1975_National_Linear_Integrated_Circuits 1975 National Linear Integrated Circuits

User Manual: 1975_National_Linear_Integrated_Circuits

Open the PDF directly: View PDF PDF.
Page Count: 706

Download1975_National_Linear_Integrated_Circuits 1975 National Linear Integrated Circuits
Open PDF In BrowserView PDF
-rn

rZ

LINEAR
INTEGRATED ,CIRCUITS

~

=a
-z

.'
-----ips

.

, National

~--------------------~
~____--------------------___

=
~------~~==========~----..~ ---­
~

m

a

.-..
n

:::c

n

C

'"
"T1

m

'"

..
Z

I

a
-.
o
=
a

-

Edge Index
by Product Family
Here is the new Linear Data Handbook from National. It gives complete specifications for devices useful
in building nearly all types of electronic systems, from communications and consumer oriented circuits
to precision instrumentation and computer designs.
For information regarding newer devices introduced since the printing of this handbook, or for further
information on listed parts, please contact our local representative, distributor, or regional office.

Voltage Regulators
Operational Amplifiers
Voltage Comparators/Buffers'
Functional Blocks

g
g

!II

Analog Switches

g
g
fJI

New Products

~

Consum'er Circuits
Transistor/Diode Arrays

Physical Dimensions/Def. of Terms

Manufactured under one or more of the following U.S. patents: 308J262, 3189758, 3231797, 3303356. 3317671. 3323071. 3381071, 3408542, 3421025, 3426423. 3440498, 3518750, 3519897, 3557431, 3560765,
3566218,3571630,3575609.3579059.3593069,3597640.3607469, 3617859, 3631312, 3633052.3638131, 3648071. 3651565, 3693248.

National does not assume any responsibility for use of any circuitry described; no circuit patent licenses are Implied; and National reServes the right, at any time without notice, to change said circuitry.

g

Ordering Information

PACKAGE
DF HJ K-

Glass/Metal Dual-In-Line Package
Glass/Metal Flat Pack
TO-S (TO-99, TO-100, T0-46)
Low Temperature Glass Dual-In-Line Package
TO-3, TO-66

M - "Wide-Track" Power Plastic Dual-In-Line Package
N - Plastic Dual-In-Line Package
P - TO-202 (D-40, Durawatt)

F

1PACKAGE
'----DEViCE NUMBER

R - "DlACON" Type Dual-In-Line Package
S - "SGS" Type Power Dual-In-Line Package
T -TO-220
W - Low Temperature Glass Flat-Pack
Z -TO-92

DEVICE NUMBER
3,4, or S Digit Number Suffix Indicators:
A - Improved Electrical Specification
C - Commercial Temperature Range

'-------DEVICE FAMIL V
DEVICE FAMILY
AH
AM
LF
LH
LM
LX
MM

-

Analog Hybrid
Analog Monolithic
Linear FET
Linear Hybrid
Linear Monolithic
Transducer
MOS Monolithic

Devices are listed in the table of contents alpha-numerically by device family (LH, LM, LX, etc_) and then by device number.
With most of National's proprietary linear circuits, a 1-2-3 numbering system is employed. The 1 denotes a Military temperature
range device (---SSoC to +12Soe), the 2 denotes an Industrial temperature range device (-2SoC to +8SoC), and the 3 denotes a
Commercial temperature range device (OOe to +70oel. i_e_ LM101/LM201/LM301.
Exceptions to this are the LM1800 series of consumer circuits which are specified for the commercial temperature range;
some hybrid circuits which employ a "C" suffix to denote the commercial temperature range; and second-source proclucts
which follow the original manufacturers numbering system, i.e. LM74l/LM741C or LM1414/LM1S14.
Parts are generally listed in the table of contents by military part number first, i.e. LM139/LM239/LM339. Where a separate
data sheet exists for a different temperature range, the device will be listed separately, i.e. LM119/LM2l9 and listed separately
LM3l9. Where only one temperature range exists, the part will be listed in its proper order, i.e. LM340.
ii

National Product Catalogs

CMOS INTEGRATED CIRCUITS

MEMORY INTEGRATED CI RCUITS

Gates
Buffers
Flip-Flops
Counters
Shift Registers
Decoders/Multiplexers
Memories
Arithmetic Functions
Special Functions

Bipolar and MOS RAMs
Bipolar and MOS ROMs
Bipolar and MaS PROMs
Clock Drivers and Their Applications
Scheduled Publication Date: First Quarter 1 975

MICROPROCESSOR MANUAL
Includes LSI Processor Building Blocks and Support
Items Including Chip Sets, Microcomputer Cards, and
Prototyping Systems_ Scheduled Publication Date: First
Quarter 1975.

DIGITAL INTEGRATED CIRCUITS

MOS INTEGRATED CIRCUITS

Series
Series
Series
Series
Series
Series
Series

Dynamic Shift Registers
Static Sh ift Registers
PROMs/ROMs
RAMs
Clock Drivers
Analog Switches
ROM Character Generators
ROM Code Convertors
Custom MaS/LSI
Complex Standards
Integrated Circuits
Microprocessors
Appl ications

54/74
54H/74H
54 Ll74 L
74S
930
9000
10,000

INTERFACE INTEGRATED CIRCUITS
Level Translators/Buffers
Memory/Clock Drivers
Line Drivers/Receivers
Peripheral/Power Drivers
Display Drivers
Sense Amplifiers
Applications

JFET TRANSISTORS
Specifications
Applications
Curves
Selection Guides
Scheduled Publication Date: First Quarter 1975

LINEAR INTEGRATED CIRCUITS
Voltage Regulators
Operatiqnal Amplifiers
Voltage Comparators/Buffers
Functional Blocks
Consumer Circuits
Transistor/Diode Arrays
Analog Switches

OPTOELECTRONICS HANDBOOK
Opto-Couplers
Calculator Display Arrays
Numeric Displays
LED Lamps
LED Drivers
Calculator Circuits
Digital Clock Circuits
Application Notes
Scheduled Publication Date: First Quarter 1975

SPECIAL FUNCTION ANALOG AND
DIGITAL CIRCUITS
Amplifiers
Buffers
Sample and Hold Amplifiers
Comparators
Analog Switches
MOS Clock Drivers
Digital Drivers
Power Supplies

TRANSDUCER
Pressure
Temperature

LINEAR APPLICATIONS

TRANSISTOR

Indexed Cross Referenced Collection of Linear Integrated Circuit Applications using Both Monolithic and
Hybrid Linear Circuits

Small Signal
Field Effect
Power

iii

CD

U
C

...

CD
CD
~
CD

illS

a:

Industry Package Cross-Reference

I

III
III

NSC

Signetics Fairchild Motorola

TI

RCA

e
CJ

CJ

CD

Cl

ca

~

u

ca

Silicon
General

AMD

D,
Glass/Metal DIP

D

I

D

L

D

D

D
M

mIVW

D..

...~

Raytheon

III

:::l
"CI

.5

~=

J,
Glass/Metal
.Fla~·Pack

0

M

¥

0

Q

F

F

F

F,

S

T.
TO·99, TO·100, TO·5

H

K,

H

G

L

S'

T

V1**

L,

H

T.
H

DB

DC,

Low-Temperature
Glass DIP

J

F

D

TO·3, TO·66

K

DA

J

L

J

DD

K,
K,
K
R

LK.
TK

_nnnnnnnn

IO~
..............................

,

"Wide·Track"
Power Plastic 01 P

M

(Package 36)
·With dual-in,-line formed leads.
·*With radially formed leads.

iv

K

F

Q

~
IDOID

@

F,
F

:::J

Co
C

Industry Package Cross-Reference (Con't)
NSC

Signetics Fairchild Motorola

TI

RCA

Silicon
General

~

-<

"tI

AMO

Raytheon

I»
(')

"

I»
CQ
CD

D

(")

N,

a

V,
P,

T,

m

Plastic DIP

N

A,

E

P
P

M,

N

ON,

(I)
(I)

PC
N

OP,

I

:xl

B

....

MP

CD
CD
~
CD

:::J

~~

(')

CD
TO·202
(0·40,Ourawatt)

'0
o

P

:::J

d

(Package 37)

8'~B

"SGS" Type
Power DIP

S

BP

TO·220

T

U

(Package 39)

~;
(Package 26)

~

Low Temperature
Glass Hermetic

W

F

F

Z

W

G

W

FM

Flat Pack

~
~~~

TO·92
(Plastic)

G
(Package 38)

v

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I
I
I
I
I

I
I
I
I
I

I
I
I
I
I

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

Table of Contents
Edge Index by Product Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Orderi ng Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
National Product Catalogs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Industry Package Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alpha·Numerical Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii

iii
iv
xi

PRODUCT GUIDES
Military Hybrid Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Military Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Industrial Hybrid Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Industrial Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Commercial Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fixed Voltage Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Variable Voltage Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FET Operational Amplifier Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Linear Cross Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xvii
xviii
xix
xx
xxi
xxii
xxiii
xxiv
xxv
xxvii

VOLTAGE REGULATORS - SECTION 1
LM 100/LM200/LM300 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 103 Regulator Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' ............ .
LM104/LM204 Negative Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM304 Negative Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM105/LM205/LM305 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM305A Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM109/LM209 5-Volt Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM309 5-Volt Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 113 Reference Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM120 Series 3·Terminal Negative Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM320T Series 3-Terminal Negative Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM123/LM223/LM323 3 Amp-5 Volt Positive Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM125/LM225/LM325/LM325A Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 126/LM226/LM326 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 127ILM227 /LM327 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM145/LM245/LM345 Negative 3 Amp Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM340 Series 3-Terminal Positive Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM341 Series 3-Terminal Positive Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM342 Series 3-Terminal Positive Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM376 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '
LM723/LM723C Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM78LXX Series 3-Terminal Positive Regulators .............. : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1-1
1-4
1-7
1-10
1-13
1-16
1-18
1-21
1·24
1-27
1-31
1-38
1-42
1-47
1-52
1-57
1-61
1-68
1·74
1-78
1-81
1-86

OPERATIONAL AMPLIFIERS - SECTION 2
LF156 Monolithic JFET Input Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0001/LH0001C Low Power Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LHOOOl A/LHOOOl AC Micropower Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0002/LH0002C Current Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0003/LH0003C Wide Bandwidth Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0004/LH0004C High Voltage Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0005/LH0005A Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0005C Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0020/LH0020C High Gain Instrumentation Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0021/LH0021C 1.0 Amp Power Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0022/LH0022C High Performance FET Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0023/LH0023C Sample and Hold Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ....... .
LH0024/LH0024C High Slew Rate Operational Amplifier ....................................... .
LH0032/LH0032C Ultra Fast FET Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0033/LH0033C Fast Buffer Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0036G/LH0036CG Instrumentation Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8-1
2-1
2-4
2-7
2-10
2-12
2-15
2-18
2-20
2-22
2-29
2-36
2-44
2-47
2-52
2-63
vii

OPERATIONAL AMPLIFIERS - SECTION 2 (CONTINUED)
LH0041/LH0041C 0.2 Amp Power Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH0042/LH0042C Low Cost FET Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . ..
LH0043iLH0043C Sample and Hold Circuit ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH0045/LH0045C Two Wire Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH0052/LH0052C Precision FET Operational Amplifier. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH0053/LH0053C High Speed Sample and Hold Amplifier . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . ..
LH0061/LH0061C 0.5 Amp Wide Band Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . ..
LH0062/LH0062C High Speed FET Operational Amplifier ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH0063/LH0063C Damn Fast Buffer Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH101 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH201 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH740A/LH740AC FET Input Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . ..
LH2101A/LH2201A/LH2301A Dual High Performance Operational Amplifier,. . . . . . . . . . . . . . . . . . . . . . ..
LH2108/LH2208/LH2308 Dual Super Beta Operational Amplifier .. . . . . . . . . . . . . . . . . . . . . . . . . . ... . . ..
LH2108A/LH2208A/LH2308A Dual Super Beta Operational Amplifier. . . . . . . . . . . . . . . . . . • . . . . . . . . . •.
LH2110/LH2210/LH2310 Dual Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH24250/LH24250C Dual Programmable Micropower Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . ..
LM101 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . _____ .. __ .. _ .... _____ ..............
LM201 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . .
LM101A!LM201A Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM301A Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM102 Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . ..
LM202 Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM302 Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Ll\ll107/LM207 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . ... . . . . . ..
LM307 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . .
LM108/LM208 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . ..
LM308 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ..
LM108A/LM208A/LM308A Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM110/LM210 Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM310 Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM 112/LM212 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . ..
LM312 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . ..
LM216/LM216A/LM316/LM316A Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMl18/LM218 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM318 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM121/LM221/LM321 Precision Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . .
LM121A/LM221A/LM321A Precision Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM124/LM224/LM324 Quad Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM143/LM343 Higi:1 Voltage Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM158/LM258/LM358 Dual Operational Amplifier • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM709 Operational Amplifier. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM709A Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM709C Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM725A/LM725/LM725C Instrumentation Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . ..
LM741/LM741C Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM747/LM747C Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM748/LM748C Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1558/LM1458 Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM2900 Quad Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM2902 Quad Operational Amplifier. . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3900 Quad Amplifier • • . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM4250/LM4250C Programmable Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

2·22
2·29
2-36
2-70
2·29
2-8.1
2-87
2-90
2-52
2-96
2-99
2-102
2·104
2·106
2-106
2·108
2-110
2-112
2·115
2-118
2-123
2-127
2-130
2-133
2-136
2-139
2-142
2-145
2-148
2-151
2-156
2-161
2-164
2-167
2-170
2-175
2-180
2-183
2-190
2-199
2-206
2-214
2-217
2-220
2:223
2-229
2-231
2-235
2·238
2-240
2-242
2-250
2-258

VOLTAGE COMPARATORS/BUFFERS - SECTION 3
LF111/LF2i iiLF3i i Voltage Comparator ............................• ." ....
LH2111/LH2211/LH2311 Dual Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . .'.'
LM106/LM206 Voltage Comparator/Buffer . . . . . . . . . . . . . . . . . . . ,. . . . . . . . . . . . . .
LM306 Voltage Comparator/Buffer. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . .
LM111/LM211 Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM311 Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viii

_.
..
. .
..
. .
. .

... ... ... ...
_ ...........
. .. .... .. ...
.... ... ... ..
.. .... .. ... .
.. ... .. .. . ..

..
_.
..
..
..
..

3-1
3-8
3-10
3-13
3-16
3·21

VOLTAGE COMPARATORS/BUFFERS - SECTION 3 (CONTINUED)
LMl19/LM219 High Speed Dual Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM319 High Speed Dual Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . .
LM139/LM239/LM339 Quad Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •
LM139A/LM239A/LM339A Low Offset Voltage Quad Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •
LM 160/LM260/LM360 High Speed Differential Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •
LM161/LM261/LM361 High Speed Differential Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM529/LM529C High Speed Differential Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM710 Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM710C Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . .
LM711 Dual Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM 711 C Dual Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM760/LM760C High Speed Differential Voltage Comparator . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1514/LM1414 Dual Differential Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2901 Quad Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3302 Quad Comparator . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-26
3-29
3·32
3-38
3·42
3-44
3-44
3-46
3-49
3·52
3-55
3·42
3-58
3-60
3-66

FUNCTIONAL BLOCKS - SECTION 4
LM122/LM222/LM322 Precision Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM555/LM555C Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM556 Dual Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2905/LM3905 Precision Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . .

4·1
4-9
8·3
4-15

CONSUMER CIRCUITS - SECTION 5
LM170/LM270/LM370 AGC/Squelch Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM171/LM271/LM371 Integrated RF/IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMl72/LM272/LM372 AM IF Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM273/LM373 AM/FM/SSB I F Amp/Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM274/LM374 AM/FM/SSB I F Video Amp/Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM175/LM275/LM375 Oscillator and Buffer with TTL Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM377 Dual 2-Watt Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM378 Dual 4·Watt Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM379 Dual 6·Watt Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM380 Audio Power Amplifier . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM381 Low Noise Dual Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM382 Low Noise Dual Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM386 Low Voltage Audio Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM387 Low Noise Dual Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM388 1.5·Watt Audio Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM565/LM565C Phase Locked Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM566/LM566C Voltage Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • .
LM567/LM567C Tone Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM703L Low Power Drain RF/IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM733/LM733C Differential Video Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM746 Color Television Chroma Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . .
LM1303 Stereo Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' .. .
LM1304 FM Multiplex Stereo Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1305 FM Multiplex Stereo Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1307 FM Multiplex Stereo Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1310 Phase Locked Loop FM Stereo Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1351 FM Detector, Limiter and Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1596/LM1496 Balanced Modulator·Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1800 Phase Locked Loop FM Stereo Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1808 Monolithic TV Sound System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1820 AM Radio System . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1829 TV Chroma Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1845 Signal Processing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2111 FM Detector and Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM2113 FM Detector and Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3011 Wide Band Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3028A/LM3028B Differential RF/IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3053 Differential RF /I F Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5-1
5-5
5·11
5·15
5·15
5-23
5-28
5·33
5-37
5-41
5·45
5·48
5·51
5·55
8-2
5·59
5-64
5-67
5·71
5·73
5·77
5·79
5-81
5-81
5·81
5-87
5-89
5·91
5·95
5-97
5·101
5-103
5-106
5-108
5-110
5-112
5-114
5·114

ix

CONSUMER CIRCUITS - SECTION 5 (CONTINUED)
LM3064
lM3065
LM3067
LM3070
LM3071
LM3075
LM3089

Tele~ision Automatic Fine Tunin'g ......... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Television Sound System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . •
Chroma Demodulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . .
Chroma Subcarrie.r Regenerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Television Chroma IF Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
FM Detector/Limiter and Audio Preamplifier .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FM Receiver IF System. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

:
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

..
..
..
..
..
..
..

5.118
5·120
5.122
5·125
5·129
5-131
8-4

TRANSISTOR/DIODE ARRAYS - SECTION 6
LM114/LM114A Matched Dual Monolithic Transistors . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . .
LM115/LM115A Matched Dual Monolithic Transistors . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . .
LM194/LM394 Supermatch Pair. : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM195/LM295/LM395 Power Transistor. . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . . . . . . . . . . . . ..
LM3018/LM3018A Matched Monolithic Transistor Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3019 Diode Array ........................... _ .... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3026 Transistor Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . ..
LM3039 Diode Array ............ , . . . . . . . . . . . . . . • . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . .•
LM3045 Transistor Array ........................ _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • ..
LM3046 Transistor Array. . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3054 Transistor Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3086 Transistor Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3118/LM3118A Matched Monolithic High Voltage Transistor Arrays •...................... _ . _ . ..
LM3145/LM3145A High Voltage Transistor Arrays ....... _ . . . . . . . . . . • . . • . . . . . . . . . . . ... . . . . . . ..
LM3146/LM3146A High Voltage Transistor Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . • . ..

6-1
6-1
6-3
6-7
6-15
6-19
6-22
6-28
6-31
6-31
6-22
6-31
6-36
6-41
6-41

ANALOG SWITCHES - SECTION 7
AH0014/AH0014C DPDT Mas Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
AH0015/AH0015C Quad SPST MaS Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ..
AH0019/AH0019C Dual DPST-TTL/DTL Compatible MaS Analog Switch .................... . . . . . ..
AH0120 Series Analog Switches ....................................•.•...... ; . . . . . . . . . ..
AH0130 Series Analog Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . ..
AH0140 Series Analog Switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
AH0150 Series Analog Switches .•...........•.... ' ............ _ ...••. _ . . . . . . . . . . . . . . . . . ..
AH0160 Series Analog Switches .....................•......... '. . . . . . . . . . . . . . . . . . . . . . . . ..
AH2114/AH2114C DPST Analog Switch ............... _ .. _ .............. ; ......•..........
AH5009 Series Low Cost Analog Current Switches ...... _ . _ . . . . • . . . . . . . . • . . • . . . . . . . . . . . . . . . . ..
AM1000 Silicon N-Channel High Speed Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
AM1001 Silicon N-Channel High Speed Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . ..
AM1002 Silicon N-Channel High Speed Analog Switch .................. _ . . . . ... . . . . . . . . . . . . . . ..
AM2009/AM2009C 6-Channel MaS Multiplex Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . ..
AM3705/AM3705C 8-Channel MaS Analog Multiplexer.....•.......•.•'. . . . . . . . . . . . . . . . . . . . . . . ..
MM450/MM550 MaS Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . ..
MM451/MM551 MaS Analog Switch ........................ _' .................. : . . . . . . . ..
MM452/MM552 MaS Analog Switch . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . _ . . . ...
MM454/MM554 4-Channel Commutator ................ _ ........ : . . . . . . . . . . . . . . . . . . . . . . . ..
MM455/MM555 MaS Analog Switch . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM4504/MM55046-Channel MaS Multiplex Switch ........ _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

7-1
7-1
7-1
7-4
7-4
7-4
7·4
7-4
7-11
7-13
7-20
7-20
7-20
7-22
7·24
7-27
7-27
7-27
7-31
7-27
7-22

NEW PRODUCTS - SECTION 8
PHYSICAL DIMENSIONS/DEFINITIONS OF TERMS - SECTION 9
Difinition of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . ..
Mil Standard 883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ..
Mil Standard 38510. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . ..
Additional Linear Information Available:
Linear Applications Handbook

x

9-1
9-5
9-10
9-10

Alpha-Numerical Index
AH0014/AH0014C DPDT MOS Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AH001S/AH001SC Quad SPST MOS Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . .
AH0019/AH0019C Dual DPST-TTL/DTL Compatible MOS Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . .
AH0120 Series Analog Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AH0130 Series Analog Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AH0140 Series Analog Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AH01S0 Series Analog Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AH0160 Series Analog Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AH2114/AH2114C DPST Analog Switch . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AHS009 Series Low Cost Analog Current Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AM1000 Silicon N-Channel High Speed Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AM1001 Silicon N-Channel High Speed Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AM1002 Silicon N-Channel High Speed Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AM2009/AM2009C 6·Channel MOS Multiplex Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AM370S/ AM370SC 8·Channel MOS Analog Multiplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LFll1 Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF1S6 Monolithic JFET Input Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF211 Voltage Comparator . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LF311 Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0001/LH0001C Low Power Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0001 A/LHOOOl AC Micropower Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0002/LH0002C Current Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0003/LH0003C Wide Bandwidth Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0004/LH0004C High Voltage Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . .
LHOOOS/LHOOOSA Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LHOOOSC Operational Amplifier ........................................................ .
LH0020/LH0020C High Gain Instrumentation Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0021/LH0021C 1.0 Amp Power Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0022/LH0022C High Performance FET Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0023/LH0023C Sample and Hold Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . .
LH0024/LH0024C High Slew Rate Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0032/LH0032C Ultra Fast FET Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0033/LH0033C Fast Buffer Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .
LH0036G/LH0036CG Instrumentation Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0041/LH0041C 0.2 Amp Power Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0042/LH0042C Low Cost FET Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '.' ..
LH0043/LH0043C Sample and Hold Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . .
LH004S/LH004SC Two Wire Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LHOOS2/LHOOS2C Precision FET Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LHOOS3/LHOOS3C High Speed Sample and Hold Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0061/LH0061C O.S Amp Wide Band Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0062/LH0062C High Speed FET Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH0063/LH0063C Damn Fast Buffer Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH101 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH201 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH740AlLH740AC FET Input Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . .
LH21 01 A Dual High Performance Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2108 Dual Super Beta Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . .
LH2108A Dual Super Beta Operational Amplifier . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2110 Dual Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . .
LH2111 Dual Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2201 A Dual High Performance Operational Amplifier . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . .
LH2208 Dual Super Beta Operational Amplifier .............................................. .
LH2208A Dual Super ~eta Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2210 Dual Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2211 Dual Voltage Comparator • . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2301A Dual High Performance Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2308 Dual Super Beta Operational Amplifier . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LH2308A Dual Super Beta Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . .

7·1
7-1
7-1
7-4
7-4
7-4
7-4
7-4
7-11
7-13
7-20
7-20
7-20
7-22
7-24
3-1
8-1
3-1
3-1
2-1
2-4
2-7
2-10
2-12
2-1S
2-18
2-20
2-22
2-29
2-36
2-44
2-47
2-S2
2-63
2-22
2-29
2-36
2-70
2-29
2-81
2-87
2-90
2-S2
2-96
2-99
2-102
2-104
2-106
2-106
2-108
3-8
2-104
2-106
2-106
2-108
3-8
2-104
2-106
2-106

xi

LH2310 Dual Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LH2311 Dual Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . ..
LH24250/LH24250C Dual Programmable Micropower Operational Amplifier . . . . . . . . . . . . . • . . . • . • . • . . ..
LM100 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . .•
LM10l Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM101A Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . .
LM102 Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM103 Regulator. Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .". . ..
LM104 Negative Regulator. . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM105 Voltage Regulator. . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .•
LM106 Voltage Comparator/Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM107 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . ..
LM108 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM108A Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1095-Volt Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . ..
LMll0 Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LMlll Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . .
LMl12 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LMl13 Reference Diode. • . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LMl14/LMl14A Matched Dual Monolithic Transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LMl15/LM115A Matched Dual Monolithic Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LMl18 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . • . .
LMl19 High Speed Dual Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM120 Series 3-Terminal Negative Regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM121 Precision Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM121A Precision Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM122 Precision Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1233 Amp-5 Volt Positive Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM124 Quad Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM125 Voltage Regulator. . . . . . . . . . . . . . . ... . . . . . . . . . • . . . • . . . . . . . . . . . . . . • . . . . . . . . . • . . . ..
LM126 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM 127 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM139 Quad Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM 139A Low Offset Voltage Quad Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .•
LM143 High Voltage Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM145 Negative 3 Amp Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM158 Dual Operational Amplifier .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM160 High Speed Differential Comparator. . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . ..
LM161 High Speed Differential Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •.
LM170 AGC/Squelch Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM171 Integrated RF/IF Amplifier. . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM172 AM IF Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM175 Oscillator and Buffer with TTL Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM194 Supermatched Pair. . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM195 Power Transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM200 Voltage Regulator. . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM201 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM201 A Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM202 Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :
LM204 Negative Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM205 Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . ..
LM206 Voltage Comparator/Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .•
LM207 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . . ..
LM208 Operational Amplifier . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . ..
LM208A Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM209 5-Volt Regulator. . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM210 Voltage Follower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM211 Voltage Comparator . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM212 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM216/LM216A Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM218 Operational Amplifier . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM219 High Speed Dual Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

xii·

2·108
3·8
2-110
1·1
2-112
2-118
2-127
1-4
1·7
1-13
3-10
2-136
2-142
2-148
1-18
2-151
3-16
2-161
1-24
6-1
6-1
2·170
3-26
1·27
2-180
2-183
4-1
1-38
2-190
1-42
1-47
1-52
3·32
3-38
2-199
1-57
2-206
3-42
3-44
5-1
5·5
5-11
5-23
6-3
6-7
1-1
2-115
2·118
2-130
1·7
1-13
3·10
2-136
2·142
2-148
1-18
2·151
3·16
2·161
2-167
2·170
3·26

LM221 Precision Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-180
LM221 A Precision Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-183
LM222 Precision Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
LM223 3 Amp-5 Volt Positive Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·38
LM224 Quad Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-190
LM225 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·42
LM226 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·47
LM227 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-52
LM239 Quad Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
LM239A Low Offset Voltage Quad Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·38
LM245 Negative 3 Amp Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-57
LM258 Dual Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-206
LM260 High Speed Differential Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·42
LM261 High Speed Differential Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·44
LM270 AGC/Squelch Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5·1
LM271 Integrated RF/I F Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
LM272 AM IF Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
LM273 AM/FM/SSB I F Amp/Detector.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5·15
LM274 AM/FM/SSB IF Video Amp/Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5·15
LM275 Oscillator and Buffer with TTL Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5·23
LM295 Power Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6·7
LM300 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·1
LM301 A Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·123
LM302 Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·133
LM304 Negative Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10
LM305 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·13
LM305A Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
LM306 Voltage Comparator/Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·13
LM307 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·139
LM308 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·145
LM308A Operational Amplifier . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·148
LM309 5·Volt Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
LM310 Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·156
LM311 Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·21
LM312 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·164
LM316/LM316A Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·167
LM318 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·175
LM319 High Speed Dual Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·29
LM320T Series 3·Terminal Negative Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·31
LM321 Precision Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·180
LM321 A Precision Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·183
LM322 Precision Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
LM323 3 Amp-5 Volt Positive Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·38
LM324 Quad Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·190
LM325/LM325A Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·42
LM326 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·47
LM327 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·52
LM339 Quad Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·32
LM339A Low Offset Voltage Quad Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·38
LM340 3-Terminal Positive Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·61
LM341 Series 3·Terminal Positive Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·68
LM342 Series 3-Terminal Positive Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·74
LM343 High Voltage Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·199
LM345 Negative 3 Amp Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·57
. LM358 Dual Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-206
LM360 High Speed Differential Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42
LM361 High Speed Differential Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·44
LM370 AGC/Squelch Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
LM371 Integrated RF/IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5·5
LM372 AM I F Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
LM373 AM/FM/SSB I F Amp/Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; 5·15
LM374 AM/FM/SSB I F Video Amp/Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5·15

xiii

LM375 Oscillator and Buffer with TTL Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM376 Voltage Regu lator. . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM377 Dual 2-Watt Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • ..
LM378 Dual 4-Watt Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . ..
LM379 Dual 6·Watt Audio Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . •.
LM380 Audio Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM381 Low Noise Dual Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM382 Low Noise Stereo Preamplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . • . . . . . . . . . . . . ..
LM386 Low Voltage Audio Power Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . •.
LM387 Low Noise Dual Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM388 1.5-Watt Audio Power Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . . . . . . ..
LM394 Supermatched Pair . . . • . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM395 Power Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • • . .
LM529/LM529C High Speed Differential Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM555/LM555C Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .'
LM556 Dual Timer . . . . . . . . . . . . . . . . ',' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM565/LM565C Phase Locked Loop . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . • . . . . • . • . . . • . . . . . . . ..
LM566/LM566C Voltage Controlled Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM567/LM567C Tone Decoder. . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . • . • . • . . • . . . . . . • . . . . . . ..
LM703L Low Power Drain RF/IF Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . ..
LM709 Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . • . . • . . . . . • . . • . . • . ..
LM709A Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . ..
LM709C Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . ..
LM710 Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ..
LM710C Voltage Comparator. . . . . . . . . . . . . . . . . . • . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . • . ..
LM711 Dual Comparator .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM711 C Dual Comparator . . . . • . • . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •.
LM723/LM723C Voltage Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM725A/LM725/LM725C Instrumentation Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . .
LM733/LM733C Differential Video Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . ..
LM741/LM741C Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . .
LM746 Color Television Chroma Demodulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ..
LM747/LM747C Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . ..
LM748/LM748C Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM760/LM760C High Speed Differential Voltage Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1303 Stereo Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . . . . . . . ..
LM1304 FM Multiplex Stereo Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1305 FM Multiplex Stereo Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . .
LM1307 FM Multiplex Stereo Demodulator .....................•........•.•...........•...
LM1310 Phase Locked Loop FM Stereo Demodulator .......................•...........•.••..
LM1351 FM Detector, Limiter and Audio Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1414 Dual Differential Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1458 Dual Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1496 Balanced Modulator-Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1514 Dual Differential Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1558 Dual Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . ..
LM1596 Balanced Modulator-Demodulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM1800 Phase Locked Loop FM Stereo Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM1808 Monolithic TV Sound System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . . . . . . . ..
LM1820 AM Radio System.
LM1829 TV Chroma Processor. . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LMl845 Signal Processing System. . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM2111 FM Detector and Limiter .................. , ... , . . . . . . . . . . . . . . . . . . . . . . . . . . , ... ,.
LM2113 FM Detector and Limiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . ..
LM2900 Quad Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM2901 Quad Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM2902 Quad Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM2905 Precision Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3011 Wide Band Amplifier . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3018/LM3018A Matched Monolithic Transistor Arrays .............•..............•......•• "
LM3019 Diode Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3026 Transistor Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . • . . . . . . . . . . . . . . . . . . . . . • . ..

>..........................................................

xiv

5·23
1· 78
5·28
5·33
5-37
5·41
5-45
5·48
5-51
5-55
8·2
6-3
6-7
3-44
4-9
8·3
5·59
5-64
5-67
5-71
2·214
2-217
2-220
3·46
3-49
3-52
3-55
1·81
2-223
5-73
2-229
5-77
2-231
2-235
3-42
5-79
5-81
5-81
5·81
5-87
5-89
3-58
2-238
5-91
3-58
2-238
5-91
5-95
5-97
5-101
5-103
5-106
5-108
5-110
2-240
3-60
2-242
4-15
5-112
6-15
6-19
6-22

LM3028A/LM30288 Differential RF/IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3039 Diode Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3045 Transistor Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3046 Transistor Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3053 Differential RF/IF Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3054 Transistor Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3064 Television Automatic Fine Tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3065 Television Sound System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3067 Chroma Demodulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3070 Chroma Subcarrier Regenerator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3071 Television Chroma I F Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3075 FM Detector/Limiter and Audio Preamplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3086 Transistor Array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3089 FM Receiver IF System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3118/LM3118A Matched Monolithic High Voltage Transistor Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3145/LM3145A High Voltage Transistor Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LM3146/LM3146A High Voltage Transistor Arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3302 Quad Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3900 Quad Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM3905 Precision Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM4250/LM4250C Programmable Operational Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LM78LXX Series 3·Terminal Positive Regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM450 MaS Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM451 MaS Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM452 MaS Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM454 4·Channel Commutator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM455 MaS Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM550 MaS Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM551 MaS Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM552 MaS Analog Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM554 4·Channel Commutator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM555 MaS Analog Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM4504 6·Channel MaS Multiplex Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MM5504 6·Channel MaS Multiplex Switch . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

5·114
6·28
6·31
6·31
5·114
6·22
5·118
5·120
5·122
5·125
5·129
5·131
6·31
8·4
6·36
6·41
6·41
3·66
2·250
4·15
2·258
1·86
7·27
7·27
7·27
7·31
7·27
7·27
7·27
7·27
7·31
7·27
7·22
7·22

xv

Military Hybrid Op Amp Selection Guide

MILITARY TEMPERATURE RANGE: -55°C to +125°C

Input

Input

Input

Offset

Offset

Voltage

Voltage Drift

Offset
Current

Current

Input

Device

Ma.
(mV)

Typ

(~V/oC)

LHOOOI
LH0001A
LH0002
LH0003

2.5
30

(Note 2)

3

LH0004
LH0005
LH0020

10
2.5

Ma.

Ma.

(nA)

(nA)

(V)

(V)

Common
Mode

Range
(V)

Differential
Input
Voltage
(V)

Supply

Current
Max

±5

±5

±20

±V"

±7

.5

.25

±5

±5

±20

±V"

±7

.5

±100

±5

±22

±Vs

(Note 21

100

30
(Note 11

±50

±5

±20

±V"

±7

30

.25

±15

±5

±45

±V'!>

±7

20
(Note 11

±50

±9

±20

±Vs

±15

90

TO·S

.25

±40

±5

±22

50

TO·5

10

X

103

104

.95

200

2000

15

20

100

30

50
30
(Note 11

30
(Note 11

100

20

50
250

100,000

±V'!>

±3Q

100

300

100,000

±1000

±5

±18

±V"

±30

35

100,000

±lO

±5

±22

±V5

±3Q

35

.01

LH0033

(Note 3)

(Note 3)
100

20

20

LH0062
(Note 11

(Note 3)

TO·5
TO-5

o

TQ·3

TO·5 DIP F.P.

4000

50

400

±100

±9

±18

±V . .

±5

252

TO·5

1000

50

500

±lOD

±5

±18

±V...

±30

200

TO·8

100

1500

.97

.1

±loa

±5

±20

±V...

(Note 3)

220

o

TO·8 8PIN J

100,000

±200

±5

±18

tV . .

±30

35

50,000

±lO

±5

±22

tV ...

±30

35

o
o

TO'5 DIP F.P.

o

TO·5 DIP

(Note 31

.025

.025

±lO

±5

±22

tV ...

±30

25

15

70

±500

±5

t18

tV ...

(Note 4)

100

50,000

15

70

±6

±5

±20

tV ...

±30

80

o

TO·5 DIP

150

6000

±-;100

±5

t18

±V...

(Note 31

500

o

TO·3

.96

.2

Note 1: Specified for AV
Not. 2: Current booster.

(Note 31

=

TO·88 PIN J

50,000

.001 100,000

300
.001

TO·5 alP

103

.0001
100

TO·5 DIP F.P .

o

.02

X

300
.005

.5

.01

TO·S

1.5

50

LH0061

Package Types

.25

10

LH0041

Compensation
Components

(mW)

25,000

3 X 103

25

Max

25,000

25

LH0063

Supply Voltage

Min

100

20

LH0052

(V/~s)

Output
Current
(mA)

100

LH0032

LH0042

Slew Rate
Av = 1
TYP

20

.002

10

Bandwidth
Av = 1
Typ
(MHz)

20

LH0022

4

Gain
Min
(VoltslV)

20

LH0021

LH0024

Voltage

Bias

-10.

TO·3

Note 3: Voltage follower.

Nota 4: Inputs have shunt·dlOde protection; current must be limited to 110 rnA.

~I

L -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~

ap!nf) UO!l-3alas dw'o' dO P!JqAH AJel-!I!1I\I

Military Op Amp Selection Guide

"g:
MILITARY TEMPERATURE RANGE: -55°C:oTA :o+125°C

Input

Device

Input

Offset

Offset

Voltaget
Max
(mV)

Voltage Drift
Max
(~V/oC)

LH10l
LM10l
LM101A
LH2101A (Note 1)
LM102

7.5

Input
Offset
Currentt
Max
(nA)

Max
(rnA)

.5

50k

.5

15

20

100

50k

.5

7.5

50k

.5

7.5

.4

50k

.4

80k

6 typ

12

LMl12

15

1.5

(V/~s)

Output

Current

50k

LMll0
LH2110(Note 11

LM725

Slew Rate
AV = 1
Typ

1500

15

6

Av = 1
Typ
(MHz)

1500

100
20

LM108A
LM2108A (Note 11

LM709

Bandwidth

500

LM108
LH2108 (Note 1)

LM124 (Ouadl

Voltage

Gaint
(Volts!V)

500

15

4

Bias

6

LM107

LMl18

Input

Currentt
Max
(nA)

100

.999

10

.4

.999

10

20

250

50k

30

300

lOOk

500

1500

25k

5

10

15

Differential
Input

Currentt

Range
(V)

Voltage
(V)

Max
(rnA)

Package Types

±3

±22

±12

±3Q

±22

±12

±30

TO·5 F.P.

±3

±22

±12

±30

TO·5 DIP F.P.

0

TO·5F.P.

±18

±lO

±3

±22

±12

±3Q

.3

±2

±20

±14

(Note 21

.6

TO·5 DIP F.P.

.3

±2

±20

±14

(Note 21

.6

TO·5 DIP F.P.

5.5

±5

±18

±1O

±2

±20

±14

(Note 21

50 mint

±5

±18

±11.5

(Note 21

321±151

V+ -1.5

32

±18

±8

±5

5.5

5 (±1.51

.3

±9

40

200

.005

±3

±22

±13.51

500

1500

50k

.5

±3

±22

±12

TO·5
TO·5 DIP F.P.

.2

40

.5

c~;::~~:~~sn

±3

LM741

1000

Supply

Common
Mode

±12

30

50k

50

Supply Voltage
.Min
Max
Typ
(V)
(V)

5.5

0

TO·5 alP

.6

0

TO·5 DIP F.P.
TO·5 DIP F.P.

0

DIP F.P.
TO·5

±5

3.5

TO·5 F.P.

±3Q

2.9

TO·5 DIP F.P.

TO·5 DIP F.P.

LM747

500

1500

50k

.5

±3

±22

±12

±30

5.6

LM748

500

1500

50k

.5

±3

±22

±12

±3Q

2.9

TO·5

LM15581Duaii

500

1500

50k

.5

±3

±22

±12

±30

2.9

TO·5

15

lOOk

±1

±18

±12

±15

.03 set

TO·5

LM4250
LH24250 INote 11

.25

.16

.75

-Not specIfied.

Note 1: Dual version of device.

tGuaranteed at +25°C.

Note 2: Inputs have shunt-diode protection; current must be limited.

Industrial Hybrid Op Amp Selection Guide

INDUSTRIAL TEMPERATURE RANGE: -25'C to +S5'C

Device

Input
Offset
Voltage

Max
(mV)

30

LHOOO5C

Bias

(IIJi~c)

Max

Max

(nA)

(nA)

60

(Note 2)

LH0020C

LH0033C

20

10

LH0062C

15

LH0063C

50

~'~I

.95
(Note 2)
15,000
30,000

100

2000

10

200

500

50,000

200

500

100,000

.005

.025

75,000

5xl03

22><10 3

3500

25

.5

.02

(Note 3)

(Note 3)

10

Slew Rate

Av

=1

.25

.96

SupplV Voltage
Min
Max

Common
Mode
Range
(V)

(V)

(V)

±5

±5

±20

±Vs

±100

±5

±22

±Vs

±50

±5

±20

±Vs

(rnA)

Differential
Input

Supply
Current

Voltage

Max

(V)

(mW)

±7

1.3

50

100

30
(Note 1)

30
(Note 1)

.25

±15

±5

±45

±Vs

'7

30
(Note 11

20
(Note 1)

±50

±9

±20

±Vs

±15

.25

700

Output
Current

Compensation Package Types
Components

TO·5 DIP F.P.

100

(Note 2)

±7

TO·5 DIP

30

TO·5
TO·5

1.5

TO·5

90

±100

±5

±18

±Vs

±30

50

TO·5

±1000

±5

ilB

±Vs

±30

40

TO·3

±10

±5

±22

±Vs

±30

24

50

400

±lOo

±9

±18

±Vs

±5

252

TO·5

50

500

±100

±5

±20

±Vs

±30

220

TO·S

100

1500

TO·5 DIP F.P.

o

±100

±5

±20

±Vs

(Note 3)

240

100,000

±200

±5

±18

40

TO·S SPIN J

(Note 3)

TO·S8 PIN J

±Vs

±30

.01

.05

25,000

±10

±5

±22

iVs

±30

2S

TO·5 DIP F.P.

.0002

.005

75,000

±10

±5

±22

±Vs

±30

30

TO·5 DIP

200
.002

(Note 3)

.15
500

200
10

Av = 1

.25

104

(Note 3)

.065

.2

Note 1: SpeCified for AV '" -10,
Nota 2: Current booster.

X

(VIlIS)

2000

LHOO52C
LH0061C

(MHz)

200

200

20

(VolulV)

120

LH0041C
LH0042C

Typ

25

25
15

Typ

200

10 x 103

LH0022C

LH032C

Bandwidth

Min

45

LH0021C

LH0024C

Voltage
Gain

25

1.5
10

Input

Current

LH0003C
LH0004C

Input

Offset
Current

3

LHOO01AC
LH0002C

Input

Offset
Voltage Drift

25,000

15

70

±500

±5

±18

±Vs

(Note 41

150

TO·J

25,000

15

70

±6

±5

±20

±Vs

±30

120

TO·5 DIP

150

6000

±400

±5

±18

±Vs

(Note 3)

500

TO·J

.96
(Note 3)

Note 3: Voltage follower.

Note 4: Inputs have shunt-diode protection; current must be limited to ±10 rnA.

____________________________________________________________________________________________________________

ap!n9 UO!:J.:Jalas

~

dw" dO P!JqAH IB!J:J.snpUI

Industrial Op Amp Selection Guide
~

INDUSTRIAL TEMPERATURE RANGE: -25°C:S TA

Input
Offset
Device

Voltaget
Max
(mV)

LM201A
LH2201A (Note 1)

Input

Offset

Bias

Currentt

Currentt

Gaint

Max
(nA)

Max
(nA)

(VoltslV)

(/lV/OC)

15

LM202

10

15typ

LM207

2

20

LM208
LH2208 (Note 1)

2

15

LM208A
LH2208A (Note 1)
LM210
LH2210 (Note 1)

LM216

Voltage

Bandwidth
Av = 1
Typ
(MHz)

Slew Rate
AV = 1
Typ
(VI/ls)

20

75

20

75

25k

25k

.5

2

50k
80k

15

.2

.5

.2

4

LM212

Input

Input

Offset
Voltage Drift
Max

.999

3
15

.2

.999

Output
Current

Max
(rnA)

Supply Voltage
Min
Max
(V)
Typ
(V)

±3

.5
10

20

10

:s +85°C

±22

Common

Mode
Range
(V)

Supply

Differential
Input

CUrrentt

Compensation

Voltage
(V)

Max
(rnA)

Components

±30

3
5.5

0

.TO·5

3

0

TO·5 DIP F .P.

±12

Package Types

TO·5 DIP F.P.

±12

±18

±10

±3

±22

±12

±30

.3

±2

±20

±14

(Note 21

.4

TO·5 DIP F.P.

.3

±2

±20

±14

(Note 2)

.4

TO·5 DIP F.P.

5

±5

±18

±10

5.5

0

TO·5 DIP F.P.

50k

.3

±2

±20

±14

(Note 21

.6

0

TO·5 DIP F.P.

30

10

.05

.15

10k

.3

±5

±20

±13

(Note 2)

.8

0

TO·5 DIP F.P.

LM216A

3

.015

.05

20k

.3

±5

±20

±13

(Note 2)

.6

0

TO·5 DIP F.P.

LM218

4

±11.5

(Note 2)

7.5

0

TO·5 DIP F.P.

LM224 (Quad)
LM7258
LM2900 (Quad)

1.5

10

50

500

50k

50

500

lOOk

20

100

500k

200

2.8k

50 mint

15

±5
40

.5
2.5

3 (±1.51

.005
20

18

±18
30 (±15)

±3

±22

4

36

V+ -1.5'
±13.5

*Not specified.

Note 1: Dual version of device.

tGuaranteed at +25°C.

Note 2: Inputs have shunt-diode protection; current must be limited.

32
±5

0

DIP

4

4

TO·5 DIP

10

0

DIP

Commercial Op Amp Selection Guide

COMMERCIAL TEMPERATURE RANGE; O"C:"=TA :,,=+70'C

Device

Input

Input

Offset
Voltaget

Offset

Offset

Voltage Drift

Max
(mVI

Max
{JJV,'CI

Currentt
Max
(nAI

Input
Bias
Currentt
Max
(nAI

Input

Voltage
Gaint
(VoltslVl

Slew Rate
Av =1
Typ
(V/psl

Output

Supply Voltage

Common

Current

Min

Max

Mode

Max
(mAl

Typ
(VI

·Typ
(VI

Range
(VI

Differential
Input

Voltage
(VI

7.5

10

500

1500

20k

.5

±3

±22

±12

±30

LM201

7.5

10

500

1500

20k

.5

±3

±22

±l2

±30

LM301A
LH230lA (Note 11

7.5

30

50

250

25k

.5

±3

±tB

±12

,30

50

250

20 tvp

15

LM307

7.5

30

LM30S
LM230S (Note II

7.5

30

LM30SA
LM230SA (Note

LM312
LM316

30

7.5
7.5

LM316A
LM31S

12

LM324 (Quadl
LM709C

7.5

LM725C

2.5

12

Components

o

TO·5 F.P.
TO·5 F.P.

3

TO·5 DIP

o

TO·5

o

TO·5 DIP F.P.

±12

±tS

±lO

±3

±1B

±l2

±30

25k

.3

±2

±tB

±14

(Note 21

.8

TO,5 DIP F.P.

SOk

.3

±2

±20

±14

(Note 21

.8

TO·5 DIP F.P.

±5

±tB

±lO

10

10

20

30

5.5

5.5

25k

.3

±2

±18

±14

{Note 21

.S

.05

.15

20k

.3

±5

±20

±13

(Note 21

.S

.015

.05

40k

.3

±5

±20

±13

(Note 21

.6

50 mm

±5

±tB

±11.5

(Note 21

30

Compensation Package Types

.5

.999

10

Supply
Currentt
Max
(mAl

25k

.99S5

.5

11

LM310
LH2310 (Note II

200

600

25k

50

500

lOOk

500

1500

25k

15

40

31±1.51

30 (±151

V+ - 1.5

.3

±9

±1B

±S

o

TO·5 DIP F.P.

o
o

TO·5 DIP F.P.
TO·5 DIP F.P.
TO·5 DIP

10

32
±5

TO·5 DIP F.P.

DIP

6.6

TO·5 DIP

is

35

125

250k

.005

±3

±22

±13.5

LM741C

200

500

20k

.5

±3

±1B

±12

±30

2.9

o

TO·5 DIP

LM747C

200

500

20k

.5

±3

±tB

±l2

±30

5.6

o

TO·5 DIP F.P.

LM74SC

200

500

50k

.5

±3

±lS

±12

±30

2.9

LM145S (Duall

200

500

20k

.5

±3

±tS

±12

±30

2.9

200

LM3900 (Quadl
LM4250C
LH24250C (Note 11

10

30

2.Sk
75k

·Not specified.

tGuaranteed at +25°C.
~.

Av =1
Typ
(MHzl

LH201

LM302

~

Bandwidth

.5

2.5
.25

10

20
.16

4 (±21

.75

±1

36 (±181
±18

TO·5 DIP

TO·5 DIP

o

TO·5 DIP

o

TO·5 DIP

10
±12

±t5

.03 set

DIP

Note 1: Dual version of deVice.
Note 2: Inputs have shunt-diode protection; current must be limited.

LI_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- - '

9p!n~

UOrl-:l919S dw" dO le!:lJ9WWOO

Fixed Voltage Regulator Guide

~:
Product
Type No.

Input

Output

Voltage

Voltage

(V)

(V)

Min

Max

Typ

Load
Regulation
(mV)
Typ

LM109K*

35

50

LM209K*

35

50

LM309K*

35

50

Line
Regulation
(mV)
Typ

4

Ripple
Rejection

Long Term
Stability

(dB)

(mV)
Max

Typ

Output
Noise Voltage
(PV)
Typ

Operating
Quiescent

Current

I

Temperature

Range

re)

(mA)

Min

Max

75

10

40

-55

125

75

10

40

-25

85

75

20

40

o

70

6

LM123K

7.5

20

50

75

10

40

6

-55

125

LM223K

7.5

20

50

4

75

10

40

6

-25

85

LM323K

7.5

20

50

4

75

20

40

6

70

100 max

100 max

70

20

40

.~

LM340-06

8

35

120 max

120 max

65

24

45

~

LM340-08

10

35

160 max

160 max

62

32

52

LM340-12

14

35

12

240 max

240 max

61

48

75

6

LM340-15

17

35

15

300 max

300 max

60

60

90

6

LM34Q-18

20

35

18

360 max

360 max

59

72

110

6

LM340-24

26

40

24

480 max

480 max

56

96

170

6

o
o
o
o
o
o
o
o

i

1a: LM340-05

35

~

6

6

70
70
70
70
70
70

--£

-25

-5

50

10

67

50

150

-55

1~

LM220K-5*

-6

-25

-5

50

10

67

50

150

-25

M

LM320K-5*

--£

-25

-5

50

10

67

50

150

o

m

LM 120K-5.2*

--£.2

-25

-5.2

50

10

67

50

150

-55

1~

~ LM220K-5_2*

-6.2

-25

-5.2

50

.10

67

50

150

-25

M

1
LM320K-5.2*
a:

-6.2

-25

-5.2

50

10

67

50

150

o

m

-55

1~

-25

M

o

m

-55

1~

= LM120K-12,j1-

-13

-30

-12

30

80

lW

400

LM220K-12*

-13

-30

-12

30

80

lW

400

LM320K-12*

-13

-30

-12

30

80

lW

400

LM120K-15*

-16

-30

-15

30

80

150

400

LM220K-15*

-16

-30

-15

30

80

150

400

-25

M

LM320K-15*

-16

-30

-15

30

80

150

400

o

m

i

4

4

-Ratings are for TO·3(K) package; device also available in TQ..s(Hl package.

tMax output current depends on package type, heat sinking, and input voltage differential.

>1
>1
>1

Package Type

TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3

3

TO-3
TO-3

>1
>1
>1
>1
>1
>1

TO-3, TO-220
TO-3, TO-220
TO-3, TO-220
TO-3, TO-nO
TO-3, TO-220
TO-3, TO-220

.8

70

LM120K-5*

~

Output
Currentt
(Amp.)

>1
>1
>1
>1
>1
>1
>1
>1
>1
>1
>1
>1

TO-3, To-no

TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5
TO-3, TO-5

Variable Voltage Regulator Guide

Specifications Are Worst Case Over Operating Temperature Unless Noted.

Input Voltage
Product
Type No.

Range

~ It

g

:e!! .$!
~~~
II:

fU

0.;

'if~
z> ii'
II:

LM100
LM200
LM300
LM105
LM205
LM305
LM305A
LM376
LM723
LM723C

LM104
LM204
LM304
LM723
LM723C

Ma.

Range
(VI
Ma.
Min

40
40
30
50
50
40
50
40
40
40

2.0
2.0
2.0
4.5
4.5
4.5
4.5
5.0
2.0
2.0

(VI

Min

8.5
8.5
8.5
8.5
8.5
8.5
8.5
9.0
9.5
9.5

-50
-50
-40
-40
-40

Output Voltage

-8
-8
-8
-9.5
-9.5

-40
-40
-30
-37
-37

30
30
20
40
40
30
40
37
37
37

-15 mV
-15mV
-15 mV
-2
-2

Load Regulation Line Regulation
(%1
IL (%VoUT/llVIN I
(mAl
Typ.
Typ.

0.1
0.1
0.1
0.02
0.02
0.02
0.02
0.2 max
0.03
0.03

12
12
12
12
12
12
45
25
50
50

0.05
0.05
0.05
0.015
0.015
0.015
0.015

0.01
0.01
0.01
0.03
0.03

20
20
20
50
50

Note: The maximum power dissipation for the LM100, LM105 and LM104 regulators IS
BOO mW. For most cases of the LM100. LM105 and the LM104, output current will
be limited by maximum junction temperature and thermal resistance as indicated.

Ripple Rejection
(%1
Typ.

Ma.

Stability
(%1

0.01
0.01

30
30
20
30
30
30
30
30
38
38

0.015%/'C
0.015%tC

.05
.05
.05
0.01
0.01

0.01
0.01
0.01
0.02
0.02

50
50
40
38
38

1.0
1.0
1.0
0.015%tC
O.015%/ o C

0.03 max

Package

TO-S

TO·3

~
~

Min

Temperature

0.02
0.02
0.02
0.003
0.003
0.003
0.003
0.1 max
0.02
0.02

Flat Pack
Solid Kovar TO·S

=,

Input·Output
Differential
(VI

Thermal ReSistance
Junction to Air

1.0
1.0
2.0
1.0
1.0
1.0
1.0

Thermal ReSistance
JunctIOn to Case

150 o C/W
lSS Q C/W Mounted

4SoC/W

1500 C!W

lSoCf!N
LS"CfW

3S"C/W

Quiescent
Current

{mAl
Typ.

