10
7.0
5.0

--

- - --Ther",,' limit@Te .. 250 C

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
transistor:

,

0.3
0.2

0.2
0.1
2.0

1:0~

-TJ =lSOoC

~_ 0.5 I

--Bonding Wire Limit

I-'-'
~ 0.3

r--- to!":'"

i:' 5.0

1.Oms

TJ -lSOoC

~

....

10

0.2

IJciElsaU@lcllB"10
IIi

I-'

0.1
0.01

0.02 0.03 0.05

0.1

0.2 0.3

0.5

1.0

2.0 3.0 4.0

0.005

0.01

IC. COLLECTOR CURRENT (AMP)

2.0 3.04.0

0.02 0.03 0.05
0.·1
0.2 0.3 0.5 1.0
IC. COLLECTOR CURRENT (AMP)

FIGURE 5 - THERMAL RESPONSE
1.0
0.7 ~O-0.5
0.5

~

u;
z

~~
....~~
~

~~

:z i

w~

0.3
0.2

-

0.2

-

-0.1

~i=

il!

0.03

Z

0.02

~

-

--: .....

o. 1~ =0.05

--

0.0 7 =
!:::!w 0.05

o

,.-

- ::

0.01
0.01

"JC - 3.12"CIW Max
MJE521. MJE3521

~

~

::;;>

0.02

~h-:-l
I,

-"JC - ~:O~_C.!W MIX ~ JMJE521KJ
D'CU V SAPPlv ORP
PULSE TRAIN SHOWN
READ TIME AT 11
TJ(pk) - TC-P(pk) "JC(I)

I

E

DUTY CYCLE. D= I,ll,

"'I
-0.01

SinglaPulsa

I
0.02 0.03

II
0.05

1111
0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

I. TIME OR PULSE WIDTH Ims)

512

10

.1 I J I I I
20

30

50

100

200 300

500

1000

MJE521, MJE 521 K, MJE3521 (continued)

M

T

II

tMJE521

1=:

LI

A-

-~

0--!tL
Li.r-.--&1

-L.l

STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITTER

DIM

MILLIMETERS
MIN MAX

16.0B 16.33
12.57 12.B3
3.1B 3.43
0.51 0.76
3.61 3.B6
2.54 BSC
2.67 2.92
0.43 0.69
K 14.73 14.99
.16 2.41
3 TYP
M
N 1.47
1.73
n 4.78 5.03
2.16
R 1.91
S
0.81
0.86
T 6.99
7.24
6.48
U 6.22

A
B
C
D
F
G
H
J

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.118
0.091 0.097
0.085 0.095
0.015 0.025
0.605 0.655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155

....1h-J
MJE521K

~~i

MJE3521

E::.Jrl C
M-J~ t

~S

K

~I--D
ltt!
rR!
G

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
B
7.49
7.75
2.41
C
2.67
0
0.51
0.66
F
2.92
3.00
2.46
G 2.31
H
2.16
2.41
J
0.64
0.38
K 15.38 16.64
30 TYP
M
n 3.76 4.01
R
1.14
1.40
S
0.64
0.89
U
3.94
3.68

il

~---}

K

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

+

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER
INCHES
MIN MAX
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100BSC
0.105 0.115
0.017 0.027
0.5BO 0.590
0.OB5 0.095

~I

0.lB8
0.075
0.032
0.275
0.245

1. DIM "G" IS TO CENTER LINE OF LEADS.

NOTE:
1. MT= MAIN TERMINAL

CASE 199'()4

CASE7NJ3

513

MJE 700 thru MJE 703 PNP (SILICON)
MJE800 thru MJE803 NPN

4.0 AMPERE

PLASTIC MEDIUM-POWER
COMPLEMENTARY SILICON TRANSISTORS
... designed to replace discrete driver and output stages in comple·
mentary audio amplifier applications.
•

High DC Current Gai n hFE = 750 (Min) @ IC = 1.5 and 2.0 Adc

•

Monolithic Construction

•

Three Lead Design - Emitter·Base Resistors to Prevent Leakage
Multiplication are Built-In.

DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

60-80 VOLTS
40 WATTS

~

MAXIMUM RATINGS
MJE702
MJE703
MJE802
MJE803

VCEO

MJE700
MJE701
MJE800
MJE801
60

Collector-Base Voltage

Ve8

60

Emitter-Base Voltage

VE8

5.0

Vdc

Collector Current

IC

4.0

Adc

Base Current

18

0.1

Adc

Po

40
0.32

Watts
WloC

TJ. Tst9

-55 to +150

°c

Symbol

Rating
Collector·Emltter Voltage

Total Device Dissipation @TC
Derate above 25°C

= 2SoC

Operating and Storage Junction

Temperatlng Range
THERMAL CHARACTERISTICS

80

Vdc

80

Vdc

3.13

Thermal Resistance. Junction to Case

I"--

"'"

......

i'-.

~

0

..........
..........

0

50

75
100
TC. CASE TEMPERATURE{OCI

1--0

L--ILJ

GJ:i

125

PIN 1. EMITTER
1. CO llECTOR
3 BASE

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0,105
0.020 0.026
0.115 0.118

~
~

"

~
~
P

0.148
0.045
0.025
0.145

0.158
0.055
0.035
0.155

CASE 77'()3

...... i'-.

0

25

K

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
7.49
7.75
B
2.41
2.67
C
0.51
0.66
D
2.92
3.00
f
2.46
2.31
G
2.16
2.41
H
0.64
J
0.38
K 15.38 16.64
30 TYP
M
Q
4.01
3.76
1.40
R
1.14
0.89
S
0.64
3.94
U
3.68

FIGURE 1 - POWER DERATING
40

s

tH

E3r=1-r
M-JI...

Max

Characteristic

Unit

"'-.

150

514

When mounting the device, torque not to
exceed 6.0' In.-lb.
If lead bending is required, use suitable
clamps or other supports between transistor
case and point of bend.

MJE700 thru MJE703 PNP/MJE800 thru MJE803 NPN (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Characteristit
OFF CHARACTERISTICS
Collector-Emitter Breakdow~ Voltagel1,
(lC = SOmAde,lB = 0)

Max

Min

Vde

BVCEO
MJE700,MJE701,MJE800,MJE801
MJE702,MJE703,MJE802,MJE803

Collector Cutoff Current
(VCE = 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 0)

ICEO
MJE700, MJE701, MJE800, MJE801
MJE702, MJE703, MJE802, MJE803

Collector Cutoff Current
(VeB = Rated BVCEO, IE = 0)
(VCB = Rated BVCEO, IE = 0, TC = 100o e)

leBO

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

lEBO

Unit

-

60
80

-

-

500
500

-

0.2
2.0

!lAde

mAde

-

2.0

mAde

ON CHARACTERISTICS
De Current Gain(l)
(lC = I.SAde, VCE = 3.0Vde)
(Ie = 2.0 Ade, VCE = 3.0 Vde)

MJE700,MJE702,MJE800,MJE802
MJE701,MJE703,MJE801,MJE803

Collector-Emitter Saturation Voltage( 1)
(Ie = I.SAde,IB = 30 mAde)
(Ie = 2.0Ade,IB =40mAdc)

MJE700,MJE702,MJE800,MJE802
MJE701, MJE703, MJE801, MJE803

Base-Emitter On Voltage(1)
(lC = 1.5 Adc, VCE = 3.0 Vde)
(Ie = 2.0 Ade, VCE = 3.0 Vde)

MJE700,MJE702,MJE800,MJE802
MJE701, MJE703, MJE801, MJE803

-

hFE

VCE!sat)

750
750

-

-

2.5
2.8

-

2.5
2.5

Vde

,ae

BE (on)

DYNAMIC CHARACTERISTICS
Small-5ignal Current Gain
(Ie = 1.5 Ade, VCE = 3.0 Vde, f = 1.0 MHz)
Pulse Width '.'5: 300 /Js, Duty Cycle ~ 2.0%.

