1974_Motorola_Discrete_Semiconductor_Series_A_Vol3_Non Registered_Type_Numbers 1974 Motorola Discrete Semiconductor Series A Vol3 Non Registered Type Numbers

User Manual: 1974_Motorola_Discrete_Semiconductor_Series_A_Vol3_Non-Registered_Type_Numbers

Open the PDF directly: View PDF PDF.
Page Count: 1483

Download1974_Motorola_Discrete_Semiconductor_Series_A_Vol3_Non-Registered_Type_Numbers 1974 Motorola Discrete Semiconductor Series A Vol3 Non-Registered Type Numbers
Open PDF In BrowserView PDF
Volume 3
DISCRETE PRODUCTS

Series A

Data Sheets For:

• Motorola Non-Registered
Type Numbers

THE
SEMICONDUCTOR
DATA LIBRARY
SERIES A
VOLUMEm

prepared by
Technical I nformation Center

The information in this book has been carefully checked and is believed to be reliable; however, no responsibility
is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of semiconductor
devices any license under the patent rights of any manufacturer identified in this library.

Nous n'acceptons aucune responsabilite'en ce qui concerne les erreurs qui auraient pu s'introduire dans cette
edition, en depit des soins minutieux apportes sa preparation et sa revision; nous esperons toutefois que les
renseignements fournis sont fiables. De plus, il est bien entendu que ces renseignements ne permettent pas a'
I'acheteur de dispositifs semiconducteurs d'utiliser les brevets des fabricants mentionnes dans ce catalogue.

a

a

Die in diesem Buch enthaltenen Angaben wurden sorgfiiltig UberprUft und sind nach unserer Meinung voll ig
zuverliissig. Wir konnen jedoch fUr die Genauigkeit dieser Angaben keine Verantwortung ubernehmen. Daruber
hinaus wird dam Kaufer von Halbleiterelementen mit Angaben, die in dieser Bibliothek genannt werden, keine
unter die Patentrechte eines Herstellers fallende Lizenz erteilt.

i1. t:tti.j'tJi~l;tt~~ l:t~HH i1. t: to) -C dO ~, jgtA L i{f'-' to) -C T 1;', JJ-~~ ~ 0) dO -:> t:~-g-li. ~ O)'HH' A
l'l -tt /c, ;J: t:*.O)tti;t,j'tJi~I:}; L' -c ~~i1.-Cl' '-' ""Ut; J: Uit1.lo) ;l-1J -O)H~Hil:? L' -c ~O)jf!llI:jf£ItlT '-' lifIJj1!~~
I:IIIIL-Ct, ""U1;t~O).jx~AL'';-tt/c,

*.I:~cit;e.

Series A
INC., 1974
"All Rights Reserved"

© MOTOROLA

Printed in U.S.A.

VOLUMEm
This volume contains complete data sheets for
Motorola non-registered devices. Data sheets are in
alphanumeric sequence according to device type number
except for those data sheets that cover several devices
with different type numbers. The alphanumerical index
in front of the book permits the user to quickly locate
the page number of the data sheet for any device
characterized in the book.

Econocap, Epibase, Epicap, Glassivated, Isothermal, *k-Pak, MeMOS, Meg-A-Life II, MDTL,
MECL, MECL 10,000, MHTL, Micro-T, MIDA, MRTL, mW MRTL, MTTL, Multi-Cell II,
RamRod, Surmetic, Surmetic 20, Surmetic 30, Surmetic 40, Thermopad, Thermowatt, Unibase,
Unibloc and Uniwatt are trademarks of Motorola Inc.
Annular Semiconductors and Field-Relief Electrode are patented by Motorola Inc.

ii

ALPHA-NUMERIC INDEX
Devices characterized in Volume III show the page reference
only. Devices characterized in Volume I and Volume II are
referenced by volume and page number.
DEVICE

VOL

UoM2.4A2
UoM2.7A2
UoM3.0A2
UoM3.3A2
UoM3.6A2
UoM3.9A2
UoM4.3A2
UoM4.7A2
UoM5.1A2
UoM5.6AZ

PAGE
2

DEVICE
.5M2.52S
.5M2.72S
.5M3.02S
.5M3.32S
.5M3.62S
.5M3.92S
.5M4.32S
.5M4.72S
.5M5.12S
.5M5.6ZS

VOL

PAGE

II

1-20

DEVICE
1M3.6A210
1M3.9A210
1M4.3A210
1M4.7A210
1M5.1A210
1M5.6A210
1M6.2A210
1M6.SA210
1M7.5A210
1M6.SZ

UoM6.2A2
UoM6.SZ
UoM7.5Z
UoMS.2Z
UoM9.12
UoM102
UoM11Z
UoM12Z
UoM13Z
UoM14Z

.5M6.0ZS
.5M6.22S
.5M6.S2S
.5M7.5ZS
.5MS.22S
.5MS.72S
.5M9.12S
.5M10ZS
.5M11ZS
.5M12ZS

1M7.5Z
1MS.22
1M9.12
1M10Z
1M112
1M12Z
1M132
1M152
1M162
1M1S2

UoM152
UoM162
UoM17Z
UoM1SZ
UoM19Z
UoM20Z
UoM22Z
UoM24Z
UoM25Z
UoM27Z

.5M132S
.5M142S
.5M152S
.5M16ZS
.5M17ZS
.5M1SZS
.5M192S
.5M20ZS
.5M222S
.5M24ZS

1M202
1M222
1M24Z
1M272
1M30Z
1M332
1M36Z
1M392
1M432
1M472

UoM302
UoM33Z
UoM36Z
UoM39Z
UoM43Z
UoM45Z
UoM472
UoM50Z
UoM52Z
UoM56Z

.5M252S
.5M27ZS
.5M2SZS
.5M30ZS
.5M33ZS
.5M362S
.5M39ZS
.5M43ZS
.5M47ZS
.5M51ZS

1M51Z
1M562
1M62Z
1M6S2
1M752
1MS22
1M91Z
1M1002
1 M1102
1M1202

UoM62Z
UoM6SZ
UoM75Z
UoMS2Z
UoM91 Z
UoM100Z
UoM1052
UoM1102
UoM120Z
UoM1302

.5M56ZS
.5M60ZS
.5M62ZS
.5M6SZS
.5M75ZS
.5MS2ZS
.5MS7ZS
.5M91ZS
.5M100ZS
.5M1102S

11111130Z
1M150Z
1M1602
1M1S0Z
1M200Z
1M3.32S10
1M3.6ZS10
1M3.9ZS10
1M4.3ZS10
1M4.7ZS10

UoM140Z
UoM150Z
UoM175Z
UoM200Z
.4M.64FR10
.4M1.36FR5
.4M1.36FR2
.4M2.04FR5
.4M2.04FR2
.5M2.4ZS

.5M120ZS
.5M130ZS
.5M140ZS
.5M150ZS
.5M160ZS
.5M170ZS
.5M1S0ZS
.5M190ZS
.5M200ZS
1M3.3AZ10

1 M5.1ZS10
1M5.6ZS10
1M6.22S10
1M6.SZS10
1M7.52S10
1MS.2ZS10
1M9.12S10
1M10ZS10
1M112S10
1M122S10

I

2
1-10

! !
I

II

1-10
1-20

II
I

iii

1-20
1-59

VOL

PAGE

I

1-59

1-59
1-100

I

1-100

DEVICE
lM13ZS10
lM15ZS10
1M16ZS10
lM18ZS10
1 M20ZS1 0
1 M22ZS10
lM24ZS10
lM27ZS10
1 M30ZS1 0
1M33ZS10

VOL

PAGE

I

1-100

DEVICE
5M75ZS
5M82ZS
5M87ZS
5M91ZS
5Ml00ZS
5Mll0ZS
5M120ZS
5M130ZS
5M140ZS
5M150ZS

VOL

PAGE

II

1-30

DEVICE
50M13Z
50M14Z
50M15Z
50M16Z
50M 17Z
50M18Z
50M19Z
50M20Z
50M22Z
50M24Z

lM36ZS10
1M39ZS10
1 M43ZS10
1M47ZS10
lM51ZS10
1 M56ZS1 0
1 M62ZS10
1 M68ZS1 0
lM75ZS10
lM82ZS10

5M160ZS
5M170ZS
5M180ZS
5M190ZS
5M200ZS
10M6.8Z
10M7.5Z
10M8.2Z
10M9.1Z
10Ml0Z

1 M91 ZSl 0
lM100ZS10
1M110ZS10
lM120ZS10
lM130ZS10
1M150ZS10
1 M160ZS1 0
lM180ZS10
1 M200ZS1 0
5M3.3ZS

10Ml1 Z
10M12Z
10M13Z
10M14Z
10M15Z
10M16Z
10M18Z
10M19Z
10M20Z
10M22Z

50M51Z
50M52Z
50M56Z
50M62Z
50M68Z
50M75Z
50M82Z
50M91Z
50Ml00Z
50Ml05Z

5M3.6ZS
5M3.9ZS
5M4.3ZS
5M4.7ZS
5M5.1ZS
5M5.6ZS
5M6.0ZS
5M6.2ZS
5M6.8ZS
5M7.5ZS

10M24Z
10M27Z
10M30Z
10M3'3Z
10M36Z
10M39Z
10M43Z
10M47Z
10M50Z
10M51Z

50Mll0Z
50M120Z
50M130Z
50M140Z
50M150Z
50M160Z
50M175Z
50M180Z
50M200Z
BB105A,B,G

5M8.2ZS
5M8.7ZS
5M9.1ZS
5Ml0ZS
5M11ZS
5M12ZS
5M13ZS
5M14ZS
5M15ZS
5M16ZS

10M52Z
10M56Z
10M62Z
10M68Z
10M75Z
10M82Z
10M91Z
1 OMl OOZ
10Ml05Z
10Ml10Z

BU105
BU108
MA202
MA206
MA4404
MA4404A
MAC5-1
MAC5-2
MAC5-3
MAC5-4

5M17ZS
5M18ZS
5M19ZS
5M20ZS
5M22ZS
5M24ZS
5M25ZS
5M27ZS
5M28ZS
5M30ZS

10M120Z
10M130Z
10M140Z
10M150Z
10M160Z
10M180Z
10M200Z
50M3.9Z
50M4.3Z
50M4.7Z

MAC5-5
MAC5-6
MAC5-7
MAC5-S
MAC6-l
MAC6-2
MAC6-3
MAC6-4
MAC6-5
MAC6-6

5M33ZS
5M36ZS
5M39ZS
5M43ZS
5M47ZS
5M51ZS
5M56ZS
5M60ZS
5M62ZS
5M68ZS

50M5.1Z
50M5.6Z
50M6.2Z
50M6.8Z
50M7.5Z
50M8.2Z
50M9.1Z
50Ml0Z
50Ml1Z
50M12Z

I
II

II

1-100
1-30

1-30

II

1-30
1-44

1-44
1-41

I

iv

1-41

VOL

PAGE

I

1-41

I

lAl
4

50M25Z
50M27Z
50M30Z
50M33Z
50M36Z
50M39Z
50M43Z
50M45Z
50M47Z
50M50Z

MAC6-7
MAC6-8
MAC10-1
MAC10-2
MAC10-3
MAC10-4
MAC10-5
MAC10-6
MAC10-7
MAC10-8

364
6
12
12
14
14
16

I

16
20

20

DEVICE

VOL

MAC11-1
MAC11-2
MAC11-3
MAC11-4
MAC11-5
MAC11-6
MAC11-7
MAC11-8
MAC37-1

PAGE
20

j
20
24

MAC37-2
MAC37-3
MAC37-4
MAC37-5
MAC37-6
MAC37-7
MAC38-1
MAC38-2
MAC38-3
MAC38-4
MAC38-5
MAC38-6
MAC38-7
MAC92,A-1
MAC92,A-2
MAC92,A-3
MAC92,A-4
MAC92,A-5
MAC92,A-6
MAC93,A-1
MAC93,A-2
MAC93,A-3
MAC93,A-4
MAC94,A-1
MAC94,A-2
MAC94,A-3
MAC94,A-4
MAC40688
MAC40689
MAC40690
MAC40797
MAC40798
,MAC800-02,A,B
MAC800-05A,B
MAC800-10,A,B
MAC800-20A,B
MAC800-40A, B
MAC800-60A,B
MAC800-80,A,B
MBD101

24
28

!

28
32

l

32
36

~
36

"

2-164
2-164
2-164

II
II

2-186
2-186
40

II
II

1

40
44

MBD102
MBD103
MBD501
MBD502
MBD701
MBD702
MBI-101
MBR320M
MBR330M
MBR340M

46
48
50
52
50
52
54
56
56
56

MBR1520
MBR1530
MBR1540
MBR2520
MBR2530
MBR2540
MBR4020
MBR4020PF
MBR4030
MBR4030PF

60
60
60
64
64
64
68
72
68
72

DEVICE

VOL

MBR4040
MBS100
MBS4991
MBS4992
MCA1911N,P
MCA1912N,P
MCA1913N,P
MCA 1914N,P
MCA1921N,P
MCA1922N,P

PAGE
68
76
78
78
82

DEVICE
MCR39-40
MCR39-50
MCR39-60
MCR051
MCR052
MCR053
MCR054
MCR80-0.5
MCR80-10
MCR80-20

MCA 1923N,P
MCA1924N,P
MCA1931N,P
MCA 1932N,P
MCA 1933N,P
MCA1934N,P
MCA2011N,P
MCA2012N,P
MCA2013N,P
MCA2014N,P

MCR80-30
MCR80-40
MCR80-50
MCR80-60
MCR80-70
MCR80-80
MCR81-0.5
MCR81-10
MCR81-20
MCR81-30

MCA2021N,P
MCA2022N,P
MCA2023N,P
MCA2024N,P
MCA2031N,P
MCA2032N,P
MCA2033N,P
MCA2034N,P
MCA2111N,P
MCA2112N,P

MCR81-40
MCR81-50
MCR81-60
MCR81-70
MCR81-80
MCR82-0.5
MCR82-10
MCR82-20
MCR82-30
MCR82-40

MCA2113N,P
MCA2114N,P
MCA2121N,P
MCA2122N,P
MCA2123N,P
MCA2124N,P
MCA2131N,P
MCA2132N,P
MCA2133N,P
MCA2134N,P

MCR82-50
MCR82-60
MCR82-70
MCR82·80
MCR101
MCR102
MCR103
MCR104
MCR106-1
MCR 1 06·2

MCA2211N,P
MCA2212N,P
MCA2213N,P
MCA2214N,P
MCA2221N,P
MCA2222N,P
MCA2223N,P
MCA2224N,P
MCA2231N,P
MCA2232N,P

MCR106-3
MCR 1 06·4
MCR 1 06·6
MCR106-8
MCR107-1
MCR107·2
MCR107·3
MCR107-4
MCR107·5
MCR107·6

MCA2233N,P
MCA2234N,P
MCL 1300
MCL 1301
MCL1302
MCL 1303
MCL 1304
MCL TC6010
MCLTC6025
MCLTC6050

82
84

l

84
85

l

MCLTC6100
MCR32-05
MCR32-20
MCR32-30
MCR32-40
MCR32-50
MCR32-60
MCR39-05
MCR39-20
MCR39-30

85
87

!

87
91
91
91

v

MCR107·7
MCR107·8
MCR115
MCR120
MCR154-10
MCR154·20
MCR154·30
MCR154·40
MCR154·50
MCR154·60
MCR155-10
MCR155·20
MCR155·30
MCR155·40
MCR155·50
MCR155·60
MCR156-10
MCR156·20
MCR156·30
MCR156-40

VOL

PAGE
91
91
91
93

~

93
97

r
97

99
101

I

101
103

103
105
105
107

107

DEVICE
MCR156-50
MCR156-60
MCR157-10
MCR157-20
MCR157-30
MCR157-40
MCR157-50
MCR157-60
MCR158-50
MCR158-60

VOL

PAGE
107

107
111

MCR158-70
MCR158-80
MCR158-90
MCR158-100
MCR158-110
MCR158-120
MCR159-50
MCR159-60
MCR159-70
MCR159-80

MCR380-40
MCR380-50
MCA380-60
MCA380-70
MCA380-80
MCA380-90
MCR380-100
MCR380-110
MCR380-120
MCR380-130

MCR159-90
MCR159-100
MCR 159-11 0
MCR159-120
MCR201
MCR202
MCR203
MCR204
MCR205
MCR206

MCR380-140
MCR380-150
MCR380B-l0
MCR380B-20
MCR380B-30
MCR380B-40
MCR380B-50
MCR380B-60
MCR380B-70
MCR380B-80

MCR235-10
MCR235-20
MCR235,30
MCR235-40
MCR235-50
MCR235-60
MCR235-70
MCR235-80
MCR235-90
MCR235-100
MCR235-110
MCR235-120
MCR235-130
MCR235-140
MCR235-150
MCR235A-l0
MCR235A-20
MCR235A-30
MCR235A-40
MCR235A-50

111
115

I

115
119

119
123

PAGE
125

j
125
129

DEVICE
MCR470-110
MCR470-120
MCR470-130
MCR470-140
MCR470-150
MCR470C-l0
MCR470C-20
MCR470C-30
MCR470C-40
MCR470C-50

129
133

MCR380D-l0
MCD380D-20
MCR380D-30
MCR380D-40
MCR380D-50
MCR380D-60
MCR380D-70
MCR380D-80
MCR380D-90
MCR380D-l00

MCR550C-70
MCR550C-80
MCA550C-90
MCR550C-l00
MCR550D-l0
MCR550D-20
MCR550D-30
MCR550D-40
MCA550D-50
MCA550D-60

MCR235C-20
MCR235C-30
MCR235C-40
MCR235C-50
MCR235C-60
MCR235C-70
MCR235C-80
MCR235C-90
MCR235C-l00
MCR320-1

MCR470-10
MCR470-20
MCR470-30
MCR470-40
MCR470-50
MCR470-60
MCR470-70
MCR470-80
MCR470-90
MCR470-100

PAGE

,

141

141
145

MCR470D-80
MCR470D-90
MCR470D-l00
MCR470E-l0
MCR470E-20
MCR470E-30
MCR470E-40
MCR470E-50
MCA470E-60
MCR470E-70
MCR470E-80
MCR470E-90
MCR470E-l00
MCR470E-120
MCR550C-l0
MCR550C-20
MCR550C-30
MCA550C-40
MCR550C-50
MCR550C-60

MCR380D-l10
MCR380D-120
MCR406-1
MCR406-2
MCR406-3
MCR406-4
MCR407-1
MCR407-2
MCR407-3
MCR407-4

VOL

MCR470C-60
MCR470C-70
MCR470C-80
MCR470D-l0
MCR470D-20
MCR470D-30
MCR470D-40
MCR470D-50
MCR470D-60
MCR470D-70

MCR380C-l0
MCR380C-20
MCR380C-30
MCR380C-40
MCR380C-50
MCR380C-60
MCR380C-70
MCR380C-80
MCR380C-90
MCR380C-l00

MCR235A-60
MCR235B-l0
MCR235B-20
MCR235B-30
MCR235B-40
MCR235B-50
MCR235B-60
MCR235B-70
MCR235B-80
MCR235C-l0

123
125

VOL

DEVICE
MCA320-2
MCA320-3
MCA320-4
MCA320-5
MCA320-6
MCA320-7
MCA320-8
MCA380-10
MCA380-20
MCR380-30

133
135

~

135
139

~

139
141

141

vi

MCA550D-70
MCA550D-80
MCA550D-90
MCA550D-l00
MCA550D-ll0
MCA550D-120
MCA649-1
MCA649-2
MCA649-3
MCA649-4
MCR649-5
MCR649-6
MCR649-7
MCA729-5
MCR729-6
MCR729-7
MCR729-8
MCA729-9
MCR729-10
MCR800-10

145
147

147
149

j
149
152

I

152
154

DEVICE
MCR800-20
MCR80e-30
MCR800-40
MCR800-50
MCR800-60
MCR800-70
MCR800-80
MCR800-90
MCR80e-100
MCR800-110
MCR800-120
MCR800-130
MCR800-140
MCR800-150
MCR846-1
MCR846-2
MCR846-3
MCR846-4
MCR1336-5
MCR1336-6
MCR1336-7
MCR1336-8
MCR1336-9
MCR1336-10
MCR1718-5
MCR1718-6
MCR1718-7
MCR1718-8
MCR1906-1
MCR1906-2
MCR1906-3
MCR1906-4
MCR1907-1
MCR1907-2
MCR1907-3
MCR1907-4
MCR1907-5
MCR1907-6
MCR2315-1
MCR2315-2

VOL

PAGE
154

154
158

i

158
160

j

,

160
162

162
164

~

164
166

!

166
169

MCR2315-3
MCR2315-4
MCR2315-5
MCR2315-6
MCR2614L-1
MCR2614L-2
MCR2614L-3
MCR2614L-4
MCR2614L-5
MCR2614L-6
MCR3818-1
MCR3818-2
MCR3818-3
MCR3818-4
MCR3818-5
MCR3818-6
MCR3818-7
MCR3818-8
MCR3835-1
MCR3835-2
MCR3835-3
MCR3835-4
MCR3835-5
MCR3835-6
MCR3835-7
MCR3835-8
MCR3918-1
MCR3918-2
MCR3918-3

169
171

j
171
173

173
171
171
171

DEVICE

VOL

MCR3918-4
MCR3918-5
MCR3918-6
MCR3918-7
MCR3918-8
MCR3935-1
MCR3935-2
MCR3935-3
MCR3935-4
MCR3935-5

PAGE
171

~

171
173

MCR3935-6
MCR3935-7
MCR3935-8
M0708.A,B
M0708F,AF,BF
M0918,A,B
M0918F,AF,BF
M0982,F
M09B4
M0985,F

DEVICE
MOA922-1
MOA922-2
MOA922-3
MOA922-4
MDA922-5
MDA922-6
MDA922-7
MDA922-8
MDA922-9
MOA942-1

173
175
175
178
178
181
183
185

MDA942-2
MOA942-3
MDA942-4
MDA942-5
MDA942-6
MDA952FR-1
MDA952FR-2
MDA952FR-3
MDA952FR-4
MDA952FR-5

M0986,F
M01120,F
M01121
M01122
M01123
M01129,F
M01130,F
M02218.A,F.AF
M02219.A,F,AF
M02369.A,B,F ,A F
,BF

187
189
189
189
191
193
191
195
195
200

MDA970-1
MDA970-2
MDA970-3
MDA972-1
MDA972-2
MDA972-3
MDA972-4
MDA972-5
MDA980-1
MDA980-2

M 02904.A,F ,A F
M02905.A,F,AF
M03250.A,F ,AF
M03251.A,F .AF
M03409
M03410
M03467,F
M03725,F
M03762,F
M04957

204
204
209
209
213
213
215
219
223
227

M05000,A,B
M06001,F
M06002,F
M06003,F
M07000
M07001,F
M07002.A,B
M07003,F
M07003A,AF
M07003B

231
233
233
233
238
240
242
244
244
244

M07004,F
M07007,A,B
M07007F
M07021,F
M08001
M08002
M08003
MOA100
MOA101
MOA102

246
248
248
250
252
252
252
254

MOA104
MOA106
MOA108
MOA110
MOA800
MOA801
MOA802
MOA804
MOA806
MOA920

J

254
256

!

256
260

vii

MDA980-3
MDA980-4
MDA980-5
MDA980-6
MDA990-1
MDA990-2
MDA99e-3
MDA990-4
MDA990-5
MDA990-6
MOA1200
MDA1201
MDA1202
MDA1204
MDA1206
MDA1330H
MDA1331H
MDA1332H
MDA1333H
MOA1505-1

VOL

PAGE
262

262
266

j
266
270

l

270
271
271
271
266

~

266
275

275
279

!

279
283

~

283
266

MOA1505-2
MDA1505-3
MDA1505-4
MDA1505-5
MDA1505-6
MDA1591-1
MDA1591-2
MDA1591-3
MDA1591-4
MDA1591-5
MDA1591-6
MDA3551
MDA3552
MDA3661
MDA3662
MFE130
MFE131
MFE132
MFE590
MFE591

266
287

~

287
796
796
796
289
289

DEVICE

VOL

PAGE

DEVICE

VOL

PAGE

DEVICE

MFE823
MFE824
MFE2000
MFE2001
MFE2004
MFE2005
MFE2006
MFE2007
MFE2008
MFE2009

295
297
299
299
301
301
301
303
303
303

MJ450
MJ480
MJ481
MJ490
MJ491
MJ802
MJ900
MJ901
MJ920
MJ921

378
380
380
382
382
384
386
386
388
388

MJ4646
MJ4647
MJ4648
MJ5415
MJ5416
MJ6257
MJ6302
MJ6700
MJ6701
MJ7000

MFE2010
MFE2011
MFE2012
MFE2093
MFE2094
MFE2095
MFE3001
MFE3002
MFE3003
MFE3004

305
305
305
307
307
307
308
310
311
312

MJ1000
MJ1001
MJ1200
MJ1201
MJ1800
MJ2249
MJ2250
MJ2251
MJ2252
MJ2253

386
386
388
388
393
395
395
397
397
399

MJ7160
MJ7161
MJ7260
MJ7261
MJ8100
MJ8101
MJ9000
MJE 105
MJE 105K
MJE 170

MFE3005
MFE3006
MFE3007
MFE3008
MFE3020
MFE3021
MFE4007
MFE4008
MFE4009
MFE4010

312
314
314
314
320
320
322

MJ2254
MJ2267
MJ2268
MJ2500
MJ2501
MJ2801
MJ2840
MJ2841
MJ2901
MJ2940

399
401
401
403
403
405
407
407
405
409

MJE171
MJE 172
MJE 180
MJE 181
MJE 182
MJE200
MJE205
MJE205K
MJE210
MJE220

~J2941

MJE221
MJE222
MJE223
MJE224
MJE225
MJE230
MJE231
MJE232
MJE233
MJE234
MJE235

j

MFE4011
MFE4012
MFE5000
MHQ918
MHQ2221
MHQ2222
MHQ2369
MHQ2483
MHQ2484
MHQ2906

322
328
330
332
332
334
336
336
338

MJ2955
MJ3000
MJ3001
MJ3026
MJ3027
MJ3028
MJ3029
MJ3030
MJ3040

4'09
411
403
403
415
415
417
419
419
421

MHQ2907
MHQ3467
MHQ3546
MHQ3798
MHQ3799
MHQ4001A
MHQ4002A
MHQ4013
MHQ4014
MHQ6001

338
340
342
344
344
346
346
348
348
350

MJ3041
MJ3042
MJ3101
MJ3201
MJ3202
MJ3260
MJ3430
MJ3480
MJ3583
MJ3584

421
421
395
423
423
425
429
6
2-537
2-537

MHQ6002
MHQ6100
MHQ6100A
MHW559
MHW560
MHW561
MHW562
MHW709
MHW710
MJ105

350
352
352
354
355
356
357
358
361
364

MJ3585
MJ3701
MJ3760
MJ3761
MJ3771
MJ3772
MJ3773
MJ4030
MJ4031
MJ4032

MJ400
MJ410
MJ411
MJ413
MJ420S
MJ421S
MJ423
MJ424
MJ425
MJ431

368
370
370
372
374
374
372
376
376
372

MJ4033
MJ4034
MJ4035
MJ4200
MJ4201
MJ4210
MJ4211
MJ4240
MJ4502
MJ4645

I
I
I

2-537
399
431
431
437
437
442

T

,

447
449

I

viii

449
2-537
454
456

MJI'240
MJE241
MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254

VOL

PAGE
456
456
456
2-499
2-499
437
442
458
458
460
462
462
466
466
468
468
470
472
472
475

j
475
479
483
483
479
486

I

486
490

490

MJE340
MJE340K
MJE341
MJE341K
MJE344
MJE344K
MJE350
MJE370
MJE370K
MJE371

494
494
497

MJE371K
MJE520
MJE520K
MJE521
MJE521K
MJE700
MJE701
MJE702
MJE703
MJE710

505
508
508
511
511
514

t

497
500
502
502
505

~

514
516

DEVICE

VOL

MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE801
MJE802
MJE803
MJE1090

PAGE
516
516
518
518
518
514

~

514
520

MJE1091
MJE1092
MJE1093
MJE1100
MJEll01
MJE1102
MJE1103
MJE 1290
MJE1291
MJE 1660

520
523

~

MJE1661
MJE2010
MJE2011
MJE2020
MJE2021
MJE2050
MJE2090
MJE2091
MJE2092
MJE2093

523
525

~

525
527
520

MJE2100
MJE2101
MJE2102
MJE2103
MJE2150
MJE2160
MJE2360
MJE2361
MJE2370
MJE2480

520
527
528
530
530
532
534

MJE2481
MJE2482
MJE2483
MJE2490
MJE2491
MJE2520
MJE2801
MJE2801K
MJE2901
MJE2901K

534
536
536
538
540
540
543
543

MJE2955
MJE2955K
MJE3055
MJE3055K
MJE3370
MJE3371
MJE3439
MJE3440
MJE3520
MJE3521

546
546
549
549
502
505
552
552
508
511

MJE3738
MJE3739
MJE4918
MJE4919
MJE4920
MJE4921
MJE4922
MJE4923
MJE5190
MJE5191

~

I
I
I
I
I
I
II
II

554
554
2-872
2-872
2-872
2-876
2-876
2-876
2-67
2-67

DEVICE
MJE5192
MJE5193
MJE5194
MJE5195
MJE5655
MJE5656
MJE5657
MJE5974
MJE5975
MJE5976

VOL

PAGE

PAGE

II

2-67
2-71
2-71
2-71
2-237
2-237
2-237
2-374
2-374
2-374

MM3007
MM3008
MM3009
MM3053
MM3726
MM3734
MM3735
MM3736
MM3737
MM3903

607
609
609
611
613
617
617
621
621
625

2-378
2-378
2-378
2-382
2-382
2-382
2-386
2-386
2-386
2-408

MM3904
MM3905
MM3906
MM4000
MM4001
MM4002
MM4003
MM4005
MM4006
MM4007

625
630
630
635

MM4008
MM4009
MM4010
MM4018
MM4019
MM4030
MM4031
MM4032
MM4033
MM4036

638
638
638
640
642
646

MJE5977
MJE5978
MJE5979
MJE5980
MJE5981
.MJE5982
MJE5983
MJE5984
MJE5985
MJE6040
MJE6041
MJE6042
MJE6043
MJE6044
MJE6045
MLED50
MLED55
MLED60
MLED90
MLED92

DEVICE

VOL

II

I

2-408
557
557
559
559
561

,

635
636
636
636

~

646
648

MLED440
MLED445
MLED500
MLED600
MLED610
MLED640
MLED655
MLED660
MLED900
MLED910

563
565
567
569
571
573
575
577
579
581

MM4037
MM4049
MM4052
MM4208
MM4208A
MM4209
MM4209A
MM4257
MM4258
MM4261H

650
652
654
656

MLED930
MLS10l
MLS102
MLS103
MLS104
MLS105
MLS201
MLS202
MLS203
MLS204

583
585

MM5005
MM5006
MM5007
MM5189
MM5262
MM6427
MM8000
MM8001
MM8006
MM8007

670
670
670
672
674
676
678
678
680
680

MLS205
MM439
MM1500,A
MM1501
MM1505
MM1553
MM1748,A
MM1803
MM1941

585
587
589
589
591
593
597
2-425
599

MM8008
MM8009
MM8010
MM8011
MMCM918
MMCM930
MMCM2222
MMCM2369
MMCM2484
MMCM2857

684
688
684
684
691
693
695
697
693
729

MMCM2907
MMCM3798
MMCM3799
MMCM3903
MMCM3904
MMCM3905
MMCM3906
MMCM3960A
MMD70
MMD6050

699
738
738
743
743
747
747
753
701
702

I

MM2005-2
MM2258
MM2259
MM2260
MM3000
MM3001
MM3002
MM3003
MM3005
MM3006

601
603
603
603
606

~

606
607
607

ix

t

656
658
658
662

DEVICE

VOL

PAGE

VOL

DEVICE

PAGE

DEVICE

VOL

PAGE

706

MPF112
MPF130
MPF131
MPF132
MPF161
MPF256
MPF820
MPF970
MPF971
MPF4391

795
796
796
796
800
802
803
805
805
809

MPS3397
MPS3398
MPS3563
MPS3638,A
MPS3639
MPS3640
MPS3646
MPS3693
MPS3694
MPS3702

881
881
869
883
885
887
890
894
894
896

MMT70
MMT71
MMT72
MMT73
MMT74
MMT75
MMT76
MMT806
MMT807
MMT808

708
709
710
712
714
716
716
718
720
722

MPF4392
MPF4393
MPI-3401
MPM5006
MPN3401
MPN3402
MPN3411
MPN3601
MP0918
MP01000

809
809
813
815
817
817
819
821
823
825

MPS3703
MPS3704
MPS3705
MPS3706
MPS3707
MPS3709
MPS3710
MPS3711
MPS3826
MPS3827

896
898
898
898
900

MMT809
MMT918
MMT930
MMT2222
MMT2369
MMT2484
MMT2857
MMT2907
MMT3014
MMT3546

724
691
693
726
697
693
729
731
734
736

MP01050
MP02221
MP02222
MP02369
MP02483
MP02484
MP02906
MP02907
MP03303
MP03467

827
332
332
334
829
829
338
338
831
833

MPS4354
MPS4355
MPS4356
MPS5172
MPS6507
MPS6511
MPS6512
MPS6513
MPS6514
MPS6515

904
904
904
908
910
912
914

MMT3798
MMT3799
MMT3823
MMT3903
MMT3904
MMT3905
MMT3906
MMT3960
MMT3960A
MMT8015

738 .
738
741
743
743
747
747
751
753
756

MP03546
MP03725,A
MP03762
MP03798
MP03799
MP03904
MP03906
MP04003
MP04004
MP06001

342
835
838
840
840
842
844
846
846
849

MPS6516
MPS6517
MPS6518
MPS6519
MPS6520
MPS6521
MPS6522
MPS6523
MPS6530
MPS6531

MOC2000
MPll0
MP110B
MP500
MP501
MP502
MP504
MP505
MP506
MP600

761
763
765
767

MP06002
MP06100
MP06100A
MP06501
MP06502
MP06600,A
MP06700
MPS404
MPS404A
MPS706,A

849
851
851
849
849
851
853
855
855
859

MPS6532
MPS6533
MPS6534
MPS6535
MPS6539
MPS6540
MPS6541
MPS6543
MPS6544
MPS6545

918
920
922
924
926
928
928

MPS708
MPS753
MPS834
MPS835
MPS918
MPS2369
MPS2712
MPS2714
MPS2716
MPS2923

861
863
865
867
869
871
873
875
873
877

MPS6546
MPS6547
MPS6548
MPS6560
MPS6561
MPS6562
MPS6563
MPS6565
MPS6566
MPS6567

930
932
934
936
940
936
940
944
944
948

MPS2924
MPS2925
MPS2926
MPS3390
MPS3391
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396

877
877
879
881

MPS6568,A
MPS6569,A
MPS6970,A
MPS6571
MPS6573
MPS6574
MPS6575
MPS6576
MPS6580
MPS8000

950
950
950
954
957

MMD6100
MMD6150
MMD7000
MMD7001
MMFl
MMF2
MMF3
MMF4
MMF5
MMF6

MP601
MP602
MP603
MP1613
MP2000A
MP2060
MP2061
MP2062
MP2063
MP2100A
MP2200A
MP2300A
MP2400A
MP3730
MP3731
MPC1000
MPF102
MPF108
MPF109
MPF111

702
702
702
704
706

I

I

767
769

!

771
773
777

~

777
773

~

773
781
781
783
789
790
792
794

I

881

x

~

900
902
902

914
916

~

916
918

j

~

957
959
961

DEVICE

VOL

PAGE

VOL

DEVICE

PAGE

DEVICE

VOL

PAGE

970
976
976
982
985

MPS-U05
MPS-U06
MPS-U07
MPS-U10
MPS-U31
MPS-U45
MPS-U51,A
MPS-U52
MPS-U55
MPS-U56

1087
1087
1089
1091
1095
1099
1103
1105
1107
1107

MR811
MR812
MR814
MR816
MR817
MR818
MR820
MR821
MR822
MR824

MPS-A13
MPS-A14
MPS-A16
MPS-A17
MPS-A18
MPS-A20
MPS-A42
MPS-A43
MPS-A55
MPS-A56

987
987
990
990
992
997
1001
1001
976
976

MPS-U57
MPS-U60
MPS-U95
MPT20
MPT28
MPT32
MPU131
MPU132
MPU133
MPU6027

1109
1111
1113
1117
1119
1119
1121
1121
1121
1125

MR826
MR830
MR831
MR832
MR824
MR836
MR840
MR841
MR842
MR844

1159
1167

MPS-A65
MPS-A66
MPS-A70
MPS-A92
MPS-A93
MPS-001
MPS-002
MPS-003
MPS-004
MPS-005

1003
1003
1006
1010
1010
1012
1014
1016
1018
1020

MPU6028
MPZ5-16
MPZ5-32
MPZ5-180
M0930
M0982
M01120
M01129
M02218,A
M02219,A

1125
1129
1129
1129
1131
181
189
193
195
195

MR846
MR850
MR851
MR852
MR854
MR856
MR860
MR861
MR862
MR864

1167
1168

MPS-006
MPS-051
MPS-052
MPS-053
MPS-054
MPS-055
MPS-056
MPS-H02
MPS-H04
MPS-H05

1022
1012
1014
1016
1018
1020
1022
1025
1028
1028

M02369
M02484
M02904
M02905A
M03251
M03467
M03725
M03762
M03798
M03799,A

200
1131
204
204
209
215
219
223
1134
1134

MR866
MR870
MR871
MR872
MR874
MR876
MR1030
MR1031
MR1032
MR1033

1176
1181

MPS-H07
MPS-H08
MPS-H10
MPS-H11
MPS-H17
MPS-H19
MPS-H20
MPS-H24
MPS-H30
MPS-H31

1032
1032
1036
1036
1039
1041
1043
1046
1049
1049

M06001
M06002
M07001
M07003
M07004
M07007
M07021
MR1-1200
MR1-1400
MR1-1600

233
233
240
244
246
248
250
1138
1138
1138

MR1034
MR1035
MR1036
MR1038
MR1040
MR1120
MR1121
MR1122
MR1123
MR1124

MPS-H32
MPS-H34
MPS-H37
MPS-H54
MPS-H55
MPS-H81
MPS-H83
MPS-H85
MPS-K20
MPS-K21

1053
1057
1060
1062
1062
1066
1068
1072
997
997

MR250-1
MR250-2
MR250-3
MR250-4
MR250-5
MR327
MR328
MR330
MR331
MR501

1141

MR1125
MR1126
MR1128
MR1130
MR1205FL
MR1209FL
MR1215FL
MR1219FL
MR1235FL,SL
MR1239FL,5L

MPS-K22
MPS-K70
MPS-K71
MPS-K72
MPS-L01
MPS-L51
MPS-U01,A
MPS-U02
MPS-U03
MPS-U04

997
1006
1006
1006
1074
1078
1082
1084
1086
1086

MR502
MR504
MR506
MR508
MR510
MR751
MR752
MR754
MR756
MR810

MPS8001
MPS8907
MPS8098
MPS8099
MPS8598
MPS8599
MPS-A05
MPS-A06
MPS-A09
MPS-A12

963
965
970

~

,
I

I

!

1141
1-50

t

1-50
1143

I

1143
1149

~

1149
1154

xi

MR1245FL,SL
MR1249FL,SL
MR1265FL
MR1269FL
MR1337-1
MR1337-2
MR1337-3
MR1337-4
MR1337-5
MR1366

1154

j
1153
1159

!

!

1168
1176

l

!

I

I

1181
1-98

1-98
1187

1187
1191
1191
1194
1194
1198
1198
1201
1201
1203
1203
1205

!

I

1205
1-64

DEVICE

VOL

MR1376
MR1386
MR1396
MR1815SL
MR1819SL
MR2000S
MR2001S
MR2002S
MR2004S
MR2006S

PAGE
1-69
1-74
1-79
1194
1194
1208

I

DEVICE

VOL

PAGE

DEVICE

MRF226
MRF230
MRF231
MRF232
MRF233
MRF234
MRF304
MRF305
MRF401
MRF501

1285
1287
1291
1295
1299
1303
1307
1311
1315
1318

MV1632
MV1634
MV1636
MV1638
MV1640
MV1642
MV1644
MV1646
MV1648
MV1650

1318
1320
1324
1330
1332
1335
1339
1339
1343
1347

MV1652
MV1654
MV1656
MV1658
MV1660
MV1662
MV1664
MV1666
MV1803
MV1805C

MR2008S
MR2010S
MR2083HA
MR2266
MR2271
MR2272
MR2273
MR2500
MR2500S
MR2501

1208
1212
1214
1-107
1216
1214
1218
1224
1218

MRF502
MRF509
MRF511
MRF603
MRF607
MRF618
MRF619
MRF620
MRF621
MRF628

MR2501S
MR2502
MR2502S
MR2504
MR2504S
MR2506
MR2506S
MR2508
MR2508S
MR2510

1224
1218
1224
1218
1224
1218
1224
1218
1224
1218

MRF816
MRF817
MRF818
MRF5174
MRF5175
MRF5176
MRF5177
MRF8004
MSD6100
MSD6101

1350
1353
1357
1361
1364
1367
1370
1374
1376
1378

MV1809C1
MV1858D
MV1860D
MV1862D
MV1863D
MV1864D
MV1865D
MV1866
MV1866D
MV1868

MR2510S
MR2525
MR2525R
MR5005
MR5010
MR5020
MR5030
MR5040
MRA133,B
MRA163,B

1224
1228
1228
1233

1233
1235
1237

MSD6102
MSD6150
MSD7000
MU851
MU852
MU853
MU2646
MU2646M
MU4891
MU4892

1380
1382
1384
1386
1386
1386
1388
1390
1392

MV1868D
MV1870
MV1870D
MV1871
MV1872
MV1874
MV1876
MV1877
MV1878
MV2101

MRA333,B
MRA363,B
MRD14B
MRD150
MRD300
MRD310
MRD360
MRD370
MRD450
MRD500

1239
1241
2-264
1243
1247
1247
1251
1251
1255
1259

MU4893
MU4894
MUS4987
MUS4988
MV104
MV109
MV205
MV206
MV209
MV830

1259
1263

MV831
MV832
MV833
MV834
MV835
MV836
MV837
MV838
MV839
MV840

II

MRD510
MRD601
MRD602
MRD603
MRD604
MRD810
MRD3050
MRD3051
MRD3052
MRD3053
MRD3054
MRD3055
MRD3056
MRF207
MRF208
MRF209
MRF215
MRF216
MRF221
MRF225

~

1263
1267
1269

I

II

1269
1273
1273
1273
1277
1280
2-443
1283

~

1392
1394
1394
1398
1400
1402
1402
1404
1406

,

1406

MV1401
MV1403
MV1404
MV1405
MV1620
MV1622
MV1624
MV1626
MV1628
MV1630

1408

1408
1410

I

1410

xii

VOL

PAGE
1410

1410
1411

I

1411
2-425
1413
1415
1417

!

1417
1421
1417
1421
1417
1421
1417
1421

l

1421
1425

MV2102
MV2103
MV2104
MV2105
MV2106
MV2107
MV2108
MV2109
MV2110
MV2111
MV2112
MV2113
MV2114
MV2115
MV2201
MV2203
MV2205
MV2209
MV2301
MV2302
MV2303
MV2304
MV2305
MV2306
MV2307
MV2308
MV3102
MV3103
MV3140
MV3141

1425
1429
"

1429
1431

1431
1433
1433
1435
1435

DEVICE
MV3142
MV3501
MV3502
MV3503
MV3504
MV3505
MV3506
MV3507
MVAM-1
MVI-2097

VOL

PAGE
1435
1437

I

1437
1439
1441

MVI-2098
MVI-2099
MVI-2100
MVI-2101
MVI-2102
MVI-2103
MVI-2104
MVI-2105
MVI-2106
MVI-2107
MVI-2108
MVI-2109
MVS460
MZ500-1
MZ500-2
MZ500-3
MZ50Q-4
MZ500-5
MZ500-6
MZ500-7

DEVICE

VOL

MZ821,A
MZ823.A
MZ825.A
MZ827.A
MZ840
MZ935,A,B
MZ936.A,B
MZ937,A,B
MZ938,A,B
MZ941,A,B

1452

~

1452
1449
1452

MZ942,A,B
MZ943,A,B
MZ944.A,B
MZ1000-1
MZ1000-2
MZ1000-3
MZ 1 000-4
MZ1000-5
MZ1000-6
MZ1000-7
1441
1445
1447

MZ1000-18
MZ1000-19
MZ1000-20
MZ1000-21
MZ1000-22
MZ1000-23
MZ1000-24
MZ1000-25
MZ1000-26
MZ1000-27

MZ500-18
MZ500-19
MZ500-20
MZ500-21
MZ500-2<'
MZ500-23
MZ500-24
MZ500-25
MZ500-26
MZ500-27

MZ 1 000-28
MZ1000-29
MZ 1 000-30
MZ 1 000-31
MZ 1 000-32
MZ 1 000-33
MZ1000-34
MZ1000-35
MZ1000-36
MZ1000-37

MZ500-28
MZ500-29
MZ500-30
MZ500-31
MZ500-32
MZ500-33
MZ500-34
MZ500-35
MZ500-36
MZ500-37

MZ2360
MZ2361
MZ2362
MZ3154.A
MZ3155.A
MZ3156.A
MZ4614
MZ4615
MZ4616
MZ4617

MZ500-38
MZ500-39
MZ500-40
MZ605
MZ610
MZ620
MZ640
MZ805
MZ810
MZ820

MZ4618
MZ4619
MZ4620
MZ4621
MZ4622
MZ4623
MZ4624
MZ4625
MZ4626
MZ4627

I

1449

1452
1460

MZ 1 000-8
MZ1000-9
MZ1000-10
MZ1000-11
MZ1000-12
MZ1000-13
MZ1000-14
MZ1000-15
MZ1000-16
MZ1000-17

MZ500-8
MZ500-9
MZ500-10
MZ500-11
MZ500-12
MZ500-13
MZ500-14
MZ500-15
MZ500-16
MZ500-17

1447
1449

PAGE

1460
I
I
I

xiii

I

1-10
1-10
1-10
1452
1452
1452
1-89

I

1-89

DEVICE
MZ5555
MZ5556
MZ5557
MZ5558

VOL

PAGE
1462

~

1462

..

IN -HOUSE NUMBERED
DEVICE SPECIFICATIONS
DIODES
OPTOELECTRONICS
MODULES
POWER VARACTORS
RECTIFIERS
RECTIFIER ASSEMBLIES
THYRISTORS & TRIGGERS
TRANSISTORS

I

II

.4M.64FR10
.4Ml. 36FRS
.4Ml. 36FR2
.4M2.04FRS
.4M2.04FR2
For Specifications, See I N816 Data, Volume 1.

.SM2. 4lS thru .SM2001S
For Specifications, See IN5221 Data, Volume II.

1M3.3AI thru 1M7.SAZ
For Specifications, See IN3821 Data, Volume 1.

1M3.31S thru 1M200ZS
For Specifications, See IN4728 Data, Volume 1.

1M6.81 thru 1M200Z
For Specifications, See I N3821 Data, Volume 1.

5M3.3ZS thru 5M200ZS
For Specifications, See IN5333 Data, Volume II.

10M6.8Z thru 10M200Z
For Specifications, See IN2970 Data, Volume 1.

50M3.9Z thru 50M200Z
For Specifications, See IN2804 Data, Volume 1.

1/4M2.4AZ thru 1/4M200Z (SILICON)

1/4W
2.4 - 200 V

Hermetically sealed, all-glass case with all external surfaces corrosion resistant. Cathode end, indicated by color band, will be
positive with respect to anode end when operated in the zener
region. These devices are in the same 400 mW glass package as the
IN746 and IN9S7 Series, but designated 1/4 Watt to allow characterization at a different test current level.

CASE 51
(00-7)

MAXIMUM RATINGS

Junction and Storage Temperature: -65°C to +175°C
D C Power Dissipation: 1/4 Watt (Derate 1. 67 mW;oC Above 25°C)
The type numbers specified have a standard voltage (VZ) tolerance of ±20%.
For closer tolerances, add suffix "10" for ±10% or "5" for ±5%. (3%, 2%, 1%
tolerances also available. )
ELECTRICAL CHARACTERISTICS ITA

TYPE NO.

NOMINAL
ZENER
VOLTAGE@ln
(V z) VOLTS

TEST
CURRENT
(lzr)mA

= 25°C, VF = 1.5 V max @

MAXIMUM
ZENER
IMPEDANCE
(Zn)@ lIT
ohms

MAXIMUM
DC ZENER
CURRENT
(lZM) mA

100 mAl

REVERSE LEAKAGE CURRENT
I, MAX
(J1A}

TEST VOLTAGE Vdc *
VR1
VR2

2.4
2.7
3.0
3.3
3.6

10
10
10
10
10

60
60
55
55
50

70
65
60
55
52

75
75
50
50
50

1
1
1
1
1

10
10
10
10
10
10

50
45
35
25
20
15

49
46
42
39
36
33

1
1.5
1.5
1.5
1.5
3.5

9.2
8.3
7.6
6.9
6.3

7.0
8.0
9 .. 0
10
11

33
. 30
26
24
21

25
25
10
5
5
5
150
75
50
25
10

1
1.5
1.5
1.5
. 1. 5
3. 5

1!4M6.8Z
1/4M7.5Z
1/4M8.2Z
1!4M9.1Z
1/4M10Z

3.9
4.3
4.7
5.1
5.6
6.2
6.8
7.5
8.2
9.1
10

5.2
5.7
6.2
6.9
7.6

4.9
5.4
5.9
6.6
7.2

1!4M11Z
1!4M12Z
1!4M13Z
1!4M14Z
1!4M15Z

11
12
13
14
15

5.7
5.2
4.8
4.5
4.2

13
15
18
20
22

19
18
16
15
1.4

5
5
5
5
5

8.4
9. 1
9'.9
10.6
11. 4

8.0
8.6
9.4
10.1
10.8

1!4M16Z
1/4M17Z
1!4M18Z
1!4M19Z
1!4M20Z

16
17
18
19
20

3.9
3.7
3.5
3.3
3.1

24
26
28
30
33

13
12.5
11.5
11. 0
10.5

5
5
5
5
5

12.2
13.0
13.7
14.4
15.2

11.5
12.2
13.0
13.7
14.4

1!4M22Z
1!4M24Z
1/4M25Z
1!4M27Z
1!4M30Z

22
24
25
27
30

2.8
2.6
2.5
2.3
2.1

1!4M2.4AZ
1/4M2.7AZ

1!4M3.0AZ
1!4M3.3AZ
1!4M3.6AZ
1!4M3.9AZ
1!4M4.3AZ
1!4M4.7AZ
1!4M5.1AZ
1!4M5.6AZ
1!4M6.2AZ

16.7
5
9.5
40
18.2
5
9.0
46
19.0
5
50
8.0
20.6
5
7.5
58
22.8
5
7.0
70
*VR1 - Test Voltage for 5% Tolerance Device
VR2 - Test vOltage for 10% Tolerance Device
No Leakage Specified as 20% Tolerance Device

2

1
1
1
1
1

15.8
17.3
18.0
19.4
21.6

1/4M2.4AZ thru 1/4M200Z

(continued)

ELECTRICAL CHARACTERISTICS (TA

TYPE NO.

NOMINAL
ZENER
VOLTAGE@ III
(V,) VOLTS

1/4M33Z
1/4M36Z
1/4M39Z
1/4M43Z
1/4M45Z
1/4M47Z
1/4M50Z
1/4M52Z
1/4M56Z
1/4M62Z

33
36
39
43
45
47
50
52
56
62

1/4M68Z
1/4M75Z
1/4M82Z
1/4M91Z
1/4M100Z

68
75
82
91
100

1/4M105Z
1/4M110Z
1/4M120Z
1/4M130Z
1/4M140Z
1/4M150Z
1/4M175Z
1/4M200Z

TEST
CURRENT
(llT)mA

105
110
120
130
140

1.9
1.7
1.6
1.5
1.4
1.3
1.2
1.2
1.1
1.0
0.92
0.83
0.76
0.69
0.63
0.60
0.57
0.52
0.48
0.45

150
175
200

0.42
0.36
0.31

= 25 C. VF = 1.5 V max
Q

MAXIMUM
ZENER
IMPEDANCE
(Zll)@l ll
ohms

MAXIMUM
DC ZENER
CURRENT
(I'M) rnA

@ 100 mA) (continued)

REVERSE LEAKAGE CURRENT
I. MAX
(/LA)

TEST VOLTAGE Vdc *
VR2
VR1

350
450
550
700
900

6.5
6.0
5.0
4.8
4.5
4.3
4.1
4.0
3.8
3.3
3.0
2.8
2.5
2.3
2.0

5
5
5
5
5
5
5
5
5
5
5

5
5
5

51. 7
56.0
62.2
69.2
76.0

23.8
25.9
28.1
31. 0
32.4
33.8
36.0
37.4
40.3
44.6
49.0
54.0
59.0
65. 5
72.0

1000
1200
1500
1900
2200

1.9
1.8
1.7
1.5
1.4

5
5
5
5
5

79.8
83.6
91. 2
98.8
106.4

75.6
79.2
86.4
93.6
100.8

2500
3300
4300

1.3
1.1
1.0

5
5
5

114.0
133.0
152.0

108.0
126.0
144.0

85
100
120
140
150
160
180
200
230
290

*VHI - Test Voltage for 5% Tolerance Device

5

25. 1
27.4
29.7
32.7
34.2
35.8
38,0
39.5
42.6
47.1

VH2 - Test Voltage for 10% Tolerance Device

No Leakage Specified as 20% Tolerance Device
SPECIAL SELECTIONS AVAILABLE INCLUDE: (See Selector Guide for details)

1 - Nominal zener voltages between those shown.

2

~. ~~~hoerd ~~;:: u(;i\~nf~~r~e~~~e~aonnCne:c~~~ =;~t~~pe~i~i'~Jot'O~~~~~~' :nlt~~~ ~~ft:~~~n~e~i~svo,.:,t:~1!,3rs~~~j~ake

possible higher

zener voltages and provide lower temperature coefficients, lower dynamic impedance and greater power handling ability.
b. Two or more Units matched to one another with any specified tolerance.

3 - Tight voltage tolerances: 1.0%.2.0%.3.0%.

3

881 05A (SILICON)
881058
88105G

I

vvc -.IfVOLTAGE VARIABLE
CAPACITANCE DIODES
SILICON EPICAP OIODES

30 VOLTS

· .. designed in the new low-inductance mini-L package for high
volume requirements of UHF and VHF TV tuning and AFC. general
frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.
• Guaranteed Minimum 0 Values at VHF and UHF Frequencies
• Controlled and Uniform Tuning Ratio
• Guaranteed Matching' Tolerance From Diode to Diode and Group
to Group
• Upon request, diodes are available In matched sets of any number or in
matched groups. All diodes in a set or group can be matched for capacitance
to your specified conditions along the entire tuning range.
If you require BB150A and 881058 matched to ±1.6% between 3.0 and
26 Volts. add "M" to the device title {i.e., BB105BML BB105G can be
ordered matched to ±3.0% by adding M to the device title. For any other

matched tolerances or conditions. plealB contact your local Motorola Repr.
!(I8ntative.

MAXIMUM RATINGS
Roting
Reverse Voltage

Symbol

Value

Unit

VR

30

Volts

Forward Current

IF

200

rnA

Device Dissipation til T A - 25°C
Derate above 25°C

Po

400

4.0

mW
mW/oC

Junction Temperature

TJ

+125

°c

T stg

-65 to +150

°c

Storage Temperature Range

~~q

fTN

I

L

20
18

~ 16

-

~

i'-..

14

12

H

iJr

I

TT,

.......

===rJ==.,------h

~J-+c

"'-

§

10

~

8.0

Q

6.0

IS

4. 0

o

S

I

w

g

ILL! E ERS

f"'1.0MHz

0.5

MI.

MAX

A

3.88

C

1.91
0.64
0.08

4.11
318
>16

0 ..
0.18

13D

1.55

0."

0.89
4.32
2.62

D

F

II
II

o

DIM

•

TA"'250 C

2.0

0.3

•

FIGURE 1 - DIODE CAPACITANCE

t---

H
J

•
•
l

1.0

2.0

3.0

5.0

10

20

YR. REVERSE VOLTAGE (VOLTS)

30

29'

....
2.36

112

R

0.19

S

1.99
1.14
0.43

T

•

1.37
1.04

12.15
140

0."

I H
MAX
MI.
0.152 0.162
0.115 0.125

0,015

0

0.025

0035

0.003
0.051

0.007

0025
0.160

0.035
0.110

0.093
0....
0.031
0.472
0.045
0.011

CASE 226

4

0.061

.

0.103

"'54
.041
."

0.055

.27

PIN 1 CATHODE
2 ANODE

BB105A, BB105B, BB105G (continued)

ELECTRICAL CHARACTERISTICS

(T A

= 2SoC unless otherwise notedl

Characteristic·AII .Types
Reverse Breakdown Voltage
(lR = 10ltAdei

Symbol

Min

BVR

30

-

Vde

-

50.0
0.5

nAde
ItAde

Max

Unit

Reverse Voltage Leakage Current
(VR = 28 VI
(VR = 28 VI T A = 60Dc

IR

Series Inductance

LS

-

3.0

nH

TCC

-

400

ppm/DC

(I

= 250 MHzl

Diode Capacitance Temperature Coefficient

(VR

= 3.0 Vdc. I = 1.0 MHzl

CT

Device
Type

VR

= 25Vdc
pF

Q
I -100MHz
CT=9pF

RS
Ohm.

Ridge
Stripe

Min

Max

Min

Max

Min

Max

Color

2.3

2.8

225

0.8

4.0

5

Blue

8Bl05B

2.0

2.3

225

0.8

4.5

White

1.8

2.B

150

1.2

4.0

6
6

Yellow

BB105G

Green

White

1600

I

0

FIGURE 3 - DIODE CAPACITANCE

/

~ 1000
o
~ 800

I

~

BB105A.B

::>

to

u:: 600

..... V
400
f"""
f--- . /V
200

/

L

/

~

'/

/

f=100MHz
1200

;x

/

4.0

VR = 3.0 Vdc

~ 1.00
>-

. . .V

<:;

:

BB105G

0.99

/

~
~ 0.98

........... V

.....

o

~O.97

u

8.0

12

16

20

24

28

0.96
-75

32

·50

VR. REVERSE VOLTAGE (VOLTS)

BU105

......... .......-

w
u

f--

o
o

1.02

o

!!! 1.01

/

/'

1.03

::;

i

,/

./

Color
White

1.04

V

Or-- r- TA = 25 C

140

d

Body

BB105A

FIGURE 2 - FIGURE OF MERIT

>-

Stripe on

C3/C25

-25

+25

+50

+75

TA. AMBIENT TEMPERATURE (DC)

For Specifications, See MHOS Data.

5

+100

+125

aUl08 (SILICON)
MJ3480

HORIZONTAL DEFLECTION SILICON
TRANSISTORS
.

5.0 AMPERE

· .. designed for use in large screen color television receivers.

TRIPLE DIFFUSED
POWER TRANSISTORS
NPN SILICON

•

Coliector·Emitter Voltage VCER = 1500 Vdc

•

Collector Current IC = 5.0Adc

•

Fall Time @ IC = 4.5 Adc tf = 0.71ls (Typ) • tf = 1.0 IlS (Max)

1300. 1500 VOLTS
56 WATTS

MAXIMUM RATINGS
Symbol

BU108

MJ3480

Unit

Collector·Emitter Voltage

Rating

VeEO

750

700

Vdc

Collector-Emitter Voltage
(ReE = 100 nl

VeER

1500

1300

Vdc

Collector-Base Voltage

Vee

1500

1300

Vdc

Eniitt,r-Base Voltage

VEe

5.0

7.0

Vdc

Collector Current - Continuous
- Peak

Ie

5.0
10

Base Current

Ie

4.0

Adc

Total Device Dissipation@Tc::::25OC

Po

56

Watts

0.625

w/oe

TJ.Tstg

-65 to +115

De

Derate Above 25°C
Operating and Storage Junction

Adc

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

FIGURE 1 - POWER DERATING

56

~
""
~

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLL£CTOR

......

.......

48

DIM

.......

40

........

z

A
B
C
0

0

~
iii
0

'"~

Ie
~

32

.......

24

.........

E

16

........

8.0

o20

F
G
H
J
K

.......
......

.......

Q

30

40

50
60
70
80
90
TC. CASE TEMPERATURE (OC)

100

110

6

120

R

MILLIMETERS
MIN MAX

-

(NCHES
MIN
MAX

39.37
1.550
0.830
21.08
7.62 0.250 0.300
1.09 0.039 0.043
3.43
0.135
.29.90 30.40 1.177 1.197
10.67
11.18 0.420 u.44O
5.33
5.59 0.210 0.220
16.64 17.15 0.655 0.675
11.18 12.19 0.440 0.480
3.64
4.09 0.151 0.161
26.67
1.050
Collector connected to case.
eASE 11
6.35
0.99

BU108, MJ3480

(continued)

ELECTRICAL CHARACTERISTICS (Tc = 250 C unl ..s otherwise noted.)

I

I

Characteristic

Symbol

I

Min

Typ

Max

750
700

-

-

-

-

1.0
1.0

.-

-

1.0

-

-

5.0

-

-

1.5

200

-

-

-

7.5

-

-

125

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
IIC = 10 mAde, IB = 0)

Collector Cutoff Current
(VeE
IVeE

= 1500 Vde,
= 1300 Vde,

VBE
VBE

= 5.0 Vde,

mAde

ICES

= 0)
= 0)

BU108
MJ3480

Emitter Cutoff Current
IV BE

Vde

VCEOlsus)
BU10B
MJ3480

mAde

lEBO

= 01

Ie

ON CHARACTERISTICS

Collector-Emitter Saturation Voltage
IIc

= 4.5

Ade, IB

Base Emitter Saturation Voltage
IIC

= 4.5 Adc,

IB

Vde

VeElsat)

= 2.0 Ade)

Vde

VBElsat)

= 2.0 Ade)

Second Breakdown Collector Current with Base
Forward Biased
(t = 1.0 s, VCE = 100 Vde)

mAde

ISlb

DYNAMIC CHARACTERISTICS

Output Capacitance
IVCB

= 10 Vde,

IE

MHz

IT

Current-Gain - Bandwidth Product (2)
IIC = 0.1 Ade, VCE = 5.0 Vde, f tes! = 1.0 MHz)

Cob

= 0, f = 0.1

pF

MHz)

SWITCHING CHARACTERISTICS
Fall Time
IIC = 4.5Ade,IBl

= 1.8 Ade,

LB

= 10l'H, See

Figure 2)

111

Pulse Test: Pulse Width 300 I'S, Duty Cycle", 2.0%
(2) fT = Ihfel - f test

FIGURE 2 - TEST CIRCUIT

100
lOW

LF

8 mH

+80 V

1.0I'F~

0.0051'F
1.5 k

CR

251'F

II

Ly
250l'F
150 V

MR11600

Cs
20l'F
600 V

Vjn

51

300

51

RB

500l'F
15 V

DRIVER TRANSFORMER ITl)
Ly
mH

IC

Motorola part number 25D68782A05-1/4" laminate "E" iron
core. Primary 1nductance-39 mH, Secondary I nductance-O.22 mH,
Leakage inductance with primary shorted-2.0 J.LH. Primary 260

A

turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG
enamel wire.

3.5

18

2.5

0.0133

4.5

1.0

2.5

0.02

TEST CIRCUIT OPTIMIZATION
transistor that is of fundamental importance. Once the required
transistor operating current is determined, fixed circuit values
may be selected from the table. Factory testing is performed by
reading the current meter only, since the input power is pro·
portional to current. No adjustment of the test apparatus is required.

The test circuit and operating waveforms for the BU108 and
MJ3480 transistors are shown in Figures 2 and 3. The test circuit
may be used to evaluate devices in the conventional manner, Le.,
to measure fall time, storage time, and saturation voltage. How~
ever, this circuit was designed to evaluate devices by a simple
criterion, power supply input. Excessive power input can be
caused by a variety of problems, but it is the dissipation in the

7

BU108, MJ3480 (continued)

BASIC CONSIDERATIONS

be 8 times the 130-volt power supply voitage or approximately 1000 volts, but may be varied slightly by adjusting retrace time and flyback tuning. For this reason, high
voltage devices are particu larly useful in cost conscious
solid-state receivers as they permit the use of an off-theline half wave power supply.
The power supply used in the circuit of Figure 2,
was chosen to produce approximately a 1000 V collector
pulse on the transistor, a conservative value, recommended
for unregulated applications_
The values of yoke inductance (L V). flyback primary
inductance (LFl. retrace capacitor (CR) and "S" shaping
capacitor (CS) are shown for operating collector currents
of 3_5 A which is suitable for 900 color and 1100 large
screen black and white receivers, and 4.5 A for 1100
color receivers_ Peak collector currents to 10 A may be
handled by these transistors. The most efficient application results when the power supply voltage is held constant_ Adjustments of the amount of deflection can then
be 'made by raising or lowering Ly and LF. Lyly is constant for the fixed voltage situation, and actual deflection
is proportional to IYJIY. Values of Cs and CR must
be varied inversely with Ly to maintain retrace and "s"
shaping periods.
.
,

The primary consideration when choosing a deflection
transistor for a conventional (parallel·connected) circuit,
as shown in Figure 2, is voltage capability. The flyback
voltage that the device will be subjected to is a relatively
predictable value with respect to the main power supply
voltage. This voltage pulse, shown in Figure 3, will usually

FIGURE 3 - TEST CIRCUIT WAVEFORMS

TEST CIRCUIT VALUES

The driver power supply and driver transistor type
can be selected according to convenience. A TO-5 or
plastic power type will generally be needed. For testing
convenience, the Darlington arrangement of the driver
transistor shown in Figure 2 was used to produce a wide
range of IB1 current values. Once the driver circuitry is
chosen, the turns ratio of the driver transformer can be
selected to produce 4 to 5 volts peak-to-peak at the base
of the output device. Tight coupling between windings is
recommended on early designs to allow optimizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The
RB and its bypass electrolytic, often called the "speed
up" circuit, allows adjustment of IB 1 (or IB "end of scan"
or IB end) while still providing a low AC impedance for
good turn-off of the output device.
In Figure 4, the effects of varying LB and IB1 on
total power input to a deflection circuit requiring an IC
of 4.5 A are shown. Note that an optimum LB can be
found which will produce low dissipation over a wide
range of' IB1. This is desirable in order to produce efficient operation over a wide range of circuit component
tolerances. Likewise, best LB also gives the least sensitivity to output transistor hF E.
The best value of LB found in Figure 4 is 12 MH. This
is the sum of the actual leakage inductance of the driver
transformer (secondary inductance with primary shorted)
and an external L if necessary. The value of IB1 is approximately 1.75 A achieved in a typical device by using
RB ~ 2.3 n, which was derived experimentally. These
are the choices recommended for the test fixture when
the transistor is used at ICM = 4.5 A.

Fundamental waveforms of a simplified horizontal
deflection cirCUit.

FIGURE 4 - RELATIONSHIP OF POWER DISSIPATION
TO LB WITH CHANGING IBVICM = 4.5 A
IS
171\

g«
~
z

17

0

;::
~

ill

16

~.

Ii:

,\
\\

~712 1\ \

i5

'"
~

14

./

15

~
14
0.5

7.6

\

LS" 2.0"H

/

/
r\.

J

~\

"- /
\1\\\ 'v ~ ....:..,/ ....~ ~ t:><
-..,
5.9'- ~"'"
1.0

-~

1.5

--

2:0

......
~
2,5

IB, BASE CURRENT (AMP)

8

BU108, MJ3480 (continued)

Today many TV receivers operate with an leM of
approximately 3.5 A. Figure 8 shows the relationship of
power dissipation to LB. with changing IB1. when Ie of
3.5 A is required.
The best value of LB. found in Figure 9 is 22 .uH. This
value is the sum of the driver transformer leakage induct·
ance and an external inductance if necessary. The best
value of IB1 is approximately 1.15 A. with an RB of
3.2 n. These are the choices recommended for the test
fixture when the transistor is used at I eM = 3.5 A.

For other values of leM the drive circuit components
must be changed. Figures 5. 6 and 7 show the values of
LB and IB1 which should be used. The value of RB which
will be required to produce the corresponding IB1 is also
given. but. it is not an independent variable.
PERFORMANCE
Shown in Figures 9 and 10 are the typical results that
will be obtained with the test circuit at various operating
conditions.

INTERRELATION OF BASE RESISTANCE.
BASE INDUCTANCE AND
BASE CURRENT

FIGURE 5 - OPTIMUM BASE RESISTANCE

FIGURE 6 - OPTIMUM BASE INDUCTANCE
0

4.0

f""....

~ 3.5

S

f'.....

w

~

5['....

~

3.0

~

~

2. 5

~

2,0

I'-.

t....."

0

~

r----....

i'-..
~

5
...............

~

..............

f'...

f'..,.

...........

1""''50
30

1.5
3.5

3.0

4.0

4.5

5.0

35
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)

ICM. COLLECTOR CURRENT (AMP)

FIGURE 8 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IB1.ICM = 3.5 A

FIGURE 7 - OPTIMUM BASE CURRENT

2.0

./

ii:' 1.75

15

V

LB

iilf-

,/'

'"

~

~

/'

f-

~ 1.50

>=
~

/V

~ 125

V

0.75
3.0

~

'"
~

/'

1.0

13

c;

./

;;'i

~

j

12

11
3.5
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)

5.0

9

5.9

V
.L.

V

V /
II'y. '/

~

7.6

12

~

0iJ [K
~

~

/

2.0"H

V V V r-

0

110

~

/

14

z

./

'"
~

5.0

19
27

"'>c:::

-22

o

1.0

1.5
lB. BASE CURRENT (AMP)

2.0

25

BU108, MJ3480 (continued)

FIGURE 9 - INTERRELATION OF tf. FALL TIME
AND ts. STORAGE TIME
2.2 5

1.1 5"""-

-- --

1

r--

5

0.7 5
~

FIGURE 10 - EFFECT OF COLLECTOR CURRENT
ON INPUT POWER

-

ts

r---....

8.0

VCEIM

;::

6.0 ~

3

o
t;

2

4.0 $

./'

1~

2.0
5.0

3.5
4.0
4.5
ICM. COLLECTOR CU RRENT (AMP)

.......- ......-

9.0
3.0

~

5.0

FIGURE 12 - "ON" VOLTAGES

1.2

""- .'-

25 0 C

10

VCE =S.O V

r-

I

z

7.0

"

/

1.4
TJ =100 0 C

5.0

en
c:;

1.0

~
w

0.8

o

I'"\

<.>

g

L

V

3.5
4.0
4.5
ICM. COLLECTOR CURRENT (AMP)

FIGURE 11 - DC CURRENT GAIN
20

iii
g§

1000 IV

w
:E

0

0.2 5
3.0

<
'">-

=

]

.'"

tf

-

7

6

'"~

0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0

VCE(sat)@ IC/IS - 2

0.05 0.07 0.1

5.0

I-'"'V
i-"""100 oC

/

1

10~OC

>

O. 2

=-Ltsoc ~ ....: /

1--""

0.6

o

2.0
0.05 0.07 0.1

=.:- r--

,; 0.4

\

3.0

VBE(sat)@ IC/IS

o

'\.

~

1

TJ

/

.A'
·Jsoc i,..---"

0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0

5.0

FIGURE 13 - ACTIVE REGION SAFE OPERATING AREA

10kf~ J1 1~ :j!i!;li!lIl!l!j !ili !l~! f1

S.Ok

®

d';O.OS

 10 0

8
0} 10 0

/'

B

IL

/'

ffi

V
./

BU10B - VCB = 1500 Volts
'" 3D0 - MJ3480 - VCB = 1300 Volts

.;,

I-

1.0 k

~ ov

25 0lC

./'

/

./

8
10- 1 REVERSE
-01

~

FORWARD
+0.1
+0.2
+0.3
+04
VBE, BASE·EMITTER VOLTAGE (VOLTS)

+0.5

+0.6

50

o

20

40
SO
TJ, JUNCTION TEMPERATURE (OC)

FIGURE 17 - CAPACITANCE
20 k
10 k

TJ

50k

:e 2V

25°C

-Gib

k

~ 1.0 k

;::
G

;t
~

-

500

200
100
0

Cob

_.

r-

20
0.5

10

20

5.0
10
20
50
100
VR REVERSE VOLTAGE (VOLTS)

11

200

500

80

100

MA202, MA206 (GERMANIUM)
Germanium PNPtransistor designed for high-voltage
applications in the audio frequency range, such as neon
driver, solenoid or relay driver applications.

{).\

CASE 31(1)
(TO-5)

,

All I•• ds isol.ted ,from cas.
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

MAXIMUM RATINGS (TA

= 250 C unless otherwise noted.)

Rating

Symbol

MA202

MA206

Collector-Base Voltage

VCB

105

SO

Vdc

Collector-Emitter Voltage

VCE

105

SO

Vdc

Emitter-Base Voltage

VEB

10

Collector Current

IC

Emitter Current

Unit

10

Vdc

200

mAdc
mAdc

IE

200

Operating and Storage Junction
Temperature Range

TJ,Tstg

-65 to +100

°c

Thermal Resistance

R9JA

0.5

°C/mW

Po

150
2.0

mW
mW/oC

Collector Dissipation @TA = 25 0 C
Derate above 250 C

ElECTR ICAl CHARACTER ISTICS (T A

= 250 C unless otherwise noted.)

Symbol

Characteristic
Collector-Base Cutoff Current
(VCB = 105 V, IE = 0)
(VCB = SO V, IE = 0)

ICBO

Min

Typ

Max

Unit

12
12

50
50

5.0

14

/LA

/LA

Collector-Base Cutoff Current
(VCB = 2.5 V, IE = 0)

ICBO

-

Emitter-Base Cutoff Current
(VEB = 10 V, IC = 0)

lEBO

-

3.0

50

/LA

Collector-Emitter Saturation Voltage
(lc = 5.0 mAdc, IB = 0.25 mAdc)

VCE(sat)

-

0.11

0.35

Vdc

Base-Emitter Saturation Voltage
(lc = 5.0 mAdc, IB = 0.25 mAd c)

VBE(sat)

-

0.22

0.40

Vdc

20
40

-

-

DC Current Ga.in
(lc = 5.0 mAde, VCE

MA202
MA20S

hFE

= 0.35 Vdc)

MA20S
MA202

DC Collector-Emitter Punch-Through Voltage
(VCB necessary to obtain VEB of -1.0 V max,
using instrument with Zin > 11 M.I1 to
MA202
measure VBE)
MA20S

VPT

Small-Signal Short-Circuit Forward Current Transfer
Ratio Cutoff Frequency
(VCB = S.O Vdc, IE = 1.0 mAdc)

fOb

12

-

-

Vdc

105

-

60

-

-

1.0

-

MHz

MA202,MA206 (continued)

DC CHARACTERISTICS
(TJ= 25°C unless otherwise noted)

"ON" VOLTAGES

CURRENT GAIN
200

II
TJ

I

VeE~

IV

100
z

~
>;

!

TJ

-

50

1

06

IIIIIII

100°C

·

~

-

wc

~

~

~J ~I~ssoc

~

20

1\

10
0.5

1.0

2.0

5.0

10

20

50

100

~

....
o

200

1.0

"..

20

5.0

1.~I\mA

~

;
~

~

160

f//
'1/

120

80

.!J
40

-;"

/. ,-

!J./

,.,

~

12

I

-

10

rOly

~

50

20

100

200

V

/

8

OIOV

/

6

~

V

/'-'"

-

".

./

Z
0.4

/

COLLECTOR HIGH VOLTAGE REGION

~ rnA

02

10

olO~

Ie. COLLECTOR CURRENT ImAI

COLLECTOR SATURATION REGION

~

VCEl.at)@IC/IB

.....

Ie. COLLECTOR CURRENT ImAI

200

f1' I II

V

0.2

}

'\~
02

vrur

ffi

~

J

I I II

0.4

:::

1-' .. -

0.1

I

06

08

o
o

10

,...,...

V

i-- ..-

m

m

O~

I

I
I

..:vI/

004V

I

0.02 V

I. I

..J,../:/

w w

~

7V'~ ~O

m

~

VeE. COLLECTOR·EMIITER VOLTAGE (VOLTSI

VeE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

13

~

m

~

MA4404, MA4404A (GERMANIUM)

PNP GERMANIUM SWITCHING TRANSISTORS
PNP GERMANIUM
SWITCHING
TRANSISTORS

.. designed for medium·speed saturated switching and chopper
applications.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) ~ 0.2 Vdc (Max) @ IC = 24 mAde
~ 0.25 Vdc (Max) @ IC = 200 mAde

•

High Ern Itter-Base Breakdown Voltage @ IE = 100/lAdc BVEBO = 12 Vdc (Min) - MA4404
~ 25 Vdc (Mm) - MA4404A

MAXIMUM RATINGS
Symbol

MA4404

MA4404A

VCES

24

35

Collector-Base Voltage

VCB

25

40

Vdc

EmItter-Sase Voltage

VEB

12

25

Vdc

Rating
Collector-Emitter Voltage

Collector Current-Continuous
Total Power Dlsslpation@TA"'250C

= 2SoC

IC

350

mAde

200
2.67

mW
mW/oC

PD

300
4.0

mW
mW/oC

Derate above 2SoC
Operating and Storage Junction

Vdc

PD

Derate above 2SoC
Total Power DISslpatlon@ TC

Unit

TJ.Tstg

-

-65 to +100 ---.-..

MA4404
MA4404A

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction
to Ambient

ReJA

375

°CIW

Thermal Resistance. Junction

ReJC

250

°CIW

to Case
FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
-10 V

+5.0V

1.0 k

390
10",F

:,-::1£
GENERATOR
<20 ns
tf<20 ns

tr

tw~5.0,",s

Duty Cycle

< 2.0%

T-

n

Output

5.0 k

OSCI LLOSCOPE
tr

<15 ns

Rin;;a: 10 Megohms

Cin ~7.0 pF

AlIJEDECdlm.nslonsandnotlSapply.
CASE 31-03
TO·S

14

MA4404, MA4404A

(continued)

ELECTRICAL CHARACTERISTICS IT A

<

250 C unless otherwise noted)

Characteristic

Min

Symbol

TV.

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

Vdc

BVCES

MA4404,
MA4404A

(Ie = 100J,lAdc, 18 = 0)

Collector-Base Breakdown Voltage
(Ie = 20 ,u.Adc, Ie = 0)

24
35
Vdc

BVCBO
MA4404,
MA4404A

25
40

Emitter-Base Breakdown Voltage

Vdc

BVEBO
MA4404.
MA4404A

(Ie = 100 /.lAde. Ie'" 0)

12
25

Collector Cutoff Current
(Vea = 12 Vdc, Ie = 0)

.,Adc

leBO

10
500

(Ves = 12 Vdc, Ie '" D, TA '" BOOC)
Emitter Cutoff Current
(VES = 2 5 Vdc, Ie'" 01

",Adc

lEBO

0.5

5.0

ON CHARACTERISTICS
DC Current Gain

hFE

tiC = 12 mAde, VeE = 0.2 Vdcl
(Ie = 24 mAde, VeE = 0.2 Vdcl

80
70

30
24

Collector-Emitter Saturation Voltage

Vdc

VeE(sat)

0.09
0.09

(Ie = 12 mAde, IS = 0.4 mAde)
(Ie = 24 mAde, IS = 1.0 mAdel
(Ie"" 200 mAde, IS = 20 mAdel

Sase-Emitter Saturation Voltage
(lC"" 12mAdc,IB=04mAdcl
(lc"" 24 mAde, 18 "" 1.0 mAde)

0.20

0.13

0.20
0.25

027
0.30

0.40

Vdc

VSE(satl

0.38

SMALL·SIGNAL CHARACTERISTICS
Alpha Cutoff Frequency
(IE'" 1.0 mAdc, Ve8: 6.0 Vdc)

MHz

fhfb

1.0

Output Capacitance
{Ves '" 6.0 Vdc, IE '" 0, f = , 0 MHz}

20

pF

Cob
MA4404

(Ves '" 6 0 Vdc, IE '" 1.0 mAde, f '" 2.0 MHz)

25

MA4404A

4.0

25

Input Impedance
{Ie"" 1.0 mAdc, VCE "" 6.0 Vde, f "" 1.0 kHz}

h,.

4.0

kohm

Voltage Feedback Ratio
(Ie"" 1.0 mAdc, VCE "" 6.0 Vdc, f '" 1.0 kHz)

h,.

8.5

Xl0-4

Smail-Signal Current Gain
(Ie"" 1.0 mAde, VeE = 6.0 Vde, f'" 1.0 kHz)

hf.

145

Output Admittance
(Ie = 1.0 mAdc, VCE = 6.0 Vdc, f = 1.0 kHz)

hoe

50

~mhos

SWITCHING CHARACTERISTICS
Delay Time
Rise Time

(Vee = 10 Vdc,IC~ 10 mAdc)
VSE(oft) = 50 Vdc, ISl ~
1 0 mAdcl (Figure 1)

Storage Time
Fall Time

(Vee'" 10 Vde, IC~ 10 mAde,
ISl = 182 ~ 10 mAde)
{Figure 1}

Total Control Charge (Figure 2)

MA4404

Id

0.13

MA4404

I,

040

MA4404

I,

110

MA4404

If

060

MA4404

°T

3000

.,.'

3600

.'
.'

pC

FIGURE 2 - TOTAL CONTROL CHARGE TEST CIRCUIT
Capacitor C, is adjusted to a minimum
value whJch will produce a turn-off waveform simllar to the one shown where

-6.0 V

Cl

C, "" Copt.

TURN-OFF WAVEFORM

560

QT = Copt V ln

0 .0 " .
C, - Copt

_:.~VIn

~,
TIME-

OSC I L LOSCOP E

GENERATOR

tr

t r <20 ns
tf <20 ns

':'

A ln

<;'5

ns

~'O Megohms

Cin ~7.0 pF

t w >5.0IJ.s
Dutv Cvcle <2.0%

15

MACS
MAC6

SERIES

(SILICON)

SERIES

TRIACS
(THYRISTORS)
SILICON BIDIRECTIONAL THYRISTORS

10 AMPERES RMS

.. designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies;

25 THRU 600 VOLTS

or wherever full-wave silicon gate controlled solid-state devices are
needed. Triac type thyrostors switch from a blocking to a conducting
state for either polaroty of applied anode voltage with positive or

MAC 5

negative gate triggering.
•

Glass Passivated Junctions

•

Low "on" Voltage - VTM

•

Four Mode and Isolated Stud Versions Available
(2N6139 Series)

=

1.3 V (Typ) @ 14 A Peak

flf~
f- ~,!. ~,
§

~~

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Off-State Voltage (1)

ITJ

= 1000 CI

MACS and MAC6

-1
-2
-3
-4
-S
-6
-7
-8

On-State Curren' RMS ITC = 7SoCI

Peak Surge Current
lOne Full cycle, 60 HZ,Tr -40 to +1000 CI
Circuit Fusing Considerations

ITJ = -40'0 +1000

Value

Unit

Volts

VDRM
2S
SO
100
200
300
400
500
600

STYLE 2.
PIN I. GATE
2. MAIN TERMINAL!
STUD:,MAIN TERMINAL 2

CASE 86

10·J2UNf.ZA

MIlliMETER
INCHE
DIM MIN
MAX
11.10
0.437
A
7.87
0.310
C
1.78TYP
0.070TYP
F
2.29
2.79 0.0900.110
G
1
11.48 0.422 0.452
16.16
0.660
15.49
0.610
NOTE:
1. DIM "G" MEASURED AT CAN.

MAce

ITIRMSI

10

Amp

ITSM

100

Amp

12,

40

A 2s

~

.---:
. .
p

L+

I'
N

e, t = 1.0 to 8.3 msl

Peak Gate Power
Average Gate Power
Peak Gate Current

Operating Junction Temperature Range
Storage Temperature Range
Stud Torque, MACS
(1) Ratings apply for open gate conditions.

PGM

10

Watts

PGIAVI

O.S

Watt

IGM

2.0

Amp

TJ

-40,0 +100

Tstg
-

-40'0 +lS0

°e
°e

lS

In.

lb.

Thyristor devices shall not be tested

With a constant current source for blocking capability such that the voltage
applied exceeds the rated blocking voltage.

STYlE 2:
PIN 1. GATE
2 MAIN TERMINAL!
3. MAIN TERMINAL 2

DIM

MILLIMETERS
MI.
AX
10.92
8.
5.97
0.16 0.86
5.33
2.79
33.53
3t.50TYP
165 1.91

22'

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

eJC

2.0

°C/W

Thermal Resistance, Case to Ambient

eCA

SO

°C/W

Characteristic

16

3.43
457
3D
CASE 87l

3.68
5.0B

.,N

INCHES
MAX
0.430

0.2
0.030
.1
D.D9
I.
1.2

"'

0.1
0.180
1.2

NOTES
1. DIM "G" MEASURED AT CAN
2 LEAD NO 3 *7.50 DISPLACEMENT.

MAC5 series, MAC6 series (continued)

ELECTRICAL CHARACTERISTICS 1Te = 25 0 e unless otherwISe notedl
Symbol

Min

Typ

Max

Unit

IORM

-

-

2.0

mA

VTM

-

1.3

1.8

Volts

IGT

-

-

50

mA

Gate Trigger Voltage, Continuous de
Main Terminal Voltage = 12 Vdc, RL == 100 ohms
MT21+)GI+); MT21-)GH

VGT

-

10

2.5

Volts

Gate Trigger Voltage, Continuous de - All Modes
Main Terminal Voltage = Rated VORM. RL == 100ohms. T J == lOOoe

VGO

0.2

-

-

Volts

IH

-

-

50

mA

ton

-

1.5

-

M'

dv/dt

-

5.0

-

VIM'

Characteristic
Peak Blocking Current (Either Direction)

Rated VORM @ TJ = lOOoe. Gate Open
On-State Voltage (Either Direction)

ITM = 14 A Peak

Gate Trigger Current, Continuous de
Main Terminal Voltage == 12 Vdc, RL == 100 ohms
MT21+)GI+); MT2HGH

Holding Current (Either Direction)
Main Terminal Voltage == 12 Vdc, Gate Open,
Initiating Current = 100 rnA
Turn-On Time
ITM = 14 Ade. IGT

= 100 mAde

Blocking Voltage Application Rate at Commutation
@ VORM. T J = 75 0 e. Gate Open

QUADRANT DEFINITIONS
Trigger devices are recommended for gating on Triacs. They provide:
MT2(+)
QUADRANT II

QUADRANT I

MT21+1. GH

MT21+1. G(+)

1. Consistent predictable turn-on points.
2. Simplified circuitry.
3. Fast turn-on time for cooler, more efficient
and reliable operation.

ELECTRICAL CHARACTERISTICS of RECOMMENDED
BIDIRECTIONAL SWITCHES
GH - - - - - - - + - - - - - - - G ( + )
QUADRANT III

QUADRANT IV

MT2H. GI-I

MT21-1. GI+I

General

USAGE
PART NUMBER

MBS4991

V<:

6.0 -10 V

IS

350 IJA Max

0.5 V Max
VSl -VS2
Temperature Coefficient 0.02%/ o

Lamp Dimmer
MBS4992
7.5

~

9.0 V

MBSloo
3.0 - 5.0 V

120 MA Max

100 - 400 MA

0.2 V Max

0.35 V Max

e Typ

See AN-526 for Theory and Characteristics of Silicon Bidirectional Switches.
MT2H

17

MAC5 series, MAC6 series

...

(continued)

-

FIGURE 1 - AVERAGE CURRENT DERATING

100

u

~

'"

90

"''"=>
t-

~

illt-

3"'
<3

t-

100

80

~

.....

l~ ~ ~ ~
'\ ~ ~ ~
30
0

0: ""

60 0

I

~

70

~

~~

90

":::::::

"''"

:>

150 0

~

-I.

<3

70

.........

1800

~

-I.

t-

a- CONDUCTION ANGLE

60

o

=

~

~

~

30 0

/;0 0_

-...;::. t:-<:",

0:

w

1800

s:::::----...

80

ill
t-

a-C01DUcT1DN ANTLE
60

::::::::::: ~ :---...

t-

r-;~ t-120 0

90 0

FIGURE 2 - RMS CURRENT DERATING

20

4.0

6.0

8.0

10

o

I

I

I

2.0

4.0

6.0

B.O

ITIAV),AVERAGE ON·STATE CURRENlIAMP)

ITIRMS), RMS ON·STATE CURRENT lAMP)

FIGURE 3 - POWER DISSIPATION

FIGURE 4 - POWER DISSIPATION

10

16

g 12 --~
-I.

lJOO

120 0

'"

~

'"~

a:

"''"

-

.-300

8.0

~>

'":;;

~

;OO~

.-CONOUCTION ANGLE -600

.,

/'~

V0"

~~

4.0

~

L

"

~~

~

~

o
o

2.0

4.0

6.0

10

8.0

2.0

ITIAV), AVERAGE ON·STATE CURRENT lAMP)

3.0

§

N

2.0

'"o

~

"''"
o~

1.0

>

ffi

'"

'"t-

----

::;

'"~

'",.:
>'"

10

3.0
2.0

-..........

0

~

VTM-12V
_ _ RL-l00"

t-

~
=>

-

ir
w
to<

B.O

N

::;
~

6.0

FIGURE 6 - TYPICAL GATE TRIGGER CURRENT

FIGURE 5 - TYPICAL GATE TRIGGER VOLTAGE

ffi

4.0

IHRMS), RMS ON·STATE CURRENT lAMP)

1.0

r--.. ---....

'"'
'"w
'"
'"
ir

VTM-12V
RL -100"

......

~ 0.5

O.S

!;;:
0.3
-50

-

..........

......

'",.:

-25

+25

+50

+75

!E 0.3
-50

+100

TJ,JUNCTION TEMPERATURE 10C)

-25

+25

+50

TJ,JUNCTION TEMPERATURE 10C)

18

+75

+100

MAC5 series, MAC6 series

(continued)

FIGURE 7 - MAXIMUM ON·STATE CHARACTERISTICS
60
50

'/'

.d- ......

30

~

20

FIGURE 8 - TYPICAL HOLOING CURRENT
3.0

~
N
~

/

ffi

,.

25°C

§

70

~

5.0

0

I

-

~N~~~A~~~~

CURRENT" 100 mA
APPLIES TO EITHER DIRECTION
-25

+25

+50

+75

+100

TJ.JUNCTION TEMPERATU RE 10C)

I

=>

u

'"~

.::::::::::,

0.5 -VTM"12V

0.3
-50

II

~
-.....

"~

I I

5:

1.0

'"'"=>
u
'"z

10
0::-

~

0

~
I-

~
TJ" 100 0CiJ

"

20

'"

~

1
1 I

3.0

~

III

z
~ 2.0
.t:-

II

0

FIGURE 9 - MAXIMUM ALLOWABLE SURGE CURRENT

I

~

BO

~

60

5:

o. 7
0.5

.......

r-

-

-r-r-

r- t'--,

=>

u

'">

'I

'"as

II

'"in
'"~

I

0.3

I

I I

0.2

---

100

0.5

40
TJ" -40 to +100 0 C

20

t---

fi 6oH ,

a
1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0

2.0

4.0

3.0

5.0

6.0 7.0 B.O

10

NUMBER OF FULL CYCLES

VTM. ON·STATE VOLTAGE IVOLTS)

FIGURE 10 - THERMAL RESPONSE

a

'"~
~
~-

~o

o. 5

o. 3

-

I--"

o. 2

~

~~

f5:i o. 1
"",

1-'"
1- 0
~o.o 5

ffi

~
~

0.03

I-

0.0 2
0.0 1
0.1 x 10-3

O.h 10-3

1 x 10-3

3 x 10- 3

10 x 10-3

0.03
t. TIME lsi

See AN-292 for details on using transient thermal response curve.

19

0.1

0.3

1.0

3.0

10

MAC 10-1 thru MAC 10-8 (SILICON)
MAC11-1 thruMAC11-8

o~

TRIACS
(THYRISTORS)
10 AMPERES RMS

SILICON BIDIRECTIONAL THYRISTORS

25 THRU 600 VOLTS

· .. designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies;
or wherever full·wave silicon gate controlled solid·state devices are
needed. Triac type thyristors switch from a blocking to a conducting
state for either polarity of applied anode voltage with positive or
negative gate triggering.
• All Diffused and Passivated Junctions for Greater Parameter Uni·
formity and Stability
• Small, Rugged, Thermopad Construction for Low Thermal
Resistance, High Heat Dissipation and Durability
• Gate Triggering Guaranteed in Two (MACll) or Four Modes
(MAC10)
MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Off-State Voltage, Note 1
-1
(TJ'I00o CI
-2
-3
-4
MAC10/ll
-5
-6

-7
On-State Current RMS (TC

=750 CI

lOne Full cycle, 60 Hz, T J

=-40'0 +100o C)

Circuit Fusing Considerations
ITJ =-40 '0 +1 OOoC, ,= 1.0 '0 8.3 msl
Peak Gate Power
Average Gate Power

. Unit
Volts

25
50
100
200
300
400
500
600

-8
Peak Surge Current

Value

VDRM

IT(RMSI

10

Amp

ITSM

100

Amp

12,

40

A2s

PGM

10

Watts

PGIAV)

0.5

Watt

Peak Gate Current

IGM

2.0

Amp

Oper,ating Junction Temperature Range

TJ

-40'0+100

Ts,g

-40 to +150

°c
°c

Storage Temperature Range
Mounting Torque (6-32 Screw), Note 2

-

in. lb.

B

STYLE 4:
PIN 1. MT 1

2. MT2
3. GATE

DIM
A

B
C
D

NOTES,
1. Ratings apply for open gate conditions. Thyristor devices shall not be tested
with a constant current source for blocking capability such that the voltage
applied exceeds the rated blocking voltage.
2. Torque rating appl ies with use of torque washer (Shakeproof WD 19522 #6
or equ iva lent) . Mounting torque in excess of 8 in. Ibs. does not appreciably
lower case·to-sink thermal resistance. Anode lead and heatsink contact pad
are common.
For soldering purposes (either terminal connection or device mounting). soldering temperatures shall not exceed +2000 c. For optimum results, an activated
flux (oxide removing) is recommended.

20

F
G
H
J
K
M
Q

R
U

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51 3.76
4.22 BSC

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
·0.166 BSC
0.105 0.115
"0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255

2.67~
0.813
15.11
90
4.70 4.95
1.91 2.16
6.22 6.48

CASE 90·05
NOTE:
1. LEADS WITHIN .005" RAD OF TRUE
POSITION (TPI AT MMC

MAC10-l thru MAC10-8/MACll-l thru MACll-8 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

IDRM

-

-

2.0

mA

On-State Voltage (Either Direction)
ITM = 14 A Peak

VTM

-

1.3

1.8

Volts

Gate Trigger Current, Continuous de

IGT

-

50

-

-

75

-

0.9

2.0

-

Characteristic
Peak Blocking Current (Either Direction)

Rated V DRM @ T J = l000C, Gate Open

mA

Main Terminal Voltage = 12 Vdc, RL = 100 ohms
MT2(+)G(+); MT2HGH
MAC10, MACll
MT2(+)G(-); MT2HG(+)

MAC10

Gate Trigger Voltage, Continuous de

Volts

VGT

Main Terminal Voltage = 12 Vdc, RL = 100 ohms
MT2(+)G(+); MT2HGH
MAC10, MACll
MT2(+)G(-); MT2(-)G(+)

1.0

2.5

VGD

0.2

-

-

Volts

IH

-

-

50

mA

ton

-

1.5

-

j.lS

dv/dt

-

5.0

-

V/j.ls

Thermal Resistance, Junction to Case

8JC

-

°CIW

eCA

-

2_0

Thermal Resistance, Case to Ambient

50

°CIW

MAC10

Gate Trigger Voltage, Continuous de - All Modes

Main Terminal Voltage = Rated VDRM, RL = 100ohms, TJ = 100°C
Holding Current (Either Direction)

Main Terminal Voltage = 12 Vdc, Gate Open,
Initiating Current = 100 mA
Turn-On Time

ITM = 14 Adc, IGT = 100 mAde
Blocking Voltage Application Rate at Commutation
@ VDRM, T J

= 75°C, Gate Open

MBS4991/MBS4992
Recommended for Triac Triggering

Triggers Provide:
1. Consistent predictable turn-on points.

2. Simplified circuitry.
3. Fast turn-on time for cooler, more efficient and reliable
operation.

Electrical Characteristics

Symbol
VSIS
VSl

~

VS2=

MBS4991

MBS4992

6 10V

7.5 9.0 V

350j.lA Max

120 j.lA Max

0.5 V Max

0.2 V Max

Temperature Coefficient = 0.02%/ o C Typ
(For light dimmer applications the MBS100 is recommended)_
See AN-526 for Theory and Characteristics of Silicon Bidirectional
Switches.

21

MAC10-1 thru MAC10-8/MAC11-1 thru MAC11-8 (continued)

FIGURE 1 - AVERAGE CURRENT DERATING
100

~
w

I~ ......

'"

90

'":0

I-

~

15

~
ex= 30
0

70

0

1"( ~ ~ ~

--

16

~
I«
~

12

'"~

~

w

to

900

'"

:0

,,~

120 0

t-....

150 0

~

BO
a'"

w

lBOo

.~

oj

70

I-

0_

'i::. K'-...

15

I-

0

..........

t80 0

iJ\y
-I

Q

~

•

.-C~NDUCiION A~GLE

60

o

2.0

4.0

6.0

B.O

-

·0

10

2.0

6.0

4.0

B.D·

IT(AV), AVERAGE ON·STATE CURRENT (AMP)

IT(RMS), RMS ON·STATE CURRENT (AMP)

FIGURE 3 - POWER DISSIPATION

FIGURE 4 - POWER DISSIPATION

-iJ\y

lJOO

p~

-I.

.-30 0

B.O

10

120 0

~o

.-CONOUCTION ANGLE -60 0

{/'

/'~ ~

V)0 V

«

ffi

>
«
:;
«

~ ~ t-~ ~ :--....... /;030

I-

-I.

-

~~

90

.- C01DUCTItN AN~LE
60

FlqURE 2 - RMS CURRENT DERATING

w

..;:::: ~

60 0

I

w

~

~~

u

"
iJ\y

BO

I-

5

100

.,

~~

4.0

~

~

L

~

o
a

2.0

4.0

6.0

B.O

10

2.0

IT(AV), AVERAGE ON·STATE CURRENT (AMP)

3.0

0.3
-50

r-- t---

-25

VTM-12V
RL -100 n

+25

+50

+75

6.0

B.O

10

FIGURE 6 - TYPICAL GATE TRIGGER CURRENT

FIGURE 5 - TYPICAL GATE TRIGGER VOLTAGE
3.0

--

4.0

IT(RMS), RMS ON·STATE CURRENT(AMP)

0.3
-50

+100

TJ,JUNCTION TEMPERATURE (OC)

--

r---. i'--

-25

VTM -12 V
RL-l00n

.......

+25

-----

+50

TJ,JUNCTlDN TEMPERATURE (OC)

22

+75

+100

MAC10-1 thru MAC10-8/MAC11-1 thru MAC11-8

FIGURE 7 - MAXIMUM ON-STATE CHARACTERISTICS

60
50

FIGURE 8 - TYPICAL HOLDING CURRENT

~

~

~V

30

./

20

l/

I-

-VTM=12V
GATE OPEN
-INITliTING CURrENT' 100

I II
II

50

~
13'"
I"'

-........

-.....

25°C

I

7.0

:!.

~
........

10

'"

~

(f
TJ = 1000r/,

0:

(continued)

-25

.............

r

+25

+50

+75

+100

TJ,JUNCTION TEMPERATURE lOCI

3.0

t?'"

""

"

I I

/
FIGURE 9 - MAXIMUM ALLOWABLE SURGE CURRENT

I II

2.0

II

.!:"

I

10
0.)

0:

'"

~

'">
"'

I

40

~

20 -

"v;,.

I I
0.5

r-

60

'"

1:'i

I
I

0.2

r--

=>

I

0.3

80

:!.

I II

0.5

--- ----- -- --

100

TJ = -40 to +100 oC
f 60Hz

l

o
1.0

1.5

2.5

2.0

3.0

3.5

4.0

1.0

3.0

2.0

5.0

70

10

NUM8ER OF FULL CYCLES

VTM, ON·STATE VOLTAGE IVOLTSI

FIGURE 10 - THERMAL RESPONSE
1.0

"'
~
~~'"~

~~
ffi

0.5

0.3

«

x"

,.--

0.2

...- ...-

O. 1

1-00
1- 0

~ ~O.05

v;
~

0.03

I-

0.02

:E

0.0 1
0.1,10-3

0,3,10-3

,,10- 3

10,

w-3

0.03
t, TIME

See AN·292 for details on using transient thermal response curve.

23

0.1

lsi

0.3

1.0

3.0

10

MAC37-1 thru MAC37-7
MAC38-1 thru MAC38-7

(SILICON)

SILICON BIDIRECTIONAL THYRISTORS
· .. designed primarily for industrial and military applications for the
control of ac loads in applications such as light dimmers, power supplies, heating controls, motor controls, welding equipment and power
switching systems; or wherever full-wave, silicon gate controlled
solid-state devices are needed.
• Glass Passivated and Center Gate Fire
• 25 Amperes RMS @ TC = 67 0 C
• Isolated Stud Available

TRIAC
(THYRISTORS)
25 AMPERES RMS
25 thru 500 VOLTS

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Off-State Voltage (1)
ITJ = 110 0 CI
-2
-3
MAC37
-4
MAC38
-5

Value

Unit

Volts

VORM
25

r'

50

100
200
300
400
500

-6
-7
ITIRMSI

25

Amp

ITSM

225

Amp

12,

210

A2 s

Peak Gate Power (2)

PGM

5.0·

Watts

Average Gate Power

.PGIAVI

0.5

Watt

IGM

2.0

Amp

Operating Junction Temperature Range

TJ

-401o +110

Storage Temperature Range

Tstg

-4010+150

°c
°c

-

30

in. lb.

On-5tate Current RMS
Peak Surge Current

lOne Full cycle, 60 Hz,
TJ = -40 '0 +1100 CI
Circuit Fusing Considerations

ITJ = -40 10 +11 O"C,
I = 1.0 10 8.3 msl

Peak Gate Current (2)

Stud Torque

MAC37

(1)For either directi.on of blocking yoltage. VORM for all typas can be applied on a con-

tinuous de basis without incurring damage. Ratings apply for open gate conditions.
Thyristor devices shall not be tested with a constant current source for blocking capability such that the voltage applied exceeds the rated blocking voltage.
(2)T J = 110o C. 1.0 second maximum duration; 6.0% duty cycle. ITM "" 10 Amp.

THERMAL CHARACTERISTICS

MAC38

Characteristic

Thermal Resistance. Junction to Case

24

MAC37-1 thru MAC37-7/MAC38-1 thru MAC38-7 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

Unit

Peak Blocking Current (Either Direction)
Rated VORM @ T J = 1100 C

IORM

-

-

2.0

mA

On-8tate Voltage (Either Oirection)
ITM =35APeak

VTM

-

1.4

1.9

Volts

IGT

-

20

75

mA

Gate Trigger Current, Continuous de (1)
Main Terminal Voltage = 7.0 Vdc, R L = 47 ohms
MT2(+)G(+); MT2HG(-)

mA

Gate Trigger Voltage, Continuous de (11
Main Terminal Voltage "" 7.0 Vdc, R L = 47 ohms
MT21+)GI+); MT2HGI-)

VGT

-

1.0

3.0

Volts

VGO

0.2

-

-

Volt

Holding Current (Either Direction)
Main Terminal Voltage:::; 7.0 Vdc, Gate Open,
I nitiating Current:::: 150 rnA

IH

-

10

75

mA

Turn·On Time
ITM = 25 Adc, IGT = 200 mA

ton

-

1.0

-

1-"

dv/dt

-

100

-

V/~s

Gate Trigger Voltage, Continuous dc - MT2(+) G(+); MT2H GH
Main Terminal Voltage = Rated VORM, RL = l00olims, TJ" l100C

Critical Forward VOltage Application Rate (Exponential Rise
of Voltage)
@VORM,TJ=1100 C, Gate Open
(1)AII voltage polarity reference to main terminal 1.

FIGURE 1 - MAXIMUM THERMAL RESPONSE
1.0
~
wZ

MAC 37

0,5

~~

~~ 0.2
w~

c«

~~ 0.1

MAC 38

~

~~

~

MAC 38

---

~

,.......

8Je· 1.00 eIW MAX

MAC 37

a: 1-0.05
c Z

z!!!
?~

""«
:= 0.02
0.0 1
0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

500

1000

t, TIME (ms)

PIN 1 MTl
PIN 1 MTI

2 GArE
CASEMT2

2 GATE
MT2

CAS~

DIM

A
B

C
D
E

F

0505
0475
0380
0068

0065

0090
0510
0097
0800

G

J
K

ri

INCHES
MIN
MAX

0501
0465
0330
0035

0080

J~
9650

.!.~
IS..

-

2040

1400
1650
2290
10670

2280
12950
2460
20320

AIiJEOECdlmenSIClnsBndllolesapplv

CASE 174·02
TO·203
MAC37

CASE 175
MAC38

25

2000

MAC37-1 thru MAC37-7/MAC38"1 thru MAC38-7 (continued)

-"

-

FIGURE 2 - AVERAGE CURRENT DERATING
110

~

'"'
=>
'"

Q

~

70

I-

50

\.

ill
w

:>

-...... .......

1200

900

'"'
W

'"
=>

180 0

~

7

ill
....

50

~

~~

0-

-

4D -

•• CONDUCTION ANGLE

'"=>

a=

0

10

o

5.0

10

20

15

25

o

5.0

"'"" f"...

'\ "'-. ~ -..........: t---.

70

\

50

30

.............
...........

\

100 I----t::s~~:!-.dl-_+-+-+-

"'\ 60

"

SOo

r-...
i"---

~

90~-~~--;~~~~~~--_r--_r--_r--~

~

80~--~~r_~---+~~~~~~~~--_r--~

=>

~ 70

160 0

1200.......

~, 60

ill

0

~

50

5

40

U

....

-10

10 o·CONDUCTION ANGLE
5.0

30~--r_--,r_--,---.--~

20~~---+--_r---r--+--r_~---+-_r~

I
10

15

IOLO--L-~-~-~-~-L--L-~2~0--L-~2·5

25

20

IT (AV), AVERAGE ON·STATE CURRENT (AMP)

IT (RMS), RMS ON-STATE CURRENT (AMP)

FIGURE 6 - POWER DISSIPATION versus AVERAGE CURRENT
40

@

!

~

Ii!
w

600 / .

0~30~ ~

ffi

r
~

~

~
....
«

1800

f---

j;

10

Ii:"

o~

a

30
25

w

20

'"ffi
>

0" CONOOCTION ANGLE

15

«

'>
«
0::

~

5.0

35

'"~

Ii!

./. ~ ~
~P'"
~

>
«

«

90"

o· CONOUCTION ANGLE

20

'"
S

J

1200

-10

'"3;:

FIGURE 7 - POWER DISSIPATION versus RMS CURRENT
40

-J0t+

30

25

FIGURE 5 - RMS CURRENT DERATING

~\a.300
I

~

20

15

10

IT (RMS), RMS ON·STATE CURRENT (AMP)

MAC'38 -

r::::::--

w

~

30 0

r

110 _=---,---,--,--,----,,--.--,---,---,

I~ ~

90

~

ill
I-

I

~ 30

o"CONDUCTION ANGLE

w

I-

-lif.' L?< 0 t.::::
-sht' V ?' "'
"-6~[' V

-10

FIGURE 4 - AVERAGE CURRENT DERATING

~

"':;::; ~ ~

~

IT (AV). AVERAGE ON·STATE CURRENT (AMP)

110

M}C37- ~

IIIIIIIIIII! ~

0
0-

w

-I.

30

0

Q

.............

'-

100

~

U

10

"""-

a=30 0\

~

I-

.......... 1--........... ~ ..........

'\

W

I-

MAL7-

"'-." :::s :::::::::: t--.

90

FIGURE 3 - RMS CURR.ENT DERATING

........

110

10
5.0
0

10

15

20

0

25

2.5

5.0

7.5

10

12.5

15

17.5

IT (RMS), RMS ON·STATE CURRENT (AMP)

IT (AV), AVERAGE ON·STATE CURRENT (AMP)

26

20

22.5

25

MAC37-1 thru MAC37-7/MAC38-1 thru MAC38-7 (continued)

FIGURE 9 - MAXIMUM MULTI-CYCLE SURGE RATING

FIGURE 8 - MAXIMUM ON-STATE CHARACTERISTICS

300

..--~

200

./

TJ = 25°C

/'

100
70

,.
~

~

o

..........

.........

-:;:; ~50C

""

0

.........

0

/

1

30

:--....

0
10

II

2.0

3.0

5.0

7.0

10

20

30

50

70 100

FULL CYCLES AT 60 Hz

'I

10

f'.~

0

Ii

20

w

~Z

,......- .--

1//

50

0::

~

250

~

"'~

7. 0

~

5.0

«

AGURE10-TY~CALHOLrnNGCURRENT

to

~

:;;
"

.!:"

3.

0

3.0
~~ 2. 0

..........

u'"
~E

2. 0

r-..........

",0

;5~ 1. 0

~

,"0

000

1. 0

~~ o. 7

""'-

:::;>-

~§ o. 5

0.7

o

0.5
0.3

'".i=
1.0

1.4

loB

2.2

2.6

3.0

3.B

3.4

4.2

4.6

-

o. 3

o. 2

5.0

~~:c~~~~!llg~~A~EJTERISTICS
-50

50

~

2. 0

0

G

w

'"
'"
~

1. 0

~

o

z

o. 3

-

w

~

'"'"
~

1.0

w
!;;:

I'..

"" f'.,..

t - ~~:c~~7~!llg~!'R~CETERISTICS

o. 2

2. 0

>

~ o. 7
B'N : o. 5
:::;

.0

o

00

w

«

w

'"~

..........

00

- 50

50

100

FIGURE 12 - TYPICAL GATE TRIGGER VOLTAGE

FIGURE 11 - TYPICAL GATE TRIGGER CURRENT

3.

-....

TJ, JUNCTION TEMPERATURE 1°C)

VTM, INSTANTANEOUS ON-STATE VOLTAGE (VOLTS)

~

..........

'"

~:::; o. 5

~

"

o
z

TJ, JUNCTION TEMPERATURE (oC)

f--.
F'"'"

f - ~~:c~~~~~llg~~AWTERISTICS

.3

o. 2

100

-

0.7

50

50
TJ , JUNCTION TEMPERATURE 1°C)

27

100

MAC92·1 thru MAC92·6 (SILICON)
MAC92A·l thru MAC92A-6

MT2

o----tii~:I!~
.......

TRIACS
(THYRISTORS)

G-...OMTI

0.45 AMPERE RMS
30-400 VOLTS

SILICON BIDIRECTIONAL THYRISTORS
· .. designed for use in solid state relays, TTL logic and light industrial applications. Supplied in an inexpensive plastic TO·92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC92 Series)
or Four Modes (MAC92A Series)
•

One·Piece, Injection-Molded Unibloc Package

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Off-State Voltage
ITJ = -40.to +100oCI
% Sine Wave 50 to 60 Hz, Gate Open
MAC92 and MAC92A - 1
-2
-3
-4
-5

STYLE 12:

PIN 1. ANODE I
2. GATE
3. ANODE 2

Amp

IT(RMSI

Full Cycle Sine Wave 50 to 60 Hz,
(TC = +6QoCI

Peak Non-Repetitive Surge Current

Volts

30
60
100
200
300
400

-6
On-State RMS Current

Unit

Value

VDRM

0.45
Amp

ITSM

(One Full Cycle, 60 Hz, T C = +60o CI
preceded and fOllowed by rated

DIM
6.0

A
B

current
Circuit Fusing Considerations
(TJ =-40 to +100o C, t= 1.0toS.3 mol

12t

A 2s
0.15

F

Average Gate Power

PG(AVI

0.1

Watt

Peak Gate Current

IGM

1.0

Amp

Operating Junction Temperature Range

Storage Temperature Range

C
D

MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.48;

L
N

1.150

P

6.350
3.430
2.410
2.030

TJ

-40 to +100

°c

Q

T stg

-40 to +150

°c

R
S

1.390
1.270
2.670
2.670

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.' 16
0.019

0.045
0.250
0.135
0.095
0.080

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

R8JC

75

°C/W

Thermal Resistance, Junction to

R6JA

200

°C/W

Ambient

28

CASE 29-02
TO-92

0.055
0.050
0.105
0.105

MAC92-1 thru MAC92-6, MAC92A-1 thru MAC92A-6 (continued)

ELECTRICAL CHARACTERISTICS (TC = 2SoC unless otherwise noted)
Characteristic

Symbol

Peak Blocking Current (Either Direction)
Rated VDRM @ T J = 100oC. Gate Open

Min

Max

-

100

-

1.7

Peak On-State Voltage (Either Direction)
ITM = 0.7 A Peak; Pulse Width = 1.0 to 2.0 ms. Duty Cycle.s;;;2.0%

IlA
Volts

VTM

Gate Trigger Current, Continuous de

mA

IGT

Main Terminal Voltage = 7.0 Vdc. RL = 100 Ohms
All Devices
MT2 H). G(+); MT2H. GI-)
MAC92A-1 thru MAC92A-6
MT2(+). GH; MT2H. GI+)

-

Gate Trigger Voltage, Continuous de

Volts

.-

Main Terminal Voltage = Rated VDRM. RL = 10 k ohms. TJ = 125°C
All Devices
MT2 (+1. GI+); MT2H. GH
MT21+). GI-); MT2H. GI+)
MAC92A-1 thru MAC92A-6
Holding Current (Either Direction)
Main Terminal Voltage = 7.0 Vdc, Gate Open; } TC=2SoC
Initiating Current = 20 rnA
TC=-40oC

~ 1.6
~ 1.4

;::
i5

1.2

~

1. 0

>

-

w

O. 6

~

0.4

f-

'"

«
..s

UUADRANT 4

t-- ::r2ann-

r- r--

f-

-..::

o

-40

-20

+20

r+40

~

=::::::::::: ~

~ O. 2
-60

0.1
0.1

-

-

10
20

rnA

50

..............

~ O. 8
f-

3.0
3.0

FIGURE 2 - TYPICAL GATE TRIGGER
CURRENT

...........

to

-

IH

FIGURE 1 - TYPICAL GATE TRIGGER
VOLTAGE

1. 8

2.0
2.0

-

MT2 (+). GI+); MT2H. GH. TC = -40°C
All Devices
MT2(+). GH; MT2H. G(+) T C = - 400C MAC92A-1 thru MAC92A-6

~

5.0
15

VGT

Main Terminal Voltage = 7.0 Vdc. RL = 100 Ohms
Minimum Gate Pulse Width = 2.0 IlS
All Devices
MT2 1+). G(+); MT2H. GI-)
MAC92A-1 thru MAC92A-6
MT2(+). GH; MT2H. G(+)

2. 0

Unit

IDRM

+60

'"
B
'"gw

-+80

+100


"'
'""

w 70

'""
'""

60

\190°:4

50

o

t\

160

BO

240

o ...... 111;;;
o

~~~~

-"

~~

.--lS00

\.

"- 'b.

50

4S0

560

o

so

""

FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

lS0b~ (".,

d';-"

:-..... l"'-- :-..... -.......
."- ,,~

""-

160

240

400

320

i'..
560

4S0

100

~ 90

90

~
w

~ 80f---+---'''"''~n-____1f---

SO

::>
"'
~
~
''""""
~

::>

~ 70f---+---r~~~~r--7---r--+-_;

'""

~ 60 f---+---r:-:-::-9i<=-cYl~"""".j<

'""

~ 50f---+---r---+~____1~~~~-r-_+-_;

.

.. 40f---+---r--+-~f----'~~~~_+-_;

...

30~-+_--r--+-~~-+_~_?~~~~

'""

0;

70
60
50

0;

40

'"

30
20
0

160

FIGURE 7 - ON-5TATE POWER DISSIPATION
700

I

I

/
• - 30°--t/600- '"/ / /

600

I

3"

/90 0

.; 50 0
~ 400

/
V

w

to

30 0

/

/

:;; 20 0

0:

100

o~

// /
/ "/ /'
/. "/
Z

/

~

~

~V

t..fJ!! ::r

~

'"

3"E
~

I
TJ ,'1000C -

~

-

~320

I
400

I

I

I
I

-~
~"_

I
4S0

-

40 0

to

~.-

240

I

;- 50 0=

,L-- 1-1S00

I
160

600

=
. ' CONDUCTION ANGLE-

~ ......

so

1'1

/-- !--r- 1200

:r---

240

2S0

320

FIGURE 8 - ON-STATE POWER DISSIPATION
700

A

1/

200

IT(RMS). RMS ON-STATE CURRENT (rnA)

IT(AV). AVERAGE ON-STATE CURRENT (rnA)

.
.

~ ~ l 'I::"~ i'-.. r-.... r-.... .......

FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

100=---.------,---,-------,,---.,------,---,-----,

ffi
:;;:

0

ITlRMS). RMS ON-STATE CURRENT (rnA)

IT(AV). AVERAGE ON-STATE CURRENT (rnA)

~

~ 1e90

0- ", CONDUCTION ANGLE

400

320

/60 0

120'0')."

~
~.-

0-

'\

\

n= 30 0

""~;:;:::::~

-

"' CONDUCTION ANG LE -

1\ \.'\: r0
"- 30°.-'1
\. I'( "- 1<"""1200
1\ 600 -'
""

1:i

3u

~"

~

\. ~ ~
0: ~

SO

10

-J"r- '~'

~

'" '\ ~

FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

~

:;;:

300

. ' CONDUCTION ANG LE

I

100

I

o
o

560

IT(AV). AVERAGE ON-STATE CURRENT (rnA)

a= 180 0

---, -/

120°--,
90° .,/.

L

I

W /.

# ~ :,#. 0 :::;..- :.,...-

........

V

P"

V

'60°

400

4S0

./

~ ~ ~ i-"'"
~

80

160

240

320

IT(RMS). RMS ON-STATE CURRENT (rnA)

30

/' /'
/'

/ '/ K V V
y- V. V V / '
~ / . . / K V ---300

TJ'1000C

:;; 200
'~

de-

560

MAC92-1 thru MAC92-6, MAC92A-1 thru MAC92A-6

FIGURE 9 - MAXIMUM ON-STATE
CHARACTERISTICS

-

6.0
4.0

~

.... 10""

FIGURE 10 - TYPICAL HOLDING CURRENT

7.0

s.0

1
>-

/,~

TJ = lOOoC
2.0

~

/, Visoc

J.

1.0

(continued)

I
I
GAT~ OPEN 1
APPLIES TO EITHER DIRECTION

I"-..

"'- '""-

3.0

13

y

'"
z 2.0

-...........
..........

§
o

r--.....

'":;E

O. 6

ii:'

"
~
=>

II/

:":
>- 0.4

'"

0.2

W

~Z

O. 7

'/

-60

-40

-20

+20

+40

+60

+80

+120 +140

I
FIGURE 11 - MAXIMUM ALLOWABLE
SURGE CURRENT

'"2: o. 1

"'z

er

10

~

0.06

~
....
~

1;;
z

:":

:t: 0.04

--

7.0
5.0

=>

'"w

0.02

~ 3.0

i>l

'"~

0.0 1

TJ

2.0

2.8

3.6

1.0

6.0

S.2

4.4

100 0 C

Surge is preceded and followed by rated current

'"

1.2

=

r--

f =60 Hz

2.0

~
0.00 6
0.4

+100

TJ. JUNCTION TEMPERATURE (OCI

o

:i

...........

1.0

2.0

1.0

3.0

S.O

VT.INSTANTANEOUS ON-STATE VOLTAGE (VOLTSI

II II

10

30

so

III

100

NUMBER OF CYCLES

FIGURE 12 - THERMAL RESPONSE

ffi

.
"

1.0

N

:::;

a:

O.S

o

f- r-

~

"''"z
~
iiia:
-'

~

02

V-

rZOJC(tI = rltl • ROJC

0.1
0.05

:ll
'"....

5 0.02
~

:=

0.01
2.0

5.0

10

20

50

200

100

t, TIME (msl

31

500

1.0 k

2.0 k

5.0 k

10 k

20 k

MAC93-1 thru MAC93-4 (SILICON)
MAC93A-l thru MAC93A-4

MT2

O-----li~i:!~--G-OMT1

TRIACS
(THYRISTORS)
0.65 AMPERE RMS
30-200 VOLTS

SILICON BIDIRECTIONAL THYRISTORS
... designed for use in solid state relays, TTL logic and light indus·
trial applications. Supplied in an inexpensive plastic TO-92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC93 Series) or Four
Modes (MAC93A Series)
• One-Piece, Injection-Molded Unibloc

Package

SEATING

MAXIMUM RATINGS
Rating
Repetitive Peak Off-State Voltage

ITJ = -40 to +1250 t)
% Sine Wave 50 to 60 Hz, Gate Open
MAC93 and MAC93A - 1
2
3
4
On-State RMS Current
Full Cycle Sine Wave 50 to 60 Hz,

Svmbol

Unit

Value

Volts

VDRM

Amp

ITIRMS)
0.65

Amp

ITSM
6.0

Average Gate Power
Peak Gate Current

A 2s

12,

ITJ = -40 '0 +125 0 C, t = 1.0 to 8.3 ms)

0.15
PG AV

0.01

Watt

IGM

1.0

Amp

°c
°c

Operating Junction Temperature Range

T

-40 to +125

Storage Temperature Range

T stg

-40 to +150

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Aesistance, Junction to Case

ReJC

75

°C/W

Thermal Resistance, Junction to
Ambient

ReJA

200

°C/W

Characteristic

STYLE
PIN 1.
2.
3.

32

L

~

12:
MAIN TERMINAL 1
GATE
MAIN TERMINAL 2

o

30
60
100
200

preceded and followed by rated
current
Circuit Fusing Considerations

H

PLANE F -

ITC = +60o C)
Peak Non-Repetitive Surge Current
(One Full Cycle, 60 Hz, T C = +60o C)

It:frlB
A
p~rJ
'~

3~

ItR

K

~

~

MILLIMETERS
DIM MIN
MAX
A
4.32
5.33
B
4.44
5.21
C
3.18
4.19
D
0.41
0.56
F
0.48
0.41
G
1.40
1.14"
H
2.54
J
2.41
2.67
K 12.70
L
6.35
N
2.03
2.92
P
2.92
R
3.43
0.41
S
0.36

C

SECT. A-A

INCHES
MIN
MAX
0.170 0.210
0.175 0.205
0.125 0.165
0.016 0.022
0.016 0.019
0.045 0.055
0.100
0.095 0.105
rr.500
0.250
0.080 0.115
0.115
0.135
0.014 0.016

All JEDEC dimensions and notes apply.
CASE 29-02
TO-92

MAC93-1 thru MAC93-4,MAC93A-1 thru MAC93A-4 (continued)

ElECTR ICAl CHARACTERISTICS

ITC ~ 25°C unless otherwISe noted I

Characteristic

Symbol

Peak Blocking Current (Either Direction)
Rated VDRM@TJ = 125°C, Gate Open

Min

Max

-

100

Peak On-State Voltage (Either Direction)
ITM ~ 0.92 A Peak; Pulse Width ~ 1.0 to 2.0 ms, Duty Cycle";; 2.0%

-

1.85

Volts

VTM

Gate Trigger Current, Continuous de

mA

IGT

Main Terminal Voltage = 7.0 Vdc, RL = 100 Ohms
Minimum Gate Pulse Width = 2.0 /olS
MT2 1+1, GI+I; MT21-1, GI-I
All Devices
MT2I+I, GI-I; MT21-1, GI+I
MAC93A-l thru MAC93A-4

-

5.0
12

-

Gate Trigger Voltage, Continuous de

Volts

VGT

Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width = 2.0 JIS
MT2 1+1, GI+I; MT21-1, GI-I
MT21+1, GH; MT2H, GI+I

= 100 Ohms

-

All Devices
MAC93A-l thru MAC93A-4

20
2.0

MT2 1+1, GI+I; MT21-1, GI-I TC ~ -40°C
All Devices
MT21+1, GI-I; MT2H, GI+I TC ~ -40°C MAC93A-l thru MAC93A-4

-

2.5
3.0

Main Terminal Voltage = Rated VORM. RL = 10 k ohms, TJ = 125°C
MT2 1+1, GI+I; MT2I-I, GI-I
All Devices
MT21+1, GI+I; MT21-1, GI-I
MAC93A-l thru MAC93A-4

0.1
0.1

-

Holding Current (Either Direction)
Main Terminal Voltage ~ 7.0 Vae, Gate Open, }
Initiating Current = 20 rnA

~ 1. 8

~ 1. 6

>

~

1. 0

'"'"

O. 8

ii'

;....

~ O. 6
~

FIGURE 2 - TYPICAL GATE TRIGGER CURRENT

--

;;:

QUADRANH

~
r-!-

--..;;

f=::::= ~

r- I-..

> O. 2
-20

+20

+40

0

~

0

~

7. 0
5. 0

~

r--==::

-

'"i§
w

~

r---...

t;;

-40

0

.s
'"""

'" O. 4
0
-60

10
20

-

r-....

to-- .............

I. 2

-

0

~ 1. 4

o~

mA

IH
TC ~ 25°C
TC ~ -40°C

FIGURE 1 - TYPICAL GATE TRIGGER VOLTAGE

2. 0

Unit

IlA

IDRM

+60

+80

+100

r--...

.............

2 and 3

3. 0

1

2. 0

r--

'"

"'

QUAD1RANT

+120

+140

-60

-

........

t'----.

:E 1. 0
O. 7
O. 5

1

- 40

-20

+20

+40

+60

+80

TJ,JUNCTION TEMPERATURE lOCI

TJ. JUNCTION TEMPERATURE lOCI

33

+100

+120 +140

MAC93-1 thru MAC93-4,MAC93A-l thru MAC93A-4(continued)

FIGURE 3 - AVERAGE CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

5~~--~10~0--~10~0--~3~0~0--~~~~~~~~7±00~~BOO
ITlAV), AVERAGE ON·STATE CURRENT (rnA)

IT(RMS),AVERAGE ON·STATE CURRENT (rnA)

FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

"''"=>

w

'"=>
~ 90~--~----~~~~~~--4---~----4---~

~ 90~---+----r---+~~~~~~~~~-'

~

I-

I-

~

I-

~

~
«
(5

~;;;

70~--~----r_--~~~~~~--~~--4---~

70

::E

«

50 ~--~----t-

(5

50
G

30

3~~--~5~0--~10=0--~~--~L-~~~~L-~~~400

0

ITlAV), AVERAGE ON·srATE CURRENT (rnA)

=

-.ju~

CONOUCTION ANG lE

100

150

300

IT(RMS), RMS ON·STATE CURRENT (rnA)

FIGURE 8 - ON-STATE POWER DISSIPATION

FIGURE 7 - ON-STATE POWER OISSIPATION

1.0,-----,-------r----,---,----,----,----;ror--;;'"
~ 0.8

~ 0.8

i

i

~ O,6~--~-­

~

~

'"ffi

O.S

~

w

"''"ffi

O.4~--~-----,h~7iS'c..-11-

:>

O.41---~----r_--_b~<_,.17t''''''''"'';;r;---'

~

«

~ 0.2 ~--~M"r_--+--~I-

--+---+--~

~ O.21---~--~Is_~~~"'__I---

IT(RMS), RMS ON-STATE CURRENT (rnA)

IT(AV),AVERAGE ON·STATE CURRENT (rnA)

34

MAC93-1 thru MAC93-4,MAC93A-1 thru MAC93A-4(continued)

-

FIGURE 9 - MAXIMUM ON-STATE CHARACTERISTICS

6.0

~

4.0

A~

2.0

I
I
GAT~ OPEN I
APPLIES TO EITHER OIRECTION

r--...

"'--

.........
............

/, I"

1.0

...........

I

0.6

I

1.0

'/

O. 7

JI

0.4

c..

5. 0

/, ~
/. ~5OC

TJ = 125°C

,.

FIGURE 10 - TYPICAL HOLDING CURRENT

7.0

5

-60

-20

-40

+20

+40

r--...

+60

I"'---

+80

I'--

+100

+120 +140

>-

~=>

TJ, JUNCTION TEMPERATURE 1°C)
0.2

I

u

'">-

FIGURE 11 - MAXIMUM NON-REPETITIVE SURGE CURRENT

~2:

O. I

o

10

fsr

~

=>
o
~

~

0.06

5

~

7.0

>-

z

~

~ 0.04

;;;

50

-I--.

=>

u

.t::::

'"~

0.02

=>

3.0

TJ = 125°C
f = 60 Hz
Surge IS preceded and followed by rated current.

~

'"~

2.0

'"

0.0 I

E
1.0

0.006
0.4

2.0

1.2

2B

3.6

4.4

5.2

6.0

10

2.0

~::i

30

5.0

10

30

50

100

NUMBER OF CYCLES

VT, INSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

FIGURE 12 - THERMAL RESPONSE
1.0

'"

il§

~

0.5

f- f-

j..--

ZOJClt) =,Itl. ROJC

I

2
1
5.0

10

20

50

100

200
t, TIME Im'l

35

500

1.0 k

2.0 k

5.0 k

10 k

20 k

MAC94-1 thru MAC94..4 (SILICON)
MAC94A·l thru MAC94A-4

TRIACS
(THYRISTORS)

SILICON BIDIRECTIONAL THYRISTORS

0_8 AMPERE RMS
30-200 VOLTS

· .. designed for use in solid state relays, TTL logic and light industrial applications. Supplied in an inexpensive plastic TO-92 package
which is readily adaptable for use in automatic insertion equipment.
• Gate Triggering Guaranteed in Two Modes (MAC94 Series) or Four
Modes (MAC94A Series)
•

One-Piece, Injection-Molded Unibloc

Package

MB

MAXIMUM RATINGS
Rating

Repetitive Peak Off-State Voltage

Symbol

Value

Unit
Volts

VDRM

(T J = -40 to +1250 Ci

Ya Sine Wave 50 to 60 Hz, Gate Open
MAC94 and MAC94A - 1
2
3
4

On-State RMS Current

Amp

IT(RMS)

Full Cycle Sine Wave 50 to 60 Hz,

SEATINGP~F1~~
PLANE

30
60
100
200

D3~

O.S
Amp

ITSM

(One Full Cycle, 60 Hz, T C = +600 C)
preceded and followed by rBted
12t

(T J = -40 to +1250 C, t=1.0to S.3 m~

Average Gate Power
Peak Gate Cu rrent

0,01

Watt

IGM

1.0

Amp

Operating Junction Temperature Range

TJ

-40 to +125

Storage Temperature Range

T stg

-40 to +150

°c
°c

MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A
4.32
5.33 0.170 0.210
B

C
D
F
G

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

ROJC

75

°C/W

Thermal Resistance, Junction to

ROJA

200

°C/W

Ambient

H
J
K
L
N
P

4.44
3.18
0.41·
0.41
1.14

5.21
4.19
0.56
0.48
1.40
2.54
2.67

0.175
0.125
0.016
0.016
0.045

0.205
0.165
0.022
0.019
0.055
0.100
0.105

2.41
0.095
12.70
0.500
6.35
.Jili!I
2.03
2.92 0.080 0.115
2.92
0.115
R
3.43
0.135
S
0.41 0.014 0.016
0.36
All JED EC dimensions and notes apply.
CASE 29-02

TO-92

36

C

SECT. A·A

~

A',
0.15

PG(AV)

.

K

~

IiR

6.0

current
Circuit Fusing Considerations

T L

F~_ ~

STYLE 12:
PIN 1. MAIN TERMINAL 1
2. GATE
3. MAIN TERMINAL 2

ITC = +SOoC)
Peak Non-Repetitive Surge Current

A

MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)

ELECTRICAL CHARACTERISTICS (TC ' 25°C unless otherwise notedl
Characteristic

Symbol

Peak Blocking Current (Either Direction)
Rated VDRM@TJ' 125°C, Gate Open
Peak On-State Voltage (Either Directionl
ITM' 1.12A Peak; Pulse Width = 1.0 to 2.0 ms, Duty Cycle':; 2.0%

Gate Trigger Current, Continuous de
Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width"" 2.0/.ls
MT2 (+1, G(+I; MT2(-1, G(-I
MT2(+I, G(-); MT2(-1, G(+)

-

Volts

-

All Devices
MAC94A-l thru MAC94A-4

~

o

>

2

~

l. 0

'"~

O. 8

I-

~ O. 6

t!:I

'"

-..........

- --40

0.1
0.1

-

-

10
20

mA

IH
TC' 25°C

TC = -40°C

FIGURE 2 - TYPICAL GATE TRIGGER
CURRENT

-20

;;0
.§

UUAORANT4

~
2 and 3

~

~ O. 2

o

3.0
3.0

-

0

0.4

-60

2.0
2.0

-

2.0

~ 1.4

5.0
10

VGT

= 100 Ohms

FIGURE 1 - TYPICAL GATE TRIGGER
VOLTAGE

~

1.5
mA

All Devices
MAC94A-l thru MAC94A-4

Initiating Current = 20 rnA

~ 1. 6

IGT

= 100 Ohms

Holding Current (Either Direction)
Main Terminal Voltage = 7.0 Vdc, Gate open,}

I'....

2.0
Volts

Main Terminal Voltage = Rated VDRM, RL' 10 k ohms, TJ = 125°C
MT2 (+1, G(+I; MT2(-), G(-)
All Devices
MT2(+I, G(+I; MT2(-), G(-I
MAC94A-I thru MAC94A-4

1. 8

-

Unit
mA

MT2 (+), G(+I; MT2(-1, G(-I TC = -40°C
All Devices
MT2(+I, G(-I; MT2(-I, G(+) TC' -40o C MAC94A-l thru MAC94A-4

~

Max

VTM

Gate Trigger Voltage, Continuous de
Main Terminal Voltage = 7.0 Vdc, RL
Minimum Gate Pulse Width = 2.0 J,l.S
MT2 (+), G(+); MT2(-1, G(-I
MT2(+I, G(-I; MT2(-1, G(+I

Min

IDRM

+20

-..;;;

=::::::::: ::::::,....

-- -+40

+60

+80

~

=>
~

r.-::::::

0
0

r-..

aUAORANT4

I

............

0

7. 0
~ 5. 0

2and3

~

~

3. 0

1

w

!;{ 2.0

r-

+100

"'"-

'"

~

+140

-60

.......

-

~

1. 0

O. 7
O. 5
+120

-

-40

-20

+20

+40

+60

+80

TJ, JUNCTION TEMPERATURE (OCI

TJ, JUNCTION TEMPERATURE (OCI

37

+100

+120 +140

MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)

FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

FIGURE 3 - AVERAGE CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

~ 1101--+--fS::S~R,oC'~
w

a:
~ 100

~ 901---+---+-~

ai

~ 80
«

~-t,t­

~.~

u~ 70

'"

'"

a = CONDUCTIO NANG LE ---I---I----+------"i~-----""I

60

500L-~-----:-!-=---:.l:::----c40~0--5~0c::-0----:6:-!-DO=---:7±OO:--~BOO
ITIRMS). RMS ON-STATE CURRENT ImA)

InAV). AVERAGE ON-STATE CURRENT ImA)

Iwl-

FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)
130
120

'"'w
::>
'"

r....

~

110

~~ ~

90

~
ai

600
70

iii

.

'"'"

'"

-

40

o

."'-. ~~ i------ 12oO

200

100

300

400

70

a:;

60

~

50 -

'"

~
~.-

o

100

200

"'" ,-'"

...........

" "- , ''-

-......: ........ '-

........

40 - . = iDNDUrlDN JNGLE
30

500

/,600

,,,,

0

§'"

'"«

30°

~ ~ ~ b<900
IBOO~ K" ~ ~
de --'"
~ ......:........
~ -.......:

0

~

\ \. 1\.." _"---l-IBOO
\. "'-.1"...

~.

120°..---'

i

~

~ ~I-...

~ ~ ;::::.....

~ 10 0

".l ~"
~
\.

50

Or-..

11 0

w

a" CONDUCTION ANGLE-

~

90°

60

30

12

~

a"'300~ ~ ::--..

BO

'"'"a5

~a-

~~

100

!;(

~

130

.........

300

400

500

ITIRMS). RMS ON-8TATE CURRENT ImA)

InAV).AVERAGE ON-STATE CURRENT ImA)

FIGURE 7 - ON-STATE POWER DISSIPATION

FIGURE 8 - ON-STATE POWER DISSIPATION

1.0,---r----,-----,----,,-------,-;.-----------..----------o...----y--,

g
~
'"~

O_B

S

O_B t---j----j---t---I--;,---,'-ho"-----oA--"c----f---1

~
0:

0_6

~

~

to

w

:::;
'"

0_6

~

w

TJ = 125°C

0.4

'"~

>

«

~

0.4
I--~--I-~~~~~~~~-+-~~-~

~ 0_21--~-----o...,.~~;.£~=--I----""--__+_-~-~
1-~~~------1'---+---+- a = CONDUCTION ANGLE
200

300

400

~-W.~~1~00--20LO--3~00-~4~00:--~L---~LO--7~0-0-~BOO

BOO

InRMS). RMS ON-8TATE CURRENT (rnA)

'TIAV). AVERAGE ON-STATE CURRENT (rnA)

38

MAC94-1 thru MAC94-4, MAC94A-1 thru MAC94A-4 (continued)
FIGURE 9 - MAXIMUM ON-STATE
CHARACTER ISTICS

FIGURE 10 - TYPICAL HOLDING CURRENT

.0

7. 0

~

-""!: j::"'"

.0

k;::: ~

.0

~

3. 0

~

V/250C

=>
'-'

;)

.0

'"

;;:
.§

~

TJ = 125°C

I

5. 0

CI

z

2.0

~

I

GAT! OPEN 1
APPLIES TO EITHER OIRECTION

'"

..........

...........
..........

o

i'--.

x
~

~

06

",

~

0

.4

~

13
w
f-

~

O. 2

'"i'--.

1.0

I

I

O. 7
-60

/I

-40

-20

+20

/I

+40

+60

+80

+100

+120 +140

TJ,JUNCTION TEMPERATURE (OCI

:z
o

FIGURE 11 - MAXIMUM NON·REPETITIVE SURGE CURRENT

~

=>

~

o. 1

10

z
~ 0.0 6

''""

c::

"
~

~

70

",

c- 0 a4

=:::::::: r-.....

5.0

~

=>

'-'
w

'"
0;

0.0 2

~

'"
~

0.006
0.4

TJ = 115°C
f = 60 Hz I

rr r

10

SlrgellS , re e e( nd fOllOWer by

'"

0.0 1

r-...

30

rar ed crrrT t

I-

);
1.0
1.1

1.0

28

10 •

4.4

3.6

1.0

30

50

VT, INSTANTANEOUS ON·STATE VOLTAGE (VOLTS)

II II
10

10

30

50

100

10k

10 k

NUM8ER OF CYCLES

FIGURE 12 - THERMAL RESPONSE

~
N

1.0

'"

05

~

02

:::;

~

--

~
<{

~

~

01

~

'"~

0.05

- --

ZOJC(t) = r(t) • ROJC

f-

E 0.02
in
:
I-

001

2.0

5.0

10

20

50

100

100

500

10k

10k

5.0 k

t, TIME (m,)

MAC40688 thru MAC40690
For Specifications, See 2N5441 Data, Volume II.

MAC40797, MAC40798
For Specifications, See 2N5571 Data, Volume II.
39

MAC800, A, B(SILICON)
Series

MT20~MTI

SENSITIVE GATE
TRIACS
(THYRISTORS)
4 AMPERES RMS

SILICON BIDIRECTIONAL THYRISTORS
· .. designed primarily for full·wave ac control applications, such as light
dimmers, motor controls, heating controls and power supplies; or wherever
full·wave silicon gate controlled solid-state devices are needed. Triac type
thyristors switch from a blocking to a conducting state for either polarity
of applied anode voltage with positive or negative gate triggering.

25 thru 800 VOL TS

• Sensitive Gate Triggering (A and B versions) Uniquely Compatible for
Direct Coupling to TTL, HTL, CMOS and Operational Amplifier
I ntegrated Circuit Logic Functions.
• Gate Triggering 2 Quadrants - MAC800 Series
4 Quadrants - MAC800A,B Series
• Blocking Voltages to 800 Volts
• All Diffused and Glass Passivated Junctions for Greater Parameter Uni·
formity and Stability
• Center Gate Fire for High di/dt Capability
MAXIMUM RATINGS
Rating
R epetl tive Pea k Off -State Voltage, Note 1
MAC800.A,B-02
ITJ = 1250 CI
-05
-10
-20
-40
-60
-80

RMS On-State Current
TC = 95°C
IFull Cycle Sine Wave 50 to 60 Hzl
Peak Non-Repetitive Surge Current
10na Full cycle, 60 Hz, T = -40 to +1250 CI
Circuit F using Considerations
ITJ • -40 to +1250 C, t = 1.0 to 8.3 msl

Peak Gate Power
IMaximum Pulse Width

Value

Unit

Volts

VORM
25
50
100
200
400
600
800
ITIRMSI

4.0

Amp

ITSM

40

Amp

12t

6.5

A 2s

PGM

10

Watts

PGIAVI

0.5

Watt

VGM

5.0

Volts

TJ

-40 to +125

°c

T stg

-40 to +150

°c

= 10 !lsi

Average Gate Power

Peak Gate Voltage
IMaximum Pulse Width

Symbol

= 10 !Is)

Operating Junction Temperature Range

Storage Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

ReJC

5.0

°C/W

Thermal Resistance. Case to Ambient

ReCA

150

°CIW

NOTES:
1. Ratings apply for open gate conditions. Thyristor devices shall not be
tested with a constant current source for blocktng capability such that
the voltage applied exceeds the rated blocking voltage.
2. For soldering purposes, soldering temperatures shall not exceed +230o C
for 10 seconds.

40

MILLIMETERS
MIN MAX
B.B9 9.40
B B.OO B.51
C 6.10 6.60
D 0.406 0.533
E
0.229 3.lT
F
0.406 0.483
G
4.83 5.33
H 0.711 0.864
0737 1.02
J
K 12.70
L
6.35
450 NOM
M
1.27
P
Q
90' NOM
R 254
-

DIM
A

INCHES
MAX
MIN
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.1J09 0.125
0.016 0.019
0190 0.210
0.028 0.034
0029 0.040
0.500
0250
45' NOM
0.050
90' NOM
0100

-

STYLE 4:
PIN 1. MAIN TERM. 1
2. GATE
3. MAIN TERM. 2
All JEDEC notes and dimensions apply.

CASE 79-02
TO·39

MAC800,A,B series (continued)
ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted 1
Symbol

Min

Typ

Max

Unit

Peak Blocking Current (Either Direction)
Rated VDRM @ T J = 125°C, Gate Open

IDRM

-

0.5

2.0

mA

Peak On-State Voltage (Either Direction)

VTM

-

-

2.0

Volts

Characteristic

ITM = 6.0 A Peak, Pulse Width ';;300~s, Duty Cycle ';;2.0%.

Peak Gate Trigger Voltage

Volts

VGTM

Main Terminal Voltage = 12 Vde, R L = 100 Ohms, T J = -4o"C
Minimum Gate Pulse Width = 8.3 ms
MT2 1+1, GI+I; MT21-1, GI-I All Types
MT21+1. GI-I; MT21-1, GI+I MAC800A,B Series

-

Main Terminal Voltage = Rated VDRM, R L = 10k ohms, TJ = 125°C
Minimum Gate Pulse Width::. 8.3 ms
MT21+I, GI+I; MT21-1, GI-I All Ty·pes
MT21+1. GI-I; MT21-I, G(+I MAC800A,B Series

0.2
02

=

12 Vdc, Gate Open, T J

Initiating Current = 1.0 Adc
TJ = -40°C

TJ = 25°C

2.5
2.5

-

-

-

mA

IH

Holding Current (Either Direction)

Main Terminal Voltage

1.4
1.4

=

-40°C

-

-

-

70
30
30
15

tgt

-

1.0

2.0

/-"

dv/dt

-

5.0

-

VI",

MAC800 Series
MAC800A,B Series
MAC800 Series
MAC800A,B Series

Gate Controlled Turn-On Time (Either Direction)
Rated VDRM,ITM = 14 Ade,lGT = 100 mAde

Cntlcal Rate of Rise of Off-State Voltage
Rated VORM, Exponential Waveform, TC

=

95°C, Gate Open

IGTM* (mAl for the following Quadrants

(See Definition Below)

Junction
Temperature

Device
Peak Gate Tngger Current
Main Terminal Voltage = 12 Vdc, RL
Minimum Gate Pulse Width

= 8.3

= 100 ohms

I

II

III

IV

-

30

-

60

-

C

30

-40°C

60

MAC800A

+25 O C

5.0

5.0

5.0

10

Series

-40°C

20

20

20

30

MAC800B

+25 0 C

3.0

30

30

5.0

Series

_40°C

15

15

15

20

+25 0

MAC800
Series

ms

*The values listed are Maximum Values.

QUADRANT DEFINITIONS
MT2(+1
QUADRANT II

QUADRANT I

MT2(+\, G(-)

MT2(+), G(+)

Trigger devices are recommended for gating on Tnacs

They provide

Consistent predictable turn-on POints
Simplified CircUitry
Fast turn-on time for cooler, more effiCient
and relrable operation

ELECTRICAL CHARACTERISTICS of RECOMMENDED
BIDIRECTIONAL SWITCHES

MBS4991

MBS4992

MBS100

Vs

60-lOV

75 - 9.0 V

30-50V

IS

350 "A Max

120 "A Max

100 - 400 "A

!VS1 -VS2!

05 V Max

02 V Max

PART NUMBER

QUADRANT IV

QUADRANT III

MT2(-), G(+)

MT21-I, GI-I

LampDlmmer

General

USAGE
G(-I-------~I-------- GI+I

Temperature
Coefficient

0.02%/ o C Typ

0.35 V Max
0.05%/ o C Typ

See AN-526 for Theory and Characteristics of Silicon BIdirectional SWitches

MT21-1

41

MAC800,A,B series (continued)

fiGURE 2 - POWER DISSIPATION

fiGURE 1 - RMS CURRENT DERATING

- 8.0,--,---,---y--,---,----,---y----,

~

~ 7.0J---+---+----+---+----+--+----+-~

120J--+--""'~~2"""=-+---1'-----+--+~'--i

-~ 6.0

~ 1151---+--+-~-k=''';;~;;;:c---'''''+-=----"f-=-+--w

:3

1101---+--+--+---~...-~...F""""-=--cI/-=""'l~--

; : !:f-

105J--+---+--+--+--=1""-~-.I.-7':..d---'1

~
~ 100

5

~

~
jJ~~

95

CONOUCTION ANG LE

90

~

~ 5.0

C
0:

4.0

w

3.0J---+--+--+_--t....-;,L-h~=--+_\ _"'i""--_j

~

o~

CONDUCTION ANGLE

..

'"

~ 20J---+--+-~~~~~~~~,-t_~_+--~

>
«
'>

--I--+--+---IJ--~

10f----+---:~:e::;.-:;;.r."""'=--+---+--=-t----+--I

~ O~~~:---_~-__;_~-~:___:---~-~~-~--:~
o
1.5
2.0
2.5
3.5
4.0

85o!---~---;-l,;---,l;----;;2l,;.0---;;2J,.5---;;3!;;.0:-----;;3!;,5-~4.0

IT(RMS). RMS DN·STATE CURRENT (AMP)

IT(RMS). RMS ON·STATE CURRENT (AMP)

fiGURE 4 - TVPICALGATE·TRIGGER CURRENT

FIGURE 3 - TYPICAL GATE·TRIGGER VOLTAGE

~ 3.0

I

::;

I

~
z

w

'::;
o 1. 0
>

r-- r-- I---"-

w

'"'"co
fw

~

7
O. 5

iB

-

'"

w

-..;;

"

1"--.

1'--

1. 0

o. 7

~

O. 5

«

..........
i'...

r--...

i"'---.

'"

'"

"

f-

'" O. 3
>
-60

"-

~

I

DFF·STATE VOLTAGE~ 12 Vdc
ALL QUADRANTS

2. 0

o

o

""~
'"

I

:l

OFF·STATE VOLTAGE< 12 Vdc
ALL QUADRANTS

~ 2. 0

.0

~

I

t;
-40

-20

20

40

60

80

100

120

140

O. 3

-60

-40

20

-20

40

60

80

100

120

140

TJ. JUNCTION TEMPERATURE (OC)

TJ. JUNCTION TEMPERATURE (OC)

SAMPLE APPLICATION:
TTL·SENSITIVE GATE 4 AMPERE TRIAC
TRIGGERS IN QUADRANTS II AND III

IC LOGIC
FUNCTIONS

I

TTL
HTL

CMOS (NAND)

FIRING QUADRANT
III
II
MAcaOOA
MACaOOA
Senes
Series
MACaOOA
MAcaOOA
Series
Series

MACaOOe

MACaQOB

Series

Series

CMOS (Buffer)

60 Hz

Operational
Amplifier

Zero Voltage
Switch

42

IV

MACaQOe
Series

MACaOOe

MAC800A
Series

MAC800A

Series

MAC800A

MAcaOOA

Series

Series
Series

MAC800,A,B series

(continued)

FIGURE 6 - TYPICAL HOLDING CURRENT

FIGURE 5 - MAXIMUMON·STATE CHARACTERISTICS
40

3.0

~
-:;....--

I

1\

0

V

0

t7'

7

II

0

0

.......
.............

..........

5

I

TJ= 125 0 C

""

0

H
0

IN EITHER OIRECTION

f',.

~

20

~~~e~~~~LlEJ FORCIONOUJTION

\..

./

30

..........

O. 3

-60

!

-40

-20

20

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE IOC)

/I

'/
0

FIGURE 7 - MAXIMUM NON·REPETITIVE SURGE CURRENT
25 0 C

40

II

0

7

I

o. 5

~

34

~

"'"

32

'"
'"~

30

'"

24 t---

E

I

I

36

w

I

o. 1

~

.~

III

o. 2

,.

38

'"~

I
II

o. 3

0::

28

r-

""'" ~ I"--

't-..

TJ "'-40 to+1250C
f = 6~ Hz

'"

I

26

,",met-·

SURG~ IS PREC~OEO ANO FOLLOWEO
BY RATED CURRENT

22

f"...

,
r--

20

1.0
1.0

2.0
3.0
4.0
5.0
NUMBER OF FULL CYCLES

5.0

4.0

3.0

2.0

7.0

10

IIT,INSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

FIGURE 8 - THERMAL RESPONSE
0

7

-

o. 5
;i §

03

~;i

,.

02

~~

1

~ ~

0.05

,.~

"f-

~

ZOJClt) = rltl o ROJC

V

'"
f-O

~ ~ 007 c--.

:g ~

003
002

om

01

02

05

1.0

2.0

5.0

10

20
t, TIMElms)

43

50

100

200

500

10k

2.0 k

5.0k

10k

MBD 101 (SILICON)

SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)
SILICON HOT-CARRIER
UHF MIXER DIODE

... designed primarily for UHF mixer applications but suitable also
for use in detector and ultra·fast switching circuits. Supplied in an
inexpensive plastic package for low·cost, high·volume consumer
requ irements.
• The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact
•

Low Noise Figure - 7.0 dB Max @ 1.0 GHz

• Very Low Capacitance - Less Than 1.0 pF
•

@

Zero Volts

High Forward Conductance - 0.48 Volts (Typ) @ IF = 10 mA

MAXIMUM RATINGS
Rating

MB

Symbol

Value

Unit

Reverse Voltage

VR

4.0

Volts

Forward Power Dissipation @I T A = 25°C
Derate above 250 C

PF

280
2.8

mW
mW/oC

Junction Temperature

TJ

+125

°c

T stg

-65 to +150

°c

Storage Temperature Range

A

P~fr1::frl

SEATING
PLANET
F-

.

L

~K

l

A

~1:1
IsECT A·A

ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)

r--J-R

Symbol

Min

Typ

Max

Unit

V(BR)R

4.0

5.0

-

Volts

CT

-

O.BB

1.0

pF

VF(11

-

0.48

0.60

Volts

Noise Figure
(f= 1.0 GHz. Nota 2)

NF

-

6.0

7.0

dB

Reverse Leakage
(VR = 3.0 V)

IR

-

0.02

0.25

itA

Series Inductance (Note 3)

LS

-

6.0

-

nH

Cc

-

0.18

-

pF

Characteristic
Reverse Breakdown Voltage
(lR = IOI'Al

Diode Capacitance
(VR =0. 1= 1.0 MHz. Note 1)
Forward Voltage

Case Capacitance (Nota 1)
If = 1.0 MHz. Lead Length"" 1116"')

2. CATHODE
N

DIM

(IF=10mA)

(I =250 MHz, Lead Length"" 1/16"')

~LE1:
~
PIN 1. ANODE
,0"-0,
N

..

(1) Matched sets available. Contact Motorola Sale. Office with specific requirements.

44

MILLIMETERS
MIN
MAX

4.32
5.33
S 4.45
5.21
C 3.18 4.19
D U.Jbti 0.533
0.407 0.482
F
1.27 SSC
G
H
1.27
J
2.54 BSC
K 12.70
L
6.35
N 2.03
2.66
P
!.93
R 3.43

A

INCHES
MIN
MAX

0.110
0.175
0.125
0.014
0.01.
0.05

0.210
0.205
0.1
0.021
J.Dl.

BSG
0.0
0.100 BSC

U.bUU

0.250
O.UIIO 0.1U~

0.115
0.135

CASE 182·02

C

MBD101 (continued)

TYPICAL CHARACTERISTICS
(T A = 25°C unless noted)

FIGURE 2 - FORWARD VOLTAGE

FIGURE 1 - REVERSE LEAKAGE
100

1.0
0.7
0.5

50

-

<"
.3
~

0.2

;

o. I

;2
w

ffi

-VR=3.0Vdc

1

V

....

./
/

0.0 7

'"

5.0

~

2.0

~

"

0.0 2

10

~~
~

~ 0.05

./

20

/

1.0

!£. o. 5
0.2

0.0 1
30

O. 1

40

50

60

10

80

90

100

110

120

0.2

130

0.4

0.3

TA. AMBIENT TEMPERATURE (OC)

FIGURE 3 - CAPACITANCE

o. 9

9. 0

~

!XI

...........

w

-..............
O.B

i"--..

U

;t
;oj
",'

0.1

---

0.1

FIGURE 4 - NOISE FIGURE
1
0

'"2

0.6

VF. FORWARO VOLTAGE (VOLTS)

1.0

~

0.5

~

7. 0
6.0

I'---

~

LhcAt

o!cll~A~JJ FREJuEJCyl = ).0 G1Hl
(Test circuit Figure 5J

'" "-

8.0

"'u:::w

::>

\..

.......

5.0

5
2

I.L~

2

4. 0
3. 0
2.0

0.6

1.0

o

1.0

2.0

3.0

0.1

4.0

VR. REVERSE VOLTAGE (VOLTS)

0.2

0.5

1.0

2.0

5.0

10

PLO. LOCAL OSCILLATOR POWER (mW)

FIGURE 5 - NOISE FIGURE TEST CIRCUIT

LOCAL
OSCILLATOR

NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge

~
UHF
NOISE SOURCE
H.P.349A

I------

OIOOE IN
TUNEO
MOUNT

{Boonton Electronics Model 75A or equivalend.

Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adiusted
for 1.0 mW. I F amplifier NF = 1.5 dB, f = 30 MHz,

-

see Figure 5.

J
NOISE
FIGURE METER
H.P.342A

IF AMPLIFIER
NF =1.5 dB
f =30 MHz

Note 3 - LS is measured on a package having a short- instead of a
die. using an impedance bridge (Boonton Radio Model
250A R X Meter!'

45

MBD 102 (SILICON)

SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)

SILICON HOT-CARRIER
UHF MIXER DIODE

· .. designed primarily for UHF mixer applications but suitable also
for use in detector and ultra-fast switching circuits. Supplied in the
low-inductance Mini-L package for low·cost, high-volume consumer
requirements.

• The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact
• Low Noise Figure - 5.5 dB Typical @ 1.0 GHz
• Very Low Capacitance - Less Than 1.0 pF @ Zero Volts
• High Forward Conductance - 0.48 volts (Typ) @IF = 10 mA
•

Mini·L Ridge Clearly Identifies Cathode Lead for Easy Handling
. and Mounting

MAXIMUM RATINGS (TJ

= 125 0 C unless otherwise noted)

Rating

Symbol

Value

Unit

Reverse Voltage

VR

4.0

Volts

Forward Power Dissipation @TA - 2SoC

PF

400
4.0

rnW
rnW/oC

TJ

+125

°c

Tstg

-65 to +150

°c

Derate above 2SoC

Junction Temperature

Storage Temperature Range

~q
n=~L

f

L

S

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Characteristic
Reverse Breakdown Voltage

Symbol

Min

Typ

Max

Unit

VIBR)R

4.0

5.0

-

Volts

CT

-

1.0

pF

(lR = 101lA)
Diode Capacitance
IVR=O,f= 1.0MHz, Note I)

0.8

DIM
A
B
C

Forward Voltage
(IF = lOrnA)

VF(I)

-

0.48

0.60

Volts

Noise Figure
If = 1.0 GHz, Note 2)

NF

-

6.0

7.0

dB

0
F

Reverse Leakage
IVR = 3.0 V)

IR

-

0.02

0.25

Il A

H
J
K
L

Series Inductance (Note 31
If = 250 MHz, Measu'ed at Lead
Stop ",I 18")

LS

-

3.0

-

nH

N
R

Case Capacitance INote I)
If = 1.0 MHz)

Cc

-

0.1

-

(1) Matched sets available. Contact Motorola Sales Office with specific requirements.

46

pF

S
T
U

MILLIMETERS
MIN
MAX

INCHES
MAX
MIN

3.86
4.11
2.92
3.18
1.91, 2.16
0.64
0.89
0.18
0.08
1.55
1.30
0.64
0.89
4.06
4.32
2.36
2.62
1.12
1.37
0.79
1.04
1.99 12.75
1.14
1.40
0.43
0.69

0.152
0.115
0,075
0,025
0.003
0.051
0.025
0.160

0.162
0.125
0.085
0.035
0.007
0.061
0.035
0,170

ft
.
0.045
0,017

CASE 226

0.054
0.041
0.502
0.055
0.027

B

MBD102 (continued)

TYPICAL CHARACTERISTICS
(TA = 25°C unless noted)

FIGURE 1 - REVERSE LEAKAGE
1.0
0.7
0.5

~

0,3

~

0.2

~w

0.1

;2

~

FIGURE 2 - FORWARD VOLTAGE
100
50

r--- I--VR

3.0 Vdc

,/
.,/

./

20

~

10

a~

5.0

~

0.07

~ 0.05

'" 0.03
0.02

~

~-~--

./

~

1--- f---

~

r---? ~-

./
/

20
1.0

u: 0.5

_.- - -

)---

0.2

0.0 1
30

o. I
40

50

60

70

80

90

100

110

120

0.2

130

0.4

0.3

TA, AMBIENT TEMPERATURE (OC)

FIGURE 3 -DIODE CAPACITANCE

I\.

LbcAL

10

.e
w

f" 1.0 MHz

!g

'-'

""
'-'
"
w
c

~

f-

i3

;t

O.S

c

Q

...:

--

""-

0.7

'-'

0.6

o

o!cll!A~JJ FREJUE~Cv'";O G1HZ
(Test circUit FIgure 5)

90

TA" 2(OC

0.9

0.7

FIGURE 4 - NOISE FIGURE

10

"-

0.6

05

VF, FORWARO VOLTAGE (VOLTS)

'-'

"-

8.0
70

u:

6.0

~

5.0

i'...

.....

w

I--"-

u: 4.0
z

3.0

2.0

1.0

2.0

1. 0
0.1

4.0

3.0

0.2

VR, REVERSE VOLTAGE (VOL TSI

03

0.5

1.0

2.0

3.0

5.0

10

PLO, LOCAL OSCILLATOR POWER (mWI

FIGURE 5 - NOISE FIGURE TEST CIRCUIT

LOCAL
OSCILLATOR

NOTES ON TESTING AND SPECIFICATIONS
Note 1 -

l
UHF
NOISE SOURCE
H.P_ 349A

I----

DIODE IN
TUNED
MOUNT

I---

IF AMPLIFIER
NF= 1.5 dB
f = 30 MHz

and CT are measured using a capacitance bridge
(Boonton Electronics Model 75A or equivalent).

Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. I F amplifier NF = 1.5 dB, f = 30 MHz,
see Figure 5.

-

t
NOISE
FIGURE METER
H.P.342A

Cc

Note 3 - LS is measured on a package having a short instead of a
die, using an impedance bridge (Boonton Radio Model
250A R X Meter).

-47

MBD103

(SILICON)

SILICON HOT-CARRIER DIODE
(SCHOTTKY BAR'RIER DIODE)
SILICON HOT-CARRIER
... designed primarily for microwave mixer applications but suitable
also for use in detector and ultra·fast switching circuits.
•

Supplied in Hermetic Ceramic Pill Package with low package
parasitics

•

The Rugged Schottky Barrier Construction Provides Stable
Characteristics by Eliminating the "Cat-Whisker" Contact
Cathode

•

Low Noise Figure - 6.0 dB Typ

•

Very Low Capacitance - Less Than 1.0 pF

•

High Forward Conductance - 0.35 Volts (Typ)

@

MICROWAVE MIXER DIODE

1.0 GHz
@

B

Zero Volts
@

IF = 100 IJA

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

Reverse Voltage

VR

4.0

Volts

Forward Power Dissipation @TA = 2SoC
Derate above 2SoC

PF

280
2.8

mW
mW/oC

+125

°c

-65 to +150

°c

Junction Temperature

TJ
T stg

Storage Temperature Range

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Svmbol

Min

Tvp

Max

Unit

V(BR)R

4.0

5.0

-

Volts

CT

-

0.88

1.0

pF

VF

-

0.48

0.60

Volts

Noise Figure
If = 1.0 GHz, Note 21

NF

-

6.0

7.0

dB

Reverse Leakage

IR

-

0.016

0.25

~A

Characteristic
Reverse Breakdown Voltage
(lR =

IO~A)

Diode Capacitance
(VR=O,f= 1.0MHz, Note 1)

Forward Voltage
(IF = 10mAI

(VR = 3.0 VI

Series I nduetaoce (Note 3)

DIM

LS

(1= 250 MHz)

Case Capacitance (Note 1)
(I = 1.0 MHz)

STYLE 1PIN 1. CATHODE
2 ANODE

Cc

..

-

-

0.8

-

nH

0.15

-

pF

•
B
C

0
F
H

MILLIMETERS
MIN
MAX
2.97
3.30
1.96
221
3.78
4.09
1.52
1.68
1.50
1.65
1.78
1.93

INCHES
MIN
MAX
0117

0.077
0.149
0.060
0.059
0.070

CASE 45·01

48

0.130
0.087
0.161
0066
0.065
0.D76

MBD103 (continued)

TYPICAL CHARACTERISTICS

ITA = 25°C unless noted)

FIGURE 2 - FORWARD VOLTAGE

FIGURE 1 - REVERSE CURRENT

1.0
0.7

100

t--- VR = 3.0 Vdc

50

" 0.5
.3

ffi

./

0.3

./

~

0.2
~
~ 0.1
«
~ 0.07
~ 0.05

>

~

5.0

/'

10

'"=>

~ 2.0

/'

0.03

~ 0.02

'"

20

~

./

lli

ffi

"

./

/

0.0 1
20

'"~

1.0

~

0.5

~

40

60

80

100

/

o. 2
o. 1

120

0.38

0.30

0.46

TA, AM81ENT TEMPERATUR E (DC)

12
11

o. 9

"'uz
~

~

............
...............
0.8

U

::
;:;
u

-- ---

r--

\

~

8.0

(L~C;I(O;""ato~ F';QUencv' = 1.~ G~z

r

-

I-- ,---

1.0

20

"

J'.,.

7.0

5.0
0.1

4.0

3.0

VR. REVERSE VOLTAGE (VOLTS)

(FIgure 5, Note 2)

'\.

6.0

o

0.70

I II
I II
I II

---'
9.0

~~

\

10

"'
~
~

07

0.6

062

FIGURE 4 - NOISE FIGURE

FIGURE 3 - CAPACITANCE
1.0

~

0.54

VF, FORWARD VOLTAGE (VOLTSJ

0.2

"

0.3
05 0.7 1.0
20
3.0
PLO, LOCAL OSCILLATOR POWER (mWJ

50

70

10

FIGURE 5 - BLOCK DIAGRAM FOR NOISE FIGURE

LOCAL
OSCILLATOR

NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge

~
UHF
NOISE SOURCE
H.P.349A

DIODE IN
TUNED
MOUNT

(Boonton Electronics Model 75A or equivalent).

Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. IF amplifier NF = 1.5 dB, f = 30 MHz,

f--

see Figure 5.

t
NOISE
FIGURE METER
H.P.342A

Note 3 - LS is measured on a package having a short instead of a

I---

IF AMPLIFIER
NF= 1.5 dB
f = 30 MHz

die. using an impedance bridge (Boonton Radio Model

250A R X Meter!.

I-

49

MBDSO 1(SILICON)
MBD701
o -....~~~o

HIGH-VOLTAGE
SILICON HOT-CARRIER
DETECTOR AND SWITCHING.
DIODES

SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)

50-70 VOLTS

I~DfrlB

· .. designed primarily for high-efficiency UH F and VH F detector
applications. Readily adaptable to many other fast switching RF and
digital applications. Supplied in an inexpensive plastic package for
low-cost, high-volume consumer and industriallcommerical requirements.
• The Schottky BarrierConstruction Provides Ultra-Stable Characteristics By Eliminating the "Cat-Whisker" or "S-Bend" Contact
•

Extremely Low Minority Carrier Lifetime - 100 ps (Max)

•

Very Low Capacitance - 1.0 pF

•

High Reverse Voltage - to 70 Volts

•

Low Reverse Leakage - 200 nA (Max)

-r....l",--H

SEATING
PLANE

•

F

MAXIMUM RATING (TJ

A

o .:l1i~--

.:J a, 1-=

Symbol

Reverse Voltage

Value

Unit

Forward Power Dissipation@TA = 25°C

PF

Operating Junction Temperature Range
Storage Temperature Range

mW
mWloC

TJ

-55 to +125

,DC

T stg

-65 to +150

DC

0

S~CT A-A
C

::t:t,-

MIN

o

500
5.0

I

R

OIM

50
70

Derate Above 25°C

J

-I

MIllIMETERS

Volts

VR
MBD501
MBD701

K

r-r
~-t-i

= 1250 C unless otherwise noted)

Rating

1
L

______1

STYLE 1:
PIN 1. ANOOE
2. CATHOOE

A

CASE 182-1

F

MAX

432

5.33

445
18

521
.1
0533

O.
27
127
2Jl4BSC

121

R

343

0135

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)
Characteristic

~mbol

Reverse Breakdown Voltage

(lR = 101'Ade)

Min

~

Max

50
70

-

-

CT

-

0.5

1.0

pF

T

-

15

100

ps

-

7.0
9.0

200
200

VF

-

1.0

1.2

Vde

LS

-

6.0

-

nH

Cc

-

0.18

-

pF

MBD501
MBD701

Total Capacitance, Figure 1

Unit
Volts

V(BR)R

(VR = 20 Volts, 1 = 1.0 MHz)
Minority Carrier Lifetime, Figure 2
(I F = 5.0 mA, Krakauer Method)
Reverse Leakage, Figure 3

(VR = 25 V)
(VR = 35 V)

nAdc

IR
MBD501
MBD701

Forward Voltage, Figure 4

(IF = 10 mAde)
Series Inductance

(1= 250 MHz, Lead Lenth",1116")
Case Capacitance
(1= 1.0MHz, Lead Lenth""1116")

50

MBD501, MBD701

(continued)

KRAKAUER METHOD OF MEASURING LIFE TIME

CAPACITIVE
CONDUCTION

STORAGE
CONDUCTION

FORWARD
CONDUCTION

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - MINORITY CARRIER LIFETIME

FIGURE 1 - TOTAL CAPACITANCE
500

20

-

.
.....
w

u

Z

>-

12

U

;t
j

0.8

b

>-

is

I

1.6

f

=

"[
:; 400

,.

1.0 MHz f-----

~

1\
\

KRAKAUER METHOD

~ 300

\

~

~ 200

I'---

"'

t---

o

~ 100

0.4

"
5.0

/

>>-

10

15

20

25

30

35

40

45

---

./

f--

10

50

/

20

30

40

50

60

70

80

90

100

IF, FORWARD CURRENT (mA)

VR, REVERSE VOLTAGE (VOLTS)

FIGURE 4 - FORWARD VOLTAGE

FIGURE 3 - REVERSE LEAKAGE
100

0
TA

11000C

0

-

TA
1

1

TA

75°C

1
>-

5. 0

;:;

2. 0
1. 0

~

\

I--

.
~

-

25°C

o
o

~

~

10

O. 2
O. 1

10

20

30

40

50

VR, REVERSE VOLTAGE (VOLTS)

o

0.4

0.8

1.2

1.6

2.0

VF, FORWARD VOLTAGE (VOLTS)

51

=

0.05
0.02
0.01

0.00 1

VALUES SHOWN ARE
STEADY STATE.
TYPICAL PRINTED
CIRCUIT BOARD
MOUNTING

5

2.4

2.8

MBD502 (SILICON)
MBD702
O--II~aI------40

HIGH-VOLTAGE
SILICON HOT-CARRIER
DETECTOR AND SWITCHING
DIODES

SILICON HOT-CARRIER DIODE
(SCHOTTKY BARRIER DIODE)

50-70 VOLTS

· .. designed primarily for high·efficiency UHF and VHF detector
applications. Readily adaptable to many other fast switching RF
and digital applications. Supplied in the low·inductance Mini·L package for low-cost, high·volume consumer and industrial/commercial
requirements.
MBD502 Marked with Orange ColorStripe
MBD702 Marked with Brown Color Stripe

• The Schottky Barrier Construction Provides Ultra-Stable Character·
istics by Eliminating the "Cat-Whisker" or "S-Bend" Contact
•

Extremely Low Minority Carrier Lifetime - 100 ps (Max)

~q

• Very Low Capacitance - 1.0 pF
•

High Reverse Voltage - to 70 Volts

•
•

Low Reverse Leakage - 200 nA (Max)
Mini·L Ridge Clearly Identifies Cathode Lead for Easy Handling
and Mounting

n=~L

iJr

Symbol

Reverse Voltage

Unit

Operating Junction Temperature Range
Storage Temperature Range

MILLIMETER
DIM MIN
MAX
4.11
A 3.86
8
2.92
3.18
C
1.91
2.16
0.64
0
0.89
0.08
0.18
F
H
1.30
1.55
0.64
J
0.89
4.32
K 4.06
L
2.36
2.62
1.12
1.37
1.04
R 0.79
1.99 12.75
S
T 1.14
1.40
0.69
U 0.43

Volts

VR
50
70

Forward Power Dissipation @TA = 25°C
Derate Above 25°C

TJ

T stg

mW

400
4.0

mW/oC

-55 to +125

°c

~5

°c

PF

1.ANOOE

K

Value

MBD502
MBD702

PIN 1 CATHODE

~
~-+c
T+~

= 1250 C unless otherwise noted)

Rating

B

S

j

MAXIMUM RATING (TJ

I

L

to +150

•

INCHES

MI.
0.152
0.115
0.075
0.025
0.003
0.051
0.025
0.160
0.093
0.044

0.031
0.472
0.045
0.017

MAX

0.162
0.125
0.085
0.035
0.007
0.061
0.035
0.110
0.103
0.054
0.041
0.502
0.055
0.027

CASE 226

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)
Characteristic

Symbol

Reverse Breakdown Voltage
IIR

= 10jlAdei

MBD502
MBD702

Diode Capacitance. Figure 1
IVR

= 20 Volts, f = 1.0 MHzl

Minority Carrier Lifetime, Figure 2

II F

(VR
(VR

= 25 VI
= 35 VI

Max

Unit

Volts

-

-

50
70

-

-

CT

-

0.4B

1.0

pF

T

-

15

100

ps

-

7.0
9.0

200
200

1.0

1.2

Vde

nAdc

IR
MBD502
MBD702

Forward Voltage, Figure 4

VF

-

LS

-

3.0

-

nH

Cc

-

0.1

-

pF

= 10 mAdel

Series Inductance
(f = 250 MHz, Measured at Lead Stop"" 1/8"1

Case Capacitance
(f

Typ

=5.0 rnA, Krakauer Methodl

Reverse Leakage, Figure 3

IIF

Min

VIBRIR

= 1.0 MHzl

52

MBD502, MBD702

(continued)

KRAKAUER METHOD OF MEASURING LIFE TIME

STORAGE
CONDUCTION

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - DIODE CAPACITANCE

FIGURE 2 - MINORITY CARRIER LIFETIME

2.0

500
TA ='25 DC

u..

I

1.6

f

f--

=1.0 MHz r--

w
u

'"

~
U

KRAKAUER METHOD

1.2

1

~

;3
w

'"'"
c
li

0.8

~

......"

r--

0.4

0

-

0

0

0
5.0

10

15

20

25

30

35

40

45

-I--

50

VR. REVERSE VOLTAGE (VOLTS)

V

- --

/

/

I-- I--

IF.PEAK FORWARD CURRENT (mA)

FIGURE 3 - REVERSE LEAKAGE

FIGURE 4 - FORWARD VOLTAGE

0

100
50
TA _IIOODC

;;:

0

.§
I-

~

-

TA=J5DC

r--

1

1

u

~

~

-

TA=25 DC

~

i-

10

20

30

40

5.0
2. 0
1. 0

50

VR. REVERSE VOLTAGE (VOLTSI

VALUES SHOWN ARE
STEADY STATE.
TYPICAL PRINTED
::
CI RCUIT BOARD
MOUNTING

=

O. 5
O. 2
O. 1
0.0 5
0.02
0.0 1
0

I

0.00 1

o

:::>

0
10

0.4

O.B

1.6

2.0

VF. FORWARD VOLTAGE (VOLTS)

53

2.4

2.B

MBI-l0l (SILICON)

SILICON HOT-CARRIER MICRO-I DIODE
(SCHOTTKY BARRIER DIODE)

SILICON HOT-CARRIER
UHF MIXER
MICRO-I DIODE

... designed primarily for UHF mixer applications but suitable also
for use in detector and ultra·fast switching circuits.
•

The Rugged Schottky Barrier Construction Provides Stable Char·
acteristics by Eliminating the "Cat·Whisker" Contact

•

Low Noise Figure - 7.0 dB Max@ 1.0 GHz

•

Very Low Capacitance - Less Than 1.0 pF @ Zero Volts

•

High Forward Conductance - 0.48 Volts (Typ) @ IF = 10 rnA

•

Supplied in Space Saving Miniature Package

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VR

4.0

Volts

PF

200
2.0

mW/oC

TJ

+125

°c

Tstg

-65 to +150

°c

Reverse Voltage

Forward Power Dissipation @TA

= 25°C

Derate above 25°C
Operating Junction Temperature

Storage Temperature Range

Device Marked With Yellow Top.

mW

~ KJlo
--.i

ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)
Characteristic

Reverse Breakdown yoltage
(lA= lO I'Al
Diode Capacitance
(VA = O. f= 1.0 MHz. Note 1)
Forward Voltage

L K-

Symbol

Min

Typ

Max

Unit

V(BA)R

4.0

5.0

-

Volts

CT

-

0.88

1.0

pF

VF(ll

-

0.48

0.60

Volts

NF

-

6.0

7.0

dB

'A

-

0.02

0.25

I'A

LS

-

3.0

-

nH

OIM

Cc

-

0.15

-

pF

C

(IF = 10 rnA)
Noise Figure

(f = 1.0 GHz. Note 2)

Reverse Leakage

STYLE 1:
PIN 1. ANODE
2. CATHOOE

iA-j

,~EJ~ tit
1
t
4

I

(VR = 3.0 V)
Series Inductance (Note 3)

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

1.98
1.22
0.25
0.10
0.51
0.03
4.19
0.89
0.38

0.078
0.048
0.010
0.004
0.020
0.001
0.165
0.035
0.015

(f = 250 MHz. Lead Length'" 1/16")
Case Capacitance (Note 1)

(f = 1.0MHz. Lead Length'" 1116")
(1) Matched sets available. Contact Motorola Sales Office with specific requirements.

TYPICAL HIGH DENSITY MOUNTING TECHNIQUE

~00~5
~
PC

===::a=:r

0
F
H
J
K
l
N

2.34
1.47
0.41
0.15
0.76
0.08
4.45
1.14
0.64

0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025

Optional Package with Raised
Circular Tab Available; Specify
Case 166·01.

0025

BOARD MOUNTING

A

t

MaXimum Solder Temperature
2S0 oC for lOs

CASE 166·02

54

MBI-101 (continued)

TYPICAL CHARACTERISTICS
(T A = 25°C unless noted)

FIGURE 1 - REVERSE LEAKAGE

FIGURE 2 - FORWARD VOLTAGE
100

1.0

07

50

05

-

;;'

./

-VR,3.0Vdc

V

.3

~
~

~w

/'
./

0.1

~

10
50

~

10

13

~ 0.0 7

"~

~ 0.0 5

'"

10

....

IL"

0.2

;;'
.§

'"
-

"

0.0 1

/
/

/

1.0

~

05
01

00 1
30

01
40

50

60

70

80

90

100

110

110

0.1

130

0.3

TA, AMBIENT TEMPERATU RE 1°C)

04

FIGURE 3 - CAPACITANCE
1\.
10

LbcAL

O~CIIL!A~JJ FREJUE~Cyl,)o G1HZ
(Test Circuit F1gure 5)

9.0

.."....

0.9

w

I'---.-

u

U

~

0.8

u

w

o
o

i5

~

...............

-- ---

0.7

FIGURE 4 - NOISE FIGURE

1.0

't;.

0.6

05

VF, FORWARD VOLTAGE (VOLTS)

r:o

8.0

~

70

'"u:

6.0

'"
<3

5.0

::>

t---

"-

"'- ..........

w

.
..

~.

0.7

4.0
3.0
1.0

0.6

o

1.0
1.0

1.0

3.0

0.1

4.0

VR, REVERSE VOLTAGE (VOLTS)

0,1

0.5

10

1.0

5.0

10

PLO, LOCAL OSCILLATOR POWER (mW)

FIGURE 5 - NOISE FIGURE TEST CIRCUIT

NOTES ON TESTING AND SPECIFICATIONS
Note 1 - Cc and CT are measured using a capacitance bridge
1800nton Electronics Model 75A or eqUIvalent).
Note 2 - Noise figure measured with diode under test in tuned
diode mount using UHF noise source and local oscillator
(LO) frequency of 1.0 GHz. The LO power is adjusted
for 1.0 mW. IF amplifier NF = 1.5 dB, f = 30 MHz,

see Figure 5.
Note 3 - LS is measured on a package having a short instead of a
die, using an impedance bridge (Boonton Radio Model
250A RX Meterl.

55

MBR320M
MBR330M
MBR340M

SCHOTTKY
BARRIER
RECTIFIERS

HOT CARRIER POWER RECTIFIERS

3 AMPERE

. emploYing the Schottky Barner pnnclple in a large area metal-ta-sillcon power

diode. State of the art geometry features epitaxial construction with oXide passiva-

20, 30,40 VOLTS

tion and metal overlap contact. Ideally sUited for use as rectifiers In low-voltage,
high-frequency Inverters, free wheeling diodes, and polarity protection diodes .

•

Extremely Low vF

•

Low Power Loss/High Efficiency

•

Low Stored Charge, MaJonty

•

High Surge Capacity

Carner Conduction

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage

Average Rectified Forward Current

Symbol

20

30

40

Volts

VRSM

24

36

48

Volts

10

VR(equiv)";; 0.2VR (de), TC = 65°C
VR(equiv),,;;0.2 VR,(dcl. TL = 90°C
( ReJA = 25 0 C/W, P.C. Soard
Mou nt i "9, See Note 31
Ambient Temperature
Rated VR(dc), PF(AV) = 0
ReJA = 25 0 C/W
Non-Repetitive Peak Surge Current

..

1-'

°c
65

60

55

I

~

L

Amp

500 (for 1 cycle)

~

- - -65 to +125 _

C

r

°c

Temperature Range (Reverse
Voltage applied)

Peak Operating Junction Temperature

TJ(pk)

(Forward Current Appl ied)

.

..

150

A
B

Thermal Resistance, Junction to Case

C
D
K

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherWISe noted.)
Symbol

Min

Typ

Max

-

-

TC = 25°C
TC = 100°C

-

-

-

-

10
75

-

11.43
8.89
7.62
1.17 1.42
24.89

INCHES
MIN
MAX

-0.046
0.980

MECHANICAL CHARACTER ISTICS
FINISH: All external surfaces corrosion-resistant
and the terminal leads are readily
solderable.
POLARITY: Cathode to c ....
MOUNTING POSITIONS: Any

(1) Pulse Test: Pulse Width =300"s, Duty Cycle = 2.0%.

56

0.450
0.350
0.300
0.056

CASE: Welded, hermetically sealed construction.
mA

IR

MILLIMETERS
MIN
MAX

CASE 60

0.450

Currerit@rateddeVoltage(11

STYLE 1:
PIN 1. CATHODE
2. ANODE

Unit
Volts

vF

Voltage (1)
(iF = 5.0 Amp)
Maximum Instantaneous Reverse

L,
DIM

Characteristic

Maximum Instantaneous Forward

K

°c

THERMAL CHARACTERISTICS

Characteristic

o

K

IFSM

TJ,Tstg

~,

Amp
15_
3.0_

TA

(surge applied at rated load conditions, halfwave, single phase 60 Hz)
Operating and Storage Junction

MBR320M MBR330M MBR340M Unit

VRRM
VRWM
VR

MBR320M, MBR330M, MBR340M (continued)

NOTE 1: OETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibil ity of thermal runavvay
must be considered when operating th is rectifier at reverse voltages
above 0.1 VRWM.
of equation III:
TAlmaxl
where

Proper derating may be accomplished by use

of 1150 C. The data of Figure. 1, 2 and 3 iobased upon dc condi·

= TJlmaxl

- R8JA PFIAVI - R8JA PRIAVI

III

T A(max) '" Maximum allowable ambient temperature

tions. For use in common rectifier circuits, Table I indicates suggested factors for an equivalent dc voltage to use for conservative
design; Le.:
VRlequivl

T J(max) == Maximumallowable junction temperature
11250 C or the temperature at which ther·

= VINIPKI

x F

141

The Factor F is derived by considering the properties of the various
rectifier circu its and the reverse characteristics of Schottk V diodes.

mal runaway occurs, whichever is lowest).
PF(AV) = Average forward power dissipation

Example:

PR(AV) = Average reverse power dissipation

Find TAlmaxlfor MBR340M operated in a 12·Volt dc

10 A IIFIAV) = 5 A), IIPKI/IIAVI
Vlrmsl. R9JA = 100 CIW.

supply using a bridge circuit with capacitive filter such that IDe

R8JA = Junction-ta-ambient thermal resistance
Figures 1, 2 and 3 permit easier use of equation (1) by taking
reverse power dissipation and thermal runaway IOta consideration.
The figures solve for a reference temperature as determined by
equation 121:
TR

when forward power is zero. The transition from one bou ndary
condition to the other is evident on the curves of Figures 1, 2 and
3 • a difference in the rate of change of the slope in the vicinity

= TJlmaxl - R8JAPRIAVI

121

Find VRlequivl. Read F = 0.65 from Table I :.
VRlequiv) = 11.411110110.65) = 9.2 V
Find TR from Figure 3. Read TR = 117o C@ VR =
9.2 V & R9JA = lO o C/W.
Find PFIAVI from Figure 4. Read PFIAVI = 6.3 W

Step 1:
Step 2.
Step 3

Substituting equation 12) into equation (1) yields.
TAlmaxl = TR - R9JA PFIAVI

@IIPKt 10 & IFIAVI = 5 A
IIAVI
Find':: AI \Y.ax I from equation 131. TAl maxI = 117·1101
16.3) - 54 C.

131

Inspection of equations (2) and (3) reveals that TR IS the ambient
temperature atwhich thermal runaway occurs or where TJ =- 12S o C,

=

= 10, Input Voltage = 10

Step 4'

TABLE I - VALUES FOR FACTOR F
Circuit

Half Wave
Resistive _1 ~apacitive (1)

Load

0.5
0.75

Sine Wave
Square Wave

I

Resistive

Capacitive

Resistive

0.5

0.65

1.0

1.5

0.75

0.75

1.5

J-;-;:-r-- N
......
~ t"'-... .........
f"""'-.....""""":
'"~ 105 -.........: :---.:
, , =' i"'r-..." r--...
i". . . . . . r--.,.,
.....
.........
r-...
........... 1'-...,
t--.'
~ 95

,r--..

ROJA IOCM') = 71i' ~I:...
I>("r-,.
60
./
'X~
50
40
. / 'X ~r30
"",)4.
25 20
/15
-1 10'"

1!i
>-

~ 85

r--... ><

iii

i

r-....'

75

~ 65

,

55
2.0

3.0

'j"

E~

RaJA IOC/WI

'"=>>-

105

~

95

w
'-'

85

1!i
>-

~
...

'"

,

~~

w

;:--...;

.....

55
3.0

4.0

5.0

~

" "........

LX :-............. "-

15

10 ....

~~ ~

10
15
7.0
VR, REVERSE VOLTAGE IVOLTSI

"'

~

20

FIGURE 4 - FORWARO POWER DISSIPATION

~

.........

~........

_L

55
7.0

,,~

...........'2'" ~~ K.~ !"..
............ ~. ~ K
./

:'.2' t'.L'>

/"'.">

"

......

:.'-.. .".. .'-l"\'
:-.: ~ ."l"\"
.......
~ ~

10
15
20
VR. REVERSE VOLTAGE IVOLTSI

'"'

30

40

IFIAVI. AVERAGE FORWARO CURRENT lAMP)

57

......

~x.~ ['.2'.. ~
I/'.x.~ ~ ........

"'

~
...........

310 25 ."
,
20 1510 """
5.0

~
r-..,."
~L".L-.. 1>-..."')...

I'X.X ~... "- I\...

" , " " """ .,
" r-. ......-'"

60
50
40

65

4.0

,

" "-"' "".....
'-

...........
...........
r-...'
.......... .........
........ ........

'..
r-~K
3.0
I:::' 1"'"":::;:::--

~.A. ~

................

I Capacitive

I

(2)Use line to center tap voltage for Vin.

FIGURE 1- MAXIMUM REFERENCE TEMPERATURE - MBR320M
125
7.0 5
~L' ',4.0
~115
3.0

,~l:"~~~~..... ..... r--.
,

Center Tapped 111,121

1.3

111 Note that VRIPKI""2 VinlPKI

w

Full Wave,

Full Wave, Bridge

........

'-

30

MBR320M, MBR330M, MBR340M (continued)

THERMAL CHARACTERISTICS
FIGURE 5 - THERMAL RESPONSE
1.0
W

<.>

z

~
iii

0.7
0.5

.--

0.3

~ C 0.2
.. !:::!

«W

a: ....
~ ~

:: g;

Ji:J1

_f-"

o. 1

tp

0,07

~ ~ 0.05

~
?

""

_

f-tl----1

0;

>-

ZeJCIt! • R'JC • rlt!

DUTY CYCLE, 0 • tp/ll
PEAK POWER, Ppk, is peak of an
equivalent square power pulse.

Pk
TIME

'" TJC· Ppk . ROJC 10 + II - O!· rIll + tp! + rltp!-rll1l1
0.03

where
l:l TJC

0.02

rlt)

0.0 1
0.5

1.0

2.0

5.0

10

20

50

100
t, TIME

200

Pk

500

1-----11---1

2.0 k

1.0 k

10 k

5.0 k

20 k

50k

NOTE 3 - MOUNTING DATA
Data shown for thermal resistance junction-to-ambient
(RaJA) for the mountir.gs shown is to be used as typical
guideline values for preliminary engineering.

Ppk

tp

': the increase in junction temperature above the case temperature
normalized value of transient thermal resistance at time, t, from Figure 5, i.e.:
r(tl + tp) '" normalized value of transient thermal resistance at time, 11 + tp.

1m,!

NOTE 2 - FINDING JUNCTION TEMPERATURE

J=tjL

=

DUTY CYCLE, 0 " tp/q
PEAK POWER, Ppk. IS peak of an
equivalent square power pulse

TYPICAL VALUES FOR ReJA IN STILL AIR
LEAD LENGTH, L liN!

TIME

To determme maximum Junction temperature of the diode 10 a given Situation,
the following procedure is retommended.
The temperature of the Clse should be measured uSing a thermocouple placed
on the case at the temperature reference pomt (see Note 3). The thermal mass
connected to the case IS normaily large enough so that It will not Significantly
respond to heat surges generated in the dIOde ala result of pulsed operation once
staady-state conditions are achieved. USlIlg the measured value of TC. the junction
temperature mavbedetermmed by
TJ'''TC+6TJC
where 0. TJC IS the IIlcrease In Junction temperature above the case temperature
It may be determined by
t:. TJC = Ppk 'R6JC [0+(1- Ol . r(q +tpJ +r(tpl-r(I111
where
r(tl'" normalized value of tranSient thermal resistance at time, t, from Figure
51' ..
r (tl + tpl ~ normaflzed value of tranSient thermal resistance at time tl + tp

MOUNTING
METHOD

1/4

1

ReJA

1

55

60

°C/W

2

65

70

°C/W

25

3

°C/W

MOUNTING METHOD 3
P. C. Board with
2 1/2" x 2 1/2" copper surface

FIGURE 6 - APPROXIMATE THERMAL CIRCUIT MODEL
ReCA
70 0 C/W
ReS(Al

ReLlA!
40 0 C/W/IN
ReLIK!
40 0 C/W/IN

Use of the above model permits calculation of average
junction tem",erature for any mounting situation. Lowest
values of thermal resistance will occur when the cathode
lead Is brought as close as possible to a heat dissipator; as
heat conduction through the anode lead is small. Terms
In the model are defined as follows:
·Ca.. temperature reference
I, at cathode end.

TEMPERA,URES

TA =
T A(Al =
T A( K) =
TL(A) =
TL(K)=
TJ =

ReSIK!

THERMAL RESISTANCES

AaCA = Case to Ambient
Ambient
ReS(A):::; Anode Lead Heat Sink to Ambient
Anode Heat Sink Ambient
Cathode Heat Sink Ambient RaS( K) = Cathode Lead Heat Sink to Ambient
L(A) = Anode Lead
Anode Lead
RaL(K)= Cathode Lead
Cathode Lead
Junction
AOCL = Case to Cathode Lead
AOJC = Junction to Case
R8J(A) = Junction to Anode Lead (S bend)

Rn

58

MBR320M, MBR330M, MBR340M (continued)

FIGURE 7 - TYPICAL FORWARD VOL TAGE
200

~J5DC

100

:.,....-

./
100DC-

70

...z
a:

~

20

700

~

500

::>

u

f = 60 Hz

...........
...........

w



G
it

"...
:::;

L

0:
30

Prior to surge, the rectifier is operated such
that TJ = 100DC; VRRM may beapplied be·
tween each cvcle of surge .

0:

/

50

~

--

FIGURE 8 - MAXIMUM SURGe CAPABILITY
1000

80

12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)

NOTE 4 - HIGH

FREQU~NCY

MBRl20M
MBR330M
-MBR340M
32

36

20 V
30 V
40.V
40

OPERATION

2500
2000
1500

~ :::1'---

TJ = 25 0C

......

t.... ..... :--.,

~ 1000
z

MBRl20M -

... rated de Voltaga (1)

TC

= l000C

Min

Typ

Max

vF

-

-

Unit

MECHANICAL CHARACTERISTICS

Volts

CASE: Welded, hermetically ..aled
FINISH: All external surfaces corrosion resistant
and terminal lead is readily solderable.

0.550
mA

IR

-

-

-

-

10

75

POLARITY: Cathode to Case
MOUNTING POSITION: Any
STUO TORQUE: 15 in .. lb. max

(1) Pulse Test: Pulse Width = 300 1'5, Duty Cycle = 2.0%:

60

MBR1520, MBR1530, MBR1540 (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS
Reverse power dissipation and the possibil ity of thermal runaway

3 as a difference in the rate of change of the slope in the vicinitY
of 115°C. The data of Figures 1. 2 and 3 is based upon dc condi·
tions. For use in common rectifier circuits, Table I indicates sug-

must be considered when operating this rectifier at reverse voltages
above 0.2 VRWM. Proper derating may be accomplished by use
of equation 111:
TAlmaxl = TJlmaxl- R8JA PFIAVI- ReJA PRIAVI
III

where
T A(max)
TJlmaxl

gested factors for an equivatent dc voltage to use for con.rvative
design; i.e.:
VRlequivl = VinlPKI x F

= Maximum allowable ambient temperature
= Maximum allowable junction temper.turel125 0 C
or the temperature at which thermal runaway

Example:
Find TA(max) for MBR1540 operated in a 12·Voltdc
supply using a bridge circuit with capacitive filter such that! DC =
10 A (IFIAVI = 5 AI. I(PKI/IIAV) = 20. Input Voltage = 10
Vlrmsl. R8JA = 5 0 C/W.

occurs, whichever is lowest).
PFIAVI = Average forward power dissipation
PRIAVI = Average reverse power dissipation

Step 1:

R8JA = Junction-to~ambient thermal resistance
Figures 1. 2 and 3 permit easier use of equation III by taking
reverse power dissipation and thermal runaway into consideration.

Find VR(equivl. Read F = 0.65 from Table I:.
VRlequivl = (1.411110110.651 = S.18 V
Find TR from Figure 3. Read TR = 121 0 C @ VR = 9.18
& R8JA = 5 0 C/W
Find PF(AVI from Figure 4. Read PFIAVI = 10.5 W
I(PKI
@1(AVI=20& IFIAV)· 5 A

Step 2:

The figures solve for a reference temperature as determined by
equation 121:
TR = TJlmaxl- R8JA PRIAVI

141

The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.

Step 3:
121

Substituting equation 121 into equation 111 yields:
TAlmaxl = TR - R8JA PFIAVI
131
Inspection of equations 12) and (3) reveals that TR is the ambient

Step 4:

Find T:,(max.\ from equation (31. TAlmaxl = 121-151
110.51 - 68.5 CI.

temperatureatwhich thermal runaway occurs or where TJ = 12SoC,
when forward power is zero. The transition from one boundary
condition to the other is eviuent on the curves of Figures 1,2 and

TABLE I - VALUES FOR FACTOR F
Circuit

Half Wave

Load

Resistive

Sme Wave
Square Wave

0.5
0.75

Full Wave.

Full Wave. Bridge

Capacitive( 11 Resistive
1.3
1.5

Center Tapped I 11(2

Capacitive

Resistive

Capacitive

0.65
0.75

1.0
1.5

1.3
1.5

0.5
0.75

(21 Use line to center tap voltage for Vin-

111 Note that VR(PKI ""2 VinlPKI

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE - MBR1520 FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - MBR1530

125

~~
roo
'"' 115 -==:r::::::: :-~:--::r--- ::::::t::'
~
a:
r-..... i'" ............. r-..... ...... ~
~

a: 105

.......

...........

~
>-

........

.......

"

....

~ 95

~a:

85

'- .......

3.0

4.0

.....

.....

3.5+~5.0

'I'..

"

~ 115

I-v<::.

!;;:

3il'

a:
=>

ffi

I'.
"'\to I\."'\.

......

......~

r-...

5.0

,

cr

t'<'. . . .~]><~.0

'"'-, ,'"
......

~
>-

7.0

'"

10

~

VR. REVERSE VOL TAGE (VOLTSI

15

~a:

~

~ 115
=>

~
=

105

...

11l

~
'"
....

~
...'"

95

75

........

...... r-.,

105

...........

"

'"

85

75
3.0

20

r-..

2.5

,
...
.....

.....
r-.... .......
~

5.0

"

20"\.
30",

"I'\.

10

,

I'......

1'-..,

"'-

i"
......

......

I'\.
:'\ "'\. ~
I'\.
\\

""
"""" "
'""

...............

"

'I\.
30

r\

"\.

2~r-..

~

"\

.'\ "\. \ \

'\ "I"'\. "-

"

15
20
7.0
10
4.0
5.0
"No external heat sink. VR. REVERSE VOLTAGE (VOLTSI

30

FIGURE 4 - FORWARD POWER DISSIPATION

""I" "- "\1\
'I\.

20

20r----.----,----,----,--,-r----r--r-r----,

.).; -"'. :"'\

ReJA IOCIWI • 50' .........

\.
"\. I\.

"'\.

15

1~

.~5

7.O-

VR. REVERSE VOLTAGE IVOL TSI

~=
2.5
J~
r- -t-'" ~~K35
5.0
r-..... r-.. . . . :. . . . . . . . . . . . . . . . . "><~1.. . 7.0
'r-...

1

~

'1~

,i~

'- ......
7.0

1'.."""""":: <.. . . . . X

......

ReJA (OCIW) • 50'

4.0

3.5

c:--......~ ~5.0

f..,.

,
85

.......... ......... ~

>-

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR1540

125

........ r--- r-.... ...

~ 95

I'\.

21 ' " "'\.

-t-

....

'J 11\.'1\. I\. "\
r....."'\.

ReJA (OelW! • 50'

75
2.0

125
2.5

,"- 1"\r\

30

u

40

u

U

U

10

IF(AV). AVERAGE FORWARD CURRENT lAMP!

61

MBR1520, MBR1530, MBR1540 (continued)

FIGURE 5 - TYPICAL FORWARD VOLTAGE
200

FIGURE 6 - MAXIMUM SURGE CAP.o.BILITY
1000

V
TJ' 25°C

100

V
,/"

1/ /"

I
'fI

0::

',.."
~

:! 20

B
~

'"'"

500

B

100°C

r

~
...........

w

>

'"~
:r
"

300

-

.......

~

W-

-'

"'"

r--.
!'....

200

~

.........

~

1/

10

700

~

1/

30

"...

~

70
50

Prior to surge. the rectifier is operated such
that TJ '" tOODe; Vfl RM may be applied be~e~~ e~~h cycle surge .

0::

V

.........
..... 1'-1--

100
1.0

20

3.0

"

~ 7.0

5.0

10

20

30

50

100

NUMBER Of CYCI ES

~

'""

5.0

I
I

~

2!

",..z

";!:t;

3.0

FIGURE 7 - CURRENT DERATING

I

2.0

"...
~

:! 14

.If

I

1.0

16

0::

12

B

10

c

«
'"
~ 8.0

0.7

~
w

6.0

0.&

'"

0.3

"~ 2.0

0.2

ffi
>

o

0.2
0.4
0.6
0.8
1.0
1.2
VF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

4.0

SINEWAVE ~'20
,CAPAC,ITIVE ~OADS , IIAV) ,
-+---jf--+---"'~~
CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE

0
75

1.4

105
95
TC. CASE TEMPERATURE 1°C)

85

115

125

FIGURE 8 - THERMAL RESPONSE

w

1.0
0.7

~

0.5

~
iii

- --

0.3

~ i5: 0.2

-

;i~

=-'
w

< 0.1
,,"
~ ~ 0.07

tpJ L I T P k
I-tl---1
TIME

~ ~O.05
z
~
0.03
I0.02

~

0;

DUTY CYCLE. D = tp/tl
PEAK POWER, Ppk. is peak of an
equivalent square power pulse.

:::

TJC' Ppk' ROJC [D + 11- D)· rlq +tp) + rltp)-rlq)]

where

11 TJC "" the mcreaH In junction temperature above the case temperature
r(t) = normalized value of uansient thermal resistance at time, t, from Figure 8, i.e.:
r(t1 + tp) =normalized value of transient thermal resistance at time, t1 + tp.

~

0.0 1
0.115

ZOJCIW ROJC • rlt)

0.1

0.2

0.5

1.0

2.0

5.0

10

20

t. TIME 1m,)

62

50

100

200

500

1.0 k

2.0k

5.0k

MBR1520, MBR1530, MBR1540 (continued)

FIGURE 10- TYPICAL REVERSE CURRENT

FIGURE 9 - NORMALIZEO REVERSE CURRENT

5.0

200

i5

3.0 t-VR =VRWM

N

:::;

2.0

.

1.0

w

,.a:.
0

~

~
a:
a:

::>

'"w
'"a:w

~

IE

./
./

0.2
0.1
0.07

-::::

10

~'1000C

~

75°C

V
~

'"

2.0
10

105

1--

..... :....

- -

~.

o

125

....

0.5
02

65
85
TC. CASE TEMPERATURE (OC)

~

I--- 25°C

- --

- ..- .-- - -

.- ::;.-

w 5.0

'"a:w
~

~

45

~

20

13

v

-

<
E.

50

..

./

0.7
0.5
0.3

125°C

TJ

100

V

4.0

8.0

12
16
20
24
28
VR. REVERSE VOLTAGE (VOLTS)

M8R1520 20 V
M8R1530 30 V
M8R1540 40 V
32

36

40

FIGURE 11-CAPACITANCE

2500
2000
1500

........
.........

NOTE 2 - HIGH FREQUENCY OPERATION

......

~

...'"

w

z

U

~
U

t-..

1000

1'.,

Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed

TJ' 25°C

M8R1520 1-1--

by using a model consisting of an ideal diode in parallel with a

variable capacitance. (See Figure 11).

Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative

700
M8R1530

."

500
400
300
250
0.040.06 0.1

M8R 1540

waveform rectification efficiency IS approximately 70 per cent at
2.0 MHz, e.g., the ratio of dc power to RMS power In the load IS
0.28 ~t this frequency, whereas perfect rectification would Yield
0.406 for sine wave Inputs
However, In contrast to ordinary
Junction diodes, the loss In waveform efficiency IS not Indicative of
power loss; It IS simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.

I'~

I IIII
0.2

0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

63

MBR2520
MBR2S30
MBR2S40

SCHOTTKY
BARRIER
RECTIFIERS

HOT CARRIER POWER RECTIFIER

25 AMPERE
20, 30, 40 VOLTS

· .. employing the Schottky Barrier principle in a large area metal·to·
silicon power diode. State of the art geometry features epitaxial can·
str'uction with oxide passivation and metal overlap contact. Ideally
suited for use as rectifiers in low·voltage, high·frequency inverters,
free wheeling diodes, and polarity protection diodes.
•

•

Extremely Low vF

•

Low Stored Charge, Majority
Carrier Conduction
•

Low Power Loss/H igh
Efficiency
High Surge Capacity

MAXIMUM RATINGS

Non·Repetitive Peak Reverse Voltage
Average Rectified Forward Current

VR(equiv.) ';;;0.2 VR(dc), TC

VRRM
VRWM
VR
VRSM
10

= 80°C

Ambient Temperature

Rated VR(dc), PF(AV)
ReJA = 3.5 0 C/W

@J

Symbol MBR2520 MBR2530 MBR2540 Unit

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

=0

Non-Repetitive Peak Surge Current

20

30

40

24

36
25

48

85

80

•

Volts
Volts

•

Amp

STYLE 1:
1. CATHODE
2. ANODE

uc

TA
90

Amp

IFSM

(surge appl ied at rated load
conditions, halfwave, single phase,

800 (for 1 cycle)

60 Hz)
Operating and Storage Junction

TJ, T stg

-4---65to+125~

°c

Temperature Range (Reverse
voltage applied)

Peak Operating Junction Temperature
(Forward Current Applied)

TJ (pk)

..

..

150

°c

THERMAL CHARACTERISTICS
Characteristic

MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 10.77 11.10 0.424 0.437
0.405
10.29
C
0
6.35
- 0.250
1.91
4.45 0.075 0.175
E
0.060
F
1.52
J
10.72 11.51 0.422 0.453
0.800
K
20.32

Thermal Resistance. Junction to Case

CASE 245.01

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwISe noted.)

-

Symbol.

Characteristic

MaxlmufTl Instantaneous Forward

Voltage (1)
(iF = 25 Amp)
Maximum Instantaneous Reverse Current
@

Rated dc Voltage (11 (TC = lO00C)

(1) Puis. Test: Pulse Width

Min

Typ

Max

IR

Unit

Volts

vF

-

-

0.550

-

20
150

= 300 I'S, Duty Cycle = 2.0%.

64

mA

MECHANICAL CHARACTERISTICS
CASE: Welded, hermetically sealed
FINISH: All external surfaces corrosion
resistance and terminal lead is
readily solderable.

POLARITY: Cathode to Cose
MOUNTING POSITIONS: Any
STUO TOROUE: 15 in. lb. Max

MBR2520, MBR2530, MBR2540 (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS
Raverse power dissipation and the possibility of thermal runaway

when forward power is zefO. The transition from one boundary
condition to the other is evident on the curves of Figures 1, 2 and
3 .. a difference in the rat, of change of the slope in the vicinity
of 1150 C. The data of Figures I, 2 and 3 is based upon dc condi-

must be considered when operating this rectifier at revena voltages
above 0.2 VRWM.
of equation (1):

Proper derating may be accomplilhed by use

TA(max) = TJ(max) -R6JA PF(AV) - R8JA PR(AV)
where
T A(max) = Maxi"1um allowable ambient temperature

tions. For use in common rectifier circuits, Table I indicates sug.
gested factors for an equivalent dc voltage to use for conservative
design; i.e.:

(I)

VR(equiv) ~ Vin(PK) x F

TJ(max) = Maximum allowable junction temperature (125 0 C
or the temperature at which thermat runaway

(4)

The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottk.y diodes.

occurs. whichever is lowesd.

Example:

Find TA(max) for MBR2540 operated in a 12·Voltdc

PF(AV) = Average forward povver dissipation

supply using a bridge circuit with capacitive filter such that I DC

PR(AV) = Average reverse power dissipation

16 A (IF(AV) = 8 A), I(PK)/I(AV) = 20, Input Voltage = 10
V(rms), R6JA = 5 0 CIW.

ROJC ;;; Junction-to-ambient thermal resistance
Figures I, 2 and 3 permit e..ier use of equation (1) by taking

Step 1:

reverse power dissipation and thermal run8\Nay into consideration.
The figures solve for a reference temperature as determined by

Step 2:

equation (2):
(2)

Step 3:

Substituting equation (2) into equation (1) yields:
TA(max) = TR - R8JA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR is the ambient

Step 4:

temperature at which thermal runaway occurs or where TJ ;;; 125°C.

=

Find VR(equiv)' Read F = 0.65 from Table I :.
VR(equiv) = (1.41)(10110.65) =9.18 V
Find TR from Figure 3. Read TR = I 1~C @ VR = 9.18
& R6JA = 5 0 C/W
Find PF(AV) from Figure 4. Read PF(AV) = 14.8 W
I(PK)
@1(AV)=20& IF(AV) = 8 A
Find T A(max) from equation (3). TA(max) = 113-(5)
(14.8) = 3QoC

TABLE I - VALUES FOR FACTOR F
Circuit

HalfW...

Load

Resistive

Sine Wave

0.5
0.75

Square Wave

I Capacitive(1)

I

I
I

Resistive

1.3
1.5

I

0.5
0.75

~

......

:::>

~

~ 105

1!i
...
~

95

!
_

" r-... r-......... '"" ,"'-

i'.....

"- "

t-.....

-r-...'

I'-........

"'-

"

85

u
~ 115 ........

r-.. ~5""'"
3.5

or
w 105

.""

"

~

~
....
w

'"

r-,. 20"- r-.. "-

ffi

7.0

10

'\..

15

VR, REVERSE VOLTAGE (VOLTS)

""

95

~
cc. 85

"'\
"' 30'" I"- r-..'\..
~'\. .~ "'
5.0

..,

e..115
w
or
:::>

~

~105

1!i
...

~ 95

~

~_

....

-

r:::- r~

I"--,

I'....

"

"
I'-.

I'....
I'-.

85

-...;

r:::::

..... i'I"i'~

"-

"

"

ROJA = (oCIW) = 5i?'

75
4.0

5.0

7.0

-r-......

.........

I"--,

t'....

.......

"'"

b.., i'-

"

0"
10

"""-

~

"
I"- I\.

'"

=

5.0

7.0

10

VR, REVERSE VOLTAGE (VOLTS)

15

'\.

r-SI~EWLE 1 1 1

1

""

WAVE

./ ./

"
"-

"

/

// /

/ ' c......

4.0

8.0

>(

TJ

12

~

V
LOAD

125 0 C
16

65

-

L
1 1 1
20

IFIAV), AVERAGE FORWARD CURRENT (AMP)

*No ftxternal heat sink

de

~I~S~:;'~:EE-

./

i--"""

b :...::; ~
~ Fi""'"

40

I/:

./

V hV
..&

L

'V

V

/

/

.

l'Y
1/ /
/SQU~RE

/

/

2

'\"\

30

[\.. \.

20

5.0

/

10

/

~

\.

VR, REVERSE VOLTAGE (VOLTS)

/

"' " '\
'\.. '\..
20

3.~

!'~
i',.
"'
!',~"
ROJAIoCIW) 50......

4.0

US

2.5' ~

I\. \.
~.ot~
'\.. r-,." \
10
):'\.. '\ \

II

~
15

~"

/

"- I"\.. '\..

~15"",,-

:--.20.",-

'\.."

",,,~

...................

"
"
~'" " ""

r-,.

r-........

r--,.1.75

........... ~.5'"
...........
5.0 '\..
7.0

"- r"-.. 10"

r--"

.........

r-... ........... t"-.,. 2.5 t'-.,."['..
~

1.3
1.5

I

CAPACITIVE I(PK) = 20
LOAOS
IIAV)

l"'--.

Capacitive

FIGURE 4 - FORWARD POWER DISSIPATION

C'............
-- r-....

~"

"

75
3.0

20

8

-

........

....or

FIGURE 3 - MAXIMUM REFERENCE TEMPERATURE - MBR2540

125

I
I

~r--;~...:::r--::::::::-r-.
~
'-..

r--~~.75-

f'.... I'...
~ .~ '\..
r-.... r"-.. i"- ~ '\..'\..
,'\.. r-,."
!'- }

4.0

3.0

1.0
1.5

(2)Use hne to center tap voltage for Vin.

ROJA(oCIW) = 50"

75
2.0

Resistive

0.65
0.75

FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE - MBR2530
125

t- - _r-;;F::::-t--.. -.. ,t-- .......... ,I.
I""--.. ........

Capacitive

I

(1) Note that VR(PK) "" 2 Vin(PK)
FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE- MBR2520
125
U
e.. 115
w
or

Full Wave,
Center Tapped (I), (2)

Full Wav., Bridge

24

28

MBR2520, MBR2530, MBR2540 (continued)

FIGURE 5 - TYPICAL FORWARD VOLTAGE

20 0

T}:25~C

7

V

100

1000 C
0

1""-1.'

FIGURE 6 - MAXIMUM SURGE CAPABILITY

--..,.

1000

~

....
15
~

- -

..............

>

Prior to surge, the rectifier is operated sue

~ 200

that TJ::: lOQDe; VRRM may be applied
between each cycle of surge

~

JI
I

i-lin

!

100
1.0

0

............

r--.

«

II

0

....... r--.

~ 300

/

0

t---..

500

13
w

..IV
~

0

.......

700

2.0

I

5.0
10
20
NUMBER OF CYCLES

50

100

0
0

0

II II
II

28
0::

~

~_

2. 0

FIGURE 7 - CURRENT DERATING

..............

~

20

SINE WAVE' h.::::"
RESISTIVE /
~ 16
LOAD

~~

O. 7

t - - t-SINEWAVE

;(

u::
O. 20

8.0

~4.0 I - - t- ~APAGITIVE
LOADS

0.3

0.2

0

1.4

0.4
0.6
0.8
1.0
1.2
vF,lNSTANTANEOUS FORWARD VOLTAGE IVOLTSI

l'..

-...... i"""'o......o.. ........ "- I,

-r-- --.

12

w

ffi

. / dc, CONTINUOUS IMAX lOG: 39.3 AI_

r-.,

,

t--

to

O.5

'<

~

13

1. 0

I"

J....-SUUARE
WAVE

24

.

IIPKI :
IIAVI

"r-,... V"'I'..
177V- ........ -"..'\1\.
20 10 5.0
::--.::: ~\
I

'\.

-

I

~
~

CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
75
85
95
105
115
TC, CASE TEMPERATURE IOGI

125

FIGURE 8 - THERMAL RESPONSE

...Jo
«w
~~
w«

1.0
O. 7
O. 5
O. 3

ZOJCIII - ROJC • rill

~~ D, 2

./

.... 0

ffi~

U; w

z<.>

V

O. 1

Pk

_

1-_ 11---1

~iO'O5

TIME

DUTY CYCLE, 0 : Ip/ll
PEAK POWER, Ppk. IS peak of an
equivalent square power pulse

,; TJC: Ppk • ROJC [0 + II - 01· rllJ + tpl + rltpl-rllJll

c: 0.0 3

where
t" TJC " the mcrease

0.0 2
0.0 1
0.05

J1:JL

tp

~ ~ 0.0 7

In

junction temperature above the case temperature

r(t) = normalized value of tranSient thermal resistance at time, t, from FigureS, I.e

r(ll + tpl::: normahzed value of tranSient thermal resistance at time, tl + tp

0.1

0.2

0.5

1.0

2.0

5.0

10
t,TIMElmsl

66

20

50

100

200

500

1.0 k

2.0 k

5.0 k

MBR2520, MBR2530, MBR2540 (continued)

FIGURE 10 - TYPICAL REVERSE CURRENT

FIGURE 9 - NORMALIZED REVERSE CURRENT
5.0

ffi

N

SOD
./

3.0 I-VR=VRWM

~ 2.0

!Z

w

./

ffi

~

!E

0.3
0.2
O. I
0.07
0.05

~

50

0.7

-

,.....

10

~

5.0

!E

2.0

w

i'

~

O.5
65
85
TC. CASE TEMPERATURE (OC)

105

o

125

FIGURE 11 - CAPACITANCE

4.0

B.O

.

-

--

--

j - - 25°C ....

1.0

45

25

....

V-

~

-~
100°C

75°C
~ ~"""

20

g§ 0.5

a~

~

1 100 v

./

a:

~ 1.0

--

TJ = 125°C

:.m

V

t;.

-.-

--

-

MBR2520 20VMBR2530 - 30 V
- - - - - - MBR2540-40V=
36
40
12
16
20
24
28
32
VR. REVERSE VOLTAGE (VOLTS)

==

NOTE 2 - HIGH FREQUENCY OPERATION

8ODO
6000
4DD0

l""'-

~3000

III

r-...

TJ

r-

Since current flow in a Schottky rectifier is the resu It of majority
carrier conduction, it is not subject to junction diode forward and

reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed

t-. "'r---.

w
u

:i 2000

by using a model consisting of an ideal diode in parallel with a

variable capacitance. (See Figure 111.

"'~ 9'

t-

~ 1500

~
;;'1000

Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. For example, relative
waveform rectification efficiency is approximately 70 per cent at
2.0 MHz, e.g., the ratio of dc power to RMS power an the load is
0.28 at this frequency, whereas perfect rectification would yield
0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the de output voltage.

MB~Z5Z0

i'..

MBR2~30

800

MBR2540

600
4DD
0.040.06 0.1

=2ioC

t-....
1'",

IIIII
0.2

0.4 0.6 1.0

2.0

4.0 6.0

10

20

40

VR. REVERSE VOLTAGE (VOLTS)

67

MBR4020
MBR4030
MBR4040

SCHOTTKY
BARRIER
RECTIFIERS
HOT CARRIER'POWER RECTIFIER

40 AMPERE
2O.ao.4O VOLTS

· .. employing the Schottky Sarrier principle in a large ,rea metal·to·silicon power
diode. State of the art oee0metry features epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for UI8 • rectifiers in low-voltage.
high-frequency inverters, free wheeling diodes. and polarity protection diodel.

•

Extremely L_ vF

• Low Stored Charge. Majority

•

low Power Loss/High Efficiency

•

High Surge Capacity

Carrier Conduction

dl

I

MAXIMUM RATINGS
Rating

Symbol MBR.4020 MBR4030 MBR4040 Unit

Peak Repatitiv. Rav«H Voltage
Working Paak.R"""... Voltag.
DC Blocking Vol~

VRRM
VRWM
VR

Non·Repetitiv. Paak Rov.... Voltage

VRSM

Average Rectified Forward Currant
VR(equivl SO.2 VR(dcl. TC = 700C

10

Ambient T_rature
Rated VR(dcl. PFCAVI • O.
RBJA • 2.0o CIW

TA

Non·Repetitive Peak Surge Current
(surge applied at rated loed conditions
hllfwav.. single ph_. 60 H~I

20

30

40

24

36

4B

•
100

40

95

Volts

.

90

Volts
Amp

oC

IFSM

_900 (for 1 cyclel_

Operating and Storage Junction
T.mp.ratura Rango (R"""...
voltage appliedl

TJ.Tstg

_ _ -66 to + 1 2 5 _

Amp

OIM

°c

8
C
0
E
F

Peak Operating Junction Temp.rature
(Forward Currant Appliedl

TJ(pkl

_150_

"C

Thermol Resistance. Junction to C_

2.9
-

11.43
9.53

-

11.51
25.

I.
10.72

IIJ§

5.08
2.03

-

jE5
-

-

-

0.115

0.667
0.450
0 5
O.

-80 O.QlO
0.422 O.
1.0lI0
0.152
0.20 0.411

D().6

ELECTRICAL CHARACTERISTICS

(Tc

= 25 0 C unle.. otherwise noted.1

Symllol

Maximum Instantaneous Forward

Min

Typ

Max

Maximum Instantaneous Reverse
Current@ rated dc Voltage (11
TC = l000 C

-

-

0.630

-

-

20
150

mA

IR

Duty

Unit
Volts

vF

Voltage (11
{iF =40Ampl

(11 Pulse Test. Pulse WIdth - 300 ....

J
K
L

Ii!1L IMETERS
MIN
MAX
16.94 I .45

5.58
8.32
~.
0.140 0.1 5
0
3.5&
4.45
NOTES:
1. Dim. .n·'P'·ildilnm•.
2. All JEOEC dlnoooooionsand ....... pply.
CASE 257.01

THERMAL CHARACTERISTICS

Characteristic

A

-

Cycle - 2.0%.

68

MECHANICAL CHARACTERISTICS
CASE: Welded, h.rmetlcally _ed

FINISH: All extornal ..rfKes corrosion rasislant
and terminal Iud is raadlly _
...
POLARITY: Cathode to C_
MOUNTING POSITION: Any
STUD TORQUE: 2Ii in. lb. Max

MBR4020, MBR4030, MBR4040 (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS
Rev.... power dissipation and the possibility of therm. runM8\'
must be considered when operating this rectifier at rev .... voltllglll
above 0.2 V RWM. Prop.r d.rating may be eccqmplished by use
of equation (1):
TA(max)· TJ(max) -RUA PF(AV) - RSJA PR(AV)
(1)
where

wh.n forward powar is zaro. Tha transition from one boundary
condition to tha other is evidant on the curves of Figures I, 2 and
3 . . . difference in the rate of change of tha slopa in the vicinity
of 1150 C. Tha data of Figures 1, 2 and 3 is b-.l upon dc cond~
tlons. For use in common rectifiar Circuits, Tabla I indicates SUII'
gasted factors for an equiv.ant de voltage to use for conservative
design; i.a.:
VR(equiv) = Vin(PK) x F
(4)
The Factor F is derived by considering the properties of the various
ractifier circuits and tha reve... characteristics of Schottky diodes.

T A(max) = Maximum allowable ambient temperature
TJ(max)· Maximum.lowabl.junction temp.ratur. (125 0 C
or the temperature at which th.rm. runMOV
occurs, whichev.r is lowest).

Example: Find TA(max) for MBR4040 operated in a 12·Voltdc
supply using a bridge circuit with capacitive filter such that loC =
30 A IIF(AV) = 15 A), I(PK)/I(AV) = 10, Input Voltage = 10
V(rms), RSJiII = 3 0 CIW.

PF(AV) = Av.rage forward power dissipetion
PR(AV) = Av.rage rev.... pow.r dissipation
RUC = Junction·to-ambient thermal resistance
Figures I, 2 and 3 permit e..iar use of equation (1) by taking
reverse power diaipation and thermal runawav into consideration.
Tha figures solva for a referance temperature as datermined by
equation (2):
TR = TJ(max) - RSJA PR(AV)

Step 1:

Find VR(equiv)' R.ed F = 0.65 from Table I .:.
VR(equiv) = (10)(1.41)(0.65) = 9.18 V
FindTR from Figure 3. Read TR.= lISOC@ VR = 9.18 V
& R8JA = 3 0 CIW
Find PF(AV) from Figure 4. Read PF(AV) = 25 W
I(PK)
@1(AVi 10 &IF(AV)=15A

Stap 2:

(2)

Step 3:

Substituting equation (2) into equation (1) yialds:
TA(max) =TR - RSJAPF(AV)
(3)
Inspection of equations (2) and (3) revaals that TR is the ambient
temperatu re at wh ich tharmal ru n_ov occurs or where TJ = 1250 C,

Step 4:

Find T A(l!)ax) from equation (3), T A(max) = 118·(3)
(25) = 43 C.

TABLE I - VALUES FOR FACTOR F
Circuit

HaifWav.

Load

Resistiv.

Sine Wave
Square Wave

0.5
0.75

I Capacitiva (1)
I 1.3

J

1.5

Resistive

Capacitiv.

Resistiv.

0.5
0.75

0.65
0.75

1.0
1.5

(1) Note that VR(PK) "" 2 Vin(PK)

~ 115 :::0:

=>

:c
0:

~

105

~
w

u

z
w

5

~
W

0:

.....:

5

75
2.0

r-.... r- ~ r-..

~ I'

~

I"

I""

...... t"--"
......

...... t"-" ~

r-.... ..... ~~

""
.........

t'.
"-

g

1.0

115

r"-,.... -..........:: r-...~

~

i'-

0:

~

"- ~~'\

"-

~ 105
~
....
w

i".."
"'" I""- " ",," " I"'"
"" r-..i".."-"~
I"'"
" ~~"- "~

~

,....,

~.O

u

ffi

~

'" 5.0 "

0:

15.~

R8JA (OCIW) = 40'"

3.0

4.0

5.0

7.0

3;j'..

.....:

'\

10

I

1.3
1.5

I

FIGURE 2 -MAXIMUM REFERENCE TEMPERATURE -MBR4030

125

-

I Capacitiv.

(2)Use line to center tap voltage for Yin.

FIGURE I-MAXIMUM REFERENCE TEMPERATURE -MBR4020

125

Full Wav.,
Canter Tapped (1),(2)

Full Wave, Bridge

I'

r--..
b

-..:::: -.,
~

I"-- r-....
t-....

r-... .....

r-.....-'::::::: ~

"

1'...'

1.0

'" ",,- '"

~

.\

...........

~

"-

r-.... . . . . .
~ t-....
......... ....... r-.... ......
........
r-..... ........

"-

95

I'

......

.......

r-.....

85

r-....

1"- ' "

R8JA (OCIW) = 40~"

75
3.0

20

........

4.0

5.0

" "'"

~ k~
2.0

"- '" '\ I~O

'"

5.0.

'\

.......

1:,\30 ' \ 20'\,15 I~
7.0
10
15
20
VR, REVERSE VOLTAGE (VOLTS)

I~

30

FIGURE 4 - FORWARD POWER DISSIPATION

4
6
SINE lAVE .
CAPACITIVE I(PK)

o LOAOS

I(Av)

69

-

L 1/

/ / ./.

0
0

10

)

6

'"'"

L

/

20J

II /

2
4

'No external heat sink VR, REVERSE VOLTAGE (VOLTS)

=

/
~

/
V V

5J

/

SINE WAVE
RESIST7
LOAO

/
~

~V

V

VSIlUARE

,/
TJ

~
de

~

125 0 C

V~ ~ to-'
8.0

16
24
32
IF(AV), AVERAGE FORWARO CURRENT (AMP)

40

MBR4020, MBR4030, MBR4040 (continued)

FIGURE 5 - TYPICAL FORWARD VOLTAGE
200

FIGURE 6 - MAXIMUM SURGE CAPABILITY
1000

t....-- ~
TJ = 25 0C

100

V

L
70

I-'"

lOOoC

0::

~~

'..."'

~

1:'0:i

I- -

::>

'"
pr.

...>

~
<[

'"""

lt1

0

I

............

<.>

'/

0

-.....

500

0:

L.~

50

=--- r:---"

700

300

Prior to surge, the rectifier is operated sue .
that TJ = 1000C; VRRM may beappliad
between each cvcle of surge

200

~

/1/

!

,rill

100
1.0

0

r--

2.0

5.0

1

10
20
NUMBER OF CYCLES

50

100

0
0

II 11

FIGURE 7 - CURRENT DERATING

0

...
~

2.0

0:

aco
0:

i

1. 0
.7

~
~ 16r---~~=-+----i-=~~=---~-~~~~t----l

.5

~>
": B.O

~

.3

if
.2

0.2

0.4
0.6
O.B
1.0
1.2
vF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE
066

1.4

.74

B2

90
9B
106
114
TC, CASE TEMPERATURE 10C)

130

FIGURE 8 - THERMAL RESPONSE
0
7

5

3

....-

I-

2

_r-

I

29JC(t) = R9JC

~

Ji:TIPk
Ip I TIME
11--'

7

PEAK POWER, Ppk,

IS

peak of an

equivalent square power pulse.

IITJC= Ppk . ROJC 10+11-0)· rllJ+lp)+rltp)-r(ll)]
where
!:::. TJC :: the Increase in junction temperature above the case temperatura
r(tl = normalized value of transient thermal resistance at time, t, from Figure 8, I,e.~
r{tl + tp) - normalized value of transient thermal resistance at time, q + tp.

3
2
0.0 1
0.1

.-dt)

DUTY CYCLE, 0 = tpltl

I II III
0.2

0.5

1.0

2.0

5.0

10

20
50
I,T1MElms)

70

100

I

I
200

111111
500

1.0k

I I
2.0 k

I II
5.0k

10 k

MBR4020, MBR4030, MBR4040 (continued)

FIGURE 9 - NORMALIZED REVERSE CURRENT

FIGURE 10 - TYPICAL REVERSE CURRENT

5.0

500

ffi

3.0 r-VR= VRWM

~

2.0

N

./

V

200
0 .....

/

~ 1.0

I-

a'a:i

E 0.7
::l

a:

i:l

0.5

w

::>

~

0.3

'"
ffi

0.2

~

a:

!IE O. I

......
...... ....

'"ffi

'"

V"

105

65
85
TC, CASE TEMPERATURE (OC)

125

~300o

I"'-,

2.0

TJ - 25°C

~

~ 1500

~

«
~ 1000

MBR4~0

so0
600
400
0.040.06 0.1

r-

t-.. I'-i'.

~ 2000

MB,,4020

,

2.0

L

,

4.0

8.0

~

MBR4020

___

20 V -

MBR4030-30~~

~ 1===-- - - -- MBR4D40-40V =
12

16

20

24

28

32

36

40

4.0 6.0

2.0 MHz, e.g., the ratio of dc power to RMS power in the load is

"10

20

HIGH FREQUENCY OPERATION

0.28 at this frequency. whereas perfect rectification would yield
Q.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of
power loss; it is simply a result of reverse current flow through the
diode capacitance, which lowers the dc output voltage.

II II
0.4 0.6 1.0

V

25°C

Rectification efficiency measurements show that operation will
be satisfactory up to several megahertz. F or example, relative
waveform rectification efficiency is approximately 70 per cent at

,[;

MBR4D40
0.2

r--

- ---

--

,

Since current flow in a Schottky rectifier is the result of majority
carrier conduction, it is not subject to junction diode forward and
reverse recovery transients due to minority carrier injection and
stored charge. Satisfactory circuit analysis work may be performed
by using a model consisting of an ideal diode in parallel with a
variable capacitance. (See Figure 11).

I....... t-

w

--

NOTE 2

r-.

<.)

.....

VR, REVERSE VOLTAGE (VOLTS)

FIGURE 11- CAPACITANCE

t--.
I'"

t---- 75°C
~

~ 5.0

!i

800 0

4000

0

O.5
45

100°C ~

O~

I.0

0.07
0.05
25

6000

O~

-

-- --

r-

,

110

./

'"a:

TJ = 125°C

40

VR, REVERSE VOLTAGE (VOLTS)

71

MBR4020PF
MBR4030PF

SCHOTTKY,
BARRIER
RECTIFIERS

.HOTCARRIER POWER RECTIFIER

40 AMPERE
20,30, VOLTS

· .. employing the Schottky Barriin principle in a large area metalto-silicon power diode. State of the art geometry features epitaxial
construction with oxide passivation and metal overlap contact.
'Ideally suited for use as rectifiers in low-voltage, high-frequency
inverters, free wheeling diodes, .and polarity protection diodes .
•. Extremely Low VF·

•
•

Low Stored Charge, Majority,. Carrier Conduction
Low Power Loss/High Efficiency

• High Surge Capacity

MAXIMUM RATINGS
Symbol MBR4020PF MBR4030PF

Rlltlng
Peak Repetitive Reverse Voltage
. Working Peak Rev.rse Voltage

"VRRM
VRWM
VR'

DC Blocking Voltage
Non·Repetltlve Peak Aevana Voltage

~

-

24

VRSM

Average Reclified Forward Current
VR(eQuiv) ';;;0.2 VR(dc), TC ~ 500 C

Ambient Temperature
Rated VR(dc)' PF(AV)
R8JA = 2.~CIW

20

10

0,

Non·Repetitive Peak Surge Current

IFSM

-

30

Volts

36

Volts

40-

Amp

96

DC,

100

TA

Unit

8QO (for 1 cyel.)-

Amp

(surge applied at fated load conditions

halfwava, ,ingle pha .. , 60 Hz)
Operating and Storage Junction
Temperature Range (Reverse

DC

TJ,Tstg
--65to+125-

DIM

voltage applied)
Peak Operating Junction Temperature

-,50-

TJ(pk)

DC

(Forward Current Applied)'

A
B
C
D
E
F

MILLIMETERS
MI.
AX

15.494 16.256 0.610
12.725 12.821 11.501
5118
635 0.20
1.193 1.346 0..'
10.11
2.032

452
J
K

THERMAL CHARACTERISTICS
Symbol

Characteristic

Thermal Reailtanca, Junction to Case

R8JC

ELECTRICAL CHARACTERISTICS (TC
Characteristic
Maximum Instantaneous Forward

Current@rateddcVoltage (11
TC -100°C

I

I

Max

Unit

Min

Typ

Max

vF

-

0.67

-

0.500

0.10

-

CASE 43-02
00-21

MECHANICAL CHARACTERISTICS
CASE: Welded. hermetically sealed

Volts

FINISH: All external surfaces corrosion resistant
and terminal lead is readily solderable.

mA

-

-

Unit

0.630

IR

-

4.826 0.080
0
0
3.556

12.70

0.640
0.50fi
0.25
0.03
D••
0.1

°CIW

1.3

= 25 0 C unless otherwise noted.)

Symbol

Voltage (1)
(iF -40 Amp)
Maximum Instantaneous Reverse

I

INCHES
MIN MAX

20
150

(11 Pulse Test: Pulse Width - 300 liS, Duty Cycle = 2.0%.

72

POLARITY: Cathode to C_
MOUNTING POSITION: Any
WEIGHT: 9 grams IApproximately)

MBR4020PF, MBR4030PF (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runavvav
must be considered when operating this rectifier at reverse voltages

when forward power is zero. The transition from one boundary

condition to the other is evident on the curves of Figures 1 and
2 as a difference in the rate of change of the slope in the vicinity
of 115°C. The data of Figure, 1 and 2 is bosed upon dc condi-

above 0.2 VRWM. Proper derating may be accomplished by use
of equation (1 J:
TA(max) = TJ(max) - R9JA PF(AV) - R9JA PR(AV)
(1)
where
T A(maxl

tions. For use in common rectifier circuits, Table I indicates sug.gested factors for an equivalent dc voltage to use for conseNative
design; i.e.:
VR(equiv) = Vin(PK) x F
(4)
The Factor F is derived by considering the properties of the various
rectifier circuits and the reverse characteristics of Schottky diodes.

= Maximum allowable ambient temperature

TJlma)(~ = Maximum allovvabfejunction temperature (125 DC
or the temperature at which thermal runaway
occurs, wh ichever is lowest).

Example: FindTA(max) for MBR4030PF operated in a 12-Volt dc
supply using a bridge circuit with capacitive filter such that IDe =
30 A (iF(AV) = 15 A), I(FM)/IIAV) = 10, Input Voltage = 10
V(rms), RaJA = 3 0 C/W.

PF(AV) = Average forward power dissipation
PRIAV) = Average reverse power dissipation
R8JA := Junction-to-ambient thermal resistance
Figures 1 and 2 permit easier use of equation (1) by taking
reverse power dissipation and thermal ru naway into consideration.
The figures solve for a reference temperature as determined by
equation (2):
TR = TJ(max) - R9JA PR(AV)

Step 1:

Find VR(equiv). Read F = 0.65 from Table I :.
VR(equiv) = (10)(1.41)(0.65) = 9.18 V
FindTR from Figure 2. ReadTR = 118o C@VR=9.18V
& R9JA = 3 0 C/W
Fond PF(AV) from Figure 3. Read PF(AV) = 25 W

Step 2:

(2)

Step 3:

Substituting equation (2) Into equation (1) vields:
TAlmax) = TR - RaJA PF(AV)
(3)
Inspection of equations (2) and (3) reveals that TR IS the ambient
temperature at which thermal runaway occurs or where TJ = 1250 C,

@ I(FM)/I(AV) = 10 & IF(AV) = 15 A
Step 4:

Find T A(max) from equation (3),
T A(max) = 118-(3) (25) = 43°C.

TABLE I - VALUES FOR FACTOR F
Circuit

Half Wave

Load

Resistive

Sine Wave
Square Wave

0.5
0.75

I Capacitive (1 )
I 1.3
I

Full Wave,
Center Tapped (1).(21

Full Wave, Bridge

I

Resistive

1.5

Capacitive

Resistive

0.65
0.75

1.0
1.5

L

0.5
0.75

I

I
I

Capacitive
1.3
1.5

I

(2)Use line to center tap voltage for Vm

(1) Note that VR(RM) ""2 Vin(PK)

FIGURE 1- MAXIMUM REFERENCE TEMPERATURE-MBR4020PF FIGURE 2 - MAXIMUM REFERENCE TEMPERATURE-MBR403OPF
125
125

5t-::

- r--.. -.: .::::::- ........
.........

......... i"-

5

5

f"""-.
~

75
2.0

I'..

""

1"'-

......

""-

= 40:"-

115

""-"""

"'-"'\.
,,,,-

i'

"-

-.....: :-. r-..
g r-.- r- ....::::
..........
r--............
'"

~

r-.."""

i'..

......

ROJA IOCIW)
30

I"- r--

""- ""I"
"- ""
"
i'..

5

:--.. r--

~

........

......

.........

"'

...........

"

:::>

1.3

~

,,~

~ 105

'\

15
....
w

~.O

2~"'\.

r-......

..........

"- ........

r-.. .

"-

'" 85

.... 300

~

0

,

........

700

5

- -

. 100°C
70

FIGURE 5 - MAXIMUM NON·REPETITIVE SURGE CAPABILITY

,.,. ,.,.

;;
'"

1/

~

~
~

!i

Prior to surge, the rectIfier IS operated such

200

that TJ '" 100 oC, VRRM may be applied
between each cycle of surge

"
~

III

~

100
1.0

0

20

3.0

50

rrrn

7.0 10
20
NUMBER OF CYCLES

30

50

70

100

0

[I

I

FIGURE 6 - CURRENT DERATING

II
2.0

1.0

o. 7
o. 5
SINEWAVE
CAPACITIVE
LOADS

o.3

i

I
(FM) = 20 -10
I(AV)

CURVES APPLY WHEN REVERSE POWER IS NEGLIGIBLE

o. 2

0.2

0.4
a6
0.8
1.0
1.2
vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

14

50

60

70

80
SO
100
110
TC, CASE TEMPERATURE (OC)

120

130

FIGURE 7 - THERMAL RESPONSE
1.0

........

i-"'"
ZOJCltl

J1:jl

tp

I

_

I-

..-

6 TJC

-

-I

11

=Ppk • ROJC

equlvalenl square power pulse.

10 + 11 - 0) . r(1l + tp) + r(lp) - r(ll) I

I 1'1 (1111
0.2

TIME

=ROJC. r(l)

DUTY CYCLE, 0 = Ip/ll
PEAK POWER, Ppk. IS peak of an

where
6 TJC '" the mcrease m junctIOn temperature above the case temperature
r(11 '" normalized value of transient thermal resistance at time, t. from Figure 7, i.e.:
((q + tpl:: normalized value of transient thermal resistance at tIme, t1 + tp

0.0 1
0.1

Pk

.5

1.0

2.0

.0

10

20
SO
I,TIME(ms)

74

100

I I
200

I I IIIIII
500

1.0k

I I
2.0 k

[ II
5.0 k

10

MBR4020PF, MBR4030PF (continued)

FIGURE 8 - NORMALIZED REVERSE CURRENT

FIGURE 9 - TYPICAL REVERSE CURRENT

5.0

~
3.0 f-VR'VRWM
N
~

./

V

2.0

~

./

co:

~
~

500
300
200

"<

.5

....
iii
a:

./

1.0

o.7

l:i

~

0.3

~
...
~
co:

0. I
0.0 7
0.05
25

~

joo"'"

"'-

!E

~

75 0 C

~-

5.0
3.0 ~
2.0

250 C

.....
MBR402DPF
MBR4D3OPF

....-L

2OV30V~

0.5
45

65
86
TC, CASE TEMPERATURE (OC)

105

125

"

i... 300a

r---

:"'-.

Rectification efficiency measurements show that operation will

i.......

S1500

1/

~

~IOO 0

Since Clm.nt flow in. SchottkV rectifier il the relult of majority
carrier CIInduction, it il not lubject to junction diode forward and
reve. . reco_V trlnli.ntl due to minority Clll'rler injection Ind
stored charge. Setllflctorv circuit .""Iylil worlc may be performed
bV uling I model CIInliotlng of an ideal diode in parall.1 with I
varleble capacltlnce. (Se. Figure 10),

t-

"

'"z 2000

30

NOTE 2 HIGH FREQUENCY OPERATION

TJ =25 0 C

1"'0.

26

10
14
18
22
VR, REVERSE VOLTAGE (VOLTS)

6.0

2.0

FIGURE 10 - CAPACITANCE

4D0 O

E

1.0

BOD0
BOD0

10

a:
w
>
w
a:

."

O. 2

!E

=>

\:.J

'"

I"

IllJOOC

100
50
3D
20

a:

0.5

=>

TJ =12~C

be satilfectory up to llveral megahertz. For .xampl., relltive
wlveform rectification .ffici.ncy is Ipproximately 70 par cent It
2.0 MHz, •. g., the ratio of dc power to RMS power in the loed is
0.28 at this frequency, where.s parf.ct rectification would yi.ld

MBR~~2DPF
,~

MBR.tsOPF

80 0

0.406 for sine wave inputs. However, in contrast to ordinary
junction diodes, the loss in waveform efficiency is not indicative of

so0

power 10.. ; it is simply a result of reverse curr.nt flow through the
diode clpacitance, which lowers th. dc output voltage.

400
0.040.06 0.1

0.2

0.4 0.6 1.0

2.0

4.0 6.0

10

20

4D

VR, REVERSE VOLTAGE (VOLTS)

MOUNTING INFORMATION
Recommended procadures for mountlng.re "' follows:
1. Drill I hal. in the heat sink 0.499 t 0.001 inch in diameter.
2. Break the hal. edge al .hown to provide a guld. Into the hoi.
and prevent lhearlng off the knurled lid. of the rectifier.
3. The d.pth Ind width of the brelk should be 0.010 Inch
maximum to retain maximum heat sink surface contact.

4. To prevant daml91 to the rectifier during pre..·in, the
presling force Ihould be Ipplied only on the shoulder ring
of the rectifier case.
6. The preaing forca .hould be applied evenly ebout the
shoulder ring to avoid tilting or centing of the rectifier case
in the hole during the prell·ln oparetlon. AIIO, the use of •
thermlilubricint luch II D.C. 340 will be of conliderlble lid.
For more informetlon see: Mounting T.chnique. for M.tll Pick.
1ged Power Semiconductors, AN·69B.

TYPICAL THERMAL
IIESISTANCE, CAst
TOSINK.8CS-Q.2oCIW

M

SHOULO .. AI.o./'

1

...T

..t....f~.01NOM

I ".

...,,.,
.

NOM

~ 01' ~'EAT.i.'1%f4.
--I

t-- ..... , O.IXII "A.

HeAT SINK MOUNTINQ

ADDITIONAL
HEAT SINK PLATE

IIIVET

........
INTIMATE
CONTACT AREA

,./
CQMPLETE KNUIIL
CONTACT AREA

THIN·CHASSIS MOUNTINQ

75

THIN
CHASSIS

Mas 100 (SILICON)

A1 OO--+C@"'MI:PIG+--oOA2
SILICON
BIDIRECTIONAL SWITCH
(PLASTIC)
3to5VOLTS
500mW

SILICON BIDIRECTIONAL SWITCH

· .. designed specifically for low cost lamp dimmer and small motor
speed controls. Supplied in an inexpensive plastic TO·92 package
for high-volume requirements, this low-cost plastic package is readily
adaptable for use in automatic insertion equipment.

•
•
•
•

Low Switching Voltage - 4.0 Volts Typical
Uniform Characteristics in Each Direction
Minimizes "Flash-On" in a Lamp O'immer
Minimizes "Cogging" in a Motor Speed Control'

STYLE 12:
PIN 1. ANODE 1
2. GATE

MAXIMUM RATINGS

3.
Symbol

Value

Power Dissipation

Po

500

mW

DC Forward Anode Current

IF

200

mA

DC Gate Current (off·state only)

IGloffi

5.0

mA

Repetitive Peak Forward Current
(1.0% Duty Cycle, 10'1'5 Pulse

IFMlrep)

2.0

Amp

Rating

IFMlnonrep)

6.0

Amp

TJ

-55 to +125

°c

T stg

-65 to +150

°c

10 ~s Pulse Width, T A • 25°C
Operating Junction Temperature

Range
Storage Temperature Range

DIM
A

B

Width, T A • l000C)
Non·Repetitive Forward Current

ANODE 2

Unit

C
0
F
.L
N

P
Q

R
S

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

4.450
3.180
4.320
0.407
0.407
1.
1-.150

5.200
4.190
5.330
0.533
0.48

0.17!i
0.125
0.170
0.816
J.016

'l[2ll5"

1.390
1.270

0.045

0.055
0.050

6.350
3.430
2.410
2.030

2.670
2.670

0.250
0.135
0.095
0.080

CASE 29-02
TO-92

76

0.165
0.210
0.021
0.019

0.105
0.105

MBS100 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Symbol

Min

Typ

Max

Switching Voltage

Characteristic

Vs

3.0

4.0

5.0

Vdc

Switching Currant

IS

100

-

400

"Adc

Unit

IVS1-VS21

-

0.35

Vdc

Holding Currant

IH

-

1.0

mAde

Forward On-State Voltage
(IF 175 mAdc)

VF

-

-

2.0

Vdc

Voltage Switchback
(IF 10mAdc)

I>.V

2.0

2.8

-

Vdc

Switching Voltage Differential

=
=

FIGURE 1 - FULL RANGE CONTROL CIRCUIT

APPLICATION NOTE
The circuit shown in Figure 1 is for full range control and may

be used as a lamp dimmer or small motor speed control. Lamp
"flash-on" and motor "cogging" is minimized. Suggested triaes

listed below give power capacity available for each davice. The inrush current andlor motor locked rotor current must be within the
maximum multlcycle surge rating for the triaes suggested.

TRIAC RECOMMENDATIONS
TriltC
MAC77-4/2N6071
MACll-4
MAC37-4
MAC38-4

Package
Type

Cue 77
(Plastic)
Cue9\!

(Plastic)
C_174
(Praufltl
Cue 175
(Stud)

Maximum
Limp Load
500 Watts

Maximum
Motor Load
1/2 HP

Maximum Single

l!iOO Watts

1-1/2 HI'

!INA

3000 Watts

3HP

225 A

3000 Watts

3HP

225 A

77

Cycle Surge
30A

MBS4991 (SILICON)
MBS4992

o

o
SILICON
BIDIRECTIONAL SWITCH
(PLASTIC)
6.0-10 VOLTS
500mW

SILICON BIDIRECTIONAL SWITCH

• •. designed for full-wave triggering in Triac phase control circuits,
half-wave SCR triggering application and as voltage level detectors.
Supplied in an inexpensive plastic TO-92 package for high-volume
requirements, this low-cost plastic package is readily adaptable for use
in automatic insertion equipment.

• Low Switching Voltage - 8.0 Volts Typical
• Uniform Characteristics in Each Direction
• Low On-State Voltage - 1.7 Volts Maximum
• Low Off-State Current - 0.1 J.l.A Maximum
• Low Temperature Coefficient - O.02%/OC Typical

STYLE 12:
PIN 1. ANODE 1
2. GATE
3. ANODE 2

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

mW

Power Dissipation

Po

500

DC Forward Anode Current

IF

200

mA

DC Gate Current (off-state onlyl

IG(off)

5.0

mA

Repetitive Peak Forward Current
(1.1)% Duty Cycle, 10 ". Pulse
Width, TA = lCOOC)

IFM(rep)

2.0

Amp

Non-Repetitive Forward Current

IFM(nonrap)

6.0

Amp

Operating Junction Temperature
Range

TJ

-55 to +125

uc

Storage Temperature Range

Tstg

-65 to +150

°c

DIM

INCHES
MIN
MAX

5.200 0.175
4.19fi 0.125
5.330 0.170
0.533 0.016
0.462 0.016

1rnJ5
0.165
0.210
0.021
0.019

L
N

1.150

1.390
1.270

0.055
0.050

P

6.350
3.430
2.410
2.030

C

10 ". Pulra Width, T A = 25°C

MILLIM TERS
MN
MAX

4,450
3.180
4.320
0.407
0.407

A
B
0
F

R
S

-

2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO-92

78

-

0.105
0.105

MBS4991, MBS4992 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol

Characteristic

Min

Typ

Max

6.0
7.5

B.O
B.O

10
9.0

-

175
90

500
120

-

-

0.3
0.1

0.5
0.2

-

-

100

-

0.7
0.2

1.5
0.5

O.OB
2.0
0.08
6.0

1.0
10
0.1
10
1.7
1.7

Unit

Vs

Switching Voltage

Vdc

MBS4991
MBS4992
IS

Switching Current

MBS4991
MBS4992
Switching Voltage Differential

)VS1-VS21

Vdc

MBS4991
MBS4992
Gate Trigger Current
(VF = 5.0 Vdc RL

"Adc

IGF

= 1.0 K ohm)

MBS4992

"Ade

IH

Holding Current

MBS4991
MBS4992

mAdc

IB

Off-State Blocking Current
(VF = 5.0 Vdc, T A = 25°C)
(VF = 5.0 Vdc, T A = B50C)
(VF = 5.0 Vdc, T A = 25°C)
(VF = 5.0 Vdc, T A = 10oDC)

"Adc

-

MBS4991
MBS4991
MBS4992
MBS4992

-

VF

Forward On-5tate Voltage
MBS4991
(IF = 175 mAdc)
MBS4992
(I" = 200 mAde)
Peak Output Voltage (CC = 0.1 "F, RL = 200hms, (Figure 7)

-

1.4
1.5

Vdc

Vo

3.5

4.B

-

Vdc

Turn-On Time (Figure B)

ton

-

1.0

-

lIS

Turn-Off Time (Fiwrp. 9)

toff

-

30

-

Temperature Coefficient of Switching Voltage (-50 to +125 0 C)

TC

-

+0.02

-

-

us
%/oC

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 2 - SWITCHING CURRENT versus TEMPERATURE

FIGURE 1 - SWITCHING VOLTAGE versus TEMPERATURE

8.0

1.04

ffi
N

1.03

~

1.02

:::;

o

~

w

~

1.01

to

~

o

1.00

j..--- I---"

>
9

~

7. a

N

:::;

--

V

""

V

~
~

~

=>

-25

+25

+50

4.0

'"'
to

3.0

~

2. 0

~

1.0

1\

Z

~

-50

5. 0

>-

0.97
0.96
-75

6.0

+75

+100

0
-75

+125

"'"
-t"'-.

-50

-25

+25

+50

TA,AMBIENTTEMPERATURE IOC)

TA, AMBIENT TEMPERATURE (DC)

79

+75

+100 +125

MBS4991. MBS4992 (continued)

FIGURE 4 - OFF-5TATE BLOCKING CURRENT
v........ TEMPERATURE

FIGURE 3 - HOLDING CURRENT versus TEMPERATURE
10.0

B.O

ffi

i

7.0
Normalized
to
-

N
~

« 6.0
~
0

<0

~

\

5.0

250 C

z

~

~

2.0

'" -

w
t-

o
-50

-25

+25

+50

/

0.1

~

I'-...

~
1.0
~
-75

VF-5.0V- f - -

1.0

to

=> 3.0

§

/

~

'"'"=><.>

."'..

4.0

<.>

~

t-

r--

~

0.01
+75

+100

-50

+125

./
-25

TA. AMBIENT TEMPERATURE (OC)

+25

+50

FIGURE 5 - ON·STATE VOLTAGE.arsus FORV'!ARD CURRENT

7.0

-

~

6.0

~
w
to

5.0

0

~

0

4.0

>

t-

~

3.0

=>

0

'"~

2.0

V

V

--

1-"

..-f--

"~

V
V

~

~RL=500n

"

~RL=100n
RL = 50 n

RL = 20 n
iL'rll

.; 1.0

>
0.0 1
2.0

3.0

+100 +125

FIGURE 6 - PEAK OUTPUT VOLTAGE (FUNCTION OF RL AND Cel

10

1.0

+75

TA. AMBIENT TEMPERATU RE (OC)

4.0

5.0

0.01

0.02

VF. FORWARO ON-STATE VOLTAGE (VOLTS)

0.05

0.1

0.2

I

0.5

TA=25 0 C
1.0

2.0

5.0

Cc.CHARGING CAPACITANCE {,tFI

FIGURE 7 - PEAK OUTPUT VOLTAGE TEST CIRCUIT

10K

O.U.T.

80

+mv

10

MBS4991, MBS4992 (continued)

FIGURE 8 - TURN-ON TIME TEST CIRCUIT
MERCURY RELAY

1.0kn
ANODE
VOLTAGE

-=-

12V

1.0kn 0.01

Vs

D.U.T.

~F

VF
Vf+O.1 (VS-VF)

Turn-on timeismeasuredfromthetime

Vs is achieved to the time when the anode vOlt~gedrops to within 90% of the difference between Vs and VF'

FIGURE 9 - TURN-OFF TIME TEST CI RCUIT

lOon
S.OV

-=-

ANODE
VOLTAGE

SOD n

~----~~~----~A2

MERCURY
RELAY
(N.O.)

D.U.T.

L-________~--------------~ Al

With the SSS in conduction and the relay contacts open, close the contacts to cause anode A2 to be driven negative. Decrease C until the sas
just remains off when anode A2 becomes positive. The turn-off time, toff. is the time from initial contact closure and until anode A2 voltage

reaches zero volts.

FIGURE 10 - DEVICE EQUIVALENT CIRCUIT, CHARACTERISTICS AND SYMBOLS
+1

A2

A2

~---.~~----r---~=r~------~+V

Al
CI RCUIT SYMOO L

Al

-I

EQUIVALENT CIRCUIT

CHARACTERISTICS

81

MCA 1911 N, Pseries MCA20 11 N, Pseries
6.8 Volts

(SILICON)

8.6 Volts

MCA2111 N, Pseries
9.5 Volts

MCA2211 N, Pseries
11 Volts

REFERENCE AMPLIFIERS

REFERENCE AMPLIFIERS

OS 6039 Rl

· .. designed for use in regulated power supplies as a combination
voltage reference element and error voltage amplifier, providing tern·
perature compensation for excellent reference voltage stability.
• Available With Either PNP or NPN Polarity for Versatility of
Circuit Design
• Specified With a Variety of Reference Voltage Stability Factors
Allowing for a Wide Selection of the Most Economical Device
to Meet Circuit Requirements
• Available for Operation in Three Different Test Temperature
Ranges: 0 to +75 0 C, -55 to +1000 C, -55 to +1500 C
• Guaranteed Maximum Impedance
• "I n·Line" Leads - Ideal for Automatic Insertion

MAXIMUM RATINGS
Rating
Zener Current

Collector Current
Collector-Emitter Voltage
Operating and Storage Junction Temperature Range

Symbol

Value

Unit

IZ

20

mA

IC

20

mA

VCEO

30

Volts

TJ, T stg

435 to +175

°c

ELECTRICAL CHARACTERISTICS (TA= 25°C unless otherwise noted)
Characteristic
Nominal Reference Voltage
(lZ= 5.0mA, VCE = 3.0 V,IC= 2501'AI
Maximum Reference Voltage Change with Temperature
(lz = 5.0 mA, VCE = 3.0 V,IC = 2501'AI

(lZT = 5.0 mA, lac = 10% IZI
MCA1911N, P; MCA2011N,P; MCA2111N,P;Series
MCA2211N,P Series

Collector-Emitter Breakdown Voltage

Value

Unit

VREF

6.8 -11
(Noml
(Table 11

Volts

AVREF

(Table 11

Volts

T

+

r-

~

- ---I
d-~
~
F

J\'!IIx
ohms

ZZT

BVCEO

-

40
120

30

-

Volts

STYLE
1
PIN 1 ZENER

ICBO

hFE

"A

-

0.05
10

50

300

life

6500

82

3 BASE

4 COLLECTOR

Oi
MILLIMETERS
MIN
MAX

A

•

9.65
1.62

10.41
'.1

f
G

2.29
1.02
.68
9.53

2.79
1.5
4.

•
K

$tmhas

2 EMITTER

~.

DIM

(lC = 250 "A, VCE = 3.0 VI
Small·Signal Transconductance
(VCE = 3.0 V, IC - 250 "A, f = 1.0 kHz)

--j

G

(VCB=45 VI
(VCB = 45 V, T A = 1500CI

DC Current Gain

A

~~,,;;'n3nt""'"
01-

(lC= 250"AI

Collector-Cutoff Current

rSEATING
PLANE

Symbol

Min

Zensr Impedance

Series uses onlv zener
diode and transistor.

(1) MeA 1911

INCHES
MIN
MAX
0.380 0.410
D.
.30
.1
0.090 0.110
0.0

0.375

CASE 212·(2)
(Form_ly Case 181)

-

MCA1911 N,Pseries, MCA2011 N,P series, MCA2111 N,Pseries, MCA2211 N,Pseries(contmued)

TABLE 1 - ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise specified)
Type
Number
(Note 11

Max Voltage
Change
(Note 21

Reference
Voltage

Test
Temperature
(oCI

@



1-

2.0

~ -2.5
~ -3.0
::; -3.5

10

E
~ +100

Normalized tol31 Vdc

to

Input Voltage

..

+B0

w

+6 0

~

+40

TJ

z

5

= 250 C

to

"\

c

i ~:

'\
\

20

FIGURE 3 - EFFECTS OF TEMPERATURE
ON REFERENCE VOLTAGE.

S

'"

\

\

30
40
50
60
VIn , INPUT VOLTAGE (VOLTS)

-40

a:::
~

-6 0

70

t

6.0
5. 0

~

4.0

~ 3. 0

~

2.0

....

1. 0

ii:
'!O

-60


1. 0
c

MCLTC6025 -

-20
0
+20
+40
+60
TA, AMBIENT TEMPERATURE (OC)

~ -4. 0

Reverse

u

..... r-.,.

MCLTC6010

I:::::::::::,

o

0

<

MCLT~

>

J

0

.............

-40

+2. 0

I
J

1 !'

~ -20

MCLTC6025

FIGURE 5 - EFFECTS OF LOAD RESISTANCE
ON REFERENCE VOLTAGE

l

0

~

r--

MCLTC6100.............

FIGURE 4 - TYPICAL CURRENT REGULATING
CHARACTERISTICS (Current Regulator Only)
7. 0

~

--.,..

r::-:::

~ -80
> -10 0

BO

V

- -

V

I.--:::

0

MCLTC~050-

MCLTC6102..--~

0

~

5

.....r-

Nurmalized to -550C
Vin = 31 Vdc

(No;. 2)

II
10

Temperature range -55 to 1000 e
(Nots: Typical6.VREF Isnegetive) -

111

20
30
50
40
Vin, INPUT VOLTAGE (VOLTS)

60

70

BO

(3) Figure 4 applies only to' the F ET portion of the device (from
Input to Reference).

mV or -16 mV for MCLTC6050.

86

MCR32 SERIES (SILICON)

THYRISTORS
7 AMPERES RMS
5()'600VOLTS

SILICON CONTROLLED RECTIFIERS
· .. designed primarily for industrial applications. Ideally suited for
capacitor·discharge ignition, systems, power switching and power con·
trol.
• Glass Passivated for High Reliability
•

Low Profile Hermetic Package for Tight
Printed Circuit Board Applications

•

High di/dt Capability

MAXIMUM RATINGS
Rating

Symbol

Peak Reverse Blocking Voltage

MCR32· ·05
20
30
40
50
60
Forward Current RMS (See Figures 4 & 5)
(All Conduction Angles)
Peak Forward Surge Current, T A
(1/2 cycle, Sine Wave, 60 Hz)

Value

Unit
Volts

VRRM

= 2SoC

Circuit Fusing Considerations, TA
(t ~ 1.0 to 8.3 m.)

= 25°C

Forward Peak Gate Power, TA == 25°C
Forward Average Gate Power, TA - 2SoC
Forward Peak Gate Current, T A - 2SoC

50
200
300
400
500
600

STYLE 3
PIN 1. CATHODE
2. GATE

3.ANODE

Reverse Peak Gate Voltage

Storage Temperature Range

7.0

Amps

ITSM

80

Amps

12 t

0.15

A2.

PGM

10

Watts

PGF(AV)

0.5

Watt

IGFM

10

Amps

VGRM
T

4.0

Volts

-40 to +135

°c

T.tg

-40 to +150

°c

THERMAL CHARACTERISTICS
Symbol

Max

Thermal Resistance, Junction to Case

ReJC

5.0

Thermal Resistance, Junction to Ambient

ReJA

150

Characteristic

~

/'

I
N

IT(RMS)

(3001", 120 PPS)
Operating JunctIon Temperature Range

a

I

Unit

°C/W

I

°C/W

MILLIMETERS
MIN MAX
8.89 9.40
B
8.00 8.51
6.10 6.60
C
D
0.406 0.533
E
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K
12.70
L
6.35
45 0 NOM
M
P
1.27
Q
90 0 NOM
R
2.54

DIM
A

INCHES
MIN
MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.D19
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
45 0 NOM
0.050
900 NOM
0.100

All JEDEC dimensions and notes apply.
CASE 79·02
TO·39

87

MCR32 series (continued)

ELECTRICAL CHARACTERISTICS
Characteristic

Max

Min

Symbol'

Peak Forward Blocking Voltage (1)

Unit

Volts

VoRM
MCR32-05
MCR32-20
MCR32-30
MCR32-40
MCR32-50
MCR32-S0

-

50
200
300
400
500
SOO

-

-

-

Peak Forward Blocking Current
(Rated VoRM @TC ~ 135°C)·

loRM

-

1.0

mA

Peak Reverse Blocking Current
(Rated VRRM @TC ~ '13S oC)

IRRM

-

1.0

mA

Forward "On" Voltage (2)
(lTM ~ 30 A peak @ TC ~ 25°C)

VTM

-

2.S

Volts

Gate Trigger Current (Continuous de)
(Anode Voltage ~ 12 Vdc, R L = 30 Ohms, T C = 25°C)

IGT

-

20

mA

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 12 Vdc, RL ~ 30 Ohms, TC

VGT

-

1.5

Volts

VGo

0.1

-

Volts

IH

-

20

mA

Gata Non-Trigger Voltage
(Anode Voltage = Rated VoRM, RL
Holding Current
(Gate Open, TC

= 25°C)

= 30 Ohms, TC~

135°C)

= 25°C) .

(1) Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the
anode.

When checking forward or reverse blocking capability. thyristor devices should not be tested with a constant current

SOUTce

in a

manner that the voltage applied exceeds the rated blocking voltage.
(2) Forward current applied for 1.0 ms ma,ximum duration, duty cycle :==:;;;1.0%.

FIGURE 2 - TYPICAL GATE TRIGGER CURRENT

FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT
300

III

III

~

100
0
cc
cc
0

\.

0

11I111

OFF-STATE VOLTAGE = 12 V

!

.~
~

~

0

~

1\

['...

0

.

'"cc

r-

TJ = -1i5 DC

1"-

25JC

w

2.0

10

20

w

......

!;[

........

,.:
!E

50

100

3. 0
-60

200

PULSE WIDTH (m.)

-40

-20

20

40

60

80

TJ,JUNCTION TEMPERATURE (DC)

88

V-

r-..

~ 7.0

5.0

J

i'-- ~

0

.. 5.0

1.0

I

OFJSTATJVOLT1GE.

co

100DC
0.5

I

i'....

::>

1"-

7.0
5. 0

3.0
0.2

.........

cc

::>

'"

0

I-

!i:
w

I

100

.......'"
120

140

MCR32 series (continued)

FIGURE 4 - AVERAGE CURRENT DERATING
IREFERENCE. CASE TEMPERATURE)

FIGURE 3 - MAXIMUM ON-STATE POWER DISSIPATION

8.0,-----,----.----,--,--,------,---,----,-----:..-:-:::::;;---r

140

~

70

""~

60

o"""lllll!!!!! ~
13

~

f-

~

~ 50

"

~

~
w

<.0

15>

~ ~ r-....
~~

w

~

40

12

0

'\. ~"

~ 110

"":; 10

;3

0:-

f-

U

""

,

"~CONOUCTION

~ ..........

".-......:'\. f\.

a5

30

~
-jaf-

100
a"

1.0

60 0

30 0

.......

'""- "-

o

05

IfIAV), AVERAGE fORWARD CURRENT lAMP)

10

1.5

10

-

t-....

~

"'-

:"'-.. ~
'1 l'-..
110 I
180

90 0

15

-

ANGLE

0

90

-

30

0

35

40

45

50

IfIAV), AVERAGE fORWARD CURRENT lAMP)

FIGURE 6 - AVERAGE CURRENT DERATING (REFERENCE.
AMBIENT TEMPERATURE. TYPICAL P.C. BOARD MOUNTING)

FIGURE 5 - AVERAGE CURRENT DERATING IREFERENCE.
AMBIENT -rEMPERATURE 4 in. sq. P.C. BOARD)

14 0
13

O~

~12 0 w

w

~ 110f--t---t--'...,.1Iili!l=~""'-+--

~ 11 0

~

100

~

100

as

90

r5

90

f-

f-

~ t-.....
~ ~ :-.....
~ ~ t-..
~

f-

f-

~ 80

EEl 80

~ 70

~ 70

""

""~

~ 60

~

ROJA ~ 150 0 C/W

"~CONOUCTION

60 0 ~

120 0

~ 0: ~ ~
~ ~

90°

60

50f--f--f--+--f--r--~.-+_~~~~~

50

4~~-f~~-~-----:~~~~~~-~~~~.

40

\
o

0.1

::'\:

"

180 0

""<.de

l"\: ~

"'"

0,4

0.3

0.2

ANGLE

-

r-...

0: "

30 0

~
-jaf-

~.

~
........

'\.

0.5

0.6

0.7

IT(AV), AVERAGE ON-STATE CURRENT (AMP)

FIGURE 8 - TYPICAL HOLDING CURRENT

FIGURE 7 - TYPICAL GATE TRIGGER VOLTAGE
1. I

g
o

1. 0 .........

2:
~

O. 9

~

O.8

~

'"

0

OFF-STATE VOLTAGE ~ 12 V - I - -

.........
........

;;c
g

.......

t-

~
a'"

w

~
ii:

O. 7

w

O. 6

z

§

.........

0

...........

~ O. 5
>
0.4
-60

-40

-20

20

40

60

80

""

0

<.0

......

f-

~
<.0

OFf·STATE VOLTAGE = 12 V

0'

100

'"~

..........

120

0

1'.....

~
.........

7.0

5, 0

140

-60

TJ. JUNCTION TEMPERATURE (OC)

-40

-20

W

~

W

........
M

TJ, JUNCTION TEMPERATURE (OC)

89

~
~

lW

1~

MCR32 series (continued)

FIGURE 10 - MAXIMUM NON-REPETITIVE SURGE CURRENT

FIGURE 9 - MAXIMUM ON-STATE CHARACTERISTICS
100

100

70

./
~ V"

50

_ su!g, is

10
1.0

I

j Ii

5.0

7.0

10

20

30

50

70 100

NUMBER OF CYCLES

1/
I
I

w

2. 0

~
~

=>

:il

~ 1.0

FIGURE 11 - CHARACTERISTICS AND SYMBOLS

t

TYPICAL I·V CHARACTERISTICS

,

-v :

o.7

ON.STATE
1M

I

I

I

VORM

A-

o.5

BLOCKING
STATE

~+

,
-----,
,

VRRM

z

!!;
.~

3.0

/I

5: 3.0

~

2.0

I

~

r--- r--r-.

~receded and followed by

raTTntTvori

7.0

G

i'-

TJ • 135°C
f= 60 Hz

TJ = 135°C ;/25 0 C

10

h

r--..........

V

~ 5.0

~

t-....

#V

20

I-

;-ICYCLE

........

f-""

/.- r

30

~
~_

",
",

+V

I

I

0.3

I

o. 2

o. 1
o

II

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

45

5.0

vF,lNSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

FIGURE 12 - THERMAL RESPONSE
1.0

O. 7
O. 5

-,8
~ ~

o. 3

~

o. 2

ffi

"''''

1-",
1-0

~ ~

f.-"'

---

ZOJClt

=

rlt). ROJC

V

o. I

~ ~ 0.07

~ ~

0.05

:g ~

0.03

0.0 2
0.0 1
0.1

0.2

0.5

1.0

2.0

5.0

10

20

t, TIMElm~

90

50

100

200

500

l.ok

2.0 k

5.0 k

MCR39 SERIES

(SILICON)

Advance InforIllation
THYRISTORS

G

AO-_.*"""~-OK

7 AMPERES RMS
50-600 va LTS

SILICON CONTROLLED RECTIFIERS

· .. designed for CD ignition and crowbar applications requiring
high repetitive di/dt.

• Glass Passivated for High Reliability
•

180 Amp Repetitive di/dt

•

Low Profile Hermetic Package for Tight Printed Circuit
Board Applications.

I~Jj-=:=
:
--

C
L
_~K

4

SEATING
PLAN E

MAXIMUM RATINGS
Symbol

Rating

Peak Reverse Blocking Voltage
MCR39·

.()5

50
200
300

N

400
500
600
'TSM

180

Amps

Peak Forward Gate Power - T A = 25°C

PGFM

10

Watt.

PGF(AVI

0.5

Watt

VGRM
TJ

5.0
-65 to +135

Volts

Tstg
di/dt

-65 to +200

TA -25°C

Operating Junction Temperature Range@
Rated VRRM and VDRM(1I
Storage Temperature Range
'Critical Rate-of-RiseofOn-5tateCurrent

PIN 1. CATHODE
2. GATE
3. ANODE

Volts

Peak Forward Current, TC = 125°C
P.W. = 101", Duty Cycle =0.1%

Peak Reverse Gate Voltage

~I-~
D STYLE 3

Unit

Value

VRRM
-20
-30
-40
-50
-60

Average Forward Gate Power

t

°c
uc
Amp/l"

500

during Turn-On Interval

THERMAL CHARACTERISTICS .
Characteristic
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

This is advance information on a new introduction and specifications are subject to
change without notice.

91

MILLIMETERS
MIN MAX
8.89 9.40
B
8.00 8.51
C
6.10 6.60
D
0.406 0.533
E
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
M
45 0 NOM
P
1.27
Q
900 NOM
R
2.54

DIM
A

INCHES
MIN
MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
45 0 NOM
0.050
900 NOM
0.100

All JEDEC dimensions and notes apply.
CASE 79-02
TO·39

MCR39 series (continued)

ELECTRICAL CHARACTERISTICS (RGK ; 1000 Ohms)
Symbol

Characteristic
Peak Forward Blocking Voltage (Note 1)
(TC = 135°C)

Min

Max

50
200

-

Unit
Volts

vORM
MCR39-05
MCR39-20
MCR39.JO
MCR39-40
MCR39-50
MCR39-60

300
400
500

-

600

-

IORM

-

2.0

mA

Peak Reverse Blocking Current
(Rated VRRM@TC=I35o C)

IRRM

-

2.0

mA

Forward "On" Voltage (Note 2)
(lTM = 50 A peak @ TA ='250 C)

VTM

-

3.5

Volts

1.0

15
30

mA

1.25
1.5

Volts

1.0

-

Peak Forward Blocking Current
(Rated VORM@TC=I350C)

Gate Trigger Current (Continuous dc) (Note 3)
(Anode Voltage = Rated VORM)

TC = 2SoC
TC = -4o"C

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = Rated VORM)

TC = 2SoC
TC = -4Q°C

VGT

0.25

mA

Holding Current
(Anode Voltage = 7.0 Vdc. Gate Open. TC = 135°C)

IH

Turn-On Time
(lTM = lBOA. Rated VORM. C = 1.0I'F. 10to 90%)

ton

-

500

ns

Critical Exponential Rate of Rise
(Rated VORM. Gate Open, TC = 135°C)

dvldt

50

-

VII'S

1. Ratings apply for zero or negative gate voltage but positive gate voltege shall not be applied concurrently with a negative potential on the
anode. When checking forward or reverse blocking capability. thyristor devices should not be tested with a const8.nt current source in a
manner that the voltage applied exceeds the rated blocking voltage.
2. Forward current applied for 0.1 ms maximum duration. duty cycle.:; 0.1%.
3. RGK current is not included in measurement.

FIGURE 2 - MAXIMUM ON-STATE POWER DISSIPATION

FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT

300

\
0
0
0
w

!;(

0

'"
""

~

.

IIII

IIII

8.0r--,--,--....,--,--.--r---,--,--~=~

111111

OFF·STATE VOLTAGE

1\

=12 V

§

7.01--f--1--1---1---1--+--++~"--+""",.."I

"--+--I--I---1~

co B.Or

.......

1\

'"w
~

r---

=-55 DC

TJ

ill

J

f'.- r--.

0

~

IE 7. 0

I

~

;,3.0

~

2.0

(

I

~

-jaf-

11--~~!iF"~+-+-+- a= CONDUCTION ANGLE

100 DC

5. 0

5.011-~-I---I---:

4.011---I---I--...."-+~.4.L..-!.,£..-+- TJ= 135 DC.

3.0

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

1.5

2.0

2.5

IF(AV). AVERAGE FORWARD CURRENT (AMP)

PULSE WIOT~ (m.)

92

5.0

MCR051 (SILICON)
thru

MCR054

A

o------tl~~~-G-O

K

MICRO·T
PLASTIC SILICON
CONTROLLED RECTIFIERS
0.25 AMPERE RMS
15 thru 100 VOLTS

PLASTIC THYRISTORS
· .. Annular PNPN devices designed for applications such as relay
and lamp drivers, small motor controls, gate drivers for larger thy·
ristors, and sensing and detection circuits.
•

Sensitive Gate Trigger Current - 200 IlA Maximum

•

Low Reverse and Forward Blocking Current 50 IJ.A Maximum, T A = 1250 C

•

Low Holding Current - 5.0 mA Maximum

•

Passivated Surface for Reliability and Uniformity

•

Small Size for High Density Packaging

MAXIMUM RATINGS
Symbol

Rating
Peak Reverse Blocking Voltage

Value

Unit

vo ts

VRRM
15
30
60
100

MCR051
MCR052
MCR053
MCR054

K

ITIRMS)

0.25

Amp

Peak Forward Surge Current, T A = 2SoC
11/2 cycle, Sine WINe, 60 Hz)

ITSM

6.0

Amp

Circuit Fusing Considerations, T A = 2SoC
It = 1.0 to 8.3 ms)

12t

0.15

A 2s

PGM

0.1

VJatt

PGF(AV)

0.01

Watt

IGFM

1.0

Amp

VGRM

4.0

Volts

DIM
A

TJ

-65 to +125

°c

B
C

Tstg

-65 to +150

-

+230

Forward Current RMS (See Figure 31
(All Conduction Angles)

Peak Gate Power - Forward. T A - 2SoC
Average Gate Powsr - Forward. T A'" 26°C

Peak Gate Current - Forward, T A
(300,.., 120PPSI

= 2SoC

Peak Gate Voltage - Reverse
Operating Junction Temperature Range @ Rated

VRRM and VDRM

Storage Temperature Range
Lead Solder Temperature
1<1/16" from case, 10. maxi

uc
°c

I

STYLE 8:
PIN 1. CATHODE
2. GATE
3. ANODE

r¥-__1iM .

EF=="T;1H

o

F
H
J
K
M

MILLIMETERS
MIN
MAX
1.98
2.34
0.38
0.64
1.24
1.55
0.25
0.41
0.10
0.15
0.51
0.76
0.03
0.09
4.19
4.45

30

7"

INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175

30

CASE 28·01

93

,-.1

70

MCR051 thru MCR054 (continued)

ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Svmbol

Characteristic
Peak Forward Blocking Voltage (Note 1)
(TA

= 125°C)

Min

Max

15
30
60
100

-

MCR051
MCR052
MCR053
MCR054

Peak Forward Blocking Current

Unit
Volts

VORM

IORM

-

50

itA

IRRM

-

50

itA

VTM

-

1.3

Volts

(Rated VORM@TA=1250C)

Peak Reverse Blocking Current
(Rated VRRM @TA = 125°C)
Forward "On" Voltage (Note 2)
(lTM = 0.25 A peak @ T A = 25°C)
Gate Trigger Current (Continuous del (Note 3)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohmsl

TC = 25°C

IGT

-

200

itA

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohms)
(Anode Voltage = Rated VORM, R L = 100 Ohms)

TC = 25°C
TC = -6SoC
TC = 125°C

VGT

-

0.8
1.2

Volts

Holding Current
(Anode Voltage = 7.0 Vdc, initiating current = 20 rnA)

TC = 25°C
TC = -6SoC

VGO

0.1

-

IH

-

mA

-

5.0
10'

-

500

°CIW

8JA

Thermal Resistance, Junction to Ambient

2.

1. Ratings apply for zero or negative gat8 voltage but positive
gate voltage shafl not be applied concurrently with a negative

Forward current applied for 1.0 ms maximum duration, duty
cycle S 1.0%.

potential on the anode. When checking forward or reverse
blocking capability, thyristor devices should not be tested

3.

with a constant current source in a manner that the voltage
applied exceeds the rated blocking voltage.

94

RGK current is not included in measurement.

MCR051 thru MCR054 (continued)

FIGURE 1 - POWER DISSIPATION
0.50
0::0::

0.4 5

'"~
o

~-

~ ~

0.4 Of-0.3 5 f - -

"' ....
~~ 0.3 0
~~

0.2 5

"'~ ....~

0.20

:::E. Ci

0.1 5

~

0.10

~~

:;

~

./

V

~I"' b-::" r0.0 5AO!! la

...-

01'- ~
25
50

75

100

125

~

150

90"

/'

L.I"'

3.0

L

V
~

200

V
TJ ~ 125"C

2.0

180"

~ o. 7

....
~

225

'"~

IFIAV). AVERAGE FORWARD CURRENT ImA)

D. 5

25"C-

1.5

2.0

r--

/1.

I II

O. 3

I

~

~

/ :/

1/

i3

250

!/ V

fl

1.0

~

175

L--"'::
/~ V

60..L'"

- -

/ . / /.V
V./ ../'
V

~V

°/
V L

30

L

./

L L.

HALF·WAVE

r-- OPERATION

IL

FIGURE 2 - FORWARD VOLTAGE
5.0

I

O. 2

~
~

z

~ O. 1
z
;: 0.07

I I

0.05

I I
J

0.03

L

0.0 2

J

1/

0.0 1

I

0.5

1.0

VF.INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

FIGURE 3 -CURRENT DERATING
130

O~

o

~

"""ii ~

~ ['......
"\

I

~~
"\.~ ~

\

0
0
0

30

o

25

50

I~

1\ ~'"
\

~

;"--

"" .""
600'\

1\

75

60 Hz
HALF-WAVE - t - OPERATION
f

I~ l'..

lX=30o \

0

t--

-J.l- t - -

100

"-

"- f'..
NSO"

'\,.90"
r-...
125
150

IFIAV). AVERAGE FORWARO CURRENT (rnA)

95

"'175

de

200

2.5

MCR051 thru MCR054 (continued)

TYPICAL CHARACTERISTICS
FIGURE 4 -GATE TRIGGER VOLTAGE

FIGURE 5 -GATE TRIGGER CURRENT

0.8

~

o.

~ 100

'" "'

o

~

~

~
>

w

!;(
,.:

:3


~

o. 5

0.3
-50

50

50

75

100

125

"'

2.0
1.0

w

'"'""
!;(

o. 5

'",..:.

O•2

.......

.5? O. 1
150

-75

-50

-25

25

FIGURE 6 -HOLDING CURRENT

TYPICAL V - I CHARACTERISTICS
N

~

2.0

il!

.............

0

~

"'"

1.0

B

0.7

~

'"z

§
0

--

VRRM

t

I--

A-

=
25

50

75

150

175

ON-STATE

IH

~+
I

I

I

'"
:#
-25

125

/;:i~~~V~::~~:-::-::-;=-==-J'~ ~

~

0.5

0.3
-50

100

FIGURE 7 -CHARACTERISTICS AND SYMBOLS

3.0

§

75

50

TJ, JUNCTION TEMPERATURE 1°C)

TJ.JUNCTION TEMPERATURE 10C)

100

125

150

TJ, JUNCTION TEMPERATURE 10C)

SELECTED THYRISTOR-TRIGGER
APPLICATION NOTES
AN-240

seR

AN-295
AN-422

Suppressing RFI in Thyristor Circuits

AN-453

Zero Point Switching Techniques

Power Control Fundamentals

Testers for Thyristors and Trigger Diodes

To obtain copies of these notes list theAN number(s)
on your company letterhead and send your request to:
Technical Information Center

Motorola Semiconductor Products, Inc.
P.O. Box 20924
Phoenix, Arizona 85036

96

V----<
VORM

BLOCKING
STATE

MCR80 series (SILICON)
MCR81 series
MCR82 series
~(F-_G_OK

THYRISTORS
PNPN

AO........_ ...

80 AMPERES RMS
50 thru 800 VOLTS

SILICON CONTROLLED RECTIFIERS

MeR80 SER IES

· .. designed for high power industrial and consumer applications in
power and speed controls such as welders, furnaces, motors, space
heaters and other equipment where control of high current is needed.
• Glass Passivated Junctions with Center Gate Fire for Greater
Parameter Uniformity and Stability.
• All Devices are Hermetically Sealed
•

'~Flll.
J

Epoxy Encapsulated for Long Voltage Creepage Path

• MCR82 Series Internally Isolated with 5000 Volt Dielectric
Strength
•

@f~ ~
II '

I,

STYLE 1
TERM. I. CATHODE
2. GATE

Flexible Leads are Optional - Consult Factory

3. CASE. ANODE

MIlliMETERS
INCHES
DIM MIN MAX
MIN
MAX
19.0& 11.300.150 0.160
1.21 1.86011500.085
3.
0.145
.155
5.11 61202350245
9.&3
365
1.41 1.425 1. 15
25.40 28.67 1.1100 t 050
4.83 5.21 0 190 0.

CASE 287·01

MAXIMUM RATINGS

MeR81 SERIES

Aating
Repetitive Peak Reverse Blocking
Voltage 'MCR8()'
MCR81·
MCR82·

Average On-State Current IT C :::: 75°C)
Peak Non-Repetitive Surge Current
lOne Cycle, 60 Hz) ITC = 7SOC)

Circuit Fusing Considerations
ITJ

= -40 to +1250 C)

It

-0.5
-10
-20
-30
-40
-50
-60
-70
-80

Symbol

Value

Unit

VRRMlll

50
100
200
300
400
500
600
700
800

Volts

Peak Gate Power

ITIAV)

50

Amp

ITSM

1000

Amp

12 t

4150

A 2s

PGM

15

Watts
Watts

PGIAVI

3.0

Peak Forward Gate Current

IGM

4.0

Amp

Peak Reverse Gate Voltage

VGM

5.0

Vol"

TJ

-40 to +125

T,to

-40 to +150

°c
°c

-

130

in. lb.

Operating Junction Temperature Range
Storage Temperature Range
Stud Torque (3)

MILLIMHERS
MIN
MAX

A 29.12

= 1.5 to 8.3 msl

Average Gate Power

INCHES
MIN
MAX
1.110 1.190
126.4227.061040 1.0&5
C 4U4 4318 1.800 17
f
t.27
US 0050 D.
H 3.611
3.940.145
155
J
21.5922,480.8508.885
K 22.86 2794 0800 liDO
L 5.08 9.530.200 0.375
N 11.15 20.98 0.675 0825
Q
4.13 5.21 0.190 02
1\
2.18 2.410.
0
S
112-20UNF- A
T 25.27 25.78 0.9951015

DIM

STYLE 1.

TERM. 1. tATHODE
2. &ATE
STUD. ANODE

30.2

CASE 288-01

MCR82 SERIES

MIL 1M TERS
DIM MIN MAX

A

THERMAL CHARACTERISTICS

•

Characteristic

29.12

30.23
26.42 21.115
45.724818
1.27
to
3.61

3.1M

2.19

Thermal Resistance, Junction to Case

INCHES
MIN
MAX
1.1701.180
1.
1.086
1.
,

....

0.145 1U16
11100.110

.SO
22."

U8
.1

(1) Ratings apply for zero or negative gate voltage. Devices should not be tested for blocking
capability In a manner such that the voltage applied exceeds the rated blocking voltage.

11.43

(2) Devices should not be operated with a positive bias applied to the gate concurrent with a
negative potential applied to the anode.

STYLE 1:
PIN 1. CATHODE
2. GATE

(31 Reliable operation can be impaired if torque rating is exceeded, terminal tubes bent,
or seal broken.

S. AIODE
STUD. ISOLATED

97

R
T

CASE 29H)1

2.18

21.14

0.900

U30.
1
11

1.100
0.5
10
0.41

52'
41

1 -lOU

,

-

MCR80 Series, MCR81 Series, MCR82 Series (continued)

ELECTRICAL CHARACTERISTICS (TC

= 25°C unless otherwise noted.)

Characteristic
Peak Forward Blocking Voltage (1)
(TJ = 125°C)
MCR80MCR81MCR82-

-0:5
-10
-20
-30
-40

Symbol

Min

VORM

50
100
200
300
400
500
600
700
800

-50
-60
-70
-80

Typ

Unit

Max

Volts

-

-

-

-

-

-

-

Peak Forward Blocking Current
(Rated VORM, with gate open, TJ = 125°C)

IORM

-

-

Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 125°C)

IRRM

-

-

4.0

rnA

Peak On-5tate Voltage (2)
(lTM = 160 A Peak)

VTM

-

-

1.55

Volts

Gate Trigger Current, Continuous de

IGT

-

-

70

mA

VGT

-

-

3.0

Volts

IH

-

-

70

mA

VGO

0.25

-

,-

Vorts

tq

-

70

-

!,s

dvldt

-

100

-

V/!'s

(VAK

= 12 V, RL = 3.0 Ohms)

Holding Current
(VAK = 12 V, Gate Open)
Non-Trigger Gate Voltage
(Anode Voltage = Rated VOM, RL = l00ohms, TJ

= 125°C)

Circuit Commutated Turn-Off Time
(IT

mA

= 12 V, RL = 3.0 Ohms)

Gate Trigger Voltage, Continuous de

(VAK

4.0

= 50A,IR = 20A, TJ = 125°C)

Critical Rate of Rise of Off-State Voltage
(Rated VORM, Exponential Waveform, T J

= 125°C, Gate Open)

(1) Ratings apply for zero or negative gate voltage. Devices should not be tested with a constant current source for forward or reverse blocking

capability such that the voltage applied exceeds the rated blocking voltage.
(2) Pulse Te": Pulse Width ';;;300 !,S, Duty Cycle ';;;2.0%.

FIGURE 2 - ON-STATE POWER DISSIPATION

FIGURE 1 - AVERAGE CURRENT DERATING
12
u

o

5~~

w

~11

~

-1+-

120;..-...... , /

0

\. ~ ~ r-....
\ "\ t'-... r-.....
1\ '\., .'...; t'--.. r-.......
............ de
\ '\'\.,I"
I\, '\. ~'r-... ...........

,"

0-

w

5

:::I

~

1800

0

• = CONDUCTION ANG LE

~10 5

...

~

'\l~::s:::-.

5

ffi

5

0

5

:}

1
75 0

a: '" 300

5.0

10

15

20

"

'"II

90
60·1
25
30
35

a= 30D

0
0

/

0

r-.... . . .

0

120.1 18~
50
40
45

/

.L:: ~

/~ ~
~ ~ ,./

a~

.",

10

./

'"/ ' ~

TJ""'125DC

--101-

• = CONDUCTION ANGLE

15

20

25

30

3~

40

IT(AV), AVERAGE ON-STATE CURRENT (AMP)

98

-

~

~

~~
5.0

IT(AV), AVERAGE ON-STATE CURRENT (AMP)

~~

60·"

0

45

50

MCR101

(SILICON)

thru

MCR104

PLASTIC SILICON
CONTROLLED RECTIFIERS
0.8 AMPERE RMS
15 thru 100 VOLTS

PLASTIC THYRISTORS
· .. Annular PNPN devices designed for low cost, high volume con·
sumer applications such as relay and lamp drivers, small motor
controls, gate drivers for larger thyristors, and sensing and detection
circuits. Supplied in an inexpensive plastic TO·92 package which is
readily adaptable for use in automatic insertion equipment.
• Sensitive Gate Trigger Current - 200 p.A Maximum
•

Low Reverse and Forward Blocking Current 100 p.A Maximum, TC = 850 C

•

Low Holding Current - 5.0 mA Maximum

• Passivated Surface for Reliability and Uniformity

MAXIMUM RATINGSI11
Symbol

Ratina
Peak Reverse Blocking Voltage

Value

Unit
Volts

VRRM
MCRIOI
MCRI02
MCRI03
MCRI04

15
30
60
100
ITIRMS)

0.8

Amp

Peak Forward Surge Current, T A = 2SoC
11/2 cycle, Sine Wave, 60 Hz)

ITSM

6.0

Amp

Circuit Fusing Considerations, T A = 2SoC
It = 1.0 to 8.3 ms)

12,

0.15

A2,

0.1

Watt

Forward Current RMS (See Figures 1 & 2)
(All Conduction Angles)

Peak Gate Power - Forward, T A

= 2SoC

Average Gate Power - Forward, T A

= 2SoC

PGM
PGIAV)

Peak Gate Current - Forward, TA = 2SoC
1300 1", 120 PPS)

IGM

Peak Gate Voltage - Reverse

VGM

Operating Junction Temperature Range@ Rated

0.01

Watt

1.0

Amp

4.0

Volts

TJ

-65 to +85

°c

T,to

-65 to +150

-

+230

°c
°c

VRRM and VORt.I

Storage Temperature Range
Lead Solder Temperature
1<1/16" from case, 10. max)

STYLE 10:
PIN I. CATHODE
2. GATE
3. ANOOE

DIM

A
B

C
D

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance Junction to Case

L
N
P

Thermal Resistance. Junction to Ambient

Q

R
S

(1) Temperature reference point for all case temperature is center of flat
portion of package.
(T C "" +85 0 C unless otherwise noted.)

99

MI LLIMETERS
INCHES
MIN
MAX MIN
MAX
4.450
0.205
5.200 0.175
4.1
0.120
0.165
.1
0.210
4.320
5.330 0.170
0.407
0.021
0.533 0.016
.4
nJ:l!Tlf if.lfW
I.
1.150
1.390 0.045
0.055
0.050
1.270
0.250
6.350
3.430
0.135
0.105
2.410
2.670 0.095
0.105
2.030
2.670 O.OBO
CASE 29-02
TO·92

-

MCR101 thru MCR104 (continued)

ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Characteristic

Svmbol

Peak Forward Blocking'Voltage (Not,,'ll
(TC = 85°C)

Min

Max

15
30
60
100

-

MCR10l
MCR102
MCRI03
MCRI04

Unit
Volt.

VDRM

Peak Forward Blocking Current
(Rated VDRM @TC=850C)

IDRM

-

100

,..A

Peak Reverse Blocking Current

IRRM

-

100

,..A

VTM

-

1.7

Volt.

(Rated VRRM @TC

=85°C)

Forward "On" Voltage (Note 2)
(lTM = 1,0 A peak@TA = 25°C)
Gate Trigger Current (Continuou. dc) (Note 3)
(Anode Voltage = 7.,0 Vdc, R L = 100 Ohm.)

TC = 25°C

IGT

-

200

,..A

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohm.)

TC = 25°C
TC = -65°C
TC = 85°C

VGT

-

0.8
1.2

Volts

VGD

0.1

-

IH

-

5.0
10

TC = 25°C
TC = -65°C

Holding Current
(Anode Voltage = 7.0 Vdc, initiating current = 20 mAl

1. "ORM and VRRM forall types can beappliad on a continuous

2. Forward current applied for 1.0 rns maximum duration, duty
cycle :S:' 1.0%.

When checking forward or reverse blocking capability. thyris-

3.

tor devices should not be tasted with a constant current source

FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

RGK current Is not Included in

measurement."

FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

N

90

a- COINOUCTlbN
ANGLE
CASE MEASUREMENT

~ I!;;:::,...

~ ~ ;::-- r-..
~ ~~

I

POINT - CENTER OF
......... ~ATPORTION

r--...." 0

\.

~

\ "~' ~

.......

Q'"

300

9~

60·

0.1

0.2

0.3

IF(AV),AVERAGE FORWARD

I

~~

~

~~
120·

o

mA

in a manner that the voltage applied exceeds the rated blocking
voltage.

de basis without incurring damage. Ratings apply for zero or
negative gate voltage but positive gate voltage shall not be
applied concurrently with a negative potential on the anode.

10

-

0.4

180·

100~--~--~0~.1~--~--~~--~~~----~~~

0.5

C~RRENT (AMP)

IF(AV), AVERAGE FORWARD CURRENT (AMP)

100

MCR 106-1 (SILl.CON)
thru

MCR106-4
MCR1 06-6,MCRl 06-8
THYRISTORS
4.0 AMPERES RMS
30 thru 600 VOLTS

SILICON
CONTROLLED RECTIFIERS
. . . Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliability of oper·
ation is important.

•

Annular Passivated Surface for Reliability and Uniformity

• Power Rated at Economical Prices
• Practical Level Triggering and Holding Characteristics
•

Flat, Rugged, Thermopad Construction for Low Thermal Resist·
ance, High Heat Dissipation and Durability.

MAXIMUM RATINGS
Rating

Symbol

Peak Reverse Blocking Voltage

(Note 11

MCR 106-1
·2
·3

VRRM

-4

-6

(All Conduction Anglesl
Average Forward Current

TC - 930C
TA - 300C

Unit

Volts
30
60
100
200
400
600

·8
AMS Forward Current

Value

IT(RMSI
IT(AVI

4.0

Amp
Amp

Peak Non-Repetitive Surge Current
(1/2
cle,60 Hz, T = -40 to +1100CI

ITSM

2.66
0.68
25

Circuit Fusing Considerations
(T --40to+l100C,t-l.0t08.3msl
Peek Gate Power

'1 2t

2.6

A2s

PGM
PG(AVI
IGM
VR M
T

0.5
0.1
0.2
6.0
-40 to +110
-40 to +150
6.0

Watt
Watt
Amp
Volts

Symbol

Max

Unit

'!uc.

3.0
75

°CIW
°CIW

Average Gate Power

Peak Forward Gate Current

Peek Reverse Glte Voltage
0 atin Junction Temperature Range
Storage Temperature Range

Tot

Mounting Torque (Note 21

Amp

°c
°c
in. lb.

Thermal Rasistance, Junction to ca..
Thermal Resistance, Junction to Ambient

Pin 1. Cathode
2. Anode
3. Gate
DIM
A
B
C
D
E
F

G
H

THERMAL CHARACTERISTICS
Choraa_lotIc

HEAT SINK

CONTACT AREA
(BOnOMI

R8JA

101

J
K
L

CASE 77·02

MCR106-1 thru MCR106-4 (continued)
MCR106-6, MCR106-8

ELECTRICAL CHARACTERISTICS (TC

= 2So C unless otherwise noted. RGK = 1000 ohms.)
Symbol

Characteristic
Peak Forward Blocking Voltage
(TJ = 1100 C. Note 1)

Min

Typ.

Max

MCR106-1
-2
-3
-4

Unit
Volts

VORM
30

-

-

-

-

P.ak Forward Blocking Current
(Rated VORM. T J = 110°C)

IORM

-

-

200

"A

Peak Reverse Blocking Current

'RRM

-

-

200

"A

Forward "On" Voltage
(lTM = 4.0 A P.ak)

VTM

-

-

2.0

Volts

Gat. Trigg.r Current (Continuous dc)
(VAK = 7.0 Vdc. RL = 100 ohms)
(VAK = 7.0 Vdc. RL = 100 ohms. TC

IGT

-

-

200

-

SOO

60
100
200
400
600

-6
-8

(Rat.d VRRM. T J = 110°C)

Gate Trigger Voltage (Continuous dcl
(V AK = 7.0 Vdc. RL = 100 ohms. TC
Gat. Non-Trigger Voltage
(VAK = Rated VORM. RL
Holding Current
(VAK = 7.0 Vdc. TC

= -4QDC)

"A

1.0

VGT

= 2SoC)

VGO

0.2

Volts
Volts

= 100 ohms. TJ = 110°C)
'H

= 25"C)

Forward Voltaga Application Rate
(TJ = 110°C)

dv/dt

-

10

5.0

rnA

-

V/"s

NOTES:
1. Ratings apply for zero or negative gate voltage but positive
gate voltage shall not be applied concurrently with a negative
. potential on the anode. When checking forward or reverse

2. Torque rating applies with use of torque washer (Shakeproof
W019523 or equivalent). Mounting torque in excess of 6 in. lb .
does not appreciably lower case-to-sink thermal resistance. Anode

blocking capability, thyristor devices should not be tested with

lead and heatsink contact pad are common. (S.e AN-290 B)

a constant current source in a manner that the voltage applied

For soldering purposes (either terminal connection or device
mounting), soldering temperatures shall not exceed +22SoC. For
optimum results, an activated flux (oxide removing) isrecommended.

exceeds the rated blocking voltage:

CURRENT DERATING
FIGURE 1 - MAXIMUM CASE TEMPERATURE

~

FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE

110

::!
:::>

I-

«
cc
~
w

:E
IW

...~
~

.,

;;
j

«

'"

:::>

'"x

«
:E

..;

I-

IT(AV). AVERAGE FORWARD CURRENT (AMP)

IT(AV). AVERAGE FORWARD CURRENT (AMP)

102

MCR107-1 thru MCR107-B (SILICON)

PLASTIC SILICON
CONTROLLED RECTIFIERS
4.0 AMPERES RMS

PLASTIC THYRISTORS
(PLASTIC SILICON CONTROLLED RECTIFIERS)

30 thru 600 VOLTS

· .. Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliabil ity of oper·
ation is important.

•

Annular Passivated Surface for Reliability and Uniformity

•

Power Rated at Economical Prices

•

Practical Level Triggering and Holding Characteristics

•

Flat, Rugged, Thermopad Construction for Low Thermal Resist·
ance, High Heat Dissipation and Durability

MAXIMUM RATINGS
Svmbol

Rating
Peak Reverse Blocking Voltage

INote 11 MCR107-1

VRRM

-2

-3
-4
-5
-6
-7
-8

Value

Unit
Volts

30
60
100
200
300
400
500
600

=1 UBr-~ t

tH
Amp

Peak Forward Surge Current

ITSM

25

Amp

12 t

2.6

A2 s

E!:3- C
M--J~·'T

PGFM

0.5

Watt

MILLIMETERS
DIM MIN
MAX
A 10.80 11.05

TJ" -40 to +1100 CI
IT J " -40 to +llO oCI
t" 1.0t08.3m.1

PGFIAV)

0.1

Watt

Peak Gate Current· Forward

IGFM

0.2

Amp

Peak Gate Voltage - Reverse

VGRM

6.0

Volts

Range

TJ

-40 to +110

°c

Storage Temperature Range

Tstg

-40 to +150

°c

8.0

in. lb.

Average Gate Power - Forward

Operating Junction Temperature

Mounting Torque (4-40)

-

INote21

G
H
K
M
Q

THERMAL CHARACTERISTICS
Svmbol

Ma.

Unit

Thermal Resistance, Junction to Case

9 JC

3.0

°CIW

Thermal Resistance, Junction to Ambient

9 JA

75

°C/W

Characteristic

103

K

!~D
GJJ
7.49
2.41
0.51
2.92
2.31
2.16
0.38
15.38

7.75
2.67
0.66
3.00
2.46
2.41
0.64
16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94

rj

tL--lLJ

ln~

4.0

Peak Gate Power· Forward

A

~

ITIRMSI

Circuit Fusing Considerations

+-

~a
'Ii

':" + '

U

Forward Current RMS
(All Conduction Anglesl
(% cycle, 60 Hz,

M

F

STYLE 2
PIN 1. CATHODE
2. ANODE
3. GATE
INCHES
MIN
MAX

0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.118
0.091 0.097
0.085 0.095
0.015 0.025
0.605 0.655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155

CASE 77·03

MCR107-1 thru MCR107-8 (continued)

ELECTRICAL CHARACTERISTICS (TC

= 25°C unless otherwise noted,

Characteristics
Peak Forward Blocking Voltage
ITJ = 1100 CI (Note 11 MCR107

Symbol

RGK

= 1000 ohms)
Min

VORM
1

30

-2

60

-3
-4
-5

100
200

300

-6
-7
-8

400
500

Peak Forward Blocking Current
(Rated VORM, T J = 1100 CI

IORM

Peak Reverse Blocking Current

IRRM

(Rated VRRM, T J = 11o"C)

Forward "On" Voltage
(lTM = 4.0 A Peak I

VTM

Gate Trigger Current (Continuous de)
(Anode Voltage = 70 Vdc. RL = 100 ohms, TC = 25°C)

IGT

Typ

-

-

Max

-

Unit
Volts

-

-

-

-

-

600

-

-

-

-

200

-

-

200

-

-

2.0

-

-

20

-

1.5

0.2

-

-

-

20

-

10

-

~A

~A

Volts
rnA

Gate Trigger Voltage !Continuous de)

Volts

(Anode Voltage = 7 0 Vdc, RL = 100 ohms, TC = 25 0 CI
(Anode Voltage = Rated VORM, RL = 100 ohms, T J = 110°C)

VGT
VGO

Holding Current
(Anode Voltage = 7.0 Vdc, ~= 250 CI

Forward Voltage Application Rate

rnA

IH
dv/dt

IT J = 1100 CI

V/~s

(1)0085 not Include current through AGK resistor.

NOTES:

(1) Ratings apply for zero or negative gate voltage. Devices shall
not have

III

positive bias applted to the gate concurrently with

a negative potential on the anode. Devices should not be tested
with 8 constant current lOurce for forward or raverse blocking
capability such that the voltage applied exceeds the rated
block Ing voltage.

(2) Torque rating applies with us. of torque washer (Shakeproof
W019523 or equivalent). Mounting torque in excess of 6 in.
lb. does not appreciably lower case-to-sink thermal resistance.
Anode lead and heatslnk contact pad are common.
For soldering purposes (either terminal connection or device
mounting), IOldering,temperatllres shall not exceed +225~C.

CURRENT DERATING DATA
FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE

FIGURE 1 - MAXIMUM CASE TEMPERATURE

11o . .- - . - - - - , , - - - , - - - - , - - - - , - - - - , - - - - , - - - - ,

30~0----~--~0.~2--~~--~~~~--~--~--~~

IF(AV),AVERAGE FORWARD CURRENT (AMP)

IF (AV), AVERAGE FORWARD CURRENT (AMP)

104

MCRl15 (SILICON)
MCR120

o~~~-o

PLASTIC SILICON
CONTROLLED RECTIFIERS
0.8 AMPERE RMS
100 and 200 VOLTS

PLASTIC THYRISTORS
· .. Annular PNPN devices designed for high volume consumer
applications such as relay and lamp drivers, small motor controls, gate
drivers for larger thyristors, and sensing and detection circuits.
Supplied in an inexpensive plastic TO-92 package which is readily
adaptable for use in automatic insertion equipment.
• Sensitive Gate Trigger Current - 200llA Maximum
• Low Reverse and Forward Blocking Current 100llAMaximum, TC= 1100 C
• Low Holding Current - 5.0 rnA Maximum
• Passivated Surface for Reliability and Uniformity

MAXIMUM RATINGS(ll
Rating

Svmbol

Peak Reverse Blocking Voltage

Value

MCR115
MCR120
Forward Current RMS (See Figures 1 & 2)

Unit
Volts

VRRM

IT(RMS)

150
200
0.8

Amp

'TSM

6.0

Amp

12 t

0.15

A2.

(All Conduction Angles)
Peak Forward Surge Current, T A

= 25°C

(112 cycle, Sine WINe, 60 Hz)
Circuit Fusing Considerations, T A
(t = 1.0 to 8.3 m.)
Peak Gate Power - Forward, T A

Average Gate Power

= 25uC

Forward, T A

Peak Gate Current Forward, T A
(300 It., 120 PPS)

Peak Gate Voltage

= 25u C

= 25u C

= 25 C

Reverse

Operating Junction Temperature Range@ Rated

PGM

0.1

Watt

PGF(AV)

0.Q1

Watt

IGFM

1.0

Amp

DIM
A

VGRM

5.0

Volts

TJ

-65 to +110

°c

C
D
F

B

VRRM and VDRM
Storage Temperature Range
Lead Solder Temperature

STYLE 10:
PIN 1. CATHODE
2. GATE
3. ANODE

K

Tstg

-65 to +150

uC

+230

vc

«1/16" from case, 10. maxi

L
N
P
Q

R
S

(') Temperatur. r.ference point for all case temperatura. In center of flat portion
of package. (TC = +110o C unle.. otherwise notad.)

105

MILLIMETERS
MIN
MAX
4.450
5.200
3.1HU
4.1"0
5.330
4.320
0.407
0.533
0.482
0.407
IVUU
1.150
1.390
1.270
6.350
3.430
2.410
2.670
2.030
2.670

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.210
0.170
0.021
0.016
0.019
0.016
J.~UU

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO-92

0.055
0.050
0.105
0.105

MCR 115, MCR 120 (continued)

ELECTRICAL CHARACTERISTICS (RGK

=

1000 Ohms)
Symbol

Characteristic
Peak Forward Blocking Voltage (Note 1)
(TC = 110o C)

Min

Max

MCR115
MCR120

Unit
Volts

VDRM
150
200

-

Peak Forward Blocking Current
(Rated VDRM @ T C = 110o C)

IDRM

-

100

!LA

Peak Reverse Blocking Current
(Rated VRRM@TC= 110o C)

IRRM

-

100

!LA

VTM

-

1.7

Volts

Forward "Dn" Voltage (Note 2)
(lTM = 1.0 A peak @ T A = 25 0 C)
Gate Trigger Current (Continuous de) (Note 3)
(Anode Voltage = 7.0 Vdc. RL = 100 Ohms)

TC = 250 C

IGT

-

200

IlA

Gate Trigger Voltage (Continuous del

TC = 250 C
TC = -650 C
TC = 1100 C

VGT

-

0.8
1.2

Volts

VGD

0.1

-

IH

-

5.0
10

Thermal Resistance. Junction to Case

OJC.

-

75

°C/W

Thermal Resistance, Junction to Ambient

°JA

-

200

°CM

(Anode Voltage = 7.0 Vdc. RL = 100 Ohms)
(Anode Voltage = Rated VDRM. RL = 100 Ohms)
Holding Current
(Anode Voltage

>=

TC=25 0 C
TC = -650 C

7.0 Vdc, initiating current == 20 rnA)

1. VORMsndVARMforall types can be applied on a continuous
de basis without incurring damage. Ratings apply for zero or
negative gate voltage but positive gate voltage shall not be
applied concurrently with a negative potential on the anode.

in a manner that the voltage applied exceeds the rated blocking
voltage.
2. Forward current-applied for 1.0 ms maximum duration. duty
cycle S 1.0%.

When checking forward or reverse blocking capability. thvristor devices should not be tested with a constant current source

3. RGK current is not included in measurement.

FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)
11 0

~

100

110

~ ~ r--.

~"

0
0

==

0

POINT - CENTER OF

o

0.1

~ ~ 801----+--\:-P~~~......::>.j.::--+--____i~-_+-_i
j~

~ ~ 701----+---l\......:~~~ct_-~"k-____i1_-_+---I

"" "'" "
90·

AC
or- CA:EN~~!SUREMENT
:~FliTPORTN

w<>

ex: ~ 90 I---+~~IQ.."-=~;:--+==+=---t--+---I

"'f'..: '"

a= CONOUCTION

3

FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

"'~ ~ ~ ...............
.............. ......... de
~~
r---....
'\
I'::'
a 300
I
~
~

0

rnA

I
0.2

0.3

"'120·

0.4

~~

x

I-

«2:

60

.:ri 501----+--+--\-,1_~=+-.....:~~c:..-1_----'~-:E W

180·

401--4--~-~r-~~~~~~--+~~

0.5

0.1

IFIAV). AVERAGE FORWARD CURRENT lAMP)

0.2

0.3

IFIAV). AVERAGE FORWARO CURRENT lAMP)

106

0.4

MCR154, MCR155 (SILICON)
MCR156, MCR157

THYRISTORS
SILICON CONTROLLED RECTIFIERS

THYRISTORS
PNPN

· .. designed for high frequency power switching applications such as

110 AMPERES RMS
100 thru 600 VOLTS

inverters, choppers, transmitters, induction heaters, cycloconverters
and high frequency lighting.
•

High Voltage Application Rate dv/dt = 200 Voltsf!.1S (Min). MCR 154. 156

•

Fast Turn-Off Time tq = 10 !.Is (MaxI. MCR154. MCR 156

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Voltage

ITJ - +125 0 C)
MCR154.155.156.157

-10
-20
-30
-40
-50
-60

Non-Repetitive Peak Reverse Blocking Voltage
It';;;; S.O ms)
MCR154. 155. 156,157

VDRM (1)
and
VRRMll)

Unit
Volts

100
200
300
400
500
600

Volts

VRSM

-10
-20
-30
-40
-50
-60

Average On-State Current

Value

200
300
400
500
600
650
ITIAV)

70

Amp

ITSM

1800

Amp

IT C = 65°C. 180 Conduction Angle)
Peak Surge Current
(One cvcle, 60 Hz) IT J - 40 to +12SoC)

ILt

Circuit Fusing Considerations
ITJ - -40 to +1250 C)

h= 8.3 msl

Peak Gate Power

A's

PGM

15

Watts

PGIAV)

3.0

Watt

Peak Forward Gate Current

IGM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0

Volts
°c

Average Gate Power

Operating Junction Temperature Range

TJ

-40 to +125

Storage Temperature Range

T sto

-40 to +150

°c

150
175

in.lb.

Stud Torque 12)

MCR156, MCR157
SERIES
CASE 246
TO-83

9,500
13.000

It- 1.5 msl

-

Kg - em

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
(1) Ratings apply for zero or negative gate voltage. Devices shall not have a positive bias
applied to the gate concurrently with a negative potential on the anode. Devices should
not be tested with a constant current source for forward or reverse blocking capability
such that the voltage applied exceeds the rated block ing voltage.
(2) Reliable operation can be impaired if torque rating is exceeded, terminal tubes bent, or
seal broken.

107

MCR154, MCR155
SER IES
CASE 219
TO-94

MCR154, MCR155, MCR156, MCR157 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Characteristic
Peak Forward Blocking Current

Symbol

Min

Typ

Max

Unit

IORM

-

-

10

mA

IRRM

-

-

15

mA

VTM

-

-

3.0

Volts

IGT

-

150
200
120

mA

-

50
100
30

-

-

3.0

(Rated VORM, with gate open, TJ = 1250 C)
Peak Reverse Blocking Current

(Rated VRRM,with gate open, TJ = 1250 C)
Forward "On" Voltage
(lTM = 500 A Peak, Duty Cycle = 0.01%)
Gata Trigger Current

(Anode Voltage = 6 V, RL =3.0 ohms, tp;;' 20 jJs)

TJ=25 0 C
TJ = -40o C
T J = +125 0 C

Gate Trigger Voltage
(Anode Voltage = 6.0 V, RL =3.0 ohms, T J = -40o C)
(VORM = Rated, RL = 1000 ohms, TJ = +1250 C)

Volts

VGT

Holding Current

IH

0.25

-

-

-

30

200

mA

( Anode Voltage = 24 V, Gate Open, Initiating Current = 2.0 A)
Circuit Commutated Turn-Off Time

jJS

tq

(VR= 50 V (Min); VORM = Rated;TJ = +125 0 C;
diR/dt = 5.0 A/",s; Repetition Rate = 1.0 pp,;
ITM = 50 A; Duty Cycle ';;0.01%; Gate
Bia, during Turn·Off Interval = 0 V, 100 ohm,;
Rate of Rise of Reapplied Forward Blocking Voltage = 20 VI""
MCR154,156
MCR155,157

Linear)

Critical Exponential Rate of Rise of

-

-

-

-

dv/dt

Forward Blocking Voltage
(VORM = Rated, TJ = 1250 C, Gate Open)

MCR154,156
MCR155,157

200
100

10
20

-

-

-

VI""

FIGURE 1 - THERMAL RESPONSE

_

~

D. 3

I---

~ O. 1

~+-

'z"'

<[

ffi

!!....

,...,

<[

~

"

:: 0.0 1

V

i-'

z
w
z

in
<[

0:
1- 0.00

3
D.DDDI

0.001

0.01

0.1

SIlUARE WAVE PULSE WIDTH (S)

108

1.0

10

MCR154, MCR155, MCR156, MCR157 (continued)

FORWARD POWER DISSIPATION
FIGURE 2 - SQUARE WAVE

FIGURE 3 - SINE WAVE

S

240

DC

~ 200
z

180

o

~

~160

-:;0

o
ffi

120

..'"'"'

80

;=
~

~~ /

h

30

=>

x

40 r--

~

~

~

h

:E

S

0;

~
20

/

./

~/ V

j
I

/"

I~O

i

V

I~O

~ 160

~

./

~
o

t'

'h / '

180

JUL

V

lOU'

120

'"~

~

~

'"

I
I

/M ~I

80

V/:. W-

I

40

~

~

180'

0'

I

~

10

120

p-

E

~

I

/. :;@

~

40
BO
80
100
ITIAV). AVERAGE FORWARD CURRENT lAMP)

BO/$

30

=>

"x
"":;;

V

/

80

10

20
30
40
50
BO
ITIAV). AVERAGE FORWARD CURRENT lAMP)

CURRENT DERATING
FIGURE 5 - SQUARE WAVE

FIGURE 4 - FORWARD CONDUCTION CHARACTERISTICS
140

. 1000
5000

2000

V

1000

~

200

.

'\

:i

B0

....

100

........
~
.........

15

........

BOO

.......

.........

-""
90' 120'

II

0

I---l-CONDUCTIDN
ANGLE

"'"' "
300

<3

/

ffi

'"
~

w

'" 80
;3

/
V

~

~ t-..,..............
'\., ~

~ 100

....

"=>
"x

JUL

~~

g

V

/

500

i---t-3BO 'C

~ 120 ~
=>

/'
./

t'-...

.......

1800

13Bo'

I

I

30
45
BO
15
90
105
ITlAV). AVERAGE FORWARD CURRENT lAMP)

120

o

'"

~ 50

FIGURE 6 - SINE WAVE

~

140

~
20

10

~
w

I

§

~fi

120

"""""
"'-"
~

100

~

"-

w

'";3

5.0

'=>"
":ix

2.0

80

-

~

0'

-

180'

~ ::---..
~ t--......
.......
'\.
~ l""'-......

"" , "'
30'

-BO'

.........
r-~ h2O'
~-

B0

~
40

1.0

o

1.0
2.0
3.0
4.0
5.0
VTM. MAXIMUM FORWARD VOLTAGE DROP IVOLTS)

o

B.O

109

10

20
30
40
50
60
ITIAV). AVERAGE FORWARD CURRENT lAMP)

10

80

MCR154, MCR155, MCR156, MCR157 (continued)

rA~
ljTerminal2

~ 1~
B

d

t

YL~
G

Terminal 1

..J LR

~Q

El~
r-

V

1
K

Terminal 4
1/2.20.UNF.2A ,(Coated)
~ \

S./-'\

Lw

MILLIMETERS
DIM MIN
MAX
A
B
C
0
E
F

H

J
K
L
N

P
Q

R

S
T

26.19
-

STYLE 1:
TERM. 1. GATE
2. CATHOOE
3. CATHODE
INCHES
4. ANODE
MIN
MAX

31.16
27.00 1.031
63.50
11.10 16.50 0.437
4.40 12.70 0.170
0.215
5.46 7.62
3.17
0.797
20.25 21.00
174.0 190.5
6.850
6.35
0.250
26.18
10.80 12.67 0.425
7.87 0.260
6.61
5.775
146.7 159.1
11.73 ·11.874 0.4619
3.81 0.140
3.56

DIM
A

1.227
1.063

2.500
0.650 .
0.50n
0.300
0.125
0.827
7.500

26.19

D
E
F

4.4
4.58

H
J
K
L
N

P
Q

R
S
T
U
V

All JEDEC dimenSions and nates apply

-

B

G

1.031
0.499
0.310
6.265
0.4675
0.150

MILLIMETERS
MIN MAX
31.16
27.00
16.51
12.70

14.60
3.17
20.25 21.00
45.97
0.31
1.27
26.18
10.80 12.67
4.58
6.60
2.93
4.06
11.733 11.874
1.53
2.03
1.53
2.92
11.9
9.2

Terminal 3
STYLE 1:
TERMINAL 1. GATE
2. CATHODE
INCHES
3. ANODE
MIN MAX

1.031
0.170
0.180

1.227
1.063
0.650
0.500

0.575
0.125
0.827
1.810
0.012 0.050
1.031
0.425 0.499
0.180 0.260
0.115 0.160
0.4619 0.4675
0.060 0.080
0.060 0.115
0.360 0.470

0.797

-

All JEDEC dimenSions and notes apply

CASE 219

CASE 246

T0-94

TO·B3

110

MCR158 (SILICON)
MCR159

INTEGRATED GATE THYRISTORS
SILICON CONTROLLED RECTIFIERS

INTEGRATED GATE
THYRISTORS
PNPN

designed for high frequency applications which require high
di/dt such as inverters, choppers, transmitters, induction heaters,
crowbars, cycloconverters and high frequency lighting.
•

10 kHz Sine Wave Operation

•

5 kHz Rectangular Waveform Operation

110 AMPERES RMS
500 thru 1200 VOLTS

•

Critical Rate-of-Rise of On-State Current - di/dt ~ 800 Amp/p.s (Max)'

•

Critical Exponential Rate - dv/dt ~ 200 V/p.s (Min)

•

Low Switching Losses at High Frequency

•

Integrated Gate Permits Soft-Fire Gate Control

o

o

MAXIMUM RATINGS
Symbol

Rating
Repetitive Peak off-State Voltage

ITJ = +1250 CI MCR158,159

Value

- 50
-60
-70
-80
-90
-100
-110
-120

Non-Repetitive Peak Reverse

VRRM

500
600
700
SOO
900
1000
1100
1200
Volts

VRSM

Block Voltage
It';;5.0msl MCR158,159

-50
-60
-70
- 80
-90
- 100
-110
-120

Average Forward Current, T C :: 65°C

Unit

Volu

VDRMlll

600
720
840
960
1080
1200
1300
1400

MCR159
SERIES

CASE 246
T0-83

ITIAVI

70

Amp

ITSM

1600

Amp

lSOoC Conducted Angle
Peak Surge Current

lOne cycle, 60 Hzl IT J = -40 to +1250 CI

ITJ = -40 to +1250 CI

A2 ,

12,

Circuit Fusing Considerations

Peak Gate Power

MCR158

5200
10,500

It= 1.5msl
It = 8.3 msl

SERIES

CASE 219

PGFM

15

Watts

PGFIAVI

3.0

Watt

Peak Forward Gate Current

IGFM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0

Volts

TJ
T stg

-4Oto +125

°c
°c

-

150
175
800

Average Gate Power

Operating Ju nction Temperature Range

Storage T-emperature Range

Stud Torque 121
Critical Rate-of-Rise of Oo-State Current during

di/dt

-4Oto +150

Turn! On Interval

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
·With 0.05 "F and 20 ohm snubber circuit.

111

in.lb. '
Kg-em

Amp/!,s

TO-94

(1) Ratings apply for zero or negative gate voltage.

Devices shall not have a positive bias applied to
the gate concurrently with a negative potential
on the anode. Devices should not be tested with
a constant current source for forward or reverse
blocking capability such that the voltage applied
exceeds the rated blocking voltage.
(2) Reliableoperation can be impaired if torque rating
is exceeded. terminal tubes bent. or seal broken.

MCR158, MCR159 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

Unit

Peak Forward Blocking Current
(Rated VORM, with gate open, T J = 1250 C)

IORM

-

-

10

mA

Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 1250 C)

IRRM

-

-

15

mA

Forward "On" Voltage
(lTM = 500 A Peak, Duty Cycle ~ 0.01%)

VTM

-

-

3,0

Volts

Gate Trigger Current

IGT

-

-

150

mA

VGT'

-

-

3.0

Volts

IH

-

20

500

mA

VGOM

0.15

-

-

Volts

tq

-

-

30

I-'S

ton

-

2.0

-

I-'S

-

-

10

I-'S

200

-

-

(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Gate Trigger Voltage
(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Holding Currant
(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 A)

Non-Triggering Gate Voltage
(Anode Voltage = Rated VORM, RJ. = 1000 Ohms, T.J.. = 125°C)
Circuit Commutated Turn-Off Time
VR = 50 V (Min); VORM = Rated; TJ = +12S o C;
diR/dt = 5.0 A/I-'s; Repetition Rate = 1.0 pps;
ITM = 150 A; Duty Cycle ~0.01%; Gate
Bias during Turn-Off Interval::: 0 V, 100 ohms;
Rate of Rise of Reapplied Forward Blocking Voltage::: 20 V/J,J.s Linear
Turn-On Time
(lTM = 50 A, VORM = Rated)
10 V open ~ircuit, 20 Ohm
Gate Supply =
0.1 I-'S (Max) rise time

Gate Pulse Width Necessary to Trigger
5.0 V open circuit, 5.0 Ohm
0.1 I-'S (Max) rise time

Gate Supply =

Critical Exponential Rate of Rise

dv/dt

V/I-'s

(VORM = Rated, Gate open, TJ = 125°C)

ALLOWABLE PEAK ON-STATE CURRENT
FIGURE 1 - SQUARE WAVE

FIGURE 2 - SINE WAVE

2BO
w

~oz

240

240~----+-~--+-+-~+++-----+---r-+-+-rt1HH

200

"";;:

"'"
w>-

,It .$ 160

~

~ffi
~ ~ 120

~

0:::>

j'-'
"
BO

:E

E

40

o

50

FZ)

-

........
~

~

50% Duty Cycle
di/dt = 25 Alp'
BOO Volt Blocking
TC = 65 0C

r

100

200

~

120 +-t+t+-----t--+-Hr-++1'-N
- I B O o Conduction H-HI+--+-+-!---iH+t-H
BO - S O D Volt Blocking H+t+---+--+.....JI-Hr+-Hi
-~C=650C

o

I

I

I I
500

1000

2000

5000

f, FREQUENCY (Hz)

f, FREOUENCY (Hz)

112

MCR158, MCR159 (continued)

FORWARD POWER DISSIPATION
FIGURE 3 - SQUARE WAVE

FIGURE 4 - SINE WAVE

0

V

0
180
120

0

Vl"

90

0
0

1/

~

16 o

~

C

1--- r~ t-

0

180
1180

'""'

3:
~

:;;

90/12 0
30

80

:;;

~

:;;

4o

:;
40

60

60

80

100

O~

..-,.. ~
~

10

120

~~

t"-

V

~
~- t-- t"-

~~ ~

=>

~

20

12~ IL

~

L(

v/ V ~ '360
~ rL V ~
31~V/ V
I//- ~ V
V

O~ ~
or--

/L

-

i

DC

180·

D·

r& ~

t-- t"-

Ii?'

20

30

60

50

40

BO

70

IT(AV). AVERAGE FORWARD CU RRENT (AMP)

IT(AV). AVERAGE FORWARD CURRENT (AMP)

CURRENT DERATING
FIGURE 5 - FORWARD CONDUCTION CHARACTERISTICS

FIGURE 6 - SQUARE WAVE

10.000

-

5000
125·C

L-

2000

V-

100 0

V

IL

500

/
V

E 200

V

~

=>
'-'

.......

1i1

100

~

0

~

IT(AV). AVERAGE FORWARD CURRENT (AMP)

FIGURE 7 - SINE WAVE

1

~
J

20

1

10

~
"'~

120~~~--~----+----+----r--

~~

100~--4-~~~~~~~--~----+----+--~

~
lBO·

I-

"'
~,.

5.0

80

=>
:;;

.

x

2.0

:;;
U

90·

120·

180·

60

I-

1.0

o

0
1.0

2.0

3.0

4.0

5.0

6.0

VTM. MAXIMUM FORWARD VOLTAGE DROP (VOLTS)

0

10

20

30

40

50

60

IT(AV). AVERAGE FORWARD CURRENT (AMP)

113

70

80

MCR158, MCR159 (continued)

FIGURE 8 - THERMAL RESPONSE

!
w
u

o. 3

~

o. 1

z

--

-

~ 7.0
::>
Q

~

5.0

z

--

J\....f\..

-l

r-....

r----... ........

>

.4

"

2.0

.2

'"'"

~

~

1.0

1.0

2.0

3.0

0

5.0

1.0

10

20

1200

30

50

10 100

sob.

900

V/

///

300

~ .//
~ ,............
~~~

/

~~

F-

0.1

0.2

0.3

0.4

IF(AV). AVERAGE I'ORWARD CURRENT (AMP)

NUMBER OF CYCLESATSO Hz

116

18~

L /
.,/
/ / / ///
:; / / 0
./ -'de

Q=

TA=250 C

~ 3.0

l:'

~

= ~ON-;jCt;~~NGLJ
s - •"
.
I

1--1 CYCLE

;::

~

FIGURE 2 - POWER DISSIPATION

.8

0

0.5

MCR201 thru MCR206 (continued)

FIGURE 4- CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

FIGURE 3 - FORWARD VOLTAGE
5.0

3. a

/ L

II

1.0

~

150C _

r--

o

'"U
....

~

\

40

10

Ct'

I

100

o. 1

0.05

J J

0.03

II

""

I

150

300

400

450

500

-J.I-I
I

~~
~ t:"--......

" "-

"\

I

.= CONDUCTION ANGLE
f =60 Hz

~ ..........

'"

I II

"\
1\

I
1.0

1.5

2.0

0.=300'\

1.5
15

VF.1NSTANTANEOUS FORWARD VOLTAGE (VOLTS)

50

100

75

........

~

1'-.. ........

\

0.5

1800

350

A-

I

1/

600\ 900\!10 0\ '

100

110

:: 0.0 7

0.01

~

\"\. I"\.

= 30 0

150

b-,.

FIGURE 5 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

z

0.0 1

50

.......

"\

\

o

..........

""\ '"\ 1"\l'\."' ."-

30

I

;'!'
z

\

60

• =CONDUCTION ANGLE
f =60 Hz

IF(AV). AVERAGE FORWARD CURRENT (rnA)

I
I

0.2

'"
~
=>

• r--

~~
~ I- 50

I

~

o

~!;: 70

/J

o. 3

~

~=>

'"~

--./L..
---I . ' - r--

0
~ ~ ...........
\"' ~ ~ ['--.,

o~

/ /

~

=>

u

~

~e...
3:: I.LJ 80

::::I 0..

I

~ O. 5

~~

100

~G 90

O. 7

I-

110
w

1/ V

TJ = moc

1.0

~

~

V

110

l./:

V

~

"-

"\

I'---.
de

r--......

r--...
1"-.."'

0
0
0
60 " " 90 ",," 180 " " "
115
150
175
100

IF(AV). AVERAGE FORWARD CURRENT (rnA)

FIGURE 6 - THERMAL RESPONSE

....

as
~

1.0
o.7
O.5

'"

~~ 0.3

_V

wZ

:::~ 0.2

~~

8JCIt)

~r--

:ff3

:t ~ o. 1

=r(t)8JC

~ ~ 0.01

N",

~ ~ 0.05

:5

z

-E

0.03
0.02

~

0.01
0.0001

0.0003 0.0005

0.001

0.003 0.005

0.01

0.03

0.05

t. TIME (SECONDS)

117

0.1

0.3

0.5

1.0

3.0

5.0

10

MCR201 thru MCR206 (continued)

TYPICAL CHARACTERISTICS
FIGURE 8 - GATE TRIGGER CURRENT

FIGURE 7 - GATE TRIGGER VOLTAGE
0.8

~

~ 100

0.7 ""-.

~

0

~
w

'"

'" ""-.

s""
0

>

w

I-

0.5

""'"

r;

>

25

5.0

MCR201

20

MCR204

50

75

100

TJ. JUNCTION TEMPERATURE 10C)

10

Iw

05

~

'"

125

thru

'"'"
ii'

"- "-25

10

~
~

1""-.

I"i MCR205. MCR206

-

I-

=>
'-'

0.4

0.3
-50

50
20

!O

"r--.

O.S

::::i

""

o~

eO

'3

........

2
-50

-25

:J

""~

\.

~

=>
'-'

~

§
!i!

VRRM

1.0

""-:::::~
......

0.7
0.5

-

........

I

A-

-25

25

50

75

ISO

""t--

~II

BLOCKING
STATE

----I

II
I

V~

VORM

LOAD

Mcf~
100

175

ON.STATE
IH

A--~o------V~------,

............ J

MCj205.

125

~~=;f;===~==,~+V.

-V', .-=E'
MCR201
thru ---: MCR204 -

~
0.3
-50

t

~V

.............

0

~
I-

100

FIGURE 10 - CHARACTERISTICS AND SYMBOLS
TYPICAL V - I CHARACTERISTICS

2.0

75

50

25

TJ. JUNCTION TEMPERATURE 1°C)

FIGURE 9 - HOLDING CURRENT

N

E===

MC R201 thru MC R204-

3.0

§

MCR205. MCR20S

o1

-75

ISO

......

125

ISO

TJ.JUNCTION TEMPERATURE 10C)

118

MCR235 SERIES (SILICON)

BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS

BEAM-FIRED
INTEGRATED GATE
THYRISTORS

. designed for high power industrial and consumer applications
in power and speed controls such as weiders, furnaces, motors, space
heaters and other equipment where cOl>trol of high current is needed.
In addition, the entire series employs the unique Beam·Fired gate
design to allow high di/dt and to reduce turn-on losses.

235 AMPERES RMS

100 thru 1500 VOLTS

• Critical Rate-of·R ise of On·State Current di/dt = 1000 Ampllls (Max)"
• Critical Exponential Rate - dv/dt = 200 VIllS (Min)
• low Switching losses at High Frequency
• Integrated Gate Permits Soft·Fire Gate Control
·Wlth 0.05 IJF and 2().ohm snubber circuit

MAXIMUM RATINGS
Rating

Symbol

Repetitive Peak Qff.stete Voltaga
ITJ =+12SoCI MCR235

Value

Volts

VORM(1)

-10
-20
-30

....,

VRRM

-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
Non-RepetitIVe Peak Reverse

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

-10
-20
-30
-40
-50
-70
-80
-90
-100
-110

-120
-130
-140
-150
Average FOIWard Current, TC .. 7SoC

IT(AVI

150

'TSM

1800

,2,

Clrclut FUSing Conllderatlons
IT J = -40 to +12S 0 CI

(1= 1Sms!
(t=83ms)

Amp
Amp
A2.

9500
13,000
15

W....

30

Watts

Peak Forward Gafa Current

IGFM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0

Volh

TJ

-40 to +125

Tot,

-40 to +150

"c
"c

1000

'b.

dl/dt

1000

Amp/J's

OperatIng JunctIon Temperature Range
Storage Temperature Range
MountIng Force
Cntlcal Rate-of-Rlse of On-State Current dUring
Tum-On Interval !Non-RepetttIlffJ Rattng)

rF
1'-..1

"

j-' : ; ) "I':';,..
E

\

~2'GATE
3. CATHOOE

,: . n
I

AL

SEATING PLANE

4. CATHOOE

K

PGFIAV}

Average Forward Gate Power

'1

TERMINAL 3

PGFM

Peak Forward Gate Power

r--;::. ~ -:::;-1

:;:'~.
~
fct4
_
.
.
~.~
~T
~M

{1aCO Conduction Anglel
Peak Surge Currant
lOne cycle, 60 Hz, T J = -40 to +12S 0 Cl

Wi!
"

200
300
400
500
600
720
840
960
to90
1200
1300
1450
1550
1650
1800

....,

R

~

r

Volts

VRSM

Block Voltage
ttS:S.Omsl MCR236

Unit

THERMAL CHARACTERISTICS
Characteriltic
Thermal Reststance, Junctton to CaM

119

T~P

I

0

NOTE,
N
1. OIM "K" APPLIES TO BOTH LEAOS
MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A 36.07 43.1B 1.420 1.700
B 18.54 29.59 0.730 1.165
C 12.45 15.24 0.490 0.600
0
4.72
4.85 0.186 0.191
0.25
2.54 0.010 0.100
E
0.35
0.48 0.014 0.019
F
2.54
0.100
H
J
6.22 19.30 0.245 0.760
K 202.69 206.12 7.980 8.115
7.62
L
- 0.300
M 200
500
'20·
50 0
N 15.49 28.58 0.610 1.125
Q
3.48
3.89 0.137 0.153
R
1.27
3.18 0.050 0.125
3.12
S
3.68 0.12l 0.145
T
4.72
7.92 0.186 0.312
U
1.27
1.78 0.050 0.070
V 2.92
3.56 0'.115 0.140
W
0.25
0.51 0.010 0.020
V
1.45
1.50' 0.057 0.059
0.64
1.65 0.025 0.065
Z
CASE 221).03
(1) Ratings apply for zero or negative gate voltage.
Devices shall not have a positive bias applied to
the gate concurrently with a negative potential
on the anode. Devices should not be tested with
a constant current source for forward or reverse
blocking capability such that the voltage applied
exceeds the rated block ing voltage_

MCR235 series (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic

Min

Typ

Max

Unit

IORM

-

-

15

mA

IRRM

-

-

15

mA

Forward "On" Voltage
(lTM ='220 A Peak. Pulse Width = 8.3 ms. Outy Cycle :51.0%)

VTM

-

-

.1.6

Volts

Gate Trigger Current

IGT

150

mA

Symbol ..

Peak ForWard Blocking Current

(Rated VORM. with 90te open. TJ

= 125°C)

Peak Reverse Blocking Current

(Rated VRRM. with gate open. TJ

(Anode Voltage

= 125°C)

= 6.0 V. RL = 3.0 Ohms)

Gate Trigger Voltage
(Anode Voltage = 6.0 V. R L

= 3.0 Ohms)

Holding Current
(Anode Voltage = 24 V. gate open. Initiating Current = 2.0 A)

.

Non·Triggering Gate Voltage
(Anode Voltage = Rated VORM. RL = 1000 Ohms. TJ = 1250 C)

Turn·On Time
(lTM = 50 A. Rated VORM)
Gate Pulse

{.10
0.1

VGT

-

-

3.0

Volts

.IH

-

20

500

mA

VGOM

0.15

-

ton

-

2.0

-

p.s

-

-

10

p.s

200

-

-

VII's

'! open circuit, 20 Ohm Source
IJ,S

(Max) rise time

Gate Pulse Width Necessary to Trigger
Gate Pulse

.volts

{500 V open circuit, 5.0 Ohm Source
0.1 }lS (Max) rise time

Critical Exponential Rate of Rise

dv/dt

(VORM = .Rated VORM. gate open. TJ = 125°C)

FIGURE 1 - SQUARE WAVE

CURRENT DERATING
(f = 50 to 400 Hz)
FIGURE 2 - SINE WAVE

u
o
w

j

'"

110

~

r--;~~~~~+-~r--+~~~

:

90r----+~~~~,,~~-+~~4_----~--_+----~

5
~
'" 70r-~-r--~r--\-f~~r-~~----~~-+--~
~
~

iT(AV). AVERAGE DN.sTATE FORWARD CURRENT (AMP)

iT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)

120

MCR235 series (continued)

FORWARD POWER DISSIPATION
(f = 50 to 400 Hz)

FIGURE 3 - SQUARE WAVE

FIGURE 4 - SINE WAVE
400'--"--'--TT--r-.-'--"r--'~-'

i
::i

i

~ 300

300f--+--f--+--P

;0

~

~

W

W

to

ffi

to

«

2ool---+--I---7'f--~4F:TS4-..."""'t---+----1

~

~
~

>
«
~

200 f--+--t-+----It'--------,t<----7'+--t---+-----I

~

~

~ 100f--+-~~~~~~t_-~

~ 100f--+~~~~4---t_-­

~

~

:>
«
a:::

:>
«
a:::
50

100

150

200

50

IT(AV), AVERAGE ON·STATE FORWARD CURRENT (AMP)

100

FIGURE 5 - MAXIMUM ON-8TATE
CHARACTERISTICS

1000

V

1000

/'

800
600

/

V

400

..:
~ 300
S

/

I-

~

/

II

200

TJ -125°C

G
~

/

«

~

:;:

100

'"

80

r-

I

60
40
30
20

o

1.0

150

IT(AV), AVERAGE ON·STATE FORWARO CURRENT (AMP)

3.0

20

4.0

VTM, MAXIMUM FORWARD VOLTAGE (VOLTS)

121

5.0

200

MCR235 series (continued)

FIGURE 6 - TRIGGERING CHARACTERISTICS
10

~ 3.0~=R=+rn+m=+:h

...5 2.01r-~~~~++~~

iii
~

G

~ ::~I=t=~E~

'"

s@ U•• r----r-• ..-

VG. GATE VOLTAGE (VOLTS)

FIGURE 7 - THERMAL RESPONSE
0.14

-

0.12

.-

0.10
O.OB

v

0.06

.--

0.04

.;'

.-

.-

0.02

o

0.001

O.ODZ

0.DD5

0.01

0.02 0.0l

0.D5 0.D7 0.1

0.2

0.3

t. TIME

122

0.5 0.7 1.0
I~

2.0

3.0

5.0 7.0 10

20

30

50

70 100

MCR23SA
MCR23SB
MCR23SC

SERIES (SILICON)
SERIES
SERIES

Advance InforIDation.
BEAM-FIRED
INTEGRATED GATE
THYRISTORS

BEAM-FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS

235 AMPER ES RMS

... designed for high-current, high-frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•

•
•
•
•

Low SWitching Losses - @ 3.0 I'S with 30 I'S Pulse, Ip = 100 A
MCR235A Series = 3.0 Volts
MCR235B Series = 6.0 Volts
MCR235C Series = 6.0 Volts
Critical Rate-of-Rise of On·State Current di/dt = 1000 Amp/l's (Max)'
Critical Exponential Rate - dv/dt = 200 VII's (Min)
Integrated Gate Permits Soft-Fire Gate Control
Fast Turn·Off Time - 10 to 20 I's

·With 0.05 #F and 20 ohm snubber circuit,

MAXIMUM RATINGS
Repetitive Peak Off-State
Voltage (TJ = +125o CI

VORM,VRRM
Volts

Device Type

Non-Repetitive Peak

Reverse Blocking Voltage
VRSM

Volts

Tu rn-Off Time"" 10 IlS Max
MCR235A

-10
-20
-30
-40
-50
-60

Turn-Off Time = 15

MCR235B

,",S

TERMINAL 2

100
200
300
400
500
600

200
300
400
500
600
700

Max

-10
-20
-30
-40
-50
-60
-70
-80

JJO~~f
W
f.:+T

TERMINAL 3

100
200
300
400
500
600
700
800

200
300
400
500
600
700
800
900

100
200
300
400
500

200
300
400
500
600
700
800
900
1000
1100

Turn-Off Time - 20 IlS Max

MCR235C

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100

MM

T~P

o.

~TI

600

700
800
900
1000

N
I DIM "K" APPLIES TO BOTH LEADS

MILLIMETERS
DIM MIN MAX
A 36.07 43.18
B 18.54 29.59
C 12.45 15.24
D
4.72
4.85
E
0.25
2.54
0.48
F
0.35
H
2.54
J
6.22 19.30
K 202.69 206.12
L
7.62
M 2D"
50·
N 15.49 28.58
Q
3.48 3.89
R
1.27 3.18
S
3.12
3.68
T
4.72
7.92
1.27
1.78
U
V
2.92
3.56
W
0.25
0.51
Y
1.45
1.50'
Z
0.64
1.65

INCHESMIN MAX
1.420 1.700
0.730 1.165
0.490 0.600
0.186 0.191
0.010 0.100
0.014 0.019
0.100
0.245 0.760
7.980 8.115
0.300
20·
50·
0.610 1.125
0.137 0.153
0.050 0.125
0.123 0.145
0.186 0.312
0.050 0.070
0.115 0.140
0.010 0.020
0.057 0.059
0.025 0.065

CASE 220·03
This is advance information on a new introduction and specifications are subject to change without notice.

123

MCR235A series, MCR235B series, MCR235C series (continued)

MAXIMUM RATINGS
Rating

Average Forward Current, T C = 60°C
(180° Conduction Angle)
Peak Surge Current

(One Cycle, 60 Hz, TJ = -40 to +125 0 C)
Circuit Fusing Considerations

Symbol

Value

Unit

IT(AV)

150

Amp

ITSM

1600

Amp

12t

10,500

A2s

(TJ = -40 to +125 0 C, t = lo5-8.3ms)
Peak Forward Gate Power

PGFM

15

.Watts

PGF(AV)

3.0

Watts

Peak Forward Gate Cuhe'nt

IGFM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0

Volts

TJ,

-40 to +125

°c

T stg

-40 to +150

°c

-

looO±200

Ibs

di/dt

200
1000

Amp/itS

Average Forward Gate Po",:,er

Operating.Junction Temperature Range
Storage Temperature Range

Mounting Force
C:ritical Rate-af-Rise of On-State Current - Repetitive
Non-Repetitive

THERMAL CHARACTERISTICS
Max

Characteristic

0.13

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Typ

Max

Unit

Peak Forward Blocking Current
(Rated VORM, with gate o"en, TJ = 125°C)

Symbol
IORM

-

-

15

mA

Peak ,Reverse Blocking Current
(Rated VRRM, with gate open, TJ = 125°C)

IRRM

-

-

15

mA

Forward "On" Voltage
(iTM=220A Peak, PulseWidth=8.3 ms, Outy Cycle=~l.O%, TJ =25 0 C)

VTM

-

-

1.85

Volts

Gate Trigger Current
(Anode Voltage ='6.0 V, RL = 3.0 Ohms)

IGT

-

-

150

mA

Gate Trigger Voltage
(Anode Voltage =,6.0 V, RL = 3.0 Ohms)

VGT

-

-

3.0

Volts

IH

-

50

500

mA

VGOM

0.15

-

-

-

Characteristic

Holding CUrrent
(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 AJ
Non· Triggering Gate Voltage
(Anode Voltage = RatedVORM, RL = 1-000 Ohms, TJ = 125°C)
Circuit Commutated Turn-Off Time

(VR = 50 V(Min); Rated VORM, TJ = +125 0 C,
diR/dt = 20 A/I's; Repetition Rate = 1.0 pps;
ITM = 1,50 A dv/dt = 20 VII'S)
Transient Turn·On Voltage
(VORM = 100 V, ITM = 200 A, PW = B.O I'S,
Gate Oriv,e = 600 mA, rise = O.ll's, test point = 4.0 I's)

Min

Volts

tq
MCR235A
MCR235B
MCR235C
MCR235A
MCR235B
MCR235C

Critical Exponential R'ate of Rise'
(Rated VORM, gate open, TJ = 125°C)

VTO

dv/dt

124

ItS

-

-

10
15
20

-

5.0
8,0
8.0

Volts

-

200

-

-

VII'S

MCR320 SERIES

(SILICON)

G

A

O>----1.~~--O

THYRISTORS

K

7 AMPERES RMS
5()'600VOlTS

SILICON CONTROLLED RECTIFIERS
· .. designed primarily for industrial applications. Ideally suited for
capacitor-discharge ignition, systems, power switching and power control.
•

Glass Passivated for High Reliability

•

low Profile Hermetic Package for Tight
Printed Circuit Board Applications

•

High di/dt Capability

MAXIMUM RATINGS
Symbol

Rating

Peak Reverse Blocking Voltage

Value

MCR320 -1
-2
-3

Unit
Volts

VRRM
25
50
100
200
300

--4

-5
~

400

-7
--8

500
600

PIN I. CATHODE
2 GATE
3. ANODE

N

Forward Current RMS ISee Figures 4 & 5)
IAII Conduction Angles)

'T(RMS)

7.0

Amps

Peak Forward Surge Current, T A - 2SoC
(112 cycle, Sine Wave, 60 Hz)
Circuit Fusing Considerations, TA = 25u C

'TSM

80

Amps

I"t

0.15

A 2s

PGM
PGIAV)
IGM

10
0.5
10

Watts

VGM
TJ
Tsta

4.0
-4010+100
-40 to +150

Volts

It· 1.0 to 8.3 ms)
Forward Peak Gate Power. TA

= 2SoC

Forward Average Gate Power, TA = 25°C
Forward Peak Gate Current, T A
(300 I'S,

= 2SoC

Watt

Amps

120 PPS)

Reverse Peak- Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range

°c
°c

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

RSJC

Thermal Resistance. J,unction to Ambient

ASJA

5.0
150

°CIW
°CIW

Charact.. istic

MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
F
0.406 0.483
G 4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
45 0 NOM'
M
P
1.27
11
900 NOM
R .2.54

DIM
A
B
C
D
E

All JEOEC dimensiDnsand notesapply.

CASE 79-02
TO-39

125

MCR320 series (continued)

ELECTRICAL CHARACTERISTICS
Max

Min

Svmbol

Characteristic
Peak Forward Blocking Voltage (1)

Unit
Volts

VORM
MCR320-1
MCR320-2
MCR320-3
MCR320-4
MCR320-S
MCR320--6
MCR320-7
MCR320-8

25
50
100
200
300
400
,500
600

-

-

Peak Forward Blocking Current
(Rated VORM @TC = l00DC)

IORM

-

1.0

mA

Peak Reverse Blocking Current

IRRM

-

1.0

mA

VTM

-

2.6

Volts

IGT

-

20

mA

VGT

-

I.S

Volts

VGO

0.1

-

Volts

IH

-

20

'rnA

(Rated VRRM@TC = l00DC)
Forward "On" Voltage (2)
(lTM = 30 A peak @TC = 2So C)
Gate Trigger Current (Continuous de) (3)
(Anode Voltage = 12 Vdc. RL = 30 Ohms, TC

= 2S o C)

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 12 Vdc, RL = 30 Ohms, TC

= 2S oC)

Gate Non-Trigger Voltaga
(Anode Voltage = Rated VORM, RL

= 30 Ohms, TC = 10oDC)

Holding Current

(Gate Open, TC

= 2S oC)

(1) Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the

anode.

When checking forward or reverse blocking capability, thyristor devices should not be tested with a constant current source in a

manner that the voltage applied exceeds the rated blocking voltage.

(2) Forward current applied for 1.0 ms maximum duration, duty cycle ";;1.0%.

FIGURE 1 - TYPICAL PULSE TRIGGER CURRENT
300

c

.sI~

\

"'
::0
w

30

.

~

~

30

II IIII

1

OFF-STATE VOLTAGE = 12 V

...."'

100
70
50

'-'

III

FIGURE 2 - TYPICAL GATE TRIGGER CURRENT

........

r-......

........

::0

........
\

ffi

I-

1,·0

1.0

2.0

5.0
PULSE WIDTH

10
(m~

20

........

'"'

~

......

~ 0.5

.......

!::

100DC
0.5

r-.... i'-

I-

25JC

5.0

10

'"'" 7.0

TJ= ...\l)OC

......... r--.

10

3.0
0.2

20

~

OIFF-sfATE1VOLtAGEI'12 IV

50

100

200

0.3
-40

-20

20

40

so

TJ,JUNCTION TEMPERATURE (OCI

80

r---.
100

MCR320 series

(continued)

FIGURE 4 - AVERAGE CURRENT DERATING
(REFERENCE. CASE TEMPERATURE)

FIGURE 3 - MAXIMUM ON·STATE POWER DISSIPATION
100

~

70

~

6.0

.
>-

'"~

~~
~ ~ r-....
'"w
~ ~ :---......
'":::> 80
~ ............

w

5.0

"- ~"

~

4.0

>

30

iii>-

;;;

1.0

~

::i

w

,,~

0:=

1.0

<>~

70

1.5

10

2.5

5.0

>~
.,;

'".<1
>-

o

0.5

Or-.

10

90

~
w

80

'":::>

70

~

60

iii>-

1.0

0

of-1

0

~

:Ii
;5

40

30
20

o. 9

'"~

0.4
ITlAV), AVERAGE ON·STATE CURRENT (AMP)

~

>

o.8

""'- r--..

o. 7

~

~

0.1

'" "

-

~"fANGLE

0.2

0.3

0.4

0.5

"

0.6

0.7

OFF·STATE VOLTAGE = 12 V

I'-:-.... t-.....

I'
.........

w

o. 6

........

r-......

0

I'--

!'-..
!""';;;;

f-

7. 0

>'"
O. 5
-20

5.0

"~CONDUCTION

\ ''-': ~'\

o

0

!;(

-40

4.5

FIGURE 8 - TYPICAL HOLDING CURRENT

t-.....

>~

4.0

0

'"w

'"~

3.5

~ ~ k--12O•
r\ ~ ~ l-- k 18O•
90· , /
\ ~~
' - de

0

1'....

""" ........

3.0

ITIAV), AVERAGE ON·STATE CURRENT lAMP)

OFF·STATE VOLTAGE =12 V

......

~.

6~.-

40

20

w

2.5

R8JA = 150·CIW

0:::300\

>-

.,;

Or---..

2.0

'I ~ ~

FIGURE 7 - TYPICAL GATE TRIGGER VOLTAGE

~

1.5

-~

0

30

1.

180·

~

as 50

50

0

"'-

~

FIGURE 6 - AVERAGE CURRENT DERATING (REFERENCE.
AMBIENT TEMPERATURE, TYPICAL P.C. BOARD MOUNTING)

:::>

iii>-

120·

:-.......

IFIAV), AVERAGE FORWARD CURRENT (AMP)

100

'"~

""

~

CONDUCTION ANGLE

FIGURE 5 - AVERAGE CURRENT DERATING (REFERENCE:
AMBIENT TEMPERATURE 4 in. sq. P,C, BOARD)

'"

"" ......

~

90·

IFIAV), AVERAGE FORWARD CURRENT lAMP)

!;(

"~CONDUCTIDN

60·

50

0
0

w

~

"- "-'\

300

~ 60

0::

~

~"fANGLE

0

~

.'"
.
.

~

90

20

40

60

80

5. 0

100

-40

TJ, JUNCTION TEMPERATURE (·C)

-20

20

40

60

TJ, JUNCTION TEMPERATURE (.C)

127

80

100

MCR320 series (continued)

FIGURE 9 - MAXIMUM ON·STATE CHARACTERISTICS

FIGURE 10 - MAXIMUM NON·REPETITIVE SURGE CURRENT

100

100

0

v

./ V

0

b

;;:

0

~_

7. 0

~=>

50

TJ' 100°C

If

...

,/

~

V

'"

< 20
~

250C

"

~

i"'-

TJ'100oC
t· 60 Hz

iil

f-

'I'

~u~e is ~receded and followed by

rated current and voltage.

I I I 1'1111
2.0

3.0

5.0 7.0 10
20
NUMBER OF CYCLES

30

50

70 100

/I

~ 3. 0

III
I
1/

2. 0

o
=>
"'

5l

~ 1. 0
z
~ O.7
!!O
.':f. o. 5

FIGURE 11 - CHARACTERISTICS AND SYMBOLS

t-----+

ON.STATE
IH
~+

TYPICAL I·V CHARACTERISTICS
VRRM

l-

VORM
A---Q~---V~----,

I
I

o. 2

BLOCKING
STATE

-V~~,::::::~~::::::::~:~+~

I

o. 3

o. 1
o

..........

~ 30

h _

r-......

I

w

~

r-....

w

10
1.0

~ 5.0

:-lCYCLE

'-'

~

z

--

~

j V

0

~

70

.......:::: V

0

I-

Ii

LOAD

1/,
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

vF,lNSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

FIGURE 12 - THERMAL RESPONSE
1. 0

O. 7
O.5
~c
<[ w

O. 3

~ ~

"',.

O. 2

~ ~

O. 1

,.!::!

1-",
1-0

--

V

41JC(t) • 'It} 0 RUC

~ ~ 0.0 7

~ ~
~~

0.05
b.03

0.02 0.0 1
0.1

i
0.2

0.5

1.0

2.0

5.0

10

20
t,TIMElms)

128

50

100

200

. 500

1.0 k

2.0 k

5.0 k

MCR380 SERIES (SILICON)

BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS

BEAM-FIRED
INTEGRATED GATE
THYRISTORS

· .. designed fer high pewer industrial and censumer applicatiens in
pewer and speed centrels such as welders, furnaces, moters, space
heaters and ether equipment where centrel 'If high current is needed.
In additien, the entire series empleys the unique Beam-Fired gate
design t<;l allew high di/dt and to reduce turn-en lesses.
• Critical Rate-ef-Rise 'If On-State Current di/dt ~ 1000 Amp/p.s (Max)'

380 AMPERES RMS
100 thru 1500 VOLTS

• Critical Expenential Rate - dv/dt ~ 200 V/p.s (Min)
• Lew Switching Lesses
• Integrated Gate Permits Seft-Fire Gate Centrel
·With 0.05 IJF and 20·ohm snubber circuit.

MAXIMUM RATINGS
Rating

Svmbol

Repetitive Peak Oft-State Voltage
ITJ .. +12SoC) MCR380

VRRM

-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
Non-Repetitive Peak Reverse
Block Voltage
(t ~5.0 msl MCR380

Value

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

-70
-80
-90
-100

-110
-120
-130
-140
-150
Average Forward Current IT C = 7T'CI

t!
UoJ

CirCUit

ITJ = -40 to +12SoCI

Peak FOfWard Gate Power
Average Forward Gate Power

ITSM

3500

Amp

Peak Forward Gate Current
Pellk Reverse Gate Voltage
Operating Junction Temperature Range

Storage Temperature Range

15
3.0

Watts
Watt

IGFM

4.0

Amp

VGRM

5.0

Volts

TJ

-40 to +125

THO

-40 to +150

°c
°c

Mounting Force
CritICal ASle-of-Rise of On-Stete Current dUring
Turn-On Interval INon-Repetltive Rating)

A2.

32,000
50,000
PGFM

dl/dt

I

"l~4.
-( .~: g~i~DDE

SEATING PLANE

TER~~ S~"

I,

MILLIMETERS

Amp

PGFIAVI

E

STYLE l'
PIN.!. ANODE

CATHODE

0M~

TYP
: /
NOTE
)(N
I DIM "K" APPLIES TO BOTH LEADS

250

(t= 1.5ms)
(t= 8.3ms)

'

";;r='

J

tT(AV)

12,

Fusing ConSiderations

IL
f' "

fi¥3 ft.;:,
,):~n

(1800 Conduction Anglel

Peel< $urgeCurrent
(One cycle, 60 Hz, T J = -40 to +12S o CI

C

TERMINAL 1

200
300
400
500
600
720
840
960
1060
1200
1300
1450
1550
1650
1800

-so

lIt r~ ~ c4'
(I

Volts

VRSM

-10
-20
-30
-40
-50

Unit

Volts

VDRM(1)

-10
-20

1000

lb.

1000

Amp/j.ls

THERMAL CHARACTERISTICS
Char-=teristic
Thermal Resistance, Junction to Case

129

INCHES

DIM MIN MAX
MIN
A 36.07 43.18 1.420
B 18.54 29.59 0.730
C 12.45 15.24 0.490
D
4.72
4.85 0.186
E
0.25
2.54 0.010
F
0.35
0.48 0.014
H
1.54
0.100
J
6.22 19.30 0.245
K 202.69 206.12 7.980
L
7.62
M 200
50 0
20 0
N 15.49 28.58 0.610
n 3.48 3.89 0.137
R
1.27
3.18 0.050
S
3.12
3.68 0.123
T
4.72
7.92 0.186
U
1.27
1.78 0.050
V
2.92
3.56 0.115
W 0.25
0.51 0.010
Y
1.45
1.50 0.057
Z
0.64
1.65 0:025
CASE 220·03

MAX
1.700
1.165
0.600
0.191
0.100
0.019
0.760
8.115
0.300
50 0
1.125
0.153
0.125
0.145
0.312
0.070
0.140
0.020
0.059
0.065

(1) Ratings apply for zero or negative gate voltage_
Devices shall not have a pOSitive bias applied to
the gate concurrently with a negative potential
on the anode_ Devices should not be tested with
a constant current source for forward or reverse
block ing capabi lity such that the va Itage applied
exceeds the rated blocking voltage_

MCR380 series (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Peak Forward B)ocking. Current
(Rated VORM, whh gate open, T J = 1250 C)

IORM

-

-

15

mA

Peak Reverse Blocking' Current
(Rated VRRM, with gate open, TJ = 1250 C)

IRRM

-

-

20

mA

Forward "On:' Voltage
(ITM = 1000 A Peak, Pulse Width = B.3 ms,Outy Cycles 1.0%)

VTM

-

-

.2.4

Volts

Gate Trigger Current

IGT

-

-

150

mA

VGT

-

-

3.0

Volts

IH

-

20

500

mA

VGOM

0.15

-

ton

-

2.0

-

!'s

-

-

10

!"

200

-

-

Characteristic

(Anode Voltage = 6.0 V, RL = 3.0 Ohms)
Gate Trigger Voltage
(Anode Voltage =.6,0 V,.RL = 3.0 Ohms)
Holding Current

(Anode Voltage = 24 V, gate open, Initiating Current = 2.0 A)
Non·Triggering Gate Voltage
(Anode Voltage = Rated VORM, RL = 1000 Ohms, T J = 1250 C)
Turn-On Time

Volts

(ITM = 50 A, Rated VORM)
Gate Pulse

{10 V ?pen circuit, 20 Ohm Source
. 0.1 !,s (Max) rise time

Gate Pulse Width Necessary to Trigger
{5.0 V open circuit, 5.0 Ohm Source
Gate Pulse
0.1 !,S (Max) rise time
dv/dt

Critical Exponential Rate of Rise

V/!'s

(Rated VORM, gate open, T J = 125°C)

CURRENT DERATING
(f

= 50 to 400 Hz)

FIGURE 2 - SINE WAVE

FIGURE 1 - SQUARE WAVE

'"
'"
'"
~

~i= 11O~--".:-?oo.:-""<~=----+--~-+---1
~
a I-

o

~

110~~~~~~~~~---+~--

ffi

~

1:i

~ 90~---+~~~~~~~~----~.---~--~----~

'<.l"

I-

1800

,~ 90~---+~\-~~--~~~----~----~---+----~
;:3

5
'"::>
'"~

00

CONDUCTION ANGLE

'"
'~"
'~"
::>

70~--~---\t-~~~\-t---~~--+---~~--4
0'= 30 0
500~---L--~10~O~--~~~~--~--~~~~--~400

IT(AV), AVERAGE ON·STATE FORWARD CURRENT lAMP)

70r---~----f\---f\---~\-~'---+----+----4

ITIAV), AVERAGE ON·STATE FORWARD CURRENT (AMP)

130

MCR380 series (continued)

FORWARD POWER DISSIPATION
(f

= 50 to 400 Hz)

FIGURE 3 - saUAR!' WAVE

i

~OOOr----r----r----r----T7---r

80°1--__---I--____1---__---I--__+--I--+-+-_____

Ci

Ci

ffi

FIGURE 4 - SINE WAVE

3:
~

--t 3600 I-

rm

'~"" 2001---+~'---7f7'~£f------I---

FZ1

-1,,1-

"'"

r---"""~~~~-+----+-----+ CONOUCTION ANG LE

:>
~

~ D~~~__~~__~__~~__~__~~__~__~

o

~

m

~

200

100

IT(AV). AVERAGE ON-STATE FORWARO CURRENT (AMP)

IT(AV). AVERAGE ON-STATE FORWARO CURRENT (AMPI

FIGURE 5 - MAXIMUM ON-STATE VOLTAGE

3000

V

200 0

V

V
1000

80 0

600

/

TJ: 125 0 C

/

0
0

I

I

0

I

/

100
80
60
40

30

o

I

1.0

2_0

3.0

4.0

VTM. MAXIMUM FORWARO VOLTAGE (VOLTS)

131

5.0

400

MCR380 series (continued)

FIGURE 6 - TRIGGERING CHARACTERISTICS

!EU.• ,-r-.tT-

1.0
VG. GATE VOLTAGE (VOLTS)

FIGURE 7 - THERMAL RESPONSE
0.14
0.12
~

'" _
~

0.10

!i!~

::

~

zw
wu

0.08

- -

~ ~ 0.06

"'w

~~ 0.04

§

-I--

0.02

o

0.001

0.002

0.005

0.01

-

0.02

~

-

I-

i-"'"

0.05

0.1

0.2

0.3

t. TIME I,)

132

0.5 0.7 1.0

2.0

3.0

5.0 7.0

10

20

30

50

70 100

MCR380B SERIES (SILICON)
MCR380C SERIES
MCR380D SERIES
Advance Infor:rn.ation
BEAM·FIRED
INTEGRATED GATE
THYRISTORS

BEAM·FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS
... designed for high·current. high·frequency applications in inverters,
ch.oppers, cycloconverters, induction heating and high·frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•

•
•
•
•

380 AMPERES RMS

Low Switching Losses - @ 3.0 ps with 30 ps Pulse, Ip = 150 A
MCR380B Series = 3.0 Volts
MCR380C Series = 6.0 Volts
MCR380D Series = 6.0 Volts
Critical Rate·of·R ise of On·State Current di/dt = 1000 Amp/ps (Max)'
Critical Exponential Rate - dv/dt = 200 VIps (Min)
Integrated Gate Permits Soft·Fire Gate Control
Fast Turn·Off Time - 15 to 30 ps

·With 0.05 J,LF and 20 ohm snubber circuit.

MAXIMUM RATINGS

Device Type

Rapetitive Peak Off·Stata
Voltaga (TJ = +125o C)
VORM, VRRM
Volts

Non-Repetitive Peak
Reverse Blocking Voltage
VRSM
Volts

100
200
300
400
500
600
700
800

200
300
400
500
600
700
800
900

100
200

200
300
400
500
600
700
800
900
1000
1100

Turn·Off Time = 15 ,",5 Max

MCR380B

-10
-20
-30
-40
-50
-60
-70
-80

Turn-Off Time = 20 IJS Max

MCR380C

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100

300
400

500
600
700
800
900
1000

Turn-Off Time· 30 lIS Max

MCR380D

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120

100
200
300

400
500
600
700
800
900
1000
1100
1200

200
300

400
500
600
700
800
900
1000
1100
1200
1300

MILLIMETERS
DIM MIN MAX
A 36.07 43.18
8 18.54 29.59
C 12.45 15.24
4.72
4.85
0
0.25
2.54
E
0.35
0.48
F
H
2.54
J
6.22 19.30
K 202.69 206.12
L
7.62
M 200
500
N 15.49 28.58
Q
3.48
3.89
R
1.27
3.18
S
3.12
3.68
T
4.72
7.92
U
1.27
1.78
V
2.92
3.56
W
0.25
0.51
Y 1.45
1.50'
Z
0.64
1.65

INCHES
MIN MAX
1.420 1.700
0.730 1.165
0.490 0.600
0.186 0.191
0.010 0.100
0.014 0.019
0.100
0.245 0.760
7.980 8.115
0.300
200
50 0
0.610 1.125
0.137 0.153
0.050 0.125
0.123 0.145
0.186 0.312
0.050 0.070
0.115 0:140
0.010 0.020
0.057 0.059
0.025 0.065

CASE 220·03
This is advance information on a new introduction and specifications are subject to change without notice.

133

MCR380B series, MCR380C series, MCR380D series (continued)

MAXIMUM RATINGS
Symbol

Value

Unit

ITIAV)

250

Amp

Peak Surga Current
lOne cycle, 60 Hz, T J = -40 to +125 0 C)

ITSM

3500

Amp

Circu it Fusing Considerations
ITJ = -40 to +125 0 C, t = 1.5 - 8.3 ms)

12 t

50,000

A2s

Rating
Average Forward Current, T C - 60°C
1180° Conduction Angle)

Peak Gate Power

Average Gate Power
Peak Forward Gate Current
Peak Reverse Gate yoltage .,...
Operating Junction Temperature Range

Storage Temperature Range
Mounting Force

Critical Rate-ot-Rise of On-State Current - Repetitive
Non-Repetitive

PGFM

15

Watts

PGFIAV)

3.0

Watts

IGFM

4.0

Amp

VGRM

5.0

Volts

TJ

-40 to +125

°c

T stg

-40 to +150

°c

-

l000±200

lb.

di/dt

200
1000

Amp/j!s

THERMAL CHARACTERISTICS
Max

Characteristic

Thermal

R~istance.

Junction to Case

0.095

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Peak Forward Blocking Current
I Rated VORM, with gate open, T J = 125Dc!

IORM

-

-

15

mA

Peak Reverse Blocking Current
IRated VRRM, with gate open, TJ = 1250 C)

IRRM

-

-

15

mA

Forward "On" Voltaga
IITM = 1000 A Peak, Outy. Cycle S 0.01", TJ = 25°C!

VTM

2.65

Volts

Gate T r ' - Current
IAnode Voltaga = 6.0 V, RL = 3.0 Ohms!

IGT

150

mA

Gate Trigger Voltage
IAnode Voltage = 6.0 V, RL = 3.0 Ohms)

VGT

3.0

Volts

50

500

mA

0.15

-

-

Volts

-

-

15
20
30

-

-

Volts

-

-

5.0
8.0
8.0

200

-

-

V/j!s

Characteristic

Holding Current
IAnode Voltaga = 24 V, gate open, Initiating Current ='2.0 A)

IH

Non·Triggering Gate Voltaga
IAnode Voltaga = Rated VORM, RL = 1000 ohms, TJ = 125°C)
Circuit Commutated Turn·Off Time
IVR = 50 V IMin); Rated VORM, TJ ~'~1250C;
diR/dt = 20 A/jJs, Repetition Rate = 1.0 pps,
ITM = 250 A; dv/dt = 20 V/j!s)

Transient Turn-On Voltage

= 100 V, ITM = 300 A, PW = 8.0 j!S,
Gate Drive = 600 mAo rise = 0.1 ,",5, test point = 4.0 j.ls)

IVORM

VGOM
tq

MCR3BOB
MCR380C
MCR3800
MCR380B
MCR380C
MCR3800

Critical Exponential R ate of R iSB
IRated VORM, Gate open, TJ = 125°C)

VTO

dv/dt

134

-

JJS

-

MCR406-1 (SILICON)
thru

MCR406-4

PLASTIC 81 LICON
CONTROLLED RECTIFIERS
PLASTIC THYRISTORS
· .. Annular PNPN devices designed for high volume consumer
applications, such as temperature, light, and speed control, process
and remote control, and warning systems where reliability of opera·
tion is important. Sensitive gate trigger permits operation as a switch
directly from low level sensors.

4.0 AMPERES RMS
30 thru 200 VOLTS

• Annular Passivated Surface for Reliability and Uniformity
• True Power Rated - 4.0 Amp@Tc

=

97 0 C

= 200!lA @ T A = 25 0 C

•

Low Level Gate Characteristics - IGT

•

Higher Surge Current Rating - ITSM = 30 Amp

•

Flat, Rugged, Thermopadtt Construction - for Low Thermal
Resistance, High Heat Dissipation, and Durability

MAXIMUM RATINGS
Rating

Symbol

Peak Reverse Blocking Voltage

(Note 1)

MCR40.6-1
MCR406-2
MCR40.6-3
MCR40.6-4

Forward Current RMS
(All Conduction Angles)

Peak Forward Surge Current
(112 cycle, 60. Hz, T J = -40. to +11 o.°C)
Circuit Fusing Considerations

(T J

Unit
Volts

VRRM

30
60.
10.0.
20.0.
4.0.
Amp

ITSM
30.
12 t

A 2s
3.6

PGFM

0..5

Watt

PGF(AV)

0.1

Watt

Peak Gate Current - Forward

IGFM

0..2

Amp

Peak Gate Voltage - Reverse

VGRM

6.0.

Volts

TJ

-40. to +110.

°c

T stg

-40. to +150.

Average Gate Power - Forward

Operating Junction Temperature

Range

Storage Temperature Range
Mounting Torque (6-32 screw) (Note 2)

STYLE 1:
PIN 1. CATHODE
2. ANOo.E
3. GATE

Amp

IT(RMS)

=-40. to 11 o.°C, t =1.0. to 8.3 ms)

Peak Gate Power - Forward

Value

-

8

°c

in. lb.

MILLIMETERS
MIN
MAX
A 16.13 16.38
B
12.57 12.83
C
3.18 3.43
D
1.09 1.24
F
3.51 3.76
4.228SC
G
H
2.67 2.92
J
0.813 0.864
15.11 16.38
K
M
90 TYP
n
4.70 4.95
R
1.91 2.16
U
6.22 6.48

DIM

INCHES
MIN MAX
0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255

CASE 90.·0.5

NOTE:
1. LEADS WITHIN .005" RAD OF TRUE
POSITION (TP) AT MMC

135

MCR406-1 thru MCR406-4 (continued)

ELECTRICAL CHARACTI;RISTICS (TC = 25°C unless otherwise noted, RGK = 1000 Ohms)
Characteristic

Min

Symbol

Peak Forward Blocking Voltage
(TJ = 110o C) Note 1

Typ

Max

Unit
Volts

VORM
MCR406-1
MCR406-2
MCR406-3
MCR406-4

Peak Forward Blocking Current
(Rated VORM @TJ= IlOo C)

IORM

Peak Reverse Blocking CUrrent
(Rated VRRM @TJ = IlOo C)

IRRM

Forward "On" Voltage
IITM = 4.0 A peak)

VTM

Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vde, R L = 100 Ohms)

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vde, R L = 100 Ohms)

VGT

(Anode Voltage = Rated VORM, RL = 100 Ohms, T J = 110°C)

-

-

-

100

-

-

100

-

-

2.2

-

-

200

-

-

0.8

0.2

-

-

3.0

jlA
jlA
Volts
jlA
Volts

VGO

Holding Current
(Anode Voltage = 7.0 Vde)

30
60
100
200

mA

IH

Turn-On Time

ton

Turn-Off Time

toff

Forward Voltage Application Rate

Circuit Dependent. Consult Manufacturer.
V/jls

dvldt

IT J = 110o C)

-

10

-

Thermal Resistance, Junction to Case

9JC

-

-

2.0

°CIW

Thermal Resistance. Junction to Ambient

9JA

-

-

50

°C/W

NOTES:
1.

VORM and VRRM for all types can be applied on a continuous
de basis without Incurring damage. Ratings apply for zero or

negative gate voltage but positive gate voltage shall not be applied
concurrently with a negative potential on the anode. When checking forward or reverse blocking capability. thyristor devices should
not be tested with a constant current source in a manner that
the voltage applied exceeds the rated blocking voltage.

FIGURE 1 - CASE TEMPERATURE versus CURRENT
w

'"'"
~
'"~
....'ww"'

70

j

'"x

'"'
"
....'< I'-..

~ 10

00(

..........

OEVICE MOUNTEO OJ
HEAT SINK

>

0.0 2

I

PRIOR TO SURGE
SCR OPERATED AT
RATEO LOAD CONDITIONS
TJ 0 -IOoC TO +110.C
PULSE REPETITION
FREDUENCY 0 60 Hz -

20

10

30

40 50 60

NUMBER OF CYCLES

VF.INSTANTANEOUS FORWARD "ON" VOLTAGE IVOLTS)

FIGURE 6 - THERMAL RESPONSE
1.0

i---

~

...... .... i'"

VI
0.1

10

1.0

t.TIMElms)

137

100

1000

10.000

MCR406-1 thru MCR406-4 (continued)

FIGURE 7 - TVPICAL GATE TRIGGER CURRENT

FIGURE 8 - TYPICAL GATE TRIGGER VOLTAGE'
10

30

E 10

..

VAKI=7.0~~

"-

'":::>
'"
<..>

W

co
~

RGK=I.Qk

:li
co

...........

co 1.0
0:

'"
co
co
0:

..
..
IW

W

~

1.0

I-

~

.......

co

ffi

r---

W

I-

N

VAK-7.0V _
RGK=I.0k

0

>

DOES NOT INCLUDE'CURRENT:
THROUGH GATE·CATHOOE
_
(RGK) RESISTOR

co

ffi

.............

O. 1

N

::;

&!!

&!!
o
z

0

z

0.0 1

-75

-so

0.1

--a

100

50

-75

125

-50

-25

-25

FIGURE 9 - TYPICAL HOLDING CURRENT
10

12

'":::><..>'"

-......

co

z

o

VAK = 7.0 V
RGK = l0001l

.......

'W

§

-

......

...........

1.0

:z:

ffi
N

..
'""
::;

r-

o
z

0.1

-75

50

75

TJ, JUNCTION TEMPERATURE (DC)

TJ, JUNCTION TEMPERATURE (DC)

-so

25

50

100

125

TJ,JUNCTION TEMPERATURE (DC)

SILEeTaD THYftISTOfI-Tflf4GEfi APf'LICATION N01'U
AN-240' - SCR Power Control Fundamentals
AN-29GB - Mounting Procedure for, and Thermal Aspects of,
Thermopedt t Plastic Power Devices
AN-295 - Suppressing RFI in Thyristor Circuits
AN-453 - Zero Point Switching Techniques.
To obtain copias of these n.otas list the AN numbeds)
on your company letterhead and send your requilst to:
Technical I nformation Center
Motorola Semiconductor Products, Inc.
P.O. Box 20924
Phoenix, Arizona 85036

138

100

125

MCR407-1 (SILICON)
thru

MCR407-4

AO

~G

OK

THYRISTORS

4.0 AMPERES RMS
30 thru 200 VO LTS

PLASTIC SILICON CONTROLLED RECTIFIERS

... Annular PNPN devices designed for high volume consumer
applications such as temperature, light, and speed control; process
and remote control, and warning systems where reliability of oper·
ation is important.

• Annular Passivated Surface for Reliability and Uniformity
• Power Rated at Economical Prices
• Practical Level Triggering and Holding Characteristics
• Flat, Rugged, Thermopad Construction··for Low Thermal Re·
sistance, High Heat Dissipation and Durability

MAXIMUM RATINGS
Rating
Repetitive Peak Reverse Blocking Voltage

Symbol

Value

INole 11 MCR407·1
·2
:3
·4

Unit

Volts

VRRM

RMS On-State Current
(All Conduction Angles)

ITIRMS)

30
60
100
200
4.0

Average On-State Current

ITIAV)

2.55

Amp

ITSM

20

Amp

121

1.6

A2,

PGFM
PGFIAV)
IGFM
VGRM
TJ

0.5
0.1
0.2
6.0
-4010 +110
-4010 +150
8.0

ITC = 890 C)
Peak Non-Repetitive Surge Current

Amp

(One cycle, 60 Hz.

STYLE 1:
PIN 1. CATHODE
2.ANODE
3. GATE

TJ= -4010 +1100C)
Circuit Fusing Considerations

IT J = -40 10 +1100C)
1= 1.010 8.3 m,)
Peak Gate Power
Average Gate Power

Peak Gate Current
Peak Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range
Mounting Torque (6-32 Screw)

T stg

-

INole 2)

Watt

Watt
Amp

DIM

Volts

B
C

uc
°c
in. lb.

A

D
F
G

H
J

THERMAL CHARACTERISTICS

K
M

Characteristic

Q

Thermal Resistance. Junction to Case

R
U

Thermal Resistance. Junction to Ambient

MILLIMETERS
MIN
MAX

INCHES
MIN MAX
16.13 16.38 0.635 0.645
12.57 12.83 0.495 0.505
3.18 3.43 0.125 0.135
1.09 1.24 0.043 0.049
3.51 3.76 0.138 0.148
4.22 sse
0.166 SSC
2.67 2.92 0.105 0.115
0.813 0.864 0.032 0.034
15.11 16.38 0.595 0.645
90 TYP
90 TYP
4.70 4.95 0.185 0.195
1.91 2.16 0.075 0.085
6.22 6.48 0.245 0.255
CASE 90·05

NOTE:

1. LEADS WITHIN .005" RAD OF TRUE
POSITION ITP) AT MMC

139

MCR407·1 thru MCR407·4 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted, RGK = 1000 ohms)
Typ

Min

Symbol

Characteristic

Peak Forward Blocking Voltage
(TJ - 110°C) Note 1

Unit

Max

Volts

VORM
30
60
100
200

-

-

-

-

-

-

IORM

-

-

100

I'A

IRRM

-

-

100

I'A

Peak On-State Voltage
(lTM= 4.0A)

VTM

-

-

2.6

Volts

Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vdc, R L = 100 ohms)

IGT

-

-

500

I'A

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vdc, R L = 100 ohms)
(Anode Voltage = Rated VORM, RL = 100 ohms, T J = 1100 C)

VGT

-

1.0
5.0

mA

-

VII's

MCR407-1
-2
-3
-4

Peak Forvvard Blocking Current

(Rated VORM, TJ = lOOoC)
Peak Reverse Blocking Current

(Rated VRRM, T J = 11 oDC)

Volts

IH

-

-

dvldt

-

10

0.2

Holding Current

-

(Anode Voltage = 7.0 Vdc)
Forward Voltage Application Rate
(TJ= 1100 C)

NOTES:
1. VORM and VRRM for all types can be applied on a continuous de
basis without incurring damage. Ratings apply for zero or negative

gate voltage but positive gate voltage shall not be applied concurrently with a negative potential on the anode. When checking
forward or reverse blocking capability, thyristor devices should not

be tested with a constant current source in a manner that the
voltage applied exceeds the rated blocking voltage.

2. Torque rating applies with use of torque washer (Shakeproof
WD19522 #6 or equivalent). Mounting torque in excess of 8 in.
Ibs. does not appreciably lower case-to-sink thermal resistance.
Anode lead and heatsink contact pad are common.
For soldering purposes (either terminal connection or device
mounting), soldering temperatures shall not exceed +22SoC. For
optimum results,8:18ctivated flu)( (oxide removing) isrecommended.

CURRENT DERATING

'"\" \

FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE

FIGURE 1 - MAXIMUM CASE T"MPERATURE
.110

;:--..:

~ 100

...g;
~

II!

~

.

60

i

50

r--

A~ ~

60 0

01=300 \

~

~100 ~ ......
'"i=
~~
~ 90

~ f-----'

\80 0

~ 90'--

80

70

~

~

~~ t'......

90

....

~

~

'G 110

.'"
ffi

a

a .. Conduction Angle

40

\' ~"\

CQ

60

,.!!i

50

x
;!

\ \ '\ ,'\.

o

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IT(AVI, AVERAGE ON-5TATE CURRENT (AMPI

......

\\

,

~

40

30

• - 300

o

0.1

\

i'-,.

600\ 900 \

120~80~

0.2

0.4

0.5

0.8

" r-...
de

0.7

0.8

0.9

IT(AV),AVERAGE ON·STATE CURRENT (AMP)

140

~

...... i'-,.

"\\

0.3

a

a .. Conduction Angle

\
\ I'\.
\ 1\ \ 1\

ii1i

20

........

\.

\

±!t=

"-

"
\ ,\

,. 80
~
>- 70

1.0

1.1

MCR470 SERIES (SILICON)

BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS
. designed for high power industrial and consumer applications in
power and speed controls such as welders, furnaces, motors, space
heaters and other equipment where control of high current is needed.
In addition, the entire series employs the unique Beam·Fired gate
design to al!ow high dildt and to reduce turn·on losses.
• Critical Rate·of·Rise of On·State Currentdildt = 1000 Amp//1s (Max)"
• Critical Exponential Rate - dv/dt = 200 Vl/1s (Min)

BEAM-FIRED
INTEGRATED GATE
THYRISTORS
470 AMPERES RMS

100 thru 1500

va LTS

• Low Switching Losses
• Integrated Gate Permits Soft·Fire Gate Control
·With 0,05 JJ.F and 20 ohm snubber Circuit.

MAXIMUM RATINGS
Rating

SVmbol

Repet!tlve Peak Off-State Voltage
fTJ" +12S0C) MCR470-

-130
-140
150
Non-Repetitive Peak Aeverse

Volts

VRSM

Block Voltage
It ~5 0 ms) MCR47Q-

- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
-100

200

300
400
500
600
720
840
960
1080
1200
1300
1450
1550
1650
1800

-110
-120
-130
-140

150
Average Forward Current
USOO Conduction Angle, Te = 7SoCJ
Peak Surge Current
(Ona cycle, 60 Hz • T J = -40 to +12S0CI

'TIAV)

300

Amp

ITSM

5500

Amp
A2,

, t

Circuit FUSlllg ConSiderations
(t=

1 5msl

50,000

(t=8.3msl

Peak Forward Gate Power

PGFM

Average Forward Gate Power
Peak Forward Gate Current

Peak Reverse Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range

PGF(AVI
IGFM
VGRM
TJ

T~

Mounting Force
Cntlcal Rate·ot·Rlse of On·State Current dunng
Turn· On Interval (Non·Repetltlve RatlOgl

Umt
Volts

100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500

-110
-120

(T J '" -40 to +12S0C)

Value

VORM(l)
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
-100

dl/dt

120,000
15

Watts

30
40

Watts
Amp

50
-40 to "'125
-40 to "'150
1000

Volts

1000

Amp/~J

°c
°c

'b.

THERMA L CHARACTER ISTICS
CharacteristiC
Thermal ReSistance, Junction to Case

111 Ratings apply for zero or negative gata voltage DeviCes shall not have a positive bias applied to the gata concur·
rently with a negative potential on the anode DeviCes should not be tested with a constant current source for
forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage

MILLIMETERS
INCHES
MIN MAX
DIM MIN MAX
A 36.07 43.18 1.420 1.700
B 18.54 29.59 0.730 1.165
C 12.45 15.24 0.490 0.600
4.85 0.186 0.191
D
4.72
2.54 0.010 0.100
0.25
E
0.35
0.48 0.014 0.019
F
2.54
0.100
H
6.22 19.30 0.245 0.760
J
K 202.69 206.12 7.980 8.115
0.300
7.62
L
50 0
M 200
500
200
N 15.49 28.58 0.610 1.125
Q
3.48
3.89 0.137 0.153
1.27
R
3.18 0.050 0.125
S
3.12
3.68 0.123 0.145
4.72
T
7.92 0.186 0.312
1.27
1.78 0.050 0.070
U
V
2.92
3.56 0.115 0.140
0.51 0.010 0.020
W 0.25
Y
1.45
1.50 0.057 0.059
0.64
1.65 0.025 0.065
Z

CASE 220·03

141

MCR470 series (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Peak Forward Blocking Current
(Rated VORM. with gate open. TJ = 125°C)

IORM

-

-

15

mA

Peak Reverse Blocking Current
(Rated VRRM. with gate open. TJ = 125°C)

IRRM

-

-

15

mA

Forward "On" Voltage
(ITM = 1000 A Peak. Pulse Width = 8.3 ms. Duty Cycle S; 1.0%)

VTM

-

-

1.9

Volts

Gate Trigger Current
(Anode Voltage =6.0 V. R L

IGT

-

-

150

mA

VGT

-

-

3.0

Volts

IH

-

20

500

mA

VGOM

0.15

-

-

Volts

ton

-

2.0

-

J.lS

-

-

10

J.lS

200

-

-

V/".s

Characteristic

= 3.0 Ohms)

Gate Trigger Voltage
(Anode Voltage =6.0 V. R L = 3.0 Ohms)
Holding Current
(Anode Voltaga'; 24 V; gate open. Initiating Current = 2.0 A)
Non·Triggering Gata Vol tag..
(Anode Voltage = Rated VORM. RL = 1000 Ohms. T J = 1250 C)
Turn·On Time
(lTM = 50 A. Rated VORM)
10 V open circuit. 20 Ohm Source
Gate Pulse
0.1 J.lS (Max) rise time

{

Gate Pulse Width Necessary to Trigger
5.0 V open circuit. 5.0 Ohm Source
Gate Pulse
0.1 J.lS (Max) rise time

{

Critical Exponential Rate 01 Rise

dv/dt

(Rated VDRM. gate open. TJ = 125°C)

CURRENT DERATING
(I = 50 to 400 Hz)
FIGURE 2 - SINE WAVE

FIGURE 1 - SQUARE WAVE

~

--I

3600

130

f--

~ ~

'"'
'"~

~~

~
~

w

~
~

\

90

i

70r---+--t---+-~t--~-~t-~-+~~

""

\

=>

X

70
50

IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)

r\.

\ '\

a=300 ~

....<3
500~--L-~1~OO~-~--~~~~-~~--~--~

- l a I-CONDUCTION
ANGLE

1,\"'- ~ t-.....

,.'"

;!
~

110

,.'"

~

~ 901---t--+-~+-~~~~d-~c-+-~~~~4

~
00
1800

~~

W

~ 1101---t""""r"'('~~""""",.q:c--+---l a f--

'=>"'

~

Q

o

100

\

1',.

I"",''-

I'...
"'-'
90~

60~
200

180)...,

\

""

300

IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)

142

400

MCR470 series

(continued)

FIGURE 4 - SINE WAVE

FIGURE 3 - SQUARE WAVE

00

1800

a I-CONDUCTION
ANGLE

-l

300
100
200
IT(AV). AVERAGE ON·STATE FORWARD CURRENT (AMP)

IT(AV). AVERAGE DN·STATE FORWARD CURRENT (AMP)

FIGURE 5 - MAXIMUM ON·STATE VOLTAGE
4000

V

i/
2000

/

V
0
0

o.

/

/

0

TJ: 125 0 C

/

100
80

I

0

II
1.0

2.0

3.0

4.0

VrM. MAXIMUM FORWARD VOLTAGE (VOLTS)

143

5.0

400

MCR470 series (continued)

FIGURE 6 - TRIGGERING CHARACTERISTICS
10 _

__

VG, GATE VOLTAGE (VOLTS)

FIGURE 7 - THERMAL RESPONSE

~

.
~
w

(.)

z

0.14
0.12
0.10

!!

~

0.08

~
....

0.06

~

~ 0.04

~

.-I-

..... 0.02

-

--

...-

?

U

~ O~OOl

0.002

0.005

0.01

0.02

0.05

0'.1

0.5 0.7 1.0

0.2

t,TIME(,)

144

2.0

5.0 7.0

10

20

50

70 100

MCR470C SERIES (SILICON)
MCR470D SERIES
MCR470E SERIES
Advance Infor:rnatlon
BEAM-FIRED
INTEGRATED GATE
THYRISTORS

BEAM-FIRED INTEGRATED GATE
FAST SWITCH THYRISTORS
· .. designed for high-current, high· frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency light·
ing. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•

•
•
•
•

470 AMPERES RMS

Low Switching Losses - @ 3.0 /-IS with 30/-IS Pulse, Ip = 150 A
MCR470C Series - 3.0 Volts
MCR470D Series - 6.0 Volts
MCR740E Series - 6.0 Volts
Critical Rate-of-Rise of On-State Currentdi/dt = 1000 Amp//-Is (Max)'
Critical Exponential Rate - dv/dt = 200 V//-Is (Min)
I ntegrated Gate Perm its Soft-F ire Gate Control
Fast Turn·Off Time - 20 to 40/-ls

·With 0.05 ",F and 20 ohm snubber circuit.

MAXIMUM RATINGS

Device Type

R.petiti •• POIIk Off-Stet.
Voltag. ITJ = +125"1:1
VORM, VRRM
Volts

Non-R.petitiv. P.ak
R...... Blocking Voltage
VRSM
Volts

Turn-Off Tlma 'Q 20 IJS Max

MCR470C

-10
-20
-30
-40
-50
-60
-70
-80

100
200
300
400
500
600
700
800

200
300
400
500
600
700
800
900

100
200
300
400
500
600
700
800
900
1000

200
300
400
500
600
700
800
900
1000
1100

100
200
300
400
500
600
700
800
900
1000
1100
1200

200
300
400
500
600
700
800
900
1000
1100
1200
1300

Turn-Off Tima .. 30 I'S Max

MCR4700

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100

~

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120

"1

r

I

"
I

E

..L...I..J

ILl

2 GATE

~3.
CATHODE
4. CATHODE

SEATING PLANE

]i'

~T Jp

TERMINAL 3

:~n
0

MM

NOTE:

This Is advance Information on a new introduction and ,pacifications are subject to chal1Qt1 without notice.

145

rF

mtfl;f= ~ ~,. "

Turn-Off Time" 40 ",I Max

MCR470E

r-;::.~ -=;-J

~

N
1 DIM "~" ""PLIES TO. BOH LEAQS

DIM
A
B
C

. 0
E
F
H
J
K
L

M
N
Q

R
S
T
U

V
W
y

Z

INCHES
MILLIMETERS
MIN MAX
MIN MAX
36.07 43.18 1.420 1.700
18.54 29.59 0.730 1.165
5.24 0.490 0.600
12.45
4.72_ 4.85 0.186 0.191
0.25 • 2.54 0.010 0.100
0.48 0.014 0.019
0.35
0.100
2.54
6.22 19.30 0.245 0.760
202.69 206.12 7.980 8.115
0.300
7.62
50·
20·
20·
50·
15.49 28.58 0.610 1.125
3.48
3.89 0.137 0.153
1.27
3.18 0.050 0.125
3.12
3.68 0.123 0.145
4.72
7.92 0.186 0.312
1.27
1.78 0.050 0.070
2.92
3.56 0.115 0.140
0.51 0.010 0.020
0.25
1.45
1.50 0.057 0.059
0.64
1.65 0:025 0.065
CASE 220-03

MCR470C series, MCR470D series, MCR470E series (continued)

MAXIMUM RATINGS
Rating
Average Forward Current, T C • 60°C
(1 SOOConduction· Angle)
Peak Surge Current
(One cvcle, 60 Hz, TJ = -40 to +1250 C)
Circuit Fusing Considerations

Symbol

Value

Unit

.lnAV)

300

Amp

ITSM

4500

Amp

12 t

B4,OOO

A2.

(TJ • -40 to +125 0 C, t = 1.5 - 8.3 ms)
PGFM

15

Wetts

PGF(AV)

3.0

Watts

Peak Forward Gete Current

IGFM

4.0

Amp

Peak Reverse Gate Voltage

VGRM

5.0 .'

Volts

Peek Forwerd Gate Power
Average Forward Gate Power

Opereting Junction Tempereture Range

TJ

-40 to+125

Storege Temperature Range

Tstg

-40 to +150

°c

-

l000±2oo

Ibs

di/dt

200
1000

Amp/"s

Mounting Force
Critical Rete-of-Rise of OnoState Current - Repetitive
Non-Repetitive

°c

THERMAL CHARACTERISTICS
Characteristic

Max

Thermal Resistance, Junction to Case

0.08

ELECTRICAL CHARACTERISTICS (TC = 25°C unl ... otherwise noted)
Symbol

TVp

Max

Unit

IORM

-

-

15

mA

IRRM

-

-

15

mA

VTM

-

-

2.30

Volts

Gate Trigger Current
(Anode Voltage =6.0 V, RL =3.0 Ohms)

IGT

-

-

150

mA

Gate Trigger voltage
(Anode Voltage = 6.0 V, RL = 3.0 Ohms)

VGT

3.0

Volts

Holding Current
(Anode Vortage = 24 V, gate open, Initiating Current = 2.0 A)

IH

500

mA

Characteristic

Peak Forward Blocking Current
(Reted "ORM, with gate open, TJ

= 1250 CI

Peak Reverse Blocking Current
(Reted VRRM, with gate open, TJ· = 125°C)
Forward "On" Voltage
(tTM = 1000 APeak, outy Cvcle:!::O.OI%, TJ

= 25°C)

Non-Triggering Gate Voltage
(Anode Voltage = Rated VORM, RL •. 1000 Ohms, TJ
Circuit Commutated Turn-Off Time
IVR = 50 V.(Min); RatedVORM, TJ = +125 0 C,
diR'dt = 20 A/"s; Repetition Rete = 1.0 pps;
ITM = 250 A; dvldt = 20 VI".)
Transient Turn·On Voltage

"S

(VORM = 100 V, ITM = 300 A, PW = B.O
Gate Ori.ve = 600 mA, rise = 0.1 "s, test point = 4.0 "s)

VGSM

= 125°C)

Min

50
0.15

Volts

tq

-

MCR470C
MCR4700
MCR470E
MCR470C
MCR4700
MCR470E

Critical Exponential Rate of Rise .
(Rated VORM, gate open; TJ = 125°C)

VTO

-

dvldt

146

-

200

-

-

-

"s
20
30
40

5.0
B.O
8.0

Volts

-

V/"s

MCR550C series
MCR550D series
Advance InforIDation
BEAM·FIRED
INTEGRATED GATE
THYRISTORS

BEAM·FIRED INTEGRATED GATE
FAST SWITCHING THYRISTORS

550 AMPERES RMS

· .. designed for high·current, high·frequency applications in inverters,
choppers, cycloconverters, induction heating and high-frequency lighting. Optimum cathode shunt placement permits high di/dt without
sacrificing dv/dt capability.
•
•
•
•

Critical Rate-of-Rise of On-State Currentdi/dt = 1000 Amp/ils (Max)
Critical Exponential Rate - dv/dt = 200 V IllS (Min)
Integrated Gate Permits Soft-Fire Gate Control
Fast Turn-Off Time - 20 and 30 IlS

MAXIMUM RATINGS

Device Type

Voltage ITJ = +125o CI
VORM,VRRM
Volts

Non-Repetitive P••
Reverse Blocking Voltage
VRSM
Volts

Tum-Off Time - 20 /olS Max
MCR550C

-10
-20
-30
-40
-50
-60
-70
-80
-90
-100

'--t
IflH~~.jI
3t!] r~'L
z

Repetitive Peak Off-State

100
200

300
400
500
600
700
800
900
1000

200
300
400
500
600
700
800
900
1000
1100

1

-10
-20
-30

-40
-50

-60
-70
-80.
-90
-100
-110
-120

SEATING PlANE

if
-': ~n
, ~, !, ' ,~~t-~
lE;:.~
4 CATHODE

NOTE:
1. OIM "K" APPLIES TO. 80TH LEAOS

DIM

Turn-Off Time = 30 IJS Max
MCR5500

E

INCHES
MILLIMETERS
MAX
MIN MAX MIN

A

100
200

300
400
500
600
700
800
900
1000
1100
1200

200
300
400
500

600
700
800

900
1000
1100
1200
1300

55.88
B 6.19
C 25.40
D 4.72
E 0.78
F 0.35
H
3.18
J
6.22
K 2
L
15

-

S

3.48
127
3.1

U
V

1.27
29

Y
Z

1.45
0.64

R

6150
38.1

2.2no

2.5
1 31 1 0
1.000 I- 5
4.8& o:iliif .1
.19 11[030
0
0.48 10.014
9
10.125
19.30 0.245 0.760
208.12 7.980 .1 5
7.82
o.3DD
15
5
1.435
.137
0 oRn
3.88
.1 3
.9
1.78
3.&6
.11 '.1

27.05

-

i.M

1
1.65

0.025 0.084

CASE 220-02
This is advance Information on a new Introduction and specifications are subject to change without nOtice.

147

MCR550C Series, MCR550D Series (continued)

MAXIMUM RATINGS
Rating
Average On-State Current, T C = so"c
(180" Conduction Angle)

Peak Non-Repetitive Surge Currant
(One cycle, 60 Hz, T J

= -40 to +1250 C)

Circuit Fusing Considerations
(TJ = -40 to +1250 C, t = 1_5 - 8.3 ms)
Peak Gate Power
(Maximum Pulse Width

= 401's)

Average Gate POVV8r
Peak Forward Gate Current

Symbol

Value

Unit

IT(AV)

350

Amp

ITSM

5500

Amp

12 t

120,000

A 2s

PGFM

200

Watts

PGF(AV)

3.0

Watts

IGFM

4.0

Amp

VGRM

10

Volts

TJ

-40 to +125

°c

T stg

-40 to +150

°c

-

2000± 200

Ibs

200
1000

Amp/l's

(Maximum Pulse Width = 401's)
Peak Reverse Gate Voltage

Operating Junction Temperature Range
Storage Temperature Range
Mounting Force

Critical AateMof-Rise of On-State Current - Repetitive
(R

= 20 Ohms, C = 0.05I'F)

di/dt

Non-Repetitive

THERMAL CHARACTERISTICS
Characteristic

Symbol

Thermal Resistance, Junction to Case

Unit

ROJC

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Symbol

Min

Typ

Max

Unit

IORM

-

-

30

mA

Peak Reverse Blocking Current
(Rated VRRM, with gate open, T J = 125°C)

IRRM

-

-

30

mA

Peak On-State Voltage
(lTM = 1000 A Peak, Pulse Width ";2.0 ms, Outy Cycle ";0.01%,
TJ = 2sOC)

VTM

-

-

2.4

Volts

Gate Trigger Current, Continuous de

IGT

-

-

150

mA

Gate Trigger Voltage, Continuous de

VGT

-

-

3.0

Volts

-

0.15

Volts

-

50

500

mA

-

-

20
30

-

-

-

10

200

-

-

Characteristic
Peak Forward Blocking Current
(Rated VORM, with gate open, TJ

= 125°C)

(Anode Voltage = 6.0V, RL = 3.0 Ohms)
(Anode Voltage = 6.0 V, RL

= 3.0 Ohms)

Non-Trigger Gate Voltage
(Anode Voltage = Rated VORM, R L = 1000 ohms, T J
Holding Current
(Anode Voltage = 24 V, gate open, Initiating Current

VGOM

= 125°C)
IH

= 2.0 A)

Circuit Commutated Turn~ff Time
(VR = 50 V (Min); Rated VORM, TJ = +1250 C,
diR/dt = 20 AIl's; Repetition Rate = 1.0 pps,
ITM = 250 A; dv/dt = 20 VII's)

I'S

tq
MCR550C
MCR5500

Transient Turn-On Voltage
(VORM = 100 V,ITM =,300 A, PW= 8.01's,
Gate Orive = 600 mA, rise = 0.1 I'S, tast point = 4.0 I's)

VTO

Critical Exponential Rate of Rise of Off-State Voltage
(Rated VORM, Gate open, T J = 125°C)

dv/dt

-

148

Volts

VII's

MCR649-1 thru MCR649-7 (SILICON)

~~
,

(D (;)
o

0

~,

o

'

@,

CASE 61

CASE 54

(TO-41)

(TO-3 Modified)

PIN 1. GATE

Industrial-type, silicon controlled rectifiers in a
"diamond" package for applications requiring a high
surge-current rating or low thermal resistance.
For units with pins (TO-3) specify devices MCR649P-l
thru MCR649P-7.

0

PIN 1 ANODE

2. CATHODE
CASE ANODE

2. GATE
CASE CATHODE

MAXIMUM RATINGS

(TJ" 100'C unless otherwise noted)

Rating

Symbol

Peak Reverse Blocking Voltage*
MCR649-1
-2
-3
-4
-5

VROM *

-6
-7
Forward Current RMS
(All Conduction Angles)

It

Value

Volts
25
50
100
200
300
400
500
20

Amp
A2s

12t

Circuit Fusing Considerations
(T J = -40 to +lOOoC; t ;;; 8.3 ms)

Unit

275

Peak Forward Surge Current
(One Cycle, 60 Hz, TJ = -40 to +1000 C)

IFM(surge)

Peak Gate Power - Forward

Amp
260

P GFM

5.0

Watts

PGF(AV)

0.5

Watt

Peak Gate Current - Forward

IGFM

2.0

Amp

Peak Gate Voltage - Forward

VGFM
VGRM

10

Volts

5.0

TJ

-40 to +100

°c

Tstg

-40 to +150

°c

Average Gate Power - Forward

Reverse
Operating Junction Temperature Range
Storage Temperature Range

*VROM for all types can be appUed on a continuous dc basis without incurring damage.
VROM ratings apply for zero or negative gate voltage.

149

MCR649·1 thru MCR649·7 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic
Peak Forward Blocking Voltage
(T J = 100°C)

Symbol
VFOM

MCR649-1
-2
-3
-4
-5
-6
-7

Peak Forward Blocking Current
(Rated VFOM with gate open, TJ = 100°C)

IFOM

Peak Reverse Blocking Current
(Rated VFOM with gate open, T J = 100°C)

IROM

Min

Typ

Max

25'
50
100
200
300
400
500

-

---

--

Volts

rnA

- -

5.0

- -

5.0

rnA

Gate Trigger Current (Continuous de)
(Anode Voltage = 7Vdc, RZ = 50 S"l)

IGT

-

30

80

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7 Vdc, RL = 50 S"l)

VGT

-

1.0

3.5

rnA

-

-

20

-

1.1

1.5

Volts

. VGNT

0.3

Holding Current
(Anode Voltage. = 7 Vdc, Gate Open)

IHO

Forward On Voltage
(IF = 20 Adc)

VF

-

Turn-On Time (~ + ~)
(IG = 50 mA, IF = 10 A)

tan

-

1.0

-

Turn-Off Time
(IF = 10 A, IR = 10 A, dv/dt = 20 V/ /loS min, T J =1000C)
(V FXM = rated voltage)
,

toff

-

25

-

(Anode Voltage = Rated VFOM' RL = ,50n, T J = 100°C)

Units

rnA
Volts

Ips
/loS

(VRXM = rated voltage)
Forward Voltage Application Rate
(Gate open, TJ = 100°C)
MCR6·49-1 thru MCR649-4

-

MCR649-5 thru MCR649-7,
Thermal Resistance (Junction to Case)

8JC

150

V/ /loS

dv/dt

-

20

-

30

-

1.0

1.5

°C/W

MCR649·1 thru MCR649·7

(continued)

F~R~l~~~tH~~~mT GATE TRIGGER CHARACTERISTICS
IsHot = 2 AMP :::3.
2.0

MAXIMUM ALLOWABLE NON·RECURRENT
SURGE CURRENT
-

300

l

~OAMJ

RJsj
T, = -40 10 +100·C

!5

"-....

<>

1

200

r-----. r----- r---

r-----.. r-----.

i

~

~ 150

IB

0.1

.J

.05

I

I

~~ '"~ ~

II
I

~~~

L
-

.02

100
10

40

20

I

WITHIN THIS
AREA

I

.0001 ....