1.0
1.0
1.0
0.8
0.8
0.8
0.8
2.5

Operating
Temperature
Range
('CI

Min

-55
-25
-55
-25

a
max

1.3

0
-55

1.3

3.6
3.6
3.6
1.3

1.3

-55
-25
0
-55

Output Current(mAl

Package Type

Ma.

125
85
70
125
85
70
70
70
125
70

20
20
20
20
20
20
45
25
150
150

TO·5,
TO-5,
TO·5,
TO·5,
TO·5,
TO-5,
TO·5

125
85
70
125
70

20
20
20
150
150

TO·5,
TO·5,
TO-5,
TO-5,

Flat
Flat
Flat
Flat
Flat
Flat

Pack
Pack
Pack
Pack
Pack
Pack

Molded DIP

TO-5, Cavity DIP
TO·5, Cavity & Molded DIP

Flat Pack
Frat Pack
Flat Pack
Cavity & MOlded DIP
TO-5, Cavity & Molded DIP

§Thc output currents given, as well as the load regulation for the LM100, lMl05,
LM723 and LM104 family of reguiators can be Increased by the addition of external
tranSistors The Increase Will be roughly equal to the composite current gam of the

added transistors

LI_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~

ap!nD JO:J,eln6aH a6e:J,IOA alqepeA

Voltage Comparator Guide
><
><

<'
Supply
Device

Temperature
Range·

DTl/TTL
Fanout

Input Bias

Input Offset

Current
(+2SoCI

Current

Voltage

1+2S0C)

(+2S C)

M""

M"

M"

Voltage

TV.
lVolts)

"'AI

(pAl

Input Offset
0

(mV)

Response
Timet
TV.
(ns)

Voltage
Gain

Package Type

+ 12

20

40 max

'Ok

TO-5 F.P.

-3

20

40 max

40k

TO-5 F.P.

To -12

25

40 max

40k

Ta-s F.P.

V+=

LM106

Mllrtary

10

LM206

Industrial

10

=

LM306

Commercial

10

lMl',
lH21111Note 1)

Military

±15

04

.7

200

200k

TO·S DIP F.P.

LM211
LH2211 (Note 1)

Industrial

To +5

.0'

.7

200

200k

TO-S DIP F.P.

LM311
LH2311 (Note 1)

Commercial

200

200k

TO-S DIP F.P.

40k

TO-S DIP F.P.

,25

AndGND

.06

lM119

MIlitary

2 (each side)

±lS

.5

.075

80

LM219

Industnal

2 (each side)

To +5

,5

.075

80

40k

TO-S DIP F.P.

LM319

Commercia)

2 (each side)

And GND

80

40k

TO-S DIP

lM139

Military

.025

1.3ps

200k

DIP F.P.

lM239

Industrial

To ±18

25

050

1.3ps

200k

DIP

Or From

25

050

1.3/-15

200k

DIP

025

1.3/-1s

200k

DIP F.P.

.050

1.3ps

200k

DIP

050

1.3J.ls

200k

01.

lM339

CommerCial

lM139A

Military

lM239A

Industnal

±1

.2
To +36

.25
.25

And GND

lM339A

CommerCial

LMI60

Military

±4.5

10

16

3k

TO·S DIP F.P.

lM260

Industrial

To

10

16

3k

TO-501P

LM360

Commercial

±6.5

15

16

3k

TO-5 DIP

lM161

Military

±5

10

12

3k

TO-5 DIP F.P.

12

3k

TO-S DIP

3k

TO·S DIP

LM261

Industrial

To ±15

10

LM361

CommerCial

And +5

15

12

::i

LM710

Military

y+", +12

20

40

1750

LM710C

Commercial

V-" -6

25

40

1500

TO·S DIP

LM711

MIlitary

V+= + 12

75

10

40

1500

TO-5

LM711C

Commercial

y-", -6

100

15

40

1500

TO-5 DIP

lM1514

Military

Y+=+14

20

30

1250

DIP

LM1414

Commercial

-7

25

30

1000

DIP

=

"Mllnary -55"Cto +125"C
Industnal -2S"C to +SS"C
Comme,clal O°C to +70°C

Comments

TV.

Single comparator with strobe, high
speed and sensitivity, large fanout.

Single, with strobe, will work from
Single supply, low bias current.

High speed dual comparator.

Quad comparator designed for single
supply operatIOn; input common
mode range inc!udesground.

low offset voltage Quad comparator
with DTLlTTllogic levels.

Very high speed, outputs compatible
with OTlffilloglc levels.

Very high speed, with individual
strobes, DTL/TTL compatible.

TO·5
Single,dlfferential in, single output.

3.5

tResponse time IS specified for 100 mV step Input With 5 mV overdnve
Note 1: Duaive,slonofdevlCi!

Dual differential, common output,
individual strobes.
Dual LM710 With separate strobes,
individual outputs.

f 1...1

DEVICE NO.

PACKAGE

NATIONAL
PIN FOR PIN
EQUIVALENT

NEAREST
NATIONAL
EQUIVALENT

Analog Devices
A0503J, K
AD503S
AD506J, K, L
AD506S
AD511
AD513J, K
A0513S
AD514J, K, L
A0514S
A0516J, K
AD516S
AD523J, K, L
A0528J, K
AD528S
A0540J. K
A0540S
ADP517
M501A, B, C
40J, K
41J, K. L
42J. K, L
43J
44J, K
45J, K
142A, B, C
146J, K
149J, K

LH0042CH
LH0042H
LH0022CH
LH0022H
LH0042
LH0042CH
LH0042H
LH0042CH
LH0042H
LH0022CH
LHOO22H
LH0052CH
LH0062CH
LH0062H
LH0042CH
LH0042H
LH0042CH
LH0022CH
LH0042CH
LH0052CH
LH0052CH
LH0022CH
LH0062CH
LH0062CH
LH0042CH
LH0022CH
LH0062CH

LH0042CH
LH0042CH
LH0022H
LH0022CH

MOD
MOD
TO-8
TO-8

Burr·Brown
3521L
3542J
3542S
3542S0
3506J
3508J

3348/03
3349/03
3350103
3503A
3503B
3503C
3503R
3503S
3503T

PACKAGE

.1'''''\111..,

'-'IV:»:»

nCICICln... C

NATIONAL
PIN FOR PIN
EQUIVALENT

UUIUC

NEAREST
NATIONAL
EQUIVALENT

Datel
TO-5
TO-5
TO-5
TO-5
MOD
TO·5
TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
MOD
TO-8
TO-8
MOD
MOD
MOO
MOO
MOO
MOD
MOD
MOD

Bell and Howell
20-008
20-108
20-208
20-248

DEVICE NO.

VI-'

TO-99
TO-99
TO-99
TO-99
TO-99
TO-99
OIL
OIL
OIL
TO-99
TO-99
TO-99
TO-99
TO-99
TO-99

LH0022CH
LH0042CH
LHOO42H
LH0042H/883
LH0022CH
LH0062CH
LHOO22CD
LH0022CO
LH0042CO
LH0042CH
LH0042H
LH0022CH
LH0022H
LH0052CH
LH0052H

AM405-2
AM406-2
AM100A
AM100B
AM102A
AM102B

TO-99
TO·99
MOD
MOD
MOD
MOD

LH0042CH
LH0042CH

TO-5

LH740AH

TO-5

LH740ACH

TO-8

LH0032CG

TO-99
TO-99
TO-99
TO-99
TO-99
TO-99
TO-99
TO-99

LH0042H
LHOO42CH
LH0022H
LH0042CH
LH0062H
LH0062CH
LH0062H
LH0062CH

LH0062H
LH0062CH
LH0062H
LH0062CH

Fairchild
U5B7740312
(I'A740)
U5B7740393
(I'A740C)

Halex
XH0032

Harris
HA2050
HA2055
HA2050A
HA2055A
HA2060
HA2065
HA2060A
HA2065A

Intech
A-l00
A-101
A-102
A-l03
A-122
A-123
A-125
A-130
A-13l
A-136
A-137
A-148A, B, C
A-1026
A-l027

LH0042
LH0042C
LH0022CH
LH0022CH
LH0052CH
LH0052CH
LH0062CH
LH0062CH
LH0062CH
LH0062CH
LH0062CH
LH0042CH
LH0022CH
LH0022CH

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOO

Intersil
ICH8500
ICH8500A
ICHB500C
ICH8007C
ICHB007M
ICLB007AM
ICLB007AC

TO-5
TO-5
TO-5
TO-5
TO-5
TO-5
TO-S

LH0052H
LH0052H
LH0052CH
LH0042CH
LH0042H
LH0042H
LH0042CH

><

:;j

9p!n~ 90U9J9:1-9H SSOJ:)

dw'o' dO .13::1

FET Op Amp Cross Reference Guide

~

DEVICE NO.

PACKAGE

NATIONAL
PIN FOR PIN
EQUIVALENT

NEAREST
NATIONAL
EQUIVALENT

MOD
MOD
MOD
MOD

LH0062CH
LH0062CH
LH0042CH
LH0042CH

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

LH0032CG
LH0032CG
LH0032G
LH0032G
LH0062CH
LH0062CH
LH0062CH
LH0062CH
LH0062CH
LH0062CH
LHOOS2CH
LH0032CH
LHOOS2CH

Optical Electronics, Inc.
(DEll
9712
9725
9731
9738
9718
9726
9727
9715
9721
9723
9733
9720
9729

Signetics
SUS36T
NES36T
SU740T
NE740T

PACKAGE

NATIONAL
PIN FOR PIN
EQUIVALENT

NEAREST
NATIONAL
EOUIVALENT

Teledyne Philbrick Nexus (Con't.)

'ntronies
FA530
FA531
FA540
FA541

DEVICE NO.

TO·S
TO·S
TO·S
TO·S

LH0042CH
LH0042CH
LH740ACH
LH740ACH

1003
100301
1006
1008
1009
100901
100902
1011
101101
101102
1021
1023
102301
102S
1408
140801
140802
140810
1402
140201
140202
1407
140701
1414
141410
1421

MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
TO·8
TO·8
TO-8
TO-8
TO-8
TO-8
MOD
DIP
TO·S

LH0052CH
LH0052CH
LH0042CH
LH0042CH
LH0042CH
LH0042CH
LH0042CH
LH0062CH
LH0062CH
LH0062CH
LH0022CH
LHOOS2CH
LHOOS2CH
LH0032CG
LHOOS2CH
LHOOS2CH
LHOOS2CH
LHOOS2CH
LH0042CH
LH0042CH
LH0042CH
LH0042CH
LH0042CH
LH0062CH
LH0062CH
LH0042CH

MOD
TO·B
OIL
OIL
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD
MOD

LH0042CH
LH0042CH
LH0042CH
LH0042CH
LH0022CH
LH0042CH
LH0042CH
LHOO42CH
LH0062CH
LHOO22CH
LHOOS2CH
LH0022CH
LH0042CH
LH0042CH
LH0062CH

Zeltex
Siliconix
L120A
L120C
L137AA
L137CA

TO·S
TO·S
TO·5
TO·5

LH0042H
LH0042CH
LH0022H
LH0022CH

MOD
MOD
MOD
MOD
MOD
TO-8
MOD

LH0042CH
LH0042CH
LH0022CH
LHOOS2CH
LH0042CH
LH0042CH
LH0042CH

Teledyne Philbrick Nexus
OFT
OFT·2
OFT·2A
OFT·2B
OFT·5
025AH
PP2SA

ZABOI/MI/M2/M3
ZAB01Tl
ZAB01Dl
ZABOIEI
ZAB02Ml,M2
ZAB03Ml.
ZAS04Ml.M2
ZA903Ml,M2
ZA910M
133
133·03
133-04
134
1340
13S

Texas Instruments Linear Cross Reference Guide
TEXAS
INSTRUMENTS
DEVICE
NUMBER

SN5510F
SN5510L
SN5511 F
SN5511 L
SN7510F
SN7510L
SN7511 L
SN52101AJ
SN52101AL
SN52101AZ
SN52107J
SN52107L
SN52107Z
SN52108J
SN52108AJ
SN52514J
SN52514N
SN52555L
SN52558L
SN52702AF
SN52702AL
SN52702AN
SN52702F
SN52702L
SN52702N
SN52702Z
SN52709AF
SN52709AL
SN52709AN
SN52709F
SN52709L
SN52709N
SN52710J
SN52710L
SN52710N
SN52710S
SN52710U
SN52711J
SN52711L
SN52711N

NATIONAL
PIN·FOR·PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM733H
LM733H
LM733H
LM733H
LM733CH
LM733CH
LM733CH
LM101AD
LM101AH
LM101AF
LM107D
LM107H
LM107F
LM108D
LM108AD
LM1514J
LM1514N
LM555H
LM1558H
LM101AF
LM101AH
LM301AN
LM101AF
LM101AH
LM301AN
LM101AF
LM709AH
LM709AH
LM709AH
LM709H
LM709H
LM709H
LM710H
LM710H
LM710H
LM710H
LM710H
LM711H
LM711H
LM711H

TEXAS
INSTRUMENTS
DEVICE
NUMBER

SN52711S
SN52723L
SN52733L
SN52733N
SN52741J
SN52741 L
SN52741N
SN52741Z
SN52747J
SN52747Z
SN52748J
SN52748L
SN52748U
SN52748Z
SN52770J
SN52770L
SN52770Z
SN52771J
SN52771 L
SN52771 Z
SN55709J
SN56514L
SN72301AJ
SN72301AL
SN72301AN
SN72301AP
SN72301AZ
SN72307J
SN72307L
SN72307N
SN72307P
SN72307Z
SN72308L
SN72514J
SN72514N
SN72555L
SN72555P
SN72558L
SN72558P
SN72702F

NATIONAL
PIN·FOR·PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUivALENT

LM711H
LM723H
LM733H
LM733N
LM741D
LM741 H
LM741CN·14
LM741 F
LM747D
LM747F
LM748H
LM748H
LM748CN
LM748H
LM108D
LM108H
LM108F
LMl12D
LM112H
LMl12F
LM709CN
LM1496H
LM301AD
LM301AH
LM301AN
LM301AN
LM301AF
LM307D
LM307H
LM307N
LM307H
LM307F
LM308
LM1414J
LM1414N
LM555CH
LM555CN
LM1458H
LM1458N
LM301AF

TEXAS
INSTRUMENTS
DEVICE
NUMBER

SN72702L
SN72702N
SN72709L
SN72709N
SN72709P
SN72709S
SN72710J
SN72710L
SN72710N
SN72710S
SN72711J
SN72711 L
SN72711N
SN72811S
SN72720N
SN72733L
SN72733N
SN72741J
SN72741 L
SN72741N
SN72741P
SN72741Z
SN72747J
SN72747N
SN72748N
SN72748P
SN72748J
SN72748L
SN72748Z
SN72770J
SN72770L
SN72770N
SN72770P
SN72770Z
SN72771 L
SN72771N
SN72771P
SN72771Z
SN76514L
SN76514N

NATIONAL
PIN·FOR·PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM301AH
LM301AN
LM709CH
LM709CN
LM709CN
LM709CH
LM710CN
LM710CH
LM710CN
LM710CH
LM711CN
LM711CH
LM711CN
LM711CH
LM1414N
LM733CH
LM733CN
LM741CD
LM741CH
LM741CN·14
LM741CN
LM741CF
LM747CD
LM747CN
LM748CN
LM748CN
LM748CN
LM748CH
LM748H
LM308D
LM308H
LM308H
LM308H
LM308F
LM312H
LM312D
LM312D
LM312F
LM1496H
LM1496H

~
ap!nE) aouaJa!aij SSOJO Jeau!l s:j.uawnJ:j.sul sexaJ.

Motorola Linear Cross Reference Guide

~

NATIONAL
PIN-FOR-PIN
EQUIVALENT

MOTOROLA
OEVICE
NUMBER

MC1303L
MCI304P
MC1305P
MCI306P
MC1307P
MC1310P
MC1326P
MC1326PQ
MC1328G
MCI328P
MC1328PQ
MCI339P
MCI350P
MC1351P
MCI357P
MC1357PQ
MCI358P
MC1358PQ
MCI364G
MCI364P
MC1370P
MC1371P
MC1375P
MCI380P
MC1410G
MC1414F
MC1414L
MC1414P
MC1420G
MC1430F
MCI430G
MC1430P
MC1431F
MC1431G
MC1431P
MCI433F
MCI433G
MC1433L
MC1435F
MC1435G
MC1435L
MC1436CG
MCI436G
MCI437L
MCI437P
MC1438R
MCI439G
MCI439L
MC1439Pl
MC1439P2
MCI454G
MC1455G
MC1455Pl
MC1456CG
MC1456G
MC1458CG
MC14S8CL
MCI458CPl

NATIONAL
FUNCTIONAL
EQUIVALENT

LM1303N
LMI304N
LMI305N
LM380N
LM1307N
LM1310N
LM3067N
LM3067N
LM746N
LM746N
LM746N
LM382N
LM703L
LM1351N
LM2111N
LM2111N
LM3065N
LM3065N
LM3064H
LM3064N
LM3070N
LM3071N
LM3075N
LM380N
LM733CH
LM1414N
LM1414J

LM1414N
LM733CH
LM301AF
LM301AH
LM301AN
LM301AF
LM301AH
LM301AN
LM301AF
LM301AH
LM301AN
LMI303N
LM1303N
LM1303N
LM1436H
LM1436H
LM1458N-14
LM1458N-14
LHOOO2H
LM301AH
LM301AH
LM218H
LM301AH
LM380H
LM555CH
LM555N
LM308H
LM308H
LMI458H
LM1458N-14
LM1458N
-_.-

-----

MOTOROLA
OEVICE
NUMBER

MC1458CP2
MCI458G
MC1458L
MC1458Pl
MC1458P2
MC1460G
MCI460R
MC1461G
MC1461R
MC1463G
MC1463R
MC1466L
MC1469G
MCI469R
MC1488L
MCI489AL
MCI489L
MC1496G
MC1496L
MCI509F
MC1510F
MC1510G
MC1514F
MC1514L
MC1519G
MC1520F
MC1520G
MC1530F
MC1530G
MC1531F
MC1531G
MC1533F
MC1533G
MC1533L
MC1535F
MC1535G
MC1536G
MC1537L
MCI538R
MC1539G
MC1539L
MC1550F
MC1550G
MC1552G
MC1553G
MC1554G
MC1555G
MC1556G
MC1558G
MC1558L
MC1560G
MC1560R
MC1561G
MC1561R
MC1S63G
MC1563R
MC1566L
MC1S69G

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM1458N-14
LM1458H
LM1458N-14
LM1458N
LM1458N-14
LM305H
LM305H
LM305H
LM305H
LM304H
LM304H
LM304H
LM305H
LM305H
LM1488J
LMI489AJ
LM1489J
LM1496H
LM1496N
LM733H
LM733H
LM733H
LM1514N
LM1514J
LM733H
LM733H
LM733H

LM101AF
LM101AH
LM101AF
LM101AH
LM101AF
LM101AH
LM101AO
LM1303N
LM1303N
LM1536H
LM1458N-14
LHOOO2H
LM101AH
LM101AD
LMI71H
LM171H
LM733H
LM733H
LM380N
LM555H
LM108H
LM1558H
LM1558D
LM105H
LM105H
LMl05H
LM105H
LM104H
LM104H
LM104H
LM10SH

MOTOROLA
OEVICE
NUMBER

MC1569R
MC1590G
MC1596G
MC15961
MC1709CF
MC1709CG
MC1709CL
MC1709CPl
MC1709CP2
MC1709F
MC1709G
MC1709L
MC1710CF
MC1710CG
MC1710CL
MC1710CP
MC1710F
MC1710G
MC1710L
MC1711CF
MC1711CG
MCI711CL
MC1711CP
MC1711F
MC1711G
MC1711L
MC1712CF
MCI712CG
MC1712CL
MC1712F
MC1712G
MC1712L
MCI723CG
MCI723CL
MCI723G
MCI723L
MC1733CG
MC1733CL
MC1733G
MC1733L
MC1741CF
MC1741CG
MC1741CL
MC1741CPl
MC1741CP2
MC1741F
MC1741G
MC1741L
MC1747CF
MC1747CG
MC1747CL
MC1747F
MC1747G
MC1747L
MC1748CG'
MC1748G
MCI776G
MCI776CG

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM105H
LM170H
LM1596H
LM1596H
LM709CH
LM709CH
LM709CN
LM709CN
LM709CN
LM709H
LM709H
LM709H
LM710CH
LM710CH
LM710CH
LM710CN
LM710H
LM710H
LM710H
LM711CH
LM711CH
LM711CH
LM711CH
LM711H
LM711H
LM711H
LM733CH

LM733CH
LM733CH
LM733H
LM733H
LM733H
LM723CH
LM723CO
LM723H
LM723D
LM733CH
LM733CD
LM733H
LM733D
LM741CF
LM741CH
LM741CH
LM741CN
LM741CN-14
LM741F
LM741H
LM741D
LM747CF
LM747CH
LM747CN
LM747F
LM747H
LM747D
LM748CH
LM748H
LM4250H
LM4250CH

MOTOROLA
OEVICE
NUMBER

MC3302P
MC3401P
MC7805CK
MC7805CP
MC7806CK
MC7806CP
MC7808CK
MC7808CP
MC7812CK
MC7812CP
MC7815CK
MC7815CP
MC7818CK
MC7818CP
MC7824CK
MC7824CP
MC7905CP
MC7905.2CP
MC7912CP
MC7915CP
MFC40000D
MFC4010A
MFC4050
MFC4060
MFC6010
MFC6030
MFC6030A
MFC6070
MFCBOOO
MFC8001
MFCBOO2
MFC8010
MFCB030
MFCB040
MFC9020
MLM101AG
MLM104G
MLM105G
MLM107G
MLM109G
MLM109K
MLMll0G
MLM201AG
MLM201API
MLM204G
MLM205G
MLM207G
MLM209K
MLM210G
MLM301AG
MLM301API
MLM304G
MLM305G
MLM307G
MLM309G
MLM309K
MLM310G

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EOUIVALENT

LM339AN
LM3900N
LM340K-5_0
LM340T-5.0
LM340K-6.0
LM340T-6.0
LM340K-8.0
LM340T-8.0
LM340K-12
LM340T-12
LM340K-15
LM340T-15
LM340K-18
LM340T-18
LM340K-24
LM340T-24
LM320T-05
LM320T-05.2
LM320T-12
LM320T-15
LM380N
LM381N
LM380N
LM376N
LM2111N
LM376N
LM376N
LM380N
LM703LN
LM703LN
LM703LN
LM380N
LM703LN
LM381N
LM380N
LM101AH
LM104H
LM105H
LM107H
LM109H
LM109K
LMll0H
LM201AH
LM201AN
LM204H
LM205H
LM207H
LM209K
LM210H
LM301AH
LM301AN
LM304H
LM30SH
LM307H
LM309H
LM309K
LM310H

Signetics Linear Cross Reference Guide
SIGNETICS
DEVICE
NUMBER

N5201A
N5307T
N5308T
N53AlT
N53A1V
N53A8T
N5556V
N5558F
N5558T
N5596K
N5596K
N5709A
N5709T
N5709V
N5710A
N5710T
N5711A
N5711K
N5723A
N5723L
N5733A
N5733K
N5740T
N5741A
N574lT
N5741V
N5747A
N5747F
N5747K
N5748A
N5748T
N5748V
NE501G
NE501K
NE510A
NE510J
NE515A
NE515G
NE515K
NE518A

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM301AD
LM307H
LM308H
LM301AH
LM301AN
LM308AH
LM307N
LM1458N
LM1458H
LM1496H
LM1496N
LM709CN
LM709CH
LM709CN
LM710CN
LM710CH
LM711CN
LM711CH
LM723CN
LM723CH
LM733CN
LM733CH
LH740CH
LM741CN-14
LM741CH
LM741CN
LM747CN
LM747CD
LM747CH
LM748CH
LM748CH
LM748CN
LM733CH
LM733CH
LM371H
LM371H
LM733CN
LM733CH
LM733CH
LM306H

SIGNETICS
DEVICE
NUMBER

NE518G
NE518K
NE526A
NE526G
NE526K
NE529K
NE529A
NE531G
NE531T
NE531V
NE533G
NE533T
NE533V
NE536T
NE537G
NE537T
NE540L
NE546
NE550A
NE550L
NE555V
NE555T
NE565A
NE565K
NE566T
NE566V
NE567T
NE567V
NE592A
NE592K
PA239A
S510lT
S5107T
S5108T
S51AlT
S51A8T
S5556L
S5558T
S5596K
S5709T

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM306H
LM306H
LM306H
LM306H
LM306H
LM361H
LM361N
LM318H
LM318H
LM318H
LM4250CH
LM4250CH
LM4250CH
LM316H
LM308H
LM308H
LHOO21CK
LM1820
LM723CH
LM723CH
LM555CN
LM555CH
LM565CN
LM565CH
LM566CH
LM566CN
LM567CH
LM567CN
LM733CN
LM733CH
LM381N
LM101H
LM107H
LM108H
LM101AH
LM108AH
LM107H
LM1558H
LM1596H
LM709H

SIGNETICS
DEVICE
NUMBER

S5710T
S5711K
S571lT
S5723L
S5733F
S5733K
S5740T
S574lT
S5747K
S5748T
SE501G
SE501K
SE510A
SE510J
SE515G
SE515K
SE518A
SE518G
SE518K
SE526A
SE526G
SE526K
SE529K
SE531G
SE533G
SE533T
SE537G
SE537T
SE540L
SE550L
SE555T
SE555V
SE565A
SE565K
SE566T
SE567T
SE592A
SE592K
SU536G
SU536T

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM710H
LM711H
LM711H
LM723H
LM733D
LM733H
LM740H
LM741H
LM747H
LM748H
LM733H
LM733H
LM171 H
LM171H
LM733H
LM733H
LM106H
LM106H
LM106H
LM106H
LM106H
LM106H
LM161H
LM118H
LM4250CH
LM4250H
LM108H
LM108H
LHOO21K
LM723H
LM555H
LM555N
LM565N
LM565H
LM566H
LM567H
LM733N
LM733H
LM216H
LM216H

~
9p!nE) 93U9J9!9U SSOJ:) Je9U!1 S3!:a.9U6!s

Fairchild Linear Cross Reference Guide

s
FAIRCHILD
DEVICE
NUMBER

LM101AD
LM101AF
LM101AH
LM101D
LM101H
LM102H
LM104H
LM105H
LM107H
LM108AD
LM108AF
LM108AH
LM108D
LM108F
LM108H
LM109K
LMll0H
LM111H
LM201AH
LM201AD
LM201AF
LM207H
LM208AD
LM208AF
LM208AH
LM208D
LM208F
LM208H
LM209K
LM301AH
LM301AN
LM302H
LM304H
LM305AH
LM305H
LM307H
LM307N
LM308AD
LM308AH
LM308D
LM308H
LM309K
LM310H
LM376N
703
709AHM

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

FAIRCHILD
DEVICE
NUMBER

709HM
710DC
710H
710HC
711HM
720PC
723DC
723DM
723HC
723HM
725AHM
726
727
732PC
733DC
733DM
733HC
733HM
739
740HC
740HM
741 DC
741FM
741HC
741HM
741TC
746PC
747DC
747DM
747HC
747HM
748HC
747HM
748TC
749
750
758
760
767
768PC
769
771
776HC
776HM
777
780DC

LM101AD
LM101AF
LM101AH
LM101J
LM101H
LM102H
LM104H
LM105H
LM107H
LM108AD
LM108AF
LM108AH
LM 1!i8 0
LM108F
LM108H
LM109K
LM110H
LM111H
LM201AH
LM201AD
LM201AF
LM207H
LM208AD
LM208AF
LM208AH
LM208D
LM208F
LM208H
LM209K
LM301AH
LM301AN
LM302H
LM304H
LM305AH
LM305H
LM307H
LM307N
LM308AD
LM308AH
LM308D
LM308H
LM309K
LM310H
LM376N
LM703LH
LM709AH
----

NATIONAL
PIN-FOR-PIN
EOUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM709H
LM710CN
LM710H
LM710CH
LM711H
LM1820N
LM723CN
LM723D
LM723CH
LM723H
LM725AH
LM114A
LM121H
LM1304N
LM733CD
LM733D
LM733CH
LM733H
LM381N
LH740ACH
LH740AH
LM741CN-14
LM741F
LM741CH
LM741H
LM741CN
LM746N
LM747CN
LM747D
LM747CH
LM747H
LM748CH
LM748H
LM748CN
LM1303N
LM711H
LM1800
LM361
LM1304
LM1304
LM1304
LM725
LM4250CH
LM4250H
LM108
LM3070N

FAIRCHILD
DEVICE
NUMBER

786
796HC
MC1458G
MC1458Pl
MC1558G
CA3018
CA3018A
CA3019
CA3026
CA3039
CA3045
CA3046
CA3054
CA3064T
CA3065D
CA3065E
CA3066D
CA3066E
CA3067D
CA3067E
CA3075D
CA3075E
CA3086
7805KM
7805UC
7806KM
7806UC
7808KM
7808UC
7812KM
7812UC
7815KM
7815UC
7818KM
7818UC
7824KM
7824UC
78M05HC
78M06HC
78M08HC
78M12HC
78M15HC
78M24HC
78N05.2GJ
SH3002
TBA510

NATIONAL
PIN-FOR-PIN
EQUIVALENT

NATIONAL
FUNCTIONAL
EQUIVALENT

LM3067
LM1496H
LM1458H
LM1458N
LM1558H
LM3018H
LM3018AH
LM3019H
LM3026H
LM3039H
LM3045D
LM3046N
LM3054N
LM3064H
LM3065N
LM3065N
LM3066N
LM3066N
LM3067N
LM3067N
LM3075N
LM3075N
LM3086N
LM340K-5_0
LM340T-5_0
LM340K-6_0
LM340T -6.0
LM340K-8.0
LM340T-8.0
LM340K-12
LM340T-12
LM340K-15
LM340T-15
LM340T-18
LM340T-18
LM340K-24
LM340T-24
LM340T-5.0
LM340T-6.0
LM340T -8.0
LM340T-12
LM340T-15
LM340T-24
LMI20K-5.2
AH0162
LM3066

r-

s:
...
o
Voltage Regulators o
.......
r-

s:
N
o
o

LM100/LM200/LM300 voltage regulator
general description
The LM100, LM200 and LM300 are integrated
voltage regulators designed for a wide range of
applications from digital power supplies to precision regulators for analog circuitry. Built on a
single silicon chip, these devices are encapsulated
in either an 8·lead, low profile TO-5 header or a
1/4 x 1/4 metal flat package. Outstanding char·
acteristics are:
• Output voltage adjustable from 2V to 30V
(LM300 adjustable from 2V to 20V)
• Better than one percent load and line regulation
• One percent temperature stability
• Adjustable short·circuit limiting
• Output currents in excess of 5A possible by
adding external transistors

.......
r-

s:

• Can be used as either a linear or high-efficiency
switching regulator.

CrJ

o

o

Additional features are fast response to both load
and line transients, small standby power dissipa·
tion, freedom from oscillations with varying
resistive and reactive loads, and the ability to start
reliably on any load within rating.
The LM100 is specified for operation over the
_55°C to +125°C military temperature range. The
LM200 and LM300 are low cost, commercial·
industrial versions of the LM 100. They are identical
to the LM 100 except that they are specified for
operation from -25°C to 85°C and from O°C to
70°C respectively.

schematic and connection diagrams
Metal Can

Flat Package

."

DU"UT

Note: Pin 4 connected to bottom of plcklg••
TOP VIEW

GROUND

Note: Pin4connectedtoClS8.
TOP VIEW

Order Number LM100H
or LM200H or LM300H
See Package 11

Order Number LM100F
or LM200F or LM300F
See Package 3

Pin connections shown are for TO·S package

typical applications
Basic Regulator Circuit
r-....- - - - - - 1 r VgUT

2A Regulator With Foldback Current Limiting

....

""'

"

41pF

200 mA Regulator

,..

tSolidtantalum.

4A Switching Regulator
===Ll,

*SO

tSolidtlnb!lum.

turns:: 20 on Arnold EngineeringA9JD157-2

molybdenum permilloy core.
tSolidtantalum.

1·1

0
0

M

absolute maximum ratings

:?!

Input Voltage
LM100, LM200
LM;300
Input·Output Voltage Differential
LM100, LM200
LM300
Power Dissipation (Note 11
LM100, LM200
LM300
Operating Temperature Range
LM100, LM200
LM300

..oJ

'"00
N

:?!
..oJ

'"00

...:?!
..oJ

Storage Temperature Range
Lead Temperature (soldering, 10 sec)

electrical characteristics
PARAMETER

40V
35V
40V
30V
800rnW
500rnW
_55°C to +125°C
O°C to 70°C
_65°C to 150°C
300°C

(Note 2)
CONDITIONS

MIN

TYP

MAX

UNITS

Input Voltage Range
LM100/LM200
LM300
Output Voltage Range
LM100/LM200
LM300
Output·lnput Voltage
Differential
LM 1OO/LM200
LM300

8.5
8.5

40
30

V

2.0

30
20

V

3.0

30
20

V

< 12 rnA

Load Regulation (Note 31

Rsc = 0, 10

0.1

0.5

%

Line Regulation

V'N - VOUT:S; 5V
V'N - VOUT ::> 5V

0.1
0.05

0.2
0.1

%/V

-55°C:S;T A :S;+125°C
-25°C:S; T A :s; 85°C
O°C::; T A ::; 70°C

0.3
0.3
0.3

1.0
1.0
2.0

%

1.7

1.81

V

Temperature Stability
LM100
LM200
LM300
Feedback Sense Voltage
Output Noise Voltage

1.63
10 Hz::;f::; 10kHz
C AEF = 0
C AEF = 0.1 IlF

Long Term Stability
Standby Current Drain
LM100/LM200
LM300
Minimum Load Current
LM 100/LM200
LM300

0.005
0.002

%
%

0.1

1.0

%

V'N =40V
V'N = 30V

1.0

3.0

rnA

= 30V
V'N - VOUT = 20V

1.5

3.0

rnA

VIN - V OUT

Note1: The maximum junction temperature of the LM100 is 150°C, while that of the LM200 is

lOOoe, and the LM300 is 85°C. For operating at elevated temperatures, deVices In the TO-5 package
must be derated based on a thermal resistance of 150 0 C/W junction to ambient or 45°C/W, junction to
case. For the flat package, the derating is based on a thermal resistance of 185°C/W when mounted on
a 1/16-inch-thick, epoxy-glass board with ten, O.03-inch-wide, 2-ounce copper conductors. Peak
dissipations to 1.0W are allowable providing the dissipation rating is not exceeded with the power
averaged over a five second interval for the LM100 and LM200, and a two second interval for the
LM300.
Note 2: These specifications apply for an operating temperature between _55°C to +125°C for the
LM100, between -25°C to 85°C for the LM200 and between OOC to 70°C for the LM300 devices for
input and output voltages within the ranges given, and for a divider impedance seen by the feedback
terminal of 2 k~l unless otherwise specified. The load and line regulation specifications are for
constant junction temperature. Temperature drift effects must be taken into account separately when
the unit is operating under conditions of high dissipation.
Note 3: The output currents given, as well as the load regulation, can be increased by the addition of
external transistors. The improvement factor will be roughly equal to the composite current gain of
the added transistors.

1-2

%IV

r-

...

3:
o

typical performance characteristics
Optimum Divider Resistance
Values vs Output Voltage
B.O

40

r-

3:
o
o
N

2.0

I

VOUT :: 2V

..

a 30 t-- ,

R2

Z

"'"

I-

Rl

"

~

~

i-"'"

~

10

-,.....

~ 7.0

:;; 20

.......

/

.... -

~

~

u

a:

I

o

.......

Minimum Load Current vs
Input-Output Voltage
Differential

Minimum I "put Voltage
vs Junction Temperature

r-

)

3:
W
o
o

/
)

1/

/

RlI1R2·2. Hn

V6 10

6.0
-60 -40 -20 0

20 30 50

20 40 60

BO 100 120

Supply Voltage ,Rejection vs
Input-Output Voltage
Differential

Load Transient Response

.

.OB

::l
'"
.,"!:;

.OB

~

.02

~

~
z

\

.,

\

;:

.,"~
'"

~.,

.04

>

I'..

It:

ii:

I
CL·O·/'

0.2

o

1

.
.,.

_)0:
00

I!:

l"-

~

f-- -T}= 10!C
1000

!:;

0.4

......

~

.

~

I'

.,
>

~

'"
40

-40

80

120

"

30

G

20

I-

.
..

I~RSC=10n

-~s~.,~
.;,;

~

!:

,.... ....
r--

G

U
Ia:

.,

10

TJ

~

>

r-.....

r-- r-- .

BO

1

j>...

.

.,

120

JUNCTION TEMPERATURE I'CI

160

r

I- -

J '"

0.99

15

~

>

12.0

i

>
;:

\O~A

' L•
ILM1001

I'"

i'..t

...

i'
i'

n 1'

-IL=2DmA

20

-ILj
11.0
-80 -40

20

30

40

BO

120

160

JUNCTION TEMPERATURE I'CI

Rsc =

Current Limiting Characteristics
1.2

Ion

TJ.25'C~

~

ILM100 ONLY\+ _Rsc '" Ion
-5S'C

~

1.0

'"<
.,:;

O.B t-- r

1\

TJ = 25'C

>

125°C

.,~

\

TJ '" ISO°C

~

Ion

1

<
'"

t--

rr'J·-55°C

'\'

5

I!:

~

>

0.6

~

t-- r

TJ '" 125"C

f-- f-

TJ '" ISO°C

0.4

>=

~

'"
40

1.0

'"

o
-40

~ -5~'C

-I

991

.,~

ill
-80

Rsc'"

VOUT '" IOV

Regulation Characteristics
With Current Limiting

r-.....

Rsc '" 20n

13.0

I"h..

ILM100 ONLYI

20

Regulator Dropout Voltage
vs Junction Temperature

LOAD CURRENT ImAI

......

VOUT= IOV

15

~

10

~

i'r-,.

I~VIN=5V

TIME (",I

TJ = 15O'C

160

ILM100 ONL VI

IRse=101l

-0.2

~

99B

Short Circuit Current
vs Junction Temperature

..s

g

10

"- TJ=;~~~
r-.....J

999

JUNCTION TEMPERATURE I'CI

40

CL ", I #IF

TJ =25'C\

~

0.2

00

5

I I

\

I'

20

~

I-

-BO

I!:

15

1001

~

40

30

!7

a

CL '"

TIME ,".1

0.5

~

IFL=20mA-

Regulation Characteristics

~

20

00

Without Current Limiting

~

10

-

INL=3mA -

10

Current Limit Sense Voltage
vs Junction Temperature

"!:;'"

0.1

~

'"
.,"

VOUT= 10V-

INPUT·OUTPUT VOLTAGE DIFFERENTIAL IVI

~

!:;
> -0.1

II

50

10

1
1 1

-0.3
-0.4

~

0.2

.,

Rse = lOll

I-

....

I
I

00

00

-0.1

> -0.2

I
I

CL -1 JlF

0.1

~

~

.

0.4
0.3

o

Line Transient Response

0.1

.,

I-"

INPUT·OUTPUT VOLTAGE DIFFERENTIAL IVI

JUNCTION TEMPERATURE I'CI

OUT1'UT VOLTAGE IVI

;;
~

o

0.2

a:
0.98
10

15

20

25

30 35

OUTPUT CURRENT ImAI

40

10

15

20

25

30

35 40

45

OUTPUT CURRENT ImAI

1-3

M

...::!

o

Voltage Regulators

-'

LM103 regulator diode **
general description
The LM103 is a two-terminal monolithic regulator
diode electrically equivalent to a breakdown diode.
The device makes use of the reverse punch-through
of double-diffused transistors, combined with active circuitry, to produce a breakdown characteristic which is ten times sharper than single-junction
zener diodes at low voltages. Breakdown voltages
from 1.BV to 5.6V are available; and, although the
design is optimized for operation between 100 IlA
and 1 mA, it is completely specified from 10 IlA to
10 mAo Noteworthy features of the device are:
•

Exceptionally sharp breakdown

•

Low dynamic impedance from 10 IlA to 10 mA

• Performance guaranteed over full military temperature range
• Planar, passivated junctions for stable operation
•

Low capacitance_

The LM 103, packaged in a hermetically sealed,
modified TO-46 header is useful in a wide range of
circuit applications from level shifting to simple
voltage regulation. It can also be employed with
operational amplifiers in producing breakpoints to
generate nonlinear transfer functions. Finally, its
unique characteristics recommend it as a reference
element in low voltage power supplies with input
voltages down to 4V.

schematic and connection diagrams
....----.,.....--.- +
R1
10K

Note: Pln2 connected to Clsa.
TOP VIEW

Order Number LM103H
See Package 8

typical applications
200 rnA Positive Regulator

Saturating Servo Preamplifier

with Rate Feedback

. . . - . . . ..---

r--------~-

V, .. >55V

R1

'"

.,

OUTPUT

2N2484

L.._ _,...........

~:~

C2
30pF

D1
LM103

'"

'""

CI·

'"15.,.

U,.F

,."'"

'SOhdllMilum

tStiKItor m,nlmum
Ilm~lI'ltu ..

IlnK_rv

"Covered by U.S. Patent Number 3,571,630.

1-4

drlh,

r-

...os:

w

absolute maximum ratings
Power Dissipation (note 1)
Reverse Current
Forward Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering. 60 sec)

250mW
20mA
100mA
-55°C to 125°C
_65°C to 150°C
300°C

electrical characteristics (Note 2)
PARAMETER
Reverse Breakdown Voltage Change

CONDITIONS
101lA~IR ~

100llA ~ IR

MIN

lOOIlA

~

1 mA

1 mA::; IR ::; 10 mA

TYP

MAX

UNIT

60

120

mV

15

50

mV

50

150

mV

5

25

n
n

IR

= 3 mA

IR

= 0.3 mA

15

60

Reverse Leakage Current

V R = Vz -0.2V

2

5

j.LA

Forward Voltage Drop

IF

0.8

1.0

V

Peak·to·Peak Broadband Noise Voltage

10 Hz::;f::;'100 kHz. IR

Reverse Breakdown Voltagll Change
(Note 4)

10IlA~IR::;

Reverse Dynamic Impedance (Note 3)

= 10 mA

0.7

= 1 mA

300

lOOIlA

100IlA::;IR~

1 mA

1 mA::;IR::;lOmA
Breakdown Voltage Temperature
Coefficient (Note 4)

100IlA~IR~

1 mA

-5.0

IlV
200

mV

60

mV

200

mV

mVtC

NOTE 1: For operating at elevated temperatures, the device must be derated based on a
150°C maximum junction temperature and a thermal resistance of aooelW junction to
case or 440°C/W junction to ambient (see curvel.
NOTE 2: These specifications apply for TA = 25°C and 1.BV < Vz < 5.6V unless stated
otherwise. The diode should not be operated with shunt capacitances between 100 pF
and 0.01 /JF, unless isolated by at least a 50n resistor,as it mayoscillateatsomecurrents.
NOTE 3: Measured with the peak-ta-peak change of reverse current equal to 10 percent
of the de reverse current.
NOTE 4: These specifications ilpply for -55°C

I

,/

I'"

TYPICAL

f--,

II

~

~

~

-ssec

=

'J

5
g

0.3

Il4v~ V,'$l~t-

02

0.1

10

1.0

0.01

0.1

10

1.0

REVERSE CURRENT (mAl

REVERSE CURRENT (mAl

REVERSE CURRENT (rnA)

typical performance characteristics
Reverse Characteristics

:

I

"

I~

~ IK

:

~

!1;

'5·C

fi

100

T... = 2SOC

~

~. 1 .... = 125°C

0.2

'"~

-0.2

c

>

10

REVERSE VOLTAGE IV)

~
i;:

g:
w
'"

M

1
0.01

o

0.4

\ TA =_55°C

~

, -5S·C

0.6

IJlrJ
i I - '- i'" T
o
=
'"~ 0.5 ~•• "'·C

A =

o

0.01

10
1.0
0.1
FORWARD CURRENT (mAl

~ 300

t-- t--

-~!PUT-

z

~.",..

o

~

I:!

"

100

.................

200

........

;;;

=

i
10
TIMEfJ,ts)

100

o
25

50

"

75

..........
100

AMBIENT TEMPERATURE 1°C)

BREAKDOWN
VOLTAGE*

PART
NUMBER

1.8

LM103H-l.8
LM103H-2.0
LM103H-2.2
LM103H-2.4
LM103H-2.7
LM103H-3.0
LM103H·3.3
LM103H·3.6
LM103H·3.9
LM103H·4.3
LM103H·4.7
LM103H·5.1
LM103H·5.6

2.0
2.2
2.4
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6

1·6

125

400

~

5C

.....

75

INPUT

10
TA ;-55OC ~

25

Maximum Power Dissipation

2.4V~Vz<5.6V-

1,0

-25

TEMPERATU RE I·C)

Response Time

1.5

s

~

REVERSE CURRENT (mAl

Forward Characteristics

ii

I""'" !'I..

-0.4

ll1r
1.0

0.1

"- ..... i'..

'"

'Measured at IR = 1 rnA.
Standard tolerance is±10%.

r-

...s:o

Voltage Regulators

~

-......

r-

s:N

LM104/LM204 negative regulator
general description

o

The LM104 and LM204 are precision voltage
regulators which can be programmed by a single
external resistor to supply any voltage from 40V
down to zero while operating from a single
unregulated supply. They can also provide
O.Ol-percent regulation in circuits using a separate,
floating bias supply, where the output voltage
is limited only by the breakdown of external
pass transistors. Although designed primarily as
linear, series regulators, the circuits can be used as
switching regulators, current regulators or in a
number of other control applications. Typical
performance characteristics are:

~

• 0.3% temperature stability over military temperature range
The LM 104 and LM204 are complements of the
LM100 and LM105 positive regulators, intended
for systems requiring regulated negative voltages
which have a common ground with the unregulated supply. By themselves, they can deliver.
output currents to 25 mA, but external transistors
can be added to get any desired current. The
output voltage is set by external resistors, and
either constant or foldback current limiting is
made available.
The LM 104 is specified for operation over the
-55°C to +125°C military temperature range. The
LM204 is specified for operation over the -25°C to
+85°C temperature range.

• 1 m V regu lation no load to full load
• 0.01 %IV line regulation
• 0.2 mV IV ripple rejection

schematic and connection diagrams

Metal Can

ADJUSTMENT

."""
."'"

UNAEG
INPUT

8 REGULATED
OUTPUT

Note: Pm 5 connected to case.
TOP VIEW

.13
O!

1K
1 BOOSTEA
OUTPUT

Order Number LM104H or LM204H
See Package 12

Flat Package
GROUND

.H

""

OUTPUT

SUPPLY

BOOSTER

UI~~~~
Note: Pin 5 connected to bouom 01 package.
TOP VIEW

Order Number LM104F or LM204F
COMPENSATION

REFERENCE
SUPPLY

REFERENCE

typical applications

See Package 3
Basic Regulator Circuit

Operating with Separate Bias Supply

fi\........_-Vou,·fai

,...----+--....,-t--vO

..

Load Regulation

20
15
LOAD CURRENT ImA)

-2

-6

!;
~

25

.
..

,

1\

0.08

;::
~

,

w

!:; 0.04

>

w

--

0.02

....
i

~

0:

~

o

'0

20

3D

0.9

'"'"

..
!:;

0.7

>

0.6

0.4
-75 -50 -25

"' , .....

i

;;:

;;

;::

..
..~
..~

20

w

>

....

-20

;::

"C "'O
.\
l

~

' .....

20

"

v!".,~-,~ •.~.- I-

I
\

0.4

I\..

w

~

it
i<

30

40

-

0.2

50

'0

20

3D

50

40

DC INPUT VDLTAGE IVI

Minimum Input Voltage

'"'"

I,..;"

~

>

./

~

.!.':.5':!.1-4_25 50 75 '00 '25 '50

-

,.

,.'

7.0

I-"'"
6.0
-75 -50 -25

0

25 50 75 '00 '25 '50

JUNCTIDN TEMPERATURE I'CI

Standby Current Drain

VOUT=

tOV

1 J.l.FINL=5m~.._
IFL'" 15 mA

tOUT=

20

1\

tr~5ns

\

w

c,,' 0.0' of

...

B.O

l'''~
~
0

--

C19 ""10j.lF

0.6

01

-I-

'-120H.

40

'"
1::
co

19

'1
J

~

....
'"

,g

=tV

t..S5ns
CouT -l"F

-9V

0.8

Load Transient Response

VO~T' ,Iov

'"
1::

,g

JUNCTION TEMPERATURE I'CI

.o.V1N

60

Ripple Rejection

/

I--'

z

50

LOAD CURRENT ImAI

I-~ou~' '~V

-75 -50 -25

,g

40

3D

i!

'0

0 25 50 75 '00 '25 , 50

20

'0

I--Rsc' O

i!
w

0.5

I

o

40

Regulator Dropout Voltage

'2

Line Transient Response

.

I

DC INPUT VOLTAGE IVI

O.B

I

I

~

'0

JUNCTION TEMPERATURE I'CI

;;:

I--

3D

v39 "

~
50

40

'.0

40

-

Rsc"in ~

1

::;

w

~

r-

;;:

~

~
C; 0.01
>

~

z

-~

1\

0:

CUrrent Limit Sense Voltage

.~

~

20

,

0.02

DC INPUT VOL TAGE IVI

.

;{

f~-

1.0

;;J

I'

>

i!
w

-

-.~-

~r" nl--

;{ -

'0

z

1\

0:

o

_....

~-

-

I

0.03

;;J 0.06

~

-

I ~
I ~

Supply Voltage Rejection With
Preregulated Reference Supply

0.'

..
~
.
..::;'"

I~

"

I........

LOAD CURRENT ImAI

Supply Voltage Rejection

~z

_....

I

-'0

~I ....

~

Rsc=2S0

-8

1
.-i, - ) - 1-~:1,-

'0

'-4

>

1

'0

..... """-

~

Current Limiting

v,J. -5tv

r--

,.. ,..
i.--'

I

'"~

..

V

> -20

!;;

,

~

-

~

5

-40
'0

TIME 1..1

20

3D

o

-40
'0

TIME 1..1

20

3D

o

20
30
'0
OUTPUT VOLTAGE IVI

40

'-9

Voltage Regulators
LM304 negative regulator
general description
The LM304 is a precision voltage regulator which
can be programmed by a single external resistor to
supply any voltage from 30V down to zero while
operating from a single unregulated supply. It can
also provide O.Ol·percent regulation in circuits
using a separate, floating bias supply, where the
output voltage is limited only by the breakdown
of external pass transistors. Although designed
primarily as a linear, series regulator, the circuit
can be used as a switching regulator, a current
regulator or in a number of other control applica·
tions. Typical performance characteristics are:

• 0.2 mV/V ripple rejection

The LM·304 is a complement of the LM300 and
LM305 positive regulators, intended for systems
requiring regulated negative voltages which have a
common ground with the unregulated supply. By
itself, it can deliver output currents to 25 mA, but
external transistors can be added to get any desired current. The output voltage is set by external
resistors, and either constant or foldback current
limiting is made available. The LM304 is a
commercial/industrial version of the LM 104 and
LM204.

• 1 mV regulation no load to full load
• 0.01%/V line regulation

schematic and connection diagrams

Metal Can

"

".'5K
R15

'"

BREGULATED
OUTPUT

~:Atf

RI3
IK
7800STER
OUTPUT

Note: Pin 5 connBmd to CISI.
TOP VIEW

Order Number LM304H
See Package 12
Flat Package

'"

BUWL"
UNIIEC
II1'UT

Note: Pin 5 connect1ld to bottllm ofpaCUIIII.

TOP VIEW

Order Number LM304F
See Package 3

COMPENSATION

REFERENCE

REFERENCE

SUPPLY

typical applications
Basic Regulator Circuit

Operating with Separate Bias Supply

,--HP---_-'..
CI'

U.,F

'T"----+--_-~-you,a&

0--+--

tSolidtantalum.
TrimR1for
auclsul.

lI ou, - ;

factor.

' -_ _4 _...._ _ _ '"
Switching Regulator

High Current Regulator

(i}_+---

"'"

T, = 70'C

~

-2

I-

;;
.!

It

~ ;::"

T," D'C

I
I

-3

I-

~

I I
J I

I- - - T, = 25'C

i:

ii
i:
"w

..
~

Rsc .. 15n

o

.."

......

..
~
;;!
=
..
.."

25

">
'"
I!:
"'"

.."~

\
\

'" ...... "" .....

c

~ O.M

>

~
iii

0.D2

o

t;
;;!
=
w

\

w

o

nSC

---

to
20
30
DC INPUT VOLTAGE (V)

.~
">

-8

.....

0.6
0.5

.."
;:

20

~
"w

o

-

~

">
'"
I!:
"'"

I-

-20

20
3D
4D
50
LOAD CURRENT (rnA)

40

~

4D

o

o

-

to
2D
3D
DC 'NPUT VOLTAGE (V)

o

40

-

">

-~

l-

ii!

z
;:

-

~
w

C

~

">

r)C1S -O

..\

-

I-- f-1L=SmA

o

20
4D
60
JUNCTION TEMPERATURE rC)

20
4D
60
JUNCTION TEMPERATURE ('C)

1,:55.s

\

-

-40

3D

"

a" o

-40
to

TIME (ps)

20

3D

VIN =-40V

c
=

.'"ra=

I

V

-20

1..
"
S
=

'"
I!:
'"

10

Standby Current Drain

INL=5mA__
IfL = 15mA

n

~

"

-

6.5
10

CouT=tpF20

.
I-

--

~

i-"""

ii!