(1 )Pulse Test:

FIGURE 2 - DC SAFE OPERATING AREA

5.0

I
~
0:

~

1.0

0:

~

0.3

~

.......

2.0

0.7
O. 5

c
'-'

I.....

3.0

-

-

O. 1
0.07
0.05
1.0

Bonding Wire Limit
Thermal Limit at TC - 250 C
Secondary Breakdown limit
TC I•

O. 2

.... ....

r ....

There are two limitations on the power handling ability of a

transistor: average junction temperature and secondary breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor

2~DJ

that must be observed for reliable operation; e.g., the transistor
must not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed by secondary breakdown. (See AN-415)

1\
MJE700,70! ...
MJE800, 801

fr\

MJE702,703_
MJE802,803
2.0

3.0

5.0 1.0

10

20

30

50

70 100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 3 - DARLINGTON CIRCUIT SCHEMATIC
PNP
MJE700
thru

MJE703

Collector

r------1
1
1

NPN
MJE800

-,

. - - -......

thru

MJE803

1
I

B,,,

Base

Collector

r---------,
:

1

I

1
1

1
1

1

I
I

I

1

1

I
_.J

1

_.J

Emitter

Emitter

515

MJE71 0 (SILICON)
MJE711
MJE712

PNP SILICON MEDIUM-POWER TRANSISTORS

1.5 AMPERE
POWER TRANSISTORS
PNP SILICON

· .. designed for use in low power amplifiers, as drivers in high-power
amplifier and medium-speec:t switching circuits.

40, 60, 80 VOLTS
20 WATTS

• De Current Gain -

hFE = 40 (Min) @ Ie = 150 mAdc
=20 (Min) @ Ie =500 mAdc
• Collector-Emitter Sustaining Voltage VCEO(sus) = 40, 50, 80 Vdc (Min) @ Ie = 50 mAdc
• Complement to NPN Types MJE72O, MJE721 , MJE722 Series
• Equivalent to the Specifications of the Pro-Electron
B0166, BOl68 and B0170 Transistors

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

MJE 710 MJE 711 MJE7t2

40

VeEO

60

80
80

Collector-B... Voltage

VeB

Emitter-Base Voltage

VEB

40
60
_5.0

Collector Current

Continuous

Ie

-1.6

Base Current

IB

-0.5

Total Device Dissipation IiITA - 26°C

Po

-1.26

20
-'0.16

Derate above 26°C
Operating and Storage Junction

..
..

-0.008

Po

Vde
Vde
Vde
Ade
Ade

.

Derate above 25°C
Total Device Dissipation iii T e = 26°C

Unit

Watt

wf'e
Watts
wf'e

TJ. Tstg - - B 5 t o + I 6 0 -

°e

Tamperatura Rangs

THERMAL CHARACTERISTICS
,Symbol

Max

Unit

Thermal Resistance, Junction to ease

8Je

6.25

°efW,

Thermal Resistance. Junction to Ambian

8JA

100

°efW

Characteristic

STYLE I
PIN 1. EMITTER
2. COLLECTOR
3. BASE

FIGURE 1 - ACTIVEoftEGION SAFE OPERATING AREA
10

i
5

Ii
'"a:tl
a:

5.0 -~-

.

TJ'I6QOC

--- -- .... .... .. .. ,

~--

3.0
2.0

...

..

1.0

l00~

1.0 . .

~

...

",6.0 ..

"\

~

0.2
0. 1
6.0

I PL..sEl:dRVESAPkY~!
I
RATED VCEO
MJE 710
I III
7.0

10

I

I
20

:::m
30

A
I

1\
G
H
J

~

:-8£ 0 IREAK OWN
de
LIMITED
U - - - 10NOING WIRE LIMITED
---THERMAL~Y L1MITED.TC '25"C
B 0.3

DIM

K
M

::-...