0.3

100

I

LL

t - - - TYPICAL --...

~

1/ /

~MAXIMUM6"

e...

::>

<>

~

~
~

i

I

2.0

I I

1.0

I

S5

~

JUNCTION TEMPERATURE _

IV

I TJ = lOQ·C
TJ 25·~

~

75

I I!

0.2

65

l '1/

0.1
0.5

0.0

9

10

1~:r-

0.]

r-...·CONDUCTION ....

1----4--+- .60~~"'''

ANGLE

.90~~

.120~'\~

~-f-"""f-"""f--t--+ .1SO.>--p.~,,+~-+--j

1.0

1.5

2.0

~.....,f--+--+---r--+---r--+---r--~~--~
DC

2.5

10

~ 1.2

v

~

<>

~ 1.0

~

/

i3

~ O.S

;j
ffi

I

0.6

V

!5in

~ 0.4

e:

V

0.2

~
.001

V

.002

.01

.02

14

0

z

12

~

10

~

.05

"""

Q

~0

0.1

4 ~

9,c

0.2

20

0.5

.J.

""

"\

"\

_ TJ1m •• r - Te _

p ••k -

IS

WITH UNIT MOUNTED
ON THE MS·I0 HEAT SINK
USING DC4· AND FREE
CONVECTION COOLING
ASSUMING MAXIMUM F01:::1:-VOLTAGE AND 9,0 = 1.5,
8cs = 0.2 AND 8.. = 3.0·C/W

...
...•

1 1 1
.005

~

~

p

'\

16

CURVE DEFINES TEMP RISE OF
JUNCTION ABOVE CASE FOR
SINGLE LOAD PULSE OF OURA·
TlON I. PEAK ALLOWABLE DIS·
SIPATION IN RECTIFIER FOR
TIME I, IF STARTING FROM
CASE TEMP., EQUALS lOO·C
(MAX. T,) MINUS MAXIMUM
CASE TEMP, OIVIDED BY THE
TRANSIENT THERMAL RESIST·
ANCE,

f

l\.

IS

/

g..

16

t,,! -l.•.J'Mrt

20

V

14

POWER DERATING CURVE

1.6

1.4

12

IFI"" AVERAGE FORWARD CURRENT IAMPI)

MAXIMUM TRANSIENT THERMAL RESISTANCE
JUNCTION TDCASE

0.0

8

0--

~

.30~ ~'"

'F, INSTANTANEOUS FORWARD ON VOLTAGE IVOLTS)

~

7

70 ~.....,--+--+-~-+-.....,f--+--r~;-~

0.5

.~

i!=

6

I I

Iso

i! 5.0

.,::>'"~

i~
5

~

90

Yif //

10

I

4

VG , GATE VOLTAGE (VOLTS)
2S·C - ANODE @ 7VOLTS)

95~~

50

20

1-40·C -150 mAl
MAXIMUM AllOWABLE FORWARD .............
GATE VOLTAGE 10 VOLTS

MAXIMUM ALLOWABLE CASE TEMPERATURE

100

~

s...-

GATE CURRENT REQUIRED
TO TRIGGER ALL UNITS
(100°C - 50 rnA I

ITJ =

LOW CURRENT LEVU

~

- -:;;8 ~P-;ES~I;M;;

I

~,ri. ~~I~~~:

~----oI i 2 3

60

CYCLES AT 60 Hz

AS A TRIGGER CIRCUIT DESIGN CRITERIA
ALL UNITS WILL TRIGGER AT ANY VOLTAGE
AND CURRENT WITHIN THIS AREA

-I

APPROXIMATELY

'"
1

I

~ !:: ~I
~~
i~ II

t---.

~

~

~ ..:( ALL UNITS

~~~
~~~

~

50.2

~ 250

f?
_

3.SVOLTS~
MINIMUM
GATE VOLTAGE
RE~II~~rRTO
I

1.0

o
1.0

I, TIME Is)

151

·DC4 IS DOW CORNING NO.4
SILICONE LUBRiCANT

I

I

I

I

~

~

~

~

"\
"\

I'\.
o

10

ro
ro
TA , AMBIENT TEMPERATURE (OC)

ro

~

~

MCR729-5 thru MCR729-10 (SILICON)

Fast-switching, high-voltage silicon controlled rectifiers especially designed and characterized for radar,
proximity fuse, beacon and similar pulse applications.

PIN 1 CATHODE
2 GATE
3 STUD ANODE

CASE 63

MAXIMUM RATINGS (T J = lOS·C unless otherwise noted)

Symbol

Value

Unit

VROM(rep) *

50

Volts

2.0

Amp

IFM(pulse)

100

Amp

Average Forward Power

PF(AV)

5.0

Watts

Peak Gate Power - Forward

P GFM

20

Watts

PGF(AV)

1.0

Watt

Peak Gate Current - Forward

IGFM

5.0

Amp

Peak Gate Voltage - Forward

VGFM
VGRM

10

Volts

10

Operating Junction Temperature Range

TJ

-65 to+ 105

Storage Temperature Range

Tstg

-65 to + 150

°c

Stud Torque

-

15

in. lb.

Rating
Peak Reverse Blocking Voltage*
Forward Current RMS

If

Repetitive Pulse Current
(PW = lOllS)

Average Gate Power - Forward

Reverse

°c

*Characterized for unilateral applications where reverse blocking capability is not important. Higher
VROM rated units available on request.

152

MCR729·5 thru MCR729·10 (continued)
ELECTRICAL CHARACTERISTICS

fTc = 25°C unless otherwise noted)

Characteristic
Peak Forward Blocking Voltage*
(T J = l05 0 C)

Symbol
MCR729-5
-6
-7
-8
-9
-10

Peak Forward Blocking Current
(Rated VFOM ' T J = 105 0 C, gate open)

I FOM

IGT

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 100 ohms)

VGT

Holding Current
(Anode Voltage

I HO

7 Vdc, gate open)

Forward On Voltage
(If = 2 Adc)

VF

Dynamic Forward On Voltage
(0.5 /.Is after 50% pt, IG = 200 mA,
Ipulse = 30 Amps)

Typ

Max

300
400
500
600
700
800

--

-

-

0.2

2.0

-

10

50

-

0.8

1.5

5.0

15

-

-

1.1

1.5

V FOM *

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 100 ohms)

=

Min

mAdc

Volts

Volts

15

25
ns

ton

-

-

Turn-On Time Variatign
(T J = +25 0 C to +105 C and _65°C to +25 0 C)

Ll.t

on

200

-

400

-

±50

-

-

Pulse Turn-Off Time
t off(pulse)
15
Test Conditions: PFN discharge; Forward Current = 30 A pulse; Reverse Current = 5 A;
Rep. Rate = 100 pps; Duty cycle = 0.05%; Forward Voltage = rated VFOM;
TC = 85·C; dv/dt = 250 V! /lS; Reverse anode voltage applied during turn-off
interval = rated VFOM;
Reverse gate bias during turn-off interval = -6 V;
Gate Trigger Pulse: 200 rnA, 1 jlS wide, 2 ns rise time.
Turn-off time measured from 90% pt. of forward, current decay to 10% pt. of reapplied forward voltage.
Forward Voltage Application Rate
(T J = 105 0 C, gate open)

dv/dt

Thermal Resistance (Junction to Case)

9 JC

*Other voltage units available upon request.

153

mA

Volts

-

(Ipulse = 100 Amps peak)

Volts

mA

VF(on)

Turn-On Time (td + t r )
(IG = -200 mAl
(Ipulse = 30 Amps peak)

Units

50

-

-

-

-

3.0

ns

/.IS

V//.IS

°C/W

MeR800

series (SILICON)

BEAM-FIRED INTEGRATED GATE
SILICON CONTROLLED RECTIFIERS
· .. designed for high power industrial and consllmer applications in
power and speed controls such as welders, 'furnaces, motors, space
heaters and other equipment Where control of high current is needed.
In addition, the entire series emp'Ioys the unique Beam·Fired gate
design to allow high di/dt and to reduce turn-on losses.
• Critical Rate·of·Rise of On-State Currentdi/dt ~ 1000 Amp/p.s (Maxl(2)

BEAM-FIRED
INTEGRATED GATE
THYRISTORS
BOO AMPERES RMS
100 thru 1500 VOLTS

• Critical Exponential Rate·of·Rise of Off·State Voltagedv/dt ~ 200 Vlp.s (Mini
•
•

Low Switching Losses
Integrated Gate Permits Soft·Fire Gate Control

MAXIMUM RATINGS
Value

Unit
Volts

Repetitive Peak Off·State Voltage
(T J .. +125o CI MCRSCIO-

100
200
300
400

500
600
700

800
900
1000

1100
1200
1300
1400

1500
Volts

Non·Repetltlve Peak Reverse
Block Voltage
(t <5.0 msl MCRSOQ-

200

300
400

500
600
720
840

960
lOBO
1200
1300
1450
1560

STYLE 1:
l.ANODE
2. GATE
3. CATHOOE
4. CATHOOE

16SO

Average On-State Current
11800 Conduction Angle, Tr. = 75°C)
Peak Surge Current
(Onl evel. 60 Hz. T = -40 to +125 o C)

lBOO
500

Amp

7000

Amp

Circuit FUllng Conlld8l"8tlon,
IT J • -40 to +1250 CI

(t"1.5ms)
(t- 8.3 mIl

Pak Forward Gata Power
Average Forward G,te Power
Peek Forw.rd Gate Current

Puk Rever. Gate VOltaga
Oper.,mg Junction Temperature Renge
Storage Temper.ture Range
Mounting Foret
Criticel Rate-of·Rise of On-State Current during
Turn-On Interval (Non-Aepetltiva Altln 1 (21

100,000
200.000
25
5.0
8.0
10
-40 to +125
-40 to +150
2000
1000

DIM

MILLIME ERS
MAX

.,.

.,.

A

U' 63.60

,. '00

• .7

W.ttt

•

.78

Amp

•

..

127

154

19.30

"0'

,.

.11

O.

.1
DJ.. &'80

•.300
1.435

1.27
3.1

, 2
Thermal Rlsistance, JunctIOn to C..
R8JC
0.08
°cm
m Ratinll' apply for lero or negetiva geM volt8g8. Devices shell not hew I positive b •• applied to the gate concur·
rently with I negative potlntial on the .nod.. Devices should not be tetted with • consUlnt current 1CMJrc8 for
forw.-d C»" revenI blocking CllPability such that the vcNYgllPplled exceed. the retld blocking voltege.
(21 With O.OS,..F Ind 20 ohm snubber circuit.

.7.

89' 7.8212

lb•.

THERMAL CHARACTERISTICS

•

1.
0.1

14

.22

·c
Arnp/~s

27.

3.18

Volu

1

ID

1

2i.4D
Wetts

INCHES
AX

....

'.1l6

.1'

1.7
11

1.'

1.65

0.025 0.084

CASE 220.Q2

MCR800 series (continued)

ELECTRICAL CHARACTERISTICS

ITC = 25°C unless otherwise noted)
Symbol

Characteristic
Peak Forward and Reverse Blocking Current

IRated VORM, with gate open)
IRated VRRM, with gate open, T J = 125°C)

Peak On-State Voltage
IITM = 1000 A Peak, Pulse Width

= 6.0 V,

RL

= 3.0 Ohms)

Gate Trigger Voltage, Continuous de

IAnode Voltage
IAnode Voltage

Typ

-

-

30

VTM

-

-

1.55

Volts

IGT

-

-

150

rnA

-

-

3.0

-

100

500

rnA

-

4.0

-

"S

-

-

10

"S

200

-

-

V/"s

Max

Unit
rnA

15

= 8.3 ms, Duty Cycle'; 1.0%)

Gate Trigger Current, Continuous de

IAnode Voltage

Min

IORM
IRRM

= 6.0 V, RL = 3.0 Ohms)
= Rated VORM, RL = 1000 Ohms, T J =

VGT
12SoC)

Volts

0.15

Holding Current

IH

-

(Anode Voltage == 24 V, gate open, Initiating Current = 2.0 AI
Gate Controlled Turn-Dn Time

tgt

IITM = 50 A. Rated VORM)
Gate Pulse

{

10 V open circuit, 20 Ohm Source

0.1 J.l5 (Max) rise time

Gate Pulse Width Necessary to Trigger
Gate Pulse

{

5.0 V open circUit, 5.0 Ohm Source
0.1 j.l5 (MaxI rise time

Critical Exponential Rate of Rise of Off·State Voltage

dv/dt

IRated VORM, gate open, TJ = 125°C)

CURRENT DERATING
If

= 50 to 400 Hz)

FIGURE 1 - SQUARE WAVE

FIGURE 2 - SINE WAVE

~
w

•

~ lIDr---+~,-"...p~~t:---t--+---t ~

s

!!'
_

1li
~

1.

• I--

CONDUCTION
ANGLE
9Dr---+--4-~-~~~~~~~-r---t---4

~

"=>

.."

~ 7Dr---+--4---~--t-~+-~.-~~-t~-~
~-

5DD~---L--~15~D----L-~~~--L-~~~~L---~
ITIAV), AVERAGE ON-8TATE CURRENT (AMP)

155

MCR800 series

(continued)

FORWARD POWER DISSIPATION

FIGURE 4 - SINE WAVE

FIGURE 3 - SQUARE WAVE

i800r-__

~ ~r- ~~~~,f~,f~~__~~
__

__

z

~ 600r---~--~~---HL-~h"--.,f-",,'---1f"7"<-"""'L..~

~
i:i
C

ffi400~--~--~~~~~~~~~~~~--~--~

~

'~" 200~--~---,~1Iiil!~=t---~~--~ -.J

~

~.I-

~

cO~~~~~ON

ir:

150

300

450

600

150

IT(AV!. AVERAGE ON·STATE CURRENT (AMP)

300

FIGURE 5 - MAXIMUM ON·STATE VOLTAGE
4000

./

/

2000

/

;;:- 1000

'>-"

5

800

~

600

1l
w

I

I

I

400

>«

>-

/

~

0

'"

200

TJ'

moc

I

.!:"

I

100
80
60
40

o

1.0

450

IT(AV). AVERAGE ON·STATE CURRENT (AMP)

3.0

2.0

4.0

VTM. MAXIMUM ON·STATE VOLTAGE (VOLTS)

156

5.0

600

MCR800 series (continued)

FIGURE 6 - TRIGGERING CHARACTERISTICS

10
7.0
5.0

=

~I:X.

LLOV

:UR

l<;'<0-.

ii:
~ 3.0

i
"'
a

2.0
1.0

- Al IEVI'CE
WILL FIRE

~ O. 7 •

~ 0.5

~~~~_~!~:S

ci
- 0.3

~'\.

~~~

~$~~
:AL_OEVII.,r-I
E
~_;
f--f,i
THIS

~

-LIN

l~'::

0.2

o. 1
0.1

liit
:;;:
I ~I

o

03

.0

.0

30

5

VG. GATE VOLTAGE (VOLTS)

FIGURE 7 - THERMAL RESPONSE

~

0.14

~ 0.12
z

~'"

0.10

;!l
-'

~ 0.08

i=
al

0,06

-

I-

~ 0.04

;;'i
1-_

0.02

I-

5

~ O~OOl

0.002

0.005

om

-

0.02

0.05

0.1

I-

0.2
t. TIME (s)

157

0.5 0.7 1.0

2.0

5.0 7.0 10

20

so 70 100

MCR846 series (SILICON)

Silicon controlled rectifiers for low-power switching
and control applications requiring blocking to 200 volts
and load currents to 2 amp.

PIN 1. CATHODE

2. GATE
3. STUD ANODE

CASE 63

MAXIMUM RATINGS (TJ

= 105°C unless otherwise noted)

Rating

Symbol

Peak Reverse Blocking Voltage

VROM(rep)

MCRB.6-1
-2
-3

-4
Forward Current RMS (all conduction angles)

It

Value

Volts
25
50
100
200
2.0

12t

Circuit Fusing Considerations
(T J = -65 to +105 0 C; t ;;i B.3 ms)

Unit

Amp
A""s

35

Peak Forward Surge Current
(One Cycle, 60 Hz, T J = -65 to + 105 0 C)

IFM(surge)

Peak Gate Power - Forward

P GFM

5.0

Watts

PGF(AV)

0.5

Watt

Average Gate Power - Forward

Amp
30

Peak Gate Current - Forward

IGFM

2.0

Amp

Peak Gate Voltage - Forward

VGFM

10

Volts

Reverse

VGRM

10

TJ

-65 to +105

U

Storage Temperature Range

Tstg

-65 to +150

°c

Stud Torque

-

15

in -lb.

Operating Junction Temperature Range

158

c

MCR846 series

(continued)

ELECTRICAL CHARACTERISTICS· (TC = 2S0C unless otherwise noted)
Characteristic
Peak Forward Blocking Voltage
(T J = 1050 C)
MCR846-1
-2

Max

25
50
100
200

-

---

-

-

2.0

- -

2.0

-

10

50

-

0.8

1.5

-

15

-

-

1.3

1.6

ton

-

0.5

-

taft

-

'6.0

~

VFOM

-3
-4
Peak Forward Blocking Current
(Rated VFOM with gate open, T J

=

1050 C)

Peak Reverse Blocking Current
(Rated VROM with gate open, T J

=

1050 C)

IFOM
IROM

Gate Trigger Current (Continuous de)
(Anode Voltage = 7 Vdc, RL = lOon)

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7 Vdc, RL = lOOn)

VGT

Holding Current
(Anode Voltage

IHO

=

7 Vdc, Gate Open)

Forward On Voltage
(IF = 2 Adc)

VF

Turn-On Time (td + t r )
(IG = 50 rnA, IF = 2 A)
Turn-Off Time
(IF = 2 A, IR
(VFXM
(VRXM

=

10 A, dv/dt

=

50V//.Is)

= rated voltage)
= rated voltage)

Forward Voltage Application Rate
(TJ = l05 0 C gate open)
Thermal ReSistance (Junction to Case)

159

Min

Typ

Symbol

dv/dt

50

9JC

-

Units
Volts

-

mA
mA
mA
Volts
mA
Volts
/.IS
/.IS

-

-

V//.IS

3.0

°C/W

MCR 1336-5 (SILICON)
thru

MCR1336-10
Fast switching, high-voltage thyristors especially
designed for pulse modulator applications in radar and
other similar equipment.
PIN 1. CATHODE
2. GATE
3. inuo ANODE

CASE 63-02

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VROM(rep)*

50

Volts

IFM(rep)

300

Amp

Current Applic·ation Rate**

di/dt**

1000

Alp.s

Peak Gate Power- Forward

P GFM

20

Watts

PGF(AV)

1.0

Watt

Peak Gate Current-Forward

IGFM

5.0

Amp

Peak Gate Voltage-Forward

VGFM
VGRM***

7.0

Volts

TJ

-65 to +105

°c

Tstg

-65 to +200

°c

-

15

in. lb.

Peak Reverse Blocking Voltage*
(T J = 105°C)
Repetitive Peak Forward Current
(pw = 3.0 p.s, Duty Cycle = 0.6%,
TC = 85°C max)

Average Gate Power-Forward

Reverse***
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque

7.0

*Characterized for unilateral applications where reverse blocking capability is
not important. Higher voltage units available upon request. VROM(rep) may
be applied as a continuous dc voltage for zero or negative gate voltage but
positive gate voltage must not be applied concurrently with a negative potential
on the anode. When checking blocking capability, do not permit the applied
voltage to exceed the rated voltage.
**Minimum Gate Trigger Pulse: iG = 500 mA, PW = 1.0 p. s, tr = 20 ns.
***Do not reverse bias gate during forward conduction if anode current exceeds
10 amperes.
160

MCR1336-S thru MCR1336-1 0

(continued)

ELECTRICAL CHARACTERISTICS (T c = 25 0 C unless otherwise noted)

Characteristic

Symbol

Peak Forward Blocking Voltage(TC = 105'C)
MCR1336

Peak Forward and Reverse Blocking Current
(Rated V FOM and VROM ' TC = 105'C, gate open)

r

VFOM

-6
-7
-8
-9
-10

-

I FOM
IROM

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, T C = 25 'C)

IGT

(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = -65'C)
Gate Trigger Voltage (Continuous dc)
(Anode Voltage = rated VFOM' RL = 100 ohms, TC = 105'C)
(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC

VGT

rHO

(Anode Voltage = 7.0 Vdc, gate open, TC = 25°C)
Forward "On" Voltage
(If = 1. 0 Adc, PW = 1. 0 ms max, Duty cycle s 1. 0%)

VF

Dynamic Forward "On" Voltage
(0.5 I's after 50% decay point on dynamic forward voltage waveform)
Forward Current: 100 A pulse (PFN discharge circuit)
Gate Pulse: at 500 mA, PW = 1. 0 I'S, tr = 20 ns

--

Volts

-

--

2.0

mA

-

-

300
400
500
600
700
800

0.2

-

2.0
mA
40
100

-

Volts

1.25
2.0
rnA

-

-

50

-

-

2.0

1.0

Volts

Volts

td
t
r

Rise Time

Unit

VF(on)

Turn-On Time

Delay Time

Max

-

= 25'C)

(Anode Voltage = 7.0 Vdc, RL = 100 ohms, TC = -65,'C)
Holding Current
(Anode Voltage = 7.0 Vdc, gate open, TC = 105'C)

Typ

Min

45

-

75
75

-

-

7.0

-

250

-

-

-

-

2.5

-

ns

Forward Current: 100 A Pulse (Capacitor discharge circuit)
Gate Pulse: at 500 rnA, PW = 1. 0 I'S, tr = 20 ns

Pulse Turn-Off Time
Test Conditions: PFN discharge; Forward Current == 100 A pulse;
Reverse Current = 5.0 A, TC = 85'C, dv/dt = 250 VI,", to Rated VFOM ;

toff(pulse)

I'S

Reverse anode voltage during turn-off interval = 0 Vi
Reverse gate bias during turn-off interval = 6. 0 V.

Forward Voltage Application Rate (Linear Rise of Voltage)
(TC = 105 'c, gate shorted)

dvldt

Thermal Resistance (Junction to Case)

eJC

VII'S
°C/W

*VFOM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate
voltage. When checking forward or reverse blocking capability, these devices should not be tested with a constant current
source in a manner that the voltage applied exceeds the rated blocking voltage. Other voltage units aVailable upon request.

161

MCR 1718-5 (SILICON)
thru

MCR1718-8

THYRISTORS
PNPN

THYRISTORS
SILICON CONTROLLED RECTIFIERS

25 AMPERES RMS

300 thru 600 VOLTS
· .. fast switching, high-voltage thyristors especially designed for
pulse modulator applications.
•
•
•
•

High-Voltage Capability from 300 to 600 Volts
Repetitive Pulse Current to 1000 Amp
Pulse Repetition as High as 4000 pps
Current Application Rate as High as 1000 A/",s

MAXIMUM RATINGS
Symbol

Rating
Peak Reverse Blocking VOltagel 1)
MCR1718-5

-8
Non-Repetitive Peak Reverse Voltage

Peak Forward Surge Current

Volts

VRsM

400
500
600
700

-8
Forward Current RMS

Volt.
300
400
500
600

-6
-7

(Transient) (Non~Recurrent 5 ms (max)
MCR1718-5
-6
-7

Unit

Value

VRRM

ITiRMS)

25

Amp

ITsM

1000

Amp

di/dt

1000

A/!'s

12t

250·

A2.

PFIAV)

30

Watts

PGM

20

Watts

11-10!'. Pulse Width)

Current Application Rate
lup to 1000 Adc peak)

Circuit Fusing Considerations
ITJ = -65 to +1250 C; t ;:;; 1.0 m.

Dynamic Average Power

STYLE 1:

Pili 1. CATHODE
2. GATE
3. ANODE

ITC= 650 C)
Peak Gate Power - Forward
Average Gate Powar - Forward

PGIAV)

1.0

Watt

Peak Gate Current· Forward

IGM

5.0

Amp

Peak Gate Voltage

VGM

10

Volts

Operating Junction Temperature Range
Storage Temperature Range'

TJ

-65 to +125

T.tg

-65 to +150

°c
uc

30

in.-Ib

Stud Torque

(1)VRRM for all types can be applied on a continuous de basis without incurring damage.
Ratings apply for zero or negetive getO voltage.

MILLIMETERS
INCHES
I
MIN
MAX
MAX
15.34\15.60 aS04\ O.SI'
14.00 14.20 M51 0.559
2S.67 30.23 1.050 1.190
F
3.43 4.06 0.135 0.160
H
2.29 REF
0.090 REF
10.67 11.5
0.420 0.455
J
K
15.75 11.02 a620 0.S70
O.
L
7.S
1.
R
1. R
O. 5 EF
T
12.73 12.83 o.!iOl 0.505

DIM
A

THERMAL CHARACTERISTICS

Characteristic

CASE 263.(12

Thermal Resistance, Junction to Case

162

MCR1718·5 thru MCR1718·8 (continued)

ELECTRICAL CHARACTERISTICS

(Tc = 2So C unless otherwise noted I

Symbol

CharKteristtc

Peak Forward Blocking Voltage (11
(TJ = 12So CI

Min

Typ

Max

300
400
500
600

-

--

-

-

-

-

8.0

-

-

8.0

-

1.1

1.3

-

30
5.0

-

-

10

50

-

0.8

I.S

0.2S

-

-

5.0

-

IS
6.0

-

-

20

-

-

100

-

VORM
MCRI718-S
·6
·7
·8

Peak Forward Blocking Current
(Rated VORM with gate open, TJ = 12So CI
Peak Reverse Blocking Current
(Rated VRRM with gate open, TJ = 12So CI
Forward "On" Voltage
(IF = 25 Adcl
(lGT = SOO mA, Ipul se = SOO Ampsl
(1.0I's after start (10% ptJ of Ipulsel
(S.O lOS afterstart (10% pt.1 of Ipulsel

IORM
IRRM
VTM

Gate Trigger Current (Continuous de)

-

VGT
VGO
IH

Circuit Commutated Turn·Off Time
(IF = SOO A, IR = 10 A, dv/dt = 20 V/l'sl

Volts

mA
mA
Volts

mA

IGT

(Anode Voltage = 7.0 Vdc, RL = 500hmsl
Gate Trigger Voltage (Continuous dcl
(Anode Voltage = 7.0 Vdc, R L = SO Ohmsl
(Anode Voltage = Rated VORM, RL = 500 Ohms, TJ = 12So CI
Holding Current
(Anode Voltage = 7.0 Vdc, Gate Open I
(Anode Voltage = 7.0 Vdc, Gate Open, T J = 125 0 CI

Units

Volts

mA

lOS

tq

(Conductive Charging Circuit - Circuit dependend
(Gate Open, T J

VII'S

dv/dt

Cri tical Exponential Rate of Rise

= 12So CI

(1)VORM for all types can be supplied on a continuous de basis without incurring damage.

Ratings apply for zero or negative gate voltage.

163

MCR 1906-1 thru MCR 1906-4 (SILICON)

THYRISTORS
SILICON CONTROLLED RECTIFIERS

PNPN
1.6 AMPERES RMS
25 thru 200 VOLTS

... designed for applications in control systems and sensing circuits
where low·level gating and holding characteristics are necessary.

•

Low·Level Gate Characteristics IGT = 1.0 mA (Max) @TC= 250 C

•

Low Holding Current - I H = 5.0 mA (Max) @ TC = 2So C

•
•

Anode Common to Case
Glass·to·Metal Bond for Maximum Hermetic Seal

MAXIMUM RATINGS IT J

=

1000C unless otherwise noted.1
Symbol

Rating
Peak Reverse Blocking
Voltage INote 1 I

Value

25

MCR1906-1
MCRI906-2
MCR1906-3
MCRI906-4

Forward Current RMS

50
100
200
ITIRMSI

1.6

Amp

ITSM

15

Amp

IAII Conduction Angle,)
Peak Forward Surge Current
lOne Cycle. 60 Hz. T J = -40 to +1 OOoC)

Unit
Volts

VRRM

No Repetition Until Thermal Equilibrium

is Restored

Peak Gate Power-Forward

PGM

0.1

Watt

PGF(AV)

0.01

Watt

Peak Gate Current-Forward

IGM

0.1

Amp

Peak Gate Voltage

VGM

6.0

Volt

TJ

-65 to +100

T stg

-65 to +150

°c
°c
°c

Average Gate Power-Forward

Operating Junction Temperature Range
Storage Temperature Range

Lead Solder Temoerature

-

+230

(>1/16" From case, 10, max.)

All JEOEC dimenstonsand notes apply_
CASE 31·03
TO-5

164

MCR1906.1 thru MCR1906·4 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted, RGK = 1000 ohms.)
Symbol

Characteristic
Peak Forward Blocking Voltage (1)

Min

Unit

Max

Volt

VORM
MCRI906·1
MCR1906·2
MCR1906-3
MCR1906·4

-

25
50
100
200

-

IORM

-

500

"A

Peak Reverse Blocking Current (3)
(Rated VRRM, TJ = 100°C)

IRRM

-

500

"A

Forward "On" Voltage (Pulsed, 1.0 ms max, Duty Cycle ";;1.0%)
(IF = 1.0 Adc peak)

VTM

-

1.75

Volt

IGT

-

1.0

mAde

(Anode Voltage = 7.0 V, R L = 100 ohms)

VGT

-

1.0

(Anode Voltage = Rated VORM, RL = 100 ohms, TJ = 100°C)

VGO

0.1

-

IH

-

5.0

Peak Forward Blocking Current

-

(Rated VORM, T J = 100°C)

Gate Trigger Current (2) (Continuous de)
(Anode Voltage = 7.0 V, RL = 100 ohms)

Volt

Gate Trigger Voltage (Continuous del

Holding Current

mA

(Anode Voltage = 7.0 V)
Turn-On Time

ton

Turn-Off Time

toft

(1)

Circu it dependent,
consult manufacturer

VRRM and VORM can be applied for all types on a continuous de basis without incurring damage. Thyristor devices shall not be tested
with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

(2)

RGK current is not included in measurement.

(3)

Thyristor devices shall not have a positive bias applied to the gate concurrently with a negative potential applied to the anode.

FIGURE 2 - AMBIENT TEMPERATURE versus CURRENT

FIGURE 1 - CASE TEMPERATURE versus CURRENT

100 .....::--,---r--,----,---r--,----,---,

100

...

~

,.«a;

w

3
w
-'

'"~ "w
j ...::>'"

" 1li~
"«x ...
"~
«

::>

1800

«
'"

"
~ 60

«

~

w
-'

so I--+---+--t-

80

~ ...:il 40
" ...~
"«x 20
"....;:
::>

::>

50~---t---~~--1---~----1-~·~----~

40~---t---~~--1---~----1---~----+---~

0.2

0.4

O.S

0.8

10

1.2

1.4

1.S
IFIAV), AVERAGE FORWARD CURRENT lAMPS)

IFIAV), AVERAGE FORWARD CURRENT IAMPSI

165

MCR 1907-1 thru MCR 1907-6 '(SILICON)
PINt CATHODE

2. GATE

\

3, STUD ANODE

~1

Fast turn-on, fast turn-off silicon controlled rectifiers for high-frequency applications requiring blocking to 400 volts and load currents to 25 amp.

CASE 64
(TO·48)

MAXIMUM RATINGS (T.r:::::: 125°C unless otherwise noted)
Rating

Symbol

Peak Reverse Blocking VoltageMCR1907-1
-2
-3
-4
-5

VROM(rep)

Value

-

-6
Peak Reverse Blocking Voltage
(Non-Recurrent 5 ms (max.)
MCR1907-1
-2

Unit
Volts

25
50
100
200
300
400
Volts

VROM(non_rep)
35
75
150
300
400
500

-3
-4
-5
-6
Forward Current RMS
(All Conduction Angles)

It

25

12t

Circuit Fusing Consideration~
(T J = -65 to+125 0 C; t ;a 8.3 ms)

Amp
A2s

75

Peak Forward Surge Current
(One Cycle, 60 Hz, TJ = -65 to +125 0 C)

IFM(surge)

Peak Gate Power - Forward

Amp
150

P GFM

5.0

Watts

Average Gate Power - Forward

PGF(AV)

0.5

Watt

Peak Gate Current - Forward

IaFM

2.0

Amp

Peak Gate Voltage - Forward

VGFM
VGRM

10

Volts

5.0

Reverse
Operating Junction Temperature Range
Storage Temperature Range
Stud Torque

TJ

-65 to +125

°c

Tstg

-65 to +150

°c

-

30

-VROM(rep) for all types can be applied on a continuous dc basis without incurring damage.
Ratings apply for zero or negative gate voltage.

166'

in. lb.

MCR1907·1 thru MCR1907·6 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)

Symbol

Characteristic
Peak Forward Blocking Voltage*
(T J = 125 0 C)
MCR1907-1
-2
-3
-4

Min

Typ

Max

25
50
100
200
300
400

-

-

-

-

-

4.0

- -

4.0

V FOM *

-5
-6
Peak Forward Blocking Current
(Rated V FOM with gate open, T J = 1250 C)

I FOM

Peak Reverse Blocking Current
(Rated VROM with gate open, T J = 125°C)

IROM

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 501'1)

IGT

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7 Vdc, RL = 50 12)

VGT

(Anode Voltage = Rated V FOM ' RL = 501'1, TJ = 125°C)

VGNT

Units
Volts

mA
mA
mA

-

15

30

-

1.5

0.25

-

-

12

-

-

1.4

1.7

Volts

-

Holding Current
(Anode Voltage = 7 V dc, Gate Open)

I HO

mA

Forward On Voltage
(IF = 20 Adc)

VF

Turn-On Time
(IG = 200 mA, IF = 10 A)

ton

-

0.5

-

Turn-Off Time
(IF = 10 A, IR = 10 A, dv/dt = 30 V//-IS min.)

toff

-

-

12

dv/dt

30

-

-

V//-IS

8JC

-

1.0

1.7

°C/W

Volts

/-IS

/-IS

(VFXM = rated voltage) T J = 1250 C
(VRXM = rated voltage)
Forward Voltage Application Rate
(TJ = 125 0 C, gate open)
Thermal Resistance (Junction to Case)

*VFOM for all types can be applied on a continuous dc basis without incurring damage.

Ratings apply for zero or negative gate voltage. These devices should never be tested
with a constant current source for forward or reverse blocking capability such that
the voltage applied exceeds the rated blocking voltage.

CURRENT DERATING
125

......"

110

I

'\ ~ ~

\.'

00

-.1,

I

DC. 116. 34>, 616, CIRCUIT
I
RESISTIVE OR INDUCTIVE LOAD, 50 TO 400 Hz-

~ :::-- .....

,~
30·>

r---...... ......
~

50

,

"'"' ~, ,

.......

60·'

~ 70
,2

90·'

w

i'--

.......

120·'

o

O·

r---......

u

u

"

IFIAVI AVERAGE FORWARO CURRENT lAMP)

167

I

LD

180·

~

'CONDUCTION ANGLE

.......

:-......

180·'

~

I

"- .....
DC

u

ro

n

M

U

MCR1907·1 thru MCR1907·6

(continued)

TURN·OFF TIME TEST CIRCUIT t

TYPICAL TURN·OFF TIME varsus
PEAK FORWARD CURRENT AND JUNCTION TEMPERATURE
14
12 -

llOV

01

...-t-+-'-~I-O

60 H, ""~-=~=-r'-+t-!-:"

(SELECTED
RECOVERYDIO[)£)

SCOPEIVOLTAGEI

~1O
,.

I, ~ lOA

'F~20A

I

dv/dt~30V/l"min

J---

---

I---- I--tlsTANDARD TEST VALUEl

'~ :J---

>=

~

,-~ ,-~

IF

~

IF

I
-65 -50

-25

25

50

75

100

125

T" JUNCTION TEMPERATURE (OCI

FORWARD CONDUCTING CHARACTERISTICS

::-,.
:I:==~TI~.E~--'~~======~'-'-----~~~=--­
~ili!

TYPICAl~.r

~.~

I I
Forward conduction current is passed through the device
(SCR, and test device triggered on). The anode is then
driven negative (SCR. triggered on), causing reverse current
to flow. The anode-to-cathode potential goes negative with
a decrease in reverse current. Forward voltage is then ap~
plied to the anode of the device (SCR. triggered on). The
device has fully recovered when it regains its ability to block
the reapplied forward voltage.

0.5

1.0

D6--

MAXIMUM

---TJ 125"C====
TJ 25"C -

1.5

2.0

'F. INSTANTANEOUS FORWARD ON VOLTAGE (VOlTSI

t Consult manufacturer for further circuit mformation.

168

2.5

MCR2315 SERIES (SILl.CON)
MCR2614L SERIES
SILICON CONTROLLED RECTIFIERS
· .. designed for applications requiring blocking voltages through 400
volts and rms currents through 8.0 amperes. These devices are avail·
able in a choice of space-saving, economical packages for mounting
versatility.

SI LICON CONTROLLED
RECTIFIERS

B.O AMPERES RMS
25 thru 400 VOLTS

• Low Forward Voltage Drop - Typically 1.0 Volt at 5.0 A at 25 0 C
• Fast, Stable Switching Times - Typically 1.0 j.ls Turn·On, 12 j.ls
Turn·Off at 250 C
• AII·Diffused Junctions for Greater Parameter Uniformity
• Fatigue·Free Solder Construction
• Glass·to·Metal Hermetic Seal

jt~

flf~I

MCA2315
CASE 86

MAXIMUM RATINGS
Rating

Symbol

r

Peak Reverse Blocking Voltage

11)

Value

Unit

Volts

VRRM

Forward Current RMS
(All Conduction Angles)
Peak Forward Surge Current
lOne cycle. 60 Hz,
TJ=-40to+l00o C)
Forward Polarity

ITSM

Circuit Fusing Considerations

12 t

A
C

,
G

Amp
Amp

SEATING PLANE

~=

DIM

8.0

ITIRMS)

-----.

J

STUD ANODE

25
50
100
200
300
400

-2
MCR2315
-3
MCR2614L -4
-5
-6

L

I,
ill
I
_
==

STYLE'
PIN I GATE
2 CATHODE

MILLIMETERS
MIN MAX

T032UNf-2A

INCHES
MAX

MIN
-

0437
0.310
O.070TYP
0090 0110
0.4220.452

1110
7.87
1.78lYP
229
2.79
1072 11.48
1616
1549

"GO
0.610

NOTE
1. DIM "6" MEASURED AT CAN.
CASE 86

80
A 2s

ITJ = -40 to +1000C; t "';8.3 ms)
Forward Polarity

Peak Gate Power - Forward

40
PGM

5.0

Watts

Average Gate Power - Forward

PGMIAV)

0.5

Watt

Peak Gate Current - Forward
Peak Gate Voltage
Operating Junction Temperature

IGM

2.0

Amp

VGM

10

Volts

TJ

-40 to +100

°c

T stg

-40 to +150

I i,:N

U¥~

ro::~r=rl
-----.ii~ t

lL __

MCR2614L
CASE 87L

Range

Storage Temperature Range

.-~

Stud Torque IMCR2315 series)

15

°c
in. lb.

(1) VRRM for all types can be applied on a continuous de basis without incurring damage.

Ratings apply for zero or negative gate voltage.
Oevices should not be tested with a constant current source for forward or reverse
blocking capabilitv such that the voltage applied exceeds the rated blocking voltage.

j

STYLE I
PIN 1 GATE
2 CATHODE

B

3.ANODE

DIM

MI.

X

c A

10.92

-

THERMAL CHARACTERISTICS
Characteristic

Symbol

Thermal Resistance, Junction to Case

MCR2614L

Max

1.5
1.8
ReCA

Unit
°CIW

ReJC

MCR2315
MCR2614L

Thermal Resistance, Case to Ambient

Typ

50 (2 )

2.7

Q

3.0

-

°CIW

(2) Applies for the worst·cas. conditions of: (0) highest ReCA peckage configuration, Ib)

leads terminated at end points, Ic) temperature measured at hottest spot on device
(center of case bottom), and (dl still air mounting.

169

•

--

INCHES

MILLIMETERS

2.29

3.63
1.
1.B5
.43
4.57

&.97
.S
.3
.79

-

TVP

1.91
3.
6.08

-

-

-30
.D

,

D.l
1

D.430_

-

NOTES:
1. DIM. "G" MEASURED AT CAN.
2. LEAD NO.3 :t7.50 DISPLACEMENT.

CASE 87L·01

MCR2315 series, MCR2614L series (continued)

ELECTRICAL CHARACTERISTICS ITJ = 25 0 C unless otherwise noted)
Apply to all case types unless otherwise noted
Symbol

ClwHteristic

....(TJ'0"'""
.,.... "'_ '" { -1
= 100°C)
MCR2315
MCR2614L

-2
-3
-4
-5
-6

Peak Forward Blocking Current
(Ratad VORM, TJ = l000C, gata opan)

IORM

Peak Reverse Blocking Current
(Ratad VRRM, T J = l000C, gate opan)
Forward On Voltage
(IF = 5.0 Ade)

IRRM

Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 Vde, RL = lOOn)

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vde, RL = 100 n)
(Anode Voltage = 7.0 Vdc, RL = 100 n, TJ
Holding Current
(Anode Voltage

VTM

Typ

Max

Unit
. Volts

25
50
100
200
300
400

-

-

-

3.0

-

-

3.0

-

1.0

1.6

-

10

40

0.2

0.6

1.5

-

-

-

10

50

-

1.0

-

-

15
30

-

-

50

-

-

-

-

-

mA
mA
Volts
mA
Volts

VGT
VGO

= 100°C)

IH

= 7.0 Vdc, gate opan)

Turn·On Time
(IF = 5.0 Ade,lGT

Min

\tORM

ton

= 20 mAde)

Circuit Commutated Turn-Off Time
UF = 5.0 Adc, IR = 5.0 Adc)
(IF = 5.0Adc,IR = 5.0 Adc, TJ = 100°C)
Critical Exponential Rate of Rise
(TJ = 100°C)

mA
#,S

tq

#,S

dv/dt

V/!"s

(1) VORM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate voltage.

Devices should not be tested with a constant current source for forward or reverse blocking capability in 8 manner that the voltage
applied exceeds the rated blocking voltage.

FIGURE 2 - TYPICAL PARAMETER VARIATIONS
versus TEMPERATURE

FIGURE 1 - CURRENT DERATING - HALF WAVE

1.6,.--,----,-------,---,----,----,
NORMALIZED IGT, VGT.IH

W

II:

::>

I-

...w~
'"w

I-

~
~
~

j

«

'"
'"x.«
::>

.;

I-

IH

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0·~1..0---~25:---7-----J2'-5---:5'::0---:::75:--~100

8.0

IT, JUNCTION TEMPERATURE (DC) .

IF(AV), AVERAGE FORWARD CURRENT (AMP)

170

MCR3818-1 thru MCR3818-8 (SILICON)
MCR3918-1 thru MCR3918-8

THYRISTORS
PNPN

THYRISTORS
SILICON CONTROLLED RECTIFIERS

20 AMPERES RMS
25 thru 600 VOLTS

· .. designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder con·
trois.
•

Economical for a Wide Range of Uses

•

High Surge Current - ITSM = 240 Amp

•

Low Forward "On" Voltage - 1.2 V (Typ) @ ITM = 20 Amp

MCR3818 Series

• Practical Level Triggering and Holding Characteristics 10 mA (Typ) @ TC = 25 0 C
Rugged Construction in Either Pressfit or Stud Package

•

STYlE 1

TERM 1 CATHODE
2. GATE

MAXIMUM RATINGS
Symbol

Rating

Repetitive Peak Reverse Blocking
Voltage
MCR3818
MCR3918

Non·repetitive Peak Reverse
Blocking Voltage Its 5.0 m',)
MCR3818
MCR3918

r
r

= -40 to +100"C)

K

0,501
0.465
0.330
0.100
0,035
0.080

-

-

N

n

0.065

CASE 174'()2
TQ.203AA

IT(RMS)

20

Amp

ITSM

240

Amp

12t

235

A2,

(t= 1.0te 8.3 m,!

Peak Gate Power
Average Gate. Po'Mtr

Peak Forward Gate Current
Peak Gate Voltage
Forward

Reverse
Operating Junction Temperature Range

Storage Temperature Range
Stud Torque (MCR3918Serie,!

PGM

5.0

Watt

PG(AV)

0.5

Watt

IGM

2.0

Amp

VGFM

10
10

STYLE 1
TERM 1 CATHODE
2 GATE

Volt,
VGRM
TJ

-40 to +100

T,tg

-40 to +150

-

°c
°c
in. lb.

30

A
B
C

15.34
14.00
20.70

F

1.40

H

2,29
10,67
9J8
6.99
2.03
1.65
12.70

K
L

(1) VRRM for all typel can be applied on a contlnuou. de basi. without Incurring damage,

n

Ratings apply for zero or negative gam voltage. Device. 'hall not have a pOtltive biu applied to the gate concurrently with. negative potential on the anode.

R
T

R
11.56
10,54
7J5
2.41
REF
12.83
CASE 175

171

0.505
0.475
0.3lI0
0.068
0,097
0.800
0.510
0.090

All JEDEC dimensions and notes apply

75
150
300
400
500
600
700

-7

(TJ

12.726 12.827
11.811 12.065
8.39
9.65
2.54
1.72
0.89
2,46
2.04
- 20.32
12,95
1.66
2.28

J

35

-6

Circuit Fusing Considerations

A
C
E
F

Volts

INCHES
MIN
MAX

MILLIMETERS
MAX
MIN

DIM

B

VRSM

-2
-3
-4
-5

Peak Surge Current (one cycle, 60 Hd
ITJ : -40 to +1 oo"C)

Unit
Volts

25
50
100
200
300
400
500
600

-2
-3
-4
-5
-6
-7
-8

-8

Forward Current RMS

Value

VRRM(I)

MCR3818-1 thru MCR3818-8, MCR3918-1 thru MCR3918-8 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Svmbol

Characteristic
Peak Forward Blocking Voltage (TJ

MCR3818
MCR3918

Peak Forward Blocking Current

= 1Oo"CI

r

= 100°C)

Peak Reverse Blocking Current

(Rated VRRM, with gate open, T J = 10o"CI
Forward "On" Voltage (lTM

= 20 A Peak)

Gate Trigger Current (Continuous de)
(Anode Voltage = 7.0 V. RL = 100 n)
Gate Trigger Voltage (Continuous del
(Anode Voltage = 7.0 V, RL = 100 n)

(Anode Voltage

= Rated

VORM, R L

Holding Current IAnode Voltage

= 100 n, T J = 1000 CI

= 7.0 V, gate open)
= 40 mAde)

Turn-On Time (td +trl (lTM = 20 Adc, IGT

, Turn-Off Time
(lTM
(lTM

Max

25
50
100
200
300
400
SOO
600

-

-

-

Unit

--

-

10RM

-

1.0

S.O

mA

IRRM

-

1.0

5.0

mA

VTM

-

1.2

I.S

Volts

IGT

-

10

40

mA

VGT
VGD

-

0.7

I.S

Volts

0.2

-

-

IH

-

10

SO

mA

ton

-

1.0

-

/-IS

-

15
25

-

dv/dt

-

50

-

eJC

-

toff

= lOA, IR. = 10 A)
= 10 A,IR = 10 A, TJ = 10o"C)

Forward Voltage Application Rate (TJ

Typ

Volts

-2
-3
-4
-5
-6
-7
-8

(Rated VORM, with gate open, TJ

Min

VORM(11

= 100°C)

Thermal Resistance, Junction to Case

/-IS

MCR3818
MCR3918

V//-Is

°C/W

-

1.5
1.6

(1) VORM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate voltage.
Devices should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds
the rated blocking'voltage.

FIGURE 1 - CURRENT DERATING

FIGURE 2 - POWER DISSIPATION
28

kc"
,/

HALF·WAVE OPERATION
180 0

0

/ 'L~

900

L

V~ ~
.=~i'~ ~ V
~o

0
0

2.0,

4.0

6.0

8.0

10

12

14

16

18

o~
o 2.0

20

IT(AV). AVERAGE FORWARD CURRENT lAMP)

~~

~

4.0

6.0

8.0

10

12

14

16

ITIAV), AVERAGE FORWARD CURRENT lAMP)

172

18

20

MCR3835-1 thru MCR3835-8 (SILICON)
MCR3935-1 thru MCR3935-8

THYRISTORS
PNPN

THYRISTORS
SILICON CONTROLLED RECTIFIERS

35 AMPERES RMS
25 thru 600 VOLTS
· .. designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder
controls.

MCR3835 Series

• Economical for a Wide Range of Uses
• High Surge Current - ITSM = 325 Amp
• Low Forward "On" Voltage - 1.2 V (Typ) @ ITM = 35 Amp
•

Practical Level Triggering and Holding Characteristics 10 mA (Typ) @TC= 25 0 C

• Rugged Construction in Either Pressfit or Stud Package
STYLE 1
TERM I CATHODE
2 GATE

MAXIMUM RATINGS
Rating
Repetitive Peak Reverse Blocking
Voltage

MCR3835
MCR3935

Symbol

r

MCR3835
MCR3935

-6

A

K

N
Q

-6
-7
-8

MILLIMETERS
MIN MAX

INCHES
MIN
MAX

12.726 12.827 0.501
11.811 12.065 0.465
8.39 9.65 0.330
2.54
0.100
0.89
1.72 0.035
2.04 2.46 0.080
20.32
- 12.95
1.66 2.28 0.065

0.505
0.475
0.380
0.068
0.097
0.800
0.510
0.090

All JED EC dImensions and notes apply
CASE 174.(J2
TO·203AA

35
75
150
300
400
500
600
700

[

Forward Current RMS

DIM
B
C
E
F
J

VQlts

VRSM

-1
-2
-3
-4
-5

Peak Surge Current

Unit

Volts
25
50
100
200
300
400
500
600

-2
-3
-4
-5
-7
-8

NonMRepetitive Peak Reverse
Blocking Voltage
(t:<:5.0 ms)

Value

VRRM(I)

IT(RMS)

35

Amp

ITSM

325

Amp

12t

435

A 2s

PGFM

5.0

PGF(AVI

0.5

Watts
Watt

IGFM

2.0

Amp

VGFM
VGRM

10
10

Volts

(One cycle, 60 Hz) (TJ =-40to+l000 C)

Circuit Fusing Considerations
(TJ=-40to+l000 C) (10 1.0 to 8.3 msl
Peak Gate Power
Average Gate Power

Peak F orW8rd~Gate Current
Peak Gate Voltage - Forward
Reverse

Operating Junction Temperature Range
Storage Temperature Range
Stud Torque (MCR3935 Series)

SfATINGl'lANf

TJ

-4010+100

QC

Tstg

-40 to +150

°C

-

30

in. lb.

(1)VRRM for all typas can ba applied on a continuous de bali, without incurring damag•.
Ratingl apply for zero or negative gate voltage. Oevlce' shall not have a positive bla' applied

to the gate concurrentlv with a negative potential on the anode.

STYLE 1.
TERM.1.·CATHODE
2 GATE

MILLIMETERS
DIM MIN MAX
A 15.34 15.60
B 14.00 14.20
C 20.70 24.13
F
1.40 1.65
H
2.29 REF
1 . 7 11.56
K 9.78 10.54
L
.99 7.75
Q
2.03 2.41
R
1.65 REF
T 12.70 12.83
CASE 175

173

MCR3835·' thru MCR3835·8, MCR3935·' thru MCR3935-8 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

Typ

Min

Symbol

Peak Forward Blocking Voltage
(TJ = l00"C)

Max

Unit
Volts

VORM(I)
25
50
100
200
300
400
500
600

-

-

-

IORM

-

1.0

5.0

mA

IRRM

-

1.0

5.0

mA

Forward "On" Voltage
(ITM = 35 A Peak)

VTM

-

1.2

1.5

Volts

Gate Trigger Current (Continuous dc)
(Anode Voltage = 7.0 V, RL = 100 n)

IGT

-

10

40

mA

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7.0 V, RL = 100 n)

VGT

0.7

1.5

Volts

r
-2

MCR3B35
MCR3935

-3

-4
-5
-6
-7

-8

Peek Forward Blocking Current
(Rated VORM, with gate open, TJ

=

Peak Reverse Blocking Current
(Rated VRRM, with gate open, TJ

= l000C)

l00o C)

-

-

-

-

-

(Anode Voltage = Rated VOM, RL = lOOn, TJ

= l000 C)

VGO

0.2

-

-

Holding Current
(Anode Voltage = 7.0 V, gete open)

IH

-

10

50

mA

Turn·On Time (td + t r )
(ITM = 35 Adc, IGT = 40 mAdc)

ton

-

1.0

-

itS

Turn-Off Time
(ITM = 10A,IR

tott

-

15

-

25

-

dv/dt

-

50

-

VIItS

6JC

-

-

1.2
1.3

°C/W

= lOA)
(ITM = 10 A,IR = 10 A, TJ = l00"C)

Forward Voltage Application Rate
(TJ = l00"C)

Thermal Resistance, Junction to Case

MCR3B35
MCR3935

ItS

-

(1) VORM for all types can be applied on a continuous de basis without incurring qamage. Ratings apply for zero or negative gate voltage. Devices
should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the
rated blocking voltage.
'

FIGURE 2 - TYPICAL POWER DISSIPATION

FIGURE 1 - CURRENT DERATING
50

100

~

'"~

90

~C3

80

ii~

70

f

j~

<",

"'w
:>""
",,,,

~~

40

i~

..
......

0-

V.

30

~

w9

80

~~

50

~~

20

'"

S

f

30

/. V

/
1/ i
- //V//
/. ' l ' /

10

J118~

W ::..---

o~V
o

ITIAV), AVERAGE FORWARO CURRENT lAMP)

60.- 90' /

t--- ~a'~ 3D'

"5

....<3

L

180' /

~~

.,~

0:>

de

I

4.0

fa
8.0

12

16

20

24

'= CONOUCTION ANGLE
28

32

ITIAV), AVERAGE FORWARD CURRENT (AMP)

174

36

40

MD708, F (SILICON)
MD708A, AF
MD708B, BF
NPN SIL1CON ANNULAR MULTIPLE TRANSISTORS
· .. designed for use as differential amplifiers, dual high·speed
switches, front end detectors and temperature compensation ap·
plications.
•

•

Excellent Matching Characteristics @ IC = 10 mAdc
hFE1ihFE2 = 0.9 (Min) - MD70BA,AF
= 0.8 (Min) - MD7088,BF

MD708
MD708A
MD708B

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.20 Vdc (Max) @ Ie = 10 mAde

•

DC Current Gain Specified from 500 /.lAde to 150 mAde

•

High Current·Gain-Bandwidth Product IT = 300 MHz (Min) @ IC = 20 mAde

•

NPN SILICON
MULTIPLE TRANSISTORS

I

STYLE "
PIN 1. COLLECTOR

Fast Switching Time ton = 35 ns (Max)
toft = 75 ns (Max)

2 BASE

3. EMITTER
4. OMITTED
S.EMITTER
6. BASE

7.COLLECTOR
a.OMITTED

MAXIMUM RATINGS
Rating
COllector-Emitter Voltage

Symbol

Value

Unit

VCEO

15

Vdc

COllector-Base Voltage

VCB

40

Vdc

Emitter~Base

VEB

5.0

Vdc

IC

200

TJ,Tstg

-65 to +200

mAde
DC

Voltage

Collector Current

Continuous

Operating and Storage Junction
Temperature Range

One Die

Both Die

Equal Power
Total Power Dissipation @TA = 25°C

550
350

600
400

3.13
2.0

3.42
2.2B

1.4
0.7

2.0
1.4

B.O
4.0

11.4
B.O

One Die

Both Die
Equal Power

mW/oC

Derate above 2SoC
MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD70BBF

Total Power Dissipation @TC= 25°C

MD70BF
MD70BAF
MD70BBF

Watts

PD

MD70B,MD70BA,MD70BB
MD7OBF,MD7OBAF,MD70BBF

CASE 654-01

mW

PD

MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD7OBB F

mW/oC

Derate above 25°C
MD70B,MD7!J8A ,MD70BB
MD7OBF,MD7OBAF,MD7OBBF

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction
to Ambient

Symbol
R8JAI11

MD7OB,MD70BA,MD70BB
MD70BF ,MD7OBAF ,MD7OBBF

Thermal Resistance, Junction to Case
MD7OB,MD708A,MD708B
MD708F,MD7OBAF,MD7OBBF

°CIW
319
500

STYLE 1.

292
438

PIN 1 BASE

125
250

Ambient

87.5
125

%
83
75

40
0

(1) R()JA IS measured With the deVice soldered Into a tYPical printed CirCUit board.

MILLIMETERS

DIM

MIN

A

6.10

MAX
1.36

22

406

0.6
036
11.08

0.48
0.15

•

Junction to
Ca ..

Coupling Factors

5 BASE

2 EMITTER

4. EMITTER

°CIW

R8JC

Junction to

MD7OB,MD7OBA,MD7OBB
MD7OBF,MD7OBAF,MD7OBBF

Unit

C
0
F
G
H
K
N

•

-

2.03

1.27BSC
0.89

381
2.548SC
127

-

1 COLLECTOR
9. COLLECTOR
INCHES

MIN
0.240

-

CASE 610A·03

175

MAX

0.290
0.115 0.1
0030 0.080
0014 0019
0.0
0.00
OD50BSC
0.035
0150
DIOOase
0.050

MD708, F,A,A F,B,BF (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip deVices, coupling of heat between die occurs.
The Junction temperature can be calculated as follows:

Assuming equal thermal resistance for each die, equation (11
simplifies to:

131 ~TJl "ROIIPOI + K02 P02)

II) ~TJI "ROI POI + R02 K02 P02
Where llT Jl

IS

the change

In

junction temperature of die 1

Ro 1 and R02 IS the thermal resistance of die 1 and die 2

POl and P02
K82

IS

IS

the power dissipated

10

die 1 and die 2

the thermal coupling between die 1 and die 2.

An effectIve package thermal resistance can be defined as
follows'

Where PDT

I

For the conditions where Po 1 = P02 = POT == 2 PO. equation
(3) can be further si mplifled and by substituting Into equation (2)

results In:

IS

141 ROIEFFI" ROIl)

+ K021/2

Values for the coupling factors when either the case or the
ambient IS used as a reference are given In the table on page 1.

the total package power diSsipation.

ELECTRICAL CHARACTERISTICS ITA" 25 0 e unless otherwise notedl.

I

Characteristic

Svmbol

Min

Max

Unit

BVeEO

15

-

Vde

BVeBO

40

-

Vde

BVEBO

5.0

-

Vde

-

15
30

nAde
/lAde

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage( 1)

(lC "30 mAde, IB

= 01

Collector-Base Breakdown Voltage

(Ie" 10 I'Ade, IE

= 01

Emitter-Base Breakdown Voltage

liE

= 10l'Ade, IC = 01

Collector Cutoff Current

IVCB
IVCB

= 20 Vde,
= 20 Vde,

IE = 01
IE" 0, TA

ICBO

= 1500 CI

-

ON CHARACTERISTICS
DC Current Gainlll
IIC = 500 /lAde, VCE = 1.0 Vde)
(lC = 10 mAde, V CE = 1.0 Vdel
(lC = 100 mAde, VCE = 5.0 Vdel
(lC = 150 mAde, VCE = 5.0 Vdel

hFE

Collector-Emitter Saturation Voltage

VCElsat)

(lC
(lC
(Ie

40
40
35
20

= 10 mAde, IB = 1.0 mAdel
= 50 mAde, IB = 5.0 mAde)
= 100 mAde, IB = 10 mAdel

Bsse-Emitter Saturation Voltage

-

200

-

Vde

-

0.20
0.35
0.50

0.65

0.85
0.95
1.10

Vde

VBElsatl

(lC" 10 mAde, IB = 1.0 mAdel
(lC = 50 mAde, IB " 5.0 mAdel
(lC = 100 mAde, IB = 10 mAdel

-

(11 Pulse Test: Pulse Width'" 300 I'S, Duty Cycle'" 2.0%.

176

-

MD708,F ,A,AF ,B,BF (continued)

ELECTRICAL CHARACTER ISTICS (continued)
Svmbol

Min

Max

Unit

tr

300

-

MHz

Output Capacitance
(VCB = 10 Vde, 'E = 0, f = 100 MHz)

Cob

-

5.0

pF

Input Capacitance

Cib

-

7.0

pF

0.9
O.B

1.0
1.0

-

5.0
10

-

10
20

DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product
(lC = 20 mAde, VCE = 10 We, f

= 100 MHz)

(VBE = 0.5 Vde, IC = 0, f = 100 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time (Figure 11
Turn-Off Time (Figure 2)
Storage Time (Figure 2)
MATCHING CHARACTERISTICS
DC Current Gain Ratio(2}
(lC = 10 mAde, VCE = 1.0 Vde)

-

hFE1/hFE2
M07OBA,AF
MD7OBB,BF

Base Votlage Differential

mVdc

i'lBE1- V BE2i
MD70BA,AF
MD70BB,BF

(lC = 10 mAde, VCE = 1.0 Vde)

Base-Emitter Voltage Differential Change

liVBE1 IVBE2 i
6TA

MD7OBA,AF
MD7OBB,BF

(lC = 10 mAde, VCE = 1.0 Vdc,
T A = _55°C to 125°C)

-

I'Vdc

(2) The lowest hFE reacting IS taken as hFE1 for this ratio.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - STORAGE TIME TEST CIRCUIT
+10 V

+3.0 V

160
280

0.11'F

....~1'Y.O""kv--Ir-<> Scope

0.11'F

- ........1"'.5"'k..--Ir-<> Scope
5.0 k

50
toff
VB"" +16 V

5.0 k

870

-:,li

-:9li

o{l" ,,:00
+11 V

177

MD918, A, B(SILICON)
MD918F, AF, BF

NPN SILICON
MULTIPLE TRANSISTORS·

MULTIPLE SILICON ANNULAR TRANSISTORS
· .. designed for use as differential amplifiers, dual high frequency
amplifiers, front end detectors and temperature compensation
applications.

•

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Max) @ IC = 10 mAdc

•

DC Current Gain - 50 (Min)

•

High Current·Gai n - Bandwidth Product fT = 600 MHz @ IC = 4.0 mAdc

@

I

IC = 3.0 mAdc
MD918
MD918A
M09188

STYLE 1:
PIN 1. COLLECTOR
2. BASE
3. EMITIER

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

4. OMITTED

Symbol

Value

Unit

VCEO

15

Vdc
Vdc.

Collector-Base Voltage

VCB

30

Emitter-Base Voltage

VEB

3.0

Vdc

IC

50

mAde

Collector Current - Continuous

Total Power DISsipatIon @ T A = 25°C

Total Power DISsipation @ T C "" 25°C
MD918,A,B
MD918F,AF,BF
Derate Above 25°C
MD918,A,B
MD918F,AF,BF
Operatmg and Storage Junction

MILL

DIM
A
B

One Die

AIiDio

550
350

600
400

mW

3.14
2.0

3.42
2.28

mW/oC

1.4
0.7

2.0
1.4

Watts

8.0
4.0

11.4
8.0

mW/oC

Po

M091B,A,B
M0918F,AF,BF
Derate Above 2SoC
MD918,A,B
M0918F,AF,BF

5. EMITTER
6. BASE

1. COLLECTOR
B. OMITTED

CASE 664-()7

E S

K

I
X
8.S1 9.40
1.15 8.51
.81 '.10
0."
0.53
5.088st
0.11 0.86
0.74 1.14
12.10

M
N

45
2.54BSC

C
D

G
H
J

Po

T J,T stg

-65'0 +200

MD918F
MD918AF
MD9188F

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to
Ambient
MD918,A,8
MD918F,AF,BF

Thermal Resistance,Junction to Case
MD918,A,B
MD918F,AF,BF

Symbol

On8 Die

All Dio'
Equal Power

319
500

292
438

125
250

87.5
125

°CIW

R9JC

Junction to
Ambient

DIM
STYlE 1:
PIN 1. BASE
2. EMITTER
•. EMITTER

Junction to

c..

5. BASE

%

Coupling Factors

MD918,A,B
MD918F,AF,BF

Unit

°C/W

R9JA(1)

83
75

40
0

(11 ReJA is measured with the device soldered into 8 typical printed circuit board.

178

7. COLLECTOR
9. COLLECTOR
CASE 810A-03

A
B
C
0
F

G
H

K
N
R

MILLIMETERS
MIN MAX
6.10
1.36
0.16

..

2.

~36

M8

O.

~Iti

1.21 SSC
U9
3. I
2.

B

1.1

MD918,A,B. MD918F,AF,BF (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices. coupling of heat between die occurs.

where: PDT is the total package power dissipation.
Assuming equa' thermal resistance for each die, equation 11)

The junction temperature can be calculated as follows:

simplifies to
(3) AT Jl = R81 (POI + KB2 P02)

Where ~T J1 is the change in junction temperature of die 1
R81 and R82 is the thermal resistance 01 die 1 and die 2
POI and P02 is the power dissipated in die 1 and die 2
k62 is the thermal coupling between die 1 and die 2

For the conditions where POI = P02, PDT = 2PD,

equation (3~ can be further simplified and by substituting Into
equation (2t results in

An effective package thermal resistance can be defined as
lollows:
Values for the coupling factors when either the case or the

(2) R8IEFF) ~ AT Jl/PDT

ambient is used as a reference are given in the table on page 1.

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.)

I

Characteristic

Symbol

Min

Typ

BVCEO

'15

-

BVCBO

30

-

BVEBO

3.0

Max

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage(1)
IIc

= 3.0 mAde,

IB

= 0)

Collector-Base Breakdown Voltage
IIc

Vde
Vde

= 1.0 "Ade, IE = 0)

Emitter-Base Breakdown Voltage
liE

-

Vde

= 10"Ade,lc = 0)

Collector Cutoff Current
IVCB
IVCB

= 15 Vde,
= 15 Vde,

IE
IE

ICBO

= 0)
= 0, TA = lSOoC)

-

-

-

10
1.0

50

165

-

VCE(sat)

0.09

0.2

Vde

VBElsatl

0.86

0.9

Vde

1150

-

MHz

Cob

1.1

1.7

pF

Cib

1.15

2.0

pF

6.0

dB

nAdc
"Ade

ON CHARACTERISTICS

DC Current Gain
IIc

hFE

= 3.0 mAde, VCE = 5.0 Vdcl

Collector-Emitter Saturation Voltage
IIc

= 10 mAde,

IB = 1.0 Ade)

Base-E mitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product
(lC

= 4.0 mAde,

VCE

fy

Output Capacitance
IVCB = 10 Vde, IE

= 0, 1= 100 kHz)

Input Capacitance
IVBE = 0.5 Vde, IC

= 0, I = 100 kHz)

Noise Figure
(lC

600

= 10 Vde, 1= 100 MHz)

NF

= 1.0 mAde, V CE = 6.0 Vde, RS = 400 n, f = 60 MHz)

MATCHING CHARACTERISTICS
DC Current-Gain Ratio' 21
(lC = 1.0 mAde, VCE = 5.0 Vde)

hFE1/hFE2
MD918B,BF
MD918A,AF

Base-Emitter Voltage Differential
(lC

= 1.0 mAde,

VCE

= 5.0 Vde)

Base-Emitter Voltage Differential Gradient
(lC = 1.0 mAde, VCE = 5.0 Vde,
TA = -55 to +12SoC)

IVBE1,VBE21
MD918B,BF
MD918A,AF
<.IVBE1-VBE21
MD918B,AF,BF
L>TA
MD918A

II) Pulse Test: Pulse Width ';;;300 "s, Duty Cycle ';;;2.0%.
(2) The lowest hFE reading is taken as hFEl lor this ratio.

179

0.8
0.9

-

1.0
1.0

-

-

10
5.0

-

-

20
10

-

mVde

"V/de

°c

MD918,A,B, MD918F,AF,BF (continued)

FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
0

1.0

-r-I-

,

TJ = 150~C

z

1-'

~

~
'"

ag'"
~

-

200

--

O. 8

~

~

~

40

I

1.0

I

c

>

,;

~ y~,

- - VCE=5.0V
- - - VCE=10V -

I 1111

I I

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT ImAI

20

~~

'\

30

I II

."
:z:

Ij5h~ 10 15~OC t--+-++l+l++--+--+--+A--l

:::>

I-

t;

V

c

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT ImAI

lc!J})

TJ = 250C
f=I00MHz

~ 1000

~G -1. 4t--++t-t+----jHi--+-+-+-+++4+-1--/-¥----j---1-j
/
1

.....

.:'-

:z:

....

20

30

-

c

'":::>

z

50

........

~ 700
z
~ 50
0/
I

~

~ -t.6H--H+t--f-+-f-+-H+I.I4V
-+--f--IC--H

\"

Y

;;:

; -1.8 emrSE_
!;(

~

III
1.0

FIGURE 4 - CURRENT-GAIN
BANDWIDTH PRODUCT

2000

~

I..-

VCElsal) Q IC IB = 0

0
0.5 0.7

50

-1.0 rT"T-rTT---r--,---r--'-T"""T""l""TTT-'--'---'-"""'-'j

~

1/

O. 2

FIGURE 3 - BASE·EMITTER
TEMPERATURE COEFFICIENT

~

~

VaElonl@VCE= 6.0 V

~ D. 6
w

r-..... -'l

-550C

-1.2

------

~

:; 0.4

60

20
0.5 0.7

~

VBElj') ·IIC~.i!

;;;

f'" ~

250C
100
0

I I. .! l.l

II
TJ = 250C

to

~ 300
~
~

-2.0 L....I.-11T.L..L.J,",-l_-,--",---,--,-.i.-..l.,",",",".L.L---'--'_-'--J.......J
2.0 3.0
5.0 7.0 10
50
0.5 0.7 1.0
20 30
IC. COLLECTOR CURRENT ImAI

J::'

200
3.0

0.5 0.7

1.0

2.0

FIGURE 5 - CAPACITANCE
3. 0

I I

2.0

--

~

..,w
~

~
..;

=1250~

Cob

'-

1.0

Cib

t:
..,
~

TJ

O.7
O.5

O.3

0.05

0.1

0.2

0.5
1.0
2.0
5.0
VR. REVERSE VOLTAGE IVOLTS)

180

10

20

50

3.0

5.0 7.0

10

20

30

MD 982 (SILICON)
MD'982F
MQ982
MULTIPLE SILICON ANNULAR TRANSISTORS

PNPSILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors, and temperature compensation
applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 150 mAdc

M0982

• DC Current Gain Specified 100llAdcto 150mAdc
•

I

High Current-Gain-Bandwidth Product fT = 320 MHz (Typ) @ IC = 50 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

50

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

Total Power Dissipation @TC :: 2SoC

B

C
SEMITTER

600

IC

OneDie
Total Power Dissipation @TA :: 2SoC
MD982
M0982F
M0982
Derate above 25°C
M0982
MD982F
M0982

A

mAde

S8A5E

7CollEtTOil
80MITIED

All Oi.

Po

mW
600
350
400

650
400
600

3.42
2.0
2.28

3.7
2.28
3.42

2.1
1.25
1.0

3.8
2.5
4.0

12
7.15
5.71

17.2
14.3
22.8

CASE 654-01

Po

-65 to +200

TJ.Tstg

DIM
SfYLEl
PlHJBASE

:::¥~:

1 COllECTOR
• COllECTOR

°C,

Symbol

MD982
MD982F
M0982

All Oi.
On.Oie Equal Powe,

ROJAll)

M0982
M0982F
M0982

Thermal Resistance, Junction to Case

270
438
292

83.3
140
175

58.3
70
43.8

D
F
G

CASE 610A-03

R

Unit

Junction to

STYLE!
PlN1CDllECToR

Ce..

211ASE

%

85
75
57
55

40
0
0
0

1 EMITTER
:

~~M~~NECTED

6 BASE

~ ~m~gg:
gBAS£
10 EMITTER
J1NCTCONNECTEO

l~ :~~T£l1
14 COLLECTOR

DIM
A
C
D
F
G
H
J
K
L

N

(1) RSJA is measured with the davice soldered into a tvplcal printed circuit board.
CASE 607·04

181

MILLIMETERS
MIN MAX

6.10
2.92
0.76
0.36
D.DB
1.27

7.36
4.0
203
0.48
0.15

asc

D.B9

3.81
2.54

sse
1.27

INCHES
MIN
MAX
0240 0290
0115 0.1
0030 0.080
0.014 0.019
0003 0.006
0.050BSC
0.035
0.150
010BSC
0.050

MQ982

°CIW

ROJC

Coupling Factor

(01-02)
jOl-Q3 or 01-04)

c

°CIW
292
500
438

Junction to
Ambient
MD982
MD982F
M0982

A
B

H
K
N

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to Ambient

K
M
N

Watts

mW/oC

Charact.. istic

H
J

mW/oC

M0982
M0982F
M0982
Derate above 25°C
M0982
MD982F
M0982
Operating and Storage Junction
T emoerature R anae

D
G

R
S

M0982, M0982F, M0982 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(1) ATJl - RBI POI

where:

+ R82 K82 P02 + RB3 KB3 P03

+RB4 KB4 PQ4

(31 ATJl = RBI (POI + KB2 P02 + Ke3 P03 + K84 P04,

Where ~,Jl is the change in junction temperature of die 1
ReI thru 4 is the thermal resistance of die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

For the conditions where POI = P02 = P03

=P04, PDT =4PO

equation (3) can be further simplified and by substituting into
equation (21 results in

(41 RB(EFFI

An effective package thermal resistance can be defined as
follows:

PDT is the total package pOlA/er dissipation.

Assuming equal thermal resistance for each die, equation (1)
simplifies to

= RB111

+ K82 + KB3 + K841 /4

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.

(21 Re(EFFI = ATJ1/POT

ELECTRICAL CHARACTERISTICS (TA

= 25°C unless otherwise noted.)

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage 111
(lC = 10 mAde,lB = 01

BVCEO

50

-

-

Vde

Coliector·Base Breakdown Voltage
(lC = IOI'Ade,lE = 01

BVCBO

60

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = lOI'Ade,lc = 01

BVEBO

5.0

-

-

Vde

--

-

0.020
20

20
25
35
40

50
75
90
60

-

OFF CHARACTERISTICS

Collector Cutoff Current

IVCS = 50 Vde, IE
(VCS = 50 Vde, IE

ICBO

= 01
= 0, TA = 1500 CI

I'Ade

ON CHARACTERISTICS III
DC Current Gai n

-

hFE

(lc = 0.1 mAde, VeE = 10 Vdel
(Ie = 1.0 mAde, VCE = 10 Vdel
(lC = 10 mAde, VCE = 10 Vdel
(lC = 150 mAde, VCE = 10 Vdel

-

-

Collector-Emitter'Saturation Voltage
(Ie = 150 mAde, IS = 15 mAdei

VCE(sati

-

0.25

0.5

Vde

Base-Emitter Saturation Voltage
(lC = 150 mAde, IS = 15 mAdei

VBE(sati

-

0.88

1.4

Vile

IT

200

320

-

MHz

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHzI

Cob

-

5.B

8.0

pF

Input Capacitance
(VSE = 2.0 Vde, IC = 0, f = 100 kHzI

Cib

-

16

30

pF

DYNAMIC CHARACTERISTICS
Current-Gain -Bandwidth Product
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHzI

(1) Pulse Test: Pulse Width ";;300 I'S, Duty Cycle";; 2.0%.

182

MD984

(SILICON)

MULTIPLE SILICON ANNULAR

TRANSISTOR
PNP SILICON
MULTIPLE TRANSISTOR

... designed for use as differential amplifiers. dual general·purpose
amplifiers. front end detectors and temperature compensation appli·
cations.
•
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.18 Vde (Typ) @ IC = 10 mAde
High Current-Gain-Bandwidth Product fT = 550 MHz (Typ) @ IC = 20 mAde

iF:b

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

20

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAde

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Total Power Dissipation

@

Derate above 2SoC
@

575
3.29

625
3.57

1.8

2.5
14.3

Derate above 2SoC

PLANE

=q

-lLo

mW/oC

Watts
10.3

TJ.T stg

SEATING

mW

Po

TC - 25°C

Operating and Storage Junction
Temperature Range

Both Die
Equal Pow",

Po

TA=250C

Total Power Dissipation

One Die

'\

mW/oC
°c

-65'0 +200

STYLE 1:
PIN 1. COLLECTOR
2. BASE

3.EMITIER
4.0"UTTED

THERMAL CHARACTERISTICS
Symbol

One Die

Both Die
Equal Power,

Thermal Resistance. Junction to
Ambient

RaJAI1)

304

280

°C/W

Thermal Resistance, Junction to Case

RaJC

97

70

°C/W

Characteristic

Unit

Junction to Junction to
Ambient
Ca..
Coupling Factor

84

44

DIM
A
8
C
D

G
H
J
K
M

N

MIN MAX
Ul
9.40
7.75 B.51
3.81 4.70
0.41 0.53
5.0B BSC
0.71 0.B6
0.74 1.14
12.70
45' BSC
2.54

%
CASE 654.(17

(1) R6JA is measured with the davice soldered into 8 typical printed circuit board.

183

5. EMITIER
6. BASE
1. COLLECTOR
B. OMITTED

MD984 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.

The junction

temperatur~

where:

can be calculated as follows:

PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1)
simplifies to

Where .o.TJ 1 is the change in junction temperature of die 1

(3) "'T J1 = Re1 1P01 + Ke2 P02)

Re1 and Re2 is the thermal resistance 01 die 1 and die 2
P01 and P02 is the power dissipated in die 1 and die 2
k82 is the thermal caupl ing between die 1 and die 2

For the conditions where P01 = P02, PDT = 2PO,
equation (3) can be further simplified and by substituting into
equation (2) results in

An effective package thermal resistance can be defined as
follows:

(4) Re(EFF)

= Re1

(1 + Ke2)/2

Values for the coupling factors when either the case or the
ambient is used as

ELECTRICAL CHARACTERISTICS

I

(TA

,8

reference are given in the table on page 1.

= 250 C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

BVCEO

20

-

-

Vde

Collector-Base Breakdown. Voltage
(IC = 10"Ade,IE = 0)

BVCBO

40

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

5.0

-

-

Vdc

-

-

25
30

nAde
"A de

25

75

-

-

-

0.18
0.38

0.3
0.5

0.8

0.9

Characteristic

OFF CHARACTERISTICS

(IE = 10"Ade, IC

= 0)

Collector Cutoff Current

(VCB
(VCB

ICBO

= 20 Vde, IE =·0)
= 20 Vde, IE = 0, TA = 15o"C)

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 10 mAde, VCE

hFE

= 10 Vde)

Collector-Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAde)

(lc

= 50 mAde, IS = 5.0 mAde)

Vde

VCE(sat)

(1)

8ase-E mitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)

VBE(sat)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Produetl1)
(IC = 20 mAde, VCE = 20 Vde, 1 = 100 MHz)
(1) Pulse Test: Pulse Width ';;;;300"., Duty Cycle ';;;;2.0%.

184

Vde

MD985 (SILICON)
MD985F

MULTIPLE SI LICON ANNULAR TRANSISTORS

NPN/PNP SILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
switches and amplifiers, front end detectors, and temperature com·
pensation amplifiers.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 150 mAdc

M0985

• Fast Switching Times ton = 25 ns (Typ) and toff = 75 ns (Typ)
• DC Current Gain Specified 0.1 mAde to 150 mAde
•

High Current·Gain-Bandwidth Product fT = 320 MHz (Typ) @ Ie = 50 mAde

STYlE'
PIN 1
2
3
4
5.
6

COLLECTOR
BASE
EMITTER
OMITTEO
EMITTER
BASE
7 COLLECTOR
8.0MITTEO

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

500

mAde

Operating and Storage Junction
Temperature Range

TJ,Tstg

Collector-Emitter Voltage

Total Power 0 issipation

@

T A - 25°C

-65'0 +200

A
B
C
D
G
H

J

One Die

Both Die
Equal Power

575
350

625
400

3.29
2.0

3.57
2.28

1.8
1.0

2.5
2.0

10.3
5.71

14.3
11.4

One Die

Both Die
Equal Power

304
500

280
438

K
M
N

851
940
775 851
31 4.70
0.41
053
508BSC
071
074

086
114

1270
451l BSC
254BSC

CASE 654-07

mW

Po

M0985
M0985F

mW/oC

Derate above 25°C
M0985
M0985F

Total Power Dissipation

°c

DIM

@

T C = 25°C

Watts

Po

M0985
M0985F
Derate above 2SoC
M0985
M0985F

mW/oC

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
M0985
M0985F

Thermal Resistance, Junction to Case
M0985
M0985F

Svmbol

°CIW

R8JAI11

°C/W

R8JC
97
175

70
87.5

Junction to

Junction to

Ambient
Coupling Factor
M0985
M0985F

Unit

ease
44
0

(1) R6JA is measured with the device soldered into a typical printed circuit board.

5 BASE

7 COLLECTOR
9 COLLECTOR

MILLIMETERS

%

84
75

STYLE 1
PIN 1. BASE
2. EMITTER
4. EMITTER

DIM

MIN

A

6.10
2.2
076
0.36

B
C
D

,
G
H
K
R

D."

MAX
7.36
40

203
0

0
1.27B

-

"9

381
2.54B81:
1.27

INCHES
NAX

MIN
0.240
0.115
0.030
0014

0"

MBO

0.01

.06

0.050B8C

0.035
0.150
O.I00BSC
0.050

CASE 610A·03

185

0.290
0.1

M0985,F (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:

where:

PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1)

simplifies to
(3) "T Jl = RBI IPOI + KB2 P02)

Where .o.T J1 is the change in junction temperature of dte 1
RBI and R82 is the thermal resistance of die l'and die 2
Po 1 and P02 is the power dissipated in die 1 and die 2
k82 is the thermal coupling between die 1 and die 2

For the conditions where POI = P02, PDT = 2Po,
equation (3t can be further simplifie(t'and by substituting into

equation (2) results in

An effective package thermal resistance can be defined as
follows:
(2) RBIEFF)

Values for the coupling factors when either the case or the
ambient is used as 8 reference are given in the table on page 1.

6TJ1/POT

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.)

I

Characteristic

Symbol

'I

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (1)
lie ~ 10 mAde,lB = 0)

BVCEO

30

-

-

Vde

Collector·Base Breakdown Voltage

SVCBO

60

-

-

Vde

BVEBO

5.0

-

-

Vde

-

-

20
20

nAde
"Ade

20
25
35
40

50
75
90
90

-

VCElsatl

-

0.3

0.5

Vde

VBElsat)

-

1.0

1:4

Vde

fT

200

320

-

MHz

Output Capacitance
IVeB = 10 Vde, IE = 0, f = 100 kHz)

Cob

-

5.8

S.O

pF

Input Capacitance

Cib

-

20

-

pF

ton

-

25

-

ns

toff

-

75

-

ns

IIc = 10"Ade,IE = 0)
Emitter·Base Breakdown Voltage
liE = 1O"Ade,lc = 0)

Collector Cutoff Current

ICBO

(YCB = 50 Vde, IE = 0)
IVCB = 50 Vde, IE = 0, TA = +150o C)
ON CHARACTERISTICS

DC Current Gain
(lC =
(lC·
(Ie =
(lC =

-

hFE

0.1 mAde, VeE = 10 Vde)
1.0 mAde, VCE= 10Vde)
10 mAde, VCE = 10 Vde)
150 mAde, VCE = 10 Vde)

Collector·Emitter Saturation Voltage
(lC = "50 mAde, IB = 15 mAde)

Base·Emitter Saturation Voltage
1Ir.= 150 mAde, IS = 15 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain'-Bandwidth Product
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)

MD985

IVBe= 0.5Vde,lc= O,f= l00'kHz)
SWITCHING CHARACTERISTICS

Turn·On Time
(VCC= 30 Vc;I.e,IC= 150 mAde, IBI = 15 mAde)
Turn-Qff Time
IVCC= 30 Vdc,IC· 150 mAde,lBl = IB2= 15 mAde)
(1) Pulse Test: Pul. Width <;300,,5, Duty Cycle <;2.0%.

186

MD986 (SILICON)
MD986F

MULTIPLE SILICON ANNULAR TRANSISTORS

NPN/PNP SILICON
MULTIPLE TRANSISTORS

· .. designed for use as switches, dual general'purpose amplifiers,
front end detectors and in temperature compensation applications.
•
•
•
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.3 Vde (Max) @ IC = 10 mAdc
DC Current Gain hFE = 25 (Min)@ IC = 10 mAdc
High Current·Gain-Bandwidth Product fT = 200 MHz @ IC = 20 mAde
Fast Switching Time@ IC= 150 mAde
ton = 28 ns (Typ)
toff = 72 ns (Typ)

MD986

I

MAXIMUM RATINGS
SymbOl

Value

Unit

Collector-Emitter Voltage

Rating

VCEO

15

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

200

mAde

Coliector Current - Continuous

IC

Total Power Dissipation@TA = 25°C
MD98B
MD98BF
Dorat. Above 25°C
MD98B
MD98BF

Po

Totol Power Dissipation@Tc= 25°C
MD986
MD9B6F
Derate Above 2SoC
MD98B
MD986F

Po

Operating and Storage Junction

One Die

Both Dia
EquaJPoww

550
350

BOO

3.14
2.0

3.42
2.2B

1.4
0.7

2.0
1.4

8.0
4.0

11.4
8.0

STYLE 1:
PIN 1,COLLECTOR
2. BASE
3. EMITTER
4. OMITTED
5, EMITTER
6. BASE
1. COLLECTOR
8. OMITTED

~~M~'~LL~'~~5~~~

l-DIM M
A
8.51 9.40
B 1.15 8.51
C
3.81 4.70
D 0.41 0.53
G
5.08 SSC
H 0.11 0.86
J
0.74 1.14
K 12.0

mW

II
I

400

B
2.54BSC

CASE 854-07

mW/oC

Watts

mWI"C

TJ.T.tg

-65 to +200

°c

Temperature Range

THERMAL CHARACTERISTICS
Both Die
Cllllracteriitic

Thermal Resistance, Junction to Ambient
MD98B
MD9B6F

Thermal Rllistance. Junction to Case
MD98B
MD9B6F

SymbOl

One Die

~qu"Pow..

Unit

°CIW

RSJA(1)
319
500

292
438
°CIW

RSJC
125
250

87.5
125

Junction to Junction to
Ambiont
eo.
Coupling Factors
MD98B
MD9B8F

~

~r -

%
83
75

40
0

(1) RSJA ilmeuurad with tho device loldered into a typical printed circuit bOard.

187

STYLE 1:
PIN 1. BASE
2. EMITTER
4. EMITTER
5. BASE
1. COLLECTOR
9. COLLECTOR

MlLLlIlETERS

0111

1111

MAX

A
I
C
D

S.10
U
0.16

1.38

•

D.38
121

H

I

CASE B1C1A-03

D.8B

M0986,F (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:
(1) ATJl

= RBl

POl

(3) ATJl = RBl (POl + KB2 P021

+ RB2 KB2 P02

Where 4.T J1 is the change in junction temperature of die 1
RBl and RB2 is the thermal resistance of die 1 and die 2
POl and P02 is tho pOwer dissipated in die 1 and die 2
KB2 is tho thermal coupling between die 1 and die 2.

An effective package thermal resistance can be defined as
follows:
(2) RB(EFF)

Assuming equal thermal resistance for each die, equation (1)
simplifies to:
For the conditions where POl = P02 = PDT = 2 PO, equation
(3) can be further simplified and by substituting into equation (2)

results in:
(4) RB(EFFI

= RBl (POl

+ KB2 P021

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.

= AT JllPOT

Where PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS

(TA = 250 C unless otharwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
IIc = 10 mAde, IB = 0)

BVCEO

15

-

-

Vdc

Collector-Base Breakdown Voltage
IIc = 10"Adc,IE = 0)

BVCBO

40

-

-

Vdc

Emitter-Base Breakdown Voltage
liE = 10"Adc,IC = 0)

BVEBO

5.0

-

-

Vdc

-

-

Characteristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 20 Vdc,lE = 0)
(VCB = 20 Vdc, IE = 0, TA

ICBO

-

-

25
30

nAdc
"Adc

25

-

-

-

-

0.3
0.5

VBE(set)

-

0.9

Vdc

fT

200

320

-

MHz

Cob

-

-

4.0

pF

= 15O"C)

ON CHARACTERISTICS
DC Current Gain
IIC= 10 mAde, VCE

hFE

= 10 Vde)

Collector-Emitter Saturation Voltage
IIc = 50 mAde, IB ~ 10 mAde)

Base-Emitter Saturation Voltage
(lC

Vdc

VCE(sat)

(Ie ~ 10mAde,IB = 1.0 mAde)

= 10 mAde, IB = 1.0 mAde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwldth Product
IIc = 20 mAde, VCE = 20 Vde, f
(lC = 20 mAde, VCE = 10Vde, f

= 100 MHz)
= 100MHz)

M0986F

Output Capacitance
(VCB: 10 Vde,lE = 0, f

= 100 kHz)

(1) Pulse Test. Pulse Width 0;;;3OO"s, Duty Cycle 0;;;2.0%,

188

I

MD 1120I MD 1120F(SILICON)
MDl121
MDl122
MQl120
MULTIPLE SILICON ANNULAR TRANSISTORS

NPN SILICON
MULTIPLE TRANSISTORS

.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.
•

Excellent Temperature Tracking - Dual Devices
"'IVBEI . VBE21 = O.B mVdc (Max) @-55 to +25 0 C
= 1.0 mVdc (Max) @+25 to +125 0 C

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = BO mVdc (Typ) @IC= 10 mAdc

•

DC Current Gain Specified - 10pAde to 10 mAde

•

High Current·Gain-Bandwidth Product fT = 250 MHz @ IC = 20 mAde

MD1120
MD1121
MD11221
~-

DIM
A

•

MAXIMUM RATINGS
Rating

Value
30

Unit

VCB

60

Vdc

VEB
IC

5.0

Vdc

500

mAde

Symbol

Collector-Emitter Voltage

VCEO

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Vdc

STYlE I
PIN 1 COLLECTOR

28ASE
lEMITTER
OMITTEIl

~

One Die

~ ~:1~TEII
lCOLlECTU!I
8 OMITTED

CASE 654-07

C
D
G
H
J
K
M

AU Die

IMD1120F

Equal
Power
Total Power Oisipatlon @ T A - 2SoC
MOI120.MOI121.MOI122
M01120F
M01120
Derate Abo\le 25°C
MOI120.MOI121.MOI122
MD1120F
M01120
Total Power DIssipation @ T C - 2SoC
MOI120.MDI121.MOI122
M01120F
M01120
Derate Above 2SoC
MOI120.MDI121.MOI122
MD1120F
M01120
Operating and Storage Junction

1

N

Po
575
350
400

625
400
600

mW

3.29
2.0
2.28

3.57
2.28
3.42

mwroc

1.8
1.0
0.9

2.5
2.0
3.6

Watts

10.3
5.71
5.13

14.3
11.4
20.5

mW/oC

MILLIMETERS

Po

~5

TJ, T stg

DIM
STYLE I
BASE
2 EMITTER
4 EMInER
saME
1 COLLECTOR
9CIlLLECTIlR

PIN I

CASE 610A·03

°c

to +200

A

•

MIN
610
2.91

INCHES

MAX

MIN

736
406
103

0240 0290
0115 0.1 0
0.030 0080
0.014 0019
0.003 0.006
0050 BSC
0035
0.150
0100BSC
0.050

C
D
F

0.76

G

H
K
N

127BSC
0.89
3.81
254 BSC

R

127

036

0.48

OOS

015

MAX

Temperature Range

THERMAL CHARACTERISTICS
All Die
Characteristic
Thermal Aesistance. Junction to Ambient

MD1120,MDI121.MDI122
M01120F
M01120
Thermal Resistance, Junction to Case
MDI120,MDI121.MOI122
M01120F
M01120

Symbol

One Die Equal Power

ReJAlll
304
500
438

280
438
292

°C/W

ReJC
97
175
195

Junction to
Ambient

70
B7.5
48.8
Junction to

STYlfl
PIN I COLLECTOR
2 BASE

JEMITTER

Unit
%

84
75
57
55

44
0
0
0

(1IA 9 JA IS measured with the device soldered Into a tVPlcal pnnted CirCUit board.

189

j

I

Ca..

Coupltng Factors

MOI120.MOI121.MOI122
MD1120F
M01120 101-02)
101-03 or 01-04)

Unit

°CIW

~ Er~~~:NECTEO
1 COLLECTOR
: ~~~~ECTOR

:1 ~~J:mNECTEU
!lBASE
I_COLLECTOR

DIM

•
C
D

F
G
H

J

•

L

N
R
CASE 607·04

S

0.38
762

8.38

.1
0.300

0.330

MD1120, MD1120F, MD1121 ,MD1122, MQ1120

(contjl)lJed)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die. equation (1)
simplifies to
The junction temperature can be calculated as follows:

In multiple chip devices, coupling of heat between die occurs.
(11 "TJl

= R81

(3) "TJl

POl + R92 K92 P02 + R83 K83 P03

= R91

(POl + K92 P02 + K93 P03 + K94 P04

= P02 = PD3 = PD4, PDT = 4PO

For the conditions where POl

+R84 K84 PD4

equation (3) can be further simplified and by substituting into
equation (2) results in

Where .0.1J1 is the change in junction temperature of die 1
R91 thru 4 is the thermal resistance of die 1 throu~ 4
POl thru 4 is the power dissipated in die 1 through 4
K82 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

(4) R9(EFF)

= R91 (1

+ K92 + K93 + K94) 14

Values for the coupling factors when either the case or the

ambient is used as a reference afe given in the tabJe on page 1.

An effective package thermal resistance can be defined as
follows:
(2) R8(EFF) = "TJ1IPOT

where:

PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS ITA

= 25°C unless otherwise

Characteristic

OFF

noted)

Symbo'

Min

Typ

Max

Unit

CHARACTERISTICS

Collector-Emitter Breakdown Voltage(1)
IIC

BVCED

= 10 mAde, IB = 0)

Collector-Base Breakdown Voltage
IIC

Collector Cutoff Current

= 50 Vde,
= 50 Vde,

IE
IE

= 3.0 Vde, IC = 0)

-

5.0

-

-

-

-

-

-

10
10

-

-

10

20
30
40
50

40
50
60
65

100
120
160
200

-

BO

100

-

700

B50

200

250

-

-

3.5

B.O

O.B
0.9

-

1.0
1.0

-

-

10
5.0

Vde
nAde

Base-Emitter Saturation Voltage

-

mVde
mVde

VBElsat)

= 10 mAde, IS = 1.0 mAdcl

jtAde
nAdc

VCElsatl

= 10 mAde, IS = 1.0 mAde)

Vde
Vde

hFE

Collector-Emitter ,Staruation Voltage

(lC

-

lEBO

ON CHARACTERISTICS
DC Current Gain (1)
IIC ~ 10 /lAde, VCE = 10 Vdc)
lic = 100 /lAde, VCE = 10 Vde)
lic = 1.0 mAde, VCE = 10 Vdc)
IIC = 10 mAde, VCE ~ 10 Vdc)
lic

60

ICBO

= Q)
= 0, TA = 150°C)

Emitter Cutoff Current
(VEB

-

BVEBD

= 10 jtAde, IC = 0)

IVCB
IVCB

-

BVCBO

= 10jtAde,IE = 0)

Emitter-Base Breakdown Voltage
liE

30

DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product I 1)
lic = 20 mAde, VCE = 20 Vde, f

Output Capacitance
IVCB

MHz

fT

= 100 MHz)

pF

Cob

= 10 Vdc, IE = 0, f = 100 kHz)

MATCHING CHARACTERISTICS (MDl120 MDl120F MDl121 MDl122)
DC Current Gain Ratio (2)
lic
lic

= 100 /lAde, VCE = 10 Vde)
= 1.0 mAde, VCE = 10 Vde)

hFE11hFE2
All Devices
MOl122

Base-Emitter Voltage Differential
(lc
(lC

= 100 /lAde, VCE = 10 Vde)
= 1.0 mAde, VCE = 10 Vde)

~ase-Emitter

IVBE1-V BE21
All Devices
MD1122

Voltage Differential Change

mVdc

"IVBE1- V BE21

mVde

Due to Temperature - M01121, MOl122
(lC = 100/lAde, VCE
lic = 100 /lAde, VCE

= 10 Vde, T A = -55 to +25 0 C)
= 10 Vde, TA = +25 to +12S o C)

(1) Pulse test: Pulse Width <;;300 jtS, Duty Cycle <;; 2.0%.
(2) The lowest hFE reading is taken as hFEl for this ratio

190

-

.-

-

-

O.B
1.0

MDl123 (SILICON)
MDl130
MDl130F
MULTIPLE SI LICON ANNULAR

TRANSISTORS

PNPSILICON
MULTIPLE TRANSISTORS

.. designed for use as differential amplifiers, dual general-purpose
amplifiers, front end detectors and temperature compensation
applications.

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.18 Vdc (Typ) @ IC = 10 mAdc

•

DC Current Gain Specified - 10 !lAde to 10 mAde - MD 1130,F

•

High Current-Gain-Bandwidth Product fT = 600 MHz @ IC = 20 mAde - MDl123

,
A

MD1123
MD1130

8

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vdc

STYlE!
PIN 1. COLLECTOR

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAde

2. BASE
3 EMITTER
40MlnED
5. EMITTER
6 BASE
1 COLLECTOR
• OIlITTEO

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Total Power DISSipation @ T A = 2SoC
MD1123, MD1130
MD1130F

Operating and Storage Junction

All Die

575
350

625
400

mW

3.29
2.0

3.57
2.28

mW/oC

1.8
1.0

2.5
2.0

Watts

10.3
5.71

14.3
11.4

mWfDC

-65 to +200

~DIM

G

PD

T J.T stg

+N'N
~
r;;~M~IL~'~'M~n~E~RslJ~~~ V'Y.",-;;:-, G
H

PD

Derate Above 2SoC
MD1123.MD1130
MD1130F
Total Power Dissipation@Tc =: 2SoC
MD1123. MD1130
MD1130F
Derate Above 2SoC
MD1123. MD1130
MD1130F

One Die

-ll.o

H 011
J
014
IC 1210

M

"

MIN MAX
851
940
115 851
381 41D
041 0.53
5088S

•

>-

D88
1.14

45 8 C

CASE 654-07

254BSC

°c

Temperature Range

THERMAL CHARACTERISTICS
AU Die

Characteristic

Thermal Resistance. Junction to
Ambient

Symbol

Coupling Factors
MD1123. MD1130
MD1130F

Equal Power

Unit

°C/W

ROJA(1)

MD1123. MD1130
MD1130F

Thermal Resistance.Junction to Case
MD1123, MD1130
MD1130F

One Die
304
500

280
438

97
175

70
B7.5

Junction to
Ambient

Junction to

°C/W

ROJC

ca ..

STYlE 1
PIN I BASE
2 EMITTER
4 EMITTER

Unit
%

B4
75

44
0

S BASE
1 COLLECTOR
!l COLLECTOR

R8JA is measured with the device soldered into a typical printed circuit board.

191

C

MILLIMETERS
MIN
MAX
610 1.36

2924.06

II

01
036
0.08
12

K
l

.81
1054

o
F

H
MD1130F
CASE 610-A03

(1)

DIM
A
1

2.
0.48
0.15
ISC

..
-

2.54ISC
1.27

MD1123, MD1130, MD1130F (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, equation (1)
simplifies to

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:

(3) ATJl = R81 IPDl + K82 PD2 + K83 PD3 + K84 PD4,

111 6TJl = R81 PD1 + R82 K82 PD2 + R83 K83 PD3

For the conditions where PDl = PD2 = PD3 = PD4, PDT = 4PD

+R84 K84 PD4

Where

~TJl

equation (3) can be further simplified and by substituting into

is the change in junction temperature of die 1

equation (2) results in

R01 thru 4 is the thermal resistance of die 1 through 4

POl thru 4 is the power dissipated in die 1 through 4

(4) R81EFFI = R8111 + K82 + K83 + K841 14

K02 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

Values for the coupling factors when either the case or the

ambient is used as a reference are given in the table on page 1.

An effective package thermal resistance can be defined as
follows:
121 R81EFFI = bTJ1/PDT

where:

PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherWISe noted.1

I

Symbol

Min

Typ

Max

Unit

COllector-Emitter Breakdown Voltage (1)
(lC = 10 mAdc, IB = 0)

BVCEO

40

-

-

Vdc

Collector-Base Breakdown Voltage

BVCBO

60

-

-

Vde

BVEBO

~.O

-

-

Vdc

-

-

10
10

"Adc

-

-

10

nAdc

MDl130,F

60

100

-

MDll23
MDl130,F

30
100

80
170

120
300

(Ie = 1.0 mAdc, VCE = 10 Vde)

MDl130,F

100

180

-

IIC= 10 mAde, VeE = 10Vdcl

MDl123
MDl130,F

50
100

75
150

200

VeElsat)

-

0.18

0,25

Vdc

VSElsat)

-

0,8

0.9

Vdc

250
200

600
550

_.
-

MHz

-

3.5

4.0

pF

0.8
O,g

-

1.0
1.0

-

-

-

-

Characteristic
OFF CHARACTERISTICS

(lC = 10"Adc, IE = 0)

Emitter-Base Breakdown Voltage
(IE = 10 "A dc, Ie = 0)

Collector Cutoff Current

ICBO

IVCB = 50 Vdc, IE = 01
IVCB = 50 Vdc, IE = 0, TA = 150°C)

Emitter Cutoff Current

IESO

nAdc

IVSE = 3,0 Vdc, IC = 01
ON CHARACTERISTICS
DC Current Gam 111
IIC= 10"Adc, VCE = 10Vdcl
(Ie = 100"Adc, VeE = 10 Vdc)

hFE

Collector-Emitter Saturation Voltage

-

-

(lC= 10mAdc, IS = 1.0Adel

Base-Emitter Saturation Voltage
(lC = 10 mAde, IS = 1.0 mAdel
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(lC = 20 mAde, VCE = 20 Vde, I = 100 MHzl

Output Capacitance

MDl123
MD1130,F

IT

MDl130,F

Cob

IVCS = 10 Vdc, IE = 0, I = 100 kHz)
MATCHING CHARACTERISTICS

DC Current-Gain Ratio (2)
MDl123
MDl130,F

Base-Emitter Voltage Differential
(lC = 100 "A dc, VeE = 10 Vdc)
(lC = 1.0 mAdc, VeE = 10 Vdc)

MDl123
MDl130,F

10
5.0
mVdc

LlIVBE1!VSE21

Due to Temperature - MD1121, MD1122
(lC = 100 "Adc, VCE = 10Vdc, TA =+25 to +1250 C)
MDl130,F

-

(1) Pulse test: Pulse Width <;;;3OO"s, Duty Cycle <;;;2,0%,
IS

mVdc

IVBE 1!VBE21

Base-Emitter Voltage Differential Change

(2) The lowest hFE reading

-

hFE l/hFE2

(lC = 100 "Adc, VCE = 10 Vdcl

taken as hFE 1 for this ratio.

192

-

10

MDl129(SILICON)
MDl129F
MQl129
MULTIPLE SILICON ANNULAR

TRANSISTORS
NPN SILICON
MULTIPLE TRANSISTORS

.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation applications.
Excellent Temperature Tracking - MDl129,F
LlIVBEl - VBE21 = 0.8 mVde (Max) @ -55 to +250 C
= 1.0 mVdc (Max) @ +250 C to +125 0 C
• Low Collector-Emitter Saturation Voltage VCE(sat) = 0.09 Vde (Typ) @ IC = 10 mAde - MDl129,MQl129
• DC Current Gain Specified at Low Collector Currents hFE = 60 (Min) @ IC = 10llAde
•

•

MDl129

I

High Current-Gain-Bandwidth Product fT" 250 MHz (Typ) @ IC = 20 mAde

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

SVmbol

Value

Unit

"cEO
VCB
VEB
IC

30
60
5.0
500

Vde
Vdc

One Die
Total Powsr Dissiaption
MDI129
MDII29F
MOl 129
Derate above 25°C
MDl129
MDI129F
MOl 128

@

TA

= 25°C

Total Power Dissipation @ T C = 25°C
MDI129
MDII29F
MOl129
Derate above 250C
'MD1129
MDI129F
MOl129
Operating and Storage Junction
Temperature Range

Po

Po

Vdc
mAde

"IIDie
Equal Power

o

STVLE,

"11"COLLECTOR

!i~~~~

3.29
2.0
2.28

3.57
2.28
3.42

mW/OC

1.8
1.0
0.9

2.5
2.0
3.6

Watts

14.3
11.4
20.5
-65 to +200

MILLIMETERS

mW/oC

DIM
A
B
C

°c

o
F
G

Symbol

Thermal Resistance, Junction to Ambient
MDI129
MDll29F
MOl 129

RSJA
(II

Thermal Resistance, Junction to Case
MDI129
MDII29F
MOII29

RSJC

Ona Die

All Die
Equal Power

Unit

CASE 61DA-03

MAX

MIN

736
40
2.03
0.48
0.15

0.240

0.290

0.115
0.030
0.014

0.1
0.080
0.019

sse

H

0.89

K
N

3.81
2.54 Bse
1.27

R

INCHES

MIN
6.10
2.92
0.76
0.36
0.08
121

0.003

0.050

MAX

0.006

sse

0.035
0.150

0.100

sse
0.050

Ma1129
°CIW

304
500
438

280
438
292

97

70
87.5
48.8

°CIW
175

195

Junction to Junction to
Ambient
CI..

Unit

PIN : ~~~EtTOR

%
84
75
57
55

44

0
0
0

(1) ReJA is measured with the device soldered into a typical printed circuit board.

4 NOTCOh'h'ECTED

;giK::OR

: ~mECTOR

rOEMrTTER
11 NOTCONNECUO
It EMITTER
::

ro~~ECTOR

CASE 601·04 ,

193

INCHES
MfN
MAX

STVLEr

aE"'TTER

Coupling Factors
MDI129
MDI129F
MOI129IQI·02)
(01·03 or 01·04)

J(

N

MIN MAX
8.51 9.40
7.75 8.51
3.Bl 4.10
0.41 0.53
5.08BSC
0.11 0.86
0.74 1.14
12.70
45° BSC
254BSC

mW
625
400
600

THERMAL CHARACTERISTICS
Characteristic

G
H
J

M
CASE 654-07

575
350
400

10.3
5.71
5.13
TJ,T,tg

MILLIMETE

DIM
A
B
C

0.240 0.275
.D3D O.
.01
0.019
.00
0.006
0.050BSC
0.005 0.035
0.015
0.250
0.740
0.010

A

C
0
F
G
H
J
K
L
N
R
S

7.62

'0.
B.38

f

0.30

O.

MDl129, MDl129F, MQl129 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat batw"" die occurs.
The junction temperature can be calculated as follows:

(11 oTJl = ReI POI + Re2 Ke2 P02 + Re3 Ke3 P03

where:

POT is the total package power dissipation.

Assuming equal thermal resistance for each die. equation (1),

simpl ifies to

+Re4 Ke4 PD4

(3) oTJl = ReI (POI + K82 P02 + Ke3 P03 + Ke4 P()4l

Where ~TJl is the change in junction temperature of die 1
R61 thru 4 is the thermal resistance of die 1 through 4

POI thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.
An effective package thermal resistance can be defined" as

follows:

For the conditions where POI = P02 = P03 = P04, POT = 4PO
equation (3) can be further simplified and by substituting into
equation (2) results in

(4) Re(EFF) = ReI (1 + Ke2 + Ke3 + Ke4) 14
Values for the.coupling -factors when either the case or the
. ambient is used as a reference are given in the table on page 1.

(2) Re(EFFi = oTJ1/POT

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Symbol

.1

Typ

Max

.30

-

-

60

-

-

5.0

-

-

-

-

-

10
10

-

-

10

60

-

300
-

Min

Unit

OFF CHARACTERISTICS
Collector-E mitter Breakdown Voltage (11
(lc = 10 mAde, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
(lC ~ 10"Ade,IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 10"Ade,lc = 0)

BVEBO

Collector Cutoff Current
- (VCB = 50 Vde, IE = 0)
(VCB = 50 Vdc, IE = 0, TA = 150°C)

-ICBO

Emitter Cutoff Current
(VBE ~ 3.0 Vde, IC = 0)

lEBO

Vde
Vdc
Vdc

-

nAdc
"Ade
nAde

ON CHARACTERISTICS
OC Current Gain (1)
(lC
(lC
(lC
(lC

hFE

= 10 "Ade, VCE = 10 Vde)
= l00"Ade, VCE = 10 Vdel
= 1.0 mAde, VCE = 10 Vde)
= 10 mAde, VCE = 10 Vde)

100
100
100

Collector-E mitter Saturation Voltage

(lC

(lC

-

Vde

VCE(sat)

= 10 mAde,lB = 1.0 mAde)

Base~E mitter

120
140

M01129,MQl129
MOl129F

Saturation Voltage

-

0.09

-

0.1
0.15

-

0.7

0.85

200

250

-

-

3.5

8.0

0.9
0.9

-

-

1.0
1.0

-

-

5.0
5.0

-

-

O.B
1.0

Vde

VBE(satl

= 10 mAde,lB = 1.0 mAde)

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 20 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f

fT

pF

Cob

= 100 kHz)

MHz

MATCHING CHARACTERISTICS (MD1129, MD1129F)
OC Current Gain Ratio (2)
(lC = 100 "Ade, VCE = 10 Vde)
(lC = 1.0 mAde, VCE = 10 Vdc)
Base~Emjtter Voltage Differential

mVde

IVBE1-VBE21

(lc 100 "Ade, VC6.= 10 Vde)
(lC = 1.0 mAde, VCE = 10 Vdc)
Base-Emitter Voltage Differential Change Due to Temperature

(lC = 100 "Ade, VCE
(lC = 100 "Ade, VCE

-

hFE1/hFE2

mVde

",IVBE1-VBE21

= 10 Vde, TA = -55 to +250 C)
= 10Vde, TA ='+25 to +1250 C)

(1) Pulse Test: Pulse Width';;; 300 "s, Outy Cycle';;; 2.0%
(2) The lowest hFE reading is taken as hFEl for this ratio.

MDl130
MDl130F

For Specifications, See MD 1123 Data.

194

MD2218, MD2218A (SILICON)
MD2218F, MD2218AF
MD2219, MD2219A
MD2219F, MD2219AF
MQ2218,A,MQ2219,A
MULTIPLE SILICON ANNULAR

TRANSISTORS

NPNSILICON
MULTIPLE TRANSISTORS

· .. designed for use as differential amplifiers, dual general-purpose
amplifiers, front end detectors and temperature compensation applications.

MD2218,A
MD2219,A

•

Fast Switching - MD2218A,AF, MD2219A,AF
td = 15 p.s (Max) tr = 30 p.s (Max)
ts = 250 p.s (Max) tf = 60 p.s (Max)

•

Low Collector-Emitter Saturation Voltage - MD2218AF, MD2219AF
VCE(sat) = 0.3 Vdc (Max) @ IC = 150 mAdc
DC Current Gain Specified - MD2218,A, MD2219,A
0.1 mAdc to 300 mAdc

•
•

High Current-Gain-8andwidth Product
fT = 250 MHz (Typ) @ IC = 20 mAdc

I

-ll-D

;t:
~
,N

H,>;

'<

V,,~;I

G

MILLI
DIM
A

MIN
8,51

C

3.81

!lB~l7!.7'~!8·i51~
o

• ""'"

! ~itCJOR

MAXIMUM RATINGS
M02218.A.F
MD2219,A,F
MQ2218.A
MQ2219.A

M02218AF
MD2219AF

Unit

VCEO

30

40

Vdc

Collector-Base Voltage

VCB

60

75

Vdc

Emttter-Base Voltage

VEB

50

Rating
Collector-Emitter Voltage

Collector Current - ContinUOus

Svmbol

60

One 0 ..

AllOil

Equ"row.
Total Power Dlsslpatlon@TA"'250C

Po

MD221B.A,MD2219.A

MD2218F .AF, MD2219F,Af
M02218,A, MQ2219,A
Derate Above 25 0 C
M02218,A,MD2219,A
M02218F,AF ,MD2219F,AF
MQ2218,A,M02219,A
Total Power Dlsslpatlon@Tc=-250C

625
400
600

mW

329
20
22B

357
2.28
342

mW/oC

18
10
09

25
20
3.6

Watts

MQ2218,A,MQ2219,A
Derate Above 250C
MD221B,A,MD2219,A
MD2218F ,AF ,MD2219F ,AF
M02218,A,MQ2219,A

103
571
513

143
114
205

mW/oC

N

~:~! ~:~
2.54 BSC

I

.:;1 j

.~.L

~

r-q;r'lf~. ~
u:::::=,__
DIM

....,

2 EMITTER

A
B

4 (MInER

C

1 COLLECtOR

D

• COLUCtDIL

F
G
H
K
N

CASE 610A-03

R

MILLIMETERS
MIN MAX
6.10
2 2
0.16
0.36

1.36
4.

2.03
0.48

0.08
0.15
1.21 BSe

INCHES
MIN
MAX
0.240 0.290
0.115
.1
0.0 0 0.080
0.014 0.019
aD
0.006
0_050 BSe

0.89

3.81
2.548Se
1.27

aC

-65 to +200

TJ,Tstg

~

4.10
0.41 0.53
'.08 sse

K 12.0
M
450 BSC

:'

STYlE.
PlltlWE

Po

MD2218,A,MD2219.A
MD2218F ,AF,MD2219F ,AF

Operating and Storage Junction
Temperature Range

575
350
400

G

MD2218F,AF
_ _.....- ; , - - - - , MD2219F,AF

Va,
mAde

500

'C

CASE 664-01

TES

MAX
9_40

0.035

al5IJ

0100 sse
0.050

M02218,A
MQ2219,A

THERMAL CHARACTERISTICS
CharacterIStic
Thermal ReSistance, Junction to
Ambient

Svmbol

Unit

°C!W
304
500
438

280
438
292

97
175
195

87.5
48.8

°CfW

RfjJC

Junction to
Ambl8nt
Coupling Factors
M02218,A,M02219,A
MD2218F ,AF ,MD2219F ,AF
M02218,A,M02219,A (01,02)
(01·03 or 01·04)

All Ole
Equal Power

R8JA(11

MD2218,A,MD2219,A
MD2218,F ,AF ,MD2219,F,AF
MQ2218,A,M02219,A
Thermal ReSistance, JUllCtlOn to Case
MD2218,A,MD2219,A
MD2218F ,AF,MD2219F ,AF
M02218,A.M02219,A

One Ole

70

STYlE.
PlN.COLLECTOft
2 BASE
3EMITTEA
'NOTCONllEtTEO

: ::~TEII

Junction to

84
75
57
55

CaM

44
0
0

1 COllECTOR

%

1: :~~:OR
g ~~~~~:"ECTEO
13 lASE
14 COllECTOR

D1M
A
C

o

F
G
H
J

K

6.3'

L

18.80

NO.2'
R

(1) R8JA IS measured With the device soldered Into a typical printed CirCUit board

CASE 607-04

195

S

0

7.62

a

.1

0.300

0.330

MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
I n multiple chip devices, coupling of heat bet\'Veen die occurs.

where: PDT is the total package power dissipation.
Assuming equal thermal resistance for each die. equation
simplifies to

The Junction temperature can be calculated as follows:
III ATJl = ROl PD1 + Rn K02 PD2 + R03 K03 PD3

(1)

131 t.TJl = ROl IPDl + K02 PD2 + K03 PD3 + K04 PD41

+R04 K04 PD4

= P03 = P04, PDT

Where .\.TJ1 is the change in junction temperature of die 1
Rel thru 4 is the thermal resistance of die 1 through 4
POt thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

equation

An effective package thermal resistance can be defined as

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.

follows:

For the conditions where POl'" P02
(2)

results in

141 RolEFFI = R0111 + K02 + K03 + K041 14

121 ROIEFFI = "TJ1/PDT

'ELECTRICAL CHARACTERISTICS

ITA = 25°C unless otherwise noted I

Characteristic

Symbol

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Collector- Emitter Breakdown Voltage {1)
IIc = 10 mAde, IS = 01

30
40

Vde

60
75

-

-

BVEBO

MD2218,A,F, MD2219,A.F. M02218,A: M02219,A
MD2218AF, MD2219AF

Collector Cutoff Current
(VCE = 50 Vde, VEBloff) = 3.0 Vdel

-

BVCBO

MD2218,A,F,MD2219,A,F,M02218,A,MD2219,A
MD2218AF, MD2219AF

Emitter-Base Breakdown Voltage
liE = 10 "Ade, IC = 01

Vde

SVCEO

MD2218,A,F, MD2219,A,F, M02218,A, M02219,A
MD2218AF, MD2219AF

Collector-Base Breakdown Voltage
IIc = lO"Adc, IE = 01

Vde

5.0
6 ..0

-

-

nAdc

ICEV

MD2218,F,MD2219,F,M02218,A
M02218A,AF,MD2219A,AF,M02219,A

20
15

-

-

-

-

30

-

-

20
35

50
45

-

25
50

55
55

-

MD2218,A,F,AF,M02218,A
MD2219,A,F ,AF ,M02219,A

35
75

65
85

-

(lC = 150 mAde, VCE = 1.0 Vdel
MD2218,A,F,AF,M02218,A
MD2219,A,F,AF,M02219,A

20
50

65
65

-

(lC = 150 mAde, VCE = 10 Vdel
MD2218,A,F,AF ,M02218,A
MD2219,A,F,AF,M02219,A

40
'100

30
120

120
300

25
30

75
75

-

Base Cutoff Current
IVCE = 50 Vde, VEB(off) = 3.0 Vdel

ON

CHARACTERIST~CS

nAdc

18L

(1)

DC Current Gain
(lC = 0.1 mAde, VCE =,10 Vde)
MD2218,A,F,AF,M02218,A
MD2219,A,F ,AF ,M02219,A

= 4PO

equation (3) can be further simplified and" by substituting into

-

hFE

(lC - 1.0 mAde, VCE ~ 10 Vdcl
MD2218,A,F,AF,M02218,A
MD2219,A,F,AF,M02219,A

IIc = 10 mAde, VCE = 10 Vdel

-

IIc = 300 mAde, VCE = 10 Vdel
MD2218,A,M02218,A
M02219,A,M02219,A

196

-

MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A

Symbol

Characteristic

Max

Typ

Min

Unit

ON CHARACTERISTICS (continued) (1)
Collector-Emitter Saturation Voltage

Vde

VCE(,.t)

IIc: 150mAdc,IS: 15 mAde)
MD221B,A,F,MD2219,A,F,MQ221B,A,MQ2219,A
MD221BAF, MD2219AF
(lC : 300 mAde, IS: 30 mAde)
MD221B,A,F,MD2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF

-

0.2

-

0.35

-

Base-Emitter Saturation Voltage

0.4
0.3

-

1.2
0.9

-

Vde

VSEI,.tl

IIC: 150 mAde, IS: 15 mAde)
MD221B,A,F ,MD2219,A, F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF
(lC : 300 mAde, IS: 30 mAde)
MD221B,A,F ,MD2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF

0.6
0.6

0.95
1.0

1.3
1.2

-

-

-

2.0
I.B

200

250

-

-

3.5

B.O

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

MHz

IT

(lC: 20 mAde, VCE : 20 Vde, I : 100 MHz

Output Capacitance
IVCB: 10 Vde, IE: 0, I : 100 kHz)

Cob

Input Capacitance
IVEB : 0.5 Vde, IC: 0, I : 100 kHz)

Cib

pF

pF

-

-

15
18

30
25

td

-

-

20
15

jlS

tr

-

-

40
30

jlS

ts

-

-

280
250

jlS

-

70
60

jlS

MD221B,A,F ,M D2219,A,F ,MQ221B,A,MQ2219,A
MD221BAF,MD2219AF

SWITCHING CHARACTERISTICS
Delay Time

(VCC: 30 Vde, Ie : 150 mAde,
VBEloll): 0.5 Vde, lSI: 15 mAde)
(Figure 11)
MD221B,F,MD2219,F
MD221BA,AF ,MD2219A,AF
MD221B,F,MD2219,F
MD221BA,AF ,MD2219A,AF

Rise Time
Storage Time

(VCC: 30 Vde, Ie: 150 mAde,
lSI: IB2: 15 mAde)
(Figure 12)
MD221B,F,MD2219,F
MD221BA,AF,MD2219A,AF
MD221B,F,MD2219,F
MD221BA,AF,MD2219A,AF

Fall Time

11) Pulse Test: Pulse Width <0;300

jlS,

tl

-

-

Duty Cycle <0; 2.0%.
FIGURE 1 - NORMALIZED DC CURRENT GAIN

4.0

§

3.0

N

::;

'"a~

'z"

;;:

'"....

- -

TJ=j?50L
20

-I-

I

1.0

!O~

- -

-55°C

-

iii 0.7

"'

"'
13

0.5

u

a

~

-1-

-

I-

J

-

-

--

-

-

- --

- - - - '~

-"

0.7

1.0

2.0

3.0

5.0

7.0

10

20

30

IC, COLLECTOR CURRENT ImA)

197

50

70

100

-

t'-

- "'
........

0:

0.3
0.2
0.5

I
CE ~ 1.0 V
-VCE=10V

200

-

'"

\

-"I
~

300

500

MD2218, MD2218A, MD2218F, MD2218AF(continued)
MD2219, MD2219A, MD2219F, MD2219AF
M02218, M02218A, M02219, M02219A

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - TEMPERATURE COEFFICIENTS

1.4

+1.6

II
II
evc L)CE~salt)

TJ =Z50C
G

I.Z

~
2!

3; +0.8

.5

1. 0

UJ

0.8

VBE(jat)@IC/IB -10

'"~

0.6

VaE@VCE

o

>

I--::;:..

e-

V

15

G

0

~

-0.8

~

1.0 V

IIII
(Z50C to 1750C)

(-55°C to IZ50C )

=>

:> 0.4
O. Z

o
1.0

Z.O

5.0

0VB for VSE

~ -1.6

VCE(,.t)@ Iclla = 10
0.5

..... 1./

§

I IIIIIII
I IIIIIII
10

ZO

50

---

100

II 1

e-

:>

~

ZOO

500

~

IIJl....--'1

-Z.4
0.5

1.0

Z.O

5.0

IC, COLLECTOR CURRENT (mA)

10

ZO

il

50

100

ZQO

500

IC, COLLECTOR CURRENT (mA)

NOISE FIGURE
= 10 Vdc, T A = 25°C)

(VCE
FIGURE 4 - FREQUENCY EFFECTS

FIGURE 5 - SOURCE RESISTANCE EFFECTS

6.0

10

5.01'\.

w

'"

=>

IC = 10"A
AS, 4.3 kil

0 1"

~ 3. 0

z
z

~.

1\

Z. 0

I"'-

II
1'1"---1'

0.5

O.Z

1.0

Z.O

5.0

10

ZO

f'

II

50

O
0.1

100

~

0.2

VCE = ZO V
TJ = Z50C
t= 100MHz

~

z

50

"i'

«

~

1'"

cl

0

"

30

~

0

V

1'1'

:---

.0

to

J:'

TJ = 25°C

t-b

,:.

~

100

Cib

100

~

50

J 11l

V
70

20

t-l'

0

y

:l:
o

10

FIGURE 7 - CAPACITANCES

j..-I-'

ZO0

«

5.0

2.0

0

t; 30Ot--

'"e-o

1.0

0.5

RS, SOURCE RESISTANCE (k OHMS)

500

'"~

V

t-

FIGURE 6 - CURRENT-GAIN-BANOWIDTH PRODUCT

5o

II

"

Z. 0

t, FREnUENCY (kHz)

N

V
f'.

z

I. 0
0
0.1

4.0

~.

IC = 100"A
AS = 1.0 kil

I)

'\

w

Y111

;~~I

-'-

V

'"
u:

5z

llJll
100"A

Ic=1.0mA

~ 6.0
=>

I-

w

'"o

J",.

B.O

I'-

~ 4.

I

t= 1.0 kHz

........

.0

.....

/
10
0.1

O.Z 0.3
,

0.5

1.0

2.0

3.0

5.0

10

20

3.0
0.1

30

0.2

0.3

0.5

1.0

2.0

3.0

REVERSE VOLTAGE (VOLTS)

IC, COLLECTOR CURRENT (mAde)

198

5.0

10

20

MD2218, MD2218A, MD2218F, MD2218AF (continued)
MD2219, MD2219A, MD2219F, MD2219AF
MQ2218, MQ2218A, MQ2219, MQ2219A

SWITCHING TIME CHARACTERISTICS

FIGURE 9 - CHARGE DATA

FIGURE 8·- TURN-ON TIME

200

"\

10,000

11t,@5V

I\.

100 :\. I\v

r-,:-2,V

td@VEB(oH)'-O

10
3.0

"

'"' 500

~

'\

200

~

10

10 a

1/

~

r-.

. . . V 1.-- ....

~ ......
5.0

Vee

I-

200

100

-

50

t-.

20
30
50
Ie, COLLECTOR CURRENT (mAl

./

1000

'\

~<'
-

lellB.

2000
Vee -, 30 V
UNLESS NOTED

I"

20

TJ -- 25"C
10
5V(UNLESS NOTEDI

-f-

- I-

td@VEB(onl

30

=~

5000

TJ 25"C
lefl, --10

~

HIGH GAIN TYPES
L?WGAIN TY PES

v--

./

Vee - 30V

~

-GA, ACTIV\~~~~~t: ALL TYPES

II II

20

300

QT, TOTAL CONTRO~~
CHARGE

3.0

5.0

7.0

I

10

20
30
50 70
Ie, COLLECTOR CURRENT (mAl

zoo

100

300

FIGURE 10 - TURN-OFF BEHAVIOR

300

" ......

200
~

~ 100
>=
::j

c::

70

Q

"'"

300 ..........

,- -l'

"

,.,

~

i lel l,

+i

~

10

"'-

20

I,

11 1
20

~

10

a
a

~~

20

......

..........

............

.......

70

200

100

300

TJ

10

i

......

l"-

---

I,

......

25 C

"I

20

30

50

70

200

100

300

Ie, COLLECTOR CURRENT ImAI

Ie, COLLECTOR CURRENT ImAI

FIGURE 12 - STORAGE TIME AND FALL
TIME EQUIVALENT TEST CIRCUIT

FIGURE 11 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT

GENERATOR RISE TIME'; 2.0 ns
PW'; 200 ns
DUTY CYCLE' 2.11%

-

n H GAIN TYPES

o

50

10

0

I>

1

30

~

0

..............

[>:

20 -

lel l,

......

lell,

.........

~

"" "',

lell, -10

0"'-

......

LOW GAIN TYPES
r---- TJ ~ 25"C
10
10

~

t-.

I

~

lell,

r-o

..........

30

t--- lell,

......

:l' 50

t,

ZO a

+30 V

RISE TIME'; 2.0 ns
DUTY CYCLE· 2.0%

+30 V

200
200

9. 9V

n

SCOPE
0-

o_L-L

619

SCOPE
Rio> 100 k ohms
Cin'; lZ pF
RISE TIME.; 5.0 ns

+16ZVR;

Ain> 100 k ohms
Cin'; 12 pF
RISE TIME'; 5.0 ns

> zooOn:...J-- - -

-j--

1.0 k

lN916

-13.8 V
-3.0 V

199

MD2369, A, B(SILICON)
MD2369F, AF, BF
MQ2369
MULTIPLE SILICON ANNULAR TRANSISTORS

NPN SILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
switches and amplifiers, front end detectors, and temperature com·
pensation amplifiers.
• Low Collector-Emitter Saturation Voltage -'
VCE(sat) = 0.25 Vdc (Max) @ IC = 10 mAdc
•

Fast Switching Times
ton = 15 ns (Max)
toff = 20 ns (Max)

•

DC Current Gilin hFE = 40 (Min) @ IC = 10 mAdc

•

@

~;~1 :=:/A-

IC = 10 mAdc

.....,

1EAT1..

-II-D

High Current-Gain-Bandwidth Product fT = 800 MHz (Typ) @ IC = 10 mAdc

N

MAXIMUM RATINGS
Rating

Value

Symbol

Unit

VCEO

15

Vdc

Collector-Base Voltage

VCS

40

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

IC

500

mAde

Coliector·Emitter Voltage

Collector Current - Continuous

One Die
Total Power Dissipation @ T A := 2SoC
M02369,A,S
M02369F,AF ,SF
MQ2369
Derate above 2SoC
M02369.A,S
M02369F ,AF ,SF
MQ2369

Po

Total Power Dissipatlon@ TC

Po

=

25°C

All Die
Equal Power

550
350
400

600
400
600

3.14
2.0
2.28

3.42
2.28
3.42

1.4
0.7
0.7

2.0
1.4
2.8

Operating and Storage Junction

.....
'CO,,",..

I RITTER

80MrtTiO

8.0
4.0
4.0

11.4
8.0
16

-65 to +200

MD2369F ,AF ,SF

"~"L
~u..,/
rLJdKl r; ~
~,
rr~~Ei~~:

.....

, COLUCTOR
'COllECTOR

°c

THERMAL CHARACTERISTICS

CASE 610A..(l3

Symbol

One Die

All Die

'

A
B
C
D
F
G
H
K
N

Temperature Range

Characteristic

!I~I~!!

DIM

mW/oC

TJ,T stg

!=~~

CASE 664.07

Watts

Derate above 2SoC
M02369,A,S
M02369F,AF ,SF
MQ2369

PlMlCOI,.UCToa

mW

mW/oC

M02369.A.S
M02369F ,AF .SF
MQ2369

"''''

R

MILLIMETERS
MIN MAX
6.10
7.36
4.06
2.2
0.76
2.03
0.36
0.48
0.15
0.08
1.27 sse
0~9

3.81
2.54 SSC
1.27

Unit

Thermal Resistance. Junction to Case
M02369,A.S
M02369F ,AF ,SF
MQ2369

°C/W

R8JA(1)

M02369,A,S
M02369F ,AF ,SF
MQ2369

319
500
438

292
438
292

125
250
250

87.5
125
62.6

Junction to
Ambiant

Junction to

°C/W

R8JC

M02369,A,S
M02369F,AF ,SF
MQ2369
IQ1-02)
(Q1-Q3 or Q1-Q4)

STYUl

!'1M ~ ~~~EtTOII

34 EMITTER
NOTCOMNECTEO

Ca ..

Coupl ing Factor

%

83
75
57
55

40
0
0
0

(1) R8JA is measured with the device soldered into a typical printed circuit board.

200

~150

MQ2369

Equal Power

Thermal Resistance, Junction to Ambient

INCHES
MI.
MAX
0.240 0.290
0.115
.1
O. 0 o. 0
0.014 0.019
0.00
O.
0.050 SSC
0.035

;m~C:OR

• COLUtTOA

1:

:~~TER

:~ :~iJ~:"Emo
138ASE
14COLLECTOII

CASE607..()4

Mil IMETERS
DIM MIN
MAX
6.10 6.99
A
C 0.16 2.03
0
0.25 0.48
F
0.08 0.15
1.21BSC
G
H
0.13 0.89
J
O.
K
6.35
L 18.80
0.25

•
R
S

1.B2

B.38

0.1008S
0.050

MD2369,A,B, MD2369F,AF,BF, MQ2369 (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows'
(1)

Assuming equal thermal resistance for each die, equation (1)

simplifies to
131 ATJl = Rel IPOl + Ke2 P02 + Ke3 P03 + K84 P041

ATJl = R81 POl + R82 K82 P02 + R83 K03 P03

For the conditions where POl'" P02

+Re4 Ke4 P04
Where L!.TJl IS the change

ROl thru 4 IS
POl thru 4 IS
K02 thru 4 IS
die 2 through

In

= PD3

'" P04. POT

4PD

=

equation (3) can be further simplified and by substituting into
equation (21 results In

junction temperature of die 1

the thermal resistance of die 1 through 4
the power dissipated in die 1 through 4

141 RelEFFI ~ R8111 + Ke2 + Ke3 + Ke41 14

the thermal coupling between die 1 and

Values for the coupling factors when either the case or the
ambient IS used as a reference are given In the table on page 1

4.

An effective package thermal resistance can be defined as
follows'
121 RelEFFI = ATjl/POT

where

I

PDT

15

the total package power diSSipation

ELECTRICAL CHARACTERISTICS leaeh sidel ITA = 25°C unless otherWISe noted.1

I

Characteristic

Collector-Emitter Breakdown Voltage (1)

I

Min

Typ

Max

Unit

SVCEO

15

-

-

Vde

SVCBO

40

-

-

Vde

BVEBO

50

-

-

Vde

-

-

0.03
30

40
20

95

140

Symbol

IIC= lOmAde,IB= 01
Collector-Base Breakdown Voltage

IIc = lO!,Ade, IE = 01
Emitter-Base Breakdown Voltage

liE = 10!,Ade, IC = 01
Collector Cutoff Current

!,Ade

ICSO

IVCS= 20Vde, IE = 01
IVCS= 20Vde, IE= 0, TA= +150o CI
ON CHARACTERISTICS 111
DC Current Gain

-

hFE

IIc = 10 mAde, VCE = 1 0 Vdel
IIC = 10 mAde, VCE = 1.0 Vde, TA = -550 CI
Collector-EmItter Saturation Voltage

VCElsatl

-

--

0.25

Vde

VBElsatl

0.7

-

0.85

Vde

IT

500

800

-

MHz

IIc = 10 mAde, IB = 1.0 mAdel
Base-Emitter Saturation Voltage

IIc = 10 mAde, IB = 1 0 mAdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)

IIc = 10 mAde, VCE = 10 Vde, I = 100 MHzl
Output Capacitance

Cob

-

-

40

pF

C,b

-

-

40

pF

ts

13

ns

ton

15

ns

toff

20

ns

IVCB = 50 Vde, IE = 0, I = 100 kHzl
I nput Capacitance
IVBE = 1.0 Vde, IC = 0, I = 100 MHzl
SWITCHING CHARACTERISTICS
Storage Time (Figure 1)

IVCC = 10 Vde, IC = 181 = 182 = 10 mAdel
Turn-On Time (Figures 2,4)

IVCC = 3.0 Vde, V8Eloffi = 1.5 Vde, IC = 10 mAde,
IBl = 3.0 mAdel
Turn-Off Time (Figures 3,5)

IVCC = 30 Vde, IC
IB2 = 1 5 mAdel

~

10 mAde, IBl

= 3.0 mAde,

MATCHING CHARACTERISTICS
DC Current Gain Ratio (2)

M02369A, M02369AF
M023698, M023698F

Base Voltage Differential

IVBE l,V8E21

IIC ~ 3 0 mAde, VCE = 1.0 Vdel

M02369A, M02369AF
M02369B, M023698 F

Base Voltage Differential Gradient

-

10
1.0

-

-

5.0
10

mVdc

!lV/oC

l>IVSE l,VSE21
l>TA

(1) Pulse Test. Pulse WIdth ~ 300 J.lS, Duty Cycle';;;; 2 0%.
IS

0.9
0.8

-

IIC = 3.0 mAde, V CE = 1.0 Vde, T A = -55 to +125 0 CI
MD2369A, M02369AF
M02369B, M023698F

(2) The lowest hFE readIng

-

hFE1/hFE2

IIc = 3.0 mAde, VCE = 1.0 Vdel

taken as hFE1 for this test

201

-

-

10
20

MD2369,A,B, MD2369F,AF,BF, MQ2369 (continued)

FIGURE 1 - STORAGE TIME TEST CIRCUIT

+10 V

980
e---=

.......

10

70
50

70
5.0
td@VBEloffi= 1 5 V

30
10
10

-I

20

Scope

I

30

50 7.0

10

T'I

20

30
20

I

30

50

70 100

-

I-10

1.0

30

ts

5.07010

20

30

50

70

100

IC. COllECTOR CURRENT ImAI

IC. COllECTOR CURRENT ImAI

FIGURE 5 - TURN-OFF TEST CIRCUIT

FIGURE 4 - TURN-ON TEST CIRCUIT

VCC= 3.0V

VCC=3.0V

270

e---._-. 0.4

- - - VCE=1.0V
- - - VCE=5.oV

0.5

1.0

2.0

5.0

10

20

50

100

o

200

0.5

0.2

11111

1.0

"ffi
t:
~

...
IC= lOrnA

-

.

0.4

~

100 rnA

JJIIjI.1
250C to 1500C ........
'OVC tor VCEI ..!)-+-t+ttftt--++.l-t.ld-ttrl-ti"itrrl;l;o-£....j

r-

$

200 rnA f-

-550Cto 250C

"-

0.2

0
0.05

~ -1.0t-H-ti-t+tt--+-+-I-+t+t+t--+--+-+1+1+1+I +111+-1-;
-!

........ I-

i\.

ILWTI
"'~ t=tlj~~~~:l:ttt~~~~2:5°tCltolll5000tC~~
~

ill-2.0

:--r-

W

>

r--

200

8

"
g
8

30rnA

100

I'I'I"Illrr1111'---'
!.1.01-H+11-tt11tt-111-+++t+tttt--+-t+1++
II++!
1111+:----\1

0.8

0.6

50

l3 +2.0 r---;"APP'L'IE'SrTFOTTR-I-c/-la'",-hF'E"-/3."-0TTTTr--~"',

TJ=250C

c

~
w

I I
2.0
5.0
10
20
IC. COLLECTOR CURRENT (rnA)

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - COLLECTOR SATURATION REGION

g 1.0

V

VCE("t)@ leila = 10

o. 2 =-

IC. COLLECTOR CURRENT (rnA)

;'"

70 100

1.2

200

..'"'"'"

50

30

TJ= 25°C

I-

300

15

20

10

FIGURE 9 - "ON" VOLTAGES

500

'"...

5.0 7.0

IC. COLLECTOR CURRENT (rnA)

...

i
0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

la. aASE CURRENT (rnA)

~

Ova lor VaE

~~~~III#III~4-++~~~f~=;-55~~~bh

'--'-:'-:'-~IIIII,::----O,::-'--'-::!~-+---'--rlu.,.HJ...L.J.·lf.u,.,.111r-----,-,J.

_3.0,::--F
0.2

0.5

1.0

2.0

5.0

10

20

IC. COLLECTOR CURRENT ImA)

203

50

100

200

MD2904, MD2904A (SILICON)
MD2904F, MD2904AF
MD2905, MD2905A
MD2905F, MD2905AF
MQ2904 ,MQ2905A
MULTIPLE SI LICON ANNULAR TRANSISTORS

PNPSILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors, and temperature compensation
amplifiers.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAde

•

Fast Switching Timeston = 45 ns (Max) and toff = 130 ns (Max)

•

DC Current Gain Specified 0.1 mAde to 500 mAde

•

High Current-Gain-Bandwidth Product fT = 320 MHz (Typ) @ IC = 50 mAde

MD2904,A
MD2906,A

I

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

MD2904,F
MD2906,F
MQ2904

MD2904A,AF
MD2906A,AF
MQ2906A

Unit

VCEO

40

60

Vde

DIM

A

Collector-Base Voltage

Ves

60

Vde

Emitter-Base Voltage

VES

5.0

Vde

Collector Current

Continuous

600

IC
0 ... 010

Totlll Po_ Dillipetion • T A - 25"c
M02904,A, M02906,A
M02904F ,AF, M02906F .AF
MQ2904. M02905A

Po

-

AnDie

.......

575
350
400

625

3.29
2.0
2.28

3.57
2.28
3.42

Total Power Oissipotion@Tc=25u C
M02904,A, M02905,A
M02904F,AF. M02905F,AF
M02904. M02905A

1.8
1.0
0.9

2.5
2.0
3.6

Po

Derate above 25°C

TJ.T stg

~ ,,~'u

.L.__~-"----r
r

Thermal Resistance. Junction to

IIY-'

~~::"r

STYlE I
PIN 1 WE
2EMITTEft

: ::r

Ell

~ ~gtt~gg:

304
438

280
438
292

97
175
195

70
87.5
48.8

500

MIN

MAX

A

6.10

7.36

B
C

2.92
0.76

4.0
2.0

D
F

0.36
0.08

O.
0.1

G

CASE 610A·03

H
K
N
R

1.27 Bse

0.89

3.81
2.54 Bse
1.21

MQ2904
MQ2906A

°CIW

ReJC

Junction to
Ambient
Coupling actor
M02904,A. M02905,A
M02904F .AF. M02905F ,AF
M02904. M02905A
(01-02)
(01-03 or 01·04)

..-

DIM

°CIW

ReJA(lI

Ambient
M02904.A. M02905.A
M02904F,AF, M02906F,AF
M02904, M02906A

Thermal Resistance, Junction to Case
M02904,A. M02906.A
M02904F,AF, M02905F,AF
M02904. M02905A

0 ... _

MD2904F,AF
MD2906F,AF

~---'Ir--~-+------~

Temperature Range

THERMAL CHARACTERISTICS

K
M

CASE 654-07

DC

-65.to +200

G
H
J

Watts

14.3
11.4
20.5

10.3
5.71
5.13

&':'~,'."\:~,',:""

~ r:~~~~

PlN1COLUCTOfl

L

mWflC

M02904,A. M02906,A
M02904F,AF. M02905F,AF
M02904, M02905A

Operating and Storage Junction

...
mWflC

M02904.A, M02905,A
M02904.F,AF. M02905F,AF
M02904, M02906A

o

mAde

400
600

Derate above 25°C

o

C
STVLE!

snlEI
PIN I COLlECTOR

Junction to

2 eASE

Case
%

84
75
57
55

44
0
0
0

(11 R6JA IS measured With the device soldered Into 8 typical printed CirCUit board.

a EMmER
4 NOT CONNECTED

: ~~~~m
1 COllECTOR
BCttLLEtTOR

1~ :~:"ER

11 NOTCDNNECTED

12 EMITTER
13 eASE

'.COLLECTO"

CASE 607·04

204

DIM

A

C
0
F
G
H
J
K
L
N
R

S

MILLIMETERS
MI.
MAX
~IO
6.99
0.76 2.03
0.25
.46
0.08 0.15
1.27 BSe
0.13 0.99
0.31
6.5
18.00
0.26

7.62

8.31

O.

I
0.330

MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
MQ2905A

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
Assuming equal thermal resistance for each die. equation (1)
simpl ifias to

The junction temperature can be calculated as follo~:

II) "TJl : ReI POI + R82 K82 P02 + Re3 Ke3 P03

(3) "TJl : ReI IPOI + Ke2 P02 + Ke3 P03 + Ke4 P04)
For the condition. where POI

+Re4 Ke4 PD4
Where l\TJ1
R91 thru 4
POl thru 4
K62 thru 4

= P02: P03 :

PD4, PDT: 4PO

equation (3) can be further simplified and by substituting into
equation (2) results in

is the change in junction temperature of die 1
is the thermal resistance of die 1 through 4
is the power dissipated in die 1 through 4
is the thermal coupling between die 1 and

14) ReIEFF) : ReI II + Ke2 + K83 + Ke4) 14
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1.

die 2 throult! 4.

An effective package thermal resistance can be defined as
follows:
(2) ReIEFF) : "TJ1/POT

where:

PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS ITA: 250 C unless otherwise noted.)
(Characteristics apply to corresponding flat package, and quad type number.)

Ct.ract.istic

Symbol

Min

Typ

Max

40

-

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breekclown Voltage 11)
(lC: 10 mAde,IB: 0)
M02904, M02905
M02904A, M02905A

BVCEO
60

-

-

Coliector·B... Bre.kdown Voltage
IIC = 10 I'Ade, IE : 0)

BVCBO

60

-

-

Vde

Emitter-Ba.. Breekdown Voltage
(IE =10jAAde, IC: 0)

BVEBO

5.0

-

-

Vde

-

-

0.020

-

-

30

20
40

50
70
70
150

-

Collector Cutoff Current
IVCB : 50 Vde, IE : 0)
IVCB : 50 Vde, IE : 0, T A : 15o"C)

IceO

Emitter Cutoff Current

lEBO

-

Vde

I'Ade

-

30
nAde

IVBE : 3.0 Vde, IC: 0)
ON CHARACTERISTICS 11)
DC Current Gain
(lC: 0.1 mAde, VCE : 10 Vde)

(lC: 1,0 mAde, VCE: 10 Vde)

(lC

~

10 mAde, VCE: 10 Vde)

(lC = 150 mAde, VCE
(lC

=10 Vde)

= 500 mAde, VCE :

10 Vde)

-

hFE
M02904
M02904A
M02905
MD2905A

35
75

M02904
M02904A
M02905
M02905A

25
40
50
100

35
40

MD2904
MD2904A
M02905
M02905A

75
100

MD2904.A.
MD2905.A

40
100

M02904
M02904A
M02905
M02905A

20
40
30
50

Collector-Emitter Saturation Voltage
(lC: 150 mAde, IB = 15 mAde)
IIC: 500 mAde, IB : 50 mAde)

VCElsat)

B...·Emitter Saturation Voltage
(lC: 150 mAde,lB : 15 mAde)
(lC = 500 mAde, IB : 50 mAde)

VBElsat)

II) Pulse Test: Pul .. Width ';;300 I'S, Duty Cycle ';;2.0%

205

75
75
100
175
90
90
110
200
90

200
60

-

-

-

-

-

-

-

120
300

-

BO
130
150

-

-

-

0.25
0.5

0,4
1.6

-

0.88
1.0

1.3
2,6

Vde

Vde

MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
MQ29 05 A

ELECTRICAL CHARACTERISTICS (continuedl
DYNAMIC CHARACTERISTICS
Current·(l"ain-Bandwidth ProduC1l( 11
(lc ·50 mAde. VCE - 20 Vde. I· 100 MHzl
Output Capacitance
(Ves s 10 Vdc. IE = O. 1 ~ 100 kHzl
Input Capacitance
(VSE s 2.0 Vdc.le = 0;1 -IOOkHzl

IT

200

Cob

-

5.S .

S.O

pF

16

30

pF

-

-

-

-

45
12
35
130
100
40

ns
ns
ns
ns
ns
ns

Cib

SWITCHING CHARACTERISTICS
Turn.()n Time
(Vee s 30 Vde. VSE(olll = 0.5 Vdc.
Delay Time
IC -150 mAde.
(Figun. 121
Ri.Time
IBI = 15 mAdel
Turn'()ll Time
(Vce = 30 Vde.
Ie = 150 mAde.
Storage Ti me
lSI = IS2 - 15 mAdel
(Figura 131
Fall Time

t..n
td
tr
toll
to.
tl

MHz

320

-

-

-

-

-

(11 Pulse T..t: Pulse WIdth" 300 /.IS. Duty. Cycle" 2.0%.

FIGURE 1 - DC CURRENT GAIN
2.0

--

Q

~I -

-- -- - - --

~

:::;

I-'

iII:

1.0

;;:

0.7

'"z~
C!\

....
i5

II:
II:

'"

~

0.3

--

TJ =+1750 C

-- -- - -'- -r-.
-- - - - -- - -

r-r--"

-... ......

+25'C

--- .- - --

0.5

:::>
u
u

-

""""

-.-

r-- _

-

'Iii'

~

'\

.......

......

1

--VeE-IOV
---- VeE - 1.0V

"
55'C

.... ...

"

........

....

\
0.2
0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

20

30

Ie. COLLECTOR CURRENT (mAl

206

50

70

100

200

300

500

MD2904, MD2904A, MD2904F, MD2904AF (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
M02905A

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - TEMPERATURE COEFFICIENTS

2.0

II
Y.. lSAT1mw' ~

1.2

~

[ -55·C
I III
I
TO +25·C

~

I~I

0.8

~

i~F~J~I~T:

+1.0

1.1 ~

!

Y.. @Yc,

1111 I

!11I

yl_12J·!
J
11

1.6

~

+2.0

1.0Y

+25·C TO +175·C

~Jv~11111

J

II III.I.LU

I-==r-

+25"C TO +175·C
'j -I

0.4

-2.0

~rll11li

i,...o'

10

YCElSATI @ lell,

o

-3.0

0.5

1.0

2.0

5.0

10

20

50

100

0.5

500

200

1.0

2.0

5.0

20

10

50

200

100

500

Ie, COlLECTOR CURRENT \mAl

Ie, COllfCTOR CURRENT (mAl

NOISE FIGURE
VCE

= 10 V, TA· 250 C

FIGURE 4 - FREQUENCY EFFECTS

FIGURE 5 - SOURCE RESISTANCE EFFECTS

10

I I lUll

1\ 1111111
5.0

,

1\

8.0
iii

:s

I-N-+-I++H++-H-t-Hfflrt+-+l--f-t-I-ttlti

4.0

~

le- IO ,.A

3.0

2.0

t=tt=t1f!tttt:t3:~~RisB-~4.1~kk~la~3:~~
po..H-t-l++Htt-H-t-t

&.0

::>

'"u::
~

i

4.0

....z

I.b

Ie IlIA
Rs-O.Ha

o
0.1

.

II 1111
0.2

0.5

1.0

2.0
5.0
I, FREQUENCY IkHzl

I
20

0

100

50

600

II

::>
Q
Q

1\

1\
1''''
lmA
0.1

0.2

f

20

w

~I--'

~200

~

'"~

!:

V

!

/

~100

..:.

I?'

""II
I;'

VeE = 10 Vd.

Tf=l2~Cl

~

0.5

1.0

Ii

2.0

5.0

10

20

1111
50

-- -

-

10

-... ......
-... ......

C!b -

-

~J 1.1~!e
f • 100 kHz

t-..... 'e~
~

5.0

80

0.7

1.0

2.0 3.0
5.0 7.0 10
IC.COLLECTOR CURRENT (MA)

r-

c5f 7.0

/'

a:

80
0.5

100

FIGURE 7 - CAPACITANCE

30

I I

:z:

1::

I\~

~

RS,SOURCE RESISTANCE (k OHMS)

VCE = 20 Vd.
I ' 100 MHz
TJ • 25 0 C

'"i!400

.t:

IL
l00pA

FIGURE 6 - CURRENT·GAIN BANDWIDTH PRODUCT

:z:

:

10

I'

,

'a

V
V

l-l.0kHz

1\

2.0

1.0 HH-t----R"I"+'II+H-+-H-++
IIH
III-HIIIH
11-4-+4-++1#1
le-IOO,.A
I-H-+-I++H++-H-t-+ Rs -1.2 +-+-i-Htttt

IC·10;.A

20

30

3.0
0.2

50

207

0.3

0.5 0.7 1.0
2.0 3.0
5.0
VR, REVERSE VOLTAGE (VOLlSI

7.0 10

r--.
20

MD2904, MD2904A, MD2904F, MD2904AF. (continued)
MD2905, MD2905A, MD2905F, MD2905AF
MQ2904
M02905A

FIGURE 8 -

TURN ON TIME

FIGURE 9 -

",

~

~IOO

t..

so

,

,

,

" ",
~;

30
20

2000

!

700

d

500

1/

300

:".
~

- --

...

I'
5.0 7.0

20

10

30
so 70 100
Ie, COLLECTOR CURRENT ImAl

FIGURE 10 -

200

300

200

100

500

300

III

I

200

t',-ts-lIBtl

~

~

.

~

... r-..,

...

'1Iri B- 21

10
5.0 7.0

10

20

30
50 70 100
Ie, COLLECTOR CURRENT ImAl

200

300

70

SO

ICIIB = 20
1c!IB = 10"'

i"

--

-

~

10
5.0 7.0

SOD

FIGURE 12 - DELAY AND RISE
TIME TEST CIRCUIT
•
P.W. > 200 ns
tr .;;; 2.0 ns
Duty Cycle'" 2.0%.

"

100

20

III

10

20

30
50 70 100
Ie, COLLECTOR CURRENT ImAl

200

300

FIGURE 13 - STORAGE AND FALL
TIME TEST CIRCUIT
P.W. R:l1.0tJ.s

-30 V

-30 V

os

tr '" 2.0
Duty Cycle" 2.0%.

200

209
Scope

Scope

1.0 k

-3.0 V

208

500

VCC=lOV _
IBI = IB2
TJ=250 C-

30

,

300

~Ll~
"

:g

f=

200

FALL TIME

...

200

;:1:

.

30
50 70 100
Ie, COLLECTOR CURRENT ImAl

-.l -.l_Ll

300

:::i

.....

20

10

500

IBI = IB2
TJ=250 e

t111,
l.f'

llJl

5.0 7.0

FIGURE 11 -

I

1c!IB" 10 _

~

QA,ACTIVE REGION CHARGE

STORAGE TIME

III

20

Vce'lO V
:J' 250 C

1/ QT, TOTAL CONTROL CHARGE

~1000

...

500

30

~

3000

~

70

10

I

----vee =30 v, VBEloffl =2.0 V- - vee = 10 v, VBEloffl = 0 ~ le/lB = 10 .
TJ = 25 0 e

200

~

I

I III

300

>=

CHARGE DATA

SOOO

500

500

MD3250, A, F, AF (SILICON)
MD3251, A, F, AF
MQ3251
MULTIPLE SILICON ANNULAR

TRANSISTORS
PNPSILICON
MULTIPLE TRANSISTORS

.. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.
•

•

Excellent Temperature Tracking - Dual Devices
LlIVBE 1 . VBE21 = O.B mVdc (Maxi @-55 to +250 C
= 1.0 mVdc (Maxi @+25 to +125 0 C

MD3250,A
MD3251,A

Low Collector· Emitter Saturation Voltage VCE(satl =O.lB Vdc (Typl @ IC =50 mAdc

•

DC Current Gain Specified - 10 /LAdc to 50 mAdc

•

High Current·Gain·Bandwidth Product fT = 600 MHz (Typl @ IC = 10 mAdc - M03251

I

MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Symbol

Value

Unit

VCEO

40

Vdc

Vce

50

Vdc

VEe

5.0

Vdc

IC

50

mAde

OnaDia

Total Power Dissipation @ T A == 2SoC

All Die
EqualPowar

Po

MD3250,A, MD3251 ,A
M03250F .AF. M03251 F .AF
M03251

!::1~~:

A
B
C
D
G
H

.....

IlIItlTTER
1 COUECTOR
IOIllITTEO

J

K
M
N

CASE 664-07

8.51
940
775 8.&1
3.81
470
0.41
0.53
5.08 Bse
0.71
0.86
0.74
114
12.70
450 BSe
2.54BSC

676
350
400

625
400
600

3.29
2.0
2.28

3.57
2.28
3.42

1.8
1.0
0.9

2.5
2.0
3.6

10.3
5.71
5.13

14.3
11.4
20.5

MD3260F,AF
MD326IF,AF

mW/oC

M03250,A, M03251,A
M03260F,AF, M03251F,AF
M03261

Po

Watts

Derate Above 25°C

DIM

mWtDC

M03250,A, M03251,A
M03250F,AF, M03251F,AF
M03251

Operating and Storage Junction
Temperature Range

snut
,.MICOLtlCTOR

mW

Derate Above 25°C

Total Power Dissipation@ TC::= 2SoC
M03250.A, M03251 ,A
M03250F,AF, M03251F,AF
M03251

MILLIME
S
Dill MIN MAX

TJ,T"9

-65 to +200

STYlE I
"Nt WE
2 EMtnER
: ::~lR
'COLLECTOR
• COLUCTOR

A
B
C

0
F
G
H
K
N

°c
CASE 610A·03

R

MILLIMETERS
MI. MAX

INCHES
MIN
MAX

6.10

0240

2.9

7.36
4.06

0.76
0.36

2.03
0.48

0030
0014

0.08

0.15
1.27 BSC

0.89
3.8-J
2.54 BSe
1.27

.115

0.290

0.1
0.080

0.019
Q003 0006
0.050 SSC
Q035
0.150
0100 BSe
0.050

THERMAL CHARACTERISTICS
All Di.

Characteristic
Symbol
Thermal Resistance, Junction to Ambient R8JA(I)
M03250,A, M03251,A
M03260F,AF, M03261F,AF
M03251

Thermal Resistance, Junction to Case
M03251,A, M03251 ,A
M03260F,AF, M03251F,AF
M03251

One Die

Equal Power

304
500
438

280
438
292

97
175
195

70
87.5
48.8

Junction to
Ambient

Junction to

°C/W

R8JC

$TVtEI

ptNICOLLECTOR
21f1SE

....,

3 EllllnER
4 NOTCOIIIIECTEO
, EM'TTER

ca.

Coupling Factors
MP3260,A, MD3261 ,A
MD3250F ,AF, MD3261 F ,AF
M03251 (01-02)
(01-03 or 0 1-04)

Unit
°C/W

%

84
75
57
55

44
0
0
0

, ...,

'COLLECTOR
ICQLLECTOR

ll1P1lnEIL
IINDTtoJIIIECTfD
12 EMITTEII
IJI4SE
14CIIlllCTOR

CASE 607-04

U) R6JA" measured with the device soldered Into a typical pnnted Circuit board.

209

INCHES
MILLIMETERS
DIM MIN MAX
MIN
MAX
A
S.10 6.9S 11.240 0.215
C o.n 2.03 0.030
0
0.25 0.41 0.010 0.019
F

0.08

G
N

0.13

0.15

0.0113 0.00II
O.05OSSC
O. 5

1.27BSC

0.89

0.006

.01

j

K
L

0.25
0.1
0.010

S.5
I.

N
R

0.25

S

I.

a.

O.

D. 0

M03250,A,AF,F, MQ3251,A,AF,F, MQ3251 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.

Assuming equal thermal resistance for each die. equation (1)
simplifies to

The junction temperature can be calculated as follows:

(31 ATJl : ROl (POl + K02 P02 + K03 P03 + K04 P041

(11 ATJl : R81 POl + R82 Ke2 P02 + R83 K03 P03

For the conditions where POl: P02 = P03: P04, PDT: 4PO

+R04 K04 P04
Where 6T Jl
AlI1 thru 4
POl thru 4
K62 thru 4

equation (3) can be further simplified and by substituting into

is the change in junction temperature of die 1
is the thermal resistance of die 1 through 4
is the power dissipated in die 1 through 4
is the thermal coupling between die 1 and

equation (2) results

10

(41 RO!EFFI : R01(1 + K02 + Ko3 + K041 /4
Values for the coupling factors when either the. case or the
ambient is used as a reference are given in the ta~e on page 1.

die 2 through 4,

An effective package thermal resistance can be defined as
follows:
(21 RO(EFFI : ATJ1/ POT

where:

PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS (TA

= 25°C unless otherwise noted'!

Characteristic

OFF CHARACTERISTICS
Colleetor·Emitter· Breakdown Voltage (1 I
(lC = 10 mAde, IB = 01

BVCEO

Collector~Base

BVCBO

Breakdown Voltage

(lC: lO/lAde, IE: 01
Emitter~Base

Vde
40

-

-

50

-

-

5.0

-

-

-

-

10
10

nAdc

-

-

-

10

nAde

Vde
Vde

BVEBO

Breakdown Voltage

(IE: 10 /lAde,lc: O)
Collector Cutoff Current
(VCB = 40 Vde, IE = 01
(VCB = 40 Vde, IE: 0, T A = 1500 CI

ICBO

Emitter Cutoff Current
(VBE = 3,0 Vde, IC = 01

lEBO

/lAde

ON CHARACTERISTICS (1)
DC Current Gain
(lC = 10 /lAde, VCE : 5.0 Vdel

hFE
M03250,A,F,AF
M03251,A,F,AF

25
50

75
100

-

M03250,A,F ,AF
M03251,A,F,AF
M03251

50
80
80

82
170
170

150
300

(lC: 100 /lAde, VCE = 5.0 Vde, T A: -55°C I
M03250,A,F ,AF
M03251 ,A,F,AF

25
50

35
75

-

M03250,A,F ,AF
M03251 ,A,F,AF
M03251

50
100
100

87
180
180

150
300

M03250,A,F ,AF
M03251,A,F,AF
M03251

50
100
100

92
190
190

M03250,A,F ,AF
M03251,A,F,AF
M03251

15
30
30

50
90
90

(lC: 100 /lAde, VCE = 5.0 Vde)

(lC

= 1.0 mAde, VCE :

(lC

= 10 mAde, VCE :

(lC

5.0 Vdel

5,0 Vdel

= 50 mAde, VCE = 5.0 Vdel

Collector-Emitter Saturation Voltage

-

300

-

Vde

VCE(sat)

(lC= 10mAde,IB = 1.0 mAdei
(Ie: 50 mAde, IB: 5,0 mAde)
Base~Emitter

-

-

-

Saturation Voltage

0.11
0.18

0.25
0.5

0.78
0.8B

0.9
1.2

Vde

VBE(sati

= 10 mAde, IB: 1.0 mAdei
(lC = 50 mAde, 'B: 5.0 mAde)

0.6

(Ie

-

(II Pulse Test: Pulse Width ";;300 I'S, Duty Cycle ";;2.0%

210

MD3250,A,AF,F, M03251,A,AF,F, M03251 (continued)

ELECTRICAL CHARACTERISTICS (continued)
Characteristic

Symbol

Min

Typ

200
250
300

600
600
600

-

-

2.5

6.0

-

6.0

B.O

0.9
0.9

-

1.0
1.0

-

3.0
5.0
5.0

Max

Unit

DYNAMIC CHARACTERISTICS
Current~Gain-Bandwidth

Product
(lC = 10 mAde, VCE = 20 Vdc, 1= 100 MHz

MHz

IT
MD3250,A,F ,AF
MD3251,A,F,AF
MQ3251

Output Capacitance
(VCB = 5,0 Vde, IE = 0, 1= 100 kHz)

Cob

Input Capacitance

Cib

pF
pF

IVBE = 1.0 Vde, IC = 0, I = 100 kHz)

MATCHING CHARACTERISTICS (MD3250A AF MD3251A AF only)
DC Current Gain Ratio 121
IIC = 100 /lAde, VCE = 5.0 Vde)
(lC = 1.0 mAde, VCE = 5.0 Vde)

hFE1/hFE2

Base-Emitter Voltage Differential
(lc = 100 /lAde, VCE = 5.0 Vdel
(lC = 10 /lAde, VCE = 5.0 Vde)
Ilc = 10 mAde, VCE = 5.0 Vde)

IV eEl Ned

Base-Emitter Voltage Differential Change
Due to Temperature

C.IVBE1 N eE21

mVde

-

-

-

mVdc

-

IIC = 100 "Adc, VCE = 5.0 Vde, TA = -55 to +25 0 C)
(lc = 100 /lAde, VCE = 5.0 Vde, TA = +25 to +125 0 C)

-

0.8
1.0

-

(2) The lowest hFE reading is taken as hFE1 for this ratio

FIGURE 1 - CAPACITANCE

FIGURE 2 - CURRENT·GAIN BANDWIDTH PRODUCT

1000

0

TJ - 25°C

G

::>

7. 0

g

-I-

~ 5. 0

f

...........

C3 3. 0

e
§
e
z

............

0.2

0.5

1.0

2.0

5.0

10

~
a

I--r-

20

100
0.2

50

/'

,/

;;;:
~ 200

Cob

1.0

V
./

Z

2. 0

1.0
0.5

400

;;;

.....

~

u'

l-

Gib

...........

:t

.....

60

:t:

.....

"'z
;:
u

-

80o-VCE - 20 Vdc
f=100MHz
0 - TJ=250C

VI' "
0.3

0.5

1.0

2.0

3.0

5.0

7.0

10

20

NOISE FIGURE VARIATIONS
IVCE = 6.0 V, T A = 25°C)
FIGURE 3 - EFFECTS OF FREQUENCY

FIGURE 4 - EFFECTS OF SOURCE RESISTANCE

SO

10

II

f = 1.0 kHz

'\.

8.0

1\

~

~

4.0

"- ......

::>

"'u:

"'
~
"'u:
"'

Rs=4.3kn
IC = 10"A

"'
~

~

6.0
10"A

~ 4.0

.......

~

2.0

Rs-1.Skn
Ic = 100"",

II

o
0.1

0.2

0.4

1.0

2.0

4.0

10

20

40

o

0.1

100

f, FREQUENCY 1kHz!

1\

........

........ ~
0.2

0.4

v ./L
V

,/

1.0

2.0

1/
'I

I'~

10O"A

I-"

4.0

10

Rs. SOURCE RESISTANCE IkOHMS)

211

'I

I

_\

.

.......

I/,

J.

IC= 1.0 mA /

I"\"

~

~- 2.0

I

II

20

40

100

MD3250,A,AF,F, MQ3251 ,A,AF,F, MQ3251 (continued)

FIGURE 5 - DC CURRENT GAIN
2.0

TJ • 125'C

........
@
N

~

'"
o

lc
1.0

""-

;;:

to

>-

~

05

=>

u

u

o

~

NORMALIZED AT IC' 10 rnA. VCE' 1.0 V
S3 - MD3250.A.F.AF

0.3

02
01

0,3

02

TYPICrFE

II

0,5

0,)

1,0

"'""

........ ~

-~5'C

~ ·0.1

z'

I'...

--

~

1

16) - MT51.AtF•
3,0

20

iQT I

50

),0

20

10

"'".....'\r-,.

~

\

30

50

IC. COLLECTOR CURRENT (rnA)
FIGURE 7 - TEMPERATURE COEFFICIENTS

FIGURE 6 - "ON" VOLTAGE

1.0

-

IITJ'25'C

It JI

0,8

VBE(sat

~

@ Icils

- 10

f..-r'""

o

;:: 0,6
w

to

~

o

>

0, 4

:>
0, 2

-

VCE("t) @ IcllB • 10

o

II
0,5 0.1 10

2,0

3,0

5,0 ),0

10

20

30

50

IC. COLLECTOR CURRENT (rnA)

MD3250

IC. COLLECTOR CURRENT (rnA)

FIGURE 8 - COLLECTOR SATURATION REGION

1,0 rTrTTTTTTrT""----,----,-.--rnrrrr---t-,--,---n-rrnr---,

\

II III

to

~ 0,6
<5

o 0.6

10mA_

~25mA

'"

~

0

02

\

~

-

0

u

ul

0.02

0.05

0.1

~
~ O. 4

\

--

0.5
1.0. 2,0
0.2
lB. BASE'CURRENT (mAl

't;" o.
~

2

8
w
u

0

o

5.0

10

>

20

212

\

\
,~

"-

~

om

(

~50mA

w

~ 0.4

>

Ic·2.0mA

>

'"w

u

.

~

25 rnA -------\
\ 50 rnA) +t++tt-----t

II
((

TJ' 25'C

w

>

'"
~

(

~ 0.8

to

10 mA

\

~

g
o,sl-+l+H-Iti++--+-+-t+++++t--1rl--+ ~J! J5W r-~
I
IC',
20 m.
A-

MD3251. MQ3251

1.0

0,02

0,05

0.1
0.2
0.5
1.0
lB. BASE CURRENT (mA)

\

\

-

........

2.0

5.0

10

MD3409 (SILICON)
MD3410

NPN SILICON ANNULAR

MULTIPLE TRANSISTORS

NPN SILICON
MULTIPLE TRANSISTORS

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.

,

• Excellent Temperature Tracking - MD3410 61 VBE1,VBE21 = 0.8 mVdc (Max) @TA = -55 to +25 0 C
= 1.0 mVdc (Max) @ TA = +25 to +125 0 C
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.15 Vdc (Max) @ IC = 10 mAdc

•

Low DC Current Gain hFE = 20-100@ IC = 10 /lAdc - MD3410

•

High Current-Gain-Bandwidth Product fT = 250 MHz (Typ) @ IC = 20 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

SOD

mAde

TJ,Tstg

-65 to +200

°c

Collector-Emitter Voltage

Collector-Current
Operating and Storage Junction

Temperature Range

= 2SoC

Total Power DIssipatIon @TA

PD

Derate above 2SoC
Total Power Dissipation @ TC

= 2SoC

PD

Derate above 25°C

One

Both Die

Die

Power

575
3.29

3.57

mW
mW/oC

1.8
10.3

2.5
14.3

Watts
mWfOC

Equal
625

STYL"-,
PIN' COLLECTOR
2 BAS"-

THERMAL CHARACTERISTICS

3 "-MITUR

One
Characteristic
Thermal ReSIstance, Junction to Ambient

Thermal Resistance. JunctIon to Case

4 OMITIED

Both Die

Equal

Symbol

Die

ROJA(I)

304

Power
280

°C/W

97

70

°CIW

ROJC

(1) R9JA

IS

84

44

measured With the device soldered into a typical printed circuit board.

213

"-MITTER
BASE

COLl"-CTOR
OM1TTEO

Unit
DIM MIN
A 851
B 115

MAX
940
851

C

381
410
041 053
503BSC
0.11 0.86
J
014 114
II. 1210
M 450 BSC
N
S4BSC

o

Junction Junction
to Ambient to Case

Coupling Factors

5
6
1
8

G
H

%

CASE 654-07

MD3409, MD3410 (continued)

THERMAL CDUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as fOllows:·

Assuming equal thermal resistance for each die, equation (1)
simplifies to:

(3) -

I---- VBf(sat)~O

100

200

1

"Applies for leIla'" hFE/4

1000e to 1750e

S+o 8
~ . t-- ·'eve'tor Ve'E(sa~)

~

o

25 DC to 1000

i3

-l-

~

.£>(1

-55 DC to 250C

0

8

«

w

VBE(on)@ VCE = 1.0 V

>

~ 0.4
0.2 I----

~.OA

">

1.2

~ 0.6 I----

400 mA

TJ = 25°C

FIGURE 4 - TEMPERATURE COEFFICIENTS
+1. 6

TJ=250C

~O.8

\

\

14

>

100mA

JJl
Jl

0.6

>
5.0

IIII
Illl

Ic=20mA

~

~

2.0

II I
II I

>

o

r-

-55°

1.0

~
o

. . r:::~

V

~

z 100

FIGURE 2 - COLLECTOR SATURATION REGION

en

VC~(sat) ~ ICiI'B

~-o. 8

~

I
I

~-1. 6.

j..--

'10 '

....

30

III

?

II
20

-55DC to 250 C

0VB for VBE

W

-24

50 70 100
200 300
IC. COLLECTOR CURRENT (mA)

10

500 700 1000

20

30

2.0

~
....

O. 6

'"~

O. 2

~ 0.4

1""-...
r------ TJ =200 0 e

-

o

~

O. 1

de

-Bonding Wire Limit

Second Breakdown limit

...........
t-"

'~

~ 0.06 ~(Note:

~~~r~~~a~~~i~~~"l ~e:r~:~ be

EO.04
0.02
2.0

4.0
6.0
8.0 10
20
VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)

217

I 25 0e to TOOoe

50 10 100
200 300
Ie. eOLLECTOR eUR RENT (mA)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA

0:: 1.0

--

...~

=-"'i oooe to 175 0e

40

I I

11

500 700 1000

MD3467 ,F, MQ3467 (continued)

FIGURE 6 - TURN'()N TIME
200

100

r-..

FIGURE 7 - RISE AND FALL TIME
200

lc/lB'10

I~

'\,

.
w

'"

1=

30

"' "- .......

20

20

30

"

w

"

1,@VCC·l0V

~

........

N-+l

""'-~ .....

1= 30

r--....

VCC' 30 V

........

10
10

500 100 1.0 k

20

30

200

- r--

i-?' <::

TJ·25'C

- --

--

-

') Ic/IB' 20

IC/IB'10?

0

---

TJ'150'C
100

20

30

70

;

50

~ 1'.

I'-. "

...,.

Ic/1B'10 :.-

'"
50 10 100
200 300
Ic. COLLECTOR CURRENT (mAl

20

20

500 100 1.0 k

30

59

Rise Time ~5 ns

Pulse Width'" 0.5 IlS
Dutv Cycle"" 2%

O.lIlF

~

1

-30U

50

~

30

z

lN916o'

n

oquiv.

-=

::s.

--

f'. t-

r-

50 10 100
200 300
IC. COLLECTOR CURRENT (rnA)

"Cii;-.

50

n

.5

300 n

-

500 100 1.0 k

FIGURE 11 - CAPACITANCE

IB1: IB2: 50mA

300n

Ic/lB-io

10

-30 V

+27.7 V

f-TJ • 150'C
"I

1-<'

........

"'-

Vec' .10 V
IB1' IB2

TJ' 25'C

-

'.

..... "

FIGURE 10 - SWITCHING TIME TEST CIRCUIT
Ie: 500mA

500 100 1.0 k

-

.......... "-

,,;. 30

t's trT/Btf

20
10

-

50 10 100
200 300
COLLECTOR CURRENT (rnA)

I'-l. . .,

:E

lBl- IB2

0

~

.

.~

......

0

1,/

-.u.

FIGURE 9 - FALL TIME

FIGURE 8 - STORAGE TIME

0

~ r-..

IC/rli

I'-..

50 10 100.
200 300
IC. COLLECTOR CURRENT (mAl

400

II

......... r---..

20

2.0 v..........

Id@IVBE/,ffl;,
10
10

0

.

1

~

- 25'C

I-TJ-150'C

0

1,@VCC-30V

~

"-

~I-- I-TJ

--

~~,

100

10
-;;

.5 50

~,

TJ·25'C

TJ 25'e

I--.....

20

~

~

;'\
u'

In

,
'r--

10
1.0
0.04 0.06 0.1

Out

218

I--0.2

0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

MD3725 (SILICON)
MD3725F
MQ3725
NPN SILICON
MULTIPLE
TRANSISTORS

MULTIPLE SILICON ANNULAR TRANSISTORS
· .. designed for use as differential amplifiers, dual high·current
amplifiers, switching and temPerature compensation applications.
•

Collector-Emitter Breakdown Voltage BVeEO = 40 Vdc (Min) @ Ie = 10 mAde

•

Guaranteed Fast Switching Times @ Ie = 500 mAde
ton = 20 ns (Typ)
toff = 50 ns (Typ)

•

Guaranteed DC Current Gain hFE = 30 (Min) @ IC = 500 mAde

MD3725

MAXIMUM RATINGS
Ratin.
Voltage
Collector-Base Voltage
Coliector~Emitter

Emitter-Base Voltage

Collector Current - Continuous
Operating and Storage Junction
Temperature Range

ISvmbol

Value

Unit

VCEO

40

V"R

65

Vdc
Vdc

V~R

6.0

Vdc

Ie

1.0

Adc

T J,Tstg

-6510 +200

°c

DIM
A

B
C

o

STYLE 1

PIN ~ ~~~ECTOR
3EMInER
40MITTEO

5 EMITTER

Total Power Dissipation @ T A::: 2SoC
MD3725
MD3725F
M03725
Derate above 25°C
MD3725
MD3725F
M03725

PD

Total Power Dissipation @ T A == 2SoC

PD

K

M

N

MD3725F

mW
600
350
400

650
400
600

3.42
2.0
2.28

3.7
2.28
3.42

2.1
1.25
1.0

3.0
2.5
4.0

Watts
DIM
STYLE 1
PIN1BASE
!EMtTTER

:=~ER

mW/oC
12
7.15
5.71

MD3725
MD3725F
M03725

~ ~mm~:

17.2
14.3
22.8

A
B
C
0
F
G
H
K

N
CASE 610A·03

THERMAL CHARACTERISTICS
Svmbol

On. Die

433
83.3
140
175

58.3
70
43.8

Junction to

Junction to
Ca..

500

1.03
0.48

076
0.36
0.08

0.15

1.21

sse

INCHES
MIN
MAX
0.240 0.291)
0115 0160
0.030 0080
0014 0019
0003 0.006
0.050 sse

0.035

OB9
3.81
2.54 Bst
1.21

0.150
0100

sse
0.050

M03725

Unit

SHU1

PIN I COLLECTOR
lBASE

3 EYITTEA

%

(01·02)
101-03,01-04)

7.36
4.06

6.10
2.92

°C/W

ReJC

Ambient
Coupling Factor
MD3725
MD3725F
M03725

"

MILLIMETERS
MIN MAX

°C/W
270
438
292

292

MD3725
MD3725F
M03725

AU Die
Equal Power

ReJA(I)

MD3725
MD3725F
M03725

Thermal Resistance, Junction to Case

0

BSC

1210
450 SSC
254 sse

AU Die.
Equal Power

Derate above 2SoC

Thermal Resistance, Junction to Ambient

9.40
8.51
410
0.53

mW/oC

MD3725
MD3725F
M03725

Characteristic

8.51
1.75
381
041
508

! ~~~~mOR t~~e~g~:~:~~'t~:j:!

CASE 654-07

One Die

G

I

MllLiMET R
MIN
MAX

85
75
57
55

40
0
0
0

: ~~:T~~:N£mo
6 BASE
1 COLLECTOR
: :~~ECTOA

:~ ~~~Ti~:NECTEO

H~~~l:::OA

(1) R6JA is measured with the device soldered into a typical printed circuit board.
CASE 607·04

219

INCHES
MAX
0.175
0030 0.080

DIM

MIN
0.240

•
C
D
F
G

0.010

H
J
K
L

0.005

S

0035
0.015

0.250
0.740
0.010

•

"

0.019

0.003 0.006
0.050Bse

1.62

8.38

0.300

.01
0.330

MD3725,F, MQ3725 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, equation (1)
In multiple chip devices, coupling of heet bet_n die occurs.
The junction temperature con be calculated as follows:
simplifies to
(1I4TJI ~ RBI POI + RB2 Ke2 P02 + RB3 Ke3 P03
+ RB4 Ke4 PD4

Where ATJl is the change in junction temperature of die 1
RBI thru 4 Is the thermal re.istance of die I through 4
POI thru 41. the power dissipation in die I through 4
Ke.2 thru 4 i. the thermal coupling between die I and
die 2 through 4.

(3) 4T Jl = RBI (POI

+ Ke2 P02 + K83 P03 + K84 P04)

For the conditions where POI = P02 = P03 = P04, PDT = 4PO
equation (3) can be further simplified and by substituting into
equation (2) results in
(4) R8(EFF) = R81 (1 + Ke2

+ Ke3 + K84) /4

Values for the coupling factors when either the case or the
An effective package thermal resistance can be defined as
ambient is used as a reference are given in the table on page 1. If
follows:
significant power is to be dissipated in two die. die at the opposite
(2) R8(EFF) = 4TJ1/POT
endlot the package should be used so that lovvest possible junction
temperatures will result.
Where: PDT is the total package povver dissipation.

ELECTRICAL CHARACTERISTICS (TAITC = 25°C unless otherwise noted).

I

I

Characteristic

Typ

Max

Unit

-

Vde

Symbol

Min

BVCEO

40

BVCES

65

BVCSO

65

-

-

Vde

BVESO

6.0

-

-

Vde

ICBO

-

0.12

1.7

-

-

120

I'Ade
I'Ade

50

-

150

30

-

-

-

-

0.19
0.30

0.26
0.45

-

-

0.80

-

0.86
1.2

tr

200

-

-

MHz

Cob

-

-

10

pF

eib

-

-

65

pF

20

45

ns

50

75

ns

OFF CHARACTERISTICS
Collector·Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

Collector-Emitter Breakdown Voltage
(lc = 10 I'Adc, VBE = 0)
Collector-Base Breakdown Voltage
(lC = 100l'Ade, IE = 0)
Emitter-Base Breakdown Voltage
(IE = 10 I'Ade, IC = 0)
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
(VCB = 40 Vde, IE = 0, TA = 100°C)
ON CHARACTERISTICS (1)

-

Vde

M03725F

DC Current Gain
(IC = 100 mAde, VCE = 1.0 Vde)
(Ie = 500 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage
(Ie = 100 mAde, IB = 10 mAde)
(lC = 500 mAde, IB = 50 mAde)
Base-Emitter Saturation Voltage
(Ie = 100 mAde, IS = 10 mAde)
(le.= 500 mAde, IS = 50 mAde)
DYNAMIC CHARACTERISTICS

-

hFE

Vde

VeE(sat)

VBE(sot)

Current-Gain - Bandwidth Product
(lC = 50 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance,
(VeB = 10 Vde, IE = 0, f = 100 kHz)
Input Capacitance
(VBE = 0.5 Vde, Ie = 0, f = 100 kHz)

Vde

SWITCHING CHARACTERISTICS
Turn-On Time (Figures 7 and 8)
(Vee = 30 Vdc, Ie = 500 mAde, IBI = 50 mAde, VSEloff) = 3.8 Vde)

ton

Turn-Off Time
(Vee = 30 Vde, Ie = 500 mAde, IB1 = IS2 = 50 mAde)

toff

(1) Pulse Test: Pulse Width ";300l's, Duty Cycle ";2.0%.

220

-

MD3725,F, MQ3725 (continued)

TYPICAL DC CHARACTERISTICS

FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
400

14

200

"

"'"

t--- t-

l-

I
u
0

~

100
80

t--- f--

60

-

25°C

~

i '~

-55°C

-TJ·250C

12

VCE ·1.0 V

iJ • 1250C

~

10

-

0.0

w

'"~

0.6 =VOElsa'i ""elia' 10

0

>
,; 0.4

,.....

40

f.-'

--I-""

0.2

o

20
10

50

20

100

200

300

-VCEI",) ""Cllo -10

10

500 . 700 1000

20

~
~

w

«
'"
!:::;
0
>

'"w
l-

"'
~8

~

:>

TJ'250C

300

~

\

0.6

\

\
\

0.4

"'

0.2

1~'100mA

I
'APPLIES FOR IC/IO< hFE/2

~
0
0.5

1.0

2.0

5.0

10

20

w
~

8rOmA

ffi

500 rnA

....

-0.5

I-

-1.0

I--f-

~ -1.5 r--6VO FOR VOE

300 rnA

'"

,....

0 5 f--'6VC FOR VCElsa'i
.

1000 rnA

50

+1.0

1+

I I

....

'-

500 700 1000

+2.0

E. +1.5
~

0

>

200

FIGURE 4 - TEMPERATURE COEFFICIENTS

0.8

I-

~

100

+2.5

I

0

70

Ie. COLLECTOR CURRENT ImAI

FIGURE 3 - COLLECTOR SATURATION REGION
1.0

50

30

IC. COLLECTOR CURRENT (mAl

.-

I-

~ -2.0

-2.5
100

200

500

10

" IS. 8ASE CURRENT (mAl

20

30

50

100

200

300

IC. COLLECTOR CURRENT ImAI

221

500

1000

MD3725,F, MQ3725 (continued)

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 6 - CAPACITANCE

FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT
~ 500

VCE' 10 Vdc
f· 100 MHz
TJ= 25 0 C

!.

g
~ 300

"
b

V

200

~

~z

100
70

..-

..............

.s

30

z

20

w
u

"'-

;'!:
U

V

~

~ 100

i

I'-... Cib

I"--

~

........

10

U

7.0

l-

B
.l:'

Tr 25 0 C

50

--

Cob

5.0

70
50
4.0

6.0

10

20

40

60

100

200

3.0
0.1

400

05

0.2

10

IC. COLLECTOR CURRENT (mAl

100

~

100
50

;:::
'"
w

!w

,.

VCC' 30 Vdc

r-..

20
10

Id@VBE(off}-OV

.....

50

1,@IC/IB-20
/IC/IB 10

oJ

r-....

30

50

100

200

300

/

500

10

1000

~

20

30

200

300

Ii

Vln = +9.7

l-

15
11'F

f--o

1k

1000

....

1000

+30 V

Pulse Generator
tr.tf~1 ns

500

FIGURE 10 - COLLECTOR CUTOFF CURRENT

FIGURE 9 - SWITCHING TIME TEST CIRCUIT

P.W. ~1.01l'
Zin = 50 n
D.C.<2%

100

50

IC. COLLECTOR CURRENT (mA)

IC. COLLECTOR CURRENT (mA)

-3.8 V

.......

V !"'..

Vi/
V
V
10

20
20

-

.....

30

......

~~~(~f~~ ~:~2 Vdc

10

100

TJ' 25 0 C

ICIIB' 20

I

20

50

50

VC~ .10 ~d~

If~ICIIB'1O

;:::

.....

~ ."...

3.0

20

70

tr@VCC=10Vdc

30

10

200

ICIIB'10
TJ' 25 0 C

~

50

FIGURE 8 - TURN·OFF TIME

FIGURE 7 - TURN·ON TIME
200

20

VR. REVERSE VOLTAGE IVOLTS)

~

o

To Sampling
43 Oscilloscope

.A. 17"
100
10

§
~

~
8

100

I--

~

VCES·60

r== ==

3~,.

10.,-

~~

1.0

1.0""
0.1

Zfn ;;'100 kn
t r <1.0nl

0.0 1

~

~

00

~

~

rn

~

TJ. JUNCTION TEMPERATURE (DC)

222

~

~

~

MD3762 (SILICON)
MD3762F
MQ3762
MULTIPLE SILICON ANNULAR TRANSISTORS

PNPSILICON
DUAL TRANSISTORS

· .. desilJled for use as differential amplifiers, dual general-purpose
amplifiers, and temperature compensation amplifiers• Collector-Emitter Breakdown Voltage - .
BVCEO = 40 Vdc (Min) @ IC = 10 mAdc
• Low Collector-Emitter Saturation Voltage VCE(sat) 0.62 Vdc (TVp) @ IC 1.0 Adc

=

MD3762

=

I

• DC Current Gain Specified hFE = 20 (Min) @ IC = 1.0 Adc
• Fast Switching Times@ IC = 1.0 Adc
ton = 40 ns (Max)
toft = 110 ns (Max)

MILUM
DIM MIN MAX
A
B.51 9.40

~ ~.a~7i.75aI8'i5Iff
g
:1'

MAXIMUM RATINGS

+

I

H'Y. \,-

Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitt.-Base Voltage

Collector Current - Continuous

Symbol

Value

VCEO
VeB
VEB
IC

40
40
5.0
1.5
OnaDio

Total Power Dissipation@TA- 25°C
Mo3762
Mo3762F
M03762
Derate above 26°C
Mo3762
MD3762F
M03762
Total Power Dissipation@Tc"" 25°C
Mo3762
Mo3762F
M03762

Unit
Vdc
Vdc
Vdc
Adc

AUDio
EqualP_
mW

Po
600
350

400

650
400
600
3.7
2.28
3.42

2.1
1.25
1.0

3.0
2.5
4.0

3E11ITTER
4 OMITTED

12
7.15
5.71

:~m

J
K

CASE 664-07

M
•

0.~.~8 B~~

1.1,

OJ'
12.0
'SO SSC
2.54BSC

.t'.__,-r--,.----.
r
L

~

1'1'11:,-.I ~

~

~,=:Jt.
DIM

ST~~i=::

.....

17.2
14.3
22.8

-65 to +200

TJ.Tstg

~::! ~:~~

=

r.----rr=-.~-H-._ - 1

mW/oC

Mo3762
Mo3762F
M03762

~

1 COUlCTDA
t OMITTED

:

Watts

Po

Derate above 2SoC

Operating and Storage Junction
Temperature Range

1'I11~ ~eCTOA

mW/oC
3.42
2.0
2.28

N

~);;I

STYLE'

JCOLLECTOR
• COLLECTOR

°c

INCHES

MI.

MAX

MI.

MAX

6.10

7.36

B
C

2.92

0.240
.115
0.030
0.014

0.290
0.1 0

0
F
G
H
K

CASE 610A·03

MILLIMETERS

A

N
R

0.76
0.36

..

2.03
0.8

0.15
1.27 BSe

0.08

lBl

0.B9

2.54 BS
1.27

n

Thermal Resistance. Junction to

ea.

Symbol
R8JA(11

OnaDio

AUoi.
Equal Power

0.0

nlso

292

500

Unit

270
438
292
°C/W

R8JC

Mo3762
Mo3762F
'M03762

....,

'EilITTER

: ::JJ~:IIEmD

eoll

Coupling Factors
MD3762
MD3762F
M03762 (01-021
(01-03,01-041
(,) RtJA is measured with the device IOldarad into

85
75
57
55
8

40
0
0
0

typical printed circuit board.

223

, ...,

STYUI
1'111 1 COLLECTOR

83.3
58.3
140
70
175
43.8
Junction to Junction to
Amblent

"

1
•
•
II

COLLECTOR
COUECTOR
"H
EMITTER
11 IIOTCOMECTED
12 EMITTER

''''''

14 COLLECTOR

CASE 607-04

DIM
A
C
D
F
G
H
J
K
I.
L II.BO

•

US

S

7.12

R

1.38

0.035

0100 BS
0.050

uCIW

438

0.019

0.050BSC

THERMAL CHARACTERISTICS
Charicterilli.
Thermal Resistance. Junction to Ambient
MD3762
Mo3762F
M03762

0.080

0.300

MD3762,F, MQ3762 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip device., coupling of heat between die occur••
Assuming equal thermal resistance for each die, equation (1)
The junctiOn temp8ratur. can be calculated es follows:
slmpllfie.to
(I)ATJ1- RBI POI +RB21<82P02+RB31<83P03

(3) AT J1

= RB1

(POI + 1<82 P02 + 1<83 P03 + KB4 P04)

+ RB4 1<84 P04
For the conditions whore POI = P02 = P03 - P04, PDT = 4PO
equation (3) can be further simplified and by substituting into

Whore ATJl i. the change in junction temperature of die 1
RB 1 thru 4 is the thermal resistence of 

10
20
50
100
200
IC. COLLECTOR CURRENT (rnA)

+1. 6
G

~

~ 1.0
o

1--1-

VBf(sat)@ICIIB= 10

J...-I-

0.2

o

10

100

200

I

'Applies for ICIIB'; hFE/4

1000C to 1750C
250C to 1000~
-550C to 25 0C

8
w

~-O.8

1I
I I

I

f-

50

ffi

VBE(on) @VCE = 1.0 V

>

0,4

2.0
5.0
10
20
lB. BASE CURRENT (rnA)

'eVc for VCE(sat)

iii
u

l-

'"

~

1.0

~
.5+0.8

1.2

~ 0.6 I--

0.5

FIGURE 4 - TEMPERATURE COEFFICIENTS

TJ= 250C

I--

"'"

"

0
0.2

500 1000

1.4

>

:\1.0 A

~

8j 0.2
5.0

Ir

400 rnA

iii

I--

I---'

2.0

TJ = 250C

;; 0.6

FIGURE 3 - "ON" VOLTAGE

~O.8

100mA

Ic=20mA

8

20
1.0

\ II

IIII
IIII

ILl I

>
~ 0.8

~

.-

VC~(sati ~ ICli B-110 I

...~-1.

30

6

II

~

I I
20

-550Cto 250C

eVB for VSE

50 70 100
200 300
IC. COLLECTOR CURRENT (rnA)

500 700 1000

20

10

30

50 70 100
200 300
IC. COLLECTOR CURRENT (rnA)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA

2. 0

.1"-....

1.0

i... ~

6

ffi o.41--- TJ = 200 0C
~

~ o.

'"

~

de

---Bonding Wire limit
2
Second Breakdown Limit

...........

,....
t-...

.1
~(Note:

80.06 ~

Thermililimitations need to be

incorporated in SOA Curve'!

.:lo.o4
0.02
2.0

I

I

4.0
6.0
8.0 10
20
VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

225

1250C to 1000C

II

-2.4

40

100:
1000C to 175 0C

I
I

500 700 1000

MD3762,F, MQ3762 (continued)

FIGURE 6 - TURN-oN TIME

FIGURE 7 - RISE AND FALL TIME

200

100

....

!~

"-

"'

;:::

!

I

N. I'. r-.....

"'I'-...

0

";:::

I'

rt+l

50

I'..~ .....

30

IC/IS·'~

"'"

10
10

500 700 1.0k

. j 1
20

30

FIGURE 8 - STORAGE TIME

200

---

-

200

TJ=lS00C
100

-IIC/IS=l?

)IC/IS' 20
0

~

r- -":: ~~

"~

0

,',

['..

,""' "

~. I'

I'-

0

t's"'tr 1/8tf

30

50 70 100
200 300
IC. COLLECTOR CURRENT (mA)

10
10

500 700 1.0 k

20

""

f-

-

~

~

50 70 100
200 300
Ie. COLLECTOR CURRENT (mA)

-30 V

70

RlseTlme";Snl

"

Pul .. Width = 400 n.

Duty Cvcl. - 2%

~

150n

T

500 700 1.0 k

Tr 2SoC

c;;...

150n

-30lJ

r-

FIGURE 11 - CAPACITANCE

50

O.I1'F

1'-1""~

30

~o .

1"<

f'...

l

vec" ov
IS1- IS2

FIGURE 10 - SWITCHING TIME TEST CIRCUIT
+27.3 V

T1' 1500C

lells'

lells"0

'" 3

20

500 700 1.0 k

TJ = 25°C

-

i"

r...1'

50
0

IS1=I.S2

r-

70

~

0
0

50 70 100
200 300
COLLECTOR CURRENT (mA)

FIGURE 9 - FALL TIME

1- ro- TJ = 25°C
k~ i""=

I,'t

~J"o.,

VCC = 30 V

Id @IVSEI(OIf -0
I
20
30
50 70 100
200 300
IC. COLLECTOR CURRENT (mA)

400

If

~ I' r-.....

20

2.0 V,,",

I-T = 1500C

70

w

~lr@VCC=10V

.....

0

10
10

~

Ir@VCC'- 30 V

-

~~,

100

~

-t-- rTJ-2SOC

,~

TJ - 25°C

0

~ 50

'"

200

IClls =10

~

1N916 or

equiv.

'I'
10

Ie· 1.0 Amp
'S1· IS2 = 100 rnA

7.0
0.04 0.06 0.1

226

I"0.2

0.4 0.6 1.0
2.0
4.0 6.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

MD4957 (SILICON)
Dual PNP silicon annular transistor designed for high-frequency
amplifier, oscillator, and mixer applications.

CASE 654-07

Pin Connections. Bottom View

All leads electrically isolated from case

MAXIMUM RATINGS (each side)

Rating

Symbol

Collector-Emitter Voltage

Unit

Value

VCEO

30

Vdc

Collector-Base Voltage

VCB

30

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

IC

30

mAde

-65 to +200

°c

Collector Current
Operating and Storage Junction
Temperature Range

T J' Tstg

One Both
Side Sides
Total Power DisSipation @ TA '" 25°C
Derate above 25°C

PD

200
1.15

mW

400
2.3

mW/oC

TYPICAL NOISE FIGURE vs. FREQUENCY
6.0
5.0
65
~
w

4.0

G:
w

=>
'"
'"
'"
C5

3.0

:

2.0

z:

Vee = 10 Vdc

./

Ie = 2.0 mA

~

......

./'

V

V

./

1.0

o

0.1

0.2

0.3

0.4

f, FREQUENCY IGHz)

227

0.5

0.6

0.7

0.8 0.9 1.0

MD4957

(continued)

ELECTRICAL CHARACTERISTICS

(TA

=2S"C unless otherwISe noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAde, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
(IC = 100 !lAde, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 !lAde, IC = 0)

BV EBO

Collector Cutoff Current
(VCB = 20 Vde, IE = 0)

ICBO

30

-

-

30

-

-

3.0

-

-

-

-

0.1

1000

1500

-

-

0.4

0.8

20

-

200

-

4.0

8.0

-

2.6

-

-

18

-

13

Vde
Vde
Vde
/lAde

ON CHARACTERISTICS
DC Current Gain
(IC = 2.0 mAde, VCE = 10 Vde)

DYNAMIC CHARACTERISTICS
'Current-Gain- Bandwidth Product
(IC = 2.0 mAde, VCE = 10 Vde, f

iT

= 100 MHz)

Collector-Base Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)

Ceb

Small-Signal Current Gain
(IC = 2.0 mAde, VCE = 10 Vde, f

= 1.0 kHz).

hfe

Collector-Base Time Constant
(IE = 2.0 mAde, VCB = 10 Vde, f

= 63.6

Noise Figure
(IC = 2.0 mAde, VCE

= 450

(IC

= 2.0 mAde,

VCE

= 10 Vde,
= 10 Vde,

f

r
MHz)

b

'c e

pF

ps

NF
MHz) Figure 1

RS = 50 ohms, f = 1. 0 GHz)

MHz

5.0

dB

FUNCTIONAL TESTS
Corhmon-Emitter Amplifier Power Gain
(VCE = 10 Vde, IC = 2.0 mAde, f = 450 MHz)
(VCE = 10 Vde, IC = 2.0 mAde, RS = 50' ohms, f

Gpe

= 1. 0 GHz)

dB

-

FIGURE 1- NOISE FIGURE AND POWER GAIN TEST CIRCUIT

• Button type capacitors
•• Variable air piston type capacitors
1. L1 . silver plated brass bar, 1.0
in. Ig by 0.25 in od.
2. L2· silver plated brass bar, 1.5
in. Ig by 0.25 in od. Tap is
0.25 in. from collector
3. L3· 14 turn of AWG No. 16 wire
0.25 in. from and parallel to
L2.
4. The noise source is a hot·cold body
(All type 70 or equivalent) with a
test receiver (AI L type 136 or
equivalent).

228

MD4957

(continued)

COMMON 'EMITTER Y PARAMETER VARIATIONS
YPARAMETERS VS FREQUENCY
VeE = 10 Vdc
Ie = 2.0 rnA.

YPARAMETERS VS CURRENT
VeE = 10Vdc - - VeE = 15Vdc - - f

FIGURE 2 - INPUT ADMITTANCE
16

!i 14
~

2

.§

~

0

--- -- -

V

.-- ~

5i!

~ 6.0

....

,J 4.0
2. 0

o
!i 80

i

~

~

~

~ 6.0

.

g"

>

0

~

0

~

~~

01----

f...--....

c

~

i

~

f-" f-,

i

.§

2. 0

~

I

-b"

-,-- .-

0

0

V

b.,

0

~

....

1!i

V

V

/

17

~

b..

-

if.

0

4. 0

3. 0

.~

0

FIGURE 4 - OUTPUT ADMITTANCE

O!---

fiGURE 1- FORWARD TRANSFER ADMITTANCE

~

0

4. 0

i"""

~

u

~

o

gr:.-

~ f--

-

--

k:::::" F- lo-"

1
..... r-

~

-,
b"

o

ii,

0

i

4.0

!i 80

70

~

10

~
- 8. 0

FIGURE 3 - FORWARD TRANSFER ADMITTANCE

lE 60
~

12

.§

---- I--

!-.-'

14

i

V

b"

,. 8. 0

=450 MHz

FIGURE &-INPUT ADMITTANCE

6

FIGURE 8- OUTPUT ADMITTANCE

f0-

r- I - .- , -

3.0

rb••

0

J..---

0

goo
g••

0

0

FIGURE 5- REVERSE TRANSFER ADMITTANCE

!i

FIGURE 9- REVERSE TRANSFER ADMITTANCE

I. 6

4

2

2

1 1.4
~

~

1.
,. I. 0

5i!

~ o.6
~

4__

~

O.

~

o. 2

ffi

b"

./

ffi O. 8
-b"

~

I-

0

V

~

<0.01

8

-i,,~

6.0

to

u:
'"0
·2
W

2.0 """'H-+-++-tH+t-+-~H- Ie = 1.0 mA
Rs =0.7 k!l

r-

1.0

4.0

0.5

1.0

2.0
5.0
f. FREQUENCY (kHzl

10

50

1mA

o0.1

100

0.2'.

FIGUR" 6 - CURRENT·GAIN BANDWIDTH PRODUCT

..,:z:
:>

'"'"IE

30
III
VCP 20 Vd,
f = 100 MHz
TJ • 25 0 C

" ....

:z:

1:;200

~

2

~
2
~Ioo

'i5"
a:
a:

V

~

......
0.5

VCE' 10 Vdc
2 C
I

Tl rl

1.0
2.0
5.0
10
20
RS.SOURCE RESISTANCE (k OHMS)

II I
50

-

20

----r--.

I r-.. r--.
r-.. r--. 'i:o~
r--....
Cib -

0.5

1.0

100

I I III
TJ • 25 0C
f· 100 kHz I-

./
~.

.......

5.0

.......

80

a 60
.t::'

./

I

V

FIGURE 7 - CAPACITANCE

600

~400
t;

'f

/1'

1'."

2.0

20

",

~I\

I--H-+-++-tH+t-+-~H- ~: 10fffi +--H+ttttl
0.2

V V

100.A

\~

2

111111

I~

\

~.

OL-LL-LLL~~~.-L~UUll-~-L~~

0.1

V
1/

I

2.0 3.0
5.0 7.0 10
IC.COLLECTOR CURRENT (MA)

20

30

3.0
0.2

50

236

0.3

0.5 0.7 1.0
2.0 3.0
5.0 7.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

MD6001 ,F, MD6002,F, MD6003, F, M06001, M06002 (continued)

FIGURE 8 -

TURN ON TIME

FIGURE 9 -

Ii II

300

,,

~

I

I

~
~

70

t"

"'

30
20

10

,

,

50

5.0 7.0

,

~
d

,

'" ......., ,

10

20

""

30

II

2000

~ 100

i!

- -50

70

I.III'OT' TOTAL CONTROL CHARGE

1000

700
SOD

200

100

200

300

100

500

I'"
OA, ACTIVE REGION CHARGE

II II
5.0 7.0

20

10

II

"

200

FIGURE" -

I

30

10
5.0 7.0

,

II
10

20

30

so

70 100

Ie, COLLECTOR CURRENT

200

300

100

~

70

..:3

50

IC/IB -10

ICIlB -'0

,

-

20

10

500

-

.......

5.0 7.0

10

(mA)

20

30

50

70

100

200

300

Ie, COLLECTOR CURRENT ImA)
FIGURE 13 - STORAGE AND FALL
TIME TEST CIRCUIT

·30

-30 V

100

tr~2.0ns

Duty Cycle < 2.0%

0:U-

500

VCC =30V _
IB,=IB1 _
TJ=25 DC

"'

FIGURE 12 - DELAY AND RISE
TIME TEST CIRCUIT

P.W.> 200ns

300

I

30

.",

'1'I'll a = 2j

~

'";:::

-t--.,

101"

20 ~

200

FALL TIME

",

~

=~

~

t111, .....

100

I I

200

70
IClla='O_

70

,

300

la, = IB2
TJ 25 DC

li;!
100
;:::

50

500

I

,'s-'s-lIB',

~

30

Ie, COLLECTOR CURRENT ImAl

STORAGE TIME

300

50

i

300
~

500

~
5ij

VCC- 30V
J = 25DC

1/

Ie, COLLECTOR CURRENT (mA)

FIGURE 10 -

....,.

3000

----vce -30 v, VBEloff) =2.0 V--Vce=10V,VBEIDff)=OV Ic/la = 10
TJ = 25 DC

200

~

CHARGE DATA

5000

500

, 0k

TO OSCILLOSCOPE
RISE TIME

~

5.0 ns

.-_cfT
-:1>100ns~

tr"'2.0ns
Duty Cycle" 2.0%.
For NPN Test CirCUits, Reverse
Diode and all Voltage Polantles.

237

100
t------oSCOPE
4

Ok v - ,-+--f
o-V
'vv

lN9'S

-3.0 V

500

MD7000

(SILICON)

MULTIPLE SILICON ANNULAR

TRANSISTOR
NPN SILICON
MULTIPLE TRANSISTOR

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation appli·
cations.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Typ) @ IC = 150 mAdc

•

DC Current Gain Specified 1.0 mAdc to 300 mAdc

•

High Current·Gain·Bandwidth Product fT = 250 MHz (Typ) @ IC = 20 mAdc

MAXIMUM RATINGS
Rating
Collector~Emitter

Voltage

Coliector·Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Symbol

Value

Unit

VCEO

30

Vdc

VCS

50

Vdc

VES

5.0

Vdc

IC

500

mAde

One Die

Total Power Dissipation
TA = 25°C

~~:~
,

K

"SEATING
PLANE

-JLo

Both Die

@

Po

Derate above 250C
Total Power Dissipation @

TC = 25°C
Derate above 25°C

Operating and Storage Junction,

Po

575

625

mV'/

3.29

3.57

mW/oC

1.8

2.5

Watts

10.3

14.3

mW/oC
°c

TJ. Tstg
-65 to +200

Temperature Range

STYLE I:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
4.0MITTEO

OIM
A

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to

Symbol

One Die

Both Di.

R8JA(1)

304

280

°CIW

97

70

°CIW

MILLIMETER
MIN MAX
9.40
8.51

Unit

Ambient

Thermal Resistance. Junction to Case

R8JC

84

44

(1) R6JA is measured with the device soldered into a typical printed circuit board.

K
M

N

Junction to Junction to
Ambient
Ca..
Coupling Factor

I

%

CASE 654'()7

5. EMITTER
6. BASE
7. COLLECTOR
B. OMITTEO
INCHES
MIN MAX
0.335 0.370
0.305 0.335
0.150 0.185
0.016 0.021
0.200 BSC
0.028 0.034
0.029 0.045
0.500
45' BSC
0.100 BSC

MD7000 (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:

where:

PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1)
simplifies to

13) "T Jl

Where ll.T Jl is the change in junction temperature of die 1

R81 and R82 is the thermal resistance of die 1 and die 2

= ROI

(POI + K02 P02)

For the conditions where POI = P02, POT = 2PO,
equation (3) can be further simplified and by substituting into
equation (2) results in

Po 1 and P02 is the pow... dissipated in die 1 and die 2
k82 is the thermal coupling between die 1 and die 2
An effective package thermal resistance can be defined as

14) RO(EFF) = RO 1 11 + K02) 12

follows:

Values for the coupling factors when either the case or the

ambient is used as a reference are given in the table on page 1.

ELECTRICAL CHARACTERISTICS

Min

Typ

Max

30

-

-

50

-

-

5.0

-

-

-

-

100

40

60

lic = 150 mAde, VCE = 10 Vdc)

70

80

lic = 300 mAde, V CE = 10 Vdc)

30

50

-

-

0.2

0.4

-

0.95

1,3

200

250

-

-

3.5

8.0

-

15

30

Characteristic

Symbol

Unit

OFF CHARACTERISTICS IT A = 25 0 C unless otherwise noted)
Collector-Emitter Breakdown Voltage (1)

Collector-Base Breakdown Voltage

Vde

BVEBO

liE = 10 /tAdc, IC = 0)

Collector Cutoff Current

Vde

BVCBO

lic = 10 /tAde, IE = 0)

Emitter-Base Breakdown Voltage

Vde

BVCEO

IiC = 10 mAde, IB = 0)

nAdc

ICBO

(VCB = 40 Vde, IE = 0)
ON CHARACTERISTICS
OC Current Gain (1)

Collector-Emitter Saturation Voltage

Vde

VCElsad

lic = 150mAde,IB = 15 mAde)

Base-Emitter Saturation Voltage

-

hFE

lic = 1.0 mAde, VCE = 10 Vdc)

Vde

VBE(sat)

lic = 150mAde,IB = 15 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product

Output Capacitance

pF

Cob

(Vce = 10 Vdc, IE = 0, 1= 100 kHz)

lnput Capacitance

MHz

IT

lic = 20 mAde, VCE = 20 Vdc, 1= 100 MHz)

pF

Cib

(VEB = 2.0 Vde, IC = 0, f = 100 kHz)

(1) Pulse Test: Pulse Width ';;;300 /tS, Outy Cycle';;; 2.0%

239

MD7001 (SILICON)
MD7001F
MQ7001
MULTIPLE SILICON ANNULAR

TRANSISTORS

PNP SILICON
MULTIPLE
TRANSISTORS

· .. designed for use as differential amplifiers, dual general·
purpose amplifiers, front end detectors, and temperature
compensation applications.
•

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAdc

•

DC Current Gain Specified 1.0 mAdc to 300 mAdc

•

High Current·Gain·Bandwidth Product fT = 320 MHz (Typ) @ IC = 20 mAdc

MD7001

I

MAXIMUM RATING
Symbol

Rating
Collector-Emitter Voltage

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

VCB

50

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

600

mAde

Collector Current - Continuous

One Die

Total Power Dissipation @ T A = 2SoC
MD7001
MD7001F
M07001
Dera.. above 25°C
M07001
M07001F
M07001

Po

Total Power Dissipation @TC:: 2SoC
MD7oo1
MD7oo1F
M07001
Derate above 2SoC
M07oo1
M07001F
M07oo1

Po

Operating and Storage Junction
Temperature Range

mW
350
400

650
400
600

3.42
2.0
2.28

3.7
2.28
3.42

2.1
1.25
1.0

3.8
2.5
4.0

600

mW/oC

Watts

DIM

mW/oC
12
7.15
5.71
TJ, Tstg

STYLE!.
Pl1tl aME
2EMlTTER
4 EMITTER

17.2
14.3
22.8

-65 to +200

seASE

1 COLLECTOR
IWLLECTOR

°c

A
B
C
D
f
G
H

6.10
.92
0.76
0,3

7.36
4.
2.03
O.

O.

0,

K

3.81

1.27 SC
0.89
2.54BSC

Symbol

Thermal Resistance. Junction to Ambient
MD7001
MD7001F
M07001

R6JA(11

Thermal Resistance. Junction to Case

R6JC

M07001
MD7001F
M07001

Coupling Factor

3 EMITTER
, OMITTEO

CASE 664-01

All Die

THERMAL CHARACTERISTICS
Characteristic

STYLE I
f'lH~ :'~ECTOR

One Die

All Die

Equal Power

292
500
438

270
438
292

83.3
140
175

58.3
70
43.8

Unit

M07001

°CIW

°CIW

, oIunctlon to

"unction to

Ambient

Case
%

M07001
MD7oo1F
M07001 (01·021
(01·03 or 01·041

1.27

CASE 61DA·D3

85
75
57
55

40
0
0
0

STYLE I
PIN ~ m~ECTO"
3EMITTEA
4 NOTCONNECTEO
& EMITTER
68",S£
1COLLEcrOll
a COLLECTOR
98115£
10 EMITTER
IIltOTCONNECTED

IZ EMllUR
13 lASE

(11 ReJA is measured with the device soldered into a tvpical printed circuit board.

"

COLlECTO~

CASE 601·04

240

DIM
A
C
D
f
B
H
J
K
L
N
R

S

1.82

8.

MD7001, MD7001F, MQ7001 (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE

In multiple chip devices. coupling of heat between die occurs.

where:

PDT is the total package power dissipation.

The junction temperature can be calculated as follows:

(1) l>TJl • RSI POI + RS2 KS2 P02 + RS3 KS3 P03

Assuming equal thermal resistance for each die, equation (11
simplifies to

+RS4 KS4 P04

(3) "TJl = ReI (POI + Ke2 P02 + KS3 P03 + KS4 P04)

Where ATJ1 is the change in junction temperature of die 1

RSI thru 4 is
Po 1 thru 4 is
KS2 thru 4 is
die 2 through

the thermal resistance of die 1 through 4
the power dissipated in die 1 through 4
the thermal coupling between die 1 and

= P02 = P03 = P04, POT = 4PO

equation (3) can be further simplified and by substituting into
equation (2) results in

4.

(4) Re(EFF) = Rel(l + Ke2 + Ke3 + KS4) /4

An effective package thermal resistance can be defined as
follows:
(2) Re(EFF)

For the conditions where POI

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the tab'e on page 1.

= "TJ1/POT

ELECTRICAL CHARACTERISTICS (TA

2S0C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage
(lC = 10 mAde, IB = 0)

(1)

BVCEO

Coliector·Ba.. Breakdown Voltage
(lC = 10"Ade,IE = 0)

BVCBO

Emitter·Ba.e Breakdown Voltage
(IE = 10 "Ade, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)

ICBO

30

-

-

50

-

-

5.0

-

-

-

-

100

40
70
30

50
90
60

-

-

0.25

0,4

-

0.B8

.1.3

200

320

-

-

5.8

8.0

-

16

30

Vde
Vde
Vde
nAde

ON CHARACTERISTICS (1)
DC Cu rrent Gain

hFE

(lC = 1.0 mAde, VCE = 10 Vde)
(lC = 150 mAde, VCE = 10 Vde)
(lC = 300 mAde, VCE = 10 Vde)
Collector· Emitter Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)

VCE (satl

Base·Emitter Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)

VBE(sat)

-

-

Vdc
Vde

DYNAMIC CHARACTERISTICS
Current·Gain·Bandwidth Produet(1)
(lC = 20 mAde, VCE = 20 Vde, f = 100 MHz)
Output Capeeitance
(VCB = 10 Vde, IE = 0, f

=100 kHz)

Input Capecitance
(VBE· 2.0 Vde, IC = 0, f

=100 kHz)

MHz

fT
Cob
C;b

(1) Pulse Test: Pulse Width ";300"s, Duty Cycle ";2.0%,

241

pF
pF

MD7002 (SILICON)
MD7002A
MD7002B

NPN SILICON ANNULAR MULTIPLE TRANSISTORS
NPN SILICON
MULTIPLE TRANSISTORS'

· .. designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
.
applications.

•

Excellent Matching Characteristics@ IC = 100/lAdchFE1/hFE2 = 0.75 (Min) - MD7oo2A
= 0.85 (Min) - MD7002B

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.35 Vdc (Max) @ IC = 10 mAdc
DC Current Gain Specified @ 100 /lAde and 10 mAde

•
•

I

High Current·Gain-Bandwidth Product fT = 260 MHz (Typ) @ IC = 5.0 mAdc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vdc

Coliector·Base Voltage

VCB

SO

Vdc

Emitter·Base Voltage

VEB

S.O

Vdc

IC

30

mAde

TJ,T,tg

-85 to +200

°c

Rating
Coliector Emitter Voltage
8

Collector-Current

Operating and Storage Junction

Temperature Range
One Die

Both Ole
Equal Pow..

=25°C

Po

575
3.29

625
3.57

mW
mW/oC

Total Power Dissipation@ T C =250 C
Derate above 2sOC

Po

1.B
10.3

2.5
14.3

Watts
mWJOC

Total Power Dissipation@ TA
Derate above 25°C

3. EMITTER
. 4.0MITTEO

THERMAL CHARACTERISTICS
C.a_lotio

Symbol

One Die

Both Die
EquelPower

Thermal Resistance. Junction to Ambient

RSJA(lI

304

280

°CIW

RSJC

97

70

°CIW

Thermal Resistance, Junction to Case

Unit

Junction to Junction to
Ambient
ea.
Coupling Factors

84

44

(1) R8JA is measured with the device soldered into a typical printed circuit board.

STYLE 1:
PIN 1. COLLECTOR
2. BASE

S. BASE

7. COLLECTOR
B. OMITTED

MILL!
A
B
C

o
%

5. EMITTER

G
H

J

K

8.51 9.40
7.75 B.51
3.81 4.70
.41 0.53
5.08 SSC
0.71 O.
0.74 1.14
2.

M

45 B

N

2.54SSC

CASE 654-07

242

MD7002, MD7002A, MD7002B (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices. coupling of heat between die occurs.
The junction temperature can be calculated as follows:

Assuming equal thermal resistance for each die, equation (1)
simplifies to:

(3) 
«
;; 0.2

~

0

..........

SURGE APPlIEO AT
RATED LOAD CONDITIONS
t--VRRM APPllEO AFTER SURGE

NY\

1--1.0 CYCLE

f---l

I
50

70

60

2.0

80
90
100
110
TA. AMBIENT TEMPERATURE (DC)

3.0

5.0 7.0 10
20
NUMBER OF CYCLES

30

50

70

100

SINGLE DIODE CHARACTERISTICS
FIGURE 3 - MAXIMUM FORWARD VOLTAGE
0:

~

50

t-

0

~

10

~

B

5.0

Q

'"
~

2. 0

~

1.0

./

-

....-

FIGURE 4 - JUNCTION CAPACITANCE

- -

100
70
50
~

.e

r-TJ -15QDC

"

/

..,Zw

0

=c~

0

~

25DC

:::>

TJ =25 DC

0-

I""-

7.0

~. 5.0

53 o. 5
z

~ o.2
~ o. 1
~

3.0
2.0

I

.~o.o 5

1.2
1.0
1.4
1.6
1.8
VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

0.8

0.6

1.0
0.1

2.0

FIGURE 5 - FORWARD RECOVERY TIME
20

r~

j

,.
;::

E or1.

j

L...

I

~,

Q

-- --

~

*

~

,., ,..,.

,

0.2
0.1

0.2

0.3

2.0 3.0
0.5 0.7 1.0
IF. FORWARD CURRENT (AMP)

ffi
fa

5.0

'"ffiw

3.0

>

~

0

100

t-tO

..........

i"'-

1.0
0.1

10

255

TJ = 25DC
0.1 

fo-i-'

0.3

I"10

;::

'r,

~ o. 7
'"
'"~ o.5

r-.....

j

vtr=2.0V
TJ = 25 DC

>

0.5
1.0
2.0
5.0
10
VR, REVERSE VOLTAGE (VOLTS)

FIGURE 6 - REVERSE RECOVERY TIME

2. 0
w

0.2

0.2

0.3

2.0 3.0
0.5 0.7 1.0
IR/IF. DRIVE CURRENT RATIO

5.0 7.0

10

MDA800, MDA801
MDA802, MDA804
MDA806
Designers Data Sheet
F",LL WAVE BRIDGE RECTIFIER ASSEMBLIES
SI NG LE-PHASE
FULL-WAVE BRIDGE

· . , utilizing inidvidual hermetically sealed metal case rectifiers interconnected and then encapsulated in plastic to provide a single rugged
package. Devices are available with voltages from 50 to 600 Volts
with these additional features,

8.0 AMPERE
50 thru 600 VOLTS

• Slip On Terminals
• High Surge Capability
• Output Current Ratings for Iloth Case and Ambient Conditions
Designers Data for "Worst Ca." Conditions
The Designers Data sheets permit the design of 'most circuits entirely from the
information presented. Limit curves - representing boundaries on device character·
istics - are given to facilitate "worst case.:' design.
.

I

MAXIMUM RATINGS (TC = 25°C
Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Vortage
DC Blocking Voltage
RMS Reverse Voltage

~~ ~~

MDA MDA MDA
800
eo1 802

VAAM
VAWM
VA

50

100

200

400

600

VA(AMS)

35

70

140

280

420

30

62
100

124
200

250
400

380
600

DC Output Voltage
Resistive Load

Vdc

Capacitive load

50

Average Rectified Forward Current
TA
TC

.-

•
•

= 55°C
= 1000C

Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions)

Operating and Storage Junction

IFSM

Unit

Volts

Volts
Volts

r-----

Amp

10

...

(Single phase bridge, resistive load,
60 Hz)

I

un Ie.. otherwise noted,)

3.5

.

8.0
200

Amp

I
l

R_I

TJ,T stg

~-65to+175~

°c

Temperature Range

Characteristic
Each Die
Effective Bridge
Thermal Resistance, Junction
to Case

Each Die
Effective Bridge

ELECTRICAL CHARACTERISTICS
Characteristic
Instantaneous Forward Voltage (1)

= 18.9 A)
(iF = 18.9 A, TJ = 175°C)

(TC

Symbol

Max

A8JA

40

°CIW

A8JA(EFF)

23

°C/W

A8JC

16

°CIW

A8JC(EFF)

5.6

°C/W

Symbol

Typ

Max

Volts

vF

IA

Unit

0.9

1.0

-

0.85

-

0.5

mA

=1c

A

B
C
D
f
G

H
J
K
L
Q

(1) Pulse Test: Pulse Width .. 3001'1, Duty Cycle .. 2.0%.

R

MECHANICAL CHARACTERISTICS

CASE: Transfer-molded plastic case witn epoxy fill.
POLARITY: Terminal-designation embossed on case
+DC Output
-DC Output
AC not marked
MOUNTING POSITION: Anv. highest heat transfer efficiency accomplished throuWt the
surface opposite the terminals.
WEIGHT: 40 grams (approx.)
TERMINALS: Readily solderable. corrosion resistant. suitable for slip-on terminals.

256

1.7
VB

o~i-I f
DIM

= 25°C unless otherwise noted.)

(iF

Reverse Current
(Rated VR applied to ac terminals,
+ and - terminals open)

Unit

Val

~i~VO
0 +~:/

lH

THERMAL CHARACTERISTICS
Thermal Aesistance, Junction
to Ambient

A-

J::=-J -

MILLIMETERS
INCMS
MAX
MIN
MAX
MIN
47.75 48.89 1.880 1.925
37.21
1.465
36.20
15.37 16.38
0.645
3.78
0.149
3.43
0.470
10.92 11.94
0.920
22.35 23.37
0.648
15.95 16.46
2 BSC
33.32 SSC
0.547
12.88 13.89
7.24
7.49
0.295
3.94
4.19
0.165
31.90 32.92
1.296

NOTES:
1. DIM "L" IS 6.35 (0.250) OEEP,
DIM "Q" IS THRU HOLE.
2. MOUNTING HOLES WITHIN 0.25 mm
(0.010) Dill OF TRUE POSITION AT
MAXIMUM MATERIAL CONDITIOft.
CASE 298·01

MDABOO, MDAB01, MDAB02, MDAB04, MDAB06 (continued)

FIGURE 1 - FORWARDVOLTAGE

200

FIGURE 2 - MAXIMUM SURGE CAPABILITY

. / I-"'"

TJ =25 DC

/

100

V

30 0

I-"'""

V

V-

0

~UR~E APJLlEJ @I I I I

.....

MAXIMUM

f'.

0
TYPICAL
0

TJ = 175DC

V

I

I

.......

0

I--

I /

0

1'1"-

Of-- f- I-60Hz

IL

0

RATEO LOAD CONDITIONS
VRRM APPLIED AFTER
SURGE

r-- t-...

0

II II

fr\rJ\
I

I-30

~1.0CYCLE
I

1 'I
2.0

1.0

0

I'--

I

111

3.0

5.0

7.0

10

20

50

30

70 100

NUMBER OF CYCLES

0

I

0

II

0

+1. 5

I

1. 0

I. 0

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

I

G

3; +0. 5

II

.5
>ffi
u

o. 7

~
8

o. 5
o. 3
O. 1
0.6

l
lLL

+1. 0

I

II

0
TYPICAL

-0. 5

RANG~

-I. 5

I

)--

-1. of-

0.8

1.0

14

1.2

1.6

1.8

0.1

1.0

V

V

I--

I

I
./

~-1. 0

0.5

1.0

10

5.0

10

10

50

100

100

'F, INSTANTANEOUS FORWARD CURRENT lAMP)

VF, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

FIGURE 4 - TYPICAL THERMAL RESPONSE
I. 0
O. 7

o. 5
~

V

ffi

o. 3
"'~
ffi -
I"- ........ f::::: ~
~ 2.5

I
I
I
I
I
I
I
~ =. (RESISTIVE & INDUCITVE LOADS)

1

2.0

i!

~ 1.5

'"~ 1.01--

TJ ~ 175°C
NOTE: Th.I(FM)/I(AV) ratio
referstoa single diode and
IF(AV) refers to the

80

60

100

:(FM) = .(RESISTIVE & INDUCTIVE LOAOS)

2 .....

(Ay~

........

1

0 .......

1/5.0 } CAPACITIVE
10
LOADS

'"SO.51--1I j"'dTrenj" I I
'" 0
!F
40

1

1

" r--:: ~~r'.l. ~

a:

~

FIGURE 6 - CASE TEMPERATURE DERATING
4

1.1.

........

.0 ......

~

I'J".,.

......

'"

.0

f"": ~1!Io.
1""'<'111

120

~

r--.

5.0 } CAPACITIVE
10
LOADS
20

..... c-....

.......
........

~

,..,L

~

]"-.. ["'-.. ~
~

o ~bTJ:7~oh~ I(FM)iI(AV) ralio
the load curjent.
0
40

180

I........ ~

..... ~

refers to a smglediode
and IF(A VI refers to

.0

'h

160

140

/

L ]

1'..

L

140
80
100
120
TC. CASE TEMPERATURE (OC)

60

TA. AMBI ENT TEMPERATUR E (OC)

160

180

TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)
FIGURE 7 - RECTIFICATION WAVEFORM EFFICIENCY
0
0

FIGURE 8 - CAPACITANCE
60 0

I T~ }2~OJ
IF(AV) = 1.0 A

r-- ::::.~

~~

0

....... 1'
0
0

JV\;-

JlJ1.J

0~1.:1 :l :I-~~

6.0
1.0

.......

1\

CURRENT INPUT WAVEFORM
I--

B.

t'-...

300

0

01-

TJ=250C

400

2.0

3.0

5.0

7.0

-

-

-

-

o

10

20

30

3

50

70 100

11111

0.5

1111111

1.0

2.0

f. FREQUENCY (kHz)

FIGURE 9 - REVERSE RECOVERY TIME

~

.3

~
....

~
10

.......

~

a:

3.

0

2.0

.;

r--.

1f'10A
IF

0~Lr°'25IR

r-...
.......

ffi

8~

LOA

~ ~ ....... 1'5.0 A'

1 1

I-lfr-l

>

t'-...

.......... r--..

0.3

o
a:

,,'

i

500

i!

I""

1 1 1

0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
IRtIF. RATIO OF REVERSE TO FORWARD CURRENT

/

,......

/

7.0

O.

10

258

.j--""'""

-

1-1-

.,,/' . - Vfr= 1.0 V

0.2

I-lrr
1.0
0.1

I

UF

w

7.0

~

~

0.7

;:: 0.5
>

5.0

200

TJ - 25°C

. ~~
~

]

TJ=250C

..........

50
100
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)

1.0

II

i:;
~

o

I....

1111111

FIGVRE 10 - FORWARD RECOVERY TIME

20

t'-...

ALL OEVICES
APPLICABLE FOR RATEO VOLTAGE

40

1~
1.0

~

.....

I--- r-2'r

2.0
3.0
5.0
IF. FORWARD CURRENT (AMP)

7.0

10

MDASOO, MDAS01, MDAS02, MDA804, MDAS06 (continued)

FIGURE 11 - POWER DISSIPATION FIGURE
8

-

./

r-/
(
(
(
(
(
IFM) =_(RESISTIVE &
r-IIAV)
INDUCTIVE LDA~S

0 - f-CAPACITIVE } ~~
fLDADS
20 ..... :--......

/

/

/

......... /

~

L

0;(. /.
.... ......... ......... . / ./.
:y Y Z

-

6

././ h
:0

2

V

D

'A'

TJ ~ 175°C
NOTE: The IIFM)/IIAV) ratio
refarsto a single diode
and IF(AVI referstD the

h ~
AlIIiIiP'
II""'"

0

I

0/

I

1°'1 CU'TI.

10
4.0
6.0
B.O
2.0
IFIAV). AVERAGE FDRWARD CURRENT IAMPI

I

I

12

14

NOTE 1 - THERMAL COUPLING ANO EFFECTIVE
THERMAL RESISTANCE
Where: POT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation 111

I n multiple chip devices where there is coupling of heat between

die, the junctlon temperature can be calculated as follows:
II) <>TJl = ROI P02 + R02i<62 P02 + R03K03P03
+ R04 K04 P04

simplifies to

(3) ATJl = ROllPOl + K02 P02 + K03 P03 + K84 P04)
For the condition where POI = P02 = P03 = P04, POT = 4POI
equation (3) caR be further simplified and by substituting into
equation (2) results in
(4) R8(EFF)' ROI II + K82 + Ke3 + K841/4

Where 8 T J1 is the change in junction temperature of diode 1
ROI thru 4 is the thermal resistance of diodes 1 through 4.

P01 thru 4 IS the power dlssipat~d in diodes 1 through 4
K82 thru 4 is the thermal coupling between diode 1 and
diodes 2 through 4.

For the MDA800 rectifier assembly, thermal coupling between

opposite diodes is 10% and between adjacent diodes is 15%when
the case temperature is used as a reference. Similarly for ambient
mounting thermal coupling between opposite diodes is 40% and
between adjacent diodes is 45%.

An effective package thermal resistance can be defined as
follows:

121 ROIEFF) = ~TJ1/POT

NOTE 2 - SPLIT LOAO OERATING INFORMATION

from Figure11,for an average current of lOA and an I(FM}/
IIAV) ~ 9.2 read POTIAV) = 21 watts or 5.25 watts/diode. Thus
POl = P03 = 5.25 watts.
Similarly, for aloed current IB of 5.0 A, diode #2 and diode #4
each see 2.5 A average resulting in en IIFM)/IIAV) = 14.
Thus, the package power dissipation for 5.0 A is 10 watts or
2.5 wattsl diode .. :P02 = P04 = 2.5 watts.
The maximum junction temperature occurs in diodes #1 and
#3. From equation (3) for diode #1 "TJl = 16 [5.25 + 0.1
12.5) +0.1515.26) +0.1512.5)]

Bridge rectifiers are used in two basic configurations as shown
in circuits A and B of Figure 12. The current derating data of

Figures 5 and 6 apply to the standard bri!lge circuit (A) where
IA = lB' For circuit B where IA;tdB, derating information can be
calculated as follows:
(5) TRJMAX) = T JIMAX) - "T Jl
Where TR(MAX) is the reference temperature (either case or
ambient)
AT J1 can be calculated using equation (3) in Note 1.

ATJl "" 1060 C
Thus TCIMAX) = 175·106 = 690 C
The total package dissipation in this example is:
PDT = 2 X 5.25 + 2 X 2.5 = 15.5 watts.

For example, to determine TCIMAX) for the MOABOO with
the following capacitive load conditions:

IA

= 10 A average with. peak of 46 A

IB

= 5.0 A average with a

peak of 35 A

First calculate the peak to average ratio for IA' IIFM)liIAV) =
46/5.0 • 9.2 INote thet the peak to average retio is on a per diode
besis and aech diode provides 5.0 A ..erage).
FIGURE 12 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS
load 1

JII·

Load

Load 2

CIRCUIT A

CIRCUIT 8

259

SILICON,
.
MINIATURE DIODE ASSEMBLIES

MDA920 series

CASE 108

CASE 109

MDA920

MDA920A

Miniature Integral Diode Assemblies (MIDA ) are low-current rectifier circuit
configurations designed with a high output-current/size ratio for applications
where space is at a premium. MIDA packages are available with flat ribbon
leads and with round leads. For round leads, add sUffix "A" to type number.
Example, MDA920A-1.
ELECTR ICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)

Characteristic

Symbol
V
F

Maximum Forward Voltage Drop per Cell
(IF = 500 mA ContinJlous)
Maximum Reverse Current (Figure 2)
25°C
(VR = Rated VRM)
100°C

Value

Unit
Vdc

1.2
ILAdc.

IR

60
600

MECHANICAL CHARACTERISTICS

CASE: Transfer molded plastic encapsulation.
FINISH: All external surfaces are corrosion,resistant,
terminals are readily solderable.

POLARITY: Embossed symbol on 4·lead devices.'
. Terminal designation by color dots on 3·lead devices:
AC input ,..... yellow
SINGLE PHASE FULL WAVE BRIDGE
+DC output - red
AC<>---~
-DC output - white

MOUNTING POSITION: Any.

WEIGHT (approx.kO.4 gram.
AC <>--'---46'

ABSOLUTE MAXIMUM RATINGS

MOTOROLA
TYPE NO.

DEVICE
MARKING
LETTER
SYMBOLS

CT" - 2S'C unless otherw,se noted)
.,

DC OUTPUT
VOLTAGE

PEAK REVERSE
VOLTAGE PER CELL

SINE WAVE
RMS INPUT
VOLTAGE

(DC or RECURRENT)

(LINE to LINE)

Res.
Load

VIM
Volts

V..
Volts

Volts

Vout'

DC OUTPUT
CURRENT
Cap.
Load @ 75'C AMBIENT
V...
lout
Volts
Amp

MDA920-1

BA

25

18

15

25

-2

BB

50

3S

30

50

-3

Be

100

70

62

100

-4

BD

200

140

124

200

-5

BE

300

210

185

300

-6

BF

400

280

250

400

-7

BG

600

420

380

600

260

LO

PEAK FUll WAVE
. PEAK FULL WAVE
ONE CYCLE
REPETITIVE
SU.RGE CURRENT
NON-REPETITIVE FORWARD CURRENT
(SINUSOIDAL 60 cps) (NONSINUSOIOAL 60 cps)
If:Mfsurq.1

IFMlr.pl

Amp

Amp

32.0
.!,

5.0

MINIATURE DIODE ASSEMBLIES

FIGURE 1 -

(continued)

FIGURE 2 -

TYPICAL FORWARD CHARACTERISTICS

I. u

TYPICAL REVERSE CHARACTERISTICS

1000

J
II
r-- -tJ
N "1/
I 1/
/I
II,
/ II
/ 1/
I

O. 9
O. 8

55°C_

25°C ...

O. 7

150°C ...

i!
~

O.6

is

~ o.5

~~

0.4

~

O.3
O. 2
O. I

o
o

./
0.2

0.4

0

O. I

~/

0.6

0.0 I

1.0

0.8

--

1.2

1.4

o

-

FIGURE 3 -

0.5

MAX ALLOWABLE SURGE CURRENT

4
0

"'

"'-

\

./

1.5

~
\

CYCLE

6

"

\\
\

4

~

2
T.

~

""'"'-

25°C

8

I

25°C

10

8

r:=ll l

"-

55'C

MAX ALLOWABLE DC OUTPUT CURRENT

0

I""I~

6

o

FIGURE 4 -

II I

6

8

I

V./V ..... NORMALIZED VOLTAGE

40

2~

/""
lOO'C

-

V,. FORWARD VOLTAGE DROP IVDLTS)

1
j

1--"'"

I~~

100

6

8 10

20

\
~

0.2

\

'r--.
40

o

o

60 80100

NUMBER Of CYCLES AT 60 H.

25

50

75

100

125

T•• AMBIENT" TEMPERATURE 1°C)

261

ISO

\
175

200

MDA922-1 (SILICON)
thru

MDA922-9
Designers Data Sheet
SINGLE-PHASE
FULL-WAVE BRIDGE

MINIATURE INTEGRAL DIODE ASSEMBLIES

1.8 AMPERES
25-1000VOLTS

passivated, diffused-silicon dice interconnected and transfer
molded into void less hybrid rectifier circuit assemblies.
•

Large Inrush Surge Capability - 100 A (For 1.0 Cycle)

•

Efficient Thermal Management Provides Maximum Power Handling
in Minimum Space
Designers Data for "Worst Case" Conditions
The Designers Data Sheet permits the design of most circuits entirely from

the information presented.

Limit curves - representing boundaries on device

characteristics - are given to facilitate "WOTst case" design.

MAXIMUM RATINGS
Rating (Per Legl

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage

VRRM
VRWM

DC Blocking Voltage

VR

DC Output Voltage
Resistive load
Capacitative Load

Vdc
Vdc

Sine Wave RMS Input Voltage

-1 -2 -3

-4

-5

-6

-7

-8

-9

Unit

25 50 100 200 300 400 600 800 1000 Volts

1530 62 124 185 250 380 500 620 Volts
25 50 100 200 300 400 600 800 1000 Volts

VRIRMS) 1835 70 140 210 280 420 560 700 Volts

Average Rectified Forward
Current
(smgle phase bridge
resistive load. 60 Hz,
see Figure 6, T A = 56 o C)

10

Non-Repetitive Peak Surge
Current, (see Figure 2)
rated load, T J = 175°C
no load, T J =25°C

IFSM

60 (for 1 cycle I
100 I for 1 cycle)

TJ, T stg

-55 to +175

Operating and Storage Junction
Temperature Range

1.8

Amp

Am~

°c

ELECTRICAL CHARACTERISTICS
Characteristic
MaXimum Instantaneous Forward Voltage Drop

(Per Leg) (IF

= 0.75 Amp, TJ = 25°C) Figure

Maximum Reverse Current (Rated de Voltage
across ac terminals, T = 25 0 CI

Symbol

Max

Unit

VF

1.1

Volts

IR

20

"A

Characteristic

+

""--SEATING PLANE

DIM
Symbol

Max

Unit

ReJA

40

°C/W

A
B

0
F
G

MECHANICAL CHARACTERISTICS
CASE: Transfer-molded plastic encapsulation.
POLARITY: Terminal-designation embossed.
on case +DC output
-DC output
-ACmput

~=p'

1

THERMAL CHARACTERISTICS)
Thermal Resistance, Junction to Ambient
(Full-Wave Bridge Operation,
Typical Printed Circuit Board Mounting)

[~J
t
-l'G

MOUNTING POSITION: Any
WEIGHT: 1.0 gram (approx)
TERMINALS: Readily solderable
connections, corrosion resistant.

262

K
L

MILLIMETERS
MIN MAX

INCHES
MIN
MAX

6.10
6.73
4.06
4.70
0.89
1.27
0.46
0.76
2.84 NOM
6.60
7.11
1.27
1.78

0.240 0.265
0.160 0.185
0.035 OO~Q
0.018 i 0.030
0.112 NOM
0.260 I 0.280
0.050 0.070

CASE 216

F

MDA922-1 thru MDA922-9 (continued)

FIGURE 1 - FORWARD VOLTAGE (PER LEG)

FIGURE 2 - MAXIMUM SURGE CAPABILITY

100

100

~

/'

50
TYP/
30

V

,/

::;
>--

/'

~
'"i3
'""'

/MAX
20

I /

'"
=>
'"

TJ,250C

I

10

'"~

~

~

"'"
~
~

'"=>
5l
z

50

I"'-

...........
l"-

N {\

30

20

I

.............

r---.....

t-----

I--

2.0

1.0

5.0

II II

10

"l"-

I

10 CYCLE

SURGE APPLIED AT RATED~
LOAD CONDITIONS (TJ' 175°C)
VRRM APPLIED AFTER SURGE

10

5.0

SURGE APPLIED AT N?:t.i:t
LOAD CONDITIONS (TJ' 25°C)
VRRM APPLIED AFTER SURGE

......

~

'">--

::;

'"
i3

.......

70

.........

.........

20

50

100

NUMBER OF CYCLES AT 60 Hz

3.0
2.0

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

1.0
+3.0

-z

~

0.5

~

0.3

'"

+20

0.2

TYPICAL RANGE

0.1

0.03
0.5

--

-1.0

0.05

1.0

1.5

2.0

2.5

3.0

3.5

-2. a
0.1

4.0

VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

0.5

0.2

1a

""...
I

i
2.0

5.0

10

20

IF, INSTANTANEOUS FORWARD CURRENT (AMP)

FIGURE 4 - TYPICAL THERMAL RESPONSE

0.002

V
.....

7

0.005
t, TIME OR PULSE WIDTH (SECONDS)

263

50

100

MDA922-1 thru MDA922-9 (continued)

FIGURE 6 - CURRENT DERATING

FIGURE 5 - POWER OISSIPATION
2.0

8.0

~
,..
«
~

z

6.0

<::

",..

:;

~
c;

"'~

li:
~

5

I':
=>

3.0

~

1.0

""

Ipk

0.4

o

0

,~

/

-..;;::~

I,vg

~

(PER LEG)

o

0

'10

RESISTIVE·INDUCTIVE
LOADS

i/" ~ ~

1/

lpk = 10 lavg

u

"~

1

l1A' 18

......... ~ ~

f--CAPACITIVE LOApS/
Ipk • 5.0 lavg

0.8

c
2.0

FULL WAVE BRIOGE OPERATION

.............. ~ ~

1.2

"'
13

4.0

«

:;
,..

~

5.0

~

........
t'--..
...... ........... ~

0: 1.6

c

;::

'"

7.0

10 , (I,vy), DC OUTPUT CURRENT (AMP)

20

60

40

80

100

120

140

TA, AMBIENT TEMPERATURE (DC)

"

160

180

200

FIGURE 7 - BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

Load 1

Load 2

CIRCUIT B

CIRCUIT A

APPLICATION NOTE
The Data of Figure 4 applies for typical wire terminal or printed
circu it board mounting conditions in still air. Under these or simi-

mal coupling between the individual semiconductor die in the
MDA922 assembly, the maximum ambient temperature is given

lar conditions. the thermal resistance between the diode junctions
and the leads at the edge of the case is a small fraction of the ther-

closely by

mal resistance from junction to ambient. Consequently. the lead

TA

temperature is very close to the iunction temperature. Therefore.
it is recommended that the lead temperature be measured when the
diodes are operating in prototype equipment, in order to d~termine
if operation is within the diode temperature ratings. The lead having
the highest thermal resistance to the ambient will yield readings
closest to the junction temperature. By measuring temperature as
outlined, variations of junction to ambient thermal resistance.
caused by the amount of surface area of the terminals or printed
circuit board and the qegree of air convection, as well as proximity
of other heat sources cease to be important design cOr:"lsiderations.
Bridge rectifiers are used in two basic circuit configurations as
shown by circuits A and B of Figure 7. The current derating data
of Figure 6 applies to the standard bridge circuit (Al, where IA

= T J(max)

-ROJA PT

where PT is the total average powEr dissipation in the assembly.
For the circuit of Figure B, use of the above formula will yield
suitable rating information. For example to determine T Almax)
for the conditions:
IA
IB

= 2.0A,
= ,.OA,

IpK
IpK

= 8.0 lavg
= 18 lavg

From Figure 5: For lA, read PTA"'" 4.2W
For I B, read PTB "" 2.2W

= lB·

PT

The derating data considers the thermal response of the junction
and is bas~d upon the criteria that the junction temperature must
not exceed rated T J(max) when peak reverse voltage is applied.
However, because of the slow thermal response and the close ther·

= (PTA + PTB) -4- 2 = 3.2W

(Division by 2 is necessary as data from Figure 5-is for full wave
bridge operation.) :. TA(':"ax)

264

= 1750

-

(40) (3.2)

= 47 o C.

MDA922-1 thru MDA922-9 (continued)

TYPICAL DYNAMIC CHARACTERISTICS (PER LEG)
FIGURE 9 - REVERSE RECOVERY TIME

FIGURE 8 - FORWARD RECOVERY TIME

2. 0
~

~

,.;::
w

1. 01==

ffi
>

O. 7f=

~
~

~

:r

20

TJ=250C

-2fj

I

]

L-

!

w

'"

;::

Vir

/

O. 5

ffi

>

V

i---"

0.3

-

0.2

O. 1

0.1

0.2

0.5

0.3

0.7

~

i""Vlr= 1.0 V

w

~
~

1.0

2.0

~
E

2.0V

3.0

"'"

5.0 7.0

"'"

3.0
2.0

1.0
0.1

10

t-teJ

r-...

5.0

w

lTV

~

10
7.0

I

[IF

a

r-....

0.2

0.3

0.5

0.7

d
I.J A~~

TJ = 25 0
0.1 < IF <

.......
2a

1.0

3.0

1.0

a ,.....!'-

O. 5f- 10.4

TJ = 25°C

a

f'.

1-n1'f~ ~

l>-.

TJ = 175°C

...

~

f':::::

I---

o. 21---

-

J\f'vJ1JL----

25°C

~

O. 1
1.0

2.0

3.0

20

5.0 7.0 10

30

l'

a

'I"

"

CURRENT INPUT WAVEFORM

.......

1' ...

"""'i!I~

0.3

11111

~

k:: I~EiURED DATA

10

FIGURE 11 - CAPACITANCE

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY

I--- I-- I--DATA NORMALIZED P'l",

5.0 7.0

IR/IF, DRIVE CURRENT RATIO

IF, FORWARD CURRENT (AMP)

o. 71--- I-- +--TO 1.0 kHz VALUE

I-....

50 70 100

""-i'...

a

I

7. a

~

5. a
0.2

200

I'...
0.5

1.0

2.0

5.0

10

20

50

100

200

VR, REVERSE VOLTAGE (VOLTS)

REPETITION FREQUENCY (kHz)

RECTIFIER EFFICIENCY NOTE
FIGURE 12 - SINGLE-PHASE FULL-WAVE
BRIDGE RECTIFIER CIRCUIT

,,2RL

8

alsine) = --·100% = -·100%= 81.2%
V2m
,,2

121

V2m
For a square wave
mput of amplitude V m,
the efficiency factor
The rectification efficiency factor
calculated using the formula:

(J

becomes:

shown in Figure 10 was

RL
alsquare) = - - . 100% = 100%
V2m

(3)

RL
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, resultIng in an increasing ac voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor G, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform efficiency only; it does not provide a measure of diode losses. Data
was obtained by measuring the ac component of Vo with a true
rms ac voltmeter and the dc component with a dc voltmeter. The
data was used in Equation 1 to obtain points for Figure 10.

V2oldc)
Pldcl
RL
V2o ( d c ) . 100%
a = p(rms) =v2olrmsl' 100% = V2o (ac) + V20ldcl
(1)

RL
For a sine wave input Vm sin (wt) to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:

265

SILICON
MOLDED ASSEMBLY RECTIFIER BRIDGES
Single-Phase Full-Wave Bridge

MDA942 SERIES (l.5 AMPS DC)
MDA972 SERIES (16.0 AMPS DC)
MDA1591 SERIES (4.0 AMPS DC)
Three-Phase Full-Wave Bridge
MDA 1505 SERIES (8.0 AMPS DC)

MDA942
CASE 110

MDA942A
CASE 111

CASE 116

Molded assembly rectifier bridges are individual hermetically sealed rectifiers interconnected and encapsu lated in molded assemblies for use as single-phase and
three-phase full-wave bridge configurations, with output
current from 1.5 to 16 amps, peak reverse voltage from
50 to 600 volts.

MDA1591

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic

Symbol

Maximum Forward Voltage Drop per Cell

= O. 75 Ade)
= 5.0 Ade)
(IF = 4.0 Ade)
(IF = 2.0 Ade)

Value

VF

(IF

MDA942 series

1.1

MDA972 series

1.0

MDA1505 series

1.0

MDA1591 series

1.0

(VR

= Rated VRM)

mAde

IR

MDA942 series

0.01

MDA972 series

1.0

MDA1505 series

1.0

MDA1591 series

1.0

266

Unit
Vde

(IF

Maximum Reverse Current per Cell

CASE 112

RECTIFIER BRIDGES

(continued)

s9}
r
I

I~

:

LA-L K

f

I

2

11

S

'N

fK

L G

.!.!

!

CASE 116·02

E C

'~l
L=

f

.J

K

l
G

~
[2A1

o

80

7

0

0

0

o

~

-1.030
0.245

0.585
l285
1.034
l255
1.100

MDA942

MILLIMETERS
MAX
MIN

INCHES
MAX
MIN
- 0.687
0.260
0.468
0.029 0.035
0.114NOM
0.147 0.153
0.125 NOM
0.500
0.750

MDA942A

CASE 111·01

MILLIMETERS
INCHES
MIN
MIN
MAX
MAX
A 176.28 177.80 6.940 7.000
8 150.88 152.40 5.940 6.000
C 28.96 34.29 1.140 1.350
E 10.67 12.70 0.420 0.500
F 14.61 15.88 0.575 0.625
G 116.84 121.92 4.600 4.800
H 32.26 34.29 1.270 1.350
3.66 NOM
0.144 NOM
J
K
7.11
8.13 0.280 0.320
L 66.04 68.58 2.600 2.700
N
25.40 26.67 1.000 1.050
Q
8.89
9.40 0.350 0.370
NOTES: R 11.68 12.70 0.460 0.500
1. TERMINALS HAVE MILLED SLOTS
1.17 mm (0.046) WIDE ANO 4.37 mm
(0.172) OEEP.
DIM

STYLE 1.
PIN 1. +
2. OPEN
3. AC
4. OPEN
5. 6. OPEN
7. AC
8. OPEN
COLOR CODED

L

..!Lsi-

14.35
7.24
0.86
6.48
27.94

A
- 17.45
6.60
8
11.89
C
0.89
D 0.74
2.90 NOM
F
3.89
G 3.73
3.18 NOM
H
J 12.70
K 19.05

"ftt
>~Q "
t=
l!j r- =!1
r;=g
F! · ·
~ .!

0.76
6.22

CASE 110·01

DIM

11

'-;;1

A

EEl!

K

NOTE:
1. POLARITY INK MARKEO ON CASE.

D

THREE..pHASE
FULL-WAVE BRIDGE

D
G

s

I

SINGLE-PHASE
FULL-WAVE BRIDGE

A
B

I

f'T~~
L
1
A

G

INCHES
MIN
MAX

MILLIMETERS
DIM MIN MAX

DIM
A
B

C
G
K

L

MILLIMETERS
MIN MAX
- 32.13
7.75
8.00
20.32 21.72
17.32 17.58
31.27 32.89
34.24 35.31

INCHES
MIN
MAX

-

0.305
0.800
0.682
1.231
1.348

1.265
0.315
0.855
0.692
1.295
1.390

CASE 112·03

04

0

5

'i'l

I .AJ
f<':'~ ' . )
~.w~,lt.
;:
0

/~

' "\::,;;/

I

D

I

L
i---J-

CASE 114--01

267

MILLIMETERS
INCHES
MIN
MAX
MIN
MAX
2.270
57.66
43.18
44.45
1.700
1.750
0.870
C
21.08
22.10
0.830
3.56
0.140
D
F
13.84
14.48
1.1
G
28.588SC
H
22.10
J
43.948SC
1.730 sse
K
5. 8
6.22
6.48
0.245
0.255
L
Q
O.lou
3.81
0.130
3.30
44.20
1.740
R
NOTES:
1. DIM "L" IS 3.18 mm (0.125) DEEP;
DIM "(1" IS THRU HO LE

OIM
A
8

O.54~
4

RECTIFIER BRIDGES

(continued)

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)
DC DUTPUT
VOLTAGE
Rls. . Cap•.
Load
Load
Volts
Volts

~55°C

PEAK FULL WAVE
ONE CYCLE
SURCE CURRENT

'MPS

AlDp.

PEAK FULL WAVE
RECURRENT
FORWARO CURRENT

PEAK REVERSE
VQlTACE
(DC or RECURREND
Volts

SINE WAVE
RMS INPUT
VOlTACE
CliNE 10 LINE!
Volts

-2
-3
-4
-5
-6·

50
100
200
300
400
600

35
70
140
210
280
420

30
62
124
185
250
380

50
100
200
300
400
600

1. 50
1. 50
1. 50
1. 50
1. 50
1. 50

25
25
25
25
25
25

6.0
6.0
6.0
6.0
6.0
6.0

2

MDA972-l
-2
-3
-4
-5

50
100
200
300
400

35
70
140
210
··280

30
62
124
185
250

50
100
200
300
4QO

16.0
16.0
16.0
16.0
16.0

250
250
250
250
250

60
60
60
60
60

3

MDA1591 -1
-2
-3
-4
,.
-5
-6

50
100
200
300
400
600

35
70
140
210
280
420

30
62
124
185
250
380

50
100
200
300
400
600

4.00
4.00
4.00
4.00
4.00
4.00

100
100
100
100
100
100

25
25
25
25
25
25

4

MDA1505 -1
-2
-3
-4
-5
-6

50.
100
200,
300
400
600

35
70
140
210
280
420

47
95
190
285
380
570

50
100
200
300
400
600

8.00
8.00
8.00
8.00
8.00
8.00

200
200
200
200
200
200

45
45
45
45
45
45

'riPE NO.

,

MDA~42-1

ru cm.

DC OUTPUT
CURRENT
BIENT

(80

Hz,

(80 Hz'

AlWps

,

Maximum Operating and Storage Temperature: -65°C to ...150°C (AlI1'ypes)

·,.

'"
~""

/
II

0

50

w

1/ I

0

70

'"
'"
a

I

20

30

50

70

100

NUMBER OF CYCLES

0

I
I

0

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

1/

0

0

L

VI

-0.5

0

/

'-'

3.s -1.Or-

TYPICAL
RANGE,

~

1.0

r;

O. 7

~

O. 5

8

:>

~

tr

/1'

l1

1-1-

V

-2.0

...... 1-

O. 3
O.2

o

r---

.~

-1. 5

I--'

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

-2. 5
0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

iF, INSTANTANEOUS FORWARD CURRENT lAMP)

VF, INSTANTANEOUS FORWARD VOLTAGE IVOLTS)

·FIGURE 4 - TYPICAL THERMAL RESPONSE

§N

1.0

~

,0. 7

g;
~

O. 5

~

o.2

...... V

to

i:i

'"

Z8JClt) = rlt) • R8JC

f-"'"

O. 3

vI-

O. 1

~ 0.07

ffi

0.0 5

,

!I:

~ 0.0 3

-I--"

z

i* 0.02

:=~ 0.0 I
?

2.0

~
5.0

10

20

50

100

200

500
t,TIME

272

1.0k
(m~

2.0k

5.0k

10k

20 k

50k

lOOk

200k

MDA970-' thru MDA970-3 (continued)

MAXIMUM CURRENT RATINGS, BRIDGE OPERATION

..

FIGURE 5 - CASE TEMPERATURE
DERATING
0

~ 9. o

~

8.

a:

o

. . . r--...:r---.:"
-"

~ 7.0

:il

6. 0

~

5. 0

~

4.0

w

to

ffi

3.0

~ 2.0

V, I I I
i.-- 5 }CAPACITIVE

r--...I"~k . . . . I---~~
...... r--...~~

......

......;:

r-....."t'~ ..... 150
~ ;<:20
a
i'--~
ffi

.

~

~ 2.

~ !IIi..

~

~

~ 1.0

:f"

0
20

en

40

80

100

-

a: 3.0
a:
5
~ 2.

LOADS

Noh: T1hel(PK)iI(AV) ratio
reters t~ a linlyle di~de.

~~ (RESISTIVE & INDUCTIVE LOADS)

S 3. 5t':::-.-

~~

TJ~150oC

-

.'"

~ =" (RESISTIVE & INDUCTIVE LOADS)

........ 1:'-.

FIGURE 6 - AMBIENT TEMPERATURE
DERATING
4.0

,

~
wi.5
to

..ffiSO.
>

I".

140

110

(4". x 4" Copper
PC Biard)

~

160

I

I

I

CAPACITIVE
LOADS

r<:~~

ROJA = 22oC/w

o

}

,,~~

I

TJ~

~

150°C

1.0

NOTE: Thel(PK)iI(AV) ratio
refers to a single diode.
5 - 1-

~~

I I I I I I

0
10

en

40

TC. CASE TEMPERATURE (OC)

80

"'"

120

100

,
160

140

TA. AMBIENT TEMPERATURE(OC)

TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)

-

FIGURE 7 - RECTIFICATION EFFICIENCY
100

""-:::-

10

r-

N:.

70

~......

~
~

15
U

TJ = 15°C

~

"

a:

rvv-'

30

ruu --2.0

3.0

5.0

\

'"ffi

~

1\

\
7.0

10

10

a

1

5.0

t

30

3. a
2.OI-

O~
0.1

0.1

500

I'.

........

300
~

1.0

2.0

3.0

VF~
- 1- Vfr-I I

-

5.0

I-- Tj=250C

7.0

10

,

w

~ O. 5r-

Tj = 25°C

200

/
/

tfr

/'

>-

ffi
>

100

§a:

70

~

~~

c;j 50

0.3

O. 2

V-

30

20
1 ____
O.

10

1.0

1.0

3.0

I

O. 7 -

'"'z

~

0.5 0.7

1.0

700

~

" "'" I'........... i'.r-... I"- l"""""

FIGURE 10 - FORWARD RECOVERY TIME

FIGURE 9 - JUNCTION CAPACITANCE
1000

w

0.3

.........

l......

L

trr

......

IRiIF. RATIO OF REVERSE TO FORWARD CURRENT

REPETITION FREQUENCY (kHz)

~

-I

IR

1. a
70 100

......
........

~~.-

f-

1\
50

Tj = 15°C

'I"-

IF = 5A

w

\

20
1.0

§

\

............

~
~ 7.0

Tj=1"750C

\

\

CURRENT INPUT
WAVEFORM.

>
;::

~

'";::

"'"'"",
""..........

Jw

~

"

I

50

w

FIGURE B - REVERSE RECOVERY TIME
30

5.0

7.0

10

10

30

50

70 100

1.0

--

--

.........-

V

1.0

/

--3.0

Vfr= I V

Vfr= 1 V

II

5.0

iF. FORWARD PULSE CURRENT (AMP)

VR. REVERSE VOLTAGE (VOLTS)

273

-

~r--

- -

. 7.0

10

MDA97o-1 thru MDA970-3 (continued)

°H
: fW) =:

FIGURE 11 -

.1

0:

~

CAPACITIVE

~u; 14 LOADS

1=

to

ffi~

I

" ,"

I

6& ~

~~

..A ~

~
.",~

a
o

1.0

",

2.0

/1./'::

]1

/ ...... ~V

~~

4.a
2. a

I

FIGURE 12 - BASIC CIRCUIT USES FOR
BRIDGE RECTIFIERS

;"./::;>5:V

-, "'''

e~ 6.0

~

I

{I~~
20

12

~~ 8. a
So

I

(RESISTIVE & INDUCTIVE LOADS))<

>z 10
<0

!'!.

POWER DISSIPATION

3.0

4.0

5.0

TJ~

15a·c

Load

CIRCUIT A

NOTE: The I(PK))I(AV) ratio refers to a single diode;
PDTIAV) referst. the package dissipation.
6.0

7.0

B.O

9.0

10

IFIAV).AVERAGE FORWARD CURRENT (AMP)

CIRCUIT B

NOTE 1: THERMAL COUPLING AND EFFECTIVE THERMAL

NOTE 2: SPLIT LOAD DERATING INFORMATION

RESISTANCE
In multiple chip devices where there is coupling of heat between
die, the junction temperature can be calculated as follows:

Bridge rectifiers are used in two basic configurations as sh,own
by circuits A and B of Figure 12. The current derating data of
Figures 5 and 6 apply to the standard bridge circuit (A) where
'A = 'B. For circuit B where IA :;6 IB' derating information can be
calculated as follows:

11) "TJl = Rei POI + R82 Ke2 P02 + Re3 Ke3P03
+ Re4 Ke4 P04

(6) TRIMAX) = T J(MAX) - "T Jl
Where TR(MAXI is the reference temperature (either
ambient)

Where 6 TJl is the change in junction temperature of diode 1
R81 thru 4 is the thermal resistance of diodes 1 through 4
POI thru 4 is the power dissipated in diodes 1 through 4
Ke2 thru 4 is the thermal coupling between diode 1 and
diodes 2 through 4.

case or

I!..T Jl can be calculated using equation (3) in Note 1.

For example. to determine T C(MAX) for the following load
conditions:

An effective package thermal resistance can be defined as
follows:
(2) R8IEFF) = "TJ1/POT
where: PDT is the total package power dissipation.
Assuming equal thermal resistance for each die, equation (1)
simplifies to

IA = 3.1 A average with a peak of 11.2 A
18 = 1.55 A average with a peak of 6.B A
First calculate the peak to average ratio for IA. I(PK)/I(AV) =
11.2/1.55 = 7.23 INote that the peak to average ratio is on a per
diode basis.)

(3) "TJl =R81 (P01,+Ke2P02+Ke3P03+K84P04)
For the conditions where POI = P02 = P03 = P04. PDT = 4 PO'
equation (3) can be further simplified and by substituting into
equation (2) results in

From Figure 11. for an average current of 3.1 A and an I(PK)/
IIAV) = 7.23 reed PTIAV) = 4.8 watts or 1.2 watts/diode :.
POI = P03 = 1.2 watts.
Similarly. for a load current IS of 1.55 A. diode #2 and diode
#4 each see 0.775 A average resulting in an I (PK)/I (A VI "" B.B.

(4) ReIEFF) = Rel(1 + Ke2 + K83 + Ke4)/4

Thus, the package power dissipation for 1.55 A is 2.3 watts or
0.575 watts/diode:. P02 = P04 = 0.575 watts.
The maximum junction temperature occurs in diode #1 and #3.
From equation (3) for diode #1 "T Jl = 9[1.2 +.65(.575) +.725
(1.2) + .725 1.575)J

For this rectifier assembly, thermal coupling between opposite
diodes is 65% and between adjacent diodes is 72.5% when the case
temperature is used as a reference. When the ambient temperature
is used as the reference, the coupling is a function of the mounting
conditions and is essentially the same for opposite and adjacent
diodes.

"TJl "" 260 C
Thus TCIMAX) = 150-26 = 1240 C

The effective bridge thermal resistance, junction to ambient,
is (from equation 4).

The total package dissipation in this example is:

(5) ROIEFF)JA = R8JAII +3KOIAV)JA)/4

PJ = 2 X 1.2 + 2 X 0.575'" 3.6 watts

Where: K8IAV)JA "" IKO(AV)JC ROJC + ReCAIiROJA
and K8(AV)JC is approximately 70%. ReCA is the case to
ambient thermal resistance.

(Note that although maximum R8JC is lOoC/watt. gOC/watt is
used in this example and on the derating data as it IS unlikely that
all four die in a given package would be at the maximum value.)

NOTE 3
Under typical wire terminal or printed circuit board mounting
conditions, the thermal resistance between the diode junctions
and the leads at the edge of the case is a small fraction of the thermal'resistance from junction to ambient. Consequently. the lead
temperature is very close to the junction temperature. Therefore,
it is recommended that the lead temperature be measured when the
diodes are operating In prototype eqUipment, in order to determine

if operation is within the diode temperature ratings. The lead having
the highest thermal resistance to the ambient will yield readings
closest to the junction temperature. By measuring temperature as
outlined, variations of junction to ambient thermal resistance,
caused by the amOunt of surface area of the terminals or printed
circuit board and the degree of air convection, as well as proximity
of other heat sources cease to be important design considerations.

MDA972 series
For Specifications, See MDA942 Data_

274

MDA980-1
MDA990-1

thru
thru

MDA980-6
MDA990-6

Designers Data Sheet

SINGLE-PHASE
FULL-WAVE BRIDGE

INTEGRAL DIODE ASSEMBLIES

12 and 30AMPERES
50 thru 600 VOLTS

passivated, diffused silicon dice interconnected and transfer
molded into voidless hybrid rectifier circuit assemblies. The MDA990
series incorporates an electrically insulated aluminum disc for im·
proved heat dissipation when mounted directly on a metal chasis
or heat sink .
•

Large surge capability - 300 A

•

Efficient Thermal Management Provides Maximum Power Handling
In Minimum Space

~~

Designers Dat8 for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

Symbol
l'1Iek Repe1lt,veReverse Voltage

Worlung Puk Reverse Voltage
DC81oeklngVoltage
RMS ReVllrseVoltaga

DC Output Voltage
ReSlS1lve Loed

. ..

.,

MAXIMUM RATI NGS (T C .. 25 0 C unless otherwise noted)
VRRM
VRWM
VR

50

100

200

V.R!AMS

36

70

140

Vd,

,.

210

<00

600

280

<20
Volt$

62

185

12'

250
400

ClIpileluwl.Q1td

380

(Smgle pha!lll bridge rHlstlve lolid,
60 Hz, TC - SSoe)

CASE 179.01

MDA980Serie.

C>
~
,

Am,

MOA990

Aluminum
Disc

0.8750Ia.

CASE 179·02
MOA 990 Series

12

MOA980

Non·Repetlt.ve PeliIk Surge Current
ISurveapphed at rated load 

ffi
z

,~.

5.0

;!:

~

3,0

!

2.0

v

-

0.3

~

0.2
0.6

0.8

1.0

1.2

1.4

1.B

1.8

2.0

2.2

-

TYPICAL
RANGE,

-1.0 " -

~

I-

V

).;1
1

f"

~

-2.0

2.B

2.4

-2. S
0.2

YF. INSTANTANEOUS FORWARD VOLTAGE IVOLTSI

0.5

1.0

5.0

2.0

10

20

50

100

200

, iF. INSTANTANEOUS FORWARD CURRENT IAMPI

FIGURE 4 - TYPICAL THERMAL RESPONSE

.

1.0

w

z
~

fa
'"..

'\

30

FIGURE 8 - JUNCTION CAPACITANCE

"',-

r-

100

30

50

10
1.0

70 100

2.0

3.0

5.0

FIGURE 9 - REVERSE RECOVERY TIME
30
20

].
!:i1 10

t'--.

f'.. I'..

;::

"-I'-I'

~
;::

~

~ 3.0
2.0

If~~~1

......

, IA,

.......

-~
=O~

_I In

I.

1.0

0.1

0.2

0.3

'" ...........
I'...

0.5 0.7

Ie

........... 'I'...

"
2.0

II-

1_

t.

3.0

0.2

_I

- t--

30

50

70 lOa

t
v,.

5.0 7.0

,0.1
10

---

1.0

l.iI" RATIO Of REVERSE TO FORWARD CURRENT

277

1/

/

..........

V

TJ~25'C

L
~

L
v.~IV

~

$

r--..

1.0

0.5

~

"-. "

L

20

I

~Vf~1

~ 0.3

>,

5.0

I

l-

0.7

].

TJ ~ 25'C

~ 7.0

~

10

FIGURE 10 - FORWARD RECOVERY TIME
1.0

i"""- t--..

7.0

V., REVERSE VOLTAGE (VOLTS)

REPETITION FREQUENCY (kHz)

~

~

2.0

k--::'"
3.0

-

r--~

vfr=2V

11
5.0

if, FORWARD PULSE CURRENT (AMPS)

7.0

10

MDA980-1 thru MDA980-6, MDA990-1 thru MDA990-6 (continued)
FIGURE 11 - POWER DISSIPATION
70
50

'"~

3D

IIPK) = "'IRESISTIVE &
IIAV)
INDUCTIVE LOADS

30

dA~!CITI~E

~;;;211

~S

ffi~ 10
>z
~ e7.0

:::::

1~"""

LOADS
IIPK) =
IIAV)

~

r-.

Ogj

~i53.0

~

0.7

1.0

'"'
~

S

2.0

3.0

I-

20

B

15

-...........

I-

5.0 7.0

10

3D

20

~ MDA99~

-~
--r-... ~

r-...

~

=> 10

TJ ~ 1750 C
NOTE: TheIIPK)/IIAV) ratio refers to a single diode; POT(AV)
refers to the package dissipation:_

p1.0
0.7
0.5

Ii::

~ i~
~ r--.;:

~

2.0

LNIT MriUNTEDION A 8 ~ 8 x 1181INCH
ALUMINUM PLATE IN VERTICAL
POSITION IN STILL AIR
rESISTIVE -INDUCTIVE LOAO

25

P'

---

~ ~5.0

j

FIGURE 12 - CURRENT VERSUS AMBIENT TEMPERATURE

0

u

°ES.O

50

""

..... ~

5.0

25

45

IFIAV). AVERAGE FORWARD CURRENT lAMP)

65

105

85

125

~~

145

165

185

TA. AMBIENT TEMPERATURE IOC)

NOTE 1 - THERMAL COUPLING AND EFFECTIVE
THERMAL RESISTANCE

Where: PDT is the total package power dissipation.

In multiple chip devices where there is coupling of heat between

die, the junction temperature can be calculated as follows:

Assuming equal thermal resistance for each die, equation (1)
simplifies to
(3) ~TJl = R811POl + K82 P02 + K83 P03 + Ke4 P04)

(1) 6TJl = R81 P02 + R82 K82 P02 + R83 K83P03
+ R84 K84 P04
\Ntiere ~T J1 is the change in junction temperature of diode 1

For the condition where POl = P02 = P03 = P04, PDT = 4POI
equation (3) can be further simplified and by substituting into
equation (2) results in

RS1 thru 4 is the thermal resistance of diodes 1 through 4.
Po 1 thru 4 is the power dissipated In diodes 1 through 4

(4) RO(EFF)

K82 thru 4 IS the thermal couplmg between diode 1 and
diodes 2 through 4.

=

R81 11 + K02 + Ke3 + Ke4114

For the MDA980 rectifier assembly, thermal coupling between
opposite diodes is 42% and between adjacent diodes is 50% when
the case temperature is used as a reference. Similarly for the
MDA990, thermal coupling between opposite diodes is 12% and

An effective package thermal resistance can be defmed as
follows:

(2) R8(EFF) = ~TJ1/POT

between adjacent diodes is 20%.

NOTE 2 - SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown

From Figure 11.for an average current of 20 A and an I(PK)I
I IA V) = 8.6 read POTIA V) = 40 watts or 10 watts/diode. Thus
POl = P03 = 10 watts.
Similarly, for a load current 16 of 10 A, diode #2 and diode 114
each see 6.0 A average resulting in an I IPK)/I IAV) '" 14.4
Thus, the package power dissipation for 10 A is 20.2 watts or
6.05 watts/diode_ .: P02 = P04 = 6.05 watts.

in circuits A and B of Figure 13. The currant derating data of
Figures 5 and 6 apply to the standard bridge circuit (A) where
IA:::; lB. For circuit B where IA*IB. derating information can be
calculated as follows:
(6) TRIMAX) = T JIMAX) - 6T Ji

The maximum junction temperature occurs in diodes #1 and

Where TR(MAX) is the reference temperature (either case or
ambient)

113. From equation (3) for diode #1 ~TJl = 5.6 [10 + 0.12
15.05) + 0.2 (10) + 0.216.0611.

6T Jl can be calculated using equation (3) in Note 1.

"TJ1 '" 760 C
Thus T CIMAX)

For example. to determine TCIMAX) for the MOA990 with
the following capacitive load conditions:

= 175-76 = 99 0 C

The total package dissipation in this example is:

IA = 20 A average with a peak of 86 A
16 = lOA average with a peak of 72 A

PJ

=2 x

10+ 2 x 5.06 '" 30.1 watts

INote that although maximum ReJC is 6 0 C/W. 5.60 C/watt is
used in this example and on the derating data as it is unlikely that
all four die in a given package would be at the maximum value).

First calculate the peak to average ratio for IA. I(PK)ilIAV) =
86/10 = 8.6. INote that the peak to average ratio is on a per diode
basis and each diode provides lOA average).

FIGURE 13 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS

Jil

Load 2

Load

CIRCUIT B

CIRCUIT A

278

MDA1200, MDA1201
MDA1202, MDA1204
MDA1206
Designers Data Sheet
FULL WAVE BRIDGE RECTIFIER ASSEMBLIES
SINGLE·PHASE
FULL·WAVE BRIDGE

· .. utilizing inidvidual hermetically sealed metal case rectifiers inter·
connected and then encapsulated in plastic to provide a single rugged
package. Devices are available with voltages from 50 to 600 Volts
with these additional features.
•
•

12 AMPERE
50 thru 600 VOLTS

Slip On Terminals
• High Surge Capability
Output Current Ratings for Both Case and Ambient Conditions
Designers Data for

·~or.t C••••

Conditions

The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves -" representing boundaries on device character-

istics - are given to facilitate "worst case" design.

MAXIMUM RATINGS ITIC = 25°C un ess ath erwi18 noted.
Rating

Symbol

Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
AMS Reverse Voltage

DC Output Voltage

MDA
1200

MDA MDA
1204 lZ06

MDA MDA
1201 1202

50

100

200

400

600

VRIRMS}

35

70

140

280

420

30
50

62
100

124
200

250

380
600

Volts
Volts

Vdc

Resistive Load

Capacitive Load
Average Rectified Forward Current
(Single phase bridge, resistive load,
60 Hz)
TA = 55°C
TC - 1000C

Non-Repetitive Peak Surge Current
(Surge applied at rated load conditions)
Operating and Storage Junction
Temperature Range

10

IFSM
TJ.Tstg

Unit

Volts

VRRM
VRWM
VR

....
..

400

Amp

..
..

4.5
12
300

Amp

~-65to +175~

Q

"C

THERMAL CHARACTERISTICS
Symbol

Characteristic
Thermal Resistance, Junction
to Ambient

Unit

Max

Each Die
Effective Bridge

R8JA

28

°C/W

R8JAIEFF}

17.15

°C/W

Each Die
Effective Bridge

ROJC

10

ROJCIEFF}

3.75

°C/W
°C/W

Thermal Resistance, Junction I
to Case

ELECTRICAL CHARACTERISTICS ITC = 25°C unle" otherwise noted.}
Characteristic
Instananeaus Forward Voltage (Per Diode) (1)
(iF
(iF

= 18.9 A)
a

18.9A, TJ

Symbol

Typ

(I) Pula Te.. : Pula Widlh

'R

Unit
Volts

0.94

= 17s"C)

Reverse Current
(Rated VA applied to ac terminals.
+ and - terminals open)

Max

vF

-

1.05
0.9
0.5

< 300 "', Duty Cycl. < 2.0%.

MECHANICAL CHARACTERISTICS
CASE: Transfer-molded plastic ca.. with epoxy fill.
POlARITV: Termlnal.- ..

!iii! o. 1
i~ 0.01

<:i!

0.05

'l::' a:

0.02

~i 0.03

0.0 1·

.....
5.0

10

i'""""

Z6JC tl

....

=r I)

. R6JC

-

l/
20

50

100

200

500

1.ok

2.ok

t.TIME(m~

280

S.ok

10k

20k

SDk

lOOk

200k.

Sook

MDA1200, MDA1201, MDA1202, MDA1204, MDA1206 (continued}

MAXIMUM CURRENT RATINGS, BRIDGE OPERATION

FIGURE 5 - AMBIENT TEMPERATURE DERATING
~

~
ffi

5. O~
4. 5~

... 4.0 ......... c-..;:: t:-...

'"g;
'"'~
~
c

3. 5 .........
3.0

~ 1.5

~

:::>

~

r-

0.:
40

w S.0 -

oo

~

I F(A V) refllrs to the load current.

so

60

100

120

ffi 6. 0

t-..

140

r-...:t--.

-,mic
r-.....

TJ

/

5.0 } CAPACITIVE

t":t'. ~~~ LOADS)
r-.... )' ~
r---.. r--.J. r-...... ~ ~

......... ~ ~

-....;: ~

NOTE: The I(FM)Ii(AV) rotio
refers to a single diode and
IF(AV) refers to the load current.

>

r"

:~:~: - .(RESISTIVE & INDUCTIVE LOADS)

.........

r---..

~ 10

~

......

~:e~E~o ~~i~~~~I:~~Aa~~ ratio

4
2

'-'

«

~~

TJ" 175 0 C

to

S

~1 6 r--..

r-...: ~ ~
R 8S~

~ 2.0

« 1.0

~1 SI""---

~~
V 1...- 5.0 } CAPACITIVE
r-.... ...... ~ I::x1-/ v~~ LOADS

2. 5

~

FIGURE 8 - CASE TEMPERATURE DERATIIIIG
~ 2O~

I
/. . 1
~ - .(RESISTIVE & INDUCTIVE LOADS)-

« 4.0 -

S

~2.0

......

~

"""

o

160

40

ISO

60

SO
100
120
140
TC. CASE TEMPERATURE (DCI

TA.AMSIENT TEMPERATURE (DC)

160

ISO

TYPICAL DYNAMIC CHARACTERISTICS (EACH DIODE)
FIGURE 8 - CAPACITANCE

FIGURE 7 - RECTIFICATION WAVEFORM EFFICIENCY
60
40

'"
t;
c

CURRENT INPUT WAVEFORM

:1:

...
'-'

20 f--

~

~

f--


'"~
'"'"

LOA

.......... ~ ......... t-..
5.0 A'

..........:

II IIII

"-

111111

100
5.0
10
20
50
VR. REVERSE VOLTAGE (VOLTS)

200

Tr 250 C

"I'
~~

~

5.0

2.0

"-

ALL DEVICES
APPLICABLE FOR RATED VOLTAGE

O. 7"F

"' o.
'" 5 r

w

'">-

-

1.0

t

TJ-25D

;:: 7.0
~

-

500

FIGURE 10 - FORWARD RECOVERY TIME

.......

~ r--- ...........

-

r--. ....... 1"-

i

.......

0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
IR/IF. RATIO OF REVERSE TO FORWARD CURRENT

0.3

I- tf, --l

V

0.2

~

7.0

1l-0'1.0

10

281

....,..

/'

--

,....

r--

-r-

I-

V
...... Uf;-1.0V

I--- r2'r

2.0
3.0
5.0
IF. FORWARD CURRENT (AMP)

7.0

10

MDA1200, MDA1201, MDA1202, MDA1204, MDA1206

(continued)

FIGURE 11 - POWER DISSIPATION

40

I- :(FMI."
I(AVI

(RESISTIVE &
INDUCTIVE LDADSI

2
CAPACITIVE
8 r-LOAOS

-x...

5.0 .....

~

I? ........

4

2~,

0

/ h

6

/
J

7. ~

/

7> 'Y
~

~ f7

2

/~ ~

0
0/

~

2.0

/

./

V ' / /'
r,!... / /. /'

-,

TJ"'" 115DC

DTE: Til! I(FMlnl(AVI rat~ refeB

~:':~I~~=~VJ.tion

~

and IF(AVI refeB to til! load current.

4.0

6.0

8.0

10

14

12

16

18

20

IHAVI. AVERAGE FORWARD CURRENT (AMPI
NOTE 1 - THERMAL COUPLING AND EFFECTIVE
THERMAL RESISTANCE

Where: PDT is the total package power dissipation.

I n multiple chip devices where there is coupling of heat between
die, the junction temperature can be calculated 8S follows:

Assuming equal thermal resistance for each die, equation (1)
simplifies to
(31 AT J1 = R81(P01 + K82 P02 + K83 P03 + K84 P041
For the condition where POI = P02 = P03 = P04. PDT = 4POI
equation (3) can be further simplified and by substituting into
equation (2) results in

(11 liT J1 = R81 P02 + R82K82P02 + R83 K83P03
+ R84 K84 P04
Where .6T J 1 is the change in junction temperature of diode 1
R81 thru 4 is the thermal resistance of diodes 1 through 4.
Po 1 thru 4 IS the power dlsslpat~d In diodes 1 through 4
K62 thru 4 IS the thermal coupling between diode 1 and
diodes 2 through 4.

(4) Re(EFFI= R81 (1+K82+K83+Ke4114
For the MOA 1200 rectifier assembly. thermal coupling between
opposite diodes is 10% and between adjacent diodes is 20% when
the case temperature is used as a reference. Similarly for ambient
mounting, thermal coupling between opposite diodes is 45'% and
between adjacent diodes is 50%.

An effective package thermal resistance can be defined as
follows'

NOTE 2 - SPLIT LOAD DERATING INFORMATION
Bridge rectifiers are used in two basic configurations as shown
in circuits A and B of Figure 12. The current derating data of
Figures 5 and 6 apply to the standard bridge circuit (AI where
IA = IS' For circuit B where IA~IB' derating information can be
calculated as follows:

From Figure 11. for an average current of lOA and an I(FMI/
I(AVI = 9.2 read POT(AVI = 21 watts or 5.25 watts/diode. Thus
POI = P03 = 5.25 watts.
Similarly. for aloed current IS of 5.0 A. diode #2 and diode #4
each see 2.5 A average resulting in an I(FMI/I(AVI = 14.
Thus, the package power dissipation for 5.0 A is 10 watts or
2.5 watts/diode .. : P02 = P04 = 2.5 watts.
The maximum junction temperature occurs in diodes #1 and
#3. From equation (31 for diode #1 .:3.TJl = 10 [5.25 + 0.1
(2.51 + 0.2 (5.251 + 0.2 (2.511.

(51 TR(MAXI = TJ(MAXI - ATJl
Where TR(MAX) ·is the reference temperature (either case or
ambient)
D.T J1 can be calculated uSing equatIon (3) in Note 1.

.:3.TJl '" 700 C
Thus TC(MAXI = 175 - 65= 106"C
The total package dissipation in this example is:
PDT = 2 x 5.25 + 2 x 2.5 = 15.5 watts

For example. to determine TC(MAXI for the MOA1200 with
the following capacitive load conditions:
IA = 10 A average with a peak of 46 A
IS = 5.0 A average with a peak of 35 A
First calculate the peak to average ratio for IA' I(FMI/I(AVI =
46/5.0 = 9.2. (Note that the peak to average ratio is on a per diode
basis and each diode provides 5.0 A averagel.

FIGURE 12 - BASIC CIRCUIT USES FOR BRIDGE
RECTIFIERS

]1·

JI1

Load

CIRCUIT B

CIRCUIT A

282

HIGH VOLTAGE SILICON RECTIFIER MOLDED ASSEMBLIES

MDA1330H
MDA1331H
MDA1332H
MDA1333H
Compensated series-connected rectifier cells for high-voltage,single-phase,
half-wave circuit applications. Each cell in the series string is shunted by a
high-voltage capacitor and resistor for equal voltage distribution.
NOTES:
1. MDA 1330H and MDA 1331 H, add suffix "C" for common cathode,
"U" for common anode, "D" for voltage doubler.
2. MDA 1332H and MDA 1333H, reverse polarity available by adding
suffix "R".

MAXIMUM RATINGS
Rating

Symbol

Peak Repetitive Reverse Voltage
CD
(Rated Current, Over Operating Temperature Range)
RMS Reverse Voltage
(Rated Current Over the Complete Operating
Temperature Range)
DC Blocking Voltage
(Over Operating Temperature Range)

MDA1330H MDA1331H MDA1332H MDA1333H

Units

VRRM

5,000

10,000

5,000

10,000

Volts

VR(RMS)

3,500

7,000

3,500

7,000

Volts

VR

3,000

6,000

3,000

6,000

Volts

10

1.0

1.0

2.5

2,5

Amps

0,3

0.3

0.5

0.5

25

25

250

250

®

Average Half Wave Rectified Forward Current
(Resistive Load, 180" Conduction Angle,
60cps, Free Convection Cooling)
TA = 40"C
T A = 100"C
Peak 1 Cycle Surge Current
(TA = 40"C, Superimposed on Rated
Current at Rated Voltage)
Operating Frequency Range

I FSM

Operating and Storage Temperature Range

Amps

DC to 400

cps

-55 to +110

"C

CD

VRM(rep) ratings of 5,000 or 10,000 volts peak are both the maximum repetitive
and non-repetitive ratings. Where voltage transient suppression is employed,
these assemblies can be reliably operated at the maximum ratings.

®

The DC Blocking Voltage rating (VR)' is established by the continuous power
dissipation ratings of the shunting reslstors and is not a function of the series

rectifiers.

ELECTRICAL CHARACTERISTICS
Rating

Symbol

MDA1330H MOA1331H MDA1332H MDA1333H

Units

Maximum Full-Cycle Average Forward Voltage Drop
(Half-Wave, Resistive Load, Rated Current and
Voltage, T A=40"C)

VF(AV)

5.0

10.0

5.0

10.0

Volts

Maximum Full-Cycle Average Reverse Current
(Half-Wave, Resistive Load, Rated Current and
Voltage, T A=40" C)

IR(AV)

0.2

0.2

3.0

3.0

rnA

Note: Ambient temperatures are measured at the cold air source point i. e. immediately below the rectifier legs under convection cooling and on the cool air
side with forced air cooling.

283

HIGH VOLTAGE SILICON RECTIFrERS(c6i1:tinUed)'

,

"

~'

ELECTRICAL DESIGN NOTES

1. .. For slngle-'phase',full-wave circuits using "Series 1300" stacks, multiply
the current ratings given for the half-wave by two.
2. For three-phase,full-wave and half-wave circuits, multiply given current
ratiQgs for single-phase,half-wave by two and one half.
3. For capacitive loads, sufficient surge and capacitor . inrush current protection must be employed. Recurrent peak currents up to six times the singlephase average output-curreI).t ratings can be safely sustained when the average
value of these peaks are held at or below the rated average output. Nonrepetitive peak currents must be held to the maximum surge ratings.

TYPICAL FORWARD CHARACTERISTICS
(TJ = 25°C)
4.0

,

8.0

I

7.0

i

i1!
~

3.0

i

I .
~

I
.L

~

MOA1330H

2.0

I

I

1.0

o

MOA1331H

/
o

5.0

I
5?

4.0

i

3.0

.~

12

o
14

16

MOA1333H

2.0

I

LO

/
10

MOA1332H

~
·z

II

/

:::

~

I

6.0

18

v, INSTANTANEOUS FOIIWARO VOLTAGE (VOLTS)

o

I

II

I
10

12

14

16

v, INSTANTANEOUS FORWARD VOLTAGE (VOlTS)

284

18

HIGH VOLTAGE SILICON RECTIFIERS

(continued)

MAXIMUM SURGE CURRENT
RATED CONDITIONS
MOA1330H and MOA1331H

MOA1332H and MOAl333H

300

30

,..i1!

\.

;
I

\.
TA. = 40°C

I\.

'\.

"

\

\

200

~
e

I

Ol

"

......... ......

T. - 4O'C

\..

!@

i"'I

\,

'"

100

j

r--..
........... ......

I"

...... ....

o

o
4

I

6810
20
CYCLES AT60 CPS

40

; 8 10
20
CYCLES AT 80 CPS

I

6080100

40

60 80100

MAXIMUM AVERAGE HALF·WAVE RECTIFIED CURRENT
(RESISTIVE OR INDUCTIVE LOAD. 180· CONDUCTION ANGLE, 60 CPS)
MOA1330H and MOA1331H
1.0

FREE
CONVENTION \looLfr\
COOLING

MDA1332H and MOAl333H

\!OOOJM

\ \ \
\ \
\ \
\
\

IrL~

\.

500LfM

\.

\

f-

FREE
CONVENTION
COOLING

"

I

o

o

o
20

40

60

\.

\.

100

120

T. AMBIENT TEMPERATURE t'CI

\.

\

\

'\

'" "- \ \.'\
"

o

20

40

60

80

T. o AMBIENT TEMPERATURE I"CI

o

285

~
~

100

120

HIGH VOLTAGE SILICON RECTIFIERS
MECHANICAL DESIGN INFORMATION AND OUTLINE 01·
MENSIONS FOR THE BASIC MDA1330H AND MDA1331H
RECTIFIER LEGS.

1 r-

(continued)
MECHANICAL DESIGN INFORMATIOt4 AND OUTLINE 01·
MENSIONS FOR THE BASIC MDA1332H AND MDA13331t
RECTIFIER LEGS.

0.50 NOM

0 50MAX
,

--.L

MOUNTING BARS,
SEE NOTE 1
OFFSET MOUNTING
TABS, SEE NOTE 2

A

(4)

0.260 HOLES
0.275

3/4

=

POlARITY DOTS: RED +DC OUTPUT

Device

ADim

BDim

t

CDim

Device

DDim

BDim

ADim

MDA1330H 4. 25max 3.70±O.05 3. 25 max 3.00nom

MDA1332H

MDA1331H 7. 00 max 6. 39±0.05 6.00max 5. 25nom

MDA1333H 11-1/4 nom 6-l/2±1/16 2-3/8 nom

NOTES: These basic rectifier legs are suitable for chassis
mounting and connection into multiple leg circuits. Center
tapped versions of the MDAI330H and MDA\33IH are
also available for use in lower voltage, Center tapped and
Voltage Doubler applications. The center tapped versions
of the MDAI330H and MDA\331H are designated by a
different suffix letter' as follows: instead of "H" specify
"C" for common cathode, center tap
"U" for common anode, center tap
"D" for voltage doubler.
1<1> TOP VIEW

NOTE I. Insulated mountinll bars are supplied
with all Series I300 stacks and tbe smgle umt bar is
shown above. For multiple leg Circuits, mom,ting bars are
available in lengths suitable for 2 or 3 legs mounted side
by side. In addition, the mounting arrangement used is also
suitable for mounting legs top and bottom on the same bar
with stand·offs employed for support of the assembly.
NOTE 2. Offset mounting taps are used to provide more
compact multiple leg assemblies. When top & bottQm or
side by side mounting is employed. reverse polarity legs
are often required in some circuits. Legs of reverse polarity
to that shown above are designated by an "R" suffix, i.e.
MDAI332HR.

t
6·718 MAX

141 0.260HOLES
0275

_

5-5/8 nom 3-1/4

CDim

1/16 1-1/8 nom

1+-518 NOM
I

I

3¢ DR TOP VIEW

141 0.260 HOLES
0275

1'·718 NOM

I---

~L::::==::::::::!H::::::41T

6· 112 ± 1/16---/

8·1/8 MAX

~~+--------~~--~~
2 NOM

f + - - - - - - - 1 3 MAX--------<001

1<1> AND 3¢ SIDE VIEW

-.i..

AC

1-------13MAX------.j

286

MDA1505 series

For Specifications, See MDA942 Data.

MDA1591

For Specifications, See MDA942 Data.

MDA3551, MDA3661, MDA3552, MDA3662
VOLTAGE
TRIPLERS

HIGH VOLTAGE TRIPLER ASSEMBLIES

30,000 VOLTS
3 MILLIAMPERES

... designed for use in horizontal deflection circuits of black and
white and color television, and in high resolution CRT terminals tal
supply high voltage to the picture tube .
•

30,000 Volt Output

•

Excellent Regulation With Changing Load

IN

~

GNO
MAXIMUM RATINGS
Rating

Symbol

Value

Unit

I nput Voltage, Peak·to·Peak

Vlnl p_p )

10,000

Volts

Average Forward Output Current

IFIAV)

3.0'

mA

IF IA VHfocu,)

0.5

mA

60

,

3.0

Minutes

TA -

750 C,

V out - 25 kV

Average Forward Focus Current
TA -750 C, V out - 25 kV
",rclng \-apao, ,ty
30 kV, 1 arcl,

-

Short Circuit Overload

Output to chassis ground

MDA3551, MDA3552

IN~~~
GNO~~~~OUT
FOCUS
MDA3661, MDA3662

.

Operating Temperature, Ambient

75

TA

°c

Derate to zero output with Vout -- 30 kV.

CASE 281

ELECTRICAL CHARACTERISTICS
Characteristic
Output Voltage (11 IJ,S pulse width,

Symbol

Typ

Max

30,000
25,000

-

vF

-

150

Volts

IR

-

1.0

I'A

1,800

-

Volts

Vout

Unit
Volts

15.75 kHz repetition rate I
Vin::;: 10 kV. 'out = 0
Vin = 8.5 kV, lout = 1.5 mA

Forward Voltage, iF

2.0mA

Reverse Current, VR - 30,000 V

va tage

egu atlon
Vin = 8500 Volts,
lout = 1ool'A to 1.0 mA

Focus Terminal Voltage

lout = 1.5 mA, Vin

-

'" out

V(focus)

8,000

Volts

MDA3551, MDA3661

= 8.5 kV
CASE 280

MECHANICAL CHARACTER ISTICS
CASE: Housing and epoxy fill are self-extinguishing and arc-tracking resistant. Case
and epoxy fill are SEQ rated.

FINISH: All external surfaces are corrosion resistant. Terminals are readily solderable.
POLAR lTV: Polarity designation is indicated by position in the outline drawing marked
on C8J8.
MOUNTING POSITION:

Any. Terminals must be adequate distance from ground pOlential.
Case may be mounted on the chassis.

WEIGHT: (approximate) 9.7 oz. for Case 280; 11.7 oz. for Case 281.
MDA3552. MDA3662

ANODE CONNECTOR: Hobson Bros., Type P125-23

287

OUT

FOCUS

MDA3551, MDA35q2, MDA3661, MDA3662 (continued)
';,'.,

DIM
A
B

C.
STYLE 1:
TERM. 1.
2.
3.
4.

INPUT
GROUND
FOCUS
OUTPUT

D
F

G
H
J
K
L
N
Q
R
S
T

MILLIMETERS
MAX
MIN
107.29 108.56
41.02 41.53
53.72 54.23
3.68
3.94
9.40
9.65
31.12 ,31.37
3.94
3.68
3.81
5.08
304.80 381.00
21.31 21.56
31.50 32.00
4.70
4.95
6.10
6.60
85.60 85.85
69.85 70.10

" ,INCHES
MIN
MAX
4.224 4.274
1.615 1.635
2.115 2.135
0.145 0.155
0.370 0.380
1.225 1.235
0.145 0.155
0.150 0.200
12.000 15.000
1.075 1.085
1.240 1.260
0.185 0.195
0.240 0.260
3.370 3.380
2.750 2.760

"'Length and type of lead may be specified, consul~ factory,
I'

Caso 280
MDA3552. MDA3662

STYLE 1:
TERM. 1.
2.
3.
4.

.• Length and WR8 of lead may be specified. consult factory,

ease 281
MDA3551. MDA3661

288

INPUT
GROUND
FOCUS
OUTPUT

INCHES
MILLIMETERS
MIN
MAX
MIN
MAX
A
98.68 100.20 3.885 3.945
B
53.09 53.59 2.090 2.110
C
49.28 49.78 1.940 1.960
D
3.56
3.94 0.140 0.155
4.50' 5.00 0.177 0.197
E
F
9.62 0.2l10 '0.380
5.08
G 34.04 34.54 ' 1.G40 1.360
H
6.10
6.60 0.240 0.260
5.08 0.150 0.2011
J
3.81
K 304.80 381.00 12.000 15.000
L, 21.84 22.35 0.860 0,880
N
1.37
1.87 0.290 0.310
Q
4.70
4.95 0.185 0.195
R
4.83
5.33 0.190 0.210
68.71 69.22 2.705 2.725
S
T
43.94 44.45 1.730 1.750

DIM

MFE130 thru MFE132
MFES90
MFE591

For Specifications, See MPF 130 Data.

(SILICON)

N·CHANNEL
DUAL GATE

N·CHANNEL DUAL·GATE
SILlCON·NITRIDE PASSIVATED
DMOS FIELD·EFFECT TRANSISTORS

DOUBLE·DIFFUSED METAL
OXIDE FIELD·EFFECT
TRANSISTORS (DMOS)

Enhancement mode (Type C) dual gate double·diffused metal
oxide transistors designed for UHF amplifier and mixer applications.
Especially suited for UH F TV tuner applications.
This series features high·volume production capability using ion
implantation techniques. Characteristics of major importance are:
•

High UHF Power Gain @ 900 MHzG ps = 12.5 dB (Min) MFE591
= 10.5 dB (Min) MFE590

•

Low UHF Noise Figure @ 900 MHzNF = 6.0 dB (Max) MFE591
= 8.0 dB (Max) MFE590

•

Low Input Capacitance @ 1.0 MHz Ciss = 3.0 pF (Max) MFE591
= 3.5 pF (Max) MFE590

•

Low Output Capacitance@ 1.0 MHz Coss = 2.0 pF (Max) MFE591
= 2.5 pF (Max) MFE590

•

Diode Protected Gates

•

Ion Implanted

Gps @ 900 MHz -15.3 dB (Typ)
N F @ 900 MHz - 4.4 dB (Typ)

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VOS

25

Vdc

VOGI
VOG2

30
30

Vdc

Drain Current

10

30

mAde

Gate Current

IGI
IG2

10
10

mAde

Po

300
1.71

mW

A

mW/oC

·65 to +200

°c

C
0
E

D~ain·Source Voltage
Drain-Gate Voltage

Total Power Dissipation
Derate above 2SoC

@

T A = 2SoC

Operating and Storage Channel
Temperature Range

T channel.
T stg

SUBSTRATE

AND CASE

DIM

Thermal Resistance. Junction to Ambient

B

F

G
H
J

THERMAL CHARACTERISTICS
Characteristic

DRAIN
GATE 2
GATE 1
SOURCE.

K

Symbol

Max

Unit

ReJA

585

°C/W

L
M
N
P

MILLIMETERS
MIN MAX
5.31 5.84
4.52 4.95
4.32 5.33
0.41
0.53
0.76
0.41 0.48
2.54 8SC
0.91
1.17
0.71
1.22
12.70
6.35
45 0 BSC
1.27 BSC
1.27

INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0.170 0.210
0.016 0.021
0.030
0.016 0.019
0.1008SC
0.036 0.046
0.028 0048
0.500
0.250
4~BSC

0050 BSC
0.050

CASE 20-03

TO·72

289

MFE590, MFE591

(continued)

ELECTRICAL CHARACTERISTICS IT A = 25 0 C unless otherwise noted.1 Substrate Connected to Source
Characteristic

Symbol

Min

Typ

Max

Unit

V(BRIOSS

25

-

-

Vdc

V(BRIG1S

10

-

-

Vdc

V(BRIG2S

1;/

OFF CHARACTERISTICS
Drain-Source Breakdown Voltage

liD = 1.0 !lAde, VG1 = Vcn = 01
Gate 1 - Source Breakdown Voltage

IIG1 = 10!lAdc, VG2S = 01
Gate 2 Source Breakdown Voltage
IIG2= 10 !lAde, VG2S~ 01
"Off" Drain Current
(VOS~ 15Vde, VG1S~ VG2S= 01

-

1.0

!lAde

IG1SS

50

nAde

IG2SS

50

nAde

mmhos

10(0111

Gate 1 Reverse Leakage Current

-

Vdc

(VG1S = 5.0 Vde, VG2S = 0, VOS = 01
Gate 2 Reverse Leakage Current

(VG2S = 5.0 Vde, VG1S = 0, VOS = 01
ON CHARACTERISTICS

Gate Source Threshold Voltage
(VOS = VG1S, VG2S = 10 Vde, 10 = 1.0 !lAdel
(VOS = VG2S, VG1S = 4.0 Vdc, 10 = 1.0 !lAdel
SMALL-SIGNAL CHARACTERISTICS
MFE591
(VOS ~ 15 Vdc, VG2S = 10 Vdc, 10 = 10 mAde, I = 1.0 kHzl MFE590

Forward Transfer Admittance

I "put Capacitance

MFE591
MFE590

Output Capacitance
(VOS= 15Vde, VG2S= 10Vde,
VG 1 = 2.5 Vde, I = 1.0 MHzl

MFE591
MFE590

Reverse Transfer Capacitance
(VOS = 15 Vde, VG2S = 10 Vde,
VG1 = 2.5 Vde, I = 1.0 MHzl

MFE591
MFE590

Coss

-

20
20

-

-

3.0
3.5

-

-

2.0
2.5

-

-

-

-

0.02
0.025

-

4.4
4.4

6.0
8.0

12.5
10.5

15.3
15.3

-

pF

pF

pI'

Crss

NF

Common-Source Noise Figure (Figure 14)

MFE591
MFE590

dB

dB

Gps

Common-Source Power Gain (Figure 14)

(VOS= 15Vde,VG2S= 10Vde,
10 = 10 mAde, I = 900 MHzl

10
8.0

Ciss

(VOS = 15 Vde, VG2S = 10 Vde,
VG1 = 2.5 Vde, I = 1.0 MHzl

(VOS = 15 Vde, VG2S = 10 Vde,
10 = 10 mAde, I = 900 MHz 1

Vis

MFE591
MFE590

290

-

MFE590, MFE591 (continued)

COMMON-SOURCE CHARACTERISTICS
{VOS

= 15 Vdc, V G2S =

10 Vdc, 10 = 10 mAde, T channel = 250 CI

FIGURE 2 - REVERSE TRANSFER ADMITTANCE - Y12

FIGURE 1 - INPUT ADMITTANCE - VII
100

0

70

~S

~~
~

ii

~~
g~

cu

0

50

A

30

./V

20

7

~ ~ 5.0

~~

/
/ . / jbrs

0

~ ~ 7.0

5

jbis/"
3.0

~~ 2.0
1.0
50

/

./

9rs)

0

7

10

/

0

""
70

/'1

gis

}

100

200

300

/'

3
2

II
SOD 700 1000

2000 3000

./

/

./

1
300

5000

500

2000

0

V

""

V

100
0
0
0

0

./

0

0
0

./

0

- jbfs

0
0

jbos

0
0
5

'\

3
200

500

700

3000

FIGURE 4 - OUTPUT ADMITTANCE - Y22

FIGURE 3 - FORWARD TRANSADMITTANCE - Y21
30

0

1000

700

f, FREUUENCY (MH')

f, FREUUENCY (MHzl

gls

./ /

1000

2000 3000

1. 0
50

5000

""

V
70

100

V

200

f, FREUUENCY (MHzl

""

300

'"
gos

500 700 1000

2000 3000

5000

f, FREUUENCY (MHzl

POWER GAIN AND NOISE FIGURE CHARACTERISTICS
{VOS

= 15 Vdc, VG2S =

10 Vdc, f = 900 MHzl

FIGURE 5 - POWER GAIN

FIGURE 6 - NOISE FIGURE

6

8.0

r":

1/

4

V
12

/

~

1'\\

10

J

II

1\
\

6.0

~

1\

I

)

i5

z 5.0
~z

\

II

7.0

w

"'"'"u::

I
I

\

i..o--

.........

4.0

8.0

o

I

3.0

4.0

8.0

12

16

20

o

4.0

--V

"
8.0

12

10, DRAIN CURRENT {mAl

10, DRAIN CURRENT (mAl

291

V

16

20

MFE590, MFE591 (continued)

S PARAMETERS

(Vos = 15 Vdc, VG2S = 10 Vde, 10 = 10 mAde)
FIGURE 8 - S'2

FIGURE 7 - S"

FIGURE 10 - S22

FIGURE 9 - S21

292

MFE590, MFE591

(continued)

DRAIN CHARACTERISTICS

FIGURE 11 - FORWARD TRANSFER ADMITTANCE

13

I.s

12

~

11

w
'-'

.
c

'"""

........

/~

J

1/

......

........

/'

"\

I'\.
\..
\

w

'"
z

10

~

I(voy 15 vde'i G2
1

I-

~

Y

l0te'i' l.ikHll

9.0

~

~~ 8.0
>"
5.0

7.0

15

9.0
11
13
lOS, DRAIN CURRENT (mAl

20

24

""::i!
I-

16

.s

~

:::>

'-'
w
'-'

.""
:::>

"I

8.0

"""

c 4.0
.;

E

,/

VGIS
2.4 VOLTS

1/

~

2.2

r

[jj

"""":::>
'-'

1.8

1/

w

1.6

II
Y..

1.2
1.0

25

8.0

"""

4.0

c
.;

30

0.5

293

/
/

./

/

./

E

0.8
5.0
15
20
10
VOS, ORAIN·SOURCE VOLTAGE (VO LTSI

12

~
~
z

1.4

J

/

/

I-

2.0

Iv

16

.s

V-

12

z

19

FIGURE 13 - EFFECTS OF GATE 1 VOLTAGE ON
DRAIN-SOURCE CURRENT

FIGURE 12 - DRAIN-SOURCE CURRENT

20

17

1.0
1.5
2.0
2.5
VGIS, GATE I SOURCE VOLTAGE (VOLTSI

3.0

MFE590, MFE591

(continued)

FIGURE 1,!\- 900 MHo TEST FIXTURE

Gate 2

1~\C6
\~J

}

R2

* rf--

L3

---i -iE-

j-L1~j 0 " :
?I-~~ 0

--@)
Drain

¢

Gate 1

il

L

e-

..J

Rl

..J

u

OJ

........

C2

.--

Cl

,rJ

5
0

II)

.,..,.

~@-~_Jo./'
~-'

C3

C5

C4 -.,l.,

T

-.J..,

T

RFC
-r'("' ..~'
\'~I

C7

I
I

/

Shield Thru
Dielectric

I

C8
Rl,R2
RFC

1/16" Teflon@FiberglassCopper Clad 2 Sides

1000 pF Bare Ceramic Disc

10 kfl
10!,H

Ll
L2
L3
L4

0.6S"

1.62"

Note' All components mounted on opposite side using
cutouts in ground plane.

Cl,C2,C3,C4

0.8-10 pF JOHANSON 5201 or Equivalent

@Registered Trademark of E. 1. DuPont, De Nemours & Co., Inc.

C5,C6,C7

100 pF Feedthru

0.5.0"
1.62"

All Width 0.125"

CAPACITANCE CHARACTERISTICS
(V OS = 15 Vdc, VG2 = 10 Vdc, f = 1.0 MHz)

FIGURE 15 - GATE ONE

FIGURE 16 - GATE TWO
3.0

3.0
2.8
Ciss

2.6

V

2.4
~
~

2.2

"'z

2.0

~

1.6

'-'

28

I.,...- I--

1---" .....

26

I

2.4

C'SS

~

22

"''-'z

2.0

'"

«
>u 1.8

>- 18

U

;t
;5

c,:.- /

1.4

1.2

1.6
14

Coss
1.2

--

L..-- V

1.0

1.0

a

1.0

2.0
3.0
4.0
5.0
VG1S, GATE·ONE VOLTAGE (VOLTS)

6.0

a

7.0

294

1.0

2.0
3.0
4.0
5.0
6.0
7.0
VG2S, GATE TWO VOLTAGE (VOLTSI

8.0

9.0

10

MFE823

(SILICON)

SILICON P-CHANNEL

P-CHANNEL
MaS FIELD-EFFECT
TRANSISTORS

MaS FIELD-EFFECT TRANSISTORS

Enhancement Mode (Type C) MOS Field-Effect Transistors designed
for use in smoke detector circuits .

•

Low Gate Reverse Current IGSS = 1.0 pAdc (Maxi @ VGS = 10 Vdc

•

High Sensitivity VIs = 1.0 mmho (Mini @ VDS = 10 Vdc

fAl

MAXIMUM RATINGS
Symbol

Rating

Value

Unit

Vdc

DraIn-Source Voltage

VOS

25

Gate..source Voltage

VGS

±10

Vdc

ID

30

mAde

PD

300

mW
mWfJC

Dram Current
Total Power DISSipation @ T A

= 2SoC

Derate above 25°C
Operatmg and Storage Junction

1.71

TJ. Tstg

-65 to +200

°c

""'~~
~·~-U
B

PLA)

--H-o
STYlE 11
PIN T DRAIN

Temperature Range

2 GATE
3 SOURCE,SUBSTRATE
AND CASE

THERMAL CHARACTERISTICS
Characteristic

Thermal ReSIstance, Junction

Symbol

Unit

Max

R8JA

584

°C/W

R8JC

250

°C/W

to AmbIent

Thermal Resistance, Junction

MILLIMETERS

DIM

to Case

••
C

0
E
F

HANDLING PRECAUTIONS:
MOS field-effect transistors have extremely high input resistance. They can be damaged
by the accumulation of excess static charge. Avoid possible damage to the devices while
handling, testing. or In actual operation. by follOWing the procedures outlined below'
1. To avoid the build·up of static charge. the leads of the devices should rema,"
shorted together With a metal ring except when being tested or used.
2. Avoid unnecessary handhng. Pick up devices by the case instead of the leads.
3. Do not Insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.

295

G
H
J

K
L
M
N

p

MIN

MAX

531

584
495
533

452
432
0406

0533
0.762
0406 0483
254BSC
0.914 1.17
0711 122
1270

-

635
45 0 Bse
127 Bse

127

INCHES

MIN

MAX

0209
0118
0170
0016

0230
0195
0210
0021
0.030
0016 0019
0100 BSe
0.036 0046
0028 0048

0

0250
45 as
0050 as
0050

AIIJEDEC nousand dimensIOns applv
CASE 22·03

(TO·1S)

MFE823 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)
Characteristic

Symbol

Min

Max

Unit

BVOSS

-25

-

Vde

lOSS

-

-20

nAdc

IGSS

-

1.0

pAde

VGS(TH)

-2.0

-6.0

Vde

10(on)

-3.0

-

mAde

VIs

1000

-

#mhos

Cis!

-

6.0

pF

erss

-

1.5

pF

OFF CHARACTERISTICS
Drain·Source Breakdown Voltage

(10 = -10 /lAde, VGS = 0 Vde)
Zero·Gate Voltage Drain Current

NOS = -10 Vde, VGS = 0)
Gate Reverse Current

(VGS = -10 Vde, VOS = 0)
ON CHARACTERISTICS

Gate-Source Voltage
(VOS = -10 Vde, 10 ~ -10/lAde)

Drain Current
(VOS= -10Vde, VGS= -10Vde)
SMALL·SIGNAL CHARACTERISTICS
Forward Transfer Admittance

(VOS = -10 Vde, 10 = -2.0 mAde, I = 1.0 kHz)
I nput Capacitance

(VOS = -10 Vde, VGS = -10 Vde, I = 1.0 MHz)
Reverse Transfer Capacitance

(VOS = -10 Vde, VGS = -10 Vde, 1= 1.0 MHz)

296

MFE824

(SILICON)

SI LICON N-CHANNEL

N-CHANNEL
MOS FIELD-EFFECT
TRANSISTORS

MOS FIELD-EFFECT TRANSISTORS

Depletion-Enhancement Mode (Type B) MOS Field-Effect Transistors designed for use in smoke detector circuits.
•

Low Gate Reverse Current IGSS = 1.0 pAdc (Max) @ VGS = 10 Vdc

•

High Sensitivity Yf1; = 1.0 mmho (Min) @VDS= 10 Vdc

MAXIMUM RATINGS
Symbol

Rating

Value

Unit

Vdc

Drain-Source Voltage

VOS

20

Gate-5ource Voltage

VGS

±10

Vdc

10

30

mAde

Po

300

Drain Current

Total Power Dissipation
Derate above 25°C

@

T A = 25°C

Operating and Storage Junction

mW
mW/oC

1.71
TJ. Tstg

-65 to +200

°c

Temperature Range

STYlE 2
PIN I SOURCE. SUBSTRATE.CASE
2 GATE
3

THERMAL CHARACTERISTICS
Character istic

Thermal Resistance, Junction

Symbol

Max

DRAIN

Unit

ROJA

584

°CIW

ROJC

250

°C/W

to Ambient

Thermal ReSistance, Junction

MILLIMETERS

to Case

DIM

MOS field-effect transistors have extremely high input resistance. They can be damaged
by the accumulation of excess static charge. Avoid possible damage to- the devices while
handling. testing, or in actual operation, by following the procedures outlined below:
1. To avoid the build-up of static charge, the leads of the devices should remain
shorted together with a metal ring except when being tested or used.
2. Avoid unnecessary handling. Pick up devices by the case instead of the leads.
3. Do not insert or remove devices from circuits with the power on because transient
voltages may cause permanent damage to the devices.

297

INCHES

MAX

MIN

5.B4
4.95
5.33
0.533
0.162
0.406 0.4B3
2.54 BSe
H
0.914 1.17
0.111 1.22
J
K 12.10
L
6. 5
M
45° BSe
N
1.21 BSe
p
1.21

0.209
O.17B
0.170
0.016

A
B
e
D
E
F
G

HANDLING PRECAUTIONS:

MIN

5.31
4.52
4.32
0.406

MAX

0.230
0.195
0.210
0.021
0.030
0.016 0.019
0.100 BSe
0.036 0.046
0.02B 00411

ro:smr

-

0.250
45 BSe
.050
0.050

AU JED EC notes and dimensions applv.
CASE 22·03
(TO·1S)

MFE824 (continued)

ELECTRICAL CHARACTERISTICS IT A = 250 C unless otherwise noted)
Min

Max

VIBR)OSX

20

-

Vde

Vas

-

-6.0

Vde

-

1.0

pAde

1.0

4.0

mmhos

Ciss

-

4.0

pF

Crss

-

0.7

pF

Co ..

-

2.5

pF

Symbol

Characteristic

Unit

OFF CHARACTERISTICS
Drain·Source Breakdown Voltage

lie = 1.0 /lAde, Vas = -8.0 Vde)
Gate-Source Voltage
IVOS = 10 Vdc,lO = 1.0 nAdc)
Gate Reverse Current

IVGS

IGSS

= 10 Vdc, VOS = 0)

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
IVOS = 10 Vde, Vas = 0)

SMALL-SIGNAL CHARACTERISTICS

Forward Transfer Admittance
IVOS = 10 Vde, VGS = 0, I
Input Capacitance
IVOS = 10 Vdc, VGS

VIs

= 1.0 kHz)

= 0, I = 1.0 MHz)

Reverse Transfer Capacitance

IVOS

= 10 Vde, Vas = 0, f =

Output Capacitance
IVOS = 10 Vde, VGS

= 0, f

1.0 MHz)

= 1.0 MHz)

298

MFE2000 (SILICON)
MFE2001
Silicon N-channel junction field-effect transistor
designed for VHF/UHF amplifier applications.

\

MAXIMUM RATINGS

Rating

Symbol

CASE 20
(TO-72)

Active elements
isolated
from case

Unit

25

Vdc

Drain-Gate Voltage

VDG

25

Vdc

Gate-Source Voltage

VGS

25

Vdc
mAdc

Drain Current

ID

30

Total Device Dissipation @TA = 25'C
Derate above 25'C

PD

300

mW

2.0

mW/'C

Operating & Storage Junction
Temperature Range

STYLE 1
PIN 1. SOURCE
2. ORAIN
3. GATE
4. CASE LEAD

Value

VDS

Drain-Source Voltage

ELECTRICAL CHARACTERISTICS

(fA

T J' T stg

'c

-65 to +175

= 25'C unless otherwise noted)

Symbol

Characteristic

Min

Typ

25

-

-

Max

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = -1.0 !lAde, Vos = 0)
Gate-Source Voltage
(10 = 0.5 mAde, VOS = 15 Vde)

V(BR)GSS

MFE2000
MFE2001

Gate Reverse Current
(VGS =-20Vde, VOS=O)
(VGS = -20 Vde, VOS = 0, T A = l50'C)

VGS

IGSS

Vde
Vde

0.5
3.0

-

-

4.0
7.5

-

-

100

-

-

200

-

6000
8000

pAde
nAde

ON CHARACTERISTICS
Zero-Gate Voltage Orain Current
(VOS = 15 Vde, VGS = 0)

MFE2000
MFE2001

SMAll·SIGNAl CHARACTERISTICS
Forward Transfer Admittance
(VOS = 15 Vde, VGS = 0, f = 1. 0 kHz)
Output Admittance
(VOS = 15 We, VGS = 0, f = 1.0 kHz)

MFE2000
MFE2001
MFE2000
MFE2001

Input Capacitance
(Vns = 15 Vde, VGS = 0, f = 1.0 MHz)

I Yf.1

IYosl
C isS

Output Capacitance
(VOS = 15 Vde, VGS = 0, f = 1.0 MHz)

COBS

Reverse Transfer CapaCitance
(VOS = 15 Vde, VGS = 0, f = 1.0 MHz)

C rss

Small-Signal Power Gain (Figure 1)
(VOS = 15 Vde, 10 = 4.0 mAde, f = 100 MHz)

Gps

(VOS = 15 Vde, 10 = 4.0 mAde, f = 400 MHZ)
(Figure 1)
Noise Figure
(VOS = 15 Vde, 10 = 4.0 mAde, f = 100 MHz, RG
(Vns = 15 Vde, 10 4.0 mAde, f = 400 MHz, RG

=

= 1. 0 k ohm)
= 1.0 k ohm)
299

NF

Ilffihos
2500
4000

-

--

Ilffihos
50
75
pF

-

5.0

-

-

2.0

-

-

1.0

18

23

10

14

-

-

1.6

2.0

3.3

4.0

pF
pF
dB

dB

MFE2000, MFE2001

(continued)

FIGURE 1 - 100 MHz and 400 MHz NEUTRALIZED AMPLIFIER

NOTE:
The noise source is a hot-cold body
(AIL type 70 or equivalent) with a
test receiver (AIL type 136 or
equivalent).

ADJUST VGS FOR
ID = 5.0 rnA
VGS < 0 VOLTS

Reference
Designation

C1
C2
C3
C4
C5
C6
C7
L1
L2
L3

VALUE
100 MHz

400 MHz

7.0 pF

1. 8 pF

1000 pF

27 pF

3.0 pF

1. 0 pF

1-12 pF

0.8-8.0 pF

1-12 pF

0.8-8.0 pF

0.0015 iJ.F

0.001 fJ.F

0.0015 fJ.F

0.001 iJ.F

JJ.H*
0.25 JJ.H*
O. 14 JJ.H*
3.0

0.2 JJ.H**
0.03 JJ.H**
O. 022 JJ.H**

17 turns (approximately-- depending on circuit layout),
AWG #28 enameled copper wire, close wound on 9/32"
ceramic coil form. Tuning provided by a powdered
iron slug.
4-1/2 turns, AWG #18 enameled copper wire, 5/16" long,
3/8" I; D.
3-1/2 turns, AWG #18 enameled copper wire, 1/4" long,
3/8" I. D.
6 turns approximately -(depending on circuit layout),
AWG #24 enameled copper wire, close wound on 7/32"
ceramic coil form. Tuning provided by an aluminum
slug.
1 turn, AWG 1116 enameled copper Wire, 3/8" I. D.
1/2 turn, AWG 1116 enameled copper Wire, 1/4" I. D.

300

MFE2004 (SILICON)
MFE200S
MFE2006

Silicon N-channel depletion mode (Type A) junction
field-effect transistors designed for chopper applications.

MAXIMUM RATINGS

Rating

CASE 22
(T0·1S)
2

10

Symbol

Value

Unit

Drain-Source Voltage

VDS

30

Vdc

Drain-Gate Voltage

VDG

30

Vdc

Gate-Source Voltage

VGS

30

Vdc

Forward Gate Current

IG(f)

10

mAdc

Total Device Dissipation @ T C = 25° C
Derate above 25° C

PD

1.8
10

Watts
mW/oC

Operating Junction Temperature Range

TJ

-65 to +175

°c

Tstg

-65 to +200

°c

3

STYLE 4:
PIN 1. SOURCE
2. DRAIN
3. GATE &CASE

Storage Temperature Range

ELECTRICAL CHARACTERISTICS (TA = 250 (: unless otherwise noted)

Characteristic

Symbol

Min

Max

30

-

-

0.2

-

0.4

-

0.2

-

0.4

8.0
15
30

-

1.0
2.0
5.0

6.0
8.0
10

-

1.0
0.4

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 1. 0 /lAdc, VDS = 0)

V(BR)GSS

Gate Reverse Current
(V Gs =20Vdc, Vns=O
(V GS = 20 Vdc, VDS = 0, TA = 150°C)

IGSS

Drain Cutoff Current
(VDS = 20 Vdc, VGS = 12 Vdc)

ID(off)

(VDS = 20 Vdc, VGS = 12 Vdc, T A = 150°C)

Vdc
nAdc
/lAdc
nAdc
/lAdc

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current 111
(VDS = 20 Vdc, VGS = 0)

MFE2004
MFE2005
MFE2006

Gate-Source Voltage
(VDS = 20 Vdc,
= 50 /lAdc)

1J

MFE2004
MFE2005
MFE2006·

IDSS

VGS

mAdc

Vdc

Vdc

VGSF

Gate-Source Forward Voltage
(IG = 1. 0 mAdc, VDS = 0)

Vdc

Drain-Source "ON" Voltage
(I D = 3.0 mAde, VGS = 0)
(ID = 6.0 mAde, VGS = 0)

MFE2004
MFE2005

-

(ID = 10 mAde, VGS = 0)

MFE2006

-

0.4

-

80
50
30

Static Drain-Source "ON" Resistance
(ID = 1. 0 mAdc, VGS = 0)
CllPulse Test: Pulse Width ~ 300 /lS, Duty Cycle

MFE2004
MFE2005
MFE2006
~

3. 0%.

301

VDS(on)

rDS(on)

0.4

Ohms

MFE2004, MFE200S, MFE2006 (continued)
ELECTRICAL CHARACTERISTICS (continued)

I

Symbol

Characteristic

Min

Max

Unit

SMALL-SIGNAL CHARACTERISTICS
static Orain-Source "ON" Resistance
(V GS = 0, 10 = 0, f = 1. 0 kHz)

MFE2004
MFE2005
MFE2006

Input Capacitance
(VOS = 0, V OS = -12 Vde, f = 1. 0 MHz)

rds(on)

Ohms

--

80
50
30

-

C.

C

pF

ISS

-

16

rss

-

5.0

pF

Reverse Transler Capacitance
(VDS = 0, V-A-lH~---'-~
GENERATOR'
OR NOISE
~
10 k
SOURCE

FROM 50n
1000
SIGNAL ">-A-lH~~--'~-+
GENERATOR'
OR NOISE
~
10 k
SOURCE

:r: .

::r: .

All upacltanca va!uelare in pF; all rllllstanet V81uesara In ohms.
el. C3, C4: Johanson Type 29&1 or 8qulVllIant
C2: Cantralab Type 82S-0.N. or aqulvalan1
LI: 5 Tums',6 AWG Wire (Internal diamata, 5/1S", Length 518")
L2: 5 Tul'l'll ',8 AWG Wire (Internal diamater 31B". Length 5/8")

All cepecitance valunare in pF;.lIresistancevaluas.reinohml.
Cl, C3, C4: Johanson Tvpe 2951 or equlvelent
C2: JohanlOn Typa 3908 or equivelent
Ll: 4 TurOl',8 AWG Wire tlnternal diameter 114", Langth3/4'1
L2: 5 TurRI "6 AWO Wfre (Internal diameter 114", Length 3/4'"
Overall bandwidth' 9.5 MHz 11-3.0 dB
14 MHz@-6.0dB

FIGURE 3 - CONVERSION POWER GAIN

FIGURE 6 - CONVERSION POWER GAIN

0....1bandwidth =3.0 MHz II -3.0 dB
4.6 MHz" -6.0 dB

~~--~~----~~VOD
+15V

TO 30 MHz
IF AMPLIFIER
150n INPUn

TO 30 MHz
IF AMPliFIER
l50n INPUT)

~-+--E~~

r-:---I---tl---«~

FROM 50G

FROM50n

~~::~ ~&;U~:::;;::;;~

~~:AH~ )-A.,j.j~;::;::;:t=;

GENERATOR

GENERATOR

1 1

1000

2000

All capacitance values a7a in pF; all r$istance val~as are in ;hms. L1: 2 Turns '16 AWG Wire (Internal diameter 1/4", Length 1/4"1
12: 25 Turns #32 AWG Wire wound on 1/4" 0.0. ceramic form
l3: 4 Turn.I2S AWG Wire wound on top of and at dc stJpply end of L2
Cl: Johanson capacitor Type 3908 ar equivalent
C2, &3: Johanson Capacitor Type 2950 or equill8lent

All capacitance valuas are in pF; all i-asistance valuas are in ohms.
Ll: GTums 116 AWG Wire (lntarnal diameter 5/1S",lengtb 1/16")
L2: 25 Tums ta2 AWG Wire wound on 114" 0.0. ceramic form
L3: 4 Turn.126AWG Wire wound on top of and at dc supply and of L2
Cl: Johanson Capacitor Type 3908 or equivalent
C2, C3: Johanson Capacitor Type 2950 or aquiwtBnt

316

MFE3006 thru MFE3008

(continued)

CIRCUIT PERFORMANCE
FIGURE 8 - NOISE FIGURE versus SOURCE RESISTANCE

FIGURE 7 - POWER GAIN versus SOURCE RESISTANCE
0

5.0

-- - -

6

,'"

~ 22
to

'"

~
a

18

...

V

"

4.0

1-1-

w
::>

'"

3.0

-

,.-

r-

w

'"0z

2.0

~.

== ~~~~~~~: ~~~ ~~:-

-

10
150

200

300

1.0

t-. TEST CI RCUITS

FIGURE~ 1 AND 4

400 500
700
1.0 k
RS.SOURCE RESISTANCE (OHMS)

2.0 k

-

-

160

200

o

3.0 k 4.0 k

18

. /~
20

fil

'"z
<1

80

/

Parfo1rmance is

I

~ot

l:;!

u::

10

'"0z

8.0

w

_

u:
z

o

2.0

+2.0

+4.0

+8.0

/

,/'./

11.

/.

/' /

//
. / .;'

,//
/

1/',.'

/. 10-

,.

~,.

~

......-:::

1-- ....

o

5.0

10
GAIN REDUCTION (dB)

VG2S. GATE 2T0 SOURCE VOLTAGE (VOLTS)

15

a

:s
20

<1

co

'"
~

15

:5:
z

.....

0

~

10

...

5.0

w
>
z

.....

,.".

,.-

o
0.5

-~
~1

w
-'

:5'"

40

r-.....

'x"
«
co'
'"
«
'"

3.0

317

-

-

1 L

......

VOS=15V
VG2S = 4.0 V
lo=10mA

i"'-..

>

«
~

1 I

IUfsl 2
MAG = 4IUisl~..1

......

<1

~~-

1.0
1.5
2.0
2.5
LOCAL OSCILLATOR INJECTION LEVEL AT VG2 (Vrm.)

I
50

z
<1
co

0

a
co

20

FIGURE 12 - MAXIMUM AVAILABLE POWER GAIN

FIGURE 11 - CONVERSION POWER GAIN
25

!z

3.0 k 4.0 k

/ ' ~,.

- - - MFE3006@f=100MHz
- - MFE3007@f=200MHz

8.0
4.0

-2.0

_

12

::>

co

frequency dependent.

80

400 600
700
1.0 k
2.0 k
Rs. SOURCE RESISTANCE (OHMS)

I

1

'"

TEST CIRCUITS . _
FIG~RES2A~D5

0

300

TESTeI RCUITS

-FIGURE~ 1tNDl4

TES~
CI RCUI~S
FIGURES2AND5

14

/

z

40

16 t---

/

:s
'"

- - - MFE3006@100MHz_
I I MF~300l @200 MH~

FIGURE 10 - COMMON SOURCE NOISE FIGURE
versus GAIN REDUCTION

FIGURE 9 - GAIN REDUCTION

co

/

"':-

co

z
14

::>

/'

u::

to

...;::

~

"- ~

:s
'"

"

30

- - -

r-....
.....

20

.....
10
50

70

100

200
f. FREQUENCY (MHz)

300

..........

400

500

MFE3006 thru MFE3008 (continued)

COMMON-SOURCE ADMITTANCE PARAMETERS
(VDS = 15 Vde, VG2S =4.0 Vde, 10 = 10 mAde)
FIGURE 13 - INPUT ADMITTANCE

FIGURE 14 - REVERSE TRANSFER ADMITTANCE

'ii

14

0.07

~
12

j

e

.§

lL

10

I~jbi' r---

w

'"z

«

I::
:iii

/

8.0

...~

.

~

0.05

/
-jbrs

~ 0.04

~ 2.0

o

-

50

...-

I,....-

l,../

gis

......-r

~ 0.0

~

I
200
I. FREQUENCY (MHz)

100

70

1-......

w

8.

400

300

500

./

I-"

1,-- r-

4. 0

z

~

2. 0

'"
~

0

>=

-3.0

a:

-"""

I--'"

-

"""

~ ~

-g"
70

'ii

~
:i!
I::

" I,

«
'"

r-

...

'"
~
'"
~

'\
300

400

400

500

12

10

./

8.0

:iii

\'\
200
I. FREQUENCY (MHz)

300

~

I'..

......gl.

100

200
I, FREQUENCY (MHz)

FIGURE 16 - OUTPUT ADMITTANCE

1\

70

100

14

............

'"
~ -2. 0
50

.--

,./

0
50

I
-j~• r -

...........

0

:iii 6. 0
~
a:
~

~

V

0.03

...a:~« 0.02

V'

FIGURE 15 - FORWARD TRANSFER ADMITTANCE
1
0

~

I-L

L

a:

w
u.
~

./

4.0

~

~

:iii

V

6.0

'"
«

.§ 006

/'

-jbos

/

6.0

4.0
2.0

r-

....... +-

I'
go.

or500

50

318

1/

70

100

200
I. FREQUENCY (MHz)

300

400

500

MFE3006 thru MFE3008 (continued)

COMMON-SOURCE CIRCUIT DESIGN DATA AS A
FUNCTION OF THE STERN "K" FACTOR
(VDS = 15 Vde. VG2S = 4.0 Vde. ID = 10 mAde)
FIGURE 18 - SOURCE ADMITTANCE

FIGURE 17 - TRANSDUCER POWER GAIN
34

10

"'

~

z

;;:

30

"

to

'"3:w
~

~

'-'

z

...'"'",.:

22

IB
2.0

B.O

"§

oS

..
w

'-'

'"......... i'--..

to

I
-iBS

"ii

- - - MFE3007@200MHz

z

""

26

=>
~

_..2_ MFE~006@IJOMHz_

\

'

...... ..........

...t:
'"co

-- -- ---

-

6.0

'"

4.0

w

t--

'-'

'"

~

2.0

o
4.0

6.0

B.O

-

2.0

10

-

I
1

- MFE3006@100MHz_
MFE 007 @200 MHz
-iBS
GiS

=>
~

r-- r--_

-

"K" FACTOR

- 4.0

;::;;;;

Gs

I
6.0

8.0

10

"K" FACTOR

FIGURE 19 - LOAD ADMITTANCE
5.0

ioS

........
.

r

-

3.0

-

co

determining the transducer gain and the proper source and load

2.0

@200 MHz

-

-1I

..:;
> 1.0

GL

i-

2.0

4.0

6.0

admittances required for a given stability (Stern "K" factor*),
The Stern 10K" factor has been defined to determine the stability of a practical amplifier terminated in finite load and source
admittances. If "K" is greater than 1.0, the circuit will be stable.
If less than 1.0, the circuit will be unstable. For further details.
see Application Note AN-215.
As the Crss of the MFE3006-7 is comparable to the distributed
capacitance of the circuit where it is used, a feedback capacitance
of 0.1 pF has been used throughout these calculations.

MFE~006 @100 MHz_
-jBL

g'"

o

-

MFE~007

~

co

Figures 17-19 are included to assist the circuit designer in

r

w

'-'
z

DESIGN NOTE

-jBL

4.0

GL
B.O

l-

·"Stability and Power Gain of Tuned Transistor Amplifiers,"

Arthur P. Stern, Proc. I.R.E., March 1967.

10

"K" FACTOR

319

MFE 30 20 (SIUCON)
MFE3021

DUAL P-CHANNEL
MOS FIELD-EFFECT
TRANSISTORS

DUAL P-CHANNEL
MOS FIELD-EFFECT TRANSISTORS

(TYp8CI

Enhancement Mode (Type C) MaS Field-Effect Transistors designed primarily for low-power, chopper or switching applications.

• Low Reverse Gate Current IGSS~10 pAdc@ vGS = -25 Vdc
• Low Drain-Source "ON" Resistance rds(on) = 250 Ohms (Max) @VGS

= -15 Vdc (MFE3021)

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Drain·Source Voltage

VOS

-25

Vdc

Drain-Gate Voltage

VOG

-25

Vdc

Reverse Gate-Source Voltage

VGSR

+25

Vdc

Forward Gate-Source Voltage

VGSF

-25

Vdc

Drain Current

10

200

mAde

Total Device Dissipation@TA=2SoC

Po

0.6
4.0

Watt
mW/oC

T stg

-65 to +200

TJ

-65 to +175

°c
°c

Derate above 2SoC
Storage Temperature Range

Operating Junction Temperature Range

STYLE 1,
PIN 1. DRAIN 1
2. NOT USED
3. GATE 1
4. SUBSTRATE
5. GATE 2
6. NOT USED
1. DRAIN 2
8. SOURCE 1

All JECEC dimensions and notes apply
NOTE,
1. DIM "0" & "R"· STAND·DFF
CASE 642-02

(TO·761

320

MFE3020, MFE3021 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

Symbol

Min

Max

Unit

Drain-Source Breakdown Voltage
(10 = 10 "Ade, VGS = 0)

V(BR)OSS

-25

-

Vde

Source-Drain Breakdown Voltage
(IS = 10 "Ade, VGO = 0)

V(BR)SOS

-25

-

Vde

ZerowGate Voltage Source Current
(VSO = -15 Vde, VGO = 0)

ISOS

-

10

nAde

Zero-Gate Voltage Drain Current (!)

lOSS

-

10

nAde

IGSS

-

10

pAde

VGS(th)

-2_0

-6.0

Vde

10(on)

10

75

mAde

-

Characteristic
OFF CHARACTERISTICS

(VOS

= -15 Vde, VGS = 0)

Gate Reverse Current
(VGS = -25 Vde, VOS

= 0)

ON CHARACTERISTICS
Gate-Source Threshold Voltage
(VOS = -15 Vde, 10 = 10 "Ade)
"ON" Drain Current
(VOS = -15 Vde, VGS

= -15 Vde)

SMALL-5IGNAL CHARACTERISTICS
Drain-Source "ON" Resistance
(VGS = -15 Vde, 10 = 0, f = 1.0 kHz)
Forward Transadmittanee (j)
(VOS = -15 Vde, VGS = -15 Vde, f

= -15 Vde, VGS = -15 Vde, f = 1.0 MHz)

Reverse Transfer Capacitance
(VOS

500

-

IJmhos

Giss

-

7.0

pF

Crss

-

1.5

pF

CSU

-

5.0

pF

COU

-

5.0

pF

td
t,

-

20
30

toff

-

50

ns
ns
ns

= -15 Vde, VGS = 0, IS = 0, f = 1.0 MHz)

Drain-Substrate Capacitance
(VSU

IYfsl

= 0, VGS = 0, f = 1.0 MHz)

Source-Substrate Capacitance
(VOU

-

500
250

= 1.0 kHz)

Input Capacitance
(VOS

Ohms

'ds(on)
MFE3020
MFE3021

= -15 Vde,

VGS

= 0, IS = 0, f = 1.0 MHz)

SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Turn-Off Time

 10 7 Ohms
Input Capacitance';;;; 1.5 pF

90%
I

Input

90%

I

I
-:-

~PulseWidth~

Output

r--Input PulseiAlse Time

1.4k
Input

...

.,
I

1

L- - - - - VGS(on)
:

~'nput Pulse Fall Time

toft

~

I
I

51

I
10%

321

10%

MFE4007 (SILICON)
thru

MFE4012
P-CHANNEL JUNCTION FIELD-EFFECT TRANSISTORS
• depletion mode (Type A) Field-Effect Transistors designed for
general-purpose amplifier applications.

P-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS

• Tightly Specified I DSS Ranges - 2: 1 for All Types
• High Gate-Source Breakdown VoltageV(BR)GSS 40 Vdc (Min) for All Types

=

• New Designers Data Sheet with Min/Max Curves for Ease in Design

LIMIT DATA FOR "WORST CASE" DESIGNS
The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves - representing boundaries for device characteristics - are
given to facilitata "worst case" design.

MAXIMUM RATINGS

Value

Unit

Drain-Source Voltage

VDS

40

Vdc

Drain-Gate Voltage

Voo

40

Vdc

VGS(r)

40

Vdc

In

20

mAdc

Rating

Reverse Gate-Source Voltage
Drain Current

Symbol

Forward Gate Current

IG(f)

10

mAdc

'fotal Device Dissipation@ TA = 25·C
Derate above 25·C
storage Temperature Range

PD
Tstg

200
1.33
-65 to +200

mW
mW/"C
·C

Operating Junction Temperature Range

TJ

-65 to +115

·C
All JEDEC dimellliGnslnd ootH apply
CASE 2(1..03

10·72

322

MFE4007 thru MFE4012

(continued)

ELECTRICAL CHARACTERISTICS

(Tc

=2S'C unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

-

Vdc

40

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 /LAdc, Vns = 0)
Gate-Source Cutoff Voltage
(VOS = 15 Vdc, ID = 1. 0 /LAde)

V(BR)GSS

MFE4007, MFE400B
MFE4009, MFE4010
MFE4011, MFE4012

Gate Reverse Current
(VGS = 20 Vdc, Vns = 0)
(VGS = 20 Vde, Vns = 0, T A = 150'C)

VGS(off)

IGSS

-

-

Vdc
3.0
6.0
B.O
nAdc
2.0

-

2.0

0.5
O.B
1.5
2.5
4.0
7.0

1.0
1.6
3.0
5.0
B.O
14

0.3

1.5

MFE400B

0.4

2.0

MFE4009

1.0

4.0

MFE4010

1.0

4.0

MFE4011

2.0

6.0

MFE4012

2.0

6.0

900
1000
1500
2000
2200
2500

2700
3000
3500
4000
4500
5000

/LAdc

ON CHARACTERISTICS
Zero-Gate Voltage Orain Current
(VOS = 15 Vdc, VGS = 0)

Gate-Source Voltage
(Vos = 15 Vdc,
= 50 /LAdc)
(VOS = 15 Vdc,
= BO /LAde)
(Vos = 15 Vdc,
(VDS
(VOS

=15 Vdc,
=15 Vdc,

(VOS = 15 Vdc,

10
10
10 =150 /LAdc)
10 = 250 /LAde)
10 = 400 /LAde)
10 =700 /L Adc )

lOSS

MFE4007
MFE400B
MFE4009
MFE4010
MFE4011
MFE4012

VGS

MFE4007

mAdc

Vdc

SMALL·SIGNAL CHARACTERISTICS
Forward Transadmittance
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz)

Forward Transconductance
(VOS = 15 Vdc, VGS = 0, f = 100 MHz)

IYfsl

MFE4007
MFE4008
MFE4009
MFE4010
MFE4011
MFE4012

Re(yfS )

MFE4007
MFE4008
MFE4009
MFE4010
MFE4011
MFE4012

Output Admittance
(Vos = 15 Vdc, VGS = 0, f = 1.0 kHz)

IYosl

lnput Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1. 0 kHz)

CiSS

Reverse Transfer Capacitance
(Vns =15VdC, VGS=O, f=I.0MHz)

Cras

Common-Source Noise Figure
(VDS = 15 Vdc, VGS = 0, RG = 1.0 Megohm, f = 100 Hz,

/Lmhos

800
900
1400
1700
1900
2100

---

Ilmhos

-

75

-

7.0

-

2.0

pF
pF

NF

BW = 1.0 Hz)
Equivalent Short-Circuit Input Noise Voltage
(VDS = 15 Vde, VGS = 0, f = 100 HZ, BW = 1.0 Hz)

e

323

n

/Lmhos

dB

-

2.5

-

115

nV//Hz

MFE4007 thru MFE4012

(continued)

TRANSFER CHARACTERISTIC CURVES FOR MIN/MAX lOSS LIMITS
FIGURE 1

FIGURE 2
2.5

1...
~

1.2

-550C

r-..'\.
0.9

~

z

~ 0.6

c

~::::

0.3

o
o

,
~,

,

1250C

-

.s...

- - MIN

2.0

~

1.5

z

1.0

ii:

12~~

'.!i.

12

25 0C........ liS::..

0.5

" '.......

-

o
o

1.25

- - - MIN

......

r'\.

""

. . . . r-.......-........;~

~

- 2 50e
t&,

1.0
0.25
0.5
0.75
VGS. GATE·SOURCE VOLTAGE (VOLTS)

"

---MAX

'\.

1250C

CJ

MFE400S
VOS'15V-

~r~ \.

i3

~.:1--

550Cf-'"""

«

_ _ _ MAX

250C

1'-.." ~

'"
i3

\/Joc

MFE4007
VOS'15V-

550e

il

'\.

25 0C ""

~

i3

moc...........

~ 2.0

"12

-550C

S.O

1.0

o
o

'-

«

.s...

_ _ MAX

'"

~ r-..... 250C.........

"-

7.0

MFE4009
VOS'15 V-

./

~ 3.0

~~
0.5

=>

. ,

u

-.

....

4.0

ii:

3.0

12

2.0

1.0
1.5
2.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)

o

2.5

"-

10.5

t-..., ......

o

~~(
..,;:

~

0.5

§ 7.5
~

z

~
f.......... )(..
' .... ~~ .........
~"-

4.5

-"I" ~

1.5

o

o

1250e

~

........

-..;;::

~-

~

---MIN

-55 0C

........

3.0

«
.s...

--MAX

""'- )(
25~

c

12

MFE4011
VOS'15 Vdc_

.......... ~

~ 6.0
z

u

1.0
1.5
2.0
2.5
3.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)

3.5

~0

1.0
2.0
3.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)

r-zr~ /

12

"-

z

~

8.0

CJ

4.0

-

~

~

.....

324

MFE4012
VOS'15Vdc-

,

""

r-.....

250C

r--.....

"

"'/..":-...

.... ..... .... ,

0C

_ _ MAX

.........

,. -.::-

o 125
o

4.0

-55 0e

16

'"i3

1250C

--

-

.~
- ~F=-..
FIGURE 6

20

-550e

-j>"

« 9.0
.s

_ _ _ MIN

moe

FIGURE 5
12

--MAX

55 0C

~~250C

.....J..

!!oooo.

MFE4010
VOS '15 Vdc

1"'- "'- v'
f'....
~
i-.. .:'"V
j',(

1.0 250C~

~
-.;;:!

!i550C

250C'<:
5.0

CJ

--... ~

1'"-

"'-

6.0

z

......

....... ...............

:"il"----

1250C 550C

~

---MIN

i'-.

2.0

FIGURE 4

I

4.0

io-.

0.5
1.0
1.5
VGS. GATE·SOURCE VOLTAGE (VOLTS)

FIGURE 3
5.0

1
...

-

~

moc
~l::::~l

125 0C

4--

-.......;".

......

:----

-..../.. ......;.

.J... ....... ""f..........

...:::- ....
'-"'

--- MIN

-;5 0C

:::::o;,:;!

'- -"-

1-:' ~

1.5
3.0
4.5
VGS, GATE·SOURCE VOLTAGE (VOLTS)

"'"""-6.0

MFE4007 thru MFE4012

(continued)

TYPICAL AND MINIMUM FORWARD TRANSFER ADMITTANCE
FIGURE 7

1i

2000

1

V ~

w

~ 1000
~
;; 700
e

~

500

-

FIGURE 8

I-t-

S

I

Typ

In

w
'-'

;;
e

../

700

~

500

./

~

300

200

z
~

300

~
«

20a

....

VOS'15Vf'1.°r Z -

;:

V
~
./

~

e
~

0.1

0.3

0.2

0.5

0.7

1.0

2.0

VOS'15Vf '1.0 kHz

3000

w

~

2000

!---""

;;

i
z

I----

I--"
V V

e

1000

~

Typ

t--

!

700 a

z

500a

'-'

~

Min

;;
~

-

300a

'"

lj; 200a

100

500

e
'" 100a

VOS·15V_
f·1.0 kHz

!

300

~ 200

0.5

0.7

2.0

1.0

3.0

I-

~

70a

i!'

50 a
0.5

4.0

0.7

2.0

1.0

FIGURE 11

~

'"w
lj;

i

MFE4011

z

300 a

;:i

....
e

'"

1000

_

700

~

10

MFE401 2
1

7000

w

'-'

500a

200a

7.0

FIGURE 12

w

~

5.0

"" 10,000

1 7000
z

3.0

10, DRAIN CURRENT (rnA)

1i 10,000

;;

Min

VOS'15V
f '1.0 kHz

10, DRAIN CURRENT (mAl

'-'

Typ

I-

..- f..-

I-f-'

....~

0.3

2.0

MFE4010

w

0.2

1.0

sJO,ooa

MFE4009

--

'"

!

0.7

FIGURE 10

;:i
....
e

0.5

10, DRAIN CURRENT (mA)

FIGURE 9
"" 400a

1-

-I
0.3

0.2

0.1

10, DRAIN CURRENT (mAl

i

MFE4008

....-

~
' ] 100

100

>

:!ITyp

Jjnl

'"

~

i.

100a

~

~

~

~.-

z

«

z

....

2000

1

MFE4007 -

.-1--

.-

---

I--

- -

-I--

~

Min

5000

;;;
e
«

300a

'"w
lj;

200a

Typ

z

«

Typ

~I-'"

'"

~ 1000

VOS'15 V
f -1.0 kHz

!

~

~ 500

-r-

I-

700

,..- H-

r--

.........

Min

1

I

VOS ·15 V
f·1.0 kHz

~ 500

0.5

0.7

1.0

2.0

3.0

5.0

7.0

0.5

10

10, ORAIN CURRENT (mA)

0.7

1.0

2.0

3.0

10, DRAIN CURRENT (rnA)

325

5.0

7.0

10

MFE4007 thru MFE4012

(continued)

TYPICAL CURVES
FIGURE 14 - CAPACITANCE versus
DRAIN·SOURCE VOLTAGE

FIGURE 13 - OUTPUT RESISTANCE
versus DRAIN CURRENT
1000

i
:r:

10
lOSS' 0.7 mA

500
300

~

20o

iii~

100

~

50

o

30

.

!

9.0

8.0

t-

~

o

~

VOS=15V
t-'= 1.0 kHz

\.

ii: 7.0
oS

r-... .....1.5mA

~

!;:; 5.0
5 4.0
~

No
-19.bmA
0.2

1.0

0.5

2.0

C",

10

10

O'S='IJ
VGS=OV

B.O

7.0

lJJ

i5

6.0
5.0
4.0

z
~ 3.0

J~s11H

8.0

VGS'OV
f= 1.0 kHz

1.0

~

6.0

:::>

~ 5.0

1\

1'\

w

1'\

S
z

l'

z

[!b

1.0

II

o
20

50

100

500

200

1000

2000

1.0

5000 10.000

10
100
Rs. SOURCE RESISTANCE (k OHMS)

f. FREQUENCY (Hz)

FIGURE 17 - DRAIN CURRENT TEMPERATURE
COEFFICIENT versus DRAIN CURRENT
-11.5

+0.01

i

!Z
w

-11.01

8

-11.03

"-

;:;

$ -0.02
w

1.0M

FIGURE 18 - TEMPERATURE COEFFICIEN1
versus DRAII'lI CURRENT
r-"....,...,-,-rnrrrr--,--,..-rr-,-,..,.,-rrr---r-,-,rrrrrrm

VOS' 15 V

..........

"-

........

i'..

'"

~ -11.04

ffi
1:11 -11.05

" r-......
r--......

..........

~ -0.06

;

-

is

-11.07

I

2.0

I

1.0

4. 0

u: 3.0

,

2.0

0
10

9.0

CD

:2

w

~

40

FIGURE 16 - NOISE FIGURE versus
SOURCE RESISTANCE

~

J

9.0

~
to

30

VOS. ORAIN·SOURCE VOLTAGE (VOLTS)

FIGURE 15 - NOISE FIGURE versus FREQUENCY

:g

2D

10

10. DRAIN CURRENT (mA)

;;;

c... r---

...........

o
o

10

5.0

Cia

G

1.0

II I

0.1

-

\.

3.0
2.0

10

I'-

.

4.5mA

20

......

6.0

o

2.0

4.0

6.0

B.O

10

12

14

~ O~~~~~~~~~~~~~~~~~
0.01

16

10. DRAIN CURRENT (mA)

0.02

0.05

0.1

0.2

.0.5

1.0

10. DRAIN CURRENT (mA)

326

2.0

5.0

10

MFE4007 thru MFE4012

(continued)

FIGURE 19 - EaUIVALENT LOW FREaUENCY
CIRCUIT

VGS(max) - VGS(min)

1.9 Vdc - 0.8 Vdc

10(max) - 10(min)

(l.25mA -0.75mA)

AS=-=~~--~~~

= 2.2 k Ohms

Common Source
YPlrlmetersforFnlquencln
Below 30 MHz

10(max) VGS(min) - 10(min) VGS(max)

VG=--------------~--------

Yls=IWC1SS
Yos=JwCos p *+ 1/ross

10(max) - 10(min)

'ffs=IYfsl

Vrs" -IWens

1.25 X 0.80 - 0.75 X 1.9
·CospiICossinparallelWlIIiSerIHCombinatlonofCifl.ndCus.

0.5

= -0.9 Vdc

In Figure B the maximum allowable value for R 1 will be determined
by loading due to gate reverse current. Gate reverse current variations with temperature follow the pattern of all silicon devices. and.
as a rule, we can assume that it will double with each 1 SoC temperature rise. Therefore. we can assume a maximum reverse current of

approximately 0.5 !lAde at 1250 C. based on the specified maximum
2.0 !lAde reverse at lS00C. The variation in V G bias versus tem·
perature will not be too great if we chose a value for R1 which re-

BIAS NETWORK DESIGN
FOR WORST CASE lOSS VARIANCE

sults in a bias network current H 1 in Figure B) greater than 5 times
the maximum reverse current. Assuming a value for R 1 of 9.1 Megohms. R2 can be solved from the equation:

This Designers Data Sheet has been published to assist the circuit
designer in optimizing his "worst case" design. The following example illustrates the use of the forward transfer characteristics

curves (Pigures 1 thru 6) in the design of a typical bias network.
VG
VOO
Given:
to +1250 C

= -30 Vdc.

10

= 1.0 ± 0.25

mAde from -550 C

ffi

~
~
z

~
o

-30A2
""----- IIgnoring IG)
9.1 + A2

A2"" 300 k Ohms

Procedure: The MFE4010 "worst case" bias conditions across the
temperature range (from Figure 4) are reproduced in Figure A.
The first step in the bias network design is to determ ine the value
of the source resistance (AS! necessary to hold the ± 0.25 mAde
10 bias tolerance. To solve AS. plot 10(max) and 10(min) on
Figure A and calculate AS. and VG.

1
....

= -0.9 Vdc

USing the above values of R1 and R2. the variation in VG can be
computed for IG = 0 to IG = 0.5 !lAde. VG will vary from 0.81 Vdc
at IG = 0.5 !lAde to 0.96 Vdc @ IG = O. This variation will have a
minimal effect on 10. as can be seen from Figure A by plotting load
lines with a slope equal to liAS from VG = 0.81 Vdc and 0.96 Vdc
respectively.

5.0
4.0

3.0
2.0

o ID(max)

-

-1.0

-0.5

AS'
2.2 k

1.0

IOlmin)

t

0.5
1.0
1.5
2.5
VGS(min)
VGS(max)
VGS. GATE·SOURCE VOLTAGE (VOLTS)

3.0

FIGURE A

FIGURE B

327

MFESOOO (SILICON)

SILICON P-CHANNEL ENHANCEMENT
MOS FIELD EFFECT QUAD TRANSISTOR

MOS FIELD-EFFECT
QUAD TRANSISTOR
P-CHANNEL

•

Monolithic Construction Provides
Improved Temperature Tracking

•

Four Field Effect Transistors in One Package
Cut Assembly Costs

•

Diode Protected Gates

•

Motorola's High Reliability Dual In-Line
Ceramic Package

FIGURE 1 - SCHEMATIC OIAGRAM
SUBSTRATE

~
4

81

,

7

--II-oJ

DIM
A

B

MAXIMUM RATINGS

Symbol

Value

Unit

C
D
F

Drain·Source Voltage

VOS

-25

Vdc

G

Orain·Gate Voltage

VOG

±40

Vdc

J

For Each 1ndlvidual DeVIce

Rating

Gate-Source Voltage
Drain Current

VGS

±40

Vdc

10

50

mAde

Each

Total

Device Package
Device Dissipation @TA

= 25°C

Po

Derate above 25°C
Operating and Storage Junction

TJ,Tstg

250
1.66

450
3.0

-65 to +175

Temperature Range

328

H
K
L
M
N

MIN

B

.1

F

MAX

19.05 19.81
6.22
6.99
4.32
5.08
0.41
0.51
1.45
1.60
2.54 BSe
1.91
2.29
0.20
0.30
3.18
4.06
7.62 BSe
15"
0.51
0.76

0.780
0.275
0.200
0.020
0.063
BSC

0.090
0.012
0.125 0.160
0.300 BSe
15"
0.020 0.030

mW
mW/oC

NOTE:
1. DIMENSION "L"TO CENTER OF
LEADS WHEN FORMED PARALLEL

°c

CASE 632-03

MFE5000 (continued)

ELECTRICAL CHARACTERISTICS

(TA = 25°C unless olherwlse nOledl For Each FET

Characteristic

OFF CHARACTERISTICS
Drain-Source Breakdown Voltage
(VGS = 0, 10 = -10/lAdel

= -10 Vde,
= -10Vde,

VOS
VOS

= 01
= 0, TA = 1250 CI

Gate-Drain Breakdown Voltage
(VOSU = O,IG = -10 )lAde)

Vdc

25

IGSS

-

-

-

10
1.0

nAdc
/lAde

V(BR)GOS

50

100

125

Vde

Gate Leakage Current
(VGS
(VGS

-

V(BRIOSS

-

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current
(VOS
(VOS

= -10
= -10

Vdcl, VGS = 01
Vdc, VGS = 0, T A

"ON" Drain Current
(VOS = - 5.0 Vdc, VGS

-

lOSS

= 1250 CI

= -10

1010ni

10

10

nAdc

-

1.0

10

.uAtlc

10

-

50

mAde

Vdel

Dram-Source "ON" Voltage
(10 = 5.0 mAde, VGS = -10 Vdel

VOSlonl

-

10

15

Vde

Gate-Source Threshold Voltage
(VOS = -10 Vde, 10 = -101'Adcl

VGS'(lh)

10

40

5.0

Vdc

-

175
75

225
110

Ohms

rds(onJ2

C ISs

-

50

60

pF

C'55

-

06

2.0

pF

Forward Transfer Admittance
(VOS = -10 Vdc, VGS = -10 Vdc, 1 0 1 0 kHzl

I Vis I

2000

5000

8000

/-ImhOS

Output Admittance
(VOS = -10 Vde, VGS = -10 Vdc, f

I Vos I

-

400

1000

,umhos

SMALL-SIGNAL CHARACTERISTICS
Drain-Source Aeslstance
(VGS = -10 Vde, 10 = 0, f
(VGS = -25 Vdc, 10 = 0, f

= 1.0 kHzl
= 1 0 kHzl

rds(onJ1

Input Capacitance
(VOS

= -10

Vdc, VGS

= 0,

f

0

1.0 MHz 1

Reverse Transfer Capacitance
(VOS

= 0,

VGS

= 0, f = 1 0

MHzl

= 1.0 kHzl

SWITCHING CHARACTERISTICS
Turn-On Delay Time

Rise Time

1VOO

Turn-Off Oelay Time

= -15

VGSloffl

Vde, 10

= 0,

= 10 mAde,

VGSlon)

'dlonl

-

30

10

ns

'r

-

10

20

ns

= 10 Vdc,

See F,gure 1)

'd(om

-

50

10

ns

'I

-

40

60

ns

Fall Time

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

VOO

1.3 k

PULSE
GENERATOR
(50 Ohms)

L_--EZ:::;~:f1---T...J
r

INPUT----.

CoaxIal
Cable

TEKTRONIX
~;:.:..------'l-=---VGSlon)

567

-EE~=f8SAMPLING
SCOPE DR
tt

1_

Id(on)-~l---;~_ _~~=~~

EQUIVALENT

-=
INPUT PULSE

Fall rime < 3.0 ns
Rise Time < 3.0 ns

VGSloffl

50 Ohm

OUTPUT---""';'1

-=

I,

Nominal Value of "on" Pulse Width = 300 ns

329

MHQ918 (SILICON)

QUAD DUAL IN·LlNE
NPN SILICON HERMETIC ANNULAR
HIGH FREQUENCY AMPLIFIER TRANSISTORS

QUAD DUAL IN·LINE
NPN SILICON HIGH
FREQUENCY AMPLIFIER
TRANSISTORS

· .. designed for low-level, high·gain amplifier appl.ications.
•

Low Noise Figure - @ IC: 1.0 mAdc
NF: 4.0 dB (Typ)

•

High Current·Gain-Bandwidth Product fT: 850 MHz (Typ) @ IC : 4.0 mAde

•

Transistors Similar to 2N918

• TO-116 Ceramic Package - Compact Size, Compatible with IC
Automatic Insertion Equipment

MAXIMUM RATINGS
Symbol

Value

Unit

VeEO

15

Vde

Collector-8ase Voltage

Ves

30

Vde

Emitter-Base Voltage

VES

3.0

Vde

Ie

50

mAde

Rating
Collector· Emitter Voltage

Collector Current - Continuous

Each
Transistor

Total
Device

Po

0.65
3.72

1.9
10.88

Watts
mW/oe

Power Dissipation @ T C ::: 2SoC

Po

1.3
7.43

4.6
26.3

Watts
mW/oe

Operating and Storage Junction
T emperatu re Range

TJ,Tstg

-65 to +200

'gg:: :~I
8

E

E.8

~

1

F

°e

MILLIMETERS
DIM MIN
MAX
A 18.8
19.9
B 5.59
7.11
C
5.08
D 0.381 0.584
F
0.77
1.77

CONNECTION DIAGRAM

c

~
-11-0

Power Dissipation @ T A = 25°C
Detate above 2SoC

Derate above 25°C

.S1

4

G
J
K
L

0.203

2.54 8SC

M
N
P

0.51

0.381

2.54
7.828SC
150
0.78
8.25

All JEOEC dimensionsa,ll: notes apply.
eASE 632'()2
TO·116

C

330

MHQ918 (continued)

ELECTRICAL CHARACTERISTICS IT A

I

~ 25°C unless otherw,se noted

I

Characteristic

I

Symbol

Min

Typ

Max

Unit

Collector·Emitter Breakdown Voltage (1)
(lC = 3.0 mAde, IS = 0)

SVCEO

15

-

-

Vde

Collector-Base Breakdown Voltage

SVCSO

30

-

-

Vde

BVESO

3.0

-

-

Vde

ICSO

-

-

10

nAdc

-

110
80

-

OFF CHARACTERISTICS

(lC = 1.0"Ade, IE = 0)
Emitter-Base Breakdown Voltage

(IE = 10"Ade, IC = 01
Collector Cutoff Current
IVCS = 15 Vde, IE = 0)

ON CHARACTERISTICS III
DC Current Gain
(lC = 0.1 mAde, VCE = 1.0 Vdel
(lC = 3.0 mAde, VCE = 1.0 Vde)
(lC = 10 mAde, VCE = 1.0 Vde)

-

hFE
20

-

50

-

Collector-Emitter Saturation Voltage
(lC = 10 mAde, IS = 1.0 mAde)

VCEI .. t)

-

0.11

0.4

Vde

Base-Emitter Saturation Voltage
IIC = 10 mAde, IS = 1.0 mAde)

VSEI .. tl

-

0.84

1.0

Vde

IT

600

850

-

MHz

Cob

-

0.75

2.0

pF

Input Capacitance
IVSE = 0.5 Vde, IC = 0, I = 140 kHz)

Cib

-

1.4

2.5

pF

Noise Figure
(lC = 1.0 mAde, VCE = 6.0 Vdc, RS = 400 Ohms, I = 60 MHz I

NF

-

4.0

6.0

dB

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, 1= 100 MHz)
Output Capacitance

IVCS = 10 Vde, IE = 0, 1= 140 kHzl

11) Pulse Test: Pulse Width <;;300 p.s, Duty Cycle <;;2.0%.

331

MHQ2221, MHQ2222 (SILICON)
MPQ2221, MPQ2222

QUAD DUAL-IN-L1NE
NPN SILICON ANNULAR
GENERAL-PURPOSE TRANSISTORS

QUAD DUAL-IN-L1NE
NPN SILICON
GENERAL-PURPOSE
TRANSISTORS

· .. Designed for general-purpose switching circuits and DC to VHF
amplifier applications.
•

Choice of Ceramic or Plastic Package

•

DC Current Gain Specified - 10 to 300 mAdc·

•

Low Collector-Cutoff Current ICBO = 50 nAdc (Max) @VCB = 50 Vdc

•

High Collector Breakdown Voltages BVCEO = 40 Vdc (Min) BVCBO = 60 Vdc (Min)

CONNECTION DIAGRAM

•

Transistors Similar to 2N2218 thru 2N2222 Series

•

TO-116 Packaging - Compact Size Compatible With I C
Automatic Insertion Equipment

•

MH02221 Available With BVCEO = 60 Vdc on Specified Request
C

MAXIMUM RATINGS
Symbol

Rating

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCS

60

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

IC

500

mAde

Collector-Emitter Voltage

Collector Current - Continuous

B

B

~MOO~~''''=
,.~ ¥~
CERAMIC

Each
Transistor

Total Power Dissipation @TA
Derate above 2SoC

:=.

25°C

PD

0.65

Operating and Storage Junction MHQ2221.22
Temperature Range
MPQ2221.22

mW/oC

10.88
15.2

5.2
TJ.Tstg

Watts

1.9

3.72

MHQ2221. MHQ2222
MPQ2221. MPQ2222

Total
Device

°c

-65 to +200
-55 to +150

~

4

8~
8 P

CASE 632·02
TO-116

7~

1

-11-0

F

MP02221. MPQ2222
CASE 646

MILLIMETERS

PLASTIC PACKAG E

DIM

A
B
C
0
F
G

NOTES
1 LEAOSWITHINO.13mm
iO.0051 RADIUS OF TRUE
POSITION ATSEATING
PLANE AT MAXIMUM
MATERIAL CONOITION.

2. DIMENSION "l" TO
GENTER OF LEADS

WHEN FORMED
PARAllEL

H
J
K
L
M

N
p

n

MILLIMETERS
MIN
MAX

18.16
6.10

18.80

6.60
4.06 4.57
0.51
038
1.02
1.52
2.S4BSC
1.32
1.83
0.30
0.20
2.92
3.43
7.37
7.87

INCHES

MIN
0.715
0.240
OISO

0.040
0.052
0.008
0.115
0.290

0.072
0.012
0135
0,310

0.020
0.005
0020

0.015
0.030

0.015

a.looase

10"

10"

0.51
0.13
O.SI

101
0.38
0.76

MAX

0.740
0.260
0.180
0.020
0060

332

0.040

C

DIM MIN
MAX
A 16.8
19.9
B 5.59
7.11
C
5.08
o 0.381 0.584
F
0.77
1.77
G
2.54 Bse
J
0.203 0.381
K 2.54
L
7.62 BSe

M
N
P

0.51

150
0.76
8.25

AIIJEOEC dlmensionsandnotesapplv.

NOTE.
DIMENSION "l" TO CENTER OF
LEADS WHEN FORMED PARALLEL

MH02221, MH02222, MP02221, MP02222
ELECTRICAL CHARACTERISTICS

(continued)

(TA = 25 0 C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

Colieetor-Emitter Breakdown Voltage(l)
(lC = 10 mAde, IB = 0)

BVCEO

40

-

-

Vde

Collector-Base Breakdown Voltage
(IC = 10 "Ade, IE = 0)

BVCBO

60

Emitter-Base Breakdown Voltage

BVEBO

5.0

-

-

ICBO

-

-

50

nAde

lEBO

-

-

50

nAde

35
75

-

-

-

-

-

-

-

-

0.4
1.6

-

-

-

1.3
2.6

IT

200

350

-

Cob

-

4.5

8.0

pF

Cib

-

17

30

pF

ton

-

25

-

ns

toft

-

250

-

ns

OFF CHARACTERISTICS

(IE = 10 "Ade, IC

= 0)

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
Emitter Cutoff Current
(VSE = 3.0 Vde, IC = 0)

Vde
Vde

------

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 10 mAde, VCE 0 10 Vde)

hFE
MH02221,
MH02222,
MH02221,
MH02222,

(lC = 150 mAde, VCE = 10 Vdc)
(lC = 300 mAde, VCE = 10 Vdc)

MP02221
MP02222
MP02221
MPQ2222

40
100

MH02221, MPQ2221
MH02222, MP02222

20
30

Collector-Emitter Saturation Voltage

VCE(sat)

(lC = 150 mAde, IB = :5 m!\de)
(lC = 300 mAde, I B = 30 mAco)

."

Base-Emitter SaturatIon Voltage
(lC = 150 mAde, IS = 15 mAde)
(lC = 300 mAde, 18 = 30 mAdcl

VBE(sat)

-

-

-

Vde

-

Vde

DYNAMIC CHARACTERISTICS

Current-Gain -Bandwidth Product \ 1)
(lC = 20 mAde, VCE = 20 Vde, f = 100 MHz)

Output Capacitance

MHz

(VCB = 10 Vde, Ie = 0, f" 100 kHz)

Input Capacitance
(VSE 00.5 Vde, IC = Q, f =.100 kHz)
SWITCHING CHARACTERISTICS (F,gure 1)
Turn-On Time
(VCC 0 30 Vde, VBE(offi = 0.5 Vde,
IC" 150mAde, lSI = 15mAde) (Figure 1)

Turn-Off Time
(VCC = 30 Vde, IC = 150 mAde,
IB1 = IS2 = 15 mAde) (Figure 2)
(1)Pulse Test- Pulse Width

S

300 Jls, Duty Cycle == 2%.

FIGURE 2 - STORAGE TIME AND FALL
TIME EQUIVALENT TEST CIRCUIT

FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT

GENERATOR RISE TIME.;; 2.0 ns
200 n.
DUTY CYCLE = 2.0%

f'W"

DUTY CYCLE = 2.0%

+30 V

l-frr~ ~~.::s

+30 V

+1602vn

99

o

J \

4

619

~n--'ll'lllr--+-0.5 V

'

Ok

,1>-J\3
a,:f\l\r9'6-.-+--I

SCOPE
Rin> 100 k ohms
Cin,,12pF
RISE TIME" 5.0 ns

J

~ 500~sl

333

-3.0 V

SCOPE

Rin > 100 k oh...
Cin,,'2pF

RISE TIME" 5.0 ns

MHQ2369 (SILICON)
MPQ2369

QUAD DUAL-IN-LiNE
NPN SILICON ANNULAR
SWITCHING TRANSISTORS
· .. designed for low-current. high-speed switching and space saving
applications.
•

Choice of Ceramic or Plastic Package

•

High Current-Gain-Bandwidth Product fT = 550 MHz (Typ) @ IC = 10 mAdc

•

Fast Switching Times ton = 9.0 ns (Typ)
toff = 15 ns (Typ)

@

QUAD DUAL-IN-LiNE
NPN SILICON
SWITCHING
TRANSISTORS

VCC = 3.0 Vdc
CONNECTION DIAGRAM

•

Low Saturation Voltage VCE(sat) = 0.25 Vdc (Max)

•

Each Transistor Similar to 2N2369

•

TO-116 Package - Compact Size Compatible With IC
Automatic Insertion Equ ipment

@

IC = 10 mAdc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

15

Vdc

Collector-Sa.. Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

IC

500

mAde

Rating
Collector-Emitter Voltage

Collector Current - Peak

Total Device Dissipation@TA = 25°C
Derate above 2SoC

Temperature Range

Total

Transistor

Device

0.5

1.5

Watts

2.86
4.0

8.58
12

mW/oC

PD

MH02369
MPQ2369

Operating and Storage Junction MH02369

Each

°c

-65 to +200
-55 to +150

TJ.Tstg

MP02369

-

MHQ2369

.S1

~
,
't:J
4

-ll-o

CERAMIC
CASE 632-02

TO-116

F

MPQ2369
CASE 646

PLASTIC PACKAGE

INCHES

DIM
A

•
C

o

F

G
H

J
NOTES:
1. LEADSWITHINO.13mm

{D.DObl RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.

2. DIMENSION ItL" TO
CENTER OF LEADS

WHEN FORMED
PARALLEL

K
L
M

Q

MIN
MAX
0.115 0.740
0.240 0.260
0.1600.180
0.015 0.020
0.040 0.060
O.l00BSC
0.052 0.012
0.008 0.012
O.t15 0.135
0.
0.310
10'
0.020 0.040
0.005 0.015
0.020 0.030

334

All JEDEC dimenslOm:a'ld notes applv.
NOTE:

DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL.

MH02369, MP02369 (continued)

ELECTRICAL CHARACTERISTICS ITA = 250 C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Typ

Max

Unit

Colleetor·Emitter Breakdown Voltagell)
(lC = 10 mAde, IB - 0)

BVCEO

15

-

-

Vde

Coliector·Base Breakdown Voltage
(lC = 10 /lAde, IE = 0)

BVCBO

40

-

-

Vde

Emitter·Base Breakdown Voltage

BVeBO

4.5

-

-

Vde

Collector Cutoff Current
IVCB = 20 Vde, IE = 0)

ICBO

-

-

0.4

/lAde

Emitter Cutoff Current
IVBE = 3.0 Vde, IC = 0)

lEBO

-

-

0.5

/lAde

40
20

-

-

-

-

0.25

-

-

0.9

fT

450

550

-

MHz

Cob

-

2.5

4.0

pF

Cib

-

3.0

5.0

pF

-

9.0

-

-

15

-

OFF CHARACTERISTICS

(IE = 10 /lAde, IC = 0)

ON CHARACTERISTICS
DC Current Gain(1)
(lC = 10 mAde, VCE = 1.0 Vde)
(lC = 100 mAde, VCE = 2.0 Vde)

hFE

Collector-Emitter Saturation Voltage

VCElsat)

-

Vdc

(lC = 10 mAde, IB = 1.0 mAde)

Base-Emitter Saturation Voltage

-

Vde

VBElsat)

(lC = 10 mAde, 18 = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product (1)
l'c= 10 mAde, Vr." = 10 Vde, f = 100 MHz)

Output Capacitance
IVCB = 5.0 Vde, 'E = 0, f = 140 kHz)

I nput ,Capacitance
IVBE = 0.5 Vde, IC = 0, f = 140 kHz)
SWITCHING CHARACTERISTICS
Turn·On Time
IVCC = 3.0 Vde, VBEloff) = 1.5 Vde,
= 10 mAde,lBl = 3.0 mAde)

ton

Turn·Off Time
IVCC = 3.0 Vde; IC = 10 mAde,
181 =3.0mAde,IB2= 1.5 mAde)

toff

ns

'c

(1)Pulse Test: Pulse Width.s; 300 /Js, Duty Cycle

ns

= 2%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

--lilt--

FIGURE 1 - ton CIRCUIT

+10.SV

nil

3.0 V

_..,.'It---,
270

0---1.5 V

-1

<1.0ns

PU LSE WIDTH (q) = 300 n.
DUTY CYCLE· 2.0%

FIGURE 2 - toff CIRCUIT
3.0 v

+1O'7:~__
__
-9.15 V

3.lk

I

J..t-< loOns
PULSE WIDTH Ill) = 300 n.
DUTY CYCLE' 2.0%
"'Total Shunt Capacitance Df test jig and connectors.

335

_IIN_--,
270

MHQ2483 (SILICON)
MHQ2484

QUAD DUAL-IN-LINE
NPN HERMETIC SILICON ANNULAR
AMPLIFIER TRANSISTORS

QUAD DUAL-IN-L1NE
NPN SILICON
AMPLIFIER
TRANSISTORS

· .. designed for low-level, high-gain amplifier applications.
•

Low Noise Figure -@ IC = 10 !lAdc, f
NF = 3.0dB (Typ) - MH024B3
= 2.0dB (Typ) - MH02484

= 10 Hz to 15.7 kHz

• Transistors Similar to 2N2483 and 2N24B4
• TO-116 Ceramic Package - Compact Size Compatible with IC
Automatic I nsertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

40

Vdc

Collector-Base Voltage

Vee

60

Vdc

Emitter-Base Voltage

VEe

6.0

Vdc

Ie

50

mAde

Collector-Emitter Voltage

Collector Current - Continuous

Power Dissipation @ T A == 25°C
Derate above 25°C

PD

Power Dissipation @ T C = 2SoC
Derate above 25°C

PD

Ope{ating and Storage Junction

TJ,Tstg

Each
Transistor

Total
Device

0.6
3.42

1.8
10.3

1.2
6.85

4.2
24

-65 to +200

Temperature Range

Watts
mW/oe

Watts
mW/oe
°e

. .S1

~
-II-oJ

7~

,

CASE 632-02
TO·116

F

CONNECTION DIAGRAM

DIM

A
B
C
D
F
G
J
K
L

M
N
P

MILLIMETERS
MIN
MAX

19.9
7.11
- 5.08
0.381 0.584
0.77
1.77

16.8
5.59

INCHES
MAX
MIN

0.660
0.220

0.785
0.280
0.200
0.023
0.070

O.of5
0.30
0.100 sse
0.203 0.381 0.008 0.015
0.100
2.54
0.300 BSC
7.62BSC
15'
0.76 0.020 0.030
0.51
0.325
8.25
2.548SC

I"

AlIJEOEC dimensionsElndnotesapplv
NOTE·
DIMENSION "l" TO GENTER OF

LEADS WHEN FORMED PARAllEl.

336

MH02483, MH02484 (continued)

ELECTRICAL CHARACTERISTICS ITA

=

250 C unless otherwise noted)

Characteristic

Max

Unit

-

-

Vde

60

-

-

Vde

BVEBO

6.0

-

-

Vde

ICBO

-

-

20

nAde

lEBO

-

-

20

nAdc

-

Svmbol

Min

Colieetor·Emitter Breakdown Voltage(1)
IIC = 10 mAde, IB = 0)

BVCEO

40

Coliector~Base

BVCBO

OFF CHARACTERISTICS

IIC

Breakdown Voltage

= 10 pAde, IE = 0)

Emitter~Base

Breakdown Voltage

liE = lOI'Ade,lc

=0)

Collector Cutoff Current

(VCB = 45 Vde, IE

=0)

Emitter Cutoff Current
(VeE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
OC Current Gain(1)
IIC = 0.1 mAde, VCE

-

hFE

= 5.0 Vde)

MHQ2483
MHQ2484

100
200

= 5.0

(lC

= 1.0 mAde,

Vde)

MHQ2483
MHQ2484

150
300

-

(lc

= 10 mAde, VCE = 5.0 Vde)

MHQ2483
MHQ2484

150
300

-

-

-

0.13
0.15

0.35
0.5

-

0.58
0.70

0.7
0.8

iT

50

100

-

MHz

Ceb

-

1.8

6.0

pF

4.0

8.0

pF

3.0
2.0

-

VCE

Collector-Emitter Saturation Voltage(1)

-

8ase-E mitter On Voltage

(Ie
(lc

Vde

VCE(sat)

IIC= 1.0mAde,IB =0.1 mAde)
IIC = 10 mAde, IB = 1.0 mAde)
VBE(on)

= 100 I'Adc, VCE = 5.0 Vdc)
= 10 mAde, V CE = 5.0 Vdc)

Vde

-

OYNAMIC CHARACTERISTICS
Current~Gain-Bandwidth

(lc

Product

= 500 I'Ade, VCE = 5.0 Vdc, f = 20 MHz)

Collector-Base Capacitance

(VCB = 5.0 Vdc, IE

= 0, f

= 100 kHz)

Input Capacitance

IVBE

= 0.5 Vdc,

IC

eib

= 0, f = 100 kHz)

Noise Figure

(lC = 10 I'Adc, VCE = 5.0 Vdc, RS = 10 k ohms,
f = 10 Hz to 15.7 kHz, BW = 10 kHz)

.~

NF

dB

-

MHQ2483
MHQ2484

~

337

MHQ2906, MHQ2907 (SILICON)
MPQ2906, MPQ2907

QUAD DUAL-IN-LINE
PNP SILICON ANNULAR
GENERAL-PURPOSE TRANSISTORS

QUAD DUAL-IN-LINE
PNPSILICON
GENERAL-PURPOSE..
TRANSISTORS

· .. designed for general-purpose switching circuits and DC to VHF
amplifier applications.
• Choice of Ceramic or Plastic Package
• High Collector-Base Breakdown Voltage BVCBO = 60 Vdc (Min) @ IC = 10 IlAdc
• DC Current Gain Specified - 10 to 300 mAdc
•

CONNECTION DIAGRAM

High Current-Gain-Bandwidth Product tr = 350 MHz (Typ) @ IC = 50 mAdc

• Transistors Similar to 2N2906 and 2N2907
•

TO-116 Packaging - Compact Size Compatible With IC
Automatic Insertion Equipment

MAXIMUM RATINGS
Symbol

Value

Unit

VeEO

40

Vdc

Collector-Base Voltage

VeB

60

Vd"

Emitter-Base Voltage

VEe

5.0

Vdc

Ie

600

mAde

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Each
Transistor

Total Device Dissipation @TA ,.. 25°C

Po

Derate above 25°C MHQ2906. MHQ2907
MPQ2906. MPQ2907
Operating and Storage Junction MHQ2906,07
Temperature Range
MPQ2906.07

TJ.Tstg

MHQ2906.MHa2907

_

CERAMIC
CASE 632-02
TO-llG

Total
Device

0.65

1.9

Watts

3.72
5.2

10.88
15.2

mw/oe

-65 to +200
-55 to +150

4

B P

~

1

°e

~

~
.•

-11-0.:1 F

MP029OS. MPQ2907
CASE 646

PLASTIC PACKAGE

DIM

MIN

MAX

A 16.8
8
5.
C
D
F
G

J
K
L

M
N
NOTES:
1. lEADS WITHIN 0 13 mm
{O.OOS, RADIUS Of TRUE
POSITION AT SEATING
PLANE AT MAXIMUM

P
2. DIMENSION "l"TO
CENTER OF lEADS
WHEN FORMED
PARALLEL

AU JECEC dlmeoSionSllfld Rutesapp1v
NOTE'
DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL

MATERIAL CONDITION.

338

MH02906, MH02907 (continued)
MP02906, MP02907
ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Typ

Max

40

-

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(l)
(Ie = 10 mAde, IB = 0)

BVeEO

Collector-Base Breakdown Voltage
(Ie = 10 /lAde, IE = 0)

BVCBO

60

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)

BVEBO

5.0

-

-

Vde

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)

leBO

-

-

50

nAde

Emitter Cutoff Current
(VCR = 3.0Vde, IE = 0)

lEBO

-

-

50

nAde

MHQ2906, MPQ2906
MHQ2907, MPQ2907

35
75

-

-

-

MHQ2906, MPQ2906
MHQ2907, MPQ2907

40
100

-

MHQ2906, MPQ2906
MHQ2907 MPQ2907

30
50

-

-

-

-

-

0.4
1.6

-

-

1.3
2.6

f,-

200

350

-

MHz

Output Capacitance
(VCS = 10 Vde, IE = 0, f = 100 kHz)

Cob

-

6.0

8.0

pF

I nput Capacitance

Cib

-

20

30

pF

Turn-On Time
(VCC = 30 Vdc, IC = 150 mAde,
IBI = 15 mAde) (Figure 1)

ton

-

30

-

ns

Turn-Off Time
(VCC = 6.0 Vde, IC = 150 mAde,
lSI = 182= 15 mAde) (Figure 2)

toff

-

100

-

n.

Vde

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 10 mAde, VCE = 10 Vde)
(lC = 150 mAde, VCE = 10 Vde)
(lC = 300 mAde, VCE = 10 Vde)

-

hFE

Coliector·Emitter Saturation Voltage (1 )
(Ie = 150 mAde, IB = 15 mAde)
(lC = 300 mAde, IB = 30 mAde)

VCE(sat)

Base-Emitter Saturation Voltage (1)
(Ie = 150 mAde, IB = 15 mAde)
(Ie = 300 mAde IR = 30 mAde)

VBE(satl

-

-

Vde

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product ( 1 )
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)

(VSE = 2.0 Vde, IC = 0, f = 100 kHz)
SWITCHING CHARACTERISTICS

(llpulse Test: Pul.. Width,. 300 /ll, Duty Cvcl.

= 2%.

FIGURE 1 - DELAY AND RISE
TIME TEST CIRCUIT

FIGURE 2 - STORAGE AND FALL
TIME TEST CIRCUIT

-30

INPUT
ZO'50n
PRF' ISO PPS
RISE TIME <; 2.0 .s

+15 V

INPUT
Zo'50n
PRF' ISO PPS
RISETIME <;20",

200

TO OSCILLOSCOPE
RISE TIME

~

-s.O

1.0 k

37

TO OSCI LLOSCOPE
RISE TIME <; 5.0 .s

1.0 k

5 0 ns

0:u50

IN91S

J200.sl

-::-

-=
339

-=

MHQ3467 (SILICON)

QUAD DUAL-IN-LiNE
PNP HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS

QUAD DUAL-IN-LiNE
PNPSILICON
MEMORY DRIVER
TRANSISTORS

· .. designed for medium·current. high-speed switching. ferrite core
and plated wire memory driver. and MOS translator applications.
•

Low Collector-Emitter Saturation Voltage VCE(satl ~ 0.5 Vdc (Maxi @ IC ~ 500 mAdc

•

Collector-Emitter Breakdown Voltage BVCEO ~ 40 Vdc (Mini @ IC ~ 10 mAdc

• Transistors Similar to 2N3467
• TO-116 Ceramic Package - Compact Size Compatible With IC
Automatic I nsertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCS

40

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

IC

1.0

Collector·Emitter Voltage

Collector Current - Continuous

Power Dissipation @ T A

= 25°C

Po

Derate above 25°C
Power DisSipation @ T C
Derate above 25°C

= 25°C

Operating and Storage Junction
Temperature Range

Po
TJ.T stg

Adc

Total

Each
Transistor

Device

0.9
5.14

2.7
15.4

mVV/oC

1.8
10.3

6.3
36

Watts
mW/oC

-55 to +200

Watts

°c

~
4

.~
B P
~

1

......1l-oJ

CASE 632-02

TO·116

F

CONNECTION DIAGRAM

DIM

MILLIMETERS
MIN
MAX

A 16.8
B
5.59
C
D
F
G
J
K

19.9
1.11
5.08
0.381 0.584
0.17
1.77
2.54 ase

L
M

0.203 0.381
2.54
I.B2Bse
15°

N

0.51

P

0.76

8.25

AUJEOEC dimensIOns and notes apply

NOTE
DIMENSION "l" TO CENTER OF
LEADS WHEN FORMED PARALLEL.

340

MH03467 (continued)

ELECTRICAL CHARACTERISTICS (TA

= 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Colleetor·Emitter Sreakdown Voltage(l)
(lC = 10 mAde, IS = 0)

SVCEO

40

-

-

Vde

Collector-Base Breakdown Voltage

SVCSO

40

-

-

Vde

SVESO

5.0

-

-

Vde

ICSO

-

-

200

nAde

lEBO

-

-

200

nAde

20

-

-

-

0.23

0.5

-

0.9

1.2

fT

125

190

Cob

-

10

25

pF

Cib

-

55

80

pF

ton

-

-

40

ns

taff

-

-

90

ns

Characteristic

OFF CHARACTERISTICS

IIC

= 10 "Ade, IE = 0)

Emitter-Base Breakdown Voltage

(IE

= 10 "Ade, IC = 0)

Collector Cutoff Current

(VCS

= 30 Vde,

IE

= 0)

Emitter Cutoff Current
(VSE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
OC Current Gain(ll
IIC

Collector-Emitter Saturation Voltage (1)

(lC

Vde

VCE(sat)

= 500 mAde, IB = 50 mAdcl

Base-Emitter Saturation Voltage (1 )

(lC

--

hFE

= 500 mAde, VCE = 1.0Vde)

Vde

VBE(,atl

= 500 mAde, I B = 50 mAde)

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth Product, ( 11
(IC = 50 mAde, VCE = 10 Vde, f = 100 MHz)

Output Capacitance
(VCS

= 10 Vde,

IE

= 0, f = 100 kHz)

I nput Capacitance

(VSE

= 0.5 Vde,

IC

=0, f = 100 kHz)

MHz

SWITCHING CHARACTERISTICS (Figure 1)

Turn-On Time
(lc = 500 mAde, lSI
Turn·Off Time

= 50 mAde)

(lC = 500 mAde, lSI = IS2 = 50 mAde)
(1 )Pulse Test: Pulse Width.s;; 300 MS, Duty Cycle == 2%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
+3.8 V

-30 V

1.0"F

E----o To Sampling Oscilloscope

1.0k

Zin ;;'100 kn
tr <1.0 ns
1.0 "F

':LJt
Pulse Generator
t r , tf t;;;;; '.0 ns

100

-=

PW""1.0"s
Zin"" 50.n
DC<2.0%

341

MHQ3546 (SILICON)
MPQ3546

QUAD DUAL-IN-LiNE
PNP SILICON ANNULAR
SWITCHING TRANSISTORS

QUAD DUAL-IN-LiNE
PNPSILICON
SWITCHING TRANSISTOR

· .. designed for low-level, high-speed switching applications.
•

Choice of Ceramic or Plastic Package

•

High Current·Gain-Bandwidth Product fT = 1000 MHz (TVp) @ IC = 10 mAdc

•

Fast Switching Times
ton = 15 ns (TVp)
toff = 25 ns (TVp)

CONNECTION DIAGRAM

•

Transistor Similar to 2N3546

•

TO-116 Packaging - Compact Size Compatible With IC
Automatic I nsertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

12

Vdc

Collector-Base Voltage

VeB

15

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

Ie

200

mAde

Collector-Emitter Voltage

Collector Current

Continuous

Each
Transistor
Total Device Oissipation@TA=2SoC

Derate above 2SoC

Po

MHQ3546
MP03546

Operating and Storage Junction MH03546
Temperature Range
MP03546

TJ,Ts'g

Total
Device

0.5

1.5

Watts

2.86
4.0

8.58
12

mwf'e

ue

-65 '0 +200
-55'0 +150

.,

MHQ3546

.S1

~
4·

CERAMIC
CASE 632-02
TO-116

7~

,

-11-0

F

MP03546
CASE 646

PLASTIC PACKAGE

MILLIMETERS
MIN
MAX
19.9
7.11
C
5.08
0
0.381 0.584
F
0.77
1.77
2.54BSC
G
J
0.203 0.381
K
2.54
7.62 BSC
L
M
- 15"
0.76
N 0.51
p
8.25

DIM

A 16.8
B 5.59

NOTE$:

1. lEADS WITHIN 0.13 mm
(0.005) RADIUS OF TRUE

POSITION AT SEATING
PLANE AT MAXIMUM

INCHES
MI.
MAX

0.785
0.280
0.200
0.015 0.023
0.030 0.070
0.1008SC
O.oIUl 0.015
0.100
0.300BSC
15"
0.020 0.030
- 0.325

0.660
0.220

-

AIIJEOEC dimensionsand notes apply.
2. DIMENSION "L" TO
CENTER OF LEADS

WHEN FORMED
PARALLEL

NOTE·
DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEL

MATERIAL CONDITION.

342

MH03546, MP03546 (continued)
ELECTRICAL CHARACTERISTICS IT A

=

250 C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage(l)
(lC = 10 mAde,lB = 0)

BVCEO

12

-

-

Vdc

Collector-Base Breakdown Voltage
(lC = 10 I'Ade, IE = 0)

BVCBO

15

-

-

Vdc

Emitter-Base Breakdown Voltage

BVEBO

4.5

-

-

Vdc

ICBO

-

-

0.1

I'Ade

lEBO

-

-

0.1

I'Ade

Characteristic
OFF CHARACTERISTICS

(IE

= 10 I'Ade, Ie = 0)

Colieetor Cutoff Current
(VCB

= 10 Vde,

IE

= 0)

Emitter Cutoff Current
(VBE = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
De eurrent Gain( 1)

-

hFE

(lC

= 10 mAde, VCE = 1.0 Vde)

30

-

(lC

= 100 mAde,

15

-

VCE(sat)

-

-

0.25

Vde

VBE(sat)

-

-

0.9

Vde

fT

600

1000

-

MHz

eob

-

2.0

6.0

pF

Cib

-

3.5

8.0

pF

Turn-On Time
(Vee = 2.0 Vde, VBE(off) = 3.0 Vde,
Ie = 30 mAde, IBI = 1.5 mAde)

ton

-

15

-

ns

Turn-Off Time
(Vee = 2.0 Vde, Ie = 30 mAde,
IBI = IB2 = 1.5 mAde)

toft

-

25

-

ns

VeE

= 1.0 Vde)

Collector-Emitter Saturation Voltage
(IC

= 10

mAde, IB

= 1.0 mAde)

Base-Emitter Saturation Voltage
(Ie

= 10 mAde,lS = 1.0 mAde)

-

DYNAMIC CHARACTERISTICS
Current-Galn-Bandwidth Product(1)

(Ie

= 10 mAde,

VeE

Output Capacitance
(VeB = 10 Vde, IE

= 10 Vde, f = 100 MHz)

= 0, f = 1.0 MHz)

Input Capacitance
(VBE

= 0.5 Vde,

IC

= 0, f = 1.0 MHz)

SWITCHING CHARACTERISTICS (F,gure 1)

(1)Pulse Test

Pulse W1dth

~ 300 jJs, Duty Cycle = 2%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

VBB

-2.0 V

....Vin:P

'""1

...OVout·

PU LSE WIDTH> 200 ns
RISE TIME < 1.0 ns
Zin=50~!

_L

'T' c, .: 10 pF

I
-b
"'Oscilloscope Rise Time~;' 1 0 ns

343

ton. VBB = +3.0 V, Vin = -7.0 Vdc
toff. VBB = -4.0 V, V," = +6.0 Vdc

MHQ3798 (SILICON)
MHQ3799

QUAD DUAL-IN-LlNE
PNP HERMETIC SILICON ANNULAR
AMPLIFIER TRANSISTORS

QUAD DUAL-IN-LlNE
PNPSILICON
AMPLIFIER TRANSISTORS

· .. designed for low·level, low·noise amplifier applications.
• Low DC Current Gain Specified - 10 !lAdc to 10 mAdc
hFE = 150 (Min) @ IC = 500 MAdc - MH03798
= 300 (Min) @ IC = 500 !lAdc - MH03799
• Low Capacitance Cob = 2.3 pF (Typ) @ VCB = 5.0 Vdc
• Low Noise Figure - NF = 2.5dB (Typ) @ IC = 100 !lAdc
• Transistors Similar to 2N3798 and 2N3799
• TD·116 Ceramic Packaging - Compact Size Compatible With IC
Automatic I ns..rtion Equipment

MAXIMUM RATINGS
flating
Collector-Emmer Voltage

Symbol

MHC3798

VCEO

40

MHC3799

Unit

60

Vdc

I

Collector-Base Voltage

VCB

60

Emitter-Base Voltage

VEB

5.0

Vdc

IC

50

mAde

Collector Current - Continuous

Vdc

Each
Transistor

Total
Device

Total Device Dlssipatlon@TA = 25°C
Derate above 25°C

PD

0.5
2.B6

1.5
8.58

Watts
mW/oC

Total Device Dlssipation@Tc=250C
Derate above 25°C

PD

1.0
5.71

3.5
20

Watts
mW/oC

Operating and Storage Junction
Temperature Range

T J.T stg

-65 to +200

CASE 632-02

°c

TO-11S

r--

A

-t_.l CJ

_

J

CONNECTION DIAGRAM

...lc'

Hi-...lGi-

'K'.:i J~\--

SEATING
PLANE

INCHES
MILLIMETERS
MAX
MIN
MAX
MIN
19.9
0.660 0.785
16.8
B
5.59
7.11 0.220 0.280
0.200
5.08
e
0
0.381 0.584 0.015 0.023
0.77
1.77
0.030 0.070
F
0.1008se
2.54BSe
G
J
0.203 0.381 0.008 0.015
K
2.54
0.100
0.3008Se
L
7.628se
M
15°
15°
0.76
0.030
N 0.51
0.020
8.25
0.325
P

DIM
A

AIIJEOEC dimensiansand nates apply.
NOTE

DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARAllEL

344

,

-:Tl ,II :
~II~II

MH03798, MH03799 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(1,
(lc = 10 mAde, IB = 0)

Vde

BVCEO

-

BVCBO

40
60
60

BVEBO

5.0

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)

ICBO

Emitter Cutoff Current
(VBE = 3.0 Vde, I C = 0)

lEBO

MHQ3798
MHQ3799

Collector-Base Breakdown Voltage

-

-

Vde

-

-

Vde

-

-

10

nAdc

-

-

20

nAdc

.100
225

-

150
300
150
300
125
250

-

-

-

-

0.2
0.25

-

-

0.7
0.8

IT

-

130

-

MHz

Cob

-

2.3

-

pF

Cib

-

5.5

-

pF

-

2.5

-

1.5

-

(lC = 10 !lAde, IE = 0)
Emitter-Base Breakdown Voltage

(IE = 10 !lAde, IC = 0)

ON CHARACTERISTICS
OC Current Gain(1)
(IC = 10 !lAde, VCE = 5.0 Vde)
(lc = 100 !lAde, VCE = 5.0 Vde)
(lC = 500 !lAde, VCE = 5.0 Vde)
(lC = 10 mAde, VCE = 5.0 Vde)

hFE

MHQ3798
MHQ3799
MH03798
MH03799
MH03798
MH03799
MH03798
MH03799

Collector-Emitter Saturation Voltage

-

Vde

VCE(sat)

(lC = 100 !lAde, IB = 10 !lAde)
(lC = 1.0 mAde, IB = 100!l Ade)
Base-Emitter Saturation Voltage

Vde

VBE(sat)

(lC= 100 !lAde, IB= 10 !lAde)
(lC = 1.0 mAde, I B = 100/lAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 mAde, VCE = 5.0 Vde, I = 100 MHz)
Output Capacitance

IVCB = 5.0 Vde, IE = 0, I = 100 kHz)
I nput Capacitance

NBE = 0.5 Vde, IC = 0, 1= 100 kHz)
Noise Figure

IIC = 100 /lAde, VCE = 10 Vde, RS = 3.0 k Ohms,
1= 10 Hz to 15.7 kHz)

NF
MH03798
MHQ3799

(, )Pulse Test: Pulse Width'S 300 p.s, Duty Cycle"" 2%.

345

dB

MHQ4001A (SILICON)
MHQ4002A

QUAD DUAL·IN·LlNE'
NPN HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS
QUAD DUAL·IN·LlNE
NPN SILICON
MEMORY DRIVER
TRANSISTORS

· .. designed for high current, high speed switching, ferrite core and
plated wire memory driver, and MOS translator applications.
•

Fast Switching Timeston = 40 ns (Max)
toff = 75 ns (Max)

•

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.95 Vdc (Max) @ IC = 1.0 Adc

• DC Current Gain Specified 100 mAdc to 1.0 Adc
• Transistors Similar to 2N3725
• TO·116 Ceramic Package - Compact Size Compatible
with IC Automatic Insertion Equipment

MAXIMUM RATINGS
Rating

Symbol

MHO
4001A

MHO
4002A

Unit

Collector-Emitter Voltage

VCEO

40

45

Vdc

Collector-Emitter Voltage

VCES

60

70

Vdc

60

70

Vdc

Collector-Base Volt ~ge

VCB

Emitter-Base Voltage

VEe

6.0

Vdc

IC

1.5

Adc

Collector Current - Continuous

Each
Transistor

Q
4

,

-lI--oJ

~
8 P

't:J
F

Four

Transistors
Equal Power

Total PO\M!f Dissipation@ T A = 25°C

Po

750
4.3

2500
14.3

mW
mW/oC

Po

1.2
6.86

4.0
22.8

Watts
mW/oC

Derate above 25°C
Total Power Dissipation @ T C = 25°C
D~rate above 2SoC
Operating and Storage Junction

TJ,Tstg

-55 to +200

°c

Temperature Range

MilLIMETERS
DIM

MIN

MAX

A 16.8
8
5.59

CONNECTION DIAGRAM

e

o

F
G
J
K
L

19.9
7.11
5.08
0.381 0.584
0.77
1.77
1.54 ase
0.103 0.381
1.54
7.61 asc

M

N
P

150

0.51

0.76
8.25

NOTE
DIMENSION "L" TO CENTER OF
LEA OS WHEN FORMEO PARALLEL.

CASE 632.()2
TO·116
All JEDEC dimeoslOnsand notes appl'l.

346

MHQ4001A,MHQ4002A (continued)

ELECTRICAL CHARACTERISTICS

(T A

= 25°C unless otherwise noted)
Symbol

Characteristic

Collector-Emitter Breakdown Voltage (1)
(lC

= 10 mAde,lB = 0)
= 10 I'Ade,

VSE

= 0)

= 10 I'Ade,

Ie

= 0)

= 10 I'Ade,

IC

MH04001A
MH04002A

-

-

-

-

60
70

-

-

-

60
70

-

-

6.0

-

-

-

-

500

50
30
20

100
60
45

250

-

0.14
0.23
0.36

0.26
0.52
0.95

-

0.75
0.88
1.0

0.86
1.1
1.7

200

275

-

-

5.0

10

-

55

70

-

30

40

-

60

75

Vde

Vde

Vde

ICBO

= 30 Vde, Ie = 0)

Unit

Vde

SVeso

= 0)

Collector Cutoff Current
(VCS

40
45

SVCSO

Emitter-Base Breakdown Voltage
(Ie

Max

SVCES

MHQ4001A
MH04002A

Collector-Base Breakdown Voltage
(lC

Typ

BVCEO

MHQ4001A
MHQ4002A

Collector-Emitter Breakdown Voltage
(lC

Min

nAde

ON CHARACTERISTICS (1)

DC Current Gain
(lC
(IC
(lC

Collector-Emitter Saturation Voltage
(lC
(lC
(lC

= 100 mAde,
= 500 mAde,

= 1.0 Ade,

IS

IS
IS

VCe(s.t)

= 10 mAde)
= 50 mAde)

= 100 mAde)

Base-Emitter Saturation Voltage
(lC
(IC
(lC

-

hFe

= 100 mAde, Vce = 1.0 Vde)
= 500 mAde, Vce = 1.0 Vde)
= 1.0 Ade, VCE = 5.0 Vde)

VSe(s.t)

= 100 mAde, IS = 10 mAde)
= 500 mAde, IS = 50 mAde)
= 1.0 Ade, IS = 100 mAde)

Vde

Vde
0.8

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(IC = 50 mAde, Vce = 10 Vde, 1= 100 MHz)

Output Capacitance
(VCB

pF

Cob

= 10 Vde, Ie = 0, I = 100 kHz)

Input Capacitance
(Vse = 0.5 Vde, IC

MHz

IT

Cib

= 0, I = 100 kHz)

pF

SWITCHING CHARACTERISTICS (F,gure 1)

Turn-On Time
(VCC = 30 Vde, IC

= 0.5 Ade, VSE(off) = 3.8 Vde,

ton
lSI = 50 mAde)

Turn-Off Time
(VCC

toff

= 30 Vde, IC = 0.5 Ade, IS 1 = IB2 = 50 mAde)

ns
ns

(11 Pulse Test: Pulse Width ';;300 I'S, Duty Cycle';; 2.0%

FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT

~

1.0"F

~~L;;~~NERAToTf----....

100

43
15
,.-;:::>.--J\IIIV------""""M~-<>+30V

-J\II".,.--t-l

tr, tf'" 1.0 ns
PW"", 1.0,l.ls
Zin" 50ll
Duty Cycle = 2.0%

62

_
-

SAMPLING

TO
OSCILLOSCOPE

1.0 k

2m~

100kH
tr<1.0 ns

-3.BV

347

MHQ4013
MHQ4014

(SILICON)

QUAD DUAL-IN-L1NE
NPN HERMETIC SILICON ANNULAR
MEMORY DRIVER TRANSISTORS

QUAD DUAL-IN-L1NE
NPN SILICON
MEMORY DRIVER
TRANSISTORS

· .. designed for high current. high speed switching, ferrite core and
plated wire memory driver, and MOS translator applications.
•

•

Fast Switching Times ton = 35 ns (Max)
toff = 60 ns (Max)
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.95 Vdc (Max) @ IC = 1.0 Adc

•

DC Current Gain Specified 100 mAdc to 1.0 Adc

•

Transistors Similar to 2N3725

• TO·116 Ceramic Package - Compact Size Compatible with IC
Automatic Insertion Equipment
MAXIMUM RATINGS
Symbol

MHQ4013

MHQ4014

Unit

Collector·E mitter Voltage

VeEO

40

45

Vdc

Collector·Emltter Voltage

VeES

60

70

Vdc

Collector-Base Voltage

Vee

60

70

Vdc

Emitter-Base Voltage

VEe

6.0

Vdc

Ie

1.5

Adc

Rating

Collector Current - Continuous

Four
Each

Transistor
Total Power Dissipation
Derate above 2SoC

@

TA == 2SoC

Total Power Dissipation @TC'" 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range

Po
Po
TJ,T stg

Transistors
Equal Power
2500
14.3

mW
mw/oe

1.2
6.86

4.0
22.8

Watts
mw/oe

-55 to +200

4

7~

1

4.3

750

Q .S1
-R-oJ

F

°e

CONNECTION DIAGRAM
MILLIMETERS
DIM MIN
MAX
A IS.8
19.9
B
7.11
5.59
C
5.08
D
0.381 0.584
F
0.77
1.77
2.54 Bse
G
J
0.203 0.381
K
2.54
L
7.S28SC
M
15'
N
0.51
0.76
P
8.25

INCHES

MIN
O.SSO
0.220

MAX
0.785
0.280
0.200
0.015 0.023
0.030 0.070
0.100 BSC
0.008 0.015
0.100
0.300 BSC
15'
0.020 0.030
0.325

-

AIIJEOEC rlimenSlonsand notes apply.

NOTE.
DIMENSION "'L"' TO CENTER OF
LEADS WHEN FORMED PARALLEl.
CASE 632.()2
TO·116

348

MHQ4013, MHQ4014 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)

I

I

Characteristic

Symbol

Min

Typ

Max

40
45

-

-

-

60
70

-

-

-

-

60
70

-

-

Unit

OFF CHARACTERISTICS
Collector-E mitter Breakdown Voltage (1)

(IC = 10 mAde, 18

MHQ4013
MHQ4014

Collector-Emitter Breakdown Voltage
(lc

Vde

SVCES

= 1OI'Ade, VBE = 0)

MHQ4013
MHQ4014

Collector-Base Breakdown Voltage
(lC = 10l'Ade,IE = 0)

Vde

SVCBO
MHQ4013
MHQ4014

Emitter-Base Breakdown Voltage
(IE

Vde

SVCEO

= 0)

SVESO

6.0

-

Vde

500

nAdc

= 10 I'Ade,lc = 0)

Collector Cutoff Current
(VCS

= 50

ICBO

= 0)

Vde, IE

ON CHARACTERISTICS (1)

DC Current Gain
(lc
(lC
(lC

Collector-Emitter Saturation Voltage
(lC
(lc
(lc

60
35
25

100
65
50

250

-

0.14
0.23
0.36

0.26
0.52
0.95

-

0.75
0.88
1.0

0.86
1.1
1.7

fT

200

275

-

MHz

Cob

-

5.0

10

pF

Cib

-

50

70

pF

ton

-

20

35

ns

toff

-

50

60

ns

-

Vde

VCE(sat)

= 100 mAde, IS = 10 mAde)
= 500 mAde, IS = 50 mAde)
= 1.0 Ade, IS = 100 mAde)

-

Base-Emitter Saturation Voltage
(IC
(lC
(lC

-

hFE

= 100 mAde, VCE = 1.0 Vde)
= 500 mAde, VCE = 1.0 Vde)
= 1.0 Ade, VCE = 5.0 Vde)

Vde

VSE(sat)

= 100 mAde, IS = 10 mAde)
= 500 mAde, I B = 50 mAde)
= 1.0Ade,IS = 100 mAde)

0.8

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, f = 100 MHz)

Output Capacitance
(VCS

= 10 Vde, IE = 0, f = 100 kHz)

Input Capacitance
(VSE

= 0.5

Vde, IC

= 0, f = 100 kHz)

SWITCHING CHARACTERISTICS
Turn..on Time

IC

= 0.5 Ade,

VSE(off)

Turn-Off Time
(VCC = 30 Vde, IC

= 0.5 Ade,

IBI

(VCC

= 30 Vde,

= 3.8 Vde,

lSI

= 50 mAde)

= IS2 = 50 mAde)

(1) Pulse Test: Pulse Width ';;;300 I'S, Duty Cycle ';;;2.0%.

FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT

JL

10llF

100

43
15
r.:::><--~

o

1.0:1
500

480

-410MHz

40

/

S

10

~

ffi
so

8.0

~

t-

~ 6.0
t-

::>

0

~

20

440 to 410 MHz
Pin set for 7.5W
Pout at 12.5 V

~

4.0

2.0
10

11

--------12

13

v---- i

Pin'IOOmW
V,, 12.5 V

16

ffi

12

~I-

440M./"

~ 8.0
t-

::>
0

~

,e

14

4.0

o
o

15

!/

6.0

Pin'" l00mW
V,, 12.5V

Q:'

0.20

~

o

'"
!Z
8

440 MHz

./

0.15

~
'"::>'"
'-'

0.10

~

0.05

A

~

~

........-:::::~
~HZ

z

j

o
o

9.0

9.0

S.O

3.0
V,~

GAIN CONTROL VOLTAGE (VOLTS)

359

12

,...

12

Vsc, GAIN CONTROL VOLTAGE (VOLTS)

FIGURE 5 - GAIN CONTROL CURRENT versus VOLTAGE

!

".,- ~
~OMHZ

//

3.0

V, VOLTAGE (V,, Vsc)

0.25

140

FIGURE 4 - QUTPUT POWER v.....u. GAIN
CONTROL VOLTAGE

FIGURE 3 - OUTPUT POWER versus VOLTAGE
12

120

100
80
Pin,lNPUT POWER (mW)

60

f, FREQUENCY (MHz)

15

15

MHW709 (continued)

UH F Power Module Test Information

FIGURE 1 - TEST CIRCUIT

FIGURE 2 - UHF POWER MODULE TEST FIXTURE
PRINTEO CIRCUIT BOARD
~--------~~-----------4" ----------------------~

Teflon Glass Board
t = 0.062"
ER = 2.56

Mount Board and module on 1/2" thick aluminum block
for heat sinking and electrical ground. Pins 2, 4 and 6 are

PIN 3

PI N 7

not directly connected to ground in this test fixture.
Ground is provided through module heat sink.

FIGURE 3 - UHF POWER MODULE TEST SETUP

12.5 Vdc

125 Vdc

Signal

Generator

Z1, Z2
L 1, L2
el, C4

50.n Mlcrostrlpllne
Ferroxcube VK200-20J4B
1.0 ~F Tantalum 25 V

C2, C3

Rl

NOTE- No Internal D.C. blockmg on input pin.

360

0 1 /-IF Ceramic

100 Ohm Pot, 2W, Linear Taper

MHW710

The RF Line
UHF POWER MODULE
13 W,12.5 V
400·470 MHz

UHF POWER MODULE
· .. designed for Land Mobile Communications equipment in the
UHF band.
•

Frequency Range 400 to 470 MHz

•

Power Gain Gp = 19.4 dB (Min)

•

Output Power Pout = 13 W (Min)

ELECTRICA L CHARACTERISTICS \Vs and
Characteristic
Frequency Range (1)

Output Power

Vsc

set at 12 5 Vdc unless

otherWise

noted.}

Symbol

Min

Max

Unit

-

400

470

MHz

Pout

13

-

Watts

Gp

19.4

-

dB

~

35

-

%

-

-

-40

dB

Zoo

-

2 1

VSWR

-

-

03

dB

(Pin = 150 mWI
Power Gain

Efficiency

(Pout" 13 WI
Harmonics

(Pout::; 13 W, Reference)
Input Impedance

(Pout"" 13 W, 50 Ohm Reference)
Power Degradation

IP out " 13 W. TC" 25 0 CI
(T C " OOC to BOoCI
Power Degradation

-

-

-

No degradation

0.7

dB

(Pout = 13 W. TC " 25 0 CI
ITC "OoC to BOaC I
Load Mismatch
IVSWR = 00, Vs = 15 Vdc, Pout

=

In

Pout

13 WI

Stability

(Pin:: 50 to 200 mW, load Mismatch 2: 1
50 ohm reference, Vs = 8.0 to 16 Vdc,

-

All SpUriOUS outputs more than

70 dB below desired signal

Vsc adjusted for Pout = 5.0 to 16 W)

(11 Frequency Range is covered in two bands:
MHW710·1 400·440 MHz
MHW71Q.2 440·470 MHz

361

MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 67.06 67.56 2.640 2.660
8 52.32 52.83 2.060 2.080
C 8.51
8.89 0.335 0.350
E 2.54
2.79 0.100 0.110
F
2.67
2.92 0.105 0.115
61.09 SSC
2.405 SSC
G
H 47.88 48.64 1.885 1.915
10.67
11.18
0.420
0.440
J
7.62 0.230 0.300
K
5.84
L 45.34 46.10 1.785 1.815
N 40.26 41.02 1.585 1.615
n 3.45 3.71 0.136 0.146
R 20.32 20.57 0.800 0.810
S 17.02 17.53 0.670 0.690
3.24 0.1175 0.1275
T 2.98
U 12.32 13.08 0.485 0.515
V 9.78 10.54 0.385 0.415
5.46 0.185 0.215
W 4.70
2.92 0.085 0.115
X 2.16
CASE 700·02

MHW710 (continued)

TVPICAL PERFORMANCE CURVES
IMHW71G-2)

FIGURE 1 - INPUT POWER. EFFICIENCY AND
VSWR versus FREQUENCY

FIGURE 2 - OUTPUT POWER versus INPUT POWER
5

225

22.

Pout = 13 Witts

0 V.-V.. -12.5 V
~

in 20

VI"'"

..,

-'-

V

-

PiQ.......

~

F"'<

0

440

420

V

~

1

~

12.5

/'

5

/
/

61 0

I-"""

r-'

5

VszV~·'2.5V

S
! 17.5

I--i-'"

5

5 INPUT VSWR <2:1

r

'!SWR

fo'

460

7.

0

1

5

80

f. F,REOUEN,CY (MHz!

J

6

i...

~o_

.

~

f2

°v
0

/'

V

~

~

V

in

i

..,

~
....

16

12

~ 8.0

o
0

12
13
V. VOLTAGE (V,-VIC!

14

15

..,~
..,g;
....
..,....o

0.1 5

3.0

6.0
9.0
12
V... GAIN CONTROL VOLTAGE (VOLTS!

~~

B

0.1 O

z

:c

j

0.05

0

3.0

6.0
9.0
12
VIC. GAIN CONTROL VOLTAGE (VOLTS!

362

...

;;
V

~

p-

160

r~
V/
V

FIGURE 5 - GAIN CONTROL CURRENT versus VOL TAGE
0.25
Pin' 150 mW
V"12.5 V

i.5 0.20

140

/" ~

V,, 12.S V

0
11

100
120
Pin. INPUT POWER (mWl

o Pin' 150mW

440 to 470 MH,
,
Pin set for l3W
Pout at 12.5 V
Input VSWR < 2:1 for voltage
from 10 to 15 V.

4

V

FIGURE 4 - OUTPUT POWER versus GAIN
CONTROL VOLTAGE

FIGURE 3 - OUTPUT POWER versus VOLTAGE

18

47lMHZ

I--~

5fi

1

480

~

V/

1i

re

2.0:1

V

/'

V

~

15

15

MHW710 (continued)

UHF Power Module Test Information

FIGURE 1 - TEST CI RCUIT

FIGURE 2 - UHF POWER MOOULE TEST FIXTURE
PRINTED CIRCUIT BOARD

1-------

4 ..

-----l~1

!

u...:...:~~_p~..l....---~~~~l-..~~~ ~O

Teflon Glass Board
t'" 0.062"
ER"" 2.56

..

Mount Board and module on 1/2" thick aluminum block
for heat sinking and electrical ground. Pins 2, 4 and 6 are
PIN 7

not directly connected to ground In this test fixtur •.
Ground is provided through module heat sink.

FIGURE 3 - UHF POWER MODULE TEST SETUP

50 Ohm

Lo""

Signa'
Generator

Z " Z2

50 n MicfO$tnpline

L " l2

Ferroxt:ube VK2OQ-20/48

C1. C4

1.0"F Tantalum 25 V

C2. C3
R1

NOTE: No Internel D.c. blocking on inpllt pin.

363

0.1 #IF Ceramic
100 Ohm Pot, 2 W. linear Taper

MJ105 (SILICON)
BU105

HORIZONTAL DEFLECTION SILICON
TRANSISTORS

2.5 AMPERE

· .. designed for use in line operated black and white (19 and 20 inch
1100 deflection circuits) or color (11 and 14 inch 900 deflection
circuits) television receivers.
•

High Collector· Emitter Volt~ge VCER (Peak) = 1400 Vdc ';'·MJl05.
= 1500 Vdc --' Bl;lJ,05' :

•

Collector· Emitter Saturation Voltage.:':;
VCE(sat) = 5.0 Vdc (Max) @ IC =2:5 Adc

•

Fall Time @ IC = 2.0 Adc tf = 0.5 lIS (Typ)
= 1.0 I1s (Max)

POWER TRANSISTORS
NPN SILICON
1400,1500 VOLTS
10 WATTS

", ....

....

MAXIMUM RATINGS
Symbol

Rating

MJ105

Collector-Emitter Voltage

VCEO

Collector-Emmer Voltage - Contmuous
(ABE = 100 nl
Peak

veER

750
1400

veB

750
1400

Collector-Base Voltage _ Continuous
Peak

Unit·

BU10S

750

I
I

Vdc

750
1500

v

750
1500

v

Emitter-Base Voltage

5.0

Vdc

Collector Current - Continuous

2S

Adc

25

Adc

'B

Base Current - POSitive
Negative

15
10

Total Device DISSipation @ TC '" gOOe
Derate above gooe

0.4

Operating and Storage Junction Temperature
Range

TJ,Tstg

-65to+115

THERMAL CHARACTERISTICS
O1aract,rlstic
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherWise noted}
t

OIaractaristic

Symbol'

Min

BVCEO(sus)

750

TVO

Max

Umt

OFF CHARACTERISTICS

Collector-Emitter Sustalnmg Voltage (1)
lie'" 100mAdc,IB"'O)
Collector Cutoff Current
(VCE = 1400 Vdc, VBe '" 0)

MJ105

(VCE = 1500 Vdc, VBe = 0)

BU10S

Emitter-Base Voltage
(IE = 100 mAdc, Ie

Vdc
mAde

ICES

'" O)

1.0
10
.BVEBO .

5.0

DIM
Vdc

ON CHARACTERISTICS

Collector-Emitter Saturation Voltage
(lC = 2.5 Adc, Ie = 1.5 Adc).
Base-Emitter Saturation Voltage
(lC"" 2.5 Adc, 'B '" 1.5 Adcl
DYNAMIC CHARACTERISTICS
Current-Gam-Bandwidth Product (2)
lie = 0 1 Adc, VCE = 5.0 Vdc, f test '" 1.0MHz)
Output Capacitance
(VCB = 10Vdc, Ie =0, f = 01 MHz)

SWITCHING CHARACTERISTICS (Figure 1 and text)
Fall TIffi8
UC=2.0 Adc,'Bl = 1.5 Adc, LB=12J.1H,
AS = 2.5, Non-opttmum values to comply
with aUl05 specification)
11 Pulse Test· Pulse Width 300 j.ls, Duty Cycle ~2.0%"
(2) fT = !hf.l.ft8St

364

MILLlMHERS
MIN MAX

INCHES
MAX
MIN

39.37
A
21.08
B
7.62 0.250
C 6.35
1.09 0.039
D 0.99
3.43
E
30.40 1.177
F 29.90
11.18 0.420
G 10.67
5.59 0.210
H 5. 3
J 16.64 17.15 0.655
12.19 0.440
K 11.18
Q
4.09 0.151
3.84
26.67
R
NOTE:
1. DIM "0" IS OIA.
CASE" ,

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ105, BU105 (continued)

CIRCUIT OPTIMIZATION
Test/application circuit and operating waveforms for BU1051
MJ105 are shown in Figure 1. It may be used to evaluate devices
in the conventional manner, i.e., to measure fall time, storage time,
and saturation voltage. However, the circuit was designed with operating effiCiency in mind, so that it could be used to evaluate devices

can be caused by a variety of problems. but it is the dissipation itself
that is of fundamental importance. Once the transistor operating
point has been established, fixed circuit values may be selected
for the test fixture. Factory testing may then be made with one

meter reading, without adjustment of the test apparatus.

by one simple criterion, supply power input. E>eC8ssive power input

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS
+ 50 Vd,
I.B k

Ly

La

Tl==

Cs
1.0.F

600 Vd,

40
.F
200
Vd,

RB

BASE CIRCUIT VALUES

Switching Test
Optimum

RB
2.5
7.0

LB

12.0
15.0

DESCRIPTION OF SPECIAL COMPONENTS
DRIVER
INPUT
SIGNAL

IB

-5.0V

to

-28.,- 1---35.,-

DUMMY YOKE INDUCTOR (Lyl

r---

2.0 mH, 52.5 turns, #16 AWe;, enamel wire 15 turns per layer,
3.5 layers on 1.376 Inch diameter bobbin, enclosed In a Ferroxcube,
cup core K535221-B2A, With a 0.687 Inch diameter core, with

I Bl

1,-

v.:

-

r-90%

IC

VCE

VBE

to
to

0.003 inch core gap. Use a nylon bolt and nut to hold cup halves
together.

r

DUMMY HIGH VOLTAGE AND HORIZONTAL SCAN
TRANSFORMER (LFI
5.5 mH, 121 turns, #20 AWG enamel wire 33 turns per layer,
3.6 layers 1 mil mylar Insulation between layers wound on 1 leg
of Allen Bradley 0.5 Inch square Fernte "u" core (21·W03 material
with 0.007 Inch gap in each leg. Core halves held together with
plastic.

ICM

-If

VCEM

q

DRIVER TRANSFORMER (nl
Motorola part number 25D68782A05-1/4" laminate "E" iron
core. Primary Inductance - 39 mH, Secondary Inductance 0.22 mH, leakage .inductance with primary shorted· 2.0 IlH. Pri·
mary 260 turns, 1128 AWe;, enamel wire, Secondary 17 turns,
#22 AWG enamel wire.

It

--l

I,

~

BASIC CONSIDERATIONS.
The primary consideration when choosing a deflection tra(lslstor
for a conventional (parallel connected) circuit, as shown in Figure
1, IS one of voltage capabIlity. The flyback voltage to which the
deVice will be subj.ect~d is a relati.vely predictable value with
respect to the main power supply voltage. This voltage pulse,
shown in Figure 1, will usually be about 8 times the value of V+,
but may be varied somewhat by adjusting retrace time and fly back
tuning. For this reason these high voltage devices are particularly
useful in cost conscious solid state receivers, as they permit the

to
FUNDAMENTAL WAVEFORMS OF A SIMPLIFIED
HORIZONTAL DEFLECTION CIRCUIT

use of an off-lhe-line half wave power supply.

365

MJ105/BU105 (continued)

COLLECTOR CIRCUIT VALUES
The power supply ul8d in the circuit of Figure I, _ chosen
to produce a 1000 volt collector pulse on the transistor, a' conserva·
tive value, recommended for unregulated applications. The values
of yoke (LVI, flybeck primary (LFI, retrace capecitor (CRI, and
"s" shaping capacitor (CsI shown, will result in a peak collector
current of 'about 2.0 A. This is sufficient to deflect (and provide
high voltage forI large screen' 110" black and white or smell 90"
color receivers. Peak collector currents to 2.5 A ma-" be handled
by the SUI05/MJI05. Holding the supply constant for most effi·
cient application. adjustment of amountofdaflection may be made
by raising or lowering LV and LF. Remember that LV IV is constant
for tho fixed voltage situatio,n. and actual daflection is proportional
to IV
VaiuBS of Cs and CR must be varied inversely with
LV to meintein retrace and "5" shaping periods.

FIGURE 3-INTERRELATION OF RB, LB. AND la1
50

2.5

~

.",

l\ "'
\
\

0

~

.JLY.

FIGURE 2 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IBI. IC· 2.0 A PEAK

:::: ~ ~27
~

~

'"

~

!a
/38

6.0

0.5

/..

20
k::;,;; ~7.6
15

1.0

1

-.........

-"La- t-Ra- t--

1.5
2.0
ICM,COLLECTOR CURRENT lAMP)

o

3.0

2.5

FIGURE 4 - INTERRELATION OF tf. FALL TIME
AND t l • STORAGE TIME
5.0

4.0

4.0

0

2.0

o

,......,

LS/2.0pH

i

~

~181

~~

"....V ......... t--

0

0

~ 8.0

"

0

1

0.2

0.4

0.6
0.8
1.0
1.2
lal. SASE·CURRENT lAMP)

1.4

1.6

1.8

2.0

's- t--

V-

/

"-"

V

t--

.: 2.0

BASE CIRCUIT VALUES
The driver power supply and driver transistor type ~n be
selected according to convenience. A TO-5 or Uniwatt type will
generally 'be 'needed. Once this is done, the turns ratio of the

1.0

driver transformer can be picked to produce about 4 to 5 volts

o

peak to peak at the base of the output dowice. Tight coupling be·

0.5

1.0

tween windings is recommended on early deSigns to allow optimizing

'1- c--

V

......

1.5
2.0,
ICM, COLLECTOR CURRENT lAMP)

2.S

3.0

I..kage inductance by adding inductance externally. Later, tho leakage can be "designed in" to the transformer. The R8 and its bypess

electrolytic. often called the "speed up" circuit f allows adjustment
of lSI lor IS "end of scan" or IS endl while still providing a low
ac impedance for good turn..,ff of the output device. In Figure 2,
the effects of varying LB and 'lSI on the total power input to the
daflection, circuit are "shown. Note that an optimum LS can be
found which will produce low dissipetion over a wide range of IS 1.

FIGURE 5 - PIN. POWER DISSIPATION, WITH DEVIATIONS
OF VCEM AND ICM

a.0

This is desirable in order to produce efficient operation oyer a wide

.,so

range of circuit component tolerances. Likewise, be.~ LS
Qives
the least sensitivity to output transistor hFE.
.
.
Tho best value of LB found in Figure 2 is 15 pH. Remember
that this is the sum of the actual leakage- inductance of the trans·
former (secondary inductance with primary shorted> and an ex·
ternal L, if necessary. Tho boist value of IS1 is 0.8 A achieved'in
the typical device by using R8 = 7 n, derived experimentelly.
These are the choices recommended, for the test fixture, when
the transistor is used at leM = 2.0 A. Fo'r other values""f ICM ,tie
drive circuit, components must be· changed. Figura 3 showS the
velues of LS and lSI wh"ich should be used.
'
The value of RS which will be required to produce the IS1 is
also given. but of course, it is not an independent variable.

ll00~IOOOV

7.0

VCEM

~ 6.0

~
'"

4.0

~

3.0

~

2.0

z

~v

5.0

~

~

:LI

V 900 V

/.

~~

0

V-

1.0

PERFORMANCE
~~own in Figures 4 and 5 are the results which will be typically
obtained with the test circuit at various operating conditions. _

0
0.5

366

1.0

1.5
2.0
,ICM, CO~LECTOIt ~URRENT (AMP)

2.5

3.0

MJ105. BU105 (continued)

TYPICAL TRANSISTOR CHARACTERISTICS

FIGURE 1 - DC CURRENT GAIN
20

II
TJ -IOOoC

z

~
....
z
~

'"
i3

~

0

j.f

FIGURE 2 - "ON" VOLTAGES
5.0

V

7.0",", "2'5oc

-

~

II

4.0

1i)-IOOoc ...

ill

0

II

I\,

\.

5. 0

\\

3. 0

11
VBE(..t)" Ic/lB = 2.0

I.0

1\
0.05

0.1

02 0.3
0.5
1.0
IC. COLLECTOR CURRENT (AMP)

~51J

I!I"?C

\

2.0

2.0

0
0.03

3.0

25JC ...

·1

VCEloat)t!lIc!IB-2.0

0

_\

~

0.03

II

VCIE =J.OV

FIGURE 3 - SAFE OPERATING AREA

0.05

0.1

J

W

'

'{l

~

0.2 0.3
0.5
1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0

FIGURE 4 - COLLECTOR CUTOFF CURRENT
1000

l....
~
'"

'"
i3

......

~

'"

~

50O~ !=BUI05 - VCB =1500 VOLTS
I- MJI05 - VCB = 1400 VOLTS
300

r--

200
100

0

:l
o

30

~

0

..,

~

-

"

I0

o

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

367

20

40
60
TJ. TEMPERATU RE (DC)

BO

100

MJ400 (SILICON)
High-voltage NPN silicon transistor designed for video
output circuitry in color television receivers.

o
CASE 80

PIN 1. BASE
2 EMITTER

(TO·66)
Collector connected to case

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

325

Vdc

Collector-Base Voltage

VCB

350

Vdc

Emitter-Base Voltage

V EB

5

Vdc

250

mAde

Colleci:or- Emitter Voltage

,

Collector Current-Continuous

IC

Peak

1000

Base Current

Is

Total Device Dissipation @ TA = 25°C

PD.

Derate above 25°C

200

mAde

2.5

Watts
wjOc

0.0167

Total Device Dissipation @ TC = 75°C

PD

Operating and storage Junction
Temperature Range

0.067

Watts
wjOc

-65 to +175

°c

6.67

Derate above 75°C
. T J , Tstg

THERMAL CHARACTERISTICS

Symbol

Max

Unit

Thermal ReSistance, Junction to Case

8JC

15

°cjw

Thermal ReSistance, Case to Ambient

8CA

60

°cjw

Characteristic

FIGURE 1- POWER·TEMPERATURE DERATING CURVE
10

;

~

~

8.0

.............
......... Te, CASE TEMPERATURE

~ 6.0

~
~
Q

ieE

4.0

2.0

.............
.............

-

............

............

TA. AMBIENT TEMPERATURE

i"-.....

I

o

25

50

75

100
TEMPERATURE (OC)

368

125

150

:::--.....
175

MJ400 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted I

Symbol

Characteristic

. Min

Max

Unit

-

Vde

-

Vde

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
(IC '1.0 mAde. I H • 0)

HVCEO(sUB)

Collector-Base Breakdown Voltage
(IC • 0.1 mAde, IE • 0)

HVCHO

Emitter-Base Breakdown Voltage
(IE' O. 1 mAde, IC • 0)

HV EHO

325
350
5.0

ICEO

Collector Cutoff Current
(VCE' 325 Vde,
0)

Is'

Vde
mAde

-

1.0

30

300

ON CHARACTERISTICS
DC Current Gain

hFE

(IC • 50 mAde, VCE • 10 Vde)

Vde

Collector-Emitter Saturation Voltage
(IC • 50 mAde,
5 mAde)

VCE(B.t)

-

5.0

Base-Emitter On Voltage
(IC • 50 mAde, VCE • 10 Vde)

VHE(on)

-

1.0

15

-

-

10

25

-

Is •

Vde

SMALL SIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC' 50 mAde, VCE ' 25 Vde, f-1O MHz)

fT

Output Capacitance

Cob

(VCH • 20 Vde, IE' 0, f· 100 kHz)
Small Signal Current Gain
50 mAde, VCE • 10 Vde, f • 1 kHz)

hf.

(Ie •

MHz
pF

-

(11 Pulse Test: PW " 300 ~s. duty cycle '" 2%

FIGURE 2- CURRENT GAIN CHARACTERISTICS
100

VeE 10V
Te 25'C

70
50

V

-

r- T;=2~'C

20

~

i"'"

FIGURE 3- OUTPUT CAPACITANCE
30

h,.@lkHz

h"

r-- l -

t'--...
~
tl
z:

5if:

10

........

'"

r--- ......

5 7.0

C;'

...........

20
5.0

3.0

10

1.0

2.0

3.0

5.0 7.0

10

20

30

50

70

1.0

100

2.0

3.0

5.0

7.0

10

20

REVERSE VOlTAGE (VOLTS)

Ie. COLLECTOR CURRENT ImAdel

369

30

50

70

100

MJ41 0(SILICON)
MJ411

HIGH VOLTAGE NPN SILICON TRANSISTORS
. designed for medium to high voltage Inverters, converters,
regulators and switching circuits.
•

•
•

High Coliector·Emitter Voltage VCEO = 200 Volts - MJ410
300 Volts - MJ411

5 AMPERE
POWER TRANSISTORS
NPN SILICON
200-300 VOLTS
100 WATTS

DC Cllrrent Gain Specified @ 1.0 and 2.5 Adc
Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.8 Vdc @ IC = 1.0 Adc

MAXIMUM RATINGS
Symbol

MJ410

I

MJ411

U!Ii'

Vceo

200

I

300

Vd.

CQII8l;tor·Base Voltage

VCB

200

300

Vd.

Emitter·Base Voltage

VEB

5.0

Vde

IC

5.0
10

Ad.

Rating
Collector-Emitter Voltage

CQllector Current - Continuous
Peak
Stile Curr.nt

IB

2.0

Ad.

Total Device Dissipation@Tc :t 75°C
Derate above 75°C

Po

100
1.33

wl"c

Operating Junction Temperature Range
Storage Temperature Rilnge

~65

TJ
Tltg

Watts

to +150

°c

-65 to +200

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
ELECTRICAL CHARACTERISTICS (Tc '"' 25°C unless otherwise noted)

I

Characteristic

SVmbol

I Min

Ma.

Unit

OFF CHARACTERISTICS

FOllector.Emltter Sustaining Voltage
tiC = 100 mAde, la = 0)
!collector Cutoff Current
(Vee = 200 Vdc. Ie '" 0)
(Vce = 300 Vdc. 'a '" 01

200
300
mAde

ICEO

0.25
0.25

MJ410
MJ411

ollector Cutoff Current
IVeE ""200Vdc, VEBloff) = 1.5 V$, MJ410
Te" usOe)
(Vee = 300 Vdc, VeB(offl·1.5 Vdc. MJ411
Te =1250 el
Emitter Cutoff C\,Irrent
(VES = 5.0 Vdc,lC = 0)

Vd.

VCEOlsus)
MJ410
MJ4t1

mAde

Icex

0.5
0.5
5.0

lEBO

MI LlMETERS
DIM MIN MAX
mAde

ON CHARACTERISTICS
toe Current Gain
IIC'" 1.0 Adc. VCE "'5.0 Vdcl
(IC" 2.5 Adc, VeE" 5.0 Vdcl
~lIector-Emitter ~aturation Voltage
lie'" 1.0 Adc,lS = 0.1 Adcl

· Base-Emitter Saturation Voltage
tic" 1.0 Adc. IS =. 0.1 Adcl

"FE

30
10

BO

VCElsatJ

0.8

V~.

VaElsatJ

1.2

Vd.

DYNAMIC CHARACTERISTICS
Current·Galn-Bandwidth Product
tic" 200 mAde. veE'" 10 Vdc.
f"'.OMHz)

39.37
21.08
B
7.62 0.250
C 6.35
1.09 0.039
D 0.99
3.43
E
f 211.90 30.40 1.177
0.420
.67 11 •
G
O. 1
5.5
.3
J 16.64 . 1 .15 0.655
0.440
K 1.18 12.1
Q 3.84
4.09 0.151
26.67
R
NOTE:
1. DIM "Q" IS DIA.

A

CASE II

370

INCHES
X
MIN

1.550
0.830
0.043
0.135
1.197
0.440
0.22
0.675
0.480
0.161
1.050

MJ410, MJ411 (continued)

FIGURE 1 - ACTIVE REGION SAFE OPERATING AREA
10

i
:5

TJ

J. " ' \

=1500 e

5.0 m.

10

_

r-____

~ 02

~

o. I

8

005

'\

There are two limitations on the power handling abifity of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 150°C; TC is variable
depending on conditions. Pulse curves are valid for duty cycles of
10% provided TJ(pk)~ 150°C. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown. (See
AN-415)

de

0.5

a

~~

1.0m~500".

5.0
0:
" 2.0

Secondary Breakdown Limited
Bonding Wire Limited

- - - - - - Thermal Limitation at Te = 750 C

"'

!}

'\.

"'"

Curves Apply Below Rated VCEO

-

MJ410_
0.02

I

0.0 I
5.0

10

I

20

50

if

I

100

200

500

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

100

20
TJ-150·C

0
50

"
ffi

::

30

a'"'"

20

'"'c
~

".......

I
l---' r-

;z

2r

/"'"

"

~ VCE

e

10

=5.0 Vde

"

...... ~

....... f-"
/"'" ~

!""" -55°C

~

Tr 150oe~

7.0
5.0
0.05

0.2

0.1

0.3

'-'-'-TTT-----r--'-"-"""-"T"I"TlII'---'----",rr-"
Tp 25°C
I II

2.0

1.0

0.5

3.0

\'I
5.0
IC, COLLECTO R CU RRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 4 -SUSTAINING VOLTAGE TEST LOAD LINE

FIGURE 5 -SUSTAINING VOLTAGE TEST CIRCUIT

500
50mH

;( 400

S

....

ffi

",~I

~ 300

a
'"c

~

-

200

.......
VCEO(.u.) IS ACCEPTABLE WHEN
VeE;;' RATEO VCEO,AT IC -IOOmA

8

\

-=-6.0 V

\

!} 100

o

\

MJ4\0MJ411

o

100

200

300 "

300

400

500

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

371

1.0 !l

MJ413 (SILICON)
MJ423
MJ431

High-voltage NPN silicon transistors designed
for medium-to-high-voltage inverters, converters, regulators and switching circuits.

CASE 11

~~
o

@2

STYLE 1:
PIN 1. BASE

0

CAS~': ~~Z~:C~OR

@.

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emuter-Base Voltage

Unit

Symbol

MJ413

MJ423

VCEX

400

400

400

Vdc

Vca
VEB

400

40U

4UU

VdC

•• u

•• u

•• U

,ac

MJ431

IC

lU

10

lU

Adc

Base Current

Ia

2.0

2'.0

2.0

Ade

Total Device Dissipation @ T C = 25 C
Derate above 25·C

PD

~~g

~i~~

Operation Junction Temperature Range

TJ

-65 to +150

·C

Continuous

Collector Current

Storage Temperature Rsnge

-6. to +200

Tstg

·C

THERMAL CHARACTERISTICS

Characteristic

Max

Thermal'Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS

1.0
(Tc = 2S'C unl... o"o.w". noted)

Symbol

Characteristic

Min

Max

325

-

Unit

OFF CHARACTERISTICS
Collector-Emitter SUstaining Voltage 111
(IC = 100 mAde, Ia = 0)
Collector Cutoff Current
(VCE = 400 Vdc, VEB(off) = 1. 5 Vd~
(VCE= 400 Vdc, VEB(off) = 1. 5 Vde,
TC = 125·C)
Emitter Cutoff Current'
(VBE = 5.0 Vde, IC = 0)

aVCEO(S~)
MJ413, MJ423
MJ431
MJ413, MJ423
MJ431
MJ413, MJ423
MJ431

I CEX

--

-

Vdc
mAde

0.25
2.5
0.5
5.0

~BO

--

5.0
2.0

hFE

20

80

15

-

30

90

mAde
mAde

ON CHARACTERISTICS
DC Current Gain III

MJ413

(IC = 0.5 Ade, VCE = 5.0 Vde)
(Ic = 1.0 Ade, VCE = 5.0 Vde)

MJ423

(IC = 1.0 Ade, VCE = 5.0 Vde)
(Ie= 2.5 Adc, VCE

=5.0 Vde)
MJ431

(IC = 2. 5 Ade, VCE = 5.0 Vde)
(IC = 3.5 Adc, VCE

=5.0 Vdc)

Collector-Emitter Saturation Voltage
(Ic = O. 5 Adc,
= 0.05 Ade)
(Ic = 1.0 Ade,
(IC = 2. 5 Ade,

Ia
Ia = O. 10 Ade)
Ia = O. 5 Ade)

Base-Emitter Saturation Voltage'(ll
(IC = O. 5 Ade,
= 0.05 Ade)
(Ic = 1.0 Ade,
= 0.1 Ade)

Ia
Ia
(IC = 2. 5 Ade, Ia = 0.5 Adc)

(11

MJ413

VCE(sat)

MJ423
MJ431
MJ413
MJ423
MJ431

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC = 200 mAde, VCE = 10Vdc,
f = 1.0 MHz)
(II PW " 300 I

50

30

10

~
~

hFE

"....

.........

".

7.0

-

Cob
C"

--...;

"

i3

g:

;3 3.0
u'

.....

2.0

1.0
10

20
0.5

:::::-

z
>- 5.0

V

ul

.la'

---

0;;;:::::::;

hfe@1.0kHz

z

;;:

1.0

5.0
10
2.0
Ie, COLLECTOR CURRENT (mAd,)

20

50

2.0

3.0

5.0 7.0

10

2r

30

50

VCB, COLLECTOR·BASE VOLTAGE (VOLTS)

MJ423
For Specifications, See MJ413 Data.
375

70

100

MJ424 (SILICON)
MJ425

HIGH VOLTAGE NPN SILICON TRANSISTORS

5 AMPERE
· .. designed for use in high voltage applications in deflection circuits,
switching regulators, inverters, and line operated amplifiers.

POWER TRANSISTORS
NPN SILICON

• High Collector-Emitter Voltage VCEX =; 700 Vdc

350-400 VOL TS '
100 WATTS

• Excellent DC Current Gain hFE = 10 (Min) @ IC = 2.5 Adc
• Low Collector-Emitter Saturation Voltage VCE(sat) = 0.8 Vdc (Max) @ IC = 1.0 Adc

MAXIMUM RATINGS
Rating

I
I

MJ425

Unit

400

Vdc

Symbol

MJ424

Collector-Emitter Voltage

VCEO

350

Collector-Emitter Voltage

VCEX

700

Vdc

Collector-Base Voltage

VCR

700

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

5.0
10

Adc

Collector Current - ContinUous

Peak
Base Current

I.

Total Device Dissipation@Tc = 7SoC

PD

Operating Junction Temperature Range

Storage Temperature Range

Adc

2.0
100

Watts

1.33

WIDe

TJ

-65 to +150

DC

T"9

-65to+200

DC

Derate above 7SoC

THERMAL CHARACTERISTICS
Characteristic

Max

Thermal ReSistance, Junction to Case

0.75

ELECTRICAL CHARACTERISTICS (Tc z. 2SoC unless

I

Characteristic

Symbol

otherWise

I

Min

noted)
Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaming Voltage

(Ie'" 100 mAde, IS:= 0)

Vdc

VCEO(sus)

MJ424

350
400

MJ425
Collector Cutoff Current
(VCE = 350 Vde, IS '" 0)

MJ424

0.25

(VCE '" 400 Vde, IS '" 01

MJ425

0.25

Collector Cutoff Current

mAde

ICED

ICEX

0.5

mAde

leBO

5.0

mAde

(VCE '" 700 Vdc, VSEloff) '" 1.5 Vde)
Emitter Cutoff Current

IVBE

~

6.0 Vdc. Ie

~

Ol

ON CHARACTERISTICS
DC Current Gain
(lC == 1.0 Ade, VCE == 5.0 Vdc)

hFE
30

(Ie:: 2.5 Adc, VCE '" 5.0 Vdc)

90

10

Collector-Emitter Saturation Voltage
(Ie"" 1.0 Adc, 18"" 0.1 Adcl

VCElsat)

0.8

Vdc

Base-Emitter Saturation Voltage
(Ie"" 1.0 Adc, Ie = 0.1'Ade)

VSE(sat)

1.2

Vdc

MILLlMl'TERS
DIM MIN MAX
A
B
C
D
E
F
G
H
J
K

n

R

DYNAMIC CHARACTERISTICS

6.35
0.99
29.90
,lu.67
5.33
18.64
11.18
3.84

-

39.37
21.08
7.62
1.09
3.43
30;40
11.18
5.59
17.15
12.19
4.09
26.67

NOTE:
1. DIM

Current-Gain-Bandwidth Product
lie'" 200 mAde, VeE" 10 Vdc.
f=1.0MHzI

INCHES
MAX
MIN

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

"0" IS OIA.

CASE 11

376

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ424, MJ425 (continued)

FIGURE 1 - SAFE OPERATING AREA
10
5.0

,

'"~

2.0

~

1.0

TJ=150 0 C

'\.<'o<>,~o-f<>',

di:-

There are two limitations on the power handling ability of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate I C-VCE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on T J(pk) == 150°C; TC is variable
depending on conditions. Pulse curves are valid for duty cycles of
10% provided TJ(pk)~ 150o C. At high case tempera~u.res, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown. (See

....

B0.5


,;
~

0
0.05

5.0

0.1

0.2

0.3

0.5

1.0

2.0

5.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 4 - SUSTAINING VOLTAGES TEST LOAD LINE

FIGUFIE 5 - SUSTAINING VOLTAGE TEST CIRCUIT



::;

-< 0.5
~

11111
TJ'" 25°e

1.6
1.4

rJ

1.2
1.0

I-"

VaE(saII@IC/IS= 10

0.8

V
V
J

0.6
VBE@ VCE" 2.0 V

0.3

0.4

~ 0.2

~: ~I"~~O
IClli'~

vi II

~.2

o

O. 1
0.03 O.S

0.1

0.2 0.3 O.S

1.0

2.0 3.0 S.O

20 30

10

0.03 0.05

0.1

0.2 0.3

O.S

1.0

2.0 3.0 S.O

10

20 30

IC. COLLECTOR eURRENT IAMPI

IC, COLLECTOR CURRENT IAMPI

FIGURE 4 - THERMAL RESPONSE

.."

1.0
0.1
O.S

o -O.S

..~~

O. 3

IJ.2

.. z

>""

!!:~ 0.2

0.1

~

~~
!::!ffi

V

I

0. I

0.05

~ ~ 0,01

~

0

:

t: 0.0S
..
~ 0.03

'r"":= 0.02
0.0 1 .........
0.01

STEADY STATE VALUES
ITYPI
0.alS0CIWIMAXI
'JCIII = rltl.JCI~)
'Jcl~1 = D.l'lW

""" In

~
SINGLE
PULSE

Plpkl

0.01

L
-I--

'"""'"
0.02

0.1

0.2

n

~CURVESAPPLYFORPOWER
L!ULSE TRAIN SHOWN

1!lm

t~J ::"::::""W '
DUTY CYCLE. 0 = 11/12

I
0.05

J U

O.S

1.0

2.0

S.O

I. TIME OR PULSE WIOTH Imsl

379

10

20

so

100

200

SUO

1000

MJ480 (SILICON)
MJ481

NPN SILICON POWER TRANSISTORS

4AMPERE
POWER TRANSISTORS
NPN SI.LlCON

. designed for general·purpose and 5 to 20 Watt audio amplifier
. applications.

40-60 VOLTS.
87.5 WATTS

•

Current-Gain-Bandwidth Product tr = 4.0 MHz (Min) @ IC = 1.0 Adc

•

DC Current Gain hFE = 30-200@ IC = 1.0 Adc

•

Complements to PNP MJ490 and MJ491

MAXIMUM RATINGS
Rating

Symbol

MJ480

MJ481

Unit

VeEO

40

60

Vdc

Collector-Base Voltage

VCB

40

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

4.0
7.0

Adc

Base Current

'B

1.0

Adc

Total Device Dissipation @TA =2SoC
Derate above 25°C

Po

5.0
28.6

mWfOC

Total Device Dissipation@TC=2SoC
Derate above 2SoC

Po

87.5
500

mw/oe

-65 to +200

°e

Collector-Emitter Voltage

Collector Current - Continuous
Peak

Operating and Storage Junction
Temperature R 8nge

TJ,Tstg

.Watts
Watts

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
10
1.0

~ 5.0
S
~

3.0

~ 2.0

de

~ 1.0 ~
~ O.1
j 0.5 I - - -

r==--I--

8 0.3 f::::::=
~O.2

f---

.......

MJ480

DIM

1.0ms

A
B
C

5.cims·

.1:

TJ o 200'C
SECONDARY BREAKDOWN LIMITED
THERMALLY LIMITED
Tco 25'C (SINGLE PULSEI
CURVES APPLY BELOW
RATED VCEO

100fJ.S

MJ481

O. 1
1.0

2.0

3.0

5.0
7.0
10
20
VCE, CDLLECTOR·EMITIER VOLTAGE (VOLTS)

The Safe OperatIng Area Curves mdlcate Ie -VeE I,mlts below

wh,,::h the dev,ce w,1I not enter secondary breakdown Collector
load hneoforspac,f,cclrcu'tsmustfallw,thmthaapphcableSala

30

50

70

Area 10 avo,d causong 8 c~tastroph'~ failure To ,nsure operat,on
below the ma,,,mum TJ, pawertemperdlu,e de,a"ng must beob
servedforbolhsteadY5t&teandpulsepawercond't,on.

380

0

MILLIMETERS
MIN MAX

6.35
0.99

39.37
21.08
7.6
1.09
3.43
30.40
11.18
5.59
17.15
12.19'
4.09
26.67

INCHES
MIN
MAX

-

1.550
0.830
0.300
_. 0.043
0.135
1.177 1.197
0.420 0.440
'0.210 0.220
0.655 0.675
0.440· 0.480
0.151 0.161
1.050
0250
0.039

E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
0 3.84
R
NOTE:
.1. DIM "0" IS DIA.
CASE 11

MJ480, MJ481 (continued)
ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

40
60

-

-

1.0
5.0

-

1.0

50

-

30

200

10

-

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lc = 0.2 Ade, la = O)
Collector Cutoff Current

= Rated
(Vca = Rated

(VCB

Vca, IE
VCB, IE

Vde

BVCEO

MJ480
MJ481

mAde

ICBO

= O)
= 0, TC = 1500 C)

Emitter Cutoff Current
(VaE = 5.0 Vde, IC = O)

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(I C = 50 mAde, V CE
(lC
(lc

= 1.0 Ado,
= 3.0 Ado,

VCE
VCE

Collector-Emitter Saturation Voltage
(lc = 1.0 Ado,IB = 0.1 Ado)
(lC = 3.0 Ado,IB

-

hFE

= 2.0 Vde)
= 2.0 Vdo)
= 2.0 Vdo)

= 0.3 Ade)

Base-Emitter Saturation Voltage
(lC = 1.0 Ado,la = 0.1 Ade)
(lc = 3.0 Ado, la = 0.3 Ado)

VaE(,at}

Base-Emitter "On" Voltage
(lc = 1.0 Ado, VCE = 2.0 Vde)

VaE(on}

(lc

= 3.0 Ade,

Vdo

VCE(,at}

VCE

= 2.0

-

0.4

-

1.2
Vdo

1.0

-

1.5

-

1.2

-

1.5

Vde

Vde)'

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 1.0 Ade, VCE = 10 Vde, f = 1.0 MHz)

Output Capacitance
(Vca = 10 Vde,IE

t-r

4.0

-

MHz

Cob

-

200

pF

= 0, f = 0.1 MHz)
FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - NORMALIZED DC CURRENT GAIN

Z

10
8.0
6.0

!:

4.0

;;:

~

a:

i3

2.0

-

...---

2.0

r--

:::J

TJ' 1+1750C -

~
~

I
-550C

ffi ~:O8

.1:: o.

.............

>S
~

4

~

25'C

V

1.2

i"

0.8

r-

Z

0.01

0.02

0.04

0.1

0.2

0.4

1.0

2.0

0
0.005

4.0

III
~ll ,@I /I ~IO
:Ililu"1 I ll..l-!0.01

2.0V

V,,@Vc •

0.4

~ O. 2

~

10

VBEt •• tj@Ic/la

........

o

0.004

TJ

l'5

O. 6

O. 1

I
I

1.6

+25 0 C

<.>

N

=

VCE '2.0 Vdc

0.02 0.03 0.05

0.1

0.2 0.3 0.5

",'
1.0

2.0 3.0 5.0

200 300

500 700 1000

Ie. COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 4 - TRANSIENT THERMAL RESISTANCE

Q

1.0

~ 0.5

D 0.5

..r 0.3

0.2

~

~

~

r=
1il r--0.05
~ 0.1
~
ffi
~

0.2

0.1

SINGLE
PULSE
~ t:;:;'

1.

I-"'"

l..-

t,;-J
DUTY CYCLE. D:l1/t2

0.01

8Jc(U"'r(U8JC

0.5

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT II

~ (SINGLE PULSE)
~O.03

!Z

TJ/pkJ- TC=P/ llkJ6JC/ t J

~O.02

;:;
.... 0.0 I
';:: 0.01

'jl]il

P!pk)

0.02 0.03

0.05 0.07 0.1

0.2

0.3

0.5 0.7 1.0

2.0

3.0

5.0 7.0 10

t, PULSE WIOTH (m,)

381

~

LU lL

I J

I I I I I I I 1111

LJ

ILL

I I

20

30

I

50 70 100

MJ490 (SILICON)
MJ491

PNP SILICON,POWER TRANSISTORS

4 AMPERE
POWER TRANSISTORS

... designed for general'purpose and 5 to 20 Watt audio amplifier
applications.

PNPSILICON
40-60 VOLTS
87.5 WATTS

• Current·Gain-Bandwidth Product for = 4.0 MHz (Min) @ IC = 1.0 Adc
• DC Current Gain hFE = 30-200@ IC = 1.0 Adc
• Complements to NPN MJ480 and MJ481

MAXIMUM RATINGS
Rating

Svmbol

MJ490

MJ491

VCEO

40

60

Vdc

Coliector·a... Voltage

Vca

40

60

Vdc

Emitter·aase Voltage

VEa

5.0

Vdc

IC

4.0
7.0

Adc

Coliector·Emitter Voltage

Collector Current

Continuous

Peak

Unit

Base Current

la

',0

Adc

Total Device Dissipation iiilTA =25°C
Derata above 25°C

Po

5.0
28.6

Watts
mW/oC

Total Device Dissipation iiilTC =25°C
Oarata above 25°C

Po

87.5
500

mW/oC

-65 to +200

DC

Operating and Storage Junction
Temperature Range

TJ.Tstg

Watts

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
I0

100J,ll

7,0

~ 5.0
1.6m.

~ 3.0

~ 2.0

de

~ 1.

==
TJ 200'C
:= O.0
7 t:::::=-- SECONOARY BREAKDOWN LlMITEO
o

; o.5 r-8 o.3 t:::::=
~o. 2

r--

-

"

5.rim•

3.0

MJ4S0

20
5.0
7,0
10
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI

Ie-Vee

The Saf. Oparatlng A,.. CUI'Vei IndlClit.
lImits below
which the dev,e, Will not ~nler $lCondary breakdown ,Collector
loiildhnH'or1lPaclricclrc ... ltsrnusll~I""lhll'llh.apphcabl,Sale

C
D
E

-6. 5
0.99

F 29.90

THERMALLY LIMITED
TC' 25'C (SINGLE PULSEI
CURVES APPLY BELOW
RATED VCEO

2.0

A
B

......
r

MJ491

0, 1
1.0

MILLIMETERS
DIM MIN MAX

30

Area to .... ood t;8Us.ng a c.1Mlroph,e

fa,lut~

50

70

To Insure operation

below the m...,mum T J. powur-lemplll'alure dflral'"g must be abterued for bolh ste$iV stale and pulse powet condltlons

382

G 10.ti7
H 5.33
J 16.64
K 11,18
n 3.84
R

-

39.37
21.08
7.62
1,09
3.43
30.40
11.18
5,59
17.16
12,19
4.Q9
28.67

INCHES
MIN
MAX

--

0.250
0.039

-

1.177
0,420
0,~10

0,665
0.440
0,151

-

NOTE:
1. DIM "n" IS OIiI.
CASE

11 .

1,550
0.830
0.300
0,043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ490, MJ491 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

40

-

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Vole.

SVCEO

MJ490
MJ491

(lc - 0.2 Ade, 'a - 01

Collector Cutoff Current
(VCS - Rated VCS, 'E = 01
(VC~ - Rato<:t VCS, IE • 0, TC -lSOoCI

Icao

Emitter~utoff

IESO

Current

mAde

-

(VSE - 5.0 Vde, IC ~ 01

Vdc

-

60

1.0
5.0
1.0

mAde

ON CHARACTIORISTICS
DC Current Gain
/lc = 50 mAde, VCE = 2.0 Vdel

hFE

(lc = 1.0 Ade, VCE = 2.0 Vdel

30

/lc • 3.0 Ade, VCE = 2.0 Vdel.

10

Collector-Emitter Saturation Voltage

VCE(satl

Base-Emitter Saturation Voltage
(lc =

1.b Adc, IS = 0.1

(lC = 3.0 Adc,

'e =

VSE(sa"

0.3 Adcl
VeE(onl

1.2
Vdc
1.0
1.5
Vde

-

(lC = 1.0 Adc, VCE = 2.0 Vdel

1.2

-

1.5

IT

4.0

-

MHz

Cob

-

200

pF

= 2.0 Vdel

(lc • 3.0 Ade, VCE

0.4

-

Adcl

Base-Emitter "On" Voltage

Vde

-

/lC'- 1.0 Ade, IS = 0.1 Adel
/lc = 3.0 Ade, IS = 0.3 Adcl

-

200
-

50

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 Adc, VCE = 10 Vdc, 1= 1.0 MHz!

Output Capacitance
(Vee' 10 Vdc,IE

=0, f

= 0.1. MHzl

FIGURE 3 - "ON" VOLTAGE

FIGURE 2 - NORMALIZED DC CURRENT GAIN

,.

1.5

10

Z

~

0
6.0

5
~ 2.0
...
0
N

~

!o
z
i

r-.. ......
r-..

.....

0:

;

=

VCE =2.0 Vd.

4.0

1.2

V

+25~C

1O.8

TJ-2S'C

+~ ~1+1750~_
9

~

VIE (N'I @'ell,= 10

-550C

o. 6
o.4

6

VIE@V",=2.0V

........

V

O.3

o.2

VeElu•• @lell,-IO
O. 1

0.004

0.01

0.02

0.04

0.1

0.2

0.4

1.0

2.0

4.0

D2.0 3.0 5.0

20 3D

10

'e. COLLECTOR CURRENT (AMPI

50

200 300 SOD

100

1000 2000

Ie. COlLECTOR CURRENT (mAl

FIGURE 4 - TRANSIENT THERMAL R~ISTANCE

!!l!.0

i~ 0.5
oJ

1
i

Ii

0.2

0.3

02

i

D-O.S

0.1

F=

0.1

~0.05

_f-'

-

SINGLE

PULS'

~

Plptl

L

......

'JCIII-ri1I'JC
oCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATI1

0.5
3 ~ (SINGLE PULSE)'

jO.o

10.02
S
":0.01
-.: 0,01

t~j

DUTY CYC:LE. D -111tz

0.01

TJlpk) - TC· '(Pkl'Jc(d

I I I II I 1111

II
0.02 0.03

0.050.07 0.1

0.2

0.3

0.5 0.7 1.0

2.0 3.0
5.0 7.0 10
~ PULSE WIDTH (ms)

383

20

3D

50 70 100

I I I
200 300

500 700 1000

MJ802 (SILICON)

30 AMPERE
POWER TRANSISTOR
HI-GH-POWER NPN SILICON TRANSISTOR

NPN SlkiCON
100 VOLTS
200 WATTS

· .. for use as an output device in complementary audio amplifiers to
1~O-Watts music power per channel.

•

High DC Current Gain - hFE

•

Excellent Safe Operating Area

= 25-100@ IC = 7.5 A

• Complement to the PNP MJ4502

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

Value

Unit

VCER

100
100
90
4.0

Vdc

30
7.5
200
1.14

Adc

Collector-Base Voltage

VCS

Collector-Emitter Voltage

VCEO

Emitter-Base Voltage

VES

Collector Current

IC

Base Current

IS

Total Device Dissipation@Tc

= 25°C

Po

Derate above 2SoC
Operating anm Storage Junction

Es~i

Vdc
Vdc

PLANE

. Adc
Watts
W/oC

°c

. -65 '0+200

TJ. T sts

Lr~
r~,

Vdc

Temperature Range

THERMAL CHARACTERISTI"S
Chara~ristic

Thermal Resistance, Junction to Case

MILLIMETERS
DIM MIN MAX

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

200

...........

S
~

150

...........

z

c

ill~

,

'.

~

100

C

'"~
~

A
B
C
D
E

~ .......

'"

~

i'-..

~

o

o

20

40

60

30

29.90
G _10.67
II 5.33
J 16.64
K 11.18
Q
3.84
R

F

50

100

120

140

-

-

6.35
0.99

~
160

TC. CASE TEMPERATURE (OCI

384

~

180

200

39.37
21.0B
7.62
1.09
3.43
30.40
n.18
5.:m
17.15
12.19
4.09
26.67

INCIIES
MIN
MAX

-

0250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
·0.161
1.050

MJ802 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250C unless otherwise notedl
Characteristic

Svmbol

Min

Max

Unit

100

-

Vde

90

-

Vde

-

1.0
5.0

IESO

-

1.0

mAde

hFE

25

100

-

Base-Emitter "On" Voltage(l)
(lc = 7.5 Adc, VCE = 2.0 Vde)

VBE(on)

-

1.3

Vdc

Collector-Emitter Saturation Voltage fl)
(lc = 7.5 Ade, IR = 0.75 Adcl

VCE(sat)

-

0.8

Vdc

Base-Emitter Saturation Voltage ft,

VBE(sati

-

1.3

Vdc

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

SVCER

= 200 mAde, RSE = 100 Ohms)

(lc

Collector-Emitter Sustaining Voltage (1)

VCEO(sus)

= 200 mAde)

(lc

Collector-Base Cutoff Current
(VCS = 100 Vde, IE = 0)
(VCS = 100 Vde, IE = 0, TC

mAde

ICSO

= 150°C)

Emitter-Base Cutoff Current
(VSE = 4.0 Vde, IC = 01
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 7.5 Ade, VCE

(lC

= 2.0 Vde)

= 7.5 Adc, IB = 0.75 Ade)

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product
(lC = 1.0 Adc, VCE = 10 Vde, f

= 1.0 MHz)

(I)

Pulse Test: Pulse WidthS: 300 ,",s. Duty Cycle s:'2.0%.

FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - DC CURRENT GAIN

'";;:co

3.0

2.0

2.0

1.8

I

1.6

T) 2Jod

I-

al
a:

1.0

a:

il!!

CI

z

~

1.4

'"

1.2

(!:I

1.0

~

0.8

;

o. 31---

VBE(..t)@ICII8= 10

Ilil . L

~ O. 6

f'

0.2

0.1

0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)

10

II I
Wll
VCE(..t) @lelI8 - 10

O. 2

o

20 30

....

......

f.-'

JL

.i.

V8E@VCE=2.0V

0.4

Data shown is obtained from pulse tests bH--f+l+--t~~........

O.,.,=,:::-!:;'~,::-a...Jnr,--:a;,:dj'ju:,":ii:,::d..J.tT°-:!-,.nlu;-,-I IiJ. .J~ii~:-f.ct...J-t--:f!-::
c;' iIC.1.:TB~!-: .-'-:';;'--U-':'::--'-:!:-J:!!
0.03 0.05

~

!L

w

-55°C

:;

<

~
~

o. 7
'CIW"'
o.
5
N

::>

0.03 0.05

0.1

r-

r-

0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)

10

20 30

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA
100

50

~

-:- ... ,

0:

~ 20

de

I-

~ 10
~ 5.0

a:

'" 2.0

t;

j

-

.....

-

..::--.,'00,..1.0ms
~

5.0ms

I--- TJ = 200°C

1.0 ~ .

The SefiI Operating Area Curves Indicate IC - VeE limits below
which the device Will not enter secondary breakdown Collector
load lines for specific CirculH must fall within the applicable Safe
Area to avoifil cau.ing. catastrophic failure. To insure operation
below the maximum TJ. power-tempereture derating must be ob·
served for both steady stete and pulse power conditions.

Secondary Breakdown Limited

F
- Bonding Wire Limitad
'"~ 0.5 ~ - - - - Thermal LimitadonsTC =250 C
I---

Pulse Duty Cycle < 10%

0.2

O. 1
1.0

2.0

3.0

5.0
10
20
30
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

385

50

100

MJ900, MJ901 PNP (SILICON)
MJ1000, MJ100l NPN
8.0 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS
· .. for use as output devices in complementary general purpose
amplifier applications.

60-80 VOLTS
90 WATTS

= 6000 (Typ) @ IC = 3.0 Adc

•

High DC Current Gain - hFE

•

Monolithic Construction with Built-In Base-Emitter
Shunt Resistors

MAXIMUM RATINGS
Rating

Svmbol

Collector-Emitter Vo tage

VeEO

MJ900 MJ901
MJ1OO0 MJ1oo1
60
80

Unit
Vdc
Vdc

Collector-Base Voltage

Vee

Eminer-Base Voltage

VEe

5.0

Vdc

Ie

8.0

Adc

Base Current

Ie

0.1

Adc

Total Device Dissipation@Tc "'" 25°C

Po

90
0.515

Watts
w/oe

TJ.Tstg

-55 to +200

°e

Collector Current

60

Derate above 25°C
Operating and Storage Junction

80

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case

FIGURE 1-DARLINGTON CIRCUIT SCHEMATIC

STYLE 1:
PIN 1. BASE

PNP
MJ900
MJ901

Collector

r-------I
I

--.,

.------<1--,

I

I

I
I
I
I
I
I

Ba..

NPN
MJIOOO
MJIOOI

--.,

,---+-,

Base

I

I

I
I
I
I
I
I
I

__ --1

__ --1

DIM
A
8

C
D
E
F

MILLIMETERS
MIN MAX

-

-

US
0.97

39.37
22.23
11.43
1.119

INCHES
MIN MAX

0.250
0.038

3.43

0
R

2&.67

I
Emitter

I. DIM "0" IS DIA.

.40 1177
11.18 0.420
5.72 0.205
17.15 0.855
12.19
3.94. 4.D9
.11

B
H

Emitter

NOTE:

2. EMITTER
CASE: COLLECTOR

Collector

K

10.
5.21
18.84
11.18

CASE 11-03

386

1.551L
0.875
0.460
0.D43
0.1
1.197
0.440
0.225
0.675
0.4BD
10.161
1.050

MJ900. MJ901. MJ1000. MJ100l (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

I

Ch.acterittic

Symbol

Ma.

Min

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage III

Vdc

BVCEO

MJ900. MJ1000
MJ901,MJ1001

(Ie = 100 mAde. IS;;; 0)

60
80
mAde

Collector Emitter Leakage Current
(Ves;;; 6QVdc. RBe '" t.Ok ohm)

MJ900. MJ1000

(Vee'" 80 Vdc, RBe = t.Ok ohm}

MJ901, MJ1001

1.0
1.0
5.0
5.0

(VCS;;; 60Vdc. ABe "'.Ok ohm, TC = 1500CI MJ900, MJtOOO

(Ves = 80Vdc, RBe = t.Ok ohm, TC;;; 1SOCCI MJ901. MJ1001

2.0

Emitter Cutoff Current
(VSE '" 5.0 Vdc, Ie;;; 0)

mAde
~Adc

Collector-Emitter Leakage Current
(VeE'" 30 Vdc, Ie '" 0)

MJ900. MJ1000

(VeE;;; 40 Vdc, IS'" O)

MJ901.MJ1001

500
500

ON CHARACTERISTICS
DC Current Gain(1)
(Ie;;; 3.0 Adc, VeE;;; 3.0 vdcl
(Ie'" 4.0 Adc, VeE = 3.0 Vdc)
Collector-Emitter Saturation Voltage(1)

Vdc

(Ie = 3.0 Adc,IS = 12 mAde)

2.0

(Ie = 8 0 Ade, Ie '" 40 mAde)

4.0

Base-Emitter Voltage(1)
flc = 3.0 Adc, VCE = 3.0 Vdc)

2.5

Vdc

(1)Pulse Test: Pulse WIdth $300 P.S, Duty Cycle'S 2.0%.

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 -SMALL-8IGNAL CURRENT GAIN
3000

50,00 0

2000
z
<1
~ 1000

20,000
TJ -1500 C

10,000

z

ffi

<1'5000

co
t-

~ 200 0

25 0 C

'" 1000
B
'" 50 0

to

200

i

100

500

~

~f5~C

./

200
100
50
0.01

300

z

Q

~

'"~
'";;!

J

VCE = 3.0 Volts

./
0.05

0.1

0.2

0.5

1.0

2.0

5.0

TC - 25 0 C

50
30
103

10

104

IC, COLLECTOR CURRENT (AMP)

t, FREQUENCY (Hz)

FIGURE 4 - "ON" VOLTAGES
3. 5

I
I

3.0

_

~
o

~
w
to

~

FIGURE 5 -DC SAFE OPERATING AREA
10

I
I

1.0

I

'"

;: 3.0

z

I

~ 2. 0

=>

VB~(..t! @Ic/lB = 250........

~ 1.

o

1- 5

o
>
>' I.0

0
0.01

~

_j'Bj@IIEI=~ 1/

8

~

i

VC~(sat)1 @llcrlf 12~10

o. 5
0.02

0.05

0.1

TJ=200·C

«

1 1

2. 0

~~

~ 5.0

i

TJ 25 0lC

2. 5

1\

VCE = 3.0 Vdc
IC = 3.0 Adc

I I II IIII
0,2
0.5
1.0

2.0

5.0

10

~
SECONOARY BREAKDOWN LIMITATION
THERMAL LIMITATION @TC=250 C
BONDING WIRE LIMITATION

:

1~.

..5 - - -

MllOho

o. 3
o. 2

r.L9Dd,
I I I I
MJ901, MJIOOI

o. 1