VOUT= 10V

"w
>

40

40

~

c,.= O.Ot pF

20

7.0

l-

!!!

.!

"c

to
20
3D
DC INPUT VOLTAGE (V)

.

~

Load Transient Response

VO~T .lov

-

Minimum Input Voltage

!!!

.6.YIN'"'1V

'1
I

= lOY

=0

\,~:!

~ to.&

;;

~:55 ..

YOUT

Rsc

w

80

o

_

7.5

C

20
4D
6D
JUNCTION TEMPERATURE ('C)

~;.t!~:~F

II
\

f' "-

I

I

Vrlppl. '" 1V. pk·p._

Regulator Dropout Voltage

-I--..

I
I

\
\.

60

Ripple Rejection

V39 '" -9Y

\

O.Ot

..

r-

Rsc = t5!l-+-t-l-fjI-t-t--l

t.O

0.D2

~

to
TIME",,)

1-12

"'"

0.03

to.O

CoUT" t pF

.

30
to
20
LOAD CURRENT (mAl

0

Line Transient Response

;;
.!

I!:

~- r-

1t.0

D.I

4D

r-

--

;;--

-to

0.9

0.4

-11-

5

"

~

t.D

0.7

-'""
iii ~

=25n

_":"4 _....

1-+-++- "
1-+-++-:; ~

">

...

.:<,

-6

Current Limit Sense Voltage

~

w

Supply Voltage Rejection With
Preregulated Reference Supply

O.tO

0.06

..~

~

\ \

-4

I-

to
t5
2D
LOAD CURRENT (mAl

O.DB

~
~-,

Supply Voltage Rejection

~

....

-2

C

-4

-5

Current Limiting

Load Regulation

,. ...o

-

I--

to
20
OUTPUT VOLTAGE (V)

3D

r-

Voltage Regulators

s:....
o

(J1

.......

r-

s:
N
o(J1

LM105/LM205/LM305 voltage regulator

.......

general description

r-

The LM lOS, LM20S and LM30S are positive volt·
age regulators similar to the LM100, except that
an extra gain stage has been added for improved
regulation. A redesign of the biasing circuitry
removes any minimum load current requirement
and at the same time reduces standby current
drain, permitting higher voltage operation. They
are direct, plug·in replacements for the LM 100 in
both linear and switching regulator circuits with
output voltages greater than 4.SV. Important
characteristics of the circuits are:
• Output voltage adjustable from 4.SV to 40V
• Output currents in excess of lOA possible by
adding external transistors
• Load regulation better than 0.1 %, full load with
current limiting

s:W

• DC line regulation guaranteed at 0.03%/V

o

• Ripple rejection of 0.01 %/V

(J1

Like the LM100, they also feature fast response to
both load and Iine transients, freedom from
oscillations with varying resistive and reactive
loads and the ability to start reliably on any load
within rating. The circuits are built on a single
silicon chip and are supplied in either an 8·lead,
TO·S header or a 1/4" x 1/4" metal flat package.
The LM20S is identical to the LM 1OS except that
it is specified for operation from - 2SoC to 8SoC.
The LM30S is specified for operation from DoC to
70° C and for output voltages to 30V.

schematic and connection diagrams
Metal Can

,..-",---"'-----'''---<1'''''':'' UNREGULATED INPUT

REGUlATEDOIlTPUT

BOOSTER DurpUT

GROUND

Nate: Pin 4 connected to case.
TOPVIEW
REGULATEDOUYPUT

+--- 5V

C AEF "'-10.uF. f

=

120 Hz

Temperature Stability

LM10S
LM20S
LM30S
Feedback Sense Voltage
Output Noise Voltage

Current Limit Sense
Voltage
Standby Current Dram

LM10S, LM20S
LM30S
Long Term Stability

-S5°C S; TA S; 12SoC
-2SoC S; TA S; 8Soc
O°CSTA S;70°C
1.63
10 Hz $ f $10 kHz
CREF :. 0
CREF >0.1 t/F
Rsc '" lOn, T A = 25°C,
VOUT = OV

V IN =SOV
VIN '" 40V

0.005
0.002
22S

300

%
%

37S

mV

0.8
0.8

2.0
2.0

mA
mA

0.1

1.0

%

Note 1: The maximum junction temperature of the LM105 is 150°C, while that for the LM205 is
100°C. and that for the LM305 is 85°C. For operating at elevated temperatures, devices in the TO-5
package must be derated based on e thermal resistance of 150"C/W, junction to ambient. or 45°C/W,
junction to case. For the flat package. the derating is based on a thermal resistance of 185° C/W when
mounted on a 1/16-inch-thick epoxy glass board with ten. O.03-inch-wide. 2-ounce copper conductors.
Peak diSSipations to 1Ware allowable providing the dissipation rating is not exceeded with the power
averaged over a five second interval for the LM105 a'nd LM205, and averaged over a two second
inlerval for the LM305.
Note 2: These specifications apply for input and output voltages within the ranges given, and for a
divider impedance seen by the feedback terminal of 2 kn, unless otherwise specified. The load and
line regulation specifications are for constant junction temperature. Temperature drift effects must be
taken into account separately when the unit is operating under conditions of high dissipation. Unless
otherwise specified. T A = 25°C.
Note 3: The output currents given, as Well as the load regulation, can be increased by the addition of
external transistors. The improvement factor will be roughly equal to the composite current gain of
the added transistors.

1-14

r-

...s:
o

typical performance characteristics

CJ1

.......

r-

Load Regulation

Load Regulation

-0.01

r-= ~ ~- .....

....

...

-- -

1."'50'1:

r-...

TI"2~ ~

•

-0.02

.

T.,,-55°C

RII:"O

...

I

-0.04 0

1D

ZD

IS

~
~

~~

~,-

-0.02

CJ1

.......

r-

..

1.-Z5°C

-0.04
-0.0&

~

Co)

.-4

~-t ~

r-r-

o

_;_

~r-~-

CJ1

D.41-1-l-"f+I-"+-I--!-+--+--1
I IT.= 12SOC

-0.08

D.2 t-:.=-,'-c-• •!:o-=-nH-t-t-t--!-+--t--1

_1
I

-D.l

"

"

1D

40

LOAD CURRENT (mA)

LOAD CURRENT (rnA)

OUTPUT CURRENT (mAl

Optimum Divider Resistance
Values

Short Circuit Current

Current Limit Sense Voltage

'2 ro-rTT.--------,

D.'

RlIIR2~2H!

..

D.'

40

10 ::;5mA

~

OA

.........

R1" 1.11 Your

.....

'.D 1\-I++++--r-.--';=:,---1

r-..

30

...... .....

...... ......

20

.....

RIC = Ion

--

.....,.",

2.' H+M-t--I-+---!-+-1

..... ....

r...

-...j...,

24

.,

D.'

-15-50-25

0

2550 75100125150

-15 -50 -25

JUNCTION TEMPERATURE (OCI

'.1
~

!

OOZ

~~

50

15100 125

-75 -50 -25

0

25

50

75

tOO

~ 0.002

0.001

2.'-75

/

./

"'"

-50 -25

"

Transient Response
40

;;;

,)f'

20

10

I.'

3.'

C•• ,=10",F,

1'"'12TII

125

Standby Current Drain

Minimum Output Voltage

/

r---

INPUT OUTPUT VOLTAGE DIFFERENTIAL (VI

4.'

,..

....... c... ~ 0

0.005

TEMPERATURE (OCI

4.'

,

0.01

>

2S

Vour = 10V
TA = 25°C

0.05

zQ

"
0

50

Supplv Voltage Rejection

I
11 L......L......J...._,--I.L......J......J.......J...-,J
-25

20

OUTPUT VOLTAGE (VI

...

i""'"

__L.....~__.L......J....~

10

Regulator Dropout Voltage

~

-so

~-L~.L....

15 100 12S 150

Rsc= 10!!

1.0

-15

50

" r-.--r--'~.--r~-~.,
VouT-IOV

-V~UT ~4.5t

60

25

AMBIENT TEMPERATURE 1°C)

Minimum Input Voltage

i""'"

0

H-+++~~~R~.~---+--1--1

22 H-+rrr---~~~~~t-~

I"'- .... 1::: to-.

RIC-zon

0

D

2.8 H,,-!-+++--I-+---!-+-1

r-..

Rsc =15n

..

0.'

8.0

_-4!_-4

D.'f--r--

'.

r-T,_"O'. ,

s:

D·'I-I-j-~I"-H"-~!I-+--1

TJ =-S5'C

~

I~

-0.03

z

Q

:;
~

o

L L

Rsc=IDU

~~

§:

s:N

Current Limiting
Characteristics

/

....
.... r··
r-r
, .......
1

-55'C

25°C::::::::::;;

1.0

1~5:C

~.

0
25 50 75
TEMPERATURE lOCI

100 115

.sz

20

Rsc "10n
5V

~VIN=

LINE

Q

---

:;
~

. ro ur =110Y

-40

~

i5

400

-CL=O
___ CL =I/-lF
LOAD

~

_ Rsc =10n
IFL =20mA
- INL "'1.0mA

--

Your= lOV

_L
I

[j1<-400

30
40
INPUT VOLTAGE (VI

"

20

10

I
I
lO

TIME (",s)

1·15

Voltage Regulators
LM305A voltage regulator
general description
The LM305A is a positive voltage regulator designed primarily for commercial series regulator
applications_ By itself, it will supply output
currents up to 45 mA; but external transistors can
be added to provide any desired load current_ The
circu it features extremely low standby current
drain, and provision is made for either linear or
foldback current limiting_ Important
characteristics are:
• 45 mA output current without external pass
transistor

• Output currents in excess of lOA possible by
adding external transistors
• Maximum input voltage

=

50V

• Output voltage adjustable from 4.5V to 40V
• Can be used as either a linear or a switching
regulator

The LM305A is also useful in a wide range of
other applications such as a shunt regulator, a
current regulator or a temperature controller.

schematic and connection diagrams

REGULATED OUTPUT

GROUND

Not&:Pin4connelltedtoCls,.

Order Number LM305AH
See Package 11

typical applications
Linear Regulator with Foldback Current Limiting

Current Regulator

. - - - - - - - - - - - - - - < p - - - - < p - - - v..

.--........fw--1-----.....--.-~&tu~; 15V
~~.7K
Cl
41pF

.,

®-----.

2N3740

VIN

1%

+

C2

1_ 1"
C1
47pF

.2

Z.21K
1%

-+--'
"'510

>lIV .....

.

Switching Regulator

Shunt Regulator
01
INUZI

2.

3.3V

.,

01
UTX21G

11.1K

-t--+".

(l}-.....

•2
2.44K
1%

V,I\I>ISV

'Solidtantllum.
+125turns#22 on Arnold
EngineerinllA262123-2

molybdenum plI'malty

1-16

r-

3:
w
o

absolute maximum ratings
Input Voltage
Input-Output Voltage Differential
Power Dissipation (Note 11
Operating Temperature Range
Storage TElmperature Range
Lead Temperature (Soldering, 60 secl

electrical characteristics
PARAMETER

U1

»

50V
40V
800mW
O°C to 70°C
-65°C to 150°C
300°C

(Note 21

CONDITIONS

MIN

TYP

MAX

UNITS

Input Voltage Range

8_5

50

V

Output Voltage Range

4_5

40

V

Output-Input Voltage
Differential

3_0

30

V

Load Regulation
(Note 31

0<; 10 <;45 mA
Rsc ~ on, T A ~ 25°C
Rsc ~ on, T A ~ 70°C
Rsc ~ on, T A ~ O°C

0.02
0.03
0.03

0.2
0.4
0.4

Line Regulation

V'N - V OUT <; 5V
V'N - V OUT > 5V

0.025
0,015

0.06
0.03

Ripple Rejection

CREF

Temperature Stability

O°C <; T A

~

10pF, f

S

~

120 Hz

0.003

70°C

Feedback Sense Voltage
Output Noise Voltage

1.55
10 Hz <; f::; 10 kHz
CREF ~ 0
CREF >0.1 pF

Current Limit Sense
Voltage (Note 41

Rsc ~ lOn, TA ~ 25°C,
V OUT ~ (IV

Standby Current Drain

V'N ~ 50V

0.3

1.0

%

1.7

1.85

V

300

Long Term Stability

%/V
%/V
%/V

0.005
0.002
225

%
%
%

%
%
375

mV

0.8

2.0

mA

0.1

1.0

%

Note 1: For operating at elevated temperatures, the device must be derated based
on a 150°C maximum junction temperature and a thermal resistance of 45°C/W
junction to case or 1500 C/W junction to ambient.

Note 2: These specifications apply for an operating temperature between

aOc

and 70oe, for Input and output voltages within the ranges given, and for a divider
Impedance seen by the feedback terminal of 2 Kn, unless otherWise speCified.
The load and line regulation speCifications are for constant junction temperature.

Temperature drift effects must be taken Into account separately when the unit IS
operating under conditIOns of high dissipation.
Note 3: The output currents given, as well as the load regulation, can be
Increased by the addition of external tranSistors. The Improvement factor will be
roughly equal to the composite current gam of the added transistors.
Note 4: With no external pass transistor.

1-17

a»

o

N

:e....

Voltage Regulators

........

a»

...

o

:e....

LM109/LM209 five-volt regulator
general description
The LM109 and LM209 are complete 5V
regulators fabricated on a single silicon chip. They
are designed for local regulation on digital logic
. cards, eliminating the distribution problems associ·
ated with single-point regulation. The devices are
available in two common transistor packages. In
the solid-kovar TO-5 header, it can deliver output
currents in excess of 200 mA, if adequate heat
sinking is provided. With the TO-3 power package,
the available output current is greater than 1A.
The regulators are essentially blow-out proof.
Current limiting is included to limit the peak
output current to a safe value. In addition, thermal
shutdown is provided to keep the IC from
overheating. If internal dissipation becomes too
great, the regulator wi II shut down to prevent
excessive heating.

response somewhat. Input bypassing is needed,
however, if the regulator is located very far from
the filter capacitor of the power supply. Stability
is also achieved by methods that provide very good
rejection of load or line transients as are usually
seen with TTL logic.
Although designed primarily as a fixed-voltage
regulator, the output of the LM109 and LM209
can be set to voltages above 5V, as shown below.
It is also possible to use the circuits as the control
element in precision regulators, taking advantage
of the good current-handling capability and the
thermal overload protection.
To summarize, outstanding features of the regulator are:

Considerable effort was expended to make these
devices easy to use and minimize the number of
external components. It is not necessary to bypass
the output, although th is does improve transient

• Specified to be complete, worst case, with TTL
and DTL
• Output current in excess of 1A
• Internal thermal overload protection
• No external components required

schematic diagram

typical application

,---r---.,---,----r-T--INPUT

High Stability Regulator'

OUTPUT

r-----.--------~Q--~~

"J------.-+--If---+-OUTPUT

D.

63V

L--4_-4-_-4-_+.-......._--+_......._+- GROUND

·Aegulltionb'UerthanD.Of%.load,lineandtemperatllre.canbeobtained.
tDetermines zener current. May be adjusted to minimill! thlrmal drift.
tSoIidtantillum.

connection diagrams

--U"'"
TO-5 (HI

,

,.." f.V!

'"
''''~

Order Number LM109H Dr LM209H
See Package 9

1-18

TO-3IKI

Order Number LM109K or LM209K
See Package 18

r-

s:...

absolute maximum ratings

o

Input Voltage
Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

35V
Internally Limited
-55°C to 150°C
-65°C to 150°C
300°C

electrical characteristics
PARAMETER

CONDITIONS

o

to

MIN

TYP

MAX

4.7

5.05

5.3

UNITS
V

T j = 25°C
7V~VIN~25V

Load Regulation

s:

N

(Note 1)

Output Voltage
Line Regulation

to
.......
r-

4

50

mV

T j = 25°C

LM109H

5 mA ~ lOUT ~ 0.5A

20

50

mV

LM109K

5 mA~ IOUT~ 1.5A

50

100

mV

Output Voltage

7V~VIN ~25V

5 mA ~ lOUT ~ Imax
P< Pmax

V

5.4

4.6

mA

Quiescent Current

7V ~ V 1N ~ 25V

Quiescent Current Change

7V ~ V 1N ~ 25V

0.5

mA

5 mA ~ lOUT ~ Imax

0.8

mA

Output Noise Voltage

5.2

10

TA = 25°C
10Hz~f~100kHz

40

JlV

Long Term Stability

mV

10

Thermal Resistance
Junction to Case (Note 2)
LM109H

15

LM109K

3

Note 1: Unless otherwise specified, these specifications apply for -55°C ~Tj:::; 150°C (-2SoC ~Tj
~ 150°C for the LM209), V I N = 10V and lOUT = 0.1 A for the TO·5 package or lOUT = 0.5A for the
TO·3 package. For the TO·5 package, I max = 0.2A and Pmax = 2.0W. For the TO·3 package,
I max = 1.0A and Pmax = 20W.
Note 2: Without a heat sink, the thermal resistance of the TO-S package is about 150o C/W. while that
of the TO·3 package is approximately 3SoC/W. With a heat sink, the effective thermal resistance can
only approach the values specified, depending on the efficiency of the sink.

typical applications(con't)
Fixed 5V Regulator

Adjustable Output Regulator

.

Current Regulator

"~':~IUIIDlI~OU",Ul
IU~:T

I

,

"

llii

rj~

LMIII

"

.U~FI

,

".

L _...._ounuT

*Detarminasoutputcunent.

*Required if ragulltor is located an apprecibla distance
ftom power supplV filter.
tAlthough no output capacitor is needed for stability,
It does Improve transient response.

1·19

en
o
N

typical performance characteristics

~

....I

.......

en

Maximum Average

...o

Maximum Average
Power 0 issipation

Power 0 issipation
50

~

....I

~

ZO

;::
"
::
iii
"

10

INFINITE
HEAT

f.....SINK

z

z

~

-....

~

E
1==

0.5

Z5

........

ENO HEAT.
SINK

.."

75

100

lZ5

r--

1.0

~

1\

150

:0

~

~':NO HEAT SiNK"'-...... ~,
"
Z5

50

AMBIENT TEMPERATURE 1°C)

VIN " 10~~
TA -Z5°C ....:;;

10'

i!!

I-

WAKEFIELD

0.1

50

9
"z
~

INFINITE HEAT SINK

I

\

~

10'

TO·5

~

"~

WAKEFIELD
~!SINK
680-75

.

Output Impedance

10.0

TO-3

75

100

lZ5

===

"

IL -50DmA

I

10-2

10

150

100

lk

10k

lOOk

Peak Output Current

Ripple Rejection
100

I

1M
"

Hc'\..

80

,

l!i

~

..

~

T,' _55°C

~

t

Tj =1&ODC",

60

~

I:
;;;

40

I L =200mA
VIN = 10V

TO·3-+-+-+-----,I--I

AV 1N =3V pop

VOUT " 4.5V

O'---'--'---'----J'---'---'
10

15

ZO

Z5

30

ZO

35

10

15

INPUT VOLTAGE (V)

ZO

Z5

30

Dropout Voltage

..~

l!
.....

~

1.5
1.0

~

0.5

":>
~

~

Irl.

i,
111

T" ISOOc

4.0

-75 -50 -Z5 0 Z5 50 75 100 lZ5 150

I-

~

5.5

~

I-

~§

'I

5.0

r--

~

,'- _h:'

4.8

JUNCTION TEMPERATURE rC)

Output Noise Voltage
1.0

4.5
-75 -50 -Z5 0

IL "200 rnA

I

.!

~

~

IL'I~ ~

I

I-

z

IZ

~

5.0

;;
co

JUNCTION TEMPERATURE (OC)

l

--

~

-""'

~

0.1

"

;;
z

"..
15

.
:"
:>
~

i

10

~>
~

'.- _55 D C

_ T,-150°C

I-4.5

Z5 SO 75 100 lZ5 150

,~

T Z5 C

5.5 l -

~

~~

VIN =10V
IL=2DmA
-75 -SO -Z5 0 Z5 50 75 100 lZ5 150

C

IL" 0

1\

4.9

Quiescent Current

~

'·20 .

Vr"-55°C

VIN = 10V

.!

1M

1\

":>

6.0

..

lOOK

r-....

I-

INPUT VOLTAGE (V)

Quiescent Current

-

5.0

5

JUNCTION TEMPERATURE (OC)

6.0

10K

!:;

7 'ill

T"zr C

i!!
O'--':':';';:;"'~--.JL.....J--'--'--'

.."

l!

5.0

4.5

lK

Output Voltage
5.1

TO-3

"

1-+-+-+

100

FREOUENCY (H,)

IL "1A

2.0

is
~

~

10

Dropout Characteristic
5.5

l!

~

35

INPUT VOLTAGE (V)

Z.5

cl

~

"\ ,

~

5

1M

FREQUENCY (Hz)

AMBIENT TEMPERATURE 1°C)

Peak Output Current

/.

lV" 20mA

10-1 =

ZO

INPUT VOLTAGE IV)

0.01 L..J...J...L.LWIIL.....J....LLWlII-...l.Jl.J.IJWU
lk
10
100
FREOUENCY (H,)

r-

s:

w
o

Voltage Regulators

CD

LM309 five-volt regulator
general description
The LM309 is a complete 5V regulator fabricated
on a single silicon chip. It is designed for local
regulation on digital logic cards, eliminating the
distribution problems associated with single·point
regulation. The device is available in two common
transistor packages. In the solid·kovar TO·5
header, it can deliver output currents in excess of
200 mA, if adequate heat sinking is provided. With
the TO·3 power package, the available output
current is greater than 1A.
The regulator is essentially blow·out proof.
Current limiting is included to limit the peak
output current to a safe value. In addition, thermal
shutdown is provided to keep the IC from
overheating. If internal dissipation becomes too
great, the regulator wi II shut down to prevent
excessive heating.

response somewhat. Input bypassing is needed,
however, if the regulator is located very far from
the filter capacitor of the power supply. Stability
is also achieved by methods that provide very good
rejection of load or line transients as are usually
seen with TTL logic.
Although designed primarily as a fixed·voltage
regulator, the output of the LM309 can be set to
voltages above 5V, as . shown below. It is also
possible to use the circuit as the control element in
precision regulators, taking advantage of the good
current·handling capability and the thermal over·
load protection.
To summarize, outstanding features of the regula·
tor are:

Considerable effort was expended to make the
LM309 easy to use and minimize the number of
external components. It is not necessary to bypass
the output, although this does improve transient

• Specified to be compatible, worst case, with
TTL and DTL
• Output current in excess of 1 A
• Internal thermal overload protection
• No external components required

schematic diagram

typical application
High Stability Regulator*

r--"T----r--.---"T-~INPUT

OUTPUT

fO----.....---------::j)-- :;IA
'"V
!}-----.,.-+---j---+-OUTPUT

D4

OJ.

L---+-.....-+--~....- .....- ....-~GROUND

-Regulation b.nerthan O.Ol%,lold.linelndtempernure, can beob Ilined.
fOatermines zener turrent. May be adjusted to minlmiH thermll drilL
+Solidtantilium.

connection diagrams
TO·5(HI

TO·3(KI

o

GOO

ounUT~rCASEJ

lonOMVIEW

Order Number LM309H

See Package 9

Order Number LM309K

See Package 18

1·21

0)

0

('t)

:?!
....I

absolute maximum ratings
Input Voltage
Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

35V
I nternally Limited
O°C to 12SoC
-65°C to 150°C
300°C

,

electrical characteristics
PARAMETER

(Note 1)

CONDITIONS

Output Voltage

T j ~ 25°C

Line Regulation

T j ~ 25°C
7V::::;V 1N ::::;25V

Load Regulation
LM309H
LM309K

T j ~ 25°C
5 mA::::; lOUT::::; 0.5A
5 mA S lOUT::::; 1.5A

Output Voltage

7V::::;VIN ::::;25V
5 mA::::; lOUT::::; Imax
P< Pmax

Qu iescent Current

7V::::; V 1N ::::; 25V

Qu iescent Current Change

7V::::; V 1N ::::; 25V
5 mA::::; lOUT::::; Imax

Output Noise Voltage

•

MIN

TYP

MAX

UNITS

4.8

5.05

5.2

V

4.0

20
50

50

mV

50
100

mV
mV

4.75

TA ~ 2SoC
10Hz::::; f::::; 100 kHz

5.25
5.2

V

10

mA
mA
mA

0.5
0.8

40

Long Term Stability

p.V
mV

20

Thermal Resistance
Junction to Case (Note 2)
LM309H
LM309K

15
3.0

°C/W
°CIW

Note I: Unless otherwise specified, these specIfications apply for oOe ::::;Tj::::; 12Soe, VIN = IOV and
lOUT = O.IA for the LM309H or lOUT = O.SA for the LM309K. For the LM309H, Imax = O.2A and
Pmax = 2.0W. For the LM309K,I max = 1.0A and Pmax = 20W.
Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about 150o C/W, while that

of the TO-3 package is approximately 35°C/W. With a heat sink, the effective thermal resistance can
only approach the values specified, depending on the efficiency of the sink.

typical applications(con't)
Fixed 5V Regulator

Adjustable Output Regulator

Current Regulator

,.... '
,

,,'

'----.._OUTI'IIT

*-.

*Requirad if regulator is locat1ld an appncible distance hompower supply filter.
tAlthough no output capacitor is needed forstllbllity, it
does improve transient response.

*Determinesoutputcurrent.

r-

s:w

typical performance characteristics

o

CD

Maximum Average
Power Dissipation

Maximum Average
Power Dissipation

50

~

'"

10

z

;::

r-....

It

INFINITE
HEAT SINK

=

WAKEFIELD
HEATSINK

illc;

=1
0.5
25

50

S

1.0

"""- j

w
u

z

~

\

SINK

-75

i!!

I-

NO AE1ATSINK "A.
1
0.1

100

125

10"

"::!'"

ffi

~
25

150

50

75

"

~
'"

1'\.\

100

10- 1

~IL=500mA

I

I

100

lk

10-2

125

150

10

I

I

...........

I

-..... "":'J

T = 25'C"

Y

5
~

I.

'"

a;

(

'"z'"

""""-

~

..........

~

"'

10

15

20

25

30

35

10

15

INPUT VOLTAGE IV)

~

~

1.5

~

~
w

"!:;'"

w

5
5

:=
0.5

100

I-

5.5

il'i

5.5

II

I-

~

5.0

;;

5.0

4.9
VIN

75

100

JUNCTION TEMPERATURE ('"C)

125

I L "2DOmA

.....

75

100

~

~>
~
w

"!:;'"

1r- I.
I"'""T I
""" I I

125

0.1

~

Tj "25°C
CL =0

""

>
'"
~
'"z

12!'C

15

50

Output Noise Voltage

T.t)C

10

25

JUNCTION TEMPERATURE rC)

I

4.5

4.5

10V

4.B

H-r
T

=

IL ;2imA

"

1i

Cl

- r-

~

'"~

50

~

1.0

lOV

oS

25

I-

Quiescent Current

C

0

. . . 1'....

o

6.0

C

i

1M

.... 1'--- .....

INPUT VOLTAGE (V)

Quiescent Current

"

lOOk

5.0

125

6.0

~
~
l-

'"
"

I,
II

JUNCTION TEMPERATURE I'C)

VIN

10k

>

T, = 125'C 'iT; = 25'C
4.5

4.0
75

I
lk

"!:;'"

n

'"

1.0

50

I
100

Output Voltage

~

>

25

I-

10

FREQUENCY (Hz)

5.0

!!!

oS

-~V'N=3Vpp

35

IL"'lA
TO·3

c;

5
5

I.

.."\.
\.\
\

5.1

I
I
I, = lA 1T0·3)

il'i

:=

3D

'\

40 -1,=200mA
VIN " lOY

Dropout Characteristic

&V OUT :::;'100 mV

"

25

5.5

2.5
2.0

T,= 125'C

INPUT VOLTAGE IV)

Dropout Voltage

;::

20

T. = 25°C

60

20
5

\

........ ~,

~

.........

' I

o

,.

BO

w

T=\2~ """"-

II

1M

J\

-

VOUT = 4.5V

5l-

lOOk

Ripple Rejection
100

TO-3

10k

FREQUENCY (Hz)

Peak Output Current

Peak Output Current

./

I=====:t IL ::: 20 mA

AMBIENT TEMPERATURE rC)

AMBIENT TEMPERATURE rc)

lD~ ~

g

c;

===-~~T

:i!

z

'"

"

TA -25 Q C _

TD·5=
WAKEFIELD HEAT
-SINK 207 -INFINITE HEAT
SINK-

~

~

~BO·75

'"
~

10'
VIN

TO·320

Output Impedance

10.0

0.01
20

INPUT VOLTAGE IV)

25

10

100

lk

10k

FREQUENCY (Hz)

. 1:23

Voltage Regulators
LM113 reference diode
general description
The LM 113 is a temperature-compensated, lowvoltage reference diode_ It features extremely-tight
regulation over a wide range of operating currents
in addition to an unusually-low breakdown voltage
and good temperature stability_
The diode is synthesized using transistors and resistors in a monolithic integrated circuit_ As such, it
has the same low noise and long term stability as
modern IC op amps_ Further, output voltage of
the reference depends only on highly-predictable
properties of components in the IC; so it can be
manufactured and supplied to tight tolerances.
Outstanding features include:
•

Low breakdown voltage: 1.220V

• Dynamic impedance of 0_3n from 500llA to
20mA
• Temperature stability typically 1% over -55°C
to 125°C range
• Tight tolerance: ±5% standard, ±2% and ±1%
on special order.
The characteristics of this reference recommend it
for use in bias-regulation circuitry, in low-voltage
power supplies or in battery powered equipment.
The fact that the breakdown voltage is equal to a
physical property of sil icon-the energy-band-gap
voltage-makes it useful for many temperaturecompensation and temperature-measurement
functions.

schematic and connection diagrams

Note: Pin 2 connected to case.

TOPVIEW

Order Number LM113H
See Package 8

typical applications
Level Detector for Photodiode

Low Voltage Regulator

..

ZN382J

..

RZ

'20

R1

"

'"

5K

ZN290S

TTL
OUTPUT

"

LM113

12V

"

LM113
I,ZV

..""'",...+----'----~o- Your ~2V
•3
12.l1

,.

,.••

1.1K

CIt

I,F

tSolidtantalum.

1-24

r-

3l:
....
....
W

absolute maximum ratings
Power Dissipation (Note 1)
Reverse Current
Forward Current
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

100rnW
50mA
50mA
-55°C to 125°C
_65°C to 150°C
300°C

electrical characteristics

PARAMETER'

(Note 2)

CONDITIONS

= 1 mA

MIN

TYP

MAX

UNITS

1.160

1.220

1.280

V

Reverse Breakdown Voltage

IR

Reverse Breakdown Voltage
Change

0.5 rnA:':; I R :':; 20 mA

Reverse Dynamic Impedance

IR
IR

= 1 mA
= 10 rnA

0.2
0.25

1.0
0.8

n
n

Forward Voltage Drop

IF

= 1.0 mA

0.67

1.0

V

RMS Noise Voltage

10 Hz:.:;t:':;10kHz
IR = 1 rnA

Reverse Breakdown Voltage
Change

0.5 mA:':; IR :.:; 10 rnA
-55°C:':; T A :':; 125°C

Breakdown Voltage Temperature
Coefficient

1.0 mA :.:; I R :.:; 10 rn'A
-55°C:':; T A :':; 125°C

6.0

rnV

15

5

/lV

rnV

15

%tc

0.Q1

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C
maximum junction and a thermal resistance of 80 0 C/W junction to case or 440 oC/W junction to

ambient.
Note 2: These specifications apply for T A = 25°C, unless stated otherwise. At high currents,
breakdown voltage should be measured with lead lengths less than 1/4 inch. Kelvin contact sockets are

also recommended. The diode should not be operated with shunt capacitances between 200 pF and
0.1 /-LF, unless isolated by at least a lOOn resistor, as it may oscillate at some currents.

typical performance characteristics
Temperature Drift

~ 1.230
w

f-+-++-+-f-+-+-+-l

Reverse Dynamic Impedance

s

~ 1.220 t-+-t"'-I-t-+-+-+~

~

/~

:>

f-+-++-+-f-+-+-+-l

~ 1.210

V

w

~

'"~

0.3

~

-55 -35 -15 5

25 45 65 85 105 125

TEMPERATURE I'CI

T =12~Jtr
(A(

TAJJ

~

1/ ~t1

u

1.200 1-.L...l-~....l...-L-i----lL-L....J

Reverse Characteristics

~ 0.2

z

~

>

"

(%I~rC

III

0.1
0.3

1

3

-2
10

REVERSE CURRENT ImAI

30

~-U~

0.3

__~~-U~__~
10

30

REVERSE CURRENT ImA)

1-25

M

oror-

:E
....I

typical performance characteristics (con't)
Noise Voltage

Reverse Dynamic Impedance

Reverse Characteristics

90

'00

IR=SmA

TA :25"C

80

S
w
~

z

'0

~

....

0.4

0.6

0.8

w

~

~

40

'"
0.1

1.0

1.2

30
100

1.4

10k

lk

REVERSE VOLTAGE IV)

i:!

o
0.5

'"z

~~

illw

V

'"'"

~

TA : 25"C

~

0.5

'0

Our

<
UT -

I

,
50

l"""' i

~~

ffi

0.3

1:;
a:: D.1

I
I
o

10

oS

~

tNT

10

I

~ ~INSTABI

0.03
12

16

20

10'

TlME(,u.s)

FORWARD CURRENT ImA)

10'

10'

+15V

130t<
1%
10K
OUTPUT

1....-4.....---15"
Constant Current Source

Amplifier Biasing for Constant Gain with Temperature

200K
1%

6K
1%

12K

"Adjust for OV.t D"C
tAdjust for 100 mvrr.

-15V

Thermometer

1·26

10'

CAPACITANCE I,F)

typical applications (con't)
130K
1%

lOOk

10k

lk

FREQUENCY 1Hz)

IN'UT

I

>

iill'lr

100

Maximum Shunt Capacitance

I

1.5

c

10

30

2.0

.........

,M

Response Time

2.0

1--::::
I-"

lOOk

FREQUENCY 1Hz)

Forward Characteristics

TA '" _55°C

50

'"z>

25'C

0.2

oS 60

~

if)1V/ k';';·cI

10"'

~>

i-"

~
;;;

~

70

I

10'

10'

,...

...

3:

Voltage Regulators

N

o
C/)

...

~

CD'
en

LM120 series three-terminal negative regulators
general description
The LM120 Series are three·terminal negative regulators with a fixed output voltage of -SV, -S.2V,
-12V, and -1SV and up to 1.SA load current capability. These devices need only one external component - a compensation capacitor at the output,
making them easy to apply. Worst case guarantees
on output voltage deviation due to any combination of line, load or temperature variation assure
satisfactory system operation.

grammed for higher output voltages with a simple
resistive divider. The low quiescent drain current of
the devices allows this technique to be used with
good regulation.

Exceptional effort has been made to make the
LM 120 Series immune to overload conditions.
The regulators have current limiting which is independent of temperature, combined with thermal
overload protection. I nternal current limiting protects against momentary faults while thermal shutdown prevents junction temperatures from exceeding safe limits during prolonged overloads.

features

Although primarily intended for fixed output
voltage applications, the LM 120 Series may be pro-

The LM 120 Series is available in TO-S and TO-3
packages. The TO-S is rated at 200 rnA and 2W;
the TO-3 at 1A and 20W.

•
•
•
•

Preset output voltage error less than ±3%
Preset current limit
I nternal thermal shutdown
Operates with input-output voltage differential
down to 1V
• Excellent ripple rejection
• SO mV load regulation

schematic and connection diagrams
-5V& -5.2V

TO-5IHI
~DUTPUT

'w.

.""

BOTTOM VIEW

."
"'
'.~~~~---+--~~--~--------~--~--------------~

"'U='

.".

Order Numbers:
LM120H-5.0 LM12DH-5.2 LM120H-12 LM12DH-15
LM22DH-5.0 LM22DH-5.2 LM220H-12 LM220H-15
LM320H-5.0 LM32DH-5.2 LM320H-12 LM32DH-15

S•• Packag. 9

-12V& -15V
TO-3(KI

o

INPUT

DUTPUT~ICASEI

"'"

BOTTOM VIEW

Order Numbers:

'.~4-~~--~~~4---4---------~~~------------~

."
"

~~~~~~:~:~ ~~~~~~:~:~ ~~~~~~:~~ ~~~~~~:~~:
LM320K-5.0 LM320K-5.2 LM320K·12 LM32DK-15

See Packag. 18

1-27

en

.~
~

absolute maximum ratings.

(/)

Device Type

o

LM 120 Series/-5.0V

...

LM120Series/-5.2V
LM120 Series/·12V

N

:e

LM120 Series/-15V

Input

Voltage
-25V
-25V
-35V
-40V

Power Dissipation
Operating Junction Temperature Range

Input-Output
Differential
25V
25V
30V
30V

Internally Limited

LM120
LM220
LM320
Storage Temperature Range

_55°C to +150°C
_25°C to +150°C
aOc to +12SoC
-6SoC to+l50°C
300°C

Lead Temperature (Soldering 10 sec)

...I

electrical characteristics

LM120
LM220
MAX
MIN

CONDITIONS

PARAMETER
Output Voltage

(-5V & -5.2V) (Note 1)

Tj

= 25°C

LM320
TYP

MIN

MAX

UNITS

-5V

-5.1

-4.9

-5.0

-5.2

-4.8

V

-5.2V

-5.3

-5.1

-5.2

-5.4

-5.0

V

T j = 25°C
-25V::;: V ,N ::;: -7V

25

10

50

mV

Load Regulation (Note 2)
H Package
K Package

T j = 25°C
S rnA::;: lOUT::;: O.SA
5 rnA::;: lOUT::;: 1.5A

SO
75

20
50

50
100

mV
mV

Output Voltage

-25V::;: V ,N ::;: -7V

Line Regulation (Note 2)

5 rnA::;: lOUT::;: IMAx
-5V

-S.20

-4.80

-5.25

-4.75

V

-S.2V

-5.40

-S.OO

-5.4S

-4.95

V

2.0

rnA

P::;: PMAX

Quiescent Current

-25V::;: V ,N ::;: -7V

Quiescent Current Change

TA

Output Noise Voltage

1.0

2.0

= 25°C

-2SV::;: V ,N ::;: -7V

0.4

0.1

0.4

rnA

5 rnA::;: lOUT::;: IMAx

0.4

0.1

0.4

rnA

T A = 25°C, CL

= 1 IlF

10 Hz::;:t::;: 100kHz

150

Long Term Stability

IlV

5

50

50

mV

Thermal Resistance
Junction to Case
H Package

15

°CfW

K Package

3

°CfW

electrical characteristics
PARAMETER

(-12V)

CONDITIONS

(Note 1)
LM120
LM220

LM320
TYP

MIN

MAX

-12.3

-11.7

UNITS
MIN

MAX

-12.4

-11.6

V

Output Voltage

Tj

Line Regulation (Note 2)

T,

-32V::;:V'N~-14V

10

4

20

mV

Load Regulation

Tj = 25°C
5 mA~loUT~0.2A
5 mA:5;l ouT:5;1.0A

25
80

10
30

40
80

mV

-11.4

V

4

rnA

H Package (Note 2)
K Package
Output Voltage

= 25°C
= 25°C

-32V~V'N~-14V

-12.5

-12

-11.5

-12.6

5 mA~louT~IMAX
P~PMAX

Quiescent Current

-32V~V'N~-14V

Qu iescent Current Change

T j = 25°C
-32V:5;V IN~-14V
5 mA~louT~IMAX

Output Noise Voltage

TA

Long Term Stability

2
0.1

rnA

0.1

= 25°C

10Hz~t~

'·28

4

400

IlV

100kHz
120

15

120

mV

r-

electrical characteristics

(-15V)

(Note

3:
....
N

1)
LM120

PARAMETER

CONDITIONS

Line Regulation (Note 2)

=25°C
T, =25°C

Load Regulation

Tj

Output Voltage

Tj

o
en

LM320

LM220

TYP

MIN

MAX

-15.3

-14.7

UNITS
MIN

MAX

-15.4

-14.6

V

5

20

mV

-15

10

...

CD
CD

en

-35V~V'N<::;~17V

H Package (Note 2)
K Package
Output

=25°C

5 mA~loUT~0.2A

25

10

40

5 mA~loUT~ 1.0A

ao

30

ao

-35V~V'N~-17V

Voltage

15.5

14.5

15.6

mV

14.4

V

4

rnA

5 mA~loUT~IMAX
P~PMAX

Quiescent Current

.,35V~V'N~-17V

Quiescent Current Change

Tj

4

2

=25°C

-35V~V'N~-17V

0.1

5 mA~louT~IMAX

rnA

0.1

Output Noise Voltage

}JV

400

Long Term Stability

150

150

15

mV

Note 1: Unless otherwise specified, these specifications apply: -55°C$Tj,:S.150"C for the LM120; _25°C~Tj5150°C for
the LM220,and O"C5Tj.:s.125°Cfor the LM320;V,N:::: (VOUT + 5V) and 'OUT :::: O.lA for the TO-5 package and 'OUT:::: O.SA
for the TO-3 package. For the TO-S package, 'MAX:::: O.2A and PMAX = 2.0W. For the TO-3 package, 'MAX = 1.0A and
PMAX = 20W. Although power diSSipation is internally limited, electrical specifIcations apply only for power levels up to
PMAX- For calculations of junction temperature rise due to power dissipation, use a thermal resistance of 150"C/W for the
TO-S and 3SoCIW for the TO-3. With an infinite heat sink, the thermal resistance is 15°C/W and 3°C/W respectively.

01

Note 2: RegulatIon IS measured at constant junction temperature. Changes in output voltage due to heating effects must be
taken into account separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.

typical performance characteristics
Maximum Average
Power Dissipation

Maximum Average
Power Dissipation

50

~
z
eo
;::

INFINITE
....-HEAT
,SINK

20

:;
~
eo

5~~!B~~~

~

2

~

WAKEFIELD

--..

a:

:i!
0.5

~
25

-'-

.........

NO HEAT.
SINK

~

ill
c;

\

1.0

~

FF~~

75

100

125

150

25

AMBIENT TEMPERATURE (OCI

50

75

'-

'\.

100

~\

125

2

5
~

'\

40

~~

20
100

150

lk

10k

lOOk

1M

10M

FREQUENCY (Hzl

Output Voltage
15.1

lOUT -100 mA
VIN - VOUT '" 5V
T - 25°C
,
I
I
10"

15.0
~

COUT - 25pF
ALUMINUM

/

lit'

r--

~ 14.9

..-

~~:~~~~;~

~
l!

l\.VOUT '" -12V &-15V

AMBIENTTEMPERATURE rCI

Output Impedance

~
~

VIN - VOUT '" 5V
TI"'25°C
COUT'" 1 pF
SOLID TANTALUM

VOUT =-5.2V"\.\

~
~

.
II:

10'

E

"

60

a:

NDHEATSINK/

0.1

50

~

1\
.....-

WAKEFIELD

80

z

eo

f-...

a:

\

~

INFINITE HEAT SINK

~

100

TO·5

~

10

1

Ripple Rejection

10.0

TO·3

'""

12.1

5
~

11.9

!:;
eo 12.0
>

=

=

r--

5.3
5.2

10-2
100

lk

10k

lOOk

FREQUENCY (Hzl

1M

11111

5.1
-75 -50 -25

0 25 50 75 100 125 150
TEMPERATURE (OCI

'·29

typical applications
-...,.-....--1>---....--1>------;~-VDu,I+)

-------=....

I'-'~-....

-VOUTI_I

,.'

tD81lrmines zener current. May blldjustad to minimize temperature drift.
ttS olidllntlllum.
-An LM12D·12

OJ

LM12D·15 may be used to permit higher Input voltlps.

butthe regulated output voltage must b. at lead -15V when using the
LM1Zl)..lZlnd-1IVfortfleLM120·15,

·-select miston to set output vallllg•• 1 PPMrC trackinglu(ll8Stld.
Laad and lin. rqulation < 0.01% tlmperatul1Il1lIbility < D.t%.

High Stability 1 Amp Regulator

Dual Trimmed Supply

-Required if regul.tor is sepamed from filter mpacitor. Fornlulgi"en.
apacho, must be solid tantllum. 25,u.F aluminum electrolyti~ may be
substituted.
tRaquiml far stability. forwlueginn. capacitor mustb, solid tantalum.
25~F aluminum electrolytic 1liiy be substituted. V,lues given may be
increlSedwithoutlimit.
Fot output ClplcitillCe in txclssof1DIlpF. A high corrent diode from
input to output (1N40D1, etcJ will protect the re~atDr from
momentlry Input shorts.

"Optionll.lmpI'1JYeS1rlnsltntlesponsnndrippllrejlttion.
VOUT = VSET 81 ;282
Select R2 IS fallows:

LM12lt-5-300n
LM12lt-U - 300n
LM12D·12 - 750n
LM121J.15 -, Kn

Variable Output

Fixed Regulator

Current Source

1·30

Voltage Regulators

iw
N

~

.
XI

LM320T series three-terminal negative regulators
general description
The LM320T Series are three·terminal negative regulators
with a fixed output voltage of -5V, -5.2V, -6V, -8V,
-12V, -15V, -18V, -24V and up to 1.5A load current
capability. These devices need only one external com·
ponent-a compensation capacitor at the output, making
them easy to apply. Worst case guarantees an output
voltage deviation due to any combination of line, load
or temperature variation assure satisfactory system
operation.
Exceptional effort has been made to make the LM320T
Series immune to overload conditions. The regulators
have current limiting which is independent of tempera·
ture, combined with thermal overload protection. Internal
current limiting protects against momentary faults while
thermal shutdown prevents junction temperatures from
exceeding safe limits during prolonged overloads.

Although primarily intended for fixed output voltage
applications, the LM320T Series may be programmed
for higher output voltages with a simple resistive divider.
The low quiescent drain current of the devices allows
this technique to be used with good regulation.
The LM320T Series is packaged in the easy to use
Epoxy B TO·220 rated at 15 watts dissipation.

features
•
•
•
•

Preset output voltage
Current limit constant with temperature
Internal thermal shutdown
Operates with input·output voltage differential down
to 1V
• Excellent ripple rejection
• Easily adjustable to higher output voltage

schematic diagrams
-5V. -5.2V, -6V,

ar
III

connection diagram
-sv

TO-220 ITI

-~

o~

OJ

6.ZV

~ )
R16
DDS

-12V, -15V, -lSV, -24V

GND

IN

OUT

Order Numbers:

LM320T·5.0
LM320T-5.2
LM320T·6.0
LM320T-8.0
LM320T·12
LM320T-15
LM320T-18
LM320T·24
See Package 26

1·31

absolute maximum ratings
Device Type
LM320T 5V, 5.2V, 6V, SV
LM320T 12V, 15V, lSV
LM320T 24V
Power Dissipation
Operating Junction Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics

Input
Voltage
-25V
-35V
-40V

Input-Output
Differential
25V
30V
35V
Internally Limited
O°C to +125°C
-B5°C to +150°C
230°C

(-5V and -5.2V) (Note 1)

PARAMETER

CONDITIONS

MIN

TYP

MAX

-5.0
-5.2

-4.S
-5.0

V
V

UNITS

Output Voltage

Tj = 25°C, -5V
-5.2V

Line Regulation (Note 2)

Tj

= 25°C, -25V":; V ,N

-7.5V

10

40

mV

Load Regulation (Note 2)

Tj

= 25°C, 5 mA":; lOUT":; 1.5A

70

120

mV

Output Voltage

-25V":; V ,N ..:; -7V
5 mA":; lOUT":; 1.0A
P":; 15W, -5V
-5.2V

-4.75
-4.95

V
V

-5.2
-5.4
..:;

-5.25
-5.45

Quiescent Current
Quiescent Current Change

T A ~ 25°C, -25V":; V ,N
5 mA":; lOUT":; 1.0A

Output Noise Voltage

T A ~ 25°C, C L = lJ-LF,
10 Hz":;f":; 100 kHz

..:;

-7.5V

1.0

3

mA

0.1
0.1

0.5
0.5

mA
mA

150

J-LV

Long Term Stability

10

mV

Thermal Resistance
Junction to Case

5

electrical characteristics

°C/W

(-6V) (Note 1)

PARAMETER

CONDITIONS

MIN

TYP

MAX

-6

-5.75

UNITS

Output Voltage

T,

= 25°C

Line Regulation (Note 2)

Tj

= 25°C, -25V":; V ,N

-S.5V

12

40

mV

Load Regulation (Note 2) .

T j ~ 25°C, 5 mA":; I OUT":; 1.5A

70

120

mV

Output Voltage

-25V ..:; V IN ..:; -S.5V
5 mA":; lOUT":; 1.0A, P":; 15W

-6.25
..:;

Quiescent Current
Quiescent Current Change

T j = 25°C, -25V ..:; V ,N
5 mA":; lOUT":; 1.0A

Output Noise Voltage

TA

..:;

-S.5V

= 25°C, 10 Hz":; f":; 100 kHz

Long Term Stability

:s

-5.7

-6.3

V

V

1

3

mA

0.1
0.1

0.5
0.5

mA
mA

180

J-LV

12

mV

Note 1: Unless otherwise specified, these specifications apply: O°C S. Tj
125"C; VIN = (VOUT + 5V) and lOUT = 5 rnA. Although power
dissipation is internally limited, electrical specificattons apply only for power levels up to 15W. For calculations of junction temperature rise due
to power dissipation, use a thermal resistance of 50°C/W (no heat sink). With an infinite heat sink, the thermal resistance is 5°C!W.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account
separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.

1-32

electrical characteristics

iw

(-8V) (Note 1)

PARAMETER

CONDITIONS

MIN

TYP

MAX

-8.3

-8.0

-7.7

V

Output Voltage

T, = 25°C

Line Regulation (Note 2)

T j = 25°C, -25V:::: V'N :::: -10.5V

15

40

mV

Load Regulation (Note 21

T, = 25°C, 5 rnA:::: lOUT:::: 1.5A

70

120

mV

Output Voltage

-25V :::: V'N :::: -1 0.5V
5 rnA:::: lOUT:::: 1.0A, P:::: 15W

Quiescent Current
Quiescent Current Change

-7.6

-8.4

T, = 25°C, -25V ::::: V'N :::: -1O.5V
5 rnA :::: lOUT:::: 1.0A

1

3

rnA

0.1
0.1

0.5
0.5

rnA
rnA

250

IN

Long Term Stability

15

mV

MIN

CONDITIONS

-,12.5

TYP

MAX

-12

-11.5

T j = 25°C

Line Regulation (Note 21

T j = 25°C, -32V:::: V'N :::: -14.5V

4

24

mV

Load Regulation (Note 2)

T, = 25°C, 5 rnA:::: lOUT:::: 1.0A

40

120

mV

Output Voltage

-32V:::: V'N :::: -14.5V
5 rnA:::: lOUT:::: 1.0A, P:::: 15W

-11.4

V

-12.6

Qu iescent Current
Quiescent Current Change

T j = 25°C, -32V:::: V'N :::: -14.5V
5 rnA:::: lOUT:::: 1.0A

Output Noise Voltage

T A = 25°C, 10 Hz::::

f:::: 100 kHz

Long Term Stability

V

2

4

rnA

0.1
0.1

0.5
0.5

rnA
rnA

400

/lV

25

mV

(-15V) (Note 1)

PARAMETER

CONDITIONS

MIN

TYP

MAX

-15

-14.4

UNITS

Output Voltage

T j = 25°C

Line Regulation (Note 2)

T j = 25°C, -35V:::: V'N :::: -17 .5V

5

30

mV

Load Regulation (Note 2)

T j = 25°C, 5 rnA:::: lOUT:::: 1.0A

50

120

mV

-14.3

V

-15.6

-35V::::V'N ::::-17.5V
5 rnA:::: lOUT:::: 1.0A, P:::: 15W

-15.7

Quiescent Current
Quiescent Current Change

en

UNITS

Output Voltage

Output Voltage

...Xl

(Ii'

(-12V) (Note 1)

PARAMETER

electrical characteristics

-I

V

Output Noise Voltage

electrical characteristics

N

o

UNITS

T j = 25°C, -35V:::: V'N :::: -17.5V
5 rnA:::: lOUT:::: 1.0A

V

2

4

rnA

0.1
0.1

0.5
0.5

rnA
rnA

Output Noise Voltage

400

/lV

Long Term Stability

30

mV

:s

:s

Note 1: Unless otherwise specified, these specifications apply: aOe
Tj
125°e; VIN = (VOUT + 5V) and lOUT = 5 rnA. Although power
dissipation is internally limited, electrical specifications apply only for power levels up to 15W. For calculations of junction temperature rise due
to power dissipation, use a thermal resistance of 50°C/W Ina heat sink). With an infinite heat sink, the thermal resistance is SoC/W.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account

separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.

1-33

I

0':::

electrical cha racteristics

IS

PARAMETER

~

0

H8V) (Note 1)
MIN

CONDITIONS

N

Output Voltage

::E

Line Regulation (Note 2)

Tj

= 25°C
= 25°C, -35V::; V IN

Load Regulation (Note 2)

Tj

= 25°C, 5 mA ::; lOUT::; 1.0A

Output Voltage

-3.5V ::; VIN ::; -21V
5 mA ::; lOUT::; 1.0A, P::; 15W

.

C")

...I

Tj

-18.7
::;

-21V

T j = 25°C, -35V::; VIN
5 mA::; lOUT::; 1.0A

Output Noise Voltage

TA

= 25°C,

::;

-21V

10 Hz::;f::; 100 kHz

Long Term Stability

electrical characteristics

MIN

Output Voltage

Tj

Line Regulation (Note 2)

Tj

= 25°C
= 25°C, -35V ::; VIN

Load Regulation (Note 2)

TJ

= 25°C, 5 mA ::; lOUT::; 1.0A

Output Voltage

-40V ::; VIN ::; -27V
5 mA::; lOUT::; 1.0A, P::; 15W

-25
::;

-27V

Quiescent Current
Quiescent Current Change

UNITS

8

36

mV

50

120

mV

-17.1

V

V

2

4

mA

0.1
0.1

0.5
0.5

mA
mA

500

I.J.V

35

mV

(-24V) (Note 1)
CONDITIONS

PARAMETER

MAX

-17.3

-18.9

Quiescent Current
Quiescent Current Change

TYP

-18

T j = 25°C, -40V ::; V IN
5 mA::; lOUT::; 1.0A

::;

-27V

TYP

MAX

-24

-23

V

12

50

mV

50

120

mV

-22.8

V

-25.2

UNITS

2

4

mA

0.1
0.1

0.5
0.5

mA
mA

Output Noise Voltage

700

I.J.V

Long Term Stability

50

mV

:s

:s

Note 1: Unless otherwise specified, these specifications apply: O'C
Tj
12S'C; VIN = (VOUT + SV) and lOUT = SmA. Although power
dissipation is internally limited, electrical specifications apply only for power levels up to 15W. For calculations of junction temperature rise due
to power dissipation, use a thermal resistance of SO°C/W (no heat sink). With an infinite heat sink, the thermal resistance is SoC/W.
Note 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account
separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.

1·34

iw

typical performance characteristics

N

Output Voltage vs
Temperature

a

~

12V TO 24V

~

r-

i§
;:::

0

!: 0.991J

:l:
d;

I.DI
~ I.DD5
0I.DD
=>
J: 0.99S
=>
c 0.990

"

~

iliQ

-5~TOBV

20

'"

40

60

BO

100

120 140

0

10

rc)

20

3D

40

60

50

~

i:l

60

a;

40

20
100

:::

5V

VOUT

::

I"

./

"""" r-

T. - 25°C

t

0.25 0.5

0.75 1.0 1.25

1.5 1.75

w
u

)

)

F§FCOUT-M
SOLID
f--- TANTALUM

~
~

-5.2~

VCouT "25pF

/

lD"

~

~~

1

10°

z

0-

-5V &
-6V & -BV

lOUT;; lDDmA
V'N VOUT '" 5V
T.;; 25°C

§

SOLID TANTALUM
~OUT::: -12V & -15V

I'\.'\

~

Ii::

VOUT

-

-IBV & -24V

w

../

Ti ::::DoC

Output Impedance

VIN

'\

1/1

~ "2~oC ~ c I'
./

LOAD CURRENT (AMPS)

10'

T. '" 25°C
CauT"" l/lF

BO

i'

0

70

Ripple Rejection

i§

:>

2.4
2.2
2.D
I.B
1.6
1.4
1.2
I.D
D.B
D.6
D.4
0.2

AMBIENT TEMPERATURE (OC)

100

~

g

>
~

~~

~

JUNCTION TEMPERATURE

~

t--

w

~D

.

I

Differential

24
22
2D
INFINITE _
IB
~HEATSIN~_
16
14
12
ID
5°CIW
B
~SINJ6
10°C/W
4 HEATSINKHEAT SINK
2

I.DI

~ 1,005
:::;
d;
I.DD
~ 0.995

~

Minimum Input·Qutput
Maximum Power Dissipation

ALUMINUM

10'2

1k

10k

lOOk

1M

10M

100

10k

1k

FREQUENCY (Hz)

lOOk

1M

10M

FREQUENCY 1Hz)

typical applications

.1

-..:!:.C3

~"V

-r-M

~""~~B29

71-:;:2...

_.±. Cltt

~~40h-t

-r-2.2"F

6

{+I

,~

R2"

_.±. C2tt

B

rI'

VOUT

/

lMJ08

'--

-

r-'O"F

2
4""
R5
10k
I

3

LM320T·S

R4t
0.5%

2

R3"

"--

VOUT (-)

Load and hne regulation <0.01% temperature stability <0.1%
tOetermines Zener I:urrent. May be adjusted to minimize temperature drift.

ttSolid tantalum.
An LM3Z0T-12 or LMJ2DT·15 may be used to permIt higher input voltages, but the
regulated output voltage must be at least-15V when using the LMJZOT·tZ and -lBV
for the LMJ20T·15.
**Select reSIStors to set output voltage. 1 ppmtC trackmg suggested.

High Stability 1 Amp Regulator

'·35

typical applications (con't)

+ INPUT

r

lOUT

l:
L

+5.0V

Ik
..., RL

I

D.l,uf

I

.:..J

COM

+
I.F
6k

RI'

*IOUT '" 1 rnA +

5V

R1

-5.2V

-INPUT

Dual Trimmed Supply

Current Source

CI
2.2/.iF

SOLID
TANTALUM

INPUT

SELECT R2 AS FOLLOWS
LMJ20T-5/5.2/6 JOO
LMJ20T·8
470
LMJ20T·12
750
LMJ20T·15
Ik
LMJ20T·18
1.2k
LMJ20H4
1.5k

o-......-~
*lmprovestTansient
response and Tippie

rejection. Do not
increase beyond 50pF

Variable Output

+VIN _ , . . - - - ;

I
I

R4'
10k
1%

I

Load Regulatlonat.j, IL = lA
Output Ripple, C1N = JOOO.uF,IL
Temperature Stability

I
I

....L!:

Output NOise 10 Hz Sf$, 10 kHz

C4"
25.F-r

R5"
10k
1%

I
I
I
I

.....J...Z

C5""
25.F-r

I
I
-V IN

-

CI
25;JF

RI
50

R2
Ik

....J\J'V\.-t><:

C2
R3

+

25IJF

5k
OUTPUTTRIM
TO -15.0V

....- - - - {

±15V.l Amp Tracking Regulators

1·36

Performance (TYPlcat)

=

lA

(-15)
40 mV
100."vrms
'50mV
150,uVrms

(+15)
2mV
10~Vrms

'5DmV
150/JVrms

*Resistor tolerance of R4 and R5 determme matching of (+J and (-J outputs.
**Necessary only" raw supply filter capacitors Ire more than 2" from regulators.

typical applications (con't)
I
I

CIt

...J.::

25e F - , -

I
I

C2
25,uF

*Lamp brightness Increases until I, = la ('" I rnA) + 5V/R1.
tNecessary only If raw supply filter capacitor 15 mOle than Z" from LM320T.

8V -15V
BULB

"Lamp brightness IOcreases until II ;; 5V!Rl (i, can be set as low as l,uA).
tNecessary only II raw supply fdter capacitor IS more than 2" from lM32DT.

Light Controllers Using Silicon Photo Cells

-Requirad if regulator uSlpar.ted from filter capacitor by
mOil! than 3". For valul given. capacitOf must be solid
tantalum. 25,uF aluminum electrolytic may be substituted.
fRequiredfolstability. Forviduegiven,caplcitormu5tbe
solid tantalum. 25/JF aluminum electrolytic may be sub·
stituted. Values ginn may be increased without limit

For output capacitance in exce5S of 10illJF, I high current
diode from input to output (1 N4001. ett.) will protect
the regulator from momentary input shorts.

Fixed Regulator

'-37

CW)

N
C!)

Voltage Regulators

~

....
........
CW)

N
N

LM123/LM223/LM323 3 amp - 5 volt positive regulator
general description

....~
.......

The LM 123 is a three-terminal positive regulator
with a preset SV output and a load driving capability of 3 amps. New circuit design and processing
techniques are used to provide the high output
current without sacrificing the regulation characteristics of lower current devices.

CW)

N

.-

~
....

The 3 amp regulator is virtually blowout proof.
Current limiting, power limiting, and thermal
shutdown provide the same high level of reliability
obtained with these techniques in the LM 109
1 amp regulator.
No external components are required for operation
of the LM 123. If the device is more than 4 inches
from the filter capacitor, however, a lJ..LF solid
tantalum capacitor should be used on the input.
A O.IJ..LF or larger capacitor may be used on the
output to reduce load transient spikes created by
fast switching digital logic, or to swamp out stray
load capacitance.

An overall worst case specification for the combined
effects of input voltage, load currents, ambient
temperature, and power dissipation ensure that
the LM 123 will perform satisfactorily as a system
element.
Operation is guaranteed over the junction temperature range -SS~C to +IS0°C. An electrically
identical LM223 operates from -2SoC to +IS0°C
and the LM323 is specified from O°C to +125°C
junction temperature. A hermetic TO-3 package is
used for high reliab.ility and low thermal resistance.

features
• 3 amp output current
•

Internal current and thermal limiting

•

O.O1!~

typical output impedance

• 7.S minimum input voltage
• 30W power dissipation

schematic diagram

D3

"

connection diagram

IIZl

1124

ZlK

lK

typical applications

TO·3(KI

Basic 3 Amp Regulator

ON'

."~.-

r-- 5.00

~ t-,.

I-

:0

I!:
:0

1.0

5.10

4.95

co

4.90

.5

S

a
-75 -60 -25 0

Z5 50 75 100 125 160

-75 -50 -Z5

JUNCTION TEMPERATURE I"C)

Load Transient Response
w

Tj=-55"C~

12

~~
..
....

O.Z

10

I
II

ill

'"~

I-

Tj=Z5·,C~
Tj = 125·C

~

Tj =Z6·C

~~
~>

:;co

$

ill

-.L

>-

I-

I-w

-O.Z

CL -O.lpF

"~

I
" If
o
o

l;

12
INPUT VOLTAGE IV)

18

20

~

'(.

~ I'-< ~~~'~~:NTALUM

co

il!

;;

Output Nois. Voltage
1.0

VIN = 10Y

~

0 25 60 75 100125 150

TEMPERATURE ("C)

TIME "")

Quiescent Current
14

1·40

I

Line Transient Response

?:

l; 1.0

T

10

5

Dropout Voltage
Z.5

..sI-

SOLID
TANTALUM

12i

o

ZO

INPUT VOLTAGE IV)

1.5

100

~~
r-T=IZ5~~
,
.......

I"""'" ~

10

C

~:'o;;F:

Short Circuit Current

Ti ::25°C
TJ =150°C

~

./

TA -AMBIENTTEMPERATURE I·C)

I-- Tj.J55"C

~

I

I

Peak Available Output Current

~
c;

~

f-V'N -7.5V

TA - AMBIENT TEMPERATURE I"C)

"ill;::

~

t=~'N =liV
L7_ITHERMAL EFFECT)

Zi

~

25°C

~

ilic;

....I

-

CL - .1pF-

i..

30

..~

~

~
a

..~
.."

"

w

0.1

>
!ij

.01
10
TIME "")

100

lK

FREDUENCY (Hz)

10K

r-

s::...

typical applications (con't)

N
W

10 Amp Regulator With Complete Overload Protection

"r-

.,

s::N

,In

,W

N
W

"-

...

r-

s::W

20mA

N

W

.,

.11l

,W

.,

V OUT

+5V

I!l
,W
+VIN O-....JVI,.,....-------+--.!.j
c~

M
SOLID
TANTALUM

·SELECT FOR 20 mA CURRENT fROM UNREGULATED NEGATIVE SUPPl V

Adjustable Regulator 0-10V

@

3A

12V ~ VIN ~ 20V

,., +
CON

SOLID
TANTALUM

V*R6'"-1ZmA

v- {-IOV TO 20YI

NEED NOT BE REGULATED
A, -LM10IA
C, - 2jJf OPTIONAL-IMPROVES RIPPLE REJECTION, NOISE, AND TRANSIENT RESPONSE

Trimming Output to 5V

, .2

. . .",12",D!",'-+~~~

.,

1211

_I_c,

-1->.1 IJ F
I

v-5VTO-15V
REGULATED

1-41

Voltage Regulators

LM125/LM225iLM325/LM325A voltage regulators
general description

features

The LM125/LM225/LM325 and LM325A are dual
polarity tracking regulators designed to provide
balanced positive and negative output voltages at
currents up to 100 mAo Internally, the device is
set for ±15V outputs. Input voltages up to ±30V
can be used and there is provision for adjustable
current limiting. The device is available in three
package types to accommodate various power
requirements and temperature ranges.

• ±15V tracking outputs
• Output currents to 100 mA
• Output voltages balanced to within 1% (LM 125,
LM325A)
• Line and load regulation of 0.06%
• Internal thermal overload protection
• Standby current drain of 3 mA
• Externally adjustable current limit
• Internal current limit

schematic and connection diagrams
r---------~------~------------------~--~~Q0'" ~

Dual·ln-Line Package
+800$1

14 +SENSE

NC

LIMIT
12 Nt

Il +CURRENT

+VIN
-YIN

..

0'"~

30.

"'

15k

@""0
'12
2.0k

-CURRENT

11

,

10

LIMIT

-SENSE

8"" 0
o ''''CD

INI

GNO
REFERENCE

NO

-BOOST

-VOUT

TOP VIEW

Order Number LM325N
or LM325AN
See Package 22
Dual-In-Line Power Package (S)

'"

16k

,"

+$ENSE

0'''0

+ CURRENT

NC

12

NC

"O1710

"

GNO

LIMIT

-SENSE

NC
-BOOST

'26
2.25

+VIN
-VIN

10 -CURRENT

REFERENCE

'"
'"

+ BOOST

2

LIMIT

-VOUT

BOTTOM VIEW

Order Number LM325S
or LM325AS
See Package 39
Metal Can Package (HI

OlD.'

GN.
DI4.LEADPOWERDIP

RJ4
!.Ok

R35

Q0"'i2l

300

0'"

[!!]
TOPVIEW

NDt9: Pin 5 connected to Clse.

0
1-42

1101

0

0'" G

Order'l\fu'';'ber LM125H,
LM225H or LM325H
See Package 13

absolute maximum ratings

operating conditions

Input Voltage

Operating Temperature Range
LM125
LM225
LM325. LM325A

±30V
--{).5V
+0.5V
PMAX

Forced Vo + (min) (Note 1)
Forced VO- (max) (Note 1)
Power Dissipation (Note 2)
Output Short-Circuit Duration (Note 3)

-55'C to +125'C
-25'C to +85'C
O'C to +70'C
Storage Temperature Range
-6SoC to +150Q C
Lead Temperature (Soldering. 10 seconds)
300'C

Indefinite

electrical characteristics

(Note 2)

PARAMETER

TYP

MAX

UNITS

15
15

15.2
15.5

V
V

= 20 mAo

2.0

10

mV

= 20 mA

2.0

20

mV

3.0
5.0

10
10

mV
mV

4.0
7.0

20
20

mV
mV

±150
±300

mV
mV

CONDITIONS

Output Voltage
LM125. LM225.LM325A
LM325

14.8
14.5

Input·Output Differential

V

2.0

Line Regulation

V'N = 18V to 30V. IL
T, = 25'C

Line Regulation Over Temperature
Range

V'N

Load Regulation
Vo +

IL
Tj

= 0 to 50 mAo
= 25'C

IL

= 0 to

Vo Load Regulation Over Temperature
Range

MIN

= 18V to 30V. IL
V'N

50 mAo V'N

= ±30V.

Vo +
Vo Output Voltage Balance
LM 125/LM225/LM325A
LM325

Output Voltage Over Temperature
Range
LM125/LM325A
LM225
LM325

P:::; PMAX • 0:::; 10 :::; 50 mAo
18V:::; IV'NI 530
15.35
15.43
15.73

14.65
14.57
14.27

Temperature Stability of Va

= 25'C

Short Circuit Current Limit

T,

Output Noise Voltage

T, = 25'C. BW

Positive Standby Current

T,

Negative Standby Current

T j = 25'C

Long Term Stability

01

= ±30V

= 25'C

=

100~ 10 kHz

V
V
V

±0.3

%

260

mA

150

J.lVrms

1.75

3.0

3.1

5.0

mA
mA

0.2

%/kHr

45
12

'C/W
'C/W

150

'C/W

Thermal Resistance Junction to
Case (Note 4)
LM125H. LM225H. LM325H
LM325AS. LM325S
Junction to Ambient

LM325AN. LM325N

Note 1: See Definition of Terms.
Note 2: Unless otherwise specified. these specifications apply for Tj = -55'C to +150'C on LM 125. Tj = -25'C to +150'C on
LM225. Tj = O'C to +125'C on LM325A. Tj = O'C to +125'C on LM325. VIN = ±20V. IL = 0 mAo IMAX = 100 mAo PMAX =
2.0W for the TO-5 H Package. IMAX = 100 mAo PMAX = 5.0W for the DIP S Package. IMAX = 100 mAo PMAX = 1.0W for
the 01 P N Package.
Note 3: If the junction temperature exceeds 150°C, the output short circuit duration is 60 seconds.
Note 4: Without a heat sink, the thermal resistance junction to ambient of the TO~5 Package is about 150°C/W, while that of
the S Package is approximatelv 55°C/W. With a heat sink, the effective thermal resistance can only approach the values
specified, depending on the efficiency of the sink.

'-43

typical performance characteristics

(V ,N =±20V, IL = 0 rnA, T; = 25°C, unless otherwise noted)

Regulator Dropout Voltage
Load Regulation

o
;;
.!

2,0

15

4,0

>=
'"
~

"

~

'"'"~

">
!;"
"
I-

.

'-

'~ ~

6,0
8.0

-

POS REG

~

,~

r-

NEG

,

~EG

~

10
12

-

~

---- r: '"

18
20

rr-

- - - T·"+l50"C
-55"C· - - - T, '+25°C -

o

20

40

80

60

~

100

2.5

~

'">=
ill

~

14
16

is

--

2.0
1.5

/

I-

"
I!:
"

§"
~

1.0

~

20

i

40

I 1"-

l-

0

~

I"\..

I

80

100

+25

+50

+75 +100 +125

r--,

~ 0.80

I'~

~
g

'"

I

+25

+50

0.1
+15

0.70

25

Standby Current Drain

JUNCTION TEMPERATURE rc)

'"

-50 -25

S' +150
.6.IL=O-10mA

;;
.!

">=
'"
~

~
+50

,

V

~ -50

+40

aIL'0-10~A

+20

..'"~

-20

!;

5

-40

" -100

"

-60

~

TIME IIps/OIV)

20

22

+300

=

+100

~

'"~

§!
1; -100
'V

1=%V
V
24

IL =0

26

28

line Transient Response
For Positive Regulator

~

II

L

TA - 55°&
TA " +25°&
TA"'+125°C

INPUT VOLTAGE I±V)

~

>

+ SUPPLY

18

+200

1\

!;

TIME 1I",/OIV)

1.0

0 25 50 75 100 125 150

~

\

~

~

Load Transient Response
For Positive Regulator

z

~ +100

2.0

JUNCTION TEMPERATURE rC)

load Transient Response
For Negative Regulator

.!

I'

0.40

TA =+125°C

B

B 0.30

0 25 50 75 100 125 150

- SUPPLY

3.0 TA - j25°&

~

I-

15
a:

100

I-

l'

i
::; 0.50

I'..

75

TA - AMBIENT TEMPERATURE rC)

<"
.!

f'

l-

I"

_ _-'-_--'

50

TA" -55°C

l'

~ 0.60

1"-

'--_~_--'

+100

4.0

::l

0.20
-50 -25

<===========

1
0.1
-25

~ 0.90

I-

'-44

60

SINK
1== t-t-No HEATITo·5)

Current Limit Sense Voltage
vs Temperature for Positive
Regulator

I-

~>

40

1-r--

1.0

Current Limit Sense Voltage

0.50

'"

20

10

TA -AM8IENTTEMPERATURE 1°C)

~

~

z

i

LOAD CURRENT ImA)

rc)

w

~

100

INFINITE HEAT SINK
(To-5)

Regulator

~

80

10

vs Temperature for Negative

0.30

60

I

LM325A, LM325 Maximum

T A - AMBIENT TEMPERATURE

15

t--t----hr-t----:;>"'I----j

Average Power Dissipation vs
Ambient Temperature

-55 -25

DAD

1.0

LM225 Maximum Average

I

~

~

Power Dissipation vs

I

~

1.51--+--+---17'-;--1

I-

Ambient Temperature

0.1

~
> 0.60

is

2.0 1--t--+-;-::+'=-7~--l

Power Dissipation vs

f--NO HEATSINK
TO·5-

0.70

'"5
;

Ambient Temperature

~ I--

~

2.5 r--r--r--,--.,~

~

LOAD CURRENT ImA)

~

'"'"

~

~

INFINITE HEATSINK
TO·5

_ 0.80

~£,..-

0.5

"z

10

~

-55°C

~

LM125 Maximum Average

1.0

TI=+%

~

LOAD CURRENT ImA)

~

Regulator Dropout Voltage
for Negative Regulator

for Positive Regulator

!;

" -200

.6.V 1N ., +20V TO +23V
IL = 10mA

r
\

30

i...

typical performance characteristics (con't)

N

en

.......

+300

:>

500

AV1N '" -20V TO -2lV
IL "'lOmA

.s

avo

~ +200

~
~
Q

:<

400

~
~

300

.s...

+100

II

w

'"~

iN

Peak Output Current vs
Junction Temperature

Line Transient Response
For Negative Regulator

......

...... F::

l:; 200

Q

:::::::-.

Q

100

Q

-200
-50
TIME (10",/DlVI

en

.......

III

N

1'1'"

3:

w

POSITIVE
REGULATOR

en

.......
r-

~

~

...>~ -100

N

"150~V

50

3:

rrTi
100

W
N

en

»

150

JUNCTION TEMPERATURE ('CI

Output Impedance vs
Frequency

Ripple Rejection
0;

10

zQ
;::

20

:s
§

30
40

'"
~
...

50

~
w

.
~

II

I. =m'~A 1111111
INPUT RIPPLE =10 Vp~
VIN

z

~

-'

7If,~5V

NEGATIV:l

!
;5

1Il!IG~

~~

_ - C . = OJ..

~

60

1~_~_c.=l""
POSIT,I,~~ REGU~~!OR

100

1.0

z

REGUI~mio;

III

80

10

l.Ok

10k

lOOk

1M

0.1

0.01 LJ.J.llJJllL.LLWlIIL.:=="'--":'-u
10k
lOOk
1M
100
1.0k
FREQUENCV (Hzl

FREQUENCV (Hz!

typical applications
(NOTE: Metal Can (H) packages shown. Short pins 6 and 7 on DIP (N) and 8 and 9 on Power DIP (5).)
Basic Regulator ttt

r--r--I

.C!,...L

'I'fO CD

El
a".}----w_-----<~_<>CD
.
'1J' 0
as I
.. CD '14' [2J

'r

ur

I

I

,,,RlO

01'

~'5

11 GND

-Y,N

111

-CURRENT

10

5

LIMIT

REfERENCE

-SENSE
-BOOST

-VOUT

TOP VIEW

15k

1"~t"aE1J.l""1r1-+--~::::;==t==t::::;;::=+:::;;:::::::;===t_-

!;

~

"

2:

~

POJ.R~.r ~ :)r< k

,

TI=+Z5°~r

V I"' r--, .<"
TI "+I50'C ./ r-x
TI"-SS'C"-I' k' L

6.0
B.O

NE~. R'EG.I
TI" -55'~1
TI "+2S'C ,TI" +lSO'C ,-

10
12
14

I

16

I

2.5

-

......

V

40

11=+%
-5S'C

t;2 ~~

\.
60

2.5 ,..--,..--,--,.--...--."

~

s
ffi

2.0 I----t--+-:::--!:=-:I~-i

~-

1.51--1--+---bI''--+---l
1.0 i--i--h/'--+-""7'''f---l

"!;;
~

'"

BO

~

...is
~

/

V'~

V

I

20

Regulator Dropout Voltage
for Negative Regulator

Regulator Dropout Voltage
for Positive Regulator

Load Regulation

:>

(V ,N = ±20V, IL = 0 rnA, Ti = 25°C, unless otherwise noted.)

1i
20

100

LOAD CURRENT (rnA)

40

60

aD

100

'iii!z"

40

20

LM126 Maximum Average

LM226 Maximum Average

LM326 Maximum Average

Power Dissipation vs

Power Dissipation vs

Ambient Temperature

~~~'~~~~~~:~~~NG~~

I
INFINITE HEAT SINK
TO·5

I

r--

.?
-NO HEAT SINK
f= ,-TO·5

I

J

'"

-55 -25

0

+25

+50

rei

_ O.BO
w

~ 0.10

"'-

0.60
0.50

~

'f'...

i'

0.20

0.50

aIL"'D-1DmA

l'

POSITIVE REGULATOR

+20

~

~

~

l'
~

6.I L=0-10rnA

NEGATIVE REGULATOR
+100

~

~
-60

Q

TIME (Zps/DIV)

IB

20

L

t:0 V
V

22

24

IL '" 0

26

2B

30

INPUT VOLTAGE (.V)

Line Transient Response

~

+300

6.V'N = +20V TO +2JV
IL = 10 rnA

~ +200

POSITIVE REGULATOR

+100

w

~

~

1.0 TA - _55°&
TA=+2S0&
TA = +125°C

~

+50

U

>

!; -40

+ SUPPLY

!i

'"

-20

~
;;:;

0 25 50 75 100 12S ISO

w

>

"

:>

"~

w

r---.

TA '" +125°&

Load Transient Response
+150

-SUPPLY

2.0

JUNCTION TEMPERATURE ('C)

2

1/1\

=
~

"

-50 -25

Load Transient Response
+40

...

0.40
=
= 0,30
B

JUNCTION TEMPERATURE ('C)

100

3.0 TA - j25°C

::l

iii

-50 -2S 0 25 50 75 100 125 ISO

7S

Standby Current Drain

<
l'

"

...

"-

50

T. - AMBIENT TEMPER~TURE ('CI

TA '" _55°C

r---.

~ 0.60

=0.30
~

'"

25

+100

4.0

::l

iii

~

+15

Current Limit Sense Voltage
vs Temperature for Positive
Regulator

~ 0.10

~

:::; 0.40

:>

0.1

+50

T. -AMBIENTTEMPERATURE ('C)

~

01

~~ ~~~~~I~:~

f--NO EAT SIN
f--OIP AND TO·5

~ 0.80

'f'...

w

...iii!

+25

I FINITE H AT SINK
TO·5

\ ' f:::::::.

1.0

~ 0.90

2:

~

§
.?

I

0.1
-25

Current Limit Sense Voltage
vs Temperature for Negative
Regulator

g

......

I

......

+75 +100 +125

TA - AMBIENT TEMPERATURE

T-

1.0

f== I=NO HEA~~~~5~

I

0.1

,

INFINITE HEAT SINK
(TO·5)

~

100

Ambient Temperature
10

10

1.0

BO

Power Dissipation vs
Ambient Temperature
10

~

60

LOAD CURRENT (rnA)

LOAD CURRENT (rnA)

'"~

\

">

~ -100

-SO

~

C>

-100

-200
TIME (I",/DIV)

TIME (ZpslDIV)

1·49

typical performance characteristics (con't)
Peak Output Current vs
Junction Temperature

Line Transient Response
+150

AV1N '" -15V TO -1BV

~

IL:; lOmA

~
~

.

1

I- NEGATIVE REGULATOR

~ +100

....
iii
a:

'"

+50

w

JOO

I---''''''"P....+++-+-+-+---i

a:

B

~

....

~

II

>

~ -50

~

"

400

200 I-+-+-+-+-f''';;::~-+-+--l
100

f-f-+-+-+-+-

-100
-50

TIME 115ps/OIVI

50

100

150

JUNCTION TEMPERATURE I"CI

Output Impedance vs
Frequency

Ripple Rejection

~
z
;:

"

'"z

:>

~

0
10

I

111111.
~.

~

-REG

z
~

50
60
10

~

80

~

INPUT RIPPLE = 10 V....

40

'"

....

VIN '" ±25V

20

~

~

111111

30

a;

w

IL =10':'A

~

/

~

~

+ REG
111111 _ _ _ CL =I"F
111111--cL=o

90
100
100

1.0k

10k

lOOk

1.0

0.1

0.01
100

I.OM

Uk

10k

lOOk

I.OM

FREQUENCY IHzl

FREQUENCY IHzl

typical applications
(NOTE: Metal Can (H) packages shown. Short pins 6 and 7 on DIP (N) and Band 9 on Power DIP (S}.)
Basic Regulatorttt

r--r--I

'C1,...L
1"

-:r-

:;. ----,

GND---~
T-~:; ~

"------,,,,,,,,,"f'r"

I 'V o
IL __ _

2.0 Amp Boosted Regulation With Current Limit

I

-Vo'

" ..

~~3:~~IV
.~~;

I

.:.L

l'
I

}---+----<~_o-"o= -12\1

I

~

ICL

=

Current limit senslvoltlge (see curve)
RCL

tSolid tanulum.
ttShortpins6andlonDiPorBend90npowerDiP.
tttRCL can be added to the besic regulator between pinS 6 and 5, 1 and 2 tD reduce current hmit.
*RequlradifregubltorislocatadlnappraciabladlstancefrompowersuppIY'llter.
4+Although no capacitor Isnaaded for stability, it does help tllnsle ntresponse. (If needed use
1j.1Felettfolytil:.)
···Although no capacitor is needed for stability, it does help tnmient response. (If naeded use
lO;JFalectrolytic.)

1-50

-nyl

_ _... __ .J

-

i
typical applications (con't)

N

CJ)

.......

(NOTE: Metal Can (H) packages shown. Short pins 6 and 7 on DIP (N) and 8 and 9 on Power DIP (S).)

i

N
N

Positive Current Dependent Simultaneous Current Limiting

eft

.......
r-

3:

W
N

l'..:HI--+~=:-t-""""9-VOUT

eft

co
~"F

~+VBEQI

.,

r - _ VSENSE NEG + V DlODE
CL

-

RcL

Boosted Regulator With Foldback Current Limit

01

R3
1.35k

, -.....---'='+---<,.,.0 -VOUT • -12V

R'

"
POSITIVE REG.
"2.0A
Isc· '" 150 rnA
@TA = 25°C
+VIN "25V
'MAX

Ro,

D.'

+VOUy= +12V

NEGATIVE REG.
'MAX -Z.OA
Isc '" 750 rnA
@TA "25°C
-VIN =-25V

Electronic Shutdown

r+t-<~'-O-VOUT ~

-12V

tSolidtantalum.
ttShort pins 6 and 7 on DIP or 8 and 9 on power DIP.
*Required if regulator is lor;ated an appreciahle distance from power suppJyfilter.
**Althoughnol:illpilcitorisneededfofstilbility,ltdoeshelptflnsientruponse.(If

needed use 1jJF elec:trolytic.1

1·51

Voltage Regulators
LM127/LM227/LM327 voltage regulators
general description

features

The LM 127 /LM227 and LM327 are dual polarity tracking regulators designed to provide balanced positive
and negative output voltages at currents up to 100 mA.
Internally, the device js set for +5V, -12V outputs.
Input voltages up to ±30V can be used and there is
provision for adjustable current limiting. The device is
available in three package types to accommodate various
power requirements and temperature ranges.

•
•
•
•
•
•
•

+5V, -12V tracking outputs
Output currents to 100 mA
Specified to be compatible, worst case, with most MOS
Internal thermal overload protection
Standby current drain of 3 mA
Externally adjustable current limit
Internal current limit

schematic and connection diagrams
r---------~------~~----------------~----~-O~

Dual-in-Line Package

~

13)

14 +SENSE

+8005T

13

NO

AS
-VIN

2.25

0

0111
R6
300

-CURRENT
LIMIT

11

,

10

-SENSE

0

'13'

0

+CURRENT

LIMIT
12 Ne

+VIN

OND
REFERENCE
NO
-BOOST

-VOUT

CD 114) 8
TOPVIEW

R9
6k

@111'0

Order Number LM327N
See Package 22

Dual-I n-Line Power Package
R14
15k

I
+SENSE

r--==-+----W-t~t:==i_-----1---<>0 16'

0

tCURRENT
LIMIT

2

I

""

14

+80D5T

13 Ne
12

NO

+VIN

GND

11

-VIlli

REFERENCE

HI

-CURRENT
LIMIT

-SENSE

NO

- BOOST
R26

2.25
BOTTOM VIEW

Order Number LM327S
See Package 39

o TO·,
o

Metal Can Package

( ) lHEAODIP

GND

14·lEAO POWER OIP

R35
300

0 '8'0

l}-.:.::-+-"-----"""'..,.,...---+--o 0 15'

~
TOPVIEW

~1-~----+---~--1--r~~-4~~--~~--------------~CD 14' ~

0
1-52

1101

0

Note: Pm 5 connected to case.

Order Number LM127H,
LM227H or LM327H
See Package 13

absolute maximum ratings
Input Voltage
Forced Va + (min) (Note 1)
Forced Vo - (max) (Note 1)
Power Dissipation (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
LM127
LM227
LM327
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics

±30V
-Q.5V
+0.5V
Internally Limited
Indefinite
-55°C to +125°C
-25°C to +85°C
O°C to +70°C
-65°C to +150°C
300°C
(Nole 2)

PARAMETER
Output Vol tage
Va·
Va -

COND'-TIONS

MIN

TVP

MAX

+4.8
-12.5

+5.0
-12

+5.2
-11.5

UNITS

TJ = 25°C

Input-Output Differential

2.0

V
V
V

Line Regulation

V+IN = +8.0V to +30V,
V-IN =-15Vto-30V,
IL = 20 mA, T J = 25°C

2.0

15

mV

Line Regulation Over Temperature Range

V+IN = +8.0V to +30V,
V-IN = -15V to -30V,
IL =20mA

2.0

30

mV

Load Regulation
Va +
Va -

IL =Ot050mA,
VIN =±30V, T j = 25°C

3.0
5.0

10
10

mV
mV

Load Regulation Over Temperature Range
Va +
Va -

IL = 0 to 50 mA, VIN = ±30V
4.0
7.0

20
20

mV
mV

Output Voltage
Va +
Va -

P< PMAX , 0 ~ 10 ~ 50 mA,
+8.0V ~ V+IN ~ +30V,
-30V ~ V-IN ~ -15V

Temperature Stability
Short Circuit Current Limit

Tj = 25°C

Outpu~

Tj = 25°C, BW = 100 -10 kHz

Noise Voltage

Va +
Va -

4.75
-12.6

5.25
-11.4

V
V

±0.3

%

260

mA

40
100

/lVrms
/lVrms

Positive Standby Current

Tj =25°C,I L =0

1.75

3.0

Negative Standby Current

T j = 25°C, IL = 0

3.1

5.0

mA
mA

Long Term Stability

0.2

%/kHr

Thermal Resistance Junction to Case (Note 4)
LM127H, LM227H, LM327H
LM327S

45
12

°C/W
°C/W

Junction to Ambient, LM327N

150

°C/W

Note 1: See Definition of Terms.
Not. 2: Unless otherwise specified, these specifications apply for Tj = -55·e to +150·e on LM127, Tj = -25·e to +150·e on LM227, Tj = o·e to

+125·e on LM327, VIN = ±20V, IL = 0 rnA. IMAX = 100 rnA, PMAX = 2.0W for the TO-5H Package, IMAX = 100 rnA, PMAX = 5.0W for the
DIP 5 Package. IMAX = 100 rnA, PMAX = I.OW for the DIP N Package.
Nota 3: If the junction temperature exceeds 150°C the output short circuit duration is 60 seconds.
Not. 4: Without a heat sink, the thermal resistance of the TO-5 Package is about 150·elW, while that of the 5 Package is approximately 55·elW.
With a heat sink, the effective thermal resistance can only approach the values specified, depending on the efficiency of the sink.

1-53

01

typical performance characteristics

Load Regulation
~

>"

oS

ii
;::

"'
~
w
'""~

6.0
8.0
12

:;;
!;

14
16

co

Regulator Dropout Voltage

Regulator Dropout Voltage

for Positive Regulator

for Negative Regulator

r--,---r-,.....-=-=

2.0

~

1.5

~

1.0

I--f--+--

~~

0.5

1--+---+--1

I--+---+-=:I;J'......--=J

40

60

80

100

!.5

r--,--,--,--,-"

2.0

-

1.5

~

1,0

~

0.5

1--j---l---hI''---l----1

§5

::;

:!i

20

I"
a
5

1i

18

2
~

ffi

a
5

10

co

>

:!

!.O

4.0

!.5

(V ,N = ±20V, IL = 0 rnA, Tj = 25°C, unless otherwise noted.)

;;"

20

LOAD CURRENT ImAI

40

60

80

100

z

20

;;

LOAD CURRENT ImAI

LM127 Maximum Average

LM227 Maximum Average

Power Dissipation vs

Power Dissipation vs
Ambient Temperature

Ambient Temperature

10~mJ

40

60

80

100

LOAD CURRENT ImAI

LM327 Maximum Average
Power Dissipation vs
Ambient Temperature
10

10

INFINITE HEAT SINK
ITO·51

~

r- r--

1.0

~

NO HEATS1NK
ITO·51

1-

r0.1
-55 -25

0

+25

+50

0.1
-25

+15 +100 "'125

Current Limit Sonsc
Voltage vs Temperature
for Negative Regulator

2w

"''"~

0.10

I"

r-- r-- :-:-..

> 0.60
w

~!::

.

r-- l -

0.50

~I

l-

.- ~

-1- -

K

0.30

-

"'-

0.20

-

2w

'"~

0.90
O.BO

co 0.10
>

!

"'-

ill
0:

0.40

i:l

0.30

..
oS

.6.IL"'D-IDmA

I-

~"

ill
0:

,~

2.0

i!E

1.0

~

~
co

~

I-

=> -10

I!:
=>

-20

~

22

24

IL =0

26

28

Line Transient Response
for Positive Regulator

~

.6.V1N =+BTO+l1V

+50

\

w

~'"

'"

~

~>

!; -50

!; -50

!;co

-100
TIME Cz",/OIVI

20

V

INPUT VOLTAGE I±VI

~
~

+50

.,!;

co

-55°C

~ +100

w

I\~

"

+150

all "'O-IOmA

+10

/'
TA

TA " +125°C

Load Transient Response
for Negative Regulator

>"

+ SUPPLY

18

0 25 50 15 100 125 150

oS

~>

TA =+125"C

~

JUNCTION TEMPERATURE lOCI

:; +100

-SUPPLY

TA =-55°C

3.0 TA - i25°C

TA=+25°C

-50 -25

+20

C(

1-54

i'-

\ - I--

+150

;::

~w
'"

I-

Current Drain

4.0

0:

+30

.

I[

I-

Load Transient Response
for Positive Regulator

>"

I

K~--

0.60

JUNCTION TEMPERATURE rCI

oS

~

§ 0.50

-50 -25 0 25 50 15 100 125 150

co

100

AMOIENTTEMPERATURE lOCI

St~ndby

for PositiVI! RI'IIt1I.llor

-

15

50
TA

Current Limit Snnso
Voltage vs Tnmpumtllw

.", I- - .- -

r-- I - - -

:::; 0.40

i

t'-.,

0.1,-_......_ _-,-_ _.L-_-'

Til. - AMOI[NT HMJlERATUf1[ I C)

TA - AMBIENT TEMPERATURE lei

0.80

I

TIME n",/OIVI

I/'

-100
TIME 1z",/OIVI

30

typical performance characteristics (con't)
Line Transient Response
for Negative Regulator

>"
..5

+150 r-r-'-'-T"""'-r"T"""""'-"-'-'-'-'
.lV1N "'-15VTO-18V

~ +100

~

~

Peak Output Current vs
Junction Temperature

+50

SOD

H-++-H-++-H-+++-H

1

H+\l-H-++t-1-+++-H

ffi

300
=
~

~

'"

S

>

~

~
~

400

f-t-t--+-+-++-+-t--+--l

...

"co

-50

200

f-t-t--+-+--P"'ii!*-t--+--l

100

I-t--l-+-+-+-50

T1ME(15",/D1V)

50

100

150

JUNCT10N TEMPERATURE 1°C)

Output Impedance vs
Ripple Rejection
IL "'lOrnA
VIN "'t25V

;;;

'";::
15
~

10

is
...
w

50

il:

60

~

80

~

"~

INPI~~,~IPPl~ ~ ,:,~ Vp •P

20
30

...
'"

Frequency

CL
- - - - CL

40

I

•

0

"

,1,~!:A'

P ~~~GI

70

+ ~~,~,-C

.IM11II1
11111111

100

I.Ok

lOOk

10k

1.0M

100

FREQUENCY IH,)

1.0k

10k

lOOk

1.0M

FREQUENCY IH,)

typical applications
(NOTE: Metal Can (H) packages shown. Short pins 6 and 7 on DIP (N) and 8 and 9 on Power DIP (S).)

Basic Regulatorttt

r--r--I

GND -

-

2.0 Amp Boosted Regulator with Current Limit

r.:-l

-

f-~:~

-L0'"

I

-:r-'"'

1.

wo

-Vo

=

-12V

I
I

+--_ _... __ .J

I

_ CunentlimitsensBvolUga(selcurvl)

CL -

RCL

fSolidtanblum.
ttShortpinsOandlon DlPor8and9 on power DIP.
tttRCL can ba added to th. bIIsic regulator betwaan pinlS and 6, 1 Ind Zto r.duel current limiL
*Requirad If regulator IS located an .ppreciabla distance from power supply filter.
**Althoughnouplcltorisneldedforstlbility,itdoeshelptnnsientresponse.(lfnaedlduSi
1~Fellctrolytic.)

***Although no capacitor is needed for rtability. it does help tnnsient response. Uf needed USi
1Op.Feler:trolytic.)

1-55

typical applications (con't)"
(NOTE: Metal Can (H) packages shown. Short pins 6 'and 7 on DIP (N) and 8 and 9 on Power DIP (S).)
Electronic Shutdown

V,H ~ 2.DV
V,L
I.IV

s

3."

G--'\Jvv-f-l......h

.....-O-VOUT • -12V

}-t-~

Boosted Regulator with Foldback Current Limit
.3
1.lSk

r - -....---==t---1~

"'

-VOUT " -12V

21

POSITIVE REG.
'MAX = Z.OA
Isc+ '" 150 rnA

'oD.'c

@TA=25~C

+VIN ;;lOV
+VOUT = SV

NEGATIVE REG.
IMAX

=

Z.DA

Isc = 750 mA
@TA C 25"C
-VIN:: -25V

Positive Current Dependent Simultaneous Current Limiting

l'..r-t---t--::,N::"::"4+-....~-VOUT=-1ZV
C4

~'"'

.,

'----+-....t - - -....---Q -v,.
*CZ t

",*'"

R3

"0

F

.,

2N2906· ......- - - - - - - - - - - - - '

,

VSENSENEC! +VBEQI

AI
ICL -

It

V SENSE

~::_+ VDIODE

ICL + controls both 'Ides of theleglllator.
R"

VSENSE +

CL'"~

1-56

tSohdtantalum.

ttShon pins 6and 7 on DIP or 8 and 9 on power DIP.
*Raquired if r!gUlator is located an appreciable distanc, from power sup ply filter .
..... Although no capacllor is needed for stability. it doe. help transiantre spaMI.Of
neededuse1~Felectrolytic.)

Voltage Regulators
LM145/LM245ILM345 negative three amp regulator
general description
The LM 145 is a three·terminal negative regulator with a
fixed output voltage of -5V or -5.2V, and up to 3A load
current capability. This device needs only one external
component-a compensation capacitor at the output.
making it easy to apply. Worst case guarantees on output
voltage deviation due to any combination of line, load
or temperature variation assure satisfactory system
operation.
Exceptional effort has been made to make the LM145
immune to overload conditions. The regulator has cur·
rent limiting which is independent of temperature,
combined with thermal overload protection. Internal
current limiting protects against momentary faults while
thermal shutdown prevents junction temperatures from
exceeding safe limits during prolonged overloads.
Although primarily intended for fixed output voltage
applications, the LM145 may be programmed for higher

output voltages with a simple resistive divider. The low
quiescent drain current of the device allows this tech·
nique to be used with good regulation.
The LM 145 comes in a hermetic TO·3 package rated at
25W. Two reduced temperature range parts, LM245 and
LM345, are also available.

features
• Output voltage accurate to better than ±2%
• Current limit constant with temperature
• Internal thermal shutdown protection
• Operates with input·output voltage differential of 2.8V
at full rated load over full temperature range
• Regulation guaranteed with 25W power dissipation
• 3A output current guaranteed
• Only one external component needed

schematic and connection diagrams

VOUT

03
6.2V

R20
2Dk

R16
0.05

v.. o---6---6-~~----4---~--~----~~---------------'--~~-------------------------l
TO·3(K)
INPUT
{CASEI

BOTTOM VIEW

Order Number LM145K, LM245K or LM345K
See Packago 18

1·57

absolute maximum ratings
I nput Voltage
Input-Output Differential
Power Dissipation
Operating Junction Temperature Range

20V
20V
Internally Limited
-55°e to +150oe

LM145
LM245
LM34!i
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical-...characteristics

-25°e to +150 o e
oOe to +125°e
-65°e to +150 o e
300 0

e

(-5V & -5.2V) (Note 1)

LIMITS
PARAMETER

CONDITIONS

LM14S/LM24S
MIN

Output Voltage
S.OV
S.2V

Ti = 2SoC, lOUT = SmA,
Y'N =-7.S

Line Regulation (Note 2)

-S.1
-S.3

TYP

LM34S
MAX

MIN

UNITS

TYP

MAX

-S.O
-5.2

-4.8
-5.0

V
V

-S.O
-S.2

-4.9
-S.1

Ti = 25°C
-20V::; Y'N ::; -7.5V

5

15

5

25

mV

Load Regulation (Note 2)

T, = 25°C, V'N = -7.5V
5 mA ::; lOUT::; 3A

30

75

30

100

mV

Output Voltage
5.0V
5.2V

-20V::; V'N ::; -7.8V
5 mA::; lOUT::; 3A
P::;25W
TMIN::;Ti::;TMAX

-4.75
-4.95

V
V

Quiescent Current

-20V::; Y,N ::; -7.5V
5 mA::; lOUT::; 3A

1'.0

Short Circuit Current

Y'N =-7.5V
V'N = -20V

Output Noise Voltage

TA = 25°C, CL = 4.7JlF
10 Hz::;f::; 100 kHz

-5.20
-5.40

-4.80
-5.00

-S.2
-S.4

-5.25
-5.45
1.0

3.0

mA

4
2

4
2

5.0
3.5

A
A

150

150

Long Term Stability

5

Thermal Resistance
Junction to Case

2

3.0

50

5

2

JlV
50

mV
°CIW

Note 1: Unless otherwise specified, these specifications apply: -55°C ::; Tj ::; +150°C for the LM145; -25°C::; Tj::; +150°C for the LM245 and
O°C::; Tj ::; +125°C for the LM345. VIN = -7.5V and lOUT = 5 mAo Although power dissipation is internally limited, electrical specifications apply
only for power levels up to 25W. For calculations of- junction temperature rise due to power dissipation, use a thermal resistance of 3So C/W for

the TO-3 with no heat sink. With a heat sink, use 2°C/W for junction to case thermal resistance.
Not8 2: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects must be taken into account
separately. To ensure constant junction temperature, pulse testing with a low duty cycle is used.

1-58

typical performance characteristics
Maximum Average Power

Dissipation for LM145.
LM245

Maximum Average Power

S
~

Ripple Rejection

Dissipation for LM345

40 r - - - - r - - - - r - - - - , - - - - ,

100

40r---.---~----.---,

~

lO

VIN - VOUT =5V
T, ~ 25"C
COUT =4.7,uF
SOLID TANTALUM

80

z
0

~

0::
~

~

20

ill
c

60

\.

'"w

\

~

'"

Ii:

10

~

;;;

40

......

20
50

75

100

50

25

125

T.- AMBIENTTEMPERATURE ("C)

75

Minimum

E ,N

I

r- T,

z
«

ill
~
0-

~

~

/'

/

0.1

~

1.6

ii
:>

1.4

I

z

:>

§

V- -

T =+15Ua C

1.8

I

/
T,= -55°C

1.2
1.0

L-

I~

...-:~

10

100

lk

10k

lOOk

1M

2w

'"'"
!:;

10M

T'1"""1

25 C _

-5.1
-5.0
-4.9

S

-4.8

THERMAL
SHUTDOWN

§ -4.7

I I I~
I
I

-4.6

0.6

-4.4

0.4

-4.2

10M

-50
OUTPUT CURRENT (AMPS)

f - FREOUENCY (Hz)

1M

-5.2

0

:>

0.8
0.01

lOOk

-5.4
-5.l

I I

2.0

25"&

10k

Output Voltage vs
Temperature

I I

2.2

§ ~~~~D=T~~:ALUM

w
u

Input~Output

2.4
100mA
~ 10V

lk

f - FREQUENCY (Hz)

Voltage Differential

lOUT

f::: V

100

TA - AMBIENTTEMPERATURE ("C)

Output Impedance
10

125

100

50

100

150

T - TEMPERATURE ("C)

typical applications
-""'1>--.....- -....------

--

ND HEAT

0:

~
~

i=

1

::

~INK -

ill
is

5

~
~

WITH lD'C!W
HEAT SINK

NO HEAT SINK

2

0:

~

~

1

--

.5

0.5

.3

D.3
0

15

3D

45

60

AMBIENT TEMPERATURE ('C)

1·64

INFINITE
HEAT SINK

10

z

C>

i=

I

TO·3

20

WITH 10'C!W
HEAT SINK

75

D

15

30

45

rnV/1000 hr

44

typical performance characteristics
Maximum Average Power
Dissipation

mA
mA
~V

170

.

Long Term Stability

mA

60

AMBIENT TEMPERATURE ('CI

75

typical performance characteristics (con't)

Ripple Rejection

Peak Output Current
80
2.5

~

$
....

i

.

60

z

i

1.5

!;

40

w

§

ir

20

.5

10

15

20

25

3D

10

100

lk

INPUT·CUTPUT DIFFERENTIAL IV)

Ripple Rejection
70

~

..

60

;;J

~

50

z

PART# _VIN
10V
LM34~06_ 11 V
LM340·08 14V
LM340·12-19V
LM340·1523V
LM340·18- 27V
LM340·24 33V

~

il:

ir

40

30

Dropout Voltage

~VIN=JVP.P

~

~O~T2~o5~~

;:

I

.

. .

LM34~05

0:

o

lOOk

2.5

f:: 120 Hz

.

10k

FREnUENCY IH,)

~

"ffi
~

1.5

c;
!;

~

~

.5

;;

10

15

25

25

20

OUTPUT VOLTAGE IV)

50

75

100

125

150

JUNCTION TEMPERATURE I'C)

Output Voltage
(Normalized to lV at 2SoC Tjl

Quiescent Current

1.010
VIN - VOUT '" 5V
lOUT = 20 rnA

~1.0D5

/"

w

'"~

~ 1.000

/

....

'"

~

1/

- r--..

.995

""
VOUT=5V

H--t-t-+-+++ lOUT " 20 rnA
.990

o

~

~

~

roo

T. = 25°C
5 L-J.-'--'--'--'-.l-..........:......~--'--'
1~

1~

5

10

JUNCTION TEMPERATURE I"C)

Quiescent Current

"oS

10

~

~

~

VIN " lOV

CI

VOUT = 5V

S

35

VIN'" lOV

Z

"~

I...........

§
....

'"

.(1"1

.1

OUT" 1.uF
ANTALUM

~

lOUT" 20 rnA
~

~

1~

COUT=lo~

TA = 25°C

w
u

5.5
~

30

lOUT::: 500 rnA

....... r-.,

""- I"--.
o

25

VOUT = 5V

6.5

S

20

Output Impedance

7.5

r-.......

15

INPUT VOLTAGE IV)

1~

JUNCTION TEMPERATURE I'C)

1~

I

.01
10

100

lk

I
10k

lOOk

1M

FREnUENCY IHd

1-65

(I)
Q)

';:

typical applications

Q)

en
o

Fixed Output Regulator

'lit

M

1-"--.--

lNPUT-.......-'-j

~

...J

Cl'
D.221-lF

OUTPUT

CZ"

""REQUIRED IF THE REGULATOR IS LOCATED FAR FROM THE POWER SUPPLY FILTER.
·"AlTHQUGH NO OUTPUT CAPACITOR IS NEEDED FOR STABILITY, IT DOES HELP
TRANSIENT RESPONSE. (IF NEEDED USE O.l.uF. CERAMIC, DISC.)

Adjustable Output Regulator

INPUT

1-'-_"__

--"--I

OUTPUT

Rl

RZ

VOUT = 5V + (5V/Rl + 10 ) R2
5V/RI > 310, LOAO REGULATION (L,)

~

((Rl + RZIIRll (L, OF LM340·05)

Current Regulator

INPUT

--"--I

V2 .3
IOUT=R, +10

Rl

61 0 ", 1.5 rnA over line and load changes

----

' - - - - -. .- - OUTPUT
lOUT

15V 5 Amp Regulator With Short Circuit Current Limit
Rl

1

4

D.25n

01

4

O--_.-::.S_I-_"""1\6f1
W.,.....-_-:ZN4398,_--=S""__ _ _ _,

1

'5
V1N

'"

RZ
Hl
1----. 4W

I

. ."....----0 ~~~TA=Ml:V

19.5V TO 25V
CZ'
10jlF

I

SINGLE
POINT GNO
LOAD REGULATION: 1.1% FOR 0::;

lOUT:::;

SA PULSED WITH 50 ms tON,

'SOLIO TANTALUM.
NOTE 1: CURRENT SHARING BETWEEN THE LM34D and 01 AllOWS THE EXTENSION OF SHORT CIRCUIT
CURRENT LIMIT, SAFE OPERATING AREA PROTECTION, AND (ASSUMING Ul'S E>JA IS ONE FORTH THE
lM340'S C-)JA) THERMAL SHUTDOWN PROTECTION.