10.80
7.48
2.41

11.05
1.
2.81

0.51
.2

0.68
.

2.36 SSC
2.16
2.41
0.38
O.
15.38 16.64

TYP

R

3.16
1.14

4.01
1.40

S'
U

0.64
3.68

0.89
3.94

Q

50

MILLIMETERS
MIN
MAX

CASE 77.1)3

VeE, COLLECTDR.£MlmR VOLTAGE (VDLTSI

516

MJE710, MJE711, MJE712 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Max

40
60

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage
(lC = 50 mAde, IB = 0)

Vde

VCEO(sus)
MJE710
MJE711
MJE712

Collector Cutoff Current
(VCE = 20 Vde, IB = 0)
(VCE ~ 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 0)

ICEO
MJE710
MJE711
MJE712

Collector Cutoff Current
(VCE = 4OVde, VBE(off)
(VCE = 60 Vdc, VBE(off)
(VCE = 80 Vdc, VBE(off)
(VCE = 40 Vdc, VBE(off)
TC = 1250 C)
(VCE = 60 Vde, VBE(off)
TC= 1250 C)
(VCE = 80 Vde, VBE(off)
TC = 1250 C)

-

80

-

-

500
500
500

"Ade

-

ICEX

=
=
=
=

1.5 Vdc)
1.5 Vdc)
1.5 Vde)
1.5 Vde,

MJE710
MJE711
MJE712
MJE710

= 1.5 Vde,
= 1.5 Vde,

"Ade

-

-

100
100
100
500

MJE711

-

500

MJE712

-

500

-

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

1.0

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(lC = 150 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 1.0 Ade, VCE = 1.0 Vde)

hFE

Coliector·Emittar Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)
(lC = 500 mAde, IB = 50 mAde!
(lC = 1.5 Ade, IB = 300 mAde

VCE(satl

Basa·Emitter Saturation Voltage
(lC = 1.5 Ade, IB = 300 mAde!

VBE(satl

Basa·Emitter On Voltage
(I C = 500 mAde, V CE = 1.0 Vde)
FIGURE 2

1000

3DO

co

200 -

ffi

::1
......

- DC CURRENT GAIN

c

o.8

t-- I""- ,.... TJ = 1500C

1l' 30

!"

10

30

50

100

200

300

500

Vde

O. 6

~~

O.4

r--

J1 II

VIBE~;) ~IIJ"B =

~~

0

~

1000

o

2000

I

VBE(on)@VCE= 1.0 Ydc

20

J

1

V
VCE(sot) .Ic/IB = 10

30

50

100

200

,.,..
300

i-"

500

1000

2D00

IC. COLLECTOR CURRENT (mA)

Note 1:
limitatio~s

Vde

O. 2

IC, COLLECTOR CURRENT (mA)

There are two

1.3

,;

r--.

2D

20

~o

~
w

0
55°C

-

FIGURE 3 - "ON" VOLTAGES

250

w

-

0.15
0.4
1.0

0.95

1.0

VCE"1.0Vdc- t -

100

:::>

-

VBE(on)

500
z

Vde

TJ = 25°C

;;:

40
20
8.0

The data of Figure 1 is basad on T J(pk) = 15oDc; TC is variable
depending on conditions. Second breakdown pulse limits arB valid
for duty cycles to 10% provided T J(pk) Sl5oDc. At high casa
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by sacond
breakdown. (See AN-415)

on the power handling ability of a

transistor; average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be obsarved for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

517

MJE720 (SILICON)
MJE721
MJE722

NPN SILICON MEDIUM-POWER TRANSISTORS

1.5 AMPERE
POWER TRANSISTORS
NPN SILICON

... designed for use in low-power amplifiers, as drivers in high-power
amplifier and medium-speed switching circuits.