~~~~

1.0

IC, COLLECTOR CURRENT (AMP)

il\.

dc:

~.o

3.0

5.0 1.0

10

20

-

30

50

10

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the po_r handling abilitv of a
transistor: average junction temperature and secondary breakdown.
Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; e.g., the transistor

must not be subjected to greater dissipation than the curves indicate.
At high casa temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed bV secondary breakdown. (See AN·415l

387

MJ920,MJ921 PNP (SILICON)·
MJ1200, MJ1201 NPN

DUAL SI LICON POWER DAR LlNGTON TRANSISTORS
· .. designed for hammer driver, regulator and amplifier applications.
• High DC Current Gain hFE =3000 (Typ) @ IC =4.0 Adc
• Coliector·Emitter Sustaining Voltage VCEO(sus} = 60 Vdc - MJ920, MJ1200
= 80 Vdc - MJ921 , MJI201
• Total Monolithic Construction
Dual transistors in the same chip, yielding like electrical char·
acteristics. Collectors are common .

DUAL DARLINGTON
8 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
60,80 VOLTS
160 WATTS

MAXIMUM RATINGS
Symbol

Rating
Collector·Emitter Voltage
Collector-Basa Voltage

Emitter-Base Voltage
Collector Current - Continuous

VCEO

60

VCS·
VES

60

IC

-Peak

Base Current
otal Device Dissipation@TC·250C
Derate above 25°C

MJ920 MJ921
MJI200 MJ1201
80
80

Unit

Vde
Vde

5.0

Vde

S.O
16

Ade

IS

120

mAde

Po

160
0.91

Watts

120
0.68
-65 to +200

Watts
wf>c
°c

wf>c

(Equal power in both transistors)
Single Transistor Dissipation @TC'" 2SoC

Po

Derate above 25°C
Operating and Storage Junction, Temperature

T J,T stg

Range

THERMAL CHARACTERISTICS
Symbol

Characteristic
Thermal Resistance, Junction to case
Single Transistor

8JC

Effective, equal power both transistors
Thermal Coupling Factor

K8

Ma.

Unit
°CIW

1.46
1.10
50

%

FIGURE 1 - POWER DERATING

G
K

•
Q

R

11. BSC
7.11
8.13

7
3.84

C
4.09
26.67

47
0.280 0.
7
0.161

l
1.050

NOTE:
I. LEADS WlTHIN 0.13 mm (0.0061 DIA OF
TRU~ POSITION AT SEATING PLANE AT
MAXIMUM MATERIAL CONDITION.
CASE 263
TC. TEMPERATURE ('CI

388

MJ920, MJ921, MJ1200, MJ1201 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)

I

I

C......ct.. istic

SYmbol

Min

Max

60

-

Unit

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage
(lC· 100 mAde, IB = 01
Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)
(VCE = 40 Vdc, IB = 0)

Vdc

VCEO(sus)
MJ920, MJl200
MJ921 , MJ1201
ICED

mAde

-

MJ920, MJl200
MJ921 , MJl201

Collector Cutoff Current
(VCE· Rated VCB, VBE(off)
(VCE = Rated VCB, VEB(off)
(VCE = Rated VCB, VBE(off)
TC= 1500C)
(VCE = Rated VCB, VEB(off)
TC = 1500C)

-

BO

0.5
0.5

-

mAde

ICEX

= 1.5 Vdc)
= 1.5 Vdc,

MJ920, MJ921
MJ1200, MJ1201
MJ920, MJ921

-

-

0.5
0.5
5.0

1.5 Vdc,

MJl200, MJ1201

-

5_0

-

2.0

750
100

lBOOO

-

= 1.5 Vdc)

=

Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(lc = 4.0 Adc, VCE = 3.0 Vde)
(lC = 8.0 Ade, VCE = 3.0 Vde)

-

hFE

-

Collector-Emitter Saturation Voltage
(lC = 4.0 Adc, IB = 16 mAde)
(lC = 8.0 Ade, IB = 80 mAde)

VCE(sat)

-

2.0
3.0

Base-Emitter Saturation Voltage

VBE(satl

-

4.0

Vde

VBE(on)

-

2.8

Vde

Magnitude of Common Emitter Small-Signal Short Circuit Forward
Current Transfer Ratio
(lC = 3.0 Ade, VCE = 3.0 Vde, f = 1.0 MHz)

Ihlel

4.0

-

-

Output Capacitance
(VCB = 10 Vde, IE

Cob

-

200

300

300

-

(lC

= 8.0 Ade, IB = 80 mAde)

Base-Emitter On Voltage
(lc = 4.0 Ade, VCE = 3.0 Vde)

Vde

DYNAMIC CHARACTERISTICS

=0, f = 0.1

MHz)

Small-5ignal Current Gain
(lC = 3.0 Ade, VCE 3.0 We, f

=

pF

MJl200, MJ1201
MJ920, MJ921
hfe

= 1.0 kHz)

FIGURE 2 - SWITCHING TIMES TEST
CIRCUIT

-

FIGURE 3 - SWITCHING TIMES
5.0
3.0

Vee
-JOV

RS & Ae VARIED TO OBTAIN DESIRED CURRENT lEVElS
0,. MUST BE FAST RECOVERY TYPES, e g.,
MB05300 USED ABOVE 18 '" 100 mA
MSD6100 USED BELOW 18'" 100 rnA

2.0

Re

1.0
O. 7
~ O. 5
;::
O. 3

SCOPE

::-...

~

-'

-...

,...--

It....

;>. ~ ~
~
._

r-I---

forldandl"Ollsdlltonnetled
and V2 '" 0

I,

.-...

O.2 -VCC;:IDV .......
-1c!IB;250 - -+O. 1 =~~I_;2~I!,2C- td@VBElolI);O ~
'--MJ920. MJ921 (PHP)
0.0
~
MJI200. MJ1201 (NPH)
0.0
0.2
0.3
0.5 0.7 1.0
0.1

Ir,lf';: IOns
DUTY CYCLE = 1 0%

......

II

-.

2.0

3.0

Ie. COLLECTOR CURRENT (AMP)
For NPN test circuit, reverse
all polarities.

389

5.0 7.0

10

MJ920, MJ921, MJ1200, MJ1201 (continued)

FIGURE 4 - THERMAL RESPONSE
1.0
O. 7:=0

0.5

O.5

r0-

Cib

70

U

''':

O

I I I ~~11~~' MJI21011~P~)
5.0

'~

..,

MJ920, MJ9211PNp)

0

--

::::::

~

1000

a

Tj =~~oJ

200

1- ____ MJ920, MJ92111PNP)
100

200

30
0.1

500 1000

_f, FREQUENCY IkHzl

-

0.2

-

MJI200, MJ12011NPNI
0.5
1.0
2.0
5.0

10

VR, REVERSE VOLTAGE IVOLTS)

390

20

50

100

MJ920, MJ921, MJ1200, MJ1201

(continued)

I

PNP
M1920,MJ921

NPN
MJ1200, MJ1201

FIGURE 8 - DC CURRENT GAIN
20,000

20,000

~ 310 ~

v'CE
7000
z 5000

;;:

TJ %1500C.....

'" 300 0
>~ 200 0

..... V
r--

G
u 100

"~
-

0

~V
0.1

F== r-- 1---' I-- r"-".
r-- r-- -- I"--

'"

V-

/

25°C

A"

r--

~

I'

G
'-'

t7Z

.v

300
200
05

03

0.7

1.0

2.0

30

50

..

-"-- -

..

_:'5::

_..

-

k:::::

25 0C /

1000

;"

..

t"":

~

2000

500

0.2

--

5000
I---+~
>- 3000 ~:1500C,.......

700
500~,-550C

30
20

I
VCE - 3.0 V

10,000

10,00 0

--

r-

-55°C

~I'

V

7.0 10

01

02

03

05

07

10

20

3.0

50

70

10

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

FIGURE 9 - COLLECTOR SATURATION REGION

en
~

3.0

I III
I III

"

;::
~ 2.6

;

"ffi

II

IC - 2 OA

4.0 A

2.2

~_

1.8

~

1.4

~

'"

25°C

3.0

j LI

~

II

;::
"

6.0 A

'"«

w

">
'">-w

1\

\

IC

°

TJ
4.0A

2.0 A

11

~

14

~

1.0

>

0.3

0.5

0_7

10

20

3.0

5.0

II

2.2

lB

"'-'
70

10

20

30

25°C

26

~

""'

I'-

°

6.0A

r-r--

\

>-

\

"
>

°

~

~

8

TJ

I"\..
I'

1.0
03

0.5

07

10

18, BASE CURRENT ImA)

20

30

50

70

10

20

30

IB, BASE CURRENT ImA)

FIGURE 10 - ON VOLTAGES
3.0

3.0

TJ %25°C

2.5

"
«
'"~
w

">

1.5

>'
1.0

'"
~

;:: 2.0

-

05
0.1

.,

VBE @V CE o30V
I
VBE1s8tl

i

./

"
;::

V

~

03

0.5 0.7

20

30

~
V

I--"
,....... ,.,

VBElsat)@ICIIB-250
10

f.---" r-

VCEI,,') @IC/18 0250

1.0

~ "'"

,.--

1.5 I--VBE@VCE%30V

>'

VCEI,,') @I~/IB - 250
02

20

«
'"

",

V

1

25°C

w

">

Ie/Ii.=: 2 0

=:

2.5

V

g

TJ

05
5.0

70

10

01

IC, COLLECTOR CURRENT lAMP)

02

03

05

07

10

20

30

Ie, CO LLECTO R CURRENT lAMP)

391

50

70

10

MJ920, MJ921, MJ1200, MJ1201 (continued)

I

PNP

MJ920, MJ921

NPN

MJ1200,MJ1201

FIGURE 11 - TEMPERATURE COEFFICIENTS
+5.0

+5.0

II "
'Applies for ICilB

E

~

~ +3.0

f1i

i

>
.§ +3.0

1/

+2.0

'"~

250C 10 1500C

G+2.0

-I

1 -j

~

-2.0

~

-3.0 9VB for VBE- 25°C 10

.1. 1 I,

-550C 1o 250C

>-

0.2

0.1

0.3

'"'"
::::J

f-"".............
-55 DC to 25°C

II II

-5.0

0.5

10

2.0

3.0

5.0

-550C 10 250C

8

f-"
i-'

!--- ?

15~

>-4.0

<:t>

./

7.0

-1.0

:cffi -2.0

OVC for VCE(sal)

~ -3.0
>~ -4.0

OVB for VBE

-5.0

10

7'

. 25°C 10 150°C

$ +1.0

V

..-

-1.0 'UVC for VCE(sal)

>-

*Apphes for le/lB < hFE/3

!Z

U

+10

II

+4.0

k:::::: ;;.;-

~

,/

250CI0150~

:.-+ttI

II II
0.1

0.2

0.3

IC. COLLECTOR CURRENT (AMP)

0.5 0.7

/
/

f-"'" , /

...... """

10

f;:::

2.0

-550C 10 25°C

I
3.0

5.0 7.0

10

+1.2

+1.4

IC. COLLECTOR CURRENT (AMP)

FIGURE 12 - COLLECTOR CUTOFF REGION
10 5
_

10

105

4 =REVERSE =:!: FFORWARO

Ia

1+= REVERSE==<' !;;::::FORWARO

L

1

./
10

3 = VCE-30V

r=VCE=30V

'" 10 2

g
_

10 I

8
E

100

Tr 150°C

r-TJ-1500C

r---

100°C

E=:=

25°C

./

10- I
-0.6

10- I
+0.6

+0.4

+0.2

-0.2

-0.4

-0.6

-0.8

-10

- 12

- 14

I

100°C
25°C
-0.4

-0.2

+0.2

+0.4

+0.6

+0.8

+1.0

VBE. BASE EMITTER VOLTAGE (VOLTS)

VBE. BASE-EMITTER VOLTAGE (VOLTS)

FIGURE 13 - DARLINGTON SCHEMATIC

PNP
MJ920
MJ921

r - - - - -----------,
I

BASE I

NPN
MJI200
MJI201

COLLECTOR

COLLECTOR

I

I
1
I
I
___
_ _ _ _ _ _ .....JI
'--t-~.........,vv--J
EMITTER I

BASE 2

BASEI..,.....,~--....

I
1
I
I
___
_ _ _ _ _ _ .....JI
'--t-~.......,w-'
EMITTER I

EMITTER 2

MJ1000, MJ100l

(SILICON)
For Specifications, See MJ900 Data.

MJ1200, MJ1201 (SILICON)
For Specifications, See MJ920 Data.
392

EMITTER 2

BASE 2

MJ 1800 (SILICON)

HIGH-VOLTAGE NPN SILICON TRANSISTOR

5 AMPERES
POWER TRANSISTOR

· . . designed for use in vertical deflection amplifier circuits in
television receivers.

NPNSILICON
500 VOLTS
100 WATTS

• High Coliector·Emitter Voltage - VCER = 500 Vdc
• Excellent Gain Linearity

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

250

Vdc

VeER

500

Vdc

VEB

5.0

Vdc

Ie

5.0

Adc

Po

100
0.8

Watts
wfDe

TJ,Tstg

-55 to +150

°e

Collector-Emitter Voltage
Collector·Emitter Voltage
Emitter·Base Voltage

Collector Current

Continuous

Total Device Dissipation@Tc=26oC
Derate above 250 e
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS (TC
Ch8nteteristic

= 25°C unless otherwise noted)
Symbol

Min

OFF Ct:lARACTERISTICS

Collector-Emitter Breakdown Voltage
(Ie = 0.1 Adc, Ie" 0)

BVCEO

III

250

-

Unit

Vdc

Collector Cutoff Current
(Vee =-5ODVdc, RBE -1.5 k Ohms)

ICER

200

,Ado

Emitter-Base Leakage Current
(VEe = 5.0 Vdc,lC = 0)

lEBO

'00

~c

DC Current Gain

hFE'

111

35

hFE2

111

40

lie" 0.3 Adc, VeE = 5.0 Vdc)

Gain Lln8lrity

DIM
A
B
C

ON CHARACTERISTICS

DC Current Gain
(Ie" 0.4 Ade, VeE" 5.0 Vdc)

STYLE 1:
PIN I. BASE
2. EMITTER
CASE: COLLECTOR

hFE1 JhFE2

D

MILLIMETERS
MIN MAX

6.35
0.99

E

F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.64
R

'20

0.95

(') 'Pulse Test: Pul.. Width ~ 600 III, Duty Cycl.~ 2.0%.

NOTE:
I. OIM "U" IS OIA.

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
eASE 11

393

INCHES
MAX
MIN

-

0.250
0.039
_.
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ1800 (continued)

FIGURE 2 - NORMALIZED DC CURRENT GAIN

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
100

""-I\.

~

t-

~

75

0

iii

z

;;:

to

50

"-

~

o

o

~

~
~

I'\.

40

60

80

"-

100

120

140

I\.

'\

O. 3

1\

o. 2

1\

~

I\.
20

0.7

ffi
N

!"'-

25

~

1.0

g o. 5

'\,

0

'"~

I
t-

\.

z

;::
;t

2. 0

o. 1
160

180

200

0.05 0.07 0.1

TC. CASE TEMPERATURE (DC)

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

IC. COLLECTOR CURRENT (AMPS)

FIGURE 3 - ACTIVE-REGION DC SAFE OPERATING AREA
10
5.0

~ 3.0
~ 2.0

"-

t-

~ 1.0

The Safe Operating Area Curves'indicate Ie-VeE limits below

~

0.5
~ 0.3

which the device will not enter secondary breakdown. Collector

r-

~ :.21
o

u

-

-

-

Secondarv Breakdown Limited
- Bonding Wire Limited

"'

0.0 5

~o.o3

0.0 2
0.01
3.0

5.0

7.0

10

20

30

50

70

load lines for specific circuits must fall within the applicable 'Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power·temperature derat,ing must be observed for both steady state and pulse power conditions.

"""

100

200 300

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

394

MJ2249 (SILICON)
MJ2250
MJ3101
Medium-power NPN silicon transistors ideal for
use as drivers, switches, amplifiers.
02

o

0

( ; )

CASE 80
(TO·66)

@I

STYLE 1:
PIN 1 BASE
2 EMITTER
CASE: CO LLECTOR

MAXIMUM RATINGS

Symbol

Rating
Collector-Emitter Voltage
Collector-Bast. Voltage
Emitter-Base Voltage

MJ3101 MJ2249 MJ2250

VCEO

40

VCB

50

·•
·

VEB

60

80

60

80

6.0

Collector Current - Continuous
Peak

IC

Base CUrrent

IB

•

0.5

Total Device DiSSipation @ T C = 25°C
Derate above 25°C

PD

•
•

20
0.133

Operating and Storage
Junction Temperature Range

TJ,Tstg

2.0
3.0

Unit
Vdc

.
.
.

Vdc
Vdc
Adc

1

.,

- - 6 5 to+175-

Adc
Watts
wloc
°c

FIGURE 1- POWER· TEMPERATURE DERATING CURVE
20

en

~z:

16

~
en

12

C

8.0

0

..............
............

............

...... r--.....

..............

en

..,
Q:

............
............

:;::
0

"-

Ci
"-

............

4.0

t--....

0
25

50

75

100

125

150

Te , CASE TEMPERATURE (OC)

Safe Area Curves are indicated by Figure 2. Both limits are applicable and
must be observed.

395

""'"

175

MJ2249, MJ2250, MJ3101

(continued)

ELECTRICAL CHARACTERISTICS fTC

=2SoC unless otherwise noted)
Symbol

Characteristic

Min

Max

Unit

OfF CHARACTERISTICS
Collector-Emitter Voltage (1)
Uc • 100 mAde, IS • 0)

svCEO
MJ3101

40

M.J2Z49

60

MJ2250

60

Collector-Base Cutoff Current
(VCS· 50 Vde, IE • 0)

MJ2249

(VCS· 60 Vde,IE' 0, TA' 15oCC)
(VCS • 60 Vde, IE· 0)
(VCS' 80 Vde,IE '

MJ2Z50

0, TA • 15oCC)

Emitter-Baae CutoU Current
(VES • 6.0 Vdo, IC ·0)

lEBO

All Type.

1.0

-

(VCS· SO Vdc,IE • 0, TA • 15oCC)
(VCS· 60 Vdc, IE' 0)

-

2.0
1.0
2.0
1.0
Z.O
mAde
1.0

ON CHARACTERISTICS
DC Current Gain
50 mAde, VCE • 4.0 Vdc)

Uc •
Uc = 100 mAde, VCE (Ie •

hFE

All Type.

25

AU Type.

4.0 Vde)t

All Types

500 mAde, VCE • 4.0 Vde)·

Collector-Emitter SaturaUon Voltage
(Ie ·600 mAde, IS' 50 mAde)

VCE(••t)

All Type.

Uc • 150 mAde, IS • 15 mAde)
Uc =1.0 Ado, lB' 0.1 Ado)

MJ3101

Base... Emltter Saturation Voltages
500 mAde,IS' 50 mAde)

VBE(••t)

(Ie •

All Type.

(Ic ·150 mAde,IS - 15 mAde)

W3101

Uc =1.0 Ade, Is = 0.1 Ade)

MJ2249, MJ2250

-

25

ZOO

25·

200"

-

-

MJ2249, MJ2250

Vdc

mAde

leso

MJ3101

-

-

-

Yd.

1.0
2.5
2.5
Vde
1.2

1.5
1.5

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
Uc = 100 mAde, VCE ' 10 Vde, f • 10 MHz)
(11 PULSE TEST: PW

~

All Type.

500 •• , Duty Cycle S 2. 0%

tColor coded hJrE groups available at 100 mAde

FIGURE 2- ACTIVE REGION SAFE OPERATING AREAS
MI2249, MJ2250, MI3101

'-I.

dc, .......

2.0

11.0

"-

M)2249, MJ2250

1.0m~ .;: t"--".

,

......

~

S

M12250

j'--... __ I-- sOO~

-.... r-..

S.ORlS •

~ 0.6

M13101'

l!i 0.4

;

-'~

""-

--

r.....

~

.Ji 0.2

'M)2249

r-

h........ r-.....

'.

'"'~

MJ2250

0.1
0.06

o

10

-

1--"-

,

70
80
50
60
30
40
VeE. COllECTOR·EMITTER VOlTAGE !VOlTS)
NOTE: For additional design curves, please refer to Type 2N3766.

20

396

The Safe Operating Area Curves indio
cate the Ic·VeE limits below which the
devices will not go into secondary
breakdown. These curves can be used
as long as the average power derat·
ing curve (Figure 1) is also taken
into consideration to insure opera·
tion below the maximum junction
temperature.

MJ2251 (SILICON)
MJ2252
High-voltage NPN silicon power transistors, particularly well suited for power output stages in television,
radio, phonograph and other consumer product applica~
~~ions.
@.
' STYLE I:

CASE 80 0

0

(TO.66)

PIN 1. BASE
2. EMITTER
CASE: COllECTOR

@I

MAXIMUM RATINGS
Rating

Symbol

Value

VCEO

Collector-Emitter Voltage

Vdc
225
300

KJ2251
14J2252

Emitter-Base Voltage

8

Vo

Collector Current

Ie;

Total Device Dissipation
@ TC = 'IO·C
Derate above 'IO·C

PD

Operating and storage
Junction Temperature Range

(TA'"

~

Collector-Emitter Breakdown Voltage
KJ2251
(IC ~ 1 oiAde, lB. 0)

BVCEO

..

225

Collector Cutoff Current
(VCB'" 300 Vdc, IE. 0)

leBO

-

Emitter-Baae Leakage Current
(VEB;' 8 Vde, Ie .. 0)

lEBO

-

DC Current Gain
(Ie" 50 mAde, VCE .. 10 Vdc)

bFE

Small Signal Current Gain
c;;:

~\

de ~

8 0.3

\

I:\._li
~\\

~

.9 0.2

0.1

0.1

10

15

25
30
20
35
VeE, COLLECTOR·EMIITER VOLTAGE IVOLTSI

40

The Safe Operating Area Curves indicate Ie - VeE limits
below which the device will not go into secondary breakdown.
Collector load lines for specific circuits must fall within the ap·
plicable Safe Area to avoid causing a collector·emitter short.

20

25

30
40
45
35
VeE, COLLECTOR·EMIITER VOLTAGE (VOLTS)

50

55

(Duty cycle of the excursions make no significant change in
these safe areas.) To insure operation below the maximum TJ ,
the power·temperature derating curve must be observed for
both steady state and pulse power conditions.

NOTE: For additional design curves, please refer to Type 2N3789.

402

MJ2500, MJ2501 PNP (SILICON)
MJ3000, MJ3001 NPN

10 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS

60-80 VOLTS
150 WATTS

for use as output devices in complementary general purpose
amplifier applications .
•

High DC Current Gain - hFE = 4000 (Typ)

@

IC = 5.0 Adc

• Monolithic Construction with Built-In Base-Emitter
Shunt Resistors

MAXIMUM RATINGS
Rating

Symbol

Collector·Emitter Voltage

VCEO

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

MJ2500 MJ2501
MJ3000 l.I"nnl
60
80
60

BO

Unit
Vdc
Vdc

5.0

Vdc
Adc

Collector Current

IC

10

Base Current

IB

0.2

Adc

Total Device Dissipation@Tc= 2SoC

Po

150
0.857

Watts
W/oC

TJ.Tstg

-55 to +200

°c

Symbol

Max

Unit

°JC

1.17

°C/W

Derate above 2SoC
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to CaS!'!

STYLE 1:
PIN 1. BASE

2. EMITTER
NOTE:
CASE: COLLECTOR
1. DIM

"a" IS OIA.

FIGURE I-DARLINGTON CIRCUIT SCHEMATIC

MILLIMETERS
DIM MIN MAX
PNP
MJ251l0
MJ2S01

Collector

---,

r---+, :
I
I
I
I

Base

Collector

NPN
MJ3000
MJ3001

A

---,
~---

1000

g

500

u

~

2000

z

§

.,; 1.0

VBiiWlll"°':'

0.5

VjC~(i1) j~ jlCIlB •

II
0.02

0.05

0.1

0.2

ilill
0.5
1.0

'"

~

1.5

0.01

.

.

1.0

~

O.7
O. 5

~ O.3
O.2

t

50 I5.0

~

MJ2500, MJ3000 - ~
MJ260l, jJ300,1 -

~

r-~

TJj 200"IC

I
2.0

~

~

1\

- - Secondary Breakdown Limited
Thermally Limnad at TC = 250C
- - - . Bonding Wire Limited

2.

o

-

3.0

0:

1

~ 2.0

-- ---

i o=

2.5

0

'"~

f\

100

100

~

"\

TC' 25°C
VCP3.0 Vdc
IC' 5.0 Adc

~

200

50

Vde

O. I

10

1.0

IC. COLLECTOR CURRENT (AMP)

2.0

3.0

5.0 7.0

10

20

30

50

70 100

VCE, COLLECTOR·EMITIERVOLTAGE (VOLTS)

not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by seCO(1dary breakdown. (See A N-415)

There are two limitations on the power handling ability of a
trensistor: junction temperature and secondary breakdown. Safe
operating area curves indicate IC-VCE limits of the transistor that
must be observed for reliable operetion; a.g., tha transistor must

\.

404

MJ2801 NPN (SILl.CON)
MJ2901 PNP

COMPLEMENTARY SILICON POWER TRANSISTORS
· .. designed for general·purpose amplifier and switching circuit
applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) 1.5 Vdc (MaxI @ IC 8.0 Adc

•

DC Current Gain hFE = 15 (Min) @ IC = 8.0 Adc

=

15 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON
40 VOLTS

115 WATTS

=

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Ba.. Voltage

VCB

Emitter-Base Voltage

VEB
IC

Vdc
Vdc

TJ.Tstg

50
7.0
15
7.0
115
0.657
-65 to +200

Symbol

Max

Unit

9JC

1.52

°CIW

Collector-Emitter Voltage

Collector Current

Continuous

Ba.. Current

IB

Total Devica Dissipation@TC=250C
Derate above 25°C

Po

Operating and Storage Junction

Adc
Adc
Watts

WloC

°c

Tamperature Range
THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

FIGURE 1 - POWER TEMPERATURE DERATING CURVE
NOTE:
1. DIM "O"IS DIA.

140

e

120

I--

115

~ 100

.,z

"'"

~. 80

~

Q

'"~

2

MILLIMETERS
DIM MIN MAX

~

60
40

A
B
C

~
..........

i'....

~ 20

"'"1'--.

o

o

25

50

75

100

125

150

f':
175

200

D
E
F
G
H
J
K
Q

R

-

-

39.37
21.08
7.62
1.09
3.43

29.90
10.67·
5.33
16.64
11.18
3.84

30.40

6.35
0.99

-

11.18
5.59
17.15
12.19
4.09
26.67

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

CASE II

TC. CASE TEMPERATURE (OC)

405

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ2801 NPN, MJ2901 PNP (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

Unit

BVCEO

40

-

Vdc

ICEX

-

5.0

mAdc

-

5.0

lEBO

-

10

mAdc

hFE

15

60

-

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(l)
(lC

= 200 mAdc,

IB = 0)

Collector Cutoff Current
(VCE = 50 Vdc, VEB(off)

= 1.5 Vdc)

Collector Cutoff Current

Emitter Cutoff Current
(VEB

= 7.0 Vdc,

IC

mAdc

ICBO

= 50 Vdc, IE = 0)
(VCB = 50 Vdc,IE = 0, TC = 1500C)
(VCB

= 0)

ON CHARACTERISTICS
DC Current Gain!l)
(I C = 8.0 Adc, V CE = 4.0 Vdc)

10

Coliector·Emitter Saturation Voltage(l)
(lC = 8.0 Adc, IB = 0.8 Adc)

VCE(sat)

-

1.5

Vdc

Base-Emitter On Voltage(l)
(lC = 8.0 Adc, VCE = 4.0 Vdc)

VBE(on)

-

2.2

Vdc

DYNAMIC'CHARACTERISTICS
Current·G.in -Bandwidth Product
(lC = 0.4 Adc, VCE = 10 Vdc, f = 1.0 MHz)
(1)Pulse Test: Pulse Width,:S 300 ",s, Duty Cycle 5,2.0%.

FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA

20

"- I"

t·

ii::' 10

2\

~

;:: 5.0

ffi
~

3.0

250".
500".

f--

~ 2.0 f - -

I

de

~ 1.0

I I
..
F-- Secondary
Breakdown Llmlttd

I

8

f:: -- - Thermal
Limitations, TC =25 C
Pul .. Duty Cycle'; 10%

'"o

G

:} 0.5

I

..

.-/

1.0ms

TJ =2000 C

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must faU within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation

below the maximum T J, power-temperature derating must be ob·
served for both steady state and pulse power conditions.

~ _. _. Bonding Wir, Limited

0

II0.3

Applicable For Rattd BVCEO

0.2
3.0

6.0

10

20

30

40

VeE, COLLECTOR·EMmER VOLTAGE IVOLTS)

406

MJ2840 (SILICON)
MJ2841

10 AMPERE
POWER TRANSISTORS

HIGH-POWER NPN SILICON TRANSISTORS

NPN SILICON
60-80 VOLTS
150 WATTS

· .. designed for use inaudio amplifjercircuits utilizing complementary
symmetry.

•

Excellent Safe Operating Area

•

DC Current Gain hFE = 20 - 100@ IC = 3.0 Adc (MJ2840)
= 4.0 Adc (MJ2841)

•

Complement to PNP MJ2940 and MJ2941

MAXIMUM RATINGS
Rllting

Symbol

MJ2840

MJ2841

Unit

VCEO

60

SO

Vdc

Collector-Sase Voltage

VCS

60

60

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

IC

10

Adc

Collector-Emitter Voltage

Collector Current - Continuous

Base Current

18

4.0

Adc

Total Device Dissipation @TC= 25°C

Po

160
0.S5

Watts

wfDc

TJ.Tstg

-65 to +200

DC

Derete above 250 C

Operating and Storage Junction
Temperature Range

lr~
r~,
ES::?t:
PLANE

i

THERMAL CHARACTERISTICS
Characteristic
Thermal R_istanc8. Junction to Case

STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

NOTE:
1. DIM "O"IS DIA.

160
In

i
z

120

~
If

100

Ili

50

~

........,....

140

DIM

..............

40

t

2D

C

..........

D
E

..............

..............
25

50

75

-

B

.............

80

~

A

MILLIMETERS
MAX
MIN

100

125

150

..............

175

2DD

Te. CASE TEMPERATURE (OCI

6.35
0.99

F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84
R

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

Slife Area Limits are Indicated by Figure 4. Both limits are applicable and must be observed.

407

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ2840, MJ2841 (continued) .
ELECTRICAL CHARACTERISTIC (TC = 25°C unless otherwise noted)

I

I

Min

Max

60
80

-

0.1
2.0

-

1.0

-

Both Types

40

-

(lC = 3.0 Ade, VeE = 2.0 Vde)

MJ2840

(lC = 4.0 Adc, VeE = 2.0 Vde)

MJ2841

20
20

100

B.....Emitter On Voltage~1)
(lC = 3.0 Ade, VCE = 2.0 Vde)

MJ2840

-

IIc = 4.0 Ade, VCE = 2.0 Vde)

MJ2841

-

Characteristic

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltaga(1)
(lC = 200 mAde, IB = 0)

Vdc

VCEO(sus)
MJ2840
MJ2841

Collector-Base Cutoff Current
(VCB" Rated VCB, IE = 0)

mAde

ICBO
Both Types
Both Types

IVCB = Rated VeB, IE = 0, TC = 150OC)
S.....E mittsr Cutoff Current
IVBE = 4.0 Vde, IC = 0)

mAde

lEBO
Both Types

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 50 mAde, VCE = 10 Vde)

-

hFE

100
Vdc

VBElon)

1.3
1.4

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIC = 0.5 Ade, VCE = 10 Vde, f = 1.0 MHz)
(1)Pulsa Teat: Pulse Width S300 ,",5, Duty Cycle'S..2%.

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

500

300
200

z

~

100

0:

10
50

~
:::>

<.>
<.>

'"

30

~ 20

2.0
1.8

VCE = 2.0 Vd,

-

TJ= 175°C

1.6

-I-

6 1.21.4
'"

+250C

2:
w

to

-55°C

:;
"

r-....

'">>'

./

10
7.0
5. 0
0.01

1.0
0.8 _

I--'
k:o::=~

V8Elsat)@ Iclla = 10 Vd,

VaElon)@ VCE = 2.0 Vdc--:

0.6

Till U

0.4

.J...+1"

0.2

VCElsatl@lclia - 10 Vd,

o
0.02 0.03 0.05

0.1

0.2 0.3 0.5

1.0

2.0 3.0 5.0

10

0.1

IC. COLLECTOR CURRENT lAMP)

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0

7.0 10

IC. COLLECTOR CURRENT lAMP)

FIGURE 4 - ACTIVE,REGION SAFE OPERATING AREA
10

0:

d,~.Oms'S.100 ..

5.0

'"5

r--

I-

z
w 2.0 r-~

=

TJ = 200°C

\

~;~~~ ~i:~~wn ~~i~50C

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. powerwtemperature derating must be observed for both steady state and pulse power conditions.

.~

Curves Apply aelow Rated aVCEO

B 1.0
0:

'"

~'" 0.5
<.>

~ 0.2

0.1
1.0

MJ2840 r-~
MJ2841

r-

2.0

3.0 4.0 5.0 7.0

10

20

30 40 50

70 100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

MJ2901 (SILICON)
For Specifications, See MJ2801 Data.
408

MJ2940 (SILICON)
MJ2941

10 AMPERE
POWER TRANSISTORS

HIGH-POWER PNP SILICON TRANSISTORS

PNPSILICON
60-80 VOLTS
150 WATTS

· .. designed for use inaudio amplifier circuits utilizing complementary
symmetry.

•

Excellent Safe Operating Area

•

DC Current Gain hFE = 20 - l00@ IC = 3.0 Adc (MJ2940)
= 4.0 Adc (MJ2941)

•

Complement to NPN MJ2840 and MJ2841

MAXIMUM RATINGS
Rating

Symbol

MJ2940

MJ2941

Unit

VeEO

60

80

Vdc

Collector-Base Voltage

VeB

60

80

Vdc

Emitter-Base Voltage

VEB

4.0

Collector Current - Continuous

Ie

10

Adc

Base Current

IB

4.0

Adc

Total Devica Dissipation @Te =250 e
Derata above 250 e

Po

150
0.85

Watts
w/oe

TJ.Tstg

-65 to +200

°e

Collector-Emitter Voltage

Operating and Storage Junction

Vdc

Temperature Range

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to

c.e

STYLE 1:
PIN 1. BASE
2. EMITTER
NOTE:
CASE: COLLECTOR
1. OIM "a" IS DIA.

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

160
140

............

S 120
~

~

!C

.~

I

~

r-...

100

MILLIMETERS
DIM MIN MAX

............

A
B

..............

80

.............

40

..............

20

..............

o

o

25

50

75

100
TCo CASE TEMPERATURE tOC)

125

6.35
0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
a 3.84

C
D

.............

60

ISO

175

200

-

R

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

Safe Area Limits are Indicated by Figure 4. Both limits are applicable and must be observed.

409

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.3
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ2940, MJ2941 (continued)

ELECTRICAL CHARACTERISTIC (TC = 25°C unless otherwise noted)
Symbol

Characteristic

Min

Max

60
BO

-

-

0_1
3_0

-

1.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(1)
(lC = 200 mAde, IB = 01
Collector-Base Cutoff Current
(VCB = Rated VCB, IE = 01
(VCB

Vde

VCEO(susl

MJ2940
MJ2941

mAde

ICBO

= Rated VCB, IE = 0, TC = 150o C)

Emitter-Base Cutoff Current
(VBE = 4_0 Vde, IC = 01

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 50 mAde, VCE

-

hFE

= 10 Vdel
(lC = 3.0 Ade, VCE = 2.0 Vde)
(I C = 4.0 Adc, V CE = 2.0 Vdel

Both Types

40

-

MJ2940

20
20

100

1.3
1.4

MJ2941

Base-Emitter On Voltage(1)
(lC = 3.0 Ade, VCE = 2.0 Vdel

MJ2940

-

(lC = 4.0 Ade, VCE = 3.0 Vdel

MJ2941

-

100
Vde

VBE(onl

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.5 Ade, VCE = 10 Vde, f

= 1.0 kHzl

(1)Pulse Test: Pulse Width 5300 #ls, Dutv Cycle~ 2%.

FIGURE 2 - DC CURRENT GAIN
100 0
700
500 - -TJ +175°C
z

"

300

'" 200

~

w

~ 100

"

'-'
'-'

'"

~

+25 e

-

FIGURE 3 - "ON" VOLTAGES
2.4

VeE - 2.0 Vdc t

'"~

t"--r-r-.
t"---r-.

-55 e

I I I II II
ITJ .1+25IoCI I III

g 2.0

I I I I

I I II

_ i l f 'ICIIB (FORCEO AGAIN)

VCE" 2., Vi'

w

'"
:;
<[

'">z
'"
~

0
0
0
0

1.6

IA.

1.2

~ ?'

""';l5>--

O.B _VBE(satl

~

0.4

;;:

~
~F

·10

~

VBE

",.

-I-"'"

_VCE!sat)

10

0.01

0.020.03 0.05

0.1

0.2 0.3 0.5

1.0

2.0 3.0 5.0

10

0.1

IC COLLECTOR CURRENT lAMP)

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

IC. COLLECTOR CURRENT (AMPS)

FIGURE 4 - ACTIVE-REGION SAFE OPERATING AREA
10

li:

"">--

dc:::S:; 1.0 ms'3;:.100 "'

5.0

~

a'i

"

'-' 1.0

::'"'-'
w

::::
8

It

2.0

'"'"

F==

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power·temperature derating must be observed for both steady state and pulse power conditions.

[~

TJ • 200 0 C

f=-- Secondary Breakdown limited

f== --- Thermally
Limited
TC' 25°C
0.5 r-Curves Apply Below Rated BV CEO

~ 0.2
0.1
1.0

MJ2940-r
MJ2941,-+
2.0

3.0 4.0 5.0 7.0

10

20

30 40 50

70 100

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

410

MJ2955 (SILICON)

15 AMPERE
POWER TRANSISTOR
PNP SILICON POWER TRANSISTOR

PNP SILICON
60 VOLTS
150 WATTS

· .. designed for general-purpose switching and amplifier applications.

•

DC Current Gain hFE = 20·70 @ IC

= 4.0 Adc

• Collector-Emitter Saturation Voltage,VCE(sat) = 1.1 Vdc (Max) @ IC =4.0 Adc
•

Excellent Safe Operating Area

• Complement to Motorola's "Epi-Base" Transistor, 2N3055

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Eminer Voltage

VeEO

60

Vdc

Collector-Emitter Voltage

VeER

70

Vdc

Collector-Base Voltage

VeB

100

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

Ie

15

Adc

Rating

Collector Current - Continuous
8ase Current

'B

7.0

Adc

Total Device Dissipation @ T C = 2SoC
Derate above 2SoC

Po

150

Watts

Operating and Storage Junction

TJ, T sts

0.86

w/oe

-65 to +200

De

STYLE 1:
PIN 1. BASE
C
2. EMmER
--~~+-j- CASE: COLLECTOR

Temperature Range

THERMAL CHARACTERISTICS
NOTE:
1. OIM "O"IS OIA.

Characteristic
Thermal Resistance, Junction to Case

FIGURE 1 - POWER DERATING
160

I-0

"- '),.

,
DIM

.........

A
8
C

0

"'"

0
0

0

" "'"

0
E
F

0
25

50

75

100

125

G
H
J

...............

150

K

...............
175 200

TC, CASE TEMPERATURE ,oCI

11

R

MILLIMETERS
MIN MAX

-

6.35
0.91

-

29.90
10.67
5.21
18.84
11.18
3.84

311.'7
22.23
11.43
1.119

INCHES
MIN
MAX

-

0.250
0.038

3.43
30.40 un
11.18 0.420
5.72 0.205
11.15 .665
12.19 iD.44O fD.480
4.D9 0.151 0.181
26.11
- 1.050
CASE 11·03

411

1'"
0.815
.450
0.043
D.T!&"
1.191
0.440
0.225
0.615

MJ2955 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unl_ otherwise noted)

I

I

Characteristic

symbol

Min

Collector-Emitter Sustaining Voltage (1)
(lc = 200 mAde. IB = 0)

VCEO(sus)

60

Collector-Emitter Breakdown Voltege (1)
(lC • 200 mAde. RSE = 100 Ohms)

BVCER

70

-

ICEO

-

0.7

Unit

Ma"

OFF CHARACTERISTICS

Collector Cutoff Current
(VCE = 30 Vde.IB = 0)
Collector Cutoff Current
(VCE = l00Vdc. VSE(off)
(VCE - 100 Vde. VSE(off)

= 1.5Vde)
= 1.5 Vdc. TC =

Vde
mAde
mAde

ICEX
150°C)

Emitter Cutoff Current
(VSE = 7.0 Vde.IC = 0)

Vdc

IESO

-

-

1.0
5.0

-

5.0

20

70

mAde

ON CHARACTERISTICS (1)
DC Current Gain
(lC = 4.0 Adc. VCE = 4.0 Vdc)
(lc = 10 Adc. VCE = 4.0 Vdc)

-

hFE

-

5.0

Collector-Emitter Saturation Voltage
(lc = 4.0 Adc. IS· 400 mAde)
(lc = 10 Adc. IS = 3.3 Adc)

VCE(satl

Sase-Emltter On Voltage
(lC = 4.0 Ado. VCE • 4.0 Vdo)

Vdc

-

-

1.1
3.0

VSE(on)

-

1.8

Vde

Current Gain - Bendwidth Product
(lC =0.5Adc. VCE = 10 Vde. f = 1.0MHz)

fT

4.0

-

MHz

Smell-5ignal Current Gain
(lC· 1.0 Adc. VCE = 4.0 Vde. f· 1.0 kHz)

hfe

15

-.

-

Smell-5lgnal Current Gain Cutoff Frequency

f"",

10

-

kHz

DYNAMIC CHARACTERISTICS

(VCE· 4.0 Vdc.IC = 1.0Ade. f= 1.0 kHz)
·Pulse Test: Pulse WidthS" 300 "', Duty Cycl.~ 2.0%.

FIGURE 3 - TURN-ON TIME

FIGURE 2 ...: SWITCHING TIME TEST CIRCUIT
1.0

VCC
-30Y

O.5

......

.......

J

+10iJ-0- - - - -

Ra

SCOPE

0.2

]
~

;::

-10V--~

51
25,.
"
.....''''10 ..
-I4,OY
DUTY CYCLE = 1.0!I
Ra ",d RC YARIED TO OBTAIN DESIRED CURRENT LEVELS

"'1-

.......

I'

o. 1

...

.;

0.05

0.02

0.01

01 MUST aE FAST RECOVERY TYPE. II:
Ma05300 USEO ABOVE IB-l00mA
MSD6100 USED BELOW la -100 mA

.......

YCC-30Y
Ic/la" 10
YaElolI) =3.0 Y
-TJ= 250C

0.1

,
0.2

0.3

0.5

2.0

3.0

IC. COLLECTOR CURRENT (AMP)

412

5.0

10

MJ2955 (continued)

FIGURE 4 - THERMAL RESPONSE
1•0

.:.

o.7 f=D -0.5

1_
o.5
wO
:>::w

~
i~ :~ r-0.1
0.2

,......

in"
ZO

~ r-io-'

",Z

~: o. 1~.0.05
~ ~o.o 7~0.02
~~o.o5
... " ,
..k"' 0.01
:t ~ 0.03
~

SINGLE
PULSE P B l J l

-

-1

f- I

~ 6JC(I) = ,(I) 6JC _

r-- 6JC·I.17 0C/W MIX

DUTY CYCLE. D-11112

D CURVES APPLY FOR POWER
PULSETRAIN S~~~ I I I
READ TIME AlII
TJ(pk) - TC = P(pk) 6Jc(l)

0.02 - SINGLE PULSE
0.0 1
0.01

I II

I

0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0

2.0

II

II II

3.0

5.0

10

20

30

50

I

100

200 300

500

1000

I. TIME (m.)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
20

I!Z

5.0

~

3.0

....
w

r-

.. 2.0

~...

1--

0

H-H

- -- ".l1fm~ ~ f~

.... .....

There ere two limitations on the po_r handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curvas indicate IC,VCE limits of the transistor
that must be observed for reliable operation; i.e .• the transistor
must not be subjected to greater dissipation than the curves indicMe•
The data of Figure S il based on TJ(pk) = 200; TC ilvariable
depending on conditions. Sacond breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pkl"'2000C. TJ(pkl may be
calculated from the data in Figure 4. At his;. c_ tamperatures.
thermal limitations will reduce the power that can be handled to
values lass than the limitations imposed by second breakdown.
(Sea AN-41 Sl

5.0 ms

TJ =200°C
Secondary Breakdown

Limited-500'J.~ k-

- - - - - Bonding Wire Limit

~c\

- - - - - - - Thermal limit at TC =2SDC

1.0

~

8

~

o.5
O.3
0.2
2.0

\
3.0

4.0

6.0

10

20

3D

40

60

VCE. COLLECTOR·EMITT~R VOLTAGE (VOLTS)

FIGURE 8 - TURN-OFF TIME

FIGURE 7 - CAPACITANCE

0

1000

2.0

TJ - 2SOC

VCC-30V

5.0

700

IC~B -10

--

IBI = IB2
TJ = 25°C

~ 500
~

--

Is

-

0.1
0.1

0.2

0.3

0.5

1.0

-""

I=;:,..
~

~
!::3OD

~.. 200

0.5

0.2

"'-

~

If

2.0

3.0

5.0

100
0.1

10

IC. COLLECTOR CURRENT (AMP)

0.2

0.5

1.0

2.0

5.0

.........

III

10

VR. REVERSE VOLTAGE (VOLTS)

413

,

Cob
Cib

I"
20

50

100

MJ2955 (continued)
FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN
200 _ H 4 , .

i--

-1

or-- t-~ I-

-

1

III

r--

TJ -150 DC

~

0

> 1.2

'"
~

"o~

~-'

O. B

\

O.4

~

>
0.3

1.0

0.5

2.0

3.0

5.0

0

10

5.0

10

20

50

IC. COLLECTOR CURRENT IAMPI

TJ - 25DC

>

II I

~

'BVC for VCEI"tl

.§. +1. 5

ffl +1, 0

J.;
VaEI,,!)@lc/la-l0
I I
I
I I I
f - - f-- VaE
@VCE - 4.0 V
O. B

~ 1--.....

S

V

O.4
VCEI"tl@lc/l a- 10

~ +0. 5

w
~

>'

....

1.1

o
0.3

1.0

0.5

-0. 5

3.0

5.0

0.1

10

- 55DC to 25DC

1/

j..- ..... ~

J.u.~ !o'"
II

';.-2.0

~ -2.5 r-

2.0

-

~

Bva for VaE

a5 -1.5

~

0.2

0.3

0.5

1.0

2.0

- 55DC to 25DC

II
3.0

5.0

FIGURE 13 - EFFECTS OF BASE·EMITTER RESISTANCE

FIGURE 12 - COLLECTOR CUTOFF REGION
10.000

VCE -30V

VCP30V

ffi

'"'"
'"'"

10

IC. COLLECTOR CURRENT IAMPI

IC. COLLECTOR CURRENT IAMPI

1
....

5000

25 DCto 150DC

~-1. 0
~

.&.-0.2

2000

j..-V

25DCto 150DC

U

V

>

0.1

1000

'APPLIES FOR Icila< hFE/4

~+2. 0

~ 1.2

o

500

FIGURE 11 - TEMPERATURE COEFFICIENTS

~
'"
;

200

+2 .5

.6

w

100

la. aASE CURRENT (mAl

FIGURE 10 - "ON" VOLTAGES
.0

r-

\

S

0.2

TJ - 25DC

B.OA

~o

k r"t--.

10
0.1

4.0A

w 1.6

,

f - - f---55 DC

II II

II
IC -1.0 A

~

VCE-4.0V

10

0

2.0

o

=

1000
IC

10 x ICES

100

r- TJ -1500C

::>

10

~

I-- r 100DC
1.0

IC -ICES

IC -ICES

o

'"~

O. Ii--

REVERSE_

I-- r-+-25DC

~FORWARD

""""

=

(TYPICAL ICES VALUES
=lOBTAINED FROM FIGURE 121

0.0 1

+11.2

103

+11.1

-0.1

-0.2

-0.3

-0.4

-0.5

20

40

60

80

100

120

TJ.JUNCTION TEMPERATURE (Oci

VaE. aASE·EMITTER VOLTAGE (VOLTSI

MJ3000, MJ3001 (SILICON)
For Specifications, See MJ2500 Data.

414

140

160

MJ3026 (SILICON)
MJ3027

2 AMPERES
POWER TRANSISTORS

VERTICAL OUTPUT
HIGH-VOLTAGE NPN SILICON TRANSISTORS

NPN SILICON
500,700 VOLTS
80 WATTS

... designed for use in class A vertical deflection in television receivers,
where linear hFE is desired to 250 rnA. Intended for use with high
supply voltage (80-120 Vdc); ideal for line operated receivers.

MAXIMUM RATINGS
Rating

Symbol

MJ3026 MJ3027

Unit

Collector-Emitter Voltage

VeEO

275

300

Vdc

Collector-Emitter Voltage

VeER

500

700

Vdc

Emitter-Base Voltage

VE8

5.0

Vdc

Ie

2.0

Adc

Collector Current - Continuous
Base Current

18

1.0

Adc

Total Device Dissipation@Te= 250 e

Po

80

Watts

0.64

wloe

TJ,Tstg

-55 to +150

°e

Derate above 25°C
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Cass

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)

I

Ch.._I....

I

Symbol

I

Min

I

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
UC·O.1Adc,IS",OI
MJ3026
MJ3027

Vd,

VCEO(sus)

275
300

Collector Cutoff Current
(Vee· SOD Vdc,RSE = 1.5 k Ohms) MJ3026
(VeE = 700 Vdc, RBe" 1.6 k Ohms) MJ3027

ICER

Emitter-aase Leakage Current
(VEB - 5.0 Vdc. Ie = 01

lEBO

~Ade

200
200

500

Gain Linearity

A
~Ade

•
D

hFE1

25

hFE2

25

E
F
B

tic ""250 mAde. VeE = 5.0 Vde)

DC Curnnt Galn(1)
Uc-200mAde, VCE "'5.0Vdel

DIM

C

ON CHARACTERISTICS

DC Current Gain! 1)

STYLE 1:
PIN 1. BASE
2. EM lITER
NOTE:
CASE: COLLECTOR
1. OIM "Q"IS OIA.

hFE1/hFE2

H
J
K
II

0.95

R

(1)Pulle Tnt: Pul .. WIdth ~'500 ~s, Duty CYl::le ~2.0".

MILLIMETERS
MIN MAX

-

39.37
22.23
11.43
1.09
3.43
29.90 30.40
10.87 11.18
5.72
521
16.64 17.15
11.18 12.19
3.84 4.09
26.67
6.35
0.97

INCHES
MIN MAX

0.250
0.038

-

1.177
0.420
02115
0.656
O.
0.151

CASE "·03

415

1.550
0.875
0.450
0.043
0.135
1.197
0.440
0.225
0.675
O.
.161
1.

MJ3026, MJ3027 (continued)

FIGURE 2 - DC CURRENT GAIN

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
80

~

"- ~

60

~
z

200

70

t"-.

0

;::

£
ill

40

is

'"~

~

~ 50

'1'..
"-

20

~
20

40

TJ'liooc

100

60

80

'"w
!i<
'"

a'"

0...,0

u

"

100

o

I':

120

~

'~
140

-

25 0 C

I'i
VCE = 5.0 Volts

0

7.0
5. 0

S
\

\

2. 0
160

0.02

0.05

0.1

0.2

0.5

1.0

2.0

IC. COLLECTOR CURRENT IAMPI

TC. CASE TEMPERATURE lOCI

FIGURE 3 - ACTIVE-REGION DC SAFE OPERATING AREA
0

..

1.0ms

5.0

I'(

~ 2.0

....
~

a

1.
O. 5

g

O.2

_

O. 1

'"

Setondary Breakdown Limited
_ .. - Bonding Wire limit
., .. _ .. Thermal limit at Te '" 25°C
Curves Apply 8olow Rated VCEO

o

g 0.05

"-

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·
sistor that must be observed for reliable operation; i.e., the transistor

.A

MJ3026
20

30

50

The data of Figure 3 is based on T Jlpkl = 150°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) " 150°C. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. ISee AN-4151

17'""
de
MJ3027

10

must not be subjected to greater dissipation than the curves indicate.

"\.

5.0 ms

0.02
0.0 1
5.0

50",

"\.

' I...

TJ =1500 C

0

O.5ms

100

:::.x,..

-r

200

300

500

VCE. CO LLECTO R·EMITTER VOLTAGE IVOLTSI

416

MJ3028 (SILICON)

3.5 AMPERES
POWER TRANSISTOR

VERTICAL OUTPUT
HIGH-VOLTAGE NPN SILICON TRANSISTOR

NPN SILICON
700 VOLTS
100 WATTS

. . . designed for use in class A vertical deflection circuits where
linear hFE is desired to 400 rnA. Primarily intended for 1100 color

television receivers.

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

300

Vdc

Collector-Emitter Voltage

VCER

700

Vdc

VEB

5.0

Vdc

IC

3.5

Adc

Rating

Emitt~r-Base

Voltage

Collector Current - Continuous
Base Current

IB

1.0

Adc

Total Device Dissipation@Tc=2SoC

PD

100

Watts

O.B

WloC

TJ.Tstg

-55 to +150

DC

Derate above 25°C
Operating and Storage 'Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC

=250 C unless otherwise noted)

Symbol

Min

Ma.

Unit

Collector-Eminer Breakdown Voltage
(Ie'" 0.1 Adc.ls = 01

VCEO(susl

300

-

Vde

Collector Cutoff Current
(VeE = 700 Vdc, RBe '" 1.5 k Ohms)

leeR

-

200

JlAdc

Emitter-Base Leakage Current
(VEB .. 5.0 Vdc, Ie .. 01

leso

500

.ADe

Characteristic

OFf CHARACTERISTICS

STYLE 1:
PIN I. BASE
2.EMITIER
CASE: COLLECTOR

DIM

ON CHARACTERISTICS
DC Current Gain·
lie = 0.3 Adc, VCE '" 5.0 Vdc)

hFE1*

25

DC Current Gain
tiC - 0.4 Adc. VCE

hFE2

30

Gain Linearity

=

A

MILLIMETERS
MIN MAX

-

B

C
0

5.0 Vdc)

6.35
0.99

E
29.90
G 10.67
H 5.33
J 16.64
K 11.18
a 3.64
R
F

0.95

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

NOTE:
I. aiM "a" IS DlA.
INCHES
MAX
MIN

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

CASE 11

417

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.490
0.161
1.050

MJ3028 (continued)

FIGURE 2 - DC CURRENT GAIN

FIGURE 1-POWER-TEMPERATURE DERATING
100

100

"- r"-........

" ""-

0

0

z
<1

40

1Q10OC

60

-

f-

I"

100

80

70
0

to

0

10

L

100

TC, CASE TEMPERATURE laC)

iji
~

0

'"

10

i3
<.>

"
110

~

"

~

140

"~
i\.

VCE =5.0 Volts

7. 0
5,0

1,0

160

TJ =15 0 C

0.40.5

0.1

0.1

0.5 0.7

1.0

1.0

3.0 4.0

IC, COI.LECTOR CURRENT lAMP)

FIGURE 3 - ACTIVE REGION SAFE OPERATING AREA
7,0
50


10

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.

1.0
de

0.5

<.>
~

'"

~8

0.1
O. 1

Secondary Breakdown Limited

t-- - -

-

Bonding Wire Limited

- - - - - - Thermal Limitation at Te = 250C
Curves Apply Below Rated VCEO

005

0.01I-++I-t+---+-+-+-++H+t---t-+-+-l

o0 ~': -.O.L-I-~1Q:----:'}0:---'--'-::'::50..J1..JILlwl~1!0::----:!10:::"0---I---l5:::!00

Safe operating area curves indicate Ie - VeE limits of the transistor. that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 3 is based on T J(pk) = 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) '" IS0o C. At high case
temperatures, thermal I imitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. ISee AN-415)

VCE, COLLECTOR·EMITTERVOL TAGE (VOLTS)

418

MJ3029 (SILICON)
MJ3030
NPN SILICON HIGH-VOLTAGE TRANSISTORS
5 AMPERE
POWER TRANSISTORS
NPN SILICON

. designed for TV horizontal and vertical deflection amplifier
circuits.
•

High Collector-Emitter Sustaining Voltage VCEO(sus) = 250 Vdc (Min) MJ3029
325 Vdc (Min) MJ3030

•

Fast Fall Time in Horizontal Deflection tf= 1.0j.ls(Max)@Vcc=80Vdc - MJ3030

•

Excellent Gain Linearity for Vertical Deflection hfe@0.4Adc. hfe@0.3Adc= 0.95 (Min) - MJ3029

250-325 VOLTS
125 WATTS

MAXIMUM RATINGS
Symbol

MJ3029

MJ3030

Unit

Collector-Emitter Voltage

VCEO

250

325

Vdc

Collector-Emitter Voltage

VCER

500

-

Vdc

Collector-Emitter Voltage

VCEX

700

Vdc

Rating

VEe

5.0

Vdc

IC

5.0

Adc

Base Current

Ie

1.0

Adc

Total Device Dissipation @TC= 25°C

Po

125
1.0

Watts
W/oC

TJ.Tstg

. -65 to +150

°c

Emitter-Base Voltage

Continuous

Collector Current

Derate above 25°C
Operating and Storage Junction
Temperatura Range

ir~

~,
i

E SEATING
PLANE

I---FI---J-

,
,

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Symbol
8JC

,
,

Max
1.0

,,

i!I~

"
~

75

C

50

0

1li
~

r\.

"-r\.

100

r\.

"II\..

w

J?

25

a

a

25

50

A
B
C
D
E
F
G
H
J
K

r\.

75

100

"I'\.
125

"

150

175

419

200

R

NOTE:
1. DIM "11" IS DIA.

MILLIMETERS
MAX
MIN

-6.35
0.99

-

29.90
10.67
5.33
16.64
11.1B
Q
3.84

TC. CASE TEMPERATURE I"C)

~
~

~-1

DIM

;;:

a:

Vi
I!
"""
~
r
t ~ ../
br
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
125

Unit

°C/W

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

INCHES
MAX
MIN

-

0.250
0.039
1.177
'0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3029, MJ3030 (continued)
ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)

I

Chancterlstlc

Min

Symbol

Mox

Unit

OFF CHARACTERISTICS
Coliector·Emltter Sustaining Voltage(1)
UC=O.1Adc,IS"'OI

Vd,

VCEO(sus)

250
325

MJ3029
MJ3030

Collector Cutoff Current

mAde

leEA

(V CE = 500 Vdc, RBE '" 1.5 k Ohms)

1.0

MJ3029

Collector Cutoff Current

mAd,

IpEX

2.0

MJ3030

(VeE = 700 Vdc. VEBloffl = 1.5 Vdc)

ON CHARACTERISTICS
DC Current Gain
lie'" 0.3 Adc. VeE = 5.0 Vdc)(1)

MJ3029

hFE1

25

lie'" 0.4 Adc. VeE = 5.0 Vdc)(11

MJ3029

hFE2

30

hFE 2

0.95

Gain Linearity
MJ3029

Collector-Emitter Saturation Voltage
lie = 3.0 Adc, IS ... 0.8 Adc)

hFE 1

Vd,

VCE(satl

2.0

MJ3030

SWITCHING CHARACTERISTICS

fall Time
(VCC=80Vdc,IC=3.0Adc,IS1 = O.BAde) Figure 3

MJ3030

(l}PulseTast; Pulse Width ~300~$. Dutv CyclaS2 0%.

FIGURE 2 - DC CURRENT GAIN
100
70
50

z

30

'">-

20

a

10

;;:

~a:

FIGURE 3 - TEST FOR FALL TIME

VCE - 2.0 V

"-

TJ=100~"\ f'\. 251c

7.0
5.0

u

c

~

I'\.

3.0
2.0
1.0
0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0

7.0

*HP 212A: Set for 10 IlS wide pulses at 2000 pulses per S1!C.
(500 IJ.$ intervals). Adjust for IB1 =0.8 A.

10

~~aspur;:~~~~~r~~:o~~t~;~~p~~a:o~~~t~~Thr~t 1.

IC. COLLECTOR CURRENT (AMP)

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA

t-- 10~~~~~~~~~~~~~~~~~~~~~
-+--++-+-+++++

5.0

100

~3.0

"
"
2.0 I--T-J-'-15+0-.C-+--d"'c<++H++1-0-'m"'.'I.
s

S

affi~

0.5
1.0

a:

~

0.3

=

~~~~"EII·~"·~"~I!III

0.2 ~-----------+-Set-.n+d-81-yf-Br0.1 _
_ Bondmg Wire limited

..j-k--jdow+n+L-+im-+it"'.d\."--+-*-+-+++-++

for duty cycles to 10% provided TJ(pk) ~ 1500 C. At high ca.e
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second

8 5 ..,:.=..::..::: Thermal LimitaUon at TC .. 250C
~ ~:OO r-------rCuMsApply Below Rated VCEO
3
0.02
1
0.0
10

I II
20

30

50

70

100

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 4 i. based on T J(pk) = 1500 C; TC is variable
depending on conditions. Second breakdown pulse limits are valid

MJ3029 :...
MJ3030'ft+"I-"t.l-I-++4++1
200

325

breakdown.

500 700 1000

VCE. COLLECTOR·EMITIERVOLTAGE (VOLTS)

420

MJ3040 (SILICON)
thru

MJ3042
Advance Inforll1ation
DARLINGTON
7 AMPERE
POWER TRANSISTORS
NPN SILICON

HIGH VOLTAGE SILICON POWER
DARLINGTONS

300,350 VOL TS
100 WATTS

· .. developed for line operated amplifier, series pass and switching
regulator applications.

•

Collector-Emitter Sustaining VoltageVCEO(sus) = 300 Vdc (Min) - MJ3040, MJ3041
= 350 Vdc (Min) - MJ3042

•

High DC Current Gain hFE = 100 (Min) @ IC = 2.5 Adc - MJ3040
= 250 (Min) @ IC = 2.5 Adc - MJ3041, MJ3042

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 2.2 Vdc (Max) @ IC = 2.5 Adc

•

Monolithic Construction with Built-In
Base-Emitter Shunt Resistors

MAXIMUM RATINGS
Rating

MJ3042

Unit

VCB

400

400

500

Vdc

VCEO

300

300

350

Symbol

Collector-Base Voltage

Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Total Device Dissipation @ T C
Derate above 25°C

= 2SoC

Operating and Storage Junction

MJ3040 MJ3041

Vdc

VEB

-5.0-

IC

-1.0-

Adc

Po

-100-0.8-

Watts

TJ.Tstg

-

-65 to +150-

Vdc

lr~

rLE:B '
ES:?-t;:
PLANE

i

W/oC

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR

Thermal Resistance, Junction to Case

NOTE:
1. OIM "U"IS OIA.

DARLINGTON SCHEMATIC
COLLECTOR

r-------

I

DIM

--,

A
B
C 6.35
D 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R

I

I

I

I

BASE

MILLIMETERS
MIN MAX

I

I
I
I

I
---'
EMITTER

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

This is advance information on a new introduction and specifications are subject to change without notice.

421

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151
-

I

0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3040, MJ3041, MJ3042 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted'!
Characteristic

Symbol

Min

Max

300
350

-

-

1.0
1.0
5.0
5.0

-

20

100
250
25
50

-

-

2.2

-

2.5

-

3.0

-

2.5

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 100 mAde, IS = 01

Collector Cutoff Current
(Vca = 400 Vde,
(Vca= 500Vde,
(Vca= 400 Vde,
(VCS=500Vde,

IE
IE
IE
IE

Vde

VCEO(susl
MJ3040, MJ3041
MJ3042

= 01
=01
= 0, TC = 100°C I
=0, TC= 100°C I

mAde

ICBO
MJ3040, MJ3041
MJ3042
MJ3040, MJ3041
MJ3042

-

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 01

mAde

IEaO

ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 Ade, VCE = 5.0 Vdel

-

hFE
MJ3040
MJ3041, MJ3042
MJ3040
MJ3041, MJ3042

(lc = 5.0 Ade, VCE = 5.0 Vdel
Collector-Emitter Saturation Voltage
(lc = 2.5 Ade, I B = 50 mAde I

Vde

VCE(satl

(IC = 5.0 Ade, la = 400 mAdel
Base-Emitter Saturation Voltage
(lC = 5.0 Ade, la = 400 mAdel

VSE(satl

Base-Emitter On Voltage
(lc = 2.5 Ade, VCE = 5.0 Vdel

VSElonl

Vde

Vde

FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA

FIGURE 2 - DC CURRENT GAIN
400

10

30o -VcIE = J:o V
TJ 25·C

5.0

i

ffi
...

'"~

'"o

~o

-

TJ = 150·C

2.0

T

1.0

=

.....

V

0

- -....,

I"'

V

O.5

1\

0
~~·-aONDING

WIRE LIMITED
o.2 ~~- --THERMALLY L1MITED@TC·2S.C
--SECOND BREAKDOWN LIMITED
o. 1

"' ""-

0
0

~ 0.05

0.0 1
5.0

0

MJ304!~
Ft-rIj3040, MJ3041-

0.02
7.0

10

20

30

50

70

100

200

300

20.
0.1

500

VCE, COLLECTOR·EMITIERVOLTAGE IVOLTSI

f
0.1

0.3

0.5

0.7

1.0

2.0

Ic, COLLECTOR CURRENT IAMPI

There are two limitations on the power handling ability of a
transistor - average junction temperature and second breakdown.

Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate.
The data of Figure 1 is based on TJlpkl = 1500C; TC is variable

depending on conditions. At high case temperatures, thermal Iimi~
tations will reduce the power that can be handled to values less
than the limitations imposed bV second breakdown. ISee AN4151.

MJ31 01, (SILICON)
For Specifications, See MJ2249 Data.
422

3.0

5.0

7.0

10

MJ3201 (SILICON)
MJ3202

~~
~

ST~I~EtBASE

2. EMITTER

CASE 80
(TO-66)

CASE, COLLECTOR

High-voltage NPN silicon transistors designed for
use in line-operated equipment such as audio output
amplifiers; low-current, high-voltage converters; and
ac line relays.

MAXIMUM RATINGS

Rating

Symbol

Collector-Emitter Voltage

MJ3201 MJ3202

VCEO
VCB

Collector-Base Voltage
Emitter-Base Voltage

Unit

225

300

Vdc

225

300

Vdc

VEB

3.0

Vdc

Collector Current-Continuous

Ie

100

mAdc

Total Device Dissipation @ T C = 25 0 C
Derate above 25 0 C

PD

15
0.1

Watts
W/oC

T J , Tstg

-65 to + 175

°c

Symbol

Max

Unit

8JC

10

°C/W

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC =256 C unless otherwise noted)

Characteristic

Min

Max

225
300

--

IeBO

--

0.1
0.1

lEBO

-

0.1

30

200

-

5.0

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(IC = 1.0 mAdc, IB = 0)

BVCEO
MJ3201
MJ3202

Collector Cutoff Current
(VCB = 225 Vdc, IE = 0)
(VCB = 300 Vdc, IE = 0)

MJ3201
MJ3202

Emitter Cutoff Current
(VBE = 3.0 Vdc, IC = 0)

Vdc

mAdc

mAdc

ON CHARACTERISTICS
DC Current Gain (11
(IC = 50 mAde, VCE = 10 Vdc)

hFE

Collector-Emitter Saturation Voltage III
(Ie = 50 mAdc, IB = 5.0 mAdc)

VCE(sat)

Base-Emitter On Voltage (11
(Ie = 50 mAdc, VCE = 10 Vdc)

VBE(on)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(Ic = 50 mAde, VCE = 10 Vdc, f = 10 MHz)
(1)

Pulse Test: PW S 300 ILS, Duty Cycle S 2%

423

Vdc
Vdc

1.0

MJ3201, MJ3202

(continued)

FIGURE 1- DC CURRENT GAIN
200
TJ ~ 125'C

-

100
~

70

§

50

~
i

30

-

75'C

,VeE~

-

- -'"

10V

'"

25'C

~

25'C

f'.

"\'r..

~
,-,"",

.'

20

~

.....

\:'

\'

10
2.0

1.0

3.0

5.0

10

7.0

30

20

70

50

100

200

Ie, COLLECTOR CURRENT ImAl

FIGU!lE 3- TRANSCONDUCTANCE .

FIGURE 2- COLLECTOR OUTPUT CHARACTERISTICS
100

t---

t~25lc
".-

...-

l.-0 V ,..-

v-::

..--

~ ,.... V
~ ~ .- f-- f---h ~ ,/'

~ b----:"
~ 1-1.21...- ~

-

1.0
0.8
10.6 -

~ V-

o

-

~

I
1.~0.2mA

'/..

-

I

o

12

16

,I,

VeE~IOV

V

,/'

TJI~ 125~C/ V

V

/

V /

/

wc
70

~

50

f!!

30

.Y

20

8

r-

.. I

100

~

e

I--

I 0.4

12 ~
20

200

1.6

/

2S'C

/

/
/

10
0,4

20

25'C

I

J

/

1
I

I

I

/

0.6

I

/

10

0.8

V", BASE·EMITTER VOlTAGE (VOLTS)

VeE, COLLECTOR,EMITTER VOLTAGE IVOLTS)

FIGURE 4- TYPICAL AUDIO AMPLIFIER

FIGURE 5- AMPLIFIER DISTORTION
10

/

1p.F

o----il---+--+-l

1

/
/

/
./

1.0
R;, '" 6.5kOhms
ViII = 130mV
POWER GAIN tOf
CIRCUIT", 56 dB

.

./

0.8
0,01

0.02

0.05

0.1

0.2

PL, LOAD POWER (WATTS)

424

0,5

1.0

1.5

MJ 3260

(SILICON)

HORIZONTAL DEFLECTION SILICON
TRANSISTOR

6 AMPERE

· .. designed for use in large screen, 21", 23" and 25" color television
receivers, using 90 0 deflection circuits.

POWER TRANSISTOR
NPN SILICON

• Collector-Emitter Voltage VCER = 700 Vdc

700 VOLTS
80 WATTS

•

Collector Current IC = 6.0 Adc

•

Fall Time @ IC = 5.5 Adc tf = O.4)ls ITypl
= 1.0)ls IMaxl

•

Circuit Information Included - Complete Technical Dissertation
on Requirements for Optimum Circuit Performance

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

250

Vd,

Collector-Emitter Voltage
(RBE : 100 nI

VeER

700

Vd,

Collector-Base Voltage

VCB

700

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

6.0

Adc

'B

25

Adc

PD

80
064

WIDe

Rating

Collector Current

Continuous

Base Current
Total Device Dissipation @ TC

2SoC

Derate above 25°C
Operating and Storage Junction Temperature
Range

TJ,Tstg

Watts

e

65 to +150

THERMAL CHARACTERISTICS
Otaracteristic
Thermal ReSistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC

=

2SoC unless otherwise noted!

Otaracteristlc

Symbol

I

Min

TVp

Max

Unit

I

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

VCEOfsus)

Vd,

250

(Ie = 100 mAde, IS"" 0)

Collector Cutoff Current
(VCE : 700 Vdc, VBE : 0)

ICES

Emitter Cutoff Current
(V BE : 5.0 Vdc, IC: 01

lEBO

1.0

mAde

Collector-Emitter Saturation Voltage
lie: 5.5 Adc, 'B: 1.25 Adc)

VCE(satl

6.0

Vdc

Base-Emitter Saturation Voltage
(lc"" 5.5 Adc, IB "" 1.25 Adcl

VBE(satl

1.8

Vdc

mAde

1.0

ON CHARACTERISTICS

DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product (21
(lc = 0.2 Adc, VeE"" 6.0 Vdc, ftest " 1.0 MHz)
Output Capacitance
(VCB;:: 10 Vdc, 'E =0, f = 0.1 MHzl

75
Cob

STYLE 1:
PIN 1. BASE
NOTE:
2. EMITTER
1. DIM "11" IS OIA.
CASE: COLLECTOR

DIM
A
B
C
D
E

SWITCHING CHARACTERISTICS (Figure 1 and textl
Fall Tune
IIC = 5.5 Adc, 'Bl : 1.25 Adc, LB: 2.0pH)
Ra - 1.6 Ohms)

pF

6.35
0.99

29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R

F
180

MI LLlMETERS
MIN MAX
39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

(1) Pulse Test: Pulse Width 300"'5. Duty Cycle ~2.0%.,

(2) fT '" Ihf.l- f t85t

425

INCHES
MAX
MIN

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3260 (continued)

CIRCUIT OPTIMIZATION
can be caused by a variety of problems. but it is the dissipation itself
that is of fundamental importance. Once the transistor operating
point has been established, fixed circuit values may be selected

Test/application circuit and operating waveforms for MJ3260
are shown in Figure 1. It may be used to evaluate devices in the

conventional manner, i.e., to measure fall time, storage time, and
saturation voltage. However, the circuit was designed with operating

for the test fixture.

Factory testing may then be made with one

meter reading, without adjustment of the test apparatus.

efficiency in mind, so that it could be used to evaluate devices
by one simple criterion, supply power input. Excessive power input

FIGURE 1 - TEST CIRCUIT AND WAVEFORMS
+80 V

250
1.5 k

15W

25~F

V" >--~+~I--1~-l

40
"F
250

51

Vdc
r----...,PIN

DESCRIPTION OF SPECIAL COMPONENTS
DUMMY YOKE INDUCTOR (Ly)

V"

-50 V

Ie

to

f-28",- '---35",-

V--

,

0.69 mH, 36 turns, #16 AWG enamel Wire, 12 turns per layer, 3
layers, 1 mil mylar Insulation between layers on 1.3 inch plastic
bobbin, enclosed in Ferroxcube cup core No. 4229P387, core
spacing of 0.006 inch.

IBI

I

1,-

to I~

DUMMY HIGH VOLTAGE AND HORIZONTAL SCAN
TRANSFORMER (LF)
0.98 mH, 31 turns, #12 AWG enamel wire, 16 turns per layer, 1.9
layers, 1 mil mylar insulation between layers on 2.0 inch plastic
bobbin, enclosed In a Ferroxcube cup core K5350-11-3E, core spacing of 0.011 inch.

-

-90%

IC

VCE

VeE

to

-1

-If

(,

VCEM

DRIVER TRANSFORMER IT1)
Motorola part number 25D68782A05-1/4" lammate "E" Ifon
core. Primary Inductance - 39 mH, Secondary Inductance 0.22 mH, Leakage Inductance with pnmary shorted - 2.0 ,uH. Primary 260 turns, #28 AWG enamel Wire, Secondary 17 turns,

IL
I,

#22·AWG enametwire.

~

BASIC CONSIDERATIONS
The pnmary conSideratIOn when choosing a deflection transistor
for a conventional (parallel connected) cirCUit, as shown In Figure
1, IS one of voltage capability. The flyback voltage to which the
device will be subjected IS a relatively predictable value with
respect to the main power supply voltage. This voltage pulse, (VCEM),
shown in Figure 1, will usually be about 8 times the value of V+,
but may be vaned somewhat by adjusting retrace time and flyback
tuning and can reduce the voltage pulse by 15 to 30% depending
on the circuit values chosen.

to
FUNDAMENTAL WAVEFORMS OF A SIMPLIFIED
HORIZONTAL DEFLECTION CIRCUIT

426

MJ3260 (continued)

COLLECTOR CIRCUIT VALUES
The power supply used in the circuit of Figure 1, was chosen

to produce a 600 volt collector pLAse on the transistor, recommended

PERFORMANCE
Shown in Figures 4 and 5 are the results which will be typically
obtained with the test circuit at various operating conditions.

for regulated applications. The values of yoke (Lyl, flyback prImary (LFI. retrace capacitor (CR). and "S" shaping capacitor (CS)

FIGURE 3 - INTERRELATION OF RB.LB. ANO IB1

shown, will result in a peak collector current of about 5.5 A. This
is sufficient to deflect (and provide high voltage fod large screen
color television receivers using 900 deflection or small and mediumscreen color television receivers using 1100 deflection. Peak collector currents to 6.0 A may be handled by the MJ3260. Holding the
supply constant for most efficient application, adjustment of amount of deflection may be made by raising or lowering Ly and
LF. Remember that Ly Iy is constant for the fixed voltage situa.tion, and actual deflection is proportional to Iy
Values of
Cs and CR must be varied inversely with Ly to maintain retrace
and "5" shaping periods.

20

A1

f--LB

.fLY.

i\ /"

14

0

::
ffi

"

~~

--..;;~

;::

12

--

C

'"~
~

-

=

..,~

I .0

0.5

F::::::::: ==-5.5

5.0

4.5

4.0

3.5

3.0

2.5

6.5

6.0

ICM. COLLECTOR CURRENT (AMP)

5.9-

FIGURE 4 - INTERRELATION OF .,. FALL TIME
AND ts. STORAGE TIME

2.0
4.0

10

~
3.0

~-

B.O
0.5

1.0

1.5

2.0

2.5

lB. BASE CURRENT (AMP)
BASE CIRCUIT VALUES
The driver power supply and driver transistor type can be selec·
ted according to convenience. A TO·5 or Uniwatt type will
generally be needed. (The Darlington arrangement of the driver
transistors used in Figure 1, produces a wide range of ISl current
values). Once the driver circuitry is chosen, the turns ratio of the
driver transformer can be picked to produce about 4 to 5 volts
peak to peak at the base of the output device. Tight coupling
between windings is recommended on early designs to allow opti·
mizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The RB and
its bypass electrolytic, often called the "speed up" circuit, allows
adjustment of IS1 (or IS "end of scan" or IB end) while still
providing a low ac impedance for good turn·off of the output
device. In Figure 2, the effects of varying LB and ISl on the total
power input to the deflection circuit are shown. Note that an
optimum lS can be found which will produce low dissipation over
a wide range of IS1. This is desirable in order to produce efficient
operation over a wide range of circuit component tolerances. likewise, best La also gives the least sensitivity to output transistor
hFE·
The best value of LS found In Figure 2 is 2.0 }.tH, which is the
leakage Inductance value of the driver transformer, and no external
L is necessary. A lower LS would have reduced the power dissipatlan, over a narrow range of IS 1. However, a leakage inductance
of 2.0 pH is a minimum practical value. The best value of ISl is
2.0 A achieved In the typical device by using RS = 1.6 n. derived
experimentally.
These are the choices recommended for the test fixture, when
the transistor is used at leM = 5.5 A. For other values of leM
the drive circuit components must be changed. Figure 3 shows
the values of LB and IS1 which should be used. The value of RB
which will be required to produce the corresponding ISl is also
given, but of course, it is not an independent variable.

]
w

'"
;::

2. 0

--

"

1.0
'f

o
2.5

I
3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

ICM. COLLECTOR CURRENT (AMP)

FIGURE 5 - PIN. POWER DISSIPATION WITH DEVIATIONS
OFVCEM AND ICM
0

~
...

VCEM =

5

~

...~

..

.....- /

-- f---

tr

~

0

:::>

:!:
Z
a: 5. 0

o

2.5

....-

;--

3.0

- ---

V

r- /
~
V

./"'"

700V
600 V

,/
~

500 V

V

--- ------

3.5

4.0

4.5

5.0

5.5

IC. COLLECTOR CURRENT (AMP)

427

~
~

o

o
LB = 14~H
12
_7.6

~

m

~B
.........

16

~
z:

I .5

/

~

FIGURE 2 - RELATIONSHIP OF POWER DISSIPATION
TO LB. WITH CHANGING IB1. IC = 5.5 A PEAK

~
...«

2.0

/"

6.0

6.5

~
.3!

MJ3260 (continued)

TYPICAL TRANSISTOR CHARACTERISTICS
FIGURE 1 - DC CURRENT GAIN

50

z
<1

-

.J='I~OC ,
V

'"
iii 20

..........

~

VzSOC

I-

1.6

i\

..,'"..,'"
::>

~

~ 1.2

~

w

~

\~

c

~

10

C

>
>'

0.1

0.4

0.2

0.6

4.0

2.0

1.0

Iclla~ ~

o.8

VaE(sat)

6.0

0.06

0.2

0.1

0.4

1/

/
s.y ....... v-

~lc/IB=2.0

VC~(sati

o

~f1

leila ~s.n
Iclla=

o. 4

,

7.0
5.0
0.06

~\" 2Sj C

VCE = 5. V

~

.....

30

FIGURE 2 - "ON" VOL TAGE

2.0

I
0.6

1.0

2.0

4.0

6.0

IC. COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 3 - SAFE OPERATING AREA

10
100",

S.O
3.0
~ 2.0

.....

iL
~
w

1.0

..,::>'"

O.S

'"

I"

dcl'\

iJillS00C

"\.

'~"'~

5.0ms

"

'"c

0.2 r-- _---BONDING WIRE LIMITED
- - - -THERMALLY L1MITEO@TC=2So C
~j 0.1
(SINGLE PULSE)
SECONO BREAKDOWN LIMITED
8 0.05

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC·VCE limits of the transistor
that must be observed for reliable operation; Le., the transistor
must not be subjected to greater dissipation than the curves indi-

l.olm~ =

cate.
The dat~ of Figure 3 is based on T J(pk) = 1500 C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pk) ,.;;; 1500 C. At high case
temperatures, thermal limitation,s will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. (See AN,415).

I\."\.

E=::.
F'=

!J
0.02
0.0 1
3.0

IIIII
S.O 7.0

10

I
20

30

SO

)
70

100

200

300

VCE!.~OLLECTOR.EMITTER VOLTAGE (VOLTS)

FIGURE 4 - TEMPERATURE COEFFICIENTS

+3.0

J

'APPLIES FOR 'elia ";hFE/2

G

3.s +2.0

I

TJ =+2s bc to +IS00 C

~

iii

I Y1

c::;

~ +1.0

..,c

,.....1/ t.....r"
~SoC to +2S?C

'BVC forVCE( ..

w

'"

::>

I

!;(

'"

~ -1.0

~ltOYST

l-

i

Bva for VaE
-2.0
0.06

./

1250C 10 +'fo~ V'''''

~

0.1

0.2

0.4

0.6

1.0

.~

Ie, COLLECTOR CURRENT ,(AMP)

428

2.0

4.0

6.0

MJ3430 (SILICON)

HIGH VOLTAGE NPN SILICON TRANSISTOR
.. designed for use in high·voltage inverters, converters, switching
regulators and line operated amplifiers.

5.0 AMPERE
POWER TRANSISTOR
NPN SILICON

= 400 Vdc

•

High Coliector·Emitter Voltage - VCEX

•

Excellent DC Current Gain hFE = 10 (Min) @ IC = 3.5 Adc

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.9 Vdc (Max) @ IC = 2.5 Adc

JOOVOLTS

125 WATTS

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

300

Vdc

Collector-Base Voltage

VCB

400

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

5.0

Adc

Base Current

IB

2.0

Adc

Total Device Dissipation@Tc = 25°C
Derate above 25°C

Po

125
1.0

Watts

Operating Junction Temperature Range

TJ

-65to+150

°c

T stg

-65 to +200

°c

Rating
Collector-Emitter Voltage

Storage Temperature Range

W/oC

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS ITC
Characteristic

0

25°C unless otherwISe noted!

Svmbol

Min

Ma.

Unit

VCEOlsus!

300

-

Vde

-

2.5

mAde

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage

(lc

= 100 mAde, IB =0)

Collector Cutoff Current
IVCE = 300 Vdc, IB =0)

ICEO

Collector Cutoff Current
IVCE = 400 Vdc,

ICEX

= 1.5 Vdc)
=400 Vdc,
VEBlol!) = 1.5 Vde, TC = 125°C!
VEBloff)

mAde

-

1.0

-

5.0

STYLE 1:
PIN 1. BASE
2. EMITIER
NOTE:
CASE: COLLECTOR
1. DIM "U" IS DlA.

IVCE

Emitter Cutoff Current
IVBE = 5.0 Vde. IC =01

lEBO

2.0

mAde

OIM

ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 Adc, VCE

(lc

= 5.0 Vdcl
= 3.5 Ade, VCE = 5.0 Vdcl

Collector-Emitter Saturation Voltage

IIc

= 2.5 Adc, IB = 0.5 Adcl

Base~Emitter

IIc

Saturation Voltage

= 2.5 Adc, IB = 0.5 Adcl

-

hFE
15

45

10

-

VCEIs.tl

-

0.9

Vdc

VBElsati

-

1.5

Vdc

OYNAMIC CHARACTERISTICS

-

6.35
0 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R
C

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE 11

Current-Gain-Bandwidth Product

(lC

A
B

MILLIMETERS
MIN MAX

=0.2 Adc, VCE = 10 Vdcl

429

INCHES
MAX
MIN

-

0.250
0.039
1.177
0.420
0.210
0.655
0.4411
0.151

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3430 (continued)

FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA

0

..

6.0

~

5

2.0

~
a:

1.0

1'l

O.5

~

o.2
o. I

E

0.0 5

a:
o

8

TJ -150°C

.5ms=~

I"..

~5.0ms \..

I

---------

Secondary Breakdown Limi~t-;I
Thermal Limit@Tc=250C de
Bonding Wire Limit
Curves Apply Below Rated VCEO

0.0 2
0.0 1
5.0

"'

1.0m "'

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor

that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figur. 1 is based on TJ(pk) = 1500 C; TC is

"" "- ""

variable depending on conditions. Second breakdown pulse limits

are valid for duty cycles to 10% provided TJ(pk) lsoOC. At high
case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by second
breakdown. (See AN-415)

10

20

30

50

100

200

300

500

VCE.COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - DC CURRENT GAIN

300

2.0

II"

200

iJ

I I " 5.0 Vdc
VCE"

J

TJ- 150 C

0

25°C

0
0

~

I-

-

~
I-

-55°C

1I11
1I11

1.6

10 0
0

~ J~oc

I-

VCE(sa')@ ICIIS - 10 "

~

1. 2

"'
o~

0.8

......

to

\
~ ~I\

>

J

V

VSE(sa,)@ICIIS-l0

II

0.4

V vF\

0.1

0.2

0.3

0.5

1.0

2.0

3.0

VCE(sa')@ ICIIS - 5.0

o

3.0

5.0

0.2

0.05 0.07 0.1

IC. COLLECTOR CURRENT (AMP)

0.3

0.5 0.7

50mH

1 400

",~l

I-

~

~ 300

a:

8
E

tOO

2.0

Of-- VCEO(sus) IS ACCEPTASLEWHEN
VCE;;.300 VAT Ic-l00mA

"

0
100

200

300

..=..6.0V

\
\

'\
400

300
500

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

MJ3480

3.0

FIGURE 5-SUSTAINING VOLTAGE TEST CIRCUIT

FIGURE 4 -SUSTAINING VOL TAGE TEST LOAD LINE

20

1.0

IC. COLLECTOR CURRENT (AMP)

500

~

17

)

:>

5.0
0.05

I--"'

IL vl7

(SILICON)

For Specifications, See BUI08 Data.

430

1.0

5.0

MJ3583 thru MJ3585

(SILICON) For Specifications, See 2N3583 Data.

MJ3701 (SILICON)

For Specifications, See MJ2253 Data.

MJ3760 (SILICON)
MJ3761
HORIZONTAL DEFLECTION SILICON
TRANSISTORS

6.0/8.0 AMPERE

TRIPLE DIFFUSED
POWER TRANSISTORS
NPN SILICON

· .. designed for use in large screen color television receivers.
• Collector· Emitter Voltage VCER = 750 Vdc

750 VOLTS
80 WATTS

• Collector Current IC = 6.0/8.0 Adc
•

Fall Time @ IC = 8.0 Adc tf = 0.51ls (Typ). tf = 0.91ls (Max)

MAXIMUM RATINGS
Rating

Symbol

MJ3760j MJ3761

Unit

Collector·Emitter Voltage

VeEO

550

Vdc

Collector-Emitter Voltage
(RBE = 100 nI

VeER

750

Vdc

Collector·Base Voltage

VeB

750

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

Collector Current - Continuous

Ie

6.0
12.0

- Peak

Sase Current
Tota' Power Dissipation
"Derate above 25°C

@

TC == 25°C

Operating and Storage Junction
Temperature Range

I

8.0
16.0

Adc

IB

4.0

Adc

Po

80
0.638

Watts

-65 to +150

°e

TJ.T"g

w/oe

Lr=':j±t
r~K
ESEATIN(~

I

PLANE

THERMAL CHARACTERISTICS
Characteriltic
Therrpal Resistance, Junction to Case

FIGURE 1 - POWER DERATING
80

"-

70

~

""
!.

60

z 6D
;::
0

;t

~

.
~

:c

40

STYLE I,
PIN 1. BASE
2. EMITTER
CASE COLLECTOR

"'-

MILLIMETERS

"",

30
20

0

0-

"" "-

lD
20

40

60

80

100

TC. CASE TEMPERATURE (DC)

MAX

MIN

MAX

A

-

39.37
21.08
7.6
1.09
3.43
30.40
11.18
5.59
17.1
12.19
4.09
28.61

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
O. 5
D.4lID
0.161
1.050

0
E

6.35
0.99

-

F
9.90
G !l0.67

o

o

MIN

B
C

~

120

5.33
J 16.64
K 11.18
II 3.84
H

"

140

431

160

INCHES

DIM

R

-

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

CASE 11

-

MJ3760,MJ3761 (continued)

ELECTRICAL CHARACTERISTICS (T
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lr. = 10mAdc,IR = 0)

Collector Cutoff Current
(VCE

= 750 Vdc, VBE = 0)

Emitter Cutoff Current
(VBE = 7.0 Vdc, IC = 0)

VCEO(sus)

550

-

-

ICES

-

-

1.0

mAd~

lEBO

-

-

1.0

mAdc

-

-

5.0
5.0

-

-

Vdc

ON CHARACTERISTICS

Collector-Emitter Saturation Voltage
(lc
(lC

= 6.0 Adc,
= 8.0 Adc,

IB
IB

MJ3760
MJ3761

Base-Emitter Saturation Voltage
(lC
(lC

Vde

VCE(sat)

= 2.5 Adc)
= 3.0 Adc)

-

Vde

VBE(sat)

= 6.0 Adc, I B = 2.5 Adc)
= 8.0 Adc, I B = 3.0 Adc)

MJ3760
MJ3761

Second Breakdown Collector Current with Base Forward Biased
(t = 1.0., VCE = 100 Vdc)

ISlb

200

-

fT

-

Cob

1.5
1.5

-

mAde

7.5

-

MHz

-

150

-

pF

tf

-

0.33

0.7

1'5

tf

-

0.5

0.9

!,s

OYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product (1), (2)
(lC = 0.3 Adc, VCE = 5.0Vdc, f test = 1.0 MHz)

Output Capacitance
(Vce

= 10 Vdc,IE = 0, f = 0.1

MHz)

SWITCHING CHARACTER ISTICS
Fall Time: MJ3760
(lC = 5.5 Adc, I B1

= 1.5 Adc,

Fall Time: MJ3761
(lC = 8.0 Adc, IB1

= 2.0 Ade, LB = 20 !,H, See Figure 2)

LB

= 20 !'H, See Figure 2)

(1) Pulse Test: Pulse Width .. 300 !,S, Duty Cycle .. 2.0%.
(2) fT = Ihfel. f test
FIGURE 2 - TEST CIRCUIT
100

TUT

lOW

8 mH

+60 V

0.005 !,F
1.5 k
25 J,lF

MJE

3439

Von
51

300

51

RS

500 IlF
15 V

values

so

below

V

·Selected for 800 Volts

DRIVER TRANSFORMER (T1)

Cs

Ly

Motorola part number 25D68782A05·1/4" laminate "E" iron
core. Primary Inductance-39 mH, Secondary Inductance-O.22 mH,

IC
A

LF
mH

mH

Leakage inductance with primary shorted-2.0 llH. Primary 260

5.5

0.98

0.65

0.03

1.0

8.0

0.57

0.44

0.05

6.0

turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG

enamel wire.

!,F

TEST CIRCUIT OPTIMIZATION
The test circuit and operating waveforms for the
of problems, but it is the dissipation in the transistor that
MJ3760 and MJ3761 transistors are shown in Figures 2
is of fundamental importance. Once the required transistor
and 3. The test circuit may be used to evaluate devices in
operating current is determined, fixed circuit values may
the conventional manner, i.e., to measure fall time, storage
be selected from the table . .Factory testing is performed by
time, and saturation voltage. However, this circuit was
reading the current meter only, since the input power is
designed to evaluate devices by a simple criterion, input
proportional to current. No adjustment of the test ap·
power. Excessive power input can be caused by a variety
paratus is required.

432

MJ3760,MJ3761 (continued)

be 8 times the 8o-volt power supply voltage or approx·
imately 640 volts, but may be varied slightly by adiust·
ing retrace time and flyback tuning. For this reason, high
voltage devices are particularly useful in cost conscious
solid·state receivers as they permit the use of an off-the'
line half wave power supply.
The power supply used in the circuit of Figure 2,
was chosen to produce approximately a 650 V collector
pulse on the transistor, a conservative value, recommended
for unregulated applications.
The values of yoke inductance (LV), flyback primary
inductance (LF), retrace capacitor (CR) and "s" shaping
capacitor (CS) are shown for operating collector currents
of 5.5 A which is suitable for 90 0 color and 1100 large
screen black and white receivers, and 8.0 A for 1100
color receivers. Peak collector currents to lOA may be
handled by these transistors. The most efficient application results when the power supply voltage is held constant. Adjustments of the amount of deflection can then
be made by raising or lowering LV and LF. LVIV is constant for the fixed voltage situation, and actual deflection
is proportional to IV
Values of Cs and CR must
be varied inverselY with LV to maintain retrace and "s"
shaping periods.

BASIC CONSIDERATIONS
The primary consideration when choosing a deflection
transistor for a conventional (parallel connected) circuit,
as shown in Figure 2, is voltage capability. The flyback
voltage that the device will be subjected to is a relatively
predictable value with respect to the main power supply
voltage. This voltage pulse, shown in Figure 3, will usually

FIGURE 3 - TEST CIRCUIT WAVEFORMS

JIY.

TEST CIRCUIT VALUES
The driver power supply and driver transistor type
can be selected accord ing to convenience. A TO-5 or
plastic power type will generally be needed. For testing
convenience, the Darlington arrangement of the driver
transistor shown in Figure 2-was used to produce a wide
range of IBl current values. Once the driver circuitry IS
chosen, the turns ratio of the driver transformer can be
selected to produce 4 to 5 volts peak-to-peak at the base
of the output device. Tight coupling between windings is
recommended on early designs to allow optimizing leakage inductance by adding inductance externally. Later,
the leakage can be "designed in" to the transformer. The
RB and its bypass electrolytic, often called the "speed
up" circuit, allows adjustment of IB 1 (or IB "end of scan"
or IB end) while still providing a low AC impedance for
good turn·off of the output device.
In Figure 4, the effects of varying LB and IB 1 on
total power input to a deflection circuit requiring an IC
of 5.5 A are shown. Note that an optimum LB can be
found which will produce low dissipation over a wide
range of I B1. This is desirable in order to produce efficient operation over a wide range of circuit component
tolerances. Likewise, best LB also gives the least sensitivity to output transistor hFE.
The best value of LB found in Figure 4 is 2.0 J.lH. This
is the sum of the actual leakage inductance of the driver
transformer (secondary inductance with primary shorted)
and an external L if necessary. The value of IBl is approximately 2.5 A achieved in a typical device by using
RB = 0.7 n, which was derived experimentally. These
are the choices recommended for the test fixture when
the transistor is used at IC = 5.5 A.

Fundamental waveforms of a simplified horizontal
deflection Circuit.

FIGURE 4 - RELATIONSHIP OF POWER DISSIPATION
TO L8 WITH CHANGING 181, IC = 5.5 A
11.2

i

110
10.8

z

o
;:: 10.6

;t

~10.4
'"w

~ 10.2
6

lei. 5.~ A
TJ' 25'e

~

ti

I~ ~

Q..l0.0

9.8
0.5

LB-12
10
8.0
6.0
4.0
:'\. 2.0

:r

0.75

~t-..

"

1.0

1.25

1.5

1.75

2.0

2.25

2.5

IB1, BASE CURRENT (AMP)

433

MJ3760,MJ3761 (continued)

A lower value of LS would have reduced the power
dissipation by a small value. However, a leakage inductance of 2.0 IlH is a minimum practical value for
driver transformer manufacturers to meet as the secondary
winding leakage inductance.
For other values of Ie, the drive circuit components
must be changed. Figures 7 and 8 show the values of LS
and IS 1 which should be used. The value of R S, which
will be required to produce the corresponding IS1 value,
is also given; however, it is not an independent variable.
Figures 9 and 10 show the typical results that will be
obtained with the test circu it of Figure 2 at various
operating conditions.

With the increasing usage of the toroidal yoke and the
inherently lower inductance, a much higher collector
current will be demanded from the horizontal output
transistor. Figure 5 shows the relationship of power dis·
sipation to LS with changing I Sl when an Ie of 8.0 amps
is required.
The best value of LS, found in Figures 5 and 7, is
2.0 IlH. The best value of IS1, found in Figure S, is
2.5 amps. In Figure 5, the 2.5 amp base current falls in
the flatter region of the 2.0 IlH base inductance curve.
The optimum base resistance RS in Figure 6 is 0.7 ohms
to produce the I Sl value of 2.5 amps.

INTERRELATION OF SASE RESISTANCE,
SASE INDUCTANCE AND SASE CURRENT
FIGURE 5 - RELATIONSHIP OF POWER DISSIPATION TO
LB WITH CHANGING 'B1

FIGURE 6 - OPTIMUM BASE RESISTANCE
5.5

1

Ic= B.OA

f - - I--TJ = 25"C

I

O~"-.
9 ~"\." I'-..
1\'-" r-....

\~

""-.....

--

t-....

'\ ~

LB~

.....V
L---

~
~

"«

~

~

r-...."-. r-r---

16
1.0

~

z

TJ = 25"C

\

3.5

t;

iii

'"w

tt

\
\

2.5

'\
.--.......

1.5

I'....

.2.0.H

""""

1.5

i
"w
S

1\
4.5 \

2.0
181. BASE CURRENT (AMP)

2.5

0.5
5.0

3.0

6.0

I

2.6

I

TJ = 25"C

j

./'"

~ 2.2

2.2

9.0

S

~

~
B
1.8

"

>-

::> 2.0

"

:!:

/

!

w

~

V

~ 1.4

!11.8

...- f...- I--

//

w

1.6
5.0

B.O

FIGURE 8 - OPTIMUM BASE CURRENT

FIGURE 7 - OPTIMUM BASE INDUCTANCE
2.4

-

7.0

IC. COLLECTOR CURRENT (AMP)

/

TJ =25"C

/

1.0 V

6.0

7.0

8.0

9.0

5.0

6.0

7.0
IC. COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

434

8.0

9.0

MJ3760,MJ3761 (continued)

FIGURE 9 - INTERRELATION OF tt, FALL TIME
AND t .. STORAGE TIME

FIGURE 10 - EFFECT OF COLLECTOR CURRENT
ON INPUT POWER
20

0.6

0.5

....-::::
./

/

~

-- -----

~ 18

's

~

~ 16

~

~

;!;

C
0::

14

TEST CIRCUIT OF FIGURE 2 USING
OPTIMUj LB ANi'Bl. I
I
6.0

1.0
8.0
IC. COLLECTOR CURRENT lAMP)

--- -

12
5.0

0.2
5.0

9.0

FIGURE 11 - DC CURRENT GAIN
1.4

z

TJ=150oC

50

I

§'" 30

I---"
~

u
Q

t

a
1.

VCE 5.0 V
1.2

~
6.0

1.0
8.0
IC.COLLECTOR CURRENT lAMP)

9.0

L
TJ' 25°C

~ 1.0

25°C

0

B

/

i"..

:;:

0:

/

V

FIGURE 12 - "ON" VOL TAGES

100
10

V

0:

V/
0.3

/

/

>-

~

....... 1--'

~

rr

'"~

1\

~
~

~

-5JOC

r-- VBEI,,')@ IC/IB - 5.0

0.6

.0

V

'">

r-.~

~I---

,

.......:V

0.8

>- O. 4
VCEI,,!)@ IC/18 = ~~
O. 2

a

5.0 "
0.01 0.02

o
0.05 0.1
0.2
0.5
1.0
IC. COLLECTOR CURRENT lAMP)

2.0

5.0

0.01

10

~2.0

I
0.02

0.05 0.1
0.2
0.5
1.0
IC. COLLECTOR CURRENT lAMP)

2.0

5.0

10

FIGURE 13 - ACTIVE REGION SAFE OPERA TlNG AREA
10
5.0

~
~

MJ3161.
-MJ3160

2.0

r'
>-

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate Ie - VeE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 13 is based on Te = 850 e. The
thermal pulse limit shown is valid for a duty cycle of
5.0%. For other conditions, TJ(pk) must be calculated and
kept below 1500 e. T J(pk) may be calculated from the
data of Figure 14. At higher case temperatures, thermal
limitations will reduce the power that can be handled to
values less than the limitation imposed by second
breakdown.

100",
DUTY CYCLE ... 0.05
de

O
:::: 0.5
0:

~

0.2

= ==
~
=.

0.1
80.05
~
0.02

0.01
1.0

TC 85°C

BONOING WIRE LIMIT
- - - - THERMAL LIMIT
SECIlIlPJREAKIl'lWN LIMIT

2.0

5.0
10
20
50
100
200
VCE. COLLECTOR·EMITTER VOLTAGE IVOL TS)

500

435

MJ3760,MJ3761 (continued)'

FIGURE 14 - THERMAL RESPONSE
10
0,7
0.5

;;i

L
wC

0,3

\.

>-N

0,2

"-

",w
>-~

2<
w,"
,"'"
2C
-w

~~
........

u~

0,03

tt'"

..,

0.02

'"

0.D1

~m

IS

~ ~ ~ 0'0,5

0,1
0,07
0,05

",-

~

'-'<" "\.

pFflSl

0,2
01
0,05
0,02
0,01
SINGLE PULSE

0.02 0,03

005

O,Z

01

0,3

0,5

1':~t2 j

I
10

2.0

30

5,0

r:

I

~ TJ - 150'C

/

~

20

""~

10

<

1/

FORWARD

w

5,0

2.0

....

~
8

25'C

6

~

-0.2

0

+0.2

50

-

+0.6

+0.4

--

ZO

60
80
100
120
TJ. JUNCTION TEMPERATURE I'CI

40

TJ' 25'C

II

~

...... C,b

100
U 70

u

a
a
2a

0,5

......
1.0

2,0

2000

0.5

......

<

1000

0.2

Cib

~ 300

500

/

1.0

w

S 200

300

./

FIGURE 17 -CAPACITANCE

1000
70 0
~ 500

200

VCS'750V

VSE. BASE·EMITTER VOLTAGE IVOLTSI

2000

100

,/

g;

~

10.1
-0.4

111111

11111

30

FIGURE 16 - COLLECTOR·BASE LEAKAGE CURRENT

«.;; 200

F= != REVERSE

~

I-

TIME (ms)

r-- VCE' 250 V
/

ZO

10

FIGURE 15 - COLLECTOR CUT·OFF REGION

./

f=
r=

DUTY CYCLE, D' I1ltz

t,

100'C

'

I4IJC(tI" rltl ReJC
ReJc' 1.56'CMI Max
o CURVES APPLY FOR
POWER PULSE TRAIN
SHOWN READ TIME
IAT 11
ITJlpkl - TC' P(pkl ZeJCltl

5,0

10

20

50

VR. REVERSE VOLTAGE IVOLTSI

436

100

200

500

140

16D

MJ3771" MJ3772, MJ6257 (SILICON)

20 and 30 AMPERE
POWER TRANSISTORS
NPN SILICON

HIGH POWER NPN SILICON POWER TRANSISTORS

40 and 60 VOLTS
200 WATTS

Select from Epibase transistors for ultimate circuIt performance
based on the design requirements.
EPIBASE - Designed for power amplifier and switching applications.

•

Low Collector-Emitter Saturation Voltage VCElsatl

= 1.0 Vde IMaxl @ IC = 15 Ade - MJ3771
= 0.8 Vdc IMaxl @ IC = 10 Ade - MJ3772
= 0.7 Vde (Max) @ IC = 8.0 Ade - MJ6257

•

Low Leakage 'CBO = 1.0 mAde (Maxi @ Rated VCB

•

High Current-Gain - Bandwidth Product IT = 2.0 MHz (Mini @ IC = 1.0 Adc

MAXIMUM RATINGS
Rating

MJ3772

MJ6257

Unit

Collector-Emitter Voltage

VCEO

40

60

40

Vdc

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base: Voltage

VCEX

50

80

50

Vdc

VCS

50

100

50

Vdc

VES

5.0

7.0

5.0

Vdc

Ie

30
30

30

7.5
15

5.0
15

Collector Current

SVmbol MJ3771

Continuous
Peak

20

Adc

IS

Peak
Total Device Dissipation @TC = 25°C

PD

200
1.14

Watts

T J,T stg

-65 to +200

°e

Operating and Storage Junction

ESEATIN!~

I

PLANE

Adc

Base Current - Continuous

Derate above 25°C

Lr~
r~.

w/oe

Temperature Range
THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction

to

Case
OIM

A

FIGURE 1 - POWER DERATlNG
200

175
150
125

'"

0
E

i'-

F
G

"'-

100

H
J
K

......

75

......

50

Q

R

........

25

o
o

8
C

.........
25

50

75

100

125

150

175

200

TC, CASE TEMPERATURE (OC)

437

MilliMETERS
MAX
MIN

-

INCHES
MIN
MAX

39.31
21.08
1.62 0.250
1.09 0.039
3.43
29.90 30.40 1.111
10.61
11.18 0.420
5.33
5.59 0.210
16.64 11.15 0.655
11.18 12.19 0.«0
3.84
4.09 0.151
26.61
Collector connected to case.
6.35
0.99

CASE 11

1.550
0.830
0.300
0.043
0.135
1.191
0.«0
0.220
0.615
0.480
0.161
1.050

MJ3771, MJ3772, MJ6257 (continued)

ElECTR ICAl CHARACTER ISTICS (T C = 25°C unless otherwise noted.!
Symbol

Characteristic

Min

Max

40
60
40

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 0.2 Adc, IS = 0)

Coliector·Emitter Sustaining Voltage
(lC = 0.2 Adc, VES(off) = 1.5 Vdc,
RSE = 100 Ohms

MJ3771
MJ3772
. MJ6257
MJ3771
MJ3772
MJ6257

Collector Cutoff Current'

Vdc
50
SO
50

-

45
70
45

-

-

2.0
2.0
2.0

-

1.0
1.0
1.0
2.0
2.0
5.0

Vdc

mAdc

ICEO

(VCE = 30 Vdc, IS = 0)
(VCE = 50 Vdc, IB = 0)
(VCE = 25 Vdc, IS = 0)
Collector Cutoff Current
(VCE =50 Vdc, VES(off) = 1.5 Vdc)
(VCE = 100 Vdc, VEB(off) = 1.5 Vdc)
(VCE = 45 Vdc, VEB(off) = 1.5 Vde)
(VCE = 30 Vdc, VES(off) = 1.5 Vdc,
TC = 1500C)
(VCE = 45 Vde, VES(off) = 1.5 Vde,
TC= 1500C)

MJ3771
MJ3772
MJ6257
ICEX
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257

Collector Cutoff Current
(VCS = 50 Vde, IE = 0)

= 100 Vdc,

-

VCER(sus)

= 0.2 Adc, RSE = 100 Ohms)

(VCS

-

VCEX(sus)

Collector-Emitter Sustaining Voltage

(lC

Vdc

VCEO(sus)
MJ3771
MJ3772
MJ6257

mAdc

-

-

mAdc

ICSO

-

MJ3771
MJ6257
MJ3772

IE = 0)

Emitter Cutoff Current

-

1.0
1.0
1.0
mAde

IESO

(VSE = 5.0 Vde, IC = 0)

-

MJ3771
MJ6257
MJ3772

(VSE = 7.0 Vdc, IC = 0)

-

1.0
1.0
1.0

ON CHARACTERISTICS
DC Current Gain
(lC = 15 Adc, VCE = 4.0 Vde)
(lC = 10 Ade, VCE = 4.0 Vdc)
(lc = S.O Adc, VCE = 4.0 Vdc)
(lc = 30 Ade, VCE - 4.0 Vdc)
(lc - 20 Ade, VCE = 4.0 Vdc)

-

hFE
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257

Collector-Emitter Saturation Voltage
(lC = 15 Adc, IS = 1.5 Adc)

VCE(satl
MJ3771
MJ3772
MJ6257
MJ3771
MJ3772
MJ6257

(lC =10 Ade, IS = 1.0 Adc)
(lC = S.O Adc, IS = O.S Ade)
(lC =30 Adc, IS = 6.0 Ade)
(lC = 20 Adc, IS = 4,0 Adc)
Sase·Emitter On Voltage
(IC = 15 Ade, VCE = 4.0 Vdc)
(lC = 10 Adc, VCE = 4.0 Vde)
(lC = S.O Adc, VCE = 4.0 Vde)

15
15
15
5.0
5.0
5.0

60

-

1.0
O.S
0.7
4.0
3.0

60
75

Vde

-

-

3.0
Vdc

VSE(on)

-

1.7
1.5
1.4

t,

-

0.7

ts

-

1.0

tf

-

O.S

MJ3771
MJ3772
MJ6257

DYNAMIC CHARACTERISTICS
Current-Gain - Sandwidth Product
(lC = 1.0 Adc, VCE· 4.0 Vdc, ftost = 1.0 MHz)
SWITCHING CHARACTERISTICS

Rise Time
Storage Time

(VCC· 30 Vde, IC = 10 Adc)
lSI = IS2 = 1.0 Adc)

Fall Time

438

,..S
,..S

,..s

MJ3771, MJ3772, MJ6257

(continued)

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME

VCC
+30 V

5.0

RC

2.0

10

SCOPE

RB

]
w

'">=
51

-~ E
f- I-

VCC
ICIIB
TJ

30 V
10
25°C

VBE(offi = 5.0 V

1.0
O. 5

...

O. 2
O. 1

tr, tfslO ns

OUTY CYCLE = 1 0%

td

0.05

-4 V

RB AND RC ARE VARIED TO SBTAIN DESIREO CURRENT LEVELS
0.0 2
0.0 1
0,3

01 MUST BE FAST RECOVERY TYPE, eg
MBD5300 USED ABOVE IB ~100 mA
MSD6100 USED BELOW IB ~100 mA

0.5

0.7

1.0

2.0

3.0

5.0 7.0

10

20

30

IC, COLLECTOR CURRENT (AMP)

FIGURE 4 - THERMAL RESPONSE
10
0, 7

-'

~
O. 5
~c
::J: UJ O. 3

r-- I -

0=0.5

>-N

0.2

Vi~

0.1

~~ O. 2

f-:::::::: t;;;:;:;;;

'"

PtJUl

"t-~'2--I

0.01
f'INGLE(UiSE

.,.,.

~ mO.D3 -

II

0.0 1
002

0.05

0.1

-

I

,....

~O.O 5_

~'"
w
0.0 2

I
DUTY CYCLE, D = ,,1'2

~~

--

~~ 0.1f-- - f- 0.05
~ ~O.O 7~ ~ 1-0.02

"'-

t

-

i-- I-""

-OJC(') ,(tl OJC
OJC 0.B750C/W Max 1 1 1 _
o CURVES APPLY FOR POWER_
PULSE TRAIN SHOWN
- t-- - READ TIME AT"
- - TJlpk)- TC = P(pk) 0JC(')-

...... Iiiii'

II
0.2.

1.0

0.5

2.0

50

10

I
20

II II
50

100

200

500

1000

2001

',TIME (m,)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
30
MJ3771
20
~

'" 10
:'>

~

"'"
'"
0

I

I

....

....

r-MJT2,t625i

d~""

I.

....

5.0
3.0

-

-

-

TC - 25°C
BONDING WIRE LIMITED

r- - - - THERMALLY LIMITED

r

There are two limitations on the power handling abdlty of a
transistor average junction temperature and second breaKdown.
Safe operating area curves mdlcate I C·V CE limits of the transistor
that must be observed for relIable operation, i.e., the transistor

must not be subjected to greater dissipation than the curves Indicate
The data of Figure 5 IS based on T J(pk) = 200°C; T C IS vanable
depending on conditions. Second breakdown pulse limits are valid

\

I

==

ln

5.0ms

7.0

(SINGLE PULSE) I
2.0 ----SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW
0
RATED VCEO
'"~ 1.0
0.7
-PULSE CURVES APPLY
0.5
-FOR ALL DEVICES
J377
0.3
2.0 3.0
5.0 7.0 10
20
1.0

~

.... 1". 50 OIlS

for duty cycle. to 10% provIded T J(ok) .;; 200°C T J(pk) may be

\

calculated from the data In Figure 4 At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations Imposed by second breakdown.

1' ~j;~;; r-I
r i30

50

(S.e Motorola Application Note AN-415)

70

100

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

439

MJ3771, MJ3772, MJ6257 (continued)

FIGURE 6 - TURN-OFF TIME

FIGURE 7 - CAPACITANCE

100

2000

0

VCC - 30 V
IC/IB 10
IBl = IB2
TJ = 25 0 C

0
0

]

;:: 2. 0

TJ = 250 C

l

~1000 b-

Cib

"z

Co~

w

5. 0

w

::;;

r---.

f--

-

ts

~.

1. 0
O. 5~

tf

..

~ 700
<3

'"

",'

........ r-300

["'-....

O.2

O. 1
0.3

I.......

~ 500

l- I----,

1.0

0.5

2.0

3.0

5.0

7.0

10

20

b,

200

30

0.1

1.0

0.5

0.2

IC. COLLECTOR CURRENT (AMP)

FIGURE 8 - DC CURRENT GAIN

200

25 0 C

z

<
'"
t-

VCE = 4.0 V

r--..

Q

ffi

'"'"
Q

0
30

r--

i"'- ~

a:

0.8

'"
§

0.4

g

r-.. "

10

~

7. 0

>

5. 0

0.3

0.5

0.7

1.0

1.2

1l']

...... i".

l'

~ 20

2.0

3.0

5.0

7.0

10

20

I'
~

0
0.01

30

0.02

I

/)

1.6

r

.

--

W

'"

O.B

VBE(sat)@IC/IB-l0

'::;
Q
>
i"'"VrE ~ ~CE = 4.0 V
>'
0.4

o

0.3

V~E(~tl JIUBI= 10
0.5 0.7

1.0

I2.0

I

~F"

~

1li

~
7.0

~
13
~
8

1.0

2.0

5.0

10

t-

i
10

20

IC. COLLECTOR CURRENT (AMP)

II

.L

./

-550 C to 250 C

+1.0

-1.0

-2.0

11

.llU
lUl
III

-

OVB for VBE

li
0.5 0.7

1.0

VI

~

-'OVC for VCE( ..ti

2.0

250 C to 1500 C

f0-

3.0

l~

_._-

tz'r-'

L

-550 C to 250 C

J.ilill
5.0 7.0

L

"",I""'"

II L

IC. COLLECTOR CURRENT (AMP)

440

/
/

25 0 C to 1500 C

-3. 0
0.3

30

..lJl U

'APPLIES FOR IC/IB" hFE/2

+2.0

w

/

5.0

0.5

+3.0

'"=>

./

,....
3.0

..;.:V II

r--

13

.§

'I

~

0.2

+4.0

3;

A

Q

0.1

FIGURE 11 - TEMPERATURE COEFFICIENTS

TJ = 250 C

~

0.05

IC. COLLECTOR CURRENT (AMP)

FIGURE 10 - "ON" VOLTAGES

1.2

I'

1\

IC. COLLECTOR CURRENT (AMP)

2.0

100

20A

~

-55 0 C

+-

0

TJ = 250 C

lOA

5.0 A

1.6

LU

'"
~
'"

r--..

100

20

II

1111

IC=2.0A

~

ill 70

'"'"=>

II

!:;

TJ = 150 0 C

hi.

10

FIGURE 9 - COLLECTOR SATURATION REGION
2.0

til

500
30 oJ--

5.0

2.0

VR. REVERSE VOLTAGE (VOLTS)

10

-20

L

30

MJ3771, MJ3772, MJ6257

(continued)

FIGURE 12 - COLLECTOR CUTOFF REGION
f--VCE - 30V

F==I==TJ

+100 0 C': !.i+250~

§

+150 OC

1

/

16:= REVERSE

FORWARD

2

w- 3
-04

-0.3

-0.2

-0.1

+0 1

+0.2

+0.3

+0.4

VBE, BASE·EMITTER VOLTAGE (VOLTS)

441

+0.5

+0.6

MJ3773, MJ6302

(SILICON)

16 AMPERE
POWER TRANSISTORS

HIGH POWER NPN SILICON POWER TRANSISTORS
Epibase transistors for ultimate circuit performance based on
the designer's requirement.
EPIBASE

NPN SILICON
120, 140 VOLTS
200 WATTS

- designed for power amplifier and switching
appl ications.

•

Low Collector· Emitter Saturation VoltageVCE(sat) = 0.8 Vdc (Max) @ IC = 8.0 Adc
= 2.0 Vdc (Max) @ IC = 16 Adc

•

Low Leakage ICBO = 1.0 mAde @ VCB = 125 Vdc - MJ6302
= 1.0 mAde @ VCB = 140 Vdc - MJ3773

•

High Current-Gain - Bandwidth Product fT = 1.0 MHz (Min) @ IC = 1.0 Adc

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

Collector-Emitter Voltage
Collector-Base Voltage

veE x

Emitter-Base Voltage
Collector Current - Continuous

VEe

MJ6302

MJ3773

Unit

120
140
140

140
160
160

Vdc

VeEO
Vee

7.0
16
30
4.0
15
200
1.14
-65 to +200

Ie

Peak
Base Current - Continuous

Ie

Peak
Total Device Dissipation
Derate above 25°C

@

T C =25°C

Operating and Storage Junction
Temperature Range

Vdc
Vdc

Po

TJ,T stg

Vdc
Adc
Adc

Watts
wfOe
°e

THERMAL CHARACTERISTICS
Characteristic

MJ3773
MJ6302

Thermal Resistance, Junction to Case

0.875

STYLE 1:
PIN " BASE

2, EMITTER
CASE: COLLECTOR

200

FIGURE 1 - POWER DERATING
NOTE:
" DIM "n"ls DlA.

I"'"
DIM

""'"

0

0

25

"'" r-....

A
B
C

""

"'"

125
50
75
100
TC, CASE TEMPERATURE lOCI

~

150

""
175

D
E
F
0
H
J
K

"

Q

R

MILLIMETERS
MIN
MAX

-

INCHES
MIN
MAX

- 1.550
22.23
- 0,875
11.43 0,250 0,450
1,09 0.038 0.043
3,43
J!..136
29.90 3D,4D 1,177 1.197
10.67 1I.IB 0,420 0,440
5.21
5.72 0.2D5 O.22S
16.84 17.15 0,65 0,675
11.18 12.19 0.440 O.
.151 0,' I
3.84 4
26.61
- 1.D50
39,3)

8.35
0.97

200

442

CASE 11·03

-

MJ3773, MJ6302 (continued)

I

ELECTRICAL CHARACTERISTICS (TC = 2SoC unless otherwise noted.!
Symbol

Characteristic

Min

Max

120
140

-

140
160

-

140
160

-

-

2.0
2.0

Unit

OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage! 11
(lc = 0.2 Ade, IB = 0)
Collector~Emitter

Sustaining'Voltage

Sustaining Voltage

Vde

VCER(sus)
MJ6302
MJ3773

(IC = 0.2 Ade, RBE = 100 Ohms)
Collector Cutoff current
(VCE = 100 Vde, IB = 0)
(VCE = 120 Vde, IB = 0)
Collector Cutoff Current
(VCE = 120 Vde, VEB(off)
(VCE = 140 Vde, VEB(off)
(VCE = 120 Vde, VEB(off)
(VCE = 140 Vde, VEBloff)

Vde

VCEX(sus)
MJ6302
MJ3773

(lC = 0.2 Ade, VBE(off) = 1.5 Vde,
RBE = 100 Ohms)
Collector~Emtiter

Vde

VCEO(sus)
MJ6302
MJ3773

mAde

ICED
MJ6302
MJ3773

-

mAde

ICEX
=
=
=
=

1.5
1.5
1.5
1.5

-

MJ6302
MJ3773
MJ6302
MJ3773

Vde)
Vde)
Vde, TC = 1500 CI
Vde, TC = IS00C)

Collector Cutoff Current
(VCB = 125 Vde, IE = 0)
(VCB = 140 Vde, IE = 0)

-

1.0
1.0
5.0
5.0
mAde

ICBO

-

MJ6302
MJ3773

Em itter Cutoff Current
(VBE = 7.0 Vde, IC = 0)

-

1.0
1.0

-

1.0
1.0

15
15
5.0
5.0

60
60

-

O.B
O.B
2.0
2.0

-

-

I.S
1.5

1.0

-

40

-

mAde

lEBO
MJ6302
MJ3773

ON CHARACTERISTlCS(I)
DC Current Gain

(lc

-

hFE

= B.O Ade, VCE = 4.0 Vde)

MJ6302
MJ3773
MJ6302
MJ3773

(lc = 16 Ade, VCE = 4.0 Vde)
Collector-Emitter Saturation Voltage
(lC = B.O Ade, IB = BOO mAde)

-

Vde

VCE(satl
MJ6302
MJ3773
MJ6302
MJ3773

(lC = 16Ade, IB = 3.2 Ade)
Base-Emitter On Voltage
(lC = B.O Ade, VCE = 4.0 Vde)

Vde

VBE(on)
MJ6302
MJ3773

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 1.0 Ade, VCE = 10 Vde, ftost = 0.5 MHz)

fT

Smell-5ignal Current Gain
(lC = 1.0 Ade, VCE = 4.0 Vde, f = 1.0 kHz)

hfo

(VCC = 30 Vde, IC

= B.O Ade,

IB 1 = IB2 = O.B Ade)

443

MHz

-

MJ3773, MJ6302 (continued)

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
5. 0

VCC

VCC-30V
IC/IB'1O
TJ ~ 25°C

3.0

+30 V

2.0

H
+~] --1--,
v

RC

J

SCOPE

RB

w

!

-9.0

51

'"

1.0

o. 7
o. 5
o.3

lr

r-I'--

O.2
t r• tt::::10

DUTY CYCLE

os
~

1.0%

-4V

- -

Id

-.

-=

~. 1

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

0.0 7
0.05
0.2

Dl MUST BE FAST RECOVERY TYPE. 09:
MBD5300 USED ABOVE IB ~100 rnA
MSD6100 USED BELOW IB ~100 rnA

0.3

0.5

0.7

1.0

--

2.0

3.0

/ i IiTli
B
V

5.0 7.0

50
• V

-

-

10

20

IC, COLLECTOR CURRENT (AMP)

FIGURE 4 - THERMAL RESPONSE
1.0
0.7

;;!

~_ 0.5

-

-

~ffi 0.3

~~

:i~

0:-

..-- iiiII-

0.2

.... N

tz ~

9JCh)' r(~_9JC

0=0.5

0.2

- o.1 --

-

-Inn

I--:::::

u.

ffjO.03

tt;o:
'2

0.02

>- -::::::: [:;;;:F"

_0.05

.,..,.-

pr

11~2~

0.01

~IINGLE{U1SE

II

0.0 1
0.02

PULSE TRAIN SHOWN
:- r--READTIMEAT'1
--TJ(pk) TC = P(pk)9JCh)- r-

DUTY CYCLE, 0 - 11/12

-~.1

_0.02
~ ~O.Q7 ~ " -

§>'"~O.05

~€~~:~;::.~·:ci~ ~OWE~-

0.05

I II

0.1

0.2

1.0

0.5

.2.0

5.0

10

111111
20

'50

100

200

500

1000

t, TIME (m.)

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
100
70
50
0:: 30
20

'"

- --

~
I-

~
0:

:::>
<.>
0:
0
....

~

10
7.0
5.0
3.0
2.0

1.0
0.7
8 0.5
~ 0.3
0.2

he'"

5.011)~ ,;:J.OI~

Tc = 25°C

"'-

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e ... , the transistor
must not be subjected to greater dissipation th,an the curves indicate.
The data of Figure 5 is based on T J(pk) = 200"c; TC is variable
depending on conditions. Second breakdown pulse limits are valid

,",

values less than the limitations imposed by second breakdown.
(See AN-415)

~.-

for duty cycles to 10% provided T J(pk) .;:;;; 200o C. T J(pk) may be

~. _.:= ~~~~~N:L~~RCI~:~~~~~INGLE PULSE)

0.1
2.0

calculated from the data in Figure 4. ·'At high case temperatures,
thermal limitations will reduce the power that can be handled to

- - - - SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCEO

IIIII
3.0

5.0

7.0

10

II
20

30

50

70

II
100

200

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

444

2000

MJ3773, MJ6302 (continued)

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME
200 0

0
30

~c~1J~- ffIc1IB=10 -

20

.=t:=

IB1- IB2._
Tr 25 OC

10

:g

7.0
~ 5.0

's

;::

2.0
1.0

100 0

u:
~

700

z
;:: 500
G

~

-- -- -

3.0

I IIII
TJ = 25°C

_

~

C~

300

r-....

200

i'-

'f

0.7
0.5
0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

100
0.2

20

0.5

1.0

2.0

IC. COLLECTOR CURRENT (AMP)

o

VCE' 4.0 V

1. 1:.

100

200

I-

~

70 =
0
5

g

30

6

-...

- > - 2 50C

"'10 0

IC=4.0A-

-

t=-550C

8

~

~ 20

I'--f-

~

:"

4

!'-...

10
7. 0
5. 0
0.2

03

05

0.7

1.0

20

3.0

5.0

10

0
005 0.07 01

20

0.2

0.3

~rT.Isob

w

">

It

1.6

/

~

c;

5

~

10

08

04

o

0.2

VIBE(,..)@ Ic/lB = 10

S

~i::::=~

7

~BETvfEI-m

JCE(lti ~ IUB 1= 110

3.0

5.0

w
~

II

/

V

./

25'~

~ o. 5 "OVC for VCE sat)

w

>

2.0

"Applies for ICIIS < hFE/2

0

.s

W
12

->

10

25

I-+-

'"«

07

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - "ON" VOL TAGES

I-

0.5

lB. BASE CURRENT (AMP)

IC.COLLECTOR CURRENT (AMP)

0

16 A

8.0 A

2

B

i5

50

TJ=250C

;;:

2.

20

0

30O;;;:::;!~
20

10

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN
50 0

z

50

VR. REVERSE VOLTAGE (VOLTS)

/

0

j55 ·0250C

V

I--'

V

1

-0. 5

I-

~ -l. 0

~

...... ~

-15

i- 2.a

25 to 1500C

_K-r

8VB for VSE

_i-"

-55'0 250C

·25
03

20
3.0
50 70
0.5 07 10
IC. COLLECTOR CURRENT (AMP)

10

o2

20

445

03

0.5

2.0
30
50
IC. COLLECTOR CURRENT (AMP)

07

10

10

20

MJ3773, MJ6302 (continued)

'FIGURE 12 - COLLECTOR CUTOFF REGION

cF ~

TJ = +1500C,/=+10ooC; r=+25 0

I--

VCE = BOV

11--

REVERSE

c -ICES

10- 2
-0.4

-0.3

FORWARD

0 +0.1 +0.2 +0.3 +0.4
-0.2 -0.1
VBE. BASE·EMITTER VOL TAGE (VOLTS)

446

+0.5

+0.6

MJ4030, MJ4031, MJ4032 PNP (SILICON)
MJ4033, MJ4034, MJ4035 NPN
16 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS

60-100 VOL TS
150 WATTS

. . . for use as output devices in complementary general purpose
amplifier appl ications.
•

High DC Current Gain - hFE = 3500 (Typ) @ IC = 10 Adc

•

Monolithic Construction with Built-In Base-Emitter
Shunt Resistor

MAXIMUM RATINGS

VCEO

MJ4030
MJ4033
60

MJ4031
MJ4034
80

MJ4032
MJ4035
100

Collector-Base Voltage

VCB

60

80

100

Emitter-Base Voltage

VEB

5.0

Collector Current

IC

16

Adc

Base Current

'B
Po

0.5

Adc

150
0.857

Watts

-55 to +200

°c

Rating

Symbol

Collector-Emitter Voltage

Total Device Dissipation@TC=250C

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ.Tstg

Unit

Vdc
Vdc
Vdc

W/oC

!=:'
=
:I==t
r~K

l
ESEATIN!~

j

PLANE

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Svmbol

I

I

OJe

Unit

Mox
1.17

I

°C/W

FIGURE 1 -DARLINGTON CIRCUIT SCHEMATIC
Collector

PNP
MJ4030
MJ4031
MJ4031

I

NPN

--,
,..-----<1--.

r------I

I

I
I
I
I
I
I

I
Sase

Collector

MJ4033
MJ4034
MJ4035

--,

.----<4-.

Sase

I

I
I

I
I
I
I

I

I

__ ...J

__ ...J

DIM
B
C
D
E
F
G
H

J
K

n
S
T

INCHES
MAX
MIN

MILLIMETERS
MIN
MAX

6.35
0.97
29.90
10.67
5.11
16.64
7.92
3.84

-

11.23
11.43
1.09
3.43
30.40
11.18
5.72
17.15
4.09
13.34
4.78

0.250
0.038
1177
0.420
0.205
0.655
0.312
0.151

447

-

All JEOEC dImenSIOns and noles apply
CASE 1·03

Emitter

Emitter

0.875
0.450
0043
0.135
1197
0.440
0.225
0675

(TO·3)

0.161
0.525
0188

MJ4030 thru MJ4035 (continued)

ELECTRICAL CHARACTERISTICS ITC = 2S0C unless otherwise noted)

I

I

Characteristic

Max

Min

Symbol

Unit

OFF CHARACTERISTICS
Collector·Emltter Breakdown Voltage(1)
(Ie = 100 mAde, '8 = 01

Vdc

BVCEO

60

MJ4030, MJ4033
MJ4031 , MJ4034
MJ4032. MJ4035

ao
100

Collector Emitter Leakage Current

mAde

'eER

(Vee =60Vdc, ABe'" 1.0kohmJ

MJ4030, MJ4033

(Vee =80Vdc. RBe = 1.0kohml

MJ4031, MJ4034

(Vee = l00V~c. RBe = 1 Okohm"l
(Vee "'OOVdc, ABe = 1.0kohm. TC = 1500 CI

MJ4032, MJ4035

(VCS=80 Vdc, RBe = 1.0kDhm. TC = lS00CI

MJ4031. MJ4034

(Vee = l00Vdc, ABe'" 1 Okohm, TC = 150°C)

MJ4032. MJ4035

1.0
1.0
10
5.0
5.0
5.0

MJ4Q30, MJ4033

Emitter Cutoff Current
(VBE =5DVdc, IC=Ol

5.0

'EBO

Coliector·Emltter Leakage Current

mAde

mAde

iCED

30
3.0
30

MJ4030, MJ4033

(VeE = 30 Vdc, 'S = 0)
(VCE = 40 Vdc, la '" 0)

MJ4031, MJ4034

(VCE = 50Vde,Ia '" 0)

MJ4032, MJ4035

ON CHARACTERISTICS(11

1000

hFE

DC Current Gein
(lC'" 10 Ade, VCE" 3.0 Vde)

Collector-Emittllr Saturation Voltage

vao

VeE(sat)

(lC = 10Ade, la = 40 mAde)

25
40

(lC = 16 Adc, 18 = 80 mAde)

3.0

VaE

Bese-Emitter Voltage
IIC'" 10 Adc, VCE '" 3.0 Vdcl

Vdc

(1)Pulse Test. Pulse WIdth ~300 jJs, Dutv Cycles;2 0%

FIGURE 3 - SMALL-SIGNAL CURRENT GAIN

FIGURE 2 - DC CURRENT GAIN
3000

50,000

2000

20,000

z

;;:

TJ =1500 C

10,000

C!)

~

z

;;: 5000

_

'"

I-

~ 2000

a

1"\

1000

~ 500

~

a-;t

1"\'

25°C

z

200

VCE • 3.0 Vol ..

100
50
0.02

0.05

0.1

0.5

0.2

1.0

2.0

5.0

10

500
300

Cl

200

i

100

j

50

~

-55 0C

1000

104

20

f, FREUUEN~Y 1Hz)

1r.,COLLECTOA CURRENT IAMPI

FIGURE 4 - "ON" VOLTAGES

FIGURE 5 - DC SAFE OPERATING AREA

3.5

50

3.0

~
~

TJ = 25°C

,

2.5

2_ a

w

'"

;
o
>

"> 1_0

~

20
16
10

~

50

ii:'

~ :::

VBE@viiillovolj...

8 o. 2
~

VCElsat)@IChB-250

O. 5

a
0.05

0.1

0.5

1.0

5.0

O. I
10

r-- -

20

1'- ........
MJ4030, MJ403~
MJ4031, MJ4034
''\ ~ MJ4032, MJ4035 -

TJ' 200°C

SECONOARY BREAKOOWN LIMITATION
- - - THERMAL LlMITATlON@TC·250C
- - - BONOING WIRE LIMITATION

0.05
2.0

IC, COLLECTOR CU RRENT lAMP)

-

=

:: 2.0

/

::::

VBElsat)@IC/IB'250

1.5 -

0.02

"-

TC·250C
VCE = 3.0 Vdc
IC =10 Ado

5.0

10

20

50

100

200

VCE, COLLECTOR·EMITTER VOLTAGE IVOL TS)

There are two limitations on the power handling ability of a
transistor: average junction temperature and secondary breakdown_
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; e_g., the transistor

must not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed by secondary breakdown. (See AN-415)

448

MJ4200, MJ4201 NPN (SILICON)
MJ4210, MJ4211 PNP

DUAL DARLINGTON
4 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS

DUAL SILICON POWER DARLINGTON TRANSISTORS
· . . designed for hammer driver, regulator and amplifier
applications.
• High DC Current Gain hFE = 3000 (Typ) @ IC = 2.0 Adc
• Collector-Emitter Sustaining Voltage VCEO(sus) = 60 Vdc - MJ4200, MJ4210
= 80 Vdc - MJ4201, MJ4211
• Total Monolithic Construction
Dual transistors in the same chip, yielding like electrical
characteristics. Collectors are common

60,80 VOLTS
85 WATTS

MAXIMUM RATINGS
MJ4201
MJ4211

Unit

80

Vdc

80

Vdc

VCEO

MJ4200
MJ421 0
60

Collector-Base Voltage

VCB

60

Emitter-Base Voltage

VEe

5.0

Vdc

IC

4.0
8.0

Adc

IB

80

mAde

PDT

85
0.485

W/oC

60
0.343

W/oC

-65°C to +2000 C

°c

Symbol

Rating
Collector-Emitter Voltage

Collector Current - Continuous

- Peak
Base Current
Total Device Dissipation@Tc=25DC

Derate above 2SoC
(Equal power

Watts

both transistors)

In

Single Transistor Disslpatlon@TC=250C

PD

Derate above 2SoC
Operating and Storage Junction Temperature
Range

TJ,T,tg

Watts

r------

THERMAL CHARACTERISTICS
Characteristic

Max

Symbol

Thermal Resistance, Junction to Case

Unit
°C/W

°JC

Single Transistor

2.92
2.06

Effective. equal power both transistors
Thermal Coupling Factor

%

FIGURE 1 - POWER DERATING

I

A
B

-

0-

C
D
E
F
G
K
M
N

P02" 1(Equal Power in
~
......... ~Ol BOfhTransistofs)

,

-........:::: ~--"";:~0.5
--.......;

~

0

~25

""" ~ ~

Q

-....;~

0

o

TJ =TC +OJC (PDI + KO POl)

25

50

75

100

125

TC, TEMPERATURE (DC)

",

150

175

R

200

449

20\

if
eN

2. BASE 2
3. BASEI
4. EMinER I
DIM

0

o

Q)V'~
it- \,i+\3J ~

PIN 1. EMinER 2

41

KO

.
STYLE 1

F-

1

jJ
G

1/
_____ M

MILLIMETERS
MAX
MIN

-

38.61
21.08
8.13
1.09
3.43
29.90 30.40
11.94 BSC
8.13
7.11
72 0 Bse
18 0 BaC
3.84
4.09
26.67

6.35
0.97

INCHES
MIN
MAX

-

1.520
0.830
0.250
320
0.038 0.043
.135
1.177 1.197
0.470 BSC
0.280 0.320
720 sse
18 0 Bse
0.151 0.161
1.050

NOTE:
1. LEADS WITHIN 0.13 mm (0.005) OIA OF
TRUE POSITION AT SEATING PLANE AT
MAXIMUM MATERIAL CONDITION.
CASE 253

1

R

MJ4200, MJ4201, MJ4210, MJ4211 (continued)

E LECTR ICA L CHARACTER ISTI CS (T C = 25°C unless otherwise noted)
Symbol

Min

Max

60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 50 mAde, IB = O)

Vde

VCEO(sus)
MJ4200, MJ4210
MJ4201, MJ4211

Collector Cutoff Current
(VCE = 30 Vde, la = O)
(VCE = 40 Vde, la = 01

BO
ICEO

mAde

-

-

0.5
0.5

MJ4200, MJ4201

-

0.5

(VCE

MJ4210, MJ4211

-

0:5

(VCE

MJ4200, MJ4201

-

5.0

MJ4200, MJ4210
MJ4201, MJ4211

Collector Cutoff Current

mAde

ICEX

(VCE = Rated VCEO' VEa(off)

= 1.5 Vde}

= Rated VCEO, VaE(offl = 1.5 Vde)
= Rated VCEO, VEB(off} = 1.5 Vde, TC = 1500C)
(VCE = Rated VCEO, VaE(offl = 1.5 Vde, TC = 150°C)

MJ4210, MJ4211

Emitter Cutoff Current
(VaE = 5.0 Vdc, IC = O)

lEaD

5.0

2.0

mAde

ON CHARACTERISTICS
DC Current Gain
(lC = 2.0 Ade, VCE
(lc = 4.0 Ade, VCE

Collector-Emitter Saturation Voltage
(lC
(lC

750
100

lBOOO

-

2.0
3.0

= 2.0 Ade, la = B.O mAde)
= 4.0 Ade, la =AO mAde)

Vde

VCE(satl

Base-Emitter Saturation Voltage
(lC

-

hFE

= 3.0 Vdc)
= 3.0 Vde)

VaE(sat)

-

4.0

Vde

VeE(on)

-

2.B

Vde

= 4.0 Ade, Ie = 40 mAdcl

Base-Emitter On Voltage
(lC = 2.0 Ade, VCE = 3.0 Vdc)

DYNAMIC CHARACTERISTICS

-

I hfe I

Magnitude of Common-Emitter Small--5ignal Short-Circuit
Forward Current Transfer Ratio
(lc = 1.5 Ade, VCE = 3.0 Vde, f = 1.0 MHz)
Output Capacitance
(Vce = 10 Vde, IE = 0, f= 0.1 MHz)

4.0

-

-

120
200

300

-

Cob

MJ4200, MJ4201
MJ4210, MJ4211

Small-5ignal Current Gain

pF

hfe

-

(lC = 1.5 Ade, VCE = 3.0 Vdc, f = 1.0 kHz)

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

"J:++R+=t=t==t=t==t++RWVCC:;,ToV
.,=+=1
VCC=~~V--

Vee

5.0 ....

-30V
RS & RC VARIED TO OBTAIN DESIRED CURRENT lEVELS
01. MUST BE FAST RECOVERY TYPES, B.g.,

:~g:: ~~:g ::~~~ I':: ::::

3.01-",p.,j:+~+---+-f--+-f-H++++-IC/IB = 250 - -

2.0

Re
SCOPE

I~

Ir

illI

1.0~ ..
-. r

1[ 0.7

~ 0.5

~
fortdand1r,0, IS disconnected
and V2'" 0

0.3

I~~:~~~c--

l

If

,_1""'-...

'

,-r-

.

0.2I-H+H-l-+-+
-'",,- ....-.2'~+-H+JI:-I-,...-..j....--::-:I:------j'-j
I--H-f-t+t-+-+-..,i'p',.......~-t.'~(Offr

f=
0.1~1=~~-~--~M~J~42~O~0.~M~J4~2~0~1(~N~PN~)~~~llg~~r~~

0.07
MJ4210. MJ4211IPNP} ,
0.05
0.04 0.06
0.1
0.2
0.4 0.6
1.0
IC, COLLECTOR CURRENT lAMP)

For NPN test circuit reverse all polarities.

450

2.0

4.0

MJ4200, MJ4201, MJ4210, MJ4211 (continued)

FIGURE 4 - THERMAL RESPONSE
I, 0

~

o. 7 0

;z

O.5

~

0.3

ffi

0=0.5

ffi~

"''''
:::5
'"
....

~

~

0.1

O.!-- ......

o. I to.05
0.02

0.07

ffi~O.05

u;
~

012

1-0.2

~c 0.2

"w
"'~

0.5

i='"
8JC(t) = r(tle;:;
t 1 1 . n 8 J C = 2 . 9 2 0 C Max
P(pkl
0 CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME AT t1

........: ~

..1

0.05

~~.Ol

0.03 -fIN~L~

P~~SE I--

0.02

0.0 I
0.02

'!:2!-

I L l~

1

0.05

0.1

j

t~

ONE OlE

.....

,I'

0.2

0.5

1.0

2.0

TJl(pkl-TC=PP~18JCI(tl

t2
DUTY CYCLE, 0 - tl/12

OUAL OlE
SINGLE PULSE
COUPLEO RESPONSE
5.0
10
t,TIME(msl

50

20

+K8 PPK2 8JC2!tl
K8 = 0.41

100

200

500

~

F=
~

t:

iii~

1000

2000

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
NOTE

0
5. 0
~

~

~
~

B

71"1
2. DONE
TRANSISTO ~

,V

.....

100;":

.......

......

~............ .........

.~

1. o~ ~QUAL POWER
5 '= BOTH TRANSISTO R

.........

r--,.200ps

BONDING WIRE LIMITED

r--TJ= 2000C
0.02

'" "\.

r--.." 5.0 ms

PPK2 = 50 W }
. .
_ 10
Pulse COlOcident at
tl ms T... Ed
D = 20%
ra. 109
ge

r(t) = 0.58
rlt) ~ 0.35
(from Figure 4)
:.8 JC1(t) = 1.690 C/W :.8 JC2(t) = 1.02o C/W
TJ1(pkl - TC = (801 (1.69) + (0.41) (50) 11,02)
= 135 + 21 = 156°C

Read

Where the side having highest junction temperature is not
obvious, both sides should be checked.

MJ4200, MJ4210
MJ420r MJ4Y I

I

0.0 I
10

Example: PPKI = 80 W
tl = 5 ms
D = 20%

.Oms

~ o. 2 - - - THERMALLY LIMITED @lTC = 25 0[,",\
to
(SINGLE PULSEI
j o. I ~SECOND BREAKOOWN LIMITED
8 0.05f:::::=CURVES APPLY BELOW RATEO VCEO
~

Use TJ1(pkl - TC = PPKI 8JCHtI + Kg PPK2 8JC2(tJ

......... ~ 500jJS

o.

-.

Computing Peak Junction Temperature

20
30
50
70
VCE, COLLECTOR-EMmER VOLTAGE (VOLTSI

100

There are two limitations on the power handling ability of a

depending on conditions. SlitCond breakdown pulse limits are valid

transistor - average junction temperature and second breakdown.

for duty cycles to 10% provided T J(pk) <200°C. T J(pk) mav be
calculated from the data in Figure 4. At hioh case temperatures,
thermal limitations will reduce the power that can be handled to
values leiS than the limitation. imposed by second breakdown.

Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

(See AN-4151.

The data of Figure 5 is basad on T J(pk) = 200°C; T C is variable

FIGURE 7 - CAPACITANCE

FIGURE 6 - SMAll-SIGNAL CURRENT GAIN
4000

2000

..

;!;IOOO
co
10 600
~400

...
I TJ = ~50CI
Vce= 3.0 V
IC= 1.5 A

a:

B
j

300

"

200

'\

~

..,zw

~IOO

5

\
'\

100
BD
40
4.0 6.0

70

20

40 BD 100 200 400 600 1000 2000
I, FREQUENCY (kHz)

....

--'II

50

---MJ4 00, MJ 1 NPN)
MJ4210, MJ4211 (PNPl
10

t--- r-

..
f

200

TJ=250C

1-- - 30

4000

0.1

451

I

02

MJ4200, MJ4201 (NPN)
j42,IOj ~iir (PNPl
0.5

I

r-CII

--

I

1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTSJ

50

100

MJ4200, MJ4201, MJ4210, MJ4211 (continued)

NPN

PNP

MJ4200. MJ4201

MJ4210. MJ4211
FIGURE 8 - DC CURRENT GAIN

20.000

10.000

f-- Vc =13jOIV

......

10.000
7000

~

5000

TJ - 1500

z

~2000

~
..,i3

25 0;"'"

..,:::>

/'

~1000

~

V
200

V

0.04 0.06

in 3.0

0.1

I I III

!:;
c

~
~ 2. 5

IC =1.0 A 2.OA

2.0

4.0

,

~

'"

~
w

3.0 A

to

.

I I
1.0
0.4 0.6
0.2
lC. COLLECTOR CURRENT (AMP)

"

IC = 1.0 A

2. 5

II

1\

2.0 A

13.0 A

4.0

2.0

11

~
~

1\

\

1- 5

\..

'"

8j

1. 0

TJ = 25DC

\

~ 2. 0

iii

g

0.1

~

:II

~ 1. 5

100
0.04 0.06

~ 3.0

TJ = 25 DC

1
\

~
'" 2.0

200

'J.-.-1"

FIGURE 9 - COLLECTOR SATURATION REGION

1\

~

-55 DC

300

V

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

"

25 DCL . "

500

-55DC

300

i-'

1000

c

ul 700

500

"...,

~

..............

I-'

~

/'}

~2000

<
~3000

..,is

TJ - 150DC

z 3000

~5000

~

=YCP3.0V

...... r-..,

"'-

1. 0

8

~

..,ul

> O. 5

> O. 5
0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

0.2

20

10

0.3

0.5 0.7

lB. BASE CURRENT (mA)

1.0
2.0 3.0
5.0
lB. BASE CURRENT (mA)

7.0

20

10

FIGURE 10 - ON VOLTAGES
2.0
1.8 f-

~

2.0

f/

111'1

/,

TJ = 25DC

1.8

ff

1. 6

1.6

~

~ 1.4
w

to

~ 1.2

'"
>

:>

o 1.4

VBE(sat)@ICIIB=250

~
w

--== I=""

1.0 ViEilYI-rov
O. 8

./

IIIIJI
VCE(sa,)@ICIIB=250

O. 6
0.04 0.06

I
0.1

V

'"~

L

11111
11111

VBE(~t\ ~ l~llB = 250

I"'"

IL

1.0
0.8

2.0

lrli'f

~ 1.2 VBE @VCE = 3.0 V
!:;

V

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

11111

r--

V~E(~~I JIC~IB = 250

I I III
0.6
0.04 0.06
0.1

4.0

452

I

"

---

0.2
0.4
0.6
1.0
IC. COLLECTOR CURRENT (AMP)

2.0

4.0

MJ4200, MJ4201, MJ4210, MJ4211 (continued)

NPN

PNP

MJ4200, MJ4201

MJ4210, MJ4211
FIGURE 11 - TEMPERATURE COEFFICIENTS

+5.0

+5.0

'Applies for 'elle < hFE/3

u +4.0
3;

.s +3.0
I-

J

~ +2.0

./ [/

$ +1.0
8w

./

0

2nt1150~ V

~ -1.0

!;(

ffi -2.0
~ -3.0
I-

i-

-~

~BVe. for VeE(rat)

V

-55°C to 250C
250C to 1500C
:..;.
BVB. forVBE

4.0

11I11

-5.0
0.04 0.06

0.1

V V
/

J

1

..5 +3.0

V

I-

ffi +2. 0

U

~ +1.0

8

/

III~

w
~-1. 0

·BVC. for VCE!sat)

~ -2. 0
~
~

II II

-3.0

i-

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT (AMP)

2.0

4.0

4.0

-550C to 250 C

II II

-5.0

0.04 0.06

0.1

-

...I-"r
~
-55°C to 25°C
I
250C to 1500C
~

--:t::::t-

BVB. for VBE

I-

II

,/

5°C to 1500C

0

I-

V

~

-55°C to 250C

'Applies for ICIIB < hFE/3

~+4.0
>

rr
I

/ II
~ f-

V" L r'
V

0.4 0.6
1.0
0.2
Ie. COLLECTOR CURRENT (AMP)

4.0

2.0

FIGURE 12 - COLLECTOR CUTOFF REGION

.L

4~VCE-30V

--

~

0.03 0.05

0.1

f-

0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC, COLLECTOR CURRENT (AMP)

10

20 30

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA

100
50

I

~

-;,

20

~ 10

w

:::~

- -

......

.......

5.0

.....

'" 2.0 -TJ=2000C
~

=
o

~100"'1.0 ms

1.0

~ 0.5

0.2

5.0 ms

.-

The Safe Operating Area Curves mdlCate Ie - VeE hmits below
which the device will not enter secondary breakdown Collector
Ioad lines for specific CircUits must fall within the applicable Safe
Area to avoid CilUSlng a catastrophic failure. To Insure operation
below the maximum T J. power-temperature deratmg must be observed for both steady state and pulse power conditIOns.

Secondarv Breakdown Limited
Bonding Wire limited
- ThermallimitationsTC =25 0 C
Pulse Duty Cycle < 10%

~
==
==

O. 1
1.0

2.0

3.0

5.0
10
20
30
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

455

50

100

MJ464S thru MJ4648 (SILICON)

1.0 AMPERE
POWER TRANSISTORS
PNPSILICON
200-300-350-400 VOL TS
5 WATTS

PNP SILICON POWER TRANSISTORS
designed for high-voltage amplifier and saturated switching
applications at collector currents to one Ampere. Ideally suited for
applications of dc-to-dc converters, relay and hammer drivers, motor
controls, and servo and pulse amplifiers. High·voltage ratings permit
direct-line operation.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = < 1.5 Vdc (Max) @ IC = 500 mAdc

•

High Collector· Emitter Breakdown Voltage BVCEO = 200, 300, 350 and 400 Vdc (Min)

•

DC Current Gain Specified - 10 mAdc to 500 mAdc

MAXIMUM RATINGS
Symbol

Rating

Collector-Emitter Voltage

MJ4645 MJ4646 MJ4647 MJ4648

Unit

Vceo

200

300

400

350

Vdc

Collector-Base Voltage

VCB

200

300

400

350

Vdc

Emitter·Base Voltage

VeB

5.0

IC

0.5
1.0

Adc

5.0

Watts

28.6----

mWf'C

Collector Current

Continuous
Peak

Total DeVIce DISSIpation

Po

T C - 25°C

@

Derate above 2SoC
Operating and Storage Junction

--

TJ,Tstg

Temperature Range

Vdc

-65 to +200 - - -

G

DC

STYLE 1
PIN 1. EMITTER
2. BASE
N 3. COLLECTOR

THERMAL CHARACTERISTICS
Cllaracteristic
Thermal ReSIstance, Junction to Case'

FIGURE 1 - POWER DERATING

A

"" "" ""

~ 4.0

i

~ 3.0

i

iiic

2.0

B
C

o

E
F
G
H

r-....

J
L

"

1.0

o
o

K

"-

'"~
""
I?

DIM

.......,

5.0

20

40

60

80

100

120

140

TC, CASE TEMPERATURE lOCI

160

.......,

""

200

456

8.B9

9.40

8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83
5.33
0.711 0.864
0.131 1.02
12.10
6.35

M

450 NOM

P

1.21
90' NOM
2.54

Q

180

MILLIMETERS
MIN MAX

R

AU JEOEC dimensions and notes apply.
CASE 79·02
TO·39

MJ4645 thru MJ4648 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)

I

I Symbol

Characteristic

Min

Typ

Max

200
300
400
350

-

-

-

-

200
300

-

400

-

350

-

-

BVEBO

5.0

-

-

Vde

ICEX

-

-

10

/lAde

20

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage (11
(lC = 10 mAde, IB = 01

Vde

BVCEO
MJ4645
MJ4646
MJ4647
MJ4648

Collector-Base Breakdown Voltage

-

Vde

BVCBO
MJ4645
MJ4646
MJ4647
MJ4648

(Ie = 100 /lAde, IE = 01

Emitter-Base Breakdown Voltage

-

(IE = 100/lAde, IC = 01
Collector Cutoff Current

(VCE = 200 Vde, VBE(offi = 0.5 Vdel
ON CHARACTERISTICS
DC Current Gain

--

hFE

(lC = 100 mAde, VCE

= 10 Vdel(11

25

-

= 500 mAde, VCE

= 10 Vdcl (1)

20

-

-

-

0.5
0.6
0.75

1.0
1.2
1.5

40
30

-

-

-

-

80
60

td

-

-

100

ns

tr

-

-

100

ns

toff

-

-

720

ns

(Ie = 10 mAde, VCE = 10 Vdel
(lC

Collector-Emitter Saturation Voltage
(lC = 500 mAde, IB = 100 mAde)

Vde

VCE(satl
MJ4645
MJ4646
MJ4647 MJ4648

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 70 mAde, VCE = 20 Vde, f

Output Capacitance
(VCB = 20 Vde, IE

= O. f

MHz

fT

= 20 MHz I

MJ4645, MJ4646
MJ4647, MJ4648

pF

Cob
= 100 kHzl

MJ4645
MJ4646, MJ464 7, MJ4648

SWITCHING CHARACTERISTICS

= 500 mAde,
= 50 mAde, VBE(offl = 5.0 Vdel
(VCC = 100 Vde, IC = 500 mAde,

Delay Time

(VCC = 100 Vde, IC

Rise Time

IBl

Turn-Off
Time

IB 1 = IB2 = 50 mAde, Pulse Width = 1.0/lsl

(1) Pulse Test: Pulse Width ~ 300 JJS. Duty Cycle S; 2.0%.

FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA

l.°m~J.mm.
__

0.1
0.5

i5
t-

~

13
~

c

~

1.0ms lOa",

"
5.0 m
O. 3r--+-+~+Htr~r-rt++Hfl
2 T =2 IJOC
dct-o
O.
SEC NOARY
1'.
BREA!m!lWN LIMITED
o. 1
BONDING WIRE
0.01 - 0.0 5 ____ ~~M~,:~~LLY LIMITEDI.'

There are two limitations on the power handling ability of a

r, \

__, _1_
1 1

transistor:

~~~~

\

I;

1\

The data of Figure 2 is based on T J(pkl

2.0 3.0 5.0 1.0 10

20 30

50 10 100

= 2000C;

T C is

variable depending on conditions. Second breakdown pulse limits

are valid for duty cycles to 10% provided TJ(pkl .;; 2000C. At
high

:~~::::: 1 .IRl !UTUI E~IO_B_VC4rE:-°-:h-IJl:I:L:,.uI~ J,~!§64~t==~~:=:l~~-hl-111J

1.0

VeE limits of the

transistor must not be subjected to greater dissipation than the
curves indicate.

8 0.03r-__r-+-rT~C~=+25~OHC~(S~ING~L~E~PU~L~S~E)rrH++-'~r-~~++tH
I CURVES APPLY ~~'~4645_ ,
E :.::

average junction temperature and second breakdown.

Safe operating area curves indicate Ie -

transistor that must be observed for reliable operation; i.e., the

200 300 500

case

temperatures, thermal limitations will reduce the power

that can be handled to values less than the

limit~ions

by second breakdown. (See AN-415)

1000

VCE, COLLECTOR·EMITIERVOLTAGE IVOLTSI

MJ5415, MJ5416 (SILICON)
For Specifications, See 2N3439 Data, Volume I.
457

imposed

MJ6257 (SILICON)
MJ6302 (SILICON)

For Specifications, See MJ3771 Data.
For Specifications, See MJ3773 Data.

MJ6700, MJ670 1. (SILICON)
7 AMPERE
POWER TRANSISTORS
PNPSILICON

MEDIUM-POWER PNP SILICON TRANSISTORS
· .. designed for switching and wide-band amplifier applications.
•

60-80 VOLTS
60 WATTS

Low Coliector·Emitter Saturation Vpltage - VCE(sat) = 1.2 Vdc
(Max) @ Ie = 7.0 Adc

• DC Current Gain Specified to 5 Amperes
•

Excellent Safe Operating Area

• Packaged in the Compact, High Dissipation TO·59 Case
•

Isolated Collector Configuration - 700 V Breakdown

MAXIMUM RATINGS
Symbol

MJ6700

MJ6701

Unit

Collector..emitter Voltage

VCEO

60.

80

Vdc

Coliector·Base Voltage

Vce

60

80

Vdc

Emitter-Base Voltage

VEe

5.0.

Vdc

IC

7.0.

Adc

Ie

1.0.

Adc

Po

60.

Watts

343

mW/OC

Rati",

Collector Current - Continuous
Base Current
Total Device Dissipation
O.rate above 25°C

@

T C = 25°C

Operating and Storage Ju nction
Temperature Range

TJ, T stg

~5

OC

to +200

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

FIGURE I - POWER-TEMPERATURE DERATING CURVE

DIM

60

B
C
E
G
H

............

"-

0

~

..............

J

K
L

..........

~

N

............
0

40

60

80

100

120

140

~
160

180

TC. CASE TEMPERATURE (OC)

Safe Area Curves are indicated by Figure 2. All limits are applicable and must be observed.

458

200

INCHES'
MIN
MAX
0.424 0.437
0.320 0.468
0,090 0.150
0.lB5 0.215
0.Q78
Q.400 0.455
0.570 0.765
0.090 0.110

~I-

4.80
~
1.65
10.065
9.65
10.380
S
4.310
10.1697
T
~.65 .".10
.MR..
All JEDEC dimenSions and nbtes apply
Collector isolated from case.
.'
.

P
0
R

t'--...

0
20

MILLIMETERS
MIN MAX
10.71 11.10
B.13 11.B1!
2.29 3.Bl
4.70 5.46
1.98
10.16 11.56
14.46 19.38
2.29 2.79

4.14
1.02
8.08
4.212

CASE 160-0.3
·(T0,59')· .

MJ6700, MJ6701 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

60
80

-

-

-

100
100

-

10
10
1.0
1.0

-

10

-

100

25
25
15

180

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (H
(lc = 50 mAde,lS = 0)

VCEO(sus)

MJ6700
MJ6701

Collector Cutoff Cu rrent
(VCE = 55 Vde, IS = 0)
(VCE = 75 Vde, IS = 0)

ICEX

= 55 Vde, VSE(off) = 1,5 Vde)
MJ6700
= 75 Vde, VSE(off) = 1,5 Vde)
MJ6701
= 55 Vde, VSE(off) = 1,5 Vde, TC = 1500C) MJ6700
= 75 Vde, VSE(off) = 1.5 Vde, TC = 1500C) MJ6701

Collector Cutoff Current
(VCS = Rated VCS, IE

jlAde
mAde
jlAde

ICSO

= 0)

Emitter Cutoff Current

(VEB

jlAde

ICEO
MJ6700
MJ6701

Collector Cutoff Current

(VCE
(VCE
(VCE
(VCE

Vde

-

jlAde

IESO

= 5.0 Vde, Ie = 0)

ON CHARACTERISTICS 111

DC Current Gain
(lC
(lC
(lc

Collector-Emitter Saturation Voltage
(lC
(lC

-

hFE

= 500 mAde, VCE = 2.0 Vde)
= 2.0 Ade, VCE = 2.0 Vde)
= 5.0 Ade, VCE = 2.0 Vde)

Vdc

VCE(sat)

= 2.0 Ade, IS = 0.2 Ade)
= 7.0 Ade, IS = 0.7 Ade)

-

0.7
1.2

-

Base-Emitter Saturation Voltage
(lC = 2.0 Ade, IS = 0.2 Ade)
(lC = 7.0 Ade, IS = 0.7 Ade)

Vde

VSE(sat)

-

1.2
2.0

30

-

-

300

-

1250

-

100
100

ns

-

1.0

jlS

150

ns

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 500 mAde, VCE = 10 Vde, f

Output Capacitance
(VCS

MHz

IT

= 10 MHz)

pF

Cob

= 10 Vde, IE = 0, f = 100 kHz)

Input Capacitance
(VSE = 2.0 Vde, IC

pF

Cib

= 0, f = 100 kHz)

SWITCHING CHARACTERISTICS

= 40 Vde, VSE(off) = 4.0 Vde,
= 2.0 Ade, lSI = 200 mAde)
Storage Time
(VCC = 40 Vde, IC = 2.0 Ade,
Fall Time
lSI = IS2 = 200 mAde)
III Pulse Test: Pulse Width = 3OOP5, Duty Cvcle = 2.0%
Delay Time

(VCC

Rise Time

ld

IC

tr

to
tf

FIGURE 2 - ACTIVE·REGION SAFE OPERATING AREA

ns

FIGURE 3 - SWITCHING TIME TEST CIRCUIT

0
0

~

The Safe Operating Area Curves
indicate Ic-VeE limits below
which the device will not enter
secondary breakdown. Collector load lines for specific circuits
must fall within the applicable
Safe Area to avoid causing a
catastrophic failur:e. To insure
operation below the maximum
T J. power-temperature derating
must be observed for both steady
state and pulse power conditions.

100,(.(5

~
~ 20

t.Oms

0

z

a

d,

05

o=

'!---TJ.211lJOC
==SECONDARY BREAKDOWN LIMITED j o. t---= --BONDING
WIRE LIMITED
80.0
5
APPLY BELO,!, RATEO VCEO
~

1~

5.0 ms ~

~:~RVES

00 ,
0,0

1'1

I

1
1.0

2.030

5070

10

MJ67OQ~
MJ6701~

20

30

50

70

100

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

459

INPUT PULSE

1---1--10 ~s

-37:~lS

+11.6 V

25~F

~
1

51
tr,tf~IO~S
D.C. - 2.0%
-=

+3,3

V

MJ7000 (SILICON)

30 AMPERE
POWER TRANSISTOR

HIGH-POWER NPN SILICON TRANSISTOR

NPN SILICON
. . . designed for use in industrial power amplifier and switching
circuits applications.

100 VOLTS
150 WATTS

• High DC Current Gain hFE = 20-100@IC=lOAdc
•

High Collector-Emitter Sustaining Voltage VCEO(sus) = 100 Vdc (Min) @ IC = 100 mAdc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.7 Vdc (Max) @ IC = 30 Adc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

100

Vdc

Collector-B ... Voltage

VeB

100

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

Ie

30

Adc

Collector·Emitter Voltage

Collector Current - Continuous
Base Current - Continuous

IB

10

Adc

Total Device Dissipation @ T C = 25°C
Derate above 25°C

Po

150
0.B55

Watts

wIDe

TJoTstg

-65 to +200

DC

Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

SEATING
PLANE
FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
160

~

140

-

B

"- ..........

120

C

E

"""

80

C

ffi

60

~
6?

40

G
H
J

...........

~ 100

fa~

0

o
o

DIM
A

25

50

75

100

K

L

"""

N

'" '"

125

TCo CASE TEMPERATURE (DC)

150

P

n
S
T

""

175

200

460

MILL
MIN
21.72
18.92
12.19
2.29
12.32

11.68
23.80
6.10
7.06
1.52
7.127
19.B9

5/16·24 UNF 2A
(COATED)

rERS
MAX
22.23
19.69
13.59
4.24
13.0
2'.67
12.57
26.16
6.BO
7.B2
7.92
2.B7
7.249
22.23

INC IES
MIN
MAX
0.855
0.875
0; 46 .lI.716
0.480
0.585
0.090
0.167
0.4
O. 1

0.460
0.937
0.240
-

0.495
1.030
0.2BO
0.300

1=

~
~
~
0.875

All JEDEC notes and dimensions apply
CASE 188
TO-63

MJ7000 (continued)

ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted)
Symbol

Min

Max

Unit

VCEOlsus)

100

-

Vdc

ICEO

-

10

"Adc

ICEX

-

5_0

"Adc

Collector-Base Cutoff Current
(VCB = 100 Vdc, IE = 0)

ICBO

-

5_0

"Adc

Emitter-Base Cutoff Cu,re"t
(VBE = 7_0 Vdc, IC = 0)

lEBO

-

5_0

"Adc

20

-

20

100

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 111
(lc = 100 mAdc, IB = 0)
Collector-Emitter Cutoff Current

(VCE

= 50 Vdc, IB = 0)

Collector-Emitter Cutoff Current

(VCE

=90 Vdc, VEB(off) = 1_5 Vdc)

ON CHARACTERISTICS 111
DC Current Gain

-

hFE

= 1.0 Adc, VCE = 4_0 Vdc)
(lc = 10 Adc, VCE = 4.0 Vdc)
(lc = 30 Adc, VCE = 4.0 Vdc)
(lC

Collector-Emitter Saturation Voltage

10

-

-

1.0

-

1.7

-

1.7
2.25

-

1_5

Vdc

tr

30

-

MHz

Cob

-

600

pF

Vdc

VCE(sat)

= 10 Adc, IB = 1.0 Adc)
(lC = 30 Adc, I B = 4.0 Adc)
(lC

Base-Emitter Saturation Voltage

Vdc

VBE(sat)

= 10 Adc, IB = 1.0 Adc)
(lC = 30 Adc, IB = 4.0 Adc)
(lC

Base-Emitter On Voltage
(lC = 10 Adc, VCE = 4_0 Vdc)

VBE(on)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 1_0 Adc, VCE = 5.0 Vdc, f = 20 MHz)

Output Capacitance
(VCB = 10 Vdc, IE

= 0, f = 100 kHz)

11) Pulse Test: Pulse Width~ 300 1'5, Duty Cycle~2.0%.

461

MJ7160 (SILICON)
MJ7161

8_0 AMPERE
TRIPLE DIFFUSED
POWER TRANSISTORS

HIGH-POWER!HIGH-VOLTAGE TRIPLE 01 FFUSED
NPN SILICON ANNULAR TRANSISTORS

NPNSILICON
300-400 VOLTS
140 WATTS

· •. designed for high-frequency. line-operated switching applications.

•

Excellent Switching Times - IC = 5.0 Adc
ton 200 ns (Typ)
toff = 1200 ns (Typ)

=

• Collector-Emitter Saturation Voltage VCE(sat) = 3.0 Vdc (Max) @ IC = 8.0 Adc
• Excellent Safe Operating Area Capability ISlb 0.2 Adc @ VCE 100 Volts

=

=

MAXIMUM RATINGS
Rating

Symbol

MJ7160 MJ7161

Unit

VCEO

300

400

Vdc

Collactor-B_ Voltaga

VCB

325

425

Vdc

Emitter-B ... Voltage

VEB

6.0

Vdc

IC

8.0
10

Adc

Collactor-Emittar Voltage

Collector Current - Continuous

Peak

Base Current

IB

2.0

Adc

Total Daviee Dissipation @TC = 2So C
Darate abovo 25°C

Po

140
0.80

Watts
Wf'C.

TJ.Tstg

-65 to +200

°c

Operating and Storage Junction Temperature

lr~
r~K
ESEATlN(~

I

PLANE

Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
STYLE 1:

PIN

FIGURE 1 - POWER DERATING

140

..........

,...,.

A

" "-

0

B
C

D

.......
I":

" --..;;:

0
20

40

60

BASE

NOTE:
1. DIM

MILLIMETERS
DIM MIN MAX

" .......

0

i.

2. EM IHER
CASE: COLLECTOR

60

100

120

140

TC. CASETEMPERATURE (OC)

160

""""

lBO

200

462

6.35
0.99

E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84
R

"Q"

IS DIA.

INCHES
MIN
MAX

39.37
21.08
7.62 0.250
1.09 0.039
_.
3.43
30.40 1.177
11.18 0.420
5.59 0.210
17.15 0.655
12.19 0.440
4.09 0.151
26.67
CASE 11

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.460
0.161
1.050

MJ7160, MJ7161 (continued)

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted.)
Characteristic

Symbol

Min

Max

300
400

-

-

100
500
5.0
10

-

100
100

-

100

Unit

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage
(lc = 10mAdo, IS = 0)
(lC = 10 mAde, IS = 0)

MJ7160
MJ7161

Collector Cutoff Current
(VCE = 300 Vde, VSE(off)
(VeE = 400 Vde, VSE(off)
(VCE = 300 Vde, VSE(off)
(VCE = 400 Vdo, VSE(off)

MJ7160
MJ7161
MJ7160
MJ7161

Vdo

VCEO(sus)

ICEX
=
=
=
=

1,5
1.5
1.5
1.5

Vde)
Vde)
Vdo, TC = 150°C)
Vde, TC = 150°C)

Collector Cutoff Current
(VCS = 325 Vde, IE = 0)
(VCS = 425 Vde, IE = 0)

mAde
/JAde

ICSO
MJ7160
MJ7161

Emitter Cutoff Current
(VES = 6.0 Vdo, IC = 0)

/JAde

/JAde

IESO

ON CHARACTERISTICS (1)
DC Current Gain
(lc = 0.5 Ade, VCE = 5.0 Vde)
(lc = 3.0 Ade, VCE = 5.0 Vde)
(lc = 8.0 Ade, VCE = 5.0 Vde)
Collector-Emitter Saturation Voltage
(lc = 3.0 Ade, IS = 0.3 Ado)
(lC = 8.0 Ade, IS = 1.6 Ado)
(lc = 8.0 Ade, IS = 3.2 Ade)

35
25
10
5.0

=3.0 Ade,
= 8.0 Ado,

100

Vde

VCe(sat)

-

MJ7160,MJ7161
MJ7160
MJ7161

-

Base-Emitter Saturation Voltage

(lC
(lC

-

hFE
MJ7160,MJ7161
MJ7160,MJ7161
MJ7160
MJ7161

1.0
3.0
3.0
Vde

VSE(sat)

IS = 0.3 Ade)
IS = 0.8 Ade)

-

-

1.0
1.5

fT

30

-

Cob

-

150

pF

Cib

-

2000

pF

DYNAMIC CHARACTERISTICS
Current·Gain - Sandwidth Product (2)
(lC = 0.5 Ado, Vce = 10 Vde, l tast = 10 MHz)

Outpu t Capacitance
(VCS = 50 Vdo, Ie

= 0, f = 100 kHz)

I nput Capacitance

(VES

= 5.0 Vde,

IE = 0, f

= 100 kHz)

MHz

SWITCHING CHARACTERISTICS (Figure 2)

Rise Time
Storage Time

(VCC = 200 Vde, IC = 3.0 Ade,
lSI = IS2 = 0.3 Ado)

Fall Time

tr

-

200

ns

ts

-

2.0

/JS

tf

-

300

ns

(1) Pulse Test: PulseWidth';;300/Js, Duty Cyele';;2.0%.
(2) ~ = I hfel- f test·
FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

Vee
200 V

Re
68 Ohms

~'::B--l~-+i
10 /Js

--+-----l

t"tf ~ 10ns
Duty Cycle = 1.0%

Scope

-4.0 V
"'Values for RS and RC are varied
to obtain the information for
Figure 4.

463

MJ7160, MJ7161 (continued)

FIGURE 3 - THERMAL RESPONSE
1.0
~
o. 1 f::D - O.S
~_ O.S

-

we

::"w3 o. 3f::=:
r5:i o. 2
in'"
e--

20

«2

- -

0.2

~'"

pmsL

I-

0.1

I-io-'

~: O. 1=.o..oS
~ ~ 0.01=.0.02
~ ~ 0.0 S

:z ~ 0.03 -

......

AC

~J

0.01

DUTY CYCLE, 0

>=

c::: OJCItI • rltl OJC _
r- 0JC· 1.2SoC/W Max
CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpkl - TC· Plpkl 8JClti

q/t2

r-~

0.0 2 - SING LE PU LSE
0.0 1
0.01

I II

I

0.02 0.03

O.OS

01

02

03

0S

20

1.0

II II

30

SO

II

II

10

20

30

So

I

100

200

300

SOD

1000

t. TlMElmsl

FIGURE 4 - ACTIVE·REGION SAFE OPERATING AREA

10
S.O

~
~

2.0

i

1.0

......

2001'S

1'\

de

There are two limitations on the power handling ability of a

I"\.

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation, i.e., the transistor must

.0.5

i3

-

r-TJ-2000C
.0.2 - - - BONDING WIRE
LIMITED
~
0.1
- - - - THERMALLY LIMITED
8 D.DS
@TC:2soCISINGLE PULSEI
~
- - SECOND BREAKDDWN
LIMITED
.0.02
CURVES APPLY BELOW RATED VCED
0.01
10
20
So
100

'"e

~

not be subjected to greater dissipation than the curves indicate.

lmi

The data of Figure 4 is based on T Jlpkl = 200o C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pkl .;; 20o"C. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown (See AN-4151.

10

:'\.

5.0ms

200

'"1'\

I
SOD

1000

VCE, CDLLECTOR·EMITTER VOLTAGE IVDLTSI

FIGURE 5 - DC CURRENT GAIN

100
10
2

;;:

'"....

SO

.......

1ii

'"

'"
i3

30

~

20

'"e

-

FIGURE 6 - "ON" VOLTAGES

2.8

t--...

r-TJ: 2SoC

I

r--- -TJ:2SoC

2.4

..........

~C

r\.
~

w

1.6

'"«

!:; 1.2
e
>
>- 0.8

:\

VCE: S.O V

2.0

0.4
10
0.1

0,2

0.3

O.S

0,7

1.0

2.0

3,0

S.O 7..0

o

10

VBElonl @VCE : 5.0 V
r--- r-r- VBElsati
@ICilB - 10
r---

I

/

I I I

r--- r- VCElsatl@ ICIIB - 10

0.1

0.2

0.3

0.5 0.7

V
1.0

2.0

3.0

IC, COLLECTOR CURRENT IAMPI

IC, COLLECTOR CURRENT IAMPI

464

5.0 7.0

10

MJ7160, MJ7161 (continued)

FIGURE B - CAPACITANCE

FIGURE 7 - SWITCHING TIMES
10,000
5000
2000
1000
]

....~

~.

500

200
100

~~

---

1ft

~ :::::; I,

3000

IBI =IB2
IcllB -10
TJ 25°C

I,

I"'

.
..

Cob

~ 200
<.i

100

III
0.2

0.3

0.5 0.7

1.0

2.0

3.0

r--..

70
50

Id iii' VBE(olf) - 5.0 v

20

TJ = 25°C

-

~ 300

..........

50

10
0.1

Cib

u:- IOOO
~ 100
~ 500

-r--.

iii' VCC-200V

II

2000

5.0 7.0

30
0.3 0.5

10

IC, COLLECTOR CURRENT (AMP)

1.0

2.0 3.0 5.0

10

20 30

50

VR, REVERSE VOLTAGE (VOLTS)

465

100

200 300

MJ7260 (SILICON)
MJ7261

HIGH-POWER/HIGH-VOL TAGE TRIPLE DIFFUSED
NPN SILICON ANNULAR TRANSISTORS

30 AMPERE
TRIPLE DIFFUSED
POWER TRANSISTORS

· .. designed for high-frequency, line operated switching applications.
• Excellent Switching Times @ IC
ton = 200 ns (Typ)
toft = 1200 ns (Typ)

=

5.0 Adc -

NPN SILICON
300,400 VOLTS
175 WATTS

• Coliector·Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 15 Adc
• Excellent Safe Operating Area Capability
ISlb = 1.0 Adc @ VCE = 50 Vdc
MAXIMUM RATINGS
Rating

Symbol

Collector-Emllter Voltage

Umt

MJ7260 MJ7261

I.
I

400

Vd,

425

Vd,

VCfQ

300

Collector-Base Voltage

VeB

325

Emitter-Base Voltage

VEa

60

Vd,

Collector Current - Continuous
Peak

Ie

15
30

Ado

Base Current

1a

50

Ad,

Po

175
10

WaIlS

TJ,T stg

-65 to +200

Total Device DISSlpatlon@ Te ~ 2S0C

Derate above 2SoC
Operating and Storage Junction
Temperature Range

w/oe
'e

Lr~

THERMAL CHARACTERISTICS
CharacteristIC
Thermal ReSistance, Junction to Case

ELECTRICAL CHARACTERISTICS ITe - 15°C unle~s otherWise noted I

I

Chafactenstlc

Symbol

Mm

1 Max

Umt

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lC = 10 mAde, Ie ,. OJ
Collector Cutoff Current
(VeE = 300Vdc, VeEloff) =
(VCE = 400 Vdc, VeE(offl =
{VeE" 300 Vdc, VeEloff} =
(VCE" 400Vdc, VSE/off)'"

Vd,

VCEQ(sus)

MJ7260
MJ7261
Vdcl
Vdc)
Vdc, TC = ISOoCI
Vdc, TC = lS0oC)

Collector Cutoff Current
(Vce = 325 Vdc, Ie = 0)
{VCS = 425 Vdc, IE = OJ

'CSO

mAde
~Adc

100
100

MJ7260
MJ7261

EmItter CutDff Current
IV Ee -60Vdc, Ie" OJ

.uAdc

100

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

DC Current Gain
= 5 0 Vdcl

(lc = 5 0 Adc. VCE '" 5 0 Vdcl
IIC" 15 Adc. VCE" 5 0 Vdc)

Collector· EmItter SaturatIon Voltage
IIC" 5 0 Adc. IS = 500 mAdcl
(Ie = 15 Adc, IS = 50Adel

DIM

Sase·Emitter SaturatIon Voltage
lie " 5 0 AcIc. IS " 600 mAclcl
lie" 15 Adc, 'e .. 1 5 Adcl
Current· GaIn - BandwIdth Product
ttc ~ 1 0 Ade, Vce " 10 Vdc, f " 10 MHz)
Output CapacItance
(Vce " 50 Vdc. IE "0. f " 0 1 MHz)
input Capacitance
(VEe" 5 0 Vdc. IC " 0, I ~ 0 I MHzl
SWITCHING CHARACTERISTICS

I--"'--I-;'-'-'-;""::'''-t--'''---l

VSEloffl ~5.0 Vdc)

NOTE:
1. DIM

MILLIMETERS
MIN MAX

A
B
C 6.35
D 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.B4
R

-

DYNAMIC CHARACTERISTICS

(Vec" 200Vdc, Ie '" 5.0 Adc, IB1 "'82'" 06 Adc,

I

E SEATING
PLANE

~Adc

100
500
50
10

MJ7260
MJ7261
MJ7260
MJ7261

ON CHARACTERISTICS

lie" 500 mAde, VeE

r~,

300
400
ICEX

-1 5
-15
-1 5
-1 5

~

-

39.37
21.0B
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

CASE"

466

"(1"

IS DlA.

INCHES
MIN
MAX

0.250
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ7260, MJ7261 (continued)

FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
10 0
50

,.0:-

0

I-

10
5. 0

~

~

=>
'-'
~

0

~

8

There are two limitations on the power handling ability of a
transistor:
de

2. O~
200~,

.1.0
0.5

BONDING WIRE LIMITE

0.2
O. 1

THERMALLY LIMITED
@TC-250C(SINGLEPULSE)
SECOND BREAKDOWN
LIMITED

depending on conditions. Second breakdown pulse limits are valid

for duty cycle, to 10% provided TJ(pk) .;;; 200°C. At high ca'.
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown. (See AN-415).

5.0 ms

0.02 CURVES APPLY BELOW RATED VCEO
0.01
1.0
2.0
5.0
10
20
50

100

200

500

average junction temperature and second breakdown.

Safe operating areB curves indicate 'e-VeE limits of the transistor
that must be observed for reliable operation, i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on TJ(pkJ = 200°C, TC is variable

1000

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

FlGUR~

FIGURE 2 - DC CURRENT GAIN
20

100
0

........

O~ I-""'

~o

1\

2

2:

=5.0 V

>--- I-- VBE(sat!@ IC/IB' 10

'"«

~ 0.8
>
>-

\

0

0.5

0.7

1.0

20 3.0
5.0
IC, COLLECTOR CURRENT (AMP)

7.0

10

o

0.2

20

LI I I III

o~ Io.'d @VBE(off) ~ 5.0 Vde

100

-

T

200OF-- ts

I

500 =

,.

30 0

""1--

~

.......

....

___

l4

10

-9.0 V

~

100

IJS

20

n

1 N4933

-4.0 Volts

0.5

0.7

1.0

20

7.0

10

20

Scope

Duty Cycle = 1 %

0.3

I

20 3.0
5.0
07 1.0
Ie, COLLECTOR CURRENT (AMP)

tr,tf~10ns

0
0
30
0,2

05

~J1~V (~RB~

Ktf

;:: 200

0.3

VCC=200V

VCC' 200 V
IcllB 10
t--IB1' IB2 t--TJ • 25°C

700
]

3.0/

1"

FIGURE 5 - SWITCHING TIMES TEST CIRCUIT

FIGURE 4 - SWITCHING TIMES

3000

1/

--t'"

>--- I-- VCE('at)
0.3

V
~

ICIIB'1O/

04

7. 0

w

-

VBE@VCE' 5.0 V

w

0

500.2

~~J.J50J

6

O - f-- TJ • +25 0C
VCE

3 _. ON VOL TAGES

3.0

5.0 7.0

10

20

NOTE:

IC, COLLECTOR CURRENT (AMP)

467

For information on Figure 4,
R Band RC were varied to obtain
desired test conditions.

MJ 81 00 (SILICON)
MJ8101

5 AMPERE
POWER TRANSISTORS

MEDIUM-POWER PNP SI LICON TRANSISTORS
. designed for switching and wide band amplifier applications.

PNP SILICON

• Low Collector·Emitter Saturation Voltage VCE(sat) ~ 1.2 Vdc (Max) @ Ie ~ 5.0 Amp

60 - 80 VOLTS
10 WATTS

• DC Current Gain Specified to 5 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact T0-39 Case for Critical Space-Limited
Applications.

MAXIMUM RATINGS
Symbol

MJ8100

MJ8101

Unit

"ceO_

60

SO

Vdc

Coliector·Sase Voltage

~

60

80

Vdc

Emitter-Base Voltage

VEa

5.0

Vdc

IC

5.0

Adc

Rating

Collector-Emitter Voltage

Collector Current - Continuous
Base Current

Total Oevice Oissipation
Derate above 2SoC

@

la

1.0

Adc

Po

10
57.2

Watts
mW/oC

TJ.Tstg

-65 to +200

°c

T C • 25"<:

Operating and Storage Junction
Temperature Range

I~;~

-r;--- -SEATING
PLANE

/'
Q

FIGURE 1- POWER-TEMPERATURE DERATING CURVE

I'"i',

""",
0

~

"-

0
~

~

I

PIN 1. EMITTER
2. BASE
3. COLLECTOR

~

INCHES
MILLIMETERS
MIN MAX
MIN MAX
0.350 0.370
8.89 9.40
0.315 0.335
8.00 8.51
6.10 6.60
0.240 0.260
0.406 0.533 0.016 0.021
0.229 3.18
0.009 0.125
F
0.406 0.483 0.Q16 0.019
G
4.83 5.33
0.190 0.210
H
0.711 0.864 0.028 0.034
J
0.737 1.02
0.G29 0.040
K 12.70
0.500
L
6.35
0.250
0
0
M
45 NOM
45 NOM
P
1.27
0.050
Q
90 0 NOM
900 NOM
R
2.54
0.100
All JEDEC dimensIOns and notes apply.
CASE 79-02
TO-39
DIM
A
B
C
D
E

"' f',

~

.-1

-.iN

Thermal Resistance, Junction to Case

0

__

~I--D I STYLE 1
~

THERMAL CHARACTERISTICS
Characteristic

~

_:::::::.uK

~

m m

~

~

~

~

TC. CASE TEMPERATURE lOCI
Safe Area CurvtS are indicated by Figure 2. All limits are applicable and must be ob.Ned.

468

MJ8100, MJ8101 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Svmbol

Characteristic

Min

Max

60
80

-

-

100
100

-

-

10
10
1.0
1.0

-

10

-

100

25
25
15

lBO

-

0.7
1.2

-

-

1.2
1.B

30

-

-

300

-

1250

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (11

Collector Cutoff Current
MJBloo
MJ8101

Collector Cutoff Current
=
=
=
=

55
75
55
75

Vde,
Vde,
Vde,
Vde,

VBE(olfl
VBE(off)
VBE(off)
VBE(off)

'CEX
=
=
=
=

"Ade

'CEO

(VCE = 55 Vde, IS = 0)
(VCE = 75 Vde, 'B = 0)
(VCE
(VCE
(VCE
(VCE

Vde

VCEO(sus)
MJ81 00
MJ8101

(lC = 50 mAde,lS = 0)

MJBloo
1.5 Vde)
1.5 Vdc)
MJ8101
1.5 Vde, TC = 1500C) MJ81 00
1.5 Vdc, TC = 1500 C) MJB10l

Collector Cutoff Current
(VCB = Rated VCB, 'E = 0)

'CSO

Emitter Cutoff Current

'EBO

"Ade
mAde
"Adc
I'Ade

(VBE = 5.0 Vde, IC = 0)
ON CHARACTERISTICS 111

-

DC Cu rrent Gain
(lC = 500 mAde, VCE = 2.0 Vdc)
(IC = 2.0 Adc, VCE = 2.0 Vdc)
(lc = 5.0 Adc, VCE = 2.0 Vde)

hFE

Collector-Emitter Saturation Voltage

VCE(sad

Vde

(lc = 2.0 Adc, 'B = 0.2 Adc)
(lc = 5.0 Adc, I B = 0.5 Adc)

Base-Emitter Saturation Voltage

-

Vdc

VBE(sat)

(lC = 2.0 Adc,IB = 0.2 Adc)
(lC = 5.0 Adc, 'B = 0.5 Adc)
OYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product

MHz

IT

(lC = 0.5 Adc, VCE = 10 Vde, f = 10 MHz)

Output Capacitance

pF

Cob

(VCS = 10 Vdc, 'E = 0, f = 100 kHzl
Inpu t Capacitance
(VBE = 2.0 Vdc, IC = 0, 1= 100 kHz)

pF

Cib

SWITCHING CHARACTERISTICS
Delay Time

(VCC = 40 Vdc, VBE (off) • 4.0 Vdc,

td

-

100

Rise Time

IC = 2.0 Adc, 'B 1 = 0.2 Adc)

tr

-

100

ns

Storage Time

(VCC

ts

1.0

I'S

Fall Time

'B1 = 'B2 = 0.2 Adc)

-

150

ns

= 40 Vdc, IC -

2.0 Adc,

tf

111 Pulse Test: PUIH Width ~ 300 J,J.5. Duty Cycle ~

2.0%
FIGURE 3 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA
100",

The Safe Operating Area Curves

INPUT PULSE

f..---.I-- 10 ~s

indicate Ie-VeE limits below

which the device will not enter
secondary breakdown.

Collec-

tor load lines for specific circuits
must fall within the applicable
Safe Area to avoid causing a
catastrophic failure. To insure
operation below the maximum
TJ. power·temperature derating
must be observed for both steady
state and pulse power conditions.
0.01

1.0

2.0 3.0
5.0
TO
2Q
30
50
VeE, COLLECTOR-EMITTER VOLTAGE (VOL IS)

ns

100

r

ov-,

+11.6 V

-40 V

-37V---L-J
25 ~F

~
1

tr,tf~10~S
D.C. - 2.0%

51

"::"

+3.3 V

469

Vcc

MJ9000 (SILICON)

10 AMPERE
POWER TRANSISTOR
HIGH-VOLTAGE NPN SILICON TRANSISTOR

NPN SILICON
700 VOLTS
125 WATTS

· .. designed for single unit use in color horizontal deflection output
circuits in television receivers.

D53157

• High Coliector·Emitter Voltage - VCES = 700 Vdc
• Fast Fall Time - tf = 1.1 Jls (Max)

@

IC = 6.0 Adc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Coliector·Emitter Voltage

VeEO

325

Vd.

Coliector·Emitter Voltage

VeES

700

Vd.

Emitter-Base Voltage

VEB

5.0

Vd.

Collector Current - Continuous

Ie

10

Ad.

Total Device Dissipation @ T e = 25°C
. Derate above 25°C

PD

125
1.0

Watts

TJ.Tstg

-55 to +150

°e

Oparating and Storage Junction
Temperature Range

wfOc

lr~
r~K
Es~1

THERMAL CHARACTERISTICS

PLANE

Ch.......ristlc

Thermal Resistance, Junction to Case

STYlE I:
PIN I. BASE

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise notedl

I

.....-

OFF CHARACTERISTICS
Collector-Emitter Braakclown Voltage (1)
UC"O.1Adc,IB"OI
CoJlector Cutoff Current

I

Symbol

I

Mi.

BVCEO

326

IceS

-

Max

Unit

2.EMITIER
CASE: COLLECTOR

MILLIMETERS
DIM MIN MAX

Vdc

I .•

(VCE - 700 Vdc, VEa - 0)

mAde

A
B
C
·D

6.35
0.99

-

E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18

ON CHARACTERISTICS
Collector-Emitter Saturation Voltaga
tic -a.DAde,l, -1.8Adc)
SWITCHING CHARACTERISTICS
Fall Time (See Flgufll 3)

Q

(VCC=80 Vdc.IC = a.DAde.IS'" 1.6 Adc)

R

470

NOTE:

3~84

-

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67
CASE

1. DIM "Q" IS 01.'0.

INCHES
MAX
MIN

--

0.2!lO
0:039
",.

1.117
0.420
0.210
0.655
0.440

0.151
11

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ9000 (continued)

FIGURE 1 - ACTIVE-REGION DC SAFE OPERATING AREA
10
7.0
5.0
~ 3.0
~ 2.0

@TC=25 0 C

.....

.....

!z 1.0
~ 0.7
~ 0.5
~ 0.3
~ 0.2

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be ob-

......

......
~. - - - Secondarv Breakdown Limited
0.1
Bonding Wire Limited
0.07 ~E - - - - Thermallimitations
~ 0.05 ~
:: 0.03
II
I
0.02
I I " "
0.01
5.0 7.0 10
20
50 70 100
200 300
30
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
~

served for both steady state and pulse power conditions.

c:

II

III

500

FIGURE 2 - TEST CI RCUIT FOR FALL TIME
150llF

f1J

to HP 212 A

TRANSISTOR
UNDER TEST

T

TO

r-----,
I

SCOPE

I

I

!

I

50

15

IL- _ _ _ _ ...JI

II

92V

OUTPUT WAVEFORM ON SCOP!!

~~

-=-

to 90%

(1) HP 212A: Set for 10 J.I.' wide pulses at 2000 pulses per sec. (500 J's Intervals). Adjust for 181 '" 1.6 A.
Bias: Adjust to 1.5 V on a VTVM across the 200 n Pot.
T: Pul.. Transformer: Motorola Part No. 25D68782A01.

471

MJ E10 5(SILICON)
MJE105K

MEDIUM-POWER PNP SILICON TRANSISTORS
5 AMPERE
POWER TRANSISTORS

· .. for use as an output device in complementary audio amplifiers
up to 20-Watts music power per channel.

PNPSILICON
• High DC Current Gain - hFE = 25·1oo@ IC = 2.0 A
• Thermopad

50 VOLTS
65 WATTS

High·Efficiency Compact Package

• Complementary to NPN MJE205, MJE205K
• Choice of Packages - MJE105 - Case 90
MJE105K - Case 199

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

50

Vdc

Collector-Base Voltage

VCS

50

Vdc

Emitter-Base Voltage

~

4.0

Vde

Collector Current

IC

5.0

Adc

Base Current

IS

2.5

Adc

POll)

65
0.522

Watts
W/oC

TJ, T stg

-55 to +150

DC

Symbol

Max

Unit

8JC

1.92

°C/W

Total Device Dissipation @ T C = 2SoC

Derate above 25°C
Operating and Storage Junction

MJE105

~

Temperature Range

THERMAL CHARACTERISTICS

CASE 90-05

Characteristic

Thermal ReSistance, Junction to Case

(1) Safe Area Curves are indicated bV Figure 1. 80th limits are applicable and must be observed.

ELECTRICAL CHARACTERISTICS tT c

IOFF CHARACTERISTICS

Characteristic

=<

I

Collector-Emitter Breakdown Voltage (2)
(lC = 100 mAde, IS = 0)

Collector Cutoff Current
(VCB
(VCS

= 50 Vde,

IE
= 50 Vdc, IE

= 0)
= 0, TC = lSOOC)

Emitter Cutoff Current
(VSE = 4.0 Vdc, IC = 0)

~mbol

I

Min

IMax

50

-

-

-

0.1
2.0

IESO

-

1.0

Unit

Vde

BVCEO
ICBO

I

mAde

mAde

ON CHARACTERISTICS
DC Current Gain
(lC =2.0 Ade, VCE
S...·Emitter Voltaga
(lc = 2.0 Adc, VCE

MJE105K

25°C unless otherwise noted)

= 2.0 Vde)

= 2.0 Vde)

I

,
CASE 199-04

-

hFE
25

100

-

1.2

Vdc

VSE

(2) Pulse Test: Pulse Width ::S;;:300 IolS, Duty Cycle <;:2.0%.

472

MJE105, MJE105K (continued)

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
I0

1. O~TJ= 151JOC
5. 0

Ie

100",

......

~

~ 3. 0

-"

I-

~ 2.0

B

~ ~:

transistor; average junction temperature and second breakdown.
Safe operating area curves Indicate Ie - VeE limits of the tranSistor
that must be observed for reliable operation; I.e., the transistor must
not be subjected to greater diSSipation than the curves indicate.

1\

1.0p-----THERMAL LlMIT@TC= 250C

'"

There are two limitations on the power handling ability of a

'"

l\li.o~s

1~---BONOINGWIRE LIMIT
5
SECOND BREAKDOWN LIMIT

The data of Figure 1

3.0

5.0

1.0

vanable

breakdown_

(See A N-4151

.J

-.11 J 1
2.0

IS

temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitatIons Imposed by second

11

MJEI05. MJEI05K

O. I
1.0

based on TJ(pkl = 150°C; TC

lor duty cycles to 10% provided T J(pkl s:1500C. At high case
d,

8 o. 3
Eo. 2

IS

dependmg on conditions. Second breakdown pulse limits are valid

--

10

20

30

50

VCE. COLLECTOR-EMITTER VOLTAGE (VOLTSI

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - DC CURRENT GAIN

50

2.0

1I11

I.S

~o
>

=-

'"~

ffi

TJ = 25°C

I. 6

I.2

0.8

:;:::::P'"

VBE(satl @IclIB = 10 ""'\.

o

I

I V~E~~t; ~ 'lclIB = 10

1.0

~

0.7

l-"

r--

-55°C

60

1"\

0

1'0.

;

O. I
0.01

2.0 3.0 5.0

0.02 0.03

0.05

0.1

0

"'-

"

MJEI05. MJEI05K

"-

"I,,

0
0

"25

0.2 0.3

0.5 0.1 1.0

IC. COLLECTOR CIJRRENT (AMPS)

~

0

r.. .
r...."

03

FIGURE 4 - POWER DERATING
65

.......

'-'
o 0.2

V

0.02 0.03 0.05
0.1
0.2 0.3 0.5
1.0
IC. COLLECTOR CURRENT (AMPSI

25°cJ.

I--'

~ 0.5

'"
B

0.4 I-- VSE @VCE = 2.0 V

0.01

----

I'...

I-

1 I II

o
> 0.6

0.2

~

o
;

VCE=2.0V -

TJ .115OO,C

~

I.4

1.0

3.0

N

::J

.. 2.0

50
15
100
TC. CASE TEMPERATURE (DC)

473

125

"

150

115

2.0 3.0 4.0

MJE105, MJE105K (continued)

MJE105

MJE105K

STYLE 1:
PIN I. BASE
2. CO LLECTO A
3. EMITTER

STYLE 2:
PIN I. EMITTER
2. COLLECTOR
3. BASE
MILLIMETERS
DIM MIN
MAX
A
B
C
D
F
G
H
J
K
M
Q

R
U

INCHES
MIN MAX

INCHES
MIN MAX

16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51
3.76
4.22 BSC
2.67
2.92
0.813 0.864
15.11 16.38
90 TYP
4.70 4.95
1.91
2.16
6.22 6.49

R
S
T

CASE 90-05

U

NOTE:
I. LEADS WITHIN .005" RAO OF TAUE
POSITION ITP) AT MMC

0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100BSC
0.105 0.115
0.017 0.027
0.580 0.590
0.085 0.095
30 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255

I. DIM "G"IS TO CENTER LINE OF LEADS.

CASE 199-04

474

MJE170 thru MJE172 PNP (SILICON)
MJE180 thru MJE182 NPN

COMPLEMENTARY PLASTIC SILICON
POWER TRANSISTORS

3 AMPERE

designed for low power audio amplifier and low current, high
speed switching applications.
•

POWER TRANSISTORS
COMPLEMENTARY SILICON

Collector· Emitter Sustaining Voltage VCEO(sus): 40 Vdc - MJE170, MJE180
: 60Vdc - MJEl71, MJE181
: 80 Vdc - MJEl72, MJE182

•

DC Current Gain hFE: 30 (Min) @ IC : 0.5 Adc
: 12 (Min) @ IC: 1.5 Adc

•

Current·Gain - Bandwidth Product tr: 50 MHz (Min) @ IC: 100 mAde

•

Annular Construction for Low Leakages ICBO: 100nA(Max)@RatedVCB

4()'6()'80 VOLTS
12.5 WATTS

MAXIMUM RATINGS
Rating

MJE170 MJE171
MJE180 MJE181

Symbol

Collector-Base Voltage

Collector-Emitter Voltage
Emitter-Base Voltage

MJE172
MJE182

Unit

VeB

60

80

100

Vdc

VeEO

40

60

80

Vdc

VEB

----7.0-

Vdc

Ie

-3.0-6.0----

Adc

Base Current

IB

Total Device Dissipation @ T A"" 2SoC

PD

1.0_ -_ _ 1 . 5 _

Watts

---0.012_
__

Watts

Collector Current ~ Continuous

Peak

Derate above 2SoC
Total Device Dissipation @TC-2SoC
Dera1te above 2SoC

~12.5--

PD

Operating and Storage Junction

- - - - 0.1 - - - _-65to+150 _ _

TJ,T stg

Adc

w/oe
w/oe
°e

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Thermal Resistance, Junction to Case

eJC

10

°e/w

Thermal Resistance, Junction to

eJA

83.4

°C/W

Unit

Ambient

S-H~l--D

1l

~GC

MJ~-t

I

MILLIMETERS
FIGURE 1 - POWER DERATING

DIM

MIN

MAX

A
8

10.80
7.49

11.05
7.75
2.67
0.66
3.0

c

U)

~

2412

D
F

h

"-

~ 2.010

G

"-

2

o

~ 1.68.0

iii

.....

01.26.0

r-..

""

~

~c

I"
r--.,

~ 0.84.0

I'

0.420

H
J
K
M

I"

r-...

" :"
.......

40

60

80

2.41

0.6
16.64

30 TYP

n

3.76

4.01

R
S

1.14

1.40
0.89

U

"

2.16

0.38
15.38

0.64
3.68

3.94

........ ~

o 0
20

2.41

0.51
2.92
2.36 Bse

100

120

~
140

160

T, TEMPERATURE (OC)

475

CASE 77-03

MJE170, MJE171, MJE172, MJE180, MJE181, MJE182 (continued)

ELECTRICAL CHARACTERISTICS (T C; 25 0 C unless otherwise notedl

I

I

Characteristic

Symbol

Min

Max

40
60
80

-

-

0.1
0.1
0.1
0.1
0.1
0.1

-

0.1

50'
30
12

250

-

0.3
0.9
1.7

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

(lC; 10 mAde, IB = 0)

Collector Cutoff Current

(VCB =
(VCB =
(VCB =
(VCB =
(VCB =
(VCB=

Vde

VCEO(susl
MJE 170, MJE 180
MJE171, MJE181
MJEI72, MJE182

/lAde

ICBO

60 Vde, IE = 0)
80 Vde, IE = 0)
100 Vde, IE = 0)
60 Vde, IE = 0, TC = 150°C)
80 Vde, IE = 0, TC = 150°C)
100Vde,IE =0, TC; 150°C)

MJE 170,
MJE171,
MJEI72,
MJE 170,
MJE171,
MJE 172,

MJE 180
MJE181
MJE182
MJE 180
MJE181
MJE 182

Emitter Cutoff Current
(VBE = 7.0 Vde, IC = 0)

mAde

/lAde

lEBO

ON CHARACTERISTICS
DC Current Gain

-

hFE

(lC; 100 mAde, VCE = 1.0 Vde)
(lC; 500 mAde, VCE = 1.0 Vde)
(IC = 1.5 Ade, VCE ; 1.0 Vde)
Collector-Emitter Saturation Voltage

Vde

VCE(sa')

(lc = 500 mAde, I B = 50 mAde)
(lC = 1.5 Ade, IB = 150 mAde)
(lC = 3.0 Ade, IB ; 600 mAde)

-

-

Base-Emitter Saturation Voltage

Vde

VBE(sati

-

(lC = 1.5 Ade, IB = 150 mAdcl
(lc = 3.0 Ade, I B = 600 mAde)

Base-Emitter On Voltage
(lc = 500 mAde, VCE = 1.0 Vde)

-

1.5
2.0

-

1.2

50

-

-

50
30

Vde

VBE(on)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (1)
Output Capacitance

pF

Cob

(VCB· 10 Vde, IE • 0, f = 0.1 MHz)
(I)

MHz

fT

(lC; 100 mAde, VCE = 10 Vde, f test = 10 MHz)
MJEI70/MJEI72
MJE180/MJE182

-

fT = Ihle ,e I test

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

H

FIGURE 3 - TURN-ON TIME

vcc

30 0

+30 V

200
10

RC

+~'J __ 1__ ,

!w
51

-=

VCC-30V _
r-ICIIB =10
VB E(olf) =4.0 V
Tr 25°C':: ~

,-,,"

O~

=1==

SCOPE

RB

-9.0 V

tr,tf~10ns

I II

'>="

0,

~-

50
0

'

0

."' .....

...

..........
$'

......

td

-=

0

-4V
DUTY CYCLE = 1.11%
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

7JJ
5.0

Dl MUST BE FAST RECOVERY TYPE, .g:
MBD5300 USED ABOVE IB =100 mA
MSD6100 USED BELOW IB =100 mA

3.0
0.03

For PNP test circuit, reverse all polarities.

PNP MJE170/MJE172

I I I I I I I NP~ MJ~'80/MiE'~2
0.05 0.07 0.1

0.2

0.3

0.5

0.7

1.0

IC, COLLECTOR CURRENT (AMP)

476

2.0

3.0

MJE170, MJE171, MJE172, MJE180, MJE181, MJE182 (continued)

FIGURE 4 - THERMAL RESPONSE
I.0

O. 7~O=0.5
O. 5

...,,::,

...-

i~ o. 3 r - - _0.2

8JCIt) = rlt)8JC
8JC' 10oC/W Max

"'«

~~ O.2 r - - -0.1

.... 0

~

~~

±JUl

0.05

Ci)~ o.
~~o.o ;~ ~0.02
........
::'0.01

2~o.o 5~
~a::0.03

-

~~~

~O (rINTL~ p~LrEi

I I

0.0 I
0.02

III

0.05

I- I -~ Jlplt)

DUTY CYCLE, D = '1/'2

0.02

II 1111

I
0.1

0.2

0.5

1.0

D CURJES A~PL ~ F~RI POWER =
1= F
~
f= PULSE TRAIN SHOWN

2.0

5.0

=~

1= f-READTIMEAT'I
1-

I TC i P1pr) ~JClltll

I

10

-

I I III
50

20

100

200

t, TIMElms)

ACTIVE·REGION SAFE OPERATING AREA
FIGURE 6 - MJEI80, MJE181, MJE182

FIGURE 5 - MJEI70, MJEI71, MJE172
0

.., 5.

10

0

~ 2.0

....

~

a

"\. f\

de

~·t

500ps

..,

5.0

~

'"
....

2. 0

~

1. 0

::::>

2- I",

~ ::
o
~o.o

1/

..........

0
1.
O. 5

a::

100

.....

-

- - - -

5~

0.0 2
0.0 I
1.0

2.0

3.0

u

TJ = 150°C
5.0ms
BONDING WIRE LIMITED
THERMALLY LIMITED @ "~
TC = 25°C IS1NGLE PULSE)
SECOND BREAKDOWN LIMITED
CU RVES APPLY BELOW
RATED VCEO -MJE170
MJE171
MJEI72
5.0
10
20
30

O. 5

a::

~

....
.....

--

2 - _____

CURVES APPL \ i~W
RATED VCEO
MiEI80

200

~
~

r-....
i"-

100
70
50

,

........

i:L

"-

.....

.e-

...

0.2

0.3

.......

0.7

1.0

'"....

U

30

<5

20

10
0.5

3.0

IC, COLLECTOR CURRENT (AMP)

.......

PNPMJEI70/MJE172 I-NPN MJEI80/MJEIB2 f-

II
Cib

"- .....

z

r---

2.0

-

I"-....

...........
I .......

I-0.5

100

TJ- 25 0 C-f-

........

50

u

r- I I I I I tN rYMJEi82
0.05 0.07 0.1

i'i'-

70

~

0.03

70

FIGURE 8 - CAPACITANCE

-=

of- - - - PNP MJE170/MJEI72

50

30

to values less than the limitations imposed by second breakdown.
(See AN-415)

VCC - 30 V_
ICIIB·1O
IBI-IB2 TJ < 25°C

0

I0

20

100

ts

......

10

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 7 - TURN-OFF TIME

~f

5.0 7.0

3.0

variable depending on conditions. Second breakdown pulse limits
are valid fordu'y cycles to 10% provided TJ(pk) < IS00C. TJ(pk)
may be calculated from the data in Figure 4. At high case tempera·
ture, thermal limitations will reduce the power that can be handled

transistor - average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·
sistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The da.a of Figures Sand 6 is based on T J(pk) = ISo"C; T C is

300

~~~~:~

I I II
2.0

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)
There are two limitations on the power handling ability of a

1000
70 0
500

TJ < 150°C
BONDING WIRE LIMITED
THERMALLY lIMITED@
TC = 25°C ISINGLE PULSE)
SECOND BREAKDOWN LIMITED

"-

O.

0.0 1
1.0

100

~

de

0.02
50

500ps

V

t'--

5.0 ms

_ o. 1:===
8 5=
.=?o.o

I II

1001-'~m

r ....

0.7

1.0

2.0

.......
3.0

Cob

5.0

7.0

- r- -

10

VR, REVERSE VOLTAGE IVOLTS)

477

i""- t--

20

30

50

MJE170, MJE171, MJE172, MJE180, MJE181, MJE1:82 (continued)

NPN

PNP

MJE180. MJE181. MJE182

MJE170. MJE171. MJE172
FIGURE 9 - DC CURRENT GAIN
200

i--

i - r-I-TJ= 110~C

rt- I--

0

...'"z

0

-I-

-55°C
0

~
0.05 0.07 0.1

0.2

0.3

0

~
i3

50

c

30

u

0

10
0.03

I--

25°C

z \0 0

VCE - 1.0 V

.....

::t.

25°C

0

- r-....

200

VCE,1.0V

.T]Ji50oC

0.5 0.7

10

r-

-55°C

~

"\

......

"- ~

0

~

\\,

2.0

~

"

I0

0.03

3.0

0.05 0.07 0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

FIGURE 10 - "ON" VOLTAGES
4

1.4

I- TJ' 25°C

~

1.

0

V~EI~') ~ :clIs - 10

c

~ o.s

'~"

o.6 i- VSE@VCrl.0V

1. 2

./

0.05 0.07 O. I

0.2

0.3

O. S

'";5;0

O.6 - VISE

2.0

1.0

....,

I

v

./

...

I 11111

O. 2

IC/IS-50

0.5 0.7

f ~Cllll~

....-

>- O. 4

./

IclIs~

f-- VCElsat)
0
0.03

~
>

. / ./

O. 2

VSE(~ti@IICIIB= \0

~

/

L

V
'/ .

;:;; 1.0

/

>

;;;.- O.4

/

I-- TJ =25 0 C

-

1. 2

VCElsa,)@IC/ls=5.0and \0
0
0.03

3.0

0.05 0.07

0.2

0.1

IC, COLLECTOR CURRENT lAMP)

0.3

0.5 0.7

1.0

2.0

3.0

IC, COLLECTOR CURRENT lAMP)

FIGURE 11 - TEMPERATURE COEFFICIENTS
U

+2.0

"->
~ +1.0

~

II
II

'APPliES fO R Iclis '" hfE/2

II II
II II

~

ttr

~

25°C to 1500C~
BvS fOR VSE

~ -2. 0

...
i

-3.0
0.03

,/

0.2

0.3

0.5

0.7

II II

*

/'

-55 0 q to 25 0 C

~
~ -2. 0

3.0

IC, COLLECTOR CURRENT lAMP)

./

-3.0
0.03

BVB fOR VBE
-550C to 25°C

I j 11
II II
0.05 0.07

I I III

0.1

0.2

0.3

I III

0.5 0.7

IC, COLLECTOR CURRENT lAMP)

478

/

250Cto~

-

...
i

V

1111../ V
V

~ -1.0

~

2.0

l-J-fttf

'BVC fOR VCElsa')

w

V

1.0

250C to 150 0 C

13

It!
11'1

0.05 0.07 0.1

111111
111111

II II

~

-55°C to +25 0C

ILL
II I

'APPliES fOR IC/IB '" hfE/2

i3

I ffll

§i-I.0

+2.0

;; +1.0

~

-550C to 250 C

w

./

....-

250C to 1500 C

'BVC fO R VCE(sa!)

i3

u

3:E

1.0

2.0

3.0

MJE200 NPN (SILICON)
MJE210PNP

COMPLEMENTARY SILICON POWER
PLASTIC TRANSISTORS

5 AMPERE

designed for low voltage, low-power, high-gain audio amplifier
applications.
•

Collector-Emitter Sustaining Voltage VCEO(sus) = 25 Vdc (Min) @ IC = 10 mAdc

•

High DC Current Gain -

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.3 Vdc (Max) @ IC = 500 mAde
= 0.75 Vdc (Max) @ IC = 2.0 Adc

•

High Current-Gain - Bandwidth Product fT = 65 MHz (Min) @ IC = 100 mAdc

•

Annular

POWER TRANSISTORS
COMPLEMENTARY SILICON
25 VOLTS
15 WATTS

hFE = 70 (Min) @ IC = 500 mAdc
= 45 (Min) @ IC = 2.0 Adc
= 10 (Min) @ IC = 5.0 Adc

Construction for Low Leakage - ICBO =100 nAdc@RatedVCB

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCB

40

Vdc

VCEO

25

Vdc

VEB

8.0

Vdc

IC

5.0
10

Adc

Collector-Base Voltage

Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Peak
Base Cu rrent
Total Device Dissipation @TC

IB

1.0

Adc

= 25°C

PD

15
0.12

Watts
W/oc

= 25°C

PD

1.5
0.012

Watts
W/oC

TJ,Tstg

-65 to +150

°c

Derate above 25°C
Total Device Dissipation @ T A
Derate above 2SoC

Operating and Storage JUnction
Temperature Range

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

eJC

8.34

°C/W

Thermal Resistance, Junction to Ambient

eJA

83.4

°C/W

Characteristic

FIGURE 1 - POWER DERATING
6

1.6

r--.

2

.........

1

.........

I'-

0

~

.........
0

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A 10.80 11.05 0.425 0.435
B
7.49
7.75 0.295 0.305
C
2:41
2.67 0.095 0.105
0
0.51
0.66 0.020 0.026
F
2.92
3.00 0.11
.1
G
2.36 SSC
0.093 BSC
H
2.16
2.41 0.005 0.095
I
0.3B
0.64 0.015 0.025
K 15.3B 16.64 0.605 0.655
M
3 TVP
3'TYP
n 3.76 4.01 0.148 0.158
R
1.14
1.40 0.045 0.055
S
0.64
0.89 0.025 0.035
U
3.68
3.94 0.145 0.155

0

.........

NOTE:
1.

0
20

40

60

80

100

120

"140

0
160

T, TEMPERATURE (OCI

479

MT~

MAIN TERMINAL

CASE 77-03

MJE200, MJE210 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unle.. otherwise noted)

I·

I

Characteristic

Symbol

Min

Ma,.

Unit

VCEO(sus)

25

-

Vde

-

100
100

nAde
/lAde

-

100

70
45
10

180

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lc = 10 mAde, IS = 0)
Collector Cutoff Current
(VCS = 40 Vde, IE = 0)
(VCS = 40 Vde, IE =, 0, TJ = 1250 C)

ICSO

Emitter Cutoff Current
(VSE = 8.0 Vde, IC = 0)

IESO

nAde

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 2.0 Ade, VCE = 1.0 Vde)
(lC = 5.0 Adc, VCE = 2.0 Vdc)

-

hFE

Collector-Emitter Saturation Voltage (1)
(I C = 500 mAdc, IS = 50 mAdc)
(lC = 2.0 Adc, IS = 200 mAde)
(lc = 5.0 Adc, IS = 1.0 Ade)

VCE(sat)

Base-Emitter Saturation Voltage (1)
(lc = 5.0 Adc, IS = 1.0 Adc)

Sase-Emitter On Voltage (1)
(lc = 2.0 Ade, VCE = 1.0 Vde

Vdc

-

0.3
0.75
1.8

VSE(sat)

-

2.5

Vdc

VBE(on)

-

1.6

Vde

IT

65

-

MHz

-

80
120

DYNAMIC CHARACTERISTICS
Current·Gain - Sandwidth Product (2)
(lC = 100 mAde, VCE = 10 Vde, I test

= 10 MHz)

Output Capacitance
(VCS= 10Vdc,IE =0,1=0.1 MHz)

pF

Cob
MJE200
MJE210

(1) Pulse test: Pulse Width = 300 /lS, Duty Cycle'" 2.0%.
(2) IT = hlel • f test

I

FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
300

+30 V
VCC

I~~~: ~~ V _

200

RC

TJ" 25 0 C100

SCOPE

RB

;::
'"
w

51

""

tr,tf~10ns

DUTY CYCLE" 1.0%

-4 V

.......

30
20

r""

'-.

"

-1'd l@IVrrO ff j5.0(' ' ....

7.0

0, MUST BE FAST RECOVERY TYPE, eg
MBD5300 USED ABOVE IB ~100 mA
MSD6100 USED BELOW IB ~100 mA

Ir

70
50

10

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVelS

"

.....

t-.

-.

....

MJE200INPN)
MJE210 IPNP)

5.0
3.0
0.05 0.07 0.1

FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES

0.2

0.3

0.5

0.7

1.0

IC, COLLECTOR CURRENT (AMP)

480

2.0

3.0

5.0

MJE200, MJE210 (continued)

FIGURE4 - THERMAL RESPONSE
1. 0
z

o. 7~
o. 5

~a

o.31--- -0.2
o. 21--- -0.1

~

~
fa

"w
~~

~~

D =0.5

~

O.~

o. I

-

....

f-- 1-10-

~ -I-OJC(t} =r(t} OJC
kl
- - OJC = B.34 oC/W Max--

p(

as gO.D5
~

,..----

~

0.0 3'---

-"

0.0 2

....

'2

t-

~(iI0.D1

1111

I I

0.1

0.05

:::0 CURVES APPL Y FOR POWER;::
-PULSE TRAIN SHOWN
READ TIME AlII

==

~
12

-

DUTY CYCLE. 0 = 1)112

(SiNGLE PULSEI

0.0 1
0.02

1 1 1 1 1 11

p

:: ~ 0.0 7

0.5

0.2

1.0

2.0
t. TIME (msj

I I

II I

5.0

10

Yi

Ptj1tJC(11

I

I

I

TJtlj

20

f--

I I
100

50

200

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
1. 0

500ps

7. 0
.... 5.0

~
....

3. 0

15
0:

2. 0

a:

13
0:

o

~
_

8

p....., 100ps':=

1.0m

.....

't r:1

There are two limitations on the power handling ability of a
transistor
average Junction temperature and second breakdown.
Safe operatmg area curves Indicate le·VeE limits of the transistor
that must be observed for reliable operation, I.e., the transistor
must not be subjected to greater diSSipation than the curves indicate.
The data of F .gure 5 IS based on T Jlpkl = 1500 C; T C IS variable
depending on conditions Second breakdown pulse limits are valid

.~

0

"-

'"
J fft-::' I'\. r\

de

TJ = 150 0C
1.0
BONDING WIRE LIMITED
0C
o. 7~--- THERMALLYLIMITEO@TC=25
(SINGLE PULSEI
0.5
~--- SECOND BREAKDOWN LIMITED

E ---

r-

for duty cycles to 10% provIded T Jlpkl';; 15o"C. T J(pkl may be

~~~~~SV~~OLY BELlOW I

!:? 0.3

calculated from the data In Figure 4. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitatiOns Imposed by second breakdown

"-

0.2

(See AN·4151
O. I
1.0

2.0
3.0
5.0
7.0
10
VCE, COLLECTOR·EMITIER VOLTAGE (VOLTSI

20

30

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN-OFF TIME
100 0
70 0
50 0
300

I--

200

~.

]
~ 100
~. 70
0
0
O
10

'"
----

-

200

=
=

I-t-

VCC - 30 V'
IcllB -10
IBI = IB2 _

r-+-

Is

...

TJ=250~_

~

.... j-...

:--..

MJE200 (NPNI
MJE210 (PNPI

1'--,

t-itf

-

1"'-::

.....
w
'-'

1-.

-

Z

~
u

t-

10 0

I"-

0

-~

2.0

3.0

5.0

481

t..::

-

I-

Cob

- - - MJE200 (NPNI
""MJTr

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMPI

t J 5 0C I--

T"'-t--.

,...;

0

0

II

0.05 0.07 0.1

- ri--~

+-

1-1-

20
0.4

0.6

1.0

l

4.0 6.0
2.0
10
VR, REVERSE VOLTAGE (VOLTSI

I-~

20

40

MJE200, MJE210 (continued)

NPN

PNP

I

MJE200

MJE210

FIGURE 8 - DC CURRENT GAIN
400

z

200

25 C

J

.........

I

~~

<
to
....

~

'"
'-'
::>

J

-55 C
100
80

'-'

60

~

40

'"

400

TJ • 1500t

z

"
~ '\

II I

20
0.05 0.07 0.1

ffi

i:l

2.0

'-'

~.

3.0

100
80

c

60

~

40

'l\'
~

-

.. 25JC

....

.""
"

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

200

<

to

~

- - VCE= 1.0 V
- - - VCE=2.0V

II I
i}= 150JC

C'\r\

-55 0C

r-;;,

\"\.

r--. :\-\. .......\',

- - VCP1.0V
- - - VCE = 2.0 V

II I

20
0.05 0.07 0.1

5.0

"\

1,,1\

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

2.0

3.0

5.0

FIGURE 9 - "ON'"VOLTAGE
2.0

2.0
ITl !l50C

~

'"

2:
to

'"~

'"
>

0.8

:>
0.4

o

~

~V

1.2

"'

tl~12~oC

1.6

1.6

VSE(satl@IC/lS.-l0

--

Vlft VC l1.1 V

)c~!satl @iC/lsl" 10

0.05 0.07 0.1

'"2:

~

t:::;:::::'F-""

1.2

"'

to

~'">

O.B

>"

I-"'"

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

/.

2.0

3.0

o

5.0

-

V

.--

JcW)@ IC)I) 10

0.05 0.07 0.1

~ ;::::;-'

.!

LJ UCE -11.0 ~

V
0.4

~

VSE("t) @IC/IS = 10

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

20

~

/

3.0

f7'

V

5.0

FIGURE 10 - TEMPERATURE COEFFICIENTS

u-

S;

~
....
ffi

+2.5
+2.0

8

~

eVC for VCE(..t) . . .

~

-2.0

/

25 0C to 150 0C ,/'
evB for VBE

IIII

-2. 5
0.05 0.07 0.1

-H1"T 1 .........

V

~ +0. 5

8

IJ

~
::>

....

/

~

....

-55°C to 250 C
2.0

3.0

-0:5

~ -1. 0

i

I I
0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT (AMP)

+1.0

~~P~~IES
F6R 11)1 '" l I
I
I I B I FEI3

-1 5

-2 0

.lovc

12150C 101150
II'

LV~E(sat)

n:

J.7 LH/

-

1...- /"

-550C to 25°C

I II
I I I

25 0C to 150 0C........-:

V /'

::::.V

I

I I I
0.2

0.3

0.5 0.7

1.0

2.0

IC, COLLECTOR CURRENT lAMP)

482

P

/

-55 DC to 250C

OVB for VSE

-2 5
0.05007 0.1

5.0

V

I

I I I

u

......... /

25 0C to 150 0C

./

~ -1.0

as'

/17

-5~0~ !012~oc

-0.5

~ -1.5

+2 0

..§. +1. 5

+1.5

~ +0. 5

i

£1;;:

+1.0

U

"'~

+2. 5

.IAWES FO~ IcllB '" h1FE/31

3.0

5.0

MJ E2 05 (SILICON)
MJE205K

MEDIUM-POWER NPN SILICON TRANSISTORS

5 AMPERE
POWER TRANSISTORS

... for use as an output device in complementary audio amplifiers
up to 20·Watts music power per channel.

NPN SILICON

- High DC Current Gain - hF E = 25-100@ IC = 2.0 A
-Thermopad High-Efficiency Compact Package

50 VOLTS
65 WATTS

-Complementary to PNP MJE 105, MJE105K
- Choice of Packages - MJE205·Case 90
MJE205K-Case 199

MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage

Symbol

Value

Unit

VCEO

50

Vde

Collector-Base Voltage

VCB

50

Vde

Emitter-Base Voltage,

VEB

4.0

Vde

Collector Current

IC

5.0

Ade

Base Current

IB

2.5

Ade

Pot

65
0.522

Watts
wflc

TJ, Tstg

-55 to +150

°c

Total Device Dissipatfon@Tc-25vC

Derate above 2SoC

Operating-and Storage Junction
Temperature-Range

MJE205

-

CASE 90-05

THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Case

Symbol

Max

Unit

8JC

1.92

°CIW

I

J

tSafe Area Curves are indicated by Figure 1. 80th limits are applicable and must be observed.

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

Characteristic

OFF CHARACTERISTICS
COllector-Emitter Breakdown Volt8get.

I

Symbol

I

Max

I

Unit

Vde
50

-

-

0.1
2.0

-

1.0

25

100

-

1.2

m~dc

ICBO

(VCB = 50 Vde, IE = 01
(VCB = 50 Vde, IE = 0, TC= 150°C)
Emitter Cutoff Current
(VBE = 4.0 Vde, IC = 01

Min

BVCEOt

IIc = 100 mAde, IB = Ol
Collector Cutoff Current

I

CASE 199-04

ON CHARACTERISTICS
hFE

Base·Emitter Voltage
(lC = 2.0 Ade, VCE = 2.0 Vdel

VBE

,

mAde

lEBO

DC Current Gain
(lC = 2.0 Ade, VCE = 2.0 Vde)

I

MJE205K

Vde

:t:Pulse Test: Pulse Width~300 tJs, Duty CycleEt;;2.0%.

483

MJE205, MJE205K (continued)

FIGURE 1 -ACTIVE REGION SAFE
OPERATING AREA
0
). 0t=TJ" 1500C
5. 01-_ ~-I--

_

i

3. 0

!Z
20
~
.

..,

a

1.

~

O.

Note 1:

- . ......
....

I- 1- -

100",

......
~.Om•

7F -

not be subjected to greater dissipatiOn than the curves indicate.
The data of Figur. 1 is based on TJ(pkl = ISOoC; TC IS variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) ,;;1500 C. At high case

BONDING WIRE LIMIT
SECOND BREAKOOWN LIMIT

5

de

-J

8 o. 3
~

that must be observed for reliable operation; Le., the transistor must

1\

It~

op _____ THERMAL LIMIT @lTC • 250C

.., O.

There are two limitations on the power handling ability of a
transistor; average junction temperature ~nd second breakdown .
Safe operating area curves Indicate Ie . VeE limits of the transistor

MJE205. MJE205K

o. 2

temperatures, thermal limItations Will reduce the power that can be
handled to values less than the limitations Imposed by second

1\

breakdown.

(See AN·4151

\

1

o.1

1.0

2.0

5.0

3.0

).0

10

50

30

20

veE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

FIGURE 2 - "ON" VOLTAGES
20
1.8

Ei
w 3.0

Tp 250C

~

CD

«

1.4
1.2
1.0

~ 0.8

0

>

::;

-I- ..-

VBE".!I@lleilB· 10

0.6
0.4
0.2

o

0.01

r;::::V

II

0.020.03 0.05

0.1

..
0

1.0

..,~

0.5

1:l

0.3

'-'
Q

i-'"

25°C

~~

0.1
om

2.0 3.0 5.0

0.02 0.03 0.05

0.1

FIGURE 4 - POWER DERATING

...t=
~

50

~

z

40

::
ill
..,

30

...~cl
...

I

~

.~

1
1

'"

MJE205. MJE205K

.......

.....

"'-

"

CI

20
10

25

I .......

:55.J

0.2 0.3

0.5 0.7 1.0

Ie. COLLECTOR CURRENT (AMPS)

;;;

I"-

0.2

Ie. COLLECTOR CURRENT (AMPSI

65
60

........

ul

.ll'
1.0

VCE-2.0,! -

~

0.1

co

....... 1'

t1JU
0.5

a'"

./

II !I
0.2 0.3

~

V.

..,

VBE @lVCE • 2.0 V

VeE(sa!) @lIe lB' 10

~

2.0

TJ"150·C

~I--

N

1.6

0
~
w

FIGURE 3 - DC CURRENT GAIN

5.0

III

""'-

50
15
100
125
TC. CASE TEMPERATURE (OC)

484

"'"

150

115

2.0 3.0 4.0

MJE205, MJE205K (continued)

MJE205

MJE205K

ll~"'-~

STYLE 2:
PIN 1. EMITIER
2. COLLECTOR
3. BASE

~~C
-It

DIM

MIN

MAX

A
B

16.08
12. 7
3.18

16.33
12.83
3.43

0.51

0.76

C
D
F

G
H
J

K
M
N

n

R
S
T
U

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

3.61
3.86
2.548SC
2.67
2.92

0.43

0.69

14.73 14.99
.1
.41
JOTYP
1.47
1.73
4.78
5.03
1.91
2.16
0.81
0.86
6.99
7.24
6.22
6.48

NOTE:
1. LEADS WITHIN .005" RAO OF TRUE
POSITION ITP} AT MMC

1. DIM "G" IS TO CENTER LINE OF LEADS.

CASE 90·05

CASE 199-04

MJE210 (SILICON)
For Specifications, See MJE200 Data.

485

MJE220 thru MJE225 NPN (SILICON)
MJE230 thru MJE235 PNP

COMPLEMENTARY PLASTIC SILICON
POWER TRANSISTORS

4 AMPERE
POWER TRANSISTORS

. designed for low power audio amplifier and low current, highspeed switching applications.
•

COMPLEMENTARY SILICON

Low Collector-Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - MJE220/MJE222
MJE230/MJE232
= 60 Vdc (Min) - MJE223/MJE225
MJE233/MJE235

40,60 VOLTS
15 WATTS

•

High Current-Gain - Bandwidth Product fr = 50 MHz (Min) @ IC = 100 mAdc

•

Annular Construction for Low Leakage ICBO = 100 nAdc (Max) @ Rated VCB

•

DC Current Gain Specified at 200 mAdc and 1.0 or 2.0 Adc

•

Collector-Emitter Saturation Voltage Specified at 500 mAdc and
1.0, 2.0 and 4.0 Adc.

MAXIMUM RATINGS

Rating

Symbol

MJE220
MJE221
MJE222
MJE230
MJE231
MJE232

MJE223
MJE224
MJE225
MJE233
MJE234
MJE235

Unit

VCB

60

80

Vdc

VCEO

40

60

Vdc

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage

VES

7.0

Vdc

IC

4.0
8.0

Adc

Base Current

IS

1.0

Adc

Total Device Dissipation @ T c:= 25°C

Po

15
0.12

Watts
W/oC

Po

1.5
0.012

Watts
W/oC

Collector Current - Continuous

Peak

Derate above 25°C

Total Device Dissipation
. Derate above 2S0C

@

TA

= 2SoC

Operating and Storage Junction
Temperature Range

-65 to +150

TJ.T,tg

°c
STYLE 1
PIN 1. EMITTER
2. COLLECTOR

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

BJC

8.34

°C/W

Therm1i' Resistance, Jl!.nction to Ambiel;lt

BJA

83.4

°C/W

3. BASE

FIGURE 1 - POWER DERATING

•........
2

"-

,
,
,
"

I'

r-....

.

I'...

"

100

T,TEMPERATURE (OC}

F

I

" G
H
J
K
M

,

,
"'-

"

1

'"

'"

n
R

s

u

,
,
'"

CASE 77-03

486

MJE220 thru MJE225, MJE230 thru MJE235 (continued)
ELECTRICAL CHARACTERISTICS (Tc

I

~ 2soe unl... otherwise noted)

I

Characteristic

Symbol

Min

Max

40

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 10 mAde, IB = Ol

Collector Cutoff Current
(VCB = 60 Vde, IE = 0)

60
ICBO

(VCB

= 80 Vde,

IE

= Ol

(VCB

= 60 Vde,

IE

= 0, Te = 125°C)

(VCB

= 80 Vdc,

IE

= 0, TC = 125°C)

= 7.0 Vde,

IC

-

MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE225,
MJE233,MJE234,MJE235
MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE225,
MJE233,MJE234,MJE235

0.1

/lAde

0.1
0.1

mAde

0.1

Emitter Cutoff Current
(VBE

Vde

VCEO(sus)
MJE220,MJE221,MJE222,
MJE230,MJE231,MJE232
MJE223,MJE224,MJE22S,
MJE233,MJE234,MJE235

/lAde

lEBO

= 01

-

0.1

MJE220,MJE230,
MJE223,MJE233
MJE221,MJE231,
MJE224,MJE234
MJE222,MJE232,
MJE225,MJE235
MJE221,MJE231,
MJE224,MJE234
MJE222,MJE232,
MJE225,MJE235

40

200

40

150

MJ"22U,MJ"2~0,

20

ON CHARACTERISTICS
DC Current Gain
(IC = 200 mAde, VCE

(lC

(IC

= 1.0 Ade,
= 2.0 Ade,

VCE

VCE

-

hFE

= 1.0 Vde)

= 1.0 Vdel
= 1.0 Vdcl

25
20
10

MJE223,MJE233
Collector-Emitter Saturation Voltage
(lC = 500 mAde, I B = 50 mAde)
(Ie = 1.0 Ade, IB = 100 mAdel

(lC

= 2.0 Adc, IB = 200 mAde)

(Ie

= 4.0 Ade,

IB

= 2.0 Ade,

18

-

= 1.0 Adcl

0.3
V.Il

0.8
2.5

Base·Emltter Saturation Voltage
(lC

Vde

VCE(satl
All Types
MJE221, MJE231,
MJE224, MJE234
MJE220, MJE230,
MJE223, MJE233
All Types

Vde

VBE(satl

= 200 mAdel

Base-Emitter On Voltage
(lC = 500 mAde, VCE = 1.0 Vde)

-

1.8

-

1.5

50

-

Vde

V8E(onl

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC

= 100 mAde, VCE = 10 Vde,

f test

Output Capacitance
(VC8

= 10 Vde,

IE

= 0, f = 0.1

MHz

fT

= 10 MHzl

pF

Cob
MJE220/MJE225
MJE230/MJE235

MHzl

50
70

-

-

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN·ON TIME

500

Vee = 30 v_
ICIIB = 10
TJ=15 oe-t -

300
100
SCOPE

RS

]
w

51

01

'"

;::

~

..'t--

50

......
td @VBE(off) - 5.0 V.....

10

1.0%

t,

70

30

t r• tf~lO ns

OUTY CYCLE

100

t-

t-,

llll

10
7.0

01 MUST BE FAST RECOVERY TYPE, 'g
MBD5300 USED ABOVE 'B_100 rnA
MSD6100 USEO BELOW IB""100 rnA

f=

=

- - -MJE110/MJE115
MJE130/MJE235

5.0 I0.04 0.06

FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES

01

'--- I - -

--"~

-4V

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

.......

"';:::t::,..

:-....

0.1

NPN
PNP
04

0.6

1.0

Ie, COLLECTOR CURRENT (AMPI

487

20

4.0

MJE220 thru MJE225, MJE230 thru MJE235 (continued)

FIGURE 4 - THERMAL RESPONSE
1.0
~

0.7

Z

0.5

:::::::: 0=0.5

0.3

-

~
f:3

~0.2

~S 0.2 f--- f--O.l
:IE!::!
"",..
~
....
~~ 0.1
:: ~ 0.07
1li~0.05 ~
in
f--Z
0.01
i::i 0.03 f--IsjN1Li Py~sp
~ 0.02
c(W

"'

--

dUL

.- 10001-"

PI kl

I

0.0 1
0.02

1

~UTY

II II

0.1

0.05

I

t

~~.02
P

...

--&JcltI=rltl8JC
- - 8JC • B.34 oCIW Max -

P

0.5

0.2

2.0
t. TIMElms)

1.0

~

t2
CYCLE. 0 = \J/12

II

5.0

I I I I II

-

j

TJtll- T{ PIT(JClt'

I

10

~

:::0 CURVES APPLY FOR POWER=:
-PULSE TRAIN SHOWN
READ TIME At tl

20

I I

50

100

f--

200

FIGURE 5 - ACTIVE· REGION SAFE OPERATING AREA
10

~
~
~

5.0

.Oms

2.0

I

1. 0

50

...

....

\01'

~

.

100/IS
/IS

.....

...

O. 5

Safe operatmg area curves mdlcate le·VeE limits of the tranSistor
that must be observed for reliable operation; I.e, the tranSistor
must not be subjected to greater diSSipation than the curves mdlcate
The data of Figure 5 IS based on T J(pk) = 150°C; T C IS variable

t===F=
f::.
•

TJ = 150 0 C
de
BONDING WIRE LlMITEDI-----THERMALLY LlMITED@TC=25 0 C
'" 21ISINGLE PULSE)
~ O. -SECOND
8REAKDOWN LIMITED
_ O.
CURVES
APPLY BELOW
l~E
o
RATED VCEO
~ 0.0
::>

<..>

There are two limitations on the power handling ability of a
transistor. average Junction temperature and second breakdown.

..... 1-\. ,1\
"-

depending on conditions Second breakdown pulse limits are valid
for duty cycles to 10% prOVIded T JlpkJ .;;; 150°C. T Jlpk) may be
calculated from the data In Figure 4 At high case temperatures,
thermal limitations Will reduce the power 1hat can be handled to
values less than the limitations Imposed by second breakdown

\.1\

5r==~

f-+

MJE220/22.MJE230/32

0.0 2

I I I I MJE2P/25.~JE233/35 r-

0.0 1
1.0

2.0

3.0

5.0

7.0

10

20

30

--

50

IS.e AN·4151
70

100

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME
2000

ve~=3bv- ~

.!,

1000

le/IB = 10
IBI = IB2 ==
TJ =25 0 C= ~
~

F=

700
500

]
W

'"

;::

-'

300 ~
200

I'
"

tf

100 I70
50
30

~

"': ......

r- - -M.IE220/MJE225 -

20
0.04

- - -MJE220/MJE225 NPN
--MJE230/MJE235 - PNP

NPN
--MJE230/MJE235 - PNP
0.06

0.1

0.2

10~~~--~~~~~~~~--~~~~~

0.4

0.6

1.0

2.0

1.0

4.0

2.0

3.0

5.0

7.0

10

20

30

VR. REVERSE VOLTAGE (VOLTS)

Ie. COLLECTOR CURRENT lAMP)

488

50

70 100

MJE220 thru MJE225, MJE230 thru MJE235 (continued)

NPN

PNP

I

MJE220 thru MJE225

MJE230 thru MJE235

FIGURE 8 - DC CURRENT GAIN

400

z

200

'"
w
...'"::>'"

.

100

i}'150dC

...

~~OC

IZ

10

<1

I-

ill

50

...

30

...::>'"'"
Q

~
.~

~ 50

...

~

"

30
0.1

0.2

0.4

0.6

1.0

r-...
~

-55°C

'"""'l:::
20

:-.:
~~

\'; ~

10
0.04

4.0

2.0

,

25°C

10

'"

~,

Q

20
0.04 0.06

100

z

-

I VC~=1.0IL
--VCE = 2.0 V

11

--Vcp2.0V

25°C

<1

200

Ii JvcJ'l.ol~_

It'15~OC

300

0.06

0.2

0.1

0.4

0.6

1.0

'~

2.0

4.0

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 9 - "ON" VOLTAGES

2.0

f-

2.0

V~Joc

I-

1.6

J
/- V

~

0

?

1.2

w

'"~

....
0

>
>'

I-

o

~

VSE{sat)@ Iclle = 10

O.S

0.4

Tll

i5 bc

1.6

V,ej jlCE = ,1.0

~

LVCE{,.t)@
JJ Iclle = 10

0.04 0.06

0.2

0.1

k::: V

-

0.4

V

.........
0.6

1.0

~

0

?

1.2

-"~

w

V

'"'~"
0

:>

f- -riEtllcE = \0 V;.
0.4

o

4.0

J

VeE{,.t)@ Iclle = 10

O.S

>

I- -U{l.l)l@
2.0

,A"

17

0.04 0.06

ICII~ lb
=

0.1

IC. COLLECTOR CU RRENT (AMP)

V
t....---'

0.2

0.4

0.6

1.0

4.0

2.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 10 - TEMPERATURE COEFFICIENTS

+2.5

~
>

+2.5
'APPLIES FOR Iclle'; hFE/3

~

+2.0

>

reffi

re
i:5

• OVC FOR VCE{sati

...o

~ -0.5

~~

-1.0

!l

-1.5

~

-2.

...

5 -" 0.06
0.04

25°C to 15~ I--""

-5~olc ~ol t50C

t--

orti7iW-

-2.

r7

.§ +1.5

.§ +1.5
+1.0
U
~ +0.5

'APPLIES FOR Ic/le'; hFE/3
+2.0

"0.1

,

V

J

I-- I- 25iC to 150 0

U

./

II

+1.0

tt

+0.5

8

0

250C to 1500C .-'

'eVC FOR VCE{,.t)

V

-5~0~ tl ~51~

~
~

2~~

~

-1.0
-1.5

I-

0rel F~ R VeE

:> -2.0

...

0.2

0.4

0.6

1.0

2.0

-2.5

0.04 0.06

4.0

489

V

V

1!
0.2

0.4

0.6

1.0

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

1/

-55°C to 250C

II
0.1

./

V

__ I--

I-

1551c 1° 125tf

""""

w

~ -0.5

v l/

P

.J....H-

w

1A""

./

2.0

4.0

MJE240 thru MJE244 NPN (SILICON)
MJE250 thru MJE254 PNP

COMPLEMENTARY SILICON POWER
PLASTIC TRANSISTORS

4 AMPERE

. designed for low power audio amplifier and low-current, highspeed switching applications.
•

High Collector-Emitter Sustaining VoltageVCEO(susl = BO Vdc (Min) - MJE240/2, MJE250/2
= 100 Vdc (Min) - MJE243/4, MJE253/4

•

High DC Current Gain @ IC = 200 mAdc
hFE = 40-200 - MJE240, MJE250
= 40-120 - MJE241,243, MJE251,253
= 25 (Min) - MJE242,44, MJE252,54

•

Low Collector-Emitter Saturation VoltageVCE(sat) = 0.3 Vdc (Max) @ IC = 500 mAdc

•

High Current Gain Bandwidth Product fT = 40 MHz (Min) @ IC '" 100 mAdc

POWER TRANSISTORS
COMPLEMENTARY SILICON
SO, 100 VOLTS
15 WATTS

• Annular Construction for Low Leakages
ICBO = 100 nAdc (Max) @ Rated VCB
MAXIMUM RATINGS
MJE240

MJEN,
MJE242
Symbol

MJE2S0
MJE251
MJE252

MJE243
MJE244
MJE253
MJE2&4

Unit

VCEO

80

100

Vdc

Collector-Ba" Voltage

VCS

SO

100

Vd.

Emitter-B. . Voltage

Ves

7.0

Vdc

IC

4.0
8.0

Ad.

Collector-Emitter Voltage

Collector Current

....

Continuous

a.-Current

IS

Total Device Dissipation@TC"26oC
Detat9 abOve 25°C

Po

Total Device Dissipation
Derate abOve 25°C

Po

II)

TA ... 25°C

I.

1.0

Ad.

0.12

w/oe

1.5

W....
Wt"C

~65

TJ,T,ttI

A

t-

Watts

0.012

Operating .-ad Storage J,unction

M

K

DC

to +150

TemperatUre Range

S
THERMAL CHARACTERISTICS
STYLE 1

Thermal Raistance, Junction to Case

PIN 1. EMITIER

Thermal Raistance, Junction to Ambient

2. COLLECTOR
3. BASE

FIGURE 1 - POWER DERATING
I .6

6

I'""-2

~

0

"

I

"-

0

O
20

40

60

80

"'~

"

100

t"120

...... ~
140

0

160

CASE 77.03

T, TEMPERATURE lOCI

490

MJE240 thru MJE244, MJE250 thru MJE254 (continued)

ELECTRICAL CHARACTERISTICS (TC

I

= 25°C unle.. otherwise nOled)

Symbol

Characteristic

Min

Max

80

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 10 mAde, la = 0)

VCEO(sus)
MJE240,MJE241,MJE242,
MJE250,MJE251,MJE252
MJE243,MJE244
MJE253,MJE254

100

Collector Cutoff Current
(Vca

= ao Vde,

(Vca

= 100 Vde,

(VCE

= ao Vde,

(VCE

= 100 Vde,

= 0)

IE

IE

= 0)

= 0,

IE

IE

TC

= 125°C)

= 0, TC = 125°C)

.Icao

MJE240,MJE241,MJE242,
MJE250,MJE251,MJE252
MJE243,MJE244,
. MJE253,MJE254,
MJE240,MJE241,MJE242
MJE250,MJE251,MJE252,
MJE243,MJE244
MJE253,MJE254

Emitter Cutoff Current

(VaE

= 7.0 Vde,

IC

0.1

-

0.1

-

0.1

-

0.1

-

0.1

40

200

40

120

JolAdc

mAde

IlAdc

IEaO

= 0)

-

Vde

ON CHARACTERISTICS
DC Current Gain
IIc = 200 mAde, VCE

-

hFE

= 1.0 Vde)

MJE240,MJE250
MJE241,MJE251,
MJE243,MJE253
MJE242,MJE252,
MJE244,MJE254
MJE241,MJE251, }
MJE243,MJE253
MJE242,MJE252
MJE 244,MJE254
MJE240,MJE250

II

IIc = 1.0 Ade, VCE

= 1.0 Vde)

IIc = 1.0 Ade, VCE = 1.0 Vde)
IIc

= 2.0 Ade,

VCE

}

= 1.0 Vde)

Collector-Emitter Saturation Voltage
IIc = 500 mAde, I a = 50 mAde)
lie = 1.0 Ade, la = 100 mAde)

IIc
IIc

= 2.0 Ade,
= 4.0 Ade,

VCE(s.,)

All Types
MJE24I,MJE251,
MJE243,MJE253 }
MJE240, MJE250
All Types

la = 200 mAde)
IS = 0.8 Ade)

Base-EmItter Saturation Voltage
IIc = 2.0 Ade, IS

Base-Emitter On Voltage
lie = 500 mAde, VCE

VaE(on)

= 1.0 Vde)

-

20

-

10

-

15

-

-

0.3
0.6

Vde

-

0.8

-

2.5

-

1.8

-

1.5

40

-

-

50
70

Vde

VSE(sal)

= 200 mAtle)

25

Vde

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 100 mAde, VCE = 10 Vde, f ,es'

Output Capacitance
(VCS = 10 Vde, IE

= 0, f = 0.1

fT

= 10 MHz)

Cob
MJE240/MJE244
MJE250/MJE254

MHz)

FIGURE 3 - TURN·ON TIME
500

+30 V
VCC

200
SCOPE
10 0

I-

I'..

./

0
0

51
.:

t,. tf!S10 ns
DUTY CYCLE = 1.0%

TJ-25 0 C- I VCC =30V- f IC/IB= 10 _

300

RC
RB

pF

-

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

MHz

0

.........

0

-4V

...

........

Ir-

.......

.......
F= ---=~~~~=::m~!~~~
7. 01=

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

-

NdIIVBE(iff) = rO V

-

10

01 MUST BE FAST RECOVERY TYPE, ego
MBD5300 USED ABOVE IB ~IOO mA
MSD6100 USEO BelOW IB ~IOO mA

5.0

0.04

0.06

0.1

0.2

0.4

0.6

1.0

FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES
IC, COLLECTOR CURRENT (AMP)

491

2.0

4.0

MJE240 thru MJE244, MJE250 thru MJE254 (continued)

FIGURE 4 - THERMAL RESPONSE
1.0

o. 7=== 0=0.5
0.5

w

'Z"'

~
ff3

0.3

~o 0.2

~~

-

O;!,.-

"'-'
~~ o. 1

---...

~0.2

r-O.I

.",

"r.r-uL

""

PI k)
p

t I-:=J

~ ~o.o 7
a1 0.05::::: ~0.02
0.01
0.03 D ISINGLE PULSE)
>-' 0.02

~"'

a:.

-E

0.0 1
0.02

12
OUTY CYCLE. 0 = 11/12

I

0.1

0.05

=-

1

I I I I III
0.5

0.2

1.0

2.0
I, TIME (m.)

-

I II

I

10

5.0

-r-9JcIO=rlt)8JC
- r - 9JC=B.340CIWMax-t-I I I I I II
=0 CURVES APPLY FOR POWER~
-PULSE TRAIN SHOWN
..
READ TIME AlII

r',

TJlpk) - TC • Plpk)8JCIt)

I,

jell

r-

I I I I I II
50

20

100

200

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
0
5.0

~

2.0

S;

1.0

w

tOjS

..... I"-

-. ~t:

E==~TJ -150°C
de
5.0
5 _ _ BONDING WIRE LIMITED
ms
---THERMALLY lIMITEDIIHC' 250C
2
ISINGLE PULSE)
O.
"\
1 ~ESECONO BREAKDOWN LIMITED
~ O.
b=FCYRVES APPLY BELOW
-'
RATEO VCEO
80.05
!}
0.02
- ~}E~~MJ~242, MJE2501MJE2 2
MJE2431MJE244, MJE2531MJE254
0.0 1
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70

'"a:
'"'
'"
~

::>

There are two limitations on the poWer handling ability of a

transiStor: average junction temperature and second breakdown.
Safe operating area curves ,ndlcate le'VeE limits of the transistor

""'1' .. t'\sn,:

that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
Thedala of F,gure 5 is based on T Jlpk) = 1500 C; TC "variable
depenchng on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provIded T Jlpkl E;; 15o<'C. T Jlpk) may be
calculated from the data In Figure 4. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.
ISee AN·4151

O.

I

100

VCE, COllECTOR·EMITTER VOLTAGE (VOLTS!

FIGURE 6 - TURN-OFF TIME
2000

=F=

1000
700
500

:!

i>-

300

200

.:

100

FIGURE 7 - CAPACITANCE
200

TJ -250C_ f-VCc-30V
Ic/18= 10
181=182

==

100

Is

r-..

"....... ......

70
50

"'
1

30 _ ---~E240/MJE244INPN)
E2501MJE254 PNP)
20
0.04 0.06
0.1
0.2
D.4

0.6

1.0

0

"
2.0

O

0

I0

4.0

1.0

IC, COllECTOR CURRENT lAMP)

---

T}.

r- I"r--Clio

-

r0-

I'-~

- - -MJE2401MJE244INPN)
-MJE2501MJE254 PNPI
2.0

3.0

0:-"'"

+t_
5.0 7.0

II

10

......

20

VR, REVERSE VOLTAGE (VOLTS)

492

25~C

30

50

70 100

MJE240 thru MJE244, MJE250 thru MJE254 (continued)

NPN

PNP

I

MJE240 thru MJE244

MJE250 thru MJE254

FIGURE 8 - DC CURRENT GAIN

500

..:c

200

300 -

~

30
20

j

~

~5~f

...'"z
...

'"'"u::>

---VCE-2.0V

200

100
70
50

=

z

;0;:1=11

~

::....

...
~

20

-550C

~

~~

1""..."'"

i:l

~

~

25°C

70
50
I30

iii
u

co

~

i

ViCE =11.0 V '--Vce- 2.O V ' -

-

T -1500C

100

-560C

10
7.0
5.0
0.04 0.06

. I II

VCE"I.O~_

T -Isooe

10
7.0
5. 0

~

~

"

...

3. 0

0.1

0.2

0.4

0.6

2.0

1.0

2.0
0.04 0.06

4.0

0.2

0.1

IC. COLLECTOR CURRENT (AMP)

0.4

0.6

2.0

1.0

4.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 9 - "ON" VOLTAGES

1.4
I-

/;l

1.2HH-++++-+--t--t-HH-++++-+-"V-7'9--l
d'
1.0H-t-t+t+-t--lf-+H-+t+++t-:,......~
..... fZ-+-H--l

~

0.8 VBE(!", @lIC/IB - 10

~

~.,

II

VBE@VCE=I.OV._+--f-lH++++I-_+-+--AW~
~

~
w

o.8

>
>.

~-HH++-~1-~~~~1BI~~~~~.0~-r-i
~I

1.0

0.1

0.2

0.4

0.6

1.0

2.0

II
II
II
IcllB = 10

VBE@VCE=I.OV

---

I
I

I
/

//

-

5.0

-

"",~LLL

-VeE(sat)

0.04 0.06

'"

h

f-,-",

le/18=IO h
IJd::IV

o

4.0

.....-:::

o.4

o.2

I

o~-~~~LVtCEt~~'t):j~~:t:r:Etlttlttl~~t=:t:j

0.04 0.06

I
I
I
VBE(sa')@

'"
.,~ o.6

~~ O.4HI-+++++-t-+--t-HI-+++++-h~~<-+-i
0.2

~

.,

.....-

0.6

iJ! ~5'oC

I. 2

0.1

0.2

IC. COLLECTOR CURRENT (AMP)

0.4

0.6

II J J

1.0

4.0

2.0

Ie. COLLECTOR CURRENT (AMP)

FIGURE 10 - TEMPERATURE COEFFICIENTS

+2.5

+2.5

£
+2.0
>

"AP LIE

R IcIIB'" hFEI3

:;-

oS +1.5
~

ffi

-I

+1.0

t:;
~ +0.5

250 C '0 150°C _ _
-55 0C'0 25°C

~ -D.5

II

1.0

! . 1-5
i

V

"BvC FOR VCEfI.,)

8w

a. .

"APPLIES FOR IcIIB<:hFE 3

~ +2.0

250~

:~

-2.

-2.
0.04 0.06

0.1

0.4

0.6

+1.0

t:;

e:

;

25 0C10 1500C ..... 1---"

"BVC FOR VCE(sa,

H"1T1

w

-5tC 10 25"C

~ ..0,5

V V

~

a::
~

-1.0

'"' -I.5
~
:> -2.0

-550C '0 25 0C

...
2.0

+0.5

8

..Lk:::: :.-~
1.0

+1.5

~

[!!

-~

II
0.2

..s

/

I
I

4.0

-2.5

1
r-250 ,10 1500J
i
ByBtiRIIBIEII II

0.04 0.06

0.1

?

493

/
/
........ L
/

./ /'"
V

-t I !'"1 iI

5 C 2 C

0.2

0.4

0.6

1.0

IC. COLLECTOR CURRENT (AMP)

Ie. COLLECTOR CURRENT (AMP)

/

2.0

4.0

MJ E340 (SILICON)
MJE340K
0.5 AMPERE
POWER TRANSISTOR
PLASTIC MEDIUM POWER NPN
SILICON TRANSISTOR .. '

NPN

SILICON

.. ' 300VO.LTS
" . 20:8 and 3Q WATTS

· .. designed for power output'stage;; for. television, ~adio, ph'onograph
and other consumer product applications.
• SUitable for Transformerless, Line·Operated:Equipment:
·.C.
• Thermopad Construction Provides High Power DissipatiOn Rating
for· High Reliability

MJE340

• Choice of Packages - MJE340 - Case 77
.
MJE340K - Case 199

MAXIMUM RATINGS
Rating
COII~tor·Emitter
Emitter.B~.

Voltage

Symbol

Value

VCEO

300

Voltage

Unit·

Vde

...

VEB

3.0

Vde.

IC

500

mAde

COlleCtor Current - Continuous

'ASE-77-03

I

. MJE3;40 MJE340K

Po

Total Device Dissipation @TC:: 2SoC

Derate above 25°C
Operating and Storage Junction
Temper-sture Range

T J, Tstg

20.8
0.167

I

Watts
W/oC

3(l

0.24

-65 to +150

°C·

MJE340K

THERMAL CHARAc:rERlgTICS
Characteristic
Thermal Resistance, Junction to Case

,

,

ELECTRICAL CHARACTERISTICSrrC =. 250 C unless otherwise noted)

I

.

Charactaristlc

I.

Symbol

I

Min

I

Max

I

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 1.0 mAde,
= Ol

18

Emitter Cutoff Current
(VEB = 3.0 Vde;'lc ~ 0)

VCEO(sus)

Vdc

300· '

ICBO

100

"Ade

lEBO

100

"Add

ON CHARACTERISTICS
DC Current Gain .
(lC = 5,0 mAde, VCE = 10 Vdel

494

CASE 199-04

"i",

".

MJE340, MJE340K (continued)

FIGURE 1 - POWER TEMPERATURE DERATING
2

8

-

FIGURE 2 - "ON" VOLTAGES
1.0

..........

""",
""'" "
"'"

4

......

B
2

~

0

........

L

to

f"-.

0.4

,/

0

>
,;

:--.....: t--...

VCE(sall

IcilB= 10

0.2

~

100
120
80
80
TC, CASE TEMPERATURE (OC)

40

/

VSE@VCE=lbv

0.6

W

:;
'"

" "MJE340K

0

20

"..,V6A

lL

~

MJE34!I~

0

IL

11

~B~ (Sat) '@ \~I~ = 10
'j TI"ITL

TJ=~50C

O.S

~

140

IL

Icra' j'0

o
180

./"

.....

20

10

30

100

50

200

300

500

IC, COLLECTOR CURRENT (mA)

ACTlVE"REGION SAFE OPERATING AREA
FIGURE 3 - MJE340

FIGURE 4 - MJE340K
I.0

1.0

I

...

0.&

5 0.3
'" 0.2
B
'"

~

0,

S

TJ = 150·

10",~

..

I.~~
~

) )l\.

I

0.06

~ 0.03

-----

500",

_

K:"f-

~-

Z
W

O.2

a

O. 1

::;

'"o

SECOND BREAKDOWN LIMIT
- BONDING WIRE LIMIT
THERMAL LIMIT 41 TC = 25°C

t;
~

'\.

o

'"'

!J

0.02

I

0.0I

I I I

I I

III

I\,

100
200
20
3D
50
VCE, COLLECTOR EMITIERVOLTAGE (VOLTS)

10

0.05
0.03

"~
- ------

~

SECOND BREAKDOWN LIMIT
BONDING WI RE LIMIT
THERMAL LIMIT 41 T = 250C

-

lSi

1S:::t-

500",

~

I--- I- TJ' 150·

0.3

I-

'\

10",

1.0ms

O•5

'\.

0.0 2
0.0 I

300

10

30

20

100

50

300

200

VCE, COLLECTOR·EMITTER·VOLTAGE (VOLTS)

There ara two limitations on the power handling ability of a transistor: average junction temperatura and second breakdown. Safe operating
area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected
to greater dissipation than the curves indicate.
Th. data of Figures 3 and 4 is based on T JJpk) = 1500 C; TC is variable depending on conditions. Second breakdown pulse limits,are valid
for duty cycles to 10% provided T J(pk) S 150"C. At high case temperatures, thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown. (See. AN"415)
FIGURE 5 - DC.CURRENT GAIN

3DO
200

I

'"
...z
...'"::>

..

'"'ul

70
50

CI

~

3D
20

10

_t:::t:- I=:-

I

z
C 100

I-

---Vce=10V -

I

J

TJ = \500

+IOOoC

--- -I"'"

+25oC

'"'""

..-- ....-rf--

1.0

"55°C

2.0

I"""'"

~

- ",

-"",

--

t--

r=-

~....-;;

~

- - .- c\.-;~-'\. -..... ~

-

3.0

-- --- -

-VCE=2.0V

t'~ ~
~

5.0

7.0

10

20

3D

IC, COLLECTOR CURRENT (mAde)

495

50

70

100

200

~

[". ~ ~.......
300

500

MJE340, MJE340K (continued)

MJE340

MJE340K
M
T

I-J
STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER

s
STYLE 1
PIN I. EMITTER
2. COLLECTOR
3. BASE

DIM

A
B

DIM
A
8
C

D
f
G
H
J'

K
M
Q

R
S
U

C

MI LL IMETE RS
MIN MAX
1080 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.00
2.31
2.46
2.16
2.41
0.38
0.64
15.38 16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94

D

F
G

MILLIMETERS
MI
MAX
16.08 16.33
12.57 12.83
3.18 3.43
0.51 0.76
3.61 3.86
2.54 Bse

H

2.67

2.92

J

0.43

0.69

K
L

M
N
Q

R
T

14.73 14.99
2.16 2.41
3 TV

1.47
4.78
1.91
0.81
6.9
6.22

1.73
5.03
2.1
.86
7.2
6.48

1. DIM "6" ISTO CENTER LINE OF LEAOS.
CASE 199.04

CASE7HJ3

496

MJE341 MJE341K(SILICON)
MJE344 MJE344K
PLASTIC NPN SILICON
MEDIUM-POWER TRANSISTORS
· •. designed for power output stages in television, radio, phonograph
and other consumer product applications.
• Recommended for 1.5 W Class A Output in Transformer Coupled,
Line-Operated Equipment - MJE341
• Ideal for Audio Output Circuitry in Black and White Television
Receivers - MJ E344
• Choice of Packages - MJE341 , MJE344 - Case 77
MJE341K, MJE344K - Case 199

0.5 AMPERE
POWER TRANSISTORS
NPN SILICON
150-200 VOLTS
20.8 and 30 WATTS

MAXIMUM RATINGS
Rating

Coliector·Emitter Voltage
Coliector~Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Base Current

Total Oeviee Oissipation@Tc=250 C
Derate above 2SoC
Operating and Storage Junction
Temperature Range

Symbol

MJE341
MJE341K

VCEO
Vce
VEe
IC
Ie

150
200
175
200
3.0
5.0
-500--_260_

Vde
Vde
Vde
mAde
mAde

Po

MJE341
MJE341K
MJE344
MJE344K
20.8
30
0.167
0.24
_-65to+150_

Watts
wl"c
°c

TJ,T stg

MJE344
MJE344K

MJE341,MJE344
Unit

CASE 77-03

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Symbol

MJE341
MJE344

MJE341K
MJE344K

Unit

6JC

6.0

4.167

°CIW

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA

MJE341 K, MJE344K

1.0

600",

1

- -

- - -

\.1.0 ..

~

SECOND BRfAKDo\\w Lim

- - -

(011)

"

TJ'" 1500 Ci

BONDING \\IRE LIMIT
THERMAl LIMIT OTc = 25'C

(all)

I\.

ck:

MJE341,344

'ii'i,

0.D2
0.01
10

20

30

40

I

\
1111

2IJO

300

VCE. CDLLECTDR-EMITTER VOLTAGE (VOLTS!

There era two limitations on the power handling ability of 8
transistor: lVerage Junction temperatura and second breakdown.
Safe operating area eurv.. indicate IC-VCE limits of the transistor
that must be obsoJ'vad for reliabl. operation; i.e., the transistor
must not be subjected to greater dissipation than the curvas indicate.
Tho data of Figure 1 i. baaed on TJ(pk) • 15o"C; TC is
_iable depending on cOnditions. Second b ....kdown pul .. limits
. . valid for dutY eyel .. to 10% provided T J(pk) <; l5O"c. At
high e_ temperatures, thermal limitations will redueo tha power
that can ba handled to values I... th,n tho limitations Impoaad by
IOCOnd breakd_n. (See AN-415)

497

CASE 199-04

MJE341, MJE341 K, MJE344, MJE344K (con~iniJed)

ELEcTRICAL cHARAcTERISTICS (Te = 250 e unless otherwise noted)
Symbol

Min

M...

150
200

-

-

1.0

-

1.0

-

0.3

-

0.1

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 1.0 mAde, IB = 0)
Collector Cutoff Current
(VeE = 150 Vde, IB = 01

MJE341,K
MJE344,K

Collector Cutoff Current
(VCB = 175 Vde, IE = 0)
(VCB

mAde

,ICBO
MJE341,K
MJE344,K

= 200 Vde, IE = 0)

mAde

ICEO

= 0)

(VCE = 200 Vde, IB

Vde

VCEO(susl
MJE341,K
MJE344,K

mAde

Emitter Cutoff Current
(VES = 3.0 Vde, IC = 01

MJE341,K

-

0.1

= 5.0 Vde, IC = 01

MJE344,K

-

0.1

20

-

25
30

200
300

20

-

-

1.0

-

2.3

VSE(on)

f-r

(VES

lEBO

ON CHARACTERISTICS
DC Current Gain
(lC = 10 mAde, VCE

(lC

MJE341,K
MJE341,K
MJE344,K
MJE341,K

= 150 mAde, VCE = 10 Vde)

Collector-Emitter Saturation Voltage
(lC = 50 mAde, IB 3 5.0 mAdel
(lC

-

hFE

= 10 Vdel
(lc = 50 mAde, VCE = 10 Vde)

Vde

VCE(setl
All Types
MJE341,K

= 150 mAde, IS = 15 mAdel

Base-E mitter On Voltage
(lC = 50 mAde, VCE = 10 Vdel

1.0

Vde

15

-

MHz

Cob

-

15

pF

hfe

25

-

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 25 Vde, f = 10 MHzl
OutpUt C8pecitance
(VCB = 20 Vde, IE - 0, f

= 100kHz)

Small-8ignal Current Gain
(lC = 50 mAde, VCE = 10 Vde, f = 1.0 kHzl

FIGURE 2 - DC CURRENT GAIN

30tI

VCE'10V

200

.,

~

1011
C
co

.
.

--- VCE =2.OV

TJ' +1600C

Ii:

10

a:
a:

50

oil
~

30

FIGURE 3 - "ON" VOLTAGES

1.0

"

~

""'

20

- r\'
~

r,

; 0.4
c
',>

D.2

I"
\

i"""

10
1.0

2.0 3.0

5.0 7.0 10

OVI
VaE. VCE' 1

..

rr
~~~~ .....

20 30

50 70 1011

r- ~CE(IIIlICnB • lu
"

r-

....

Icna ~ 5.0

o

200 30tI 6011

10

IC, COLLECTOR CURRENT (IlIA)

1.ll~

-

20

30

50

...... ....;
/

/

-/

./

1011

IC, COLLECTOR CURRENT (mAl

498

II

-ri' ..Lk--: '1"

.~ 0.&

+250C

::0

I I II
vat(!'.'IJI

O.8

TJ' +250C_

I I
200

3011

I
5011

MJE341, MJE341K, MJE344, MJE344K

(continued)

MJE341,
MJE344

MJE341K,
.. MJE344K

B
M

T

tSTYLE 1:
PIN 1. SASE
2. co LLECTO R
3. EMITTER

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3.8ASE

DIM

MILLIMETERS
MIN MAX

16.0S 16.33
B 12.57 12.83
e 3.18 3.43
0.51
D
0.76
F
3.61 3.86
2.54 SSC
G
2.92
H
2.67
0.43 0.00
J
K 14.73 14.99
L
.16
.41
M
30 TYP
N
1.47
1.73
Q
4.78
5.03
2.16
R 1.91
S
0.81
0.86
T 6.99
7.24
6.48
U 6.22
A

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
8
7.49
7.75
C
2.41
2.67
o -0.51 0.66
F
2.92
3.00
G
2.31
2.46
H
2.16
2.41
.. J
0.38
0.64
K 15.38 16.64
M
3 TYP
Q
3.76
4.01
R
1.14
1.40
S
0.64
0.89
U
3.68
3.94

INCHES
MIN MAX
0.633 0.643
0.485 0.5050.125 0.135
0.020 0.030
0.142 0.152
0.100 SSC
0.105 0.115
0.017 0.027
0.580 0.590
.085 0.095
3 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255

I. DIM '"G" IS TO CENTER LINE OF LEADS.

NOTE:
1. MT' MAIN TERMINAL

CASE 199{)4

CASE7HJ3

499

MJE350

(SILICON)

PLASTIC MEDIUM POWER PNP
SILICON TRANSISTOR
· .. designed for use in line-operated aud io and telev ision applications
and as low power, lin~operated series pass and switching regulators.
•

High COllector-Emitter Sustaining Voltage VCEO(sus) = 300 Vdc@lIC = 1.0 mAdc

•

Excellent DC Current Gain hFE =30-240 @lIC = 50 mAdc

•

Plastic Thermopad Package

0.5 AMPERE
POWER TRANSISTOR
PNPSILICON
300 VOLTS
20 WATTS

MAXIMUM RATINGS
Rating
COllector-Emitter Voltage

Emitter-Sase Voltage
Collector Current - Continuous

Total Device DiSSipation @TC = 2SoC
Derate above 2SoC
Operating and Storage Junction

Symbol

Value

Unit

Vceo
Ves
IC

300
3.0

Vde
Vde
mAde

Po

20
0.16
-65 to +150

500

T J.Tstg

watt.

A

wf'c
°c

t-

Temperature Range

K

THERMAL CHARACTERISTICS
Thermal Resistance,Junction to case

STYLE 1
PIN 1. EMITTER
2. COLLECTOR

I

3. BASE

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Ch_....lltic

I

Symbol

I

Min

I

MIX

I

Unit

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltogo
(lC· 1.0 mAde. IS • 01

VCEOlsusl

300

-

Vdc

Collector Cutoff Current
(VeB· 300 Vde, IE ·01

leBO

-

100

,.Ado

Emitter Cutoff Current

lEBO

-

100

pAde

(VEB • 3.0 Vdc, Ie· 01

F

G
H
J
K

M
0.
R

ON CHARACTERISTICS
DC Curront Geln
(lC - 50 mAde. VCE.· 10 Vdel

DIM
A
8
C
D

30

240

S
U

MILLIMETERS
MIN MAX
10.80 11.05
748
7.75
2.41
2.67
0.5
0.66
3.00
2.92
2.31
2.4&
2.16
.41
0.38 0.64
16.64
15.38
3 rYP
3.76 4.01
1.40
1.14
0.64 0.89
3.68
3.94

INCHES
MIN MAX
0425 0.435
0.295 0.305
0.095 0.105
10.020 0.026
O. 15 O.l1B
0.091 0.097
0.085 I 0.095
0.015 0.025
0.605 0.&55
3u TYP
0.14B 0.158
0.045 0.055
0.025 0.035_
0.145 0.155

CASE 77-03

500

MJE350 (continued)

FIGURE 2 - "ON" VOL TAGES

FIGURE 1 - DC CURRENT GAIN
200

z

100

to

0

;;:

§
..,~
co

ul
~

1.0

TJ'1500C

r- r-...

J5lc

"
~

-!ls~c

50

.......,

I II

VCE" 2.0 V
- - - VCC'10V

0

10
5.0 7.0

~
w
to

""- '\" '~

III

0

'"

~

""

III

"

50 70 100
20
30
IC. COLLECTOR CURRENT (mA)

10

1~J~~Joc

o. 8

"

~

'">>'

~ '\~.:',,~

200

~

"'::>
~
'"t;

O. 2

V~

j
8

0

!-}

20

Y

VCE(satl
0
5.0 7.0

IC1118" ~.o

10

"'

'de

........

~

100",
I'..

10

20

.
-

TJ,1500C

+0.

E +0.

BONOING WIRE LIMITED
THERMALLY LIMITED iii TC' 25°C
IISEC?NO ~RE~KOIDwr \1~ITED
30

500

: Jill

+25 0 C to +l000 C ,

I...-'V

'OVC for VCE(",)

0

500#.

-55°C '0 +250C'"

4

'\tOm '......

I'..

300

II +100dC'0 +1500C

"Applies for Iclia -

3.0

~

2.0

... ...
dc'" ...
I

TJ=15O'C

i~

1.0

a:
o

r-- t--

1.0m.+-

--

- I-

ii: 5.0

...

5.0 ms

..,~

FIGURE 2

10

!>-

~
a

...........

'"

.- MJE3701(

f-j--

I-..,-.::t--s;

1.0ms

...

5.nm.~

~r--.

3.0
2.0
1.0,1:::==-

dC~r-

TJ=150'C

0

....~ o. 5

- -

8~ o. 3

~

SECONO BREAKDOWN LIMITED
BONDING WIRE LIMITED
THEJMALi Y LtlD

o. 2

ticI t

8

c

~

II

O. 1
1.0

2.0

3.0

5.0

0.5

02

10

30

20

~E±t-

1---111

0.1

- r-H

SECOND BREAKDOWN LIMITED
- - BONDING WIRE LIMITED
--THERI.tALLYLIMITED@TC=25'C

-

OJ

10

5.0

3.0

2.0

VeE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

- l - r-- r-

I I

10

10

30

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS'

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.

The d~ta of Figures 1 and 2 based en T J(pk) -;:: 150°C, TC IS
variabl.e depending on conditions. Se~Qnd breakdown pulse limjt$
are ... ~lId for duty cycles to 10% provided T J)pk) ~ 150°C. At
high case t0moeraturA$h thermal limitations will reduce the POwer

Safe operating area curves indicate Ie - VeE limi~ of the transistor
that must be observed for reliable operation; i.e., the transistor
must natbe subjected to greater dissipation than the curves indicate.

t~e

that can be handled to \lalues less than

limitations imposed by

second braakdown. (Sf'te AN-41S)

FIGURE 3 - DC CURRENT GAIN

.

1000
700
500

FIGURE 4 - "ON" VOLTAGE

5
l.OV

-

f-- -

'i11"
•

VeE

,

'T:rr-;T1
I,

TJ~WC

2

lith I

;!; 300

'" 200

is

±j

....... r-,

+150·C

TJ

!Ii!

G 100

9

150

I i II
:U'j

6

~

10

VBf[utl@Ic/I B

+2S·C

g 70

~

I

'V,,@VeE ~ 2 ~V

55°C

30

V

II

3

20
VCE [,atl@I C /I,-10

ill

I0

2.0 3.0 5.0

20 30 50
100
200 300 500
Ie, COlLECTOR CURRENT (lIlA)

10

1000

2000

O2.0 30 5.0

10

20 30 50
100
200 300 500
Ie, COLlECroR·CU~RENT (mA)

1000

2000

FIGURE 5 - THERMAL RESPONSE
_

1.0

~

1

0.7

0

5.0

0.5
0.2

.... 0.3

~

-'~ o. I

i<= 0.07
0.05

g
!i:

0.1

0.2

0.03

e: 0.02

I"'""

-

~

i-""

1JUL

0.01

~ 0.0I

om

I-

0.05

i,...--""

~I'~
t,

SINGLE PULSE

DUTY CYCLE, 0

0.05

0.1

I,ll,

I I II

..111111
0.02 0.03

9Jc(r)- r(t)9JC
9JC =5.0 CIW Max
MJE370, MJE3370
9JC= 3.125'CIWMax MJE370K
oCURVESAPPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk)-TC p(pk)oJClt)

'r!:?'

0.2

0.3

0.5

1.0

2.0
3.0
5.0
I,TIME Imsi

503

11111

I I

10

20

i
30

50

I
I

100

I
200

i
300

500

1000

MJE370, MJE370K MJE3370 (continued)

F

M

T

tK

s

\-.0

GJ:!

MJE371
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

E9r=I
M-n:::;

C

""T

MJE3371
STYLE 3
PIN 1. BASI?
2. COLLECTOR
3. EMITTER

D~L
Li../it--ill

~~i

DIM

A
DIM

A
B
C

D
F
G
H

J
K
M
Q

R
S
U

B
C

MILLIMETERS
MIN MAX
1080 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.
2.31
2.46
2.16
2.41
0.38
0.64
15.3B 16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
O.SS
3.68
3.54

D

F
G
H
J
K
M
N
Q

R
S
T

MJE370K
STYlE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER

MILLIMETERS
MIN MAX
16.08
12.57
3.18
0.51
3.61
2.54
2.67
0.43
14.73 1

3DT

6.99

1.73
.03
2.16
0.86
7. 4

6.2

6.4

1.47
4.78
1.91
0.81

1. DIM "6"15 TO CENTER LINE OF LEADS.

NOTE:
1. MT = MAIN TERMINAL

CASE 199.(J4

CASE 77-113

504

MJ E371 (SILICON)
MJE371K
MJE3371
4 AMPERE
POWER TRANSISTORS

PLASTIC MEDIUM-POWER PNP
SI LICON TRANSISTORS

PNP SILICON
40 VOLTS
40 and 60 WATTS

. • . designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 20 Watt audio amplifiers utilizing complementary symmetry circuitry.

• DC Current Gain - hFE = 40 (Min) @ IC = 1.0 Adc
• MJE371, MJE371K and MJE3371 are Complementary with NPN
MJE521, MJE521K and MJE3521
• Choice of Packages- MJE371, 40W - Case 77 (E-C-S)
MJE3371, 40W-Case 77 R (S-C-E)
MJE371 K, 60 W - Case 199

MJE3371
Style 3

MJE371
Style 1

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vde

Collector-Sase Voltage

VCB

40

Vde

Emitter-Base Voltage

VEB

4.0

Vdc

4.0

Ade

Rating

Collector-Emitter Voltage

Collector Current - Continuous

IC

CASE 77-03

8.0

- Peak

Base Current - Continuous

2.0

18

Ade

::liN711 I MJE371K
Total Device Dissipation @TC= 2So C

40
320

Po

Derate above 25°C

Operating and Storage Junction
Temperature Range

TJ, Tstg

I

Watts
mW/oC

60
480

MJE371K

°c

-65 to +150

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25°C unle.. otherwise noted)

I

Characto

~

0.1
0.01

0.02 0.03 0.05

0.1

0.2 0.3

0.5

1.0

60

V.

0;

I'-

-55°C

40

TJ=250C

1.6

r--

20

I

TJ" 25°C

~ 3.0

S.O 10

FIGURE 4 -'''ON'' VOLTAGE
2.0

7.0 r-r5.0

6.0

4.0

The data of Figure. 1 and 2 based on T J(pk) "" 150°C; TC Is
variable depending on conditions. Second breakdown pulse limits
er. valid for duty eyel" to 10% provided T J)pk).oS 1150o C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to vsluet leu than the limitations imposed by
second breakdown. (Se. AN-415)

10

I-

l-

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI

There are two limitations on the power handling ability of a
transistor: averagE!! junction temperature and second breakdown.
Safe operating area curves indicate Ie - Vee limits of the transistor
that must be' Observed for reliable operation; i.e.,. the transistor
must not be SUbjeC~~ to g~.&ter dissipation than the curves indicate.

;;:

-

de--,

.... - --Thermal Limit @TC - 250 C

VCE, COLLECTOR·EMITTER VOLTAGE (VOL TSI

~

\

0.2

0.2

5l

"

Bonding Wire limit
Secondary Breakdown

-" -

F'

I

5.0 m~"\

II

0.4

"'

2.0 3.0 4.0

0.005

~
VSE@ VCE • 1.0 V

~6~(sall @IClIs= 10
0.01

IC, COLLECTOR CURRENT (AMPI

0.02 0.03 0.05
0.1
0.2 0.3 0.5
IC, COLLECTOR CURRENT'(AMPI

~
1.0

2.0 3.04.0

FIGURE 5 - THERMAL RESPONSE
1.0 I=:.-:E:F-

-wo 0.7 ~D=0.5
O.5
N
)-._... ::;
~~ 0.3 1--

_.

0.2

",-

.... w

~~

-

-

-.-

-

--

-

r-- f- O.l

0.1 l:= -0.05
rO.02
~ ~ 0.07
:::: ~ 0.05 ~
~

:;;::;'

w-,

rO.Ol

f.1{1- ..",. -

L

f-::: ~

r==

'"'\1
~i 003 1-"2
r--~

--

~2

.:;;a:

:i il

.

1::1

Single Pulse

0.02

I-

0.01

0.01

8JCltI=,ltI8JC

'"~ ~ ~rn'. ~""'

P
(pkl

11
12

8JC = 2.0aoCIW Max - MJE371 K
0 CURVES APPLY FOR POWER
SINGLE 'PUlSE TRAIN SHOWN
PULSE REAO TIME AT 11

DUTY CYCLE, 0 = 11/12

I
0.02 0.03

I II
0.05

I I I I IIIILI
0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

I, TIME OR PULSE WIDTH (msl

506

10

TJ(pk) - TC = P(pk18JCltl

I I J I I IIIIII . I I I
100
20
50
zoo

500

1000

MJE371, MJE371 K, MJE3371 (continued)

M

K

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

MJE371
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

MJE3371
STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITTER
MILLIMETERS

DIM

MIN

A

10.BO
7.49
2.41
0.51
2.92
2.31
2.16
0.38
15.38

B
C

D
F
G
H
J
K
M

n

R
S
U

MAX

11.05
7.75
2.67
0.66
3.00
2.46
2.41
0.64
16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94

DIM

A

a

INCHES
MIN

MAX

0.425
0.295
0.095
0.020
0.115

0.435
0.305
0.105
0.026
0.118

0.091
0.085
0.015
0.605
30 T
0.148
0.045
0.025
0.145

C
D
F
G
H

I

J
K
L
M
N

n

R
S
T

0.158
0.055
0.035
0.155

U

MILLIMETERS
MIN
MAX

INCHES
MIN MAX

16.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61
3.86
2.54 asc
2.67
2.92
0.43 0.69
14.73 14.99
2.1
2.41

0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.1008SC
0.105 0.115
0.017 0.027
0.580 0.590
0.085 0.0 5
3 TYP
0.058 0.068
0.188 0.198
0.D75 0.085
0.032 0.034
0.275 0.285
0.245 0.255

30 TYP

1.47
4.78
1.91
0.81
6.99
6.22

1.73
5.03
2.16
0.86
7.24
6.48

1. DIM "G"IS TO CENTER LINE OF LEADS.

NOTE:

1. Mr= MAIN TERMINAL

CASE 199'()4

CASE 77-fJ3

507

MJE520(SILICON)
MJE520K
MJE3520
3 AMPERE
POWER TRANSISTORS

PLASTIC MEDIUM-POWER NPN
SILICON TRANSISTORS

NPNSILICON
30 VOLTS
25 and 40 WATTS

· . . designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 10 Watt audio amplifiers utilizing complementary symmetry circuitry.
•
•

=

=

DC Current Gain - hFE 25 (Min) @ IC 1.0 Adc
MJE520, MJE520K and MJE3520 are Complementary with PNP
MJE370, MJE370K and MJE3370

• Choice of Packages - MJE520, 25 W - Case 77 (E·C·S)
MJE3520, 25 W - Case 77 (S·C·E)
MJE520K, 40 W - Case 199

MJE520

MJE3520

Style 1

Style 3

MAXIMUM RATINGS
Symbol

Value

Unit

Coliector·Emitter Voltage

Rating

VCEO

30

Vdc

Coliector·Base Voltage

VCB

30

Vdc

Emitter·B.... VoitaQe

VEB
iC

4.0

Vde

3.0

Ado

Collector Current - Continuous

- Peak
Base Current - Continuous

IB

2.0

@l

T C = 25°C

Po

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ. Tag

Adc

:i3SCa I
25 -r 40
0.2
0.32
E

Total Device Dissipation

CASE 77-03

7.0

MJE528K

-65 to +150

Watts
W/oC
°c

MJE520K

THERMAL CHARACTERISTICS
Characteristic

Thertnal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 2SoC uniess otherwise notedl
Characteristic

I Symbol

Min

Max

30

-

Vde

ICBO

-

100

pAdc

leBO

-

100

pAdo

Unit

OFF CHARACTERISTICS
Coliector·Emitter Su ...ining Voltage (11
IiC· 100 mAde,IB· 01
Coliector·B... Cutoff Current
(VCB * 30 Vdo, iE ·0)

VCEO(susl

Emitter-Base Cutoff Current

IVEB • 4.0 Vdc, IC· 01
ON CHARACTERISTICS
DC Current Gain (11
IiC· 1.0 Ado, VCE = 1.0 Vdcl

I

hFE

(1) Pulse -ra.t: Pulae Width S300/JI, Duty Cycle ~2.0".

508

CASE 199-04

MJE520, MJE520K, MJE3520 (continued)

ACTIVE-REGION SAFE OPERATING AREA
10

_.

FIGURE 1 - MJE520 MJE3620

--r- - -

f-

5.0

Q;

!

2. 0

.

i

'"
t.)

'" 1.0

~...

........

5.0

!

3.0

~

2.0

~......

8

.§

O. 2

I

O. 1
1.0

I I III

3.0

2.0

10

5.0

20

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
Safa operating are. curves indicate Ie . VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor

3.0

0.2

I
2.0

1.

20

10

30

1.5

Ve

$ 300
~

~B1

FIGURE 4 - "ON" VOLTAGE

FIGURE 3 - DC CURRENT GAIN

g-

5.0

3.0

are valid for duty cycles to 10% provided (T Jpk) E;;;; 150°C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to values Ie.. than the limitations imposed by
second breakdown. (See AN -415)

must not be subjected to greater dissipation than the curve. indicate.

15

tsl-

VCE. CDLLECTOR·EMITIER VOLTAGE (VOLTS)

average junction temperatura and second breakdown.

1000
700
SO0

--=:.1.0 ml-

The data of Figures 1 and 2 based on TJ(pk) = 150o e; TC is
variable depending on conditions. Second breakdown pulse limits

Ther. a,e two limitations on the power handling abilitv of a
transistor:

- ..

SECOND BREAKDOWN LIMITED
- BONDING WIRE LIMITED
THERMALLY LIMITED. TC' 25°C

-

0.5

O. 1
1.0

30

- MJE620K

~

TJ = 150°C

~ 1.0

SECOND BREAKDOWN LIMITED

--

.....

&.O ...~~

'"::>

BONDING WIRE LIMITED
- - THERMALLY
LIMITED III TC =25°C

o. 5
~ o. 3

CI

Q;

!z

d......

TJ 151jC

::>

-~

tOms-I-

.

.oml-·

3.0

~

FIGURE 2

10

-I-d-I-t.

TJ - 25'C

1.2

1.0 V

1.

IZ

200

"

TJ -ISO'C
100
0
0

25'C

~

VIEI ..t,@lell.=IO
V.. @Ve.=2.0V

-55'C
0

IL

0.3

0
I0
2.0 3.0 5.0

Ve., ..t,@lell.=IO

III
10

20 30

50

100

200 300 SOD

o

1000 2000

2.0 3.0

5.0

10

Ie. COLLECTOR CURRENT (mAl

20 30

SO

100

200 300 SOO

1000 2000

Ie. COLLECTOR CURRENT (mAl

FIGURE 5 - THERMAL RESPONSE

~

1.0
0.7
'" 5.0

i

D- 0.5

c::>

0.2

~ 0.3
t.)

z 0.2
~

m
'" O. I
~ 0.07

-

-

0.1

0.01

~ 0.05 _
w

ill 0.02
~ 0.0 I
;

'r

0.01

MJE520.