NOTE Z, FOR OPTIMUM CURRENT SHARING OVER TEMPERATURE 01 SHOULO BE MOUNTED TO THE
SAME HEAT SINK AS 01 SO THAT ITS JUNCTION TEMPERATURE TRACKS THAT OF 01.

1-66

typical applications (con'tl

High Current Voltage Regulator

CD

INPUT - -...-

!II

C

.....

5V, IDA

~-"--OUTPUT
C2

0.1 J.lF

TA"'25~C

@V IN tOV, OA ~ IL:S IDA
Load Regulation'" 2 mV
@IL =10A.9V~ VIN::: 12V
line Regulation'" 20 mV

tSOLIO TANTALUM.
NOTE: PASS TRANSISTOR NOT SHORT CIRCUIT PROTECTED.

Electronic Shutdown Circuit

V,N ·20Vo-...__- - - - - - - - - _.....-

VOUT

.....:..

t5VAT tAMP

Rt

soo,!

R2
360"
tW
RJ

~~P~~ 0--",,1K""_-I

"REQUIRED IF THE REGULATOR IS LOCATED FAR
FROM THE POWER SUPPLY FILTER
"HEAT SINK Qt AND THE LM340

Dual Power Supply

~----..--4~--O~f5J~TIAMP
Ot
tN4120

GNOo--t_---_1~------_1~-t_-~-oGNO

02
tN4120

1 - - - - -....--.4.....- - 0 ( ) ~f5V~Tl AMP

·SOLID TANTALUM.
NOTE t: IF THE START UP COMMON LOAD IS MORE THAN 600 mA, REPLACE Dt
WITH AN EQUiVALENT GERMANIUM DIODE.

'-67

=

·c

Voltage Regulators

i

LM341 series three terminal positive regulators
general desc.ription
Considerable effort was expended to make the LM34l-XX
series of regulators easy to use and minimize the number
of external components. It is not necessary to bypass
the output, although this does improve transient response.
Input bypassing is needed only if the regulator is located
far from the filter capacitor of the power supply.

The LM341-XX series of three terminal regulators is
available with several fixed output voltages making them
useful in a wide range of applications. One of these is
local on card regulation, eliminating the distribution
problems associated with single point regulation. The
voltages available allow these regulators to be used in
logic systems, instrumentation, HiFi, and other solid
state electronic equipment . .Although designed primarily
as fixed voltage regulators these devices can be used
with external components to obtain adjustable voltages
and currents.

features
•
•
•
•
•
•

The LM341-XX series is available in the plastic TO-202
package. This package allows these regulators to deliver
over O.5A if adequate heat sinking is provided. Even
with over O.5A of output current available the regulators
are essentially blow-out proof. Current limiting is included
to limit the peak output current to a safe value. Safe
area protection for the output transistor is provided to
limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided,
the thermal shutdown circuit takes over preventing the
IC from overheating.

Output current in excess of O.5A
Internal thermal overload protection
No 'external components required.
Output transistor safe area protection
Internal short circuit current limit
Available in plastic TO-202 package

voltage range
LM341-5.0
LM341-6.0
LM341-8.0
LM341-l2

5V
6V
8V
12V

l5V
l8V
24V

LM34l-l5
LM341-18
LM341-24

schematic and connection diagrams

.----4I------....- - - - -....--..-:-'NPuT
TO-202 (P)

o

0'5
2k

GND

016

...._____+ ____

0,3
~~2~OUTPUT

017

1

01'

3Dk

3

INPUT _

2
- - OUTPUT

GND
FRONT VIEW

018
2.6k

Order Numbers
LM341P-5.0
LM341P-6.0
LM341P-8.0
LM341P-12

0'

Uk

See Package 37
GND

'-68

LM341P-15
LM341P·18
LM341P-24

3

absolute maximum

rating~

Input Voltage
(Va = 5V through 18V)
(Va = 24V)
Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

35V
40V
I nternally Limited
OOeto +70 o e
+150 o e
-65°e to +150 o e
+230 o e

electrical characteristics
LM341-5.0 (V 1N

= 10V, lOUT = 500 mA, oOe:s; TA :s; +70o e,

PARAMETER

unless otherwise specified)

CONDITIONS

Output Voltage

TI = 25°C

line Regulation

Tj = 25°C, 7.2V 5, V'N 5, 25V
lOUT = 500 mA
lOUT = 100 mA

MIN
4.B

Load Regulation

TI = 25'C. 5 mA 5, lOUT 5, 0.5A

Output Voltage

7.5V 5, V'N 5, 20V, 5 mA 5, lOUT 5, 0.5A. Po 5, 7.5W

Quiescent Current

TI = 25'C

Quiescent Current Change

TI = 25'C, 7.5V 5, V'N 5, 25V
TI = 25'C, 5 mA 5, lOUT 5, 0.5A

Output Noise Voltage

TA = 25°C, 10 Hz5,l5, 100 kHz

TYP
5

4.75

UNITS

5.2

V

100
50

mV
mV

100

mV

5.25
7

Ripple Rejection

1= 120 Hz

60

Dropout Voltage

Tj = 25'C, lOUT = 0.5A

2

V

10

mA

1
0.5

mA
mA

20

mV/l000 hr

40

Long Term Stability

LM341-6.0 (V 1N

MAX

/lV

dB
V

= llV, lOUT = 500 mA, OOe:S;TA :s; +70o e, unless otherwise specified)

PARAMETER

CONDITIONS

Output Voltage

Tj = 25'C

Une Regulatjon

Tj = 25°C, B.3V 5, V'N 5, 25V
lOUT = 500 mA
lOUT = 100 mA

Load Regulatjon

Tj = 25'C, 5 mA 5, lOUT 5, 0.5A

Output Voltage

B.6V 5,V'N 5, 21V, 5 mA5, lOUT 0.5A, Po5, 7.5W

Quiescent Current

TI = 25°C

Quiescent Current Change

TI = 25'C, B.6V 5, V'N 5, 25V
TI = 25°C, 5 mA 5, lOUT 5, 0.5A

Output Noise Voltage

TA = 25°C, 10 Hz 5,15, 100 kHz

MIN

TYP

MAX

5.75

6

6.25

V

120
60

mV
mV

120

mV

5.7
7

6.3

V

10

mA

1
0.5

mA
mA

24

mV/l000 hr

45

Long Term Stability
Ripple Rejection

f= 120 Hz

57

Dropout Voltage

Ti = 25°C, lOUT = 0.5A

2

UNITS

/lV

dB
V

Nota 1: Thermal resistance without a heat sink for junction to case temperature is 1'relW for the TO-202 package. Thermal resistance for case to

ambient temperature is 70' C/W lor the TO-202 package.

1-69

electrica I characteristics (can't)
= 14V, lOUT = 500 rnA, o°c -:::;; T A

LM341-S.0 (V 1N

PARAMETER

-:::;;

+70°C, unless otherwise specified)

CONDITIONS

Output Voltage

T j = 2S·C

Line Regulation

Tj = 2S·C, 10.3V::;; Y,N ::;; 2SV
lOUT = SOOmA
lOUT = 100mA

MIN
7.7

Load Regulation

TI = 2S·C, S mA::;; lOUT::;; O.SA

Output Voltage

10.6V::;; Y,N ::;; 23V, S mA::;; lOUT::;; O.SA, Po ::;; 7.SW

Quiescent Current

TI = 2S·C

au jeseent Current Change

TJ = 2S·C, 10.6V::;; Y,N ::;; 2SV
TJ = 2S·C, S mA::;; lOUT::;; O.SA

Output Noise Voltage

T A = 2S·C, 10 Hz::;;f::;; 100 kHz

TYP
a

7.6
7

Ripple Rejection

f=120Hz

SS

Dropout Voltage

Tj = 2S·C, lOUT = O.SA

2

= 19V, lOUT = 500 rnA, O°C -:::;; TA

PARAMETER

-:::;;

CONDITIONS
T j = 2S·C

Line Regulation

TJ = 2S·C, 14.SV::;; Y'N ::;; 30V
lOUT = SOD mA
lOUT = 100mA

Load Regulation

TJ = 2S·C, S mA::;; lOUT::;; O.SA

Output Voltage

14.BV ::;; V IN ::;; 27V, S mA ::;; lOUT::;; O.SA, Po ::;; 7.5W

Quiescent Current

TJ = 2S·C

Quiescent Current Change

TJ = 25·C, 14.BV::;; Y,N ::;; 30V
TJ = 25·C, 5 mA::;; lOUT::;; 0.5A

Output Noise Voltage

T A = 25·C, 10 Hz ::;;f::;; 100 kHz

mA
mA

32

mV/l000hr

p.V

dB
V

240
120

mV
mV

240

mV

11.4

UNITS

12.6

52

V

10

mA

1
0.5

mA
mA

48

mV/l000 hr

p.V

75

dB
V

+70°C, unless otherwise specified)

CONDITIONS

Output Voltage

T j = 25·C

Line Regulation

T, = 25·C, 17.6V::;; Y'N ::;; 30V
lOUT = 500 rnA
lOUT = 100 rnA

Load Regulation

T, = 25·C, 5 mA::;; lOUT::;; 0.5A

Output Voltage

laV::;; Y'N ::;; 30V, 5 mA::;; lOUT::;; 0.5A, Po ::;; 7.5W

Quiescent Current

T j = 25·C

MIN

TYP

MAX

14.4

15

15.6

V

300
150

mV
mV

300

mV

14.25

15.75
7

Tj = 25·C, 18V ::;; Y,N ::;; 30V
Tj = 25·C, 5 rnA::;; lOUT::;; 0.5A
T A = 25·C, 10 Hz::;; j::;; 100 kHz

UNITS

V

10

mA

1
0.5

mA
rnA

60

mV/l000hr

p.V

90

Long Term Stability

1-70

1
O.S

V

2

Output Noise Voltage

mA

12.S

f=120Hz

. Quiescent Current Change

V

10

12

TI = 25·C, lOUT = 0.5A

PARAMETER

mV

11.S

Ripple Rejection

-:::;;

160
a.4

MAX

7

= 500 rnA, OoC -:::;; TA

mV
mV

TYP

Dropout Voltage

lOUT

160

80

MIN

Long Term Stability

= 23V,

V

+70°C, unless otherwise specified)

Output Voltage

LM341-15 (V 1N

UNITS

a.3

S2

Long Term Stability

LM341·12 (V 1N

MAX

Ripple Rejection

j=120Hz

50

dB

Dropout Voltage

Tj = 25·C, lOUT = 0.5A

2

V

electrical characteristics (con't)
LM341-18 (V IN

= 27V,

lOUT

= 500 rnA, oDe ~ TA

PARAMETER

~ +70De, unless otherwise specified)

CONOITIONS

Output Voltage

T, = 2SoC

line Regulation

T, = 2SoC, 20.7V $ V ,N $ 33V
lOUT = SOOmA
lOUT = 100 mA

Load Regulation

T, = 2SoC, S mA $ lOUT $ O.SA

Output Voltage

21V $ V ,N $ 33V, S mA $ lOUT $O.SA, Po $ 7.SW

Quiescent Current

T, = 2SoC

Quiescent Current Change

T, = 2SoC, 21V $ V ,N $33V
T, ..= 2SoC, S mA $ lOUT $ O.SA

Output Noise Voltage

TA = 2So C, 10 Hz $ 1$100 kHz

MIN

TYP

MAX

17.3

18

18.7

V

360
180

mV
mV

360

mV

17.1

UNITS

18.9
7

V

10

mA

1
O.S

mA
mA

72

mV/l000hr

110

IlV

Long Term Stability
Ripple Rejection

1= 120Hz

48

dB

Dropout Voltage

Tj = 2So c, lOUT = O.SA

2

V

LM341-24 (V IN

= 33V,

lOUT

= 500 rnA, oOe~ TA

PARAMETER

~ +70De, unless otherwise specified)

CONDITIONS

Output Voltage

Tj = 2So C

Line Regulation

T j = 2So C, 27V $ V ,N $ 38V
lOUT = SOO mA
lOUT = 100 mA

TYP

MIN
23

Load Regulation

T j = 2So C, S mA $ lOUT $ O.SA

Output Vol tage

27.3 $ V ,N $ 38V, S mA $ lOUT $ O.SA, Po $ 7.SW

Quiescent Current

T j = 2So C

Quiescent Current Change

T j = 2So C, 27.3 $ V ,N $ 38V
T, = 2S o C. 5 mA $ lOUT $ O.SA

Output Noise Voltage

TA = 2SoC, 10 Hz $ 1 $ 100 kHz

MAX

UNITS
V

2S

24

22.8

480
240

mV
mV

480

mV
V

2S.2
10

mA

1
O.S

mA
mA

96

mV/l000 hr

7

170

IlV

Long Term Stabil itv
Ripple Rejection

1= 120 Hz

44

dB

Dropout Voltage

T j = 2So C, lOUT = O.SA

2

V

typical performance characteristics
Maximum Average Power

Dissipation
30
20

~
~
;:

::
iii;S

10
5
2

Ii?

I

~

E===

1.25

INFINITE HEAT SINK

I--

S

WITH 15"C/W HEAT SINK ~

.

f'--

==-~ ~

0.5

I-

1.0

B
5

0.75

..~
~

0.5
0.25

0.3
0

Ripple Rejection

Peak Output Current
1.5

15

30

45

60

AMBIENT TEMPERATURE I"C)

75

0

80

~ T looc
(r.. ~~~

V- i'-... ........

"

=
:s

.........

T••

~~

'50"C~

I I
5

10

15

..
.
;;.

I

60

z

20

~

§
;;:

40

v••

w

~

20

"IDV
..V,N = 3V,.,
V T=5V

DU

lOUT

• GOD

Tj .. 25"C

ii

0
25

INPUT·OUTPUT DIFFERENTIAL IV)

3D

10

100

Ik

10k

lOOk

FREQUENCY IH.)

1-71

typical performance characteristics (con't)
Ripple Rejection

m

:!!

§

..
Ul

PART = VIN

50

LM341·05.10V
LM341·0&.IIV
LM341·0B.14V
LM341·12.1BV
LM341·15.23V
LM341·1B.27V
LM341·24.33V

a:

40

30

o

IOUT·~~
T, = 25°C

.

;

. .
15

20

.--r-.-~:--.....,,=..---,

V 1N

1.5

..~

§:: 1.000

"

~

~ 0.5 I--I--+--=f'-;--t--l
OL-~

o

__

25

~

__

50

~~

15

__

100

~ 0,995

-L~

125

0.990

150

10

.........

25

30

VIN = lOV

is

Tj = 25°C
5~~~-L~~~~~

20

'" i'..

CI

.

o

TA

'

125

150

COUTJ!...~

~

!!l

I~

~

..

~~-

f.iuT"~!
ANTALUM

0.1

~

...l

.01
25

50

75

100

125

150

10

100

JUNCTION TEMPERATURE C·CI

INPUT VOLTAGE CVI

100

sou mA

25·C

z

VOUT'" 5V
lOUT" 20 mA

5.5

35

75

YIN'" lOV
IOUT-

:g

r-...

6.5

i

H-+-+-++++-~:~Taz2~vmA

50

VOUT" 5V

..........

ill

15

25

Output Impedance

Quiescent CUrrent

;;.s....

~

JUNCTION TEMPERATURE C·C)

7.5

10

o

JUNCTION TEMPERATURE C·C)

Quiescent Current

~

/'

/

....

OUTPUT VOLTAGE CVI

5

V

~

~

25

5V

'"

20 mA

~'.005

I-....I=="""-..$o~

is

~
....

VOUT

-

lOUT'"

c

~

10

1.010

a

.W1N -3Vp .p

.

&0

~

~

2.5

.= 120Hz

~

Output Voltage (Normalized
to 1V at 2SoC Tjl

Dropout Voltage

70

lk

10k

lOOk

1M

FREOUENCY CHz!

typical applications
Electronic Shutdown Circuit
Current Regulator
Vouy=15V

VIN .. 2DVo-. . .---------1~-_\:

AlD.5A

INPUT

.,

-

~---. . .- -

OUTPUT

lOUT

IOUT=~·+IQ

£2·~
O.Z2/I.f

l!.ia "'1.5 mA ov" linl and lo.d Cblhges

-r-

II

tI~

~

"--"'II'v----i

LOGIC
INPUT--·

.,
2N4969

Vo
·Requlred .f the regulator IS loc.tld far from the power supply fdter,
··Heat sink Q1 and the lM341.

Dual Power Supply

VII\I =20V

High Input Voltage Regulator

GNO

o-....----+------+-_.........~ GNO

1----...- ....- - - 0 Vouy-·-15V
·Salidbntllum.
Nota;: Diodes Ollnd 02 ISsure rflUletDr SUlrtup into I common load regardless of the Input
....... sllrtupsequenci.

1-72

typical applications (con't)
Variable Output Regulator

LM341P·05

15V 1.SA Regulator with Short Circuit Current Limit

r------1---..--o

.,

1-=-=-"'.2 " !'
l.Ok

v,

-'-cz*

- r D,Z2J.,f

+ Ct··
Z.Z"F

10k

I

VOUT

2
"JI--

R1
0.5
2W

.2

I

"3'---

I
lW

.,

Uk

*Requned.f the regulator IS located far hom the power supply filter.
··Solidtantalum.

Load Regulation: 0.8% for 0 ~ lOUT $1.5A pulsed With 50 ms 'ON'
"Sohdtantalum.
Note 1: Current sharing between the LMJ41 and 01 allows the extension of short circuit
current limit, safe operating area protection, and (assumingOl's (-),Alsonehalfthe
lM341's SjA) thermal shutdown protection.
Note 2: For optimum current sharing over temperature 01 should be mounted to the
same heat sink as Q1 so that injunction temperature tracks that of Q1.

Adjustable Output Regulator

Fixed Output Regulator

OUTPUT

INPUT

.,

D

R2

*Requlfed ,f the regulato, IS located far from the power supply fllte r.
··Althougb no output capaciiol IS needed fOI stability,lt does heJp transient
response. Uf needed use O.1)JF,ceramlc dl5t.)

VOUT = 5V + (5V/R1 + 101 R2
5V/R1 >31 0 • Load Regulation IL,I ,..((R1 + R211R11 IL, of LM341P·051

High Voltago Short Circuit Protected Regulator

"Solldlantalum.
"·Heatsink Q1 •
.....Smce the LM341 will not sink cumntthe regulator should have a minimum load
to smk the standby current through R1 R2.
""""An output short circuit will cause Q1 to drop the mput voltage of the regulator and
limit the regulator's power dissipation. The regulator will start again under load
after removal of the short circuit.

Switching Regulator

Variable Output Regulator O.5V - l8V

0.5mH

--t-.,::·

VIN .. l0Vo-....

+VIN "20V

lN2011

.,

CI

VOUT 5V AT 500 mA

T,·22"

l'.

.2

.J

410

.2

JOpf

·Soltdtantalum.
"'Needed far ltability.
..··HntsinkQ1.

HZ = a.m, f ",,45 kHz, RIPPLE;;;, 11 mW
RZ
f ... 25 kHz, RIPPLE'" 35 mW

·'n,

LOAD -SOOmA

·Solidtanllium.

VOUT = VG + 5V, Rt • (-VIN/loLM34I)
VOUT • 5V (R2IR41 far {HZ + R31- (R4 + R5)
A D.5V output will caltespond to {R2IR41- 0.1, {R3IH41 = 0.9

1-73

Voltage Regulators
LM342 series three terminal positive regulators
general description
The LM342-XX series of three terminal regulators is
available with several fixed output voltages making them
useful in a wide range of applications_ One of these is
local on card regulation, eliminating the distribution
problems associated with single point regulation_ The
voltages available allow these regulators to be used in
logic systems, instrumentation, HiFi, and other solid
state electronic equipment. Although designed primarily
as fixed voltage regulators these devices can be used
with external components to obtain adjustable voltages
and currents.
The LM342-XX series is available in the plastic TO-202
package. This package allows these regulators to deliver
over O.2A if adequate heat sinking is provided. Even
with over O.2A of output current available the regulators
are essentially blow-out proof. Current limiting is included
to limit the peak output current to a safe value. Safe
area protection for the output transistor is provided to
limit internal power dissipation. If internal power dissipation becomes too high for the heat sinking provided,
the thermal shutdown circuit takes over preventing the
IC from overheating.

Considerable effort was expended to make the LM342-XX
series of regulators easy to use and minimize the number
of external components. It is not necessary to bypass
the output, although this does improve transient response.
Input bypassing is needed only if the regulator is located
far from the filter capacitor of the power supply.

features
•
•
•
•
•
•

Output current in excess of O.2A
Internal thermal overload protection
No external components required
Output transistor safe area protection
Internal short circuit current limit
Available in plastic TO-202 package

voltage range
LM342-5.0
LM342-6.0
LM342-S.0
LM342-10

5V
6V
SV
10V

LM342-12
LM342-15
LM342-1S
LM342-24

12V
15V
lSV
24V

schematic and connection diagrams

,-....---.---------------<.---<.----.-0 v"
TO-202IP)

0
D'

GNO

Rl1
1.'
VOUT

1

J

,

C1
5pF

RIl

INPUT_

RI
15k

_OUTPUT

LGNO
FRONT VIEW

RI

RS

38911

7.Bk

Order Numbers;
LM342P.s.O
LM342P-12
LM342P-6.0
LM343P-15
LM342P.s.O
LM342P-18
LM342P-10
LM342P-24
See Package 37

R13

un
L4~~~-+---~D6

"'

2.1411

GNO

1-74

absolute maximum ratings
Input Voltage
VA = 5V to 8V
VA = 10V to 18V
VA = 24V
Internal Power Dissipation (Note 1)
Operating Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Metal Can Package .(H)
Molded TO-202 Package (P)
Lead Temperature (Soldering, 10 seconds)

30V
35V
40V
Internally Limited
oOe to +70 0 e
150°C
--£5°e to +150 o e
-55°C to +150 o e
300°C

electrical characteristics
LM342-5

V ,N = 10V, lOUT = 200 mA, oOe ~ T A ~ 70°C, unless otherwise specified.
CONDITIONS

PARAMETER
Output Voltage

T j = 25°C

Line Regulation

Tj

Load Regulation

T j = 25°C. 1 mA ~ lOUT ~ 200 mA

Output Voltage

8V ~ V'N ~ 20V. 1 mA ~ lOUT ~ 200 mA

4.8

= 25°C. 7.5 ~ V'N

Quiescent Current

T j = 25°C

Quiescent Current Change

Tj
Tj

Output Noise Voltage

TA

MIN

TYP

MAX

5.0

= 25°C,

4.75

10 Hz~f~ 10 kHz

Long Term Stability
f=120Hz

Dropout Voltage

T j = 25°C

45

UNITS

5.2

~ 25V

= 25°C. 7.5V ~ V'N ~ 25V
= 25°C. 1 mA ~ lOUT ~ 200 mA

Ripple Rejection

LM342-6

(Note 2)

V

100

mV

100

mV

5.25

V

6

mA

1.5
0.5

mA
mA

40

}1V

20

mV/l000 hr

60

dB

2

V

0

V ,N = l1V, lOUT = 200 mA, oOe ~ T A ~ 70°C, unless otherwise specified. (Note 2)

PARAMETER

CONDITIONS

MIN

TYP

MAX

5.75

6

6.25

V

120

mV

120

mV

UNITS

Output Volrage

T j = 25°C

Line Regulation

T J = 25°C. 8.5V ~ V'N ~ 25V

Load Regulation

Tj

Output Voltage

9V ~ V'N ~ 21V. 1 mA ~ lOUT ~ 200 mA

Quiescent Current

TJ = 25°C

6

mA

Quiescent Current Change

T j = 25°C, 8.5V ~ V'N ~ 25V
T, = 25°C, 1 mA ~ lOUT ~ 200 mA

1.5
0.5

mA
mA

Output Noise Voltage

TA

= 25°C. 1 mA ~

= 25°C.

lOUT ~ 200 mA

10 Hz ~ f ~ 10 kHz

Long Term Stability
Ripple Rejection

f=120Hz

Dropout Voltage

T j = 25°C;

43

V

6.3

5.7

48

/lV

24

mV/1000 hr

59

dB

2

V

Note 1: Thermal resistance of the Metal Can Package (H) without a heat sink is 40°C/W junction to case and 140°C/W junction to ambient.
Thermal resistance of the TO-202 Package (PI without a heat sink is 12°C/W junction to case and 80°C/W junction to ambient.

Note 2: The maximum steady state usable output current and input voltage are very dependent on the heat sinking. The electrical characteristics
data represent pulse test conditions with junction temperatures as shown at the initiation of tests.

1-75

electrical characteristics (con't)
LM342·8

VIN = 14V, lOUT = 200 rnA, o°c.:; T A':; 70°C, unless otherwise specified. (Note 2)

PARAMETER

CONDITIONS

Output Voltage

T j = 25°C

Line Regulation

T j = 25°C, l1V :::; VIN :::; 25V

MIN

TYP

MAX

7.7

8

8.3

UNITS
V

160

mV

160

mV

Load Regulation

T j = 25°C, 1 mA:::; lOUT:::; 200 mA

Output Voltage

11.5V .:; VIN :::; 23V, 1 mA:::; lOUT:::; 200 mA

Quiescent Current

T j = 25°C

6

mA

Quiescent Current Change

T j = 25°C, llV:::; VIN :::; 25V
T j = 25°C, 1 mA:::; lOUT:::; 200 mA

1.5
0.5

mA
mA

Output Noise Voltage

TA = 25°C,10 Hz:::;f:::; 10 kHz

7.6

Long Term Stability
Ripple Rejection

f = 120 Hz

Dropout Voltage

T j = 25°C

LM342·10

39

8.4

V

64

I-lV

32

mV/lOOO hr

57

dB

2

V

VIN = 16V, lOUT = 200 rnA, O°C.:; T A':; 70°C, unless otherwise specified. (Note 2)

PARAMETER

CONDITIONS

MIN

TYP

9.6

10

MAX

UNITS

Output Voltage

T j = 25°C

Line Regulation

T j = 25°C, 13V:::; VIN :::; 25V

Load Regulation

T j = 25°C, 1 rnA:::; lOUT:::; 200 mA

Output Voltage

13.5V:::; VIN :::; 25V, 1 mA:::; lOUT:::; 20 mA

Quiescent Current

TI = 25°C

6

mA

Quiescent Current Change

Ti = 25°C, 13V:::; VIN :::; 25V
T j = 25°C, 1 mA:::; lOUT:::; 200 mA

1.5
0.5

mA
mA

Output Noise Voltage

TA = 25°C, 10 Hz :::;f:::; 10 kHz

9.5

Long Term Stability
Ripple Rejection

f= 120 Hz

Dropout Voltage

T j = 25°C

36

LM342·12 VIN = 19V, lOUT = 200 mA, O°C.:; TA .:; 70°C, unless otherwise specified.
CONDITIONS

PARAMETER
Output Voltage

T j = 25°C

Line Regulation

T j = 25°C, 15V :::; VIN :::; 30V

Load Regulation

T j = 25°C, 1 mA:::; lOUT:::; 200 mA

Output Voltage

15.5V:::; VIN :::; 27V, 1 mA:::; lOUT:::; 200 mA

10.4

V

200

mV

200

mV

10.5

V

80

I-lV

40

mV/lOOO hr

55

dB

2

V

(Note 2)

MIN

TYP

11.5

12

11.4

MAX

UNITS

12.5

V

240

mV

240

mV

12.6

V

Quiescent Current

T j = 25°C

6

mA

Quiescent Current Change

T j = 25°C, 15V :::; VIN :::; 30V
T j = 25°C, 1 mA:::; lOUT:::; 200 mA

1.5
0.5

mA
mA

Output Noise Voltage

T A = 25°C, 10 Hz:::; f:::; 10 kHz

Long Term Stability
Ripple Rejection

f=120Hz

Dropout Voltage

T j = 25°C

1·76

36

96

I-lV

48

mV/lOOO hr

54

dB

2

V

electrical characteristics (con't)
LM342·15 V ,N ; 23V, lOUT; 200 rnA, oOe::; T A::; 70oe, unless otherwise specified.
PARAMETER

CONDITIONS

MIN

TYP

MAX

15

15.6

UNITS

Output Voltage

Tj

line Regulation

Tj

;

25°C, 18V::; V'N ::; 30V

300

rnV

Load Regulation

Tj

;

25°C, 1 rnA::; lOUT::; 200 rnA

300

rnV

Output Voltage

18.5V::; V'N ::; 30V, 1 mA::; lOUT::; 200 mA

Quiescent Current

Tj

Quiescent Current Change

T j = 25°C, 18V ::; V'N ::; 30V
T j = 25°C, 1 mA::; lOUT::; 200 mA

Output Noise Voltage

TA = 25°C, 10 Hz::;f::; 10kHz

;

;

25°e

(Note 2)

14.4

14.25

Ripple Rejection

f; 120 Hz

Dropout Voltage

Tj

;

15.75

25°C

32

25°C

V

6

rnA

1.5
0.5

mA
rnA

120

Long Term Stability

V

/1V

60

mV!1000 hr

51

dB

2

V

LM342·18 V ,N ; 27V, lOUT; 200 rnA, O°C::; TA ::; 70°C, unless otherwise specified. (Note 2)
PARAMETER

CONDITIONS

Output Voltage

T j = 25°C

line Regulation

T j = 25°C, 21V";V'N ::;33V

MIN

TYP

17.3

18

MAX
18.7

V

360

rnV

360

rnV

Load Regulation

T j = 25°C, 1 mA::; lOUT::; 200 mA

Output Voltage

22V::; V'N ::; 33V, 1 mA::; lOUT::; 200 mA

Quiescent Current

T j = 25°C

6

rnA

Quiescent Current Change

T, = 25°C, 21 ::; V'N ::; 33V
T j = 25°C, 1 mA::; lOUT::; 200 mA

1.5
0.5

mA
mA

Output Noise Voltage

TA = 25°C, 10 Hz::;f::; 10kHz

17.1

Ripple Rejeciion

f=120Hz

Dropout Voltage

T, = 25°C

31

e, unless otherwise specified.

LM342·24 V'N ; 33, lOUT = 200 rnA, oOe::; TA ::; 70 o
PARAMETER
Output Voltage

CONDITIONS
Tj

;

25°C

18.9

150

Long Term Stability

V

/1V

72

mV!1000 hr

48

dB

2

V

(Note 2)

MIN

TYP

MAX

23

24

25

UNITS
V

line Regulation

T j = 25°C, 27.2V ::; V'N ::; 38V

Load Regulation

T j = 2SoC, 1 mA::; lOUT::; 200 mA

Output Voltage

28V::; V'N ::; 38V, 1 mA::; lOUT::; 200 mA

Quiescent Current

T j = 25°C

6

mA

Quiescent Current Change

T, = 25°C, 27.2V::; V'N ::; 38V
T j = 25°C, 1 mA::; f ::; 200 mA

1.5
0.5

mA
mA

Output Noise Voltage

TA = 25°C, 10 Hz ::;f::; 10 kHz

22.8

Ripple Rejection

f= 120 Hz

Dropout Voltage

T j = 25°C

27

480

rnV

480

mV

25.2

190

Long Term Stability

01

UNITS

V

/1V

96

!l'1V!1000 hr

45

dB

2

V

1·77

Voltage Regulators
LM376 voltage regulator
general description
The LM376 is a positive voltage regulator designed
primarily for commercial product applications. The
device is especially useful because it is packaged in
an 8'pin mini·DIP which has the advantage of
reduced size and low cost. Used independently,
the device will supply 25 mA; but with the addi·
tion of external pass elements any desired load
current can be achieved. The circuit features ex·
tremely low standby current drain, and provision

is made for either linear or foldback current
limiting. Important characteristics of the LM376
are:
+5V to 37V

• Output voltage range

25mA

• Output current
•

Load regu Iati on

0.2%

•

Line regulation

0.03%/V

simplified schematic and connection diagrams
r-__...._ ...._____'1"~"-"-"-TE-'-'''.''--....- -...--1 ~:pRJrGUlATED

:0:

Dual·ln·Line Package
2aOOSTER

'"'""

.J-_"'''''''''__

cu"":;;;;;

:~:;E''T

UI::~

L..._ _ _ _ _....;,I :~~~~Ub

...._ _ _ _ _ _....:...7:~~:~~:TlDIIII

3

REGUU.TtD
OUTPUT

6

.

.

FEEDBACK

REnRENCE
BYPASS

rOPYJEW

"

Order Number LM376N
See Package 20

BYPASS

'---4---<...- ...--------4_--------:..GROUliO

typical applications
Basic Positive Regulator with Current Limiting

R1+R2

VOUT .... '·72

R2 v

v,.
Isc ...

1.0A Regulator with Protective Diodes

'"

~mA

Rso

Linear Regulator with Foldback Current Lim iting

UTRJ315

r---~I_--....-

....- -...~~....-VOUT·Z'"

r-_....---'lNY--...- -....- ...-:~U~'SV

"I
UTRl.5

....._ _- ;

v,.~>-

"",

'"

tPrOtecl'lIIIlinstshortedinput
orinductivelDldsonunregu·
litedsupply.
""'otactslgainstinputvoltaga
reversal.
tProtacbapinstoutput
wltagele'lmil.

'·78

V",,>11V

absolute maximum ratings
40V
40V
400mW
O°C to 70°C
-65°C to +150°C
300°C

Input Voltage
Input·Output Voltage Differential
Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(Note 2)
CONDITIONS

MIN

TVP

MAX

UNITS

Input Voltage Range

9.0

40

V

Output Voltage Range

5.0

37

V

Output·lnput Voltage
Differential

3.0

30

V

Load Regulation

0'::::: 10'::::: 25 mA
Rsc = on, TA = 25°C
Rsc
Rsc

Line Regulation

TA

0.2
0.5
0.5

= on, T A = 70°C
= on, TA = O°C

= 25°C

%
%
%

.03

%IV

.1

%IV

Ripple Rejection

f = 120 Hz, TA = 25°C

0.1

%IV

Standby Current Drain

V IN

= 30V, TA = 25°C

2.5

mA

Reference Voltage

1.60

Current Limit Sense Voltage

1.72
.360

1.80

D

V

V

Note 1: For operating at elevated temperatures, the device must be derated based
on a 100°C maximum junction temperature and a thermal resistance of 187°C/W
junction to ambient.
Note 2:0 These specifications apply for an operating temperature between OoC
and 70 .

·1·79

,...

U)

C")

:E

typical performance characteristics

....

Load Regulation

..
....'"
..'"
..'"

i!

1

OA

j::

0.3
D.2

!:;
>

TA' 70·C

0.1

I;

I!:

Id!-

..
f- .

~

l~

~\r

1~

1.00

1!

!:;
> 0.75

I-

I!:

~

20

>

!

15

20

I

0:
0:

I

i:l

.300

.200

30

25

12.3
12.2

.'"

25

.~

I-

Asc'10"

~

!!'"

6.6

r- ....

- -rI", .. ....

11.7
11.6
11.5

0255070
AMBIENT TEMPERATURE I·C)

2.B
2.7

w

2.6

f;l

2.5

!ii'"

::l
0:

IL"0mA/V

R, = 1.11 Yo Kn
R 1.72 x R,
2"'v;:T.1I

!,

2.4
2.3

+~

Vo=1.72X(:;

1\

R,

2.2
2.1

11.4 H'LtiA/I
11.3
0255070

6.5

70

Optimum Divider Resistance
3.0
2.9

w

l,;o

50

AMBIENTTEMPERATURE rC)

VouT -10V

1
IL =20mA

11.9
!:; 11.B

~

....

~ .250

Regulator Dropout Voltage

L..-'

&.7

...... 1-0.
.350

III

I-

I

10

~ 12.0

6.8

~

~

i

.",

D.25

12.1

6.9

ADD

OUTPUT CU RRENT ImA)

7.2
7.1
7.0

IO~5~A

w

~

I-

30

VO:""'5V

7.3

I-

I

w

Minimum Input Voltage

w

TA"'25°C~

Current Limit Sense Voltage
~

0:

10

..~
..

TA '70"C- - - I I

I
I

TA'O"C

0.50

LOAD CURRENT ImA)

~

n.:,,~

1

~
w

TA" 0 C
TA = 25°C

w

..'"
..
. ..'"
'"

Asc -0

J
I

z

~

Cur;ent Limiting Characteristics

2.0
5

10

1&

AMBIENTTEMPERATURE rC)

20

2&

30

35

OUTPUT VOLTAGE IV)

Standby Current Drain

Supply Voltage Rejection

TA=2S'C
2.00
1.95
C 1.90
I- 1.85

""i:i
0:
0:

i:l

.

=

1.55
1.50

25

30

INPUT VOLTAGE IV)

'·80

h-IHHHHH-+CREF'" 0

H'~-H--l-I-+++-t--1

40

~

RIO' Ion
r-- 6V
= 5V

-40 I--

w

..

'.

1N

RIC' 1lin

VoUT .. tDV

IFL -ZOmA
INL = 1.0 mA

-CL=O
l

~

5

10

15

20

25

30

INPUT·OUTPUT VOLTAGE DIFFERENTIAL IV)

.5;

·111 f

J 1
roo·

I;

~ 0.010 f-I-I-I-I-I-I-HHHH
35

1
LINE 1

..::i

~ eoo •••• e

~

1
20

~ 0.025

~o.D15

.J-~7 ~q·i5V
15

HHHHHHH,,;'20Hz

~ 0.020

.....H"

10

~

;;!

Vo= 10V

1.75

1.50

~z

~O.030 HHHHHH-+~:~T2~O~OV

1.60

~ 1.70
z 1.65

Transient Response
40

-400

I
1D

...

VOUT=

tOV
....

LOAD

I
20
TIME,"~

30

r-

s:
.....

Voltage Regulators

N
W

........

r-

s:.....
N
CIJ

LM723/LM723C voltage regulator

(')

general description
The LM723/LM723C is a voltage regulator designed primarily for series regulator applications. By
itself, it will supply output currents up to 150 mA;
but external transistors can be added to' provide
any desired load current. The circuit features extremely low standby current drain, and provision
is made for either linear or foldback current limiting. Important characteristics are:
•

150 mA output current without external pass
transistor

•

Output currents in excess of lOA possible by
adding external transistors

•

Input voltage 40V max

•

Output voltage adjustable from 2V to 37V

•

Can be used as either a linear or a switching
regulator.

The LM723/LM723C is also useful in a wide range
of other applications such as a shunt regulator, a
current regulator or a temperature controller.
The LM723C is identical to the LM 723 except
that the LM723C has its performance guaranteed
over a O°C to 70°C temperature range, instead of
_55°C to +125°C.

01

schematic and connection diagrams *
Dual-In-Line Package

,.

FR[QU[NCV

COMPENSATION

,

CUIIAENTStNSE

1

NONI~VIRWjG

~

INPUT

v...

11

V,

10

V,""

, "

6

.""
Order NumberLM 7230 or LM723CO

See Package 1
Vour

Order Number LM723N or LM723CN

See Package 22

"

Metal Can Package
CUAAIN!
LIMIT

,
Note: Pin 5 connected to case.

Order Number LM723H or LM723CH

See Package 1J

equivalent circuit *

TEMPEllnUAE

COMPENSATED
lE~ER

*Pin numbers to metal can packaga onlv Note 1.

1;81

absolute maximum ratings
50V
40V
40V
7.5V
5V
25 mA
15mA
800mW
900mW
660mW
-55'C to +125'C
O°C to +70°C
-6SoC to +150°C

Pulse Voltage from V+ to V- (50 ms)
Continuous Voltage from V+ to VInput-Output Voltage Differential
Maximum Amplifier Input Voltage (Either Input)
Maximum Amplifier Input Voltage (Differential)
Current from V z
Cu rrent from V A E F
Internal Power Dissipation Metal Can INote 1)
Cavity DIP (Note 1)

Molded DIP (Note 11
Operating Temperature Range LM723

LM723C
Storage Temperature Range Metal Can

_55°C to +125°C

DIP

300'C

Lead Temperature (Soldering, 10 sec)

electrical characteristics

(Note 2)
LM723

PARAMETER

UNITS
MIN

Line Reg.Jlation

LM723C

CONDITIONS
TYP
.01

V'N = 12V to V'N = 15V
-SS'C:S TA:S +125'C

MAX

MIN

TYP

0.1

.01

Load Regulation

IL

::::;

12V to V ,N = 4QV

.02

= 1 rnA to IL = 50 rnA

.03

-55'C:S T A:S +125'C

0.2

0.1

0.15

.03

0.3

%V OUT

O.S

%VOUT

0.2

% VOUT
%V

OUT

0.6

%V

OUT

0.6

1 = 50 Hz to 10 kHz, CREF = 0

74

74

dB

1 = 50 Hz to 10 kHz. CREF = 5/lF

86

86

dB

Average Temperature

-55'C:S T A:S +12S'C

Coefficient of Output Voltage

O·C ~ TA ~ +70'C

Short Circuit Current Limit

Rsc = lOn, VOUT = 0

.002

%tc

65

BW = 100 Hz to 10 kHz, CREF = 0

7.15

.015

65
7.35

6.80

20

8W = 100 Hz to 10 kHz, CREF = 5/lF

7.15

Long Term Stability

0.1
1.3

Ie = 0, V'N = 30V
9.5

pVrms

0.1

40

1.3

V

/JVrms

2.5

3.5

%!'C
mA

7.50

20

2.5

Standby Current Drain
Input Voltage Range

.015
.003

6.95

Reference Voltage

Output Noise Voltage

%V OUT
%V OUT

O'C:STA:S= +70'C
Ripple Rejection

0.1

0.3

O'C:S T A:S +70'C
V 1N

MAX

%/1000 hrs

4.0

mA

9.5

40

V

Output Voltage Range

2.0

37

2.0

37

V

Input-Output Voltage Differential

3.0

38

3.0

38

V

Note 1: See derating curves for maximum power rating above 2SoC.
Note 2: Unless otherwise specilied, TA = 25°C, VIN = V+ = Vc = 12V, V- = 0, VOUT = 5V,
IL = 1 mA, RSC = 0, Cl = 100 pF, CREF = 0 and divider impedance as seen by error amplifier
~ 10 'kn connected as shown in Figure 1. Line and load regulation specifications are given for the
condition of constant chip temperature. Temperature drifts must be taken into account separately
for high dissipation conditions.
Note 3: Ll is 40 turns 01 No. 20 enameled copper wire wound on Ferroxcube P36/22-3B7 pot core
or equivalent with 0.009 in. air gap.

Note 4: Figures in parentheses may be used if R1 /R2 divider is placed on opposite input of error amp.
Note 5: Replace Rl/R2 in figures with divider shown in Figure 13.
Note 6: V+ must be connected to a +3V or greater supply.
Note 7: For metal can applications where
connected in series with VOUT.

'-82

Vz

is required, an external 6.2 volt zener diode should be

r-

s::
.....

maximum power ratings

N

W

LM723

BOO

1000
900

1\

l\.

600

-...:

500
400
300

TJ MAX"15D"C

200
100

RTH -16o'C/W(TO·5)
RTH -14o'C/W (DIP)
NO HEATSINK

10

I'~

~

0

.\

r-t--- '\1\

-

600

'P

300

I
I\:
TJ MAX ~ 125'C

200
100

RTH -125'C/W (TO·5)
RTH - 155'C/W (OIP)
NO HEAT SINK

o

0
~~

n

I

.!l 500
.E 400

~

N
W

I
TO·5

BOO
100

11\\

TD·5

100

.!.E

Ambient Temperature

DIP

I

r-

s::
.....

Power Dissipation vs

Power Dissipation vs
Ambient Temperature
1000
900

.......

LM723C

H

~

~

-55 -25

1251~

0

25

50 15 100 125 150

T. AMBIENT TEMPERATURE ('C)

T. AMBIENT TEMPERATURE ('C)

typical performance characteristics
Load Regulation

Characteristics with

Load Regulation
Characteristics with

Current Limiting

Current Limiting

0.05

0.1

~ -0.05

~~'C

I

fi

;::

T.-125'C ~

i

~ -0.15

0:

-0.2

0:

f-

VOUT = +5V. VIN '" +12V

-0.2

10

15

20

25

I

30

o

20

OUTPUT CURRENT (mA)

1.2
~

'"

~

>

!;

~

VOUT '" 5V. VIN = +12V

~

Roc -lOU r r - r -

'"

o.B

~

0.1

~
~

0.6

>
-f-TA -125'C
- f - ~. -

~6'~ -

~

c-

0.4 -r-T.--55'C~

~
0:

0.2

II
II

o

I
o

20

~~~
LOAO-f--

VouT-+5V~
-0.1

60

Bo

~::2~'C

I I
IL-1 mAtolL"'50mAI

-0.2
Bo

60

-5

100

15

-

Rr

~

f'

,.
:;

0.5

~

m~URRENT
0.4 (-Rsc '" 10n

N-I..

200

2.0

;;:

160 !:

oS

:I
'" ...~
120 ~

r-...r'-r-...

Bo

r-t-

40

"c ~
~
=: z~
e I;;"

..

I I

0.3

100

-50

OUTPUT CURRENT (mA)

50

35

45

Standby Current Drain vs
Input Voltage

I
I
I'. SENSE VOLTAGE
I ' 'I..

LIMH~RR~
5

25

VIN - VOUT (VI

I'.

t:

~

II
40

o.B

~

1.0

0.6

~

I

I

LINE

Current Limiting
Characteristics vs
Junction Temperature

>
;::

~

0.1

OUTPUT CURRENT (mA)

Current limiting
Characteristics

~

I I

, \I

40

i

fA = -55"C

~,

"\

I-,T.~ 12rC
-0.4

o

I

~
;::

'" ,\

\

T. - 25'C-1

-0.3

lise -lOu
-0.25

'"

~

z

D

TA :+25"C
!:J.V =+3V
IL"'lmA

0.2

~

~

-0.1

VOUT=+5V
Rsc=O

S

~

g

'N:-t--

TA =25°&-

-0.1

0.3

VOUT - 5V, VIN = +12V
Rsc -lOU - r - r -

>

~

I

,~

.
.'"

Load & Line Regulation vs
Input·Output Voltage
Differential

100

T~-J5,J-,-

1.B
1.6

T~-~5'L-

1.4
1.2

T~" 1~5,J-,-

1.0
o.B
0.6
0.4
0.2

VOUT = VREF
IL =0

10

150

JUNCTION TEMPERATURE ('C)

20

30

40

50

INPUT VOLTAGE (V)

Output Impedance vs
Line Transient Response
6.0

:>
oS

..
."
..'"~
z
;::

<::

II
II

4.0

2.0

~

i"""

r!!-~UTVOLTAGE-

VIN =+12V
VOUT =+5V
IL"'1mA

>

-5

:to

fi

4.0
OUTPUT VOLTAGE

'""

..... 1- ~

35

45

~

~

"

\

-B.o
-5

m

-10
VIN =+12V
VouT =+5V
IL =40mA
TA "'25°C

Rsc" 0

15

.. E
" ~
.~ !il
..e .:="

25

35

45

z

1.0

!;

0.1

u

Rsc" 0
TA ;; 25"C

CL =0

JlI

IL-SDmA

<

z

-20

~

VOUT -T5V
VIN =+12V

,..

\

:l >
-4.0 z !; -4.0

S

10

I

B.o

~

-2.0 ~

-6.0
25

z
co

Frequency
10

LOAO CURRENT

.~

I'"

15

:>
oS

~ ~

:5

TA ' 25'C
Rsc =0

-4.0

~...
<

2.0

I[

12

4.0

INPUT VOLTAGE

!; -2.0

~

load Transient Response

CL = 1 ~F

-30
.01 L....LJ.WJJIL.l.J.JoWIl-L.JWllIII...J...L
100
lk
10k
lOOk

1M

FREQUENCY (Hz)

'·83

RESISTOR VALUES (kn) FOR STANDARD OUTPUT VOLTAGE

TABLE I

POSITIVE
OUTPUT VOLTAGE

FIXED

APPLICABLE
FIGURES

OUTPUT
ADJUSTABLE

OUTPUT
±5%

NEGATIVE
OUTPUT VOLT AGE

±10% (Note 51

FIXED
OUTPUT

APPLICABLE
FIGURES

±5%

(Note 4)

Rl

R2

Rl

PI

R2

Rl

PI

+3.0

1,5,6,9,
12(4)

4.12

3.01

1.8

0.5

1.2

+'00

7

3.57

102

2.2

10

91

+3.6

1.5.6.9.
12 (4)

3.57

3.65

1.5

0.5

1.5

+250

7

3.57

255

2.2

10

240

+5.0

1,5,6,9,
12141

2.15

4.99

0.5

2.2

-6 (Note 6)

3,(10)

3.57

2.43

1.2

0.5

+6.0

1,5,6,9,
12141

1.15

6.04

0.5

2.7

-9

3,10

3.48

5.36

1.2

0.5

2.0

+9.0

2,4, (5.6.
12,9)

1.B7

7.15

1.0

2.7

-12

3,10

3.57

8.45

1.2

0.5

3.3

+12

2,4, (5,6,
9,12)

4.87

7.15

2.0

1.0

3.0

-15

3,10

3.65

11.5

1.2

0.5

+15

2,4,15,6,
9,12)

7.87

7.15

3.3

1.0

3.0

-28

3,10

3.57

24.3

1.2

0.5

+28

2,4,15,6,
9,12)

7.15

5.6

1.0

2.0

-45

8

3.57

41.2

2.2

10

+45

7

3.57

48.7

2.2

10

39

-100

8

3.57

97.6

2.2

10

91

+75

7

3.57

78.7

2.2

10

68

-250

8

3.57

2.2

10

240

21.0

.75
0.5
.75

Rl

Outputs from +2 to +7 volts

Outputs from +4 to +250 volts

(F,gures I, 5, 6, 9, 12, (4)]

[Figure 7]

V OUT

R2

249

'"

[V AEF X At

VOUT=[V~eF

~2 R21

.75

4.3
10
33

VSENSE

X R2;,A'j:R3=R4

Outputs from -6 to -250 volts

[Figures 2, 4, (5, 6, 9, 12)1

[Figures 3. 8, 10]
V OUT = [

V~EF

Current Limiting
ILI,MIT=~

Outputs from +7 to +37 volts
Rt + R2
VOUT = (V REF X ~]

X Rt;, R2

Foldback Current Limiting
_ [ V OUT R3
IKNEE Rsc R4

J:

typical applications

..

LMl2J

--C~"

-.

N

COIoW

OUTPUT

C'1aapf

FIGURE 1. Basic Low Voltage Regulator
(VOUT = 2 to 7 Volts)

-!~

1_-1i

" ~I
-,."

.."

I

""

LMIZ3C

'''~

co"",

..

Cl

"

1~Opf

~

TYPICAL PERFORMANCE
RegullltldOutputValtlg&
15V
Line RelJllltion (.6.V'N '" 3V)
1.5mV
laid Regulation (M L.. 50 mAl 4..5mV

Nate: R3 = ~ for minimum temperaturedrifL
R3 may Ita eliminated for minimum component count.

FIGURE 2. Basic'High Voltage Regulator
(VOUT = 7 to 37 Volts)

,oo~:"

-'."

«-

VOUT

LIItIZJ
LMIZJC

,,-

.--" "'¥1

ZNJU!i4

I

..

CL~~~UULATEO
OUTPUT
CS

-"

1I1T6~~~'f

I

REGULATED
OUTPUT

y

"2~"91

V.

1
~

'0.

 - - -....- - - - - - - - - - - - - - -....- -....

.9

A11
1.9

' - - - - - - - ; -.....- ....-0

Your

C1
5pF

R2

A12

J.41k
R8

15k

01

02

R1
3.B!I~

R5
Uk

A13
2.23k

.6

R6
2.B4k

'-~~-~---~~~~>_---_4~-------------~_oGND

LM78LXX

typical applications

t-.....~......>_-OUTPUT

INPUT

CZ'"
D.Dl/.lf

"Required if the regulator IS I!lealed far from the power lupplV filter.

"See Note 3 in the electrical characteristici table.

VOUT ~ 5V + !5VJRl + 10J HZ

5V/Rl

Fixed Output Regulator

1-94

> J 1o. load regulation (l,) "" HRI + R2)!Rll Il, of LM78LD5)

Adjustable Output Regulator

typical applications (con't)

INPUT

"'

-

' - - - -. . .- - OUTPUT
lOUT

lOUT = IV23 /RTJ +10

olio = 1.5 mAoverhneandload thanges

Current Regulator

1.1

VOUT = 5V AT 500 rnA

...
·Sohdtantlaurn,

"Hen sink aI,
"·DptlOnal:lmpIDvesnpplerelrctlonlndlranSlrntrlsponse.
Load Rrgulil!lon: 0.6% 0::;; IL $ 250 rnA pulsld with toN .. 50 ms.

01

5V, 500 mA Regulator with Short Circuit Protection

1 - - -.....-otVOUT ·15V AT 100 rnA

tV IN aZOV

C4

O.Dl/iF

H~-""-o -VOUT· -15V

-VIN --lOV

AT 100 mA

·Solidtlntllum.

± 15V,

tV'N =20Vo-+---'i

LM7IL05

r---1~--t-----t---1ro

TO.2~F

.,

.,

o--t-J\lVY----....- - -..::<:

••

v,

I

C2

c"
O, Z2iJF

VOUT

.z

C"

-VIN ,,-tOV

100 rnA Dual Power Supply

"J"

JOpF

-=

RS

"Sohdtantalum.
VOUT· Vo +5V, RT • (-V1N/IOL.M78LOS)

VOUT = 5V IRZ/RG) for (RZ + Rli = IR4 + RS)
A D.5VoutputWlIl correspond to IRZ/R4)" 0.1, {R31R4J" 0.9

Variable Output Regulator 0.5V - 18V

1-95

r:::I:

o

o
o

Operational Amplifiers

~

.......•
r:::I:

o
o

LH0001*/LH0001C, low power operational amplifier
general description
The LHOOOl /LHOOOl C is a general purpose operational amplifier designed for extremely low
quiescent power. Typical NO-load dissipation at
25°C is 2 milliwatts at Vs = ±l5 volts, and 0.5
milliwatts at Vs = ±5 volts. Even with this low
power dissipation, the LHOOOl /LHOOOl C will
deliver ±lO volts into a 2K load with ±l5 volt
supplies, and typical short circuit currents of 20 to
30 milliamps. Additional features are:
•

Operation fro'm ±5V to ±20V

•

Very low offset voltage: typically 200 J.l.V
at 25°C, 600 J.l.V at -55°C to 125°C

•

g

n

Very low input offset current: typically 3 nA

at 25°C, 6 nA at _55°C
•

Low noise: typically 3 J.l.V rms

•

Frequency compensation with 2 small capacitors

•

Output may be clamped at any desired level

•

Output is continuously short circuit proof

The LHOOOl /LHOOOl C is ideally suited for space
borne applications or where battery operated equipment requires extremely low power dissipation.

schematic and connection diagrams
~-1~-----1~---'-------'--v~+ 9
COMPENSATION
R6
50K

Rl

I--

50K

COMPENSATION
TOP VIEW

+ ______+ __+-,

'--~I---IO

_C:;O::;M::-P+__

~~~MP

COMPENSATION
COMP

R4
lOOK

R3

lOOK

L---'-------~~--------'-V~-

l

Note: Pin 7 must be grounded or connected to a voltage
at least 5 volts more negative than the positive supply
(Pin 9). Pin 7 may be connected to the negative supply,

howe\ler the standby current will be increased. A resistor
may be inserted in series with Pin 7 up to a maximum of

100 kG per volt between Pin 3 and Pin 9.
Order Number LHOOOl H
See Package 14

typical applications
Voltage Follower

Voltage Comparator for Driving MOS Circuits
RI'

+10 VOLTS

CI
INPUTS

2:--------0UTPUT
~-+f_--V,

>"-....-OUTPUT

L--t+----V,
*Mav be zero orequal to
sourC81esistancefor
minimum offset.