40, 60, 80 VOLTS
20 WATTS
•

DC Current Gain hFE = 40 (Min) @ IC = 150 mAdc
= 20 (Min) @ IC = 500 mAdc

•

COllector-Emitter Sustaining Voltage VCEO(sus) = 40, 60, 80 Vdc (Min)

•

Complement to PNP Types MJE710, MJE7", MJE712 Series

•

Equivalent to the Specifications of the Pro-Electron BO 165,
B0167, and B0169 Transistors

@

IC = 50 mAdc

THERMAL CHARACTERISTICS
Symbol

Rating

MJE720 MJE721 MJE722

Unit

VCEO

40

60

80

Vdc

Collector-Base Voltage

VCB

40

60

80

Vdc

Emitter-Ba.se Voltage

VEB

Collector-Emitter Voltage

Collector Current

Continuous

.
.

5.0

Vdc
Adc

IC

'--1.5

Base Current

IB

-0.5

Total Device Dissipation @T A =25°C

Po

-1.25

-0.008

wf'c

Po

-20

Watts

-0.16

wf'c

Derate above 25°C
Total Device Dissipation@Tc"" 25°C

Derate above 25°C
Operating and Storage Junction

TJ, Tstg -

Adc
Watt

-65 to + 1 5 0 -

°c

Temperature Range

MAXIMUM RATINGS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

8JC

6.25

°CIW

Thermal Resistance. Junction to Ambia"

8JA

100

°CIW

Characteristic

STYLE I
PIN I. EMITTER
2. COLLECTOR
3. BASE

FIGURE 1 - ACTIVE· REGION SAFE OPERATING AREA
10

0:

'"$

5.0

TJ -15OOC

-,,- -

-- ----

--.;:

3.0

~

l-

~

...

...

ia
0

SECOND BR EAKDDWN
LIMITED
i
i
de
0.5
BONDING WIRE LIMITED
- - - - THERMALLY LIMITED@TC'25oC
0.3

'"

~
8
!J

1.Oms

......

~

....

~,5.0ms

~

D

'\

F

G

-

~!MJE 720
O.2 ~fURVESAPPLY
RATED VCEO

I

O. I
5.0

A

~

2.0
1.0

DIM
l00p.s

7.0

10

I
20

H
J

K
M

"

...... ~

Q

R

s

MJE721
MJE 722
30

u

50

70

100

See Note 1

VCE , COLLECTOR·EMITTER VOLTAGE (VOLTS,

518

CASE 77·03

MJE720, MJE721, MJE722 (continued)
ELECTRICAL CHARACTERISTICS (TC s 250C unl... otherwise not.1I
Min

Mu

40
60
BO

-

-

500
500
500

MJE720
MJE721
MJE722
MJE720

-

-

100
100
100
500

MJE721

-

500

MJE722

-

500

-

1.0

40
20

-

Unit

OFF CHARACTERISTICS
Collactor-Emitaor Sultllinlng Voltage
(lC· 50 mAde, lB· 0)

Vde

VceO(sus)
MJE720
MJE721
MJE722

Collactor Cutoff Current
(VCE = 20 Vde, IB = 0)
(VCE = 30 Vde,lB = 0)
(VCE ·40 Vde, IB s 0)

I£Ade

ICEO
MJE720
MJE721
MJE722

Collector Cutoff Current
(VCE • 40 Vde, VBE(off) = 1.5 Vde)
(VCE· 60 Vde, VBE(off) = 1.5 Vde)
«VCE • 80 Vde, VBE(off) = 1.5 Vde)
(VCE -40 Vdc, VBE(off) -1.5 Vdc,
TC = 12&oC)
(VCE· 60 Vdc, VBE(off)· 1.6 Vdc,
TC = 12SoC)
(VCE = 110 Vdc, VBE(off) - 1.& Vdc,
TC -12&oC)