~J~~:Vl::~c:.. ~~'OR ~~~::K

I-'"

0.05

i!: 003 i..--'"
lE'

8JChl- ,(1I8JC
8JC - 5.D°C/w Ma.
MJE352D

PULSE TRAIN SHOWN
READ TIME ATtl
TJ(pkl- Te· P(pk)8JC(tl

~
~~~

SINGLE PULSE

DUTY CYCLE, 0 = I,ll,

IIIIII
0.02 0.03

0.05

0.1

I I II I
0.2

0.3

0.5

1.0

3.0 5.0
t, TIME Imsl

2.0

509

IIIII

I I

10

20

30

SO

100

200

300

500

1000

~,

MJE520, MJE520K, MJE3520(continued)

-.

M

tK

D~L

MJE520
MJE3520
STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITIER

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3: BASE

DIM

,A
B
'C

D

F

G
J
'K

M
Q

R
S
U

MILLIMETERS
MIN MAX
10.BO 11.05
7,49
7.75
2,+1
2.67
0.66
0.51
2,92
300
2.31
2.46
2,16
2.41
0.3B
0.64
15.36' 16.64
30TYP
3.76' 4.m
1.14 ·1.40 .
0.64 .0.B9
3.68 . 3.94

DIM

MILLIMETERS
MIN MAX

16.06 16.33
12.57 12.B3
3.1B 3.43
o 0.51 0.76 .
F
3.61' 3.B6
G. . " 2.S4 8se
H
2.67 2,92
J
0:43' 0,69
K 14.73 14.99
.L
.1
.41
M
3 TYP
N 1.47
1.73
Q
4.7B
s.oa
R
1.91
,16
S O.Bl
0.86
T
6.99
7,24,
6.48
U 6.22

..
0.095
0.025
0,655
P
0.156
0.055
0.035
0.155

NOTE:
1. MT = MAIN TERMINAL

1. DIM "G" IS TO CENTER LINE OF LEADS.
CASE 199-04

CASE 77-03

510

MJE520K

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3, EMITIER

A
B
C

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.11

0.148
0,045
0.025
0.145

--Ik-J

MJE521 (SILICON)
MJE521K
MJE3521
PLASTIC MEDIUM-POWER NPN
SI LICON TRANSISTORS

4AMPERE
POWER TRANSISTORS
NPNSILICON

· .. designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 20 Watt audio amplifiers utilizing complementary symmetry circuitry.

40 VOLTS
40 and 60 WATTS

• DC Current Gain - hFE = 40 (Min) @ IC = 1.0 Adc
• MJE521, MJE521 K and MJE3521 are Complementary with PNP
MJE371, MJE371K and MJE3371
• Choice of Packages - MJE521, 40 W - Case 77 (E-C-B)
MJE3521, 40 W - Case 77 (B-C·E)
MJE521K, 60 W - Case 199

MJE521

MJE3521

Style 1

Style 3

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vde

Collector-Base Voltage

VCB

40

Vde

Emitter-Base Voltage

VEB

4.0

Vde

IC

4.0

Ade

Rating
Coliector~Emitter

Voltage

Collector Current - Continuous
-Peak

8.0

Base Current - Continuous

Total De.... ice Dissipation
Derate above 25°C

@

T C = 2So C

::3",1

MJE521 K

40
320

480

Po

Operating and Storage Junction
Temperature Range

I

60

-65 to +150

TJ, T stg

CASE 77-03

Ade

2.0

IB

Watts
mW/oC
°c

MJE521K

lHERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS (TC
Characteristics

= 25°C unless otherwise noted)

I

Symbol

Min

Max

Unit

VCEO(sus)

40

-

Vde

Collector·Base Cutoff Current
(VCB 40 Vde, IE = 0)

ICBO

-

100

"Ade

Emitter-Base Cuto,f Current

lEBO

-

100

"Ade

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage(1
(lC = 100 mAde, IB = 0)

=

(VEB

=4.0 Vde, IC =0)

ON CHARACTERISTICS
DC Current Gain (11
(lC' 1.0 Ade, VCE = 1.0 Vde)
(1) Pulse Test: Pulse Width ~O IJI, Duty Cycl.

<2.0".

511

CASE 199-04

MJE521, MJE521 K, MJE3521' (continued)

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 2 - MJE521K

FIGURE 1 - MJE521, MJE3521
10

1--- r~

5.0

....

3.0

5

~
a

2.0

0

1.0

'"

~

too---

1--'

100",

....

.

~

~

...

5.0 ms

i

2.0

de'\.

---

~

1.0

I~

.... 3.0

a

t::::= ---- Second
Breakdown Limit
Thermal limit

0.5

8
E

@Te-250C

II I III
4.0

6.0

20

10

40

...

::;

~

l - I-

2.0

z

;;:

to

....

!

i-

1.0
0.7
0.5

t--

TJ - 25°C

60

I I
TJ-250C

1.6

r-.

~o

-55~(

\I

1.2

~

2w
to

;

0.8

VBElsal)@IC/IBir

0.4

III

~
VB @VCE·2.0V

g

::>

~

'-' 0.3

u

1'\

0

;

40

FIGURE 4 - "ON" VOLTAGE

VCE-1.0V-

rI-

20

:s:

150°C

~ 3.0

0

10

6.0

The data of Figures 1 and 2 based on T J(pk) ,.. 150°C; TC is
variable depending on conditions. Second breakdOwn pulse limits
are valid for duty cycles to. 10% provided TJ)pk)
150°C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to values tess than the limitations Imposed by
second breakdown. (See AN-415)

average junction temperature and second breakdown.

2.0

0:

~

Bonding Wire Limit
Secondiry Breakdown

4.0

FIGURE 3 - DC CURRENT GAIN

ffi

5.0ms

VCE. COLLECTOR·EMITTERVOLTAGE (VOLTS)

Ther. are two limitations on the power handling abilitv of a

N

r-t-100",

" de
-. -

0.1
2.0

60

Safe operating area curves indicate Ie - v CE limits of the transistor
that must be observed for reliable operation; I•••• the transistor
must not be subjected to greater dissipation than the curves Indicate.

10
7.0
5.0

--

- - --Ther",,' limit@Te .. 250 C

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
transistor:

,

0.3
0.2

0.2
0.1
2.0

1:0~

-TJ =lSOoC

~_ 0.5 I

--Bonding Wire Limit

I-'-'
~ 0.3

r--- to!":'"

i:' 5.0

1.Oms

TJ -lSOoC

~

....

10

0.2

IJciElsaU@lcllB"10
IIi

I-'

0.1
0.01

0.02 0.03 0.05

0.1

0.2 0.3

0.5

1.0

2.0 3.0 4.0

0.005

0.01

IC. COLLECTOR CURRENT (AMP)

2.0 3.04.0

0.02 0.03 0.05
0.·1
0.2 0.3 0.5 1.0
IC. COLLECTOR CURRENT (AMP)

FIGURE 5 - THERMAL RESPONSE
1.0
0.7 ~O-0.5
0.5

~

u;
z

~~
....~~
~

~~

:z i

w~

0.3
0.2

-

0.2

-

-0.1

~i=

il!

0.03

Z

0.02

~

-

--: .....

o. 1~ =0.05

--

0.0 7 =
!:::!w 0.05

o

,.-

- ::

0.01
0.01

"JC - 3.12"CIW Max
MJE521. MJE3521

~

~

::;;>

0.02

~h-:-l
I,

-"JC - ~:O~_C.!W MIX ~ JMJE521KJ
D'CU V SAPPlv ORP
PULSE TRAIN SHOWN
READ TIME AT 11
TJ(pk) - TC-P(pk) "JC(I)

I

E

DUTY CYCLE. D= I,ll,

"'I
-0.01

SinglaPulsa

I
0.02 0.03

II
0.05

1111
0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

I. TIME OR PULSE WIDTH Ims)

512

10

.1 I J I I I
20

30

50

100

200 300

500

1000

MJE521, MJE 521 K, MJE3521 (continued)

M

T

II

tMJE521

1=:

LI

A-

-~

0--!tL
Li.r-.--&1

-L.l

STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITTER

DIM

MILLIMETERS
MIN MAX

16.0B 16.33
12.57 12.B3
3.1B 3.43
0.51 0.76
3.61 3.B6
2.54 BSC
2.67 2.92
0.43 0.69
K 14.73 14.99
.16 2.41
3 TYP
M
N 1.47
1.73
n 4.78 5.03
2.16
R 1.91
S
0.81
0.86
T 6.99
7.24
6.48
U 6.22

A
B
C
D
F
G
H
J

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.118
0.091 0.097
0.085 0.095
0.015 0.025
0.605 0.655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155

....1h-J
MJE521K

~~i

MJE3521

E::.Jrl C
M-J~ t

~S

K

~I--D
ltt!
rR!
G

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
B
7.49
7.75
2.41
C
2.67
0
0.51
0.66
F
2.92
3.00
2.46
G 2.31
H
2.16
2.41
J
0.64
0.38
K 15.38 16.64
30 TYP
M
n 3.76 4.01
R
1.14
1.40
S
0.64
0.89
U
3.94
3.68

il

~---}

K

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

+

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER
INCHES
MIN MAX
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100BSC
0.105 0.115
0.017 0.027
0.5BO 0.590
0.OB5 0.095

~I

0.lB8
0.075
0.032
0.275
0.245

1. DIM "G" IS TO CENTER LINE OF LEADS.

NOTE:
1. MT= MAIN TERMINAL

CASE 199'()4

CASE7NJ3

513

MJE 700 thru MJE 703 PNP (SILICON)
MJE800 thru MJE803 NPN

4.0 AMPERE

PLASTIC MEDIUM-POWER
COMPLEMENTARY SILICON TRANSISTORS
... designed to replace discrete driver and output stages in comple·
mentary audio amplifier applications.
•

High DC Current Gai n hFE = 750 (Min) @ IC = 1.5 and 2.0 Adc

•

Monolithic Construction

•

Three Lead Design - Emitter·Base Resistors to Prevent Leakage
Multiplication are Built-In.

DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

60-80 VOLTS
40 WATTS

~

MAXIMUM RATINGS
MJE702
MJE703
MJE802
MJE803

VCEO

MJE700
MJE701
MJE800
MJE801
60

Collector-Base Voltage

Ve8

60

Emitter-Base Voltage

VE8

5.0

Vdc

Collector Current

IC

4.0

Adc

Base Current

18

0.1

Adc

Po

40
0.32

Watts
WloC

TJ. Tst9

-55 to +150

°c

Symbol

Rating
Collector·Emltter Voltage

Total Device Dissipation @TC
Derate above 25°C

= 2SoC

Operating and Storage Junction

Temperatlng Range
THERMAL CHARACTERISTICS

80

Vdc

80

Vdc

3.13

Thermal Resistance. Junction to Case

I"--

"'"

......

i'-.

~

0

..........
..........

0

50

75
100
TC. CASE TEMPERATURE{OCI

1--0

L--ILJ

GJ:i

125

PIN 1. EMITTER
1. CO llECTOR
3 BASE

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0,105
0.020 0.026
0.115 0.118

~
~

"

~
~
P

0.148
0.045
0.025
0.145

0.158
0.055
0.035
0.155

CASE 77'()3

...... i'-.

0

25

K

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
7.49
7.75
B
2.41
2.67
C
0.51
0.66
D
2.92
3.00
f
2.46
2.31
G
2.16
2.41
H
0.64
J
0.38
K 15.38 16.64
30 TYP
M
Q
4.01
3.76
1.40
R
1.14
0.89
S
0.64
3.94
U
3.68

FIGURE 1 - POWER DERATING
40

s

tH

E3r=1-r
M-JI...

Max

Characteristic

Unit

"'-.

150

514

When mounting the device, torque not to
exceed 6.0' In.-lb.
If lead bending is required, use suitable
clamps or other supports between transistor
case and point of bend.

MJE700 thru MJE703 PNP/MJE800 thru MJE803 NPN (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Characteristit
OFF CHARACTERISTICS
Collector-Emitter Breakdow~ Voltagel1,
(lC = SOmAde,lB = 0)

Max

Min

Vde

BVCEO
MJE700,MJE701,MJE800,MJE801
MJE702,MJE703,MJE802,MJE803

Collector Cutoff Current
(VCE = 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 0)

ICEO
MJE700, MJE701, MJE800, MJE801
MJE702, MJE703, MJE802, MJE803

Collector Cutoff Current
(VeB = Rated BVCEO, IE = 0)
(VCB = Rated BVCEO, IE = 0, TC = 100o e)

leBO

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

lEBO

Unit

-

60
80

-

-

500
500

-

0.2
2.0

!lAde

mAde

-

2.0

mAde

ON CHARACTERISTICS
De Current Gain(l)
(lC = I.SAde, VCE = 3.0Vde)
(Ie = 2.0 Ade, VCE = 3.0 Vde)

MJE700,MJE702,MJE800,MJE802
MJE701,MJE703,MJE801,MJE803

Collector-Emitter Saturation Voltage( 1)
(Ie = I.SAde,IB = 30 mAde)
(Ie = 2.0Ade,IB =40mAdc)

MJE700,MJE702,MJE800,MJE802
MJE701, MJE703, MJE801, MJE803

Base-Emitter On Voltage(1)
(lC = 1.5 Adc, VCE = 3.0 Vde)
(Ie = 2.0 Ade, VCE = 3.0 Vde)

MJE700,MJE702,MJE800,MJE802
MJE701, MJE703, MJE801, MJE803

-

hFE

VCE!sat)

750
750

-

-

2.5
2.8

-

2.5
2.5

Vde

,ae

BE (on)

DYNAMIC CHARACTERISTICS
Small-5ignal Current Gain
(Ie = 1.5 Ade, VCE = 3.0 Vde, f = 1.0 MHz)
Pulse Width '.'5: 300 /Js, Duty Cycle ~ 2.0%.

(1 )Pulse Test:

FIGURE 2 - DC SAFE OPERATING AREA

5.0

I
~
0:

~

1.0

0:

~

0.3

~

.......

2.0

0.7
O. 5

c
'-'

I.....

3.0

-

-

O. 1
0.07
0.05
1.0

Bonding Wire Limit
Thermal Limit at TC - 250 C
Secondary Breakdown limit
TC I•

O. 2

.... ....

r ....

There are two limitations on the power handling ability of a

transistor: average junction temperature and secondary breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor

2~DJ

that must be observed for reliable operation; e.g., the transistor
must not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed by secondary breakdown. (See AN-415)

1\
MJE700,70! ...
MJE800, 801

fr\

MJE702,703_
MJE802,803
2.0

3.0

5.0 1.0

10

20

30

50

70 100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 3 - DARLINGTON CIRCUIT SCHEMATIC
PNP
MJE700
thru

MJE703

Collector

r------1
1
1

NPN
MJE800

-,

. - - -......

thru

MJE803

1
I

B,,,

Base

Collector

r---------,
:

1

I

1
1

1
1

1

I
I

I

1

1

I
_.J

1

_.J

Emitter

Emitter

515

MJE71 0 (SILICON)
MJE711
MJE712

PNP SILICON MEDIUM-POWER TRANSISTORS

1.5 AMPERE
POWER TRANSISTORS
PNP SILICON

· .. designed for use in low power amplifiers, as drivers in high-power
amplifier and medium-speec:t switching circuits.

40, 60, 80 VOLTS
20 WATTS

• De Current Gain -

hFE = 40 (Min) @ Ie = 150 mAdc
=20 (Min) @ Ie =500 mAdc
• Collector-Emitter Sustaining Voltage VCEO(sus) = 40, 50, 80 Vdc (Min) @ Ie = 50 mAdc
• Complement to NPN Types MJE72O, MJE721 , MJE722 Series
• Equivalent to the Specifications of the Pro-Electron
B0166, BOl68 and B0170 Transistors

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

MJE 710 MJE 711 MJE7t2

40

VeEO

60

80
80

Collector-B... Voltage

VeB

Emitter-Base Voltage

VEB

40
60
_5.0

Collector Current

Continuous

Ie

-1.6

Base Current

IB

-0.5

Total Device Dissipation IiITA - 26°C

Po

-1.26

20
-'0.16

Derate above 26°C
Operating and Storage Junction

..
..

-0.008

Po

Vde
Vde
Vde
Ade
Ade

.

Derate above 25°C
Total Device Dissipation iii T e = 26°C

Unit

Watt

wf'e
Watts
wf'e

TJ. Tstg - - B 5 t o + I 6 0 -

°e

Tamperatura Rangs

THERMAL CHARACTERISTICS
,Symbol

Max

Unit

Thermal Resistance, Junction to ease

8Je

6.25

°efW,

Thermal Resistance. Junction to Ambian

8JA

100

°efW

Characteristic

STYLE I
PIN 1. EMITTER
2. COLLECTOR
3. BASE

FIGURE 1 - ACTIVEoftEGION SAFE OPERATING AREA
10

i
5

Ii
'"a:tl
a:

5.0 -~-

.

TJ'I6QOC

--- -- .... .... .. .. ,

~--

3.0
2.0

...

..

1.0

l00~

1.0 . .

~

...

",6.0 ..

"\

~

0.2
0. 1
6.0

I PL..sEl:dRVESAPkY~!
I
RATED VCEO
MJE 710
I III
7.0

10

I

I
20

:::m
30

A
I

1\
G
H
J

~

:-8£ 0 IREAK OWN
de
LIMITED
U - - - 10NOING WIRE LIMITED
---THERMAL~Y L1MITED.TC '25"C
B 0.3

DIM

K
M

::-...

10.80
7.48
2.41

11.05
1.
2.81

0.51
.2

0.68
.

2.36 SSC
2.16
2.41
0.38
O.
15.38 16.64

TYP

R

3.16
1.14

4.01
1.40

S'
U

0.64
3.68

0.89
3.94

Q

50

MILLIMETERS
MIN
MAX

CASE 77.1)3

VeE, COLLECTDR.£MlmR VOLTAGE (VDLTSI

516

MJE710, MJE711, MJE712 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Max

40
60

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage
(lC = 50 mAde, IB = 0)

Vde

VCEO(sus)
MJE710
MJE711
MJE712

Collector Cutoff Current
(VCE = 20 Vde, IB = 0)
(VCE ~ 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 0)

ICEO
MJE710
MJE711
MJE712

Collector Cutoff Current
(VCE = 4OVde, VBE(off)
(VCE = 60 Vdc, VBE(off)
(VCE = 80 Vdc, VBE(off)
(VCE = 40 Vdc, VBE(off)
TC = 1250 C)
(VCE = 60 Vde, VBE(off)
TC= 1250 C)
(VCE = 80 Vde, VBE(off)
TC = 1250 C)

-

80

-

-

500
500
500

"Ade

-

ICEX

=
=
=
=

1.5 Vdc)
1.5 Vdc)
1.5 Vde)
1.5 Vde,

MJE710
MJE711
MJE712
MJE710

= 1.5 Vde,
= 1.5 Vde,

"Ade

-

-

100
100
100
500

MJE711

-

500

MJE712

-

500

-

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

1.0

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(lC = 150 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 1.0 Ade, VCE = 1.0 Vde)

hFE

Coliector·Emittar Saturation Voltage
(lC = 150 mAde, IB = 15 mAde)
(lC = 500 mAde, IB = 50 mAde!
(lC = 1.5 Ade, IB = 300 mAde

VCE(satl

Basa·Emitter Saturation Voltage
(lC = 1.5 Ade, IB = 300 mAde!

VBE(satl

Basa·Emitter On Voltage
(I C = 500 mAde, V CE = 1.0 Vde)
FIGURE 2

1000

3DO

co

200 -

ffi

::1
......

- DC CURRENT GAIN

c

o.8

t-- I""- ,.... TJ = 1500C

1l' 30

!"

10

30

50

100

200

300

500

Vde

O. 6

~~

O.4

r--

J1 II

VIBE~;) ~IIJ"B =

~~

0

~

1000

o

2000

I

VBE(on)@VCE= 1.0 Ydc

20

J

1

V
VCE(sot) .Ic/IB = 10

30

50

100

200

,.,..
300

i-"

500

1000

2D00

IC. COLLECTOR CURRENT (mA)

Note 1:
limitatio~s

Vde

O. 2

IC, COLLECTOR CURRENT (mA)

There are two

1.3

,;

r--.

2D

20

~o

~
w

0
55°C

-

FIGURE 3 - "ON" VOLTAGES

250

w

-

0.15
0.4
1.0

0.95

1.0

VCE"1.0Vdc- t -

100

:::>

-

VBE(on)

500
z

Vde

TJ = 25°C

;;:

40
20
8.0

The data of Figure 1 is basad on T J(pk) = 15oDc; TC is variable
depending on conditions. Second breakdown pulse limits arB valid
for duty cycles to 10% provided T J(pk) Sl5oDc. At high casa
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by sacond
breakdown. (See AN-415)

on the power handling ability of a

transistor; average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be obsarved for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

517

MJE720 (SILICON)
MJE721
MJE722

NPN SILICON MEDIUM-POWER TRANSISTORS

1.5 AMPERE
POWER TRANSISTORS
NPN SILICON

... designed for use in low-power amplifiers, as drivers in high-power
amplifier and medium-speed switching circuits.

40, 60, 80 VOLTS
20 WATTS
•

DC Current Gain hFE = 40 (Min) @ IC = 150 mAdc
= 20 (Min) @ IC = 500 mAdc

•

COllector-Emitter Sustaining Voltage VCEO(sus) = 40, 60, 80 Vdc (Min)

•

Complement to PNP Types MJE710, MJE7", MJE712 Series

•

Equivalent to the Specifications of the Pro-Electron BO 165,
B0167, and B0169 Transistors

@

IC = 50 mAdc

THERMAL CHARACTERISTICS
Symbol

Rating

MJE720 MJE721 MJE722

Unit

VCEO

40

60

80

Vdc

Collector-Base Voltage

VCB

40

60

80

Vdc

Emitter-Ba.se Voltage

VEB

Collector-Emitter Voltage

Collector Current

Continuous

.
.

5.0

Vdc
Adc

IC

'--1.5

Base Current

IB

-0.5

Total Device Dissipation @T A =25°C

Po

-1.25

-0.008

wf'c

Po

-20

Watts

-0.16

wf'c

Derate above 25°C
Total Device Dissipation@Tc"" 25°C

Derate above 25°C
Operating and Storage Junction

TJ, Tstg -

Adc
Watt

-65 to + 1 5 0 -

°c

Temperature Range

MAXIMUM RATINGS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

8JC

6.25

°CIW

Thermal Resistance. Junction to Ambia"

8JA

100

°CIW

Characteristic

STYLE I
PIN I. EMITTER
2. COLLECTOR
3. BASE

FIGURE 1 - ACTIVE· REGION SAFE OPERATING AREA
10

0:

'"$

5.0

TJ -15OOC

-,,- -

-- ----

--.;:

3.0

~

l-

~

...

...

ia
0

SECOND BR EAKDDWN
LIMITED
i
i
de
0.5
BONDING WIRE LIMITED
- - - - THERMALLY LIMITED@TC'25oC
0.3

'"

~
8
!J

1.Oms

......

~

....

~,5.0ms

~

D

'\

F

G

-

~!MJE 720
O.2 ~fURVESAPPLY
RATED VCEO

I

O. I
5.0

A

~

2.0
1.0

DIM
l00p.s

7.0

10

I
20

H
J

K
M

"

...... ~

Q

R

s

MJE721
MJE 722
30

u

50

70

100

See Note 1

VCE , COLLECTOR·EMITTER VOLTAGE (VOLTS,

518

CASE 77·03

MJE720, MJE721, MJE722 (continued)
ELECTRICAL CHARACTERISTICS (TC s 250C unl... otherwise not.1I
Min

Mu

40
60
BO

-

-

500
500
500

MJE720
MJE721
MJE722
MJE720

-

-

100
100
100
500

MJE721

-

500

MJE722

-

500

-

1.0

40
20

-

Unit

OFF CHARACTERISTICS
Collactor-Emitaor Sultllinlng Voltage
(lC· 50 mAde, lB· 0)

Vde

VceO(sus)
MJE720
MJE721
MJE722

Collactor Cutoff Current
(VCE = 20 Vde, IB = 0)
(VCE = 30 Vde,lB = 0)
(VCE ·40 Vde, IB s 0)

I£Ade

ICEO
MJE720
MJE721
MJE722

Collector Cutoff Current
(VCE • 40 Vde, VBE(off) = 1.5 Vde)
(VCE· 60 Vde, VBE(off) = 1.5 Vde)
«VCE • 80 Vde, VBE(off) = 1.5 Vde)
(VCE -40 Vdc, VBE(off) -1.5 Vdc,
TC = 12&oC)
(VCE· 60 Vdc, VBE(off)· 1.6 Vdc,
TC = 12SoC)
(VCE = 110 Vdc, VBE(off) - 1.& Vdc,
TC -12&oC)

-

I£Ade

ICEX

-

Emitaor Cutoff Current
(VBE =5.0Vde,IC = 0)

lEBO

mAde

ON CHARACTERISTICS

-

DC Current Gain
(lC s 150 mAde, VCE = 1.0 Vde)
IIc = 500 mAde, VCE = 1.0 Vde)
IIc = 1.0 Ade, VCE = 1.0 Vde)

hFE

Collactor-Emitter Saturation Voltage
IIc = 150 mAde,IB = 15 mAde)
IIc = 500 mAde, IB = 50 mAde)
IIc = 1.5 Ade,lB = 300 mAde

VCE(sat)

-

0.15
0.4
1.0

_Emitter Saturation Voltage
IIc = 1.5 Ade,lB =300 mAde

VBE(sat)

-

1.3

Vde

Base-Emitter On Voltage
IIc = 500 mAde, VCE = 1.0 Vde)

VBE(on)

-

0.95

Vdc

B.O

Vde

-

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

1000

1.0
VCE -1.0 Vdc

500
0.8

z 300

...........

<
'" 200

TJ=150oC

....

z
w

.

~ ......

~ 100

~

::I

o

~

50

-550C

HtTH

50

VBE(sa,)@ICIiB' 10

~

:;:::
~-,::

~

VBE(on) @VCE - 1.0 V

~ 0.6

""

~

ri i

w

c:~>

0.4

/

>'

30
20

"'

0.2

1,,\

10
20

30

50

100

200

300

500

1000

VCE(.. ,)@ICIIB - 10

o

2000

20

30

50

100

100

300

500

1000

1000

IC. COLLECTOR CURRENT (mA)

IC, COLLECTOR CURRENT (mA)

Not. 1:
There are two limitations on the power handling ability of a
transistor; average junction temperature and second breakdown.
Safe operating area curves indicatelc - VCE limits of the trensistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipetion than the curves indicate.

The data of Figure 1 is based on TJ(pk)

= 150o C; TC

is variable

depending on conditions. Second breakdown pulse limits are valid

for duty cycles to 10% provided T J(pk) S 15aGC. At high case
temperatures, thermal limitations will reduce the power that can be

handled to values less than the limitations imposed by second
breakdown.

(See AN-415)

MJE800 thru MJE803 (SILICON)
For Specifications, See MJE700 Data,
519

MJE1090 thru MJE1093 PNP (SILICON)
MJE2090 thru MJE2093
MJE 1100 thru MJE 1103 NPN
MJE 2100 thru MJE2103
5.0 AMPERE

PLASTIC MEDIU!VI-POWER
COMPLEMENTARY SILICON TRANSISTORS

DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON
60·80 VOLTS
70 WATTS

Designed for use in driver and output stages in complementary
audio amplifier applications.

• High DC Current Garn hFE = 750 (Min) @ IC

= 3.0 and

4.0 Adc

• True Three Lead Monolithic Construction - Emitter·Base Resistors
to Prevent Leakage Multiplication are Built in.
•

Available in Two Packages - Case 90 or Case 199

MJE1090
MJE1091
MJE1092
MJE1093
MJE1100
MJE1101
MJE1102
MJE1103

MAXIMUM RATINGS

Rating

Symbol

Collector-Emitter Voltage

MJE1090
MJE1091
MJEll00
MJE1101
MJE2090
MJE2091
MJE2100
MJE2101

MJE1092
MJE1093
MJEll02
MJE1103
MJE2092
MJE2093
MJE2102
MJE2103

Unit

CASE 90-05

VCEO

60

80

Vdc

COllector-Base Voltage

VCS

60

80

Vdc

Emitter-Base Voltage

VES

50

Vdc

IC

5.0

Adc

Collector Current

IS

01

Adc

PD

70
0.56

Watts
WloC

TJ. T stg

-55 to +150

°c

Base Current

Total Device DISSIpation
Derate above 25°C

@

T C ." 25°C

Operating and Storage Junction
Temperatmg Range
THERMAL CHARACTERISTICS

Characteristic

MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101
MJE21Q2
MJE2103

Max

Thermal Resistance, Junction to Case

1.8

FIGURE 1 - POWER DERATING
0
0

"'"

0
0

.~

CASE 199-04

"'"

0
0
0

~

~
~

0
0

20

40

60

80

100

12il

. . . r--.,.
140

TC, CASE TEMPERATURE I'C)

520

160

MJE1090 thru MJE1093 PNP/MJE1100 thru MJE1103 NPN (continued)
MJE2090 thru MJE2093 PNP/MJE2100 thru MJE2103 NPN

ELECTRICAL CHARACTERISTICS (TC

=

25°C unl... otherwise notedl
Symbol

Min

Max

60
60
80
80

-

-

500
500
500
500

-

0.2
2.0
2.0

750
750
750
750

-

Unit

OFF CHARACTERISTICS

Coliector·Emitter Breakdown VOltage(1)

= 100 mAde,

(lC

la

= 01

MJE1091,
MJE2091,
MJE 1093,
MJE2093,

MJE1100,
MJE2100,
MJE 1102,
MJE2102,

MJEll0l
MJE2101
MJE 1103
MJE2103

MJE1090,
MJE2090,
MJE1092,
MJE2092,

MJE 1091,
MJE2091,
MJE1093,
MJE2093,

MJE 1100,
MJE2100,
MJEll02,
MJE2102,

MJE 1101
MJE2101
MJE1103
MJE2103

Collector Cutoff Current
(VCE

= 30 Vdc,

la

= 01

(VCE

= 40 Vdc,

la

= 01

ICED

Collector Cutoff Current
(Vca = Rated aVCEO, IE
(VCR = Rated BVCEO, IE

= 5.0 Vde,

IC

"A de

mAde

Icao

= 01
= 0, Tr. = l000CI

Emitter Cutoff Current
(V BE

Vde

aVCEO
MJE1090,
MJE2090,
MJE1092,
MJE2092,

lEaD

= 01

mAde

ON CHARACTERISTICS (11
DC Current Gain
(lC = 3.0 Ade, VCE

= 3.0 Vdel

= 4.0 Ade,

= 3.0 Vdel

(lc

VCE

MJE1092,
MJE2092,
MJE1093,
MJE2093

MJEll.00,
MJE21oo,
MJE1101,
MJE2101

MJEll02
MJE2102
MJEll03
MJE2103

Collector-Emitter Saturation Voltage
(lC = 3.0 Ade, IS

= 12 mAdei

= 4.0 Ade,

= 16 mAdei

(lC

IS

VCE (satl
MJE1090,
MJE2090,
MJE1091,
MJE2091

MJE1092,
MJE2092
MJE1093,
MJE2093

MJE1100,
MJE2100
MJE1101,
MJE2101

MJEll02
MJE2102
MJE1103
MJE2103

MJE1090,
MJE2090
MJE1091,
MJE2091,

MJE1092,
MJE2092,
MJE1093,
MJE2093,

MJE11oo,
MJE21oo,
MJE 1101,
MJE2101,

MJEll02
MJE2102
MJE 1103
MJE2103

Base-Emitter On Voltage

= 3.0 Ade,

(lc

VaE ionl

VCE = 3.0 Vdel

(lC = 4.0 Adc, VCE

-

hFE
MJE1090,
MJE2090,
MJE1091,
MJE2091

= 3.0 Vdcl

Vde

-

2.5
2.5
2.8
2.8

-

2.5
2.5
2.5
2.5

Vde

DYNAMIC CHARACTERISTICS

Small--5ignal Current Gain
(lC = 3.0 Adc, VCE = 3.0 Vdc, f
(1)Pulse Test: Pulse Width

:e:; 300

= 1.0 MHzI
JJ.S,

Duty Cycle ~ 2.0%.

FIGURE 2 - DC SAFE OPERATING AREA
0
.0

a::

'"

,.;
>-

I

.of-·

2

0

~

.1

-

O. 3

~

"

O~ ~~~~~~~~ ~;~~:e~o:nT~~I~;doc

o

~

·+·-t·-t-+H+H·

30

-.--

=j~;:~::: !
=j~;:::~:
~~;~:~::; I
=jg:~~:~;

\
\

.5

O. 2

o.1
1.0

TC
2.0

=

25°C
3.0

There are two limitations on the power handling ability of a

tram.lstar
JunctIOn temperature and secondary breakdown Safe
operatIng area curves ,nd,cate IC··VCE 1II111ts of the tranSIstor that
mu!.t be Observed for rel,able operatIon, e.g., the transIstor l11u!.t
not be subjected to greater dISSIpatIOn than the curves md,cate
At hIgh case temperatures, thermal limItatIOns will reduce the
power that can be handled to values less than the IImltat10ns
Imposed by seconddry breakdown. (See AN-415J

1\

Bonding Wife Limited

5.0

7.0

10

20

1\
30

50

70100

VeE, COLLECTOR EMITTER VOLTAGE (VOLTS)

FIGURE 3 - DARLINGTON CIRCUIT SCHEMATIC

PNP
MJE1090
thru

MJE1093
MJE2090
thru
MJE2093

r------,
I ~o."...'

.-t;;I;~ II
L

_ _ _ _ _ -l

NPN
MJE1100
thru

MJEII03
MJE2100
thru

EmItter

MJE2103

521

··-:cs:s

,------,

L

I ~o"'.".'
I

I

_ _ _ _ _ -l

EmItter

MJE 1090 thru MJE1093 PNP/MJE1100 thru MJE 1103 NPN (continued)
MJE2090 thru MJE2093 PNP/MJE2100 thru MJE2103 NPN

MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101
MJE2102
MJE2103

MJE1090
MJE1091
MJE1092
MJE1093
MJE1100
MJE1101
MJE1102
MJE1103

STYLE 1:
PIN 1. BASE
2. CO LLECTO R
3. EMITTER

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

DIM

MilliMETERS
MIN MAX

INCHES
MIN MAX

A
B
C
D
F
G
H
J

16.08 16.33
0.633 0.643
0.495 0.505
12.57 12.83
3.18 3.43
0.125 0.135
0.51
0.76
0.020 0.030
3.61
0.142 0.152
3.86
2.54 8SC
0.100 BSC
2.67
2.92
0.105 0.115
0.43 0.69
0.017 0.027
0.580 0.590
K 14.73 14.99
V6 2.41 0.085 0.095
30 TYP
M
3" TYP
1.73
0.058 0.068
N 1.47
Q
0.188 0.198
4.78
5.03
2.16
0.075 0.085
R 1.91
0.81
0.86
0.032 0.034
S
0.275 0.285
T 6.99
7.24
6.48
0.245 0.255
U 6.22
1. DIM "G"IS TO CENTER LINE OF LEADS.

F

G
H
J
K
M
Q

R
NOTE:
1 LEAOS WITHIN .005" RAO OF TRUE
POSITION ITP) AT MMC

CASE

90·05

CASE 199'()4

522

MJE1290, MJE1291 PNP (SILICON)
MJE1660, MJE1661 NPN

15 AMPERE
COMPLEMENTARY SILICON

POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM·POWER TRANSISTORS

40-60 VOLTS
· .. designed for use in power amplifier and switching applications.
•

High Collector Current IC= 15Adc

•

High DC Current Gain hFE = 10 (Min) @ IC = 15 Adc

90 WATTS

MAXIMUM RATINGS
Symbol

MJE1290
MJE1660

MJEl291
MJEl661

VCEO

40

60

Vdc

Collector-Base Voltage

Vca

40

60

Vdc

Emitter-Base Voltage

VEa

5.0

Vdc

'C

15

Adc

Base Current

la

5.0

Adc

Total Device Dissipation @TC:= 25°C
Derate above 25°C

Po

90
0.72

Watts
W/oC

TJ. T,t9

-65 to +150

°c

Rating
Collector-Emitter Vottage

Collector Current-Continuous

Operating and Storage Junction

Unit

Temperature Range

THERMAL CHARACTERISTICS
Max

Characteristics
Thermal Resistance, Junction to Case

1.39

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

FIGURE 1 - POWER TEMPERATURE DERATING CURVE

DIM
0

""

0
0
0

A
B
C

0
F
G

""

H

0

-"

J
K
M

0

'-

0

"

0
0
0

25

50

75

100

Q

R
U

INCHES
MIN MAX
0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.13B 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0,075 0.085
0.245 0.255

CASE 90·05

~

125

MILLIMETERS
MIN
MAX
16.13 16.36
12.57 12.B3
3.18 3.43
1.09 1.24
3.51 3.76
4.228Se
2.67 2.92
0.813 0.864
15.11 16.38
90 TYP
4.70 4.95
1.91 2.16
. 6.22 6.48

150

When mounting the device, torque not
to exceed 8.0 in.-Ib.

175
If lead bending is required. use suitable
clamps or other supports between transistor case and point of bend.

TC. CASE TEMPERATURE (DC)

523

MJE1290, MJE1291 PNP/MJE1660. MJE1661 NPN(continuedJ

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

Symbol

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage fit
(lc = 200 mAdc, IB = 0)

ICEO

Collector Cutoff Current

ICES

= 40 Vdc, VBE = 0)
= 60 Vdc, VBE = 0)

MJE1290, MJE1660
MJE1291, MJE1661

Collector Cutoff Current
(VCB = 40 Vdc, IE = 0)

(VCB

Max

40
60

-

-

1.0

-

-

0.7
0.7

ICBO
MJE1290, MJE1660
MJE1291, MJE1661

= 60 Vdc, IE = 0)

-

0.7
0.7

Emitter Cutoff Current
(VBE = 5.0 Vdc, IE = 0)

lEBO

-

1.0

20
10

100

-

1.8

-

2.5

3.0

-

25

-

Unit

Vdc

VCEO(sus)
MJE 1290, MJE 1660
MJE1291, MJE1661

Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)
(VCE
(VCE

Min

mAdc
mAdc

mAdc

mAdc

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 5.0 Adc, VCE = 4.0 Vdc)
IIc = 15 Adc, VCE = 4.0 Vdc)

-

hFE

Collector-Emitter Saturation Voltage (11
(lC = 15 Adc, IB = 1.5 Adc)

VCE(sat)

Base-Emitter on Voltage III
(IC = 15 Adc, VCE = 4.0 Vdc)

VBE(on) .

-

Vdc
Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 Adc, VCE = 10 Vdc, f

= 1.0 MHz)

Small-Signal Current Gain
(lC = 1.0 Adc, VCE = 10 Vdc, f

= 1.0 kHz)

MHz

for
hfe

-

(U Pulse Test: Pulse Width'S 300+,1. Duty Cycle'S. 2.0%.

FIGURE 2 - DC SAFE OPERATING AREA

100
&::

·50 =rJ -150°C

~ 20
t;: 10

.
.

~--

....

~ ~.o
'-'

o

~....

-- I -

- - - - Secondary Breakdown limited
- - - - - Thermally limited. TC:: 25 0 C
- - - - Bonding Wire Limh:ed

2. 0
1.0

8 o.5
!t
O.2
o. I

-MJE1291

~ .-- MJE1661\ \

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power-temperature derating must be observed for both steady state and pulse power conditions.

MJEI290, MJEI660

IIII
I.b

2.0

3.0

5.0 7.0

10

20

30

50

70 100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

524

MJE2010, MJE2011 PNP (SILICON)
MJE2020, MJE2021 NPN

5.0 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON

COMPLEMENTARY SILICON
MEDIUM-POWER TRANSISTORS

4O-GOVOLTS
BOWATTS

• .• designed for use in general-purpose amplifier and switching
applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 3.5 Adc

• High DC Current Gain hFE = 25-125@lIC= 1.0 Adc

MAXIMUM RATINGS
Symbol

MJE201 0
MJE2020

MJE2011
MJE2021

Unit

VeEO

40

60

Vdc

Collector-Base Voltage

VeB

40

60

Vdc

Emitter-B... Voltage

VEB

Rati",
Collector-Emitter Voltage

Colt'ector Current - Continuous

Ie

Base Current

'B
Po

Total Device Dissipation@Te=25o e
Derate above 260 e

Operating and Storage Junction
Temperatura Range

TJ.Tstg

---

6.0
5.0
3.0

60
0.64

--

Vdc
Adc
Ado
Watts

wf'e

_-65to+150~

°e

THERMAL CHARACTERISTICS
Ch.racterlstic

Thermal Resistance, Junction to Case

i=1l lC
~
_.
-11
R

FIGURE 1 - POWER TEMPERATURE DERATING CURVE
DIM

80

A
70

e

80

Q

50

!z

~

~

Q

'"~
2

e

"""'" i'-..

40

B

C
D

'I'..

30

20
10

o

o

20

40

60

80

F
G
H

"'-

J
K

'"

100

MILLIMETERS
MIN MAX

18.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61 3.86
2.54 BSC

2.67 2.92
0.43 0.69
14.73 14.99
.41

M

N
Q

li'-..

120

R
S

T

~
140

U

STYLE 1:
PiN 1. BASE
2. COLLECTOR
3. EMiTTER

TYP

1.47
4.78
1.91
0.81
6.99
6.22'

1.73
5.03
2.16
0.86
7.24
6.48

160
1. DIM "G"ISTO CENTER LINE OF LEADS.

TC. CASE TEMPERATURE (DC)
CASE 199-04

525

MJE2010, MJE2011 PNP/MJE2020, MJE2021 NPN (continued)

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

40
60

-

-

0.7

-

0.4

-

0.4

'-

0.4

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(1)
(IC = 200 mAde, IS = 0)

Collector Cutoff Current
(VCE

= 30 Vde,

IS

ICEO

= 0)

Collector Cutoff Current
(VCE = 40 Vde, VSE = 0)

MJE2010, MJE2020

= 60 Vde, VSE = 0)

MJE2011, MJE2021

(VCE

Vde

VCEO(sus)
MJE2010, MJE2020
MJE2011, MJE2021

-

mAde

ICES

Collector Cutoff Current

mAde

ICSO

= 40 Vde, IE = 0)
(VCS = 60 Vde, IE = 0)
(VCS

MJE2010, MJE2020

-

0.4

-

1.0

25

125

15

-

-

1.0

-

1.5

VSE(on)

-

1.6

Vde

IT

3.0

-

MHz

hIe

20

MJE2011, MJE2021

Emitter Cutoff Current
(VSE = 5.0 Vde, IC = 0)

mAde

IESO

mAde

ON CHARACTERISTICS
DC Current Gain(l)

Collector-Emitter Saturation Voltage( 1 J
(lC
(lC

= 3.5 Ade,
= 5.0 Ade,

IS
Ie

Vde

VCE(sat)

= 350 mAde)
= 800 mAde)

Base-Emitter On Voltage
(I C = 3.0 Ade, V CE

-

hFE

= 1.0 Ade, VCE = 4.0 Vde)
(lC = 3.0 Ade, VCE = 4.0 Vde)
(lC

= 4.0 Vde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.5 Ade, VCE = 10 Vde, I

= 1.0 MHz)

Small-Signal Current Gain
(lC = 0.5 Ade, VCE = 10 Vde, I

= 1.0 kHz)

-

(1)Pulse Test: Pulse Width ~ 300 /J.s, Duty Cycle S'2.0%.

FIGURE 2 - DC SAFE OPERATING AREA

10
5.0

,.

2.0 I-- TJ = 150 0 C

I-

1.0

~

~

~
'"u:::>
'"
0

~

S

iL MJE2011

\ '\

0.5
0.2
0.1

MJE2021
The Safe Operating Area Curves indicates Ie-VeE limits below

which the device· will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power~temperature derating must be observed for both steady state and pulse power conditions.

MJE2010
MJE2020

===

Secondary Breakdown.Limited
250 C
Bonding Wire Limited

~ - - - - - Thermally limited@Tc

0.05 ~

~

0.02

II II

0.01
1.0

2.0

3.0

5.0 7.0

10

20

30

50

70

100

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS).

526

MJE20S0 NPN
MJE21S0 PNP

(SILICON)

Advance In:forInation
5.0 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON
25,45 VOLTS
15 WATTS

COMPLEMENTARY SILICON POWER TRANSISTORS
... designed to be used in conjunction with the MC1385P audio
driver integrated circuit to produce a Class B audio amplifier suitable
for auto radio applications.

MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage
Emitter-Base Voltage

Collector Current - Continuous

Operating and Storage Junction
Temperature Range

MJE2150

I

45

Unit

Vde

25

4.0

Vde

IC

5.0
10

Ade

Po

15
0.12

Watts
W/oC

TJ,Tstg

-65 to +150

°c

Peak
Total Power Dissipation @TC=25oC
Derate above 2SoC

I

MJE2050

VCER
VEB

\.--0
GlJ

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

I
I

Symbol
R6JC

I
I

Max
8.34

I
I

°elW

I

Unit

Unit

E::3ri-f
M-JI...; t

ELECTRICAL CHARACTERISTICS ITc = 25°C unless otherwise noted!.
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

IIc

=0.2 Adc, RBE = 1.0 k Ohms)

iSymbol

I

:I I

MJE2050
MJE2150

BVCER

Min

45
25

ON CHARACTERISTICS

DC Current Gain
IIc

= 1.8 Adc, VCE = 1.0 Vde)

I

I

I I I
hFE

50

Max

Vdc

-

c
o
F

G

-

-

H

J

.o
K

R

s

u
CASE 77.4)3

This is advance ,"formation on a new introduction and specifications are subject to change without notice.

527

STYLE I.
PIN 1 EMITTER
2. COLLECTOR
3. BASE

MJE2090 thru MJE2093 (SILICON)
For Specifications, See MJEI090 Data.

MJE2100 thru MJE2103 {SILICON}

For Specifications, See MJE1090 Data.

MJE2160

{SILICON}

PLASTIC MEDIUM-POWER NPN
SILICON TRANSISTOR

1.5 AMPERE
POWER TRANSISTOR
NPN SILICON

· .. designed for line operated audio output amplifier applications
in television and radio receivers; as medium power line operated seriespass and switching regulators.
•

300 VOLTS
50 WATTS

High Collector-Emitter Sustaining Voltage VCEO(sus) = 300 Vdc (Min) @ Ie = 10 mAdc

• Excellent DC Current Gain hFE = 3()'240@ IC = 500 mAde
• Thermopad Construction: Case 199 - for Metal-to-Metal
Mounting

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

300

Vde

Emitter-Base Voltage

VEB

5.0

Vde

Collector Current - Continuous

IC

1.5

Ade

Total Device Dissipation @ T C = 25°C
Derate above 25°C

PD

50
0.4

Watts
W/oC

TJ,Tstg

-6Sto+150

°c

Rating

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Thermal Resistanco, Junction to C...

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otharwiso noted)

I

Clmacterlsti.

I I!vmbol I

Min

I Typ I

Max

VCEO(sus)

300

-

-

Vde

BVCEO

300

-

-

Vde

'CBO

-

-

100

/lAde

'EBO

-

-

100

/'Ade

30
10

-

240

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 100 mAde (inductive),
L -50mH)
Collector-Emitter Breakdown Voltage
(lc = 1.0 mAde, lB· 0)
Collector Cutoff Current
(VCB = 300 Vde, IE • 0)
Emitter Cutoff Current

(VEB - 5.0 We, IC· 0)

ON CHARACTERISTICS
DC Current Gain
IIC· 500 mAde, VCE - 10 Vde)
IIC = 1.0 Ado. VCE - 10 Vde)

hFE

-

-

Collector-Emitter Saturation Voltage
lie - 500 mAde, 'B· 50 mAde)

VCE(sat)

-

-

3.5

Vde

Base-Emitter On Voltage
(lC - 500 mAde, VCE = 10 Vde) ,

VBE(on)

-

-

1.2

Vde

-

1.94
2.14

Base-Emitter Voltage Temperature
Coeffleiont
IIC· 60 mAde, VCE = 10 Vde)
_65°C to +250 C
+250 C to +ISOOC

BVB

-

528

mVfOC
mVfOC

.tfRi

~I

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

MILLIMETERS
DIM MIN
AX
A 16.08 16.33
B 12.57 12.83
3.18 '3.43
C
0.51 0.76
D
3.61 3.86
F
2.548SC
G
H
2.67 2.92
0.43 0.69
J
K 14.73 14.99
2.41
L
.1
TVP
M
1.73
N 1.47
Q
4.78
5.03
2.16
R 1.91
0.81
0.86
S
7.24
T 6.99
6.48
6.22
tDiM "G" IS TO CENTER LINE OF LEADS.
CASE 199.04

MJE2160 (continued)

FIGURE 1 - DC CURRENT GAIN
200
100
70
z
;;: 50
co
....z 30
W
0:
0:

..

~

-

c

~

10
7.0
5.0

- - - VCe-IOV
- - - VCE"2.0V

-

I
I

TJ" 250C

3.2

250C

20 --55 0

=>

...

I"-

TJ = 1500C

FIGURE 2 - "ON" VOLTAGES
4.0

.'- ,-

~

h

I VCEI~t)

~

5.0-_

~ 2•4

I'

w

~o

'.

~

"l" . .

>
,;

VBE@

'.S

/

0.8

3.0
2.0
20

50 70

30

100

200

""

:\.\

300

JIC/IBI'IO _

500 700 1000

o

2000

20

...... ,.....
50

30

70 100

200

!/

iT'jV-

~

/

f...-' VBi'itl,ilfB-'r300

500 700 1000

2000

IC. COLLECTOR CURRENT ImA)

IC. COLLECTOR CURRENT ImA)

FIGURE 3 - ACTIVE·REGION SAFE OPERATING AREA
4. 0
3.0

2.0

""~
....

O.lms,,1.0 ms 1\.

....

...

5.0~~

'-

f ..I,

'\.

1.0

~ o. 6

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; I.e., the transIstor
must not be subjected to greater diSSipation than the curves Indicate.
The data of Figure 3 IS based on TJ(pk) = 150°C; TC IS vanable

015ms~

de

0:

a
~

t;

~
-'
o

~J = J,50 0
SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMALLY L1MITEO@TC'250&
(SINGLE PULSE)

0.4
0.3
-

o. 2

- - - -

~ o. I
0.0s
0.0410

20

50

30

70

depending on conditions. Second breakdown pulse limits are valid
for duty cycle! to 10% provided TJ(pk) .;; 150°C. At high case

temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second

.'\

100

breakdown. (See AN·415)

200

300

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 5 - SUSTAINING VOLTAGE
TEST CIRCUIT

FIGURE 4 - POWER DERATING
50

"-

~ 40
!;;:
z

~

"

'\.

~
0

50mH

30

""'-

gj
i5

20

"

0:

~
~

~ '0

o

o

20

40

so

80

'"

""'-

100

TC. CASE TEMPERATURE 10C)

.::i1

.=... S.OV-

" ""'120

"

140

300
160

529

1.0

MJE2360 (SIUCON)
MJE2361

NPN SILICON HIGH-VOLTAGE TRANSISTOR
· •. designed for use in line operated two·watt audio output amplifier
applications in televisions and radios.
•

High Coliector·Emitter Sustaining Voltage VCEO(sus) = 350 Vdc (Min) @ IC = 2.5 mAdc

•

Excellent DC Current Gain hFE = 40 (Min) @ IC = 100 mAdc - MJE2361

0.5 AMPERE
POWER TRANSISTORS
NPN SILICON
350 VOLTS
30 WATTS

• Current-Gain-Bandwidth Product fj" = 10 MHz (Typ) @ IC = 50 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

350

Vde

Collector-Base Voltage

VCB

315

Vde

Emitter-Base Voltage

VEB

6.0

Vde

Collector Current - Continuous

IC

0.5

Ade

Base Current

IB

0.25

Ade

Total Device Dissipation @TC=2SoC

Po

30
0.24

Watts
W/oC

TJ,Tstg

-65 to +150

°c

Collector-Emitter Voltage

Derate above 25°C
Operating and Storage Junction
Temperature Range

STYLE 1:
PIN 1. BASE

2. CO LLECTO R
3. EMITTER

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case

DIM

MILLIMETERS
MIN MAX

A 16.0B 16.33
12.57 12.B3
3.18 3.43
0.51
0.76
3.61
3.86
F
2.54 SSC
G
2.67
2.92
H
0.43 0.69
J
14.73
14.99
K
L
Z.16
2.41
30TYP
M
N 1.47
1.73
0
4.78
5.03
2.16
R 1.91
0.81
u.86
S
7.24
T
6.99
6.48
U 6.22
B

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
40

C
D

.........
.........
0
......... r-..,

.........
0
........ r-..,

0

.........

0
20

40

60

80

100

120

r-..

140

INCHES
MIN MAX
0.633
0.485
0.125
0.020

0.643
0.505
0.135
0.030

II

,!!;W~
~
~
~
0.095

0.085
3"TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255

1. DIM "G·' ISTO CENTERLINE OF LEADS.
160

CASE 199-04

TC, CASE TEMPERATURE IOC)

530

MJE2360, MJE2361 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Typ

VeEOlsus)

350

-

-

Vde

ICEO

-

-

0.25

mAde

ICEX

-

-

0.5

mAde

ICBO

-

-

0.1

mAde

lEBO

-

-

0.1

mAde

MJE2360
MJE2361

25
50

200
250

MJE2360
MJE2361

40

-

Characteristic

Max

Unit

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage( 1)

lie

= 2.5 mAde, Ie = 0)

Collector Cutoff Current

IVCE

= 250 Vde, Ie = 0)

Collector Cutoff Current

IVCE

= 375 Vde, VEeloff) = 1.5 Vde)

Collector Cutoff Current

IVce

= 375 Vde, IE = 0)

Emitter Cutoff Current

IVeE

= 5.0 Vde,

IC = 0)

ON CHARACTERISTICS
DC Current Gain (1)
lie = 50 mAde, VCE

IIc = 100 mAde, VCE

-

hFE

= 10 Vde)
= 10 Vde)

15

-

Coliector·Emitter Saturation Voltage(1)
IIc = 100 mAde, Ie = 10 mAde)

VCElsatl

-

-

1.5

Vdc

Base·Emitter On Voltage
IIc = 100 mAde, VCE = 10 Vdc)

VBElon)

-

-

1.0

Vdc

fT

-

10

-

MHz

Cob

-

20

-

pF

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

IIc

= 50 mAde, VCE = 10 Vde, f = 1.0 MHz)

Output Capacitance
(VCB = 100 Vdc, IE

= 0, f = 100 kHz)

(1)Pulse Test: Pulse Width ~ 300 IJ.s, DutV Cvcle ~2.0%.

FIGURE 2 - DC SAFE OPERATING AREA
1.0

;;::

0.5

~ 0.3

ffi

0.2

a:
a:

- - - Secondary Breakdown limited
- - - Bonding Wire Limited

~ O. I

a:
o

1\

The Safe Operating Area Curves indicate IC-VCE limits below

t;

,

j 0.05
B 0.03 r--TJ = ISooC
~O.O 2
0.0 I
1.0

i

2.0

I I

1

5.0

which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be observed for both steady state and pulse power conditions.

10

20

50

1110

200

I
500 1000

VCE, COLLEGTOR·EMITTERVOLTAGE (VOLTS)

531

MJE2370 (SILICON)

3.0 AMPERE
POWER TRANSISTOR
PNP SILICON MEDIUM·POWER TRANSISTOR

PNP SILICON
40 VOLTS
40 WATTS

· .. designed for use in general· purpose amplifiers as drivers and as
switches.
• Low Coliector·Emitter Saturation Voltage
VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc
• High DC Current Gain hFE =40·200@ IC =0.2 Adc
• Complement To NPN MJ_E2520

MAXIMUM RATINGS
Roti",
Coliector·Emitter Voltage
COliector·a... Volt.
Emitter·a_ Voltage
Collector Current - Continuous
_Current
Total Deltice Oi.ipation • TC ~ 25u C
01,.,. Ibova 250 C
Operating .nd Stor. Junction
Temperature Range

Symbal

v.....

Unit

VCEO
Vca
VEa
IC

40
40

Vdc
'Vdc

5.0

Vdc

3.0

Adc

la

1.0

Adc

Po

40
0.32
-65 to +150

Wans
WJOC

TJ,Tstg

B

M

T

s

°c

-JI--J

THERMAL CHARACTERISTICS

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

Thermal Rasilllnce,Junctlon to ca.

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
40

e
i

35

0

25

..

20

z

~
ia0
;

f

e

" "'"

30

15
10

A
B
C
D
F

""',
'" "'-

5.0

o
o

G
H
J
K
L
M
N

60

BO

100

120

160

0.51
3.61

2.
2.67
0.43

14.73

T
U

6.22

6.4B

S

140

3.18

5.03

R

f'..

16.08

12.57

.1
3
1.47
4.78
1.91
.81
6.99

0.

~
20

DIM

1.73

2.16
0.86
7.24

1. DIM "G"ISTO CENTERLINE OF LEADS.
CASE 199-04

532

MJE2370 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

CharlCteristlc

Symbol

Min

Max

40

-

-

0.3

-

0_2

-

1.0

40
10

200

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining VOltagall 1
(lc = 50 mAde, 18 = 01

Vdc

VCEOlsusl

Collector Cutoff Current
IVCE = 30 Vdc,IB = 01

ICED

Collector Cutoff Current
NCE = 40 Vdc, VBE =01

ICES

Emitter Cutoff Current
IVEB 5.0 Vdc, IC = 01

lEBO

=

mAde
mAde
mAde

ON CHARACTERISTICS
DC Current Gainlll
(lC = 0.2 Ade, VCE
IIC = 1.0 Ade, VCE

-

hFE

= 4_0 Vdcl
=

4.0 Vdcl

-

Collector-Emitter Saturation Voltagelll
(lC = 1.0Ade,IB = 125 mAdel

VCElsatl

-

0_7

Vdc

Base-Emitter On Voltage
IIC = 1.0 Adc, VCE = 4.0 Vdel

VBElonl

-

1.3

Vdc

Current-Gain-Bandwidth Product
IIC = 0.5 Adc, VCE = 10 Vdc, f = 1.0 MHzl

fT

3.0

-

MHz

Small-Signal Current Gain
IIC = 0.5 Ade, VCE = 10 Vdc, f = 1.0 kHz)

hfe

20

-

-

DYNAMIC CHARACTERISTIC

1llPut.. T.st: Put .. Width ~ 300 ,.s, Duty Cycte ~2.0".

FIGURE 2 - DC SAFE OPERATING AREA
10
5.0
0:

'..."'
...z
5

=
=
1'l
...=
0

!!l-'
0

'"'~

'

2.0
TJ'150oC

1.0

....

~

0.5
0.2
0.1

~

0.05 :::.:

- - - Secondary Breakdown limited
__ - - Thermally Limited@Tc =250 C
-

\

Bonding Wire Limited

0.02
0.01
1.0

The Safe Operating Area Curves indicate IC-VCE limits below
which the davice will not enter secondary breakdown. Collector
load lin.. for specific circuits must fall within the applicebl. Safe
Area to avoid causin\l" catastrophic fallure_ To insure operation
below the maximum T.to power-temperature derating mUlt be obterved for both steedy state and pulse power conditions.

2.0

3.0

5.0

IIIII
7.0

10

20

30

50

70

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

533

MJE2480, MJE2481 (SILICON)
MJE2482, MJE2483

4.0 AMPERE

NPN SILICON MEDIUM-POWER TRANSISTORS

POWER TRANSISTORS
NPN SILICON

· .. designed for use in general-purpose amplifier and switching
applications.
•

Low Coliector·Emitter Saturation Voltage VCE(sat) ~ 0.7 Vdc (Max) @ IC ~ 1.5 Adc

•

DC Current Gain hFE ~ 20-100@ IC

~

40-60 VOLTS
60 WATTS

2.5 Adc

• Current·Gain-Bandwidth Producttr ~ 2.0 MHz (Min) @ IC ~ 1.0 Adc

MAXIMUM RATINGS
Symbol

MJE2480
MJE2482

MJE2481
MJE2483

Unit

VCEO

40

60

Vdc

Coliector·Base Voltage

VCB

40

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

4.0

Adc

Base Current

IB

2.0

Adc

Total Device Dissipation@Tc= 25°C
Derate above 25°C

Po

60
0.48

Watts
W/oC

TJ.Tstg

-65 to +150

°c

Rating
Collector-Emitter Voltage

Collector Current

Continuous

Operating and Storage Junction
Temperature Range

D~L

THERMAL CHARACTERISTICS

~~

Characteristic

--- =-f-r

Thermal Resistance, Junction to Case

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE

A
B
C
0
F
G
H
J

80

~

!z
c

70
80

'"'"

50

~

40

5

a:

30

c

20

!:i

..!Il

~

'"'"

"'""

""'" .......,

10

o
o

........
20

40

60

DIM

80

100

120

I'-...

140

160

TC. CASE TEMPERATURE (OCI

534

MILLIMETERS
MIN MAX
16.08 16.33
12.57 12.83
3.18 3.43

~I--J
STYlE 1:
PIN1.BASE
2. COllECTOR
3. EMITIER
INCHES
MIN MAX

0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
3.61
0.142 0.152
2.54
0.100 BSC
0.105 0.115
2.67
0.43
0.017 0.027
K 14.73 1
0.580 0.590
L
2.16
2.41
0.085 0.095
M
JC TYP
3" TYP
N 1.47
1.73
0.058 0.068
Q
4.78
0.188 0.198
5.03
R 1.91
2.16
0.075 0.085
0.81
0.032 0.034
S
0.86
T 6.99
7.24
0.275 0.285
U 6.22
6.48
0.245 0.255
1. DIM "G·· IS TO CENTER LINE DF LEADS.
CASE 199-04

." i

MJE2480, MJE2481, MJE2482, MJE2483 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

40

-

Unit

OFF CHARACTERISTICS
CollectorMEmitter Sustaining Voltage(1)
(lC = 100 mAde, IB = 01

Collector Cutoff Current
(VCE = 20 Vdc, IB = 0)

MJE2480, MJE2482

= 30 Vde, IB = 0)

MJE2481, MJE2483

(VCE

1.0

-

0.1

-

0.1

All Types

40

-

MJE2480, MJE2481

20

100

MJE 2482, MJE2483

20

100

-

0.7

-

1.4

-

1.5

= 60 Vde,

MJE2481, MJE2483

= 5.0 Vde,

IC

1.0
mAde

ICBO

= 0)

Emitter Cutoff Current
(VBE

mAde

-

MJE2480, MJE2482

IE

60
ICEO

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
(VCB

Vde

VCEO(susl
MJE2480, MJE2482
MJE2481, MJE2483

lEBO

= 0)

0.1
mAde

ON CHARACTERISTICS
OC Current Gain(l)
(IC = 1.0 Ade, VCE

Collector-Emitter Saturation Voltage(1)

= 1.5 Adc,
(lC = 4.0 Ade,
(lC

-

hFE

= 4.0 Vdc)
(lC = 1.5 Ade, VCE = 4.0 Vde)
(IC = 2.5 Ade, VCE = 4.0 Vde)

Vde

VCE(sat)

= 0.15 Ade)
IB = 1.0 Ade)
IB

Base-Emitter On Voltage
(lC = 1.5 Ade, VCE = 4.0 Vde)

VBE(on)

Vde

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(I C

= 1.0 Ade, V CE = 10 Vde, f = 1.0 MHz)

(1) Pulse Test: Pulse Width

s: 300 #ls,

Duty Cycle S 2.0%.

FIGURE 2 - DC SAFE OPERATING AREA

0
5. 0
0
- - - Secondary Breakdown Limited

O§ ___
5~
-

ThermallyLimited@Tc 250C
Bonding Wire Limited

...
_\

MJE2480.82

2

MJE248 1,83

l\

V
The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power·temperature derating must be ob·
served for both steady state and pulse power conditions.

, 1\

1\

1
5
-TJ-150oC
0.0 2
0.0 1
1.0

2.0

3.0

5.0

7.0

10

20

30

50

70 100

VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

535

MJE2490 (SIUCON)
MJE2491

3.0 AMPERE
POWER TRANSISTORS

PNP SILICON MEDIUM-POWER TRANStSTORS

PNPSILICON

. designed for use in general-purpose amplifiers as drivers and
as switches.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.2 Vdc (Max) @ IC = 3.0 Adc

•

High DC Current Gain hFE = 20-100@ IC = 1.0 Adc

•

Complements to NPN MJE2522 and MJE2523

40-60 VOLTS
60 WATTS

MAXIMUM RATINGS
Rating

Svmbol

MJE2490

MJE2491

Unit

VeEO

40

60

Vdc

Collector-Sase Voltage

Ves

40

60

Vdc

Emitter-Base Voltage

VES
Ie

Collector-Emitter Voltage

Collector Current - Continuous
Base Current

IS

Total Oevice Dissipation @TC == 25°C

Po

--

3.0

-

Derate above 25°C
Operating and Storage Junction
Temperature Range

5.0

TJ.Tstg

1.0
60

--

Vdc

Adc

-

Adc
Watts

-0.48-

wf'e

--65to+150-

°e

THERMAL CHARACTERISTICS

STYLE 1:
PIN 1. 8ASE
2. COLLECTOR
3. EMITTER

Characteristic

Thermal Resistance. Junction to Case
DIM

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
80

i

70
00

z
o

0

:::

40

i5

0

;::

iii

'"~
~

~

..........

"'" ""

20

""t--..

0

"t--..

0
20

40

60

80

100

120

""i'..
140

MILLIMETERS
MIN MAX

16.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61
3.86
2.54 BSC
2.67
2.92
0.43 0.69
K 14.73 14.99
L
2.16
2.41
3 TYP
M
N
1.47
1.73
n 4.78 5.03
2.16
R 1.91
0.81
0.86
S
7.24
T 6.99
6.48
U 6.22

A
B
C
0
F
G
H
J

INCHES
MIN MAX
0.633 0.643
0.485 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100 B C
0.105 0.115
0.017 0.027
0.580 0.590
0.085 0.095
30 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 0.255

1. DIM "0" IS TO CENTER LINE OF LEADS.

160

TC. CASE TEMPERATURE (OCI

536

CASE 199·04

MJE2490, MJE2491 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 250 C unless otherwise noted)
Symbol

Characteristic

Min

Max

40

60

-

-

0.3

-

0.2

20

100

8.0

-

-

0.6

-

1.3

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(l)
(lc = 50 mAde, IS = 0)
Collector Cutoff Current

(VCE

=

30 Vde, IS

ICEO
ICES

= 40 Vde, VSE = 0)
(VCE = 60 Vde, VSE = 0)

(VCE

MJE2490
MJE2491

Emitter Cutoff Current

= 5.0 Vde,

IC

mAde

= 0)

Collector Cutoff Current

(VES

Vde

VCEO(sus)
MJE2490
MJE2491

IESO

mAde
0.2
1.0

mAde

= 0)

ON CHARACTERISTICS
DC Current Gain(l)
(lC = 1.0 Ade, VCE

-

hFE

= 4.0 Vde)
(I C = 3.0 Ade, V CE = 4.0 Vde)

Coliector·Emitter Saturation Voltage(1)

Vde

VCE(satl

= 1.0 Arlo, is = 100 mAde)
(I C = 3.0 Ade, I B = 375 mAde)

(lC

Base-Emitter On Voltage

1.2
Vde

VBE(on)

= 1.0 Ade, VCE = 4.0 Vde)
(lc = 3.0 Ade, VCE = 4.0 Vde)
(lC

1.8

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 0.5 Ade, VCE = 10 Vde, I = 1.0 MHz)

IT

3.0

-

MHz

Small-Signal Current Gain
(lC = 0.5 Ade, VCE = 10 Vde, I = 1.0 kHz)

hfe

20

-

-

(1)Pulse Test: Pulse Width ~300 #Ls, Duty Cycle~ 2.0%.

FIGURE 2 - DC SAFE OPERATING AREA

10
5.0

...

ii:
::E

!>
l-

~
a
'"

2.0

-

~ ~:

8
~

\ \

- - - Secondary Breakdown limited
t. o E~
Thermally Limited@Tc - 25·C
5~'
Bonding Wire Limited
o.
MJE2490

2

MJE2491

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be observed for both stead V state and pulse power conditions.

V

\

1

0.0 5

I---- TJ = 150·C
0.02
0.0 1
1.0

2.0

3.0

5.0 7.0

10

20

30

50

70 100

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

537

MJE2520 (SILICON)

3.0 AMPERE
POWER TRANSISTOR
NPN SILICON MEDIUM·POWER TRANSISTOR

NPN SILICON

· .. designed for use in general·purpose amplifiers as drivers and as
switches.

40 VOLTS
40 WATTS

•

Low Coliector·Emitter Saturation Voltage
VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc

•

High DC Current Gain hFE = 40-200@ IC = 0.2 Adc

•

ComplementTo PNP MJE2370

MAXIMUM RATINGS
Rati",
Coliector·Emitter Voltage

Symbol

V.....

Unit

VCEO

Vde

Collector-Bose Voltage

VCB

40
40

Emitter-Bose Voltage

VEB

5.0

Vde
Ade

Collector Current

Continuous

Ie

3.0

Base Current

IB

1.0

Ade

Total Device Dissipation@TC=250C
Der....bove 250 e

Po

40

Watts

0.32

wfGc

TJ.Tstg

-65 to +150

°e

Operating and Storage Junction

B

Vdc

M

T

1-5

Temparature Range

l-J

THERMAL CHARACTERISTICS

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER

Thennal Resistance.Junction to case

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
40

I.
z

ijjj

""

35
30

20

5

I
~

""

15
10
5.0

o
o

20

40

60

80

"'

'""

100

120

MILLIMETERS
MIN MAX

A 16.0B 16.33
8 12.57 12.83
3.18 3.43
C
0.51
0.76
D
F
3.61 3.86
2.54 BSC
G
2.67 2.92
H
J
D.43 0.69
K 14.73 14.99
L
2.16
2.41
M
30 TYP
1.73
N 1.47
Q
4.78
5.03
2.16
R 1.91
0.81
S
0.86
T 6.99
7.24
6.
U 62

.",

25

DIM

i'--.
140

180

TC. CASE TEMPERATURE 10C)

INCHES
MIN MAX
0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100 BSC
0.105 0.115
0.017 O.D27
0.580 0.590
0.085 0.095
3"TVP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.285
0.245 O. 55

1. DIM "6" IS TO CENTER LINE OF LEADS.
CASE 199.()4

538

MJE2520 (continued)

ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Unit

OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage(11
(lC ~ 50 mAde, IS = 0)
Collector Cutoll Current
(VCE = 30 Vde, IS = 0)

ICEO

Collector Cutoff Current

ICES

(VCE

= 40 Vde, VSE = 0)

Emitter Cutoff Current

(VES

= 5.0 Vde,

IESO

= 0)

IC

Vde

VCEO(susl

40

-

-

0.3

-

0.2

-

1.0

40

200

mAde
mAde
mAde

ON CHARACTERISTICS
DC Current Gain( 1)
(lC = 0.2 Ade, VCE = 4.0 Vde)
Coliector·Emitter Saturation Voltage(1}

(lc

= 1.0 Ade,

10

-

VCE(sati

-

0.7

Vde

VSE(on)

-

1.3

Vdc

fT

3.0

-

MHz

hIe

20

-

-

= 4.0 Vde)

(lC = 1.0 Ade, VCE

-

hFE

IS = 125 mAde)

Sase-Emitter On Voltage
(lC = 1.0 Ade, VCE = 4.0 Vde)
DYNAMIC CHARACTERISTIC
Current·Gain-Bandwidth Product

(lc

=0.5 Ade, VCE ~ 10 Vdc, I = 1.0 MHz)

Small·Signal Current Gain
(lC =0.5 Adc, VCE = 10 Vde, 1= 1.0 kHz)
(1)Pulse Test: Pulse Width ~ 300 ~s, Dutv Cvcle ~2.0".

FIGURE 2 - DC SAFE OPERATING AREA
10
5.0

.......

0:

'"
~
a
!!
I-

2.0

0.5

'"
t;

0.2

;

0.1

8

0.05

0

~

\

TJ: 150DC

1.0

Breakdown limited
§F _ --- - Secondary
Thermally Limited TC : 25 C
@

D

The Sale Operating Area Curve. indicata IC-VCE limits below
which the daviea will not antar secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safa
Araa to avoid causing a catastrophic failure. To insura operation
below tha maximum T J, power-tamperatura darating must ba ob·

\

Bonding Wire limited

served for both steady state and pul. power conditions.

0.02

I 1111

0.01
1.0

2.0

3.0

5.0

7.0

10

20

30

50

70

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOL TSI

539

MJE2801(SILICON)
MJE2801K
10 AMPERE
POWER TRANSISTORS

HIGH-POWER NPN SILICON TRANSISTOR

NPNSllICON
60 VOLTS
90 WATTS

. . . for use as an output device in complementary audio amplifiers
up to 35·Watts music power per channel.

MJE2801
• High DC Current Gain - hFE = 25·100@ IC = 3.0 A
• Thermopad High·Efficiency Compact Package
• Complementary to PNP MJE2901. MJE2901 K
• Choice of Packages - MJE2801·Case 90
MJE2801K·Case 199

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

60

Vde

Coliector·B... Voltage

VCB

60

Vde

Emitter-Base Voltage

VEB
IC

4.0

Vde

10

Ade

IB

5.0

Ade

Pot

90
0.12
-55 to +150

Watts

Rating
Collector-Emitter Voltage

Collector Current

Base Current

Total Device Dissipation @TC = 25°C
Derate above 2SoC
Operating and Storage Ju netio"

TJ. Tst9

CASE 90-05

wf'c
°c

Temperature Range

MJE2801K

THERMAL CHARACTERISTICS
Charact_lllic
Thermal Resistance. JUr'ction to Case
tSafe Area Curves are indicated bv Figure 1. 80th limits are applicable and must beobserved.

ELECTRICAL CHARACTERISTICS (TC = 2S oC unless otherwise noted)

I

Characteristic

I

Symbol

I

Min

I Max I

60

-

-

0.1
2.0

Unit

OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (11
(lC = 200 mAde. IB = 0)
Coliector·Cutoff Current
(VCB = 60 Vde. IE = 0)
(liCB =60 Vde. IE - O. TC • 15o"C)

ICBO

Emitter Cutoff Current

lEBO

(VBE

=4.0 Vde. IC •

Vde

BVCEO

0)

mAde

CASE 199-04
mAde

-

1.0

25

100

-

1.4

ON CHARACTERISTICS

-

hFE

DC Current Gain
(lc = 3.0 Adc. VCE

= 2.0 Vde)

B...·Emitter 'IIoltaga
(I C = 3.0 Ade. VCE

= 2.0 Vde)

Vd.

VBE

(1) Pul .. T_: Pul.. Width <;300 "'•• Duty Cyel. <;2.0%.

540

MJE2801, MJE2801 K (continued)

FIGURE 1 - ACTIVE REGION
SAFE OPERATING AREA
10

7. 0
5.o

!

3. 0

::
a

1.o

!...t-

~ 2. 0

.
o

"~\I. ~...;

TJ -150OC

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i ,e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on T Jlpk) = ISo"C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T Jlpk) .;;; ISo"C. At high ca..
temperatures, thermal Iimitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown. lSee AN·415)

\\

==--'

~

BO'NDING WIRE LIMITED
O.7 =-----THERMALLY L1MIT@TC'ZSOC
5
SECONDARY BREAKDOWN LIMITED

~ o.
8 o.3
~
o.2

MJE2BDI. MJE2801K

O. 1
1.0

2.0

3.0

5.0

7.0

1 1
1 1

1

20

3D

10

50 6D

VCE. COllECTOR-EMITTER VOLTAGE IVOLTS)

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - DC CURRENT GAIN
500

1.4
1.2

TJ' 250 C

300

1
1

~1.0
~ o.8

VBE @VCE =2.0 V

.
.a

30

1.1 l i
1.1 ..l1

....
0

~

20

z

I

L

w

co

~ o.6

o
>
,; O.4

I I

o.2

C 100

'-"" .....-

V8EI..t)@ICilB' 10

~

0.2

0.3

0.5

1.0

2.0

25 6e

50

....

55 0 C

3.0

5.0
0.01

10

5.0

0.02

0.05

IC. COllECTOR CURRENT lAMP)

0.1
0.2
0.5
1.0
2.0
Ie. COLLECTOR CURRENT lAMPS)

FIGURE 4 - POWER DERATING
90

i!!
....

~

"'

80
70

z

0

;:: 60

~ 50

ill
c

.

40

...
...ci

20

.....

"

MJE2801. MJE2801 K

~

~ 3D

0

o

"

~

~

"-~

10

o

......

10

-I--""

o
0.1

.....,........t""

....

/

II

VCEI..!)@ICiIB' 10

VCE' 2.0 V

T "~C

200

25

100
50
75
125
TC. CASE TEMPERATURE (DC)

541

150

175

5.0

10

MJE2801, MJE2801 K (continued)

MJE2801

MJE2801K

M

~~i

DIM
A
B
C

DIM

A

0
F

G
H
J
K
L

G
H
J
K

M
N

M

n

n

R

R

U

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

LI-hr--ill

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

S
T

6.22

NOTE:
1. LEAOSWITHIN .005" RAD OF TRUE
POSITION (TP) AT MMC

U

MILLIMETERS
MIN MAX

INCHES
MIN MAX

16.0B 16.33
12.57 la.03
3.18 3.43
0.51
0.76
3.86
3.61
2.548SC
2.67 2.92
0.43 0.69
14.73 14.99
2.16 2.41
TYP
1.47
1.73
5.03
4.78
2.16
1.91
0.81
0.86
6.99
7.24
6.48
6.22

0.633 0.643
0.495 0.505
0.125 0.135
0.020 0.030
0.142 0.152
0.100BSC
0.105 0.115
0.017 0.027
0.580 0.590
0.085 O. 95
3 TYP
0.058 0.068
0.188 0.198
0.075 0.085
0.032 0.034
0.275 0.~5
0.245 0.255

1. DIM "G" IS TO CENTER LINE OF LEAOS.

CASE 90-05
CASE 199-04

542

MJ E2901 (SILICON)
MJE2901K

HIGH-POWER PNP SILICON TRANSISTORS
10 AMPERE
POWER TRANSISTORS
· .. for use as an output device in complementary audio amplifiers
up to 35-Watts music power per channel.
•

High DC Current Gain - hFE = 25·100@ IC = 3.0 A

•

Thermopad

•

Complementary to NPN MJE2801, MJE2801K

•

Choice of Packages - MJE2901 - Case 90
MJE2901K - Case 199

PNPSILICON
60 VOLTS
90 WATTS

High Efficiency Compact Package

MJE2901

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

60

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current

IC

10

Adc

Base Current

IB

5.0

Adc

Pot

90

Watts

0.72

W/oC

TJ, T,tg

-55 to +150

°c

Collector~Emitter

Voltage

Total Device Dissipation

@I

T C = 2SoC

Derate above 25°C
Operating and Storage Junction
Temperature Range

CASE 90-05

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
tSafe Area Curves are tndicated by Figure 1. Both limits are applicable and must be observed.

MJE2901K
ELECTRICAL CHARACTERISTICS (TC

= 25°C unless otherWISe noted)

Characteristic

Symbol

I Min I Max I

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc = 200 mAde, IB = 0)

BVCEO(1)

Collector-Cutoff Current
(VCB
(VCB

=60 Vdc, IE = 0)
=60 Vdc, IE = 0, TC = 15o"C

Emitter Cutoff Current
IVBE = 4.0 Vdc, IC

= 0)

60

Vdc
mAde

ICBO
0.1
2.0
1.0

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(lc = 3.0 Adc, VCE

25

100

= 2.0 Vdc)

Base-Emitter Voltage
(lC

CASE 199-04
hFE

= 3.0 Ade, VCE = 2.0 Vdc)

VBE

1.4

(1 )Pulse Test: Pul.. Width <;300 Ii', Outy Cycle<2.0%.

543

Vdc

MJE2901, MJE2901 K

(continued)

FIGURE 1 - ACTIVE-REGION SAFE
OPERATING AREA
10

...

7.0 I-TC'25"C

I

3.0

~ 1.0

a:

,\1
\

\d'\

F __: __ ~~~~~NAWI~~TL~M~~:0250C

~ 0.7 ~
0.5

The data of Figure I is based on T J(pk) = 15o"C; TC is variable
depending on conditions. Second breakdown pulse limits are valid

SECONDARY BREAKDOWN LIMITED

:l

~

There are two limitations on the power handling ability of 8
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie' VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

... I "S.O l1li.-'

TJ= 15 Doc

t;: 2.0

w
a:
a:

B.

oo~:

5.0

for duty cycles to 10% provided T J(pk)o;;;I500 C·. At high case
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown. (See AN-415)

1\

0.3

MJE2901. MJE2901 K

0.2

O. 1
1.0

2.0

3.0

5.0

1.0

I

1

10

20

\
50 60

30

VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 2 - "ON" VOLTAGES

FIGURE 3 - CURRENT GAIN
500

2.0

300

Tp 250C
1.6

~

0

~

ZOO
z:

W

to

«

:;
0

;(

.IV
1.2

VBEI"'I@ICIIB = I~
0.8

-

j

0.2

2sbC

50

...
i

/.

0.3
0.5
1.0
20 3.0
IC. COLLECTOR CURRENT IAMPI

...-....

W

""...:::>
,;'

vCEiJ@'lclll 10
0.1

100

Z

.....:

-55°C

~

30

CI

I -I I', I I I

0.4

to

~~

VBE@VCE =3.b ~

>
>'

o

:;:::::;;-

...

VCE' 2.0 V

TJO 150°C

10

5.0

5.0
0.01

10

0.02

0.05

02
0.1
0.5
1.0
2.0
IC. COLLECTOR CURRENT lAMPS)

FIGURE 4 - POWER DERATING
0
0
0;

10

i

0

z
o

0

:t

40

;::

iJi
c

"

""

0

"
~

20

&?

0
0

"

MJE2901. MJE2901 K

""

""
"'-

25

r-...

20

50

100
125
15
TC. CASE TEMPERATURE (DC)

544

""

150

175

5.0

10

MJE2901, MJE2901 K (continued)

MJE2901

MJE2901K
M

STYLE 1:

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

PIN 1. BASE

2. COLLECTOR
3. EMITTER
MIL LlMETERS

DIM
A
B

MILLIMETERS

DIM MIN
A

16.13

B
C
D
F

12.57
.18

C
D
F
G
H
J
K

1.09

G
H
J

K

M

M
Q

N

R

Q

U

R

S

NOTE:
1. LEADS WITHIN .005" RAD DF TRUE
POSITION (TP) AT MMC

T

u

MIN

MAX

16.0B 18.33
12.57 12.83
3.18 3.43
0.51
0.7&
3.81
3.88
2.MBse
2.67
2.92

0.43

0.&9

14.73
.1

14.99
.41

3 TYP

1.47
4.78
1.91
0.81
6.99
.2

1.73
5.03
2.1&
0.86
7.24
.4

1. DIM "6" IS TO CENTER LINE OF LEADS.

CASE91J.05

CASE 199'()4

545

MJE2955 (SILICON)
MJE2955K

HIGH POWER PNP SILICON TRANSISTORS
... designed for use in general-purpose amplifier and switching
applications.

10AMPERE
POWER TRANSISTORS
PNPSILICON

• DC Current Gain Specified to 10 Amperes
• High Current-Gain - Bandwidth Product - tr = 2.0 MHZ (Min)
@ IC = 500 mAdc
• Thermopad High-Efficiency Compact Package
• Complement to NPN MJE3055, MJE3055K
• Choice of Packages - MJE2955-Case 90, MJE2955K-Case 199

60 VOLTS
90 WATTS

MAXIMUM RATINGS
Rating
Collector·Emitter Voltage

Symbol

Value

Unit

VCEO

60

Vdc
Vdc

Collector·Base Voltage

Vce

70

Emitter-Base Voltage

VEe

5.0

Vdc

IC

10

Adc

Base Current-Continuous

IS

6.0

Adc

Total Device Dissipation@TC=250 CI1I
Derate above 25°C

Po

90

Watts

0.718

wf'c

TJ.T stg

-55 to +150

DC

Collector Current-Continuous

Operating and Storage Junctic;m
Temperature Range

MJE2955

THERMAL CHARACTERISTICS

CASE 90-05

Characteristic

Thermal Resistance, Junction to Case

FIGURE I - ACTIVE REGION SAFE OPERATING AREAS
0

1.0ms~10D~s

0

t

50"" ~

5.0

~
... 3 0

ifi
~

Iii
~

o. S

8 o.3

\

\ .\ \

MJE2955. MJE2955K

0

07

MJE2955K

'\.

0

.a ,
o

\

d'

-

-,-of--

!}

2

TJ"150'C
- - - SECOND BREAKDOWN LIMITED
-

- - - THERMAllY LIMITED

, I I

TC"25 0 CfO"OH

o

5.0

\

- - - - BONDING WIRE LIMITED

70

10

I
20

30

50 60

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

CASE 199-04

TIMf..... I _ hmom.on. on ttle po_ hl"dlln, ab,lity of • tranS'"lor .......... ,,,"... On
templlrelur. end _ond b.Mkdown S ... Op"".tlng .... Cu ..... IndlC." 'C VCE ' ..n,tt of
the u ......tor tMl must boo ob_v.d '0...... bl. operatIon. ' •. t .... ".n..stOt mult not b.
Mlb' ... tedto .....*dl..'p.tlonth.nth.curvaslnd'c••
Th. o.t. of F'gur. 1 's bft8d on TJ(pk) '" 150"C. TC It II..,IIbI. d.pand.ng on conchtlant Second b ..... do ..... pUlM I,m'tt.,. v.lld for duty eycl. to 10,. prOll'_ TJ(pk)
5 1l10Ge At h,ghc_
the.mII' I,m,t.t.ona w,1I ... du.c:. ttl. pow.. th" c.n b.
h.nd" to ".'un , _ th.n the IIm".t'onl 'mpoNd by 1IK0nd br..kdown !S.. AN "'l1)

."""'.81\1....

(1)Safe Ar. Curves are Indicated by Figure 1 - Both thermal and safearea
limits ere applicable and must be obterY8d.

546

MJE2955, MJE2955K (continued)

ELECTRICAL CHARACTERISTICS (TC

I

=

25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

60

-

-

700

-

1.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
(lc

Vde

VCEO(sus)

= 200 mAde, IB = 0)

Collector Cutoff Current

pAdc

ICED

(VCE = 30 Vdc, IB = 0)
Collector Cutoff Current

mAdc

ICEX

(VCE = 70 Vde, VEB(off) = 1.5 Vde)
(VCE = 70 Vdc, VEB(off)

= 1.5 Vdc, TC = 1500C)

Collector Cutoff Current

= 70 Vde,

mAde

= 0)
(VCB = 70 Vdc, IE = 0, TC = 1500C)

(VCB

IE

Emitter Cutoff Current

(VBE

= 5.0 Vde,

IC

5.0

ICBO

-

1.0

-

5.0

20

70

5.0

-

-

1.1

-

8.0

-

1.8

10
mAde

lEBO

= 0)

ON CHARACTERISTICS
DC Current Gain (1)

-

hFE

= 4.0 Ade, VCE = 4.0 Vde)
(lC = 10Ade, VCE = 4.0 Vde)
(lC

Colleetor-Emitter Saturation Voltage (1)

Vdc

VCE(sat)

= 4.0 Adc, IB = 0.4 Adc)
(lC = 10 Adc, IB = 3.3 Adc)
(lC

Base-Emitter On Voltage ( 1)
(IC

Vdc

VBE(on)

= 4.0 Adc, VCE = 4.0 Vdc)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwkhh Product

(lC

= 500 mAdc, VCE = 10 Vdc, f =500 kHz)

(1)Pulse Test: Pulse Width ~300 /ols, Duty Cycle ~2.0%.

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES

SOO

2.0
TJ = 25°C

300
200
z

~

...

100

~

so

::'i

13
u

30

i

20

c

...-

-

VeE" 2.0 V

TJ" ISOoC

u;

1.6

':;
c
~ 1.2

2SoC

~

to

~SsoC

~

........

>'

F'"
0.4

10
S.O
0.01

r--o
0.02

0.05

0.1

Ie.

0.2

O.S
1.0
2.0
COLLECTOR CURRENT (AMP)

S.O

0.1

10

--

VaE(",) iii' IcJla - 10

~ 0.8

V~E ~ VFE =)3.0 IV

vJE(L)~leJla llo
0.2

0.3

0.5

b:::;O ~""
/

......
I--1.0

2.0

Ie, COLLECTOR CURRENT (AMP)

547

3.0

5.0

10

MJE2955, MJE2955K (continued)

MJE2955

MJE2955K
F

M

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITIER

STYLE 2:
PIN 1. EMITIER
2. COLLECTOR
3. BASE

DIM
A
B

C
0
F
G
H

J
K
M
N
Q

R
S
T

NOTE:
1. LEADS WITHIN .005" RAO OF TRUE
POSITION lTP) AT MMC

U

MIN

MAX

16.08 16.33
12.57 12.83
.18 3.43
0.51 0.76
3.61 3.86
2.54 BSC
2.67 2.92
0.43 0.69
14.73 14.99
2.41
TYP
1.47
1.73
4.78 5.03
1.91
2.16
.86
0.81
6.99
7.24
6.48
6.22

1. DIM "G"IS TO CENTER LINE Of LEADS.

CASE90.Q6

CASE 199.04

548

MJE3055 (SILICON)
MJE3055K

HIGH POWER NPN SILICON TRANSISTORS

10 AMPERE
POWER TRANSISTORS

• .• designed for use in general·purpose amplifier and switching appli·
tions.

NPNSILICON
60 VOLTS

•

DC Current Gain Specified to 10 Amperes

•

High Current Gain - Bandwidth Product for 2.0 MHz (Min) @ IC 500 mAdc

=

90 WATTS

=

• Thermopad

High·Efficiency Compact Package

•

Complement to PNP MJE2955. MJE2955K

•

Choice of Packages - MJE3055 - Case 90
MJE3055K - Case 199

MJE3055

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

60

Vdc

Coliector·B_ Voltage

VCB

70

Vdc

Emittor·B_ Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

10

Ade

a_ Current -

IB

6.0

Ade

Po

90
0.718

W/oC

-56 to +150

Dc

Reting

Coliector·Emitter Voltago

Continuous

Total OllYieo Oillipation @TC - 25°C {ti
Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ,Tstg

Watts

CASE 90-05

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case

MJE3055K
e1} Sef. Ara. Curves.,. Indicated by Figur. 1 - Both thermal and ..fa area
limits .r. applicable and must be observed.

FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
0

1.8ms't.1OO".

.0 .. 'r---' I-

..

0

~

"\.

0
MJE3OH. MJE3G55K

0

\ ,\1\

7

•-f--I3

111

0. I
U

CASE 199-04

7,0150'0
- - - SECOND BREAKDOWN LIMITED
- _ ... - ION DING WIRE LIMITED
- - - - THERMALLY LIMITED
70:3"010 0 0.11
1.0

~

1

50 ••

10
20
3D
VeE. COLL£CTOR·EMITTER VOLTAGE (VOLTSI

There .... two limnallons on tIM pGWllr handling ability of II "anllstor ....., . . JunCllon
t.fnp.k.tu,• •nd .-cOnd br. .kdown. S.fe O~'.tin• • r. . curves In~flc.te IC'VCE limits of
UW Uanilitor tha' m ...st be obMrv.d for r.liabla operation, i .•.• the ".nu,to, must nOt be
subjected 10 .e.ter diSllp.llon th.n the curve, Indic."
TM da.. of F .... r. 1 IS baed on TJfpkl .. l~C. TC i, ...a'iebledepending on condl'
tion,. Second breakdown pul"limllS .,. ..... Iid fot duty eyel. . 10
providlld TJ(pkl
:! 150o C. AI high c ... tempetatl.lr... thermal IImltadon, Will '''!,Ie. the power that can be
h.ndled to .... ,1.1.. ,... than Ih. limitations Impo..cf by wc::ond breakdown (S. . AN 4151

'0'"

549

MJE3055, MJE3055K (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)
DI.racteristic

I

Symbol

Min

Max

Unit

VCEO(sus)

60

-

Vdc

Collector Cutoff Current
(VCE = 30 Vdc,IB ~ 0)

ICEO

-

700

I'Ade

Collector Cutoff Current
(VCE = 70 Vdc, VEB(off) = 1.5 Vdc)
(VCE = 70 Vdc, VEB(off) = 1.5 Vdc, TC = lsoDC)

ICEX

-

1.0
5.0

Colltector Cutoff Current
(VCB = 70 Vdc, IE = 0)
(VCB = 70 Vdc, IE = 0, TC = 1500C)

ICBO

-

-

1.0
10

Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)

lEBO

-

5.0

20
5.0

70

-

1.1
8.0

-

1.8

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lc = 200 mAde, IB = 0)

mAdc

mAdc

mAde

ON CHARACTERISTICS
OC Current Gain (1)
(lC = 4.0 Ade, VCE = 4.0 Vde)
(lC = 10 Adc, VCE = 4.0 Vdc)

-

hFE

Collector-Emitter Saturation Voltage (1)
(lC = 4.0 Ade, IB = 0.4 Ade)
(lC = 10 Adc, IB = 3.3 Adc)

VCE(satl

Base-Emitter On Voltage (1)
(lC = 4.0 Ade, VCE = 4.0 Vde)

VBE(on)

Vde

Vde'

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product
(lC = 500 mAde, VCE = 10 Vdc, f = 500 kHz)
(1) Pulse Test: Pulse Width.::5300 IlS, Dutv CycleS2.0%.

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGES'

500

[

300
TJ: 150°C

200
z

;;:

'"
~

100

...-1"'""

=
'"c

30

/

w

-55°C

~

......

[

!:j O•6

'",;>

20

VBE@VCE : 2.0 V

o.4
[

0.2

10
5.0
0.01

......

VSE(..t)@lICilS-IO

~ 0.8
50

~

[
[

~ 1.0

25°C

I-

B

TJ: 25°C

1.2

VCE - 2.0 V

0.02

[

,./

[ [

VCE(..ti@lICilB =10

1.--1"'""

o
0.05

0.1
0.2
0.5
1.0
2.0
IC, COLLECTOR CURRENT (AMP)

5.0

10

0.1

0.2

0.3

0.5

1.0

2.0

IC, COLLECTOR CURRENT (AMP)

650

3.0

5.0

10

MJE3055, MJE3055K (continued)

MJE3055K

MJE3055

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

STYlE 1:

PIN 1. BASE
2. COLLECTOR
3. EMITIER

DIM

MilliMETERS
lNCHES
DIM MIN
MAX MIN MAX
A
16.38 0.635 0.645
B
12.83 0.495 0.505
C
3.43 0.125 0.135
D
0.043 0.049
0.138 0.148
0.166 BSC
G
H
0.105 0.115
0.032 0.034
J
0.595 0.645
K
M
90 TYP
Q
0.185 0.195
0.075 0.085
R
0.24 0.255

MilliMETERS
MIN MAX

A
B
C
D
F
G

16.08 16.33
12.57 12.83
3.18 3.43
0.51
0.76
3.61
3.86
2.54 SSC
H
2.67
2.92
J
0.43 0.69
K 14.73 14.99
L
2.16
2.41
M
30TVP
N
1.47
1.73
Q
4.78
5.03
R 1.91
2.16
S
0.81
0.86
T
6.99
7.24
U 6.22
6.48

NOTE:
1.LEAOS WITHIN :005" RAO OF TRUE
POSITION (TP) AT MMC

1. DIM "6" IS TO CENTER LINE OF LEADS.

CASE 90-05

CASE 199-04

551

MJE3370 (SILICON)

For Specifications, See MJE370 Data.

MJE3371 (SILICON)

For Specifications, See MJE371 Data.

MJE3439, MJE3440 (SILICON)
0.3 AMPERE
NPN SILICON HIGH·VOLTAGE POWER TRANSISTORS
· .. designed for use as video output amplifiers in television receivers
and in line operated audio output amplifiers.

NPN SILICON
POWER TRANSISTORS
250-350 VOLTS
15 WATTS

• High DC Current Gain hFE = 4O-160@lc=20mAdc
• Current·Gain-Bandwidth Product fT = 15 MHz (Min) @ IC = 10 mAdc
•

Low Output Capacitance Cob = 10 pF (Max) @ f = 1.0 MHz

MAXIMUM RATINGS
Rating

Symbol

MJE3439

MJE3440

Unit

VeEO

350

250

Vdc

Collector-Base Voltage

Vee

450

350

Vdc

Emitter-Base Voltage

VEe

_6.0

Ie

-0.3

ase Gurrent

Ie

_150_

mAde

otal OevicoOissipation@Te=25 e
Derate above 2SoC

Po

15
0.12

wfOe

Collector~Emitter

Voltage

ICOllector Current

Continuous

luporatong and :storago Junction
Temperatura Range

-

TJ.Tstg

--

Vdc
Adc

Watts

-=-65 to +150-

°e

L--LJ

THERMAL CHARACTERISTICS
Characteristic

STYLE 1
PIN 1. EMITTER
2. COLLECTOR

harmsl Resistance. Junction to Case

3. BASE

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE

16
14
~
~

~

z

t--

DIM
A

......

t-....

12

0

t=

::

10

11i 8.0

B
C

"

C

'" 6.0
~

:i!

J?

D
F

"'"

4.0

'"

G
H
J
K

~

2.0

o

M

n

R
S

I'-.

U

"r-..,
o

20

40

60

80

100

120

140

INCHES
MILLIMETERS
MIN MAX MIN MAX
10.80 11.05 ( M26 0435
7.49
7.75 0.295 0.305
2.41
2.67 0.095 0.105
0.51
0.66 0.020 0.026
2.92
3.00 0.115 0.1 B
2.46 0.091 0.ll97
2.31
2.41 0.085 0.095
2.16
0.38
0.64 0.015 0.Ql!5
16.64
15.38
0.605 0.655
JUTYP
3 TVP
4.01 0.148 0.158
3.76
1.14
1.40 0.045 0.055
0.89 0.025 0.035
0.64
3.94 0.145 0.155
3.68

160
CASE 17-63

Te. CASE TEMPERATURE (OC)

552

MJE3439, MJE3440 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

350

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 5.0 mAde, 18 = 0)

(lC = 50 mAde, IS = 0)

MJE3440

Collector Cutoff Current
(VCE = 300 Vde, IB = 0)

MJE3439

(VCE = 200 Vde, IB = 0)

MJE3440

Collector Cutoff Current
(VCE = 450 Vde, VEB(off)
(VCE = 300 Vde, VEB(off)

Vde

VCEO(sus)
MJE3439

250

I'Ade

ICEO

-

20

-

500
500

-

20

30

-

50
I'Ade

ICEX

= 1.5 Vde)
= 1.5 Vde)

MJE3439
MJE3440

Collector Cutoff Current

I'Ade

ICBO

= 360 Vdc, IE =0)
(VCB = 250 Vde, IE = 0)

(VCB

MJE3439
MJE3440

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

lEBO

20
2Q

I'Ade

ON CHARACTERISTICS
DC Current Gain
(lC = 2.0 mAde, VCE

(lC

-

hFE

= 10 Vde)

= 20 mAde, VCE = 10 Vde)

40

160

VCE(satl

-

0.5

Vde

Base-Emitter Saturation Voltage
(lc = 50 mAde, I B = 4.0 mAde)

VBE(sat)

-

1.3

Vde

Base-Emitter On Voltage
(lC = 50 mAde, VCE = 10 Vde)

VBE(on)

-

0.8

Vde

fT

15

-

MHz

Cob

-

10

pF

hfe

25

-

-

Collector-Emitter Saturation Voltage

(lC

= 50 mAde, I B = 4.0 mAde)

OYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 10 mAde, VCE = 10 Vde, f

= 5.0 MHz)

Output Capacitance

(VCB

= 10 Vde,

IE

= 0, f = 1.0 MHz)

Small-Signal Current Gain

(lC

= 5.0 mAde, VCE = 10 Vde, f = 1.0 kHz)
FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA

~
!t;

1.0
0.7
0.5
0.3
0.2

!-

~

0.1

a'"

0.05

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collec:tor
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power-temperature derating must be observed for both steady state and pulse power conditions.

0.07

'"
o

0.03
g-, 0.02
0.01
S 0.007
<3 0.005
- 0.003
0.002

'-.

MJE3439'
MJE3440

0.00 1
1.0

2.0 3.0 5.0 7.0 10

20 30

50 70 100

200 300500

1000

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

553

MJE3520 (SILICON)

For Specifications, See MJE520 Data.

MJE3521 (SILICON)

For Specifications, See MJE521 Data.

MJE3738 (SILICON)
MJE3739
0.5 AMPERE
NPN SILICON HIGH·VOLTAGE TRANSISTORS

POWER TRANSISTORS
NPN SILICON

· .. designed for use in line-operated equipment such as audio output
amplifiers, low-current, high-voltage converters, and AC line relay
applications.

225-300 VOLTS
30 WATTS

• DC Current Gain hFE = 40-2oo@ IC = 100 mAdc
• Current-Gain-Bandwidth Product fT = 10 MHz (Typ)@ IC = 50 mAdc

MAXIMUM RATINGS
Rating

Symbol

MJE3738

MJE3739

Unit

VCEO

225

Vde

Collector-Ba.. Voltage

VCB

250

300
325

Emitter-Ba.. Voltage

VEB
IC

Collector-Emitter Voltage

Collector Current - Continuous

Base Current

IB

Total Device Dissipatlon@TC= 25°C
carata above 25°C

Po

Operating and Storage Junction

TJ,Tstg

---

Vde

6.0-

Vde

0.5-

Ade
Ade

0.5.30
--0.24-

Watts
wf'c

- - 6 5 to +150-

°c

Temperature Range

THERMAL CHARACTERISTICS
STYLE 1:
PIN I. BASE
2. COLLE{;TOR
3. EMITTER

a.-t8riltic

Thermal Resistance. Junction to Case
DIM

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
40
35

i.
Q

25

~

20

;::

iii
Q

'"~
~

e

f
6

30

H

.........

J

""-

15

K

L
M
N

""""-",

10

........

5.0

o

A
B
C
D

o

20

40

60

80

100

R
S
T

.......

120

U

.........

r-....

140

MILLIMETERS
MIN MAX
16.08 16.33
12.57 12.83
3.18 3.43
0.51 0.76
3.61
3.86
2.54 BSC
2.67 2.92
0.43 0.69
14.73 1 .99
.16 2.41
30 TYP
1.47
1.73
4.78
5.03
1.91
2.16
0.81
0.86
7.24
6.99
6.22
6.

1. DIM "S"ISTO CENTERllINE OF LEADS.

160

TC. CASETEMPfRATURE (OCI

CASE 199-04

554

MJE3738, MJE3739 (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise notedl

I

Characteristic

Symbol

Min

Typ

Max

225
300

-

-

-

-

0.25

-

-

0.25

-

0.5

-

-

-

-

0.1

-

-

0.1

30

-

-

40

-

200

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage I 1)
IIc = 30 mAde,lB =0)
IIc = 20 mAde,lB = 0)
Collector Cutoff Current

= 125 Vde,
IVCE = 200 Vde,

IVCE

Vde

VCEOlsus)
MJE3738
MJE3739
ICEO

= 0)
IB = 0)

MJE3738

IB

MJE3739

Collector Cutoff Current

mAde

mAde

ICEX

= 250 Vde, VEBloff) = 1.5 Vdc)
IVCE = 325 Vde, VEBloff) = 1.5 Vde)

MJE3738

IVCE

MJE3739

Collector Cutoff Current

0.5
mAde

ICBO

= 250 Vde, IE = 0)
IVCB = 325 Vde, IE = 0)
IVCB

MJE3738

.

MJE3739

Emitter Cutoff Current
IVBE = 6.0 Vde, IC = 0)

lEBO

0.1
mAde

ON CHARACTERISTICS
DC Current Gainl 1)
IIc = 50 mAde, VCE

hFE

= 10 Vde)
IIc = 100 mAde, VCE = 10 Vde)
IIc = 250 mAde, VCE = 10 Vde)

25

Collector-Emitter Saturation Voltage(1)

VCElsat)

-

2.5

Vde

IIc = 250 mAde, IB = 25 mAde)
Base-Emitter On Voltage
IIc = 100 mAde, VCE = 10 Vde)

VBElon)

-

-

1.0

Vdc

IT

-

10

-

MHz

Cob

-

20

-

pF

OYNAMIC CHARACTERISTICS
Current~Gain-Bandwidth

Product

IIc = 50 mAde, VCE = 10 Vde, f = 1.0 MHz)
Output Capacitance
IVCB

= 100 Vde, IE = 0, f = 100 kHz)

(1)Pulse Test: Pulse Width ~300 IJ.s, Duty Cycle S'2.0%.

FIGURE 2 - DC SAFE OPERATING AREA
1.0
0",
0:

'"
~

:;
f-

13

'"

0.5

500",

"\. "I

0.2

1.Oms

"\.

0.1

The Safe Operating Area CUNes indicate IC-VCE limits below
which the devlca will not enter secondary breakdown. Collector
load lines for specific circuits must fell within the applicable Safe

de

0.05

0

~
8

!d

0.02 ~ - - - - Secondary BrBakdown Limited
Bonding Wire Limited
0.01 E= - - 0.005
0.002

~

TJ o I50·C

=

Curves Apply lfelow Rated VCEO
MJE3738
MJE3739

0.001
1.0

Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power-temperature derating must be observed for bOth steedy state and pulse power conditions.

2.0 3.0 5.0

10

20 30

50

100

ZOO 300 500

1000

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

MJE4918 thru MJE4920 (SILICON)
For Specifications, See 2N4918 Data, Volume 1.

MJE4921 thru MJE4923 (SILICON)
For Specifications, See 2N4921 Data, Volume L
555

MJE5190

thru

MJE5192

(SILICON)

For Specifications, See 2N5190 Data, Volume II.

MJE5193

thru

MJE5195

(SILICON)

For Specifications, See 2N5193 Data, Volume II.

MJE5655

thru

MJE5657 (SILICON)

For Specifications, See 2N5655 Data, Volume II.
,"

MJE5974

thru

MJE5976 (SILICON)

For Specifications, See 2N5974 Data, Volume II.

MJE5977

thru

MJE5979 (SILICON)

For Specifications, See 2N5977 Data, Volume II.

MJE5980

thru

MJE5982 (SILICON)

For Specifications, See 2N5980 Data, Volume II.

MJE5983

thru

MJE5985 (SILICON)

For Specifications, See 2N5983 Data, Volume II.

MJE6040

thru

MJE6045 (SILICON)

For Specifications, See 2N6040 Data, Volume II.

556

MLED50, MLED55

VISIBLE RED LIGHT-EMITTING DIODES
... designed for applications requiring high visibilitY,low·drive power
and high reliability. These devices can be used as circuit status indio
cators, panel indicators in large matrix displays, and for film anno·
tation. The MLED50 is a high intensity point source in a clear
plastic package. The MLED55, because of its diffusing red plastic
package appears as a large area light source with wide viewing angle.

LIGHT-EMITTING DIODE
VISIBLE RED
GALLIUM
ARSENIDE PHOSPHIDE
120 MILLIWATTS

.
.
.
MLED50 - 1.0 mcd (Typ)
• High Luminous Intensity - MLED55 _ 0.6 mcd (Typ)
• Solid State Reliability
• Compatible with IC's - Low Drive Current
•

Economical Plastic Package - Clear or Diffusing Red

•

Resistant to Shock and Vibration

• Easy Cathode Indentitication - Wider Lead
• Visible Red Emission -660 nM (Typ)
MAXIMUM RATINGS
Rating

Reverse Voltage

Forward Current·Cohtinuous
Total Device Oissipation@TA=250C
Derate above 25°C
Operating and Storage Junction

Symbol

Value

Unit

VR

3.0

Volts

IF

50

rnA

POI1l

120
2.0

rWN
mWI"C

MLED60 - CI•• r Plastic
MLED55 - Diffusing Red Plastic

-4010 +85

TJ,Tstg (21

Temperature Range

THERMAL CHARACTERISTICS
Charectaristic

Symbol

Thermal Resistance, Junction to Ambient

Solder Tamperature

8JA(11

J

1

. 26O"C for 3 sec.

MIX

I

Unit

500

I

oelW

-

1/16" from C...

(1) Printed Circuit Board Mounting

(2) Hen: Sink ,hou1d be applled to leads during soldering to prevent Ca .. Temperature

exceed.,.. 85°C.

FIGURE 1 - TYPICAL NORMALIZED LIGHT OUTPUT
_INSTANTANEOUS FORWARD CURRENT
M

100

...r

It::1TJ' 2SOC
Note 2

o

0

I

--

DIM

10

100

1000

A

134
.1

F
H

1.57
0.20

K 11.30
L I.
M

'F. INSTANTANEOUS FORWARD CURRENT ImAI

MILLIMETERS
I
X

II

J

0.0 I

1.0

PIN 1. ANODE
2. CATHODE

2.611

INCHES
MI

0.1192

o.
1.83
.30
11.
ID.
II

19
0.0
0

CASE 234-02

557

0.102

o·

I

.0
0.450
.1
11

MlED50, MlED55 (continued)

ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted}
Fig. No.

Symbol

Min

Typ

-

IR

-

100

Max
-

Unit

Reverse Leak_ Current
IVR =3.0 V.RL = 1.0 Megohml
Reverse Breakdown Voltage
(lR -100ItAI

-

BVR

3.0

-

-

Volts

Forward VOltage
(IF" 2OmA)

2

VF

2.0

Volts

T otel Capacitence
(VR = 0 V. f · 1.0 MHz)

-

CT

a..-Istic

OPTICAL CHARACTERISTICS

-

150

pF

ITA = 250 C unless otherwise noted)

Characteristic
Axial Instantaneous
Luminous Intensity
(IF = 20 mAl Note 1

1.6

nA

Fig. No.

Symbol

Min

Typ

Max

MLED50
MLED55

Unit

moo

10

1
1

0.5
0.3

1.0
0.6

-

Peak Emission Wavelength

O\!'

660

nM

Spectral Line Half Width

60\

10

nM

TYPICAL CHARACTERISTICS
FIGURE 2 - FORWARD CHARACTERISTICS

..

0

lllill
1

TJ-250C

2

a

FIGURE 3 - AXIAL LUMINOUS INTENSITY
.enus JUNCTION TEMPERATURE

:1

~~

2. 4

~~

--

~ ~ 1.•
~- g o.
~
2.0

•

5.0

10

20

50

100

200

5001000

zooo

IF. INSTANTANEOUS FORWAR,D CURRENT (mAl

lJ. JUNCTION TEMPERATURE (DC)

FIGURE 4 - AXIAL LUMINOUS INTENSITY
versus CONTINUOUS FORWARD CURRENT
0

FIGURE.5 - SPATIAL RADIATION PATTERN

J

TA=ZSOC
0

MLED50

MLE055

0
0

0"

2.0

V

3.0

V

5.0 1.0
10
20
30
IF. CONTINUOUS fORWARD CURRENT (mAl

50

NOTES:

1. Axial Luminous Intensity (10) 'is measured using a elE Corrected Photometer and a measurement
solid angle of 0.003 Steradian. The
spatial radiation pattern and 10 fully define the light emitting characteristics of an LED.
As seen from the specification, the MLE050 has a much higher 10 than the MLE055 because of the diffusing nature of the encapsulant used
for the MLED55. The result is a large uniform field of emitted light for the MLED55 and a sharp intense field for the MLED50 as shown in Fig·
ure 5.

2. To estimate output level under non continuous current drive at junction temperature ,other than 25°C, fir~t'the average junction temperature
can be calculated from
TJ(av)=TA+OJA" VF)( IF)( 0
where 0 is the duty cycle of the applied current (IF). Then the normalized luminous intensity at this junction temperature can be read from
Figure 3 .. Use of the above method should b~ restricted to drive conditions employing pulses of less than 10 J.lS duration to avoid errors caused
by high peak junction temperatures.
-I nternational Commission on Illumination

558

MLED60
MLED90

INFRARED-EMITTING DIODES
· .. designed for applications requiring high power output, low drive
power and very fast response time. This device is used in industrial
processing and control, light modulators, shaft or position encoders,
punched card and tape readers, optical switching, and logic circuits.
It is spectrally matched for use with silicon detectors.
•

INFRARED-EMITTING DIODES
900nM
PN GALLIUM ARSENIDE
120 MILLIWATTS

High Intensity - 550IlW/str (Typ)@ IF = 50 mA - MLED60
350IlW/str (Typ)@ IF = 50 mA - MLED90

•

Infrared Emission - 900 nM (Typ)

•

Low Drive Current - Compatible with Integrated Circuits

• Unique Molded Lens for Durability and Long Life
• Economical Plastic Package
• Small Size for High Density Mounting
•

Easy Cathode Identification - Wider Lead

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VR

3.0

Volts

Reverse Voltage

IF

80

mA

PO(1)

120
2.0

mW
mW/oC

TJ,Tstg

-40 to +85

°c

Forward Current-Continuous

Total Device DISSipation @ T A = 250C
Derate above 25 0 C

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
OIaracteristic

Thermal Resistance. Junction to Ambient
Solder Temperature
M

(1 )Printed CirCUit Board Mounting

FIGURE 1 -INSTANTANEOUS AXIAL RADIANT
INTENSITY versus FORWARD CURRENT
z

20
10

i5

5.0

.....
;i
~'"

~~

'" E
~-

,,>-

TJ=250C

==

MlED60

2.0

./
MlED90

1.0

I---

A
B

~~ 0.5
zz
~~
zz 0.2

"'~

52

DIM

C

D
F

0.1
0.05
0.02
2.0

5.0

10

20

50

100

200

500

1000 2000

IF. INSTANTANEOUS FORWARD CURRENT (mA)

H
J
K
L
M

MILLIMETERS
MIN
MAX

2.34
2.11
2.39
0.66
0.48
1.57
0.20
11.30
10.29
90

2.59
2.36
!.ti4

0.71
0.53
1.83
0.30
11.43
10.41
11 0

INCHES
MIN MAX

0.092
0.083
0.0.4
0.026
0.019
0.062
0.008
0.445
0.405
90

CASE 234·02

559

0.102
0.093
O.IU'

0.028
0.021
0.072
0.012
0.450
0.•10
11"

MLED60, MLED90

(continued)

ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)
Fig. No.

a...--iltic

Symbol

Reverse Leakage Current
(VR = 3.0 V, RL = 1.0 Megohm)

Min

IR

Typ
50

Mal<

Unit

-

nA

-

-

Volts

Reverse Breakdown Voltage
(lR = loojtA)

-

BVR

3.0

For_rd Voltage
(IF =50mA)

2

VF

-

1.2

1.5

Volt.

Total Capacitance
(VR = OV, f = 1.0 MHz)

-

CT

-

150

-

pF

OPTICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)
CIuIr_istlcs

Fig, No.

Symbol

1

10

Axial Radiant Intensity

-

Peak Emission Wavelength

2.0

...
~

TJ =25°C

~

~

~

ffi

~..:

900
40

-

nM

-

nM

..

f-'"

1.2

0.8

2.0

r-.....
.........

~

r--....

~

l!t

~

1.0

~

0.7

Q

O.S

........

~

z

..

:il
z
~

-

3.0

/

-

1.6

~
~

-

FIGURE 3 - RADIANT INTENSITY versus
JUNCTION TEMPERATURE

J

1111

~

550
350

Ap

FIGURE 2 - FORWARD CHARACTERISTICS

~

Unit

400
200

.loA

Spectral Line Half Width

Max

jtW/str

MLED60
MLED90

(IF =50mA)

Typ

Min

i'..

Ii;

0.4

>

2.0

, ......

;:!i

S.O

10

20

100

SO

ZOO

SOO

0.3
-7S

1000 ZOOO

-50

-25

2S

50

7S

100

150

TJ, JUNCTION TEMPERATURE (OCI

IF, INSTANTANEOUS FORWARD CURRENT (mA)

FIGURE 5 - SPATIAL RADIATION PATTERN

FIGURE 4 - CONTINUOUS POWER OUTPUT
versus FORWARD CURRENT
=TA=2S0C

.,.

./

..... ,.,

MLED~ ~ED90

0

I,;'" V

V
0

2.0

4.0

6.0

10

20

40

60 80 100

IF,CONTINUOUS FORWARD CURRENT(mA)

Output saturation effects .r. not evident at currents up to 2 A 81 shown on F igur. 1. However. power output decrea., due to heating of the
semiconductor a. Indicated by Figura 3. To estimate output level, average junction temperature may be calculated from:
TJ(AVI = TA + 0JA VFIFD
where 0 is the duty cycle of the applied current. IF- Use of the above method should be restricted to drive conditions employing pulses of
'a.. th~n 10 III duration to avoid errors caused by high peak junction temperatures.

560

MLED92

INFRARED·EMITTING DIODE

LOW COST
INFRARED·EMITTING DIODE
PN GALLIUM ARSENIDE

· .. designed for industrial processing and control applications such
as light modulators, shaft or position encoders, end of tape detectors,
and optical coupler applications. Supplied in TO·92 package for ease
of mounting and compatibility with ex isting automatic insertion equ ipment.
• High Power OutputPo = 150 IJW (Typ) @ IF = 50 mA

.!l. (Typ)

•

Infrared-Emission - 9000

•

One-Piece, Unibloc Package for High Reliability

MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current-Continuous

Total Power Dissipation @TA = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

Symbol

Value

Unit

VR
IF
PO!I)

3.0
100
215
2.86
-65 to +100

Volts
mA

TJ,Tstg

mW

rrlNl"c

Ole Placement Will Be
Wlthm the Boundaries
of the Dotted Circle

°c

THERMAL CHARACTERISTICS

I

Characteristic

I

Symbol

Thermal Resistance Junction to Ambient

I

Max

I

R8JA!I)

I

350

Unit

°C/W

(1) R6JA(1) is measured with the device soldered into 8 typical printed circuit board.

FIGURE 1 - RELATIVE SPECTRAL OUTPUT
1.0

/'

IF=50mA
O.B r-TA = 250C

I

-

>-

~

......,

\

/

0.6

~

/

0.2

J

\
\

/
01---BOOO

8400

DIM
A

\

I

0.4

\

\

w

>
;::

STYLE 20:
PIN 1. N.C.
2. CATHODE
3. ANODE

C

,

0
f

..... t--.

B800

9200

9600

10,000

~,WAVELENGTH (A)

L
N
P

a

R
S

MILLIMETERS
INCHES
MIN
MAX MIN
MAX
4.450
5200 0.175
0.205
4.
.1
O. 65
4.320 5.330 0.110
0.210
0.021
0.407
0.533 0.016
0.019
0.482 0.016
0.407
1.150
6.350
3.430
2.410
2.030

-

1.390
1.20

-

2.670
2.670

0.045

CASE 29.02
T0-92

561

-

0.250
0.135
0.095
0.080

0.055
0.050

-

0.105
0.105

MLED92 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Fig. No.

Symbol

Min

Typ

Max

Unit

Roverse Leakage Current
(VR = 3.0 V, RL = 1.0 Megohm)

Characteristic

-

IR

-

50

-

nA

Rove... Breakdown Voltage
(lR = 100 "A)

-

BVR

3.0

-

-

Volt.

Instantaneous Forward Voltage (Note 3)
(IF =50mA)

2

vF

-

1.2

1.5

Volts

Total Capac:itance
eVR =0 V, f = 1.0 MHz)

-

CT

-

150

-

pF

OPTICAL CHARACTERISTICS ITA = 250 C unless otherwISe noted)
Chwacteristic

Fig. No.

~mbol

Min

Typ

Max

3, 4

Po

50

150

-

"W

10

-

0.66

-

mW/steradian

900

-

nM

40

-

nM

Total Power Output (Notes 1 and 3)
(IF=50mA)
Radiant Intensity (Not. 2)
(iF = 5OmA)

Peak Emission Wavelength

1

N>

Spectral Line Half Width

1

C

TJ.Tstg

-65 to +85

°c

Rating

Total Power Dissipation
Derate above 25°C

@

T A = 25°C

Operating and Storage Junction
Temoerature R.nat!

K

Characteristic
Thermal Resistance Junction to Ambient

NOTE:
1. CATHOOE
2. ANODE

e3=fF

THERMAL CHARACTERISTICS
Unit

Max

SYmbol
AOJAII)

I

1000

11) R9JA is measured with the device socket mounted, with 1/8" lead
from device to socket plane.

I

°C/W

MILLIMETERS
MIN MAX
3.68 3.94
B
2.92 3.18
C
4.95 5.21
D
0.38 0.48
E
0.76 1.02
F
0.20 0.30
G
2.41 2.67
J
1.78 2.03
K
12.70

DIM
A

INCHES
MIN MAX
0.145 0.155
0.115 0.125
0.195 0.205
0.015 0.019
0.030 0.040
0.m8 0.012
0.095 0.105
0.070 0.080
0.500

CASE 292'()1

563

MlED440

(continued)

E LECTRICA L CHARACTERISTICS (TA • 2So C unl... ot"-ia noted)
CMr_.i.ie
Rever_ Breakdown Voltage
(lR -100pA)
Forward Voltage (2)
(IF-20mA)
OPTICAL CHARACTERISTICS (TA

Unit
Volts

1.6

2.0

Volts

Min

Typ

Mex

Unit

0.3

1.2

-

-

660

-

-

Fig. No.

Symbol

3,4

10

1
e

-

vF

-

Symbol

Mex

Min
4.0

Typ

BVR

F" No.

-

2So C unless oth_ia noted)

C....eci.iltics
Axial Luminouslntenoitv (1)
(IF -20 mAl

-

Peek Eml.. ion Wavelength
Spectral Lina Half Width

-

AP

HI

"A

mod

nm
nm

(1 )Axial Luminouslntansltv (10) is mea.ured USIng a Spectra Mleroeandela Loght-Emlttlng D,oda (LED) Photometer IncorporatIng a photometrIC
senSOr (d",ector and filter) matched to the ClEO standard obar_. eve respona. 10 il defined as the ratio of the luminous flux ilmitled by a
source to an incremental on axis safid angle subtended by a sensor; i.e., candela=- lumens/stera:lian. Since '0 is I photometric measur.ement.
it provides an accurate indieationof the visibility of an LED that includes the physieal characteristics of the package such al encapsulant and lenl
design.
(2) Pulse Test: Pulse Width" 300 /IS, Dutv Cvcle "2.0% .
• , nternational Commission on I flumination.

TYPICAL CHARACTERISTICS
FIGURE 1 - FORWARD CHARACTERISTICS
1.84

FIGURE 2 - SPATIAL RADIATION PATTERN

,/

TJ·25DC

./

./
./

6

,.
2

V

V
../

..... i-""
1.44
3.0

4.0

6.0

8.0

10

20

15

30

iF. INSTANTANEOUS FORWARD CURRENT (mA)'

AXIAL LUMINOUS INTENSITY
FIGURE 3 - EFFECTS OF CONTINUOUS FORWARD CURRENT

3.0

1

iI!!

2.0
1.0

.
::>

0.3

~
.....

0.2

co

~
...

I

..,... i-"""

TA -25DC

........

0.7
0.6

!!

I

0.1

........

0

.,...

t-....

........

0

......

7

5

'/

......

3

0.7

Z

~ D.5

0.3

2.D

FIGURE 4 - EFFECTS OF JUNCTION TEMPERATURE

1

4.0

B.O

10

20

40

-20

o

+20

+40

+60

TJ. JUNCTION TEMPERATURE (DC)

IF. CONTINUOUS FORWARO CURRENT (mA)

564

........
+80

+100

MLED445

MINIATURE
LIGHT EMITTING DIODE
VISIBLE RED
PNGALLIUM
ARSENIDE PHOSPHIDE

VISIBLE RED LIGHT-EMITTING DIODE

... designed for panel mount applications where small size and
plug-in package are desirable.
•
•
•
•
•

High Luminous Intensity
Solid State Reliability
Water Clear Lens
IC Compatible - Low Power Consumption
Wide Viewing Angle '- 400

-

t--

L~

r

MAXIMUM RATINGS
Symbol

Value

Unit

Reverse Voltage

VR

4.0

Volts

Forward Current-Continuous

IF

30

Po

60
1.0

mA
mW
mWf'C
DC

Rating

Total Power Dissipation @TA = 2So C
Derate Ibcwe 250 C
Operating and Storage Junction

TJ.T stv

~5

to +85

tt..l

NOTE:
1. CATHODE
2. ANODE

6=fF

THERMAL CHARACTERISTICS
ChIIr_istic

~
K

Temperature Range

Thermal ResistWlce Junction to Ambient

A
B

Symbol

Max

Unit

RSJAlll

1000

°CIW

(1) R9JA is measured with the device socket mounted, with 1/8" lead
from device to socket plane.

DIM
A
B

C
D
E

F
G

J
K

I LI
168
2.92
4.95
0.38
0.18
0.20
2.41
1.18
12.70

AS
MAX
194
3.18
5.21
0.48
1.02
0.30
2.17

2.03

CASE292-GI

565

INCHES
MAX
0.155
0.125

MIN

0.145
0.115
0.195
0. 15
0
O.
O.
.00

0.205
0.019
0.040
0.01
0.105

DB

MLED445 (continued)

E LECTRICA L CHARACTERISTICS (TA = 250 C unless otherwise notedl
Charact.i.ic

Fig. No.

Symbol
BVR

Min
4.0

Typ

-

-

Moox
-

Unit
Volts

1

vF

-

1.6

2.0

Volts

Fig. No.

Symbol

Min

TVp

Moox

3.4

10

Unit
mcd

0.8

2.2

-

-

AP

-

660
10

-

Reverse Breakdown Voltage
(lR = 100 /lA1
Forward Voltage (21
fiF=20mAI

OPTICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Charact.lstics
Axial luminous Int,ns!ty (1)
(IF =20mA)

Peak Emission Wavelength
Spectral Line Half Width

6A

nm

nm
{UAxial Luminous Intensity (10) is measured using a Spectra Mlcrocandela Ltght~EmlttlOg Diode (LED) Photometer incorporating a photometnc
sensor (detector and filter) rn8tched to the CIE* standard observers eye response. 10 is defined as the ratio of the luminous flux emitted by a
source to an incremental on axis solid angle subtended by a sensor; Le., candela =. lumens/steradian. Since '0 is a photometric measurement.
it provides an accurate indication of the visibility of an LED that includes the physical characteristics of the package such as encapsulant and lens
design.

(2) Pulse Test: Pulse width';; 300 /.IS. Duty Cycle';; 2.0 %
*International Commission on Illumination.

TYPICAL CHARACTERISTICS
FIGURE 1 - FOflWARD CHARACTERISTICS
1.64
~

~­
~~

1.60

CI:I 0

1.5 6

...."''''

1.5 2

~c.

TJ = 25°C

/"
/'

Ww
~!:i

"0
;;0:

\if

L

/'

1.48

......
1.44
3.0

lL

"'"

V-

1;;>

V

FIGURE 2 - SPATIAL RADIATION PATTERN

"""
6.0

4.0

8.0

10

30

20

15

iF. INSTANTANEOUS FORWARD CURRENT (mA)

AXIAL LUMINOUS INTENSITY
FIGURE 4 - EFFECTS Of JUNCTION TEMPERATURE

FIGURE 3 - EFFECTS OF CONTINUOUS FORWARD CURRENT

10

4.0

1

rTA = 25°C

.......-

2. 0

r-'

~

7.0
~ 5.0

..

-

.,/

~ 3.0

~ 2.0
0'10

......

2. 0

.2

0.06

/

.......

!Z o. 7

/

~ 0.5
o

~

~ 0.1 0

0.04
2.0

.........

~ 1.0

V

z

~

...............

>....

0.60

g

~

......

o. 3

.......

3 o. 2
3.0

5.0

7.0

10

20

30

40

O. 1
-40

-20

o

+20

+40

+60

TJ.JUNCTION TEMPERATURE (OC)

IF. CONTINUOUS FORWARD CURRENT (rnA)

566

........
+80

+100

MLED500

LOW COST
LIGHT EMITTING DIODE
VISIBLE RED
PN GALLIUM
ARSENIDE PHOSPHIDE

VISIBLE RED LIGHT-EMITTING DIODE

... designed for applications requiring visible indication of circuit
status. Supplied in popular TO·92 package for ease of mounting into
printed circuit board applications.

•
•
•
•

Solid State Reliability
Diffusing Red Lens
IC Compatible - Low Power Consumption
One·Piece, Injection·Molded Unibloc Package for High Reliability

Ole Placement Will Be
Within the Boundaries

of the Dotted Circle

I

li
,

MAXIMUM RATINGS
Allting

Reverse Voltage
Forward Current-Continuous

Total Device Oisslpation.@ T A = 25°C
Derate above 25°C

Operating and Storage Junction
Temperature Range

Symbol

Value

Unit

VR

4.0

Volts

IF

100

rnA

POW

215
0.285

rnW
rnWt"C

TJ,T,tg

-65 to +100

DC

THERMAL CHARACTERISTICS
CNo,_istic
Thermal Resistance Junction to Ambient

I

Symbol

R8JA(1)

I

Mo.

Unit

350

°CIW

(1) R9 JA is measured with the device soldered into a typical printed circuit board.

DIM
A
B
C
D
F

L
N
P
Q

S

MILLIMETERS
MAX
MIN
4.450
5.200
3.1 0
.190
4.320
.330
0.407
0.533
, 407
482
1150

-

6.350
3.4
2.410
2.030

-

1.390

INCHES
MAX
MIN

0175.
0170
0.016
.
0019
0.045

1.270

-

2.670
2.670

0.250
0.135
0095
0080

CASE 29-02
TO·92

567

-

-

0055
0050

0105
0105

MLED500 (continued)

ELECTRICAL CHARACTERISTICS

(TA = 250 C unless otherwise noted)

Fig. No.

Symbol

Min

Typ

Max

Unit

Reverse Breakdown Voltage
(lR = l00jAA)

-

BVR

4.0

-

-

Volts

Forward Voltage
(IF =20mA)

1

VF

-

1.6

2.0

Volts

Symbol

Min

Typ

Max

Unit
mcd

0.1

0.3

Charact.. istic

OPTICAL CHARACTERISTICS (T A = 250 C unless otherwIse noted)
Charoc:t.. iotics
Axial Luminous Intensity (1)
(IF=20mA)

Fig. No.

-

Peak Emission Wavelength
Spectral Line Half Width
(1)

10

2.3

-

kp
A/>,

660
10

-

-

-

nM

-

nM

Axial Luminous Intensity (10) is measured using a CIE* corrected Photometer and a measurement solid angle of 0.003 steradian. The
spatial radiation pattern and 10 fully define the light emitting characteristics of a LED.

*1 nternational Commission on Illumination.

TYPICAL CHARACTERISTICS
FIGURE 2 - AXIAL LUMINOUS INTENSITY
versus JUNCTION TEMPERATURE

FIGURE 1 - FORWARD CHARACTERISTICS
1.85

10

5-

T; =

250~

5

./

--

'"

./'

1.0

2.0

I

i
!.

'"

........ .....

~ 1.0

.........

........

~ O. 7

~ 0.5
o

.........

~ 0.3

3

I"

O. 2

~

3.0

5.0 7.0

10

TA = 25°C

V

Q2

30

20

50

70

100

-

i;'

O. 1

~ 0.05
:::>

:;'0.03
0.02

3.0

5.0 7.0

10

20

30

50

1

-20

o
+20
+40
+60
TJ. JUNCTION TEMPERATUR E (OC)

70

100

IF. CONTINUOUS FORWARD CURRENT (rnA)

568

.......

+80

FIGURE 4 - SPATIAL RADIATioN PATTERN

~ 0.07

2.0

r-....

~

........ ~

0.3

0.0 1
1.0

5.0

~ 2.0

FIGURE 3 - AXIAL LUMINOUS INTENSITY
versus CONTINUOUS,FORWARD CURRENT

-

~
~

IF. INSTANTANEOUS FORWARD CURRENT (mA)

1.0
o.7
0.5

7. 0

'" 3.0

f-""

1.35

ffi

"

+100

MLED600

VISIBLE RED LIGHT-EMITTING DIODE

· .. designed for applications requiring high visibility, low drive power
and very fast response time. This device is used in panel and circuit
condition indicators, light modulators, shaft or position encoders,
punched card readers, optical switching, and logic circuits.

LIGHT-EMITTING DIODE
VISIBLE RED
PNGALLIUM
ARSENIDE PHOSPHIDE
120 MILLIWATTS

• High Brightness - 1100 fL (Typ)

A (Typ)

•

Visible Red Emission - 6600

•

Low Drive Current - 10 mA for 200 fL (Typ)

•

Unique Molded Lens for Durability and Long Life

•

Economical Plastic Package

MAXIMUM RATINGS
Rating
Reverse Voltage
Forward

Current~Continuous

Total Device Dissipation
I Oarate above 25°C

@

TA

= 25°C

Symbol

Value

Unit

VR

4.0

Volts

IF

50

mA

POll)

120
2.0

mW
mWf'C

-40 to +85

°c

TJ,Tstg(2)

rCrJerating and Storage Junction
~
Temperature Range

i

"'===t1G

C
i=======::,2

o

THERMAL CHARACTERISTICS
IDLE 2.
PIN 1 ANODE

Characteristic

2. CATHODE

Thermal Resistance Junction to Ambient

f

(1) Printed Circuit Board Mounting
(2) Heat Sink should be applied to leads during soldering to prevent Case Temperatur.
exceeding 850C.

c

I

Lead 2 indicated bV squarl bonding
pad on bottom of·device.

FIGURE 1 - TYPICAL DRIVE CIRCUIT

MPS6515
OIM
A

C

VOLTAGE
SOURCE

II
MLED600

RE

'------~---III)---......

0
F
H
K

n

MILLIMETERS
MIN
MAX
3.56
4.06
4.57
5.33
0.48
0.33
0.23
0.28
1.27
1.02
I
6. 5
1.9 NOM

INCHES
MIN
MAX
0.140
0.180
0.013
O. 0

O.
0.250
0.07 NOM

Cathode indicated by square bonding pad
on bottom of device.

CASE 171

569

0.160
0.210
0.019
0.0 1

MLED600 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise notedl
Fig. No.

Symbol

Min

-

IR

-

Typ
100

Max
-

Unit
nA

R..... Break_ Voltage
(lR = l00,.A.)

-

BVR

4.0

-

-

Volts

Fo.-d Voltage
(IF·20mA)

2

VF

-

1.6

2.0

Volts

Totlll Capacitance
(VR - OV. f = 1.0MHzl

-

CT

-

150

-

pF

Charawiltlc
Rave... L....... Curl1lRt
(VR = 4.0 V. RL • 1.0 Megohm)

OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise notedl
Cher_istico
Axiallftltant8naous
Luminous Intensity
(IF = 20 mAl

Fig. No.

Min

Typ

Max

Unit

10

1.0

3.0

-

mcd

-

660

-

nM

Symbol

-

Peek E mission Wavelength

4

~f

Spectral Line Half Width

4

~~

10

nM

NOTES:
1. Output saturation effacts are not evident at pulse currents up to 2 A. However, saturation does occur due to heating of the semiconductor
as Indicated by Figure 5. To .stimate output leval, average junction temperature may be calculated from:
TJ(AV) = T A

+ 9JA ,VF'FD

whet. D is the duty cycle of the applied current, IF' Use of the above method should be
I... than 10 ~s duration to avoid error. caused by high peak junction temperatures.

res~ricted

to drive conditions employing pulses of

2. Axial Luminous Intensity (10) is measured using a CIE* corrected Photometer and a measurement solid angle of 0.003 Steradian.

*International Commission on Illumination.

FIGURE 2 - FORWARD CHARACTERISTICS

FIGURE 3 - LUMINOUS INTENSITY

4.0

/

TJ = 2JOC

3.2

10
7.0

I

V

-

~
~

US 2.0

2.4

ffi

.,""

r-

1.6

~

1.0

i5

0.7
~ 0.5

:3.§

0.8

-- -

5.0
3.0

-

r--

P.C. BOARD MOUNTING

O. 3
0.2

o

0.1

2.0

10

5.0

20

50

100

200

500

5.0

1000 2000

7.0

IF. if,ISTANTANEOUS FORWARO CURRENT (mA)

0.8

~

~

0.8

J

/
V
./

0.2

o

ffi 5.0

I \
I \
II
\

TA -25"C

...~
S
...or: 0.4

10
7.0

Ir-..

-IF'=20J

N

~ 3.O

~ 2.0

o

f"",..

\

~ 1.0
;

\

6600 6700

.......

0.1

!! 0.5

\

'"g

1"6500

1f=20mA- t-

.......

~

/'

6100 6200 6300 6400

50

FIGURE 5 - LUMINOUS INTENSITY
versus JUNCTION TEMPERATUR E

FIGURE 4 - RELATIVE INTENSITY
1.0

10
20
30
IF. CONTINUOUS FORWARD CURRENT (mA)

6800

z

"'

0.3

ii 0.2

~

6900

:3
pO.l
-50 -40 -30 -20 -10

7000 7100

~ WAVELENGTH (A)

0

+10 +20 +30 +40 +50 +60 +70 +80 +90

TJ. JUNCTION TEMPERATURE (DC)

570

MLED610

VISIBLE RED LIGHT-EMITTING DIODE
... designed for applications requiring high visibility, low drive power
and very fast response time. This device is used in panel and circuit
condition indicators, light modulators, shaft or position encoders,
punched card readers, optical data links, optical switching, and
logic circu its.
•

LIGHT-EMITTING DIODE
VISIBLE RED
PN GALLIUM
ARSENIDE PHOSPHIDE
350 MILLIWATTS

High Intensity - 3.0 mcd (Typ) - 1100 tL(Typl

• Visible Red Emission - 6600

A(Typ)

•

Low Drive Current - 10 mA for 200 fL (Typ)

•

Hermetic Pill Package for Durability, Long Life and Reliability

• Pill Package Allows Printed Circuit Board Assembly
• Small Size for High Density Mounting

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

4.0

Volts

IF

75

mA

POIlI

TJ,Tstg

350
3.5
-65 to +125

rrN'I
mWfl_C
°c

Symbol

M..

Unit

8JA

286

°CIW

Reverse Voltage

Forward Current-Continuous
Total Device Dissipation
Derate above 2SoC

@

TA

=

25°C

Operating and Storage Junction

Temperature

Ra~ge_

THERMAL CHARACTERISTICS
OIaracteristic
Thermal Resistance. Junction to Ambient( 1)

Q~

(1)Thermal resistance, junction to case is typically 80° C/W.

The
mounting conditions determine the junction to ambient thermal

L~

resistance. For example, when soldered in a copper printed circuit
board through a 1/8" diameter pad on the top to a 1/4" x 1/4" pad

~~,~

on the bottom surface, values of the 1600 e/W will occur. If both

pads are 1/8" in diameter, thermal resistance is typically 2500 C/W;
the limit of 286 0 C/W is specified for the laner mounting condition.

FIGURE 1 - TYPICAL DRIVE CIRCUIT

STYLE 2:
TERM I. ANODE
2. CATHODE

MPS6515

wumO
SOURCE

fQ

II

~~ MLED610

RE

DIM
A
B
C
D
F
H
K
L

MILLIMETERS
MIN MAX
2.79 3.30
1.47 1.57
0.71 1.02
0.41 0.61
0.13 0.25
0.48 0.53
2.11 2.36
0.20 0.30

INCHES
MIN MAX
0.100 0.130
0.058 0.062
0.028 0.040
0.016 0.024
0.005 0.010
0.019 0.021
0.083 0.093
0.008 0.012

III
CASE 81A'()S

571

MLED610 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

Max

Fig. No.

Symbol

Min

Typ

-

IR

-

100

-

nA

BVR

4.0

-

-

Volts

VF

-

1.6

2.0

Volts

CT

-

150 '

-

pF

Reverse Leakage Current
(VR =4.0 V, RL = 1.0 Megohm)
Reverse Breakdown Voltage
fiR = 100jtA)
Forward Voltage
(IF =20mA)

2

Total Capacitance
(VR = 0 V, f = 1,,0 MHz)

-

Unit

OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Chor-._

Fig. No.

Symbol

Axial Instantaneoul
Luminous Intensity

10

Min

Typ

Max

Unit

o.s

3.0

-

mcd

Peak Emission Wavelength

4

Ap

-

660

-

nM

Spectral Line Half Width

4

AA

-

10

-

nM

NOTE:
1. Output saturation effects are not avident at currents up to 2 A as shown on Figure 3. However, saturation does occur due to heating of the
semiconductor as indicated by F Igur. 5. To astlmata output lavel. average junction tamperatur. may be calculated from:
TJ(AV) - TA + 8JA VFIFD

whare 0 Is the duty cycle of the applied currant, 'F' Use of the above method should ba restricted to drive conditions employing pulse. of
lass than 10 III duration-to .void .rrors caused by high peek junction temperatures.

2. Axial Luminous Int.ns~ (10' II rnenured ullng I CIE· corrected Photometer ... d a measurement,IOUd angl. of 0.003 Stet::adlan.

-International CommitliOn on Illumination.

FIGURE 3 - INSTANTANEOUS INTENSITY

FIGURE 2 - FORWARD CHARACTERisTICS
..

4.0

I

!::;

~

...

3.2

~

2.4

~o

i

~

/

TJJoC

-

1.6

!!l
o

...

~

500
200

1

100

~

20

;

5.0

i

:.,..

fii

IE

0.8

...

10

2.0

5.0

10

20

50

100

200

500

0.5
2.0

1000 2000

1.0

0.8

...
...S
rr:
i!!

,

0.6

;>0

j

0.4

/

i/

0.2

V

5.0

I \
I \
II

TA-25OC

1\
\

6100 6200 6300 6400

6600 6700

50

100

200

500

1000 2000

r--.

'"

7
5

.........

\
O. 1
-50 -40 -30 -20 -10

t"-....
6500

20

,.....

0

~

/

10

FIGURE 6 -INTENSITY v...... JUNCTION TEMPERATURE

J~

f-IFI'20J

5,0

IF, INSTANTANEOUS FORWARD CURRENT (mA)

FIGURE 4 - RELATIVE INTENSITY

l-

/'

2.0

IF, iNSTANTANEOUS FORWARD CURRENT (mA)

...~

/'

1.0

~

;>0

50

6800

6900

7000 7100

}., WAVELENGTH (A)

572

0 +10 +20 +30 '140 +50 +tiO +70 +80 +9G

TJ. JUNCTION TEMPERATURE (OC)

MLED640

PANEL MOUNT
LIGHT EMITTING DIODE
VISIBLE RED
PH GALLIUM
ARSENIDE PHOSPHIDE

VISIBLE RED LIGHT-EMITTING DIODE
... designed for panel mount indicator applications. Ideally suited
for mounting in panels to 0.125" thick using plastic snap·in reteiner.
• High Luminous Intensity
• Economical Plastic Package
• Solid State Reliability
• White Diffusing Lens

MAXIMUM RATINGS
Roti",

Symbol

V.lue

Unit

VR

4.0

VOlts

IF

60
100
1.67

mA

Reverse Volulge
Forward Current·Contlnuous

TOlal Device DISSipation" T A - 25°C
Derate above 25°C

POlll

Operating and Stor. Junction
Temperalure Ronge

TJ.T stg

-40 to

rrIIY
mWf'C

+as

°c

THERMAL CHARACTERISTICS
C....._ilti.
Thermal Resistance JunCtion to Ambient

Symbol

Max

RBJA(1l

600

I

Unit
°CIW

, )Mounted in meta' panel (see Figure 11

STYLE 1:
PIN 1. CATHODE
Z.ANODE

FIGURE 1 - HARDWARE DIMENSIONS

.UIlITtIilGeu'

.

W

• DTOJtDLA"'RTIIO~
UCSlG1ll9AODI

CKAIIISUIJ3.IIIO.QI/I.IZ5)TNK

IIOTFUIItISHEOM'NItIT
IU. IA

IItLEARAItCi HOLE

MILLIMETERS

GNT EMlnHlG DIODE

HI Il:lI!lo,.

Ji-RUMIUIiINii

IIIN

MAX

A

5.72
4,95
8.38
0.41

5.97
5.Z1

C
D

F
.8
J
K

.

MOTOROLA MRT ItO.

,

:

DIM

•

MOTOROLA CAlI NO. m
IlOT FUIIIIISKEDWITN KIT

:

R

.... Z1f.t

0.30
44
Z.44
lZ.57
2.54

8••
0.51

0.41
1.14
2.54
'3.21
Z.I.

CASE 2711-01

573

INeMU
IIIN
MAX

O.Z25
0.235
OolD. .J!.!!!!!.
O.nlt --"'D!!.
0.011 _IYlZD
25
0.0
o.olZ 0.011
0.104
0.011
0.011
0.180
0._
0.1 ... .0.110

MLED640 (continued)

ELECTRICAL CHARACTERISTICS (TA

= 25°C unless otherwise notedl

Fig. No.

Symbol

Min

Typ

Reverse Breakdown Voltage

-

BVR

4.0

-

Max
-

Volts

(lR = l00IAAI
Forward Voltage
(IF = 20 mAl

2

VF

-

1,6

2.0

Volts

Symbol

Min

Typ

Max

Unit

2.0

-

'Xp

O.B
-

AX

-

660
10

.-

Charact..istic

Unit

OPTICAL CHARACTERISTICS (T A = 25°C unless otherwise noted I

Charact.-istics

Fig. No.

Axial Luminous Intensity (11
(IF = 20 mAl

3.4

-

Peak Emission Wavelength
Spectral Line Half Width

mcd

10

-

nM
nM

(1) Axial Luminous Intensity (10) is measured using a CIE- corrected Photometer and a measurement solid angle of 0.003 Steradium.
*International Commission on 111~mination.

TYPICAL CHARACTERISTICS
FIGURE 3 - AXIAL LUMINOUS INTENSITY
versus JUNCTION TEMPERATURE

FIGURE 2 - FORWARD CHARACTERISTICS
10

1.85

ffi 7.0
:t 5.0

1 .1

,.
<[

51-- TJ = 250 C

~

5

./

5

1.35
1.0

--

""

/

i:5

'~

g

.....
.........

:l

I-""

.§ 0.2

70

100

.0~TA=250C
.0
io""

.0

V
./

.0

./

.7
.5

/

V
3.0
5.0 7.0 10
20 30
50
. IF, CONTINUOUS FO'RWARO CURRENT (mAl

O. 1

-40

-20

o

+20
+40
+60
TJ,JUNCTION TEMPERATURE (OCI

+80

FIGURE 5 - SPATIAL RADIATION PATTERN

0

2.0

........

1.0

!!: 0.7
0.5
z
:E 0.3

FIGURE 4 - AXIAL LUMINOUS INTENSITY
_illS CONTINUOUS FORWARD CURRENT

0. \.0

............

I-

2.0 3.0
5.0 7.0 10
20 30
50
IF. INSTANTANEOUS FORWARD CURRENT (rnA)

.2

........

lll;

1---' .....

.0

3.0

z'

;: 2.0

/V

70

100

574

+100

MLED655

PANEL MOUNT
LIGHT EMITTING DIODE
VISIBLE RED
PN GALLIUM
ARSENIDE PHOSPHIDE

VISIBLE RED LIGHT-EMITTING DIODE
· .• desi!1led for panel mount indicator applications. Ideally suited
for mounting in panels to 0.125" thick using plastic snap·in retainer.
• High Luminous Intensity
• Economical Plastic Package
• Solid State Reliability
• Red Diffusing Lens

MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current-Continuous

Total Device DISSipatiOn

@

Symbol

Value

Unit

VA

40

Volts

IF

TA

=:

25°C

60

mA

POll)

100
1.67

mW
mw/oe

T J.T 519

·40 to +85

°e

Symbol

Ma.

Unit

°JAI1)

600

°e/W

Derate above 250 C
Operattng and Storage Junction
Temoerature Ranae

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance Junction to Ambient
(1)Mounted In metal panel (see Figure 1)

STYLE 1
PIN 1. CATHODE
2. ANODE

FIGURE 1 - HARDWARE DIMENSIONS

MOUNTING CLIP
MOTOROLA PART NO

42CS807!89ADOI

rn
-""""":43

ClEARANCEHOlEA~
648 (0255)OIA

CHASSIS~

07!1/318 !D0311O 1251 THIC
NOT FURNI8HED WITH KIT

]-:IGHT EMlnlNG DIODE

~

nil fRO

DIM
A

~
/

:

:

MOTOROLA CASE NO 219

B

NOT FURNISHED WITH KIT

C
D
E
F
G

RETAINER RING
MOTOROLAPARTNO
42CSB01989AOO2

J
K

R

MILLIMETERS
MIN
MAX
S.72
S.97
4.9S
S.21
8.38
8.89
O.Sl
0.41
0.64
0.89
046
0.30
2.64
2.44
2.44
2.54
12.S7
13.21
254
2.79

Mlt2791

CASE 279'()1

575

INCHES
MIN
MAX
0.23S
0.22S
0.195
0.20S
0.350
0.330
0.020
0.D16
0.025
0.03S
0.012
0.D18
0.096
0.104
0.100
0.095
0.520
0.495
0.110
0.100

MLED655 (continued)

ELECTRICAL CHARACTERISTICS (TA = 2So C unle.. oth_ise notedl
Charectwillie
R_se BreakdOwn VOltage
(lR = 1001'041
Forwwd Voltage
(IF = 20 mAl

Fig. No.

Symbol

-

BVR

2

VF

Typ

Max

-

-

Unit
Volts

1.6

2.0

Volts

Min

Typ

Max

Unit
mal

0.8

2.0
660
10

-

Min
4.0

OPTICAL CHARACTERISTICS (T A = 250 C unless oth_lse notedl
Cherectwiltics
Axial Lumlnouslntenlity (11
(IF =20mAI

Fig. No.

Symbol

3,4

10

-

~p

-

"'~

-

Peek Eminion Wavelength
Spectral Line Half Width

-

nM
nM

-

(1) Axial Luminous Intensity (101 is measured using a ClEO corrected Photometer and a measurement solid angle of 0.003 Steredian. The
spatial radiation pattern and 10 fully define the light emitting characteristics of a LED.
*International Commission on Illumination.

TYPICAL CHARACTERISTICS
FIGURE 3 - AXIAL LUMINOUS INTENSITY
venus JUNCTION TEMPERATURE

FIGURE 2 - FORWARD CHARACTERISTICS
10

1.85

S 7.0

250~

5 - T] =

"""'

.....

~

i!
'"!iii

-

-......

0.7

3.0

5.0 7.0

10

20

3D

50

70

1

lDD

0·-40 -30 -20 -10

.....

0

./

0

/"

./

/

/
3.0

5.0 7.0

10

20

30

50

+10 +20 +30 +40 +50 +60 +70 +80 +90 +100

FIGURE 5 - SPATIAL RADIATION PATTERN

0~TA·25.C

0

0

TJ, JUNCTION TEMPERATURE (DC)

0

0
7
5

"'" .........

0.3
30.2
~

FIGURE 4 - AXIAL LUMINOUS INTENSITY
_ _ CONTINUOUS FORWARD CURRENT

U

........

i

IF, INSTANTANEOUS FORWARD CURRENT (mA)

o.~.~

"'

1.0

Q

~I-"

2.0

Z

........

~ 0.5

i"""

.3

..

!. 2.0

/~

1.0

5.0
3.0

~

V

1.3&

~

70

100

IF, CONTINUOUS FORWARO CURRENT (mA)

576

MLED660

PANEL MOUNT
LIGHT EMITTING DIODE
VISIBLE REO
PN GALLIUM
ARSENIDE PHOSPHIDE

VISIBLE RED LIGHT-EMITTING DIODE
. designed for panel mount indicator applications. Intended for
mounting in standard 0.125" panels using plastic snap-in retainer.
• High Luminous Intensity
• Economical Plastic Package
• Solid State Reliabilitv
• Wide Viewing Angle - 90°
• High On/Off Contrasting Red Diffused Lens

DEEP RED
CONTRASTING LENS

MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current·Continuous

Symbol

Value

Unit

VR

4.0

Volts

IF

Total Power Dissipation @ T A"" 25°C

60

mA

POIII

100
1.67

mW
mWI"C

TJ.T,tg

-4010 +85

°c

Symbol

Mox

R8JA(11

600

Derate above 25°C
Operating and Storage Junction
Temperature Range

CSl

11c

THERMAL CHARACTERISTICS

I

Chllracteriltic

Thermal Resistance Junction to Ambient

I

Unit

~I

°CfW

r-fq

(HMounted in metal panal (se. Figure 1)

SEATING
PLANE

K

~

l.JtL D

G ---I

FIGURE I - HARDWARE DIMENSIONS

MOUNTINIiCL"
IIOTOIIOLAPART N O ' i j J '
42CSI019I8AOOI
i
i

i

\

CHASSISO.1S/3.18 I0.D311O.125) THK
/URNlSH£DWlTHKIT

'------',-h-,--""
CLEARANCE HOLE

..IJ

:

!

MKns.,

r~LtF

~

'a. ". ir
Ha,.d

IiOIA

.JL.

DIM

m

A

8
C

.L"~~YlJ ~.¥&
~

i:I! (!:!Iii)".'" I

'
Ji

8.13 0lA
h'A....
.

0
E

RETAllfERf.DB

fU#,R.

RETAINEIIRIItG
MOTOROLA PART NO.
."..."..,.,

I--

Hlr-l 1.1

~llo-

ETAINER

RING

Hfo'IA

- ~

I----

If,

F

r:::=:::-;:;:;----,
IrDtMEMIION:

n:

III

,V':=::'::15"'" ,

577

G
J
K
R

STYLE 'PIN I CATHODE
2. ANODE

MILLIMETERS
MIN
MAX
5.72
5.97
4.95
5.21
8.38
B.89
0.41
0.51
0.64
0.89
0,30
0.46
.44
2.64
2.44
2.54
12.57
13.21
2.54
2.79
CASE 279-01

INCHES
MIN
MAX
0.225
0.235
0.195
0.205
0.330
0.350
0.016
0.020
0.035
0.025
0.012
0-018
0.09& 0.104
0.100
0.096
0.495
0.520
0.100
0."0

MLED660 (continued)

E LECTRICA L CHARACTERISTICS (TA = 250 C unle.. otherwise noted I
Charm_l.ti.
Re_se Breakdown Voltage
(lR = l00,.A1

Fig. No.

Symbol

Min

Typ

Max

-

BVR

4.0

-

-

Unit
Volts

vF

-

1.6

2.0

Volts

Symbol

Min

Typ

Max

Unit
mod

0.4

0.8
1.4

-

2
Instantaneous Forward Voltoge (21
(iF = 20 mAl
OPTICAL CHARACTERISTICS (T A -- 250 C unless otherwise notedl
Charaet_Isti.s
Axial Luminous Intensity (11
(IF = 20 mAl
(IF -50 mAl
Peak Emission Wavelength
Spectral Line Half Width

Fig. No.
4,5

10

-

-

A

6600

I.P

-

"I.

100

-

A

(1) Axial Luminous Intensity (1 0 ) is measured using a Spectra Microcandela LightMEmitting Diode (LED) Photometer incorporating a photometric

sensor (detector and filter) matched to the CIE- standard observers eye response. 10 is defined as the ratio of the luminous flux emitted by a
source to an incremental on axis solid angle subtended by a sensor; i.e., candela = lumens/steradian. Since 10 is a photometric measurement,
it providess" accurate indication aftha visibility of an LED that includes the physical characteristics of the package such as encapsulant and lens
design.
(21 Pulse Test: Pulse Width E;;3001's, Duty Cycle E;;2.0%.

FIGURE 2 - FORWARO CHARACTERISTICS

FIGURE 3 - SPATIAL RADIATION PATTERN

1.86

T}'250~

6r-

6

V

6

1.36
1.0

""

/'

-2.0

i..-"~

3.0

6.0 7.0

10

20

30

60

70

100

iF, INSTANTANEOUS FORWARD CURRENT (mAl

FIGURE 5 - EFFECTS OF JUNCTION TEMPERATURE

FIGURE 4 - EFFECTS OF FORWARD CURRENT
3.0
2.0

I
= 0.5
I!:!

-

10

I

--

I--TA=25oC

1.0

~

0.7

~

0.2

~

O. 1

_

~

3.0

.2

..........

.......

;: 2.0

.........

i);

f5

r

1. 0

I-

!: O. 7
~ O.
o 6

z
iii

0.115
4.0

6.0

10

20

30

40

60

578

"

2

.1

IF, CONTINUOUS FORWARD CURRENT (mAl

......

o. 3

"'.;0.

~ 0.07
0.03
3.0

7.0

l-

!! 0.3
z

ffi

~ 5.0
~

f0-

-20

o

+20
+40
+60
TJ,JUNCTION TEMPERATURE (OCI

+60

+100

MLED900

INFRARED-EMITTING DIODE
900nM
PN GALLIUM ARSENIDE

INFRARED-EMITTING DIODE

120 MILLIWATTS

· .. designed for applications requiring high power output, low drive
power and very fast response time. This devioe is used in industrial
processing and control, light modulators, shaft or position encoders,
punched card readers, optical switching, and logic circuits. It is
spectrally matched for use with silicon detectors.
•

High Power Output - 550 p.W (Typ)

IF

@

=

50 mA

• Infrared Emission - 9000 A (Typ)
•

Low Drive Current - 10 mA for 120 p.W (Typ)

•

Unique Molded Lens for Durability and Long Life

•

Economical Plastic Package

MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current-Continuous

Total Device Dissipation @TA
Derate above 25°C

=

250C

Symbol

Valas

Unit

VR

3.0

Volts

IF

80

rnA

Po(11

120
2.0

rnW
rnW/oC

-40 to +85

°c

TJ,Tstg (2)

Operating and Storage Junction

Temperature Range

=t

"'======tG'i=======.2

THERMAL CHARACTERISTICS
Characteristic

Symbol

I

Thermal Resistance, Junction to Ambient

Max

I

8JA

o

Unit

I

500

STYLE 2:
PIN I. ANODE
2. CATHODE

°C/W

(1) Pnnted CirCUit Board Mounting

(2) Heat Sink should be applied to leads during soldering to prevent Case Temperature

exceeding 85°C.

t

FIGURE 1 - RELATIVE SPECTRAL OUTPUT
1.0

I

I

/"

IF=50mA
0.8 -TA=250C

-'-

o

1\

\
\

1\
\

I

0.4

0.2

j

..........

/

0.6

-

8000

/

/

DIM
A
C
0
F

\

H

r--..

./
8400

C

K

r8800

9200

9600

10.000

'. WAVELENGTH (A)

579

Q

MILLIMETERS
MIN
MAX

3.56
4.51
0.33
0.23
1.02
6.35
1.91

4.06
5.33
0.48
O. 8
1.2

-

INCHES

MIN

MAX

0.140 0.160
0.180 0.210
0.013 0.019
O.Ous I U.UlI
0.040 I u.u:.u
0.250

NOM

CASE 171

-

MLED900 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Fig. No.

Symbol

Min

Typ

Max

Unit

Reverse Leakage Current
(VR = 3.0 V. RL = 1.0 Megohml

-

IR

-

50

-

nA

Reverse Breakdown Voltage
(IR = 100 ItA)

-

BVR

3.0

-

-

Volts

Forward Voltage
(IF =50mA)

2

VF

-

1.2

1.5

VOlts

Total Capacitance

-

CT

-

150

-

pF

Unit

a..ract.. istic

(VR = OV, f = 1.0 MHz)

OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristics

Fig. No.

Symbol

3,4

Po

Total Power Output (Note 11
(I" = 50 mAl
Radiant Intensitv (Note 2)
(In- 5OmA)

Min

Typ

Max

200

550

-

-

2.4

-

I'W

10

mW/steradian

Peak Emission Wavelength

1

/..P

-

900

-

nM

Spectral Line Half Width

1



2

§

2.0

t:-....

N

::;

,......

~

........

b"

o

;

1.0

.......

~

;r
,..

8

-""

g o. 7

~

'"w

.........

~ 0.5

4

.E
u.

>

0
2.0

5.0

10

20

50

100

200

500

0.3
-75

1000 2000

IF, INSTANTANEOUS FORWARD CURRENT (mAl

-50

-25

25

50

75

100

150

TJ, JUNCTION TEMPERATURE (OCI

FIGURE 4 - INSTANTANEOUS POWER OUTPUT
versus FORWARD CURRENT

FIGURE 5 - SPATIAL RADIATION PATTERN

20

i

TJ=250C

10

~
,..

5.0

~

2.0

~
~

1.0

~

0.5

./

=>

V
V

ffi

~ 0.2

~

0.1

z

~ 0.05

0.02
2.0

5.0

10

20

50

100

200

500

1000 2000

IF. INSTANTANEOUS FORWARO CURRENT (mAl
Output saturation effects are not evident at currents up to 2 A as shown on Figure 4. However, saturation does occur due to heating of the
semiconductor as indicated by Figure 3. To estimate output level, average junction temperature may be calculated from:
TJ(AV) = T A

+ 8JA VFIFD

where 0 is the duty cycle of the applied current, IF' Use of the above method should be restricted to drive conditions employing pulses of
less than 101./.5 duration to avoid errors caused by high peak junction temperatures.

580

MlED910

INFRARED-EMITTING DIODE
· .. designed for applications requiring high density mounting, high
power output, low drive power and very fast response time. This
device is used in industrial processing and control, light modulators,
shaft or position encoders, punched card and tape readers, optical
switching, and logic circuits. It is spectrally matched for use with
silicon detectors.
• High Power Output - 150 I1W (Typ)
•

Infrared-Emission - 9000

INFRARED-EMITTING DIODE
900nM
PN GALLIUM ARSENIDE
350 MILLIWATTS

IF = 50 mA

@

A(Typ)

•

Low Drive Current - lamA for 32 I1W (Typ)

•

Low Profile Pill Package Allows Printed Circuit Board Assembly

• Sub-M iniature Package for High Density Mounting

MAXIMUM RATINGS
Rating
Reverse Voltage
Forward Current-Continuous

Total Device Dissipation@TA::::2SoC
Derate above 2SoC

Operating and Storage Junction

Symbol

Value

Unit

VR

3.0

Volts

IF

150

rnA

PO(I)

350
3.5

rnW
rnW/oC

TJ,Tstg

-65 to +125

°c

Q~

Temperatu're Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Ambient
(1) Thermal resistance, junction to case is typically 80 o C/W. The mounting conditions determine the junction to ambient thermal resistance.

F or example, when soldered in a copper

printed circuit board through a 1/8" diameter pad on the top to a 1/4" x 1/4" pad on the bottom
surface, values of 1600 CIW will occur. If both pads are 1/8" in diameter, thermal resistance
is typically 2500 C/W; the limit of 28SoC/W is specified for the latter mounting condition.

Lr '\

~

/' ........
1F-50mA

0.8 f--TA = 25"e

/

0.6

0.4

/

o~
8000

\

DIM
A
B
C
D

\

F
H

\

......
8400

\

\

/

/

0.2

STYLE 2:
TERM 1. ANOOE
2. CATHODE

\

I

8800

9200

t

". . . . r---....

9600

10,000

'" WAVELENGTH (A)

581

1
A

,2]

FIGURE 1 - RELATIVE SPECTRAL OUTPUT
1.0

1

K
L

MILLIMETERS
MIN MAX
2.79 3.30
1.47 1.57
0.71 1.02
041 0.61
0.13 0.25
0.48 0.53
2.11 2.36
0.20 0.30

INCHES
MIN MAX
0.100 0.130
0.058 0.082
0.028 0.040
0.016 0.024
0.005 0.010
0.019 0.021
0.083 0.ll93
0.008 0.012

CASE alA-05

MLED910 (continued)
ELECTRICAL CHARACTERISTICS

(T A =

250 C unless otherwise

noted)

Fin. No.

Svmbol

Min

TVD

Max

Unit

-

IR

-

50

-

nA

Reverse Breakdown Voltage
(lR=l00IlAl

-

BVR

3.0

-

-

Volts

Forward Voltage
(IF = 50 rnA)

2

VF

-

1.2

1.5

Volts

Total Capacitance
(Va= 0 V:f = 1.0 MHz)

-

CT

-

150

-

pF

Fig. No.

Svmbol

Min

TVD

Max

Unit

3,4

Po

50

150

-

IlW

10

-

0.66

-

mW/steradian

Reverse Leakage Cu rrent
(VR = 3.0 V, RL =

1.0 Megohm)

OPTICAL CHARACTERISTICS

un ess ot aMlse noted)

(T'A =

Characteristic
Total Power Output (Note

1)

I~ =~DmA

Radiant Intensity (Note
(IF = 50 rnA)

2)

Peak Emission Wavelength

1

I-p

-

900

-

nM

Sooetral Line Half Width

1

al-

-

40

-

nM

NOTE:
1. Power Output, po. is the total power radiated by the device into a solid angle of 27T steradians. It is measured by directing all radiation

leaving the device, within this solid angle, onto a calibrated silicon solar cell.
2.

Irradiance from a Light Emitting Diode (LED) can be calculated by:

H

= 10

d2

where H is irradiance in mW/cm 2 , 10 is radiant intensity in mW/steradian;
d is distance from LED to th~ detector in em.

FIGURE 3 - POWER OUTPUT versus JUNCTION TEMPERATURE

FIGURE 2 - FORWARD CHARACTERISTICS

go

2.0

1111

Co

«

~

~

en

:::>

/

TJ = 25°C

w

to

C;
o
>
~

1.6

~

1.2

3.0

/
ffi

«

..,.,

~
I-

1.0

~

:::>
0

0.7

'"~

0.5

~

0.4

.......

""

r.....

..........
..........

.E

u:

>

2.0

5.0

10

20

50

100

200

500

0.3
-75

1000 2000

IF, INSTANTANEOUS FORWARD CURRENT (mAl

-50

-25

25

50

75

100

150

TJ, JUNCTION TEMPERATURE (OC)

FIGURE 5 - SPATIAL RADIATION PATTERN

FIGURE 4 -INSTANTANEOUS POWER OUTPUT
10
5.0

I-

~ 2.0
o

1.0

;

0.5

'"
.,~

i'..

I-

0.8

~

:::>

.........

«
~

~

I

........

:::;

~
z

!z

2.0

N

-

TJ - 25°C

~ 0.2

~ 0.1
z

~ 0.05

z
~0.02
0.0 1
2.0

5.0

10

20

50

100

200

500

1000 2000

IF, INSTANTANEOUS FORWARD CURRENT {mAl

Ou~put saturation effects are not evident at currents up to 2 A as shown on Figure 4. However, saturation does occur due to heating of the
semiconductor as indicated by Figure 3. To estimate output level, average junction temperature may be calculated from:

TJ(AVI = T A + 0JA VFIFD

where 0 is the duty cycle of the applied current, IF. Use of the above method should be restricted to drive conditions employing pulses of
less than 10 Ils duration to avoid errors caused by high peak junction temperatures.

582

MLED930

INFRARED-EMITTING DIODE
· .. designed for applications requiring high power output, low drive
power and very fast response time. This device is used in industrial
processing and control, light modulators, shaft or position encoders,
punched card readers, optical switching, and logic circuits. It is
spectrally matched for use with silicon detectors.
•

High-Power Output - 650,!,W (Typ) @ IF = 100 rnA

•

Infrared-Emission - 9000

•

Low Drive Current - 10 rnA for 70!'W (Typ)

•

Popular TO-18 Type Package for Easy Handling and Mounting

•

Hermetic Metal Package for Stability and Reliability

INFRARED-EMITTING DIODE
900nM
PN GALLIUM ARSENIDE
250 MILLIWATTS

A (Typ)

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Reverse Voltage

VR

3.0

Volts

Forward Current-Continuous

IF

150

mA

Total Device Dissipation @ T A

= 25°C

250
2.5
-65 to +125

Poi1l

Derate above 2SoC
Operating and Storage Junction

TJ,Tstg

~A

B

L

mW
mW/oC
°c

Temperature Range

~

f1= .,

-i

f1c

F

~EATIN"
~LA~E

THERMAL CHARACTERISTICS

K

Characteristics

Thermal Resistance, Juntion to Ambient

Symbol

Max

Unit

9JA

400

°C/W

o~1--

~

(1)Printed Circuit Board Mounting

H

M

FIGURE 1 - RELATIVE SPECTRAL OUTPUT
1.0

I

I

/

IF"50mA
0.8 I-- TA "25 0 C

I

!;

~w

\

1/

>

/

>=

g 0.4
0---8000

\

/

0.6

0.2

""""" 1\

/

\

J

\
\.

8400

8800

9200

X, WAVELENGTH

9600

.............
10,000

~~;-o

~>

583

I

PIN 1. ANODE
PIN 1. CATHODE
PIN 2 INTERNALLY CONNECTED
TO CASE
MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
5.31 5.84 0.209 0.230
A
8
0.178 0.195
4.52 4.95
0.200 0.250
C
5.08 6.35
D
0.41 0.48 0.D16 0.019
F
0.51 1.02 0.020 0.040
G
2.54 asc
0.100 asc
H
0.039 0.046
0.99 1.17
J
0.84 1.22 0.033 0.048
0.500
K 12.70
L
3.35 4.01
0.132 0.15Jl.
450 asc
M
45 0 asc
209-01

(A)

G
J

MLED930 (continued)
ELECTRICAL CHARACTERISTICS

(T A = 250 C unless otherwise noted)
Fia. No.

Symbol

Min

Typ

Max

Unit

-

IR

-

50

-

nA

Reverse Breakdown Voltage
(lR=l00"A)

-

BVR

3.0

-

-

Volts

Forward Voltage
(IF = 50mA)

2

VF

-

1.2

1.5

Volts

Total Capacitance
(VR = 0 V;f = 1.0 MHz)

-

CT

-

150

-

pF

Characteristic
Reverse Leakage Current
(VR = 3.0 V, RL = 1.0 Megohm)

OPTICAL CHARACTERISTICS

(TA = 250 C unless otherWise noted)

Characteristic

Unit

Fig. No.

Symbol

Min

Typ

Max

3,4

Po

200

650

-

"W

10

-

1.5

-

mWIsteradian

Total Power Output (Note 1)
(iI: =50mA)
Radiant Intensity (Note 2)
!iF= 100 rnA)
Peak Emission Wavelength

1

J..p

-

900

-

nM

Spectral Line Half Width

1

dJ..

-

40

-

nM

NOTE:
1. Power Output, po. is the total power radiated by the device into a solid angle of 21T steradians. I t IS measured by directing all radiation
leaving the device, within this solid angle, onto a calibrated silicon solar cell.
2.

Irradiance from a Light Emitting Diode (LEO) can be calculated by:
H;;; 10

d2

where H is irradiance in mW/cm 2 ; 10 is radiant intensity in mW/steradian;

d is distance from LED to the detector in em.

FIGURE 3 - POWER OUTPUT versus JUNCTION TEMPERATURE

FIGURE 2 - FORWARD CHARACTERISTICS

~o

2.0

Jill

?

TJ = 25 0 C

w

to

«

--

1.6

~
o

>

/

3.0

J
§

t--...

2.0

N

:J

,......

«
~

........

I'....

""",

0

;:0

1.0

....
i<
....=>
0

0.7

'"~

0.5

~

........

""'" ..........

.E
0.3

u:

>

5.0

2.0

10

20

50

100

200

500

1000 2000

-75

IF, INSTANTANEOUS FORWARD CURRENT (mAl

-50

-25

25

50

75

100

150

TJ, JUNCTION TEMPERATURE (DC)

FIGURE 4 - INSTANTANEOUS POWER OUTPUT
FIGURE 5 - SPATIAL RADIATION PATTERN

versus FORWARD CURRENT

~
....

20
10

=1=

Tr25 0 C

~ 5.0

=>

~ 2.0

~
~

1.0

'"~

0.5

z
~ 0.2
z
~ 0.1
z

./

~O.05

0.02
2.0

5.0

10

20

50

100

200

500

1000 2000

IF,INSTANTANEOUS FORWARO CURRENT (rnA)

Output saturation effects are not evident at currents up to 2 A as shown on Figure 4. However. saturation does occur due to heating of the
semiconductor as indicated by Figure 3. To estimate output level, average junction temperature may be calculated from:
TJ(AVI

= TA + 0JA

VFIFD

where D is the duty cycle of the applied current, IF' Use of the above method should be restricted to drive conditions employing pulses of
less than 10 fJs duration to avoid errors caused by high peak junction temperatures.

584

MLS10l thru MLS 105 (SILICON)
MLS201 thru MLS20S

Advance Information
LIGHT ACTIVATED
SILICON
CONTROLLED RECTIFIERS
250, 400 mA RMS
15 thru 200 VOLTS

LIGHT SENSITIVE THYRISTORS
· .. Annular PNPN devices designed for applications such as
optoelectronic couplers, relay and lamp drivers, small motor
controllers, drivers for larger thyristors, and in sensing and detection
circuits.
• Sensitive Gate Trigger 35 mW/cm2 (Typ) - MLS10l thru MLS105
10 mW/cm2 (Typ) - MLS201 thru MLS205
•

Low Reverse and Forward Blocking Current 100J.tA (Maxl. TC = 1000C

•

Low Holding Current - 2.0 mA (Max)

•

Passivated Surface for Reliability and Uniformity

•

Choice of PackagesPlastic TO·92 - MLS10l thru MLS105
Metal TO·1S - MLS201 thru MLS205

CASE 29-01

TO·92

MLS10l thru
MLS105

MAXIMUM RATINGS
MLS10l1 MLS201

Rating

Symbol

Peak Reverse Blocking Voltage
MLS101,
MLS102,
MLS103,
MLS104,
MLS105,

Series

Unit
Volts

MLS201
MLS202
MLS203
MLS204
MLS205

15
30
60
100
200

Forward Current RMS

IT(RMS)

(All Conduction Angles)

Peak Forward Surge Current, T A

Series

VRRM

==

2SoC

250

I

400

mA

5.0

Amp

IGF(AV)

25

mA

IGFM

500

mA

VGRM

6.0

Volts

TJ

·40 to +100

°c

Tstg

-40 to +100

°c

Symbol

Max

Unit

8JA

200

°C/W

8JC

150

·C/W

ITSM

(112 cycle, Sine Wave, 60 Hz)

Average Gate Current - Forward, T A == 25°C
Peak Gate Current - Forward, T A :::: 2SoC
(300 ItS, 120 PPS)

Peak Gate Voltage - Reverse
Operating Junction Temperature Range

@

Rated

VRRM and VORM(l)

Storage Temperature Range

CASE 82
TO·18

THERMAL CHARACTERISTICS
Dlaracteristic
Thermal Resistance, Junction to Ambient
MLS10l Series

Thermal Resistance, Junction to Case
MLS201 Series

This is advance information on a new introduction and specifications are subject to change without notice.

585

MLS201 thru
MLS205

MLS10l thru MLS105, MLS201 thru MLS205 (continued)·

·ELECTRICAL CHARACTERISTICS

(RGK = IS k Ohms, TC = 2So C unless otherwise noted)

Characteristic

Symbol

Peak Forward Blocking Voltage (Note 1)

Min

Max

(TC = 100°C

MLS10l,
MLS102,
MLS103,
MLS104,
MLS10S,

MLS201
MLS202
MLS203
MLS204
MLS20S

IS

-

30

-

60
100
200

Peak Forward Blocking Current

Unit
Volts

VDRM

-

IDRM

-

100

itA

IRRM

-

100

itA

-

1.8

-

1.1

(Rated VDRM @TC= 100°C)

Peak Reverse Blocking Current
(Rated VRRM @TC = 100°C)
Forward "On" Voltage (Note 2)
(lTM = 2S0 mAl
(lTM=400mA)

Volts

VTM
MLS10l thru MLS10S
MLS201 thru MLS20S

Light Sensitivity

mWlcm 2

HET

(V AK = 7.0 V, Tungsten Source@ 27800 KI

-

MLS10l thru MLSlOS
MLS201 thru MLS20S

Gate Trigger Current (Continuous de) (Note 3)

-

SO
20

IGT

-

100

itA

VGT
VGD

-

0.8

Volts

0.1

-

IH

-

2.0

(Anode Voltage = 7.0 Vdc, RL = 100 Ohms, TC = 2S0C)

Gate Trigger Voltage (Continuous de)
(Anode Voltage =.7.0 Vdc, RL = 100 Ohms)

Holding Current

(Anode Voltage

TC = 2SoC
TC = 100°C
TC = 2SoC

=

7.0 Vdc, initiating current = 20 mA)

mA

1. Ratings apply for zero or negative gate voltage but positive gate voltage shall not be applied concurrently with a nega~ive potential on the

anode. When checking forward or reverse blocking capability. thyristor devices should not be tested with a constant current source in a
manner that the voltage applied exceeds the rated blocking voltage.
2. Forward current applied for 1.0 ms maximum duration, duty cycle ~ 1.0%.
3. RGK current is not included in measurement.

'--A

'"'''"~lrrJ
D3t
PLANE

K

~

~.

,

__

G
DIM
C
D
E
G

J
K
L
M

J

0

B

MLS101 thru
MLS105
CASE 29-01
TO-92

L

D-I-

H~

""J

Pin 1. Cathode
2, Gate
3. Anode
DIM

A

J '

NOTES:
1. LEADS WITHIN .13 mm (.005) RADIUS
OF TRUE POSITION AT SEATING
PLANE,AT MAXIMUM MATERIAL
CONDLTlON.
2. PIN 3·INTERNALLY CONNECTED TO
CASE.

586

CASE 82
TO·18

I

~~

M
INCHES
MIN
MAX
0.175
0.185
0.016
0.D19
0
5 NOM
0.045
0.055
0.085
0.095
0.500
0.050 TP
0.003
0.013

K

~

I

MI LLIMETERS
MIN
MAX
4.450
4.700
0.407
0.482
50 NOM
1.150
1.390
2.1611
2.420
12.700
1.270 TP
0.076
0.330

-t

SEATING
PLANE

Pin 1. Gate
2, Anode
3. Cathode

MLS201 thru
MLS205

~
~rc

B

C
D
F

G
H

J
K
L

M

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

5.31 5.84
4.52 4.95
5.08 6.35
0.41 0.48
0.51 1.02
2.54 BSC
0.99 1.17
0.84 1.22
12.70
3.35 4.01
450 BSC

0.209 0.230
0.178 0.195
0.200 0.250
0.016 0.019
0.020 0.040
0.100 BSC
0.039 0.046
0.033 O.04B
0.500
0.132 0.158
450 asC

-

MM439

(SILICON)

Advance Inf'orIDation
PNPSILICON
RFNHF AMPLIFIER
TRANSISTOR

PNP SILICON ANNULAR
RFNHF AMPLIFIER TRANSISTOR
· .. designed for use in RF and VHF amplifier applications.
• Collector-Emitter Breakdown Voltage BVCEO = 15 Vdc (Min) @ IC = 2.0 mAdc
•

High Current-Gain-Bandwidth ProductfT = 1000 MHz (Typ) @ IC = 3.0 mAdc

•

Low Collector-Base Capacitance Ccb = 0.4 pF (Typ) @ VCB = 12 Vdc

•

High Common·Emitter Amplifier Power Gain GpE = 22 dB (Typ) @ IC = 3.0 mAdc

•

Excellent Electrical Replacement for Germanium Mesa Technology
MM5000 Series

I

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

15

Vdc
Vdc

Collector-Base Voltage

VCB

30

Emitter-Base Voltage

VEe

3.0

Vdc

Collector Current - Continuous

IC

50

mAde

Total Power Dissipation @ T A = 2SoC

PD

250
1.43

mW
mW/oC

PD

400
2.28

mW
mW/oC

TJ,T stg

-65 to +200

°c

Derate above 25°C
Total Power Dissipation@Tc= 2sOC
Derate above 25°C

Operating and Storage Junction
Temperature Range

STYLE 10
PIN 1

EMITTER

2
3

BASE
COLLECTOR

4-

CASE

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient

Thermal Resistance. Junction to Case

INCHES
MIN
MAX

Symbol

Ma.

Unit

ReJA(ll

700

°C/W

ReJC

438

°C/W

0.230
0195
0210
1)021
0.030
0016 0.019
0100BSC
0.036 0046
0028 0.1)48
0.500
0.250
45 BSC
0050BSC
0050

(1) A6JA is measured with the device soldered into a typical printed circuit board.

All JEOEC dImenSIons and notes apply
CASE 20-03

TO·72

This.s advance information on a new Introduction, and specifications are subject to change without notice.

587

MM439 (continued)

I

ELECTRICAL CHARACTERISTICS

(TA ~ 25°C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Colleetor·Emitter Breakdown Voltage (1)
(IC ~ 2.0 mAde, IB ~ 0)

BVCEO

15

-

-

Vde

Collector-Base Breakdown Voltage

BVCBO

30

-

-

Vde

BVEBO

3.0

-

-

Vde

IT

800

1000

-

MHz

Ceb

-

0.4

0.6

pF

rb'C e

-

2.9

3.5

ps

NF

-

2.5

3.5

dB

Characteristic
OFF CHARACTERISTICS

(lC ~ 100 "Ade, IE ~ 0)

Emitter-Base Breakdown Voltage
(IE ~ 500 "Ade, IC ~ 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lC ~ 3.0 mAde, VCE ~ 12 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lc~3.0mAde, VCE~ 12Vde,l~

100 MHz)

Collector-Base Capacitance
(V C8 ~ 12 Vde, I E ~ 0, I ~ 1.0 MHz)

Collector-Base Time Constant
(IE ~ 3.0 mAde, VC8 ~ 12 Vde, I ~ 31.8 MHz)
Noise Figure
(lC = 3.0 mAde, VCE ~ 12 Vde, I ~ 200 MHz)
FUNCTIONAL TEST (Figure 1)
Common-Emitter Amplifier Power Gain
(VCC ~ 12 Vde, IC ~ 3.0 mAde, I ~ 200 MHz)
(1) Pulse Test: Pulse Width';;; 300 I'S, Duty Cycle';;; 2.0%.

FIGURE 1 - 200 MHz POWER GAIN AND NOISE FIGURE TEST CIRCUIT

T1

0.7-9.0 pF·
Output

RL
Shield

0.7-9.0 pF·

500hms
2.0·8.0 pF

470 pF
Input

RS
50 Ohms

470

2.0·8.0 pF

O.OOlI'F

NOTES:
L1

% inch inside diameter, % inch length, 4 turns #20 solid copper wire, center tapped.

T1

% inch inside diameter. close wound, 3 turns #26 solid copper wire. 1: 1 ratio
bifiller wound.

High Quality piston type capacitor.
Distance from eminer contact of transistor to ground side of bypass capacitor
should be kept minimum.

588

MM 1500, A(SILICON)
MM1501
NPN silicon RF power transistors designed for
UHF amplifier, frequency multiplier, and oscillator
applications.

MM1500
MM1501

MM1500A

@

@

STYLE 1

PIN 1. EMITIER

PIN 1. EMITIER

2. BASE
3. COLLECTOR

CASE 23

CASE 24

(TO-107)

2. BASE
3. COLLECTOR

(TO-102)

MAXI MUM RATI NGS

(TA'" 25°C unless otherwisenotedl

Symbol

Value

Unit

VCEO

15

Vdc

Collector-Base Voltagee

VCB

30

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current

IC

200

mAdc

Total Device Dissipation @ TC '" 25°C
Derate above 25°C

Po

3.5
20

Watts
mW/oC

TJ , Tstg

-65 to 200

°c

Symbol

Max

Unit

9JC

50

°C/W

Rating
Collector-Emitter Voltage

Operating and storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

589

MM1500,A, MM1501 (continued)

ELECTRICAL CHARACTERISTICS (T"

=25"C unless otherwise noted)
Symbol

Charatftristic

Min

Typ

Max

Unit

-

-

Vde

OFF CHARACTERISTICS
CoUector-Em1tter SwltaInIDg Voltage
10 mAde, Is = 0)

BVCEO(SU8)

Uc •

Collector-Base Breakdown Voltage
(Ic = 100 "Ade, IE • 0)

BVcso

Emitter-Base B _ Voltage
(~= 0.1 mAde, IC' 0)

BVEBQ

I

15
30

--

4.0

Collector Cutoff Current
(Vcs ' 20 Vde, ~. 0)

ICBO

-

(VCB ' 20 Vde, IE - 0, TA -150'C)

Vde
Vile
"Ade

0.1
100

DYNAMIC CHARACTERISTICS
Current-Gain - B8Ddw1dth Product
(Ie' 100 mAde, VCE = 15 Vde, f • 200 MHz)

fT

_1500, A
_1501

Outp,l C__ ltance

Cob

(VCB • 20 Vdc, ~. 0, f • 100 kHz)
CoUector-Base TIme COMtant
~ • 100 mAde, VCB • 15 Vdc, f = 31.8 MHz)

--

r 'c
b

MM15OO,A
MM1501

--

3.2

5.0

7.0
10

--

MHz

pF

-

c

FUNCTIONAL TEST
Power 0u1put, Figure 1
(VCD - 20 Vdc, RL = 50 ohm.. f - 1500 MHz)

1500
1000

pa

MM15OO,A
MM1501

FIGURE 2- CAPACITANCES

FIGURE 1- POWER OUTPUT TEST CIRCUIT
10

·1

T,-25"C

I!!!!!!!!

"'"

l- I--.

::-,;,·;.0;...

t"-

r- t"-

:--'1"-

I"~

:~~~~~

~~

i'-~

...... j'-..

"

2"

r--..

RFC

I"-

~

~~r-.

Jc..

r-. N

@I.,-O

3

c..'

,

r--..
I'
....

"I'
2

0.1

-VEE

Vcc=20V

0.2 0.3

0.5 0.7 1.0

2.0 3.0

5.0 7.0 10

COU£CTOII VOlTAGE (YOllS)

590

20 30

MM1505

(SILICON)

NPN SILICON SWITCHING TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR

... designed primarily for high·speed, saturated switching applications.
•

High Speed Switching Times @
ton';; 12 ns (Max)
toff ';;12 ns (Max)

Ie =

10 mAdc -

*MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage (1)

VCEO

6.0

Vde

Collector-Emitter Voltage

VCES

11

Vde

Collector-Base Voltage

Vce

15

Vde

Emitter-Base Voltage

VEe

4.0

Vde

IC

50

mAde

Po

0.30
1.71

rrNVl"C

TJ, Tstg

-65 to +200

°c

TL

300

°c

Collector~urrent

- Continuous

Total Power Dissipation@ TA = 25°C
Derate above 2SOC
Operating and Storage Junction
Temperature Range
Lead Temperature
(Soldering, 60 second time limit)

Watt

STYLE 1:
PIN 1. EMITIER
2. BASE
3. COLLECTOR

f---#----t
A

E
*Indicates JEOEC Registered Data.
(11 applicable from 0.01 mAde to 10 mAde (Pulsedl.

C

K
FIGURE 1 - TURN·ON AND TURN'()FF
TIME TEsT CIRCUIT

'"

+S.OV

L

Vep-lOV

O%~n

~

V1n'"+6.0V

OSCilLOSCOPE
VCC=+1.0V RISETIME"O.4ns
INPUT Z =

son

50

VOUI

500
f-'M.-oVoul

'"

1l1",F

GENERATOR

""

RISETIME< 1.0 ns
OUTPUT Z = 50n
PULSE WIDTH " 200ns

VBB = +5.0 V
Vm =-4.0V

.'.O~'o%V,"

DIM
A
B
C
0

10"

FIGURE 2 - CHARGE.sTORAGE TIME
TEST CIRCUIT

U

5.31
4.52
2.92

~

+3.0 V

-3.3 V

INCHES
MIN
MAX

5.84
0.209 0.230
4.95
0.178 0.195
3.81
0.115 0.150
0.021
0.533
E
0.762
0.030
F
0.406 0.483 0.016 0.019
G 2.54 BSC
0.914 1.17
0.046
H
0.711 1.22
0.048
J
K 12.70
L
6.35
0.250
M 45" BSC
450 BSC
1.27 BSC
N
0.050 BSC
p
1.27
0.050
CASE 27·02
T0-52
All JEDEC dimensions and notes apply

90%Vout

GENERATOR
RISE TIME < 1.0 tIS
OUTPUT Z,. son
PULSEWIOTH"200ns

MILLIMETERS
MIN MAX

50

OSCillOSCOPE
RISETIME-O.4ns
INPUTZ ",son

591

MM1505 (continued)

*ELECTRICAL CHARACTERISTICS (TA" 25°C unless otherwise rioted.)

I

Characteristic

Symbol

Min

Max

6.0

-

11

-

15

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11

Vde

VCEO(sus)

(lC" 10 mAde, IS " 0)
Collector-Emitter Breakdown Voltage

Vde

SVCES

(lC" 10/lAde, VSE" 0)
Collector-Base Breakdown Voltage

Vde

SVCSO

(lC" 10/lAde, 'E" 0)
Emitter-Base Breakdown Voltage

Vde

SVESO

(IE" 10 /lAde, IC" 0)

4.0

Collector Cutoff Current

'CES

(VCE" 11 Vde, VSE "0)
(VCE" 5.0 Vde, VSE "0)
(VCE" 5.0 Vde, VSE" 0, TA " +8SOC)

/lAde

-

10
0.1
5.0

-

10

15
25
15

125

-

Base Cutoff Current

'Sl

/lAde

(VCE" 11 Vde, VEB(ol!) " 0)
ON CHARACTERISTICS (1)
DC Current Gain

Collector-Emitter Saturation Voltage

(lC"
(lC"
(lC"
(lC"

-

hFE

(lC" 1.0 mAde, VCE " 0.4 Vdc)
(IC" 10 mAde, VCE" 0.4 Vde)
(I C " 30 mAde, V CE " 0.4 Vde)
VCE(satl

1.0 mAde, IS" 0.1 mAde)
10 mAde, IS" 1.0 mAde)
30 mAde, IS " 3.0 mAde)
10 mAde, IS " 1.0 mAde, TA " 85°C)

Vde

-

Base-Emitter Saturation Voltage
(lC" 1.0 mAde, IS" 0.1 mAde!
(lC" 10 mAde, IS" 1.0 mAde!
(lC" 30 mAde, IS" 3.0 mAde!

-

0.25
0.25
0.38
0.4
Vde

VSE(sat)
0.68
0.75

-

0.85
0.95
1.3

600

-

-

3.0

-

2.0

-

12

-

12

-

6.0

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(lC" 10 mAde, VCE" 4.0 Vde, I" 100 MHz!

IT

Output Capacitance
(VCS" 5.0 Vde, 'E" 0, I" 140 kHz!

Cob

Input Capacitance

Cib

(VSE" 0.5 Vde, 'C" 0, 1·140 kHz!

MHz
pF
pF

SWITCHING TIMES
Turn-On Time (Figure 1)
(VCC" 1.0 Vde, VSE(off) " 1.0 Vde, IC" 10 mAde,
'SI'" 2.0 mAde)

ton

Turn·Off Time (Figure I!

tofl

(VCC" 1.0Vde, 'C" 10 mAde, 'Bl ""'B2",1.0mAde)

Charge Storage Time (Figure 2)
(lC" 'SI"" IS2" 5.0 mAde)

ns

ns
ns

ts

*Indicates JEO'EC Registered Data.

(I) pulse Test: Pulse Length" 300 /lS; Duty Cycle ';;2.0%)

592

MM 1553 (SILICON)

75 W -150 MHz

RF POWER
TRANSISTOR

NPN SILICON RF POWER TRANSISTOR

NPNSILICON
... designed for VHF power amplifier applications in military and in·
dustrial equipment. Particularly suited for use in Class AB, B, or C
amplifier applications to 175 MHz.

•

High Output Power Capability 90 Watts Peak Output for 13.5 Watts (Max) Input@f = 150 MHz

•

Balanced Emitter Construction to Assure Ruggedness and Resist
Transistor Damage Caused by Load Mismatch

• Stripline Packaging for Lower Lead Inductance and Better
Broadband Capability

I

[T

t l=-

r:tE

MAXIMUM RATINGS
Rating

10·32 UNF 2A

Svmbol

Value

Unit

Collector-Emitter Voltage

VCEO

70

Vdc

Collector-Base Voltage

VCB

100

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current - Continuous

IC

8.0

Adc

Total Device Dissipation @TC=500C
Derate above sOOC

Po

80

533

Watts
mW/oC

-65 to +200

°c

Operating and Storage Junction

A

TJ, Tstg

Temperature Range

This device is designed for R F operation. The total device dissipation
rating applies only when the device is operated as an R F amplifier.

593

WRENCH FLAT
DIM

MILLIMETERS
MIN MAX

A 12.45
B 10.41
·C 21.21
0 8.51
E 1.78
F 4.19
H 22.86
J
0.10
K 11.43
L 1.65
M 40u

P
R
S
T
U

-

9.78
4.11
2.16
2.54

12.95
10.92
21.45
8.76
2.03
4.45
23.62
0.15
11.81
1.91
50"
1.27
10.03
4.42
2.41
3.30

INCHES
MAX
MIN
0.490
0.410
0.835
0.335
0.070
0.165
0.900
0.004
0.450
0.065
40u
0.385
0.162
0.085
0.100

CASE 145C·Ol

0.510
0.430
0.845
0.345
0.080
0.175
0.930
0.006
0.465
0.075
5(jll
0.050
0.395
0.174
0.095
0.130

MM1553 (continued)

ELECTRICAL CHARACTERISTICS (TC ~ 250 C unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

Unit

BVCEO

70

-

-

Vde

BVCES

100

-

-

Vde

BVEBO

4.0

-

-

Vde

'CBO

-

-

2.0

mAde

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc ~ 50 mAde,lB = 01

",
5'"
0« 400
w!::

~

~'"

I'-..

'::-Cm

;;:

•

is

-200
-400
105

45

35

40
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

110

115

120

125

130

---r-135

140

145

t, FREaUENCY (MHz)
FIGURE 6 - PARALLEL EQUIVALENT OUTPUT
CAPACITANCE versus FREQUENCY
160

I

r- VCE = 22 Vdc

140

Pout=25W

-V~E=22Jdc
Pout=25W

t-

-

0
8
Rin

O. 2

115

lW

1~

1~

g5

140

120

~~

tOO

~~

80

«w
>'"

...........

~'"

j~
~'"

4

110

vt

I"" """-..

FIGURE 5 - PARALLEL EQUIVALENT INPUT
RESISTANCE versus FREQUENCY

105

5.0

Pout = 25 W

~: 200
~«
~'"

r-

o

4.0

800

~.s

f--

10

1000

z
wu.

3.0W

20

S

0':

/

50 I-- t= lJMHz

~

'"
~

3.0

FIGURE 4 - PARALLEL EQUIVALENT INPUT
CAPACITANCE versus FREQUENCY

60

40

v:-

Pin, INPUT POWER (WATTS)

FIGURE 3 - POWER OUTPUT versus
COLLECTOR-EMITTER VOLTAGE

i

~ t--. ~ ~ V

V

'0 ~

1.0

Pin, INPUT POWER (WATTS)

~

./'" ~

~~/

...

22V,!---

3.0

118 ~Hz .....
136MHz _
150 MHz ......

'"3;:

~

----

V

20

r--- JCE = 2J Vdc

~

/

0

~

..----- ~

60

40

j

20

145

105

t, FREGUENCY (MHz)

-----

-

Cout

~

110

115

120

125

130

t, FREaUENCY (MHz)

595

135

140

145

MM1553

(continued)

FIGURE 7 - SAFE-OPERATING AREA

FIGURE 8 - POWER·TEMPERATURE DERATING CURVE

10

100

7.0

,.

~

~

>-

~

a
'"
'"

~8

~

5.0

""'"

3.0
2.0
0

1\

1.0
0.7

0

........

~

0.5
0.3

I~

0

~
........

0.2
0.1

0
1.0

2.0

3.0

5.0

7.0

10

20

50

30

70

25

100

50

75

100

125

150

~

175

200

TC, CASE TEMPERATURE (OC)

VCE, COLLECTOR·EMIITER VOLTAGE (VOLTS)

FIGURE 9 - 150 MHz TEST CIRCUIT
CI3

C2

VCE = 22 Vdc or 44 Vdc
Pout

L1

CI
C5

L1

15 Ohm, 1/2 W Carbon Compo
3/4" x 1/4" x 0,040" Copper Strap

L2

1 Turn #16 AWG Tinned Wire, 1/4" 1.0.

L3

Closewound (3/4" Total Length)
10 TUrns #18 AWG Coated Wire, 518" 1.0.
Closewound (1" Total Length)

RI

C3

L4

CI
C2
C3
C4
C5,C9

VK 200 Ferrite Bead, 2·112 TurnS#22AWG
1.5-15 pF ARCO 460 or Equivalent
6,8 pF Glass
2.7-30 pF ARCO 461 or Equivalent
12 pF Glass
22 pF Glass

FIGURE 10 - 150 MHz TEST CIRCUIT LAYOUT

Circuit Built on 1/4" Copper Plate

596

C6,CB
C7

CIO

9.0-IBO pF ARCO 463 or Equivalent
4.7 pF Glass
2000 pF Mica

Cll

0.Q1 liF Ceramic

CI2
CI3

5.0,uF. 50 V Fail Electrolytic
1200 pF Ceramic Feed-Thru

MM1748, A (SILICON)

NPN SILICON
SWITCHING
TRANSISTORS

NPN SILICON ANNULAR SWITCHING TRANSISTORS
· .. designed for low-voltage, high-speed saturated switching applications.

•

Collector-Emitter Sustaining Voltage VCEO(sus) = 6.0 Vdc (Min) @ IC = 10 mAde

•

DC Current Gain Specified @ 10 mAde and 30 mAde

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Typ) @ IC = 3.0 mAde

•

High Current-Gain-Bandwidth Product fT = 850 MHz (Typ) @ IC = 5.0 mAde - MM 1748A

•

Fast Switching Times @ IC = 10 mAde
ton = 15 ns (Max)
toft = 15 ns (Max)

MAXIMUM RATINGS
Symbol

Value

Unit

VCEOlsus)

6.0

Vdc

Collector-Base Voltage

VCB

15

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

IC

150

mAde

Po

300
1.71

mW
mW/oC

TJ,T stg

-65 to +200

°c

Rating,
COllector-Emitter Voltage

Collector Current - Continuous

Total Power Dissipation @ T A = 25°C
Derate above 25°C
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Ambient

I

I

Symbol

R9JAI1l

I

I

Max

I

Unit

583

I

°C/W

(1) R8JA is measured with the device soldered into a typical printed circuit board.

STYLE 1:
PIN 1. EMITIER
2. BASE
3. COLLECTOR
MILLIMETERS
INCHES
DIM MIN MAX MIN MAX
A
5.31 5.84
0.209
B
4.52 4.95
0.178
C
2.92 3.81
0.115
0
0.533
0.162
E
F
0.408 0.483
G
2.54BSC
H
0.914 1.17
0.03610:046
J
0.711 1.22 0.028 I 0.048
K 12.10
0.500
L
6.35
0.250
M 450 SSC
45' sse
N
1.27 sse
0.050 sse
p
1.27
0.050
All JEOEC dimensions and notes apply

-

~:~~~
-

-

CAse 27

T0-52

597

MM1748,A (continued)
ELECTRICAL CHARACTERISTICS (TA = 260C unles50therwi.. noted.)

I

I

Symbol

Min

Typ

Max

Unit

VCEO(sus)

6.0

-

-

Vde

Collector-Ba.. Braakdown Voltege
(lC = 10l'Ade,IE = 0)

BVCBO

15

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

-

Vde

-

-

50

nAde

-

-

5.0
5.0

I'Ade

20
30
10
15

50

VCE(sat)

-

0.2

0.3

Vde

V8E(satl

0.7

0.78

0.S5

IVde

600
800

750
850

-

Cob

-

2.0

3.0

pF

Cib

-

1.8

2.0

pF

Turn-OnTime (Figure 1)
(VCC = 1.0 Vdc, VBE(off) = 1.0 Vdc, IC = 10 mAde,
IBI = 2.0 mAde, IB2 = 1.0 mAde)

ton

-

12

15

ns

turn-Off Time
(VCC = 1.0 Vde,lc = 10 mAde,lBl = IB2 = 1.0 mAde)

toff

-

12

15

ns

ts

-

4.0

6.0

ns

Characteristic

OFF CHARACTERISTICS
Colleetor·Emitter Sustaining Voltege (1)
(lC = 10mAdc,IB = 0)

(IE

= lOI'Ade,lc = Ol

Collector Cutoff Current
(VCB = 5.0 Vde, IE = 0)
(VCB

= 5.0 Vde,

IE

ICBO

= 0, TA =

-

MM1748
MM1748A
Both Devices

1500 c)

ON CHARACTERISTICS (1)
DC Current Gain

= 10 mAde, VCE = 0.5 Vde)

(lC
(lC

= 10 mAde, V CE = 0.5 Vde, T A = -550C)
= 30 mAde, VCE = 1.0 Vde)

MM1748
MM1748A
Both Devices
Both Devices

Collector-Emitter Saturation Voltage

(lC

-

hFE

(lC

120
90

55
20
20

-

-

= 3.0 mAdc,lB = 0.15 mAde)

Base-Emitter Saturation Voltage
(lC = 3.0 mAde, IS = 0.15 mAde)
OYNAMIC CHARACTERISTICS
Current-Gain-Sandwidth Product
(lC = 5.0 mAde, VCE = 4.0 Vde, f
Output Capacitance
(VCB = 5.0 Vdc, IE

MM1748
MM174SA

= 0, f = 140 kHz)

I nput Capacitance
(VBE = 0.5 Vde, IC = 0, f

MHz

fT

= 100MHz)

= 140 kHz)

-

SWITCHING CHARACTERISTICS

Storage Time (Figure 2)
(VCC = 3.0 Vde, IC = 5.0mAdc, IBI

= IS2 = 5.0 mAde)

(1) Pulse Test: Pulse Width <;;3001'5, Duty Cycle <;;2.0%.

FIGURE 1 - TURN-ON AND TURN'()FF TIMES
TEST CIRCUIT
vee+ 1.Ov

FIGURE 2 - STORAGE TIME TEST CIRCUIT
Vee +3.0 V

+5.2 V

50
34

V,nT
1

O.II'F

O.lI'F

50

~Vout
500

500

I---'w-o

O.lI'F
PW;;'200 ns

2.0 k

530
2.0k

-3.3 V

50

O.II'F
330

toff
Vee = +5.0 Vde
Vln = -4.0 V

ton
Vee m -1.0 V
Vln = +6.0 V 0
t, <;; 1.0 ns
tof1

MM1803 (SILICON)
For Specifications, See 2N3l37 Data, Volume I.
598

430

MM 1941 (SILICON)
1 ~3

\COllector connected to case

~

NPN silicon annular transistor for high-frequency
power oscillator, multiplier and driver applications.

CASE 22
(TO·IS)
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

MAXIMUM RATINGS (TA=25 0 Cunlessotherwisenoted)

Rating

Symbol

Value

Unit

Collector-Base Voltage

VCB

30

Vdc

Collector-Emitter Voltage

VCES

30

Vdc

VEB

3.0

Vdc

Base Current

~

30

mAde

Collector Current - Continuous

IC

200

mAde

Input Power

P.

100

mW

Output Power

Pout

250

mW

Power Dissipation @ T C = 25' C
Derate above 25'C

PO*

600
4.0

mW
mW/"C

Power Dissipation @ T A - 25' C
Derate above 25' C
.

P D*

300
2.0

TJ

175

mW
mW/'C
·C

Tstg

-65 to +175

'C

Emitter-Base Voltage

m

Junction Temperature
Storage Temperature Range

*See Safe Area Curve

ELECTRICAL CHARACTERISTICS (TA = 250(; unless otherwise notetu

Characteristic

Symbol

Collector-Emitter III
Sustain Voltage

VCES{sus)

Colleetor- Base
Breakdown Voltage

BVCBO

Collector Emitter-Open
Base Sustain Voltage (11

BVCEO{sus)

Collector Cutoff Current

ICBO

Test Conditions

30

40

IC = 100 /LAde, IE = 0

30

40

IC - 15 mA, IB - 0

20

-

-

-

0.01

0.1

-

25

/LAdc

-

0.1

10

/LAde

25

50

-

-

6.0

8.0

-

-

2.5

pF

-

mW

VCB - 15 vdc, IE = 0

= 15 Vde,

IE

= 0,

TC = 100'C

Emitter Cutoff Current

lEBO

V EB = 3 Vdc, IC = 0

DC Current Gain

hFE

IC

Ihfel

VCE - 10 Vde, IC - 10 mAde
f=lOOmc

Collector Output
Capacitance

Cob

VCB - 15 Vdc, IE

Power Output

P

Pin - 20 mW max, f - 175 MHz

Power Gain

Ge

(IiPulse Test: PW = 100

/LS;

out

Typ ~ax Unit

IC = 15 mA, RBE = 0

VCB

AC Current Gain

Min

= 10

VCC

mAde, VCE

= 13.6 Vdc,

DC - 2%

599

= 10 Vde

= 0,

f - 100 kHz

IC (max) = 25 mA

-

-

100

-

7.0

9.0

Vdc
Vdc
Vdc

dB

MM 1941 (continued)
(continued)

ELECTRICAL CHARACTERISTICS

Test Conditions

Symbol

Characteristic
Power Output
(Oscillator)

Min Typ Max Unit

f = 80 MHz , VCC = 13.6 Vde,

Pout

-

50

-

mW

-

3.0

-

dB

IC(typ) - 20 mAde

Power Gain (Multiplier)

Ge

fin - 80MHz, fout - 240MHz
VCC - 13.6 Vdc, Pout'" 30 mW
IC(typ) - 25 mAdc

*Pu!se Test: PW = 100

/LS;

DC = 2%

POWER OUTPUT ,ersus FREQUENCY

POWER OUTPUT versus FREQUENCY
300

300

ie,

VCE=jVdC
250

~

I
!

J

~

2{)0

"""

ISO

250

!..

'"

P;, = loom~

~,=8Omw

P;n::;;;:60mW~

~

200

~

150

l<

100

S

100

",-'\ " I
~ ~;,=~mw

50

100

o

500

200

500

200

100

50

t. FREQUENCY rMH,)

f, FREQUENCY ~MHz)

INPUT AIID OUTPUT IMPEDAIICE HI'SIIS

SAFt OPERATIIIC AREA

COLLECTOR CU.RENT PARALLn EQUIVALENT

700

1000

t 175 MHz
10V
Ve

Te=2S·C

600

5
~
S

~.9

500

"

\

400

o

~

I

J

0.5_ PUlSE WIDTH _
~OUTYCYCLE

DC~ r-o

W

U

-

M

i'-.

100

~

~

U

50

!1i

.........

I
RtWt - R.V..

200

S

........

"i'...

200

500

I'"
e

\.

300

100

~

10

2{)

I
R.YI.

o

10

20

30

~

i...
;;

VeE _ 13.6 Vdc

1=150 MHz

250

..
g

200

S

V

100
50

~
~

V

~

J

/r

/

o
o

250

2{)

~

~

50
80
p;,. POWER INPUT (mW)

TO

80

80

~f-'
./

200

V

150
100
50

W

50

POWER OUTPUT CHARACTERISTICS
300

VeE - 8Vdc

150

r--

Ie. COLLECTOR CURREIIT (mAl

f:::::250 MHz

g
S

-

T-+-

20

POWER OUTPUT CHARACTERISTICS
300

R;,

r--

VeE. COLLECTDR·EMlmR VOLTAGE !VOLTS)

..

p;,=Jmw

o..'i
50

cg

= 13hdc

80mW

p;,=20mw~~

~

...

/p;,

V

V

o

~

600

o

n

V
2{)

V

~

~
50
50
P;,. POWER INPUT (mW)

TO

80

80

~

MM200S-2 (SILICON)

PNPSILICON
AMPLIFIER
TRANSISTOR

PNP SILICON ANNULAR TRANSISTOR

. . . designed for use in general·purpose amplifier and switching
applications.

•

Electrically Similar to 2N2906, 2N2907.

SEATING
PLANE

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

Value

Unit

VeEO

20
25
4.0
600
400
2.28
1.4
8.0

Vdc

mw/oe

-65 to +200

°e

Collector-Base Voltage

VeB

Emitter-Base Voltage

VEB

Collector Current - Continuous

Ie

= 25°C

Po

Total Power Dissipation@Tc= 25°C
Derate above 25°C

Po

Total Power Dissipation @TA

Derate above 25°C

Operating and Storage Junction
Temperature Range

TJ,T stg

Vdc
Vdc
mAde

mW
mW/oe

Watts

DIM

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case

STYLE I:
PIN I. EMITTER
2. BASE
3. COLLECTOR

I ROJA(1) I

I

438

I

R8Je

12.5

(1) R8JA is measured with the device soldered into a typical printed circuit board.

Unit
oem
oem

INCHES
MIN
MAX

5.84
0.209 0.230
4.95
0.178 0.195
5.33
0.170 0.210
0.533 0.Q16 0.021
0.030
0.762
0.406 0.483 0.Q16 0.019
0.100BSC
2.54 BSC
0.036 0.046
0.914 1.17
0.0:/8 0.048
J
0.711 1.22
0.500
K 12.70
0.250
L
6.35
M
45° BSC
45° BSC
N
0.050 B.~
1.27 SSC
P
1.27
0.050
All JEDEC notes and dimensions apply.
A

I

Max

Symbol

MILLIMETERS
MIN
MAX

B

C
0
E
F
G
H

5.31
4.52
4.32
0.406

-

CASE 22·03
(TO·1S)

601

MM2005-2 (continued)

I

*ELECTRICAL CHARACTERISTICS (T A = 250 C unle.. otherwise noted.)

I

Symbol

Min

Typ

M.x

Unit

Colleetor·Emitter Breakdown Voltage (1)
(lC = 10mAde.IB = 0)

BVCEO

20

-

-

Vde

·Coliector·Ba.. Breakdown Voltage
(lC = 1001'Ade.IE = 0)

BVCBO

25

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

-

Vde

ICBO

-

-

0.5

I1Ade

DC Current Gain
(lC = 150 mAde, VCE = 10 Vde)

hFE

100

200

400

-

Collector-Emitter Saturation Voltage

VCE(sat)

-

0.3

1.0

Vde

VBE(sat)

-

0.7

2.0

Vde

IT

-

300

-

MHz

Output Capacitance
(VCB = 10 Vde, IE = 0, I = 100 kHz)

Cob

-

6.0

15

pF

I nput Capacitance

Cib

-

20

-

pF

ton

-

20

45

I1S

toll

-

85

100

I'S

Characteristic

OFF CHARACTERISTICS

(IE = l00I'Ade.IC = 0)
Collector Cutoff Current

(VCB = 15 Vde,IE = 0)
ON CHARACTERISTICS (1)

(lC = 150 mAde,lB = 15 mAde)
Base-Emitter Saturation Voltage

(lc = 150 mAde, IB = 15 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(lC = 50 mAde, VCE = 20 Vde, 1= 100 MHz)

(VBE = 0.5 Vde, IC = 0, I = 100 kHz)
SWITCHING CHARACTERISTICS
Turn-On Time

(Vec = 30 Vde,lc = 150 mAde, IBI = 15 mAde) (Figure la)
Turn·OII Time
(Vec = 6.0 Vde, IC = 150 mAde,lBl = IB2 = l i mAde) (Figure lb)
(1) Pulse Test: Pulse Width'; 300 I'S, Duty Cycle'; 2.0%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT
lb - TURN-OFF TIME

1. - TURN-ON TIME

·30

INPUT
Zo=&OS!
PRF = 150 PPS
RISE TIME" 2.0 ns

+1& V

INPUT
Zo=&O"
PRF = 1&0 PPS
RISE TIME" 2.0 '"

200

1.0 k

......

r

~

O.:LJ

TO OSCILLOSCOPE
RISE TIME" &.0 ns

.j

&0

602

,

~J
lN916

200n.l-

-=

-=

37

r

1.0 k

&0

-

1.0 k

0:u-

-J200nsL

·6.0

-=

-=

TO OSCILLOSCOPE
RISE TIME" &0 n.

MM2258 (SILICON)
MM2259
MM2260
NPN silicon transistors designed for video output circuitry in transistorized television receivers.
CASE 31
(TO-S)

Collector connected to case

MAXIMUM RATINGS

Value
Rating

Symbol

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage

MM2258

MM22S9
MM2260

Unit

VCB

120

175

Vdc

VCEO

120

175

Vdc

VEB

Collector Current -Continuous
Total Power Dissipation @ TA

IC

= 25°C

PD

Derating Factor Above 25 ° C
Total Power Dissipation @ TC

500

300
1.0
5.71

= 25°C

PD

Derating Factor Above 25°C

5.0

mAdc
Watt
mW/oC
Watt

28.6

mW/oC

TJ

+200

°c

Tstg

-65 to +200

°c

ROJA

175

°C/W

ROJC

35

°C/W

Junction Temperature, Operating
storage Temperature Range

Vdc

~.O

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to
Ambient
Thermal Resistance, Junction to Case

603

MM2258, MM2259, MM2260 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristics

Symbol

Collector Cutoff Current
(V CB = 75 Vde, IE = 0)
(VCB = 75 Vde, IE = 0, T A = 150°C)

ICBO

Emitter Cutoff Current
(V EB = 4 Vde, IC = 0)

lEBO

Collector-Base Breakdown Voltage
(IC = 10 !
<.)

<.)

0

30

~

--

t-

I-

r--.

C,b

ALL TYPES

0
T,

I-"

........ ..... ~

ll-

50

125°C

100

z: 70

FIGURE 2 - JUNCTION CAPACITANCE VARIATIONS

25°C

I
T,

0

I

=

II

-55°C

Cob

....

MM2258

7
5
MM2259, MM2260
3

20
ALL TYPES
Veo = 2V

10

20

30

50

i'"

2

I I II

10

....

I

70 100

0.1

0.3 0.5

1.0

3.0 5.0

REVERSE BIAS (Yde)

Ie, COLLECTOR CURRENT ImAde)

604

10

30

50

100

MM2258, MM2259, MM2260 (continued)
SMALL SIGNAL h PARAMETER CHARACTERISTICS
(VeE

= 10 V, TA = 25°C, f = 1 kHz)

FIGURE 3 - CURRENT GAIN

FIGURE 4 - OUTPUT ADMITTANCE

400

50

200

20

MM2258. MM226~ ~

,....1-'

MM2258. MM226~

V

~

......... 1--"

....

,.....

- ~

50

. / I--"

I"'"
~

"

~~

'"'"

MM2259

~

i-"""

,.
i,....--'

~~

MM2259

~
2.0

0
0.1

0.5

0.2

1.0

5.0

2.0

\.0
0.1

10

1.0

2.0

5.0

10

Ie. COLLECTOR CURRENT (mAde)

FIGURE 5 - INPUT IMPEDANCE

FIGURE 6 - VOLTAGE FEEDBACK RATIO
50

20

1\

or\

0.5

0.2

Ie. COLLECTOR CURRENT (mAde)

~

"-

r\.

Of\. 1\
I"

" I'

0

I'
I'

"

1'1

MM2259
0

0

'"

l\ 1\

MM2258, MM2260

MM2258. MM2260
~

0

I"

r\
r\ f\

MM2259

r\ l\

1.0

0

1"-

O. 7

"

1. 0

"-

1'\

I"
r-..

~

~

o. 5
O. 4
0.1

0.2

0.5

1.0

2.0

5.0

O. 5
0.1

10

Ie. COllECTOR CURRENT (mAde)

0.2

0.5

\.0

2.0

Ie. COLLECTOR CURRENT (mAde)

605

5.0

10

MM3000 thru MM3003 (SILICON)
NPN silicon epitaxial transistors designed for general-purpose, high':'voltageapplication s.
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

CASE 79
{TO· 39)

MAXIMUM RATINGS

Rating
Collector-Emitter

Vo~tage

Emitter-Base Voltage

Symbol

MM3000

MM3001

MM3002

MM3003

VCEO

100

150

200

250

VEB

Collector Current -Continuous
Total Power Dissipation @ T A

5.0
200

Ie

= 25°C

PD

= 25°C

Derate above 25°e

ELECTRICAL CHARACTERISTICS

50

mAdc
Watt
mW;oe

5.0

Watts

28.6

mW;oC

. -65 to +200

T J , T stg

(T,

50

5.71
PD

Operating and Storage Junction
Temperature Range

Vdc
Vdc

1.0

Derate above 25°C
Total Power Dissipation @ TC

200

Unit

°e

= 25'C unless otherWISe noted)

Characteristic .

Symbol

Min

BVCEO

100 •
100
150
200
250

Max

Unit

OFF CHARACTERISTICS
Colleetor-Enlitter Breakdown Voltage (1)
(IC = 10 mAde, IB = 0)

MM3000
MM3001
MM3002
MM3003

Emitter-Base Breakdown Voltage
(IE = 10 I'Ade,' IC = 0)

BVEBO

= 100 Vde,

IE

= 0)

Vde

1.0

MM3001

-

MM3002, MM3003

-

5.0

150

-

-

7.0
15

MM3000

I CBO

Vde

-

5.0

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)
(VCB = 75 Vde, IE = 0)
(V CB

--

I'Ade
1.0

ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE = 10 Vde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(IC

= 10 mAde,

VCE

Output Capacitance
(VCB = 20 Vde, IE

fT

= 20 Vde, f = 100 MHz)

= 0,

f

= 100 kHz)

MM3000, MM3001
MM3002, MM3003

(1) Pulse Test. Pulse Wldthe300l's, Duty Cycle 2.0%

606

Cob

MHz
pF

MM3005 (SILICON)
MM3006
MM3007

NPN SILICON
AUDIO TRANSISTORS

NPN SI.LlCON ANNULAR TRANSISTORS

· .. designed for high·voltage audio driver amplifiers and general·
purpose switching and oscillator applications.

•

High Coliector·Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 10 mAde (MM3007)

•

Low Output Capacitance Cob = 15 pF (Max) @VCB = 10 Vdc

•

Excellent Gain Linearity - 1.0 to 250 mAde

•

Complements to PNP MM5005. MM5006. MM5007

MAXIMUM RATINGS
Svmbol

MM3005

MM3006

MM3007

Unit

VCEO

60

BO

100

Vdc

Collector-Base Voltage

Vce

BO

100

120

Vdc

Emitter-Base Voltage

VEB

Rating
Collector-Emitter Voltage

Collector Current

Continuous

Total Power Dissipation @TA

IC

=25°C

Po

=25°C

Po

Derate above 25°C
Total Power Dissipation @TC

•

..

Vdc

2.5-

Adc

1.05.71

Watt
mW/oC

B.O

_45.6

Derate above 25°C
Operating and Storage Junction

.

5.0

TJ.Tstg

~

-65 to

•

•

+200~

Temperature Range

607

Watts
mW/oC

°c

MILLIMETERS
INCHES
MIN
MAX
MIN MAX
0.350 0.370
B.B9 9.40
0.315 0.335
B.OO 8.51
6.10 6.60
0.240 0.260
D
0.406 0.533 0.016 0.021
E
0.009 0.125
0.229 3.18
F
0.406 0.483 0.016 0.019
0.190 0.210
G
4.83 5.33
H
0.711 0.864 0.028 0.034
0.737 1.02
0.029 0.040
J
0.500
K 12.70
0.250
L
6.35
M
45" NOM
45" NOM
P
1.27
0.050
Q
90" NOM
90" NOM
R
2.54
0.100
All JEDEC dimenSions and notes apply.
CASE 79-02
TO·Jg
DIM
A
8
C

MM3005, MM3006, MM3007 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

60
80
100

-

80
100
120

-

-

5.0

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

Collector-Base Breakdown Voltage

(lC

= 100 !lAde, IE = 0)

Vde

BVCBO
MM3OO5
MM3OO6
MM3OO7

Emitter-Base Breakdown Voltage

(IE

Vde

BVCEO
MM3005
MM3006
MM3OO7

BVEBO

Vde

= 100 !lAde, IC = 0)

Collector Cutoff Current
(VCB = 60 Vde, IE = 0)

MM3005

= 80 Vde, IE = 0)

MM3006

(VC8

(VCS = 100 Vde, IE = 0)

nAde

ICBO

-

100

-

100

All Types

40

-

MM3007

Emitter Cutoff Current
(VBE = 4.0 Vde, IC = 0)

lEBO

100
100
nAde

ON CHARACTERISTICS
DC Current Gain

= 1.0 mAde, VCE = 1.0 Vde)
(lC = 150 mAde, VCE = 1.0 Vde)
(lC = 200 mAde, VCE = 1.0 Vde)
(lC = 250 mAde, VCE = 1.0 Vde)

(lc

MM3OO5

50

250

MM3006

50

250

MM3007

50

250

VCE(sat)

-

0.35

Vde

VBE(on)

0.60

0.75

Vde

IT

50

-

MHz

Cob

-

15

pF

Collector-Emitter Saturation Voltage

(lC

-

hFE

= 150 mAde, IB = 15 mAde)

Base-Emitter On Voltage
(lC = 150 mAde, VCE = 1.0 Vde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, I = 20 MHz)
Output Capacitance

(VCB

= 10 Vde, IE = 0, I = 100 kHz)

(1) Pulse Test: Pulse W,dth .. 300 !lS, Duty Cycle .. 2.0%.

608

MM3008 (SILICON)
MM3009
High-voltage NPN silicon transistors designed for
video output circuitry in transistorized television receivers.
STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

CASE 79
(TO-39)

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous,

Symbol

MM3008

VCEO

120

MM3009

Unit

180

Vde

VEB

6.0

Vde

IC

400

mAde

Total Power Dissipation @ TA = 25"C
Derate above 25"C

Po

1.0
5.71

Watt
mW/"C

Total Power Dissipation@ TC = 25"C
Derate above 25"C

Po

4.0
22.8

Watts
mW/"C

TJ,T stg

-65 to +200

"C

Operating & Storage Junction
Temperature Range

ELECTRICAL CHARACTERISTICS

(T.

=2S"C unless otherwise noted)

Characteristic

Symbol

Min

Max

120
180

-

6.0

-

-

0.1

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage*
(IC = 10 mAde, IB = 0)

MM3008
MM3009

Emitter-Base Breakdown Voltage
~ = 10 /LAde IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 120 Vde, IE = 0)

MM3008

= 180 Vde,

MM3009

(VCB

~

BVCEO*

"0)

Emitter Cutoff Current
(VBE =4.0 Vde, IC = 0)

ICBO

lEBO

Vde

Vde
"Ade

0.1
0.1

"Ade

ON CHARACTERISTICS
DC Current Gain
= 1. 0 mAde, VCE = 10 Vde)
(IC = 10 mAde, VCE = 10 Vde)

hFE

Uc

(~

=30 mAde,

VCE

30

-

50

-

-

3.0

-

20

30
40

= 10 Vde)

-

DYNAMIC CHARACTERISTICS
Current-GaIn-Bandwidth Product
(IC =20 mAde, VCE = 20 Vde, f

fT

=20 MHz)

Collector-Base Capacitance
(VCB =20 Vde, IE = 0, f = 100 kHz)

C cb

Input Capacitance
(VBE = 0.5 Vde, ~

C ib

Puise Test:

= 0, f = 100kHz)

Pulse Width:$ 300 /L8, Duty Cycle:$ 2. 0%.

609

MHz

pF
pF

MM3008, MM3009 (continued)

FIGURE 1- CURRENT GAIN
20'0'

II
TJ = 25°C
VCE = 10' V

z

10'0'

«:
C!I
I-

z
.......

.... ~

70'

<>::
<>::

=>

U

.... i'i-'

50'

---

hie

--

i--" I"""

........

~

-

@ 1.0' kHz

......-

hFE

~

~

""~

"\ \

,

\

3D
20'
0.5 0'.7

1.0'

2.0'

3.0'

5.0'

7.0'

20'

10'

50'

3D.

Ic. COLLECTOR CURRENT (rnA)

FIGURE 2- CAPACITANCE
10'
7.0'
G::

..9.......
u

5.0'

.............

Z


a...
l=>
0

~
u

2.0'

1.0'
1.0'

2.0'

3.0'

5.0'

7.0'

10'

.........

r--.. ..... ....

20'

3D

VR• REVERSE VOLTAGE (VOLTS) .

610

-

r... r....~ ...

50'

,

70'

10'0'

MM30S3

(SILICON)

NPN SILICON ANNULAR

NPN SILICON
SWITCHING AND AMPLIFIER
TRANSISTOR

TRANSISTOR

. . . designed for medium current, medium power amplifier and
switching applications.

•

High Gollector-Emitter Breakdown Voltage
B\(CEO = 50 Vdc (Min)

•

Similar to 2N3053 in an easy to handle TO-39 Package

•

Collector Current - Continuous
IC= 1.0Adc

STYLE 1
PIN 1. EMITTER
I
2. BASE
3. COLLECTOR

...---1

/'
Q

MAXIMUM RATINGS
Symbol

Rating

N
Value

Unit

Collector-Emitter Voltage

VeEO

50

Vdc

Collector-Base Voltage

VeBO

80

Vdc

Emitter-Base Voltage

VEBO

6.0

Vdc

Collector Current - Continuous

Ie

1.0

Adc

Total Power Dissipation @ T A = 2SoC

Po

1.0
5.72

Watt
mW/oe

Po

5.0
28.6

Watts
mw/oe

TJ,T,tg

-65 to +200

DC

Derate above 25°C
Total Power Dissipation @ T C
Derate above 2SoC

= 2SoC

Operating and Storage Junction
Temperature Range

MILLIMETERS
INCHES
MIN MAX
MIN MAX
0.350 0.370
8.89 9.40
0.315 0.335
B
8.00 8.51
6.10 6.60
0.240 0.260
C
D
0.406 0.533 0.016 0.021
E
0.009 0.125
0.229 3.18
0,406 0.483 0.016 0.019
F
0.190 0.210
G
4.83 5.33
H
0.711 0.864 0.028 0.034
J
0.737 1.02
0.029 0.040
K 12.70
- 0.500 0.250
L
6.35
45 0 NOM
45 0 NOM
M
P
1.27
0.050
0
0 NOM
90
NOM
90
n
R
2.54
- 0.100
All JEOEC dimenSions and notes apply.
CASE 79-02
DIM
A

TO-39

611

MM3053 (continued)

ELECTRICAL CHARACTERISTICS (TA ~ 250 C unless otherwise noted I
Characteristic

Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage (11
(lC = 1.0 mAde,lB ~ .01

BVCEO

5.0

-

Vde

CoII.etor-Base Breakdown Voltage
(lC = 100 "Ade, IC =.01

BVCBO

8.0

Vde

Emitter-Base Breakdown Voltage
(Ie = 100 "Ade, Ic ~ .01

BVEBO

6_.0

Vde

OFF CHARACTERISTICS

COllectOr Cutoff Current
(Vce = 5.0 Vdc, IE =01

ICBO

100

nAde

Emitt.r Cutoff Current
(VBE = 4.0 Vde, IC = .01

lEBO

loa

nAdc

ON CHARACTERISTICS
DC Current Gai n
(lC = 1.0 mAde, VCE ~ 10 Vdel
(lc =150 mAde, VCE ~ 1.0 Vdel(11

hFE

CollectorMEmitter Saturation Voltage
(lC ~ 15.0 mAde, IB = 15 mAdel

VCE(satl

0.6

Vde

Base-Emitter Saturation Voltage
(lC =15.0 mAde, IB = 15 mAdel

VBE(satl

1.2

Vde

-

MHz

1.0

pF

8.0

pF

35
40

-

-

300

DYNAMIC CHARACTERISTICS
Current·Gain - Bandwidth Product (11,(21
(lC = 5.0 mAde, VCE = 1.0 Vde, f = 2.0 MHzl

fT

Output Capacitance
(Vce

= 1.0 Vde,

IE ~

a, f

Cob
= 1..0 MHzl

Input Capacitance
(Vee ~ .0.5 Vde, IC

Cib

= .0, f = 1.0 MHz)

(1) Pulse Test: Pulse Width::S;;: 300 IJs. Duty Cycle ~ 2.0%.

12)

1.0.0

fT = "'fel· f test

612

-

MM3726 (SILICON)

PNP silicon annular transistor designed for
medium-current, high-speed saturated switching and
core driver applications, and for complementary circuitry with NPN type MM3725.

Collector connected to cale

CASE 31
(TO·5)

MAXIMUM RATINGS

(TA = 25°C unless otherwise noted)

Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Symbol

Value

Unit

VCEO

50

Vdc

VEB

5.0

Vdc

IC

1.5

Adc

Total Power Dissipation @ TA
Derate above 25°C

=25°C

Po

1.0
5.71

Watt
mW/oC

Total Power Dissipation @ TC
Derate above 25°C

=25°C

Po

5.0
28.6

Watts
mW/oC

~J" TSM

-65 to -1'200

°c

Operating and storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal ReSistance, Junction to Case

R6JC

35

°C/W

Thermal Resistance, Junction to Ambient

R'.JA

175

°C/W

Characteristic

613

MM3726 (continued)

, ';

...

ELECTRICAL CHARACTERISTICS

','

,,'~';

~.

(T A = 2SoC unless otherwise noted)

Characteristic

Fig. No.

OFF CHARACTERiStiCS

..

-

Collector···Emltter Breakdown'Voltage (1)
(Ic· 10 mAde, 1a = 0)
Emitter-Base Breakdown Voltage
(IE = 10 ~Ade, IC = 0)
Collector Cutoff Current
(VcB ' 40 Vde, IE = 0)

Max
BVCEO
BVEBO

5.0

ICBO

VcIc

-

50

-

0.1

30

120

15

-

-

0.6

,V~c

"Ade

ON CHARACTERISTICS t1I
DC Current Gain
(lC = 500 mAde, VCE = 2 Vde)

9

hFE

(IC = lAde, VCE = 5 Vde)
Collector-Emitter Saturation Voltage
(IC = 500 mAde, 1a = 50 mAde)

10,11

, .. Vdc

VCE(s.t)

(IC = lAde, 1a = 100 mAde)

Base-Emitter Saturation Voltage
(IC = 500 mAde, 1a = 50 mAde)

11

".

"

-

1.2

0.8

1.1

-

1.3

200

-

-

10

Vde

VBE(sat)

(lC = lAde, 1a = 100 mAde)

DYNAMIC CHARACTERISTICS
Current· Gain - Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, I = 100 MHz)

Collector-Base Capacitance
(VCB

:=

-

IT

3

Ceb

10 Vdc, IE = 0, f = 100 kHz, emitter guarded.)

Emitter-Base Capacitance
(VSE "" 0.5 Vdc,

Ie = 0,

Turn-On Time
(VCC = 30 Vde, VBE(ofl) = 2 Vde, IC = 500 mAde,
1al = 50 mAde,

Ra = 200 ohms,

Cob

1,5,8

ton

2,7,8

toff

1,5,6

ton

Turn-Off Time
(VCC = 30 Vde, IC = lAde, 1a1 =·1az = 100 mAde,

2,7,8

toft

Ra

Ra = 100 ohms,

..

pF

80 ,'.'

-,,-

no

RL = 60 ohms)

Turn-On Time
(VCC = 30 Vde, VBE(ofl) = Z Vde, IC = lAde,
1al = 100 mAde,
= 100 ohms, . RL = 30 ohms)

pF

-

RL = 60 ohms)

Tum-Off Time
(VCC = 30 Vde, IC = 500 mAde, 1a1 "1a2 = 50 mAde,

Ra = 200 ohms,

3
f = 100 kHz, collector guarded)

MHz

RL = 30 ohms)

-

30

-

90

-

35

-

60

-

no

..
.-

.;'-

(1}Pulse Test: Pulse Width ~300 /Js, OU,ty Cycle ~ 2.0%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS
FIGURE 1- TURN-ON TIME
FIGURE 2- TURN-GFF TIME

'=ti

- 30 V o--"VIII,----,
RL
I

V"

::*::Cs' < SOpF

R,

+2V

I

o

-108---

I,::J

_..J

I,

+9V±=lf''" V;.-)30_V..R'V·~ri:~""'-~"1I-" SOO'E
Vi. 0
-I1V~',

IN916

.,'

':

1.0.< t, < 500 p'
'" < 50$

< 2ns

0.2 < t, < SOO!"

DUTY CYCLE ::::: 2%

DUTY CYCLE::::: 2%

'TOTAL SHUNT CAPACITANCE Of TEST JIG, CONNECTORS, AND OSCILLOSCOPE.

614

""l' Cs' < 50 pF
I
_.J,

. :!

MM3726 (continued)
TRANSIENT CHARACTERISTICS
-25'C

--- 150'C

FIGURE 3- CAPACITANCES

FIGURE 4- CHARGE DATA

100

-

0

0
50

7. o=vee
5.O-Ie/l•

c..

3~oV
V

3.0

0

'it 2. 0

0

,-

l.,.-

~

1. 0
~ O. 7
o. 5

ee...

t"-

0

iii
i

Or

0

O.3

0

Q,..

0.2

3.0,
2.00.1

0.2 0.3

0.5 0.7 1.0

2.0 3.0

5.0 7.0 10

20 30

O. I

50

10

20

30

REVERSE VOLTAGE IVOLTS)

50

70

100

200

300

500 700 1000

Ie, COlLECTOR CURRENT ImAl

FIGURE 6- RISE TIME

FIGURE 5- TURN·oN TIME
100

Vee 30V
le/l.- 10

0

["

50

~

0

I"~

0
7.0
20

30

200

1--'

-

200

300

500 700 1000

100

......
r-. t.....

~Ioo

i

100

FIGURE 8- FALL TIME .

FIGURE 7. - STORAGE TIME

-

70

Ie, ColLECTOR CURRENT ImAl

Ie, COlLECTOR CURRENT (mAl

300

50

-

Vee-'30V

0

I, =1.. ,

50

".

I'

0

~

(e/l. - IO - ~i""i
I I
lell.-2O ~~

50

;; 30

"

: ....

Icll.= U).J

IZ'

t--.

-

1eI1, = 20

20 f--I.,-I..

0

1,'=1,-"'''
0

I0

10

20

30

50

70

100

200 300

500 700 1000

0

20

30

50

70· 100

200

Ie. COUECTOII CURRENT ImAl

Ie. COUECTOII CURRENT ImAl

6,15

300

500 700 1000

MM3726 (continued)

STATIC CHARACTERISTICS

FIGURE 9- CURRENT GAIN
300

--

~0

--

-

20

---- - ..,J-- p,
-- ::'r,
--::::: ~ -

~-~-

25°C

-

-

~~

~-f-

- -,

55°C

,,,,:=>

r--.

.~

'"""

~
~

,t"

Vc,= IV
V'rlO V

r-- --j
0

--,",

-I-'

--- - - - - ---- - - JIl2('._
- -- ~}J_.!!~£.

-- --------

200

2,0

3,0

5.0

7,0

10

20

50

30

70

100

200

300

500

700

1000

Ic, COLLECTOR CURRENT (mAl

FIGURE 10 - SATURATION REGION
1,0

\

\
500mA

100mA

Ic = 10mA

1\
\.

\

1
\

o0.1

,
I""-t-.

'\

\.
. . . 1"-

IA

............

'I'-.

I""'- ~

0.2

0.3

0,5

0.7

2,0

1.0

3.0

TJ = 25°C

5.0

7,0

10

20

30

50

70

1 1001

200

IL BASE CURRENT (mAl

FIGURE 12 - TEMPERATURE COEFFICIENTS

FIGURE 11 - "ON" VOLTAGES
1.2

+1.0

1.0
~

V"(N'I @(cll, = 10

f-

J..:.I-r"

V"I.~I@IVc,=

0
1,0

tH+:-W.

t?

~

(-55°C I. 25°CI

~-I,0
;;;

OV

~ -2.0

1/
0,2

'III(25°C 1.I75°CI

II
8vc for VCE(N'I

i-"
I-"

r-.

/Iv,forV..

iC'("'11@1cil~ ~I ~L.

II
2.0

5.0

10

20

50

100

200

500

1000

-3.0
1,0

Ic. COllECTOR CURRENT (mAl

616

2,0

5,0

10

20
50
100
Ic, COLLECTOR CURRENT (mAl

200

500

1000

MM3734 (SILICON)
MM3735

NPN SILICON
CORE DRIVER
TRANSISTORS

NPN SILICON ANNULAR
CORE DRIVER TRANSISTORS
... designed for use in core driver applications and high speed, high·
current switching applications.

•

Coliector·Emitter Breakdown Voltage BVCEO = 30 Vdc (Min) - MM3734
= 50 Vdc (Min) - MM3735

•

Low Coliector·Emitter Saturation Voltage VCE(sat) =0.29 Vdc (Typ) @ IC = 1.0 Adc
High Current·Gain-Bandwidth ProductfT = 400 MHz (Typ) @ IC = 50 mAdc

•
•

Fast Switching Times ton = 16 ns (Typ) @ IC = 1.0 Adc
toff =2B ns (Typ) @ IC = 1.0 Adc

•

Devices Electrically Similar to 2N3734 and 2N3735

JJIa
R

~

MAXIMUM RATINGS
Rating

Symbol

MM~34 MM~35

Unit

50

Vdc

75

Vdc

Collector-Emitter Voltage

VCEO

30

Collector-Base Voltage

Vca

50

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

1.5

Ado

Total Power Dissipation @ TA = 25°C

Po

1.0
5.71

mW/oC

4.0
22.8

mW/oC

-65 to +200

°c

Dera .. abo"" 25°C
Total Power Dissipation @ T C = 2SOC
Dera .. abo"" 2SOC
Operating and Storage Junction

Po
TJ,T st9

SEATiNG
PLANE

B

:::::
rP f .
A

---Tn

__

~K

--II_~
STYlE 1:
PIN 1. EMITIER
2. BASE
3. COLLECTOR
N

Watt

Watts

Temperature Range

DIM
A
B

MILLIMETERS
MIN MA

C

0

THERMAL CHARACTERISTICS
Charecteristic

Thermal Resistance. Junction to Ambient
Thermal Resistance. Junction to case

F

Symbol

MIX

Unit

RSJA(lI

175

°CIW

RSJC

44

°CIW

(1) A6JA is measured with the device soldered into a typical printed circuit board.

G
H
J

K
L
M

P
Q

R

INCHES
MAX
0.350 0.370
0.315 0.335
0.240 0.2BO
0.016 0.0 1
0.1
O.
O.OIB
. 19
0.19
0.21
0.0
0.029 0.Q40
0.5
O.
4
OM
0.050
9 NOM
0.100

MIN

CASE 79
TO-39

617

MM3734, MM3735 (continued)

I

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

Characteristic

Symbol

Min

Typ

Max

30
50

-

-

50
75

-

5,0

-

-

-

40
50
35
25
20
25
20

85
100
65
35
35
30
30

Unit

OFF CHARACTERISTICS
, Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde',11! = 0)
Collector-Base Breakdown Voliage
(lC= 10"Ade,IE = 0)

Emitter-Base

Breakdo~n

Vde

BVCEO
MM3734
MM3735
MM3734
MM3735

Voltage

BVEBO

Vde

BVCBO,

I

-

Vde

500
75

;lAde

(IE, = 10 "Ade,lc = 0)

Collector Cutoff Current
(VCB = 30 Vde,IE = 0)
(VCB

ICBO

= 30 Vde,IE = 0, TA = l00oC)

-

nAdc

ON CHARACTERISTICS (1)

DC Current Gain
(lc = 10 mAde, VCE = 1.0 Vde)
(lC = 100 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1,0 Vde)
(lC = 1.0 Ade, VCE = 1.5 Vde)
(I C = 1.5 Ade, VCE = 5,0 Vde)

-

hFE

MM3734
MM3735
MM3734
MM3735

Collector-Emitter Saturation Voltage

-

100'
100

-

Vde

VCE(sat)

(lC = 10 mAde,lB = 1,0 mAde)
(lC = 100 mAde, IB = 10 mAde)
(lC = 500 mAde, IB = 50 mAde)
(lC = 1.0 Ade, IB = 100 mAde)

-

0,15
0,16
0.20
0.29

0,25
0.30
0,5
1.0
0,8
0,9

0,8

0.65
0.75
0.86
0.94

200

400

'.,

M!'iz

-

7,3

15

pF

Cib

-

72

90

pF

Turn.()n Time
(VCC· 30Vde, VBE(off) = 2.0 Vde,.IC = 1.0Ade,IBl = l00mAdel

ton

-

16

35

' ns

Turn.()ff Time
(VCC· 30 Vde,

tofl

-

28

60

ns

-

Base-Emitter Saturation Voltage

Vde

VBE(sat)

-

(lC= 10 mAde,lB = 1.0 mAde)
(lC = 100 mAde,lB = 10mAde)
(lC = 500 mAde, IB = 50 mAde)
(lC = 1.0 Ade, IB = 1 00 mAde)

1.2

1.4

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 10 Vde, f = l00MHz)

IT

Output Capacitance
(VCB = 10 Vde,lE = 0, I

I "put Capacitance
(VBE = 0,5 Vde,lc

Cob

= 1.0 MHz)

= 0, I = 1,0 MHzl

;

SWITCHING CHARACTERISTICS (FIgure 111

Ie· 1.0 Ade, IBI = IB2 = 100 mAde)

(I) Pulse Wldt,,: Pulse WIdth ';;;300;lS, Duty Cycle ';;;2.0%.

618,

MM3734, MM3735 (continued)

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA

...

3_0

'I.

~
~

1.0

~

O. 7

~

o. 5

~

0_3

~

o.2

200

1'1\

1£: 2_0

\

I.om.~

'

--

- CURRENT LIMIT
- THERMAL LlMIT'@TC - 25°C
ISINGLE PULSE)
SECONO BREAKOOWN LIMIT
3
0.0 0.5 0.7 1.0
5.0 7.0
2.0 3.0

0.07

0.05

-r-.

z

~ lOo";~t=

~100 r-

de

25 C

z>-

.

~

0

'"o

0,...-

a'"

"- '\ 1\
'\. 1\ 1\

8

~ O. I

10 ••

~
o

O.6

.......
~

0
MM3734
MM3735
10

20

30

.--

2010

50

20

30

1.0

TJ = 25°C

~
~
w

r--::f-"
VBEI..!)@lclIB=lo

II. II

II
IC=20mA

100mA

II

500 mA

TJ = 25°C

I.OA·

0.8

~

\

~ 0.6

VBE @VCE" 1.0 V

:i 0.4

"

~

~
:j

VCEI"I)@IC/IB=IO

\

20

30

50 70 100
200 300
IC. COLLECTOR CURRENT ImA)

"-

r--

0.2

0.5

500 700 1000

FIGURE 5 - TEMPERATURE COEFFICIENT
+2.0

~
is

Ll

'Applies for ICIIB < hFE/3

j

200

tt:
1"

10

a

!<0:

f0-

eVB for VBE

r'
'"

-~

r-

r-..

Air'"

...... Ia"'"

A

~

0

V
///

8 o. I

~

II
20

Afi9'

Vcp4lJV
25 V
10V

a

8

-3.0
10

100

~

~

'eVC for VCEI"')

w
~ -1.0

~

50

- VBEloff) = 2.0 V

>-

m100

0

-2.0

2.0
5.0
10
20
lB. BASE CURRENT ImA)

FIGURE 6 - COLLECTOR CUTOFF CURRENT

u

~

1.0

-

1000
TJ = -550 C10 125°C

.§. +1 0
~
.

"- i"'--t--

'1\

8
0
10

>-

250mA

'"
~

O. 2

!

500 700 1000

co

~ O.

$

50 70 100
200 300
IC.COLLECTOR CURRENTlmA)

FIGURE 4 - COLLECTOR SATURATION REGION

2!
w
co

~

"-

.ll'

FIGURE 3 - "ON" VOLTAGES

o.8

J

-55°C

ul

VCE. COLLECTOR-EMITTER VOLTAGE IVOLTS)

I.0

V~E 11.

TJI'12~C

'I.

~

~,

FIGURE 2 - DC CURRENT GAIN

30

50

70

100

200

300

500 700 1000

0.0 1

o

20

4lJ

60

80

100

120

140

TJ.JUNCTION TEMPERATURE 1°C)

IC. COLLECTOR CURRENT ImA)

619

160

180

200

MM3734, MM3735 (continued)

DYNAMIC CHARACTERISTICS

FIGURE 8 - CAPACITANCE

FIGURE 7 - CURRENT-GAIN-BANDWIDTH PRODUCT
100

I- JcJ-lll.~

.........

Cib

50

........

,/'

0

/

/

TJ = 25"e

0

f-l00MH,
T -25"C

0

I-

,)~

0
Cob

7.0
4,0

6.0

100
20
40 60
IC, COLLECTOR CURRENT (mAl

1

200

5.00.1

400

0.2

100

~

/'

30

20 tr@lYCC'10Y

~.

10

100

!

~

~

!

r--

Id @I YaE(olll' 2.0 v

7.0
5.0

30

50 70 100
200 300
Ie. COLLECTOR CURRENT (mAl

50

20

1ilil

r'>c(

70

If@lVCC=10V,lella=10-

50

-

r-....

30

0
0

500 700 1000

If ~ yJc! 3b ~,lldla =110
and YCC =10,lc/la' 20

>-

_r-

.....

r-

...... 1,@llella=20
lellB= 10
20

30

200 300
50 70 100
Ie, COLLECTOR CURRENT (mAl

500 700 1000

FIGURE 11 - SWITCHING TIME TEST CIRCUITS

Tu,n-Qn Time

+30 V

Turn·Off Time

+30 V

30

P,W. 0;;; ZOO n.
RIM TI .... o;;;z n.
Duty Cycle 0;;; Z"

n

+". ,V

Scope

Scope

Vln

100

1.. la2
TJ' 250 C

If@lYCC-'Y'I C a

........

0-

I I I III
20

'Z

0
Oy'

3.0

2·~0

300

..... o
"- .......,l"'

!

10

FIGURE 10 - TURN'()FF TIME

200

70
50

5.0

500

leila- 10
TJ = 250C

Ir@lYCC,30Y

2.0

VR, REVERSE YOLTAGE (VOLTSI

FIGURE 9 - TURN'()N TIME
200

1.0

0.5

100

lN91S

Vln_j __ -\:.: 0

11 - 1.01"

-Z.OV

12 <5

n.

13>11"

DUIV Cycle - Z"

620

-4.0 V

-:

MM3736, MM3737 (SILICON)

NPN SILICON ANNULAR MEMORY DRIVER
. designed for 1 Ampere, high·speed switching applications such
as ferrite core memory and hammer drivers.

NPNSILICON
MEMORY DRIVER
TRANSISTOR

• Coliector·Emitter Breakdown Voltage BVCEO =30 Vdc (Min) @ IC = 10 mAdc - MM3736
.. 50 Vdc (Min) @ IC = 10 mAdc - MM3737
• Guaranteed DC Current Gain hFE =30·120@ IC = 1.0 Adc - MM3736
= 2(1.80@ Ie = 1.0 Adc - MM3737
• Guaranteed Switching Time @ IC" 1.0 Adcton =45 ns (Max) toff" 65 ns (Max)

*MAXIMUM RATINGS
Svmbol

Rating

MM3736 MM3737

Unit

VCEO

30

50

Vdc

CollflCtor·Sa.. Voltage

VCS

50

75

Vdc

Emitter· Base

VES

5.0

Collector Current - Continuous

IC

1.5

Adc

Total Device Dissipation@TA = 2SoC

Po

0.5

Collector·Emitter Voltage

Voltage

2.86

Watt
mW/oC

Po

2.0
11.4

Watts
mW/oC

TJ.Tstg

-65 to +200

°c

D
>' 0.4

0

10

I-- TJ = 25°C

1.2

VCE-l.0V

1000

500

~VCElsatl @IC IB = 10

10

50

20

IC. COLLECTOR CURRENT ImAI

100

500

200

1000

IC. COLLECTOR CURRENT ImAI

FIGURE 4 - COLLECTOR SATURATION REGION

g
~
w

O.S

;;

O.6

'"
~
o

300~
Ic=150mA

L¥
a:

~

:j

0.4

\

I'-

0.2

500mA 8D0 1
mA

\
\
\

~

:IE

, I

I III

1.0

\
"- ....

"'---

8

W

....

>

o

0.5

1.0

2.0

5.0

1111 TJ = 25°C
obl~~

10

-

20

100

50

200

5DO

lB. BASE CURRENT ImAI

~

+2.0

.!

+1. 5

1000

<
3

w
<:;

ft

....
z

'APPLIES FOR ICIIB< hFE/2

e

w
a:
a:

I-'

+1.0

.

~

....
....
~

~

..(1.5

~

-1.0

~
~

i

10

0

w

o
....
w

a:

I:!

"- ~I--'

-1. 5 f--sVB FO R VBE

-2.0
-2.5
10

.....

A

100

....

L.-I--' I---

+0.5 f--'svc FOR VCElsatl

~

~ 1=

1.0

fil

""

:::j

....0
f:l

0.1

I,.
0.01

30

50

100

200

300

SOD

1000

,

o

m

30

10~ ~

40

DO

~

8D

~

m

~

TJ. JUNCTION TEMPERATURE lOCI

IC. COLLECTOR CURRENT ImAI

623

v

~

f-- I-VCE =60

~

20

...e:

FIGURE 6 - COLLECTOR CUTOFF CURRENT

FIGURE 5 - TEMPERATURE COEFFICIENTS

+2. 5

~

~

~

MM3736, MM3737

(continued)

TYPICAL DYNAMIC CHARACTERISTICS

FIGURE 8 - CAPACITANCE

FIGURE 7 - CURRENT GAIN - BANDWIDTH PRODUCT
~ 500

VCE" 10 Vdc
f" 100 MHz
TJ" 25°C

~

t;
:>

c

~

100
70

300

I'-....

V

/"

'"

::; 200

........

'-'

z
~

"

V

20

<3

~

Z

10

'-'

<.i

;f

13
J:'

.......

30

w

;;: 100

~

...... Cib

~

oS

~

~I

TJ" 25°C

50

7.0

--

Cob

5.0

70
50
4.0

S.O

20

10

40

SO

100

200

3.0
0.1

400

1.0

0.5

0.2

IC. COLLECTOR CURRENT (rnA)

100

10

50

20

200

Ic/lB "10
TJ" 25°C

~

5.0

100

FIGURE 10 - TURN.QFF-TIME

FIGURE 9 - TURN.QN TIME
200

2.0

VR. REVERSE VOLTAGE (VOLTS)

100

1"-

VC~" Jo ~d~

If@ICIIB"10
"lcIIB-20

Tr 25 0lC

50

!w

'";::--

......

....

20

I,@ VCC " 10 Vdc
VCC" 30 Vdc

.~ V

70

!w

~

';::"

~~

10

"

50

Id@VBE(off)'OV
VBE(off) " 2.0 Vdc
VCC" 30 Vdc

......

I

2.0
10

50

20

100

10
200

500

.

j'..,

30

V
./

20

5.0

1,@ICIIB"20
/ IC/IB" 10

.....

1000

v:-

10

Vl/
V
20

30

IC. COLLECTOR CURRENT (rnA)

.......

"
50

100

200

TURN-ON TIME
R(SE TIME'" 2.,

Vi~:lVQ

TURN-OFF TIME
+30V

30n

DUTY CYCLE'" 2%

-2Vj-- -C

30!1

+ll.lV

Vi,

_v'"

300

IC. COLLECTOR CURRENT (rnA)

+30V

lOon'

-=

t-

lOon
Vi,
IN916

t]~
1 /oIS 1#$

DUTY CYCLE" 2%

624

l"-

I-'

FIGURE 11 - SWITCHING TIME TEST CIRCUIT

P. W. '" 200..

/

500

1000

MM3903 (SILICON)
MM3904

NPNSILICON
SWITCHING AND AMPLIFIER
TRANSISTORS

NPN SILICON ANNULAR TRANSISTORS
· .. designed for general purpose switching and amplifier applications.
Direct replacement for plastic 2N3903 and 2N3904.

•

Hermetic Low Profile TO-52 Metal Package for High Reliability

•

High Voltage Ratings - BVCEO

•

Current Gain Specified from 100 JJ.A to 100 mA

•

Complete Switching and Amplifier Specifications

= 40 Volts (Min)

~A-

l'c~-+;' I I'
']-1L
~ F
- --- K

I

SEATING

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage
Collector-B... Voltage
Emitter-Base Voltage

PLANE
Symbol

Value

Unit

VeEO

40

Vde

VeB

60

Vde

VEB

6.0

Vde

Collector Current - Continuous

Ie

200

mAde

Total Power Dissipation @TA = 2SoC

Po

360
2.06

mW
mwfOe

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ. Tstg

-55 to +200

~~

Characteristic

DIM

°e

A

Svmbol

Max

Unit

RaJA

490

°CM

N N

I

MVZV J

THERMAL CHARACTERISTICS

Thermal Resistance. Junction to Ambient

1--- 0

STYLE 1:
PIN 1. EMITIER -jG
2. BASE
3. COLLECTOR

J

I

B
C
D
E
F
G
H
J
K

L
M

N
p

MILLIMETERS
MIN MAX
5.31
4.52
2.92

5.84
4.95
3.81
- 0.533
0.762
6.406 0.483
2.548SC
0.914 1.17
0.711 1.22
12.70
6.35
45° BSC
1.27 BSC
1.27

INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0.115 0.150
0.021
0.030
0.D16 0.019
0.100 BSC
0.036 0.046
0.028 0.048
0.500
0.250
450 BSC
0.050 SSC
- 0.050

All JEDEC dimensions and notes apply

CASE 27·02
TO·52

625

I

MM3903, MM3904 (continued)
ELECTRICAL CHARACTERISTICS

(TA

= 2S'C unless otherw;,. noted)

Characteristic

Fig. No.

Symbol

Min

Mal(

60

-

40

-

6.0

-

Unit

OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(Ie = 10 ""dc, IE = 0)

-

Collector-Emitter Breakdown Voltage (11
(IC = 1.0mAdc, IB =0)

-

BVCEO

-

IBEV

Emitter-Base Breakdown Voltage
(~ = 10 ""de, IC = 0)
Collector Cutoff Current
(VCE = 30 Vde, VEB(ol!) = 3.0 Vdc)
Base Cutoff Current

(VCE = 30 Vdc, VEB(ofl) = 3.0 Vde)

BVCBO

BVEBO

ICEV

-

Vde
Vde
Vde
nAde

50
llAac

50

ON CHARACTERISTICS 111
DC Current Gain
(IC = 0.1 mAde, VCE = I. 0 Vde)

15

hFE

(IC = 1.0 mAde, VCE = 1.0 Vde)

1011013903
1011013904

35
70

---

(IC = 10 mAde, VCE = 1.0 Vde)

1011013903
MM3904

50
100

150
300

(IC = 50 mAdc, VCE = 1.0 Vde)

1011013903
MM3904

(IC = 100 mAde, VCE = 1.0 Vde)

1011013903
MM3904

30
60
10
15

--

MM3903
1011013904

16, 17

Collector-Emitter saturation Voltage
(Ic = 10 mAde, IB = 1.0 mAde)

VCE(sat)

(IC = 50 mAde, IB = 5.0 mAde)
17

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)
(Ie = 50 mAde, IB = 5.0 mAde)

VBE(sat)

20
40

-

-

Vde
0.2
0.3
Vde

0.65

0.85

-

0.95

250
300

--

SMALL·SIGNAL CHARACTERISTICS

-

IT

Output Capacitance
(VCB = 5.0 Vde, IE = 0, 1= 100 kHz)

3

Cob

-

5.0

Input Capacitance
(V BE = 0.5 Vde, IC = 0, 1= 100 kHz)

3

C ib

-

10

0.5
1.0

8.0
10

0.1 x 10- 4
0.5 x 10- 4

.5xlO-4
8 x 10-4

50
100

200
400

1.0

40

--

6.0
5.0

Current-Gain-Bandwidth Product (1)
(IC = 10 mAde, VCE = 20 Vde, f = 100 MH~)

1011013903
1011013904

Input Impedance
(IC = 1.0 mAde, VCE = 10 Vde, f = I. 0 kHz)

13
1011013903
1011013904

Voltage Feedback Ratio
= 1.0 mAde, VCE = 10 Vde, 1= I. 0 kHz)

(Ie

14

hre

11

hIe

1011013903
1011013904

Small-Sign~

Current Gain
(IC = 1.0 mAde, VCE = 10Vde, 1= 1. 0 kHz)

MM3903
1011013904

Output Admittance
(IC = 1.0 mAde, VCE = 10 Vde, 1= 1.0 kHz)

12

Noise Figure
(IC = 100 ""de, VCE = 5.0 Vde, Rs = 1.0 k ohms,
f = 10Hz to 15.7 kHz)

hie

9, 10

hoe
NF

1011013903
1011013904

101Hz

pF
pF
kohms

!JIIlhos
dB

SWITCHING CHARACTERISTICS
Delay Time

(VCC = 3.0 Vde, VBE(ofl) = 0.5 Vde,

Rise Time

IC = 10 mAde, IBI = 1.0 mAde)

Stor.Time

(VCC = 3.0 Vde,

Ie = 10 mAde,

MM3903
MM3904

IBI = IB2 = 1. 0 mAde)

Fall Time

ns-+!

td

-

35

ns

tr

-

35

ns

2, 7

ts

175
200

n.

50

ns

2, 8

111 Pulse Test: Pulse Width "300 1lS, Duty Cycle "2.0%.
FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT

300
14DUTY CYCLE = 2'0~+10.6 V

I, 5
I, 5, 6

tl

--

FIGURE 2 - STQRAGE AND FALL TIME
EQUIVALENT TEST CIRCUIT
10 < I, < 500 p.'-i I, I:!:-+ 10 9 V
DUTY CYCLE = 2 . 0 : . r r :

-O.SV

< 1.0 ns

-9.lVJU.ons
'Total shunt capacitance of test jig and connectors

626

MM3903, MM3904 (continued)

TRANSI ENT CHARACTER ISTICS
- - - TJ = 25°C ----- TJ = 125°C
FIGURE 3 - CAPACITANCE

FIGURE 4 - CHARGE DATA

W

~

V~-~OV

3000 -Iella- IO
7.0
5. 0

-

~ 700

I

....... C;b
........ ..........
Cob

2. 0

-

_v

500
/

d 300

...............

-, ,

200

..........
1.0
0.1

0.2 0.3

0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
REVERSE BIAS VOLTAGE (vOLTSI

-'

-I-

100
70
50
1.0

20 30 40

,

Or

IlA

2.0 3.0

5.0 7.0 10
20 30
Ie. COLLECTOR CURRENT (mAl

!

~

il!

lella- IO
200

"

l'

70
SO

I'

300

"-"-

100

~

i'

"

20
10
7.0
5.0
1.0

."- -'" t,@Vcc -3.0

........

-""i
td@VEB(off)

.....: Ic?'f'

;"

"

"'

100
'70

",

~

OV

.; 30

I~ ::::!i

0
10

0
2. V

2.0

3.0

5.0 7.0 10
20 30
Ie. COllECTOR CURRENT (rnA)

50 70 100

'5.01.0

200

2.0

3.0

500
r-~+--r+-rrHK+-1-+--r~r~-~-~.­

IJ

1"-1,,

'Iell~-I~
200 1-++-c±=±::t:~,j;tI=*-"i_=_:"
__
:"

.
---- - -- = -

!IOO
70
il! 50
~

~

~

,:

--

r

300

-

IIlell, -I 20
:~.
~

!

200

~

"",

lella-20
lelia

20

20

10

10

50 70 100

\;,t-I"I-40L

V

50

g4 30

5.0 7.0 10
20 30
Ie. COLLECTOR CURRENT (rnA)

SO 70 100

"l" ~

100

30

3.0

"

, ,

~

lell

2.0

""'; :"

200

20~~
I--+--+--t-+-+-++++l-+-+--I--+-++ lell, ,t"W-

5.0
1.0

"

F.IGURE 8 - FALL TIME

500
I

"

-

~

5.0 7.0 10
20 30
Ie. COllECTOR CURRENT (rnA)

FI.GURE 7 - STORAGE TIME

300

200

Vee -40V
lella- IO

~ 50

30

50 70 WO

FIGURE 6 - RISE TIME

"-

200

/

/

,

500

"- I,

300

V

./

FIGURE. 5 - TURN-ON TIME

SOD

,-

1000

-

0

-

,

2000

5.0
1.0

200

627

lelia_Ill""

20

, ,
,;;:,

lelia -10 ~

..

-- =-

2.0

3.0

5.0 7.0 10
20 30
50
Ie. COLLECTOR CURRENT (rnA)

70 100

I'-

200

MM3903, MM3904 (continued)

AUDIO SMALL SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
VCE = 5.0 Vdc, TA = 25°C

FIGURE 9

2

I
I

o \

14

1
I

~ ~lc=1.0mA

FIGURE 10

1~=1.0mA/I"(1 II

2

~ lLJI

SOURCE RESISTANCE = 200!l

~ 8.0

liu:::

I

\V
r'\.

6.0 '

~ 4.

" ""'"
I T" '"

1

O~

2.o

""')<
~

SOURCE RESISTANCE = ZoO!l
le=O.SmA
.

./

I"-...

:::t-

~

4.0

c-- Ie - 100 pA
SOURCE RESISTANCE = 1.0 kohm I
1c=50pA
I
1.0 2.0
4.0
0.2
0.4
10
f. FREQUENCY (kHzI

o
0.1

40

0
0.1

100

0.2

0.4

h PARAMETERS
VCE" 10 Vdc, f" 1.0 kHz, TA" 250C

FIGURE 11 - CURRENT GAIN

100

200

50

f-

15100

~
i

..-

i"'"

7oV

-

50pA

1/ .I

-

/

:.1

./

1.0
2.0
4.0
10
20
Rs. SOURCE RESISTANCE Dc ohms)

40

100

FIGURE 12 - OUTPUT ADMITTANCE

300

I

V

~

'"'

2.0
20

/
/
100pA . /

IL

..... :2

~ 1.. SOURCE RESISTANCE Soo!l

/

/

/

11 L

/

o~

-

I

o.?mAl

/

0

I

.....

,. /

10

-.l

IIII

I

t- f=II.OkHz

V

J.-

./

'"

"""'0

......

50

2.0
30
0.1

·0.2

5.0

0.5
1.0
2.0
Ie. COLlECTOR CURRENT !mAl

1.0

10

0.1

FIGURE 13 - INPUT IMPEDANCE

10

10

10

t....

-"

'"

1
.: 5.0

j

~

5.0

FIGURE 14 - VOLTAGE FEEDBACK RATIO

.....

20

0.5
1.0
2.0
Ie. COLLECTOR CURRENT !mAl

0.2

"

0

r-....

2.0

"

~ 1.0

0

~

r-.....

i

0

0.5

7

0.2
0.1

0.2

0.5
1.0
2.0
Ie. COLLECTOR CURRENT !mAl

,',

5.0

O.5
0.1

10

628

0.2

-- '"

0.5
1.0
2.0
Ie. COLlECTOR CURRENT (mAl

,/

5.0 .

10

MM3903, MM3904 (continued)
STATIC CHARACTERISTICS
FIGURE 15 - NORMALIZED CURRENT GAIN

2.0

z:

..J,

......

~ 0.7

§

........

~

I

~ 0.3

~

-......

"' ~
.......

-SS·C

I----'"' I-f-

t-.....
1-0.

-

!---""

c..> 0.5

r-- r---.

~r--

-

1.0

i

-I---.

""I

t'-.....

I"-

If
... 0.2

0.1

= 1.0 V

VeE

TJ= JI2S.A

I~

I'

"\ l\.

0.1

0.2

0.5

0.3

0.7

1.0

2.0

3.0
5.0
7.0
10
Ie, COLLECTOR CURRENT (mAl

20

30

50

70

""'- R'

100

200

FIGURE 16 - COLLECTOR SATURATION REGION

1.0
TJ = 25'C

f3

~

~

g

0.8
Ie = 1.0 rnA

30mA

lOrnA

lOOmA

\
\

O.6

~

i!i
l!5 O. 4

~

~
>

\..

O. 2

0
.01

.02

........

r"...

r-

.03

.05

.07

i'-I--

0.2
0.3
O.S
18, BASE CURRENT (mAl

0.1

FIGURE 17 - "ON" VOLTAGES

1.2

O.8

~
g

O.6

~

0.4

g

L!

~

-

Hi: :.rtf'

~

~ f- Y.~Q VeE=1.0Y

0

i

5.0
10
20
50
Ie, COLLECTOR CURRENT (mAl

3.0

5.0

7.0

10

-I 'Sl

100

~IJS·J-

eve for VeE,,,,) ~ J J _111
r-r-r- 1--.. 5l.cITol+2~.JTl:r-

r--

+25'C TO +12S·C

VVi-'"

40

60

80

100

120

140

(e, COLLECTOR CURRENT (mAl

629

(-(-

11v. for V.EI ..I)

0'
-2. 0 20

200

I-"""

-S5'C TO +2S'C

c..>_I.0

~ I--"

2.0

t-t-

~-O.5

VeE".I) @Ie/l. = 10

1.0

l-

~

L

o

2.0

I-

o.5

I?

L

O.2

1.0

FIGURE 18 - TEMPERATURE COEFFICIENTS

V I ~I ~ II !I~ 10
'E, .. Jl~

1.0

0.7

1.0

LI LLil

T.'= i5'C

iil

"- I""'-

'\

160

180 200

MM3905 (SILICON)
MM3906

. PNP SILICON ANNULAR TRANSISTORS

PNPSILICON
SWITCHING AND AMPLI FI ER
TRANSISTORS

..• designed for general purpose switching and amplifier applications.
Direct replacement for plastic 2N3905 and 2N3906.

•

Hermetic Low Profile TO-52 Metal Package for High Reliability

•

High Voltage Ratings - BVCEO ; 40 Volts (Min)

•

Current Gain Specified from 100 IlA to 100 mA

•

Complete Switching and Amplifier Specifications

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

Vca

40

Vdc

Emitter-aase Voltage

VEa

5.0

Vdc

Collector Current - Continuous

IC

200

mAde

Total Power Oissipation @ TA = 25°C
Del"ate above 25°C

Po

360
2.06

mW
mWfOC

TJ. Tstg

-55 to +200

°c

. Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

THERMAL CHARACtERISTICS
Cha_istic

Symboi

Max

Unit

Thermal Resistance. Junction to
Ambient

R9JA

490

.,oCIW

MILLIMETERS
INCHES
DIM MIN MAX MIN MAX
5.31 5.84 0.209 0.230
A
B
4.52 4.95
0.178 0.195
0.115 0.150
.C
2.92 3.81
0.533
0
- 0.021
0.762
0.030
E
0.406 0.483 0.016 0.019
F
0.100 asc
G 2.54 BSC
0.036 0.046
H ·0.914 1.17
0.028 0.048
J ·0.711 1.22
0.500
K 12.70
0.2511 .
L
6.35
450 asc
M 450 asc
1.27 asc
0.050aSC
N
p
1.27
0.050
All JEDEC dimenSions and notes apply

-

-

CASE 27'()2
TO-52

630

-

MM3905, MM3906 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25·C "'ess otherwISe noted)

Characteristic
OFF CHARACTERISTICS

-

Collector-Base Breakdown Voltage
(IC = 10 /JAde, IE = 0)
Collector-Emitter Breakdown Voltage t 11
(IC = 1.0 mAde, IB = 0)

-

Emltter-Base Breakdown Voltage
(IE = 10 /JAde, IC = 0)

-

Collector Cutoff Current
(VCE = 30 Vde, VBE (off) = 3.0 Vde)

-

Base Cutoff Current
(VCE = 30 Vde, VBE(oll) = 3.0 Vde)

-

BVCBO
BVCEO
BV EBO

I CEV
I BEV

Vde
40

-

40

-

5.0

-

-

50

-

50

30
60

-

Vde
Vde
nAde
nAde

ON CHARACTERISTICS (II
IX: Current Gain

hFE

(IC = 0.1 mAde, VCE = 1.0 Vde)

MM3905
MM3906

(IC = 1. 0 mAde, VCE = 1.0 Vde)

MM3905
MM3906

40
80

VCE = 1.0 Vde)

MM3905
MM3906

50
100

150
300

(IC = 50 mAde, VCE = 1. 0 Vde)

MM3905
MM3906

30
60

(IC = 100 mAde, VCE = 1. 0 Vde)

MM3905
MM3906

10
15

-

(IC

= 10 mAde,

15

16, 17

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

VCE(sat)

(IC = 50 mAde, IB = 5.0 mAde)
17

Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)

VBE(sat)

(IC = 50 mAde, IB = 5.0 mAde)

-

-

-

Vde

-

0.25

0.65

0.85

-

0.95

200
250

-

·

5.0

-

10

0.5
2.0

8.0
12

0.1 x 10-4
1 x 10-4

5 x 10- 4
10 x 10-4

50
100

200
400

1.0
3.0

40
60

·
·

5.0
4.0

0.4
Vde

SMALL-SIGNAL CHARACTERISTICS

-

Currenl-Gain-Bandwidlh Product (1)
(IC = 10 mAde, VCE = 20 Vde, I = 100 MHz)

MM3905
MM3906

Output Capacitance
(VCB = 5.0 Vde, IE = 0, f • 100 kHz)

3

Input Capacitance
(V BE = 0.5 Vde, IC = 0, 1= 100 kHz)

3

Input Impedance
(IC = 1. 0 mAde, VCE = 10 Vde, I = 1. 0 kHz)

13
MM3905
MM3906
14

Voltage Feedback Ratio
(IC = 1. 0 mAde, VCE = 10 Vde, I = 1. 0 kHz)

MM3905
MM3906
11

Small-Signal Current Gain
(IC = 1. 0 mAde, VCE = 10 Vde, I = 1. 0 kHz)

MM3905
MM3906

Output Admittanee
(IC = 1.0 mAde, VCE = 10 Vde, I = 1. 0 kHz)

12
MM3905
MM3906

Noise Figure
(IC = 100 /JAde, VCE = 5.0 Vde, RS = 1. 0 k ohm,
1= 10 Hz to 15.7 kHz)

9, 10

IT

. Cob
C 1b
hie

hr.

hie

hoe

MHz

Pl!"
pF
k ohms

.
.

J.Unho$

NF

MM3905
MM3906

dB

SWITCHING CHARACTERISTICS
Delay Time

Rise Time
Storag,,:

~ime

,Fall Time

1, 5

td

-

35

1, 5, 6

tr

·

35

ns

MM3905
MM3906

2, 7

ts

-

200
225

ns

MM3905
MM3906

2, 8

tl

-

60
75

ns-

(VCC = 3.0 Vde, VBE(off) = 0.5 Vde,
IC = 10 mAde, IBI = 1. 0 mAde)
(VCC = 3.0 Vde, IC = 10 mAde,
IB1 = IB2 = 1. 0 mAde)

·
·

ns

(11 Pulse Test: Pulse Width = 300 /JB, Duty Cycle = 2.0%.
FIGURE 2 - STORAGE AND FALL TIME
EQUIVALENT TEST CIRCUIT

FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT

+~9lV~"'<10",

! j~
30V

< 1.0 "'

+OSV

mQ

10k:

.lS.< 40pF"

-106V~

1-300ns
:J'
OUTVCYCl[= 20% -=-

10k -30V

o
IN916

*Total shunt capacItance of test JIg and connectors

631

IO

"'- "'-

I.!@Vo,=O
2.0

3.0VV

"

100
0
0

I~~

......

50

FIGURE 6 - RISE TIME

500

30O~

,7

5.0
10
20
Ie. COlLECTOR CURRENT (mAl

2.0

FIGURE 5 - TURN-ON TIME

500

V

....... I--""

"

100
70
50
1.0

50

-- -

500

200

1.0

,

,,

Cob

10

20

~

~

2.0 3.0

20 30
50
5.0 7.0 10
Ie. COLLECTOR CURRENT (mAl

- :.---

t::=

100

200

MM3905, MM3906

(continued)

AUDIO SMALL SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
VCE = 5.0 Vdc, TA = 25°C
FIGURE 10

FIGURE 9

12

V

f-f~11.0kHZ

10

=

~

IC=1.0mA

8.0

~

~

""
~
~z

'"

6.0

!2'

4.0

""
1i:
~
~

~

!2'

2.0

Ii

/
/

/

~

I

"'\. '\..
-......;;

""-

~ .;'

./'

100pA..,

/

/

II

1/ /
/ /

/ 1/
./ ./

c:::... >

/

/ / "'-...50pA

0.5mA

?

o
0.1

100

0.2

0.4

1.0

2.0

4.0

10

20

40

100

Rs, SOURCE RESISTANCE Ik ohms)

h PARAMETERS

f, fREQUENCY 1kHz)

(VCE = 10 Vdc, f = 1.0 kHz, TA = 25°C
FIGURE 12 - OUTPUT ADMITTANCE

FIGURE 11 - CURRENT GAIN

100

300

70
200

l.- I--

~
~

aJ

~E

50

V

.:J.

V

~

~

30

~
;;;
5i! 20

100

/
/

1./

~
~

§

70

J

50

v

10
7.0

30
0.1

0.2

0.5

1.0

2.0

5.0

5.0
0.1

10

0.5

0.2

Ie, COLLECTOR CURRENT lmA)

10

5.0

10

0

"" i'

7. 0

'\.

~ 5. 0

'\.

0

"" r--.

0

2.0

FIGURE 14 - VOLTAGE FEEDBACK RATIO

FIGURE 13 - INPUT IMPEDANCE

20

1.0

Ie, COLLECTOR CURRENT lmA)

"\
0

]\

~

I'-

I"

r-..... r-- i...-

0

o.5

vY

o. 7
0.2
0.1

0.2

0.5
1.0
2.0
Ie, COLLECTOR CURRENT ImA)

5.0

0.5
0.1

10

633

0.2

0.5
2.0
1.0
Ie, COLLECTOR CURRENT ImA)

5.0

10

MM3905, MM3906

(continued)

STATIC CHARACTERISTICS
FIGURE 15 - NORMALIZED CURRENT GAIN
2.0
TJ

z:
;;;:

'"
ffi
"":::>""
'-'

-

I +12~'C

r-.....

+25~C

1.0

I.VCE 1.0
JV

551,C

0.7

~

~

..............

0.5

~

fa

N

~

i!i
0

0.3

J

0.2

"- ~~

z:

j\ ~

~
"\:

0.1
0.1

0.2

0.3

0.5

0.7

1.0

2.0

5.0
7.0
10
3.0
Ie. COLLECTOR CURRENT (rnA)

20

30

50

70

100

~

200

FIGURE 16 - COLLECTOR SATURATION R.EGION
1.0

\

~ 0.8

...~

Ic=1.0mA

10mA

~

\

o.6

ill

!::

\

\

1,\

ai

"" 0.4

~

\.

8

.. 0.2

~

o

0.02

0.01

"0.03

0.05

0.07

-r--

0.2
0.3
0.5
la, BASE CURRENT (rnA)

0.1

0.7

-H:H:ml
VaE@VcE

~

hl=I_15hllo
+0.8

2.0

ffw

'" '"

r-

--

BVB for VBE(sat)

-2.0

1 .1 ...I-t"

50
5.0
10
20
Ic, COLLECTOR CURRENT (rnA)

I---"r'

-0.4

~ -1.6

VCE(... ) @ Ic/la = 10

1.0

10

1~5.JC I

~ -0.8
c::;
-1.2

o

V

III

7.0

r;

/

O. 4

0

5.0

3.0

BVC for VCE(sat)

0.6

1111'

..

I II

+0.4

1.0 V

3;
.§
,...

0.2

I--

FIGURE 18 - TEMPERATURE COEFFICIENTS

VaE(...) @ 'clla ~ 10.......:

o.8

,..... ..... 1---

2.0

1.0

+1.2

. TJ=25'C

~

~

r-

FIGURE 17 - "ON" VOLTAGES

~

1\

",
i"

1.0

...~

100 mA

\ 30mA

~
~

L! 2~'t

\

\

-2.4

100

200

-2. 8
0.1

0.2

0.5

1.0

2.0

5.0

10

20

IC, COLLECTOR CURRENT (rnA)

634

50

100

200

MM4000 thru MM4003 (SILICON)
High-voltage PNP silicon annular transistors for"
use in general-purpose, high-voltage applications.
2

Collector connected to case
STYLE 1:

PIN 1. EMITTER
2. BASE

~

l~;_~/

MAXIMUM RATINGS

3. COLLECTOR

Rating

CASE 79
(T0-5)

Symbol

MM4000

MM4001

MM4002

MM4003

Unit

100

150

200

250

Vde

Collector-Emitter Voltage

VCEO

Collector-Base Voltage

VCB

100

150

200

250

Vde

Emitter-Base Voltage

VEB

4.0

4.0

4.0

4.0

Vde

Collector Current - Continuous

100

500

500

500

mAde

0.6

1.0

1.0

1.0

Watt

3.42

5.71

5.71

5.71

mWj"C

3.0

5.0

5.0

5.0

Walts

17.2

2B.6

2B.6

2B.6

IC
Pn

Total Power Dissipation@ T A = 25" C

Derate above 25" C
Pn

Total Power Dissipation @T C = 25°C
Derate above 25"C
Operating and Storage Junction
Temperature Range

ELECTRICAL CHARACTERISTICS

(T. = 25"C ",."

mW/oC

°c

-65 to +200

T J' T stg

oth.,.". ,o'.d)

Characteristic

Symbol

Min

Max

100
150
200
250

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Bre;1kdown Voltage
(IC = 10 mAde, IB = 0)

(1)

Collector-Base Breakdown Voltage
(IE = 0, IC =lo.o/lAde)

MM4000
MM4001
MM4002
MM4003
MM4000
MM4001
MM4002
MM4003

Emitter-Base Breakdown Voltage
(IE = 100 /lAde, IC = 0)

Collector Cutoff CUrrent
(V CB = 50 Vde, IE = 0)
(V CB = 75 Vde, IE = 0)
(V CB = 150 Vdc, ~ = 0)

BV CEO

BV CBO

BV EBO

MM4000

ICBO

Vde

-

Vde

100
150
200
250

-

4.0

-

-

1.0

Vde
/lAde

MM4001

-

1.0

MM4002, MM4003

-

5. 0"

20

-

-

0.6
5.0

-

6.0
10
20

ON CHARACTERISTICS'
DC Current Gain 111
(IC = 10 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage fU
(IC = 10 mAde, IB = 1. 0 mAde)

hFE

MM4000, MM4001
MM4002, MM4003

VCE(sat)

Vde

DYNAMIC CHARACTERISTICS
Output Capacitance

(V CB = 20 Vde, IE = 0, f = 100 kHz)

MM4000
MM4001
MM4002, MM4003

I1IPulae Test: PW" 300 lis, Duty Cycle s 2%

635

Cob

pF

-

-

MM4005 (SILICON)
thru

MM4007

PNPSILICON
AMPLIFIER TRANSISTORS

PNP SILICON ANNULAR AMPLIFIER

•.. designed for use in general·purpose amplifier applications .

•

Collector-Emitter Breakdown Voltage @ IC = 10 mAdc
BVCEO 60 Vdc (Min) - MM4005
= 80 Vdc (Min) - MM4006
= 100 Vdc (Min) - MM4007

•

Current-Gain-Bandwidth ProductfT ~ 250 MHz (Typ) @ IC ~ 50 mAde

=

~~?
A

R

B

rP

_I---~

re- ---=Tri

~K

SEATiNG

PLAN E

MAXIMUM RATINGS
Rating
Coliector·Emittar Voltage
Coliector·B ... Voltage
Emittar-8ase Voltage
Collector Current Continuous
Total Power Oisoipation @TA ~ 25°C
Oerata ebove 25°C '
Total Power Dis&i~tion @aTe=250C
Oerata above 25°C
Operating & Storage Junction
THERMAL CHARACTERISTICS
Charact.istic
Thermal Resistance, Junction to

Symbol
Vceo
VCB
VEB
IC
Po

MM4OO61 MM4006I MM4007
60 1 80 1 100
60 1 80 1 100

Po
TJ.T,tg

Unit
Vdc
Vdo
Vdc
Adc
Watt
mWflC
Watts
mWflc
°c

5.0
1.0
1.0
5.71
7.0
40
-65 to +200

Symbol
R8JA (1 )

Max

Unit

175

°c/w

R8JC

25

°C/W

Ambient

Thermal Resistance,:Junction to Case

(1) R9JA is measured with the device soldered into a typical printed circuit board.

____

--11-- 0

1

STYLE 1

PIN 1. EMITTER
2. BASE
3. COLLECTOR

MILLIMETERS
MIN MAX
8.BS 9.40
8.00 8,51
C
6.10
.60
D
0.406 0.533
E
0,229 3.18
F
0.406 0.483
G
4,83 5,33
H
0,711 0.8 4
J
0.737 1.02
K 12.70
L
6.35
M
450 NOM

DIM
A
B

P
Q

R

INCHES
MIN MAX

1.27
900 OM
2.54

All JEDEC dimensions and notes apply.
CASE 79·02

TO-39

636

MM4006, MM4006, MM4007 (continued)

ELECTRICAL CHARACTERISTICS
Chllractaristic

Symbol

Min

Typ

Max

Unit

60

-

-

Vde

-

Vde

OFF CHARACTERISTICS
Collector·Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

MM4005
MM4006
MM4007

. BVceo

Colleetor·Base Breakdown Voltage
(lC = l00,.Ade, Ie = 0)

MM4006
MM4006
MM4007

BVCBO

80
100

80
BVEBO
ICBO

MM4005
MM4006
MM4007

Emitter Cut()ff Currant
(VBE = 3.0 Vde, IC = 0)

leBO

-

-

5.0

-

-

-

100

Emitter·Ba.. Breakdown Voltage
(IE = loo,.Ade, IC = 0)
Collector Cutoff Current
(VCB = 60 Vdc, Ie = 0)
(VCB = 60 Vde, Ie = 0)
(VCB = 80 Vde, IE = 0)

60

-

-

-

Vde

nAde

100
100
100
100

nAde

ON CHARACTeRISTICS (1)

DC Current Gain

hFe

(lC = 1.0 mAde, Vce = 1.0 Vde)
(lC = 160mAdc, Vce = 1.0 V~c)

40

-

-

50

90
150

Collector·Emitter Saturation Voltage
(lC = 160 mAde, IB = 16mAdc)

VCE(sat)

-

0.1

-

Vdc

Base·Emitter Saturation Voltage
(lC = 160 mAde, IB = 15 mAde)

VBE(sat)

-

0.7

-

Vdc

Current-Gain-Bandwidth PrOduct (1)
(lC = 50 mAde, Vce = 10 Vd., I = 20 MHz)

IT

60

260

-

MHz

Output Capacitance
(VCB = 10 Vde, IE = 0, I = 1.0 MHz)

Cob

10

-

pF

I nput Capacitance

Cib

100

-

pF

DYNAMIC CHARACTERISTICS

(VBe = 0.5 Vde, IC = 0, I = 1.0 MHz)
(1) Pulse Test: Pul .. Width.; 300 ,.S, Duty Cycle'; 2.0%.

637

-

MM4008 (SILICON)
thru

MM4010

PNP SILICON ANNULAR AMPLIFIER
TRANSISTORS

PNPSILICON
TRANSISTORS

· •. designed for use in high voltage amplifier and switching
applications.
• Coliector·Emitter Breakdown Voltage @ fC = 10 mAde
BVCEO = 60 Vdc (Min) - MM4008 '
= 80 Vdc (Min) - MM4009
= 100 Vde (Min - MM4010
•

High Current·Gain-Bandwidth Product fT = 325 MHz (Typ) @ IC = 20 mAde

r~

MAXIMUM RATINGS
Rating

Symbol MM4008 MM4009 MM4010

Collector-Emitter Voltage

VCEO

60

Unit

80

100

Vdc

Collector-Base Voltage

VCB

60

80

100

Vdc

Emitter-Base Voltage

VEB

5,0

5.0

5.0

Vdc

Collector Current

Continuous

IC

500

mAde

Total Power 0 issipetion @ T A "" 25°C
Derate above 25°C

Po

600
3,43

,mW
mW/oC

Total Power Dissipation@ T C = 25°C
Derate above 25°C

Po

2,0
1.4

mW/oC

-65'0 +200

°c

Operating and Storage Junction
Temperature Range

TJ,Tstg

..

~

SE~[lNNGE ~'~

lJK

STYLE I:
PIN l.EMIITER
2, BASE
3, COLLECTOR

D

Watt

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case

Symbol

Max

Unit

R6JA(1)

330

°C/W

R6JC

11.5

°CIW

(1) R8JA is measured with the device soldered into a typical printed circuit board.

0,007
All JEDEC dimensions and notes apply.
CASE 31·03
TO·S

638

MM4008, MM4009, MM4010 (continued)

ELECTRICAL CHARACTERISTICS (TA : 250 C unless otherwise noted.)

I

Characteristic

Symbol

Min

1:yp

60
80
100

-

Max

Unit

-

Vde

OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (1)
(lC: 10 mAde, IB: 0)

MM4oo8
MM4009
MM4010

BVCEO

Collector-Base Breakdown Voltage

MM4008
MM4009
MM4010

BVCBO

60
80
100

BVEBO

5.0

(lC: 100l'Ade, IE: 0)
Emitter-Base Breakdown Voltage

-

-

Vde

Vde

(IE: 1001'Ade,lc: 0)
Collector Cutoff Current

(VCB: 50 Vde, IE: 0)
(VCB: 60 Vde, IE: 0)
(VCB: 80 Vde, IE: 0)

nAdc

ICBO

lEBO

-

-

hFE

75

125

-

-

VCE(sati

-

0.2

-

Vde

VeE(sati

-

0.7

-

Vde

-

MM4008
MM4009
MM401 0

Emitter Cutoff Current

-

100
100
100
100

nAde

(VBE: 3.0 Vde, IC: 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lC : 10 mAde, V CE : 1.0 Vde)
Collector-Emitter Saturation Voltage

(lC: 10 mAde, IB: 1.0 mAde)

.Base-Emitter Saturation Voltage
(lC: 10 mAde, Ie: 1.0 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(lC: 20 mAde, VCE: 10 Vde, I : 100 MHz)

MM4008
MM4009/10

IT

-

325
150

-

MHz

Output Capacitance

MM4008
MM4009/10

Cob

-

6.0
10

-

pF

MM4oo8
MM4009/10

Cib

-

20

-

pF

(Vce: 10 Vde,IE: 0, I : 100 kHz)
Input Capacitance

(VeE: 0.5 Vde, IC: 0, I : 100 kHz)
(1) Pulse Test: Pulse Width .. 3001'5, Duty Cycle .. 2.0%.

639

125

MM40 18 (SILICON) .

PNPSILICON
RF POWER
TRANSISTOR

PNP SILICON RF POWER TRANSISTOR
• .. designed for amplifier, frequency multiplier or oscillator appli·
cations in military and industrial equipment. Suitable for use as
Class A, B, or C driver, or pre-driver stages in VHF applications.

• Power Output - Pout = 0.5 W (Min) @f= 175 MHz
• High Current·Gain - Bandwidth ProductfT = 900 MHz (Typ) @ IC = 50 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

20

Vdc

Collector·aase Voltage

Vca

40

Vdc

Emitter-Base Voltage

VEa

4.0

Vdc

IC

0.4

Adc

Po

5.0
28.6

Watts
mW/DC

TI. Tstg

-65 to +200

Collet::tor-Emitter Voltage

Collector Current - Continuous

Total Device Dissipation @TC
Derate above 250 C

= 2SoC

Operating and Storage Junction
Temperature Range

DC

STYLE 1

PIN 1. EMITIER
2. BASE

FIGURE 1 - 175 MHz OUTPUT POWER TEST CIRCUIT

N

3. COLLECTOR

-12.5 Vdc

DIM

L3
L2
RG=50n

Cl

C4

MILLIMETERS
MIN MAX

INCHES
MIN MAX

RL"50n

L1

40 pF

C3

C2
L
M
P
Cl, C2
C3, C4
L1
L2
L3

0.250
45 0 NOM
0.050

900 NOM

Q

3.0 - 30 pF, ARCO 461 OR EQUIVALENT
B.O - 80 pF, ARCO 462 OR EQUIVALENT
100 nH, HURNS NO. 18 AWG, 114" 1.0., 5/8" LENGTH
40 nH. 2 TURNS NO. 18 AWG. 114" 1.0.. 1/2" LENGTH
200 nH, 8 TURNS NO. 18 AWG, 114" 1.0.. 7/8" LENGTH

R

0.100

All JEDEC dimensions and notes apply.
CASE 79-02
TO·39

640

MM4018 (continued)
ELECTRICAL CHARACTERISTICS (T A = 2SoC unless otherwise noted)
C....lICteriltlc

Symbol

Min

Collector-Emitter Brllkdown Voltage
(lC· 5.0 mAde, lB· 0)

BVCEO

20

Collector-Base Brllkdo_ Voltage
(lC· .5.0 mAde, IE· 0)

BVCBO

Emitter-Base Brelkdown Voltlgt
(IE· 1.0 mAdc, IC· 0)

MIX

Unit

-

-

Vdc

40

-

-

Vde

BVEBO

4.0

-

-

Vdc

Collector Cutoff Current
(Vce· 15 Vdc, IB • 0)

ICEO

-

-

20

"Adc

Collector Cutoff Current
(VCE • 40 Vd., VBE • 0)

ICES

-

-

0.1

mAdc

Collector Cutoff Current
(VCB· 15 Vdc, Ie • 0)

ICBO

-

-

10

"Adc

fT

-

900

-

MHz

Cob

-

3.5

-

pF

Pout

0.5

-

-

Watt

45

55

-

%

OFF CHARACTERISTICS

ON CHARACTERISTICS
OC Current Gain
(lC - 50 mAde, VCE· 5.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC· 50mAdc, VCE· 15 Vdc, f- 100 MHz)
Output Capaciten..
(VCB· 12.5 Vdc, Ie = 0, f

= 100 kHz)

FUNCTIONAL TEST
Power Output
(Figure 1)
(Pin· 50mW, Vee = 12.5 Vdc, f- 175 MHz)
Collector Efficiancy (Figure 1)
(Pin = 50 mW, Vec· 12.5 Vdc, f = 175 MHz)

'I

FIGURE 3 - PARALLEL EQUIVALENT OUTPUT
CAPACITANCE versus FREQUENCY

FIGURE 2 - POWER OUTPUT versus POWER INPUT

o.7

+20

0.6

@

!

I

o.5

ffi

~

0.2

./

f-175MH,

o.4
O.3

~

---

~12.5 Vd.

Vcc =

/'

-

VCC - -12.5 Vdc
0

-

0

/'

Pout =O.5W

01-'"

O.1 /

o

V

o

10

20

30

40

50

-20
100

60

150

Pin' PIlWER INPUT (mWI

60

+100
Vcc' -12.5Vdc

Vcc = -12.5 Vdc

0

.. +SO

.s

Or-.
0

w

------

"z

;!

t--....

i3

-....... r-.....

:.

~

I-

~

p. ut ~0.5W

100

150

200

-50

u~-100

0

o

300

FIGURE 5 - PARALLEL EQUIVALENT INPUT
CAPACITANCE versus FREQUENCY

FIGURE 4 - PARALLEL EQUIVALENT INPUT
RESISTANCE versus FREQUENCY

0

200

f. FREQUENCY (MHz)

-150
100

300

~
150

------

Pout "'O.5W

200

f. FREOUENCY (MHz)

f. FREQUENCY (MHz)

641

300

MM40 19 (SILICON)

PNPSILICON
RF POWER
TRANSISTOR

PNP SILICON RF POWER TRANSISTOR

..• designed for use as complement to NPN 2N3553 in VHF and
UHF amplifier applications for military and industrial equipment.
• Power Output - Pout = 2.0 W (Typl @ Pin = 0.5 W, f = 400 MHz
• Power Input - Pin = 0.25 W (Maxl@Pout= 2.5 W, f = 175 MHz

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

VCB

60

Vdc

Collector Current - Continuous

Ie

1.0

Adc

Total Device Dissipation @TC=250C
Derate above 250 e

Po

5.0
28.6

Watts
mW/oC

TJ,Tstg

-65 to +200

°e

Collector·Emitter Voltage
Collector·Ba.. Voltage

Operating and Storage Junction
Temperature Range

V"'-H
DIM
A
B

C
D
E
F
G
H

J
K
L
M

P
Q

R

MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
45 0 NOM
1.27
900 NOM
2.54

INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
45 0 NOM
0.050
900 NOM
0.100

-

All JEDEC dimensions and notesepply.
CASE 79·02
TO·39

642

MM4019 (continued)

ELECTRICAL CHARACTERISTICS IT A = 250 unless otherwise noted)

I

Symbol

Min

Typ

BVCEO

40

-

Collector-Base Breakdown Voltage
IIC = 10 mAde, IE = 01

BVCBO

60

-

-

Vde

Emittar-Basa Breakdown Voltage
liE = 0.1 Ade,lc = 01

BVEBO

4.0

-

-

Vde

Collector Cutoff Current
(VCE = 30 Vdc, IB = 01

ICEO

-

-

0.1

mAde

Emitter Cutoff Current

lEBO

-

-

0.1

mAde

hFE

10

-

-

-

VCE(satl

-

-

1.0

Vde

fr

-

750

-

MHz

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
IIc = 10 mAde, IB = 01

(VBE

= 4.0 Vde, IC = 01

ON CHARACTERISTICS
DC Current Gain
IIC = 250 mAde, VCE = 5.0 Vdel
Colleetor·Emitter Saturation Voltage
II C = 250 mAde, I B = 50 mAdel

MI.

Unit
Vde·

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

IIC = 100 mAde, VCE
Output Capacitance
(VCB = 30 Vde, IE

= 28 Vde, f =

100 MHzl

FUNCTIONAL TEST
Power Input
(Pout = 2.5 W, VCC

Power Output
(Pin = 0.5 W, VCC = 28 Vde, f

50

TJ

= 175 MHzl

-

Watt
Watts

2.0

Pout

=400 MHzl

Collector Efficiency
(Pout = 2.5 W, VCC = 28 Vde, f

0.25

Pin

= 28 Vde, f = 175 MHzl

pF

7.5

Cob

= 0, f = 100 kHzl

-

%

FIGURE 1 - 175 MHz TEST CIRCUIT

.--------:=-------<..-----..---0 -28 Vdc
L3

TL_5_00_p_F_~I~---...JT 0.01 j.lF

L4

C3

CI, C2
C3
C4, C5
LI
L2
L3
L4

C5

C4

3.0·30 pF, ARCO 461 or equivalent.
40 pF
5.0-80 pF, ARCO 462 or equivalent.
80 nH, 3 Turns #18 AWG, 1/4"1.0., 1/4" Length
Ferrite Choke, VK-200 Ferroxcube, Q < 5
0_15j.lH, RF Choke
27 nH, 2 Turns #18 AWG, 1/4"1.0., 3/8" Length

643

MM4019 (continued)

FIGURE 2 - POWER OUTPUT v...... FREQUENCY

FIGURE 3 - POWER OUTPUT ...rsus POWER INPUT
3.5

.

3.0 t-VCC.J8 Vd.
f= 175 MHz
~
2.5

i

2.0

0

;'"

..

0
A-

1.5

/

1.0

}

0.5
0~________- L___
0._05_W__~____~__~~__~__~

100

150

200

V

/'

//

/

o
o

400

300

~

/
./

i

I::>

.

'~,

'

0.05

0.1

0.2

0.15

0.25

f. FREQUENCY (MHz)

Pin. POWER INPUT (WATTS)

FIGURE 4 - PARALLEL EQUIVALENT
INPUT RESISTANCE ..., .... FREQUENCY

FIGURE 5 - PARALLEL EQUIVALENT INPUT
CAPACITANCE versus FREQUENCY

20

0.3

200

VCC = 28 Vd.

~
:z:

S

15

t---: F=:: ~ r- r-

~

ill~
'"

r---.:::::::

J

~

3.0W-

10

~.5

"- .........

~.5 W- r---

I-

vct =28 Vd.

"'-

r---..

i'- r---. ....... r--.,

,

r-.:::

~t·3.0W

........

5.0

'.

'"
50

70

150

100

200

300

100

70

50

f. FREQUENCY (MHz)

u-

...
...;f~
...-<
w

15

Z

0

j

300

FIGURE 7 - OUTPUT CAPACITANCE
varsu.COLLECTOR VOLTAGE

V,cC" 28 Vd.

..........

r---..

........

u-

.s

~

10

25

w

r--.. ...... ..........
.,

I-

~::>

200

30

I'...

"'

150

f. FREQUENCY (MHz)

FIGURE 6 - PARALLEL EQUIVALENT OUTPUT
CAPACITANCE versus FREQUE.NCY

.s

~~

o

o

20

~
1.5W

~
~

i \

Pout"3.0W

~
l.SW

5.0

20
15

~ t:::-....

~

10

3

5.0

::>
0:>

.....

"-

-----

-I-.

o
50

70

100

150

200

o

300

f. FREQUENCY (MHz)

-5.0

-10

-15

-20

VC8. COLLECTOR·8ASE VOLTAGE (VOLTS)

644

-25

-30

MM4019 (continued)

FIGURE 8 - CURRENT·GAIN-BANDWIDTH PRODUCT
~100 0

~

t;

"
:800
Q

f-"

~

i:
Q

~
~I

800

-

/ ' Vrr--VCC"I~ / '

Z

C
~ 400

/'

ffi

'"

"'"u,.:200 V
-

~V

10

~~dc

I

30

20

50

70

200

100

300

IC. COLLECTOR CURRENT (mAde)

FIGURE 9 - MM4019/2N3553 COMPLEMENTARY 175 MHz AMPLIFIER CIRCUIT

CI. C2
C3
C4. C5
L1, L2
L3

3.0·30 pF, ARCO 461 orequivalenl
O.I/!F. ATC·200 Chip Capacitor or equivalent
1.5·15 pF. ARCO 460 or equivalent
1·1/2 Turns 118 AWG, 118" Length, 1/4"1.0 .• 36 nH
7 Turns 118 AWG, 112" Length. 1/4" 1.0 .• 140 nH
O.OOI/!F

r---~~--'-------~~6V

0.002/!F

O.I/!F

T

RL = 50 Ohms

RG =50 Ohms
L3
L2

II

C2

IS pF

C5

Q<5

FIGURE 10 - POWER OUTPUT versus POWER INPUT
FOR COMPLEMENTARY CIRCUIT

5.0

e

~
...

"
I!:

_VC~'56JdC

V
V

f=115MHz

4.0

V

V

3.0

V

"

V

Q

a:

~

2.0

...
Q

/'

;l
o'! 1.0

/'

o

o

100

200

300

Pin. POWER INPUT (mW)

645

400

500

MM4030 (SILICON)
thru

MM,4033

PNP SILICON
SWITCHING TRANSISTORS

PNP SILICON ANNULAR SWITCHING TRANSISTORS

· .. designed for use in general-purpose amplifier and switching
applications.
• Collector Emitter Breakdown Voltage @ IC = 10 mAdc
BVCEO = 60 Vdc (Min) - MM4030, MM4032
= 80 Vdc (Min) - MM4031, MM4033
•

DC Current Gain - 100 pAdc to 1.0 Adc

•

Low Collector-Emitter Saturation Voltage VCE{sat) = 0.5 Vdc (Typ) @ IC = 1,0 Adc

•

Fast Switching Time @ IC = 500 mAde
ton = 55 ns (Typ)
toff = 340 ns (Typ)

JdId
R

B

rP

-~~~:
A

~

re- ---=rTT

~K

SEATING
PLANE

~_--.1

--11-0

MAXIMUM RATINGS
Rating
Collector·Emitter Voltage

Symbol

MM4030 MM4031
MM4032 MM4033

Unit

VCEO

60

80

Vdc

Colleetor-Ba.. Voltage

VCB

60

80

. Vde

Emitter~BaS8

VES

5.0

IC

1.0

Adc

T A = 25°C

Po

1.0
5,71

Watt
mW/oC

Total Power Di ..ipation @ T C = 25°C
Dera.. above 25°C

Po

7.0
40

Watts
mW/oC

DIM
A
8

TJ,Tstg

-65 to +200

°c

C
D

Voltage

Collector Current - Continuous

Total Power Dissipation
Dera.. above 25°C

@

Operating and Storage Junction
Temperature Range

Vdc

E
F
G
H

THERMAL CHARACTERISTICS
Ch....ct.istic
Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case

J

Symbol

Max

Unit

R8JA(11

175

°C/W

R8JC

25

°CIW

(1) A6JA is measured with the device soldered into a typical printed circuit board.

K
L
M
P'
Q

R

MILLIMETERS
MIN MAX
8.89 9.40
8,00 8,51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5,33
0.711 0.864
0.737 1.02
12.70
6.35
450 NOM
1.27
900 NOM
2.64

-

INCHES
MIN MAX
0,350 0,370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0,210
0.028 0.034
0,029 0.040
0,500
0.250
450 NOM
- 0.050
900 NOM
0,100

All JEDEC dimensionsaooootesappl..,.
CASE 79·02

TO·39

646

MM4030 thru MM4033 (continued)

ELECTRICAL CHARACTERISTICS IT A" 26°C unle .. otherwi .. noted'!

I

Characteristic

Symbol

Unit

Min

Typ

Max

60
80

-

-

60
80

-

-

-

-

-

50
50
50
50

IJAdc

-

10

).lAde

30
75
40
100
25
70
15
10
40
25
15
40

50
110
80
150
40
100
35
30
60
50

-

-

-

-

0.1
0.3
0.5

0.15
05
1.0

-

07

0.9

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (1)
IIC" 10 mAde, la" 01

Vde

aVCEO
MM4030, MM4032
MM4031, MM4033

Collector-Base Breakdown Voltage

aVCBO

IIc '10~Ade, IE" 01

MM4030, MM4032
MM4031, MM4033

Emitter·Base Breakdown Voltage

5,0

aVEaO

-

Vde

Vde

liE" 10~Ade, IC" 01
Collector Cutoff Current

IVCB"
IVCB"
IVCB"
IVca"

50
60
50
60

Vde,
Vde,
Vde,
Vde,

IE"
IE"
IE"
IE"

leBO
MM4030, MM4032
MM4031 , MM4033
MM4030, MM4032
MM4031 , MM4033

01
01
0, T A" 1500 CI
0, TA" 1500 CI

Emitter Cutoff Current

lEBO

nAdc
nAdc
~Adc

IVaE" 5.0 Vde, IC" 01
ON CHARACTERISTICS 111
DC Current Gam

-

hFE

IIC" 100~Ade, VCE" 5.0 Vdel

MM4030,
MM4032,
MM4030,
MM4032,
MM4030,
MM4032,
MM4030
MM4031

IIC" 100 mAde, VCE" 5.0 Vdel
IIC" 500 mAde, VCE" 5.0 Vdel
IIC" 1.0Ade, VCE" 5.0Vdel

MM4031
MM4033
MM4031
MM0433
MM4031
MM4033

MM4032

MM4033
(lC " 100 mAde, VCE" 5.0Vde, TA" -550 CI MM4030, MM4031
MM4032, MM4033

Collector-Emitter Saturation Voltage

Base-Emitter Saturation Voltage

-

Volts

VaElonl

-

-

1.1
1.2

100
150

250
300

400
500

Ceb

-

10

20

pF

Cob

-

100

125

pF

ton

-

40

100

ns

toff

-

240

-

ns

ts

-

200

350

ns

All Devices
MM4030, MM4032

(lC" 500 mAde, VCE" 0.5 Vdel
IIC" 1.0 Ade, VCE" 1.0 Vdel

-

Vde

VaEI,.tl
All DeVices

(lC " 150 mAde, IB " 15mAdei

Base·Emltter On Voltage

120
300

Vde

VCEI,.,I
All DeVices
AU Devices
MM4030, MM4032

(lC" 150 mAde, I a" 15 mAdel
(lc" 500 mAde, la" 50 mAde 111
(lC" 1.0 Adc, la" 100 mAdel

-

DYNAMIC CHARACTERISTICS

Current-Gam-Bandwidth Product (1'

MHz

fT

(lC" 50 mAde, VCE" 10 Vde, f" 100 MHzl

MM4030, MM4031
MM4032, MM4033

Collector-Base Capacitance
IVCB" 10 Vde, IE" 0, f" 1.0 MHzl

Input Capacitance
IV BE "0.5 Vde, IC" 0, f" 1.0 MHzl
SWITCHING CHARACTERISTICS (Figur.'1

Turn-On Time
(VCe" 30 Vde, VBEloffl" 3.8Vde, IC" 500 mAde, IB1" 50 mAde I
Turn-Off Time
Storage Time
IVeC" 30Vde, IC" 500 mAde, IB1"IB2" 50mAdei

I

(1) Pulse Test: Pulse Width" 300

jJ.S,

Duty Cycle" 2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT

VBB = +3.8 V

t

iOlJ

tr.tf~20ns
V
Zin=50n
Pulse Width = 10 #-1
Duty Cycle <2.0% -9.7 V

1.0k

10"F

+
50

647

Vee

= -30 V
60

Scope
100

Zln> 100 kilohms

tr

~

10 ns

MM4036 (SILICON)

PNPSILICON
PNP SILICON ANNULAR SWITCHING TRANSISTOR

SWITCHING TRANSISTOR

· .. desi!Jled for use in general purpose amplifier and switching
applications.
Breakdown Voltage • Coliector·Emitter
IC = 10 mAde
BVCEO = 65 Vc;Ic (Min)
• DC Current Gain - 100 /JAde to 500 mAde
Coliector·Emitter Saturation Voltage • LowVCE(sat)
= 0.3 Vdc (Typ)
IC = 150 mAde
Times IC = 150 mAde
• FasttonSwitching
= 90 ns (Typ)
@

II

@

@

toff = 450 ns (Typ)

~

-r;--I
ELK
--

SE::l~~

MAXIMUM RATINGS
R~tjng

Symbol

Value

Unit

VCEO

65

Vdc

Collector-Base Voltage

Vce

90

Vdc

Emitter-Base Voltage

VEe

5.0

Vdc

I

Coliector·Emitter Voltage

Collector Current - Continuous

IC

1.0

Adc

Base Current - Continuous

Ie

500

mAde

Total Power Dissipation @TA "" 25°C
Derate above 25°C

Po

1.0
5.71

Watt
mWt"C

TC = 25°C

Po

7.0
40

Watts
mW/oC

-65 to +200

°c

Total Power Dissipation
Derate above 25°C

@

Operating and Storage Junction
Temperature Range

TJ.Tstg

Characteristic

Thermal Resistance. Junction to Case

Symbol

Max

Unit

R~JA(11

175

°CM

R~JC

25

°CM

(O~'
Ih; -

N

~~¥J
PIN 1. EMITTER

2. BASE
3. COLLECTOR

DIM
A
8

C
0
E
F
G
H
J
K
L

M
p

(1) R8JA is measured with the device soldered into a typical printed circuit board.

I

I

STYLE 1:

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient

F

-11-0

n
R

MILLIMETERS
MIN MAX
8.89
8.00
6.10
0.406
0.229
0.406
4.83
0.711
0.737
12.70
6.35
450

-

900 NOM
2.54

INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250

~
0.100

~

All JEDEC dimensions and notesappty.
CASE 79-02
TO·39

648

MM4036 (continued)

I

ELECTRICAL CHARACTERISTICS (TA = 25°C unle.. otherwi.. noted.)

I

Symbol

Min

Typ

M.x

Unit

Collector· Emitter Breakdown Volt.ge (1)
(lc = 10 mAde,lB = 0)

BVCEO

65

-

-

Vde

Coliector·B... Breakdown Voltage
OC= l00"Adc,IE= 0)

BVCBO

90

-

-

Vde

Emitter·Ba.. Breakdown Voltage
Of:= l00"Ade,lc= 0)

BVEBO

5.0

-

Vde

Collector Cutoff Current
(VCB = 60 Vde, IE = 0)

ICBO

-

-

250

nAde

Emitter Cutoff Current

lEBO

-

-

250

nAde

250
100

nAde
"Ade

Cheract..istic
OFF CHARACTERISTICS

(VBE = 3.0 Vdc, IC = 0)
Collector Cutoff Current (2)
(VeE = 60 Vde, VBE(off) = 1.5 Vde)
(VCE = 30 Vde, VBE(off) = 1.5 Vde, TC = 150°C)

ICEV

-

-

-

-

20
20
40
20

50
60
90

ON CHARACTERISTICS (1)
DC Current Gain

OC=
Oc =
Oc =
Oc Q

hFE

l00"Ade, VCE= 10Vdc)
150 mAde, VCE = 2.0 Vde)
150 mAde, VCE = 10 Vde)
500 mAde, VCE = 10 Vde)

Collector-Emitter Saturation Voltage

VBE(sat)

-

VCE(s.t)

(IC* 150 mAde,lB = 15 mAde)
B...·Emitt.r Saturation Voltage
(lC = 150 mAde, IS = 15 mAde)

-

200
140

-

40
0.3

0.65

Vde

1.0

1.4

Vde

DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, f = 20 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time

(VCC = 30 Vde,lc = 150 mAde,
IBI = 15mAde)

(Figure la)

ton

-

40

75

ns

Turn·Off Time

(VCO = 6.0 Vde, IC = 150 mAde,
IBl = IB2= 15 mAde)

(Figurelb)

toff

-

110

175

ns

(1) Pul.. Test. Pul.. Width .. 300 ,,5, Duty Cycle .. 2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
FIGURE 1. - TURN'()N TIME

FIGURE lb - TURN'()FF TIME

,

-30

INPUT
Zo =5011
PRF = 150 PPS
RISE TIME .. 2.0 ns

O_:LJ

INPUT
Zo=5011
PRF = ISO PPS
RISETIME"2.0,..

200

-

1.0 k

L

~

i

+15 V

) TO OSCI LLOSCOPE
RISE TIME .. 5.0 ns

50

37

Uk

0:U-

~)

1.0 k

50

-J l-

--1200nsL

-6 O

~

IN916

200ns

-=

-=

""=

649

-=

""=

TO OSCI LLOSCOPE
RISE TIME .. 5.0 ns

MM4037 (SILICON)

PNPSILICON
TRANSISTOR

PNP SILICON ANNULAR
AMPLIFIER TRANSISTOR
· .. designed for use in general·purpose amplifier and switching
applications.

•
•

Coliector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 10mAdc
Low Collector· Emitter Saturation Voltage VCE(sat) = 0.3 Vdc (Typ) @ IC = 150 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vde

Collector-Base Voltage

VCB
VEB

60
5.0
1.0
500
1.0
5.71
7.0
40
-65 10+200

Vde

Emitter-Sase Voltage

Collector-Emitter Voltage

Collector Current - Continuous

IC

Base Current

IB

Total Power Dissipation t A = 25°C
Derate above 25°C
Total Power Dissipation T C = 2S"C
Derate above 25°C

Po
Po

Operating & Storage Junction
Temperature Range

TJ.Tstg

STYLE I
PIN 1. EMITTER
2. BASE
3. COLLECTOR

Vde
Ade
mAde
Watt
mW/oC

Watts
mW?C
°c

DIM
A

B
C

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

I
I

Thermal Resistance, Junction to Case

I

Symbol

Max

ReJA(I)

175
25

ReJC

I

I
I

Unit
°C/W
°C/W

(1) R6JA is measured with the device soldered into a typical printed circuit board.

o
E
F

G
H
J
K
L
III
P
Q

R

MILLIMETERS
P/lIN MAX
8.B9 9.40
B.OO 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.4 6 0.483
4.B3 5.33
0.711 0.B64
0.737 1.02
12.70
6.35
45' N01\1

1.27
90. NOM
2.54

All JEOEC dimensions and notes apply,
CASE 79-02
TO-39

650

MM4037 (continued)

I

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted!.
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage(l)
(lC = 10mAdc,IB = 0)

BVCEO

40

-

-

Vde

Collector-Base Breakdown Voltage
(lC = 10 "Ade, IE = 0)

BVCBO

60

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 1.0 "Ade, IC = 0)

BVEBO

5_0

-

-

Vde

ICBO

-

-

250

Ade

lEBO

-

-

1_0

nAde

15
50

50
75

250

VCE( ..t)

-

0.3

1.4

Vde

VBE(on)

-

0.8

1.5

Vde

f,-

60

100

-

MHz

20

30

pF

60

-

pF

Characteristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 60 Vde, IE = 0)
Emitter Cutoff Current
(VEB = 5.0 Vde, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain

(lc
(lc

Collector~Emitter

(lC

-

hFE

= 1.0 mAde, VCE = 10 Vde)
= 150 mAde, VCE = 10 Vde)
Saturation Voltage

= 150 mAde, IB = 15mAde)

Base-Emitter On Voltage,
(lC = 150 mAde, IB = 10 mVde)

-

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (1)
(lC = 50 mAde, VCE = 10 Vde, f = 20 MHz)
Collector-Base Capacitance
(VCB = 10 Vde, IE = 0, f

Ceb

= 1.0 MHz)

Input Capacitance

(VBE

= 0.5 Vde,

IC

-

Cib

= 0, f = 1.0 MHz)

SWITCHING CHARACTERISTICS
Turn-On Time

(IC

= 150 mAde, IB = 15 mAde)

Turn...()ff Time
(lc = 150 mAde, IBI

ton

-

40

75

ns

toff

-

110

175

ns

(Figure la)

= 15 mAde, IB2 = 15 mAde)

(Figure lb)

(1) Pulse Test: Pulse Width ';;;300 "s, Duty Cycle ';;;2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT
lb - TURN-DFF TIME

1. - TURN-DN TIME

-30

INPUT
Zo=50<2
PRF = 150 PPS
RISE TIME" 2.0 n,

+15 V

INPUT
Zo=50<2
PRF = 150 PPS
RISE TIME" 2.0 '"

200

1.0 k

1.0 k
TO OSCI LLOSCOPE
RISE TIME" 5 0 n'

O_lJ

-6.0

37

1.0 k

TO OSCI LLOSCOPE
RISE TIME" 5.0 os

0:U-

50

50

lN916

-j200n,l-

--J200n,L

-::-

-::-

-::-

651

-::-

-::-

MM4049 (SILICON)

The RF Line
4.0 GHz

@

20 mAde

HIGH FREQUENCY
TRANSISTOR

PNP SILICON HIGH-FREQUENCY TRANSISTOR

PNPSILICON

· .. designed for use as a high-frequency current mode switch. Because
of the extremely high Current-Gain-Bandwidth this transistor also
makes an excellent RF amplifier and oscillator.
• High Current·Gain-Bandwidth Product fT =4.0 GHz (Min) @ IC =20 mAdc
•

Low Collector·Base Capacitance Ccb = 1.25 pF (Max) @ VCB = 5.0 Vdc

I

MAXIMUM RATINGS
Rltlng

Coliector~B8se

-

Voltage

Emitter-B... Voltage

Collector Current

~M

Value
10

Unit

VCEO
VCI!

15

Vde

VEB

4.6

Vde

IC

30

mAde

Po

200
1.14

mW"
mW/oC

TJ.Tstg

-66 to +200

DC

Symbol

Collector-Emitter Voltago

Continuous

Totel Device Dialpation@TA =25°C
Derate above 25°C
Operating and Storage Junction

Vde

Temperature Range

STYLE 10

PIN1. EMITTER

2., BASE
3. COllECTOR
4

FIGURE 1 - CURRENT-GAIN-BANDWIDTH PRODUCT
:J:

5.0

!!!

t;

5
~

4.0

~

3.0

..!

2.0

~
t

~

-

--:::-

CASE

Vca. 510 Vdc-

I

Vca· 2.0 Vdc-

~

~

a

!O

1.0

o

o

5.0

10

15

20

25

30

35

40
AlLJEOECdllnlnsionsandnOlisapply

IC. COLLECTOR CURRENT (mAdel
CASE 20·03

TO·72

652

MM4049 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic

Max

Unit

Symbol

Min

Collector·Emitter Breakdown Voltage
(lC = 2.0 mAde, IB = 0)

BVCEO

10

Collector·Base Breakdown Voltage
(lC = 100 "Ade, IE D 0)

BVCBO

15

-

Vdc

Emitter·Base Breakdown Voltage
(IE = 100 "Adc, IC = 0)

BVEBO

4.5

-

Vdc

ICBO

-

10

nAdc

fT

4.0

Collector·Ba.. Capacitance (Figure 2)
(VCB = 5.0 Vde, Ie = 0, f = 1.0 MHz)

Ccb

-

1.25

pF

Emitter-Base Capacitance (Figure 2)

Ceb

-

1.25

pF

'b'Ce

-

15

ps

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB· 10 Vdc, IE = 0)

Vdc

ON CHARACTERISTICS
DC Current Gain

(lC = 25 mAde, VCE = 2.0 Vdci)
OVNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product (Figur. 1)
(lC 20 mAde, VCE = 5.0 Vdc, f • 500 MHz)

=

(VeB

=0.5 Vdc, IC = 0, f = 1.0 MHz)

Collector·Base Time Constant (Figure 3)
(Ie = 15 mAde, VCB = 5.0 Vde, f = 63.6 MHz)

FIGURE 3 - COLLECTOR·BASE TIME CONSTANT

FIGURE 2 - CAPACITANCES
2. 0

5

1

1.8

~

1. 6

~ 1.4

...~

1. 2

5

1.0

It

0.8

~

GHz

u O. 6 .......
0.4

0.1

:IE

.....

;:

3
~....

Ccb

ci:

I--... r -

.......r-

C.b

8

"-

O. 2

o

...8

20

5

Vca

=2.0 Vde

....-1
<~.OVdC

............

-

10

5.0

.j
'If!

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

5.0

VR, REVERSE VOLTAGE (VOLTS)

10

15

20

25

IC. COLLECTOR CURRENT (mAde)

653

30

35

40

MM4052 (SILICON)

PNP SILICON
CHOPPER AND SWITCHING
TRANSISTOR

PNP SILICON ANNULAR TRANSISTOR

· .. designed for bilateral switching and high· level chopper appli·
cations such as servo·loop circuitry and control amplifiers for motor
drive systems. These transistors can also be used as replacement
devices for alloy-type transistors where high BVEBO is required.

•

High Emitter-Base Breakdown Voltage BVEBO = 30 Vdc (Min) @ IE = 100 /JAdc

•

Inverted DC Current Gain - 3.0 (Min) @ IC = 150 mAde

•

Low Emitter-Collector Offset Voltage VEC(ofs) = 2.0 mVdc (Max) @ I B = 1.0 mAdc

•

Low "ON" Series Resistance rec(ON) = 2.0 Ohms (Max) @ IB = 10 mAde

\

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

Value

VeEO

30

Unit
Vdc

Emitter-Collector Voltage

VEe

30

Vdc

Collector-Base Voltage

V eB

30

Vdc

Emitter-Base Voltage

V EB

30

Vdc

Collector Current - Continuous

Ie

500

mAde

Total Power Dissipation @ T A = 25° C

Po

0.5
2.86

Watt
mw/oe

Po

1.75
10

mW/ C

-65 to +200

°c

Derate above 25° C
Total Power Dissipation

@

T C = 25 C

Derate above 25 C

Watts

Operating and Storage Junction

Temperature Range

TJ. T stg

AIIJEDEC dImenSIOns and nOl8sapply
CASE 26·03
TO·46

654

MM4052 (continued)

ELECTRICAL CHARACTERISTICS IT A = 250 C unless otherwise noted)
Characteristic

Svmbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage 111
(lC = 10 mAde, 'B = 0)

BV CEO

30

-

Vde

Emitter-Collector Breakdown Voltage 111

BV ECO

30

-

Vde

BV CBO

30

-

Vde

BV EBO

30

-

Vde

'CBO

-

0.5

nAdc

'EBO

-

0.5

nAde

20
15
3.0

-

VEC(ofsl

-

2.0

mVde

Cob

-

10

pF

-

5.0

20
3.0

-

(IE

= 10 mAde, IB = 0)

Collector-Base Breakdown Voltage

= 0)

(lC = 100 IJAde, 'E

Emitter-Base Breakdown Voltege
(IE

= l00lJAde, 'C = 0)

Collector Cutoff Current
(V CB =15 Vde, 'E = 0)
Emitter Cutoff Current
(V EB = 15 Vde, 'C

= 0)

ON CHARACTERISTICS
DC Current Gain 111

-

hFE

(lC = 10 mAde, VCE = 1.0 Vdc)
(lC = 150 mAde, VCE = 1.0 Vde)
(lC = 150 mAde, VCE = 1.0 Vde) (Inverted.
Offset Voltage
(lB = 1.0 mAde, 'E = 0)
SMALL-SIGNAL CHARACTERISTICS
Output Capacitence
(V CB

= 10 Vde, 'E = 0, 100 kHz";f ";1.0 MHz)

Input Capacitance
(V EB

= 10 Vde, 'C = 0, 100 kHz s

C ib
f ~ 1.0 MHz.

Small-Signal Current Gain
(lC

= 10 mAde, VCE - 1.0 Vde, f = 4.0 MHz)

(lB = 10 mAde, f· 1.0 kHz)

-

hfe

(lC = 10 mAde, VCE = 1.0 Vde, f = 1.0 kHz)
"ON" Series Resistance

pF

-

655

Ohms

rec(ON)

(1) Pulse Test: Pulse Width'$; 300 #£1, Duty Cycle'S 20%

-

2.0

MM4208, MM42I08,A (SILICON)
MM4209, MM4209A

PNP SILICON
SWITCHING
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS

... designed for applications requiring very high-speed switching at
low voltage for computer logic circuits.

•

Fast Switching Times - @ IC = 50 mAde
ton = 15 ns (Max)
toff = 20 ns (Max)

•

High Current-Gain-Bandwidth Product fT 1300 MHz (Typ) @ IC 10 mAde

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.18 Vde (Max) @ IC = 10 mAde

=

=

MAXIMUM RATINGS
Rating

Symbol

MM4209

MM4208A
MM4209A

VeEO

12
12

15
15

Collector-Emitter Voltage
Colleetor-Sa.e Voltage
Emitter~Base

VeB
VEB
Ie

Voltage

Collector Current - Continuous

Total Power Dissipation@TA = 250 e
Derate above 2Soe

Po

Total Power Dissipation @Te=250 e
Derato above 250 e

Po

Operating and Storage Junction
Temperature Range

TJ,Tstg

MM~208

4.5
200
0.36
2.06

Unit

6.86

Watts
mW/oe

-65 to +200

°c

1.2

SEATING
PLANE

Vde
Vde
Vde
mAde
Watt
mW/oe

DIM

5.84
4.95
5.33
0.533
0
E
- 0.762
F 0.406 0.483
G
2.548Se
H 0.914 ·1.17
0.711 1.22
J
K 12.70
L
6.35
M
45' BSC
N
1.27 a e
P
1.27

A

a
C

SELECTOR GUIDE
BVeEO

hFE
@le=10mA,VeE-0_3V

Type

Volts
Min

Min.lMax

MM4208
MM4208A
MM4209
MM4209A

12
15
12
15

30/120
30/120
50/120
50/120

MILLIMETERS
MIN
MAX

5.31
4.52
4.32
0.406

-

INCHES
MIN
MAX

0.209
0.178
0.170
0.D16

-

0.D18
0.1
0.036
0.028

0.230
0.195
0.210
0.021
0.03C
0.019

esc

0,046
0.048

--

0.250
45 ase
0.050 as
0.050

All JEDEC notes and dimensions apply.
CASE 22-03

(TO-IS)

656

MM4208, MM4028A, MM4209, MM4209A (continued)

ELECTRICAL CHARACTERISTICS (T A = 2SoC unless otherwise noted)

I

Characteristic

Symbol

Min

BVCEO

,.

TV'

....

Unit

OFF CHARACTERISTICS

Coliector·Emitter Breakdown Voltagel')
(Ie = 3.0 mAde, '8 '" 0
Collector·Emltter Breakdown Voltage
He = 100,uAdc. Vse = 0)

Vd<

BVCES

12
15

MM4208,MM4209

MM4208A,MM4209A

Collector-Base Breakdown Voltage
(Ie ""OO,uAdc. Ie = 0)

Vdc

12

MM4208,MM4209
MM4208A,MM4209A

Vdc

BVCBO

12
15

MM4208,MM4209
MM420BA,MM4209A

Emitter-Base Breakdown Voltage

BVEBO

4 .•

Vdc

(Ie'"' 100,uAdc, Ie = OJ

Collector Cutoff Current

ICES

10
10
5.0
5.0

MM4208,MM4209

(Vee" 6.0 Vdc, Vse = 0)
(VeE = 8.0 Vdc, Vse = 0)
(VeE" 6.0 Vdc, VeE" 0, T A = 125°C)

MM4208A,MM4209A

(VeE =8.0Vdc, Vee =0, TA -=125 0 CI

MM4208A,MM4209A

MM4208,MM4209

Base Current
(VeE = 6.0 Vdc, VeE'" 0)

MM420B,MM4209

(VCE ., 8.0 Vde, VSE = OJ

MM4208A,MM4209A

nAdc

,Adc
nAde

'8

1.0
1.0

ON CHARACTERISTICS
DC Current GIIin
IIc = 1.0 mAde, VCE '" 0.5 Vdc)

hFE
MM4208,MM4208A
MM4209,MM4209A

15
35

(lc = 10 mAde, VCE = 0.3 Vde)

MM420B,MM4208A
MM4209,MM4209A

30

(lC'" 10 mAde, VCE = 0.3 Vde, T A = -5SoCl

MM4208,MM4208A
MM4209,MM4209A

(lC = 50 mAde, VCE = 1.0 Vdc)(1)

MM4208,MM4208A
MM4209,MM4209A

120
120

50
12
20
30
40

Colleetor·Emitter Saturation Voltage
tiC" 1.0 mAde, le=0.1 mAde)

Vdc

VCEfsat}
0.16

tiC =- 10 mAde, IS" 1.0 mAdel

0.18

OS

(IC = 50 mAde, Ie" 5.0 mAdelll1
Base·Emitter Seturatlon Voltage
(lC" 1.0 mAde, Ie" 0.1 mAde)

Vdc

VSElsatl

0.8

IIc" 10 mAde, 'e" 1.0 mAde)

0.85

0.7

1.5

(lc" 50 mAde, 'e" 5.0 mAde)11)
SMALL SIGNAL CHARACTERISTICS

IT

Current-Gain Bandwidth Product
lie'" 10mAde, Vee "10 Vdc, f"100MHz)

850

1300

MHz

Output Capacitance
(Vce'" 5,0 Vdc, Ie '" 0, f .. 140 kHz)

Cob

3.0

pF

Input Capacitance
(VeE" a,s Vdc, IC '" 0, f '" 140 kHzl

Cib

3.5

pF

Turn·On Time IFigure 11
(VCC = 3.0 Vdc,lC "50mAdc,IS1 =5.0mAdcl

ton

,.

Turn-Off Time
(VCC =3.0 Vde, 'c=50mAdc,'S1 '"'S2=5.0mAdcl

toff

20

Storage Time
iVCC = 3.0 Vdc, IC~10mAdc,IBl "'S2s=:.10mAdc)

t,

SWITCHING CHARACTERISTICS

17

(1JPulse Test: Pulse WidthS 300 ~I, Duty Cycle'5. 1.0%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

Vee

Vaa

Rl

+ - - - - - O V OU l
R3

01

ton
toft
1,

Vin VBB
Volts Volts
-12.8 +4.0
+20 -11.3·
+9.0
-10

Vee
Volts
-3.0
-3.0
-3.0

Rl

R2

R3

R4

R5

01

Ohms Ohms Ohllt'S Ohms Ohms

55
55

100
100

270

510

2.0k
2.0 k
390

100
100
info

info
info
51

*At Point A (ptA) 01 must be fast recovery type. e.g" MSD6100

657

no
yes

no

20

MM4257
MM4258

(SILICON)

SWITCHING
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS
· .. designed for applications requiring high speed switching at
low voltages.

PNPSILICON

• Coliector·Emitter Saturation VoltageVCE(sat) ; 0.15 Vdc (Max) @ IC; 10 mAdc
• SwitchingTimes@ IC; 10 mAdcton; 10 ns (Typ)
toff ; 10 ns (Typ)
•

Hermetic Constructed Version of 2N4257 and 2N4258

• Complement to 2N2369

MAXIMUM RATINGS
Rating

Symbol

MM4257

MM4258

Unit

VeEO

6.0

12

Vde

Collector-Base Voltage

Vea

6.0

12

Vde

Emitter-Base Voltage

VEa

4.5

Vde

Collector Current - Continuous

Ie

80

mAde

Total Power Dissipation @
TA = 250 e
Derate above 2SoC

Po
360
2.06

mW
mW/oe

Total Power Dissipation @
Te = 250 e
Derate above 2SoC

Po
1.2
6.86

Watts
mWfOe

Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

°e

TJ,Tstg
-65 to +200

SEATING
PLANE

PIN I. EMITTER
2. BASE
3. COLLECTOR

DIM
A
S
e

0
G
H

J
K

M
N

INCHES
MIN
MAX

MILLIMETERS
MIN
MAX
5.31
5.84
4.52 4.95
4.32 5.3
.48
0.41
2. I SSC
1.17
0.91
1.22
0.71
12.70
45 BSe
1.27 BSe

0.209
0.178
0.170
.1
0.111

0.230
0.195
0.210
!]l9

bSC

o·r:

O'O~~I 0.4

BSe
0.05 BSe

Collector Connected to Case
CASE 22
TO-18

658

MM4257, MM4258 (continued)

ELECTRICAL CHARACTERISTICS (TA

I

= 250 C unless otherwise noted)

I Symbol

Characteristic

Unit

Min

Typ

Ma.

6.0
12

-

-

6.0
12

-

-

6.0
12

-

4.5

-

-

-

0,01
5.0

15
30
30

-

-

-

120

-

-

-

-

0.15
0.5

0.75

-

0.95
1.5

500
700

-

-

-

Ceb

-

-

3.0

pF

Cib

-

-

3.5

pF

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lc = 3.0 mAde, IB = 0)
Collector-Emitter 8reakdown Voltage (1)
(lC = 100 "Ade, VBE = 0)

-

Vde

BVCES
MM4257
MM4258

Colleetor-Ba.. Breakdown Voltage
(lC = 100 "Ade, IE = 0)

Vde

BVCBO
MM4257
MM4258

Emitter-Base Breakdown Voltage

(IE

Vde

VCEO(sus)
MM4257
MM4258

BVEBO

-

Vde

= 100 /lAde, IC = 0)

Collector Cutoff Current

"Ade

ICES

(VCE = 6.0 Vde, VBE = 0)
(VCE = 3.0 Vde, V8E = 0, T A = +650 C)
ON CHARACTERISTICS (11
DC Current Gain

-

hFE

(lC = 1.0 mAde, V CE = 0.5 Vde)
(lC = 10 mAde, VCE = 0.3 Vde)
(lc = 50 mAde, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage

Vde

VCE( ... )

(lC = 10 mAde, IB = 1.0 mAde)
(lC = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage

Vde

VBE( ..t)

(lC = 10 mAde, 18 = 1.0 mAdel
(lC = 50 mAde, IS = 5.0 mAde)

-

DYNAMIC CHARACTERISTICS
Current-Gain - Sandwidth Product (2)
(lC = 10 mAde, VCE = 5.0 Vde, 1= 100 MHz)
(lC = 10 mAde, VCE = 10 Vdc, I = 100 MHz)

MHz

IT
MM4257
MM4258

Collector-Base Capacitance

(VCS = 5.0 Vde,IE = 0, I = 100 kHz)
I nput Capacitance
(VSE = 0.5 Vde, IC = 0, I = 100 kHz)

SWITCHING CHARACTERISTICS (Figure 5)
ton

-

10

15

ns

'd

-

5.0

10

ns

tr

-

5.0

15

ns

MM4257
MM4258

toff

-

12
16

15
20

ns

MM4257
MM4258

'.

6.0
8.0

15

ns

MM4257
MM4258

tl

6.0
8.0

10
10

Storage Time
(lc "" 10 mAde, lSI ,.,10 mAde, IS2 "" 10 mAde) MM4257
MM4258

Is

-

15
20

Turn~nTime

Delay Time

Rise Time

(VCC = 1.5 Vdc,
VSE(olf) = 0,
IC = 10 mAde, lSI

=1.0 mAde)

Turn'()lf Time
Storage Time

(VCC = 1.5 Vde,
IC = 10 mAde,
181 = IB2 1.0 mAde)

=

Fall Time

-

(2) fT is defined as the frequency at which I hfe I extrapola.. s to unity.

659

ns
ns

-

(1) Pulse Test: Pulse Width.;;; 300 "', Du'y Cycle';;; 2.0%.

20

-

MM4257. MM4258 (continued)

TYPICAL TRANSIENT CHARACTERISTICS

FIGURE 1 - CURRENT-GAIN - BANDWIDTH PRODUCT

FIGURE 2 - CAPACITANCE

~ 3000

7.0

1 1 II
11 II

i!

....

~ 2000
Q
Q

IE

~
~

~

."

1000

........

i'

0

700

~

500

r-- t-I-

Cob

II:
II:

~~
V

~ 3O~.6

-

1.0

::>

0.1

1.0

2.0

3.0

5.0 7.0

10

20

30

o.7

50

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7Jl

10

20

VR. REVERSE VOLTAGE IVOLTS)

IC. COllECTOR CURRENT (mA)

FIGURE 3 - TURN-ON TIME

FIGURE 4 - TURN-OFF TIME
100

100
70
50

Ie/IS =10
TJ,250 C

30 1"'...'

!

Tl'·250 C_ I-MM4258

--

0

,

z
C

5.0

U1LJJ257
VCE -10 V MM4258
TJ - 25"C

20

r-::: ............,

w

!.... 10

70
50

!

r-:::

20

.......

~.VCC·'.

10
.,.... 7.0
5.0

"""i..

3.0

Id II VSElo!l) • 0

3.0

TJ' 250 C

!

1,II VCC·1.5V

2.0
2.0

" I'.

w

-- 7.0
5.0

1.0
1.0

181"182
IC/IS" 10

30

I II

5.0 7.0

10

3.0

j"'--..
20

2.0

30

50

70

1.0
1.0

100

2.0

--

..!!

f-"'"
..... .....

3.0

IC. CO LLECTOR CURRENT lmA)

5.0 7.0. 10
20 30
. IC. COLLECTOR CURRENT I.....)

50

70

100

FIGURE 5 - SWITCHING TIME TEST CIRCUIT

VCC
Rl

Ion

R2

Ioff

O.I/1f
Vin o--.....
Zin,50n
1,<1.0 n.
son
tw= 240 ns

R3

-U'-...-...JVVY-----jH

Vout
Zin;>l00kll
1,< 1.0 os

I.

660

Vin
Volts
-5.8
+9.8
+9.0

V8S
Volts

GNO
-8.0
-10

VCC
Volts
-1.5
-1.5
-3.0

Rl
Ohm.
130
130
270

R2

R3

Ohms

Ohms

2.2k
2.2k
510

5k
5k
390

IC
mA
10
10
10

lSI
mA
1.0
lJl
10

182
mA

-

1.0
10

MM4257, MM4258 (continued)

DC CURRENT GAIN
FIGURE 7 - MM4258

. FIGURE 6 - MM4257
200

z

100

w
ac
a:

....z

70

.....

I

TJ = ~5&t

TJ' 250 C

50

CI

.l!'

~

0.5 0.7

1.0

a:
a:

..
tl

I'-.,r--

0.5V

30
20

VCE-5.0V

50

1.0V

-~

ffi

---

1.0V

-

0

z

IVCEI. 5!0!

:c
co
:>

100

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (mA)

20

30

0;"3

CI

10

50

0.5 0.7

2.0

1.0

I/f""

TJ.250 C

I-: :;;....

VsE(~) .ICII~ = Id
VBEI!IVCE·1.0V

~ 0.8
w

~

~-

0.4

O.2

0.5 0.7

1.0

2.0

3.0

--

........ 1--'

~

\lCE(at) IiIIClis' 10

o

3.0

5.0 7.0

10

IC. COLLECTOR CURRENT (mA)

FIGURE 8 - "ON" VOLTAGES

~

1""--...;

.l!' 20

1.0

0.8

::-

0.5 V

5.0 7.0

10

IC. COLLECTOR CURRENT (mA)

661

20

30

50

20

30

50

MM4261 H(SILICON)

High Reliability Products
PNPSILICON
SWITCHING TRANSISTOR

PNP SILICON ANNULAR TRANSISTOR,
· .. designed for high reliability, low·level switching applications and
general usage for radiation resistant requirements.

• Off-the-Shelf Availability of Extensive High Reliability Processing
• High Tolerance to Neutron Radiation @ IC = 10 mA,
hFE Degradation Typically Less Than 50% after
5 x 1014 Neutronslcm 2 (Figure 13}
• High Current-Gain-Bandwidth ProdlJct fT = 3500 MHz (Typ} @ IC = 10 mA
•

Low I nput and Output Capacitance Cib and Cob = 2.5 pF (Max}

• Excellent Current-Mode Performance tr = 0.5 ns (Typ} @ IC = 10 mA
0.9 ns (Typ} @ IC = 30 mA

rF'1
~I"~
",). ~ ,

MAXIMUM RATINGS

Collector-Emitter Voltage

Collector-Ba.. Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation @ T A

~

PLANE

Rating

= 25°C

Symbol

Value

Unit

VeEO

15

Vdc

Veil

15

Vdc

VEB

4,5

Vdc

Ie

30

mAdc

Po

200
1,14

mW
mwf'e

TJ, Tstg

-65 to +200

°e

Derate above 25°C
Operating and Storage Junction

Temperature Range

--11--0

STYLE 10

N PIN 1.
2.
rNI 3,

EMITIER
BASE
COLLECTOR
I~HJ1--l G 4. CASE
2

M

V~Jtt
MILLIMETERS
MIN MAX
5,31 5.B4
A
B
4.52 4,95
4,32 5.33
C
0,41 0.53
0
E
0.76
F
0.41 0.48
2,54 BSC
G
0,91
H
1.17
J
0.71
1.22
K
12.70
6,35
l
M
45 0 BSC
1.27 BSC
N
P
1,27

DIM

INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0,170 0,210
0.016 0,021
0,030
0.D16 0,019
0,100 BSC
0.036 0.046
0,028 0.048
0,500
0.250
45 BSC
0.050 BSC
0,050

ALL JED EC dimensions and notes apply

eASE 20·03
TO-72

662

MM4261 H (continued)

.

HIGH RELIABILITY
PROCESSING SEQUENCE

GROUP A INSPECTION
The lot is 100% inspected in the sequence

shown below

+

SAMPLE INSPECT ELECTRICAL PARAMETERS per TABLE I
summary data provided

INTERNAL VISUAL INSPECTION
SUBGROUP 1
LTPD = 5

Not81

SCREEN ELECTRICAL PARAMETERS
Table I
G,R

VISUAL and MECHANICAL
MIL-STD-750
Method 2071
R

HIGH TEMPERATURE STORAGE
T A;:' 2000C, t;:' 24 hours

SUBGROUP 2
LTPD = 2

TEMPERATURE CYCLING
MI L-STD-202, Method 102, Condition C

ELECTRICAL TEST
Table I
G,R

10 cycles, t (extreme) ~15 minutes

SUBGROUP 3
LTPD = 3

CONSTANT ACCELERATION
MIL-STD-750, Method 2006
Yl axis 20,000 G

ELECTRICAL TEST
Table I
G,R

FINE LEAK
MIL-STD-202, Method 112, Procedure Ilia
Condition C, P = 50 psig. t

=4

hours

SUBGROUP 4
LTPD = 5

Leak rate :s: 1 x 10-8 atm. eelsec
R

ELECTRICAL TEST
Table I
G,R

GROSS LEAK
MI L-5TD-202, Method 112, Condition A
Ethylene Glycol, T = 100o C, t :><15 sec.
R

SUBGROUP 5
LTPO = 5

MARK DEVICES
Motorola Symbol, MM4261H, seal date

code

ELECTRICAL TEST
Table I
G,R

ELECTRICAL TEST Table II (initial)
RR,R

SUBGROUP 6
LTPD = 7

BURN-IN TA = 250 C, t = 168 hours
Po = 200 mW, VCB:S: 5.0 V

ELECTRICAL TEST
Table I
G,R

ELECTRICAL TEST Table II (end points)
POA = 10
RR,R

SUBGROUP 7
LTPD = 7

Option 1
Burn·ln Data with Delta Calculations
(see Option Data Provisions)

ELECTRICAL TEST
Table I
G,R

Samples are randomly selected from the lot
for Group A, Group S, and Group C inspec-

tion. Sample size for s8ch Subgroup shall be
determined from Sampling Plan Table and

R - Remove Rejects
G- Go-No-Go
RA - Read and Record

shall meet the specified LTPD or lambda
requ irements.

NOTE 1: Internal Visual Inspection
Each device will be inspected under
magnification for defects in material and
workmanship which do not comply with
Motorola's visual inspection procedures.

663

I

MM4261H (continued)

GROUP B INSPECTION

..________..~I

I

SAMPLE INSPECT ENVIRONMENTAL and LIFE
summary data provided

L
IIII________..

I

,,
SUBGROUP 1
LTPD =20

PHYSICAL
DIMENSIONS
per OUTLINE
DRAWING
TO-72 Package

,,

SUBGROUP 2
LTPD= IS

SUBGROUP 3
LTPD = 15

SUBGROUP 4
LTPD = 20

SUBGROUP 7
~ = 7

ELECTRICAL TEST
Table III

ELECTRICAL TEST
Table III

LEAD FATIGUE
MIL-STD-750
Method 2036

ELECTRICAL TEST
Table IV

SOLDERABILITY
MIL-STD-750
Method 2026

SHOCK
MI L-5TD-750 .
Method 2016
1500 G. 0.5 ms
5 blows each Xl. Yl.
Y2.Z1
20 blows total

Condition E

TEMPERATURE
CYCLING
MIL-STD-750
Method 1051
Condition C

THERMAL SHOCK
MI L-5TD-750
M.thod 1056
Condition A

HERMETIC SEAL
MI L-5TD-202
Method 112
FINE LEAK
Procedure Ilia
Condition C
Leak rate
~ 1 • 10-8 cc/lSC
GROSS LEAK
Condition A

VIBRATION FATIGUE
MIL-STD-750
Method 2046

VIBRATION VARIABLE
FREOUENCY
MI L-5TD-750
Method 2056

CONSTANT
ACCE LE RATION
Method 2006
20 kG in XI.
Y2. ZI axes

'n.

ELECTRICAL TEST
Table III
G

ELECTRICAL TEST
Table III
G

GROUP C INSPECTION
SUBGROUP 1
LTPD= 10

NEUTRON FLUX
RADIATION EXPOSURE
fluenc.  = 1 x 1015
tronsl cm2
(E>10keVI
.

neu

ELECTRICAL TEST
Table V
RR

G - Go-No-Go
R R - Read and Record

664

SUBGROUPS
LTPD = 20
SALT ATMOSPHERE
MI L-5TD-750
Method 1041

SUBGROUP 6
~ = 7
HIGH TEMPERATURE
STORAGE LIFE
MI L-5TD-750
Method 1031
Tstg' 2000 C

ELECTRICAL TEST
Table IV

STEADY STATE
OPERATION
MIL-5TD-750
Method 1026
VCB = 10V
TA = 250 C
Po = 200mW

ELECTRICAL TEST
Table IV

MM4261 H (continued)

TABLE I: GROUP A INSPECTION (TA

~ 250 C unless otherwise noted)

MIL-STO-750
Method

Examination or Test
SUBGROUP 1
Visual and Mec;:hanical Examination

2071

SUBGROUP 2
Collector-Base Cutoff Current
(VCB ~ 10 Vde, IE ~ 0)

Symbol

ICB01

Collector-Cutoff Current
(VCE ~ 10 Vde, VBE(off) ~ 2_0 Vde)

3041A

ICEVI

Collector-Cutoff Current
(VCE ~ 10 Vde, VEB(on)

3041 A

= 0.4 Vde)

Emitter-Base Breakdown Voltage
(IE = 10 "Ade, IC = 0)

30260

Collector-Base Breakdown Voltage
(lC = 10 "Ade, IE ~ 0)

30010

Collector-Emitter Breakdown Voltage (1}
(lC ~ 10 mAde, IB ~ 0)

3011D

Unit

LTPO

-

-

5

-

ICEV2

nAde

-

5_0

-

5_0

-

50

4.5

-

15

-

15

-

nAde
nAde

BVEBO

Vde
Vde

BVCBO

Vde

BVCEO

3
~

3066B

VBE(on)1

3066B

VBE(on)2

1.0 Vde)

Base-Emitter On Voltage
(lC ~ 10 mAde, VCE ~ 1.0 Vde)
Collector-Emitter Saturation Voltage
(lC ~ 1.0 mAde, IB ~ 0.1 mAde)

3071

Collector-Emitter Saturation Voltage
(lC ~ 10 mAde, IB ~ 1.0 mAde)

3071

DC Current Gain
(lC ~1.0mAde, VCE

3076
~

3076

DC Current Gain
(lC ~ 30 mAde, VCE ~ 2.0 Vde)

3076

SUBGROUP 4
Current-Gain-Bandwidth Product
(lC ~ 5.0 mAde, VCE ~ 4.0 Vde, f
Current-Gain-Bandwidth Product
(lC ~ 10 mAde, VCE ~ 10 Vde, f

-

O.B

-

1.0

-

0.15

-

0.35

25

-

30

150

20

-

Vde
Vde

VCE(sad2

Vde

-

hFEl

-

hFE2

-

hFE3

5
MHz

fT1
~

100 MHz)

1500

-

2000

-

-

2.5

-

2.5

MHz

fT2
~

Vde

VCE(sat) 1

1.0 Vde)

DC Current Gain
(lc~ 10 mAde, VCE ~ 1.0 Vde)

100 MHz)

Output capacitance
(VCB ~ 4.0 Vde, IE ~ 0,100 kHz:5: f:5: 1.0 MHz)

3236

Input capacitance
(VEB ~ 0.5 Vde, IC ~ 0, 100 kHz:;;: f:5: 1.0 MHz)

3240

SUBGROUP 5 (See Figure 1)
Collector-Base Time Constant
(lC ~ 5.0 mAde, VCE ~ 4.0 Vde)

Cob
Cib

pF
pF
5

rb'Cel

Collector-Base Time Constant
(lC ~ 10 mAde, VCE ~ 10 Vde)

'b'Ce2

ps

-

60

-

50

ps
7

SUBGROUP 6
DC Current Gain
(lC ~ 1.0 mAde, VCE ~ 1.0 Vde, TA ~ -55°C)

-

hFE4
15

-

15

-

-

5.0

ton

-

5.0

ns

toft

-

5.0

ns

DC Current Gain
(lC ~ 10 mAde, VCE ~ 1.0 Vde, TA ~ -55°C)

hFE5

Collector-Base Cutoff Current
(VCB ~ 10 Vde, IE ~ 0, TA ~ 1500C)

ICB02

/lAde
7

SUBGROUP 7 (See Figure 2)
Turn-On Time
Turn-Off Time
(11 'Pulse

Mex

2
3036D

SUBGROUP 3
Base-Emitter On Voltage
(lC ~ 1.0 mAde, VCE

Min

Test: Pulse Width S 300 lIS, Duty CycleS 2.0%.

665

MM4261H (continued)
TABLE II: ELECTRICAL INSPECTION

ITA = 25°C unless otherwise noted)

Examination or Test
Collector-Base Cutoff Current
IVCB = 10 Vde, IE = 0)
DC Current Gain fli
(lC = 10 mAde, VCE

MIL-8TD-750
Mathod

Symbol

30360

ICBol

3076

= 1.0 Vde)

~ICBOl

DC Current Gain

~hFE2

MIL-8TD-750
Method

Symbol

30360

ICB01

Collector-Base Cutoff Current
IVCB = 10 Vde, IE = 0)

3076

= 1.0 Vde)

TABLE IV: ELECTRICAL INSPECTION

ITA

DC Current Gain \ 11
(lC = 10 mAde, VCE

30

150

-

±20%

Min

Max

-

5.0

30

150

Min

Max

-

5.0
10

30
20

150
lBO

-

nAde

-

Unit
nAde

-

hFE2

MIL-8TD-750
Method

Symbol

30360

ICBOl

Initial
End Point
3076

= 1.0 Vde)

5.0

= 25 0 C unless otherwise noted)

Examination or Tast
Collector-Base Cutoff Current
IVCB = 10 Vde, IE = 0)

-

Unit

ITA = 250 C unless otherwise noted)

Examination or Tast

DC Current Gain 111
(lC = 10 mAde, VCE

Max

hFE2

Collector-Base Cutoff Current
100% or 5.0 nAde whichever is greater

TABLE III: ELECTRICAL INSPECTION

Min

nAde

-

hFE2

Initial
End Point

Unit

-

Collector-Basa Cutoff Current
100% or 5.0 nAde whichever is greater

~ICBOl

DC Current Gain

~hFE2

-

MIL-8TD-750
Method

Symbol

Min

Max

30360

ICBOl

-

10

-

0.5

12

-

±20%

-

TABLE V: ELECTRICAL INSPECTION ITA = 250 C unless otherwise noted)

Examination or Tast
Collector-Base Cutoff Current
IVCB =10 Vde, IE = 0)

(I)

Collector-Emitter Saturation Voltage \11
(lC = 10 mAde, IB = 1.0 mAde)

3071

DC Current Gain II)
(lC = 10 mAde, VCE

3076

= 1.0 Vde)

Pulse Test: Pulse Width:S300 1'5, Duty Cyele:S2.0%.

666

VCElsat)2

Unit
I'Ade
Vde

-

hFE2

MM4261H

(continued)

FIGURE 1 - COLLECTOR·BASE TIME
CONSTANT TEST CIRCUIT
CAL

RS

~

FIGURE 2 - TURN·ON TIME AND TURN·OFF
TIME TEST CIRCUIT

_ _ _ _--,

0.1 "F
50n @7-..,..---CH-~-- 10 koV)

I-- I-"
3~~ I-- I~

3Xl~5

10

~.

r

~(nvt) En-r 11~ ~.~

~~7~~

60

FIGURE 15 - TYPICAL COLLECTOR-EMITTER SATURATION
VOLTAGE va.... FAST NEUTRON DOSAGE
100

0
5.OFVCB--1SV

0

I-TJ" 25°C
0
0
5

0
l;ii'

F F

POST·IRRAOIATION ICBO

5.0

~

2

/~

0

2.0

1

'

~~

TJ.250 C_

if

(E>10 kaY)

0

5

o.5

PRE·IRRADIATION ICBO

O. 1 3.1014

0.0 1
1013

1014
~.

1015

o

1016

FAST NEUTRON OOSAGE (E > 10 koV)

IclIB=10= t==

3x 1013

o. 2r-l014 -

0.02

3.1015

U)
100

"K

\"" 1010
200

300

400

VCE(sat). SATURATION VOLTAGE (mV)

neutronslcm2

Devices Stocked in Motorola Bonded Warehouaa
STANDARD DATA PROVISIONS
1. Motorola will keep on file 1 copy of all aseociated
data for a minimum of 3 yeers from date of purchaaa order.
2. One copy of Summary data shall accompany each
shipment of devices from following steps.
a. Burn-In Test par Table II
b. Group A Inspection per Table I
c. Group B Inspection per Tables III and IV
d. Group C Inspaction per Table V
Foam Tray Packaging per MIL-5-19491

Option 2
100% Rediographic Inapection per MILoSTD-202.
Method 209 (aae Option Data Provisions)

OPTION DATA PROVISIONS
1. Motorola will provide burn-in delta data on control
parameters for the lot as well as for Group B. Subgroup 6 and 7. and Group C. Subgroup 1.
2. Motorola will X-ray the aarialized devices prior to
shipping and provide films only if this is required
by purchase order.

669

500

600

MM5005 (SILICON)
MM5006
MM5007

PNP SILICON ANNULAR TRANSISTORS

PNPSILICON
AUDIO TRANSISTORS

· .. designed for high-voltage audio driver amplifier and general purpose
switching and oscillator applications.

•

•

High Coliector·Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 10 mAdc (MM5007)
Low Output Capacitance Cob = 20 pF (Max) @ VCB = 10 Vdc

•

Excellent Current Gain linearity - 1.0 to 250 mAdc

•

Complements to NPN MM3005, MM3006, MM3007

~11-=:=:

~
MAXIMUM RATINGS
Rating

Symbol

MM5005 MM5006 MM5007

Unit

VCEO

60

80

100

Vdc

Collector-Sase Voltage

VCS

80

100

120

Vdc

Emitter-Base Voltage

VES

_5.0_

Vdc

Collector Current - Continuous

IC

_2.0_

Adc

Total Power Dissipation@TA ~ 2SoC

Po

_1.5_
_8.57_

Watts
mWI"C

Po

_8.0_
_45.7_

mWI"C

Collector-Emitter Voltage

Derate above 2SoC
Total Power Dissipation @TC = 25°C
Derate above 250 C

Operating and Storage Junction
Temperature Range

TJ,Tstg

_

-65 to +200_

SEATING
PLANE

--

L
~K

- __
---11--0

.....---i
./
I
Q

~l

STYLE 1
PIN 1. EMITTER
2. BASE
3. COLLECTOR
N

Watts

°c

DIM
A
B

MILLIMETERS
MIN
MAX

9.40
8.51
6.60
0.533
3.18
0.483
5.33
0.864
1.02

INCHES
MIN
MAX

0.350 0.370
0.315 0.335
C
0.240 0.260
D
0.016 0.021
E
0.009 0.125
F
0.016 0.019
G
0.190 0.210
H
0.028 0.034
J
0.029 0.040
K
0.500
L
- 0.250 M
45u NOM
45 0 NOM
P
1.27
0.050
Q
900 NOM
900 NOM
R
2.54
0.100
All JEDEC dimensions and notes apply.
CASE 79-02
TO-39

670

8.89
8.00
6.10
0.406
0.229
0.406
4.83
0.711
0.737
12.70
6.35

MMSOOS, MMS006, MMS007 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol

Min

Max

60
80
100

-

80
100
120

-

5.0

-

MMSooS

-

200

MMSOO6

-

200

-

100

Characteristic

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lc = 10 mAdc,lB = 0)

Collector-Base Breakdown Voltage
(lC = 100 "Adc, IE = 0)

(VCB
(VCB

= 80 Vde, IE = 0)
= 100 Vde, IE = 0)

Vdc

BVCBO
MM500S
MMS006
MMS007

Emitter-Base Breakdown Voltage
(IE = 100 "Adc, IC = 0)
Collector Cutoff Current
(VCB = 60 Vdc, IE = 0)

Vdc

BVCEO
MM5OO5
MMSOO6
MMS007

BVEBO
ICBO

MMS007

Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 0)

lEBO

Vdc
nAdc

200
nAdc

ON CHARACTERISTICS
DC Current Gain
(lc = 1.0 mAde, VCE

hFE

= 2.S Vdc)

All Types

40

-

= lS0 mAde, VCE = 2.S Vde)
(lc = 200 mAde, VCE = 2.S Vde)

MM500S

SO

2S0

MMS006

50

2S0

(lC = 2S0 mAde, VCE = 2.S Vde)

MMS007

SO

250

(lC

Collector-Emitter Saturation Voltage
(lC = lS0 mAde, IS = lS mAde)

VCE(satl

Sase-Emitter On Voltage
(lc = 150 mAde, VCE = 2.S Vde)

VBE(on)

0.6S

fT

30

O.S

Vde

0.8

Vde

DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product (1)

(lc

= SO mAde, VCE = 10 Vde, f = 20 MHz)

Output Capacitance
(VCS = 10 Vdc, IE

Cob

= 0, f = 100 kHz)

11) Pulse Test. Pulse WIdth .. 300 "s, Duty Cycle .. 2.0%.

671

MHz
20

pF

MM5189 {SILICON}

NPN SILICON
HIGH CURRENT AMPLIFIER
AND CORE DRIVER
TRANSISTOR

NPN SILICON ANNULAR TRANSISTOR

• .• designed for use in high·current, high speed switching, and core
driver applications.
•

Collector·Emitter Breakdown Voltage BVCES = 55 Vdc (Min) @ IC =,1.0 mAdc

•

Low Collector·Emitter Saturation Voltage VCE(sat) = 0.29 Vdc (Typ) @ IC = 1.0 Adc

•

High Current·Gain-Bandwidth Product fT = 350 MHz (Typ) @ IC = 50 mAdc

•

Fast Switching Time @ I C = 1.0 Adc
ton = 16 ns (Typ)
toff = 28 ns (Typ)

•

Device Electrically Similar to 2N5189

jl1-~:
~ --I

L
~K

,

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

40

'(de

Collector-Emitter Voltage

VCES

55

Vdc

Collector-Base Voltage

VCB

60

Vdc

~mitter-Base

VEB

5.0

Vdc

IC

2.0

Adc

Voltage

Collector Current - Continuous

Total Power Dissipation
Derate above 25°C

@

T A = 2SOC

Po

1,0
5.71

Watt
mWf'C

Total Power Dissipation
Derate above 26"C

@

T C = 26°C

Po

4.0
22.8

Watts
mWf'C

-66 to +200

°c

Operating and Storage Junction

TJ,Tstg

Temperature Rangs

- .=.1
SEt(.!:~

MILLIMETERS

DIM
A
B
C

D
E

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance. Junction to Ambient (1)

R8JA

175

°CIW

Thermal Resistance, Junction to Case

ReJC

44

°CIW

Characteristic

-""-0
STYLE 1:
PIN 1. EMITTER
, 2, BASE
G 3, COLLECTOR
N

F
G
H
J
K
L

M
P

n

R

MIN
8.89
B,OO
6.10
0,406
0.229
O. 6
4.B3
0.711
0.737
12,70
6.35

INCHES

MAX MIN MAX
9,40
0,350 0.370
B,51
0.315 0.335
B,60
0.240 0.260
0.533 0.016 0,021
3,IB
0.009 0.125
0,483 0.016 O. ~.L
0.190 0,210
5.33
0.B64 0.028 0.034
0,029 0.040
1.02
0,500
0.250

-

4IjDNOM

4IjoNOM

-

1.27
9 NOM
2,54

-

-

0.050
N M

0,100

-

All JEDEC dimensions and notes apply.

(1) R6JA is measured with the device soldered into a typical printed circuit board.

672

CASE 79-02
TO·39

MM5189 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

I

I

Max

Symbol

Min

Collector· Emitter Breakdown Voltage (11
(lC· 10 mAde, IB = 0)

BVCEO

40

Coliector·Emitter Breakdown Voltage
(lC = 1.0 mAde, VBE = 0)

BVCES

55

Coliector·Base Breakdown Voltage
(lC = 10/lAdc, IE = 0)

BVCBO

60

Emitter·Base Breakdown Voltage
(IE = 10/lAde, IC = 0)

BVEBO

5.0

-

-

Vde

ICES

-

-

100

/lAde

Char_Istic

Typ

Unit

OFF CHARACTERISTICS

Collector Cutofl Current
(VCE = 55 Vde, VBE

Vdc

-

-

Vdc
Vdc

= 0)

Collector Cutoff Current
(VCB = 60 Vdc, IE = 0)

ICBO

100

/lAde

Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)

lEBO

10

/lAde

35

-

-

VCE(setl

0.29

1.0

Vdc

VBE(setl

0.94

1.6

Vdc

360

-

MHz

-

pF

ON CHARACTERISTICS (1)

DC Current Gain
(lC

hFE

Collector-Emitter Saturation Voltage
(lC = 1.0 Ade, IB = 100 mAde)
Base-Emitter Saturation Voltage
(lC

20

= 1.0 Ade, VCE = 1.0 Vdc)

= 1.0 Adc, IB = 100 mAde)

DYNAMIC CHARACTERISTICS
Current·Gain Bandwidth Product
(lC· 60 mAde, VCE = 10 Vdc, 1= 100 MHz)

IT

-

Output Capacltanca
(VCB = 10 Vdc, IE· 0, I = 1.0 MHz)

Cob

7.3

Input COpacltance
(VBE· 0.6 Vdc, IC· 0, I = 1.0 MHz)

Cib

72

pF

SWITCHING CHARACTERISTICS
Turn-On Time
Turn-OII Time
(1) Pulse Test: Pulse Width"; 300 /lS, Duty Cycle"; 2.0%.

FIGURE 1 - SWITCHING TIME TEST CIRCUITS
Vee

Input Pulse
'tr ... 2 nl
td = 100 ns

= 10.7 V

100

Vee· 10.7 V

-,Jf. ~: '
'T'"

'tf = 2 ns

td= 100ns

Vee = 6 V

673

MM5262

(SILICON)

NPN SILICON ANNULAR TRANSISTOR

NPN SILICON
HIGH CURRENT AMPLIFIER
AND CORE DRIVER
TRANSISTOR

· .. designed for use in high-current, high-speed current switching
and core driver applications.
• Collector-Emitter Breakdown Voltage BVCES = 60 Vdc (Min) @ IC = 1.0 mAdc
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.29 Vdc (Typ) @ IC = 1.0 Adc

• High Current-Gain-Bandwidth ProductfT = 350 MHz (Typ) @ I C = 50 mAdc
•

Fast Switching Times@ IC = 1.0 Adcton = 16 ns (Typ)
toff = 28 ns (Typ)

1~
R

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VeEO

50

Vdc

Collector-Emitter Voltage

VeES

60

Vdc

Collector-Base Voltage

VeB
VEB

75

Vdc

5.0

Vdc

Collector Current - Continuous

Ie

2.0

Adc

Total Power Dissipation @TA :: 2SoC

PD

1.0
5.71

Watt

mw/oe

PD

4.0
22.S

mwJOe

-65 to +200

°e

Emitter-Base Voltage

Derate above 2SoC

Total Power Dissipation@ TC::: 2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ,Tstg

Characteristic

Thermal Resistance. Junction to Case

p

--I

t

~K

--.1

SE:;.n.:~ -J~o

Watts

STYLE 1
PIN 1. EMITTER
2 BASE
3. COLLECTOR

DIM
A
8
C

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Ambient

r.-

8

_....

Svmbol

Max

Unit

RSJAll)

175

RSJC

44

°elW
uCIW

(1) R8JA is measured with the device soldered into a typical printed circuit board.

o

E

F
G
H

..
K
L

M
P

MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.
0.40& 0.533
0.229 3.18
0.406 0.48
4.83 5.33
0.711 0.864
.737 1.
12.70
6.35
45 NOM
1.27
M

2.54
All JEDECdimansionund nOlts.pply.

CASE 79-02
TO-39

674

MM5262 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)

I

I

Svmbol

Min

TYJI

Max

Unit

Coliector·Emitter Breakdown Voltage (11
(lc = 10 mAde, IS = 0)

BVCEO

50

-

-

Vde

Collector-Emitter Breakdown Voltage

BVCES

60

-

-

Vde

SVCBO

75

-

-

Vde

BVEBD

5.0

-

-

Vde

ICES

-

-

10

... Ade

ICBO

-

-

100

... Ade

lEBO

-

-

100

pAde

35
40
25

100
65
35

-

VCE( .. t)

-

0.29

0.8

Vde

VSElsati

-

0.94

1.4

Vde

IT

-

350

-

MHz

Cob

-

7.3

-

pF

Cib

-

72

-

pF

Charact..-istie
OFF CHARACTERISTICS

(lC = 1.0 mAde, VSE = 0)
Collector-Base Breakdown Voltage

(IC. = 10 ...Ade, IE = 0)
Emitter-Base Breakdown Voltage

(IE = 10 ... Ade,lc = 0)
Collector Cutoff Current

(VCE = 60 Vde, VBE = 01
Collector Cutoff Current

IVCB = 75 Vde, IE = 0)
Emitter Cutoff Current

IVR. = 5.0 Vde, Ie. = 0)
ON CHARACTERISTICS 11)
DC Current Gain

-

hFE

(lC = 100 mAde, VCE = 1.0 Vde)
(I C = 500 mAde, V CE = 1.0 Vde)
(lC = 1.0 Ade, VCE = 1.0 Vdc)
Collector-Emitter Saturation Voltage

-

(lC= 1.0Ade,IB= lOOmAdc)

Base-Emitter Saturation Voltage
(lC = 1.0 Ade, IS = 100 mAde
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(IC = 50 mAde, VCE = 10 Vdc,l = 100 MHzI
Output Capacitance

IVCB = 10 Vde, IE = 0, I = 1.0 MHz)
Input Capacitance

IVSE = 0.5 Vdc, IC = 0, I = 1.0 MHz)
SWITCHING CHARACTERISTICS

Turn-Off Time
111 Pulse Test: Pulse Width';;; 300 !", Duty Cycle';;; 2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUITS

Turn-On Time

Turn-Off Time

+30 V

+30

P.W.~200ns

Rise Time ~2 ns
Duty Cycle ~ 2%

n

+ll. lV

Vin-j--2.0 V

Scope

vln

-t: 0

100

lN916
t1

:=:

1.0j.l.S

t2 <5 ns

'3 >1,,,
Duty Cycle'" 2%

675

-4.0V

-:.-

v

MM6427

(SILICON)

NPN SILICON ANNULAR DARLINGTON
TRANSISTOR

NPN SILICON
DARLINGTON TRANSISTOR

· .. designed for use as high-gain amplifiers for audio, chroma, and
control circuits; drivers for displays, lamps, buzzers and solenoids.

• Collector-Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @IC= 1.0 mAdc
• DC Current Gain specified @ 10 mAdc and 100 mAdc
• Monolithic Construction

MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage

Unit

Value

VCEO

40

Vde

Collector-ease Voltage

Vce

50

Vdc

Emitter-Base Voltage

VEe

12

Vde

IC

300

mAde

Po

i'

375
2.14

mW

W/oC

M

Po

1.25
7.15

Watts
W/oC

-65 to +200

°c

Collector Current - Continuous
Total Power Dissipation @TA

=2SoC

Derate above 25°C
Total Power Dissipation @ T C = 25°C
Derate above 2SoC

Operating and Storage Junction

TJ.Tstg

~
N

'_;-.

~

G

J

STYLE "
PlN1.EMlnER

2. Bj\SE
3. COLLECTOR

THERMAL CHARACTERISTICS
Symbol

Thermal Resistance. Junction to Ambient

I
I

Thermal Resistance. Junction to Case

j

Characteristic

Max

RaJA

I
I

RaJC

j

140

467

I
I

°CIW

I

°C/W

Unit

DIM
A
B
C
D
E
F
G
H
J
L
M

P

MILLIMETERS
MIN
MAX

5.31
4.52
4.32
0.406

5.84
U5

5.3

O.
- 0.162
0.406 D.
2.54BSe
0.914 1.17
0.111 1.22
12.1
6.
4 sse
1. B
1.21
-

INCHES
MIN
MAX

0.209
O.17B
0.1
0.016

-

0.230
0.195
0.21
0 1
0.030

.1
0.0 6
.0
4
0

-

0

-

e

.5

All JEOEC notes and dimension. apply.
CASE Z2·03

(TO·'I)

676

MM6427 (continued)

I

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted.)
Charlcteristic
Symbol
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage( 1I
BVCEO
IIC ~ 1.0 mAde, IB = 0)
Collector-Base Braakdown Voltage
BVCBO
(lC = 100 ,.Ade, IE = 0)
Emitter-Ba.. Breakdown Voltage
BVEBO
liE = 10 ,.Ade, Ie = 0)
Collector Cutoff Current
ICBO
(VCB = 30 Vde, IE = 0)
Emitter Cutoff Current
lEBO
(VBE = 10 Vde, Ie = 0)
ON CHARACTERISTICS (1)
DC Current Gain
hFE
(lC· 10 mAde, VCE = 5.0 Vde)
(lC = 100 mAde, VCE = 5.0 Vdcl
Colleetor-Emitter Saturation Voltage
VCE(satl
(lC = 100 mAde, IB = 0.1 mAde)
B.....Emitter On Voltage
VBE(on)
(lC 100 mAde, VCE = 5.0 Vde)
SMALL-8IGNAL CHARACTERISTICS
High Frequency Currant Gain (1)
hie
IIC· 10 mAde, VCE - 5.0 Vde, I = 100 MHz)
Output Capecitance
Cob
(VCB • 10 Vde, IE = 0, f· 100 kHz)
Input Capacltanca
Cib
(VBE • 0.6 Vdc, IC • 0, f - 100 kHz)

I

=

(1) Pulse Test: Pulse Width <300 ,.,; Outv Cycle <2.0%.

677

Min

Max

Unit

40

-

Vde

50

-

Vde

12

-

Vde

-

100

nAde

-

100

nAde

5000

-

10,000
-

1.5

Vde

-

2.0

Vde

1.26

B.O

pF

15

pF

MM8000 (SILICON)
MM8001

NPN silicon high-frequency transistor designed for
high-frequency CATV amplifier applications. Suitable
for use as output driver or pre-driver stages in VHF and
UHF equipment.

CASE 79
(TO-39)

STYLE 1:
PIN 1. EMInER
2. BASE
3. COLLECTOR

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

V CEO

30

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

3.5

Vdc

IC

0.4

Adc

PD

3.5
20

Watts
mW/oC

T J , T stg

-65 to +200

°c

Collector-Emitter Voltage

Collector Current
Total Device Dissipation @T C
Derate above 25° C

= 25°C

Operating and Storage Junction
Temperature Range

678

MM8000, MM8001

(continued)

ELECTRICAL CHARACTERISTICS (TC

=25°C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

30

-

-

40

-

-

3.5

-

-

-

-

20

-

--

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(IC = 5.0 mAdc, IB = 0)

VCEO{sus)

Collector-Base Breakdown Voltage
(IC = O. 1 mAdc, ~ = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = O. 1 mAde, IC = 0)

BV EBO

Collector Cutoff Current
(V CE = 28 Vdc, IB =0)

I CEO

Vdc
Vdc
Vdc
/LAde

ON CHARACTERISTICS
DC Current Gain
(IC = 50 mAdc, VCE = 15 Vdc)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 25 mAdc, V CE = 15 Vdc, f = 200 MHz)

fT
MM8000
MM8001

550
700

(IC = 50 mAdc, VCE = 15 Vdc, f = 200 MHz)

MM8000
MM8001

700
900

(IC = 100 mAdc, VCE = 15 Vdc, f = 200 MHz)

MM8000
MM8001

700
900

--

-

-

3.5

-

2.7

-

Output Capacitance
(VCB = 30 Vdc, ~ = 0, f = 1. 0 MHz)

Cob

Figure 1 Test Circuit
Noise Figure
(IC = 10 mAdc, VCE = 15 Vdc, f = 200 MHz)

NF

-

-

pF

FUNCTIONAL TESTS
Common-Emitter Amplifier Power Gain Figure 1 Test Circuit
(I C = 10 mAdc, V CE = 15 Vdc, f = 200 MHz)

FIGURE 1 - 200 MHz TEST CIRCUIT

Cl.C2,C3:
C4:
C5:
CS, C7:
C8:

1.0-30pF
1.0 - 20 pF
10,000 pF
1000 pF
0.01 ~F

Ll: 4·1/2 'urns, No. 22
AWG wire, 3/1S" 1.0.
4: 3·1/2 ,urns, No. 22
AWGwire, 3/1S" 1.0.
L2, L3: 0.82 ~H RFC
Rl: 240 ohms, 2 wa'ts

Cs

679

MHz

dB

MM8006 (SILICON)
MM8007

NPN SILICON RF SMALL-8IGNAL TRANSISTORS

NPNSILICON
RF SMALL·SIGNAL
TRANSISTORS

· .. designed primarily for use in highllain. low·noise. small'signal
amplifiers in military and industrial equipment. Suitable for use in
video wideband and general high·frequency amplifier applications
of 50 to 1000 MHz.

•

t

Low Noise Figure NF = 2.2dB (Typl @f= 200 MHz - MM8006

• High Power Gain Gpe = 25 dB (Typl @f = 200 MHz - MM8006
• High Current·Gain-Bandwidth Product fT = 1000 MHz (Mini @ IC = 5.0 mAde

MAXIMUM RATINGS
Roting

Symbol

Value

Unit

VCEO

10

Vde

Collector·B... Voltage

VCB

15

Vde

Emitter·B... Voltage

VEB

3.0

Vde

Collector·Emltter Voltage

Collector Current - Continuous

IC

20

Total Device Disslpation@TA • 25°C

Po

200

mW

1.14

mWfDC

Denne above 25°C
Operating and Storega Junction
Tamperature Range

TJ.Tstg

-65

to

mAde

+200

°c

STYLE 10

PIN~: ::~~TER

~
1

.

,

M

~~

N

3. COLLECTOR
4. CASE

G

J

MILLIMETERS
MIN MAX
5.31 5.84
B
4.52 4.95
C
4.32 5.33
o 0.41 0.53
E
0.76
FOAl 0.48
G
2.54 BSC
H
0.91
1.17
J
0.71 1.22
K
12.70
L
6.35
M
45 BSC
N
1.27 BSe
P
1.27

DIM
A

INCHES
MIN
MX
0.209
0.178
0.170
0.016

ALL JEOEC dimensions and notas apply
CASE 20-03
TO-72

680

MMS006, MMS007 (continued)

ELECTRICAL CHARACTERISTICS IT A ~ 25°C unless otherwise noted)

I

I

Symbol

Min

Typ

Max

Unit

COliector·Emitter Breakdown Voltage
(lC = 1.0 mAde, IB = 0)

BVCEO

10

-

-

Vde

Collector· Base Breakdown Voltage
(lC = 0-01 mAde, IE = 0)

BVCBO

15

-

-

Vde

Emitter·Base Breakdown Voltage
(IE' 0-01 mAde, IC = 0)

BVEBO

3.0

-

-

Vde

ICBO

-

1.0

10

nAdc

fT

1000

-

3500

MHz

Cob

-

1.1

1.5

pF

rb'Ce

-

5.0

-

ps

-

1.5
1.9
2.2
2.7

-

-

3.S
5.0

30
25
20
-

-

-

-

Charactet'istic

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 6.0 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain

(lC = 1.0 mAde, VCE = 6.0 Vde)
DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product
(lC = 5.0 mAde, VCE = 6.0 Vde, f= 100 MHz)
COllector· Base capacitance
(VCE = 6.0 Vde, IE = 0, f = 0.1 MHz)

Collector-Base Time Constant
(lC = 10 mAde, VCE = 6.0 Vde, f=31.S MHz)
Noise Figure
(lC= 1.0 mAde, VCE =6.0 Vdc,f=60 MHz)
(lC= 1.0 mAde, VCE=6.0 Vdc,f=2OO MHz)
t(lC= 1.0 mAde, VCE =6.0 Vde,f=450 MHz)

NF

dB

MMSOO6
MM8007
MM8006
MMSOO7

-

MMSOO6
MM8007

-

FUNCTIONAL TEST
tCommon-Emitter Amplifier Power Gain

dB

Gpo

(lC = 1.0 mAde, VCE =6.0 Vde, f = 60 MHz)
(lC = 1.0 mAde, VCE =6.0 Vdc, f = 200 MHz)

Both TVpes
MMSOO6
MMS007

-

(I C = 1.0 mAde, V CE = 6.0 Vde, f = 450 MHz)

MM8006
MM8007

14
12

-

tTuned for minimum noise.

FIGURE 1 - POWER GAIN AND NOISE FIGURE TEST CIRCUIT

FIGURE 2 - COLLECTOR-BASE CAPACITANCE venus VOLTAGE

2. 5

I
~HIElOIGROUNDED)

2.0
IE = 0

1.5

Cl,C2,C4,C1-0.8-10pF
C8-0.5-35pF
C3,C5-500pF

Rl-0-10k

Joh."son
Joh_

Button Type
Trlmpol

R2-27k

114 VI8tt 5%
114 watt S%.
L,··1/4" BraaRod.SaldarPlalld.l·1/8"10f1Q.
l'I.ced518"'romthelllCketandmpllfillel
Wllhtheshleld,wlllchblSel:lStlwlsoctel
Th. ungrounded sid. Ismld .... d dlrKllylo

R3-1.0_

th'UfIgI'oundtdsideolC2
L2-0Z2,.,H

l'-..

1.0

..

o.5

L3-I/4"Br.srRod,SaldlrPlaml,I·m",fHIg.
"'lcad,n"fromthesotkltandlnPlRln"
""tIIsllllld,wh.cllbiJedsthesocltllt
Thtu""oundldsidelllQldereddlrectlyto

tMUngI'oun!ledsid,ofCl0ulpulllllllS

15116 Irom ground
L4-1f2TllfnlI6.5116 u lboveL3Ind5l8u
11IIIg.I_Lal.

0

U

2.0

4.0

6.0

8.0

10

12

14

16

VCB, COLLECTOR·8ASE VOLTAGE (VOLTS)

681

18

20

MM8006, MM8007

(continued)

FIGURE 4 - 511 AND 522

FIGURE 3 - CURRENT-GAIN-BANDWIDTH PRODUCT
1.6

~

:r
~ 1.5 _ VCEI. 6.0 Jde

.,,/

t;

5

1.4

f

1.3

I

o

:r
~

i

~

1. 1

~

1.0

z

/

1.2

;;' O. 9

to

~

0.8

.to

0.6 0

-

-

~

MMB007

./

/

/

11
II
1/

'" /if
a
O.

2.0

4.0

6.0

B.O

10

12

14

16

18

20

IC. COLLECTOR CURRENT (mAdel

FIGURE 5 - 512

FIGURE 6 - 521

682

MMS006, MMS007 (continued)

FIGURE 8 - POWER GAIN versus FREQUENCY

FIGURE 7 - NOISE FIGURE versus FREQUENCY
S. 0

0

-

5 t-

5.0
w

.,/

'"to

=> 4. 0

u:
z

'""" :--.,.

0

",V

~.

z

-

/"

~

2. 0
1. 5

o

50

60

70 80 90100

MM8007

"'~

./

3. 0

./

~
.§

./'

I-

200

300

400

500

100

70

40

j
w

./

,./
20
bie

10

'"
«

....V

r---

./'

200

300

400

l=

r1

;;;

./

«
~

boy

4. 0

l-

=>

_I-'

o

~e

500

./

6. 0

e

V

Vfo""

i.-

z

/

30

~ 2. 0

700

0
100

1500

1000

VCE: 6.0 Vde
IC: 1.0 mAde

-

1=
;;;

r--.,.

91.

30

'"
~

20

l-

e

-~

-tl'

",-

~

-!

0

100

300

400

500

700

6.6

I-'

0

IL
j

0

I'

V
./

'\

0

i\
\

r----

0

--

i"

gra

........ ....

r\

.............

bit .......
"'I'-

0
150

1000

Vdc
_ VCE :
IC: 1.0 mAde

40

10

- I-'

200

150

1--

fu':

FIGURE 12 - REVERSE TRANSFER
ADMITTANCE ve....s FREQUENCY
0

r--

...... V

I, FREQUENCY (MHz)

50

E

'"~

500

8. 0 - VCE: 6.6 Vde
IC: 1.0 mAde

FIGURE 11 - FORWARD TRANSFER
ADMITTANCE 'versus FREQUENCY

~

300

~

1Vde I
r--- _ VC~IC:: 6.0
1.0 mAde

I. FREQUENCY (MHz)

~

150
200
I, FREQUENCY (MHz)

0

150

«

"

FIGURE 10 - OUTPUT ADMITTANCE versus FREQUENCY

o

~

" ", "-~~~
"- """"-

FIGURE 9 -INPUT ADMITTANCE versus FREQUENCY

~

.§
z~

~A~~006

50

~

!

MAXIMUM

;;; ~ ~

NOISE

lI-

ii
e
«

T~NEh FOR

MM8007T~~I~~~R ......

V

w

'"«z

........

GAIN

I. FREQUENCY (MHz)

~

...... ~ ........

T~:~I~~~R,./

5

.........MM800S

TUNED FOR
MINIMUM

~I'..NOISE

MM80~

~

~

~ ~MB006

VC~ : 6.~ Vd~

IC: 1.0 mAde

a>

(5

r---

VCIE :blVde
IC : 1.0 mAde

r-

200

300

400

500

700

150

1000

200

300

400

f, FREQUENCY (MHz)

t, FREQUENCY (MHz)

683

500

700

1000

MM8008 (SILICON)
MM8010
MM8011
NPN SILICON RF POWER TRANSISTORS
NPNSILICON
RF POWER
TRANSISTORS

· .• designed primarily .for oscillator, frequency multiplier, and UHF
amplifier applications in military and industrial equipment.
•

High Power Output (Oscillator) Pout = 300 mW (Min) @ f = 2.0 GHz (MM8008)
200 mW (Min) @f= 2.0 GHz (MM8010)
100 mW (Min) @f= 2.0 GHz (MM8011)

•

High Current-Gain~Bandwjdth Product fT = 1000 MHz (Typ) @ IC = 50 mAdc

•

Ideal for Radio Sonde Applications Pout (Oscillator) = 550 mW (Typ) @f= 1.68 GHz (MM8008)
450 mW (Typ) @ f = 1.68 GHz (MM8010)
300mW (Typ)@f= 1.68GHz.(MM8011)

•

Wide Flange Case for Easy Mounting in Cavity Circuits

•

Multiple Emitter Construction for Excellent High-Frequency
Performance

~

..,."'"

~:1H-

f

*

fTFJ\I

.1
t
---1

SEATING
PLANE

MAXIMUM RATINGS
Rating
Collector-Eminer Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Total Davice Dissipation@ T C = 250 C
Derate above 25°C
.
Operating and Storage Junction

F

Symbol

Value

Unit

VCEO
VCB
VEB
IC

30
35
3.0
100

Vdc
Vdc

Po

3.5
20
-66 to +200

TJ,Tstg

-11-0
I.

REFERENCE
PLANE

G

N

Vdc

S~';!'tEMITTER
2_BASE
3. COLLECTOR

mAde

TemperaWre Range

K

watts
. mWfOC
°c

DIM
A
B
D
E
F
G
H
J
K
L
N
p

MILLIMETERS . INCHES
MIN MAX
MIN MAX
B.13 B.88
5.08 5.46
0.407 0.533
0.76
0.407 0.482
2.54 SSC
4.07 4.32
1.15 1.62
2.70
6.35
1.27 BSC

-

-

-

0.320
0-200
0-016

0.350
0.215
0.021

•

0.019
BSC
0.170
0-0111

O.
0.500
0.250
0.050 BSC

-

0.1m; U.l3li
2.87 3.42
All J!;DEC dunenSlon, and noles applv
.
CASE 23
TO-l07
H

684

MMSOOS, MMS010, MMS011 (continued)

ELECTRICAL CHARACTERISTICS (TC

= 250C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage
(lc = 5.0 mAdc,lB = 0)

BVCEO

30

-

-

Vdc

Collector-Base Breakdown Voltage
(lC = 100 "Adc, IE = 0)

BVCBO

35

-

-

Vdc

Emitter-Base Breakdown Voltage
(IE = 100 "Adc, IC = 0)

BVEBO

3.0

-

-

Vde

ICEO

-

-

100

"Ade

fT

-

1100

-

MHz

Cob

-

1.3

3.0

pF

0.3
0.2
0.1

-

-

Characteristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCE = 20 Vdc,IB = 0)
ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
(lc = 100 mAde,lB = 10 mAilc)
DYNAMIC CHARACTERISTICS
Currant-Gain-Bandwidth Product
(Ie = 50 mAde, VCE = 15 Vde, f = 100 MHz)
Output Capacitance
(VCB = 30 Vde, IE

= 0, f

= 1.0 MHz)

FUNCTIONAL TEST
Oscillator Power Output (Figure 1)
(lC= 100 mAde, VCE =20Vdc,f=2.0GHz) MMBOOB
MM8010
MM8011

Watt

Pout

-

-

FIGURE 1 - 2.0 GHz OSCILLATOR TEST CIRCUIT

B+20V

(Supply Floating)
Cl-1.0-10pFJohansonCap.#3901
C2 - 4.0-6.0 pF Johanson Cap. # 4640
C3, C4 - SOD pF Button Feedthru Cap.
L1. L2 - Microstrip line 1.03" Long and
0.013" Wid.
L3, L4 - 0.68 ,H RF Choke

L2

Hf---p-~F-'------1p---f--)--< ~~t~~z
50 Ohms

Cl

L5 - Microstrip 0.620" Long and
0.018" Wid.
Rt - 2.0 k ohms Pot (Miniature)

1/1S" Microstrip Board

B- 20iV

685

L5

MMSOOS, MMS010, MMS011 (continued)

FIGURE 3 - SIDE VIEW - 2.0 GHz OSCILLATOR TEST CIRCUIT

FIGURE 2 - TOP VIEW - 2.0 GHz OSCILLATOR TEST CIRCUIT

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

~ 1250

l!S
t;
co

~

~ 1000

~

~I

z:

:;;: 750

:!
Iil
~

/

/

---

----

:::>

V

L5V

vcE

~

~

'\

:::>

'"
.t:"

500
10

20

30

40

50
60
IC. COLLECTOR CURRENT (mAdc)

70

90

80

100

FIGURE 5 - OUTPUT CAPACITANCE versus VOLTAGE
4.0
u.

.s

"- ~

w

...:i'" 3.0
0:;

~

~!:;

~~

2.0

co

...

--

I----

&

1.0

o

5.0

10

15
VCB. COLLECTOR·BASE VOLTAGE (VOLTS)

686

20

25

30

MMSOOS, MMS010, MMS011 (continued)

OSCILLATOR OUTPUT POWER versus CURRENT
(SEE FIGURE 1 FOR TEST CIRCUIT)
FIGURE 6 - f = 2.0 GHz

MM8008
400

~

VCE·30~

300

~
~

~

~

~ 200

~

I!:
::>
o

------

--

;

re 100

o

----

~OV~ ~

r15 Vde

MM8008
800
700

5600

-

~

or

w

500

~
~300

-----

o

200

100
75

50

100

10 Vde

---- --~

,..,. ........-

..,./"

~

!;
150
o

;

,e
100

50

MM8010
800

VCE· 30 Vde

f50

~ 200

/"

-/

700

5600
or

~ 500

--

~

::>

400

J300
200
100

75

100

----

/ V--

o

10 Vde

~

:.---

--

50

IC. COLLECTOR CURRENT (mAde!

'"w

~150

I!:

g

100

----..--- --- -VCP30 Vde

~ 200

..s

------

20 Vde
15 Vde

~

J
50

50

75
IC. COLLECTOR CURRENT (mAde)

-

~

15 Vdc

~Vde

75
IC. COLLECTOR CURRENT (mAde!

100

MM8011

MM8011

250

~
20 Vde

/

....::>

15 Vde

~

VCE· 30 Vde

~

~

50

....::>

100

75
IC. COLLECTOR CURRENT (mAde!

MM8010

'"w

15 Vde

50

IC. COLLECTOR CURRENT (mAde!

300

-

20 Vdc

~~

~ 400

::>

-

2

---

~

~
....::>

~
10 Vde

FIGURE 7 - f = 1.68 GHz

500

'"
~

~

300

,....... ~ r-

~ 200

5

20 Vde

.....-- ~

~

;

,e
100

100

------VCE' 30 Vde

~400

..s

50

10 Vde

75
Ie. COLLECTOR COR RENT (mAde)

687

100

MM8009 (SILICON)

NPN SILICON RF POWER TRANSISTOR

NPN SILICON
RF POWER
TRANSISTOR

· .. designed for amplifier, frequency multiplier, or oscillator applications in military and industrial equipment. Suitable for use as output,
driver, or pre-driver stages in UHF equipment and as a fundamental
frequency oscillator at 1.68 GHz.
• High Output Power - Pout =0.9 Watt (Min)

@f

=1.0 GHz

• . High Current-Gain-Bandwidth Product fT = 1000 MHz (Min) @ IC = 50 mAdc
• Ideal for Radio Sonde ApplicationsPout (Oscillator) =300 mW (Typ) @ f =1.68 GHz

JJI1-=:=
-r;-- : e

L
~K
-~

SEt~~~ --11-0

MAXIMUM RATINGS

Pin 1. Emitter

2. Base

Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter·Ba.. Voltage
COllector Current - Continuous
Total Oevica Oissipation@Te ~ 25°C
Oerata above 25°C
Operating and Stoi-aga Junction
Temparature Range

Symbol

Value

Unit

3. Collector

VeEO
VeB

50

Vde
Vde

N

VEB
Ie

3.0
400
3.5
20
-65 to +200

Po
TJ,Tstg

55

Vde
mAde
Watt
mwfOe

°e

DIM
A
B

C
D
E
F
G
H
J
K
L

M
P
Q

R

MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
45 0 NOM
1.27
900 NOM
2.54

INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 .040
0.500

~
45 0 N

0.1 0

-

All JEOEC dimensions and notes apply.
CASE 79-02
TO·39

688

MM8009 (continued)

ELECTRICAL CHARACTERISTICS (TC

I

=25°C unless otherwise noted)

I

I

Svmbol

Min

TVp

Max

Unit

OFF CHARACTERISTICS
Collector-Base Breakdown Voltage
(lc = loo"Adc,IE = 0)

BVCBO

55

-

-

Vdc

Emitter-Base Breakdown Voltage
(IE = 100 "Adc, IC = 0)

BVEBO

3_0

-

-

Vdc

Collector Cutoff Current
(VCE = 15 Vdc, IB = 0)

ICEO

-

-

100

"Adc

Collector Cutoff Current
(VCE = 50 Vdc, VBE = 0)

ICES

-

-

10

"Adc

Current-Gain-Bandwidth Product
(lc = 50 mAdc, VCE = 15 Vdc, f = 100 MHz)

fT

1000

-

-

MHz

Output Capacitance
(VCB = 30 Vdc, IE

Cob

-

1.8

3.0

pF

Pout

0.9

-

-

Watt

Pout

-

0.3

-

Watt

"

35

-

-

%

ON CHARACTERISTICS
Collector-Emitter Saturation Voltage
(lc = 100 mAde,lB = 10 mAdc)
DYNAMIC CHARACTERISTICS

= 0, f = 1.0

MHz)

FUNCTIONAL TEST
Po_r Output (Figure 1)
(Pin = 316 mW, VCE = 28 Vdc, f

= 1.0 GHz)

Power Output (Oscillator) (Figura 2)
(VCE = 20 Vde, VEB = 1.5 Vdc, f = 1.68 GHz)
(Minimum Efficiencv = 15%)
Collector Efficiencv
(Pin = 316 mW, VCE

= 28 Vdc, f

= 1.0 GHz)

FIGURE 1 - 1.0 GHz POWER AMPLIFIER TEST CIRCUIT

FIGURE 2 - 1.68 GHz POWER OSCILLATOR TEST CIRCUIT

VCC" ...28v

BIAS

+Vcc

-Vee

"'2.0 V

.......----il'
v"
L4

I

"I,

I
L_ JL _______ _

"

I

Ll.L2-1/16"t,IIlCmltlpBalrtl L1n.areO.IS"
wide and I 31" king.
L3-I/1& .. MiuostrlpBoardO.lr ......nd
o.&S"IIIIIII·
L4-AFChoke,3.6,.Hy
CI-OApF-6DpFJo...... 4840
C2-1'OpF-l0pF ........ 435S
C3,C4-2!ipFF....'hru
R-2kOllmsi'ollMlniatllftl

I

/I

I

.JL_...J
BIAS
TEE

W~lI<"-~N--·OUTPUT

dl: 1"lnputlinI.Unlerc:ondutlorwidth"O.280"
d2' 1"DutpUlliN,c",tarcofl!luctorwidth:D.12S"
a.2N5108
R.3.90hms
ii, n. Microlab Double Stub Tuner, or Equivalent
BmTee. MicrGlabOBN,orEquivalent
TransistorMoLlnt.1/32"MlCronripbOird

689

MM8009 (continued)
FIGURE 3 - POWER OUTPUT versus POWER INPUT
1.2
_

e

!....

~

I

1.1
1.0 _ VCE -28 Vd.
t= 1.0 6Hz
0.9

/

~

I'

./

0.8

!....

./

0.1

g 0.6
ffi
~

FIGURE 4 - POWER OUTPUT venus FREQUENCY
2.0

f!:
:::>
0

...

0.2
0.1

o

Pin'" 310 mW
1.0

~

./'"

tE

0.5

0

o

0.1

0.2

0.4

0.3

0.6

0.5

0.7

FIGURE 5 - POWER OUTPUT venus VOLTAGE

o. 5

1. 1

I- t

/'

in 1.0 I-- Pin = 0.31 W
9
t= 1.0 6Hz

./

3

0

~r--

40

60

80

100

120

FIGURE 8 - COLLECTOR·BASE CAPACITANCE versus VOLTAGE
4.0

1.1

/

I;

0.9

\

--...

v

:x: 1.0

IpO

VCE = 15 Vd.

"'1'- I..........

/

0.8

I

~

VCE =15 V

IC, COLLECTOR CURRENT (mAd.)

FIGURE 7 - CURRENT-GAIN-BANDWIDTH PRODUCT

co

"
20

30

~ 1.3
~
~ 1.2

z
;;;: 0.7

/ . I-"

~

~ V ..... V

0
5.0
10
15
20
25
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

~

~~

!.,.? t/'"
~V

1

o. 2
o. 1

V

V V ..... V

2

/'

~ o.4
} o. 3

~

V

/'

ffi o. 5

1.0

IVCE=I~

/'

g o.6

z

~ 1.68 ~HZ

4

./

o.
o. 8
.... 7
~ o.

«

~

0.9

FIGURE 6 - OSCILLATOR POWER OUTPUT versus CURRENT

1.2

~

0.8

t, FREQUENCY (6Hz)

Pin, POWER INPUT (WATTS)

g
g;

t-::--....,

~

,/

J 0.3

---r---

VCP28Vd.

'"~

/

0.4

r--- ~

:::>

./
1,/

0.5

1.5

II

/

r-.....

0.6

B 0.5
.!:'

0·\0

20

30

40

50

60

70

80

90

100

5.0

IC, COLLECTOR CURRENT (mAd.)

10

15

20

VCB, COLLECTOR·BASE VOLTAGE (VOLTS)

MM8010 (SILICON)
MM8011
For Specifications, See MM8008 Data.
690

25

30

MMCM918 (SILICON)
MMT918

MICRO-T
NPN SILICON
AMPLIFIER
TRANSISTORS

NPN SILICON ANNULAR TRANSISTORS

· .. designed for VHF and UHF amplifier, mixer and oscillator
applications.

• Space Saving Micro-Miniature Packages

;t]~

MMCM918

•

High Current-Gain-Bandwidth Product - fT = 600 MHz (Min)

•

Low Capacitance - Cob = 1.7 pF (Max)

•

MMT918 - One-Piece, Injection-Molded
Reliability

STYLE 1
PIN 1 BASE

Package for High

.L1:~1
c
1

2. EMITTER

3. COLLECTOR

IT

MMCM918 - Ceramic Package for Hermeticity

SEATING
PLANE

DIM
A
B

C
D
F
K
NOTE
A Toieranci of .25 mm (.010) must be allowad
at pomt Indsprolrudetrompackag.forglass
run over.
CASE 176

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

MMCM918

MMT918

Unit

VCEO

15

Vdc

Collector-Base Voltage

Vce

30

Vdc

Emitter-Base Voltage

VEe

3.0

Vdc

Collector Current - Continuous

Ie

Total Power Dissipation

Po

@

T A = 2SoC

Derate above 2SoC

Operating and Storage Junction
Temperature Range

TJ,Tst9

50
200
1.14

~~)~
I'
A
~ 2

MMT918

mAde

225
2.05

-65 to +200 -55 to +135

mW
mw/Oe
°e

j
STYLE 1
PIN1
2. EMITTER
3 COLLECTOR

""

Characteristic

CJ~

E£I-~
TF

THERMAL CHARACTERISTICS

Thermal Resistance,Junction to Ambient

J

3

Svmbol
ROJA

MMCM918 JMMT918
875

I

490

Unit
°e/W

MILLIMETERS
MI.
MAX
2.34
0.38
0.84
C 1.24 1.55
D 025
0.41

DIM
A
B

'"

F 0.10
0.51

H

J
K
M

0.03
4.19

3

0.15
0.76
0.08
4A'

,

- INCHES
MI.
MAX
0.018 0.092

0.015

0.020
0.001

0.025
0.061
0.016
0.006
0.030
0.003

0.1

0.176

0.049
0.010
0.1lO4

3'

CASE 28-01

691

,

H

MMCM918, MMT918 (continued)

ELECTRICAL CHARACTERISTICS (TA ~ 250 C unlass otherwise noted)
Symbol

Min

Typ

Collector-Emitter Breakdown Voltage
IIc = 3.0 mAde, IB = 0)

BVCEO

15

-

Collector-Base Breakdown Voltage
IIc= 1.0j.lAde,IE = 0)

BVCBO

30

-

~

Emitter-Base Breakdown Voltage
liE =10j.lAde,Ic =0)

BVEBO

3.0

-

-

Vdc

ICBO

-

-

10

nAde

hFE

20

-

-

-

-

0.4.

Vde

-

1.0

Vde

MHz

Max

Unit

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 15 Vde, IE = 0)

Vdc
Vde

ON CHARACTERISTICS
DC Current Gain(l)
IIc = 3.0 mAde, VCE = 1.0 Vdc)
Collector-Emitter Saturation Volt_III
IIC = 10 mAdc,lB = 1.0 mAde)

VCE(sat)

Base-Emitter Saturation Volt_(I)
IIc = 10 mAde,IB = 1.0 mAde)

VBE(satl

-

for

600

-

-

-

-

1.7

DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product
(VCE = 10 Vdc,IC = 4.0 mAde, f = 100 MHz)
Output Capacitance
(VCB= 10 Vdc,IE =0, f~O,1 MHz and~I.0 MHz)

pF

Cob

-

(VCB = O,IE· 0, f~.1 MHz and~I.0 MHz)
I nput Capacitance
(VBE =0.5 Vde,IC=O, f2:0.1 MHzend:51.0 MHz)

Cib

Noise Figura ,(Figure 1)
IIC = 1.0 mAde, VCE = 6.0 Vde, RS = 400 ohms, f = 60 MHz)

NF

-

Common-Emitter Amplifier Power Gain (Figure 2)
(VCC· 12Vdc,lc=6.0mAde, f= 200 MHz)

Gpe

Power Output (Figure 3)
(VCB = 15 Vde,lc=8.0mAdc, f = 500 MHz)
Collector Efficiency (Figure 3)
(VCB- 15Vde, IC =8.0 mAde, f= 500 MHz)

-

3.0
2.0

pF

-

6.0

dB

-

23

-

dB

Pout

-

60

-

mW

'I

-

50

-

%

FUNCTIONAL TESTS

,

(1) Pulse Test. Pulse W,dth S 300 1'1, Duty Cycl.~ 2.0%.

FIGURE 1 - NOISE FIGURE TEST BLOCK DIAGRAM
NOISE FIGURE METER
HEWLETT·PACKARD 342A
(OR EQUIVALENT)
INPUT

POWER SUPPLY
CONSTANT Ie AND VeE

(60 MHz)

The test fixture shan consist of a 60 MHz tuned amplifier and suitable
'biasing circuits. It shbuld be constructed utilizing good very· high· frequency
design techniques.
"
The effective source susceptance should be tuned for each device being
tested to obtain minimum noise filiur•. Note that because the HP 343A has
a SO·ohm output resistance. a suitable impedance transformer must be used
to obtain an effective source conductance of 2.5 mmho at the transistor
with minimum losses.

FIGURE 3-5OOMHzOSCILLATOR TEST,CIRCUIT

FIGURE 2 - NEUTRALIZED 200 MHz POWER AMPLIFIER
GAIN TEST CIRCUIT

1000 pi'

l2

I

-Ve.

692

MMCM930, MMT930 (SILICON)·
MMCM2484, MMT2484

MICRO·T
NPN SILICON ANNULAR TRANSISTORS

NPN SILICON
AMPLIFIER
TRANSISTORS

· .. designed for low·level, low noise amplifier applications.
• MMT Plastic Micro-T
• MMCM Hermetic Ceramic Micro-T
• Space Saving Micro·Miniature Packages
•

High Breakdown Voltages VCEO(sus) 45 Vdc (Min) @lIC 10 mAdc
(MMT930, MMCM930)
= 60 Vdc (Min) @lIC = 10 mAdc
(MMT24B4, MMCM2484)

=

=

MMCM930
MMCM2484

STYLE 1:
PeN 1. BASE
2.EMlnn
3. COLLECTOR

•

High DC Current Gain hFE = 800 (Max) @lIC = 10 mAdc

•

MMT930, MMT24B4 - One-Piece, Injection-Molded Unibloc
Package for High Reliability
MMCM930, MMCM24B4 - Ceramic Package for Hermeticity

NOTE:

ATo....nee of .25 mm (.D101 mu. III .11....
.. PDint ...... JRllrudehumPlCk... totaJrun ....
CASE 178

MAXIMUM RATINGS
Rating

Symbol

COllector-Emitter Voltage

VCEO

I

Unit

I

Vdc

MMCM930 MMCM2484
MMT930
MMT2484
45
60

Collector-Base Voltage

VCB

60

Vdc

Emitter-B_ Volyge

VEB

6.0

Vdc

50

mAde

Collector Current - Continuous

IC

MMT930
MMCM930
MMCM2484 MMT24B4

Total Power Dissipation@TA

= 2SoC

Po

Operating and St\Jrage Junction
Temperature Range

200
1.14

Derate above 25°C

225
2.05

mW
mW/oC

TJ,Tstg

-65 to +200 -55 to +135

°c

Symbol

MMCM930
MMT930
MMCM24B4 MMT24B4

Unit

~

~
MMT930
MMT2484

STYLE I:
PIN 1. BASE

2. EMITTER
3

COLLECTOR

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance,Junction to Ambient

ROJA

875

490

°C/W

DIM

...

I....

ilLUME

MAX

,
•• ,1." ....
• ,. 0.4,, ",
U4

A

H

OS,

4.1

lUll.

u. a
U

IIA

0JI82
0.0'

0JI31I

'"

1
CASE .....'

693

MMCM930, MMT930/MMCM2484, MMT2484 (continued)'

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Symbol

Characteristic

Min

Max

45
60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(l)
(lc = 10 mAde, IB = 0)

Vde

VCEO(sus)
MMCM930,MMT930
MMCM24B4,MMT2484

Colleetor-Base Breakdown Voltage
(lc = 10 "Ade, IE = 0)

BVCBO

60

-

Vde

Emitter~Base

BVEBO

6.0

-

Vde

Collector Cutoff Current
(VeB = 45 Vde, IE = 0)

ICBO

-

0.Q1

"Ade

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

lEBO

-

0.Q1

"Ade

Breakdown Voltage

(IE = 10 "Ade, IC = 0)

ON CHARACTERISTICS
DC Current Gain
(lc = 100 "Ade, VCE = 5.0 Vde)

-

hFE

(I C = 500 "Ade, V CE = 5.0 Vdc)

(lc = 1.0 mAde, VCE = 5,0 Vde)

-

MMCM930,MMT930
MMCM2484,MMT2484

100
175

MMCM930,MMT930
MMCM2484,MMT2484

125
200

-

MMCM930,MMT930
MMCM2484,MMT2484

150
250

-

-

-

800

Collector~Emitter

VCE(satl

-

0.35

Vde

Base-Emitter 'On Voltage
(lc = 100 "Ade, VCE = 5.0 Vde)

VBE(on)

0.5

0.7

Vde

fT

60

-

MHz

Cob

-

6.0

pF

Cib

-

6.0

pF

-

3.0

(lC = 10 mAde, VCE = 5.0 Vde)(I)

All Types

Saturation Voltage
(lc = 1.0 mAde, IB = 0.1 mAde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 500 "Ade, V CE = 5.0 Vde, f = 30 MHz)
Output Capacitance

(VCB = 5.0 Vdc, IE = 0)
I nput Capacitance

(VBE = 0.5 Vde, IC = 0)

Noise F ig~re
(lC= 10"Ade, VCE = 5.0 Vde, RS" 10 k ohms,
f= 10 Hz to kHz, Power Bandwidth = 15.7 kHz)
(1 )Pulse Test: Pulse WidthS 300

,",5,

NF
MMCM24B4,MMT2484

Duty Cycle '52.0%.

694

dB

MMCM2222 (SILICON)

MICRO-T
NPN SILICON
SWITCHING
TRANSISTORS

NPN SILICON ANNULAR TRANSISTORS

. . . designed for high-speed switching circuits and DC to VHF
amplifier applications.

•

Space Saving Micro-Miniature Packages

•

High DC Current Gain Range IC Specified from 1.0 mA to 300 mA

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAde

•

Ceramic Package for Hermeticity

!

K

A

____

ll

II_,J
I a
MAXIMUM RATINGS
Rating
Collector~Emitter
Collector~Base

Voltage

Voltage

Emitter-Base Voltage

Total Power Dissipation @ T A :: 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Rangt.

Symbol

Value

Unit

VCEO

30

Vdc

Vca

60

Vdc

VES

5.0

Vdc

Po

200

1.14

mW
mW/oC

-65 to +200

°c

TJ,Tstg

Characteristic

n-~1
PLANE

STYlE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

DIM

A
B
C
0

THERMAL CHARACTERISTICS
Thermal Resistance.Junction to Ambient

F

~

-Z--.t:

Symbol

Max

Unit

ROJA

875

°CIW

F
K
NOTE:

MILLIMETERS
MIN
MAX
2.03
2.67
0.51
0.76
1.27
2.03
0.25
0.41
0.08
0.15
4.57
4.06

INCHES
MIN
MAX
0.080 0.105
0.020 0.030
0.050 0.080
0.010 0.016
0.003 0.006
0.160 0.180

A Tolerance of .25 mm (,010) must be allowed
at point leads protrude from package for glass
. run over.

CASE 176

695

MMCM2222.(continued)

ELECTRICAL CHARACTERISTICS

(TA = 25°C unless otherwise noted)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

BVCEO

30

-

-

Vde

Collector-Base Breakdown Voltage

BVCBO

60

-

-

Vde

BVEBO

5.0

-

-

Vde

ICBO

-

-

0.05

/lAde

50

-

-

Characteristic
OFF CHARACTERISTICS

(lC = 10 /lAde, IE = 0)

Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)

Collector Cutoff Current
(VC8 = 50 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 1.0 mAde, VCE = 10 Vde)

-

hFE

(lC = 10 mAde, VCE = 10 Vde)

75

(lc = 150 mAde, VCE = 10 Vde)(I)

100

(lc = 300 mAde, VCE = 10 Vde)ll)

30

Collector-Emitter Saturation Voltage( 1)
(lC = 150 mAde, 18 = 15 mAde)

300

Vde

VCE(sat)

-

0.9

0.4.
1.6

-

0.85

1.3

-

1.4

2.6

IT

200

-

-

MHz

Cab

-

3.5

8.0

pF

Cib

-

-

30

pF

(lc = 300 mAde, 18 = 30 mAde)
Base-Emitter Saturation Voltage(l)
(lc = 150 mAde, IB = 15 mAde)

0.2

Vde

VBE(satl

(lC = 300 mAde, IB = 30 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)

(lc=20mAde, VCE =20Vde, f = 100 MHz)

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 MHz)

Input Capacitance
(VBE = 0.5 Vde, IC = 0, f = 100 MHz)
SWITCHING CHARACTERISTICS
Turn·On Time (Figure 1)
Turn·Off Time (Figure 2)
(1)PulseTest: Pulse Width"'S300 IJ.$, Duty Cycle 'S. 2.0%.

FIGURE 2 -SATURATED TURN·OFF SWITCHING
TIME TEST CIRCUIT

FIGURE 1 -SATURATED TURN·ON SWITCHING
TIME TEST CIRCUIT

Vee = +30 V (adjust for
150 rnA)

IL
o~

VCC"+30 V (adjust for
150mA)

~r
oU~!j_-"'v

OUTPUT TO
SAMPLING
SCOPE

6V

PW=200:t.l0ns

1.0k

1.Ok
OUTPUT TO

SAMPLING
SCOPE

lN916
10JjS 100 k ohms
Cin,;;12pF
trs5.Dns

MMCM2369 (SILICON)
MMT2369

MICRO-T
NPN SILICON
SWITCHING
TRANSISTORS

NPN SILICON ANNULAR TRANSISTORS

... designed for high·speed, low current switching applications where
high·density packaging is required.

tt]~

MMCM2369

•

Space Saving Micro·Miniature Packages

•

Ideal for Thick Film Digital Circuit Applications

•

MMT2369 - One·Piece, Injection-Molded Unibloc
High Reliability

STYLE 1.
PI" 1. BASE
2. EMITTER
3. COLLECTOR

Package for

1.1:~1
c
1

IT

MMCM2369 - Ceramic Package for Hermeticity

SEATING
PLANE

•
•
C

•
F

NOTE:

ATolll'lnct of .25 mm (.0101 mlilt b••lIowed
atpointllldsprolfudafromplCklll,fotgl. .
runoq',
CASE 176

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

MMCM2369

MMT2369

Unit

VCEO

15

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

IC

200

mAde

Collector Current - Continuous
Total Power Dissipation
Derate above 25°C

@

TA

=::

25°C

Operating and Storage Junction

Po

200
1.14

225
2.05

TJ,T,tg

-65 to +200 -55 to +135

Symbol

MMCM2369 MMT2369

~

1

K

~

ft

MMT2369

mW
mW/oC

°c

Temperature Range

STYLE 1
PIN 1

2
3

BASE

EMITTER
COLLECTOR

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance,Junction to Ambient

RaJA

875

490

Unit
°CIW

MllLtilETERS
MAX
2.34
••38 0."
1.55
12'
0.41
F
0.10
0.16
0.51
J
O.
0
4.19

DIM MIN
1.98

••

••
"
•
"

697

02.

INCHES
MI.
MAX
O,01B 0.1182
0.015 •.025

... .....,.
U.,

0... '
.018
0....
0.020 0.030
1
•. 1
o.n5
3

CASE 28·01

,

MMCM2369, MMT2369 (continued)

ELEcTRicAL cHARAcTERISTICS (T A = 2So C unless otherwise noted)
Symbol

Min

Max

Unit

Collector·Emitter Breakdown Voltage(l)
(lC = 10 mAde,lB = 0)

BVCEO

15

-

Vde

Colleetor·Base Breakdown Voltage
(lC = 10 "Ade, IE = 0)

BVCBO

40

-

Vdc

Emitter-Base Breakdown Voltage

BVEBO

4.5

-

Vde

ICBO

-

100

nAdc

Characteristic
OFF CHARACTERISTICS

(IE = 10 "Ade, IC = 0)
Collector Cutoff Current
(VCS = 20 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain (1 )
(lC = 10 mAde, VCE = 1.0 Vde)

-

hFE

40
20

120

VCE(sat)

-

0.25

Vde

VBE(sat)

0.70

0.85

Vde

f-r

500

-

MHz

Cob

-

4.0

pF

12

ns

(lC = 100 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage

-

(lC = 10 mAde, IS = 1-0 mAde)
Base-Emitter Saturation Voltage

(lC = 10 mAde,lS = 1.0 mAde)
SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product

(lc = 10 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance

(VCS = 5.0 Vde, IE = 0, f = 140 kHz)
SWITCHING CHARACTERISTICS
Turn-On Time
(VCC = 3.0 Vde, VBE(off) = 1.5 Vde,IC = 10 mAde,lBI = 3.0 mAde)

tan

Turn·Off Time
(VCC=3.0Vde,lc= 10mAde,IBI = 3.0 mAde,IS2 = 1.5 mAde)

taff

-

lB

ns

Storage Ti me

tS(TS)

-

13

ns

(lC = IS1'= IB2 = 10 mAde)

(1)Pulse Test: Pulse Width'5:300 ,",5, Duty Cycle:5:2.0%.

FIGURE 1 - ton CIRCUIT

+lO':~C---l
f-

FIGURE 2 - toff CIRCUIT

3.0 V o--'\M.~~.,

'1

270

-1.5 V

~

<1.0ns

3.3 k

PULSE WITH hi) = 300 ns
DUTY CYCLE = 2.0%

PULSE WIDTH I',) = 300 ns
DUTY CYCLE = 2.0%

"Total shunt capacitance of test jig and connectors.

MMCM2484 (SILICON)
For Specifications, See MMCM930 Data,

MMCM2857

(SILICON) (CERAMIC PACKAGE)
For Specifications, See MMT2857 Data.
698

MMCM2907 (SILICON)

MICRO-T
PNPSILICON
SWITCHING AND AMPLIFIER
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS

... designed for general·purpose switching and amplifier applications,
where high·density packaging is required.

•

Space Saving Micro·Miniature Packages

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0_4 Vdc (Max) @ IC = 150 mAdc

•

High Voltage Rating - BVCEO = 40 Vdc (Min)

•

DC Current Gain Specified from 1.0 mAdc to 300 mAdc

•

MMT2907 - One-Piece, Injection-Molded Unibloc
High Reliability
MMCM2907 - Ceramic Package for Hermeticity

Package for

f

K

____ ll

,]
MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

Collector-Emitter Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

600

mAde

Total Power Dissipation @ T A = 25°C

Po

200
1.14

mW
mWt"C

TJ,Tstg

-65 to +200

°c

O....te above 25°C

Operating and Storage Junction
Temperature Range

ITHERMAL CHARACTERISTICS
Characteristic

Thermal ResistanCe,Junction to Ambient

Symbol

Max

Unit

R8JA

875

°CIW

Ll~l1
C

IT

SEATING
PLANE

STYLE 1:
PIN 1. BASE
2. EMITTER
3. CO LLECTOR

DIM
A
B
C
D
K
NOTE:

A Tolerance of ,25 mm 1.010) must be allowed
at point leads protrude from package for glass

run over.

CASE 176

699

MMCM2907 (continued)
ELECTRICAL CHARACTERISTICS (T A = 2So C unless otherwise noted)

I

I

Symbol

Min

Typ

Max

Collector-Emitter Breakdown Voltage(1)
(lc = 10 mAde. IB = 0)

BVCEO

40

-

Collector-Base Breakdown Voltage
(lC = 10 "Ade. IE = 0)

BVCBO

60

-

Emitter-Base Breakdown Voltage
(IE = 10 "Ade. IC ~ 0)

BVEBO

5.0

-

-

ICBO

-

-

50

50
75
100
30

-

Characteristic

Unit

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 50 Vde. IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lc = 1.0 mAde. VCE = 10 Vdc)
(lC = 10 mAde. VCE =10 Vde)
(lc = 150 mAde. VCE =10 Vde)!l)
(lC = 300 mAde. VCE = 10 Vde)!l)

Vde
Vde
nAde

-

hFE

Collector-Emitter Saturation Voltage(l)
(lC = 150 mAde. IB - 15 mAde)
(lC =300 mAde. IB = 30 mAde)

VCE(sa!)

Basa-Emitter Saturation Voltage
(lC = 150 mAde.IB = 15 mAde)!l)
(lc 300 mAde, IB 30 mAde)

VBE(sa!)

=

Vde

-

300

0.2

-

-

0.4
1_6

-

0.85

-

1.3
2.6

260

-

MHz

4.8

8_0

pF

-

30

pF

-

Vde

Vde

-

=

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 50 mAde, VCE = 20 Vde, f = 100 MHz)

-

tr

200

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 MHz)

Cob

Input Capacitance
(VBE ·2.0 Vde, IC = 0, f -.100 MHz)

Cib

-

SWITCHING CHARACTERISTICS
Turn-on Time (Figure 1)
Turn-off Time (Figura 2)
(1 )Pul .. Te.. : Pulse Width ~ 300 "', Duty Cycle ~ 2.0%.

FIGURE I-SATURATED TURN-oN SWITCHING
TIME TEST CIRCUIT

-30 V

FIGURE 2-SATURATED TURN-oFF SWITCHING
TIME TEST CIRCUIT

(Adjust for
150 mAde)

-30 V
200

200
loOk

0~6V
50 PW$2oo ••

H

-16.3 V

50

II

'1++'2

OUlPUTTO
SAMPLING SCOPE

50k
Zin>loo kohms

'3

10"'<11<100,,,
12<5.0 ..

-=
.. +3.0 V

C;.~12pF
1r~5.0

..

DUTY CYCLE$ 2.0'li

MMCM3798, MMCM3799

(SILICON) (CERAMIC PACKAGE)

For Specifications, See MMT3798 Data.

MMCM3903, MMCM3904 (SILICON) (CERAMIC PACKAGE)
For Specifications, See MMT3903 Data.
700

MMCM3905, MMCM3906 (SILICON) (CE.JlAMIC PACKAGE)
For Specifications, See MMT390S Data.

MMCM3960A (SILICON) (CERAMIC, PACKAGE)
For Specifications, See MMT3960A Data.

MMD70 (SILICON)
MICRO-MINIATURE
SILICON EPITAXIAL
SWITCHING DIODE

SILICON EPITAXIAL SWITCHING DIODE

· .. designed for general·purpose, high·sPeec:! switching applications.

,

•

High Breakdown Voltage .,:'
V(BR) = 50 Vdc (Min) @ I(BR) = 100!,Adc

•

Space·Saving Micro·Miniature Package

•

One·Piece,lnjection·Molded Unibloc Package for High Reliability

•

Characteristics Similar to MMD6050

jA"1

i~

MAXIMUM RATINGS
Rating

Symbol

Valu.

Unit

VR

50

Vde

IF

200

mA

IFMlsurgel

500

mA

Reverse Voltage

Peak Forward Recurrent Current
Peak Forward Surge Current

\Pulse Width

=10,,51

Po

225
2.05

mW
mWI"C

Operatf~g and Storage Junction

TJ,T5tg

-55 to +135

°c

Temperature Range

Symbol

Min

Mox

Unit

VISRI

50

-

Vde

IR

-

100

nAdc

VF

0.75

1.2

Vdc

Capacitance
IVR = 01

C

-

2.5

pF

Reverse Recovery Time

trr

-

15

ns

Reverse Current

IVR = 30 Vdel
Forward Voltage

~

KJtD

(IF = 100 mAdel

MI LIMETERS
DIM MIN MAX
1.98

C

1.22

D
F
H
J
K
L

0.25
0.10
0.51
0.03
4.1s
U9
0.39

N

lti

2.34
1.47
0.41
0.15
0.76
0.08
4,45
1.14
0.64

INCHES
MIN MAX
0.078
0.048
0.010
0.004
0.020'
0.0111
0.165
0.035
0.015

CASE 16&02

701

t

STYLE 1:
PIN 1. ANODE
2. CATHODE

A

(IF -IR - 10 mAde, VR = 15 Vde,
irr = 1.0 mAdel

~

8'

t

ELECTRICAL CHARACTERISTICS (TA =25 0 C unless otherwise noted)
Characteristic

L 'f
K

Power Dissipation @I T A :;:z 2SoC
Derate, above 2SoC

Breakdown Voltage
(lIBRI = 100 "Adel

-.i

0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025

MMD6050 (SILICON)
MMD6100
MMD6150
Silicon epitaxial micro-miriiature .switching diodes single, series and dual diodes designed for general-purpose,
MMD7000
high-speed switching applications.

MMD6050 - Case 166

MMD6100 - Case 28 (2)
MMD6150 - Case 28 (3)
MMD7000 - Case 28 (4)

MAXIMUM RATINGS

(each diode)

Rating

Symbol

Value

Unit

Reverse Voltage

VR

70

Vdc

Peak Forward Recurrent Current

IF

200

rnA

FM(surge)

500

rnA

Peak Forward Surge Current
(Pulse Width = 10 Jls)

I

Power Dissipation @T A = 25° C
Derate above 25° C

PD

225
2.05

mW
mW/oC

Operating and Storage Junction
Temperature Range

T J , Tstg

-55 to +135

°c

Optional Package with Raised
:Circular Tab Available; Specify

MMD6050

MMD61 00
(Style 2)

IC... 166·01.

MMD6150
(Style 3)

MMD7000
(Style 4)

~.
I (J

1/1

2

~

1

K

~
K

STYLE 1:
PIN 1. ANODE

I

~ 2.CATH~
t
====t--B-t=====r-4;;;;;;;;;;:tir---7-:H

t""
MILLIMETERS
DIM MIN
MAX
A
C

D
F
H

J
K
L

N

INCHES
MIN
MAX

1.98
2.34
0.078
1.22
1.47
0.048
0.010
0.25
0.41
0.10
0.15
0.004
0.51
0.76
0.020
0.001
0.03
0.08
4.19
4.45
0.165
0.89
1.14
0.035
0.38
0.64
0.015
CASE 166-02

l

STYLE 2:
PIN 1.
2.
3.
STYLE 3:
PIN 1.
2.
3.
STYLE 4:
PIN 1.
2.
3.

0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025

702

ANOOE 2
ANOOE 1
CATHDOE
CATHOOE 2
CATHODE 1
ANODE
CATHODE
ANODE
COMMON
CATHODE
ANODE

fr-~-1
I
tlH
MILLIMETERS
MIN
MAX
A
1.98
2.34
B 0.38
0.64
C 1.24
1.55
D 0.25
0.41
F 0.10
0.15
H 0.51
0.76
J
0.03
0.08
4.45
K 4.19
M
3"
7"
CASE 26·01
DIM

INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
3"
7"

MMD6050, MMD6100, MMD6150, MMD7000 (continued)
ELECTRICAL CHARACTERISTICS (T =25'C unless otherwISe noted)
A

Symbol

Characteristic
Breakdown Voltage
(I(BR) = 100 I'Ade)

IR

Forward Voltage
(~ = 1. 0 mAde)

VF

t

/

20
10

I

7.0
5.0

-

-

-

0.1

0.55

0.7

0.85

-

-

1.2

2.0

-

1.5

5.0

1.1
pF

rr

ns

FIGURE 2 - REVERSE LEAKAGE CURRENT
versus TEMPERATURE

I

TJ

=

125'C

V

/

V 25'C /

3.0
2.0

~

~El

/-55'C

I
!

/ /
I
/ /

I
0.2

~

-

-VR= 70/

0.4

VR=IO/

./"'" ./"'"
,,/

.01

.001

1.2

1.0

0.8

0.6

--

1.5

~

'is.

3.0

~

TJ = 25'C

~

-

i-

-

!

r--

2.0

0.5

1.0
0.3

O.S 0.7 1.0

2.0

125

100

3.0

TJ =2S'C 1,= loomA

~

5.0 7.0 10.0

r-

1.0

0.5

~

......

- r--

I, = 50mA

I,

1.5

0.2

-

.J

0.7

0.1

75

FIGURE 4 - REVERSE RECOVERY TIME

4.0

C

Operating and Storage Junction

TJ,T stg

-55 to +135

°c

Peak Forward Surge Current
(Pulse Width a 10 "s)

1

B
Symbol

K

.L........-"'"-=-F=~
K

I

Temperature Range

STYLE 4:
PIN 1. CATHODE
2. ANODE
3. COMMON
CATHODE
ANODE

Common
Anode
Cathode

Cathode
DIM
A
B

C
0
F

H
J
K
M

Anode
SERIES

MILLIMETERS
MAX
MIN
2.34
1.98
0.64
0.38
1.24
1.55
0.41
0.25
0.10
0.15
0.76
0.51
0.03
0.08
4.45
4.19
7°
3"

INCHES
MIN
MAX

=I
0.004
0.020
0.001
0.165
3°

CASE 28-01

704

~

~
~
0.016
0.006
0.030
0.003
0.175
7°

MMD7001 (continued)

ELECTRICAL CHARACTERISTICS (T A ~ 25°C)
Characteristic
Breakdown Voltage

Symbol

Min

Max

Unit

V(BR)

45

-

-

Vde

IR

-

-

01

/lAde

Typ

(I(BR)' 10/lAde)
Reverse Current

(VR

= 30 Vde)

Forward Voltage

(IF
(IF
(IF

VF

C

-

2.5

3.5

pF

Os

-

-

50

pC

trr

-

3.2

-

ns

0.75

-

Capacitance
(VR = 0)
Total Control Charge

(IF

= 10 mAde)

Reverse Recovery Time

(IF

= IR = 10mAde, VR = 5.0Vde, i rr = 1.0 mAde)

FIGURE 1 - RECOVERY TIME EaUIVALENT TEST CIRCUIT

500

50
100 ns < q
1,0 ns (max)

Vde

-

= 100 mAde)
= 300 mAde)
= 500 mAde)

< 100 IlS

DUTY CYCLE

=

2,0%

705

0.9
1.05
1.15

MMF 1thru MMF6 (SILICON)

MATCHED SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS
. consists of two individual 2N3823 device types which have been
carefully matched for critical applications, such as differential amplifier service. Each matched pair is packaged in a metal clip for pair
identity and each device is marked with the basic 2N3823 type number
and a date code for further identification in the event of removal
from the clip.
•

Guaranteed Temperature Tracking - (DOC to 1000C)
DoIVGSl - VGS21/ DoT = 10 p.v/oe - MMF1, MMF2
25 jJ.V /oe - MMF3, MMF4
50jJ.V/oe - MMF5, MMF6

•

Excellent Gate-Source Voltage Match 1VGSl - VGS21 = 5.0 mVdc (Max)

•

Tight I DSS Match DoIDSS = 5.0% (Max) - MMF1, MMF2

•

Low Noise Figure - NF = 2.5 d8 (Max) @ 100 MHz (Each Device)

MATCHED
JUNCTION FIELD-EFFECT
TRANSISTORS
TYPE A

MAXIMUM RATINGS (TA -- 25°C)
Svmbol

Value

Unit

Drain-Source Voltage

VOS

30

Vde

Drain-Gate Voltage

VOG

30

Vde

Gate-Source Voltage

VGS

30

Vde

Drain Current

10

20

mAde

Gate Current

IG

10

mAde

Total Device Dissipation @ T A ::: 25°C

Po

300
2.0

mW
mWloC

TJ,T stg

-65 to +175

°c

Rating

Derate above 25°C
Operating and Storage Junction

0390

0183

ifi85

'Om-30 MAX

TAB
SCRIBE
MARK -

Temperature Range

TABLE I - DIFFERENTIAL GATE-SOURCE VOLTAGE
CHANGE WITH TEMPERATURE

ORAIN
GATE
CASE

Conditions:
VOG: 15 Vde
MMF1, MMF3, MMF5 - 10

=300 !lAde

0005x45°
IRAOIUS OPTIONAl}

MMF2, MMF4, MMF6 - 10

= 750 !lAde

BURR fREE

INSIDE MUST BE

Device Type

OOc to+25oC

+25 0 C to +1000 C

MMF1,MMF2

0.250 mVde

0.750 mVde

MMF3, MMF4

0.625 mVde

1.875 mVdc

MMF5, MMF6

1.250 mVde

3.750 mVde

~-,.--rt.~~T
0245

ii"i55

' - - _ ' - - . . . . L - _....

TWO TO·72 CASE 20 III
STYlE IN CLIP
SCRIBE MARK INDICATES
LOCATION Of DEVICE TAB

706

-L

MMF1 thru MMF6 (continued)

ElECTR ICAl CHARACTERISTICS

I

(each 2N3823) (TA = 250 C unle.. otherwise noted)

I

I

Min

Typ

Max

Unit

V(BR)GSS

30

-

-

Vdc

Gate·Source Voltage
(10 = 0.4 mAdc, VOS = 15 Vdc)

VGS

1.0

-

7.5

Vdc

Gate·Source Cutoll Voltage
(10 = 0.5 nAdc, VOS = 15 Vdc)

VGS(off)

0.2

-

8.0

Vdc

-

-

0.5
500

-

S500

Characteristic

Symbol

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage

(lG = 1.0 "Adc, VOS = 0)

Gate Reverse Current

nAdc

IGSS

(VGS = 20 Vdc, VOS = 0)
(VGS = 20 Vdc, VOS = 0, TA

= 150o C)

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current< 1)

(VOS = 15 Vdc, VGS = 0)
DYNAMIC CHARACTERISTICS

#lmhos

Forward Transfer Admittance

(VOS = 15 Vdc, VGS = 0, I = 1.0 kHz)(l)
(VOS = 15 Vdc, VGS = 0, I = 200 MHz)
I nput Conductance

Ivlsl

3500

R.(VI~)

3200

-

-

Re(Vis)

-

-

800

IVosl
Re(vo.)

-

35

-

200

Ciss

-

-

S.O

pF

Crss

-

-

2.0

pF

NF

-

-

2.5

dB

",mhos

(VOS = 15 Vdc, VGS = 0, I = 200 MHz)

Output Conductance
(VOS = 15 Vdc, VGS = 0, 1= 1.0 kHz)!l)

""mhos

(VOS = 15 Vdc, VGS = 0, I = 200 MHz)
I nput Capacitance

(VOS = 15 Vdc, VGS = 0, I = 1.0 MHz)

Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, I

=

1.0 MHz)

Common-Source Spot Noise Figure

(VOS = 15 Vdc, VGS = 0, RS = 1.0 k ohm, I = 100 MHz)
MATCHING CHARACTERISTICS (MMFl thru MMFS, See Note 2)
Zero-Gate-Voltage Drain Current Ratio
(lOSSl is the lower 01 the two values)

MMF1,MMF2
MMF3,MMF4,MMF5,MMFS

(VOS = 15 Vdc, VGS = 0)

-

10SSl

Forward Transfer Admittance Ratio

IOSS2

0.95
0.90

-

-

1.0
1.0

-

IVlsll

(IVlsll is the lower 01 the two values)

IVIs12

(VOG = 15 Vdc, 10 = 300 "Adc)

MMFl
MMF3,MMF5

0.98
0.95

-

1.0
1.0

(VOG = 15 Vdc, 10

MMF2
MMF4,MMFS

0.98
0.95

-

-

1.0
1.0

-

-

1.0

=

750 "Adc)

Oilferential Output Conductance
(VOG = 15Vdc,I0 = 750,..Adc, 1= 1.0 kHz)

MMF1,MMF3,MMF5

(VOG = 15 Vdc, 10 =300,..Adc, 1= 1.0 kHz)

MMF2,MMF4,MMFS

Oilferential Gate-Source Voltage
MMF1,MMF3,MMF5

(VOG = 15 Vdc, 10 = 750 "Adc)

MMF2,MMF4,MMFS

Differential Gate Reverse Current

(VOG = 15Vdc, 10 = 750 "Adc, TA = 1000 C)
Differential Gate-50urce Voltage Chango with Temperature

= 100 ml,

-

-

-

5.0

-

1.0

10

1.0

10

1.0
mVdc
5.0
nAdc

IIG1-IG21

(VOG = 15Vdc,10~3oo"Adc, TA =1000C)

(1)Pulse Tast: Pulse Width

IVGS1-VGS21

= 15 Vdc, 10 =300 "Adc)

(VOG

"mho

Ilvosil -lvosl21

See TABLE I

Duty Cycle ~10%.

(2)Matchlng characteristics apply only to pairs of device. originally packaged 8S a matched pair.

707

MMY 70 (SILICON)

NPN SILICON ANNULAR TRANSISTOR
MICRO-MINIATURE

... designed for low· level. low-noise amplifier applications.
•

Space Saving Micro-Miniature Package

•

One·Piece.lnjection Molded Unibloc Package for High Reliability

NPN SILICON
AMPLIFIER
TRANSISTOR

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO
VCB
VEB
IC

20
25
5.0
50
225
2.05
-55 to +135

Vde
Vde
Vde

Collector-Emitter Voltage

Collector-Base Voltage
Emitter-Base Voltage
Collector Current

Po

Total Power Dissipation@TA - 25u C

Derate above 2SoC
Operating and Storage Junction

TJ.Tstg

mAde

mW
mW/oC
°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient

.-),Li

ELECTRICAL CHARACTERISTICS (T A

B

joi

i (¥*=1====::J=$tt

=25 0 C unless otherwise noted)

Characteristic

K

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

IIc = 10 mAde. IB

= 0)

BVCEO

20

-

-

Vde

BVCBO

25

-

-

Vde

BVEBO

5.0

ICBO

-

-

50

nAdc

I

(1)

Collector-Base Breakdown Voltage

IIc = 10 ~Ade. IE = 0)
Emitter-Base Breakdown Voltage

Vde

liE = 10 ~Ade. IC = 0)
Collector Cutoff Current

(VCB = 15 Vde. IE = 0)
ON CHARACTERISTICS

f±EJ~Mtl
c

.-l

,

I

STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

DC Current Gain

IIC= 2.0 mAde. VCE = 5.0 Vde)
OYNAMIC CHARACTERISTICS
Output Capacitance

8.0

pF

8.0

pF

(VCB = 5.0Vde.IE =0. f= 1.0MHz)
Input Capacitance

Gib

(VBE = 0.5 Vde.lc =0. f= 1.0MHz)
Noise Figure
IIc = IO~Ade. VCE = 5.0 Vde.
RS = 10kohms. f = 10 Hzto 15.7 kHz

NF

1.0

dB

(1) Pulse Test: Pulse Width .. 300 ~s. Duty Cycle .. 2.0%.

INCHES

MILLIMETERS
MIN

MAX

MIN

MAX

A 1.98
B 0.38
C 1.24
D 0.25
F 0.10
H 0.51
J
0.03
K 4.19
M
30

2.34
0.64
1.55
0.41
0.15
0.76
0.08
4.45
70

0.078
0.015
0.049
0.010
0.004
0.020
0.001

0.092
0.025
0.061
0.016
0.006
0.030
0.003

DIM

CASE 28·01

708

H

MMT.71 (SILICON)

PNP SILICON ANNULAR TRANSISTOR
MICRO-MINIATURE
... designed for low-level, low-noise amplifier applications.

PNP SILICON
AMPLIFIER
TRANSISTOR

•

Low Noise Figure - NF ~ 1.5 dB (Typ) @ f ~ 1.0 kHz

•

Low Output Capacitance Cob ~ 2.0 pF (Typ) @ VCB

•

One-Piece, Injection-Molded Unibloc Package for High Reliability

•

Characteristics Similar to 2N5086

~

5.0 Vdc

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage

Symbol

Value

Unit

Vceo

20
25
4.0
50
100
225
2.05
-55 to +135

Vde
Vde
Vde

VCB

Emitter-Base Voltage
Collector Current - Continuous
Peak
Total Power Dissipation@TA

= 2SoC

Derate above 25°C
Operating and Storage Junction

T J,Tstg

mAde

mW
mW/oC
°c

Temperature Range

1

-.Jl{B n
U3
K

THERMAL CHARACTERISTICS
Characteristic

1 Symbol J

Max

R8JA

490

1

Thermal Resistance, Junction to Ambient

I

I

Unit

°C/W

A

2

t

ELECTRICAL CHARACTERISTICS (TA ~ 25 0 C unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

I

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

(lC

~

10 mAde, IB

~

(lC ~ 10 ~Ade, Ie ~ 0)
Emitter-Base Breakdown Voltage

(Ie

~

10

~Ade,

Ic

~

BVceo

20

-

-

BVCBO

25

-

-

Vde

BVEBO

4.0

-

-

Vde

ICBO

-

-

50

nAdc

Vde

0)

Collector-Base Breakdown Voltage

0)

Collector Cutoff Current
IVCB ~ 15 Vde, Ie ~ 0)

fu
tD

150

-

-

-

Output Capacitance
IVCB ~ 5.0 Vde, Ie" 0, f" 1.0 MHz)

Cob

-

2.0

6.0

pF

DIM

Input Capacitance
IVBe "0.5 Vde, IC" 0, f" 1.0 MHz)
Noise Figure

Cib

-

-

10

pF

A
B
C

SMALL-SIGNAL CHARACTERISTICS

NF

1.5

dB

(lC ~ 100~Ade, VCe" 10 Vde,
IRS" 3.0 kohm5, f" 1.0 kHz)
II) Pulse Test: Pulse Width <:; 300,,5, Duty Cycle <:; 2.0%.

T;1H

STYLE 1
PIN 1 BASE
2. EMITTER
3 COLLECTOR

hFE

(lC" 2.0 mAde, VCe" 5.0 Vde)

1-.1

1tM

ON. CHARACTERISTICS
DC Current Gain

D
F
H
J
K
M

MILLIMETERS
MIN
MAX
2.34
1.98
0.38
0.64
1.24
1.55
0.41
0.25
0.15
0.10
0.76
0.51
0.03
0.08
4.45
4.19
70
30

INCHES
MIN
MAX
0.078
0.015
0.049
0.010
0.004
0.020
0.001
0.165
30

CASE 28-01

709

1

K

0.092
0.025
0.061
0.Q16
0.006
0.030
0.003
0.175
70

MMT72 (SILICON)

MICRO-MINIATURE
NPN SILICON
SWITCHING
TRANSISTOR

NPN SILICON ANNULAR TRANSISTOR

· .. designed for high·speed, low·current switching applications where
high-density packaging is required.

•

Ideal for Thick Film Digital Circuit Applications

• One-Piece, Injection-Molded Unibloc Package for High Reliability

K
JDI
IT>~F===$tt
B

I(

MAXIMUM RATINGS
Rating
Collector~Emitter

Voltage

Collector-Emitter Voltage

Emitter-Base Voltage
Collector Current-Continuous
Total Power Dissipation @ T A :::: 25°C

I(

Symbol

Value

Unit

VCEO
VCES
VEB
IC

10
12
4.0
200
225
2.05
-55 to +135

Vdc
Vdc
Vdc

Po

Derate above 25°C
Operating and Storage Junction

TJ, Tstg

j

mAde

mW
mW/oC

°c

Temperature Range

STYLE I:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

THERMAL CHARACTERISTICS
Characteristics
Thermal Resistance, Junction to Ambient

I

Symbol

I

Max

I

Unit

1

RSJA

1

490

1

°C/W

DIM
A
B
C
D
F
H
J
K

MILLIMETERS
MIN MAX
1.98
2.34
0.38
0.64
1.24
1.55
0.25
0.41
0.10
0.15
0.51
0.76
0.03
0.08
4.19
4.45

INCHES
MIN
MAX
0.078 0.092 '
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
-0.020 0.030
0.001 0.003

CASE 28-01

710

MMT72 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(IC = 10 mAde_IB = 0)

BVCEO

10

-

Vde

Collector-Emitter Breakdown Voltage
(lC = 10 "Ade, VBE = 0)

BVCES

1<

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

Vde

ICBO

-

100

nAdc

Characteristic
OFF CHARACTERISTICS

Vde

(IE = 10 "Ade, IC = Q)
Collector Cutoff Current
(VCB = 10 Vde, IE = 0)
ON CHARACTERISTICS

DC Current Gain

30

hFE

-

-

0.3

Vde

-

MHz

6-:lr

pF

(lC = 10 mAde, VCE = 2.0 Vde)

Collector-Emitter Saturation Voltage

VCE(s.t)

(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product

400

fT

(lC= 10mAde, VCE= 10Vde, f= looMHz)

Output Capacitance

\:"ob

(VCB = 5_0 Vde, IE=O, f= 1.0 MHz)
SWITCHING CHARACTERISTICS
Turn-On Time
(VCC= 3.0Vde, VBE(off) = 1.5 Vde.

ton

-

20

ns

toff

-

30

ns.

IC= 10 mAde, IBI =3.0mAde)
Turn-Off Time
(VCC = 3.0 Vde, IC = 10 mAde,
IBI = 3.0 mAde, 182 = 1.5 mAde)
(1) Pulse Test: Pulse Width

~

300 J,l.S, Duty Cycle

~

2.0%.

FIGURE 2 - toff CIRCUIT

FIGURE 1 - ton CI RCUIT

+1O.6V

n.-l
11

14-

270

I

0---1.5 V

~

..

....

_.L_
100 k OHMS
tr < 5.0 ns

~

130

-=

VBB
Vdc

ton

Vin
Vdc
-5.8

IC
mA

181
mA

182
mA

Gnd

VCC
Vdc
-1.5

toff

+10

10

1.0

1.0

-8.0

-1.5

10

1.0

1.0

713

MMT74 (SILICON)

MICRO-MINIATURE
NPN SILICON
RF AMPLIFIER
TRANSISTOR

NPN SILICON ANNULAR TRANSISTOR
· .. designed for high-gain, low-noise amplifier, oscillator and mixer
applications.
•

High Current·Gain-Bandwidth Product fT = 1000 MHz (Typ) @ IC = 4.0 mAde

•

Low Collector - Base Capacitance
Ccb z 1.0 pF (Typ) @ VCB = 10 Vdc

• One·Piece, Injection Molded Unibloc Package for High Reliability

,1

I~'

I

n
K

!

3 2

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Total Power Dissipation@TA""250C
Derate above 2SoC
Operating and Storage Junction

Symbol

Value

Unit

VCEO
VCB
VEB
IC
PD

12
20
3.0

Vdc
Vdc
Vdc

T J,Tstg

40

mAde

225
2.05
-55 to +135

mW
mW/oC

Max

Unit

490

°C/W

°c

Temperature Range

K

I

fu
to

.-J

1CM

THERMAL CHARACTERISTICS
Characteristics
Thermal ReSIstance, Junction to Ambient

Symbol
ROJA

I

STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

DIM

A
B
C

0
F
H

J
K
M

MILLIMETERS
MAX
MIN

1.98
0.38
1.24
0.25
0.10
0.51
0.03
4.19
3"

2.34
0.64
1.55
0.41
0.15
0.76
0.08
4.45
7"

t1

INCHES
MIN
MAX

0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.Q16
0.004 0.006
0.020 0.030
0.001 0.003
0.165 .0.175
7"
3"

CASE 28·01

714

1

H

MMT74 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol

Min

Collector-Emitter Breekdown Voltage (1)
(lC = 3.0 mAde, IB = 0)

BVCEO

12

Vde

Collector-Base Breekdown Voltage
(lC = 100 "Ade, IE = 0)

BVCBO

20

Vde

Emitter-B... Breakdown Vdltaga
(IE = 10 "Ade, IC = 0)

BVEBO

3.0

Characteristic

Typ

Max

Unit

OFF CHARACTERISTICS

ICollector Cutoff Current

-

Vde
100

ICBO

nAde

(VCB = 10 Vde, IE = 0)
ON CHARACTERISTICS

I

25

DC Current Gain
(lc=3.0mAde, VCE

= 1.0 Vde)

DYNAMIC CHARACTERISTICS
Current~Gain

700

fr

Bandwidth Product
(lC=4.0 mAde, VCE = 10 Vde,
f = 100 MHz)

Collector-Base Capacitance

1000

Ceb

1.0

NF

4.0

MHz

3.0

pF

(VCB = 10 Vde, 'E =0, f= 1.0 MHz)
Noise Figure
(lC· 1.5 mAde, VCE = 10 Vde,
RS = 50 ohms, f = 450 MHz)

dB

FUNCTIONAL TEST
Common Emitter Amplifier Power Gain
(lC = 1.5 mAde, VCE = 10 Vde, f = 450 MHz)
(1) Pulse Test: Pulsa Width .. 300 "S, Duty Cycle .. 2.0%.

FIGURE 1 - TEST CIRCUIT FOR NOISE FIGURE AND POWER GAIN

Capacitance values in pF
L1. L2 - Silver plated brass rod, 1-1/2"'ong and 1/4" dis. Install at least
1/2" from nearest vertical chassis surface.
L3 - 1/2" turn 116 AWG wire. located 1/4" from and parallel to L2.
IOOkohms
Cm <12pF
tr<50ns

MMT2222 (continued)
FIGURE 3 - DC CURRENT GAIN
400

200

z

~

§

~-

~

r\

I

\

-~

100

-

.55°~~

40

...

20
0.3 0.5

...

1.0

g
o
~

g

r,

--

VBE(sat)iii Ic/lB -10

ITllll
0.6
VBE(on) III VCE = 10V

~

5.0

10

20 30

50

0.4

o. Z

~

o

100

/'

VCEh.,) IIIIC/IB • 10

---VCE=,li~v

2.0 3.0

i;"

V"

w

~

VCE= 10V

I

·I I fill

0.8

'\

~

~

i J ~ ~~!~

co

60

ul

~

1.0

}J~1150bc

'"
i:l

~

FIGURE 4- "ON" VOLTAGES

0.3 0.5

200 300

1.0

2.0 3.0 5.0

10

20 30

50

100

200 300

IC. COLLECTOR CURRENT (rnA)

IC. COLLECTOR CURRENT (rnA)

FIGURE 5 - CURRENT -GAIN - BANDWIDTH PRODUCT
~ 400
~

t;

=>
o
o

....

V

g: 200

...o
%

~

V

z

<

::l:

100

co
,.:.

80

~

60

i:l
.I:'

40

:;;:

-

..... f--

VCE=ZOV

r-i~~lJ~HZ
-/

V

V
0.3

0.5

0.7

1.0

Z.O

3.0

5.0 7.0

10

ZO

30

IC. COLLECTOR CURRENT (rnA)

FIGURE 6 - TURN-ON·TIME
500
30
ZOOo

FIGURE 7 - TURN-OFF·TIME
1.0 k

.......

VCC-IOV-

~~/~B2s01~

"

-

..

30

w

IBI-IBZ TJ=Z5°C -

I,

70

50

YttfB="~OV=

300

.........

!

;::
.: Z0

,...

.......
td@VEB(om=O

0

100
~ 70

r--.....

5 50

........

......

-

"

ZOO

100

!

700
500

I'

30

tf

ZO

7. 0
0
5. 3.0

5.0 7.0

10

10
20

30

50

70

100

ZOO

3.0

300

5.0 7.0

10

ZO

30

50

70

IC. COLLECTOR CURRENT (rnA)

IC. COLLECTOR CURRENT (rnA)

MMT2369 (SILICON)

For Specifications, See MMCM2369 Data.

MMT2484 (SILICON)
For Specifications, See MMCM930 Data.

728

100

ZOO

300

MMT2857 (SILICON)
MMCM2857 (CERAMIC PACKAGE)
NPN silicon annular micro-miniature transistor designed
for high-gain, low-noise amplifier, oscillator and mixer
applications.

MMT2857

MAXIMUM RATINGS

CASE 28(1)

Symbol

Value

Unit

VCEO

15

Vdc

Collector-Base Voltage

VCB

30

Vdc

Emitter-Base Voltage

Rating
Collector-Emitter Voltage

MMCM2857

CASE 176

VEB

3.0

Vdc

Collector Current -Continuous

IC

40

mAdc

Total Power DiSSipation @TA = 25° C
Derate above 25°C

PD

225
2.05

mW
mW;oC

T J' Tstg

-55 to +135

·C

Operating and Storage Junction
Temperature Range

ELECTRICAL CHARACTERISTICS

ITA' 25°C and case grounded unless otherwise noted)

Symbol

Characteristic

Typ

Max

15

-

-

30

-

-

3.0

-

-

-

-

50

1,000

1,300

-

-

0.5

1.0

-

8.0

-

-

3.8

-

Min

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 3.0 mAdc, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
(IC = 10 ItAde, ~ = 0)

BVCBO

Emitter-Base Breakdown Voltage
~ = 10 ItAdc, IC = 0)

BVEBO

Collector Cutoff Current
(YCB = 15 Vdc, ~ = 0)

ICBO

Vdc
Vdc
Vdc
nAdc

ON CHARACTERISTICS

I

DC Current Gain
(IC = 3.0 mAdc, VCE = 1. 0 Vdc)

30

DYNAMIC CHARACTERISTICS
Current-Gain-BandWidth Product
(IC = 4. 0 mAdc, VCE = 10 Vdc, f = 100 MHz

fT

Collector-Base Capacitance
(V CB = 10 Vdc, ~ = 0, f = o. 1 to 1. 0 MHz)

Ccb

MHz
pF

(Emitter and Case Guarded)
r b 'c c

Collector-Base Time Constant
~ = 4. 0 mAdc, VCB = 10 Vde, f = 31. 9 MHz)
Noise Flgure*
(IC 1.5 mAde, VCE = 10 Vdc, RS

=

=50 ohms,

NF*
f = 450 MHz)

FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (Figure 1)
(IC = 1.5 mAdc, VCE = 10 Vdc, f = 450 MHz)
*Measured In circuit of Figure 1 With no connections for Input cirCuit losses or post ampllfler contribution.

729

ps
dB

MMT2857, MMCM2857 (continued)
FIGURE 1 - TEST CIRCUIT FOR NOISE FIGURE AND POWER GAIN

VOUI

RS = 50n

Capacitance values in pF
Ll, l2 - Silver-plated brass rod, 1·1/2" long and 1/4" dia. Install at least
112" from nearest vertical chassis surface.
L3 - 112 turn 616 AWG wire, located 1/4" from and parallel to L2.

G)- 'External

Neutralization Procedure:
(A)

Connect 450·MHz signal ge:nerator (with RS

=

50 ohms) to input

terminals of amplifier.
(8)

interlead shield to isolate collector lead from emitter

(e)

and base leads.

Connect 50-ohm RF voltmeter across output terminals of amplifier.

Apply VEE. and with signal generator adjusted for 5 mV output
from amplifier, tune Cl, C3, and C4 for maximum output.

MMT2857

(01

Interchange connections to signal generator and RF voltmeter.

(E)

With sufficient signal applied to output terminals of amplifier,
adjust C2 for minimum mdication at Input.

(F)

Repeat steps (A), (B), and IC) to determine if retuning is necessary.

MMCM2857

-.*' ~

f

1

K

K

A

L

A

2

J

STYLE 1:
PIN 1. BASE
2. EMITTER
3. co LLECTOR

K

r

STYLE 1.
PIN I. BASE
2 EMITTER
3. COLLECTOR

_

r-'(a

I--K

ll

J
__

LB

F

ct~~

rrE¥='~
t1

IT
H

DIM
A
B

MILLIMETERS
DIM MIN MAX
A
1.98
2.34
B 0.38
0.64
C 1.24
1.55
0 0.25
0.41
F 0.10
0.15
H
0.51
0.16
J
O.OJ
0.08
K 4.19
4.45
M J'
1".-

~2

C
0
F

INCHES
MIN MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 O.OOJ
0.165 0.175
J'
7'

K

SEATING
PLANE

MILLIMETERS
MIN
MAX
2.03
2.67
0.51
0.76
1.27
2.03
0.41
0.25
0.08
0.15
4.57
4.06

1

INCHEt
MIN
MAX
0.080 0.105
0.020 0.030
0.050 0.080
0.010 0.016
0.003 0.006
0.160 O.IBO

NOTE:
A Tolerance of .25 mm (.010) must be aHowed
at point leads protrude from package for glass
run over.

CASE 176
CASE 28·01

730

MMT2907 (SILICON)

MICRO-T
PNPSILICON
SWITCHING AND AMPLIFIER
TRANSISTOR

PNP SILICON ANNULAR TRANSISTOR

... designed for general·purpose switching and amplifier applications.
where high-density packaging is required.

•

Space Saving Micro-Miniature Package

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 150 mAdc

•

DC Current Gain Specified from 1.0 mAdc to 300 mAdc

1K

n

11

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage

Symbol

Value

Unit

VCEO

40

Vdc

VCS

60

Vdc

PIN 1

VES

5.0

Vdc

Collector Current - Continuous

IC

300

mAde

Total Power Dissipation @TA = 25°C

Po

225
1.8

mW
mW/oC

-55 to +150

°c

Emitter-Base Voltage

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ,Tstg

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

K

Svmbol

Max

Unit

ROJA

555

C/W

I

STYLE I
BASE

2

EMITTER

3

COLLECTOR

MILLIMETERS
DIM

MIN

A
B
C
0
F
H
J
K
M

1.98
0.38
1.24
0.25
0.10
0.51

0.03
4.19
3

MAX
2.34

0.64
1.55
0.41
0.15
0.16

0.08
4.45

7'

INCHES
MIN
MAX
0.078 0.092

0.005
0.049
0.010
0.004
0.020
0.001
0.165
3'

CASE 28-01

731

0.025
0.061
0.016
0.006
0.030
0.003
0.175
7

MMT2907 (continued)

ELECTRICAL CHARACTERISTICS

(T A = 25 0 C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage( 1)
(lC = 10mAde,Ia = 0)'

BVCEO

40

-

-

Vde

Collector-Base Breakdown Voltage

BVCBO

60

-

-

Vde

BVEBO

5.0

-

-

Vde

ICBO

-

-

50

nAde

50

-

75

-

-

100

-

OFF CHARACTERISTICS

(lC

= 10"Ade,IE = 0)

Emitter-Base Breakdown Voltage
(IE

= 10 !lAde, IC = 0)

Collector Cutoff Current

= 50

(VCB

Vde, IE

= 0)

ON CHARACTERISTICS (1)

DC Current Gain
(lC = 1.0 mAde, VCE

-

hFE

= 10 Vde)
(lC = 10 mAde, VCE = 10 Vde)
(lC = 150 mAde, VCE = 10 Vde)
(lc = 300 mAde, VCE = 10 Vde)

30

Collector-Emitter Saturation Voltage

VCE(sat)

= 150 mAde, IB = 15 mAde)
(lC = 300 mAde, IB = 30 mAde)
(I·C

Vde

-

Base-Emitter Saturation Voltage

300

0.15
0.24

0.4
1.6
Vde

VBE("t)

(lC

= 150 mAde,lB = 15 mAde)

(I C

= 300 mAde, 18 = 30 mAde)

-

0.87

1.3

0.94

2.6

tr

200

340

-

MHz

Cob

-

4.8

8.0

pF

Cib

-

-

30

.pF

Ion

-

20

-

ns

tott

-

120

-

ns

OYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 20 mAde, VCE = 10 Vde, t

= 100 MHz)

Output Capacitance
(VCB

= 10 Vde,

IE = 0, t

= 100 MHz)

Input Capacitance

= 2.0 Vde,

(VBE

IC

= 0, f

= 100 MHz)

SWITCHING CHARACTERISTICS
Turn-On Time (Figure 1)
(VCC = 30 Vde, IC
IBl = 15 mAde)

= 150 mAde, VBE(off) = 0,

Turn-Off Time (Figure 2)
(VCC

= 30 Vde,

IC

= 150 mAde, IBI = IB2 = 15 mAde)

(1 )Pulse Test: Pulse Width

"5. 300

f,ls, Duty Cycle '5. 2.0%.

FIGURE 2 - TURN-OFF TIME TEST CIRCUIT

FIGURE 1 - TURN-ON TIME TEST CIRCUIT
(Adjust for

-30 V

ISO mAde)

200
1.0 k

°LLS.9V
50 PW<200 ns

H

lN91S

50

"" +3.0 V

732

OUTPUT TO
SAMPLING SCOPE
SOk
Zin>100 k Ohms
'":" Cin~12 pF
tr~5.0ns

MMT2907

(continued)

FIGU RE 3 - DC CURRENT GAIN
300
TJ:

z

~

2S'C

I-

~

13
u

e

~

H1f

100

::::;"'.SS'C
70
0

-....

-

il+ - --;~~.

200

FIGURE 4 - "ON" VOLTAGES
1.0

l'~ri'C

----

1--

-

-

,\

-

2.0 3.0 S.O

10

......

~

e

20 30

100

0, 6

'"«
~
>

O.4

VBElonl @VCE: 10 V

--

VCElsal1 @'CIIB: 10

l.--""

,..---

~B~+~"~'ICI'B: 10

./

V

1111111

>'
O. 2

--1

m~,l.0V

SO

2:w

""~,

-;- I I I

1.0

O.B

....
VCE: 10V

30
0.3 O.S

1111111

0 I
0,3 D,S

200 300

1.0

'c, COLLECTOR CURRENT (mAl

2,0 3.0 S.O

10

20 30

SO

100

200 300

'c, COLLECTOR CURRENT ImAI

FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT
~

400

II

~

G

"
e
e

g:

l- I--

VCE: 10 V
f: 100MHz
200 f-- TA: 2S'C

V

/'

:c
le

~

/

z

~

100

~

80

z

I-

~
'"
13
.I:'

60

V

40
0,3

O.S 0,7

1.0
2.0 3.0
S,O 7,0
'c, COLLECTOR CURRENT ImAI

10

200

!w

'">=

~.

100
70
50

"'
......

=

VCC: 30 VIcllB =10'
'Bl: 'B2 TJ:25'C -

SOO

.....
300

I,

200

I"
Is

100

......

30
VBElolfl : ';;'

20

II

10
5,0
3,0

1.0 k
700

VCC:30V I--- r-ICilB: 10
TJ: 2S'C I--- r--

I

30

FIGURE 7 - TURN·OFF·TIME

FIGURE 6 - TURN·ON·TlME
SOD
300

20

5.0 7.0

10

20

......

70
50

........r-.,

30

If

0

........

0

50

70

100

200

10
3,0

300

IC. COLLECTOR CURRENT (mAl

5,0 7.0

10

20

30

SO

IC. COLLECTOR CURRENT ImAI

733

70

-

100

200

300

MMT30 14 (SILICON)

MICRO-MINI.ATURE

NPN SILICON ANNULAR TRANSISTOR

NPN SILICON
SWITCHING
TRANSISTOR

· .. designed for high-speed, saturated switching applications where
high-density packaging is required.
•

High-Speed Switching Times ton + toff = 41 ns (Max) @ IC = 30 mAdc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.22 Vdc (Max) @ IC = 30 mAdc

•

Space Saving Micro-Miniature Package

•

Ideal for Thick Film Digital Circuit Applications

•

One-Piece,lnjection-Molded Unibloc Package for High Reliability

_,_~/B
A

-

jD~

6ir=l===:4..l.=$
l
t1
K

j

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

20

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

200

mAde

Total Power Dissipation @TA :: 2SoC

PD

225
2.05

mW
mW/oC

TJ,Tstg

-55 to +135

°c

Derate above 2SoC
Operating and Storage Junction
Temperature Range

STYLE 1:
PIN 1. BASE
2. EMITTER
3 COLLECTOR

THERMAL CHARACTERISTICS
DIM
Characteristic

A
B
C
D
F
H

Thermal Resistance, Junction
to Ambient

J
K
M

MILLIMETERS
MIN
MAX

1.98
0.l8
1.24
0.25
0.10
0.51
O.Ol
4.19
lO

2.l4
0.64
1.55
0.41
0.15
0.76
0.08
4.45
70

INCHES
MIN
MAX

0.078
0.D15
0.049
0.010
0.004
0.020
0.001
0.165

CASE 28-01

734

0.092
0.025
0.061
0.D16
0.006
O.OlO
O.OOl
0.175

MMT3014 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

Symbol

Min

Max

Unit

BVeEO

20

-

Vde

BVeBO

40

-

Vde

BVEBO

5.0

-

Vde

leBO

-

100

nAde

50

200

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11

lie: 10 mAde, IB: 01
Collector-Base Breakdown Voltage

IIC: 100 ",Ade, IE : 01
Emitter-Base Breakdown Voltage

liE: 100 ",Ade, IC: 01
Collector Cutoff Current
(VCB: 20 Vde, IE: 01

ON CHARACTERISTICS

-

hFE

DC Current Gain (11

II C : 30 mAde, VeE: 0.4 Vdel

25

-

VCE(sati

-

0.22

Vde

VBE(satl

0.70

0.9

Vde

Current-Gain-Bandwidth Product (11
lie: 30 mAde, VCE : 10 Vde, f: 100 MHzl

tr

350

-

MHz

I nput Capacitance
(V BE : 0.5 Vde, Ie : 0, f: 1.0 MHzl

eib

-

8.0

pF

Output Capacitance

Cob

-

5.0

pF

Turn-On Time
(V CC : 2.0 Vde, I C : 30 mAde, I B 1 : 3.0 mAdel

ton

-

16

ns

Turn-Off Time
(VCC: 2.0 Vde, Ie = 30 mAde, IB1 : 3.0 mAde,
I B2 = 3.0 mAde I

toff

-

25

ns

TS

-

18

ns

IIc: 100 mAde, VeE: 1.0 Vdel
Collector-Emitter Saturation Voltage

IIC: 30 mAde, IB: 3.0 mAde I
Base-Emitter Saturation Voltage
II C : 30 mAde, I B : 3.0 mAdel

SMALL-5IGNAL CHARACTERISTICS

(VCB: 5.0 Vde, IE: 0, f: 1.0 MHzl
SWITCHING CHARACTERISTICS

Charge Storage Time

IIC: IB1 = IB2= 10mAdei
111

Pulse Test: Pulse Width'" 300 J,ls, Duty Cycle'5 2.0%.

FIGURE 2 - CHARGE STORAGE TIME
CONSTANT TEST CIRCUIT

FIGURE 1 - TURN-ON AND TURN-OFF
TIME TEST CIRCUIT
"A"

Vee
V,"

i'k Vout

OlpF

.-.,.

500

Dl.llF 10k
+60V

~

R2

R1

890

~

91

500
Pulse Gel'ler~tor
Vln Rise Tune " 1 0"
Source Impedance = ~O~!

R4

I

56

OOD23.uF

OOOl3/.1F

I

'.1/-

"\,'

10pF

10IIF

To O~cliloscope
Input Impedance

''i'lOV

Rise Time = IOns

Vm Au:e Time less than 1 Gns, PIN = 30G ns, Duty Cycle = 2 0',

INPUT PULSE

SWITCHING TEST CIRCUIT VALUES
Test

Vin

I

VBB

I

Vec

R1

I

R2

ton

7.0
-13

I

I

GND
7.0

I

R3

R4

tr

OHMS

VOLTS

toff

I

I

I

2.0
2.0

100

1 1 I
62

100

735

2.0k

<1.0

I

I

I

tf

Pulse Width

ns

-

I

>200

50!1

MMT3546 (SILICON)

PNP SILICON ANNULAR TRANSISTOR

MICRO-MINIATURE
PNPSILICON
SWITCHING TRANSISTOR

· .. designed for high-speed, low-level switchi.ng applications, where
high-density packaging is required.
• Space Saving Micro-Miniature Package
• Ideal for Thick Film Digital Circuit Applications
• Total Switching Time = 60 ns @ IC = 50 mAdc
• One-Piece, Injection-Molded Unibloc Package for High Reliability

I~I
1

B

~=~

MAXIMUM RATINGS

Rating

Value

Unit

VCEO

12

Vdc

Collector-Base Voltage

VCB

15

Vdc

Emitter-Base Voltage

VEB

4.5

Vdc

Collector Current - Continuous

IC

250

mAde

Total Power Dissipation @TA = 25°C
Derate above 25° C

PD

225
2.05

mW
mW/"C

TJ,T stg

-55 to +135

°c

Symbol

K

K

Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

I
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DIM

THERMAL CHARACTERISTICS

I

Characteristic

IThermal Resistance, Junction to Ambient

A

Symbol
R8JA

Max

Unit

490

·C/W

I

I

8
&

0

F
H

J
K
M

736

MILLIMETERS
MIN
MAX

1.98
0.38
1.24
0.25
0.10
0.51
0.03
4.19
3D

INCHES
MIN
MAX

2.34
0.Q15
0.64 0.D78.
1.55 0.049
0.41
0.010
0.15 0.004 0.006
0.76 0.020 0.030
0.08 0.001 0.003
4.45 0.165 0.175
7D
7D
3D
CASE 28·01

MMT3546 (continued)
ELECTRICAL CHARACTERISTICS

(TA

=25'C unless otherwise noted)

Characteristic

Symbol

Min

Max

12

-

15

-

4.5

-

-

100

-

100

30

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage III
(IC = 10 mAde, IB = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 10 ).IAdc, IE = 0)

BV CBO

Emitter-Base Breakdown Voltage
(IE = 10 ).lAde, IC = 0)

BV EBO

Collector Cutoff Current
(V CB = 10 Vde, IE = 0)

I CBO

Emitter Cutoff Current
(VEB = 3.0 Vdc, IC = 0)

lEBO

Vde
Vde

Vde

nAde

nAde

ON CHARACTERISTICS III
DC Current Gain
(IC = 10 mAdc, VCE = 1. 0 Vde)

hFE

(Ie = 100 mAde, VCE = 1. a Vde)

15

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAdc)

VCE{sat)

VBE{sat)

Vde

-

0.15

0.7

0.9

-

1.6

700

-

-

6.0

-

8.0

(IC = 100 mAde, IB = 10 mAdc)
Base-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1. 0 mAde)

-

0.5
Vde

(IC = 100 mAde, IB = 10 mAde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 10 mAde, VCE = 10 Vdc, f = 100 MHz)

MHz

fT

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1. 0 MHz)

Cob

Input Capacitance
(VBE = O. 5 Vde, IC = 0, f = 1. 0 MHz)

Cib

pF

pF

SWITCHING CHARACTERISTICS
Delay Time
Rise Time

(V CC = 3.0 Vde, VBE = 2. a Vde,

td

-

10

ns

IC = 50 mAde, IB1 = 5.0 ·mAde)

t

r

-

15

ns

s

-

20

ns

tf

-

15

ns

Storage Ti me

t
(V CC = 3.0 Vde, IC = 50 mAde,

Fall Time

IBI =IB2 = 5.0 mAde)

III Pulse Test: Pulse Width = 300 ).IS, Duty Cycle < 2.0%.

FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT

FIGURE 2 - STORAGE AND FALL TIME
EQUIVALENT TEST CIRCUIT
-3.0 V

-3.0 V

55

55
Vin
+ 2 . 0_
V
_ _l j v

-10.8 V

0Ft+8~
V _ _ _ Vin

2.0k
Vin o--'IIIIV-+-f

Vin
-11.3 V

lN916

'" OSCilLOSCOPE RISE TIME s 1.0 os

737

I

;t;
I

I
PULSE WIDTH -200 ns
RISE TIME $ 2.0 ns
DUTY CYCLE <10%

PU LSE WI DTH - 200 ns
RISE TIME. 2.0 ns
DUTY CYCLE < 10%

o--'Io2"'.0....
k---1H-f..

-:;l::-

CS< 20 pF

MMT3798, MMT3799 (SILICON)
MMCM3798, MMCM3799 (CERAMIC PACKAGE)
MMT3798

~"

PNP silicon annular micro-miniature transistors designed for low-level, low-noise amplifier applications.

CASE 28-01

A

MMCM~~::~
MMCM

CASE 176

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

VCEO

60

Vdc

. Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

Collector c'urrent - Continuous

Ie

50

mAdc

Total Power Dissipation@ T A =25°C
Derate above 25°C

PD

225
2.05

TJ,T stg

-55 to +135

mW
mW/"e
°c

Symbol

Max

Unit

490

°C/W

Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction
to Ambient

Re JA

738

MMT3798, MMT3799, MMCM3798, MMCM3799

ELECTRICAL CHARACll::l'(lSTICS

(T A

(continued)

=25"C unless otherwise noted)

Characteristic

Symbol

Collector-Emitter Breakdown Voltage (1)

BVCEO

Min

Typ

Max

Unit

OFF CHARACTERISTICS
(IC

= 10 mAde,

IB

= 0)

Collector-Base Breakdown Voltage
(IC = 10 I'Ade, IE = 0)

BVCBO

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)

I CBO

Emitter Cutoff Current
(V BE = 3.0 Vde, IC = 0)

lEBO

ON CHARACTERISTICS
DC Current Gain
(IC = 10 I'Ade, VCE

Vde

-

60
60

-

-

-

-

50

-

-

50

nAde
nAde

11)

hFE

Collector-Emitter Saturation Voltage
(IC = 1. 0 mAde, IB = 100 I'Ade)

VCE(sat)

-

-

Base-Emitter Saturation Voltage
(IC = 1.0 mAde, IB = 100 I'Ade)

VBE(sat)

-

-

0.8

40
40

120
150

--

-

2.0

4.0

-

-

8.0

-

8.0
16

-

re

-

2.0
4.0

-

hie

-

275
475

-

= 5.0 Vde)

MMT3798
MMT3799

75
150

(IC

= 100 I'Ade,

VCE

= 5.0

Vde)

MMT3798
MMT3799

150
300

(IC

= 1.0 mAde,

VCE

= 5.0 Vde)

MMT3798
MMT3799

150
300

(IC

= 10 mAde,

MMT3798
MMT3799

125
250

= 5.0 Vde)

VCE

Vde

-

-

450
900

-Vde
0.25
Vde

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 500 I'Ade, VCE = 5.0 Vde, f

= 20

Output Capacitance
(VCB = 5.0 Vdc, ~

= 0,

f

= 100 kHz)

Input Capacitance
(VBE = O. 5 Vde, IC

= 0,

f

= 100 kHz)

Input Impedance
(IC = 1.0 mAdc, VCE

MHz)

= 10 Vdc, f = 1. 0 kHz)

Cib

MMT3798
MMT3799

= 1.0 kHz)

MMT3798
MMT3799

Small-Signal Current Gain
(IC = 1.0 mAde, VCE = 10 Vdc, f

= 1. 0 kHz)

MMT3798
MMT3799

Output Admittance
(IC = 1. 0 mAde, VCE

= 10 Vde, f = 1. 0 kHz)

MMT3798
MMT3799

Noise Fignre
(IC = 100 I'Ade, VCE

= 10 Vde,

MMT3798
MMT3799

RS

= 3.0 k ohms,

h
oe
NF

f = 100 Hz)

MMT3798
MMT3799

(IC = 100 I'Ade, VCE = 10 Vde,

MMT3798
MMT3799

= 3.0 k ohms, f = 10 kHz)

(IC = 100 I'Ade, VCE = 10 Vde,

Rg

h.
Ie
h

= 100 I'Adc, VCE = 10 Vde,
RS = 3.0 k ohms, 1= 1. 0 kHz)

RS

fT

Cob

Voltage Feedback Ratio
(IC = 1. 0 mAdc, VCE = 10 Vde, f

(IC

11)

MMT3798
MMT3799

= 3.0 k ohms, BW

= 10 Hz

to 15.7 kHz)

MMT3798
MMT3799

Pulse Test; Pulse Width" 300 1'8, Duty Cycle" 2.0%.

739

MHz

pF
pF
k ohms

X 10-4

-

-

-

18
30

-

1.5
0.8

--

1.0
0.8

-

2.5
1.5

3.5
2.5

4.0
2.5

I'mhos

dB

MMT3798, MMT3799, MMCM3798, MMCM3799 (continued)

MMT3798
MMT3799

MMCM3798
MMCM3799

KB

1

~

0 2

A

J

STYLE 1:
PIN 1. BASE
2. EMITTER
3. CO LLECTOR

K

j
STYLE 1

PIN 1
2
3

-K

~1=.

1
rr~t

BASE
EMITTER
COLLECTOR

fu
1r
~
MILliMETERS
DIM MIN
MAX
A 1.98
2.34
B 0.38
0.04
C 1.24
1.55
0 0.25
0.41
F 0.10
0.15
H 0.51
0.76
J
0.03
0.08
K 4.19
4.45
M 3°
7°

~I
, ~'Jf

K

-.--1

M

~

PLANE

fiH
DIM
A

INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
3°
7°

B

C
D
F
K

MILliMETERS
MIN
MAX
2.67
2.03
0.76
0.51
2.03
1.27
0.25
0.41
0.15
0.08
4.57
4.06

INCHES
MIN
MAX
0.080 0.105
0.020 0.030
0.050 0.080
0.010 0.016
0.003 0.006
0.160 0.180

NOTE:
A Tolerance of .25 mm (.010) must be allowed
at point leads protrude from package for glass
run over.

CASE 28·01

CASE 176

740

MMT3823 (SILICON)

MICRO·T
SILICON N·CHANNEL
JUNCTION FIELD·EFFECT TRANSISTOR

MICRO·MINIATURE
JUNCTION
FIELD·EFFECT
TRANSISTOR

Depletion Mode (Type A) Field-Effect Transistor designed for RF
amplifier and mixer applications where high density packaging is
required_

SYMMETRICAL
SILICON
N-CHANNEL
Type A

•

Low Cross-Modulation and Intermodulation Distortion

•

Drain and Source Interchangeable

•

Low 100-MHz Noise Figure - 2_0 dB (Typ)

•

Low Transfer and Input Capacitances
Crss = 1_0 pF (Typ); Ciss = 4_0 pF (Typ)

•

Space Saving Micro-Miniature Package Circuit Applications

Ideal for Thick Film

=4

1

MAXIMUM RATINGS
Symbol

Value

Unit

Orain-50urce Voltage

VOS

30

Vdc

Drain-Gate Voltage

VOG

30

Vdc

Gate-5ource Voltage

VGS

-30

Vdc

Rating

Gate Current
Total Power Dissipation @ T A
Derate above 2SoC

= 25°C

Operating and Storage Junction

IG

10

mAde

Po

225
2_05

mW
mW/oC

TJ, T stg

-55 to +135

°c

Temperature Range

r-t.:!}==B

K

I
~_1rM

-.!

~~VH
STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
DIM

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to

Symbol
ReJA

Max

Unit

490

°CIW

Ambient

A

8
C

0
F
H

J
It
M

MILLIMETERS
MAX
MIN

1.98
0.38
1.24
0.25
0.10
0.51
0.03
4.19
3D

2.34
0.64
1.55
0.41
0.15
0.76
0.08
4.45
7u

INCHES
MIN
MAX

0.078
0.015
0.049
0.010
0.004
0.020
0.001
0.165
3D

CASE 28-01

741

0.092
0.025
0.061
0.016
0.006
0.030
0.003
0.175
7D

MMT3823 (contintled)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise rioted)

Symbol

Min

Typ

Max

-30

-

-

-

-

-1.0

-

-

-8.0

-1.0

-

-8.0

3000

-

8000

-

4000

-

-

500

-

-

25

-

-

125

-

-

4.0

-

-

1.0

-

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
UG - -1.0 "Adc, VOS = O}

Vdc

V(BR}GSS

Gete Reverse Current
(VGS = -20 Vdc, VOS = O)

IGSS

Gate-Source Cutoff Voltage
Uo = 1.0 nAdc, VOS = 15 Vdc}

VGS(off}

Geta-Source Voltage
Uo = 0.5 mAdc, VOS = 15 Vdc}

VGS

nAdc

Vdc

Vdc

ON CHARACTERISTICS
Zaro-Geta-Voltage Drain Current Oi
(VOS = 15 Vdc, VGS = O)
DYNAMIC CHARACTERISTICS
Forward Transfer Admittance
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz) 01

IYfsl

(VOS = 15 Vdc, VGS = 0, f = 200 MHz)
I nput Conductance

Re(Yis}

(VOS = 15 Vdc, VGS = 0, f = 200 MHz)
Output Conductance
(VOS = 15 Vdc, VGS = 0, f = 1.0 kHz) 01
(VOS = 15 Vdc, VGS = 0, f = 200 MHz)

IYosl
Re(yos}

I nput Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1.0 MHz)

Ciss

Reverse Transfer CapaCitance
(VOS = 15 Vdc, VGS· 0, f-l.0 MHz)

Crss

Common-Source Spot Noise Figure
(VOS = 15 Vdc, VGS· 0, RS,= l000ohms,f= 100 MHz)

NF

111 'Pulse Test: Pulse Width = 100 mi, Duty Cycle:S: HI%.

\

"mhos'

742

"mhos

"mhos

pF

pF

-

dB
2.0

-

MMT3903, MMT3904 (SILICON)
MMCM3903, MMCM3904 (CERAMIC PACKAGE)

MICRO-T
NPN SILICON ANNULAR TRANSISTORS
· .. designed for general purpose switching and amplifier applications
and for complementary circuitry with PNP type MMT390S and
MMT3906 where high·density packaging is required.

NPN SILICON
SWITCHING AND AMPLIFIER
TRANSISTORS

• High Coliector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 1.0 mAdc
•

DC Current Gain Specified from 100 /lAdc to 10 mAdc

•

Low Output Capacitance Cob = 4.0 pF (Max) @ VCB = S.O Vdc

MMT3903
MMT3904

CASE 28-01

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

Vee

60

Vdc

Emitter-Base Voltage

VEe

6.0

Vdc

Collector-Current - Continuous

Ie

200

mAde

Total Power Dissipation
Derate above 25°C

Po

225
1.8

mW
mW/oC

-55 to +150

°c

Collector-Emitter Voltage

@

T A'" 25°C

Operating and Storage Junction
Temperature Range

TJ,Tstg

MMCM3903
MMCM3904

THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Ambient

I Symbol I

Max

Unit

RaJA

556

°elW
CASE 176

743

MMT3903, MMT3904, MMCM3903, MMCM3904 (continued)

I

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Coliector·Emitter Breakdown Voltage (1)
(IC= 1.0mAde,IB= 0)

BVCEO

40

-

-

Vde

Coliector·Base Breakdown Voltage
(lc = IOI'Ade,lE = 0)

BVCBO

60

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = IOI'Ade,lc= 0)

BVEBO

6.0

-

-

Vde

ICBO

-

-

50

nAde

lEBO

-

-

50

nAde

Characteristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
Emitter-Cutoff Current
(VEB = 4.0 Vde, IC = 0)
ON CHARACTERISTICS (1)

DC Current Gain

-

hFE

(lC= 100l'Ade, VCE= 1.0Vde)

MMT3903
MMT3904

20
40

-

-

(lC = 1.0 mAde, VCE = 1.0 Vde)

MMT3903
MMT3904

35
70

-

(lC = 10mAde, VCE = 1.0 Vde)

MMT3903
MMT3904

50
100

-

Collector-Emitter Saturation Voltage

VCE(sat)

-

-

VBE(sat)

-

250
300

150
300
0.2

Vde

-

0.85

Vde

-

-

(lC = 10 mAde,lB = 1.0 mAde)

Base-Emitter Saturation Voltage
(lC=10mAde,IB= 1.0mAdc)
SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC= 10mAde, VCE= 20Vde,l= 100MHz)

MHz

IT
MMT3903
MMT3904

Output Capacitance

Cob

-

-

4.0

pF

Cib

-

-

8.0

pF

NF

-

3.0

-

dB

(VCB = 5.0 Vde, IE = 0, I = 100 kHz)

Input Capacitance
(VEB = 0.5 Vde, IC = 0, I = 100 kHz)
Noise Figure
(lC= 100l'Ade, VCE= 5.0Vde,Rs= 1.0kohms
Noise Bandwidth - f = 10Hz to 15.7 kHz)

SWITCHING TIME TEST CIRCUITS
FIGURE 1 - TURN·ON TIME

0., ".".

FIGURE 2 - TURN·OFF TIME

'~fI---j
300 n. I
+10.9 V

-2.0 V

<1.0n.

1-

10=

100
70
50

1.0

2.0

3.0

5.0 7.0

10

20

30

IC. COLLECTOR CURRENT (rnA)

FIGURE 7 - TURN-QFF TIME

500

]:

i'.

.......

150

~ 100
,.:.

70

V

200

'f
z

l/V

,.:.

'"
B

VCE = 20 V
f=100MHz

g:

I""--

~

z
~ 100

_I T~ = ~5bJ 11

::I

500

IC~~= ~~oC-

C'....
....... .......
.......

30
20
10
7.0
5.0
2.0

]
w

.......

.......

'>="

'r@VCC-3.0Y F-

........ i.......

oJ

~t~ ~

....... ~

........

5.0 7.0

10

20

30

50

70

100

....... ......., I'-.

100
70
50

le/lB=~

30

10
7.0
5.0
2.0

200

IC. COLLECTOR CURRENT (mAl

745

II Ic/le I-10
20

'f@lclle=?;j'>

20

~.O~r-.
VBE(Offl->'"
3.0

,', ,,·1/8'fVCC=3.0V IS1=IS2 _
TJ=250 C _

300
200

............

i'r-.

:--.
-I--

3.0

20
30
50
5.0 7.0 10
IC. COLLECTOR CURRENT (rnA)

70

100

2UO

MMT3903,MMT3904,MMCM3903,MMCM39Q4 (continued)
FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - ''ON'' VOLTAGE

500

1. 0

300

z

~ 100

0-

a'l

~
'"'"c
~

J

Tr 11250

-

200

I::O-'F'

70
50

-I'.

--

V8E(Oo)@VCIE -

~.

7.0
5.0
0.2

0.5

1.0

2.0
5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)

100

1.0

>

0:

lOrnA

50 rnA

~

~....

8

~

>

5.0

10

20

E

~+1.0

~

100 rnA

lllill
JJlill

o.2

~

'evc for VCE(sa!)
0

-550C10 25b C---

"'

2~~
1
.

~ -1. 0

1\

"

O
0.01 0.02

.

8VB for V8E

~

..l.l...Ll

~

I- l-:tsl;JiJ !~OC..c-

~ -2. 0

I"'

t0.05 0.1

0.2
0.5 1.0 2.0
5.0. 10
18. BASE CURRENT (rnA)

20

MMT3903
MMT3904

II II

-3. 0

50 100

0.2

0.5

1.0

2.0
5.0
10
20
IC. COLLECTOR CURRENT (rnA)

fllllH
IIIIIII100
50

MMCM3903
MMCM3904

_.~B
A

2
3

~I
~2 ._:U

1

K

A

~

A

B
C
0
F
H

J

K
M

MILLIMETERS
MIN MAX
1.98
2.34
0.38
0.64
1.24
1.55
0.41
0.25
0.10
0.15
0.51
0.76
0.03
0.08
4.19
4.45
30
70

'J
0

I

F

C

f£:-~~
t1
DIM

__

1i
LBt ~K -.i
~
IT
1

K

STYLE l'
PIN 1. BASE
2. EMITTER
3. COLLECTOR

200

8

~

l'

100

JllWi

0:

o.4

150

1 111111

'APPLIES FOR Ic/IB" hFEn.o

~

~

iii

2.0

+2. 0

U

Ic=I.0mA

1.0

FIGURE 11 - TEMPERATURE COEFFICIENTS
13"

TJ = 25 0C

O.6

0.5

IC. COLLECTOR CURRENT (rnA)

"' O. 8

'"
~c

VCE(sal)@ ICIlB = 10

0
0.2

200

J111

~~

/

o.2

FIGURE 10 - COLLECTOR SATURATION REGION

_

\.o'v

4

--VCE=1.0V ~
---VCE=5.0V

10

~

6

~~

20

~

J.IlIT

o.8

- -

-550C

-

-

3D

~

250C

JJJ(~!)@lcJIBM

TJ=250C

STYLE 1:
PIN 1. BASE
2. EMITTER
3.COLLECTOR

SEATING
PLANE

DIM
A
8
C
D

H

INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
30
70

F

MILLIMETERS
MIN
MAX
2.67 .
2.03
0.51
0.76
1.27
2.03
0.25
0.41
0.08
0.15
4.06
4.57

INCHES
MIN
MAX
0.080 0.105
0.020 0.030
0.050 0.080
0.010 0.016
0.003 0.006
0.160 0.180

K
NOTE:
A Tolerance of .25 mm (.010) must be allowed
at point leads protrude from package for glass
run over.

CASE 176

CASE 28·01

746

200

MMT390S ,MMT3906 (SILICON)
MMCM3905, MMCM3906 (CERAMIC PACKAGE)

MICRO-T
PNPSILICON
SWITCHING AND AMPLIFIER
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS

· .. designed for general purpose switching and amplifier applications
and for complementary circuitry with NPN types MMT3903 and
MMT3904 where high·density packaging is required.

MMT3905
MMT3906

• Space Saving Micro·Miniature Package
• Coliector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 1.0 mAdc
• DC Current Gain Specified from 100 /.LAdc to 10 mAdc
•

Low Output Capacitance Cob= 4.5 pF (Max)@VCB= 5.0 Vdc

CASE 28-01

MAXIMUM RATINGS
Ratin~

Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

40

Vdc
Vdc

Collector-Base Voltage

VCS

40

Emitter-Sase Voltage

VES

5.0

Vdc

Collector Current - Continuous

IC

200

mAde

Total Power Dissipation @ T A = 25°C
Derate above 2SoC

Po

225
1.8

mW
mWf'C

TJ.Tstg

-5510 +150

°c

Operating and Storage Junction

MMCM3905
MMCM3906

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

I

Symbol

ROJA

I

Max
556

747

I

Unit

°C/W

CASE 176

MMT3905, MMT3906, MMCM3905, MMCM3906 (continued)

ELECTRICAL CHARACTERISTICS (TA: 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC: 1.0mAdc, IB: 0)

BVCEO

40

-

-

Vdc

Coliector~Base

BVCBO

40

-

-

Vdc

BV EBO

5.0

-

-

Vdc

Collector Cutoff Current
(VCB: 30 Vdc, IE: 0)

ICBO

-

-

50

nAdc

Emitter Cutoff Current
(VBE(ofl) : 4.0 Vdc, IC: 0)

lEBO

-

-

50

nAdc

30
60
40
80
50
100

-

Characteristic

OFF CHARACTERISTICS

Breakdown Voltage

(lC: 10!lAdc, IE: 0)
Emitter-Base Breakdown Voltage

(IE· 10 !lAde, IC: 0)

ON CHARACTERISTICS (1)

DC Current Gain
(lC = 100 !lAde, VCE : 1.0 Vdc)

-

hFE
MMT3905
MMT3906
MMT3905
MMT3906
MM,T3905
MMT3906

-

Collector·Emltter Saturation Voltage
(lC = 10 mAde, IB: 1.0 mAde)

VCE(,at)

-

-

Base-Emitter Saturation Voltage
(lC· 10 mAde, IB = 1.0 mAde)

VBE(sat)

-

-

0.85

200
250

-

-

Cob

-

-

4.5

pF

Cib

-

-

10

pF

NF

-

1.0

-

dB

(lC· 1.0mAdc,VCE= 1.0Vdc)
(lC = 10 mAde, V CE = 1.0 Vdc)

150
300
0.25

Vdc
Vdc

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 20 Vde, 1·100 MHz)

MHz

IT
MMT3905
MMT3906

Output Capacitance

-

(VCB = 5.0 Vde, IE • 0, I = 100 kHz)
I nput Capacitance

(VEB = 0.5 Vde, IC = 0, f = 100 kHz)
Noise Figure

(lc = 100 !lAde, VCE = 5.0 Vde, RS = 1.0 k ohms,
Noise Bandwidth - f • 10Hz to 15.7 kHz)
(1) Pulse Test: Pulse Width = 300 !lS, Duty Cycle = 2.0%.

748

MMT3905, MMT3906, MMCM3905, MMCM3906

(continued) ,

FIGURE 2 - CAPACITANCE

FIGURE 1 - CURRENT-GAIN-BANDWIDTH PRODUCT
~

~

t;

:::>

c
c

70 0

f - TJ - 250 C
20 V
50Of- VCE"
f-l00MHz

f
~ 300

~

:If

~

L-"'"

~

,.:.
10 0

TJ - 25'C

7.0

.......

~

0

clb

0

200

'l'

~

-

.- .....
./

0

V

~

0
I\.C,b

........

'":::>

.., 70

.t:

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

20

1. 0
0.04

30

0.1

0.2

300

;::

30

......

~~

20

IcliB -10
TJ-25'C

1,@VCC-40V

r-...

:I!

-'

1'-.....1-

20

40

500

500

!

10

4.0

FIGURE 4 - TURN-OFF TIME

FIGURE 3 - TURN-ON TIME

100
70
50

2.0

YR. REVERSE VOLTAGE (VOLTS)

IC. COLLECTOR CURRENT (mA)

200

1.0

0.4

r--

..... 1::::,

;::

........ .........

~T'rC[TI

i'-...

10
7. 0

5.0 7.0

10

Id@VBE(,ff) - 0
50
20
30

IC. COLLECTOR CURRENT

30

2.0 V

T7"'

-10.9 V

70

100

2.0

200

3.0

5.0 7.0

f--

10

20

30

50

70

100

IC. COLLECTOR CURRENT (mA)

(mA)

FIGURE 6 - TURN-OFF SWITCHING CIRCUIT

+0'

I

-..I

~

r-..

0

-3.0 V

o

ICliB-IO

7. 0
5.0

FIGURE 5 - TURN-ON SWITCHING CIRCUIT

+0.5 V

........

0

......

(s- Is -1IBlf
VCC-40V
IB1- IB2

IC/IB - 20

If@IC/IB- 10

:I!

.......

r-.

3.0

~IB-201-e-

~

100
0
.".
.5
0
w

I.......

5.0
2.0

300 ...........
20 0

JO'"'

-40 V

3.9 k
10 k

>--AA~>+---I

'Ok

-.I

\.-300 ns

I..

Duty Cycle == 2.0%

10<'1<5001"
Duty Cycle"" 2.0%

749

-10.9 V lN91S

200

MMT3905, MMT3906, MMCM3905, MMCM3906(c'ontimied)
FIGURE 7 - DC CURRENT GAIN

500

TJ"1250C

300
200

z

I::-r-

'"......

......

-=:-::

l-

""'I"

100 ~
70
w
a: 50
a:

<

-

I'~ 1-1-

25°C

FIGURE 8 - "ON" VOLTAGES

1.0

~ O•6~E(on)@VCE·1.0Y
w

-550C

'"
~
'"

-~

30

!\

20

>
,;

- - - VCP 1.0 V \
- - - VCE=5,OV

.ll'
10
7.0
5,0
0.2

VBE(.. ,) @1~118 = 10

~

::>

'"ul

.....

11 Jill

o.8

~~

0,4

/
VCE( .. ,)@ IC IB = 10

0,4

2,0

1.0

4.0

10

20

100

40

0
0.2

200

I I
2.0

1.0

0.4

g 1.0

..

TJ=250C

Q

...

oS +1.0

o. 8

iii
Ic·1.0mA

lOrnA

:SOmA

u

100 rnA

20

'APPLIES FOR IC/18 "hFE/2,O

111111
125°C '0 1250C

tttttr

)-5~0~~~

III~

w

a:

o.4

~

8 o.2

~

\

ul

::
~

\

r--

-1.0

!... -2.0

~

~

§; 0
0.0050,01 0.02

0,05 0,1 0.2
0,5 1.0 2.0
lB. BASE CURRENT (rnA)

5.0

10

20

-3,0
0.2

50

25°C '0 110C

I-- ~

BY8 FOR VSE

IIIIII

II 1111

111111

0.5

1.0

2.0

MMCM3905
MMCM3906

-·K B

STYLE 1:
PIN 1. BASE
2. EMITIER
3. COLLECTOR

K

!

STYLE 1:
PIN 1. BASE
2, EMITTER
3, COLLECTOR

0
F

H
J
K

M

so

L1:~l1
C

DIM

I

A

20

f--K

IT

fr-~~
~H
B
C

10

· rJ¥

2

3

DIM

5,0

~,I

1

K

MILLIMETERS
MIN MAX
2,34
1.98
0,38
0.64
1,24
1,55
0,41
0.25
0,15
0.10
0,51
0.76
0,03
0.08
4.19
4.45
7"
3°

-550C '0 250C

I 11111

j

IC. COLLECTOR CURRENT (rnA)

MMT3905
MMT3906

A

100

IIIIII

II 1111
II 1111

8

'"

40

'evc FO R VCE(.at)

~

~
~

10

FIGURE 10 - TEMPERATURE COEFFICIENTS

+2.0

~

~
'"~ o.6

4.0

IC. COLLECTOR CURRENT (mA)

FIGURE 9 - COLLECTOR SATURATION REGION

~

I

/

O.2

IC. COLLECTOR CURRENT (rnA)

a'"

./

TJ=25OCIIII

A
B
C
0
F

INCHES
MIN
MAX
0.078 0,092
0,015 0.025
0,049 O,OBI
0,010 0.016
0,004 0.006
0,020 0,030
0,001 0.003
0,165 0.175
3"
7°

SEATING
PLANE

MILLIMETERS
MIN
MAX
2,03
2.67
0.51
0.76
1.27
2.03
0,25
0,41
0,08
0.15
4,06
4.57

INCHES
MIN
MAX
0,080 0.105
0,020 0.030
0.050 0.080
0.010 0,016
0.003 0,006
0,160 0,180

K
NOTE:
A Tolerance of .25 mm (.010) must be allowed
at point leads protrude from package for glass
run over.

CASE 176

CASE 28·01

750

100

200

MMT3960 (SILICON)

NPN SILICON ANNULAR

MICRO-T'''

TRANSISTOR

NPN SILICON
HIGH-SPEED SWITCHING
TRANSISTOR

· .. designed for high-speed current-mode logic switching applications.
•

High Current-Gain-Bandwidth Product fT = 2250 MHz (Typ) @ IC = 10 mAde

•

Low I nput and Output Capacitance Cob = 1.3 pF (Typl @ VCB = 4.0 Vdc
Cib = 1.2 pF (Typ) @VBE = 0.5 Vdc

•

Excellent Current-Mode Performance tr = 0.65 ns (Typ)

•

Low Collector-Base Time Constant rb'C c = 15 ps (Typ) @ IC = 30 mAde

•

One-Piece, Injection-Molded Unibloc Package for High Reliability

1

K

~

MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage

Value

3.0
5.0
3.0
225
2.05
-55 to +135

VCEO

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Po

Total Device Dissipation@TA "" 25°C

Derate above 25°C
Operating and Storage Junction
Temperature Range

Unit

TJ,Tstg

STYLE 1
PIN 1

Vdc

2
3.

Vdc
Vdc

mW
mW/oC

°c
INCHES
MIN MAX
O.07B 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
70
3

MILLIMETERS
DIM MIN MAX
A 1.98
2.34
8 0.38
0.64
C 1.24
1.55
0 0.25
0.41
F 0.10
0.15
H 0.51
0.76
J
0.03 0_08
K 4.19
4.45
M
30
70

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

CASE 28

FIGURE 1 - TWO INPUT ORINOR Eel GATE

Vee· GNO

RISE AND FALL TIMES

PROPAGATION DELAY
OUTPUT

M

INPUT

.";:\~ ~~

tP:-~:Pd+

U
INPUT

22

22

120

330

"NOR"

__
A INPUTS B
VEE. -5.2
All Transistors are MMT3960 Types

tpd+

751

tr

r_o:J:~T

10%
tf

INPUT PULSE

"\
I

O%

50%
L __
tpd-

,-1.6V

L-J____
tr 8Rdtf<1.0ns

-O.BV

MMT3960 (continued)

ELECTRICAL CHARACTERISTICS (T A = 250C unless otherwise noted)

I

I

Symbol

Min

Typ

Max

Unit

BVCEO(1l

3.0

-

-

Vde

Colleetor·Base Breakdown Voltage
(lC = 10 jlAde, IE = 01

BVCBO

5.0

Emitter-Base Breakdown Voltage

BVESO

3.0

-

-

Vde

ICED

-

-

10

jlAde

Collector Cutoff Current
(VCB = 3.0 Vde, IE = 0)

ICBO

-

-

100

nAde

Emitter Cutoff Current
(VEB = 1.5 Vde, IC = 0)

lEBO

-

-

100

nAde

100

-

200

>

Characteristic

OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltagel11
(lC = 10 mAde, IB = 0)

Vde

(IE = 10 jlAde, IC = 0)
Collector Cutoff Current

(VCE = 2.0 Vde, IB = 0)

ON CHARACTERISTICS
DC Current Gain(l)
(IC = 10 mAde, VCE = 1.0 Vde)

hFE

80

(I C = 30 mAde, V CE = 1.0 Vde)
Collector-Emitter Saturation Voltage(1)
(lc = 10 mAde, IB = 1.0 mAde

VCE(sa!)

-

Base-Emitter Saturation Voltagel1)
(lC = 10 mAde, IS = 1.0 mAde)

VBE(sat)

0.7

0.2

Vde

0.85

Vde

DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product

MHz

fT

(lC = 5.0 mAde, VCE= 2.0 Vde, f = 100 MHz)

-

(lC = 10 mAde, VCE = 2.0 Vde, f = 100 MHz)
(lC = 30 mAde, VCE = 2.0 Vde, f = 100 MHz)

1600

2000

-

2250
2600

-

Output Capacitance
(VCB = 4.0 Vde, IE = 0, f = 140 kHz)

Cob

-

1.3

2.0

pF

I "put Capacitance

Cib

-

1.2

3.0

pF

rb Ce

-

15

-

ps

td(on)

-

0.95

-

ns

tr

0.65

-

ns

td(off)

-

1.05

-

ns

tf

-

0.75

-

ns

(VBE = 0.5 Vde, IC = 0, f = 140 kHz)
Collector-Base Time Constant

(IE = 30 mAde, VCB = 2.0 Vde, f = 100 MHz)
SWITCHING CHARACTERISTICS (Figure 1)
Turn-On Delay Time
Rise Time

Turn·Off Delay Time
Fall Time

(1)Pulse Test: Pulse Widths; 300 JJs, Duty Cycle S 2.0%.

752

MMT3960A (SILICON)
MMCM3960A (CERAMIC PACKAGE)

NPN SILICON ANNULAR TRANSISTOR

MICRO-MINIATURE

· .. designed for high-speed current-mode logic switching applications.

NPN SILICON
HIGH-SPEED SWITCHING
TRANSISTOR

• High Current-Gain-Bandwidth Product fT = 2250 MHz (Typ) @ IC = 10 mAdc

MMT3960A

• Low Input and Output CapacitanceCob = 1.3 pF (Typ) @ VCB = 4.0 Vdc
Cib = 1.2 pF (Typ) @ VBE = 0.5 Vdc
• Excellent Current-Mode Performance tr = 0.75 ns (Typ)

~

• Low Collector-Base Time Constant rb'Cc = 15 ps (Typ) @ IC = 30 mAdc
• One-Piece, Injection-Molded Unibloc Package for High
Reliability

CASE 28-01

MAXIMUM RATINGS

Symbol

Value

Unit

vCEO

B.O

Vdc

Collector-Base Voltage

VCB

15

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

PD

225
2.05

mW
mW/oC

T J , T stg

-55 to +135

°c

Rating
Collector-Emitter Voltage

Total Power Dissipation @TA = 25° C
Derate above 25° C
Operating and Storage Junction

Temperature Range

MMCM3960A

X
CASE 176

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Ambient

FIGURE 1 - TWO INPUT OR/NOR ECl GATE

PROPAGATION DELAY

U' ,

Vee = GND

RISE ANO FALL TIMES

OUTPUT INPUT

"OR"

tpd- OR
OUTPUT

22

I~PUT~

}Ff

90%

50%
tpd+

10%

tr

\

330

22

,

-I

120

-tf

INPUT PULSE

r---

'---1____
tr and tf<1.0 ns

VEe"'" -5.2

All Transistors are MMT3960A Types

753

-1.6 V

-0.8 V

MMT3960A, MMCM3960A (continued)

ELECTRICAL CHARACTERISTICS

(TA

=2SoC unless otherwise noted)
Symbol

Characteristic

Min

Typ

Max

8.0

-

-

15

-

-

3.0

-

-

-

-

50

-

-

50

30

-

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (II
(IC = 10 mAdc, IB = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC = 10 /LAdc, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(~ = 10 /LAdc, IC = 0)

BVEBO

Collector Cutoff Current
(V CB = 10 Vdc, ~ = 0)

ICBO

Emitter Cutoff Current
(VEB = 1.5 Vdc, IC = 0)

~BO

ON CHARACTERISTICS

Vdc
Vdc
Vdc
nAdc
nAdc

(11

~E

DC Current Gain
(IC = 1. 0 mAdc, VCE = 1. 0 Vdc)
(IC = 10 mAdc, VCE = 1.0 Vdc)

-

200

30

-

-

-

-

0.2

0.75

-

0.9

-

2000

-

2250

-

1600

2500

-

-

1.3

2.0

-

1.2

3.0

-

15

-

-

1.0

-

30

(IC = 30 mAdc, VCE = 1.0 Vdc)
Collector-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1. 0 mAdc)

VCE(sat)

Base-Emitter Saturation Voltage
(IC =·10 mAdc, IB = O. 5 mAdc)

VBE(sat)

-

Vdc
Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(IC = 5.0 mAdc, VCE = 4. 0 Vdc, f = 100 MHz)
(IC = 10 mAdc, VCE = 5.0 Vdc, f = 100 MHz)

fT

(IC = 30 mAdc, VCE = 2. 0 Vdc, f = 100 MHz)
Output Capacitance
(VCB =4.0Vdc, ~ =0, f = 140kHz)

Cob

Input Capacitance
(V BE = O. 5 Vdc, IC = 0, f = 140 kHz)

Cib
r b 'c c

Collector-Base Time Constant
(~ = 30 mAdc, VCB = 2.0 Vdc, f = 100 MHz)

MHz

pF
pF

SWITCHING CHARACTERISTICS
Turn-On Delay Time

(Figure 1)

ton(delay)

Rise Time

(Figure 1)

tr

Turn-Off Delay Time

(Figure 1)

Fail Time

(Figure 1)

toff(delay)
tf

(1IPulse Test: Pulse Width" 300 /LS, Duty Cycie" 2. 0%.

754

-

0.75
1.1
0.85

-

ps

ns
ns
ns
ns

MMT80 15 (SILICON)

NPN SILICON MICRO-T
RF SMALL-SIGNAL
TRANSISTOR

NPN SILICON RF SMALL-SIGNAL TRANSISTOR
· . . designed for low·noise, highilain, small·signal microwave
amplifiers. Ideal for microstrip circuits where high density packaging
is requ ired.
•

Unneutralized Power Gain GpE = 12 dB (Typ) @f= 1.0 GHz

•

Low Noise FigureNF = 3.5 dB (Typ) @f= 1.0 GHz

•

Characterized with Scattering Parameters

1

~'l==B=4=$

!-

K

I

MAXIMUM RATINGS
Rating

Svmbol

Value

VCEO

10

Vde

Coliector·Bose Voltage

VCB

15

Vde

Emitter-Base Voltage

Collector-Emitter Voltage

Unit

VEB

3.0

Vde

Collector Current - Continuous

IC

15

mAde

T otol Power 0 issipotion @ T A = 25°C
Derate above 250C

Po

200
2.05

mW
mW/OC

TJ,T stg

-55 to +135

°c

Operating and Storage Junction

Temperature Range

STYLE 1:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

MILLIMETERS
MIN
MAX
1.98
2.34
0.38
0.64
1.24
1.55
o 0.25 0.41
F 0.10
0.15
H 0.51
0.76
J
0.03
0.08
K 4.19
4.45

DIM
A
B
.C

M

30

7"

INCHES
MIN
MAX
0.078 0.092
0.015 0.025
0.049 0.061
0.010 0.016
0.004 0.006
0.020 0.030
0.001 0.003
0.165 0.175
3"
70

CASE 28·01

756

MMT8015 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

Svmbol

Min

TVp

Max

Unit

Collector-Emitter Breakdown Voltage
(lc = 1.0 mAde, IB = 01

BVCEO

10

-

-

Vde

Colleetor-Bese Breakdown Voltage
(lC = 0.01 mAde, IE = 01

BVCBO

15

-

-

Vde

Emitter-Base Breakdown Voltage
(I E = 0.01 mAde, IC = 0)

BVEBO

3_0

-

-

Vde

ICBO

-

1.0

10

nAde

hFE

25

-

300

-

Collector-Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAdel

VCE(sa!)

-

0.35

-

Vde

Base-Emitter Saturation Voltage

VBE(sa!)

-

1.0

-

Vde

iT

1000

2000

-

MHz

Ceb

-

0.50

1.0

pF

rb'C e

-

4.0

-

ps

NF

-

3.2

4.0

dB

Common-Emitter Amplifier Power Gain (1) (Figure 1)
(VCE~6.0Vde,lc= 1.0 mAde, I = 1.0GHz)

Gpo

6.0

7.5

-

dB

Common-Emitter Amplilier Power Gein (2) (Figure 1)
(VCE = 6.0 Vde, IC = 6.0 mAde, I = 1.0 GHz)

Gpe

10

13

-

dB

OFF CHARACTERISTICS

Collector Cutoff CurrAn.
(VCB = 6.0 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 1.0 mAde, VCE = 6.0 Vde)

(lc = 10 mAde,lB = 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 6.0 mAde, VCE = 6.0 Vde, f = 250 MHzl
Collector-Base Capacitance
(VCB = 6.0 Vde, IE = 0, f = 100 kHz)
Colleetor-Bese Time Constant
(IE = 6.0 mAde, VCB = 6.0 Vdc, f = 31.8 MHz)
Noise Figure (l)(Figure 1)
(lC = 1.0 mAde, VCE = 6.0 Vde, RS

= 50 ohms, f =

1.0 GHz)

FUNCTIONAL TEST

(1) Biased For Minimum Noise
(2) Blated For Optimum Gain

FIGURE 1 - POWER GAIN AND NOISE FIGURE TEST CIRCUIT

757

MMT8015 (continued)

FIGURE 2 - COLLECTOR-BASE CAPACITANCE
versus VOLTAGE

FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT

1.0

x

~ 1.8
t;

".s

z~

;;

i5

o. 81\.

u

" """- r-

if

~ 0.6
w

~

ci: 0.4

~
j

----

fx

b
i

~

I'-..

-:--- r--

::;

j

:::>

'-'

2.0

4.0

6.0

8.0

10

12

14

16

VcE" 6.0 Vde

1.6
1.4
1.2
1. 0

...-

--

18

.i-

20

O. 2

0

1.0

2.0

VCB' COLLECTOR·BASE VOUAGE (VOLTS)

30

f-- VCE =6.10 Vde

=1.0 mAde

25

00

--..,

............. ~

:s
z

4.0

;;:

r---..
r"'--

20

r<.....

"-

to

u:

'"

w
3:
~

W

~ 3. 0
z

-

"-

z

2.0

1.0
0.1

0.2

........

'"

1,..;'"

:l!
to

15

0.1

0.3

0.2

(CIRCUIT A~JUSTED.)

4.0

\

3.0

/

to

~

)(

/'

FOR

__

MjIMUM~ GA)N

----

V

...-

~OISE FIGURE

............... I

~CIRCUIT ADJUSTED FOR
MINIMUM NOISE

1
12~
'!'
1 c:
z

z

1o ~
9.0

....
'f!

:a

8.0

~

7.0

~

'"

..:
z

6.0 :a
5.0

2. 0

~

z
~

4.0
1.00

0.4

0.5

f, FREo.UENCY (GHz)

f= 1.0GHz
5. 0 VCe-6.O Vde

az

"

""-

"-

1.0

2.0

3.0

4.0

IC' COLLECTOR CURRENT (mAde)

758

'"'"

I'-

FIGURE 6 - NOISE FIGURE AND GAIN versus CURRENT
. (See Test Circuit Figure 1)

u:

:>-

I

f, FREo.UENCY (GHz)

~
w
g;

........ r-,..

I--,BIASEO FOR MINIMUM NOISE./'
VCE" 6.0 Vde'
.
10 ric = 1.0 mAde

1.0

6. 0

20

I'..

5

0.5

0.3

10

BIASED FOR O'PTIMUM GAIN
VCE = 6.0 Vde
IC = 6.0 mAde

/

t'-.....

00

:s
w
a:
:::>
to

7.0

FIGURE 5 - UNNEUTRALIZED POWER GAIN
versus FREQUENCY

6.0
f--IC

5.0

3.0

IC' COLLECTOR CURRENT (mAde)

FIGURE 4 - NOISE FIGURE versus FREQUENCY

5.0

......

r-

: o.8
~ o. 6
~ o. 4

8 o. 2

o
o

2.0

5.0

3.0
6.0

~

0.7

1.0

1.5

MMT8015 (continued)

511,522, INPUT AND OUTPUT REFLECTION
COEFFICIENTS
VCE

~

6.0 Vde,I C = 1.0 mAde

FIGURE 7

FIGURES

VCE = 6.0 Vde, IC = 6.0 mAde
FIGURE 9

FIGURE 10

759

MMT8015 (continued)

S12, REVERSE TRANSMISSION COEFFICIENT

S21. FORWARD TRANSMISSION COEFFICIENT

Vee = 6.0 Vde, Ie = 1.0 mAde, ZG = ZL = 50 Ohms
FIGURE 11

FIGURE 12

veE = 6.0 Vde, Ie = 6.0 mAde, ZG = ZL = 50 Ohms
FIGURE 13

FIGURE 14

760

MOC2000

Advance InforIDation

HERMETIC
OPTOELECTRONIC COUPLER
PHOTOTRANSISTOR/IR LED
COUPLED PAIR

NPN PHOTOTRANSISTOR AND
PN INFRARED EMITTING DIODE

· .. Gallium Arsenide LED opticallv coupled to a Silicon Photo Transistor designed for applications requiring electrical isolation, highcurrent transfer ratios, small package size and low cost; such as
interfacing and coupling systems, phase and feedback controls, solidstate relavs and general-purpose switching circuits.
•

High Voltage Electrical Isolation - 1500 V Min

•
•
•

Hermetically Sealed Package
Fast Switching - 2.811S (Tvp)
Excellent Coupling Characteristic
ICL = 0.5 mA (min) @ IF = 15 mA
ICL = 1.6 mA (Min) @ IF = 35 mA

3~4~
BE
MAXIMUM RATINGS (TA = 25°C unless otherwise noted.1

I

Rating

Symbol

I

Value

Unit

PIN 1. ANOOE
2. CATHOOE
3. COLLECTOR

Volts

4. EMITTER

INFRARED EMITTING DIODE MAXIMUM RATINGS
3.0

Reverse Voltage

VR

Forward Current·Continuous

IF

80

mA

Forward Current-Peak
(1.01" Pulse, 300 ppsl

IF

3.0

Amp

I

~=d
1

K

--r
t
F

~~

-11--0

PHOTOTRANSISTOR MAXIMUM RATINGS

Collector-Emitter Voltage

VCEO

30

Volts

Emitter-Collector Voltage

VECO

7.0

Volts

Collector-Base Voltage

VC80

70

Volts

Po

150
1.5

mW
mWf'C

Junction Temperature Range

TJ

-55 to +125

°c

Storage Temperature Range

T stg

-55 to +150

°c

10

,ec

NOTE:
POLARITY DOT ON PACKAGE
OENOTES PIN 1.

TOTAL DEVICE MAXIMUM RATINGS

Total Device Dissipation @ T A
Derate above T A = 25°C

Lead Soldering Time
T = 24O"C, 1/16" from case

=

25°C

DIM

A
B
C
0
E

F
G
K

MILLIMETERS
MAX
MIN
4.70
4.95
4.32
4.06
4.95
5.21
0.51
0.38
0.36
0.46
30.48
26.67
1.27 BSC
20.32
24.13

INCHES
MIN
MAX
0.185
0.195
0.160
0.170
0.195
0.205
0.015
0.020
0.014
0.Q18
1.050
1.200
0.050 SSC
0.800
0.950

CASE 271-02

This is advanca information on a new introduction and specifications are subject to change without notice,

761

MOC2000 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwISe noted,)
Symbol

Min

Typ

Max

Unit

IR

-

-

100

"A

VF

-

-

1.5

Volts

Ci

-

150

-

pF

ICEO

-

-

25

nA

Collector-Emitter Breakdown Voltage
(lC 1.0 mA, Base Open)

BVCEO

30

-

-

Volts

Emitter-Collector Breakdown Voltage
(IE 100 IJ.A, Base Open)

BVECO

7.0

-

-

Volts

hFE

-

200

-

-

Collector light Current
(VCE = 50 V, IF = 15 mAl

ICll

0.5

-

-

mA

Collector Light Current
(VCE = 5.0 V, IF = 35 mAl

ICl2

1.6

-

-

mA

Isolation Voltage (1)
(SO Hz)

-

1500

-

-

Volts

Isolation Resistance (1)
(V = 500 V)

-

-

10 13

-

Ohms

-

-

0.3

Volts

Characteristic
lED CHARACTERISTICS

Reverse Leakage Current
(VR = 3.0 V, Rl = 1.0 M

n

Forward Voltage
(IF

= 50 mAl

Input Capacitance
(VR = 0, f = 1.0 MHz)
PHOTOTRANSISTOR CHARACTERISTICS

Collector-Emitter Dark Current
(VCE

= 30 V,

IF

= 0, Base Open)

=
=

DC Current Gain
(VCE = 5.0 V, IC

= 100 "A)

COUPLED CHARACTERISTICS

COllector-Emitter Saturation Voltage

(lC

VCE(sat)

= 1251J.A, IF = 15 mAl

(11 For this test, LED pms 1 and 2 are common, and PHOTOTRANSISTOR pins 3 and 4 are common.

762

MP 110 (GERMANIUM)

(;)
o

'

0

@.

PNP germanium power transistor designed for
high-gain power amplification in the audio range.

STYlE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

CASE 11

MAXIMUM RATINGS (TC = 25°C unless otherwise noted)

Rating

Symbol

MPllO

Unit

VCEX

65

Vdc

Collector-Emitter Voltage

VCER

40

Vdc

Collector-Emitter Voltage

VCES

50

Vdc

Ie

7.0
15

Adc

Collector-Emitter Voltage

Collector Current-Continuous
Peak
Base Current
Total Device Dissipation @ T C
Derate above 25 0 C

=

25 0 C

Operating and Storage Junction
Temperature Range

IB

2.0

Adc

PD

106
1.25

Watts

W/oc

TJ,T stg

-65 to +110

°c

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

Symbol

Max

Unit

8JC

0.8

°C/W

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 25 mAdc, VBE (off) = 2 Vdc

BVCEX

Collector-Emitter Breakdown Voltage
(IC = 0.6 Adc, RBE = 68 ohms)

BV CER

Collector-Emitter Breakdown Voltage
(IC = 0.2 Adc, VBE = 0)

BVCES

Collector
(VCB =
(VCB =
(V CB =

Cutoff Current
2.0 Vdc, IE = 0)
40 Vdc, IE = 0)
40 Vdc, IE = O,TJ = 75 0 C)

65

-

-

40

-

-

50
ICBO

Emitter Cutoff Current
(VBE = 20 Vdc, IC =' 0)

lEBO

Floating Potential
(V eR = 40 Vdc, IF. = 0)

VFL

-

-

Vdc
Vdc
Vdc
mAdc

0.2
2.0
15
mAdc

-

-

60
74

-

250

8,0
Vdc
0,8

ON CHARACTERISTICS
DC Current Gain (See Note)
(IC = 50 mAdc, VCE = 2 Vdc)
(IC = 1.0 Adc, VCE = 2.0 Vdc)

hFE

-

Vdc

Collector-Emitter Saturation Voltage
(IC = 2.0 Adc, IB = 0.2 Adc)

VCE(sat)

-

-

0.5

Base-Emitter "On" Voltage
(IC = 1.0 Adc, VCE = 2.0 Vdc)

VBE(on)

-

-

0.5

SMALL SIGNAL CHARACTERISTICS
Current-Gain Bandwidth Product
(IC = 1.0 Adc, VCE = 2.0 Vdc)

763

Vdc

MPll0

(Continued)

@

fiGURE 1- POWER· TEMPERATURE DERATING CURVE

nl~
J1-s:-+--Is:~Jil---+-------i1
t

~0--------~25--------~50~------~7~5------~I~OO~~11~0--~125
Te, CASE TEMPERATURE ('CI

fiGURE 2 - DC '!IPRcNT GA!N
200

nr-'l

j =I

TJ

z

~

~

g

i

Ve.

=1

2.J

vi

-

90
80
70

'"

i

;

\
\

~

i:i

..... f',

~

0.5

0.5

0.7

1.0

2.0

3.0

0.3

I

/

II

/

/

5.0 7.0

I

II

/

II

/

0.2

0.1

Ie. COLLECTOR CURRENT (AMP)

fiGURE 4 - ACTIVE REGION SAfE OPERATING AREA
5

10

m:'-

70

/
/

/

5.0

;
~
~

30

"-de '\

:$

~

1.5

"'-

1.0
0.7

.9

05

i
a

~

~

20

/

02

2.0

/

I

/

1.0
3.0

5.0

70

10

20

30

/

/

0.15

2.0

V

55'e

70
5.0
3.0

1.0

V

/

L 25,C L

10

03

01

/

/

V

TJ = loo'e

2.0

8

0.7

fiGURE 5-INPUT ADMITTANCE

50

3.0

0.6

100

7.0

ii:

0.5

0.4

0.3

V". BASE·EMITTER VOLTAGE (VOLTS)

IS

..

V

/

II

0.1
0.3

/

25'C

i

55'C

02

50

/

0.7

'~
0.2

V

V

/

1.0

.9

"

/

/

1/

2.0

r'\

-I-

0.1

/

V

TJ = 100'C /

-55'C

60

I - Vc.- 2.0V

3.0

25'C

100

5.0

100'C

r---~

fiGURE 3- TRANSCONDUCTANCE
7.0

40

/
/

/

II

/
01

Ve., COLLECTOR·EMIITER VOLTAGE IVOLTSI

0.2

0.3

0.4

0.5

V", BASE·EMITTER VOLTAGE {VOLTSI

h ..

COLOR CODE

NOTE: Transistors are color coded to identify gain ranges as
shown. No guarantee is made of gain distribution.
le= I Adc, Vo.=2Vdc

Max.

74

III

orange

100

yellow

119
145
179

133
164

red
green

blue

764

Min.

200

250

0.6

MP 11 OB (GERMANIUM)

PNP GERMANIUM POWER SWITCHING TRANSISTOR
25 AMPERE
... designed for high·current switching applications requiring low
saturation voltages, fast switching times and good safe operating area.

PNP ADE GERMANIUM
POWER TRANSISTOR

• Alloy-Diffused Epitaxial Construction

90 VOLTS
106 WATTS

• Low Saturation Voltage VCE(sat) = 0.5 Vdc @ IC = 5.0 Adc

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage

Symbol

Value

Unit

V CEO

40

Vdc

Collector-Base Voltage

V CB

90

Vdc

Emitter-Base Voltage

V EB

2.0

Vdc

IC

25

Adc

Base Current - Continuous

IB

5.0

Adc

Total Device Dissipation @TC = 25' C
Derate above 25' C

PD

106
1. 25

Watts
W/"C

T J , Tstg

-65 to +110

'c

Collector Current - Continuous

Operating and Storage Junction
Temperature Range

C

SEATING PLANE

/
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junction to Case

FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT
DIM
A

MilliMETERS
MIN MAX

-

B

C

-

D

1.0

la

I-20Hz
Duty Cycle' 0.5"

1.22

E
F

G
H
J

10

K

LJ~~--~~~~~4

.

-----C~I11....___Ad_!...~:'lIII"'a-·-~--_¥3.""O._----'

Q

R

29.90
10.67
5.33
16.64
S.13
3.S4

-

39.37
21.08
7.62
1.32
3.43
30.40
11.18
5.59
17.15
10.67
4.09
26.67

CASE llA

765

INCHES
MIN MAX

0.048
1.177
0.420
0.210
O. 55
0.320
0.151

1.550
0.830
0.300
0.052
0.1 5
1.197
0.440
0.220
.67
D.420
0.161
1.050

MP1108 (continued)

ELECTRICAL CHARACTERISTICS

(Tc =

Characteristic

25°C unless otherwise noted)

Symbol

I

Min

Max

40

-

40

-

2.0

-

-

10

-

20

-

200

65
100
150
55

120
200
300

-

0.5

-

0.45

500

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 100 mAdc, IB = 0)

BV CEO

Collector-Emitter Sustaining Voltage
(IC = 5.0 Adc) (See Figure 1)

V
CE(sus)

Emitter-Base Breakdown Voltage
(IE = 100 mAdc, IC = 0)

BV EBO

Collector-Emitter Cutoff Current
(V CE = 50 Vdc, REB = 100 Ohms)

ICER

Collector Cutoff Current
(V CE = 90 Vdc, VBE (off)

I CEX

= O. 2 Vdc)

Collector Cutoff Current
(V CB = 2. 0 Vdc, IE = 0)

ICBO

Vdc
Vdc

Vdc
mAdc
mAdc
/lAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 1. 0 Adc, VCE

= 2. 0 Vdc)*

= 5.0 Adc,

= 2.0 Vdc)

(IC

VCE

hFE

Red
Green
Blue

Collector-Emitter Saturation Voltage
(IC = 5.0 Adc, IB = 100 mAdc)

VCE(sat)

Base-Emitter On Voltage
(IC = 1. 0 Adc, VCE = 2.0 Vdc)

V
BE (on)

(IC

= 5.0

Adc, VCE

= 2.0 Vdc)

-

Vdc
Vdc
0.60

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = O. 5 Adc, V CE = 10 Vdc)

fT

*For desired hFE range, specify color code.

766

kHz

MP500 thru MP502 (GERMANIUM)
MP504 thru MP506

(D ~)

PNP germanium power transistors for high- gain,
high-power amplifier and switching applications in high
reliability industrial equipment.

STYLE 1

PINl BASE
;