Int8grator with Bias Current Compensation
CF

IIV,I>IV,11

External Current Limiting Method
01

02

INPUT-"'II,.........--~
>~+----OUTPUT

">.--W.........--OUTPUT
IOUT -RUM
<~

'2Ml1
-15V

INPUTS

*Adjust for zera
integratordrilt.

·Vf

=

average forward
voltage drop of
dlOdesD11oD4
a120 10 50 pA.

'Previously called NH0001

2-1

CJ

Q

absolute maximum ratings

o
o

Supply Voltage
Power Dissipation (see Curve)
Differential Input Voltage
Input Voltage
Short Circuit Duration (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering 10 sec.)

::J:

....
......

...•

o
o
o

::J:

....

±20V
400mW
±7V
Equal to supply
Continuous
_55°C to +125°C
_65°C to +150°C
300°C

electrical characteristics

(Note 2)

TEMP (oC)

PARAMETER
Input Offset Voltage

25
-55 to 125

CONDITIONS

MIN

TYP

Rs~5K

MAX

0.2
0.6

Rs<5K

UNITS

1.0
2.0

mV
mV

Input Offset Current

25 to 125
-55

20
100

nA
nA

Input Bias Current

25 to 125
-55

100
300

nA
nA

Supply Current (+)

25
125

Vs = ±20V
Vs = ±20V
Vs = ±20V

90
70
100

125
100
150

/lA
/lA
/lA

25
125

Vs = ±20V
Vs = ±20V
Vs = ±20V

60
45
75

90
75
125

/lA
/lA
/lA

-55
Supply Current H
-55
Voltage Gain

-55 to 25
125

V OUT

25
-55
125

RL = 100 Kn, Vs = ±15V, V OUT = ±10V
RL = 100 Kn, Vs = ±15V, V OUT = ±10V

25
10

60
30

V/mV
V/mV

Vs = ±15V, RL = 2K
Vs= ±15V, RL = 2K
Vs = ±15V, RL = 2K

10
9
11

11.5
10.5
12.5

V
V
V

Common Mode
Rejection Ratio

-55 to 125

Vs = ±15V, V'N = ±10V, Rs~ 5K

70

90

dB

Power Supply
Rejection Ratio

-55 to 125

Vs = ±15V, t:N = 5V to 20V, Rs = ~ 5K

70

90

dB

Input Resistance

0.5

25

Average Temperature
Coefficient of Offset
Voltage

-55 to 125

Average Temperature
Coefficient of Bias
Current

-55 to 125

25

Equivalent Input
Noise Voltage

Mn

1.5

Rs~5K

Rs = 1K, f = 5 Hz to 1000 Hz, Vs = ±15V

4

/lAte

0.4

nAte

3.0

/lVrms

Note 1: Based on maximum short circuit current of 50 rnA, device may be operated at any combination of supply voltages,
and temperature to be within rated power dissipation (see Curve).

Note 2: These specifications apply for Pin 7 grounded, for ±5V ::; Vs ::; ±20V, with Capacitor Cl = 39 pF from Pin 1 to Pin 10,
and C2

=

22 pF from Pin 5 to ground, unless otherwise specified.

guaranteed performance
Small Signal Voltage Gain

Input Voltage Range
18
16

12

",

,

dt'

/

17

TA "'-55°C TO +125°C

I
15

-50

°

I"-

700

"'

soo

"-

400

1'... ~

I

15
'0

'00

600

"OV

M'N'iUM .......
80

"

NEGATIVE SUPPl V

MINIMUM .......
ysa'±SV

Ii

SUPPLY VOLTAGE I:!:V)

2-2

.. )-J.. ,,,vi.

/

~."\

•,V / '
°5

I

"

14

Maximum Power Dissipation

RL -lOOK TO THE

'50

f-- K"'IENi'

300

"

+100

TEMPERATURE lOCI

+150

CASE

I'\..

l"-

.....

.............

'00

I"""':

"0

°

25

so

75

100

TEMPERATURE IQC)

125

rl:
<:)
<:)
<:)

typical performance characteristics

...

......•
Negative Supply Current

110.----,----,---,
1601---+---1-----1
: 1401---+---1-----1

180

"'"
.
~

..
z

~

>

~

>

160

"

140

..

120

u

T... --55°&

60

TA =+25"&

~

"

§

in

~

10

(')

--

fI'

I"

10

"r-----+------r----~
o '--____L -____-'-__---'

"

15

SUPPLY VOL lAGE (:VI

3D

~
~

>

T =+125 C

~ "
40

!

P~SITlVES~PPLY
N!GATIVE!uPPLY

>

80_

I

40

<:)
<:)

g

Vs ·t15V

I " ...-

~

100

rl:

Short Circuit Output CUrrent

Positive Supply CUrrents

10

5

"

15

'0

-55

+100

'50

+150

SUPPLY VOL lAGE (tV)

Input Resistance

Input Offset Current

Input Bias Current

Vs· '1SV

"

.e

i

1

6Or-----~----~----~

:I
a;
~

~ 20r----LTTA~.~.,~25~·C~--~
o~-_~

5

___

10

~

__

TA = -55~C

i
~

V

T... = +125°C

~

10

SUPPLY VOLTAGE (tV)

zo

15

SUPPL V VOL JAGE

Negative Output
Voltage Swing
II

161----::-~=:_-I--7.!I"'"

16

14

14

12r----r-~~~~-~

1Or-----~~~~----~

~

100
T" =+25°C

'"

12

z

~

10

.

~

!::;

;:

§
5

~

_____ L_ _ _ _

10

RL "lOOK TO THE
NEGATIVE SUPPLY
~

80

zo

15

SUPPLY VOL IAGE

10

(~VI

Vs· ±15V

I I
I I

120

60

I

Voltage Follower

Frequency Response

Pulse Response

16

"

CI"39pF

"o
0.1

I'

'l I
cr"!" "- '~I

-

40

I

1

10

.,

1

T... ·Z5°C

12
Cl =0,&2'"0

N\

100

lK 10K lOOK 1M 10M

FREQUENCY (HI)

15

Large Signal

~

&2:0

CI'''''\'l\.

~

lOOK

'4

.,

-,

1M

FREOUENCY (Hz)

10M

I
I
~

INPUT

1\-

-

OUTPUT

I\,

,-

1\

-Z
-4

C2:22r

10K

.,

~

\

IK

~
c

\e1"0

\

100

R, 'Z'

10

20

SUPPLY VOLTAGE '-VI

vs= '15V

Rl ·l00K

80

5

'10

1 1

140

zo

15

SUPPl Y VOLTAGE (±VI

Open Loop
Frequency Response

110
160

150

Voltage Gain

~

i

100

50

TEMPERATURE (OCI

~
~

____

-50

(~VI

Positive Output
Voltage Swing

11.--::--=-,----,---,

o~

/

,;'

z

zo

15

./

T... "+25¥C

~

r-. -II
1/

~. - , , "

o

20

4060

Vs= t15V

RL=2K

T,,"2S G C

1 1

BD 100 120140160

TIME flRCl

2-3

u

...

c(

Operational Am'plifiers

o
o
o

....:a::

.......

...

c(

o

LH0001A/LH0001AC micropower operational amplifier

....:a::

general description

o
o

The LH0001A/LH0001AC is a micropower, high
performance integrated circuit operational amplifier designed to have a no load power dissipation
of less than 0_5 mW at Vs = ±5V and less than
2 mW at Vs = ±20V, Open loop gain is greater
than 50k and input bias current is typically 20 nA_

• Output short circuit proof
The LH0001A/LH0001AC may be substituted
directly for the LH0001/LH0001C_ Low power
consumption, high open loop gain, and excellent
input characteristics make the LH0001A an ideal
amplifier for many low power applications such
as battery powered instrument or transducer
amplifiers_

features
• 1,0 mV Typical low offset voltage
• 5 nA Typical low offset current
• 31lVrms Typical low noise
• Simple frequency compensation
• Moderate bandwidth and slewrate

The LHOOOl A is specified for operation over the
_55°C to +125°C military temperature range_ The
LH0001AC is specified for operation over the O°C
to +85°C temperature range_

schematic diagram*

typical application*

C,

IN'U1_""'",""-+_,
R1

OUTPUT

T12

C2

-v

.

PF

*Adjustforzeraintegratordrift.

Integrator with Bias Compensation

INPUTCOMPENSATIDH

'Pin shown for TO-5 package

connection diagrams
Matal Can Package

Cavity Dual-In-Line Package

Flat Package

LHDDOIAD/LHDDOtACD

LHDD01AH/LHOOD1ACH

COMP&CLAMP

lHDOOIAF/LHDOD1ACF

14 +IN'U1

-INPUT

+IN'UT

NC

OUTPUTCDMP

NC

_IN'U1 ....__----"..-

v-

CQMPaCLAMP
INPUT COM'

v'
OUTPUT

IN'UTeUM'

TOP VIEW

INPlITCQMP

IJ Nt

v-

f2 Nt

NC

11 DUTPUTCDMP

10 Nt

COMPAClAMP
NC

•

TOP VIEW
OUTPUT

v'
NC

TOP VIEW

Order Number
LH0001AH or LH0001ACH
Sea Package 14

2-4

Order Number
LH0001AF or LH0001ACF
See Package 3

Order Number

LH0001AD or LH0001ACD

See Package 1

r-

:J:

o

absolute maximum ratings

o
o

~

Supply Voltage
Power Dissipation (See curve)
Differential Input Voltage
Input Voltage
Short Circuit Duration
Operating Temperature Range

LH0001A
LH0001AC.

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

PARAMETERS

»
......

±20V
400mW
±7V
±Vs
Continuous
-55°C to 125°C
-25°C to 85°C
-65°C to 150°C
300°C

r-

:J:

o

o
o

~

»
o

(Note 1)

LHOO01AC

LHOO01A

CONDITIONS

MIN

TYP

MAX

MIN

1.0

2.5
4.0

TYP

MAX

2.0

5.0
7.0

UNITS

Input Offset Voltage

Rs~ lk, TA = 25°C

Input Bias Current

TA = 25°C

20

100
300

20

200
300

nA
nA

Input Offset Current

TA = 25°C

5

20
100

20

60
100

nA
nA

Supply Current

Vs = ±20V, TA = 25°C
Vs = ±20V

80

125
150

80

125
150

IlA
nA

Voltage Gain

Vs = ±15V, V OUT = 10V, RL = lOOk,
T A =25°C
Vs = ±15V, V OUT = 10V, RL = lOOk

25
25
10

60
60
30

25
25
10

60
60

Output Voltage

Vs = ±15V, RL = 2k, TA = 25°C
Vs = ±15V, RL = 2k

10
9

11.5

10
9

11.5

mV
mV

V/mV
V
V

Common Mode Rejection Ratio

Vs = ±15V, Y'N = 10V, Rs = lk

70

90

70

90

db

Power Supply Rejection Ratio

Vs = ±15V, Rs = lk, Vs = ±5V
to ±20V

70

90

70

90

db

Equivalent Input Noise Voltage

Vs = ±15V, Rs = lk, TA = 25°C
f = 500 Hz to 5 kHz

3.0

3.0

IlVrms

Average Temperature Coefficient
of Offset Voltage

Rs~

3.0

3.0

IlVI"C

0.3.

0.3

nAI"C

Average Temperature Coefficient

of Bias Current

lk

\P

g

V/mV

Nota 1: The specifications apply for ±5V ::; Vs .$. 20V. with output compensation capacitor,
Cl .= 39 pF. input compensation capacitor, C2 '" 22 pF, -5S"C to 12S"C for the LH0001A and
-2S"C to +85"C for the LH0001AC unless otherwise specified.

typical applications

'"

"_'_R2--l~LH::::A'M

'._'IoR"",,"",..

~

'--

~+

5&\/

+VIUF

-15V

-=-

TTL/DTL Compatible Comparator

::F

LHDODIA

tLAM~

RI

DI

INPUT_+

"'May be zero ohms or equal
to lource resistance for
minimum offSIt.

T

2
2Z PF

V,'
louy:>:R;'"

r--M---.
D2

D3

~OUTPUT

- V.V""""'fOM"::::'
of diodes D1 to03

at 20 to 50IJA.

":"

Voltage Follower

External Output Current Limiting

2-5

(J

«
.....

typical performance characteristics

o
o
o

:::t

....
«.....

......

Maximum Power Dissipation

I

iz

C
.:!

....

!: 590

~
a:

!;;:

:::t

i

....

Q

a:

400

I........

300

r--.....

100

o

o

60

8:
ill

40

50 75 1110 125 150
TEMPERATURE rCI

TA ""25~C

I I I
I I I

T. -125'C 1.,; ....

~

T. -125'C

I

10

5

I I I
15

5
10
15
SUPPLY VOLTAGE ('VI

ZO

SUPPLY VOLTAGE ('VI

T. - -55'C '. 'j5'C

20

T. - -55'C

(TYPICALI

~
'"z

'/
'/

'l

'"

.,'"~

'/

o

o

o

5
10
15
SUPPLY VOLTAGE ('VI

20

o

+2
OUTPUT

I
:1

1\
\

-2
~

-6

5
10
15
SUPPLY VOLTAGE "VI

1

\ INPUT

> -4

'/
TA -125°e

+4

~
w

' / (MINIMUMI
TA -25°C

.... .-

-

+6

I

I I
I I

20

Voltage Follower
Pulse Response

Input Voltage Range

I I
f-

I I I

%
I

Input Bias Current
80

I I I

T. - 25'c;,....

20
25

TA =+55°C

TA '" _55°C

80

~
~

~200

r-

I I I

....."
I"..-f'"

100

o
o
o

I "put Offset Current

Supply Current

20

20

. ..
40

~~

Vs" ±1SV
RL =2K
TA = 25°C

60 80 100 120 140
TIME ,_,)

Positive Output

Negative Output
Voltage Swing

Voltage Gain

Voltage Swing

18 ~~~'----r---'

18r---,---,----,

16 r----=.~~~--+----7~

16

14

14

12 r-----+-----:~,..'-___I

12 r-----+----~~'-___I

:s

10 ~----+-~~~~-----1

10r------t~~~+_----_;

~

100
m

z

95

w

'"

~>

90

85
RL '" 100K TO THE

80 L-_ _

oL-_ _l....._ _.l.:...._---l
10

15

5

20

160
140
;

120

.~ 100

Large Signal Frequency

Response

Response

,-.,.-..,---r--r--,...-.,.-..,---r--r

~+---,If--+--++--+ VS - ±15V

I
~-L_IL_+--++--+--f---t--i
RL'" lOOK

~

80
60

>

40

Vs= ±15V
TA = 25°C

12

\

'"z
iii

\

I I

o
0.1

1

,1\.

10 100 lK 10K lOOK 1M 10M
FREOUENCY IHzl

Cl-0
C2-0

'

!;

.,~

ZO

2-6

I

16

~

SUPPLY
_NEGATIVE
_ _
_
~

16

SUPPLY VOLTAGE (±VI

Open Loop Frequency

w

'"

10

20

SUPPLY VOLTAGE (±VI

SUPPLY VOLTAGE (±V)

180

16

10

~

r\ l\.

CI-39P~\

CZ- Z2

o
lK

10K

lOOK

1M

FREQUENCY (Hz)

10M

~

20

r-

~

o
o

Operational Amplifiers

o
N

.......
r-

~

o
o
o

LH0002/LH0002C* current amplifier

N

(")

general description
The LH0002/LH0002C is a general purpose thick
film hybrid current amplifier that is built on a
single substrate. The circuit features:

output portion of the circuit also provides a low
output impedance for both the positive and negative slopes of output pulses.

400 kil

The LH0002 is available in an 8·lead low-profile
TO-5 header; the LH0002C is also available in an
8·lead TO-5, and a 10-pin molded dual· in-line
package.

• High Input Impedance

6il

• Low Output Impedance
• High Power Efficiency
• Low Harmonic Distortion

The LH0002 is specified for operation over the
_55°C to +125°C military temperature range. The
LH0002C is specified for operation over the OOC
to +85°C temperature range.

• DC to 30 MHz Bandwidth
• Output Voltage Swing that Approaches Supply
Voltage
• 400 mA Pu Ised Output Current

applications

• Slew rate is typically 200V//ls

•
•
•
•
•

• Operation from ±5V to ±20V
These features make it ideal to integrate with an
operational amplifier inside a closed loop configu·
ration to increase current output. The symmetrical

Line driver
30 MHz buffer
High speed D/A conversion
Instrumentation buffer
Precision current source

schematic and connection diagrams
yo'

y,'

Metal Can Package

Dual-In-Line Package
E, IIGI---1~--+-f

V,'

Yo

yo'

E.

Yo

E.

Y,

E,

Order Number LH0002H
Dr LH0002CH
See Package 11

Order Number LH0002CN
See Package 21

Y,

Pin numbers in parentheses denote pin
connection,'ordual.jn-linepackage.

typical applications
High Current Operational Amplifier

Lina Driver

Se1e,t
INPUT

~lplCltor

10 IdjuS11im. response of pulsa.

"'

-.JV-~"'.:.j-. ""
OUTPUT

R1JIR2

VIN

RL

'Previously called NH0002/NH0002C

2-7

(.)

N

o

absolute maximum ratings

o
o

J:
.......

....

Supply Voltage
Power Dissipation Ambient
Input Voltage (Equal to Power Supply Voltage)
Storage Temperature Range
Operating Temperature Range
LH0002
LH0002C
Steady State Output Current
Pulsed Output Current (SO ms On/l sec Off)

N

o
o
o

J:

....

electrical characteristics
PARAMETERS
Voltage Gain

±22V
600mW
-6S0C ·to +lS0oC
-SSoC to +12SoC
O°C to +8SoC
±100mA
±400mA

(Note 1)

CONDITIONS

MIN

Rs= 10kn, RL = 1.0kn

TYP

.9S

MAX

UNITS

.97

V IN = 3.0 V pp, f = 1.0 kHz
T A = -SSoC to 12SoC
AC Current Gain

V IN =1.0V rms

40

A/mA

f = 1.0 kHz
Input Impedance

Rs = 200 kn, V IN = 1.0 V rm ..

-

kn

10

n

±11

-

V

±10

±30

mV

±10

p.A

180

400

-

6

±10

f = 1.0 kHz, RL = 1.0 kn
Output Impedance

V IN = 1.0 V rms , f = 1.0 kHz
RL = son, Rs = 10 kn

Output Voltage Swing

RL = 1.0 kn, f = 1.0 kHz

Output Voltage Swing

Vs = ±lSV, V IN = ±10V,

±9.SV

RL = lOOn, TA = 2SoC
DC Output Offset Voltage

Rs = 300n, RL = 1.0 kn

-

TA = -SSoC to 12SoC
DC Input Offset Current

Rs= 10kn, RL = 1.0kn

-

±6.0

0.1

T A = -SSoC to 12SoC
Harmonic Distortion

V IN = S.O V rm .. f = 1.0 kHz

-

Bandwidth

V IN = 1.0 V rms ' RL = son,
f = 1 MHz

30

Positive Supply Current

Rs = 10 kn, RL = 1 kn

Negative Supply Current

Rs = 10 kn. RL = 1 kn

-

-

%

-

MHz

+6.0

+10.0

mA

-6.0

-10.0

mA

so

Note 1: Specification applies for T A = 25°C with +12V on Pins 1 and 2; -12V on Pins 6 and 7 for the
metal can package and +12V on Pins 1 and 2; -12V on Pins 4 and 5 for the dual·in·line package unless
otherwise specified. The parameter guarantees for LH0002C applv over the temperature range of OOC
to +85°C , while parameters for the LH0002 are guaranteed over the temperature range _55°C
to 125°C.

2-8

r::I:
0
0
0

typical performance
Maximum Power Dissipation

Frequency Response

1.0

...

~

2i

..
..:="'

1.2
CASE

1.0

AMBIENT

is 0.6
co
~ 0.4
~
0.2

~

TA-25"1:

\
I'.

2.0

V,o -0.3V._1I11

-80

2 ,0 = 1.0 kIlliI 10MH•• "
1 TA -25 /

1

Or--..l.

-&0 !..

~
-40 ~

~

I'

1

-20

/

o

0.1

0.2

0.5

10

:!

Ro. -R.=5on

ill
co

co 6.0

a

./"

~ 4.0

~

o

TA=25'C

o

Vs=±12V
RL =R s =50n
TA = 25°C

~

~~ -1.0

.
Q

::;

-2.0

~

..\

-

5 -3.0
-5.0

20

40

60

80 100

TIME I.s)

r

. bUTJUT

I

II

INPUT

II

~-4.0

o

15.0

~
~

11

0

12.0

9.0

6.0

"'

r- OUTPUT 1\
I
\

2.0

I-"""

/

V
./

2.0

~

I(

~ 1.0

0
50.0 100

2D.0

SUPPLY VOLTAGE (tVI

I

J.O

~

if

Negative Pulse

r- INP~T

== 4.0

N

("')

l

!

\Is D±12V

.
..!;!i
..

10.0

TA,25'C••
ching, from
10.0 Less thin ±10%
I
:;:
-55"1: to 125"1:
8.0
0-

Positive Pulse

~ 5.0

:!!

-16 ~

SupplV Current

FREQUENCY IMH.)

~

1

I

5.0

12.0

-100

R. - 50n, v. - t12.0V

11"1R.'10kll

..

ir

FREQUENCY (MH.)

Input Impedance (Magnitude & Phasel

0

0
0
0

1

/

........

TEMPERATURE I'C)

0

-24

Ii

L1

1.0

50 75 100 125 150 175

J:

. / PHASj_ -8

0.2
~

25

son. Vs" ±12.DV _

~ 0.4

-32

r-

AV

'\I

~ 0.6 VIN "l Vrml• RL -

i\

0.8

0.8

.......

L

--r...

1.4

j

N

....0

o

20

40

60 80 100 120
TIME (.s)

Input Offset Current

~

TA =25'C_
TA = -55'C-:

~

~ ~V

~ I/'

?': ",. ...... TA = 125'C

~ "/

'"V
o

4

10

12

14

16

18

20

SUPPLY VOLTAGE (tV)

2-9

(,)
(W')

o
o
o

Operational Amplifiers

::J:
...I

.......
(W')

o
o
o

LH0003/LH0003C* wide bandwidth operational amplifier

...I

general description

::J:

The LH0003/LH0003C is a general purpose operational amplifier which features: slewing rate up to
70 volts/llsec, a gain bandwidth of up to 30' MHz,
and high output currents. Other features are:
• Very low offset voltage
•

Typically 0.4 mV
> ± 1OV into lOOn
load

Large output swing

Typically> 90 dB

• High CMRR
• Good large signal
frequency response

50 kHz to 400 kHz de·
pending on compensa·
tion
The LH0003 is specified for operation over the
_55°C to +12SoC military temperature range. The
LH0003C is specified for operation over the O°C
to +85°C temperature range.