-

I£Ade

ICEX

-

Emitaor Cutoff Current
(VBE =5.0Vde,IC = 0)

lEBO

mAde

ON CHARACTERISTICS

-

DC Current Gain
(lC s 150 mAde, VCE = 1.0 Vde)
IIc = 500 mAde, VCE = 1.0 Vde)
IIc = 1.0 Ade, VCE = 1.0 Vde)

hFE

Collactor-Emitter Saturation Voltage
IIc = 150 mAde,IB = 15 mAde)
IIc = 500 mAde, IB = 50 mAde)
IIc = 1.5 Ade,lB = 300 mAde

VCE(sat)

-

0.15
0.4
1.0

_Emitter Saturation Voltage
IIc = 1.5 Ade,lB =300 mAde

VBE(sat)

-

1.3

Vde

Base-Emitter On Voltage
IIc = 500 mAde, VCE = 1.0 Vde)

VBE(on)

-

0.95

Vdc

B.O

Vde

-

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

1000

1.0
VCE -1.0 Vdc

500
0.8

z 300

...........

<
'" 200

TJ=150oC

....

z
w

.

~ ......

~ 100

~

::I

o

~

50

-550C

HtTH

50

VBE(sa,)@ICIiB' 10

~

:;:::
~-,::

~

VBE(on) @VCE - 1.0 V

~ 0.6

""

~

ri i

w

c:~>

0.4

/

>'

30
20

"'

0.2

1,,\

10
20

30

50

100

200

300

500

1000

VCE(.. ,)@ICIIB - 10

o

2000

20

30

50

100

100

300

500

1000

1000

IC. COLLECTOR CURRENT (mA)

IC, COLLECTOR CURRENT (mA)

Not. 1:
There are two limitations on the power handling ability of a
transistor; average junction temperature and second breakdown.
Safe operating area curves indicatelc - VCE limits of the trensistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipetion than the curves indicate.

The data of Figure 1 is based on TJ(pk)

= 150o C; TC

is variable

depending on conditions. Second breakdown pulse limits are valid

for duty cycles to 10% provided T J(pk) S 15aGC. At high case
temperatures, thermal limitations will reduce the power that can be

handled to values less than the limitations imposed by second
breakdown.

(See AN-415)

MJE800 thru MJE803 (SILICON)
For Specifications, See MJE700 Data,
519

MJE1090 thru MJE1093 PNP (SILICON)
MJE2090 thru MJE2093
MJE 1100 thru MJE 1103 NPN
MJE 2100 thru MJE2103
5.0 AMPERE

PLASTIC MEDIU!VI-POWER
COMPLEMENTARY SILICON TRANSISTORS

DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON
60·80 VOLTS
70 WATTS

Designed for use in driver and output stages in complementary
audio amplifier applications.

• High DC Current Garn hFE = 750 (Min) @ IC

= 3.0 and

4.0 Adc

• True Three Lead Monolithic Construction - Emitter·Base Resistors
to Prevent Leakage Multiplication are Built in.
•

Available in Two Packages - Case 90 or Case 199

MJE1090
MJE1091
MJE1092
MJE1093
MJE1100
MJE1101
MJE1102
MJE1103

MAXIMUM RATINGS

Rating

Symbol

Collector-Emitter Voltage

MJE1090
MJE1091
MJEll00
MJE1101
MJE2090
MJE2091
MJE2100
MJE2101

MJE1092
MJE1093
MJEll02
MJE1103
MJE2092
MJE2093
MJE2102
MJE2103

Unit

CASE 90-05

VCEO

60

80

Vdc

COllector-Base Voltage

VCS

60

80

Vdc

Emitter-Base Voltage

VES

50

Vdc

IC

5.0

Adc

Collector Current

IS

01

Adc

PD

70
0.56

Watts
WloC

TJ. T stg

-55 to +150

°c

Base Current

Total Device DISSIpation
Derate above 25°C

@

T C ." 25°C

Operating and Storage Junction
Temperatmg Range
THERMAL CHARACTERISTICS

Characteristic

MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101
MJE21Q2
MJE2103

Max

Thermal Resistance, Junction to Case

1.8

FIGURE 1 - POWER DERATING
0
0

"'"