~~~TL~~~OR

CASE 7

(CONNECTED TO
CASEI

MAXIMUM RATINGS

Rating

MP500
MP504
45

Symbol

MP501
MP505
60

MP502
MP506
75

Volts

Unit

Collector-Base Voltage

VCB

Collector-Emitter Voltage

VCES

45

60

75

Volts

Collector-Emitter Voltage

VCEO

30

45

60

Volts

Emitter-Base Voltage

VEB

25

30

40

Volts

60

60

60

Amp

Power Dissipation at T C = 25 0 C

Ie
PD

170

170

170

Watts

Junction Temperature Range

TJ

Collector Current

,

POWER-TEMPERATURE DERATING CURVE

POWER DERATING

~ 175

<
~ 150

The maximum continuous power is related to maximum
junction temperature by the thermal resistance factor.
This curve has a value of 170 Watt. at case temperatures
of 25"C and i. 0 Watts at 1I0'C with a linear relation b'etween the two temperatures such that:

~
f

170 WATTS MAXIMUM

" r-....

125
100
75

~
o

["0...

......

I :~

= 110' - To

allowable P D

°c

-65to+ll0 -

0.5

tf

t-....

0

10

20

30 40 50 60 70
80
Te. CASE TEMPERATURE (OC)

"'"

90 100 110

SAFE OPERATING AREA
0
0
0
0
0

;

!
I
u

0

\

,,,"

~ l'-.
Ie (MAX:)

_~'215~

~

MP504

"170·WATT

POWER DISSIPATION AT

25°C CASE TEMPERATURE

I

de

/

0

500~s

5
50#-,5

_

3

ORLESS

2

~

l'\.'" "" ~ It'- I
Ic(MA~
"- ~
-!:ml ~
""" ~10
!"'-,.

'"

;

500~s

i
iil

1--250",

i"'o.

110-WATT

POWER DISSIPATION AT
25°C CASE TEMPERATURE

Je/

••

0, I
20

30

40

COlLECTOR-EMITTER VOLTAGE (VOLTSI

50

'"

5

2
170-WATT

~

~

_'\~

7-

/'

....t--.l
~

Y

POWER DISSIPATION ,...

I

I--

500~s
~ ~ --250
•• ,_

~
de

~

\ \ OR LESS

25°C CASE TEMPER.,UH

0,5

,

!--50 ••
OR LESS

0,4

0.3
0,2

O. 2

10

10

-

~ ~ -Sm.1m. r _ _

~~

1m.

=~~:

~ l\.

\\

20

Ie (MAX.)- I--

,,,-

~

Sms

0,5
0,4
0,3

o.2
0, I

:~!8A -

~

I

'~

0, S
0, 4
0, 3

40
30

'c(MAX.i-

~

0"

I--;SO",'

~~

50

o '\'\
0

1m;

60

0
0

Sm.

\'"

"'- l1 ~ ~

4
3

2

'c(MAX:I- IMPSOO - f -

'\\

~

.'l
2N2152

S

"-

MP5G2. MP.

MP50!. MP585

MP500. MP504

10

20

30

40

50

COLLECTOR.[MITTER VOLTAGE (VOLTS)

The Safe Operating Area Curves indicate IeVeE limits below which the device will not go into
secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a collector-emitter short.

767

60

70

U

0

10

20

30

40

50

60

70

80

90

COLI£CTOR-EMITTER VOLTAGE (VOlTS)

(Duty cycle of the excursions make no significant
change in these safe areas.) To insure operation
below the maximum TJ, the power-temperature
derating curve must be observed for both steady
state and pulse power conditions.

MP500 thru MP502

MP504 thru MP506(continued)

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Characteristic
(VCB' -4~ V, IE " 0)
(VCB - -60 V, IE" 0)
(VCB" -7~ V, IE" 0)

MP~OO

MP501
MP.02

IeBOI

MP504
MP.O.
MP506

Collector-Base eutott CUrrent
(VcJl" VCBm"", IE" 0, TC " +71"<:)
Collector-Base Cutoff Current

MP~OI

MP502

lEBO

MP.04
MP.05
MP506

lEBO

MP~04

MP~OI

MP50~

MP.02

MP~01!

MP~OO

MP504

MP501
MP502

MP~O.

Collector-Emitter Breakdown Voltage (11
(IC " 1.0 A, IB • 0)

MP500
MP501

MP504

MP~02

MP506

DC Current Transfer Ratio
(Ie " 15 A, VCE " 2 V)

MP.OO

(11

mAde

-

60

200

0.2
0.2
0.2

4.0
4.0
4.0

2.7

I~

-4.
-60
-7.

--

mAde

mAc1c

-

1.0
1.0
1.0

30
.0
12

47
63
20

60
100

VCE(sat)

-

0.11
0.2

0.2
0.4.

VBE(sat)

-

-

0.7
2.0

2.~

2.0

3.6

-

hFEI
hFE

f:"e

Common Emitter Cutoff Frequency
(Ie " I~ A, VCE " 2 V)

10

-

MP~O~

MP~04

(IC" ~OA, VCE " 2 V)
Collector-Emitter Saturation Voltage
(Ie " I. A, IB " I A)
(Ie " ~O A, IB " ~ A)
Base-Emitter Saturation Voltage
(IC " I~ A, IB " I A)
(Ie " .0 A, IB " ~ A)

4.0

-

VEBF

through MP502
through MP506
All Types

4.0
4.0
4.0

-30
-45
-60

MP506

Floating Potential
(VCB" 45V,IE" 0)
(VCB" 60 V, IE" 0)
(VCB" 75 V, IE" 0)

0.9
0.9
0.9

-

BVCEO

Ua"

/lAde

BVCES
MP.OO

11.,

mAde

--

leBO

MP.OO

Till

-

ICBO

(VCB" -2 V, IE " 0)
Emitter-Base Cutoff Cu.rrent
(VEB" -2. V, Ie " 0)
(VEB" -30 V, Ie " 0)
(V EB " -40V,lc- 0)
Emitter-Base eutott Current
(VEB " VEBmax,'c" O,T C " mOc)
Collector-Emitter Breakdown Voltage (1)
(IC " 300 rnA, VEB" 0)

Mito

SIJIIIItI

Collector .. Base Cutoff Current

--

Vde

Vde

Vde

-

_ Vdc

Vde
1.0

kHz

To avoid excessive heating of collector junction,
perform this test with a sweep method.
INPUT AND TRANSFER CHARACTERISTICS

60

COLLECTOR CURRENT

DC CURRENT GAIN

versus BASE·EMITTER VOLTAGE

versus COLLECTOR CURRENT

r
I

VeE

/

2V

50
MP504·506
ii:

'"....
~

~

1:l 30

~

20

10

o

z

~

~1:l

MP500 - 502

Q

i

o

./

80Hr:--'oi---t--""""r----t---f----i

601----"II--"~----1r----+---+---i

~

g 40 1---+--~~---1~~-+---+---i

II

.2

rr--r---,----,---,-----,--....,

100 1-+---+---+---+--+-----l---4

V

/;V

'"
8

/1

VI

40

VI

120

i

I(V

1.0
1.5
0.5
2.0
V", BASE-EMITTER VOLTAGE (VOLTSI

2.5

10

768

20
30
40
Ie, COLLECTOR CURRENT (AMPI

50

60

MP600 (GERMANIUM)
thru

PNP Germanium power transistors designed for highcurrent switching applications requiring low saturation
voltages, short switching times and good sustaining voltage capability.
• Alloy Diffused Epitaxial Construction
• Low Saturation Voltages VCE(sat) = 0.75 Vdc (Max) @ IC = 25 Adc
VBE(sat) = 1.2 Vdc (Max) @ IC = 25 Adc

MP603

STYLE l'
PIN 1. BASE
1. EMITTER
CASE' COLLECTOR

CASE 11A

MAXIMUM RATINGS

Symbol MP600 MP601 MP602 MP603

Rating

Unit

VCEO

50

60

70

80

Vdc

Collector-Base Voltage

VCB

75

75

90

90

Vdc

Emitter-Base Voltage

VEB

1.5

Vdc

Collector Current - Continuous

IC

25

Adc

Base Current - Continuous

IB

5.0

Adc

Total Device Dissipation @T C =25°C
Derate above 25°C

PD

85
1.0

Watts
WjOC

T J , T stg

-65 to +110

°c

Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Symbol
eJC

Characteristic
Thermal Resistance, Junction to Case

Max

Unit

1.0

°C/W

FIGURE 1 - SUSTAINING VOLTAGE TEST CIRCUIT

Vertical

1.0

f

=20 Hz

Duty Cycle = 0.5%

U

10

0-150

~~Push~T.e~st
~

A_d~jUv~~I~B_=_~_~____~~______~

_______

**Close Switch S, for IC = 25A Test

769

5.0

3.0

MP600 thru MP603 (continued)
ELECTRICAL CHARACTERISTICS

(Te

=25'C unless otherwISe noted)

Characteristic

Symbol

Min

Max

50
60
70
80

-

50
60
70
80

-

30
40
40
50

-

-

1.5

-

-

0.4

-

10

-

10

-

200

-

5.0

50

-

-

0.75

-

1.2

-

0.6

1.0

-

-

6.0

!lS

-

13

/.Is

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC " 100 mAdc, IB " 0)

BV CEO

MP600
MP601
MP602
MP603

Collector-Emitter Sustaining Voltage (See Figure 1)
(IC " 5.0 Ade)

MP600
MP601
MP602
MP603

Floating Potential
(V CB = 60 Vdc, IE

Collector Cutoff Current
(V CE = 75 Vdc, VBE (off) "0. 2 Vdc)

= 90

Vdc, V BE (off)

MP602, MP603

= O. 2 Vde)

Collector Cutoff Current
(V CB = 2.0 Vdc, IE = 0)

I CBO

Emitter Cutoff Current
(V EB = O. 5 Vdc, IC = 0)

lEBO

-

-

mAdc

I CEX

MP600, MP601

-

Vdc

V EBF

= 0)

-

Vdc

BV EBO

Emitter-Base Breakdown Voltage
(IE" 100 mAdc, IC = 0)

Vdc

VCE(sus)

MP600
MP601
MP602
MP603

(IC "25 Adc)

(V CE

Vdc

!lAdc

mAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 5.0 Adc, VCE

= 2.0

hFE
Vdc)

Collector-Emitter Saturation Voltage
(IC = 25 Adc, IB = 1. 25 Adc)

VCE(sat)

Base-Emitter Saturation Voltage
(IC = 25 Adc, IB = 1. 25 Adc)

VBE(sat)

Emitter-Base On Voltage
(IC = 5.0 Adc, VCE = 2.0 Vdc)

VEB(on)

Vdc

Vdc

Vdc

Joule

PET

Pulse Energy Test (See Figure 2) tH
(I C = 3. 3 Adc, V CE = 30 Vdc)

SWITCHING CHARACTERISTICS
t

Rise Time
(VCC

Storage Time

= 22

Vdc,

Ie = 15

Adc, 1B1

= 1B2

" 1.5 Adc)

t

See Figure 3

Fall Time

r
s

1

10

!ls

I11Puise Test: Pulse Width = 10 ms, Duty Cycle = 2. 5%.

FIGURE 3 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - PULSE ENERGY TEST CIRCUIT
1.5

TUT

Adj for
IC=3.3A

Adj for

0.10

_1~O/.lS-A+15V
Adjfor

U

VCE =30 V

:=O--Jow. . . .

100/.ls
Input Puis.

tr ,tf< 10 ns
PRF = 60 Hz

*C. P. Clare HGSM1011 Or Equivalent
Adj for 10 ms, Pulse Width
and 2.5% Duty Cycle

770

22 V

10

-15.5

Ie = 15A
1.5

t+--I

Input

MR830

TUT

MP 1613 (GERMANIUM)
Ol
o
~
@I

0

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE COLLECTOR

Medium-current germanium PNP power transistor,
designed for use in 12 Volt vertical deflection circuits
in television receivers; features: high breakdown
voltage, low leakage current, and low saturation voltage.

CASE 11

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Collector-Emitter Voltage

v CEO

75

Vdc

Collector-Emitter Voltage

VCES

90

Vdc

Collector-Base Voltage

v CB

100

Vdc

Emitter-Base Voltage

VEB

50

Vdc

IC

7.0

Adc

15

Adc

2.0

Adc

Collector Current - Continuous
- Peak
Base Current - Continuous
Total Device DiSSipation @ TC

IB
=

25°C

PD

Derate above 25°C
Operating and Storage Junction
Temperature Range

85

Watts

1.0

W/"C

T J' T stg

-65 to +110

°c

Symbol

Max

Unit

IIJC

1.0

°C/W

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

=2SOC unless otherwise noted)

ELECTRICAL CHARACTERISTICS

(Tc

I

Symbol

I

Characteristic

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltagt.(1)
(IC = 300 mAde, IB = 0)

BVCEO

Collector-Emitter Breakdown Voltaget 1)

BVCES

('c =250 mAde,

VBE

= 0)

Collector Cutoff Current
(VCE = 37.5 Vde, IB = 0)
Collector Cutoff Current
(VCE = 90 Vde, VBE = 1. 0 Vde, TC

IC

mAde

10
mAde

ICBO

=2.0 Vde, 'E =0)
= VCB max, 'E =0)
= 12 Vde,

mAde
30

ICEX

= +100"C)

0.06
5.0

Emitter Cutoff Current

(V BE

Vde
90

ICEO

Collector Cutoff Current
(VCB
(VCB

Vde
75

'EBO

=0)

100

""de

ON CHARACTERISTICS
IX: Current Gain
=50 mAde, V CE

('c

(IC

= 1.0 Ade,

V CE

hFE

=2.0 Vde)
=2.0 Vde)

120
40

Collector-Emitter Saturation Voltage
(IC =3.0 Adc, IB = 300 mAde)

VCE(sat)

tU SWeep Test: 1/2 sine wave, 60 Hz.

771

200

70
Vde

0.25

MP 1613 (continued)

-

200

DC CURRENT GAIN versus COLLECTOR CURRENT

r---

!--

TJ= +IOO'C

---- --

-r++++25'C

rr-

-40'C

0.01

0.015 0.02

0.03

0.05

0.1

Vee = l.OV

0.15

0.2

-

t--.

l-

r-- t:--

0.5

0.3

Ie-leBo
I, +Ielo'-

h"

1.0

2.0

1.5

5.0

3.0

10.0

Ie. COLLECTOR CURRENT (AMPS)

POWER·TEMPERATURE DERATING CURVE

~i

;::!

~i

!=
,sfl5
... ~

11

. 0

~*'~t

25

50
75
Te. CASE TEMPERATURE I'CI

100 HO

SAFE OPERATING AREAS
20

IS
10
7.0

1 ;

125

=

I

2.0

1.0
~ 0.7

.Ji 0.5
0.3

0.2
0.1

"-

"- ."\.
'\.~.oms
de'{'\.

3.0

~

10 , VOE limits below which the device will not go into secondary breakdown. Collector load lines for specific cir·
cuits must fall within the applicable Safe Area to avoid
causing a collector-emitter short. (Case temperature and
duty cycle of the excursions make no significant change
in these safe areas.) The load line may exceed the BVCES
voltage limit only if the collector current has been reduced
to 20 mA or less before or at the BVOES limit; then and
only then may the load line be extended to the absolute
maximum voltage rating of BVOBO' To insure 'operation
below the maximum T J • the power-temperature derating
curve must be observed for both steady state and pulse
power conditions.

"-.SOILS

SODILS

'\.

5.0

<> 1.5

NOTE: - The Safe Operating Area Curves indicate

""-

'\

~

-

"-

~

"\

'\...

EXPANDED ~.""
LOW CURRENT AREA
(SEE NOTE)

V

Lr1
AREA

"-

I~" ~
'\.
'\.\

"

I'\.

'\.

20 A

~J
o

10

75

=
20

"-

100/1

30

40

\

"'I'\.

50

60

Ve" COLLECTOR·EMITTER VOLTAGE (VOLTSI

'"

70

80

12 VOLT VERTICAL DEFLECTION CIRCUIT

100

2.0k

+
100

500 -15 V

MPS6517

600 ILF
lOV
1.2 k

600ILF
3.0 V

+12 V

772

MP2000A (GERMANIUM)
MP2100A
MP2200A
MP2300A
MP2400A
PNP GERMANIUM POWER TRANSISTORS

25 AMPERES ADE
POWER TRANSISTORS

. . . designed for high·voltage switching. and power converter
applications.
•

Alloy-Diffused Epitaxial Construction

•

Low Saturation Voltages VCE(sat) = 0.6 Vdc (Max)
VSE(sat) = 1.0 Vdc (Max)

@

@

30-120 VOL T8
106WATT8

IC = 25 Adc
IC = 25 Adc

•

Fast Switching Timeston = 11IJ.s (Typ) @ IC = 10 Adc
toff = 21IJ.s (Typ) @ IC = 10 Adc

•

Guaranteed Excellent Safe Operating Area

MAXIMUM RATINGS·
Rating
Symbol MP2000AIMP2100AIMP2200AIMP2300AIMP2400A Unit
Collector-Emitter VOltage
80
100
120
Vdc
30
60
VCEO
Emitter-Base Voltage
2.0
Vdc
VEe
Collector Current-Continuous
25
Adc
IC
tsase (;urrent Continuous
5.0
Adc
Ie

Po

Total Device Dissipation
@TC·250C

Watts
W/OC

106
1.25

Derate above 25°C

°c

65to+110

Operating and Storage Junction TJ, Tstg

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case

STYLE 1:
PIN 1. BASE

2. EMITIER
CASE: COLLECTOR
FIGURE 1 -POWER-TEMPERATURE DERATING
14 0

OIM
A

B

00

C
D

..........

"

0

G

'"

H

J
K

.........

Q

"
o
40

-

1.22

E
F

.........

20

MILLIMETERS
MIN MAX

60

80

R

'"

120

TC. CASE TEMPERATU RE IOC)

773

-

-

-

0.048
1.177
0,420
0.210
0.655
0.320
0.151

1.550
0.830
0.300
0.052
0.135
1.197
0.440
0.220
0.675
0,420
0.161
1.050

CASE l1A

..........

100

29.90
10.67
5.33
16.64
8.13
3.84

39.37
21.08
7.62
1.32
3,43
30,40
I1.1B
5.59
17.15
10.67
4.09
26.67

INCHES
MIN MAX

(1)For devices with Lugs (TO·41) contact
your local Motorola sales office.

MP2000A, MP2100A, MP2200A, MP2300A, MP2400A (continued)
ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

Min

TVp

Max

30
60
80
100
120

-

-

Unit

OFF CHARACTERISTICS
Coliector~Emitter

Breakdown Voltage

Vde

SVCEO

IIc = 0.1 Ade,IS = 0)

MP2oo0A
MP2100A
MP2200A
MP2300A
MP2400A

Collector-Emitter Sustinaing Voltage (Figure 7)

-

-

-

Vde

VCE(,u,)

IIc = 8.0 Ade)

-

-

MP2000A
MP2100A
MP2200A
MP2300A
MP2400A

60
80
90
100
120

-

MP2oo0A
MP2100A
MP2200A
MP2300A
MP2400A

60
70
75
80
90

-

2.0

-

-

-

-

10
10
10
10
10
25
25
25
25
25

ICSO

-

-

200

j.tAdc

hFE

25

-

-

-

Collector-Emitter Saturation Voltage
(lC = 25 Ade, IS = 2.5 Ade)

VCE(,.,)

-

-

0.6

Vde

Base-Emitter Saturation Voltage

VSE(sal)

-

-

1.0

Vde

VBE(on)

-

-

0.8

Vde

IIc = 25 Ade)

Emitter-Base Breakdown Voltage

BVEBO

-

-

-

-

-

-

Vde

(IE = 0.5 Adc, IC = 0)
Collector Cutoff Current
(VCE = 60 Vde, VSE(off) = 0.2 Vde)
(VCE = 80 Vde, VSE(off) = 0.2 Vde)
(VCE = 100 Vde, VSE(off) = 0.2 Vdc)
(VCE = 120 Vde, VSE(off) = 0.2 Vdc)
(VCE = 140 Vde, VSE(off) = 0.2 Vdc)
(VCE = 60 Vdc, VSE(off) = 0.2 Vde ,TC = 850 C)
(VCE = 80 Vde, VSE(off) = 0.2 Vde ,TC = 85 0 C)
(VCE = 100 Vde, VSE(off) = 0.2 Vde ,TC = 85 0 C)
(VCE = 120 Vde, VBE(off) = 0.2 Vde ,TC = 85 0 C)
(VCE = 140 Vde, VBE(off) = 0.2 Vde ,TC = 85 0 C)

mAde

ICEX
MP2oo0A
MP2100A
MP2200A
MP2300A
MP2400A
MP2000A
MP2100A
MP2200A
MP2300A
MP2400A

Collector Cutoff Current

-

(VCS = 2.0 Vde, IE = 0)
ON CHARACTERISTICS

DC Current Gam
(lC = 8.0 Ade, VCE = 2.0 Vde)

(lC = 25 Ade, IS = 2.5 Adcl

Base-Emitter On Voltage
(lC = 8.0 Ade, VCE = 2.0 Vde)
DYNAMIC CHARACTERISTICS

430

kHz

Current-Gain

IT

Turn-On Time (Figure 2)
(lC = 10 Ade, IS1 = 1.0 Ade)

ton

-

11

-

~,

Turn-Off Time (Figure 2)
(lC= 10Ade,IS1 = IS2= 1.0Ade)

Iofl

-

21

-

~,

Bandwidth Product
(lC = 0.5 Ade, VCE = 5.0 Vde, f = 100 kHz)

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SW)TCHING TIME TEST CIRCUIT

VCC=-30V

100

RC

50

Scope

g
InpurPulse
tr, tf~ 100 ns
PRF = 60 Hz

MR830

~
;::

20

==
-

~

VCC 30 V
181=182 IcllO

-

I,

V

Is

/- f-

r-

10

If

5.0

Note: RB and RC are varied
to obtain desired test
conditions.

2.0

1\

~

V
1.0
0.1

0.2

0.5

1.0

2.0

5.0

10

IC, COLLECTOR CURRENT (AMP)

774

20

\
50

100

MP2000A, MP2100A, MP2200A, MP2300A, MP2400A (continued)

FIGURE 4 - THERMAL RESPONSE
1.0
1=0 0.5

§N

- -- .......
?

O.5

:J

«

'"

0.2

ti);:U-

011

~:5 0.2
wz
Zu

-

~ ~ 01

r-r-

1===0.05

5~

:= ~ 0.05 1---0.02

"'~

«

..J;!!l-

'"~ 002
r-

0.01
0.1

-

~NGLE PULSE

02

~

f-

05

I IIIIII

10

2.0

50

10

20

50

100

30
10

..'"
~

2~

==F

-

~

5. 0

~_

3.0

8

TJ <; 110 0 C r--

::} 2.0

MP2200A
MP2300A
MP2400A
20

10

5.0

10

1

The data of Figure 5 is based on TJ(pk)

100

200

10

50 70

20

30

50

J, ve~su;

0.8

:z:

0.6

z

:1i

2: 0.4

:;;:
to

a:i

""""
a
J:'

0.2

---

0
0.1

V

::;:::: r.---

.....

70 100

Vc!@ Ic:

2.0

c&J11

10mH

"

~""
5.0

ICADJ

IOn

Outy Cycle = 50%

3.0

H

0~51}

MP2000A·2200A
.. MP2300A
MP2400A

~p24rOAI
1.0

300

Scope

C

~
fOOA.2200~~
MP2300A
0.5

200

FIGURE 8 -CLAMPED INDUCTIVE SAFE OPERATING
AREA TEST CI RCUIT

~~ ~

0.2

100

values less than the limitations imposed by second breakdown.
(See AN-415)

2DPPS

trrirYE,T,V

70

thermal limitations will reduce the power that can be handled to

II I

;[!'

g:

I

calculated from the data in Figure 4. At high case temperatures,

= 1100 C; TC is variable

10

50

30

140V -

depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(Pk):S1100 C. TJ(pk) may be

VCE, CO LLECTO R·EMITTER VO LTAGE IVOLTS)
30

I

20

..... 120 V

VCE,COLLECTOR-EMITTERVOLTAGE (VOLTS)

FIGURE 7 -CURRENT·GAIN-BANDWIDTH PRODUCT

20

MP2000A
MP2100A - MP2200A
MP2300A
MP2400A

1.0
50

There are two limitations on the power handling ability of a

10
~ 1.0

\

1\

a 7.0

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

...

5000 10,000

1\'1\

Test CirCUit

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

iii
c

I
2000

1000

1
See Figure 8 for

t-

dc~5.0ms

0.1
2.0

b

500

20

:;

2.0 - - - THERMAL LIMIT, TC =
.......
1.0 --SECOND BREAKDOWN
LIMIT
1== MP2000A
0.5
MP2100A
0.2

t;

200

FIGURE 6 -CLAMPED INDUCTIVE SAFE OPERATING AREA

l~ri~-

...... 1.0m"

'r-.

=> 5.0

g=>

II II

30

:'>

~

~~j

I

PULSE WIDTH 1m,)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA

~
8

prJUl

==

-

TJlpk) - TC = 'JC rll), 0) Ppk 10 = 0)

100

'"
'"""

DUTY CYCLE, 0 = 1)/12

-

Read Time At q

I),

..'"
;

=

0Jcll) = rll)) 0JC
oJC = 0 80 C/W Max
o Curves Apply For Power
Pulse Tram Shown

V

~

:.--

r--

10

775

AOJ
CLAMP

VOLTAGE

0-5.0
ADJUST 18=IC/IO

IC, COLLECTOR CURRENT (AMP)

II

PUSH TD TEST

-AdiUst wch that
IS>IC

MP2000A, MP2100A; MP2200A, MP2300A, MP2400A

FIGURE 10-COLLECTORSATURATION REGION

FIGURE 9 - DC CURRENT GAIN

300

--

10 0

D

~o

VCE: 1.0 V t -

f-

(continued)

~

O. 5

II

II.

IC: 1.0 A

~ o. 4

lI-TJ: -55°C

'"~

""-

0
15°C
0

"\
~,

Ilbobc
ITI! \

10
0.03 0.05

0.1

0.3 0.5

3.0 5.0

1.0

10

~

D. 1

~

O. I

_

1\

o

1\

f\..

~

>
30

'"
:;

0.02

0.05

0.1

-

0.4
~

+5.0

0.1

0.5

1.0

VSE(on) @VCE: 2.0 V
I

1/

2.0

5.0

10

;;

..s +3.0
....
~

./

8

10

50

-1.0

~

-1.0

iii
....

-3.0

II

II

0vs'for VSE(sat)

II II

II II

-5.0
0.1

100

=>

0

'"j

1.0

8
~ 0.1

0.01
+0.5

TJ:l00oC

- -- --

......

I

0.2

0.5

1.0

r-

--- --

-

_. -

--

--

+0.3

+0.2

+0.1

5.0

10

20

50

100

FIGURE 14 - EFFECTS OF BASE EMITTER RESISTANCE

VCE: 0.5 SVCEO

'If

I,

20

-r-......

'I ' "

5
2.5'

.......

~~ :;-~

~

IC

\"'"

/'
1.25 ICES

"'"

~~

.......

-...::::

......:

-0.2

-0.3

-0.4

'-

.......

~

i-.

For Values of ICES See Fig. 13

f- FORWARD BIAS-I---::-

-0.1

~

.........

- - - VCE 0.5 BVCEO
VCE 2.0V=

,y

500Cr-REVERSE BIAS-1--::-\ 15°C
+0.4

2.0

IC. COLLECTOR CURRENT (AMP)

fJI

."

75°C

1::

I--

aVC for VCE(sat)

w
~

100.000

",7
10

'"

'"
....

IC:ICES

10

+2.0

FIGURE 13 - COLLECTOR CUTOFF REGION

APPROXIMATE LOCUS
_
100 =,WHERE IC: ICBO - ,

5.0

APPLIES FOR IC/IB 
>'

1
....

0.5

U

0.6

0.2

0.1

FIGURE 12 - TEMPERATURE COEFFICIENTS

O.BI---1HH-t+tt+f---+--++H-I-H-I--+-++I+I++I
II

«
0

r-- Ir--

....... ......

IS. SASE CURRENT (AMP)

JO~++-I+++--+-+-+++H++--+-+-++++HI

w

-r-.

0
0.01

FIGURE 11 - "ON" VOLTAGES

r - TJ

\..

1\

'"

IC. COLLECTOR CURRENT (AMP)

~

10 A

> O. 3

0

~
0

10 A

'"
~
o

0

1.0

I

5.0 A

1.0
10

-0.5

20

30

40

. 50

60

70

80

TJ.JUNCTION TEMPERATU.RE (OC)

VSE. BASE·EMITTER VOLTAGE (VOLTS)

776

90

-

100

110

MP2060 thru MP2063 (GERMANIUM)

g)~
PIN I. BASE

CAS~·: ~~I~ic~OR

PNP germanium power transistors for audio amplifier
applications.

CASE 11

MAXIMUM RATINGS

Rating

Symbol MP2080 MP2061 MP2062 MP2063

Collector-Emitter Voltage

VCES
VCEO

Collector-Emitter Voltage
(Open Base)
Collector-Base Voltage

VCB

Emitter-Base Voltage
Peak Collector Current
(PW;; 5 ms)
Base Current (Continuous)
Storage Temperature

60

75

Vdc

25

35

50

60

Vdc

40

60

75

90

Ie
Ie

...

IB

..
11

TC
PD

Total Device Dissipation
@I'c = 25 0 C
Derate above Z5 0 C

45

..

Tstg

Operating Case Temperature

30

..

VEB

Collector Current (Continuous)

Junction to Case

Thermal Resistance

20

...

7.0

•

Vdc
Vdc

15

•

Mc
Mc

2.0

..

Mc

.
•
...

-65 to +110

...

- 65 to +110

•

85
1.0

~

Thermal Resistance

Unit

°c
°c
Watts
W/OC

BJC

1.0

°C/W

BCA

32.7

°C/W

Case to Ambient

POWER· TEMPERATURE DERATING CURVE

Tc

100
85
80

~Tc

60

~TA

--- r---::::::::

...........

............ r--......

40

20

o

o

........

50
75
TEMPERATURE (Oe)

25

777

-

~

100

110

125

MP2060 thru MP2063

(continued)
ELECTRICAL CHARACTERISTICS

fTc = 25°C unless otherwise ~tedt

Cllal'lCllrl$tlts

Sy*I

DC Forward Current Gain (Note I)
(IC = 3 Ade, VCE = Z Vde)

Collector-Emitter Saturation Voltage
= 3.0 Ade, IB

= 0.3 Ade)

Base-Emitter saturation Voltage

(Ie

= 3.0 Ade,ls = 0.3 Ade)

-

ISO

-

600

-

VCE(a.t)

-

-

0.Z5

VBE(a.t)

-

-

0.70

3.0

-

-

--

--

--

-

gFE

= 3.0 Ade, VCE' Z Vde)

Collector.. EmItter Breakdown Voltage-

(Ie •

250 mAde)

MPZ060
MPZOSI
MP206Z
MPZ063

Collector-Emitter Sustalnlng Voltage*
(Ie = 500 mAde)

MPZ060
MPZ061
MPZ06Z
MP2063

Collector-Base Breakdown Voltage
(IC = 20 mAde)

MP2060
MP2061
MP2062
MP2063

BVCES *

60
75
VCEO(sua)*

60
BVCBO
40
60
75
90

MP2060
MP2061
MP2062
MP2063

Collector-Emitter eutott Current
(VCE

= 30 Vde,
= 45 Vde,

(VCE

(VCE

(VCE

Vde, TC

VBE(ofl)

=I
=I

Vde, TC

= 1000C)
= 100OC)

=60 Vde,

VBt(off)

=I

Vde, TC

= 1000C)

= 75 Vde,

VBE(off)

=I

Vde, TC = 1000C) MP2063

VBE(off)

MP2060

(VBE = 20 Vde)

=

-

-

-

---

-

-

-

----

Vde

Vde

mAde

0.060
1.0
1.0
1.0
1.0

-

10
10

10

lEBO

-

-

1.0

hie

-

25

-

-

3.0

10

mAde

ohms

%

~

(IC =-500 mAde, VCE = -12Vde,RS = 30ohma,R L = 25 ohms,
RE (unbypassed) = 0.33 ohm, Pout = 2 watts)

Vdc

-

-

Distortion

mhos

mAde

-

1 mAde, f = I kHz)

kc

Vde

-

Input Impedance
(IC =-500 mAde, VCE = -12Vde, ib

-

Ulit

Vde

IeEX

MP2061
MP2062

Emitter-Base Cutoff Current

Z5
35
40

leBO

= 2 Vde)
= 25 Vde)
= 35 Vde)
= 40 Vde)
= 60 Vde)

30

45

Collector-Base Cutoff Current
(VCB
(VCB
(VCB
(VCB
(VCB

MIl

30

DC Transconductance

(Ie

TJp

IT

CUrrent Gain-Bandwidth Product
(Ie = 0.5 Ade, VCE = IZ Vde)

(Ie

lila

b FE

-

·Sweep Test: 1/2 sine wave, 60 Hz

NOTE: upon customer's request the
transistors will be numerically coded to identify matched pairs. The
dc current transfer ratios are sorted into approximately 1: 1. 5 ranges.
Any two devices within a bracket
constitute a matched pair. No guarantee is made of gain distribution.
IC

= 3 Adc,

Bracket

Min

Max

-1

30
40
50
60

45
60
75
90
120
150

-2
-3
-4

VCE = 2 Vdc

778

-5

80

-6

100

MP2060 thru MP2063

(continued)
NORMALIZED COLLECTOR·BASE CURRENT

COLLECTOR·EMmER CURRENT versus BASE·EMITTER RESISTANCE
300

500

200

[...--"""

300

I

200

100

I

/'

/
/

/
/

---

./

TJ =100·':--

J

IL

.....

/

/

/

/

I

/
TJ

70·C

./

Ye.=¥..YeEO
1

.001

.003 .005 .01

.03.05 0.1
0.3 0.5 1
RIE, BASE.£MITTER RESISTANCE (K OHMS)

COLLECTOR CURRENT versus BASE·EMITTER VOLTAGE

!:g

-40·C

8
I

I

I

0.3

I

/ / I

0.2

/I

0.1

0.2

0.5

~

TJ

/

/
/

100·C

I

'70.C

/

/
I

/

0.1
0.05
0.03 -TJ
0.02

Ve.=2Y

I

/

.J! 0.3
0.2

I

I

3:0 f=TJ
2.0

~
~ 1.0

I

0.5

/

1 50

I13

J

/

10

c/+I!

TJ = +100·C

1.0

V/

/ /

50
30
20

/

VI V

2.0

125

100

50
75
TJ, JUNCTION TEMPERATURE (·CI

100

'//

/

3.0

_

./

.//

5.0

;

Ve,=2V

300
200
~

A:

25

/

COLLECTOR CURRENT versus BASE·EMITTER VOLTAGE

10

~

/

o

3 5 10

/

2S·C

vc.= 'hVCEO

V

0.01

0.4

0.6

0.8

1.0

0.2

0.3

v.., BASEiMITTER VIltTAGE (VOLTS)

0.1

-0.1

-0.2

-0.3

V... BASE·EMITTER VOLTAGE (VOLTS)

DC CURRENT GAIN versus COLLECTOR CURRENT
100
~

1li

150

z

~100

u

i

--

V

~

---- - -f--

50

o

010

.030

-!
f--

.

"-r-

I

-,....

Ve.=2V
TJ= 100·C

I'--.
TJ

t--

.010

TJ

0.1

0.5
0.3
Ic, COLLECTOR CURRENT (AMPI

779

1.0

hFl_lc-lclo
- 1,+ lelo

r--- t:- ---......

2S·C

t-

4O·C

3.0

5.0

MP2060 thru MP2063 (continued)

COLLECTOR-EMITTER SATURATION VOLTAGE VARIATIONS
v,rsus JUNCTION TEMPERATURt'

,
\

,

I

,I

~~

.1\

,

,

I
I
I

-'"

'~

I~

~ l\.r"'-, ',.

~

25'C TJ
- - - lOO'C
-----4O'C

.......

-- ..

'~"- t'-....

~~

- -- r_-- - - ----- --..........
~

~~

....

~
....

"-

...

;;: IeTIA

20

10

so

30

70
100
200
I" BASE CURRENT (mAl

300

15

15

""so,..

r--........

10

i'.....

500!,-,

.......

:--..

""-.,.
De'

-

...........

0.2
0.15

1:J\
'
~LlMIT
J
~~
o

0.1

--r

o

~...l

i

\ \

"

2

B 1.5
! 1

1,\ \

~

0.7

~

0.3
0.2
0.15
0.1

10

20
15
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

25

f'....

'-DC

W

"-

10

b~l;

l

iii

"-

3

OC~

~ 2
~ 1.5

~

1
8 0.7
JJ 0.5
0.3
0.2
_015
0.1

"'5ms

~

~LOW EXPANDED
~
CURRENT AREA

~ 1~~'1
o

o

I

10

60

75/

,

'\.

\.

""

1\

\

\
40

45

MP2063
20
15
10

~

'\

"'\ I"

-""
" ",,,-

'"

"-""

~LlMITL
b~

\.\

10
15
20
25
30
35
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

5OO!,-s ..:--"

l

.\

f*"'". --;/

30

~ ........ SOlo'S

" J".,

'"I"

20mA

7

'\

-,\",

'"

EXPANDED
"LOW CURRENT AREA

MP2062
20
15

........

"," ~

V.

~ 0,5

'\.

~.$

"'\.

"5m,

~ 3
s

40/1

30

2000

1000

5OO!,-$

"-

..l

L'--.. ~ '\ .li

~LOW EXPANDED
.:"..
CURRENT AREA

0.3

~

_

""

""'I.'" 50

......

~

~5m'

.

rr

20

J

" "-

Ic==7 A

---=

MPZ061

20

10

~-

700

500

MP2060

t- -

}"

~

~

~50!,-s

5OO1o's,

I'\.~m'

r".

'"

'\.

~

20
30
40
50
VeE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

"'-

1,\ "-

.....

V EXPANDED ~.'"
~ LOW CURRENT AREA

~

""

"'\

DC~

"I"
"

"

I"

0_3
0.2

'\

-"'"

~""1
AREA

'"

75

_\.

~
20 A

~"'"5 )
J

"'-\

90/

'\

~

10

780

'\.

~

0.1

60

"- .....

20
30
40
SO
60
VeE, COLLECTOR-EMITTER VOLTAGE (VOlTS)

70

80

MP2100A, MP2200A, MP2300A, MP2400A (GERMANIUM)
For Specifications, See MP2000A Data.

MP3730 (GERMANIUM)
MP3731
5 and 10 AMPERE
POWER TRANSISTORS
PNP GERMANIUM POWER TRANSISTORS

PNP GERMANIUM
EPITAXIAL BASE
200-320 VOLTS
56 WATTS

PNP Germanium power transistors with the MP3730 designed
primarily for medium-power, vertical deflection amplifier applications
in television receivers and the MP3731 designed for horizontal amplifier applications_

•

Low Co IIector Cutoff Current 'CES =5.0 mAde (Max) @ VCE =200 Vde MP3730
=10 mAde (Max) @ VCE =320 Vde MP3731

•

Low Collector Emitter Saturation Voltage VCE(sat) • 0.5 Vde (Max) @ IC • 50 mAde MP3730
= 0.5 Vdc (Max) @ IC =6.0 Adc MP3731

•

Low Base·Emittar Saturation VoltageVSE(sat) =0.8 Vde (Max) @ IC • 6.0 Adc

MP3731

·MAXIMUM RATINGS
Rating

Symbol

MP3730

MP3731

Unit

VCES

200

320

Vdc

Coliector·Ba.. Voltage

VCB

200

320

Vdc

Emitter-Base Voltage

VEB

Collector-Emitter Voltage

Collector Current - Continuous

Ie

Total Device Dissipation,@Tc= 25°C

Po

Derate above 25"c
Operating & Storage Junction
Temperature Range

TJ, T stg

Vdc

2.0
5.0

10

Adc

STYLE I:
PIN 1. BASE

2. EMITTER
CASE: COLLECTOR

56

Watts

0.67

wf'c

DIM

-65 to +110

°c

A
8
C
D
E
F
G
H

THERMAL CHARACTERISTICS
Charact.. istic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

6JC

1.5

°CIW

J
K

II
R

NOTE:
1. DIM "Q"15 DIA.

MILLIMETERS
MIN MAX

INCHES
MIN MAX

38.37
22.23
11.43
1.08
3.43

6.35
0.97

28.90 30.40
10.87
5.21
18.84
11.18
3.B4

-

11.18
5.72
17.15
12.19

4.08
26.87

1.550
0.875

-

1.177
0.420
0.205
0.655
0.440

om

CASE 11·03

781

.450

0.250
0.038

L

0.1)43
0.135
1.197
0.440
0.225
0.875
0.480
O.161
1.1150

MP3730, MP3731 (continued)

ELECTRICAL CHARACTERISTICS (TC = 2So C unless otherwise noted)

I

I

Characteristic

Unit

Min

Max

-

5.0
10

-

0.4

-

50
50

'10
15
15

200

-

0.5
0.75
0.5

VBE(satl

-

0.8

Vde

VBE(on)

-

0.6

Vde

Symbol

OFF CHARACTERISTICS
Collector Cutoff Current
(VCE = 200 Vdc, VBE
(VeE =320 Vde, VBE

MP3730
MP3731

= 0)

Collector Cutoff Current

(VCB

= 10 Vde,

IE

mAde

ICES

= 0)

ICBO

= 0)

E mi ttor Cutoff Cu rrent
(VBE = 0.5 Vdc, IC = 0)
(VBE = 2.0 Vdc, IC = 0)

mAde

lEBO

MP3730
MP3731

mAde

ON CHARACTERISTICS
(lc
IIC
(lC

= 50 mAde, VCE = 4.0 Vde)
= 2.25 Adc, VCE = 4.0 Vde)
= 6.0 Ade. VCE = 3.0 Vde)

MP3730
MP3730
MP3731

= 50 mAde. IB = 5.0 mAde)
= 2.25 Ade, IB = 150 mAdcl
= 6.0 Ade, IB = 400 mAde)
= 6.0 Ade,

IB

= 400 mAde)

MP3731

Base-Emitter On Voltage

(lc

Vdc

MP3730
MP3730
MP3731

Base-Emitter Saturation Voltage

(lc

-

VCE(satl

Collector-Emitter Saturation Voltage

(lC
(lc
(lC

-

hFE

DC Current Gain

= 0.5 mAde, VCE = 4.0 Vdcl

MP3730

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(I C

= 0.5 Ade, V CE = 5.0 Vde)

SWITCHING CHARACTERISTICS (Figur. 1)
Fall Time - MP3731
(VCE = 300 V (Peak). IC
IBl

= 0.5 A

(Pe.k),IB2

= 5.0 A, (Peak)
= 2.2 A (Peak)

FIGURE 1 - SWITCHING TIME TEST CIRCUIT
+25.V

I
Ie PROBE

I

1_

PKle-

saUARE WAVE
INPUT

IB(ONI" O.5A
PEAK TURN OFF PULSE", 2.2 A
PEAK Ie" 5.0 A

ADJUST INPUT
TO SET Ie (on) CONDITION
T1: Motorola 125D68782AOI.IJ

NOTE:

If

II

If transformer is not readily available, it may be simulated as follows:
Material: % inch thick EI stack·IQmlnated soft iron. Center leg % inch
by % inch. (No air gap.) Primary: 260 turns No. 30 (AWG)
Secondary: 22 turns No. 24 (AWG)

782

111%

911%

MPC1000

HIGH POWER POSITIVE VOLTAGE REGULATOR

VOLTAGE REGULATOR

The MPC1000 is a positive voltage regulator designed to deliver
load current to 10 Adc. Output current capability can be in·
creased further through use of one or more external pass transistors. The MPC1000 is specified for operation over the junction
temperature range (-55 to +1750 C)

HIGH-CURRENT
10 AMPERE

• 100 Watt Power Capability
• Output Voltage Adjustable - 2 to 35 Vdc
• Output Current to 10 Adc Without External Pass Transistors
• 0.1 % Line and Load Regulation
• Temperature Stabi lity 0.005%/oC Typ
• Adjustable Overload Protection

T

SEATING
PLANE

MAXIMUM RATINGS ITC = +250 C. unless otherwise noted.1
Symbol

Rating
Pulse Voltage from Vin2 to

Vee

Value

Unit

(50 ms)

Vin21pl

50

Vpeak

Vee

Vin2

40

Vdc

Vinl'VO

60

Vdc

'L

10

Adc

Continuous Voltage from Vin2 to
Input·Qutput Voltage Differential

Output Current

Iref

15

rnA

Po

Watts

1/R8JC

100
0.667

TJ

-55 to +175

Storage Temperature Range

T"g

-65 to +175

Operating Case Temperature Range

TC

-55 to +150

Current from V ref

Internal Power Dissipation

@

T C == 25°C

Derate above T C = 25°C

Operating Junction Temperature Range

WloC

°c
°c
°c

FIGURE 1 - CIRCUIT SCHEMATIC
Case Vin1
NOTE:
1. LEADS WITHIN 0.13 mm 10.005)
DlA OF TRUE POSITION AT
MAXIMUM MATERIAL CONDITION.

CASE &62-01
SOCKET/WASHER NOTE:
Mica Insulating Washer: 'Electronic
Essentials Part No. MI·9·1000
Socket: Electronic Essentials
Part No. MS-9-1000
Electronic Essentials, Inc.
49 Bleeker Street
New York, New York 10012

vref

Non·
Inverting
Input

Vee

The Case 662-01 pin configuration is
compatible with 9-pin miniature vacuum
tube sockets.

Inverting
Input

783

MPC1000 (continued)

ELECTRICAL CHARACTERISTICS ITc =250 C, vinl =vin2 = 12 Vde, VEE = 0, Va = 5,0 Vde, IL = 10 mAde, unless otherwise noted.}
Characteristic

Figura No.

Nota

Symbol

Min

Max

Unit

Input Voltage Range

2

1

Vin2

9.5

40

Vde

Output Voltage Range

2

-

Va

2.0

35

Vde

I nput-Output Voltage DIfferential
IlL = 10 mAde}

2

2

Vinl-VO
Vin2' VO
Vinl-VO
Vin2- VO

-

60
38

Vdc

3.0
5.0

-

IlL = 4.0 Adc}

2

2

-

Reference Voltage

2

3

Vrel

6.8

7.5

Vde

Standby Current Drain
IlL = 0, Vinl = Vin2

2

8

liB

-

5.0

mAde

2
2

2,6
2,6

Ragin
Regin

-

0.1
0.5

%VO
%VO

2

2,4,7

Regload

-

0.1

%VO

Line Regulation
IVinl = Vin2
IVinl = Vin2

= 30 Vde,

Va

= 5.0

Vde}

= 12 Vde to 15 Vdel
= 12 Vde to 40 Vdel

Load Regulation
IlL = 100 mAde to IL

= 4.0 Ade, pulsedl

TEMPERATURE PERFORMANCE IlL = 10 mAde Va = 50 Vde VEE =0 unless otherwiSe noted I
Characteristic
Line Regulation
IVinl = Vin2 = 12 Vde to 15 Vdel
TC = -55°C
TC = +125 0 C
Load Regulation
IlL = 100 mAde to 4.0 Ade, Vinl
TC = -55°C
TC = +125 0 C

Figure No.

Note

Symbol

2

2,6

Ragin

2,4,7

2

Max

Unit

0.5
0.5

%VO
%VO

0.6
0.6

%VO
%VO

Regload

= Vin2 = 12 Vdel

Temperature Coefficient of Output Voltage

2

IVinl = Vin2 = 12 Vde, IL = 1.0 Ade, ATC
T C = _55°C to + 1250 Ci

2,4,5

0.015

TCVO

= 180°C,

°c

TYPICAL CIRCUIT CONNECTIONS
FIGURE 2 - Vo Vref

Vin 1o-....,----icase

Vin1o-.....- - - - j Case

O.'~F:J

0.1

Vin20--.-----I

~F:J

9r-----;

Vin20-....- - - - - l

A3

MPC10QO

MPC1000

10f----;
10f---1r~

Al
1000 pF

L-_-r__
Parameter Values for Best Results
Al

~

R2 (Vref

A3

Al

10k

I-

~ -20 0
0
-50

--

~~

+125'C

40

- ;;;t:---

~'C

~

.""".

-55°C

+1250 C _

~

"
ffi
~

-.....;;::;:::

o



100

~

FIGURE 11 - LOAD REGULATION CHARACTERISTICS
WITHOUT CURRENT LIMITING
4

0

~

I--

10

FIGURE 10 - LOAD TRANSIENT RESPONSE

.sz

--

TA = -55'C

15

50

75

100

125

150

-0.15

200

175

t. TIME (",)

10

2.0
10. OUTPUT CURRENT (AMP)

3.0

4.0

FIGURE 13 - 5 VOLT. 50 AMPERE POWER REGULATOR
WITH REMOTE SENSE

FIGURE 12 - 5 VOLT. 10 AMPERE HIGH
EFFICIENCY REGULATOR
lOOk

Input 1

2N56,,8_5_--t'_"- 5 0 Volt

+8.0 V
Input 2
5.0 Volt
Output

+12 V
I

100
~F

+4 0
k

r<>''---,-'N>--------1
1000 pF

(2) R6 + R7::::: VO/10 mA

(31~=~

A2
15 k

A6

3

A7

1

330

+

R7

Isc Rsc

n

Values of R sc ' R6 and R7 shown give I FB "" 6A and Isc = 2A.

V051----------~

Ise

/l

=2

A

'FB

'=

To design a foldback circuit, first find Rsc using Equation (1),
then determine the quantity (A6 + R7) using Equation (2).
Substitute the value of (R6 + R7) into Equation (3) and solve
for R7.
... For Va

Finally obtain the value for R6 from

> V ref use the typical connections shown in

with the additions of R6 and A7 shown above.

6 A

10

787

Equation (2) .
Figure 3

MPC1000 (continued)

FIGURE 17 -1S·VOLT REGULATOR WITH
REMOTESHUTOOWN

+

L

:--.1

Case

6

0.1 iJF

r- 2

+

Rsc

+
500l'F

9
2.7 k
MPC1000

4k

10

VO: 15 V
1000 pF

~1

7
10 k

r

Pulse

MPS3646

3

-

Inhibit

1

-

If short circuit protection is not needed, remote shutdown
can be accomplished using the internal currant IImltn; transistor
bV grounding Pin (9), disconnecting Pin (8) and driving Pin (8)
with an external 1 mA current source during the shutdown mode.

FIGURE 19 - HEATSINK MOUNTING HOLE PATTERN

FIGURE 18 - HEATSINK MOUNTING HOLE PATTERN
.219 DIA 2 PL

.125 ± .002 DIA 9 PL
ON .468 DIA BC

1.177

1.177
1.197

1.197

Mounting Hardware - A Motorola standard mountmg hardware
kit for the MPC1000 is available as a separately purchased item.
This kit is designated by the Motorola part number MK662 and
consists of one socket, one mica Insulating washer and other
associated hardware.

Mounting InformatIon - The MPC1000 must be heat sinked to
operate at maximum ratings. Figures 18 and 19 provide two options for heat sink mounting hole patterns. The option shown in
FIgure 18 results in a lower case·to-sink thermal resistance but is
more complex than the pattern shown in Figure 19.

788

MPF 102 (SIUCON)

Silicon N-channel junction field-effect transistor
designed for VHF amplifier and mixer applications_
MAXIMUM RATINGS

(TA

= 25'C unless otherwise noted)

Rating

Symbol

Value

Unit

VOS

25

Vdc

Oraln-Gate Voltage

VOG

25

Vdc

Gate-Source Voltage

Oraln-Source Voltage
STYLE 5:
PIN I. DRAIN
2. SOURCE
3. GATE

CASE 29
(TO-92)

VGS

25

Vdc

Gate Current

IG

10

mAdc

Total Oevlce Olsslpatlon @ TA • 25'C

%"1

310

mW

2.82

mW/oC

125

°c

-65 to +150

°c

Derate above 2SoC

Drain and Source
may be interchanged

T J lll

Operating JWlction Temperature
Storage Temperature Range

Tstg

ELECTRICAL CHARACTERISTICS (TA = 2S'C unless otherwise noted)

Characteristic

Symbol

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG

= 10 ~Adc,

VOS

BVOSS

= 0)

2S

Gate Reverse Current

IGSS

(VGS •

15 Vdc, VOS • 0)

(VGS •

15 Vdc, VOS

Min

= 0,

T A • 100' C)

Gate-Source Cutoff Voltage
(VOS = 15 Vde, 10 = 2.0 "Ade)

VOS(of!)

Gate-Source Voltage
(V OS = 15 Vde, 10 = 0.2 mAde)

Vos

-

Max

Unit

-

Vdc

2.0

nAdc

-

2.0

~Ade

-

8.0

0.5

7.5

2000

7500

Vde
Vde

ON CHARACTERISTICS
Zero-Gate- Voltage Drain Current 111
(VOS = 15 Vde, VGS = 0 Vde)

lOSS

DYNAMIC CHARACTERISTICS
Forward Transfer AdmIttance' (1)
(VOS = 15 Vde, VGS = 0, ! = 1 kHz)

IYf.1

Input Capacitance
(VOS = 15 Vde, VGS = 0, ! = 1 MHz)

e iss

Reverse Transfer Capacitance
(VOS =15Vdc, VGSoO, !=IMHz)

erss

Forward Transfer Admittance
(VOS = 15 Vdc, VGS = 0, ! = 100 MHz)

IY!. I

Input Conductance
(VOS = 15 Vdc, VGS = 0, !

= 100

Re(Yis)
MHz)

OUtput Conductance
(VOS = 15 Vde, VGS = 0, ! = 100 MHz)
·Pulse Test: Pulse WIdth

:$

p.mhos

pF

-

7.0

-

3.0

pF

-

1600

Jlmhos

-

800

-

200

~mhos

Re(yos)

630 rns; Duty Cycle :$ 10%

(1) Continuous package improvements have enhanced these g.uaranteed MaXImum Ratings as follows·
Derate above 2SoC - B.O mW/oC, T J::O -65 to +150 o C. ()JC = 125° C/W.

789

Jlmhos

Po

=

1.0 W @TC == 2SoC.

MPF 108 (SILICON)

JUNCTION
FIELD-EFFECT
TRANSISTOR

SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR

SYMMETRICAL
SILICON
N-CHANNEL

Depletion mode (Type A) transistor designed for VHF amplifier
and mixer applications.

Type A

• Devices are Classified and Identified in 2: 1 I DSS Ranges
• Low Cross-Modulation and Intermodulation Distortion
• Guaranteed 100 M Hz Parameters
• Drain and Source Interchangeable
• Low Transfer and Input Capacitance Crss = 1.2 pF (Typ) @ VDS = 15 Vdc
Ciss = 5.0 pF (Typ) @ VDS = 15 Vdc
• Low Leakage Current

r

• Unibloc Plastic Encapsulated Package

MAXIMUM RATINGS

Symbol

Value

Unit

Drain-Source Voltage

VDS

25

Vdc

Drain-Gate Voltage

VDG

25

Vdc

Gate-Source Voltage

VGS

-25

Vdc

IG(f)

10

mAdc

P D llI

310
2.82

mW
mW;oC

T J I11

-65 to +135

°c

-65 to +150

°c

Forward Gate Current
Total Device Dissipation @T A
Derate above 25 0 C

= 25° C

Operating Junction Temperature
Range

Storage Temperature Range

Tstg

(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings as
follows: PD = 1.0 W @TC= 2SoC. Derate above 2SoC - 8.0 mW;OC. T J = -65 to +150 o C,
8 J C = 12SoC/W.

~

K

D~rcr~

~~

PIN 1.
"n"
2

DRAIN
SOURCE

GATE

3

DIM
A
B
C
D
F

1.150

p

6.350
3.430
2.410
2.030

R
S

s

B

--I ~=rr

MILUm
INCHES
MIN
MIN
MAX
4.450
0.175
0.205
3llilf 4.190.
0.165
4.320
5.330 0.170
0.210
0.407
0.533 0.016
0.021
0.407
0.482 10.016
0.019

L
N
Q

J.. J,!

-

-

1.390
1.270

-

-

2.670
2.670

0.045

-

0.250
0.135
0.095
0.080

CASE 29·02
TO·92

790

1

.,,'""~jj
PLANE

Rating

A

0.055
0.050

-

0.105
0.105

MPF108 (continued)

ELECTRICAL CHARACTERISTICS (T, = 25·C unless otherwise noted)

Characteristic

Symbol

Min

Max

-25

-

0.5

B.O

-

1.0
-1. 0

2000

7500

1600

-

-

75

-

200

-

BOO

-

6.5

-

2.5

-

2.5

-

3.0

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 IlAde, VDS = 0)

V(BR)GSS

Gate-Source Cutoff Voltage'
(VDS = 15 Vde, ID = 10 IlAde)

V GS(off)

Gate Reverse Current
(VGS = -15 Vde, VDS = 0)

IGSS

(V GS = -15 Vde, VDS = 0, T A = 100·C)

,

Vde
Vde
nAde
IlAde

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current*
(VDS = 15 Vde, VGS = 0)

SMAll·SIGNAl CHARACTERISTICS

,

Forward Transadmittance*
(VDS = 15 Vdc, VGS = 0, f = 1. 0 kHz)

Yls

Forward Transadmittance
(VDS = 15 Vdc, VGS = 0, 1= 100 MHz)

I Yisl

Output Admittance
(VDS = 15 Vdc, Vas = 0, 1= 1.0 kHz)

IYosl

Output Conductance
(VDS = 15 Vdc, Vas = 0, I = 100 MHz)

Re(yos)

Input Conductance
(VDS = 15 Vde, Vas = 0, 1= 100 MHz)

Re(y iS )

Input Capacitance
(VDS = 15 Vde, VGS = 0, I = 1. 0 MHz)

C.

Reverse Transfer Capacitance
(VDS = 15 Vdc, Vas = 0, 1= 1.0 MHz)

C

ISS

Common-Source Noise Figure
(VDS = 15 Vde, Vas = 0, Ra = 1. 0 Megohm, I = 1. 0 kHz)

rss

NF

(VDS = 15 Vde, V GS = 0, Ra = 1. 0 k ohm, f = 100 MHz)

Ilmhos

I'lmhos

Ilmhos

I1mhos

}.1mhos
pF
pF
dB

*To characterize these devices to narrower limits, regarding IDSS, VaS(off) and Yfs, the entire production lot is tested
and divided into color-coded groups, with each ,color dot representing a relatively small range compared with the total
min-max limit of the whole distribution. The color codes and their associated limits are given in the following table.
When 'packaged for shipment, the colors are randomly selected and no speCific color distribution is implied or guaranteed.

Color
Orange
Yellow
Green
Blue
Violet

VG5(off)

IDSS

1. 5
2.5
4.0
7.0
12

mAde'
mAde
mAdc
mAde
mAde

Min, 3.0 mAdc Max
Min, 5.0 mAde Max
Min, B.O mAdc Max
Min, 14 mAde Max
Min, 24 mAde Max

0.5
0.5
1. 0
1. 0
2.0

791

Vde
Vdc
Vdc
Vdc
Vde

Min,
Min,
Min,
Min,
Min,

5.0
5.0
7.0
7.0
B.O

y"
Vde
Vde
Vdc
Vdc
Vde

Max
Max
Max
Max
Max

2000
2000
2500
2500
3000

to
to
to
to
to

6500
6500
7000
7000
7500

Il mhos
Il mhos
Il mhos

Ilmhos
Ilmhos

MPF 109 (SILICON)

SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR

JUNCTION
FIELD-EFFECT
TRANSISTOR

Depletion mode transistor designed for general-purpose audio
and switching applications.

SYMMETRICAL
SILICON
N-CHANNEL

• Devices are Classified and Identified in 2: 1 Zero-Gate Voltage
Drain Current Ranges (2: 1 I DSS Ranges)
• Drain and Source Interchangeable
• High AC Input Impedance
• High DC Input Resistance
• Low Transfer and Input Capacitance
• Low Cross-Modulation and Intermodulation Distortion
• Unibloc Plastic Encapsulated Package

r

A-

SEATINGY~ 0 ~
~

MAXIMUM RATINGS

L-

PLANE

Rating

Symbol

Value

Unit

Drain-Source Voltage

VDS

25

Vdc

Drain -Gate Voltage

VDG

25

Vdc

Gate-Source Voltage

VGS

-25

Vdc

Forward Gate Current

IG(f)

10

mAdc

Total Device Dissipation @ T A = 25 'c
Derate above 25'C

P D 111

310
2.82

mW
mW;oC

Operating Junction Temperature
Range

T J 111

-65 to +135

'c

-65 to +150

'c

storage Temperature Range

Tstg

(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings as
follows: Po '" 1.0 W @ T C = 25°C, Derate above 25°C - 8.0 mwflc, T J = -65 to + 150°C,

eJC = 125 0 C/W.

K

--.l

D~rcf-h

R~

1°r-.l
~

STYLE 5:
PIN 1.

DRAIN
2. SOURCE
3.
GATE

DIM
A
B
C
D

00.

B

MILLIMETERS
MIN
MAX

S

INCHES
MIN
MAX

4.450
3.180
4.320
0.407
0.407

5.2 0 0.175
.1
5
5.330 0.170
0.533 0.016
0.482 10.016

0.205
O. 5
0.210
0.021
0.019

L
N

1.150

1.390
1.270

0.055
0.050

P
0

6.350
3.430
2.410
2.030

f

R
S

-

-

2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO·92

792

S

--I =rr

-

0.105
0.105

MPF109 (continued)

ELECTRICAL CHARACTERISTICS

(T,

= 25"C unless otherwise noted)

Characteristic

Symbol

Min

Max

-25

-

0.2

8.0

-

-1. 0

800

6000

-

75

-

7.0

-

3.0

-

2.5

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 ~Adc, VOS = 0)

V(BR)GSS

Gate -Source Cutoff Voltage.
(VOS = 15 Vdc, ~ = 10 IIAdC)

VGS(off).

Gate Reverse Current
(VGS = -15 Vdc, VOS = 0)

IGSS

Vdc
Vdc
nAdc

ON CHARACTERISTICS
Zero-Gate Voltage Orain Current(VOS = 15 Vdc, VGS = 0)

SMALL·SIGNAL CHARACTERISTICS
Forward Transadmlttance*
(VOS = 15 Vdc, VGS = 0, 1= 1.0 kHz)

YIB *

Output Admittance
(VOS = 15 Vdc, VGS = 0, 1= 1. 0 kHz)

YOB

Input Capacitance
(VOS = 15 Vdc, VGS = 0, 1= 1. 0 MHz)

C iss

Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, 1= 1. 0 MHz)

Crss

Common-Source Noise Figure
(VOS = 15 Vdc, VGS = 0, RG = 1. 0 Megohm, 1= 1. 0 kHz)

NF

~mhos

~mhos

pF
pF
dB

*To characterize these devices to narrower limits, regarding Inss, VGS(off) and Yfs, the entire production lot is tested and
divided into color-coded groups, with each color dot representing a relatively small range compared with the total min-max
limit of the whole dis~ribution. The color codes and their associated limits are given in the following table.
When packaged for shipment, the colors are randomly selected and no specific color distribution is implied or guaranteed.

I DSS

Color
White
Red
Orange
Yellow
Green
Blue
Violet

O. 5
0.8
1. 5
2. 5
4.0
7. 0
12

mAdc
mAdc
mAdc
mAdc
mAdc
mAdc
mAdc

Min,
Min,
Min,
Min,
Min,
Min,
Min,

1. 0 mAdc Max
1. 6 mAdc Max

3.0
5.0
8.0
14
24

Yfs

VGS(off)

mAdc
mAdc
mAdc
mAdc
mAdc

Max
Max
Max
Max
Max

0.2
0.4
0.4
1. 0
1. 0
2.0
2.0

Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc

793

Min,
Min,
Min,
Min,
Min,
Min,
Min,

2.0
4.0
4.0
6.0
6.0
8.0
8.0

Vdc
Vdc
Vdc
Vdc
Vdc
Vdc
Vdc

Max
Max
Max
Max
Max
Max
Max

800 to
1000 to
1000 to
1500 to
1500 to
2000 to
2000 to

3200
4000
4000
5000
5000
6000
6000

Ilmhos
Ilmhos
Ilmhos
Ilmhos
11 mhos
Ilmhos
11 mhos

MP F111 (SILICON)

SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR
N-CHANNEL JUNCTION
FIELD-EFFECT
TRANSISTOR

Depletion Mode device designed for general-purpose amplifier
and switching applications.
•
•

Low Transfer Capacitance - Crss = 1.5 pF (Typ) @ VDS = 10 Vdc
Low I nput Capacitance - Ciss = 4.5 pF (Typ) @ VDS = 10 Vdc

•

Unibloc Plastic Encapsulated Package

•

Drain and Source Interchangeable

MAXIMUM RATINGS
Symbol

Value

Unit

Drain-Source Voltage

VOS

20

Vdc

Drain-Gate Voltage

VOG

20

Vdc

Gate-Source Voltage

VGS

-20

Vdc

Gate Current

IG

10

mAde

Total Device Dissipation@TA '" 25°C

Po (2)

200
2.0

mW
mW/oC

125

°c
°c

Rating

Derate above 25°C
T J (2)

Operating Junction Temperature

Storage Temperature Range

-65 to +135

Tst9

ELECTRICAL CHARACTERISTICS (T A
Characteristic
OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
IIG=-1O!lAdc, VOS = 0)

Gate Reverse Current

=25 0 C unless otherwise noted)

Symbol

Min

Typ

Max

Unit

BVGSS

-20

-35

-

Vdc

IGSS

-

0.1

VGSloll)

-0.5

-4.0

100

SEATlNGJt
PLANE

1

L-

nAdc

IVGS=-10Vdc, VOS = 0)

Gate-Source Cutoff Voltage

-10

Vdc

(Vns = 10Vdc,IO = 1.0 !lAde)

STYLE 5:
PIN 1.

2.
3.

ON CHARACTERISTICS

Zero-Gate-Voltage Drain Current

G)

(VOS = 10 Vdc, VGS = 0)
DYNAMIC CHARACTERISTICS


c
z
0.3

-bas

8

:i ~

"~

o

./

1.5~

/

.

5

/"

0.2

-

0.1

1.o~

O.5~

~

gos

.--""

o

o

300

2.0i

/'

30

40

FIGURE 5 - GAIN REDUCTION

SO

80
100
f. FREUUENCY (MHz)

300

200

FIGURE 6 - CONVERSION POWER GAIN
25

-'
10
iii 20
::;!

z

SOMHz

c

30

~
z

40

t

;;:

'"

50
SO
70
·2.0

~

,

...

...

...

rtr~

r"

--60MHz

.........-

- --

200 MHz

/,

f!

,
I

-

.--""

-

r---

200 MHz

f---

15

+2.0
+4.0
+6.0
VG2. GATE 2 TO GROUND VOLTAGE (VOLTS)

e."
z

0.015

z

80.01 0

o

3,0 ~

/'

E
E

-b rs

c

I

0.020;:;:;

./

~0.015

300

-i--t__rY~~~~

.,p

1 Vrms

56

RF
60,200
MHz
l2

100 k
Rl

60 MHz

Rl
10k

200 MHz

1.0 k

270

-=

I

0.001

~F

L1
l2
l3
l4
10 Turns #22 Enameled
15 Turns #26 Enameled 4 Turns #26 Enamelod
0.331lH
on MI llER 4500-4 Core DELEVAN
on MillER 4500·1 Core Oil Same Core as l3
15 Turns #26 Enameled 4 Turns #26 Enameled
2 1/2 Turns
3 1/2 Turns #18, 1/4"
#18,3/8" Dia., on MillER 4500-1 Core on Same Core as L3
Cia" 1/2" long
1/2" long

All F.edthrough Capacitors 1000 pF.
All Variable Capacitors JOHANSON JMC2951, 3.0-15 pF.

799

MPF 161 (SILICON)

P-channel junction field-effect transistors depletion
mode (Type A) designed for general-purpose amplifier
applications.
MAXIMUM RATINGS

Rating

Symbol

Value

Unit

Drain-Source Voltage

VDS

40

Vdc

Drain-Gate Voltage

VDG

40

Vdc

VGS(r)

40

Vdc

lD

20

mAde

Reverse Gate-Source Voltage
Drain Current
STYlE 7:
PIN 1. SOURCE
2. DRAIN
3. GATE

CASE 29
(10-92)

Forward Gate Current

lG(f)

10

mAdc

Total Oevice Dissipation @ T A = 25 'c
Derate above 25'C

P D 111

310
2.82

mW
mW/'C

-65 to +150

'c

-65 to +135

'c

T stg

Storage Temperatore Range

Till
J

Operating Junction Temperature Range

(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings 8'
follows: Po '" 1 ,0 W @ T C ... 25°C. Derate above 25°C - 8.0 mwflc, T J = -65 to + 150°C.

6JC - 125 0 CIW.

ELECTRICAL CHARACTERISTICS

(TA

=2S'C unless otherWise noted)

Characteristic

Symbol

Min

Max

Unit

-

Vdc

40
0.2

8.0

-

10

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(IG = 10 I'Adc, VDS = 0)

V(BR)GSS

Gate-Source Cutoff Voltage"
(VDS = 15 Vdc, lD = 1. 0 I'Ade)

VGS(off)'

Gate Reverse Current
(VGS = 30 Vdc, VDS = 0)

Vdc

lGSS

nAdc

ON CHARACTERISTICS
:!ero-Gate Voltage Drain Current'
(VDS = 15 Vdc, VGS = 0)

mAdc

SMALL·SIGNAL CHARACTERISTICS
Forward Transadmittance *
(VDS = 15 Vdc, VGS = 0, f = 1.0 kHz)

IYfsl'

Output Admittance
(VDS = 15 Vdc, VGS = 0, f = 1. 0 kHz)

I'mhos
800

6000

IYosl

-

75

Input Capacitance
(VDS = 15 Vdc, VGS = 0, f = 1.0 MHz)

Ciss

-

7.0

Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1. 0 MHz)

C rss

-

2.0

-

2.5

-

115

Common-Source Noise Figure
(VDS = 15 Vdc, VGS = 0,
RG = 1. 0 M ohm, f = 1. 0 kHz, BW = 1. 0 Hz)

NF

Equivalent Short-Circuit Input Noise Voltage
(VOS = 15 Vdc, VGS = 0,

e

n

I'mhos
pF
pF
dB

nV/J'Hz

f = 1. 0 kHz, BW = 1. 0 Hz)
*To characterize these devices to narrower limits, regarding VGS(off), lOSS andlYfsl, the entire production lot is tested and divided Into color-coded groups, with each color dot representing a relatively small range compared with the total min-max limit of
the whole distribution. The color codes and their associated limits are given in the following table.
When packaged for shipment, the colors are randomly selected and no specific color distribution is implied or guaranteed.
lDSS

VGS(off)

Color
White
Red
Orange
Yellow
Green
Blue

0.2 Vdc
0.4 Vdc
0.4 Vde
1. 0 Vdc
1. 0 Vdc
2.0 Vde

Min,
Min,
Min,
Min,

2.0 Vdc
4.0 Vdc
4.0 Vdc
6.0 Vde
Min, 6.0 Vdc
Min, 8.0 Vdc

Max
Max
Max
Max
Max
Max

O. 5 mAdc
0.8 mAdc
1.5 mAde
2. 5 mAde
4.0 mAde
7.0 mAdc

800

Min,
Min,
Min,
Min,
Min,
Min,

1. 0 mAdc Max
1.6 mAdc Max
3.0 mAde Max
5. 0 mAde Max
8.0 mAdc Max
14 mAdc Max

IYfsl
800 to 3200 I'mhos
1000 to 4000 I'mhos
1000. to 4000 I'mhos
1500 to 5000 I'mhos
1500 to 5000 I'mhos
2000 to 6000 Mmho.

MPF 161

(continued)

DRAIN CURRENT versus GATE·SOURCE VOLTAGE
FIGURE 1
1.0

.
.sI-

0.9 - DEJ'CES JARKEJ
0.8
0.7

~ 0.6

V~S=15Ivffi

"'~

II:

'" '"
~

II:

c. 0.3

0.2

O. 1

o
o

0.1

0.2

~

~

TA = 125°C

~K
~D

"

0.3

0.4

0.5

E
-55°C

I--.

0.6

['... ~

c. 0.6

25°C

r.....::::: r--

\
r\.
1.0
"l\'
0.8
1.2

0.8

0.9

r-.......

o

1.0

TA = 125°C

~

0.2

:y-..j.

0.7

..........

0.4

o

0.2

0.4

VGS. GATE-8DURCE VOLTAGE (VOLTS)

4.0

.sIa'i

2.5

...:>z

2.0

II:

1.5

!fJ

1.0

II:
II:

;(

c

6.0

Z

w 5.0

"-

."'-

~

..........

...........

az

/

;(

2JoC

.::::::..../

II:
C

125°C

!fJ

"""- ~ ~

0.4

0.6

0.8

1.0

1.2

1.4

1.6

;A = -55°C

4.0
3.0

1.8

25°C
125°C

-

-.......: ~

o
o

2.0

1..-

...... ~

2.0
1.0

~ !!!tIoo..
0.2

"'" <

II:
II:

TA = -55°C

0.5

1.0

~

1.5

10
9.0 \:. DEvicES

" ,II'
'Y

7.0

~ 6.0

a
z

5.0

!fJ

3.0

~ 4.0
c

['\..

i"',.

["'-...

"'.

2.0

14 \ '

112

.......

25°C

D~V'CES

z
: 6.0

..I tv'

........

c

K . . . . t-....

!fJ

I

\

B B.O
125°C

3.0
2.0
2.5
1.0
1.5
VGS. GATE-80URCE VOLTAGE (VOLTS)

4.0

1

4.0

'"
I'-...

2.0

A = -55°C
25°C

1\./

~ 1/

3.5

801

0

-.......;:::

o

4.0

125 C

'~ ~

o
0.5

3.5

3.0

VDS=15V-

JAR KED iLUE

"- '\. L./

I-

~ 10

~ ~....... t---..

1.0

o
o

VDS'\5V-

TA = -55°C

.......... t--.,..........

2.5

FIGURE 6
16

MA~KEO G+N

.......

2.0

VGS. GATE-80URCE VOLTAGE (VOLTS)

FIGURE 5

!z

2.0

VDS=15V-

DE)'CES MArKED YElLOW

VGS.GATE·SOURCE VOLTAGE (VOLTS)

.s

1.8

I-

0.5

:( 8.0

T

1

7.0 -

VOS=15V-

i

.......

o
o

-55°C

8.0

.11

"'\
.......

C

FIGURE 4

~ARKE~ ORAJGE

3.5 t- DEl'CES

.//25i

0.6
0.8
1.0
1.2
1.4
1.6
VGS. GATE·SOURCE VOLTAGE (VOLTS)

FIGURE 3

:( 3.0

1

VDS=15V-

1.6

&

0.5

T

JARKE~ RED

1.8 - OEJ'CES

11.4 \

~ 0.4

E

WH'T~

~\

II:

~

FIGURE 2
2.0

1.0

2.0

3.0

~ ....

4.0

5.0
6.0
VGS. GATE·SOURCE VOLTAGE (VOLTS)

7.0

8.0

MPF256

(SILICON)

Advance InforIll.ation
JUNCTION
FIELD-EFFECT
TRANSISTOR

SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR

SILICON
N-CHANNEL

· .. depletion mode junction field-effect transistor designed for low
noise general amplifier applications.
•

Low Noise - Less Than 2.0 dB at 100 MHz, 4.0 dB at 400 MHz.

•

High Gain - Typically 21 dB at 100 MHz, 12 dB at 400 MHz.

MAXIMUM RATINGS
Symbol

Value

Unit

Drain-Source Voltage

VOS

±30

Vdc

Drain-Gate Voltage

VOG

30

Vdc

VGSR

30

Vdc

IGF

10

mAde

Po

350
2.73

mW
mW/oC

TJ,Tstg

-65 to+150

°c

Rating

Reverse Gate-Source Voltage

Forward Gate Current

Total Device Dissipation
Derate above 2SoC

@

TA

= 26°C

Operating and Storage Junction Temperature Range

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

Symbol

I Min I Typ I Max I

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage

V(BR)GSS

25

-

-

Vdc

VGS(off)

0.5

-

7.5

Vdc

IGSS

-

-

5.0

nAde

(lG = 10 /lAde, VOS = 0)
Gate-Source Cutoff Voltage

(VOS = 15 Vdc, 10 = 200 /lAde)
Gate Reverse Current

SEATINGJ~L-~
PLANE

IVGS = 15 Vde, VOS = 0)
ON CHARACTERISTICS
Zero-Gate Voltage Drain Current

1VOS = 15 Vde, VGS = 01

mAde

lOSS'
Red
Green
Violet

3.0
6.0
11

-

-

7.0
13
18

SMALL-SIGNAL CHARACTERISTICS

Forward Transadmittance
IVOS = 15 Vde, VGS = 0, t = 1.0 kHz)

Output Capacitance
1VOS= 15Vde,IO= 10mAde,t= 1.0kHz)
I "put Capacitance

STYLE 5:

6.0

Reverse Transfer Capacitance

Power Gain

Noise Figure

1VOS = 15 Vde,Rs = 500bmsl
100 MHz
400 MHz

3.

pF

-

2.0

-

-

3.0

-

-

1.2

-

pF

DIM
A
B
C

pF

C,..s
Gps

1VOS = 15 Vde, RS = 50 Ohms)
100 Mhz
400 MHz

2.

-

Ciss

IVos = 15 Vdc, 10 = 10 mAde, t= 1.0 MHz)
Smal'~Signal

-

Coss

IVos = 15 Vde, 10 = 10 mAde, t= 1.0MHzl

PIN 1

mmhos

yls

0
F

dB
20
12

-

-

-

NF

-

-

·To characterize these devices to narrower limits, the entire production lot is tested
divided into color-coded groups, with each color dot representing an ID$S range.

and

When packaged for shipment. the colors are randomly selected and no specific color distribution is implied or guaranteed.
This is advance information on a new introduction and specifications are subject to change without notice.

802

U.~UU

K

!.IUU

1.150

1.390
1.270

0.045

6.350
3.430
2.410
2.030

-

0.250
0.135
0.095
0.080

R
S

2.0
4.0

INCHES
MIN
MAX
0.175
0.205
0.125
".165
0.170
0.210
0.016
0.021
0.D19
"."1.

L
N
P

a

dB

MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.4"7
".4.,

2.670
2.670

CASE 29-1l2
TO-92

0.055
0.050

-

0.105
0.105

MPF820 (SILICON)

Advance In:forIllation
JUNCTION
FIELD-EFFECT
TRANSISTOR

SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTOR

SILICON
N-CHANNEL

· .. depletion mode junction field-effect transistor designed for low
noise grounded gate RF amplifier applications.
•

Low Noise - Less Than 4.0 dB at 100 MHz

•

High Gain - Typically 18 mmhos at 100 MHz

MAXIMUM RATINGS
Symbol

Value

Unit

Drain·Source Voltage

VOS

Drain-Gate Voltage

VOG

25
25

Vde
Vde

Rating

Reverse Gate-Source Voltage
Forward Gate Current

Total Device Dissipation
Derate above 25°C

@

TA

VGSR
IGF

25

Vde

10

mAde

Po

625
5.0

mW
mWfOC

TJ,Tstg

-65 to+150

°c

= 25°C

Operating and Storage JUnction Temperature Range

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted I

I

Characteristic

I Max I

Symbol

Min

TVp

Unit

V(BR)GSS

25

-

-

Vde

VGS(off)

-

-

5.0

Vde

IGSS

-

-

5.0

nAdc

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage

(lG = 10 /LAde, VDS = 0)
Gate-Source Cutoff Voltage

(VDS = 15 Vde, ID = 200 /LAde)
Gate Reverse Current
IVGS = 15 Vde, VOS = 0)

-~
SEATING~~L1PLANE

O-jI~H-~
=::jR~

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current

(VOS = 15 Vde, VGS = 0)

SMALL-SIGNAL CHARACTERISTICS
Yfs

-

20

-

mmhos

Output Capacitance
(VDS = 15 Vde, ID = 10mAde, f= 1.0kHz)

Coss

-

3.5

-

pF

I nput Capacitance
(VDS = 15 Vdc, ID = 10mAde, f= 1.0MHz)

Ciss

-

15

-

pF

Reverse Transfer Capacitance
(VDS = 15 Vdc,ID = 10mAde,f= 1.0 MHz)

Crss

-

3.5

-

pF

gig

-

16

-

mmhos

gog

-

16

~mhos

Vfg

-

-

mmhos

Forward Transadmittance
(VDS = 15 Vde, VGS = 0, f = 1.0 kHz)

Common~Gate I "put Conductance

(VDS = 15 Vde, ID = 10mAdc, f= 100 MHz)
Common-Gate Output Conductance

(VDS = 15 Vde, ID = 10mAde, f= 100MHz)
Common-Gate Forward Transadmittance

J-7~
~F r

18

(VDS = 15 Vde, ID = 10mAde, f = 100MHz)
Common-Gate Reverse Transadmittance
(VDS = 15 Vde, ID = 10mAde, f= 100MHz)

Yrg

-

-

130

",mhos

Small--5ignal Power Gain
(VDS = 15 Vde, ID = 10 mAde, See FigureS)

G pg

-

11

-

dB

Noise Figure
(VOS = 15 Vde, ID = 10mAde,See FigureS)

NF

-

-

4.0

dB

r

l

--

3.0

'"u:w

>--

.sw
..,

0'" 2.0
z

z

10

1=
~
:i
z

7.0

«

~

......

1.~ kHz

1!

V

...

:!!
w

t=

~
",

«

'"

5.0

l-

u:
z

ii::

~

1.0

~

~

o
0.1

0.4

0.3

0.2

0.6

0.8

1.0

3.0

~

2.0
0.1

/"

0.5

0.2

FIGURE 4 -OUTPUT AND REVERSE
TRANSFER CAPACITANCE

FIGURE 3 -INPUT CAPACITANCE
2.0

20

" "C~

t'=1.0MHl-

........

......

1.6

.......

!'-....

0

.ew

---

..,z

............

1.2

r"-.

~

r--

<3

§

0.8

"

o

-2.0

-1.0

-3.0

o
o

-4.0

4.0

VGS,GATE·SOURCE VOLTAGE (VOLTS)

"""'- -..

Coss

........

0.4

o

f=l< r-

40

>

-"'"

8.0

~2:

w

~

STYLE 5:

PIN 1.
2.
3.

to

gj

4.0 >

50

60

70

0

lOSS. ZERO·GATE VOLTAGE ORAIN CURRENT ImAI
The Zero-Gate-Voltage Drain Current (lOSSI, is the principle determinant of
other J-FET characteristics. Figure 1 shows the relationship of Gate-Source

Off Voltage IVGSloff11 and Drain-Source On Resistance Irdslonll to lOSS'
Most of the devices will be within ±10% of the values shown in Figure 1.
This data will be useful in predicting the characteristic variations for a given
part number.
For example:
Unknown
rds(on) and VGS range for an MPF970
The electrical characteristics table indicates that an MPF970 has an lOSS
range of 15 to·60 mAo Figure 1 shows rds(on) "" 110 Ohms for lOSS:: 15
mA and 56 Ohms for lOSS:: 60 mAo The corresponding VGS values are 4.1
volts and 10.8 volts.

805

DIM
A

MILLIMETERS
MIN
MAX

4.450

IS

J.IHU

C
0
F

4.320
0.407
0.40

K

~./UU

L
N

1.150

P

6.350
3.430
2.410
2.030

Q

R
S

INCHES
MIN
MAX

5. 00
4.190
5.330
0.533
0.482

0.175
u.ll>
0.170
0.016
0.016

1.390
1.270
-

0.045

0.205
u.165
0.210
0.021
0.019

U.~UU

2.670
2.670

0.250
0.135
0.095
0.080

CASE 29'()2
TO-92

0.055
0.050
0.105
0.105

MPF970, MPF971 (continued)

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwISe noted)

I

Characteristic

Symbol

Min

Typ

Max

Unit

V(BR)GSS

30

-

-

Vde

5.0
1.0

-

12
7.0

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage

(lG

= 1.0l'Ade, VOS = 0)

Gate-Source Cutoff Voltage
(VOS = 15 Vde, 10 = 10 nAde)
Gate Reverse Current

(VGS = 15 Vde, VOS = 0)
(VGS = 15 Vde, VOS = 0, T A
Vde,
Vde,
Vde,
Vde,

VGS
VGS
VGS
VGS

-

IGSS

-

= 150oC)

Drain-Cutoff Current

(VOS = 15
(VOS = 15
(VOS = 15
(VOS = 15

Vde

VGS(ofl)
MPF970
MPF971

= 12 Vde)
= 12 Vde, T A = 15oCC)
= 7.0 Vde)
= 7.0 Vde, T A = 15oCC)

-

-

1.0
1.0

nAde
I'Ade

10(011)

-

MPF970
MPF970
MPF971
MPF971

-

10

nAdc

10
10
10

)lAde
nAde
)lAde

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current (1)
(VOS = 20 Vde, VGS = 0)

mAde

lOSS
MPF970
MPF971

Drain-Source "ON" Vpltage
(10 = 10 mAde, VGS = 0)
(10 = 1.5 mAde, VGS = 0)

VOS(on)

Static Drain-Source "ON" Resistance
(10 = 1.0 mAde, VGS = 0)

rOS(on)
MPF970
MPF971

15
2.0

-

-

-

-

1.5
1.5

-

-

100
250

-

-

100
250

-

12
12

-

5.0
5.0

3.5
5.0

8.0
10

-

2.0
3.0

5.0
5.0

-

13
88

25
120

-

9.0

15
80

-

60
30
Vde

Ohms

SMALL-SIGNAL CHARACTERISTICS
Drain-Source "ON" Resistance
(VGS = 0, 10 = 0, f = 1.0 kHz)

-

Input Capacitance
(VGS = 12 Vde, VOS = 0, I = 1.0 MHz)
(VGS = 7.0 Vde, VDS = 0, f= 1.0 MHz)

pF

Ciss
MPF970
MPF971

-

-

Reverse Transfer Capacitance

pF

Crss

(VGS = 12 Vde, VOS = 0, 1= 1.0 MHz)
(VGS = 7.0 Vde, VOS = I = 1.0 MHz)

?,

-

MPF970
MPF971

SWITCHING CHARACTERISTICS (See F,gure 6, RK

= 0)

-

(1)

Turn-On Time

ns

ton

(lO(on) = 10 mAde, VGS(oll) = 12 Vde)
(lO(on) = 1.5 mAde, VGS(off) = 7.0 Vde)

-

MPF970
MPF971

-

Rise Time
(lO(on) ~ 10 mAde, VGS(oll) = 12 Vdc)
(lO(on) = 1.5 mAde, VGS(off)' = 7.0 Vde)
Turn-Off Time
(lO(on) = 10 mAde, VGS(oll)
(lO(on) = 1.5 mAde, VGS(off)

Ohms

rds(on)
MPF970
MPF971

ns

Ir

-

MPF970
MPF971

ns

loll

= 12 Vde)
= 7.0 Vde)

MPF970
MPF971

Fall Time
(lO(on) = 10 mAde, VGS(oll) = 12 Vde)
(lO(on) • 1.5 mAde, VGS(off) • 7.0 Vde)

MPF970
MPF971

II

(1) Pulse Test: Pulse W,dth <1001's, Outy Cycle <1.0%,

806

ns

68

MPF970, MPF971 (continued)

FIGURE 3 - RISE TIME

FIGURE 2 - TURN·ON DELAY TIME

..
w

0

;::

0

5w
Q

Z

Q

~

:::>

>-

g
"§

100

'100
70
50

.........

RK = Ro'

......

50

RK =,0

0

;::

0

w

MPF970

3.0
2.0

:!
w

..

r--.... I""'-

7. 0
5.0

~

I-

,.;

....... MPF971

......... ......

7.0
5. 0

RK = o

MPF970

r--

MPF971

3.0

I

MPF971

R • Ro'

0

I'-.. MPF971

10

Tchannel" 2S0 C':::::::E
VGS(offl'12 V (MPF9701
7.0 V(MPF9711

D

Tchannel"" 25 0 C .J-4---+VGS(offl = 12 V (MPF97017.0 V MPF971'-

MPF970

2.0

MPF97Q1. 0
0.2 0.3

111
0.5 0.7

1. 0
1.0
2.0 3.0
5.0 7.0
'0, DRAIN CURRENT (mAl

10

20

0.2

0.3

0.5 0.7

500

..... l.....

300

.

;::

>

~

Q

u.
u.

0

~

:::>

>-

j

200
100
70
50

I"'.

~

-.......;: ~

300 I"...:

Tchannel "" 250~d:VGS(offl = 12 V (MPF9701
7. V MPF9711

RK = RO'

200

II

]

.
w

20

~

.......

RK = 0.1-'

0.5

0.7

1.0

2.0

~

"
r--...
10

20

-VOO
Ro

INPUT

:1:

30

'"

20

_ ~,.±;ch.nn'l = 2SoC
- RO
VGS(off)= 12 V (MPF9701
MPF971
7.0 V (MPF9711

I--+-

,,~

r....

~

RK =0'

MPF970-

.......

......

,......

r-.

-

.......
0.2 0.3

0.5 0.7

1.0

2.0

3.0

5.0

7.0

10

20

paralle' combination of effective load impedance (R'OI and

son

Draln~Source Resistance (fds). During the turn~ff. this charge
flow is reversed.
Predicting turn~n time is somewhat difficult as the channel
resistance 'cis is a function of the gate-source voltage. While Cgs

-=- VGG

PU LSE WIDTH· 2.0~.
DUTY CYCLE< 2.0%

20

discharges through the series combination of RGen and RK. Cgd
must discharge to VOS(on) through RG and RK in series with the

OUTPUT

n.

10

NOTE 1
The switching characteristics shown above were measured using a
test circuit similar to Figure 6. At the beginning of the switching
interval, the gate voltage is at Gate Supply Voltage (+VGGI. The
Orain·Source Voltage (VOSI is slightly lower than Drain Supply
Voltage (VOOI due to the voltage divider. Thus Reverse Transfer
capacitance (erss ) or Gate-Drain Capacitance (Cgd) is marged to
VGG + VOS·
During the turn-on interval, Gate-Source Capacitance (Cgs )

FIGURE 6 - SWITCHING TIME TEST CIRCUIT

INPUT PULSE
tr<0.2S
tf-I V

MPF971

;::

MPF970

,.......

30

10
7.0
5.0

2.0

FIGURE 5 - FALL TIME

FIGURE 4 - TURN·OFF DELAY TIME
500

!w

1.0

10, DRAIN CURRENT (mAl

discharges, VGS approaches Z8ro and rds decreases. Since Cad
discharges through 'ds. turn~n time is non-tinear. During turn-o'(
the situation is reversed with fds increasing as Cgct charges.
The above switching curves show two impedance conditions; 1)
RK is equal to RO, which simulates the switching behavior of
cascaded stages where the driving source impedance is normally
the load impedance of the previous stage, and 21 RK = 0 (low

RGG> RK
RO' = Ro(Rr-SOI
Ro-Rr-SO

impedance) the driving source impedance is that of the generator.

807

MPF970, MPF971 (continued)

FIGURE 8 - TYPICAL CAPACITANCE

FIGURE 7 - TYPICAL FORWARO TRANSFER ADMITTANCE

i
"Ii
~

5.0

~

3.0

il

.....

7. 0

MPF97V ./

z

~

l-

e

i'"

V

Hj:j/

2.0

Tchannel =25°C
\11S is negljgblel
3.0

1.

~

1.0

2.0

3.0

5.0

7.0

......

III
0.1

0.2 0.3 0.5

2.0 3.0

1.0

5.0

10

20 30

VR. REVERSE VOLTAGE (VOLTS)

20

10

I'..

III

2.0
0.03 0.05

0.5 0.7

,

r-(Us= Cgd

5.0

oV v,v
0.2 0.3

'"

7.0

Tchannel =' 260 C
VOS = 20 V

MPF970

/1.1'

.7

I-.

10

V

~

'"~

0

'0. DRAIN CURRENT (mA)
FIGURE 10 - EFFECT OF TEMPERATURE ON DRAIN·SOURCE
ON-STATE RESISTANCE

FIGURE 9 - EFFECT OF GATE·SOURCE VOLTAGE
ON DRAIN·SOURCE RESISTANCE

28
°H:oSS=
7.5 mA

o I

I
II
0
0/
01-0

I

I

/

1/

./

I--

1.0

.....-

40 mA

I

I

/

-/

30mA

I

I

II

I

II15 mA I20 mAI

IO~ l.O~A
VGS =0

[/,v

6

/

,/V

7

V

./

/'

/'

2.0

8r--

1.

[I

I

/

-

2. 0

I
SOmA

./

V

Tchannel =25°C

3.0

4.0

V

I-'" I-'"
0.4

5.0

-60

VGS. GATE·SOURCE VOLTAGE (VOLTS)

-30

30

60

90

Tehann.', CHANNEL TEMPERATURE (DC)

FIGURE 11 - LOW FREOUENCY CIRCUIT MODEL

~.

YIS=jWC 1SS

Vos = 1/ross+ Iweoss
Vb'" IYfsl

Cgs

'/

V V

Yrs=-lwC rss

ros

CISS = Cgd + Cgs
Crss = Cgd
Coss = Cgd + Cds. Cds"" 0

808

120

150

MPF4391, MPF4392, MPF4393 (SILICON)

SILICON N-CHANNEL
JUNCTION FIELD-EFFECT TRANSISTORS

N-CHANNEL
JUNCTION FIELD-EFFECT
TRANSISTORS

Depletion Mode (Type A) Junction Field-Effect Transistors designed
for chopper and high·speed switching applications.
•

Low Drain·Source "ON" Resistancerds(on) = 30 Ohms (Max) - MPF4391
= 60 Ohms (Max) - MPF4392
= 100 Ohms (Max) - MPF4393

•

Low Reverse Transfer Capacitance Crss = 3.5 pF (Max)
Guaranteed Fast Switching Times ton = 15 ns (Max) - All Types
toft = 20 ns (Max) - MPF4391
= 35 ns (Max) - MPF4392
= 55 ns (Max) - MPF4393

•

SEATING.J~

t

~

PLANE

MAXIMUM RATINGS
Symbol

Value

Unit

VOS

30

VOG

30

Vdc
Vdc

STYLE 5.
PIN 1.

Gate-Source Voltage

VGS

30

Vdc

Forward Gate Current

IGlfl

50

mAde

2.
3.

Po

625
5.0

mW
mW/oC

Rating
Orain~Source

Voltage

Drain-Gate Voltage

Total Device Dissipation @TA - 25°C
Derate above 2SoC
Operating and Storage Channel

T channel. T stg

~5

to +150

Temperature Range

°c

DIM
A
B
C

0

MILLIMETERS
MAX
MIN

4.450
3.18
4.320
0.407

X

~.407
11./UU

L
N

1.150

P

6.350
3.430
2.410
2.030

A

Q

R
S

5.200
4.190
5.330
0.533
u...,

INCHES
MIN
MAX

0.175
0.I2b
0.170
0.016
u.u16

u.suu
1.390
1.270
2.670
2.670

0.045
0.250
0.135
0.095
O.OBO

CASE 29-02

TO·92

809

0.205
U.165
0.210
0.021
u.ul.
0.055
0.050
0.105
0.105

MPF4391, MPF4392, MPF4393 (continued)

ELECTRICAL CHARACTERISTICS

I

(TA = 250 C unless otherwise noted)

Characteristic

Symbol

Min

V(BR)GSS

30

Typ

Max

Unit

OFF CHARACTERISTICS
Gate-Source Breakdown Voltage
(lG = 1.0 !lAde, Vas = 0)

Gate-Source Voltage
(Vas

= 15

Vde, 10

Vde

VGS

= 10 nAde)

MPF4391
MPF4392
MPF4393

Gate Reverse Current
(VGS
(VGS

Vde

4.0
2.0
0.5

-

-

10
5.0
3.0

IGSS

= 15 Vde, Vas = 0)
= 15 Vde, Vas = 0, TA =

-

1000C)

Drain-Cutoff Current
(Vas = 15 Vde, VGS = 12 Vde)
(Vas = 15 Vde, VGS = 12 Vde, TA = 1000 C)

-

1.0
0.2

nAde
!lAde

1.0
0.1

nAde
!lAde

I a (of!)

-

-

-

-

60
25
5.0

-

ON CHARACTERISTICS
Zero-Gate Voltage Drain Current (1)
(Vas = 15 Vde, VGS = 0)

Drain-Source "ON" Voltage
(10 = 12 mAde, VGS = 0)
(10 = 6.0 mAde, VGS = 0)
(10 = 3.0 mAde, VGS = 0)

mAde

lOSS
MPF4391
MPF4392
MPF4393

-

130
75
30

-

-

0.4
0.4
0.4

-

-

-

-

30
60
100

-

20
17
12

-

-

-

30
60
100

-

6.0

10

-

2.5
3.2

3.5

3.0
4.0
6.5

15
15
15

1.2
2.0
2.5

5.0
5.0
5.0
20

-

10
20
37

-

7.0
15

15
20

-

29

35

Vde

VOS(on)
MPF4391
MPF4392
MPF4393

Static Drain-Source "ON" ReSistance
(10 = 1.0 mAde, VGS = 0)

-

-

Ohms

rOS(on)
MPF4391
MPF4392
MPF4393

SMALL-SIGNAL CHARACTERISTICS
Forward Transfer Admittance
(Vas = 15 Vde, 10 = 60 mAde, f = 1.0 kHz)
(VOS= 15 Vde,lo =25 mAde,f= 1.0kHz)
(Vas = 15 Vde, 10 = 5.0 mAde, f = 1.0 kHz)
Drain-Source "ON" ReSistance

(VGS

= 0,10

= 0, f

Ohms

rds(on)

= 1.0 kHz)

MPF4391
MPF4392
MPF4393

I nput Capacitance
(VGS = 15 Vde, Vas = 0, f

mmhos

yfs
MPF4391
MPF4392
MPF4393

Ciss

= 1.0 MHz)

Reverse Transfer Capacitance

Rise Time (See Figure 2)
(lO(on) = 12 mAde)
(lO(on) = 6.0 mAde)
(10 (on) = 3.0 mAde)
Turn·Off Time (See Figures 3 and 4)
(VGS(off) = 12 Vde)
(VGS(off) = 7.0 Vde)
(VGS(off) = 5.0 Vdcl

-

ns

-

-

n.

tr

-

MPF4391
MPF4392
MPF4393

-

-

ns

toff

-

MPF4391
MPF4392
MPF4393

Fall Time (See Figure 4)

IVGS(off) = 12 Vde)
(VGS(off) = 7.0 Vde)
I VGS(off) = 5.0 Vdel

-

ton
MPF4391
MPF4392
MPF4393

35
55
ns

tf
MPF4391
MPF4392
MPF4393

(1 \ Pulse Test: Pulse Width";;; 1.00 !l', Outy Cycle ";;;1.0%.

810

pF
pF

Crss

(VGS = 12 Vde, Vas = 0, f = 1.0 MHz)
(Vas = 15 Vde,lo = 10 mAde, f = 1.0 MHz)
SWITCHING CHARACTERISTICS IS ee F'Igure 5 , R'K = 0)
Turn..Qn Time (See Figures 1 and 2)
(lO(on) = 12 mAde)
(IO(on) = 6.0 mAde)
(IO(on) = 3.0 mAde)

-

MPF4391, MPF4392, MPF4393 (continued)

TYPICAL SWITCHING CHARACTERISTICS

FIGURE 1 - TURN-ON DELAY TIME

FIGURE 2 - RISE TIME

1000

1000
500

Jw

'"

;:
>-

RK = Ro'

200

r-.....

100

.AI

TJ - 25 0 C
••••••••• MPF4391 VGS(offl = 12 V
f- - - - MPF4392
=7.0 V
---MPF4393
=5.0 V

500
....... MPF4391 :VGS(offl 12 V
=--kd,....,.RK = Ro' - - - MPF4392 _
= 7.0 V
200 R-+.dr++.....
~
--MPF4393
= 5.0 V
100 .

50

!w

50

z

20

;:

20

~

10

~

5.0

RK - 0

;SO

2.0

.. ~~... ......

~

'"

Q

<;>

w

'-

:::>

~

a;

.::

10
5.0

oS

1.0
0.5 0.7

1.0

3.0

2.0

5.0 7.0

2.0
20

10

30

..... ::: ... "'" .... ''1'

1.0
0.5 0.7 1.0

50

2.0

5.0 7.0

3.0

10

20

30

50

10, DRAIN CURRENT (mAl

10, DRAIN CURRENT (mAl

FIGURE 3 - TURN-OFF DELAY TIME

FIGURE 4 - FALL TIME

1000
500
.-i?'RK - RO' - 200

:;
w

'"

;:
20H-H~~+:-+--4~~+t-+t+-I-t--t-t--j

_ ...........

""=,,,.

5'1°!II~I~RK~-~-0~~~'II~II~II~
....
..

',0:.

~

~

'"

VGS(offl = 12 V
MPF4393: ~:~ ~

100

50

">:--

~

~

:.::.::~ =~~:m

20
10

o..?-

RK =

'"

'.. , '..:::. .

5.0
'0,

.... ..:,

"•
0 ••

_.

2.0H+++l--+-+---+---1--++t-+t+-"-'~4:_,..,..:.""t ..:.
.. ,.
. ....,

2.0 H+f-H--+--+--+--+--+-++-+++-+--+-+-+~

1.0 L..J....u..u..-.l....:.I-....,.L-'....,.L:-1.:':-'-L':--'---:!:--::---I.-:.
0.5 0.7 1.0
2.0
3.0
5.0 7.0 10
20 30
50

1.0 LL..Ll.LL.._L--.L....,.L-'-,l-,..LJLLU-.....JL....,!,--,J,.....J.....,I
0.5 0.7- 1.0
2.0 3.0
5.0 7.0 10
20
30
50
10, DRAIN CURRENT (mAl

10, DRAIN CURRENT (mAl

NOTE 1

FIGURE 5 - SWITCHING TIME TEST CIRCUIT

The switching characteristics shown above were measured using a
test circuit similar to Figure 5. At the beginning of the switching

interval, the gate voltage is at Gate Supply Voltage I-VGGI. The
Drain·Source Voltage IVDSI is slightly lower than Drain Supply
Voltage IVDD) due to the voltage divider. Thus Reverse Transfer
CapacItance ICrssl or Gate·Drain Capacitance (Cgd) IS charged to
VGG + VDS·

-VOD

RO
SET VDS(off) = 10 V
INPUT

RK,
OUTPUT
SOl!

50H

INPUT PULSE

Ir'->O 25 ns
il,,05ns
PULSE WIDTH

~201JS

DUTY CYCLE <20',

During the turnwon interval, GatewSource Capacitance (Cgs ) discharges through the series combination of RGen and RK- Cgd
must discharge to VOS(on) through RG and RK in series with tne
parallel combination of effective load impedance (R'D) and DrainSource Resistance (rdsl. During the turn-off, this charge flow is
reversed.
Predicting turn-on time is somewhat difficult as the channel
resistance rds is a function of the gate-source voltage. While Cgs
discharges, VGS approaches zerw
0'-'

/ /

'?Z

BO

ow
"''''
§~

I

I

'-'0

;((1

I 15mA/100mAI
/ I
I
I I
I
I
I /
/
/ /

IDSS 25mA
-10
rnA

I

/

/ /

/ / "/
40

;:::::::.. -:

~

o
o

J

J

1.0

-........

1.0

I

1.0

.... w
,?!::!

0.3 0.5

1.0

/

10

3.0 5.0

30

=-=.J

ID - 1.0L
VGS - 0

./

1.6

/

Z~

0":

w'"
'-'"'
0:0
=>z
0-

/

/

~~
<<(

1.4

./

1.1

1.0

-2[:3 O.B

,/

0",

5.0

1.0

6.0

"':!?"

0.6
0.4
-10

B.O

V

...............

o!!!

2rC -

7

7'

...............

"'I-

./'

4.0

I.B

w

..:0

Tchinne, '"

3.0

0.1

FIGURE 9 - EFFECT OF TEMPERATURE ON DRAIN-SOURCE
ON-5TATE RESISTANCE

....-

V

./

...........

VR, REVERSE VOLTAGE IVOLTS)

125mA

50 mA

I----

IIIII

1.0
0.D3 0.05

50

FIGURE 8 - EFFECT OF GATE-50URCE VOLTAGE
ON DRAIN-50URCE RESISTANCE

z<

Tchannel = 25°C
(Cds is neglig ibis)

1. 5

1.0
0.5

....w
..:

I"-.

~ ......

5.0

~ /'

5.o~

Cgs

......

1.0

y

-

0

MPF4391

-----

-40

-10

20

50

BO

110

140

110

Tehannel, CHANNEL TEMPERATURE 1°C)

VGS, GATE·SOURCE VOLTAGE IVOLTS)

FIGURE 10 - EFFECT OF lOSS ON DRAIN-SOURCE
RESISTANCE AND GATE-50URCE VOLTAGE
100

80

~-;r 70
~:e 60

"'w

~~

r---..

§

~

40

30

......... 1-'"

.) ~

V

10

o

10

10

'"

~

V

20

NOTE 2

9.0

V< r-

N

~~ 50

'?..:

1

The Zero-Gate-Voltage Drain Current (lOSS), is the principle deter8.0 w
Figure 10 shows the
minant of other J-FET characteristics.
relationship of Gate-Source Off Voltaso IVGSloff)) and Orain7.0 ~
Source On Resistance (rds(on)) to lOSS. Most of the devices will
o
........ V
6.0 >
be within ±10% of the values shown In Figure 10. This data will
~(i) be useful in predicting the characteristic variations for a given
VGSloff) - r- f- 5.0 §!:i
part number.
0 0
For example:
4.0 ~~
Unknown
3.0
rdslon) and VGS range for an MPF4392
.;
1'"'-1The electrical characteristics table indicates that an MPF4392
2.0 ~
has an lOSS range of 25 to 75 mAo ·Figure 10, shows rdslon)
1.0
= 52 Ohms for lOSS = 25 mA and 30 Ohms for lOSS = 75 mAo
The corresponding VGS values are 2.2 volts and 4.8 volts.
0
80 90 100 110 110 130 140 150

V

/rOSlon @VGS- 0

[\..

OE

:= t;;

I

I

w

S

/

Tchannel'" 25°C

90

30

40

50

60

10

IDSS, ZERO·GATE·VOLTAGE ORAIN CURRENT ImA)

812

MPI-3401 (SILICON)

SILICON PIN MICRO-I DIODE
SILICON PIN
SWITCHING
MICRO·I DIODE

... designed for industrial/communications applications where space
is at a premium. May be used at VHF frequencies for band switch·
ing and general·purpose attenuator circuits.
•
•

Electrically Similar to MPN3401
Rugged PI N Structure Coupled with Wire Bond Construction for
Optimum Reliability

• Supplied in Space·Saving Miniature Package

MAXIMUM RATINGS
Symbol

Value

Unit

Reverse Voltage

VR

35

Volts

Forward Power Dissipation @TA =2SoC
Derate above 2SoC

PF

200
2.0

mW
mWloC

Operating Junction Temperature

TJ

+125

°c

T stg

-65 to +150

°c

Rating

Storage Temperature Range

Device marked with white top.

f-- A --l
I
I

I

Symbol

Min

Typ

Max

Unit

V(BRIR

35

-

-

Volts

Diode Capacitance (Note 11
(VR = 2C) Vdc, f = 1.0 MHz)

CT

-

-

1.0

pF

Series Resistance (F Igure 5)

RS

-

-

0.7

Ohms

IR

-

-

0.1

p.A

Series Inductance (Note 2)
(f = 250 MHz) (Measured at Lead
Stop'" 118")

LS

-

3.0

-

nH

Case Capacitance

Cc

-

0.15

-

pF

Reverse Breakdown Voltage
(lR =

10~A)

PIN 1. ANODE

I

IL

2. C:l0E

1f

ELECTRICAL CHARACTERISTICS (T A = 25 0 C unless otherwise noted)
Characteristic

STYLE I:

U

)}:::=:K::=::::;::!J

C::::::=:=L===f,

(IF = 10 rnA)

Reverse Leakage Current
(VR

(f

= 25 Vdc)

= 1.0 MHz'

A

NOTES

1. CT is measured using a capacitance bridge (Boonton Electronics Model 75A or
equivalent) .

2.

DIM

L~ is measured on a package having a short instead of a die, using an impedance
bridge (Boonton Radio Model 250A RX Meter).

MIllIMETERS
MAX
MIN

INCHES
MIN
MAX

1.98

0.078
0.048
0.010
0.004
0.020
0.0111
0.165
0.035
0.015

C

1.22

0

0.25
0.10
0.51
0.03
4.19
0.89
0.38

F

H
J
K
L
N

2.34
1.47
0.41
0.15
0.76
0.08
4.45
1.14
0.64

0.092
0.058
0.016
0.006
0.030
0.003
0.175
0.045
0.025

TYPICAL HIGH DENSITY MOUNTING TECHNIQUE

Optional Package with Raised
Circular Tab Available; Specify

C='in:=I

Case 166·01.

DD2~

PCBOAROMOUNTlN~

CASE 166'()2

813

to

MPI·3401 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - SERIES RESISTANCE

FIGURE 2 - FORWARD VOLTAGE

1.6

50

I

1.4
in

"....

~

:: 1.2

ew
..,'"z

\

1.0

~ 0.8

iii
'"
13

~

:2

.§

TA' 25'C

~
'"~

\

\.,.

0.6

I
I

40

30
TA' 25'C

Q

r---.......

0.4

'"
~

20

!i-

10

I

I

~

/

0.2

o
o

2.0

4.0

6.0

8.0

10

12

14

V

o
16

0.5

0.6

IF. FORWARD CURRENT (rnA)

FIGURE 3 - DIODE CAPACITANCE

5. 0

15

TA-25'C

U

2.0

C

/

10
.... 4.0

;!:

Ii

VR' 25 VOLTS

1

~

1.0

RGURE4-LEAKAGECURRENT

10
7.0

5
w
g

0.9

100
40

~

~

0.8

VF. FORWARO VOLTAGE (VOLTS)

20

z

0.7

~

1.0

~

0.4

ffi

O. 1

>

1.0
o.7

L
/

L

~ 0.04

~

0.5

./

0.0 1

0.004
0.2
+3.0

-3.0

-6.0

-9.0

-12

-15

-18

-21

-24

0.00 1
-60

-27

I'
-20

+20

+60

+100

+140

TA. AMBIENT TEMPERATURE ('C)

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHOD

10pF

H,

2. Use a short length of wire to short the test circuit from
point "A" to "B", Then connect the power supply providing 10 mA of bias current to the test circuit.

SOOn

o-----I~(--....,!~--'''''''~--o+

Boonton
Model 33A or B

C

LoO
All measurements@ 100 MHz

A

~

0 UT

3. Adjust the capacitance scale arm of the bridge and the "G"
zero control for a minimum null on the "nUll meter".
The nuli occurs at approximately 130 pF.

PowerSupp1v

i~"ure'leadSSh'Uld be~-

4. Replace the wire short with the device to be tested, Bias
the device to a forward conductance state of 10 rnA.
5. Obtain a minimum null on the "nUll meter". with the
capacitance and conductance scale adjustment arms.
6. Read conductance IG) direct from the scale. Now read
the capacitance value from the scale (~13O pF) and subtract 120 pF which yields capacitance ICI. The forward
resistance (RS) can now be calculated from:

short as possible.

To measure seri~s resistance, a 10 pF capacitor is used to reduce
the forward capacitance of the circuit and to prevent shorting of
the external power supply through the bridge. The smali signal
from the bridge is prevented from shorting through the power
supply by the 500-0hm resistor. The resistance of the 10 pF
capacitor can be considered negligible for this measurement.

2.533G

RS=--C2

1. The RF Admittance Bridge (Boonton 33A or B) must be
initially balanced, with the test circuit connected to the
bridge test terminals. The conductance scale will be set at
zero and the capacitance scale will be set at 120 pF, as required when using the 100 MHz test coil.

Where:
G - in micro mhos,
C - in pF.
RS - in ohms

814

MPM5006 (SILICON)

NPN SILICON
RF AMPLIFIER
TRANSISTOR

NPN SILICON ANNULAR TRANSISTOR

· .. designed for television, AM/FM, and general-purpose RF amplifier
appl ications.
• Low Capacitance - Cob = 1.6 pF (Max) @ VCB = 10 Vdc
•

High Power Gain - PG = 20 dB (Min) @f = 100 MHz

• High Collector-Emitter Sustaining Voltage BVCEO(sus) = 40 Vdc (Min) @ IC = 1.0 mAdc
•

Low Noise Figure - NF = 5.5 dB (Typ) @ f = 100 MHz

• Forward AGC Characteristic

r

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

40

Vdc

SEATlNG~i~
~

PLANE

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current - Continuous

IC

100

mAdc

Total Power Dissipation @TA = 25'C
Derate above 25' C

PD

310
2.81

mW
mW!'C

Total Power DisSipation @TA = 60' C
Derate above 60' C

PD

210
2.81

mW
mW!'C

Operating Junction Temperature Range

TJ

-55 to +135

'c

THERMAL CHARACTERISTICS

STYLE I,
PIN I, EMITTER

lor

~: ~~~iECTOR

DIM
A
B
C
D

p

0
R

S

...

0

MILLIMETERS
MIN
MAX

4.450

•

S

B

3.180
4.320
0.407
0.407
12.700
1.150

-

6.350
3.430
2.410
2.030

INCHES
MIN
MAX

5,20
0.175
4.190' r 0.125
5.330 0.170
0.533 0.016
0.462 I O]JTS-

-

1.390
1.270
-

-

2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE29'()2
TO-92

815

I

~..---1.

--Is=rT

K
L
N

Thermal Resistance, Junction to Ambient

~Fr

D~~~

F

Characteristic

l

A

O. 05
I!:l6D
0.210
0.021
Il:lIfIr

-

0.055
0.050
0.105
0.105

MPM5006 (continued)
ELECTRICAL CHARACTERISTICS

(TA

=25"C unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

40

-

-

40

-

-

4.0

-

-

-

1.0

50

-

5.0

30

70

-

-

-

2.0

-

-

0.98

-

1.1

1.6

4.0

6.0

-

-

5.5

-

35

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Vollage(l)
(IC =1. 0 mAdc, IB =0)

VCEO(sus)

Collector-Base Breakdown Voltage
(IC =100 "Adc, ~ =0)

BVCBO

Emitter-Base Breakdown Vollage
(~ =100 "Ade, IC =0)

BVEBO

Collector Cutoff Current
(VCB =20 Vdc, ~ =0)
(VCB =20 Vde, ~ =0, T A

I CBO

=65"C)

Vdc

Vdc
Vde

nAde
I'Ade

ON CHARACTERISTICS
DC Current Gain (1)
(IC =4. 0 mAde, V CE

hFE

=10 Vde)

Collector-Emitter Saturation Voltage
(IC =10 mAde, IB =5.0 mAde)

VCE(sat)

Base-Emitter Saturation Voltage
(IC =10 mAde, IB =5. 0 mAde)

VBE(sat)

Vdc
Vde

SMAll·SIGNAl CHARACTERISTICS
Output Capacitance
(VCB =10 Vde, ~

Cob

=0, f =100 kHz)

Small-Signal Current Gain
(Ic =4. 0 mAde, VCE =10 Vde, f

hfe

=100 MHz)

Noise Figure (See Figure 2)
(IC =4.0 mAde, V CC =15 Vdc, RS

pF

-

NF

=100 ohms, f =100 MHz)

dB

FUNCTIONAL TESTS
Power Gain
(IC =4. 0 mAde, V CC
(IC =4. 0 mAde, VCC

(Figure 1)

28

-

=4.0 mAde,

(Figure 2)

20

26

-

6.0

9.0

12

(IC

=12 Vde, f =455 kHz)
=12 Vde, f =10.7 MHz)
VCC =12 Vde, f =100 MHz)

PG

Automatic Gain Control
(IC for which PGAGC =PG -30 dB) (Figure 2)
(l)Pulse Test: Pulse Width

=300 I's,

Duty Cycle

dB

AGC

mA

=1. 0%.

FIGURE 1 - 10.1 MHz UNNEUTRALIZED AMPLIFIER TEST CIRCUIT
.12 V

1.1~H
l1~H

300

5.0 k

L2

C, and C2 AReO 1465
L1" 111'H (0.9 inch of 1632 AIRQUX COIL)
Input Tap at 2.9 T from cold side.
O.... tput Tap at 3.66 T from cold side

50n
OUTPUT

200pF
±50pF

L2 = 1.1 /lH (1.5 inches of #608AIROUX COlLI
Input Tap at 2.3 T from cold side
Output Tap at 0.6 T from cold side
0.5~F

All resistors are 112 Watt.

Typical gain at Ie = 4.0 mAde is 34 dB.

FIGURE 2 - 100 MHz AGC, POWER GAIN AND NOISE FIGURE TEST CIRCUIT
270 ·VCC=12V

r--:? 1

2.2 k

1000 pF

T1

-=

Ballun Core
1/4" 1.0 •• 1/8" Long
5 turns primary
5 turns secondary

1000 pF

1132 Bifilar W1re
T2

0.7-10 pF

1/4" 1.0.
5" 2 turns tapped
up 1/2 turn.11S
Buss Wire

3lI0

816

12 pF

OUTPUT

MPN3401 (SILICON)
MPN3402

SILICON PIN
SWITCHING DIODE

SILICON PIN DIODE
· .. designed primarily for VHF band switching applications but also
suitable for use in general·purpose switching and attenuator circuits.
Supplied in an inexpensive low·inductance plastic package for low
cost, high-volume consumer and industrial requirements.
•

Rugged PIN Structure Coupled with Wirebond Construction for
Optimum Reliability

•

Both 1 pF and 2 pF Devices for Design Selectivity

•

Very Low Series Resistance at 100 MHz - 0.34 Ohms (Typ)
@IF=10mAdc

•

Low Inductance Mini-L Package

•

Mini-L Ridge Clearly Identifies Cathode Lead for Easy Handling
and Mounting

C"hod'~

;!tIT

MAXIMUM RATINGS
Rating

Symbol

Valu.

Unit

Roverse Voltage

VR

35

Volts

Forward Power Dissipation @TA - 25°C
Dorata above 25°C

PF

400
4.0

mW
mW/oC

TJ

+125

°c

Tstg

-65 to +150

°c

Junction Temperature

Storage Temperature Range

MPN3401 - BROWN RIDGE
MPN3402 - BROWN RIDGE,
RED BODY STRIPE

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Reverse Breakdown Voltage
IIR = 10"AI

Symbol

Min

Typ

MIX

Unit

VIBR)R

35

-

-

Volts

-

-

1.0
2.0

pF

-

-

0.7
0.6

Ohms

-

Diode Cepacitance INote 1) MPN3401
IVR = 20 Vdc, f = 1.0 MHz) MPN3402

CT

Series Resistance (Figure 5) MPN3401
(IF = 10mA)
MPN3402

RS

Reverse Leakage Current

IR

-

-

0.1

"A

LS

-

3.0

-

nH

IVR

=25 VdG)

Series Inductance (Note 2)

-

A

If = 250 MHz) IMeasured at Lead
Stop"" 1/8")

CaM Capacitance

•
C
D

F

Cc

-

0.1

-

pF

If = 1.0 MHz)

H
J
K

L

N
R

S
T
U

NOTES

•

I

DIM

III. MAX
186
tl2
1.91
0.64
0.118
1.30
0.64
'.06
2.36
1.12
0.19
1.89
1.14
0.43

4.11
3.18
2.16
0.89
0.18
1.65

0.89

'.32

2.
1.37
1.04
IU5
1.40
0.89

I. H
MAX
MI.
~152

0.115

817

~125
~

U25
0.003
U&1
U26

0.035
0.007
0.0&1
0.
0.110
0.103
0.054

~1611
~D93

0.1144
0.031
0.412
0.Q45
0.017

1. eT is measured using a capacitance bridge (Boonton Electronics Model 75A or
equivalent).
2. LS is measured on a package having a short Insteed of • die, using an Impedance
bridge (Boonton Radio Model 250A RX Meter).

0.162

~07&

CASE 228

D.lMI
0.502
0.0&&
0.027

PIN 1. CATHODE
2. ANODE

MPN3401, MPN3402 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - SERIES RESISTANCE

FIGURE 2 - FORWARD VOLTAGE

1.6

50

1
1
1
U

1.4
0;

e'"
"'uz
'"to

:<

1.2

:J:

\

1.0
0.8

~

~

..s

....
15

=25°C

\

30

~
~

;"

t:l 0.6

if

TA

TA = 25°C

"'"
~

t'--

0.4

40

I

20

I

'"

~

!i-

J

10

If

0.2

a

a

2.0

4.0

6.0

8.0

10

12

,-/

a

14

16

0.5

0.6

IF. FORWARD CURRENT (rnA)

0.7

0.9

0.8

1.0

VF. FORWARD VOLTAGE (VOLTS)

FIGURE 3 - DIODE CAPACITANCE

FIGURE 4 - LEAKAGE CURRENT
lOa

20

a
VR = 25 VOLTS

a

~

5.a

TA

;:r:

25°C

13
~

/

:>

1.0

2i

L

I. a

"'"'ffi o. 1

MV3402

<:3

li

4.a

~ O. 4

2. a

g"'

a

i....
~

~ 7.0

~ 0.0 4

0, 7
0, 5

'"

MV~401

-

./

0.0 I

0.004

O. 2
+3.0

-3.0

-6.0

-9.0

-12

-15

-18

-21

-24

0.00 I
-60

-27

-20

+20

+60

+100

+140

TA. AMBIENT TEMPERATURE 10C)

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHOD
10 pF

2. Use a short length of wire to short the test circuit from
point "A" to "8". Then connect the power supply providing 10 mA of bias c~rrent to the test circuit.
3. Adjust the capacitance scale arm of the bridge and the "G"
zero control for a minimum null on the "null meter".
The null occurs at approximately 130 pF.
4. Replace the wire short with the device to bt.'~sted. Bias
the device to a forward conductance state of 10 mAo
~. Obtain a minimum null on the "nuli meter", with the
capacitance and conductance scale adjustment arms.
6. Aead conductance' (G) direct from the scale. Now read
the capacitance value from the scale (:::::: 130 pF) and sub-,

500!l

Hi o-----jlf-(------j!~----'''''''',..---O+
Boonton
Mod,1 33A or B
Lo 0

I

A

~

DUT

.

Power Supply

Le~.~,.~ ~-

All measurements@100MHz

short as possible.

To measure series resistance, a 10 pF capacitor is used to reduce
the forward capacitance of the circuit and to prevent shorting of
the external power supply through the bridge. The small signal
from the bridge is prevented from shorting through the power

tract 120 pF which yields capacitance (C). The forward

resistance (AS) can now be calculated from:

supply by the 50Q-ohm resistor. The resistance of the 10 pF
capacitor can be considered negl'igible for this measurement.

2.533G
RS=---

1. The RF Admittance Bridge (Boonton 33A or B) must be
initially balanced, with the test circuit connected to the

C2

Where:
G - in micromhos,
C - in pF,
RS - in ohms

bridge test terminals. The conductance scale will be set at
zero and the capacitance scale will be set at 120 pF, as required when using the 100 MHz test coil.

818

MPN3411

(SILICON)

PIN ATTENUATOR DIODE
SILICON PIN
ATTENUATOR
DIODE

· .. designed primarily as a general purpose attenuator diode. Sup·
plied in popular low·inductance, Mini·L plastic package for low cost,
high·volume consumer and industrial requirements.

•

Rugged PIN Structure Coupled with Wirebond Construction for
Optimum Reliability

•

Characterization of Forward Resistance @ 5, 20, 50 and 100 MHz
for Greater Design Flexibility

•

Low Inductance Mini·L Package

•

Mini·L Ridge Clearly Identifies Cathode Lead for Easy Handling
and Mounting
.

•

Can be used for AGC in T and Pi configurations.

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

Reverse Voltage

VA

25

Volts

Forward Power Dissipatton @ T A - 2SoC

PF

400
4.0

mW
mW/oC

+125

°c

-65 to +150

°c

Derate above 25°C
Junction Temperature

TJ

Storage Temperature Range

T stg

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.1
Symbol

Min

Typ

Max

Unit

VIBAIA

25

100

-

Volts

Diode Capacitance (Note 1)
(VA = 20 Vdc, f = 100 MHzl

CT

-

-

0.45

pF

Forward Resistance
MPN3411
IIF = lamA, f= 100MHzI MPN3412

AF

-

10
15

Ohms

-

-

-

3.0

-

nH

Characteristic
Reverse Breakdown Voltage

OA = 10 "AI

Series Inductance (Note 2)

2 ANODE

LS

C

Cc

-

0.1

-

pF

0
F

H
J

K
L
N
R
S
T
U

NOTES

1

DIM
A
B

If = 250 MHzl IMeasured at Lead
Stop ""/8'"1
Case Capacitance
If = 1.0 MHzl

PIN 1. CATHODE

MILLIMETERS
MIN
MAX
3.86
4.11
2.92
3.18
1.91
2.16
0.64
0.89
0.18
0.08
1.30
1.55
0.64
0.89
4.06
4.32
2.36
2.62
1.12
1.37
0.79
1.04
11.99 12.15
1.14
1.40
0.43
0.69

INCHES
MAX
MIN
0.152 0.162
0.115 0.125
0.075 0.085
0.025 0.035
0.003 0.007
0.051 0.061
0.025 0.035
0.160 0.170
0.093 0.103
0.044 0.054
0.031 0.041
0.472 0.502
0.045 0.055
0.017 0.027

CT is measured uSing a capacitance bridge (Boonton Electronics Model 75A or
equivalent).

2. LS is measured on a package having a short instead of a die, using an Impedance
bridge (Boonton Radio Model 250A AX Meter).

819

CASE 226

MPN3411 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS
FORWARD RESISTANCE vorsus CURRENT
FIGURE 2 - MPN3412

FIGURE 1 - MPN3411

10 k

S.O
TJ = 2SoC

.........

; 1.0 k

'"

'"

~ 100
~

50

~ 100

~~

20

z

I=JIk

~ 200

ii

~

10

S.O
0.01

0.02

O.OS

f= 100MHz
'l~O MHz
'!J20 MHz
S·OMHz

~2.0 k
81.0 k
~ 700
~ SOO
~
~ 200

~ 500

T = 2S oC

S.O k

f=IOOMHz
I. SO MHz
20 MHz
5.0 MHz

2.0

0.1
0.2
O.S
1.0
IF, FORWARD CURRENT (mAl

2.0

5.0

~
a:
i!

SO

~

20
10
0.01

10

.......

t-.;;:::

0.02

O.OS

0.1
0.2
O.S
1.0
2.0
IF. FORWARD CURRENT (mAl

S.O

10

FIGURE 3 - FREQUENCY versus CAPACITANCE

2. 0

0
7

V =0
TA=2SoC

""

i'...

S

t'-

0.3
0.2

1.0

2.0 3.0 S.O

20 30 SO
10
f, FREUUENCY (MHzI

100

200 300 SOO

1000

FIGURE 4 - FORWARD RESISTANCE TEST METHOD

10 pF

2. Use a short length of wire to short the test circuit from
point "A" to "S". Then connect the power supply providing 10 mA of bias current to the test circuit.

SOO II

HI o-----j(~-_!---'\vv...---O+
Boonton
Model 33A or B

IA~.
L--I

LoO
All measur-ements@100MHz

0 U.T.

B

1

For test Ii"u", leads should be

short as possible.

3. Adjust the capacitance scale arm of the bridge and the "G"
zero control for a minimum null on the "null meter".
The null occurs at approximately 130 pF.
4. Replace the wire short with the deVice to be tested. Bias
the deVice to a forward conductance state of 10 rnA.
5. Obtain a minimum null on the "null meter", with the
capacitance and conductance scale adjustment arms.
6. Read conductance (Gl direct from the scale. Now read
the capacitance value from the scale (~130 pF) and subtract 120 pF which yields capacitance (e). The forward
resistance (RF) can now be calculated from:

Power Supply

~­

To measure forward resistance, a 10 pF capacitor is used to reduce
the forward capacitance of the circuit and to prevent shorting of
the external power supply through the> bridge. The small signal
from the bndge IS prevented from short; ng through the power
supply by the 50hm reSistor. The resistance of the 10 pF
capacitor can be considered negligible for this measurement.

1. The RF Admittance Bridge (Boonton 33A or BI must be

initially balanced, with the test circuit connected to. the
bndge test terminals. The conductance scale will be set at
zero and the capacitance scale will be set at 120 pF , as reQuired when using the 100 MHz test coil.

Where:
G - in micro mhos,
C in pF,
RF - in ohms

820

K - frequency dependent
constant - Boonton 75A
instruction manual.

MPN3601

(SILICON)

MICROWAVE SILICON PIN DIODE
· .. designed for band switching, general-purpose switching, and
attenuator applications where a hermetic low parasitic package
is desirable.
•

Supplies in Ceramic Pill Package for Microwave Applications

•

Rugged PIN Structure Coupled with Wirebond Construction for
Optimum Reliability

•

Very Low Series Resistance @ 100 MHz RS = 0.34 Ohms (Typ) @ IF = 10 mA

•

Low Series Inductance LS = 3.0 nH (Typ) @f = 250 MHz

•

Completely Switched at VR

MICROWAVE
SILICON PIN
SWITCHING DIODE

Cathode

= -2 V

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Reverse Voltage

VR

35

Volts

Forward Power Dissipation @TA - 2SoC
Derate above 2SoC

PF

400
4.0

mW
mW/oC

TJ

+125

Tstg

-651o +150

°c
°c

Junction Temperature
Storage Temperature Range

ELECTRICAL CHARACTERISTICS (T A
Characteristic
Reverse Breakdown Voltage

=25

0

C unless otherwISe noted)

Symbol

Min

V(BR)R

35

Typ

Max

Unit

Volts

IIR'10!'A)
Diode Capacitance (Note 1)

CT

1.0

pF

0.7

Ohms

0.1

!'A

IVR ' 20 Vdc, f ' 1.0 MHz)
Senes ReSIstance (Figure 5)
IIF' 10 mA, f, 100 MHz)

RS

Reverse Leakage Current

IR

0.34

(VR ' 25 Vdc)

Senes I nductanee (Note 2)

LS

nH

0.8

If' 250 MHz)

Case Capacitance
(f, 1.0 MHz)

STYlE 1
PIN 1 CATHODE
2. ANODE

Cc

pF

0.15

NOTES
1. CT is measured using a capacitance bridge (Boonton Electronics Model 75A or

equivalent).
2.

INCHES

MILLIMETERS

LS IS measured on a package haVing a short Instead of a die, using an impedance
bndge (Boonton Radio Model 250A AX Meter).

821

DIM

MIN

MAX

MIN

MAX

A
B
C
0
F

2.97
1.96
3.78

3.30
2.21
4.09

0117

0.130
0.087

1.52

1.68

1.50
1.78

1.65
1.93

0060
0.059
0.070

H

0.077
0.149

CASE 45·01

0.161
0.066

0.065
0.076

MPN3601 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - SERIES RESISTANCE

FIGURE 2 - FORWARO VOL TAGE

1.6

50

I
I

1.4
0;

":z:

w
'-'

\

1.0

z

«

l;; O.B

~

fZ

~

II

oS
TA = 250C
1= 100 MHz

\

>-

~

a'"

1"'-

0.6

~

«
~

r----

0.4

if

40

;;{

1.2

S

!I

30

TA=25 0 C

I

20

/

5:

~

/

10

0.2

o

o

I-"'"

o
2.0

4.0

B.O

60

12

10

14

16

05

07

0.6

IF, FORWARO CURRENT (mAl

O.B

FIGURE 3 - DIODE CAPACITANCE

FIGURE 4 - LEAKAGE CURRENT
40
VR

10
w
'-'

7.0

=

15 VOLTS

L

a

0

z
~

1.0

100

20

0..

09

VF, FORWARO VOLTAGE (VOLTSI

TA - 25 0C
0

3. 0

U

;t

2.0

;J

L

1

w

§
c;

ci

1.0
7
5

L

4

L

00 1
0.00 4

O. 3
O. 1
'30

-30

-6.0

-90

-11

-15

-18

-21

-24

000 1
-60

-27

l"""
-20

+10

+60

+100

+140

TA, AMBIENT TEMPERATURE (OCI

VR, REVERSE VOLTAGE (VOLTSI

FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHOD
10 of

HI

2. Use a short length of wire to short the test CircuIt from
POint "A" to "B". Then connect the power supply proVid,ng 10 rnA of bias current to the test cIrcuit.

500"

~If-(-----16~----'VVI.~--O+

Boonton
Model33A orB

Lo 0

I

~ 0 UT

L.e. .",. .,,~

All measurements@ 100 MHz

A

3. Adjust the capacitance scale arm of the bridge and the "G"
zero control for a minimum null on the "null meter".
The null occurs at approximately 130 pF.
4. Replace the wire short wIth the device to be tested. Bias
the deVice to a forward conductance state of 10 rnA.
5. Obtain a minimum null on the "null meter", with the
capacitance and conductance scale adjustment arms.
6. Read conductance (G) direct from the scale. Now read
the capacitance value from the scale (:::::::: 130 pF) and subtract 120 pF which yields capacitance (e). The forward
resistance (RS) can now be calculated from:

Power Supply

short as possible

To measure series resistance, a 10 pF capacitor is u.sed to reduce
the forward capacitance of the circuit and to prevent shorting of

the external power supply through thE' bridge. The small signal
from the bridge is prevented from shorti n9 through the power

supply by the 500-ohm resistor. The resistance of the 10 pF
capacitor can be considered negligible for thiS measurement.

2.533 G
RS=---

1. The RF Admittance Bridge (Boonton 33A or BI must be
initially balanced, with the test cirCUit connected to the
bridge test terminals. The conductance scale will be set at
zero and the capacitance scale will be set at 120 pF , as required when using the 100 MHz test coil.

C2

Where:

G - in micromhos,
C - in pF,
RS - in ohms

822

MPQ918

(SILICON)

QUAD DUAL IN-LINE
NPN SILICON ANNULAR HIGH
FREQUENCY AMPLIFIER TRANSISTORS

QUAD DUAL IN-LINE
NPN SILICON HIGH
FREQUENCY AMPLIFIER
TRANSISTORS

· .. designed for low·level, high-gain amplifier applications.
•

Low Noise Figure - @ I C = 1.0 mAdc
NF = 4.0 dB (Typ)

•

High Current·Gain-Bandwidth Product fT = 850 MHz (Typ) @ IC = 4.0 mAdc

•

Transistors Similar to 2N91 8

•

TO-116 Package - Compact Size Compatible with IC Automatic
Insertion Equipment

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

15

Vdc

Collector-Base Voltage

VCB

30

Vdc

Emitter-Base Voltage

VEe

3.0

Vdc

IC

50

mAde

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Four

each
Transistor

EqualPowar

Transiston

Power Dissipation @ T A = 25°C (1)
Derate above 2SoC

Po

500
4.0

900
7.2

mW
mW/oC

Povwr Dissipation @ T C = 25°C
Derate above 25°C

Po

6.7
0.B25

2.4
19.2

mW/oC

Operating and Storage Junction
Temperature Range

TJ,Tstg

Watts

-55 to +150

°c

THERMAL CHARACTERISTICS

C_

Junction to
Ambiant

Unit

Effective, 4 Die

151
52

250
134

°CIW
°CIW

01-04 or 02-Q3
01-02 or Q3-04

34
2.0

70
26

%
%

Junction to
Characteristic

Each

Thermal Resistance

Coupling Factors

oi.

MILLIMETERS
DIM
A

•

MIN

MAX

1803

1879

60'

660

-%- Pl-t_457
38
51

+

CONNECTION DIAGRAM

H

INCHES

-~~~-Wo
140
160

260
180

m~jJj[:
065
1-~~-dn{.!L
040

~\oDBSC

132

183

-+- r-tk+-t&
K

+

~J81
_
100

N
T

54

U
V

&4 RAn
13
38

89
10 TYP

051

011

-~
115
IJ5
290

-

..

015

310
I

'"

10 TYP
025 RAD

01'

DimenSIon L wleadcrntllllntwllen
lormed parallel

c

B

B

CASE 646
TO-116

c

823

MPQ918 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for eaen die, equation (1)
simplifies to

In multiple chip devices, coupling of heat between die occurs.
The junction temperature can be calculated as follows:

(31 "TJl = RO 1 (POl + K02 P02 + K03P03 t K04 P041

(11 "TJl = ROl POl + R02 K02 P02 + R03 K03P03
+ R04 K04 P04

For the conditions where POl

follows:
(21 RO(EFFI = ATJ1/POT
IS

=

4 PO'

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.

An effective package thermal resistance can be defined as

where: PDT

= P02 = P03 = P04. PDT

equation (3) can be further simplified and by substltutmg Into
equation (2) results in

Where & T J1 is the change In junction temperature of die 1
ROl thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated in die 1 through 4
K02 thru 4 is the thermal coupling between die 1 and
die 2 through 4.

the total package power diSSIpation.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted I

I

I

Symbol

Min

TVp

Max

Unit

BVCEO

15

-

-

Vde

Coliector·Base Breakdown Voltage
(lC = 1.0"Ade,'E = 01

BVCBO

30

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

3.0

-

-

Vdc

'CBO

-

-

10

nAdc

-

110
80

-

Characteristic

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (1)
(lC = 3.0 mAde, IB = 01

(IE

= 10 "Ade. IC = 01

Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)
ON CHARACTERISTICS (1)

DC Current Gain

20

Collector-Emitter Saturation Voltage
(lC

-

hFE

(lC = 0.1 mAde, VCE = 1.0 Vdel
(lC = 3.0 mAde, VCE = 1.0 Vdel
(lC = 10 mAde. VCE = 1.0 Vdcl

= 10 mAde, IB = 1.0 mAde)

Base-Emitter Saturation Voltage

-

50

-

VCE(sati

-

0.11

0.4

Vde

VBE(sat)

-

0.84

1.0

Vde

IT

600

850

-

MHz

Cob

-

0.75

1.7

pF

Cib

-

1.1

2.0

pF

NF

-

4.0

6.0

dB

(IC= 10mAdc,'B = 1.0mAdei
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, 1= 100 MHzI

Output Capacitance
(VCB = 10 Vde, IE = 0, 1= 140 kHz)

Input Capacitance
(VBE = 0.5 Vde,lc = 0, f = 140 kHzI

Noise Figure
(lC = 1.0 mAde, VCE = 6.0 Vde, RG = 400 Ohms, I = 60 MHzI
(II Pulse Test: Pulse Width ";;3oo!J.S, Duty Cvele ";;2.0%.

824

MPQ1000

QUAD DUAL-IN-LINE NPN LED DISPLAY DRIVER
QUAD DUAL-IN-LiNE
NPN LED DISPLAY DRIVER

· .. designed for DC to VHF amplifier applications.
•

DC Current Gain Specified - 10 to 150 mAdc

•

Low Coliector·Cutoff Current ICBO = 50 nAdc (Maxi @ VCB = 30 Vdc

•

Collector Breakdown Voltages BVCEO = 20 Vdc (Mini BVCBO = 40 Vdc (Mini

•

TO·llB Packaging - Compact Size Compatible With IC
Automatic Insertion Equipment

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

20

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

IC

500

mAde

Rating
Common-Emitter Voltage

Collector Current ~ Continuous

Four
Each

Transistors

Transistor

Equal Power

= 2SoC

Po

650
5.18

1250
10

mW
mW/oC

Power Dissipation @TC "" 2SoC
Derate above 2SoC

Po

1.0
8.0

3.0
24

mW/oC

Operating and Storage Junction

TJ,Tstg

Power Dissipation @ T A

Derate above 25°C

Watts

°c

-55 to +150

Temperature Range

C::::::Q
~A

II-p

~r.'~
u

A
1~ ~G~ ~~D";::" ~J~
NC

K

NOTES:
1. LEAOSWITHIN 0.13 mm
(0.005) RAOIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "L'· TO
CENTER OF LEADS
WHEN FORMEO
PARALLEL

THERMAL CHARACTERISTICS
Junction to

Junction to

Ca..

Characteristic

Ambient

Unit

Thermal Resistance (1)

Each Die
Effective, 4 Die

125
41.6

193
100

°C/W
°C/W

Coupling Factors

01·04 or 02-03
01·02 or 03-04

30
2.0

60
24

%
%

(1) R6JA is measured with the device soldered into a typical printed circuit board.

CONNECTION DIAC3RAM
C

BEE

B

C

'~:: =&il
c

8

E

B

OIM
A
B
C
0
F
G
H
J
K
L
M

N
P
Q

MILLIMETERS
MAX
MIN
18.16 18.80
6.60
6.10
4.51
4.06
0.38
0.51
1.52
1.02
2.54 BSC
1.83
1.32
0.30
0.20
3.43
2.92
1.31
1.81

100
0.51
0.13
0.51

1.02
0.38
0.16

CASE 646
TO-116

C

825

MPQ1000 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip davie., coupling of hut between die occur•.
The junction temperatures can be calculated 8S foflows:

Assuming equal thermal resistance for e8ch die, equation (1)
simplifies to
(31 .o.TJI = ROI (POI + K02 P02 + K03P03 + K04 P041

(11 .o.TJI = ROI POI + Rn K02 P02 + R03 K03P03

+ R04

For the condItIons where Po I = P02 = P03

K04 P04

= P04,

POT

=4 PO'

equation (3) can be further simplified and by substituting into
equation (2) results In

Where D. T J1 is the change in junction temperature of die
R81 thru 4 is the thermal resistance of die 1 through 4

P01 thru 4 is the power dissipated in die 1 through 4
K02 thru 4 is the thermal coupling between die 1 and
Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.

die 2 through 4.
An effective package thermal reSistance can be defined as
follOWS:
(21 RO(EFFI =.o.TJI/POT
where: PDT IS the total package power dissipation.

ELECTRICAL CHARACTERISTICS

(T A = 25 0 C unl ..s otherwise noted I

Characteristic

Symbol

Min

Typ

Max

Unit

Colleetor·Emitter Breakdown Voltage(1 I
(lC = 10 mAde, IB = 01

BVCEO

20

-

-

Vde

Collector-Base Breakdown Voltage

BVCBO

40

-

-

Vde

BVEBO

4,0

-

-

Vde

ICBO

-

-

50

nAdc

lEBO

-

-

50

nAdc

OFF CHARACTERISTICS

(lc = 10 /lAde, IE = 01

Emitter-Base Breakdown Voltage
(IE = 10/lAde, IC = 01

Collector Cutoff Current
(VCB = 30 Vde, IE

= 01

Emitter Cutoff Current
(VEB

= 2.0 Vde,

IC

= 01

ON CHARACTERISTICS (1)
DC Current Gain

-

50
50
40

Collector-Emitter Saturation Voltage
(lC = 150 mAde,lB

-

hFE

(Ie = 10 mAde, VCE = 10 Vdel
(lC = 50 mAde, VCE = 10 Vdel
(lC = 150 mAde, VCE = 10 Vdel

VCE(sati

= 15 mAde)

Base-Emitter Saturation Voltage

Vde

-

-

0.5

-

-

1.3

IT

175

-

-

MHz

Cob

-

-

B,O

pF

Cib

-

-

30

pF

Vde

VBE(sati

(lC= ISO mAde,lB = 15 mAdei

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC

= 20 mAde, VCE = 20 Vde, I =

100 MHzI

Output Capacitance
(VCB

= 10 Vde,

IE

= 0, 1= 100 kHzI

Input Capacitance
(VBE = 0.5 Vde, Ie

= 0, 1= 100 kHzI

(II Pulse Test: Pulse Width .. 300 /lS, Outy Cycle .. 2.0%.

826

MPQ 1050 (SILICON)

QUAD DUAl-IN-LiNE NPN SILICON

QUAD DUAl-IN-liNE
NPN SILICON
HIGH-CURRENT
SWITCHING TRANSISTOR

HIGH-CURRENT SWITCHING TRANSISTOR
designed for high-current, high-speed switching applications.
•

Low Collector· Emitter Saturation Voltage VCE(sat) ~ 0.45 Vdc (Max) @ IC ~ 500 mAde

•

High Current·Gain - Bandwidth ProductfT ~ 200 MHz (Min) @ IC ~ 50 mAde

•

Fast Switching Speeds @ IC ~ 500 mAdc
ton ~ 35 ns (Max)
toft ~ 45 ns (Max)

•

TO-116 Package - Compact Size Compatible with IC Automatic
I nsertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

30

Vdc

Collector-Emitter Voltage

VCES

50

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

10

Collector Current - Continuous

•

Adc
Four

Each

Total Power Disslpation@TA
Derate ahove 25°C

= 25°C

Total Power Dissipation @ T C :: 25°C
Derate above 2SoC
Operating and Storage Junction
Temperature Range

Po
Po

Transistor

Transistors
Equal Power

750
5.98

1700
13.6

mW/oC

1.25
10

3.2
25.6

Watts
mW/oC

mW

-55 to +150

TJ.Tstg

°c

NOTES
1. LEAOSWtTHINO.13mm
(0.005l RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "l" TO
CENTER OF LEADS
WHEN FORMED
PARAllEL

THERMAL CHARACTERISTICS

Characteristic

Junction to Junction to
Ca..
Ambient

Unit

Effective, 4 Die

100
39

167
73.5

°C/W
°C/W

01-04 or 02-03
01-02 or 03-04

46
5.0

56
10

%
%

Thermal Resistance (1)

Each Die

Coupling Factors

A

•
C
0

CONNECTION DIAGRAM

F

B

INCHES

MILLIMETERS
DIM

G
H
J
K

L
M
N
p
Q

MAX

MIN

18.1S 18.80
S.lO
aGO
4.57
4.06
0.38
0.51
1.02
1.52
2.54 BSe
1.32
1.83
0.20
0.30
3.43
2.92
7.7
7.87
10<>
0.51
1.02
0.13
0.38
0.76
0.61

MI.

0.715
0.240
016
0.015

CASE 646
TO-116

(1) R8JA is measured with the device soldered into a typical printed circuit board.

827

MAX

0.740
0_26
0.180
0.020
~04ll
0.060
0.10DBSe
0.052 0.072
0.008 0.012
0.115 0.135
0_ 1
~290
- 10'
0.020 0.040
0.005 O. I
0.020 0.030

MPQ1050 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming eQtlal thermal resistance for each die, equation
In multiple chip devices, ccupling of heet be~.n die occurs.
The junction temperatures can be calculated as follows:
slmpl if teS to

(1)

13) 6TJl = RellPDl + Ke2 PD2 + Ke3P03 + Ke4 P04)
For the conditIon. where POI = P02' P03 = P04, PDT =4 PO'
equation (31 can be further simplified and by substituting into
equation (21 results In

= ReI POI + Re2 K92 P02 + R83 K83 P03
+ R84 K84 P04
Where 11TJl il the change in junction temperature of die
ReI thru 4 is the thermal resistance 01 die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and

11) 6TJl

Values for the coupling factors when either the, case or the
ambient is used as a reference are given in the tabte on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will resul t.

die 2 through 4.

An effective package thermal resistance can be defined as
lollows:
(2) RSIEFF) = 6T Jl/POT
where: PDT IS the total package power diSSipatiOn.

ElECTR ICAl CHARACTER ISTICS ITA: 25°C unless otherwise noted.)
Choracteristic
Symbol
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltagell)
BVCEO
IIc = 10 mAde, IB = 0)
Coliector·Emitter Breakdown Voltoge
BVCES
IIc : 100 /lAde, VBE : 0)
Emitter·Base Breakdown Voltage
BVEBO
liE = 10 /lAde, IC : 0)
Collector Cutoff Current
ICBO
IVCB : 30 Vde, Ii: : '0)
ON CHARACTERISTICS (1)
DC Current Gain
hFE
IIC: 100 mAde, VCE: 1.0 Vde)
IIc = 500 mAde, VCE = 2.0 Vde)
Collector-Emitter Saturation Voltage
VCElsall
IIc : 500 mAde, IB : 50 mAde)

I

I

Min

Max

Unit

30

-

Vde

50

-

Vde

5.0

-

Vde

-

500

nAde

40
30
-

0.45

Vde

VBElsat)

0.8

1.0

Vde

IT

200

-

MHz

Cob

-

10

pF

Cib

-

80

pF

Turn-On Time

ton

-

35

ns

IVCC: 30Vdc,IC: 500 mAde, VBElofl): 3.8Vdc,IB1: 50mAde)
Turn-Off Time
IVCC : 30 Vde, IC: 500 mAde, IBl : IB2: 50 mAdcl

tolf

-

45

ns

Base-Emitter Saturation Voltage
IIc : 500 mAde, IB = 50 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)

-

IIc : 50 mAde, VCE : 10 Vde, I : 100 MHz)
Output Capacitance
IVC8 ~ 10 Vdc, IE : 0, I : 100 kHz)
Input Capacitance
IVEB: 0.5 Vde, IC: 0, f: 100 kHz)
SWITCHiNG CHARACTERISTICS (FIgure 1)

11) Pulse Test: Pulse WIdth ";;300 /lS, Duty Cycle";; 2.0%.
FIGURE 1 - TURN·ON AND TURN'()FF TIME TEST CIRCUIT
30 V
1511

9.7 V

n

--.J
tr,tt..;;:.ons

Pulse Width ~ 1.0 JJs
Zin = 50 0.
D.C. <2.0%

1.0/lF

To

E----o Sampl jng

Oscilloscope

4311

L

10011

1.0/lF
T211

-=

1.0k11

-3.8 V

MPQ2221 (SILICON)
MPQ2222 For Specifications, See MHQ2221 Data,
828

2in ;;;'100 k11
t r <1.0n5

MPQ2369 (SILICON)
MPQ2483
MPQ2484

For Specifications, See MHQ2369 Data.

(SILICON)

QUAD DUAL IN·LlNE
NPN SILICON ANNULAR
AMPLIFIER TRANSISTORS

QUAD DUAL IN-LINE
NPN SILICON
AMPLIFIER TRANSISTORS

... designed for low·level. high·gain amplifier applications.
•

Low Noise Figure -@ IC = lO/lAdc
NF = 3.0 dB (Typ) - MP02483
= 2.0 dB (Typ) - MP024B4

•

Transistors Similar to 2N24B3 and 2N2484

• TO·116 Package -- Compact Size Compatible with IC Automatic
Insertion Equipment
MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

IC

50

mAde

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Four

Transistor

Transistors
Equal Power

PD

500
4.0

900
7.2

mW
mW/oC

Power Dissipation @ T C = 25°C
Derate above 25°C

PD

0.825
6.7

2.4
19.2

mW/oC

Operating and Storage Junction

TJ.T'IQ

each

Power Dissipation @ T A = 25°C (11

Derate above 25°C

Watts

-55 to +150

°c

Temperatu re Range
(11 Second Breakdown occurs at power levels greater than 3 times the power dissipation rating.

THERMAL CHARACTERISTICS

Characteristic

Junction to Junction to
Ca..
Ambient

Unit

Thermal Resistance

Each Di.
Effective, 4 Die

151
52

250
134

°C/W
°C/W

Coupling Factors

01·04 or 02-03
01-02 or 03-04

34
2.0

70
26

%
%

CONNECTION DIAGRAM
B

B

'1570 TYP

64
70 TYP

64 An
025 RAD
13
DD5
015
OlmI!1l1l0n"L"!ole.dclnt.rlmlwhen
formed/!ll ••11eI

"

CASE 646
TO-116
C

B

E

B

C

829

MPQ2483, MPQ2484 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices,coupling of he.t between die occurs.
Assuming equal thermal resistance for each die, equation (U
The junction temperature can be calculated os follows:
simplifies to
(11 ATJl

(31 aT Jl = R81 (POI + K82 P02 + K83P03 + K84 P041
Forthe conditions where POI = P02 = P03 = P04, PDT = 4 PO'

= RBI POI + R82 K82 P02 + R83 K83P03
+ R84 KB4 P04

equation (3) can be further simplified and by substituting into

Whore ATJ 1 is the change in junction temperature of die 1

equation

RBI thru 4 is the thermal resistance of die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
KB2 thru 4 is the thermal coupling between die 1 and
die 2 throuWl 4.
An effective package thermal resistance can be defined as
follows:
(21 RB(EFFI = aT Jl/POT

results in

Values for the coupling factors """"en either the case or the

ambient is used as 8 reference are given in the table on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of tile peckage should be used so thet lowest possible junction
temperatu ras will result.

where: PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS (TA

(2)

= 250 C unless otherwise noted I

Characteristic

Symbol

Min

Typ

Collector-Emittar Braekdawn Voltage(11
(lC· 10 mAdc, IB • 01

BVCEO

40

-

-

Vde

Coliector·Ba.. Breakdown Voltage
(lC· 10 ,.Adc, IE ·01

BVCBO

60

-

-

Vde

Emitter·Base Breakdown Voltage
(IE ·'0"Adc,IC· 01

BVEBO

6,0

-

-

Vdc

Collector Cutoff Current
(VCB • 46 Vdc, IE ·01

ICBO

-

-

20

nAdc

Emitter Cutoff Current
(VBE • 3.0 Vdc, IC = 01

lEBO

-

-

20

nAdc

100

-

Unit

OFF CHARACTERISTICS

ON CHARACTERISTICS
DC Current Gain( 11
(lC· 0,1 mAdc, VCE· 5.0Vdcl
(lC

hFE
MP02483
MP02484
MP02483
MP02484
MP02483
MP0246.4

= 1.0mAdc, VCE· 5.0 Vdcl

(lC = 10 mAdc, VCE

= 5.0 Vdcl

-

-

-

.-

-

-

-

0.13
0.15

0.35
0.5

-

0.58
0.70

0.7
0.8

IT

50

100

-

MHz

Cob

-

1.8

6.0

pF

Cib

-

4.0

8.0

pF

-

3.0
2.0

-

200

150
300
150
300

Coliector·Emitter Saturation Voltage
(lC·'.0mAde,IB -0.1 mAdcl
(lC = 10 mAdc, lB· 1.0 mAdcl

VCE(sati

a-Emitter On Voltage (11
(lC· 100 "Ade, VCE • 5.0 Vdcl
(lc· 10 mAdc, VeE· 5.0 VdcI

VBE(onl

-

-

-

Vdc

Vdc

DYNAMIC CHARACTERISTICS
Cumnt-Gain-Bandwidth Product
(lc· 500 ,.Adc, VCE = 5.0 Vdc, f
Coliector·Ba.. Capacitance
(VCB • 5.0 Vde, IE = 0; f

= 20 MHzl

= 100 kHzl

Input Capacitance
(VBE • 0.5 Vde, IC = 0, f = 100 kHzl
Nolle Figure
(lc· 10 "Ade, VCE ·5.0 Vde, RS· 10 k ohms,
f· 10 Hz to 15.7 kHz, BW. 10 kHzl

NF
MP02483
MP02484

MPQ2906I MPQ2907 (SILICON)
For Specifications, See MHQ2906 Data.
830

dB

MPQ3303

(SILICON)

QUAD DUAL·IN·LlNE
NPN SILICON ANNULAR
LOW·VOL TAGE HIGH·CURRENT TRANSISTORS

QUAD DUAL·IN·LlNE
NPN SILICON
LOW VOLTAGE
HIGH CURRENT
SWITCHING
TRANSISTORS

· .. designed for high·current, high-speed switching, and MOS translator applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc
• High Current-Gain-Bandwidth Product fT = 400 MHz (MinI @ IC = 100 mAdc
• Fast Switching Speeds at High Currentston = 15 ns (Max) @ IC = 1.0 Adc
toff = 25 ns (Max) @ IC = 1.0 Adc
• Transistor Similar to 2N3303
• TO-116 Package - Compact Size Compatible with IC Automatic
Insertion Equipment
• Collector-Emitter Breakdown Voltage BVCEO = 25 Vdc with appropriate parameter modifications as
a special
MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

12

Vdc

Collector-Base Voltage

Vce

25

Vdc

Emitter-Base Voltage

VEe

4.0

Vdc

IC

1.0

Adc

Collector-Emitter Voltage

Collector Current - Continuous

Total Power Dissipation

Four
Transistors
Equal Power

@

TA

= 2SoC

Po

650
5.2

1250
10

mW
mW/oC

@

TC:: 25°C

PD

1.0
8.0

3.0
24

Watts
mW/oC

Derate above 25°C
Total Power Dissipation
Derate above 2SoC

Each
Transistor

Operating and Storage Junction

-55 to +150

TJ.Tstg

°c

Temperature Range

'
r-" A"--\
~
j - --- ::
F

SEATING -

THERMAL CHARACTERISTICS

PLANE
G

Characteristic
Thermal Resistance

Junction to Junction to
C_
Ambient

-

T
- - --- . ...J...

-

-

I

--1 !:iro

'M

J

Unit

Effective. 4 Die

125
41.6

193'
100'

°CIW
°C/W

01-04 or 02-03
01-02 or 03-04

30
2.0

60

%
%

Each Die

-

OIM
A

Coupling Factors

25

•

C

o

F
G
H

CONNECTION DIAGRAM

J
K

l
M
N
T
U
V
DUl'llnlllCln"L"talNdclIIlIlfltnlwtMn
IOfl".dPllflllll

CASE 646
TQ·116

·R6JA is measured with the device soldered into a typical printed circuit board.

831

J-\I-

MPQ3303 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip dllvices coupling of heat between die occurs.
The junction temperatures can be calculated as follows:
(1) ATJl

= ReI

+ R04

Assuming equal thermal resistance for each dMt. equation (1)
simplifies to

(3) AT Jl = ROI IPOI + K02 P02 + K03P03 + Ke4 P04)
For the ronditions where POI =P02 = P03 = P04, PDT =4 PO'
equation (3) can be further simplified and by substituting into

POI + Re2 K02 P02 + R03 K03P03
K04 P04

\Nhere f'j. T J1 is the change in junction temperature of die
ROI thru 4 is the thermal resistance of die 1 through 4
POI thru 4 is the power dissipated in die 1 through 4
Ko2 thru 4 is the thermal coupling between die 1 and

equation (2) results in

Values for the coupling factors when either the case or the
ambient is used as a reference are _ven in the table on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.

die 2 through 4.

An effective package thermal resistance can be deftned as
follows:
(2) ROIEFF) = AT Jl/POT
where: PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter BreakdQwn Voltage
(lC = 10 mAdc, IB = 0)

BVCEO

12

-

-

Vde

Collector-Base Breakdown Voltage
(lc = l00"Ade, IE = 0)

BVCBO

25

-

-

Vde

Emitter-Ba.. Breakdown Voltege
(IE = 100 "Ade, IC = 0)

BVEBO

4.0

-

Vdc

ICES

-

-

100

"Adc

30
40

45
55

200

-

0.22
0.52

0.33
0.7

-

0.87
1.04

1.1
1.4

CMractwistic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCE = 15 Vdc, VBE = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 100 mAdc, VCE· 0.5 Vdc)
(lC = 300 mAdc, VCE = 0.5 Vdc)

hFE

Collector-Emitter Saturation Voltage
(Ic· 300 mAde, IB = 30 mAdc)
(lC = 1.0 Ade, lB· 0.1 Adc)

VCE(set)

Base-Emitter Saturation Voltege
(lC· 300 mAdc,lB = 30 mAde)
IIc ·'.0Ade,IB = 0.1 Adc)

VBE(setl

-

Vdc

-

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ie = 100 mAdc, VCE = 5.0 Vdc, f = 100 MHz)

IT

400

600

-

MHz

Output Capacitance
(VCB 5.0 Vde, IE = 0, f

Cob

-

5.0

10

pF

= 1.0 MHz)

Input Capacitance
(VBE 0.5 Vdc, IC = 0, f

Cib

-

22

30

pF

= 1.0 MHz)

Ion

-

12

15

ns

toff

-

18

25

ns

=

=

SWITCHING CHARACTERISTICS IFigure 1)

Turn-On Time
IVCC = 12 Vde,IC = 1.0 Ade, VBE(off)

=4.0 Vde, IBI = 100 mAdc)

Turn·Off Time
IVCC = 12 Vdc,IC = 1.0 Adc, IBI = IB2 = 100 mAdc)

FIGURE 1 - TURN-ON AND TURN·OFF TIME TEST CIRCUIT
Voo -4.0V

Vcc

+12V

11

1.0k

PULSE WIDTH = lOOns

:1:JL
PULSE SOURCE
tr=tfo;;;T.Ons
Zjn"'50n
PRFlOkn
Cin<50pF

MPQ3467

(SILICON)

QUAD DUAL IN-LINE
PNP SILICON ANNULAR
MEMORY DRIVER TRANSISTORS

QUAD DUAL-IN-L1NE
PNP SILICON
MEMORY DRIVER
TRANSISTORS

· .. designed for medium-current, high-speed switching, ferrite core
and plated wire memory driver, and MOS translator applications.
•

Low Collector-Emitter Saturation VoltageVCE(sat) = 0.5 Vdc (Max) @ IC = 500 mAdc

•

High Collector-Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 10 mAdc
• Fast Switching@ IC = 500 mAdc
ton = 40 ns (Max)
toff = 90 ns (Max)
• Transistor Similar to 2N3467
•

TO-116 Package - Compact Size Compatible with IC Automatic
I nsertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEe

5.0

Vdc

IC

1.0

Adc

Common-Emitter Voltage

Collector Current - Continuous

Four

Transistor

Transistors
Equal Power

750
5.98

1700
13.6

mW/oC

1.25
10

3.2
256

Watts
mW/oC

Each

Power Dissipation @ T A '" 25°C
Derate above 25°C

Po

Power Dissipation @TC

Po

=

25°C

Derate above 2SoC
Operating and Storage Junction

mW

-55 to +150

TJ,T stg

°c

Temperature Range

~~r-H

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance (11

Coupling Factors

Junction to Junction to
Ambient
Case

Effective, 4 Die

100
39

167
73.5

01-04 or 02-03
01-02 or 03-04

45
5.0

55
10

Each Die

(1 J ROJA is measured with the device soldered into a typical printed circuit board.

U-----_--I
.

SEATING

Unit

PLA:'

~I--o

%
%

DIM

---------L

J

K .M

MILUMETERS
MIN
MAX

A

1803

B

609

660

C
D
F

406
38
102

457
-51
165

l
M
N
T
U
V

1879

2fl4BSC

J
K

132
23
292
737

183
36
343
787

ioo

64
89
70 TYP
64AAO

13
38
DImenSion "L"to lead
lormedparallel

~entelhnewhen

CASE 646
TO-116

833

-~!

°CIW
°C/W

G
H

CONNECTION DIAGRAM

A

rr'iT
N

J

-\1-

MPQ3467 (continued)
THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.
The junction temperatures can be calculated as follows:

Assuming equal thermal reSistance for each die, equation (1)
simplifies to

(3) t.T J1 = Ro 1 (P01 + K02 P02 + K03P03 + K04 P04)

(1) t. TJ1 = Re1 P01 + R02 K02 P02 + Re3 KU3 P03
+ R04 K04 P04

For the conditions where P01 = P02 = P03 = P04, POT = 4 PO'
equation (3) can be further simplified and by substltutmg Into

Where ,'\TJl is the change in junction temperature of die
R81 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated in die 1 through 4
K02 thru 4 is the thermal coupling between die 1 and

. equation (2) results

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest pOSSIble JunctIon
temperatures will result.

die 2 through 4.

An effective package thermal reSistance can be defmed as
follows:
(2) RO(EFF) =t.TJ1/POT
where: PDT

IS

the total package power diSSipation

ElECTR ICAl CHARACTERISTICS

In

IT A " 25°C unless otherWISe noted)

Characteristic
OFF CHARACTERISTICS
BVCEO

40

-

Collector-Base Breakdown Voltage
IIC = 10 I'Ade, IE = 0)

BVCBO

40

-

Emitter-Base Breakdown Voltage
liE = 10 I'Ade, IC = 0)

BVEBO

50

-

-

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)

ICBO

-

-

200

nAdc

Emitter Cutoff Current
(Vse = 3,0 Vde, IC ='0)

lEBO

-

-

200

nAdc

20

-

-

-

0.23

0.5

-

0.90

1.2

IT

125

190

Cob

-

10

25

pF

Cib

-

55

SO

pF

Turn-On Time
(VCC = 30 Vde, IC = 500 mAde, IB1 = SO mAde, VSE(off) = 3.8 Vde)

ton

-

-

40

ns

Turn-Off Time

!off

-

-

90

ns

Collector-Emitt~r,a.r~.akdown Voltage(1)

IIC = 10 mAde, IB = 0)

Vde
Vde
Vde

ON CHARACTERISTICS (1)

DC Current Gain

hFE

IIC = 500 mAde, VCE = 1.0Vde)
Collector-Emitter SaturatIon Voltage
II C = 500 mAde, I B = 50 mAde)

VCE(sat)

Base-Emitter Saturation Voltage
IIc = 500 mAde, IB 0 50 mAde)

VBE(sat)

Vdc
Vde

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 50 mAde, VCE = 10 Vdc, f = 100 MHz)
Output Capacitance
(VCS = 10 Vde, IE

= 0, f =

100 kHz)

I nput Capacitance
(VSE = 0.5 Vde, IC

= 0, I = 100 kHz)

MHz

SWITCHING CHARACTERISTICS IFigure 1)

(Vec = 30 Vde, I·C = 500 mAde, IBI = IB2= 50 mAde)
(1)Pulse Test: Pulse Width OS; 300 IlS, Duty Cycle~ 2.0%

FIGURE 1 - TURN-ON AND TURN-OFF SWITCHING TIMES TEST CIRCUIT
-30 V

15

PULSE GENERATOR
tr,tf <; 1.0 ns

r;-;>"--">NI"-"'-i~ TO SAMPLING
1.01'F

PW:::::: 1.01Js
Zin:::::: 50n

Dutv Cycle

OSCILLOSCOPE

Zin;;:= 100 kn

< 2.0%

t r <1.0n$

+3.8 V

834

MPQ3546 (SILICON)
For Specifications, See MHQ3546 Data.

MPQ3725 (SILICON)
MPQ3725A
NPN SILICON ANNULAR QUAD
CORE DRIVER TRANSISTORS

QUAD DUAL·IN-LiNE

· .. designed for medium·current, high speed switching and driver
applications.
•

Coliector·Emitter Breakdown Voltage @ IC = 10 mAdc BVCEO = 40 Vdc (Min) - MP03725
= 50 Vdc (Min) - MP03725A

•

Fast Switching Times @ IC = 500 mAdc ton = 20 ns (Typ)
toff = 50 ns (Typ)

NPN SILICON
CORE DRIVER
TRANSISTORS

MAXIMUM RATINGS
Rating

Symbol

MPQ3725

Voltage

VeEO

40

Collector-Emitter Voltage

VeES

60

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continous

Ie

1.0

Adc

Operating and Storage Junction
Temperature Range

TJ, Tstg

-55 to +150

°e

Collector~Emitter

MPQ3725A

Unit

50

Vdc

70

Vdc

Four
Ono
Transistor

Po

Total Power Dissipation @TA "" 2SoC
Derate above 2SoC

Transistors
Equal Power

1.0
8.0

2.5
20

Watts
mW/oe

'
~
-+ F

THERMAL CHARACTERISTICS

I Symbol

Characteristics

Max

Unit

Thermal Resistance.Junction to Ambient*

*RSJA

IS

measured with the device soldered

I

R8JA

Into 8

For Four
Transistors

125

typical printed

50
CirCUit

board.

-

-

-

-

°elW
DIM

-

~L--I
T
----- -.l

- --- -r

K MJ

.,.

MILUM T
MAX
1819
&.10

1803

."".
,
38

CONNECTION DIAGRAM

-

'LA:'--I ~I-o

Effective

Qna
Transistor

SEATING

rH

m

.

,

" ,'65"
"2 183

K
L

2.92
731

H

M

N
T
U

23

36
343

.

'""

.

IT'(P
TV'
.. A
' " 'A DIS
V
13
36
OlmlnSion "L·o,o Indclntarhnewllin
formld(llrlUIl

CASE 646
TO·116

835

,-11-

MPQ3725,MPQ3725A (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

Unit

40

-

-

Vde

-

-

Vde

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

MP03725
MPQ3725A

BVCEO

Collector-Emitter Breakdown Voltage

MP03725
MPQ3725A

BVCES

(lC = 100 /lAde, VBE = 0)

50
60
70
BVEBO

5.0

-

-

Vde

ICBO

-

-

0.5

/tAde

35
40
25
30

75
80
45
50

200

VCE(sat!

-

0.32

0.45

Vde

VBE(sati

0.8

0.9

1.0

Vde

for

250
200

275
250

-

MHz

Cob

-

5.1

10

pF

Cib

-

62

80

pF

Turn-On Time (Figure 1)
(lC = 500 mAde, IBI = 50 mAde, VBE(oll) = 3.8 Vdc!

ton

-

20

35

ns

Turn-Olf Time (Figure I!
(lC = 500 mAde, IBI = IB2 = 50 mAde)

toft

-

50

60

ns

Emitter-Base Breakdown Voltage
(IE = 10 /lAde, IC = 0)
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)

ON CHARACTERISTICS (1)
DC Current Gain
(lC = 100 mAde, VCE = 1.0 Vde)

hFE
MPQ3725
MPQ3725A

(lC = 500 mAde, VCE = 2.0 Vde)

MP03725
MPQ3725A

Collector-Emitter Saturation Voltage

-

-

-

-

(I C = 500 mAde, I B = 50 mAde!

Base-Emitter Saturation Voltage
(lC = 500 mAde, IB = 50 mAde!
DVNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lr. = 50 mAde, Vr.F = 10 Vdc, 1= 100 MHz!

MPQ3725
MPQ3725A

Output Capacitance

-

(VCB = 10 Vde, IE = 0, I = 100 kHz!

Input Capacitance
(VBE = 0.5 Vde, IC = 0, I = 100 kHz!
SWITCHING CHARACTERISTICS

(1) Pulse Test: Pulse Width :S;;;;300 IJS, Duty Cycle ~2.0%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
-3.8 V

+30 V

15

43
100
Pulse Ganerator
t r • tf ~ 1.0 ns

PW ~1.0~.
Zin = 50 n
Duty Cycle';;; 2.0%

836

1.0/lF

f----<> To

1.0k

Sampling
Oscilloscope

Zin ;'100 Hl.
tr <1.0 ns

MPQ3725,MPQ3725A (continued)

FIGURE 2 - DC CURRENT GAIN

100

:!:~c

to

I-

~

70

~
u

0

c

:

-....

L-

~ 100

-.........:
~

-

-~50C
P'"

V I=-"'"'

10
10

LdJ

~
~
w

I

.......

'"

r-..,......

1.0

TJ" 15 0C

0

- - - VCE"1.0V

"

0

FIGURE 3 - COLLECTOR SATURATION REGION

I I V~EI,

I

to

O.B

I

«

Ic'100mA

C;
> 0.6

500 rnA

'"

.....

""

\

~

....... ":-1

al
'""'

.....

:3

~

0.4

I\,

I--

~

>
10

30

50

70

100

100

300

500 700 1000

0.5

1.0

1.0

5.0

~

? 0.6

50

100

~

500

u

:;
2.

...... f-I--"

--

~

2150C

+1.0

r- 'OVC For VCE lsatl

ffi

VBE{sall@ICIIB" 10

u

~o 15JoC

-550C to 250C

:3
w

«

C;

-550C to 250C

~ -1.0

o 04
>
>'

02

VCE{satl@ICIIB" 10

II II
30

50

100

V

100

~

,/

--+-tI f-

f-0VB For VBE

~ -2.0
I-

~
300

500

'APPLIES FOR
20

30

50

FIGURE 6 - CAPACITANCE

BO

TJ

r-

25 0C

C,b

.......

0

~
w

~

g

20

~

...; 10
B. 0

Cob

6. 0
4.0
0.1

0.2

100

200

300

IC.COLLECTOR CURRENT {mAl

IC. COLLECTOR CURRENT {mAl

0

0.5

10

2.0

5.0

VR. REVERSE VOLTAGE (VOLTS)

837

~ < hFE

IB

1

-3.0
10

1000

~

I-

~

w

10

200

FIGURE 5 - TEMPERATURE COEFFICIENTS

to

10

20

+20

TJ" 25 0C

-

10

lB. BASE CURRENT {mAl

FIGURE 4 - "ON" VOLTAGES

O.B

~

.......

.............

0.2

IC. COLLECTOR CURRENT {mAl

10

\

1.0 A

20

50

100

500

1000

MPQ3762 (SILICON)

QUAD DUAL IN·LlNE
PNP SILICON ANNULAR
MEMORY DRIVER TRANSISTOR
· .. designed for high·current, high·speed
•

QUAD DUAL·IN·LINE
PNPSILICON
MEMORY DRIVER
TRANSISTOR

s~itchin9.

Low Collector· Emitter Saturation Voltage VCE(sat) = 0.55 Vdc (Max) @ IC = SOO mAdc

• Coliector·Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 10 mAdc
•

Fast Switching @ IC = 1.0 Adc
ton = SO ns (Max)
toff = 120 ns (Max)

• Transistor Similar to 2N3762
• TO·116 Package - Compact Size Compatible with IC Automatic
Automatic Insertion Equipment
MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

1.5

Adc

Rating
Common-Emitter Voltage

Collector Current - Continuous

Four

Each
Transistor

Equal Power

Transistors

Power Dissipation @ T A = 2SoC
Derate above 2SoC

Po

750
5.98

1700
13.6

mW
mW/oC

Power Dissipation @ T C = 2SoC
Derate above 2SoC

Po

1.25
10

3.2
25.6

mW/oC

Operating and Storage Junction

TJ,Tstg

Watts

-55 '0+150

°c

Temperature Range

NOTES:
1. LEADS WITHIN 0.13 mm
(0.D05) RADIUS OF TRUE
POSITION AT SEATING
PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "L" TO
CENTER OF LEADS
WHEN FORMED
PARALLEL

THERMAL CHARACTERISTICS

Characteristic

Junction to Junction to
Case
Ambient

Unit

Thermal Resistance (1)

Each Die
Effective. 4 Die

100
39

167
73.5

°CIW

Coupl ing Factors

01·04 or 02·03
01·02 or 03·04

46
5.0

56
10

%
%

°C/W

DIM

(1) R9JA is measured with the device soldered into a typical printed circuit board.

CONNECTION DIAGRAM

A

MILLIMETERS
MIN
MAX

o

18.16
6.10
4.06
0.38

18.80

8
C

F

.1.02

1.52

G
H
J

K
L
M
N

,
Q

6.60

4.57
0.51

2.54 SSC
1.32

I.S3

0.20
2.92
7.'¥l

0.3D
3.43
7.87

10.
0.51
0.1
0.51

1.02

0.38
0.76

CASE 646
TO·"6

838

MPQ3762 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip davle_. coupling of heat between die occurs.

Assummg equal thermal resistance tor each die, equation (1)
simplifies to

The junction temperatures can be calculated as follows:

131 aTJ1" ROllPOl + K02 P02 + K03P03 + K04 P041

111 aTJ1" ROl POl + R02 K82 P02 + Ra3 K03 P03

For the conditions where POl = P02

+ R04 K04 P04
Where 1\ T J1

15

=:

P03

= P04. PDT

= 4 PO'

equation (3) can be further simplified and by substituting mto
equation (2) results In

the change in junction temperature of die

R81 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated In die 1 through 4
K02 thru 4 is the thermal coupling between die 1 and

141 ROIEFFI " Ru 111 + K02 + K03 + K041/4

die 2 through 4.

An effective package thermal resistance can be defmed as
follows'

121 ROIEFFI "aTJ1/ POT
where. PDT IS the total package power diSSipation

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power IS to be dissipated in two die, die at the oPPosite
ends of the package should be used so that lowest possible lunctlon
temperatures will result.

ELECTRICAL CHARACTERISTICS ITA = 250 C unless otherwise noted.!

I

Characteristic

S~mbol

Min

Typ

Max

Unit

BVCEO

40

-

-

Vde

BVCBO

40

-

-

Vde

BVEBO

5.0

-

-

Vde

ICBO

-

-

100

nAde

lEBO

-

-

100

nAdc

35
30
20

70
65
35

-

-

-

0.3
0.6

0.55
0.9

-

0.9
1.0

1.25
1.4

IT

150

275

-

MHz

Cob

-

9.0

15

pF

Cib

-

55

80

pF

50

ns

120

ns

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (1)
IIC

= 10 mAde,lB = 01

Collector-Base Breakdown Voltage
II C = 10 I'Ade, IE

= 01

Emitter-Base Breakdown Voltage
liE

= 10 I'Ade,lc = 01

Collector Cutoff Current
(VCB" 30 Vde,IE

= 01

Emitter-Cutoff Current
IVEB

= 3.0 Vde, IC"

0)

ON CHARACTERISTICS (11

DC Current Gain

-

hFE

IIC = 150 mAde, VCE = 1.0 Vdel
IIc = 500 mAde, VCE = 2.0 Vdel
IIC " 1.0 Ade, V CE = 2.0 Vdel

Collector-Emitter Saturation Voltage
II C
IIc

Vde

VCElsatl

= 500 mAde, I B " 50 mAdel
= 1.0 Ade,IB = 100 mAdel

Base-Emitter Saturation Voltage

Vde

VBE(satl

(I C = 500 mAde, I B = 50 mAdel
IIc = 1.0 Ade,IB; 100 mAdel

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product (1)
IIC; 50 mAde, VCE" 10 Vde, I

= 100 MHzl

Output Capacitance
IVCB; 10 Vde, IE" 0, I ; 100 kHz I

I nput Capacitance
(VEB; 0.5 Vde, IC" 0, f ; 100 kHzl
SWITCHING CHARACTERISTICS
Turn-On Tim. (Figure 11
IVCC = 30 Vde,lc" 1.0 Ade,lBl " 100 mAde, VBE(offl; 2.0 Vdel
Tu[n-Off Tim. (F igur. 21
(VCC = 30 Vde,IC" 1.0 Ade,lBl " IB2; 100 mAdel

ton

-

toff

-

(1) Pulse Test: Pulse Width ";3001's, Duty Cycle ";2.0%.
EQUIVALENT TEST CIRCUITS

+2'OV1f~
0-

-

S .9V

o

30

Scope

100
-11.1 V
PW= 200n.
Rise Time :s;;,;;;2.0 ns
DC";2.0%

iR

FIGURE 2 - TURN-OFF

FIGURE 1 - TURN-ON
-30 V

-1'.1V

I

:

1

1

~
'2

I

Scope
100

I--

1+-1

10<'1 < 5001"
t2 <:[ 10 ns
'3>1.01'5

839

30

- - 1"1 -

1'1
'3

-=-

-30 V

1N916
+4.0 V

MPQ3798
MPQ3799

(SILICON)

QUAD DUAL·IN·LlNE
PNP SILICON ANNULAR
AMPLIFIER TRANSISTORS
QUAD DUAL·IN·LlNE
PNP SILICON
AMPLIFIER TRANSISTORS

· .. designed for low·level, low·noise amplifier applications.
•

DC Current Gain Specified -10 !lAde to 10 mAde
hFE = 150 (Min) @ IC = 500 !lAde - MPQ3798
= 300 (Min) @ IC = 500 !lAde - MPQ3799

•

Low Capacitance Cob = 2.3 pF (Typ) @ VCB = 5.0 Vdc

•

Low Noise Figure -NF = 1.5 dB(Typ)@ IC = 100 !lAde - MPQ3799

•

Transistors Similar to 2N3798 and 2N3799

•

TO·116 Package - Compact Size Compatible with IC
Automatic Insertion Equ ipment

MAXIMUM RATINGS
Rating

Symbol

MPQ3798

MPQ3799

Unit

Collector-Emitter Voltage

VCEO

40

60

Vdc

Collector-Base Voltage

Vce

60

Emitter-Base Voltage

VEe

5.0

Vdc

IC

50

mAde

Collector Current - Continuous

Vdc

Four

Po

Power Dissipation @ T A:: 25 0 C( 1)

Derate above 25°C
Power Dissipation @ T C = 25°C
Derate above 25°C

Po

Operating and Storage Junction

TJ' Tstg

Each

Transisto"

Transistor

Equal Power

500
~.O

900
7.2

mW
mW/oC

0.825
6.7

2.4
19.2

Watts
mW/oC

°c

-55 to +150

Temperature Range
(1) Second breakdown occurs at power levels greater than 3 times the power
dissipation rating.

k'~1--"

THERMAL CHARACTERISTICS
Junction to Junction to
Ca..

Ambient

Unit

Thermal Resistance

Each Die
Effective, 4 Die

151
52

250
134

°CIW
°CIW

Coupling Factors

01·04 or 02·03
01·02 or 03·04

34
2.0

70

%
%

Characteristic

~L
-I -L
------

F

PLA;~ ~r-o

SEATING

26

-

-

-

-

-

-

~

T

-

1 MJ

---

CONNECTION DIAGRAM

DlmallSlOn "L"IO leadctflterltnewhen
formed parallel

B

B

CASE 646
TO-116

C

840

~

J-\\-

MPQ3798, MPQ3799 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices. coupling of heat between die occurs.
The junction temperatures can be calculated as follows'

Assuming equal thermal reSistance for each die, equation (1)
simplifies to

131 ~TJl = ROl (POl + KfJ2 P02 + KH3P03 + KII4 P041

III ~TJl = ROl POl + R02 KII2 P02 + RH3 KH3P03
+ R04 K04 P04

Forthecondltlonswhere P01

=

P02 '" P03 = P04. PDT = 4 PO'

equation (3) can be further simplified and by substituting Into
equation (2) results In

Where 1\ T J 1 IS the change In Junction temperature of die 1
Ra 1 thru 4 is the thermal reSistance of die 1 through 4

POl thru 4 is the power cilssipated in die 1 through 4
K02 thru 4 IS the thermal coupling between die 1 and
die 2 through 4.

141 ROIEFFI

R0111 + K02 + K03 + K041/4

0

Values for the coupling factors when either the case or the
ambient IS used as a reference are given In the table on page 1 If
significant power IS to be diSSipated In two die. die at the opposite
ends of the package should be used so that lowest possible Junction
temperatures will result.

An effective package thermal resistance can be defined as
follows'
121 ROIEFFI = ~T Jl/POT
where PDT IS the total package power dissipation

ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherWISe notedl
Characteristic
OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage( 1)
(lC

= 10 mAde,

= 01

IB

Collector-Base Breakdown Voltage
(lC

= 10 /.lAde,

-

--

Vde

--

-

Vde

40
60

-

BVCBO

60

BVEBO

50

= 01

IE

Emitter-Base Breakdown Voltage
(IE

Vde

BVCEO
MPQ3798
MPQ3799

= 10/.lAde,IC = 01

Collector Cutoff Current
IVCB

= 50

Vde, IE

Emitter Cutoff Current
IVBE

= 30 Vde,

ICBO

-

lEBO

-

10

nAdc

-

20

nAdc

-

-

= 01

I C = 01

ON CHARACTERISTICS 111

DC Current Gain

VCE

= 5,0

Vdel

(lC = 500 /.lAde, VCE

= 5.0

Vdel

(lC

= 100 /.lAde,

(lC = 10 mAde, VCE

= 5.0

hFE

MPQ3798
MP03799

(lC = 10 /.lAde, VCE = 5,0 Vdel

225

150
300

MPQ3798
MP03799
MPQ3798
MPQ3799
MPQ3798

Vdel

100

150
300
125

-

-

-

-

-

0.12
0.15

0.25

-

0.58

0.7

0.66

0.8

IT

60

130

-

Cob

-

2.3

4.0

pF

Cib

-

5.5

8.0

pF

-

2.5

-

Mpn~7QQ

?~n

Collector-Emitter Saturation Voltage

Vde

VCElsatl

(lC = 100 /.lAde, I B = 10 /.lAdel
(lC = 1.0 mAde,lB = 100/.lAdel

Base-Emitter Saturation Voltage

0.2
Vde

VBElsatl

(lC = 100 /.lAde, IB = 10 /.lAdel
(lC = 1,0 mAde, IB = 100/.lAdel
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(Ie =

1.0 mAde, VCE

=

5.0 Vde, I

MHz

= 100 MHzl

Output Capacitance
(VCB = 5.0 Vde, IE = 0, I = 100 kHzl

I nput Capacitance
(VBE = 0.5 Vde, IC = 0, I

= 100 kHzl

Noise Figure
(lC = 100 /.lAde, VCE = 10 Vde, RS = 3.0 k Ohms,
f = 10 Hz to 15.7 kHzl

NF
MPQ3798
MPQ3799

(11 Pulse Test: Pulse Width ';;;300 /.lS, Duty Cycle = 2.0%.

841

dB
1.5

MPQ3904

(SILICON)

QUAD DUAL-IN-LiNE

QUAD DUAL-IN-L1NE
NPNSILCON
AMPLIFIER/SWITCH
TRANSISTOR

NPN SILICON ANNULAR
AMPLI FI ER!SWITCH TRANSISTOR
. designed for low current amplifier and switching applications.
•

Transistors Similar to 2N3903, 2N3904, 2N3946

•

Low Collector· Emitter Saturation Voltage VCE(satl = 0.2 Vdc (MaxI @ IC = 10 mAde

•

Collector· Emitter Breakdown Voltage BVCEO = 40 Vdc (Mini @ IC = 1.0 mAdc

•

DC Current Gain Specified - 0.1 to 10 mAdc

• TO·116 Plastic Package - Compact Size Compatible with
IC Automatic I nsertion Equipment
MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

Vce

60

Vdc

Emitter-Base Voltage

VEe

6.0

Vdc

IC

200

mAde

Rating

Collector-Emitter Voltage

Collector Current - Continuous

Four

Each
Transistor

Transistors
Equal Power

Total Power Dissipation @ T A '" 25°C
Derate above 2SoC

Po

500
4.0

900
7.2

mW
mW/oC

= 25°C

Po

825
6.7

2.4
19.2

mW/oC

Total Power Dissipation @ T C

Derate above 2SoC
Operating and Storage junction
Temperature Range

Watts

-55 to +150

TJ,Tstg

°c

THERMAL CHARACTERISTICS
Junction to

Ca..

Junction to
Ambient

Unit

Effective, 4 Die

151
52

250
139

°C/W
°C/W

01·04 or 02·03
01·02 or 03·04

34
2.0

70
26

%
%

Characteristic
Thermal Resistance
Coupling

Fact~rs

Each Die

CONNECTION DIAGRAM

OmlenllDn'l"toleadcentellmewhen
fOfmedjlafaliel

B

CASE 646
TO-116

c

842

MPQ3904 (continued)

THERMAL COUPLING ANO EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupl ing of heat between die occurs.
The junction temperature can be calculated as follows:

Assuming equal thermal resistance for each die, equatIOn (1)
simplifies to

131 AT Jl = ROI (POI + K82 Po2 + K03P03 + K04 P041
Forthe oond,ltons where Po 1 = Po2 = Po3 = P04. PDT = 4 PO'

III ATJl = ReI POI + Rn K02 Po2 + R03 K03Po3
+ R04 K04 Po4
v.'here .:1 T J 1 is the change in junction temperature of

di~

equation (31 can be further simplified and by substituting ,nto

1

equation (2) results 10

R81 thru 4 is the thermal resistance of die 1 through 4

POl thru 4 is the power dissipated in die 1 through 4
K82 thru 4 is the thermal coupling between die 1 and

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest possible junclion
temperatures will result.

die 2 through 4.
An effective package thermal resistance can be defined as
follows:

121 ROIEFFI =.o.T Jl/POT
where: PDT 15 the total package power dissipation.

ELECTRICAL CHARACTERISTICS ITA = 25 0 C unless otherwise notedl

f

I

Characteristic

Symbol

Min

TVp

Max

Unit

Collector· Emitter Breakdown Voltage 111
IIc = 1.0 mAde, IB = 01

BVCEO

40

-

-

Vde

Collector-Base Breakdown Voltage
(lC = 10 "Adc, IE = 01

BVCBO

60

-

-

Vde

Emitter-Base Breakdown 80ltage
liE = 10 "Ade, IC = 01

BVEBO

6.0

-

-

Vde

ICBO

-

-

50

nAde

lEBO

-

-

50

nAde

OFF CHARACTERISTICS

Collector Cutoff Current
IVCB = 40 Vde, IE = 0)
Emitter Cutoff Current
IVBE = 40 Vde, IC = 01
ON CHARACTERISTICS III
DC Current Gain
IIc = 0.1 mAde, VCE = 1.0 Vdel
IIc = 1.0 mAde, VCE ='1.0 Vdel
(lC = 10 mAde, VCE = 1.0 Vdcl

hFE

Collector-Emitter Saturation Voltage
(lC = 10 mAde, 18 = 1.0 mAdel
Base-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAdel

-

30
50
75

90
160
200

-

VCElsatl

-

0.1

0.2

Vdc

VBElsatl

-

0.65

0.B5

Vdc

fT

250

300

-

MHz

Output Capacitance
IVce = 5.0 Vdc, Ie = 0, f = 140 kHzl

Cob

-

2.0

4.0

pF

Input Capacitance
IVBE = 0.5 Vdc, IC = 0, f = 140 kHzl

Cib

-

4.0

8.0

pF

ton

-

37

-

ns

toff

-

136

-

ns

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIc = 10 mAde, VCE = 20 Vde, f = 100 MHzl

SWITCHING CHARACTERISTICS
Turn-On Time

(lC

IFigure 1)

= 10 mAde VBEloff) = 0.5 Vde, IBI

= 1.0 mAde)

Turn·Off Time IFigure 2)
IIC = 10 mAde, IBI = IS2 = 1.0 mAde I
11) Pulse Test: Pulse Width" 300 "s, Duty Cycle" 2.0%

FIGURE 2 - STORAGE ANO FALL TIME
EQUIVALENT TEST CIRCUIT

FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT
300 nS-1i
f+-

10 < I, < 500l-'s-l I, i:!::.....+10 6V

DUTY CYCLE = 2%~+10'6V
-O.SV

<1.0ns

DUTY CYCLE = 2 % : E

.Is < 4.0 pf'

C

0

.:r'

-9.1 V--il- < 1.0 ns

T

-1Totalshunt capacitance-of test jig end connectors

843

MPQ3906

(SILICON)

QUAD DUAL-IN-lINE
PNP SI LICON ANNULAR
AMPLIFIER/SWITCH TRANSISTOR

QUAD DUAL-IN-L1NE
PNP SILICON
AMPLIFIER/SWITCH
TRANSISTOR

· .. designed for low current amplifier and switchirlg applications.
•

Transistors Similar to 2N3905, 2N3906, 2N3250

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 10 mAdc

•

Collector· Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 1.0 mAdc

•

DC Current Gain Specified - 0.1 to 10 mAdc

•

TO·116 Plastic Package - Compact Size Compatible with IC
Automatic Insertion Equipment

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAde

Collector-Emitter Voltage

Collector Current - Continuous

Four
Each
Total Power Dissipation @ TA "" 25°C

Po

Derate above 25°C
Total Power Dissipation @ T C "" 25°C
Derate above 25°C
Operat.ng and Storage Junction
Temperatu fe Range

Transistor

Transistors
Equal Powe

500
4.0

900
7.2·

mW/oC

825
6.7

2.4
19.2

Watts
mW/oC

Po

mW

°c

-55 to +150

TJ,T'IQ

THERMAL CHARACTERISTICS

Characteristic

Junction to Junction to
Case
Ambient

Unit

Effective. 4 Die

151
52

250
139

°C/W
°C/W

01·04 or 02-03
01-02 or Q3.Q4

34
2.0

70
26

%
%

Thermal Resistance

Each Die

Coupling Factors

CONNECTION OIAGRAM

Olmen$ll)n"l"loleadtenwhne~hen

fo.ml!'dp..alkll

CASE 646
TO-116

844

MPQ3906 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, equation (1)

In multiple chip devices,coupling of heat between die occurs.
The junction temperature can be calculated as follows:

simplifIes to
131 "T Jl = Re 1 IPOl + K02 P02 + K 03 P03 + K04 P041
For the condItions where POl'" P02"'" P03 = P04. PDT'" 4

(11 .. TJl = Rel POl + Re2 Ke2 P02+ R03 Ke3P03
+ R04 Ke4 P04

Where &. T Jl

Po

equation (3) can be further simplified and by substituting mto
equation (2) results In

the change in junction temperature of die 1
R01 thru 4 IS the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated In die 1 through 4
K02 thru 4 is the thermal coupling between o1le 1 and
IS

Values for the coupling factors when either the case or the
ambient IS used as a reference are Qlven in the table on page 1. If
significant power IS to be dissipated In two die. die at the opposite
ends of the package should be used so that lowest possible Junction
temperatu res will result.

die 2 through 4.

An effective package thermal resistance can be defined as
follows
(21 ROIEFFI = "T Jl/POT
where PDT IS the total package power diSSipation

ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherwISe noted.1

I

I

Characteristic

Symbol

Min

Typ

Max

BVCEO

40

-

-

Vde

BVCBO

40

-

-

Vde

BVEBO

5.0

-

-

Vde

ICBO

-

-

50

nAdc

lEBO

-

-

50

nAdc

40
60
75

160
180
200

-

VeE(satl

-

0.1

0.25

Vde

VBE(satl

-

0.65

0.85

Vde

IT

200

250

-

MHz

eob

-

3.3

4.5

pF

C,b

-

4.8

10

pF

Turn-On Time (Figure 1)
(Ie = 10 mAde, VSE(offl = 0.5 Vde, IBl = 1.0 mAdel

ton

-

43'-

-

ns

Turn·Off Time (Figure 21
(Ie = 10 mAde, IBl = IB2 = 1.0 mAdel

toff

-

155

-

ns

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 01

COllector-Base Breakdown Voltage
(Ie = 10 /lAde, IE = 01

Emitter-Base Breakdown Voltage
(IE = 10/lAde, IC = 01

Collector Cutoff Current
(VCB = 30 Vde, IE = 01

Emitter Cutoff Current
IVBE = 4.0 Vde, Ie = 01
ON CHARACTERISTICS (11

DC Current Gain

hFE

(lC = 0.1 mAde, VeE = 1.0 Vdel
(Ie = 1.0 mAde, VCE = 1.0 Vdel
(Ie = 10 mAde, VCE = 1.0 Vdel

Collector-E mitter Saturation Voltage

-

-

-

(lC = 10 mAde, IB = 1.0 mAdel

r-aa~-Emitter Saturation

Voltage

(Ie = 10 mAde, IB = 1.0 mAdel
DYNAMIC CHARACTERISTICS

Current-Gain -Bandwidth Product
(lC = 10 mAde, VeE = 20 Vde, 1= 100 MHzl

Output Capacitance
(VCB = 5.0 Vde, IE

=

0, 1= 140 kHzl

I nput Capacitance

(VBE = 0.5 Vde, Ie = 0, f = 140 kHzl
SWITCHING CHARACTERISTICS

(11 Pulse Test: Pulse W,dth .,;3OO/l', Outy Cycle ";2.0%.
FIGURE 2 - STORAGE AND FALL TIME
EQUIVALENT TEST CIRCUIT

FIGURE 1 - DELAY AND RISE TIME
EQUIVALENT TEST CIRCUIT

05v
'

:'J1.,~:' ~W.

rt

-,

~<

-\06V ~

IOns

10D~'C~C~~!'~%

100- 3OOn.
DUTY CYCLE - 2%

-+I I,

F- IO.6V

*Total shunt capacitance of test jig and connectors

84&

MPQ4003 (SILICON)
MPQ4004

NPN SILICON ANNULAR QUAD
CORE DRIVER TRANSISTORS

NPNSILICON
DUAL-IN-L1NE
CORE DRIVER
TRANSISTORS

.. designed for medium current, high·speed switching and driver
applications.
•

High Coliector·Emitter Breakdown Voltage @ IC
BVCEO = 40 Vdc (Min) - MPQ4003
=50 Vdc (Min) - MPQ4004

•

Fast Switching Times @ IC = 500 mAdc -

= 10 mAdc -

ton = 25 ns (Typ)
toff = 60 ns (Typ)

MAXIMUM RATINGS
Symbol

MPQ4003

MPQ4004

Collector-Emitter Voltage

VeEO

40

50

Vdc

Collector-Emitter Voltage

VeES

60

70

Vdc

Rating

Unit

VEe

5.0

Vdc

Collector Current - Continuous

Ie

1.0

Adc

Operating and Storage Junction
Temperature Range

TJ.T stg

-55 to +150

°e

Emitter...f3ase Voltage

Equal
One

TllInsistar.

Tranlistor

Equal Pow ...

1.0
8.0

2.5

Watts

20

rrlNf'e

Po

Total Power Dissipation @ T A = 25"e

Derate Above 2SoC

THERMAL CHARACTERISTICS

I

Charocteristic

Thermal Resistance, Junction to Ambient·

I

Mox

Symbol

R9JA

Unit

Effective
For Four

One
Transistor

Transistor.

125

50

°elW

*R8JA is measured with the device soldered into a typical printed circuit boird.

CONNECTION DIAGRAM

T

10

U
Y

y,

14 A

CASE 646
TO·H6

846

AD

:II
0115
015
OIlMqo" .. l .. to ..... cem...""wMn
IOflftld ..,atIeI
13

MPQ4003,MPQ4004 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

Characteristic

Symbol

Min

40
50

Typ

Max

-

-

Vde

-

-

Vde

0.5

"Ade

Unit

OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

MPQ4003
MPQ4004

BVCEO

Collector-Emitter Breakdown Voltage
(lC = 100 "Ade, VBE = 0)

MPQ4003
MPQ4004

BVCES

Vde

60
70

Emitter-Base Breakdown Voltage

5.0

BVEBO

(IE = 10 "Ade, IC = 01
Collector Cutoff Current
(VCB = 40 Vde, IE = 01

ICBO

ON CHARACTERISTICS (11
DC Current Gain
(lC = 100 mAde, VCE = 1.0 Vde)

-

hFE
35

(lC

= 500 mAde, IB = 50 mAde)

Base-Emitter Saturation Voltage
(lC

= 500 mAde, I B = 50 mAde)

200

25

45

-

VCE(sati

-

0.32

0.45

Vde

VBE(sat)

0.8

0.9

1.0

Vde

IT

200

250

-

MHz

Cob

-

5.1

10

pF

Cib

-

62

80

pF

25

40

ns

60

75

ns

(lC = 500 mAde, VCE = 2.0 Vde)

Collector-Emitter Saturation Voltage

75

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, VCE = 10 Vde, 1= 100 MHz)

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)

Input Capacitance
(VSE = 0.5 Vde, IC = 0, f = 100 kHz)
SWITCHING CHARACTERISTICS
Turn-On Time (Figure 1)

ton

(IC = 500 mAde, IB1 = 50 mAde, VBE(otf) = 3.8 Vde)
~.

Turn-Off Time (Figure 1)

-

toff

(lC ~ 500 mAde, IB 1 = IS2 = 50 mAde)
(1) Pulse Test. Pulse Width';; 300 IlS, Duty Cycle';; 2.0%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
-3.8 V

+.JU V

15

+9. 7V

n

--.J

L

°pulseGenerator
t r , tf:S;;; 1.0 ns

43

T-

PW ~l.0JJs
Zjn = 50.n
Duty Cycle"" 2.0%

1.01lF

100

1.0JJF

t---o To

1.0k

Sampling

Oscilloscope
2in ~100

kn

tr <1.0 ns

62

_
-

847

MPQ4003,MPQ4004 (continued)

FIGURE 2 - DC CURRENT GAIN
200

~V~EI"L olJ

TJ" ~oc

-

0

--

-i50 C
0

b,.:: F-""'"'

~

-, - - - VCE"2.0V
r-......: :'

L

0

FIGURE 3 - COLLECTOR SATURATION REGION

w

'""
:;

"' "

200

\

'"

~

"'
~
8

I'

0.4

0

~

100

500mA

I-I--

" r r--t\
70

IC"IJom~

w

~~

i'-.:

""",I'

50

30

DB

> 06

300

02

500 700 1000

10

0.5

r-50

2.0

vi-"

~

? 06

VBE(sat)

@ ICIIB"

10

200

500

+1.0

25°C to 1500C

"Ove For VCE(sat)

;:;

--::t:

~
o

'"
>

100

G

">
~
:li

w

~o

50

+2.0

-II-f-

20

FIGURE 5 - TEMPERATURE COEFFICIENTS

TJ" 25°C

I--

10

lB. BASE CURRENT (mA)

FIGURE 4 - "ON" VOLTAGES

O.B

~

I'

0

IC. COLLECTOR CURRENT (mA)

10

\

1.0 A

'I"--

j

>
20

TJ" 25°C

0

?

0

0
20
10

10

-55°C to 250C

'-'
w

04

~ -1.0

0.2

~

;>

VCE(sati

@

ICIIB" 10

V-

I--

~

20

30

50

i

100

l--t- !---

-2.0

I--

II II
10

-550C to 150 0C
OVB For VBE

200

300

500

"Applies for
-3. 0

10

1000

20

IC. COLLECTOR CURRENT (mA)

100
200 300
30
50
IC. COLLECTOR CURRENT (mA)

FIGURE 6 - CAPACITANCE
BO
60

~

r--.

40

C,b

r---

'-'
z
~ 20
;:;

;t

;3
u~

10
B.O

Cob

-...

6.0
4.0
0.1

0.2

0.5

1.0

2.0

5.0

10

VR. REVERSE VOLTAGE (VOLTS)

848

20

50

100

~< h~E

1.1
500

1000

MPQ6001 (SILICON)
MPQ6002
MPQ6S01
MPQ6S02
QUAD DUAL-IN-LiNE
SILICON
COMPLEMENTARY PAIR
TRANSISTORS

QUAD DUAL-IN-LiNE
SILICON ANNULAR
COMPLEMENTARY PAIR TRANSISTORS
designed for hlgh·speed sWitching CirCUitS, DC to VH F amplifier
applications and complementary circuitry.

•

DC Current Gain Specified - 1.0 to 300 mAdc

•

High Current·Gam -Bandwidth Product
IT " 400 MHz (Typ) @ IC ~ 50 mAdc

•

NPN TranSistor Similar to 2N2218 or 2N2219

•

PNP TranSistor Similar to 2N2904 or 2N2905

•

TO-116 Package - Compact Size Compatible with IC Automatic
Insertion Equipment

•

MP06501, MP06502 Matching Characteristics Available
as Specials on 01-04 and 02-03.

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeEO

30

Vdc

Collector-Bas8 Voltage

Vee

60

Vdc

Emitter-Base Voltage

VEe

50

Vdc

Ie

500

mAde

Collector*Emltter Voltage

Collector Current - Continuous

Power Dissipation @ T A = 2SoC (1)

= 2SoC

Four
Transistors
Equal Power

650
5.18

1250
10

mW
mW/oC

PD

1.0
8.0

3.0
24

mW
mW/oC

-55.to +150

TJ,Tstg

INCHES

DIM MIN MAX
MIN MAX
18.16 18.80 0.71& 0-740
B
6.10
6.60 0.240 0.260
O.lBO
4.06
4.57 0.16
C
0.51 0.015 0.020
D
0.38
F
1.02
1.52 0-040 0-060
0.1008SC
G
2.54 BSC
H
1.32
1.8 0.052 0.072
D.3O 0-008 0.012
I
0-20
3.43 0.115 0.135
K
2.92
7.B7 0.290 0.310
L
7.37
10'
10'
0.51
1.02 0.020 0.040
0.13
0.38 0.005 0.015
Q
D. 1 0.76 0-020 0.030

•

Transistor

Derate above 2SoC
Operating and Storage Junction
Temperature Range

MILLIMETERS

Po

Derate above 2SoC
Power Dissipation @ TC

Each

°c

.

•,

(1) Second Breakdown occurs at power Jevelsgreater than 3 times the power dissipation rating.

-

NOTES:
1. LEADS WITHIN 0.13 mm

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance

Coupling Factors

(0.0051 RAOIUS OF TRUE

Junction to
Ambient

Unit

125

°C/W
°C/W

Each Die
Effective. 4 Die

41.6

193
100

01-04 or 02-03
01-02 or 03-04

30
2.0

60
24

MP06001, MPQ6oo2

POSITION AT SEATING

Junction to
Case

%
%

CONNECTION DIAGRAM

849

PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION "L" TO
CENTER OF LEADS
WHEN FORMED
PARALLEL
CASE 646

MP06501, MPQ6502

MP06001, MP06002, MP06501, MPS6502 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
Assuming equal thermal resistance for each die, eq~tton (1)
simplifies to

In multiple chip devices. coupling of heat between die occurs.

The junction temperature can be calculated as follows:

(3) "TJl =RSl (POl + KS2 P02+ KS3P03+'KS4 PO.v
Forthe oonditionswhere POl = P02 = P03 = P04. PDT = 4 Po

(1) "TJl = Rel POl + RS2 KS2 P02 + RS3 KS3P03
+ RS4 KS4 P04

equation (3) can be further simplified and by substituting into

Where lI. T J1 is the change in junction temperature of die 1

equation (2) results

R01 thru 4 is the thermal resistance of die 1 through 4
P01 thru 4 is the power dissipated in die 1 through 4
K02 thru

4. is the thermal coupling

between die 1 and
Values for the coupling factors vvhen either the case or the

die 2 through 4,
An effective package thermal resistance can be defined as

ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die. die at the opposite
ends of the package should be used so that lowsst possible junction
temperatures will result.
'

follows:

(2) RS(EFF) = "'TJ1/POT
where: PDT is the total package power diSSipation.
ELECTRICAL CHARACTERISTICS IT A

In

C

2SoC unlenotherwlse noted I
By_I

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage(1)
(Ie = 10mAde,IB'= 0)

Min

Ma.

TV.

Unit

BVCEO

30

Vd,

Collector-Base Breakdown Voltage
IIc = 10/.lAde, IE = 01

.BVCBO

61l

Vd,

Emltter·Base Breakdown Voltage
(IE = 10/.lAde,lc" 0)

BVEBO

50

Vd,

Collector Cutoff Current
(VCS '" 50 Vde, Ie = 0)

ICBO

30

nAde

Emitter Cutoff Current
(VEB'" 3.0 Vde, IC '" 0)

lEBO

30

nAde

ON CHARACTERISTICS
DC Current Gainl1J
IIC = 1.0 mAde, VCE = 10 Vde
(lC = 10 mAde, Vee = 10 Vctc)
(Ie = 150 mAde, VCE = 10 Vde)

IIC

=300 mAde, VCE =10 Vdel

hFE

MPQ6001,6501
MPQ6002,6502
MPQ6001,6501
MP06002,6502
MPQ6001,6501
MP06002,6502

25
50
35

35
65
50
90

75
40
100
20
30

MPQ6001,6501

MP06002,6502
Collector-Emitter Saturation Voltage (11
(Ie" 150 mAde,'S = 15 mAde)
HC = JOOmAde,lB = 30mAdel

VCElsatl

Sase-Emitter Saturation Voltage 111
(Ie = 150 mAde, 'S = 15 mAde I
IIC = 300 mAde, 'I B = 30 mAde)

VBElsatl

65
120

2.

35
Vd,
0,2

0.

0,35

I.

Vd,

M

1,3

LO

2,0

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (11
tiC" SO mAde, Vce = 20 Vde, f .. 100 MHz)

IT

Output Capaclta~e
(VCB = 10 Vde, Ie = 0, f "100kHz)

MH,

350

Cob

.NP
N.N

Input Capacitance
IVES = 2 0 Vde,IC = 0, f = tOO kHz)

200

pF
6,0
4,5

8,0
8,0

20
17

30
30

pF

Cib

PNP
NPN

SWITCHING CHARACTERISTICS
Turn·On Time
(Vee· 30 Vde, VBE(off) = 0.5 Vde, Ie - 150 mAde,
ISl = 15 mAde. FIgure 11

'on

Turn-Off Time
tVec = 30 Vde, IC" 150mAdc,
181" IB2 " 15 mAde, FIgure 2)

'off

30

225

{1lPulse Test· Pul .. Wldth-s;300/.l" DutV,Cycle. 2%

NPN SATURATED SWITCHING TIME TEST CIRCUITS
For PNP Switching Tests, reverse the diodes, voltage polarities, and input pulses.
FIGURE 1 - NPN TURN-ON TIME
FIGURE 2 - NPN TURN·OFF TIME
GENERATOR
Ri.. Time S 2.0 nt

PW:S:200nl
DutY Cvcl. ":2,0%

·Cs IS totll shunt capacItance of oscilloscope and test ftxture

j ---t;:= 10

to

:~O +16.2~<5.0

619

+30 V

100

n.

+9.9TI

-

-

RC

200 +30 V

1000

C.':S:12pF

0-

"I

0

-

'-~1"'N"9-1-6-'---T Jl/PDT

Por IS

the total package power diSSipation.

ELECTRICAL CHARACTERISTICS (T A

I

PD2

==

P03

=

P04. POT

=

4 PO'

In

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.

die 2 through 4.

where:

=

equation (3) can be further simplified and by substituting mto

Where 6.TJ1 is the change in junction temperature of die 1
R01 thru 4 is the thermal resistance of die 1 through 4
P01 thru 4 is the power dissipated in die 1 through 4

= 25°C unless otherwise noted.)

I

Characteristic

ColiectorMEmitter Breakdown Voltage(11
(lC = 10 mAde, IS = 0)

MP061 00,6600
MPOS100A,SSOOA

CollectorMBase Breakdown Voltage

Symbol

Min

Typ

Max

Unit

SVCEO

40
45

-

-

Vde

-

SVCSO

SO

-

-

Vde

BVEBO

5.0

-

-

Vde

ICBO

-

-

10

nAdc

(lC = 10 /lAde, IE = 0)

EmitterMBase Breakdown Voltage
(IE = 10/lAde, IC = 0)

Collector Cutoff Current
(VCS = 50 Vde, IE = 0)
ON CHARACTERISTICS (1)

DC Current Gain
(lC = 100 /lAde, VCE = 5.0 Vde)
(lC = 500 /lAde, VCE = 5.0 Vde)
(lc = 1.0 mAde, VCE = 5.0 Vde)
(lC = 10 mAde, VCE = 5.0 Vde)

-

hFE
50
100
75
150
75
150
SO
125

95
200
140
300
140
300
110
275

-

VCE(sat)

-

0.1

0.25

Vde

VSE(sat)

-

0.65

0.8

Vde

IT

50

125

-

MHz

-

1.2
1.8

4.0
4.0

-

5.5
6.0

8.0
8.0

-

4.0

-

MP06100,SSOO
MPQ6100A,SSOOA
MPQ6100,S600
MPQS100A,SSOOA
MPQ6100,SSOO
MPQ6100A,S600A
MPQ61 00,6600
MPQS100A,6600A

Collector-Emitter Saturation Voltage
(I C = 1.0 mAde, IS = 100 /lAde)

BaseMEmitter Saturation Voltage
(lc = 1.0 mAde, IS = 100/lAde)
DYNAMIC CHARACTERISTICS

CurrentMGain-Bandwidth Product
(lC = 500 /lAde, VCE = 5.0 Vde, 1= 20 MHz)

Output Capacitance
(VCS = 5.0 Vde, IE = 0, I = 100 kHz)

I nput Capacitance
(VBE = 0.5 Vde, IC = 0, 1=.100 kHz)

pF

Cob
PNP
NPN

pF

Cib
PNP
NPN

Noise Figure

NF

(lC = 100 /lAde, VCE = 5.0 Vde, RS = 10 kohms,
1= 10 Hz to 15.7 kHz, BW = 10 kHz)
(l)Puke Test: Pulse Width ";;;300/ls, Duty Cycle .. 2.0%.

852

dB

MPQ6700 (SILICON)

QUAD DUAL-IN-LiNE
SILICON ANNULAR
COMPLEMENTARY PAIR TRANSISTOR

QUAD DUAL·IN·LlNE
SILICON
COMPLEMENTARY PAIR
TRANSISTOR

designed for DC to VH F amplifier applications and complementary circuitry.
e. DC Current Gain Specified - 0.1 to 10 mAdc

e Current-Gain - Bandwidth Product fT = 200 MHz (Min) @ IC = 10 mAde
e NPN Transistor Similar to 2N3903 or 2N3904
e PNP Transistor Similar to 2N3905 or 2N3906

•

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

50

Vdc

IC

200

Collector-Emitter Voltage

Collector Current

~

Continuous

mAde
Four

Power DISSipation @ T A'" 25°C (1)

Po

Derate above 25°C
Power Dlsslpatlon@Tc
Derate above 25°C

'=

25°C

Operating and Storage JunctIOn

Po

Each

Transistors

Transistor

Equal Power

500
40

900
7,2

mW/oC

825
6.7

2400
19.2

mW
mW/oC

mW

°c

-55 to +150

TJ,Tstg

Temperature Range
(11 Second Breakdown occurs at power levels greater than 3 times the power diSSipation rating

THERMAL CHARACTERISTICS
Junction to
Characteristic

Case

Junction to
Ambient

Unit
°C/W
°C/W

Thermal Resistance

Each Ole
Effectlve,4 Ore

151
52

250
134

CouplIng Factors

01-04 or 02-03
01-02 or 03-04

34
2,0

70
26

CONNECTION DIAGRAM

%
%

MILLIMETERS
DIM

A
B
e
0
F
G
H

J
K
L
M
N
p
Q

MIN

MAX

18.16 18.80
6,60
6.10
4.06
4.57
0,38
0.51
1.01
1.51
1.548Se
1.31
1.83
0.30
0.10
1.91
3.43
7,37
7.87
10'
0.51
1.01
0,13
0.38
0,51
0.76

INCHES
MAX
MIN

0.715
0,140
0.160
0.015
0.040
0.1
0.051
0.008
0,115
0.190
0.010
0.005
0.010

CASE 646

c

c

853

MPQ6700 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat between die occurs.

The junction temperature can be calculated as follows:

Assuming equal thermal resistance for each die. equation (1)
simplifies to

(1) aTJl = R91 POl + R92 Ke2 P02 + R83 K93 P03

(3) aT Jl = R91 (POl + K82 P02 + K83 P03 + K84 P04)

+ R94 Ke4 P04
For the conditions where POl = P02 = P03 = P04, POT = 4PO,
equation (3) can be further simplified and by substituting into

Where AT J1 is the change in junction temperature of die 1

R81 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipation in die 1 through 4
K82 thru 4 is the thermal coupling between die 1 and

equation (2) results in
(4)R9(EFF)= R81 (1 + Ke2+ K83+ K84) /4

die 2 through 4.

An effective package thermal resistance can be defined as
lollows:
(2) R9(EFF) = aTJ1/POT

Where: PDT is the total package power dissipation.

Values for the coupling factors when either the case or the
ambient is used as a reference are given in the table on page 1. If
significant power is to be dissipated in two die, die at the opposite
ends of the package should be used so that lowest possible junction
temperatures will result.

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

Characteristic

Symbol

Min

Typ

Max

Unit

BVCEO

40

-

-

Vde

BVCBO

40

-

-

Vde

BVEBO

5.0

-

-

Vde

ICBO

-

-

50

nAdc

lEBO

-

-

50

nAde

30

-

70

70
120
160

VCE(sat)

-

0.1

0.25

Vde

VBE(sat)

-

0.75

0.9

Vde

IT

200

400

-

MHz

Cob

-

1.5

4.5

pF

-

7.0
4.5

10
8.0

OFF CHARACTERISTICS

COllector-Emitter Breakdown Voltage (11
(lC = 10 mAde,lB = 0)

Collector-Base Breakdown Voltage
(lC = 10 "Ade, IE = 0)

Emitter-Base Breakdown Voltage
(IE = 10"Ade,IC = 0)

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)

Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 0)
ON CHARACTERISTICS (1)

DC Current Gain

-

hFE

(lc = 0.1 mAde, VCE = 1.0 Vdc)
(lC = 1.0 mAde, VCE = 1.0 Vdc)
(lC = 10 mAde, VCE = 1.0 Vde)

50

Collector-Emitter Saturation Voltage

-

(lC = 10 mAde, I B = 1.0 mAde)

Base-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 20 Vdc, I = 100 MHz)

Output Capacitance
(VCB = 5.0 Vde,l E = 0, I = 100 kHz)

Input Capacitance
(VEB = 0.5 Vde, IC = 0, I = 100 kHz)

pF

Cib
PNP
NPN

(1) Pulse Test: Pulse Width <;;;300 "S, Outy Cycle ";;2.0%.

854

MPS404 (SILICON)
MPS404A

PNP SILICON ANNULAR TRANSISTORS
PNP SILICON
CHOPPER TRANSISTORS

· .. plastic encapsulated package designed for medium·speed chopper
applications in industrial and computer equipment. Intended for operation in applications replacing the 2N404 and 2N404A transistors.
•

High Emitter-Base Breakdown Voltage BVEBO = 12 Vdc (Mini - MPS404
25 Vdc (Mini - MPS404A
50 Vdc (Typl - MPS404, MPS404A

•

Full Design Curves

MAXIMUM RATINGS
MPS404 MPS404A

Symbol

Rating

Vceo

24

Collector-Base Voltage

VCB

25

Emitter-Base Voltage

VeB

12

Collector-Emitter Voltage

Collector Current - Continuous

Total Power Dissipation @ T A

= 2SoC

Vdc

40

Vdc
Vdc

25

......-150 ------.

Po

"""-350--"

mW

"'--2.8~

mW/oC

Po

Derate above 2SoC
Operating and Storage Junction
Temperature Range

Unit

35

IC

Derate above 2SoC
Total Power Dissipation @ T C - 25°C

I
I
I

TJ, T stg

mAde

. - - 1 . 0 - - - - . . Watt

........- 8.0--'--' mWtDC
4 - -55 to + 150---.
°c

STYLE 1
PIN 1 EMITTER
2 BASE
3 COLLECTOR

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to
Ambient
Thermal Resistance, Junction to Case

Symbol

Max

Unit

R a JA(1)

357

°CIW

125

°C/W

RaJC

DIM
A
B
C
D
F
~

(1) R8JA is measured with the device soldered into a typical printed circuit board.

L
N
P
Q

R
S

MILLIMETERS
MIN
MAX

4.450
3.180
4.320
0.407
0.407

INCHES
MIN
MAX

5100
4.190
5330
0.533
0.48

0175
0.125
0.170
0.Q16
"."16

0105
0165
0210
0011
0.019

1.390
1.170

0.045

-

0.055
0.050

0.250
0.135
0.095
0.080

0.105
0.105

l:,{1J1L

1.150

6.350
3.430
2.410
2.030

2.670
2.670

CASE 29-02
TO-92

855

MPS404,A (continued)

ELECTRICAL CHARACTERISTICS

I

(TA ~ 25°C unless otherwise noted)

I

Characteristic

I

Symbol

Typ

Min

Unit

Max

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (1)

Vde

BVCEO

(IC = 10 mAde, IB ~ 0)

MPS404
MPS404A

Collector-Base Breakdown Voltage
(lc = 10 )lAde, IE = 0)

24
35

-

-

25
40

-

-

-

-

12
25

50
50

-

-

-

100

-

-

100

30

100

400

-

0.1
0.12

0.15
0.20

-

0.7
0.74

0.85
1.0

4.0

-

-

-

6.8

20

43

-

Vde

BVCBO
MPS404
MPS404A

Emitter-Base Breakdown Voltage
(IE = 10)lAde,lc= 0)

Vde

BVEBO
MPS404
MPS404A

Collector Cutoff Current

nAdc

ICBO

(VCB ~ 10 Vde, IE ~ 0)
Emitter Cutoff Current
(VBE ~ 10 Vde, IC ~ Q)

nAdc

lEBO

ON CHARACTERISTICS

DC Current Gai n

-

hFE

(lC ~ 12 mAde, VCE = 0.15 Vde)

Collector-Emitter Saturation Voltage

Vde

VCE(sat)

(lc = 12 mAde, IB = 0.4 mAde)
(lc = 24 mAde. I B = 1.0 mAde)

Base-Emitter Saturation Voltage
(IC
(IC

~
~

12 mAde, IB
24 mAde, IB

~
~

Vde

VBE(sat)

0.4 mAde)
1.0 mAde)

OYNAMIC CHARACTERISTICS
Common-Base Cutoff Frequency
(IC ~ 1.0 mAde, VCB ~ 6.0 Vde)

fOb

Output Capacitance

Cob

MHz
pF

(VCB ~ 6.0 Vde, IE = 0)
SWITCHING CHARACTERISTICS
Delay Time

Rise Time

Storage Time
Fall Time

(Vec= 10Vde.lc= 10mAde,IBl ~
1.0mAde, VBE(off)= 1.4 Vde) (Fig. 11,13)

'd

(Vec = 10 Vde, IC = 10 mAde, IBl ~
IB2= 1.0mAde(Figures 12and 13)

ts
If

Total Conlrol Charge (Figure 14)
(Ie ~ 10 mAde, IB = 1.0 mAde)
(1)

Pulse Test: Pulse Width

~

300 .us, Duty Cycle

~

I I

I I

'-'I-

j~

0",

'-10

40

r--

I-- -

"'IW'-'
I-W

!::j
"'0

w'-'

-IC/IIB=

J.o

i-+-

,0

-1-1-

o

10

I I
2.0

3.0

ns
ns
ns
pC

/

-,

1400

FIGURE 2 - BASE "ON" VOLTAGE

~cn
0':;

?