schematic an,d connection diagrams

RI

R1

1K

1K

...;C::O::::M:..'....-+----1----11--,

CI

TOP VIEW

L---f--to

~~~MP

Order Number LH0003H or LHOOO3CH
S.. Package 14

COMPENSATION
5 COMP

A3

A4

toK

10K

A'

lK

C.rcultG,ln

High Slew Rate Unity Gain Inverting Amplifier

C,

,F

,F

~40
~

typical applications

c,

~

10
b

~

2

~

1

51ewRate
RL

> 2000. VI/J.sec
70

.. ..
15

30
30

90

90

30

.00
3,. }

15

2,.
100
50.

Typical Compensation

Unity Gain Follower

IOOpF

'Previously called NH0003/NH0003C

2-10

Full OU1put Frequency
R, 200llV oUT

'H,

r-

l:

o
o
o

absolute maximum ratings
Supply Voltage
Power Dissipation
Differential Input Voltage
Input Voltage

w
......

±20V
See curve

Load Current

Operating Temperature Range LHOOO3
LHOOO3C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER
Input Ofhet Voltage

r-

±7V
Equal to supply
120mA
_55°C to +125°C
O°C to+85°C
-65°C to +150°C
300°C

l:

o
o
o

w
n

(Notes 1 & 2)
MIN

CONDITIONS

MAX
3.0
0.2
2.0

TVP

0.4

As< lk

Input Offset Current

0.02

Input Bias Current

Supply Current

Vs "±20V

Voltage Gain

RL " lOOk, Vs

Voltage Gain

RL = 2k, Vs

Output VOltage SWing

Vs

=

=

±lSV, V OUT

=±15V, V OUT

=

"

0.4
1.2
70
40

20
15

±10V

±10V

"A
"A
rnA

3

V/mV
V/mV

V

±12

±10

±15, RL" lOOn

UNITS

rnV

Input Resistance

"'1

100

Average Temperature
CoeffiCient of Offset
Voltage
Average Temperature
Coetftelentof Bias
Current

Note 1.

Note 2.

"vfc

4

Rs 
'\.

iii
;::: 600

\.

::
iii
c;

AMBIENT

400

i

"' "
.....

0:

zoo

.111111111

14

\.

CASE

1O
oS

o pen Loop Frequency Response

Large Signal Frequency Response

Maximum Power Dissipation
1000

0

""'"
~

!;

~

Vs=±1SV
tA =2S"C
_RL"'2DOU

lZ
10

Cl=
CZ=

lOr

6
4 Cl = gO pF
CZ =90 pF
2

50

75

100

TEMPERATURE I'C)

125

10'

a;

100

'"~z

80

~

'"'"~

Cl= 0
C2 =0

>

t\.1

r-.

111111

0
25

II

1SpF

8

10'

\1

FREQUENCY (Hz)

40
20

10'

RL =200n-:::!!l

f-- -

±llv_

tA =2S"C

R,! 10;J

60

0

N

10'

v;:

120

~11.T-CZ-O

'" "'

C1;;9DP~
C2= 90pF

'\

"\..\
,.

10°10' 102 103 104 105 106 10 7 108
FREQUENCY (Hz)

2·11

(.)
~

o

Operational Amplifiers

o
o

....::E:

.......
~

LH0004/LH0004C* high voltage operational amplifier

o
o

o

general description

....::E:

The LH0004's high gain and wide range of oper·
ating voltages make it ideal for applications
requiring large output' swing and low power
dissipation.

The LH0004/LH0004C is a general purpose opera·
tional amplifier designed to operate from supply
voltag.es up to ±40V. The device dissipates ex·
tremely low quiescent power, typically 8 mW at
25°C and Vs = ±40V. Additional features include:
•
•

•
•
•
•

The LH0004 is specified for operation over the
-55°C to +125°C military temperature range. The
LH0004C is specified for operation over the O°C
to +85°C temperature range.

Capable of operation over the range of ±5V to
±40V
Large output voltage typically ±35V for the
LH0004 and ±33V for the LH0004C into a
2 KQ load with ±40V supplies
Low input offset current typically 20 nA for
the LH0004 and 45 nA for the LH0004C
Low input offset voltage typically 0.3 mV
Frequency compensation with 2 small capacitors
Low power consumption B mW at ±40V

applications
• Precision high voltage power supply
• Resolver excitation
• Wideband high voltage amplifier
• Transducer power supply

schematic and connection diagrams
r-....- -....- ....- -........:.. "

tOM".!.'~~_+_-I--_-t:::::;_T-"!.10 ~~~::NSATION

Note: Pin 7 must be grounded or connected to a voltage
at least 5V more negative than the positive supply (Pin 9L
Pin 7 may be connected to the negative supply; however,
the standby current will be increased. A resistor may be
inserted in series with Pin 7 to Pin 9. The value of the
resistor should be a maximum of 100 Kn per volt of
potential between Pin 3 and Pin 9.

Order Number LH0004H or LH0004CH
See Package 14

typical applications
Voltage Follower

Input Offset
Voltage Adjust

External Current
Limiting Method

i

IZZ,F
CI

_
-

*May be zero orequal
to source resistance for
minimum offset.

'Previously called NH0004/NH0004C

2·12

*V f

High Compliance Current Source

"

average forward
voltage drop of
diodes 01 to 04
at 20 to 50IJ,A.

rJ:

o
o
o

absolute maximum ratings
Supply Voltage, Continuous
Supply Voltage, Transient (:::;0.1 sec, no load)
Power Dissipation (See curve)
Differential Input Voltage
Input Voltage
Short Circuit Duration
Operating Temperature Range. LHOO04
LHOO04C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

~

.......

±45V
±60V
400mW
±7V
Equal to supply
3 sec
-55°C to +125°C
O°C to 85°C
-65°C to +150°C
300°C

rJ:

o
o
o

~

(")

(Note 1)
LHOOO4

PARAMETER

CONDITIONS

MIN

TYP

LHOO04C
MAX MIN

TYP

MAX
1.5
3.0

UNITS
mV
mV

Input Offset Voltage

Rs :::; 5k, T A = 25°C
Rs :::;5k

Input Bias Current

TA = 25°C
= -55°C

20

100
300

30

120
300

nA
nA

Input Offset Current

TA = 25°C
= -55°C

3

20
100

10

45
150

nA
nA

Positive Supply Current

Vs = ±40V, T A = 25°C
Vs = ±40V

110

150
175

110

150
175

JJA
IlA

Negative Supply Current

Vs = ±40V, T A = 25°C
Vs = ±40V

80

100
135

80

100
135

JJA
JJA

Voltage Gain

Vs = ±40V, RL = lOOk, T A = 25°C
V OUT = ±30V
Vs = ±40V, RL = lOOk
V OUT =±30V

0.3

30

60

10

1.0
2.0

0.3

30

60

10

V/mV

±30 ±33
±33 ±35

V
V

Output Voltage

Vs = ±40V, RL = 2k
Vs = ±40V, RL = 4k

CMRR

Vs = ±40V, Rs :::; 5k
V 1N = ±33V

70

90

70

90

dB

Vs = ±40V, Rs:::; 5k

70

90

70

90

dB

PSRR

±30 ±35
±34 ±36

V/mV

eN = 20V to 40V
Average Temperature
Rs:::; 5k
Coefficient Offset Voltage

4.0

4.0

JJvtc

Average Temperature
Coefficient of
Offset Current

0.4

0.4

nAtC

3.0

3.0

JJVrms

Equivalent Input
Noise Voltage

Rs = lk, Vs =±40V
f = 500 Hz to 5 kHz, T A = 25°C

Nota 1: These specifications apply for ±5V ~ Vs ~ ±40V, Pin 7 grounded, with capacitors Cl = 39 pF between Pin 1 and
Pin 10, C2 = 22 pF between Pin 5 and ground, -55°C to +125°C for the LH0004, and O°C to +8SoC for the LH0004C unless
otherwise specified.

2·13

o
~
o
o
o

typical performance

J:
...J
.......
~

o
o

o

Input Voltage Range

Input Bias Current

45

J:

80

Voltage Gain

i 1-

...J

~
...
!:;
>

25

..'"
!!

~~+

~

):.

..."
~

It

-

.....

...
~

15
~

r""

..... I-"'"

4D

40

10

.....'"
'"..
Z

120

80

20

.:J.

~

-

P

'"
!:;
5
~

!:;

">

40

o

2-14

10

TA = 25°e

~
~

15

""

/.~

~ i-- TA • -55"C

I I
I I

45

3D

15

4D

SUPPLY VOLTAGE (±VI

Package Power Dissipation
Vs

;;

""'"

r- -

"" "

lOOk
lk
FREQUENCY (Hzl

10M

'"z
iii...

2D

""

10

-

lk

\

BOD

I\.

~
lOOk

FREQUENCY IHzI

\

AM81ENT

4DO

\.

..........

is
a:

,\

10

Iz

iii

\
\

I\,

CASE

"
~

"

,\

0.1

800

±40V

Cl =39pF L\Cl=C2=0
-C2-22pF

~

o

=

Tr2j"C

\

3D

.:J.

Cl=C2-0

D.l

RL =2k

TA - 125"C

3D

Frequency Response

1':
- r- Cl ~ 39;-- r- C2=22pF
I i

4D

3D

I
I

">

3D

Vs '" ±40V

RL = lOOk

RL =2k

20

Output Voltage

4D

m

10

Large Signal

Response

I I
I I
I I

o

SUPPLY VOLTAGE (±VI

Opan Loop Frequency

160

I

IP'

SUPPLY VOLTAGE (±VI

'-

RL = lOOk TO
MINUS SOURCE
&0

D ~ ..... ...
..

I-

iii

TA ", 125°e

~

10

;;

TA -125"C_

80

V

SUPPLV VOLTAGE (±VI

~
3D

20

~ 120
a:
a:

TA '" _55°C

45

TA=25"C_

~

TA '" 26°e

80

4D

3D

f"

!:;

TA =-55"C _

C

TA=-5S0C

~

~
r--

-

I~

~".

90

Positive Supply Current

C

.:I
120

20

10

l-

160

lBO

~
a:
a:

kJ
TA ~ 12J"C
I I

..
.....'"'"
z

SUPPLY VOLTAGE (±VI

SUPPLY VOLTAGE (±VI

...

1-~5!C- -

T

t-

:l

...~

:s

- --

40

ii

~

;;;

I I

~
a:

/

"

~

!...

100

l-

TA -55 C
35

..........

200

\

........

0
100M

0

50

100

TEMPERATURE rCI

150

r::J:

Operational Amplifiers

o
o
o

UI

.......
r::J:

o
o

o

lHOOOS/lHOOOSA* operational amplifier
general description

UI

»

• Full operating range: -55°C to +125°C

The LH0005/LH0005A is a hybrid integrated circuit operational amplifier employing thick film
resistors and discrete silicon semiconductors in its
design_ The select matching of the input pairs of
transistors results in low input bias currents and a
very low input offset current, both of which exhibit excellent temperature tracking. In addition,
the device features:

• Good high frequency response: unity gain at
30MHz
With no external roll-off network, the amplifier is
stable with a feedback ratio of 10 or greater. By
adding a 200 pF capacitor between pins 9 and 10,
and a 200 ohm resistor in series with a 75 pF
capacitor from pin 4 to ground, the amplifier is
stable to unity gain. The unity gain loop phase
margin with the above compensation is typically
70 degrees. With a gain of 10 and no compensation
the loop phase margin is typically 50 degrees.

• Very high output current capability: ±50 mA
into a 100 ohm load
• Low standby power dissipation: typically
60 mW at ±12V
• High input resistance: typically 2M at 25°C

schematic and connection diagrams

.

INPUT fREQUENCY

OUTPUT fREQUENCY

COMPENSATION

COMPENSATION

"

10K

•

'K

10K

N'
TOP VIEW

Order Number LH0005H
or LH0005AH
See Package 14

L-----------+--4~------~~r

•

GROUND

typical applications
Voltage Follower

External Current Limiting

R,'

~

·V," Average forward voltage drop
R,

>'--""',."............

-OUTPUT

-May be zero or equal to Ihe
input resistance for minimum

of diodes D, to D4 at .pprox.
1 mAo
FOf cootinuousshort circuit
protection IVs =±12V,
-SSoC::; TA::; +100°C.
RL1M;:::SOn

offtet

··To minimize crassover distortion
at higher frequencies. May be
omitted for low frequency
application Dr selected to suit
design rtquirements

"

~15PF

Integrator with Bias Current Compensation

"

....F

Offset Balancing Circuit

OUTPUT

OUTPUT

-Typical value, AB == lOOK.
Rs may be incrnsed for grelter

sensitivity with reduction in
range.

·Adiust RD for zero Integrltion

·Previously called NH0005/NH0005A

drift.

2·15

c(

an

o

absolute maximum ratings

o
o

...

J:
.......

an

o
o
o

...J:

±20V
400mW
±15V
Equal to supply voltages
±100 mA
_65°C to +150°C
_55°C to +125°C
300°C

Su ppl y Vol ta~e
Power Dissipation (see Curve)
Differential Input Voltage
Input Voltage
Peak Load Current
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics

(Note 1)
LHOOO5

PARAMETER
Input Offset Voltage
25°C
-55°C, 125°C

CONDITIONS

Rs ~ 20 kn
Rs~20 kn

Input Offset Current
25°C to 125°C
_55°C
Input Bias Current
25°C to 125°C
-55°C
Large Signal Voltage Gain
_55°C to 25°C
125°C
Output Voltage Swing
_55°C to 125°C
25°C to 125°C
_55°C

RL

;

10K, R2; 3K, VOUT ; ±5V

RL
RL
RL

;

10 kn
100.11
100.11

;
;

Input Resistance
25°C
Common Mode Rejection Ratio
25°C

V1N

;

±4V, RS:S 20 kn

Power Supply Rejection Ratio
25°C

LHOOO5A

MIN TVP MAX MIN TVP MAX UNITS

2
1.5

5

10
10

1

3
4

mV
mV

10
25

20
75

2
10

5
25

nA
nA

15
100

50
250

8
60

25
125

nA
nA

4
3

4
3

-10
-5
-4

+6
+5
+4

5.5
5

-10
-5
-4
1

V/mV
V/mV
+6
+5
+4

2

V
V
V

1

2

Mn

55

60

60 66

dB

55

60

60 66

dB

Supply Current (+)
-55°C to 125°C

3

5

3

5

mA

Supply Current (-)
_55°C to 125°C

2

4

2

4

mA

Average Temperature Coefficient
of Input Offset Voltage
_55°C to 125°C
Rs~20 kn

20

10

uvfc

Output Resistance
25°C

70

70

.11

Note 1: These specifications apply for pin 6 grounded, Vs = ±12V. with Resistor R, '"
200n in series with Capacitor C, = 75 pF from pin 4 to ground, and C2 = 200 pF between
pins 9 and 10 unless otherwise specified.

2-16

r-

:J:

o

o
o

guaranteed performance characteristics

U1

SupplV Current
900

1 1

~800
;'100

1 1
1 1

~

""

"'

600

!!:: 500

~ 400
100

11

12

13

14

o

15

o
o
o

U1

I""CASE

o

25

SUPPLY VOLTAGE (.V)

l>

I"

I,

1

1 1

I

I I

50

"

I'\.

AMBIENT

~ 200

r-

:J:

~

a:

~ 300

10

.......

Maximum Power Dissipation

75

r-....

100

125

TEMPERATURE (OC)

typical performance characteristics
Voltage Gain

Input Bias Current

;;

BO

1.... 60

\
\

~

\ '\

1ll
a:
:to!

50
40
30

~

-t

iii

~

I"

~
>
~

c
~

~HOO05

~

c

~

1 1 1

Vs = ±llV
RL =lOon
TA = 25°C

z

NHOO05A~

~

O'--_ _J..LI.w.w...J..JJ..UWI....LJ..L.IJUU

2

-10
-55 -35 -15 5 25 45 65 85 105125 145

10

9

DC Output Voltage Swing

~

_I-

Vs= ±12V
TA =2SoC
."'Spec.limit

~ -2
c -4
~
~

~f.

-B

-12

..

TA -+2S0C - . _ . TA=+12S0C--TA "'-55°C - -

~ 13

~,...

o

14

15

O.IK

~

I

-I-

RL = 10K.

g

5
~

1

~

~
~
....>

.'¢ ~
~~

'"~

10

9

c

11

=
:g

TA "25°C

I---r-:-""""[~"""''-+--+-----j

-B ci~~-t-+--r--f~

-7

12

14

13

~

IS

10

....
""

;

~

60
z 50
;;:
40

..

"

20

!:;
c
> 10
c

R, "'oa
Rz "3K
RL =10K
TA 25°C

~

20

~
c

10
0

90

II

G

"

180

1

10
FREQUENCY (MHz)

~

100

--

13

~

A.

5
~c

~

>

fr~p.!!!

14

v.·:tUV
,,~

-ZIIIn

INPUT

= I-""'It

",'111011

~

:to!

=

--

~
c

><
270 w

-10
10M

12

IS

Inverting Pulse Response

..

Cz =0

~

~

30

Vs '" ±12V

G

;;:

70

11

SUPPLY VOLTAGE (tV)

8

I'-.

z 30

80

lOOK
1M
FREQUENCY (Hz)

-11

Open Loop Gain vs Excess Phase
40

10K

-13

SUPPLY VOLTAGE (.V)

Vs= ±12V

1M

> -5
;::

~·L;100!l1

Frequency Response

lOOK

..

r-- -

3

10 IS 20 25 30 35 40 45 50

10K

Negative Output Voltage Swing

".....

=. I?"

~

>

OUTPUT CURRENT ('mA)

lK

lK

FREQUENCY (Hz)

.. 11

~

>

0 _ 10

13

~-ISr----~-------r--.--'

~
>

~

.... -6

12

Positive Output Voltage SWing
~ 15

POS1T1VE

.

11

SUPPLY VOLTAGE (±V)

TEMPERATURE (OC)

8

1-+~-IIlII-o:l

~

~

10

9

~

..""

I\.. I......

iD 20

10 r-r"TT1T111T-'"

~z

Vs= ±12V

70

Loaded Output Voltage Swing

8r--r-r--r-r-.--.

90

2
0

-

-4

--6

~;::;'F

a·,

_C,,",f

i
TA = 25°C

-0.4 ~
~

0.2

111.1011)

-2 I--

-B

r

\,.

.-

-

t:I

~

>

-0.2 !;

0.4

!!

I I

o
TIME (....)

2·17

(.)
IS)

o
o
o

Operational Amplifiers

3
LH0005C* operational amplifier
general description
The LH0005C is 8 hybrid integrated circuit operational amplifier employing thick film resistors
and discrete silicon semiconductors in its design.
The select matching of the input pairs of transistors results in low input bias currents and a very
low input offset current both of which exhibit
excellent temperature tracking. In addition, the
dev ice featu res:
• Very high output current capability: ±40 mA
into a 100 ohm load
• Low standby power dissipation: typically
60 mWat±12V
• High input resistance: typically 2M at 25°C

• Operating range: 0° to 70° C
• Good high frequency response: unity gain at
30 MHz
With .no external roll·off network, the amplifier is
stable with a feedback ratio of 10 or greater. By
adding a 200 pF capacitor between pins 9 and 10,
and a 200 ohm resistor in series with a 75 pF
capacitor from pin 4 to ground, the amplifier is
stable to unity gain. The unity gain loop phase
margin with the above compensation is typically
70 degrees. With a gain of 10 and no compensation
the loop phase margin is typically 50 degrees.

schematic and connection diagrams
OUTPUT FREQUENCY
COMPENSATION

INPUT FREQUENCY
COMPENSATION

10

•

•

10K

.K

10K

N.
TOP VIEW

Order Number LH0005CH
See Package 14

12K

12K

L-----------+--4~------~~·v-

•

GROUND

typical applications

External Current Limiting

Voltage Follower

~

~.

*May be zero or equal to the inputresistlncefor
minimum offset.
-To minimlZl crossover distortion athigher
frequencies. May be omitted for low frequency
application or selected to suit design requirements.

For continuous shott Circuit protection IVs '" ±12V, DOC :s: TA :s: 70 o e. RUM :::- SOn)
"Vf "average forward voltaga drop of diodes D1 to D4 at approximately 1 rnA.

I ntagrator With Bias CUrrent Compensation

Offset Balancing Circuit
iII-IOiK

OUTPut

'"'Typical value, RB" 100K. Ra may be Increased
for greatlf unsitiYlty with reductIOn inranga.

'Previously called N H0005C

2·18

R_

I.
*Adjun Ro for zero integration drift.

r:t

absolute maximum ratings
Supply Voltage
Power Dissipation (see Curve)
Differential Input Voltage
Input Voltage
Peak Load Current
Storage Temperature Range
Operating Temperature Range
Lead Temperature (soldering, 10 sec)

0
0
0

±20V
400mW
±15V
Equal to supply voltages
±100 rnA
_55°C to +125°C
O°C to 85°C
300°C

U'I

0

electrical characteristics
LHOOO5C
PARAMETER

CONDITIONS

Rs~

I nput Offset Voltage

MIN

TYP
(Note 2)

10

mV

5

25

nA

20

100

nA

Input Offset Current

Large Signal Voltage Gain

RL

10K, R2; 3K, VOUT

Output Voltage Swing

R L ;10kn
R L ; lOon

;

Input Resistance

TA

Common Mode Rejection Ratio

V1N

Power Supply Rejection Ratio

TA

±5V

25°C

;

;

;

;

±4V, Rs ~ 20 kn, T A; 25°C
25°C

UNITS

3

20 kn

Input Bias Current

MAX

2

5

-10
-4

±6

V/mV
+6
+4

V
V

2

Mn

50

60

dB

50

60

dB

0.5

Supply Current (+)

3

5

rnA

Supply Current (-)

2

4

rnA

g

Note 1: These specifications apply for pin 6 grounded, Vs = ±12V, with Resistor Rl = 200n in series
with Capacitor CI = 75 pF from pin 4 to ground, and C2 = 200 pF between pins 9 and la, over the
temperature range of aOc to +85°C unless otherwise specified.
Note 2: Typical values are for 25°C only.
1DOD
900

SOD
100
600
500

"r-r-r--r........-,-,.,,,

I-H-t-+-+-++-HH

1-1.:,++-HH-++-t-1
f-H"d+++CA':s:-,HH
f-H-f'''-!-+-t-''rt-H
H-+-+-+'''Ir...M-+-+--+--l

400 ~H,cl-+-+-"t-+-t-H
JOO

200
100

H-t-F""".....++-t--H-I
I-H-,A"'M.:-::I'""NT::-l"......+-t-H
H-+-.-jrl-t-+-t-+-l

oL-J.....l.--'-...J...-'---'-~L-J--'

o

25

50

15

100

125

TEMPERATURE ( C)

Maximum Power Dissipation

2-19

CJ

o
N
o
o

Operational Amplifiers

J:

...I

.......

o
N
o

LH0020/LH0020C* high gain instrumentation
operational amplifier

o

J:

...I

general description
The LH0020/LH0020C is a general purpose opera·
tional amplifier designed to source and sink 50 mA
output currents. In addition to its high output
capability, the LH0020/LH0020C exhibits excel·
lent open loop gain, typically in excess of 100 dB.
The parameters of the LH0020 are guaranteed
over the temperature range of -55°C to +125°C
and ±15V ~ Vs ~ ±22V, while those of the
LH0020C are guaranteed over the temperature
range of O°C to 85°C and ~ ±5V ~ Vs ~ ±18V.
Additional features include:
• Low offset voltage typically 1.0 m V at 25°C
over the entire common mode voltage range.

• Low offset current typically 10 nA at 25°C for
the LH0020 and 30 nA for the LH0020C.
• Offset voltage is adjustable to zero with.a single
potentiometer.
• ±14V, 50 mA output capability.
Output current capability, excellent input char·
acteristics, and large open loop gain make the
LH0020/LH0020C suitable for application in a
wide variety of applications from precision dc
power supplies to precision medium power
comparator.

schematic and connection diagrams

COMPENSATION

OFFSET A::DJ;:":.:'T_ _ _....I

v'

INVERTING
INPUT

4

•

INPUT

GND

10
V"

TO' VIEW

COMPENSATION

Order Number LHOO20G or LH0020CG
See Package 6

typical applications
Offset Adjustment

Unity Gain Frequency Compensation

."

,.

OUTPUT

'R,
INPUT~M.-4JI-=-t

'C,
3DDpF

-Ii

'Previously called NH0020/N H0020C

2·20

r-

~

o
o
N
o
......

absolute maximum ratings
±22V
1.5W
±30V
±15V

Supply Voltage

Power Dissipation
Differential Input Voltage

Input Voltage INote II
Output Short Circuit Duration
Operating Temperature Range LH0020

LH0020C

Storage Temperature

r-

~

o

Continuous

o

-55'C to +125'C

aOc to 8SoC
-6SoC to +150°C

N

o

300'C

Lead Temperature (Soldering, 10 sec)

(")

electrical characteristics
LH0020
PARAMETER

UNITS
TEMP'C

Input Offset

Rs"; 10k

Voltage

Input Offset
Current

Input Bias
Current
Supply Current

Vs = ±15V

Voltage Gain

Vs = ±15V, RL = 300n

Output Short

Vs = ±15V
RL = on

Input Voltage

TVP

1.0
2.0

MAX TEMP'C

2.5
4.0

MIN

25
Oto 85

TVP

1.0
3.0

6.0
7.5

mV
mV

10

50
100

25
o to 85

30

200
300

nA
nA

25
-55 to +125

60

250
500

25

200

o to 85

500
800

nA
nA

3.5

25
0.6

25
-55 to +125

14.2
14.0

1.0

Vs =±15V

-55 to +125 ±12

Rs"; 10k

-55 to +125

90

Rs"; 10k

-55 to +125

90

25
25

300

14.5

100

25

5.0

130

3.6
0.3

25
o to 85

50
30

25
Oto 85

14.0
13.5

25

25

6.0

1.0

V/mV
V/mV

14.2

120

mA
Mn

150

V
V
140

mA

Oto 85

±12

96

Oto 85

90

96

dB

96

o to 85

90

96

dB

V
V

Range
Common Mode

MAX

25
-55 to +125

V s =±15V, RL = 300n, Va = ±10V
25
100
Vs= ±15V, RL = 300n, Va = ±IOV -55 to +125 50

Output Voltage
Swing

Circuit Current

MIN

25
-55 to +125

25

Input Resistance
Large Signal

LH0020C

CONDITIONS

Rejection Ratio
Power Supply

Rejection Ratio

Note 1: For supply voltages less than ±15V. the absolute maximum input voltage is equal to the supply voltage.
Note 2: These specifications apply for ±5V ~ Vs ,,; ±22V for the LH0020, ±5V ~ Vs ~ ±18V for the LH0020C, pin 9

grounded, and a 5000 pF capacitor between pins 2 and 3, unless otherwise specified.

2·21

...

u

III:t

o
o

Operational Amplifiers

l:

....
.......

...

III:t

o
o

l:
....I

...u
N

o

o

l:

...
....I

.......
N

o

o

l:
....I

LH0021/LH0021C 1.0 amp power operational amplifier
LH0041/LH0041C 0.2 amp power operational amplifier
general description
The LH0021/LH0021C and LH0041/LH0041C are
general purpose operational amplifiers capable of
delivering large 'output currents not usually associated with conventional IC Op Amps_ The -LH0021
will provide output currents in excess of one
ampere at voltage levels of ±12V; the LHOO41
delivers currents of 200 rnA at voltage levels
closely approaching the available power supplies_
In addition, both the inputs and outputs are protected against overload_ The devices are compensated with a single external capacitor and are free
of any unusual oscillation or latch-up problems_

• High slew rate
• High open loop gain

features

The LH0021 is supplied in a a pin TO-3 package
rated at 20 watts with suitable heatsink_ The
LH0041 is supplied in both 12 pin TO-a (2_5
watts with cI ip on heatsink) and a power a pin
ceramic DIP (2 watts with suitable heatsink)_ The
LH0021 and LH0041 are guaranteed over the
temperature range of -55°C to +125°C while the
LH0021 C and LH0041C are guaranteed from _25°C
to +85 u C

•
•
•
•
•

Output current

1.0 Amp (LH0021)
0_2 Amp (LH0041)
Output voltage swing ±12V into lOn (LH0021)
±14Vinto lOOn (LH0041)
Wide full power bandwidth
15 kHz
Low standby power
100 mW at ±15V
Low input offset
voltage and current
1 mV and 20 nA

3_0V//J-s
100 dB

The excellent input characteristics and high output capability of the LH0021 make it an ideal
choice for power applications such as DC servos,
capstan drivers, deflection yoke drivers, and programmable power supplies_
The LH0041 is particularly su ited for applications
such as torque driver for internal guidance systems,
diddle yoke driver for alpha-numeric CRT displays,
cable drivers, and programmable power supplies
for automatic test equipment_

schematic and connection diagrams

*Rsc externllonTO-Band
TO·3packages. Rsc internal
on "J"package. Offset Null
connettions avaliable only
onTO.a "G" package.

TO-3 Package

TO-S Package

Ceramic DIP

V-[§,."."V.
INPUT

Order Number

LH0021 K or LH0021CK

See Package 19

Order Number

LH0041G or LH0041CG

See Package 6

Me

2

7

l=~iJT

GND

3

&

OUTPUT

y+

4

Ii

COMP

Order Number

LH0041CJ

See Package 15

I"'"

:x:
o
o

absolute maximum ratings

....

N
Supply Voltage
Power Dissipation
Differential Input Voltage
Input Voltage (Note 1)
Peak Output Current (Note 2) LH0021/LH0021C
LH0041/LH0041C
Output Short Circuit Duration (Note 3)
Operating Temperature Range LH0021/LH0041
LH0021C/LH0041C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

"I"'"

±18V
See curves
±30V
±lSV
2.0 Amps
O.S Amps
Continuous
-SSoC to +12SoC
- 2SoC to +8SoC
-6SoC to +lS0°C
300°C

:x:

o
o

N
....
(")
I"'"

:x:
o

o

~
....

"I"'"

:x:

o
o

dc electrical characteristics

!:
(")

for LH0021/LH0021C (Note 4)
LIMITS

lHOO21

CONDITIONS

PARAMETER

MIN
Input Offset Voltage

As:O::;: 10 kil. Tc
As::;': lOkn

Voltage Drift with Temperature

Rs:5:: 10

=

2SoC

kn

Tc= 2SoC
With

Temperature

Input Resistance

Tc

=

5

0.3

2S C

Rs~

10 H2, /J,V CM

=

±lOV

V s =±15V
Rs ~ 10 kn,

Voltage Gain

Vs= ±15V. Vo = ±1OV
RL = 1 kn, T c = 2So C:
Vs = ±15V, Vo = ±1OV
=

tNs

= ±lOV

lOOn,

15

5

20

50

200
SOO

1.0

0.2

Output Short Circuit Current

Vs= ±l5V, Tc = 25°~,Rsc= 0.5n

Power Supply Current

V s =±15V,V ouT =0

1.0

200
0.3

Power Consumption

V s =±15V,V ouT =0

ac electrical characteristics
Slew Rate

Av::: +1, R L ::: lOOn

Power BandWidth

RL = lOOn

100

200

14

1.5

V/mV

20
±13
±10

1.2

f6

2.5

3.5

;

V/mV

V
V

±14
±12

1.2

1.6

Amps

3.0

4.0

mA

90

120

mW

2SoC, Vs; ±lSV, Cc ; 3000 pF)

3.0

4

O.B

105

1.0

40
5

lOV, Av = +1

V

200

0.3

=

dB

100

for LH0021/LH0021C (TA

Small Signal Overshoot

pF

90

±12

nA

"A
Mn
dB

70

±1'.0

nA
nA

nAte

3
±12

±13.5

IN/watt

90

96

75

Small Signal Transient Response

6V IN

70

90

"vtc

nA/week

SOO
1.0

1.0

BO

0.8

1.0

2
300
1.0

mV
mV

pV/week

100
300

25

Vs= ±15V, RL = lOOn
Vs= ±15V, RL = 10n

30

5

±12

Input Voltage Range

Power Supply Rejection Ratio

RL

70

6.0
75

5

3

Common Mode Rejection Ratio

Settling Time (0.1%)

25

UNITS
MAX

30

100

D

LHOO21C
TVP

3.0

2
Tc =2SDC

Input Capacitance

Output Voltage SWing

3.0
5.0

0.1

Offset Current Drift with Time

Input Bias Current

1.0

MIN

5

Offset Voltage Change with Output Power

Offset Current Drift

MAX

3

Offset Voltage Drift with Time

Input Offset Current

TVP

3.0

V/IlS

40
1.0
20

0.3
10
4

kHz

1.5
30

"'
%

"'
"'

3

3

Harmonic Distortion

f = 1 kHz, Po ::: 0.5W

0.2

0.2

Input Noise Voltage

Rs = 50n, B.W. "" 10 Hz to 10 kHz

5

5

IlV/rms

Input Noise Current

B.W. = 10 Hz to 10 kHz

0.05

0.05

nA/rms

Overload Recovery Time

%

2·23

CJ

;

o
o

dc electrical characteristics

for LH0041/LH0041C (Note 4)

l:

....

...

LIMITS

.......

PARAMETER

CONDITIONS

"'it

o
o

l:

....

CJ

N
o
o

MIN
Input Offset Voltage

Rs s:.l0 kn. Til.:: 2SoC
Rs~ 10kn

Voltage Drift wIth Temperature

Rs

LH0041
TVP
1.0

s: 10 klJ

Offset Voltage Dnft with Time

.vfc
#lV/watt

15

15

(NoteS)

20

20

Input Offset Current

TA

JO

=

25D C

0.1
2

Input Bias Current

100

TA= 2SoC

N

l:

....

100
30D

50

Input Resistance

Til.

=

0.3

2So C

0.2

1.0

Rs

s:. 10 kn. t:NCM = ±lOV

Input Voltage Range

Vs =±15V

Power SupplV Rejection Ratio

Rs

Voltage Gain

Vs = ±15V. Vo = flOV
RL = 1 kG, T A = 2SDC
Vs =±15V,Vo =±10V

70

JOO

RL = lOOn

= ±15V,

200

90

70

Vs

Output Short Circuit Current

Vs = ±15V, T A' 25°C
INote6l

Power Supply Current

Vs = ±15V, V OUT '" 0

Power Consumption

Vs = ±15V, V OUT =

Slew Rate

Av = +1, RL =

Power Bandwidth

RL = lOOn

dB

100

200

100

200

V/mV

20
14.0

for LH0041/LH0041C (TA
1.5

Rs =

Input Noise Current

B.W. = 10 Hz to 10 kHz

5On, B.W. '" 10 Hz to 10 kHz

VlmV

3.5

V

±14.0

200
3.0
go

105

300

4.0
120

mA
mA
mW

= 25°C. Vs = ±15V. Cc = 3000 pF)
1.0

VI.,

3.0
40

1.0
20

4

Overload Recovery Time

Input Noise Voltage

300

3.0

5

f= 1 kHz, Po'" 0.5W

±13.0

40
0.3

Harmonic Distortion

V
90

2.5

6V1N = 10V, Av .. +1

dB

70

75

Small Signal Overshoot

pF

90

±12

200

Small Signal Transient Response

Mn

3

96

±13.0

loon

1.0

nA
.A

BO

0

ac electrical characteristics

nA
nA
nA/oC
nA/week

500

1.0
0.3

25
RL = 1000

Output Voltage Swmg

Settling Time (0.1%1

1.0

±12

s:. 10 kn, t:Ns = t10V

1.0

2

3

Common Mode Rejection Ratio

mV
200
500

1.0
Input Capacitance

mV
mV
IJ.Vlweek

Offset Voltage Adjustment Range

Offset Voltage Change with Output Power

6.0
7.5

5

Offset Current Drift with Time

o

3.0

UNITS
MAX

5

Offset Current Dnft with Temperature

o

3.0
5.0

LH0041C
TVP

5

l:

...

MIN

3

.......

....

MAX

0.3
10

kHz
1.5
30

4

.'

.'.'
%

3

3

0.2

0.2

5

5

p.Vlrms

0.05

0.05

nA/rms

%

Note 1: Rating applies for supply voltages above ± 15V. For suppl ies less than ± 15V. rating is equal to supply vol tage.
Note 2: Rating applies for LH0041 G and LH0021 K with RSC =

on.

Note 3: Rating applies as long as package power rating is not exceeded.
Note 4: Specifications apply for ±5V 5. Vs ±18V. and _55°C 5. TC = 5. 125°C for LH0021 K and LH0041G. and -25°C 5.
TC ~ +85°C for LH0021CK. LH0041CG and LH0041CJ unless otherwise specified. Typical values are for 25"C only.
Note 5: TO-8 "G" packages only.
Note 6: Rating applies for" J" DIP package and for TO-8 "G" package with RSC = 3.3 ohms.

r-

:::t:

o
o

typical performance characteristics

N
....

......
r:::t:

Package Power Dissipation

Power Oerating-LH0021

Safe Operating Area - LH0021
Z.O

25

;,

ill
;::

20

S

ill
g

15

'"

10

i

~

::

~

1.5

E

1.0

I-

0.5

-I---

I!:

g

50

15

100

125

l - - I--'""

-15

Rsc"

0

>

A

-10

-5

'".
m

~

A

10

~

A K-

~~

/

2
4

B

'"

10

~

80

co

60

0

40

~

"R L= Ion

12

>

ILH002:f
I
I

'"

~
~

""-

0.9

16

IB

Z5

\

co

'"~
!;

INPUT

"!

i

\

-4

~

~

0

-B

15

20

15

16
Vs" :t15V

~

TA = 25"C

100

125

150

12

~

10

z

o

III ~::!~~~PF
\ ~~I~II~oori

co

'"~

RL ::; 10n

0

>

I-

~

I
'\

1

10

100

Ik

I- \L~OIWllflNL

r)

11111111

I

11111111

I

o

~
lOOk

10k

Ik

10k lOOk 1M

1M

FREQUENCY 1Hz)

Temperature LH0021/LH0021C
2.0

~

I-

i

2.0

25

30

1.4
1.2

........

1.0

t-....

r--. J

Rsc = t.on

I-

~

Rsc= 0.50

Q.4

I

0.2

I

a

35

15

10

TIME Ips)

-

1"'--

O.B

&
U 0.6

1.0

I
I
I

Vs-:!:15V

1.6

........

...."

-15 -50 -25 0 25 50 15 100 125 150

20

CASE TEMPERATURE I'C)

SUPPLY VOLTAGE I'V)

Short Circuit Current vs

Temperature LH0041/LH0041C
225

IZO

400

1 200
~ 175
~

150

1-+-+--+-+--1-"1'-0;::-1

B

~ 125

= 100 1--+-+-""'_:1--1-+-;

u
~

751--;--+-"'-t-+--'l"""""';:-I

;; 501-+-+--+-+--1-+-;
25 '---'--'---'---'--'--'_.....
-50 -25
25 50 15 100 125
CASE TEMPERATURE I'C)

Voltage Gain

Input Bias Current

r-""T""""'r--r-.,....-,-~--,

!

300

~
~

ZOO

I-

-

Tc

.~55'C

w

100

~

~0

Te - 25"C

100

O!

110

co

~
~

'"..
0;

....-

-

-

Te '"

>

~25°C

o

90

J

10

15

SUPPLY VOLTAGE I'V)

20

Te =21jOt

V
~ 10--

Te" 125°C

I

I

80
5

-

Tl=-s,lck:::::o ~

5

10

o
o

0l:Io
....

III'vs = ,15V

14

co

-12
10

50

Response

No Load Supply Current
3.0 r---r-"'T'"-,.---r--.----.

l-

OUTPUT

>

!;;

0l:Io
....

......
r-

Short Circuit Current vs

Vs -±15V
RL = 100n
Cc = 3DOOpF

w

'\.
"'-...:

Large Signal Frequency

FREQUENCY 1Hz)

Response

~

'"

:::t:

o
o

'\

TEMPERATURE I'C)

Voltage Follower Pulse
I...

I\. CASE

w

SUPPLY VOLTAGE I'V)

12

r-

:::t:

RL=I00n'

I

o

FREEAI~

0.6

15

I'

o

20

'\.

0.3

Co = 3000pF

~IK

20

RL " 100n

14

-

100 """,'

w

~r

I-

10

I

120

A

12

1.2

Open Loop Frequency
Response

on

14 I-R1L)kn

illg

OUTPUT VOLTAGE IV)

Output Voltage Swing
16

---

-1.0

TEMPERATURE I'C)

IB

1.5

::

-2.0
25

'"'"~

'"

;::

....

N

'\

~ I.B

c

!;; -0.5

'\.

2.1

0

-1.5

~
w

..- ~\
T :2S"C

o
o

LH0041/LH0041C
Z.4

15

20

SUPPLY VOLTAGE I'V)

2-25'

(,)

:to

typical performance characteristics (con't)

o

::I:

...

...I
......
~

o

Vs "'±15V

..
......~

;;
C 300
oS

(,)

N

o
o

::I:

....
:i
ili
1l
....

~

...

...I
......

"

200

100

......

-15 -50 -25

o
o

--

0

:i

12

/'
./

.
~

!!

~

o

:I!

5

15

10

1Ir'•

10

20

100

1k

lOt

FREQUENCY (Hz)

SUPPLY VOLTAGE (.V)

Distortion vs Frequency

Input Noise Current

4.0 r-T'TTTTmr--,.-rn'nmr-,""'Mrmm

~
5

..
.......

.

g

1l

co
~

6

~

!fl

;§

5l

:i
ill

~r-

c

./

5

50 15 100 125

" ""

~

co

;tllr"."
lr,";•••

...I

-

•...

CASE TEMPERATURE ("CI

::I:

~...
,.co~

l-

>

-

I'--

25

IS

co

r-...
~~r" ~

I--

o

N

BIAS

.:l

•

-;;; 10-1

20

400

::I:

...I

Input Noise Voltage

Input Voltage Range

Input Current

o

10"" LI..l.JJLl-LILlL..J.....L1J-LU,W....J
10k
lOOk
10
100

3.0

2.0

1--H-ttHttt--1'+1fttilltl'lt-HfIttH

1.D1---t+tffllHl-+lfHl1IIl--+++ItHll

10k

lk
FREQUENCY

FREQUENCY (Hz)

lOOk

IHzl

typical applications

r-----.,,~...&

.. I

-

--;··iiil,

!

I

I

I

I
I

:

!

I

:

'IIW~

'"U
ADlurJ

_IIV~

I

...

, - ---"

IHIIII'IIT

•

I

I

L

•

L44J!.......!!-+--'l~!!.-...,

+Vo.,,·"VI

("'l~RIT¥I~J A.....!..-_v~ •• (_la'll.::''-------''-_-=--~
IJ

I'

L_~D~

'"
Programmable One Amp Power Supply

2-26

35 WATT (,mo) Audio Amplifie,

lOOk

r:I:

o
o

typical applications (con't)

N

~

......
r:I:

o
o

N
~

n

r:I:

o

o
~
......
~

r:I:

IOU'·~

o
o

,."

~

hh..

Dual Tracking One Amp Power Supply

~

n

CRT Deflection Yoke Driver

-----,
I

""

I

I
I
I

v.

RI

R3

n-'"
'---'IIVOi-----OIOUT·1:i

Two Way Intercom

(M) -ZDmAN

Programmable High Current Source/Sink

·T.",317 llfll1l

Power Comparator

DC Servo Amplifier

2·27

...

(.)

g
o

auxiliary circuits

J:

...
....I

........
~

o
o

J:

....I
(.)

...
N

o
o

J:

= 1.4AMPS

........
N

LH0021 Unity Gain Circuit with
Short Circuit Limiting

...

'" 2l0mA

....I

LH0041G Unity Gain with
Shor, Circuit Limiting

o

o

J:

....I

R1

=

RJ

Av= -

R'
At

LH0041/LH0021 Offset Voltage Null Circuit
(LH0041CJ Pin Connections Shown)"

LH0041G Offset Voltage Null Circuit'

V··IV-----+-.,

Called NH0022/NH0022C

2-29

CJ
N

absolute maximum ratings

It)

o

o

J:
.......
....I

N

It)

o
o

J:

.

....I

UU
NN
N-.:t

00
00
J:J:
....1....1

..............

Supply Voltage
Power Dissipation (see graph)
Input Voitage (Note 1)
Differential Input Voltage (Note 2)
Voltage Between Offset Null and VShort CirCl.Jit Duration
Operating Temperature Range
LH0022, LH0042, LH0052
LH0022C,LH0042C, LH0052C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

_55°C to +125°C
_25°C to +B5°C
_65°C to +150°C
300°C

dc electrical characteristics

For LH0022/LH0022C (Note 3)

:!:22V
500mW
±15V
±30V
±0.5V
Continuous

NN
N-.:t

00
00
J:J:

LIMITS

LHOO22

CONDITIONS

PARAMETER

MIN

....1....1

Input Offset Voltage

RsS: 100 kO;T A = 2SoC

TV.
2.0

Rss:.100 kG
Temperature Coefficient of
Input Offset Voltage

MIN

•

RsS: 100 kG

3.•

4.0

"

2SoC

0.2

Doubles every

Temperature CoeffiCient of

UNITS
MAX

6.0
10.0

10

5

3
TA

TV.

5.0

Offset Voltage Orlft with Time
Input Offset Current

LHOO22C
MAX

15

1.0

mV

p.vlc
IlV/week

4
2.0

mV

5.0

200

200

ufe

Doubles every 100 e

pA
pA

Input Offset Current

Offset Current Drift with Time

pA/week

0.1

0.1

TA =26°C

25

pA

10

22

nA

Doubles every 100 e

Doubles every 100 e

Differential Input Resistance

10 '2

10'2

Common Mode Input ReSistance

10 '2

10'2

n
n

4.0

pF

Input Bias Current

5

Temperature Coefficient of

10

10

Input Bias Current

4.0

Input Capacitance

80

90

70

90

dB

100

200

75

160

V/mV

Rs

Large Signal Voltage Gain

RL = 2 kn. V OUT '" ±1OV,
T A =25°C,Vs =±15V
RL = 2 kn, V OUT = t10V,
Vs = ±15V

50

Output Current Swing

2-30

70

Supply Voltage Rejection Ratio

Output Voltage Swing

25°C,

tl0

RL "2kn,Vs =tlSV

±10

V OUT = ±10V, T A = 2SoC

±10

RL = 1 kn, T A
Vs= ±15V

•

dB

90

RsS: 10 kn. V IN

s: 10 kn, ±5V s: VsS: ±15V

V

90

80

Common Mode Rejection Ratio

±10V

±13.6

±13.5

Vs· ±15V
"

t12

±12

Input Voltage Range

V/mV

50
tl0

±12.5

t12

V

tIS

mA

V

tl0
tl0

±15

Output ReSIStance

75

75

n

Output Short Circuit Current

25

25

mA

Supply Current

Vs = ±15V

Power Consumption

Vs = ±15V

2.0

2.5
75

2.4

2.B
B5

mA
mW

r-r::I:::I:
00
00

dc electrical characteristics
(T A

for LH0042/LH0042C
= 25°C, Vs = ±15V; unless otherwise specified)

-I=IoN
NN

LIMITS

CONDITIONS

PARAMETER

LH0042

MIN
Input Offset Voltage

Rs~ 100

Temperature Coefficient of
Input Offset Voltage

As5: 100kn

kn; ±SV ~ Vs:5: 20V

5.0

MIN

TV.

20

MAX

6.0

Offset Voltage Drift with Time

20

IJ.vtc

10

JlV/week

Doubles every lOoe

I I

I I
0.1

0.1

Offset Current Drift with Time

10

Input Bias Current

Temperature Coefficient of
Input Bias Current

25

15

'2

Differential Input Resistance

Input Capacitance
Input Voltage Range

10 '2

4.0

40

C1I
N

±12

±13.5

±12

±13.5

V

70

96

70

90

dB

70

96

70

80

dB

50

150

25

100

V/mV

Supply Voltage Rejection Ratio

Rs~

10 kn, ±6V ~ Vs::;:' ±15V

Large Signal Voltage Gain

RL = 1 kil, VOUT = ±lOV

Output Voltage Swing

RL" 1 kil

±10

±12.5

±10

±12

V

Output Current Swing

VOUT = ±10V

±10

±15

±10

115

mA

75
20
2.5

Supply Current
Power Consumption

dc electrical characteristics

C1I
N

o

mA

20
4.0

2.8

120

105

o
o

"

75
3.5

"r-::I:

"
"

pF

10 kn. VIN = ±10V

Output Short Circuit Current

o

pA

10 '2

10
1012

Output Resistance

o

pA/week

50

Rs~

Common Mode Rejection Ratio

00
r::I:

Doubles every lOoe

Doubles every lOoe

Common Mode Input Resistance

-I=IoN
NN

pA

10
Doubles every 100 e

00
00

mV

10

Input Offset Current
Temperature Coefficient of
Input Offset Current

r-r""
::I:::I:

UNITS

LH0042C

MAX

TV.

mA
mW

For LH0052/LH0052C (Note 3)
LIMITS

PARAMETER

CONDITIONS

MIN
Input Offset Voltage

Rs~ 100 kH; Vs" ±15V,
TA =25°C

TVP

MAX

0.1

0.5

Rs~100kn •.vs"'±15V

Temperature Coefficient of
Input Offset Voltage

UNITS

LH0052C

lHOO52

MIN

TV.
0.2

1.0

MAX
1.0
1.5

Rs~ 100 kn

10

Offset Voltage Dnft with Time
Input Offset Current

mV

Ilvtc
IlV/week

TA = 25°C

0.01

Temperature CoeffiCient of
Input Offset Current

0.02

0.1

100

Doubles every 10°C

Doubles every 10°C

0.5

1.0

1.0

500

Doubles evelY 10°C

Doubles every 10°C

Differential Input ReSistance

10 12

10 12

10 12

10 12

4.0

4.0

Input Capacitance
Input Voltage Range

Vs = ±15V

Common Mode Rejection RatiO

Rs

~

10 kn. VI,.,

=±10V

5.0

500

Common Mode I nput Resistance

pA

pA

pA/week

<0.1

<0.1
T,A " 25°C

Temperature Coefficl!:nt of
Input Bias Current

0.2

100

Offset Current Dnft with Time
Input Bias Current

mV

pA
pA

"
"

pF

±12

±13.5

±12

±13.5

V

SO

90

76

90

dB

Supply Voltage Rejection RatiO

Rs~ 'Dkn.±5V~Vs::;;:±15V

SO

90

76

90

dB

Large Signal Voltage Gain

RL =2 kU. VOUT ':: ±lDV.
Vs:: ±15V. T A :: 25°C

100

200

75

160

V/mV

R L :: 2 kn. V OUT ;; ±10V.
Vs=±15V

50

Outpu,t Voltage Swing

RL" 1 kn. T A = 25°C
Vs:: ±15V

±10

RL=2kn.Vs::±15V

±1O

Output Current SWing

VOUT = ±10V. T A:: 25°C

±10

75
25

Power Consumption

Vs = ±15V

±12

V

±15

mA

V

±10
±10

±15

Output Short CirCUit Current
Vs = ±15V

±10

±12.5

Output ReSistance

Supply Current

V/mV

50

3.0

"

75

mA

25
3.5
10.5

3.0

3.8
114

mA
mW

2-31

(,)

N

an
o

ac electrical characteristics

For all amplifiers (TA

= 25°C, Vs = ±15V)

o

l:

LIMITS

-'
......
N
an
o
o

PARAMETER

CONDITIONS

LH0022/42/52
MIN

l:

SIEI\'Y Rate

Voltage Follower

large Signal Bandwidth

Voltage Follower

TYP

1.5

-'

Rise Time
Overshoot

NN

Settling Time (0.1 %1

Nq00
00

-'-'
............
NN
Nq00
00
l:l:
-' -'

TYP
3.0

0.3

::::

lOV

VIlAs
kHz
MHz

1.0
1.5

10

I1V 1N

UNITS

MAX

40

1.0

1.5

0.3
15

30

4.5

Overload Recovery

l:l:

MIN
1.0

3.0
40

Small Signal Bandwidth

(,)(,)

LH0022C/42C/52i:
MAX

40

%

ps

4.5

4.0

ps

ps

4.0

Input Noise Voltage

Rs = 10 kn, fo = 10 Hz

150

150

nV/..;Hz

Input Noise Voltage

As:::: 10 kn, fo = 100 Hz

55

55

nV/..;Hz

Input Noise Voltage

As'" tOka, fa"" 1 kHz

35

35

nV/..;Hz

Input Noise Voltage

Rs= 10kO,fo = 10kt:'z

30

30

nV/..;Hz

Input Noise Voltage

BW = 10 Hz to 10 kHz, Rs = 10 kn

12

12

.uVnns

Input Noise Current

BW= 10Hzto 10kHz

<.1

<.1

pAnns

Note 1: For supply voltages Ie;ss than ±15V. the absolute maximum input voltage is equal to the supply voltage.
Note 2: Rating applies for minimum source resistance of 10
input voltage is ±5V.

kn, for source resistances less than 10 kn. maximum differential

Note 3: Unless otherwise specified, these specifications apply for ±SV ~ Vs ~ ±20V and -SSoC ~ T A ~ ±12SoC for the
LH0022, tH0042 and LHOOS2 and -2SoC ~ TA +8SoC for the LH0022C and LHOOS2C. Typical values are given for
TA ~ 2SoC.

auxiliary circuits

(shown for TO·5 pin out)

v'

OUTPUT
OUTPUT

V'
V'

Protecting Inputs From

Offset Null

± 150V

Transients

OUTPUT

L----+-...._-Ov.
Boosting Output Drive to ± 100 mA

typical applications

'""
AN,~~~o--+_ _ _ _ _- - ,

"

INI'4

TTL SA"C~E~~:~~ CHH---r'"""

•

ANALOG
OUTPUT

>,'-'IIVIo-~...., ~~~~UT

"

t.IIU

L..

"

1U1~F

~POlY1TY"EIiE

Alternate Low Drift Sample

2·32

Precision Voltage Comparator

r-r::I:::I:
00
00

typical applications (con't)

~N

NN

................
r-r::I:::I:
00
00

-'-'"-

~N

NN

nn
r::I:

o
o

lD-JJpF

Picoamp Amplifier for pH Meters
and Radiation Detectors

C1I
N

Precision Subtractor for
Automatic Test Gear

........
r::I:

o
o

C1I
N

n

!IOUT0 12D"A

V,

V,"IZ2V

lauT=ASET

'"m
Ultra Low Level Current Source

Sensitive Low Cost "VTVM"

",,,,,,,,,,:;:tE,,r
- - - - ". ;;- - - - - I,
CONTROL

-

,

..

I

-

-

--,

-,

:

I

I

,

l ___ ~~_~_ '

'"

10

I

-:"

11

It

1~:

"'
INP~~ o---ii"",'''~",;;;""",!f''

VOUT= ell A1/-V1 dt+V:z

Precision Integrator

True Instrumentation Amplifier

,

1ANALOG
INPUT

+

"

I

r----'

,

I
SA""lE/HDLD~.J

~"
":" L _ _ .. ~

~l!L

_ _ .JI

RE URC

·PoIVUPIene dielettIic.

Precision Sample and Hold

I

CCMM;:~ o-+D-{>-.J
L_l~D.!!!._..J

Cl ~O,01 /IF polYltyrenl.

V·

Re-Zeroing Amplifier

2·33

U

N
In

typical performance characteristics

o
o

l:

-I
......

Input Bias Current vs
Temperature

Input Offset Current

vs Temperature

Maximum Power Dissipation

N
In

,..--,--,--,--,-----::>1

1.000

800

o
o

100

Iz

l:

..

..
UU
-I

;::

:

NN

ili

N~

'"!Ol
f

>~

TO·5 .nd DIP

SOD

J. .l

400

r!!!'~~ 1\

I'.:

zoo
100
50

NN
N~

100

:>

Vs - ±15V

'"

~

>

500

.
.~

'"
1l
LHOOZZ. T. =ZS"C

1000

w

100

=~ "'"

""

'"c
!:;

LHOOZZ. T•• +1Z5"C

10

"= "=

!!!

~

!!!
!!!

I I

I I
I I

'""

;;;;; ~OOSZ. T. =Z5"C

~

I

-6

-1000

w

-60

I-::::~

100

w

300

..

250

'"~

E
100
!!!

'"

50

~

>
:;

=>
~

!!!
>-

ZO

60

100

140

INPUT SOURCE RESISTANCE In)

vs Frequency

~
!

w

fo= 10 Hz

II
fo= 1 KHz

mrnr

400

>

300

..

1

w

Rs-1DM

~

Rs"'lM

is

"~

I-"

!!!
~

c

H.:Jt

ZOO
100

e

Il

10k

'"~

lOOk

1M

:>
TA =25°C

.3

40

'"
!:;

3D

TA " 25°C
Vs"':!:15
PREVIOUS

w

,/

.."

111111

10

10M

100

i

,/

~

V"

10

..

tON

Z

~

-10

'"c
!:;

..
..!£~
>
t;

"-I'

w

./

1 J1.V

Il

!!!
!!!

10k

lOOk

Change in Input Offset
Voltage Due to Thermal
Shock vs Time

~
Vos~

Ik

FREOUENCY 1Hz)

>

zo

Vs -±15V
TA "'Z5°C

111111111

SOD

Stabilization Time of Input
Offset Voltage from Power
Turn-On

vs Supply Voltage

I

ZO

ZS"C

TIME FROM POWER APPLICATION IMIN)

60"C

ISO

I

1/1
I

100

I I

v!. i'5~ I I

PREVIOUS OUIESCENT
Vos~

1 J1.V

I

50

-

!!!
!!!
w

"'"

5'"
-ZO

-Noise Voltlge Includes Contribution from Source Resistance

2-34

~

SOURCE RESISTANCE In)

Common Mode Input Voltage

SUPPLY VOLTAGE ',V)

10

>-

Vs = ~115V
TA '" 25°C

INPUT SOURCE RESISTANCE In)

IS

i

100

Total Input Noise Voltage*

Ik

10

tt'"

~

vs Source Resistance

o

:;:

IZ5

~c

-ZO

~ 150

!!!
>-

IDS

>

~ 200

10

85

Total Input Noise Voltage*

~ 3S0

,/

>

......

TEMPERATURE I"C)

'"

/'

l4;;;Iozz

I.....LHo04Z

~ 400

..~~

'"c

VI

Offset Error (Without
VOSNull)

~

w

1/1

.r-V

COMMON MODE INPUT VOLTAGE IV)

>

I I

1'"Y V

-500

10

-Z

~

LH005Z

6S

T - TEMPERATURE I"C)

Offsel Error (Wilhout
VosNulll

Vs "±t5V
Vos ~ 5 p.V AT 25°C

w

-10

45

Input Offset Current
vs Temperature

100D

!

10

T - TEMPERATURE I"C)

Input Bias Current vs Input

~

EO

0.01 I£._L-_L-_..I-_..I---'
IDS
IZ5
ZS
4S
65
85

zoo

ISO

Voltage

i>-

100

~

~

TEMPERATURE I"C)

-1-1

'"~

:.l

-1-1

............
00
00
l:l:

,..--,--,--,--,-----::>1

%1.000 1--+--+---\:;"":71'''---1

600

is 300

00
00
l:l:

10.DDO

I
tAPPLY

I
20

40

60

80

100

TIME FROM HEAT APPLICATION I...)

r-r::I:::I:

typical performance characteristics (con't)

00
00
~N

NN

Supply Voltage vs
Supply Current
120

:<

=

oS 2.0

~

§

~
~

100

'"'"
~

1.0

>

90

-

~

~

TA·T25°C

14

16

SUPPLY VOLTAGE (,VI

~

0-

!;'"
,.co
~

co

,.
0-

~

-

Vs "'±15V
TA '25°C

~

'"z

20

~

16

10

V

r-..
"""" :::'\

./

o

0.2

0.5

1.0

2.0

5.0

~

'"

'"z
~

Vs'" ±15V
RL =2K

14

TA=25°C

12
10

~

'"'"':;
co
>

~

10

10

15

20

25

0

30

Ik

10k

OUTPUT CURRENT (±mA)

lOOk

TA

Frequency Characteristics vs
Ambient Temperature

IV '±15V
TIRAJSIE~T
RESPONSE

15

"

S

10

25°C

~

:>
oS

OUTPUT

l-

-4

'">
~

>

'"
I!:
'"

co

~.

OUTPUT
-5
Vs '" t15V

-S

TIME

.200

'"

.~

.400 .600

"'.1

..!--1"

r--

~LE~ RA~E

IJ--J.

S.R.
0.8

CLOSED LOOP
BAjOjlDTt

.SOO

Frequency Characteristics vs

Output Resistance vs
Frequency

r--.--,-,--r--.-...,

160

"""

I---+-+-+--f---+--I

S

120

z

100

~
~

~
iii

.

1.0

0-

!;'"

o.S

co

, ,

15

Av= 10

40

11111--

SUPPLY VOLTAGE (,VI

z

~

..'"
w

100

III"
10'

':; 10'
co
> 10

IIImI
~

lit'
Ik

10k

140

lOOk

FREQUENCY IHzl

-...

Vs = ±15V
fA'" 25°C

RL :22Kn

~AIN

" '" ,
'" ""PHA~

45

1M

SHIFT

10

100

Ik

10k

!

-45 ~

\

Av'"

o
20

10'

11111111 Av' 10?)

20
0.6

III"

'. '"''''

; IHITIII

60

100

60

Open Loop Transfer
Characteristics vs Frequency

rJ>l..

80

20

-20

TEMPERATURE lOCI

Supply Voltage

10

-60

T"'.I

140

::

.....
T:!,.. .....

0.6
10

~

1.0

RL =2k
CL = 100 pF

-10

-12

>
>

1.2

'"

~

INPUT

0-

INPUT

1.2

10M

1M

FREQUENCY (Hz)

Transient Response

~

~

N

o

co

~

1.4

U1

16

/

RL" 2K

'"co

::I:

o
o

SUPPLY VOLTAGE I'VI

1.4

~

r-

20

!;;

Vs=±15V

0-

.......

I
15

10

5

Voltage Follower Large

'"'"

U1

I

N

20

TA'25°C

Signal Response

co
>

o
o

SWING -Vp"p

/'

12

Vs=±lSV

TA = 125°C

LOAD RESISTANCE (kn)

':;

::I:

. / OUTPUT VOLTAGE_

Frequency

~

/

00
r-

Output Voltage Swing vs

~

0.1

,.

Current Limiting

15
28
26
24
22
20
18
16
14
12
10
8

24

SUPPLY VOLTAGE I±VI

Output Voltage Swing
vs Load Resistance
~
'"z

15

10

~

co

~N

NN

./

~

I

5

18

./

2S

,.:=

I

TA = 25°C

32

!;;

I

~

00
00

RL =2Kn

36

~

TA .25 C

SO
12

10

~
'"z

Tl'-55~

,

r-r::I:::I:

40

I

110

z

B

i

Output Swing vs Supply
Voltage

Voltage Gain

3.0

..............

t:

i!

-90

~

-135

~

-ISO

lOOk 1M 10M

FREQUENCY (Hz)

2·35

CJ
CW)

'lilt

Operational Amplifiers

o
o

J:

....I

.......
('I)

LH0023/LH0023C, LH0043/LH0043C
sample and hold circuits
general description

'lilt

o

o

J:

.

....I

The LH0023/LHOO23C and LH0043/LH0043C
are complete sample and hold circuits including
input buffer amplifier, FET output amplifier,
analog signal sampling gate, TTL compatible logic
circuitry and level shifting. They are designed to
operate from standard ±15V DC supplies, but
provision is made on the LH0023/LH0023C for
connection of a separate +5V logic supply in
minimum noise applications. The principal differ-'
ence between the LH0023/LH0023C and the
LH0043/LH0043C is a 10: 1 trade-off in performance on sample accuracy vs sample acquisition
time. Devices are pin compatible except that TTL
logic is inverted between the two types.

CJ
CW)

N

o

o

J:

....I

.......
CW)

N

o

o

J:

....I

hold applications including data acquisition,
analog to digital conversion, synchronous demodulation, and automatic test setup. They offer
significant cost and size reduction over equivalent
module or disCrete designs. Each device is available
in a hermetic TO-8 package and are completely
specified over both full military and instrument
temperature ranges.
The LH0023 and LH0043 are specified for operation over the _55°C to +125°C military temperature range. The LH0023C and LH0043C are
specified for operation over the _25°C to +85°C
temperature range.

The LH0023/LHOO23C and LH0043/LH0043C
are ideally suited for a wide variety of sample and

features
features

LH0043/LH0043C

• Sample acquisition time-15 jls max for 20V
4 jlS typ for 5V'
• Aperture time-20 nS typ
• Hold drift rate-1 mV /sec typ
• Sample accuracy-O,l% max
• Wide analog range-±10V min
• Logic input-TTl/DTL
• Offset adjustable to zero with single 10k pot
• Output short circuit proof

LH0023/LH0023C

•
•
•
•
•
•
•
•

Sample accuracy-0.01% max
Hold drift rate-0.5 mV /sec typ
Sample acquisition time-100 jls max for 20V
Aperture time-150 ns typ
Wide analog range-±10V min
Logic input-TTl/DTL
Offset adjustable to zero with single 10k pot
Output short circuit proof

block and connection diagrams
LH0023/LH0023C

LH0043/LH0043C

Order Number LH0023G or
LH0023CG or LHOO43G or
LH0043CG

*liefo.operation

with y+. 15Vonly

"

TDPYIEW

See Package 6

.., .
OFFIET
~

..",,~~
.....n.:,"n
INPUT.\,

-

'----,,--o:;.~~~T·alll

C~~
.

.
..

--0"

*YiatapinBforoperationwithoutVcc supply.

--o~

--0<

2-36

•

•

I
I

~
I
~:,~~~ _..J

.'-1

'

n
DUrnlT

'".OU.GE

1:A'~tlTOR

---:V.

.

--00'

-OOtiD

r-

::t

o

absolute maximum ratings

o

N

Supply Voltage (V+ and V-I
±20V
Logic Supply Voltage (Vee) LH0023, LHOO23C
+7.0V
Logic Input Voltage (V 6 )
+5.5V
Analog Input Voltage (V 5 )
±15V
Power Dissipation
See graph
Output Short Circuit Duration
Continuous
_55°C to +125°C
Operating Temperature Range LH0023, LHOO43
LH0023C, LHOO43C _25°C to +85°C
_65°C to +150°C
Storage Temperature Range
Lead Soldering (10 sec)
300°C

electrical cha racteristics

to)

........

ro

::t

o

N

to)

(")

ro

::t

o

LH0023/LH0023C (Note 1)

.Jlo

to)

........

r-

LIMITS
PARAMETER

CONDITIONS
MIN

LHOO23
TYP

MAX

MIN

LHOO23C
TYP

o

MAX

o

Sample ILogic "1"1
Input Voltage

Vcc = 4.5V

Sample (Logie "1")

V6= 2AV, Vec= 5.5V

5.0

5.0

IlA

Hold (Logic "a")
Input Voltage

Vce = 4.5V

0.8

0.8

V

Hold (Logic "0")

V6 = OAV, Vec = 5.5V

0.5

0.5

rnA

2.0

::t

UNITS

2.0

.Jlo

V

to)

(")

Input Current

I nput Current

Analog Input
Voltage Range
Supply Current - 1'0
Supply Cu rrent - 1'2

±10

±11

Vs = OV, V6 = 2V,
V" = OV
Vs = OV, V6 = OAV,
V" = OV

±10

±11

V

4.5

6

4.5

6

mA

4.5

6

4.5

6

mA
mA

Supply Current - la

Va = 5.0V, Vs = a

1.0

1.6

1.0

1.6

Sample Accuracy

V OUT = ±lOV (Full Scale)

0.002

0.01

0.002

0.02

DC Input Resistance

Sample Mode
Hold Mode

Input Current - Is

Sample Mode

500
20

1000
25
0.2

Input Capacitance
Vs = ±10V; V" = ±10V,
TA = 25°C
Vs = ±10V; V" =±lOV

Drift Rate

V OUT = ±5V, Cs = 0.01 IlF,
TA = 25°C

100
0.6

200
1.0

1.0

10

20

20

IlA
pF

500
2

pA
nA
mV/s

0.5

0.5

V OUT = ±10V,

1.5

3.0
200

%
kS1
kS1

1000
25
0.3

1.0

3.0

Leakage Current pin 1

Drift Rate

300
20

50

mV/s

Cs = 0.01 IlF, TA = 25°C
Drift Rate

0.1

V OUT = ±10V,
Cs = am IlF

Aperture Time
Sample Acquisition
Time

0.2
150

150
LlV OUT = 20V,
Cs = 0.01 IlF

Output Amplifier
Slew Rate

50
1.5

Output Offset Voltage
(without null)

Rs:-:; 10k, V5 = OV, V6 = OV

Analog Voltage
Output Range

RL zlk,T A =25°C
RLz2k

100

3.0

50
1.5

±10
±10

Note 1: Unless otherwise noted, these specifications apply for V+

=

ns
100

3.0

±11

±10

±12

±1O

+15V, Vee = +5V, V-

±11
±12

Il S

V/Ils
±20

±20

mV/ms

mV
V
V

= -15V, pin 9 grounded, a

O.01J.LF capacitor connected between pin 1 and ground over the temperature range -55°C to +125°C for the LH0023, and

-25°C to +85°C for the LH0023C. All typical values are for T A = 25°C.

2-37

(.)

M

electrical characteristics

o:t

o
o
:r:

LH0043/LH0043C: INote 2)

LIMITS

....I

.......
M

PARAMETER

o:t

LHOO43

CONOITIONS
MIN

o

o
:r:
....I

Hold ILogic "1")
Input Voltage

(.)

Hold (Logic "1")
Input Current

M
N

Sample (Logic "a")
Input Voltage

o
o
:r:
....I

Sample (Logic "a")
Input Current

V6 = 0.4V
±10

o
o

Supply Current

....I

Sample Accuracy

Vs=OV,VS=2V,V" =ov
Vs = OV, Vs = OAV,
V" = OV
V OUT = ±10V (Full Scale)

DC Input Resistance

T c =25°C

TYP

MAX

0.02

Input Current - Is

1.0
1.5

V
5.0

/1 A

0.8

0.8

V

1.5

1.5

mA

±10

±11
20
14

22
18
0.1

10'2

Input Capacitance

UNITS

5.0

±11
20
14

10'0

MIN
2.0

V6 = 2.4V

Analog Input
Voltage Range

:r:

LHOO43C
MAX

2.0

.......
M
N

TYP

0.02
10'0

5.0

V
22
18
0.3

10'2
2.0

mA
mA

%

1.1
10.0

1.5

nA
pF

Leakage Currentpin 1

V s =±10V;V" =±lo,
T C = 25°C
V s =±10V;V" =±10V

10

25

10

25

2

5

Drift Rate

V OUT = ±lOV, Cs = o.OOl/1F,
TA = 25°C

10

25

20

50

25

2

5

mV/ms

2

5

mV/s

Drift Rate

V OUT = ±10V, Cs = O.Ool/1F

10

Drift Rate

V OUT = ±10V, Cs = o.Ol/1F,
TA = 25°C

1

Drift Rate

V OUT = ±10V, Cs = O.Ol/1F

1

Aperture Time
Sample Acquisition

Time

t.V OUT = 20V, Cs = O.OOl/1F
t.V OUT = 2oV, Cs = o.Ol/1F
!1VOUT = 5V, Cs = O.ool/1F

Output Amplifier
Slew Rate

V OUT = 5V, Cs = O.oOl/1F

Output Offset Voltage
(without null)

Rs ~ 10k, Vs = oV, Vs = OV

Analog Voltage
Output Range

RL~ lk, TA = 25°C
RL~2k

20

2.5
2.5

0.2

nA
mV/s

0.5 mV/ms

60

20

60

ns

10
30

15
50

10
30
4

15
50

/1S
/1S
/1s

3.0

1.5

3.0

±11
±12

V//1s
±4o

±40
±10
±lo

pA

20

4
1.5

50

±10
±10

±11
±12

mV
V
V

Note 2: Unless otherwise noted, these specifications apply for V+ ::: +15V, V- = -15V, pin 9 grounded, a 5000 pF capacitor
connected between pin 1 and ground over the temperature range -55°C to +125°C for the LH0043, and -25°C to +8SoC

for the LH0043C. All typical values are for TC = 25°C.

2-38

r-

:::t

o

typical performance characteristics
Power Dissipation
2.0
1.75

~

f--

1.5

;:: 1.25

~

illc;

1.0

a: 0.15

~

f

~'LL AIR WITH ClIP·ON
HEATSINK

-

~

0.5
0.25
25

50

15

~

;:'"
c

~

~
~

100

a:

OV

~

-

il\
,

J
II

125

-o

150

TEMPERATURE I"CI

Sample Acquisition
Time-LH0023

g;

'\J.

5

6

TIME

'".1

1

DV

I;;

l"'l

-10V

T

3 4

I I
I I

>

ill

__ OUTPUT

,,

_L
I

1 2

o

8

o

I- TA ~ 25°C

:::'"c: +1DV -- _lL

INPUT"":

-10

:::t

vL =O.OV

~

c:> +10V

"r-

I--~L ~O.OI"F

TA "'25"C

~

W

r- Vs :±15V

Cs '" 0.001 J.lF
VL =5.0V

~

N

Sample Acquisition
Time-LH0043

~.-1;5~1

I"\. '\.
r'\.''\
STILL AIR

1!l

o

Sample Acqu isition
Time-LH0043

II

.
o

9 10

N
W

n

~'\

r-

I'\. Io-0UTPUT
NI

I

INPUT-l

,

:::t

o
o
~
w

_J~

I I -- I I

I I

5 10 15 20 25 30 35 40 45 50

"r-

TIME ,".1

:::t

Pin 1 Leakage Current
vs Output Voltage

o
o

Pin 1 Leakage Current

vs Temperature

~

w

100

n
--011

~

+10

~

+5

I,
I

~
~
~

~

-5
-10

c

VSAMPLE

~

-14~~
-16t±±

IL
20 40 60 80 100 120 140 160 200

-

~

'"z
iii

10.0

5

~

""

~

a:

100

:;;
' - Tc =+125°:;-"
>
oS 100

10

15

20

25

1'\

~

:;

10

a:

t
~

t

0:
c

o

30

.001

.01

OUTPUT CURRENT (,."AI

100

125

Vs" ±15
VOUT " ±10

II'\.

1.000

~

TA =25°C

75

I,

10.000

Vs '" ±15V

il

50

25

Drift vs Capacitance
(LHOO43)

Drift Rate vs Capacitance

5.0

o

o

TEMPERATURE (OCI

1000

....... ::- t:--,.,
"\
TA = 125°e

//

OUTPUT VOLTAGE (VI

Output Current Limiting
15.0

.01

-12V -10 -8 -6 -4 -2 0 2 4 6 8 1012V

TIME ""I

VoUT -+l0_

.1

z
a:

/'

h

~~OUT~O_

=5.0V

\

I
o

f---'vOUT--10~

Cs =0.01 p.F
1A =25°C

10

C, - CAPACITANCE ,"FI

~

~

~

'"1'\.1

Tc "25 C
c

.1
.0001

10

~

I,

1'\.1

.001

.01

~

'"
10

CAPACITANCE ,"FI

typical applications

,------------,
I

\/'(-15111

I
I
ANALOG
INPUT

SAM'UI
HOLD

LOGIC
IN'UT

I'

I

q3>-t-i=~-,,--i--V.C.15VI

I
I
I

(II~F

I

IL ___________ -'I
OUARD$HIELD

Note 1:
Note 2:
Note 3:
Nota 4:

.eIDARD

C1 is polvstyrene.
C2, C3, C4 are clrmic disc.
Jumper 7--8 and C4 not requirld for LH0043.
R1 optional ifzllo trim is required.

How to Build a Sample and Hold Module

2·39

CJ
CW)

typical applications (con't)

'lit

o
o

....:::I:

......
CW)

nf"'----....- }

'lit

o
o

~~~"

Forcing Function Setup fo, Automatic Tost Goa,

:::I:
....

CJ
CW)

N

o

ANALOG SWITCH

o

MULTIPLEXERS

'."0'
INPUTS [

:::I:

....

>--1-;1-1

......

AtlOII5.
AMl705,
AM21111t,
DRAHD120SERIES

DIGITAL
} OUTPUTS

SlHLOGIC

CW)

N

CHANNEL SELECT

o

·S.. op .mpsellCtion guidt fer details. Most popul., tvpts indud.lH005Z, LHllS, LM101,lM112 and LM11B.

:::I:
....

Data Acquisition System

o

..

~
DIGITAL

OUTPUTS

ANALOG
OUTPUTS

I

IL

AM"".

__

A~D

__

I

..J

CLOCK

Single Pulse Sample,

~ r-----------,

I
SIGNAL #1 OUTPUT

SIGNAL #2 OUTPUT

Two Channel Double Sideband Demodulator

2·40

schematic diagrams

r:::E:

o
o

LH0043/LH0043C

N
W

.......

r:::E:

o

o

N
W

r>r-

:::E:

o
o

L _ _-I_.....+-oOUIPUT

~

w

.......

r:::E:

o

o

~

, ,
TIL

w

UD

(")

1A":.~~rlD

LH0023/LH0023C

-------E--~~"1..

BRDU"IIb.'

2-41

o
CW)
~

applications information

o

1.0 Drift Error Minimization

o

J:
.......
...I

o
o

In order to minimize drift error. care in selection
of Cs and layout of the printed circuit board is
required. The capacitor should be of high quality
Teflon, polycarbonate, or polystyrene construc·
tion. Board cleanliness and layout are critical
particularly at elevated temperatures. See AN·63
for detailed recommendations. A guard conductor
connected to the output surrounding the storage
node (pin 1) will be helpful in meeting severe
environmental conditions which would otherwise
cause leakage across the printed circuit board.

~

2.0 Capacitor Selection

CW)

~

o

o

J:

.

...I

c.f
CW)

N

J:

CW)

N

o
o

The size of the capacitor is dictated by the reo
quired drift rate and acquisition time. The drift is
determined by the leakage current at pin 1 and
dV
IL
.
may be calculated by !it = Cs ' where IL IS the

J:

...I

total leakage current at pin 1 of the device, and
Cs is the value of the storage capacitor.
2.1 Capacitor Selection - LH0023
At room temperature leakage current for the
LH0023 is approximately 100 pA. A drift rate of
10 mV /sec would require a O.Ol/-1F capacitor.
For values of Cs up to 0.01 /-IF the acquisition
time is limited by the slew rate of the input buffer
amplifier, A 1, typically 0.5 V//-Is. Beyond this
point, current availability to charge Cs also enters
the picture. The acquisition time is given by:

will be stored on the capacitor, in much less time as
dictated by the slew rate and current capacity of
the input amplifier, but it will not be available at
the output). For larger values of storage capaci·
tance, the limitation is the current sinking capabil·
ity of the input ampl ifier, typically 10 mA. With
Cs =0.01 /-IF, the slew rate can be estimated by
dV
10 • 10- 3
.
.
dt = 0.01 '10-6 = 1 VI/-Is or a sleWing tIme for a
5 volt signal change of 5/-1s.
3.0 Offset Null
Provision is made to null both the LH0023 and
LH0043 by use of a 10k pot between pins 3 and 4.
Offset null should be accomplished in the sample
mode at one half the input voltage range for
minimum average error.
4.0 Switching Spike Minimization-LHOO43
A capacitive divider is formed by the storage
capacitor and the capacitance of the internal F ET
switch which causes a small error current to be
injected into the storage capacitor at the termina·
tion of the sample interval. This can be considered
a negative DC offset and nulled out as described in
(3.0), or the transient may be nulled by coupling
an equal but opposite signal to the storage
capacitor. This may be accomplished by connect·
ing a capacitor of about 30 pF (or a trimmer)
between the logic input (pin 6) and the storage
capacitor (pin 1). Note that this capacitor must be
chosen as care,fully as the storage capacitor itself
with respect to leakage. The LH0023 has switch
spike minimization circuitry built into the device.
5.0 Elimination of the 5V LogiC Supply-LHOO23

where: R = the internal resistance in series with Cs
Aeo

=

change in voltage sampled

An average value for R is approximately
600 ohms. The expression for tA reduces to:
_ yAeoCs

tA =

20

For a -10V to +10V change and Cs
acquisition time is typically 50/-ls.

.05 /-IF,

2.2 Capacitor Selection-LH0043
At 25°C case temperature, the leakage current for
the LH0043G is approximately 10 pA, so a drift
rate of 5 mV/s would require a capacitor of
Cs = 10 • 10-12 /5 '10- 3 = 2000 pF or larger.
For values of Cs below about 5000 pF, the
acquisition time of the LH0043G will be limited
by the slew rate of the output amplifier (the
signal will be acquired, in the sense that the voltage

2·42

The 5V logic supply may be eliminated by
shorting pin 7 to pin 8 which connects a 10k
dropping resistor between the +15V and Vc.
Decoupling pin 8 to ground through 0.1 /-IF disc'
capacitor is recommended in order to minimize
transients in the output.
6.0 Heat Sinking
The LH0023 and LH0043G may be operated
without damage throughout the military tempera,
ture range of -55 to +125°C (-25 to +85°C for
the LH0023CG and LH0043CG) with no explicit
heat sink. however power dissipation will cause the
internal temperature to rise above ambient. A
simple clip·on heat sink such as Wakefield
#215-1.9 or equivalent will reduce the internal
temperature about 20°C thereby cutting the leak·
age current and drift rate by one fourth at max.
ambient. There is no internal electrical connection
to the case. so it may be mounted directly to a
grounded heat sink.
7.0 Theory of Operation-LH0023
The LH0023/LH0023C is comprised of input
buffer amplifier, A 1, analog switches, Sl and 52, a

r:J:

applications information (con't)
TTL to M05 level translator, and output buffer
amplifier, A2. In the "sample" mode, the logic
input is raised to logic "1" (V6 ~ 2.0V) which
closes 51 and opens 52. 5torage capacitor, Cs , is
charged to the input voltage through 51 and the
output slews to the input voltage. In the "hold"
mode, the logic input is lowered to logic "a"
(V 6 ~ 0.8V) opening 51 and closing 52. Cs
retains the sample voltage which is applied to the
output via A2. 5ince 51 is open, the input signal
is overridden, and leakage across the M05 switch is
therefore minimized. With 51 open, drift is primarily determined by input bias current of A2,
typically 100 pA at 25° C.