0
0

.~

CASE 199-04

"'"

0
0
0

~

~
~

0
0

20

40

60

80

100

12il

. . . r--.,.
140

TC, CASE TEMPERATURE I'C)

520

160

MJE1090 thru MJE1093 PNP/MJE1100 thru MJE1103 NPN (continued)
MJE2090 thru MJE2093 PNP/MJE2100 thru MJE2103 NPN

ELECTRICAL CHARACTERISTICS (TC

=

25°C unl... otherwise notedl
Symbol

Min

Max

60
60
80
80

-

-

500
500
500
500

-

0.2
2.0
2.0

750
750
750
750

-

Unit

OFF CHARACTERISTICS

Coliector·Emitter Breakdown VOltage(1)

= 100 mAde,

(lC

la

= 01

MJE1091,
MJE2091,
MJE 1093,
MJE2093,

MJE1100,
MJE2100,
MJE 1102,
MJE2102,

MJEll0l
MJE2101
MJE 1103
MJE2103

MJE1090,
MJE2090,
MJE1092,
MJE2092,

MJE 1091,
MJE2091,
MJE1093,
MJE2093,

MJE 1100,
MJE2100,
MJEll02,
MJE2102,

MJE 1101
MJE2101
MJE1103
MJE2103

Collector Cutoff Current
(VCE

= 30 Vdc,

la

= 01

(VCE

= 40 Vdc,

la

= 01

ICED

Collector Cutoff Current
(Vca = Rated aVCEO, IE
(VCR = Rated BVCEO, IE

= 5.0 Vde,

IC

"A de

mAde

Icao

= 01
= 0, Tr. = l000CI

Emitter Cutoff Current
(V BE

Vde

aVCEO
MJE1090,
MJE2090,
MJE1092,
MJE2092,

lEaD

= 01

mAde

ON CHARACTERISTICS (11
DC Current Gain
(lC = 3.0 Ade, VCE

= 3.0 Vdel

= 4.0 Ade,

= 3.0 Vdel

(lc

VCE

MJE1092,
MJE2092,
MJE1093,
MJE2093

MJEll.00,
MJE21oo,
MJE1101,
MJE2101

MJEll02
MJE2102
MJEll03
MJE2103

Collector-Emitter Saturation Voltage
(lC = 3.0 Ade, IS

= 12 mAdei

= 4.0 Ade,

= 16 mAdei

(lC

IS

VCE (satl
MJE1090,
MJE2090,
MJE1091,
MJE2091

MJE1092,
MJE2092
MJE1093,
MJE2093

MJE1100,
MJE2100
MJE1101,
MJE2101

MJEll02
MJE2102
MJE1103
MJE2103

MJE1090,
MJE2090
MJE1091,
MJE2091,

MJE1092,
MJE2092,
MJE1093,
MJE2093,

MJE11oo,
MJE21oo,
MJE 1101,
MJE2101,

MJEll02
MJE2102
MJE 1103
MJE2103

Base-Emitter On Voltage

= 3.0 Ade,

(lc

VaE ionl

VCE = 3.0 Vdel

(lC = 4.0 Adc, VCE

-

hFE
MJE1090,
MJE2090,
MJE1091,
MJE2091

= 3.0 Vdcl

Vde

-

2.5
2.5
2.8
2.8

-

2.5
2.5
2.5
2.5

Vde

DYNAMIC CHARACTERISTICS

Small--5ignal Current Gain
(lC = 3.0 Adc, VCE = 3.0 Vdc, f
(1)Pulse Test: Pulse Width

:e:; 300

= 1.0 MHzI
JJ.S,

Duty Cycle ~ 2.0%.

FIGURE 2 - DC SAFE OPERATING AREA
0
.0

a::

'"

,.;
>-

I

.of-·

2