0

w~

-

"'>
0",
I-w

"''''
~~

~:~l:::: :~;::: ~ r-

_f.-f>'

V

--

0.5 8

c.3~
>=>

VEC("t)@IE/IB=2.0

5,0 7.0 10
20
30
IC, COLLECTOR CURRENT (rnA)
IE, EM lITER CURRENT (rnA)

0.66

ow

~~~

so

70 100

856

/

TJ = 2SoC

~~ 0.74

,.

,/

0.82

 10 0

'-'

B0

- -

__ .TJ

125°C
I--r-

:;0 5 0

;;;

"'ft,:...

I-

u

"-

"

60 0

"
~

~~

u

'r--.

20

-55°C ....

a 3.0

~

" "-''It-.

30

~

25°C ....

I-

10
10

~

.t--~~

'" 5. 0

'-'

"

t--



TJ" 25°C

~

"2:
~

"~

"
~ 0.4
'"~

0.4

"~

50mA

lOrnA

IC" 2.0 mA
0.3

§; 03

0.2

8j 0.2

~

"-

O. I

"

~

>

II I
II I

IE "0.5 mA

TJ" 25°C

1

I

2.0mA

1
50 mA

lOrnA

00

"

B

ill
III

~

~

!

0.5

O
0005

001

0.02

0.05

0.1

1'-- ......

00

u

~

w

~

t0.2

~

0.5

1.0

2.0

>

5.0

o. I
0
0.05

lB. BASE CURRENT (mAl

I'- r0.1

0.2

0.5

-

1.0

\
2.0

5.0

IB, BASE CURRENT (mAl

857

10

20

50

MPS404,A (continued)

FIGURE 10 - CAPACITANCE

FIGURE 9 - EMITTER-COLLECTOR "ON" RESISTANCE

100

,

70

p

50

z

-NOTE: The dynamic resistance between the emitter and collector
~.
is measured with th8devicelorerate~ in t~e Inverted Mode.

"-

II
~

I

IIII

I--

.
w

z

....

7.0

u

~ 5.0

,.....

;:\

I'--

0
3.0

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0 7.0

2.0
0.05

10

FIGURE 11 - TURN'()N TIME

0.5

VCC'loV
ICIIB -10
TJ' 25 0 C

.........

-ld@VBE(olf)

1.4V

3D
20
1.0

2.0

3.0

L

-

""-

100
70
50

r10

5.0

20

50

5.0 7.0

10

'\

w

~ 300

a--r

RB

-- -

20

30

~

50

70

100
1.0

100

1.0

-

ton. tdlnd tr

toff,tsandtf

Vin
(Volts)
-12
+20.6

VBB
(Volts)
+1.4

-11.6

30

5.0

7.0

10

10

30

50

70

100

IC. COLLECTOR CURRENT (rnA)

FIGURE 14 - STORED BASE CHARGE TEST CIRCUIT

(_~.~~) o-_RC,,(,.,56"'0_nl_...._ _ _ _ _ _ _--

U

"e

i}J

~

10

~

1,'1001'11 RMS
1'1.0 kHz
TJ" 25 0 C
IE' 0

"- "-

-

20

-=

0

Voltage Wave10rms

MEASUREMENT PROCEDURE
IVin \>5.0"'1 Ir• II < 15 ns
Cl is increased until the toff time of 60 V
the output waveform is decreased to .
:
I
0.2 jJ.S, aS IS then calculated by
Cl Vin.
I
Us3 or 0s7 by B·Line ElectrOnics 6.0 V
or equivalent may also be used.
t--'oll

Voltages and resistor values shown

as·

afe for Ie:: 10 rnA, Iclls = 10
and IS 1 =182. Resistor values
changed to obtain curves in
Figures 11 and 12.

858

MPS706, MPS706A (SILICON)

NPN SILICON
NPN SILICON ANNULAR SWITCHING TRANSISTORS.

SWITCHING TRANSISTORS

· .. designed for use in high-speed switching applications.
•

Collector-Emitter Breakdown Voltage BVCEO = 15 Vdc (Min) @ IC = 10 mAdc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.3 Vdc (Typ) @ IC = 10 mAdc

•

Fast Switching Times @ IC
ton = 40 ns (Max)
toff = 75 ns (Max)

= 10 mAdc

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage
(RSE = 10 Ohm,)

Symbol

Value

Unit

VCER

20

Vdc

Collector-Base Voltage

VCB

25

Vdc

Emitter-Base Voltage

VEB

5.0

Vde

Collector Current - Continuous

IC

200

mAde

Total Power Dissipation @ T A"" 25°C
Derate above 2SoC

Po

350
2.8

mW
mW/oC

Total Power Dissipation @ T C = 2SOC
Derate above 2SoC

Po

1.0
8.0

Watt
mWfOC

TJ.T,tg

-55 to +150

°c

Operating and Storage Junction

STYLE 1:
PINt. EMlnER
2. BASE
3. COLLECTOR

Temperature Range
DIM
A
B

THERMAL CHARACTERISTICS
Ch..actaristic

Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

Symbol

Max

Unit

R6JA(1l

357

°C/W

R6JC

125

°C/W

(1) R8JA is measured with the device soldered into a typical printed circuit board.

C
D
F
L

N
p
Q

R
S

MILliMETERS
MIN
MAX

INCHES
MIN
MAX

4450
3180
4.320
0407
0.407
1.
1.150

5.200
4.190
5.330
0.533
0.4'2

0.175
0.125
0.170
0.016
0.D16

0.205
0.165
0.210
0.021
u.u'"

1.390
1.270

0.045

0055
0.050

-

6.350
3.430
2.410
2.030

-

2.670
2.670

CASE 29-02
TO-92

859

-

0.250
0.135
0.095
0080

-

0.105
0.105

MPS706,MPS706A (conti nuedl

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-E mitter Breakdown Voltage( 1)
(lC = 10 mAde, IB = 0)
Collector-Emitter Breakdown Voltage 111
(IC = 10 mAde, RBE = 10 Ohms)

BVCEO

15

-

-

Vde

BVCER

20

-

-

Vde

Collector-Base Breakdown Voltage

BVCBO

25

-

-

Vde

BVESO

5.0

-

-

Vde

-

-

0.5
10

-

10

-

-

10
10

20
20

50
45

SO

-

0.3

O.S

0.7

0.8
0.8

0.9
0.9

tr

200

SOO

-

MHz

Cob

-

1.5

S.O

pF

eib

-

3.4

-

pF

rb

-

-

50

pF

ton

-

35

40

ns

toll

-

55

75

ns

ts

-

20
20

25
60

ns

Characteristic
OFF CHARACTERISTICS

(lc

= 100 IlAde.

= 0)

IE

Emitter-Base Breakdown Voltage

(IE

= 10 IlAde, IC = 0)

Collector-Cutoff Current

(VeB
(VeB

= 15 Vde.
= 25 Vde,

IE
IE

MPS70S
MPS706A

Collector Cutoff Current

(VeE

= 20 Vde,

RBE

MPS70SA

leER

= 100 kHz)

Emitter Cutoff Current

(VBE
(VSE

= 3.0 Vde,
= 5.0 Vde,

Ie
IC

IlAde

ICBO

= 0)
= 0)

!lAde
IlAde

IESO

= 0)
= 0)

-

MPS706
MPS706A

ON CHARACTERISTICS
De Current Gain( 1)
(Ie = 10 mAde, VCE

MPS70S
MPS706A

Collector-Emitter Saturation Voltage( 1)

(Ie

VCE(sat)

= 10 mAde, IB = 1.0 mAde)

Base-Emitter Saturation Voltage(1)

(Ie

-

hFE

= 1.0 Vde)

Vde

VBE(sat)

= 10 mAde, IB = 1.0 mAde)

MPS70S
MPS70SA

Vde

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

(Ie

= 10 mAde,

VCE

Output Capacitance
(VeB = 10 Vde·, IE

= 15 Vde, I = 100 MHz)

=' 0, I = 100 kHz)

MPS706

I nput Capacitance

(VBE

= 1.0 Vde,

Ie

= 0, I = 100 kHz)

Extrinsic Base Resistance
(VeE = 15 Vde, IE = 10 mAde, I

= 300 MHz)

SWITCHING CHARACTERISTICS
(Figure 1)

Turn-On Time

(Vee

= 3.0 Vde,

VSE(off)

Turn-Off Time
(Vec = 3.0 Vde, Ie

= 2.0 Vde,

IC

= 10 mAde, lSI = 3.Q mAde)
(Figur.')

= 10 mAde, IBI = IB2 = 3.0 mAde)
MPS70SA
MPS706
(Figure 2)

Storage Time
(Vec = 10 Vde, IC = 10 mAde,
IBI = IB2 = 10 mAde)

(1) Pulse Test: Pulse Width ';;12 ns, Duty eyele ';;2.0%.

FIGURE 2 - STORAGE TIME TEST CIRCUIT

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

Vee

Vee = 3.0 Vdc
(Adjust for 10 mAl

270
+7.0Vn

1.0 k

+5.0Vn

Scope

2.0 k

oV

-2.0 V

::J -- -l.: o----'VVv---JH

= 10.3 Vdc

(Adjust for 10 mA)

Scope

390

o

V
-3.1 V

860

.::1-- -l.:. o----"''''''"-IH

MPS708

(SILICON)

NPN SILICON
SWITCHING
TRANSISTOR

NPN SILICON ANNULAR SWITCHING TRANSISTOR

· .. designed for use in high-speed switching applications.
•

Collector-Emitter Breakdown Voltage BVCER = 20 Vdc (Min) @ IC = 30 mAde

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.21 Vdc (Typ) @ IC = 10 mAde

•

MPS70S Electrically Similar to 2N70S - TO-1S Package

I
SEATINGJ~ ~

MAXI MUM RA TI NGS
Symbol

Rating

Value

Unit

VCEO

15

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Contmuous

IC

200

mAde

Total Power DISSlpatlon@ TA '" 25°C
Derate above 2SoC

Po

350
2.8

mW
mW/oC

Total Power Dissipation @ T C

Po

1.0
8.0

mW/oC

-55 to +150

°c

Collector-Emitter Voltage

::=

25°C

Derate above 25°C
Operatmg and Storage Junction

TJ.Tstg

PLANE

STYLE l'
PIN 1

2

3

Watt

Temperature Range

DIM
A

B

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case

Symbol

Max

Unit

C
D

ReJA(11

357

°C/W

F
K

ReJC

125

°C/W

(1) ReJA IS measured with the device soldered into a typical printed circuit board.

~

L
N

P
Q

R

S

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

4.450
3.180
4.320
0.407
0.407
1.0
1.150

5.200
4.190
5.330
0.533
0.482

0.175
0.125
0.170
0.016
0.016
0
0.045

6.350
3.430
2.410
2.030

-

-

1.390
1.270
2.670
2.670

-

0.250
0.135
0.095
0.080

CASE 29-02
TO-92

861

0.205
0.165
0.210
0.021
0.Q19
0.055
0.050
0.105
0.105

MPS708 (continued)

ELECTRICAL CHARACTERISTICS (TA : 250 C unless otherwise noted.1
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (11
(lC: 30 mAde, IS: 01

SVCEO

15

-

-

Vde

Collector-E mitter Breakdown Voltage

SVCER

20

-

-

Vde

SVCSO

40

-

-

Vde

SVESO

5.0

-

-

Vde

ICSO

-

-

25

nAdc

IESO

-

-

80

nAdc

15
30

35
50

120

VC~(S8tl

-

0.21

0.4

Vde

VSE(satl

0.68

0.7

0.78

Vde

Current-Gain-Bandwidth Product
(lC: 10 mAde, VCE: 10Vde,f: 100MHzI

fT

300

600

-

MHz

Output Capacitance
(VCS: 10 Vde, IE : 0, f : 140 kHzl

Cob

-

2.4

6.0

pF

Characteristic
OFF CHARACTERISTICS

(lC: 30 mAde, RSE : 10 Ohmsl
Collector·Base Breakdown Voltage

(lC: 1.0I'Ade, IE: 01
Emitter-Base Breakdown Voltage

(IE: 10"Ade, IC: 01
Collector Cutoff Current

(VCS: 20 Vde, IE : 01
Emitter Cutoff Current
(VSE : 4.0 Vde, IC : 01

ON CHARACTERISTICS (11
DC Current Gain
(lC: 0.5 mAde, VCE : 1.0 Vdel
(lC: 10 mAde, VCE : 1.0 Vdel

-

hFE

Collector-Emitter Saturation Voltage

(lC: 10 mAde, IS: 1.0 mAdel
Base-Emitter Saturation Voltage

(lC: 10 mAde, 18: 1.0 mAdel
DYNAMIC CHARACTERISTICS

SWITCHING CHARACTERISTICS (FIgure 1)
Storage Time

(VCC: 3.0 Vde, IC: 10 mAde, ISl : IS2: 10 mAde)
(1) Pulse Test: Pulse Width ';;;300 ItS, Duty Cycle ';;;2.0%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT

1.0 k

.....-:>..----~~----o V out
270

50

VBB:

+11 V

=

862

Vcc: 3 .OV

MPS753

(SILICON)

NPNSILICON
SWITCHING
TRANSISTOR

NPN SILICON ANNULAR SWITCHING TRANSISTOR

· .. designed for use in medium-voltage high-speed switching applications.
•

Collector-Emitter Breakdown Voltage BVCER = 20 Vdc (Min) @ IC = 10 mAde

•

High Current-Gain-Bandwidth Product fT = 600 MHz (Typ) @ IC = 10 mAde

•

Fast Switching Times
ton = 40 ns (Max)
toft = 75 ns (Max)

MAXIMUM RATINGS
Rating
Coliector~Emitter

Voltage
(RBE = 100hmsl

Symbol

Value

Unit

VCER

20

Vdc
Vdc

Collector-Base Voltage

VCB

25

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

200

mAde

Total Power Dissipation

T A ::: 25°C

Po

350
2.8

mW
mW/oC

Total Power Dissipation @TC "" 25°C
Derate above 25°C

Po

1.0
8.0

Watt
mW/oC

TJ.Tstg

-55 to +150

°c

@

Derate above 25°C

Operating and Storage Junction
Temperature Range

Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

2
3

DIM
A
B
C
D

THERMAL CHARACTERISTICS
Characteristic

STYLE 1
PIN 1

Symbol

Max

Unit

R8JA(11

357

°CIW

R8JC

125

°C/W

(1) R8JA is measured with the device soldered into a typical printed circuit board.

F
K
L
N
p

a
R
S

EMITTER

BASE
COLLECTOR
MILLIMETERS
INCHES
MIN
MAX
MAX
MIN
4.450
5200
0.175
0.205
0.165
3.1
41
0125
0170
0210
4320
5330
0407
0533
0.016
0021
0.019
0.407
.482 I 0.016
0
.00
1.150
1.390
0.045
0055
1.270
0.050
6350
0.250
3.430
0135
0105
2.670
2.410
0.095
2.030
2.670
0.105
0.080

CASE 29
TO-92

863

MPS753 (continued)

E LECTR I CA L CHARACTER I STiCS (T A = 250 C unless otherwise noted.)

I

Characteristic

Symbol

Min

Typ

Max

Unit

SVCEO

15

-

-

Vde

SVCER

20

-

-

Vde

ICER

-

-

10

)lAde

-

-

OFF CHARACTERISTICS
Collector·Emitter Breakdown Voltage (1)

(lC = 10 mAde, IS = 01
Collector-Emitter Sreakdown Voltage (11
IIC= 10 mAde, RSE = 100hmsl
Collector Cutoff Current

(VeE = 20 Vde, RSE = 100 k Ohmsl
Collector Cutoff Current

)lAde

leso

-

-

0.5
10

IESO

-

-

10

)lAde

hFE

40

100

120

-

VCE(satl

-

0.3

0.6

Vde

VSE(satl

0.7

0.8

0.9

Vde

fT

200

600

-

MHz

Cob

-

1.5

5.0

pF

Turn-On Time (Figure 11

ton

-

30

40

ns

Turn-Off Time (Figure 11

toff

-

60

75

ns

Storage Time (Figure21

ts

-

30

35

ns

(Ves = 15 Vde, IE = 01
(Ves = 25 Vde, IE = 01
Emitter Cutoff Current
(VSE = 5.0 Vde, Ie = 01

ON CHARACTERISTICS (11
DC Current Gain
(lC = 10 mAde, VCE = 1.0 Vdel
Collector·Emitter Saturation Voltage

(lC = 10 mAde, IS = 1.0 mAdel
8ase-E mitter Saturation Voltage
IIC = 10 mAde, IS = 1.0 mAdel

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(lc = 10 mAde, VCE = 15 Vde, f = 100 MHzl
Output Capacitance
(VCS = 5.0 Vde, IE = 0, f = 140 kHzl

SWITCHING CHARACTERISTICS

(11 Pulse Test: Pulse Width ';;300 )lS, Duty Cycle ';;2.0%.

FIGURE 2 - STORAGE TIME TEST CIRCUIT

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

Vee= 3.0 Vdc

270

II
ov-.d---t

+7,0 V

Vee = 10 Vdc

980

(Adjust for

10mA)

2.0 k

-2.0V

864

(Ad)ustfor
10mA)

MPS834 (SILICON)

NPN SILICON
NPN SILICON ANNULAR SWITCHING TRANSISTOR

SWITCHING TRANSISTOR

· .. designed for use in high·speed switching applications.
•

Collector· Emitter Breakdown Voltage BVCEO = 30 Vdc (Min) @ IC = 10 mAdc

•

High Current-Gain-Bandwidth Product
fT = 600 MHz (Typ) @ IC = 10 mAdc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.2 Vdc (Typ) @ IC = 10 mAdc

•

Fast Switching Times @ IC = 10 mAdc
ton = 16 ns (Max)
toft = 30 ns (Max)

•

Excellent Predriver for N-MOS clock drivers.
Use with 2N5845 and MPS3638 Active Pull-Up and Pull-

Down Transistors.

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Vceo

30

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Ba~e

VeB

5.0

Vdc

Collector Current - Continuous

IC

200

mAde

Total Power Dissipation @ T A"" 25°C

Po

350
2.8

mW
mW/oC

Po

1.0
8.0

mW/oC

-65 to +150

°c

Collector-Emitter Voltage

Voltage

Derate above 25°C
Total Power Dissipation
Derate above 25°C

@

T C = 25°C

Operating and Storage Junction
Temperature Range

TJ.Tstg

STYLE 1

Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case
(1) R9JA

IS

2 BASE
3 COLLECTOR

DIM
A
B

THERMAL CHARACTERISTICS
Character istic

PIN 1 EMITIER

Watt

c

Symbol

Max

Unit

RBJA(1)

357

°C/W

RBJC

125

°C/W

D
F
K
L
N

P

measured with the device soldered into a typical printed circuit board.

Q

R
S

MILLIMETERS
MIN
MAX
4450
5200
3.180
4190
4320
5.330
0407
0.533
0407
0482
12700
1150
1390
1270
6350
3430
2410
2670
2.670
2030

INCHES
MIN
MAX
0175
0.205
0165
0125
0210
0170
0021
0016
0019
0.016
5
0.055
0.045
0050
0250
0135
0095
0105
0105
0080

CASE 29·02
TD·92

865

MPS834 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25"C unless otherwise noted.)

I

Symbol

Min

TVp

Max

Unit

Colleetor·Emitter Breakdown Voltage (1)
(lC= 10mAde, IB= 0)

BVCEO

30

-

-

Vde

Collector·Base Breakdown Voltage
(lC= 10J'Ade, IE = 0)

BVCBO

40

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

5.0

-

-

Vde

ICES

-

-

10

I'Ade

ICBO

-

-

0.5

"Ade

hFE

25

-

-

-

0.2
0.3

0.25
0.4

VBE( .. t)

-

0.7

0.9

Vde

Current·Gain-Bandwidth Product (1)
(IC = 10 mAde, VCE = 20 Vde, I = 100 MHz)

IT

350

600

-

MHz

Output Capacitance

Cob

-

1.5

4.0

pF

Cib

-

3.4

-

pF

ton

-

12

16

ns

toll

-

25

30

ns

ts

-

18

25

ns

Characteristics
OFF CHARACTERISTICS

(IE = 101'Ade, IC= 0)
Collector Cutoff Current

(VCE = 30 Vde, VBE = 0)
Collector Cutoff Current
(VCB= 20Vde, IE= 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lc = 10 mAde, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage

Vde

VCE( ..t)

(lC = 10 mAde, IB = 1.0 mAde)
(I C = 50 mAde, I B = 5.0 mAde) (1)
Base-Emitter Saturation Voltage

(lC = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS

(VCB = 10 Vde, IE = 0, 1= 100 kHz)
Input Capacitance

(VEB = 10 Vde, IC = 0, I = 100 kHz)
SWITCHING CHARACTERISTICS
See Figure 1

Turn-On Time

(VCC= 3.0 Vde, VBE(olf) = 4.0 Vde, IC = 10mAde, IBl = 3.0 mAde)
Turn-OII Time
(V CC = 3.0 Vde, I C = 10 mAde, I B 1 = 3.0 mAde) See Figure 1
Storage Time

(VCC= 10Vde,lc= 10mAde, IBl = IB2= 10 mAde) See Figure2
(1) Pulse Test: Pulse Width "';300 "s, Duty Cycle "';2.0%.

FIGURE 1 - SWITCHING TIME TEST CIRCUIT

TI

FIGURE 2 - STORAGE TIME TEST CIRCUIT

o-u--

Turn-On

Vaa = -4.0 V
Vin=+ 21
0-

-

-

+3.0 Vdc:

-10 V

-

280
0.1 "F
f---oSCope
5.0k

0.1 "F

1

5.0 k

o-u-Turn-Off

Vaa

=

+16 V

Vln = -19 V

866

500

500

+', V

+10 V

160

MPS835 (SILICON)

NPN SILICON ANNULAR SWITCHING TRANSISTOR

NPN SILICON
SWITCHING
TRANSISTOR

· .. designed for high·speed saturated switching applications.
•

Collector-Emitter Breakdown Voltage BVCEO = 20 Vdc (Min) @ IC = 10 mAdc

•

High Current-Gain-Bandwidth Product fT = 600 MHz (Typ) @ IC = 10 mAdc

•

Fast Switching Times ton = 15 ns (Max)
toff = 30 ns (Max)

I
r

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

20

Vdc

Collector-Base Voltage

VCS

25

Vde

Emitter-Base Voltage

VES

3.0

Vde

IC

200

mAde

Po

350
2.8

mW
mW/oC

Po

1.0
8.0

Watt
mW/oC

TJ,T,tg

-55'0 +150

°c

Coliector~Emitter

Collector-Current

Voltage

Continuous

Total Power Dissipation
Derate Above 25°C

@

Total Power Dissipation

@

TA "" 25°C

T C = 25°C

Oerete Abo,", 25°C

Operating and Storage Junction

SEATlNG~ic
PLANE
K
r
~

°-jIH-

=l r'-~

STYLE 1:
PIN 1. EMITTER ~
2. BASE
3.

Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case

Symbol

Max

Unit

R9JA(1)

357

°CIW

R9JC

125

°CIW

(1) R8JA is measured with the device soldered into a typical printed circuit board.

,

"

MILLiMETERS
MIN
MAX

5.200
4.19
5.330
0.533

F

4.450
3.1
4.320
0.407
0.407

L

1.150

1.390
1.270

P

6.50
3.430
2.410
2.030

C
D

R

S

B

-

-

-

2.670
2.670

INCHES
MIN
MAX

0.175
0.1
0.170
0.016
6

0.205

0.045

0.055
.050

-

0.250
0.13
0.095
O.OBO

CASE 29
TO-92

867

S

--1sTT
DIM
A

Characteristic

a

COLLECTOR~.-l
<000

Temperature Range

THERMAL CHARACTERISTICS

1

A

0.210
0.021
.1

-

0.105
01 5

MPS835 (continued)

ELECTRICAL CHARACTERISTICS (TA

I

~ 250 C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC ~ 10 mAde, I B = 0)

BVCEO

20

-

-

Vde

Collector-Base Breakdown Voltage
(lC = 10"Ade,IE = 0)

BVCBO

25

-

Vde

Emitter-Base Breakdown Voltage
(I E = 10 "Ade, IC = 0)

BVEBO

3.0

-

-

Vde

Collector Cutoff Current
(VCE = 30 Vde, VBE = 0)

ICES

-

-

10

IIAde

Collector Cutoff Current
(VCB ~ 20 Vde, IE = 0)

ICBO

-

-

0.5

",Ade

hFE

20

35

-

-

-

0.20

0.30

VBE(sat)

-

0.78

0.9

Vde

fT

300

600

-

MHz

Cob

-

1.5

4.0

pF

ton

-

15

20

ns

tolf

-

30

35

ns

t.

-

28

35

n.

Characteristic

OFF CHARACTERISTICS

ON CHARACTERISTICS
DC Current Gain
(lC ~ 10 mAde, VCE ~ 1.0 Vdc'
Collector~emjtter

(lC

Saturation Voltage

Vde

VCE(sa!)

= 10 mAde, IB = 1.0 mAde)

Base-Emitter Saturation Voltage
(lC = 10 mAde,lB ~ 1.0 mAde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC ~ 10 mAde, VCE ~ 20 Vde, f = 100 MHz)

Output Capacitance
(VCB ~ 10 Vde, IE ~ 0, f

~

100 kHz)

SWITCHING CHARACTERISTICS
Turn-On Time (Figure 1)
(VCC = 3.0 V, V8E(off)
I B2 ~ 1.0 mAde)

= 2.0 V, IC ~

10 mAde, 18 1 ~ 3.0 mAde,

Turn-Off Time (Figure 2)
(VCC ~ 3.0 V, IC ~ 10 mAde, 181 ~ 3.0 mA, 'B2

= 1.0 mAde)

Storage Time (Figure 2)
(VCC ~ 10 V,IC ~ 10mAde,IBl ~ IB2~ 10 mAde)
(1) Pul •• Test: Pulse Width';; 300",., Duty Cycle';; 2.0%.

FIGURE 1 - TURN-ON AND TURN-OFF TIME
TEST CIRCUIT

FIGURE 2 - STORAGE TIME TEST CIRCUIT

+30Vdc

+10Vdc

280
01j.lF

,-.o-'W'.,....-jE-o V,",
15k

50

V"

' A n " .. _~
ton VBB~
OV
----.

V Ill "-19Vdc

tolf VBB=+'SV~

Vm "+21Vdt

ov---,-'

+11 V

---.

868

MPS918 (SILICON)
MPS3563

NPN SILICON ANNULAR TRANSISTORS
NPNSILICON
· . . designed for VHF/UHF low-level amplifier, and oscillator
applications.

AMPLIFIER
TRANSISTORS

• One-Piece, Injection-Molded Plastic Unibloc
Reliability
•

Package for High

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.4 Vdc (Max) @ IC = 10 mAdc

MAXIMUM RATINGS
Retina

Symbol

MPS918 MPS3663

Unit

Collector·Emitter Voltage

VCEO

15

12

Vdc

Collector·Base Voltage

VCB

30

30

Vdc

Emitter·Base Voltage

VEB

3.0

2.0

Vdc

Collector Current - Continuous

IC

50

mAde

Total Power Dissipation
Derate a bove 25°C

T A"" 25°C

Po

350
2.B

mW
mW/oC

Total Pavvsr Dissipation @ T C = 25°C
Derate above 25°C

Po

1.0
8.0

Watt
mW/oC

TJ,T,tg

-55 to +150

°c

@

Operating and Storage Junction
Temperature Range

Characteristic

Thermal Resistance, Junction to Ambient

Symbol

Ma.

Unit

ROJA(1)

357

°C/W

ROJC

125

°CIW

Thermal Resistance, Junction to Case

~ INPUT IMPEDANCE'

~
1000
-VEE

005,,:1

lU

'0

OIM
A
B
C
0

Ohm,
1000 pF
VITRAMON

'/"

100

~OO1"

1

L~

II - 3 5 TURNS NO 16TINNED COPPER WIRE, 5/16' OIA.
7/16" LONG TURNS RATIO "" 4 til 2
l2 - 8 TURNS NO 16 TINNED COPPER WI FIE, 1/8" OIA.
7IB" LONG TURNS RATIO"" 8 TO 1
L3 - MILLER #4303 (04-0 65 ~H)

12

Ji

15-;~pF ~!

~OOOl'F

-=

AFC
+VCC

OOl "

-=

K

-=::jR~

F
30-12pF

~

O-jI~~L

3.

FIGURE 1 - 200 MHz POWER GAIN TEST CIRCUIT

~

"""JrtJ~ ~ {1

or
l t:ff±-1..
I

STYLE l'
PIN 1. EMITTER
2. BASE

(1) R8JA is measured with the deviced soldered into a typical printed circuit board.

[

A

PLANE

THERMAL CHARACTERISTICS

-=

r 1

K
L
N
P
Q

R
S

.J, J,

~

---I ~I=J-T

COLLECTOR

MILLIMETERS
MIN
MAX
4.450
5.200
4.190
3.180
4.320
5.330
0.533
0.407
0.482
0.407
1 . 00
1.390
1.150
1.270
6.350
3.430
2.670
2.410
2.030
2.670

-

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.D16
0.D19
u.~uu

0.045
0.250
0.135
0.095
0.080

OUTPUT IMPEDANCE" 50 Ohms

CASE 29-02
TO-92

869

B

0.055
0.050

-

0.105
0.105

MPS918, MPS3563 (continued)

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)

a...-Istic

Symbol

Min

Max

15
12

-

-

30
30

-

3.0
2.0

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltaga(2)
(lC = 3_0 mAde, IB = 0)
Collector-Base Breakdown Voltage
(lC = 1.0,.Ade, IE - 0)
(lC = 100 ,.Ade, IE ·0)
E mittar-Baoe Breakdown
(IE = 10 "Ade, IC = 0)

Vde

BVCBO
MPS91B
MPS3563

V~ltage

Collector Cutoff Current
(VCB = 15 Vde, IE = 0)

Vde

BVCEO
MPS91B
MPS3563

Vde

BVEBO
MPS91B
MPS3563
ICBO
MPS91B
MPS3563

-

nAde
10

50

ON CHARACTERISTICS
OC Current Gain (2)
(lC = 3.0 mAde, VCE = 1.0 Vdc)
(lC = 8.0 mAde, VCE = 10 Vde)

MPS91B
MPS3563

Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)

MPS91B

B.......Emltt.r Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)

MPS91B

hFE

VCE(satl
VBE(sat)

20

-

20

200

-

0.4

-

1.0

600
600

-

Vde
Vde

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product(2)
(lc = 4.0 mAde, VCE = 10 Vde, f = 100 MHz)
(lC = 8.0 mAde, VCE = 10 Vde, f = 100 MHz)
Output Capacitance
(Vce = 0 Vde, IE = 0, f = 140 kHz)
(Vce = 10 Vde, IE = 0, f = 140 kHz)
(Vce = 10 Vdc, IE = 0, f = 1.0 MHz)

for
MPS91B
MPS3563

MHz
1500
pF

Cob

-

MPS91B
MPS918
MPS3563

I nput Capacitance
(VEe = 0.5 Vde, IC = O. f = 140 kHz)

MPS918

Smell-8ignal Currant Gain
(lC = B.OmAde, VCE = 10 Vde, f= 1.0kHz)

MPS3563

Noise Figura
(lc = 1.0 mAde, VCE· 6.0 Vde, RS=400ohms,f=60MHz)

MPS91B

-

3.0
1.7
1.7

-

2.0

20

250

-

6.0

15
14

-

30

-

25

-

-

pF

Cib

-

hfe
NF

de

FUNCTIONAL TEST
Common-Emittar Amplifier Power Gain (:;ee Figura 1)
(lc = 6.0 mAde, Vce = 12 Vde, f = 200 MHz)
(lC = B.O mAde, VCE = 10 Vdc, f = 200 MHz)
(Gfd + Gra < -20 d8)

de

Gpa
MPS91B
MPS3563

Power Output
(lC = 8.0 mAde, Vce = 16 Vde, f = 600 MHz)

MPS918

Oscillator Collector Effiei.ncy
(iC=8.0 mAde, VCB = 15 Vdc,Pout -30mW, f=500MHz)

MPS91B

mW

Pout

%

11

(2) Pulse Tes" Pulse Width ,;; 300 "s, Duty Cycle';; 1.0%.

870

MPS2369 (SILICON)

NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR

· .. designed for use in high-speed, low-current switching applications.
•

Low Output Capacity
Cob = 4.0 pF @ VCB = 5.0 Vdc

•

Fast Switching Time @ IC = 10 mAdc
ton = 12jls (Max)
toff= lBns (Max)

•

High Current-Gain-Bandwidth Product
fT = 500 Ml-iz @ IC = 10 mAde

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCES

40

Vdc

Collector-Emitter Voltage

VCEO

15

Vdc

Collector-S... Voltage

VCS

40

Vdc

Emlttar·Ba .. Voltage

VES

4.5

Vdc

Collector Current - Continuous

IC

200

mAde

Total Power Oiuipation
Derate above 2SoC

@

Po

350

2.8

mW
mWI"C

Total Power Dissipation
Derata above 2SoC

@

Po

1.0
8.0

Watt
mW/oC

TJ,Tstg

-55 to +150

°c

T A "" 26°C

TC:: 2SoC

Operating and Storage Junction
Temperature Range

~

SEATING.Jt
PLANE
~

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Ambient

Symbol

Max

Unit

R8JA(1)

357

°CIW

R8JC

125

°C/W

Thermal Resistance, Junction to Case

(1) ReJA is measured with the device soldered into a typical printed circuit board.

~"I--

30Vo--"",,~-,

.1005V__~

""-1 ~

PULSE WIDTH (tl)

FIGURE 1 - ton CIRCUIT

.T'

10 "'
=

300

_..: CS-<40pF

33k

liS

DUTY CYCLE: 2 o,,~

--l "

DIM
A

I--

30 V 0---",,___- . ,

tl075 V n _ _ _ _
0

FIGURE 2 - toff CIRCUIT

-415V----=:l--~
l:=<110ns
PULSE WIDTH (10"

no

11-.6OV[11

0
F

Jl.
l

300 ns

r-4lOVo--"",~-,

980.,...,....___

-

-40 V
< 1 0 ns
\..PULSE WIDTH (11) '" 300 ns
DUTY CYCLE" 2 0%

B

C

33k

DUTY CYCLE" 2 0%

0- - -

STYlE 1:
PIN 1 EMITTER
2. BASE
3. COLLECTOR

>--"""""OO\.-H

;~;

-~ Cs·

< 3D pF

FIGURE 3 - STORAGE TEST CIRCUIT

MllLlM~
MIN
4.450
4.190
3.18"
4.320
5.330
0.407
0.533
0,.0
u.482
_Hel ""
1.150
1.390
1.270

I

~

-

S

2.670
2.670

r4-f-4-

INCHES
MIN
MAX
0.175
0.205
0.125
".lti5
0.170
0.210
0.016
0.021
O.Ul.
0.500

"."'"

0.045

0.055
0.050

0.250
0.135
0.095
0.080

CASE 29-02
TO·92

*Totalshunt capacitance of 1ts1llgandconnlctors.

871

-

0.105
0.105

MPS2369

(continued)

ELECTRICAL CHARACTERISTICS(TA = 2S'C unless otherwise noted)

Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage'lli

= 10 mAde,

(Ie

IB

BVCEO

= 0)

= 10 !LAde,

V BE

= O)

Collector-Base Breakdown Voltage
(IC

= 10 I'Ade,

IE

= 10 I'Ade,

IC

40

-

40

-

4.5

-

Vde

BVCBO

= 0)

Emitter-Base Breakdown Voltage
(IE

-

BVCES

Collector-Emitter Breakdown Voltage

(IC

Vde
15

Vde

BV EBO

= O)

Collector Cutoff Current

Vde

ICBO

(VCB

=20 Vde,

IE

= O)

(VCB

= 20 Vde,

IE = 0, T A

= 125°C)

!LAde

-

0.4

-

30

40

120

20
20

-

-

0.25

ON CHARACTERISTICS
DC Current Gain (11
(IC
(IC
(IC

Collector-Emitter Saturation Voltage (11
(IC

= 10 mAde,

IB

= 10 mAde,

IB

Vde

VCE(sat)

= 1. 0 mAde)

Base-Emitter Saturation Voltage (1)
(IC

-

hFE

= 10 mAde, VCE = 1. 0 Vde)
= 10 mAde, VCE = 1. 0 Vde, TA = -55"C)
= 100 mAde, VCE = 2.0 Vde)

Vde

VBE(sat}

= 1.0 mAde)

0.70

0.85

SMALL SIGNAL CHARACTERISTICS
Ontput Capacitance
(VCB

= 5.0 Vde,

pF

Cob
IE

= 0,

f

= 140 kHz)

-

Ihre I

Small-Signal Current Gain

(IC = 10 mAde, VCE

= 10 Vde,

f

= 100 MHz)

4.0

-

5.0

SWITCHING CHARACTERISTICS
Turn-On Time
IBI

IC

= 10 mAde,
-

Turn-Ofr Time
IB2

IB1

= IB2 = IC = 10 mAde)

ns

= 3.0 mAde,

Storage Time
(I B1

12

t ofr

= 3.0 Vdc, IC = 10 mAde,
(Figure 2)
= 1. 5 mAde)

(VCC

os

ton

= 3.0 Vde, VBE (off) = 1. 5 Vde,
(Figure 1)
= 3.0 mAde)

(VCC

t

(Figure 3)

(11 Pulse Test: Pulse Width = 300 !LB, Duty Cycle = 2.0%

872

B

-

18

-

13

ns

MPS2712 (SILICON)
MPS2716

NPN SILICON
AMPLIFIER
TRANSISTORS

NPN SILICON ANNULAR AMPLIFIER TRANSISTORS

· .. designed for use as a general-purpose amplifier.
• Coliector·Emitter Breakdown Voltage BVCEO = 18 Vdc (Min) @ IC = 1.0 mAde
•

Low Output Capacitance Cob = 2.0 pF (Typ) @ VCB

I

= 10 Vdc

r

MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage

MPS2712

VCEO

I

Unit

18

Vdc

Collector-Base Voltage

VCB

18

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

100

I

25

mAde

= 25°C

Po

350
2.6

mW
mW/oC

Total Power Dissipation @ T C "" 2SoC
Derate above 2SOC

Po

1.0
8.0

Watt
mW/oC

TJ,Tstg

-55 to +150

°c

Total Power Dissipation@TA
Derate above 25°C

Operating and Storage Junction
Temperature Ran ge

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

L-

Max

Unit

R8JA(1I

357

°C/W

R8JC

125

°C/W

(1) R8JA is measured with the device soldered into a typical printed circuit board.

-F

D=lf-Lr~

lor

STYLE I
PIN I

EMITTER

-000

S

B

~sTT
DIM
A
B
C
D

MILLIMETERS
MIN
MAX

4.450
3.180
4.320
0.407

L
N

1.150

P
0

6.350
3.430
2.410
2.030

R
S

INCHES
MIN
MAX

5.200 0.175
4.190 0.125
5.330 0.170
0.533 0.016
u.48 I u.Ol.

0.205
0.165
0.210
0.021
0.019

1.390
1.270

0.055
0.050

-

-

2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE29.()2

TO·92

873

I

~"-1..

~ ~~~iECTOR

. U.4Ut

Symbol

1

SEATING~iFC1
PLANE

MPS2716

A

-

-

0.105
0.105

MPS2712, MPS2716 (continued)

I

ELECTRICAL CHARACTERISTICS (TA = 25°C unl••• otherwi.. noted.)

I

Symbol

Min

Typ

Max

Unit

BVCEO

lB

-

-

Vde

Collector Cutoff Current
(VCB = 18 Vde, Ie = 01
(VCB = 18 Vde, IE = 0, TA = l000 CI

ICBO

-

-

0.5'
15

I'Ade

Emitter Cutoff Current
(VBe = 5.0 Vdc, IC = 01

lEBO

-

-

0.5

lOA de

Cheracteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 01

ON CHARACTERISTICS
DC Current Gain

(lC = 2.0 mAde, VCE

=

4.5 Vdel
MPS2712, MPS2716

SMALL-8IGNAL CHARACTERISTICS
Output Capacitance
(VCB 10 Vde,le

=

=0, f = 1.0 MHzl

MPS2712
MPS2716

(11 Pulse Test: Pulse Width ';;;300 lOS, Duty Cycle ';;;2.0%.

874

MPS2714 (SILICON)

NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR

... designed for use in low· level swi\ching applications.

•

Low Output Capacitance Cob = 2.5 pF (Typ) @ VCB = 10 Vdc

•

Fast Switching Time@ IC
ts = 12 ns (Typ)

•

High Current· Gain-Bandwidth Product
fT = 250 MHz (Typ) @ IC = 10 mAdc

= 10 mAdc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

18

Vdc

Collector-Base Voltage

VCB

18

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

200

mAde

PD

350
2.8

mW
mW/oC

PD

1.0
8.0

mW/oC

-55 to .150

°c

Rating
Collector-Emitter Voltage

Collector Current

Continuous

Total POlNer Dissipation @ T A "" 2SoC

Derate above 2SoC
Total Power Dissipation @ TC = 2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ,Tstg

Watt

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case

Symbol

Max

Unit

ReJAllI

357

°C/W

ReJC

125

°C/W

(1) R6JA is measured with the device soldered into a typical printed circuit board.

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

DIM
A

B
C

0
F
K

L
N
p
Q

R
S

INCHES
MIN
MAX
0.205
5.200 0.175
4.190 '1[f25 Ir. 65
0.210
5.330 0.170
0.533 0.016
0.021
0.019
0.482 0.016
0.500
1.390 0.045
0.055
0.050
1.270
- 0.250
0.135
2.670 0.095
0.105
0.105
2.670 0.080

MILLIMETERS
MIN
MAX

4.450
3.1 0
4.320
0.407
0.407
12.700
1.150
6.350
3.430
2.410
2.030

CASE 29.02
TO-92

875

MPS2714 (continued)
ELECTRICAL CHARACTERISTICS (continued)

Characteristic
ON CHARACTERISTICS
DC Current Galn
(Ie • 2 mAde, VCE =4.5 Vde)

-

hFE

CoUeetor-Emltter Saturation Voltage
(Ie • 50 mAde, IB • 3 mAde)

VCE(sat)

Base-Emltter Saturation Voltage
(Ie • 50 mAde, IB • 3 mAd.)

VBE(sat)

75

150

225

-

0.16

0.3

0.6

0.75

1.3

Vde
Vde

SMALL SIGNAL CHARACTERISTICS
Small Signal Current Galn
(Ie = 2 mAde, VCE • 4.5 Vde, f

-

life

= 1 kHz)

80
Current-Galn- Bandwidth Product
(Ie • 10 mAde, VCE • 10 Vdc, f • 100 MHz)
OUtput Capacitance
(VCB = 10 Vdc, IE

fT
Cob

= 0, f = 100 kHz)

Input Impedance
(Ie = 0.5 mAde, VCE

= 1 Vdc, f =

lite

1 kHz)

-

250
2.5
3000

300

-

MHz

pF

ohms

SWITCHING CHARACTERISTICS
Delay Time

Ie = 10 mA, IB1 =

3 mA, VCC

td

= 10 V

Rise Time

Storage Time
FaU Time

t.
Ie •

10 mA, IB1 • 3 mA, IB2
VCC.10 V

t.

= 1 mA,

It

876

-

-

7.0

6.0
12
9.0

-

ns
ns
DB
DB

MPS2923 thru MPS2925 (SILICON)

NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
SWITCHING
TRANSISTOR

· .. designed for use in medium·speed general·purpose amplifier and
oscillator applications.
• Collector· Emitter Breakdown Voltage BVCEO = 25 Vdc
• Small Signal Current Gain hfe = 90-180 MPS2923
150-300 MPS2924
235-470 MPS2925

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

25

Vdc

Collector-Base Voltage

VCS

25

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

Collector Current - Continuous

IC

100

mAde

Total Power Dissipation
Derate above 25°C

T A = 25°C

Po

350
2.8

mW
mW/oC

= 2SoC

Po

1.0
8.0

Watt
mW/oC

TJ,Tstg

-55 to +150

°c

Rating

Collector-Emitter Voltage

@

Total Power Dissipation@ TC
Derate above 2SoC

Operating and Storage Junction
Temperature Range

STYLE 1:
PIN 1

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Ambient
Thermal ResIstance, Junction to Case

Symbol

Max

Unit

ReJA(lI

357

°C/W

ReJC

125

°C/W

(1) RaJA is measured with the device soldered into a typical printed circuit board.

EMITTER

2. BASE
3. CO LLECTO R

DIM
A

B
C
0
F
K

L
N

P
Q

R

S

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

4.450
3.180
4.320
0.407
0.407
1 .700
1.150
6.350
3.430
2.410
2.030

0.175
0.125
0.170
0.016
0.016

5.200
4.190
5.330
0.533
0.482

-

1.390
1.270

-

2.670
2.670

-u:.rnr
0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO-92

877

0.205
0.165
0.210
0.021
0.019

-

0.055
0.050

-

0.105
0.105

MPS2923 thru MPS2925 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

Symbol

Characteristic
Collector Cutoff Current
VCB = 25 V, IE = 0

ICBO

VCB = 25 V, ~ = 0, TA = 100°C
Emitter Cutoff Current
VEB = 5 V

~BO

Small Signal Current Gain (f = 1 kHz)
VCE =10V,IC =2mA
MPS2923
MPS2924
MPS2925

hfe

Collector Capacitance
VCB = 10 V, IE = 0, f = 1

Cob

Min

Max

-

0.5

-

15

J.l.A

-

0.5

J.l.A

J.l.A

90
150
235

180
300
470

-

12

MHz

(1) Cpntinuoul package improvements have enhanced these guaranteed Maximum Ratings 8' follows:
T C = 2SoC. Derate above 25°C - 8.0 mWr'C, T J =- -65 to +150 o C. 6 JC = 12SoC/W.

878

Unit

PO" 1.0 W @

pF

MPS2926 (SILICON)

NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
AMPLIFIER
TRANSISTOR

... designed for use in amplifier applications.

• Collector-Emitter Breakdown Voltage BVCEO = 1B Vdc
• Small-Signal Current Gain hfe = 35-470

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

18

Vdc

Collector-Base Voltage

VC8

18

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

100

mAd~

Total POlNer Dissipation @ T A "" 25°C

Po

350
2.8

mW
mW/oC

Po

1.0
8.0

Watt
mW/oC

TJ,T stg

-55 to +150

°c

Symbol

Max

Unit

ReJAlll

357

°C/W

ReJC

125

°C/W

Collector-Emitter Voltage

Derate above 2SoC
Total Power Dissipation@ TC "" 2SoC

Derate above 2SoC
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

STYLE 1:
PIN 1

2.
3.

(1) R6JA is measured with the device soldered into a typical printed circuit board.

DIM
A
B
C
D
F

EMITTER
BASE
COLLECTOR

MILLIMETERS
MIN
MAX

4.450
:1.180
4.320
0.407
0.4U7

K

~.700

L
N
P

1.150

a

R

S

6.350
3.430
2.410
2.030

INCHES
MIN
MAX

5.200
4.19U
5.330
0.533

0.175
U.l 5
0.170
0.016
U.016

0.205
0.165
0.210
0.021
U.U19

1.390
1.270

0.045

0.055
0.050

u.4B

2.670
2.670

0.250
0.135
0.095
0.080

CASE 29-02
TO-92

879

0.105
0.105

MPS2926 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

Characteristics

Symbol

Min

Typ

Collector Cutoff Current
(VCB =18 Vdc, IE = 0)
(VCB =18 Vdc, IE =0, TA

ICBO

--

-

lEBO

-

-

0.5

Current Gain - BandWidth Product
(IC = 4 mA, VCE = 5 V)

fT

-

300

-

Output Capacitance
(VCB = 10 V, IE = 0, f

Cob

-

-

3.5

35

-

470

=100'C)

Emitter Cutoff Current
(V EB =5 Vdc, IC = 0)

=1 MHz)

Small Signal Current Gain
(VCE = 10 V, Ie =2 mAo f = 1 kHz)

Max

Unit
J.LA

0.5
15
J.LA

MHz
pF

-

hfe

(1) Continuous package improvements have enhanced the .. guaranteed MaXimum Ratings as follows:
Derate above 25°C - 8.0 mWf'C, T J '" -&5 to +150o C. 8 J C:Z: 125 0 C/W.

Po

= 1.0

W

@

TC "" 2SoC,

Each unit will be branded with the MPS2926 type and also by color code to identify the different A-C beta
categories. A-C beta Is broken down into five groups, and typical values of DC beta are listed for guidance.

Color Code
Brown
Red
Orange
Yellow
Green

hie
(VcE =lOV,lc =2mA,f=1 KHz)

hFE
(VCE = 4.5 V, Ic = 2 mAl

Min

Max

Typ

35
55
90
150
235

70
110
180
300
470

36
62
115
155
215

880

MPS3390 (SILICON)
thru

MPS3398

NPN SILICON
AMPLIFIER
TRANSISTORS

NPN SILICON ANNULAR AMPLIFIER TRANSISTORS

· .. designed for use in general-purpose and high-gain amplifier or
driver applications.
•

Collector-Emitter Breakdown Voltage BVCEO ~ 25 Vdc (Min) @ IC = 1.0 mAdc

•

DC Current Gain Specified at 2.0 mAdc hFE ~ 400-800 - MPS3390
250-500 - MPS3391
150-300 - MPS3392
9D-180 - MPS3393
55-110 - MPS3394
150-500 - MPS3395
90-500 - MPS3396
55-500 - MPS3397
55-800 - MPS3398

MAXIMUM RATINGS
Symbol

Value

Unit

VeEO

25

Vdc

Collector-Base Voltage

Ves

25

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

COllector-Current - Continuous

Ie

100

mAde

Total Power Dissipation @ T A == 2SoC

Po

350
2.8

mW
mWflC

Po

1.0
8.0

Watt
mWfOC

-55 to +150

°c

Rating
Collector-Emitter Voltage

Derate above 2SoC

Total Power Dissipato" @TC= 25°C
Derate above 25°C
Operating and Storage Junction

TJ,Tstg

Temperature Range

STYLE 1:
PIN 1
2.
3.

DIM
A

B
C

0
F

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case

Unit

L
N

357

°c/w

Q

125

°C/W

R
S

Symbol

Max

ReJAll)
ReJC

P

MILLIMETERS
MIN
MAX

4.450
3.180
4.320
0.407
0.407

5.200
4.190
5.330
0.533
0.482

1.150
6.350
3.430
2.410
2.030

1.390
1.270
2.670
2.670

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.021
0.016
0.019
u.ul.

0.045
0.250
0.135
0.095
0.080

(1) ReJA is measured with the device soldered into a typical printed circuit board.

CASE 29-02
TO-92

881

0.055
0.050
0.105
0.105

MPS3390 thru MPS3398 (continued)

I

ELECTRICAL CHARACTERISTICS

(TA = 250 C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector·Emitter Breakdown Voltage (1)
IIC· 1.0 mAde, IB= 0)

BVCEO

25

-

-

Vde

Coliector·Base Breakdown Voltage
IIC· O.hAde, IE = 0) ,

BVCBO

25

-

Vde

Emitter·Base Braakdown Voltege
liE· O.II'Ade,lc= 0)

BVEBO

5.0

-

-

Vde

Collector Cutoff Current
(VCB· 18 Vde, IE = 0)

ICBO

-

-

0.1

I'Ade

Emitter Cutoff Current

lEBO

-

-

0.1

I'Ade

Characteristic
OFF CHARACTERISTICS

(YEB • 5.0 Vde, I C = 0)
ON CHARACTERISTICS
DC Current Gain
IIC· 2.0 mAde, VCE • 4.5 Vde)

hFE
MPS3390
MPS3391
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396
MPS3397
MPS3398

-

-

400
250
150
90,
55
150
90
55
55

80

-

500
800

-

2.0

10

400

-

1250
800
500
400
300
800

-

-

-

-

800
500
300
180
110
500

500

SMALL-SIGNAL CHARACTERISTICS
Output Capacitance
(YCB = 10 Vde, IE = 0, I

Cob

= 1.0 MHz)

Small-Signal Current Gain
IIC = 2.0 mAde, VCE = 4.5 Vde, I

-

hIe

=1.0 kHz)
MPS3390
MPS3391
MPS3392
MPS3393
MPS3394
MPS3395
MPS3398
MPS3397
MPS3398

250
150
90
55
150
90
55
55

(1) Pulse Test: Pulse Width 0;;;3001'1, Duty Cycle 0;;;,2.0%.

MPS3563 (SILICON)

For Specifications, See MPS918 Data.

882

pF

-

-

800
800
1250

MPS3638 (SIUCON)
MPS3638A

NPN SILICON ANNULAR TRANSISTORS
· .. designed for high-current switching applications.
•

NPN SILICON
SWITCHING
TRANSISTORS

Collector-Emitter Sustaining Voltage VCEO(sus) = 25 Vdc (Min)

•

DC Current Gain Specified - 1.0 mAdc to 300 mAdc

•

Fast Switching Time @ IC = 30 mAdc
ts = 140 ns (Max)

•

Current·Gain-Bandwidth Product fT= 150 MHz (Min) @ IC = 50 mAdc MPS3638A

•

Electrically Similar to 2N3638,A

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCES

25

Vdc

Collector-Emitter Voltage

Rating

VCEO

25

Vdc

Ccllector-Ba. Voltage

VCB

25

Vdc

Emittar-Ba. Voltage

VEB

4.0

Vdc

Collector Currant - Continuoul

IC

500

mAde

Total Power Dlaipation @ T A - 2SoC
Darat. above 2S<>C

Po

350
2.B

mW
mW/oC

TC = 2SoC

Po

1.0
8.0

Watt
mW/OC

TJ,Tstg

-55 to +150

°c

Total Power Dlaipation
o.rlta above 2SoC

@

Operating and Storage Junction

J J~
1 r--;f
L....:....-

SEATINGJt
PLANE

D-jl~~
=::jR~

Temperature Range

l°r-.l
,,>IT>, ~'

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Ambient
Thermal Resistance. Junction to Case

Symbol

Max

Unit

R9JAil)

357

°CIW

R9JC

125

OC/W

K

STYlE 1:
PIN 1.
2. BASE
3. COllECTOR

(1) R8JA is measured with the device soldered into a typical printed eircuit board.

DIM
A
B
C

0
F
L
N
P
Q

R

S

S

--l 3 t

MILLIMETERS
MIN
MAX

S

INCHES
MIN
MAX

4.450
3. 80
4.320
0.407
U.4tl/
1.
1.150

5.200 0.175
4.19U I u.125
5.330 0.170
0.533 0.016
u.4., ~

6.350
3.430
2.410
2.030

0.250
0.135
0.095
0.080

1.390
1.270
2.670
2.670

0.045

CASE 29'()2
TO-92

883

0.205
u. 65
0.210
0.021

....!!oO..!!!.
0.055
0.050
0.105
0.105

MPS3638, MPS3638A (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-EmItter Sustalmng Voltage (11
(Ie = 10 mAde, IB = 0)

VCEO(SllS)

CoUector-Emltter Breakdown Voltage
(I C = 100 MAde, V BE = 0)

BV CES

Collector-Base Breakdowil Voltage
(IC 100 MAde, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 MAde, IC = 0)

BV EBO

Collector Cutoff Current

ICES

(V CE =15Vde. VBE=O)
(VCE = 15 Vdc. VBE = 0, TA = +65T)

Base Current
(V CE = 15 Vde, V BE = 0)

Vde
25
Vde
25
25

-

Vdc

Vde
4.0

-

,u.Ade
0.035
2.0
MAde

IB

0.035

ON CHARACTERISTICS I')
DC Cunent Gam
(IC = I mAde, VCE = 10 Vde)

MPS3638A

hFE

80

-

(IC = 10 mAde, VCE = 10 Vde)

MPS3638
MPS3638A

20
100

(IC = 50 mAde, VCE = 1 Vde)

MPS3638
MPS3638A

30
100

-

(Ie = 300 mAde; VCE =2Vde)

MPS3638

20
20

-

MPS3638A

Collector-Emltter SaturatIOn Voltage
(IC = 50 mAde, IB = 2. 5 mAde)

0.25

-

(IC = 300 mAde. IB = 30 mAde)

1.0
Vdc

VBE(s.t)

(IC = 300 mAde, IB = 30 mAde)

Vde

VCE(s.t)

Base-Emltter Saturation VoltagE'
(Ie = 50 mAde, IB = 2. 5 mAde)

-

1.1
0.80

2.0

100
150

-

-

20
10

DYNAMIC CHARACTERISTICS
Current-Gain-BandWldth Product
(VeE = 3 Vdc, Ie = 50 mAde, f = 100 MHz)

MPS3638
MPS3638A

Output CapacItance

MPS3638
MPS3638A

(V CB = 10 Vde. IE = 0, f = 140 KHz)
Input Capacltance
(V BE = 0.5 Vdc, IC = 0, f = 140 "Hz)
Small-Signal Current Gam
(Ie = 10 mAde, VCE = 10 Vdc/ f

= 1. 0 KHz)

Output Conductance
(Ic = 10 mAdc, VeE

= 1.0 kHz)

= 10

Vdc, f

MPS3638
MPS3638A
MPS3638
MPS3688A

Input Resistance
(Ie = 10 mAde, VCE = 10 Vde, 1 = 1.0 kHz)
Voltage Feedback RatIo
(Ie = 10 mAde, VCE = 10 Vde, f

MPS3638
MPS3638A

= 1. 0 kHz)

MPS3638
MPS3638A

fT

COb

MHz

pF

C ,b

pF
65
25

h re

25
100

180

-

mmhos

hoe

-

1.2

hie

-

1500
2000

-

26
15

h re

Ohms

XlO- 4

SWITCHING CHARACTERISTICS
Delay TIme

Vce = 10 Vde. Ie = 300 mAde,

Rlse TIme

lin = 30 mAde. VBE(olf) = 3. I ~dc

Storage TIme

Vee::: 10 Vdc, Ie = 300 mAde.

Fall TIme

IBI

Turn-On Tlme

Ie - 300 mAde, lSI - 30 mAde

Turn-Oil TIme

Ie": 300 mAde, lSI

(1)

==

30 mAdc. IS2

'd

,

r

= 30 mAde
=30 mAde,

=30 mAde

Pulse Test: Pulse Width s 300 I'S, Duty Cycle" 2.0%

884

ns

70

ns

's

140

'1

70

on

75

tuff

170

\

IB2

20

ns

MPS3639 (SIUCON)

PNP SILICON ANNULAR TRANSISTOR
PNP SILICON

· .. designed for use in low·current, high-speed switching applications.
•

SWITCHING

Collector-Emitter Breakdown Voltage BVCES= 6.0 Vdc (Min)

TRANSISTOR

•

Fast Switching Time @ IC = 50 mAdc
ton = 25 ns (Max)
toff = 25 ns (Max)

•

Low Output Capacitance Cob = 3.5 pF (Ma,,) @ VCB = 5.0 Vdc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

6.0

Vdc

Collector-Base Voltage

VCB

6.0

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current - Continuous

IC

80

mAde

Total Power Dissipation
Derate above 25°C

T A :::: 25°C

Po

350
2.8

mW
mW/oC

Total Power Dissipation @ T C = 25°C
Derate above 25°C

Po

1.0
8.0

Watt
mW/oC

TJ.T stg

-55 to +150

°c

Rating
Collector·Emitter Voltage

@

Operating and Storage Junction
Temperature Range

SEATINGJt
PLANE

L-

THERMAL CHARACTERISTICS
Ma.

Symbol

Characteristic

Unit

~
D-jIP[-+L
-=1Rf.."=-

357

Thermal Resistance, Junction to Ambient

Thermal Resistance. Junction to Case

°C/w

125

ROJC

lQr

(l) ROJA IS measured with the device soldered into a typical printed circuit board.

SWITCHING TIME TEST CIRCUITS
Vbb"
1.& V

v

~

Vbb=
-6V

"-6

5K

110

1K

0.1
~Vout
)J.F ~ To sampling scope

V1n1f~. 6~~~ ~ Ri~~:!~:~n~

Vee"
-5V

130

0.1
"F ~ To sampling scope

Vln11E-~ ~~ \3.. Ri~~t~!e~cl~On~

51

STYLE 1.
PIN 1. EMITTER
2. BASE
3. COLLECTOR

DIM
A
B
C

0
F

L
N

51

P
PULSE SOURC;
Rise time c I na
PW ~100 na

'='

~.~

1-_~ 1-7~F1~

PULSE SJURC;
Rise Ume 5 1 ns
PW lI! 200 ns

Q

R
S

~.~

Fall time c1 ns

Fall time d

NOTES: (1) Collector C\l.rrent .. 50 rnA
(2) Turn~On and Turn-Off Base
Currents. 5 rnA

NOTES: (1) Collector Current s 10 rnA
(2) 'l'um·On and Tum-Off Base
Currents .. 0.5 rnA

885

~
--I =rt
1 2 ,

000

..J.

S

8

S

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

4.450
3.180
4.320
0.407
0.407
1 .7
1.150

0.175
0.125
0.170
0.016
0.016

0.205
'1,165
0.210
0.021
0.019

0.045

0.055
0.050

6.350
3.430
2.410
2.030

5.200
4.190
5.330
0.533
0.482
1.390
1.270
2.670
2.670

0.250
0.135
0.095
0.080

CASE 29-02
TO-92

0.105
0.105

MPS3639 (continued)

ELECTRICAL CHARACTERISTICS

(TC = 250 C unleSl otherwise noted.1

Characteristic
Collector·Emitter Susteining Voltage (I)
(lS=0,lc·l0mA)
Collector·Emitter Breakdown Voltage
(lC= 100 "A, VBE = 01
Collector-Base Breakdown Voltage
(lC = 100 "A, IE = 0)
Emitter-Ba.. Breakdown Voltage
(Ie = 100 "A, IC = 01
Collector Cutoff Current
(VCE=3V,VEB=01
(VCE = 3 V, VEB = 0, TA = +650 CI
Base Current
(VCE=3V,VEB=01
Forward Current Transfer Ratio (11
(VCE=0.3V,IC= lOrnA)
(VCE = 1.0 V, IC = 50mAI

Symbol

Min

VCEO(susl

6.0

-

V

BVCES

6.0

-

V

BVCBO

6.0

-

V

BVEBO

4.0

-

V

-

-

0.01
1.0

-

10

30
20

120

-

0.16
0.5
0.23

ICES

IB

MIX

VCE( ..tl

Base-Emitter Saturation Voltage (11
(lC = 10 rnA, IB = 0.5 rnA)
(lc=10mA,IB=lmA)
(lC = 50 rnA, IB = 5mAI
Small-5ignal Current Transfer Ratio
(VeE = 5 V, IC = 10 rnA, f = 100 MHz)
(VCB = 0, IC = 10 rnA, f = 100 MHzl
Output Capaictance
(IE = 0, VCB = 5 V, f = 140 kHzl

VBE(sat)

"A

nA

-

hFE

Collector-Emitter Saturation Voltage (11
(lC= lOrnA, IB= 1 mAl
(lC = 50 rnA, IB= 5mA)
(lC= 10mA,IB- 1 mA,TA=+650 CI

Unit

-

-

V

V
0.75
0.8

-

0.95
1.0
1.5

5.0
3.0

-

hfe

-

Cob

-

3.5

pF

Cib

-

3.5

pF

Delay Time
(VCC = 6V, IC = 50 rnA, IBI = 5 rnA, VBE(off) = 1.9 VI

td

-

10

ns

Rise Time

tr

30

ns

20

ns

12

ns

Input Capacitance
(VBE = 0.5 V, IC = 0, f = 140 kHzl

(Vec = 6 V, IC,= 50 rnA, IBI = 5 rnA, VBE(off) = 1.9 VI
Storage Time
(VCC = 6 V, IC = 50 rnA, IBI = IB2= 5 mAl
Fall Time
(Vec= 6 V, IC = 50 rnA, IBI = IB2= 5mA)

ts

-

tf

Turn-On Time
(lC = 50 rnA, lSI = 6 rnA, VBE(off) - 1.9 VI
(Ie = lOrnA, IBI = 0.5mAI

ton

Turn-Off Time
(Ie = 50 mA, VBE(off) = 1.9 V, IBI = IB2 = 5 mAl
(lC = 10 rnA, IBI = IB2 = 0.5 mAl

taff

ns

-

25
60

-

25
60

ns

-

(11 Pulse Test: Pulse Width" 300,,5, Duty Cycle" 2.0%.

886

MPS3640

(SILICON)

PNPSILICON
SWITCHING
TRANSISTOR

PNP SILICON ANNULAR TRANSISTOR

· .. designed for general'purpose, low-level switching applications.

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.2 Vdc@ IC = 10 mAdc

•

Output Capacitance Cob = 3.5 pF (Max) @Vce= 5.0 Vdc

•

Fast Switching Time@lc= 50 mAdc
ton = 25 ns (Max)
toff = 35 ns (Max)

MAXIMUM RATINGS
Symbol

Value

Unit

VeEO

12

Vdc

Coliector·Base Voltage

VeB

12

Vde

Emitter-Base Voltage

VEB

4.0

Vde

Collector Current - Continuous

Ie

BO

mAde

Total Power Dissipation @ T A::: 25°C

Po

350
2.B

mW
mwf'e

Po

1.0

Watt

8.0

mw/oe

Rating
Cdllector~Emitter

Voltage

Derate above 25°C
Total Power Dissipation@ TC::: 25°C
Derate above 25°C
Operating and Storage Junction

TJ,T stg

-55 to +150

STYlE 1:

°e

PIN 1.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

EMITTER

2. BASE
3. COLLECTOR

Temperature Range

Symbol

Max

Unit

ROJA(11

357

R6Je

125

°elW
°elW

(1) R8JA is measured with the device soldered into a typical printed circuit board.

DIM
A
B

C
D
F

L

MILliMETERS
MIN
MAX
4.45l1
5.200
3.180
4.19
4.320
5.330
Q.407
0.533
7
.4

1.150

N

P

a

R

S

6.350
3.430
2.410
2.030

1.390
1.270
2.670
2.670

INCHES
MIN
MAX
0.175
0.205
0.15
0.165
0.170
0.210
0.016
0.021
•.• '9

0.045
0.250
0.135
0.095
0.080

CASE 29'()2
TO·92

887

0.055
0.050
0.105
0.105

MPS3640 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

I

Symbol

Min

VCEO(suI)

12

-

Vdc

Collector-Emitter Breakdown Voltage
(lc ·l00I'Adc, VBE = 0)
Collector-B... Breakdown Voltage
(lc a l00I'Adc,IE a 0)

BVCES

12

-

Vdc

BVCBO

12

-

Vdc

Emilter-Ba.. Breakdown Voltage
(IE = l00I'Adc,IC= 0)

BVEBO

4.0

-

Vdc

Charact«iotic

Unit

MIX

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(Ie = 10 mAdc,ls = 0)

Collector Cutoff Current
(VCE = 6.0 Vde, VBE = 0)
(Vel"· 6.0 Vde, VRE - 0, TA

ICES

Reverse Base Current
(VCE = 6.0 Vde, VBE = 0)

I'Ade

-

0.01
1.0

-

10

30
20

120

-

0.2
0.6
0.25

0.75
0.8

-

0.95
1.0
1.5

IT

500

-

MHz

Cob

-

3.5

pF

Cib

-

3.5

pF

-

25

-

60
10

ns

30

ns

-

35

-

75

= 650 C)
IB

nAde

ON CHARACTERISTICS (1)

DC Current Gain
(lC = 10 mAde, VCE'= 0.3 Vde)
(I C = 50 mAde, VCE = 1.0 Vde)
Coliector·Emitter Saturation Voltage
(lC = 10 mAde,lB = 1.0 mAde)
(lC= 50mAde,IB= 5.0 mAde)
(lC = 10mAde,IB = 1.0 mAde, TA = 650 C)
Base-Emitter Saturation Voltage
(lC = 10 mAde, IB = 0.5 mAde)
(lC = 10mAde,IB = 1.0mAde)
(I C = 50 mAde, I B = 5.0 mAde)

-

hFE

Vde

VCE( ..t)

Vde

VBE( ..tl

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(lC = 10 mAde, VCE = 5.0 Vde, I = 100 MHz)

Output Capacitance
(VCB = 5.0 Vde, IE = 0, I = 140 kHz)
Input Capacitance
(VB I" = 0.5 Vde, IC = 0, I = 140 kHz)
SWITCHING CHARACTERISTICS
Turn-Cln Time
(V CC = 6.0 Vde, IC = 50 mAde, V BE(oll) = 1.9 Vde, I B 1 = 5.0 mAde)
(Figure 1)
(VCC = 1.5 Vde, IC = 10 mAde, IBl = 0.5 mAde) (Figure 2)
Delay Time

I

Rise Time

I

Id

(VCC = 6.0 Vde, IC = 50 mAde, VBE(off) = 1.9 Vde,
IBl = 5.0 mAde)(Figur. 1)

Ir

Turn-Off Time
(V CC = 6.0 Vde, I C = 50 mAde, 181=IB2=
IBl = IB2 = 5.0 mAde) (Figure 1)
(VCC = 1.5 Vde, IC = 10 mAde, IBl = IB2 = 0.5 mAde) (Figure 2)
Storage Time
Fall Time

I

I

ns

ton

'off

(VCC = 6.0 Vde, IC - 50 mAde, IBl = IB2 = 5.0 mAde)
(Figur.l)

Is
If

ns

-

20

ns

12

ns

(1) Pulse Test: Pulse Width ";3ool's, Duty Cyele";2.0%.

VBB =+1.9 V

VBB =-6.0 V

VCC = -6.0 V

110

-:.JS

PULSE SOURCE

Rise Time~ 1.0 ns

1.0 k

Vini

0.1 pF

Vout
TO SAMPLING SCOPE
Input Z

~100

k

:n

PULSE SOURCE

VCC-I.5V

130
5.0 k

vino-'i~tF

51

Vout

5.0 k
TO SAMPLING SCOPE
Input Z

~100

k

Rise Time:::. 1.0 os
Rise Time==:1.0 ns
Pulse Width ~200 os
lin = 50 Ohms
NOTES: Collector Curr.nt .. 10 rnA, Turn·On and Turn·Off Tim.
Fall Time::: 1.0 ns
Base Currents = 0.5 rnA.

Rise Time::: 1.0ns

Pul.. Width ::100 ns
=50 Ohms
NOTES: ColI.ctor Curr.nt = 50 rnA, Turn·On and Turn·Off Time
fall Time:::: 1.0 ns
Base Cumnts = 5.0 rnA.

lin

888

MPS3640 (continued)

FIGURE 3 - DC CURRENT GAIN

FIGURE 4 - "ON" VOLTAGES

200

1.4

VCE'I.0V

g 1.0

-:1 25OC

-

II

~ o. a

VaElo") @VCE - 1.0 V

"''"~ o. 6
o

I"-

IIIII
IIIII

>

->

O. 4
O. 2

0.5

0.2

1.0

2.0

5.0

10

50

20

0

100

0.1

0.2

0.5

o. a

J

ill

II

5.0 rnA

20 rnA

Ic" 1.0 rnA

'"

~r;;
~ ~ O. 6

II

I

I II I

f-

'ovc FOR VCEI"t)

ffi

~

\

~ 0.4
O. 2

0.05

0.02

-55 0J:"250C
-0.5

'"

~

-1.0

~

25°C to 1250C

-

Bva FOR VSE

~
2.0

5.0

-2.0
0.1

10

L
0.2

FIGURE 7 - CURRENT-GAIN-BANDWIDTH PRODUCT

2000 TJ - 25°C
~
t, 100 MHz

VeE' 10 V

o
o

1000

'"6 aoo
;li,

V

600 V

v
V

L

z

iii
,.:.

-

Tri-II

~

0.5
1.0
2.0
5.0
10
IC. COLLECTOR CURRENT ImA)

20

-.. r-.....

1.0 V
t-

50

100

FIGURE 8 - CAPACITANCE

5.0

I

to
=>

r-_~c

f-

0.1
0.2
0.5
1.0
'B. BASE CURRENT ImAI

i

Z

WL12510 c

~ -1.5

'-

0
0.01

3:
o

100

w

I'

'"'>

:f

I I I
20
50

1\

00

~

'APPLIES FOR Ic/la'; hFE/4

3;
G

t;~

>

G

E

aOmA

"'>
0
-

j

+0.5

TJ' 250C

III

5.0
10
1.0
2.0
IC. COLLECTOR CURRENT ImA)

FIGURE 6 - TEMPERATURE COEFFICIENTS

FIGURE 5 - COLLECTOR SATURATION REGION

I

I I
I I

.l..-K

IIIII

IC. COLLECTOR CURRENT !mAI

1.0

I
I

_lUII~t) @1~/la ~ lb

0

10
0.1

I I

VaEI",)@ 'eila';:'
__ -t'"

o

-

0 - __ 55°C
0

WI

1. 2

0
0-

t

t-TJ =25 0

T~,lmJc

TJ-250C

3. 0
0

r:--::

......

1"'-_

Cob

C,b

0

400

~

O. 7

'"

=>

'"'. 200
1.0

.t:-

2.0

3.0

5.0 7.0 10
20
30
IC. COLLECTOR CURRENT ImA)

50

O. 5
0.2

70 100

889

0.3

0.5 0.7 1.0
2.0 3.0
5.0 7.0
VR. REVERSE VOLTAGE IVOLTS)

10

20

MPS3646 (SILICON)

NPN SILICON
MEDIUM
SWITCHING TRANSISTOR
NPN SILICON ANNULAR SWITCHING TRANSISTOR
· .. designed for use in fast switching applications.

• Collector· Emitter Breakdown Voltage BVCES = 40 Volts (Min) @ IC = 100 pAdc
• DC Current Gain Specified - 30 mAde to 300 mAde
•

Low Collector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 300 mAde

•

Fast Switching Time
ton = 16 ns (Typ)
toff = 23 ns (Typ)

@

IC= 300 mAdc

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

15

Vdc

Collector-Emitter Voltage

VCES

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

300
500

mAde

25°C

PD

350
2.8

mW
mW/oC

Total Power Dissipation @ T C = 25°C
Derate above 25°C

PD

1.0
B.O

Watt
mW/oC

TJ,T stg

-55 to +150

°c

Rating

Collector Current - Continuous

-

10~s

Pulse

Total Power Dissipation @TA
Derate above 2SoC

::=:

Operating and Storage Junction
Temperature Range

Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

PIN 1

Symbol

Max

Unit

R8JAll)

357

°CIW

R8JC

125

°C/W

(1) R6JA is measured with the device soldered into a typical printed circuit board.

EMITTER

2
3

DIM
A

4.450
3.180

C

4320
0407
7
1.
1.150

L
N

P
0
R
S

BASE
COLLECTOR

MILLIMETERS
MIN
MAX

B

0

THERMAL CHARACTERISTICS
Characteristic

STYLE 1

6.350
3.430
2.410
2.030

0175

1.390
1.270

0.045

-

2.670
2.670

0.125

0.170
0.016
.16

0.250
0.135
0.095
0.080

CASE 29·02

TO·92

890

INCHES
MIN
MAX

5.200
41
5.330
0.533
.4

0.205
0.165
0.210
0021
0 19

-

0.055
0.050

-

0.105
0.105

MPS3646 (continued)

ELECTRICAL CHARACTERISTICS (TA =

250 C unless otherwise noted).

I

Symbol

Min

Typ

Max

Unit

BVCEO(sus)

15

-

-

Vde

Collector-Emitter Breakdown Voltage
(lC = 100 /LAde, VBE = 0)

BVCES

40

-

-

Vde

Coliector·Base Breakdown Voltage
(lC = 100 /LAde, IE = 0)

BVCBO

40

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 100 /LAde, IC = 0)

BVEBO

5.0

-

-

Vde

-

-

-

-

0.5
3.0

30
25
15

65
48
20

120

-

0.15
0.20
0.33
0.20

0.2
0.28
0.5
0.3

-

0.78
0.85
0.95

0.95
1.2
1.7

Characteristic
OFF CHARACTERISTICS
Colleetor·Emitter Sustaining Voltage (1)
(lC = 10 mAde, IB = 0)

Collector Cutoff Current

/LAde

ICES

(VCE = 20 Vde, VBE = 0)
(VCE = 20 Vde, VBE = 0, TA

= 650 C)

Base Current

IB

0.5

/LAde

ON CHARACTERISTICS (11

DC Current Gain

-

hFE

(lc = 30 mAde, VCE = 0.4 Vde)
(lC = 100 mAde, VCE = 0.5 Vde)
(lC = 300 mA, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage
(IC = 30 mAde, IB = 3.0 mAde)
(lc = 100 mAde. IB = 10 mAde)
(IC = 300 mAde, IB = 30 mAde)
(lC = 30 mA, IB = 3.0 mA, T A = 65°C)

VCE(sat)

Base-Emitter Saturation Voltage

VBE(sat)

(lC = 30 mAde, IB = 3.0 mAde)
(lc = 100 mAde, IB = 10 mAde)
(lc = 300 mAde, IB = 30 mAl

Vde

Vde
0.73

DYNAMIC CHARACTERISTICS/SMALL.sIGNAL CHARACTERISTICS
Current-Gain - Bandwidth Product
(lc = 30 mAde, VCE = 10 Vde, I = 100 MHz)

IT

350

600

-

MHz

Output Capacitance

Cob

-

2.5

5.0

pF

I nput Capacitance
(VBE = 0.5 Vde, IC = 0, I = 1.0 MHz)

Cib

-

8.8

-

pF

Turn-On TIme

ton

-

16

18

ns

td

7.0

10

ns

9.0

15

ns

taff

-

23

28

ns

tf

-

7.0

15

ns

18

ns

(VCB = 5.0 Vde, IE = 0, 1= 1.0 MHz)

Delay Time

(VCC = 10 Vde, VBE(aff) = 3.0 Vde, IC = 300 mAde,
IBI = 30 mAde, Figure 1)

Rise Time
Turn-Off Time

Fall Time

tr
(VCC = 10 Vde, IC = 300 mAde, IBI = IB2 = 30 mAde,
Figure 1)

Sto rage Ti me
(VCC = 10 Vde, IC = 10 mAde, IBI = IB2 = 10 mAde, Figure 2)

ts

(1) Pulse Test: Pulse Width ';;300 /LS, Duty Cycle';; 2.0%.

FIGURE 2 - CHARGE STORAGE TIME TEST CIRCUIT

FIGURE 1 - SWITCHING TIME TEST CIRCUIT
-3.0 V

+10 V

+1' V

+10 V

10% Pulse

1.0 k
+7.6 V i l

-.J

L

0.1

o
Vin1
tr,tf
1.0 ns
Pulse Width ~ 240 ns
50
Zin = 50n
_

<

120

33

500

To Sampling Scope
t r <1.0ns
2in"" 100 k!l

0~1
-10 V

Vin

t r <1.0n5
Pulse Width ::= 300 ns
Duty Cycle = 2.0%
Zin = 50 n

891

56

-=

500

"A"

MPS3646 (continued)

FIGURE 3 - DC CURRENT GAIN
100
70

-

f-

TJ

=125'C

;;:
'"

..

....'"
'"
'"'"
:::>
...,
""

'";

I I

50

L.- ~

Fff

..........
03

r-

I-f-

J5.1C I...-- V

20

i-- I-t-"

_f-- ,...-

i5'~

30

10

r-

~

. . . J...... f0.5

0.7

2.0

1.0

3.0

5.0
7.0
10
IC, COLLECTOR CURRENT (mA)

FIGURE 4 - "ON" VOLTAGES

~

.
<0

o. 6

1111

~

g II 11111 I
>
J
08 UUill

i...-"

~
to

Jib v

lL

IC = 2.0 mA 10mA

~
<0

"

100

~

"""-

200

300

50 rnA

1111

TJ = 25°C

llil
200 mA

> 0.6

'"
J::'"

!

to

~

70

II

<0

2:

o. 4

<0

>

>'

50

30

~

FIGURE 5 - COLLECTOR SATURATION REGION

VeE('at) @Ic/le - 10
VeE(,n)@VCE

20

1.0

I
I

TJ = 25'C

......

VCE =1.0 V

1. 0

o.8

~
1"'-0.

0.4

I~

D

t;

......... V

VCE('at)@lclle=10
2

j

11111
0

D

11111
0.3 0.50.7 1.0

"
t--

02

2.0

""~

I
5.070 10

20

50 70 100

>

200300

0
o 04 0.06 0.1

0.2

IC, COLLECTOR CURRENT (mA)

~

:>
E
....

t--

0.4 0.6 1.0
20
4.0 6.0
IC, COLLECTOR CURRENT (mA)

FIGURE 6 - TEMPERATURE COEFFICIENTS
+1 6
"APPlIESFORlc/le"'hFE=3.0/5
+1. 2

II

I II
11
0 4 f-±++;++
III:I--I--t-+++++trt--- ~50J tolllM: ttt:::::;:;oo-i"'"'"

+0.8

1~'O~V~C~fo~rV~C~E{~sa~t)~~~~~~~I~~~~r-~~~
-55°C to 250C

ffi +. OF
U
~

8

-0.4 H-H-+tt+--+-+-H-t++++---+--+-++++Itt---+--

~

-0.8 H-H-+ttt--+--+-H-+t+-tt---+--+-++++Itt---+--1

:::>

....

~
=
25'C to 125°C ~~
~ -1.6 Hov-te-tf-tor-HVfteE--+-+-+-t-tlitt--t-~-r-t-r~d::I$~=+--1
-1.2

~ :~~t1z.+++111t1111~*;f9+tittr"T-:;-i(50_50ff 1° mi-0.3 0.5

10

2.0 3.0 5.07.0 10

20 30

IC, COLLECTOR CURRENT {mAl

892

50 70 100

"r---

1""-

200300

10

20

40

MPS3646 (continued)

FIGURE 7 - COLLECTOR·BASE TIME CONSTANT

FIGURE 8 - CAPACITANCE

20

15

VCE= 5.0 V
f = 31.8 MHz
TJ = 25°C

1\

.......

~ 7.0

\
4

TJI=25~CI

10

z

1\

r-....

C,b

S

5.0

II

"- t'....
3.0

j
t3 3.0

/
...... V

...... r-.
2.0

;t

5.0

7.0

10

20

30

t-

50

70

100

1.50.5

0.2

0.5

FIGURE 9 - CltC1m'NT·GAIN·- BANDWIDTH PRODUCT
~10k

~-'

700

VCE

;;

~ 300

1.0

,LP'

'\.

~ 200

100

~

70

.;,

50

10 V

V'-

'\:

'\

I

j;
~

;;:
"'

~

'"=>
~

30

20

TJ = 25°C
f= 100MHz

I IIII

100.3 0.50.7 1.0

1.0

2.0

5.0

VR, REVERSE VOLTAGE (VOLTSI

1:; 500

2.0 3.0 507.0 10
20 30 5070 100
IC, COLLECTOR CURRENT (mAl

893

i-

r--.
0.1

Ic, COLLECTOR CURRENT (mAl

E!

~b

2.0

200

10

20

50

MPS3693 (SILICON)
MPS3694

NPN SILICON

~NNULAR

TRANSISTORS
NPN SILICON
AMPLIFIER
TRANSISTORS

... designed for use in RF amplifier applications and AM/FM

receivers.

•
•

Coliector·Emitter Sustaining Voltage VCEO(sus) = 45 Vde (Min) @ IC = 10 mAde
Current·Gain-Sandwidth Product fT = 200 MHz (Min) @ IC = 10 mAde

Capacitance • LowCobOutput
= 3.5 pF (Max) @VCS= 10 Vde

MAXIMUM RATINGS
Symbol

Value

VCEO

45

Ydc

Collector-Base Voltage

VCB

45

Vdc

Emitter-Base Voltage

Rating
Collector-Emitter Voltage

Unit

VEB

4.0

Vdc

Collector Current - Continuous

IC

50

mAde

Total Power Dissipation @ T A = 2SoC
Derate above 25°C

Po

350
2.8

mW
mW/oC

Total Power Dissipation @ TC = 25°C
Derate above 25°C

Po

1.0
8.0

Watt
mW/oC

TJ.Tst9

-55 to +150

°c

Symbol

Max

Unit

Operating and Storage Junction

Characteristic

Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

R6JA(1)

357

°C/W

R9JC

125

°C/W

~FI

PLANE

U

o-jlf-LI-h

=:::jR~

Temperature Range

THERMAL CHARACTERISTICS

J!
f.-1

-~

SEATINGJ~~
i

STYlE 1:
PIN I.

~~~~TER

1°r~

2.
3. COLLECTOR

(1) R9JA is measured with the device soldered into a typical printed circuit board.
DIM
A
B
C

o
F

MILLIMETERS
MAX
MIN
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.482 I

L
N

1.150

P

6.350
3.430
2.410
2.030

Q

R
S

m=t
Xp--r

1.390
1.270
2.670
2.670

B

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.016
0.0 9
0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO·92

894

0.055
0.050
0.105
0.105

MPS3693, MPS3694 (continued)

ELECTRICAL CHARACTERISTICS (TA

= 2SoC unless otherwise noted)

Characteristic

Symbol

Min

Typ

Max

45

-

-

45

-

-

4.0

-

-

-

50

-

-

-

5.0

200

-

-

-

-

3.5

-

-

55

-

4.0

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage(2(
(IC =10 mAde, IS =0)

VCEO(sus)

Collector-Base Breakdown Voltage
(IC =100 /lAde, ~ =0)

BV CBO

Emitter-Base Breakdown Voltage
(~ =10 /lAde, IC =0)

BV EBO

Collector Cutoff Current
(V CB =35 Vde, ~ =0)
(V CB

=35 Vde,

~

=0,

ICBO
TA

=65·C)

Vde
Vde
Vde
nAde
/lAde

ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE = 10 Vde)

MPS3693
MPS3694

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(IC =10 mAde, V CE =15 Vde, f =100 MHz)
Output Capacitance
(VCB =10 Vde, ~

fT

Cob

=0, f =100 kHz)

Collector-Base Time Constant
(~ =10 mAde, V CB =15 Vde, f

Noise Figure
(IC =3.0 mAde, V CE

r'C
b e

=31. B MHz)

=10 Vde, Kg =300 ohms, f =1. 0 MHz)

(2):Pulse Test: Pulse Width 5 300 /lS, Duty Cycle 51.0%.

895

NF

MHz
pF
ps
dB

MPS3702 (SILICON)
MPS3703

PNP SILICON ANNULAR TRANSISTOR
PNP SILICON
AMPLIFIER
TRANSISTOR

... designed for use in low-current, large-signal amplifier applications.

•

Device Similar Electrically to 2N3702, 2N3703

MAXIMUM RATINGS
Roting

Symbol MPS3702 MPS3703

Unit

Collector·Emitter Voltage

VCEO

25

30

Vdc

Collactor-Base Voltage

Vce

40

50

Vdc

Emitter-Base Voltage

VEe

5.0

Vde

Collector Current - Continuous

IC

200

mAde

Total Power Dissipation @ T A = 26°C
Derate above 25°C

Po

350
2.8

mW
mW/oC

T C = 2SoC

Po

1.0
8.0

Watt
mWtDC

TJ.Tstg

-55 to +150

°c

Total Povver Dissipation

@

Derate above 25°C
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Ambient
Thermal Aesistance, Junction to Case
(1)

Symbol

Max

Unit

ReJA(1)

357

°C/W

ReJC

125

°C/W

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

R8JA is measured with the deviced soldered into a typical printed circuit board.

0

MILLIMETERS
MIN
MAX
4.450
.180
4.320
0.407

F

Jl..4QL

L
N

1.150

P

6.350
3.430
2.410
2.030

DIM
A
B
C

Q

R
S

I

~

INCHES
MIN
MAX
0.175
0.l05
O.~ ~
0.170
0.210
0.021
0.016
~
~
~

1.390
1.270

0.045
0.250
0.13~

2.670
2.670

0.095

O.oao

CASE 29-02
TO-92

896

0.055
0.050

0.105
0.105

MPS3702, MPS3703 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

Symbol

Characteristic

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sreakdown Voltage'"
(IC = 10 mAde, IS = 0)
Collector-Base SreaJ
'"
u:
w

1"-

~-

~ 6.0
=>

100.A

'"u:

/

4.0

'"~

2.0

i'-

"

/
i'

5
'"
'"

i

4.0

~-

10

5.0

2.0

10

50

20

r--..

100

10

20

50

100

RS. SOURCE RESISTANCE (k OHMS)

"

500

1.0k

2.0k

5.0k

10k

FIGURE 4 -- CAPACITANCES

FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT
10 0

~

VCE = 10 Vde

t; 240

50

g

TA

a

25°C

200

'"
i;

V

".-

;: 160

........

/'

>'-

--

.....-

40

-'

0

'\.

/'"

~
~ 120
I
z
~ 80

~

200

f. FREQUENCY (Hz)

'" 280

g:

"

~ Ic lIon iii iil~
o

-0.5

0.2

r--.

2. 0

o
0.1

I"\..

w

V
./

/

.

IC = 1.0mA.Rs = 300 n

VCE = 1.0 Vde

-

Cob
TJ - 2S"C

........

0
Ceb

~

.......
'\..

2.0

=>

'"
.f

0
2.0

5.0

10

50

20

100

1.0
0.1

200

1.0

0.5

0.2

IC. COLLECTOR CURRENT (mAde)

VCC -30Yt,

500
300
200

"f!
;;; 100

'>="

~

"

~td @VaE(oH) = 5.0 V

-

0

30

50

100

_s.:LJ° foVin '" -9.7 Vdc

lin'" 50 Ohms
Pulse Width = 1.0.,
tr < 2.0 AS

r-;;
200

300

50

20

100

-30 Vde

~--+--+ SCOPE
1.0.F

~ t-....
20

10

1.0 k

r-....

I.::::...

20
0
10

+3.8 Vde

Ic/fa - 1~.;:E
lal -la2.;;TJ = 25°C

tf

0

5.0

FIGURE 6 - SWITCHING TIME TEST CIRCUIT

FIGURE 5 - SWITCHING TIMES

1000

2.0

VR. REVERSE VOLTAGE (VOLTS)

500

1000

IC. COLLECTOR CURRENT (rnA)

906

Ra = 100

I .

~~ ,Cs < 12 pF
lt

+

___ I

-=
*T olal shunt capacitance of test jig, connectors, and oscilloscope.

MPS4354, MPS4355, MPS4356 (continued)

TYPICAL DC CHARACTERISTICS
DC CURRENT GAIN
FIGURE 7 - MPS4354. MPS4356

1000
500
z
;;: 100

-

'"....z

--

.-

TJ=1150C

r-

--

Ii'""

-

15'C

~ 10 0

f--

l-

-

=>

u
~

50

-55°C

10

-

........

10
0.1

0.5

0.1

-

-

-

I

I

I I
5.0

1.0

10

"'t~

VCE=10V
VCE = 1.0 V

~t--

1--1 II

10

10

50

500

100

100

1000

lC. COLLECTOR CURRENT ImAI

FIGURE 8 - MPS4355

1000

-

500
z

~
....

g

TJ - 115°C

_ 100

-

c

~

-

r-

r-

l-

f--

-I-

-

---

-!'"
r-

..........

~-

-55'C

B

u

- 1--

15°C _

::::-::::- --

200

-~

~~

50
-

-

-

10
0.1

0.1

0.5

~

Lm=1.0V

I

1.0

10

'" ["':~

VCE=10V

10

5.0

10

10

100

50

100

500

1000

IC. COLLECTOR CURRENT ImAI

FIGURE 9 - "ON" VOL TAGES

1.0

O. S

l! c~
2:

0.6

'"
~
o

II IIII
II IIII

-::::-

-V~E(SH!c~~I_llo

-

'- VSE(,nl

-

w

FIGURE 10 - DC SAFE -OPERATING AREA

1.0

....-:

0: 0.5

'"5
~

~ ~~E = 1.0 V
"

O. 1

8

~

VCE(sat)@ ICIIS = 10
5.0

10

10

50

100

100

500

1000

IC. COLLECTOR CURRENT ImAI

"I

I

DI.

'" "-

"-

TC 15°C

- - - THERMAL LIMITS
BONDING WIRE LIMIT
- - - SECOND SREAKDOWN LIMIT

,

I- - - 0.01

o
2.0

T

~

::l 0.05

i

I

I,

"-

TA = 15'C

o

0.4

1.0

0.2

=>
u
a:: 0.1

>
>'
~

"

....

0.0 1
1.0

1Jp~~354. ~~~m~ r--- ~r-:
1.0

5.0

10

20

50

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

907

100

MPS5172 (SILICON)

NPN SILICON
AMPLIFIER TRANSISTOR

NPN SILICON ANNULAR TRANSISTOR

· .. designed for general-purpose,low·level amplifier applications.

•

High DC Current Gain hFE = 100 - 500@ IC = 10 mAdc

•

Low Collector-Emitter Saturation Voltag&VCE(sat) = 0.25 Vdc (Max) @ Ie = 10 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

25

Vdc

Collector-Base Voltage

VCB

25

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

100

mAde

Total Power Dissipation @ T A"" 2SoC
Derate above 2SoC

Po

350
2.81

mW
mW/oC

Total Power Dissipation @ T C :: 25°C
Derate above 25°C

Po

1.0
B.O

Watt
mW/oC

Coliector·Emitter Voltage

Collector Current - Continuous

Operating and Storage Junction

TJ, T stg

-55 to +150

Temperature Range

SEATlNG.J~
PLANE

Symbol

Max

Unit

Thermal Resistance, Junction to
Ambient

R8JA

357

°CIW

D

Th,ermal Resistance, Junction to

R8JC

e

.£.
125

K

STYLE 2
PIN 1. EMITIER
2. BASE
3. COLLECTOR

DIM
A
B

°C/W

Case

}~

°c

THERMAL CHARACTERISTICS
Characteristics

,
~

K
L
N

P
Q

R
S

MILLIMETERS
MI
MAX

4.450
~lBO

4.320
0.407
0.407

5. 00
4.190
5.330
0.533
0.482

INCHES
MIN
MAX
U.175
0.205
0.1 5
O.lli.

0.170
0.016

0.210
0.021
.1

0.045

-

0.055
0.050

O.OBO

0.105
0.105

~.700

1.150
6.350
3.430
2.410
2.030

1.390
1.270

-

2.670
2.670

0.250
0.135
0.095

CASE 29'()2
TO-92

908

-

-

MPS5172 (continued)

ELECTRICAL CHARACTERISTICS (T A

~

25°C unless otherwise noted)

Characteristic

Syinbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage
(lc ~ 10 mAde, IB ~ 0)

BVCEO

25

-

-

Vde

ICES

-

-

100

nAde

-

-

100

nAde

-

10

"Ade

lEBO

-

-

100

nAde

hFE

100

-

500

-

VCE(sati

-

-

0.25

Vde

Base-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)

VBElsati

-

0.75

-

Vde

Base-Emitter On Voltage
(lC =10 mAde, VCE = 10 Vde)

VBE(on)

0,5

-

1.2

Vde

fT

-

120

-

MHz

Ceb

1.6

-

10

pF

hfe

100

-

750

-

OFF CHARACTERISTICS

Collector Cutoff Current
(VCE ~ 25 Vde, VBe = 0)
Collector Cutoff Current
(VCB = 25 Vde, IE = 0)
(VCB = 25 Vde, IE = 0, TA

ICBO

= 100o C)

Emitter Cutoff Current
IVBE = 5.0 Vde, IC = 0)
ON CHARACTERISTICS
OC Current Gain (11
IIC = 10 mAde, Vce. = 10 Vde)
Collector·Emitter Saturation Voltage

IIc

= 10 mAde, Ie = 1.0 mAde)

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
IIc =' 2.0 mAde, VCE = 5.0 Vde}
Collector-Base Capacitance
(Vce = 0, Ie = 0, f = 1.0 MHz)
Small-Signal Current Gain
(lc = 10 mAde, VCE = 10 Vde, f

= 1.0 kHz)

11) Pulse Test: Pulse Width ';;;300 "S, Outy Cycle ';;;2.0%.

909

MPS6507 (SILICON)

NPN SILICON
VHF/UHF AMPLIFIER
TRANSISTOR

NPN SILICON ANNULAR VHF/UHF
AMPLIFIER TRANSISTOR

... designed for use in VHF/UHF amplifier applications.
•

High Collector Emitter Breakdown Voltage BVCEO = 20 Vdc (Min) @ IC = 1.0 mAdc

•

High Current·Gain-Bandwidth ProductfT = 800 MHz (Typ) @ IC = 10 mAdc

•

Low Output Capacitance Cob = 1.25 pF (Typ) @ VCB

= 10 Vdc

r
MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage

Value

Unit

VeEO

20

Vdc

ColiectorMBase Voltage

Vee

30

Vdc

Emitter-Base Voltage

VEe

3.0

Vdc

Ie

100

mAde

Po

350
2.e

mW
mW/oC

Po

1.0
8.0

Watt
mW/oC

TJ,T stg

-55 to +150

°c

Collector Current - Continuous
Total Power DiSSipation @TA - 2SoC

Derate Above 2SoC
Total Power Dlsslpatlon@Tc

=

25°C

Derate Above 2SoC
Operating and Storage Junction
Temperature Range

Characteristic

Thermal Resistance. Junction to Case

Symbol

Max

Unit

R8JA(1)

357

R8JC

125

°cm
°cm

(11 A6JA is measured with the device soldered into a typical printed circuit board.

1

SEATlNG4Dac
PLANE
. .
K
~

°-j!I-'-I-!-L

::::jR~

PIN

1~'.l.'
r--1
a

STYLE 1:

1.
1.
3.

EMITTER
BASE
COLLECTOR

--I

s

L
N

1.150

P

6.350
3.430
2.410
2.030

R
S

1.390
1.270
2.670
2.670

0.045
0.250
0.135
0.095

O.OBO

CASE 29-02
TO·92

910

B

S

INCHES
ETERS
MAX MIN
MAX
O. 05
.200 0.17
.1
.165
4.19
0.210
5.330 0.170
0.533 0.016
0.021
.1

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient

A

0.055
0.050
0.105
0.105

MPS6507 (continued)

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Min

Typ

Max

Unit

BVCEO

20

-

-

Vde

BVCBO

30

-

-

Vde

BVEBO

3.0

-

-

Vde

-

-

50

-

1.0

nAde
I'Ade

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

(I C: 1.0 mAde, I B : 0)
Collector-Base Breakdown Voltage

IIC: lOOI'Ade,IE: 0)
Emitter-Base Breakdown Voltage

(IE: 100 I'Ade, IC: 0)
Collector Cutoff Current

ICBO

(VCB: 15 Vde, IE: 0)
(Vce: 15 Vde,IE: 0, TA: SOoC)
ON CHARACTERISTICS
DC Current Gain (1)
(lC: 2.0 mAde, VCE: 10 Vde)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC: 10 mAde, VCE: 10 Vde, I: 100 MHz)

IT

700

800

-

MHz

Output Capacitance
(VCB: 10 Vde, IE : 0, I: 100 kHz)

Cob

-

1.25

2.5

pF

Small-Signal Current Gain

hie

20

-

-

-

IIC: 2.0 mAde, VCE: 10 Vde, I: 44 MHz)
(1) Pulse Test: Pulse Width';;; 300 I'S, Duty Cycle';;; 2.0%.

..I

911

MPS6511

(SILICON)

NPN SILICON
VHF/UHF AMPLIFIER
TRANSISTOR

NPN SILICON ANNULAR VHF/UHF
AMPLIFIER TRANSISTOR

· .. designed for use in VHF/UHF amplifier applications.
•

High Collector Emitter Breakdown Voltage BVCEO = 20 Vdc (Min) @ IC = 0.5 mAdc

•

Low Output Capacitance Cob 1.25 pF (Typ) @ VCB

=

=10 Vdc

MAXIMUM RATINGS
Symbol

Valul

Unit

Collector-Emitter Voltage

VCEO

20

Vdc

Collector-Emitter Voltage

VCES

30

Vdc

VEe

3.0

Vdc

'C

100

mAde

Total Power Dissipation @ T A" 2S0C
Derate Above 2SoC

Po

350
2.8

mW
mW/oC

Total Power Dissipation@Tc "" 25°C

Po

1.0
8.0

Watt

mWf>C

TJ.Tstg

-55 to +150

°c

Rating

Emitter-Base Voltage
Collector Current - Continuous

Derate Above 2SoC
Operating and StorsSJ! Junction
Temperature Range

D

STYLE 2:
PIN 1. EMITTER
2. BASE

3.

~

<0,,'"'' ~---!

s=rt
s

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, JUnction to Ambient

Thermal Resistance, Junction to Case

Symbol

Max

Unit

R9JA(1)

357

°CIW

R9JC

125

°CIW

(1) R8JA is measured with the device soldered into a typical printed circuit board.

r

fL!!Q

0.533
L

1.150

P

8.350
3.430
2.410
2030

1.390

INCHES
MIN
MAX
0.175
0.25
.1
.1
0.210
0.170
0.016
0.021
.1

0.045

1.

Q
R

S

2670
2.670

0.250
0.1 5
0.09
0.080

CASE 29.02
TQ·92

912

0.055
0.050
0.105
0.105

MPS6511 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted.1

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC = 0.5 mAde, IB = 01

BVCEO

20

-

-

Vde

Colleetor·Emitter Breekdown Voltage (1)
(lC = 100 "Ade, VEB = 01

BVCES

30

-

-

Vde

ICBO

-

-

50

Characteristic

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB= 15Vde,Ie = 0)

ON CHARACTERISTICS
DC Current Gain (1)
!lC= 10mAde, VCE

= 10Vdc)

DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 10 Vdc, Ie

= 0, f = 100 kHz)

FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain
(lC = 10 mAde, VCB = 12 Vde, f = 45 MHz)

(11 Pulse Te.t: Pulse Width ';;300"., Duty Cvcle ';;2.0%.

913

nAde

MPS6512 thru MPS6515 NPN (SILICON)
MPS6516 thru MPS6519 PNP (SILICON)

SILICON
COMPLEMENTARY
AMPLIFIER
TRANSISTORS

SILICON ANNULAR TRANSISTORS
· •. designed for general·purpose amplifier applications and for
complementary circuitry.

•

Narrow DC Current Gain Ranges - 2:1

•

Complementary Types for Each Gain Range

•

Low Noise Figure - 2.0 dB Typ

•

Low Output Capacitance - 3.5 pF Max - NPN
4.0 pF Max - PNP

MAXIMUM RATINGS ITA = 25°C unless otherwise noted. I

Collector~Emitter

Rating

Symbol

Voltage

VCEO

MPS6512. MPS6513
MPS6514. MPS6515
MPS6516 thru MPS6518
MPS6519
Collector-Base Voltage

PNP

Unit

Vde
30
25

-

-

-

40
25

40

-

Vde

Vce

MPS6512 thru MPS6515
MPS6516 thru MPS6518
MPS6519
Emitter-Base Voltage

NPN

-

40
25

VEe

4.0

4.0

Vde

Collector Current - Continuous

IC

100

100

mAde

Total Power Dissipation @ T A': 25°C

Po

350
2.8

350
2.8

mW
mWloC

Po

1.0
8.0

1.0
8.0

Watt
mWloC

Derate above 25°C
Total Power Dissipation @TC= 25°C
Derate above 2SoC

Operating Junction Temperature Range

-5510 +150

TJ

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to case

Symbol

Max

Unit

RSJA

357

°CIW

RSJC

125

°CIW

STYLE 1:
PIN 1.

2.
3.

DIM
A
e
C

0
F
L
N
P

a

R
S

MILLIMETERS
MIN
MAX

4.450
.1
4.320
0.407
0.407

5.200
4.1
5.330
0.533
0.48,

1.150

1.390
1.210

6.350
3.430
2.410
2.030

2.670
2.670

INCHES
MIN
MAX
0.17.
O. 05
0.1
.1
0.170
0.210
0.021
0.016
0.016
0.019

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO-92

914

0.055
0.050
0.105
0.105

MPS6512 thru MPS6515/MPS6516 thru MPS6519

(continued)

MPS6512 thru MPS6515 (NPN)
ELECTRICAL CHARACTERISTICS

(T.=

25·Cun,... ot,.",;,.notod)

Characteristic

Symbol

I Min

Typ

Unit

Max

OFF CHARACTERISTICS
Vde

Collector-Emitter Breakdown Voltage
(~= 0.5 mAde,
= 0)

In

30
25

MPS6512, MPS6513

MPS6514, MPS6515

Vde

Emitter-Base Breakdown Voltage
= 10.,Ado, IC = 0)

('E

Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)
(VCB = 30 Vde, IE = 0, TA

4.0
0.05

=60"C)

1.0

ON CHARACTERISTICS
DC Current Gain

(IC

=2. 0 mAde,

VCE

= 10 Vde)

hFE

MPS6515

50
90
150
250

MPS6512
MPS6513
MPS6514
MPS6515

30
60
90
150

MPS6512
MPS6513

MPS65 14
(IC

= 100 mAde,

VCE

= 10 Vde)(11

Collector-Emitter SaturatIon Voltage
(Ie"" 50 mAde, IB '" 5.0 mAde)

VCE(sat)

--Vde

-

-

-

100
180
300
500

-

0.5

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(~ = 2.0 mAde, VCE = 10 Vde)
(~

= 10 mAde,

MPS6512. MPS6513
MPS6514. MPS6515

= 10 Vde)

VCll

IT

330
480

MPS6512. MPS6513
MPS6514, MPS6515

Output Capacitance
(VeB = 10 Vde,

Cob

Noise Figure
(~ = 10.,Adc, VCE = 5.0 Vde, HS = 10 k ohms,
Power Bandwidth = 15.1 kHz, 3.0 dB points @

NF

'E =0, I = 100 kHz)

MHz

250
390

pF

3.5
da
2.0

10 Hz and 10 kHz)

• Pulse Test: Pulse Width;; 30 ps, Duty Cycle;:i 2. 0%.

MPS6516 thru MPS6519 (PNP)
ELECTRICAL CHARACTERISTICS

(T.

= 25'C "',,,ot'O',,,, oot"')

Symbol

Characteristic

Min

Typ

Max

40
25

--

-

4.0

-

-

-

0.05

-

0.05

100
IBO
300
500

30
60
90
150

--

-

VCE(sat)

-

-

0.5

IT

--

200
340

-

270
420

-

-

-

4.0

-

2.0

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc = 0.5 mAde, Ia = 01

MPS6516 thru MPS6518

BV CEO

MPS6519
Emitter-Base Breakdown Voltage
= 10 IlAde, IC = 0)

BV EBO

('E

Collector Cutoff Current
(Vca = 30 Vde, IE = 0)
(Vca = 20 Vde, IE = 0)

(Vca
(Vca

'E =0,
'E = 0,

= 30 Vdc,
= 20 Vde,

MPS6516 thru MPS6518

ICBO

MPS6519
TA
TA

= 60"C)
= 60"C)

MPS6M6 thru MPS6518

MPS6519

-

Vde

Vde
IlAde

1.0
1.0

ON CHARACTERISTICS
DC Current Gain

(IC

= 2.0 mAde,

VCE

= 10 Vde)

(IC

= 100 mAde,

VCE

= 10 Vde)(11

MPS6516
MPS6517
MPS6518
MPS6519

hFE

MPS6516
MPS6517
MPS6518

MPS6519
Collector-Emitter Saturation Voltage
(IC = 50 mAde, Ia = 5.0 mAde)

50
90
ISO
250

-

---

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwldth Product
(IC • 2.0 mAde, VCE = 10 Vde)

(IC

= 10 mAde,

VCE

= 10 Vde)

MPS6516, MPS6517
MPS651B, MPS6519
MPS6516, MPS6517
MPS65 18, MPS6519

Output Capacitance
(Vca = 10 Vde,

Cob

'E = 0, I = 100 kHzI

Noise Figure
(IC

= 10 .,Ade,

VCE

Power Bandwidth

==

= 5.0 Vdc,

NF

lis = 10 k ohms,

15.7 kHz, S.O dB points @

10 Hz and 10 kHz)
{1) Pulse Test: Pulse Width:; SO lIS, Duty Cycle ~ 2.0%.

915

MHz

pF

dB

MPS6520, MPS6521NPN (SILl.CON)
MPS6522, MPS6523 PNP

SILICON COMPLEMENTARY
AMPLIFIER TRANSISTORS
SILICON ANNULAR TRANSISTORS

· .. designed for general·purpose amplifier applications and for com·
plementary circuitry.

• High DC Current Gain hFE = 150 (Min) @IC= 100llAdc - MPS6521. MPS6523
•

Low Noise Figure NF = 1.8 d8 (Typ) @ IC = 10/lAdc

•

Low Output Capacitance Cob = 3.5 pF (Max) @VCB = 10 Vdc

J

!

-7
L1

~

~Fl

SEATING4
PLANE

MAXIMUM RATING
Rating

Symbol

Collector-Emitter Voltage

PNP

Collector-Base Voltage

25
Vdc

VCB

40
VEB

Collector Current - Continuous
@

T A =2S oC

IC

Po

Derate above 2SoC
Total Power Dissipation @ T C "" 25°C
Derate above 2SoC
Operating Junction Temperature Range

Po
TJ

4.0
100
350

2.81
1.0
8.0
150

25
4.0
100
350
2.81
1.0
8.0
150

Vdc
mAde
mW
mWt"C
Wan
mW/oC
°c

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Ambient
(Printed Circuit Board Mounting)

ReJA

357

°C/W

Thermal Resistance, Junction to Case

ReJC

125

°ctw

Characteristic

D~Pp~

25

MPS6520.MPS6521
MPS6522.MPS6523
Emitter-Base Voltage

Unit

Vdc

VCEO

MPS6520.MPS6521
MPS6522.MPS6523

Total Power Dissipation

NPN

.

STYLE 1:
PIN 1. EMITTER
2. BASE

1°r J

w
1 ,

,

......

3. COLLECTOR

--I

S

S

B

INCHES

MILLIMETERS

DIM

MIN

MAX

MIN

MAX

A

4.450
3.16U
4.320
0.407

5.200 0.175
4.190 10.125
5.330 0.170
0.533 0.016
0.482 I U.UI6
I 0.500
1.390 0.045
1.270
0.250

0.205
0.165
0.210
0.021

B

C
D
K

L
N
p

o
R
S

u.4O

12.700
1.150
6.350
3.430
2.410
2.030

U.019

0.055
0.050

0.135

2.670
2.670

0.095
O.OBO

CASE 29'()2

TO·92

916

=r-r

0.105
0.105

MPS6520, MPS6521, MPS6522, MPS6523 (continued)

MPS652~MPS6521

(NPN)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage
(IC = 0.5 mAde, IB = 0)

BVCEO

25

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10/LAde, IC = 0)

BVESO

4.0

-

-

Vde

-

-

0.05
1.0

400
600

-

-

0.5

390
480

-

-

Cob

-

-

3.5

pF

NF

-

1.B

3.0

dB

Characteristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCB· 30 Vde, IE = 0)
(VCB = 30 Vde, IE = 0, T A = 6oDC)

ICBO

-

/LAde

-

ON CHARACTERISTICS
DC Current uain
(lC = l00/LAde, VCE = 10 Vde)
(lC = 2.0 mAde, VCE = 10 Vde)

nFE
100
150
200

MPS6520
MPS6521
MPS6520
MPS6521

300

Collector-Emitter Saturation Voltage
(lC = 50 mAde, IB = 5.0 mAde)

VCE(satl

-

Vde

DYNAMIC CHARACTERISTICS

Current-Gain Bandwidth Product
(lC = 2.0 mAde, VCE = 10 Vde)

I'f

(Ie = 10 mAde, VCE· 10 Vde)
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
Noise Figure
(le= 10/LAde, VCE= 5.0Vde, RS= 10k Ohms,
Power Bandwidth = 15.7 kHz, 3.0 dB points@>
10 Hz and 10 kHz)

MHz

MPS6522. MPS6523 (PNP)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage
(lC· 0.5 mAde, IB = 0)

BVCEO

25

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = lOjlAde, IC = 0)

BVEBO

4.0

Charactaristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 20 Vde, IE = 0)
(VCB = 20 Vde, IE = 0, TA = 6oDC)

ICBO

-

Vde
/LAde

-

0.05
1.0

ON CHARACTERISTICS
DC Current Gain
(lC= l00/LAde, VCE = 10Vde)
(lC = 2.0 mAde, VCE • 10 Vdc)

hFE
MPS6522
MPS6523
MPS6522
MPS6523

-

-

-

400
600

-

-

0.5

-

340
420

--

100
150
200
300

Collector-Emitter Saturation Voltage
(lC = 50 mAde, IB = 5.0 mAde)

VCE(satl

DYNAMIC CHARACTERISTICS
Current--Gain BandwIdth Product _.
(lC = 2.0 mAde, VCE· 10 Vde)
(lC = 10 mAde, VCE = 10 Vdc)

t-r

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)

-

-

MHz

Cob

Noise Figure
(lC = 10jlAdc, VCE = 5.0 Vdc, RS = 10 k ohms,
Power Bandwidth = 15.7 kHz, 3.0dS points@>

NF

-

1.B

c'

10 Hz and 10 kHz)

917

Vde

3.5

pF

3.0

dB

MPS6530
MPS6531
MPS6532
MPS6533
MPS6534
MPS6535

NPN (SILICON)

PNP (SILICON)

NPN/PNP SILICON ANNULAR TRANSISTORS
NPN/PNP SILICON
COMPLEMENTARY
AMPLIFIER
TRANSISTORS

· .. designed for use in complementary amplifier applications.

•

Collector-Emitter Breakdown @ IC = 10 mAde
BVCEO = 40 Vdc (Min) MPS6530,6531,6533,6534
30 Vdc (Min) MPS6532,6535

•

DC Current Gain Specified - 10 mAdc to 500 mAdc

•

Current-Gain-Bandwidth Product @ IC = 50 mAde
fT = 390 MHz (Typ) NPN
260 MHz (Typ) PNP

MAXIMUM RATINGS
Rating
Collector-Base Voltage

Symb
0.210
0.021

1.390
1.210

0.045

0.055
O. 50

-

2.610
2.610

0.250
0.135
0.095
0.080

*Indicates JEDEC Registered Data
(1) ROJA is measured with the device soldered into a typical printed circuit board.
CASE29.(J2

TO·92

928

-

-

-

0.105
0.105

MPS6544, MPS6545 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

I

Symbol

Min

Typ

Max

Unit

Coliector·Emitter Breakdown Voltage (1)
(tC = 1.0 mAde,lB = 0)

BVCEO

46

-

-

Vde

Coliector·Base Breakdown Voltage
(tC = IOI'Ade,lE = 0)

BVCBO

60

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

-

Vde

ICBO

-

-

500

nAde

hFE

20

100

-

-

Collector-Emitter Seturation Voltage
(I C = 30 mAde, I B = 3.0 mAde)

VCE(sat)

-

0.2

0.5

Vde

Base·Emittar On Voltage (1)
(lC = 10 mAde, VCE = 10 Vdc)

VBE(on)

-

0.7

0.95

Vde

Yo.

-

-

0.10

.mmhos

-

0.55
0.5

0.65
0.58

1.0

-

-

Characteristic

OFF CHARACTERISTICS

(IE

= IOI'Ade,lc = 0)

Collector Cutoff Current
(VCB

= 35 Vde, IE = 0)

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 30 mAde, VCE

= 10 Vde)

DYNAMIC CHARACTERISTICS

Output Admittance
(IC = 10 mAde, VCE

= 10 Vde, f = 45 MHz)

Common-Emitter Reverse Transfer Capacitance
(VCB

= 10 Vde, IE = 0, f = 100 kHz)

Output Voltage
(Vin (RMS) = 15 mVde, f

pF

Cre

MPS6544
MPS6545
V out

= 46 MHz)

(1) Pulse Test: Pulse Width ';;3001'5, Duty Cyel. ';;2.0%.

FIGURE 1 - OUTPUT VOLTAGE TEST CIRCUIT
+25 Vdc

1N60

r------.~~--._~~.~~~~~
8.2 k

12

4.7
5.1 k

":'"

All Capacitors in Pica-Farads Unless
Otherwise Shown
T1 - Primary: 7 Turns #26 Wirs,

1/4" I.D., Tapped 5 Turns
From Collector.
Secondary: 10 Turns #26 Wire, 1/4"1.0.
Core: ARNOLD Iron Powder, Part No. A1-10
For MPS6545 Shield is Connected to Ground.

929

Vde

MPS6546 (SILICON)

NPN SILICON
VHF MIXER TRANSISTOR

NPN SILICON ANNULAR VHF MIXER TRANSISTOR

... designed lor use in VHF mixer applications.
•

Collector Emitter Breakdown VoltageBVCEO = 25 Vdc (Min) @ IC = 1.0 mAde

•

High Current Gain-Bandwidth Product
IT = 1000 MHz (Typ) @ IC = 10 mAde

•

Low Feedback Capacitance Cre = 0.4 pF (Typ) @ VCB

= 10 Vdc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

25

Vdc

Collector-Base Voltage

VCB

35

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

IC

50

mAde'

Po

350
2.8

mW
mW/oC

Po

1.0
8.0

Watt
mW/oC

-55 to +150

°c

Rating
Collector-Emitter Voltage

Collector Current - Continuous
Total Power Dissipation @ T A::; 2SoC

Derate Above 2SoC
Total Power Dissipation@Tc '" 2SoC
Derate Above 2SoC

TJ,T stg

Operating and Storage Junction

STYLE 2
PIN 1

2

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

RaJA!I)

357

°CIW

RaJC

125

°C/W

--l

S

~
_1 I

MILLIMETERS
MAX
MIN

4.450

c

4.320
0.407

L
N

1.150

P

6.350
3.430
2.410
2.030

o

R~

~~~~TER 13t,:
~r ~

3. COLLECTOR

DIM
A

Temperature Range

r'-f-!.L

o

5. 0
4.1
5.330
0.533
.4

Thermal Resistance, Junction to Ambient
Thermal Resistance. Junction to Case
(11 R8JA

IS

measured with the device soldered into

8

typical printed circuit board.

Q
R

S

.390
1.27
2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TQ·92

930

0.055
0.050
0.105
0.105

MPS6546 (continued)

ELECTRICAL CHARACTERISTICS (TA

250 C unless otherwise noted.)

=

I

Characteristic

Symbol

Min

Typ

Max

Unit

BVCEO

25

-

-

Vde

BVCBO

35

-

-

Vde

BVEBO

3.0

-

-

Vde

ICBO

-

-

100

nAde

lEBO

-

-

1.0

!'Ade

hFE

20

60

-

-

VCE(sat)

-

0.15

0.35

Vde

VBE(on)

-

0.7

0.95

Vde

IT

600

1000

-

MHz

Cre

-

0.4

0.45

pF

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

(IC

= 1.0 mAde,

IB

= 0)

Collector-Base Breakdown Voltage

(lC

= 10 "Ade, IE = 0)

Emitter-Base Breakdown Voltage
(IE = 100 "Ade, IC = 0)
Collector Cutoff Current

(VCB

= 25 Vde, IE = 0)

Emitter Cutoff Current

(VBE

= 2.0 Vde, IC = 0)

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 2.0 mAde, VCE

= 5.0 Vde)

Collector-Emitter Saturation Voltage

(lC

= 10 mAde,

IB

= 1.0 mAde)

Bas.·Emitter On Voltage (1)
(lC = 10 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(IC

= 2.0 mAde,

VCE

= 10 Vde, f = 100 MHz)

Common-Emitter Reverse Transfer Capacitance

(VCB

= 10 Vdc,

IE

= 0, I = 100 kHz)

FUNCTIONAL TEST
Power Output (Figure 1)
(VCE = 12.5 Vde, I = 118 MHz)

(11 Pulse Test: Pulse Width ';;300"s, Duty Cycle ';;2.0%.

FIGURE 1 - OSCILLATOR POWER OUTPUT
TEST CIRCUIT
2.0pF

15 of
1.0 k

3.0 k

L1 = 51/2 Turns *18 Wire
Winding Length 1/2"

5/16" I.D.

-Vee

931

MPS6547 (SILICON)

NPN SILICON
RF AMPLIFIER TRANSISTOR

NPN SILICON ANNULAR RF AMPLIFIER
TRANSISTOR

· .. designed for use in RF amplifier applications.
•

Coliector·Emitter Breakdown Voltage BVCEO = 25 Vdc (Min) @ IC = 1.0 mAdc

•

High·Current·Gain-Bandwidth Product fT = 1000 MHz (Typ) @ IC = 2.0 mAdc

•

Low Feedback Capacitance Cre = 0.3 pF (Typ) @ VCB = 10 Vdc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

25

Vde

Collector-Base Voltage

VCB

35

Vde

Emitter·Base Voltage

VEB

3.0

Vde

IC

50

mAde

PD·

350
2.\1

mW
mWt"C

Po

1.0
8.0

Watt
mW/oC

TJ,T stg

-55 to +150

°c

Rating
Collector-Emitter Voltage

Collector Current

Continuous

Total Power Dissipation @ T A "" 2SoC

Derate above 25°C
Total Power Dissipation@Tc"" 25°C

Derate above 2SoC
Operating and Storage Junction
Temperature Range

STYLE 1:

PIN 1. EMITTER
2. BASE
3. COLLECTOR

DIM
A

B

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case

C
Symbol

Max

Unit

R8JA(1)

357

°C/W

R8JC

125

°CIW

(1) ReJA is measured with the device soldered into a typical printed circuit board.

0
F
K

L
N

P

a
A

S

MILLIMETERS
MIN
MAX

4.450
3.180
4.320
0.407
0.407
!.700
1.150
6.350
3.430
2.410
2.030

5.200
4.190
5.330
0.533
u.4H2
1.390
1.270

2.670
2.670

INCHES
MIN
MAX

0.175
0.1 5
0.170
0.G16
U.UI6
I 0.500
0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO·92

932

0.205
0.165
0.210
0.021
0.019

-

0.055
0.050
0.105
0.105

MPS6547 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unle.. otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 0)

BVCEO

25

-

-

Vde

Collector-Base Breakdown Voltage
(lC· 10l'Ade,Ie = 0)

BVCBO

35

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

3.0

-

-

Vde

Collector Cutoff Current
(VCB = 25 Vde, Ie = 0)

ICBO

-

-

100

nAde

Emitter Cutoff Current

leBO

-

-

1.0

I'Ade

hFE

20

60

-

-

VCE(sat)

-

0.1

0.35

Vde

VBE(on)

-

0.7

0.95

Vde

Current-Gain-Bandwidth Product
(lC = 2.0 mAde, VCE = 10 Vde, I = 100 MHz)

IT

600

1000

-

MHz

Common-Emitter Reverse Transfer Capacitance

Cre

-

0.3

0.35

pF

Gpo

20

25

-

dB

Characteristic

OFF CHARACTERISTICS

(Ie = 100'~Ade, IC = 0)

(VBe = 2.0 Vde. IC = 0)
ON CHARACTERISTICS

DC Current Gain
(lC = 2.0 mAde, VCE = 5.0 Vde)

Collector-Emitter Saturation Voltage
IIC= 10 mAde,lB = 1.0 mAde)
eose-Emitter On Voltage (1)
IIC = 10 mAde, VCE = 10 Vde)
DVNAMIC CHARACTERISTICS

(VCB = 10 Vdc, IE = 0, f = 100 kHz)
Conversion Gain
(lC = 4.0 mAde, VCE = 10 Vde (Test Circuit Figure 1)
1= 100 MHz to 10.7 MHz)

(1) Pulse Test: Pul .. Width ';;300 I'S, Duty Cycle ';;2.0%.

56 kHz

108MHZ

RS

= 60 n
10 mV

L

5.6 pF

,,

,,

L2

,

H

O_OlI'F

25-280

-::- 1-30 pF

pF

-::-

I

118'7MHZ~

RS - 50 n

l0.7MHZ

RL=50n,

15 pF

BOOmV

L 1 ... 3 Turns #20 Wire,

10 Vdc

1/4" 1.0., Air Wound,
Base Tapped 1/2 Turn
From Ground.

L2 = 37 Turns #28 Wire,
Wound on 1/4" 1.0. Coil Form.

933

-::-

o .o1 1'F

Bandwidth ~ 500 kHz

MPS6548

(SILICON)

NPN SILICON
VHF/UHF OSCILLATOR
TRANSISTOR

NPN SILICON ANNULAR
VHF/UHF OSCILLATOR TRANSISTOR

· .. designed for use in VHF/UHF common·base oscillator applications.
•

High Coliector·Emitter Breakdown Voltage BVCEO = 25 Vdc (Min) @ IC = 1.0 mAde

•

High DC Current Gain hFE '= 125 (Typ) @ IC = 4.0 mAde

•

High Current·Gain-Bandwidth Product fT = 1500 MHz (Typ) @ IC = 4.0 mAde

•

Low Coliector·Base Capacitance Ccb= 0.5 pF (Typ)@ VCB = 10 Vdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

25

Vde

VCB

30

Vde

VEB

3.0

Vde

IC,

50

mAde

T A = 2Slc

Po

350
2.8

mW
mW/oC

= 2SoC

Po

1.0
8.0

mW/oC

-55 to +150

°c

Collector·Emitter Voltage
Coliector~Base

Voltage

Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation
Derate above 2SoC

@

Total Power Dissipation @TC
Derate above 2SoC

Operating and Storage Junction
Temperature Range

TJ,T stg

Watt
STYLE 2:
PIN 1. BASE
2. EMITTER

3. COLLECTOR

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

INCHES

Max

Unit

DIM
A

R6JA(I)

357

°C/W

C

R6JC

125

°C/W

Symbol

MIN
0.175

B

0.170
0.016
0.016

D

(1) R8JA is measured with the device soldered into a typical printed circuit board.

F

L
N
P
Q

R
S

1150

6,350
3.430
2.410
2.030

1.390
1.270
2.610
2.670

0045
0250
0135
0.095
0080

CASE 29-02
TO-92

. 934

MAX
0.205
0165
0.210
0.021
1

0055
0050
0.105
0.105

MPS6548 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

Symbol

Min

TVp

Max

Unit

Collector-Emitter Breakdown Voltage (I)
(lc = 1.0 mAde, IB = 0)

BVCEO

25

-

-

Vde

Coliector~Base

BVCBO

30

-

-

Vde

BVEBO

3.0

-

-

Vde

ICBO

-

-

100

nAde

lEBO

-

-

100

nAde

hFE

25

125

-

-

VCE(sat)

-

-

0.5

Vde

VBE(sat)

-

-

0.95

Vde

fT

650

1500

-

Ceb

-

0.5

0.7

rb'C e

-

-

9.0

Characteristic
OFF CHARACTERISTICS

(IC

Breakdown Voltage

= 100!,Ade, IE = 0)

Emitter-Base Breakdown Voltage

(IE

= 10!,Ade, IC = 0)

Collector Cutoff Current

(VCB

= 25 Vde, IE = 0)

Emitter Cutoff Current

(VBE

= 2.0 Vde, IC = 0)

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 4.0 mAde, VCE

= 10 Vde)

Collector-Emitter Saturation Voltage

(lC

= 4.0 mAde, IB = 0.4 mAde)

Base-Emitter Saturation Voltage

(lC

= 4.0 mAde, IB = 0.4 mAde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(IC

MHz

= 4.0 mAde, VCE = 10 Vde, f = 100 MHz)

Collector-Base Capacitance

(VCB

pF

= 10 Vde, IE = 0, f = 100 kHz)

Collector-Base Time Constant
(IE = 4.0 mAde, VCB = 10 Vde, f = 31.8 MHz)
(I) Pulse Test: Pulse Width <;;3ool's, Duty Cycle <;;2.0%.

935

ps

MPS6560 NPN
MPS6562 PNP

(SILICON)

SILICON ANNULAR AUDIO
TRANSISTORS .

NPN/PNP SILICON
AUDIO TRANSISTORS

... designed for complementary symmetry audio output applications.

• Excellent Gain Linearity From 10 mAde to 100 mAde
•

Low Collector· Emitter Saturation Voltage VCE(sat)'= 0.5 Vde (Max) @ IC = 500 mAde

r

MAXIMUM RATINGS
Rating
COllector-Emitter Voltage

Symbol

Value

Unit

VCEO

25

Vdc

Collector-Base Voltage

VCB

25

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

500

mAde

Collector-Current - Continuous

Total Device Dissipation

@

T A = 25°C

PD

Derate above 25°C
Total Device Dissipation @ T C = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

PD
TJ T st9

625
5.0

mW
mW/DC

1.5
12

mW/DC

Watts

-55to +150

DC

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Ambient

ReJAI1)

200

°C/mW

ReJC

83.3

°C/mW

Thermal Resistance. Junction to Case
(1) ROJA

IS

measured with the device soldered into a typical printed circuit board.

A

l

SEATlNG4~j
~

PLANE

K

--..l

D-jll-'-kL

=lR~

STYLE 1
PIN 1 EMITTER

2
3

BASE

......1

COLLECTOR

DIM
A
B
C
D
F

0

~

~

INCHES
MIN
MAX

5200
4.190
5330
0533
482

0175
0125
0170
0016
16

0205
.165
0210
0021
019

1390
1270

0.045

0055
0.050

1 .100

L
N

1150

P

6350
3430
2.410
2.030

0
R
S

2670
2.670

0.250
0.135
0.095
O.OBO

CASE 29·02
TO·92

936

B

-1sbr

MILLIMETERS
MIN
MAX

4.450
31BO
4320
o4{}7
o4{}7

r'

h-n\-j-

-

0.105
0105

MPS6560, MPS6562 (continued)

ELECTRICAL CHARACTERISTICS ITA = 250 C unless otherwise noted.)

I

I

Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage (1)
IIc=10mAde,IB=0)

BVCEO

-

25

Vde

Collector-Base Breakdown Voltage

BVCBO

-

25

Vde

BVEBO

5.0

-

Vde

ICEO

-

100

nAdc

ICBO

-

100

nAde

lEBO

-

100

nAde

35
50
50

200

VCEls.t)

-

0.5

Vde

VBElon)

-

1.2

Vdc

IT

60

-

MHz

Cob

-

30

.pF

Characteristic

OFF CHARACTERISTICS

IIC= 100~Ade, IE= 0)

Emitter-Base Breakdown Voltage
II E = 100 ~Adc"IC = 0)

Collector Cutoff Current
IVCE = 25 Vde, IB = 0)

Collector Cutoff Current
IVCB = 20 Vde, IE = 0)
Emitter Cutoff Current
IVEBloff) = 4.0 Vde, IC = 0)

ON CHARACTERISTICS 11)

DC Current Gain

-

hFE

!"IC = 10 mAde, VCE = 1.0 Vde)
IIc = 100 mAde, VCE = 1.0 Vde)
IIc = 500 mAde, VCE = 1.0 Vde)

Collector-Emitter Saturation Voltage

-

IIc = 500 mAde, IB = 50 mAde)

Base-Emitter On Voltage
IIc = 500 mAde, VCE = 1.0 Vdc)
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
IIc = 10 mAde, VCE = 10 Vde, f = 30 MHz)

Output Capacitance
(VCB = 10 Vde, IE = 0, I = 100 kHz)

(1) Pulse Test: Pulse Width ';;300 ~s, Duty Cycle ';;2.0%

TYPICAL CHARACTERISTICS
MPS6562PNP

MPS6560 NPN
FIGURE 1 - COLLECTOR SATURATION REGION
$1. a

:;

'"

~

~ O. 8
<{

:;

1111
1111

~Cl~'~A 25~A

1111
1111

\

Ilrid~'A_

II

~ o.6

~AI

t'.i a

>

0.05

~
w

U~mA- r-

"'~

o

~

~
I\.

\

-

0.1

I'-.

0.2

I

IIII

I 1111

O.8

III TJ = 250

I

III

I

1

III

I III

Ie =lOmA 25mA

l00mA 250 mA 50OmA

o. 6

:::

\

0.4

o

o

'\

o

8~ o. 2

:;

LI III

25b

o

:::
~

v; 1.

'1IITJ=250C

.......
0.5
1.0
2.0
5.0
IB, BASE CURRENT ImA)

-----

10

'-

20

0.4

"'
~-' o.

2

8

I'....

t'.i a

>

0.05

50

937

-

1\

0.1

0.2

I--I-

0.5
1.0
2.0
5.0
IB, BASE CURRENT (mA)

10

r20

50

MPS6560, MPS6562 (continued)

TYPICAL CHARACTERISTICS (continued)
MPS6562 PNP

MPS6560 NPN
FIGURE 2 - DC CURRENT GAIN

40 0

400
VCE = 1.0 V

---

~ 300
:::;

«

~ 200

~
z'

;;'

"'I-

~ 10 0
:::>

'"
'"'"

;

TJ = 125°C

~J

I-

-

VCE = 1.0 V

'"~ 300

TJ = moc

I

:::;

.«

"

25°C

'z" 200

-.........;

I

-J50~

Z

~

\

~

Ii:

~ 100

a
'"
'"~

ao
60

-

60

-

"i''-

tt

-

a0

-..

I
~501c

~

40

40

O.S

1.0

2.0

5.0
10
20
SO
100
IC. COLLECTOR CURRENT ImAI

200

0.5

500

1.0

2.0

5.0
10
10
50
IC. COLLECTOR CURRENT ImA)

100

200

500

FIGURE 3 - "ON" VOLTAGE

1.0

TJ = 25°C

II I

o. a

~

VSElsatl@ Iclia = 10

~

'" o.6
:::
"'"'
~
~

--

11,1

VSElonl@VCE = 1.0 V

1.0

........ ~

TJ=250C! IIII1

11111

o.a

~

~ 0.6

........

-

VB Elsa') @IClls- 10

I--

VBElonl @VCE = 1.0 V

w

"'~

0.4

o 0.4

>

>-

>-

-

o.2
VCElsa'l@ ICIIS = 10

o
0.5

1.0

2.0

5.0
10
20
50
100
IC. COLLECTOR CURRENT ImAI

o.1

-

./
VCElsa'1 @ICIiS = 10

o

100

0.5

500

1.0

2.0

5.0

10

20

50

100

./
200

500

IC. COLLECTOR CURRENT ImA)

FIGURE 4 - BASE·EMITTER TEMPERATURE
COEFFICIENT

-o.S

'0. a
~

0

~-(.)-1 .2

2

w

.. e..

4
~~-1.
W Z

V

I-W

./

6

0

--

LIII

1.0

I

2.0

~~

V

........

8VS for VBE

~ ~-1. 6

w ....

-55 0 C to 25 0 C
8

0.5

:;>

I

4

-2. 2

-1.0

:::>

~

C-

IIIII

5.0
10
20
50
IC. COLLECTOR CURRENT ImAI

~

IIII

100

200

8VS for VSE

IIII

1.0

2.0

5.0

10

20

50

IIII
11111

IC. COLLECTOR CURRENT ImA)

938

V
;..--- .

./

250C to 1250C

-2. 0

-2. 2
0.5

500

-1550Cto2Ek

(.)-1.8

.,;

250C to 1250

100

I

200

I

500

MPS6560, MPS6562 (continued)

TYPICAL CHARACTERISTICS
MPS6562 PNP

MPS6560 NPN

-

TJ = 25 0C
t= 30 MHz
VCE = 10V

.;

FIGURE 5 - CURRENT·GAIN - BANDWIDTH PRODUCT

"

~ 300
~

TJ}250~

I
t =30 MHz
VCE =10 V

~

~ 200

\

""
"~

/

~

z

V
/

.:, 70

i

/

;;:

II

'-?

20

5.0
10
20
50
100
IC, COLLECTOR CURRENT (mA)

200

.t:'

500

50

300.5

10

2.0

5.0
10
20
50
Ic, COLLECTOR CURRENT (mA)

FIGURE 6 - CAPACITANCE
70

t

30
20

r-

~

~ 10

13

-

;i:
~ 7.0
5.0

l

25 C

0

f-

f-.

....

I'--~

-......

--r-

Cob

100

.1

L

+J = 256C

'"

....

0.5

0.7

1.0

2.0

3.0

5.0 7.0

10

20

0.2

VR, REVERSE VOLTAGE (VOLTS)

939

0.3

0.5

1

~

7.0
0.3

500

1

10

..... r-.,

200

i'-- "":ib

~

0

r-...

u'

=

C,b

-......:..

"'z

u

3.0
0.2

\

100

;;\

1.0

"- \

~
~

0.7 1.0
2.0 3.0
5.0 7.0
VR, REVERSE VOLTAGE (VOLTS)

10

20

MPS6561 NPN (SILICON)
MPS6S63 PNP

SILICON ANNULAR AUDIO
TRANSISTORS

NPN/PNP SI LICON
AUDIO TRANSISTORS

... designed for complementary symmetry audio output applications.

• Excellent Gain Linearity From 10 mAde to 100 mAde
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 350 mAde

MAXIMUM RATINGS
Symbol

Value

Unit

VceOlsus}

20

Vdc

Collector-Base Voltage

Vce

25

Vdc

Emitter-Base Voltage

VEe

5.0

Vdc

Collector-Current - Continuous

IC

600

mAde

Total Povver Dissipation @TA = 25°C
Derate above 2SoC

PD

625
5.0

mW
mW/oC

T C = 2SoC

PD

1.5
12.0

Watt
mW/oC

TJ,T stg

-55 to +150

°c

Rating

Collector-Emitter Voltage

Total Power Dissipation
Derate above 2SoC

@

Operating and Storage JunctIon
Temperature Range

STYLE 1
PIN 1

1
3

DIM
A

THERMAL CHARACTERISTICS

C

Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Ambient

ROJAllI

200

°CIW

ROJC

83.3

Thermal ResIstance, Junction to Case

D

(1) RaJA is measured with the device soldered into a tYPical printed circuit board.

4450
3.18
4320
0407
40

+1
+
L

°CIW

MILLIMETERS
MIN
MAX

--*4J.....

1.150

INCHES
MIN
MAX

'.200
4.190
5.330
0.533
42

0175
15
0.170
0016
016

0.205
16
0.210
0.021
01

1390
1270

0.045

0055
0.050

-

2.670
2670

-

0.250
0135
0.095
0.080

CASE 29·02

TO·92

940

-

0.105
0.105

MPS6561, MPS6563 (continued)

ELECTRICAL CHARACTERISTICS ITA" 25°C unless otherwise noted.!
Unit

Symbol

Min

VCEOlsus)

20

-

Vde

BVCBO

20

-

Vde

BVEBO

5.0

-

Vde

ICEO

-

100

nAdc

Collector Cutoff Current
IVCB = 20 Vde, IE = 01

ICBO

-

100

nAdc

Emftter Cutoff Current
IVEB = 4.0 Vde, IC" 01

lEBO

-

100

nAdc

Character istic

Max

OFF CHARACTERISTICS
Collector-Emitter ~reakdown Voltage (1)
(lC" 10mAde,IB" 0)

Collector-Base Breakdown Voltage
(lC" 100!,Ade,iE = 0) .

Emitter-Base Breakdown Voltage
(lE~ 100!,Ade,lc= 0)

Collector Cutoff Current
(VCE = 20 Vde, IB = 0)

ON CHARACTERISTICS 111

DC Curren't Gain
(lC = 10 mAde, V CE " 1.0 Vdel
(lC" 100 mAde, VCE" 1.0Vdel
(lC" 350 mAde, VeE" 1.0 Vdel

-

hFE

-

35
50
50

200

Collector-Emitter Saturation Voltage
IIC" 350 mAde, IB = 35 mAde)

VCE(satl

-

0.5

Vde

Base-Emitter On Voltage

VBE(onl

-

12

Vde

IT

60

-

MHz

Cob

-

30

pF

IIc = 350 mAde, VCE = 1.0 Vdel
DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
IIc = 10mAde, VCE = 10Vde, I" 30 MHzl

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)

(11 Pulse Test: Pulse Width';; 300 !,S, Duty Cycle';; 2.0%

TYPICAL CHARACTERISTICS
MPS6563 PNP

MPS6561 NPN
FIGURE 1 - COLLECTOR SATURATION REGION

c;; 1.0

:;

o

2:-

~ O. 8

:;
""

1111

IIII

W

IIII

~Clbl~A

2S

~A

~

>

0

III

:;
>

-

I-.....
0.2

I III

ii

~~~mA- -

;o

I

I III
I
0.8
IC =IOmA 2SmA

II III

III

TJ = 25.

III
II III
lOOmA 2S0 mA SOD mA

~

\

0.1

1.0

o

~ 0.6

1\

I

0.05

II

(7)

\

~ 0.4
ci:
0.2

IIITJ=2S.C

1\

~

~

II

I\JoI~IA_ 2sb~AI

~
'" O.6

8:

\

0.5
1.0
2.0
5.0
IB, BASE CURRENT (mAl

!

--10

20

0.4

_ 0.2

r--.

S
~

>
50

941

0
O.OS

--

\

~

...........

0.1

0.2

---

0.5
1.0
2.0
5.0
IB, BASE CURRENT ImAI

10

20

50

MPS6561, MPS6563 (continued)

TYPICAL CHARACTERISTICS (continued)
MPS6563 PNP

MPS6561 NPN
FIGURE 2 - DC CURRENT GAIN
400

400
TJ

VCE'1.0V
~ 300
:::;

~

~ I-

<

;: 200

12SOC

o

I

:::;

z-

-Jso~

f-"""'

«

-.........:~

I

Z

'">u

o

~

TJ~1250C

1.0 V

n
t-

Z

~so\c

.

Z

~

r\

~ 100

B

~

300

'"'" 200
:5

"

dsot

o

VCE

~

~ 80

80

u

o

60

I-

~ 6O

40
0.5

t-

tt

~ l-

>Z

~ 100

,

40

1.0

2.0

5.0

10

20

50

100

200

0.5

500

1.0

2.0

5.0

10

50

20

100

200

500

IC. COLLECTOR CURRENT (rnA)

IC. COLLECTOR CURRENT (rnA)

FIGURE 3 - "ON" VOLTAGE
1. 0

TJ

o. a

~

2SoC

II II
II II

VBE(sat)@ Iclla ~ 10

.....-

~

II

6

-

1.0

TJ

o.8

I I III
IIIII

-

VBE( .. t)@lclla· 10

~

~ o. 6

VBE(on)@ VCE ~ 1.0 V

~ 2SoC

V

-

VBE(on) @VCE' 1.0 V

w

'"

~o o.4
>

4

>-

-

o. 2

o

o.s

I-- VCE("!)@ ICIIB ~ 10
1.0

2.0

5.0
10
20
50
100
IC. COLLECTOR CURRENT (rnA)

o. 2

I,..;

-"

VCE(sat) @IcllB ~ 10

200

0
0.5

SOO

1.0

2.0

5.0

10

20

so

100

200

500

IC. COLLECTOR CURRENT (rnA)

FIGURE 4 - BASE·EMITTER TEMPERATURE
COEFFICIENT
-0. 8

-0. a
W
0:

0

=>

~ G-1. 2
o.e.

2

"'>

I

4

4
~~-1.
wZ

\./

~~

/'

6
8
OVB for VSE
0

IIII
1.0

I
2.0

-

~

I-

)

i ~-1. 6

w~

-550C to 250C

-2. 2
0.5

-1, 0

~

Ww
~ 8-1.a

V
250C to 125 0

C-

IIIII
IIIII

I
I

5.0
10
20
so
IC. COLLECTOR CURRENT (rnA)

100

200

.,;

~

IIII
1.0

2.0

5.0

10

I
I

I Inl
I IIII

20

so

IC. COLLECTOR CURRENT (rnA)

942

/\....-

~

250C to 12SoC

-2. 0
-2.2
O.S

500

-15 soC to ~oc
0VB for VBE

100

"1
I
200

soo

MPS6561, MPS6563 (continued)

TYPICAL CHARACTERISTICS
MPS6561 NPN

0

0

-

TJ ~ 25 0C
f~ 30 MHz
VCE~ 10V

,;'

MPS6563PNP

FIGURE 5 - CURRENT·GAIN - BANDWIDTH PRODUCT
~ 300
~

""' '\

VCP 10 V

~
"....o
~

I

f~30MHz

~ 200
o

/

0

TJ~1250~

....

"""

V

\

100

1\

'"
~
.:, 70

0

;;:

II

<.0

0

0
1.0

2.0

5.0
10
20
50
100
IC. COLLECTOR CURRENT (rnA)

200

500

~

50

G
.t:

300.5

1.0

2.0

5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)

100

200

500

FIGURE 6 - CAPACITANCE
0

t~

0

h

25 C
0

0

r-..
0

- -

0

.....

5. 0

3.0
0.2

~ ....... r-.,

0.3

0.5

0.7

1.0

3.0

II

r-..

0--'

t'......

0

Cob

r---- ~ib
. . . 1'-.

5.0 7.0

10

~

0

...... .......

7. 0
0.2

20

0.3

0.5

0.7

1.0

2.0

3.0

5.0

VR. REVERSE VOLTAGE (VOLTS)

VR. REVERSE VOLTAGE (VOLTS)

943

I

I+J~25bc

1':--

.....

2.0

-

7.0

10

20

MPS6565 (SILICON)
MPS6566

NPN SILICON ANNULAR TRANSISTORS
NPN SILICON
AMPLIFIER
TRANSISTORS

· .. designed for low·current amplifier applications.

•

Coliector·Emitter Breakdown Voltage BVCEO = 45 Vdc (Min) @ IC = 1.0 mAde

•

Output Capacitance Cob = 3.5 pF (Max) @ VCB = 10 mAde

•

Full Designers Curves

MAXIMUM RATINGS
Symbol

Value

VCEO

45

Vdc

Collector-Base Voltage

VCS

60

Vdc

Emltter·Base Voltage

VES

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Ie

Unit

4.0

Vdc

200

mAde

= 2SoC

Po

350
2.8

mW
mW/oC

Total Power Dissipation @ TC = 25°C
Derate above 2SoC

Po

1.0
8.0

mW/oC

T J.T stg

-55 to +150

°c

Symbol

Max

Unit

R8JAI1l

357

°C/W

R8JC

125

°C/W

Total Power Dissipation @ T A
Derate above 2SoC

Operating and Storage Junction

Watt

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case

STYLE 1:
PIN 1.

EMITTER

2. BASE
3. COLLECTOR

(1) AOJA 15 measured With the devIce soldered into a typical printed circuit board.

DIM
A

B
C

0
F

L

MI LLiMETERS
MIN
MAX

4.450
3.180
4.320
0.407
0.40
12.
1.150

N

P

a

R
S

6.350
3.430
2.410
2.030

INCHES
MAX

MIN

5.200
4.190
5.330
0.533

0.175
0.1 5
0.170
0.D16

l.4HZ

U.Ul~

1.390
1.270

0.045

2.670
2.670

0.250
0.135
0.095
0.080

CASE 29·02

TO·92

944

0.205
0.165
0.210
0.021
U.019
0.055
0.050
0.105
0.105

MPS6565, MPS6566 (continued)

ELECTRICAL CHARACTERISTICS

(T.

= 25'C '""H ,,",,,,,,, .;.,...,

Characteristic

Symbol

Min

Typ

Max

-

-

4.0

-

-

-

-

100

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(Ic = I mAde, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
('c = 100 I'Ade, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 100 I'Ade, 'c = 0)

BVEBO

45

60

Collector CutoH Current
(VCB = 30 Vde, IE = 0)

'cBO

-

Vde

Vde

Vde

nAde

ON CHARACTERISTICS
DC Current Gain ( 11
('c = 10 mAde, VCE = 10 Vde)

MPS6565

hFE

MPS6566
Collector-Emitter Saturation Voltage
('c = 10 mAde, IB = I mAde)

40
100

VCE(••t)

-

COb

-

-

160

-

400
Vde

0.1

0.4

-

3.5

3.7

-

-

-

I'mhos

60

-

ohms

500

2.5

-

4.0

-

SMAll·SIGNAl CHARACTERISTICS
Output Capacitance

(VCB = 10 Vde, IE = 0, f = 100 kHz)
Input Capacitance

(VBE = 0.5 Vde,

Ie

C1b
= 0, f = 100 kHz)

Small Signal Current Gain
(IC = 10 mAde, VCE = 10 Vde, f = 100 MHz)

"te

Output Admittance
(IC = 10 mAde, VCE = 10 Vde, f = 1 kHz)

hoe

Input Impedance
(IC = 10 mAde, VCE = 10 Vde, f = I kHz)

~.

Voltage Feedback Ratio
(IC = 10 mAde, VCE = 10 Vde, f = I kHz)

hre

Noise Figure
('c = 100 I'Ade, VCE = 5 Vde,

lis

NF
= 1000 ohms, f= 10 Hz

to 15.7 kHz)

(1) Pulse Test: Pulse Width';; 300 /LS, Duty Cycle';; 2.0%.

945

2.0

-

pF

pF

-

X 10- 4

dB

MPS6565, MPS6566 (continued)

SMALL SIGNAL CHARACTERISTICS
NOISE FIGURE
Va

= 5Vdc, TA = 2S-C

FIGURE 2- SOURCE RESISTANCE EFFECTS

FIGURE 1 - FREQUENCY EFFECTS
12
10

I II
II

I
I

I
I

~ r - SOORCE RESISTANCE -

200 II
I

\

I\:Ie-lmA

&15

~

!

;

8

-"- r-....

Ii 4 ~

i
_

0
0.1

I'\.

I

17"" """ ...

r

"f...
t:'--

10

./

SOURCE RESISTAftCE - 200 II
Ic - 0.5mA

"

-

I'\.. V

:t-

"

4

L SOURCE RESISTANCE 500 II
t-- Ic 100 pA
SOORCE RESISTANCE - 1kll
I
Ic - 50 pA
I
10

0.4

20

40

o

100

0.1

hPARAMETERS
= 1 kHz. TA =

/

.....

/

./

/'

10
1.0
2.0
4.0
Rs. SOORCE RESISTANCE Iklll

0.4

20

40

100

2S-C

FIGURE 4 - OUTPUT AOMmANCE

300

100

200

0

-

I- ~

15100

50pA

/

/
~

FIGURE 3 - CURRENT GAIN

I

Ic

Vic - 100 p.A/

~

0.2

/

/
/

1/

.......

/

/
/

I

/
/

Vet = lOY, f

j

I I II
/1/1 II

/ .

::---

,...:1:="

-.- 1-"'..... b"'i
l$ " 0.5
:::;;;
....
;:;..
~ V r..:. ">:: -"?f::
1~
~ .......
::..-I~ 0.3 ~ .... -..:::- ~ r-- -... ..... rc

.-

--

V

0.2
0.1

.-

f--

-r--

-..: ~

--

.-.:::=

~

-~

----- 1---r-_

--

~

::::- f--

~-

0.3

0.5

0.7

1'\:\

- - VCE = 10V
-VcE=IV

2.0
3.0
5.0
7.0
Ic, COLLECTOR CURRENT (mAl

10

...

~

""'" -2S"C

1.0

.....

-..;:

...::::::.... 2S"C

I
0.2

IC::!..-

I

I

20

lO

~
50

70

,\1\
1\
100

FIGURE 8 - COLLECTOR SATURATION REGION
1.0

TJ = 2S"C

i

0.8
Ie

Ic= lmA

~

=

Ie = 100mA

Ie = 30mA

IOmA

\

:;: 0.6

\

~

i
~

,.~

0.4

l\.

'\
I\. ......

0.2

o

.01

.02

f'.....

--I-

.03

.05

.07

0.1

1""-0 1-1-

r-..

--0.2
O.l
0.5
I" SASE CURRENT (mAl

0.7

2.0

1.0

FIGURE 9- TRANSCONDUCTANCE

l.O

5.0

7.0

10

FIGURE 10 - CAPACITANCES

100

10

70
IL

50
~

I

30

L

-

r-- TJ = 125°C J

20

1/

/

8
2

II

3.0

I

~

25°C

5

2.0

j

L

0.4

I-

......

....... ....... _Cib

. -"'-....l
Cob

......

I

I-

IL

/
0.5

3.0

-

2.0

J

/

f-f-

-I-

...

~

I

TJ =2S"C

7.0

L

/
5.0

l/2soc

/

10
7.0
5.0

1.0

II

75"C /

B

®.
=

I

1.0
0.6

0.7

0.8

0.9

1.0

0.1

0.2 0.3

0.5 0.7 1.0

2.0 3.0

5.0 7.0 10

REVERSE VOLTAGE (VOLTSI

V... BASE·EMITIER VOLTAGE (VOLTSI

947

20 30 40

MPS6567 (SILICON)

NPN SILICON
AMPLIFIER/MIXER
TRANSISTOR

NPN SILICON ANNULAR
AMPLIFIER TRANSISTOR
· .. designed for use in high-frequency amplifier and mixer applications_

•

High Collector-Emitter Breakdown Voltage BVCEO = 40 Vd~ (Min) @ IC = 1.0 mAdc

•

Low Feedback Capacitance Cre = 0.5 pF (Typ) @ VCB = 10 Vdc

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Emitter-Base Voltage

Symbol

Value

Unit

VCEO

40

Vdc

VEB

5.0
_.50

Vdc
mAde

Collector Current - Continuous

IC

Total Power Dissipation @ T A"" 25"C
Derate above 2SoC

Po

625
5.0

mW
mW/oC

Total Power Dissipation @ TC .,. 2SoC
Derate above 2SoC

'PO

1.5
12

Watts
mW/oC

TJ,T stg

-55'0 +150

°c

Operating and Storage Junction

STYLE 2:
PIN I.

2.
3.

Temperature Range
DIM
.A
B·

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case

Max

Unit

C
0

R8JA(I}

200

°CIW

F

R8JC

83.3

°CIW

L
N
P

Symbol

(1) R6JA is measured with the device soldered into a typical printed circuit board.

Q

R
S

MILLIMETERS
MIN
MAX

4.450
3.
4.320
0.407
0.407.

5.200
4.1
5.330
0.533
0.48

1.150

1.390
1.270

-

6.350
3.430
2.410
2.030

--

2.670
2.670

INCHES
MIN
MAX

i=P.i=
.16

~
0.021

0.016

0.019

0.045

0.055
0.050

0.250
0.135
0.095
0.080

CASE 29-02
TO-92

948

-

0.105
0.105

MPS6567 (continued)

I

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.)

I

Symbol

Min

Typ

Collector-Emitter Breakdown Voltage (1)
(IC = 1.0 mAde, IB = 01

BVCEO

40

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10 !,Ade, IC = 01

BVEBO

5.0

-

-

Vde

ICBO

-

-

25

100

-

Characteristic

Max

Unit

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 35 Vde, IE = 0)

500

nAde

ON CHARACTERISTICS
DC Current Gai n (1)
(lC = 10 mAde, VCE = 5.0 Vde)

hFE

-

Collector-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)

VCE(sati

-

0.2

0.5

Vde

Base-Emitter On Voltage (1)
(IC = 10 mAde, VCE = 5.0 Vde)

VBE(on)

-

0.65

O.B

Vde

DVNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 10 Vde, f = 100 MHz)

fT

600

BOO

-

MHz

Common-Emitter Reverse Transfer Capacitance

Cre

-

0_5

0.7

pF

Roep

100

-

-

kOhms

(VCB= 10Vde,IE=O,f= 100kHz)

Output Resistance
(lC = 2.0 mAde, VCE

= 10 Vde, f = 10.7 MHz)

(1) Pulse Test: Pulse W,dth ... 300 !,S, Duty Cycle'; 2.0%.

949

MPS6568, A(SILICON)
thru

MPS6570, A

NPN SILICON ANNULAR TRANSISTORS
... designed for VHF·RF and video IF stages in TV receivers.
•

Guaranteed Noise Figure
NF = 3.3 dB(Max) @ 200 MHz-MPS6568,A
6.0 dB(Max) @45 MHz-MPS6569,A. MPS6570.A

•

Guaranteed AGC Characteristics

NPN SILICON
VHF TRANSISTORS

•

External Shielding for Optimum RF Circuit Performance

•

Complete v·Parameter Curves at Both 45 MHz and 200 MHz

•

Guaranteed Power Gain
Gpe = 20 dB(Min) @ 200 MHz-MPS6568,A
22.5 dB(Min) (Unneutralized) @45 MHz-MPS6529,A.
MPS6570,A

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage·

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation T A - 2SoC

Symbol

Value

Unit

VeEO
Ves

20

Vdc
Vdc

VES
Ie
Po

3.0

Vdc

50

mAde

20

350
2.8

mW
mW/oe

Po

1.0
8.0

mW/oe

TJ.Tstg

-55 to +150

°e

Derate above 25°C
Total Power Dissipation @TC = 2SoC
Derate above 2SoC

TO·92
MPS6565A
MPS6569A
MPS6570A

MPS6568A
MPS6669A
MPS6570A

Watt

SEATINGJt

Operating and Storage Junction
Temperature Range

TO·92 WITH SHIELD (1)
MPS65'68
MPS6569
MPS6570

PLANE

i

~

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case (2)
Thermal Resistance. Junction to Ambient

Symbol

Max

Unit

ReJC
ReJA

125

°e/w

357

°e/W
STYLE 1.
PIN 1
2.
3.

(1) Device and shield supplied without shield being attached.
(2) RaJA is measured with the device sOldered into a typical printed circuit board.

MILLIMETERS
DIM MIN MAX
A
5.03 5.18
4.01
4.27
B
4.70
~D 4.45
0.254 0.381
300 TYP
E
F
0.229 0.279
G
1.14 1.40
H
0.406 0.483
J
0.787 RAD
K 12.70
L
1.27 T.P
N
0.330 I 0.331
P
0.254 TYP
Q
4.01 I -4.27

INCHES
MIN MAX
0.198 0.204
0.158 0.168
0.175 0.185
0.010 0.015
300 TYP
0.009 I 0.011
0.045 0.055
0.U16 I 0.019
0.0 1 RAD
0.500
0.050T.P
0.013 I 0.015
0.010 TYP
0.158 0.168

MPS6568
MPS6569
MPS6570

DIM
A
B
e
K

CASE 29A
TO-92

oil
FI

~
B

H-U-

L

_~.
T
~
N

ST;I':/ EMITTER
2. BASE
L
3. COLLECTOR

3

G

950

0
F
K

L
N
P
Q

R
S

MILLIMETERS
INCHES
MIN
MAX MIN
MAX
4.450
5.200 0.175
0.205
3.180
4.11!ll 0.15
0.165
4.320
5.330 0.170
0.210
0.407
0.533 0.016
0.021
0.407
0.48 nJ]Jl6 """"lJ:lIl9
1 .700
! 0.500
1.150
1.390 0.045
0.055
1.270
0.050
6.350
0.250
3.430
0.135
2.410
2.670 0.095
0.105
2.030
0.105
2.670 0.080

CASE 29-02
TO-92

MPS6568,A thru MPS6570,A (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

20

-

20

-

3.0

-

-

50

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC = 1.0 mAde, IB = 0)

BVCEO

Collector-Base Breakdown Voltage

BVCBO

(lC

= 100 "Ade,

IE

= 100 "Ade,

IC

Vde

= 0)

Emitter-Base Breakdown Voltage

(IE

Vde

Vde

BVEBO

= 0)

Collector Cutoff Current
(VCB = 10 Vde, IC = 0)

nAde

ICBO

ON CHARACTERISTICS
DC Current Gain
(lC = 4.0 mAde, VCE

Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 5.0 mAde)

VCE(sat)

Base-Emitter Saturation Voltage

VBE(sat)

(lC

= 10 mAde,

IB

-

hFE

= 5.0 Vde)

= 5.0 mAde)

20

200

0.1

0.3

-

0.96

375
300

800
800

0.25

0.5

-

0.65

-

3.3

-

6.0

20

27

22.5

28.5

4.0

5.0

4.4
5.2

5.4
6.2

Vde
Vde

SMALL·SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, I = 100 MHz)
MPS6568A
MPS6569A, MPS6570A

IT

Collector-Base Capacitance

Ceb

(Vee::; 10 Vdc, 'E = 0, f = 1.0 MHz, emitter guarded, with shield)
MPS6568/6570
(VCB = 10 Vde, IE = 0, I = 1.0 MHz, emitter guarded)
MPS6568A/6570A

pF

NF

Noise Figure

(VAGC

MHz

dB

= 1.4 Vde, RS = 50 ohms, I = 200 MHz, Figure 9)

MPS6568,A
(VAGC = 2.75 Vde, RS = 50 ohms, f = 45 MHz, Figure 10)
MPS6569A, MPS6570A

FUNCTIONAL TEST
Gpe

Power Gain

(V AGC

= 1.4 Vde, RS = 50 ohms, I = 200 MHz,

Figure 9)
MPS6568,A
(V AGC = 2.75 Vdc, RS = 50 ohms, I = 45 MHz, Figure 10)
MPS6569,A, MPS6570,A

Forwarcj AGC Voltage
(Gain Reduction = 30 dB, RS = 50 ohms, f
MPS6568,A
(Gain Reduction = 30 dB, RS = 50 ohms, f
MPS6569,A
MPS6570,A

Vde

VAGC

= 200 MHz, Figure 9)
= 45 MHz, Figure

dB

10)

AGC CHARACTERISTICS
Vee ~ 12 Vdc, Rs ~ 50 OHMS, SEE FIGURES 9 AND 10
-f~45MHz

FIGURE 1- POWER GAIN
25

z

,/
/

20

~

15

I

10

/'

,

""

12

\"" \

~

\

,i/

~:..

-5

FIGURE 2- NOISE FIGURE

14

30

~

f~200MHz

--

\

2.0

3.0

4.0

\

~

<3

:i

\

1\

5.0

o

6.0

o

I

I

\

z

I\.

\
1.0

'"'"

\\

/

/

~
~

\
o

I

10

/

I--'

"-

10

2.0

3.0

/

,./

4.0

5.0

VAGC, AUTOMATIC GAIN CONTROL VOLTAGE (VOLTS)

VAGC, AUTOMATIC GAIN CONTROL VOLTAGE (VOLTS)

951

6.0

MPS6568,A thru MPS6570,A (continued)

COMMON-EMITTER Y PARAMETERS
VeE ~ 12 Vdc, T. ~ 25°C

FIGURE 3-INPUT ADMITTANCE

f ~ 45 MHz

-

100

80

60

~

-g

/

/

.§
~

jE 40

,.~

..... ~ ............

~

20

~
~
~

.....;

z

--

",

./

..,'"

;-,/J I
k.'

,I

/

4.0

6.0

8.0

--

-b".f

I~

0,;-....".

~

g,l

120

1

~ 100
~ 80
«

;

~ 60

Q

~ 40

~

~ 20

/

/

"""

/

/

/
/
. . . -b,. "
/

1/
'j

-bfe

,...;-

2.0

--.

.

,:;

10

4.0

"

",

",

7

-- --- ---,.--~SH:7=

12

4.0

2.0

..-

-

WITHOUT $HIELD

6.0

8.0

10

12

Ie, COLLECTOR CURRENT (mA)

FIGURE 6- OUTPUT ADMITTANCE
3. 0

2. 5

-\-\
\~

.....

.......
.......

......

8.0

--- ---

~I.

--- ---

boo

- ~.10

~:J

5

,~ I~

.......

6.0

/~

-b"f..

o. 1

\
"1

gfe '

--- .........

:::i

V-\

/

g

-~+ ..........

..- WITH SHIELD

-g'~~/

FIGURE 5- FORWARD TRANSFER ADMITTANCE

140

£_WITHOUT SHIELD

0.2

Ie, COLLECTOR CURRENT (mAl

160

--1'

ffi 0.3

\
2.0

-- --- --

5i!

-20

o

FIGURE 4- REVERSE TRANSFER ADMITTANCE

,.~

r"-.b,:-..,
-40

0.5

~ 0.4

-..... ..............

--::::::: ~

/

~

.................

- - f ~ 200 MHz
0.6

O. 5

0

12

~I~UT SHIELD

r-__ _.

WITH SHIELD
WITHOUT 'SHIELD

-

;::- Ie=::

~

4.0

6.0

8.0

Ie, COLLECTOR CURRENT (mA)

. Ie, COLlECTOR CURRENT (mA)

952

,,/

.....

,-- --- -g~ l.--- ~
2.0

---

-- ---

Iii

A

:::::.t

CITHSHIELD

~",

10

..,..

12

MPS6568,A thru MPS6570,A (continued)

FIGURE 7- DC CURRENT GAIN

FIGURE 8- COLLECTOR-BASE CAPACITANCE
0

50
Ve• ~ IOVdc
-TA~25°C

V

0

.........

(C,b~C,,@I.~O)

-

O. 7

~

0-----

-

r-r-.

5

--

I

-..... ........

........

\
3

\
\

7. 0

"'"

WITH SHI ElD~

\

0

I III h ~ 25°C-

WITHOUT SHIELD

2

5. 0

3. 0
0.1

O. 1
0.2

0.3

0.5 0.7 1.0
2.0 3.0
Ie, COllECTOR CURRENT (rnA)

5.0 7.0 10

20

0.1

0.2 0.3

0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
Vea, COllECTOR-BASE VOLTAGE (VOLTS)

20

30

FIGURE 10 - 45 MHz FUNCTIONAL TEST CIRCUIT
(UNHEUTRALIZED)

FIGURE 9- 200 MHz FUNCTIONAL TEST CIRCUIT
(NEUTRALIZED)
Vee~12V

Vee

270n
lolW

RF BEADS

I( 1000 PFJ.

~

12V
270n
lolW

I( 1000 PFJ.
son

1000pF

OUTPUT

>----ir--e

I~

2.2 k!J
lolW

1000PF11'
390n
lolW

T, ~ FERRITE CORE INDIANA GEN. CORP. F-684
T, ~ 6 TURNS #16 BUSS WIRE, ID ~ \14", l ~ 0/4".

T, ~ TOROID 4J RATIO} #22 WIRE
8T-PRI2T-SEC

953

son

OUTPUT

MPS6571 (SILICON)

NPN SILICON ,ANNULAR TRANSISTOR
NPN SILICON
AMPLIFIER
TRANSISTOR

... designed for preamplifiers in audio amplifier applications.

•

Collector-Emitter Breakdown Voltage BVCEO = 20 Vdc @ IC = 1,0 mAde

•

Low Noise Figure NF = 1.2 dB (Typ)

@

IC = 100 IlAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

20

Vdc

Collector-Base Voltage

VCB

20

Vdc

Emitter-Base Voltage

VEB

3,0

Vdc

Col rector Current - Continuous

IC

50

mAde

Total Power Dissipation @ T A::: 25°C

PD

350
2,8

mW
mW/oC

PD

1.0
8,0

Watt
mW/oC

TJ,Tstg

-55 to +150

DC

Collector·Emitter Voltage

Derate above 25°C
Total Power Dissipation @ TC

=::

2SoC

Derate above 25°C
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

(1) RaJA

IS

Symbol

Max

Unit

ReJA (1)

357

°C/W

ReJC

125

°C/W

STYLE I:
PIN L EMITTER
2. BASE
3, COLLECTOR

measured with the device soldered rnto a typical printed circuit board.

DIM

A

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

4.450
3.180
4.320
0.407
u.407

5,1110
4.19U
5,330
0,533
,48'

0.115

L
N

1.150

1.390
1.270

0,045

P

6.350
3.430
2.410
2.030

B
C
D
F

Q

R
S

2.670
2.670

0.12~

0.110
0.016
u.u16

0.250
0,135
0.095
0.080

CASE 29'()2
TO-92

954

0,205
u.lij5
0,210
0.021
0,019
0,055
0,050
0.105
0,105

MPS6571 (continued)

ELECTRICAL CHARACTERISTICS

(TA

Characteristic

=25°C unless otherwise noted)

I Symbol

Min

Typ

20

-

-

25

-

-

-

-

50

-

-

50

250

-

1000

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAdc, IB = 0)

BVCEO

Collector-Base Breal '" <>

COLLECTOR

....j s

B

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

4.450
3.180
4.320
0,407
0.407
12.70
1.150

5.200
4.190
5.330
0.533
.4 2

0.175
0.125
0.170
0,016
0.016

0.105
0.165
0.110
0.011
0.019

1.390
1.270

0.045

0.055
0.050

6.350
3.430
2.410
1.030

-

2.670
1.670

0.150
0.135
0.095
0.080

CASE 29-02
TO-92

959

/:::It

0.105
0.105

MPS6580 (continued)

I

ELECTRICAL CHARACTERISTICS (T A

=

250 C unless otherwise noted.)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lc = 1.0 mAde, I B =0)

BVCEO

25

-

-

Vde

Collector-Base Breakdown Voltage
(lc = 10jLAde.IE = 0)

BVCBO

30

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10jLAde, IC = 0)

BVEBO

3.0

-

-

Vde

Collector Cutoff Current
(VCB = 20 Vde, IE = 0)

ICBO

-

-

100

nAde

Emitter Cutoff Current
(VBE = 2.0 Vde, I C = 0)

lEBO

-

-

100

hAde

hFE

20

80

-

-

VCE(satl

-

0.2

0.5

Vde

250

450

-

MHz

-

0.5

1.0

pF

Characteristic

OFF CHARACTERISTICS

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 2.0 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage
(lc = 2.0 mAde, IB = 0.2 mAde)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 2.0 mAde, VCE = 10 Vde, f
Collector-Base Capacitance
(VCB = 10 Vde, IE =0, f

IT

=100 MHz)

Ceb

=100 MHz)

(1) Pulse Test: Pulse Width ';;3OOjLs, Duty Cycle ';;2.0%.

960

MPS8000

(SILICON)

NPN SILICON ANNULAR

RF TRANSISTOR

625 mW - 27 MHz
RF DRIVER
TRANSISTOR

designed for use in Citizen-Band Communications equipment
operating to 30 MHz. High current gain available for driver applications. This device is designed to be used with the MPS8001 RF
oscillator and the MPS-U31 RF power output.

NPN SILICON

MAXIMUM RATINGS
Symbol

Value

Unit

VCES

60

Vde

VEB

3.0

Collector Current - Continuous

IC

500

mAde

Total Power Dissipation @ T A = 2SoC
Derate above 2SoC

Po

625
5.0

mW
mW/oC

Total Povver Dissipation @ T C :::: 25°C
Derate above 25°C

Po

1.5
12

mW/oC

-55 to +150

°c

Rating

Collector-Emitter Voltage
Emitter-Base Voltage

Operating and Storage Junction

TJ,Tstg

Vde

Watt

Temperature Range

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance. Junction to Case

R&JC

B3.3

°C/W

Thermal Resistance, Junction to Ambient

R&JCllI

200

°CIW

Characteristic

(1) Typical printed circuit board mounting.

0-:111-'-1-1- L
=lRf..:-

or
l ~~

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.1
Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)

BVCES

-

60

Vde

(lC =·50 mAde, VBE = 01
Emitter-Base Breakdown Voltage

STYLE
PIN 1.1 EMITTER
2. BASE
3.

-

BVEBO

3.0

ICBO

-

10

hFE

30

-

VCEI,at)

-

0.3

!lAde

(VCB = 50 Vde, IE = 0)

-

(lC = 100 mAde, VCE = 2.0 Vdel
Collector-Emitter Saturation Voltage

F
L
N

P

FUNCTIONAL TEST

a
Gpe

12

-

dB

350

-

mW

IP out = 350 mW, VCC = 13.6 Vde, , = 27 MHz I
Power Output

C
0
K

Vde

IIc = 100 mAde, IB = 10 mAde)
Common-Emitter Amplifier Power Gain

DIM
A

B

ON CHARACTERISTICS
DC Current Gain (2)

Pout

.

1 3

00

R
S

MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4:190
4.320
5.330
0.407
0.533
0.407
0.482
1 .7
1.150
1.390
1.270
6.350
3.430
2.410
2.670
2.030
2.670

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO-92

961

B

INCHES
MIN
MAX
0.175
0.205
0.165
0.125
0.170
0.210
0.021
0.016
0.019
0.016

(Pin = 21.8 mW, VCC = 13.6 Vde, '·27 MHz)
(2) Pulse Test' Pulse WIdth <;;;300 ~', Duty Cycle· 2.0%.

5

Vde

(IE = 1.0 mAde, IC = 0)
Collector Cutoff Current

I

--1-;- =:rT
·0 0

COLLECTOR

0.055
0.050

-

0.105
0.105

MPS8000 (continued)

",,

TYPICAL CHARACTERISTICS

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - ON VOL TAGES

200

1.0

...

TJ = 25'C
VCE = 2.0 V

z

;;: 100

g

'"
'"c

C; 0.4
>
>'

0

0.2

30

VCE("t}@ IcllB = 10

20
0.5

o
2.0

1.0

5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)

100

200

500

0.5

1.0

2.0

FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT

'" 400

IIII

~

g
~

VCE= 10V

200

~

c

2.0V

~

100
z
;1i 80
I
60
Z

,~

B

.t'

5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)

-

100

200

500

FIGURE 4 - CAPACI'TANCE

100

IIII

TJ = 25'C

~

;;:
~

VBE(,n}@VCE= 10 V

«
'"

,/

~

'"

..... .....

1111

VBE(sat)@ IcII8 = 10

I- -f-tt!m

w

50

II

-

0.6

0

2:

70

II IIII

TJ = 25'C

0.8

I-

~
a

I III

.......

70
50

i'.

30

1\

~
~

1\

~

~

-

-

7.0
5.0

TJ =25 0 C

-Cob

",'

1\

40

20

w

'"'"
«
I10

Cib

3.0
2.0

1\

20
0.5

1.0

2.0

5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)

100

200

1.0
0.1

500

0.2

0.5

1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)

50

FIGURE 5 - 27 MHz TEST CIRCUIT
+13.6 Vdc
VCC

~

0.0041l F
C1

C2
C3.C4

5.0 to 8.0 pF ARea 462 or equivalent
9.0 to 180 pF AReo 463 or equivalent
25 to 280 pF ARea 464 or equivalent

=

1SIlH
0.221lH
Output

Input

T.U.T.

C3

RF Ferroxcube

5659065/38

962

100

MPS8001

(SILICON)

NPN SILICON RF ANNULAR TRANSISTOR
RF OSCILLATOR
designed for use in Citizen-Band communications equipment
operating to 30 MHz, with low feedback capacity for stable operation_ This part is designed to be used with the MPSBOOO driver and
the MPS-U31 RF power output_

TRANSISTOR
NPN SILICON

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Emitter-Base Voltage

Symbol

Value

VCEO

25

Vde

VEB

3_0

Vde

Unit

Collector Current - Continuous

IC

100

mAde

Total Device Dissipation @ T A '" 2SoC
Derate above 25°C

Po

350
2_8

mW
mW/oC

= 2SoC

Po

1_0
8_0

Watt
mW/oC

TJ,T,tg

-55 to +150

°c

Symbol

Max

Unit

RBJC

125

°C/mW

RBJA'

357

°C/mW

Total Device Dissipation @ T C
Derate above 25°C

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

*RO JA is measured with the device soldered Into a typical printed Circuit board.

ELECTRICAL CHARACTERISTICS ITA

I

Characteristic

=

25°C unless otherwise noted.)
Symbol

Min

Max

Unit

BVCEO

25

-

Vdc

BVEBO

3.0

-

Vde

ICBO

-

1.0

jtAde

hFE

40

-

-

VCElsat)

-

0.4

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage(1}

IIc

= 1.0 mAde,

IB

= 0)

Emitter-Base Breakdown Voltage
liE = 10jtAde, IC = 0)

COllector Cutoff Current
IVCB = 25 Vde, IE = 0)

Coliector·Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)

DIM
A
B
C
F

Vde

L
N

P
Q

R

DYNAMIC CHARACTERISTICS

S

Current· Gain - Bandwidth Product (1)
IIc =4.0 mAde, VCE = 10 Vde,
I: 100 MHz)

IT

Collector·Emitter Capacitance
IVCE = 10 Vde, IE = 0, I = 1.0 MHz)

Cce

(l)Pulse Test:

2.
3.

0

ON CHARACTERISTICS
DC Current Gain
IIc = 10 mAde, VCE • 1.0 Vde)

STYlE 1:
PIN 1.

MILLIMETERS
MIN
MAX
4.450
3.180
4.320
0.407
0.40,
0.482
1.150
6.350
3.430
2.410
2.030

INCHES
MAX
MIN
0.175
O. 05
.125
0.165
0.210
0.170
0.021
0.016
u.u19
0.016

•
1.390
1.270

2.670
2.670

0.045
0.250
0.135
0.095
0.080

MHz
100

-

0.65

Pulse WIdth ~300 J,ls, Duty Cycle ~ 2.0%.

963

pF

CASE 29-02
TO-92

0.055
0.050
0.105
0.105

MPS8001 (continued)

FIGURE 2 - "ON" VOLTAGE

FIGURE 1 - DC CURRENT GAIN
200
iJ =

1.0

1~5DC

--j:-

.......

25 DC

~ 70

a

'"

::::-

~ 30
20

- -

10
0.5

r---

'"1"--..- ['..

VCE=1.0V
10
m=

II

II II
0.7

~

~

-55D~

50

'"c

~ JsJ(s~tlllc/lsl- ld

0.8

~ 100
to

r

I,..-

TJ = 25 DC

VSE @VCE = 10 V

~ 0.6

"f' ~

to

r-....

>

w

«

!:i
o

0.4

=>
0.2

~

1.0

2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)

20

30

50

0.5 0.7

2.0 3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (mA)

1.0

:J:

to;

~
~

50

FIGURE 4 - CAPACITANCE
TJ = 25 DC
t= 1.0 MHz

.....

700

2.0

......

50 0

"""

I-I--"

300

~

100
0.03

0.05 0.07 1.0

IlT

2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mA)

20

~

1.0

~

O. 7

_

VCE= 10V
t= 100MHz_ ~
TJ = 25 DC

4: 20 0

r-

\':l
z

I

z

'":>
'"'"
J:'

30

3.0

100 0

t;

i5
o
g:

-~

VCE(..tl@IClIs= 10

o

FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT

¥

i..-- I- ~ I--~

Cab
Ccb

I-

-C~ I

ee

0.5

30

I
0.5 0.7

964

I

1.0

2.0 3.0
5.0 7.0 10
VR, REVERSE VOLTAGE NOLTS)

"20

30

MPS8097 (SILICON)

NPN SILCON ANNULAR
LOW-NOISE, HIGH-GAIN AMPLIFIER TRANSISTOR
... designed lor use in low-level, low·noise amplilier applications.
•

Colieetor·Emitter Breakdown Voltage BVCEO = 40 Vde (Min) @ IC = 10 mAde

•

High DC Current Gain hFE = 250 (Min) @ IC = 100j.lAde

•

High Current·Gain - Bandwidth Product IT = 200 MHz (Min) @ IC = 10 mAde

•

Low Noise Figure NF = 2.0 dB (Max) @ IC = 100 !lAde,
1= 10 Hz to 15.7 kHz

1
r

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

V CEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

V EB

6.0

Vdc

Collector Current - Continous

IC

200

mAde

Total Power Dissipation @ T A:: 25°C

PD

350
2.8

mW
mW/oC

1.0
8.0

Watt

Rating

Derate above 2SoC
Total Power Dissipation @

NPN SILICON
LOW NOISE, HIGH GAIN
AMPLIFIER
TRANSISTOR

PD

TC = 25°C

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ,Tstg

-55 to +150

PLANE

Symbol

Ma.

Unit

ReJAlll

357

°C/W

Thermal Resistance, Junction to Case

ReJC

125

°C/W

D--Jlf-L~L
STYLE 1
PIN 1

2.
3

IOta a typical printed circuit board.

DIM
A
B
C
D
F

L
N

P
Q

R
S

Q

_

~

~

MILLIMETERS
MIN
MAX

4.450
3.180
4.320
0.407
0...,7
:.1UU
1.150
6.350
3.430
2.410
2.030

i

u.4.2

INCHES
MIN
MAX

0.175
0.125
0.170
O.ot6
O.ul.

0.205
U.165
0.210
0.021
0.019

U.~UU

1.390
1.270
2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO·92

965

r

=lR~

EMITTER
~
BASE
COLLECTOR

~~

K

111 RaJA is measured with the device soldered

~~ijtJ

°c

Thermal Resistance, Junction to Ambient

Characteristic

"",,"4~

mWPC

THERMAL CHARACTERISTICS

1

A

0.055
0.050
0.105
0.105

MPS8097 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted)
Charect.istic

I

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAdc, IB

Vdc

BVCEO

=0)

Collector Cutoff Current
(VCB = 40 Vdc, IE 0)
(VCB ~ 60 Vdc, IE = 0)

ICBO

Emitter Cutoff Current

lEBO

=

(VBE = 6.0 Vdc, IC = 0)

40

-

-

30
10

-

20

250

700

0.45

0.65

200

-

1.0

4.0

-

10

250

800

-

2.0

-

8.0

-

32

nAdc
"Adc
nAdc

ON CHARACTERISTlCS(!)
DC Current Gain

(lC

hFE

=1()() "Adc, VCE = 5.0 Vdc)

Base-Emitter on Voltage

(lC

VBE(on)

=100 "Adc, VCE = 5.0 Vdc)

Vdc

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product (2)
(lC = 10 mAdc, VCE = 5.0 Vdc, f = 100 MHz)

IT

Output Capacitance
(VCB = 5.0 Vdc, IE = 0, f = 1.0 MHz)

Cob

Emitter-Base Capacitance

Ceb

(VBE = 0.5 Vdc, IC = 0, f = 1.0 MHz)
Small-Signal Current Gain

pF
pF

hfe

(lC = 100 "Adc, VCE = 5.0 Vdc, f = 1.0 kHz)

Noise Figure
(lC= 100 "Adc, VCE= 5.0Vdc,
RS = 10 kOhms, f = 10 Hz to 15.7 Hz)

NF

(lC = 100 "Adc, VCE = 5.0 Vdc,
RS = 10 kOhms, f = 100 Hz, BW= 1.0 Hz)
Equivalent Short Circuit Noise Voltage

VT

(lC = 100 "Ado, V CE = 5.0 Vdc,
RS = 10 kOhms, f = 100 Hz, BW = 1.0 Hz)

(1) Pulse Test: Pulse Width <0;300 "s, Duty Cycle <0;2.0%.
(2) fT is defined as the frequency .t which Ihlel extropolates to unity.

966

MHz

dB

nV/..rHz

MPSS097 (continued)

FIGURE 1 - TRANSISTOR NOISE MODEL

1-----------1
I

I
Ideal

Transistor

I ___________ JI
L

NOISE APPLICATION NOTE
For a transistor, total noise at the input may be
expressed
as:
[
] y,
VT = e~ + 4KT RS + i~ R~
(1)

NF

or

(See Figure 1)
Where:
VT

K
T

RS

total noise voltage
20 1091O noise voltage contributed
by the Source Resistance
y,

NF = 20 10910 [
total noise voltage at the transistor input
(Volts/J"Hz)
noise voltage of the transistor referred to
the input (Figures 2 and 3)
noise current of the transistor referred to
the input (Figure 4)
Boltzman's constant (1.38 x 10- 23 j/OK)
temperature of the source resistance (OK)
source resistance (Ohms)
.

(2)

)

\4 KT RS
Noise figure can be calculated for the above example as

fOIlOW~:F = 20 1091O 1(7·2 x 10-9)~ ~ 4.9 dB

L

J

16.6 x 1O- 18
This checks with the value read from Figure 7 of 5.0 dB.
To minimize noise in a transistor stage, one might use
Figure 7 and deduce that noise is minimized when Noise
Figure is minimum. This is not necessarily true as shown
by Figure 6 where the total noise voltage is a minimum at
small values of source impedance. This can be seen from
equation (1) which shows that total noise is a direct
function of source resistance.
Noise over a frequency band can be handled in one of
two ways depending upon whether total transistor noise is
constant or variable over the bandwidth of interest:

Example:
Find the total noise at the input of an MPS·8097 for a
collector current of 1.0 mA and a source impedance of
1.0 Kilohm at a frequency of 100 Hz and at a temperature
of 25 0 C.
Read en = 4.6 nV/JHZ from Figure 2 or Figure 3.
(Note that this is for a one cycle bandwidth)
Read in = 3.6 pA/J'Hz. from Figure 4.
VT = [(4.6 x 10-9 )2 + (4)( 1.38 x 1O-23U300)
(1 x 10 3 ) + (3.6 x 10- 12)2 (1 x 103 )2 1(, =

For Constant transistor noise, multiply, VT by the
square root of bandwidth. i.e., V-r = VT • ~f~

J

7.2 nV/.[Hz

2. For variable transistor noise, plot VT (where ~f =
1.0 Hz) versus frequency over the bandwidth and
integrate the result.

This checks with the value shown in Figure 6.
Example:
Read VT = 7.2 nV/,JH; at IC
RS = 1.0 kn.
Noise figure is defined as:

VT 2

Total noise voltage at the output of the transistor stage
can be found by multiplying VT or
by the voltage lIain
of the stage.

1.0 mA imd

vi

967

MPS8097 (continued)

NOISE CHARACTERISTICS
(VCE = 5.0 Vdc, T A = 25°C)

NOISE VOLTAGE
FIGURE 2 - EFFECTS OF FREQUENCY

0

~
w
'"«
~

o

I .I~WdWid~h

~

20

\

1111
li~1 = 10lmA

RS

=: 1:.J

FIGURE 3 - EFFECTS OF COLLECTOR CURRENT
30r-~~"nTmr--'-'-rn~~-'-.-rrmTn

~Ba~Wi~t~=~.~~I~~~+H~~~~~

~! I

20~-+-+~H+~--~~HH~~~~~rH+H
~

0

~

10

>

w

~

o

7. o

"-

3.0 mA

z

l

-

1.0 mA""'!-.

5.0

r-- .unt-.l
11111300~

3. 0

10

20

SO 100

100 k~;
3.0 '---'--'-~u..Lw..__-'--'-L...I..Ju.JJU--'---""""'''''''''''''''
0.01 0.02
O.OS 0.1
0.2
O.S
1.0
2.0
S.O
10
IC. COLLECTOR CURRENT (mA)

200

SOO 1.0 k 2.0 k S.O k 10 k 20 k SO k 100 k
f. FREnUENCY (Hz)

FIGURE 5 - WIOEBAND NOISE FIGURE

FIGURE 4 - NOISE CURRENT

10
7.0

20
Bandwidth - 1.0 Hz

Ic-lOmA
"'N-I.
3.0mA

S.O

i

3.0

t--.

~ 20
~

~

0.7

~

0.5

-

~

"""

a 10
~

~

16

~
w

~

~

12

u::
w

'"~

300.A

,.....

8.0

~

10

20

z

SO

o

10

100 200

SOO 1.0k 2.0k S.Ok 10k 20k SDk lOOk
f. FREQUENCY (Hz)

SOO.A

1-

~

./

lO.A

0

IC = 1.0 mA

i'

4.0
30.A

r-..
RS~

0.1

11111111

~

'i-I.
11.OmA

lro:;I

0.2

11111111

11111111 I

Bandwidth:::; 10 Hz to 15.7 kHz

u:

0.3

11111111 I

~ l~o.
20

SO

100 200 SOO 1.0k 2.0k S.Ok 10k 20k SOk lOOk
RS. SOURCE RESISTANCE (OHMS)

100 Hz NOISE DATA
FIGURE 7 - NOISE FIGURE

FIGURE 6 - TOTAL NOISE VOLTAGE

300

II

200

IC = 110 ~~

:>

.5 100

~

~

o

>

io'=

Bandwidth

~
16

V

~O

'"w

1.0
mA

50

~ 12

'"u::
w
'"
oz B.O

I Ill:

~

30
20

/

10

/1/

~

6
....

11/
1/

mA

1.0 Hz

ii
«

20

~A~

//

~O,O,J.l

30.A
10"':

~.

z

I 1111111
Ic=10mA

~

~
'\

AIIIII

'\
~
~ l\I" ~

1.0mA

K

~ 7.0
S. 0

3. 0
10

20

SO 100 200
SOO 1.0k 2.0k S.Ok 10k 20k
RS. SOURCE RESISTANCE (OHMS)

SOk lOOk

968

RS, SOURCE RESISTANCE (OHMS)

MPS8097 (continued)

FIGURE 8 - DC CURRENT GAIN
2.0 k

~~~I =

5.01V

~ 1.0k

'"

i

700

'"~

500

I-- f-

TJ

=1250C
25 0C

./

W1
1-15 °C

./

1........-

Q

i
300

.....-

/'

V

200
0.01 0.02

0.05 0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

100

IC. COLLECTOR CURRENT {mAl

FIGURE 10 - TEMPERATURE COEFFICIENTS

FIGURE 9 - "ON" VOLTAGES
1.0

0.8

E!'
c:

-0.4

II III
~ 1= ~5Jcl

~-o. B

f-I J I I II

0.6

:>E

"'-

~~E{;n; ~ VCE =5.0 V

wI-

1= :li -1.2

~E

2:
w

'"~

",w

~

0.4

8-1. 6

TJ = 25 0C to 125 0C

-i 1-

~. ~

o

>
>'

>'"
0.2

a

<:t>

V~E{~tl ; 11~:rll ~

0.01 0.02

0.05 0.1

0.5

1.0

2.0

5.0

10

20

-550 C to 250 C

nn liT

"~ -2.4

~

0.2

U?

~-2.0

50

0.01 0.02

100

0.05

0.1

IC. COLLECTOR CURRENT {mAl

6.0

~

w

'"z

4.0
3.0

--

....
I-

Ccb

c(

~U

~

- ....... -ill

I-

<:;

Cob

"'"

"-

......... Cob

TJ

to

'"
30 a
Q

C,b

~

~

:I:

IQ

.!:;;:

1.0

2.0

20
0/

"

/"

V
/'

\

5.0

10

20

10 a

'"~ 7 f- VCE - 5.0V
aI-- TJ = 250C
'"

I--

-

- -I--

-

-5!i1'C

1--1-

I-- 1-1-

I--

_t-"

25°C

k- f-ff"

--

I-

I-- r-I-

~ I--

.........

\

'~

.......

'"

1\ \

60

\

40
0.2

0.3

0.5

0.7

1.0

~ 2.0

1111
II II11

TJ =25°C
O.S

~
0

~

0.6

w

'"'"
~

0

>
>"

III

o

~

-

VSE(sa,)@IClIs= 10

30

50

70

\

100

200

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - "ON" VOLTAGES

1.0

20

3.0
5.0
7.0
10
IC, COLLECTOR CURRENT (rnA)

2.0

~
w

~
o

1.6 r-

I JII

I

III

I

III

I

III

I III

100 rnA

200 rnA

IJ10mA 20mA

1\

~ 1.2

r- VSE@VCE = 5.0 V

50 rnA

t

~

0.4

"'

0.8

8

0:4

~

TJ = 25°C

o

0.2

00.2

0.5

1.0

~

.....

VCE(..!)@ Icils = 10
2.0
5.0
10
20
IC. COLLECTOR CURRENT (rnA)

ul

;;
50

100

:-... ,....

200

0.02

0.05

0.1

-1.4

/

c:;
u:
t::; -1.S

8

-

w

'"~

-

eVS FOR VSE

I-"

-55°C TO 1250C

-2. 2

~

~

.;
~

-2. 6

-3''11.2

0.5

1.0

2.0
5.0
10
20
50
IC, COLLECTOR CURRENT (rnA)

974

"-

0.2
0.5
1.0
2.0
IS. SASE CURRENT (rnA)

"
~
,g
;:;

\

0

FIGURE 10 - BASE·EMITTER TEMPERATURE COEFFICIENT
_ -1.0

I-

1\

100

200

5.0

-

10

20

MPS8098,MPS8099 NPN/MPS8598,MPS8599 PNP (continued)

PNP
MPS8598. MPS8599

FIGURE 11 - DC CURRENT GAIN
300
TJ =

1250~

r--

z .200

"

to

~

~ 100

'"c

~

-

~

I-

70

J

VCE=5.0V

........

J- 25 C

-

"- r-.;

~I--

i'...
~

-55°C

~

1,\

\.

50

\

300.2

0.3

1\
0.5

0.7

1.0

2.0

3.0
5.0
7.0
10
IC. COLLECTOR CURRENT (mAl

20

50

30

Ui 2.0

c

~

mIT

II

~

w

IIII

II

:;

1.6

IC = 10 mPi

:;
~
f:

alci:

0.4 f-f-+++ttH--+--++++H+f--+-+-+++++Hf--l

1.2

~

0.1

0.2

FIGURE 14 - BASE·EMITTER TEMPERATURE COEFFICIENT

">

/

E

;: -1. 4

J

G
~ -1. a

c

..

r

:>

~

m

...-

Ova FOR VaE

-550C TO 1250C

2
2
.

-2. 6

.?

0
-3. 0.2

0.5

1.0

2.0

5.0

10

20

IC, COLLECTOR CURRENT (mAl

975

0.5

1.0

50

100

200

-

2.0

IS. SASE CURRENT (mAl

-1.0

ffi
u:

1\

~

r-....

TJ - 25 C
0
0.05
0.02

>

100 rnA

mr
200 rnA

\
\

\
\

~ 0.4

O~~~~~~-L~~~~~~~~~~
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
IC. COLLECTOR CURRENT (mAl

I IIII

T

\

0.8

~

VCE(sa'l@ IcllS - 10

'"w

200

1\

c
0.2 HH-t-H+t+--+--H++++I1f--+--+-+++++H-/--,."'!

\

SOmA

20 rnA

c

G

100

FIGURE 13 - COLLECTOR SATURATION REGION

FIGURE 12 - "ON" VOLTAGES

-

70

-

'5.0

10

20

MPS-AOS, MPS-A06NPN· (SILICON)
MPS-ASS, MPS-AS6PNP

COMPLEMENTARY SILICON ANNULAR
AMPLIFIER TRANSISTORS

COMPLEMENTARY SILICON
AMPLIFIER TRANSISTORS

· .. designed for use as medium·power driver and low-power outputs.
•

High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc - MPS-A05, MPS-A55
= 80 Vdc (Min) @ IC = 1.0 mAdc - MPS-A06, MPS-A56

•

Excellent Current-Gain Linearity 1.0 mAdc to 150 mAdc - MPS-A55, MPS-A56
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 100 mAdc

•

MAXIMUM RATINGS
Symbol

MPS-A05
MPS-A55

MPS-A06
MPS-A56

Unit

VCEO

60

80

Vdc

Collector-Base Voltage

Vce

60

80

Vdc

Emitler-Base Voltage

VEe

4.0

Vdc

Collector Current - Continuous

IC

500

mAde

Total Power Dissipation@TA - 25°C
Derate above 2SoC

Po

625
5.0

mW
mW/oC

Total Power Dissipation@Tc= 2SoC

Po

1.5
12

mW/oC

-55 to +150

°c

Rating
Collector-Emitter Voltage

Derate above 2SoC
Operating and Storage Temperature

TJ,Tstg

Watts

Temperature Range

3

Thermal ResIstance, Junctton to Ambient
Thermal Resistance, Junction to Case

l ~-!r
Q

COLLECTOR

-4SPt

THERMAL CHARACTERISTICS
Characteristic

STYLE 1
PIN 1 EMITTER
2 BASE

Max

Unit

ROJA(1)

200

°C/W

ROJC

83.3

oC/W

Symbol

(1) RaJA IS measured with the device soldered Into a tYPical printed circuit board.

MILLIMETERS
DIM
MIN
MAX
A
4.450
5.200
B
3.180
4.19
4.320
C
5.330
D
0.407
0.533
F
0.407
0.482
L
N
P
Q

R

S

1.150

-

6.350
3.430
2.410
2.030

-

1.390
1.270
2.670
2.670

INCHES
MIN
MAX
0.175
o. 05
0.1 5
.165
0170
0.210
0.016
0.021
I 0.D16
0.01'

lJh'>llil.
0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO-92

976

-

-

0.055
0.050

-

0.105
0.105

MPS-A05,MPS-A06 NPN/MPS-A55,MPS-A56 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted.1
Characteristic

Max

Min

Svmbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB - 01

Vde

BVCEO
60
80

-

BVEBO

4.0

-

Vde

ICEO

-

0.1

!lAde

-

0.1
0.1

50
50

-

VCE(sat)

-

0.25

Vde

VBE(onl

-

1.2

Vdc

MPS-A05, MPS-A55
MPS-A06, MPS-A56

Emitter-Base Breakdown Voltage

-

(IE = 100!lAde,lc= 01
Collector Cutoff Current
(VCE = 60 Vde, IB = 01
Collector Cutoff Current

!lAde

ICBO

(VCB = 60 Vde, IE = 01
(VCB= 80Vde,IE= 0)

MPS-A05, MPS-A55
MPS-A06, MPS-A56

ON CHARACTERISTICS (1)
DC Current Gain

-

hFE

(lC = 10 mAde, VCE = 1.0 Vdel
(IC= 100 mAde, VCE= 1.0Vde)
Collector-Emitter Saturation Voltage

(lC = 100 mAde, IB = 10 mAde)

Base-Emitter On Voltage
(lC= 100 mAde, VCE= 1.0Vdcl
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (21
(IC = 10 mAde, VCE = 2.0 Vde, f = 100 MHz)
(1) Pulse Test: Pulse Width ';;;300!ls, Outy Cycle ';;;2.0%.
(21 fT is defined as the frequency at which jhfel extrapolates to unity.

FIGURE 1 - SWITCHING TIME TEST CIRCUITS

Turn-on Time

-1.0V

Turn-off Time

Vee

+VBB

+40V

100

100

-,or:::--,,--.. Output
Vin

tr"" 3.0 ns

--,

I ~!lF

L-.J

100

--15.0 !lsI-tr;;: 3.0 ns
·Total Shunt Capacitance of Test Jig and Connectors
For PNP Test C,ircuits. Reverse All Voltage Polarities

977

100

MPS-A05,MPS-A06 NPN/MPS-A5.5,MPS-A56 (continued)'

NPN

PNP

MPS·A05. MPS·A06

MP8-A55. Mps·A56

FIGURE 2 - CURRENT-GAIN-BANDWIDTH PRODUCT
300
:z:

~ 200 r::>

VCP 2.0 V
TJ: 25°C

Q

~

100

'f
z

0

.

15z

~~

a'"'"

J:'

it;

r\

I

JI

f- VCE=2.0V

V

TJ=250C

::>

~100

\

V

:z:

I:i

200

-

I II

"N

:z:

!;

0

/

~

~ 50
I

z

~

0

~

0

~

0
2.0

3.0

5.0 7.0 10
20
30
50
IC. COLLECTOR CURRENT (rnA)

70 100

a
J:'

200

20
2.0

50
5.0 7.0 10
20
30
IC. COLLECTOR CURRENT (rnA)

3.0

70

100

200

FIGURE 3 - CAPACITANCE
0

100
70

0,,40

..
w

~

20

I-

13

;t
~

10

U

S.O

Cib

r-...,

-

, Cib

-

r--.
r-..

Cob

0.5
1.0
2.0
5.0
10
VR. REVERSE VOLTAGE (VOLTS)

20

Cob

........

0

0.2

.TJ: 25°C

......

r-...

6.0
4.0
0.1

50

TJ = 25°C

7.0

50

5. O.
0.1

100

1.0
2.0
5.0
10
0.5
VR. REVERSE VOLTAGE (VOLTS)

0.2

20

50

100

FIGURE 4 - SWITCHING TIME
1.0k

1.0 k

700
500
300

~

100

>=

70
0
0
0

'r--..

~

200

:!

700
500

ts

~

~

'"

10

r--..

0
0

11

I

VCC=40V
IC/ls: 10
lSI: IS2
TJ = 25°C

10
5.0 7.0

200

"-

0

td@ VSE(off) = 0.5 V
I r II

ts

"-

300

f"'-..

20
30
50 70 100
IC. COLLECTOR CURRENT (mA)

t,

0

,/

0

r200

300

0
5.0

500

978

:

"'- ......
"-

...........
.......

~
tf

td@VSE(off) = 0.5 V
VCC= 40 V
Ic/lS = 10
lSI = IS2
TJ = 25°C
7.0

10

......
"-

20 30
50
70
100
Ic. COLLECTOR CURRENT (rnA)

t,

r--..r200

300

500

MPS-A05,MPS·A06 NPN/MPS-A55,MPS·A56 (continued)

FIGURE 5 - THERMAL RESPONSE

~
~

1.0
0.7
~
O.S

c(

c~
;;

D zO.5

~

0.3

~

0.2

~

-

0.1
O.

I-

O. 1
0.0 71-- ~--'= .01
~ 0.05 I-- P SINGLE PULSE

i
E0.03
t-

pfJUL
t~j

DUTY CYCLE. D I1/t2

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT I1ISEE AN-469)
TJlpk) - TC z P(pk) ZOJC(t)

,~i""

'"
z

0.02 f..--' ~

~

1
0.01.0

~

-

I-- f- 0.2

S~GILE Ju ~sJ

ZeJClt) z ,It). ROJC

I

2.0

S.O

10

20

100

50

200
500
t,TIMElm,)

"

i"i -

't

~Jtlt)" jlt) •LRO~~

1.0 k

2.0 k

IPk ) ~T

S.O k

10 k

'j PIP1 Z~Al)li
20 k

50 k

lOOk

FIGURE 6 - ACTIVE - REGION SAFE OPERATING AREA
MPS-A05, MPS-A06

MPS-A55, MPS-A56

1.0 k

1.0 k

700
50 0
;{

.s
t-

~

a'"

30 0
200

soo
1.0ms

1'.

"-

1.01,

- ...

70

50 f-

-- --

8

30

E

- Thermal Limit
- - Second Breakdown Limit

20

~

10
1.0

~

'"

TA =2SoC

:5

~

1 300

1\

TC =2SoC "-

......

100

100.,

700

100.,

,

Current limit

III

....

a 100
'"

~ ~~

,"',

8

30

~ 20

MPS-AOS
MPS-A06

2.0 3.0
5.0 7.0 10
20
30
50
VCE, COLLECTOR-EMITTER VOLTAGE IVOLTS)

200

10
70

100

1.0

......

1.0m;'j

I..........

....

"-b..l.~,
TC = 25°C

I....

1' ....

Tr 2SoC
- - - - Current limit
- Thermal limit
- - Second Breakdown Limit

, ,

....

MPS-ASS= ~~
MPS·AS6

2.0 3.0
S.O 7.0 10
20
30
50
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

The safe operating area curves Indicate Ie-VeE limits of the transistor that must
be observed for reliabJe operation. Collector load lines for specific circuits must fall
below the limits indicated by the applicable curve.
The data of Figure 6 is based upon T J(pk) == 150°C; T C or T A IS variable depending
upon conditions. Pulse curves are valid for duty cycles to 10% provided T J(pk) ~
150o C. TJ(pk) may be calculated from the data In Figure 5. At high case or ambient
temperatures, thermal Iimitations will reduce the power that can be handled to values
less than the limitations imposed by the secondary breakdown. (See AN-415A)

979

,

~

70

100

MPS-A05,MPS-A06 NPN/MPS-A55, MPS-A56 (continued)

NPN
MPS-A05, MPS-A06
FIGURE 7 - DC CURRENT GAIN

400

-- - TJ

z

.

;;: 200
to

Z

~

-

~

---

'":::>'-'
'-'

co

~

100
80

.....

-

11250c

--

250C

~
-550C

..- r---

i-"

-l-

~

-I-

VCE 1.1.0V

lot,..

"

-

--... ~
~

~
"-

60
40
0.5

~

0.7

1.0

2.0

3.0

5.0

FIGURE 8 - "ON" VOLTAGES

1.0

~~ ~1250C

II

~

r:---

l::±±J::!::m=-r-

i

0.6

11'111

g

..-

~

f-'

0,8

IIII

III~I~ \0 rnA 5~

rnA

w

to

~

o

~SE:on: ~ J~i ~11.0 v

>

~~

0.4

300

>-

~

o. 2
VCEI';'t)@ IC/IS • 10
-i -j I 1'1111

z.O

500

I II

11~J~A- z;o~l

II

T/.

z;Oc l

11500m~-

0.6

0.4

a:

>

1.0

200

a:

co

0
0.5

100

FIGURE 9 - COLLECTOR SATURATION REGION

IIII

II IIII
VBElsat)@ IC/IS = 10

~
w
to

70

1.0

o. B

~co

50

7.0
10
20
30
IC. COLLECTOR CURRENT ImA)

8

~

5.0
10
ZO
50
IC. COLLECTOR CURRENT ImA)

100

\

O.Z

200

~
>

500

0

0.05

0.1

-0.2

r--

0.5
1.0
Z.O
5.0
IC. COLLECTOR CURRENT ImA)

FIGURE 10 - BASE-EMITTER TEMPERATURE COEFFICIENT

-0.8

~

:>

.s

-1.2

5;:; -1.6

v

u::
It

8
w

.",

/.
IVS lor VSE

-z.O

I--- r-

:::>

S -2.4
~

.

~

.;

~

-2.8
0.5

1.0

Z.O

5.0
10
20
50
IC. COLLECTOR CURRENT ImA)

980

100

200

-

:--

i'---

:---1-

500

10

zo

50

MPS-A05,MPS-A06 NPN/MPS-A55,MPS-A56 (continued)

PNP
MPS-A55, MPS-A56
FIGURE 11 - DC CURRENT GAIN
400

I

TJ = 125°C

r--

z

iii

200

25°C

~

'"u=>
2:

i

VC~=1.0V
---......

i'-.

'~ t\.

-55°C'
100

80

--"'1"'-

~

0
40
0.5

0.7

1.0

2.0

3.0

5.0

7.0
10
20
30
IC. COLLECTOR CURRENT (rnA)

FIGURE 12 - "ON" VOLTAGES
1.0

~~I~ 25°C

:.
0

~

.

VBE(on)

~

~ Jc~ ~

~
0

:.-- r-

l.-I--l-±::l±ttI-- I-

0.6

~

n

0

\

o. 6

>

Iv

Ic=10rnA- 50rnA

'"

~

0.4

I-

0.2
VCE(sa')@ IcllB = 10
1.0

2.0

~

f--

5.0
10
20
50
100
IC. COLLECTOR CURRENT (rnA)

w

200

>'"

500

0
0.1

-

0.2

--

r--..

5.0
1.0
2.0
0.5
lB. BASE CURRENT (rnA)

FIGURE 14 - BASE·EMITTER TEMPERATURE COEFFICIENT
-0.8
u

3;

-1.2

.5
I-

1/

::5

C3 -1.6

~

8

~

'"~
~

0VB for VBE

-2.0

-2.4

~

/'

---

I-

~ -2.8

~

0.5

1.0

2.0

5.0
10
20
50
IC. COLLECTOR CURRENT (rnA)

981

500 rnA

1\

2

0
0.05

I

100 rnA-\ 250 rnA

~ 0.4
o

5.0

500

TJ = 25°C

0

>
>-

300

200

o. 8

"'to

:.'"

to

:.

100

FIGURE. 13 - COLLECTOR SATURATION REGION

vI--'

VBE(sat)@IC/IB= 10
0;

70

1.0

II III
II III

0.8

50

100

200

500

1\
I-10

I-

20

50

MPS·A09 (SILICON)

NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
AMPLIFIER
TRANSISTOR

... designed for preamplifier applications in audio amplifiers.
Breakdown Voltage • Collector-Emitter
BVCEO = 50 Vdc (Min)
IC = 1.0 mAdc
Figure • LowNFNoise
= 1.4 dB (Typ) IC = 100 /lAdc
@

@

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

50

Vdc

Collector·Base Voltage

VCB

50

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

IC

50

mAde

= 25°C

Po

350
2.8

mW
mW/oC

= 2SoC

PD

1.0
8.0

mW/oC

TJ,T stg

-55 to +150

°c

Collector-Emitter Voltage

Collector Current - Continuous
Total Power Dissipation @ T A

Derate above 25°C
Total Power Dissipation@ TC

Derate above 2SoC
Operating and Storage Junction
Temperature Range

Watt

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

Symbol

Max

Unit

ROJA (1)

357

°C/W

ROJC

125

°C/W

STYLE 1.
PIN 1. EMITTER
2. BASE
3. COLLECTOR

(1) AOJA is measured with the device soldered into a typical printed circuit board.

DIM
A
B
C
D
L

N
P

a

R
S

MILLIMETERS
INCHES
MAX MIN
MAX
MIN
4.450
5.200 0.175
0.205
3.18
4.190 0.125
0.165
5.330 0.170
4.320
0.210
0.407
0.533 0.016
0.021
0.407
0.482 .0.016
0.019
.7
I.~UU
1.150
1.390 0.045
0.055
1.270
0.050
6.350
0.250
3.430
0.135
2.410
2.670 0.095
0.105
2.030
2.670 0.080
0.105

CASE 29-02
TO-92

982

MPS-A09 (continued)

ELECTRICAL CHARACTERISTICS

(TA

Characteristic

= 25°C unless otherwise noted)

Symbol

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
{IC = 1. 0 mAde, IB = 0)

(1)

Collector-Base Breakdown Voltage
(Ic = 0.1 mAde, IE = 0)

BVCEO
BVCBO

Collector Cutoff Current
(VCB = 25 Vdc, ~ = 0)

ICBO

Emitter Cutoff Current
(V BE = S.O Vdc, IC = 0)

~BO

50

-

-

50

-

-

-

-

100

-

-

100

100

-

600

Vdc
Vdc
nAdc
nAdc

ON CHARACTERISTICS
DC Current Gain
(IC = O. 1 mAde, VCE

hFE

= 5.0Vdc)

Collector-Emitter Saturation Voltage
(IC = 10 mAde, IB = 1.0 mAde)

VCE(sat)

-

-

0.9

Base-Emitter On Voltage
(IC = 1. 0 mAde, VCE = 5.0 Vdc)

VBE(on)

-

-

1.0

SO

80

-

-

-

5.0

-

1.4

-

Vdc
Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = O. 5 mAde, VCE = 5.0 Vdc, f
Output Capacitance
(VCB = 5.0 Vdc, IE

Cob

= 0, f = 100 kHz)

Noise Figure
(IC = O. 1 mAde, VCE
RS

fT

= 20 MHz)

= 5. 0

NF
Vdc,

= 6. 8 k ohms, f = 1. 0 kHz)

(1) Pulse Test: Pulse Width.;; 300 /..IS, Duty Cycle';; 2.0%.

983

MHz
pF
dB

MPS-A09 (continued)

FIGURE 1 - DC CURRENT GAIN

---

4.0
~ 3.0

~ 2.0
~

--

o

z
z
;;: 1.0

'"

I-

~ 0.1

B0.5

g

-

VCE = 5.0 Volts

N

0.4

f..---

~ 0.3

0.2
0.01

0.02

0-03

~

---

0.05

TA = I(SOC

~
~f-SSoc

0.1

~

0.2
0.3
0.5
IC. COLLECTOR CURRENT (mAl

_

1.4

1.3
1. 2
w 1. I

?
~

I 111111
I I jllil

I
I

Ic=O.lmA

1.0mA

"

t;
~ 160

_\.

"
b

\
\

~"

z

=

a
0.1 0.2

0.5

1.0 2.0

5.0

V

50

100 200

10

500 1000

V ............

5.0V

V

/'

~ 40

B

20

80

;;:
'">'-

........

-

10

5.0

~V

120

3:

o

0.4
0.3
S 0.2
~ 0.1

---

./

VCE = 15 V

~

\.

~

I-

II
II

t- TJ = 2S0lC
f=20MHz

~

I\:

~

O. 9
0.8
~ O. 7
~ 0.6
tE: 0.5
~

'"""

3.0

2.0

'" 200

IO~AI

5.0~AI

1.0

&:I:

>

.I
I

I
1

1.0

~ f-

FIGURE 3 - CURRENT GAIN-BANDWIDTH
PRODUCT

FIGURE 2 - COLLECTOR SATURATION REGION

~

--

r-

f- I-"

V
0.1

lB. BASE CURRENT (.AI

./
0.2

0.5
2.0
1.0
IC. COLLECTOR CURRENT (mAl

5.0

10

NOISE FIGURE
(VCE

= 5.0 Vdc, T A = 25°C)

FIGURE 4 - FREQUENCY EFFECTS
14
12

I\'"
\

CD 10

:s
w

~ 8.0

'"u:
~

6.0

u..~

4.0

oz
z

1IIIi~I'.0~A IR~!lli~h
' IJoO.~

100.A

I'i

r\

a
0.010

~SI=, ~IJ kn

II WJlls.OV~It~J

RS =OPTIMUM SOURCE
RESISTANCE
TA=2SoC

til ,iii'

120~~ IRlsl;li2kn

\

2.0

~S ~ ~.h' ~g

FIGURE 5.- SOURCE RESISTANCE EFFECT

"

"""

-

'"-

.........

0.100

1.0

10

100
RS, SOURCE RESISTANCE (OHMSI

f, FREQUENCY (kHz)

984

MPS-A 12 (SILICON)

NPN SILICON DARLINGTON TRANSISTOR
NPN SILICON
DARLINGTON
TRANSISTOR

· .. designed for preamplifier input applications requiring input
impedance of several megohms.

•

Excellent Current-Gain Linearity from 1.0 mA to 100 mA

•

Features Extremely High Current Gain 20,000 (Min) @ IC = 10 mAdc

•

Monolithic Construction

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VeES

20

Vde

Collector Current - Continuous

VES
Ie

10
500

mAde

Total Device DISSipation @TA -2SoC

PD

625

mW

TJ,T stg

-55 to +150

°e

Collector-Emitter Voltage
Emitter-Base Voltage

Vde

Derate above 25°C
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case
(1) ROJA

IS

measured with the device soldered rnto a typical printed circuit board.

ELECTRICAL CHARACTERISTICS
Characteristic

I Symbol

Min

Typ

Max

20

-

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

(lc

= l00I'Ade, IS = 01

Collector Cutoff Current

(VCE

= 15 Vde, VSE = 0)

Collector Cutoff Current

'CES
ICBO

(VCS = 15 Vde, 'E = 0)
Emitter Cutoff Current

Vde

SVeES

'ESO

(VEB = 10 Vdc, IC = 0)

nAdc

-

-

100

-

-

100

-

-

100

nAdc
nAdc

DIM
A

ON CHARACTERISTICS
DC Current Gain

(Ie = 10 mAde, VCE

=5.0 Vde)

Collector-Emitter Saturation Voltage

B

(lC

= 10 mAde, VCE = 5.0 Vdc)

-

hFE
VCE(s."

(IC = 10 mAde, IS = 0.01 mAde)
Base-Emitter On Voltage

VSE(onl

20,000

-

-

-

-

1.0

-

-

Vde
Vde
1.4

(VCB = 10 Vde, 'E

=0, I = 100 kHz

Small-5ignal Current Gain

(lc

pF

Cob

= 10 mAde, VCE = 5.0 Vde,

-

8.0

-

-

35

-

e

o

MILLIMETERS
MIN
MAX
4.450
5.200
3.1Bu
4.190
4.320
5.330
0.407
0.533
0.407
0.4B2

K

12.700

L
N
p

1.150

Q

SMALL-SIGNAL CHARACTERISTICS
Output Capacitance

STYLE 1:
PIN I. EMITTER
2. BASE
3. COLLECTOR

R
S

6.350
3.430
2.410
2.030

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
0.Ul6
u.ul"
0.500

1.390
1.270
2.670
2.670

0.045
0.250
0.135
0.095
0.080

-

hie

1= 1.0 kHz)

985

CASE 29-02
TO-92

0.055
0.050
0.105
0.105

MPS-A 12

(continued)

FIGUR'E 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
200k

~J ~ :~5'C

100 k
70 k

"-

:,.....,..

..-

.......

1.6

,

«

~

i"o.

30 k

0

10 k

.c

5.0 k

~

"'"'
«
':; 1.0

i3

:s

IIII
IIII

>
>-

-55'C

O.B
VCE-5.0V -r--

io+1""

3.0 k

II

2.0 k
5.0

7.0

50 70 100
20
30
lC. COLLECTOR CURRENT (mA)

200

300

~
o~

>

3.0
2.5

II I II 11
II I II II
r:C I
1~~~ 5~~A
=

~

JlI II
III II
~~O ~~

IIIII
IIIII

50

100 200

'"~
~

"'
i3

1.0
O.B

.~
~

;;

r'va for VaE

......- V-

J..I..I+-t'"

-I--

-550C to 250C

1111

-6. 0

500 1000

5.0

7.0

10

20
30
50 70 100
IC. COLLECTOR CURRENT (mA)

-

I
200

300

500

FIGURE 6 - CAPACITANCE

,/

.111

. . . r-..

liJI:

l5'C

10

V

~

z

0.6

:;;i 0.4

5

Cob

u

~

1.0

2.0

0.5
10
20
50
100
IC. COLLECTOR CURRENT (mA)

200

.......

J. 0
2. 0
0.04

500

986

cC,b

5. O

;i;

l
0.2
0.5

7. 0

-J..J...LJ.J..LL.-L.......I...L.LJ.J..uL..J...J.-L.LW..J.JJJ

2.0
5.0 10 20
lB. BASE CURRENT (PA)

---

-550 Cto 25°C

S

S

1.0

.-

~

ffi

t:; -3. 0

1.0

0.5

"'8ve for VCE(sat)

~ -2.0

5~ ~ll+--++-I-++++++I

~ H+N++t~.t-I-+++Httf-"l.d.....-+*I+tIIH+-++H+H1
0.2

I

-

20
30
50 70 100
IC. COLLECTOR CURRENT (mAl

'APPLIES FOR Iclla'" hFE/3.0
u

1.5 H-f-Httttit--H-+++H\tH-f-Htttttt-++-+++1rttt1

0.1

1-;::: .....

FIGURE 4 - TEMPERATURE COEFFICIENTS

2.0 H-f-H++I+I---H-+++t+++H-HH+++++l-++-+-++1f.1Hj

>

10

-1. 0

ffi

1::

I

0.6
5.0 7.0

500

FIGURE 3 - COLLECTOR SATURATION REGION

~

I I
I I

VCE(",)@ICIIB= 1000

I I

10

-

v

~ ~ I-""

VBE(,n)@ VCE = 5.0 v

0

~ 7.0k

~

ITiT

1.2

~

20k

I I
I I

~BIEi~t) @I~/IB 11000

[i25'C

!; 50 k

"'
~

I-

IIII
TJ=25'C

1.4

0.1

0.2
0.4
1.0
2.0
4.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

40

MPS-A 13 (SILICON)
MPS-A14

NPN SILICON
DARLINGTON
TRANSISTORS

NPN SILICON DARLINGTON
AMPLIFIER TRANSISTORS

· . . designed for pre·amplifier input applications requiring high
input impedance.
•

High DC Current Gain @ IC = 10 mAdchFE = 5,000 (Min) MPS·A 13
10,000 (Min) MPS·A 14

•

Coliector·Emitter Breakdown Voltage BVCES = 30 Vdc (Min) @ IC = 100/JAdc

•

Low Noise Figure NF = 2.0 dB (Typ) @ IC = 1.0 mAdc

•

Monolithic Construction

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCES

30

Vdc

Collector-Base Voltage

Vca

30

Vdc

Emitter-Base Voltage

VEa

10

Vdc

ColiectorMEmitter Voltage

Collector Current

Continuous

Total Power Dissipation @ T A = 25u C

IC

500

mAde

Po

625
5.0

mW
mW/oC

Po

1.5
12

Watts
mW/oC

TJ,T stg

-55 to +150

°c

Derate above 2SoC
Total Power Dissipation@Tc- 2SoC

Derate above 2SoC
Operating and Storage Junction

Temperature Range

0-:111-'-1-1- L

~R~

3.

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Ambient (1)

R8JA

200

°CIW

Thermal Resistance, Junction to Case

R8JC

83.3

uCIW

(1) R9JA is measured with the device soldered into a typical print" circuit board.

lor

STYLE 1:
PIN 1. EMITTER
2. BASE

DIM
A

MILLIMETERS
MIN
MAX

C
0

F

U.401

L
N

P
0
R
S

1 ,

.7
1.150
6.350
3.430
2.410
2.030

•

-000

COLLECTOR

4.450
3.1BO
4.320
0.407

B

~
--1 =rt

5.200
4.190
5.330
0.533
u... 2
1.390
1.270
2.670
2.670

B

S

INCHES
MIN
MAX

0.175
0.1>0
0.170
0.D16
0.016

0.205
0.165
0.210
0.021
0.019

0.045

0.055
0.050

0.250
0.135
0.095
0.080

CASE 29'()2
TO-92

987

~

S

0.105
0.105

MPS-A13,MPS-A14 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
BVCES

30

-

-

Vde

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)

ICBO

-

-

100

nAde

Emitter Cutoff Current

lEBO

-

-

100

nAde

MPS-A13
MPS-A14

5000
10,000

-

-

MPS-A13
MPS-A14

10,000
20,000

-

-

Collector-Emitter Breakdown Voltage
(lC = 100"Ade,IB = 0)

(VBE = 10 Vde, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain

-

hFE

(lc = 10 mAde; VCE = 5.0 Vde)
(lC = 100 mAde, VCE = 5.0 Vde)

-

VCE(satl

-

0.75

1.5

Vde

"BE (on)

-

1.29

2.0

Vde

High Frequency Current Gain(2)
(lC = 10 mAde, VCE = 5.0 Vde, f = 100 MHz)

IhFEI

1.25

2.0

-

MHz

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)

Cob

-

5.4

-

pF

Noise Figure
(lC = 1.0 mAde, VCE = 5.0 Vde, RS = lOOk ohms, f= 1.0 kHz)

NF

-

2.0

-

dB

Collector~Emitter

Saturation Voltage

(lC = 100 mAde, IB = 0.1 mAde)
Base-Emitter On Voltage

(lC = 100 mAde, VCE = 5.0 Vde)
SMALL-SIGNAL CHARACTERISTICS

(1) Pulse Test: Pulse Width .. 300 "S, Duty Cycle" 2.0%.
(2) fT = Ihfel. f test

988

MPS-A 13,MPS-A 14

(continued)

FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
3. 0

~
N

2. 0

:::;

"

T~; 112~OC

~

O. 7

~_

~
'"~

3
0
0.2

'"

uJ

~

O. 1
0.0 7
0.0 5

~>

t......

i=-550C

:>

f--/-

VCE-5.0V
10

20
30
50 70 100
IC. COLLECTOR CURRENT IrnA)

200

JOO

IIII 11

ITII

O.B

~ 2.5

"''"
o~

II

II

II

III

II! II

:C~ 1~~A 5~~A

III II

III II

IIIII

IIIII

I II

1.5

~

i*

25°C to 125°C

~~

.....

IIII

1.0

2.0
5.0 10 20
lB. BASE CURRENT .,A)

50

100 200

500 1000

~

~

fl
~

I-'VB lor VBE

7

J-

-

-550C to 250C
-6.0
50

HIT T
7.0

10

50 70 100
20
30
IC. COLLECTOR CURRENT ImAI

200

300

500

FIGURE 6 - CAPACITANCE
0

VCE=5.0V
1= 100 MHz
TJ= 25°C

,/

-

r-...

2. 0

0

11111
'iJ IJ J50C

,/
0

10

~ O. B
Cii

I

-S .0

FIGURE 5 - HIGH FREQUENCY CURRENT GAIN
4. 0
z

i.- ....

J.W.t.--r .......----

0

~

i

0.5

500

--- ....

·i~ .......

--+-

>-

0.50.1 0.2

300

2(o~11 250~

-550C to 250C

-4.

O

200

~

C3 -3. 0

2.0

r

~

20
30
50 70 100
IC. COLLECTOR CURRENT ImAI

+8VC for VCE(sat)

~ -2. 0

~~O ~~ 5~~~ll

I\,

-

P

I
10

"APPLIES FOR ICIIB" hFE13.0
G

TJ= 25°C

>

~

I I

-1. 0

'"

~

~~

FIGURE 4 - TEMPERATURE COEFFICIENTS

FIGURE 3 - COLLECTOR SATURATION REGION
3.0

--

.....

VBElon)@VCE = 5.0 v

0.6
5.0 7.0

500

~ ;.,...

~

1.0

VCEI ..tI@ICIIB= 1000

0.03
5.0 7.0

~

I

?IE\it)@I~ ;;...
1.2

w

'""

fl

u

I I
I I

11111.

25°C

~ O. 5

'"

IIII
TJ= 25°C

1.4

1o

i'1!

r--..

I--

.....t-

1.6

C,b

O. 6

f-

...... ~b

0

j
~ O.4
3. 0
O. 2
0.5

1.0

20

0.5
10
20
50
100
IC. COLLECTOR CURRENT ImA)

200

2. 0
0.04

500

989

0.1

0.2
0.4
1.0
2.0
4.0
YR. REVERSE VOLTAGE (VOLTSI

10

20

40

MPS-A 16 (SILICON)
MPS-A17

NPN SILICON ANNULAR TRANSISTORS

NPN SILICON
CHOPPER
TRANSISTORS

... designed for use in moderate speed switching and clipping applications that require large input voltage capability.

•

High-Emitter-Base Breakdown Voltage BVEBO = 12 Vdc (Min) @ IE = 0.1 mAdc - MPS-A 16
= 15 Vdc (Min) @ IE = 0.1 mAdc - MPS-A 17

MAXIMUM RATINGS
Rating

MPSA16

Symbol

Collector-Emitter Voltage

12

VEB

Collector Current - Continuous
Total Power Dissipation @TA - 25°C
Derate above 2SoC
Total Power Dissipation @TC = 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range

MPSA17

Unit

40

VCEO

Emitter-Base Voltage

I
I

Vde
Vde

15

IC

100

mAde

Po

350

mW

Po

1.0
8.0

mW/oC

-5.0 to +150

°c

TJ.Tstg

Watt

THERMAL CHARACTERISTICS

SEATING.J~L-i

Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

PLANE

(1) R8JA is measured with the device soldered into a typical printed circuit board.

D-jIPM-L

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

I

Min

I

Max

Unit

-

Vde

=:]R~

lor

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (2)
IIC = 1.0 mAde, IB = 0)

BVCEO

Emitter-Base Breakdown Voltage
liE =0. I mAde, IC =0)

BVEBO

Vde
12
15

-

ICBO

-

100

nAdc

lEBO

-

100

nAdc

MPS-A16
MPS-A17

Collector Cutoff Current

40

IVBE = 10 Vde, IC = 0)

h~E

200

600

-

VCElsat)

-

0.25

Vde

IIC= 10 mAde, IB = 1.0mAdc)

Current-Gain-Bandwidth Product (2)

100
80
Cob

-

4.0

IVCB = 10Vde, IE =0, f= 100 kHz)

(2)

P~lse

K

~./UU

1.150

Q

6.350
3.430
2.410
2.030

INCHES
MIN
MAX
0.175
0.205
u.125
u.l.5
0.170
0.210
0.016
0.021
U.Ul.
u.Ol.
O.~UO

1.390
1.270

-

2.670
2.670

0.045
0.250
0.135
0.095
0.080

MHz

fT

MPS-A16
MPS-A17

B

S

S

MILLIMETERS
MIN
MAX
4.450
5.200
3.1 0
4,1'-,,4.320
5.330
0.407
0.533
U...,
0.40

L
N
P

R
S

DYNAMIC CHARACTERISTICS

Output Capacitance

DIM
A
B
C
F

COllector-Emitter Saturation Voltage

IIC= 5.0 mAdc;VCE ~ 10Vde,
f = 100 MHz)

3. COLLECTOR

0

ON CHARACTERISTics
DC Current Gain (2)
IIC = 5.0 mAde, VCE = 10Vde)

J

~
--I =r-r
1 , 3
... 0 0

-

IVCB = 30 Vde, IE = 0)

Emitter Cutoff Current

STYLE I:
PIN 1. EMITTER
2. BASE

Test: Pulse Width", 300 IJ,S, Duty Cycle'" 2.0%.

990

pF

CASE 29-02
TO-92

0.055
0.050

-

0.105
0.105

MPS-A 16, MPS-A 17

(continued)

FIGURE I-DC CURRENT GAIN

-

500

- ---

TA - 2;OC
VCE 10 Vdc

--

300

z

~

f-

~

200

-I-

=>

u
u

c
ul
~

100

- I--

t-

V f--

e--

!
;>

,.,./ ,........ i-""'"MPS·A16

/'
100
0.1

0.3

0.5

II

I

1. 6

500

=> 400
-'

1

1. 8

IMPU17 1

1.4

1. 2

8 - I--

VSE(onl

o. 6

o.4
O. 2 - VCE(ltl

o

0.7

1.0

3.0

5.0

7.0

2.0

1.0

10

=>

...

c

~

10 0

"cf-

~

z

;;l
I

z

.-

-

f---

MP~'A161

~

w

10

~
<3
~
~
~

...............

2. 0

.......... ........

1.0

2.0

100

5.0

10

1.0
0.4

20

i--

MPS' A1

MPS'A17~

=>

u

0.5

IIIII

.....

30

0.2

50

4.0

5f-

TA = 25°C
VCE =.10 Vdc

o

20

20

TA = 25°C I

U
Z

"-

<.0

~

30

V

7.0
MPS.A1T"

,.:.

~

A

FIGURE 5 -OUTPUT CAPACITANCE

70
50

.1-

0

:;;.--

:;;:

MPS·AI6

IC. COLLECTOR CURRENT (mAl

FIGURE 4 -CURRENT·GAIN-BANDWIDTH PRODUCT

"
1!\
t;

5.0

V
~ 1-'1-

~ ~SAI6

~ IC/IS = 10

3.0

IC. COLLECTOR CURRENT (mAl

" 200

-

1.0

0.7

1.0

2.0

4.0

7.0

10

VR. REVERSE VOLTAGE (VOLTSI

IC. COLLECTOR CURRENT (mAl

991

20

40

MPS-A18 (SILICON)

NPN SILICON ANNULAR
AMPLIFIER TRANSISTOR

NPNSILICON
AMPLIFIER
TRANSISTOR

· .. designed for use in low-level, low-noise amplifier applications
with excellent gain linearity from 10 /lAdc to 10 mAdc.
• DC Current Gain hFE = 580 (Typl @ IC = 10/lAdc
= 1100 (Typl@ IC= 1.0 mAdc
•

Noise Figu;e NF = 4.0 dB (Typl @f= 100 Hz
= 0.5 dB (Typl@f= 10 Hz to 15.7 kHz

1
r

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

"VCEO

45

Vdc

Collector-Base Voltage

V CB

45

Vdc

Emitter-Base Voltage

V EB

6.5

Vdc

IC

200

mAde

= 2SoC

Po

350
2.8

mW
mWI"C

= 2SoC

Po

1.0
8.0

Watt
mWI"C

COllector-Emitter Voltage

Collector Current - Cont!nuous
Total Power Dissipation, T A

Derate above 2SoC .
Total Power Dissipation, TC

Derate above 2SoC
Operating and Storage Junction
"femperature Range

TJ,T stg

-55 to +150

A

1

SEATlNG4~~
~

PLANE

K

--.-l

O-jlrc~L
STYLE 1
PIN 1

2

3

°c

r_...J.

:::::] RIo';-

r

EMITTER .....
BASE
COLLECTOR

,

Q

,

3

OJ''

B

.....j;=n
THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal ResIstance, Junction to Ambient

ReJAlll

357

°CIW

Thermal Resistance, Junction to Case

ReJC

125

°CIW

11) ReJA is measured

With the device soldered. IOta a typical printed CirCUit board.

DIM
A
B
C

MILLIMETERS
MIN
MAX

F

4.450
3.18u
4.320
0.407
0.407

K

l!,1UU

0
L
N

1.15D

P

6.350
3.430
2.410
2.030

Q

R
S

-

INCHES
MIN
MAX

5.200 0.1 5
4.190 0.125
5.330 0.170
0.533 O.ot6
0.482 I 0.0 6
1.390
1.270

-

2.670
2.670

0.045·
0.250
0.135
0.095
0.080

CASE 29·02
TO·92

992

0.205
0.165
0.210
0.021
o D19
0.055
0.050
-

-

0.105
0.105

MPS-A18 (continued)

ELECTRICAL CHARACTERISTICS iT A" 25°C unless otherwise noted.)

I

Symbol

Min

TVp

Max

Unit

BVCBO

45

-

-

Vde

Collector-Emitter Breakd~n Voltage 11)
(lC" 10 mAde, IB" 0)

BVCEO

45

-

-

Vde

Emitter-Base Breakdown VolfBge

BVEBO

6.5

-

-

Vde

ICBO

-

1.0

SO

nAdc

400
500
500
500

580
850
1100
1150

-

Characteristic

I

OFF CHARACTERISTICS
Collector-Base Breakdown Voltage

(lC" 100/LAde, IE ,\0)

liE" 10jLAde, IC" 0)
Collector Cutoff Current

IVCB" 30 Vde, IE" 0)
ON CHARACTERISTICS 11)

DC Current Gain
IIC"
IIc =
lie =
(lC =

-

hFE

10 /LAde, VCE = S.O Vde)
100jLAde, VCE" 5.0 Vde)
1.0 mAde, VCE = 5.0 Vde)
10 mAde, V CE = 5.0 Vde)

Collector-Emitter Saturation Voltage

1500
Vde

VCElsat)

-

-

-

0.08

0.2
0.3

VBElon)

-

0.6

0.7

Vde

IT

100

160

-

MHz

Ceb

-

1.7

3.0

pF

Emitter-Base Capacitance
IVEB = 0.5 Vde, IC = 0, I " 1.0 MHz)

Ceb

-

5.6

6.5

pF

Noise F igu re
(Ie = 100jLAde, VCE = 5.0 Vde, RS = 10 kn, I" 10 Hz to 15.7 kHz)
IIc = 100 "Ade, V CE " 5.0 Vde, RS = 1.0 kn, I = 100 Hz)

NF

-

0.5
4.0

1.5

Equivalent Short Circuit Noise Voltage

VT

-

6.5

-

(lC = 10 mAde, IB = 0.5 mAde)
(lC = 50 mAde, I B = 5.0 mAde)

Base Emitter On Voltage
(lC = 1.0 mAde, V CE = 5.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 mAde, VCE = 5.0 Vde, 1= 100 MHz)
Collector-Base Capacitance

IVCB = 5.0 Vde, IE = 0, I = 1.0 MHz)

IIc = 100 JLAde, VCE " 5.0 Vde, RS = 1.0 kn, I = 100 Hz)
11) Pulse Test: Pulse Width <300 "s, Duty Cyele < 2.0%.

993

dB

nVt,JHi

MPS-A 18

(continued)

FIGURE 1 - TRANSISTOR NOISE MODEL

,-----------1
I

I

RS
~-V~--~~ in

Ideal
Transistor

I

I

L ___________ .J

NOISE APPLICATION NOTE

For a transistor, total noise at the input may be
expressed
= [
+ 4KT RS +
] y,
(1)

a~T

e~

NF

I~ R~

Of

(See Figure 1)
Where:
VT

K
T
RS

20 1091O

NF = 20 log 10
lOtal noise voltage at the transistor input
(Volts/.jHZ)
nOise voltage of the transistor referred to
the input (Figures 2 and 3)
nOise current of the transistor referred to
the input (Figure 4)
Boltzman's constant (1.38 x 10- 23 j/oK)
temperature of the source resistance (OK)
source rElSistance (Ohms)

%

VT 2

)

(2)

\ 4 KT RS

follows:
NF

= 20 10910

[

9 ~ Y, .
(7.2 x 10-)
= 4.9 dB
16.6 x 10- 18

This checks with the value read from Figure 7 of 5.0 dB.
To minimize rioise in a transistor sta!Jl', one 'Tlight use
Figure 7 and deduce that noise is minimized when Noise
Figure is minimum. This is not necessarily true as shown
by Figure 6 where the total noise voltage is a minimum at
small values of source imped~nce. This can. be seen from
equation (1) which shows that total noise is a direct
function of source resistance.
Noise over a frequency band can be handled in one of
two ways depending upon whether total transistor noise is
constant or variable over the bandwidth of interest:

Read en = 4.6 nV/..{HZ from Figure 2 or Figure 3.
(Note that this is for a one cycle bandwidth)
Read in = 3.6 pA/.jHZ from Figure 4.
VT = [(4.6 x 10- 9 )2 + (4)( 1.38 x
(1 x 10 3 ) + (3.6 x 10- 12 )2 (1 x

I.

7.2nV/~

For Constant transistor noise, multiply, VT by the
square root of bandwidth. i.e., V'T = VT • ~f~

2. For variable transistor noise, plot VT (where ~f =
1.0 Hz) versus frequency over the bandwidth and
integrate the result.

in Figure 6.

Example:
Read VT = 7.2 nV/~ at IC
RS = 1.0 kn.

noise voltage contributed
by the Source Resistance

NOise figure can be calculated for the above example as

Example:
Find the total noise at the input of an MPS·A 18 for a
collector current of 1.0 mA and a source impedance of
1.0 Kilohm at a frequency of 100 Hz and at a temperature
of 25 0 C.

This checks with the value shown

I.

total noise voltage

---,..--~~­

Total noise voltage at the output of the transistor stage
can be found by multiplying VT or VT by the voltage gain
of the stage.

1.0 mA and

Noise figure is defined as:

994

MPS-A 18

(continued)

NOISE CHARACTERISTICS
(VCE = 5.0 Vdc. T A = 25°C)

NOISE VOLTAGE
FIGURE 3 - EFFECTS OF COLLECTOR CURRENT

FIGURE 2 - EFFECTS OF FREQUENCY

30

~

IIII

\

20

~

"z
i

~ BLw,U= ~.~Uz

0

RS

~

0

RS

~
w
'"

\

~

">w

I~!~dWldt~ =: 1:.d ~!

I

Ili~1 = 10 Im~

w

'"
<

30

f=IOHz /

'"

"

~

3.0 rnA

~ 7. O~

r-- u.rnt-J.

r-

111111300~

20

50 100

3.0
0.01

200

500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k
f. fREQUENCY (Hz)

I

16 ~

Ic-l0mA

'H-IJ

"-

3.0

r-.

2.0

3.0mA

........

........

...........

g'"

11.0mA

~

BandwIdth = 10 Hz to 15.7 kHz

12

w

~

0.3

~ 8.0
u:

RS

~

20

50

500lJ,A

"fml.

o10

100 200
500 1.0k 2.0k 5.0k 10k 20k 50k lOOk
f. fREQUENCY (Hz)

20

50

00

IIIII
III
!IIII

00

~1 00
w

'"< 70~

II

I
I

FIGURE 7 - NOISE FIGURE

V
1.0

50

<5 20

i/

<
I-

V

~

....

~

/ V

1/

: Bandwidth ' 1.0 Hz

z

">-

II~~

10

v:

V......

,,

""'

7.0
5.0
3.0
10

20

50

100 200
500 1.0k 2.0k 5.0k 10k 20k
RS. SOURCE RESISTANCE (OHMS)

50k lOOk

RS. SOURCE RESISTANCE (OHMS)

995

'1°~ 0 ~

100 200 500 1.0 k 2.0 k 5.0 k 10 k 20 k 50 k 100 k
RS. SOURCE RESISTANCE (OHMS)

100 Hz NOISE DATA
FIGURE 6 - TOTAL NOISE VOLTAGE

~

~

./

10"A

0.1
10

Ic=1.0mA

i'.
40

To::[

0

~

z

100 ",A

r--.

0.2

~

10

u:

300 "A

~. 0.5

">w

I

w

'1-

1.0
0.7

5.0

II IIIII I IIIIIIII
IIIIIIII THIIIII

1.0 Hz'-

Bandwidth

5.0

100 kH;

0.1
0.2
0.5
1.0
2.0
IC. COLLECTOR CURRENT (mAl

FIGURE 5 - WIOEBAND NOISE FIGURE
20

7.0

~

0.05

10 kHz

14Jfffi

V

0.02

FIGURE 4 - NOISE CURRENT

=>
~

V

Jr- 5. O~ ~

1.0mA~

5.0

V
100 Hz

w

7.0 ~

10

I

1I

0

~ 10
>

10

3.0
10

~

~

MPS-A 18 (continued)

FIGURE 8 - DC CURRENT GAIN
3000
200Of--

V~E! J.J ~I

I--ITJ ~

i2~btl
25°C

1000 - - - -

-55°C

~ 700
~ 500

D-

~

30

~

20O

"
Q

i

100
0
0
0
0.01 0.02

005 0 I

0.2
0.5 1.0 2.0
5.0 10
IC. COLLECTOR CURRENT (mA)

FIGURE 9 - "ON" VOLTAGES
10

08

~

'"

06

100

FIGURE 10 - TEMPERATURE COEFFICIENTS

~ I, i5iCI

~-o. 8

III

3>
E

"'w>t= ~-1 1

~~E(~ni ~ vep 5 0 V

:E U

~

wU::

w

'"""~

50

-0. 4

I III
,J,

20

w"~ 8- 1.6
~w

0.4

TJ '" 25°C to 125°C

~f ~
>'"

>

o

IVCE(j": ~ )If;:r

0.01 0.02

')1
10

20

50

100

.,
~ 1'.

. . . . . .r-m r--.
Ccb

0

r--.

Jl

O. 8
01

TJ .1250~

g 300

r-....

'"'"
g;
%
:;

b

;;;'"

C,b

Ceb [\

0.5

50 100

20

LV
,/

i"

/'

0"......-

3<
z

;;;:

~ r--.
0.2

10

500

~

J

1. 0

0.1 0.2
0.5 10 1.0
5.0 10
iC, COLLECTOR CURRENT (mAl

%

~r--...
Cob

0.05

FiGURE 12 - CURRENT-GAiN-BANDWiDTH PRODUCT

H-

or-- t--

I f I III

0.01 0.01

FiGURE 11 - CAPACITANCE

Ot---

"

-550C to 250C

'"~ -2. 4

f-

0.05 0.1 0.2
0.5 1.0 2.0
50
IC. COLLECTOR CURRENT (mA)

8. 0

0

U?

~ ~-2 .0

02

1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)

'"~
~

50

100

996

'"

"
.t:'

100

r- VCE 5.0 V
7o'-- TJ' 250C
0
1.0

, I
2.0

3.0
5.0 7.0 10
20
IC, COLLECTOR CURRENT (mAl

3D

50

70 100

MPS-A20 (SILICON)
MPS-K20, MPS-K21,
MPS-K22

NPN SILICON
AMPLIFIER
TRANSISTORS

NPN SILICON ANNULAR TRANSISTORS
..• designed for use in audio, radio, and television applications.
•

MPS-K20, MPS-K21, MPS-K22 are 3, 5 and 9
Transistor Kits Available in Varied hFE RangesSee Table 1

•

High Breakdown Voltage BVCEO = 40 Vdc (Min)

•

Low Collector-Emitter Saturation Voltage VCE{sat) = 0.25 Vdc (Max) @ IC = 10 mAdc

•

Low Output Capacitance Cob = 4.0 pF (Max) @ VCB = 10 Vdc

@

IC

= 1.0 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

COllector-Emitter Voltage

VeEO

40

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Ie

100

mAde

Po

350
2.8

mW
mW/oe

Po

1.0
8.0

Watt
mW/oC

TJ.T stg

-55 to +150

°e

Collector Current - Continuous

Total Power Dissipation @TA - 2SoC
Derate above 2SoC
Total Power Dissipation @TC

=

2SDC

Derate above 25°C
Operating and Storage Junction
Temperature Range

SEATINGJ~ 1
PLANE

~

STYlE I:
PIN 1.

2.
3.

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case
(1) ROJA is measured with the device soldered into a typical printed circuit board.

DIM
A
B
C

D
K

L
N

P
Q

R
S

MILLIMETERS
MIN
MAX.

4.450
3.1"0
4.320
0.407
0.407
.7UU
1.150
6.350
3.430
2.410
2.030

INCHES
MIN
MAX

5.200
4.190
5.330
0.533
0.4"2

0.175
0.1l>
0.170
0,016
u.016

1.390
1.270

0.045

u.~uu

-

2.670
2.670

0.250
0.135
0.095
0.080

CASE 29-02
TO·92

997

0.205
u.165
0.210
0.021
0.019
0.055
0.050
0.105
0.105

MPS-A20, MPS-K20, MPS-K21, MPS-K22 (continued)

ELECTRICAL CHARACTERISTICS

(TA

= 25"C unless otherwise noted)

Characteristic

Max

Min

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)
(IC = 1. 0 mAdc, IB = 0)

BVCEO

Emitter-Base Breakdown Voltage
(~ = 100 !LAde, Ic = 0)

BVEBO

Collector Cutoff Current
(V CB = 30 Vdc, ~ = 0)

40

-

4.0

-

-

100

.40

400

ICBO

Vdc

Vdc

nAdc

ON CHARACTERISTICS
DC Current Gain ('2)
(IC = 5. 0 mAdc, V CE = 10 Vdc)

hFE

Collector-Emitter Saturation Voltage
(IC = 10 mAdc, IB = 1. 0 mAdc)

-

VCE(sat)

0.25

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(IC = 5.0 mAde, VCE = 10 Vdc,f = 100 MHz)

fT

Output Capacitance
(V CB = WVdc, IE = 0, f = 100 kHz)

Cob

(2) Pulse Test:

Pul~

125

-

-

4.0

MHz
pF

Width.;;; 300 /loS, Duty Cycle';;; 2.00/0.
FIGURE 1 - SIMPLIFIED AC EQUIVALENT CIRCUIT (Common Emitter)

BASE

Ccb

'b'

COLLECTOR

C.

Co

FIGURE 2 - SMALL SIGNAL CURRENT GAIN

Note:
Data for MPS-A20 is presented in ferms of the equivalent
circuit shown in Figure "1. Values for its components may be
found or calculated as follows:

rb • - See Figure 8
re = 26 mVllE

Ce

1
= 2.. f t re

Ccb· Cob - 0.2 pF (See Figure 6)
gm = 1/r.
Ue = (hfe +1) hob (See Figures 2 & 7)
Co = 0.2 pF

Low frequency h parameters may be found from:
hie = 'b' + (hfe +1) re
hfe = See Figure 2

700

z 500

;;:

co

ffi

300

'"

..,g;

- r-.TAf=1.0kHz
= 250 C

200

yNIT#3

--'

I

~ 100

UNIH2

<
z

--'

;;! 70

UNIT#I

~ 50
40

I

30
25
0.3

hre = Negligible
hoe· (hfe + 1) hob

998

I
0.5

0.7

2.0
3.0
IC. COLLECTOR CURRENT (mAdel
1.0

5.0

7.0

10

MPS-A20, MPS-K20, MPS-K21, MPS-K22 (continued)

FIGURE 4 - "SATURATION" AND "ON" VOLTAGES

FIGURE 3 - NORMALIZEO DC CURRENT GAIN
1.0

2.0

z

;;;:

'"
~

1.0

O.S

~

~
'-' 0.6
o
o
~
~ 0.4

w

\

<

~

~

to

1\

o. 3
0.2
0.2

0.5

1.0

2.0

5.0

10

20

50

100

I I
I I

III!
I III!

1-"'"

VaE(...) (lielis = 10

o. 7

VSE(on) II!> VCE = 10 V

O.6
O.5

~

O. 4

>

O.3

o

\,

iA~J501cl

O.a

~o

= .,

..'"

O.9 -

JCIEIJ \OV _
TA = 25°C

1.5

O.2

VCE(sat) II!>lells = 1~

0. 1

0
0.1

200

j

III I
0.2 0.3 0.50.71.0

IC, COLLECTOR CURRENT (mAde)

2.03.0

I
20 30

5.07.010

5070100

IC, COLLECTOR CURRENT (mAde)

FIGURE 5 - CURRENT -GAIN-BANDWIDTH PRODUCT

FIGURE 6 - CAPACITANCES

400

0

:J:

~ 300

t;

:::>

g
g:
:J:
....
o

ill

7.0

z

100
SO

.l:

60

:i
;;;:

'"
'"
~
'":::>

TA-250C -

200

i""'"

........

V

~ 5.O

VCE=lOV
TA"25DC -r--

-r-....

w

-

'-'
z

;!:

~

r--....

30
0.7

1.0

2.0

3.0

5.0 7.0

10

20

30

1.0
0.4

50

2.0

0.6 O.S 1.0

FIGURE 1- OUTPUT ADMITTANCE

~
:J:

170

-r--

W

'-'

VCE = 10 V
f=1.0kHz
TA=250C

~

160

40

r----.

Z

<

I;;

i..-'

1= o. 1

r--.... t-

20

....

~

o.2

6.0 S.O 10

FIGURE 8 - BASE SPREADING RESISTANCE

o.5

]

4.0

........

VR, REVERSE VOLTAGE (VULTS)

1.0

~

r--

40

IC, COLLECTOR CURRENT (mAde)

,j

:--..

r- Cob

U 3.0

c$ 2.0

~ 2~.5

C-

Cib

~

.... i-"

150

.......
VCE = 10V
f = 1.0 kHz
TA = 25°C

to
Z

;;;

C

o

~

~ 0.05
:::>

3;

o

~

r=:::>

140

I"

w

~ 0.02

0.0 1

0.1

130

'.e

0.2

0.5
1.0
2.0
IC, COLLECTOR CURRENT (mAde)

5.0

120
0.1

10

999

0.2

0.3

0.5
2.0
3.0
1.0
IC, COLLECTOR CURRENT (mAde)

5.0

10

MPS-A20, MPS-K20, MPS-K21, MPS-K22 (continued)

MP8-K20, MP8-K21 and MPS-K22are three, five
and nine transistor kits consisting of MPs-A2Q's
with various hFE selections_

Table 1
MPS-K20 - Three Transistor Kit
hFE OIC ~ 5_0 mAde, VCE = 10 Vde
Quantity Par Kit

Color Code

Min

Max

1

Red

40

1
1

White
Blue

80
120

400
400
300

MPS-K21 - Five Transistor Kit

=

hFE OIC· 5_0 mAde, VCE 10Vde
Min
Max

Quantity Par Kit

Color Code

3
1
1

Red

40

Green
Yellow

100
150

I

400
200
300

MP8-K22 - Nine Transistor Kit
Quantity Par Kit

4
2
2
1

Color Code

hFE 0 IC - 5_0 mAde, VCE • 10 Vde
Min
Max

Red

40

400

White
Green
Yellow

BO

400
200

1000

100
150

300

MPS-A 42 (SILICON)
MPS-A43

NPN SILICON ANNULAR TRANSISTORS
. designed for general·purpose applications requiring high break·
down voltages, low saturation voltages and low capacitance.
•

•
•

NPN SILICON
HIGH VOLTAGE
TRANSISTORS

High Coliector·Emitter Breakdown Voltage @ IC = 1.0 mAdcBVCEO = 300 Vdc (Min) - MPS·A42
200 Vdc (Min) - MPS·A43
Low Coliector·Emitter Saturation VoltageVCE(sat)=0.18 Vdc (Typ) @ IC = 20 mAde
Complements to PNP Types MPS·A92 and MPS·A93

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage
Collector-S•• VOltage
Emitter-Base Voltage

Collector Current

Continuous

Symbol

MP5-A42

VCEO

300

200

Vd,

Ve.

300

200

Vd,

VEe

60

6.0

Vd,

Total Device Dissipation OTC· 250C
Derate above 25°C

625
'.0
1.5
12

Po

Operating and Storage Junction
Temperature Range

mW

mWJOC
W.",

mWfOC

-65 to +150

TJ,Tstg

Unit

mAde

500

Ie
Po

Total Device Dissipation@TA .. 25"C
Derate above 26°C

MP8-A43

°e

r

THERMAL CHARACTERISTICS
Ch....cterinlc

1

A

I

Thermal Resistance, Junction to case

Thermal Resistance, Junction to Ambient

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)

I

Char....ilt:ic

Symbol

I

SEATING-1t
Min

Max

Unit

PLANE

BVCEO

Coltector·8aIe Sr_down Vol...

BVCBO

IIC:-1OO1J,Adc.le "0)

MPS-A42

Emitter-BaIt Breakdown Voltage
(Ie" 100 "Ade, IC '" 01

Vd,
300
200

STYLE 1:

6.0

Mps·A42
MJ>S.A43

Emttter Cutoff Current
IVSE .. 6.0 Vdc, IC" 01
IVSE .. 4.0 Vdc, IC - 0)

MPS-A42
MJ>S.A43

pAd,

ICBO
0.1
0.1

CoIlector..£mitter Satunltlon Volt.ge
tiC" 2OmAdc, IS" 2.0mAdcl

Both Types

0.1
0.1

DIM

Mps·A42
Mps·A43

25
40
40
50

DYNAMIC CHARACTERISTICS

.,.

Cumnt-Gtin Blndwldth Product
(lC -10mAdc. VCE - 20 Vdc,f-1OOMHz)

Collector·S_ CepeeiUll'lce
(Vcs-20Vdc,'e -O,f-1.0MHz)

MPS-A42
MPS-A43

Vdc
0.'
0.4

VBEIAt)

,

S

B

S

0 .•

Vd,

pF
3.0
4.0

C11Pul.. TIIIt: Pul.. Width S300 "', Dutv Cvel~2.0%,

1001

INCHES
MIN
MAX

0.175
0.125
0.170
0.016
U.' 1~

0.205
0.165
0.210
0.021
0.u19

L
N

1.150

1.390
1.270

0.045

0.055
0.050

p

6.350
3.430
2.410
2.030

0
R
S

2.670
2.670

0.250
0.135
0.095
0.080

MH,

50

Ceo

MILLIMETERS
MIN
MAX

5.200
4.190
5.330
0.533
0.482

F
200

VCEltat)

a.e-Emltter Satumion Vol.,.
UC"20mAdc,IS '"' 2.0 mAde}

1 ,

·000

4.450
3.180
4.320
0.407
0.407

B
C
D

hFE

Both Typ.
MPS-A42
Mps·A43

~
--I =r-T

pAd,

'eBO

ON CHARACTERISTICS
Uc·1.0mAdc, VCE -10Vdcl
Uc·10mAdc. VCE -10Vdcl
IIC-30mAdc, Vee -10Vdcl

PIN 1. EMITTER
2. BASE
3. COLLECTOR

).

DCCu"'ntG~n

l or .-l

Vd,

BVEBO

Collector Cutoff Current
IVcs -200Vdc,le -01
IVce-160Vdc,IE -"'01

~R~

Vd,
300
200

MP&A43

K

~
D~I!..!.I-+L

OfF CHARACTERISTICS
Collector-Emltter Bra.stdown Voltagel1)
MPS-A42
lie· 1.0 mAde. IS ·0)
MP5-A43

~

1

L-

CASE 29-02
TO·92

0.105
0.105

MPS-A42, MPS-A43 (continued)
FIGURE 1 - DC CURRENT GAIN
2 0 0 r - - ,I,
VCE = 10 Vdc

_I---............

I

I

IC, COLLECTOR CURRENT (mA)

FIGURE 3 -CURRENT·GAIN-BANDWIDTH PRODUCT

FIGURE 2 - CAPACITANCES
~ 100

10 0

~ 80

t;

0

g

~

20

'"
'"

10 -

w

;0

~ 60

............

Cob

V

"

\; 40

/

~

~ 30

U

;t

.:,

<.i

~ 20
>'-

55. 0
Ccb"

2.0

.........

r-

1.0
0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

V

TJ = 25°C

'"'l' '

~

~

..: 10
1.0

VR, REVERSE VOLTAGE (VOLTS)

2.0

500 ~

IIII

in

':;

11'11

!.I IJ

VeE(sat)@ Ic/le =·10

c

0.6

.

0.4

2!
w

'"':;

-

--

-

'<
E
~

.....

o
0.05

8

VCE(sa!) @ICIIB = 10

I III

III

II

0.1

0,2

0,5

~

1--....
1.0

2.0

100

"

<

./

""""'-"'·""'t·

625 mW THERMAL
.
~~IMITATION@TA=250C
/

.......

100",

·1.0m;-~

=>

~

-UJl.

100

50

1.5 WATT THERMAL

.......

~ 50
_

0.2

~OO

~

c

>
>'

20

FIGURE 5 - ACTIVE·REGION SAFE
OPERATING AREA

TJ = 25°C

O.B

10

5.0

IC, COLLECTOR CURRENT (m'A)

FIGURE 3 - "ON" VOL TAGES
1,0

r-..

L..-

,/

5.0

10

20

50

IC, COLLECTOR CURllENT (mA)

......

.......

~

.........

20

tIMITATI~

- - - BONDING WIRE
"
10 - - SECOND BREAK~OWN.
~IMITATION
.MPS·A43
TJ-150oC
MPS·A4
.5.0
3,0
5.0
20
30
50
10

\.

"100

VCE,COLLECTOR-EMITTER VOLTAGE (VOLTS)

MPS-A55 (SILICON)
MPS-A56
For Specifications See MPS-AOS Data.

1002

200

300

MPS-A6S (SILICON)
MPS-A66

PNPSILICON
DARLINGTON
TRANSISTORS

PNP SILICON DARLINGTON
AMPLIFIER TRANSISTORS

· . . designed for pre·amplifier input applications requiring high
input impedance.
•

High DC Current Gain hFE = 50,000 (Min) @ IC = 10 mAdc (MPS·A65)
75,000 (Min) @ IC = 10 mAdc (MPS·A66)

•

Collector·Emitter Breakdown Voltage BVCES = 30 Vdc (Min)@ IC = 100l.lAdc

•

Low Noise Figure NF = 2.0 dB (Typ) @ IC = 1.0 mAdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCES

30

Vdc

Collector-Base Voltage

VCS

30

Vdc

Emitter-Bass Voltage

VES

8.0

Vdc

Collector Current - Continuous

IC

300

mAde

Total Power Dissipation

T A = 25°C

Po

625
5.0

mW
mW/oC

= 2SoC

Po

1.5
12

mW/oC

Collector-Emitter Voltage

@

Derate above 2SoC
Total Power Dissipation @ TC

Derate above 2SoC
Operating and Storage Junction
Temperature Range

TJ,T'I9

5510 +150

STYLE 1:

PIN 1.
2.
3.

Watts

°c

DIM
A

B
C

o
F

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal 'iiesistance, Junction to Ambient

R8JA

200

°C/W

Thermal Resistance, Junction to Case

R8JC

83.3

°CIW

L
N

P
Q

R
S

MILLIMETERS
MIN
MAX

4.450
3.1 0
4.320
0.407
0.40
.7
1.150
6.350
3.430
2.410
2.030

5.200
4.19
5.330
0.533
_0.~2

INCHES
MIN
MAX

0.175
0.12.
0.170
0.016
0.016

u.l"5
0.210
0.021
0.019

u.•uu
1.390
1.210
2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO·92

1003

0.205

0.055
0.050
0.105
0.105

MPS-A65, MPS-A66

(continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

I

I

Symbol

Min

Typ

Max

Unit

BVCES

30

-

-

Vdc

Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)

ICBO

-

-

100

nAdc

Emitter Cutoff Current
(VeE = B.O Vdc, IC = 0)

IEeO

-

-

100

nAdc

MPS-A65
MPS-A66

50,000
75,000

-

MPS-A65
MPS-A66

20,000
40,000

-

-

VCE(satl

-

0.9

1.5

Vdc

VBE(on)

-

1.45

2.0

Vdc

IT

100

175

MHz

2.5

pF

Chlracteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC= 100 "Adc, IB' 0)

ON CHARACTERISTICS (1)
DC Current Gain
(lC = 10 mAdc, VCE = 5.0 Vdc)
(lC = 100 mAdc, VCE = 5.0 Vdc)

hFE

Collector-Emitter Saturation Voltage

-

-

(lc = 100 mAdc,lB = 0.1 mAdc)
Base-Emitter On Voltage
(lc = 100 mAdc, VCE = 5.0 Vdc)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(lC = 10 mAdc, Vce = 5.0 Vdc, I = 100 MHz)
Output Capacitance
(VCB = 10 Vdc, Ie = 0, I = 100 kHz)

Cob

Noise Figure
(lC = 1.0 mAdc, VCE = 5.0 Vdc, RS = 100 kohms, 1= 1.0 kHz)

NF

(1) Pulse Test: Pulse Width ';;;300 "s, Duty Cycle ';;;2.0%.
(2) fT = ihlei • ftest

1004

-

2.0

-

dB

MPS-A65, MPS-A66 (continued)

FIGURE 1 - DC CURRENT GAIN
1.5

ffi

Tl=2~DJ

...
N

:::;

~ 1.6

tllJ

I

1.0 f-VCE = 5.0 Vdc
0.7

'c"'

FIGURE 2 - BASE-EMITTER "ON" VOLTAGE

c 1.5

2

w

to

~

M S·A 5

......

0.5

~

";;:

to

0.3

I-

P

V

L

~
a 0.2

1.4

c

> 1.3
Z

:::;

t:

1.1

~

1.0

li
~

<..>

c

? 0.9

;

,/

1.2

..-

ill

0.1
0.1

0.2

0.5

1.0

5.0

2.0

10

20

-

---

~ 0.8

50

100

0.1

0.2

0.5

1.0

IC. COLLECTOR CURRENT ImAI

14 -

"'-

1

~100

~ 10

70

u::

z
~ 50
z

'"~

to

0.0

w

..:

;;::

Z

I-

~ 30

r\.

20
0.02

."
w

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

\

6.0
4.0

'"

......

........

2.0

r--....

t =1

T

0.3

20
18

~

'"0z

..............

S.O

u: 6.0
z

w

......

10

~.

10

20

50

100

200

500

1.0 k

2.0 k

5.0 k

o

10 k

7.0

1005

=1.0 !Jz ....... ~

"-

2.0

t, FREaUENCY 1Hz)

..... t

7.0

10

~

6.0

4.0

II

o

5.0

~100H'

I"--

'"oz S.O

..........

N--+-L

2,0

2.0
3.0
0.5 0.7 1.0
IC, COLLECTOR CURRENT ImAI

,

....... IC=1.0mAdc

4.0

_I--'

r.......

=>

u:

......

-

IC = 100.Ado

14

w

.. 12

IC = 100.Adc

to

10

,/

VCE~5.L~c I

......

16

16

" ....

/'

V

FIGURE 6 - EFFECTS OF SOURCE RESISTANCE ON
NOISE FIGURE

VCE = 5.0 Vdc
RS = 100 k Ohms

12

f-"""

I

l - r-

0.2

0.1

s..

14

oHz

i= 1.0 Ik~zl

o

20

to

Ii:
w

100

~

FIGURE 5 - EFFECTS OF FREQUENCY ON
NOISE FIGURE

os

50

VCE = 510 Vdc I
RS = 100 k Ohms

t, FREaUENCY IMHzl

.,

20

12

c

18

10

16

200

20

5.0

FIGURE 4 - EFFECTS OF COLLECTQR CURRENT ON
NOISE FIGURE

FIGURE 3 - EFFECTS OF FREQUENCY ON
TRANSCONDUCTANCE

"
~

20

IC, COLLECTOR CURRENT ImAI

10

20

r-

200 300
30
50 70 100
RS, SOURCE RESISTANCE Ik OHMSI

500 700 1000

MPS-A70 (SILICON)
MPS-K70, MPS-K71
MPS-K72

PNP SILICON ANNULAR TRANSISTORS

PNPSILICON
AMPLIFIER
TRANSISTORS

· .. designed for general purpose use in audio, radio, and television
applications.
•

MPS-K70, MPS-K71, MPS-K72 are
3, ~ and 9 Transistor Kits Available in
Varied hFE Ranges - See Table 1

•

High Breakdown Voltage BVCEO = 40 Vdc (Min) @lIC= 1.0 mAdc

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @lIC= 10 mAdc

•

Low Output Capacitance Cob = 4.0pF (Max,) @l VeB = 10 Vdc

r

A

l

Jl~

SEATINGJ~~-FI
i --7

MAXIMUM RATINGS

PLANE

Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Symbol

Value

Unit

VCE,O
VEB
IC

40
4,0

Vdc
Vdc

100
350
2,8

25°C

Po

Total Power Dissipation@Te:=250C

Po

1.0
8,0

TJ.T,tg

-55 to +150

Total Power Dissipation @TA

:=

Derate above 25°C

Derate above 25°C
Operatjng and ,Storage JUnction

O~IPH-~
~R~

mAde

mW
mWl"c
Watt
mWI"C
°c

THERMAL CHARACTERISTICS
Characteristic

DIM
A

B

Thermal Resistance, Junction to case

C

(1) R8JA is measured with the device soldered into 8 typical printed circuit board.

0
F

~.407

L
N

1.150

P

6,350
3.430
2,410
2.030

Q

R
S

--I

MILLIMETERS
MIN
MAX

4,450
3,180
4,320
0.407

r

Q

S

B

~=rf

INCHES
MIN
MAX

5,200
4,190
5.330
0.533
0,48.

0,175
0.125
0.170
0.D16
0.U16

0.205
0.165
0.210
0.021
U,UI9

1.390
1.270

0.045

0,055 .
0.050

2,670
2.670

0.250
0.135
0,095
0.080

CASE 29·02
TO-92

1006

I

~---1.
1 , ,
-.. ....

3, COLLECTOR

Temperature Range

Thermal Resistance, Junction to Ambient

l

STYLE
PIN 1.1: EMITIER
2,BASE

0.105
0.105

MPS-A70, MPS-K70, MPS-K71, MPS-K72 (continued)

ELECTRICAL CHARACTERISTICS

(TA

= 25"C unless otherwise noted)

Characteristic

Symbol

Min

Max

40

-

4.0

-

-

100

40

400

-

0.25

125

-

-

4.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAdc, IB = 0)

BV CEO

Emitter-Base Breakdown Voltage
(~ = 100 /.IAdc, IC = 0)

BVEBO

Collector Cutoff Current
(V CB = 30 Vdc, ~ = 0)

I CBO

Vdc

Vdc

nAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 5.0 mAdc, VCE = 10 Vdc)
Collector-Emitter Saturation Voltage
(IC = 10 mAdc, IB'= 1.0 mAdc)

hFE
VCE(sat)

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 5.0 mAdc, VCE = lO'Vdc, f = 100 MHz)

fT

Output Capacitance
(V CB = 10 Vdc, ~ = 0, f = 100 kHz)

Cob

MHz
pF

FIGURE 1 - SIMPLIFIED AC EQUIVALENT CIRCUIT (Common Emitter)
BASE

'b

Ceb

FIGURE 2 - SMALL SIGNAL CURRENT GAIN

Note:
Data for MPS-A70 is presented in terms of the equivalent
circuit shown in Figure 1. Values for its components may be
found or calculated as follows:
fb' - See Fi~ure 8

re

Ccb = Cob - 0.2 pF (See Figure 6)

= 26 mVIlE

gm = I/r.

1

go = (hfe + 1) hob (See Figures 2 & 7)

Co = 2" f t re

Co = 0.2,pF

Low frequency h parameters may be found from:

'100ai-_

'" 700

I 1,0 kHz
TA =25 0 C_

;;:

'" 500

~

r--

UNIT#3
UNIT#2

B300 a:

....

::l:
'"0;

200

....
....

«
hie = 'b'+(hfe+11 'e

~ 100

hfe= See Figure 2

j

UNIT #1

70

h,e = Negligible
hoa = (hie

50
0,5

+ Ilhob

0,7

1.0

2,0

3.0

IC, COLLECTOR CURRENT {mAdel

1007

5.0

7,0

10

MPS-A70, MPS·K70, MPS·K7', MPS·K72 (continued)

FIGURE 3 - NORMALIZED DC CURRENT GAIN

FIGURE 4 - "SATURATION" AND "ON" VOLTAGES
1.0 .--T'""1rT"T'""1-rrrr.,..--r.,....=,.,.-nT-r-rTT....rn"'"

2.0
1.5

'"ffi

1.0

0.9

I-

I-

a:
a:
=>

~
e

i ~ ~50~ Htttl-:"f-++l+:-I+,II~I~1111't-t-++b!-"T':PI'fH

I-- A
VBElsa!)@IC/IB' 10
O.B I-H+t+t+ttt+-r--f-H-"H"Tt:I;*""'f::io+'Ft+tttH

VCE = 10 V
TA=250C

z

;;:

O. 7

~ 0.5 t-t-"I+-Hr+Ht+t-r+-H++t+t-Ht-t-t-t++t+t1ffi

'\

ffi

\

NO.5
:::;

~

>

<
::;;
a:

0.4 t-'f---,H-t-IH--HTtt-H---H-t--t-t+tttt--t-t-t-t--t-t-tl1it1

,; 0.3 t-t-I+-Hr+Ht+t---t--H++t+t-Ht-t-t-t++t+tHtl

~ 0.3

0.2 t-'t-cH-t-IH--HTtt-H---':-'-'--'-:!-:'-t.....,::-t-t-t-t-tl"fllit1
VCEI..t)@ Ic/lB = 10

r-

~

~+I++::J:14:j#:=Rm=!=ttmH11tttM1t1

0.1
0.2

0.2

0.5

1.0

2.0

5.0

10

so

20

100

O~~~~~~~~~~lli~li~~~~~.

200

0.1

0.2 0.3 0.50.7 1.0

FIGURE 5 - CURRENT .(lAIN-BANDWIDTH PRODUCT

~
t;

200

"

IS 0

g:

l-

e

~ 100
z

V

j..--

......

I

VCE=10V
'TA=ZSOC

I

z

0

z

~

0

~

0

'"

20

;;:

Cib

7.Or-.

-"

0

I-t-

TA=250C-

"

0

0

;:!i

=>

J::'

0.5

Cob

!'-..

1.0

2.0

3.0

5.0

10

20

30

1. 0
0.4

50

0.6 0.8 1.0

2.0

FIG URE 7 - OUTPUT ADMITTANCE

30

40

::;;
'"

"w

i= 1.0 kHz
o. 31- TA=250C

8140

./

o. 1

Y\;E; 16v

'"

/

w

~ili

,/

~~:i~:~

130

'"

'"oz

<
~ 0.05

;:li

o 0.03

!l;

1

;:!i

I-

0.0 1
0.1

20

150

O. 5 VCE = 10 V

g

6.0 8.0 10

FIGURE 8 - BASE SPREADING RESISTANCE

1.0

'"
9

4.0

--

VR. REVERSE VOLTAGE IVOLTS)

IC. COLLECTOR CURRENT ImAde)

iii

r-

" 1'""

2.0

w

SO 70 100

.-

10

=>

g

20 30

FIGURE 6 - CAPACITANCES

40 0
300

"

2.0 3.0 5.07.0 10

IC. COLLECTOR CURRENT ImAde)

Ic. COLLECTOR CURRENT ImAde)

~

1-'1-'"

~~ 0.6~
0.7 t:t~~~mtfl!jtnnmV~BE~{o:n~)@~V~C~E~'~10~V~

120

r---~

a:

'r--

~ 11 0

t:
0.2

0.5

1.0

2.0

5.0

10

IC. COLLECTOR CURRENT ImAde)

100
0.1

0.2

0.3

0.5

1.0

2.0

3.0

IC. COLLECTOR CURRENT (mAde)

1008

5.0

10

MPS-A70, MPS-K70, MPS-K71, MPS-K72 (continued)

MPS·K70, MPS·K71and MPS·K72 are three, five
and nine transistor kits consisting of MP5-A70's
with various hFE selections.

Table 1
MPS·K70 - Three Transistor Kit
hFE @ ..c= 5.0 mAde, VCE = 10 Vde
Quantity Per Kit
1
1
1

Color Code
Red

White
81ue

Min

Max

40
80
120

400
400
300

MP5-K71 - Five Transistor Kit
hFE @IC=5.0mAde, VCE· 10 Vde
Min
Max

Quantity Per Kit

Color Code

3
1
1

Red

40

Green
Yellow

100
150

400
200
300

MP5-K72 - Nine Transistor Kit
Ouantity Per Kit
4
2
2
1

Color Code
Red

White
Green

Yellow

1009

hFE @ IC = 5.0 mAde, VCE • 10 Vde
Min
Max
40
80
100
150

400
400
200
300

MPS-A92 (SILICON)
MPS-A93

PNP SILICON ANNULAR TRANSISTORS
. designed for general·purpose applications requiring high break·
down voltages, low saturation voltages and low capacitance.

PNPSILICON
HIGH VOLTAGE
TRANSISTORS

• High Coliector·Emitter Breakdown Voltage@ IC = 1.0 mAdcBVCEO = 300 Vdc IMin) - MPS·A92
200 Vdc IMin) - MPS·A93
• Low Coliector·Emitter Saturation Voltage VCElsat)= 0.12Vdc ITyp) @ IC = 20 mAdc
• Complements to NPN Types MPS·A42 and MPS·A43
MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage
Collector·Base Voltage

IW'S-A92J MPS·A93

VCEO

300

Ves

300

Unit
Vd,

200

Vo,

200

VEB

5.0

Vo,

Ie

500

mAde

Total Device Disslpatlon@TA - 2So C
Derate above 25°C

Po

625
5.0

mwflC

T9tal DevIce Di~ipation @TC-2SoC
Derate above 2SoC

Po

1.5
12

T~,Tstg

-55 to +150

Emitter-Base Voltage
ColiactOl"Currtlnt

Continuous

Operating and Storage Junction

mW

Watts
mWf'C
DC

Temperature Range

THERMAL CHARACTERISTICS

-~ J!
i
~ ~-7
~Fl

Characteristie
Thermal Resistance, Junction to Case
Thermal Resistance, JunctIon to Ambient

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwIse noted)
Svmbol

Characteristic

Mi.

Mox

Unit

SEATINGJt
PLANE

O-jIPK~
=lR~

OFF CHARACTERISTICS
Collector Emitter Breakdown Voltage(1)
(Ie" 1 QmAde.IS "01
MPS-A92
MPS-A93

8Vceo

Collector-Base Breakdown Volta9l!
IIC'" 100 /.lAde. IE = 01

BVCBO

200
Vd,

Vd,

BVEBO

5.0

Collector Cutoff Current
(VCS"200Vdc.le =0)

MPS-A92

WCB = 160Vdc,IE = 0)

MPS·A93

pAd,

ICBO

Emitter Cutoff CUrTent
(VBe = 3.0 Vdc, IC = 01

0.25

Both Types
Both Types

IIc=30mAdc. VeE = 10Vdc)

MPS·A92
Mps·A93

25
40
25
30

B
C
0

•

150
Vd,

VCE(satl

0.5
04

MPS-A92
Mps.A93

D."

VBE(satl

Vd,

Product
IIC" 10 mAde, VCE '" 20 Vde. f"'201MHzl

tr

Pulse Width'S 300/.11. Duty CycleS 2 0%

S

B

S

1.150

P

6.350
3.430
2.410
2.030

a

1.390
1.270
2.670
2.670

INCHES
MIN
MAX
0.175
0.205
U.IZ~
0.165
0.170
0.210
0.016
0.021
u.uh ~019
0.045
0.250
0.135
0.095
0.080

MH,

50

pF

Ceb
MPS-A92
MPS-A93

MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
u.407
0.4..

L
N
R
S

DVNAMIC CHARACTERISTICS
CurTent.Qain~Bandwidth

-000

pAd,

hFE

Base-Emitter Saturation Voltage
(IC'"20mAdc,IB-2.0mAdel

(1)PulseTftt

COLLECTOR

DIM
A

0C .. l0mAde, VCE '" 10Vdc)

Collector-Base Capacitance
{VCB =20 Vdc. Ie "o,f"1.0MHzl

3.

-.l

~
--l =rt
1 2 3

2.

BASE

0.1

ON CHARACTERISTICS

Collector-Emitter Saturation Voltage
(IC-20mAdc,IB"'2.0mAdel

STYLE I:
PIN 1. EMITIER

0.25
lEBO

DC Current Gain (1)
(lc"'1.0mAde. Vee = 10Vdc)

lor

300
200

MPS-A92
MPS-A93

Emitter-Base Breakdown Voltage
liE'" 10 /.lAde. IC = 0)

Vd,

300

6.0
B.O

CASE 29·02
To·92

0.055
0.050
0.105
0.105

MPS-A92, MPS-A93 (continued)

FIGURE 1 - DC CURRENT GAIN
150

I

100

z

«co
I-

ili

'"'":::>
'"
'"

V~E -lo.Jc

TJ =+1250C

"""

1---+250C
70

~

.........

50 t---- 55OC

~~

r\ ~t-..

Q

~

30

"' 1"\

20
15
1.0

2.0

5.0

3.0

7.0

10

20

30

50

I"'.

80

100

IC.COLLECTOR CURRENT (rnA)

FIGURE 3 - CURRENT -GAIN-BANDWIDTH PRODUCT

FIGURE 2 - CAPACITANCES
~. 100

100

oS
w

20

~

U
~

",-

60

iE

-I-

z

I-

Q

40

Z

30

~

..........

10

" "\

:::>

Cib
~

..'"
.
'"

Tr 25°C
80 I-vcp 20 Vdc

'"~

50

f-

;;\

./

\

./

V

I

z

5.0

«co

"2.0
1.0
0.1

r-- Cfb ,
0.2

0.5

1.0

2.0

5.0

10

20

50

100 200

20

~'.

:::>

500 1000

.c:'"

0
1.0

5.0

2.0

VR. REVERSE VOLTAGE (VOLTS)

500

" - -II

8

VB~ @JCE '= 10 ~

r-- 6

"-

4

0
1.0

'"~"

01""--

"-

1.5 WATT THERMAL ......
LlMITATlON@TC=250C
625 mWTHERMAL
LlMITATION@TA=250C

o. 2

I--f-"

VCE( ..t}@ICIlB = 10

10

II II
2.0

5.0

10

20

100

50

20

FIGURE 5 - ACTIVE-REGION SAFE
OPERATING AREA

FIGURE 4 - "ON" VOLTAGES
1. 0

10

IC. COLLECTOR CURRENT (rnA)

50

~

"-

'.

3.0

5.0

10

20

30

1011

~

MPS.A9~ ~
'1'..
MPS·A92~
~

so

"-

100

VCE.COLLECTOR·EMITTER VOLTAGE (VOLTS)

I C. CO LLECTO R CU RRENT (mA)

0(00",\

i\
"-

- - -BONOING WIRE LIMITATION
SECOND BREAKDOWN
LIMITATION TJ - 1500C

S.O

100

1.0m,

\.

~

200

300

MPS·DOl NPN
MPS·DSl PNP

(SILICON)

COMPLEMENTARY
SILICON
TRANSISTORS

COMPLEMENTARY SILICON ANNULAR TRANSISTORS
· .. designed for use in electronic calculators using gas discharge
tubes.
• Coliector·Emitter Breakdown Voltage BVCEO = 200 Vdc (Min) @ IC = 1.0 mAdc
• Complete Typical Design Curves

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol

Value

VCEO

200

Vde

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

VCB

200

Vde

VEB
IC

4.0

Vde

100

mAde

Total Device Dissipation @TA = 25°C
Derate above 2SoC
Total Device Dissipation @TC = 25°C
Derate above 25°C
Operating and Storage Junction

Po

625
5.0

mW
mW/oC

Po

1.5
12

mWf'C

-55 to +150

°c

TJ, T stg

Unit

Watts

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Aesistance, Junction to Case
(1)R8JA is measured with the device soldered into a typical printed circuit board,

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherWISe noted.)

I

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)

IIC = 1.0 mAde,lB

= 01

Collector-Base Breakdown Voltage

Symbol
BVCEO
BVCBO

I

Min

I

Max

Unit

200

-

200

-

Vde

4.0

-

Vde

Vde

IIc = lO)lAde,IE = 0)

Emitter-8ase Breakdown Voltage

BVEBO

(IE=10)lAde,IC=0)

Collector Cutoff Current

ICES

IVCE = 80 Vdc, VSE = 01
IVCE = 80 Vde, VBE = 0, T A = 7Soc)

Collector Cutoff Current

-

0.1
4.0

ICBO

(VeB = 80 Vde,IE = 0)
(VCB • 80 Vde, Ie = 0, TA • 750 CI

)lAde.

DIM
A

4.450
.1
4.320
0.407
7

520
0
5.330
0.533

L
N

1.150

1.300
1. 0

P

6.350
3.43
2.410
2.00

C
D

/SAde

-

0.1
4.0

-

ON CHARACTERISTICS

Q

DC Current Gain (2)
IIc = 10 mAde, VCE " 10 Vdel
IIC' 30 mAde. Vce = 10 Vde)

MILLIMETERS
MIN
MAX

R

S

-

INCHES
MIN
MAX

If

~
~

0.045

0.055
0.050

~ ~

-

2.670
2.670

0.250
0.13
0.095
O.OBO

DYNAMIC CHARACnRISTICS
CASE 29·02
TQ-92

Current-Gain - Bandwidth Product (2)
IIC = 10 mAde, VeE' 20 Vde, f =

2P MHzl

(2) Pulse Test: Pulse Width..;; 300 ItS, Duty Cycle";; 2.0%.

1012

0.15

0.021

...!'..".!.:!.

-

-

0.105
0.105

MPS-OOl NPN, MPS-051 PNP (continued)

NPN
MPS·D01

PNP
MPS·D51
FIGURE 1 - DC CURRENT GAIN

200

f--

z

~

~

a
'"'

~

50

TJ=1250C
0

"1\

Jc

-

100

~ 70 _

'"

100

TJ:12~OJ

I'\.
25°C

0

1\

0

1\

0
VCE = 10 V

VCE = 10 V

0
20
1.0

2.0

3.0

5.0 7.0 10
20
30
IC,COLLECTOR CURRENT (mA)

50

70

10
1.0

100

2.0

3.0

50

5.0 7.0 10
20
30
Ie, COLLECTOR CURRENT (mA)

70

100

70

100

FIGURE 2 - "ON" VOLTAGES
1.4

1. 4

1.2 I-- TJ = 25°C

1.21-- TJ = 25°C
~~

0;

!::; 1.0

'"~w
...'"!::;

0.8

'">

0.6

B

10

.L
11

VBE(~tl ~ lellB = 10

l

/

_Ll

O. 4

le/le = 10

t - VeE(sat)

1-"

1.0

2.0

3.0

5.0 7.0 10
20
30
IC, COLLECTOR CURRENT (mA)

50

70

0
1.0

100

I I

'"f

10

~

50

~

z

:i
I
Z

~

co:
co:
=>

'"
.t:

30

./

-

.....

.....

-

./

/'

,,-

~

~

\ \

U

;'

~

/

20
10 ~

Cob

- - - Mps·DOl (NPN)
- - - - MPS.Jl5l (PNPI

3.0

5.0

7.0

10

20

30

10

20

30

50

50

--

3.0

I

1.0
0.2

Ie, COLLECTOR CURRENT (mAl

1013

LU
Mps·DOl (NPN)
- - - Mps·D51 (PNP)

7.0

2.0

70 100

TJ = 25°C

......

~~ 5.0

2.0

7.0

-

eib

~ 30

20
1.0

5.0

FIGURE 4 - CAPACITANCE
100
70
50

:r

)CE .120 V 1
!=20MHz
TJ=250C

3.0

IC, COLLECTOR CURRENT (mA)

-;:; 200
~

II

2.0

FIGURE 3 - CURRENT -GAIN - BANDWIDTH
PRODUCT

gc 100 I-I--

""'"

O. 2

I-

VCE(sat)@ ICIIB = 10

o

L

..1-1'"
5.0

0.2

~.

II

/

6 VBE@VCE-l0V

VBE ~ V~E = 10 V

0.4

I

i

I I
I I

0

VBE(sat)@IC/IB

>'

I I

0.5

1.0

=
=

!'o."

2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)

r50

100

200

MPS-D02 NPN
MPS-DS2 PNP

(SILICON)

COMPLEMENTARY
SILICON
TRANSISTORS

COMPLEMENTARY SILICON ANNULAR TRANSISTORS
, ... designed for use in high voltage amplifier and driver applications.
•

Coliector·Emitter ,Breakdown Voltage BVCEO = 140 Vdc (Min) @ IC = 1.0 mAdc

•

Excellent for'Nixie® Driver Applications

•

I deal for Calculator Display Design

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Vr.Fn

140

Vde

Collector-Base Voltage

Vr.R

140

Vde

Emitter-Base Voltage
Collector Current - Continuous

VFR

4.0

Vde

Collector-Emitter Voltage

I"

50

mAde

Po

350
2,8

mW.
inwtc

Po

1.0
8.0

Watt
mWtC

TJ, T stg

-55 to +150

"C

Total DeVice DisSipation @ T A = 25° C

Derate above 25° C
Total DeVice DissipatIOn @ T C ::: 25° C

Derate above 25° C
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERI.STICS
Characteristic
Thermal Resistance, Junction

to Ambient

Thermal Resistance, Junction to Case
(1) R8JA is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS ITA=25"C unless othe,wlSe noted.J

I

I

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)

IIc

= 1.0 mAde.IB = 0)

Collector-~se

areakdown Voltage
IIc = 100 ~Ade. IE = OJ
Emitter-Base Breakdown Voltage
liE = 10 ~Ade. IC = OJ
Collector Cutoff Current
IVCE = 80 Vde. VBE = 0)
Collector Cutoff Current
(VeB = 80 Vde. IE = OJ
ON CHARACTERISTICS

Symbol

I

Min

I

Max

BVCEO

140

-

Vde

BVCBO

140

-

Vde

BVEBO

4,0

-

Vde

fMtTTER

BASE
COLlEC10R

MILL!

DIM
A
B
C

ICES
ICBO

I'Ade

-

0.1

-

0.1

D

P
Q

R
S

INCHES

MIN
4.450
3 0
4,320
040'
1.150

I'Ade

6350
3430
2410

2.030

1.390
1.270
2670
2670

MIN
01
012
0170
0.016
1

MAX

0045

0.055
0,050

=

(2) Pulse Test: Pulse Width'; 300,",s, Duty Cycle'; 2.0%.
Trademark of Burroughs Corporation

1014

"

0.165
0.210
0.021
.0

0.250
0.135
0095

0105

0080

0.105

CASE 29-02
TO·92

Current· Gain - Bandwidth Product (2)
lie" 10 mAde. VCE 20 Vde, f ·100 MHzJ

®

PIN t

2
1

DC Current Gam (2J
IIc = 10 mAde, VCE = 1,0 VdeJ
II = 30 mAde. V
= 10 VdeJ
DYNAMIC CHARACTERISTICS

=

Unit

MPS-002 NPN, MPS-052 PNP (continued)

PNP
MPS-OS2

NPN
MPS-002
FIGURE 1 - DC CURRENT GAIN
400

z

~ 200

200

I II

VCE' 10 v

LUL

....

-

II

ffi

'"~'"

25°C

g

100

.#

80

TJ=125°C

VCE' 10 V

~~o~

~

~ 100

....... r-..,.

'"

-......,

"\

~ 80

a

~

"\

.\

60

\\

\

\

~ 40

'\

60

\\

40
0.5 0.7

1.0

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (rnA)

20

30

20
0.5 0.7

50

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (rnA)

1.0

20

30

50

FIGURE'2 - "ON" VOLTAGES
1.0
TJ' 25°C

o. 0

~
~

o. 6

-

..-

I II

P

VaE(sat} @ICliO' 10

TJ = 25°C

i5

0.6

VaE(on}@VCE= 10 V

'"~

0.4

~

VaE(on} @VCE= 10 V

~
w

'";0
>
>'

0.0

I II
VaE(sat} @Ic/la- 10

I-

w

i5

-

1.0

V
_I-"

0.4

I-"
""I-"

--

V

,..

I
I

o

-

0.2
VCE(sat} @Ic/la' 10

o

II

0.5 0.7

1.0

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (rnA)

20

>

>'

30

Ic/la ' 1 0 /
0.2

l-

o

2.0 3.0
5.0 7.0. 10
. IC. COLLECTOR CURRENT (rnA)

1.0

FIGURE 3 - CURRENT-GAIN BANDWIDTH PRODUCT
VCE=20V
TJ'25°C

7.0

-

1--"""

~ t:::

0

1-

-~

".... :\

~5.0
~.

OOTH

-

"""""-.

30

50

OEVIC~S

TJ .25°C

r-....
Cib

;0

....

~

---..

~ 3.0

\.

0

,i 2.0

- - MPS·002 NPN

....

."'--- MPS·052 PNP
Cob

0

r-:::: ::...o~

MPS·002 NPN
----- MPS·052 PNP
0

20

FIGURE 4 - CAPACITANCE
10

0

5J..-

I II

0.5 0.7

50

........ ..-

VCE(sat}

0.5

0.7

1.0
2.0 3.0
5.0 7.0
IC. COLLECTOR CURRENT (rnA)

10

20

1.0

30

1015

0.2

0.5

1.0

2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)

50

100

200

MPS-D03 NPN
MPS-D53 PNP

(SILICON)

COMPLEMENTARY SILICON ANNULAR

COMPLEMENTARY
SILICON
TRANSISTORS

TRANSISTORS

· .. designed for use in high voltage amplifier and driver applications.
•

Coliector·Emitter Breakdown Voltage BVCEO = 100 Vdc (Min) @ IC = 1.0 mAde

•

Excellent for Nixie ® Driver Applications

•

Ideal for"Calculator Display Design

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VeEO
Vee
VEe
IC
Po

100
100
4.0
50
350
2.8
1.0
8.0
·55 to +150

Vde
Vde
Vde

Collector·Emltter Voltage
Collector-Base Voltage

Emitter-Base Voltage
Collector Current - Continuous

Total Device Dlsslpatlon@TA - 2SoC
Derate above 25° C
Total DeVice Dlsslpatlon@Tc - 2SoC

PD

Derate above 25° C
Operatmg and Storage Junction

TJ, Tstg

mAde

mW
mWI"C
Watt

mWI"C
e

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal ReSistance, Junction to Ambient

r

""'''~

L-~p

PlANE

Thermal ReSistance, Junction to Case

I

I

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)

Symbol

I

Min

2 BAse

Max

Unit

BVCEO

100

-

Vdc

BVCBO

100

-

Vdc

BVEeO

4.0

-

Vde

-

0.1

-

0.1

(lC = 1.0 mAde,le = 01
Collector-Base Breakdown Voltage

I

(lC = 100 "Ade, IE = 01
Emitter-Base Breakdown Voltage

(IE = 10 ~Adc,IC'=OI
Collector Cutoff Current

ICES

(VCE = 80 Vde, VBE = 01
Collector Cutoff Current

ICBO

(Vce = 80 Vde,le ~ 01
ON CHARACTERISTICS
DC Current Gam (2)
(lC = 10 mAde, VCE = 10 Vdel
(lC' 30 mAde, VCE -10 Vdel
DYNAMIC CHARACTERISTICS
Current Gain - Bandwidt·h Product(2)
(lC 10 mAde, VCE - 20 Vde, f = 100

=

~Ade
~Ade

®

,COlLECTOR

DIM
A
B
C

o

MHz

Trademark of Burroughs Corporation

1016

a

rJ

L

MIL I
MIN
4.450
31
4.320
0.407
1150

N

P

a

MHz

1

~;

R
S

(2) Pulse Test: Pulse Width .. 300 /J.S, Duty Cycle .. 2.0%.

D-:lHRH-l
==l et--

Pitt I EMITTER

ELECTRICAL CHARACTERISTICS ITA = 2S·C unless otherwISe noted.1

1

A

6.350

3.30
2.410

2.030

2.670
2.670

CASE 29-02
TO·92

0.105
0105

MPS-003 NPN, MPS-053 PNP (continued)

PNP
MPS·D53

NPN
MPS·D03
FIGURE 1 - DC CURRENT GAIN

400

200

II II

VCE'IOV

-

z
~ 200 TJJ,W

ffi

II

a

25'C

~
~

100

i

80

TJ"25'C

VCE' 10 V

~5l~

~

~ 100

r--... r-.....

'"

r--.. ~

~

80

a

60

"\.
\

\

u

\

'"

~ 40

\

60

\

\
40
0.5 0.7

1.0

2.0 3.0
5.0 7.0 10
'C, COLLECTOR CURRENT (rnA)

20

30

20
0.5 O}

50

1.0

2.0 3.0
5.0 7.0 10
Ie. COLLECTOR CURRENT (rnA)

20

30

50

FIGURE 2 - "ON" VOLTAGES

1.0

1.0
TJ' 25'C

I II

0.8

VBE(sa')@IC/'B· 10

J

~ 0.6

VBE(,n) @VCE' 10 V

VBE(,n)@VCE 10 V

V

-

II II

0.8

r-- f-

VBE(sa,) @lc/'B- 10

~

TJ' 25'C

V
_..-" ,......1---

,.....

I-- ..-" >-f-

w

'"~

II

~ 0.4

>

>.

-

0.2
VCE(sa,)@IC"B' 10

o

I
0.5 0.7

I I

"1.0

2.0

3.0

5.0

7.0

10

20

'c, COLLECTOR CURRENT (rnA)

30

N

0.5 0.7

~

~ 20 0

VCE=20V
TJ'25'C

I-::--: :::::i -

:I:

b

~ 100

-

f"
...
I'

z

~;;:

70"

ffi

50

85.0
w

:'\

.......

,....

Cib

I.... .....

~

- - - - Mps·053 PNP

r----.....

~ 2.0

~

-I-I-;-~· M~05~ PNP
0.7

1.0
2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (rnA)

20

.....

Cob

r-:::: ~

Mps·003 NPN
0.5

- - Mps·003 NPN

....

~ 3.0

~

<.>

50

TJ = 25'C

'-'

<;>

::>

30

.......... BOTH bEVI CES

7.0

I-f-

0
3 0.3

20

10

'"
~

.f

2.0 3.0
5.0 7.0 10
'c, COLLECTOR CURRENT (rnA)

1.0

FIGURE 4 - CAPACITANCE

300

....

I
I

IIII

o

50

5

~

VCE(sa,)

FIGURE 3 - CURRENT·GAIN BANDWIDTH PRODUCT
:I:

y

IC/IB' lIy~
0.2

l-

1.0

30

1017

0.2

0.5

1.0

2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)

. 50

100

200

MPS-D04 NPN
MPS-DS4 PNP

(SILICON)

COMPLEMENTARY DARLINGTON SILICON
ANNULAR TRANSISTORS

COMPLEMENTARY
SILICON
DARLINGTON
TRANSISTORS

... designed for use in high gain driver applications.
•

Excellent LED Digit'Driver

•

DC Current Gain Specified - 10 mAdc to 300 mAdc

•

Monolithic Construction

MAXIMUM RATINGS
Symbol'

Value

Unit

Collector-Emitter Voltage

VCES

25

Vde

Emitter-Base Voltage

VEB

10

Vde

I~

300

mAde

Total Power Dissipation @ T A = 25°C
Derate above 25°C

Po

625
5.0

mW
mW/oC

Total Power Dissipation @TC = 25°C
Derate above 25°C

Po

1.5
12

mW/oC

TJ,Tstg

-55to +150

°c

Rating

Collector Current - Continuous

Operating and Storage Junction
Temperature Range

~.

~P
.~

NPN

Watts

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Ambient (1)

R8JA

200

°C/W

Thermal Resistance, Junction to Case

R8JC

S3.3

°C/W

Characteristics

(1) A8JA is measured with the device soldered into a typical printed dr.cuit board.

ELECTRICAL CHARACTERISTICS (T A

I

Characteristic

=25°C unless otherwise noted 1

I

Symbol

I

Min

I

Max

Unit

OFF CHARACTERISTICS
Collector-Em.itter Breakdown Voltage
(lC= loo)lAde, VSE = 01

BVCES

25

-

Vde

Emitter-Base Breakdown Voltage
(Ie = 10)lAde, Ie = 01

SVEBO

10

-

Vde

STYlE' 1
3

Collector Cutoff Current
(VCE = 20 Vde, V'BE = 01

ICES

-

1.0

,u.Adc

Collector Cutoff Current
(VCB = 20 Vde, IE = 01

ICBO

-

1.0

~Ade

Collector~Emitter

Saturation Voltage
(lC = 100 mAde, IS· 0.1 mAde 1

EMITTER
BASE

COllECTOR

MILLIMETERS

ON CHARACTEfllSTICS (21
DC Current Gain
(lc = 10 mAde, VCE = 5.0 Vdel
(lC = 100 mAde, VCE = 5.0 Vdel
, (I C = 300 mAde; V CE = 5.0 Vdel

PIN 1
2

hFE
1000
2000
1000
VCE(satl

-

-

-

P

-

DYNAMIC CHARACTERISTICS

l

MIN
4.450
3,1 0
4.320
0.401

MAX
5.200
,19
5330
0.533
42

1150'

1,390
1.270

N

-

1.0

DIM
A
B
C
D

Q

Vde

R
S

6.350
3.430
2.410
2.030

2,670
2.61

0.045

0.250
0.135
0,095
0.080

CASE 29-02

High Frequency Current Gain"(2)
(IC = 10 mAde, VCE ·5,0 Vde,
f = 100 MH,zl

TO·92

(21 Pulse Test, Pulse Width ';;300 ~s, Duty Cycle ';;2.0%.

1018

0.055
.050
0.105,
0.105

MPS-004 NPN, MPS-OS4 PNP (continued)

TYPICAL CHARACTERISTICS

I

NPN
MPS-D04

PNP
MPS-D54

FIGURE 1 - DC CURRENT GAIN
200 k

20 k

~~~" 5.0~

VCP 5.0V

iJ ;125~C

I-

100 k

z 10k
~ 7.0 k

~

g

~

s:

........ 1--

r\

TJ -125°C

to

ffi

5.0 k

\

30 k

L

~ 20 k

25°C

....

3.0 k

::>

g

~

\

25°C

/

'-'

/'
2.0 k

./

z 70 k
« 50 k

«
ffi

II

10 k

\'

5.0 k

i-'

3.0 k
1.0 k
0.3

0.5

1.0

2.0 3.0 5.0
10
20 30 50
Ie. COLLECTOR CURRENT (rnA)

100

2.0 k
0.3

200 300

0.5

S
o

6

.L

V

VaE(sa')@ Iclla - 1000

4

to

~

o

1.2

VaE(",)@lclla" 1000

2
VaE(on) @VCE " 5.0 V

>

>- 1.0

O.a

Jc~(~~)I~IIClla "1 100:.

~

1.0

2.0 3.0 5.0
10
20 30 50
IC. COLLECTOR CURRENT ImA)

100

O. 6
0.3 0.5

200300

Vce=S.ov
t= 100MHz
TJ = 25°C

~ 3.0

:::i

~: 2.0

t--f.•...1--

;'

:::i

~:;;: ....

~

a 1.0
i

~ O. a

--

-

1--..., I~
I-- r:::::

-

I

UoI'ffT

100

200 300

+1" 25"~

........ ::--..

...

~

r-.

= =
- - MPS-D04 NPN
- - - MPS-054PNP
2.0

1.0

I
I

MPS·004 NPN
MPS-054 PNP _

i:

0.5

5100

1111111

2.0 3.0 5.0
10
20 30 50
Ie. COLLECTOR CURRENT (rnA)

Cib

~ O.6

4
o. 3
0.3

ICII8"1~~'-

t~

10 ~

'\

::I

'-'

I

FIGURE 4 - CAPACITANCE

"-

I..... ""

1.0

15

11 U

4.0

-

VCE("'I

FIGURE 3 - HIGH FREQUENCY CURRENT GAIN
6.0
Z

./

O.a

I I

0'0.3 0.5

VaE(on)@VCE" 5.0 V

0

I

1111111

6

«

200 300

I.8

US' 1.6

«

100

TJ" 25°C

TJ" 25°C
I.8

1.4

2.0 3.0 5.0
10
20 30 50
IC. COLLECTOR CURRENT (rnA)

FIGURE 2 - "ON" VOLTAGES
2. 0

2. 0

~

1.0

2.0 3.0 5.0
10
20 30 50
Ie. COLLECTOR CURRENT (mA)

100

1.5
0.2

200 300

1019

......

II II
0.3

0.5

0.7 1.0
2.0 3.0
5.0 7.0
VR. REVERSE VOLTAGE (VOLTS)

10

20

MPS·DOS NPN
MPS·D5S PNP

(SILICON)

COMPLEMENTARY SILICON
ANNULAR TRANSISTORS

COMPLEMENTARY
SILICON
TRANSISTORS

· .. designed for use in general purpose amplifier applications.
•
•

Excellent LED Digit Driver
DC Current Gain Specified - 50 mAdc to 500 mAdc

MAXIMUM RATINGS
Rating
Collector~Emitter

Voltage

Symbol

Value

Unit

VeEO

25

Vde

VeB

25

Vde

Ie

500

mAde

Collector-Base Voltage

Collector Current - Continuous
TA

= 2SoC

Po

350
2.8

mW
mW/oe

Total Power Dissipation@ TC

= 2SOC

Po

1.0
8.0

Watt
mW/oe

TJ,Tstg

-55to +150

°e

Total Power Dissipation

@

Derate above 2SoC
Derate above 2SoC
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient (1)

Thermal Resistance, Junction to Case
(1) RaJA is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (TA " 25°C unless otherwise noted.1
Characteristic

I

Symbol

I

Min

I

Max

Unit

-

Vde

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage
(lC" 1.0 mAde, IB" 01

BVCEO

25

Collector-Base Breakdown Voltage

8VCBO

25

l ~-!r

STYLE 1
PIN 1 EMITTER
2 BASE
3 COLLECTOR

a

Xth

Vde

(lC" 101'Ade,IE" O)

Collector Cutoff Current
(VCE" 20 Vde, VBE "O)

ICES

Collector Cutoff Current
(VCB" 20 Vde, IE" O)
Emitter Cutoff Current
(VEB = 3.0 Vde, Ie" O)

ICBO
lEBO

1.0

#Adc

-

1.0

I'Ade

-

100

nAdc

Collector~Emitter

Saturation Voltage
(Ie" 100 mAde,18" 10 mAde)

-

hFE
50
80
30
VeE(s.t}

C

D

ON CHARACTERISTICS Il}

DC Current Gain
(lC" 50 mAde, VeE" 5.0 Vde)
(Ie" 100 mAde, VCE" 5.0 Vdc)
(lC" 500 mAde, VCE" 5.0 Vde)

MILLIMETERS

DIM
A
B

0.5

L

N
P

a

R
S

MIN
4:450
.1
4.320
0.401
O.
1.150

-

MIN
0.115

1.390

0.045

1.270

6.3!i0
1430
2.410
2.030

-

2.670
2.610

Product
(lC" 50 mAde, VCE " 10 Vde,
f" 100 MHz)

(1) Pulse Test: Pulse Width ';;300 1", Duty Cycle ';;2.0%.

1020

-

0.250
0.13!i
0.095
0.080

29~02

TO~92

Current~Gain-8andwidth

0.110
G.016
.1

Vde
CASE

DYNAMIC CHARACTERISTICS

INCHES

MAX
5.20
4.1
5.330
0.533

MAX
.05
.15
0.210
0.021

-

0.055
0.050

-

0.105
0.105

MPS-D05 NPN, MPS-D55 PNP (continued)

TYPICAL CHARACTERISTICS
NPN
MPS-D05

PNP
MPS-D55

I

FIGURE 1 - DC CURRENT GAIN
500

500

VCE-5.0V

VCE - 5.0 V

Il25o~

TJ - I250C

z

-

300

:;;:

'"I--

~
a

200

.....

-

'25oc

'" 200
I--

,~

~ 100

a'"'"
u

c

t.LilOO

1\

70

20
30
50 70 100
IC, COLLECTOR CURRENT (rnA)

200

300

~

25 0C

ili

l\~

c

10

-

r-- .....

:;;:

u

50
5.0 7.0

TJ

300

z

:::::

'~

70

505.0 7.0

500

10

50 70 100
20
30
IC, COLLECTOR CURRENT (rnA)

200

300

500

FIGURE 2 - "ON" VOLTAGES
1.0

~Bf(~~) ~ IC/I~ 1~

0.8

~

c

..,. ......

f--- ~

--

-

VBE(on)@VCE=5.0V

? 0.6

1.0

~ ......

TJ=250CI

~
~

>0.2

...........

5.0 7.0

10

20
30
50 70 100
IC, C.DLLECTOR CURRENT (rnA)

200

300

~

VCE(sat)@IC/IB-IO

VCE(sa!) @lcIIB- 10

o

o

5.0 7.0

500

10

FIGURE 3 - CURRENT-GAIN-BANDWIDTH
PRODUCT

20
30
50 70 100
IC, COLLECTOR CURRENT (mA)

200

30

!.

-

t; 400

",.

300

:I:

200

-

.... ,

20

'"~

\

I 100

z
:;;:

80

~

60

'"
~

40

.to'

30

r:::::. ~
"'-:::

.....
Cob

5.0 7.0

10

MPS·005 NPN
- - -- MPS-O 55 PNP
20
30
50 70 100
IC, COLLECTOR CURRENT (mA)

200

300

\

3.0
0.3

500

1021

0.5 0.7

r.:::
MPS·005 NPN
- - - - . MPS-055 PNP

V

r-

5.0
VCE = 10V
f=IOOMHz
TJ = 2SOC

500

TJ = 250C

1-1-

" -,

\

~

300

~,

1',

\.

..... V

FIGURE 4 - CAPACITANCE

~ 600

'"

_I--'

>

0.2

b

--

~

I....-r--

~ OA
c

0.4

>-

g

J

-""'"

w

~

:f

I
IC/IB =

VBE(on) @VCE = 5.0

~ 0.6

w

~

V~E:(~!)IJ

0.8

---

TJ = 25 0C

-...

r--_

1.0
2.0 3.0
5.0 7.0 10
VR, REVERSE VOLTAGE (VOLTS)

20

30

MPS-D06 NPN
MPS-DS6 PNP

(SILICON)

COMPLEMENTARY
SILICON
TRANSISTORS

COMPLEMENTARY SILICON ANNULAR TRANSISTORS

· .. designed for use in low voltage amplifier/driver circuits.
• Excellent LED Segment Driver
•

Excellent Mini·Florescent Driver

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Emitter-Base Voltage

Symbol

Value

Unit

VCEO

25
4.0

Vdc

50
350
2.8
1.0
8.0
-55 to +150

mAde

V~R

Collector Current - Continuous

IC~

Total Power Dissipation @ T A = 2SoC
Derate above 25°C

Po

Total Power Dissipation@ TC = 25°C
Derate above 25°C

Po

Operating and Storage Junction

TJ, T stg

Vdc
mW
mWfOC

Watt
mWfOC
°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to case
(1) ROJA is measured with the device soldered into a typical printed circuit board.

ELECTRICAL CHARACTERISTICS (T A" 25°C unless OtherWISe noted 1

I

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (2)

(lC = 1.0 mAde, IB

=

I

Symbol

I

Min

I

Max

Unit

Emitter-Base Breakdown Voltage

PIN 1 EMITTER
2 BASE
3. COLLECTOR

BVCEO

25

-

Vde

BVEBO

4.0

-

Vde

ICES

-

1.0

"Adc

DIM
A

ICBO

-

1.0

"Ade

C
D

-

L
N

1.150

P

6.35
3.430
2. 10
2.030

01

(IE " 10 "Ade, IC = 01
Collector Cutoff Current

(VCE = 20 Vde, VBE = 01
Collector Cutoff Current

ON CHARACTERISTICS
IIc = 1.0 mAde, VCE = 5.0 Vde)
IIc = 10 mAde, VCE" 5.0 Vdel
IIc ~ 50 mAde, V CE = 5.Q Vde)
Collector·Emitter Saturation Voltage

IIC" 50 mAde, IB " 5.0 mAde)

hFE

VCE(satl

4.450
~180

(VCB = 20 Vde, IE = 01

DC Current Gain (2)

MILLIMETERS
MAX
MIN

40
50
50

-

-

0.3

a

R

-

S

4.320
0.407

5.200
4.190
5.3311
0.533

-

1.390

INCHES
MIN
MAX
O. 5

0.175
.1
0.110
0.016
0.045

1.270

-

2.670
2.670

0.250
0.135
0.095
0.080

Vde
CASE 29'()2

DYNAMIC CHARACTERISTICS

TO~92

Current~Gain-Bandwidth Product (2)
IIc = 10 mAde, V CE = 5.0 Vde,
f" 100 MHz)

(2) Pulse Test: Pulse Width.;; 300/.ls, Duty Cycle';; 2.0%.

1022

.1
0.210
0.021
O. 19

-

0.055
0.050

-

0.105
0.105

MPS-D06 NPN, MPS-D56 PNP (continued)

NPN
MP5-006

PNP
MPS-056
FIGURE 1 - DC CURRENT GAIN
400

400
VCE = S.OV

--

~ 200

~

0:
0:

- ---

TJ=12SoC
2sbc

~
c

.., 100

1111

VCE = S.O v

TJ = 12S oC
z

~

.....

r--_

II

~ 200

.WC

r--

~

glaD

~ 80

j!- 80

so

60

40
O.S 0.7

1.0

2.0 3.0
S.O 7.0 10
IC. COLLECTOR CURRENT ImA)

20

30

40

so

-

.....

ul

O.S 0.7

1.0

2.0 3.0
S.O 7.0 10
IC. COLLECTOR CURRENT ImA)

20

3D

v

I--

so

FIGURE 2 - "ON" VOLTAGES
1.0

1.0

TJ = 2S oC

;c

~
W

to

II

O.S

-

VSElsa')@ IClls = 10
VSElon)@ VCE = S.O v

O.S

TJ = 2S oC

.",..

,.....-v

I II

f"""_
O.S

VSElsat)@ IClls = 10

--

!--

-I-

~

~ O. S VSElon)@VCE= S.O V

~

«

:>

c

W

to

'" 0.4
>

~

O. 4

>
>"

,...-

0.2
VCElsatl@lelIS-l0

o

O.S 0.7

1.0

2.0 3.0
S.O 7.0 10
IC. COLLECTOR CURRENT ImA)

20

3D

VCEI ..,)@IC/IS 10

o

so

O.S 0.7

1.0

%

i!l'
t;

7. 0

i530D
'"
if

....... 1-'

S. 0

~ 200

./

~

~

~100
~
~

V

70

0:

~

.....-..--

500.5 0.7

--

!---

1.0

.........

,

0

--,

--

.......... >< 1--, .......
...... "

....

Cob, ~

-~

3.0

--

-1-

- - Mps·DOS N N

I I
2.0

so

Cib

0

I

3D

TJ=2SoC-

=

MP8-00SNPN
MP8-056PNP

III

::>

3.0
S.O 7.0 10
20
IC. COLLECTOR CURRENT ImA)

0

VCE=S.OV
t= 100MHz
TJ = 2SoC

c

2.0

FIGURE 4 - CAPACITANCE

FIGURE 3 - CURRENT -GAIN - BANDWIDTH
PRODUCT
." SOD

-

O. 2

S.O

7.0

10

20

30

0
1. 0.3

50

IC.COLLECTOR CURRENT ImA)

1023

1IIInrT
O.S 0.7

1.0
2.0 3.0
S.O 7.0
VR. REVER~E VOLTAGE IVOLTS)

10

20

30

MPS·D51

(SILICON)
For Specifications, See MPS-DO 1 Data.

MPS·D52 (SILICON)
For Specifications, See MPS-D02 Data.

MPS-D53 (SILICON)
For Specifications, See MPS-D03 Data.

MPS-D54 (SILICON)
For Specifications, See MPS-D04 Data.

MPS·D 55 (SILICON)
For Specifications, See MPS-DOS Data.

MPS-D56 (SILICON)

For Specifications, See MPS-D06 Data.

1024

MPS·H02 (SILICON)

NPN SILICON ANNULAR TRANSISTOR
NPN SILICON
VHF TRANSISTOR

. . . designed for a common-emitter VHF-RF amplifier stage in
TV receivers.

•

Low Collector-Base Capacitance Ccb = 0.5 pF (Max)

•

Guaranteed Noise Figure NF = 3.3 dB (Max) @ f = 200 MHz

•

Guaranteed AGC Characteristics

•

Complete v-Parameter Curves from 50 MHz to 300 MHz

•

Guaranteed Power Gain Gpe = 20 dB (Min) @ f = 200 MHz

MAXIMUM RATINGS
Rating
conector~Emitter

Voltage

Symbol

Value

Unit

VCEO

20

Vd.
Vd.

Coliector-aalO Voltaga

VCB

20

Emitter-Base Voltage

VEB

3.0

Vd.

Collector Current - Continuous

IC

30

mAde

Total Power OiSlipatlon @ TA = 25°C
Oorate above 25°C

Po

350
2.8

mW
mW/oC

Total Power Dissipation Gil TC" 2SoC
Oerata lbove 2sOC

Po

1.6
12

WItt
mWfOC

TJ,T,tg

-55 to +150

"c

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resl'tanca, Junction to Ambient
Thermal Resiltance. Junction to Call

Symbol

MIx

Unit

R8JAf1I

200

°C/mW

R8JC

83.3

°C/mW

(1) R8JA is mealured with the device soldered into a typical printed circuit board.

SEATINGJ~ 1
PLANE

~

STYLE 2:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

DIM
A
B
C
0
F

L
N
P

a

R
S

MILLIMETERS
MIN
MAX
4.450
5.l0U
3.180
4.320
5.3 0
0.407
0.533
U.4!li
0.482
1.150
6.350
3.430
2.410
2.030

INCHES
MIN
MAX
U.175
O.lOb
.1
0.170
0.210
0.016
0.021
O.UI,

u.u'"

1.390
1.270

0.045

0.055
0.050

-

0.250
0.135
0.095
0.080

2.670
2.670

CASE 29'()2
TO-92

1025

0.105
0.105

MPS-H02 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

I

Syml;lol

Min

COllector-Emitter Braakdown Voltage
(lC = 1_0 mAde,lB = 01

BVCEO

20

-

Vde

COllector-Base Braakdown Voltage
(lC = 100 "Ade, IE • 01

BVCBO

20

-

Vde

Emitter-Base Braakdown Voltage
(IE = 100 "Ade, IC· 01

BVEBO

3.0

-

Vde

ICBO

-

50

nAde

fT

375

-

MHz

Ccb

-

0.5

pF

NF

-

3.3

dB

Gpe

20

-

dB

VAGC

4.0

5.0

Vdc

Chal'8C1llristic

Unit

OFF CHARACTERISTICS

COllector Cutoff Current
(VCB· 10 Vde, IE = 01
ON CHARACTERISTICS
DC Current Gain
(lC = 4.0 mAde, VCE • 10 Vdel
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vdc, f
COllector-Base Capacitance
(VCB = 10 Vde. IE = 0, f
Noise Figure (Figure 91
(VAGC = 1.4 Vdc, RS

= 100 MHzl

= 1.0 MHzl

= 50 Ohms, f =200 MHzl

FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (Figure 91
(VAGC = 1.4 Vdc, RS = 50 Ohms, f =200 MHzl
Forward AGC Voltage (Figure 91
(Gain Reduction =30 dB, RS = 50 Ohms, f

=200 MHzl

AGC CHARACTERISTICS

(Vce

= 12 Vde,

= 50 Ohms, f = 200 MHz, See Figure 9)

RS

FIGURE 1 - POWER GAIN

FIGURE 2 - NOISE FIGURE

14

30
25

~

~

20

10

'"

5.0

is 8.0

IIi

6.0

3.0

2.0

5.0

4.0

o

6.0

o

2.0

1.0

(Ie

0

0

40

B

] o.8

/

w

....~ o.6

/
~

V

v

V
V

60

80

100

/

/

.. o.
;;;

-bre

Q

~

200

6.0

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

I

L

5.0

1.0

/gie

0

4.0

= 4.0 mAde, VeE = 10 Vde, TA = 25 0 q)

FIGURE 3 -INPUT ADMITTANCE

0

3.0

VAGc, AUTOMATIC GAIN CONTROL VOLTAGE (VOLTS)

COMMON-EMITTER V PARAMETERS

0

"

2.0

VAGC, AUTOMATIC GAIN CONTROL VOLTAGE (VOLTSI

0

/

\I\..

4.0

i\
\
1.0

V

~

\
o

J

~

i

-5.0

/

10

~

\

15

i

12

~

(

~

bie

"

300

./'

4

!ll
~

.... o.2

!

400

f, FREQUENCY (MHz)

1026

r-'
0

40

-

60

...

80

"

V

./

1Ire
100
~O
f, FREQUENCY (MHz)

300

400

MPS·H02 (continued)
COMMON·EMITTER V PARAMETERS
(lc = 4.0 mAde, VCE = 10 Vdc, TA = 25°C)
FIGURE 5 - FORWARD TRANSFER ADMITTANCE

~

~

:i

I:

r-....

80

iii 60
~

....

~ 40

:><

V

r""oo.
2

........

~fe

"'

~

:: 20
Q

0:

60

80

100

./

/

I'\.
4

300

200

.....

4D

i;'

1Ioe ....

V

,."

~

i--"'"

D

400

/

bo~

8

\.

0

oj, M2040

J
V

6

"..

0:

itt

FIGURE 6 - OUTPUT ADMITTANCE
2.0

... 120
.lil
.!100

80

60

100

20D

3DD

40D

f. FREIlUENCY (MHz)

f. FREIlUENCY (MHz)

FIGURE 7 - DC CURRENT GAIN

FIGURE 6 - COLLECTOR·BASE CAPACITANCE

0

1.3
Ve,-IOVd,
t- T. - 25'C

...

30

O~

--

f-'""

111111

1.2

(C,b-CN@I,-Ol
T. - 25'C

i\

\

\

0

-

7.0

r-

0.5

r--.... r-....

5.0

['..
0.3

3.0
0.1

0.2 0.3

0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
Ie. COllECTOR CURRENT ImAdel

0.1

20

0.2 0.3

0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
VeL COLLECTOR· SASE VOLTAGE IVOLTSI

FIGURE 9 - 200 MHz FUNCTIONAL TEST CIRCUIT
(NEUTRALIZED)
Vcc- 12V
270

*W

lOOOpF

50 OHMS
INPU'T

T'

T, - FERRITE CORE INDIANA GEN. CORP. F·684
T, - &TURNS #16 8tJSSWIR~ 10 - IIo".L-!l"

1027

"

20 30

MPS-H04 (SILICON)
MPS..H05

NPN SILICON
TRANSISTORS

NPN SILICON ANNULAR TRAN$ISTORS

... MPS·H04 is designed for RF amplifier applications in AM receivers .
. . . Mps·H05 is design8!l for mixer ,oscillator, autodyne CQnverter, and
IF amplifier applications in AM receivers.

• High Breakqown Voltage - BVCEO =80 Vdc (Min)
• Low Coliector·Base Capacitance - Gcb = 1.0 pF (Typ)
• Low O\.ltput Admittance - hoe =5.0llmhos (Max)
• Low Noise Figure - NF = :2.0 dB (Max) - MPS'H04
• Complements to PNP Tvpes MPS·H54 and Mps·H55

J

!

SEATINGJ~L1·- ~~
. . Fl
PLANE

1--1

D-I-f' H-L
-R~

MAXIMUM RATINGS
Ratl'"
Collector.Emitter Voltage
Ernitter-8_ Voltage
Collector Current - Continuous
Total Po_ Oillipa.ion .. TA • 25u C
D_._2SOC
Total P _ Qiuipation OTC = 250C
Derate _
26°C

SV..... I

Value

VCEO
VEB
IC

80

Opemi", and SIOI'8ge Junction
T"""",rature Ra"",

TJ,Tstg

Po
Po

4.0
100
360
2.8
1.0
8.0
-66 to +160

Unit
Vdc.
Vdc
mAd!;
mW

m~', '1i~
--l
PIN 1. EMITTER
2. BASE
3. COLLECTOR

mWf>c
Watt

mWf>c
OC

TH"RMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient

DIM
A

0

1. .l.

MILL M TERS
INCHES
M N MAX MIN
MAX
4.450
. 0 O. 175
0.205

B

180

. 80

0.125

0.165

C
D

4.
0.407

5.
O. 33

.170
0.016

O. 10
0.021

F

D.4O/

• liZ

D.Dlti

U;UI9

L
N

1.150

1.39u
1. 0

0.046

0.055
0.050

P

6.350

oR

2.410
2.030

. s:

0.250
O~

.4

2.670
2.670

0.085
O.OBO

CASE 28-02
TO·92

1028

B

5

S

0.105
0.105

MPS-H04, MPS-H05 (continued)

ELECTRICAL CHARACTERISTICS (T A =25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Coliector·Emitter Breakdown Voltage (1)
(IC = 1.0 mAde, IB = 0)

BVCEO

80

-

-

Vdc

Coliector·Ba.. Breakdown Voltage
(IC = 100 pAdc, IE = 0)

BVCBO

80

-

-

Vdc

Emitter·B..... Breakdown Voltage
(IE = 100 pAdc, IC = 0)

BVEBO

4.0

-

-

Vdc

Collector Cutoff Current
(VCB" 60 Vdc, IE = 0)

ICBO

-

-

50

nAdc

Emitter Cutoff Current
(VEB = 3.0 Vdc, IC = 0)

lEBO

-

-

50

nAdc

30

120
150

Characteristic
OFF CHARACTERISTICS

ON CHARACTERISTICS
DC Current Gain
(IC = 1.5 mAde, VeE = 10 Vdc)

-

hFe
30

70
70

VCE(satl

-

0.12

0.25

Vdc

Current·Gain-Bandwidth Product
(IC = 1.5 mAde, VCE = 10Vdc, f= 100 MHz)

fT

80

180

-

MHz

Coliector·Base Capecitance
(VCB = 10 Vdc, I = 1.0 MHz)

Ccb

-

1.0

1.6

pF

Output Admittance
(IC" 1.5 mAde, VCE = 10 Vdc, f = 1.0 kHz)

hoe

-

2.0

5.0

pmhos

Noise Figure
(IC= 1.5 mAde, VCE = 10Vdc, Rs=50ohms,l= 1.0MHz) MPS·H04

NF

-

1.7

2.0

dB

MPS·H04
MPS·H05

Coliector·Emitter Saturation Voltaga
(IC = 10 mAdc,lB = 1.0 mAde)
DYNAMIC CHARACTERISTICS

(1) Pulse Tast: Pul .. Width" 300 p', Duty Cvda " 2.0%.
FiGURE 1 - SIMPLIFIED AC EQUIVALENT CIRCUIT (Common Emitter)
BASE

rb

COLLECTOR

V Parameters may be determined from the following calculation.:
1/1e

c,

Note:
Data lor MPS·H04 and MPS-H05 i. presented in terms 01 the

equivalent circuit shown in Figure 1. Values for its components
may be lound or calculated .. follows:
rb''''' 15 Ohms
ra =26mV!IE

Ccb, See Figure 5

Um = 1Ire
!Ie: = (hie + 1) hob (S.e Figuras 3 and 6)
Co =0.2pF
rb'c = (~fe + 1) re

Low frequency h parameters may be found from:
hie = 'b' + rb'c

hle "'1.1 hFE(See Figure 2)
hre = Negligible
hoe = (hie

+ 1) hob

1029

MPS-H04, MPS-H05 (continued)

ELECTRICAL CHARACTERISTICS (VCE

= 10 V. T A =25°C unless otherwise noted)
FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - NORMALIZED DC CURRENT GAIN
1.0

3.0

§
N

::;

---

2.0

-

'"~

'"
:!l
z
<
'"
...
~
'"
B
u

'"

1.0
0.7
0.5

~

L--

0.3
0.1

II II
II II

TA = 125°C
O.B

VBE @VCE

I----

-

- -

--

0.5

0.2

1.0

~

25°C

~H-

'"

0.6

~
W

to

:;
'"

-55°C

0.4

'">

~

VCE(sat)@

0.2

0.1

10

0.2

0.3

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

~
z

'"~

--

V

V

I---

~

oV

-t--t--

~

15

ffi 100

8 o. 7

'"'"::>

j

3.0

4.0

5.0

7.0

10

r-...

1.0

2.0

,1= 1.~ kHlz

;'!:

...'"'"'"'
::>
::>

0.03

'"
j

0.02
0.01 5
0.5

100

50

FIGURE 7 - NOISE FIGURE

j

0.0 7

!:: 0.05

;=

20

[7

j 0.1

....
~

10

5.0

VCB COLLECTOR·BASE VOLTAGE (VOLTS)

FIGURE 6 - OUTPUT ADMITTANCE

z

t--

o. 5

IC. COLLECTOR CURRENT (mAde)

0.1 5

10

2. 0

w

2.0

5.0

0:;

~
u

50
1.0

3.0

~ 3. 0

'"t'-

.t?

2.0

,= 1.0 MHz

u

i.--

'"
'"t;j 1.0

u

I

5. 0

-"
w

<

z

1.0

FIGURE 5 - COLLECTOR·BASE CAPACITANCE vat'SUs VOLTAGE

.

'" 200

0.5

IC COLLECTOR CURRENT (mA)

-;:; 300
:x:
l!l
t;
250

lC
iB
=10

IIIIII

o
5.0

2.0

IC. COLLECTOR CURRE,NT (mAde)

15
f'"
i:

=10 V

V

./

1/

V

"

V
~
0.7

1.0

2.0

3.0

5.0

0.05

IC. COLLECTOR CURRENT (mAde)

0.1

0.2

0.3

0.5

0.7 1.0

RS. SOURCE RESISTANCE (kohms)

1030

2.0

3.0

5.0

MPS·H04, MPS·H05 (continued)

AM RADIO DESIGN INFORMATION
FIGURE 8 - 1.0 MHz AMPLIFIER TEST CIRCUIT
L1

L2

CI

RG

=

L1 90 turns of 7 x 41 Utz Wife on 1/4" form,

50 n

tapped 4 turns from ground end. Turns
ratia of call"", 22, unloaded n, Qu "" 130
Loaded D, UL ~ 60
L2 90 turns of 7 x 41 Lltz wire on 1/4" form,
tapped 21 turns from high end. Turns
ratio of cOIl"., 1.3, unloaded Q, Qu "" 130,
Loaded D, DL ~ 60
CI 25-280 pF Vanable
C2 100-400 pF Variable

50

15 k
13 k
+12 V

FIGURE 9 - 1.0 MHz MIXER TEST CIRCUIT
L1

CI
FL

L1 90 turns of 7 x 41 Lltz wire on 1/4" form,

tapped 4 turns from ground end. Turns

0.1 pF

-

r

100

CI

1.5k

Bias Supply

(0·30V)

+12 V

FIGURE 10 - AMPLIFIER POWER GAIN
39

f-~
z
~

....
'"

35 f--

~

to

29

0:.

TA = 25°C
VCE" 10 Vde
j= I 0 MHz
k = 5.0

--

z

.-/

1.0

22

&:

20

~
0

Figure 8, as they are reoptimized.

27

'"'"
z

I
I
I

I
I
2.0

-

I

iii

...-? ....

~
z

Ie

16
14

'"

12
10

4.0

1.0 mAde

./

-

V /'
V': I--

~

"'/
~3.oTAde
0.5 rnA'de

10

5.0

=

./ A
/ V-

18

8

~

I
3.0

28 _VCE=IOVde
TA = 25'C
26

;;: 24

~~ccu~;r~~ ~~t~~~~rV:~~nf~~ ~Ct~o:e0o~Ad c, -

......

,.....
0.7

:s

V
./"

.-/

25
0.5

.

L

33
I

FIGURE 11 - CONVERSION POWER GAIN
30

I I

37 f--

Loaded 0, DL ~ 60.
25·280 pF Varoable

FL 455 kHz Filter

0.01

1.455 MHz

-::-

ratiO of coil"" 22, unloaded 0, Gu "'" 130.

1.5 k

RG '" 50 S~

15

20

(Fl Losses Not Included)

30

40

50

OSCILLATOR INJECTION VOLTAGE (mVdel

IC, COLLECTOR CURRENT (mAde)

1031

70

100

MPS-H07 (SILICON)
MPS-H08

NPN SILICON
. FMNHF TRANSISTORS
NPN SILICON ANNULAR TRANSISTORS

· .. designed for common-base FMNHF RF amplifier applications.
•

•

Guaranteed Noise Figure NF = 3.2 dB (Max) @f= 100 MHz
= 3.5 dB (Max) @f = 200 MHz

MPS-H07
MPS-H08

Guaranteed Forward AGC Characteristics

•

Complete v-Parameter Curves at Both 100 MHz and 200 MHz

•

Guaranteed Power Gain Gpb = 18 dB (Min) @f= 100 MHz
= 14 dB (Min) @f = 200 MHz

•

MPS-H07
MPS-H08

Low Feedback Capacitance AllOWing Stable Unneutralized
Operation

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

30

Vde

Coliector·Ba.. Voltage

Vce

30

Vde

Emitter-Base Voltage

VEe

3.0

Vde

Collector Current - Continuous

IC

30

mAde

Totel Power Dissipation @ T A = 25°C
Dorat. above 25°C

Po

350
2.8

mW
mW/oC

Total Power Dissipotion @ TC = 25°C
Oerate above 250 C

Po

1.0
8.0

Wott
mW/oC

T J,T stg

-55 to +150

°c

Collector· Emitter Voltege

Operating end Storage Junction

Temperature Range

STYLE 1:

PIN 1. EMITIER
2. BASE
3. COLLECTOR

DIM
A
B

C
D
F
G

THERMAL CHARACTERISTICS
. Characteristic

Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

Symbol

Max

Unit

R6JA(I)

357

R6JC

125

°CM
°CIW

(1) R8JA is measured with the device soldered into a typical printed circuit board.

1032

H
J
K
L

MILLIMETERS
MIN MAX
5.03 5.18
4.01 4.27
4.44 4.70
0.41 0.48
0.26 0.38
1.14 1.40
1.40 1.65
0.23 0.28
12.70
0.33 0.38

INCHES
MIN MAX
0.198 0.204
0.158 0.168
0.175 0.185
0.016 0.019
0.010 0.015
0.045 0.055
0.055 0.065
0.009 0.011
0.500
0.013 0.015

CASE29A
PLASTIC TRANSISTOR
WITH SHIELD

-

MPS-H07. MPS-H08 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Symbol

Min

Max

Unit

Colleetor-€mitter Breakdown Voltage
IIC = 1.0 mAde, IB = 0)

BVCEO

30

-

Vde

Coliector·Ba.. Breakdown Voltage
IIc = l00/lAde, IE = 0)

BV CBO

30

-

Vde

Emitter·Ba.. Breakdown Voltage
(IE = l00/lAde, IC = 0)

BV EBO

3.0

-

Vde

ICBO

-

50

nAde

DC Current Gain
IIC = 3.0 mAde, VCE = 10 Vde)

hFE

20

-

-

Ba..-€mitter On Voltage
IIc = 3.0 mAde, VCE = 10 Vde)

VBE(on)

-

0.9

Vde

400
500

-

-

0.3

Characteristic
OFF CHARACTERISTICS

Collector Cutofl Current
(VCB = 15 Vde, IE = 0)
ON CHARACTERISTICS

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

MHz

IT

IIC = 3.0 mAde, VCE = 10 Vde, I =·100 MHz)

MPS·H07
MPS·HOB
Cee
(Crb)

CoUector-Emitter Capacitance

(V CE = 10 Vde, I B =0, I = 1.0 MHz, base guarded)

pF
dB

NF

Noise Figure (Figure 9)
(lC = 3.0 mAde, VCB = 10 Vde,
RS = 50 Ohms, I = 100 MHz)
IIc = 3.0 mAde, VCB = 10 Vde,
RS = 50 Ohms, I = 200 MHz)

MPS·H07

-

3.2

MPS·HOB

-

3.5

FUNCTIONAL TEST
Common-€mitter Amplilier Power Gain (Figure 9)
IIc = 3.0 mAde, VCB = 10 Vde, RS = 50 Ohms
1= 100 MHz)
IIc = 3.0 mAde, VCB = 10 Vde, RS = 50 Ohms,
1= 200 MHz)

dB

G pb
MPS-H07
MPS-HOB

lB

-

14

mAde

I AGC

Forward AGC Current (Figure 9)
(Gain Reduction = 30 dB, RS = 50 Ohms
1= 100 MHz)
(Gain Reduction = 30 dB, RS = 50 Ohms,
1= 200 MHz)

MPS·H07

5.0

B.O

MPS·HOB

5.0

B.O

AGC CHARACTERISTICS
Vee

= 10 Vdc, RS =50 Ohms, See Figure 9
--1= l00MHz

---1=200MHz

FIGURE 1 - POWER GAIN

0

FIGURE 2

10

-

I

9.0

z

01-

'"

i
!z

i8 -20
.g,

-

r-- ~ ~

!

3.0

7.0

w

0:

~~

...........",

=>

'"il:

'"'

'"
-40

17
il
II

8.0

~

;;:

5.0
6.0
4.0
IAGC' AUTOMATIC GAIN CONTROL CURRENT (mA)

::l
(5

""

6.0

II

5.0
4.0

z
u.:
z 3.0

NOISE FIGURE

~

.......

2.0

/'

-

,,' '/

1.0

o0

7.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

IAGC' AUTOMATIC GAIN CONTROL CURRENT (mA)

1033

9.0

10

MPS·H07, MPS·H08 (continued)

COMMON·BASE V PARAMETERS
V CB = 10 Vdc. T A = 25°C
-f

= 100 MHz

- - - f "" 200 MHz

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

FIGURE 3 - INPUT ADMITTANCE

'S'
~
oS
W

~

....

~
~
z

80

60
40

-

20

-20

~

-40

~

r--.....

oS

-1-- !- -

1-'

~~,

'-

1.0

~

0.4

~..

0.3

z

0.2

.
~
....
c

'" "'" -

o

-g 0.5

I

~ -60

8'" -80
~-100

-

~.
J

....::..

~

Z

v .......r.....
/£. .

100

2,0

V~-

'7

,..- --

-g~/

- -

0:
W

ffi
B.O

9.0

o

1.0

2.0

-g 100
~

W

60

c

20

...

J

bib.....

,,/V"

40

~

z -20

"'

-40

0:

~

1i:

"' ....

1--"'-

-60

~

7

....~ :-:-....

2.0

.::: t--

-........-

glb

1..... ......

/'

/

k

~
:iii
;:

0.8

~

!; 0.6
c

.g

V

>-

f'..i-. "/

3.0
4.0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (mAl

S.O

9.0

1.4
1.2
1.0

c

/
91b

~

10

~

~

1000

900

;
_

3.0
2.0

'9.0

10

........ i-.

o

1.0

2.0

V

....t-'"

......... ~b

3.0
4.0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (mAl

S.O

9.0

10

......, -

BOO

TAl = 250cI

VCE = 10Vd,_ I----

l:i

600

c

500

9.0

10

400

~

300

iii

200

a

100

~

S.O

gl
J.b_

.,....V

700

~z

/

3.0
4.0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (mAl

_

IE
i

/

.; 1.0

----

1--

%

/

........

2.0

......

i5
c

/

8

0

/
V

~ 4.0
D:

~

t;

TA:'-25 0 C I
Ves = 10 Vd,

6.0
5.0

B.O

FIGURE 8 - CURRENT -GAIN BANDWIDTH PRODUCT

;s

w

~

-~rb

.~

.....

1.0

10

8.0

t- .....

I--

0.2

9.0

8 7.0
;::

rb-

l

I-_bOb_

bob

-

0.4

FIGURE 7 - COLLECTOR-BASE TIME CONSTANT

~

-

3.0
4.0
5.0
6.0
7.0
IC' CO LLECTOR CURRENT (mAl

-" -

)1.6

t:.::..

-- -

i'...

-SO
1.0

:!
...

--."L 1--

..,/

I.S

I-bib

,,'V

1:i

...c~

1--

2.0

BO

'"'z
~

-

FIGURE 6 - OUTPUT AOMITTANCE

FIGURE 5 - FORWARO TRANSFER ADMITTANCE

oS

,.::~

f--- 1--

o

10

-

0.1

~

3.0
4,0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (rnA)

f--

.i-

1034

00

V

I--

'- :--....

'" I'-...
1.0

2.0

3.0
4.0
5.0
6.0
7.0
IC' COLLECTOR CURRENT (mAl

8.0

9.0

10

MPS-H07. MPS-H08 (continued)

FIGURE 9 - 100·MHz AND 200-MHz COMMON·BASE AMPLIFIER

O.l IlF:J;
1000 pF

INPUT~
1000 pF

~OUTPUT

10.1

FREQUENCY
100 MHz - u- 11 TURNS NO. 16 AWG, 'Au 1.0.,
TAPPED l4 TURNS FROM COLD END.
200 MHz - L2 - 6 TURNS NO. 16 AWG, 'Au 1.0.,
TAPPED l4 TURNS FROM COLO ENO.

1035

1lF

MPS-H 10 (SILICON)
MPS·Hll

NPNSILICON
VHF/UHF TRANSISTORS
NPN SILICON EPITAXIAL TRANSISTORS
· . . designed for use in VHF/UHF common base oscillator
applications.
• High Current·Gain~Bandwidth Product fT =650 MHz (MinI @lIC =4.0 mAde
•

Low Coliector·Base Time Constant ~'Ce =!l.0 ps (MaxI @lIC =4.0 mAde

•

Feedback Capacitance Crb = 0.35-0.66 pF - MPS·Hl0
0.6-0.9 pF - MP$·H 11

r1
A

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

25

Vde

Collector-lla.. Voltage

Vca

30

Vdc

Emitter~8ase

VEa

3.0

Vdc

Total Power DisSipation liiIT A = 25°C
Derate above ~C

Po

350
2.8

rrfN
rrfNf'c

t c =25°C

Po

1.0
a.o

tJ. Tstg

-85 to +150

Walt
mWf'C
DC

Collector-Emitter Voltage

Voltage

Total Power Dissipation @
Derate above 2s<'C

Operating and Storage Junction
Temperature Range

SEATING~nB~
PLANE

L---

D~H-Rl-tl
=::j

STYLE 2
PIN!. BASE
2. EMITTER

3.

~

r

r-

a

COLLECTOR~".-l
000

Symbol

Valua

Unit

Thermal Resistance. dunction to Ambient

R8JA

357

°C/W

Thermal Resistance. Junction to Case

R8JC

125

°C/W

B

MI IMETERS
INCHES
MIN
DIM
MAX MIN MAX
4.450
A
0.205
502110 lo.m
3.1
B
4.1 0
.1
4.320
C
5.330 0.110
0.210
D
0.401
0.021
0.533 0.016
l
p

1.150

6.350

Q

430

R

2.410
2.030

S

1.390
1. 10

-

-

2.61
2.610

0.045

0.250
0.1
0.085
O.OBO

CASE 29-02
TO·92

1036

S

-ls::::rT

THERMAL CHARACTERISTICS
Characteristic

K

-

0.055
.050

-

0.105
0.105

MPS-H10, MPS-H11 (continued)

ELECTRICAL CHARACTERISTICS (TA = 250 e unless otherwise noted)
Svmbol

Min

Collector-Emitter Breakdown Voltage
(lC = 1.0 mAdc,lB = 01

"vCEO

.."

Collector-Base Breakdown Voltage
(lC = 100 "Ade, IE = 01

aVCRO

30

-

Vdc

Emitter-Base Breakdown Voltage
(IE = 10 "Adc, IC = 01

BVEBO

3.0

-

Vdc

Collector Cutoff Current
IVCB = 25 Vdc, IE = 01

ICBO

-

100

nAdc

Emitter Cutoff Currant
!VBE = 2.0 Vde, IC = 01

lEBO

-

100

nAdc

hFE

60

-

-

Colleetor-Emitter Saturation Voltage
IIC = 4.0 mAde, I B - 0.4 mAdel

VCElsatl

-

0.5

Vde

Base'Emiuer On Voltage
(lc = 4.0 mAde, VCE = 10 Vdcl

VBElonl

-

0.95

Vdc

IT

650

-

MHz

Cob

-

0.7

pF

0.35
0.6

0,65
0.9

-

9.0

Characteristic
OFF CHARACTERISTICS

Max

Unit

vae

ON CHARACTERISTICS
DC Current Gain
IiC = 4.0 mAde, VCE = 10 Vdel

DYNAMIC CHARACTERISTICS
Currant-Gain-Bandwidth Product
IiC= 4.0 mAde, VCE = 10 Vde, f = 100 MHzl
Collactor-Base Capacitanca
!VCB = 10 Vde, IE = 0, f = ,1.0 MHzI
Common-Base Feedback Capacitance
IVCB = 10 Vdc, IE = O. f = 1.0 MHzl

em

MP5-Hl0
MP5-Hl1

Collector-Base Time Constant
IiC = 4.0 mAde, VCB = 10 Vde, f = 31.8 MHzl

pF

rb'Cc

po

COMMON-BASE y PARAMI:TERS versus FREQUENCY
(VCB = 10 Vdc, Ie =4.0 mAdG. T A = 25°C)
Yib. INPUT ADMITTANCE
FIGURE 1 - RECTANGULAR FORM
80

Iis
...z

~

10

...........

:Ii

......

-10

9lb

60

i'..

w

g

50
-bib
40

c

:::>

FIGURE 2 - POLAR FORM

30

0.

!!: 20

-20

""

I-r---

'i

,...... ....

i'..

r'\

~

1

.......

10
200

300

400

500

100

."

-50

'\
100

-1000 MHz
-30

"

100

...........

400

2f- 1OO

--l-

I
I

-60

1000

10

f. FREQUENCV (MH"

20

30

40

!liblmmho,'

1037

50

10

80

MP8-H10, MPS·H11 (continued)

COMMON·BASE Y PARAMETERS versus FREQUENCY
(VCB = 10 Vdc, IC =4.0 mAde, T A =25°C)
Yfb, FORWARD TRANSFER ADMITTANCE

---

--

FIGURE 3 - RECTANGULAR FORM

1
oS

.,.
~

:z

<

70
60
50
40

Q

30

'"

20

.

10

<

~
z
~

Q

'"

i~

FIGURE 4 - POLAR FORM
60

bfb

r- ...........
.......

50

1

,,'b

.......

"-

""

0
·10

~

400

100

r--.... '-...
600,,"
700""-

j

40

!

t

"

30

"'

1000 MHz

20

-20

'\

~ -30
100

200

300
400
I, FREQUENCY (MHz)

500

700

10

1000

70

60

50

40

30

20

10

-10

-20

-30

1.2

1.6

2.0

!lib (mmhos)

Yrb, REVERSE TR.ANSFER ADMITTANCE
FIGURE 5 - RECTANGULAR FORM

FIGURE 6 - POLAR FORM

/
Jf'S.~l1 1--

100

/

·brb

/'

./

.....---::::::.

200

100

i

/

f-""

-2.0

400

~ -3.0

-brb

iPS'T

200

1

"" I-

./

./

........ V

/'

·1.0

I-

O

700

-4.0

I-

lIrb

300· 400
500
I, FREQUENCY (MHz)

1000 MHz

-5.0

700

1000 .

-2.0 -1.6

-1.2

-O.B

-0.4

0.4

O.B

grb (mmhos)

Yob, OUTPUT ADMITTANCE
FIGURE 8 - POLAR FORM

FIGURE 7 - RECTANGULAR FORM
10

j

9.0

E

B.O

~

7.0

oS
z

..g

.~
Q

<

:0

V

I

l/l0ooMHZ

B.O

V

l' 6.0

6.0
5.0
bob

4.0
3.0

0

!

10

:1.0
1.0
100

---

1

V

~

l..

,/

V
~
200

300
400
I, fREQUENCY (MHz)

-

500

4.0

I

700

f'i

200

2.0

..... V
700

100

1000

2.0

4.0

6.0
gob (mmho.)

1038

B.O

10

MPS-H17

(SILICON)

Advance Inforxnation
NPN SILICON
TRANSISTORS

NPN SILICON ANNULAR TRANSISTORS

· .. designed lor CATV converter applications.
•

Low Collector-Base Capacitance Ccb = 0.9 pF (Max)

•

High Current-Gain - Bandwidth Product IT = 800 MHz (Min) @ IC = 5.0 mAdc

•

Low Noise Figure NF = 6.0 dB (Max)

@

I

= 200 MHz

l

j

~

i :i

SEATINGJt
PLANE
~

D-jl~~
=lR~

MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Collector Base Voltage
M

Emitter-Base Voltage
Total Power Dissipation @ T A = 25°C

Symbol

Value

Unit

VCEO

15

Vdc

VCB

20

Vdc

VEB

3.0

Vdc

PD

625
5.0

mW
mW/oC

TJiTstg

-55 to +150

°c

Derate above 25°C
Operating and Storage Ju nction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
(Printed Circuit Board Mounting)

K

I

Symbol
R8JA

I

Max

Unit

200

°C/W

lor
tgt~

STYLE
2: BASE
PIN 1.
2. EMITIER

1 2 3

000

3. COLLECTOR

DIM
A
B
C
D
F

--l

MILLIMETERS
MIN
MAX

S

5.200 .0.175
4.1HU 0.125
5.330 0.170
0.533 0.016
".482 "."16

L
N

1.150

1.390
1.270

P

6.350
3.430
2.410
2.030

D.5OU

R
S

2.670
2.670

0.045
0.250
0.135
0.095
0.080

CASE 29-112
TO-92

This is advance information on a new introduction and specifications are subject to change without notice.

1039

S

B

INCHES
MIN
MAX

4.450
3.1su
4.320
0.407
".4U7

°

=r-r
0.205
0.165
0.210
0.021

"."1'
0.055
0.050
0.105
0.105

MPS-H17 (continued)

ELECTRICAL CHARACTERISTICS (TA = 2So C unless otherwise noted)

I

Characteristic

I

Symbol

Typl

Min

Max

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage
(lc = 1.0 mAde, IB = 0)

BVCEO

Coliector·Base Breakdown Voltage
(lC = 100 "Adc, IE = 0)

BVCBO

Emitter·Base Breakdown Voltage
(IE = 10"Adc, IC =0)

BVEBO

Collector Cutoll Current
(VCB = 15 Vdc, IE = 0)

Vdc

IS

-

-

20

-

-

3.0

-

-

-

-

100

25

-

250

-

-

0.5

800

-

-

0.3

-

0.9

30

-

-

-

-

6.0

Vdc
Vdc

ICBO

nAdc

ON CHARACTERISTICS
DC Current Gain
(IC =5.0 mAde, VCE = 10 We)

hFE

Coliector·Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)

VCE(sat)

Vdc

DYNAMIC CHARACTERISTICS
Current·Gain - Bandwidth Product
(lC = 5.0 mAde, VCE = 10 Vdc, I = 100 MHz)

IT

Coliector·Base Capacitance
(VCB = 10 Vdc, I = 1.0 MHz)

Ccb

Small-Signal Current Gain
(lC = 5.0 mAde, VCE = 10 Vdc, 1·1.0 kHz)

hIe

Noise Figure (Figure 1)
(IC = 5.0 mAde, VCC

NF

= 12 Vde, AS = 50 ohms, I = 200 MHz)

MHz
pF

dB

FUNCTIONAL TEST (Figure 2)
Common-Emitter Amplifier Power Gain
(Ie = 5.0 mAde, Vee = 12 Vdc, AS = 50 ohms, 1= 200 MHz)

FIGURE 1 - 200 MHz FUNCTIONAL TEST CIRCUIT
(NEUTRALIZED)
VAGC

VCC" 12 V
270
1/2W

FIGURE 2 - TYPICAL COMMON EMITTER POWER
.
GAIN AND NOISE FIGURE
I

30

~
z

;;: 24

co

0:

~

~

""

.......

If

8.0

t"-....

II
12

\.. 1--

z

--

'-NF

-' -'"

:IE
:IE

.,
0

T"

J
1000PF11'

2.0

4.0

6.0

8.0

10

12

14

IC. COllECTOR CURRENT (mAl

390
1I2W

TI "FERRITE CORE INOIANA GEN. CORP. F·684
T2" 6 TURNS#16 BUSSWIRE.IO" 114", L" 3/4"

1040

u::
w
o

4.O!!!

z

RS"50n
~
1=200MHz-2.0
VCC" 12V

6.0

o
o

6.O~
::>
co

l ' r-...

0

50 OHMS
INPUT

iii
:g

........... I

IB

0:

~:IE

-.....Gp.

/'

16

18

o
20

MPS-H 19 (SILICON)

NPN SILICON EPITAXIAL TRANSISTOR
... designed for VHF mixer applications in TV receivers.
•

NPNSILICON
VHF TRANSISTOR

Excellent Conversion Gain - 15 dB (Min) @2ooMHz

=0.65 pF (Max)

•

Low Collector·Base Capacitance - Ccb

•

High Current·Gain-Bandwidth Product fT 300 MHz (MinI

•

Complete y·Parameters @ 4.0 mA

=

MAXIMUM RATINGS
Rating

Symbol

V.•I~e

Unit

VCEO

25

Vde

Ulliector-Ba.. Voltage

VCB

30

Vde

Emltter-Bese Voltage

VEB
PD

3.0

Vde

350
2.73

mW
mWf'C

-56 to +150

°c

Coliector·Emitter Voltage

Total Power Dlnlpation .. T A - 25°C
Darate above 250 C
Operating and Storage Junction
Temparature Range

TJ,Tstg

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Ambient

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)

I

Min

Max

Unit

BVCEO

25

-

Vde

Collector-lIMe Breakdown Voltage
(lC - 100 ,.Adc, IE ·01

BVCBO

30

-

Vde

Emitter-B... Breakdown Voltage
liE - 10 ,.Adc, IC· 01

BVEBO

3.0

-

Vde

ICBO

-

100

nAde

Cher_istic
OFF CHARACTERISTICS
Collector-Emitter Braekdown Voltage
(IC = 1.0 mAde,lB =01

Collector Cutoff Current
(VCB = 15 Vdc, IE = 01

Symbol

ON CHARACTERISTICS
DC Cumlnt Gain
(lC =4.0 mAde, VCE - 10 Vdel
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth PrOduct
(lC = 4.0 mAde, VCE - 10Vdc, f - 100 MHzl

STYLE 2:
PIN 1.

2.
3.

~
A
B
C
0
F

fT

300

-

MHz

Collector-lIMe Capacitance
(VCB· 10 Vde, IE • O~ f· 1.0 MHzl

Cob

-

0.65

pF

Conversion Gain (Figu.ras I and 21
(213 MHz to 45 MHzi
IIC = B.O mAde, VCC = 20 Vde,

GpC
15

-

L
N
P

a

R
S

~
3.180
4.320
0.407
0.401
1.150

6.350
3.4~

2.410
2.030

INCHES
MAX MIN
MAX
5.200 0.175
O.~5
4.190 . 0.125
0.165
5.330 0.1
0.210
0.021
0.533 0.016
0.019
0.482 0.016

1.390
1.270

2.670
2670

0.045
0.250
o.!~)

0.095
0.080

dB

Oscillator Injection· 150 mVrms)

1041

CASE 29-02
T0-92

-

0.055
0.050

-

0.105
0.105

MPS-H19 (continued)

CONVERSION GAIN CHARACTERISTICS
(TEST CIRCUIT FIGURE 2)
(fsig· 213 MHz, fif - 4& MHz, B.W.· 6.0 MHz)
FIGURE 1 -CONVERSION GAIN

FIGURE 2 - VHF MIXER TEST CIRCUIT

40

60n
INPUT

1.&-.20

35

;a 30

:s
z

~

Z

5

Q

20

!I;!

15

i:i
z

8

l;!

0

'"

5. 0

........

~

./

~

I

~

I\.
\
ALL CAPACITANctVAL~S IN pF.

+20 V

L1 =3 TURNS #16 AWG, TAPPEO 112 TURN.
-VEE
L2. 10 TURNS #26AWGWITH ARNOLD At·10CORE.

0
2.0

4.0

6.0

8.0

10

14

12

16

18

20

IC. COLLECTOR CURRENT(mA)

COMMON·EMITTER y PARAMETERS
(VCE = 10 Vde. IC = 4.0 mAde, TA = 2SoC)
FIGURE 3 - INPUT ADMITTANCE

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

j

20

1.0

e

.s
~

z
2

~
./

V

./
~

4.0

~

~

Y
~

:E
Q
O.S

/

""

~

-'

:l 0.4
'"w
'"ffi o.2

1---.....
60

80

100

200

gre

0

300

30

40

60

f. FREQUENCY (MHz)

FIGURE S - FORWARD TRANSFER ADMITTANCE

0

_ 2.0
1
~ 1.S

'i

-

l-

40

200

so

"'r-!" ........

L

~

L

L

.L.

L

1.2

~

t-....

~

~ O.8

'"!
100

boo

:E

t
80

300

2.4

w

I- r-

0
30

100

FIGURE 6 - OUTPUT ADMITTANCE
2.8

0

80

f. FREQUENCY (MHz)

0

-

L

./"

-f-" ....

1:;

'"!
40

V

-bre

~

o
30

o. 8

~

200

f. FREQUENCY (MHz)

k'"

r"""

o.4
0
30

300

V

goo

40

so

80

100

f. FREQUENCY (MHz)

1042

200

300

MPS-H20 (SILICON)

NPN SILICON EPITAXIAL TRANSISTORS
NPN SILICON
VHF TRANSISTOR
· .. designed for VHF mixer applications in TV receivers.

•

Excellent Conversion Gain - 23 dB (TVp I

•

Low Collector-Base Capacitance - Ccb = 0.65 pF (Max)

•

High Current-Gain-Bandwidth Product -

•

Complete v-Parameter Curves from 50 to 300 MHz

•

One-Piece, Injection Molded Unibloc Package

IT =400 MHz (Min)

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

30

Vdc

Collector-Sa.e Voltage

VCB

40

Vdc

Emitter-Sase Voltege

VES

4.0

Vdc

IC

100

mAde

= 25°C

Po

625
5.0

mW
mW/oC

T C = 25°C

Po

1.5
12

Watt
mW/oC

T J, T.tg

-55 to +150

°c

Rating
Collector-Emitter Voltage

Collector Current - Continuous

Total Power Dissipation @TA
Oerate above 25°C
Total Power Dissipation
Oerate above 25°C

@

Operating and Storage Junction
Temperature Range

PIN 1.

BASE

2. EMITTER
3

THERMAL CHARACTERISTICS
Symbol

Mex

Unit

Thermal Resistance, Junction to
Ambient

R8JA

200

°c/w

Thermal Resistance, Junction to
Case

R8JC

Characteristic

83.3

°C/W

COL,LECTOR

DIM
A
C
D
F

MILLIMETERS
MIN
MAX

..

0

.1
'.3ZO
0.407

L

1.150

P

6.350
3.'30
2.410
2.030

Q

S

-

.20
.9
5.3
0.533

-

1.390
1. 0

-

2.670
2.670

INCHES
MIN
MAX

0.1
0.125
0.1 0
0.016
.1

.2
.1
.110
0.021
9

0.045

0.055
.050

-

0.250
.1
.095
0.080

CASE 29·02
TO·92

1043

-

0.105
0.105

MPS·H20 (continued)
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

I

I

ChIo-mtio

Symbol

I

Min

Typ

Max

Unit

OFF CHARACTERISTICiI

Colle.tor-Emltter Sreakdown Voltage (1)
(lC = 1.0 mAd.,IB = 0)
,

SVCEO

30

-

-

Vde

Collector-S... Sreakdown Voltage
(lC • l00I'Adc, IE ·0)

SVCBO

40

-

-

Vdc

Emltter-S... Sreakdown Voltege
(IE • 10l'Adc, IC· 0)

SVEBO

4.0

-

~

Vdc

ICSO

-

-

50

nAdc

fy

400

620

-

MHz

Cob

-

0.6

0.66

pF

Collector-BaH Time Constant
(IE = 4.0 mAde,VCS- 10 Vdc, f=31.S MHz)

'b'Cc

-

10

-

PI

,Conversion Gain (21310 45 MHz)
(I C = 4.0 mAde, VCE • 10 Vde, Oscillator
Injection = 200 mVdc, See Figures 1,2 and 9)

GpC

IS

23

-

dS

Collector Cutoff Current
(VCS· 16 Vde, IE ·0)
ON CHARACTERISTICS

DC Current Gain (1)
(lC· 4.0 mAde, VCE • 10 Vde)
SMALL41GNAL CHARACTERISTICS

Current-Gain-Bandwldth Product (1)
(Ie· 4.0 mAde, VCE 10Vdc,f-l00 MHz)

=

Collector-S... Capacltanca
(VCS = 10 Vdc, IE ·0, f· 1.0 MHz)

(11 Pulse Taft: Pul. Width

< 3001", Duty Cycl. < 2.0".
CONVERSION GAIN CHARACTERISTICS
(TEST CIRCUIT FIGURE 9)

FIGURE I - VARIATION WITH COLLECTOR CURRENT
50

VcJ ·10 v~e

45

I

40

Osclllator,lnjection = 200 mV
f... • Z58 MHz

iz

36

fslg"213MHZ
flF =45MHz

~

30

co

z

25

.

20

in
a:

FIGURE 2 - VARIATION WITH INJECTION LEVEL
40

I

iz

C

-

V

~
z' 15
co

CD

z

20

~
z

15

in
a:

B

...cl
'"

6.0

o

1.0

2.0
3.0
Ie, COLLECTOR CURRENT (mAdel

4.0

V

V

/

~

V

10
5.0
, 0

o

Ic·4.0mAdo
fslg'213MHz
flF" 45 MHz

25

co

I;! 10

'"

~veIE'10vL

35

30 _

5.0

o

100
200
300
VI, OSCILLATION INJECTION (mV)

400

COMMON·EMITTER y PARAMETERS

(lC" 4.0 mAde. VCE

= 10 Vde, TA = 25°C)

FIGURE 3 -INPUT ADMITTANCE
28

.
z

I
/i

24

IE
.s...

//1;1- r-

20

/
./

E

16

co

12

:&


fsig =213 MHz, lose =275 MHz _

&!

0

&!

Osc Inj = 150 mVrms

o

2.0

4.0

6.0

/"

20

~

10

o

z
;;:
co
z

8

"'

.".. I--"

>
z

z

8

fsig'" 60 MHz, fOst '" 104 MHz

30

~

8.0

I

/

-

10

IC =8.0 mAde

co

10

12

14

100

16

IC, COLLECTOR CURRENT (mAde)

lsig =213 MHz, lose =275 MHz_

200

Vi, OSCILLATOR INJECTION (mV)

1047

300

400

MPS-H24 (continued)

COMMON·EMITTER y PARAMETERS
(VCE 15 Vdc, TA 250 C}

=

=

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

FIGURE 3 - INPUT ADMITTANCE

1 o.1

50

I.
g

40

w

z

..

:::>

i.

-'

.,/

20

t-

~

-

30

:IE
0

~

---213MH,
- - &OMH,

-

/

,

10

I

0.06

'"

W

8.0

B.O

l!i

-b"

II:

..::= k

0.04

II:

....

ll!

ffi

.~

i;;

bla "--- r=
12

14

CURR~NT

(mAde)

10

16

gre < -0.01 mmho

g

?

-

I---"

lC. COLLECTOR

~ 0.08

g

110

1---

bit

:::::.o :::::.
o 2.0 4.0

.....

f=45MH'

1

".""

18

0.02

oc

o

20

o

2.0

200

/'

~ 120

II:
W

~

80

Vile

t-

ooc

io

40

.;.

0

./'

/

...

V

14

16

18

20

f'45MH,

)
go.....

iii 0.4
o

'"
~~

/'
/'

,/

12

!

/

.

10

1! 0.6

"'\.

V

~

B.O

FIGURE 6 - OUTPUT ADMITTANCE
0.8

r--.....

..........

"45MH,

!I!! 1&0

6.0

IC. COLLECTOR CURRENT (mAde)

FIGURE 6 - FORWARD TRANSFER ADMITTANCE

j

4.0

V
0.2

~

/b"

/"

V

7

V

....--

boa

V'

o

L'
2.0

4.0

6.0

8.0

10

12

14

16

18

2.0

20

4.0

6.0

B.O

10

12

14

16

18

20

IC. COLLECTOR CURRENT (mAde)

IC. COLLECTOR CURRENT (mAde)

FIGURE 7 - VHF MIXER TEST CIRCUIT'
(fil = 44 MHz, B.W. = 6.0 MHz)

fig

IIOMH,

ll. MH'

OIl:

IUIMH,

258 MH.
15-ZO.F
B.1J.12pF
1.5-ZO.F

Cl
C2
C3
C4
C5

Ll
L2

l.3

1.5·20 pF
lJ.O.&opF
IJ.O.8OpF
3.0·35.F
1.5-ZOpF
ST•••"26
Air. Tap ITurn
10 T""" 126
Ai.
OhmlttZ235

-

L2

Cl
C4

RL -son

O.U~
pF - 60MH.

C2

TRAP

3T.... II8
Ai•• TIp II T.m

10T.... 126
A.noldAl·l0
Core
~

-VEE

1048

470
pF

~ <20 V

MPS-H30 (SILICON)
MPS-H31

NPNSILICON
IF AMPLIFIER
TRANSISTORS

NPN SILICON ANNULAR TRANSISTORS
· . . designed for first and second video IF stages in TV receivers.

• Guaranteed Noise Figure NF = 6.0 dB (Max) at 46 MHz
• Guaranteed AGe Characteristics
• Complete y·Parameter Curves at 46 MHz
• Guaranteed Power Gain Gpe = 22.6 dB (Min) (Unneutralized) at 46 MHz

J 1~

MAXIMUM RATINGS
Rating
Collecto,·Emitt., Voltege

SymbD.

Volua

Unit

VCEO

20

Vde

Collector-Base Voltage

VCS

20

Vdc

Emitter·Be .. Volt"",

Vea

3.0

Vd.

Collector Current - Continuous

IC

50

mAde

Totel Po"", Dillipation .. T A • 2sOc
Derate above 26"C

Po

350
2.a

mW
mWI"C

Tote. Po_ Dissipation" TC D 25°C
Derate above 26°C

Po

1.0
a.o

Wett
mW/OC

TJ.TII1I

-55 to +150

OC

..,.....

Mall

Unit

Thermal Resistance, Junction to Ambient

R9JA(1I

357

OCIW

Thermal Resistance. Junction to Ca_

. R8JC

126

OC/W

Operating and Storage Junction

Tamperature Range

THERMAL CHARACTERISTICS
Chor_ittic

-7

~
~

SEATINGJt
PLANE

(11 R8JA is m.asured with tho doviCllOldered into a typical printed cl'cult board.

-F!

U

D-H-

-- RH-L
t--

STYLE 2:
PIN 1.
EMITTER
2. BASE
3. COLLECTOR

1°r
J
~
0

0

0

S
MIL IMETERS . INCHES
DIM MIN
MAX MIN
MAX
• A
4.Q
O.lUD
UUU U.IID
4.32

6.330

0.40

0.533

L
N

1.1

1.390
120

P

6.350

S

.430
.410
2.030

C
D

O.17U
0.016

U. 10
0.021
U.UI9

0.045

0056
.06

0.250
0.1;)5
2.670
2.610

.09
0.090

CASE 29.Q2
TO-92

1049

s a

0.105
0.105

MPS-H30, MPS-H31

(continued)

ELECTRICAL CHARACTERISTICS

(TA

= 25'C unless otherwise noted)

Symbol

Characteristic
Collector -Emitter Breakdown Voltage
(IC = 1.0 mAde, IB = 0)

BVCEO

Collector-Base Breakdown Voltage
(IC = 100 "Ade, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage_
(IE = 100 "Ade, IC = 0)

BVEBO

Collector Cotoff Current
(VCB = 10 Vdc, IE = 0)

ICBO

Min

Max

Unit

-

Vde

20

-

Vde

20

3.0

-

-

50

20

200

0.1

3.0

-

0.96

Vde

nAdc

ON CHARACTERISTICS
DC Current Gain
(IC = 4.0 mAdc, VCE = 5.0 Vde)

hFE

Collector-Emitter saturation Voltage
(IC = 10 mAde, IB = 5.0 mAde)

VcE(sat)

Base-Emitter saturation Voltage
(IC = 10 mAde, IB = 5.0 mAde)

VBE(sat)

Vde

Vde

SMALL·SIGNAL CHARACTERISTICS
Current-G_andwidth Product
(IC = 4. 0 mAde, VCE = 10 Vde,. f = 100 MHz)

fT

Collector-Base Capacitance
(VCB = 10 Vde, ~ = 0, f = 1. 0 MHz, emitter guarded)

Ceb

Noise Figure
(V AGC = 2.75 Vde, RS = 50 ohms, f = 45 MHz, Figure 9)

NF

MHz
300

800

-

0.65

-

6.0

22.5

31

4.4
5.2

5.4
6.2

pF

dB

FUNCTIONAL TESTS
Power Gain
(V AGe = 2.75 Vde, RS = 50 ohms, f = 45 MHz, Figure 9)

Gpe

Forward AGC Voltage
(Gain Reduction = 30 dB, RS = 50 ohms, f = 45 MHz, Figure 9)

VAGC

MPS-H30
MPS-H31

dB

Vdc

AGC CHARACTERISTICS
Vee

=

12 Vdc, AS

=

50 Ohms, f

=

45 Ml:lz, See FIgure 9

FIGURE 2- NOISE FIGURE

FIGURE 1-POWER GAIN
4

0

5

V

I

0

-5

,

/

0

o

II

1.0

5'
3

\

/

5

2

........

1\

~

8.0

I

6.0

!I!.
4.0

\
2.0

1\

3.0
4.0
5.0
YAGC, AUTOMATIC GAIN CONTROL YOlTAGElVOlTS)

I

0

/

\

J
./

L..--'

2.0
0

6.0

1050

1.0

5.0
2.0
3.0
4.0
YAse,AUTOMATIC GAIN CONTROL YOlTAGEIYOlTS)

6.0

MPS-H30, MPS-H31 (continued)

COMMON-EMITTER y PARAMETERS
VeE =12 Vdc, TA '" 26oC, f= 45 MHz

FIGURE 3-INPUT ADMITTANCE

FIGURE 4- REVERSE TRANSFER ADMITTANCE

100

0.3

80

0.250

/

),.{

----

./

2

V

2.0

4.0

8.0

6.0

10

~

12

2.0

~

120

~/

I 100
~

g
i!i

80

~

60

"'~"

/

V
I

~

;i 40
~
~ 20

/

-\

f

/'

/

/

.,/

2.0

1/
4.0

8.0

12

10

FIGURE 6-0UTPUT ADMITTANCE

0.9
0.8

I

\
\

I''""

8.0

0.7

~

0.6

~

O. 5

~
J

by

5: 0.4

.~

6.0

6.0

1.0

-\

-bfe

4.0

Ie, COLLECTOR CURRENT (mAdel

FIGURE 5- FORWARD TRANSFER ADMITTANCE

140

- ---

V

Ie, COLLECTOR CURRENT (mAdel

160

;;

I

0.05

o

1/

-b~

b,:---""

-::::::-

-20

-40

-In/

0

~

10

0.3

/

..-

"'" /

V

~ V

0.2
O. I

0

12

Ie, COLLECTOR CURRENT (mAdel

~
2.0

----

4.0

6.0

;;./
8.0

Ie, COLLECTOR CURRENT (mAdel

1051

/

J

10

12

MP~-H30,

MPS-H31 (continued)

FIGURE 7- DC CURRENT GAIN
50
Ve,= 10Yde
TA = 25°C

30

--I
~

.,-

.... ~

----

-

1.2

~1.1

\

i

\

IS 10

1

(C,b=C.. @I,=o)
TA = 2SoC-

'i

\

20

FIGURE 8- COLLECTOR-BASE CAPACITANCE

1.3

~ 1.0

7.0

-

~ 0.7
S

\

r-.....

J
0.5

r-.

~

5.0

3.0
0.1

0.2 0.3

0.5 0.7 1.0

2.0 3.0

5.0 7.0 10

20

0.3
0.1

0.2 0.3

Ie. COLLECTOR CURRENT (mAde)

0.5 0.7 1.0

5.0 7.0 10

Ve.. COlLECTOR· BASE VOLTAGE !VOLTS)

FIGURE 9 - 45 MHz FUNCTIONAL TEST CIRCUIT
(UNNEUTRAUZEDj

RF BEADS

,lOOOpF

2.0 3.0

I~

Uk
!U

4.0-30pF

T, = TOROI04,IRATIO } #22 WIRE
8T.f'RI2T-SEC

1052

"

20 30

MPS·H32 (SILICON)

NPNSILICON
VHF TRANSISTOR

NPN SILICON ANNULAR TRANSISTOR

• .. designed for first and second video IF $tages in TV receivers.
• LoiN Coliector·Base Capacitance - Ccb = 0.22 pF (MaxI
• Maximum Unilateralized Power Gain Gum" 44 dB (Tvpl
• Low Noise Figure - NF .. 3.3 dB (Tvpl

@

f = 45 MHz

• Forward AGC Characteristics
• Complete v·Parameter Curves at 45 MHz
• Guarant4led Power Gain Gpe" 22.5 dB (MinI (Unneutralizedl

@

f =45 MHz

MAXIMUM RATINGS
Rati",

SymbDl

Value

Unit
Vdc

VCEO

30

Collector·ease Voltage

Vce

40

Vdc

Emitter·Base Voltage

VEB

4.0

Vdc

Po

310
2.81

mW
mW/oC

TJ T.tg

-55 to +135

°c

Characteristic

SymbDl

Max

Unit

Thermal Resistance. Junction to Case

R8JC

0.137

°C/mW

Coliector·Emitter Voltage

Total Power Dissipation @TA = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

. Thermal Resistance. Junction to Ambient

R8JA

INCHES
MIN
MAX

.1
0.357

0.05
.1

°C/mW

5.330 0.170
0.533· O. 16

0.210
0.021

1.390
1.

0.055
0.050

.1

p
Q

S

6.350
3.4
2.410
2.030

2.60
.610

0.045
0.250
.1
0.095
0.060

CASE 29.Q2
TO·92

1053

0.1 5
0.105

MPS·H32 (continued)

ELECTRICAL CHARACTERISTICS ITA

=25°C unless otherwise noted)
Min

TVp

Max

Unit

-

Vde

-

Vde

OFF CHARACTERISTICS
Collector-Emitter B....kdown Voltage
IIC= 1_0 mAde,lB D 01

BVCEO

30

Collector-Base B....kdown Voltage
IIC = loo,.Ade,IE = 01

BVCBO

40

-

Emitter-B.... Breakdown Voltage
liE = loo"Ade,lc· 01

BVEBO

4_0

-

-

Vde

ICBO

-

-

50

nAde

hFE

27

35

200

Collector-Emitter Saturetlon Voltage
IIC = 10 mAde, IB = 5_0 mAdel

VCE(satl

-

1_5

3_0

Vde

Base-Emitter Saturation Voltega
(lC = 10 mAde, IB = 5.0 mAdcl

VBE(satl

-

O.g

1.2

Vde

f,-

300

440

-

MHz

Cob

-

0.2

0.22

pF

NF

-

3.3

-

dB

Gpe

22.5

25

-

dB

VAGC

-

5.5

-

Vdc

6.0

-

mmhos

Collector Cutoff Current
(VCB = 10 Vde, IE = 01
ON CHARACTERISTICS
DC Current Gain
(lC = 4_0 mAde, VCE

=5_0 Vdcl

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 4.0 mAde, VCE = 10 Vde, 1= 100 MHzl
Collector-Base Capacitance
(VCB = 10 Vde, IE • 0, I

= 1_0 MHzl (Emitter Guardedl

Noise Figure (Figure 101
(lE"'4.0 mAde, VCE""9.3 Vdc, VAGC
RS = 50 Ohms, I = 45 MHzl

= 2.75 Vde,

FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (Figure 101
(lE""4.0 mAde, VCE""9.3 Vde, VAGC = 2.75 Vde,
RS = 50 Ohms, I • 45 MHzl
Forwerd AGC Voltaga (Figure 101
(Gain Reduction· 30 dB, RS = 50 Ohms, f = 45 MHzl
SUMMARY·COMMON EMITTER PARAMETeRS (VCE

=

10 Vde, IC = 4.0 mAde, f

I nput Conductance

gie

I nput Capacitance

Cie

Forward Transler Admittance Magnitude

IVlel

=

45 MHzl

-

33

Feedback Capecitance

ere

-

Output Conductance

90e

-

20

Output Capacitance

Cae

-

1.4

Maximum Unilateralized Power Gain

Gum

-

44

Forward Transfer Admittance Phase Angle

~Yfe

IVfel 2
Gum = - - 4gie9oe

1054

pF

110

-

mmhos

-22

-

Degrees

0.2

pF
,.mhos
pF
dB

MPS·H32 (continued)

AGC CHARACTERISTICS
Vee

= 12 Vdc. RS = 50 Ohms. f = 45 MHz. See Figure 10

FIGURE 1 - POWER GAIN

FIGURE 2 - NOISE FIGURE
B.O

30
25

.

20

:!i!

z

15

0:

10

:cco
~

/

v

7.0

""'"

\

:!i!
~ 5.0

I\.

I

~ 5.0
~

~ 4.0

~
..:

\

\
o

3.0

z 2.0

-5.0
-10

\

:::>

co

I\.

I

co

/

.. 6.0

V

.....

1.0

1,\

2.0
1.0
3.0
5.0
4.0
VAGC. AUTOMATIC GAIN CONTROL VOLTAGE (VOLTS!

"

V

/

2.0

1.0

6.0

4.0

3.0

5.0

6.0

VAGC. AUTOMATIC GAIN CONTROL (VOLTS)

COMMON-EMITTER y PARAMETERS
VCE = 10 Vdc. f = 45 MHz. TA = 25°C
FIGURE 3 - INPUT AOMITTANCE

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

"i

60

~

/

/
o

-;::::::::.::::::-

o

2.0

/ -

oS
~

z
~

gia

/

,.

!:: 0.2

~

0:
W

.'"
u..

z

bie

e:

..--:::: ~

--

0.3

~

0:
W

G;

~

6.0
B.O
IC. COLLECTOR CURRENT (mAde)

10

0

o

12

2.0

160

~

140

~

"li
~

120

~
~

I-

o

111.
100

80

40

f2

20

!

0

~

V

60

0:

B.O
4.0
6.0
IC. COLLECTOR CURRENT (mAde!

10

0.6

g
~

gra

.,..

" "'---

V-bf'

/

o

/

V

/ .,../
/'"
2.0

t-......

4.0
6.0
B.O
IC. COLLECTOR CURRENT (mAde!

0.5

~

oS
~

0.4

~ 0.3

\

~

.

i

o

l-

r-.

f

I-

0.2

/

:::>

r--

"!

o.1
o

10

12

FIGURE 6 - OUTPUT ADMITTANCE

FIGURE 5 - FORWARD TRANSFER ADMITTANCE

"li

-/-

.-/

0:

4.0

/

0.1

~

12

1055

o

2.0

-----

PI

~

~.

/

4.0
B.O
6.0
IC. COLLECTOR CURRENT (mAde!

10

12

MPS-H32 (continued)

FIGURE 8 - COLLECTOR-BASE CAPACITANCE

FIGURE 7 - DC CURRENT GAIN
1.0

80
40

z

~

i

iw

r- JCE"llO~d~

30

\.

20 i"""

\

'"'"

~

.c

~

0.3

I--,;,

0.2

~

-t--

~ 0.1

6.0
4.0
3.0
0.2

0.5

i

~

'" 10
~B.O

Cob· c,. IPIE" 0

0.7

'"
~

8

j

0.3

0.5

1.0

2.0

3.0

5.0

10

0.07

0.05
0.3

20

0.5 0.7

IC. COLLECTOR CURRENT (mAdel

1.0
2.0 3.0
5.0 7.0 10
VCB. COLLECTOR·BASE VOLTAGE (VOLTSI

20

30

FIGURE 9 - CURRENT-GAIN-BANDWIDTH PRODUCT

isoo

-~

a!

t:::>

g
g:

VCE" 10Vd,

300

........

.......

"-I'\.

1

200

'\

~I

I'"

Z

;;: 100

~
w
~

:::>

'"
.t:

""

70

50
1.0

2.0

5.0

3.0
IC. COLLECTOR CURRENT (mAd.1

FIGURE 10 - 46 MHz FUNCTIONAL TEST CIRCUIT
lUNNEUTRALIZEDI

''''
tllDOpF

vce-Uy
IIFUAOl

m

•• w

~

-

10."",

"''''' "

...

In
II T1

Uk
1/2W

n

~

_I~
Inw

l 1-

~

n.T.oRtHD4:1U.TIO!

IT.pRI2T.stlC

1056

1Z2W4RE

......

au"",

7.0

10

MPS-H34 (SILICON)

NPN SILICON EPITAXIAL TRANSISTOR
NPN SILICON
... designed for third·stagevideo I F applications in television receivers.
•

High Collector-Emitter Breakdown Voltage BVCEO = 45 Vdc (Min)

•

High Collector-Base Breakdown VoltageBVCBO = 45 Vdc (Min)

•

Low Collector-Base CapacitanceCcb = 0.32 pF (Max) @ VCB = 10 Vdc

•

Complete v-Parameter Curves @ 45 MHz

IF TRANSISTOR

MAXIMUM RATINGS
SYmbol

Value

Unit

VCEO

45

Vdc

Collector-Base Voltage

VCB

45

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

Collector Current - Continuous

IC

100

mAde

Total Power Dissipation @ TA = 25°C
Derate above 25°C

Po

625

50

mW
mW/oC

Total Power Dissipation @ TC - 2sOC
Derate above 25°C

Po

1.5
12

Watt
mW/oC

TJ.T,tg

-55 to +150

OC

Rating
Collector-Emitter Voltage

Operating and Storage Junction

STYLE 2:

PIN 1. BASE
2. EMITIER
3. COLLECTOR

Temperature Range

DIM

Symbol

Max

Unit

A
8
C

R8JAll)

200

°C/W

F

R8JC

83.3

°C/W

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Ambient
Thermal Resistance. Junction to Case

(1) R8JA is measured with the device soldered into a typical printed circuit board.

o

K
L
N
p

a
R

S

MILLIMETERS
MIN
MAX

4.450
J.1HU
4.320
0.407
u.407
!.700
1.150
6.350
3.430
2.410
2.030

INCHES
MIN
MAX

5.200 I 0.175
4.19u I U.110
5.330 0.170
0.533 0.016
0.482 __ u.ul0
__U.~UU
1.390 0.045
1.270
0.250
0.135
2.670 0.095
2.670 0.080

CASE 29-02
TO-92

1057

~._~~

.0.165
0.210
0.021
_u.ul._
0.055
0.050
0.105
0.105

MPS-H34 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

Characteristic
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage 11)
(lC = 1.0 mAde, IB = 0)
Collector-Base Breakdown Voltage

(lC

= lOO/lAde,IE = 0)

Emitter·Base Breakdown Voltage
liE = 10 /lAde, IC = 0)
Collector Cutoff Current
IVCB = 30 Vde, IE = 0)

Symbol

Min

BVCEO

45

BVCBO

45

BVEBO

4.0

ICBO

-

-

50

40
15

-

-

Typ

Max

Unit

Vde

-

-

Vde
Vde
nAde

ON CHARACTERISTICS
DC Current Gain 11)
(lC = 7.0 mAde, VCE = 15 Vde)
(lc = 20 mAde, VCE = 2.0 Vde)

hFE

Collector-Emitter Saturation Voltage
(lc

= 20 mAde,lB = 2.0 mAde)

Base-Emitter On Voltage
(lC

= 7.0 mAde, VCE = 15 Vde)

VCElsat)

0.5

Vde

VBElon)

0.95

Vde

DYNAMIC CHARACTERISTICS
Current·Gain Bandwidth product 1,1)
(lc = 15 mAde, VCE = 15 Vde, f = 100 MHz)
Current·Gain - Bandwidth Ratioll)
(lC = 15mAdc to IC = 20mAdc, VCE

f-r
f-r15
-

= 15Vde, f = 100 MHz)

= 0, f =

720

-

-

1.6

-

-

0.25

0.32

pF

MHz

f-r20

Collector-Base Capacitance
IVCB = 10 Vde, IE

500

Ceb
1.0 MHz)

11) Pulse Tast: Pulse W,dth .. 300 /lS, Duty Cycle .. 2.0%.

FIGURE 1 - CURRENT·GAIN - BANDWIDTH PRODUCT
0

FIGURE 2 - POWER GAIN

r- VC~ = 15 vide

6 I---

TA = 25 0 C

TA = 250 C
2 b f =45MHz

0

-r---..
V

0

(See Circuit Figure 7)

b-"

/

0

1/

/

"~

I

1

10

12

14

16

18

'"

1'\
-~

1\
16

B.O

-..;.

0

0
6.0

-

V

4

"

4.0

/'

B

I'.

J

2.0

v6c = 15 [Vde

20

IC, COLLECTOR CURRENT (mAde)

o

2.0

4.0

6.0

8.0

10

12

14

IC, COLLECTOR CURRENT (mAde)

1058

16

18

\
20

MPS-H34 (continued)

COMMON-EMITTER Y PARAMETERS
(f = 45 MHz, VeE = 15 Vdc, TA

FIGURE 4 - REVERSE TRANSFER ADMITTANCE

FIGURE 3 - INPUT ADMITTANCE

v

B.O

....

1oS

.- /

60
.

w
'-'

~
c
"
~

iE 4.0

!:

~

r--

2. 0

/

--

i

o. 1

1
,.~

0.08

-bra

~

V

~ 0.06

bie

":li

/

gre < -0.01 mmho

~
~ 0.04

/

I-

tlj

ffi

~

0.02

'"

0
2.0

=25°C)

4.0

6.0

B.O

12

10

14

16

18

o

o

20

2.0

4.0

1

,/

oS

w 160

g
"'"

I-

~
~
~

~

L

80

40

/'

/gl.

,J

~
iE

V

c

0.4

-

<[

=>

:=

10

12

14

20

)
go.

l-

g
~

8.0

18

w
'-'

/ble
6.0

16

'"

/'

4.0

14

~

0.2

/'

-,;;7

..... /
2.0

12

10.6

./

'"

w

z

"

/

~

10

0.8

r---....

V

'" 120
~

v

8.0

FIGURE 6 - OUTPUT ADMITTANCE

FIGURE 5 - FORWARD TRANSFER ADMITTANCE
~ 200

6.0

IC, COLLECTOR CURRENT (mAde)

IC. COLLECTOR CURRENT (mAde)

16

18

2.0

20

4.0

6.0

8.0

.---10

12

FIGURE 7 - 45 MHz FUNCTIONAL TEST CIRCUIT
(UNNEUTRALIZED)
VCC=ISV
270
RF BEADS

1I2W

1000PFI~

son

OUTPUT

2.a

1I2W

sonr
~ .~.

INPUT

T1 = TOROID 4:1 RATIO} #22 WIRE
BURl, 2T·SEC

1059

,;'

boe

14

IC, COLLECTOR CURRENT (mAde)

IC, COLLECTOR CURRENT (mAde)

/

16

18

20

MPS-H37 (SILICON)

NPN SILICON ANNULAR TRANSISTOR
. designed for 4.5 MHz sound IF applications in TV receivers.
•

High Breakdown Voltage BVCEO = 40 V (Min) @ IC = 1.0 mAdc

•

High Output Resistance

@

NPN SILICON
IF AMPLIFIER
TRANSISTOR

4.5 MHz -

__(1_ _) = 100 k Ohms (Min)@le=2.0mAdc
Yoe real
•

Low Reverse Feedback Capacitance ere = 0.7 pF (Max) @ VCB = 10 Vdc

• Complete y·Parameter Curves @ 4.5 MHz

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Emitter-Base Voltage

Symbol

Value

Unit

VCEO

40

Vdc

VEB

5.0

Vdc

IC

50

mAde

Po

350
2.8

mW
mWt"C

Po

1.0
8.0

Watt
mWt"C

TJ.Tstg

-55 to +150

°c

Collector Current - Continuous
Total Power Dissipation @TA - 25u C

Derate above 2SoC
Total Power Dissipation @TC

=2SoC

Derate above 25°C
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

o

Thermal Resistance, Junction to Cese

ELECTRICAL CHARACTERISTICS (fA = 2S·Cunless otherwIse noted)

I

Characteristic

I

Symbol

I

Min

Max

Unit

OFF CHARACTERISTICS
Colleetor~Em1tter

BVCEO

Emitter~Baae

BV EBO

Breakdown Voltage
(Ie'" 1.0 mAde, ~ '" 0)

(IE =

Breakdown Voltage
10 pAdc. Ie '" 0)

Collector Cutofi Current
(VeB'" 35 Vdc, IE = 0)

40
Vdc

'.0
ICBO

0.'

b FE

Collector-Emitter Saturation Voltage
(IC '" 10 mAde, IB = 1. 0 mAde)

VCE(sat)

Base-Emitter On Voltage
(IC " 5.0 mAde, VCE '" 10 Vde)

VBE(on)

"""'"
Vdc

D••
Vdc

0.'

Common-Emitter Reverse Transfer Capacitance
(VCB = 10 Vdc, IE = 0)
Real Part of Output Resistance
(Ie =2.0mAde, VCE = 10Vdc, f = 4.5 MHz)

IT

B
C

L
N

P
Q

R
S

MILLIMETERS
MIN
MAX

4.450
3.180
4.320
0.407
u.407
1.150
6.350
3.430
2.410
2.030

INCHES
MIN
MAX
5.200 0.175
0.205
4.190 . I U.l 5
U.165
5.330 0.170
0.210
0.533 0.016
0.021
U.46l U.U1ti
0.01.

1.390
1.270
2.670
2.670

0.045
0.250
0.135
0.095
0.080

MHz

300

pF

Cr.

0.7

1

Yoe(real)

DIM
A
0
F

••

DYNAMIC CHARACTERISTICS
Current-Gain- Bandwidth Product
(IC = 5.0 mAde, VCE = 10 Vde, f = 100 MHZ)

2. EMITIER
3. COLLECTOR

Vdc

ON CHARACTERISTICS
DC Current Gain
(Ie:= 5.0 mAde, Vr~ = 10 Vdc)

STYLE 2:
PIN 1. BASE

k ohms

100

CASE 29-02
TO·92

1060

0.055
0.050
0.105
0.105

MPS-H37 (continued)

COMMON-EMITTER y PARAMETERS
, ~ 4.5 MHz, TA ~ 25°C

FIGURE 1-INPUT ADMITTANCE
8.0

I I
VeE~

"jg
~

g;•

.§

!Ii

4.0

:>!

2.0

~

~

./V

10Vdc

6.0

i

FIGURE 2 - REVERSE TRANSFER ADMITTANCE

~

~

0.04

~

~e

V .---- ~
i-"""

.§

!Ii

0.03

;

0.02

~

0.01

~
:iii
!Z

15Vdc

V

10Vdc _

V

I

b;,

-

~

1.0

2.0

3.0

4.0

5.0

6.0

7.0

15Vdc
-b«O.OI

i

15Vdc

o

8.0

9.0

o

10

o u

u

u

Ie. COLLECTOR CURRENT (rnAl

~ 150

~
~

;

~

o

.,./

/

,:i

o

-b,. /"

-- --1

1.0

2.0

3.0

5.0

e 0.15

==

~

15Vdc

E
:IE
~

5

~

.!

6.0

7.0

8.0

9.0

0,10

i=""'"""

15Vdc

ftoo

o

1.0

2.0

I--- f-

I I

~

\';l

1.0

<3

OJ

5l1:

30

-- 1-- tffi-

t-

5.0

6.0

7.0

8.0

-

9.0

10

I I I

I

VeE~IOV

TJ ~ 125°C

C;b

1--_

t-- r-_

4.0

FIGURE 6- DC CURRENT GAIN
50

I

-

3.0

Ie, COllECTOR CURRENT (rnA j

FIGURE 5- CAPACITANCES

2.0

f-- bo, - -

0.05

o

10

-

VeE =!O Vdc

Ie, COllECTOR CURRENT (rnAl

3.0

W

0.20

-;::::;;-

V

4.0

M

.§

10Vdc -

/

50

U

~

~

)t'

~

u

:§

81,/ I'"
100

co

~
12

10Vdc

~

V

u

FIGURE 4 - OUTPUT ADMITTANCE

FIGURE 3 - FORWARD TRANSFER ADMITTANCE
VeE~

u

Ie, COLLECTOR CURRENT (rnAl

200

I

-b~

VeE ~ 10Ydc

~

c~@

z

iii

iii

20

~

lli
i3
g

1.=0

........

.i

-

~

.--

WC

.---

25°C

.---

-25°C

---~

W

0.5
7.0
0.3

5.0
0.1

0.2 0.3

0.5 OJ 1.0

2.0 3.0

5.0 7.0 W

20 30

1.0

2.0

3.0

5.0

7.0

10

Ie, COllECTOR CURRENTImAl

REVERSE VOLTAGE (VOLTSI

1061

20

30

MPS-H54 (SILICON)
MPS-H55

PNPSILICON
TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS

· .. MPS·H54 is designed for RF amplifier applications in AM receivers.
· .. MPS·H55 is designed for mixer, oscillator, autodyne converter, and
I F amplifier applications in AM receivers.

= 80 Vdc

•

High Breakdown Voltage - BVCEO

•

Low Collector· Base Capacitance - Ccb = 1.0 pF (Typ)

(Min)

•

Low Output Admittance - hoe = 15jlmhos (Max)

•

Low Noise Figure - NF = 2.0 dB (Max) - MPS·H54

•

Complement to NPN MPS·H04, MPS·H05

MAXIMUM RATINGS
Rating
Collector~Emitter

Voltage

Emitter-Base Voltage
Collector Current ..... Continuous

Symbol

Value

Unit

VCEO

80
4.0

Vdc

100

mAde

VEB
IC

Vdc

Total Power Dissipation @TA = 25~C
Derate above 2SoC

Po

350
2.8

mW
mW/oc

Total Power Dissipation @TC = 25°C
Derate above 2sOC

Po

1.0
8.0

Watt
mW/oC

TJ.Tstg

-55to+150

°c

Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS

STYLE 1:
PIN 1.

2.
3.

DIM
A
B
C

0
F

Characteristic
Thermal Resistance, Junction to Ambient

K

Thermal Resistance, Junction to case

L
N

(1) R8JA is measured with the device soldered into a typical printed circuit board.

P
Q

R
S

MILLIMETERS
MIN
MAX

4.450
3.180
4.320
0.407

D.""'

1 :.lUU
1.150
6.350
3.430
2.410
2.030

INCHES
MIN
MAX

5.200
4.190
5.330
0.533

0.175
0.125
0.170
0.016
0.016

0.205
0.165
0.210
0.021
0.019

1.390
1.270

0.045

0.055
0.050

2.670
2.670

0.250
0.135
0.095
0.080

CASE 29'()2
TO·92

1062

0.105
0.105

MPS-H54, MPS-H55 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage
(I C = 1.0 mAde, I B = 0)

BVCEO

80

-

-

Vde

Collector-Base Breakdown Voltage
(lC = 100 "Ade, IE = 0)

BVCBO

eo

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 100 "Ade, IC = 0)

BVEBO

4.0

-

-

Vde

Collector Cutoff Current
(VCB = 60 Vdc, IE = 0)

ICBO

-

-

50

nAdc

Emitter Cutoff Current

lEBO

-

-

50

nAde

30

120
150

Characteristic

OFF CHARACTERISTICS

(VEB = 3.0 Vde, IC = 0)
ON CHARACTERISTICS
DC Current Gain
(lC = 1.5 mAde, VCE = 10 Vde)

-

hFE

30

70
70

VCE(sat)

-

0.16

0.25

Vde

Current-Gain-Bandwidth Product
(lC = 1.5 mAde, VCE = 10Vde, 1= 100 MHz)

IT

80

185

-

MHz

Collector-Base Capacitance

Ceb

-

1.0

1.6

pF

Output Admittance
(lc = 1.5 mAde, VCE = 10 Vde, I = 1.0 kHz)

hoe

-

6_6

15

",mhos

Noise Figure
(lc = 1.5 mAde, VCE = 10 Vde, RS =500hms, 1= 1.0 MHz) MPS-H54

NF

-

1.5

2.0

dB

MPS-H54
MPS-H55

Collector-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)
DYNAMIC CHARACTERISTICS

(VCB = 10 Vdc, I = 1.0 MHz)

FIGURE 1 - SIMPLIFIED AC EQUIVALENT CIRCUIT (Common Emitter)
Go'

c,

COLLECTOR

c,

y Parameters may be determined from the following calculations:

Nota:
Data lor MPS-H04 and MPS-H05 is presented in terms 01 the
equivalent circuit shown in Figure 1. Values for its components
mev be lound or calculated as follows:
rb',., 15 Ohms
re =26 mV/lE

Ceb, See Figure 5
gm =

lIre

9c = (hfe+l) hob (See Figure.3and 6)
1

Cg=--

27fft re

Co = 0.2 pF
rb'e = (hfe + 1) re

Low frequency h parameters may be found from:

rb'+rb'e +jwC )( jwCcb )
( --,-,e
rb rb c

hie = rb' + rb'e
hfe""I.1 hFE(See Figure 2)
hre = Negligible
hoe- (hfe+ 1) hob

1063

MPS-H54, MPS-H55 (continued)

ELECTRICAL CHARACTERISTICS (VCE = 10 V, T A = 25°C unless otherwise noted)
FIGURE 2 - NORMALIZED DC CURRENT GAIN
2.0

TA=1250 C

ffi

N

:::;
<[

'a:"
"

l!;

1.0

f.- I-"

V

to

z

w
a:
a:
=>

..."

~

0.6
0.4

0.3

d5 0

-

0.8

..." ....z

FIGURE 3 - "ON" VOLTAGES
1.0

I "
~~E~VCE210~

0.8

~
"~.,
w
'"

-55°C

--

:,...-

........

I "

J
~

0.6

0.4

">>'
0.2

Y1E,t) @ 1~!lB = 10

./"

I I

o

0.2
0.1

0.2

0.5

1.0

2.0

0.2

0.1

10

5.0

0.3

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

....

~

....
~
.

~

~

........

200

a:
a:

a

.i-

.....

~

3.0

b-..

~
~

1.0

"j

0.7

~

100

2.0

3.0

4.0

7.0

5.0

0.5
1.0

10

i'.

2.0

IC, COLLECTOR CURRENT (mAde)

5.0

0.5

j

5.0

t=l~Ok~z

/

z

~ 0.2
c

10.07

--

-

0.05
0.5

0.7

1.0

I

V

a:
=> 3.0
to

u:

0.5 mAde

III

V

0 2.0
z

......

....
z

1.0

o
2.0

3.0

IC = 5.0 mAde /

w

./

;;;

"

"

4.0
iii
~

0.1

100

50

t = 1.0 MHz

0.3

"

20

FIGURE 7 - NOISE FIGURE

I I

~

~~

10

VCB, COLLECTOR·BASE VOLTAGE (VOLTS)

FIGURE 6 - OUTPUT ADMITTANCE

...

5.0 7.0 10.0

"

..........

" 2.0

. / i-"'"

50
1.0

3.0

t= 1.OMHz

w

~ 150 V
z

W~

5.0

oS

t;

"
II:

2.0

FIGURE 5 - COLLECTOR·BASE CAPACITANCE

" 300
:c
250

1.0

IC, COLLECTOR CURRENT (mAde)

IC, COLLECTOR CURRENT (mAde)

iil

0.5 7.0

5.0

0.05

~mA~e

V

2.0 mAde

:J.. ........ ",....

I-

,I

V

1.0 mAde

0.5 mAde ....

1064

.l\

Ht\

)-

/

i·oliiel
0.1

0.2

0.3

0.5

0.7 1.0

RS,SOURCE RESISTANCE (k ohm~

IC, COLLECTOR CURRENT (mAde)

A
~O~d~

2.0

3.0

5.0

MPS-H54, MPS-H55 (continued)

AM RADIO DESIGN INFORMATION
FIGURE 8 - 1.0 MHz AMPLI FIER TEST CI RCUIT
L1

L2
n4

Cl

C2
O.OI.F

n3

RG=50n

L1. L2 = 80 .H, Unloaded Coil, a ~ 200
~

300

1.0mV@1.0MHz

10.1.F
"::'

~=2.8
n3

Cl, C2 - 200-480 pF

f"

15 k
1.3 k
-12 V

"::'

*~13

50

1.5 k

"::'

FIGURE 9-1.0 MHz MIXER TEST CIRCUIT
L1
Cl
FL

L1-80.H, Unloaded Coil, a ~ 200

RG=50n

O.l.F
RG =50n

r

1.0mV@

100

0.01

... 1.0 MHz

8iasSupply

"::'

10-30V)

-10V

"::'

r'

~.:

to

......-

3

to

......-

1

1..0-""'

I-'"'

9

7

./

V

25
0.5

VCE = 10 Vde
TA = 250 C

8

-

0:

"::'

0

I
TA=25 0 C I
7~~E= 10Vde
I t= 1.0 MHz
5 - Stern Stability = 5.0

;;:

C1-200-480 pF
FL-455 kHz Filter

FIGURE 11 - CONVERSION POWER GAIN

FIGURE 10 - AMPLIFIER POWER GAIN

9

,.

~=::13
nl

1.5 k

i.--'""""

...-:::::

4

--

2
0

8

At currants other than Ie '" 1.0 mAdc,circuit constants vary from thon of _
Figure 8, as they are readjusted f0T-optimum gain. I
I· I

6

~

~

1/ . / :...-\ 1/ /r\

V

IC' 0.5 mAde

./'

./

~Ad~

IIC = 11.0
J...........

6

-

IFL La.... Not Included)

\
3.0 mAde

41:'?\
1.0 mAde
2

0.7

1.0

2.0

3.0

4.0

10
10

5.0

IC, COLLECTOR CURRENT ImAde)

15

20

30

40

50

OSCILLATOR INJECTION VOLTAGE ImVrmsi

1065

70

100

MPS-H8l

(SILICON)

PNP SILICON EPITAXIAL TRANSISTOR
· .. designed for use in UHF/VHF oscillator applications.
•

Complete y.Parameter Curves

•

Low Coliector·Emitter Capacitance Cce = 0.65 pF (Max) @ VCB = 10 Vdc
High Current Gain - Bandwidth Product - @ IC = 5.0 mAde
fT = 600 MHz (Min)
= 1250 MHz (Typ)

•

PNP
SILICON
TRANSISTOR

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

20

Vde

Collector-Base Voltage

Vce

20

Vde

Emitter-Base Voltage

VEe

3.0

Vde

PD

350
2.81

mW
mW/oC

TJ.Tstg

-55 to +150

°c

Rating
Collector-Emitter Voltage

Total Power Dissipaton @ T A
Derate above 25°C

= 2SoC

Operating & Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic

J 1~

Thermal Resistance, Junction to Ambient

ELECTRICAL CHARACTERISTICS (TA

I

Characteristic

I

=

25°C unless otherwise noted)

Symbol

I

Min

I

Typ

I

Max

Unit

Collector-Emitter Breakdown Voltage

(lC

= 1.0 mAde. Ie = 0)

BVCEO
20

Collector-Base Breakdown Voltage
(lC = 101'Ade.IE = 0)

eVceo

Emitter-Base Breakdown Voltage

BVEBO

(IE = IOI'Ade.IC

= 0)

Collector Cutoff Current

(VCB

= 10 Vde.

(VBE

= 2.0 Vde.

IC

=0)

-

20

-

-

3.0

-

-

-

-

100

-

-

100

ICBO

IE = 0)

Emitter Cutoff Current

-

= 10 Vde)

COllector-Emitter Saturation Voltage

(Ie = 5.0 mAde. I B = 0.5 mAde)
ease·Emitter On Voltege (1)
(Ie =5.0 mAde. VeE = 10 Vde)

DIM
hFE

60

-

-

-

-

0.5

-

-

0.9

Vdc

VCE(sat)

Vde

VeE(on)

DYNAMIC CHARACTERISTICS
Current·Gam-Bandwidth Product (1)
(lC = 5.0 mAde. VeE = 10 Vde.
1= 100 MHz)
Collector-Base Capacitance

MHz

IT

600

1250

-

-

-

0.85

-

-

0.65

Ceb

(VCB = 10 Vde. IE = O. 1= 1.0 MHz)
Coliector~Emitter

(lB = O. VCB

Capacitance

= 10 Vde. I = 1.0 MHz)

STYLE 2:
PIN 1.
EMITTER
2. BASE
3. COLLECTOR

nAdc

lEBO

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 5.0 mAde. VeE

lor
tgt"J

Vde

nAdc

Cee

~
~F r

D-:lIP~
=lR~

Vde

Vde

1-

~

SEATINGJt
PLANE

OFF CHARACTERISTICS

A

"

C
D

MILLIMETERS
MAX
MIN

4.450
3.180
4.320
0.407
0.401

o

R
S

1.150
6.350
3.430
2.410
2.030

5.200
4.1.0_'
5.330
0.533
D.4OL

(1) Pulse Test: Pulse Width .. 300,.. •• Duty Cycle .. 2.0%.

1066

B

INCHES
MIN
MAX

0.175
0.125
0.170
0.016
0.016

0.205
.1 5
0.210
0.021
0.019

U.bUU

1.390
1.270
2.670
2.670

0.045
0.250
0.135
0.095
0.080

pF
pF

S

--.-r
--Is~1 I

:.1UO

L
N
P

000

CASE 29.02
TO·92

0.055
0.050
0.105
0.105

MP8-H81 (continued)

TYPICAL COMMON·BASE V·PARAMETERS
(VCB = 10 Vdc. TA = 25°C. Frequency Points in MHz)

FIGURE 1 - INPUT ADMITTANCE
·30

930~~~."""" ~MHz

'"

-40

-;;; -60

oS

'"

-10

P..0

I

"\. " .~

-50

~

FIGURE 2 - REVERSE TRANSFER ADMITTANCE

~O

-90

.~

\

",

12~

-100

""'\

20

40

60

80

·3.0

1-4·0

\

.........

-110
-20

"il

\ 100 MHz

~

i'l..

"'" t-t-J

-2.0

8.0mA

.,/ :,/

-6.0

~
120

-8.0
-2.4

140

-2.1

-1.8

-1.5

90

"il

80

ii

~MHZ

10

~

60

oS

-

\

..........

:J_'"..A

~

,

........

I .........

\

....... ""-. 450

..............

oS

6.0

/. V

j

-0.3

~---

930

I-"'"

12mA

Aff

4. 0

II. ~5450
250

2.0

.J.J.j 100 MHz

......... '

30
20
-120

8. 0

~

...........

40

a

,\:130

I

IC =4.0 mA

ii

..,... ..\..

I

Ic=4.0mA

VL y

10

I

8171--

\

50

-0.6

2

~

\.

\

930

14

110
\

-0.9

',I

FIGURE 4 - OUTPUT ADMITTANCE

FIGURE 3 - FORWARD TRANSFER ADMITTANCE

100

-1.2

IC = 4.0 mA

grb.(mmhos)

Uib.lmmhosl

120

- \ 450

f

--

V V
:..,:::-- .....,.- - -

-1.0

100

250

12my {OmA

1-5.0

\
\

·,100MHZ

l"\""'

Ic=4.0mA

I
1250 MHz

!~

~

-1.0

;--.......

~

·100

-80

-60

-40

-20

20

-2. 0
-0.5

40

0.5

1.0

!lfb.(mmhos)

1.5

gob. (mmhos)

FIGURE 5 - CURRENT·GAIN - BANDWIDTH PRODUCT

-

~ 1400

t'" 1300
61200

~

0..

/

1100

900

I

800

;;\
z

I
I

;;: 100

'"~""

-

-to-

V-

'"t-o> 1000
~z

V

VCE" 10 V

/= loo,MHZ

I

600

'"
::> 500
'"'. 400

J:"

0

2.0

4.0

6.0

8.0

10

12

14

IC. COLLECTOR CURRENT (mA)

1067

16

18

20

2.0

2.5

3.0

3.5

MPS-H83 (SILICON)

PNPSILICON
UHF TRANSISTORS

PNP SILICON ANNULAR TRANSISTORS

. . . designed for common-base UHF RF amplifier applications.

•

Guaranteed Noise Figure NF =4.2 dB (TVp) @ f = 850 MHz

•

Guaranteed Forward AGC Characteristics

•

Complete v-Parameter Curves from 400 MHz to 900 MHz

•

Guaranteed Power Gain Gpb 16 dB (TVp) @ f

•

Low Feedback Capacitance Allowing Stable Unneutralized
Operation - Cce = 0.3 pF (Max)

=

=850 MHz

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage

Emitter-Base Voltage

Total Power Oissipalton @ T A
Derate above 25°C

= 250 e

Operating and Storage Junction

Temperature Range

Symbol

Value

VeEO

30

Vdc

VeB

30

Vdc

Unit

VEB

3.0

Vdc

,PO

350
2.S1

mW
mWf'e

TJ. T stg

-55 to +150

Dc

STYLE 1:
PIN 1.

DIM
A
B

C
D

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to

Symbol

Max

Unit

R8JA

357

°elW

Ambient

EMITTER

2. SASE
COLLECTOR

3.

F
G

H
J
K
L

MILLIMETERS
MIN MAX
5.03 5.18
4.01 4.27
4.44 4.70
0.41 0.48
0.25 0.38
1.14 1.40
1.40 1.65
0.23 0.28
12.70
0.33 0.38

INCHES
MIN MAX
0.198 0.204
0.158 0.168
0.175 0.185
0.016 0.019
0.010 0.015
0.045 0.055
0.055 0.065
0.009 0.011
O.SOO
0.013 0.015

CASE29A

PLASTIC TRANSISTOR AND
UNATTACHED SHIELD
SUPPLIED

1068

MPS-H83 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

Unit

BVCEO

30

-

-

Vde

BV CBO

30

-

-

Vdc

BV EBO

3.0

-

-

Vdc

ICBO

-

-

100

600

950

-

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

IIC = 1.0 mAde, IB=OI
Collector-Base Breakdown Voltage

IIc

= l00/IAdc,IE = 01

Emitter-Base Breakdown Voltage

liE

= l00PAde,lc = 01

Collector Cutoff Current

nAdc

(VCB = 15 Vdc, IE = 01

ON CHARACTERISTICS

DC Current Gain
(lC = 2.5 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

MHz

IT

(lc=2.5mAde, VCE = 10Vde, f= 100 MHz)
Coliector-Emitter Capacitance

(VCE

-

Cce
(C'b)

= 10 Vde, IB = 0, I = 1.0 MHz, base guarded)

Noise Figure (F igure 9)
(lC = 2.5 mAde, VCB = 10 Vde,
RS = 50 Ohms, f = 850 MHz)

-

pF

0.3

dB

NF

-

6.5

4.2

FUNCTIONAL TEST (Using shield as shown in dimensional information)
Common-Base Amplifier Power-Gain (Figure 9)
(lC = 2.5 mAde, VCB = 10 Vde, RS = 50 Ohms
1= 850 MHz)

dB

G pb

Forward AGC Current (Figure 9)
(Gein Reduction = 30 dB, RS = 50 Ohms
f = 850 MHz)

10

16

-

4.5

5.6

7.5

I AGC

mAde

AGC CHARACTERISTICS
VCB = 10 Vde, RS = 50 Ohms, I = 850 MHz, Date from Figure 9

represents device shielded similar to that shown in outl ine dimensions.
FIGURE 2 - NOISE FIGURE

FIGURE 1 - POWER GAIN

+20

16

C; +1 5

:s
~

'" "-

+1 0

'"~ +5.0
~

!

~

'"~

'"~

.,

\

-5.0
-10

2.0

3.0

4.0

/

~

/

:::>

'"u::
w

\

co -15

-20
1.0

12

:s

I\.

0:

5.0

8.0

'"i3z
u."

z

'\

\
6.0

4.0

o
o

7.0

,
V

r---....
1.0

2.0

3.0

/

4.0

IAGC,AUTOMATIC GAIN CONTROL CURRENT (mAl

IAGC, AUTOMATIC GAIN CONTROL CURRENT(mAI

1069

5.0

MPS·H83 (continued)

COMMON-BASE y PARAMETERS
(VCB

= 10 Vdc. T A = 250 C.Frequencv Points in MHz)
FIGURE 4 - REVERSE TRANSFER ADMITTANCE

FIGURE 3 -INPUT ADMITTANCE

j-o.3

1oS
w
u

z

-101---+----I----+---+-~.=ii_-~

1

-20

:i -0.4

:::;;;

-3~

gOO
;!:
I- -40
;;;
I:>
« -50

600

~ -0.5

~

~

..;
~

IC -1.0to 5.0 mA

I:>

«

I-

!;

450

~

Data represents units

I-

-60

~ -0.6 shielded similar to that
shown in outline dimensions

~

-70
-80'-_ _-'-_ _-'-_ _-'-_ _....J._ _ _L-_---'

o

gOO

1-0.7

00

-0.4

-0.2

-0.3

9ib.INPUT ADMin ANCE (mmhos)

gol--~oo

~ 8. 0

~

80y 8 ! - - f . /

oS 7. 0
w

IC=l.~mA

u

~

B. 0

;;;

5.0

I:>

I-

~

~

400·

2.0
1. 0
0.4

9fb. FORWARD TRANSFER ADMITTANCE (mmhos)

800

V

j('-ICI" 2.0 mAl

500

flD

400

0.8

1.2

2.0

gob. OUTPUT ADMITTANCE (mmhos)

FIGURE 8 -CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 7 -COLLECTOR·BASE TIME CONSTANT·
"N 2000

7.0

'"

~

vCELoJ - If= 100MHz

t;

S
!ill
;::

5.

:::>

'"
:il

0",

.. 1000

1

o

D:: 4. 0

~
j

8

I-- rsoo

700,,<: 7 0 0 700

/500')#500

'" 3.0

.~

/

4.0

:::>

6.

"'

~

I)
...............

---V

r-

3.0

~ 2.0

t().4

J BOV BOY-BOO", I '5.0 mA

«

~

+0.3

FIGURE 6 - OUTPUT ADMITTANCE

g. 0

!

t().2

grb. REVERSE TRANSFER ADMITTANCE (mmhos)

FIGURE 5 - FORWARD TRANSFER ADMITTANCE

JI-

t().1

-0.1

1.0

~

800

!

600

~

"' I'\.

I

Z

;;: 400

:f
iii
~

:::>

u

2.0

3.0

4.0

5.0

B.O 7.0

.t-

200
1.0

2.0

3.0

lC. COLLECTOR CURRENT(mA)

IC. COLLECTOR CURRENT (mA)

1070

4.0

5.0

MPS-H83 (continued)

FIGURE 9 - 850 MHz COMMON BASE POWER GAIN
ANO NOISE FIGURE TEST FIXTURE

4[70PF

(vec
470

0.5.20 pF

RFC

'-"

50 Ohm

RFC: 12 TU RNS #26 AWG
WOUND ON #42

S FROM VPARAMETERS

SII =

II-Vll)11 +Y22) + YI2 Y21
0

S
I1+Vll)1I-Y22) + Y21 VI2
22'
0

In converting from V to S parameters, the V parameters must first be multiplied
by Zo, and than substituted in the equations for conversion to S parameters.

-2Y12
SI2=-0-2V21
S21=-0Wh.re 0 = II +Vll) II +Y22) - (YI2Y21)

FIGURE 10 - DC CURRENT GAIN

FIGURE 11 - CAPACITANCES

100

10
VCE = 10 Vdc- fTJ=25 0C - f-

0

5.0

2.0

r--..

1.0

Cib

~

0

.s
w

'z"'
0

~
U

r--

~

Crb

O. 2

2.0

3.0

5.0

7.0

'-

§c.S o.5

0

10
1.0

r-- r--~

O. I
0.4 0.5

10

IC, COLLECTOR CURRENT ImA)

0.7

1.0

2.0

3.0

4.0

VR, REVERSE VOLTAGE (VOLTS)

1071

7.0

10

MPS-H8S (SILICON)

Advance InforIllation
PNP SILICON
VHF TRANSISTOR
PNP SILICON ANNULAR TRANSISTOR

Gpb @ 200 MHz> 14 dB

.•. designed for common base VHF RF amplifier applications.

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

30

Vdc

Collector-Bese Voltage

VCB

30

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

Total Power Dissipation @ T A = 26"C
Derate above 250 C

Po

350
2.81

TJ,Tstg

-65 to +150

Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient

,

mW
mW/oC

,

Max

Symbol·'

357

RSJA

Dc

Unit
°CIW

ELECTRICAL CHARACTERISTICS (T A = 25°C unle.. otherwi.. noted).
Characteristic

Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage
(lC = 1.0 mAdc,IB = 0)

BVCEO

30

-

Vdc

Collector-Ba.. Breakdown Voltage
(lC = IOI'Adc,lE = 0)

BVCBO

30

-

Vdc

Emitter·B... Breakdown Voltage
(IE = 10 "Adc, IC - 0)

BVEBO

3.0

-

Vdc

ICBO

-

100

nAdc

hFE

20

-

-

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 15 Vdc, IE - 0)

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

ON CHARACTERISTICS
DC Current Gain
(lC = 2.5 mAde, VCE

= 10 Vde)

A
B

DYNAMIC CHARACTERISTICS
Current Gein - Bandwidth Product
(lC =2.5.mAde, VCE = 10 Vde,f= 100 MHz)

Collector-Emitter Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)
Noi.. Figura (Figure 6)
(lC = 2.5 mAde, VCE = 20 Vdc, fa 200 MHz)

DIM

for

360

-

MHz

Ceo

-

0.2

pF

NF

-

6.5

dB

-

dB

C
D
F
G
H
J
K
L

MILLIMETERS
MIN MAX
5.03 5.18
4.01 4.27
4.44 4.70
0.41 0.48
0.25 0.38
1.14 1.40
1.40 1.65
0.23 0.28
12.70
0.33 0.38

INCHES
MIN MAX
0.198 0.204
0.158 0.168
0.175 0.185
0.016 0.019
0.010 0.015
0.045 0.055
0.055 0.065
0.009 0.011
0.500
0.013 0.015

FUNCTIONAL TEST (Using shield as shown in dimensioned information).
Common-Emitter Amplifier Power Gain
(lC· 2.5 mAde, VCC = 20 Vde, f =200MHzI
(Figure 61

Gpb

14

This I. advance Information on 8 new introduction and spacifications are subject to change without notice.

1072

CASE 29A

PLASTIC TRANSISTOR AND
UNATTACHED SHIELD
SUPPLIED

MPS-H85 (continued)

COMMON BASE Y PARAMETERS
(VCB = 10 Vdc. TA = 2SoC. Frequency Points in MHz)
Data represents units shielded similar to that shown in outl ina dimensions.

FIGURE 1 - INPUT ADMITTANCE

FIGURE 2 - FORWARD TRANSFER ADMITTANCE

j

1.s

1
1

'0

500 MHz

~

IC=4.0mA

~ -20

1=

'"

400

300MHz_
100MHz /

1
14OO ,H/,

.. -30

~

~

Y

1
1

-50

~

100 MHz

~ 20

I:>

a:

500 MHz

-60

I

~ -0.1

1::>!
~

-0.2

z

>-

I--

w

ffi -0.3

I

~

.~-O.4

500

-0.5

-0.4

-0.3

-0.2

-3~

-20

-10

+10

+20

+30

1 4.0
w

'"~

..

'" 2.5)----+--t-'7'!--'o"I:>

~

I!:

5

400 M1z

MH~

500 MJz

-0.1

+0.1

3.0 )----+----I--"""'!"--I'-I----+---fj-=

1=

I

I

-40

1 3.5)----+----1-

100MHl---; 100M)Z
I
200MHr- 200 MHz
I
IC = 1.0-4.0 mA300 MHz
300 Miz
400 MHz

-50

300 MHz

.;I 400 MHz

FIGURE 4 - OUTPUT ADMITTANCE

..,.....-"1

I - - Ic=7o!mA

\
500 MH;

~5r---'----.----.---'----.----.----r---'

I

a:

1\ 200 MHz

YIb. FORWARD TRANSFER ADMITTANCE (mmho.)

FIGURE 3 - REVERSE TRANSFER ADMITTANCE

~e

'" ~~ MHz I

A

1

0

.sw

"-i500MHZ_ ~

Ic=7.0mA

9ib.INPUT ADMITTANCE (mmhos)

a:

1/
IC' 4.0 mA

1
1

i 10
~
.i -70

o

..*

100 MHz

IC = 2.5 mA

500 MHz

400 MHz

>-

400MHz

)

:r-..

~OMHZnl.

./

"-

a:

w

l!1

y

1

/

~ 30

300MHz

400 MIHZ

200 MHz

'"

I

J

300 MHz

IC = 2.5 mA

.~ -40

~

1

Y200MHz

~H~

300
200 MHz

'" 40

{ZOO MHz

fo::r/
~

-t

50

e

.sw

1-. T100 MHz
100 Mhz "1

~MHZ ..!

t--"'-..T

500 MHz

I:>

Ic=7.0mA

1

2.0 )---+-,---,J<-+-1----I--+-H---1----I
1.5)---+"",-)+---1----1--+--1'-1---1----1

.~ 1.0 )-~.t!--...
O~

+0.2

__

o

+0.3

~

__- L____L -__

~

0.1

0.2

0.3

__- L ____L -__

~

0.5

0.4

0.6

__

~

0.7

gob. OUTPUT ADMITTANCE (mmhos)

grb. REVERSE TRANSFER ADMITTANCE (mmhos)

AGC CHARACTERISTICS

.,
~

FIGURE 5 - POWER GAIN AND NOISE FIGURE
POWER GAIN
15

~

a:
~

IIAGC

'\

\.

7.5

O.I"Fr
1000 pF

/

~ 5.0
z
~ 2.5

~

1=200MHz

.........

V

g 12.5
~ 10
...:

FIGURE 6 - AGC TEST CIRCUIT

17.5

~

\

NOISE FIGURE

0

0-8.0 pF

INPUT

\

-2.5

2OOT~;:ED ~;u~~~~:~:OcJ~:~={·I.D..

rff -7.5
1.0

2.0

3.0

4.0

5.0

6.0

L1

1000 pF
~OUTPUT

1.0k

\

~-5.0
o

~

7.0

IAGC. AUTOMATIC GAIN CONTROL CURRENT (mA)

1073

VCC

rO.,.F

0.8

MPS·K20, MPS·K21, MPS·K22 (SILICON)
For Specifications, See MPS-A20 Data.

MPS·K70, MPS·K71, MPS·K72 (SILICON)
For Specifications, See MPS-A 70 Data.

MPS-LO 1(SILICON)
HIGH VOLTAGE
NPN SILICON
AMPLIFIER TRANSISTOR

NPN SILICON ANNULAR TRANSISTOR

... designed for general-purpose, high-voltage amplifier applications .

•
•

High Breakdown Voltages BVCEO = 120 Vdc (Min), BVCBO = 140 Vdc (Min)
Low Saturation Voltage
VCE(sat) = 0.30 V (Max) @ IC = 50 mA

SEATlNG~~~

MAXIMUM RATINGS

PLANE

Rating
COllector·Emitter Voltage

Symbol

Value

Unit

Vdc

VCEO

120

COllector·Sase Voltage

Vce

140

Vdc

Emitter-Base Voltage

VEe

5.0

Vdc

Collector Current - Continuous

IC

150

mAde

= 2SoC

Po

625
5.0

mW
mW/oC

Total Power Dissipation @TC= 25°C
Derate above 2SoC

Po

1.5
12

Watts
mW/oC

TJ,T stg

-55 to +150

°c

Total Power Dissipation

@

TA

Derate above 2SoC

Operating and Storage Junction
Temperature Range

K

0*
LJi(/-M
,-- .
~

12'

G

J

I

STYLE 1

PIN 1. EMITTER
2. BASE
3. COLLECTOR

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Ambient (1)

R8JA

200

°C/W

Thermal ReSistance, Junction to Case

R8JC

83.3

°C/W

Characteristic

o
E
G
J
K

L

(1) R6JA is measured with the device soldered into a typical printed circuit board.

M

CASE 29·01

1074

M~S-L01 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

120

-

140

-

5.0

-

-

1.0

-

100

50

300

-

0.20

-

0_30

-

1.2

60

-

-

8.0

30

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(lc = 1_0 mAde, IB"; 01

BVCEO

Collector-Base Breakdown Voltage
(lc = 100 "Ade, IE = 01

BVCBO

Emitter-Base Breakdown Voltage
(IE = 10 "Ade, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 75 Vde, IE = 01

ICBO

Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 01

lEBO

Vde
Vde
Vde
"Ade
nAde

ON CHARACTERISTICS
DC Current Gain (II
(lc = 10 mAde, VCE = 5.0 Vde)

-

hFE

Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAdel

Vde

VCE(setl

(lC = 50 mAde, IB = 5.0 mAde)
Base-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAdel

Vde

VBE(satl

(lC = 50 mAde, IB = 5.0 mAdel (1)

1.4

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 10 Vde, f = 100 MHz)

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHzI

Cob

Small-Signal Current Gain
(lc = 1.0 mAde, VCE = 10 Vde, f = 1.0 kHz)

hfe

(1) Pulse Test: Pulse Width

MHz

fy

pF

-

= 300 "S, Duty Cycle = 2.0%.
FIGURE 1 - THERMAL RESPONSE

1.0

- -

O. I

o.5 f-o = 0.5
3

F

2 ....

~

-

0.2

....0T) 0.05

1

-

Pt~nmL~

I~

-

BUl---

I

ZaJc(tl = r(tl ROJC
ROJC = 83.3 CIW Max

Plpkl

SINGLE PULSE

I

5
3

0.02

~~~
Duty Cycl•• 0 =11/12

0.0 1
0.1

0.2

0.5

1.0

2.0

50

10

20

50

100
I. TIMElmsl

1075

200

500

- - -

Z'JAIt)= rlt) RaJA

RaJA = 200·CIW Max
o CU RVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpkl - TC = Plpkl ROJCltl
1.0 k

2.0 k

5.0 k

10k

MPS·L01 (continued)

FIGURE 2 - DC CURRENT GAIN
500
300
200

-25°C

z

;;:
'"
....

~

::>

'-'

-TJ= 125°C

-...

-I"-

100
7o r---- -55°C
50

VCE= 1.0 V
VCE=5.0V

I_I'-

""<;

'-'

<>

0

~

0

~

....::

0
7. 0
5.0
0.1

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

10

20

30

50

70

100

IC. COLLECTOR CURRENT (mA)

FIGURE 3 - COLLECTOR SATURATION REGION
-

!:l<>

~
w

~

1.0

~

0.9

0.7

<>

Ic=I.0mA

> 0.8

~
!
~
'-'

:!
8

L

T].J50

\
\

0.8

\ 10mA

loomA

30mA

\

0.5
0.4

1\

0.3

\

0.2

\...

----- .....

w o. 1
!;; 0

0.01

0.005

0.02

1"-",,0.03

0.05

0.1

0.2

0.3

0.5

1.0

r-.....

"2.0

3.0

5.0

10

20

lB. BASE CURRENT (mA)

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA
200

~
....
ffi

'"'"
a
'"

~

~'-I.J

100
70
0
0

i~CI=250C

0
TA = 25°C

Of= .

of=
f-

3. 0
2. 0
2.0

100",

rThere are two limitations on the power handling
ability of a transistor: junction temperature and
secondary breakdown. Safe operating area curves
indicate Ie-VeE limits of the transistor that must be
observed for reliable operation; i.e., the transistor
. must not be subjected to greater dissipation than
the curves indicate.
The data of Figure 6 is based on TJ{pkl '" 150 0 C
Te is variable depending on conditions. Pulse tums
are valid for duty cycles of 10% provided TJ(pk) iii;

5.0ms

10
1.
~ 5.

E

I-

II

""

I,

......

~~gOu:~' loTJ~tk~i;:a!et:~!:~~:~~ar:~I~:=

BONDING WIRE LIMIT
THERMAL LIMIT
TJ=1500C

I I I I I II
3.0

I

I

5.0 7.0 10
20
30
50 70 100
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

tions will reduce the power that can be handled to
values less than the limitations imposed by secondary
breakdown.

I
200

1076

30

50

MPS-L01 (continued)

FIGURE 5 - "ON" VOLTAGES

1.0
r-

0.8

S 0.6
0

2:
w

'"'"
:;
0

r-

-

FIGURE 6 - TEMPERATURE COEFFICIENTS

2.5

U2~O~

1111

I

I II

1111

I

JB~(2t! ~ IM'B J10

2.0

15

1.0

~

0.5

U

II

I

:111

I~J f~j m(sa~)

w

....'"=>

0.4

~

~
....

0.2

0.2 0.3 M

1.0

-0.5
·1.0
BVS for VSE(sat)

·1.5

ttt-r

~ -2.0

VCE(sat)@ICIIB= 10
0.1

~o I~O~

I111111

8

>
>'

o

Tll_15W

oS 1.5
....

_i--

-

1

It>

2.0 3.0 5.0

10

20 30

50

·2.5
0.1

100

II III
0.2 0.3 0.5

1.0

2.0 3.0 5.0

10

20 30

50

100

IC, COLLECTOR CURRENT (rnA)

IC. COLLECTOR CURRENT (rnA)

FIGURE 7 - SWITCHING TIME TEST CIRCUIT

FIGURE 8 - CAPACITANCES

20
V8B
-8.8 V

r-

VCC
30 V

10

I

II

I

TJ = 25°C

1111

C,b
100

~ 7. 0

3.0k

w

~

Scope

5.1 k

~

3. 0

(.3

2. 0

;3
tr• tf" 10ns

100

Duty Cycle = 1.0%

5. 0

i'--

"u....

-

....

cy

Valuei Shown are for le@10rnA

0.5

FIGURE 9 - TURN·ON TIME

=

500 0

ICIIS= 10
TJ = 250 C, "
'tr@,VCC- 12OV
I--

.~@ VCC = 120 V

3000

tr@VCC=131~V

'2

>

1000

200

,.;::

~

i-'

w

'"

.>

30

td@ VES(off)
VCC=120V

~

0.5 V

I......

tf@VCC=30'V

500
300 ts@VCC-120V
20 0

'"

V

"-

~

100

20
10
0.2 0.3 0.5

III
1.0

I
2.0 3.0

200

~

/

;::
50

100

IS1- IS2 Iclis = 10
TJ - 25°C

2000

300

;;; 100

2.0
50
10
20
50
VR, REVERSE VOLTAGE (VOLTS)

FIGURE 10 - TURN-OFF TIME

1000

500

1.0

50

5.0

10

20 30

50

100

200

IC, COLLECTOR CURRENT (rnA)

0.2 0.3 0.5

1.0

2.0 3.0

5.0

10

20 30

IC. COLLECTOR CURRENT (rnA)

1077

50

100

200

MPS-LSI (SILICON)

HIGH VOLTAGE

PNP SILICON ANNULAR TRANSISTOR
· .• designed for general·purpose, high·voltage amplifier applications.
•

High Breakdown VoltagesBVCEO = 100 Vdc (Min), BVCBO = 100 Vdc (Min)

•

Low Saturation Voltage
VCE(sat) = 0.30 V (max) @lIC= 50 mA

PNPSILICON
AMPLIFIER TRANSISTOR

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

100

Vdc

Collector-Base Voltage

Vca

100

Vdc

Emitter·Base Voltage

Rating
Collector-Emitter Voltage

VEa

4.0

Vdc

Collector Current - Continuous

IC

600

mAde

Total Power Dissipation
Derate above 2SoC

@

T A "" 2SoC

Po

625
5.0

mW
mWflC

Total POMr Dissipation
Derate above 26°C

@

TC = 25°C

Po

1.5
12

Watt
mW/oC

TJ,T,tg

-55 to +150

°c

Operating and Storage Junction
Temperature Range

Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

Max

Unit

AeJAllI

200

°CIW

AeJC

83.3

°C/W

Symbol

(11 ASJA is measured with the device soldered into a typical printed circuit board.

~F

PLANE

O-jI~I-+-~
:::::JR~

lor

STYLE 1:
PIN 1. EMITTER
2. BASE

DIM

A
B
C
D

W
1 ,

3

"00

3. COLLECTOR

THERMAL CHARACTERISTICS

l~
.7
r

_~

SEATINGJ~~
1--

--I

MILLIMETERS
MIN
MAX

4.450
3.1MU
4.320
0.407
0.4u7

5.200
4.90
5.330
0.533

1.150

1.390
1.270

U.4IIl

S

J
=r-r
S

a

INCHES
MIN
MAX

0.175
0.125
0.170
0.D16
I u.ul6

0.205
0.165
0.210
0.021
0.0; 9

0.045

0.055
0.050

K

L
N
P
o
R
S

6.350
3.430
2.410
2.030

2.670
2.670

0.250
0.135
0.095
0.080

CASE 29·02
TO-92

1078

0.105
0.105

MPS-L51 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

100

-

100

-

4.0

-

-

1.0

-

100

40

250

0.25
0.30

Vde

-

1.2
1.2

Vde

-

60

-

-

8.0

20

-

Unit

OFF CHARACTERISTICS
Colleetor·Emitter Breakdown Voltage 111
(lC = 1.0 mAde, IB = 0)

BVCEO

Coliector·Base Breakdown Voltage
(lC = 100 /LAde, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(Ie = 10 /LAde, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 50 Vde, IE = 0)

ICBO

Emitter Cutoff Current
(VBE = 3.0 Vde, IC = 0)

lEBO

Vdc

Vde

Vde

/LAde

nAdc

ON CHARACTERISTICS
DC Current Gain (11
(lC = 50 mAde, VCE = 5.0 Vde)

-

hFE

Collector-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
(lC = 50 mAde, IB = 5.0 mAde)

VCE(satl

Base·Emitter Saturation Voltage (1)
(lC = 10 mAde, IB = 1.0 mAde)
(lC = 50 mAde, IB = 5.0 mAde)

VBE(sat)

DYNAMIC CHARACTERISTICS
Current·Galn·Bandwldth Product 11)
(lC = 10 mAde, VCE = 10 Vde, f = 100 MHz)

fT

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 1.0 MHz)

Cob

Small-8ignal Current Gain
IIc = 1.0 mAde, VCE = 10 Vdc, f= 1.0 kHz)

hfe

MHz

pF

-

(11 Pulse Test: Pulse Test = 300 I'S. Duty Cycle = 2.0%

FIGURE 1 - THERMAL RESPONSE

E

~~ ~

1.0
0.7 rD =0.5
0.5
."".,.....

0.3 r--0.2

~ ~ 0.2 C--O.I

tit;

tt ~

o. I

0.05

L

~

--

~r-

~ ~ 0.07 0.0
~ ~ 0.05 ~Ol SING~E PIU\~
..ow
vi
~ i= 0.03

'"~

~

0.02

p--

1--

-

l-

II II
0.002

0.005

0.01

BU1
t~j

........ SINGLE PU LSE

0.0 I
0.001

DUTY CYCLE, D = 11112

0.02

0.05

0.1

0.2
0.5
I, TIME (SECONDS)

1079

1.0

2.0

_ _ ROJC(I) =(t)8JC
ROJC =100"CIW Max
- _RSJA(I) =r(I)8JA
ROJA = 357"CIW Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATtI
TJ(pk) - TC =P(pk) 8JCIt)

5.0

10

20

50

100

MPS·L51 (continued)

FIGURE 2 - DC CURRENT GAIN
200

I

150

-

~ 100

'"
!Z
::l

12~OC
~...::tT 1=

-

70

II:

::>

..

~

50

--

--

!--

-

250 C

---

1

-1
J5 0 C

30

1 - -f::~
20
0.1

.-4--......- ~ r0.3

0.2

I--

'-:

-

~

r- r--

~

,..-

-,-

.:::.I- roo-

,.. - '- '- ,-I-1--.-

!-f-- I -

~-

r-.
r-.;:r-..\

-VCE"1.0
_ _ VCE-5.0V

3.0
2.0
5.0
IC. COLLECTOR CURRENT (mAl

1.0

0.5

-r- ~ -

30

20

10

"
50

100

FIGURE 3 - COLLECTOR SATURATION REGION

g 0,91.0

I

'"~

0.8
0.7

0

> D.6
Ic=1.DmA

0.5

II:
0

.~.
0

-

0.2

.,;; D.l

>

D.OD5

0,01

\

D.D5

D.D2

D.l

1

~

lDl

~

IC = ICES

::>

.. 100

~
j

750 C

-

~'0'2

~REVERSE

~

0.1
0
0,1
0.2
0.3
0.4
0.5
VBE. BASE·EMITIER VO LTAGE (VO LTSI

50

~

0.6

0.7

~

IC= 10xi ES

r-...

"

......
~

......
r-...

,.....,

104

8

.,;;103

-

~

0 10

1080

VCE-30V-

le=lcES

~
....

10-3
0.2

20

r....

IC = 2 x leES

:0;

"i 105

FORWARD

r--..

""" ......

~ 106

/

25 0 C

0.3

10

5.0

........

107

~
iii

/

10-1

8

2.0

FIGURE 6 - EFFECTS OF BASE-EMITTER RESISTANCE

z

TJ'1250 C

I--

r--

!e loB

f-VCE=30V

II:
II:

"'

-

D.2
D.5
1.0
lB. BASE CURRENT (mAl

FIGURE 4 - COLLECTOR CUT-OFF REGION

102

~

I' -

103

j

IDDmA

3DmA

~

\

0.3

\
\

\

\ 10mA

:0;

"i 0.4

\
\

\
\
\

II:

~

\

\

0

~

w

-(TYPICAL ICES VALUES OBTAINED FROM FIGURE 91- I-20

30

40 50 60 7D 80 9D 100 110 120 130 140
TJ. JUNCTION TEMPERATURE (OCI

MPS-L51 (continued)

FIGURE 7 - TEMPERATURE COEFFICIENTS

FIGURE 6 - "ON" VOLTAGES
1.0

TJ=2SoC

2.5

II 1111
II 1111

0.9

, """

O.B

TJ = -55 0 C to lS00 C

~ 2.0

:>

.§ 1. 5

-~

--

ffi

1. 0

H:

O. 5

o

0

~

~

-0. S

~"0.3

: -t 0
II:!
a5 -t 5

en 0.7 I - - r~O.6

i!

VBE(SAT) @ Ic/lB = 101-

t-"

~O.5

... 0.4

U

w

'"w

L-

8VC FOR VCE(SAT)

o

I - - f--

0.2

VCE(SAT) @-IClir 1~

....

i

0.1

II 1111

o
0.1

0.2 0.3 O.S

1.0
2.0 3.0 S.O
10
20 30
IC. COLLECTOR CURRENT (mA)

SO

100

-

eVB FOR VSE(SAT)

-2.0
-2. 5
0.1

II IIII
0.2 0.3

0.5

1.0
2.0 3.0 5.0
10
IC. COLLECTOR CURRENT (mA)

20 30

100

TJ=250 C

70
SO

VCC
30 V

B.BV

100

FIGURE 9 - CAPACITANCES

FIGURE 8 - SWITCHING TIME TEST CIRCUIT

VBS

50

3.0 k

30

~ 20
I!l
z

RC

100

Vout

--

I--

;: 10

~

7.0

:5 6.0

"Cib

r- ICOb~

","

3.0

Values Shown
.ra'orlc@10mA

2.0

Ir.I,"'O ••
OUly Cyel. = 1.0%

1.0
0.2

0.3

0.5 0.7 '.0
2.0
3.0
5.0 7.0
YR. REVERSE VOLTAGE (VOLTS)

FIGURE 11 - TURN-OFF TIME

FIGURE 10 - TURN-ON TIME
1000

200 0

700 _!CIIS = 10
SOO -TJ-2S0 C

1000

Ir@VCC=120V-

1'\

300

!

200

rx'
~
~

'"""

~
....

100
., 70

700
SOD

tr@VCC=30V

\

]300

"I TI-'

-+ t,@VCC.=30V

.,

l\.

100

IIIYfC= 12rv II
O.S

1.0

2.0 3.0 S.O
10
20 30
IC. COLLECTOR CURRENT (mA)

SO

......
100

~

1\

70
50

30
20

'-

t.@VCC= 120 V

>=

SO

10
0.2 0.3

"- ~,Il VCC = lJO V

T}=~sJl
IC/IB = 10

~ 200

td@VSE(OFF) = 1.0 V

20

10

30
20
0.2 0.3

200

1081

O.S

1.0

20 30
2.0 3.0 5.0
10
IC. COLLECTOR CURRENT (mA)

SO

100

200

MPS-UO 1(SILICON)
MPS-U01A

NPN SILICON ANNULAR TRANSISTORS
· .. designed for complementary symmetry audio circuits to 10 Watts
output.

NPN SILICON
AUDIO TRANSISTORS

• Excellent Current Gain Linearity - 1.0 mAdc to 1.0 Adc
•

Low Coliector·Emitter Saturation Voltage VCE(sat) = O. 5Vdc (Max) @ IC = 1.0 Adc

• Complements to PNP MPS·U51 and MPS·U51A
• Un iwatt Package for Excellent Thermal Properties 1.0 Watt@TA = 250 C

MAXIMUM RATINGS
Symbol

MPS·UOI

MPS-UOIA

Unit

VCEO

30

40

Vdc

Collector-Base Voltage

Vce

40

50

Vdc

Emitter-Base Voltage

VEe

5.0

IC

2.0

Adc

T A = 26°C

PD

1.0
8.0

Watt
mW/oC

Total Power Dissipation@ TC'" 26°C
Derate above 25°C

PD

10

80

Watts
mWfOC

-55 to +150

°c

Rating
Collector~Emitter

Voltage

Collector Current - Continuous

Total Power Dissipation
Derate above 25°C

@

Operating and Storage Junction
Temperature Range

TJ.Tstg

Vdc

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to

Ambi~nt

Symbol

Max

Unit

R8JC

12.6

°CIW

DIM

R8JA(1)

125

°C/W

A
B
C

(1) R6JA is measured with the device soldered into a typical printed circuit board.

Uniwatt packages can be To-S lead formed by adding -5 to the device title and tab formed for
flush mounting by adding -1 to the device title.

o
F
G
H

~

LN
Q

R

MILLIMETERS
MIN
MAX

9.14
6.60
5.41
0.38
3.18

9.53
7.24
5.66
0.53

INCHES
MIN
MAX

0.360
0.260
0.213
0.015
0.125

4~8~S~e~~~0.~10TO~BS~e~
~4~.1~9~~0.~15~5~0~.1~65~

+.'l~~:~g~~~~:"!,~~e:~~~:~':!~H
0.200 ase
EtB2",,~5e·~53~i~Oa·9~8:;;:5~f~1;;;·MOrO~5"i
2.69
0.094 0.106
1.40

0.045

CASE 152·02

1082

0.315
0.285
0.223
0.021
0.131

0.055

MPS-U01,MPS-U01A

(continued)

ELECTRICAL CHARACTERISTICS (T A

I

= 25 0 C unless otherwise noted)

Symbol

Characteristic

Min

Max

30

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
IIC = 10 mAdc, IB = 0)

Vdc

BVCEO
MPS-UOI
MPS-UOIA

Collector-Base Breakdown Voltage

40

Vdc

BVCBO
MPS-UOI
MPS-UOIA

IIC? 100 "Adc, IE = 0)
Emitter-Base Breakdown Voltage

5.0

-

-

0.1

-

0.1

-

0.1

55

40
50
BVeBO

Vdc

= 100 "Ade, IC = 0)

liE

Collector Cutoff Current
(VCB = 30 Vdc, IE = 0)

(VCB

= 40 Vdc,

Ie

= 0)

MPS-UOIA

Emitter Cutoff Current

(VBE

= 3.0 Vdc,

IC

ItAdc

ICBO
MPS-UOI

lEBO

= 0)

"Adc

ON CHARACTERISTlCS(I)
DC Current Gain

50

-

VCE(satl

-

0.5

Vdc

VBE(on)

-

1.2

Vdc

fT

50

-

MHz

Cob

-

20

pF

60

Collector-Emitter Saturation Voltage

= 1.0 Adc, IB = 0.1

(lC

-

hFE

= 10 mAdc, VCE =1.0 Vdc)
IIC = 100 mAde, VCE '" 1.0 Vdc)
IIc = 1.0 Adc, VCE = 1.0 Vdc)

IIc

Adc)

Base-Emitter On Voltage
(lc = 1.0 Adc, VCE = 1.0 Vdc)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(lc = 50 mAdc, VCE = 10 Vdc, f = 20 MHz)
Output Capacitance

(VCB

= 10 Vdc,IE = 0, f =

1.0 MHz)

(1)Pulse Test: Pulse Width S300 #ls, Duty Cycle '$.2.0%.

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - "ON" VOLTAGES

500

"
'"
~

300

;;:

1.0

r---

~ J

I II

I- TJ 25 C

~CE l1.0 V~C
TJ = 250C

Q

200

~

~~

g

I-

i--'"

VSE(sat)@IC/IB-1O

O.S

VBE @VCE = 1.0 V

2

0.6

'"C;'"
>
'">-

0.4

w

a

r-.

U
Q

~

100

0.2

VCE(sat)@ ICIIB = 10

70

10

20

50

r-

o

50
100

200

500

10

1000

20

30

50

100

200

300

500

1000

IC, COLLECTOR CURRENT (rnA)

IC, COLLECTOR CURRENT (rnA)

FIGURE 3 - DC SAFE OPERATING AREA
2.0

0;
~

:oS

i
'"t;'"

~
8

'{.

IjJ.

1.0

Tr 150°C
0.7
BONDING WIRE LIMIT
I---'-- THERMAL LlMIT@TC-25 0C
0.5
SECOND BREAKDOWN LIMIT

There are two limitations on the power handling ability of a transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate IC-VCE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

I

1-

I"\.

0.3
0.2

~

'"=

MPS·UOI

MPS-i 01A
0.1
2.0

4.0

6.0

10

20

::::::!

The data of Figure 3 is based on TJ(pk) = 1500C; TC is variable
depending on conditions. At high case temperatures. thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown_

~

40

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

1083

MPS-U02 (SILICON)

NPN silicon annular amplifier transistors designed for
general-purpose amplifier and driver applications. Complement to PNP MPS-US2.
.

MAXIMUM RATINGS

Rating

Symbol

CASE 152
PIN·!.

EMITTER

2. BASE
3. COLLECTOR

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

Collector-E mitter Voltage

STYLE 1:

Value

VEB

5.0

Vdc

Collector Current - Continuous

IC

BOO

mAde

Total Power Disslpation@ TA = 25·C

PD

Derate above 25·C
Total Power Dissipation@ TC = 25·C
Derate above 25·C
Ope rating and Storage Junction
Temperature Range

1.0

Watt

B.O

mW/OC
Watts

PD

10
80

TJ • T stg

-55 to +150

mW/"C
·C

THERMAL CHARACTERISTICS

Max

Symbol

Characteristic

Unit

Thermal ReSistance, Junction to Case

R6JC

12.5

'C!W

Thermal ReSistance, Junction to Ambient

ReJA

125

°C/W

ELECTRICAL CHARACTERISTICS (T.. = 25·C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

Unit

-

Vdc

40
60

-

-

100

OFF CHARACTERISTICS
Collector-Emitter Sreakdown Voltage
(IC =1. 0 mAde, IS =0)

SVCEO

Collector-Sase Breakdown Voltage
(IC =l00j.lAdc, IE" 0)

SV CBO

Collector Cutoff Current
(VCB .= 40 Vdc, ~ .. 0)

ICBO

Vdc
nAdc

ON CHARACTERISTICS
DC Current Gain
(IC =10 mAde, VCE =10 Vdc)
(IC = 150 mAde, VCE =10 Vdc)
(IC

= 500 mAde,

VCE

hFE

=10 Vdc)

50
50
3D"

300
-

Collector-Emitter Saturation Voltage
(Ic = 150 mAde, IS = 15 mAde)

VCE(sat)

-

0.4

Base-Emitter Saturation Voltage
(Ic =150 mAde, IB = 15 mAde)

VSE(sat)

-

1.3

150

-

-

10

-

Vdc
Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Sandwidth Product
(IC = 20 mAde, VCE =20 Vdc, f
OutJl!lt Capacitance
(VCS =10 Vjic, ~

fT

= 100 MHz

Cob

=0, f =100 kHz)

1084

MHz
pF

MPS-U02 (continued)

FIGURE 2 - COLLECTOR·EMITTER
SATURATION VOLTAGE versus BASE CURRENT

FIGURE 1 - NORMALIZED DC CURRENT GAIN

~.: -r- IcIJUI~A~H+tI-t+I.IJJII--!++I+H1f+H-+-I-H+H+f

.. ;; o.sl--l--Fl+t+ftI----+-1-tH loo mA H++HfHtt-+++IftHIt
......
~ g 0.71-++++Hffi--IH-I+IFHH-+-II 250 mA -I~r-+-++HfH!I
2~ ~ 0.6

~~

500mA

\V

0.5

a~ o.41-++t+HttI--1H-I+tffilt-+~tftftft--r''''''''f-oIF:t:I:I:!!l
~>

...::.~

!..
... =>
$'

~

0.31-+++'H+ti+---1H-t+ttAW--+-++-ftffil--H-H+H!t

S 0.21-++++Nti+---1H-t+HfiIl-~~H+tttHf"'oood--H-t+HtI
"

r-

0.1 t-++++ttttP""
......
::+-+++tt-Ht--H"H-ttHt--t--H-t+HtI
O~~LL~~-4~~~~~~ww_~~~

0.01

0.1

FIGURE 3 - BASE·EMITTER VOLTAGE
versus COLLECTOR CURRENT

5.0
4.0

/'

O.B

3.0

~

...
'"~

-~

oS

2.0

z

;
III

'--

"-

...u

/"

0.7

g

100

FIGURE 4 - CAPACITANCE versus VOLTAGE

0.9

~o

10

1.0
lB. BASE CURRENT(mA)

IC. COLLECTOR CURRENT (mA)

V

0.6

r----.. ......

,--

5

r-...... ...... '" \C

~

~

u

c.i

0.5

1.0

.......... .....

0.7

>
0.4

5"r
II

0.5
0.1

1.0

100

10

1.0 A

1.0

0.1

100

10

REVERSE VOLTAGE (VOLTS)

Ic. COLLECTOR CURRENT (mA)

FIGURE 5 - CURRENT·GAIN·BANDWIDTH PRODUCT
FIGURE 6- ACTIVE REGION DC SAFE OPERATING AREA
versus COLLECTOR CURRENT
2.0

1000

~
~ 700
t;

1'\

=>

11.0

o

...~

500

...o'"

/"

~3OD
z
:i

z

/

;;:

...

'" 200

.

'"=>
u

100

~
'"~
o'"

'"\

o

~ 0.2

'\.

'\

r- -

r-- _

/
1.0

0.1
0.5

t;
; 0.3

V

iii

.t:'

VCE -20 V

0.1
10
100
IC. COllECTOR CURRENT (mA)

1.0 A

1085

1.0

'\
- - - Thermal limitation
- - Secondary Breakdown Limitation

"\.

I I I I IILlI J
2.0

3.0

5.0

7.0

10

20
VCE. COllECTOR·EMITTER VOLTAGE (VOLTS)

'\
30

50

MPS-U03 (SILICON)
MPS-U04

STYLE 1:
PIN 1. EMITTER

NPN silicon annular plastic transistors designed for
video output circuits utilizing an emitter-follower driver
and for horizontaJ driver applications in television receivers.

2. BASE
3. COLLECTOR
CASE 152·02

Collector connected to tab

MAXIMUM RATINGS

MPS-U03 MPS-U04 Unit

Symbol

Rating

VCEO

120

180

Vdc

Collector-Base Voltage

VCB

120

180

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

1.0

Adc

Total Power Dissipation @ T A = 25°C

PD

1.0
8.0

mW/"C

Collector-Emitter Voltage

Derate above 25°C

10
80

PD

Total Power Dissipation,@ TC = 25°C
Derate above 25°C

T J , T stg

Operating and Storage Junction
Temperature Range
ELECTRICAL CHARACTERISTICS

(T.

-55 to +150

Watt
Watts
mW/"C
°c

=2S'C unless,olherwise noted)
Symbol

Characteristic

Min

Max

120
180

--

120
1BO

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC =1. 0 mAde, IB = 0)
Collector-Base Breakdown Voltage
(IC =100 /LAde, ~ = 0)

MPSU03
MPSU04
MPSU03
MpgU04

Emitter-Base Breakdown Voltage
= 100 /LAde, IC = 0)
Collector Cutoff Current
(VCB =100 Vdc,
=0)

MPSU03

= ISO Vdc,

MPSU04

'E

=0)

IE

BVCBO
BVEBO

('E

(VCB

BV CEO

ICBO

S.O

-

Vdc

Vdc

Vdc
/LAde

0.1
0.1

ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE

hFE

= 10 Vdc)

40

-

Collector-Emitter Saturation Voltage
(IC =200 mAde, IB =20 mAde)

VCE(sat)

-

0.5

Base-Emitter On Voltage
(IC =200 mAde, VCE = 1. 0 Vdc)

VBE(on)

-

1.0

100

-

Vdc
Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ie =50 mAde, VCE = 20 Vdc, f
Ontput CapaCitance
(VCB = 10 Vdc, ~

fT

=100 MHz)

Cob

=0, f =100 kHz)

Input Capacitance
(VBE = 0.5 Vdc, IC

Cib

=0, f = 100 kHz)

1086

-

MHz

pF
12

pF
110

MPS-U05 (SILICON)
MPS-U06

NPN SILICON
AMPLIFIER TRANSISTORS

NPN SILICON ANNULAR
AMPLIFIER TRANSISTORS
· .. designed for general-purpose, high-voltage amplifier and driver
applications.
•

High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc - MPS-U05
80 Vdc (Min) @ Ie = 1.0 mAdc - MPS-U06

• High Power Dissipation - PD = lOW

@ TC =

25 0 C

• Complements to PNP MPS-U55 and MPS-U56

F________

H

~A-

R

I

r- B -

J

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Collector-Base Voltage
Emitter-Base Voltage

Symbol
VeEO
VeB
VEe

Collector Current - Continuous

.!.Q.

Total Power Dissipation @ TA = 2sOe

Po

Derate above 2SoC
Total Power Dissipation@TC= 250C

Po

Derate above 2SoC
Operating and Storage Junction

TJ, Tstg

MPS-U05 MPS-U06
60
60

80
80

4.0
2.0
1.0
8.0
10
80
-55 to +150

Unit

Vdc
Vdc
Vdc
Adc
Watt

mW!Oe
Watts

mW!Oe
°e

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to case
Thermal Resistance. Junction to Ambient

Symbol

Max

Unit

R9JC

12.5

°eiw

R8JAll)

125

°e!W

(1) R8JA is measured with the device soldered into a typical printed circuit board.

3 2

,-~ ~JJ
l:.±

N

STYLE 1:
---Il-J
PIN 1. EMITTER
2. BASE
3. COLLECTOR

MILLIMETERS
DIM MIN MAX
A 9.14 9.53
B 6.60
1.24
e
5.41
5.66
D 0.38
0.53
F __ 3.18
3.33
G
2.54 Bse
H 3.94
4.19
J
0.36 0.41

r-JL

R

r---!i--

r-4--

~
R

.

25.53
BSe
2.69
1.40

INCHES
MIN MAX
0.360 0.315
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 BSe
0.155 0.165
0.014 0.016
0.475 0.500

•
.

CASE 152-02

1087

BSe
0.106
0.055

MPS-U05, MPS-U06 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

I

Min

TVp

Max

60

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage
(lc=1.0mAde,IB=0)

Vde

BVCEO
MPS-U05
MPS-U06

Emitter-Sase Breakdown Voltage

BVEBO

-

BO

-

-

4.0

-

-

-

-

-

-

100
100

SO
60

-

-

125
100
. 55

-

O.lS
0.1

0.4

Vde

(IE = 100 "Ade, IC = 0)
Collector Cutoff Current
IVCB = 40 Vde; IE = 0)
IVCB = 60 Vde, IE = 0)

nAde

ICBO
MPS-U05
MPS-U06

ON CHARACTERISTICS
DC Current Gain (1)
(lc = 50 mAde, VCE = 1.0 Vde)
(lc = 250 mAde, VCE = 1.0 Vde)
(lc=500mAde, VCE = 1.0Vde)

-

hFE

-

Collector-Emitter Saturation Voltagell)
(lC = 250 mAde, IS = 10 mAde)
(I C = 250 mAde, I B = 25 mAde)

VCElset)

Base-Emitter On Voltage 11)
(lc = 250 mAde, VCE = 5.0 Vde)

VBElon)

-

0.74

1.2

Vde

fT

50

170

-

MHz

Cob

-

6.0

12

pF

Vde

-

SMALL-5IGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product 111
(lc" 200 mAde, VCE = 5.0 Vde, f = 100 MHz)

Output Capacitance
IVCB = 10 Vde, IE = 0, f = 100 kHz)
(1 )Pulse Test: Pulse Width

~300

JJ.S, Duty Cycle

~2.0%.

FIGURE 1 - DC CURRENT GAIN

3lJ0

FIGURE 2 - "ON" VOLTAGES
.0

_~~EI·'roVd'
TJ"2&OC

200

-t.!,,!

IIIIIII
v:EI.~) ~ "I,: ~',~'

........

f--

0

.....

.U.J+ttr:: .....

.S

VBE(on)@VCE=5.0Vdt

6

4

0
0

2
VCE(sal)@le fl B"'0

30

'.0

10

20

50

0
t.O

,00

200

100

20

5.0

Ie, COLLECTOR CURRENT (rnA)

FIGURE 3 - DC SAFE OPERATING AREA

~
~

~
~

o

~

~ 300

1O~~.

~

Tp'15D OC

- - - Second Breakdown limited
0.2 _ _ _ Bond!llgWlrfllrmlted
_ _ _ TllermaILlmnallons@Tc .. 250C
11.1
Ap{lhcableTo BVCEO

:'\ MPS.J06
Mps·U05 '\

=++++

~005

[l.O~';;-0--:!2';;-0-1-1","'o:"-,..u""'O--:!20;;-..1....""',"'oV.Jl...J.IV.....",,,oo

200

'00

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

2.0.---r-......,.......--."''TT,---,---r--r-rT'TTn

05

10
20
50
100
Ie. COLLECTOR CURRENT (rnA)

"

./"

20 0

l!'

~
~

\

100

l;;

0

"

0

.t:-

0
3 .

r

veE. COlLECTOR·EMITTER VOLTAGE (VDLTS)

Thp~", 'i ...

tvvv limitations on the power handling ability of a
junction' temperature and second breakdown. Safe
operating area curves indicate Ie - VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater diSSipation than the curves indicate.

VCE=5.0Vdc

50

I

[Jli""
10

20

50
100
Ie, COLLECTOR CURRENT (rnA)

200

'00

The data of Figure 3 is based on T Jlpk) = 150°C; T C is variable

depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed bV second breakdown ..

tran~idor:

1088

MPS-U07 (SILICON)

NPN SILICON
AMPLIFIER TRANSISTOR

NPN SILICON ANNULAR
AMPLIFIER TRANSISTOR

... designed for general·purpose, high·voltage amplifier and driver
applications.

•

High Coliector·Emitter Breakdown Voltage BVCEO = 100 Vdc (Min)@ IC = 1.0 mAde

•

High Power Dissipation - PD = 10 W@TC=250C

•

Complement to PNP MPS-U57
F

3 2

MAXIMUM RATINGS
Rating

Coliector·Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage

Collector Current - Continuous
Total Power Dissipaton . @ T A "" 25°C

Symbol

Value

Unit

VCEO
VCS
VES
IC
Po

100

Vdc

100
4.0
2.0
1.0
8.0

Vdc
Vdc
Adc
Watt
mW/oC

Po

10
80

mW/oC

-55 to +150

°c

Derat. above 25°C
Total Power Dissipaton@ T C = 25°C
Derat. above 25°C
Operating and Storage Junction
Temperature Range

TJ,Tstg

Thermal Resistance. Junction to Case
Thermal Resistance. Junction to Ambient

STYLE I:
PIN I. EMITIER
2. BASE
3. CllLLEeTOR

Watts

iIIlLLIMETERS
DIM MIN MAX
A

B
C
D

THERMAL CHARACTERISTICS
Characteristic

o

Symbol

Ma.

Unit

R9JC

12.5

°C/W

125

°C/W

R9JA(1)

(1) R6JA is measured with the device soldered into a typical printed circuit board.

F
G
H
J
K
L
N
Q

R

9.14
9.53
6.60
7.24
5.41
5.66
0.38
0.S3
3.18
3.33
2.54 ase
3.94
4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 ase
2.39
2.69
1.14
1.40

INCHES
MIN
MAX
0.360
0.260
0.213
0.01S
0.125

ft

0.165
0.016
0.475 0.500
0.985 1.005
0.200 BSC
0.094 0.106
0.D45 0.055

CASE 152·02

1089

0.375
0.235
0.223
0.021
0.131

MPS-U07 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lc = 1.0 mAde, 'B = 0)

BVCEO

100

-

-

Vde

Emitter·Base Breakdown Voltage
(IE = l00"Ade,lc = 0)

BVEBO

4.0

-

-

Vde

ICBO

-

-

100

DAde

60
30

110
65

-

-

33

-

-

0.18
0.1

0.4

0.76

1.2

Vde

Characteristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VeB = 80 Vde, IE = Ol
ON CHARACTERISTICS
DC Current Gain (1)
(lC = 50 mAde, VCE = 1.0 Vde)
(lC = 250 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage (1)
lie = 250 mAde,lB = 10 mAde)
(I C = 250 mAde, I B = 25 mAde)

Vde

VCE(satl

Base-Emitter On Voltage (1)
(lc = 250 mAde, VCE = 5.0 Vde)
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (1)
(IC = 200 mAde, VCE = 5.0 Vde, f = 100 MHz)

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
(1)PulseTest:

VBE(on)

-

f,-

50

175

-

MHz

Cob

-

6.0

12

pF

FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN

,

1.0

, ~CE·l.DJd'

D.

TJ=25 0C

100

~

Ui

D.'
o.7

~

o. 'F""

~

04

:;

~

~

-

Pulse Width ~300IJs. Dutv CycleS2.0%.

200

z

-

hFE

70

il , 0

,\

~

j!-

"'"'

TJ' 250C

,,
, ,,
,

-

VBE(sat)@lc/1e=lD

......

VeE(on)@VCE=5.0Vdc

D.'

>'.0.3

0.2

3D

j;

VCE(sat)@ICIlB=IO

D. 1

20
5.07.0

10

5070100

20

200

III

o

500

1.0

5.0

2.0

Ie. COLLECTOR CURRENT (mA)

FIGURE 3 - DC SAFE OPERATING AREA

i

200300500

l'\.

\

~ lOll

~:~:~~:!~:j~:~TC.250C
~ 01~~~.~~I~~S'~"~'d~'~~~k~d'~·'~"f;m:"~d~~~~~~

~z'

I

:::: 0.05

Applicable To 8VCEO

,

""

/'

200

~

O.2-TJ=150oC

",'02

100

if

0'

8

50

~300

'"

2.0

I~1"D~"!III
_

2D

FIGURE 4 - CURRENT -GAIN-BANDWIDTH PRODUCT

5.D~EEEm~alm

'"

10

Ic, COLLECTOR CURRENT(mA)

"'"

O.Ol~~~~~~~~~~~~tt~i1~
2.0
5.0
10
20
50
100

O.no5,~
1.0

.f

VeE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

10

50
305.0 7.0

VCE-5.0Vdc
TJ=25 0e

"II
10

,

2D

5070100

200

500

Ie, COLLECTOR CURRENT (mA)

The data of Figure 3 is based on T J(pk) =150 0 C; TC is variable
dapending on conditions. At high case temperatures, thermal
limitations will reduce the _
that can be handled to values lass
than the limitations imposed by second breakdown,

There are two limitations on the power handling ability of a
transistor: junction temperature and second breakdown. Safe

operating area curves indicate Ie - Vee limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

.1090

MPS-U 10 (SILICON)

NPN SILICON
HIGH VOLTAGE
AMPLIFIER
TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR

· .. designed for high·voltage video and luminance output stages in
TV receivers.

•

High Collector·Emitter Breakdown Voltage BVCEO = 300 Vdc (Min) @ IC = 1.0 mAdc

•

Low Coliector·Emitter Saturation Voltage VCE(sat) =0.75 Vdc (Max) @ IC = 30 mAdc

•

Low Coliector·Base Capacitance Ccb = 3.0 pF (Max) @VCB = 20 Vdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEn

300

Vdc

Collector-Base Voltage

VCB

300

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

Collector Current - Continuous

Ir.

500

mAde

Total Power Dissipation

Po

1.0
8.0

mW/oC

Collector-Emitter Voltage

@

T A ;; 25°C

Derate above 25°C

Total power Dissipation @TC= 25°C
Derate above 25°C
Operating and Storage Ju nction Temperature Range

Watt

Po

10
80

Watts
mWJOC

TJ.Tstg

-55 to +150

°c

DIM

A
B

e

o
F

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

R8JC

12.5

°C/W

Thermal Resistance, Junction to Ambient

R8JA(1I

125

°CIW

(1) R8JA is measured with the device soldered into a typical printed circuit board.

G
H
J
K
L
N

n
R

MILLIMETERS
MIN
MAX

9.14
9.53
6.60
7.24
5.41
5.66
0.38
0.53
3.1
3.33
2.54 BSe
3.94 4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 BSe
2.39
2.69
1.14

1.40

CASE 152·02

1091

INCHES

MPS-U10 (continued)

ELECTRICAL CHARACTERISTICS (TA; 25 0 C unless otherwise noted)
Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 0)

BVCEO

300

-

Vde

Collector-Base Breakdown Voltage
(lC = 100 I'Ade, IE = 0)

BVCBO

300

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

6.0

-

Vde

Collector Cutoff Current
(VCB = 200 Vde, IE = 0)

ICBO

-

0.2

I'Ade

Emitter Cutoff Current
(VBE = 6.0 Vdc, IC = 0)

lEBO

-

0.1

I'Ade

25

-

Characteristics
OFF CHARACTERISTICS

(IE

= 100 I'Ade, IC = 0)

ON CHARACTERISTICS
DC Current Gain

-

hFE

= 1.0 mAde, VCE = 10 Vde)
(lC = 10 mAde, VCE = 10 Vde)
(lC = 30 mAde, VCE = 10 Vde)
(lc

40
40

-

VCE(sat)

-

0.75

Vde

VBE(on)

-

0.85

Vde

Current-Gain-Bandwidth Product (1)
(lC = 10 mAde, VCE = 20 Vde, f = 100 MHz)

1,-

60

-

MHz

Collector-Base Capacitance

Ceb

-

3.0

pF

Collector-Emitter Saturation Voltage

(lC

= 30 mAde, IB = 3.0 mAde)

Base-Emitter On Voltage
(lC = 30 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS

(VCB

= 20 Vde, IE = 0, f = 1.0 MHz)

(1 )Pulse Test: Pulse Width ~300 IlS, Duty Cycle~ 2%.

FIGURE 1 -DC SAFE OPERATING AFlEA
600
500
400

,

........

""

30 0

"-

0

""

1'"

'I'-

0

........

The Safe Operating Area Curves indicate Ie-VeE limits below

1\

which the device will not enter second breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power·temperature derating must be observed for both steady state and pulse power conditions.

==:
-

Second Breakdown limited
Bonding Wire limited
- - - - Thermal limitations TC 25 0 C

I

o
30
15

20

I

I

I

" I'

30
50
70
100
150 200
VCE, COllECTO R·EMITTER VOLTAGE (VOLTS)

\.
~
300

1092

MPS-U10

(continued)

FIGURE 2-DCCURRENTGAIN

200

---

.....-

~
~

B

0

'-'

o

-

T}=+~ I----I--I -

z
;:;: 100

'"

-

I

VCE -10 Vdc

~
0
20
1.0

.J---

I----

~

I----

25 0 C

I

.L--

-sr c

-

-..........

I---

1'..~l
"-

'\.

\

f\

I

I

\

3.0

2.0

"-

5.0

7.0

10

30

20

70

50

100

IC, COLLECTOR CURRENTlmAI

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 3 - CAPACITANCES

;:; 10 0

100

:r

~ 80

t;

0

=>

Cob

~

-S 20

~
:r

r---

t
~

w

'-'
Z

ot-

;:: 1
U

;;:
~

z

5. 0

~

U

1. 0
0.2

0/

1.0

V

TJ = 25 0 C

20

2.0
5.0
10
20
VR, REVERSE VOLTAGE IVOLTSI

50

100

'"'"T"

~=>

r0.5

V

>'-

ccb' t--.

.0

V

40

~ 3
I

'-'

oil 0

1.0

200

2.0

5.0

TJ = 25 0 C

0.8

~
0

2:

0.6

0

I

VBE@VCE = 10 V

w

'"'"
!:;

I

0.4

J

>
>0.2

j...--

VCEI..ti@ ICIIB = 10

II

o
1.0

10

20

IC, COLLECTOR CURRENT ImAI

FIGURE 5 - "ON" VOLTAGES

1.0

1-...

J.,..

0

2.0

3.0

5.0

10

20

IC, COLLECTOR CURRENT ImAI

1093

30

50

100

50

100

MPS-U10

(continued)

APPLICATIONS INFORMATION
The MPS-Ul0 is primarily designed for use in the R, G,and B output

stages of color television receivers and with a high BVCEO, it can
supply the video amplitude requirements of any known system.

The low feedback capacitance provides good video bandwidth with
modest drive current requirements. Typical drive is from an

emitter-follower with a 4.7 k emitter·resistor operated from a
20-Volt supply. It will, therefore, be operable directly from a
number of available chroma demodulators. The low output capac-

itance of this device adds little to the total load capacitance, allowing improved bandwidth 19f a given collector load resistor. Two
typical applications for the MPS-U10 are shown in Figures 6 and 7.
Device dissipation will reach approximately 1.6 Watts under

dissipator of 40.5 0 CIW, or lower. will be required. A black anodized 0.020" thick aluminum plate measuring 1" x 2" can be folded
into a channel shape and formed with "feet" to snap into a printed
circuit panel for support. This will provide the safety factor.
Used as a color difference output. where drive and bandwidth
requirements are less severe, the MPS-U10 can be operated with
27 k ohm load resistors (worst-case dissipation would then be only
0.6 Watts). The device can, therefore, be operated as a colordifference output without any heat radiator in ambient temperatures
to 150-0.6 (125) = 750 C.
In addition the safe operating area of the MPS-U1O will fill the

requirements of the luminance output function with a total
equivalent load of 5.0 kilohms. Worst-case dissipation can reach 3

worst-case signal conditions and some heat sinking is required. At
an operating ambient temperature of 650 C. a thermal resistance
R6JA=150-65/1.6 = 530 C/W will be required.

Watts, this requires a total R6JA of 150-65/3 = 28.4°C/W. This
28.4°C/W means a heat dissipator of 15.90CIW, (approximately 2"

The junction-to-

x 3" aluminum plate) will be required.

case thermal resistance,R6Jc,of the device is 12.50 C/W, thus a heat

FIGURE 6 - MPS-Ul0AS RGB OUTPUT WITH RGB INPUT

+250Vdc

0----......---....--,

, . - - - - - , 9 GREEN

f-o---,---t--{

MC1326

11 REO

OEJ~~~~:rOR H:.=~--.,..---+--+--L
13 BLUE

47k

47k

FIGURE 7 - MPS-Ul0AS RGB OUTPUT, MATRIXING COLOR
DIFFERENCE AND LUMINANCE INPUTS

1 G-Y
4.1k

MC1328
CHROMA
DEMODULATOR

2 R-Y
4.7k
4 B-Y

47.

1094

MPS-U31

(SILICON)

NPN SILICON ANNULAR

RF TRANSISTOR

3.SW - 27 MHz
RF POWER OUTPUT
TRANSISTOR

· .. designed for use in Citizen· Band and other high·frequencv com·
munications equipment operating to 30 MHz. Higher breakdown
voltages allow a high percentage of up·modulation in AM circuits.
This device is designed to be used with the MPS8000 driver and the
MPS8001 RF oscillator.
•

Output Power = 3.5 W (Min)

•

Power Gain = 11.5 dB (Min)

•

High Coliector·Emitter Breakdown VoltageBVCES;;' 65 Vdc

•

DC Current Gain Linear to 500 mAdc

@

NPN SILICON

VCC = 13.6 Vdc

F

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation @ T A

= 2SoC

Symbol

Value

Unit

VCES

65

Vdc

VEe

3.0

Vdc

IC

500

mAde

Po

1.0
8.0

mW(OC

Po

10
80

Watt
mW/oC

TJ,Tstg

-55 to +150

Symbol

Ma.

Unit

R8JA

12.5

°CIW

R8JA(11

125

°CIW

Derate above 25°C
Total Power Dissipation@ TC "" 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

Watt

o

--lI-J

STYLE 1:
PIN 1. EMITTER
2. BASE
3. CO LLECTO R

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Thermal Resistance. Junction to Ambient

A

D

(1) R8JA is measured with the device soldered into a typical printed circuit board.

G
H

J
K
L
N
Q

R
CASE 152·02

1095

MPS-U31 (continued)

ElECTR ICAl CHARACTERISTICS

I

(T A

= 25°C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lc = 150 mAde, VBE = 0)

BVCES

65

-

-

Vdc

Emitter-Base Breakdown Voltage

BVEBO

3.0

-

-

Vde

ICBO

-

-

0.01

mAde

Common-Emitter Amplifier Power Gain
(Pout = 3.5 W, VCC = 13.6 Vdc, f = 27 MHz)

GpE

11.5

-

-

dB

Outpu t Power
(Pin = 350 mW, VCC

Pout

3.5

-

-

Watts

11

-

85

-

%

-

-

85

-

%

Characteristic
OFF CHARACTERISTICS

(IE

= 1.0 mAde, IC = 0)

Collector Cutoff Cllrrent
(VCB = 50 Vdc, IE = 0)
ON CHARACTERISTICS
DC Current Gain (2)
(IC = 100 mAde, VCE = 10 Vdc)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12 Vdc, IE

= 0, f = 1.0 MHz)

FUNCTIONAL TEST (Figure 1)

= 13.6 Vdc, f = 27

Collector Efficiency (3)
(Pout = 3.5 W, VCC = 13.6 Vdc, f

MHz)

= 27 MHz)

Percentage Up-Modulation (4)
(f = 27 MHz)

(1) Pulsed thru 0 25 mH Indicator.
(2) Pulse Test: Pulse Width ";;300 p.s,

Duty Cycle";; 2.0%.
(3) 11 = AF Pout • 100
(VCC) (lC)

(4)

Percentage Up-Modulation is measured in the test circuit

(Figure 1) by setting the Carrier Power (Pc) to 3.5 Watts with
VCC = 13.6 Vde and noting tho power input. Then the Peak
Envelope Power (PEP) is noted after doubling the original power
input to simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the Vee to 25 Vdc (to simulate the

modulating voltage). Percentage Up-Modulation is then determined
by the relation:

Percentage Up-Modulation

=

EP
[( PpC )

1/2 -1 ] .,00

FIGURE 1 - 27 MHz TEST CIRCUIT
r - - -......-----1~---<) ~i~ Vdc

CI, C2
C3, C4
C5
C6
RFC1

9.0·180 pF ARCa 463 or Equivalent
5.0·80 pF ARCO 462 or Equivalent
O.02J.1F Ceramic DISC
0.1 /-IF Ceramic DISC
4 Turns #30 Enameled Wire Wound on
Ferroxcube Bead Type 56-590·65138

RFC2

26 Turns #22 Enameled Wire (2 Layers13 Turns Each Layer) ""'nner Diameter
0.22.H Molded Choi

'"'"
'"

~

~

25°C

:;;:

5.0

10

50

100

TJ·250C

Va Elsa')

0

0

..'"
w

I---

I

0

V- L-

J

Iclla • 10

V

VaE@VCE"10V

!::; O.4
1:1
>
>'

L-

-55°C

f-""

O.2
VCE'10V
VCEI...)@lc/la· 10

20
0.5

20

-

~
'"
B

FIGURE 2 - SMALL-SIGNAL CURRENT GAIN

10

300
200

F-" FTJ

r---...

125°C

1

W=5.0Vz

i"'-

25 0 C

2.0

~

1.0

"'~

0.5

~

VCE = 5.0 Vd-:TJ = 25°C
f=100MH,

'"
B

20

~

'-'

'"
~

~

-

--

5.0

~

10
7.0
5.0

-55~C

3.0
002

0.05

01

0.5

0.2

1.0

'"~

"

"

\\2.0

'"

0.2
O. 1

0.01

0.02

0.03

FIGURE 3 - "ON" VOLTAGES

5

J

C;

'""'
'"
o~

1. 5 f-

1.0

rBEli")@IC/IB =

I I

50~

_ --

.................

I I

i--

.s>-

..........

-

'"'"
i3

I I
0.03

10

~

-2.0

1/
0VB For VSE

-3.0

8

I I
0.05

-5.0

0.1

0.2

03

0.5

2.0

1.0

0.01

V

./

....... ~

-4.0

i-rEIi"'tt'i'WiO

0.02

0.5

U

e..
>

.....

O. 5 -

o

0.3

-10

VBE @VCE = 5.0 V

>
>'

02

J

f

I I

~

?

0

I

0.1

FIGURE 4 - TEMPERATURE COEFFICIENT

i-~ J25 b

2.0

0.05

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

2.

~,

-

002

t0.03

0.05

0.1

0.2

0.3

0.5

10

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

FIGURE 5 - DC SAFE OPERATING AREA

2.0

I'\.

"

'>-"

:>.

1.0

~

0.7

'"
B
'"'"

~8

~

"\

"-

0::

0.5

.'\

0.3

There are two limitations on the power handling ability of p
transistor: junction temperature and second breakdown. Safe
operating area curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must not

I-- r- TJ=150oC

0.2

1----

---J I

1--0.1
2.0

3.0

7.0

10

The data of Figure 5 is based on T J(pk) = 150°C; TC is variable
depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.

"-

BONDING WIRE LIMITATION
THERMAL LlMITATION@TC=25 0C
SiCOY BiEAiDIiN jlMITATliN
5.0

be subjected to greater dissipation than the curves indicate.

f~

20

30

40

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

1101

MPS·U45 (continued)

5-WATT AUDIO AMPLIFIER
+20 V
470 k

10.I~F

10.1~

1.8k
02

1.8M

04

INPUT

<>--:l

01

0.47
1000~F.

1.5 k

0.1~

8f!
3.3k

68

-=
0.47

03

3.0M
+

1.5 k

100~F

05
8.2k

01· MPS·A 13 (OARLINGTON)
02· MPS·A70
03· MPS·A20
04· MPS·U45
{COMPLEMENTARY
as· MPS·U95
OARLINGTONS

1102

MPS-U 51 (SILICON)
MPS-U51A

PNP SILICON ANNULAR TRANSISTORS
PNP SILICON
AUDIO TRANSISTORS

· .. designed for complementary symmetry audio circuits to 5 Watts
output.
•

Excellent Current Gain Linearity - 1.0 mAdc to 1.0 Adc

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc

• Complements to NPN MPS·U01 and MPS·U01A
•

Uniwatt Package for Excellent Thermal Properties 1.0 Watt@TA = 250 C

F

MAXIMUM RATINGS
Rating

Symbol

MPS·U51

MPS·U51A

VCEO

30

40

Vdc

Collector-Base Voltage

VCB

40

50

Vdc

Emitter-Base Voltage

Collector-Emitter Voltage

Unit

5.0

IC

2.0

Adc

Total Device Dissipation@TA "" 2SoC
Derate above 2SoC

PDIII

Watt

mW/oC

Total Device Dissipation @TC = 2SoC

PD/tl

1.0
8.0
10
BO

mW/oC

-55 to +150

°c

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ.Tst~1I.

Symbol

Thermal Resistance, Junction to Case

R8JC

Thermal Resistance, Junction to Ambient

R8JA 111.

I
I

D

Watts

THERMAL CHARACTERISTICS
Characteristic

J 2

Vdc

VEB

Collector Current - Continuous

Max

I

12.5

I
I

125

Unit

°CIW
°CIW

(1) R6JA is measured with the device soldered into a typical printed circuit board.

..JI--J

STYLE I:
PIN I. EMITIER
Z. BASE
3. COLLECTOR
MILLIMETERS
DIM MIN
MAX

A
B
C
D

F
G
H

J
K
L

N
R

9.14 9.53
6.60 7.24
5.41
5.66
0.38
0.53
1
33
2.54BSC
3.94 4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 SSC
2.39 2.69
1.14 1.40

INCHES
MIN
MAX

11.360
0.260
0.213
0.1

CASE 152·02
Unlwatt packages can be To-5 lead formed by adding -6 to the device title and tab formed for

flush mounting by adding -1 to the device title.

1103

MPS-U51,MPS-U51A (continued)
ELECTRICAL CHARACTERISTICS (TA = 2SoC unless otherwise noted)
Min

Max

30
40

-

40
50
S.O

-

MPS-USI

-

0.1

MPS-US1A

-

0.1

-

0.1

55

-

Characteristic

Symbol

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage
(lc

MPS-USI
MPS-U51A

Collector-Base Breakdown Voltage
(lC = 100 "Ade. IE = 0)

Vde

BVCBO
MPS-USI
MPS-US1A

Emitter-Base Breakdown Voltage
(IE

Vde

BVCEO

= 1.0 mAde.IB = 0)

BVEBO

Vde

= 100 "Ade. IC = 0)

Collector Cutoff Current
(VCB = 30 Vde. IE = 0)

(VCB = 40 Vde.IE

ICBO

= 0)

Emitter Cutoff Current

(VBE

"Ade

lEBO

= 3.0 Vde. IC =0)

"Ade

ON CHARACTERISTICS(l)

DC Current Gain

-

hFE

= 10 mAde. VCE = 1.0 Vde)
(lC = 100 mAde. VCE '" 1.0 Vde)
(lC = 1.0 Ade. VCE = 1.0Vde)
(lC

60
50

-

Collector-Emitter Saturation Voltage
(IC = 1.0 Ade. I B = 0.1 Ade)

VCE(sat)

-

0.7

Vdc

Base-Emitter On Voltage

VBE(on)

-

1.2

Vde

IT

SO

Cob

-

(lC

= 1.0 Ade. VCE = 1.0 Vde)

DYNAMIC CHARACTERISTICS

(;urrent-Gain Bandwidth Product (1)
(lC = SO mAde. VCE = 10 Vde. I = 20 MHz)

Output Capacitance
(VCB

= 10 Vde.IE = O. I = 100 kHz)

MHz
30

pF

(1)PulseTest: Pulse Width S.300,",5, Duty Cycle "f 2.0%.

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - "ON" VOLTAGES

500

1.0

300 z

'"

~0:

200

13

-

Q

100

'"

~
w

-r--r- -

~

'"

~

5 0.6
'"
~
Q

f---

-

50

100

200

VCE(satl@ICIIB=l!.,..-

-mr

o

500

1000

..ktl

.J-.+1'"

VBE@ VCE = 1.0 V

0.4

0.2

50
20

f---

..-r

>
>-

70

10

-

VBE(sat)@ICIIB"10_

0.8

TJ=25 0 C

;;:

I-

I III

J

-TJL5 C

~CEI= 1.0 JdC

10

20

IC. COLLECTOR CURRENT (rnA)

30

50

100

....

....

200

300

500

1000

IC. COLLECTOR CURRENT (mA)

FIGURE 3 - DC SAFE OPERATING AREA

2.0

ii::

.... ~

'"

1.0

~

0.7

~
I0:
:::J

I",

TJ =150D
C.

0:

Q

g

".....

0.5

'"

0.3

- - - - . Secondary Breakdown limited

- - - - - - Bonding Wire Limited
--'
- - - - Thermal Limitations @ TC=25 0C
8 0.2
-I 1
1 AP1PIi"lbl • iD ~VyEr

9

There are two limitations on the power handling ability of a transistor: junction temperature and second breakdown. Safe
operating area curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

"-

The data of Figure 3 is based on T J(pk)

........

I

0.1
2.0

II
3.0

5.0

10

20

30

= 15o"C;

TC is variable

depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by second. breakdown .

40

VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)

1104

MPS-U52 (SILICON)
PNP silicon annular amplifier transistor designed for
general-purpose amplifier and driver applications. Complement to NPN MPS-U02.

CASE 152
STYLE 1:

PIN 1. EMITTER
2. BASE
3. COLLECTOR

MAXIMUM RATINGS

COllector connected to tab

Rating
Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

1.5

Adc

Total Power Dissipation @ TA = 25°C

PD"'

1.0

Watt

8.0

mW/"C

Derate above 25'C
Total Power Dissipation @ TC = 25'C

P D f1l

Ope rating and Storage Junction
Temperature Range

Watts

10
80

Derate above 25°C

-55 to +150

mW/'C
·C

Symbol

Max

Unit

R8JC

12.5

T J' T stg"'

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junction to Case
Thermal ReSistance, Junction to Ambient

ELECTRICAL CHARACTERISTICS

125

R8JA "'
(T A

°C/W

°c/w

=2S'C unless olherwise noted)
Min

Max

40

-

60

-

-

100

50

-

(1<; = 150 mAdc, VCE = 10 Vdc)

50

300

(I C = 500 mAdc, VCE = 10 Vdc)

30

-

Symbol

Characteristic

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = 1. 0 mAde, IB = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC =l00/lAdc, IE = 0)

BV CBO
I CBO

Collector Cutoff Current
(VCB = 40 Vdc, IE = 0)

Vdc
Vdc
nAdc

ON CHARACTERISTICS (2)
DC Current Gain
(IC = 10 mAde, VCE = 10 Vdc)

hFE

-

Vdc

Collector-Emitter Saturation Voltage
(IC = 150 mAde, IB = 15 mAde)

VCE(sat)

-

0.4

Base-Emitter Saturation Voltage
(I C = 150 mAdc, IB = 15 mAdc)

VBE(sat)

-

1.3

Vdc

"

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(IC = 20 mAde, VCE = 20 Vdc, f = 100 MHz

iT

Output Capacitance
(V CB = 10 Vdc, IE = 0, f = 100 kHz)

Cob

150

-

-

24

pF

(1) R8JA is measured with device soldered into a typical printed circuit board
(2) Pulse Test: Pulse WidthS300 /ls, Duty CycleS2. 0%
Uniw8tf packages can be To-5 Iud formed by adding -6 to the deviee title and tab formed for

flush mounting by adding -1 to the device title.

1105

MHz

MPS-US2 (continued)

FIGURE 1 - DC CURRENT GAIN
300

TJ -125°C

.. -

-

200

-

-

01-

FIGURE 2 - "ON·' VOLTAGES
1.4

I

- r--.
-.....

H-

J

-

r--,

25 C

b

-55 0

TJ' 25°C

I1.2

~

I',

...

2: 0.8 I- VBE( ..,!@lelIB= 10

'"

to

~

r--.

0

-

1.0

0

0.6 F

VBE ° nl:~VCe=

lov

l-

0

>

\
~

-VCe=I.0V

01-

1-;-;-;-;7"VCE~10~

IIIIII

30
2.0

5.0

10

,,: 0.4

I

20
50
100
200
IC, COLLECTOR CURRENT (mA)

5DD

L

0.2

~

I- t-VCE .. @lelIB=10

o2.0

1000 2000

FIGURE 3 - COLLECTOR SATURATION REGION
0;

5.0

10
20
50
100
200
IC, COLLECTOR CURRENT (rnA)

1DOD 2000

500

FIGURE.4 - DC SAFE OPERATING AREA
2. 0

1.0

TJ = 2

':;

1',

0

2: O.8

'"to

0

<[

':;
0
>

IC = 1 rnA 50mA 150 ...

O. 6

mA

'"

10

7

mA

I:'"

1\

iii o.4

'"

:::j

O.2

0
0.05 0.1 0.2

0.5 1.0

2.0

5.0

10

20

50

100 200

O. 12.0

500

IB, BASE CURRENT (mAl

g

f

FIGURE 6 - CAPACITANCE

II1II

TJ = 250C

t- t-t100

.... ~ I-"""

z
<1100

r--......

/'

Cib

0

I'

v

~

'"

;i!i

01--

,/

t-

O

~
z

~

0

Cob

~ 70

a'"

.i

50
2.0

40

200

VCE=20V
300 I-- I-- TJ=25oC
f= 100 MHz

~ 200
o

\

4.0
6.0
B.O 10
20
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 5 - CURRENT-GAIN BANDWIDTH PRODUCT
"" 500

t;

~

J

ul

"~

~

I

8
>'"'

~

TJ = 150°C
- - - BONDING WIRE LIMIT
3/-- _ _ _ THERMALLIMIHHC=250C
- - SECOND BREAKDOWN LIMIT
2

I--

0

~

.:-.

5

3.0

5.0 7.0 10
20
30
50
IC, COLLECTOR CIIRRENT (mA)

70

100

0

200

1106

r-- 'r---.
0.1

0.2

0.5
1.0
2.0
10
5.0
VR, REVERSE VOLTAGE (VOLTS)

20

50

100

MPS-US S(SILICON)
MPS-US6

PNP SILICON ANNULAR
AMPLIFIER TRANSISTORS

PNPSILICON
AMPLIFIER TRANSISTORS

· .. designed for general-purpose, high-voltage amplifier and driver
applications.
•

High Collector-Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAdc - MPS-U55
80 Vdc (Min) @ IC = 1.0 mAdc - MPS-U56

•

High Power Dissipation - Po = 10 W @ TC = 25 0 C

•

Complements to NPN MPS-U05 and MPS-U06

MAXIMUM RATINGS
Rati

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Power Dissipation @ T A ,., 25°C
Dorate ebove 250 C
Total Power Dissipation
Dora.. above 250 C

@

T C '" 25°C

Operating and Storage Junction
Temperature Range

Svmbol

MPS-U55

MPS-U56

Unit

VCEO
V

60

80

Vdc

60

80

Vdc

VEB

4.0

Vdc

IC

2.0

Adc

Po

1.0
8.0

Watt
mW/oC

Po

10
80

TJ,Tstg

-55 to +150

Watts
mW/oC
DC

3.
0

STYLE I
PIN 1. EMITTER
2 BASE
3. COLLECTOR

THERMAL CHARACTERISTICS
S mbol

Max

AeJC

12.5

Unit

INCHES
MIN MA

Thermal Resistance, Junction to Ambient
Thermal Resistance. Junction to Case

0.31
0.285

~

0.213

0.223

1

(1) R6JA is measured with the device soldered into a typical printed circuit board.

125
11
D.l00asc
0.155 0.185
0.014 0.016
0.415 0.500
D.9B5

1.005

G.200BSC

0.0114

0.1011

0.045

O.1Ii5

Collector ConnacMd
to Tab

CASE 152-02

1107

MPS-U55, MPS-U56 (continued)

ELECTRICAL CHARACTERISTICS (T A = 250C unless otherwise noted)

I

I

Ch_1stIc

OFF CHARACTERISTICS
CoII_-Emltter Breakdown Voltage (1)
(lc = 1.0 mAde. lB· 0)

Symbal

I

Typ

60

-

-

4.0

-

-

-

-

-

-

100
100

BO
50

160
130
BO

-

BVceo
MPS-U55
MPS-U56

80

Emitter-Base Breakdown Voltage
(IE =100"Ade. IC· 0)

BVEBO

Collector Cutoff Curr.nt
(VCB· 40 Vde. IE = 0)
(VCB = 60 Vde. IE • 0)

Min

ICBO
MPS-U55
MPS-U56

ON CHARACTERISTICS
DC Currant G.in (1)
(lC· 50 mAde. VCE = 1.0 Vdc)
(lC = 250 mAde. VCE ·'.0 Vdc)
(lC =500 mAde. VCE = 1.0 Vdc)
Collector-Emitter Saturation Voltage( 1)
(lC = 250 mAde. IB = 10 mAde)
(lC =250 mAde. IB = 26 mAde)

Unit

Vde

nAde

hFE

-

-

Vdc

VCE(sat)

B.....Emitter On Voltage (1)
(lC = 250 mAde. VCE - 5.0 Vde)

Vde

0.22
0.15

0.5

VBE(on)

-

0.7B

1.2

Vde

IT

50

100

-

MHz

Cob

-

10

15

pF

-

SMALL-SIGNAL CHARACTERISTICS
Currant-Gain-B.ndwidth Product (1)
(lC = 250 mAde. VCE = 5.0 Vde. f = 100 MHz)
Output Capacitance
(VCB = 10 Vde. IE = O. f = 100 kHz)
(1 )Pulse Test: Pulse W,dth ';;300 "so Duty Cvele ';;2.0%.

FIGURE 1 - DC CURRENT GAIN
300

FIGURE 2 - "ON" VOLTAGES

•t---fJ.J5,J

lM~II.'Vd'
o
TJ"25 C

200

I IIIII
VBEi." ~ ,~,J JIJ

8

...... f'.-

_f-"'"

VBE(onl &1 VeE = 5.0VdCt--

.6

..

•

•
•5.'

~

~

1

~

VCE(sat)"CfIB"'10

3

10

20

50
100
Ie. COLLECTOR CURRENT (mAl

0

200

I..

500

FIGURE 3 - ACTIVE-REGION SAFE
OPERATING AREA

2.'

10

50

20

50

20.

100

5

00

Ie. COLLECTOR CURRENT (mAl

FIGURE 4 - CURRENT -GAIN-BANDWIDTH PRODUCT

......--

t....

"

•
0

VCE"S.OVdc
TJ=25 DC

10
VC£, COLLECTOII-EMITTEII VOLTAGE (VOLTSI

There are two limitations on the power handling ability of a
van.istor: junction temperature and second breakdown. Saf.
operating area eurves indicate IC - VCE limits of the transistor that
must be obsaMId for reliable operation; i.••• the transistor must
not be subjected to greater dissipation than the eurves indicate.

20

50

100

200

500

Ie. COLLECTOR CURRENT (mA)

The date of Figure 3 is based on TJ(pk) = 1SOOC; TC is variabl.
depending on conditions. At high case temperatures. thermal
limitetions wili reduce the power that can be handled to values I_
than the limitations imposed by second breakdown.
(See AN-415A)

1108.

MPS-U57 (SILICON)

AMPLIFIER TRANSISTOR

PNP SILICON ANNULAR
AMPLIFIER TRANSISTOR

PNPSILICON

· .. designed for general-purpose, high-voltage amplifier and driver
applications.

•

High Collector-Emitter Breakdown Voltage BVCEO = 100 Vde (Min) @ IC = 1.0 mAde

•

High Power Dissipation - Po = 10 W@ TC = 25 0 C

•

Complement to NPN MPS-U07
F

MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage

Svmbol

Value

Unit

VCEO

100

Vdc
Vdc

Collector·Base Voltage

VCB

100

Emitter·Base Voltage

VEB

4.0

Vdc

IC

2.0

Adc

2SoC

PD

1.0
8.0

Watt
mW/oC

Total Power Dissipation @ T C = 2SoC
Derate above 2SoC

PD

10
80

Watt
mW/oC

TJ,Tstg

-55 to +150

°c

Collector Current

Continuous

Total Power Dissipation
Derate above 25°C

@ TA -

Operating and Storage Junction
Temperature Range

D

STYLE I:
PIN I. EMITTER
2. BASE
3. COLLECTOR

DIM

MILLIMETERS
MIN
MAX
9.14
6.60
5.41
0.38

INCHES
MIN
MAX
0.360
0.260
0.213
0.015

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, JUnction to Case

R8JC

12.5

°C/W

Thermal Resistance, Junction to Ambient

R8JA!11

125

°C/W

(1) RSJA is measured with the device soldered into a typical printed circuit board.

CASE 152-02

1109

MPS-U57 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

I

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage (1)
(lC = 1.0 mAde,lB = 0)

BVCEO

100

-

-

Vde

Emitter·Base Breakdown Voltage
= 100 I'Ade, IE = 0)

BVEBO

4.0

-

-

Vde

ICBO

-

-

100

nAdc

60
30

-

140
65
30

-

0.24
0.15

lie

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
ON CHARACTERISTICS (1)

DC Current Gain

-

hFE

(lC = 50 mAde, VCE = 1.0 Vde)
(lC = 250 mAde, VCE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)

Collector-Emitter Saturation Voltage
(lc = 250 mAde, I B = 10 mAde)
(lC = 250 mAde,lB = 2? mAde)

VCE(sat)

Base·Emitter On Voltage
(lC = 250 mAde, VCE = 5.0 Vde)

VBE(on)

-

0.7B

fr

50

100

Cob

-

10

-

-

Vde
0.5

1.2

Vde

-

MHz

SMALL-SIGNAL CHARACTERISTICS
Current·Gain-Bandwidth Product (1)
(lC = 200 mAde, VCE = 5.0 Vde, f = 100 MHz)

Output Capacitance
(VCB = 10 Vde, IE = 0, f

= 100 kHz)

15

pF

(1) Pulse Test: Pulse Width ... 300 1", Duty Cycle ... 2.0%.
FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
2DO

0

o. 9t-;J.~.cl

~

0

~
~

0

I

1111

y

vJEll,@ l'cJe~ Jo'

o.8
o.7
o.6

W

fi-rrt

VBE(onltD VeE" 5.0 Vdc

; :•
5

0

'\

1111
20
5.0 7.0 10

-> o.3

1\

vee'" T.OVdc
TJ=250C

0

o.2

5070 toO

2DO

0
1.0

500

2.0

Ie, COLLECTOR CURRENT tmAl

FIGURE 3 - DC SAFE OPERATING AREA

i

300

g

200

.

liJ-l.U

g

~

- -

~eco~d ~~k~!.!n

2.0

10

100

200300500

~

......

!

limited
BondingWireUmited
Thermll Limitatlons@TC=2S 0C
Applicable To BVCEO

I 11I111

I

I

50

~ TOO

TJ= ISOoc

2
0.005
\.0

J...----:

IE

.5

.1

20

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

0

.2

I

Ie. COLLECTOR CURRENT (mA)

5.0

0

VCE(satl@ICIlB"10 V

.

I

20

~ 70

I
20

VeE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

'"

IDO

Thera ara two limitations on the power handling ability of a
transistor: junction temporature and second breakdown. Safe
operating area curves indicate IC - VCE limits of the transistor that'
must be observed for reliable operation; i.e., the transistor must
not be subjacted to graater diSSipation than the curves indicate.

;

50

13
,t;.

0
3 5.0 7.0

Vce-S.OVdc

l'i'il"C
10

20

50

70 100

200

500

IC. COLLECTOR CURR£NT (mA)

The data of Figure 3 is based onTJ(pk) =150 0 C; TC is variable
depending on conditions. At high case temporaturas, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed by secondbraakdown,

1110

MPS-U60 (SILICON)

PNP SILICON ANNULAR TRANSISTOR
PNPSILICON
HIGH VOLTAGE
TRANSISTOR

. designed for general·purpose applications requiring high break·
down voltages, low saturation voltages and low capacitance.
• Complement to NPN Type MPS·Ul0

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VCEO

300

Vdo

Collector-Base Voltage

VCB

300

Vdo

Emitter-Base Voltage

VEB

5.0

Vdo

Collector Current - Continuous

Ie

500

mAde

Total Power Disslpatlon@TA=25 0 c

Po

10
B.O

mWf'C

Po

10

eo

Watu
mWflC

TJ,T stg

-55to+150

°e

Collector·Emltter Voltage

Derate above 25°C
Total Power Dlsslpatlon@Tc=250C

Derate above 25°C
Operating and Storage Junction

Watt

Temperature Range

THERMAL CHARACTERISTICS

F

Characteristic

Thermal ReSistance, Junction to Case
Thermal Resistance, Junction to Ambient

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic

Svmbol

Max

Min

Unit

OFF CHARACTERISTICS
Collector Emitter Breakdown VoltBge,(2)
(Ie'" 1 0 mAde, IR = Ol

BVCEO

Collector-Base Breakdown Voltage
(Ie'" 100 j.lAde, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
(IE = 10 j.lAde, IC = 0)

BVEBO

Vdo

300
Vdo

300
Vdc

-ll--J

5.0

Collector Cutoff Current
(Vce = 200Vdc,IE =0)

ICBO

Emitter Cutoff Current
(VBE = 3_0 Vde, Ie = 0)

lEBO

j.lAde

0.2
j.lAde

0.1

STYLE 1:
PIN I. EMITTER
2. BASE
3. COLLECTOR

ON CHARACTERISTICS
DC Current Gain (2)
(Ie" 1 0 mAde, VeE = 10 Vdcl

-FE

25
30

IIc = 10mAdc, VCE = 10Vdc)

30

(Ie = 30 mAde, VCE = 10 Vdel
Collector-Emitter Saturation Voltage
tiC = 20 mAde, IS ""2_0mAdcl

VCE(satl

Base-EmitterSaturation Voltage
(lC =20mAdc, IS = 2,OmAdcl

VSE(sat)

Vdc
0_75

0.9

Vdo

DVNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(lc .. 10 mAde, VCE = 20 Vdc, f = 100 MHz)
Collector-Base Capacitance
(Vee "20Vde,IE =0. f= 1.0 MHzl

(1) R6JA is measured with the device soldered into a typical printed circuit board.
(2) Pulse Test: Pulse Width .. 300 1'5, Duty Cycle .. 2.0%.

1111

CASE 152·02

MPS-U60 (continued)

FIGURE 1-DC CURRENT GAIN
15 0

V~E

TJ=+1250 C

\0

V~c

100

z

;;:
to
I-

~_

"-

_ + 2 5 0e

70

~

50 ~-550e

"

~

.......
~

G
...,

"""" r'\

30

~

'\

~

"

20

'\

15
1.0

2.0

5.0

3.0

10

7.0

20

30

50

80

100

Ie. eOLLEeTO R CU RRENT (mAl

FIGURE 2-CAPACITANCES

FIGURE 3 -CURRENT-GAIN-BANDWIDTH PRODUCT

100

"

TJ C 25 0e

g~

50
Cib

~
w
...,

20

Z

'"

I-

<:;
~

r-t-

~

6"
~

r--....

10

Z

:;

100

I- TJ = 25·C
80 I- VCE = 20 Vdc

"

60

\

/'

40

V

30

I
Z

;'l 5.0
...,-

-

2.0

1.0
0.1

:;;'

to

20

Cfb l

0.2

0.5

1.0

2.0

•. 0

10

20

.0

100 200

5.0

2.0

.00 1000

VR. REVERSE VOLTAGE (VOLTSI

g
~
w

-

JI

O.8

-

r-

FIGURE 5 - DC SAFE OPERATING AREA
500

II

TJ = 25.e

VB~ @JeE I= 10 ~

;;:
oS

I-~

0.6

to

o

1.0

100

"'"

0

1-1-""

II II
10

20

I\.

...,

"~

5.0

....

200

~::>

~...,

2.0

'..,

Z

~ D.4
>-

VeE(satl Ii' ICIIB = 10

300

I-

~

D. 2

100

50

20

IC. COLLECTOR CURRENT (mAl

FIGURE 4 - "ON" VOLTAGES

1. 0

10

50

TJ = 150·C
0
- - - SECOND BREAKDOWN LIMITED
0 - BONDING WIRE LIMITED
- - - THERMALLYLIMITEO@TC=25·C
0

5.0

100

20

30

40

60

80

100

r-...

200

VCE.COLLECTOR-EMITTER VOLTAGE (VOL TSI

IC. COLLECTOR CURRENT (mAl

1112

300

400

MPS-U95 (SILICON)

PNPSILICON
DARLINGTON
TRANSISTOR

PNP SILICON DARLINGTON
AMPLIFIER TRANSISTOR
· .. designed for ampl ifier and driver applications.
• High DC Current Gain hFE = 25,000 (Min) @ IC = 200 mAdc
15,000 (Min) @ IC = 500 mAdc
• Collector-Emitter Breakdown Voltage BVCES = 40 Vdc (Min) @ IC = 100/lAdc
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.5 Vdc @ IC = 1.0 Adc

• Monolithic Construction for High Reliability
3

• Complement to NPN MPS-U45

,~

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCES

40

Vdc

Collector-Base Voltage

VCB

50

Vdc

Emitter-Base Voltage

VEB

10

Vdc

Collector Current -Continuous

IC

2.0

Adc

Total Power Dissipation @ TA - 25°C
Derate above 25°C

Po

1.0
8.0

Watt
mW/oC

Total Power Dissipation@ TC = 2SoC
Derate above 2SoC

Po

10
80

mW/oC

TJ,TsIg

-551o +150

°c

Symbol

Max

Unit

Thermal Resistance, Junction to Ambient

R8JA

125

°CIW

Thermal Resistance. Junction to Case

"'8JC (1)

12.5

°C/W

Operating and Storage Junction

Watts

o

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

STYlE 1.
PIN 1. EMITTER
2. BASE
3. COLLECTOR

DIM

MILLIMETERS
MIN
MAX

9.53

INCHES
MIN
MA

Q.360

0.375

0.260 0.285
0.213 0.223
0.01
0.0
12
0.1 1
0.1008SC

0.155

0.165

0.014 0.016
0.475 0.5
0.985 1.005
0.200BSC
0.094 0.1116
0.045 0.055

(1) A8JA is measured with the device soldered Into a typical printed circuit board.

1113

CASE 162-02

MPS-U95 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Olaracteri5tic

Symbol

Min

Typ

Max

Unit

Collector-Emitter Breakdown Voltage
(lC = lOOI'Ade, VBE =1»)

BVCES

40

-

-

Vde

Collector-Base Breakdown Voltage
(lC = 100 I'Ade, IE = 0)

BVCBO

50

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10 I'Ade, IC = 0)

BVEBO

10

-

-

Vde

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)

ICBO

-

-

100

nAdc

Emitter Cutoff Current
(VEB = 8,0 Vde, IC = 0)

lEBO

-

-

100

nAde

= 5.0 Vde)

25,000

150,000

(lC = 500 mAde, VCE = 5.0 Vde)

15,000

43.000
41,000

(lC = 1.0 Ade, VCE = 5.0 Vde)

4,000

35,000

-

OFF CHARACTERISTICS

ON CHARACTERISTICS(l)
DC Current Gain

(lC

= 200 mAde, VCE

-

hFE

-

Collector-Emitter Saturation Voltage
(lc = 1.0 Ade, IB = 2.0 mAde)

VCE(sat)

-

1.0

1.5

Vde

Base-Emitter Saturation Voltage
(lC = 1.0 Ade, I B = 2.0 mAde)

VBE(sat)

-

1.85

2.0

Vde

Base-Emitter On Voltage
(lC = 1.0 Ade, VCE = 5.0 Vde)

VBE(on)

-

1.7

2.0

Vde

Small..signal Current Gain (1)
(lC = 200 mAde, VCE = 5.0 Vde, I = 100 MHz)

Ihlel

0.5

1.6

-

-

Collector Base Capacitance
(Vca = 10 Vde, IE = 0, I = 1.0 MHz)

Ceb

-

2.5

12

pF

DYNAMIC CHARACTERISTICS

(l}Pulse Test: Pulse Width ~300 IJs, Duty Cycle ~2.0%.

Uniwatt darlington transistors can be used in any number of low power applications, such as relay drivers, motor control and as general
purpose amplifiers. As an audio amplifier these devices, when used as a complementary pair, can drive 3.5 watts into a 3.2 ohm speaker using
a 14 volt supply with less than one per cent distortion. Because of the high gain the base drive requirement is as low as 1 mA in this application.
They are also useful as power drivers for high current application such as voltage regulators.

1114

MPS-U95 (continued)

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - SMALL-8IGNAL CURRENT GAIN

10

150
ViE-lOV

z
;;: 5.0
'">-

~100 r-TJ= 125°C
;

70

;;:

=
a
u

c

F" r-2SoC

Ti

0

~
20

I

....

\

"\

'"

\.

i!i

~«

i

~

r-rr

15
0.02

~ 1.0

\

~
0.05

O. 5

o.2
O. 1
0.01

2.0

1.0

0.5

0.2

0.1

TJ = 25°C
f= 100 MHz

~

\.

§ 50

~

~ 2.0

I'\.

'"

~VCE=5.0Vdc

r----

0.02

0.D5

u

2.0

1.5

'"
~
c

1.0

~
w

0.5

1.0

+O.B
TJ = 25°C

o

0.2

FIGURE 4 - TEMPERATURE COEFFICIENT

FIGURE 3 - "ON" VOLTAGES

2.5

s

0.1

IC. COLLECTO RCU RRENT lAMP)

IC.COLLECTOR CURRENT lAMP)

.......-: t::::
VBE@W=S,~V

>'

~ -2.4

~ -3.2

11:

>- -4.0

'i

II

0.05

./
/'

::>

II

0
0.02

BVC FOR VCElsat)
-1.6

!;;:

VCElsat)@ICIIB=SOD
O. 5

ffi -0.8

~
8

./"

II

./
/'

0

U

VBElsa"@ IcllB = SOD

>

sa.
~

0.2

0.1

0.5

-4.B
0.02

2.0

1.0

0.05

---

'"

~VB~ORVrE
0.1

0.2

0.5

1.0

2.0

IC. COLLECTO RCURRENT lAMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 5 - DC SAFE OPERATING AREA

2.0

....

'\.

'"

;;;

~

1.0

>-

~ 0.7

=

i3

0.5

=
c
~ 0.3
c

~

0.2

There are two

operating area curv~ 5 indicate Ie-VeE limits of the transistor that
must be observed for reliable operation; i.e .• the transistor must not
be subjected to greater dissipation than the curves indicate.

.'\

~
r- ~ TJ=150oC

----

O. 1
2.0

I

I
3.0

The data of Figure 5 is based on T J(pk) = 15o"C; TC is variable
depending on conditions. At high case temperatures, thermal limi-

tations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.

"-

f - - - - BONDING WIRE LIMITATION

r-._ _

THERMAL lIMITATION@TC=2S0 C
SjCON1D BjEAjDiWIN ,IMITATliN
5.0

7.0

10

mitations on the power handling ability of a

transistor: junction temperature and second breakdown. Safe

20

3D

40

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

1115

MPS-U95 (continued)

5-WATT AUDIO AMPLIFIER
+20

v

470 k

1.8\

10.l P F

10.lpF
02

i.8M

04

INPUT~

01

0.47
1000 pF

1.5k

0.1 pF

8n
3.3 k

68

-=
0.47

03

3.0 M

+
100pF

1.5 k

os
8.2 k

ill· MPS·A13 (DARLINGTON)
02· MPS·A70
03· Mps·A20
04· MPS·U45 {COMPLEMENTARY
U5 . MPS·U95
DARLINGTONS

1116

MPT20 (SILICON)
Plastic silicon 3-layer bilateral triggers are two-terminal
devices that exhibit bi-directional negative resistance
switching characteristics. These economical, durable devices have been developed for use in thyristor triggering
circuits for lamp drivers and universal motor speed controls.

STYLE 3:
PIN 1. MAIN TERMINAL!
2. MAIN TERMINAL2

CASE 182
(Formerly CASE 29 B)

MAXIMUM RATINGS (TA = 2SOC unless otherwise noted)

Rating

Symbol

Peak Pulse Current
(30 /lS duration, 120 Hz
repetition rate)

1
pulse

Power Dissipation @ T A

= -40 to

Value

Unit
Amp

2.0
+25° C

PD

Derate above 25° C
Operating Junction Temperature RangE
Storage Temperature Range

300

mW

4.0

mWjOC

TJ

-40 to +100

°c

Tstlr

-40 to +150

°c

ELECTRICAL CHARACTERISTICS

(TA

=25 °C unless otherwise noted)

Plastic Trigger (MPT) devices have bi-directional characteristics and as such the terminal leads are interchangeable. For purposes of symbol clarification. the leads have arbitrarily been designated 1 and 2. A 12 designation
indicates that terminal 1 is positive with respect to terminal 2. vice versa for a 21 designation. (See Figure 1)

Characteristic

Symbol

Min

Typ

Max

Unit

Breakover (Switching) Voltage both directions

V(BR)12 & V(BR)21

16

20

24

Volt

Breakover (Switching) Current both directions

I(BR)12 & I(BR)21

-

35

100

/lAmp

Switchback (Delta) Voltage both directions
(1 12 =121 = 10 mAdc)
Peak Blocking Current both directions
Voltage Applied = 14 V

Volt

~V 12 & ~V 21

5.0

7.0

/lA

I(BL)12 & I(BL)21

1117

0.5

10

MPT20 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - VOLT-AMPERE CHARACTERISTICS

FIGURE 2 -INSTANTANEOUS "ON" VOLTAGE
u; 17

1(+)

I-

2:

lOrnA
'(BL)21

~

15

w

14

o 50 ns

I(BU1Z
lOrnA

~ 13

REVERSE

g
'"=>

500 ns lSTEADY STATE}

~

SYMBOL

-{>I
~ 0.8

r--.....

~

~ O. 7

o

<

o.5

-20

40

20

100

60

80

100

-40

-20

150 k

0

'">=

50

iii:

40

REJERiE

1'.:.'1'

I'r-.

0.3.F~

= RL'

LOAD
6.010900
WATTS

I,

'ADJUSTED FDR Ip

FOR;::;t-

0

-

117 V AC

0
0
0

0.05

0.1

""

80

L1Q-~~~~------------------~

Ip

90%
io%

20
40
60
TJ. JUNCTION TEMPERATURE (OC)

FIGURE 6 - CONTROL CIRCUIT

"~"'"

TJ = 250C

80

60

" '""'-

:> O. 6

FIGURE 5 - SWITCHING TIMES

0

-"

~ERSE

TJ. JUNCTION TEMPERATURE (OC)

~

2.0

121.h2 = 10 mA

~ 1.5

1.5

w

~

0.5
0.7
1.0
Ip. PEAK CURRENT (AMPERES)

2.0

l!;

:!w

J J

FIGURE 4 - NORMALIZED OUTPUT
VOLTAGE BEHAVIOR

2.0

~
::;

ffi

b::::::::::

~ 9.0

u:

~
g

--

1

> 7.0
0.2

!o

t-t--

500 ns

50ns

to

S

~

TJ= 25 0C

5,6

0.2 0.3
0.5
1.0
ip. PEAK CURRENT (AMPERES)

2.0

3.0

5.0

J
1118

MACI-4
TRIAC

5.0 kll

O.I.F

0.02.F

100

MPT28 (SILICON)
MPT32
Plastic silicon annular 3-layer bilateral triggers,
two-terminal devices which exhibit symmetrical negative resistance switching characteristics. These
economical, durable devices have been developed for
use in thyristor triggering circuits, signal switching and
detection circuits.
CASE 182
(Formerly CASE 29 B)
STYLE 3:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating

Symbol

Peak Pulse Current
(30 Ils duration, 120 Hz
repetition rate)

I

Value

Unit
Amp

pulse
2.0

Power Dissipation @TA = -40 to +25 C

PD

0

Derate above 25°C
Operating Junction Temperature Range

TJ

Storage Temperature Range

T

stg

300

mW

4.0

mW/oC

-40 to +100

°c

-40 to +150

°c

FIGURE 1 - VOLT AMPERE CHARACTERISTICS
I (+)

10 rnA

,I
,

,-

t:N 21

10 rnA

SYMBOL

-I
I (-)

1119

------t>KJ--

MPT28, 32 (continued)

ELECTRICAL CHARACTERISTICS

(TC = 25°C unless otherwise noted)

Symbol

Characteristic
Breakover (switching) Voltage - both directions
MPT28
MPT32

V(BR)12 & V(BR)21

Breakover (switching) Current - both directions

i(BR)12 & i(BR)21

Switchback (delta) Voltage - both directions
MPT28
MPT32

AV 12 & AV 21

Peak Blocking Current - both directions
Voltage Applied. 18 V

\BL)12 & i(BL)21

Breakover (switching) Voltage Temperature
Coefficient, TA = -40'>C to +100°C

Min

Typ

Max

24
28

28
32

32
36

-

20

50

7.0
7.0

10
10

-

-

0.5

10

-

0.03

-

Unit
Volt

/lAmp
Volt

JlA

%/'C

P.lastic trigger devices have symmetrical characteristics and as such the terminal leads are interchangeable.
For purposes of symbol clarification, the leads have arbitrarily been designated 1 and 2. A 12 designation indicates that
terminal! is positive with respect to terminal 2, vice versa for a 21 designation.

FIGURE 2 - TYPICAL CONTROL CIRCUIT
RL

L1Q-~~~-'

LOAD
6 to 900
WATTS

117 VAC
60 Hz

________________________~

150 kll
MACI-4
TRIAC

5.0 kll

0.1 JlF

0.01 /IF

L2O-______~------__4_------------~

1120

MPU131 (SILICON)
thru

MPU133

SILICON
PROGRAMMABLE UNIJUNCTION
TRANSISTORS
40 VOLTS
375mW

SILICON PROGRAMMABLE
UNIJUNCTION TRANSISTORS
designed to enable the engineer to "program" unijunction
characteristics such as RBB, 1), lV, and Ip by merely selecting two
resistor values. Application includes thyristor·trigger, oscillator, pulse
and timing circuits. The MPU131, MPU132 and MPU133 may also
be used in special thyristor applications due to the availability of an
anode gate. Supplied in an inexpensive TO·92 plastic package for
high·volume requirements, this package is readily adaptable for use in
automatic insertion equipment.

• Programmable - RBB, IV and Ip.
• Low On·State Voltage - 1.5 Volts Maximum@ IF = 50 rnA
• Low Gate to Anode Leakage Current - 5.0 nA Maximum
• High Peak Output Voltage - 11 Volts Typical
1),

• Low Offset Voltage -

0.35 Volt Typical (RG = 10 k ohms)

!

SEATING-.r-nBC
PLANE

-1
D-l:tJ-t1
~
L

nY~I~

CATHODE L
GATE
M
3.ANDDLV

PIN 1.
2.

MAXIMUM RATINGS
Rating
Power Dissipation
Derate Above 25°C
DC Forward Anode Current

Symbol

Value

Unit

PF
1I8JA

375
5.0

mW
mW/oC

IT

200
2.67

rnA
mA/oC

IG

±20

rnA

1.0
2.0

Amp
Amp

ITSM

5.0

Amp

VGKF

40

Volt

f-!t-!L
L
M

Derate Above 2SoC
DC Gate Current
Repetitive Peak Forward Current

ITRM

1001.1' Pul,e Width, 1.0% Duty Cycle
201.1' Pulse Width, 1.0% Duty CYcle
Non-Repetitive Peak Forward Current

101.1' Pulse Width

Gate to cathode Forward Voltage
Gate to Cathode Reverse Voltage

VGKR

5.0

Volt

Gate to Anode Reverse Voltage

VGAR

40

Volt

VAK

±40

Volt

TJ

-50 to +100

°c

T,tg

-65 to +150

DC

Anode to cathode Voltage
Operating Junction Temperature Range

Storage Temperature Range

1121

,

__

0

"

G

J

3

I

~ILLIMETERS

DIM
C
D
E

~

MIN
MAX
4.45U
4.700
0.407
0.482
5° NOM
1.390
2.420
12.
TP
0.076
0.330

pEl

CASE 29·01

INCHES
MIN
MAX
0.175
0.185
0.016
0.019
5° NOM
0.045
0.055
1.085
0.095
0.500
0.050 TP
0.003
0.013

MPU131, MPU132, MPU133 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Figure

Symbol

Min

Typ

Max

Unit

MPU131
MPU132
MPUI33
MPU131
MPU132
MPU133

2,9-14

Ip

-

1.25
0.19
0.08
4.0
1.20
0.70

2.0
0.30
0.15
5.0
2.0
1.0

,..A

MPU131
MPU132
MPU133

1

VT

0.2
0.2
0.2
0.2

0.70
0.50
0.40
0.35

1.6
0.6
0.6
0.6

Volts

1,4,5,

IV

-

18
18
270
270

50
25

-

-

1.0
30

5.0
75

-

5.0

50

Characteristic
Peak Current
(VS = 10 Vdc, RG = 1.0 Mnl

(VS

= 10 Vdc, RG = 10 k ohms)

Offset Voltage
(VS = 10 Vdc, RG
(VS

= 10 Vdc, RG = 10 k ohms)

Valley Current
(VS = 10 Vdc, RG
(VS

= 1.0 MO)

-

(All Types)

= 1.9 MU)

/loA

MPU131, 132
MPU133
MPU131
MPU132,133

= 10 Vdc, RG = 10 k ohms)

70
50

Gate to Anode Leakage Current
(VS = 40 Vdc, T A = 250 C, Cathode Open)
(VS = 40 Vdc, T A = 750 C, Cathode Open)

IGAO

Gate to Cathode Leakage Current

IGKS

= 40 Vdc, Anode to Cathode Shorted)
Forward Voltage (IF = 50 mA Peak)

-

nAdc

nAdc

(VS

Peak Output Voltage
(VB = 20 Vdc, Cc = 0.2 ,..F)
PU,lse Voltage Rise Time

(VB

1,6

VF

-

0.8

1.5

Volts

3,7

Vo

6.0

11

-

Volts

3

tr

-

40

80

ns

= 20 Vdc, Cc = 0.2 ,..F)
FIGURE 1 - ELECTRICAL CHARACTERIZATION
+VB
A

R2

~~~.,. -VS - Rl :\2 VB
Rl

lA - PROGRAMMABLE UNIJUNCTION
WITH "PROGRAM" RESISTORS
RiandR2

lB - EQUIVALENT TEST CIRCUIT FOR
FIGURE 1A USED FOR ELECTRICAL
CHARACTERISTICS TESTI NG
(ALSO SEE FIGURE 21 •

lC - ELECTRICAL CHARACTERISTICS

FIGURE.3 - Vo AND t, TEST CIRCUIT

FIGURE 2 - PEAK CURRENT (lp) TEST CIRCUIT

+VB
Ip(SENSE)

ADJUST

-=-

+V

100.V -to nA

VB

510 k

RG - R/2
Vs - VB/2

16 k

Cc

Vo

(See Figure 1)
SCOPE

20U
20

PUT
UNDER
TEST

1122

27k

MPU131, MPU132, MPU133

(continued)

TYPICAL VALLEY CURRENT BEHAVIOR

FIGURE 4 - EFFECT OF SUPPLY VOLTAGE

FIGURE 5 - EFFECT OF TEMPERATURE

1000

500

t - - - TA = 25 0 C

500

f:::: (SEE FIGURE 1)

RG=10kn=

:;:

~ 300

....

~

a
~
«

~

.3

~

200
100 k!l

100

30
20
10

-- -

5.0

I'--..

100

'"
a

50

«
>

20

-

t'-.

~
10

1.0Mn_

10

15

-25

FIGURE 6 - FORWARD VOLTAGE

w

+25

+50

+75

TA 25 0 C

~
0

2.0

~

r--

TA = 250C
(SEE FIGURE 3)

Cc = 0.2"F

20

/'

w

'"~

1.0

g

0.5

'"
«

:;

/,;r

>

~

0.2

~

0.1

""
~

0.05

~

:::>

/

""
«

~

~ 0,02

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

o
o

0.01

om

V

10

0

.j
5.0

.......::

IF. PEAK FORWARD CURRENT (AMPI

-/

f..--

!---

10

5.0

15

20

'~

'lL{'

RS2

ASS=Rl+R2

Al
Al"=~

SI

CIRCUIT SYMBO L

RT

R2

Cc

Bl
TYPICAL APPLICATION

EQUIVALENT CIACUIT

!dO

PRDGRAMMABLE UNIJUNCTION
A

t·
CIACUIT SYMBOL

E

A2

.

P

:
N

G

Al

RSs=Al+A2

".~
Cc

K
Bl
EQUlVALENT CIACUIT
WITH EXTEANAL ''PAOGRAM''
AESISTOAS Al and A2

1123

25

VS. SUPPLY VOLTAGE (VOLTSI

STANDARD UNIJUNCT1DN

P
N

- -

~

/

FIGURE 8 - STANDARD UNIJUNCTION
COMPARED TO PROGRAMMABLE UNIJUNCTION
S2

/"

./

15

0

....
:::>

~

+100

FIGURE 7 - PEAK OUTPUT VOLTAGE
25

o

~

__1.0Mt-

TA. AMBIENT TEMPERATURE (OCI

0

5.0 I

t'-.

VS=10VOLTS
-(SEE FIGURE 11

VS.SUPPLY VOLTAGE (VOLTSI

g

-100kn

5.0
-50

20

--!G = 10kn

.........

~

50

>

200

-

to-

300

TYPICAL APPLICATION

30

35

40

MPU131, MPU132, MPU133 (continued)

TYPICAL PEAK CURRENT BEHAVIOR
MPU131
FIGURE 9 - EFFECT OF SUPPLY VOLTAGE AND RG

FIGURE 10 - EFFECT OF TEMPERATURE AND RG
100

10

50

5.0
~

~

3. 0

~ 2.0

,.~

1.0

~

0.5

~

10

1

~

.......
....... ........

20

VS=llOVOLTS
(SEE FIGURE 2)

........

50
.

I=-----=.RG - 10 kn

~

~

l00kn
1.0Mn

O. 3
0.2

I

I

10

15

0.1
5.0

TA = 25 DC
(SEE FIGURE 21

1.0

100 kn

0.5

1.0Mn

0.2
O. 1
-50

20

........

./

RG -10kn

-

........

~

2.0

+25

-25

VS. SUPPLY VOLTAGE (VOLTSI

+50

+75

+100

TA.AMBIENT TEMPERATURE (DCI

MPU132
FIGURE 11 - EFFECT OF SUPPLY VOLTAGE AND RG

FIGURE 12 - EFFECT OF TEMPERATURE AND RG

10

30
20

5.0

....
~

i

TA = 25 DC
(SEE FIGURE 21 r - - -

2.0

"

~
~

5.0

....
z

~ 1.0

1.0
r--RG

""

10kn

~ 0.5

0.5

!f 0.2
100 k!:l

10

15

20

..........

........

l00kn /"

........

1.oMn

0.05
0.03
-50

1.0Mn

/",

r--RG=10kn

0.1

0.2
0.1
5.0

......

"'

~ 2.0

'"

~
""

VS=10VOLn:I~
(SEE FIGURE 21--"

10

j

+25

-25

+75

+50

+100

TA.AMBIENT TEMPERATURE (DC)

VS.SUPPLY VOLTAGE (VOLTS)

MPU133
FIGURE 13 - EFFECT OF SUPPLY VOLTAGE AND RG

FIGURE 14 - EFFECT OF TEMPERATURE AND RG

1.0

10

0.7
0.5

i....
~

50
RG - 10 kn

0.3

«

100kn

0.2

.... 1.0
~
~ o. 5

I.....

"~ o. 1
~ 0.01
~

0.05

B

~ 0.2

0.02

10

r-- RG = 10kn

15

.., .......

.......

.......

........

100-;;;;

........

1.0l n

l

........

0.02

I

0.01

r-..

0.0 5

TA - 25 DC
(SEE FIGURE 21 r - -

Vs = 10 VOLTS
(SEE FIGURE 2)

........

""
"'

~ O. 1

1.0Mn

0.03

5.0

2.0

3

20

VS.SUPPLY VOLTAGE (VOLTSI

0.0 1
-50

..........
-25

+25

+50

TA. AMBIENT TEMPERATURE (DCI

1124

........
+75

+100

MPU6027, MPU6028 (SILICON)

SILICON
PROGRAMMABLE UNIJUNCTION
TRANSISTORS

,

40 VOLTS
375 mW

SILICON PROGRAMMABLE
UNIJUNCTION TRANSISTORS

\

· .. designed to enable the engineer to "program" unijunction characteristics such as RBB, '7, lV, and Ip by merely selecting two resistor
values. Application includes thyristor-trigger, oscillator, pulse and
timing circuits. These devices may also be used in special thyristor
applications due to the availability of an anode gate. Supplied in an
inexpensive TO-92 plastic package for high-volume requirements, this
package is readily adaptable for use in automatic insertion equipment.

•

Programmable - RBB,1J, IV and Ip.

•

Low On-State Voltage - 1.5 VoltsMaximum@ IF = 50 mA

•

Low Gate to Anode Leakage Current - 10 nA Maximum

•

High Peak Output Voltage - 11 Volts TYPical

•

Low Offset Voltage - 0.35 Volt Typical (RG= 10 k ohms)

SEATINGJ~ ~
PLANE

~

STYLE 10:
PIN 1. CATHODE
2. GATE
3. ANODE

MAXIMUM RATINGS
Rating

Power Dissipatlon(11
Derate Above 25°C
DC Forward Anode Current(2)

Symbol

Value

Unit

PF

375
50

mW/oC

1/8JA

IT

Derate Above 25°C
DC Gate Current
Repetitive Peak Forward Current

Gate to Cathode Forward Voltage

mA

200
267

mA/DC

±50

mA

10
2.0

Amp
Amp

ITSM

50

Amp

VGKF

40

Volt

IG
ITRM

100 I-IS Pulse Width, 1.0% Duty Cycle
20 lAS Pulse Width, 1.0% Duty Cycle
Non-Repetitive Peak Forward Current
10 J,lS Pulse Width

mW

VGKR

-5.0

Gate to Anode Reverse Voltage

VGAR

40

Volt

VAK

±.40

Volt

TJ

-50 to +100

T stg

-55 to +150

°c
°c

Storage Temperature Range

L
N

P
Q

Volt

OperatIng Junction Temperature Range

B
C
D
~

Gate to Cathode Reverse Voltage

Anode to Cathode Voltage

DIM
A

1125

R
S

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

4.450
3.180
4_320
0.407
0.407
12.70
1.150

0.175
0.1 5
0.170
0.016
0.016

0.205
U.165
0.210
0.021
0.019

0.045

0.055
0.050

6.350
3.430
2.410
2.030

5.200
4.190
5.330
0.533
U.482
1.390
1.270
2.670
2.670

0.250
0.135
0.095
0.080

CASE 29-02
TO-92

0.105
0.105

MPU6027, MPU6028 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

~

10 Vdc, RG

Z

Symbol
Ip

Max

1,25
0.08

2.0
0.15

-

4.0
0.70

5.0
1.0

MPU6027
MPU6028

0.2
0.2

0.70
0.50

1.6
0.6

(Both Types)

0.2

0.35

0.6

10 k ohms)

-

MPU6027
MPU6028
1

Offset Voltage
(VS· 10 Vdc, RG· 1.0 MH)
(VS· 10 Vdc, RG· 10 k ohms)

1.4,5,

Valley Current
(VS

= 10 Vdc,

IVS

= 10 Vdc, RG = 10 k ohms)

RG

Min

MPU6027
MPU6028

(VS ~ 10 Vdc, RG - 1 0 Mni
(VS

Figure
2,9,11

Typ

Characteristic

Peak Current

= 1.0 MI1)

IV

"A

-

-

18
18

50
25

MPU6027
MPU6028

70
25

270
270

-

-

"A

Volts

VT

MPU6027
MPU6028

Gate to Anode Leakage Current

Unit

IGAO

nAdc

-

IVS· 40 Vdc, T A = 25°C, Cathode Open)
(VS = 40 Vdc, TA = 75°C, Cathode Open)

-

-

1.0
3.0

10

5.0

50

nAdc

-

-

IGKS

Forward Voltage (IF = 50 mA Peak)

1,6

VF

-

0.8

1.5

Volts

Peak Output Voltage

3,7

Vo

6.0

11

-

Volts

3

tr

-

40

80

ns

Gate to Cathode Leakage Current
(VS = 40 Vdc. Anode to Cathode Shorted)

(VB a 20 Vdc, CC= 0 2 "F)
Pulse Voltage Rise Time

(VB - 20 Vdc, Cc = 0 2 "F)

FIGURE 1 - ElECTRICAL CHARACTERIZATION
+VB

IA
_A

RZ

J..L'~~... -VS· Rl ~IRZ VB
Rl

IS - EQUIVALENT TEST CIRCUIT fOR
fiGURE lA USED fOR ELECTRICAL
CHARACTERISTICS TESTING
(ALSO SEE FIGURE Z)

lA - PROGRAMMABLE UNIJUNCTION
WITH "PROGRAM" RESISTORS

Al and R2

lC - ELECTRICAL CHARACTERISTICS

FIGURE 3 - Va AND tr TEST CIRCUIT

FIGURE 2 - PEAK CURRENT (lp) TEST CIRCUIT

+VS
ADJUST

FOR

-=-

Ip(SENSE)

;-rI _.

1 £1'10

+V

100pV· 1.0 nA

510 k

TURN·OI~
THRESHOLD

-=-

16k

Vo

6V

VB
001 pF

RG • RIZ
Vs • VBIZ
(See Figure 1)

Vo

zan

SCOPE

ZO

PUT
UNDER
TEST

1126

Z7k
0.6 V +;.;...4-..1--------....

I

MPU6027, MPU6028 (continued)

TYPICAL VALLEY CURRENT BEHAVIOR

FIGURE 5 - EFFECT OF TEMPERATURE

FIGURE 4 - EFFECT OF SUPPLY VOLTAGE
1000
50o

50 0

~TA=250C
r==
(SEE FIGURE 11

RG -10kn=

200t'--..

j

0
0
100 kll

0

~

100

'"G

50

~

0
20
10

--

5.0

0

:?

10

15

~

'"
>
~

+75

25

g

TA = 25°C

5.0 I

'"2:w
'"«

2.0
1.0

~

0.5

~
=>

0.2

f-

~

0.1

'"

~'"

0.05

'"

~

Cc = 0.2 pF

TA = 25°C

20

u:
> 0.02

/'"

15

.//

,/'
lO

,/'

5.0

>
0.05

0.1

0:2

0.5

1.0

2.0

o /'"
5.0
o

5.0

-- -/'

/'

10

15

20

FIGURE 8 - STANDARO UNIJUNCTION
COMPAREO TO PROGRAMMABLE UNIJUNCTION
5T ANDARD UNIJUNCTIDN
B2

RT
RI
Rl 1J "R1+R2

BI

CIRCUIT SYMBOL

RB2

P
R2
Er
N y 2 RBS=Rl+R2

Cc

BI

1j

EQUIVALENT CIRCUIT

PRDGRAMMABLE UNIJUNCTION

B2

E

R2

P
N

G

P

N

K

CIRCUIT SYMBOL

RBS" RlI- R2
_ RI

'1- R1 + R2

RI

K

81

EQUIVALENT CIRCUIT
WITH EXTERNAL "PROGRAM"
RESISTORS Rt and R2

1127

TYPICAL APPLICATION

-

=

25

VS.SUPPLY VOLTAGE (VOLTS)

IF. PEAK FORWARO CURRENT (AMP)

'~

/'

7

0

0.02

+100

J - - - (SEE FIGURE 3)

'">f-

«
~

0.01
0.01

+50

+25

FIGURE 7 - PEAK OUTPUT VOLTAGE

FIGURE 6 - FORWARD VOLTAGE

'"2:w
'"
«

-25

-

r-.. 1 . 0 M t -

TA. AMBIENT TEMPERATURE (OCI

VS.SUPPLYVOLTAGE (VOLTSI

10

~

""-

(SEE FIGURE 11

5.0
-50

20

-

100 kn

f--- VS =10VOLTS

10

1.0Mn_

10 kll

_RG

........

;!:

-

f...-

--

30 0

30

~

35

40

MPU6027, MPU6028 (continued)

TYPICAL PEAK CURRENT BEHAVIOR
MPU6027
FIGURE 9 - EFFECT OF SUPPLY VOLTAGE AND RG

FIGURE 10 - EFFECT OF TEMPERATURE AND RG

100

10

50
5. 0

1

3. 0

~

0
2,

........

~

"

20
.3 10

~

~

:: 5.0

~

~

""

1. °f---RG

~ o. 5
~

Vs ='10 VOLTS
(SEE FIGURE 2)

........

........ ........

=>

10kil

~ 2.0

~

100kil
1.0 Mil

O. 3

RG -10m

1.0

TA=250C
(SEE FIGURE 2)

O. 2
10

15

O. 1
-50

20

~

==

..::::",

1.0 Mil

o. 2
50

........
L

100 kn

O. 5

O. 1

'"

..::::",

+50

+25

-25

VS, SUPPLY VOLTAGE (VOLTS)

+75

+100

TA, AMBIENT TEMPERATURE (OC)

MPU6028
FIGURE 11 - EFFECT OF SUPPLY VOLTAGE AND RG

FIGURE 12 - EFFECT OF TEMPERATURE AND RG

1. 0

10

O. 7
5

"
3>-

~

O. 3

50
RG = 10 kil
" 2.0
;: 1.0
~
~ o. 5

100kil

o. 2

~

=>

u

'"
~
~

~

-'"

10

15

.......

/

100r;;

0.05

TA 25°C
(SEE FIGURE 2) t - - -

00 2

VS= 10vaLTS
(SEE FIGURE 2)

.........

~
~ O. 1

1.0 Mil

00 3

0.0 1
5.0

"-

a::.::: 0.2 I--RG-l0kil

1
0.0 7
0.0 5

.....

.:::::::

........
~

~

1.0~il

~

0.0 2
0.0 1
-50

20

VS, SUPPLY va LTAGE (VOLTS)

-25

+25

+50

TA, AMBIENT TEMPERATURE (OC)

1128

."""""

--..

+75

+100

MPZ5-16 series (SILICON)
Silicon power transient suppressor designed for applications
MPZ5-32 series requiring
protection of voltage sensitive electronic devices in
danger of destruction by high energy voltage transients. Indicells are matched to insure current-sharing under high
MPZ5-180 series vidual
current pulse conditions.
MAXIMUM RATINGS

Transient Power Dissipation: 40 kW
Pulse Width: 0.1 ms, (See Figure 1)
DC Power Dissipation: 350 Watts@ T C = 25°C
(Derate 2.33 wfc above 25°C)

CASE 119

Operating Junction & Storage Temperature
Range: - 65° C to +175° C
Polarity:
Anode-to-Case is Standard
Cathode-to-Case Available Upon Request

ELECTRICAL CHARACTERISTICS (TA

MPZf).16A

·16B
-32A
-328

-32C
·1 BOA
-l80B

·1SOC

(VF

=I

5 V max @ 10 A for all types)

Maximum
Device

Nominal
Operating Voltage
(Note 11

Type

= 25°C)

Minimum Zener Voltage Maximum Zener Voltage
Pulse Width = 1.0 ms

Clamping

VOP(PK)
Vd.

VOP(RMS)

Factor
CF = VZ@ IZ (1!!!Ise)
VZ@IZT

Vrms

(Note 2)

Vd.

14
14
28
28
28
165
165
165

10

1.25
1.25

16
16
32
32
32
180

10

20
20
20
117
117
117

Maximum
Reverse Current
IR(max)

VZ(min)

t.25
1.25
1.25
1.14

@

0.4
0.4
0.2
0.2
0.2
0.03
0.03
0.03

'80

1.14
1.14

IZT VZ(max)
Ad.
Vd.

lS0

@

IZlpulso)
Ad.

24
20
50
45
40
250
225
205

200

@VR

=VOP(PK)
!lAd.

~F

50

0.025
0.025
0.011
0.011
0.011
0.0012

200

100
100
100
20
20
20

Typical
Capacitance
C (typ)
@VR =VOP(PK)

1

0.0012

0.0012

FIGURE 1 - MAXIMUM NON-REPETITIVE SURGE POWER
(RECTANGULAR WAVEFORM)
Ill{)

_

70
50
30
20

.......

:s:

......

~ 10

ffi

7.0
~ 5.0

"" 3.0
~ 2.0

;2 1.0

TC

-

TC = 350 C

"-

125"C

~ 0.7
"-Q.5

-

0.3
0.2

O. 1

0.0001

0.0002

0.0005

0.001

0.002

0.005

0.01

0.02
0.05
t, TIME (SEC)

1129

0.1

0.2

0.5

1.0

2.0

5.0

10

MPZ5-16 series, MPZ5-32 series, MPZ5-180 series

(continued)

FIGURE 2 - TYPICAL DYNAMIC ZENER
VOLTAGE CHARACTERISTICS (Note 2)
0

VI I pulSEI wllD~~ ~ 11.0 m~_

V I ITA= -I
25"C

0

0

~

'/

'Ov
1.0

2.0

sent. peak voltage input values VOP(PK) should
be used to select device type.

MPZ5-180 SERIES

0

_0

NOTE 1; Nominal operating voltage is defined as normal
input voltage to device for non-operating condition. If non-sinusoidal wave or de input is pre-

1/

MPz~31 SE ~ Id

"'1

-1"j

Iv

50
5.0 7.0 10
20
30
IZlpulsel. ZENER CURRENT IAI

ratio of

Vz

measured at IZ (pulse) given in the

Electrical Characteristics Table divided by Vz
measured at I ZT under steady stat-e conditions.
This value guarantees the sharpness of the voltage

J

breakdown of individual devices.

V

MPZ5-16 SERIES ....

3.0

NOTE 2: The maximum device clamping factor CF is a

V

Figure 2 de-

monstrates the typical sharpness of the breakdown, and indicates the voltage regulation over
a wide range of currents .

70

100

200

lNZ = VZ@ IZ(pulse) - Vz @ IZT

1130

MQ930 (SILICON)
MQ2484

NPN SILICON
MULTIPLE TRANSISTORS

NPN SI LICON ANNULAR MULTIPLE TRANSISTORS
... designed for use as differential amplifiers, dual general·purpose
amplifiers, front end detectors and temperature compensation
applications.

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.35 Vdc (Max) @ IC = 1.0 mAde

•
•

DC Current Gain Specified - 10 !lAde to 10 mAde - MQ2484
High Current·Gain-Bandwidth Product fT = 260 MHz (Typ) @ IC = 5.0 mAdc

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

VCEO

I

M0930 M02484
45

60

Unit

Vdc

. Collector-Base Voltage

Vce

60

Emitter-Base Voltage

VEe

6.0

Vdc

IC

30

mAde

TJ,Tstg

-65 to +200

°c

COllector-Current

Operating and Storage Junction
Temperature Range

Vdc

Die

Power

Total Power OISSlpatlon @ T A '" 25°C
Derate above 2SoC

Po

400
2.28

600
3.42

mW
mW/oC

= 25°C

Po

0.9
5.13

3.6
20.5

Watts
mW/oC

Total Power Dissipation @Te
Derate above 25°C

STYlE 1
PIN 1
2
3
4
5
B
7
8
9
10
11
12
13
14

Four Di
Equal

One

THERMAL CHARACTERISTICS
Four

One

Characteristic

Thermal ReSistance, Junction to Ambient
Thermal Resistance, Junction to Case

Coupling Factors

01-02
01-03 or 01-04

COLLECTOR
BASE
EMITTER
NOTCONNECTEO
EMITTER
BASE
COLLECTOR
COLLECTOR
BASE
EMITTER
NOT CONNECTED
EMITTER
BASE
CDLLECTOR

Symbol

Die

Oi.

Unit

R8JAI1I

438

292

°C/W

R8JC

195

48.8

°C/W

Junction

Junction

to Ambient to Case
57
0
55
0

%

OIM
A
C

D
F
G
H
J

•
L

N

(1) R8JA IS measured with the device soldered into a tYPical printed cirCUit board.
CASE 607-04

1131

MQ930, MQ2484 (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
In multiple chip devices, coupling of heat be_n die occurs.
The junction temperatures can be celculated as follows:
(1) 4TJl = R81 POl + R82 K02 P02
+ R84 K04 P04

Assuming equal thermal resistance for each die, equation (1)
simplifies to
(3) 4T Jl = R81 (POl + K82 P02 + K83P03 + K84 P04)

+ R93 K03P03

Fortheconditionswhere POl = P02 = P03 = P04, PDT = 4 Po
equation (3) can be further simplified and bV substituting Into

Where ~ T J1 is the change in junction temperature of die
Rt}1 thru 4 is the thermal resistance of die 1 through 4
POl thru 4 is the power dissipated in die 1 through 4
Ke2 thru 4 is the thermal coupling between die 1 and

equation (2) results

Values for the coupling factors when either the case or the
8S a reference are gven in the table on page 1.

die 2 through 4.

An effective package thermal resistance can be defined as

In

ambient is used

follows:
(21 R8(EFFI =4TJ1/POT
where: PDT IS the total package power diSSipation.

ElECTR ICAl CHARACTER ISTICS (T A

I

= 25°C unless otherwise noted.)

I

Characteristic

Symbol

Min

VCEO(sus)

45
60

I·

Typ

Max

Unit

-

-

Vde
Vde

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (1)

MQ930
MQ2484

Collector-Base Breakdown Voltage
(IC = lO/lAde,IE = 01

BVCSO

60

-

Emitter-Base Breakdown Voltage
(IE = 10/lAde, IC = 0)

BVEBO

6.0

-

-

Vde

ICBO

-

-

10

nAde

lEBO

-

-

10

nAde

MQ2484

100

250

500

MQ930
MQ2484

100
175

120
120

Vde)

MQ930
MQ2484

125
200

250
250

= 5.0 Vde)

MQ930
MQ2484

150
250

350
350

(lC = 10 mAdc,ls = 01

Collector Cutoff Current
(Vca = 45 Vde, IE

= O)

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)
ON CHARACTERISTICS
DC Current Gain (1)
(lc = 10/lAde, VCE = 5.0 Vdel
(lC = 100 /lAde, VCE
(I C = 500 /lAde, V CE

= 5.0
= 5.0

Vde)

(lc

= 1.0 mAde,

(IC

= 10 mAde, VCE = 5.0 Vdcl

VCE

-

hFE

-

800

VCE(,atl

-

260

Collector-Emitter Saturation Voltage
(lc = 1.0 mAde, IB = 0.1 mAdel

0.2

0.35

Vde

Base-Emitter On Voltage
(lc = l00llAde, VCE = 5.0 Vde)

VBE(onl

0.5

0.58

0.7

Vde

IT

-

260

-

MHz

Cob

-

2.7

6.0

pF

MQ2484

Cib

-

2.15

6.0

pF

MQ2484

NF

-

2.2

3,0

dB

Both Device

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(IC = 5.0 mAde, VCE

= 20 Vde, 1= 100 MHzl

Output Capacitance
(VCB = 5.0 Vdc, IE = 0, I = 100 kHz)

Input Capacitance
(VSE = 0.5 Vdc, IC = 0, I = 100 kHz)
Noise Figure
(IC = 10/lAde, VCE = 5.0 Vde, RS
1= 10 kHz to 15.7 kHz)

= 10 k

ohms,

(11 Pulse Test: Pulse Width ";;300/l', Duty Cycle ";;2.0%.

1132

MQ982 (SILICONJor Specifications, See MD982 Data,
MQ1120 (SILICON)For SpecI'f'lcatl'ons , See MD1120 Data,
MQ1129 (SILICON)For SpeCII'f'cations, See MD 1129 Data,
MQ2218, A (SILICON)
MQ2 219, A For SpecificatIOns,
See
'MD2218
Data,
MQ 2369 (SILICON)
For SpecI'f'lca tl'ons , See MD2369 Data,
MQ2904 (SILICON)
,
MQ2905A For Specificattons,
See MD2904 Data,
MQ3251 (SILICON)
" t ' s See MD3250 Data,
For Speclflca lon,
MQ3467 (SILICON)
'"
See MD3467 Data,
For SpecifIcatIOns,
MQ 3725 (SILICON)
'f' tl'ons , See MD3725 Data,
For Specllca
MQ3762 (SILICON)
'"
See MD3762 Data,
For Speclflcattons,
1133

MQ3798 (SILICON)
MQ3799
MQ3799A

PNP SILICON

PNP SILICON ANNULAR MULTIPLE TRANSISTORS

MULTIPLE TRANSISTORS
• •. designed for use in high·gain. low noise amplifiers; front end
detectors and temperature compensation applications.

• Low Collector·Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 1.0 mAdc
• DC Current Gain Specified - 100 jtAdc to 1.0 mAdc• High Current·Gain - Bandwidth Product tr = 450 MHz (Typ) @ IC = 5.0 mAdc
• Matching Characteristics Available - M03799A

MAXIMUM RATINGS
Symbol

Value

Unit

Coliector·Emitter Voltage

VCEO

60

Vdc

Collector-Base Voltage

VCB

60

Vdc

Emitter-Base Voltage

VEe

5.0

Vdc

IC

50

mAde

TJ.Tstg

-65 to +200

°c

Rating

Collector-Current
Operating and Storage Junction
Temperature Range

One
Die

AIIDio
Equal
Power

25°C

Po

400
2.28

600
3.42

rnW/oC

Total Power Dissipation@Tc = 25°C
Derate above 2SoC

Po

0.7
4.0

2.8
16

Watts
inwl"C

Total Power Dissipation @TA

Derate above 2SoC

STYlE!
PIN 1. COLLECTOR
2- BASE
3 EMITTER
4 NOT CONNECTED
5 EMITTER
6 BASE
1 COllECTOR
B COLLECTOR
9 BASE
10 EMITTER
11 NOT CONNECTED
12 EMITTER
13 BASE
14. COLLECTOR

mW

THERMAL CHARACTERISTICS
One
Char.meristic
Thermal Resistance, Junction to Ambient

Thermal Resistance, Junction to Case

Coupll!,9 F acto~s

01·02
01·03 or 01.04

~IUI.

Equal

MI
DIM MIN

Symbol

Die

Power

Unit

R8JA(11

438

,292

°CIW

A
C

250
62.6
°CIW
Junction
unction
to Ambient to Case

F
G

R8JC

57
55

0
0

'. %

o

H
J

6.10
0.16
0,25
0.08

RS
MAX

6.99
2.03
0.48
0,15

1.21BSC

0.13

0,89
,38

K 6.5
L lB.80
•
0.25
R
S

1.62

B.

(11 R8JA IS measured with the device soldered Into a typical printed cirCUit board.
CASE 607'()4

1134

O.

MQ3798, MQ3799, MQ3799A (continued)

THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE
I n multiple chip devices, coupling of heat between die occurs.

The junction temperature can be calculated as follows:
(1) aTJl

Where

Assuming equal thermal resistance for each die. equation (1)

simplifies to

= R91

POI + R92 Ke2 P02 + R93 Ke3 P03
+ R94 Ke4 P04

~T J1

(31 aTJl = R91 (POI + Ke2 P02 + Ke3 P03 + K94 P041
For the conditions where POI

is the change in junction temperature of die 1

= P02 = P03 = P04. PDT = 4PO.

equation (3) can be further simplified and by substituting into

R61 thru 4 is the thermal resistance of die 1 through 4
Po 1 thru 4 is the power dissipation in die 1 through 4
K62 thru 4 is the thermal coupling between die 1 and

equation (2) results in
(41 R9(EFFI

die 2 through 4.

= ReI

11 + Ke2 + K93 + K941/4

Values for the coupling factors when either the case or the
An effective package thermal resistance can be defined as
follows:
ambient is used as a reference are given in the table on page 1.
(21 R9(EFFI

= aTJ1/POT

Where: PDT is the total package power dissipation.

ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherWise noted)

I

Characteristic

Typ

Max

Unit

Symbol

Min

VCEO(sus)

60

Vdc

Collector-Base Breakdown Voltage
(Ie'" lOJ.iAdc. Ie = OJ

BVCBO

60

Vdc

Emitter-Base Breakdown Voltage
(Ie = 10/J.Adc.IC = 0)

BVeBO

5.0

Vdc

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 10 mAdc.le = OJ

Collector Cutoff Current
(VCB = 50 Vdc.le = 0)
Emitter Cutoff Current
(VEa = 4.0 Vde,IC = 0)

Icao

10

nAdc

lEBO

20

nAdc

ON CHARACTERISTICS
DC Current Galn(l)
(lC = 100 j.tAdc. Vce = 5 0 Vdc)

hFE

(Ie = 500 j.tAde. VeE = 5.0 Vdc)

MQ3798

150
300
150

(IC = 1.0 mAde, VCE = 5.0 Vdc)

M03799.A
M03798
M03799A

150
300

MQ3798
MQ3799.A

300

Collector-Emitter Saturation Voltage
(lC'" 100 Io'Adc, IS = 10 J,lAdcl
(lC = 1.0 mAde. IB = 100 J,lAdeJ

VCElsat)

Base Emitter Saturation Voltage
(IC = 100 J,lAde. IS = 10 !JAde I
(lc = 1.0 mAde. IS = 100 J,lAdcl

VaElsat)

Base-Emitter On Voltage
(IC = 100 /J.Adc, VCE = 5.0 Vdc)

VBElon)

375
250
400
260
400

450
900
450
900
450
900

0.08
0.08

0.2
0.25

0.65
0.68
0.64

0.7
0.8

200

Vdc
Vdc

0.7

Vdc

DYNAMIC CHARACTERISTICS
Current-GaIn-Bandwidth Product
(IC = 5.0 mAde, VCE = 5.0 Vdc, f '" 100 MHz)

IT

450

Output CapacItance
(Vca:: 5.0 Vdc, IE = O. f = 100 kHz)

Cob

2.1

40

pF

Input Capacitance
(VEB = 0.5 Vdc, IC = O. f '" 100 kHz)

Cob

5.5

8.0

pF

NOise Figure
flC >= 100~Adc, VCE >= 10Vdc, AS= 3.0kohmsl
f = 10 kHz to 15.7 kHz)

NF

2.0

MH,

dB

MATCHING CHARACTERISTICS (2) MQ3799A

0.9

1.0

DC Current Gain Ration (31
(lC = 100 ~Adc, VCE '" 5.0 Vdc)

hFE/hFE

Base Voltage DIfferential
(lc = 100 ,uAdc, VCE = 5.0 Vde,)

VBE1- VBE2

3.0

mVde

- 20 0

-- -

~

~

.5l,c

-- - ... -

100

0

......

TJ = 125 0C
-'1-

'-

~

25'C

1--

1\',

-~

--~

- 1--1-1-

~

to... ...... ~

r-_

t-

-55'C

l\t--

0
'"
ul 8
~ 60

~\
\..'
~ ""It . .
~I't

0
0
0

1\

0
30
0.5 0.7

1.0

2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mAl

20

30

~J l ~J,c

o. 8

rBE!tlm

~

f.---

VBE(~nl @~CE !5.b V

'" o. 6

~
w

-----

'"
~

.§.

~
~

-

>.
VCE( ..tl@ICIIB= 10

I
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT(mA)

J

V

20

/

7

-l.S

;i

~ -1.8

~

~

>-

~

30

50

-2. 0
0.5 0.7

ftoriBEI
II
1.0

6.0

r'\

-

~ 4.0

f\

II

./

-

-55 DCto 125 De

f-

2.0 3.0
5.0 7.0 10
IC. cOLLECTOR CURRENT (mAl

20

~

z

;'!:
u

\

f

3.0

-

50

TJ=25OC

...........
........

"

C,b

~

2.0

~

Cab

U

........

0
1. 0

0
0.3

30

FIGURE 6 - CAPACITANCE

~

0

0

50

II

-1.4

8. 0

/"

30

=>
>-

V' ,

t- CE I=5'0
TJ= 25'C
f=100MHz
t-

20

-1.2

FIGURE 5 - CURRENT-GAIN - BANDWIDTH PRODUCT
500

2.0 3.0
5.0 7.0 10
IC, COLLECTOR CURRENT (mAl

~
8

1.0

1.0

-1.0

0.4

0.5 0.7

0.7

FIGURE 4 - BASE·EMITTER TEMPERATURE COEFFICIENT

~

o. 2

1\

40
0.5

50

FIGURE 3 - "ON" VOLTAGES
1.0

"~

-

~...

25'C

I"--r.

O.8

2.0 3.0
5,0 7.0
0.5 0.7 1.0
IC. COLLECTOR CURRENT (mAl

10

20

30

0.1

1136

0.2

0.5

1.0
2.0
5.0
10
VR, REVERSE VOLTAGE (VOLTS)

20

50

100

MQ6001 (SILICON)
MQ6002
For Specifications, See MD6001 Data.
MQ7001 (SILICON)
For SpecI.f.lca tl·ons , See MD7001 Data.
MQ7003 (SILICON)

...
See MD7003 Data.
For SpecIfIcatIons,

MQ7004 (SILICON)
For SpeCI·fl·cations , See MD7004 Data.
MQ7007 (SILICON)
..
S MD7007 Data.
For SpeciftcatIons, ee
MQ7021 (SILICON)For SpecI.f.lcatl·ons , See MD7021 Data.

1137

MRl-1200 (SILICON)
MRl-1400
MRl-1600

HIGH VOLTAGE
LEAD MOUNTED
SIL1CON RECTIFIERS

AXIAL LEAD SILICON RECTIFIERS

1200,1400, 1600, VOLTS
1 AMPERE

· .. designed for television "damper" diode service and other high
voltage industrial/consumer applications.
• High Current Handling - 1.0 Ampere at 750 C
• Medium Recovery Characteristics
• Low Forward Voltage

MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Symbol
VRRM
VRWM
VR

Average Rectified Forward Current
(Single phase, resistive load,
R9JA = Sf1>CIW, TA = 7f1>cl (1)
Non-Repetitive Peak Surge Current
(surge appl ied at rated load
conditions.)
Operating and Storage Junction
Temperature Range (2)

MR1·
1200

MR1·
1400

MR1·
1600

Unit

'1200

1400

1600

Vdlt's

10

1.0

Amp

IFSM

30 (for 1 cycle)

Amp

TJ,T stg

-65 to +175

°c

r=o
Lit

ELECTRICAL CHARACTERISTICS (TA -- 2f1>C unle.. otherwise noted)
Characteristic

Symbol

Typ

Max

Unit

Maximum Instantaneous Forward Voltage
(iF = 1.0 Amp, T J = 2f1>C)
(iF = 3.14 Amp, TJ = 25°C)

vF

Maximum Reverse Current (rated de voltage)
TJ = 25°C
TJ = 100°C
Capacitance
(VR = 50 volts, f = 1.0 MHz)

IR

Reverse Recovery Time
(IF = 20 rnA, IR = 2.0 rnA)
Forward Recovery Time
(IF = 20 rnA, Vfr = 2.0 V)

trr

17

25

itS

tfr

0.7

1.0

itS

C

K

Volts
0.95
1.1

1.1
1.3

0.2
12

10
100

4.0

7.0

itA

pF

CATHOOE
BANO

1
K

~
OIM

(1) Must be derated for reverse power dissipation. See note on Page 3.

A
B
D
K

(2) Derate as shown in Figure 4.

MECHANICAL CHARACTERISTICS
CASE: Void free, Transfer Molded
MAXIMUM LEAD TEMPERATURE FDR SOLDERING PURPOSES: 350°C, 3/S" from

case for 10 seconds at Sibs. tension
FINISH: All external surfaces are corrosion·resistant, leads are readily solderabole
POLARITY: cathode indicated by color band
WEIGHT: 0.40 Grams (approximetely)

1138

MILLIMETERS
MIN MAX
4.70 5.20
.71
.54
0.76 0.86
27.94

-

INCHES
MIN MAX
0.lB5 0.205
0.100 0.107
0.03{) 0.034
1.100

CASE 5g.01
CONFORMS TO 00·41

-

MR1-1200, MR1-1400, MR1-1600(continued)

FIGURE 1 - FORWARD POWER DISSIPATION
7.0

ffi

II
/

6.0

~~

~~4.0

... z

I

TJ~175oC

W O

..
~~

/

.02.0
1.0

....

r

./

~~

o

~

o

'"«
'"~

L

so:

---

i"--

r--

0.5

1.5

1.0

2.0

-

5
10
20

2.5

H-

~OA~

0.6

to

~

1-

0.4

>

;;

f-

Information)

(See Applications

40

....

50

~

180

'"

'"G

30

~
w

20

w

z

in

~

..

10

..

-He:eCVCl~
--t1= 60Hz

VRRM APPLIED AFTER SURG:~
I
I
I
I
I I I
- - - TYPICALFAILURES
- - DESIGN LIMITS

~ 1.0

5.0

-~ ~

1.0

2.0

3.0

'"

a

~ 160

60

\

---,- ..

!;;:

Ie 140

r- ~

''''t-

ill
....
w
'"

!

~ r- ~
f-r-f--

~

SURGE APPLIED AT RATED
LOAD CONDITIONS
TJ = 175 0 C

5.0 7.0 10
20
NUMBER OF CYCLES

3D

50

........ I:": ~
~

100

SO

70

- --

r-r--.. . .
.............. r-.......
::::-....... c---.
~ r-

::s...

....

liiio..

120

160

140

ISO

r........

........

::>

"--

/

~
....... ~

FIGURE 4 - MAXIMUM REFERENCE TEMPERATURE

SURGE APPLIED AT NO
LOAD CONOITIONS
Tr25 0 C

:--

LOAOS

TA. AMBIENT TEMPERATU RE (OC)

100

iii

l' CAP~CliIVE ff- -

I I I

FIGURE 3 - NON·REPETITIVE SURGE CURRENT

7p

r-- -

} RESISTIVE
LOAD

~

IF(AV). AVERAGE FORWARD CURRENT (AMP)

f

........

_5
10
20

~

.0.2

4.0

3.5

....K
>........

-<

RaJA = S5 0 CIW

~

I I

k

I'....: ><

.......

r--

«

CAPACITIVE
LOADS

3.0

O.S

w

} RESISTIVE-

I(PK)II AV)=w

r--

......

0

/

~ ""'.:

1.0

.

/

i/

I
I~PK)/I(A~) = w

... ....... ........
...." ...... t:'"'"'
...
i""

1.2

~
a'"

./

V

~~3.0

"'

~

I

~

/

L

IL

CI

'"....

/
./

~ r;;5.0

~

FIGURE 2 - CURRENT DERATING
1.4

a::

...... ~

~

~

120

:100
....

-'............. t-- '...... ~
'-

-- -

r--. ...... t'-- .......-- ' r-... r--~

I'-.~ 15
1'-.""",

25-

.... r-...4O~
~60-

r-- ....... ~-

R6JA (OCIW) = 110--"""':
80
150

100

1139

200

lO0
400
500
700
1000
VR. DC REVERSE VOLTAGE (VOLTS)

1500

MR 1-1200, MR 1-1400, MR 1-1600 (continued)

APPLICATIONS INFORMATION
TYPICAL VALUES FOR R'eJA IN ST LLA IR
LEAD LENGTH L(IN)

MOUNTING
METHOD

1/32

3/S

1

ReJA

1

-

60

85

2

73

85

103

°CIW
°CIW

MOUNTING METHOD 1
P.C. Board with 1 %" x 1 %" copper surface

MOUNTING METHOD 2
Vector Push·ln Terminals T·28

Reverse power dissipation and the possibility of thermal runaway

when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figure 4 as a
difference in the rate of change· of the slope in the vicinity of
ISo"C. The data of Figure 4 is basad upon de conditions. For usa
in common re.ctifier circuits, Table 1 indicates suggested factors
for an equivalent dc voltage to use for conservative design: i.e.:

must be considered when operating this rectifier at reverse voltages
above 50 volts. Proper derating may be accomplished by use
of equation (1):
TA(max)

= TJ(max)

- ReJAPF(AV) - ReJAPR(AV)

(1)

where

VR(equiv)

TJ(max) "" Maximum allowable junction temperature

such that IOC = 1.0A, (IF(AV) = 0.5A),I(PK)/I(AVJ = 10,Input
Voltage = 353 V(rms) (line to center tap), ReJA = S(fJC/W.

PF(AV) = Average forward power dissipation

= Average reverse power dissipation

Step 1:
I

R8JA "'" Junction-ta-ambient thermal resistance

- ReJAPR(AV)

= TR

- ReJAPF(AV)

13)

temperature atwhich thermal runaway occurs or where TJ

from Table 1.

Find TR from Figure 4. Read TR = 1170 C @
VR = 555 V@ R6JA = S(fJC/W.

Step 4:

= 17So C

TABLE I - VALUES FOR FACTOR F
Circuit

Half Wave

Full Wave, Bridge

Full Wave
Cento,·Tapped*t

Load

Resistive

Capacitive*

Resistive

Capacitive

Resistive

Sine Wave
Square Wave

0.45

1.11

0.45

0.55

0.90

1.11

0.61

1.22

0.61

0.61

1.22

1.22

"Note that VR(PK) "'2 Vin(PK)

tUse line to center tap voltage for Vin

1140

= O.SW

Find PF(AV) from Figure 1. Read PF(AV)

@ IpK = 10 & IF(AV) = 0.5 A
IAV
Find TA(max) from equation (3), TA(max) = 117
-(SO) 10.6) = Sl o C.

Substituting equation (2) into equation (1) yields:
TA(max)

= 1.11

Step 3:

(2)

Inspection of equations (2) and (3) reveals that TR is the-ambient

Find VR(equiv)' Read F

VR(equiv) - 1.41) (353) (1.11) = 555 V
Step 2:

Figure 4 permits easier use of equation (1) by taking reverse power
dissipation and thermal runaway into consideration. The figure
solves for a reference temperature as determined by equation (2):

= TJ(max)

(4)

supply using a full wave center·tapped circuit with capacitive filter

mal runaway occurs, whichever is lowest.)

TR

x F

Example: Find TA(max) for MR1·1200operated in a 500 Volt de

(175°C or the temperature at which ther-

PR(AV)

= Vin(PK)

The Factor F is derived by considering the properties of the various
rectifier circuits and the rectifiers reverse characteristics.

T A(max) "" Maximum allowable ambient temperature

Capacitive

MR2S0-1

MR2S0-S

thru

High-voltage, low-current rectifiers designed for applications where high-voltages in subminiature packages are
required.

MAXIMUM RATINGS

(T.

=25"C unless otherwise noted)
Symbol

Rating
Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage

MR250-l MR250-2 MR250-3 MR250-4 MR250-5

Unit

VRM(rep)
vRM(Wkg)

1000

2000

3000

4000

5000

Volts

700

1400

2100

2800

3500

Volts

DC Blocking Voltage

VR

RMS Reverse Voltage

Vr

Average Rectified Forward Current
(single phase, resistive load,

10

250

mA

IFM(rep)

2.0

Amp

~M(surge)

15 (for 1/2 cycle)

Amp

T J , Tstg

-65 to +150

·c

60 Hz, T A

= 75'C)

Peak Repetitive Forward Current
(T A = 75'C)

Non-Repetitive Peak Surge Current
(superimposed on rated current
at rated voltage, TA = 75'C)
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS

Symbol

Characteristics
Thermal Resistance, Junction to Ambient (1 inch lead length),

ELECTRICAL CHARACTERISTICS

(At 60 Hz Sinusoidal, Resistive or Inductive)

Characteristic

Symbol

Full Cycle Average Forward Voltage Drop

VF(AV)

(10

= O. 25 Amp and Rated Vr'

TA

=

Unit
Volts

1.7

75°C, Half Wave Rectifier)

DC Forward Voltage Drop
(IF

Max

= 0.25

Adc, TA

Full Cycle Average Reverse Current

(10

= O. 25 Amp and Rated Vr'

TA

=

Volts

VF

= 25°C)

3.5
f.1.A

IR(AV)
100

75°C, Half Wave Rectifier)

DC Reverse Current
(Rated VR, T A

f.1.A

IR

= 25°C)

10

MECHANICAL CHARACTERISTICS
CASE: Void free, flame-proof silicone polymer case
FINISH: All external surfaces corrosion-resistant and leads readily solderable
POLARITY: Indicated by polarity band
MOUNTING POSITIONS: Any
WEIGHT: 0.40 Gram (approx)
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350·C, %" from case for 10 seconds

1141

MR250-1 thru MR250-5 (continued)

TYPICAL FORWARD CHARACTERISTICS

.....

10

~

~

!

1.0

r- t-

TJ = + 150°C "

c

~

100
60

===

~

/' ./

J--

TYPICAL REVERSE CHARACTERISTICS

-

100

113

~~

TJ= +25°C

~

.01

1.0
0.6
0.4

~

I

~

.001

-

-

.01

o

,.."

....-

~
TJ

....-

.02
.0001

,.."

0.1
.06
.04

~

I

I

TJ=+ 100°C

0.2

15

.~

I--I--

~

2.0

i

'"
~
~

I-- ~+~!OOC

I--

10
6.0
4.0

~

0.1

~

-

40
20

0.2

0.4

0.6

+25°C

0.8

1.2

1.0

VR• VRM,NORMALIZED VOLTAGE (VOLTS)

'" INSTANTANEOUS FORWARD VOLTAGE IVOLTS}

CURRENT DERATING
300

r-

r-

(60 Hz, RESISTIVE OR INDUCTIVE LO~D)

--....

250 ~
 INCH LEADS

}--

r-

I

........... ~ ~ INCH LEADS
./ r---... ...........
-.......
,,r---... --......... ........
.......

I liNCH LEADS

J'

--....

............

~

~

I50

.}

I
I
I
Non, LEAD LENGTH IS DEFINED AS THE
DISTANCE BETWEEN THE RECTIFIER
BODY AND THE TERMINATION POINT
AND APPLIES TO BOTH LEADS. -'-'--'-

............

100 f---;

I

I

r--.....

,

-..........: ~ :--....

...:::::::-: :::::-...

I-

-..::: ~

I60

70

80

90

100

120

110

130

.......

140

150

TA , AMBIENT TEMPERATURE (OC)

MAXIMUM ALLOWABLE NON·REPETITIVE SURGE CURRENT
20
0::

~

~
i'l

~
~

z

in
~

18
16
14
12
10

...............
-..........: .......

RECTIFIER OPERATED AT
MAXIMUM RATED CONDITIONS.
VRM(~pJ APPLIED AFTER SURGE,
TA ~ 75°C.

...............
......... ............
.....................

-.......

r---

""~

...............

.-

-..........: ~

[

J
8
10
CYCLES AT 60 Hz

20

r--40

60

MR327, MR328, MR330, MR331
For Specifications, See IN3491 Data, Volume 1.
1142

80

100

MRS01, MRS02, MRS04
MRS06, MRS08, MRS10

Designers Data Sheet

STANDARD RECOVERY
POWER RECTIFIERS

MINIATURE SIZE, AXIAL LEAD MOUNTED
STANDARD RECOVERY POWER RECTIFIERS

100-1000 VOLTS
JAMPERE

· .. designed for use in power supplies and other applications having
need of a device with the following features:

• High Current to Small Size
High Surge Current Capability
• Low Forward Voltage Drop
• Void·Free Economical Plastic Package
• Available in Volume Quantities
•

I

Designer's Data for "Worst Case" Conditions
Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device character~
istics - are given to facilitate "worst case" deSign.

The Designers

MAXIMUM RATINGS
Symbol

Rating

Peak Repetitive Reverse Voltage VRRM
Working Peak Reverse Voltage VRWM
DC Blocking Voltage

MR
501

MR

50;Z

MR
504

MR
506

MR
510

MR
5111

Unit
Volts

100

200

400

600

800

1000

150

250

450

650

850

1050

VR

Non-Repetitive Peak Reverse
Voltage

VRSM

Average Rectified Forward
Current

Amp

10

.
.

(Single phase resistive load, TA ""
95"c,PCBoard Mountingl (11
(EIA Standard Conditions
L = 1/32'", TL = 850 CI
Non-Repetitive Peak Surge
Current (surge applied at

Volts

IFSM

.
.

3.0
8.0

.

100
(one cycle)

STYLE 1:
PIN 1. CATHODE
2. ANODE

Amp

fated load conditions)
Operating and Storage Junction

TJ,Tstg

°c

-65 to +175

-

Temperature Range (2)

DIM
A

8

THERMAL CHARACTERISTICS

D

Characteristic
Thermal Resistance, Junction to Ambient
(Recommended Printed Circuit Board
Mounting, See Note 2 on Page 4).

Symbol

Max

Unit

ReJA

28

°elW

ELECTRICAL CHARACTERISTICS
Symbol

Characteristic
I nstantaneous Forward Voltage 131
IiF =9.4 Amp, T J = 1750 el
IiF =9.4 Amp, T J = 250 CI

vF

Reverse Current (rated dcvoltage) (31

IR

TJ
TJ

=25°C
= l000e

Min

Typ

Max

-

0.9
1.04

1.0

1.1

-

0.1
2.8

5.0
25

Volts

p.A

-

(1) Derate for reverse power dissipation. See Note on Page 2.
(2) Derate as shown in Figure 1.
(31 Pulse Test: Pulse Width

Unit

= 300 p.s, Duty Cycle = 2.0%.

1143

K

MILLIMETERS
MAX
MIN

9.40
4.83
1.22
26.97

9.65
5.33
1.32
27.23

INCHES
MIN
MAX

0.370
0.190
0.048
1.062

0.380
0.210
0.052
1.072

CASE 267·01

MECHANICAL CHARACTERISTICS
Case: Void Free, Transfer Molded
Finish: External Leads are Plated,
Leads are readily Solderable
Polarity: Indicated by Cathode Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for
Soldering Purposes:
300oC, 1/8'" from case for 10 s
at 5.0 lb. tension

MR501, MR502, MR504, MR506, MR508, MR5.10 (continued)

NOTE 1: DETERMINING MAXIMUM RATINGS

Raverse power dissipation and the possibility of thermal runeway
must be considered when oparating this rectifier at reversa voltages
above 200 volts. Proper derating may be accomplished by use
of equation II):
TAlmax)· TJlmaxl- R6JAPFIAVI- R6JAPRIAVI
whera
T Almaxl

e

when forward power is zero. The transition from one boundary
condition to the other is evident on the curves of Figura 1 es a
dlfferance in the rate of change of theslope in the vicinity of 165o C.
The date of Figure 1 is based upon de conditions. For use in
common rectifier circuits, Table 1 indicates suggested fectors for
an equivalent de voltage to use for conservative design; i.e.:

III

VRlequiv) • VinlPKI x F
(41
The Factor F is derived by considering the properties of the various
rectifier circuits and the rectifiers reverse characteristics.

Maximum allowable ambient temperatura

TJlmaxl = Maximum allowable junction temperatura
I 1750 C or the temperatura at which ther·
mal runewey occurs, whichever is lowest. I

Example: Find TA(maxl for MR510 operated in a 400 Voltdc
supply using a full wave center-tapped circuit with capacitive filter
such that IDC = 6.0A,(lF(AV) = 3.0AI,I(PKI/I(AVI = 10,Input
Voltage = 283 V(rmsllline to canter tapl, RSJA = 280 CIW.

PFIAVI- Average forward power dissipation
PR IAVI = A_age raverse power dissipation
R6JA • Junction-to·ambient thermal resistance
Figura 1 permits aasier use of equatifln III by taking reverse power
dissipation and thermal runaway into consideration. The figure

SteP 1:

Find VR(equivl. Read F = 1.11 from Table 1 :.
VRlequivl = 1.41)(283)(1.111 =444 V

Step 2:

Find TR from Figura 1. Reed TR = 167 0 C 0
VR = 444 V & RSJA = 2rPCIW.

solves for a raference temparatura es determined by equation 121:

Step 3:
TR = TJlmaxl - RSJAPRIAV)
Substituting equation (2) into equation 11) yields:

Find PFIAV) from Figura 8. Read PF(AV)

121

=4 W

IPK
OlAV = 10 & IF(AV) = 3.0 A

TAlmaxl = TR - RSJAPFIAV)
(3)
Inspection of equations 121 and 131 reveals that TR is the ambient
temperatureatwhich thermal runaway occurs orwhare TJ = 17SoC.

Find T Nmaxl from equetion (31. T A(maxl = 167-(281
55 C.

Step 4:

(4) =

TABLE 1- VALUES FOR FACTOR F
HalfWaye

Circuit

Full Wave, Bridge

Loed

Resistive

Capacitive*

Resistive

Capacitiye

Resistive

Sine Wave

0.45
0.61

1.11
1.22

0.45
0.61

0.55
0.61

0.90
1.22

SquaraWeve

10r---.----r---r--~r__,~--r-~~~

:~ ~ ~

175

110

~ 165

~ 160

~

-- -

'"' "

c

~
~p..
40

.......... ~ :"'-

w
~ 150
w
a:
w

--

10

r--.; ..:::-- tI"'" :::::
........

~
... 155

~

';o~

r

-::'
40
... 13

sr"

5

9.0 CAPACITIVE LDAOS II(PK) = 5.0-:-lt--¥---+-7'~h.c.....~
(AV)
B.ol---+--f--+--,H.....+t--7f-~l7"'­

7.DI---+--,f-___-F'1--d-T-"'-I....,~..,.S_~b,£..._!

~

6.01---+--f---!1'-7F'--"7I''f-:~6-~~!-::-::=-l

i'
O

!i! ~ 5.01---+--f--t'+--T-+~~1F-:~<:..p~­
ffii:

~J 4.01---+--h<--J<-_<.;""",.c..+---+-~t---j

",-"

RSJA (OCIWI;
NOlte 2

U;

~I=
~ ~
w

"'- "'- ~

145

~

~

i

lr f

3.DI---+--.hhh""''''-+2.01----+-7'~1.IIli~'+---+-....:.t_--+--t_-_!

1.01--:;dII.....'-t---if---+---t---j--t---j
O~~~~~~~~~~~~~~~~.

130

100

1.11
1.22

FIGURE 2 - FORWARD POWER DISSIPATION

FIGURE 1 - MAXIMUM REFERENCE TEMPERATURE

180

a:

Capacitive

tUse line to center tap voltage for Vin.

"Note that VR(PK) ""2 Vin(PK)

~
w

Full Wave
Center· Tapped*t

200

300

400

600

BOO

1000

VR, DC REVERSE VOLTAGE (VOLTS)

1144

o

W

~

~

IF(AV), AVERAGE FORWARD CURRENT (AMP)

n

u

MR501, MR502, MR504, MR506, MR508, MR510 (continued)

CURRENT DERATING
(Reverse Power Loss Neglected)
FIGURE 6 -

FIGURE 3 - PC BOARD MOUNTING

;;;

4.0
"

z

~ 3.0

. .....

..

CI

2.5

b::

i

2.0

1'-'" '"

a
a:

~

~

a:

~

1.

5

t-

1.0

~ R9JA = 2SoCIW

r--.I ~

~

--

~

..... ~

...

0
40

200

5.0 - - - 10 ...........
20---

-,

..... ~

TJ

-

so

100

120

V
TYPICAL/

140

~
~

~

!/ 1/
J /

20

I

....

160

180

TA. AMBIENT TEMPERATURE (OC)

ill
a:

~

MAXIMUM

/

30

~~

.- ,..., ~

~

70
0

/. ~ ~ ~1 ~
..... ~~
..:::;

60

~ 250~

100

......
...... ....
~ ~ ~~ ~

I(PK)
NOTE: FOR RESISTIVE LOAD I(AV) = w

vI'"

I I

I--

CAPACITIVE LOAOS f0-

..... .1, ,~
t-....
'-,

I I

I(PK)
'w ___
IIAV)

R8JA = 50oCIW'" I"'-

"~ 0.5
~

-

,I'

'"....

~ 3.5

FORWARD VOLTAGE

/

10

CI

~ 7.0

~

~ 5.0

FIGURE 4 - SEVERAL LEAD LENGTHS
ii:' 8.

7.0

w
~

6.0

~

5.0

a

,

Or-...

~
5;

r---.

.......
........

~

~ 4.0

" ," ,~~
~

.......

'"-

~
If

.......

r---. SIS"

~
~

8.0
7.o

r---.", 't-......
r-...

a

~ 5.0

~

~ 4.0

i'"'- t---.

r- r-.. .

w

~ 3. 0

........

N

~

~ 2.0

~

.........

....... -......; ~ ~

o.5

to

o

40

&.

I(AV)
LOAD)
snUAREWAVE

r--.... I'<

I""--

t" t--..

r- r- "
I'-....

CAPACITIVE LOADS :(PK) = 5.0
I
)
I
I (AV)

"6<

100

u

u

u

~

U

-3.2

+5.0

1--1--

+4.0

7
II

~

3> +3.0
oS

....
f5

c::;

u:

~~
l7 r.... R: ~ ~
T' 20 I"" ~ ~

""

~

FIGURE 7 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

BOTH LEADS TO HEA
SINK WITH EnUAL
t"{ENGTHS

120
140
TL, LEAO TEMPERATURE (OC)

SO

0.2
0.4

ISO

vF,lNSTANTANEOUS FORWARD VOLTAGE (VOLTS)

""'III

60

0.3

~~

160

V~(PK) =w(RESISTIVE
I-'"

a:
w

;;

1. 0

1/8" LEAD LENGTH

~

..............

a: 6.0

!:

o. 7

SO
100
120
140
TL, LEAO TEMPERATURE (OC)

FIGURE 5 £'

t; 2. 0

.':f

......::: ~

60

3.0

"

BOTH LEAOSTO HEAT
SINK WITH LENGTHS

f-- AS SHOWN

1.0

40

~

,......., ":". ~

2.0

o

Z

......
!'...
.......,
~ ......

~ 3. 0

ffi~

lil

REslsTlv~ LdAD J

~1132"

~ ......

::0
'"

160

tti
8

i

TYPICAL RANGE"
+1.0

0

-2.010.2

180

1/

::;.0.5

1.0

....

2.0

5.0

10

20

50

iF, INSTANTANEOUS FORWARD CURRENT (AMP)

1145

I

+2. 0

-1.0

~

I

100

200

MR501, MR502, MR504, MR506, MR508, MR510 (continued)

FIGURE 9 - TYPICAL REVERSE CURRENT

FIGURE 8 - MAXIMUM SURGE CAPABILITY

..'"

150

.........

100

r-....

~100

!z

~
a:

80

...>

60

::>
u

~

........

...'"w«

30

'"

20

~

. . . r-.,-...
r-.,

.........'"
f·

15
1.0

2.0

VRRM MAY BE APPLIED
BETWEEN EACH CYCLE
-OFSURGE.TJNDTED IS
- TJ PRIOR TO SURGE

l"Io.

I'-..

~ETlTIVE ~

~ 40

«
:r

IJUt=

~

11i'-r-.,

III

5.0 7.0

3.0

10

...ffi

. . . . r-.,

iii
a:

........

..........
20

VR

0

"g: ::i~g ~gti:~~:"'
20% RATED VOLTAGE~

0

L L
7'

L

~ 5.0

.....
........

,Ur'r--.

60 Hz

i:'i
a:

,........

.J,.250 C"'-- f..(

~~

~
I-

~NON·REPETITIVE

~

~~C

0

./

2. 0

./

1.0

./

~ O•5

30

50

70

./

o.2
o. 1
o

r--....r-.,
100

./

20

40

60

80

100

120

140

160

180

2110

TJ, JUNCTION TEMPERATURE lOCI

NUMBER OF CYCLES

THERMAL CHARACTERISTICS
FIGURE 10 - THERMAL RESPONSE

=
c::
n
,
.
"Orn~~~~IfmBm
-I--;=:::j ~Ppk

.... 0

~~

~~

Ppk

~

0.5

0,3 ....

DUTY CYCLE' tpltl
PEAK POWER, Ppk, is p"k of an

t--t-i-t+++++-+--:bo-F-I--'"-+++-If-I-jl-t--iI-t--t-iH+++++-+--f

TIME equivalent squa.. power pulse.

0.2 .... aTJL' Ppk. ReJL ID + Ii - D) ,

~"

+ 'pl +

LEAD LENGTH· 114"

~tp) - r(tl)[

l---+-+-+-H-H.r-9-"-+-+++-~-I+II--I-+_I-+--II~.j.I-I1-11.j.111-1-+-I
uti~~:~C~=::I':!t-:n~:~::!t':::."!

l,..-f'"

.........re:

i ~ =~J~;:=~~ injunction:te~m~p:.retu:"~ab~O"~'h;e:a:~I!~m!m;m~;~~ii=let:~het~ie~:~is !::~rg::::;
:i
E fa
resista*
iii ~

8.1::

~

:: ,ritl + tp) = normalized value of
0.03 t~ent thermal
~ a: 0.02 ,-II .nnetl + tp, ~

J....n I I III

==
=

10 that it win not significantly respond to heat
surges generated in the diode as a result of pulted -_
operation once _eady-state conditionsn achieved.
Uti", the measured value of TL, the junction tim- p.lllure may be d..~nni:O:~Y:
I III
-

ret) = normalized value of transient thenn.1 resistance

~ 0.05 - at time, t, ie.:

~ t;

-

I I 1111 ~J - TL

I

I JLI I

I 1111

0.0~'~2~~~o.~5.J..t-'--';1;';.0~"""'2t..O'-~~5;';.0~1-LJ';\'0.--L,.-;2!;;O-L-.L.-;5"0"""-'f.,OO~-J..-;200;;--,J.~-;5:!;;1IO;'-'-'-;'':!.07k-l-;2~.O:-:k~'--'::5-:!.0':-k.L...L-'-':,!;-OkC-'-;;;!20 k
t TIMElmsl
NOTE 2 - AMBIENT MOUNTING DATA
Ollte shown for thermal rftist8nc. junction-to·ambient (R.JA)
for the mounting. 1h000n i. to b. ul8d .. typk:.1 guidelln. _u"
for pr.liminary enrgin..,ing or in c ... the ft. point temperllt'ure
cannot be rn,tuur-.d.

FIGURE 11- STEADY-STATE THERMAL RESISTANCE
50

SINGLE LEAD TO HEAT SINK
r-INSIGNIFICANT HEAT FLOW
THROUGH OTHER LEA~.~

X
/ ' ","

./
....... 1"""

v0
0

/'

--,...

1..,,/ ~

1/8

/'

V

....

/

-

_ _ _ MAXIMUM

---TYPICAL -

..- - -- ..,_....

TYPICAL VALUES FOR R8JAIN STILL AIR

L,./ ....

/"

/

~

V

-~

HEAT SINK, EnUAL
LENGTH

•

LEAD LENGTH L (IN)

1/8
50

3

-

3/1
112
5/8
L, LEAD LENGTH (INCHES)

314

MOUNTING METHOD 2

7/8

1146

53

28

..

3/4

RsJA
·CIW
CIW

P.C. Board Wh.... Av.118bt. Copper
Surface are. i. small.

VlICtOr Push·ln T.,."lnels T-28

1/4

1/2

.,

1/4

MOUNTING METHOD 1

1ff~1J

'(,-

.... -BOTH LEADSTD

MOUNTING
METHOD

MOUNTING METHOD 3
P .C. Board with
1-112" III 1-112" Copper Surfac•

MR501, MR502, MR504, MR506, MR508, MR510 (continued)

FIGURE 12 - APPROXIMATE THERMAL CIRCUIT MODEL

THERMAL CI RCUIT MOOEL
(Fo, Hilt Conduction Through the Leads)

T A = Ambient Tempera1'ur.
TL = Lead Temperature

RIJS(K)

T C - C • • Temperature
T J .. Junction Tempereture

RSS "" Thermal Resistance. Heat
Sink to Ambient
RBL'= Thermal Resistance, Lead
to HeetSink
A6'J = Thermal Resinance. JunetiontoCau
Po = Total Power Dissipation ..
PF + PR
P F .. Forward Power Dissipation
P R = Reverse Power Dissipation

(SubscriptS (AI .nd (K) reie, to anode and cathode side. respectivelv.)
Values for thermal re.istance components ere:

= 46o C/W/IN.

RBL

Typically and 480 C/W/IN Maximum.

RfJJ = 100 C/W Typically and 16o C/W Maximum.

The maximum lead temperature m8lY be found •• follows:

TL" TJCm.x)

u . of the ilbOYtl modet permits junction to leed thermal
for any mounting configuration to be 'found. For a
given totlll lead length, 10Wftt velua occur when one side of the
rac:tifler i. brought.s close .. possible to the heat link. Termsln
resisUI~

-b

TJL-PO

where

the mode' signify:

TYPICAL DYNAMIC CHARACTERISTICS
(TJ = 25°C)
FIGURE 14 - REVERSE RECOVERY TIME

FIGURE 13 - FORWARD RECOVERY TIME
1.0
]
w

:II

7~

or--...'
Vff):

;:: 0.51-- tf,

~
8
w

""
""

i

...

L-

W

VI,

I--

1111

D.3

VI,-2.0':-

,..

~

-

Q

0.2

'"

0

8

5.0

~

3.Of-

;:::
~ 7.0
w
>

IF=200mA

w
a:

......."'1-..

"-

il:;
cc:~

Q

E

I"- ~~

]

0.

.;

(Overshoot not significant below
Ip 200 mA/
r
O. 1
0.5 0.7 1.0
2.0 3.0
0.1
0.2 0.3
IF. FORWARD CURRENT (AMP)

5.0 7.0

10

2.0 ,

IR

e-

I

1.0
0.1

FIGURE 15 - RECTIFICATION WAVEFORM EFFICIENCY

""~

0.5

i

U 0.3

u:
::;

.. 0.2

7D

....... D~TlNbMLlho~
......
1.0 kHz VALUE

O.7

IT"rTt" r-_
....
~MEASJRJO A1TA
CURRENT INPUt wlvE~o~J

-VV'v
-

0.1
1.0

0.3

5.0 7.D

2.0 3.0
0.5 0.7 1.0
IR/IF. DRIVE CURRENT RATIO

lD

"""...........

3.0
5.0 7.0 10
20
30
REPETITION FREDUENCY {kHzl

....

5D

~

I'

~~

r--....
j'., .....
10

J1.1U---2.0

i I I I II

0.2

i'

'"

'::::i'

I-..

FIGURE 16 - JUNCTION CAPACITANCE

-

1.0

-~ l'..
..........

W,J

0

50

70

100

1147

7.0
D.l

0.2

D.5

1.0
2.D
5.D
lD
20
VR. REVERSE VOLTAGE (VOLTS)

50

100

MRS01, MRS02, MRS04, MRS06, MRS08, MRS10 (continued)

RECTIFIER EFFICIENCY NOTE
FIGURE 17 - SINGLE-PHASE HALF-WAVE
RECTIFIER CIRCUIT

The rectification efficiency factor

(J

shown in Figure 15 was

calculated using the formula:

V2 o (dc)

RL
P(dc)
0=--=---·100%=
p(rms)

V2 o (rms)

For a square wave input of
amplitude V m • the efficiency

factor becomes:
V2 o (dc)
V2 o (ac) + V2 o (dc)

RL

·100% (1)

(A full wave circuit has twice these efficiencies)

As the frequency of the input signal is increased, the reverse re-

RL

For a sine wave input Vm sin (wt) to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:
V2m

,,2RL
4
O(sine) = --;;;-. 100% = ,,2· 100% = 40.6%
m

2RL
O(square) =-2-· 100%=50% (3)
Vm

covery time of the diode (Figure 14) becomes significant, resulting
in an increasing ae voltage component across RL which is opposite
in polarity to the forward current, thereby reducing the value of
ttle efficiency factor (1, as shown on Figure 15.
It should be emphasized that Figure 15 shows waveform efficien-

cy only; it does not provide a measure of diode losses. Data was
obtained by measuring the ae component of Vo with a true rms ac
voltmeter and the de component with a de voltmeter. The data was
used in Equation 1 to obtain points for the figure.

(2)

1148

MR751 (SILICON)
MR752
MR754
MR756
Designcr!-l Data Sheet
HIGH CURRENT
LEAD MOUNTED
SILICON RECTIFIERS
HIGH CURRENT LEAD MOUNTED RECTIFIERS
100-600 VOLTS
DI FFUSED JUNCTION

• Current Capacity Comparable To Chassis Mounted Rectifiers
• Very High Surge Capacity
• Insu lated case
Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

MAXIMJM RATINGS
Symbol

Characteristic
Ipeak Repetitive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage

MR751 MR752 MR754 MR756 Unit

VRRM
VRWM
VR

100

200

400

600

Volts

VRsM

120

240

480

720

Volts

70

140

280

420

Volts

Non-Repetitive Peak Reverse Voltage
Ihalfwa"", single phase, 60 Hz peak)
RMs Reverse Voltage

VRIRMs)

Average Rectified Forward Current

10

(single phase, resistive load,
60Hz.) See Figures 5 and 6

Non-Repetitive Peak Surge Current
(surge applied at rated load
conditions)
Operating and Storage Junction
Temperature Range

221TL : 60°C, 1/8" Lead Lengths) Amp
6.01T A :600 C,P.C.
Board mounting)

IFSM

400 Ifor 1 cycle)

-65 to +175

TJ, T stg

Amp

°c

ELECTRICAL CHARACTERISTICS
Charact.. istic and Conditions
Maximum Instantaneous Forward Voltage Drop

Symbol

Max

Unit

vF

1.25

Volts

VF

0.90

Volts

IR

0.25
1.0

mA

(IF: 100 Amp, T J: 25°C)

Maximum Forward Voltage Drop
(IF = 6.0 Amp, T A: 25°C, 3/8 inch leads)

Maximum Reverse Current (rated dc voltage) T J""250C
TJ:l000C

MECHANICAL CHARACTERISTICS

STYLE 1:
PIN 1. CATHODE
2. ANODE
DIM

CASE: Void free, Transfer Molded
MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 350°C 3/8" from

A
B

case for 10 seconds at 5.0 Ibs. tension

D

FINISH: All external surfaces are corrosion-resistant, leads are readily solderable

K

MI LLIMETERS
MIN
MAX
10.03 10.29
5.94
6.25
1.27
1.35
25.15 25.65

POLARITY: Indicated by diode symbol
WEIGHT: 2.5 Grams lapprox)

CASE 194

1149

INCHES
MIN
MAX
0.395 0.405
0.234 0.246
0.050 0.053
0.990 1.010

MR751, MR752, MR754, MR756 (continued)

FIGURE 2 - MAXIMUM SURGE CAPABILITY,

- - --

FIGURE 1 - FORWARD VOLTAGE
700
500 r--TJ= 250 C

./

100

r-- f-TYPICAL
I

r---..L
!z
-...........:.. ""'O""I/~
::;300
i"""- :?'I't.
.............
'"

~ 200

25 0 C

.......

'"~

50

i""'r--r-.

ffi

r-1.0

2.0

10

5.0

50

20

100

NUMBER OF CYCLES AT 60 Hz

I

10

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT

7.0
+0.5

5.0

z
~
z
3.0
I;;

'"

~

~ ......

80

/I

'"0

~

...............

60

I

20

::>

i

~

III

I

5 30
t-

lr

25 0 C

~ 100

:E

~

Ii"

~'r'I'f

.......

/

I

r--r-.
r--....
J),t. ~tc'
........1'--

I/fP~j--....

W

1/ / '

70

0:

.............

::>

:I:

a;

VRRM MAY BE APPLIED SETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS T PRIOR TYURGE

W

MAXIMUM

V

/

200

...........

~

5400

V

/

300

600

/

G

2.0

3-.§"

-0.5

t-

al

1.0

u

~

-

-1.5
0.3
0.2
0.6

I
O.S

-2.0
1.0

1.2

1.4

1.6

1.S

2.0

2.2

2.4

'--

......

TYPICAL RANGE
-1.0

8

0.5

2.6

0.5

0.2

VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

1.0

.......

I,...-

2.0

I?'

5.0

10

20

50

100

200

IF, INSTANTANEOUS FORWARD CURRENT (AMP)

FIGURE 4 - TYPICAL TRANSIENT THERMAL RESISTANCE
20r---.---r-'-.---r--r-r.-,,-r---'---r-'-'---r-'--~~'-r---'---r-'-'---r-'-~I~

~_

~~

10

:= ~ 5.0
!z
OW
~~
~ ~

~~

~ ~

i= .....

~~
=! ffi
§~
~

a::

3.0

-===-!~~~~IL~"~~~L~~!!~~~~~II~~II~ll~n'!
~

~

f---

3/S':=

1/4,1-

HEAT SINK

W"

Both leads to heat sink, with lengths as shown. Variations in
2.01---f--1--+-1--t--t-t-+-+-t-l---t_-::_1""'=t--t--1--+- R6JL(t) be10w 2.0 seconds are independent of lead connections
L.........
of 1/8 inch or greater,and vary only about ±.20%from the values
rshown. Values fortimesgrtater than 2.0 seconds may be obtained
1.0
by drawing a CUM, with the end point (at 70 seconds) taken .
from Figure 8, Dr calculated from the notes, using the given
0.5
curves as a guide. Either typical or maximum values may be
used. For ROJL(t} valuas at pulse widths less than O.I ... ond,
0.3
,.".
the above curve can be extrapolated down to 10 lAS at a can·
,IIfIIII'

-

==
_
:
_
_

0.2.~~~~~:t~==:t~~t;~:t~==:±==~:j=;~:±~E:ltli:.nu~i'j"n~g~~.oj~~·I~__~I~_~I_L-I~I~IL-~I~~-~
0.1

0.2

0.3

0.5

0.7

1.0

2.0

3.0

t, TIME (SECONDS)

1150

5,0

7.0

10

20

30

50

70

MR751, MR752, MR754, MR756 (continued)

FIGURE 6 - MAXIMUM CURRENT RATINGS

FIGURE 5 - MAXIMUM CURRENT RATINGS
28

7.0

'" ...... " ,

I

114"

.........

8""

......

.......

'"

....

0

--

0

20

40

60

80

100

~

6.0

~
~
w

"',
"'

~

"
..

::,.'"

~

Tl' LEAD TEMPERATURE (OCI

50

-

"-

.~

~

..

·l~ ~

.....

\/,

....

~

~ 1.0

""

160

6~(lPK/IAVE

180

g
200

.... ~

o

20

,,~

.",~" ~

/

....

- 6.281

I

I
I

I
I

40

60

80

U

f· 60 Hz- I - -

~ ~j', ~

SEE NOTE

w

- - - I(pkl' 51avg
_______ ••• l(pkl'IO I,vg ____ • l(pkl' 2Olavg-

~

",~

'""10\:

V

I

,... RESISTIVE-INDUCTIVE LOADS
CAPACITANCE LOAOS-l~ ~

..~'"
.(
~~

o
~ 2.0 f-ROJA • 40 C/W,

~,

140

I~""i

3.0

to

~~

120

ReJA • 25oC,IW,
SEE NOTE

..

~ 4.0

...... .......
.......... '" .......

5/8"

6.0

13

LENGTHS -

........

......

............

.......

~
...
:ii

80TH LEADS Til HEAT _

~~~H~~~

.....

~ ,~

0:

RESisTlvE-INDUCJIVE LOt DS
I -

L·1I8"

~

~
100

120

140

.........

160

180

200

TA, AMBIENT TEMPERATURE (OCI

FIGURE 7 - POWER DISSIPATION
NOTES
32

THERMAL CIRCUIT MODEL
!For Heat Conduction Through The Leadsl

...~
~

RflSCKJ

z
0
;::

~

ill
i5

16

'"itw
~

j

Use of the above model permits junction to lead thermal resistance for any
mounting configuration to be found. Lowest values occur when one side of the

~

rectifier is brought as close as possible to the heat sink as shown below. Terms in
the model signify:
TA '" Ambient Temperature
R6S "" Thermal Resistance,HeatSink to Ambient
TL '" Lead Temperature
ReL = Thermal Resistance, Lead to Heat Sink
TC '" Case Temperature
R6J "" Thermal Resistance,Junction to Case
TJ '" Junction Temperature
PF = Power Dissipation
(Subscripts (A' and (K) refer to anode and cathode sides respectively.)
Values for thermal nmstance components are:
R8L'" 400CIWIIN. Typically and 44Q CIWIIN Maximum
R8J '" 20 CIW Tvpically and 4 o C/W Maximum

IF(avgl, AVERAGE FORWARD CURRENT (AMPI

FIGURE 8 - STEADY STATE THERMAL RESISTANCE

Since R8J is so low, measurements of the case temperature, T C. will be approximately equal to junction temperature in practical lead mounted applications.
When used as a 60 Hz rectifier, the slow thermal response holds T J(PKI close to
TJ(AVGI. Therefore maximum lead temperature may be found from: TL '"
17So-RSJL PF. PF may be found from Figure 7.
The recommended method of mounting to a P .C. board is shown on the sketch.
where RSJA is approximately 2SoC/W for a 1-112" x 1-1/2" copper surface area.
Values of 400CIW are typical for mounting to terminal strips or P .C. boards where
available surface area is small.

351---+--+--+--1-----1.

~~30
",u

t;~

ffi~25r----+----~--~~r-~~~~1-----r---~'

"':~20r----+----~--~~~~----1---~~~.
....
",2

~~15r----+--~~~~r----+~~~~~r---~----~

~§10r_--~~~~~~~~~~~~

~~

1/4

3/8

112

5/8

1.0

L, LEAD LENGTH flNCHESI

1151

Recommended mounting for half wave circuit

MR751, MR752, MR754, MR756 (continued)

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 10 - REVERSE RECOVERY TIME

FIGURE 9 - RECTIFICATION EFFICIENCY

-

100

30

":::.~-

~~

70

~

20
~

'\

i

TJ ~ 175'C

50

~

l-

~

;

30 I-

r-

I

1.0

\

\

.i

2.0

1\

\

10

20

"'-

30

50

IF

I

0.2

0.1

0.7

........

~200

0.3

ts

70

.J

50

~

30

.,:#

~ 0.2

20
10
7.0

10

20

30

50

1_ 1,,_1

2.0

1.0

3.0

70 100

-

5.0 7.0

10

TJ~25'C

/
/

v"

-----

1.0

V., REVERSE v()LTAGE IVOlTS)

-

I

--- --

0.1
5.0

0.5 0.7

I

~

~lOO

3.0

i"- ............. ~

~VF~I

c-

~

2.0

0.3

I--

....~ 0.5 c-

TJ ~25'C

iiiE;
!il

1.0

'"

...... 1'-,

FIGURE 12 - FORWARD RECOVERY TIME

1.0

f'.

..........

.............

1./lF, RATIO OF REVERSE TO FORWARD CURRENT

FIGURE 11 - JUNCTION CAPACITANCE

300

........

1.0
70 100

1000
700

......

,

3A"
I~'"

:o?=Jr[

REPETITION FREQUENCY 1kHz)

500

TJ ~ 25'C

......... r--

::>..

"' 3.0 -

\

~

5.0 7.0

.........

i'.

IF~5A

i

1 1 III
3.0

""""""'"

7.0
E;
~ 5.0

1\

ruu --2.0

i!'!
iii

\

\

f\J'v1

.... 10

\ . TJ~25'C

CURRENT INPUT WAVEfORM

j

20

~

~ I"-

/"

,......,. ..-/

V

2.0

V3.0

v,,~IV

---I I
v ,,=2V

5.0

-l-

r-r7.0

10

iF, FORWARD PULSE CURRENT(AMP)

FIGURE 13 - SINGLE-PHASE HALF-WAVE
RECTIFIER CIRCUIT
,,'RL
4
a(sine) = - - . 100% = - . 100% = 40.6%

V' m

,,2

(2)

4RL
For a square WINe input of
amplitude V m. the efficiency

factor becomes:

2RL
U(square) = -2- . 100%= 50% (3)
Vm

RL
(A full wave circuit has twice these efficiencies)

The rectification efficiency factor a shown in Figure 9 was
calculated using the formula:

As the frequency of the input signal is increased, the reverse re·

V'o(dc)

covery

~me

of the diode (Figure 10) becomes significant, resulting

in an increasing ac voltage component across R L which is opposite
in polarity to the forward current, thereby reducing the value of
the efficiency factor 0, as shown on Figure 9.

P(dc)
RL
V'o(dc)
u=--=---'100%=
,100% (1)
p(rms)
V'o(rms)
V2 0 (ac) + V2 0 (dc)

It should be emphasized that F igure 9 shows waveform efficien-

RL

cy only; it does not provide a measure of diode losses. Data was
obtained by measuring the ac component of Vo with a true rms ae

For a sine wave input Vm sin (wt) to the diode, assumed lossless,
the maximum theoretical efficiency factor becomes:

voltmeter and the dc component with a dc voltmeter. Tho data was
used in Equation 1 to obtain points for Figure 9.

1152

MR810 thru MR814
MR816thru MR818

FAST RECOVERY
POWER RECTIFIERS

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-1000 VOLTS
1 AMPERE

. . . designed for special applications such as de power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interfer·
ence and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 200 nanoseconds providing
high efficiency at frequencies to 250 kHz.

--1@l-B

DESIGNER'S DATA FOR "WORST CASE" CONDITIONS

The Designers Data Sheet permits the design of most circuits entirely from the
information presented. Limit curves - representing device characteristic boundaries are given to facilitate "worst case" design.

r=

K
MAXIMUM RATINGS
Rating

Symbol

P..k Repetitive R ......
Voltaga

VRRM

WQrkin; Peak Rever.

VRWM

MR810

Voltage
DC Siocking Voltage
VR
Non--RepetttlvePeak
VRSM
Reverse Voltage
RMSR_Voll8ge
VRRM
AverageRlICtlfllld
'0
ForwardeulT8nttsingie
ph8lll,l'ftistlveIOld.

T

MRS11

MR812

MRSt4

MR813

MAStS

MR817

MA8tS

50

100

'00

300

100

'00

300

400

36

7.

14.

21.

400

800

800

1000

500

800

1000

1200

Votu

420

'60

700

Volts
Amp

,..

L il

n

Unit
Volts

-I

CATHODE/
BAND

"SM

30

ITA = 750 Cl
Operating Junction
Tampll"lrtur$ Range

TJ

-6510 +150

StorageTemp8l'3h.1re

~

T""

-6510+175

Am..

reted 10000condltions)

Aarlge

1
K

1.•

-750 CI

N~::~e(:~;=I~r:

I-D

MILLIMET~RS

DIM

A
THERMAL CHARACTERISTICS
Ctwactarlstic
Thermal R"lmmca, Junction 10 Ambient
(Typical p,.lmtecl Clfeuit Board Mounting)

...,

Symbol

R8JA

I

Un•

C"'

6'

I·

B
0
K

MIN
4.70
2.54
0.76
27.94

INCHES
MIN
MAX

MAX
5.20

.71
0.86

0.185
0.1011
0.030
1.100

0.205
0.10
0.034

CASE 59·01
CONFORM'S TO 0041

ELECTRICAL CHARACTERISTICS
Characterldlc
InstentaneoulFOfWIt'dVoitage
OF - 3t14 Amp, T - 1SOOC)
Forward VoitIgII
U~"1.0Amp, T _260 CI
RIIIIIfR Curnnt (rated de voltage) TA .. 25°C
T -1000C

Symbol

Min

"

TV.

M"

1,1

1.'

VF

1.•
1.•
50

'.

Un.
Volts

"1.

.A

'"

CASE: Void Free, Transfer Mold!!d

FINISH: External leads are plated
and are readily solderable

REVERSE RECOVERY CHARACTERISTICS
Ch..acteriltic

Svmbol

R....... RecovervTlme
(IF" 1.0 Amp to VR" 3OVdcllFlgure211
!IF = 20 mA, IA • 2.0 mA, TektrOniX &PIug-lnHFigure 22)

'.

Aevene AEO\I'8IY eurretlt
(IF = 1.0 Amp to VR ~ 30 Vdel(FiFre 21)

MECHANICAL CHARACTERISTICS

Min

TV.

M"

'00

750

1.•

3 .•

Un.

.'
n.

Amp

'RM(REel

3.0

1153

POLAR lTV: Cathode i ndicatAod by

Polaritv band
WEIGHT: 0.4 Grams (Approximately)

MR810 thru MR814/MR816 thru MR818 (continued)

FIGURE 1 - FORWARD VOLTAGE
0

I I

V

30

/'
./

v-

FIGURE 2 - MAXIMUM SURGE CAPABILITY

..... ....

100

1/

0
TYPICAL

J

.
w'"

VV

0

./'

V

5

-~

a'"
~

"'~
~=

:: ~ 50
z'"
~~ 40 '---

,.

~~ 30 r-

6.0

I

;!:
«
"

I;;

:;:

--~CLE

o

2.0

I

IIIII
II Lli
5.0 7.0 10

3.0

i"'r--

AI

r-

20

3D

50

70 100

NUMBER OF CYCLES AT 60 Hz

I'/

1.0

2.0

1.0

I
III

-

III"

e:::r

10

I

3.0

each cycle of surge•

"NJ

~ 20

~

z

is operated such that TJ. 150oC;

VRRM may be applied between

i'

!;:~ 60

"'w

~
'"ffi

~~rl;: .urge~ the ~t:fi~ I I

i'"

oa:: 70

MAXIMUM

7.0

~

90

;;;80

,/

I - _ TJ=2!i°C

.......... ......

FIGURE 3 - TEMPERATURE COEFFICIENT
4. 5
4.0

o. 7
J
I

O.6

.~

3.5
3.0

i ~:

o.3

~ 1. 5

I

0.2

TYPICAL RANGE

/

~ 1.0

I

r

A
"'1

U 0.5

u:

I

o. 1

1

6
0

tt;.

8

0

.v

-0.5
.1.0
-1.6
-2.0

0.07
0.06
0.4

0.8

1.2
1.6
2.0
2.4
2.8
Yf.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

3.2

-2.5
0.05

FIGURE 4 - FORWARD POWER DISSIPATION
3.2

.1.

1

I(PK) -20I(AV)

2

INDUCTIVE LOAD)

~

~V

2
8

0.8

L~
A ~ ./

6

TJ~15OoC- t--

1.2

1.6

20

2.4

2.8

~o 4~
/ . / 2.0
/. ;r V

/ / ~ V ./

4

~~

0.4

/

8

0

// ~

po

I(PK)=/7
I(AV)

6

/ 1/ h v

~~

60

FIGURE 5 - FORWARD POWER DISSIPATION

~~ESlJTlVJ,

i/ /

5.0
10
20
0.2
0.5
1.0
2.0
iF. INSTANTANEOUS FORWARD CURRENT (AMP)

0

X
I-V~.o/
//

V/

0.1

V

V

de

TJ~150oC

~ "/

~~

4
~ ....
0 .......
0.4

,

0.8

1.2

1.6

2.0

IF(AV). AVERAGE FORWARD CURRENT (AMP)

IF(AV). AVERAGE FORWARD CURRENT (AMP)

1154

2.4

2.8

MR810 thru MR814/MR816 thru MR818 (continued)

MAXIMUM CURRENT RATINGS
(SEE NOTES 1 and 21

SINE WAVE INPUT

SQUARE WAVE INPUT

FIGURE 6 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
£

2.S

~
....

2.4

ffi
0:
~

..,
CI

r-~

.1

2.Or-l~

~

1.61--3/i?"'--

~
w
co

1.

~

ffi

;c

~

r-....

~

~

0.S

60

70

90

SO

" I"
1"-..

'"

5~ r-3/8"
r-...i

f'-.. r.....
1'--. ..........
...

~~

1"--

~

~l'
i:"'--, ~

110

120

130

140

0
50

150

60

70

FIGURE 8 - 1/8" LEAD LENGTH, VARIOUS LOADS

--~

~o:

a

IPK
IAVG

.........

2.4
2.0

~

(~ESISTI~ElINDIUCTIVb

l"'-..

-

1.2

w
co

--. ~

..........

r--

: o.S

..... ~

......... ~

........ .......

j

SO

90
100
110 120
fl. lEAD TEMPERATURE (OCI

130

140

'"

150

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
E:

~

0:

..,~
CI

1.2

"""

1.0

0:

0.8

~

o.6

~

w

~
w

:<

~

~

I<

I'--.

......
-t--

-

......

-

~

0
50

w

~

ffi

;c

~

130

140

150

"

I'--.

140

70

"

150

1155

~

"" " "
."'
~

90
100 110 120
fl. lEAD TEMPERATURE(OCI

SO

130

~

140

150

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
1.4
1.2
1.

r--.

r--..

1

.....,

........ I'--.
O~ --.........; I'..

f--de

........... ..........

j.."

BJA = 55oCiW- t--

""

CAPACITIVE lOAD
-......; ~
I(PKI • 2.0 10 5.0
:>' s::,."
I(AVI
10~ ~
~
~"
20

D. 6

O.4

0
50

I'..

"""'"
.......... ........;
...........~

~t-..
l~

SO.2

~

i"-,

'"&

60

~

u.

.......

SO
90
100 110 120
TA,AMBIENTTEMPERATURE (OCI

D.4

CI

r--

......

70

130

..........
~
~

~
.. D.S

.........

02
611

...........

~

O.S

"'>""

~
B

~

f'.,
~
CAPACITIVE lOAD
)---- IWKI = 5.0'pc;;, ~
O.4
'IAVI 10
I----::::
~
20
......
0
50

1.2

ffi

8JA = 650 CiW-

~

r--.

~

~
....

".,RESISTIVE·INDUCTIVE
lOAD

1--.

i

i---I(PKI = 20
1.6r---I(AVI

.

1.4

~

2.0

ffi

~

70

~! ;

>

~

60

~~
~

........ de

w

O. 4

f'...: 1"--'
r--.....- 2"
~
......

.........

......... 2.0 to
...... ~O
........... lO"t--.

co

~,

~~

0
50

I""'--...

2.4

CI

.........

2.8

~
....

..,_

w

:<-'-

E:

.~

I'..
,........ K
10 r-....
...........

......

I'.

..... r--..."

FIGURE 9 - 1/8" LEAD LENGTH, VARIOUS LOADS

.......... .:--,

~ 1.6

ft

-1r

r--

SO
90
100 110 120
Tl. lEAD TEMPERATURE (OCI

Tlo lEAD TEMPERATURE (OCI

2.S

"'
r-....... r--.

5

~~
~

100

r---

5/S~ t--

0

."

...... 1"'t....

BOT~

lEAJS TO H'EAT _
SINK WITH lENGTHS
-)---AS SHOWN

o

-

AS SHOWN

--

2t-<~ ...... ~

0
50

r-....

r--....

5" o.4

~

.5H=~,

.1

=~NTKH~I~~DCE~~~~:T -

f'.,

"\

.1

RESISTI~J1~~UCTlVE_

~

I"-.

FIGURE 7 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD

&.

~

611

70

90
100 110 120
130
TA. AMBIENT TEMPERATURE (OCI
SO

140

150

MR810 thru MR814/MR816 thru MR818 (continued)

FIGURE 12 - THERMAL RESPONSE

FIGURE 13 - THERMAL RESISTANCE

1.0

80

0 0•7
~ 0.5

~
~

0.3

~~

0.2

----JOTH LElos TO JEAT
EQUAL LENGTH

LEAD LENGTH = 1/4"

~~

0.1
~~ 0.07
-E~ 0.05

-

0

t-

-'

~ 0.02

,...-

V

°v/ ' V
10

./

0.0 1
0.05 0.1 0.2 0.4

1.0 2.0 4.0

10

20 40

o
o

100 200400 10002000 5000

./'"
..........
114

1/8

I,TlME (m.)

Pk

1---11--J

,../'

TYPICAL

f"""

3/8

1/2

5/8

3/4

7/8

NOTE 2

Ppk

Data shown for thermal resistance junction-to·ambient (6JAl for the
mountings shown is to be used as typical guideline values for preliminary
engineering or in case the tie point temperature cannot be measured.

DUTY CYCLE, 0 = Ip/ll
PEAK POWER, Ppk, i. peak .lan

Ip

V

.........V

LEAD LENGTH (INCHES)

NOTE 1

RJL

V

./
(SEE NOTE 1)

~

/'

I

MAXIJUM/

/'

.. <.>

!O,03

SIN~'

equivalent square power pulse.

TYPICAL VALUES FOR 8JA IN STILL AIR

TIME

To dDtermine maximum junction temperature of the diDde in a given situation,
the following procedure is recommended:

4.

The temperature of the case should be measured using a thermocouple placed
on the case as close as possible to the tie point. The thermal mass connected to
the tie point is normally large enough so that it will not significantly respond to
heat surges generated in tilt) diode as a result of pulsed operation once steadystate conditions are achieved. Using the measured value of Te, the junction
temperature may be determined by:

MOUNTING METHOD 1

H t::!=i
MH

TJ=TC+"TJC

where!:::. TJC is the increase in junction temperature above the case temperature.
It may be determined b~:
t. TJC=Ppk 'R9JC 0 + (1-0) ,,(11 +Ip)+,ltp)-,ltli]
where
rh) '" normalized value of transient thermal resistance at time, t, from Figure
12, i.e.:
r (q + tpl ::. normalized value of transient thermal resistance at time 11+ tp.

§

MOUNTING METHOD 3

P. C. Boa,d wilh
J.112"xl·1/2"copperOJ,f.ce

~?!"9=
ptane

FIGURE 14 - THERMAL CIRCUIT MODEL

T A" Ambient Temperature R8S'" Thermal Resistance, Heat Sink to Ambient
Tl = lead Temperature
R8l = Thermal Resistance. lead to Heat Sink
T C '" Case Temperature
R8J" Thermal Resistance, Junction to Case
TJ" Junction Temperature PO" Power Dissipation
(Subscripts (A) and (K) refer to anode and cathode sides respectively.)
Values for thermal resistance components are:
R8L = U:ZOc/w/IN. Typically and 12SOCIW/IN MaXimum
R8J IE 1fPCIW Typically and 3QOCIW Maximum
The maximum lead temperature may be calculated as follows:
Tl"'1SOO-.o.TJl
6TJl can be calculated as shown in NOTE 1 or it may be approximated
asfonows:
6TJL""" ROJL • PF; PF may be formulated for sine·wave operation from
Figure 3 or from Figure 4 for square·wave operation.

Use of the above model permits junction to lead thermal resistance for
any mounting configuration 10 be found. For a given total lead length,
lowest values occur when one side of the rectifier is brought as close as
possible to the heat sink. Terms in the model sig'nify:

POLARITY: Cathode to Case is standard,
Reverse Polarity indicated by
an "R" suffix, i.e" MR871 R.

1156

MR810 thru MR814/MR816 thru MR818 (continued)

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 15 - FORWARD RECOVERY TIME

FIGURE 16 - JUNCTION CAPACITANCE

0.5

~
w

.

0.3

>=

0

-V~r=1.L
_

~ 2
w
u

TJ=25;C

i'- r-. .....

<;

... V

>

~

~
...,

10

z

V

5z 1.0

0:

1

0.05 I
0.1

TJ J5 C
0

~

/

ffi o.2

i'" O.
...'":!i- 0.07

o~

z

.......

=>

~ 5.0

r-.

.."..
0.2

0.5

2.0

1.0

5.0

3.0
1.0

10

5.0

2.0

10

20

50

100

VR, REVERSE VOLTAGE (VOLTS)

IF, FORWARD CURRENT (AMP)

TYPICAL RECOVERED STORED CHARGE DATA
(SEE NOTE 3)
FIGURE 17 - T J

= 25Q C

FIGURE 18 - TJ = 75°C

1. 0

~
w
~

2.0
IFM = 20 A

.3
w

g
'"

'"

\.

......

~ o. 2

~

."

o.5

h ~

o. I

~

V- ""

~

~

~o.o

~ ~ ......

:~ p-2.0

5.0

>

5.0 A

\

w
80:

./. V

O. 2

~

o. 1

10

50

20

0.0 1
10

tOO

FIGURE 19 - TJ

.3.
w

2.0

= 100°C

IF~

1.0

5.0

~~

'"'" 0.02
1.0

V

2.0

5.0

I\A

10

20

1. 0

g

O. 5

~0

~>
~

......

5.0 A

U; ......
L&e :;..-1-'"

.0;
w

t;;

10 A

~ 0.05

50

100

= 1500C

~

,...-: v ......

ffi>. O. 1
8

10

= 20lA

,.,

Bl

10
do/dt, (AMP/ps)

FIGURE 20 - T J

~ o. 5

~

lOA

2.0

~

~ 0.2

r-.... ...... i-"

1.0 A

~ ::::;.V

di/dt IAMP/",)

2.0

i-"

V

5.0A

01/

J

'>

0.0 5

1.0 A

0.0

1.0

~

10 A

"-

V

W
0:

'"w
~

O. 5

'"

Bl
0:

~ 0.05

'FJ=201

1. 0

0:

O. 2
O. 1
lOA
0.05

1.0A

'"'" 0.01

I
50

100

1.0

I
2.0

5.0

10
di/dt (AMP/p')

di/dt, (AMP/ps)

1157

20

50

100

MR810 thru MR814/MR816 thru MR818 (continued)

FIGURE 21 - REVERSE RECOVERY CIRCUIT

NOTE 3
Reverse recovery time is the period which elapses from the
time that the current, thru 8 previously forward biased rectifier
diode, plsses thru zero going negatively until the reverse current
recovers to 8 point which is less than.10% peak reverse current.
Reverse recovery time is 8 direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier. recovery time is very circuit depend·
ent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiersafe rated under a fixed set of conditions
using IF ... 1.0 A, VR '" 30 V. In ordar to cover all circuit
conditions, curves are given for typical recovered stored charge
versus commutation d./dt for various levels of forward current
and for junctlon temperatures of 2SD C. 7SoC. 1ocPC, and

30"

115Vac 10k
60 Hz
2W

!>OW

NON·INDUCTIVE

UNIT
UNDER TEST

+--~[o)A

I.DAde FROM

.,

CONSTANT
VDLTAGESUPftLY
RIPPLE" 3 mVrms MAX

'"

lOW
30 Vdc

CONSTANT VOLTAGE
SUPPLYC>'-+_-<~=_ _

NON· INDUCTIVE

ISo"C.
To use these curves, it is necessary to know the forward
currant level just before commutation, the circuit commutation
dildt. and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

Cl

1.0 pF

+-____.3:::00:..;V~_-
and peak reverse recovery current URMIAEC)I can be closely
approximated using the following formulas:

MdlADJUST

Tl

120~VC
60Hz

Q

Cl

T,',
II

'AMIAEC) '" 1.41 )( [QR x dl/d~ 1/2

R1 =50Qhms
R2=250 Ohms
01 = lN4123

02= lN4001
03 = I N0934
SCRI ~ MCR729·10
Cl"'O.!itoSOJ.lF
C2",,4000,uf
Ll = 1.0-27pH

1"2

trr'" 1.41 x [ di/:t1

01

T1 = Vanac AdjUsts I(PK) and dl/dt
T2= 1.1
13= 1.1 (totnggerclrcUlt)

FIGURE 23 - TYPICAL REVERSE LEAKAGE

3

FIGURE 24 - TYPICAL REVERSE LEAKAGE

r- r- f-VR =400 V

r

./

TJ< 15 C
2

100°C

./

1
76°C

1

25~C

10- 1a

100

200

300

400

500

./
600

700

800

900

10-2
20

1000

VR. REVERSE VOLTAGE (VOLTSI

1158

30

.0

50

60 70 80 90 100 110 120 130 140 160 160
TJ. JUNCTION TEMPERATURE (OCI

MR820,MR821,MR822,
MR824,MR826
De!'oligT1PI'!'oI }lata

~hept

FAST RECOVERY
POWER RECTIFIERS

SUBMINIATURE SIZE. AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
5.0 AMPERES

designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes_ A complete line of fast recovery
rectifiers having typical recovery time of 100 nanoseconds providing
high efficiency at frequencies to 250 kHz_

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

MAXIMUM RATINGS
MR820

MR821

MR822

MR824

MA826

Ratl,.

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VRRM
VRWM
VR

50

100

200

400

600

Non-Repetitive Peak Reverse
V.,_

VRSM

15

150

250

450

650

Volts

VRtAMS)

35

10

140

260

420

Volu

RMS Reverse Voltaga
Averet!Ja Rectified Forward

.
.
.

10

Current
(Single ph.... resistive lOad,

5.0

0

TA -55·CIl1l
Non-Repetitive Peak Surge

IFSM

Current
(Surge applied at rated load
conditions)
Operating and Storage Junction

300

0

TJ.Tstg

Umt

Volu

-65 to +175

0

Temperature Range t2)

Amp

STYLE 1:
PIN 1. CATHODE
2. ANODE

Amp

DIM

·c

A
B
D

THERMAL CHARACTERISTICS

K

c_
Therm.. Resistance. Junction to Ambient
IRecommended Printed Circuit Board
Mounting. See Note 6. Page 81 ,

Symbol

Mo.

Unk

RUA

25

·e/W

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

10.03
5.94
1.27
25.15

0.395
0.234
0.050
0.990

10.29
6.25
1.35
25.65

0.405
0.246
0.053
1.010

CASE 194

ELECTRICAL CHARACTERISTICS

Choo_

Symbol

Instantaneous Forward Voltage

Min

Typ

Max

0.16

1.05

IIF -15.7 Amp. TJ ·'600C)
Forward Voltage

0.9

1.0

MECHANICAL CHARACTERISTICS
Volts

VF

(IF· 6.0 Amp. T J - 260 CI
Maximum R..... Current. (rated de voItagel

Unk
Volts

vF

'R

TJ '" 25°C

TJ-lOOOC

5.0

25

o.~

1.0

,.A
mA

Unk

REVERSE RECOVERY CHARACTERISTICS
Cho_.....

Symbol

Min

TY1I

MIl.

t"

-

100
150

200
300

Revane Recovery Time
ifF - 1.0 Amp to VR '" 30 Vdc, Figure 251
IfFM -15 Amp, dildt '" 25 A/jjs, Figure 261
Revene Recovery Current
(IF = 1.0 Amp to VR "" 3OVdc. Figure 25)

'RMIREC)

-

no

-

Amp

2.0

(1 I Must . . der.ted for rev.... po~r dl.-ipMion. S- Now 3
(2) Derllte •• shown I," Figure 1.

1159

CASE: Void Free, Transfer Molded
FINISH: External Surfaces are Corrosion Resistant
POLARITY: Indicated by Diode
Symbol
WEIGHT: 2.5 Grams (Approximately)
MAXIMUM LEAD TEMPERATURE
FOR SOLDERING PURPOSES:
3500 C, 3/S" from case for 10 s
at 5.0 lb. tension.

MR820, MR821, MR822, MR824, MR826'(confinued)

MAXIMUM CURRENT AND TEMPERATURE RATINGS
FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION
TEMPERP...... .........

reverse power'dissipation is also included. ratings vary
with reverse voltage as shown on Figure. 2 thru 5.

.... ~
-....... 10DC/W ...........
......
1'-..
.......
'-...... ~
20~
r-'-...... .......... ::--.. C"'-- ~ -....;,

""

0

0

.........

~?

25 DC,w'"
0

30DC,w'"
400C,w

0
60

NO'I"E1
MAXIMUM JUNCTION TEMPERATUIU. OERATING

ReJA = 5,ODC/W

80

zoo

100

'"

"-

400

300

When current ratings are computed from T J(max) and

SOO

VR• PEAK REVERSE VOLTAGE (VOLTSI

RESISTIVE LOAD RATINGS
PRINTEO CIRCUIT BOAflO MOUNTING - SEE NOTE 6, PAGE II
FIGURE 3 :.... SQUARE WAVE INPUT

, FIGUR,E 2 - SINE WAVE INPUT

a::

7.0

~

lIeJA = Z5 DC,w

;: S.O

...... f:::-.
ffi
0:
r-.....
~ 5.0
Q

0:

~

4. 0

"

~ 3.0
w

~
~

:;c

2.0--:-;

;; 1.0

~ o

" !"

,,

"-

~

~

'"

VR=10V(PKI

......... r-....

"'''

~

.....

........

.....

- :=t-Sor"v V ....... r....... ........ ......
'200 V

"

I

20

40

60

80

.......

100

I-

6,0

!13

5.0

a: 4.0

~
~

100V

~

I........

~
Q

JOV

IS ....

4O~V

r-

7.0

·1

......
...... .......
.......

R~JA

i"...: J-....

.......

3.0

~

'" !'to-..

'\

lZ0

140

>

«

","
ISO

;;

~

2.0

~

r-...

.........

I I

0
20

180

40

01'-..

".....

"- ~

0

'

"'.t'
400 V

~

~ ........

SOOV
40

60

80

....... :::-..

:::>

'"'
Q

50V"

~
.........

-....;,

b- ::-...

.....
120

"'-

r-... i'..

140

f".. l""
160

lBO

TA. AMBIENT TEMPERATURE (DCI

I" :::-..

I
100

140

120

160

180

........

~;;:

1.0

~

0

..... iI'" r-..

200~1'-..1>-.,

-raY

I,/[}.

20

VR = 10 V (pkr

i'- :::-..

I"-

.........

w 2.0

.........

100

,3.0

j

100 V

l"- i<-.

........

")

......
60

R8JA • 400C,w

4.0

~

~ .........
2r

i!Z
w

'l'-

./

FIGURE 6 - SQUARE WAVE INPUT

V!=I~V(~KI

" > ,"
'>
'

100V

5.0

::--:

l"- e:--..
r-....

sov

"K
"(

TA. AMBIENT TEMPERATURE (DCI

R8JA' 4ODC,w

~

r-.... ~
I".........

600 V
60

FIGURE ,4 - SIN!; WAVE INPUT

01"

........

r- OO ~,.,.. .....
1.0 r- ~~400I,/r'-,.
V If' ......

TA. AMBIENT TEMPERATURE (DC I

5.0

c-.. ::-- VR=10V(PKI

~

1/ r-...

w

t'-l

.........

..... ........

= 25DC,w~

........
.......

BOO V

40

sov

r-...; ~

60

100 V

r-.. 'f-..

......

..... r....... / r-... ......
J-.... ......
~ t'-,
"- I"~

80

100

120

140

TA. AMBIENTTEMPERATURE (DCI

1160

~,

r......... i"
160

180

MR820, MR821, MR822, MR824, MR826 (continued)

MAXIMUM ctJRRENT RATINGS
NOTE 2
Current derating data is basad upon the thermal responte data of Figure 29 and the forward power dissipa·
tion data of Figures 19 and 20. Since reverse power dissipation is not considered in Figures 6 thru 11. addi~

tional derating for reverse voltage and for junction to ambient thermal resistance must be applied.

FIGURE 6 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
0::

.

20

RESISTIVE·INOUCTIVE
LOADS
80TH LEADSTD HEAT
SINK WITH lENGTHS AS SHOWN

-

16

....... 1"-....

a:

a
g

FIGURE 7 - EFFECT OF LEAD LENGTHS,
RESISTIVE LOAD
20

~
~

I.

12

I--

~

~

t--

~
w 8.0

4.0

j

0
75

........

1)4"

96

-

115

125

-....

r--

135

~

155

165

~ 0

175

75

85

95

105

TL, lEAD TEMPERATURE (OC)

6

g

~

1
2r--

~
w 8.0

~
~

4.0

j

0

I(PK) =W (RESISTIVE/INDUCTIVE LDADS)
I(AV)

"'- ....... r-.....

r-........ ::---..... ./

it'

r-- :>
--

'-

t---

85

95

~
...........

..... r-.....

6

a::a:
<>

g

"'>
......... r-...... "'<....

--

12

~

~2D

a:

~

./ 0<......:: ~

w

8. 0

~~

4.0

115

105

clPACITI'VE- f - LOADS

/./10

BOTH lEADS TO HEAT SINK

75

I.
0:

....... ~ ........

"-

20

:>

5

-

"'..... ........

125

~

135

145

~

155

l'o.
165 175

j

~
a:

J I

6.0

R9JA·250CN/

a: 5.0
:>
<>
Q
a: 4.0

~

~
w

~w

~

......

........ ="

......

r-3.0
r-

2.0 R9JA •

~

I""-

95

r-. :-- ::::" Ib.

400C~~w'

40

BO

: / 17'" -...; ~ ~

80

~ 5.0

.......

g

r-.;: ~

......

~

120

140

160

~

3.0

~

2.0

~

175

I(PK) = 2 (R!SISTIJE/INOJCTlVE 1& I(AV)
lARGE CAPACITIVE lOADS)

/

5

........

K

105

~

115

125

135

145

156

~

165

175

:--

R9JA = 250CN/

~

K

~~

I""--

K",

-.; I::::- :::-:::-

~~:
I

20

180

de
2.0-5'1 1(PK)
10._
I(AV)
'/20

........ I'<: ........

I (PK) 2.0-5.0
10/
;; 1.0 -1(AVr
20 ....

I I I T....

100

""

........ ......

~

0

20

~

6.0

.. 4.0 -.;

I""-- :-..;:

,

165

~ ~~
........ ~

85

<>

...... .z ~

r---; ~ o.I!.

7.0

w
a:

I(AV)

r-r-I(PK) 5.?,.....
IL
;; 1.0 '-r-'I(AV) 1~/
\ 21
0

~

Itz

...... I:X .......O

r-;::: ~

156

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS

v 5~oti(PKI
/10

145

TL. LEAO TEMPERATURE (OC)

I

t-..;;: < V

-<:::

135

BOTH LEADS TO HEAT SINK
0
75

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING,
VARIOUS LOADS
1.0

125

'>C"": V 1°1 LIGHT CAPACITIVE LOADS
............. 1'.....:'< K; O
. . . . r-........ y...:. t....:: I'-.. de

Tl, LEAD TEMPERATURE (OC)

a:
~

r-:::-- ~ ~

FIGURE 9 -118" LEAD LENGTH, VARIOUS LOADS

0

a:

a

""'" .........

b

........

Tl. lEAD TEMPERATURE (OC)

FIGURE 8 - 118" LEAD LENGTH, VARIOUS LOADS

!
i

--

-....... '-....

115

to HEA~-

SINK ~~T~H~~NGTHS _

,

-- -:-....

~ 5/8"

~

......... ~

145

3/8" -....... ........

~ 4.0

....... :---.,.........

.....

1/4"

b-..

~ 8.0

.........

IBOTH (EAOS

............

12

~

...........

105

L= lJ8"
~ r--....

16

Q

r--... . . . .........
r- ~
~ :-.... ........ t'--....

85

(RESISTIVE/INDubnVE lND,_
LARGE CAPACATIVE LOADS)

'"
:;
'"'
g

~1/8"

~
~

See Note 3.

SQUARE WAVE INPUT

SINE WAVE INPUT

;;:-.;

:::::: ~

80

""10:

,/

/'

I"'\1Ii

F=:::. ~ 110.
i";;;'I

i"IIIi

'11
40

...;:::

...... IiIIIIi ~ ~
..... ~

80

100

120

TA,AMBIENTTEMPERATURE (OC)

TA, AMBIENT TEMPERATURE (OC)

1161

140

160

180

MR820, MR821, MR822, MR824, MR826 (continued)

REVERSE POWER DISSIPATION AND CURRENT
NOTE 3
DERATING FOR REVERSE POWER DISSIPATION
In this rectifier, power loss due to reverse current IS generally not
negtigible. For reliable circuit design. the maximum junction
temperature must be limited to either 175°C or the temperature
which results in thermal runaway. Proper derating may be accom·
plished by use of equation 1 or equation 2.

Equation 1
Where'

TA=T,- 1175-TJtmaxii -PR R6JA
T, = MaXimum Allowable Ambient Temperature
negtectlng reverse power dissipation (from Figures
100r 111

TJlmax) = Maximum Allowable Junction Temper.
ture to prevent thermal runaway or 17S0C. which
ever is lower. (See Fi~re 1).
PR .. Reverse Power DISSipation (From Figure 12
13, adjusted for T Jlmax) as shown below)

Of

R6JA = Thermal Remtance, Junction to Ambient
When thermal resistance, junction to ambient, IS over 2fPC/W.
the effect of th.,.mal response IS negligible. Satisfactory derating
may be found by uSing:

EquatIon 2

T A = T Jlmaxl - (PR + PF) ROJA
PF = Forward Power Dissipation (See Figures 19 & 201
OtheT terms defmed abOve.

The revt!fStt power given on Figures 12 ancI13 IS calculated for
T J = 1S00 e. When TJ IS lower, PR will decrease. its value can be
found bv multiplVlng PR bV the normalized reverse current from.
Figure 14 at the temperature of mterest.
The reverse pOW\lr data IS calculated for half wave rectification
circuits. For full wave rectification uSing either a bridge or a
canter·tapped transformer, the date for reSIstive loaels is equiva-

lent whan Vp is the line to line voltage across the rectifiers. For
capacitive loads, It is recommended that the de case on Figure 13
be used, regardless of input waveform, for bridge circuits. For
capacitlvelv loaded full ~ center·tapped circuits, tha 20:1
data of Figure 12 should be usacl for sine wave inputs and the
capacitive load data of Figure 13 should be used for square wave
mputs regardless of I(pkl/'lav)' For these two cases, Vp is the
voItege across one leg of the transformer.
EXAMPLE:
Find Maxnnum Ambient Temperatu1'1!l for 'AY = 2 A, CapaCitive
Load of 'pK/IAV = 20, Input Voltage = 120 V (rms) Sine Wave,
R8JA = 25o CIW. Half Wave Ciraulo
Solution 1:
Find. Vp; Vp .. J2 Vin = 169 V, VR{pkl = 338 V
Fmd TJ(maxl from Figure 1. Read TJlmaxl = 119°C.
FmdPRlmax) from Figure 12. ReadPR" 770mW@1400C
Find
normalized from Figure 14. Read 'Rlnorm) = 0.4
Correct PR to TJlmax). PR = 'Rlnorml x PR IFlgure 12)
PR '" 0.4 x 770"' 310 rrNV,
Step 6: Find PF,from Figure 19. Read PF = 2.4 W,
Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

'R

Step 7: Compute T A from T A = TJlmax) • (PR + PFI R6JA
T A = 119·10.31 + 2.41 (251
TA=51 o C
~:

Steps 1 Ihru 5 are as above.
Step 6: FlndTA=T,fromFlgure10. ReadTA-1150C.
Step 7: Compute T A from T A = T1 - (175 - IT Jlmax)i . PR R6JA
TA = 115· (175·119)· (0.31)125)
TA = 51 0 e
At times, a discrepancy between methods will occur because
thermal response is factored into Solution 2.

FIGURE 13 - SQUARE WAVE INPUT DISSIPATION

FIGURE 12 - SINE WAVE INPUT DISSIPATION
200o

.~

'"

~_

"';:

/V

CAPACITIVE

100o~tK!=5.
I(AV!

-

70
OK;;lO
50o
20

~~ 300

I--N

~ i= 200

r,'/

~~

I

:>
«

"i:

30
20

o

~

200

100

1

1

1_

~,

Vp

300

400

300OI"-

CAPACITIVE
2000 I-- f--LOAOS

l!l_

JIIELr--' -=

./

V",

100
,70
50

L,...'"

..... RESISTIVE LOAO~_

"'0

~~

5000

-

I:;'

---~

==

TJ= 1400C- I-MAXIMUM::: l ITYr'CA~
I-700
500
600

~~ 1000

V

l"'-. V

v::

"

k"

~

~

~z 100

~~

500

~~
":0

300

«~

~

~

'/

dc-

200

100
70
50

V

TJ = 14j"C_

I

't/

:.;.-

V

-

jilin:}

MAXIMUM
- TYPICAL

o

100

200

300

500

400

000

700

Vp, PEAK APPLIED VOLTAGE (VOLTS)

Vp, PEAK APPLIED VOLTAGE (VOLTS!

FIGURE 15 - TYPICAL REVERSE CURRENT

FIGURE 14 - NORMALIZED REVERSE CURRENT
101

105

.,.-

TJ = 175°C

1/

150°C
125°C

7'

:=::::::VR =400 V
I

3

100°C

/

75°C
2
50°C

1/

1

25°C

1,/

100
20

40

00

80

100

120

140

160

180 200

100

200

300

400

500

VR, REVERSE VOLTAGE (VOLTS)

TJ,JUNCTION TEMPERATURE (OC)

1162

600

700

MR820, MR821, MR822, MR824, MR826 (continued)

STATIC CHARACTERISTICS

FIGURE 16 - FORWARD VOLTAGE

FIGURE 17 - MAXIMUM SURGE CAPABILITY
400 ...........
~

2001- - I - Tr 25 jC

V

~YPI~AL

~ 300 ..........

/1-'
~AXIMUM

V

~

........

~

501-t--t--h/~/I1-+-+++--+-+-+-+--I

IJ

~

~

30

G

20~~-+--~~-+--~~-+--~-r-+--~-r-1

«

~

~~-+--ij-~-+--~~-+--~-t.-+--~~-1

.......... .......T~25IC

rr--. .......
........
..........
r--. ........... r--r-.,

~
~

VRRM MAY BE APPLIED I
BETWEEN EACH CYCLE OF
SURGE. THE TJ NOTED IS
TJ priOR jO SURGE.

...........

~ 200

G
w

~

1NON·REPETITIVE
........

..............

;i 100

........... .......

~ r--r-.
25~C

:0:

0 - REPETITIVE

~

8

~

6

I

0

I

40
1.0

2.0

11O~illnm~nE
7.oH

.......
I
3.0

5.0 7.0

"'-

~C

I

20

10

50

30

70 100

NUMBER OF CYCLES AT 60 Hz

~

FIGURE 18 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

~ 5.0 ~~-+-t-~+-+--~-r-+--~-r-+--~-r-1

+2.5

~

+2.0

!!:

.!f 3.0~-r-+H-~+-+--~-r-+--~-r-+--~-r-1

+1.5

~ +1.0

2.0~~--jj4-~+-+--~~-+--~-r-+--~~-1

.§ +0.5
~

"U

W

0

1.0~HE~HE
0.7~

$-0.5

0.51-+-Il-H-I-+-+-l-+-+-+-l-+-+--I

-1.5

I

TYPICAL RANG~

V

8-1.0

/

-2.0
-2. 5

0.3 '----'-......'--'---"---'---1:--'.,----,--'-,--,,1:--:1-:-"""""',----,1:--:'-:--:-'.
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

0.3 0.5

1.0

2.0 3.0 5.0

10

20 30

50

100

200 300

iF. INSTANTANEOUS FORWARO CURRENT (AMP)

VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

MAXIMUM FORWARD POWER DISSIPATION
FIGURE 20 - SQUARE WAVE INPUT

FIGURE 19 - SINE WAVE INPUT
20

20

h-

II

v

I.;
w

I(PKl~~·O
10

I(AV)

/. ~

20

TJ~

~

~IV

0.3

-' ".
0.2 0.3

!

10

a..

7.0

~"

wo

i

2.0

3.0

5.0 7.0

10

20

0.2

IF(AV). AVERAGE FORWARO CURRENT (AMP)

Jb.:<

~
de

TJ~150'C

V
~",

O. 5

D.3
1.0

2.010 5.0

2.0

0.2

0.2

~

liPK) =20
I(AV)
10

~~
~~ 1.0
~oO.7

f

..,.
0.5 0.7

z v

~~5.0
;=' V~
~

'-'

IFM=20A

~

'"t;
ffi

~p

1~
1.0
2.0

~

....
5.0

>

n..

/.i!:i<'

§

'1.0 A

10
di/dt (AMP/.,)

'"ci:
'"

20

50

100

~ :/

0.1
0.05
002
1.0

~ ~f-'"
2.0

~1.0A

5.0

20

10
di/dt. (AMP/#,)

50

100

50

100

w

~

IFM=20A
I
IDA

~ 0.5

'-'

i:i:l

"

'"

~ 0.2

>

i.-"

FIGURE 24 - TJ = 150°C

w

ffi

~

2. 0

III

.'"

V-

501

I.i!:i<'

FIGURE 23 - T J - 100"C

11.0

v/ . V-

IDA

0.2

i:i:l

2.0

i:i:l

=7SoC

2.0

V

~K

O. 1

ci:

1.0

I--

~

~ r;;,.. ....
2.0

~

O. 2

~>

O. 1

10

20

50

0.0 2
1.0

100

1-

~V

lr

~~
2.0

I
5.0

di/dt. (AMP/.,)

./

./V /"

0

"' 0.0 5

I I

5.0

5.0 A...

§

l.°t

(hr;..'

IFM=20A
IDA

0.5

~

5.0 A

'"'-'~ 0.05
'" 0.02

5

.... ,....

10

20

di/dl (AMP'.,I

NOTE 4
Reverse recovery time is the period which elapses from the
time that the current, thru

8

di/dt

previously forward biased rectifier

diode, passesthru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward

current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of oonditions
using IF =' 1.0 A, VR = 30 V. In order to cover all circuit
conditions. curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 2SoC, 7So C, l00"C, and
ISo"C.
To use these curves, it is necessary to know the forward
cunant level just before commutation, the circuit commutation
dildt, and the operating junction temperature. The reverse
covery test current waveform for all Motorola fast recovery
rectifien is shown.

IRM(REC)+----'~

From stored charge curves versus di/dt, recovery time (trrl
and peak reverse recovery current (lRM(RECII can be closely
approximated using the following formulas:

r.

1164

trr= 1.41 x

lRMIRECI

= 1.41

[~
R

'12

dildt

x [OR x di/dt] 112

MR820, MR821, MR822, MR824, MR826 (continued)

DYNAMIC CHARACTERISTICS

FIGURE 25 - REVERSE RECOVERY CIRCUIT

A - TEKTRONIX 545A. K PLUG IN
PRE·AMP. PSIIOO PROBE OR EQUIVALENT

300
50W
NON·INDUCTIVE

115 Vac 10 k
60 Hz
2W

RI .- ADJUSTED FOR 1.40 BETWEEN
POINT 2 OF RELAY AND RECTIFIER
INDUCTANCE ~ 38 ~H

UNIT
UNDER TEST

n.

R2 - TEN· I W.IO
1% CARBON CORE
IN PARALLEL

.....---~)A

30 Vd,
CONSTANT VOLTAGE
SUPPLY

TA' 25 ~1~oC FOR RECTIFIER

R2
I0
lOW
NON.INDUCTIVE

MINIMIZE ALL LEAD LENGTHS
1.0 Adc FROM CONSTANT VOLTAGE SUPPLY
RIPPLE = 3 mVrm.MAX

0-+--+-----..-----40;..:..;...'--4>--.0-

Zout = 1% 0 MAX. DC to 2kHz

FIGURE 26 - JEDEC REVERSE RECOVERY CIRCUIT
RI

RI = 50 Ohm.
R2 = 250 Ohm.
01 = IN4723
02 -IN4DOI
03 -IN4933
SCRI- MCR729·10
CI =0.5to50~F

LI
di/d. ADJUST

T1

120

v J c TI21
I

03

60 Hz

Cl

1:1

C2~4DOhF
LI = 1.0-27~H

oot

I (PK) ADJUST

02

T1 = Variac Adjust. IIPK) and di/dt

T2 =1:1
T3 = 1:1 (to trigger circuit)

01
CURRENT
VIEWING
RESISTOR

FIGURE 28 - JUNCTION CAPACITANCE

FIGURE 27 - FORWARD RECOVERY TIME
10
7.0

j

!
ffi

=
-

5. 0 = = =

w

3.O -

=
"fj+- ===
I-'Ir

100

~TJ=250C
Vfr= 1.1 V

Ufr

Il

2.0

~

Q

--

TJ=25 0C

I--.

0

......... 1--.

V

>

II:

--.

70

1.0
O. 7

i""0

r--r-.

II:

~

0.5

~

0.3

*

0.2

...........

.--

O. 1
1.0

2.0

5.0

10

20

50

I0
1.0

100

IF. FORWARD CURRENT (AMP)

2.0

5.0

10

20

VR. REVERSE VOLTAGE (VOLTS)

1165

50

100

MR820, MR821, MR822, MR824, MR826 (continued)

THERMAL CHARACTERISTICS
FIGURE 29 - THERMAL RESPONSE
1.0
7
51-- tI-- t-

~

f-- I-

HEAT SINK

V

I

L-1/4"
,/

I

7

5
3

:g

_l-

0.02

v

0.0 I
0.2

0.5

2.0

1.0

5.0

10

20

50

100

200

500

1000

2000

5000

10,000

20,000

t, TIME (m.)

NOTE 5

NOTE 6

To determine maximum junction temperature of the diode
in a given situation, the following procedure is recommended:

The temperature of the lead should be measured using a
thermocouple placed on the lead as close 8S possible to the tie
pOint. The thermal mass connected to the tie point is normally
large enough so that it will not significantly respond to heat
surges generated in the diode as a result of pulsed operation once

Use of the above model permits junction to lead thermal
resistance for anv mounting configuration to be found. Lowest
values occur when one side of the rectifier is brought as close as
possible to the heat sink as shown below. Terms in the model
signify:

steady-state conditions are achieved. Using the measured value
of TL. the junction temperature may be determined by:
TJ""TL+6. T JL
where 6. T JL is the increase in junction temperature above the
lead temperature. It may be determined by:

T A '"" Ambient Temperature

'" TJL - Ppk • R8JL (0 + (I ·0) • r(I, + Ip) + r(lp) • r(I,))

T L "" Lead Temperature

where r(1) = normalized value of transient thermal resistance at
time t from Figure 29, i.e.:

T C "" Case Temperature

r(t1 + t p ) = normalized value of transient thermal resistance at
time t1 + tp'

T J "" Junction Temperature

r::l Ppk

-::J

tp

Lead
JuncPF +

PR

DUTY CYCLE' tp/tl
PEAK POWER. Ppk. is peak of an
TIME equivalent square power pulse.

~tl~

Heat

PF "" Forward Power DiSSipation
PA = Aeverse Power DiSSipation

I I Ppk
L

C-.J

A8S =- Thermal Aeslstance,
sink to Ambient
A8 L "" Thermal Aesistance,
to Heat Sink
R8J "" Thermal Aeslstance,
tion to Case
Po =- Power Dissipation =

(Subscripts(A) and (K) refer to anode and cathode sides respectively)
Values for thermal resistance components are:
R8L - 400 C/W/IN. Typically and 44o C/W/IN Maximum.
R6J "" 2 0 C/W Typically and 4 0 CIW Maximum.
Since R6J is 10 low. measurements of the case temperature.
T C. will be approximately equal to junction temperature In practical lead mounted applications. When used as a 60 Hz rectifier,

FIGURE 30 - STEAOY·STATE THERMAL RESISTANCE

40

the slow thermal response holds T J(PKI close to T J(AVI. Ther.·
fore maximum lead temperature may be found as follows:
TL -TJ(max) • ",TJL
where
AT JL can be approximated as follows:
.o.TJL ~ A6JL • PO; Po Is the sum of forward and
reverse power dissipation shown in Figures 12 & 19 for
sine wave operation and Figures 13 & 20 for square
wave operation.
The recommended method of mounting to a P .C. board Is
shown on the sketch. where R9JA is approximately 2SoC/W for
8 1-112" x 1-1/2" copper surface area. Values of 40 0 C/W are
typical for mounting to terminal strips or P .C. boards where available surface are. Is small.

118

1/4

3/8

1/2

~--~g

5/8

L, LEAD LENGTH (INCHES)

RlCommanded mounting for hilt W8VI cin:uit

1166

MR830, MR831, MR832
MR834, MR836
MR840, MR841, MR842
MR844, MR846
HERMETICALLY SEALED, AXIAL LEAD
MOUNTED FAST RECOVERY POWER
RECTIFIERS

FAST RECOVERY
POWER RECTIFIERS
50-600 VOLTS
3 AMPERES

. designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low R F interference and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 100 nanoseconds providing
high efficiency at frequencies to 250 kHz.

o
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Symbol

~=~

MR831
MR841

MR832
MR842

MR834
MR844

MR846

SO

100

200

400

600

VRRM
VAWM

VR

Average Rectified Forward Current
ISingle phase, resistive load,
TC = 1000C)

'0

Non-Repetitive Peak Surge Current

'FSM

(surge applied at rated load

conditionsl
Operating Junction Temperature

TJ

MR836
Unit

Volts

.
..

3.0

100

C

.

Amps

.

Amps

- - - - 6 5 to +150 _ _

r
K

L,

DC

Range

STYLE I:

Storage Temperature Range

T".

_ _ _ -65 to +175 _ _

ELECTRICAL CHARACTERISTICS
Characteristic
Forward Voltage
!IF = 3.0 Adc, TA = 2SoCJ

Symbol

Min

Ma.

-

1.1

10,;

VF

Volts

MR830Series
MR840Series

Reverse Current (rated DC Voltage)
TA=2SoC

'R

mA

0.05
0.075
1.5
2.5

-

DIM
A

B
C

L2

-

MR830 Serres
MR840Serle5
TA = 1000C MR830Series
MR840Series

PIN I. CATHODE
2. ANODE

DC

0
K

MILLIMETERS
MAX
MIN

-

11.43
8.89
7.62
1.17 1.42
24.89

INCHES
MIN
MAX

0.046
0.H8U

0.450
0.350
0.300
0.056

CASE 60

REVERSE RECOVERY CHARACTERISTICS
Characteristic
Reverse Recovery Time
(IF" 1.0 Amp to VR = 30 Vdcl

Symbol
t"

MR830 Series
MR840Serles
(IFM = 15 Amp, dl/dt = 25 A/lJsJ MRB30 Series
MR840Senes

Reverse Recovery Current
IIF = 1.0Amp to VR =30 Vdc)

Min

-

-

IRMIRECI

-

T

Ma.

Unit

100
O.S
150

200
1.0
300
1.5

,...'

0.75

.

n,

Amp

-

2.0

1167

MECHANICAL CHARACTERISTICS
CASE: Welded, hermeticallv ..aled
FINISH; All external surfaces corrosion
resistant and leads readily solderable
POLARITY: Cathode to Ca..
WEIGHT: 2.4 Grams (Approximatelvl

MR850,MR851,MR852,'
MR854,MR856

Data Shppt

J)esi~'np]·s

FAST RECOVERY
POWER RECTIFIERS

SUBMINIATURE SIZE, AXIAL LEAD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
3 AMPERE

. designed

for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference and free wheeling diodes. A complete line of fast recovery
rectifiers having typical recovery time of 100 nanoseconds providing
high efficiency at frequencies to 250 kHz.
"

Designer's Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most Clfcuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

MAXIMUM RATINGS
Symbol

Rating
Peak Repetitive Reve~ Voltage
Working Peek Reverse Voltage
DC Blocking Voltage

VRRM

Non-Repetitive Peak Reverse Voltage

VRSM

MR860

MRB61

MR862

MR854

Unit

MR856

Vol"

VRWM

50

100

200

400

600

76

150

35

70

250
140
3.0

450
280

650
420

VR

RMS Reverse Voltage

VRIRMS)

.

Average Rectified Forward Current
(Single phase resiltive load,
TA-9O"C){11

10

Non-Repetitive Peak Surge Current

IFSM

.

TJ,TItg

...

lturge applied at rated lold
conditiont)
Operating and Storage Junction

Volts
Volts
Amp

.
.

100
lone cycle)
-65 to +176

Temperature Range(2)

STYLE 1:
PIN 1. CATHODE
2. ANODE

Amp

·c

THERMAL CHARACTERISTICS
ChI<_io
Thermal Resistance, Junction to Ambi.nt

Symbol

M..

Unit

R8JA

28

·C/W

IRecommended Printed Circuit Board Mouting,

o

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Instantaneous Forward Voltage

vF

(IF ·9.4 Amp, T J" 1750 CI

Forward Voltage

DIM MIN
A
B

See Note 6, Page 8)

VF

Min

TV.

MOl<

Unk

-

0.9

1.1

Volts

1.04

1.25

Volts

-

2.0

100

10
150
150
200
250
300

.A

-

-

Min

TV.

Mo.

Unit

100

200
300
2.0

Amp

9,40
4.83
t22

K 26,97

MAX
9.65
533
1.32

272

CASE 267·01

ifF ·3.0 Amp. TJ. 250 CI
Reverse Current (rated de voltage) T J • 26°C

TJ" 1000C

{~~:~

'R

-

MR852

MR854
MR866

60

MECHANICAL CHARACTERISTICS

REVERSE RECOVERY CHARACTERISTICS
Characteristic

Symbol

Reverse Recovery Time
!IF' - 1.0Arhp to VA = 3O'Vdc.figure 25)
(IF" 15 Amp,di/dt - 10 Alps, figure 261
Reverse Recovery Current

!IF'" 1.0 Amp to VA" 30 Vdc, Figure 251

150
IRM(REC)

(1) Must b8deratftd for reverse po~r dlnlpatJon. See Note 2. Peg.. 3.

(21 Derate., shown In F laure 1

1168

Case: Void Free, Transfer Molded
Finish: External Leads are Plated,
Leads are readily Solderable
Polarity: Cathode Indicated by Polarity Band
Weight: 1.1 Grams (Approximately)
Maximum Lead Temperature for
Soldering Purposes:
300o C, 1/8" from case for las
at 5.0 lb. tension

MR850, MR851, MR852, MR854, MR856 (continued)

MAXIMUM CURRENT AND TEMPERATURE RATINGS
FIGURE 1 - MAXIMUM ALLOWABLE JUNCTION TEMPERATURE
180
Q

e..

...

..

,

.......

170

........
.........

I'.

=> 180
....

.........

.

II:

~

:E

~

28oCfN"-

z 140
;::
130

>5

120

.........

",

.
~

........

-

~JA -100CfN-

NOTE 1
MAXIMUM JUNCTION TEMPERATURE OERATING

2DOC~ ........

" ........ .........

150

'-'
z

.........

.........

II:

500 CfN

I'.

>...

'

r-......

.....
........

I'.

When operating this rectifier at junction temperatures

........

over 1200C, reverse power di..ipation and the possibility of thermal runaway must be considered. The data
of Figure 1 is based upon worst case reverse power and
should be used to derate T Jlmax) from its maximum
value of 17So C. See Note 2 for edditional information

i""'-..

........

........

........

'"

........

on derating for reverse power dissipation.
Whan current ratings are computed from T Jlmax) and
reverse power dissipation is also included, ratings vary
with reverse voltage as shown on Figures 2 thru 5.

........

110
80

80

100

200

30D

400

600

VR,PEAK REVERSE VOLTAGE (VOLTS)

RESISTIVE LOAD RATINGS
Printed Circuit Board Mounting - See Note 6, Page 8

FIGURE 2 - SINE WAVE INPUT

FIGURE 3 - SOUARE WAVE INPUT

TA, AMBIENT TEMPERATURE (DC)

FIGURE 5 - SOUARE WAVE INPUT

FIGURE 4 - SINE WAVE INPUT

2.0

~

1.8

~

1.6

~
=>

1.4

u

Q
II:

~
0.6
II:

...~

........
........

~
l00V,

1.2

~ 1.0
~ 0.8

'"'" '"

i 0.:
75

"'h.

.......

,

.......

..........

"-

115

I\.

125

135

i

1.0

...

0.8

iw

:::

I\-

155

185

'- i'-. N
""'..........
""'..........

...........

I"-

'-IUDV

0.8

l'..

""'-

~

'-..2UDV

l'..

0.4

600 V,,"

175

TA, AMBIENT TEMPERATURE IOC)

75

85

95

105

115

""\

125

135

'\.

145

TA, AMBIENT TEMPERATURE (DC)

1169

.......

t-...

V

"l

"\

r\.

145

i".....VR • 0 - 10 V(PK)

"
'"
'"
'
400
'"
'"
"
i 0.:

.........

400 V

105

1.2

~

" ""- " '\. "- ""-"I"'..
I\.

95

1.4

Q

a

800 V",,85

II:
CI:

R8J~ • 500clw_

I

..........

1.8

~ 1.6 .........

II:

",200 V ......

'\

0.4

0

~R=0-10V(PK)

......

I

R8J~ =50 JfN-

..........

-.........

2.0

155

165

"

175

MR850, MR851, MR852, MR854, MR856 (continued)

MAXIMUM CURRENT RATINGS
Current d • •tlng data i. bated upon the thermal response data of F !gur. 29 and the forward power diSllp8~
tion data of Figures 19 and 20. Since rever_ ppwer dissipation i. not considered in Figures 6 thru 11, addi·

See Note ;Z:.

tional derating for reverse voltage and for junction to ambient thermal resistance must be applied.

SINE WAVE INPUTS

SQUARE WAVE INPUTS
FIGURE 7 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD

FIGURE 6 - EFFECT OF LEAD LENGTHS.
RESISTIVE LOAD
7.0

~ ~.1/8"

RESISTIVLE~~:SUCTIVE _

~ ~" :--... r....
........... 318" :--....
.......
...........

......

518"

1-0..

i"o...

" ........

-

......

2.0

~

S 1.0

I

.... 6.0

ili

-

~ 5.0

75

95

105

115

i

........
........ ........

~
w

-,

........

........

125

RESISTIVLE~~:SUCTIVE _

~~

BOTH LEADSTO HEAT SINK WITH LENGTHS AS SHOWN

.......

~~

-.........; ~

~

...

135

145

155

165

3.0

I"""'-.

3/8" ~

--

i:l

518"

r-..

175

75

.........;

r-......

I

~

-

~

..........

-....::Ii ~

~
95

85

......
~

....

j

/51
10
~ 1,..-20

..B
:il

.......

:r

--

BOTH LEADS
/ - TOIHEAT ~INK

r--...." ~

ffi

~

105

115

125

135

145

155

165

125

135

145

155

165

175

!.m

,.......

.1.

r-.... 1"-..
r-.... r-....
~

'"

_

J.

IIAV)

.""". ~

I

~.5}LlGHT-

~10
4.0 /-_t---+--+-""'..jf".,2'-...:t'....
'=><~1X720

CAPACITIVELOADS
-

~~

.~

3.0

t--

"'"-"
~

BOTH LEADS -+--+--t--P"'~~-/--t
TO H.EAT SINK-+---/--t---+-~--'~""h:I---I

~ or--+--+-I-+-i-i---r--r-~--t--t~~~~

"

175

75

85

96

105

115

125

135

145

155

165

175

TL. LEAD TEMPERATURE IDC)

FIGURE 11 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS

~

IRESISTIVEIINDUCTIVE
LOADS)

S

4.0 r----,r---,--..,---,----,---,--,----,----,--3.51---""ik:--..l'~"+---+--+---+---1__t--_+--__i

§

....

ili

...
~
:::.

::0
Q

Q

i~

i

~
w
co

~
S
~

115

~ l.ol-__/-__ll---+__-+__~__-+__-+__-+~~~~~

FIGURE 10 - PRINTED CIRCUIT BOARD MOUNTING.
VARIOUS LOADS

1--/--I-IIAVl •• - - - - -

6.0

~ 2.0 t--

~
95

J"....

w

~~

TL. LEAD TEMPERATURE IDC)

..'"

105

~

.......... t.....
"'::-";:::

I
I
85

~

II CAPACITIVE- rLOADS. r-

.;>< ~

.O/-

'...."

~

~)=.IRESI~IVEI.'NDUC~IVE LO~OS)- r-

.0

S

~

...... ....... .":--...... ~ I'-.

TL. LEAD TEMPERATURE IDC)

....

f""o,.,

,....... r<

0'-

4.0

'"

.......

2.0

S 1.0
~ o

"

........ .......

FIGURE 9 - 1/8" LEAD LENGTH. VARIOUS LOADS

Ot--...

Ii:

:.......

7~~~--~~'---r--'---r--.---r--'--,
Ii:
::--.
l'..
_L . I IRESISTIVEIINOUCTIVE
~ 6.0 f".,.......
de
& LARGE CAPACITIVE
~
I"""'-. '" ./ IPK) =2
LOADS)

i"'-..

0
75

r--.. ........

FIGURE 8 - 1/8" LEAD LENGTH. VARIOUS LOADS

01'-.

.0

-

.......

f""o,.,

TL. LEAD TEMPERATURE IDC)

7.0

r-....

~

~

85

~ ~118'

~ 4.0

-.....;:::

~ o

=

....... ........

r-..

w

'"~

BOTH LEADS TO HEAT
SINK WITH LENGTHS
AS SHOWN

w

~

1.51--~P"1R""...""""-i~d-""~~"""'.__t-_+-~

1.0

ffi 1.0r---r~f--_::!b.:::_f-=~....iiiI:~'5f~~,_+-__I

0.5

S

0
75

~

~
105

115

125

135

145

TA. AMBIENT TEMPERATURE IDC)

0.51---t---c1_-1--t---t--t--t-""'4iiI!1iIi

~~5--~8~5--~--~~1~1~5~1~25~~1~35~~1~45~~~~~~
TA. AMBIENTTEMPERATURE (DC)

1170

MR850, MR851, MR852, MR854, MR856 (continued)
REVERSE POWER DISSIPATION AND CURRENT
NDTE2
DERATING FDR REVERSE POWER DISSIPATION

capacitively loaded full wave center-tapped circuits, the 20: 1
data of Figure 12 should be used for sine wave inputs and the
capacitive load data of Figure 13 should be used for square wave
inputs regardless of l(pk)/ltav). For these two cases, Vp is the
voltage across one leg of the transformer.
Example 1 Find maximum ambient temperature for 'AV '" 2 A,
capacitive load of IpK/lAV "" 20, Input Voltage '"
~~C~itl.rms). sine wave, R9JA '" 2SoeM, half wave

In this rectifier, power loss due to reverse current is generally not
negligible. For retiable circuit design, the maximum junction
temperature must be limited to either 175°C or the temperature
which results in thermal runaway. Proper derating may be accomplished bV use of equation 1 or equation 2.
Equation 1

T A = T 1 - (175 - T Jlmax) - PR R8JA

Where:

T 1 '" Maximum Allowable Ambient Temperature

neglecting reverse power dissipation (from Figures
100r 111
T Jlmax) ;; Maximum Allowable Junction Temperature to prevent thermal runaway or 17SoC, which

ever is lower. (See Figure 11.

Solution 1

(using Equation 1)

Step 1:
Step 2:

~~;iJ J(max) from Figure 1.

Read TJlmax) '"

Step 3:

~i~d@P1~brglg) from Figure 12.

Read PR = 360

Step 4:

Find lR normalized from Figure 14. Read IR(norml

Step 5:

Correct PR to TJ(maxl' PR = IR{norml x PR
(Figure 12) PA = 1.5 x 360 '" 540 mW

Find Vp; Vp "" J2 Vin

= 85 V, VAlpk)

'" 170

PR "" Reverse Power Dissipation (From Figure 12
or 13. adjusted for T J(maxl

8$

shown below)

= 1.5

R9JA "" Thermal Resistance, Junction to Ambient.

When thermal resistance. junction to ambient, is over 200C/W,
the effect of thermal response is negligible. Satisfactory derating
may be found by using:
Equation 2

T A'" T J{max) - (PR + PF) R6JA

Step 6:

Find T A '" T 1 from Figure 10. Read T 1 = 940 e

Step 7:

ComputeTA fromTA =T1 ·1175 -TJ'max) - PR R6JA
T A = 94 ·1175·157) • 10.54)128)

TA '" 61 0 C

PF "" Forward Power Dissipation (See F .gures 19 & 20)
Solution 2

Other terms defined above.

ffi

5

It

ComputeTA fromTA =T Jlmax) -fPR +PF) R6JA
T A = 157 ·10.54 + 3)28
TA == 580 e

The discrepancy occurs because thermal response is factored into
solution 1, and advantage is taken of the cooling time after the
power pulse and before reverse voltage achieves its maximum.
61 0 e is a satisfactory ambient temperature.

FIGURE 13 - REVERSE POWER DISSIPATION, SQUARE WAVE
5000
3000
2000 _CAPACITIVE
LOADS
1000

CAPACITIVE LOADS

p!P!-

(AV) = 10 - 20

300

"

~5

.....

... ....

~,.

I

..

20

I

o

~

~3: 500
ffi E
> - 300
wZ

I

TJ=150oC_ ~VP
MAXIMUM
- - - - - TYPICAL

-'

10

'"~

",0

=

]1q::I~J ::::
--

•7.

30

RESISTIVE
LOAD

•..!::

X

... 0

S

Find PF from Figure 19. Read PF "" 3.0 W

Step 1:

1000

~~ 200
w E
>wz
",0
w>= 100
.. a. 70
ffii
>- 50

"'

Step 6:

FIGURE 12 - REVERSE POWER DISSIPATION, SINE WAVE
700
500

;:
~

(using EquatIon 2)

Steps 1 thru 5 are as Solution 1

The reverse power given on Figures 12 and 13 is calculated for
T J = 150 0 e. When T J is lower, PR will decrease; its value can be
found by multiplying PR by the normalized reverse current from
Figure 14 at the temperature of interest.
The reverse powI!r data is calculated for half wave rectification
circuits. For full wave rectification using either a bridge or a
center-tapped transformer, the data for resistive loads is equivalent when Vp is the line to line voltage &cross the rectifiers. For
capacitive loads, it is recommended that the dc case on Figure 13
be used, regardless of input waveform, for bridge circuits. For

I

200

100

I

I

300

I
400

'--

~::

100

w'"
~a

50
30
20

S
It

I

700

10

o

11)0

!O

1,10

...

...
,

RESISTIVE LOAOS

,.

TJ -150"C .
---MAXIMUM
- - - - - TYPICAL

10
5.0

o

100

200

3DO

-

= ;]Iq::IJ

400

VP~

SOO

600

FIGURE 15 - TYPICAL REVERSE CURRENT

FIGURE 14 - NORMALIZED REVERSE CURRENT

~

.AI

..-:...

V

VP. PEAK APPLIED VOLTAGE (VOLTS)

Vp. PEAK APPLIED VOLTAGE (VOLTS)

20

~

200

",1);

5

600

500

w>=

de LOAOS

lliO

1110

21)0

TJ. JUNCTION TEMPERATURE (DC)

VR. REVERSE VOLTAGE (VOLTS)

1171

700

MR850, MR851, MR852, MR854, MR856 (continued)

STATIC CHARACTERISTICS
FIGURE 17 - MAXIMUM SURGE CAPABILITY

FIGURE 16 - FORWARD VOLTAGE
2IJII

/

1110

50

TYPICAL

...z
W
II:
II:

i:l

T

i51110
Iii

II:
II:

~

......

,...,

~~ITIVE~

11

I

>< 30

I/

7.0

f2

5.0

.I I

r.o

III

¥5

o

w

I5

1.0

r--.

3.0

5.0 7.0

!Z 1.0
U o.5
u::

.
8

0.5

50

70 100

I
1.2

1.6

2.0

2.4

2.8

./

V

-0.5

-1.5
-2.0
-2.5
-3.0
0.2

0.3
0.8

30

TYPICAL RANGE

~

i-1.o

0.4

...... .......
20

10

II

w

.0. 7

o

.......

........... 1....
2.0

...

4.0
3.5
3.0
G 2.5
'l_~ 2.0
1.5

1.0

0.2

........ ~
........ ...... .......

FIGURE 18 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

I

2!

.~

~NON.REPfTITIVf

7'-...

NUMBER OF CYCLES AT 60 Hz

I

ti 2.0

~

20

o

i

175ac

\7~~

~

~

Ir!t~c=
..,.

VRRM MAY BE APPLIED
BETWEEN EACH CYCLE
f-OF SURGE. TJ NOTfD'~
I-TJ PRIOR TO SURGE

P ~~

...... ~

:c

I J

I0

-...

r-....

~ 40

II

20

80

-... !"...

i:l 60

MAXIMUM

cT

30

V'

,
7

70

i5

v

II

T}.u.dC

150

r0.5

1.0

2.0

5.0

10

20

50

100

200

iF. INSTANTANEOUS FORWARD CURRENT (AMP)

VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

SQUARE WAVE INPUT

SINE WAVE INPUT

FIGURE 20 - FORWARD POWER DISSIPATION

FIGURE 19 - FORWARD POWER OISSIPATION

10r---,----r---.----r---r---07---r--~

II:

~

8.0f--+--1--+--+--+~""'.f-""q....".!:...i

~u;

i~

6.0

II:i!

~~

~ ~ 4.01---+--ir--i.I'7IC-*,,-c.--+--+--"<+--i
~~,
<0
~
2.0f--+--ZII~~t---+

It:

IF(AV). AVERAGE FORWARD CURRENT (AMP)

IFlAV). AVERAGE FORWARD CURRENT (AMP)

1172

MR850, MR851, MR852, MR854, MR856 (continued)

TYPICAL RECOVERED STORED CHARAGE DATA
(See Note 3)
1.0
"U

3

w

j

0.5

li!

w

~

lOA

~ 0.2

5.0A~

o. I

5

~ ....

~~

~

~

0.0

:~
1.0

rio..

~ IP'..,.
~

2.0

5.0

~

0.2

...~>

·0. 1

'"
~

LOA

.:

'"
10
di/dt (AMP/#sl

20

II!":

0:

~ 0.05
0:

IFM -20 A

0.5

:;J

~

gO.D

1.0

li!

IFM = 2J A_,

"13
'"t;;

FIGURE 22 - T J ·75"C
2.0

50

100

~ 'r"

lOA

.......
~ V ..,.

0.05

5.0 ~

.b
0.02
1.0

-1.0A

~ ::::;'1""
2.0

5.0

10
di/dt,

20

50

100

(AMP/~sl

FIGURE 23 - T J. 100°C
2.0

j

2.0

ill

1. 0

"U

0:

I

lOA

"''"

'"

~ O.2

ffi

O. I

'"

.:

1.0

~

~

~ ~I""
2.0

5.0

10

20

50

lOA

0.3
0.2

~~

o. 1
0.1
0.05

d

0.03
0.02
1.0

100

~~

5.0 A

~

:.l
0:
.:

LOt

LOV

IFM-20A

0.5

0:

5.0 A

'-'
~ 0.05

'" 0.02

0.7

~

v:: VI,.;
~ k I--'

0:

>

1.0

~

5

IFM=20A

~ O. 5

'"w

.3
w

"'to

J...iJ!!!!!

~A

~~
5.0

2.0

dildt,(AMP/~sl

~

f."'"

10
di/dt (AMP/psl

20

50

NOTE 3
Reverse recovery time is the period which elapses from the
time that the current. thru a previously forward biased rectifier

di/dt

diode, passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse· current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, reoovery time is very circuit depend·
ent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of oonditions
using !F = 1.0 A, VR = 30 V. In order to cover a" circuit
conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current
and for junction temperatures of 2SoC, 7SoC, l000C, and
1So"C.
To use these curves, it is necessary to know the forward
current level just before commutation, the circuit commutation
di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

IRM(RECI+----'-From stored charge curves versus dUdt, recovery time Itrr )
and peak reverse recovery current (I RM(RECI) can be closely
approximated using the follOWing formulas:
trr

a ~
= 1.41 x [_R_

112

di/dt

IRM(RECI = 1.41 x [OR x di/dt] 112

1173

100

MR850, MR851, MR852, MR854, MR856 (continued)

DYNAMIC CHARACTERISTICS
FIGURE 25 - REVERSE RECOVERY CIRCUIT

MINIMIZE All lEAD lENGTHS

lOll

115V" 10k
60Hz
2W

SOW

A - TEKTRONIX 545A. K PLUG IN
PRE·AMP. PtlOOO PROBE DR EQUIVALENT

NON·INDUCTIVE
UNIT
UNDER TEST

~---fi:>lA
R2
III
lOW
NDN.INDUCTIVE

RI-AOJUSTEO FOR 1.4IlBETWEEN
POINT 2 OF RELAY AND RECTIFIER
INOUCTANCE _ 38l1li
1.0 Ad. FROM
CONSTANT
VOLTAGE SUPPLY
RIPPLE" 3 mVrms MAX

a.

Rz - TEN·I W. 10 1% CARBON CORE
IN PARAllEL
TA' 25 ~Igoc FOR RECTIFIER

CI
.O"F
lOOV
z.,ut-llIIlMAX.

OCto 2 kHz

FICURE 26 - JEDEC REVERSE RECOVERY CIRCUIT
RI

RI-SOOh...
R2 -250 Ohms
DI = IN4723
DZ =IN4001
03-1N4934
SCRI' MCR729·10
Cl =O.5to50~F
C2 ~ 4000"F
L1=1.0-27"H
T1 '" Variac Adjusts I(PKland Mdt
TZ-I:I

L1
dVdt ADJUST

03

C2

CI

I (PK) ADJUST

+

QUI

02

T3" 1:1 Ito trigger circuit)

RZ
01
CURRENT
VIEWING
RESISTOR

FIGURE 28 - JUNCTION CAPACITANCE

FIGURE 1:7 - FORWARD RECOVERY TIME
O.5

100

25dC
r-- I-TJ=
V,,=I.I v

I

O.3

.

O. 2

;::
>II:
~

0

II:

~

$

~I

tl'~

0.07.--

'1

0.05
0.1

t"'-

V

Q

i

0 .............

./

I........V

III

TJ=25DC

0.2

0.3

0.5

0.7

1.0

2.0

1 171
3.0

5.0

r

7.0

""

I0

10

1.0

IF. FORWARD CURRENT (AMP)

2.0

3.0

5.0 7.0

10

..... 1'20

30

VR. REVERSE VOLTAGE (VOLTS)

1174

f"-.""
50

70

100

MR850, MR851, MR852, MR854, MR856 (continued)

FIGURE 30 - STEADY·STATE THERMAL RESISTANCE

FIGURE 29 - THERMAL RESPONSE
1.0

0

II II
II III I I I

5

T~

SINGLE LEAD
HEAT JINK
INSIGNIFICANT HEAT FLOW-.;::THRDUGH DTHER LEAD . /

LEA D LENGTH = 1/4"

3
2

./
/'

I

,,""

/'
5

~

0.0 1

"

2 3 57

2 3 57

100

""

r:; .. - ..

~

",,'

2 3 57

101

2 3 5 7

102

2 3

o

o

57

103

104

V ,,"
" -" - - MAXIMUM
- - - - - TYPICAL

"

.' ""

l--

- --

..- K- --- ..

- ---

......

1/4

1/8

,,,

V

~

112

3/8

BOTH LEADS TO HEAT
SINK, E~UAL LE~GTlj -

3/4

5/8

7/8

L, LEAD LENGTH (INCHES)

t,TIME(ms)
NOTE 4

vvtter. ret) .. norm.hzed .......... of tranlient th.rmal resllbnc8 .It
tim. t from FIgur. 29. I.•.

To determine maxImum junction temperature of the diode
in a given Iltuatlon, the following procedure Is recommended:

rlt1 + tpl = normalized valu. of tran.lant thermal re.i$honea at
tlm.t, +t p .

The temperature of the lead should be measured using a
thermocouple placed on the lead el close a. po_ibl. to the tie
point. The thermal map connected to the tie point is normally

large enough so that it will not significantly respond to heat
surges generated In the diode .s a 'Hult of pulsed operation once
steady-state conditions are achieved. Using the measured value
of TL' the junction temperature may be determined by:
TJ = TL. + tloTJL
where 6 T JL is the increase in junction temperature above the

lead temperature. It may ba determined by:

n

n

PPk

PPk

DUTY CYCLE = tpitl
PEAK POWER, Ppk, is peak of.n

L

~tPC..J

. 1---" ----l

equivalent square power pulse.
TIME

IJ. TJL = Ppk • R6JL [D + II - DJ • dt1 + tpJ + rttpl - r(t1)]

NOTE 6

NOTE 5

Data shown for tharmal resistance Junction·to·ambient (R6JAJ
for the mountings shown is to be uted as typical guideline values
for preliminary engineering or In CIIIe the tie point temp...ature
cannot be measured.

Use of tha above model permits Junction to lead thermal
resistance for any mounting configuration to be found. For a
given total lead 'angth, lowelt values occur when one slda of the
rectifier's brought 8S close as possible to the heat sink. Terms in
the model signify:
T A .. Ambient Temperature Res" Thermal Reslsunce, Heat
Sink to Ambient
T l. = Lead Temperature
Re L '" Thermal Resistance, Lead
to HntSink
TC" Case Temperature
R6J" Tharmal Resistance, Junc·
tion to Case
TJ = Junction Temperature
P D = Total Power Dissipation.
PF + PR
PF = Forward Power Dissipation
PR .. Rever. Power Olsslpatlon

TYPICAL VALUES FOR ROJAIN STILL AIR
MOUNTING
METHOD

LEAD LENGTH L IINI

1/8

1/2

1/4

"'

50

..

3/4

28

3

MOUNTING METHOD 1
P.C. Board Where Available Copper
Surface ar.a Is small.

(Subscripts (Aland (KI refer to anode end cathode sides respac:tively.)
Values for thermal resistance components are:
ReL = 4e o C/W/IN. Typicelly and 48o C/W/IN Maximum.
ReJ .. 100 C/W Typically and 1e o C/W Maximum.

CL-j

f-L:j

lff!~iiii;~;;;;;l'lffl

The maximum lead temperature may be found as follows:
TL""TJlmaxJ-IJ.TJL
where

MOUNTING METHOD 2
Vector Pin Mounting

IJ.TJL can be approxlmeted as follows:

~

AT JL ~ R6JL • PC; Po is the sum of forward
end reverse power dissipation shown In FIGures
2 and 4 for sine wave operation and Figures 3
and 5 for square wave operation.

THERMAL CIRCUIT MODEL
(For Heat Conduction Through the L..ds)

Vector Push·ln 'Tarminals T·28

MOUNTING METHOD 3
P.C. Board with
1-1/2" x 1_1/2"CopparSurfaca

JII[J
1175

RsJA
o~/W

W

°c/w

MR860, MR861,
MR862, MR864,
MR866
~IH:'pt

Data

()P!'->i:,.?,TH'I'!'->

FAST RECOVERY
PoWER RECTIFIERS

STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS
... designed for special applications such as dc power supplies. inverters.
converters. ultrasonic systems. choppers. low RF interference, sonar power
supplies and'free wheeling diodes. A complete line of fast recovery rectifiers
having typical recovery time of 100 nanoseconds providing high efficiency
at frequencies to 250 kHz.

50-600 VOLTS
40 AMPERES

Designe,'s Data for 'Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" desigl).

MAXIMUM RATINGS
Symbol

Peak Repetitive Rever. VClItage"
Working Peak Reverse Voltage
DC Blocking VOltage
Non·Repetitive Peak Rever. Voltage
RMS Reve... Voltage

MRSSO

VR
VRSM
VRfRMS)

AVtf'age Rectifted"Forward Current

MRII'

MRW

MRIM

MR8B8

Unit
Volts

VRRM
VRWM

50

lOll

200

400

800

75
35

150
70

250
140

450
280

650
420

10

Volts
Volts
Amps

40

(Single phase. reilltive load,

TC,· l00"C)
Non·RepetitlVe Peak Surge Current
llurgeltpplledat rated load
condit4ons)
Operating Junction Temperature
Range
Star. Temperature Range:

~

~.

TERM. I. ANODE
·Z.CATHODE

Am..

IFSM

350

.

TJ
Tstg _

--65 to +160

DC

-65 to +175

DC
P

1/4·Z8UNF-2A
rermilllil

THERMAL CHARACTERISTICS
Thermal Resistance. JunctIOn to Ca..

ELECTRICAL CHARACTERISTICS
ChanI_iltic

Symbol"

InstantaneoUi Forwerd Voltage
(IF = 126 Amp; T J • 1SOOC)
Forward Voltage
(IF" 40 Amp, TC ·2sOCI
Aevene Current (ratad de VOltage)
TC· 2SoC

Min

vF

VF

TV'
1,3

M..

Unit

1,6

Volts

1,0

".

26
1.0

50
2,0

IR

To =l00"C

Volts

....

mA

Revene Recoverv Tima
(lF;o 1.0 Amp to VR" 30 Vdc, Figure 181

11 ... ·36 Am••• lldt. 2'A/~., Fi~N 171

Rev.rse Recovarv CUmM\t
II .. 1.0 Amp to VR = 30 V6c, Figure t61

Svmbol

'"
iRMIREC)

0.15Z

O.zza O.Z4S
0.1400.115
NOTES.
1. DlmlllSlOn''P'''lsdiarntller.
2. All JEDECdlmanlloosand notaupply.
CA'SE 2$7·01
DO·203AB
3.66

6.32
4.45

MECHANICAL CHARACTERISTICS

REVERSE RECOVERV CHARACTERISTICS
ClYracteriltlc

'86
5.59

Mm

TVD

Mo.

lOll

200

200
2.0

400
3,0

117~

Un.

Amp

CASE: Weld.d. hermetically ••eled
FINISH: All external surfaces corrosion resistant
and readily solderable
POLAR lTV: Cathod. to C_. Reverse Polarity
Indicated by an "Ru suffix •
i.•.•, MR861R
WEIGHT: 17 Gr.ms (Approximately)

MR860, MR861, MR862, MR864, MR866 (continued)

FIGURE 2 - MAXIMUM SURGE
CAPABILITY

FIGURE 1 - FORWARD VOLTAGE
300

V

100

i'

VI

0

.........

I600 C

0

"r-.

(1

0

',I.

I
is operated such that TJ '" lSOOC;
VRRM may be applied between
each cycle of surge.

....

V
TJ=250 C

~iort~ s.r~ ••~ ~HI" I

...........

/

200

-

I

A

-

(\

A

1----\..1 CYCLE

J

II

0

III

0
1.0

rl

2.0

3.0

5.0 7.0

10

20

30

50

70 100

NUMBER OF CYCLES AT 60 Hz

0

NOTE 1
0

RJ1

~k

.~

1---•• _

I

2.0

I

0.4

TIME

The temperature of the case should-be maured using a thermocouple pllC9d
on the tase at the temperature ref.rence point (see Note 31. The thermal mass
connected to. the CII8 is normally large enough .. that It will not agnificantly
respond 10 heat surgugenerated In thad ..de lSI fesult of pulsed opefitlOn once
deady-statecoPditions8ltlcbieved. Usi .. the lllllSUred-valueof Te. the junction
temperature may be determined by:
.
TJ=TC+ 6YJC
where ~ TJC is tlte increase in junction temperature above IhI case temperature.
It may be determined by:
t::. TJC = Ppk 'R8JC ID + 0 - D) . r(tl + lp)+-r{tp} -rlttll
whlft
.
.
r(t) '" normalized value of transient tbermat rasistanct at time. t. from Figure
3, i.e..
~
-,
r (11 + tpl:r. nonnaliztd vatue of transient I,"",mal nsistant:e at tima t,+tp.

I

I I

I

the follOWIng procedure is recommended

0.7
0.5

o

DUTY CYCLE, 0 = 1phl
PEAK POWER, Ppk,lS peak of an
equivalent square power pulse.

To determin.maxlmum Junction temperature of the diode In a given situation,

I

1.0

0.3

Ppk

t

0

0.8

1.2

1.6

2.4

2.0

2.8

VF.INSTANANEOUS FORWARD VOLTAGE (VOLTSI

FIGURE 3 - THERMAL RESPONSE
1.0

~
~

........

0.5

~~ 0.3

. , 0:

:~ 0.2
.... w

w'-'

~~
........

"

0.1

~~

(SEE NOTE'U

!ii~0.05
.;~

"'ii:l 0.03
~0.02
....
0.01
0.001 0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

',TIME(msi

1177

10

20

50

100

200

500 1000 2000

5000 10.000

MR860, MR861, MR862, MR864, MR866 (continued)

SINE WAVE INPUT

SQUARE WAVE INPUT

FIGURE 4 - FORWARD POWER
DISSIPATION

FIGURE 5 - FORWARD POWER
DISSIPATION

0

70

I
CAPACITIVE LOADS

I

/
1/

1/
O-II(PK) I
I--.
-1(AV)'2O/
/
0
/

~

/ /

1~--r

/'

5.0

.b

'f.

./

V

./ V

liD

0

/

I
CAPACITIVE LOADS
I
I
I(PK) =20I(AV)

0

ro

r- w

20

~

z

I
I

~

I
I

~

I
I

~

~

~

00

..""

5.0

10

FIGURE 6 - CURRENT DERATING

..,g;

35

~

30

~
~

20

~

S
~

~

:'......

.............

--.

25

a

~

45

,~
:;
..,

40
35

'"
a:

30

....

40

...........

~

........... t--.,...........

I(PK) =20---~
15 t - - - I(AV)
10 HCAPACITIVE LOADS""'" 10
RESISTIVEIINOUCTIVE LOAD

,

,

~
~

80

90

100

110

120

.

~~

5·0

130

1~

150

TC. CASE TEMPERATURE (DC)

"

ffi"'

15

~

10

~

5.:

45

50

~e

:"-.....

"

.............. ~

"""

10

I(AV)

2.0

~"
~ 0-

~

,

.... ~

90

100

110

120

130

1~

150

160

~::;

!!_ __
1 '1111111.
f=
i

1000C

lOO

;;

....z

750C

~

~ ~50DC

a:

== F I

250C

.I
~
500
~
YR. REVERSE VOLTAGE (VOLTS)

600

10

-

~10-2~1~~~11~~11~!1~111~

1

100

~

35

FIGURE 9 - NORMALIZED REVERSE CURRENT

:::TJ= 1500C

100
o

30

TC. CASE TEMPERATURE (DC)

i-- 1250C

1==

""

80

160

FIGURE 8 - TYPICAL REVERSE CURRENT

104

25

...... ........-........:: :::-.... i'...
~ 25 -CAPACITIVE LOADS
I
./'" ~
~ 20
I(PK) • 20

-:x ~

5.:

20

FIGURE 7 - CURRENT DERATING
50

~ 45

~

15

IF(AV). AVERAGE FORWARD CURRENT (AMP)

50

a:

"/

L#

IF(AV). AVERAGE FORWARD GURRENT (AMP)

a:

./

...........
~ ;.r
~

RESISTIVE/INDUCTIVE LOAD

~

de

/
I. / "

~
~

/' /'

--7 / ' V

5.0

.// :,-

0"'-

V
./

+/

I
700

1178

10- 3 ':-~-:':---::':-~~~-:--:':-~---,JL...,,.!.,-~--,JL...,~-,J

20

30

40

50

60 70 80 90 100 110 120 130 140 150 160
TJ. JUNCTION TEMPERATURE (DC)

MR860, MR861, MR862, MR864, MR866 (continued)

FIGURE 10 - FORWARD RECOVERY
TIME

FIGURE 11 - JUNCTION CAPACITANCE
200

10
7.0

~ 5.0
w

!

ffi

~TJ = 25°C

I
II - - - v~ I

3.0 f - - -

!-'fr

VVfr-1.1 V

>

~

'"~

i

~

~

-

ot---"-

VIr

2.0
1.0
o.7

0
TJ - 25°C

0

0.5

0.3
2 ___

"...

O.

O. 1
1.0

.......

t-

O

5.0
10
20
IF. FORWARD CURRENT (AMP)

2.0

t---...

20
1.0

100

50

2.0

5.0

10

20

50

100

VR. REVERSE VOLTAGE (VOLTS)

TYPICAL RECOVERED STORED CHARGE DATA
(Sae Note 21

FIGURE 12 -TJ = 25°C
1.0

~

I I

IFM = 20 A

o. 5

.3
w
:;;

40 A

:;;
«
13 o. 2
w

'"
'"~'"

FIGURE 13 - TJ ~750C
20

,~

~~

O. 1

g

V~

/

/"

~

~

g 0.0
0.0

'\

~ IP" ......

:~ /""
1.0

2.0

~

lOA

;,:::;

'\

./ 1/

1 OA

0.2

20

~ 5-

1

o

I
50

002
10

100

"/ V

/

~_a; 005

50AI

50

40 A
05

~

~

'"~ 0.0 5

IFM = 20 A

10

~

V

i'---.. ..... ~
IDA
5.0 A

0

LOA

r

tIIIe ~ ......
2.0

5.0

50

20

10

100

di/d •• (AMP/",)

FIGURE 15 - T J = 150°C

FIGURE 14 - T J = 100Dc
0

IF~ = 20lA

31
0
w

:;;

~

0

~

;'

w

g

o. 5
V

~k

'"w~ o. 1
>
§
a;

0.0 2
1.0

~

j..-l-"

~>
~
a;

50 ~

~~V
~ ......
2.0

5.0

1.0 A
10

20

O. 5

/

~

V

lOA

a:: 0.0 5

o

V

/" V

~ o.2

1.../

:;;

40 A

~

J

IFM=40A

0

I

0.05

~
"lOA:-

LOA

/L.

~~
2.0

5.0

10
di/d.(AMP/",)

1179

fY

~

IDA

0.0 2
1.0

100

/

2 1/

'~

O. 1

o
50

7

O. 2

20

50

100

MR860, MR861, MR862, MR864, MR866 (continued)

FIGURE 16 - REVERSE RECOVERY CIRCUIT

A - TEKTRONIX 545A, K PLUG IN
PRE·AMP, PSOOO PROBE OR EaUIVALENT

300
50W

115 Vac 10 k
60Hz
ZW

RI - ADJUSTED FOR 1.4 o BETWEEN
POINT Z OF RELAY AND RECTIFIER
INDUCTANCE ~ 3BlIH

NON·INDUCTIVE
UNIT
UNDER TEST

n.

RZ - TEN·I W, 10 1% CARBON CORE
IN PARALLel

~--~JJA

TA - Z5 ~Igoc FOR RECTIFIER

RZ
~o

MINIMIZE ALLLEAO LENGTHS
lOW ,
30 Vdc
NON.INDUCTIVE
CI
1.0 Adc FROM CONSTANT VOLTAGE SUPPLY
CONSTANT VOLTAGE
1.0pF
RIPPLE - 3 mVrms MAX
SUPPL Yo-+_ _..._ _ _ _-4......_ _ _ _...30_O_V...._--o- Zout - 1% 0 MAX, DC to Z kHz

FIGURE 17 - JEDEC REVERSE RECOVERY CIRCUIT
RI

RI - 50 Ohms
T1
RZ - Z50 Ohms
01 -IN4723
DZ -IN4001
D3 -IN4933
IZOVAC
SO Hz
StRI - MCR729·10
CI-0.5to50pF
CZ ~ 4000pF
LI-1.0-Z7pH
T~ - Variac Adjust. I(PK) and dildt
TZ =1:1
T3 = 1:1 (to trigger circuit)

11
dVdtAOJUST

~ II
TZ

D3

1:1

CZ

CI

+

I (PK) ADJUST

D.uT.

DZ
RZ

DI
CURRENT
VIEWING
RESISTOR

NOTE 2
Reverse recovery time is the period which elapses from the
time that the current, thru a previously fdrward biased rectifier

dildt

diode. passes thru zero going negatively until the reverse current
recovers to a point which is less than 10% peak reverse current.
Reverse recovery time is a direct function of the forward
current prior to the application of reverse voltage.
For any given rectifier, recovery time is very circuit dependent. Typical and maximum recovery time of all Motorola fast
recovery power rectifiers are rated under a fixed set of conditions

,using IF ;, 1,0 A, VR

= 30

V.

IRM(REC)+:---'--

In order to cover all circuit

conditions, curves are given for typical recovered stored charge
versus commutation di/dt for various levels of forward current

and for junction temperatures of 25°C, 75°C, l00"C, and
150"C.

From stored charge curves versus di/dt, recovery time

hrr )

and peak reverse recovery curient (I RM(REC)) can be closelV
approximated using the following formulas:

To use these curves, it is 'necessary to know the forward
current levBI just before commutation, 'the circuit commutation
di/dt, and the operating junction temperature. The reverse recovery test current waveform for all Motorola fast recovery
rectifiers is shown.

'0

~ 1/2

trr= 1.41 x [ _R_
di/dt

IRM(REC)

1180

= 1.41

x [OR x

di/d~ 1/2

MR870, MR871,
MR872, MR874,
MR876
FAST RECOVERY
POWER RECTIFIERS

STUD MOUNTED
FAST RECOVERY POWER RECTIFIERS

50-600 VOLTS
50 AMPERES

designed for special applications such as dc power supplies,
inverters, converters, ultrasonic systems, choppers, low RF interference, sonar power supplies and free wheeling diodes_ A complete
line of fast recovery rectifiers having typical recovery time of 100
nanoseconds providing high efficiency at frequencies to 250 kHz_

Designe,'s Data for "Worst Case" Conditions
The Designers Data sheets permit the design of most circuits entirely from the
information presented. Limit curves - representing boundaries on device character-

istics - are given to facilitate "worst case" design.

MAXIMUM RATINGS
Rating

Symbol

Ptlak Repetitive Reverse Voltage

VRRM

WOf'"king Peak Reverse Voltage

VRWM

DC Blocl

'";;

~

26

"-

.........

6

..... )'..

40
36

......

5

)'..."'"

..........

30

......

26

61---

20

0

16

6

10

0

6.0

0

0
80

90

130

100

36

40

46

60

'-de

"

'-

....

f'.......-"""'" 1:'.'

I(PK) = 20------' r--~
I(AV) 10--

2.0·6.0

0
80

140

r- CAPACITIVE LOADS

100

90

TC. CASE TEMPERATUR E(oC)

120

110

~ ~

J.-..-----:

-....;

130

~\

~~
~
~
1@

150

160

TC. CASE TEMPERATURE (DC)

FIGURE 8 - TYPICAL REVERSE CURRENT
TJ

30

FIGURE 7 - CURRENT DERATING

I0:

20

IF(AV). AVERAGE FORWARD CURRENT (AMP)

FIGURE 6 - CURRENT DERATING
!L

~

L

F-""
~~

0
~

L

L

~~

0

w

L

10,-

V

g

V

:~:~~ t---~.L.LV
V
[/)V
V
V/
I'V""
b ~V
.L

/ . / "-:;(RESISTIVE
INDUCTIVE -

/ V/ ~
/ ~V

10

0

V V

FIGURE 9 - NORMALIZED REVERSE CURRENT
101

=1600C

VR

I-

=100 V
~

0

1~
2

200

300

400

600

600

700

VR. REVERSE VOLTAGE (VOLTS)

10· 3
20

/'

30

40

50

60

70

60

90 100 110 120 130 140 150 160

TJ. JUNCTION TEMPERATURE (DC)

1183

MR870, MR871, MR872, MR874, MR876(cohtinued)

TYPICAL DYNAMIC CHARACTERISTICS
FIGURE 10 - FORWARD RECOVERY TIME
10
7.0

~ 5.0
w

~

3:0

ffi

2.0

>
o

ftl

=
-===

0.5

~

0.3

~

",. O.

-

\-tlr

VIr

I

......

2~

.........
1""- ...

0

-

0

10

10
5.0
20
IF, FORWARD CURRENT (AMP)

2.0

T =250C

0

VVir = 1.1 V

O. 1

1.0

-

~ ~TJ=250C
V~ r-- I-

1.0
O.7

'"o
'"i

FIGURE 11 - JUNCTION CAPACITANCE
100

1.0

100

5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)

2.0

100

50

TYPICAL RECOVERED STORED CHARGE DATA
(See Nbte 2)

1.0

FIGURE 13 - T J =750 C

2.0
IFM-20A

j

40A

0.5

w

~

g

./ . / V'v

~ 0.2

~~

o

t; O. 1

/"

~ 0.05

"-

~

gO.02
0.0

V
1~
1.0
2.0

5.0

'\

di/dt

o.5

~w

>
o

40 A

././

0. t>

o. 1
~

0.02
1.0

100

2.0

I
50

20

10

100

FIGURE 15 -TJ -ISOOC
.0

'.~

'iFM=4JA

.0

/.

40A
O.5

.5

./

~

'"~

5.0

di/dt, (AMP/~sl

IF~ =20lA

1.0

co

'"

..,~

LOA

~ ~i-'"

FIGURE 14 -'TJ = 100°C

:iw

'-.1.:-IDA

o'"
50

i-'

./'

5,0 A

(AMP/~s)

2.0

,/'

a:: 0.05

l.°i
20

/. V

~

5.0 A

10

5'"
~

IDA

~ iP

1.0

'"~ o.2

~

~

IFJ =201

.3.
w
co

'v'

~k

~

w O. 1

..,o>

./

~ /1.:--

/

02

V

/'

.2

Vf-"

./

...< ./'

~~

.1

IDA

'~ 0.05

~
0.02
1.0

2.0

5.0

5

10

20

I.DA

/~

'1'0 A

:;..-1-'"

50

r'20A=

IDA

5.0~

~'O'.,.".

><:

100

dildt, (AMP/~s)

1184

0.02
1.0

~r
2.0

5.0

10
di/dt (AMP/~s)

20

·50

100

MR870, MR871, MR872, MR874, MR876 (continued)

FIGURE 16 - REVERSE RECOVERY CIRCUIT
A - TEKTRONIX 545A, K PLUG IN
PRE-AMP, PSOOO PROBE OR EQUIVALENT

300
50W
NON-INDUCTIVE

115Vac 10k
60 Hz
2W

RI-ADJUSTED FOR 1.4 o BETWEEN
POINT 2 OF RELAY AND RECTIFIER
INDUCTANCE ~ 3B I'H

UNIT
UNDER TEST

R2- TEN-I W, 100.1% CARBON CORE
IN PARALLEL

t-----t

Ie.

i

,1//

I
'-'

80

/I

r;:

:II

:5

PHASESTAR

1/
z:

52

100

f

80

iii
c

60

f5

~

40

TJ

!Ii

t;;

!5

...

20

Ii!

=1S0oC I I
I I

I

TJ

iIi!
~

20

10
8.0

,

6.0

4.0

o

0.2 0.4

0.6 0.8 1.0

1.2 1.4

~

o
o

1.6 1.8 2.0

~

DC

/

I) '/ /

J. ~ /
~/

V

PHASE (HALF WAVE _
OR FULL WAVE)

-

T,(150,CTOlrC

20

v,. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

/

'iJ/

!J 1'" ~

40

~

=25°C

/

3 PHASE
(HALF WAVE OR FULL WAVE)
6 PHASE WITH INTERPHASE

~

::>

fa

60 _

J

60

40

100

80

I'(AV). AVERAGE FORWARD CURRENT (AMP)

FIGURE 3 - MAXIMUM CURRENT RATINGS
'80

78.5
~

70

-

60

I--

~

f5

;;:

..~

f5

50

I'"

45.5

'-'

Ie

~

=

40

32
' 30

00-

I--

-

-

I

P~N~l~-ilv~VE i"'-...

I

I
WA~rcI'R~ULL WAV

~ PHASE TH INTiRPHAS~
HALF

==

" "'~ t-....

-

..........

6 PHASE STAR

i

10

~

~

~

,

'\

'\

"'" ........... ~ ~

100

110

12,.0

130

140

ISO

Te • CASE TEMPERATURE (OC)

1192

160

R

'\

~~

I"'-- ...........

20

.".

(16rrJ6bb~r:J~~X~)

170

.

~~

180

190

MR1205FL, MR1209FL (continued)

FIGURE 4 - EFFECTIVE TRANSIENT THERMAL IMPEDANCE
1.0

1\

III
TJ

-

...........s.

I
Tc =R6JCltl PAW;

.... ~

1.&3"

~,....

~

.....

...-

DC

~ f.-""
t-'

..... -l-

----

.... 1--"

~
o
0.002

0.004 0.006

0.01

0.04

0.02

0.1
0.06
I • TIME (SECONDS)

0.4

0.2

0.6

1.0

10

4

FIGURE 5 - MAXIMUM ALLOWABLE SURGE CURRENT

i5

800

~

iii
::>

..,

"-

'"

600

~

...z:
~

;;;
~

II

~U~EIAPUED
AT I
RATED LOAD CONDITIONS

.......
........ 1-0.

r....... ~

t

~

=

...'"
::I

v.... APPLIED AFTER SURGE
Tc '" 150°C

-

400

I

r- r- :--

200

j

100
1.0

6.0

4.0

2.0

8.0 10

20

60

40

80 100

200

400

600

CYCLES AT 60 CYCLES PER SECOND

FIGURE 6 - CURRENT DERATING DATA
0::

~

so

ffi

!;;

~

40

~

I

30

Ie

20

ill!

10

.

~
{~ ..........

r-~

r-.....

i""'-

Co.t"tcr~

~

~~ ~~~~"'r--....
.........
r-....

"

........
..............

........

,"'- "-

"' ""

r-......
.........

......... r-.....

"
r--....

j

20

40

60

80

100

120

T•• AMBIENT TEMPERATURE (OC)

1193

For 6 phase ratlnll multiply
current scale by 0.63.

........

f"'""'-.. r.:::: .........

III

~

CONDITIONS
5 x 5 x ~ copper heat link
fin It ~ 0.9 and mounted parallel
to airllow. 180~ conduction.
For 3 ph_ ratinll multiply
current ..ale by 0.90.

140

"

'..:::: ~ ~
160

~

'"

180

200

MR1215FL, MR1219FL (SILICON)
MR1815SL, MR1819SL

UNIQUE, MULTI·CELL RECTIFIERS OFFERING
HIGHEST ORDER OF RELIABILITY IN
POWER APPLICATIONS

HIGH·CURRENT
SILICON RECTIFIERS
80/100 AMPERE
300, 600 VOL TS
DIFFUSED JUNCTIONS

Designers Data for "Worst Case" Conditions

Motorola DESIGNERS Data Sheets are prepared to facilitate
"worst-case" circuit design entirely from information presented on
these pages. To do this, the usual typical curves which provided
some guidance to the engineer, have been supplemented by limit
curves which are directly applicable to "worst-case" rectifier circuit
design. Limit curves represent boundaries on parameters and does
not necessarily indicate typical rectifier behavior.

CASE 167

MR1215Sl

MAXIMUM RATINGS

.......,

Radng
Peak Repetrtiva RfIYiIlW Voltage

VRRM

Worlcing Peek Ravene Voltage

VRWM

DC Blacking Voltage

MR1219SL,MR1819SL

MR1215SL,MR181&SL'

eoo

Unit

and
MR1219Sl

Volts

VR

Non·R.petitivlt Putt Reverse Voltage
lonahalfwMla.slng'aph• •

VRSM

400

VRIRMSI

210

60 H;r peek)

RMS R.,.,.. Voltage

720
420

Volts

Vatu

A~

Rectified Forwwd CUrrent
(lingle ph• • mlstlve load,
80Hz.... Figure 31 TC·':WOC
TC· 1&OOC

Non·RepetitlYti Peak Surge CUmnu
(IUrge 8pplied at rated 10.1
condltiOl"ll...eFlgul'tl5)

Amp

'0

100

80
2.000lfor 1I2cyCI.I----_
'FSM

_ _ _ _ 1,200 IforslK conleCutlvlcycl•• I _ _ __

Amp

Tc ·,eQOC
Iq Rating l"OM'lPItltive, for 1
IFHttf than 1 Fnland I. .

,0,

_______ 8,300------_

thin 8.3 msl

Operatlng.nd Storage Junction

Temperature Rlngl C. . Figure4
for other conditio....)

_ _ _ _ _ _ -65to+19D _ _ _ _ __

TJ. TMJ

CASE 189

ELECTRICAL CHARACTERISTICS
Unit

Symbol
Full Cycle Av.... Forwerd Voltllgll Drop
1mecl1oand Vr,.lnglaph... 60 H~, TC -1SOOC)

VFIAVI

Full Cycl. Average Rewne Currtn1
hllt8d 10 and Vr ,lIngie ph... 60 Hz, TC-1SOOC)

IRIAVI

0.4

,.

mA

MR1815SL

and
MR1819SL

THERMAL CHARACTERISTICS
Tlwmel Resistance, Junctton 10 c..

Volt

0.40

1194

MR1215SL, MR1219SL/MR1815SL, MR1819SL (continued)

FIGURE 2 - MAXIMUM FORWARD POWER DISSIPATION

FIGURE 1 - MAXIMUM FORWARD VOLTAGE DROP
4000

160
6 PHlsE

2000

0::

"

~

1000
800
600

i"

111

T,

200

/ 1/

i,;

e
""z
~

100
80

TJ

== 25°C

80

/

~

;'!

60

60

z

t;;

40

I

~

20

40

10

8.0
6.0
4.0

20

o

0.2 0.4 0.6 0.8 1.0

o

1.2 1.4 1.6 1.8 2.0

~[:/

de

V

V

1 PHASE (HALF WAVE
OR FUll WAVE)

~V

I

II

.-

JrlJ

WV /
h~ /

100

= 150°C I I

l'i

V

/

3 PHASE
(HALF WAVE OR FULL WAVE)
6 PHASE WITH INTERPHASE

/

400

STA~ J

140

120

~
~

~

~

I

o

V
~
V
40

20

80

60

v,. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

=150°C TO 190°C

T,

100

120

140

160

180

200

I"",. AVERAGE FORWARD CURRENT (AMP)

FIGURE 3 - MAXIMUM CURRENT RATINGS
160
157
"-

"ffi

F=

'"

de

140 ' - -

~

;:;:

~

'"~
~

ffi
ii2

13

"

j

I

J

120 -

100
91

--

80

--I

64

1==

60

1 PHASE (HALF WAVE
OR FULL WAVE)

3 PHASE

(HALF WAVE OR FULL WAVE)
6 PHASE WITH INTERPHASE

~

""
--

~
-.......;

.........

~

~

40 ~

---

o

110

120

130

140

150

160

Te. CASE TEMPERATURE (OC)

1196

'"

~.... ~

20 ~

o

"",

r---..l-...........
'

6 PHASE STAR

I

)

(60 Hz. RESISTIVE OR INDUCTIVE LOAD)

170

~

180

190

200

MR1215SL, MR1219SL/MR1815SL, MR1819SL (continued)

FIGURE 4 - EFFECTIVE TRANSIENT THERMAL IMPEDANCE
0.7

IIII

i, ~ T~ ~6'CI'IP"

~

f...-' ~

r-

~
~
0.002

0.004 0006

001

0.02

0.04

0.06

0.1

.,.-

-

0.2

I--"

--

~

1--" .....
1--" .....

0.4

0.6

~ l14>

~

n

34>

-r

1.0

10

t. TIME (SECONDS)

FIGURE 5 - MAXIMUM ALLOWABLE SURGE CURRENT
2000

............

~
~

~

1500

u

~.,

I

"'-

~

z

...........

'"'"
'"'"
"~

L

I

=

........ .......

~

in

I

SURGE APPLIED AT
RATED LOAD CONDITIONS
v.... APPLIED AFTER SURGE
Tc
150°C

II-

........

1000

~

........

500

............

-

l"- I--

~

1.0

:z.o·

4.0

6.0

8

10

20

40

60

80 100

200

400

FREQUENCY AT 60 (Hz)

FIGURE 6 - MAXIMUM CURRENT DERATING DATA

CONDITIONS

y. copper heat sink
f;; 0.9 and mounted parallel

5x5x
fin

€

to air flow, 1SO- conduction.
For 3 phase ratings multiply
current scale by 0.90.
For 6 phase ratings multiply
current scale by 0.63.

200
TA • AMBIENT TEMPERATURE (OC)

1196

600

MR1215SL, MR1219SLlMR1815SL, MR1819SL (continued)

POLARITY:
Standard polarity devices are CATHODE TO CASE. Reverse
polarity devices are ANODE TO CASE and are designated
by an "R" suffix i.e. MR1215SLR. These devices have a
molded plastic top for mechanical strength and seal.

CASE:

MOUNTING POSITION: Any

All units have a plated copper base and terminal. Molded
external case with internal hermetically sealed, metallic case
rectifier cells

STUD MOUNTING TOROUES:
25 in-Ib min., 30 in-Ib max.

OUTLINE DIMENSIONS

~}

MRI215SL

MRI815SL

and
MRI219SL

MRI819SL

-~

--Jot--

: i
I / iI

Q

l~: !

G

.

.Il

~

I .-

-2

L

lO.32 UNF.2A J

SEATING PLANE
CASE 167

DIM
A
B
C

D
E
F
G
H
J
K
Q

R

MI LLIMETERS
MIN
MAX

31.37
13.72
12.70
2.92
2.fl7
29.21
12.70
10.77
34.93
6.10
-

36.83
32.13
17.91
13.34
3.43
3.43
34.29

~'l

and

NOTES:
1. CRIMPED LUG
2. ANGULA R ORIENTATION
OF LUG UN DEFINED.
MI LLIM ETE RS
INCHES
DIM MIN MAX
MIN
MAX

-

1.235
0.540
0.500
0.115
0.105
1.150
0.500
12.70 0.424
44.45 1.375
6.60 0.240
30.48
-

1.450
1.265
0.705
0.525
0.135
1.135
1.350
0.500
1.750
0.260
1.200

A
B

C
0

E
F

G
H
J
K
Q

R

33.02
31.37
13.72
12.70
2.92
2.67
29.21
12.70
15.06
34.93
6.10

-

36.83
32.13
17.91
13.34
3.43
3.43
34.29
16.76
16.69
44.45
6.60
30.48

@

B

-~

--JOt--

~1>

INCHES
MIN
MAX
1.300
1.235
0.540
0.500
0.115
0.105
1.150
0.500
0.593
1.375
0.240

1.450
1.265
0.705
0.525
0.135
0.135
1.350
0.660
0.657
1.150
0.260
1.200

.12

L3/8-24-UNF2A J
SEATING PLANE
CASE 189

CONSTRUCTIONAL FEATURES
Motorola's unique double-cn"€:, multiple cell
construction offers numerou~ advantages whIch result In rectifiers
posse!.sing "deSigned-in" ruggedness. rehabllity and !.uperior
performance charactenstlcs.

r-"

Cc)mplete

IS

case

seal strength afforded by the outer
thus preventing any excessive stress on the glass-tometal hermetic inner seal.

Void-free, molded external case for added mecham-

cal strength and electrical isolation In addition to
being corrosion resistant. - - - -_ _""'"

Plated copper base and lor stud i

to the inner cases for optimum " ..
rent balance between cells.

ttm,",""""" cur·

,:~?~~~~!tce

to thermal fatigue of each cell is assured
use of double back-up discs and high
temp solder constructlOn to protect the silicon die
against stres~. In addition, the small junction areas
of the individual paralleled cells result in a total
rectifier WhiCh can better resist thermal fatigue because of the smaller excursion of dissimilar bonded
materials as opp()~ed to a large single-junction
rectifier.

1197

MR1235FL, MR1239FL (SILICON)
MR1235SL, MR1239SL
SL CASE 127

FL CASE 134

Silicon power rectifiers designed with double-case, multi-cell
construction for extreme reliability and ruggedness. Available in
two packages which have the same ratings and characteristics.
Desired package can be selected by adding suffix "SL", or "FL"
to type number.
MAXIMUM RATINGS

Rating

Symbol

MR1235

MR1239

Unit

300

600

Volts

Peak Repetitive Reverse Voltage

VRRM

Working Peak Reverse Voltage
DC Blocking Voltage

'RWM
VR

Non-Repetitive Peak Reverse Voltage
(one halfwave, single phase,
60 cycle peak)

VRSM

400

720

Volts

VR(RMS)

210

420

Volts

RMS Reverse Voltage
Average Rectified Forward Current
(single phase, resistive losd,
60 Hz, see' Figure 3) TC = 135·C

10

Non-Repetitive Peak Surge Currents
(surge applied at rated losd
conditions, see Figure 5)
T C ·15,O·C
rt Rating (non-repetitive, for t
greater than 1 ms and less
than 8.3 ms)
Operating and Storage Junction
Temperature Range (see Figure 4
for other conditions)

Amp

300
240

TC = 150·C

5,000 (for 1/2 cycle)

~SM

Amp
3,000 (f or six consecutive cycl es)

12t

A2.

52,000

·C

-65 to +190

TJ' Tstg

ELECTRICAL CHARACTERISTICS

Symbol

Max

Unit

Full Cycle Average Forward Voltage Drop
(rated 10 and VR(RMS)' Single phase, 60 Hz, TC =, 150·C)

VF(AV)

0.4

Volts

Full Cycle Average Reverse Current
(rated 10 and VR(RMSl' single phase, 60 Hz , TC = 150·C)

IR(AV)

35

rnA

Symbol

Max

Unit

R6JC

0.12

·C/Watt

Characteristics and Conditions

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance, Junction to Case

1198

MR1235FL, MR1239FL/MR1235SL, MR1239SL (continued)

MECHANICAL CHARACTERISTICS
POLARITY:
Standard polarity devices are CATHODE.TO.CASE.
Reverse polarity devices are ANODE-TO·CASE and are
designated by an "R" suffix i.e. MR 1235FLR.
MOUNTING POSITION: Any.
STUD AND MOUNTING BOLT TORQUES:
For Stud Mounted "SL" rectifiers. 300 in·lb. min .•
400 in-Ibs max.
For Flat Mounted "FL" rectifiers use \4 inch bolts

CASE:

torqued to 60 in·lbs min., 80 in-Ibs max. Use an alternating

All units have a plated copper base and terminal. Molded
external case with internal hermetically sealed. metallic case
rectifier cells.

procedure when torquing the four bolts and do not tighten
one bolt completely without tightening the others.

FIGURE 1 - MAXIMUM FORWARD VOLTAGE DROP

FIGURE 2 - FORWARD POWER DISSIPATION

6000

500

4000
2000

i

I
S

100
80
60

~

I
.".

i

is
;:::
f 300

=

150°C

/T.

I

3 PHASE
(HALF WAVE OR FULL WAV~ _
~ PHASEtlTH INTERPHAS
/

IE 200

~

.:

2D

o

1.0 1.2 1.4

1.6 1.8 2.0

V}
I7jV

T.

100

o
0.2 0.4 0.6 0.8

/ 1/

/
/

/

VOC

V

IJ.-.: '/ V
~ ~. V
/.~ /
=
~/

i
i

25°C

~V

I PHASE (HALF WAVE
OR FULL WAVE)

c;

=

40

10
B.O
6.0

t--

ilj

I
T.

PHAS~ STAR) 'I

400

I

.,

2

r

16

400

200

e

I.

1000
800
600

;~

/

/

~

o

1500C TO 190°C

~ /'
100

200

400

300

500

1".'1. AVERAGE FORWARD CURRENT (AMPERES)

v,. INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 3 - MAXIMUM CURRENT RATINGS
600

C

~

15

'"~

( 60 Hz • JESISTIVE
500
470

~

..........

DC

400

15
...

i.

.
:0

!~'"

1 PHASE (HALF WAVE
OR FULL WAVE)
300
270
200
190

III

~
j

-

~~
--....... ~
~~

PHASE (HALF WAVE OR FULL WAVE)
6 PHASE WITH INTERPHASE
6 PHASE STAR

100

-

90

100

110

""~

oj INDUCTIVE lOAD)

120
130
140
150
Te. MAXIMUM CASE TEMPERATURE (OC)

1199

'"

160

~

170

~

180

190

200

MR1235FL, MR1239FL/MR1235SL., MR1239SL (continuedl

FIGURE 4 - EFFECTIVE TRANSIENT THERMAL IMPEDANCE

_I I 1.1111

6.

Tc ~R8JCltIP"VE

TJ

-----

i--" ~I--

0.01

0.02

0.04

0.06

0.1

1.&3<1>

~

l- I--"'"

-

0.004 0.006

~

~ I-

~

0.4

0.2

DC

I'-"

...
0.6

1.0

10

t. TIME (SECONDS)

FIGURE 5 - MAXIMUM ALLOWABLE SURGE C.URRENT
5000

;;:

~

IE

...........

~

4000

........ .......

~
i3
~ 3000

r-

........ r-...

...3lz

..
~

2000

~

1000

~

-~

SURGE APPLIED AT I ~
RATED LOAD CONDITIONS
~~ l::!~IEDAFTER SURGE _ r-

...
..........."'"

1.0

2.0

4.0

6.0

8.0 10

"""'20

roo ...

40

60

80 100

200

400

600

CYCLES AT 60 CYCLES PER SECOND

FIGURE &- CURRENT DERATING DATA
300

;;:

~

250

~

i;

II! 200

..
!...

.CONDITIONS

f!i

I

8

8 x % .copper heat sink
C"

:=:: 0.9 .nd mounted parallel

to airflow. 1SO- conduction.

150

For 3 ph... retinp multiply
current ...10 by 0.90.
For 6 ph... retinas muHlply

100

current ecolo by 0.63.

~

!l
~

)C

fin

5D

~
.1>
200
TA • AMBIENT TEMPERATURE (·C)

1200

MR1245FL, MR1249FL (SILICON)
MR1245SL, MR1249SL
SL

CASE 128

FL

CASE 135

Silicon power rectifiers designed with double-case, multi-cell
construction for extreme reliability and ruggedness. Available in
two packages which have the same ratings and characteristics.
Desired package can be selected by adding suffix "SL" or "FL"
to type number.
MAXIMUM RATINGS
MR1245

MR1249

Unit

VRWM
VR

300

600

Volts

VRSM

400

720

Volts

VR(RMS)

210

420

Volts

Rating

Symbol

Peak Repetitive Reverse Voltage

VRRM

Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage
(one halfwave, single phase,
60 cycle peak)
RMS Reverse Voltage
Average Rectified Forward
Current
(single phase, resistive load,
60Hz, T C =150°C

400

10

Non-Repetitive Peak 'Surge
Currents
(superimposed on rated
current at rated voltage,
TC = 150°C)

Amperes

8,000 (for 1/2 cycle)

~SM

4, 500 (for six consecutive 1/2 cycles)

12t Rating (non-repetitive for t
greater than 1. 0 ms and less
than 8.3 ms)

12t

133,000

A 2s

Operating and Storage Junction
Temperature Range

T J , T stg

-65 to +190

°c

Amperes

THERMAL CHARACTERISTICS

Symbol

Characteristic
Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS

Max
0.075

R OJC

(T..

=2SoC unless otherwise noted)
Symbol

Max

Unit

Full Cycle Average Forward Voltage Drop
(rated 10 and VR(RMS)' single phase 60 Hz, TC = 150° C)

VF(AV)

0.4

Volts

Full Cycle Average Reverse Current
(rated 10 and VR(RMSl' single phase 60 Hz, TC = 150°C)

IR(AV)

50

rnA

Characteristic

1201

MR1245FL, MR1249FL/MR1245SL, MR1249SL {continued)
FORWARD VOLTAGE CHARACTERISTICS
10,000
8000
SOOO

4000

/,

rl

2000

MAXIMUM FORWARD CURRENT versus MAXIMUM CASE TEMPERATURE

V1

c:

700

0

DC

'"

600

iii
~

I I

Y

0

TJ

;

1500

0

'"

s

I...

ITJ; 250C

0

I

0
0

500 fo-

~

300

~

200

I"

t:.

400

.;

.....

8
6

........

.6"

f-

~

0

.........

3"

~

100

4

D
2

....

o

m

m

ill

I\.

~

(60 ICPS,

\

RESI~TlV£ OR )~DUCTIVE L~)

I"-.

~........ ~
........... ~ [\
~~ ~
"~
m.

~

~

~

~

~

T., MAXIMUM CASE TEMPERATURE (OC)
I

o

0.2 0.4 0.6 0.8 1.0 1.2 1A I.S 1.8 2.0

v" INSTANTANEOUS FORWARD VOLTAG£ (VOLTS)

i

MAXIMUM SURGE CURRENT (Tc

~ 8000

Ii...

'"

7000

:::>

u

6000

~
~

... 5000
z
;;;

i

4000

~

3000

........

= 150·C)

I'....

~"

r"- r-.

""~

r-- r-

1
!

2000

1"-0.

1000

o
1.0

2.0

4.0

6.0

8.0

10

20

40

60

80

100

CYCLES AT 60 CYCLES PER SECOND

MAXIMUM SINGLE·PHASE CURRENT RATING

400

.'"

iii

350

S-

300

ei

i'"

...
Iiil
i5!
...
::>

-......... r-.:,..-..,

...........

SSOl

250

~

200

100

j

50

"

CONDITIONS
8 x 8 x ~ copper heat sink
finE;;:: 0.9 and mounted parallel
to airftow. 180· conduction,

........

"
r--- ~ ..........
......... ~ I'-....

~~

I'EcrlON

........

........

........

For 3 phase 1'lltings multiply
current scale by 0.85.

--...:: h:::--... ~ r-..

150

~
~

~~

~

For 6 phase ratings multiply
current scale by 0.60.

~~
~
.......

o

o

~~

20

40

60

100
120
80
TA• AM81ENT TEMPERATURE IOC)

1202

140

160

ISO

200

MR1265FL, MR1269FL (SILICON)

Silicon power rectifiers designed with double-case,
multi - cell construction for extreme reliability and
ruggedness. Standard cathode-to-case polarity, but
available with reverse polarity by adding suffix "R" to
type number.

CASE 136

MAXIMUM RATINGS

Rating

Symbol

MR1265

MR1269

Unit

VRRM
VRWM

300

600

Volts

VRSM

400

720

Volts

VR(RMS)

210

420

Volts

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

VR

Non-Repetitive Peak Reverse
Voltage
(one half-wave, single phase,
60 cycle peak)
RMS Reverse Voltage
Average Rectified Forward
Current
(single phase, resistive load,
60 Hz, TC = 150°C)

10

Non-Repetitive Peak Surge
Currents
(superimposed on rated current at rated voltage, TC =
150°C)

I FSM

12t Rating (non-repetitive, for t
greater than 1 ms and less than
8.3 ms)

12t

300,000

TJ,T stg

-65 to +190

Operating and Storage Junction
Temperature Range

Amperes

650

12, 000 (for 1/2 cycle)
Amperes
8,000 (for six consecutive 1/2 cycles)

A28

°c

THERMAL CHARACTERISTICS

Symbol

Characteristic
Thermal Resistance, Junction to Case

ROJC

Max

Unit

0.045

°C/Watt

ELECTRICAL CHARACTERISTICS

Symbol

Characteristic
Full Cycle Average Forward Voltage Drop
(rated 10 and VR(RMS), single phase, 60 Hz, TC

= 150·C)

Full Cycle Average Reverse Current
(rated 10 and VR(RMS), single phase, 60 Hz, TC

= 150°C)

1203

VF(AV)

~(AV)

Max

Unit
Volts

0.4
rnA

100

MR 1265FL, MR 1269FL (continued)
FORWARO VOLTAGE CHARACTERISTICS

20 ,000

~

10,000
8000

:::::::
MAXIMUM FORWARD CURRENT versus MAXIMUM CASE TEMPERATURE

8000

1200

I
I
Ii!

I

I
I

2000

(60 Hz, RESISTIVEOR'INOUCTIVE LoAo)
-0,

i"..
oC'\

0

I.

T.=ISOOr! /T.=25 0 C

-ti

1000
800
600

I
...

1100

0

.......
"-'\
3. ........"" ..................

0
400

I

0

II

200

"- '\
.......... ...............

6.
0

100
80

100

60

0

'\.

......r-...... . . . . . . "'.."
...... ~" ~

""""
120

110

40

130

150

140

170

160

~

180

T•• MAXIMUM CASE TEMPERATURE (OC)

'"

190

200

20

10

o

0.2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

MAXIMUM SURGE CURRENT (Tc

" ,INSTANTAIIEOUS FORWARD VOLTAGE (VOlTS)

12.1l00

~ r-....

.......

r-.... ~

= 15D C)
O

r-...
"'I"-

~r"'-......

..........

~ r-.......

-

r- ... ~

4.0

2.0

6.0

B.O

10

20

40

60

80 100

CYCLES AT 60 Hz

MAXIMUM SINGLE-PHASE CURRENT RATING
700

i:s,.

""

600

!i:

'"
=

400 ............

.

II!

:il

;

e'"

III
:!

~

....~

J

r--.......

500

CONDITIONS

. . . . . . . . r-...........

~Oa~01( ~
~VE~r-.... ~ .............. r-...
300
r-- ~ ~ r-......
200
-...
~~

--

-.:::::

180

r-::::

For 3 phase ratings multiply
current scale by 0.8S.
For 6 phase ratings multiply
current scale by 0,60.

~~

~

o

o

lOx lOx 14 copper heat sink
fin I 5;; 0.9 and mounted parallel
to air flow. 180 0 conduction.

SS0!!At

20

40

60

80

100

120

140

TA , AMBIENT TEMPERATURE (OC)

1204

160

......

180

200

MR 1337-1

MR 1337-5 (SILICON)

thru

Fast recovery silicon rectifiers designed for highfrequency power supply, inverter, and converter applications. Typical recovery time of 100 nsec extends
practical frequency limit of current rectification to
more than 300,000 Hz thus permitting the design of
power supplies with smaller, lighter, and less expensive associated components.

CASE 52
<00-13)

MAXIMUM RATINGS
MR
1337·1

MR
1337·2

MR
1337·3

VRRM
VRWM
VR

50

100

200

300

400

Volts

VRSM

100

200

300

400

500

Volts

VR(RMS)

35

70

140

210

280

Volts

Rating

Symbol

Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
(half-wave, single phase,
60 cycle peak)
RMS Reverse Voltage
Average Rectified Forward Current
(single-phase resistive 10ad)TA=25·C
Figure 2
TA=75·C

10

Non-Repetitive Peak Surge Current
Figure 3 (superimposed on rated
current at rated voltage, T A = 75 ·C)
Peak Repetitive Forward Current
(TA = 75·C)

~t Rating
(non-repetitive, for t greater than
1 ms and less than 8. 3 ms)
Maximum Junction Operating
Temperature Range

Maximum Steady State DC
Thermal Resistance

1.0
0.75

Amp

IFSM

30

Amp

~RM

4.0

Amp

~t

3.75

TJ

-65 to +150

Tstg

-65 to +175

ROJA

100

-

so

I

I

1/

2.0'

IJ -ISOoC

,
/

~

i_

O•2

•.of

O. 1

o

~

M

M

U

..........

5

TJ -25°C

,

,

·C/Watt

.............. ~

5

1/

~

~ I.0
O.5

1.50

":/

20

B 5.0

A
2
(rms) s

FIGURE 2 - MAXIMUM AVERAGE FORWARD CURRENT RATING
versus MAXIMUM AMBIENT TEMPERATURE

FIGURE 1 - TYPICAL FORWARD CHARACTERISTICS

10

~

'"'"

----

I.~

~ l"\.

5

U

Unit

·C

Maximum Case Storage
Temperature Range

i

MR
MR
1337-4 1337·5

U

U

U

U

o

o

~

'h INSTANTANEOUS FORWARD VOlTAGE IYOI.TSI

25

50

75

100

TA• AMBIENT TEMP£RATURE (OCI

1205

"

125

ISO

MR1337·1 thru MR1337·5 (continued)
ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

VF

1.1

Vdc

Full Cycle Average Forward Voltage Drop
(Io= 0.75 Amp and Rated Vr' TA = 75°C,
Half Wave Rectifier)

VF(AV)

0.55

Volts

Full Cycle Average Reverse Current
(10 = 0.75 Amp and Rated Vr , TA = 75°C,
single phase)

~(AV)

0.75

rnA

~

0.25

rnA

200

ns

DC Forward Voltage Drop
(Ip. = 1.0 Adc, TA = 25°C)

DC Reverse Current
(Rated VR , TA = 25°C)
Maximum Reverse Recovery Time
(IF = 1 Amp min)

t

Maximum Overshoot Current

I

FIGURE 3 - MAXIMUM ALLOWABLE NON·REPETITIVE
SURGE CURRENT

rr

2.0

os

(SUI'£RIMPOSED ON RATED CONDITIONS, V......, API'LI£D AfTER SURGE, T.= 7S'C)

40

L~

I ' I'

FAST RECOVERY
RECTIFIERS GftfAnY
INCR£ASE EFFICIENCY

L

\ I

V

'"

Amp

V

"-

I \

\

/'

Li.

~

~

IlPICAI. LOSISES AT -.."

[,£"

HlGH;FREIIUEHCY WITH
CONVENTiONAl RECTIFIERS

I'r--

TYPICAL RECOVERY PATTERN

l"- I'

0

r---.. I'--.
I'-

t---

0
6

8 10

40

20

60 80.100

ZERO

~~
~~

REFERj-'

t..

,....,

~

L
.-'

J
lAMP

- :r-

I

CYCLES AT 60 CYCLES PER SECOND

FIGURE 4 - t" TEST CIRCUIT
115 VI.

60Hz

10 K

2W

(/
UNIT'

"I

A- TEKIRONIX 545A. K PUJG.IN
PRE-AIIP, P6000 PROBE OR EQ

300
50W
NON-INOUCTIVE

R, - ADJUSTED FOR 1.40 B£1WEEN

POINT 2 OF RELAY AND RECTIFIER.
INDUCTANCE - 38,.10

/

UNDER TEST

R, - ~NpI:u.~' 1% CARBON COMP.

t-----+)A

TA - 25 ~1: 'C FOR RECTIFIER

R,

CONST~~TAGE

13w
NON-INOUCTIVE

IC~'F

SUi'PLY+o-_ _ _ _ _..--'-_ _--4>--_ _ _ _..-_300_V-+--0

1206

+

MINIMIZE All LEAD LENGTHS

:I=-E~:m~,:r:

VOLTAGE SUi'PLY

z... = 'ho MAX, OCto 2 kHz

MR1366
For Specifications, See IN3879 Data, Volume 1.

MR1376
For Specifications, See IN3889 Data, Volume 1.

MR1386
For Specifications, See 1N3899 Data, Volume 1.

MR1396
For Specifications, See IN3909 Data, Volume 1.

MR1815SL (SILICON)
MR1819SL
For Specifications, See MR1215FL Data.

1207

MR2000S

SERIES (SILICON)

MEDIUM-CURRENT SILICON RECTIFIERS
MEDIUM-CURRENT
SILICON RECTIFIERS
20 AMPERE
50-1000 VOLTS
DIFFUSED JUNCTION

compact, highly efficient silicon rectifiers for medium·current
applications requiring:
•

High Current Surge - 400 Amperes @

•

Peak Perforifi'ance @ Elevated Temperature - 20 Amperes @

TJ = 175°C
TC=150oC
• Low Cost
• Compact, Molded Package - For Optimum Ef.ficiency in a Small
Case Configuration.

MAXIMUM RATINGS
MR
Characteristic

Peak Repetjtive Reverse Voltage
Working Peak Reverse Voltage

DC Blocking Voltage
. Non-Repetitive Peak Reverse
Voltage (halfwave, Single phase,
RMS Forward Current

Non-Repetitive Peak Surge Cur-

MR

MR

MR

MR

2OO6S 008S 2010S Unit

50

100

200

400

600

600

1000

60

120

240

480

720

960

1200

VR
VRSM

I(RMS)
10

IFSM

rent (surge applied @ rated load
conditions, half wave, single
phase, 60 Hz)
Operating and Storage Junction

MR

Volts

VRRM
VRWM

60 Hz oeak)

Average Rectified Forward Curren
(Single phase, resistive load,
60'Hz;1'" -150"C)

MR

Symbol 20008 2OO1S 2002 2004S

TJ,Tstg

Temperature Range

.•
.
.

Volts

40
20

.•

400 (for 1 cvcle)

•

Amp

-65 to +175

•

°c

Amp
Amp

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS
Characteristic and Conditions
Maximum Instantaneous Forward Voltage

Symbol

Max

Unit

vF

.,1.1

Volts

!iF - 63 Amp. TC - 2SoC)

Maximum Reverse Current (rated de voltage) TC = 250C

100

IR

I'A

500

TC - 100°C

MECHANICAL CHARACTERISTICS
CASE:
FINISH:

Void Free, Transfer Molded.
All External Surfaces are CorrOSion-Resistant and the Terminal Lead is Readily
Solder able.

POLARITY: Cathode to Case (Reverse Polarity Units are Available and Designated by an
"R" Suffix I.e., MA200OSR).
MOUNTING POSITIONS: Any
STUD TOROUE:
15 in. [bs. Maximum

MAXIMUM TERMINAL TEMPERATURE FOR SOLOERING PURPOSES:
Seconds

@

MILLIMETERS
DIM MIN MAX
A 12.12 12.70
B 10.77 11.10
C
- 10.29
D
6.35
1.91
E
4.45
1.19
F
1.35
J 10.72 11.51
K
20.32
Q
1.52

INCHES
MIN MAX
0.477 0.500
0.424 0.437
0.405
- 0.250
0.075 0.175
0.047 0.053
0.422 0.453
O.BOO
0.060

27. oC fo, 10

3 Kg Tension.

CASE 283-01
00-4

WEIGHT: 6 Grams (Approximately).

1208

MR2000S series (continued)

FIGURE 2 - NON-REPETITIVE SURGE CURRENT

FIGURE 1 - FORWARD VOLTAGE
700
50o -TJ=25 0 C

/'

........

./

300

f7

I--- f-TYPICAL

,.

07

~ 300

~

;0

:::

J

I

I

.r--r-,
........ 1-...

~'''cl.-l

60

1.0

2.0

5.0

/I

10

50

20

100

NUMBER OF CYCLES

I'

0

1
25°C

80

I

0

r-

' - . t--..

I

f-fL.J\

'"'"

0

............

TJ = 1750 C

~ 100

0

.......

200

~
~

0

..... ....;

'-. ......

ffi

/'

VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz

...........

5 400

/

J

100

MAXIMUM

"7

7

200

--

.........

600

FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

.0

+0.5

0
0
u

0

~

0

~

u

ffi -1.0

O. 5

8

0.2
0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

. /~

f'.;
~

-2.0
0.2

2.6

.---~

l\.

-1.5

,

V

TYPICAL RANGE\.

o. 7

0.3

"//

5 -0. 5

I

0.5

1.0
2.0
5.0
10
20
50
100
iF, INSTANTANEOUS FORWARD CURRENT (AMP)

200

vF, INSTANTANEOUS FORWARO VOLTAGE (VOLTS)

FIGURE 5 - FORWARD POWER DISSIPATION

FIGURE 4 - CURRENT DERATING
07

~c

40

....,

'"'

5

ffi

2

'"

4

~=2.0

~
~

ilZ
w

16 f----

10

f----

20

ffi

.,

.(SINEWAVE
LOAD)

'-

r-;:,

135

140

145

150

;5

to

TC, CASE TEMPERATURE (OCI

185

24

,/

-

-CAJACITIVE LOADS

16 c - - I(AV) ;

:;;

""'"

170

175

1209

'"

~

0

-

~

--::-

V< , /

~p<:

'-saUARE WAVE

I\-SINIEWAV~_

}O ~ ~

'ltMl = 20

::: 8.0

-~

160

TJ"'" 1750 C

32

ffi

~~

155

40

S
~

.:::::::-: ~
...... ~ ~

~ACIITIVE \OADS
130

i
~
'"w

.........

......

8.0

125

1

.........: .........

;;;

~ o

1

RE;I~TlVE 1 -

.......

5.0

to

:::

.1

~=2(SaUAREWAVE)

:a~
!P"

RESISTIVE
LOAD
,-

~~

../

o

4.0

8.0

12

16

20

24

28

32

IFIAV),AVERAGE FORWARD CURRENT lAMP)

36

40

MR2000S series (continued)

FIGURE 6 - THERMAL RESPONSE

ffi 1.0

~ 0.7
~ 0.5

a:
o

........

!:. 0.3
w

~

.-

0.2

~
ffi

......

0.1
~O.07
~O.O 5

a:
w

:=0.03
~o.o 2b--":'

ReJc(t) = ReJC • ,It)
INOTE 1)

i"""

!li

1
~0.01.0

2.0

3.0

5.0

:J

7.0

10

20

50

30

70

100

I. TIME

'"
FtJL

200

NOTE 1

P",

~~1: ~~~~: gp~,tr.'~~k of an
TIME

500 700

2.0k

1.0k

3.0k

5.0k 7.0k 10k

FIGURE 7 - CAPACITANCE

500

tp

~t1----t

300

Im~

equival.nt square power I"llse.

........

TJ = 2JDC

r-

300

.........

~

To determine maximum }unctIOn temperature of ttl, diode in a given _tuatlon, the following
procedur.IS recomm.nded.
The temperature of the case should be measured uSing I thermocouple placed on the c.. at
the lemp.ralUra refer.nc. pomt(see the outline drawing on p&gll 1). The thermal mIllS connected
to the casa is normally large enough so that ilwill not significantly respond to h•• tsurges
generated In the diodeaS8l'8Sultofpulsedop.rationoncest8ldystatecoliditlonsareachillV.d.
USlIlg the measured value of TC, the junction temperature may be determined by:
TJ"'lC+ 6TJC
where A TJC IS the increase in junction temperature abow the cast temperature. It may be
determined by.
!:::.TJC = Ppk • RflJC [0 + (1 - D~ • rtt1 + tpl + r(tpl- rhllJ

"

~ 200

g

J

~

- - ALL 0 EVICES
- - - ALL DEVICES EXCEPT MR2 000 ' -

c.:i 100

70

wht"

50
0.1

rhl = normalIZed value of transient thermal r!!Slstanee at time, t, from Fj~re 5, i.e.,
r ttl + tpl = normalized value of transient thermll resistance at time 11 + tp.

FIGURE 8 - FORWARD RECOVERY TIME

1.0

.

O. 7r- "F

w

ffi
>

./

0

lrl
O.
a:

I--"""

......... """ 1Jf,' 1.0 V

-

-

20

..-

..

O. 1.0

j

w

i"""

100

~
w 3.0

ill
~ 2.0

I--- t-

a:

2'r

$
7.0

1.0
0.1

10

1210

IJ I

::-..... ...... ..........
10

TJ =25DC

......

8

2.0
3.0
5.0
IF. FORWARD CURRENT lAMP)

50

.......

;:: 7.0
>
a:
~ 5.0

3V"

...--r1~

1.0
2.0
5.0
10
20
VR. REVERSE VOLTAGE IVOLTS)

FIGURE 9 - REVERSE RECOVERY TIME

TJ = 25b C

'1'
"" r~
;:: O. 5~ f-II,-l

.i!

0.5

0.2

IF

IF -lOA
I I

0~Lr°'25IR
I t'rr l II

......

...... I""-.
~~
5.0 A/

~OA

......

.......... I"'-- r-... ....
I'

0.2 0.3
0.5 0.7 1.0
2.0
5.0
IR/IF. RATIO OF REVERSE TO FORWARD CURRENT

7.0

10

MR2000S series (continued)

FIGURE 10- RECTIFICAnON WAVEFORM EFFICIENCY
60

I I I

40

T;.M

..,..."

r- ~~

0

r-

w

r-

itw

.;

'"'['\

CURRENT INPUT WAVEFORM

~ 2il

..,>z

RECTIFICATION EFFICIENCY NOTE
FIGURE 11 - SINGLE.f'HASE HALFoWAVE RECTIFIER CIRCUIT

J\.JV-

The rectification afflcianery fector (1 shown in Figure 10 wal
calculated uolng the formula:

I'

J1JL ----

y20(dc)

10

a= Pdc =

RL
.100%=
y20 (dc)
.100%
Prml y20 (""")
y20 (ec) + y20 (dc)

8.0

(1)

RL
2.0

3.0

5.0

7.0

10

f, FREQUENCY (kHz)

20

30

50

70

100

For a .ine wave input Ym lin (wd to tho diode. assume 101lIe.o,
the mS:Kimum theoretical efficiency factor becomes:
y2m
,,2RL
4
(1(sina) =-2- '100%="2 '100%=40.6%
Y m
"
4RL

(2)

For 8 square wave input of amplitude V m~ the efficiency factor

becomes:
Y2m
2RL

"(square) =-2- '100%= 50%
Ym

(3)

RL
(A full wave circuit ha. twice the.. efficiencies)
As the frequency of the input signal is increased, the raverse
recovery time of the diode (Figure 9) becomes Significant, result-

ing in an increasing ac voltage component across R L which is
opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor a, as shown on Figure 10.

It should be emphasized that Figur. 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was obtained by measuring the ac component of Va with a
true rms ac voltmeter and the de component with a de voltmeter.
The data was used in Equation 1 to obtain points for Figure 10.

1211

MR2083HA (SILICON)

Multi-cell II, power rectifier diode designed for highcurrent rectifier service to provide single-output, highcurrent dc with forced air cooling.
CASE 159
MAXIMUM DIODE RATINGS
Rating

Symbol

Value

Units

300

Volts

400

Volts

10

7S0

Amperes

r..SM

12,000 for 1/2 cycle
8,000 for 6 cycles

Peak
Amperes

Peak Repetitive Reverse Voltage

VRRM

Working Peak Reverse Voltage

VRWM

DC Blocking Voltage

VR
VRSM

Non-Repetitive Peak Reverse Voltage
(one half-wave, singJe-phase,
60 cycle peak)
Continuous Average Rectified
Forward Current
(singJe-phase, resistive load,
60 Hz, TC = ISO°C)
Non-Repetitive Surge Currents at
Rated Conditions

MAXIMUM CIRCUIT RATINGS (All Types TC ~ 150°C See Figure 1)
Total Diod•• Required

Circuit Configuration

Total Circuit DC Output Current

Three-Phase Half-Wave
(3-1-I-Y)

3 Diodes Either Polarity

2,000 Amperes

Three-Pha.. Full-Wave
(6-I-I-B)

6 Diode. Either Polarity or 3 Diodes Each
Polarity

2,000 Amperes

Six-Phase Star
(6-1-1-S)

6 Diodes Either Polarity

2,600 Amperes

Six-Phase with Interphase,
3~ DoubieWYE (6-I-l-Y)

6 Diodes Either Polarity

4,000 Amperes

Maximum Operating and Storage Temperature: -6SoC to + ISOoC (All Types)

FIGURE 1 - MAXIMUM CIRCUIT RATINGS

z
w
Double WYE,
0::
0::

w
:;;;

a..

~===j::;iMiilFMt:===~....,.--=~..---+--Multiply
IDe
Scale by 2.
1000 LFM

0::

::J

'-' 1500 I1-

::J

a..

60 Hz, Resistive or
Inductive Load.

1-

::J

a

!:: 1000

500 LFM

::J

'-'
0::

C3
w

'"«

500

FREE CONVECTION

0::

w

>
«

:;
~
~

0

20

40

60

80

100

TA, MAXIMUM AMBIENT TEMPERATURE (OC)

1212

120

140 150

MR2083HA (continued)

ELECTRICAL CHARACTERISTICS (All Types)
Characteristic And Conditions

Symbol

Maximum Limit

Units

Fu1l-Cycle Average Forward Voltage
Drop at Rated Load, TC =ISOoC

VF(AV)

0.5

Volts

FuU-Cycle Average Reverse
Current at Rated Load, T C = ISOoC

lR(AV)

80

Milliamperes

4.0

Milliamperes

DC Reverse Current at Rated
Reverse Voltage, VR, TC =25°C

lR

NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bU9-ber
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assemblv case temperature is not allowed to exceed 15o"C.CSee Figur.l).

MECHANICAL CHARACTERISTICS
POLARITY:
Standard polarity devices ere CATHODE-TO-CASE, reverse polarity devices ere ANODE-To-CASE and designated
by an "R" suffix, i.e., MR2083HAR.

MOUNTING POSITION:
Cooling fins vertical for convection cooling or parallel to forced air flow.

MOUNTING CONFIGURATION:
The MR2083HA is designed to be mounted as an intagral part of the current carrYing buo-bar network of the
rectifier system as shown in the outline dimensions. The rectifier diode and finned heatsink are supplied as two separate
pieces under one common type number.

OUTLINE DIMENSIONS
0.25_1

f-!-''----+-+----:l-,

0.281 DiA THRU
4 PLACES

I ~~gr-I ~
_ _ 3.00·
-3.25

""1,.....--------------

t

j

t

2.34± 0.08
1.92±0.0!-•

•

r-

I-------I~
0.25

0.562 OiA THRU

~RECTIFIERDiOOE

I

~____J--L____~

06~.031

1.._ ;J~FI~~~§~§~§~'
0.25

T

BU~AR

~

----

~

~

~~
~

1213

FiNNED HEATSiNK

TOLERANCES UNLESS OTHERWiSE SPECIFIED: 2 PLACES± 0.015
3 PLACES ± 0.010

MR2266 (SILICON)
MR2273

High-voltage, axial-lead, silicon rectifiers, designed
for television "damper" diode service, feature subminiature packages, high current-handling capability,
excellent reliability, and economy. Flame-proof silicone polymer case.

CASE 59
(00-41)

MAXIMUM RATINGS

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Symbol

MR2273

MR2266

Unit

VRRM
VRWM

200

800

Volts

140

560

Volts

1.0
0.75

1.0
0.75

VR

RMS Reverse Voltage (Sine wave operation)

VR(RMS)

Average Rectified Forward Current
(single-phase, resistive (75·C Ambient)
(100·C Ambient)
load, 60 Hz )

10

Amp

Peak Repetitive Forward Current
(TA = 25·C)

~RM

10

Non-Repetitive Peak Surge Current
(superimposed on rated current
at rated voltage, T A = 25·C)

~SM

30 (for 1/2 cycle)

T J , TstJr

-65 to +175

Operating and Storage Temperature Range

Amp
Amp

·C

THERMAL CHARACTERISTICS
Thermal ReSistance, Junction to Ambient: 8 JA

ELECTRICAL CHARACTERISTICS (TA = 25OCUhlilssothel'WisenOted)
Charilcteristics

Symbol

Full-Cycle Average Forward Voltage Drop
(Rated Current @ 2S·C, sine wave operation)

VF(AV)

DC Forward Voltage Drop
(1 Amp Continuous DC, 25·C)

VF
(25·C)
(lOO·C)

DC Reverse Current @ Rated Vr

IR

Max

Unit
Volts

0.8
Volts
1.1
0.01
0.05

rnA

Typical

Typical Forward Peak Voltage Overshoot
(Figure 1, Figure 2)

I

I

MR2266, IF - 2 A

Vfo

10

Volts

MR2273, IF = 5 A

Vfo

28

Volts

1214

MR2266, MR2273 (continued)
FIGURE 1 - FORWARD PEAK VOLTAGE OVERSHOOT TEST CIRCUIT

+
500 j.LF

on
HP-214A
PULSE
GENERATOR
OR
EQUIVALENT

]

5Q,5W
NON·INDUCTIVE
1: 1
PULSE
TRANSFORMER
CURRENT SENSE

TEST PROCEDURE:
1. Adjust input pulse from generator to saturate MF812 transistor
2. Adjust battery voltage for the specified forward current
after the voltage overshoot.
IF = 2 Amps, for MR2266
IF = 5 Amps, for MR2273
3. Read peak voltage overshoot across diode under test. (See
Waveform Diagram).
FIGURE 2 -

DIODE UNDER TEST, WAVEFORM DIAGRAM

MR2271
For Specifications, See 1N4933 Data, Volume 1.
1215

DIODE
UNDER
TEST

TEKTRONIX
541 SCOPE

MR2272 (SILICON)

Subminiature axial-lead silicon rectifier designed for
videopower-supplyapplications in low-voltage television
receivers where video supply-voltage is obtained from
horizontal deflection system.

"

CASE 59
(00-41)

I

MAXIMUM RATINGS

(TA = 250 C unless otherwiSe noted)

Symbol

Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocldng Voltage
R:MS Reverse Voltage (Sine wave operation)

Average Rectified Forward Current (Sine wave operation)
(75'C Amb(ent)
(100'C Ambient)
Peak Repetitive Forward Current
(TA = 75'C)

Value
400

Volts

VR(RMS)

280

Volts
Amp

10

1.0
0.75
Amp

.IFRM
IFSM

Non-Repetitive Peak Surge Current
(superimposed on rated current
at rated voltage, TA =75'C)
Juction Operatlng and storage Temperature Range

Unit

VRRM
VRWM
VR

TJ , Tstg

10
Amp
30 (for 1/2 cycle)
@80 Hz
-65 to +175

·C

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Ambient: (J JA = lOOoC/W MAX
ELECTRICAL CHARACTERISTICS

(TA· 25°C unless otherwise noted)

Symbol

Characteristics
Forwara v~~e Drop
(1 Amp Continuous DC, 25'C)

~1mum

VF

Maximum Full Cycle Average Forward Voltage Drop
(IO = O. 75 Amps and Rated Vr' TA = 75' C,
Half Wave Rectifier, 60 Hz)

VF(AV)

Maximum Reverse Current @ Rated DC Voltage (25'C)

Ia

Maximum Reverse Recovery Time
(IRR =O. 5 Amp)

trr

Rectification Efficiency (Typical)

RE

1216

Value

Unit
VOlts

1.1
Volts
0.5

0.01

mA
/Ls

1.5

55

%

MR2272

(continued)
TYPICAL REVERSE CHARACTERISTICS

TYPICAL FORWARO CHARACTERISTICS
2.0

.

1.6

ffi

1.2

il'!

I

TJ

I

I

I
I I J
J
J I I

25°C

/

.Jf 0.4

I

I

/ / /
V:..;I . /
0.2

0.4

0.6

I

~

I

50°C

0.8

o
o

J

= 100°C_ - J

:$

~

000

0.8

I

25°C

.01

.

~

0.75

~

~ 0.50
~
w

to

ffi

0.25

>

«
>"

~

0

0

25

RECOVERY TIME TEST CIRCUIT

o

TEKTRONIX

'"'"

100
50
75
125
T... AMBIENT TEMPERATURE (OCI

535A

I
D.UJ.

I~

150

175

501l

4 WATTS

TYPICAL RECOVERY WAVEFORM IN CIRCUIT

10

t. TlMEIJ£S1

LOW VOLTAGE HORIZONTAL DEFLECTION TEST CIRCUIT

MR2273 (SILICON)
For Specifications, See MR2266 Data.
1217

3.6K

15.75 kHz I

1.5

5

CURRENT
PROBE

HEWLm
PACKARD
PULSE
GENERATOR
214.\
(f =

DIODE CURRENT WAVEFORM IN VIDEO SUPPLY OPERATION

4

-

200
400
V•• STATIC DC REVERSE VOLTAGE !VOLTSI

1.2

1.0

MAXIMUM ALLOWABLE DC OUTPUT
gj (Sine Wave Operation, Resistive or Inductive Load)

a~

::::100~=

n

V~ FORWARD VOLTAGE DROP (VOLTSI

!! 1.00

= 150°C

600

MR25 00 SERIES (SILICON)

MfDIUM-CURRfNT SILICON RECTIFIERS
MEDIUM-CURRENT
SILICON RECTIFIERS

· •• compact, highly efficient silicon rectifiers for medium·current
applications requiring:
•

High Current Surge - 400 Amperes @ T J = 1750 C

•

Peak Performance @ Elevated Temperature - 25 Amperes @
TC=l50o C

•
•

Low Cost
Compact, Molded Package - For Optimum Efficiency in a Small
Case Configuration

50 - 1000 VOLTS
25 AMPERES
DIFFUSED JUNCTION

~

MAXIMUM RATINGS
MR
Ch...cterlstic
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage

Non-Repetitive Peak Reverse
Voltage (halfwaY8, single phase,

MR

MR

MR

MR

MR

VR
VRSM

60

10

•

120

240

480

720

960

60 Hz·. TC' 15o"C)
IFSM

Current (surge applied@rated

25

..

1200 Volts

..

60 Hz peak)

Average Rectified Forwarc;t Current
(Single phase, resistive load,
Non-Repetitive Peak Surge

MR

Symbol 2500 2501 2502 2504 2506 2506 2510 Unit
Volts
VRRM
100 200 400 600 800 1000
50
VRWM

400 (for 1 cycle)

.

Amp

Amp

load conditions, half wave,

single phase, 60 Hzl
Operating and Storage Junc::tion

TJ,Tstg

Temperature Range

-

..

-65 to +175

.'

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
(Single Side Cooled)

@
1: '[I=!I

---=t--.-i

ELECTRICAL CHARACTERISTICS
Characteristics and Conditions
Maximum Instantaneous Forward Voltage

Temperature
SVmbol

vF

Max
1.18

Unit

Volts

Reference
Point

liF' 78.5 Amp, Tr.· 25°C)
Maximum Reverse Current (rated de voltage)

TC' 25°C
TC'Z 100°C

IR
100
500

"A

CASE 183-03

MECHANICAL CHARACTERISTICS
CASE: Void Fr.e, Transfer Molded.
FINISH: All External Surfaces are Corrosion Resistant and the Contact Areal Readily
Solderable.
POLARITY: Indicated by dot on Cathode Sida
MOUNTING POSITIONS: Any
MAXIMUM TEMPERATURE FOR SOLDERING PURPOSES: 25o"C
WEIGHT: 1.8 Grams (Approximately)

1218

MILLIMETERS
DIM MIN MAX
A 10.03 10.Z9
4.19 4.45
B
D
5.54 5.64
F
5.94 6.Z5
M
5' NOM

INCHES
MIN MAX
0.395 0.405
0.165 0.175
0.Z18
.ZZZ
O.Z34 O.Z46
50 NOM

MR2500 Series (continued)

FIGURE 1 - FORWARD VOLTAGE

700

FIGURE 2 - NON-REPETITIVE SURGE CURRENT
600

."...
~

500 e--TJ 250C

V

/

300

/

200

1/ V

!----- I-TYPICAL

'"~

~
~

f"""'-....

1'"

0

II

0

1

30

25°C

f""'-",

~,,,,,.~

50

I

r-....

--....... r-...

I

e--fLJ\

60
1.0

20

20

5.0

/I

~

"'"

I""-TJ = 175'C

0

..,

VRRM MAY BE APPLIED BETWEEN
EACH CYCLE OF SURGE. THE TJ
NOTED IS TJ PRIOR TO SURGE
f = 60 Hz

0

/

J

100

r-...

0

MAXIMUM

V

.............

t:--.
0 ...............

~t-

./

II

10

10

20

50

100

NUMBER OF CYCLES

FIGURE 3 - FORWARD VOLTAGE TEMPERATURE
COEFFICIENT

~
~ 7. 0

~ 5. 0

+ll.5

'"

>-

~ 3. 0
~

~

2. 0

f,3

:;

V2

.§ -0.5

5U
$-1.0

1. 0
7

o. 5

TYPICAL RANGE",

i-"'"

8

-

-1. 5

o. 3
O. 2
0.6

0.8

1.2

1.0

1.4

1.6

1.8

2.0

2.2

2.4

2.6

-2.0
0.2

0.5

VF, INSTANTANEOUS FORWARO VOLTAGE IVOLTS)

FIGURE 4 - CURRENT DERATING

..,
~

~

40

~

30

_

!

~
~

~

'"

~

1.0
2.0
5.0
10
20
50
100
iF, INSTANTANEOUS FORWARD CURRENT lAMP)

0

11 L

1 ......
1--1-"ic---tl -Ililf.IF;;,;M) =ff ISINE WAVE RESISTIVE LOAD)_

t:---..

1........... 11

I'-

..........

~

IAV)

~

I

....... I

I

I

l~gtCAPACITIVE --!---+-----f
LOADS

J

t':'---- . . . ~ rr~

--.......

Nil'... . . . . . .

- f-t...
10

r--.: ~~

130

135

-~~~

0

~

__~~__~~__~__~~~
140
145
150
155
160
TC, CASE TEMPERATURE 10C)

J

0

....... E§!!ii

0~~--4-

SINEWAVE
0 CAPACITIVE r-;IIFM)=2j 1- 10
IIAV)
LOADS
0

i-t)! .......... ,::::-....~

20:::::--

125

,

./

200

FIGURE 5 - FORWARD POWER DISSIPATION

or--'~~ddee~--'--I.---r--.--.---.--,--,

>-

--- ....-

-1"1

165

170

175

1219

L5 /
/

h

'l
//

V

/

/

de

/ / / V' .......SQUARE_ ; - WAVE
L L 6( / '
/ 1/./ ~ ~ " SINE~AVE
RESISTIVE LOAD1// ~ F'

A~ II""'""
~ jII"""

O~
10
20
30
40
IFIAV), AVERAGE FORWARD CURRENT IAMPI

50

MR2500 Series

(continued)

FIGURE 6 - THERMAL RESPONSE

~

1- 0
~ O. 7
~ o. 5
o
~ o. 3
<..)

z

~

--

o. 2

~ o. 1
~ 0.0 7

ffi
or
I-

~
~

0.05

0.0 3

/"

0.02

""~ 0.0 1

~

ReJC(tl- ReJc· rlt!
NOTE 1

0.05 0.07

0.1

0.2

0.3

0.5

0.7

2.0

1.0

3.0
5.0
I,TIME(ms)

7.0

10

20

t-

DUTY CYCLE, D = tp/t!
PEAK POWER, Ppk. !Speak of an

t

P

TIME

equivalent square power pulse.

I--- " ------I

~
w

"

/-11,-1

i'.

50

0.1

ffi
>

~

O. 3

~

O. 2

~

....-

"I,

/

V

'".5
~

I!f,= 1.0 V

:2
i;

O. 1 ' - - - 1.0

ffi

>

~

5.0

~

3. 0

II:

2. 0

w

2.0
3.0
5.0
IF, FORWARD CURRENT (AMP)

0

>- 1.0

----

----

0.5

1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)

50

1::

2.0V

7.0

,

100

TJ=250C

~ I"'- ..........

IF

0~~0'25IR

;::

L""

----

0.2

FIGURE 9 - REVERSE RECOVERY TIME

i.---1"'"
~

2~OC

0

TJ - 25°C

=:

500

--ALL DEVICES
"
- - - ALL DEVICES EXCEPT MR2500

2. 0

7-~

5
;:: O.

300

r--..,

0

FIGURE 8 - FORWARD RECOVERY TIME

O.

200

TJ =

30O

To determme malClmum juncllon temperature of the diode In a given SItuation, the followmg
procedure IS recommended.
The temperature of the case should be measured uSing a thermocouple placed on the case at
the temperature leference pOtllt (see the outhne drawing on page 11 The thermal mass connected
to the case IS normally large enough $0 that ,tWill not Stgnlflcantly respond to heat StIrges
generated in the dlodeasa result of pulsed operation once steadv state conditions are achieved
USing the measured value 01 TC, the junction tel1lgeratur" may be determined bV
TJ=TC+lHJC
wlN!re 8. TJC IS the Increase in Junction temperature abow the case temperature It may be
determinedbv.
6TJC" Ppk • ROJC [0 + (1 - 01 • r(l1-f Ipl-f ntp) - rft,)]
where
rft) = normalIZed value of tranSIent thermal reSIstance at time, 1. from Figure 6, i.e.,
r(11+tpl=normalizedvalueoftranSientthermalresistanceattim811+tp

1.0

100

500

Ppk

Pk

70

FIGURE 7 - CAPACITANCE

NOTE 1

RS[

50

30

-

IF = lOA

1220

1.0
0.1

"r--..

f-1rr

I'

~~

5.0A

-......

II

r--..

.......... l"'- I'--

)1

i"

;5
10

......

0.2

0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0
IR/IF, RATIO OF REVERSE TO FORWARD CURRENT

10

MR2500 Series (continued)

FIGURE 10 - RECTIFICAnON WAVEFORM EFFICIENCY

0

-

0

-

TJ=250C

,

~

[\

0

I'
CURRENT INPUT WAVEFORM

0

8. 0
6. 0

1.0

J\I'vI ~-~-~ II
2.0

3.0

5.0

7.0

10

20

30

50

70

100

f. FREQUENCY (kHzl

RECTIFICATION EFFICIENCY NOTE
FIGURE 11 - SINGLE-PHASE HALF·WAVE RECTIFIER CIRCUIT

The rectification efficiency factor
calculated using the formula:

(J

For a square wave input of amplitude V m • the efficiency factor

shown in Figure 10 was

becomes:
V2m

V20ldcl
0=

Pdc
RL
.100%=
V20ldel
.,00%
Prm • = v20lrmsl
v20lacl + V20ldel

2RL
0lsquarel = V2m • 100% = 50%

III

RL

RL

(A full wave circuit has twice these efficiencies~

As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, result·
iog in an increasing ac voltage component across R L which is
opposite in polarity to the forward cur",,,,t. thereby reducing the
value of the efficiency factor a, as shoV't'n on Figure 10.
I. should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide a measure of diode losses.
Data was ob.alned by measuring the ae component of Vo with a
true rma ac voltmeter and the dc component with a de voltmeter.
ob'ain points for. Figure 10.
The deta was used in Equation 1

For a -sine wave input Vm sin (wt) to the diode, assume lossless.
the maximum theoretical efficiency factor becomes:
V2m
,,2RL
4
"Isinel = -2- • 100% ~2
V m
"
4RL

131

• 100% = 40.6%

121

'0

1221

MR 2500 Series (continued)

Exceeding these recommended maximums can result in
electrical degradation of the device.

ASSEMBLY AND SOLDERING INFORMATION
There are tMIO basic areas of consideration for successful
implementation of button rectifiers:
1. Mounting and Handling
2. Soldering
each should be carefully examined before attempting a
finished assembly or mounting operation.

SOLDERING
The butlon rectifier is basically a semiconductor chip
bonded between two nickel·plated copper heat sinks with
an encapsulating material of thermal-setting silicone. The
exposed metal areas are also tin plated to enhance
solderability .
In the soldering process it is important that the tem·
perature not exceed 2500C if device damage is to be
avoided. Various solder alloys can be used for this oper·
ation but two types are recommended for best results:
1. 96.5% tin. 3.5% silver; Melting point is 221 0 C (this
particular eutetic is used by Motorola for its button
rectifier assemblies).
2. 63% tin. 37% lead; Melting point lB3 0 C (eutetic).
Solder is available as preforms or paste. The paste
contains both the metal and flux and can be dispensed
rapidly. The solder preform requires the application of a
flux to assure good wetting of the solder. The type of
flux used depends upon the degree of cleaning to be
accomplished and is a function of the metals involved.
These fluxes range from a mild rosin to a strong acid; e.g .•
Nickel plating oxides are best removed by an acid base
flux while an activated rosin flux may be sufficient
for tin plated parts.
Since the button is relatively light-weight. there is a
tendency for it to float when the solder becomes liquid.
To prevent bad joints and misalignment it is suggested
that a weighting or spring loaded fixture be employed. It
is also important t!1at severe thermal shock (either heating
or cooling) be avoided as it may lead to damage of the die
or encapsulant of the part.
Button holding fixtures for use during soldering may be
of various materials. Stainless steel has a longer use life
while black anodized aluminum is less expensive and will
limit heat reflection and enhance absorption. The assembly
volume will influence the choice of materials. Fixture
dimension tolerances for locating the button must allow
for expansion during soldering as well as allowing for
button clearance.

MOUNTING AND HANDLING
The button rectifier lends itself to a multitude of
assembly arrangements but one key consideration must
always be included:
One Side of the Connections to
the Button Must Be Flexiblel
Strain Relief Terminal
for Button RectIfier

This stress relief to the button ~Copper
should also be chosen for maxitl
Terminal
mum contact area to afford the
~
Button
best heat transfer - but not at
- /
the expense of flexibi!ity. Fo~ an
__ r~::'t
annealed copper term mal a thlckSink
ness of 0.015" is suggested.
Material)
The base heat sink may be of various materials whose
shape and size are a function of the individual application
and the heat transfer requirements.
Common
Materials
Advantages and Disadvantages
Low Cost; relatively low heat conductivity
Steel
Copper
High Cost; high heat conductivity
Aluminum Medium Cost; medium heat conductivity
Relatively expensive to plate and not all
platers can process aluminum.
Handling of the button during assembly must be
relatively gentle to minimize sharp impact shocks and
avoid nicking of the plastic. Improperly designed automatic
handling equipment is the worst source of unnecessary
shocks. Techniques for vacuum handling and spring loading should be investigated.
The mechanical stress limits for the button diode are
as follows:
(29.4 kilograms)
Compression 321bs.
(29.4 kilograms)
Tension
32 Ibs.
6-inch Ibs. (6900 gm-cm)
Torsion
(44.9 kilograms)
Shear
551bs.

HEATING TECHNIQUES
The following four heating methods have their advantages and disadvantages depending on volume of
buttons to be soldered.
1. Belt Furnaces readily handle large or small volumes
and are adaptable to establishment of "on-line"
assembly since a variable belt speed sets the run
rate. Individual furnace zone controls make ·excellent
temperature control possible. Cost ranges from
$20.000 to $30.000.
2. Flame Soldering involves the directing of natural
gas flame jets at the base of a heatsink as the heatsink is indexed to various loading-heating-coolingunloading positions. This is the most economical
labor method of soldering large volumes. Flame
solderi ng offers good temperature control but requires sophisticated temperature monitoring systems
such as infrared. Cost ranges from $25.000 to
$40.000.

MECHANICAL STRESS
Compression

~

~

Shear

1222

MR2500 Series (continued)

ASSEMBLY AND SOLDERING INFORMATION (continued)
1. Peel ing or plating separation is generally seen when
a button is broken away for solder inspection. If
heatsink or terminal base metal is present the
plating is poor and must be corrected.
2. Thin plating allows the solder to penetrate through
to the base metal and can give a poor connection.
A suggested minimum plating thickness is 300
microinches.
3. Contaminated soldering surfaces may out-gas and
cause non-wetting resulting in voids in the solder
connection. The exact cause is not always readily
apparent and can be because of:
(a) improper plating
(b) mishandling of parts
(c) improper and/or excessive storage time

3. Ovens are good for batch soldering and are produc·
tion limited. There are handling problems because
of slow cooling. Response time is load dependent,
being a function of the watt rating of the oven and
the mass of parts. Large ovens may not give an
acceptable temperature gradient. Capital cost is low
compared to belt furnaces and flame soldering.
4. Hot Plates are good for soldering small quantities of
prototype devices. Temperature control is fair with
overshoot common because of the exposed heating
surface. Solder flow and positioning can be cor·
rected during soldering since the assembly is exposed.
Investment cost is very low.
Regardless of the heating method used, a soldering
profile giving the time-temperature relationship of the
particular method must be determined to assure proper
soldering. Profiling must be performed on a scheduled
basis to minimize poor soldering. The time-temperature
relationship will change depending on the heating method used.

SOLDER PROCESS MONITORING
Continuous monitoring of the soldering process must
be established to minimize potential problems. All parts
used in the soldering operation should be sampled on a lot
by lot basis by assembly of a controlled sample. Evaluate
the control sample by break-apart tests to view the solder
connections, by physical strength tests and by dimensional
characteristics for part mating.
A shear test is a suggested way of testing the solder
bond strength.

SOLDER PROCESS EVALUATION
Characteristics to look for when setting up the soldering process:
I Overtemperature is indicated by anyone or all three
of the following observations.
1. Remelting of the solder inside the button rectifier
shows the temperature has exceeded 2850 C and is
noted by "islands" of shiny solder and solder
dewetting when a unit is broken apart.
2. Cracked die inside the button may be observed by a
moving reverse oscilloscope trace when pressure is
applied to the unit.
3. Cracked plastic may be caused by thermal shock as
well as overtemperature so cooling rate should
also be checked.
II Cold soldering gives a grainy appearance and solder
build-up without a smooth continuous solder fillet. The
temperature must be adjusted until the proper solder
fillet is obtained within the maximum temperature
limits.

POST SOLDERING OPERATION CONSIDERATIONS
After soldering, the completed assembly must be unloaded, washed and inspected.
Unloading must be done carefully to avoid unnecessary
stress. Assembly fixtures should be cooled to room
temperature so solder profiles are not affected.
Washing is mandatory if an acid flux is used because
of its ionic and corrosive nature. Wash the assemblies
in agitated hot water and detergent for three to five
minutes. After washing; rinse, blow off excessive water
and bake 30 minutes at 1500 C to remove trapped
moisture.
Inspection should be both electrical and physical. Any
rejects can be reworked as required.

III Incomplete solder fillets result from insufficient solder
or parts not making proper contact.

SUMMARY
The Button Rectifier is an excellent building block for
specialized applications. The prime example of its use is
the output bridge of the automative alternator where
millions are used each year. Although the material presented here is not all inclusive, primary considerations for
use are presented. For further information, contact the
nearest Motorola Sales Office or franchised distributor.

IV Tilted buttons can cause a void in the solder between
the heatsink and button rectifier which will result in
poor heat transfer during operation. An eight degree
tilt is a suggested maximum value.
V Plating problems require a knowledge of plating
operations for complete understanding of observed
deficiencies.

1223

MR2 500 S Series (SILICON)

MEDIUM-CURRENT
SILICON RECTIFIERS

MEDIUM·CURRENT SILICON RECTIFIERS

50-1000
DIFFUSED JUNCTION

· .. compact. highly efficient silicon rectifiers for medium-current
applications requiring:
• High Current Swge - 600 Ampares
• Peak Performance at Elevated Temparature 25 Ampares. TC = 1500C
• Low Cost
• Compact Molded Package - For Optimum Efficiency in a Small
Case Configuration

MAXIMUM RATINGS
Rating
Peak Repetitive Rewrse
Voltage

Working Peak Reverse
Voltage
DC Blocking Voltage
Non-Repetitive Peak Reverse
Voltage
(halfwave. single phase,
60 Hz Peak)
RMS Forward Current
Average Rectified Forward

Symbol
VRRM

MR MR MR MR MR
2500 2&01 2602 2&04 2&06
S
S
S
S
S
100 200 400 600
50

MR

800

MR
2510
Unit.
S
1000 Volts

960

1200 Volts

S

VRWM
VR
VRSM

I(RMS)
10

Currant

60

.

•

120

240

480

720

...

50

25

(single phase, resistive
load. 60 Hz. T C =
1500C)
Non-Repetitive Peak Surge
Current
(surge applied at rated
load conditions, half
wave, single ph.se, 60 Hz)
Operating and Storage

IFSM

TJ.Tstg

Junction Temperature

•

.

.

600 (For 1 Cycle)

.

-65'0 +175

Amp
Amp

,
•

DIM

Amp

C

C
D
E
F
J
K
Q

MILLIMETERS
MI. M,X
12.12 12.70
10.77 11.10
- 10.29
6.35
1.91
4.45
1.19
1.35
1.12 11.51
20.32
1.52

INCHES
MI' M'X
0.471 0.500
0.424 0.437
0.406
0250
0.075 0.175
0.047 0.053
0.422 0.453
0.800
.060
-

CASE 283-01

Range

(00·4)

THERMAL CHARACTERISTICS

MECHANICAL CHARACTERISTICS

Cherlctaristic
Thermal Resistance, Junction to Case

CASE: Void Free. Transf.r Molded.

FINISH: All External Surfaces are CorrosionResistant and the Terminal Lead is Readily

ELECTRICAL CHARACTERISTICS
Charecteristic and Conditions
Maximum Instantaneous Forward Voltage
IIF = 79 Amp. TJ

Max

Unit

vF

1.15

Volts

= 2sOC)

Maximum Reverse Current (rated de voltage)
TC' 2sOC
TC = 10o"C

Symbol

~A

IR
100
500

1224

Solderabl•.
POLARITY: Cathod. to Ca.. (R ...r .. Polarity
Units are Available and Designated by an
"R" Suffix i .•.• MR2500sR).
MOUNTING POSITIONS: Any.
STUD TORQUE: 15 in·lbs Maximum.
MAXIMUM TERMINAL TEMPERATURE FOR
SOLDERING PURPOSES: 275"C for 10
Saconds at 3 Kg Tension.
WEIGHT: 6 Grams (Approximately).

MR2500S series (continued)

FIGURE 2 - MAXIMUM SURGE CAPABILITY

FIGURE 1 - FORWARD VOLTAGE
500

I I

V

300
TJ' 25°C
200

cc

100

~

70

"

I-

~
a'"

/

./

1000

.,.'"

V

ii:' 700

~
ffi

/'

/

a

~
::i.

-

Typical

I

« 30

I

~

~

;0

f\ --If\
J I

100
1.0

1"'-1--

1-1 Cycle

I I I

2.0

3.0

5.0

10

20

30

50

70 100

I I

JI

t;
~

f-

i ' ...........

NUMBER OF CYCLES

20

;0
z 10
«
.-

r-

200

""'"

Maximum

1/ II

~

'"~
'"'"
~
z

...........

~

50

Surge .

.....

~ 300

/

I

r----.

~

/V"

TJ'1750C
f· 60 Hz
VRRM May Be Applied
Between Each Cycle of

........
500

FIGURE 3 - FORWARD VOLTAGE
TEMPERATURE COEFFICIENT
2.5

7.0

2.0

5.0

15

I

I

3.0

I

2.0

U

1.0

3;

0.5

Typical Range

D' V

5

IZ

~

-05

~

-1.0

1.0

V

....

-15
-2.0

0.7

-2.5

0.5
0.6

O.B

1.0

1.2

1.6

1.4

0.1

2.0

loB

0.2 05
1.0 2.0
5.0 10 20
50 100 200
iF. INSTANTANEOUS FORWARD CURRENT (AMP)

500 1000

VF.INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

FIGURE 4 - CURRENT DERATING
50

~
~

i''""'
.Ii!!

"""'l de
I(AV)

~

20

'"
>

I(AV)

'11'

CAPACITIVE
i- LOADS
I(FM) .20
i-I(AV)
//

::::::~ ~

:;;

if

1~

1~

1~

1~

150
1~
TC. CASE TEMPERATURE (OC)

1~

1~

1/

~

~

Square Wave
_
Sine Wave ReSistive
load

-

~

I"'..
1~

.;:;I::V/ 1'.... . . . .

10

/- ~

...... ~

~ Capacitive loads

de

/- ?'/

5.0

...........

...\\

10

~

/'

(Sine Wave Resistive Load) _

~~
~~

r---- f-l0
r---- 20

./

TJ ~ 175°C

-

-........:
t'.....
........

5.0

w

..ffi
..

...... "-

•

30

~.

0

!lEMJ • 2.0 (Square Wave)

!lEMJ .2.;;'''''''''

40

FIGURE 5 - FORWARD POWER DISSIPATION
50

1m

./

lH

5.0

10

15

20

25

30

35

40

IF(AV). AVERAGE FORWARD CURRENT (AMP)

1225

45

50

MR2500S series (continued)

FIGURE 6 - THERMAL RESPONSE

ffi
:::;

100
70

illo

30

~

20

N

«

~

z

~

R3

so

10
7.0

~

5.0

...'"
ffi

3.0
2.0

u;

~

ReJClt1 = ReJC • r(11
(Note II

I,...--"t-

~

...

t-

V

........ I--"'"

i--'"

i-""

1.0
1.0

2.0

3.0

S.O

7.0

10

20

30

SO

70

100

200

SOD

300

700

1.0 k

2.0k

3.0k

S.Ok 7.0k 10k

t. TIME (m.1

n

Ppk

nL

Ppk

J"tPL-j
I---t1---1

Time

DUTY CYCLE. 0 = tp/t1
PEAK POWER. Ppk. is peak of an
equivalent square power pulse.

--

700

To determine maximum junction temperature of the diode in

SOD

a given situation, the following procedure is recommended.
The temperature of the case sho uld be measured using a
thermocouple placed on the case at the temperature reference
point (see the outline drawing on pege 1 I. The thermal ma .. can·
nected to the case is normally large enough so that it will not
significantlv respond to heat surges generated in the diode 8S a
result of pulsed operation once steady state conditions are
achieved. Using the measured value of TC, the junction temperature
may be determined by:

w

O.S

3

I-llr~

'>"'

;::

./'"

ill

> 0.3

~

~ 0.2
"'

;:: 7.0

w
rn

7.0

SO

20

FIGURE 9 - REVERSE RECOVERY TIME

ill 5.0
>

5.0
2.0
3.0
iF. FORWARD PULSE CURRENT (AMP)

I"

Ali Devices Except MR2&OO

20

~

-

"'"

All Devices

ill

70

FIGURE B - FORWARD RECOVERY TIME

TJ - 25°C

--

100t- -

4TJC = Ppk. R8JC [0 + (1 -D) • rlt1 +tpl + r(tpl - r(t1)]
where
r(t} = normalized value of transient thermal resistance at time.
t. from Figure 6. i.e.:
r h1 + t p ) = normalized value of transient thermal resistance at
time t1 + tp.
'

~~

I 1
~J = ~so~

0

---

1.0

100

r--.

TJ=TC+4TJC

0.7

I"--..

0

where AT JC is the increase in junction temperature above the case
temperature. It may be determined by:

...

FIGURE 7 - CAPACITANCE

IF = IDA

I,
I--~.
.......,
S.OA
III
........ ........ ~....: ...... 1.0'A'
. . . r---.. ........ ,.... r-~

I"-.

.....

!'
0.2 0.3
2.0 3.0
S.O
0.5 OJ 1.0
IR/IF. RATIO OF REVERSE TO FORWARO CURRENT

7.0

10

MR2500S series (continued)

NOTE 2 - RECTIFICATION EFFICIENCY

FIGURE 10 - RECTIFICATION WAVEFORM EFFICIENCY
60

~f\

0

~

20 -CURRENT INPUT WAVEFORM

-vvv-

a;

~
~
~

w

.-

FIGURE 11 - SINGLE·PHASE HALF-WAVE RECTIFIER CIRCUIT

TJ : 250 C
IF(AV): LOA

~

'"t;
:t

III

- ""

40

10

S.O

tJlfL

f-

6.0
1.0

I

I

I

2.0

3.0

I

1\

-

I

I

The rectification efficiency factor a shown in Figure 10 was
calculated using the formula:

I

V20 (dc)

Tn
5.0 7.0 10
20
f. FREQUENCY (kHz)

30

50

70

100

= -R-L-- .100%=
V20(dc)
.100% (1)
V20 (rms)
V20 (ac) + V20(dc)
Prms

U=~

~
For a sine wave input V m sin fwd to the diode, assumed lossless,
the maximum theoretical etficiency factor becomes:
V2

,,2R~

4

u(sine) =-;-;r- • 100% =-:2 • 100% = 40.6%
V m
"

(2)

4RL
For a square wave input of amplitude V m • the efficiency factor

becomes:
V 2m

2RL

U(squarel = -2- • 100% = 50%
V m

(3)

RL
(A full wave circuit has twice these efficiencies)
As the frequency of the input signal is increased, the reverse
recovery time of the diode (Figure 9) becomes significant, resulting in an increasing ae voltage component across R L which is

opposite in polarity to the forward current, thereby reducing the
value of the efficiency factor a, as shown on Figure 10.
It should be emphasized that Figure 10 shows waveform
efficiency only; it does not provide. m.... r. of diode losas.
Data was obtained by measuring the ac component of Va with a
true rms ac voltmeter and the de component with 8 dc voltmeter.
The data was used in Equation 1 to obtain points for Figure 10.

1227

MR2S2S
MR2S2SR
POWER RECTIFIER/POWER SURGE SUPPRESSOR
· .. designed for applications requiring a low voltage rectifier with
reverse avalanche characteristics or for use as a reverse power
transient suppressor. Developed to su ppress transients in the automotive system, this device operates in the forward mode as a
standard rectifier or reverse mode as a power zener diode and will
protect expensive mobile transceivers, radios and tape decks from
over-voltage conditions.

AVALANCHE RECTIFIER
25 AMPERE

24-32 VOLTS

• High Power Capability
• Economical
• Non-Standard Voltages Available
• Increased Capacity by Parallel Operation
MAXIMUM RATINGS
Rating
DC Peak Repetitive Reverse Voltage

Working Peak Reverse Voltage
DC Blocking Voltage
RMS Forward Current
Average Rectified Forward Current

Symbol

Limit

VRRM
VRWM
VR

23

Volts

I(RMS)

94

Amp

10

25

Amp

IFSM

600

Amp

Unit

(Single Phase, Resistive Load. T C = 15o"C)
Non·Repetitive Peak Forward Surge Current
(Surge Applied at Rated Load Conditions,

Halfwave, Single Phase 60 Hz)
Repetitive Peak Reverse Surge Current

Amp

IRSM

(Pulse Width = 10 ms, Duty Cyele";;1.0%,
TC = 85°C)
Exponential (See Figure 5)

62

40

$quare Wave (See Figure 4)
Operating and Storage Junction
Temperature Range

TJ,T stg

-65 to +175

°c

THERMAL CHARACTERISTICS

TEMPERATURE
REFERENCE
POINT

Characteristic

Thermal Resistance. Junction to Case

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

Min

Max

Unit

Instantaneous Forward Voltage (1)
(iF = 79 Amp, T J = 25"C)

vF

-

1.1

Volts

Reverse Current

IR

-

50
300

IVR = 20 Vde, TC = 25°C)
(VR = 20 Vde, T C: l00"C)

Breakdown Voltage
OR: 100 mAde, TC = 25"C)
Breakdown Voltage (2)
OR =40 Amp, TC ~ 85°C)

I'Ade

BV
BVM

SEATING
PLANE

114-28 UNF·2A

INCHES

MILLIMETERS

DIM MIN

24

32

Volts

-

40

Volts

MECHANICAL CHARACTERISTICS

A 18.29
B 16.99
C
D
0.46
F
H 7.62
J 10.72
K

-

4.44

ease: Void free. transfer molded

MAX

MIN

-

0.720
0.669

17.48
10.67
8.38
0.56
B.13
11.51
30.48
4.70

0.018
0.3
0.422

-

0.175

Finish: All external surfaces are corrosion-resistant and the terminal lead is readily solderable
Polarity: Standard polarity is cathode to case - MR2525
Reverse polarity is anode to case and is designated by an "R" suffix - MR2525A

Mounting Position: Any
Stud Torque: 20 in~lbs maximum
(1) Pulse Te't: Pulse Width ";;3001", Duty Cycle ";;2.0%.

(2) Pulse Test: Pulse Width";; 10 ms, Duty Cyele";;2.0%.

1228

CASE 296-03

MAX

-

0.688
0.420
0.330
0.022
0.320
0.453
1.200
0.185

MR2525, MR2525R (continued)

FIGURE 2 - MAXIMUM FORWARD NON-REPETITIVE
SURGE CURRENT

FIGURE 1 - MAXIMUM FORWARD VOLTAGE
500

1000

~

300

0

200

-"""

~

0

........

r---...

10
/

100

J

I

II

/

0

10 0
1.0

TJ = 175°C
0

~1 c~cl'-I1
2.0

'"

...........

I I

3.0

/250C

I

""'"

!\ /\

0

I

surge.

V

0
0

TJ =175°C
f =60 Hz
VR RM may be applied
between each cycle of

0

5,0

7.0

10

20

30

I

O"ty

C~eIB,

0

~

tpltl

Peak Power, Ppk' IS

0

of

To determine maximum Junction temperature of the
diode In a given Situation, the following procpdure IS

I

I

recommended

I

I

The temperature of the case shou Id be measured uSing a
thermocouple placed on the case at the temperature rof·
erencE' pOint (see the outline drawmg on page 1) The
thermal mass connected to the case IS normally large
enough so that It Will not significantly respond to heat
surges generated In the diode as a result of pul!:.ed
operation once steady-state conditions are achieved Usmg
the measured value of TC, the JunctIOn temperaturp may
be determined by' TJ = TC +J\TJC
where .1.TJC IS the mcrease In Junction temperature above
the case temperature It may be determmed by
.6.TJC"'P pk 'ReJC [0+ (1-D) 'r(q +tpl +r(tp) - r(q)]
where
r(t) '" normalized value of transient thermal resistance
at time, t. from Figure 3, r e ,
r (t1 + tpl '" normalrzed value of transient thermal
resistance at time 11 + tp

I

I

1.0

O. 7
0.5
0.4

pea~

an aquwalentsquare pOwer
pul$~

....-

0.03

0.02

ROJCII) =ReJC 'rlt)
(See Note 1)

.......

~ ~ O. 1
>-'"
!Z g; 0.07

.....

.......... 1-"

0.0 1
1.0

2,0

3,0

5.0

7.0

10

20

30

50

70

100

11, PULSE WIDTH Im,l

1229

200

300

500 700

1,0 k

2.0k

3,Ok

5.0k 7.0k 10k

MR2525, MR2525R (continued)

REPETITIVE REVERSE SURGE CURRENT
(TC = 8SoC, Duty Cycle <;;1.0%)
FIGURE 5 - EXPONENTIAL

FIGURE 4 - SQUARE WAVE
~ 100

200

!!:

..JL

... 70

~

J,.-...i.,-.tl

~

'" 50

a

~ 30

......

20

g< 10
~

j

xz
w

W
",,'"

NotB 2

50

.. '"'
<'"

......
-

'"

O"tL\mit

.~

100

.....

w

w

ivJca,J.r:r

!za:~ ~ 10

iil

~w

I I I I rm

f'

w:O

... - - Typical Failures
- - - - Design limit

"

s:-~ 30
x",
w:o

""r-.

len

rr-., ......

20

"

7. 0

5.0
1.0

5.0

2.0

10

20

50

100

200

500

1.0 k

10
1.0

5.0

2.0

10

20

50

100

1], PULSE WIDTH

1], PULSE WIDTH Ions)

200

500 1.0 k

1m,)

FIGURE 6 - CAPACITANCE
10

NOTE 2

TJ= 250 C t= 1.0 MHz-

Time tl is at the half power point and is defined
as follows:

7.0

I'- t.....

~ 5.0
w

'"'
::l
5

.......
r--....

3.0

;t

r--.

5

c.,:; 2.0

1.0
0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0 7.0

10

The time constant of the exponential curve can be
found by multiplying t1 by 1.44.

20

VR, REVERSE VOLTAGE IVOLTS)

FORWARD CURRENT DERATING DATA
FIGURE 8 - FORWARD POWER DISSIPATION

FIGURE 7 - CURRENT DERATING
0

0

0

of--

0_

!JfM) • ~ IResini .. Load)-

.........

r- .......

r-...
.......
~

0

1/ /
/

0

10 } Capacitive Loads
20 )

0

~ f..,L

t..... ~
I""-- :" ~

0
100

0

F:SIo
I".
110

120

130

140

/

7

0

i"'" ~

0
150

160

170

1/ /

7

0

1'. ....... ~

K

0

~.~~~) I I I I ,-

I
TJotI 1750C

~

I/V
j

/

~

/- V J:>S
',h f-...
/ 1'.6
I0i

IJfM) = 

~

l

~
0::

500

./

300

..? v

:>

f

200

'"~

70

~

50

~

30

ffi

20

~

i

..

........

600

li:

I,

5 400

~
~

~;:

iLL
VRRM MAY BE APPLIED
BETWEEN EACH CYCLE
OF SURGE.

200

..... t--

.........

....
« 150

I

'"'"
~

I I

~

100 r-

l-

80 r-

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

(\

(\
I,

I

. . . 1'--

r--....

1 CYCLE

1

60
0.6

1 1 1

~

L

0.4

2.0

1.0

3.0

VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

5.0 7.0 10
20
30
NUMBER OF CYCLES AT 60 Hz

50

FIGURE 5 - THERMAL RESPONSE

.... 3

1.0
O. 7
o. 5

Recommended procedures for mounting are as follows:

1 Onll a hole In the heat Sink 0.499 ± 0.001 lOch in dIameter
2. Break the hole edge as shown to provide 8 guide Into the
hole and prevent shearmgoff the knurled side of the rectifier .

V

~~ o. 3
....
w< O.2

3

ZoJC(t)

",

=R8JC • ret)

....
.... '"
0

/'

~~ o. 1
~~ 0.07
::~ 0.05

The depth and WIdth of the break should be 0.010 inch

maximum to retain maximum heat sink surface contact.
4 To prevent damage to the rectifier during press-in. the
pnssing force snould be applied only on the shoulder ring
of the rectifier case as shown.
5. The pressing force should be applied evenly about the
shoulder ring to avoid tilting or canting of the rectifier case
m the hole durtng the press-In operation. Also, the use of a
thermallubrtcant such as D.C. 340 Will be of considerable atd.

V

"':E

~~ 0.03
0.02

~

TYPICAL THERMAL
R£SISTANCtCASE
rOSINK.llcs=O,2~C/W/

0.0 1
0.2

0.5

1.0

2.0

5.0

10 20
50
t,TIME(ms)

100 200

80

TJ = 195 0C

'" "

300

::>

Tr1750ch 25 0C

10
7.0

70

FIGURE 4 - MAXIMUM NON· REPETITIVE SURGE CAPABILITY

'-'

z

.~ 5.0
0.2

10
20
30
40
50
60
IF(AV), AVERAGE FORWARD CURRENT (AMP)

./7

~ 100

30

200

180

0::

::>

40

« 20

FIGURE 3 - MAXIMUM FORWARD VOL TAGE
-

70

0

..........

CAPACITIVE
LOADS

~=~ (I¢RESISTIVELOAO)
I(AV) 3.62 (3 ¢ RESISTIVE LOAD)+--f-5,10,20 (CAPACITIVE LOADS)_
5.0

~ 60

.~
""" ~ ~
\.

20

100

I

..... ~ '\

5i~}

~ o

I

~ =.(1¢, RESISTIVE LOAD)

"-

5.0

10

'"~

,L

K

FIGURE 2 - FORWARD POWER DISSIPATION
_ 100
~
~ 90
~
80

500 1.0 k 2.0 k

SHOULDER RING

1_

I

-~

~

-I

~

_I

Ty

1-11- 01 NOM

.01

NOM

.505~
DIA '-BH£A~T'"srNK::::;a"7J')~

I

049!h:OOOIDiA

HEAT SINK MDUNnNG
ADDITIONAL
HEAT SINK PLATE

RIVET '\..

/
INTIMATE

CONTACT AREA

COMPLETE KNURL "'-...... THIN
CONTACT AREA
CHASSIS

THIN·CHASSlS MDUNnNG

1234

70

100

MRA133, MRA133B

(SILICON)

Multi-Cell II, power rectifier diode circuits designed
for high-current rectifier service. The MRA130 series
is an air-cooled, integral rectifier assembly engineered
for optimum diode/heatsink utilization.

MAXIMUM DIODE RATINGS PER CIRCUIT LEG
Rating

Symbol

Peak Repetitive Reverse Voltage

VRRM

Working Peak Reverse Voltage

VRWM

DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
(one half-wave, single-phase,
60 cycle peak)
Continuous Average Rectified
Forward Current
(single-phase, resistive load,
60 Hz, TC = IS0°C)
Non-Repetitive Surge Currents at
Rated Conditions

Value

Units

300

Volts

400

Volts

ISO

Amperes

VR
VRSM

10

~SM

3000 for 1/2 cycle
1800 for 6 cycles

Peak
Amperes

MAXIMUM CIRCUIT RATINGS (All Types, TC:S: 150°C, See Figure 1)

Circuit Configuration

Total Diodes Required

Max Total Circuit DC Output Current

Single-Phase, Center Tap
(2-1-1-C)

1 Diode Assembly Either Polarity

300 Amperes

Single-Phase Bridge
(4-1-1-B)

2 Diode Assem bUes, One Each Polarity

300 Amperes

Maximum Operating and Storage Temperature: -6S o C to +IS00 C (All Types)
ELECTRICAL CHARACTERISTICS PER CIRCUIT LEG (All Types)
Symbol

Maximum Limit

Units

FultCycle Average Forward Voltage
Drop at Rated Load, TC = IS00 C

VF(AV)

O.S

Volts

Fun-Cycle Average Reverse
Current at Rated Load, TC = IS00 C

IR(AV)

20

Milliamperes

IR

1.5

Milliamperes

Characteristic And Conditions

DC Reverse Current at Rated
Reverse Voltage, VR, TC = 2S o C

NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bus-bar
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assembly case temperature is not allowed to exceed 15o"C. (See Figure 1).

OUTLINE DIMENSIONS AND MECHANICAL CHARACTERISTICS
POLARITY:
Standard polarity assemblies are CATHODES-TO-HEATSINK, (COMMON CATHODE). Reverse polarity assem·
blies are ANODES-TO-HEATSINK (COMMON ANODE) and are designated by an "R" suffix, i.e.,MRA13:.R. (See
Figure 2.)

MOUNTING POSITION: Diode legs ....ertical for convection cooling or parallel to forced air flow.
FULL-WAVE BRIDGE ASSEMBLIES are available completely assembled with electrically insulated hardware
suitable for easy mounting. The bridge assembly is designated by a "B" suffix, i.e.,MRA133B. The bridges are
composed of one common cathode and one common anode assembly.(S .. Figure 3)
CUSTOM RECTIFIER ASSEMBLIES are available in a variety of current and voltage ranges using the basic
MULTI-CE LL II construction techniques.

1235

MRA 133, MRA 133B (continued)

FIGURE 1 - MAXIMUM CIRCUIT RATINGS
~ 300

1500 LFM

~

1000 LFM

250

I""\

~

~ 200
~
~

"~

500 LFM

150

~

...'"
o

~ 100

U

'"~'"

FREE CONVECTION

50

:(

S

~

25

COND1T1~NS: Singl~asec8nter

I\.

50

75

~

-- ----

Tap or Full-Wave
Bridge Operation

-

60 Hz Resistive or
Inductive Load

-

..

~~

100

~

125

150

175

TA. MAXIMUM AMBIENT TEMPERATURE (OCI

"c" CIRCUIT FOR
SINGLE-PHASE OPERATION

FIGURE 2 - MRA13'3 ("C" CIRCUIT)

CASE 154A

FIGURE 3 - MRA133B (BRIDGE CIRCUIT)

CASE 155A

1t-°·8PL."C~~

'~~
Tolerances unless specified: ±.D.03
RED (CATHODE. DC+)

(ANODE. DC·)

•

CONTACT SURFACE

1236

MRA163, MRA163B

(SILICON)

Multi-Cell II, power rectifier diode circuits designed
for high-current rectifier service. The MRA163 is an
air-cooled, integral rectifier assembly engineered for
optimum diode/heatsink utilization.
MAXIMUM DIODE RATINGS PER CIRCUIT LEG
Rating

Symbol

Peak Repetitive Reverse Voltage

VRRM

Working Peak Reverse Voltage

VRWM

DC Blocking Voltage

Units

Value

SO

100

300

300

400

Volts

75

ISO

400

400

500

Volts

VR

Non-Repetitive Peak Reverse Voltage

(one half~wave, single-phase,

VRSM

60 cycle peak)
Continuous Average Rectified
Forward Current

(single·phase, resistive load,

Amperes

300

10

60 Hz, TC = ISO°C)
Non~Repetitive

~SM

Surge Currents at

Rated Conditions

6000 for 1/2 cycle
3600 for 6 cycles

Peak
Amperes

MAXIMUM CIRCUIT RATINGS (All Types TC': 150°C, See Figure 1)
Total Diodes Required

Circuit Configuration

Max Total Circuit DC Output Current

Singlei'hase, Center Tap
(2-1-1-C)

1 Diode Assembly Either Polarity

600 Amperes

Single-Phase Bridge
(4-1-1-8)

2 Diode Assem blies One Each Polarity

600 Amperes

Maximum Operating and Storage Temperature: -6S oC to +lSOoC (AU Types)

ELECTRICAL CHARACTERISTICS PER CIRCUIT LEG (All Types)
Symbol

Maximum Limit

Units

Full-Cycle Average Forward Voltage
Drop at Rated Load, TC = ISOoC

VF(AV)

0.5

Volts

Full-Cycle Average Reverse
Current at Rated Load, TC = ISOoC

IR(AV)

40

Milliamperes

IR

3.0

Milliamperes

Characteristic And Conditions

DC Reverse Current at Rated
Reverse Voltage, VR. TC = 2S oC

NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bus-bar
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assembly case temperature is not allowed to ex-

ceed 15o"C. (See Flgur. 1).

OUTLINE DIMENSIONS AND MECHANICAL CHARACTERISTICS
POLARITY:
Standard polarity assemblies are CATHOOES-TO-HEATSINK, (COMMON CATHODEI. Reverse polarity assemblies are ANOOES-TO-HEATSINK (COMMON ANODE) and are designated by an "R" suffix, i.e.,MRA163R. (See
Figure 2.)

MOUNTING POSITION:

Cooling fins and diode legs vertical for convection cooling or parallel to forced air flow.

FULL-WAVE BRIDGE ASSEMBLIES are available completely assembled with electrically insulated hardware
suitable for easy mounting. The bridge assembly is designated by a "8" suffix, i.e.,MRA 1638. The bridges are
composed of one common cathode and one common anode assembly. (See Figure 3)

CUSTOM RECTIFIER ASSEMBLIES are available in a variety of current and voltage ranges using the basic
MULTI-CELL II construction techniques.

1237

MRA333, MRA333B (SILICON)
Multi-Cell fi, power rectifier diode circuits designed
for high-current rectifier service. The MRA333 is an
air-cooled, integral rectifier assembly engineered
for optimum diode/heatsink utilization.
MAXIMUM DIODE RATINGS PER CIRCUIT LEG
Rating

Symbol

Peak Repetitive Revetse Voltage

VRRM

Working Peak Reverse,Yoltage

VRWM

DC Blocking Voltage
Non-Repetitive Peak Reverse Voltage
(one half-wave, single-phase,
60 cycle peak)
Continuous Average RectifJed
Forward Current
(three-phase, resistive load,
60 Hz, TC = 1S0°C)
Non-Repetitive Surge Currents at
Rated Conditions

Value

Units

300

Volts

400

Volts

100

Amperes

VR
VRSM

IF(AV)

~SM

2000 for 1/2 cycle
1200 for 6 cycles

Peak
Amperes

MAXIMUM CIRCUIT RATINGS (All Types, TC';;; 150oC, See Figure 1)
Total Diodes Required

Circuit Configuration

Max T atal Circu it DC Output Cummt

Three-Phase Half-Wave
(3-1-1-Y)

1 Diode A,sem bly, Either Polarity

300 Ampete.

Three-Phase FuUoWave
(6-1-1-B)

2 Diode Assem blies, One Each Polarity

300 Amperes

Six-Phase Star
(6-1-l-S)

2 Diode Assemblies Same Polarity

400 Amperes

Six-Phase with Interphase,
3 \II Double WYE (6-l-l-Y)

2 Diode Assemblies Same Polarity

600 Amperes

Maximum Operating and Storage Temperature: -6S oC to +lS00 C (AU Types)

ELECTRICAL CHARACTERISTICS PER CIRCUIT LEG (All Types)
Symbol

Maximum Limit

Units

Full-Cycle Avetage Forward Voltage
Drop at Rated Load, TC = 1S0oC

VF(AV)

O.S

Volts

Fun-Cycle Average Reverse
Current at Rated Load, TC = 1S0oC

IR(AV)

IS

Milliamperes

IR

1.0

Milliamperes

Characteristic And Conditions

DC Reverse Current at Rated
Reverse Voltage, VR, TC = 2S oC

NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bus-bar
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any

rating point of output current, ambient temperature and air flow, the assembly case temperature is not allowed to exceed 1500C.(Se. Figure 1).

OUTLINE DIMENSIONS AND MECHANICAL CHARACTERISTICS
POLARITY:
Stand.rd pol.rity ....mbli.s .re CATHODES-TO-HEATSINK, (COMMON CATHODE). Reverse polarity assamblies are ANODES-TO-HEATSINK (COMMON ANODE) .nd .re deslgnetad by en "R" suffix, i.e.,MRA333R. (See
Figure 2.)

MOUNTING POSITION: Diode legs vertical for convection coaling or par.llel to forced air flow.
FULL-WAVE BRIDGE ASSEMBLIES .re av.ilable completely .... mbled with electrically insulated hardware
suitable for easy mounting. Th. bridge assembly is designated by • "S" suffix, i.•. ,MRA333S. The bridges are
composed of one common cathode and one common anode assembly. (Sse Figure 3)

CUSTOM RECTIFIER ASSEMBLIES .re avail.ble in a v.riety of current .nd voltage r.nges using the basic
MULTI-CELL II construction techniques.

1239

MRA333, MRA333B (continued)

FIGURE 1 - MAXIMUM CIRCUIT RATINGS

!,.
:;

300

1000 lFM

....

I
!;

~

~

1500 lFM

250

~\

200

150

500 lFM

....

~

g"''"

50

;:;
FREE CONVECTION

>
«

~

25

~

50

75

3-Phase Half-Wave

~rx~;~~:a;:~r.For

-

Multiplv IDe Scale
by 1.33. For 3 
DoubleWYE,
Multiply IDe
Scale by 2.

-

'" ~~
~~
--- ----~
~

0

100

CONDITIONS:

100

60 Hz, Resistive or
Inductive Load

125

150

175

TA. MAXIMUM AMBIENT TEMPERATURE (OCI

FIGURE 2 - MRA333 ("Y" CIRCUIT)

"Y" CIRCUIT
FOR POLYPHASE OPERATION

038

CASE 154

0.38

FIGURE 3 - MRA333B (BRIDGE CIRCUIT)

CASE 155

1240

MRA363, MRA363B (SILICON)
Multi-Cell II, power rectifier diode circuits designed
for high-current rectifier service. The MRA363 is an
air-cooled, integral rectifier assembly engineered for
optimum diode/heatsink utilization.
MAXIMUM DIODE RATINGS PER CIRCUIT LEG
Rating

Symbol

Peak Repetitive Reverse Voltage

VRRM

Working Peak Reverse Voltage

VRWM

DC Blocking Voltage

Value

Units

300

Volts

400

Volts

220

Amperes

VR

Non-Repetitive Peak Reverse Voltage
(one half·wave, single-phase,
60 cycle peak)
Continuous Average Rectified
Forward Current
(three-phase, resistive load,
60 Hz, TC = ISO°C)
Non-Repetitive Surge Currents at
Rated Conditions

VRSM

IF(AV)

~SM

5000 for 1/2 cycle
3000 for 6 cycles

Peak
Ampere!!

MAXIMUM CIRCUIT RATINGS (All Types, TC';; 1500 C, See Figure 1).
Circuit Configuration

Total Diodes Required

Max Total Circuit DC Output Current

Three-Phase Half-Wave
(3-1-1-Y)

1 Diode Assembly Either Polarity

650 Amperes

Three-Phase FuU-Wave
(6-1-1-B)

2 Diode Assem blies, One Each Polarity

650 Amperes

SiJ<-Phase Star
(6-1-1-S)

2 Diode Assemblies Same Polarity

870 Amperes

Six-Phase with Interphase,
341Double WYE (6-1-1-Y)

2 Diode Assem blies Same Polarity

1300 Amperes

Maximum Operating and Storage Temperature: -65°C to +150°C (AU Types)
ELECTRICAL CHARACTERISTICS PER CIRCUIT LEG (All Types)
Symbol

Maximum Limit

Units

FuU"Cycle Average Forward Voltage
Drop at Rated Load, TC = 150°C

VF(AV)

0.5

Volts

FuU-Cycle Average Reverse
Current at Rated Load, TC

IR(AV)

40

Milliamperes

IR

3.0

Milliamperes

Characteristic And Conditions

= 150°C

DC Reverse Current at Rated
Reverse Voltage, VR, TC = 25°C

NOTE: A portion of the internal power losses of the rectifier may be conducted from the device by the connecting bus-bar
or cables and can vary depending on mounting conditions. The above ratings are based on conditions where at any
rating point of output current, ambient temperature and air flow, the assembly case temperature is not allowed to e)(ceed 150o C.(See Figure 11.

OUTLINE DIMENSIONS AND MECHANICAL CHARACTERISTICS
POLARITY:
Standard polaritv ....mbli .. are CATHOOES-TO-HEATSINK, (COMMON CATHODE). Reverse polarity assembli.. are ANODES-TO-HEATSINK (COMMON ANODE) and are d.. ignated by an "R" suffix, i.e.,MRA363R.( See
Figure 2)
MOUNTING POSITION: Cooling fins and diode legs v.rtical for convection cooling or parallel to forced air flow.
FULL-WAVE BRIDGE ASSEMBLIES are available completely assembled ·with electrically insulated hardware
suitable for easy mounting. The bridge assembly is designated by a "8 u suffix, i.e.,MRA36.3:l. The bridges are
composed of one common cathode and one common anode assembly. I See Figure 3)
CUSTOM RECTIFIER ASSEMBLIES are available in a variety of current and voltage ranges using the basic
MULTI-CELL II construction techniques.

1241

MRA363, MRA363B (continued)
FIGURE 1 - MAXIMUM CIRCUIT RATINGS
700

*'"
:t!
5

I

400

~
0

300

~

100

!;

....
13

"'"'
~
~

";;
~

COND1T10NS,

"-

1500 lFM

600
500

~

1000 lFM

OoubleWYE.
Multiply IOC
Scale bV2.

""'"

~'" ,'\.

500 lFM

--

'~"'0

FREE CONVECT10N
100

15

50

75

3-Phase Half.-Wave
or Full-Wave.
For Silt-Phase Star,
Multiply I DC Scale
by 1.33. For 3 4>

100

----"

60 Hz. Resistive or
Inductive Load

~
~

115

150

175

TA. MAXIMUM AMBIENT TEMPERATURE lOCI

FIGURE 2 - MRA363 ("V" CIRCUIT)

"V" CIRCUIT
FOR POLVPHASE OPERATION

CASE 156

FIGURE 3 - MRA363B (BRIDGE CIRCUIT)

CASE 157
VEL(AC)
~

(ANODE DC-)

~~:jf~~~~~~~

REO
ICATHODE, DC+)

Tolerancesunlessspecified ±003

III

CONTACT SURFACE

MRD 148 (SILICON)
For Specifications, See 2NS777 Data, Volume II.
1242

MRD1S0 (SILICON)

PLASTIC NPN SILICON PHOTO TRANSISTORS

40 VOLT
MICRO-T
NPN SILICON
PHOTO TRANSISTOR

· .. designed for application in punched card and tape readers, pattern
and character recognition equipment, shaft encoders, industrial
inspection processing and control, counters, sorters, switching and
logic circuits, or any design requiring radiation sensitivity, stable
characteristics and high·density mounting.

50 MILLIWATTS

• Economical Plastic Package
• Sensitive Throughout Visible and Near Infra·Red Spectral Range
for Wide Application
• Small Size for High·Density Mounting
• High Light Current Sensitivity (0.20 mAl for Design Flexibility
• Annular+ Passivated Structure for Stability and Reliability

MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Emitter-Collector Voltage

Total Device Dissipation @TA

=2SoC

Symbol

Value

Unit

VCEO

40

Volts

VECO

6.0

Volts

Po

50
0.67

mW
mW/oC

Derate above 2SoC

Operating and Storage Junction
Temperature Range

°c

TJ(I),Tstg -40 to +100

(1) Heat Sink should be applied to leads during soldering to prevent Case
Temperature from exceeding 85°C.

PIN I. EMITTER
2. COLLECTOR

FIGURE 1 - COLLECTOR·EMITTER SENSITIVITY

0.10

'"

t:~

0.08

~~~
I=ffi..!:!

0.06

,.....1-""

:E~

,-""
;;:
WZE

~

..-

V

8~3 0.04

I--' I-

00
w,",

~a:

0.02

o

MIN

"""

f-'~
0.2

0.5

1.0

INCHES
MAX
MIN
0.078 0.092
0.048 0.058
0.010 0.016
0.004 0.006
0.020 0.030
0.160
7D
3D

CASE 173

....... """

0.1

MILLIMETERS
MIN
MAX
1.98
2.34
1.47
1.22
0.41
D 0.25
F 0.10
0.15
0.76
H 0.51
K 4.06
M
3D
7D

DIM
A
C

~

j~;:C

-

II

VCC =20V
CO LO RTEMP =2870 K
TUNGSTEN SOURCE

r4===:--='~~l-M~=====

2.0

5.0

10

H, RADIATION FLUX OENSITY (mW/cm2)

1243

20

MRD150 (continued)

STATIC ELECTRICAL CHARACTERISTICS (TA ~ 25°C unless noted)
Characteristic

Fig. No.

Symbol

Collector Dark Current
(Vee = 20 V; Base Open).
(Note 2)
TA ~ 25°C
TA = 85°C

-

ICEO

Collector-Emitter Breakdown Voltage
(I_e = 100 p.A; Base Open; Note 21

-

Emitter-Collector Breakdown Voltage
(IE = 100 p.A; Base Open; Note 2)

-

Min

Typ

Max

Units
p.A

-

-

0.10

-

5.0

-

40

-

-

6.0

-

-

Min

Typ

Max

0.20

0.45

-

Volts

BVCEO

Volts

BVECO

OPTICAL CHARACTERISTICS (T A ~ 25°C unless noted)
Characteristic

Fig. No.

Symbol

1

IL

Collector Light Current
(Vee = 20 V; RL = 100 ohms; Base Open)
(Note 1)

Units

mA

Photo Current Rise Time (Note 3)

2and3

tr

-

-

2.5

p.s

Photo Current Fall Time (Note 3)

2and3

tf

-

-

4.0

p.s

9

As(typl

-

0.8

-

I'm

Wavelength of Maximum Sensitivity

NOTES:
1. Radiation Flux Density (HI equal to 5.0 mW/cm 2 emitted from

3. For unsaturated response time measurements, radiation is
provided by a pulsed GaAs (gaillum·arsenide) light-emltting
diode (i\. = 0.9 j,tm) with a pulse Width equal to or greater than
10 microseconds (see Figure 2 and Figure 3).

a tungsten source at a color temperature of 2870 K.
2. Measured under dark conditions. (H~O),

FIGURE 2 - PULSE RESPONSE TEST CIRCUIT

FIGURE 3 - PULSE RESPONSE TEST WAVEFORM

VCC
+20V

O.lV- -

-

-

-1 ....- - - - - ' \ 1
-

hv

N.C.o----+--l.

i= 1.0mA
PEAK

I

RL = lOOn

OUTPUT

1244

-

-

-

-90%

MRD150 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 5 - COLLECTOR
SATURATION CHARACTERISTICS

FIGURE 4 - COLLECTOR·EMITTER CHARACTERISTICS
1. 0

«.§.

COLOR TEMP = 2870 K
TUNGSTEN SOURCE

l--- r-

o. 8 /

f-

~ o. 6
'"
13
'"0

~
8

~

-

H -10 mW/cm2

'"~
~

'"
~

7.0

2. 0
1. 8
1. 6
1.4

o

> 1. 2

V-

'"

~

510

o. 4
o. 2

15

.8

o

6
O.
4

"'~

}o
0.5

~

0

>
10

5.0

15

20

CO LOR TEMP = 2870 K

_ o. T~N~srEIN ~o~m"
8 .2
I I 1111111

2.0
1.0

IC=O.l mA

25

I

0
0.1

1.0

j

\

1'\

r---"

11111111

0.2

0.5

1.0

5.0

2.0

10

FIGURE 6 - DARK CURRENT versus TEMPERATURE
5

T~ = 25dc

I-- H=O

0

1=

0

VCE=20V
I-- H 0
0

5

./
0

0

.,,/

0

./

0

0.0 1
-20

-40

20

40

60

100

80

, lL'"

V

10

I
V

0

0

/

\
~

\

/

80

60

40

20

20

40

60

L

0

\

0

80

\

100

0
0.4

/

"

/

0

V

0

II

0

\

/

40

30

20

50

FIGURE 9 - CONSTANT ENERGY SPECTRAL RESPONSE

"-

)

lL

100

..........

1/

~

L

lL'"

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 8 - ANGULAR RESPONSE

0

V

lL:

IL":

0

TA,AMBIENTTEMPERATURE (OC)

100

100

FIGURE 7 - DARK CURRENT versus VOLTAGE

10,000

.1

50

20

H, RADIATION FLUX DENSITY (mW/cm 2)

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

0
100

0.5

1. 0

~

~

\

\

I

1245

~

\

0.5

0.6

0.7

0.8

0.9

X, WAVELENGTH (~m)

ANGLE (Degrees)

,

~

V

1.0

1.1

1.2

MRD150 (continued)

OPTOELECTRONIC DEFINITIONS, CHARACTERISTICS, AND RATINGS

BVCBO

Collector-Base Breakdown Voltage - The minimum de breakdown voltage, collector to base,
at stated collector current and ambient temperature. (Emitter open and H "" 0)

BVCEO

Collector-Emitter Breakdown Voltage - The
minimum de breakdown voltage, collector to
emitter, at stated collector current and ambien t
temperature. (Base open and H "" 0)

BVECO

Emitter-Collector Breakdown Voltage - The
minimum de breakdown voltage, emitter to
collector, at stated emitter current and ambient
temperature. (Base open and H "" 0)

E

Luminous Flux Density(Illuminance) [lumens/
ft. 2 = ft. candles I - The radiation flux density of wavelength within the band of visible
light.

H

Radiation Flux Density (Irradiance) [mW/
cm 21 - The total incident radiation energy
measured in power per unit area.

ICEO

Collector Dark Current - The maximum current through the collector terminal of the device measured under dark conditions, (H "" 0),
with a stated collector voltage, load resistance,
and ambient temperature. (Base open)

Po

Power Dissipation

TA

Ambient Temperature

tf

Photo Current Fall Time - The response time
for the photo-induced current to fall from the
90% point to the 10% point after removal of
the GaAs (gallium-arsenide) source pulse under
stated conditions of collector voltage, load resistance and ambient temperature. (See Note
3 and Figures 2 and 3)
J unction Temperature

Ir

Photo Current Rise Time - The response time
for the photo-induced current to rise from the
10% point to the 90"10 point when pulsed with
the stated GaAs (gallium-arsenide) source under
stated conditions of collector voltage, load resistance. and ambient temperature. (See Note
3 and Figures 2 and 3)

Tstg

Storage Temperature

VCBO

Collector-Base Voltage - The maximum allowable value of the collector-base voltage which
can be applied to the device at the rated temperature. (Base open)

VCEO

Collector-Emitter Voltage - The maximum
allowable value of collector-cmitter voltage
which can be applied to the device at the rated
temperature. (Base open)
Emitter-Collector Voltage - The maximum
allowable value of emitter-collector voltage
which can be applied to the device at the rated
temperature. (Base open)
Wavelength of maximum sensitivity in micrometers.

1246

MRD300 (SILICON)
MRD310

50 VOLT
PHOTO TRANSISTOR
NPN SILICON

NPN SILICON HIGH SENSITIVITY
PHOTO TRANSISTOR
· .. designed for application in industrial inspection, processing and
control, counters, sorters, switching and logic circuits or any design
requiring radiation sensitivity, and stable characteristics.

400 MILLIWATTS

• Popular TO-IS Type Package for Easy Handling and Mounting
• Sensitive Throughout Visible and Near Infra-Red Spectral Range
for Wider Application
• Minimum Light Current 4 mA at H = 5 mV/cm 2 (MRD 300)
• External Base for Added Control
• Annular Passivated Structure for Stability and Reliability

MAXIMUM RATINGS IT A • 25°C unless o.he,wise no.edl
SYmbol

Value

Unit

VCEO

50

Volts

Emitter·Coliector Voltage

VECO

7.0

Volts

COllector-Base Voltage

VCBO

80

Volts

Po

400
2_28

mW
mWf'C

TJ,T stg

-65.0+200

°c

Rating

INote 1)

Coliector·Emitter Voltage

Total Device Dissipation @TA = 2SoC
Derate above 25°C
Operating Junction and Storage

L

SEATING
PLANE

Temperature Range

NOTES:
1. LEADS WITHIN .13 mm (.005) RADIUS
OF TRUE POSITION AT SEATING
PLANE,AT MAXIMUM MATERIAL
CONDITION.
2. PIN 3 INTERNALLY CONNECTED TO
CASE.
MILLIMETERS
DIM MIN
MAX

FIGURE 1- LIGHT CURRENT ••,.us IRRADIANCE

:ro
6

IIII
IIII

/

VCC=20V
TUNGSTEN SD.URCE
CO LO R TEMP = 2870 K

III

0.5

IJ

A
B

C

'~ MR0310

o

/

F
G

1/

4. 0

a

MRD.300

1/

2

0

I
If

i.-'

i-"'
1.0

2.0

~---

H
J

'"
5.0

K

10

20.

50

l
M

5.31 5.84
4.52 4.95
5.0B 6.35
0.41 0.48
0.51 1.02
2.54 BSC
0.99 1.17
0.B4 1.22
12.70
3.35 4.01
45 SSC
CASE B2-01

H, RADIATION FLUX DENSITY ImW/cm21

1247

MRD300, MRD310

(continued)

STATIC ELECTRICAL CHARACTERISTICS

(TA = 25"c unless otherwise noted)

Charocteristic

Symbol

Collector Dark Curren,t
(VCC = 20 V. H""O) TA = 250 C
TA = l000C

Min

Typ

Max

Unit

-

25

4.0

-

na
pA

ICEO

-

-

Coliector·Base Breakdown Voltage
(lC= 100 "A)

BVCBO

BO

Collector-Emitter Breakdown Voltage
(lC = l00pA)

BVCEO

50

-

-

Volts

Emitter-Collector Breakdown Volta!!e
(IE = l00pA)

BVECO

7.0

-

-

Volts

Min

Typ

Max

Unit

4.0
1.0

7.5
2.5

-

-

2.5
0.8

-

-

2.5

'"

-

4.0

".

OPTICAL CHARACTERISTICS

(TA

= 250 C unless otherwise noted)
Device
Type

Charact.-istic
Light Current
(VCC = 20 V. RL

= 100 ohms)

Note 1

Light Current
(VCC = 20 V. RL

= 100 ohms)

Note 2

Volts

Symbol

mA

IL
MRD300
MRD310
IL
MRD300
MRD310

Photo Current Rise Time (Note 3) (RL = 100 ohm.
IL = 1.0 mA peak)

Ir

-

Photo Current Fall Time (Note 3) (RL = 100 ohm.
IL = 1.0 mA peak)

tf

-

NOTES:
1. Radiation flux density (H) equal to 5.0 mW/cm 2 emitted from
a tungsten saUTC9 at a color tamperature of 2870 K.
2. Radiation flux density (H) equal to 0.5 mW/cm 2 (pulsed) from
a GsAs (gallium-arsenide) source at ~~O.9 #Lm.

3. For unsaturated ,aspo".. time melllUramanU. radiation I, provided by pulsed GaA. (gallium-arsenlde) liaht..ml1:ting diode
(A ~ 0.9 ~m)- with • pulse width equal to or greater than 10
mlcrol8Condl (see Flgur. 6) I L = 1.0 mA peak.

1248

mA

-

MRD300, MRD310 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 3 - NORMALIZED LIGHT CURRENT
versus TEMPERATURE

FIGURE 2 - COLLECTOR·EMITTER
SATURATION CHARACTERISTIC

~
~

1.4
1. 2

2.

TUNGSTEN SOURCE
COLOR TEMP' 2870 K

w

~

1.0

ffiN

o

ffi

0.8

1=

:::;

-

1.0mA

~

5.DmA- f--

2.DmA

:iii 0.6

:l::

~

8
w

>'"'

0.4

0.2 t-

o. 1
0.3

m

0.5

.1

_I.

-'

'-

'-

"-

1.0

5.0

3.0

./

1.2

1.0
O. 6

,/

O. 4

O. 2
0
-100

30

10

-75

-50

>=
w

5.0

7.0

'"
....
~

'"

4.0

'":::>
'"'
....

3.0

0

0

Note 3

-

-

2.0

o

0.2

1.0

>=
-'

5.0

~

....

'"
:::>
'"
0'"'

500n-

2.0

5.0

75

-

----

4.0

....
0

10

3.0

100

125

"'"

20

IL. LIGHT CURRENT (mA)

500n

2.0
1.0

o

0.2

0.5

1.0

2.0

250n

~~og_

3.0

5.0

10

IL. LIGHT CURRENT (mA)

FIGURE 6 - PULSE RESPONSE TEST CIRCUIT AND WAVEFORM
VCC
+20V

IL = 1.0 mA- - - - --.~---......
- - - - - - ------90%

h.

N.C.

150

1000n_

~

il:

250n lOOn50n_

-...;:::

50

Note 3

~

:,....

0.5

6.0

-'

lOOOn-

"'-...

il:
.,; 1.0

!w

:E

i--

25

FIGURE 5 - FALL TIME versus
LIGHT CURRENT

7.0

:E

-25

TA.AMBI ENT TEMPERATURE (OC)

FIGURE 4 - RISE TIME ve,sus
LIGHT CURRENT

6.0

./

V

V

H. RADIATION FLUX DENSITY (mW/cm2)

!w

"'"

./

1.4

~ O.8

\
\

rlio
I III

°

1. 81-- VCC = 20 V
Note 1
1. 6

"-

0------1

OUTPUT

1249

20

MR0300, MR0310 (continued)

FIGURE 7 - DARK CURRENT ve....s TEMPERATURE

40

1

10

~

1.0

....

I: H· 0
F
t-- ~ VCE=20V

::>

'-'
~

'"c
rr;.-

~
:j

o. 1
0.01

OJlOl

8
ci

E O.DOD 1
0.00001

-25

-50

25

75

50

125

100

TA. AMBI ENT TEMPERATU RE (DC)

FIGURE 8 - CONSTANT ENERGY SPECTRAL RESPONSE
100

L .........

II

0

J
0

/

0

0

V

/

I\.

\

80

\

\

~

60

>

40

w

;::

0.7

0.9
0.8
~. WAVELENGTH (pm)

I
I
I
I

g

1.0

1.1

o

1.2

'"\
.\
\

\
\

I

20

\.
0.6

I

w

'"z

1\
\

/
0.5

ANGULAR RESPONSE

/

~

o
0.4

S' -

FIGURE
100

\

i

I
40

30

20

10

10

ANGLE (DEGREES)

1250

\
20

30

40

MRD360 (SILICON)
MRD370

NPN SILICON HIGH SENSITIVITY
PHOTO DARLINGTON TRANSISTORS
· .. designed for application in industrial inspection, processing and
control, counters, sorters, switching and logic circuit or any design
requiring very high radiation sensitivity at low light levels.
•

Popular TO·18 Type Hermetic Package for Easy Handling and
Mounting

•

Sensitive Throughout Visible and Near Infra·Red Spectral Range
for Wider Application

•

Minimum Light Current 12 rnA at H = 0.5 mW/cm 2 (MRD360)

•

External Base for Added Control

•

Switching Timestr@ IL = 1.0 rnA peak = 15 p.s (Typ) - MRD370
tf@ I L = 1.0 mA peak = 25 p.s (Typ) - MRD370

MAXIMUM RATINGS

(T A

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

40

Volts

Emitter-Base Voltage

VEBO

10

Volts

Collector-Base Voltage

VCBO

50

Volts

IL

250

mA

Light Current
@

250 MILLIWATTS

= 25°C unless otherwise noted).

Rating (Note 1)

Total Device Dissipation
Derate above 25°C

40 VOLT
PHOTO DARLINGTON TRANSISTORS
NPN SILICON

T A - 25 C
u

Operating and Storage Junction

Po

250
1.43

mW
mW/oC

TJ,Tstg

-65 to +200

°c

SEATING
PLANE

H

G
M

J '

Temperature Range

FIGURE 1 - LIGHT CURRENT versus IRRAOIANCE

1001~~~
50~

;(

f---f---J--f--+-MR0361!loO.,r--<::"'+--+--J-::;;...-I

V
i,...--f-'"
~'" 20/-_+_+_+-~,j.£'--+---::t;....""'M
::
/"
""'MRD370:.--+_--1
.§.

/'

../

10~~~~~~~~~~~~~~~~~~~

~B 5.0~
~

STYLE I:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
STYLE 2:
PIN I. CATHODE
2. GATE
3. ANODE

NOTES:
1. LEADS WITHIN .13 mm ('005) RAOIUS
OF TRUE POSITION AT SEATING
PLANE,AT MAXIMUM MATERIAL
CONDITION.
2. PIN 3 INTERNALLY CONNECTED TO
CASE.
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX
A
5.31 5.84
0.209 0.230
B
4.52 4.95
O.17B 0.195
C
5.08 6.35
1t.200 0.250

~ ~::: ~:: I~:~:
asc

f---I--t/Y-7/-+--+--i--+- VCP 5.0 V - /
H@2870oK

G
2.54 BSC
I-¥H-+~0~.9;.9+-7'1...
17.-+
I-'!:~-+"'!I~~:~;'O+-"1:....
22.-+

0.046
0.048

1.00!:--=0.~(-fO.2::--:0f:.3:--:0J.,.4--:0'=.5-"J0.1:-6-o:::l.7:--:-/f:.8:--:0,l:.9-~1.0

~:fL;.t::",3;'i;.~3;;'5:'7.·4F..;;;0~I=t

0.158

2.01----j'-",,/1--+-+-1--+-:.:r-=;.:.:---f--!

H, RADIATION FLUX DENSITY {mW/'m2}

M

45" BSC

CASE 82
TO·18

1251

MRD360, MRD370 (continued)

STATIC ELECTRICAL CHARACTERISTICS (TA

~ 250 C unless otherwise noted.)

Symbol

Min

Typ

Max

Unit

Collector Dark Current
(VCE ~ 10 V, H ""'0) TA ~ 25°C

ICEO

-

10

100

nA

Collector-Base Breakdown Voltage
(lC = 1OOjlA)

BVCBO

50

-

-

Volts

Collector-Emitter Breakdown Voltage

BVCEO

40

-

-

Volts

BVEBO

10

-

-

Volts

Symbol

Min

Typ

Max

Unit

12
3.0

20
10

-

-

-

1.0

Characteristic

(lC~100jlA)

Emitter-Base Breakdown Voltage
(IE ~ 100jlA)

OPTICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted.)
OtrliceType

Characteristic
Light Current
VCC~ 5.0V,RL= 100hms(Note 1)

mA

IL
MRD360
MRD370

Collector-Emitter Saturation Voltage
(lL ~ 10 mA, H ~ 2 mW/cm 2 at 28700 K\

Volts

VCE(satl

Photo Current Rise Time (Note 2)

(RL ~ 1000hms
IL ~ 1.0 mA peak)

MRD360
MRD370

tr

-

40
15

100
100

jlS

Photo Current Fall Time (Note 2)

(RL = 100 ohms
IL = 1.0 mA peak\

MRD360
MRD370

'f

-

60
25

150
150

jlS

NOTES:
1. Radiation flux density (H) equal to 0.5 mW/cm 2 emitted from

a tungsten source at a color temperature of 2870 K.
2. For unsaturated response time measurements. radiation is provided by pulsed GaAs (gallium-arsenide) light-emitting diode
(1- "" 0.9 jlm) with a pulse width equal to or greater than 500
microseconds (see Figure 6\ I L ~ 1.0 mA peak.

1252

~

MRD360, MRD370 (continued)

I'
I

I
TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 2 - COLLECTOR-EMITTER
SATURATION CHARACTERISTIC

~

FIGURE 3 - COLLECTOR CHARACTERISTICS

1. 5

100

o

~

1. 3

"...
.§

~

'"
~
O. 9

\

'"

~
8

_ o. 7

--

::::-i-

......

~

IL"20mA
lOrnA
5.0mA
2· omi

l

H@2870oK

> O. 5

0.2

0.1

0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0
H. RADIATION FLUX DENSITY (mW/cm2)

...

2. 0

./

1. 0
~ O. 7
~ O. 5

'"

V

V

1

1.0

2.0
3.0
4.0
5.0
6.0
7.0
8.0
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

g.O

10

O. 3

-40

-20

20

B

0

~

~1.0pA

VCE - 5.0 V
H " 0.5 mW/cm 2 @ 28700 K -

/'

O. 1
-60

100

o

./

:? o. 2

~

«

/"

~

::i

I
01 m~/cm2

FIGURE 5 - DARK CURRENT versus TEMPERATURE

5. 0

~ 3. 0

...

0.2 mW/cm 2

1000

~

'"

I

5. 0

1. o

10

0

o

0.5 mW/cm 2

2. 0

FIGURE 4 - NORMALIZED LIGHT CURRENT
versus TEMPERATURE

;-;

0
0

3. 0

~

~

H" 1.0 mW/cm 2

~
~ 10
a 7. 0

§; 1. 1

~

~H @2870oK

0

40

60

80

100

120

~

100

8

0

~
140

TA. AMBIENT TEMPERATU RE (OC)

H o ==
VCE lOV::

F

~

1. 0
0.1 nA
-10

0

20

40
80
100
60
TA. AMBIENT TEMPERATURE (OC)

120 130

FIGURE 6 - PULSE RESPONSE TEST CIRCUIT AND WAVEFORM

IL"10mA------:r-----.,.,
- - - - - - ------90%

N. c. 0---"+-1

j==

l.OmA
PEAK

j

tf~

OUTPUT

1253

==
=

MR0360, MR0370 (continued)

FIGURE 7 - CONSTANT ENERGY SPECTRAL RESPONSE
100

II

0

j
0

/

"

1. 0

/

\

1/ ~

o. 9

I\.

./

0

0

/

FIGURE 8 - ANGULAR RESPONSE

I

O. 8

\

~

!:

I

J

> 0.4
;::
O. 3

g

\

/
II

O.2

05

06

07
09
08
A, WAVElENGTH (pml

10

11

~20

12

\

V
-16

-12

-8,0

-4.0

+4.0

ANGLE !DEGREESI

SELECTED OPTOELECTRONICS APPLICATION NOTES:
AN-440

Theory and Characteristics of Photo Transistors

AN·50S

Applications of Phototransistors in Electro-Optic Sys-

AN-56l

How to Use Photosensors and Light Sources

tems.
To obtain copies of these notes list the AN numbeds) on your
company letterhead and send your request to:
Technical Information Center
Motorola Semiconductor Products Inc.
p,O, Box 20924
Phoenix, Arizona 85036

1254

\

I

O. 1

0
04

,

J.

5

w

\

\

'1

6

\

1\

I

d. 7

+8.0

+12

~

+16

+20

MRD450

(SILICON)

PLASTIC NPN SILICON PHOTO TRANSISTOR

40 VOLT
PHOTO TRANSISTOR
NPN SILICON

· .. designed for application in industrial inspection, processing and
control, counters, sorters, switching and logic circuits or any design
requiring radiation sensitivity, and stable characteristics.

100 MILLIWATTS

• Economical Plastic Package
• Sensitive Throughout Visible and Near Infra·Red Spectral Range
for Wide Application
• Minimum Sensitivity (0.2 mA/mW/cm2) for Design Flexibility
• Unique Molded Lens for High, Uniform Sensitivity
• Annular Passivated Structure for Stability and Reliability

MAXIMUM RATINGS
Rating (Nota 11

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

40

Volts

Emitter-Collector Voltage

VECO

6.0

Volts

Po

lOU

mW
mW/oC

Total Oevice Dissipation @ T A = 2SoC
Derate above 25°C
Operating Junction Temperature Range

1.3
TJ (11 -40'0 +85
T stg

Storage Temperature Range

°c
STYLE 1:
PIN 1. EMmeR
2. COLLECTOR

(1) Heat Sink should be applied to leads during soldering to prevent Case

Temperature from exceeding 85°C.

t

c

FIGURE 1 - COLLECTOR·EMITTER SENSITIVITY

t

1.0

'"

~~
:;;>

VCC=20V
COLOR TEMP = 2870 K
TUNGSTEN SOURCE

0.8

0.6

DIM

"..

""" ;;:

j~~

Ot-e
'-'«oe
w«
~a:

rv;r

....

LL.Ij::_

~~1
t-w-

I--"

A

C

./' i-""

0.4

o
F
H
K
Q

0.2

o

---

0.1

3.56
4.57
0.33
0.23
1.02
6.35
1.91

4.06
5.33
0.46
0.28
1.27

0.140 0.160
0.160 0.210
0.013 0.019
0.009 L-'!,O

0.040

I
0.5

1.0

2.0

5.0

H. RAOIATION FLUX OENSITY (mW/cm 21

1255

CASE 171

10

20

0.05u

0.250
NOM

MIN

r-0.2

INCHES
MIN
MAX

MILLIMETERS
MIN
MAX

U.Ut! NUM

MRD450 (continued)

STATIC ELECTRICAL CHARACTERISTICS ITA

=

25°C unless otherwise noted)

Characteristic

Symbol

Collector Dark Current
(VCC = 20 V, Note 2)
TA
TA

Typ

Max

Unit
p.A

ICEO

= 250 C
= 850 C

Coliector·Emitter Breakdown Voltage
(lC = 100 p.A; Note 2)

BVCEO

Emitter~Collector

BVECO

(IE

Min

Breakdown Voltage

= 100 p.A; Note 2)

-

-

-

5.0

-

40

-

-

6.0

-

-

Min

Typ

1.0

4.0

-

-

2.5

0.10

Volts

Volts

OPTICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)
Characteristic

Fig. No.

Symbol

1

IL

Collector Light Current I
(VCC = 20 V, RL = 100 ohms, Note 1)

Max

Unit
mA

Photo Current Rise Time (Note 3)

2and3

tr

-

Photo Current Fall Time (Note 3)

2and3

tf

-

-

4.0

p.s

9

Xs

-

0.8

-

p.m

Wavelength of Maximum Sensitivity

p.s

NOTES:
1. Radiation Flux Densitv (H) equal to 5.0 mW/cm 2 emitted from

3. For unsaturated response time measurements, radiation is

a tungsten source at a color temperature of 2870 K.

provided by a pulsed GaAs (gallium-arsenide) light-emitting
diode (A ::::::::0.9 ",m) with a pulse width equal to or greater than
10 microseconds (see Figure 2 and Figure 3),

(H~O).

2. Measured under dark conditions.

FIGURE 2 - PULSE RESPONSE TEST CIRCUIT

FIGURE 3 - PULSE RESPONSE TEST WAVEFORM

Vec
+20 V

0.1 V- -

-

-

-1,.-----""'"\
-

-

-

-

-90%

N.C. o-------1~l.

RL =loon

--10%

OUTPUT

1256

MRD450 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 5 - COLLECTOR SATURATION
CHARACTERISTICS

FIGURE 4 - COLLECTOR-EMITTER CHARACTERISTICS

10

1....

8.0

z

./~

w
~ 6.0

/

..,::>

"'"~

-

~

>

8

o

o

1.2

~

1.0

'"

COLOR TEMP = 2870 K
TUNGSTEN SOURCE

,

\lc'O.lmA

0.8

0.5

1.0

\

\

06
_ 0.4

"'"W 0.2

1.0
10

1\

~

2.0

5.0

1.4

~

5.0
3.0

--

'"~

">

0:

/ ' I""""

§ 2.0

1.8

;;; 1.6

7.0

./~

4.0

~ 2.0

COLOR TEMP =2870 K
TUNGSTEN SOURCE -

-1-

I
~.10mlNlcm

"

~ 0
15

20

25

0.1

0.2

0.5

1.0

2.0

=

1

"

VCE - 20 V
H-O

TA = 25 DC
H= 0

~ 20 -

0:
0:

a~ 15
"'"

L

~
L

1

1/
0.0 1
-40

-20

60
20
40
TA, AMBIENT TEMPERATURE (DC)

80

o
o

100

v

80
~

>

40

20

o

50

40

I
30

..

10

20

V

V':

30

/'

II

20

J

Z

~

'"""1\\

/

w

'"

\
\
\
1
\
10

10

~

~

20

V

80

\

I
I
I
I
I

100

v

V

40

50

FIGURE 9 - CONSTANT ENERGY SPECTRAL RESPONSE

'\.

I

"

V

100

-.......

/
V

~

g

20

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 8 - ANGULAR RESPONSE
100

V

10

"~ 5.0
~

./

V

L

0:

~

10

25

-

w

5.0

FIGURE 7 - DARK CURRENT versus VOLTAGE

FIGURE 6 - OARK CURRENT versus TEMPERATURE
10,000

60

I'...

H, RAOATION FLUX DENSITY (mW/cm2)

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

z

5.0

60

/

\

./

0:

~ 40

1\

;::

~

0:

~
30

0

\

\

/

\.

o

40

0.4

0.5

0.6

0.7

0.8

0.9

~,WAVELENGTH (~m)

ANGLE (DEGREES)

1257

1.0

1.1

1.2

MRD450 (continued)

MRD450
OPTOELECTRONIC DEFINITIONS, CHARACTERISTICS, AND RATINGS

BVCEO

resistance, and ambient temperature.
open)

Collector-Emitter Breakdown Voltage - The
minimum de breakdown voltage, collector to
emitter, at stated collector current and ambient
temperature. (Base open and H "'0)

BVECO

Emitter-Collector Breakdown Voltage - The
minimum de breakdown voltage, emitter to
collector, at stated emitter current and ambient
temperature. (Base open and H ,., 0)

E

Luminous Flux Density(Illuminance) [lumens/
ft. 2 = ft. candles) - The radiation flux density of wavelength within the band of visible
light.

H

Radiation Flux Density (Irradiance) [mW/
cm 2 ) - The total incident radiation energy
measured in power per unit area.

ICEO

Collector Dark Current - The maximum current through the collector terminal of the device measured under dark conditions, (H ,., 0),
with a stated collector voltage, load resistance,
and ambient temperature. (Base open)

PD

Power Dissipation

SRCEO

Collector-Emitter Radiation Sensitivity (mA/
mW/cm 2) - The ratio of photo-induced, collector-emitter current to the incident radiant
energy measured at the plane of the lens of the
photodevice under stated conditions of radiation flux density (H), collector voltage, load

(Base

Ambient Temperature
Photo Current Fall Time - The response time
for the photo-induced current to fall from the
90% point to the 10% point after removal of
the GaAs (gallium-arsenide) source pulse under
stated conditions of collector voltage, load resistance and ambient temperature. (See Note
3 and Figures 2 and 3)
Junction Temperature
Photo Current Rise Time - The response time
for the photo-induced current to rise from the
10% point to the 90% point when pulsed with
the stated GaAs (gallium-arsenide) source under
stated conditions of collector voltage, load resistance, and ambient temperature. (See Note
3 and Figures 2 and 3)
VCEO

Collector-Emitter Voltage - The maximum
allowable value of collector-emitter voltage
which can be applied to the device at the rated
temperature. (Base open)

VECO

Emitter-Collector Voltage - The maximum
allowable value of emitter-collector voltage
which can be applied to the device at the rated
temperature. (Base open)
Wavelength of maximum sensitivity in micro
meters.

1258

MRD500 (SILICON)
MRD510

100 VOLT
PHOTO DIODE
PIN SILICON

PIN SILICON PHOTO DIODE

100 MILLIWATTS
· .. designed for application in laser detection, light demodulation,
detection of visible and near infrared light-emitting diodes, shaft or
position encoders, switching and logic circuits, or any design requiring
radiation sensitivity, ultra high·speed, and stable characteristics.
•

Ultra Fast Response - «1.0 ns Typ)

~

MRD500

.'
.. .
MRD500 (1.2 pA/mW/cm 2 Min)
High Sensitivity - MRD510 (0.3/JA/mW/cm2 Min)
• Available With Convex Lens (MRD500) or Flat Glass (MRD510) for
Design Flexibility

Jl

MR0510

(CONVEX LENS)
CASE 209-1

(FLAT GLASS)
CASE 210-1

• Popular TO·18 Type Package for Easy Handling and Mounting
•

Sensitive Throughout Visible and Near Infrared Spectral Range
for Wide Application
PIN 1. ANODE

• Annular Passivated Structure for Stability and Reliability

PIN 2. CATHODE

PIN 2 INTERNALLY CONNECTED
TO CASE

MAXIMUM RATINGS IT A
Rating

Symbol

Value

Unit

Reverse Voltage

VR

100

Volts

Total Device Dissipation@TA==250 C

Po

100
0.57

mW
mW/oC

Derate above 25°C
Operating and Storage Junction

MILLIMETERS
MIN MAX
5.31 5.84
4.52 4.95
5.DB 6.35
0.41 0.48
0.51 1.02
2.548SC
G
H
0.99 1.17
J
0.84 1.22

= 250 C unless otherwise noted)

TJTstg

~5

to +200

DIM
A
B
C
D
F
CASE 209-01

K

°c

L
M

Temperature Range

F't--t·

1I-'

FIGURE 1 - TYPICAL OPERATING CIRCUIT

SEATING
PLANE

K

D--H--

12.70

3.35 4.01
45° 8SC

INCHES
MIN MAX
0.209 0.230
0.178 0.195
0.200 0.250
0.016 0.019
0.020 0.040
.1 0 B
0.039 0.046
0.033 0.048
0.500
0.132
450 BSC

STYLE 1:
PIN 1. ANODE
2. CATHODE

~

H

4i+;'o

+-----0 V,ilnal

M

50n

~>

CASE 21D-Ol

G

J

I

MILLIMETERS

DIM
A
B
C
0
G
H
J

K
M

1259

MAX
MIN
5.31 5.84
4.52 4.95
4.57 5.33
0.41 0.48
2.54 BSC
0.99 1.17
0.84 1.22
12.70
450 sse

INCHES
MIN
MAX
0.209 0.230
0.178 0.195
0.180 0.210
0.016 0.019
0.100 sse
0.039 0.046
0.033 0.048
0.500
450 sse

MRDSOO, MRDS10 (continued)

STATIC ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Fig. No.

Characteristic

Symbol

Min

Typ

Max

nA

10

Dark Current

Unit

(VR = 20 V. RL = 1.0 megohm; Note 2)
TA = 25 0 C
TA = l00"C

-

4 and 6

-

2.0

-

14

-

Reverse Breakdown Voltage
IIR= 10.uA)

-

BVR

100

200

-

Volts

Forward Voltage
(IF = SOmA)

-

VF

-

-

1.1

Volt.

Series Resistance
(IF = SOmA)

-

R.

-

-

10

ohms

Total Capacitance
(VR = 20 V; f = 1.0 MHz)

6

CT

-

-

4

pF

Fig. No.

Symbol

Min

TVp

Max

OPTICAL CHARACTERISTICS (TA = 25°C)
Characteristic

Radiation Sensitivity

(VR

= 20 V. Note 1)

Sensitivity at 0.8 .um
(VR = 20 V. Note 3)

MR0500
MR0510

2 and 3
S(/,= 0.8.um)

MR0500
MR0510

-

-

Response Time
(VR = 20 V. RL = 50 ohms)

-

Wavelength of Peak Spectral Response

7

1.8
0.42

-

-

6.6

-

.uA/mW/cm2
1.5

-

1. Radiation Flux Density (H) equal to 6.0 mW/cm 2 emitted from
• tungsten source at • color temperature of 2870 K.
(H~

0).

3. Radiation Flux Density (H) equal to '0.5 mW/cm 2 at O.S "m.

1260

-

1.0

NOTES:

2. Me,lured under dark conditions.

-

1.2
0.3

t(resp)

hs

Unit
.uA/mW/cm2

SR

0.8

ns

-

.um

MRDSOO, MRDS10 (continued)

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - IRRADIATED VOLTAGE - CURRENT
CHARACTERISTIC FOR MRD500
50

1....
~

'"
El
....
:z:

FIGURE 3 -IRRADIATED VOLTAGE - CURRENT
CHARACTERISTIC FOR MRD 510
10

I--- TUNGSTEN SOURCE TEMP - 2870 K t---- H= 20 mW/cm2.-

-

5.0

20

10_

10

5.0=-=

5.0

2.0= L...--

1....

'===

~

'"=><.>

I--

0.5

0.5

5.02.0
2.0
1.0
1.0==
0.5-

0.2
0.1

o

10

20

30

40

50

60

70

80

90

o

100

10

20

FIGURE 4 - DARK CURRENT venus TEMPERATURE

H

1000

80

90

100

~50C

~ 0.15

10 0

....
il'i

./

~

.'"

10

G

'"'"
12

1.0

'"'"

0.1

Vf"'"

,.........

V

.,...... V

V

12 0.05

V

o. 1

V

o

0.0 1
25

50

75

100

125

o

150

10

20

3D

TA. TEMPERATURE (DC)

40

50

FIGURE 6 - CAPACITANCE versus VOLTAGE

f =1.0 MHz

80

6. 0

~

5. 0

z

;! 4.o \
~

3. 0 " ' -

g

2. 0
1. 0
0
50

60

100

70

80

90

100

VR. REVERSE VOLTAGE (VOLTS)

40

\

\

0

,/

0
0.2

0.3

"

'-.

0.4

0.5

0.6
~.

1261

,

-.i

/

0
0

1\

/

50

U

40

90

,

/

70
60

30

80

~

L

90

7. 0

20

70

FIGURE 7 - RELATIVE SPECTRAL RESPONSE
100

10

60

VR. REVERSE VOLTAGE (VOLTS)

8. 0

U

70

T=
H= 0 - - t - -

~

£:

60

=20 V I - =0

1

;3

50

0.2
VR

~
~

40

FIGURE 5 - DARK CURRENT versus REVERSE VOLTAGE

10.000

'"'"
=>

30

VR. REVERSE VOLTAGE (VOLTS)

VR. REVERSE VOLTAGE (VOLTS)

ffi

20 mW/cm2-==
K= t=H
10 :::::::::;;:;

'" 0.5
::;
~

1.0- I - -

1.0

!==TUNGSTEN SOURCE TEMP = 2870

....:z:

'"::;
..l 2.0

=

0.7

0.8

WAVELENGTH

(~m)

0.9

1.0

1.1

1.2

MRD500, MRD510 (continued)

MRD500 AND MRD510
OPTOELECTRONIC DEFINITIONS, CHARACTERISTICS, AND RATINGS

BVR

Reverse Breakdown Voltage - The minimum dc
reverse breakdown voltage at stated diode current
and ambient temperature.

CT

Total Capacitance

H

Radiation Flux Density (Irradiance) [mW/cm 2] The total incident radiation energy measured in
power per unit area.

ID

Dark Current - The maximum reverse leakage
current through the device measured under dark
conditions, (H~), with a stated reverse voltage,
load resistance, and ambient temperature.

Po

Power Dissipation

Rs

Series Resistance - The maximum dynamic series
resistance measured at stated forward current and
ambient temperature.

Radiation Sensitivity (}.tA/mW/cm 2) - The ratio
of photo-induced current to the incident radiant
energy measured at the plane of the lens of the
photo device under stated conditions of radiation
flux density (H), reverse voltage, load resistance,
and ambient temperature.

SR

TA

Ambient Temperature

TJ

Junction Temperature

Tstg

Storage Temperature

VF

Forward Voltage - The maximum forward voltage
drop across the diode at stated diode current and
ambient temperature.

VR

Reverse Voltage - The maximum allowable value
of dc reverse voltage which can be applied to the
device at the rated temperature.

As(~m)

Wavelength of peak spectral response in micro
meters.

OPTO DEVICES

AN-50B Applications of Phototransistors in ElectroOptic Systems

AN-440- THEORY AND CHARACTERISTICS OF PHOTO
TRANSISTORS

A brief history of the photoelectric effect is discussed,
followed by a comprehensive analysis of the effect in
bulk semiconductors, pn junctions and phototransistors. A model is presented for the phototransistor.
Static and transient data for the MRD300 provide
typical phototransistor characteristics. Appendices
provide a discussion of the relationship of irradiation
and illumination and define terms specifically related
to phototransistors.

1262

This note reviews phototransistor theory, characteristics and terminology, then discusses the design of
electro-optic systems using device information and geometric considerations. It also includes several circuit
designs that are suited to dc, low-frequency and highfrequency applications.

MRD601, MRD602 (SILICON)
MRD603, MRD604

50 VOLT
NPN SILICON
PHOTO DETECTOR

NPN 81 LICON PHOTO DETECTOR

50 MILLIWATT8
· .. designed for application in card and tape readers, pattern and
character recognition, and shaft encoders, or any design requiring
radiation sensitivity, stable characteristics, and high-density mounting.

•
•
•
•
•

Low Profile Lens Reduces Optical Cross·Talk
Pill Package Designed for PC Board Insertion
Wide Range of Output Currents
Excellent Match to Tungsten and Gallium·Arsenide Sources
Sensitive Throughout Visible and Near Infra·Red Spectral Range
for Wider Application
• Rugged Hermetic Package
• Annular Passivated Structure for Stability and Reliability

MAXI MUM RATI NGS ITA" 25°C unless otherWISe noted)
Symbol

Valua

Unit

Collector-Emitter Voltage

VCEO

50

Volts

Emitter-Collector Voltage

VECO

7.0

Volts

50
0.5

mW
mWf'C

-65 to +125

°c

-65 to +150

°c

Rating

Total Device Dissipation

PD

@TA"250C

Derate above 25°C
Operating Junction
Temperature Range

TJ

Storage Temperature Range

T stg

Soldering Temperature

2400C for 10 seconds

FIGURE 1 - NORMALIZED LIGHT CURRENT
versus RADIATION FLUX DENSITY

0

~

STYlE 2:
TERM 1. ANODE

Tr25'C
VCC =5.0 V

2 CATHODE

f"G,As
SOURCE

MILLIMETERS
DIM

L

V

I

V

NGSTENURCE

0.5

1.0

2.0

5.0

10

20

H. RADIATION FLUX DENSITY ImW/cm2)

1263

MAX

INCHES
MI.
MAX

O.osa

0.062
0.125

0.018
0.008
0.003

0.022
0.012
0.007
0.020
0.093
0.094
0.031

0.20

1.57
3.18
0.56
0.30

0.08

0.18

H

0.36
2.11

0.51

0.014

L

2.08
0.58

2.36
2.39
079

0083
0082
0.023

C

0
E
F

0.46

•
•

./
0.0 I
0.2

•

MI.
1.47

CASE 81A-Qa
STYLE 2

MRD601, MRD602, MRD603, MRD604

(continued)

STATIC ELECTRICAL CHARACTERISTICS (TA: 250 C unless otherwise noted)
Characteristic (Note 11
Collector Dark Current
(Vec'3OV,H:01

Symbol

Min

Typ

Max

-

-

25

nA

1.0

pA

BVCEO

50

-

-

Volts

BVeco

7.0

-

-

Volts

Min

TVp

Max

Unit

Unit

ICEO
TA: 250 e
TA: l00"C

Collector-Emitter Breakdown Voltage
(lC'I00"A,H=OI
Emitter-Collector Breakdown Voltage
(IE '100I'A, H: 01

ELECTRO-OPTICAL CHARACTERISTICS (TA' 250 e unless otherwise noted)
Characteristic

Svmbol

Light Current
(VCC: 5.0 V, R L : 100 ohms,
H: 20 mW/cm 2
MRDSOI
MRDS02
MRD603
MRD604
(Note 1 - Figure 11

IL

Light Current
(Vec' 5.0 V, RL: 100 ohms,
H : 0.5 mW/cm2)
MRDSOI
MRD602
MRDS03
MRDS04
(Note 2 - Figure 1)

IL

0.5
2.0
4.0
7.0

1.5
3.5
S.O
B.5

= 20 mW/cm 21

-

-

-

mA

-

Collector-Emitter Saturation Voltage

(lC' 0.5 mA, H

mA

-

-

O.OB
O.IB
0.30
0.45

VCE(sad

-

0.13

-

-

Volts

(Note 1 - Figure 2)

Rise Time
Fall Time

Rise Time
Fall Time

(Vec: 30 V, IL - BOO pA,
RL = 1000 ohms)
(Note 3 - Figure 101
(Vec: 30 V, IL = 800 pA,
RL: 100 ohmsl
(Note 4 - Figure 10)

tr

-

1.5

-

"s

tf

-

15

-

"s

tr

-

2.0

-

2.B

-

"S
"S

tf

NOTES:
1. Radiation flux Density (H) equal to 20 mW/cm 2 emitted from

a tungsten source at a color temperature of 2870D K.
2. Radiation Flux Densitv (HI equal to 0.5 mW/cm 2 emitted from
a GaAs (gallium-arsenidel source at ?-""900 nM.
3. For this response time measurement, radiation is provided by
a pulsed xenon arc lamp with a pulse width of approximately

1.0"s(see Figure 10).
4. For this response time measurement, radiation is provided by a

pulsed GaAs (gallium arsenide) light emitting diode (?-"" 900 nM)

with a pulse width equal to or greater than
(see Figure 10), I L

= BOO "A.

1264

10

~sec

MRD601, MRD602, MRD603, MRD604 (continued)

TYPICAL CHARACTERISTICS
COLLECTOR·EMITTER SATURATION VOLTAGE versus RADIATION FLUX DENSITY
FIGURE 2 - SATURATION CHARACTERISTICS
WITH TUNGSTEN SOURCE

1.0

z
o

S

O.9

:::>

O.8

>-

FIGURE 3 - SATURATION CHARACTERISTICS
WITH GBAs SOURCE
1.0

T~~8rc~tL
+J J2J.c

:i~

~~o. 5

1.0mA

8• o.
2

~

>'"'

o. 1

2.0

5.0

........

10

20

I
I

""

0.5 rnA

IC=O.1 mA

I I
I I

GoA.
SOURCE
900 nM

5.0mA

1.0mA

D.4

j> o. 3
8 o.2
o. 1
~

50

-

.....

!

II

0.5mA

II

'"''''

IC =02 mA

0
1.0

0.8

"'~~...

5.0mA

~>o. 3

~

II

~~ O.7
1='" o.6
~~
O. 5
.."

~So. 6
9~O.4

O. 9

S

COLOR TE:T =
2870·K

~u;0. 7

z
'"

0
0.2

2.0

1.0

0.5

5.0

10

20

H. RADIATION FLUX DENSITY (mW/cm21

H. RADIATION FLUX DENSITY (mW/cm21

COUPLING CHARACTERISTICS WITH GaAs SOURCE
FIGURE 5 - PULSED LIGHT CURRENT versus DISTANCE

FIGURE 4 - CONTINUOUS LIGHT CURRENT versus DISTANCE
5.0

50

~

SOURCE: MLED9102.0
1.0

!
~_

20

~ K1F(continuous) - 50 mA- -

TA - 25·C

o. 2
i3 o. 1
!i:
~

0.05

~

0.02

r--...

20 rnA

......

'"~

........

o

f5

6.0

8.0

10

~

0.2

........

O. 1

0.05
12

14

o

2.0

4.0

d. LENS t. LENS SEPARATION (mml

FIGURE 6 - DARK CURRENT
TEMPERATURE

versus

'"to
to
...'"

13

VCC - 30 V
H-O

o. 1

§
N

...:::;

~

0.00 1

./

I. 2

~

~

O.8

='

'"~ 0.000 1

/'
/'

O. 6

V

/'

O. 4

~
0.0000 1
·50

./

./

1.4

1. 0

0

'"

RL=100n

.'
_I.
VCC=5.0V
Note 1

1.6

0.0 1

'"'"

14

FIGURE 7 - NORMALIZED LIGHT CURRENT
versus TEMPERATURE
1.8 _

ill

12

10

2.0

1.0

>-

8.0

6.0

d, LENS to LENS SEPARATION (mml

10

j

-...

0.1 A

~ 1.0

4.0

.......

........

:

2.0

:::;

10mA

2.0

TA - 25·c'== E

~ "-- -0.4 A

>-

0.0 1
0.005

"\.

110
>~ 5.0

o. 5

SOURCE: MLED910PULSE WIDTH 10 •• -

IF (pulsedl -1.0 A

O. 2
0
-25

+25

+50

+75

+100

+125

TA. AMBIENT TEMPE RATU RE (·Cl

·100

·75

·25

25

50

75

TA,AMBIENT TEMPERATURE (·CI

1265

100

125

150

MR0601, MR0602, MR0603, MR0604 (continued)

FIGURE 9 - FALL TIME versus
LIGHT CURRENT

FIGURE 8 - RISE TIME versus
LIGHT CURRENT
7.0

J

...
~
...
.,

6.0

--

5.0

c:

4. 0

ffi~

3.0

7.0

LI
Not. 4

Jw
1000n-

';:......"'

500n-

'"'"
....

3.0

0

2.0

r.....

....
:::I

r-...

~ 2.0

if

250n100n50n_

~

.,; 1.0

:f
...
1ii

Note 4

6.0

r1000n_

5.0
4.0

""""-

...
0

500n

---

:::I

~

if

250n
loon
50n

:: 1.0

o

0

01

0.5

1.0

2.0

10

5.0

20

0.2

1.0

0.5

IL, LIGHT CURRENT (rnA)

2.0

5.0

10

20

'L, LIGHT CURRENT (rnA)

FIGURE 10 - PULSE RESPONSE TEST CIRCUIT AND WAVEFORM

VCC
+30 V

IL =800pA -

--,r----__,.

- -

h.
N.C.

"

<:>------1

OUTPUT

100

~

,

V

I,

/

.,w

\jH -:---

1\

/

0

\

z

~

SO

'"
~

40

~

'"

FIGURE 12 - CONSTANT ENERGY SPECTRAL RESPONSE
100

FIGURE 11 - ANGULAR RESPONSE

I
I
I
I
I

0

\

30

0

I

r--

0

10

10

20

/

0

30

0
0.4

40

e, ANGLE (DEGREES)

/

"

\

\

1-

\
\

/

\
0.5

0.6

0.7

0.8

~,WAVELENGTH

1266

i\

/'

0

\

20

1/

'--

\
\
\
\

0
40

~=
\

/

'--

0.9
(pm)

1.0

1.1

1.2

MRD810 (SILICON)

35 VOLTS
NPN SILICON
PHOTO TRANSISTOR

NPN SILICON PHOTO TRANSISTOR

250 MILLIWATTS
. . . designed for application in card and tape readers, optical char·
acter recognition, shaft encoders, industrial inspection, processing and
control, switching and logic circuits or any design requiring radiation
sensitivity, and stable characteristics.

•

Popular TO·1S Type Package for Easy Handling and Mounting

•

Minimum Sensitivity (0.2 mA/mW/cm 2 ) for Design Flexibility

•

Sensitive Throughout Visible and Near Infrared Spectral Range
for Wider Application

•

Annular Passivated Structure for Stability and Reliability

•

Flat Lens for Fiber Optic Coupling

•

Precision Die Location for Minimum Optical Tolerances

MAXIMUM RATINGS ITA

TI

=25°C unless otherwise noted)

Rating
Collector~Emitter

FTB

Voltage

Emitter-Collector Voltage

Symbol

Valua

Unit

VCEO
VECO

35
5.0
250
2.5
-55 to +125

Volts

Po

Total Device Dissipation@TA =25°C

Derate above 25°C
TJ,Tstg

Operating Junction and Storage

SEATING
PLANE

Volts

0--11--

mW
mW/oC

ll
--t
K

~

°c

Temperature Range

FIGURE 1 - COLLECTOR-EMITTER SENSITIVITY
_sus RADIATION FLUX DENSITY

STYLE2:
PIN 1. EMITTER
2. COLLECTOR

0.5

I--

/
0.1

V

~UM

k-" .......

..- ~

DIM

A
B

VcC=20V r RLjlOOn

W

~

~

g

M

~

G
H

J

SOURCE TE~P' 2810 K
TUNjSTEN jOURCj
~

C
0

K

M

ro

A. RADIATION FLUX DENSITY (mWI,m2)

1267

MILLIMETERS
MAX
MIN

INCHES
MIN
MAX

5.31
5.84
4.52 4.95
4.57 5.33
0.41
0.48
2.54 BSe
0.99
1.11
0.84 1.22
12.70
45 0 BSC

0.209 0.230
0.118 0.195
0.180 0.210
0.016 0.019
0.100 BSe
0.039 0.046
0.033 0.048
0.500
45 0 BSC

CASE 210-01

MRD810 (continued)

STATIC ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted)
Symbol

Characteristic
Collector Dark Current
(VCC = 20 V. RL = 100 ohms. Note

Min

Typ

Max

-

-

0.050

10

Unit
I'A

ICEO

2) TA = 250 C

Coliector·Emitter Breakdown Voltage
(lC = 100 /lA. Note 2)

BVCEO

35

50

-

Volts

Emitter·Collector Breakdown Voltage
(IE = 100 /lA. Note 2)

BVECO

5.0

8.0

-

Volts

Symbol

Min

Typ

Max

Unit

IL

1.0

-

-

mA

-

2.0

-

ILS

25

-

I's

-

5.0

I's

6.0

I'S

TA = l000C

OPTICAL CHARACTERISTICS (T A

=

250 C unless otherwise noted)

Characteristic
Collector Light Current
(VCC = 20 V. RL = 100 ohms, Note

1)

Photo Current Saturated Rise Time (Note

3)

tr(sat)

Photo Current Saturated Fall Time (Note

3)

tf(sat)

Photo Current Rise Time (Not. 4)

tr

Photo Current Fall Time (Not. 4)

tf

a pulsed xenon arc lamp with a pulse width of approximately
1.0 microsecond (see Figure 2).

NOTES:

1. Radiation flux density (H) equal to 5.0 mW/cm 2 emitted from
a tungsten source at a color temperature of 2870 K.

4. For unsaturated rise time measurements, radiation is provided

2. Measured under dark conditions. (H:::::::Q).

by a pulsed GaAs (gallium-arsenide) light-emitting diode
(A:::::O.9 JJ.ml witha pulse width equal toor greater than 20 micro-

3. For saturated rise time measurements, radiation is provided by

seconds.

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 2 - COLLECTOR-EMITTER
CHARACTERISTICS
50

".s

1.0

0

u

:?

1.0

--

SOURCE TEMP'" 2870 K
TUNGSTEN SOUR~

0

TA=250C~

~

~

/'

30

2. 0

/

H=50

I
1/

'--H'" I 0

I

H =2.0

~
1il

'~"

10

15

"

10

10

5

,

~

Ic·,0.17 A

o. 1
1.0

1.0

35

30

~=1.0mA

0

8 o. 1
>

5.0

VeE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 4 - DARK CURRENT
versus TEMPERATURE

100

o

10

o

~

~

7.0

10

10

FIGURE 5 - ANGULAR RESPONSE
100

../

/'

80

~

5.0

3.0

H, RADIATION FLUX DENSITYlmW/cm2)

100,000

~

.'\

\,

~

0

>-

_f----

/"'"

>z

~
~
~

H=10mWfcm Z

_?OURCE TEMP'" 2870 K
TUNGSTEN SOURCE
4.0 _TA=250C

FIGURE 3 - COLLECTOR SATURATION
CHARACTERISTICS

r---....

/
/

'"

t\.

\

1\

"\

I

1.0

0
1
00 1
-60

o
-40

-10

20

40

60

80

100

-50

120

-40

-30

-20

-10

10

ANGLE (DEGREES)

TA,AMBIENTTEMPERATURE (OCl

1268

20

30

40

50

MRD3050 (SILICON)
thru

MRD3056

NPN SILICON PHOTO TRANSISTOR
· .. designed for application in industrial inspection, processing and
control, counters, sorters, switching and logic circuits or any design
requiring radiation sensitivity, and stable characteristics.

30 VOLT
NPN SILICON
PHOTO TRANSISTOR
400 MILLIWATTS

•

Hermetic Package at Economy Prices

• Popular TO·l B Type Package for Easy Handling and Mounting
•

Sensitive Throughout Visible and Near Infrared Spectral Range
for Wider Application

•

Range of Radiation Sensitivities for Design Flexibility

•

External Base for Added Control

• Annular Passivated Structure for Stability and Reliability

MAXIMUM RATINGS ITA = 25°C unless otherWISe noted)
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

30

Volts

Emitter-Collector Voltage

VECO
VrRn

5.0

Volts

40

Volts

PD

400
2.28

mW
mWf'C

TJ,Tstg

-65 to +200

°c

Collector-Base Voltage

Total Device Dissipation @ T A = 25°C

Derate above 25°C
Operating and Storage Ju nction
Temperature Range

THERMAL CHARACTERISTICS

SEATING
PLANE
STYLE 1:
PIN 1. EM ITTE R
2. BASE
D
3. COllECTOR

Characteristic

Thermal Resistance, Junction to Ambient

FIGURE I - COLLECTOR·EMITTER SENSITIVITY
0.10
VCC=20 V
SOURCE TEMP: 2810 K
TUNGSTEN SOURCE

II

r-

I
T~P

I--'"

I--'
./
0.02

o0.1

0.2

0.5

1.0

2.0

5.0

10

20

NOTES:
1. LEADS WITHIN .13 mm (.005) RADIUS
OF TRUE POSITION AT SEATING
PLANE,AT MAXIMUM MATERIAL
CONOITION.
2. PIN 3 INTERNALLY CONNECTED TO
CASE.
INCHES
MILLIMETERS
DIM MIN
MIN
MAX
MAX
5.31 5.84
A
0.209 0.230
B
4.52 4.95
0.178 0.195
C
5.08 6.35
0.200 0.250
0
0.41 0.48
0.016 0.019
0.51 1.02
F
0.020 0.040
G
2.54 BSC
08SC
H
0.99 1.17
0.046
J
0.84 1.22
0.048
K 12.70
L
3.35 4.01
M
45 8SC
CASE 82·01

H. RADIATION FLUX DENSITY {mW/cm21

1269

MRD3050 thru MRD3056 (continued)

STATIC ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Unit

Min

Typ

Max

-

-

0.1

5.0

-

BVCBO

40

-

-

Volts

Collector-Emitter Breakdown Voltage
(lC=100"A)

BVCEO

30

-

-

Volts

Emitter-Collector Breakdown Voltage
(IE = 100"A)

BVECO

5.0

-

-

Volts

Min

TVp

Max

0.10
0.20
0.10
0.25
0.625
1.5
2.0

-

-

-

0.40
1.0
2.5

-

-

Symbol

Characteristic

Collector Dark Current

ICEO

(VCC = 20 V. RL = 1.0 Megohm. Note 2) TA = 25°C
TA =B50C

Collector-Base Breakdown Voltage

"A

(lC=100"A)

OPTICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Collector Light Current
(VCC = 20 V. RL = 100 ohms. Note 1)

Fig. No.

Svmbol

1

IL

Unit
mA

MRD3050
MRD3051
MRD3052
MRD3053
MRD3054
MRD3055
MRD3056

-

Photo Current Saturated Rise Time (Note 3)

4

tr(sat)

-

1.0

-

"s

Photo Current Saturated Fall Time (Note 3)

4

tl(5Ot)

-

10

-

/lS

Photo Current Rise Time (Note 4)

4

tr

-

2.0

-

"s

Photo Current Fall Time (Note 4)

4

tf

3.5

-

"s

Wavelength of Maximum Sensitivity

-

As

-

O.B

-

"m

NOTES:
1. Radiation flux density (H) equal to 5.0 mW/cm 2 emitted from
a tungsten source at a color temperature of 2870 K.
2. Measured under dark conditions. (H ~O).

approximately 1.0 microsecond (see Figure 4).

4. For unsaturated switching time measurements, radiation is provided by a pulsed GaAs (gallium·arsenide) light-emitting diode
(~O.9 jJm) with a pulse width equal to or greater than 10 micro-seconds (see Figure 4).

3. For saturated switching time measurements, radiation is provided by a pulsed xenon arc lamp with a pulse width of

1270

MRD3050 thru MRD3056

(continued)

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 2 -COLLECTOR·EMITTER CHARACTERISTICS
I.0

SOURCETEMP=2870 K
TUNGSTEN SOURCE

-

H= IOmW/cm2

~r-- r--

8

/'

FIGURE 3 - PHOTO CURRENT versusTEMPERATURE
2.0

7.0
6

4

0

3~0

2

2.0
1.0
10

20

25

·50

·25

25

VCC
+20V
h.

"0-----+..,
I

t

RL = lOOn

OUTPUT

FIGURE 5 - DARK CURRENT versus TEMPERATURE
10.000
0

F VCE-20V

I-- H=O

~

0
0
.0
.1
0.0 1
-40

·20

50

TA. AMBIENT TEMPERATURE (DC)

FIGURE 4 - PULSE RESPONSE TEST CIRCUIT AND WAVEFORM

i= LOrnA
PEAK

COLLECTOR·BASE

o

15

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

N.C.

-

~

V

~/

0.5

0
5.0

---- --COJLECTOR.EMITTER

5~0

V-

VCC=210V
NOTE 1

NORMA1UZEO TO Tf = 250 C

20

40

TA. AMBIENTTEMPERATURE (DC)

1271

60

BO

100

75

100

MRD3050 thru MRD3056 (continued)

TYPICAL CIRCUIT APPLICATIONS
(Extracted from Motorola Applications Note AIII·50B. "Applications of Phototransistors in Electro·Optic Systems'"
FIGURE 7 - LIGHT OPERATED SCR ALARM USING
SENSITIVE·GATE SCR

FIGURE 6 - STROBE F LASH SLAVE ADAPTER
9-25 V

+ IIII~__- - - - - o

01
MRD3050/MRD3056

lBk
INPUTTO STROBE
FLASH UNIT

100 mH
RFC

SI

MRD
3050

Rl
1.2 k

02
2N4216

1.0 k

+

FIGURE 8 - CIRCUIT DIAGRAM OF VOLTAGE REGULATOR FOR PROJECTION LAMP.

80 Vrms
±0.5%

01 and Q2: MPS6516
03: MRD3054

Input
105 to
180 Vac

R3

Output Adj.
Potentiometer
(Range 50-80 V)

R5
7.5 k/2 W

Rl
10 k/2 W

R6
2.0 k
82
2N
4870
81

SCR
2N4444*

R2
3.3 k/l W

·2N4444 to be used with a heat sink.

1272

MRF207, MRF208, MRF209 (SILICON)

The RF Line
NPN SILICON RF POWER TRANSISTORS
· .. designed for 12.5 Volt large-signal power amplifier applications
in communications equipment operating at 220 MHz.
• Specified 12.5 Volt, 220 MHz Characteristics Output Power = 1.0 W - MRF207
10W- MRF208
25W - MRF209
Minimum Gain = 8.2 dB - MRF207
10 dB - MRF208
4.4 dB - MRF209
• Balanced-Emitter Construction to provide the designer with the device technology that assures ruggedness and resists transistor
damage caused by load mismatch.

1_0,10,25 WATTS - 220 MHz
NPN SILICON
RF POWER
TRANSISTORS

MRF207
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Symbol MRF2071 MRF208\ MRF209
18
VCEO

Collector-Base Voltage

VCBO

Emitter·Base Voltage

VEBO
IC

Collector Current - Continuous

Total Device Dissipation@Tc=250C(1)

Po

Derate above 2SoC
Storage Temperature Range

Stud Torque(21

0.4
3.5
20

T".

-

-

Unit

Vdc
Vdc
36
Vdc
4.0Adc
I 2.0 I 4.0
50
Watts
37.5
214
286
mWf'C
DC
-65 to +200
in. lb.
6.5
I

I

I

(1) These devices are designed for RF operation. The total device
dissipation rating applies only when the devices are operated as

RF amplifiers.
(2) For Repeated Assembly use 5 in. lb.

MRF208
MRF209

1273

MRF207, MRF208, MRF209 (continued)

E LECTRICA L CHARACTERISTICS (T C = 25 0 C unless otherwise noted)

I

Characteristic

Symbol

Min

Typ

lS
lS
lS

-

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

MRF207
MRF20S
MRF209

Collector-Base Breakdown Voltage
(lc = 2.0 mAde, IE = 0)
(IC = 5.0 mAde, IE = 0)
(lc = 10 mAde. IE = 0)

15 Vde, IE

~

-

-

-

-

Vde

BVEBO
MRF207
MRF20S
MRF209

Collector Cutoff Current
~

Vdc

36
36
36

MRF207
MRF208
MRF209

= 1.0 mAde, IC = 0)
= 2.5 mAde, IC = 0)
= 5.0 mAde, IC = 0)

(VCB

-

-

BVCBO

Emitter-Base Breakdown Voltage

(IE
(IE
(IE

Vde

BVCEO

= 5.0 mAde, IB = 0)
= 15 mAde, IB = 0)
(IC = 20 mAde, IB = 0)
(IC

(lc

4.0
4.0
4.0

-

-

-

-

-

-

-

-

0.1
0.25
0.5

5.0
5.0
5.0

-

-

-

mAde

ICBO

0)

MRF207
MRF20S
MRF209

ON CHARACTERISTICS

DC Current Gam
(IC = 100 mAde, VCE
(IC = 250 mAde, VCE
(I C = 500 mAde, VCE

-

hFE

= 5.0
= 5.0
= 5.0

Vde)
Vde)
Vde)

MRF207
MRF20S
MRF209

-

-

-

-

S.2
10
4.4

12.5
12.5
5.2

-

-

10-jll.5
1.4+j1.4
1.4+jl.S

-

32 -j41
5.7 -j1.3
3.9 - jO.2

-

FUNCTIONAL TESTS
Common-Emitter Amplifier Power Gain
(VCC = 12.5 Vde, Pout = 1.0 W, f = 220 MHz)
(VCC = 12.5 Vde, Pout = 10 W, f = 220 MHz)
(VCC = 12.5 Vde, Pout = 25 W, f = 220 MHz)
Input Impedance

(Pout
(Pout
(Pout

Ohms

Zin

= 1.0 W, f = 220 MHz)
= 10 W, f = 220 MHz)
= 25 W, f = 220 MHz)

MRF207
MRF20S
MRF209

-

Output Impedance

(Pout
(Pout
(Pout

dB

GpE
MRF207
MRF20S
MRF209

Ohms

Zout

= 1.0 W, f = 220 MHz)
= 10 W, f = 220 MHz)
= 25 W, f = 220 MHz)

-

MRF207
MRF20S
MRF209

-

-

-

220 MHz TEST CIRCUIT
FIGURE 1 -MRF207

FIGURE 2 - MRF208, MRF209

+

I
.----_-0C7

C4
L2

C6

Cl
C2, C4
C3
C5
C6
C7
Ll
L2
L3, L4

2.0 - 50 pF
5.0 - 80 pF
1.5 - 15 pF
40 pF
1000 pF
5.01'F

-=

C3

ARCO 461
ARCO 462
ARCO 460

Cl, C2, C3, C4
C5,C6
C7
C8

5.0 - 80 pF
100 pF
10l'F
1000 pF

L1

TANTALUM

L2
L3, L4

#14 AWG, 1%" Long, Straight
, Turn,#14 AWG , 3/8" 10

1 Turn, #20 AWG , 1/4" 10
4 Turns, #20 AWG. 1/4 10

151'H RFC

1274

ARCO 462
TANTALUM

RFC VK200

MRF207, MRF208, MRF209 (continued)

OUTPUT POWER versus INPUT POWER
(Vcc

= 12.5

Vdc. f

= 220 MHzl

FIGURE 3 - MRF207

FIGURE 4 - MRF208

1.6

20

2

V
"

V
,/

8

v

~

15

/

0

./

o.4

':5
,;;

/
V

0

'"

5.0

20

40

80

60

-

V

/

L

0

100

~

L

1.5

1.0

0.5

Pin, INPUT POWER (WATTSI

Pin. INPUT POWER (mWI

FIGURE 5 - MRF209

30
~

en 25

~

~

~

~ 20

E:
ie
I-

5

,,;

,;; 0

V

,/

::>

o

V

/

I-

V J.--

/

5.0

2.0

4.0

6.0
Pm, INPUT POWER (WATTSI

8.0

10

FIGURE 6 - 220·MHz, 25·WATT AMPLIFIER
Performance
Response -

125 Vdc

+

Flat from
219 to 225 MHz

(680 pF 122 I'F

Power Gain - Greater than
24 dB
Harmonics -

2nd 437 dB
all others
~50 dB

Efficiency -

50%

>

L5

O.OOlI'F

~><-___.rv..,..,n....~"'l--cK ~~tts

L1
100 mW )-t+-~"V'fY'-1r-

.....-+1L

C6

C8
40 pF

7.0 pF

L1
L2
L3
L4
L5
L6,L7

1 Turn, #20, 1/4" I D

3 Turns, #20, 1/4" 10
1/3 Turn, #16. 3/8" 10
1/3 Turn, #18, 1/4" 10
1 Turn, #20, 1/8" 10
5 Turns, #20. 1/4" 10

RFCl
RFC2
RFC3

V K200 Ferroxcube
V K20Q Ferroxcube
V K200 Ferroxcube

Cl
C2,C3,C4
C8

1275

2.0-25 pF, ARea 421 or equivalent

7.0-100 pF, ARca, 423 or equivalent
Underwocd or equivalent capacitor which
current without undue heating.

IS

capable of high

MRF207, MRF208, MRF209 (continued)

Jj~
R

B

-----

re- --,

P

L
~K

SEATING
PLANE

-

---=-.:.l

--U-D

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

L ~ I
1<1:]' I
t:T=--=
A

N

~EAT~G

E

-

PLAN]

WRENCH FLAT

DIM
A
8
C
D
E
F

G
H
J
K
L
M

P
Q

R

INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.Q16 0.021
0.009 0.125
0.Q16 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
450 NOM
0.050
900 NOM
0.100

U

*r~
ct-

=1_fU

INCHES
MIN MAX

A 9.40
9.78 0.370 0.385
8
8.13
8.38 0.320 0.330
C 18.03 19.05 0.710 0.750
D 5.59
5.84 0.220 0.230
E
1.78
2.03 0.070 O.II8Q
F
2.79
2.92 0.110 0.115
H 26.42 28.70 1.040 1.130
J
0.10
0.16
10.006
K 13.21 14.35
L
1.40
1.65
O. 5
M
450 NOM
P
1.27
R 7.59
7.80 0.299 0.307
S
4.01
4.52 0.158 li[1~
T
2.16
2.41 0.085 0.095
3.30 0.100 0.130
U 2.54
NOTE:
CASE 145A·OI USE 8·32NC2A STUD

8

All JEDEC dimensions and notes apply.
CASE 79-02

TO·39

CASE 146A·Ol

1276

I

~~

MILLIMETERS
DIM MIN MAX
MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
45 0 NOM
1.27
900 NOM
2.54

J

~

Fo:Fo

S

MRF 215 (SILICON)

The RF Line

20W -175 MHz
CONTROLLED Q
RF POWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

· .. designed for 12.5 Volt VHF large'signal amplifier applications in
industrial and commercial FM equipment operating to 175 MHz.

•

Specified 12.5 Volt, 175 MHz Charactenstics Output Power = 20 Watts
Minimum Gain = 8.2 dB
Efficiency = 60%

• 100% Tested for Load M:smatch at all Phase Angles
with 20: 1 VSWR
•

Characterized With Series Equivalent Large·Signal Impedance

Parameters
•

Built·ln Matching Network for Broad Band Operation

R

STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. EMITTER
4. BASE
FLANGE -ISOLATED

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

18

Vdc

Collector-Base Voltage

VCBO

36

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

IC

2.5

Adc

Po

31
177

Watts

Collector Current

Continuous

Total Device Dissipation

@

T C - 25°C (11

Derate above 2SoC
Storage Temperature Range

T stg

rrW'lIoC

-65 to +200

C

DIM

A

8

24.3H
12.45

C

• o·

0

5.33
5.50
1824
0.10
10.67
4.45
4.06
2.92
3.05
21.34

F
H
(11 These devIces are desIgned for RF operation. The total device diSSipation rating
applies only when the devices are operated as class B or C RF amplifIers

MILLIMETERS
MIN
MAX

J
K
L

N
Q

R
S

INCHES
MIN
MAX

25.15 0.960 0.900
12.96 0.490 0.510
B,-n ?. -n "nn
5.59 0.210 0.220
5.84 1i"7?0 0710
18.59 n71H n
0.15 0.004 0.006
10.92 0.420 0.430
4.70 0.175 0.185
4.45 0.160 0.175
3.18 0.115 0.125
3.30 0.120 0.130
21.84 0.840 0.860

NOTE:
1. DIM. "K" FROM CENTER OF "Q".
CASE 278'()4

1277

MRF215 (continued)

ELECTRICAL CHARACTERISTICS (TC

= 25 0 C unless otherwise noted)

Characteristic

Max

Unit

-

Vdc

-

--

Vde

4.0

-

-

Vde

-

-

8.0

mAde

-

0.5

mAde

-

-

dB

-

-

%

Svmbol

Min

eVCEO

18

eVCES

36

eVEeO

Collector Cutoff Current
(VCE = 15 Vde. VeE = 0, TC = 55°CI

ICES

Collector Cutoff Current

ICBO

-

GpE

8.2

T/

60

TVp

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

(lC

= 20 mAde, Ie = 0)

Collector-Emitter Breakdown Voltage

(lC

= 10 mAde, VeE = 0)

Emitter-Base Breakdown Voltage

(I E

=2.0 mAde, IC = 0)

= 15 Vde,

(VCB

IE

= 0)

ON CHARACTERISTICS

DC Current Gain
(lC = 500 mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS

Output CapaCitance
(VCB

= 15 Vde,

IE

= 0, f = 1.0 MHz)

FUNCTIONAL TEST (Figure 11
Common-Emitter Amplifier Power Gain

(Pout

= 20W, VCC = 12.5 Vde, f = 175 MHz)

Collector Efficiency

(Pout

= 20W, Vee = 12.5 Vde, f = 175 MHz)

Load Mismatch
(Pout = 20 W, VCC = 12.5 Vde, f
VSWR = 20: I, all phase anglesl

-

= 175 MHz

No DegradatIon

In

Output Power

FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC
_L_4_

CS

L------It-----«~2.5

Vdc

Cl0
RF INPUT

RF OUTPUT

Z2

Cl
ZI
C6
L1

C14
C9

L5

Cl,C12
C2,C3
C4
C5,C6,Cl0,C14
C7,CS

C9
Cll,C13

L1
L2

15 pF UNDERWOOD
40 pF UNDERWOOD
0.1 )JF, 100 V, ERIE
10 pF UNDERWOOD
6S0 pF ALLEN BRADLEY Feedthrough
25 pF UNDERWOOD
1.0·10 pF JOHANSEN Type 3201
0.15)JH Choke
2 Turns, #24 AWG, I/S" 10

L3
6 Turn~ #20 AWG, on 390 Ohm, 2 W ReBidor
L4
Forrite Choke, FERRDXCUBE VK·200·10-4B
L5
Ferrite Bead, FERROXCUBE 56-590·85·3B
Rl
390 Ohm, 1/2 W, 10%
R2
2.7 Ohm, 1/4 W, 10%
Z1,Z2
MICROSTRIPLINE -0.275"Wx4,13" L
Board - Gloss Teflon, E = 2.56, t = 0.062"
Input/Output Connectors - Type N

1278

MRF215 (continued)

TYPICAL PERFORMANCE DATA
FIGURE 3 - OUTPUT POWER versus INPUT POWER

FIGURE 2 - OUTPUT POWER versus FREOUENCY

r-- t---

0

I---

-

----

I.Iw- I----

t--- ~ow

r--

I
0.6 1W

i--

-

./ ~

./

5

'l'

//
// /'
1/ ./
JY/

J

I

145

155

0

o
165

o

175

~

i'--

.............
20W

f'....

""'I-...

9.5
90

0.5

.......

1.5
1.0
Pin, INPUT POWER (WATTS)

20

f'....
r--........

VCC = 12.5 Vdc

1.5 +j 0.5
175 + 11.0
20 +j 1 5

8.0
7.5
130

,/

......... t--.Pout'" lOW

10

85

""'-175 MHz

I

t----....
r---...

~ 10.5

z

V

.-

.............

12

1

/'"

155 MHz

140

150

160

170

2.5

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE PARAMETERS

FIGURE 4 - TYPICAL GAIN versus FREQUENCY

11.5

'/'"

.....

.~

f, FREQUENCY (MHz)

12. 5

135 MHz

VCC = 12 5 Vdc
0

Pin - O.4W

VCC = 12.5 Vdc
135

-

l - t---

5

1.6W

180

f, FREQUENCY (MHz)

FIGURE 6 - 175 MHz TEST CIRCUIT LAYOUT

1279

lout
3.0 -12.0
3.5 - j 15
40 - j 1.0

MRF216 (SILICON)

The RF Line

40W -175 MHz
CONTROLLED 0
RF POWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

· .. designed for 12.5 Volt VHF large·signal amplifier applications in
industrial and commercial FM equipment operating to 175 MHz.

• Specified 12.5 Volt, 175 MHz CharacteristicsOutput Power = 40 Watts
Minimum Gain = 6.7 dB
Efficiency = 60%
• 100% Tested for Load Mismatch at all Phase Angles

with 20: 1 VSWR
• Characterized With Series Equivalent Large·Signal Impedance
Parameters
• Built·ln Matching Network for Broad Band Operation

R

STYLE 1:
PIN 1. EMITTER
2. COLLECTO R
3. EMITTER
4. BASE
I FLANGE - ISOLATEO

MAXIMUM RATINGS
Coliector~Emitter

Rating

Symbol

Value

Unit

Voltage

VCEO

18

Vdc

36

Vdc
Vdc
Adc

Coliector·Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Total Device Di ..ipation@Tc=25°Cll)

VCBO
VEBO
IC
Po

Derate above 25°C
Storage Temperature Range

Tstg

4.0
6.0
75
0.428
·65 to +200

Watts

W/oC
C

(1) These devices are designed for RF operation. The total device diSSipation rating
applies only when the devices are operated as cless B or C RF amplifiers.

L rBi

C

tg£~~
DIM

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

A I '438

251~

0.~60

B
C
0
F
H

12.95

0.490

J
K
L

N
Q

R
S

12.45
~~.

5.33
5.59
8.24
0.10
10.67
4.45
4.06
2.92
3.05
21.34

I.'
5.59

5.84
18.59
0.15
10.92
4.70
4.45
3.18
3.30
21.84

o~90

Ii:5fiI

n,.. n.nn

0.210

-"""
nl1R

0.220

If,..
n

0.004 0.006
0.420 0.430
O. 5 0.185
0.160 0.17~
0.115 0.125
0.120 0.130
0.840 0.860

NOTE:
1. OIM. "K" FROM CENTER OF "0".

CASE 278·04

1280

MRF216 (continued)

ELECTRICAL CHARACTERISTICS (TC

0

25°C unless otherwISe noted)

Unit

Max

Symbol

Min

Coliector~Emitter

Breakdown Voltage
(lC = 100 mAde, IB = 0

BVCEO

lB

-

-

Vde

Collector-Emitter Breakdown Voltage
(lC = 20 mAde, VBE 0 0)

BVCES

36

-

-

Vde

Emitter-Base Breakdown Voltage
(IE 0 10 mAde, IC 0 0)

BVEBO

4.0

-

-

Vde

ICES

-

-

10

mAde

ICBO

-

-

2.5

mAde

Common-Emitter Amplifier Power Gain
(Pout = 40W, VCC = 12.5 Vde, to 175 MHz)

GpE

6.7

-

-

dB

Collector Efficiency
(Pout = 40 W, VCC = 12.5 Vde, t = 175 MHz)

11

60

-

-

%

Load Mismatch
(Pout = 40 W, VCC = 12.5 Vde, t = 175 MHz,
VSWR = 20:1, all phase angles)

-

Characteristic

Typ

OFF CHARACTERISTICS

Collector Cutoff Current

(VCE

0

15 Vde, VBE = 0, T Co 55°C)

Collector Cutoff Current
(VCB = 15 Vde, IE 0 0)

ON CHARACTERISTICS
DC Current Gain
(lC 0 1.0 Ade, VCE

0

5.0 Vde)

DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB= 15Vde,IE=O, to 1.0MHz)

FUNCTIONAL TEST (Figure 1)

No Degradation in Output Power

FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC
L4

Tc,-C_I_I_ _ _ _
CI_lt-_T
.....;_13_ _ _ _ _ _ _ _

~<-

12.5 Vdc

L~!::=~r7Jt-i~, RF OUTPUT

Cl,10
C2, 3, 4
C5
C6,7
C8
C9
Cll,12
C13

0.1 .F, 100 V Chip
40 pF, UNELCO

L1

6 Turns, #18 AWG, 1/4" Die.

l2

3 Turns. 1/8" Oia on Lead of C5

0.1 pF, 100 V Disc Ceramic

L3, L4 FERRITE Choke. FERROXCUBE VK200·10-4B
21
MICROSTRIPLlNE, 0.300" Wide, 3.20" Long
22
MICROSTRIPLIN E, 0.300" Wid., 0.50" Long
23
MICROSTRIPLlNE,O.300"Wid., 1.90" Long
Board - Glass Teflon, e = 2.56, t '" 0.062"
Input/Output Connectors - Type N

10 pF, UNELCO
25 pF, UNELCO
60 pF, UNELCO
680 pF, ALLEN BRADLEY Feedthru
1.0.F,35 V, TANTALUM

1281

MRF216 (continued)
TYPICAL PERFORMANCE DATA

FIGURE 3 - OUTPUT POWE R versus INPUT POWE R

FIGURE 2 - OUTPUT POWER versus FREOUENCY

-

45

"40

~
«

I-

35

~ 30

'"
~

-

50
155 mHz......
6.0W

t--- r--

~O~

~ 25

f--

I-

'"

~
0

20

}

15

Pin = 2.0W

VCC

~

12.5 Vdc

~«

40

'"
~

30

155

165

A
/" X

12.5 Vdc

-

/'
/

~
t-

"-

175

./

10

V
o

2.0

4.0
6.0
Pin, INPUT POWER (WATTS)

10.5
10
9.5

'"z

~

8.5

r--

8,0
7.5
70
6.5

VCC

~

-

Pout = 40W

r- t--

12.5 Vdc

6.0

---

5.5
130

140

150

160

170

175mHz

./

8.0

FIGURE 5 - SERIES EQUIVALENT IMPEOANCE
PARAMETERS

FIGURE 4 - TYPICAL GAIN versus FREQUENCY

180

t, FREQUENCY (MHz)

FIGURE 6 - 175 MHz TEST CIRCUIT LAYOUT

MRF221 (SILICON)
For Specifications, See 2N6081 Data, Volume II.

1282

......,..

1/. . .
/ V

t, FREQUENCY (MHz)

9.0

V
V

V/

~

g 20

o

145

~

~

-

1U

VCC

10.0

MRF225

(SILICON)

The RF Line

1,5 W - 225 MHz

NPN SILICON RF POWER TRANSISTOR

RF POWER
TRANSISTOR
NPN SILICON

... designed for 12.5 Volt large·signal power amplifier applications
in communication equipment operating at 225 MHz. Ideally suited
for Class E citizens band radio .
• Specified 12.5 Volt, 225 MHz CharacteristicsOutput Power = 1.5 Watts
Minimum Gain = 9.0 dB
Efficiency = 50%

f!

• Characterized With Series Equivalent Large·Signal Impedance
Parameters

MAXIMUM RATINGS
Symbol

Value

Unrt

Collector-Emitter Voltage

VCEO

18

Vdc

Collector-Base Voltage

VCBO

36

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Collector Current - Continuous

IC

0.25

Adc

Total Device Dissipation
Derate above 25°C

Po

3.5
0.02

Watts

Tstg

-65 to +200

°c

Rating

@

TC = 2SoC (1)

Storage Temperature Range

W/oC

(1) These devices are designed for R F operation. The total device dissipation rating

applies only when the devices are operated as Class C R F amplifiers.

FIGURE 1 - 225 MHz TEST CIRCUIT SCHEMATIC
STYLE 1
PIN 1. EMITTER
2 BASE
3 COLLECTOR

RF
RF

Output

Input

DIM
A
8
C
0

E
C1.2,5

50 pF Dipped Mica

C3

1.5-20 pF ARea 402

C4
CS

4.0-40 pF ARea 403
100 pF Dipped Mica

C7

1000 pF UNELCO

C8
L1
L2

1.0 fJF 35 V Tantalum
0.6 Inch #18 AWG
2 Turns x 0.25 inch 10 #18 AWG

R Fe 1

Ferroxcube V K200

R FC 2

2.2 JJ.H Molded Choke

F
G

H
J
K

L
M
P
Q

R

MILLIMETERS
MIN MAX
889 9.40
8.00 851
6.10 660
0406 0533
0.229 318
0406 0.483
483 5.33
0711 0,864
0.737 102
12.70
6.35
45 0 NOM
1.27
90' NOM
1.54

INCHES
MIN
MAX
0350 0370
0315 0.335
0240 0.260
Om6 0011
0.009 0115
Om6 0.019
0190 0.210
0028 0.034
0.019 0040
0.500
0250
45° NOM

0,050
90' NOM
0.100
-

All JEDEC dimenSIOns and notes apply.
CASE 79·02
TO·39

1283

MRF225

(continued)

ELECTRICAL CHARACTERISTICS (TC= 250 C unlelSotherwl.. noted.)
sYmbol

Min

Max

Unit

Colle.tor-Emitter Breakdown Voltage
ilC= 20mAd.,IB= 0)

BVCEO

18

-

Vdc

Collector-Emitter Breakdown Voltage
IIC = 20 mAde, VBE = 0)

BVCES

36

-

Vdc

Emitter-B... Breakdown Voltage
liE = 1.0 mAde,lc = 0)

BVE80

4.0

-

Vdc

ICBO

-

100

"Adc

GpE

9.0

-

dB

T/

50

-

%

C....._istl.
OFF CHARACTERISTICS

Collector Cutofl Current
(VCB = 15 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
IIC= 100 mAde, VCE = 5.0 Vde)

DYNAMIC CHARACTERISTICS
Output Capacitance

(VCB = 12 Vdc, IE = 0, I = 1.0 MHz)
FUNCTIONAL TEST (Figure I)
Common-Emitter Amplifier POVller Gain

(Pout = 1.5 W, VCC = 12.5 Vdc, I = 225 MHz)
Collector Efficiency
(Pout = 1.5 W, VCC = 12.5 Vdc, I = 225 MHz)

FIGURE 3 - SERIES EOUIVALENT IMPEDANCE

FIGURE 2 - OUTPUT POWER versus INPUT POWER
2.0

~~

#

13.6V#

~ ;;-;-2.5 V
V
.0

V
o

25

50

P'"

'"

1= 225 MH,

75

100
125
150
Pin, INPUT POWER ImWl

175

200

225

1284

MRF226

(SILICON)

TheRFLine
13W-225MHz

RF POWER
TRANSISTOR

NPN SILICON RF POWER TRANSISTOR

NPN SILICON

· .. designed for 12.5 Volt large·signal power amplifier applications
in communication equipment operating at 225 MHz. Ideally suited
for Class E citizens band radio.
•

Specified 12.5 Volt, 225 MHz CharacteristicsOutput Power = 13 Watts
Minimum Gain = 9.0 dB
Efficiency = 50%

•

Characterized With Series Equivalent Large·Signal Impedance
Parameters

•

Designed to Withstand Load Mismatch at all Phase Angles with
20:1 VSWR

MAXIMUM RATINGS
Rating
Collector~Emitter

Voltage

Symbol

Value

Unit

VCEO

18

Vdc

Collector-Base Voltage

VCBO

36

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Collector Current - Continuous

IC

2.5

Adc

Total Device Dissipation @ T C '" 2sOC (1)
Derate above 2SoC

Po

45
257

Watts
mW/oC

Storage Temperature Range

Tstg

-65 to +200

°c

-

6.5

In. Lb.

Stud Torque (2)

L 1_

19

(1) These devices are designed for RF operation. The total device dissipation rating

applies only when the devices are operated as Class C RF amplifiers.
(21 For repeated assembly. use 5 In. Lb.

l

C12
~~~~~~~~-<+

12.5V

A
B
C

AF
Output

AF
Input

D
E
F
H

J
K
L

Cl.2.B.9
C3
C4.5
C6
C7
Cl0,12
Cl1

18 pF Chip Cap 50 V
15 pF UNELCO

BOpF UNELCO
25 pF UNELCO
7,OpF UNELCO
680 pF Feedthru ALLEN BRADLEY
1.0 ",F, 35 V Tantalum

AFC 1.3 Ferroxcube V K200

AFC 2

O. 15 ~H Molded Choke

Ll
L2
L3
L4
L5

0.15 x 3.15 inch Microstrlp
0.15 x 0.55 inch Mlcrostrip
0.15 x 1.4 inch Microstrip
0.15 x 2.35 Inch Microstrip

0.15 x 0.5 inch Microstrip
Board Is G 10 3 x 5 x 0.062 inch

€A - 5

1285

M
P
R

S
T

U

=ii,1

::::..j ~

MILLIMETERS
DIM MIN MAX

C10 RFC 3

~J ~

I"

=J_fU

WRENCH FLAT

FIGURE 1 - 225 MHz TEST CIRCUIT SCHEMATIC

A

=

E

:EATING PLANE

T'------+---'---«
I -

ti'

--j

9.40
9.78
8.13
8.38
18.03 19.05
5.59
5.84
1.18
2.03
2.19
2.92
26.42 28.70
0.10
0.15
13.21 14.35
1.40
1.65
45 D NOM
1.21
1.59
1.80
4.01
4.5
2.16
.41
3.30
2.54

INCHES
MIN MAX
0.310 0.385
0.320 0.330
0.110 0.150
0.220 0.230
0.010 0.080
0.110 0.115
1.040 1.130
0.004 0.006
0.520 0.565
0.055 0.065
45 D N M
- 0.050.
0.299 0.301
11
8
0.085 O. 95
0.100 0.13

NOTE

CASE 145A·Ol USE 8·32NC2A STUD
CASE 145A·Ol

ts

MRF226 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unle •• otherwise noted.)

I

Symbol

Min

Max

Unit

Collector Emitter Braakdown Voltage
(lC= 15mAde,IB= Q)

BVCEO

18

-

Vde

Collector-Base Breakdown Voltage
(lC = 5.0 mAde, IE = 0)

BVCBO

36

-

Vde

Emitter·Base Breekdown Voltage
(IE = 2.5 mAde, IC = 0)

BVEBO

4.0

-

Vde

ICBO

-

0.25

mAde

GpE

9.0

-

dB

1/

50

-

%

Characteristic
OFF CHARACTERISTICS

Collector Cutoll Current
(VCB = 15 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain

(lC = 250 mAde, VCE = 5.0 Vdc)
FUNCTIONAL TEST (Figure 1)
Common-Emitter Amplifier PO\Ner Gain

(Pout = 13 W, Vee = 12.5 Vde, I = 225 MHz)
Collector Efficiency

(Pout = 13 W, Vee = 12.5 Vde, 1= 225 MHz)

FIGURE 2 - OUTPUT POWER versu.INPUT POWER
22. &
0

. / / .......... ~

~ 17.&
~

'"

~

13.6~

1&

1//
/V

~ 12. 5

!:;

~ 10

"

o
~ 1. 5

o'?

5. 0

//
12.5V

1//
IV

2. 5

o

FIGURE 3 - SERIES EQUIVALENT IMPEDANCE

0.5

1.0

2.0
1.5
2.5
Pin,lNPUT POWER (WATTSI

3.0

3.5

4.0

1286

MRF230

(SILICON)

TheRFLine
1.5 W -90 MHz
RF POWER
TRANSISTOR

NPN SILICON RF POWER TRANSISTORS

NPNSILICON

· .. designed for 12.5 Volt, mid·band large'signal amplifier appli·
cations in industrial and commercial FM equipment operating in the
40 to 100 MHz range.

•

Specified 12.5 Volt, 90 MHz Characteristics Output Power ~ 1.5 Watts
Minimum Gain ~ 10 dB
Efficiency ~ 55%

•

100% Tested for Load Mismatch at ali Phase Angles with
30:1 VSWR

•

Characterized with Series Equivalent Large·Signal Impedance

•

Characterized with Paraliel Equivalent Large·Signal Impedance

Parameters
Parameters

N

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

18

Vdc

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Device Dissipation@Tc = 25°C (1)
Derate above 25°C
Storage Temperature Range

VCBO

36

Vdc

VEBO

Vdc

Po

4.0
0.5
5.0

Watts

28.6

mW/oC

Tstg

-65 to +200

Rating

IC

°c

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

I

Symbol
ROJC

I

STVLE 1

PIN 1. EMITTER
2.8ASE
3. COLLECTOR

Adc

Max

I

Unit

35

I

°C/W

(1) These devices are designed for A F operation. The total device dissipation rating applies
onlv when the devices are operated as Class C RF Amplifiers.

MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
M
450 NOM
P
1.27

DIM
A
B
C
D
E

900 NOM
R

2.54

-

INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
450 NOM
0.050
900 NOM
0.100

All JEDEC dimensions and notes apply.
CASE 79-02

TO·39

1287

MR F230 (continued)

I

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

Characteristic

Max

Svmbol

Min

BVCEO

18

-

Vde

BVCES

36

-

Vde

BVEBO

4.0

-

Vde

'CBO

-

0.5

mAde

GpE

10

-

dB

1/

55

-

%

Unit

OFF CHARACTERISTICS

ColiectorwEmitter Breakdown Voltage
(lC

= 25 mAde, 'B = 0)

CollectorwEmitter Breakdown Voltage
(lC

= 25 mAde, VBE = 0)

EmitterwBase Breakdown Voltage
(IE

= 0.25 mAde,lc = 0)

Collector Cutoff Current
(VCB = 15 Vde, 'E = 0)
ON CHARACTERISTICS
DC Current Gain

(lC = 250 mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB

= 12.5 Vde,

'E

= 0, f = 1.0 MHz)

FUNCTIONAL TESTS (Figure 11
Common-Emitter Amplifier Power Gain
(VCC = 12.5 Vde, Pout = 1.5 W, f = 90 MHz)
Collector Efficiency
(VCC = 12.5 Vde, Pout

= 1.5 W, f = 90 MHz)

>

Load Mismatch

VSWR
30: 1 Through All Phase
Angles in 3 Second Interval
After Which Devices Will Meet

(VCC= 12.5 Vde, Pout = 1.5W,
f = 90 MHz, TC "';;250 C)

GpE Test Limits

FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC

.---~----~--~~------<+
12.5 Vdc
~--~--~----~(-

RF
Output

Cl
C2.C6
C3
C4
C5

5.0·80 pF, ARCO 462
25·280 pF, ARCO 464
260 pF UNELCO
10pFUNELCO
9.0·180 pF, ARCO 463

C9
L1

C7

1000 pF UNELCO

C8

O.471JF ERIE Disc Ceramic

L5
R1

Ferrite Bead, FERROXCUBE 56-590-65-3B
4.7 OHM, 1/2 W. 10% Carbon

20"F, 15 Vdc TANTALUM

L2

2 Turns, #18 AWG, 3/8"1.0. 3/8" Long
2.5 Turns, #20 AWG. on Ferrite Bead.

L3

FERROXCU8E 56-590-65-38
3 Turns, #18 AWO, 3/S" 1.0., 1/2" Long

L4

0.68

~H.

9230-16 MILLER Molded Choke

Input/Output Connectors - Type BNC

1288

MR F230 (continued)

FIGURE 3 - OUTPUT POWER versus FREQUENCY

FIGURE 2 - OUTPUT POWER versus INPUT POWER

2.5

I

50MHz
0

/

5

/
)

5

/'

...-V

V

90~Hz_ r--

~ 2.0

i

/

//

./

e:i

1.5

~~

1.0

~

./

0

---

2.5

J

r-Vce = 12.5 V

/'

V

-------- --

r--

o

':5

rE 0.5

oV

50

100

o

250

200

150

Vee = 12.5 V

50

40

-.......

--

Pin= 150 mW

.......... I-.....
~OmW

"-50mW

60
70
f. FREUUENeY (MHz)

Pin. 'NPUT POWER (mW)

.........

r--- '"

r-80

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
2. 5

r

Pin ='150 mW
- ' f=90MHz

0

ffi

1. 5

~

>~

>-

1.0

::>

o

-- ---

~

V

} 0.5

o

B.O

9.0

10

11

12

13

14

15

16

Vee. SUPPLY VOLTAGE (VOLTS)

FIGURE 5
SERIES EQUIVALENT OUTPUT IMPEDANCE

SERIES EQUIVALENT INPUT IMPEDANCE

ot-+-+-+-J'L-..............-rT

liN
Ohms
4.7·)9.2
4.25·)8.65
3.8i8.9
3.1·j7.35

Vee = 12.5 Vdc
Pou' = 1.5W

~1/1 ttttt:b:t
-t-t-+++4-u..
~ ++I+t:1r:t±
» -t-t-f-+++-I-Ll

, , , ~+-TY-I..j.J,.L

1289

...........

90

.........

100

MRF230

(continued)

FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
.ersus FR EQUENCY

FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
versus FREQUENCY
500

0

r-

VCC' 12.5 Vdc

VCC' 12.5 Vdc

Pout =1.5W

Pou t'l.5W

-- -- -!;;w~

400

~.e


"''''
~~

2~

is

0

o

40

50

60

70

80

90

100

o

100

40

50

60

70

80

90

100

f, FREQUENCY (MHz)

f, FREQUENCY (MHz)

FIGURE 8 - PARALLEL EQUIVALENT OUTPUT RESISTANCE
versus FREQUENCY

FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
.ersus FREQUENCY

100

100,-----.,----,----.----,---,---,
VCC' 12.5 Vdc

Pout= 1.5W

--

VCC' 12.5 Vdc

...

ffiu:

-...-

f--

Pout = 1.5W

~

80

~

w
_co
::>2:
d « 60
w ...
~<3

~:

~

,go

o
40

20

0
50

60
70
f, FREQUENCY (MHz)

80

90

100

1290

40

50

60
70
f, FREQUENCY (MHz)

80

90

100

MRF231

(SILICON)

The RFLine
3.5W - 90 MHz

RF POWER
TRANSISTOR
NPN SI LICON R F POWER TRANSISTORS

NPN SILICON

· .. designed for 12.5 Volt, mid·band large-signal amplifier applications in industrial and commercial FM equipment operating in the
40 to 100 MHz range.

• Specified 12.5 Volt, 90 MHz CharacteristicsOutput Power = 3.5 Watts
Minimum Gain = 10 dB
Efficiency = 55%
• 100% Tested for Load Mismatch at all Phase Angles with
30:1 VSWR
Characterized with Series Equivalent Large-Signal Impedance
Parameters

•
with
• Characterized
Parameters

Parallel Equivalent Large-Signal Impedance

ti'

L j _ ""1
MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

18

Vdc

Collector-Base Voltage

VCBO

36

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Collector Current - Continuous

IC

1.0

Adc

Total Device Dissipation
Derate above 2SoC

Po

10
57.1

Watts
mWI"C

T stg

-65 to +200

°c

-

6.5

In-Lb.

@

TC == 2SoC (1'

Storage Temperature Range
Stud Torque (2)

THERMAL CHARACTERISTICS
Characteristic
Thermal Aesistance. Junction to Case

Symbol

Max

Unit

ReJC

17.5

°CIW

(1) These devices are designed for RF operation. The total device dissipation rsting applies

iR[
L

WRENCH FLAT

=.fJ ~

~~

=ii,

~ I--L

STYLE 1
PIN 1 EMITTER
1 BASE
3 EMITTER
4 COLLECTOR

MILLIMETERS
OIM MIN MAX
A

9.40
B.13
lB.03
5.59
E
1.18
F
2.19
H 26.41
J
0.10
K 13.11
L
1.40
B
C
0

M
R
S
T

(2) For repeated assembly use 5 In-Lb.

I

-~S

E

:EATINGPlANE

P

only when the devices are operated 85 Class C RF Amplifiers.

A

9.18
8.38
19.05
5.84
1.03
1.91
2B.l0
0.15
14.35
1.65

450 NOM

-

1.59
4.01
2.16
1.54

1.21
1.80
4 2
2.41
3.30

INCHES
MIN MAX
0.310 0.385
0.320 0.330
0.110 0.150
0.120 L.!llil!.
0.010 0.080
0.110 0.115
1.040 1.130
0.004 0.006
0.520 0.565
0.055 0.065
~~

-

0.299
0.158
0.085
0.100

.050
0.301

.05
U
0.130
NOTE
CASE 145A·Ol USE 8·31NC1A STUD

CASE 145A·Ol

1291

MRF231 (continued)

ELECTRICAL CHARACTERISTICS

(Te = 2sOe unless otherwise noted.)

I

Symbol

Min

. Max

Unit

eoliector·Emitter Breakdown Voltage
(Ie = 25 mAde, IB = 0)

BVeEO

lB

-

Vdc

Coliector·Emitter Breakdown Voltage

BVeES

36

-

Vdc

BVEBO

4.0

-

Vdc

0.5

mAde

-

dB

Characteristic
OFF CHARACTERISTICS

(lC = 25 mAde, VBE = 0)
Emitter-Base BreakdoWl Voltage
(I E = 0.25 mAde, IC = 0)
Collector Cutoll Current
(VeB = 15 Vdc, IE = 0)

ICBO

ON CHARACTERISTICS

DC Current Gain
(Ie

= 250 mAdc, VeE = 5.0 Vdc)

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 12.5 Vdc, IE = 0, I = 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain
(Vee = 12.5 Vd., Pout

=

GpE

10

17

55

3.5 W, I = 90 MHz)

Collector Efficiency

%

(Vee = 12.5 Vd., Pout = 3.5 W, I = 90 MHz)

-

Load Mismatch
(VCC = 12.5 Vdc, Pout = 3.5 W,
1= 90 MHz, Te~250e)

VSWR >30:1 Through All Phase
Angles in 3 Second Interval
Alter Which Devices Will Meet
GpE Test Limits

FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC

r---~----'----'--------<+
12.5 Vde

RF
Output

RF
Input

C1,C3

9.0·1S0 pF, ARCO 463

L3

1.5I'H,9230·24 MILLER Molded Choke

C2,C4
C5
C6

25·2S0 pF, ARCO 464
1000 pF, UNELCO
0.047 ,u.F, ERIE Disc Ceramic

L4
L5

3 Turns, #1S AWG, 3/S" 1.0., 1/2" Long
10 Turns, Wound on R2

C7

10,u.F, 15 VdcTANTALUM

R1

15 Ohm, 1/2 W. 10% Carbon

L1

2 Turns, #18 AWG, 3/8" 1.0., 1/2" Long

R2

220 Ohm. 1 W. Carbon

L2

22 ,u.H, 9230-52 MILLER Molded Choke

Input/Output Connectors - Type BNC

1292

MRF231

(continued)

-- -

FIGUR E 3 - OUTPUT POWER versus FREQUENCY

FIGURE 2 - OUTPUT POWER versus INPUT POWER

5.0

Vcc = 12.5 V
50 MHz

~ 4.0

~ 3.0

rE

r"""

en

/'"

i

90 MHz

0::

~

V /'

....

!il

,,/'
./

/'"

~

~
~ 2.0

V

/

~

o

/'

5.0

V

o

~
....
!il

~

0.1

0.2

~
~
~

=>
o

!il

2.0

~ 1.0

-

8.0

,.........
~

9.0

10

-

11

~

12

14

15

r--....

200

'-

...... 1--..

mW-- r-.....

l;:;---

"'"

~

""" r-...

1.0

50

70
60
f, FREQUENCY (MHz)

80

90

FIGURE 5 - SERIES EQUIVALENT fMPEDANCE

.........-

13

F--=r..

VCC = 12.5 V

40

...... ...........

Pin = 300 mW
f = 90 MHz

~ 4.0

~ 3.0

2.0

'i----...
Pin::: 300 mW

o

0.5

0.4

0.3

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE

i

3.0

=>
o

Pin, INPUT POWER (WATTS)

5.0

4.0

~

/ /'

/V
1.0
//
oIf'

t--

16

Vcc, SUPPLY VOLTAGE (VOLTS)

1293

100

MR F231 (continued)

FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
versus

FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
versus FREQUENCY
1000
VCC = 12.5 Vdc
Pout = 3.5 W

FREQUENCY

25

Vcc = 12.5 Vdc
Pout = 3.5 W

-

0
0
40

50

60

70

80

90

0
40

100

60

70

80

90

100

f, FREQUENCY (MHz)

f, FREQUENCY (MHz)

FIGURE 8 - PARALLEL EQUIVALENT OUTPUT RESISTANCE
versus FREQUENCY
50

50

r--

FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
v~rsus FREQUENCY

1oo,-----,---,---,-----,-----,---,

+ ___

Vcc =12.5 Vdc
Pout =3.5W

-+__+ __

VCC = 12.5 Vdc+_ _ _ _
+-_ _
Pout" 3.5 W
~_801-----+----t----r---r-~--i

-

ffi~

....
 ~ 60 i-----t-----i----+----t---r--1
" ~========t=======~======i======t~::~:::j
w ~
u

....
w~

0

~ ~

40i-------j----t----ir---t---t---j

~~
-''''
JC

20~----1----+----r---+---t--,

o:~

0

o

40

50

60

70

f, FR EDUENCY (MHz)

so

90

100

°4O~------~5~0------~6~0------~70~--~80,---~9~0--~loo
f, FREQUENCY (MHz)

1294

MRF232

(SILICON)

TheRFLine

7.5W -90MHz

RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTORS

NPN SILICON

... designed for 12.5 Volt, mid·band large .. ignal amplifier appli·
cations in industrial and commercial FM equipment operating in the
40 to 100 MHz range.

•

•

Specified 12.5 Volt, 90 MHz Characteristics Output Power = 7.5 Watts
Minimum Gain = 9.0 dB
Efficiency = 55%
100% Tested for Load Mismatch at all Phase Angles with 30:1
VSWR

•

Characterized with Series Equivalent Large·Signal Impedance
Parameters

•

Characterized with Parallel Equivalent Large·Signal Impedance
Parameters

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VeEO

18

Vdc

Collector-Base Voltage

VeBO

36

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Collector Current - Continuous

Ie

2.0

Adc

Total Device Dissipation
Derate above 2SoC

Po

20
114

rrNVf'e

-65 to +200

°e

@

TC::: 25°C (1)

Storage Temperature Range

T stg

-

Stud Torque (2)

6.5

L 1_
Ik[
lp

Characteristic

Thermal Resistance, Junction to Case

Symbol

Max

Unit

R~Je

8.75

°e/W

(1) These devices are designed for RF operation. The total device dissipation rating applies
only when the devices are operated as Class C A F Amplifiers.

=B1

~

I--L

STYLE 1
PIN 1 EMITTER

2 BASE
3 EMITTER
4 COLLECTOR

MILLIMETERS
DIM MIN MAX
8
C
0
E
F
H
J
K

L
M
P
R

(21 For repeated assembly use 5 In. Lb.

=~

WRENCH FLAT

A

THERMAL CHARACTERISTICS

I" =.fJ ~

A

=~S

E

SEATING PLANE

Watts

In. Lb.

ti'

-(

S
T
U
NOTE

9.40
8.13
18.03
5.59
1.78
2.79
26.42
0.10
13.21
1.40

9.78
8.38
19.05
5.84
2.03
2.92
28.70
0.15
1435

1.65

45° NOM

7.59
4.01
2.16
2.54

1.27
7.80
4.52
2.41
3.30

INCHES
MIN MAX
0.370 0.385
0.320 0.330
0.710 0.750
0.22
. 3D
0.070 0.080
0.110 0.115
1.040 1.130
0.004 0.006
0.520 0.565
0.055 0.065
450 NOM
- 0.050
0.299 0.307
0.158 O.llll
0.085 0.095
0.100 0.130

CASE 145A 01 USE 8 32NC2A STUD

CASE 145A·01

1295

MRF232 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)

I

Symbol

Min

BVCEO

18

-

Vdc

Collector-Emitter Breakdown Voltage
(lC = 50 mAde, VBE = 0)

BVCES

36

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

Vdc

ICBO

-

1.0

mAde

GpE

9.0

-

dB

1/

55

-

%

Choractoristic

Max

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage

(lC = 50 mAde, IB = 0)

liE = 2.5 mAde, IC= 0)
Collector Cutoff Current

(VCB = 15 Vde, IE = 0)
ON CHARACTERISTICS
DC Current Gain
IIC = SOO mAde, VCE = 5.0 Vde)

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 12.5 Vde, IE = 0, f = 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)
Common-Emitter Amplifier POV\l!:T Gain
(VCC = 12.5 Vde, Pout = 7.5 W, f = 90 MHz)
Collector Efficiency

(VCC = 12.5 Vde, Pout = 7.5 W, f = 90 MHz)

-

Load Mismatch

VSWR

> 30: 1 Through All Phase

Angle in a 3 Second Interval
After Which Devices Will Meet

(VCC= 12.5 Vde, Pout = 7.5W,
, = 90 MHz, TC <;;250 C)

GpE Test Limits.

FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC

RF
Output

Cl

L1

RF
Input

C2

C3

Cl,C6

5.O-S0 pF, ARCO 462

Ll

C2,C5

9.0-1S0 pF, ARCO 463

C3,C4

100 pF UNELCO

C7

1000 pF UNELCO

L2
L3
L4

CS

4.7 I'F, 15 Vdc, T ANT ALUM

3 Turns, #18 AWG. 3/S" 1.0., 3/S" Long
FEAROXCUBE VK200-20-4B Ferrite Choke
3 Turns, #18 AWG, 5/16" 1.0., 3/S" Long
10 Turns, #22 AWG, on Rl

Rl
340 Ohm, 1 W Carbon
Input/Output Connectors - Type BNC

1296

MR F232 (continued)

FIGUR E 2 - OUTPUT POWER v...sus INPUT POWER
10
Vee = 12.5 V
9.0

/'

8.0

E

7.0

'"~

6.0

'"3;:

5.0

~

~

/

=> 3.0
0

~

V

./"'

V

V

9.0

2.0

~

./

~=>

-E

'"

~

'"3;:

0.4
0.6
Pin. INPUT POWER (WATTS)

r- Pi~ : ~~~:z

....-

6.0

~ 5.0

5

4.0

0

3.0

:==>

rE"

0.8

1.0

0.25W """'-.

I'--..

4.0

""

"""

..............

......... 1'-.

"

2.0

Vee = 12.5 V
1.0

--

40

--

~

....-V

,..-

2.0

o
9.0

10
11
12
13
Vee. SUPPLY VOLTAGE (VOLTS)

14

15

50

60
70
f. FREQUENCY (MHz)

80

90

FIGURE 5 - SERIES EOUIVALENT IMPEDANCE

1.0
8.0

O.SW

o
0.2

10

7.0

-............

o

FIGURE 4 - OUTPUT POWER versusSUPPLV VOLTAGE

8.0

"""'-.

..............

5.0

Pin'" 0.75 W

"""'-.

~ 3.0
.E

o

~
I-

..............

r--....
............

...............

t:

~MHZ

//
1.0
V
o

9.0

........

b-.,

8.0

/
/'
/ /'

I-

.E

SOMHz

V

I

4.0

.....-1

/

FIGURE 3 - OUTPUT POWER versus FREQUENCY
10

16

1297

100

MR F232 (continued)

FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
varsus FREQUENCY
25

FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
versus FREQUENCY
1000

Vd~

Vee: 12.5
Pout: 7.5W

VCC: 12.5

Vd~

Pout'" 1.5W

- --- -- - ----

20

800

Iz_

.-"
....

w~
~

>w 600

=>2
d"
wI.... <3

......
......
W ..

r--

"'"
....
""I-

""=>
j~

o
40

50

60
70
t, FREQUENCY (MHz)

r--

400

80

90

100

200

40

FIGURE 8 - PARALLEL !'QUIVALENT OUTPUT RESISTANCE
versus FREQUENCY

50

60
70
f, FREQUENCY (MHz)

80

90

100

FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
versus FREQUENCY

25

500
Vec: 12.5 Vdc
Pout'" 7.5W

VCC: 12.5 Vdc

Pout =7.5 W
I- _ 20

z'"

w'"

'"
::;e
....

:;

~

15

dz

w""

.... 1-

w'"
.... ,;;

-' w 10

""""

""I-

;t=>

.,:;~

;;;5.0

--

~ r--

----

o
40

o
50

60
70
t, FREQUENCY (MHz)

80

90

Hill

40

50

--

t--

60

r-70

t, FREQUENCY (MHz)

1298

-

80

90

100

MRF233

(SILICON)

The RFLine
15W-90MHz

RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTORS

NPN SILICON

· .. designed for 12.5 Volt, mid·band large·signal amplifier applications in industrial and commercial FM equipment operating in the
40 to 100 MHz range.

•
•

Specified 12.5 Volt, 90 MHz Characteristics Output Power = 15 Watts
Minimum Gain = 10 dB
Efficiency = 55%
100% Tested for Load Mismatch at all Phase Angles with
30:1 VSWR

with Series Equivalent Large-Signal
• Characterized
Parameters
with Parallel Equivalent Large-Signal
• Characterized
Parameters

Impedance
Impedance

Rating
Collector~Emitter

Voltage

Collector-Base Voltage
Emitter-Base Voltage
Collector Current

Continuous

Total Device Dissipation@Tc-25OC(1)
Derate Above 2SoC
Storage Temperature Range

Symbol

Value

Unit

VCEO
VCBO
VEBO
IC

18
36
4.0
3.5

Vdc
Vdc
Vdc
Adc

PD

50

Watts

-

285
-65 to +200

mW/oC

6.5

In-Ib

T,t9

Stud Torque (2)

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

A

Lp

==

16 \

MAXIMUM RATINGS

I

Symbol

Max

I

Unit

I

ROJC

3.5

I

°CIW

E

SEATING PLANE

I

=r J.

I

-

WRENCH flAT

~

I--L

STYlE 1
PIN 1 EMITTER

2 BASE
3 EMITTER
4 COLLECTOR

DIM

MILLIMETERS
MIN MAX

A 9.40
B
8.13
C 18.03
0
5.59
E
1.78
F
2.19
H 26.42
J
0.10
K 13.21
1.40
L
M
450

p
(11 These devices are designed fQr RF operation. The total device dissipation rating
applies only when the devices are operated as Class C RF amplifiers.
(2) For Repeated Assembly use 5 In. Lb.

7J r=ill:

LI_ I

R
S

T
U

-

1.59
4.01
2.16
2.4

9.78
8.38
19.05
5.84
2.03
2.92
28.10
1115
14.35
1.65
NOM
1.21
1.80
4.52
2.41
3.30

INCHES
MIN MAX
0.310
0.320
0.110
0.220
0.010
0.110
1.040
0.004
0.520
0.055

0.3B5
0.330
0.150
0.230
0.080
0.115
1.130
O.OOS
0.565
0.065
45 0 N M
.050
0.299 0.301
0.158
17
0.085
.095
0.10
.130

NOTE
CASE 145A 01 USE 8 32NC2A STUD
CASE 145A·Ol

1299

j

S

MR F233 (continued)

ELECTRICAL CHARACTERISTICS(TC ~ 25 0 C unless otherwise notedl.

I

Characteristic

Svmbol

Min

Typ

Max

Unit

-

Vde

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC ~ 100 mAde, IB ~ 01

BVCEO

18

-

Collector-Emitter Breakdown Voltage
(lC ~ 50 mAde, VBE ~ 01

BVCES

36

-

Emitter-Base Breakdown Voltage
(IE ~ 5.0 mAde, IC ~ 01

BVEBO

4.0

-

Collector Cutoff Current
(VCB ~ 15 Vde, IE ~ 01

ICBO

Vde

-

Vde

1.0

mAde

ON CHARACTERISTICS

DC Current Gain
(lC ~ 1.0 Ade, VCE

~

5.0 Vdcl

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 12.5 Vde, IE

~

0, f

~

1.0 MHzl

FUNCTIONAL TESTS (Figure 11
GpE

10

-

Collector Efficiency
(VCC ~ 12.5 VdG, Pout ~ 15 W, f ~ 90 MHzl

'I

55

-

Load Mismatch
(VCC ~ 12.5 Vde, Pout ~ 15 W,
f ~ 90 MHz, TC ":2So CI

-

Common-Emitter Amplifier Power Gain
(VCC: 12.5 Vdc, Pout ~ 15 W, f ~ 90 MHzl

-

%

>

VSWR
30: 1 Through All Phase
Angles in a 3 Second Interval

After Which Devices Will Meet
GpE Test Limits

FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC
r----1~---1>--_.-----<+

12.5 Vdc
~--~~--~-------«-

C4

L4

RF
OUtpUL

RF

Input

>--f-T.~~~~ry,-~~~

C3

C1,C3 9.o-1S0 pF, ARCO 463
C2,C4 25·2S0 pF ARCO 464
C5
1000 pF UNELCO
C6

C7

0.01

~F

L3
L4

2.2"H, 9230·200 MI LLER Molded Choke
2 Turns, };t18 AWG, 3/S" 1.0., 3/S" Long

L5

10 Turns, #16 AWG, Wound On R2.

ERIE Disc Ceramic

1.0 "F, 35 Vdc TANTALUM

L1

2 Turns, #18 AWG. 3/8" I. D., 1/4" Long

L2

0.22 jlH, 9230-04 MI LLER Molded Choke

1300

dB

Rl
15 Ohm, 1/2 W, 10% Carbon
R2
68 Ohm, 1 Watt, 10% Carbon
Input/Output Connectors - Type BNC

MRF233 (continued)

FIGURE 2 - OUTPUT POWER v.rsus INPUT POWER

FIGURE 3 - OUTPUT POWER versus FREQUENCY

25

25

VCC" 12.5 V

V

50 MHz

,..-

V

/

I /
J V
1//

L'

i

..,./

ffi

90 MHz

~....

./"

~

r---

---

o~
15

10

~
o

;

~

5.0

-- --t---,1.5W

Pin=1.0W -

0.5W-

r---.
r---

..............

......

.............
..................
...............

VCC = 12.5 V

'II

0.5

1.0
1.5
Pin. INPUT POWER (WATTS)

50

2.5

2.0

FIGURE 4 - OUTPUT POWER v.rsus SUPPLY VOLTAGE
25

r-

l!!

Pin" 1.5W
1=90MHz

20

~

15

~

....

~

....

10

---

.......... i-'"""

!--

V--

:>

0

;

0':

5.0

o 8.0

9.0

10

11

12

13

14

15

80

90

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE

...-

~

'"~

60
70
I, FREUUENCY (MHz)

16

VCC, SUPPLY VOLTAGE (VOLTS)

1301

100

MR F233 (continued)

FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
varsus FREQUENCY

FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
v'"sus FREQUENCY
2000

10

VCC : 12.5 Vdc
Pout'" 15W

VCC: 12.5 Vdc

Pout: 15W
8. 0

0

I---

-I-

0

---

0

- ----

t---

0

0

40

50

60

70

80

90

0

100

40

50

60

70

r-80

90

100

f. FREQUENCY (MHz)

f. FR EQUENCY (MHz)

FIGURE 8 - PARALLEL EQUfVALENT OUTPUT RESISTANCE
versus FREQUENCY

FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
varsus FREQUENCY

20

500
Vce: 12.5 Vdc
Pout = 15W

Vec: 12.5 Vdc
Pout = 15W
0

6

Ot-

0L------

-

0

0

0

40

-

r:----.....

I---

r---

- r-:-I-

0

50

60

70

80

90

100

f. FREQUENCY (MHz)

1302

0

40

50

60
.10
f. FREQUENCY (MHz)

80

90

100

MRF234

(SILICON)

The RFLine

25W -90MHz

RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTORS

NPN SILICON

· .. designed for 12.5 Volt, mid·band large·signal amplifier appli·
cations in industrial and commercial FM equipment operating in the
40 to 100 MHz range.

• Specified 12.5 Volt, 90 MHz Characteristics Output Power = 25 Watts
Minimum Gain = 9.5 dB
Efficiency = 55%
• 100% Tested for Load Mismatch at all Phase Angles with
30:1 VSWR.
•

Characterized with Series Equivalent Large·Signal Impedance
Parameters

•

Characterized with Parallel Equivalent Large·Signal Impedance
Parameters

til

L j_ I
MAXIMUM RATINGS
Rating

Symbol

Value

Unit

CollectorMEmitter Voltage

VCEO

18

Collector-Base Voltage

VCBO

36

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Collector Current - Continuous

Ie

4.0

Adc

Total Device Dissipation @TC- 2SoC (1)

Po

70
400

Watts
mW/oe

T stg

-65 to +200

°c

-

6.5

In. Lb.

Derate above 2SoC
Storage Temperature Range
Stud Torque (2)

Vdc

jk[
l

Characteristic
Thermal Resistance, JUnction to Case

Symbol

Max

Unit

R8JC

2.5

°C/W

(1) These devices Bre designed for RF operation. The total device dissipation rating applies
only when the devices are operated as Class C RF Amplifiers.

=~

WRENCH FLAT

dJ ~

=ij1

:::....j I--L

STYL[1
PIN 1
2
3
4

EMITTER
BASE
EMITTER
COLLECTOR

MILLIMETERS
DIM MIN MAX
A

9.40
8.13
18.03
0
5.59
E
1.18
F
2.79
H 16.42
J
0.10
K 13.21
L
1.40
M
450
8

P

R
S

(2) For repeated assembly use 5 In. Lb.

I

-~S

E

:EATINGPLANE

C

THERMAL CHARACTERISTICS

A

T

U

7.59
4.01
2.16
1.54

9.78
8.38
19.05
5.84
1.03
1.91
28.70
0.15
14.35
1.65
OM
1.27
7.80
4.51
2.41
3.30

INCHES
MIN MAX
0.370
0.320
0.710
0.220
0.070
0.110
1.040
0.004
0.520
0.055

0.385
0.330
0.750
0.230
0.080
0.115
1.130
0.006
0.565
0.065

~°'I.ILM

0.199
0.158
0.085
0.100

0050
O. 07
0.1IB..
0.095
0.130

NOTE
CASE 145A 01 USE 8 31NC1A STUD
CASE 145A·Ol

1303

MRF234 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unle •• otherwise noted.1

I

Symbol

Min

Typ

Max

Unit

BVCEO

18

-

-

Vde

Coliactor·Emitter Breakdown Voltage
(IC = 200 mAde, VBE = 01

BVCES

36

-

-

Vde

Emitter·Basa Breakdown Voltage

BVEBO

4.0

-

-

Vde

ICBO

-

-

1.0

mAde

Common-Emitter Amplifier Power Gain
(VCC = 12.5 Vde, Pout = 25 W, 1= 90 MHzl

GpE

9.5

-

-

dB

Collector Efficiency
(VCC = 12.5 Vdc, Pout = 25 W, I = 90 MHzl

71

55

-

-

%

Load Mismatch
(VCC = 12.5 Vde, Pout = 25 W,
1= 90 MHz, TC ';;250 C

-

Cheracteristic
OFF CHARACTERISTICS
Collector~Emitter

Breakdown Voltage

(lC = 200 mAde, IB = 01

(IE = 5,0 mAde, IC = 01
Collector Cutoff Current
(VCB = 15 Vde, IE = 01
ON CHARACTERISTICS

DC Current Gain
(lC = 1.0 Adc, VCE = 5.0 Vdcl
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB= 12.5Vde,IE = 0,1 = 1.0MHzI
FUNCTIONAL TESTS (Figure 11

VSWR

> 30: 1 Through All Phase

Angles in a 3 Second Interval
After Which Devices Will MeE!!

GpE Test Limits.

FIGURE 1 - 90 MHz TEST CIRCUIT SCHEMATIC

12.5 Vdc

'------<>---1----« -

RF
Output

RF
Input

Cl,C4
C2,C3

5.0-80 pF, AR CO 462
25-280 pF, A R CO 464

lo3

C5

1000 pF UNEloCO

lo5

10 Turns, #18 AWG, 1/4" 1.0., wound on A2

C6

0.047 JlF. EA I E disc ceramic

C7

10/tF,15 VdcTANTAloUM

Rl

15 Ohms. 1/2 W, 10%

R2

47 Ohm, 1 W Carbon

lo4

Ll

1 Turn, #16 AWG, 3/8" 1.0., 1/8" Long

lo2

0.22 /tH, 9230·04 MlloloER Molded Choke

1304

22/tH, 9230-52 MlloloER Molded Choke
2 Turn •• #14 AWG. 3/8" 1.0 .• 1/4" Long

Input/Output Connector - Type BNC

MRF234 (continued)

FIGURE 2 - OUTPUT POWER v",susINPUT POWER
0

I-- Vee

J

12.5 V

0

V

0

FIGURE 3 - OUTPUT POWER versus FREQUENCY
0

V
./

/
/ V

V
/'

-

5

V"

50 MHz

V

Pin= 3.0W
-

90MHz

o~
5

0

01//

I(

r--

..........

~
2.0W

...............
I.OW

~

~

..........

...............
~

Vee= 12.5 v

I5

1.0

2.0
Pin. INPUT POWER (WAITS)

4.0

3.0

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
40

I.

~Pin=3.0W

f= 90 MHz

V

0

°v

.......-V

---

V

V

------

0

9.0

ID

II
12
14
13
Vee. SUPPLY VOLTAGE (VOLTS)

15

40

50

60
70
f. FREQUENCY (MHz)

80

90

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE

0

8.0

r--......

16

1305

~

100

MRF234 (continued)

FIGURE 6 - PARALLEL EQUIVALENT INPUT RESISTANCE
ver...s FREQUENCY
0

FIGURE 7 - PARALLEL EQUIVALENT INPUT CAPACITANCE
ver... s FREQUENCY
2000

I-

t-

Vec' 12.5 Vd,
Pout' 25W

0-- - 0

Vec' 12.5 Vd,
Pout' 25W

1600

:::::::::-:=.

0

----

0

r-.

r---

0

40

50

60
70
f, FREUUENCY (MHz)

80

90

40

100

FIGURE 8 - PARALLEL EQUIVALENT OUTPUT RESISTANCE
versus FREQUENCY

.

Ci)

60
70
f, FREQUENCY (MHz)

80

90

100

FIGURE 9 - PARALLEL EQUIVALENT OUTPUT CAPACITANCE
versus FREQUENCY
VCC' 12.5 Vd,

t - Vec' 12.5 Vd,
~

50

1000

0

ffi

r--..

o

0

....

-

t - Pout.25W

Pout·25W

8.0

"'"

>0

:;~

,...,.

~ ~ 6.0

~"

j~

,,13

a:: a: 4.0
~
.:~

....

g!::;

~"'""

.-

....r--.

~

a: 02. 0

-- --

i--

-

0

40

50

60
70
f, FREQUENCY (MHz)

80

90

100

1306

40

50

60
70
f, FREQUENCY (MHz)

80

90

100

MRF304

(SILICON)

The RF Line
10W·400 MHz
CONTROLLED "Q"
RF POWER TRANSISTOR
NPN SILICON RF POWER TRANSISTOR

NPN SILICON

designed primarily for wideband large-signal driver amplifier
stages in the 225-400 MHz frequency range.
•

Specified 28 Volt, 400 MHz CharacteristicsOutput Power = 10 Watts
Minimum Gain = 9.0 dB
Efficiency = 60%

•

Built-In Matching Network for Broadband Operation

• 100% tested for Load Mismatch at all Phase Angles with
30:1 VSWR

R

Q

STYLE 1:
PIN 1. EMITTER
2. CO LLECTOR
3. EMITTER
4. BASE
FLANGE·ISOLATEO

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Coliector·Emitter Voltage

VeEO

33

Vdc

Collector-Base Voltage

VeBO

60

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Ie

2.0

Adc

Collector Current - Continuous

Total Device Dissipation @ T C

= 2SoC

(1)

Po

Derate above 2SoC
Storage Temperature Range

T5t9

30

Watts

171

mW/oe

-65 to +200

°e

1) These devices are designed for R F operation. The total device dissipation rating
applies only when the devices are operated as RF amplifiers.

rBj ~C

L

Lili:~
DIM
A
B
C

D
F
H
J
K
L
N
Q

R
S

MILLIMETERS
MIN MAX
24.38 25.15
12.45 12.95
5.97 7.62
5.46 TYP
5.08 5.33
18.29 18.54
0.10 0.15
10.67 10.92
3.81 4.06
3.81 4.32
2.92 3.18
3.05 3.30
21.34 21.84

INCHES
MAX
MIN
0.960 0.990
0.490 0.510
0.235 0.300
0.215 TYP
0.200 0.210
0.720 0.730
0.004 0.006
0.420 0.430
0.150 0.160
0.150 0.170
0.115 0.ll5
0.120 0.130
0.B40 0.860

CASE 278·03

1307

MRF304 (continued)

ELECTRICAL CHARACTERISTICS

(TC = 25°C unless otherwise noted I
Symbol

Min

Typ

BVCEO

33

-

Collector-Emitter Breakdown Voltage
(lC = 30 mAde, VBE = 01

BVCES

60

Emitter·Base Breakdown Voltage
(IE = 1.0 mAde, IC = 01

BVEBO

4.0

Characteristic

Max

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage
(lC

= 30 mAde,

Vde

IB = 01

Collector Cutoff Current
(VCB = 30 Vde, IE = 01

vae

ICBO

-

vae

1.0

mAde

ON CHARACTERISTICS
DC Current Gain
(lC = 500 mAde, VCE = 5.0 Vdel
(lC = 2.0 Ade, VCE = 5.0 Vdel
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12.5 Vdc, IE = 0, f = 1.0 MHzl

FUNCTIONAL TESTS (Figure 11
Common-Emitter Amplifier Power Gain
(VCC = 28 Vde, Pout = 10 W, f = 400 MHzl

Collector Efficiency
(VCC 28 Vde, Pout

=

= 10 W, f = 400 MHzl

GpE

9.0

dB

11

tiU

'"
No Degradation in Pout

Electrical Ruggedness
(Pout = lOW, VCC=28 Vde,f =400 MHz, VSWR 30:1,
all phase angles.)

FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
L4

Cll

C13

I

r-(-

28 Vdc

Z2
Cl0

Cl
RF

INPUT

)-1~~I~~==Z[I~;J--~r-------,-ti

C2

Cl,Cl0
C2,C3,C7,C9
C4
C5
C6
C8
C",CI3
C12
Rl

RF
OUTPUT

C3

C8

C4

100 pF A.T.C. Type ATC·l00 B
1.0·20 pF, JOHANSON Type 3906
2,10 pF UNDERWOOD (UNELCOI one on
each side of the base lead
100 pF UNDERWOOD IUNELCOI
2,15 pF UNDERWOOD (UNELCOI one on

L1

each side of the collector lead
0.1 /JF. 100 V Disc Ceramic

ZI

680 pF ALLEN BRADLEY Feed'h,u
1.0 I'F, 35 V TANTALUM
2.7 Ohms, 1/2 W, 10%

Z2

C7

C9

7 Turns, #20 AWG, 1/4" ID

L2

1 Turn, 1/8" 10, lead of C8

L3
L4
L5

7 Turns, #20 AWG, 1/4" 10
FERRITE Choke, FERROXCUBE VK200·20·4B
FERRITE Beed on loed of Rl, FERROXCU8E
56·590·65·3B
MICROSTRIPLINE 0.2" W. 1.6" L,
C2 Mounted 0.3 I "chas From Start
C3 Mounted 1.1 Inches From Start

MICROSTR IPLIN E, 0.300" W • 1.70" L
C7 Mounted at Collector
C9 Mounted 0.4" From End

Board - Glass Teflon, €R "" 2.56, t "" 0.062"
Input/Output Connectors - Type N

1308

MRF304 (continued)

FIGURE 3 - OUTPUT POWER versus INPUT POWER

FIGURE 2 - OUTPUT POWER .ersus FREQUENCY

20

t--

v~c = 28 Vd'

0

I

1

Vec' 28 Vd,

Pin' I.~

r- -r-....
r-~
-

--r-

I'-.
0

-.....

1.0lW

1:-

-- ~

t--

0

0.25W

1225 MJz

5

.,V
/V

0

V
V /

t--

"-

0

40& MHz

V

.//

..... V

/
0
200

I

250

0

300
35D
t, FREIlUENCY (MHz)

400

450

0.4

2.0

1.6

FIGURE 5 - OUTPUT POWER versus
SUPPLY VOLTAGE - 400 MHz

FIGURE 4 - POWER GAIN versus FREQUENCY

16

14

0.8
1.2
Pin, INPUT POWER (WAITS)

0

--

--.

2

r-_

0 - _~ce=28Vd'
P " '=

OI l°i

'"::
~

--.

300

250

k:

'"~

--

~ 10

>-

::l

~o

400

350

--

12

f, FREIlUENey (MHz)

FIGURE 6 - OUTPUT POWER versus
SUPPL Y VOL TAGE - 225 MHz

-

--

....- - ~
--- ....- ----r-.......

o

450

V

.......... .......... ~7

; 5. 0 ..........
.E

8. 0
200

15

16

20
24
Vee, SUPPLY VOLTAGE (VOL TS)

28

32

FIGURE 7 - SERIES EQUIVALENT IMPEDANCE

0

t_l~

5

./

:;~

V V V~ V I---"
0
I--l./:: ~ V
I--I-~V

V

01-i""""

0
12

-

16

O~

.!

H

O.~

20
24
Vee, SUPPLY VOLTAGE (VOLTS)

28

32

5 Hz
300 MHz

+J
20+j30

• -I
~
65-145

350 MHz

45+/45

65-J5.2

-l-f-+-j-+-'Ll~!,/j'l

1309

MRF304 (continued)

400 MHz TI;ST CIRCUIT
FIGURE 8

1310

MRF30S

(SILICON)

The RF Line
30W-400 MHz
CONTROLLED "a"
RF POWER
TRANSISTOR

NPN SILICON RF POWER TRANSISTOR

NPN SILICON
. designed primarily for wideband large·signal driver and output
amplifier stages in the 225·400 MHz frequency range.
•

Specified 28 Volt, 400 MHz CharacteristicsOutput Power = 30 Watt
Minimum Gain = 8.0 dB
Efficiency = 55% (Min)

•

Built·ln Matching Network for Broadband Operation

•

100"10 Tested for Load Mismatch at all Phase Angles
with 30: 1 VSWR

R

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

Collector-Base Voltage
Emitter-Base Voltage
Total Device Dissipation@Tc::: 25 0 C

(11

VeEO
VeBO
VEBO
Po

Derate above 2SoC
Storage Temperature Range

T stg

Value

Unit

33

4.0

Vdc
Vdc
Vdc

70
0.4

w/oe

-65 to +200

°e

60

STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. EMITTER
4. BASE
FLANG E·ISO LATED

Watts

THERMAL CHARACTERISTICS
DIM

Characteristic

A

Thermal Resistance. Junction to Case

B
C

(1)These devices are designed for RF operation., The total device dissipation rating
applies only when the devices are operated as RF amplifiers.

D
F
H

J
K
L
N
Q

R
S

MILLIMETERS
MAX
MIN
24.38 25.15
12.95
12.45
5.97 7.62
5.46TYP
5.08 5.33
18.29 18.54
0.10 0.15
10.67 10.92
3.81 4.06
3.81 4.32
2.92 3.18
3.05 3.30
21.34 21.84

INCHES

MIN MAX
0.960 0.990
0.490 0.510
0.235 0.300
0.215 TYP
0.200 0.210
o.no 0.730
0.004 0.006
0.420 0.430
0.150 0.160
0.150 0.170
0.115 O.IZD
0.120 0.130
0.840 0.860

CASE 278-03

1311

MRF305 (continued)

ELECTRICAL CHARACTERISTICS (TC

=

250 C unless otherwise notedl
Svmbol

Min

TVp

Max

Unit

Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB = 0)

BVCEO

33

-

-

Vde

Collector-Emitter BreakdQlN" Voltage
(lC = 50 mAde, VBE = 0)

BVCES

60

Vde

Emitter-Base Breakdown Voltage
(Ie = 3.0 mAde, IC = 01

BVEBO

4.0

Vde

ICBO

-

-

2.0

mAde

GpE

8.0

-

-

dB

1]

55

-

-

%

Characteristic
OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
ON CHARACTERISTICS

DC Current Gain
(lC = 500 mAde, VCE = 5.0 Vde)
(lC = 3.0 Ade, VCE = 5.0 Vdcl
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 28 Vde, Ie

= 0, f = 1.0 MHz)

FUNCTIONAL TESTS (Figure 1)
Common-Emitter Amplifier Power Gain
(VCC = 28 Vde, Pout = 30 W, f = 400 MHz)
Collector Efficiency
(VCC = 28 Vde, Pout

= 30 W, f = 400 MHz)
-

Electrical Ruggedness

(Pout = 30 W, VCC
all phase angles)

= 28 Vde, f = 400 MHz, VSWR

-

No Degradation in Pout

30: 1,

FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
L4

Cll

C13
28 Vdc

RF
INPUT

I~--~--~t----1C=~Z~2~~}-~!:-~~
Cl0

Cl

Zl

C2

RF
OUTPUT

L2

C3

CB

C4

C7

C9

Rl

C1,C10

O.018IJF VITRAMON Chip Capacitor

C2 ,C3,C7 ,C9 1.0-20 pF JO HANSO N Type 3906
C4
2,10 pF UNOERWOOD (UNELCO)
one each side of the Base Lead
C5
100 pF UNDERWOOD (UNELCO)
C6
2,20 pF UNDERWOOD (UNELCO)
one each side of the Collector Lead
0.1 /JF. 100 V Disc Ceramic
C8
Cl1,1.3
680 pF ALLEN BRADLEY Feedthru
C12
1.0 I'F, 35 V TANTALUM
Rl
2.7 Ohm, 112 Watt, 10%
3 Turns, #24 AWG, 118" 10
Ll
2 Turns, Lead of ca. 1/S" 10
L2

L3
L4

5 Turns, #20 AWG, 1/4" 10

L5

FERRITE Bead on Lead 0,1 R1,

ZI

Microstrip Line. 0.2" W x 1.7" L

FERRITE Choke, FERROXCUBE
VK200-20-4B
FERROXCUBE 56-590-65-38

Z2

1312

C2 Mounted 0.3" from
C3 Mounted 0.9" from
Microstrip Line, 0.3" W x 1.5" L
C7 Mounted 0.8" from
C9 Mounted 0.2" from
Board - Gla. Teflon fR = 2.56,
t = 0.062 in.
Input Output Connectors Type N

Start
Start
End
End

MRF305 (continued)

FIGURE 2 - OUTPUT POWER versus FREQUENCY

FIGURE 3 - OUTPUT POWER versus INPUT POWER

\

50

50
Vcc - 28 Vdc

i

40

30

:>

20

~

-r-

"-

/"

'"

'"w

......

I-- I--- 3.0W

~

/'

30

/

0

.E"

0.1W

200

250

300
350
f. FREQUENCY (MHz)

400

~

o
o

450

~MHZ

../

.L[&.. V"

10

0.5W

o

~

~ V

IL

:>

V

. / f-"""300 MHz

V V

:>

~ 20

2.0W

t--- i--

S

.E 10

40

~

4.0W

t---

:>
0

g

~ 5.0W

t---

~25MH~

Vcc - 28 Vdc

Pin-

r--

t-..

'"~

....~

--- ---

I--

2.0

1.0

3.0

FIGURE 5 - OUTPUT POWER versus
SUPPLY VOLTAGE - 400 MHz

FIGURE 4 - POWER GAIN versus FREQUENCY
0

2

f-400MHz
1

z

I"----. .......

0

to

'"
~
::e

to

r--..

. Vcc - 28 Vdc
Pout-30W

0

. . . r--.

9. 0

0

8. 0

250

300
350
f. FREQUENCY (MHz)

400

FIGURE 6 - OUTPUT POWER versus
SUPPLY VOLTAGE - 225 MHz
Pin
. / 4.0W

~V
V ..... V
~

12

14

V

---- --- -- - - ...-

0

,../ f-"""

_

~

3.0W
2.0W

f-

16
18
20
22
24
Vcc. SUPPLY VOLTAGE (VOLTS)

12

14

V V

--

V

.-

I-- I-rf - f--

VI"""
f-........... f-

-

16
18
20
22
24
Vcc. SUPPLY VOLTAGE (VOLTS)

26

tOW

28

30

1313

5.0W
4.0W
3.0W

r-- 2.0W
tOW

26

FIGURE 7 - SERIES EQUIVALENT IMPEOANCE

f - 225 MHz

0

~

0
10

450

50

0

k:::: V

0

7. 0
200

Pin

0

.........

;;:
W

5.0

4.0

Pin. INPUT POWER (WATTS)

28

30

MRF305

(continued)

FIGURE 8 - INTERMODULATION DISTORTION vorsus
OUTPUT POWER (PEP)

0
z

o
;::

'"
~Q
z

o

45

f=1400M~~±

"""

........
.... r-....

0

r-.......

~

~
o

TONE SPACE 1.0 MHz
VCC =28 Vdc- r--

35

ffi

..........

1'--...

f'--..

~ 30

c,

r----..

~

5
2151617

18
19202122232425
Pout. OUTPUT POWER (WATTS PEP)

FIGURE 9 - 400 MHz TEST CIRCUIT

1314

MRF401

(SILICON)

The RF Line
25 W PEP - 30 MHz
RF POWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTORS

· .. designed primarily for applications as a high·power linear
amplifier from 2.0 to 75 MHz.
• Specified 28 Volt, 30 MHz Characteristics Output Power = 25 W (PEP)
Minimum Gain = 13 dB
Efficiency = 40%
•

Intermodulation Distortion at 25 W (PEP)
IMD = -32 d8 (Max)

•

Isothermal·Resistor Design Results in Rugged Device

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

Rating

VCEO

30

Vdc

Emitter-Base Voltage

VERn

4.0

Vdc

}b[
L

Collector Current - Continuous
Total Device Dissipation@Tc

= 2SoC(1)

Ir

3.3

Adc

Po

50
28.6

Watts

T stg

-65 to +200

°c

Derate above 2SoC
Storage Temperature Range

W/oC

(11 These devices are designed for R F operation. The total device dissipation fating
applies only when the devices are operated as class B or C R F amplifiers.

L 1_

,

r

d:'-L

]- = -+bT,

E

:EATINGPLANE

WRENCH FLAT

=~S

=~
::::..j I--L

MILLIMETERS
DIM MIN
MAX

INCHES
MIN
MAX

A
9.40
9.78
B
8.13
8.38
C 18.03 19.05
D 5.59
5.84
E
1.78
2.03
F
2.79
2.92
H 26.42 28.70
J
0.10
0.15
K 13.21 14.35
L
1.40
1.65
M
450 N M
P
1.27
R 7.59 7.80
S
4.01
452
T
2.16
2.41
2.54
3.30
NOTE
CASE 145A·OI USE 8·32NC2A STUD
CASE 145A·Ol

1315

MRF401

(continued)

ELECTRICAL CHARACTERISTICS ITc =

250 C unless otherwise noted.)

I

Symbol

Min

Typ

Max

Unit

Colle.tor-Emitter Breakdown Voltage
IIc = 50 mAde, IB = 0)

BVCEO

30

-

-

Vd.

Colle.tor-Emitter Breakdown Voltage
(lC = 10 mAd., VBE = 0)

BVCES

60

-

-

Vd.

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

-

Vd.

Common-Emitter Amplifier Power Gain
(Pout = 25 Watts PEP, IC (max) = 1.12 Ad., VCC = 28 Vd.,
1= 30 MHz)

GpE

13

-

-

dB

Collector Elfieienty
(Pout = 25 Watts PEP, IC (max) = 1.12 Ad., VCC = 28 Vde,
1= 30 MHz)

'I

40

-

-

%

1M

-

-

-32

dB

Characteristic
OFF CHARACTERISTICS

(IE = 10mAde,lc= 0)
ON CHARACTERISTICS

DC Current Gain
IIC =

1.0Ad~,

VCE = 5.0 Vde)

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 30 Vd., IE = 0, I = 1.0 MHz)
FUNCTIONAL TEST (Figure I)

Intermodulation Distortion
(Pout = 25 Watts PEP, IC = 1.12 Ade, VCC = 28 Vd.,
11 = 30 MHz, 12 = 30.001 MHz)

FIGURE 1 - 25 WATT, 2-30 MHz BROADBAND AMPLIFIER TEST CIRCUIT

Vss

RFC -2

28 Vdc

'----~I----_+-t-< 25 Watts PEP

RF
INPUT

RF OUTPUT

R1
10
1/2 W

T,

T3 4.1 6 Turns of 2 TWisted Pairs of =26 AWG Enameled
,
Wire (6 Crest Per Inch) Wound on Stackpole 57·9322 =11 Toroid.
T2 4"
4 Turns of 4 TWisted Pairs of =26 AWG Enameled
Wire (6 Crest Per Inch) Wound on Stackpole 57 ·9322 =11 Toroid.
RFC -2 Ferroxcube VK200 19/48 Ferrite Choke

NOTE: Adjust

Ves

for

Ie =

20 mAde with no RF drive present.

1316

MRF401 (continued)

FIGURE 2 - PARALLEL EQUIVALENT INPUT RESISTANCE
versus FR EQUENCY

FIGURE 3 - PARALLEL EQUIVALENT INPUT
CAPACITANCE versus FREQUENCY

5.0

2500

.............

i'---.

~cc ~ 128 vJ,_ r r

..........

r-

ICQ ~ 20 mA
Pout ~ 25 WIPEP)-i-

:--....

I-

a:iu:-

2000

r"-..

~.5

>w

~~

1500

~t::

-......

~~
5 1000

vC~~2L~_±

ICQ ~ 20 mA
Pout ~ 25 W(PEP)-

" "'" ""-

~

:;i

r- 1--.1-

"'I-

o:~

,,'"

G -

0

i""-

""-

500

'r-.

r-f-

o
10

20

30
40
t, FREQUENCY (MH,)

70

50

100

20

10

30
40
f, FREQUENCY (MH,)

70

100

MHz _

-

50

FIGURE 4 - PARALLEL EQUIVALENT OUTPUT
CAPACITANCE versus FREQUENCY
100 0

VC~~2JVd~+

ICQ ~ 20 mA
Pout ~ 25 W(PEP) -

0

0",-

""

0

0

10

I"---.. .......
-I-20

30
40
t, FREQUENCY (MH,)

FIGURE 5 - POWER GAIN versus FREQUENCY
30

I

I
Pout

iii

25

~

Two Tone Test
Z_

0"'-20

-'C

1-":0
..J:JI0":
0 00 -40

.........

-

~
'"3!

a:>-

VCC=28V
VCC = 28 V

1.5

./

V
./

1.0

:::>

./

1=
:::>
0.5

o

V

V

r--. r--.....
...........
r--.

-

I-"

r- r-...

V V

0

J

V

~V

L.---

I--

/
o

V V
40

-- ---r-- t-.

r- t-~
r- t-- -r- t--1

. . . . r- r-

60
80
100
Pin, INPUT POWER (mWI

120

140

o

~

160

50 mW

Pin = 25 mW

I
~

~

~

~

~

rn

I, FREQUENCY (MHz)

1321

5mW

t-- I--.

+--

/

20

.......

I
I
t---¥:.mw

~

~

~

~

MRF509 (continued)

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT
1.25
VCC' 20 Vdt

."
%

~

~ 1.0
",-

Q
Q

If:

i!:

./

0.75

--

--r-..

.........

Q

1§
~ 0.5

I

z

;;:
c;>

ffi 0.25
'":::>

'"

.,
~

300 MHz

400 MHz
500 MHz

0
0

10

20

30
40
50
80
70
IC. COLLECTOR CURRENT (mAl

80

90

100

FIGURE 6 - Sll,lNPUT REFLECTION COEFFICIENT

FIGURE 7 - S22, OUTPUT REFLECTION COEFFICIENT

FIGURE 8 - S12, REVERSE TRANSMISSION COEFFICIENT

FIGURE 9 - S21, FORWARD TRANSMISSION COEFFICIENT

1322

MR F509 (continued)

FIGURE 10 - 400 MHz TEST CIRCUIT

1323

MRF511

(SILICON)

Tbe RF Line
HIGH FREQUENCY
TRANSISTOR
NPN SILICON

NPN SILICON HIGH FREQUENCY TRANSISTOR
• .. designed specifically for broadband applications requiring low
distortion characteristics and noise figure. Specified for use in
CATV applications.
• Specified +50 dB mV Output, 80 mAdc Distortion Characteristics Triple Beat = -65 dB (Max)
Cross Modulation = -57 dB (Max)
Second Order = -50 dB (Max)
• High Broadband Power Gain Gpe = 10 dB (Min) @f= 250 MHz
• Low Broadband Noise Figure NF = 10 dB (Max) @ f = 200 MHz

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VeEO

25

Vdc

Collector-Base Voltage

VeBO

35

Vdc

Emitter-Base Voltage

VEBO

3.5

Vdc

Collector Current - Continuous

Ie

250

mAde

Total Device Dissipation @ T C "" 25°C
Derate above 2SoC

Po

5.0
28.6

Watts
mW/oe

Tstg

-65 to +200

°e

-

6.5

Storage Temperature Range
Stud Torque 11 )
(1) For Repeated Assembly use 5 In. Lb.

In. Lb.

DIM

MILLIMETERS
MIN
MAX

A 7.06 7.26
8
6.25 6.45
C 15.49 16.51
D 0.64 0.89
E
1.40 1.65
F
5.59 5.84
H 26.67 27.18
J
0.10 0.15
K 13.34 13.59
L
8.26 8.51
M 400
500
N 1.40 1.65
p
1. 7
S
3.00 3.25
T 1.40 1.85
U 2.92 3.68
V 100
200

INCHES
MIN
MAX

0.278 0.286
0.246 0.254
0.610 0.650
0.025 0.035
0.055
0.220
1.050
0.004
0.525
0.325

~

0

0.055
0.118
0.055
11
100

CASE 1440-04

1324

2

MR F511 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unl... oth.rwi. noted.)

I

I

Symbol

Min

Typ

M8x

Unit

Collector·Emitter Breakdown Voltage
(lc = 6.0 mAde,IB = 0)

BVCEO

25

-

-

Vde

Collector-B •• Breakdown Voltage
(lC = lool'Ade, IE = 0)

BVCBO

35

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = lool'Ade,lc· 0)

BVEBO

3.5

-

-

Vde

100

pAde

CMr.ctwilli..

OFF CHARACTERISTICS

Collector Cutoff Current
(VCE = 15 Vde, IB = 0)

ICEO

ON CHARACTERISTICS
hFE

25

50

200

VCE(sat)

-

0.2

0.5

Vde

Current-Gain-Bandwidth Product
(lc = 80 mAde, VCE = 20 Vdc, f = 200 MHz)

fT

1.5

2.1

-

GHz

Output Capacitance
(VCB = 20 Vde, IE = 0, f = 1.0 MHz)

Cob

-

3.2

4.5

pF

Noise Figure
(lc = 50 mAde, VCE = 20 Vde, f = 200 MHz)

NF

-

7.3

10

dB

Common-Emitter Amplifier Power Gain
(VCE = 20 Vde, IC = 80 mAde, f = 250 MHz)

Gpe

10

11

-

dB

2nd Order I ntermodulation Distortion
(VCE = 20 Vde, IC = SO mAde, Chn 2 + Chn 13 = 266.5 MHz)

IMD

-

-55

-50

dB

12 Chn XMD
30Chn XMD

-

-57

-

-59
-46

TB

-

-68

-65

DC Current Gain
(lC = SO mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage
(lC· loomAde,ls= 10 mAde)
DYNAMIC CHARACTERISTICS

FUNCTIONAL TESTS (Figure 1)

dB

Cross-Modulation Distortion
(VCE = 20 Vde, V out = +50 dBmV, IC = SO mAde)

Chn 13
Chn R

Triple Beat
(VCE = 20 Vde, IC = 80 mAde, V out = +50 dBmV,
Chn 2 + Chn 3 + Chn E = 261.75 MHz)

dB

FIGURE 1 - 40 to 330 MHz BROADBAND TEST CIRCUIT SCHEMATIC

R4

L4

C6

RF Output

CIRCUIT PERFORMANCE
Input/Output Aeturn Loss

Flatness
Gain

Bandwidth

Cl,C3,C4,CS,C6

0.002 "F Ceramic Disc

Rl
R2

C2
Ll

0.35-3.5 pF JOHANSON 4702

L2

SIlH, Ferrite Choke, MILL.ER
18 Turn., #24 AWG Enamelled, on Farrlta Torrid Core
FERROXCUBE 1041TOSo-4C7

L3

L4

2 Turns, #20 AWG, 118" 1.0.,0.2" Long

5 Turns, #20 AWG, 3116" i.D., 0.35" Long

1325

R3
R4

Min

Typ

-

ladB
+0.3 dB

10dB

-

40-300 MHz

4.7 kn, 1/4W, 10%
27 n,IW,10%
27 n,IW,10%
300 n, 1/4W, 10%.

Input/Output Conneetor, - TVpe F
Zo - 75 Ohms

MR F511 (continued)

FIGURE 3 - OUTPUT CAPACITANCE

FIGURE 2 - CURRENT-GAIN-BANDWIDTH PRODUCT
'N 2800

I

'"
'"t;24O
0
=>
o

f200 0

f--

10

I

9.0

V~E = 20 ~de

'" 1600
I;

8. 0

-.......

",

u.

.e
w

........
.......

/

~

o

7. 0

~ 6.0
~
C3 5. 0 \

§ 4.0

~120o /

z

0-

<800

~

3.0

~..;

2.0

",400
ex:
=>

~ 1.0

~

'"'

J:'

0
0

20

40

60
80
100 120 140
Ic. COLLECTOR CURRENT (mA)

160

180

I'-...

200

~

4.0

FIGURE 4 - INPUT CAPACITANCE

8.0
12
16
20
VCB. COLLECTOR·BASE VOLTAGE (VOLTS)

24

28

FIGURE 5 - BROADBAND NOISE FIGURE

25

13
12

~

.,

20

w
lio-'"'

U

~
~

:
15

10

!!;

..;
is 5.0

-

1-

VC

1: ~g~~~z

10

'"

~ 9. 0
il:
~ 8.0

-

o
z

7.0

u.'
Z

6.0

i,...- I---'"

--

5.0

-;,::;;;;

-

~

4.0

o
o

3.0
1.0
2.0
3.0
VE8. EMITTER·BASE VOLTAGE (VOLTS)

4.0

5.0

o

10

20

30
40
50
60
70
Ie. COLLECTOR CURRENT (rnA)

80

90

100

FIGURE 7 - 12 CHANNEL CROSS-MODULATION
versus COLLECTOR CURRENT

FIGURE 6 - 12 CHANNEL CROSS·MODULATION
versusCOLLECTOR·EMITTER VOLTAGE
30

:!
::!

....
w
Z

~

I
I
0 - '- IC =80 mAde
E. =+50d8mV

ul
z

..
i3
i5

Z

o

z

=>
o

o

0

~=>

~

~

50

o

t-- "-

'"

'"

~

'"
c

I I I
Vce-20Vde
E. = +50 dBmV

40

'"

r-- r--

:g

'"fi

-

z

0

S

30

z

r--.

'o·"'
~ 70

70
15

-

l- i--

60

16

17
18
19
20
21
22
23
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

24

25

1326

50

60

70
80
90
100
IC. COLLECTOR CURRENT (mA)

110

120

MR F511 (continued)

FIGURE 9 - 30 CHANNEL CROSS·MODULATION
ON CHANNEL 2,13,R

FIGURE B - 30 CHANNEL CROSS·MODULATION
ON CHANNEL R
25
0;

2:

30

~

35

z

40

5

45

..
z

z
o
z

50

o

55

~=>

'"'"
'"

lIi

60
65

\

IVCE

~

........ ......

70

d

75
50

60

1

20 ide

2:
~~

I--

I-- I-

20

N'

-'
W

I I I

I"--- r-

~

Z

~ 30

13

Eo = +50 dBmV

z

I"'.. i:'-

2!i 40

r- r-

Eo = +45 dBmV

~
g

...... ~ r-...

CHANNEL 13

i""'-- ~ r-I'--

50

'"

Eo = +40 dBmV

lIi

~

120

110

70
80
90
100
IC, COLLECTOR CURRENT (mA)

VCE = 20 Vde
Eo = +50 d8mV

~ r--....

o

--

"

~

l!i

T T T
......... t-..

'"

;;- 10

1T I

c:;;

'"x

CHANNEL R

r-....

CHANNEL 2

60
50

70
100
80
90
IC, COLLECTOR CURRENT (mA)

60

120

110

FIGURE 10 - 3O-CHANNEL CROSS-MODULATION versus
COLLECTOR·EMITTER VOLTAGE
20

I

I

IC = 80 mAde
Eo = +50 dBmV

~ 30 f..z

.

13
z
z
o

40

g

50

o

~
=>

r-- r-- i--

'o"

~

~
ci 60

l!i

15

16

17
18
19
20
21
22
23
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

0

..).

0

4O - f-

V~:: !~OV:~mv on Channel 2, 3, E

r-

%

'"'"
~

~

01--.

~

. . . r--.

50

!<

60

~

l"- t-.

10

w

i

70

«i
....

80

"'....

80
50

'"'"
~

w
-'

....
«i
....

Ic=80mA
Eo = +50 dBmV on ChanneI2,3,E

%

0

~

~

25

FIGURE 12 - TRIPLE BEAT versus
COLLECTOR·EMITTER VOLTAGE

FIGURE 11 - TRIPLE BEAT versus COLLECTOR CURRENT

i

24

60

100
70
80
90
IC, COLLECTOR CURRENT (mA)

110

120

1327

15

16

17
18
19
20
21
22
23
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

24

25

MRF511 (continued)

FIGURE 13 - SECOND ORDER IMD versus COLLECTOR
CURRENT

FIGURE 14 - SECOND ORDER IMD versus COLLECTOREMITTER VOLTAGE

20

20

r--

VCE" 20Vd,
Eo' +50 dBmV on Channel 2, 13

r---

IC' 80 mAd,
Eo· +50 dBmV on Chann,12, 13

0

(.....0-

....... I'-...

60

-~

r-

70
80
90
100
IC, COLLECTOR CURRENT (mA)

--

~

110

120

0
15

16

I--

17
18
19
20
21
22
23
VCE, COLLECTOR-EMITTER VOLTAGE IVOLTS)

FIGURE 15 -INPUT REFLECTION COEFFICIENT (SII) AND OUTPUT
REFLECTION COEFFICIENT (S22) versus FREOUENCY

1328

24

25

MRF511 (continued)

FIGURE 16 - FORWARD TRANSMISSION
COEFFICIENT (S12) vorsus FREQUENCY

FIGURE 17 - REVERSE TRANSMISSION
COEFFICIENT (S21) versus FREQUENCY

1329

MRF603 (SILICON)

The RFLine
10W -175 MHz
RF POWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

... designed for 12.5 Volt VHF large'signal power amplifier applica·
tions required in military and industrial equipment operating to 300
MHz .
•

Specified 12.5 Volt, 175 MHz CharacteristicsOutput Power = 10 Watts
Minimum Gain = 10 dB
Efficiency = 50%

MAXIMUM RATINGS
Svmbol

Value

Collector·Emitter Voltage

VCEO

18

Vdc

Collector-Base Voltage

VCBO

36

Vdc

VEBO
IC

4.0

Vdc

2.0
30

Adc
Watts

171

W/oC

Rating

Emitter~Base

Voltage

Collector Current - Continuous

Unit

Tot.1 Device Dissipation@Tc·25°C('1
Derat. above 25°C

Po

Storage Temperature Range

T stg

-65 to +200

°c

-

6.5

in. lb.

Stud Torque (21

DIM
A
B

C
0
E
F

H

J
K
L
M

(1) Th• • devices .r. designed for RF operation. The total device dissipation rating
IPPU.. only when the device. ere operated as clas. B or C RF amplifiers,
«2) For rep..ted ....mbly u•• 5 in.lb.

P
R
S
T
U

MILLIMETERS
MIN MAX
9.40
8.13
18.03
5.59
1.78
2.79
26.42
0.10
13.21
1.40
45 0
7.59
4.01
2.16
2.54

INCHES
MIN MAX

9.78 0.370 0.385
8.38 0.320 0.330
19.05 0.710 0.750
5.84 O. 20 0.230
2.03 0.070 0.080
2.92 0.110 0.115
28.70 1.040 1.130
0.15 0.004 0.006
14.35 0.520 0.565
1.65 0.055 0.065
NOM
45 0 N M
1.27
- 0.050
7.80 0.299 0.307
4.52 0.158 10.178
2.41 0.085 0.095
3.30 0.100 0.130

NOTE:

CASE 14SA-Ol USE 8-31NC2A STUD

CASE '45A-Ol

1330

MRF603 (continued)

ELECTRICAL CHARACTERISTICS (Tc

I

= 25 0 C unless otherwise noted.)

I

Characteristic

Symbol

Min

Typ

Max

Unit

BVCEO

18

-

-

Vde

BVCES

36

-

-

Vde

BVEBO

4.0

-

-

Vde

ICES

-

-

8.0

mAde

ICBO

-

-

0.5

mAde

GpE

10

-

-

dB

17

50

-

-

%

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

IIC

= 20 mAde,lB = 0)

Collector-Emitter Breakdown Voltage

IIC

= 10 mAde, VBe = 0)

Emitter-Base Breakdown Voltage

lie

= 2.0 mAde,lc = 0)

Collector Cutoff Current

(Vce

= 15 Vde, VBE = 0, TC = 550 C)

Collector Cutoff Current

(VCB

= 15 Vde,

Ie

= 0)

ON CHARACTERISTICS
DC Current Gain

IIC = 0.5 Ade, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 15 Vde,IE

= 0, f = 0.1

MHz)

FUNCTIONAL TEST (Figure 1)
Common-Emitter Amplifier Power Gain
(Pout = 10 W, VCC = 12.5 Vde, f = 175 MHz)
Collector Efficiency

(Pout

= 10 W, VCC = 12.5 Vdc, f = 175 MHz)

FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC

r-----~------~----~----~----<+

RF
OUTPUT
Cl

L1

RF
INPUT

C2

C4

C3

R2

Cl, C5
C2

C3
C4
L1
L2

5.0-80 pF,ARCO 462 or equivalent
9.0-180 pF, ARCO 463 or equivalent
120pF
25-280 pF, ARCO 464 or equivalent
Coppar Strap, 1-114" L, 114" W, 0.03" Thick
Ferrite Choke VK-20D-20148 FERROXCUBE
(Ferrite 8eed neer Base)

L3
L4
Rl

R2

1331

6 Turns file AWG, Wrapped on Rl
30 nH, 1 Turn file AWG, 1-114" Length, 114" 1.0.
100 Ohms, 2 W
1.5 Ohms, 114 W

MRF607 (SILICON)

The RF Line
1.75 W - 175 MHz
RF POWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

· .. designed for amplifier, frequency multiplier, or oscillator applications in military. mobile. marine and citizens band equipment.
Suitable for use as output driver or pre·driver stages in VHF and
UHF equipment.

•

Specified 12.5 Volt. 175 MHz CharacteristicsOutput Power ~ 1.75 Watts
Minimum Gain ~ 12.5dB
Efficiency ~ 50%

•

Characterized through 225 MHz

Ji~-=:=:

re---SEATING
PLANE

,,~

-----<>---0 STYLE 1:
PIN 1. EMITTER
I
2. BASE
3. COLLECTOR
N

...----I

/"
Q

C

LI

~K

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

16

Vdc

Collector-Base Voltage

VCBO

36

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Ie

Adc

Po

0.33
3.5
28

Watts
mWloC

Tst9

·65 to +200

°e

Collector Current

~

Continuous

Total Device Dissipation@TC=750C (1)

Derate above 75°C
Storage Temperature Range

DIM
A
B

C
D

E
F
G
H

J
(1) These devices are designed tor RF operation. The total device diSSipation ratm9
applies onlv when the devices are operated as class B or C RF amplifiers.

K

L
M
P
Q

R

MILLIMETERS
MIN MAX
8.89 9.40 .
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
D.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
450 NOM
1.27
900 NOM
2.54

All JEDEC dimensions and notes apply.
CASE 79-02

TO·39

1332

MRF607 (continued)

ELECTRICAL CHARACTERISTICS 1Te= 25"c unless otherwISe noted.)

I

Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage
lie = 25 mAde, 18 = 0)

BVeEO

16

-

Vde

Collector-Emitter Breakdown Voltage
IIC = 25 mAde, VBE = 0)

BVCES

36

-

Vde

Emitter-Base Breakdown Voltage
(IE = 0.5 mAde, Ie = 0)

BVEBO

4.0

-

Vde

leEO

-

0.3

mAde

GpE

12.5

-

dB

1'/

50

-

%

Characteristic

OFF CHARACTERISTICS

Collector Cutoff Current
(VCE = 10 Vde, IB = 0)
ON CHARACTERISTICS

DC Current Gain
(lC = 50 Ade, VeE

= 5.0 Vde)

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB

= 12

Vde,IE

= 0, f = 1.0 MHz)

FUNCTIONAL TEST (F;gure 1)
Common-Emitter Amplifier Power Gain

Vee

= 12.5

Vde, f

= 175 MHz)

Collector Efficiency
(Pout = 1.75 W, Vec

= 12.5

Vde, f

= 175 MHz)

(Pout

= 1.75 W,

FIGURE 1 - 175 MHz TEST CIRCUIT SCHEMATIC

L3

'---_-+-_--'r< L2

12.5 Vdc

C4
RF

Ll

Cl

Output

RF
Input

C3

C2

Cl
C2
C3,C4
C5

ca

2.7-15 pF, ARCO 461
9_0-180 pF, ARCO 463
5_0-80 pF, ARCO 462
1000 pF UNELCO
51'F, 25 Vdc, TANTALUM

1333

L1

1 Turn #20 AWG, 318" 10

L2

3 Turns #20 AWG, 3/8" 10

L3
L4

0_22 I'H Molded Choke
0_151'H Molded Choke
with FERROXCUBE
56-590-65-38 8ead on
ground Iud

MRF607 (continued)

TYPICAL PERFORMANCE DATA
FIGURE 2 - OUTPUT POWER vorsus FREQUENCY
325

l\.

2.75

g
~

2.0

1.75

\ 1\
\

"

I"

1
1

=> 1.50

0

~ 1.25

'\

I

0.15
50

75

100

125

\

150

175

I\,

\ \

I\.

VCC = 12.5 Vdc

1.0

3.0
.. 2.1 5
[::
~ 2.50

\

Pin = 50 mW ' "

I-

.E

250mW

1,\

I"

1
1

~ 2.25
w

"Ie

200mw,\

loomW'\

2.50

'"

l '

.1

3.0

FIGURE 3 - OUTPUT POWER versus INPUT POWER
3.25

\

250

2.7 5
2.50

V

.,V

0
5

./

0

5

k-'-"

./

V

0.50
0.25
5.0

f = 175 MHz
Pin = 150 mW' -

V
6.0

7.0

9.0
10
11
12
VCC.SUPPLYVOLTAGE (VOLTS)

B.O

1.7 5

0.1 5

275 300

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE

5

~

13

14

15

1334

V

L

/
/

1/

/

J

L
o

50

L
V".L.225 MHj

/

V

1.0

f. FREQUENCY (MHz)

5

2.0

l-

\1\

225

2.25

~

=>
o 1.50
~
~ 1.26

1\ '
200

ffi

175 MHz

V

/

VC~ = 12.5 Vdc -

V
100

150

200
250 300
350
Pin. INPUT POWER (mW)

400

450

FIGURE 5 - SERIES EQUIVALENT IMPEOANCE
PARAMETERS

500

MRF618

(SILICON)

The RF Line

15 W -470 MHz
CONTROLLED Q
RF POWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

· .. designed for 12.5 Volt UHF large·signal amplifier applications in
industrial and commercial FM equipment operating to 520 MHz.

•

Specified 12.5 Volt, 470 MHz CharacteristicsOutput Power = 15 Watts
Minimum Gain = 6.0 dB
Efficiency = 60%

•

100% Tested for Load Mismatch at all Phase Angles
with 20: 1 VSWR

•

Characterized With Series Equivalent Large·Signal Impedance

Parameters
•

Built·ln Matching Network for Broad Band Operation

STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. EMITTER
4. BASE
FLANGE·ISOLATEO

NOTE:
1. DIM "Q" IS OIA
DIM "S" IS RAD

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO
VCBO
VEBO
IC

18

2.5

Vdc
Vdc
Vdc
Adc

Po

45
0.257

Watts
W/oC

Tst9

-65 to +200

°c

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Total Device Dissipation
Derate above 2SoC

@

TC

Storage Temperature Range

= 2SoC (1)

36
4.0

(1) These devices are designed for RF operation. The total device diSSipation rating
applies only when the devices are operated as class B or C RF ampllflers

DIM

MILLIMETERS
MAX
MIN

24.51
9.47
5.97
18.29
E 2.16
4.32
F
H 18.29
0.10
J
K 12.19
L
3.05
6.86
N
n 2.79
R 6.10
2.67
S
U
1.65

A

B
C
D

25.15
9.73
7.62
19.311
2.67
4.57
18.54
0.15
12.70
3.30
7.11
3.18
6.60
3.05
1.91

INCHES
MIN
MAX

0.965
0.373
0.235
0.720
0.085
0.170
0.720
0.004
0.480
0.120
0.2 0
0.110
0.240
0.105
0.065

CASE 278-02

1335

0.990
0.383
0.3110
0.760
0.105
0.180
0.7311
0.006
0.500
0.1311
0.280
0.125
0.260
0.120
0.075

MRF618 (continued)

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

BVCEO

16

-

-

Vde

Collector-Emitter Breakdown Voltage
IIc = 50 mAde, VBE = 0)

BVCES

36

-

-

Vde

Emitter-Base Breakdown Voltage
liE = 50 mAde, IC = 01

BVEBO

4.0

-

-

Vde

ICES

-

-

10

mAde

GpE

6.0

7.0

-

dB

1/

60

-

-

%

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

IIc

= 50 mAde, IB =01

Collector Cutoff Current
(VCE = 15 Vde, VBE = 0, TC

= 55°CI

ON CHARACTERISTICS
DC Current Gain
IIC = 1.0 Ade, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB

= 12.5 Vde,

IE

= 0, f = 1.0 MHzl

FUNCTIONAL TEST (F,gure 11
Common-Emitter Amplifier Power Gain
(Pout = 15 W, VCC = 12.5 Vde, f = 470 MHzl

Collector Efficiency
(Pout = 15 W, VCC

= 12.5 Vde,

f

= 470 MHzl

Electrical Ruggedness

(Pout = 15 W, VCC = 12.5 Vde, f
VSWR = 20: 1, all phase anglesl

=

-

470 MHz,

No Degradation in Output Power

FIGURE 1 - 470 MHz TEST CIRCUIT SCHEMATIC
1000 pF
+

L2

Z2

T

J

RF INPUT >-~~r--'t--I>--L_~Z~l_..J

L1
C6

Cl, C8
C2
C3, C4, C5, C6
C7

C7

C4

100 pF

FERRITE
BEAD

Zl
Z2

100 pF, UNELCO OR EQUIVALENT
1.0·10 pF,JOHANSON 2951
15 pF, UNELCO OR EQUIVALENT
1.0·20pF,JOHANSON3906

0.2"WIDTH x 1.0" LENGTH
0.2B" WIDTH x 1.0" LENGTH
BOARD ISGLASSTEFLDN
3x5 x 0.062 INCH 1 0' COPPER
BOTH SIDES

L1, L2 3TURNS#20AWG,1/8"I.D.
FERRITE BEAD FERROXCUBE 56-590-65-3B

1336

1.0"F

C8

C1

C2

Vee

RF OUTPUT

MRF618 (continued)

TYPICAL PERFORMANCE DATA
FIGURE 3 - OUTPUT POWER versus INPUT POWER

FIGURE 2 - OUTPUT POWER versus FREQUENCY

10

10

Vee - 11.5 V

-

Pm- 3.OW

0

-

1.0W

0

400

410

440

460

480

"

~
~

~

:;:
~>-

10

"
0

J

-

500

'-470MHz

~ 15
>-

r-r--

LOW

o

510

5.0

,/'

V

/'

/

V

o
1.0

f, FREQUENCY (MHz)

1.0

3.0

4.0

50

Pin, INPUT POWER (WATTS)

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE
PARAMETERS

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE

0

....... ".--

I---ve1e -12.5 tdC

J.

f - - Pin- 3.0W

,- 470 MHz
5

0

/"

V

/

~

/'

0

0
4.0

6.0

8.0

10

12

14

16

VCC, SUPPLY VOLTAGE (Vdc)

FIGURE 6 - 470 MHz TEST
CIRCUIT LAYOUT

The series equivalent impedance values shown in Figure 5 are an
average of a large sample of devices. These impedances are highly
dependent on the following conditions: input power, output
power, supply voltage, harmonic termination and base bias (if any),

These variables can cause changes to ±30% from the typical values
shown.
Application Note AN-548. "Microstrip Design Techniques for
UHF Amplifiers". should be referenced for UHF power amplifier

designs.

1337

MR F618 (continued)

WIDEBAND UHF AMPLIFIER
460 MHz Typical Performance
Pin = 120 mW
Pout = 11 W
Ie = 1.8 A
FIGURE 7-

FIGURE 8RFG4

r

125 V

L2

Cl

RF

Rl

L3

C13

L1

INPUT

C9
C3

RF
OUTPUT

C4

Cl0

Cll

C12

C5

C1, 13, 14, 16 680 pF, All"EN·BRAQlEY FEEDTHRU
C2,10
1 0·11) "F,JOHANSON 2951
C3
10 pF UNDERWOOD OR EQUIVALENT
G4,5
60 pF UNDERWOOD OR EQUIVALENT
C6.8
Hi pF UNDERWOOD OR EQUIVALENT

C7
C9

100 pFUNOERWOOD OR EUUIVALENT
25 pF UNDERWOOD OR EUUIVALENT

GIl

70 pF UNOERWOOD OR EQUIVALENT

G12
C15

50pF UNDERWOOD OR EQUIVALENT
1 O.. F 35 V TANTALUM

l2

a 5 INCH, #24 AWG
a 5 INCH, #18 AWG

L3

0375 INCH, #18 AWG

L1

RFCI 4 TURNS #26 AWG, l/B" I 0 x 114" LONG WITH
FERRITE BEAD {FERRDXCUSE) ON GROUND END
RFC 2,3 5 TURNS #22 AWG, 1/8" lOx 1/4" LONG
RFC 4
FERROXCUBE VK200
Al 27 \! 1/4WATT
RZ 39~1114WATT
CIRCUITBUILTONPC BOARD 20ZCOPPER

FIGURE 9 - WIDEBAND SWEPT RESPONSE

:-.
,~

-Pout= 14W
-Pout=llW

-VSWR = L5
-VSWR = 1.0
'01

f, FREUUENCY (MHzl

SWEPT POWER OUTPUT AND INPUT VSWR Vec = 12.5 V Pin 150 mW

1338

MRF619 (SILICON)
MRF620

The RF Line

25 W - 470 MHz - MRF619
35 W - 470 MHz - MRF620

NPN SILICON RF POWER TRANSISTORS

"CONTROLLED

•

a"

RF POWER
TRANSISTORS

· .. designed for 12.5 Volt UHF large-signal amplifier applications in
industrial and commercial FM equipment operating to 510 MHz.

NPN SILICON

Specified 12.5 Volt, 470 MHz Characteristics Output Power = 25 Watts - MRF619
35 Watts - MRF620
Minimum Gain

= 5.22 dB -

MRF619
4.3 dB - MRF620

Efficiency = 55%
•

100% Tested for Load Mismatch at all Phase Angles with
20:1 VSWR

•

Characterized with Series Equivalent Large-Signal Impedance
Parameters

•

Built-In Matching Network for Broadband Operation

r N1

[21,.,f-r
~---

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO
VCBO
VEBO
IC

Vdc
Vdc
Vdc
Adc

T stg

16
36
4.0
6.0
8.0
115
0.667
-65 to +200

I Symbol I

Max

Rating
Collector - Emitter Voltage

Collector - Base Voltage
Emitter - Base Voltage
Collector Gurrent - COntinuous

MRF619
MRF620

Total Device Dissipation@TC=2Sv C (1)

PD

Derate above 2SoC
Storage Temperature Range

STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. EMITTER
4. BASE
FLANGE-ISOLATEO

4

---

I

JFL

NOTE:
1. OIM "a"ls DIA
DIM "S"IS RAD

Watts

W/oC

DC

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to case

I

1.5

°JC

I

I

(1) These devices are designed for RF operation. The total device dissipation rating

applies only when the devices are operated as class C RF amplifiers.

Unit

uCIW

DIM
A
B

C
0
E
F

H
J
K
L
N
Q

R
S
U

MILLIMETERS
INCHES
MIN
MAX
MIN MAX
24.51 25.15 0.965 0.990
9.47
9.73 0.373 0.383
7.62 0.235 0.300
5.97
lB.29 19.30 0.720 0.760
2.67 0.OB5 0.105
2.16
4.57 0.170 0.180
4.32
18.29 18.54 0.720 0.730
0.10
0.15 0.004 0.006
12.19 12.70 0.480 0.500
3.05
3.30 0.120 0.130
7.11 0.270 -"'.280
6.86
2-79
3.1B 0.110 0.125
6.80 0.240 0.260
6.10
3.05 0.105 0.120
2.67
1.91 0.065 0.075
1.65
CASE 278-02

1339

MRF619, MRF620 (continued)

ELECTRICAL CHARACTERISTICS

I

(Te

= 25 0 e

unless otherwise noted)

I

Typ

Max

Unit

16

-

-

Vde

BVCES

36

-

-

Vde

BVEBO

4.0

-

Vde

Symbol

Min

Breakdown Voltage
0)

BVCEO

Collector-Emitter Breakdown Voltage
(Ie = 50 mAde, VBE = 0)

Emitter-Base Breakdown Voltage

Characteristic

OFF CHARACTERISTICS
Collector~Emitter

(lC

(IE

= 15 mAde, IB =

=5.0 mAde, IC = 0)

Collector Cutoff Current
(VCE = 15 Vde, VBE = 0)

ICES

-

-

20

mAde

Collector Cutoff Current
(VCB = 15 Vde, IE = 0)

ICBO

-

-

20

mAde

5.22
4.3

-

-

55
55

-

ON CHARACTERISTICS
DC Current Gain
(lC = 4.0 Ade, VCE

= 5.0 Vde)

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 12.5 Vdc, IE = 0, f = 1.0 MHz)
FUNCTIONAL TEST (F,gure 1)
Common-Emitter Amplifier Power Gain
(Vec = 12.5 Vde, Pout = 25 W, f = 470 MHz) MRF619
(VCC = 12.5 Vde, Pout = 35 W, f = 470 MHz) MRF620

GpE

Collector Efficiency
(Vec = 12.5 Vde, Pout = 25 W, f = 470 MHz) MRF619
(Vee = 12.5 Vde, Pout = 35 W, f = 470 MHz) MRF620

1)

Electrical Ruggedness

-

(Vce = 12.5 Vde,
VSWR = 20: 1,
(VCC = 12.5 Vde,
VSWR = 20:1

dB

%

Pout = 25 W, f = 470 MHz,
All phase angles)
MRF619
Pout = 35 W, f = 470 MHz,
All ohase angles)
MRF620

-

No Degradation
in output power

FIGURE 1 - 470 MHz TEST CIRCUIT
Bead
~------~~----~------O+VCC

C8I_

+

J;C7

L2

RF
INPUT

RF
OUTPUT

C4

Cl, C9
C2,C4
C3,C5
C6
C7
CB
Cl0, C11

1.0-20 pF JOHANSON 3906 or equivalent
25 pF UNELCO or equivalent
15 pF UNELCO or equivalent
, .0-1 0 pF JOHANSON 2951 or equivalent
1.0,uF, 35 V TANTALUM
680 P F F eedth ru
100 pF UNELCO or equivalent

C5

C6

L1
L2

4Turns#22AWG,O.125 1.0.
3 Turns #20 AWG, 0.250 1.0.

ZI
Z2
Z3

0.160'· W X 1.7"' L
0.230" W X 0.9" L
0.340" W X 0.9" L

FERROXCUBE Bead 56·590·65-3B
Board is gtass teflon, ER = 2.56

3" x 5" x 0.062", 1 oz.
COPPER DOUBLE CLAD

1340

C9

MRF619, MRF620 (continued)

OUTPUT POWER versus FREOUENCY
(Vec

= 12.5 Vdc)
FIGURE 3 - MRF620

FIGURE 2 - MRF619

-

5

I-- --l.

0_

5

-r-- r--

45

--

7.~W

12.5W

~
~

- --

r-- I--

0:

450
470
t, FREQUENCY (MHz)

-

lOW
35

~
>~
>-

30

5

25

I-f-

.........

I-- r--

'"0
,;:

430

40

~

6.0W

5

10
410

-- --

Pin: 15W

Pin: lOW

20
410

510

490

- --

5.0W

430

450

470

490

t, FREQUENCY (MHz)

510

OUTPUT POWER versus INPUT POWER
(Vee

= 12.5 Vdc)
FIGURE 5 - MRF620

FIGURE 4 - MRF619
5

.1.

450M~

~
0:

~

~ V"..,...,.

30

-9'/

25

:='"
}

15

10
2.0

/? F-470 MHz
510 MHz

in

>>-

r--

'"
0:

~

>~

!;
0

5

~
AV
~

,;:

~

450 MHz _
35

~

~

~

4.0

40

~

A I"

20

'"o

~ V%

~/

~

>-

45

~V

30

l,..'lV'

25 ~

V

~

-

.... ~ ~

;..---

...........

<::::: "./
"./ --.. 470 MHz

I--

-510MHz

/V'

..,/
20
6.0

8.0

10

7.0

5.0

12

Pin, INPUT POWER (WATTS)

9.0

11

13

15

Pin, INPUT POWER (WATTS)

OUTPUT POWER versus SUPPLY VOLTAGE
(f = 470 MHz)

FIGURE 6 - MRF619
5

~
0:

~

0

,/'

3

>-

~

20

~

~

V

V

0:

/'

L

40

.,.

,./

.,./

~

>~
>-

-

I--

45

~

V
~1 5
10
10

--

"./

25

~

>o'"

"./'

FIGURE 7 - MRF620
50

35

.,./

V

'"
0

Pin: 7.5W

5

,;:

30

p. :13W

'1

-

r-

J

25
11

12

13

14

15

10

11

12

13

VCC, SUPPLY VOLTAGE (Vdc)

VCC, SUPPLY VOLTAGE (Vdc)

1341

14

15

MRF619, MRF620

(continued)

SERIES EQUIVALENT IMPEDANCE

(Vee

= 12.5 Vdcl

FIGURE 8 - MRF619

FIGURE 9 - MRF620

lin
4001.0 + j4.5
--'"-+-1""-450 1.0 + j4.8
4701.1+ j5.5
5101.1 + j5.6

FIGURE 10 - 470 MHz TEST CIRCUIT LAYOUT

1342

MRF621

(SILICON)

The RF Line
45 W -470 MHz

"CONTROLLED a"
RF POWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR
... designed for 12.5 Volt UHF large·signal amplifier applications in
industrial and commercial FM equipment operating to 512 MHz.
•

Specified 12.5 Volt, 470 MHz Characteristics Output Power ~ 45 Watts
Minimum Gain ~ 4.8 dB
Efficiency ~ 55%

•

100% Tested for Load Mismatch at all Phase Angles with 20: 1
VSWR

•

Characterized with Series Equivalent Large·Signal Impedance

•

Built·in Matching Network for Broadband Operation.

Parameters

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector· Emitter Voltage

VCEO

Vdc

Collector - Sase Voltage

VCBO

Emitter - Base Voltage

VEBO

16
36
4.0
11
146
0.834
-65 to +200

Collector Current - Continuous

IC

Total Device Dissipation@TC-2SOC(1)
Derate above 25°C

Po

Storage Temperature Range

T stg

Vdc
Vdc
Adc
Watts

WloC

°c
DIM

THERMAL CHARACTERISTICS
Characteristic;
Thermal Resistance, Junction to case

I

Symbol

I

Max

I

Unit

I

ReJC

I

1.2

I

°CIW

A
8
C
D
F
H
J
K

(1) These devices are designed for RF operation. The total device dissipation rating

applies only when the devices are operated as Class C R F amplifiers.

L
N
Q

R
S

MILLIMETERS
MIN MAX
24.38 25.15
12.45 12.95
5.97 7.62
5.46 TVP
5.08 5.33
18.29 18.54
0.10 0.15
10.67 10.92
3.81 4.06
3.81 4.32
2.92
.18
3.05 3.30
21.34 21.84

INCHES
MIN
MAX
0.960 I 0.990
0.490 0.510
0.235 0.300
0.215 TVP
0.200 0.210
0.720 0.730
0.004 0.006
0.420 0.430
0.150 0.160
0.150 0.170
0.115 0.125
0.120 0.130
0.840 0.860

STYLE 1:
PIN 1. EMITTER
2. CO LLECTO R
3. EMITTER
4.8ASE
FLANGE·ISOLATED
CASE 278·03

1343

MR F621 (continued)

ELECTRICAL CHARACTERISTICS (TC= 250 C unless otherwi. noted.)

I

I

Symbol

Min

Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB = 0)

BVCEO

16

Coliector·Emitter Breakdown Voltage
(lC· 15 mAde, VBE = 0)

BVCES

36

-

Emitter·Ba. Breakdown Voltage
(IE = 5.0 mAde, IC = 0)

BVEBO

4.0

-

Vde

ICBO

-

20

mAde

Common-Emitter Amplifier Power Gain
(VCC = 12.5 Vde, Pout = 45 W, IC(max) = 6.5 Ade, 1= 470 MHz)

GpE

4.8

-

dB

Collector Efficiency
(VCC = 12.5 Vde, Pout = 45 W, IC(max) = 6.5 Ade, 1= 470 MHz)

11

55

-

%

Electrical Ruggedness
(VCC = 12.5 Vde, Pout = 45 W, f = 470 MHz,
VSWR = 20: 1, All phase angles)

-

Choracteristic

Max

Unit

OFF CHARACTERISTICS

Collector Cutoll Current
(VCB = 15 Vde, IE = 0)

Vde
Vde

ON CHARACTERISTICS

DC Current Gain
(lC = 5.0 Ade, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 12.5 Vde, IE = 0, 1= 1.0 MHz)
FUNCTIONAL TEST (Figure 1)

-

No Degradation
in output power

FIGURE 1 - 470 MHz TEST CIRCUIT
L4

Cl0

1I

C12

I

C11

+
12.5 Vdc
(-

RF OUTPUT

RFINPUT

C13

Cl,C9
C2,C8
C3,C4.C5
C6
C7
Cl0,C12
Cll
C13
Ll
L2
L3

1.0-20 pF JOHANSON Type 3906
100 pF UNELCO
25 pF UNELCO
40 pF UNELCO
5.0 pF UNELCO
680 pF ALLEN BRADLEY Feedthru

1.0 I'F, 35 V TANTALUM
O.lI'F, 100 V ERIE Red Cap
3.9

~H

DELEVAN Molded Choke

7 Turns, #18 AWG, 0.2" lOx 0.5" L..
(0.6 em 10 x 1.3 em L.)

C5

C6

C7

L4

FERRITE Choke, FERROXCUBE
VK200-20-4B

L5
Rl
Zl,Z4
Z2

2 Turns, L.ead of C13, 0.1" 10 (0.25 em)

Z3

Microstrip Line, 0.25" W x 1.5" L
(0.7 em W x 3.8 em L)
C7 Mounted 1.0" (2.5 em) from C5, C6

4.3 Ohm, 1/4 Watt, 10%
Mlerostrlp Line (50 m, O.lBO" W (0.07 em)
Microstrlp Line, 0.25" W x 1.0" L..
(0.7 em W x 2.5 em L)

Board - Glass Teflon, ER ... 2.56, t

FERRITE Bead on Lead of L1

FERROXCUBE 56-590-65-3B

= 0.062"

Input/Output Connectors - Type N

1344

MRF621

(continued)

FIGURE 2 - OUTPUT POWER
5

"""'-If"...

Pin=15W

5

lOW"'--

'470 MHz

!512 MHz

i

!

1

"-

I

'"

420

V

440

460

i
480

500

/

5

~

i

L

5

I"
I

'-

Vee' 12.5 Vde

400

.........
V
/'

...... ~,
I

30
380

FIGURE 3 - OUTPUT POWER ....... INPUT POWER
55

i'-o
I
I

'-

_MI, FREQUENCY

520

540

560

L

f =470 MHz
Vee = 12.5 Vd;-

,

30
6.0

580

/

8.0

10

f, FREQUENCY (MHz)

12

14

16

18

20

Pin, INPUT POWER (WATTS)

FIGURE 4 -OUTPUT POWER vorsus SUPPLY VOLTAGE
57.5

~

12.5 Vde

55

./

., 52.5

~
~

ffi
3:
it

V

50

1/

47.5

/

45

~

42.5

o

40

/

f =470 MHz_
f-Pin = 15W

S

re 37.5
35
32.5
7.0

/
8.0

9.0

/
10

11

12

13

14

15

16

17

Vee, SUPPLY VOLTAGE (VOLTS)

FIGURE 5 - SERIES EQUIVALENT INPUT IMPEOANCE

FIGURE 6 - SERIES EaUIVALENT OUTPUT IMPEDANCE
PDut = 45 w

Pout '"' 45W
Vee = 12.5 Vde
Frequency

MHz

400
450
500
550

Vee = 12.5 Vde

liN
Ohms
1.3+j3.9
1.4+j4.1
1.9+j5.7
3.7 +j4.5

Frequency
MHz
400
450
500
550

2.0
3.0
4.0
5.0

1345

lOL
Ohms
1.9 +j2.3
1.7 +j2.4
1.6+j2.4
1.2+j3.4

22

MRF621 (continued)

FIGUR E 7 - 470 MHz TEST CIRCUIT LAYOUT

""1·_-----------12.~.~-m-----------_t
..1

E

: 1,

RF INPUT

...:

1346

MRF628 (SILICON)

The RF Line
0.5 W • 470 MHz
RFPOWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

· .. designed for 5.0·15 Volt, VHF/UHF large'signal Amplifier/Mul·
tiplier applications in military and mobile FM equipment.

•

Sp~cified

•

Characterized with Series Equivalent Large·Signal
I mpedance Parameters

12.5 Volt, 470 MHz Characteristics
Power Output = 0.5 Watts
Minimum Gain = 10 dB
Efficiency = 50%

I~F]
JJ

MAXIMUM RATINGS
Symbol

Rating

Value

Unit

I

I
-I

VeEO

16

Vde

Collector-Base Voltage

VeBO

36

Vde

Emitter-Base Voltage

VEBO

4.0

Vde

Ie

200

mAde

Po

3.0
17.2

Watts

DIM

rrNilf'e

-65 to +200

°e

A
C
D
H

Total Oevice Dissipation @TC
Derate Above 25°C
Storage Temperature Range

= 25°C

Tstg

SEATING
PLANE

STYLE 1:
PIN I.EMITIER
2. BASE
3. EMITTER
4. COLLECTOR

Collector-Emitter Voltage

Collector Current - Continuous

A

MILLIMETERS
MIN MAX

7.06 7.26
2.82 3.35
5.5
26.67 27.18
0.10 0.1
J
K 1 .34 13.59
M
40'
S 1.40 1. 5

INCHES
MAX
MIN

0.278 0.286
0.115
0.220 10.230
1.050 1.070
.004 O.
O.
40
50'
0.055 0.065

CASE 249·01

1347

1

L\ \

MRF628 (continued)

ELECTRICAL CHARACTERISTICS ITc = 2So C unless otherwise noted)

I

Characteristic

Symbol

Min

Typ

16

-

-

36

-

-

36

-

-

4.0

-

-

-

-

2.0

-

-

0.5

10

-

-

50

-

-

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltege 11)
IIc = 20 mAde, IB = 0)

BVCEO

Collector-Emitter Breakdown Voltage (1)
IIc = 20 mAde, VBE = 0)

BVCES

Collector-Base Breakdown Voltage
IIc = 20 mAde, IE = 0)

BVCBO

Emitter-Base Breakdown Voltage
liE: 5_0 mAde, IC = 0)

BVEBO

Collector Cutoff Current
IVCE = 15 Vde, VBE = 0, TC = 25 0 C)

ICES

Collector Cutoff Current
IVCB = 15 Vde, IC = 0)

ICBO

Vde
Vde
Vd.
Vde
mAde
mAde

ON CHARACTERISTICS

DC Current Gain
IIC = 100 mAde, VCE = 5.0 Vde)

20

DYNAMIC CHARACTERISTICS
Output Capacitance
IVca = 12 Vde,lE

.

= 0, f = 1.0 MHz)

FUNCTIONAL TEST
Common-Emitter Amplifier Power

Gain
Iclmax)

= 80 mAde, f =470 MHz)

Collector Efficiency
IVCC = 12.5 Vde,.pout = 0.5 W, Iclmax)

= 80 mAde, f =470 MHz)

IVCC

= 12.5 Vde, Pout = 0.5 W,

GpE

1/

dB
%

11) Pulsed thru 25 mH inductor.

FIGURE 1 - SERIES EaUIVALENT
IMPEDANCE PARAMETERS

FIGURE 2 - OUTPUT POWER versus INPUT POWER
2.0
1.8

S
...

1.0

0

=>

0.8

0

0.6

~

0.4

I!:
=>

0.2

../
../

/'
./
V
20

/

40

60

80

100

120

Pin,lNPUT POWER ImWl

1348

..-/

/"

1.4

1.2

I-

,., ,.,

1.6

.~.,w

,.

J

Vee = 12.5
f = 470 MHz

140

160

180

200

MRF628

(continued)

FIGURE 4 - OUTPUT POWER _ .... VOLTAGE

FIGURE 3 - OUTPUT POWER var...s FREQUENCY
1000

-

900
800

!

70O

~

600

~
!;

I-- Pin

400

o

300

J 200

-

600

410

420

430

440

450

460

470

480

/

V

450

~

....

400

!;

350

~

-

490

500

'"~
0

25 mW

VCC = 12.5 V

550

!

T"-

100
0
400

./

= 75 mW

~-

500

~

......-

650

~

0':

300

./

.,/

f=470MHz
Pin = 50 mW

./

250
200
150
5.0

500

6.0

f, FREQUENCY (MHz)

7.0

8.0
9.0
10
11
12
VCC. SUPPLY VOLTAGE (VOLTS)

FIGURE 5 - 470 MHz TEST CIRCUIT
+12.SVdc

RF INPUT

@~~~~~~~~~~­
C2

FIGURE 6 - 470 MHz TEST CIRCUIT SCHEMATIC
C5

L3

C6
12.5 Vdc

~------~----~--«RF
OUTPUT
RF
INPUT

=
Cl,2,3,4
C5.6
C7

11.2
L3

1.0·25 pF ARCO 421 OR EOUIVALENT
1000 pF FEEOTHRU CAPACITOR
1.0.F, 35 V CAPACITOR
7 TURNS #22 AWG. 0.2"1.0.
FERRITE BEAOS FERROXCUBE
56·5911-65·3B AS SHOWN ON Ll
l·CHOKE FERROXCUBE VK·200·20-4B

1349

BOARO·GLASS TEFLON, '!~!-I-{=:1:!::::=}

C1

C1,2,4,5,6
C3
C7,C8
C9
C10

1.0-10 pF, JOHANSON 5201
25 pF, UNELCO
15 pF, ATC, 50.50 Mils
680 pF, ALLEN BRADLEY Foedthru
1.0"F,35 V, TANTALUM

L1

6 Turns, #26 AWG, O~ 1" 1.0., 0.25" Long,
Bead on ground leed
Ferrlta Beed, FERROXCUBE, 56-590-65-38
on L.ead of L1

L2

1351

L3

6 Turns, #22 AWG, 0.1" 1.0.,0.35" Long

Z1
Z2
Z3,Z4
Z5

Mlcrostrlpllne, 0.3" W x 2.0"L
Mlcrostriplina, 0.3" W x 0.5" L
Microstripline, 0.3" W x 0.6" L
Mlcroltripline, 0.3" W x 0.4" L.

Board - Glass Teflon, eR "" 2.56, t = 0.062"
Input/Output connectors - Type N

MRF816

(continued)

FIGURE 3 - OUTPUT POWER v.. sus FREQUENCY

FIGURE 2 - OUTPUT POWER varsuIINPUT POWER
1200
~

1100

V V

ll°O0
S06MHz . /

II:

~ 900

V/

It
~ 800
~ 700

S

re

V

V

600 ......

1200

~~

V vVV

I 1000

75Jw

t--

II:

900 MHz

~ 900

.......

It

~50MHl

~

SOD

50mW

~

./

5

"./

VCC = 12.5 V

500

500

400
40

400
800

60

70
so
90
Pin,lNPUT POWER (mW)

100

110

120

820

840

1100
l1000
II:

~ 900

...........

...........

-+---- ......

Pin= 100 mW

........... ~

It

~ 800

-

f.-- f.--

-

~

..-

......

-

....

5

700

75'!'W

S

Pin=l00mW._
1 900 jHZ

tE 600

1

500
400
10

11·

12
13
VCC, SUPPLY VOLTAGE (VOLTS)

14

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE

1352

--

............

r-..

860
880
900
I,FREQUENCY (MHz)

FIGURE 4 - OUTPUT POWER versus SUPPL V VOLTAGE
120 0

--r--

---

I-..

700

S
,e 600
Vcc = 12.5 V

50

~i~ = l00'1W--

1100

...- ~

15

920

~

940

960

MRF817

(SILICON)

The RF Line
2.5 W - 900 MHz

RF POWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR

NPN SILICON

... designed for 13.6 Volt UHF large'signal amplifier applications in
industrial and commercial FM equipment operating to 960 MHz.

•
•

Specified 13.6 Volt, 900'MHz CharacteristicsOutput Power = 2.5 Watts
Minimum Gain = 6.2 dB
Efficiency = 50%
Characterized with Series Equivalent Large-Signal Impedance

Parameters

2

~
lL=
Hl

'

K

,

A

•

~

-L~

MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

Value

Unit

VCEO

16

Vdc

Collector-Base Voltage

VeBO

36

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

Collector Current - Continuous

Ie

400

mAde

Total Device Dissipation@Tc=: 25°C (ll
Derate above 25°C

PD

5.0
28.6

Watts

Storage Temperature Range
Stud Torque (2)

WRENCH

-65 to +200

°e

-

6.5

In. Lb.

(1) These devices are designed for A F operation. The total device dissipation rating applies
only when the devices are operated as Class C R F Amplifiers.

1--iT

~_~_lpeJ i C
---i.'
I

1;
I=

fLA:=n ~~
STYLE 1
PIN 1

mW/oe

T stg

(2) For repeated assembly. use 5 In. Lb.

-C tT
8-32 NC 2A

A

EMITTER

2

8ASE

3.

EMITTER

4.

COLLECTOR

o
E
H

J

K
M

P
R
S
T
CASE 244

1353

MRF817 (continued)

ELECTRICAL CHARACTERISTICS (TC= 2SoC unless otherwise noted.)

I

Symbol

Min

ColiectorMEmitter Breakdown Voltage
(lC = 50 mAde, IS = 0)

BVCEO

16

Vde

Collector-Emitter Breakdown Voltage
(lC = 50 mAde, VBE = 0)

BVCES

36

Vde

Emitter-Ba.. Breakdown Voltege
(IE = 1.0 mAde,lc= 0)

BVEBO

4.0

-

Vde

ICBO

-

1.0

mAde

Common-Emitter Amplifier POVller Gain
(VCC = 13.6 Vdc, Pout = 2.5 W, f = 900 MHz)

GpE

6.2

-

dB

Collector Efficiency
(Vec = 13.6 Vdc, Pout = 2.5 W, f = 900 MHz)

17

50

Characteristic

Unit

Max

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)
ON CHARACTERISTICS

DC Current Gain
(lC = 100 mAde, VCE = 5.0 Vdc)
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 12.5 Vde,IE = 0, f = 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)

%

FIGURE 1 - 900 MHz TEST CIRCUIT

V

R F I nput

>:~-IIR'~IJ

Mlcrostrlp Board

Cl,4
C2,3,5,6
C7
C6
C9

1.IJ.20 pF, JOHANSON 5501
1.0·10 pF, JOHANSON 5201
100 pF UNELCO
6BO pF, ALLEN BRADLEY Fe.dthru
1.01'F,35 V TANTALUM

Ll,2

Ferrite Bead FERROXCUBE 56-59().65·4A
on 1/2", #22 AWG

Board - Glass Teflon, ER = 2.56, t". 0.062"
Input/Output Connectors - Type N

1354

MR F817 (continued)

FIGURE 2 - OUTPUT POWER var.... INPUT POWER
3.25

3.00
5

V

/

0

FIGURE 3 - OUTPUT POWER vsrsus FREQUENCY

V

~ 3.00
~

;; 2.7 5

~
~

/

5

0

/

f:900MH,
5 Vee: 13.6 Vdc
1.5 0

I

1.2 50

100

/

:::>

1=
:::>

V

g

2.75

«

~ 2.50

'"~

~

2.25 I-""

I-

~

2.00

I-

:::>

----

1l2.00
1.7 5

V

VCC: 13.6 V
1.50
600

700

800

-- -12

5
1.2 800

820

840

-- --

...........

--- -- -860

880

900

.1.

Pin: 600 mW-

I'---..

~

~OOmW

920

r----...
940

960

f. FREQUENCY (MH,)

i-- ~

- SERIES EQUIVALENT IMPEDANCE

"~
0"

~

.....

1.50

11

- r--

0':

~ 1.75 r-- r- f:900MH,
Pin: 600 mW
0':
1.25 10

2.25

o

FIGURE 4 - OUTPUT POWER vs,susSUPPLY VOLTAGE
3.25
3.00

2.50

I-

400
300
500
Pin. INPUT POWER (mW)

200

r-- r--

3.25

13

14

15

Vec. SUPPLY VOLTAGE (VOLTS)

1355

MR F8l7 (continued)

TEST CIRCUIT MASK DRAWING

1356

MRF818

(SILICON)

The RFLine
8.0 W - 900 MHz
RFPOWER
TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

· .. designed for 13.6 Volt UHF large-signal amplifier applications in
industrial and commercial FM equipment operating to 960 MHz.

• Specified 13.6 Volt, 900 MHz Characteristics Output Power = S.O Watts
Minimum Gain = 5.05 dS
Efficiency = 50%
• Characterized with Series Equivalent Large,Signal Impedance
Parameters

MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current Continuous
Total Device Dissipation@Te=25V e,(11

Derate Above 25°C
Storage Temperature Range
Stud Torque (21

Symbol

Value

Unit

VeEO

16

Vde

VeBO

36
4.0

Vde

1.5

Ade

15
85.7

Watts

VEBO
Ie

Po

Vde

STYLE I:
PIN I.
2.
3.
4.

mW/oe

T otg

-65 to +200

°e

-

6.5

In·Lb

DIM
A
B

(1) These devices are designed for AF operation. The total device dissipation
rating applies only when the devices are operated as Class C RF amplifiers.
(2) For repeated assembly. use 5 In. Lb.

C
D
E
H
j

K

,

M
R

S

T
U

EMITTER
BASE
EMITTER
CO LLECTO R

MILLIMETERS
INCHE
MIN MAX
MIN
MAX
1.D6 1.26 0.218 0.288
6.25 6.45 0.246 0.254
15.49 16.51 0.610 0.650
0.220 0.230
1.52
0.060 NOM
1.066 1.086
0.D06NoM
13.41
0.528 0.532
45"N
45"NOM
.1.21
4.52 5.03 0.118 0.198
3.00 125 0.118 0.128
1.40 1.65 0.055 0.086
2.92 168 0.115 0.145

'"I

CASE 244

1357

-

MRF818 (continued)

ELECTRICAL CHARACTERISTICS (TC

= 250 C unl ... otherwi.e noted).

I

Symbol

Min

Coliector·Emitter Breekdown Voltage
(Ie = 100 mAde, 18 = 0)

BVCEO

16

-

Vdc

Coliector·Emitter Breakdown Voltage
(Ie = 100 mAde, VRE = a)

BVCES

36

-

Vdc

Emitter·Base Breakdown Voltage
(IE = 2.0 mAde, IC = a)

BVEBO

4.0

-

Vdc

ICBO

-

1.0

mAde

Common-Emitter Amplifier Power Gain
(VCC = 13.6 Vdc, Pout = 8.0 W, f = 900 MHz)

GpE

5.05

-

dB

Collector Efficiency
(VCC = 13.6 Vdc, Pout = 8.0 W, f = 900 MHz)

'1

50

-

%

Characteristic

Max

Unit

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 15 Vdc, IE = a)

ON CHARACTERISTICS

= 5.0 Vdc)
Output Capacitance
V
= 12.5 Vdc, I

= 0, f = 1.0 MHz

FUNCTIONAL TESTS (Figure 1)

FIGURE 1 - 900 MHz TEST CIRCUIT

v

A F I nput

>-J~"'I!P~"

Microstrip Board

C1,4
1.0-20 pF, JOHANSON S501
C2,3,5,6 1.0-10 pF, JOHANSON S201
C7
100 pF UNE LCO
680 pF, ALLEN BRADLEY Feedthru
C8
C9
1.0!,F, 35 V TANTALUM

L1,2

Ferrite Bead FERROXCUBE 56-590-65·4A
on 1/2", #22 AWG

Board - G lass Teflon, E'A "" 2.56, t "" 0.062"
Input/O utput Connector. - Type N

1358

MRF818 (continued)

FIGURE 3 - OUTPUT POWER versus FREQUENCY

FIGURE 2 - OUTPUT POWER ••rsus INPUT POWER
10
9.0

.....-V

E

~ 8.0

ffi

~I-

~_

o

~

~

7.0

....V

6.0

/'

5.0

/

--

0

~

~ 8.0
a:

~ 7. 0
~
~ 6.0

V

~

05.0
~
~4. 0

2.0

3.0

2.5

10

_V.--- ---

9.0

-

8.0

~ 7.0
a:

~

6.0

~

0

5.

--

o 4. 0
;

3.
0-

2.0
10

~V

r

~

t'

Pin" 2.5 W
900
11

12
13
VCC,SUPPL Y VOLTAGE (VOLTS)

14

800

820

840

860

-

-- --

880
900
f, FREUUENCY (MHz)

920

r--

940

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE

/::

1.0W

3.0

Pin, INPUT POWER (WATTS)

0;

VCC "3.6 V

f-900MHz

r-- VCC'
13.6 Vd,
"
I
1.5

r--

/::

4.0

3.0

Pin· 2.5W-

iii 9.0

15

1359

960

MRF818 (continued)

TEST CIRCUIT MASK DRAWING

-_5.0"--~·1

!o4-1.

1360

MRF5174 (SILrCON)

TheRFLine
2W-400MHz

RFPOWER
TRANSISTOR

NPN SILICON RF POWER TRANSISTOR

NPNSILICON
... designed primarily for wide band large-signal driver and pre·
driver amplifier stages in the 20()'6oo MHz frequency range.

•

Specified 28,Volt. 400·MHz CharacteristicsOutput Power = 2.0 Watts
Minimum Gain = 12 d8
Efficiency = 50%

• Characterized from 200 to 600 MHz
•

Includes Series Equivalent Impedances

MAXIMUM RATINGS
Rating

Symbol

Vllue

Unit

Collector-Emitter Voltage

VCEO

33

Vdc:

Collector-Base Voltage

VCBO

60

Vdc

Emltter·Base Voltage

VEBO

4.0

Vdc

Collector Current - Continuous

IC

0.5

Adc

Total Device Dissipation'" T A = 25°C (1)
Derate above 25°C

Po

5.0
2B

Watts
mWf'C

Storage Temperature Range

Tstg

-65 to +200

°c

(1) These devices are designed for RF operation. The total device dissipation rating applies
only when the devices are operated al RF amplifiers.

THERMAL CHARACTERISTICS
Chore_lstle
Thermal Resistance, Junction to case

I

Symbol
R8JC

i

Max

I

25

Unit

STYLE 1:
PIN 1. EMITIER
2. BASE

3. EMIITER
4. COLLECTOR
INCHES
MIN
MAX

DIM
A

0.278
0.246
0.810
0.220

B

C
D
E

0.081 NOM

1.055 1.065
0.1105 NOM
0.528 0.5 2
45' NOM

H
J
K
M

,

0.118
0.118
0.055
0.115

°C/W

CASE 244

1361

0.286
0.254
0.650
0.230

0.198
0.128
0.065
0.145

MRF5174 (continued)

ELECTRICAL CHARACTERISTICS (TC= 250 C unless otherwise noted.)

I

I

Symbol

Min

Typ

Max

Unit

V~ltage

BVCEO

33

-

-

Vde

Coliector·Emitter Breakdown Voltage
(lc = 20 mAde, VBE = 0)

BVCES

60

-

-

Vde

Emitter·Base Breakdown Voltage
(IE = 1.0mAde,IC= 0)

BVEBO

4.0

-

-

Vde

ICBO

-

-

0.1

mAde

Common-Emitter Amplifier Power Gain
(VCC = 28 Vde, Pout = 2.0 W, f = 400 MHz)

GpE

12

-

-

dB

Collector Efficiency
(VCC = 28 Vde, Pout = 2.0 W, f = 400 MHz)

1)

50

-

-

%

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown
(lC = 20 mAde, 'B = 0)

Collector Cutoff Current
(VCB = 30 Vde, Ie = 0)
ON CHARACTERISTICS

DC Current Gain
(lC = 100 mAde, VCE = 5.0 Vde)
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 30 Vde, 'E = 0, f = 1.0 MHz)
FUNCTIONAL TESTS (Figure I)

FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC

L5

Cll

T

C12

1
Z4

RF
Input

)~~~t1C=~Z~lC=J
Ct

C2

C1,Cl0

Z2

C3

C4

O.OlSI'F VITRAMON Chip
1.0·20 pF JOHANSON Type 3906
100 pF UNDERWOOD (UNELCO)

C6,C7

5.0 pF ATC Chip

CB

O.1J,lF ERIE Disc Ceramic

L4
L5

Cll,C12 6S0 pF ALLEN BRADLEY Feedthru
L1
L2
L3

2S Vdc

RF
Output

C9

C2,C3,C9 1.0·10 pF JOHANSON Type 2951
C4
C5

Cl0

Z3

<-

At

2.7 Ohm, 1/8 Watt, 10%

R2

5.1 Ohm, l/S Wa", 10%

Z1,23
22

Mlcroltrlp Line, 0.'" W x 0.6" L
Microstrip Line, 0.1" W x 0.4" L
Microstrip Line, 0.075" W x 2.5" L.

Z4

3.9 IJH Molded Choke
Ferrite Bead, FEAAOXCUBE 56-590-65-38
4 Turns, #22 AWO. 0.1" 10

6 Turns, #20 AWG, l/S" ID
Ferrit. Choke, FERROXCUBE VK200·20·4B

Board - Glass Teflon, fA

= 2.56, t

... 0.062"

Input/Output Connectors - Tvpe N

1362

MRF5174 (continued)

FIGURE 2 - OUTPUT POWER versus FREQUENCY
3. 0

.......
5

......r--...,

r-...

......... r--,

b...

0

.5

~

'"

I
300

350

400

r-

~OmW

Vee = 28 Vdc

450

~

1"-.

500

5

r -- -- -- ---

550

600

650

1.5

r--

0
50

r-

:>

o

100mW

;l

r:E

1.0

f = 400 MHz

o

18

20

22
24
Vee. SUPPLY VOLTAGE (VOLTS)

26

100
150
Pm. INPUT POWER (mW)

200

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE

I-- ~250mW

I-- I-- r-

Vee =28 Vdc

I

5

I-""

../

V600MHz

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE

2.0

,.... t V

V

o

.. 1. 0

3.0

ffi

../

V

f. FREQUENCY (MHz)

~
!;
:=

~

b--:

V400MHz

.......

0

V

0

.........

50mW" "

250

V

200 MHz

t---.,250 mW

'"'

200

.L..-- f-'

5

f'....

'r--,

0
150

FIGURE 3 - OUTPUT POWER versus INPUT POWER
3.0

[""---.

28

FIGURE 6 - 400 MHz TEST CIRCUIT

1363

250

MRF5175

(SILICON)

The RF Line
5W -400MHz

RF POWER
TRANSISTOR

NPN SILICON RF POWER TRANSISTOR

NPN SILICON

· .. designed primarily for wideband large·signal driver and predriver
amplifier stages in the 200·600 MHz frequency range.

•

Specified 28·Volt, 400·MHz CharacteristicsOutput Power = 5.0 Watts
Minimum Gain = 11 dB
Efficiency = 50%

•

Characterized from 200 to 600 MHz

•

Includes Series Equivalent Impedances

~

ltt1r

~A~ ~T

MAXIMUM RATINGS
Rating
Coliector~Emitter

Voltage

Value

Unit

WRENCH FLAT

VCEO

33

Vdc

B

Collector-Base Voltage

VCBO

60

Vdc

Emitter-Base Voltage

VEBO

.4.0

Vdc
Adc

Collector Current - Continuous

IC

1.0

Total Device Dissipation@TA== 25°C (11

Po

12
69

Watts
mW/oC

T stg

,65 to +200

°e·

Derate above 25°C
Storage Temperature Range

(1) These devices are designed for RF operati<:>n. The total

device

dissipation rating applies

only when the devices are operated as A F arlJ~lifiers.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

tT 1R~flpEJ'C
= -+I

~31NC1A
Symbol

Symbol

Max

Unit

ReJC

12

°CIW

~

:LIllE

STYLE 1
PIN 1 EMITTER
2 BASE

3
4

EMITTER
COLLECTOR

DIM
A

•

C
D
E
H
J
K
M
p

R

s

CASE 244

1364

MRF5175 (continued)

ELECTRICAL CHARACTERISTICS (Te· 25°C unle •• otherwise noted.)

I

I

Symbol

Min

Typ

Max

Unit

BVCEO

33

-

-

Vdc

Collector·Emitter Breakdown Voltage
(lC· 30 mAde, VBE· 0)

BVCES

60

-

-

Vde

Emitter-Base Breakdown Voltage

BVEBO

4.0

-

-

Vde

ICBO

-

-

0.5

mAde

Common-Emitter Amplifier Power Gain
(VCC = 2B Vde, Pout· 5.0 W, f • 400 MHz)

GpE

11

-

-

dB

Collector Efficiency
(VCC = 28 Vdc, Pout' 5.0 W, f = 400 MHz)

17

50

-

-

%

Characteristic

OFF CHARACTERISTICS
Coliactor·Emitter Breakdown Voltage

(Ie· 30 mAde, lB· 0)

(IE· 1.0 mAde, Ie· 0)

Collector Cutoff Currant
(VCB· 30 Vde, IE· 0)
ON CHARACTERISTICS
DC Current Gain
(lC· 250 mAde, VCE· 5.0 Vde)

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB· 30 Vde, IE • 0, f · 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)

FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
Cll

C12

T

1

L5

+

Z4
RF
Input

>~~~~r1==~~~
C1
21

C2

Cl0

Z2

C3

0.018

~F

RF

Output

Z3

C4

C9
Rl

Cl.Cl0

28 Vdc

<-

VITRAMON Chip

L4

R2

6 Turns, #20 AWG. 1/S" 10

C2.C3.C91.0·10 pF JOHANSON Type 2951

L5

Ferrite Choke, FERROXCUBE VK200-20-4B

C4

Rl

1.0·20 pF JOHANSON Type 3906

C5

100 pF UNOERWOOO (UNELCO)

C6,C7
CB

5.0 pF ATe Chip

0.1 IJF ERIE Disc Ceramic

C11,C12 680pF ALLEN BRADLEY Feedthru

R2

2.7 Ohm, 1/8 Watt, 10%
5.1 Ohm, 1/8 Watt. 10%

Z1,Z3

Microstrip Line, 0.'" W x 0.5" L

Z2

Microstrip Line, 0.1" W x 0.4" L
Microstrip Line, 0.075" W x 2.5" L

Z4
L1

3.9 IJH Molded Choke

L2

Ferrite Bead, FERROXCUBE 56-590-65-3B
4 Turns, #22 AWG, 0.1" '0

L3

Board - Glass Teflon, €R :: 2.56, t::: 0.062"
Input/Output Connectors - Type N

1365

MRF5175 (continued)

FIGURE 3 - OUTPUT POWER versus INPUT POWER

FIGURE 2 - OUTPUT POWER versus FREQUENCY

6.0

g

5. 5

............

~ 5. 0

o

S

~

6.5

S

.......

r-........
......

3.0

,..........

.........
......

Vcc = 28 Vdc
1. 5
150

~

4.0

1=
i5

3.5

250

300

350
400
450 500
f, FREQUENCY (MHz)

550

600

650

6.0
5.5

-

"

5.0
a:
~ 4. 5
~

~

~ 4.0

5

1=
:::>

3. 5

~ 3. o

100

20

=400 MHz

22
24
Vcc, SUPPLY VOLTAGE (VOLTS)

26

200

Vcc = 28 Vdc

300

400
500
600
700
Pin, INPUT POWER (mW)

800

900

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE

--zDfw
f

2.0
1. 5
18

o

400mW

rE 2. 5

600 MHz

/

- --

=---I--

1/

L

2.0

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE
6. 5

g

/
/

2.5

"-

/'

V

400 MHz

/

,E

1.5
200

/

/

S 3.0

.........

2.0

5.0

/

/

/

~ 4.5

"-

200mW

100 mW'"i'..

2. 5

~

i',,400mW

i-'

.,/200 MHz

5.5

............

...........

3. 5

V

6.0

r-.....

r-........

~ 4.0
:::>

.......

.......

~ 4. 5

5~

-

--t--....

6.5

28

FIGURE 6 - 400 MHz TEST CIRCUIT

1366

1000

MRF 517 6 (SILICON)

The RF Line
15W -400 MHz

RFPOWER
TRANSISTOR
NPN SILICON RF POWER TRANSISTOR

NPN SILICON

... designed primarily for wideband large·signal driver and predriver
amplifier stages in the 200·600 MHz frequency range.

•

Specified 28 Volt, 400 MHz CharacteristicsOutput Power = 15 Watts
Minimum Gain = 10d8
Efficiency = 50%

•

Characterized from 200 to 600 MHz

•

Includes Series Equivalent Impedances

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

COllector-Emitter Voltage

VCEO

33

Vdc

Collector-Base Voltage

VCBO

60

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

IC

2.0

Adc

Po

30
170

Watts
mW/oC

Tstg

-65 to +200

°c

Collector Current - Continuous
Total Device Dissipation@ TA
Derate above 2SoC

= 25°C (1)

Storage Temperature Range

STYLE 1.
PIN 1. EMITTER
2. BASE
3. EMITTER
4.

COLLECTOR

(1) These devices are designed for RF operation. The total device dissipation rating applies

only when the devices arB operated as R F amplifiers.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

I

Symbol
R6JC

I

Max

I

6.0

Unit

°CIW

CASE 244

1367

MRF5176 (continued)

ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted.)

I

I

Max

Unit

-

-

Vde

60

-

-

Vdc

BVEBO

4.0

-

-

Vdc

ICBO

-

-

1.0

mAdc

GpE

10

-

-

dB

11

50

-

-

%

Symbol

Min

Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB - 0)

BVCEO

33

Collector-Emitter, Breakdo~n Voltage
(lC = 50 mAdc, VBE -

BVCES

Emitter-Base Breakdown Voltage

Charlet.-istie

OFF CHARACTERISTICS

or

(IE

= 2.0 mAdc, IC= 0)

Collector Cutoff Current
(VCB = 30 Vdc, IE

= 0)

ON CHARACTERISTICS
DC Current Gain
(lC = 500 mAde, VCE '" 5.0 Vdc)
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 30 Vdc, IE = 0, f = 1.0 MHz)
F,UNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain
(VCC· 28 Vdc, Pout = 16W,f· 400 MHz)
Collector Efficiency
(VCC· 28 Vdc, Pout = 115 W, f· 400 MHz)

FIGURE 1 - 400 MHz TEST CIRCUIT SCHEMATIC
L5

C12

C13

L...---..4I_---~TI-----«
Cl0

Z4

Z3

RF
Input

ZI

_28 Vdc
RF
Output

Z2

C1

C2

L2

C3

C7

Cl,Cl0 0.01Sj.lF IlITRAMON Chip
C2,C3,C8 1.0·20 pF JOHANSON Type 3906
100 pF UNOERWOOD (uNELCO)
C4
56 pF ATe Chip
C5,C6
0.1
p.F, E R I E Disc Ceramic
C7
I .0-2b pF JOHANSON Type 3906
C9
1.0 j.lF, 35 V TANTALUM
Cll
C12,C13 680 pF ALLEN BRADLEY Feedthru

C9

CS

R2

Rl

LI

3.9 j.lH Molded Choke

Rl

L2

Ferrite Bead, FERROXCUBE, 56-590-65-38

R2

207 n, liS W, 10%
5.1 n, 1/8 W, 10%

L.3

3 Turns, #20 AWG. 0.1" 10

Z1

Microstrip Line, 0.'" W x-'1.2" L

L.4

6 Turns, #20 AWG. 1/4" 10

Z2

Microstrlp L.ine, 0.25" W

L.5

Ferrite Choke, FERROXCUBE, Vt<200·20-4B Z3,Z4 Microstrip Line, 0.075" W x 1.25" L'
Board - Glass Teflon, fR

x 0.7" L

= 2.56, t = 0.062"

Input/Output Connectors - Type N

1368

MRF5176

(continued)

-

FIGURE 3 - OUTPUT POWER versus INPUT POWER

FIGURE 2 - OUTPUT POWER v....u. FREQUENCY

25
22.5
~ 20

~17.5
ffi 15
3:

...~12.5

25

I-...

r-- r-..

~ 10

:::>

o~

-

--

r--

7.5

';

V

22.5

........ ........

Pin = 210W

r--....

........

I.OW

!17.5

.......... ~

-.... -....
I-...

...... r--..,.

c

~

15
12.5

:::>

..........

rE 5.0

'"~

r--....

.............
0.5W

/200MHzV

~ 20

~

~

10

~

7.5

:::>

r-...

tE 5.0

J

V400MHz

/ V
/

V

/

;;;;.0

V

V

~MHZ

VCC = 28 Vdc

VCC = 28 Vdc

2.5

2.5

o

150

200

250

300

350

400

450

500

550

600

650

o
o

1.0

I, FREQUENCY (MHz)

22.5

~17.5
~

ffi

15

..... V

~12.5

.......

~ 10

1=

57.5

~ 5.0

-

---- ..........

.....-

/

...............

l--- '"Pin = 2.0W

----

"'1.0W

-D.5W

1=400 MHz

16

18

20
22
24
26
VCC, SUPPLY VOLTAGE (VOLTS)

28

4.0

FIGURE 5 - SERIES EQUIVALENT IMPEDANCE

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE

25

~ 20

2.0
3.0
Pin, INPUT POWER (WATTS)

30

FIGURE 6 - 400 MHz TEST CIRCUIT

1369

5.0

MRF5177 (SILICON)

The RF Line
30 W. 400 MHz
RF POWER TRANSISTOR
NPN SILICON

NPN SILICON RF POWER TRANSISTOR

... designed for VHF/UHF power amplifier applications. This device
is optimized for rugged performance in 225·400 MHz communications
equipment.

•

Performance @ 400 MHz, 28 Vdc Power Output = 30 W (Min)
Gain = 6.0 dB (Min)

•

Isothermal Design for Rugged Performance Tested at 30: 1 VSWR through all phase angles

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

Rating

VCEO

35

Vdc

Coliector·Ba.. Voltage

VCBO

60

Vdc

Emitter-Base Voltage

VEBO

4.0

Vdc

IC

4.0

Adc

Base Current

IB

1.0

Adc

Total Device Dissipation @ T C = 25°C) (1)
Derate Above 25°C

Po
-

58
0.33

Watts
W/oC

T,tg

-65 to +200

DC

Collector Current '- Continuous

Storage Temperature Range

(1) This device is designed for RF Power operation. The total device dissipation rating

2. BASE

~"1 I ~R
1!!F3~
LA-J1E

3. COllECTOR

B

J

A

H

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

PIN 1. EMITIER

o

applies only when the device is operated as a Class C AF Amplifier.

Characteristic

STYLE 1:

I

Symbol
9JC

I

Max

I

3.0

Unit.

°C/W

K
l

M
R

1.52

S

T

2.03

2.03
5.38
2.54

0.080

CASE 215

1370

MRF5177 (continued)

ElECTR ICAl CHARACTE RISTICS

I

(T C = 25°C uniess otherwise noted)

I

Characteristic

Symbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage
(lC = 50 mAde, IB = 0)

BVCEO

35

-

Vde

Collector-Emitter Breakdown Voltage

BVCES

60

-

Vde

BVEBO

4.0

-

Vde

ICBO

-

2.0

mAde

GpE

6.0

-

dB

~

60

%

Psat

36

Watts

OFF CHARACTERISTICS

(lc

= 50 mAde, VBE = 0)

Emitter-Base Breakdown Voltage
(IE

= 2.0 mAde,

iC

= 0)

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)
ON CHARACTERISTICS

DC Current Gain
(lc = 100 mAde, VCE = 5.0 Vdc)
(I C = 4.0 Ade, V CE = 5.0 Vde)
DYNAMIC CHARACTERISTICS

Output Capactiance
(VCB

= 28

Vde, IE

= 0, f = 1.0 MHz)

FUNCTIONAL TESTS (F Igures 1 and 9)
Common-Emitter Amplifier Power Gain
(Pout = 30 W, VCC = 28 Vdc, f = 400 MHz)
Collector Efficiency
(Pout = 30 W, VCC

= 28 Vde, f = 400 MHz)

Saturated Power
(Pin

= 11

W, VCC

= 28 Vdc, f = 400 MHz)

Electrical Ruggedness
(Pout = 30 W, VCC = 28 Vde, f

VSWR > ;roo 1 through all pha.e angle. on a 3 second time onterval,

= 400 MHz, TC';;; 50°C)

After which, devices will meet GpE test limits.

FIGURE 1 - 400 MHz TEST CIRCUIT
(Typical Performance Data for 300-500 MHz Operation)

L1

RF

j--t--::W<--f""r-< OUTPUT

CT.2.3.4.5
C6.C7
CB
C9
Ll,L2
l3

Rt 2.7 ohms, 1/4W, Carbon
Board Material:
1/16" Teflon Fiberglass
1 oz. copper, two-sided
Zl 0.3" Width, x 2.7" Length
Z2 0_3" Width, x 2.7" Length

4.0-40 pF ARCO 422 or equivalent
100 pf ATC or eqUIvalent
10 DOD pF ATC or eqUivalent
1 OJ.lF,35 V Tantalum
4 Turns, #20 AWG, 1/4" 10
Ferrrte Bead, Ferroxcube 56·590-65/38

FIGURE 2 - 200·300 MHz TEST CIRCUIT
(TYPical Performance Data)

r-~------~--------'---------~--"'VCC

RF
OUTPUT

Z2
RF

INPUT

C3

RT

Cl,C2,C3,C4 7.0·100 pF AR CO 423 or equivalent
C5,C6 100 pF Porcelain Chip Capacitor (ATC·100 or equivalent)
C7 10.000 pF Porcelain Chip Capacitor (ATC·100 or equivalent)
_
C8 1.0,u.F.35·VTantalum
- Lt,L27Turns#20AWG.l/4"10

1371

Beeds. Ferroxcube 56·590 65/3B
Rt 2.7 ohms, 1/2W, Carbon
21 0.3" Width x 3.3'" Length
22 0.3" Width x 4.53" Length
Board Materiel:
1116" Glass-Teflon
1 Ol.Copper, 2·sided

MRF5177 (continued)

FIGURE 4 - OUTPUT POWER versus INPUT POWER

FIGURE 3 - OUTPUT POWER versus FREQUENCY
40

E
«

30

'\..

~
0:

~

~
=>

20

l-

I!:
=>

"'"

'"

'-......

8.0W'

6.0W

r---

4.0W

r---

10

200 MHz

/

~

400

300

/

/
/

3.0

1.0

--

0

~

0---

I--

~ I--

-

~

0

I--- ...-

Pin=8.0W

I--- f.---

0
12

-

L---

~z_

5.0
Pin. INPUT POWER (WATTS)

9.0

7.0

--

f.--'" Pin = 3.0,!..
...... l-- ~ 2.0W

0

-

L-V
_V ...... V- I--

0

~
01---

I-----"

I---

-- -I---

-

--

-

1.0W

0
16

20

24

28

12

FIGURE 7

'"

~
........... r-..
..........

!'-....

""r--......

0

50.

100

20

24

FIGURE 8 - SERIES EQUIVALENT IMPEDANCE

RF POWER DERATING

0

16

Vcc. SUPPLY VOLTAGE (VOLTS)

0

0

".

,/

f= 200MHz

VCC SUPPLY VOLTAGE (VOLTS)

r--

./

0

~V

f.-- I-- --rOW

V

FIGURE 6 - OUTPUT POWER versus SUPPLY VOLTAGE

FIGURE 5 -- OUTPUT POWER versus SUPPLY VOLTAGE
f = 400 MHz

300MHZ./ 400 MHz "......

V

500

I

;/

A

/'1

.....
o VCC = 28 Vdc

f. FREQUENCY (MHz)

40

/"

V /' V
/ L/:: ,/"
O~

VCC = 28 Vdc-

200

VA

I'-....

-----

""""-- r--

Pin = 2.0W

o

~

I'-....

~

0

;

~

'\

0

150

~

200

TC. CASE TEMPERATURE (OC)

1372

28

MRF5177 (continued)

FIGURE 9 - 400 MHz CIRCUIT LAYOUT

11-.. -----5.0"----~·1

1373

MRF8004 (SILICON)

The RF Line

3.5W -27 MHz
RF POWER
TRANSISTOR

NPN SILICON RF POWER TRANSISTOR

NPN SILICON

... designed primarily for use in large-signal output amplifier stages.
Intended for use in Citizen·Band communications equipment operating to 30 MHz. High breakdown voltages allow a high percentage of
up-modulation in AM circuits.
•

Specified 12.5 V.
Power Output
Power Gain
Efficiency

27 MHz Characterisitcs= 3.5 W
= 10 dB
= 70% Typical

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

30

Vdc

Collector-Base Voltage

VCBO

60

Vdc

Emitter-Base Voltage

VEBO

3.0

Vdc

Collector Current - Continuous

IC

1.0

Adc

Total Device Dissipation @ T C = 2SoC (1)

Po

5.0
28.6

Watts
mW/oC

-65 to +200

°c

Rating

Derate above 25°C
Storage Temperature Range

T stg

FIGURE 1 - 27 MHz TEST CIRCUIT

INPUT

8.00
E.
F
H
C1,C2
C3, C4
C5
CB
RFCl

9.o-180pF ARCO 463 or Equivalent
5.0-80 pf ARea 462 or Equivalent
O.02"F Ceramic Disc
O.l,uF Ceramic Disc

RFC2
L1
L2

26 Turns 122 Enameled Wire (2 Layers13 Turns Each Layer) '\4" InnlH' Diameter
O.22101H Molded Choke
0.68,11H Molded Choke

4 Turns 130 Enameled Wire Wound on

Ferroxcube Bead Type 58-591).85138

6.10
0.406
0.229
0.406
4.83

0.711

0.737
12.70
6.35
45 0 NOM
M
P
1.27
Q
900 NOM
R
2.54
K

All JEDECdim,n,ions.nd notes.pply.
(1lThis device Is designed for R F operation. The total device dinipatlon rating
applie. only when the device I. operated as an R F amplifier.

1374

CASE 79-02
TO-39

MRF8004 (continued)

ELECTRICAL CHARACTERISTICS (TA

= 25 0 C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

BVCEO

30

-

-

Vdc

Collector-Emitter Breakdown Voltage
(Ie = 200 mAde, VBE = 0)

BVCES

60

-

-

Vdc

Emitter-Base Breakdown Voltage

BVEBO

3,0

-

-

Vdc

ICBO

-

-

0.01

mAde

GpE

10

-

-

dB

1)

62.5

70

-

%

-

-

85

-

%

Rin

-

21

-

Ohms

Cin

-

900

-

pF

e out

-

200

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

(lC = 50 mAde, IB = 0)

(IE = 1.0 mAde, Ie = 0)
Collector Cutoff Current
(VCB = 50 Vdc, IE = 0)

ON CHARACTERISTICS
DC Current Gain
(Ie = 400 mAde, VCE

= 2.0 Vdc)

DYNAMIC CHARACTERISTICS

Output Capacitance
(VeB = 12.5 Vdc, IE = 0, 1 = 1.0 MHz)
FUNCTIONAL TEST
Common-Emitter Amplifier Power Gain (See Figure 1)
(Pout = 3.5 W, Vec = 12.5 Vdc, 1 = 27 MHz)

Collector Efficiency (2) (See Figur.')
(Pout = 3.5 W, Vce = 12.5 Vdc, 1 = 27 MHz)
Percentage Up-Modulation (1) (See Figure I)
(1= 27 MHz)
Parallel Equivalent Input Resistance

(Pout = 3.5 W, Vee = 12.5 Vdc, 1 = 27 MHz)
Parallel Equivalent I nput Capacitance

(Po~t = 3.5W, Vee = 12.5 Vdc, 1 = 27 MHz)
Parallel Equivalent Output Capacitance

pF

(Pout = 3.5 W, Vee = 12.5 Vdc, 1 = 27 MHz)
(I) Percentage Up-Modulation is measured in the test circuit (Figure 1) by setting the Carrier Power (Pc) to 3.5 Watts with Vee =
12.5 Vdc and noting the power input. Then the Peak Envelope
Power (PEP) is noted after doubling the original power input to
simulate driver modulation (at a 25% duty cycle for thermal considerations) and raising the VCC to 25 Vdc (to simulate the modulating voltage). Percentage Up-Modulation is then determined by
the relation:

[(PEP) 1/2

Pc

Percentage Up-Modulation ==

RF Pout

(2) 11 = - - - ·,00
(Vee) (Ie)

]

-1

.100

FIGURE 2 - CIRCUIT TUNED AT 25 V, 25% DUTY CYCLE,
Pout = 15 W PEAK
20

lee.

t

25l Duty

./

1/
0.2

'"

/
,..,....

FIGURE 3 - CIRCUIT TUNED AT 12.5 V,Pout = 4 W
20

~ .....

5-

V

/'

0

./'

o

r

Vee 2.5VI 100% !"'y eyr
0.6
0.4
Pin, INPUT POWER IWATTSI

- Jee • 2J v 25J Duty e~Cle
V

o
O.B

1.0

,

V

-

I"

L

---::;~le'lyv 10jDUrYCI.
0.3

1375

~

0.9
O.B
Pln,lNPUT POWER IWATTSI

1.2

1.5

MSD6100 (SILICON)
Silicon epitaxial dual sWitching diode, designed for use in high
speed switching applications, features high breakdown voltage, low
capacitance and space saving common-cathode configuration.

e

I 2 3 STYLE 3:
PINI.ANODE
--2. ANODE
3. CATHODE

CASE 29
(10-92)

MAXIMUM RATINGS

eTA = 25°C unless otherwise noted)

Rating

Symbol

Value

Unit

Reverse Voltage

VR

100

Vde

Recurrent Peak Forward Current

IF

200

mA

IFM(surge)

500

mA

Power Dissipation @ T A = 25°C
Derate above 25°C

Po

111

310
2.82

mW
mW/oC

Operating Junction Temperature

TJ

111

135

°c

Storage Temperature Range

Tstg

-55 to +135

°c

Peak Forward Surge Current
(Pulse Width = 10 ~see)

111

ELECTRICAL CHARACTERISTICS (TA =250C unless otherwise noted I

Characteristic

Fig. No.

Symbol

Breakdown Voltage
(I(BR) = 100 ~Ade)

-

V(BR)

Reverse Current
(VR = 100 Vde)
(VR = 50 Vde)
(VR = 50 Vde, TA = 125°C)

2

IR

Forward Voltage
(IF = 1 mAde)
(IF = 10 mAde)
(IF = 100 mAde)

1

Capaeitarlee
(VR = 0)

3

Reverse Recovery Time
(IF = IR =10 mAde, VR = 5 Vde,
irr = 1.0 mAde)

4,5

VF

C

trr

(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings as follows:

. Derate above 2SoC - 8.0 mWf'C, T J

= -65 to

+150o C. 0JC

=

12SoCIW.

1376

Min

Max

100

-

-

5.0
0.1
20

0.55
0.67
0.75

0.7
0.82
1.1

-

1.5

Unit
Vde
IlAde

Vde

-

pF

ns
4.0

Po = 1.0 W @TC'" 2S0C,

MSD6100

(continued)

FIGURE 1 -

FORWARD CHARACTERISTICS

FIGURE 2 -

100

REVERSE LEAKAGE CURRENT

100

70

~

so

I

30

~

20

IS

~

Iil!

/

I
TJ = 125'C/

10

II

/

I

~

IS

I

~

I -55'C

25'C /

I

7.0
5.0

2.0

I

1.0
0.2

I

/ /

0.6
v~

'"
~

OJ

1.0

~

0.1

....-

.01

L
..-

V.=IO'!.---

~ ~

.001 25

1.2

l../

so

V•

FIGURE 3 - CAPACITANCE

IV

75

100

125

FIGURE 4 -

REVERSE RECOVERY TIME

5.0

----

4.0

1.1

I,

0.8

!
..........

r-----

!
i

~

t--

~

3.0

1,=loomA

--...........
~

.....

- r---

~

1,= SOmA

2.0

1,-IOmA

-

1.5

0.7

0.6

~

TAo AMBIENT TEMPERATURE ('CI

fORWARD VOlTAGE ORCP 1VOlTS)

1.2

~ 1.0

r-

I

/ /

/
0.4

I--- r- V. = 100j..- ~
1.0

~

.$

3.0

L

10

1.0
0.5

o

1.0

VR. REVERSE VOLTAGE (VOLTSI

FIGURE 5 -

1.11,

RECOVERY TIME EQUIVALENT TEST CIRCUIT

I,

sooo

SOil

1377

1.5

MSD61 01 (SILICON)

e

1 2 3

STYLE 3:

PIN1.ANODE
2. ANODE
3. CATHODE

C> C> C>

CASE 29
(TO-92)

Silicon epitaxial dual discriminator diode designed
for use in FM discriminator applications.

MAXIMUM RATINGS ITA = 26°C unless otherwise noted)

Rating

Symbol

Value

Unit

Reverse Voltage

VR

50

Vdc

Peak Forward Recurrent Current

IF

200

mA

IFM(surge)

500

mA

PDIII

310
2.82

mW
mW/oC

TJ , Tstg III

-55 to +135

°c

Peak ForWard Surge Current
(Pulse Width = 10 j.Ls)
Power Dissipation@ TA =
Derate above 25°C

2~oC

Operati.ng and Storage Junction Temperature
Range

ELECTRICAL CHARACTERISTICS

Characteristic
Breakdown Voltage
(I(BR) = 100 j.LAdc)
Heverse~urrent

= 40 Vdc)
({ = 40 Vdc,

(TA

= 25'C unless otherwise noted)

Fig. No.

Symbol

-

V(BR)

2

(V

TA

= 125°C)

Forward Voltage
(IF = O. 1 mAde)
(IF = 10 mAde)

1

Capacitance
(VR = 0)

3

Reverse Recovery Time
(IF = = 10 mAde, VR
irr = 1. 0 mAde)

Ia

IR

= 5 Vdc,

Forward Voltage Matching Vn - VF2
(I F1 = IF2 = O. 1 mAde)

4, 5

-

VF

C

Min
50

-

-

0.1
100

0.43
0.67

0.57
0.82

-

2.0

Vdc
j.LAdc

pF
ns

trr

L1V F

Unit

Vdc

-

10

-

0.003

(1) Continuous package improvements have enhanc:ed these guaranteed Maximum Ratings as follows:
TC" 26°C, Derate above 2S0C - B.O mWfOC, T J ~ -66 to +150o C, 9JC - 12SoC/W.

1378

Max

Vdc

PO" 1.0 W @

MSD6101

(continued)

FIGURE 1 - FORWARD CHARACTERISTICS
10.0
7.0
5.0

f

is

FIGURE 2 - REVERSE LEAKAGE CURRENT
10.0

..-

,

3.0
2.0

i"'"

I

j.. ~

!!

:; 1.0
0.7
~ O.5

1

-c. +-

~

~

I

/
~

/
U

M

I

/
~

..-

f - TJ = 125·C _
~

./

25·C
........-;-55·C

../
./ ./

~

./

.....< . / '

../

I

- 0.3
O.2

O. I

L

--

..-

I

VR-50V_

........
10~_
--I--- IV

I
U

U

U

~

.00 I

25

50

75

125

100

TA • AMBIENT TEMPERATURE (.c)

V, FORWARD VOLTAGE DROP IVDLTS)

FIGURE 3 - CAPACITANCE

FIGURE 4 - REVERSE RECOVERY TIME

1.2

15

1. I

10

1.-50mA

/

r- IOmA
lmA==

01\..

9~
8

O.7

0.6

-----

J

I

o

0.5

0.75

VR• REVERSE VOLTAGE (VOlTS)

1.0
I,ll.

1.25

FIGURE 5 - RECOVERY TIME EQUIVALENT
TEST CIRCUIT

I.

5000

50D

1379

1.5

MSD61 02 (SILICON)

Silicon epitaxial dual diode designed for use as ahorizontal phase detector for television receivers, and for
similar applications.

e

1 2 3 STYLE 3:
PINl.ANODE
2. ANODE
3. CATHODE

CASE 29

co co co

(10-92)

MAXIMUM RATINGS

(TA

:::

25°C unless otherwi~e noted)

Rating

Symbol

Value

Unit

Reverse Voltage

VR

70

Vdc

Recurrent Peak Forward Current

IF

200

mA

IFM(surge)

500

mA

310
2.82

mW
mW/oC

135

°c

-55 to +135

°c

Peak Forward Surge Current
(Pulse Width = 10/.ls)
Power Dissipation @ T A = 25°C
Derate above 250C

.:<

PD

111

<1r'

Operating Junction Temperature

TJ

Storage Temperature Range

Tstg

111

(1) Continuous package improvements have enhanced these guaranteed Maximum Ratings as follows:
Derate above 25°C - 8.0 mW/oC. T J = -65 to + 150°C, (J JC = 125 0 C/W.

1380

Po" 1.0 W @TC

=

25°C,

MSD6102 (continued)
ELECTRICAL CHARACTERISTICS

Characteristic

(TA

= 2S"C unless otherwise noted)

Min

Symbol

Breakdown Voltage
(I(BR) = 100 !lAdc)

V(BR)

Reverse Current
(VR = 50 Vdc)

IR

Forward Voltage
(IF = 10 mAdc)

VF

Capacitance
(VR = 0)

-

-

0.1

0.67

1.0

-

3.0

trr

I

20

I

Ie

~

7.0

c

-"

I

I

30

10

TJ

100

~

125°C

II

IL

II

I

r------ t-V,~

J

I I-55°C

25°C

2.0

I

1.0
0.4

I

I

/ /

r--

,..,...

V,~10/

,.,.,.... ,.,.,....
/

V,

0.8

1.0

.001 25

1.2

1V

/

50

75

100

TA , AMBIENT TEMPERATURE (OC)

V" FORWARD VOLTAGE DROP (VOlTS)

FIGURE 3 - RECOVERY TIME EQUIVALENT TEST CIRCUIT

500n

I,

son
10 ns (max)

"....-

/"

I

I II
0.6

70;:"'- ~

...-

I

J

3.0

...-

/

10

5.0

0.2

ns

-

100

70
50

B

pF

FIGURE 2- REVERSE LEAKAGE CURRENT
versus TEMPERATURE

100

is

I.lAdc

Vdc

FIGURE 1- FORWARD CHARACTERISTICS

~

Unit
Vdc

70

C

Reverse Recovery Time
(IF = IR =10 mAdc, VR = 5 Vdc,
irr = 1.0 mAdc)

Max

I/" < t, < 1001"
DUTY CYCLE - 2%

1381

125

MSD6150 (SILICON)

SILICON EPITAXIAL
DUAL DIODE

SILICON EPITAXIAL DUAL DIODE

COMMON ANODE

· .. designed for general-purpose consumer applications.

•

High Breakdown Voltage V(BR) = 70 Vdc (Min) @ I(BR)

•

Space-Saving Package with Common Anode Configuration

•

One-Piece, Injection-Molded Unibloc Package

~

= 100}JAdc

1

2

MAXIMUM RATINGS
Symbol

Value

Unit

Reverse Voltage

VR

70

Vde

Peak Forward Recurrent Current

IF

200

rnA

IFM(surge)

500

rnA

PD 111

310
2.82

rnW
rnW/oC

TJ,Tstg 111

-55 to +135

Rating

Peak Forward Surge Current
(Pulse Width = 10 Its)
Total Device Dissipation@TA =25°C
Derate above 2SoC
Operating and Storage Junction
Temperature Range

SEATING.!t
PLANE

°c
STYLE 4:
PIN 1. CATHODE
2. CATHOOE
3. ANODE

ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

V(BR)

70

-

-

Vde

IR

-

-

0.1

/t Ade

VF

-

0.80

1.0

Vde

Capacitance
(VR =0)

C

-

5.0

8.0

pF

Reverse Recovery Time

t"

-

-

100

ns

Characteristic
Breakdown Voltage
(I(BR) = 100/tAde)

Reverse Current
(VR = 50 Vde)

Forward Voltage
(IF = 10 mAde)

~

L-'--

DIM
A
B
C
D

.1'
L
N
P
Q

(IF = I R = 10 mAde, VR = 5.0 Vde,
ire = 1.0 mAde)
(1) Continuous package improvements haVe enhanced these guaranteed Maximum Ratings as
follows: PO'" 1.0 W @ T A "'" 25°C, Derate above 8.0 mWJOC, Po '" 1 0 W @ T C "" 2SoC.
Derete above 80 mWI'C, T J,T stg'" -65 to +150°. 6JC" 12.5 0 CIW, 8JA "" 126°C.

1382

R
S

MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.482
1 . 0
1.150
1.390
1.270
6.350
3.430
2.410
2.670
2.030
2.670

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.210
0.170
0.016
0.021
0.u19
U.UI6
0.045

I~

CASE 29.(12

TO-92

0.055

~

~
....QJ..!!L

3

MSD6150 (continued)

FIGURE 1 - FORWARD CHARACTERISTICS

FIGURE 2 - REVERSE LEAKAGE CURRENT

100

2000

/'

I

I

70

I

I

II

50

I

I

1000

I

I

500

./

/

30

<
.§

I

/ /I

20

I

I-

~

II

/

10

~ 7.0

I

~

5.0

0.4

/

«

~
'"w'"

10

I

I

I

'" V

/

'"

2.0

I I

1.0

I I

0.5

10 V

~

./'

/

/

/

/

/

I

II

V

5.0

1;;

I

/

./

w

-55°C

I

./
/

20

I

/

/

"''"

/'

0.2
0.1

0.6

0.8

1.0

1.2

25

50

VF. FORWARD VOLTAGE (VOLTSI

75

100

TA. AMBIENT TEMPERATURE lOCI

FIGURE 3 - RECOVERY TIME EQUIVALENT TEST CIRCUIT

+li.2V

J..--"_,I--

1.0",<" < 100",
OUTY CYCLE ~ 2.0%

500

-4.8 V

./

50

I

I

1.0
0.2

~
'"=>
'w"'

VR - 50 V

I

3.0

2.0

1
I-

J

25°C

~

,/

_ 100

I I

TJ=1250C

=>

'"'~

/

./

./

200

~.,-----J
1-

50

trr

10 ns (m.xl

1383

125

MSD7000 (SILICON)

SILICON EPITAXIAL DUAL SERIES DIODE
SILICON EPITAXIAL
DUAL
SERIES DIODE

designed for use in biasing, steering and voltage doubler
applications.
•

High Breakdown Voltage V(BR) = 100 Volts minimum

•

Low Capacitance C = 1.5 pF maximum

@

VR = 0

,m

MAXIMUM RATINGS
Rating
Reverse Voltage
Recurrent Peak Forward Current

Peak Forward Surge Current
(Pulse Width = 10 /A)
Total Device Dissipation @ T A
Derate above 2SoC

= 25°C

Operating Junction Temperature

Storage Temperature Range

Symbol

Value

Unit

VR

100

Vde

IF

200

mA

IFM(surge)

500

mA

Po

350
2.82

mW
mWf'C

TJ

150

°c

T stg

-55 to +150

°c

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise·noted)
Characteristic
Breakdown Voltage
(I(BR) = 100 "Ade)
Reverse Current
(VR 100 Vde)

=

Fig. No.

Symbol

Min

Max

Unit

-

V(BR)

100

-

Vde

2

IR

"Ade·

-

-

100

0.55

0.7

(IF = 10 mAde)

0.67

0.82

(IF = 100 mAde)

0.75

1.1

-

2.0

(VR = 50 Vde)
(VR = 50 Vde, TA = 125°C)
Forward Voltage
(I F 1.0 mAde)

1

=

Capacitance
(VR =0)
Reverse Recovery Time'
(IF = IR = 10 mAde,"VR
irr = 1.0 mAde)

3
4,5

= 5.0 Vde

trr

PIN I.

2.
3.

Vde

VF

C

STYLE 1:

0.5
0.2

-

15

DIM
A
B
C
pF

ns

0

•K
L
N
P

Q

R

S

MILLIMETERS
MAX
MIN

INCHES
MIN
MAX

4.450
3.18U
4.320
0.407

5,200
4.190
5.330
0.533

0.175
0.li!5
0.170
0.016

0.401

MO'

"."lti

12.700
1.150
6.350
3.430
2.410
2.030

1.390
1.270
2.670
2.670

0.500
0.045
0.250
0.135
0.095
0.080

CASE 29-02
TO·92

1384

0.205
0.165
0.210
0.021
0.019
0.055
0.050
0.105
0.105

MSD7000

(continued)

FIGURE 2 - REVERSE LEAKAGE CURRENT

FIGURE 1 - FORWARD CHARACTERISTICS

100
70
50



\

~

i'-.

0.7 a

i

'2.0

4.0

6.0

8.0

8.0 t--

6.0
0.5

10

VR. REVERSE VOLTAGE (VOLTS)

b

--

........... ~F=50mA

--

-

-

r--

t-- ~
0.9

0.7

1.1

1.l

IR/IF. RATIO OF REVERSEANO FORWARD CURRENT

FIGURE 5 - RECOVERY TIME EQUIVALENT TEST CIRCUIT

500

50
1.0 ns(max)

1.5

TA. AM81 ENT TEMPERATURE (OC)

0.7 8

u

I

0.02
0.01

I

1.0
0.2

«

1.0 V~

-'

r'

0.5

2.0

1\
~ 0.74
\
<:;

IV.

100n'c

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - SWITCHING VOLTAGE

FIGURE 2 - SWITCHING CURRENT

9.2

g

8.8

0

8.4

2!

400

w

'""
:;

8.0

0

>
z

7.6

'"
5....

7.2

~

6.8

>

6.4

.,;

6.0
-0.04

/

-0.03

/'
-0.02

V

/"

/"

/'

/

350

~
....

~

300
250

a 200

'"z

B 150
....

~

100
50

'\.

MUS4987

"'- '<
":>-: ~

""""-

MUS498a

-:::::: t::--

o
-0.01

+0.01

+0.02

+0.03 +0.04

-75

TC, TEMPERATURE COEFFICIENT 1%/0&1

-50

-25

+25

+50

+75

TA, AMBIENT TEMPERATURE 10C)

1395

+100

-

+125

MUS4987, MUS4988 (continued)

FIGURE 3 - HOLDING CURRENT

FIGURE 4 - FORWARD BLOCKING CURRENT

400

50

350

§

300

~

250

<.)

200

....

'"=>

r\

"-I"-

150
100

Z

MUr988

~

50

~ O.5

o~

c::; t-- t---.

r-

-50

-25

+25

L

2.0

~ 1.0

o
-75

5.0

i'l

~S4987

./ f".,.. ['-...

0

'"
:£

B

/
VF - 5.0 Volts

to

1"'''- ~'

Z

§

20

~ 10

r\.'\

to

~
....

+50

+75

+100

./

0.2

"-

IE

O. 1

0.05
-50

+125

FIGURE 5 - FORWARD ON·STATE VOLTAGE

1.40

~

1.35

~

./

01.30

V

>

w
~ 1.25

!1

~ 1.20

£'

o

i

1.15

~ 1.10

u:

> 1.05

V

g 6.0

L

V

0

z:w

5.0

to

«

TA=25 0 C

~

L

>
~

4.0

~ 3.0
=>
0

./

-

I--

I.-~

r-

100

125

1\

~

r- RL=500n
RL=100n

c

I-RL=50n
RL = 20 n
r-RL= 5n

r I II

1.0

150

175

200

0.01

IF. FORWARD ON·STATE CURRENT ImAI

FIGURE 7 - REVERSE CURRENT
10

5.0
VR = 30 V

.L.

~ 2. 0

ffi

1. 0

'"~

o. 5

<.)

w

~

o.2

~

o. 1

L

'" 0.0 5
It
0.02

0.0 1
-75

-50

-25

+25

+50

+100

~

> 2.0

75

50

+75

+125

FIGURE 6 - OUTPUT VOLTAGE (FUNCTION OF RL AND Cel
7.0

/

0;

~

+50

TA. AMBIENT TEMPERATURE lOCI

1.45

z:

+25

-25

TA. AMBIENT TEMPERATURE lOCI

+75

+100

+125

TA. AM81ENT TEMPERATURE lOCI

-I

CHARACTERISTICS

1396

MUS4987, MUS4988 (continued)

FIGURE 9 - PEAK OUTPUT VOLTAGE TEST CIRCUIT
10K

(\

FIGURE 10 - TURN·ON TIME TEST CIRCUIT
MERCURY RELAY

...II
I ....

1.0kf!
ANODE
VOLTAGE

:::... 12 v

1.0W 0.01 ~F

..

(

\..

Vs

~O.U .T.
VF
Vf+0.1 (VS-VF)

Turn-on time is measured from the time

Vs

is achieved to the time when the anode voltage drops to within 90% of the difference between

Vs

and VF.

FIGURE 11 - TURN·OFF TIME TEST CIRCUIT

ANODE
VOLTAGE

4Df!

S.OV

-=MERCURY
RELAY

O.U.T.

With the SUS in conduction and the relaV contacts open, the contacts are closed and the anode is driven negative. C is decreased. and when the
anode voltage becomes positive, the SUS remains off. The turn-off time, toff. is the time between initial contact closure and the point where the
anode Yoltage passes through zero volts.

1397

MV104 (SILICON)

vv c ---.! r-DUAL
VOL TAGE-VARIABLE
CAPACITANCE DIODES

SILICON EPICAP DIODES

37-42 pF
32 VOLTS

· .. designed for FM tuning, general frequency control and tuning, or
any top·of·the·line application requiring back·to·back diode configu·
rations for minimum signal distortion and detuning. This device is
supplied in the popular TO·92 plastic package for high volume,
economical requirements of consumer and industrial applications.

•
•
•
•

Guaranteed Capacitance Range - 37-42 pF @ VR = 3.0 Vdc
Dual Diodes - Save Space and Reduce Cost
TO-92 Package for Easy Handling and Mounting
Guaranteed Matching' Tolerance From Diode to Diode and

•

Monolithic Chip Provides Near Perfect Matching - Guaranteed
± 1% (Max) Over Specified Tuning Range.

Group to Group

"Upon request, diodes are available in matched sets of any num~er or in

matched groups. All diodes in a set or group can be matched for capacitance to

± 1.5% or 0.1 pF (whichever is greater) over the specified tuning range.

MAXIMUM RATINGS (Each Device)
Symbol

Value

Unit

VR

32

Volts

Forward Current

IF

200

rnA

Total gower Dissipation q&T A =
25 C Derate above 25 C

Po

280
2.8

mW
rnW/oC

TJ

+125

Tstg

-65 to +150

°c
°c

Rating

Reverse Voltage

Junction Temperature

Storage Temperature Range

FIGURE 1 - OIODE CAPACITANCE lEach Device)
0

.......

DIM
A

0

B

""

0
0

TA '25 0C
f= 1.0 MHz

0

C
0

F

""

K

L
N
P
Q

0

.............

R
S

MILLIMETERS
MIN
MAX
4.450
5.200
3.180
4.190
4.320
5.330
0.407
0.533
0.407
0.482
1
1.390
1.150
1.270
6.350
3.430
2.410
2.670
2.030
2.670

INCHES
MIN
MAX
0.175
0.205
0.125
0.165
0.170
0.210
0.016
0.021
U.016
0.D19
0.045
0.250
0.135
0.095
0.080

10

o
0.3

0.5

1.0

2.0

3.0

5.0

10

20

30

VR, REVERSE VOLTAGE (VOLTS)

1398

CASE 29·02
TO·92

0.055
0.050

-

0.105
0.105

MV104 (continued)

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted, Each Device)
Characteristic-All Types

Symbol

Min

Typ

Max

Unit

BVR

32

-

-

Vdc

-

50
500

nAdc

-

Reverse Breakdown Voltage
IIR = 1Ol'Adc)
Reverse Voltage Leakage Current T A 250 e
(VR = 30 Vdc)
TA = sooe

IR

Series Inductance
(f = 250 MHz,Lead Length"" IllS")

LS

Case Capacitance

ee

-

0.18

-

pF

Tee

-

280

400

ppm/oe

S.O

nH

(f = 1.0 MHz, Lead Length"" IllS")

Diode Capacitance Temperature Coefficient

(VR = 4.0 Vdc, f = 1.0 MHz)

a. Figure of Merit

CT. Diode Capacitance
VR =3.0Vdc, f= 1.0MHz
pF
Device

Min

MV104

37

I
I

CR. Capacitance Ratio
e3/C 30
f = 1.0 MHz

VR = 3.0 Vdc
f = 100 MHz

Max

Min

Min

42

100

2.5

I
J

Max
2.8

TYPICAL CHARACTERISTICS (Each Device)
FIGURE 2 - FIGURE OF MERIT

FIGURE 3 - FIGURE OF MERIT

500

2000

V
V

40 0

100

V

I-

I-

V

"'

~ 300
o

~
::;;

...... V

~

~

'"

./

~ 200

TA=25 0 C . _
f=IOOMHz

./

d

500

r-..

~

w

u:

o~

200

I'

TA = 250 C
VR = 3.0 Vdc

:::>

~ 100

"""

d

100 /

0
~

0
3.0

6.0

9.0

12

18

15

24

21

27

20
10

30

20

30

FIGURE 4 - DIODE CAPACITANCE
1.040

:::;

~ 1.020
o

~ 1.010

~ 1.000

~ 0.990
w

g
i5

0.980

to. 970

- - ?'

~

0.960
-75

-50

~

50

1

--

30V -

NO ~~:;~Zi~~O CT _

V V
V

I-

I

-

w

~

'"
~~
w

-

I

I
25

50

200

300

75

TA=1250 C

20
10

=::::

5.0
750 C

2.0
1.0
0.50

0.20
0.10

-

250 C

0.05
0.02
0.01

-25

100

100

~ /4.0 V

~

./

70

FIGURE 5 - REVERSE CURRENT

VRJ~

c~ 1.030

50

f, FREQUENCY (MHz)

VR, REVERSE VOLTAGE (VOLTS)

100

125

TJ. JUNCTION TEMPERATURE (OC)

o

5.0

10

15

20

VR, REVERSE VOLTAGE (VOLTS)

1399

25

30

MV109 (SILICON)

VVC~r-SILICON EPICAP

VOLTAGE VARIABLE
CAPACITANCE DIODE

DIODE

26-32pF
. designed in the new low· inductance Mini·L package for high
volume requirements in VHF TV tuning, AFC, general frequency
control and tuning applications; providing solid·state reliability in
replacement of mechanical tuning methods.
•

High QWith Guaranteed Minimum Values at VHF Frequencies

•

Controlled and Uniform Tuning Ratio

•

Low Inductance Mini·L Package

•

Guaranteed Matching* Tolerance From Diode to Diode and Group
to Group

·Upon request, diodes are available in matched sets of any number or in matched
groups. All d lodes in a set or group can be matched for capacitance to ±3%
or 0.1 pF (whichever is greater) along the entire 'specified tuning range.

MAXIMUM RATINGS
Rating

Reverse Voltage
Forward Current

Oevic~ Dissipation

@

TA

= 25°C

Symbol

Value

Unit

VR

30

Volts

IF

200

mA

PD

400
4.0

mW
mW/oC

TJ

+125

T st9

-65 to +150

°c
°c

Derate above 25°C

Junction Temperature
StoraQe Temperature Range

40
36

,

2
~

28

~

24

z

FIGURE 1 - DIODE CAPACITANCE
Tl= ~5JC
j=1.0MHz

"

\

DIM
A

•

U

~
w

o
c
C

Ii

20
16

C
D
f

12

"-

8.0
4.0

o

1.0

2.0

.3.0

H
J

•

l
N
R
S

r-

5.0 7.0
15 20
30
VR, REVERSE VOLTAGE (VOLTS)

50

70 100

T

U

MILLIMETERS
MIN
MAX

38'
292
191

064
008
1.30

0.64
'4.06
2.36
1.12
0.79
1.99
114
0.43

lI.

411

INCHES
MIN ...MA1L
0152 0.162
0.115 0.125

0.075
0.025

0.085
0.035

0.18
1.55
0.89

0.003
0.051

0.007
0.061

0.025

0.035

432
2.62

0.160 0.170
0.093 0.103
0.044 0.054
0031 0.041
0.472 0.502
0.045 0.055
0.017 . 0.027

2.16

089

1.37
1.04
12.75
1.40

0.89

CASE 226

1400

MV109 (continued)

ELECTRICAL CHARACTERISTICS (T A = 25°C unl... otherwise noted)
Characteristic-Ail Types

Symbol

Min

BVR

30

Reverse Breakdown Voltage

Typ

Unit

Max

Vde

OR ' lO~Ade)
Reverse Voltage Leakage Current

IR

0.1

"Ade

(VR = 28 Vdc, T A = 25°C)

Series Inductance

LS

-

3.0

nH

Cc

-

0.1

pF

TCC

-

300

Q.

Figure of Merit

(I = 250 MHz, Measured at Lead Stop",,1/8")

Case Capacitance
II = 1.0 MHz)
Diode Capacitance Temperature CoeffiCient
(VR = 3.0 Vde, I = 1.0 MHz)

CT. Diode Capacitance
VR =3.0Vdc,f= 1.0MHz
pF

I

Device

I

Minj

MV109

26

Nom

1

1 1

32

f--

Min

Min

280

5.0

~

....

,.ffi
~

=25 0 C
1=5OMH,

'"=>

'"
'"

./

~

to

u::

d

10
VR-2oVdc

0.3 1./
0.2
3.0

6.0

9.0

12

15

18

24

21

27

V
V

-60

-20

+20

+60

+100

+140

TA, AMBIENTTEMPERATURE (DC)

DIODE CAPACITANCE

NOTES ON TESTING AND SPECIFICATIONS

1.03

:::i

~ 1.02

VR = 3.0 Vdc
~ 1.01 -f-f= 1.0MH,
o

w
'-'

..........

~ 1.00

....

13
~

./

0.001

30

1.04

~

L

./

0.1

VR, REVERSE VOLTAGE IVOLTS)

FIGURE 4 -

L

1.0

!E 0.01

0.5

o

6.5

YELLOW

13
w

./

1. 0

Calar

RED

./

3. 0

2.0

Color

,/

1
....
~

w

I

Max

FIGURE 3 - LEAKAGE CURRENT

5. 0

o

I

Body Stripe R idga Stripe

100

TA

0

Package

C3/C25
f= 1.0 MHz

FIGURE 2 - FIGURE OF MERIT

0

ppm/oC

CR. Capacitance Ratio

VR = 3.0 Vdc
f=50MHz

Max

29

400

0.99

;3

.,./

~ 0.98

,......

/'"

--

1. LS IS measured on a package having a short Instead of a die. using an
impedance bridge (Boonton Radio Model 250A R X Meter).

........... V"

2. Cc IS measured on a package without a die, usmg a capacitance
bridge (Boonton Electronics Model 75A or equivalent).
3.

a

IS calculated by takmg the G and C readings of an admittance
bridge. such as Boonton Electronics Model 33AS8. at the specified
frequency and substituting in the following equation.

o

i5
iO.97
0.96
-75

2"fC
Q=G

-50

-25

+25

+50

+75

TA, AMBIENTTEMPERATURE (DC)

+100

+125

4. CR is the ratio of CT measured at 3.0 Vde divided by CT measured
at 25 Vdc.

1401

MV205
MV206

(SILICON)

vvc -+I~
VOLTAGE VARIABLE
CAPACITANCE DIODES

SILICON HYPER·ABRUPT TUNING DIODES
••. designed for microwave tuning applications where minimum
package parasitics are required.
•

High Guaranteed Q@ 100 MHzQ = 225 (Min) - MV205
= 150 (Min) - MV206

•

Guaranteed Tuning Ratio, C3/C25
CR = 4.5 (Min) - MV205
= 4.0 (Min) - MV206

•

Supplied in Rugged Hermetic Ceramic Package

@

1.0 MHz -

MAXIMUM RATINGS
Rating

Svmbol

Value

Unit

VA

30

Volts

Forward Current

IF

200

mA

Device Dissipation@Tc= 25°C

Po

5.0
28.6

Watts

mW/oC

TJ,T stg

fs5 to +200

°c

Reverse Voltage

Derate above 25°C
Operating and Storage Junction

Temperature Range

FIGURE 1 - DIODE CAPACITANCE
20
18
~
~

...

16

G

12

5

10

"c

8.0

""
...'"
~

...

~

~

14

"

4.0

DIM
A
8
C
0
F
H

.....

II
III

2.0

o
0.3

~

TA = 25"C
f =1.0 MHz

~ 6.0

t;

STYLE 1:
PIN 1. CATHODE
2. ANODE

0.5

1.0

~
2.0

3.0

5.0

10

20

MILLIMETERS
MIN
MAX
3.30
2.97
1.96
2.21
3.78
4.09
1.52
1.68
1.50
1.65
1.78
1.93

INCHES
MIN
MAX
0.117 0.130
0.077 0.087
0.149 0.161
0.060 0.066
0.059 0.065
0.070 0.076

30
CASE 45·01

VR, REVERSE VOLTAGE (VO-LTSI

1402

MV205, MV206 (continued)

ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted,)
Characteristic - All Typas

Symbol

Min

Typ

Max

Unit

BVR

30

-

-

Vde

-

50
0.5

nAde
"A de

LS

-

0.8

-

nH

Cc

-

0.15

-

pF

TC e

-

-

400

ppm/oC

Reverse Breakdown Voltage
OR = 10"Ade)

Reverse Voltage Leakage Current

IR

IVR=28V)
IVR = 28, T A = 6oDC)

Series Inductance (11
(f = self resonant frequency)

Case Capacitance (2)
If = 1.0 MHz)

Diode Capacitance Temperature Coefficient (6)
IVR = 3.0 Vde, f = 1.0 MHz, -55°C to +1250 C)

0(5)
f = 100MHz
CT = 9 pF

CT(2),13)
VR = 25"Vde
pF

Device
Typa

CR (4)
f= 1.0 MHz
C3/C25

Min

Max

Min

Min

MV205

2.0

2.3

225

4.5

6.0

MV206

1.8

2.8

150

4.0

6.0

FIGURE 2 - FIGURE OF MERIT
160Ii

....

V

I

1400 1 - -

TA=250 C
f = 100 MHz

1200

V

ii'

~ 1000

I

~

~

800

MV205

~ 600

/

:J

.... V

400
20

/

f...-"

O~

/
/

V

FIGURE 3 - DIODE CAPACITANCE
1.04

V

/

~

1.0 3

~

1.0 2

:::;

/

VR = 3.0 Vdc

o

~

/

V

Max

w

1.0 I

~
~

u

!;:; 1.00

MV206

~

V

0.9 9

~

o

V-

./V

~

.... V

~

0.9 B

C
:; 0.97
0.96

4.0

16
12
20
24
VR, REVERSE VOLTAGE (VOLTS)

B.O

2B

32

-75

-50

-25
0
+25
+50
+75
TA, AMBIENT TEMPERATURE (DC)

+100

+125

PARAMETER TEST METHODS
1. LS, SERIES INDUCTANCE

5. 0, FIGURE OF MERIT
o is calculated by taking the G and C readings of an admittance
bridge at the specified frequency and substituting in the follow
ing equations:
2nfC

LS is determined from the self resonant frequency and the

junction capacity of the device.

w

1
LS=-2-W

2.

Ce, CASE CAPACITANCE
Cc is measured on an open

Q=--

resCJ

G
(Boonto" Electronics Model 33ASB or equivalent).
6. TC e, DIODE CAPACITANCE TEMPERATURE COEFFICIENT

package at 1.0 MHz using a capaci-

tance bridge (Boonton Electronics Model 75A or equivalent.)
3. CT, DIODE CAPACITANCE
ICT = Cc + CJI. CT is measured at 1.0 MHz using a capacitance
twidge (Boonton Electronics Model 75A or equivalent.)
4. CtI. CAPACITANCE RATIO
CR i. the ratio of CT measured at 3.0 Vde divided by CT
......... d at 25 Vde.

TCe is guarantead by comparing CT at VR = 3.0 Vdc, f • 1.0
MHz, T A = -55°C with CT at VR = 3.0 Vde, f = 1.0 MHz,
T A = +1250 C in the following equation, which deftn.s TCe:
TC e =

ICT(+1250C) - CTI-55"C)1 x 106
155 + 125) CTI25"C)

Aee.... ey limited by CT measurement,

1403

to. 1 pF .

MV209

(SILICON)

vvc~\-SILICON EPICAP

VOLTAGE VARIABLE
CAPACITANCE DIODE

DIODE

26-32 pF

· .. designed for VH F TV tuning, AFC, general frequency control
and tuning applications; providing solid·state reliability in replace·
ment of mechanical tuning methods.
•

High Q With Guaranteed Minimum Values at VHF Frequencies

•

Control/ed and Uniform Tuning Ratio

•

Guaranteed Matching(1) Tolerance From Diode to Diode and
Group to Group

•

Supplied. in One'Piece, Unibloc

Package for High Reliability.

(1)Upon request, diodes are available In matched sets of any number or in
matched groups. All diodes in 8 sat or group can be matched for capacitance
to ±3% or 0.1 pF (whichever is greater) along the entlr. specified
tuning range.

T
p~1EIJ~B

MAXIMUM RATINGS

H

Symbol

Rating

Value

Unit

Reverse Voltage

VR

30

Volts

Forward Current

IF

200

mA

Po

280

mW
mW/oC

TJ
T stg

+125

Po .... r Diaipation @ T A
Derate above 26"C

= 26"C

2.8

Junction Temperature

Storage Temperature Range

SEATING
PLANE

40
36
~

32

u

28

...'"

24

~

20

.s

...
z

A

Q
Q

..:J J 1-=

12

I:i

8.0

R

c

PIN 1. CATHODE
2. ANODE

Ti = ~5JC

...........

i'-

f= 1.0 MHz

INCHES
MIN
MAX
5.33 0.110 0.210
5.21
0.115 0.205
B
4.19
.1 5
C
0.533 0.014 0.021
D
0.412
F
0.05 I BSC
G
1.21
0.050
H
0.100 BSC
J
2.54 BSC
U.500
K 12.10
L
~,3It

DIM

A

\

1.0

MILLIMETERS
MIN
MAX
4.32
4.45
3.18
0.356
0.401
1.21

-

-

1"-..

r-

4.0

o

;:::c

I SECTA.A

~

16

i5

I

~

D-::!i'iiG

r

K

STYLE 2:

i3

5...

l

--.l

FIGURE 1 - DIODE CAPACITANCE

A

.

F

°c
°c

-65 to +150

.

N

z.lJ3.

~

2.0

3.0

5.0 1.0 10
20
30
VR. REVERSE VOLTAGE (VOLTS)

50

10 100

-

-

-

.1

CASE 182-02

1404

--

0.135
R 3.43
All JEDEC dimenSIOns Bnd notes Ipply.

MV209 (continued)

E lECTR ICAl CHARACTER ISTICS (T A " 250 C unless otherwise noted)
Symbol

Min

Typ

BVR

30

-

-

Vde

IR

-

-

0.1

/lAde

Series Inductance (Note 1)
(f = 250 MHz, Lead Length"" 1/8")

LS

-

6.0

-

nH

Case Capacitance (Note 2)
(f" 1.0 MHz)

Cc

-

0.2

-

pF

TCC

-

300

400

ppm/oC

Characteristic
Reverse Breakdown Va'tage
OR" 10 /lAde)

Reverse Voltage Leakage Current
(VR

= 3.0 Vde, f

" 1.0 MHz)

Ct. Diode Capacitance
VR

= 3.0 Vdc, f = 1.0 MHz
pF

I

I

Device

Min

MV209

26

1
I

1

Nom

1

29

0, Figure of Merit

CR. Capacitance Ratio

VR = 3.0Vdc
f = 50 MHz
(Not. 3)

fiN~~.~rz

Min

Min

32

200

5.0

I--- TA = 250 C

I7

f = 50 MHz

1:

7. 0
5.0

/'

~
~

7

1.0

I../'

o

3.0

9.0

6.0

12

15

18

24

21

~27

30

~
w

'"'~
>-

u
if
~

-20

+20

+40

+60

+80

+100

+120 +140

1. LS is measured on a package having a'short instead of a die. using
an impedance bridge (Boonton RadiO Model 250A RX Meter).

VR = 3.0 Vdc

...,/

1.0I f - - t-f= 1.0 MHz
et"'" Cc + Cj
1.00
./

0.99

~

2. Cc is measured on a package without a die, using a capacitance
bridge (Boonton Electronics Model 75A or equivalent).

V

J.....-

3. Q is calculated by taking the G and C readings of an admittance
bridge, such as Boonton Electronics Model 33AS8, at the
specified frequency and substituting in the following equation:

V

./V

;'l
o

-40

NOTES ON TESTING AND SPECIFICATIONS

FIGURE 4 - DIODE CAPACITANCE

o

./

TA. AMBIENTTEMPERATURE (DC)

1.0 4

~

./

0.2
0.1

'" 0.02
- 0.01
0.006
0.002
0.001
-60

VR. REVERSE VOLTAGE (VOLTS)

1.0 2

./

VR=20Vdc

~ 0.06

O. 7
0.5

1.0 3

6.0

~ 0.6

2.0

ffi

6.5

./

20
10

~ ~:~

3.0

N

I

Max

100
60

0

0.3

I

FIGURE 3 - LEAKAGE CURRENT

FIGURE 2 - FIGURE OF MERIT

0.2

CalC25

Max

0

d

Unit

= 25 Vde)

Diode Capacitance Temperature Coefficient
(VR

Max

21rfC
Q=-G

0.98

C


Q..

LeV~1

1.0 GHz
= 2.0 GHz

fin =
f out

15

V

l-

=>
0

....

10

i0

Q..

./

./

Q:

~
Q..

I'"

V

,,;'

".

5.0

/

o
o

V
5.0

10
20
15
Pin, POWER INPUT (WAnS)

1416

25

30

MV1858D ,MV1860D, MV1862D, (SILICON)
MV1863D, MV1864D, MV1865D,
MV1866D, MV1868D, MV1870D

vvc --.I~

VOLTAGE-VARIABLE
CAPACITANCE DIODES

SILICON EPICAP DIODES

1 to 15 pF
60 VOLTS

... designed for electronic tuning and control applications in the UHF
and lower microwave frequency ranges. where extremely high Q and
broad tuning ratio are required.
•
•
•
•
•

Excellent Q Factor @ f = 100 MHz
Low Capacitance Values - as low as 1.0 pF
Wide Tuning Range - to 60 Volts
Complete Typical Design Curves
Microwave Ceramic Package

MAXIMUM RATINGS
Rating
Reverse Voltage

Forward Current
Total Device Dissipation

Symbol

Value

Unit

VR

60
250
5.0
28.6
-65 to +200

Volts

IF
@ TC

= 25°C

Po

Derate above 2SoC

Operating and Storage Junction
Temperature Range

TJ. Tstg

mA
Watts

mW/oC
°c

THE FOLLOWING PACKAGES ARE AVAILABLE ON SPECIAL REQUEST

e

8

MV1858A
thru
MV1870A

rBl

CATHOOE

~~

""

D

MILLIMET AS

DIM
A

B

C
D

C

MAX

MIN

MAX

3300
2110
1.780
1090

0111
0077

0130

0050

0070
0043

0.037

I"

tD

STYLE 1

1

INCH

MIN

CASE 48

G

thru
MV1870B

B

E

2970
1960

1.270
0940

e··"M'§
""',--I *la--r'r'"

0.1183

DIM
A
B
C

D
E
F
G

MIL~
MIN
2970

1950
5.210
1520
1500
1780
1500

INCHES

MIN

MAX

0117
0077

0130
0087

0205

0225

0060
0059
0070
0059

0066

CASE 46

1417

0065
0016

0065

DIM
A
B

C
D
E
F

MILLIMETERS
MAX
MIN
2.970
3.300
2.210
1.960
3.780
4.090
1.520
1680
1.500
1.650
1780
1.930
CASE 45

INCHES
MIN
MAX
0117
0.130
0.077
0087
0.149
0.161
0.060
0.066
0.059
0.065
0.076
0.070

MV18580, MV18600, MV18620, MV18630, MV18640,
MV18650, MV18660, MV18680, MV18700 (continued)

ELECTRICAL CHARACTERISTICS IT A = 250 C unless otherwise noted)
Characteristic

Symbol

Reverse Breakdown Voltage
(lR = 10 "Adc)

Max

60

-

-

-

-

0.02
20

-

0.8

-

-

0.15

-

IR

"Adc

nH

LS

= selfwresonant frequency I

Case Capacitance 11)
(I = 1.0 MHz)

Cc

CT. Diode Capacitanca (2)
VR = 4 Vdc, I - 1.0 MHz
pF

Device

Unit
Vdc

= 55 Vdc)
= 55 Vdc, TA = 1500 C)

Series Inductance
(f

Typ

BVR

Reverse Voltage Leakage Current

IVR
IVR

Min

CR. Capacitance Ratio

pF

Q.

Figure of Merit
VR =4.0 Vdc
f= 100 MHz

C4/C60
f= 1.0 MHz

Min

Nom

Max

Min

Max

Min

MVI85BD
MV1860D
MVI862D
MV1863D
MVI864D

0.70
1.76
2.97
4.23
6.10

1.0
2.2
3.3
4.7
6.8

1.30
2.64
3.63
5.17
7.50

2.1
2.5
2.6
2.6
2.7

2.7
3.1
3.3
3.3
3.4

350
350
300
300
300

MV1865D
MVI866D
MV1868D
MV1870D

7.38
9.00
10.80
13.50

8.2
10.0
12.0
15.0

9.02
11.00
13.20
16.50

2.7
2.8
2.8
2.8

3.4
3.5
3.5
3.5

300
250
200
200

(1) Case Capacitance = 0.25 pF typical for types MV 1858A thru MV 1870A (case 48),
(2) All CT values 0.11 pF higher for types MV1858A thru MV1870A (case 48). CR is reduced proportionately.

PARAMETER TEST METHODS

1. LS, SERIES INDUCTANCE
LS is determined from the self resonant frequency and the
junction capacity of the device.

4. CR, CAPAC IT ANCE RATIO
CR is the ratio of CT measured at 4.0 Vdc divided by CT
measured at 60 Vdc.
5. RS, SERIES RESISTANCE
RS is calculated from the insertion loss observed when the diode

LS= __I__
w 2 res CJ

is resonated across a 50-ohm transmission line.

2. CC. CASE CAPACITANCE
Cc is measured on an open package at 1.0 MHz using a capaci~
tance bridge (Boonton Electronics Model 75A or equivalent,)

3. CT, DIODE CAPACITANCE
ICT= CC+ CJ}. CT is measured at 1.0 MHz using a capacitance
bridge (Boonton Electronics Model 75A or equivalent.)

1418

25

RS=----~~~--~~-­

-1 ( Insertion

10910

20

LOSS) -1

MV1858D, MV1860D, MV1862D, MV1863D, MV1864D,
MV1865D, MV1866D, MV1868D, MV1870D (continued)

FIGURE 1 - DIODE CAPACITANCE varsus REVERSE VOLTAGE

FIGURE 2 - NORMALIZED SERIES RESISTANCE
varsus REVERSE VOLTAGE

100

10

0

or---MV1870D
~
~
;5

i3

~

10

1. 0

5.0

3.0

r-- t=

~

-

MVI858D

Q

'"25

I

r-i-

5.0
3. 0

~

S

MVI864D

~
;;;;

t· 1.0 MHz

~

1.0

~

0.5

~
~

NORMALIZED TO R, @ VR

o. I

O. 1
10

20

40

60

10

20
VR, REVERSE VOLTAGE (VOLTSI

40

60

100

1.0

-2.0

0

~ 2. 0

./

:5

1. 0

~

u

~ -1. 0
i3

~ -2 .0

-3. 0
-4 0

-5. 0
-75

~

.-

....-

~

-

2

50 V

:/

=4 Vdc

-~

8

~ t-

4

1,/

2

/"
-25

25

75

50

100

75

-50

-25

25

50

75

100

TJ, JUNCTION TEMPERATURE lOCI

FIGURE 6 - DIODE REACTANCE varsus FREQUENCY
1000

TA

50 0
30 0

=150De

i

1.0

u

z

O. 1

;

i

75 De

w

~

10 0

[""-0.

.......

0
0

MVI858D

....

Q

'"

is

'"ti:

- 0.00 1

MVI860D

r-.

20

30

0
5. 0
3. 0

25 De

40

50

60

VR. REVERSE VOLTAGE (VOLTSI

1419

1.0
0.1

.Ib-.",

......

~

0.0 1

0.0001
10

~

r-

NORMALIZED TO R,@25'C

6

V

-50

VR

O

f-"_ V./

10

~

100

4

V.- V-lOV

100

~

60

6

-40 V

FIGURE 5 - REVERSE CURRENT

~
'"
B

40

20

8

V

TJ, JUNCTION TEMPERATURE ('CI

~
>-

10

2. 0

4. 0

0

60

FIGURE 4 - NORMALIZED SERIES RESISTANCE
varsus TEMPERATURE

5. 0

~

40

20

VR, REVERSE VOLTAGE (VOLTSI

FIGURE 3 - CAPACITANCE VARIATION versus TEMPERATURE

~

4V

,t 0.3

0.5
3

~MV1864D

"

"

MVI870D ~

I II
0.2

0.3

0.5

2.0
1.0
t, FREQUENCY IGHzI

3.0

5.0

10

MV18580, MV18600, MV18620, MV18630, MV18640,
MV18650, MV18660, MV18680, MV18700 (continued)

EPICAP VOLTAGE-VARIABLE CAPACITANCE DIODE DEVICE CONSIDERATIONS

A. EPICAP NETWORK PRESENTATION

FIGURE 1

The equivalent circuit in Figure 7 shows the voltage capaci·
tance and parasitic elements of an EPICAP diode. For design
purposes at all but very high and very low frequencies. L" RJ,
and Ce can be neglected. The simplified equivalent circuit of
Figure 8 represents the diode under these conditions.

Definitions:
CJ - Voltage-Variable Junction Capacitance
R, - Series Resistance (semiconductor bulk, contact,
and lead resistance)
Ce - Case Capacitance
L, - Series Inductance
RJ - Voltage-Variable Junction Resistance (negligible
above 100 kHz)

R,

L,

FIGURE 8

C,)k

R,

O------~~*r-F-----~~~------~O
CT = Ce + CJ

B. EPICAP CAPACITANCE vs REVERSE BIAS VOLTAGE
The most important design characteristic of an EPICAP
diode is the CT versus V.. variation as shown in equations 1 and
2. Since the desIgner is primarily interested in the slope of CT
versus YR. the Ce. Co. CPr' and 'Y characteristics have been en·
compassed by the simplified equation- 3. Min/max limits on
a can be guaranteed over a specified V. range.

(1)

CT = Ce + __C_.__
(1

(2)

+ ~).,

. f .. N(x2) = 20.8; N(x3) = 34-.8; N(x4) = 62.5 M and N are Constants 1420 (6) WRSCeq P Efficient harmonic generation is possible with Motorola EPICAPS because of their high cutoff frequency and break· down voltage. Since EPICAP junctIon capacitance varies in· versely with the square root of the breakdown voltage, "",CJRi RJ (10) MV1866, MV1868, MV1870, (SILICON) MV1871, MV1872, MV1874, MV1876, MV1877, MV1878 vvc -.!~ VOLTAGE-VARIABLE CAPACITANCE DIODES 10-47 pF 60 VOLTS SILICON EPICAP DIODES · .. a PREMIUM line of epitaxial, passivated, abrupt·junction tuning diodes designed for electronic tuning, FM AFC and harmonic generation applications into the microwave range providing solid-state reliability to replace mechanical tuning methods. • • • • • Excellent Unit-to-Unit Uniformity Typical Design Curves Guaranteed Temperature Coefficient Guaranteed Q at Specified Reverse Voltages Guaranteed Capacitance Slope versus Reverse Voltage • Guaranteed MinIMax Slope of Capacitance versus Reverse Voltage Curve (a) • Complete Design Curves "I@li B D_~ K CATHODE BAND Symbol Valu. Reverse Voltage VR 60 Vdc IF 250 mAde RF Power I nput I Note 1) Pin 5.0 Watts Total Device Dissipation@TA =250 C Po 400 2.67 mW mWf'C DIM PL 2.0 13.3 Watts mWf'C A B 0 Total Device Dissipation @TL "" 25°C Derate above 25°C Operating Junction Temperature Range Storage Temperature Range TJ +175 DC Tstg -65 to +200 DC b:!:. K Unit Forward Current Derate above 25°C rFj r+.~ L MAXIMUM RATINGS Rlting _I F MILLIMETERS MIN MAX 5.84 2.16 0.46 7.62 2.72 0.56 1.27 INCHES MIN MAX 0.230 0.085 0.018 K 25.40 1.000 All JEDEC dimensions and notes apply Note 1. The RF power input rating assumes that an adequate heat sink Is provided. CASE 51-02 00-7 1421 0.300 0.107 0.022 0.050 MV1866, MV1868, MV1870, MV1871, MV1872, MV1874, MV1876, MV1877, MV1878 (continued) ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Characteristic - All Types Breakdown Voltage OR = 10/LAde) Reverse Current (VR = 55 Vde) Symbol Min Typ Max Unit BVR 60 75 - Vde - - 0.02 /LAde IR (VR = 55 Vde, T A = 150"C) 2.0 nH 5.0 Series Inductance (1= 250 MHz, Measured at LeadStop",,1/16") LS Case Capacitance (1= 1.0MHz, Lead Length",,1/16") ee - 0.17 Diode Capacitance Temperature Coefficient Tee - 200 leo - 45 - pF ppm/"C 300 (VR = 4.0 Vde, I = 1.0 MHz) Cutoff Frequency (VR = 60 Vde, I = 50 MHz) Device MV1866 MV1868 MV1870 MV1871 MVI872 MV1874 MV1876 MVI877 MV1878 CT, Diode Capacitance VR =4.0Vdc.f= 1.0MHz pF Q, Figure of Merit f = 50 MHz VR =4.0Vdc VR-60Vdc - a. Diode Capacitance Reverse Voltage Slope VR =4.0Vdcto VR =60Vdc See B on Back Page GHz CR, Capacitance Ratio C4.0/C60 1=1.0 MHz Min Nom Max Min Min Min Typ Max Min Typ Max 9.0 10.8 13.5 16.2 19.8 24.3 29.7 36.7 42.3 10.0 12.0 15.0 18.0 22.0 27.0 33.0 39.0 47.0 11.0 13.2 16.5 19.8 24.2 29.7 36.3 42.9 51.7 500 500 400 400 400 300 300 300 300 700 700 700 700 700 700 700 700 700 0.42 0.42 0.42 0.42 0.45 0.45 0.45 0.45 0.45 0.44 0.44 0.45 0.45 0.46 0.46 0.47 0.47 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 3.0 3.0 3.0 3.0 3.2 3.2 3.2 3.2 3.2 3.1 3.1 3.2 3.2 3.3 3.3 3.4 3.4 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.6 3.6 3.6 PARAMETER TEST METHODS frequency and substituting in the followmg 1. LS. Series Inductance equations: Ls IS measured on a shorted package at 250 MHz using an Impedance brtdge (Boonton 2TrfC Qo-- RadiO Model 25QA AX Meter orequivalent) G 2. CC. Ca.. Capacitance (Boonton Electronics Model 33AS8 or equivalent). Cc IS measured on an open package at 1.0 MHz using a capacItance bndge (Boonton ElectronIcs Model 75A or eqUivalent). 6. TCc ' Diode Capacitance Temperature Coefficient 3. CT. Diode Capacitance TC c IS guaranteed by companng CT at V A (CT "" Cc + CJL CT IS measured at 1.0 MHz using a capacitance bridge (Boonton Elec· tronlCs Model 75A or equivalent). = 4.0 Vdc, f = 1.0 MHz, T A = -6SoC with CT at VA = 4.0 Vdc, f = 1.0 MHz, TA = +8S o C in the follOWIng equation, which defInes TC e : 4. CR. Capacitance Ratio CT(+85 0 C) - CT(-65 0 Clj CR is the ratio of CT measured at 4.0 Vdc divided by CT measured at 60 Vdc. Te c = j 85 + 65 '06 --CT(250C) 5. Q, Figure of Merit Accuracy limited by CT measurement to iO 1 pF. Q is calculated by taking the G and C read· ings of an admittance bridge at the specifIed 1422 MV1866, MV1868, MV1870, MV1871, MV1872, MV1874, MV1876, MV1877, MV1878 (continued) FIGURE 1 - DIODE CAPACITANCE FIGURE 2 - FIGURE OF MERIT 200 100 60 MVI866 0 ~ 100 2!0 ... ...... ....... 0 . ~ ..... 0 f'.... 0 t--. -..... 0 ~ 6. 0 4. 0 d ~ 2.01---- ~ f' f'-. 1.0 1.0 1"" MVI872 2000.... 3.0 ... . 2.0 ffi 1000 ~ 700 0: 500 ... ::> '"u:d 6.0 10 10 20 40 60 100 3000 ...... ....... 1">. 4.0 6.0 FIGURE 3 - FIGURE OF MERIT I"- 2.0 4.0 VR, REVERSE VOLTAGE (VOLTS) """" ~ TA' 25°C 1= 1.0 MHz 1.0 ..... """ 2.0 MVI866 4.0 1. 0 0.6 1./ """ I~ t"'--. ...... 7.0 5. 0 !>Y '/ kZ; ~MV1878 TA"'25 0C I-50 MHz 0 '" u: MVI878 " 0 ~ c l' 0 -., MVI872 20 40 60 ...... ......... .......... ~ ~ t"'-- i.--MV1866 MVI872 :--.. :--.. "" ~ 300 - TA'250C _ VR' 4.0 Volts MV1878/ i"""-,. """" 200 1 VR, REVERSE VOLTAGE (VOLTS) 100 10 ........ ~ 20 30 40 50 " I....... 70 t::: i" 100 I, FREQUENCY (MHz) FIGURE 4 - DIODE CAPACITANCE FIGURE 5 - REVERSE CURRENT 1.1 2 ~ N . ~ 1.08 0: C ~ ~ 1.04 ./ ~ ~ 1.00 5 0.9 6 ...c Ii 0.9 2 -75 ./ / ./ IL IL V 100 V TA -150°C 0 1.0 .1 75°C VR '4.0 Volts 1'1.0 MHz 0.0 I !/ 0.00 I 25°C ./ -25 +25 +75 +125 0.000 1 +175 10 20 30 40 VR, REVERSE VOLTAGE (VOLTS) TJ,JUNCTION TEMPERATURE (OC) 1423 50 60 MV1866, MV1868, MV1870, MV1871,MV1872, MV1874, MV1876, MV1877, MV1878 (continued) EPICAP VOL TAGE·VARIABLE CAPACITANCE DIODE DEVICE CONSIDERATIONS FIGURE 7 A. Epicap Network Presentation The equivalent circuit in Figure 7 shows the voltage capacitance and parasitic elements of an EPICAP diode. For design purposes at all but very high and very low frequencies. LS. AJ. and Cc can be neglected. The simplified equivalent circuit of Figure 8 represents the diode under these conditions. Definitions: CJ - Voltage· Variable Junction Capacitance RS - Cc LS RJ - Series Resistance (semiconductor bulk, contact, and lead resistance) Case Capacitance Series Inductance Voltage-Variable Junction Resistance (negligible above 100 kHzl FIGURE 8 C~k' RS O~------~/?~r-~------~~~·--------O (1) B. Epicap Capacitance v....u. Reverse Bias Voltage The most important design characteristic of an EPICAP diode is the CT versus VR variation as shown in equations 1 and 2. Capacitance Ratio. CR, between any two voltage points on curve of equation (2) is determined from· equations (3) and (4). C. Epicap Capacitance versus Frequency Variations in EPI CAP effective capacitance, as a function of operating frequency, can be derived from a simplified equfvalent circuit similar to that of Figure 7. but neglecting AS and AJ. Theadmittance expression for such a circuit is given in equation 5. Examination of equation 5 yields the following information: At low frequencies. Ceq = CJ; at very high frequencies (f = = 00) Ceq CC. As frequency is increased from 1.0 MHz, Ceq increases until it is maximum at w 2 = 1/LSCJ; and as w 2 is increased from 1/LSCJ toward infinity, Ceq increases from a very negative capacitance (inductance) toward Ceq = CC. a positive capacitance. Very simple calculations for Ceq at higher frequencies indicate the problems encountered when capacity measurements are made above 1.0 MHz. As w approaches Wo = I/.Ji scJ. small variations in LS cause extreme variations in measured diode capacitance. D. EPICAP Figure of Merit (0) and Cutoff Frequency (feo) The efficiency of EPICAP response to an input frequency is re· lated to the Figure of Merit of the device as defined in equation 6. For very low frequencies. aquation 7 applies whereas at high freQuencies, where RJ can be neglected, equation 6 may be rewritten into the familiar form of equation 8. Another useful parameter for EPICAP devices is the cutoff fre· quency (fcoL and is the frequency point where Q is equal to 1. Equation 9 gives this relationship. (2) (3) TA Diode = Cn CJl + Cc CT2 CJ2+ Cc ° Co = CJ at VA = VA = Aeverse Bias (Volts) 'Y. Diode Power Law. "" 0.44 4>. Contact Potential. "" 0.6 Volt Cc ",,0.17 pF Y = jwCeq = jwCc + jwCJ ---=-- XSeq 0=-ASeq (6) wCJA J 2 aLf = - - - - - - AJ + AS(1 + w 2CPAP 1 ahf=--wASCeq Pin(max) = (7) (8) (9) fco = af max M(BVA + 4»2 fin 1424 (5) 1 -w2LSCJ E. Harmonic Generation Using EPICAPS Efficient harmonic generation is possible with Motorola EPICAPS because of their high cutoff frequency and breakdown voltage. Since EPICAP junction capacitance varies inversely with the square root of the breakdown voltage. harmonic generator performance can be accurately predicted from various idealized models. Equation 10 gives the level of maximum input power for the EPICAPand equation 11 gives the relationships governing EPICAP circuit efficiency. In these equations, adequate heat sinking has been assumed. (4) AS (10) fco M(x2) = 0.0285;M(x3) = 0.0241;M(x4) = 0.196 f out Eff= 1-N fco N(x2) = 20.8;N(x3) = 34.8;N(x4) = 62.5 M and N are Constants (Ill MV2101 (SILICON) thru MV2115 vvc --.!rVOL TAGE·VARIABLE CAPACITANCE DIODES 6.8-100 pF 30 VOLTS SILICON EPICAP DIODES · .. designed in the popular PLASTIC PACKAGE for high volume requirements of FM Radio and TV tuning and AFC. general frequency control and tuning applications; providing solid·state reliability in replacement of mechanical tuning methods. • High Q with Guaranteed Minimum Values • Controlled and Uniform Tuning Ratio • Standard Capacitance Tolerance-10% • Complete Typical Design Curves Tm~ MAXIMUM RATINGS Rating Reverse Voltage Forward Current Device Dissipation @ T A Derate above 2SoC = 25°C Junction Temperature Storage Temperature Range Symbol Valuo Unit VR 30 Volts IF 200 rnA Po 280 2.8 mW mW/oC TJ Tstg +125 °c °c -65 to +150 r- SEATING PLANE A H K J AA D-nl.;--- JJ L STYLE 1 PIN 1. ANOOE 2. CATHOOE ~o !sECT A·A ~ \WI DIM A 0 J K MILLIMETERS MIN MAX 4.45 0.41 2.29 12.70 4.10 0.48 2.79 - INCHES MIN MAX 0.175 0.016 0.090 0.500 CASE 182'()3 1425 0.185 0.019 0.110 - MV2101 thru MV2115 (continued) ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted) Characteristic-All Types Symbol Min Typ Max Unit BVR 30 - - Vdc Reverse Voltage Leakage Current (VR ~ 25 Vdc, TA ~ 25°C) IR - - 0.10 "Ade Series Inductance (f ~ 250 MHz,Lead Length "" 1116") Ls - 6.0 Case Capacitance (f· 1.0 MHz, Lead Length"" 1116") Cc - 0.18 - pF TCC - 280 400 ppml"C Reverse Broakdown Voltage (lR ~ 10,.Adc) Diode Capacitance Temperature Coefficient nH (VR = 4.0 Vdc, f = 1.0 MHz) CT. Diode Capacitance VR ~ 4.0 Vdc, f ~ 1.0 MHz pF Q, Figure of Merit Nom TR, Tuning Ratio C2/C30 f= 1.0MHz VR· 4.0 Vdc, f = 50MHz Device Min Min Min Typ Max MV2101 MV2102 MV2103 MV2104 MV2105 6.1 7.4 9.0 10.8 13.5 6.8 8.2 10.0 12.0 15.0 7.5 9.0 11.0 13.2 16.5 450 450 400 400 400 2.5 2.5 2.5 2.5 2.5 2.7 2.8 2.9 2.9 2.9 3.2 3.2 3.2 3.2 3.2 MV2106 MV2107 MV2108 MV2109 MV2110 16.2 19.8 24.3 29.7 35.1 18.0 22.0 27.0 33.0 39.0 19.8 24.2 29.7 36.3 42.9 350 350 300 200 150 2.5 2.5 2.5 2.5 2.5 2.9 2.9 3.0 3.0 3.0 3.2 3.2 3.2 3.2 3.2 MV2111 MV2112 MV2113 MV2114 MV2115 42.3 50.4 61.2 73.8 90.0 47.0 56.0 68.0 82.0 100.0 51.7 61.6 74.8 90.2 110.0 150 150 150 100 100 2.5 2.6 2.6 2.6 2.6 3.0 3.0 3.0 3.0 3.0 3.2 3.3 3.3 3.3 3.3 Max PARAMETER TEST METHODS 1. LS, SERIES INDUCTANCE Ls is measured on a shorted package at 250 MHz using an impedance bridge (Boonton Radio Model 260A RX Meter). 2. 5. Q, FIGURE OF MERIT a is calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equations: Ce, CASE CAPACITANCE 2wfC Q=G Cc is measured on an open package at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent). 3. CT, DIODE CAPACITANCE (CT = Cc + .CJ). CT is measured at 1.0 MHz using a capacitance (Boonton Electronics Model 33AS8). Usa Lead Length ",,1/16". 6. TCC, DIODE CAPACITANCE TEMPERATURE COEFFICIENT TCC is guaranteed by comparing CT at VR = 4.0 Vdc, f = 1.0 MHz, T A = -650 C with CT at VR = 4.0 Vdc, f ~ 1.0 MHz, T A • +8SoC in the following equation which defines Tee: bridge (Boonton Electronics Model 76A or equivalent). 4. TR, TUNING RATIO TR is the ratio of ~ measured at 2.0 Vdc divided by ~ measured at 30 Vdc. TCC = CT(+850 C) - CTI-650 C) 106 85 + 65 . CR(250C) Accuracy limited by measurement of 1426 Or to ± 0.1 pF. MV2101 thru MV2115 (continued) TYPICAL DEVICE PERFORMANCE FIGURE 1 - DIODE CAPACITANCE versus REVERSE VOLTAGE TA-250C f-1.D MHz 300 ~ MV2115 .!: w MV2111 <.> z 100 g ~ ~ MV2109 50 MV2105 20 w g MV2101 10 C ti 5.0 2.0 1.0 0.4 0.1 4.0 1.0 30 10 VR, REVERSE VOLTAGE (VOLTS) FIGURE 2 - NORMALIZED DIODE CAPACITANCE versus JUNCTION TEMPERATURE 1.040 ~ VRJ~ ~ 1.030 ~ 1.020 § 1.010 w g 1.000 C ~ 0.990 .,..... ~ 0.980 Z /'" / 0.910 - ?' - ?' VRYOV- NORMALIZED +0 CT_ at -50 -25 TA =25°C vy /' 0.960 -75 -- 15 (CURV1EI 50 75 _ 50 :1 !;; ~ 5 ~ - TA=125oC 0 0 5.0 TA -75°C 2.0 1. 0 ~ 0.50 Ii 0.2 0 - 0.1 0 - 0.02 0.0 1 125 o 10 5.0 TJ, JUNCTION TEMPERATURE (OC) I- ill :E ~ 0 w ""=> co u:: 4000 3000 1000 ..I-t""' MV2109 500 I- 1000 ill 500 '" ~ 300 200 w 300 200 u:: 100 0 MV2115 ""=> co _I"'"" 100 Tr250C f-50MHz d 50 d 50 25 1.0 2.0 5.0 10 30 r--- ~-- MV2101 r-... ~ TA = 250C r---,VR = 4.0 Vdc r-... 20 20 10 30 VR, REVERSE VOLTAGE (VOLTS) r--.. MV 109 10 20 50 f, FREQUENCY (MHz) 1427 r-... MVl115 30 30 20 10 20 FIGURE 5 - FIGURE OF MERIT versus FREQUENCY MV2101 1000 15 VR, REVERSE VOLTAGE (VOLTS) FIGURE 4 - FIGURE OF MERIT versus REVERSE VOLTAGE 4000 3000 2000 - TA = 25°C 0.05 100 -- 10 0 ~ ..........VR=4.0V R ./ ::l o FIGURE 3 - REVERSE CURRENT versus REVERSE BIAS VOLTAGE 100 250 MV2101 thru MV2115 (continued) EPICAP VOL TAGE·VARIABlE CAPACITANCE DIODE DEVICE CONSIDERATIONS fiGURE 6 A. Epicap Network Presentation The equivalent circuit in Figure 6 shows the voltage capacitance and parasitic elements of an EPICAP diode. For design purposes at atl but very high and very low frequencies. Lg. RJ. and Cc can be neglected. The simplified equivalent circuit of Figure 7 rep~nts the diode under these conditions. Definitions: CJ - Voltage·Variable Junction Capacitance RS - Series Resistance (semiconductor bulk, contact, and lead resistance) Cc - case Capacitance LS - Series Inductance RJ - fiGURE 7 C:...lk"" RS OO~--------/?;fr-~------~~~-------O Voltage-Variable Junction Resistance (negligible above 100kHz) (1) B. Epicap Capacitance versus Reve... Bias Voltage The most important design characteristic of an EPICAP diode is the Or versus VR variation as shown in equations 1 and 2. Tuning Retio, TR. between any two voltage points on curve of equation (2) isdotarmined from equations (3) and (4). C. Epicap Capacitance versus frequency Variations in EPICAP effective capacitance. as a function of operatiAg frequency. can be derived from a simplified equivalent circuit simn.r to that ot FigureS, but neglecting RS and RJ. Theaciminance expression for such 8 circuit is given in equation 5. Examination of equation 5 yields the follOWing information: Co CT=CC+---- (1 +'!fJ TR Junction At low frequencies. Ceq""CJ; at very high froquencles If"'" CO) CJI =- CJ2 TR Diode"" Cn CT2 (VR2+4»'r = --VRl +4> (3) CJI + Cc = --CJ2+ Cc (4) Conditions: ° toward infinity. Ceq increases from a very negative capacitance Co = CJ.t VR = VR = Reverse BI.s IVolts) 'Y. Diode Power Law. "" 0.44 4>. Contact Potanti.,. "" 0.6 Volt Cc ",,0.18 pf (inductance) toward Ceq = CC. a positive capacitance. Very simple calculations for Ceq at higher frequencies Indicate Y • jwCeq = jwCc + - - - ' - - the problems encountered when capacity measurements are made I -w 2 LgCJ Ceq "" CC· As frequency is increased from 1.0 MHz. Ceq incre. . . until it is maximum at ",2 = lILSCJ; and os ",2 is increased from lILgCJ (2) jwCJ (5) abova 1.0 MHz. A. w approaches Wo • II./LScJ. small variations in Ls cause extreme variations in measured diode capacitance. Q= D. EPICAP FiII"e of Merit IQ) and CutoH Frequency Ifeo) The efficiency of EPICAP response to an input frequency is re· lated to the Figure of Merit of the device as defined in equation 6. For very low frequencies. equation 7 applies whereas at high frequencies, where RJ can be neglected. equation 6 may be rewritten into the familiar form of equation 8. Another useful parameter for EPICAP devices is the cutoff frequency (feo ). and is· the frequency point where Q is equal to 1. Equation 9 gives this relationship. > ~ :;-r- ~ r-- t-t- - N 3.0 _TA'250C "1.0 MHz 1.0 0.2 1.0 4.0 VR. REVERSE VOLTAGE (VOLTS) INCHES MIN MAX 5.33 0.170 0.210 A 4.32 0.175 0.205 5.21 B 4.45 4.19 0.125 0.165 3.18 e 0.356 0.533 0.014 0.021 D F 0.407 0.482 0.01. .D19 0.050 BSC 1.27 BSC G 0.050 1.27 H 0.1008Se 2.54 BSC J u.5uu K 12.70 0.250 L 6.35 2.66 O.OBO I U. 05 N 2.03 p o. 15 .93 0.135 R 3.43 MILLIMETERS DIM MIN MAX 5.0 0.1 ~ ,0-' "', N 10 25 CASE 182-02 1429 C MV2201, MV2203, MV2205, MV2209 (continued) =25°C unless otherwise noted) ELECTRICAL CHARACTERISTICS (T A Ch.racteristic-AII Types Symbol Min BVR 25 Reve... Breakdown Voltage (lR = 10 "Adcl Revarse Voltage Leakage CUrrent (VR = 10 Vdc, T A = 250 CI (VR = 10 Vdc, TA = 850 CI IR 0.5 5.0 "Adc VF 0.65 - Vdc Series Inductance (f = 250 MHz, lead length",,1/16"1 LS - 6.0 - nH Case Capacitance (f = 1.0 MHz lead lenath ",1116"1 Cc - 0.18 - pF .... Device Min Max Min Min Max 5.5 8.5 13 8.0 11.5 17 37 300 1.9 2.0 2.1 2.1 2.3 2.4 2.5 2.5 29 200 200 150 FIGURE 3 - FIGURE OF MERIT .ersus FREQUENCY 4000 3000 MV2201 .... 1000 ill'" MV2209 500 II: '"u: 100 => - 2000 ..J...+o- .... 1000 300 200 TR, Tuning Ratio Cl/Cl0 f=1.0MHz Q, F!gure of Marit VR = 4.0 Vdc, f= 50 MHz MV2201 MV2203 MV2205 MV2209 4000 3000 2000 w Vdc - FIGURE 2 - FIGURE OF MERIT .ersus REVERSE VOLTAGE "0 Unit - - CT, Diode C.....itance VR • 4.0 Vdc, f · 1.0 MHz pF '" Max - Forward Voltage Drop (IF = 250 "Adcl ill Typ :5 ::! => TA=250C -~§ f=50MHz l - d 50 '"c;u: I- 500 300 200 100 50 30 20 r-MV2201 r--.. ~TA=250C 2.0 3.0 5.0 7.0 10 20 10 30 r--.. =,VR=4.0Vdc MV2209 ~ 30 20 101.0 r-.... 10 20 30 50 70 100 200 250 f. FREQUENCY {MHzl YR. REVERSE VOLTAGE {VOLTSI FIGURE 4 - NORMALIZED DIODE CAPACITANCE .ersus JUNCTION TEMPERATURE 1.040 ~ 1.030 VR z 5 1•020 ~ 1.010 w g 1.000 i5 ffi 0.990 N ~ 0.980 II: o Z 0.970 V V 0.960 -75 .,/" [,./ -50 V ~ "- ? ~ Vv NOTES ON TESTING AND SPECIFICATIONS J ~ - LS is measured on a package having a short instead of a die, using an impedance bridge {Boonton Radio Model 250A RX Meterl. R=4.0V VRr5V- - Cc is measured on a package without a die. using a capacitance bridge (Boonton Electronics Model 75A or equivalent). Q is calculated bV taking the G and C readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specified NORMALIZEO \0 CT _ at TA = 25°C frequency and substituting in the following equation: - 2111C 0=-G -25 25 50 75 100 125 TJ. JUNCTION TEMPERATURE {OCI 1430 MV2301 (SILICON) thru MV2308 VVC --.IIVOLTAGE-VARIABLE CAPACITANCE DIODES 120-330 pF 20 VOLTS SILICON EPICAP DIODES ... epitaxial passivated tuning diodes designed for general tuning. trimming and AFC applications at low radio frequencies. • Standard Capacitance Values to 330 pF • Maximum Working Voltage of 20 V • Excellent Q Factor at High Frequencies • Guaranteed Minimum Q and Tuning Ratio • Solid·State Reliability to Replace Mechanical Tuning Methods • Low·Cost·Plastic Package for Economical Design r--t-~A Pt-t H T' SEATING PLANET - F Reverse Voltage Symbol Val •• Unit VR 20 Vde Forward Current IF 400 mAde Total Device Dissipation@TA = 25°C Derate above 25°C Po 500 5.0 mW mWI"C Junction Temperature TJ +125 °c T stg -65 to +150 °c Storage Temperature Range K I A MAXIMUM RATINGS Rating L _ ---.l ..:IJI--= (> r-t- R STYLE PIN 11 ANODE 2 CATHODE IsECd" A A ~ 0 ,..,-- " N N MILLIMETERS DIM MIN A B C D F G H J -+ -i.- MAX 5.33 4.32 5.21 4.45 3.18 4.19 0.356 0.533 0.407 0.482 1.27 Ssc - 1.27 2.' SSC -:- ! R 3.43 2. 6 - INCHES MIN M 0.170 0.210 0.175 0.205 0.125 1.165 0.014 0.021 0.016 . 11119 - , .0"- 0.2 0.0 .1 0.135 - o.u~ 0.100 SSC CASE 182·02 1431 ~ D-::!i1iG - MV2301 thru MV2308 (continued) ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit BVR 20 - -. Vdc IR - - 0.1 /lAdc Series Inductance LS - 6.0 - nH Case Capacitance Cc - 0.18 - pF Characteristic Reverse Breakdown Voltage (lR = 10/lAdc) Reverse Current (VR = 15Vdc) a, CT. Diode Capacitance Capacitance Ratio Figure of Merit Min Nom Max VR =4.0Vdc, 1- 20 MHz Minimum MV2301 108 120 135 250 2.3 MV2302 132 150 165 250 2.3 MV2303 162 180 198 200 2.3 MV2304 180 200 220 200 2.3 MV2305 198 220 242 150 2.3 MV2306 225 250 275 150 2.3 MV2307 243 270 300 100 2.3 MV2308 297 330 363 100 2.3 Device VR = 4.0 Vdc, I = 1.0 MHz C2/C20 Minimum PARAMETER TEST METHODS 1. LS,SERIESINDUCTANCE: Determined from the self resonant frequency (w o ) and FIGURE 1 - DIODE CAPACITANCE versus REVERSE VOLTAGE 1000 .. 600 ..,z 400 w r--- f-....: ~ 200 I-- U :: ~ 1~0 ~ o c - - r--- - - the junction capacity of the device, CJ. 60 MV2306- MV2308 I"-'-L r- I-- t- I Irf-..: MV2301 I-- MV2303 0 Ii 2. CT, DIODE CAPACITANCE: Measured at 1.0 MHz using a capacitance bridge (Boonton r--- Electronics Model 75A or equivalent). (CT = Cc + CJI. ~ 3. CAPACITANCE RATIO: The ratio of CT measured at 2.0 Vdc divided by CT meas· ured at 20 Vdc. MV2305- 4. I 0 FIGURE OF MERIT: Calculated by taking the G and C readings 01 an admittance bridge at the specified frequency and sUbstituting Q, in the following equations: 0 1.0 2.0 4.0 6.0 8.0 10 20 2wIC Q=- G VR. REVERSE VOLTAGE (Boonton Electronics Model 33AS9 with range extender or equivalent). 1432 MV31 02 (SILICON) MV31 03 VVC~r-VOLTAGE VARIABLE CAPACITANCE DIODES SILICON EPICAP DIODES 22 pF (Nominal) 30 VOLTS · . . designed in the new low·inductance Mini·L package for high volume requirements in VHF TV tuning, AFC, general frequency control and tuning applications; providing solid·state reliability in replacement of mechanical tuning methods. • High Q With Guaranteed Minimum Values at VHF Frequencies • Controlled and Uniform Tuning Ratio • Low Inductance Mini·L Package • Guaranteed Matching' Tolerance From Diode to Diode and Group to Group ·Upon request, diodes are available in matched set50f any number or in matched groups. All diodes in a set or group can be matched for capacitance along the entire specified tuning range, MAXIMUM RATINGS Rating Reverse Voltage Symbol Value Unit VR 30 Volts Forward Current IF 200 mA Device Dissipation @ T A = 2SoC Po 400 4.0 mW mW/oC TJ Tstg +125 °c °c Der:ate above 2SoC Junction Temperature Storage Temperature Range -65 to +150 ir J I PIN I. CATHOOE 2 ANODE I Tt==qj:r'l FIGURE 1 - DIODE CAPACITANCE 0 6- -uw z ...u" "~ w 0 0 <5 I:i 2 DIM A B C D F H "'- ........ 8 4 i'- 0 ..... J K L 6 2 i'... TA = 25'C t= 1.0 MHz 8. 0 4.0 0 0.3 0.5 1.0 2.0 3.0 5.0 10 N R S I'~ 20 T U MI LLlMETERS MIN MAX 3.86 4.11 2.92 3.18 1.91 2.16 0.64 0.B9 0.08 0.18 1.30 1.55 0.64 0.89 4.06 4.32 2.36 2.62 1.12 1.31 0.19 1.04 1.99 12.15 1.14 1.40 0.43 0.69 INCHES MAX MIN 0.152 0.162 0.115 0.125 0.015 0.085 0.025 0.035 0.003 0.001 0.051 0.061 0.025 0.035 0.160 0.110 0.093 0.103 0.044 0.054 0.031 0.041 0.412 0.502 0.045 0.055 0.011 0.021 30 CASE 226 VR, REVERSE VOLTAGE (VOLTS) 1433 MV3102, MV3103 (continued) ELECTRICAL CHARACTERISTICS (T A ~ 250 C unless otherwise noted) Characteristic-All TVpes Svmbol Min TVp Max Unit BVA 30 - - Vdc IA - - 0.1 jlAdc Series I nductanc~ (f =250 MHz. Measured at Load Stop""l/S") LS - 3.0 - nH Case Capacitance Cc - 0.1 - pF TCC - 300 400 ppm/oC Reverse Breakdown Voltage = 10jlAdc) (lA Reverse Voltage Leakage Current (VA (f = 25 Vdc. TA =250 C) = 1.0 MHz) Diode Capacitance Temperature Coefficient (VA = 3.0 Vdc. f = 1.0 MHz) CT, Diode Capacitance VR=3.0Vdc.f-l.0MHz pF Figure of Merit VA = 3.0 Vdc f-50MHz Q. CR. Capacitance Ratio C3fC25 f=1.0MHz Device Min Nom Max Min Min TVp Color MV3102 MV3103 20 19 22 25 26 300 200 4.5 4.0 4.S Green - White - FIGURE 3 - LEAKAGE CURRENT FIGUAE 2 - FIGURE OF MERIT 0 r-- 0 100 TA - 250 C I-50 MHz V V IL ~ ~ MV3102 2. 0 / o 1. 0 d O. 5 w '"ffi MV3103 0.1 ~ ~ '" ./ - 0.01 o.31/ O.2 1.0 a / /' ./ w o L L. VR - 20 Vdc ill ~ / 3. 0 '"=> '" u: 10 !.... 0 .... Package Stripe 1/ 0.001 3.0 6.0 9.0 12 15 18 24 21 27 30 -60 VR. REVERSE VOLTAGE (VOLTS) -20 +20 +60 +100 +140 TA. AMBIENTTEMPERATURE (OC) FIGURE 4 - DIODE CAPACITANCE 1.04 ffi ~ N 1. LS IS measured on a package having a short instead of a die, using an 1.02 '"o .. 1.01 ~ :!i1.00 .... <3 It NOTES ON TESTING AND SPECIFICATIONS 1.03 r------ VR - 3.0 Vdc -1-1.0MH, ." .-- impedance bridge (Boonton Aadio Model 250A AX Meted. ,......,. V 2. Cc is measured on a package without a die, using a capacitance bridge (Boonton Electronics Model 75A or equivalent). V 0.99 5 3. ./"" ~ 0.98 a is calculated by taking the G and C readings of an admittance bridge. such as Boonton Electronics Model 33ASS. at the specified frequency and substituting in the following equation: o ...~O.97 0.96 -75 2"fC Q=G -50 -25 +25 +50 +75 +100 +125 4. CR is the ratio of CT meesured at 3.0 Vdc divided by CT measured et 25 Vdc. TA. AMBIENTTEMPERATURE (OC) 1434 MV3140 (SILICON) MV3141 MV3142 VVC~rVOLTAGE VARIABLE CAPACITANCE DIODES SILICON EPICAP DIODES 30 VOLTS · .. designed in the new low·inductance mini·L package for high volume requirements of UHF and VHF TV tuning and AFC, general frequency control and tuning applications; providing solid·state reli· ability in replacement of mechanical tuning methods. • Guaranteed Minimum Q Values at VHF and UHF Frequencies • Controlled and Uniform Tuning Ratio • Guaranteed Matching' Tolerance From Diode to Diode and Group to Group • Upon request, diodes are available in matched sets of any number or in matched groups. All diodes in 8 set or group can be matched for capacitance to ±'1.5% or 0.1 pF (whichever is greater) at all points along the specified tuning range. MAXIMUM RATINGS Rating Symbol Value Unit Reverse Voltage VR 30 Volts Forward Current IF 200 mA Device Dissipation @ T A = 2SoC Derate above 25°C Po 400 4.0 mW mW/oC Junction Temperature TJ +125 °c Tstg -65 to +150 °c Storage Temperature Range L~~q IF~L L t S FIGURE 1 - DIODE CAPACITANCE 20 t-. 18 16 1'.. ~ 14 ~ 12 ~ 10 ~ 8.0 Q 6.0 S 4.0 o I' i' TA'25'C 1-1.0MH, ...... II II 2.0 o 0.3 MILLIMETERS MIN MAX 3.86 4.11 2.92 3.18 1.91 2.16 0 0.64 0.89 0.08 0.18 F H 1.30 1.55 J 0.64 0.89 4.32 K 4.06 L 2.36 2.62 1.37 N 1.12 R 0.79 1.04 S 1.99 12.75 T 1.14 1.40 0.43 0.69 U OIM A 8 C 0.5 1.0 2.0 3.0 5.0 10 20 INCHES MAX MIN 0.152 0.162 0.115 0.125 0.075 0.085 0.025 0.035 0.003 0.007 0.051 0.061 0.025 0.035 0.160 0.170 0.093 0.103 0.044 0.054 0.031 0.041 0.472 0.502 0.045 0.055 0.017 0.027 30 CASE 226 VR, REVERSE VOLTAGE (VOLTS) 1435 B MV3140, MV3141, MV3142 (continued) ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted) Characteristic-All Types Symbol Min Typ Max Unit Reverse Breakdown Voltage I1R= lO !lAde) BVR 30 - - Vde Reverse Voltage Leakage Current IR - - 0.1 !lAde LS - 3.0 - nH Cc - 0.1 - pF TCC - 300 400 ppm/oC IVR = 25 Vde, TA = 25°C) Series Inductance If = 250 MHz, Measured at Lead Stop",1/8") Case Capacitance If= 1.0 MHz) Diode Capacitance Temperature Coefficient IVR = 3.0 Vde, f = 1.0 MHz) CT. Diode Capacitance Q, Figure of Merit CR, Capacitance Ratio VR = 3.0 Vdc f = 100 MHz C3/C25 f=1.0MHz VR =3.0Vdc VR = 25 V pF Package Stripe Device Typ Max Min Min Color MV3140 MV3141 MV3142 10.5 10.5 10.5 2.3 3.2 3.2 150 150 50 4.5 4.0 3.5 Blue White Orange TYPICAL MV3140 ELECTRICAL CHARACTERISTICS FIGURE 2 - FIGURE OF MERIT FIGURE 3 - LEAKAGE CURRENT 100 1600 ITA = 250l 1400 V 1=100MHz f- 1200 ~ 100 0 800 ::> '"u::d / 600 V /' f- ~ / ::> w ~ '"w ~ ./ 0.1 /' :EO.Q1 V I-4.0 L VR 20 Vdc 1-1.0 MHz 1.0 <.> o o 10 oS V 40 0 200 IL ;;;: / a; ~ / 0.001 12 8.0 16 20 28 24 -60 32 VR, REVERSE VOLTAGE IVOLTS) -20 +20 +60 +100 +140 TA, AMBIENTTEMPERATURE 10C) FIGURE 4 - DIODE CAPACITANCE 1.04 NOTES ON TESTING AND SPECIFICATIONS ffi 1.03 i N 1.02 VR = 3.0 Vdc o ~ 1.01 w <.> :i 1.00 0:; ~ 0.99 ~ f- ;3 ./ ~ 0.98 f.--'"' ~ .-/" 1. LS is measured on a package having a short instead of a die, using an impedance bridge (Boonton Radio Model 250A RX Meter). ,./ 2. Cc is measured on a package without a die, using a capacitance bridge (Boonton Electronics Model 75A or equivalent). 3. Q is calculated by taking the G and C readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specified frequency and substituting in the following equation: ,/ o C &0.97 0.96 -75 2"fC Q=- G -50 -25 +25 +59 +75 TA,AMBIENT TEMPERATURE 10C) +100 +125 4. CR is the ratio of CT measured at 3.0 Vde divided by CT measured at 25 Vdc. 1436 MV3501 (SILICON) thru MV3507 vvc-+HVOLTAGE-VARIABLE CAPACITANCE DIODES SILICON EPICAP DIODES 6.8-22 pF 30 VOLTS ... designed in the new low-inductance Mini-L package for high· volume, low·cost frequency control and tuning applications; providing solid state reliability in replacement of mechanical tuning methods. • High Q With Guaranteed Minimum Values@ 100 MHz • • Capacitance Values - 6.B to 22 pF Ideal for RF and Microwave Applications • Controlled and Uniform Capacitance Change MAXIMUM RATINGS Rating Reverse Voltage Symbol VaI~. Unit VR 30 Volts Forward Current IF 200 rnA Device Dissipation @ T A - 25°C Derate above 25°C Po 400 4.0 rnW mW/oC TJ +125 Tstg -65 to +150 °c °c Junction Temperature Storage Temperature Range iJr t Tt FIGURE 1 - DIODE CAPACITANCE PIN I CATHODE 2.ANOOE C LJi~, 100 50 MV3501 ~ oS w 30 z 20 ~ ;!: U :; 10 c c 5.0 I:i 3.0 :3 w c r-. ~ MV3503 - - 2.0 1.0 0.1 - r-- r--r-- MV3501 ............ --.. TA"25'C '"11.0 MI' 0.2 0.5 1.0 2.0 MILLIMETERS MIN MAX 3.86 4.11 B 2.92 3.18 C 1.91 2.16 D 0.64 0.89 F 0.08 0.18 H 1.30 1.55 J 0.64 0.89 4.32 K 4.06 L 2.36 2.62 N 1.12 1.31 R 0.79 1.04 S 1.99 12.75 T 1.14 1.40 0.43 U 0.69 DIM A 5.0 10 20 30 VR, REVERSE VOLTAGE (VOLTS) CASE 22& 1437 INCHES MAX MIN 0.152 0.162 0.115 0.125 0.015 0.085 0.025 0.035 0.003 0.001 0.051 0.061 0.025 0.035 0.160 0.110 0.093 0.103 0.044 0.054 0.031 0.041 0.472 0.502 0.045 0.055 0.011 0.027 MV3501 thru MV3507 (continued) ELECTRICAL CHARACTERISTICS (TA = 250 C unless otherwise noted) Characteristic-All Typ.. Symbol Min Typ Max Unit BVR 30 - - Vdc - 0.1 LS - 3.0 - nH Cc - 0.1 - pF Reverse Breakdown Voltage (fR = 10 "Adc) Reverse Voltage Leakage Current (VR = 25 Vdc) IR = 25 Vde, T A = 850 C) (VR Series Inductance "Ade 5.0 (I = 250 MHz, measured at lead stop ""'/8") Case Capacitance (1= 1.0 MHz) Figura 01 Marit VR =4.0Vdc, f= 100 MHz CT, Diode Capacitance VR = 4.0 Vdc, f = 1.0 MHz pF CR, Capacitance Ratio C2/C30 f=I.0MHz Q, Package Stripe Device Min Nom Max Min Min Color MV3501 MV3502 MV3503 MV3504 MV3505 MV3506 MV3507 6.1 7.4 9.0 10.8 '13.5 16.2 19.8 6.8 8.2 10 12 15 18 22 7.5 9.0 11 13.2 16.5 19.8 24.2 225 225 200 200 200 175 175 2.7 2.8 2.8 2.8 2.9 2.9 2.9 Brown Red Orange Yellow Green Blue Violet TYPICAL ELECTRICAL CHARACTERISTICS FIGURE 2 - FIGURE OF MERIT FIGURE 3 - FIGURE OF MERIT 400 0 3000 200 0 zoo0 MV3S01 700 ... SOD ~ '" ..... III 1000 r I ... ,.. 300 ~ 200 L--- w '"" .. I---"'" ~ 500 ,. J..+-1' MV3S07 w 30 0 20O .."'"'" 100ETA 2SaC o EVR -4.0 Vdc ~ 0 -~ '" 100 d 70 SO -- ........ 1000 TA"zsac . f-l00MHz :E t= d MV3501- t"- r-... " MV3507' 0 20 30 20 10 1.0 2.0 3.0 S.O 7.0 10 20 30 10 VR, REVERSE VOLTAGE (VOLTS) 20 30 SO 70 100 200 250 f, FREQUENCY (MHz) FIGURE 4 - DIODE CAPACITANCE 1.040 ~1.D30 ~ 1.020 ~ ~ 1.010 . w ~ 1.000 t: ~ ~ 0.990 w 0.980 ~ NOTES ON TESTING AND SPECIFICATIONS VRlL/: R - ./ '"'"2i 0.970 ./" / ' '?' '?' b VRt V - -50 Ls is measured on a peckage having a short instead of a die, using an impedance bridge (Boonton Redia Model 250A RX Meter). NORMALIZED la CT _ at TA " Z5aC - 2. Cc is measured on a package without a die, using a capacitance bridge (Boonton Electronics Model 75A or equivalent). 3. Q is calculated by taking the G and C readings of an admittance bridge, such as Boonton Electronics Model 33ASB, at the specified frequency and substituting in the following equation: r---I--- 21!fC Q=G /' 0.980 -75 1. Vv R=4.0V -25 25 50 75 TJ,JUNCTION TEMPERATURE (ac) 100 12S 4. CR is the ratio 01 CT measured at 2.0 Vdc divided by CT measured at 30 Vdc. 1438 MVAM·l (SILICON) vvc ---.!~ TRIPLE SILICON TUNING DIODE VOLTAGE VARIABLE CAPACITANCE DIODE · .. designed for electronic tuning of AM receivers, general frequency control or systems requiring two or three tightly matched voltage variable capacitance diodes. Supplied in a rugged four· pin dual in· line plastic package for the economical requirements of consumer and industrial applications. • High Capacitance Ratio CR = 15 (Min) @VR = 1.0 Vdc to 25 Vdc • Guaranteed Diode Capacitance Ct = 400 pF (Min) -- 560 pF (Max) @ VR = 1.0 Vdc, f = 1.0 MHz • Ion Implanted Monolithic Triplet for Guaranteed ±1 11,% Matching Over Entire C-V Curve • Guaranteed Figure of Merit Q = 150 (Min) - 575 (Typ) @ VR FOR AM TUNING = 1.0 Vdc, f = 1.0 MHz MAXIMUM RATINGS Rating Reverse Voltage Forward Current Power DissIpation @ T A=< 2SoC Symbol Value Unit VR 28 Volts IF 50 mA PD 350 3.5 mW mW/oC TJ.T stg -65 to +125 °c Derate above 2SoC Operating and Storage JunctIon Temperature Range L......t---~ FIGURE 1 - TYPICAL AM RADIO APPLICATION MILLIMETERS MIN MAX 5.59 5.21 6.60 7.11 3.43 4.06 0.63 0.89 3.94 4.19 0.30 0.20 3.56 2.54 9.27 L 9.02 10· M N 1.14 1.40 DIM A B C D G J K INCHES MIN MAX 0.205 0.220 0.260 0.2BO 0.135 0.160 0.025 0.035 0.155 0.165 0.008 0.012 0.100 0.140 0.355 0.365 10· 0.045 0.055 Note: For optimum performance use 01 in CASE 206·02 the AF stage, 02 in the oscillator and D3 in the mixer. 1439 MVAM·1 (continued) ELECTRICAL CHARACTERISTICS IT A = 2S<>C unl... oth.rwise noted. Each Oevice) Characteristic - All Type Breakdown Voltage fiR = 10ltAdel Reverse Current (VR = 25 Vde. T A = 25°(;1 Diode Capacitance Temperature Coefficient (VR = 1.0 Vde. f = 1.0 MHz. T A = -40°C to +850 C) Case Capacitance Symbol Min Typ Max Unit VIBR) 28 - - Vde IR - - 150 nAdc TCC - 435 - ppm/oC - 0.27 0.04 0.16 0.17 0.03 0.15 - pF Cc Leads 1-2 2-3 1-3 1-4 2-4 3-4 - - - Ct , Diode Capacitance VR = 1.0Vdc.f= 1.0 MHz . pF I Device Min I MVAM-l 400 I I 0, Figure of Merit 480 - CR. Capacitance Ratio . C,/C25 f& 1.0 MHz VR = 1.0VlIc f=1.0MHz 1 I Typ - Max Min 560 150 I I Typ Min 575 15 1 Typ I 26 TYPICAL CHARACTERISTICS FIGURE 2 - EFFECTS OF REVERSE VOLTAGE ON CAPACITANCE FIGURE 3 - EFFECTS OF TEMPERATURE ON CAPACITANCE 1.04 100ll 700 500 _= TA=25'C 1= 1.0 MHz_ 30 0 ~ 10 0 U 0 50 .:1 1.02 '" ~ ~ ~ ~ '"o w '-' z 1.03 g 1.00 ~ -0.99 o o C -0.9 8 1\ 1\ 1.0 2.0 3.0 5.0 7.0 10 VR. REVERSE VOLTAGE (VOLTS) 20 - 1........- ~~~ I-- 25 V /' ,/ ,/ -40 - V / ...- -0.9 7'" 30 / /. ,/ 1.0 I ~ 0.5 0.7 1 VR -1.0Y........ z 0 CAPACITANCE MATCHING VR = 1.0 V t. 25 V 0 GUARANTEED ±1.5% 10 0.3 1= 1.0 MHz ::; ....... 200 §N -20 40 60 20 TJ. JUNCTION TEMPERATURE ('C) 80 FIGURE 4 - FIGURE OF MERIT 0 0-TA=25'C ' - - f=1.0MHz ~ 0 V ~ l- i;; l\! 0 Q is calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equation: V ~ o V w '"=>to 10 i:i: 8. 0 d 6.0 ,/ Q = 27TfC G (Boonton Electronics Model 33AS8 or equivalent). 4. 0 1.0 Figure of Merit Test Method V 2.0 5.0 7.0. 3.0 VR. REVERSE VOLTAGE (VOLTS) 10 20 1440 100 MVI-2097 thru MVI-2109 (SILICON) vvc --.!~ VOLTAGE-VARIABLE CAPACITANCE DIODES SILICON EPICAP MICRO-I 1.0-33pF 30 VOLTS DIODES . designed in the popular PLASTIC PACKAGE for high volume requirements of FM Radio and TV tuning and AFC, general frequency control and tuning applications; providing solid·state reliability in replacement of mechanical tuning methods. • Electrically Similar to MV2101 Series • Controlled and Uniform Tuning Ratio • Standard Capacitance Tolerance-l0% • Complete Typical Design Curves • Supplied in Space Saving Micro-Miniature Package STYLE 1. PIN 1. ANODE 2. CATHODE L MAXIMUM RATINGS Rating Symbol Value Unit VR 30 Volts Reverse Voltage Forward Current Device Dissipation @ T A 'F 20 rnA PD 200 2.0 mW mW/oC TJ,Tstg -55 to +125 °c = 25°C Derate above 25°C Operating and Storage Junction Temperature Range K DIM A C D F H TYPICAL HIGH DENSITY MOUNTING TECHNIQUE J K L ---.l. ~~OO1' f==~[:r o N MILLIMETERS MIN MAX 1.98 1.22 0.25 0.10 0.51 0.03 4.19 0.89 0.38 2.34 1.47 0.41 0.15 0.76 0.08 4.45 1.14 0.64 INCHES MIN MAX t! 0.004 0.020 0.001 0.165 0.035 0.D15 I 0.092 I 0.058 0.016 0.006 0.030 0.003 0.175 0.045 0.025 1J1~ PC BOARD MOUNTIN~-----y Optional Package with Raised Circular Tab Available; Specify Ma~lmum Solder Temper3ture 250°C lor lOs Case 166·01. CASE 166·02 1441 MVI-2097 thru MVI-2109 (continued) ELECTRICAL CHARACTERISTICS (T A =25 0 C unless otherwise notedl Characteristic-All Types Reverse Breakdown Voltage OR ~ Symbol Min Typ Max Unit BVR 30 - - Vdc 20 nAdc 10 ~Adc) IR Reverse Voltage Leakage Current (VR = 25 Vdc) Series Inductance (f = Case Capacitance (I = - 3.0 nH ee 0.15 pF Tee 280 LS 250 MHz.Lead Length", 1/16··) 1.0 MHz. Lead Length'" 1/16··) Diode Capacitance Temperature Coefficient 400 ppmloe (VR = 4.0 Vdc. I = 1.0 MHz) CT, Diode Capacitance VR = 4.0 Vdc. f = 1.0 MHz pF Or Figure of Merit VR = 4.0Vdc f= 100 MHz TR, Tuning Ratio C2/C 30 f= 1.0MHz Color Code Min Nom Max Min Min Max Top Bottom MVI·2097 MVI·2098 MVI·2099 MVI·2100 0.8 1.8 2.6 3.7 1.0 2.2 3.3 4.7 1.2 2.7 4.0 5.7 325 325 300 300 2.0 2.0 2.2 2.4 2.4 2.8 2.9 2.9 None None None None None Brown MVI·2101 MVI·2102 MVI·2103 MVI·2104 6.1 7.3 9.0 10.8 6.8 8.2 10 12 7.5 9.0 11 13.2 275 275 275 275 2.5 2.6 2.6 2.6 3.3 3.3 3.3 3.3 None None None None Yellow MVI·2105 MVI·2106 MVI·2107 MVI·2108 MVI·2109 13.5 16.2 19.8 24.3 29.7 15 18 22 ·27 33 16.5 19.8 24.2 29.7 36.3 275 250 200 200 200 2.6 2.7 2.7 2.7 2.7 3.3 3.3 3.3 3.3 3.3 None None Brown Brown Gray White Brown Red Device Red Orange Green Blue Violet None Brown PARAMETER TEST METHODS 1. LS. SERIES INDUCTANCE LS is measured on a shorted package at 250 MHz using an impedance bridge (800nton Radio Model 250A RX Meter). 5. Q. FIGURE OF MERIT a is calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equations: 2"IC Q=- 2. CC. CASE CAPACITANCE Cc is measured on an open package at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent). G (Boonton Electronics Model 33ASS). Use Leed Length ",1/16" 6. TCC. DIODE CAPACITANCE TEMPERATURE COEFFICIENT 3. CT, DIODE CAPACITANCE (CT = Cc + CJ)' CT is measured at 1.0 MHz using a capacitance bridge (Boonton ElectrOnics Model 75A or equivalent). TCe is guaranteed by comparing CT at VR = 4.0 Vdc, f = 1.0 MHz, T A = -65 0 C with CT at VR = 4.0 Vdc, f = 1.0 MHz. T A = +85 0 C in the following equation which defines TCe: 4. TR, TUNING RATIO TR isthe ratio of CT measured at 2.0 Vdc divided by CT measured at 30 Vdc Accuracy limited by measurement of CT to ± 0.1 pF. CR 1442 = Capacitance at VR = 4.0 Vdc MVI-2097 thru MVI-2109 (continued) TYPICAL CHARACTERISTICS FIGURE 1 - DIODE CAPACITANCE versus REVERSE VOLTAGE 500 TA - 25DC f 1.0 MHz ~ 200 MVI·2109 w 100 ""z 50 "Ll MVf-2105 l- £ 20 MVI-~,il1 w 10 MVI-2099 C 5.0 ~ c c l:i - MVI-2097 2.0 1.0 0.5 0.1 0.2 0.3 0.7 0.5 2.0 10 3,0 7,0 5.0 20 10 30 VR, REVERSE VOLTAGE (VOLTS) FIGURE 2 - NORMALI2ED DIODE CAPACITANCE versus JUNCTION TEMPERATURE 1.040 g1.020 ~ 1.010 w C ~ 0.990 N :::; ~ 0.980 o z 0.970 versus REVERSE BIAS VOLTAGE VRJ~ w 1.030 ""z g 1.000 FIGURE 3 - REVERSE CURRENT -- - ~ -50 R ·4.0V - I-- ~ I----- VRr OV - .... ~ io ... L/ " ?' 0960 -75 ~ ~ Vv NORMAliZED CT_ I----at TA ""250C 1 100 50 1 ~ I- ::> ""w '"w ~ci ~ L 5.0 25 50 75 TA -75DC 2.0 1.0 0.50 0.20 0.10 100 125 o 5.e TJ, JUNCTION TEMPERATURE (DC) 3000 I MVI-2101 ffi 1000 '"....c 700 '"::> 500 w to u: d 300 200 b-----:' 100 1.0 ~ - V r- 2.0 --- MVI-209Y .Y 2000 ./ 1/ MVI·2109 - ...... 20 .......... r- '"~ 1'-:'-- '''''......... ~ I'- ffi 1000 VI-2097 700 w ~ 500 ~ to u: 7,0 10 20 30 100 10 1443 '" MVI-2109 "- ~ ~ I 20 30 I 50 70 f, FREQUENCY (MHz) VR, REVERSE VOLTAGE (VOLTS) " "'" ~ MVI-2101 ci 300 200 5.0 30 TA' 25 DC - VR' 4.0 Vdc __ ......... I- -~ 3.0 25 FIGURE 5 - FIGURE OF MERIT versus FREQUENCY V ....- 15 3000 V I- 10 VR, REVERSE VOLTAGE (VOLTS) FIGURE 4 - FIGURE OF MERIT v....us REVERSE VOLTAGE r-TA • 25DC 2000 f---- f· 100 MHz - TA·25 DC 0.05 0.02 0.01 -25 125DC TA ----r 20 10 100 I'\. " " 200 300 MVI-2097 thru MVI-2109 (continued) EPICAP VOL TAGE·VARIABLE CAPACITANCE DIODE DEVICE CONSIDERATIONS FIGURE 6 A. Epicap Network Presentation The equivalent CirCUit in Figure 6 shows the voltage capacitance and parasitic elements of an EPICAP diode. For design purposes at all but very high and very· low frequencies, LSI RJ, and Cc can be neglected The simplified equivalent CirCUit of Figure 7 represents the diode under these conditions. Definitions CJ RS - o Voltage-Variable Junction Capacitance Senes Resistance (semiconductor bulk, contact, and lead resistance) FIGURE 7 Cc - Case Capacitance LS RJ - C~k"" RS o----------~~r-~--------~~~------~O Series Inductance Voltage-Variable Junction Resistance (negligible above 100 kHzl (11 8. Epicap Capacitance versus Reverse Bias Voltage The most important design characteristic of an EPICAP diode is the CT versus VR variation as shown in equations 1 and 2. Tuning Ratio, TR, between any two voltage points on curve of equation (21 IS determined from equations (31 and (41. C. Epicap Capacitance versus Frequency Variations In EPICAP effective capacitance, as a function of operating frequency, can be derived from a simplified equivalent circuit similar to that of Figure 6, but neglecting RS and RJ. The admittance expression for such a circuit is given in equation 5. Examination of equation 5 yields the following information: At low frequencies, Ceq ~ CJ; at very high frequencies (f ~ Co CT=CC+---- (1<7 (21 CJ1 (VR2+4»"1 TR Junction = = ---CJ2 VR1 + 4> (31 00) Ceq"" CC· As frequency is increased from 1.0 MHz, Ceq increases until it is maximum at w 2 = 1/LSCJ; and as w 2 is increased from 1/LSCJ toward infinity, Ceq increases from a very negative capacitance (inductance) toward Ceq = CC, a positive capacitance. Very simple calculations for Ceq at higher frequencies indicate the problems encountered when capacity measurements are made above 1.0 MHz. As w approaches Wo = 1/~LSCJ' small variations in LS cause extreme vanations in measured diode capacitance. D. EPICAP Figure of Merit (a) and Cutoff Frequency (feD) The efficiency of EPICAP response to an input fr~quency is related to the Figure of Ment of the device as defined in equation 6. For very low frequencies, equation 7 applies whereas at high frequencies, where RJ can be neglected, equation 6 may be rewritten Into the familiar form of equation 8. Another useful parameter for EPICAP devices is the cutoff frequency (teo), and IS the frequency point where Q is equal to 1. EquatIOn 9 gives this relationsh ip. CT1 CJ1 + Cc TR Diode = - - = - - - CT2 CJ2 + Cc Conditions: Co = CJ at VR = 0 VR = Reverse Bias (Voltsl 'Y, Diode Power Law, ~ 0.44 4>, Contact Potential, "" 0.6 Volt Cc~0.1BpF jwCJ (51 Y = jwC eq = jwCc + 1 - w 2 LSCJ XSeq 0=--RSeQ (6) wCJR J 2 OLf= --------------RJ + RS(1 + w 2 CJ 2R J 2 1 Ohf=----wRSCeq (8) (91 M(BVR + 4>12 fin E. Harmonic Generation Using EPICAPS Efficient harmonic generation is possible with Motorola EPICAPS because of their high cutoff frequency and breakdown voltage. Since EPICAP junction capacitance varies inversely with the SQuare root of the breakdown voltage. harmonic generator performance can be accurately predicted from various Idealized models. Equation 10 gives the level of maximum input power for the EPICAP and equation 11 gives the relationships govern 109 EPICAP Circuit efficiency. In these equations, adequate heat sinking has been assumed. 1444 (41 pin(maxl·= RS (101 feD M(x21 = 0.0285; M(x31 = 0.0241; M(x41 = 0.196 f out Eff= 1-N fco N(x21 = 20.8, N(x31 = 34.8; N(x41 = 62.5 M and N are Constants 1111 MVS460 Of---I~~l--O TUNING DIODE REGULATOR MONOLITHIC TEMPERATURE COMPENSATED VOLTAGE REFERENCE DIODE Highly reliable temperature compensated monolithic integrated circuit voltage stabilizer designed for use in television and FM radios that use variable capacitance diode tuners . • Low Dynamic Operating Impedance • Low Operating Voltage Change over Temperature Range r-I S "".. '!;:fFr-;-, i -~ A PLANE _ F _ -------.l MAXIMUM RATINGS Symbol Value Unit Operating Current for 33 Vz Rating IZ 18 rnA Power DIssipation PD 625 rnW Operating Junction Temperature TJ 150 °c Storage Temperature Range T stg -40 to +150 °c Symbol Max Unit °JC 0.083 °C/rnW @ T A = 25°C THERMAL CHARACTERISTICS CharacteristiC Thermal Resistance, Junction to Case Thermal Resistance, Junction to Ambient °C/rnW 0.200 eJA Characteristic Operating Voltage (lZT = 5.0 mAl Operating Voltage Change (I ZT = 5.0 rnA, 0 to 700 CI Operating Dynamic Impedance liZ = 5.0 mAl := c> I) IsECT A-A r--J--R STYLE 1: PIN 1. ANODE 2. CATHODE Min Typ Max Unit Vz 31 33 35 Volts /:,vZ f',T- -3.1 -2.3 +1.55 mV/oC Zz - 9.0 25 Ohms ,o-I-oZ N INCHES MIN MAX 4.32 4.45 3.18 0.356 0.407 1.27 0.170 0.210 0.175 0.205 0.125 0.165 0.014 0.021 0.016 .0 9 0.050 SSC 0.050 0.100 sse u.•uu 0.250 0.080 0.lu5 o. 15 0.135 C Symbol ~ N MILLIMETERS DIM MIN MAX B 25°C unless otherWise noted) I A A ELECTRICAL CHARACTERISTICS (T A D F G H J K L N p R 5.33 5.21 4.19 0.533 0.482 sse 1.27 2.54 SSC 12.70 6.35 2.03 2.66 1.9: 3.43 CASE 182-02 1445 K C MVS460 (continued) FIGURE 1 - POWER DERATING ~ 20 700 18 -- 600 z !;! 500 ~C 300 ~ 200 I--DERATE A80VE 25 DC -5.0 mW/DC !--....... -........ ..1 i w w b ...... r--... ~ Vz - 35 V r--..... ......... ~ 10 ~ 6.0 S 4.0 -........: ......... ............ ~ ~ ~ m 00 00 00 0 ~ 10 20 TA, AMBIENT TEMPERATURE IDC) 25 r'---. w :i'" i3 '" o~ 50 60 70 80 90 100 FIGURE 4 - OPERATING VOLTAGE CHANGE TEST CIRCUIT ~ ........ , t---"W'\,---t--c VZ2 ...... ......,. -50 ........ > ~ -7 5 ~ ",-12 5 :;; -150 20 30 40 50 60 Til. AMBIENT TEMPERATU RE IDC) 70 --, I I + 100V I I I I "- ....... ~ -100 To Vll, 2 or 3 ,- , o 10 40 ,.------'lNY--..,--oVZ3 -2 5 o 30 TA, AMBIENT TEMPERATURE IDC) FIGURE 3 - OPERATING VOLTAGE CHANGE 50 w ::::-.-. 2.0 0 ~ ""- S8.0 o ..1 ........ r--.... . . . . 12 z ............ ............ ............ 14 ~ ............ 100 Vz =31 V 1>- '6 400 ffi ~ FIGURE 2 - CURRENT DERATING 800 I I L _ _ _ _ _ _ _ -1 " 6"x6"x3" SEALED CARDBOARD TEST BOX INSIDE OVEN TO ISOLATE FROM AIR MOVEMENT. 80 FIGURE 5 - OPERATING IMPEDANCE TEST CIRCUIT R= 13.2 k, ZW C= 0.05 ~F FIGURE 6 - OPERATING IMPEDANCE 40 J ~ 35 e \ 30 w u ~ 25 ~ ~ 20 0-100 V '"z 5 ~ 10 S o "\ "' ~5.0 r- r-- - 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 IZ, OPERATING CURRENT ImA) 1446 8.0 9.0 10 MZ500-1 thru MZ500-40 (SILICON) Miniature plastic encapsulated zener diodes for regulated power supply circuits, surge protection, arc suppression and other functions in television, automotive and other consumer product applications. CASE 51 (00-7) MAXIMUM RATINGS Rating DC Power Dissipation @ TL = Value Unit 400 mW 3.2 mW/oC -65to+175 °c 50°C Derate above 50°C Junction Temperature* *Maximum lead temperature for 10 seconds at 1/16" from case = 230°C FIGURE 1- POWER-TEMPERATURE DERATING CURVE 1.0 Lead temperature taken at indicated distance from case. en 0.8 I- !;;c ~ z: C> ~ en en 0.6 "- C cc: 0.4 ..... 3: C> "- Lead Length = I" ~ 0.2 0 0 25 75 50 h. 100 125 150 LEAD TEMPERATURE (OC) MECHANICAL CHARACTERISTICS CASE: Void free, transfer molded. FINISH: All external surfaces are corrosion resistant. Leads are readily solderable. POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode. MOUNTING POSITION: Any. WEIGHT: 0.42 gram (approximately). 1447 175 MZ500·1 thru MZ500-40 (continued) ELECTRICAL CHARACTERISTICS (To = Vz Type No. Zener Voltage Volls· IZT 25'C unl ••• otherwise nOled) V, = 1.5 Vmax Tesl Curront Iii> Typical Zzr Izr Iii> IZT Ohms . Ma. DC Zenor Current IZM mA Min Nom Ma. mA MZ500-1 MZSOO-2 MZ500_3 MZ500-4 MZ50D-5 2.16 2.43 2.7 2.97 3.24 2.4 2.7 3.0 3.3 3.6 2.64 2.94 3.3 3.63 3.96 20 20 20 20 20 35 30 30 30 25 150 135 120 110 100 MZ500-6 MZ500-7 MZ50D-B MZ500-9 MZ500-10 3.51 3.87 4.23 4.59 5. Of 3.9 4.3 4.7 5.1 5.6 4.29 4.73 5.17 5.61 6.16 20 20 20 20 20 25 25 20 20 15 MZ50D-ll 5.58 6.12 6.75 7.38 8.19 6.2 6.6 7.5 6.2 9.1 6.82 7.48 8.2S 9.02 10.02 20 20 20 20 20 MZ50D-12 MZ500-13 MZ500-14 MZ500-1S @ 200 mA on aillypes Maximum Reverse leakage Current . @ I. V. pA Ma. Volts Typical remperature CoeHicient %i"C -- -1 1 -.085 -.080 -.075 -.070 -.06S 95 85 80 70 65 20 5 5 5 5 1 1 1 1 1 -.060 -.050 -.043 1:.030 t.028 10 5 10 10 10 60 55 50 45 40 5 5 5 1 1 1 1 1 +.045 .050 .058 .062 ,068 20 20 •• MZ500-16 MZSOO-17 MZ500-1B MZ500-19 MZ500-20 9.0 9.9 10.8 11.7 13.S 10 12 13 15 11.0 12.1 IS.2 14.3 16.S 20 20 20 9.5 8.5 20 20 30 15 20 36 35 32 30 26 5 5 5 10 10 I 1 I 9.4 10.8 .075 .076 .077 .079 .082 MZ500-21 MZ500-22 MZ500-23 MZ500-24 14.4 16.2 18.0 17.6 19.8 22.0 24.2 26.4 7.8 7.0 6.2 5.6 5 .2 20 25 30 30 35 25 21 19 17 16 10 10 10 10 10 11.S 13.0 14.4 15.8 17.3 .083 .08S .086 .087 .088 14 13 12 19.4 21.6 23.8 25.9 28.1 .090 .091 .092 .093 .094 II MZSOO-25 19.8 21.6 16 18 20 22 24 MZ500-26 MZ500-27 MZ500-28 MZ500-29 MZ500-30 24.3 27.0 29.7 32.4 35.1 27 30 33 36 39 29.7 33.0 36.3 39.6 42.9 4.6 4.2 3.8 3.4 3.2 45 50 60 70 80 9.1 10 10 10 10 10 MZ500-31 MZ500-32 MZ500-33 MZ500-34 MZ500-35 38.7 42.3 45.9 50.4 55.8 43 47 51 56 62 47.3 U.7 56.1 61.6 68.2 3.0 2.7 2.5 2.2 2.0 95 110 130 150 190 8.8 7.9 7.4 6.9 6.0 10 10 10 10 10 31.0 33.8 36.7 40.3 44.6 .095 .095 .096 .096 .097 MZ500-36 MZ500-37 MZSOO-38 MZ500-39 MZ500-40 61.2 67.5 73.8 81.9 90.0 68 7. 82 91 100 74.8 82.5 90.2 100.1 110.0 1.8 1.7 1.5 1.4 1.3 240 280 340 400 500 5.5 5.1 4.6 4.2 3.7 10 10 10 10 10 49.0 54.0 59.0 65.5 72.0 .097 .098 .098 .099 .100 *1. 0 II Nominal voltages other than those stated above, matcbed sets of tight voltage tolerance devices, tigbter Voltage tolerances and double anode Clippers, are available from the .4M3.3ZS5 series on special request. 2. Voltages to 200 volts are available. , FIGURE 2 - TYPICAL ZENER DIODE CHARACTERISTICS and SYMBOL IDENTIFICATION 300 fORWARD CHARACTERISTIC TYPICAL IALL TYPESI 200 • REVERSE VOLTAGE IVOLTSI 30 • IF - Forward Current • Iz - Zener Current 20 • Izt.! - Malimum 1 DC Zener Current (limIted by Power Dissipation) II 1110 • In -Zener Test Current • YF - Forward Voltage ./ 10 - -- -- ~_L_.lIn - 4.2mA 0.5 30 1.5 V,IVOLTSJ 10 20 1.0 l-'" • REVERSE CHARACTERISTIC ITYPICAL fOR 30 VOLT UNIT. MZ501J.271 1448 • Vz - Nominal Zener Vottage • Zz - Zener Impedance • Zzy -Zener Impedance at Test Current (lzy) MZ600 SERIES (SILICON) 6.2 Volts MZ800 SERIES 8.4 Volts PRECISION REFERENCE DIODES ... designed, manufactured and tested for applications requiring a precision voltage reference with ultra-high stability of voltage with time and temperature change. PRECISION REFERENCE DIODES with CERTIFIED ZENER VOLTAGE·TIME STABILITY Special test laboratory uses precision measurement equipment, four-terminal (separate contacts for current and voltage) measurement techniques and voltage standards to provide calibration directly traceable to the National Bureau of Standards. CASE 51 (00·7) ~~~TeST DaTa 1@)1 8 Every Precision Reference Diode is individually serialized and its test data recorded on a Certificate of Precision that accompanies the device when shipped. This data shows: -Device voltages at each test temperature (+25, +75 and +1000 C) -Voltage stability within the measuring temperature range -Actual device voltage at 168 hour intervals during verification test DIM A '84 2.16 7.62 272 0.230 0,"' 0107 0 0.46 0.56 0.018 0.022 • -Voltage stability throughout the entire 1000 hour test period INCHES MIN MAX MilliMETERS MAX MIN F K 25.40 ,21 0.300 0.06 1.000 AIiJEDECdlmlnllonsandn'oteSlllply CASE 51·02 -Certification of Precision DO·204AA -All diodes are marked with the device type number and polarity band MECHANICAL CHARACTERISTICS, CI•• , Glass, Hermetically Sealed LI.ds; Dumet Laid Finish, ~ickel 50·100 ~in. then gold plated 50-200 ~in. Weight, 0.2 grams (approx) 1449 MZ600 series, MZ800 series (continued) OPERATING TEMPERATURE RANGE:* 25 to 100·C. MZ600 SERIES (Voltage 6.2V ± 5%, In Type No. MZ605 MZ610 MZ620 MZ640 = 7.5 mAde t, b.Vz = 2.5 mVdc* *) Voltage-Time Stability (!'V /1000 Hours) 30 Maximum 60 Maximum 120 Maximum 240 Maximum DYNAMIC IMPEDANCE: 10 ohms at I.. MZSOO SERIES (Voltage SAV ± 5%, Type No. MZ805 MZ810 MZ820 MZ840 Parts Per Million Change (ppm/lOOO Hours) Izr < 5 <10 <20 <40 = 7.5 mAde, I•• = 0.75 mAo = 10 mAdet, b.Vz = 3.5 mVdc**) Voltage·Time Stability (/LV /1000 Hours) Parts Per Million Chllnge (ppm/lOOO Hours) 45 Maximum 90 Maximum 180 Maximum 360 Maximum <5 <10 <20 <40 DYNAMIC IMPEDANCE: 15 ohms at In = 10 mAde, I.. = 1.0 mAo NOTES t TEST CURRENT *Maximum limits for use as a precision reference device. Limits are For certification testing of time stability, Motorola maintains 'ZT well below the maximum thermal limits. constant and repeatable to ±0.05 "A tolerance. For voltage toler· ··VOLTAGE·TEII/IPERATURE STABILITY: Maximum allowable ance, impedance and voltage temperature stability 'ZT needs to be voltage change betwee.n voltages recorded at 25, 75 and 100" C held to 0.01 mA tolerance only. ambient. VOLTAGE·TIME STAB I LITV (~VZ/l000 Hours). After this "warm·up" period, the device voltage will be between the minimum and the maximum voltage of those recorded at the seven points of the Voltage,Time Stability certification. The device voltage is read and recorded initially and at 168 hour intervals through 1000 hours. The maximum change of voltage between readings, taken at any of the seven points, must be less than MOUNTING the maximum voltage change per 1000 hours specified as Voltage· Time Stability. ing. If necessary, the device may be soldered into a circuit using a TURN·ON CHARACTERISTICS Precision Reference Diodes have been tested to determine the Excellent results have been obtained by using a mechanicel mount· heat sink.~n the heat source and the body of the diode. A low thermal EMF solder is recommended. SPECIAL NOTE behavior of the device under interrupted power operation. Voltage toleranca less than 5.0% is available upon special request. Precision Reference Diodescepable of meeting special requirements for standard voltages regerdless of required test current, temperatura range, or test temperatures are available. Custom requirements of ~rticular devices for specific applications are also available. To insure specified performance, adequate time must be allowed for the device and its environment to reach thermal equilibrium. "Warm·up" time may range from 10 to 30 minutes. Thermal equilibrium is reached when the chamber is cycling at the required tempera- ture with the device energized. 1450 MZ600 series, MZ800 series (continued) FIGURE 1 - MAXIMUM VOLTAGE CHANGE, IN /IoV AND PPM, DUE TO CURRENT SUPPLY STABILITY 1000 ~ ~ ~ t= MZ600 SERIES F Vz 6.2V r-10 Ohms ~ IZINO"I ~ 7.5 mA 100 100 . I I" / PPM CHANGE 10 ~ !5! ~ For verification of time stability. and for repeatable operation. Izr should be maintained with a tolerance of ±0_11'A. Figure 1 will assist in design where the supply current stability cannot be maintained to better than 0_2 pA deviation_ III z: ;!; / 10 ~ r---- ~ p.V CHANGE 1.0 '" 1.0 1000 ~ ~ !5! 11111 /" 5 '"z: 5 0.1 100 F M1800 SERIES r--Vz 8.4V t-Zzr 15 Ohms 100 EIZINOMI - 7.5 mA Ilp~M CHAN~E 10 1 ~ ~ !5! ~ III z: ~ ~ ~ !5! VOLTAGE-CURRENT STABILITY CHARACTERISTICS E ~ 10 ~ p.V CHANGE P' 1.0 ~ !i! 5 1.0 V ~ 0.1 1.0 0.1 100 10 61.. CURRENT STABILITY 1p.A1 FIGURE 2 - TYPICAL VOLTAGE CHANGE, IN I'V AND PPM, DUE TO AMBIENT TEMPERATURE STABILITY VOLTAGE-TEMPERATURE CHARACTERISTICS CHOICE OF OPERATING TEMPERATURE The stability certification is performed at 65·C ± O.020 C. The operating temperature can be selected within the operating temperature range. If the desired temperature is not 65·C. the precise voltage of the device will be different but the certified stability will still be observed. VOLTAGE TEMPERATURE STABILITY For verification of time stability and/or repeatable operation, the ambient temperature should be controlled to ±O.l·C. Figure 2 will assist in designs where ambient temperature cannot be controlled to better than 0.2"C deviation. 1000 ~ ~ ~ F 100 MZ600 SERIES I 100 I I I L--" PPM CHANGE 10 ~ !5! ~ ~ ...... f-'" f.-':-J ~ ~ ~ ~ !5! '" E ~ 10 ~ 1.0 p.V CHANGE V- 1.0 II II !i! 5 0.1 100 1000 ~ M1800 SERIES 5§. i 100 PPM CHANGE ~ !5! ~ ~ ~ ;!; ~ 10 ~ & po 10 j;::::: 1.0 .01 !5! ~ I 1.0 1.0 6 TA • AMBIENT TEMPERATURE STABILITY lOCI 1451 ~ z: ;!; '" 1111 0.1 ~ ; p.V CHANGE '" i 0.1 10 MZ821,A MZ823,A MZ825,A MZ827, A 6.2 VOLTS ± 5% MZ935,A,B Desig'nel's Data Sheet thru MZ938,A,B MZ941,A,B RADIATION HARDENED TEMPERATUR E·COMPENSATED ZENER REFERENCE DIODES MZ944,A,B Highly reliable reference sources utilizing an oxide·passivated junco tion for long·term voltage stability. Ramrod construction provides a rugged, glass-enclosed, hermetically sealed structure. 9.0 VOLTS ± 5% thru 11.7 VOLTS ±5% MZ3154,A thru MZ3156,A • Specified Radiation Effects • Low Dynamic Impedance • Choice of Temperature Ranges • "Box Method" Specifications Guarantee Maximum Voltage Devia· tion • Choice of Four Voltages 8.4 VOLTS ± 5% Designer's Data for ''Worst Case" Conditions The Designers Data sheets permit the design of most circuits entirely from the information presented. Limit curves - representing boundaries on devtc8 characteristics - are given to facilitate "worst case" design. RADIATION HARDENED TEMPERATUR E·COMPENSATED SILICON ZENER REFERENCE DIODES liB @ DMAXIMUM RATINGS ~ K Junction Temperature: -55 to + 175°C CATHOOE BANO Storage Temperature: -65 to +1750 C .UFJ DC Power Dissipation: 400 mW @ T A = 25°C I A r+. ' f MECHANICAL CHARACTERISTICS K CASE: Hermetically sealed, all·glass CASE 51·02 DO·204AA DIMENSIONS: See outline drawing FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable. DIM MILLIMETERS MIN MAX L INCHES MIN MAX POLARITY: Cathode indicated by polarity band. A 5.84 7.62 0.230 0.300 B 2.16 2.72 0.085 0.107 D 0.46 0.56 0.018 0.022 F 1.27 0.050 K 25.40 1.000 All JEOEC dimensions and notes apply WEIGHT: 0.2 Gram (approx) MOUNTING POSITION: Any 1452 MZ821,A, MZ823,A, MZ825,A, MZ827,A, MZ935,A,B thru MZ938,A,B, MZ941,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued) ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Maximum Maximum Vol~ Reference Vol~1It Test Currant Vz = 6.2 V ±. 5% @IZT=7.5mA Motorola Type No. (Note 1) Temparature Coefficient Dc (Note 2) %/oC 0.096 0.01 MZ823 0.005 MZ825 0.048 0.Q19 MZ827 0.009 MZ821A 0.096 0.048 -55,0, +25, +75, +100 0.002 0.001 0.019 0.002 MZ827A 0.009 0.001 MZ935 0.067 0.033 0.005 MZ937 MZ938 0.013 0, +25, +75 0.002 0.001 MZ935A 0.139 0.Q1 MZ936A MZ937A 0.069 0.005 MZ938A 0.013 MZ935B MZ936B 0.092 -55,0, +25, +75, +100 0.027 0.184 0.037 MZ938B 0.Q18 -55,0, +25, +75, +100, +150 0.002 0.001 0.002 0.088 0.Q1 0.044 0.Q18 0.005 MZ944 0.009 MZ941 A 0.181 @IZT=7.5mA MZ943A MZ944A 0.090 0.036 0,+25, +75 0.002 0.001 20 20 30 0.01 -55,0, +25, +75, +100 0.018 0.005 0.002 0.001 MZ942B 0.239 0.120 0.005 MZ943B MZ944B 0.047 0.024 MZ945B 0.012 0.0005 MZ946B 0.005 0.0002 MZ941B 20 0.001 MZ942 MZ943 MZ942A 10 0.01 0.005 MZ941 VZ=II.7V±.5% 15 0.01 0.006 MZ937B Dynamic Impedance ZZTOhml (Note 3) 0.01 0.005 MZ825A MZ936 @IZT=7.5mA Ambient Air Test Temperaturas MZ821 MZ823A Vz = 9.0 V±. 5% Change l>VZ (Volts) (Note 2) 30 0.Q1 -55,0, +25, +75, +150 0.002 0.001 30 0.Q1 MZ3154 0.130 MZ3155 0.065 -55,0, +25 0.005 MZ3156 0.026 +75, +100 0.002 15 Vz = 8.4 V ±.5% @IZT=10mA MZ3154A 0.172 MZ3155A 0.086 -55,0, +25, 0.005 MZ3156A 0.034 +75, +100, +150 0.002 0.Q1 1453 15 MZ821,A, MZ823,A, MZ825,A, MZ827,A, MZ935,A,B thru MZ938,A,B, MZ941,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued) EFFECTS OF NEUTRON DOSAGE FIGURE 1 - EFFECT OF NEUTRON DOSAGE ON REFERENCE VOLTAGE -1000 -500 - !-200 TYP IN941 SERIES ~-100 :z: ~ -50 ~ c ~ > ~ -- - TYP IN821 SERIES I- -20 -10 -5.0 f-- TYP IN935 SERIES -2.0 ~ -1.0 1012 - - V TYP ~Z821 SE,RIES' I----" 1--- f.Hf _ ..... - I- ..... 1-" - I-""" Noll I- *90% of the units changeless than 2.5 times typical value shown.- I I III .... === 1014 '" I I I I I YII lOiS FIGURE 2 - TYPICAL EFFECT OF NEUTRON DOSAGE ON TEMPERATURE COEFFICIENT ~ w co '"~ 0.0 I 0.005 0.002 ~TA' .... 0.00 I ~ U 0.0005 § 8 w !5 ..... -55°C '0 +1500 C TYP MZ821 SERIES f-'" 0.0002 ---- 0.000 I !;( ~ 0.00005 r-ryp MZ941 SERIES '" 0.00002 i.~ ~O.OOOO I ~ / .... - - ........... I-""" ,...... i--' ,/ .....c V TYP MZ3154 SERIES TYP MZ935 SERIES L' II II 1014 1012 4>. NEUTRONS/cm 2 (E > 10 Kavl (NOTE: Change may be either positive or negative) FIGURE 3 - EFFECT OF NEUTRON DOSAGE ON IMPEDANCE' 10 8.0 ; :z: 5.0 ~ 3.0 co :i! 2.0 5 90% of the units change less than 2 timas typical value shown. V ~ 1.0 ~ 0.8 ~ 0.5 ~ 0.3 ~ 0.2 O. I 10 12 10 13 - ..- ,. - ...... 1014 4>. NEUTRONS/cm2 (E > 10 Kavl 1454 I TYP MZ3154 SERIES"" 4>. NEUTRONS/cm 2 (E > 10 Kevl u I TYP MZ941 SERIES' TYP MZ935 SERIES' TYPICAL CHANGE lOiS -- I MZ821,A, MZ823,A,MZ825,A, MZ827,A, MZ935,A,B thru MZ938,A,B, MZ941,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued) loOi-i--r--r-=:;;:!;::.::==t==:::;:l FIGURE 4 MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE (with IZT = 7.5 rnA ± 0.01 rnA) 75~----1-----~~--t---·--~--~----~ These graphs can be used to determine the maximum voltage change of any device in the series over any specific temperature range. For example, a temperature change from 0 to +50o C will cause a voltage change no greater than +31 mV or - 31 mV for MZ821 0 r MZ821A, as illustrated by the dashed lines in figure 4. The boundaries given are maximum values. Expanded views of Maximum Voltage Change versus Ambient Temperature curves are shown on the standard data sheet 1N821,A, 1N823,A, 1N825,A, 1N827,A, 1N829,A. The maximum voltage change. 6.VZ. in Figures5and 6 is due entirely to the impedance of the device. If both temperature and IZT are varied, then the total voltage change may be obtained by adding 6VZ in Figure 5 or 6 to the b..VZ in Figure 4 for the device under consideration. If the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 5 or 6 on Figure 4. -751-------...L----p~--t-----I----~----~ -100b--_---!_---;b---_~==:::::i===±:==::::J -55 ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE (At Specified Temperatures) (See Note 5) MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES FIGURE 6 - MZ821 A SERIES FIGURE 5 - MZ821 SERIES 10 +100 0 C 9.0 ;;C .s >- ~ G 8.0 7.5 7.0 co w ~ N 6.0 .!:9 5.0 4.0 -75 50 50 "VZ, MAXIMUM VOLTAGE CHANGE (mVI (Referenced to IZl = 7.5 mAl oVZ, MAXIMUM VOLTAGE CHANGE (mVI (Referenced to IZT = 7.5 rnA) MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT (See Note 3) MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES FIGURE 7 - MZ821 SERIES FIGURE 8 - MZ821A SERIES 1000 80 0 en 60 0 ~ 400 1000 800 ~ 600 o ~ 20 O~ O~ 60 40 '"zw 0 W ~~ -55°C :> 100 ~ 40 ffi 20 ~ ,. 100'C 25'C => ,. ,.~ 4.0 :J N 2.0 N 1.0 1.0 200 ~ ~ ~~ N I0 ~ 8. 0 ,. 6. 0 ,.~ 400 '"~ ~ 1~0 ~ ~ :J: ~ 2.0 4.0 6.0 8.0 10 20 40 60 80100 IZ, ZENER CURRENT (mAl 25'C ~ 10 8.0 6.0 ~ ~;rr -55'C 4.0 ....;::::, 2.0 1.0 1.0 I 2.0 4.0 6.0 8.0 10 20 IZ, ZENER CURRENT (mA) 1455 40 60 80100 MZ821,A, MZ823,A, MZ825,A, MZ827,A,MZ935,A,8 thru MZ938,A,8, MZ941,A,8 thru MZ944,A,8, MZ3154,A thru MZ3156,A (continued) MAXIMUM VOLTAGE CHANGE versus TEMPERATURE (With IZT = 7.5 mA ± 0.Q1 mAl FIGURE 9 - MZ935 thru MZ939 FIGURE 10 - MZ935A thru MZ939A 150 5 50 MZ935 / ~J+:2r71 5_j_l 100 MZ936 ' MZ937 MZ938 , ,I -50 -75 __ I a a ........... MZ936 :'" IZT = 7'5 mA --r-- 100 ~~ 50 w~ ",,\, ~; §!~ !5~ "'~ ;;:--50 :li ---- __L / / V __ L -~ -tOO -150 -200 -55 -15a -55 V- " -- MZ936B t - - - 8A =r-U, MZ938A MZ937A ""'" MZ936A '" The boundaries given are maximum values. Expanded views of Maximum Voltage Change versus Ambient Temperature curves are shown on the standard data sheet 1N935A,B thru lN939,A.B. The maximum voltage change, t::,VZ, in Figure 12 is due entirely to the impedance of the device. If both temperature and IZT are varied, then the total voltage change may be obtained by adding 6VZ in Figure 12 to the t::.VZ in Figure 9, 10, or 11 for the device under consideration. If the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 12 on Figure 9, 10, or 11. MZ937B MZ938B MZ939B. " I T M~::iJB MZ937B MZ936B - MZ935B FIGURE 13 - MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT (See Note 3) 1000 MORE THAN 95% OF THE UNITSAAE IN THE RANGES INDICATED BV THE CURVES 800 '" 600 ;;: 400 +25 0 C +150 0 C 9.0 f----+----+----I-""""'fNj"""!-----.1 +75 0 C 8- ~ 200 z .. 100 1: 8.01----+--..,.IZ-T--t-----h~--+----I ~ ~g ------ :ll 7.0I_---+----+---::iII~----I_--_I ffi ffi a N ffi 6.0 I_---:-:±:---+~~-_+----I_--_I '" :> ~ '" ~ N .!9 =:tMZ939A h These graphs can be used to determine the maximum voltage ~ ""'" ~ MZ937A change of any device in the series over any specific temperature range. For example, a temperature change from +25 to +50o C will cause a voltage change no greater than +22 mV or - 22 mV for MZ935. as illustrated by the dashed lines in Figure 9. 10MORE THAN 96% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES ~ ::2 MZ936A MZ935A 50 100 150 TA, AMBIENT TEMPERATURE (OC) MZ935B 50 100 150 TA. AMBIENT TEMPERATURE (OC) FIGURE 12 - ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE (at specified temperatures) (See Note 5) I- ~~ ~ MZ935 ~~ r-~ ~ r-............. N ~ -10 a 50 75 TA, AMBIENT TEMPERATURE (OC) 150 :;; ---.:: MZ937 FIGURE 11 - MZ935B thru MZ939B 20 a ..sw '"z • MZ938 1 25 V k.V ~ + MZ939 ~ .vzl=-22.dm~ V ~ ....- Ltd _l_~ MZ935A IZT= t5 mA IZT= t.5 mA 5.0 1__---I__-,~"....j,.L---I__---I__---l +75 0 C "N N 4.0 '--_-4<-""'-L..-"'--"'-_ _-'-_ _ _...L_ _- ' -150 -100 -50 100 50 .VZ, MAXIMUM VOLTAGE CHANGE (mV) (Referenced to IZT = 7.5 mAl 0 40 20 -55°C a 6. a 8.1a ~ .... 25°C 4.0 2. a 1.0 0.1 1456 ~ ,..,.150 C 10 IZ, ZENER CURRENT (mA) 1.0 100 MZ821,A, MZ823,A, MZ825,A, MZ827,A, MZ935,A,B thru MZ938,A,B, MZ941,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued) MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE (With IZT = 7.5 mA ± 0.01 mAl FIGURE 14 - MZ941 thru MZ946 5 /' MZ941 150 -T---- V ''''""YJ- MZj42 'j 0 0 , MZ:44 jZr MZ945 t MZ944 MZ943 MZ945 ~~ ~VZZ-28.~~:~ .: -100 o ,,/ 200 150 '"z / « ~~ 50 ~~ !:i";;; o~ > iii "'~ ~ r--. "" ~ '"N ~; ~ --:::: 0 ~~-50 -100 ~ -150 -200 -250 -55 MZt2A MZ941A 50 100 TA, AMBIENT TEMPERATURE (DC) MZj41 B These graphs can be used to determine the maximum voltage change of any device in the series over any specific temperature range. For example, a temperature change from +25 to +50o C MZ942B ...- will cause a voltage change no greater than +29 mV or - 28 mV for MZ941 , as illustrated by the dashed lines in Figure 14. The boundaries given are maximum values. Expanded views of Maximum Voltage Change versus Ambient Temperature curves are shown on the standard data sheet 1N941,A,B thru l-MZ9~ MZj41B lN946,A,B. • ~MZ944BI J --.::::: ~z;;f MZ943B .............. ~ The maximum voltage change, 6VZ, in Figure 17 is due en~ tirely to the impedance of the device. If both temperature and I ZT are vaired, then the total voltage change may be ob~ tained by adding I'NZ in Figure 17 to the ''NZ in Figure 14, 15, or 16 for the device under consideration. I f the device is to be operated at some stable current other than the specified test current, a new set of characteristics may be plotted by superimposing the data in Figure 17 on Figure 14, 15, or 16. ""'- ....... MZ942B "'-'\ MZJ41B 50 100 150 TA, AMBIENT TEMPERATURE (DC) FIGURE 17- ZENER CURRENT versus MAXIMUM VOLTAGE CHANGE (At specified temperatures) (See Note 5) FIGURE 18 - MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT (See Note 3) MORE THAN 95%OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES 10r---~T--~~~~~~r=~~~rrT7~~ MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES 1000 '"S'" +75 0 C ::;; 9.0 .." 150 0 C w u ;( .5 B.O 7.5 7.0 u f- i ~ --- _..!£~ ~. 100 :!! ~ w ~ ill N w ill N '\ -20 0 -55 /' / 100 w~ ~ '" '" -15 0 50 75 TA, AMBIENT TEMPERATURE (DC) MZ943A FIGURE 16 - MZ941B thru MZ946B 250 ~w MZr2A MZ943A MZ945A MZ944A ...... MZ941 I I 25 V. . . . . V- -- 0 I I MZ941A ~~ MzL2 ~\ -7 5 / / :~i'--.. ..::::::: ~A~A • .L 5-1 0 V / 0 __L 5~ FIGURE 15 - MZ941A thru MZ946A 200 100 6.0 ~ .!9 -550 C 10 ~ '"x« 5.0 25 0 CL ::;; N N 1.0 50 o 100 ~VZ, MAXIMUM VOLTAGE CHANGE (Referenced to IZT = 7.5 rnA) 1457 1.0 10 IZ, ZENER CURRENT (mA) 100 MZ821 ,A, MZ823,A, MZ825.A, MZ827.A, MZ935,A,B thru MZ938,A,B, MZ941,A,B thru MZ944,A,B, MZ3154.A thru MZ3156.A (continued) MAXIMUM VOLTAGE CHANGE versus AMBIENT TEMPERATURE (With IZT = 1.0 rnA ± 0.01 rnA) The maximum voltage change. 6VZ, in Figure 21 is due en~ tirely to the impedance of the device. If both temperature and IZT are varied, then the total voltage change may be ob~ tained by adding l>VZ in Figure 21 to the l>VZ in Figure 19 or 20 for the device under consideration. If the device is to be operated at some stable current other than the specified test current. a new set of characteristics may be plotted by superimposing the data in Figure 21 on Figure 19 or 20. These graphs can be used to determine the maximum voltage change of any device in the series over any specific temperature range. For example, a temperature change from 0 to +50o C will cause a voltage change no greater than +42 mV or - 42 mV for MZ3154, as illustrated by the dashed lines in Figure 19. The boundaries given are maximum values. Expanded views of Maximum Voltage Change versus Ambient Temperature curves are shown on the standard data sheet 1N3154,A thru lN3157,A. FIGURE 19 - MZ3154 thru MZ3157 FIGURE 20 - MZ3154A thru MZ3157A 150 r----,----'----,----,----,------, zoo IZT=10~A MZ3154 MZ31154A 150 1001----+----+7'--+---+---+-1 ,/ / / 50 /' MZ3155A ........- ~ ~ ~~ ~ -50 t---'l'---f-3o,_____--+""'.::---+----t---!-H -10 0 -100 f-----+----j-..,.,.,--f-----J---H -15 0 ---"" MZ3156A , MZ3157A r-- r-r--.... ...... ~ "" -55 MZ3l57A MZ3156A ~ ~ -zo 0 -15~5'=5------,L------,5LO----l.J.00-------'-------' • • MZ3155A_ " 1 1>'l3 54A 50 100 150 TA, AMBIENT TEMPERATURE (DC I TA, AMBIENT TEMPERATURE (DC I FIGURE 22 - MAXIMUM ZENER IMPEDANCE versus ZENER CURRENT (See Nota 3) FIGURE 21 - ZENER CURRENT varsus MAXIMUM VOLTAGE CHANGE (at spacified tamparatures) (See Note 5) 100 MORE THAN 95% OF THE UNITS ARE IN THE RANGES INDICATED BY THE CURVES ~ '":r ;r: ~ r--.; ~ :;; ~ 9.0 '"zw _w .!9 8.0 '=>" ;;; '"w ....... "- w '-' z ..st- '" a 50 S 11 N ~ N -550 C 10 ...... lOOoC po ::::: ...... to- Z5 0 C 5.0 '"« +100 oC 'N" N 7.0 -75 1.0 1.0 ~VZ. 5.0 10 IZ. ZENER CURRENT (mA) MAXIMUM VOLTAGE CHANGE (mVI IReferencad to IZT ~ 10 rnA) 1458 zo 30 40 MZ821,A, MZ823,A, MZ825,A, MZ827,A, MZ935,A,B thruMZ938,A,B, MZ941 ,A,B thru MZ944,A,B, MZ3154,A thru MZ3156,A (continued) RADIATION EFFECTS Standard Zener Diodes are inherently radiation resistant because of high doping levels. This is not the case in Temperature Compensated Zener Reference Diodes because standard diffused, forwardbiased, P-N junctions having negative temperature coefficients arB utilized to compensate for the positive temperature coefficient of the zener die. Normally, the characteristic of the toward-biased P-N junction changes significantly with fast neutron dosage and makes the composite device sensitive to radiation. Motorola utj.. lizas specially processed P-N junctions to provide devices capable of meeting the information shown in Figures 1, 2 and 3. The radiation effects curves were generated based on data obtained by irradiating devices in a Tri~ Reactor. Note: 3 neutron/cm 2 (Triga Reactor) = 1 neutron/em (1Mev equivalent.) NOTE 1: NOTE 3: The Motorola listed types have electrical specifications identical to the 1 N ... counterpart, i.e., MZ821 is identical to 1 N821. Zener hnpedance Derivation The dynamic zener impedance. ZZT. is derived from the 6()"Hz ac voltage drop which results when an ac current with an rrns value equal to 10% of the dc zener current, IZT. is superimposed on IZT' Curves showing the variation of the zener impedance with zener current for each series are given. A cathode·ray tube curve·trace test on a sample basis is used to ensure that each zener characteristic has a sharp and stable knee region. NOTE 2: Voltage Variation (t:.VZ) and Temperature Coefficient All reference diodes are characterized by the "box method," This guarantees a maximum voltage variation (t:.VZ) over the specified temperature range. at the specified test current (lZT). verified by tests at indicated temperature points within the range. This method of indicated voltage stability is now used for JEDEC registration as well as for military qualification. The former method of indi· eating voltage stability - by means of temperature coefficient accurately reflects the voltage deviation at the temperature ex· tremes, but is not necessarily accurate within the temperature range because reference diodes have a nonlinear temperature relationship. The temperature coefficient, therefore, is given only as a reference. 1459 MZ 1000-1 thru MZ 1000-37 (SILICON) MINIATURE PL.ASTIC ENCAPSULATED ZENER DIODES · .. for regulated power supply circuits, surge protection, arc suppression and other functions in television, automotive and other consumer product applications. 1 WATT ZENER DIODES SILICON OXIDE PASSIVATED • No larger than conventional 250 mW case yet conservatively rated at 1 watt (to 3 watts dissipation possible). 3.3-100 VOLTS • 100% oscilloscope tested to assure sharp breakdown and long-term, reliable operation. MAXIMUM RATINGS Rating DC Power Dissipation Value @ Derate above 500 e T L ::: 500 e Unit 1.5 8.33 Lead Temperature (11 Watts mW/oC °c -65 to +175 (1) Maximum Lead temperature for 10 seconds at 1/16" from case'" 230°C FIGURE 1-POWER·TEMPERATURE DERATING CURVE 4.0 3.5 In S 3.0 ~ j!5 2.5 ~ ~ 2.0 is i I ~ 1.5 ~ LeadLengtl1~%~ --- ------ -I 1" ~ 1.0 0.5 0 0 25 -- 50 I ~~~~d~~~::~:~~n~k~~m ........ '-..... .......... '---- 75 case - ........... ............... ---- ~ ~ 100 150 125 175 Tc LEAD TEMPERATURE 1°C) MECHANICAL CHARACTER'ISTICS CASE: Void free, transfer molded. NOTE: 1. POLARITY DENOTEO BY CATHODE BAND FINISH: All external surfaces are corrosion resistant. Leads are readily solderable. POLARITY: Cathode indicated by color band. When operated in zener mode, cathode will be positive with respect to anode. DIM A MOUNTING POSITION: Any. B 0 F WEIGHT: 0.42 gram (approximately). K MILLIMETERS MIN MAX 4.07 2.04 0.71 - 27.94 5.20 2.71 O.BS 1.27 - INCHES MIN MAX 0.lS0 0.205 0.080 0.107 O,02B O. 34 0.050 1.100 - - All JEDEC dImensions and notes apply. CASE 59-03 00-41 1460 MZ1000-1 \ thru MZ1000-37 (continued) ELECTRICAL CHARACTERISTICS (Tc = 25"C unlessolherwlle noted} V, "" Vz Motorola Type No. 1 5 Vmil~ @200rnAon"Utypes Zener Voltage Volts (2) IZT Test Current Izr mA @ Typical ZZT (@ IZT Ohms Max DC Zener Current IZM mA Maximum Reverse Leakage Current VR IR @ pA Max Volts Temperature Coefficient %/"C Min Nom Max MZIOOO-l MZI000-2 MZIOOO-3 MZIOOO-4 MZI000-S 2.97 3.24 3.51 3.87 4.23 3.3 3.6 3.9 4.3 4.7 3.63 3.96 4.29 4.73 5.17 76 69 64 58 53 15 15 13,5 13.5 12 276 252 234 217 193 150 150 75 20 20 I I I I I -.070 -.065 -.060 -.050 -.043 MZIOOO-6 MZlOOO-7 MZIOOO-8 MZIOOO-9 MZIOOO-lO 4.59 5.04 5.58 6.12 6.75 5.1 5.6 6.2 6.6 7.5 5.61 6.16 6.82 7.48 8.25 49 45 41 37 34 10.5 7.5 3 5.25 6 178 162 146 133 121 20 20 20 20 20 I 2 3 4 5 t.030 t .028 +.045 .050 MZIOOO-ll MZIOOO-12 MZIOOO.. 13 MZlOOO-14 MZlOOO-15 7.38 8.19 9 9.9 10.8 8.2 9.1 10 II 12 9.02 10.01 II 12.1 13.2 31 28 25 23 21 6.75 7.5 10.5 12 13.5' 110 100 91 83 76 20 20 20 10 10 5.9 6.6 7.2 8.0 8.6 .068 .075 .076 .077 MZlOOO-16 MZIOOO-l'7 MZIOOO-18 MZIOOO-19 MZlOOO-20 11.7 13.5 14.4 16.2 18 13 15 16 18 20 14.3 16.5 17.6 19.8 22 19 17 15.5 14 12.5 15 21 24 30 33 69 61 57 50 45 10 10 10 10 10 9.4 10.8 11.5 13.0 14.4 ,079 .082 .083 ,085 .086 .058 .062 MZlOOO-21 19.8 MZlOOO-22 MZIOOO-23 MZI000-24 MZI000-25 21.6 24.3 27 29.7 22 24 27 30 33 24.2 26.4 29.7 33 36.3 11.5 10.5 9.5 8.5 7.5 34.5 37.5 52.5 60 67.5 41 38 34 30 27 10 10 10 10 10 15.8 17.3 19.4 21.6 23.8 .087 .088 .090 .091 .092 MZ1000-26 MZI000-27 MZI000-28 MZ1000-29 MZI000-30 32.4 35.1 38.7 42.3 45.9 36 39 43 47 51 39.6 42.9 47.3 51.7 56.1 7 6.5 5.5 5 75 90 105 120 142.5 25 23 22 19 18 10 10 10 10 10 25.9 28.1 31.0 33.8 36.7 .093 .094 .095 .095 .096 MZ1000-31 MZI000-32 MZI000-33 MZ1000-34 MZI000-35 50.4 55.8 61.2 67.5 73.8 56 62 68 75 86 61.6 68.2 74.8 82.5 90.2 4.5 4 3.7 3.3 3 165 177.5 225 262.5 300 16 14 13 12 II 10 10 10 10 10 40.3 44.6 49.0 54.0 59.0 .096 .097 .097 .098 .098 MZI000-36 MZ1000-37 61.9 90 91 100 100.1 110 2.8 2.5 375 525 10 9 10 10 65.5 72.0 .099 .100 6 (2) NoDlinal voltages other than those stated above, matched sets, and tighter voltage tolerances are available as listed on DS 7030 HI (available from your local Motorola sales office or distributor) ... Motorola IN4728 thru IN4764 series (lM3.3ZS10 thru IMIOOZSIO). Voltages to 200 volts are available in other package configurations on request. FIGURE 2 - TYPICAL ZENER DIODE CHARACTERISTICS and SYMBOL IDENTIFICATION 300 FORWARD CHARACTERISTIC TYPICAL IALL TYPESI • Iz -Zener Current REVERSE VOLTAGE IVOLTSI 30 .I 200 - I 100 • IZT - Zener Test Current • VF - Forward Voltage 11;~8~mA .t.._ _ ./ 10 ... § 20 ~30mA 30 • Vz - Nominal Zener Voltage 1.0 0.5 V,IVOLTSI :;;; I"" Maximum OCZenerCurrent (limited by Power Dissipation) • IZM - 10 20 -- • IF - Forward Current . 1.5 • Zz - Zener Impedance • Zn - Zener Impedance at Test CUrrent tlZT) REVERSE CHARACTERISTIC ITYPICAL FOR 30 VOLT UNIT. MZ1000·241 MZ2360 thru MZ2362 For Specifications, See IN816 Data, Volume I. MZ4614 thru MZ4627 (SILICON) For Specifications, See IN4099 Data, Volume 1. 1461 MZ5555 (SILICON) thru MZ5558 De~igllerlS Data Sheet SILICON POWER TRANSIENT SUPPRESSORS SILICON POWER TRANSIENT SUPPRESSORS are highly reliable voltage regulators specifically designed to withstand high power pulses for protection of voltage transient sensitive circuits. • Peak Power Given - 0.01 ms to 1.0 s • Low Power Overshoot • Low Power Loss • Convenient Size • Ax ial Lead Package • Oxide Passivated Junction Designer's Data for "Worst Case" Conditions The Designers Data sheets perm it the design of most circu its entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design. ~. 1-' o K L MAXIMUM RATINGS Rating Transient Power Dissipation c Symbol MZ5555 MZ5556 MZ5557 MZ5558 Unit - 9.0 6.5 kW r K L, Smgle Square Wave Pulse, Pulse Width = 0.01 ms, TL = 25°C DC Power Dissipation TL = 25°C. L = 0.5·' Derate above 2SoC Operating and Storage JunctIon Temperature Range Po 5.0 Watts 33.3 mW/oC TJ,Tstg -65 to +175 °c STYLE 1: 1. CATHODE 2. ANODE DIM MECHANICAL CHARACTERISTICS CASE: Metal, hermetically sealed. FINISH: All external surfaces are corrosion resistant and leads are readily solderable and weldable. POLARITY: Cathode indicated by diode symbol. A B C D K MILLIMETERS MIN MAX INCHES MIN MAX - 11.43 8.89 7.62 1.17 1.42 24.89 - 0.450 0.046 0.300 0.056 o. CASE 60-02 146? ~O _. , MZ5555 thru MZ5558 (continued) ELECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted.) VF IR Vc Ipp TC Clamping Voltage Peak, Pulse Current T emperatu ra Coefficient @Ipp IVolts) INote 1) lAmp) VF Forward Forward Voltage @VR (IlA) Vz Breakdown Voltage @1.0mA IVolts) (VRMS) Max Min Max Max Max Max 21.5 5.0 33 47.5 32 0.093 2.0 2.7 40.3 28.5 5.0 43.7 63.5 24 0.095 2.5 3.2 MZ5557 49 34.5 5.0 54 78.5 19 0.099 2.8 3.8 MZ5558 175 124 5.0 191 265 5.7 0.110 3.5 5.1 Reverse Standoff leakage Current VR Reverse Standoff Voltage Type Number (Vdc) MZ5555 30.5 MZ5556 Voltage INote3) I%I"C) @ IF = 100 A INote2) IVa Its) @IF=200A INote 2) IVolts) Max NOTE 1: The Peak Pulse Curfent is measured on an exponential curve With Ipp defined as follows: o 102.03.040 Tlme-(ms) 50 60 NOTE 2: The Forward Current (IF) is a non·repetltive sqaure wave pulse With a pulse width of 10 ms. NOTE 3: Temperature Coefficient IS measured at 1.0 rnA over the temperature range of 25°C to 125°C. FIGURE 2 - EFFECTS OF LEAD LENGTH ON STEADY STATE THERMAL RESISTANCE FIGURE 1 - STEADY STATE POWER OERATING :::"' ~ 5.0 4.0 ~ ~~ "'" 46 ........ ~ 2.0 §l "«x "~ "'" -11/2" 20 BO @kJ r- -I 112" 1- L L ./" ~ L 1- 1I "" 0 60 rfff- ~ 1.0 40 f- 'TL "'" 3.0 c; "' @kJ i"-,. 100 120 140 ~ /' -- r -/- . - f--- f--- ./ "'"I'160 2 lBO TL, LEAD TEMPERATURE IOC) lB V o V 0.1 "" 0.2 0.3 0.4 0.5 0.6 L, LEAD LENGTH (INCHES) 1463 0.1 O.B 0.9 10 MZ5555 thru MZ5558 (continued) FIGURE 4 - MAXIMUM NON-REPETITIVE EXPONENTIAL SURGE CURRENT FIGURE 3 - TYPICAL VOLTAGE CHANGE WITH CURRENT 10 0 go 50 ~ 10 LU 5.0 o 2.0 ~ > 0 ..... 0 0 ~1--~""'.....d::-++F'!'I~........ """,~Mr-:...",55'-15~5 0:- MZ555S 20 '"~ ~ Pulsewidth - 300 liS, Duty Cycle L ~ 3/S" TL 15 0 C +-I+H+-I----I---Tt : ~7;'~ !a O§~~~Di~~~~~~~~~~1 r-~ MZ5557 ~ MZ555B ~ MZ5 555 7.01-- 5,0 MZ555B 3,0 ~5557' ~,;; ;~ H'f "ffl'''''',-+-++f!k~ ffi 1.0 ffiNO.5 N > = 10k ;t -~.ri% o g5.0 Fi=L..J 1--12----j 0-0 0 D~~lxl00 12 z ~ 1.0 0 11 x 100 11 k ~ 500 1.0% c; 100 a: 100 "~ Fi=L..J 1--11----1 0 ~ 1.0 k ~ 500 ::i s: k 5.00/., a::: ~ 10% 50 10 1°~ 10 0.01 0,01 0.050.1 0.1 0.5 1.0 2.0 5.0 10 10 200 100 " ~ 50 ~ 20 50 100 100 5001.0 k 5.0% 10% 10% 10 0.010.02 0.050.1 0.2 0.5 1.0 1.0 11. PULSE WIDTH 1m,) 5.0 10 10 50 100 100 5001.0 k 11. PULSE WIDTH 1m,) NON-REPETITIVE SURGE POWER versus TEMPERATURE (L = 3/S". 0 = 0) FIGURE S - MZ555S FIGURE 7 - MZ5555. MZ5556. MZ5557 10 k 10 k ~ 10 k ~ 5.0 k ~ 5.0 k 10 1,0 k ~ z ~ o ;=2.0 k ;t >= ;t ~,~ ;55 0 C ~ ~ 1.0 k ~ ~ 200 "~ 100 ~ 0 10 0,010,01 0.05 0,1 0,1 50 0 c; 500 ~ 1.0 k "' 200 ~ +25 0 C +125 oC D,S 1.0 1,0 5,0 10 20 50 100 200 ~ 100 "~ 50 ~ 20 5001.0 k 11. PULSE WIDTH ImS) 10 0,01 0.02 0,05 0,1 0.2 TL -55 0 C rH!... +25 0 C Ill~25~ 0,5 1.0 2,0 5.0 10 20 It. PULSE WIDTH ImSI 1464 50 100 200 5001.0 k \ MZ5555 thru MZ5558 (continued) FIGURE 9 - TYPICAL CAPACITANCE 5.0 k 3.0 kt-2.0 k iii 1.0 k ~ 700 ~ 500 TA r- -- --t::t~ r-- r-- I-- MZ5556 MZ5557 ~ 300 5 =25°C MZ5555 r-- MZ5558 r-- 200 u' -- 100 70 50 1.0 20 3.0 5.0 7.0 10 20 VR. REVERSE VOLTAGE (VOLTS) 1465 30 50 70 100 ... --------------------NOTES--------------------


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:12 16:24:25-08:00
Modify Date                     : 2017:06:12 17:25:05-07:00
Metadata Date                   : 2017:06:12 17:25:05-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:8d011258-e3eb-1741-bf68-2047a42b3807
Instance ID                     : uuid:1f3f050e-94e9-2e4b-91ce-9949d1886c65
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1483
EXIF Metadata provided by EXIF.tools

Navigation menu