7.1 Theory of Operation-LH0043
The LH0043/LH0043C is comprised of input
buffer amplifier A 1, FET switch 51 operated by a
TTL compatible level translator, and output buffer
amplifier A2. To enter the "sample" mode, the
logic input is taken to the TTL logic "0" state
(V 6 = 0.8V) which commands the switch 51

ANALOG
INPUT

LOGIC
INPUT

ANALOG
OUTPUT

o

closed and allows A 1 to make the storage capaci·
tor voltage equal to the analog input voltage. In
the "hold" mode (V 6 = 2.0V), 51 is opened
isolating the storage capacitor from the input and
leaving it charged to a voltage equal to the last
analog input voltage before entering the hold
mode. The storage capacitor voltage is brought to
the output by low leakage amplifier A2.

o

N
W

"r:J:

o
o

N

W
(")

8.0 Definitions

r:J:

o

The voltage at pin 5, e.g., the analog
input voltage.
The voltage at pin 6, e.g., the logic
control input signal.
VII: The voltage at pin 11, e.g., the output
signal.
The temperature of the ambient air.
The temperature of the device case at
the center of the bottom of the header.

o
-1=00

W

"r:J:

o

o

-1=00

W
(")

Acquisition Time:
The time required for the output (pin 11) to settle
within the rated accuracy after a specified input
change is applied to the input (pin 5) with the
logic input (pin 6) in the low state.
Aperture Time:
The time indeterminacy when switching from
sample mode to hold including the delay from the
time the mode control signal (pin 6) passes
through its threshold (1.4 volts) to the time the
circuit actually enters the hold mode.
Output Offset Voltage:
The voltage at the output terminal (pin 11) with
the analog input (pin 5) at ground and logic input
(pin 6) in the "sample" mode. This will always be
adjustable to zero using a 10k pot between pins 3
and 4 with the wiper arm returned to V-.

2·43

(,)
~

N

Operational Amplifiers

o
o

::I:
..J
.......
~

N

o
o

LH0024/LH0024C high slew rate operational amplifier

::I:
..J

general description
The LH00241LH0024C is a very wide bandwidth,
high slew rate operational amplifier intended to
fulfill a wide variety of high speed applications
such as buffers to A to D and D to A converters
and high speed comparators. The device exhibits
useful gain in excess of 50 MHz making it possible
to use in video applications requiring higher gain
accuracy than is usually associated with such
amplifiers.

features
• Very high slew rate - 500 V!jJ.s at Av = +1
• Wide small signal bandwidth - 70 MHz
• Wide large signal bandwidth - 15 MHz
• High output swing - ±12V into lK

• Offset null with single pot
• Low input offset - 2 mV
• Pin compatible with standard IC op amps
The LH0024!LH0024C's combination of wide
bandwidth and high slew rate make it an ideal
choice for a variety of high speed applications
including active filters, oscillators, and compara·
tors as well as many high speed general purpose
applications.
The LH0024 is guaranteed over the temperature
range -55°C to +125°C, whereas the LH0024C
is guaranteed _25°C to +85°C.

schematic and connection diagrams

.

COMP/NULL

.--.....-+-_-----.....-0'

V'

Metal Can Packag.
COMP/IIIUll

Note: FDrheatsink use
Tbermalloy 2230-5seriel.

Order Number LH0024H or LH0024CH

Se. Packag. 11

typical applications
Video Amplifier

Offset Null

TTL Compatible Comparator

.--.....- -......---l"~

"
VRE'_..JIj,"~''''':p...

"'OK
"

""

'OK

.

".

0 I~F

III'UT~H..J\I1'h-I-~

"'OK

R1 "'R2=R3=R4
R5+(R3R4)

oV'----5

IR311R41

2·44

r

::t

o
o

absolute maximum ratings
Supply Voltage
Input Voltage
Differential Input Voltage
Power 0 issipation
Operating Temperature Range

N

LH0024
LH0024C

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

dc electrical characteristics

PARAMETER

Rs = 50n, T A = 25°C
Rs = 50n

Average Temperature
Coefficient of Input
Offset Voltage

Vs =±15V, Rs = 50n
_55°C to 125°C

Input Offset Current

T A" 25°C

Input Bias Current

TA

r
::t

o

o
N

.1:10

n

(Note 1)

LH0024

CONDITIONS

Input Offset Voltage

.1:10
......

±IBV
Equal to Supply
±5V
SOOmW
_55°C to +125°C
_25°C to +B5°C
-S5°C to +150°C
300°C

MIN

TVP
2.0

LH0024C
MAX

MIN

TVP

4.0
S.O

5.0

= 25°C

15

4.0

5.0
10.0
30

12.5

13.5

UNITS

mV
mV

IlV/oC

15.0
20.0

IlA
IlA

lB

40
50

IlA
IlA

12.5

13.5

40
Supply Current

B.O
10.0

25

20

2.0

MAX

mA

Large Signal Voltage
Gain

Vs = ±15V, RL
Vs = ±15V, RL

= lk, T A = 25°C
= lk

4
3

5

Input Voltage Range

= ±15V
Vs = ±15V, RL = lk, TA = 25°C
Vs =±15V, RL = lk
Vs = ±15V, RL = lk,
C, = C2 = 30 pF
Av = +1, T A = 25°C
Vs = ±15V, LW'N = ±10V

±12

±13

±12

±13

V

±12
±10

±13

±10
±10

±13

V
V

400

500

250

400

Vllls

SO

SO

dB

SO

SO

dB

Output Voltage
Swing
Slew Rate

Common Mode
Rejection Ratio
Power Supply
Rejection Ratio

Vs

4

3
2.5

V/mV
V/mV

Rs= 50n
±5V:O::; Vs:O::; ±IBV
Rs = 50n

Note 1: These specifications apply for ±5V ~ Vs ~ ±lBV and _55°C to +125°C for the LH0024 and -25°C to +B5°C for
the LH0024C.

frequency compensation
TABLE I

Frequency Compensation Circuit

CLOSED
LOOPGA'N

c,

C.

C3

,ao

0

0

0

20

0

0

0

,

0

20 pF

, pF

30 pF

30 pF

3 pF

'0

~

~.kr:'~

C>-'VoI
..

lHIICI24

·::.~·~_~-oOUTPUT
R1 =R211 R3

2·45

g

CJ

'lit

N

typical perform ance ch a racte ristics

o
o

Large Signal Frequency

:::I:
...I
.......

800

'lit

700

Maximum Power Dissipati9"

N

o

o

i"-.

S

500

:::1:.

"

CASE

~

ffi 300

;0:

2200

"

15

~

~

w

'"co~

10

~

5

Av • +!.~

0
75 100 125
50
TEMPERATURE (OCI

150

0
10k

100M

"'"'"cc
'"'"~

+5

w

>

/

>" 15

'"

"
~

10

l-

~

IA

0

100

200
300
TIME(nsl

~
co

5

V

~

0

500

5

10

20

15

/'~

";:12 .
~
10

gIL

.....

~ 20

~ ·+25°C l - t--

I-

V

fr

6

8

10

12

"cc
w

~
25Oi- t--

~

~
~

I

8
4

5

10

15

20

,

Input Bias Current vs Voltage

(I

~ 11

>

V
SUPPL Y VOLTAGE ('VI

T~. -5JoC

TAl. -55!C

i

5

0

25

14

E

V
V

SUPPLY VOLTAGE I,VI

Supply Current vs SupplV
Voltage

13

10

0

0
400

100M

.t!

>

,

-10

1M
10M
FREQUENCY (Hz)

Output Voltage Swing

co

-5

lillie

RL '" 1K

15

w

!; 0
~

1M
10M
FREQUENCY (Hz)

TA;;25~C

.t!

~

eo

II

20

:>

Av=+1

';:;+10

co

> 20

20

f-TA·25°~_ _f-~L·1K

!:i
'"

"

40

Input Voltage vs Supply
Voltage

Cl·C2-30.F

:>

lOOK

10K

Voltage Follower Pulse
Response
Vs "'±15

RL" 1k
TA " 25°t

60

~

Vs: ±15V
CI· C2-30pF
RL" IK

co

0

I'V s "':t15

~

>

100
25

";;:

w

!;
0

..'"

~

~

I'.. I........
1""-'

Ci

Response
III

25

2! 20

I\..

AMBIENT"...

i1i400

...I

..

~

;g 600

Open Loop Frequency

Response

1"-

1 1

t .+~5°C

15

1-

..

10

5

-

t--

t--

~A .1125°C- t-1 1 1

0
14

16

18

SUPPLY VOLTAGE I'VI

4

6

B

10

12

14

16

18

SUPPLY VOLTAGE I'VI

applications information
1. Layout Considerations

2·46

-1, C3 may requ ire adjustment in order to per·
fectly cancel the input capacitance of the device.
When operating the LH0024/LH0024C at a gain
of +1, the value of R 1 should be at least lK ohm.

The LH0024/LH0024C,like most high speed cir·
cuitry, is sensitive to layout and stray capacitance.
Power supplies should be by·passed as near the
device as is practicable with at least .01 /-IF disc
type capacitors. Compensating capacitors should
also be placed as close to device as possible.

The case of the LHOQ24 'is electrically isolated from
the circuit; hence, it may be advantageous to drive
the case in order to minimize stray capacitances.

2. Compensation Recommendations

3. Heat Sinking

Compensation schemes recommended in Table 1
work well under typical conditions.. However. poor
layout and long lead lengths can degrade the per·
formance of the LH0024 or cause the device to
oscillate. Slight adjustments in the values for
Cl, C2; and C3 may be necessary for a given
layout. In particular, when operating at a gain of

The LH0024/LH0024C is specified for operation
without the use of an explicit heat sink. However,
internal power dissipation does cause a significant
temperature rise. Improved offset voltage drift
can be obtained by limiting the temperature rise
with a clip·on heat sink such as the Thermalloy
22288 or equivalent.

r-

::I:

o
o

Operational Amplifiers

W
N

"r::I:

o
o

W

LH0032/LH0032C ultra fast FET operational amplifier

N

n

general description
The LH0032/LH0032C is a high slew rate, high
input impedance differential operational amplifier
suitable for diverse application in fast signal handl·
ing. The high allowable differential input voltage,
ease of output clamping, and high output drive
capability particularly suit it for comparator appli·
cations. It may be used in applications normally
reserved for video amplifiers allowing the use of
operational gain setting and frequency response
shaping into the megahertz region.

features
• High slew rate
• High bandwidth
• High input impedance

500 V//ls
70 MHz
10 12n

•

20 pA max

Low input bias cu rrent

• Offset null with single pot
2 mV max

•

Low input offset voltage

•

No compensation for gains above 50

The LH0032's wide bandwidth, high input imped·
ance and high output capacity make it an ideal
choice for applications such as summing amplifiers
in high speed 0 to A's, buffers in data acquisition
systems, and sample and hold circu its. Additional
applications include high speed integrators and
video amplifiers. The LH0032 is guaranteed over
the temperature range -55°C to +125°C and the
LH0032C is guaranteed from _25°C to +85°C.

schematic and connection diagrams
V'

Metal Can Package

I!

ounUT

COMmlSATION

TD'VIE'II

Nate:

For heat slOk use thermalloy

2240 ulles IIr Wakefield Z1S·XX senes.

Order Number LH0032G or LH0032CG
See Package 6

typical applications

DC to Video Log Amplifier

1 MHz Function Generator

Note: All diodes mllst be IDW stored chlrge, high speed.
DKouple power supphel at each Imp witIJ O.01~F uramic diSCS.

2·47

CJ

N

C")

o

absolute maximum ratings

J:

Supply Voltage
Input Voltage
Differential Input Voltage
Power Dissipation
Operating Temperature Range LH0032
LH0032C
Storage Tem,perature Range
Lead Temperature (Soldering, 10 sec)

o

..I
.....

N

C")

o
o

J:

..I

±18V
±Vs
±30V
See curve
_55°C to +125°C
_25°C to +85°C
_65°C to +150°C
300°C

dc electrical characteristics
PARAMETER
Input Offset Voltage

(Note 1)

CONDITIONS

LH0032
TVP

MIN

Vs == ±15V, As ~ lOOk, TA

= 2SoC

2.

MAX

MIN

5

5

Vs = ±'5V, Rs"; ,ook

LH0032C
TVP
MAX
15

,0

Average Offset Voltage Drift

Rs"; ,00k

25

Input Bias Current

TA = 25°C

10

20
25

,00

large Signal Voltage Gain

TA

= 2SOC

200

25

Vs:: ±15V, V OUT ::: ±lOV, f
RL = 1 kn, TA = 2SoC
Vs = ±15V. V OUT = ±10V; f

25

.-

=, kHz

60

= 1 kHz

57

"

,0

25

5

70

rnV

pA

'5.0

nA

50

pA

5

60

rnV

IlVtC

50
Input Offset Current

UNITS

70

nA
dB

57

dB

RL =, kn

= ±15V

Input Voltage Range

Vs

Output Voltage Swing

Vs =±'5V, RL =' kn

Power Supply Rejection Ratio

Vs = ±'5V, tNs = ±lOV

Common Mode Rejection Ratio

Vs = ±'5V,I'N ,N = ,OV

Supply Current

Vs = ±'5V, TA = 25°C

ac electrical characteristics
PARAMETER

±10

±12

±10

±12

±10

±13.5

±10

±13

V

50

60

50

60

dB

50

60

50

60

,8

dB

22

20

rnA

(Note 2)

CONDITIONS

MIN

TYP

350

MAX

UNITS

Slew Rate

Av = +1, I'N'N = 20V

500

V!/1S

Settling Time to 1% of Final Value

Av = -1, b.V'N = 20V

100

ns

Settling Time to 0.1% of Final Value

Av = -I, b.V'N = 20V

300

ns

Small Signal Rise Time

Av = +1, b.V'N = lV

8

20

ns

Small Signal Delay Time

Av = +1, b.V'N = lV

10

25

ns

Note 1: These specifications apply for ±5V ~

Vs ~ ±18V and

_55°C to +125°C for the LH0032 and - 2SoC to +85°C for the

LH0032C.

Note 2: These specifications apply for Vs

2-48

20

V

=

±15V, RL = 1 kn and T A = 25°C.

r-

J:

o

o

typical performance characteristics

W
N

........

r-

Maximum Power Dissipation
2.0

-

~

i!5

1.5

>=
~

~

Q

1.0

~

~

-

""

"AJE- -

AMBIE~

25

50

22

I I II

~

20

Av=+l

0

18

~

""

75

100

'"

16

~

12

~

...........

0.5

"....
~

125

o

Response

III II

"-

J:

Open Loop Frequency

Large Signal Frequency
Response

10K

Av

60

1000 ~

40

100

(")

~

~

C":I

l>

;;

1\

Vs=±lS
RL = lK

10

10

TA

"

I

1111111

<:

\

25°&

100

TEMPERATURE rCI

Large Signal Pulse Response

W
N

=I~~I~

14

150

o

80

11111111

100M

10M

1M

10

20

10K

lOOK

1M

S

100M

10M

FREQUENCY (Hz!

FREQUENCY (Hz)

Large Signal Pulse Response

Input Bias and Offset Current
vs Temperature
10.000

+10

~

..'"~
w

'\..

Vs=±15_
Av

RL =lK -

I-Vs= '1~

Av"'+lD

RL =lK -

~

.~

+5

1000

w

!....

'"

>

z

>

~

~

Vs"'±15V_

10

=+1

-5

~

\

\

-10

1.- 7'~

100

t---

los

'"'"=>
u

-5

10

l

-10

1
100

200

300

100

500

400

TIME(ns)

200

300

400

500

25

45

65

85

105

125

TEMPERATURE rCI

TIME (nsl

Supply Current vs Supply
16

~w

!:;
0
>

~

24

20

r---~~: ~~oC

/

14

.'"

Voltage

Output Swing

Input Voltage Range

/

12

~

TA = 25°C/

'"z

10

~

~

/

/

22

/

15

~

20

~

18

....
ill

/

10

oS

/

i

0

_

....-

T!=-55!C

_-r-r-

----

I--

TA=25~C

16
14
12

I--

f.f.- ~TA = +125°C

10
10

12

14

16

SUPPLY VOLTAGE (,VI

18

20

10

15

SUPPLY VQLTAGE ('VI

20

10

15

20

SUPPLY VQLTAGE (,VI

2-49

(.)

N
CW)

o
o

auxiliary circuits

J:

-I

......
N

CW)

Output Short Circuit Protection

Offset Null

o

o

v·

r - -....- - v•

J:

-I

OUTPUT

'NPUTS {

V-

typical applications (con't)
lOX Buffer Amplifier

Unity Gain Amplifier

v·

V·

,..

'NPUT

INPUT

-"'VI"""-=!
11

OUTPUT

OUTPUT

g.

.

,

V-

.".

100X Buffer Amplifier

High Impedance, High Speed Comparator

v·

v·
tODK

,.
INPUT

>.;;.....--OU~~T
INPUT _ _ _ _ _-'j

,.K
'00
.".

2-50

v-

IN4148

v-

r-

:x:

o

typical applications (con't)

o

W
N

.......
r-

High Speed Sample and Hold

:x:
o
o

W
N

o

·Use polvstvtlna di.lectric for minimum drift

Current Mode Multiplexer
3-lpF

ANAlOG INPUT .10gvD--'VIrv-....-

--Q--,

.....

VOUT

·!!!.
x R, X ~
.,
mA

applications information
Power Supply Decoupling
The LH0032/LH0032C like most high speed cir·
cuits is sensitive to layout and stray capacitance.
Power supplies should be by·passed as near to
Pins 10 and 12 as practicable with low inductance
capacitors such as O.01IlF disc ceramics. Compen·
sation components should also be located close to
the appropriate pins to minim ize stray reactances.

Input Capacitance
The input capacitance to the LH0032/LH0032C is
typically 5 pF and thus may form a significant
time constant with high value resistors. For opti·
mum performance, the input capacitance to the
inverting input should be compensated by a small
capacitor across the feedback resistor. The value
is strongly dependent on layout and closed loop
gain, but will typically be in the neighborhood of
several picofarads.

In the non·inverting configuration, it may be
advantageous to bootstrap the case and/or a guard
conductor to the inverting input. This serves both
to divert leakage currents away from the non·
inverting input and to reduce the effective input
capacitance. A unity gain follower so treated will
have an input capacitance under a picofarad.
Heat Sinking
While the LH0032/LH0032C is specified for opera·
tion without any explicit head sink, internal power
dissipation does cause a significant temperature
rise. Improved bias current performance can thus
be obtained by limiting this temperature rise with
a small head sink such as the Thermalloy No. 2241
or equivalent. The case of the device has no inter·
nal connection, so it may be electrically connected
to the sink if this is advantageous. Be aware, how·
ever, that this will affect the stray capacitances
to all pins and may thus require adjustment of
circuit compensation values.

2-51

u

('I)

CD

Operational Amplifiers

o
o

J:

....

.......
('I)

CD

o

LH0033/LH0033C, LH0063/LH0063C

J:

f~st

o

.

....I

and damn fast buffer amplifiers

u

('I)
('I)

general description

o
o

The LH0033/LH0033C and LHOO63/LH0063C are
high speed, FET input, voltage follower/buffers
designed to provide high current drive at fre·
quencies from DC to over 100 MHz. The LH0033/
LH0033C will provide ±10 mA into 1 kn loads
(±100 mA peak) at slew rates of 1S00V /,us. The
LH0063/LH0063C will provide ±2S0 mA into
son loads (±SOO mA peak) at slew rates of up to
6000V /,us. In addition, both exhibit excellent
phase linearity up to 20 MHz.

J:

....I

.......
('I)
('I)

o

o

J:

....I

• Output drive adequate for most loads
• Single pre·calibrated package

features
6000V/,us

• Damn fast (LH0063)

• Wide range single or dual supply operation
• Wide power bandwidth

DC to 100 MHz

• High output drive

Both are intended to fulfill a wide range of buffer
applications such as high speed line drivers, video
impedance transformation, nuclear instrumentation
amplifiers, op amp isolation buffer for driving
reactive loads and high impedance input buffers
for high speed A to D's and comparators. In
addition, the LH0063/LH0063C can continuously
drive son coaxJal cables or be used as a diddle
yoke driver for high resolution CRT displays. For
additional applications information, see AN·48.

±10V with

•

Low phase non·linearity

•

Fast rise times

son load
2 degrees
2 ns

• High current gain

120 dB

• High input resistance

1010 n

These devices are constructed using specially
selected junction FErs and active laser trimming
to achieve guaranteed performance specifications.
The LH0033 and LH0063 are specified for opera·
tion from -SSo C to +12So C; whereas, the LH 0033C
and LH0063C are specified from -2SoC to +8SoC.
The LH0033/LH0033C is available in a l.SW
metal TO·8 package and a special 1/2 x 1 inch 8
pin ceramic dual·in·line package while the LH0063/
LH0063C is available in a SW a·pin TO·3 package.

advantages
• Only +10V supply needed for S Vp •p video out
• Speed does not degrade system performance
• Wide data rate range for phase encoded systems

connection diagrams
LH0033/LH0033C

LH0033/LH0033C

Metal Can Package

Dual-I,n-Line Package

LH0063/LH0063C
Metal Can Package

Nt

INPUT

--'i----,

v'

OFFSET
PRESET

V,'

OffSET

V,·

ADJUST

v,. __

/~,v,.

. 17:0 \!I:\\
v 1ilL
3

OU1PU1-.....- - - -....

OUTPUT

INPUT

Y
OFFSET

".
m;z
~/OfFSET

ADJUST

~

PRESET

TOP VIEW
Nt

Order Number LH0033J or LH0033CJ

TOP VIEW

See Package 15

TDPYIEW

CASE IS ElECTRICALL V
ISOLATED

CASE IS ELECTRICAll Y
ISOLATED

Order Number LH0033G or LH0033CG

See Package 6

2·S2

Order Number LH0063K or LH0063CK

See Package 19

ro

::t

absolute maximum ratings
Supply Voltage (V+ - V-I
Maximum

Pow~r

oCo.)
40V

Peak Output Current

Dissipation (See Curves)

LH0063/LH0063C
LH0033/LH0033C
Maximum Junction Temperature

Input Voltage
Continuous Output Current

Co.)

LH0063/LH0063C
LH0033/LH0033C

SW
l.SW
17SoC
Equal to Supplies

±5oo mA
±2S0 mA

r-

::t

Operating Temperature Range
LH0033 and LH0063
LH0033C and LH0063C

±250 mA
±100mA

o
o
w
w
n

-55°C to +125°C
-25°C to +85°C
-65°C to +150°C
300°C

Storage Temperature Range

LH0063/LH0063C
LHOO33/LH0033C

........

Lead Temperature (Soldering, 10 sec)

r-

::t

dc electrical cha racte ristics

o
o
m
w

LH0033/LH0033C: (Note 1)
LIMITS

CONDITIONS

PARAMETER

MIN
Output Offset Voltage

Rs = 100kn, Tc = 25°C
Rs =100kn

Average Temperature Coefficient
of Offset Voltage

-SS'C~Tc ~ 12SoC

Input Bias Current

Tc

Voltage Gain

Input Impedance
Output Impedance

Output Voltage Swing

Supply CUrrent
Power Consumption

Rs = 100 kn,

MAX

5

10
15

.97

RL = 1 kn, Rs = 100 kn
V1N = lVrms.
f = 1 kHz, RL = 1 kn
V 1N

1010

lVrms. f = 1 kHz,

'"

±12

UNITS

TYP

MAX

12

20
2S

.OS

.1
10

.98

1

.96
10 10

10"
10

±13

.IS
S

nA
nA

.98

1

V/V

1011

6
±12

±9

.OS

n
10

±13

6

n
V
V

±9
6

V p. p

=±lSV

20
18

22

21
18

24

mA
mA

V'N =OV, Vs = ±ISV
Vs = ±SV

600
180

660

630
180

720

mW
mW

V'N = OV, Vs
Vs

= ±5V

ac electrical characteristics
LH0033/LH0033C (Tc = 25°C, Vs = ±15V, Rs = 50n, RL = 1 kn)
LIMITS
PARAMETER

CONDITIONS

Slew Rate

V 1N

Bandwidth

V 1N

::
::

±10V

lVrms

LH0033
MIN

TYP

1000

1500
100

LH0033C
MAX

UNITS

MIN

TYP

1000

1400

VIps

100

MHz

MAX

Phase Non-Linearity

BW= 1 t020MHz

2

2

Rise Time

LlV'N

= O.SV
LlV'N = O.SV

2.9

3.2

ns

1.2

l.S

ns



12

~

= 25"C

r---

10

...
~

II

/

'"

15

20

IL

(")

V

/

10

20

15

SUPPLY VOLTAGE ltV)

LH0033 Positive Pulse
Response

LH0033 Negative Pulse
Response

18

/

RL '" SOn

16

As

= lk

14

..'"..

V

Tc =25°C

12

V

10

=
=

RL = 1 kn

'"

!:;

-4

>

-5

~

-8

i5

I

Tc "+25"C

12

'"

10

= 1 kn. R, = son
t-- t - TRLc "'+25°C

- -

r-

1

P

>

!;

j--

I

INPUT~ \

'(===OUTPUT

~

- -

-10
=
~ -12

~

..'"~

bb-INPUT- I
r - ; - OUTPUT
I
I

~

/

1l'I!

.---1\s=5on
-2

!;

V

/

~

Q

Vs =±15V

Vs = ±15V

~

±VIN" tV s

20

15

10

SUPPLY VOLTAGE ltV)

LHOO63 Output Voltage vs
Supply Voltage

...'">

L

50
10

SUPPLY VOLTAGE (±V)

~
'"'"
~

o
o
0)
w

L

I
RL =1kd
R,=100kn
Tc " +25"C

16 -

V V

VV

i;l

\ Te =+125"C

18

~V

""
K;;

::I:

LH0033 Output Voltage vs
Supply Voltage

LH0063 Supply Current vs
Supply Voltage

'"
~

\

I

~

\

I

2

5

10

15

10

20

20

SUPPLY VOLTAGE ltV)

I- RL = son

>

303!

:§

,.

1: '"
25~ i=

.~
.."..
r
V

A. f-----1

1.D

I

0.8

15 ;
~

0.4

1O.m

A

0.2

V
1.0

2.0

5.0

10.0 20.0

FREQUENCY IMHz)

i

4.0

=1k

50

60

..'"~
.....
>

~

~

=

'"

100

TEMPERATURE I'C)

. J••1±IJV
Te' 2S"C

~

't:"'

50

40

LH0063 Large Signal Pulse
Response

2.0

-50

3D

12
10
8

o
SOlDO

20

TIME!ns)

-- -RL

6.0

~

20!,
Q

0.8

10

60

Vs =±15V
Rs = son

35

Rs = 50n

....:c
..'"~
..

50

B.o

40

f- V,=tlSV

~

40

LH0033 Rise and Fan Time
vs Temperature

LH0033 Frequency Response

Vw'",.oVrms

30
TIME!ns)

150

RL

=

son

0

-2
-4
-6
-8
-10
-12

RL

o

-un

1 2 3 4 5 6 7 8 9 10 11 12
TIME!.,)

2-55

()
(¥)

CD

typical performance characteristics (con't)

0
0

Z

...I

LHOO33 Input Bia. Current
vs Temperature

.......

LH0063 Frequency Response

LH0063 Input Current

(¥)

CD

0
0

z

...I

U
(¥)
(¥)

0
0

220
200
180
160
140
120

10k
1.0

!....

~

.!l

....

ffi

'"~

.100

-Vs·±15~

:.!
;;;
....

I

./

Vs·+5V--

./

~ .010~~
.001

Z

...I

E::::E::

o

25

:.!
;;;

vs·'~
100

15

100

Vs"'±5V-

1\

.8

~z
~

.6

'"'"

.4

100
80
60
40

w

~>

.2

20

125

o

TEMPERATURE ('CI

.......

V/

i
10

50

V .......

/

Vs '" 110V

lk

50

25

15

100

10

125

(¥)
(¥)

100

1000

FREQUENCY (MHz)

TEMPERATURE ("C)

LHOO63 Small Signal Ri..
Time

0
0

800

Z

Tc '" 25"C

100

...I

,

I~UT

600

;;.

.s.
w
'"'"
~

">

500

-

,.JUTjUT

/

400
300

100

-j~--. ;

/

200

!/

•

3

1>\1

=~

4

TIME (ns)

application hints
Recommended Layout Precautions:
RF/video
printed circuit board layout rules should be followed when using the LH0033 and LH0063 since
they will provide power gain to frequencies over
100 MHz. Ground planes are recommended and
power supplies should be decoupled at each device
with low inductance O.lJ.!F disc capacitors. In
addition, ground plane shielding may be extended
to the metal case of the device since it is
electrically isolated from internal circuitry. Alternatively the case should be connected to the
output to minimize input capacitance.
Offset Voltage Adjustment Both the LHOO33's
and LH0063's offset voltages have been actively
trimmed by laser to meet guaranteed specifications
when the offset preset pin is shorted to the offset
adjust pin. This pre-calibration allows the devices
to be used in most DC or AC applications without
individually offset nulling each device. If offset
null is desirable, it is simply obtained by leaving
the offset preset pin open and connecting a trim
pot of lOOn for the LH0033 or 1 kn for the
LH0063 between the offset adjust pin and Vas illustrated in Figures 1 and 2.

2·56

1;;::~:
;;:::~'hT (
PRESET

9

10

'00

' -....~--;lI--o·I5V
FIGURE 1. Offset Zero Adjust for LHOO33 (Pin nos.
shown for TO-S)

;;~~::,
D(::::~kh'r

AD'UST

7

I

Ik

L-......~--;lI--o·I5V

FIGURE 2. Offset Zero Adjust for LH0D63

e'"
~
'":'l

~

r-

::t

o
o
w

application hints (con't)
Operation from Si ngle or Asymmetrical Power
Supplies: Both device types may be readily used
in applications where symmetrical supplies are
unavailable or not desirable. A typical application
might be an interface to a MOS shift register
where V+ : +5V and V- : -12V. In this case,
an apparent output offset occurs due to the de·
vice's voltage gain of less than unity. This additional
output offset error may be predicted by:

w

as illustrated in Figures 3 and 4. Resistor values
may be predicted by:

RLiM

V+

V-

Isc

Isc

.......

r-

::t

o
o

=-:--

w
w

Isc -::; 100 mA for LH0033

where:

(")

Isc -::; 250 mA for LH0063

r-

::t

(V+ -V-)

AVo

= (1-A v ) - - - : .005 (V

+_
-V )

2

where:
Av : No load voltage gain, typically .99
V+ : Positive supply voltage
V : Negative supply voltage

For the above example, AVo would be -35 mY:
This may be adjusted to zero as described in
Section 2. For AC coupled applications, no addi·
tional offset occurs if the DC input is properly
biased as illustrated in the "typical applications"
section.
Short Circuit Protection: In order to optimize
transient response and output swing, output current limit has been omitted from the LH0033
and LH0063. Short circuit protection may be
added by inserting appropriate value resistors
between V+ and Vc + pins and V- aQd Vc - pins

o
o
0)
w

.......

The inclusion of limiting resistors in the collectors
of the output transistors reduces output voltage
swing. Decoupling Vc + and Vc - pins with ca·
pacitors to ground will retain full output swing
for transient pUlses. Alternate active current limit
techniques that retain full DC output swing are
shown in Figures 5, 6 and 7. In Figures 5 and 6,
the current sources are saturated during normal
operation thus apply full supply voltage to the
Vc pins. Under fault conditions, the voltage de·
creases as required by the overload. For Figure 5:

V BE

RLiM : -

Isc

.6V

: -- :

r-

::t

o
o
0)
w
(")

10Q

60 mA

In Figure 6, quad transistor arrays are used to
minimize can count and:
RLiM :

~
1/3 (lsc)

: ___
.6_V_ _ : 8.2Q

1/3 (200 mAl

v'

v'

·'N
60SW

INPUT

FIGURE 3. LHOO33 Using Resistor Current Limiting

INPUT

FIGURE 4. LHOO63 Using Resistor Current Limiting

2·57

(J

M
U)

application hints (con't)

o

o

J:

...I

........
M

. - - -.....o--~~O+15V

U)

o

o

J:

...I

>:':""-11---0 OUTPUT

INPUT

(J

M
M

o

o

J:

2N2905
2N22t9

...I

........
M

' -. .-

M

...........---0

-15V

o

o

J:

FIGURE 5. LH0033 Current Limiting Using Current

...I

Sources

INPUT

FIGURE 6. LH0063 Current limiting Using Current

Sources

Capacitive Loading: Both the LH0033 and LH0063
are designed to drive capacitive loads such as coaxial cables in excess of several thousand picofarads
without susceptibility to oscillation_ However,
peak current resulting from (C X d v Id t ) should be
limited below absolute maximum peak current
ratings for the devices.

Thus for the LH0033:

t~~~N) X CL~
2-58

lOUT

~

±250 mA

and for the LH 0063:

(~:~N)

X C L ~ lOUT ~ ±500 mA

Peak current limiting may be accomplished by
controlling input large signal rise time, inserting
20 to 100s/. resistors between V+ and Vc + pins
and V- and V c pins, using active current limit
as described in Section 4, Figures 5, 6 and 7, or
inserting a small value resistor in series with the
output.

r-

J:

o
o

application hints (con't)
In addition, power dissipation resulting from
driving capacitative loads plus standby power
should be kept below total package power rating:

?

Pd;ss

Poc + PAC

pkg

Pd;ss

?

(v+ - V-I X Is + PAC

pkg

where

Vp_p = Peak·to·peak output voltage swing

........

J:

o

o
w
w

Hardware: In order to utilize the full drive
capabilities of both devices, each should be
mounted with a heat sink particularly for extended temperature operation. The cases of both
are isolated from the ci rcuit and may be connected to system chassis. Heat sinks are commercially available at low cost; the following or
their equivalents are recommended:
LH0033G (TO-8 pkg):

Thermalloy #2240A
Wakefield #215-CB

LH0063K (TO-3 pkg):

IERC #LAIC3B4V

f = frequency
CL = Load Capacitance

w
w
r-

resistor of 47Q should be used between the op
amp output and the input of LH0033. The wide
bandwidths and high slew rates of the LH0033
and LH0063 assure that the loop has the charac·
teristics of the op amp and that additional rolloff
is not required.

n

r-

J:

o
o
C)
w
r-

........

J:

o
o

Mounting and test sockets are available from:
Operation Within an Op Amp Loop: Both devices
may be used as a current booster or isolation
buffer within a closed loop with op amps such
as LH0032, LH0062, or LM 118. An isolation

LH0033G (TO-8 pkg):

Barnes Corp. #MGX-12

LH0063K (TO-3 pkg):

Keystone Elect. (N.Y.)
#4626 or #4627

C)

w

n

schematic diagrams

LH0063/LH0063C

LH0033/LH0033C

r----'''''-o~
'I NORMALLY

INPUT

SHOATED

1

•. /

v, '

INPUT
OUTPUT

R6

OUTPUT

R.
9

V,

....

...

V,·

) NORMAllY
SHORTED

I

'I NORMALLY

L--..,.j-+....~-o ~_
OffSET

OFFSET

ADJUST

PRESET
NORMALLY
SHORTED

J

,_/
NORMALL Y
SHORTED

OFFSET
ADJUST

7

SHORTED

'"
V·

CASE IS ELECTRICAllY
ISOLATED

PIN NUMBERS SHOWN FOR TO·8 ("G") PACKAGE.

2-59

(,J

M
cg

typical applications

o

o

::t
...I

High Speed Automatic Test Equipment

.......

Forcing Function Generator

M
cg

o

o

::t

...I

(,J

L_~l~_.J

. - -....-o+lDV

M
M

o
o

::t
...I

.......
M
M

o

co~~~~~[~~ 1

o

INPUT

::t

TEST

...I

PATTERN

1.-...--40--.....-0 -2DV
2

n...::';"'.r--..
v - -............-:

-25V

'5V

Gamma Ray Pulse Integrator

GAMMA
RAY

2-60

r-

::J:

o
oCo)

typical applications (con't)

Co)

High Input Impedance AC Coupled Amplifier

Nuclear Particle Detector

r-

V·

r--~>---lDDMHz

::J:

o
o

0)
Co)

Coaxial Cable Driver

Isolation Buffer

("')

OVERAll FEEDBACK
+15V

INPUT

-15V

Coaxial Cable Driver
V·

INPUT

so"
V-

"Select C1 for optimum pulse response.

lW CW Final Amplifier

2-61

(J

M

typical applications (can't)

CD

o
o

J:
...J
.......

High Input Impedance Comparator
Instrumentation Shield/Line Driver

With Offset Adjust

M
CD

v"

VUL

o
o

"

J:
...J

(J

M
M

INPUT

o
o

NO GO '" lOGIC "1"
GO" LOGIC "0"

J:

...J

IT

.......
M
M

o
o

J:

...J

4_5 MHz Notch Filter

Single Supply AC Amplifier
Vee = 12.0V

1M
.OOl"F

INPUT

0---1

v,"
OUTPUT

1
1M

.,

22Dn

fo= 2rrRIC!

.,

220n

RI:2 R2

v-

High Speed Sample & Hold

ANALOG

OUTPUT

INPUT

S.DV

I

.t

I

lOGIC
INPUT

L

2-62

1/2DHOO34

"¥

l'
v-

I
I
-.J

*Polycarbonate orleftan.

,

C2
Cl= -

r-

:::J:

o
o
w
0)

Operational Amplifiers

G')

........

r-

:::J:

o

o

LH0036G/LH0036CG instrumentation amplifier

w

0)

A

general description

G')

The LH0036G/LH0036CG is a true micro power
instrumentation amplifier designed for precision
differential signal processing. Extremely high accu·
racy can be obtained due to the 300 Mn input
impedance and excellent 100 dB common mode
rejection ratio. It is packaged in a hermetic TO·8
package. Gain is programmable with one external
resistor from 1 to 1000. Power supply operating
range is between ±lV and ±18V. Input bias current
and output bandwidth are both externally ad·
justable or can be set -by internally set values.
The LH0036G is specified for operation over the
-55°C to +125°C temperature range and the

LH0036CG is specified for operation over the
-25°C to +85°C temperature range.

features
•

High input impedance

•
•
•
•
•
•
•

High CMRR
Single resistor gain adjust
Low power
Wide supply range
Adjustable input bias current
Adjustable output bandwidth
Guard drive output

300 Mn
100 dB
1 to 1000
90J.1W
±1V to ±18V

equivalent circuit and connection diagrams
INPUT

GUARD

BIAS

DRIVE

BANDWIDTH

ADJUST

OUTPUT

CONTROL

~'l __

V-

I

lNV,
INPUT

GAIN
SET

v+

, --...lL--.b,--j'!1
.J

'5

.,

I
I
I
I
11

GAIN

SET

OUTPUT

••
••

NON·tNV.
INPUT

.6

.,

CMRR

I,

PRESET

CMRR
TRIM

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ ...l

TO·S Metal Can Package

CMRR
TRIM

TOP VIEW

Order Number LH0036G or LH0036CG
See Package 6

2-63

absolute maximum ratings
Supply Voltage

±18V

ShOft Circuit Duration

Differential Input Voltage
Input Voltage Range

±30V
±Vs
±Vs
±Vs
±Vs

Operating Temperature Range

Shield Drive Voltage
CMRR Preset Voltage

CMRR Trim Voltage
Power Dissipation (Note 3)

Continuous

-5SoC to +125°C
-2SoC to +85°C
-6SoC to +150°C
300°C

LH0036
LH0036C
Storage Temperature Range
Lead Temperature, Soldering 10.seconds

1.5W

electrical cha racteristics

(Notes 1 and 2)
LIMITS

PARAMETER

CONDITIONS

LH0036
MIN

Input Offset Voltage
(V IOS )

TYP

LH0036C
MAX

MIN

UNITS

TYP

MAX

Rs = 1.0kU, TA = 25°C
Rs = 1.0kU

0.5

1.0
2.0

1.0

2.0
3.0

mV
mV

Output Offset Voltage

Rs = 1.0kU, TA = 25°C

2.0

(V oas )

5.0
6.0

5.0

Rs:=: 1.0kf.!:

10
12

mV
mV

Input Offset Voltage
Tempco (L\.Vlo~/LlT)

Rs

S

1.0kU

Output Offset Voltage
Tempco (AVoos/6.T)

Overall Offset Referred

Av "" 1.0

to Input (Vas)

Av:=: 10
Av = 100

TA

= 1000
= 25°C

TA

= 25°C

Av
Input Bias Current

10

10

~vtc

15

15

fJ.vtc

2.5
0.7
0.52
0.502

6.0
1.5
1.05
1.005

40

100
150

50

125
200

nA
nA

10

40
80

20

50
100

nA
·nA

IIBI
Input Offset Current
(los)

Small Signal Bandwidth

Av "" 1.0, RL = 10krl
Av ::: 10, RL = 10kn
Av'" 100, RL = lOkn

Av
Full Power Bandwidth

= 1000,

RL

= 10kU

VIN '" ±10V, RL '" 10k,

mV
mV
mV
mV

350
35
3.5
350

350
35
3.5
350

kHz
kHz
kHz
Hz

5.0

5.0

kHz
V
V

Av = 1
Input Voltage Range

Differential

±1O
±1O

Common Mode

±12

±10

±12

±12

±10

±12

Gain Nonlinearity
Deviation From Gain

0.03
Av = 1 to 1000

±0.3

0.03
±1.0

%

±LO

±3.0

%

Equation Formula

PSRR

CMRR

Output Voltage

±5.0V ~ Vs ~ ±15V,

1.0

2.5

1.0

5.0

mVIV

Av"" 1.0
±5.0V:S" Vs :::::: ±15V,
Av"" 100

0.05

0.25

0.10

0.50

mVIV

1.0
0.1
10

2.5
0.25
25

2.5
0.25
25

5.0
0,50
50

mV/V

Av '" 1.0

DC to

Av "" 10
Av "" 100

LlRs

100

Hz

= 1.0k

Vs '" ±15V, RL = 10krl,

±1O

Vs '" ±1.5V, RL = 100Hl

±O.6

±13.5
±O.S

±10
±O.6

±13.5
±O.S

Output Resistance

0.5

Supply Current

300

Equivalent Input Noise

20

20

0,3

0.3

3.8
180

3.8
180

400

~VIV

V
V

0.5
400

mVIV

U
600

~A
~Vlp·p

Voltage
Slew Rate

AV 1N =

RL
Settling Time

±lOV,

Vips

= 10kU, Av = 1.0

To ±10 mY, RL
AV OUT = 1.0V

= 10krl,

Av '" 1.0

Av

= 100

Note 1: Unless otherwise specified, all specifications apply for Vs
LH0036C and -55°C to +125°C for the LHOO36.
Note 2: All typical values are for T A

= ±15V, Pins 1,3, and 9

~s
~s

grounded, -2SoC to +8SoC for the

= 2SoC.

Note 3: The maximum junction temperature is 150°C. For operation at elevated temperature derate the G package on a
thermal resistance of 90° C/W. above 25° C.

2-64

r:::t

o
o
w
en

typical performance. characteristics
Supply Current

Supply Current vs Temperatura
1000

3ZO

Vs=±lSV

i
::;

~

~
~

Z80
40 I-- I-3D

50

75

100

~o

lZ5

3D

w
en

L,..-

(')
Ci)

V

ZO

V

10

4.0 6.0 8.0 10 lZ 14 16

I~ 300

I

1111111

'>

~ Z70

JJJ~1115J

3Z

~ Z8

1111111

Z4

=
~ ~
2.4

:>

!;

1111111

~

1111111
PINS 1, 3, & 9 GROUNDED
10k

l.ok

PIN 1 GROUNDED

;§

2.0

~

:>
~ 150\

~

§j

120

1-'d-t-NdIlllJ.--4-H-lllIIIl-+H+lllH

1.2

~ ~

90

~n~ljl1R~s~:~I~OO~k,;ttt11m

60

g
....

0.4

lOOk

60

1-+-l+f1IlllJ.--4-+ Vs " ±15V

50

t80

~ ~

~

3D f-

~
z

40

~
w

3D

'"'"

20

~:>

11111

riillll~k

H.!9::::~0"
lllllli

R~ ~I!~~~

l.ok
FREOUENCY (H,I

LOAD RESISTANCE Inl

±tB

Vs =±15V
RL" 10k
TA = 25°C
PINS 1 & 3 GROUNDED

mllill

f1111111
11111
11111111
RG =00

10

111111 I

100

10

±14

R~ IJ ~.~~

11111111

L-LLUillli-~~Wll~-ULWW

l.oM

±10

Closed Loop Voltage
Gain vs Frequency

1.6

o.B

fA" 25°&

~ ~

±6.0

SUPPLY VOLTAGE (VI

Z40 1\
210 f-\+-l+f1IlllJ.--4-H-lllIIIl-+H+lllH

w

I

~~1;1~1.5~

ZO

±2.0

Total I nput Noise Voltage*
vs Frequency

36
34

18

SUPPLY VOLTAGE (±VI

Peak to Peak Output
Voltage Swing vs RL

~

~
:>
....=>
....=>

10
Z5

TEMPERATURE ("CI

'"'"

'"'"

o
o

PIN} 3 & 19 GR?UNDfD
-55 -Z5

w

Q

=

o

..

RL. '" 10k
TA =25 C
PIN " J & 9 GROUNDED

40

i

ZO
10

1= r:=
!== F;

V

100

Ci)

.......
r:::t

50

i

~

Vs=±1.SV

Output Voltage Swing vs
Supply Voltage

Supply Voltage

TA:Z5"C
PINS 1, 3, & 9 GRDUNDED ~

II

l - I--

310
;< 300
.3 Z90
....

YS

100

10k

1.0k

10k

l.oM

lOOk

FREQUENCY (Hd

'Noise voltage loclude5 controbut'oll "om sou,ce ,es,stallce

;
'"

'"
1i

~L=100-

100
90
80
70
60
50
40
3D
ZO
10

AVCL = 10

A~~: 1~1~!0

"

:rl
a;

'"'"

zo

:>

Vs =±lSV

......

!

~
w

~

!;

o

-55 -Z5

10k

l.ok

~
=

Vs"'±l.SV

50

V

PINS 1, 3, & 9 GROUNDED

Z5

/

ZO

=>'"

15

~i

10
5.0

/

/

/

/

±5.0

lOOk

±to

±t5

±20

SUPPLY VOLTAGE ('VI

Large Signal Pulse Response

ZZ
11111
20
\
11111
AVCL ::: 1.0
18
1111I 11'4
16
14 flZ
1\
10
8.0
6.0 Vs '" ±15V
RL :lok
4.0
TA : 25"C
1\
Z.O PINS 1 3 & 9 GROUNDED

+10

75

TEMPERATURE ("CI

100 125

~~~L .Il~~

w

'"'"

l.ok

10k

FREOUENCY (H,I

1\

~

III

100

II

~

:>

!;

~

II
-10

o

25

RL =10k
f= 14 Hz
TA = 25°C

III III III

I

3D

"'

100

3D

Output Voltage SWing vs
Frequency

PINS 1,3, & 9 GROUNDED

10

~~
~~

35

FREQUENCY (Hd

~
~

~

"'"'w
w'"

"'8

I nput Bias Current

~

~:

;;

"'.,
10

40

40
Vs =±15V
M::: 1.0 Vp .p
= 25"C

",=

Ro - GAIN SET RESISTDR (nl

50

Common Mode Voltage vs
Supply Voltage

CMRR ys Frequency

Closed Loop Voltage Gain

lOOk

40

1\

VS = ±15V
RL ;; 10k
AVCL = 1.0
PINS 1, 3, & 9 GROUNDED

80

lZ0

160 ZOO Z40 Z80

TIME '"'I

2-65

C!J

(J

CD

typical applications

C")

o
o
:::t
....

±Z.7IBV
INPUT

.......
C!J
CD

C")

r-------1---oy+~+3.0VTO+15V

o
o
:::t
....

±100mV
INPUT

"OmV
INPUT
ENABLE

'-----------0
.,ov

V---1.0VTO-1SV

·R sw AND Rs ARE OPTIONAL BANDWIDTH AND INPUT BIAS CURRENT

CONTROLLING RESISTORS

INPUT

Instrumentation Amplifier with Logic Controlled
Shut-Down

Pre MUX Signal Conditioning

Isolation Amplifier for Medical Telemetry

"AN

15k

21lk

r----.......~-I---+--+-+15V

JOk

lM4250

IOmvrc
~OUTPUT

>Ok

I

\.

/

J

DIDOES IN THEAMAl
CDNTACTWITHAMBI~NT

---1H>---4------4- -15V

THERMOtOUPLEJUNCTIONS

Thermocouple Amplifier with Cold Junction Compensation
GAIN

v'

HOmA

CURRENT

j

10

80·

4

v"

lOOP

OUTPUT

.J

~
Fl

FL

-

FH
1
hAaeG

-15V
FH-A FUNCTIDN OF SELECTED AVCL,R B AND Raw

Process Control I nterfaca

2-66

High Pass Filter

r-

::J:

o
o
w
G)

applications information
THEORY OF OPERATION

r------------,
I

Ci)

......
r::J:
o
o

1

I
I
I
I

signal bandwidth 350 kHz for AvcL = 1. In some
applications, particularly at low frequency, it may
be desirable to limit bandwidth in order to minimize the overall noise bandwidth of the device. A
resistor R Bw may be placed between pin
and
ground to accomplish this purpose. Figure 2 shows
typical small signal bandwidth versus R BW.

11

OUTPUT

w

G)

n

1M

Ci)

glDOk
:

L. _ _ _ _ _ _ _ _ _ _ _ _ .J

:;

FIGURE 1. Simplified LH0036

The LH0036 is a 2 stage amplifier with a high
input impedance gain stage comprised of A, and
A2 and a differential to single·ended unity gain
stage, A3 . Operational amplifier, A" receives
differential input signal, e" and amplifies it by a
factor equal to (R1 + RG)/R G.
A, also receives input e2 via A2 and R2. e2 is seen
as an inverting signal with a gain of R1/RG' A,
also receives the common mode signal eCM and
processes it with a gain of +1.
Hence:

V,

R1

+ RG

= ---

e,

1.0M

(1)

100M

IOOOM

FIGURE 2. Bandwidth vs RBW
It also should be noted that large signal bandwidth
and slew rate may be adjusted down by use of
RBW • Figure 3 is plot of slew rate versus RBW •
1.0

0.1

'"

"'"

S 0.01

By similar analysis V2 is seen to be:

~

(2)

For Rl = R2:

~O.OOI

10k

[C:J+

10M

Rm - RESISTANCE FROM PIN 1 TO GROUND (nl

Rl

RG

V2 - V, =

~

:: 10k

lOOk

1.0M

10M

100M

Ruw - RESISTANCE FROM PIN 1 TO GROUND (n)

(3)

1] (e2 -e,)

Also, for R3 = R5 = R4 = R6, the gain of A3 = 1,
and:
eo=(1)(V2 -V,)=(e2- e,)

[1+(::1)]

(4)

As can be seen for identically matched resistors,
eCM is cancelled out, and the differential gain is
dictated by equation (4).

e,

vs RBW

Use of Pin 9, CMRR Preset
Pin 9 should be grounded for nominal operation.
An internal factory trimmed resistor, R6, will
yield a CM R R in excess of 80 dB (for AvcL = 100).
Should a higher CMRR be desired, pin 9 should
be left open and the procedure, in this section
followed.
DC Off-set Voltage and Common Mode
Rejection Adjustments

For the LH0036, equation (4) reduces to:
eo
50k
AvcL = - - - = 1 + - e2 RG

FIGURE 3. Output Slew Rate

CMRR CONSIDERATIONS

(5a)

Off-set may be nulled using the circuit shown in
Figure 4.

The closed loop gain may be set to any value from
1 (RG = 00) to 1000 (R G :! 50n). Equation (5a)
re·arranged in more convenient form may be used
to select RG for a desired gain:
RG =

50k
AvcL - 1

(5b)
v-

"

l3k

USE OF BANDWIDTH CONTROL (pin 1)
In the standard configuration, pin 1 of the LH0036
is simply grounded. The amplifier's slew rate in
this configuration is typically 0.3" IllS and small

FIGURE 4.

Vos

v-

Adjustment Circuit

Pin 8 is also used to improve the common mode
rejection ratio as shown in Figure 5. Null is
2-67

applications information (con't)
+15V

achieved by alternately applying ±10V (for V+ &
V- = 15V) to the inputs and adjusting R 1 for
minimum change at the output.

OUTPUT

OUTPUT

FIGURE 8. Improved AC CMRR Circuit

FIGURE 5. CMRR Adjustment Circuit

The circuits of Figure 4 and 5 may be combined
as shown in Figure 6 to accomplish both Vas
and CMRR null. However, the Vas and CMRR
adjustment are interactive and several iterations
are required. The procedure for null should start
'with the inputs grounded.
.,SY

After adjusting R 1 for best dc CM R R as before,
R2 should be adjusted for minimum peak-to·peak
voltage at the output while applying an ac
common mode signal of the maximum amplitude
and frequency of interest.
.INPUT BIAS CURRENT CONTROL
Under nominal operating conditions (pin 3 grounded), the LH0036 requires input currents of 40 nA.
The input. current may be reduced by inserting a
resistor (R B) between 3 and ground or, alternatively, between 3 and V-. For RB returned to
ground, the input bias current may be predicted
by:
IBIAS

V+ -0.5
(6a)

~ -~-:-----

4

X

108

+ BOO RB

or
FIGURE 6. Combined CMRR,

Vas

Adjustment Circuit

R2 is adjusted for Vas null. An input of +10V
is then applied and Rl is adjusted for CMRR null.
The procedure is then repeated until the optimum
is achieved.
A circuit which overcomes adjustment interaction
is shown in Figure 7. In this case, R2 is adjusted
first for output null of the LH0036. R 1 is then
adjusted for output null with +10V input. It is
always a good idea to check CMRR null with a
-10V input. The optimum null achievable will
yield the highest CM R R over the amplifiers com·
mon mode range.

V+ - 0.5 - (4 x 108 ) (lBIAS)
RB = - - - - - - - - - BOO IBIAS

(6b)

Where:
IBIAS = Input Bias Current (nA)
RB = External Resistor connected between
pin 3 and ground (Ohms)
V+ = Positive Supply Voltage (Volts)
Figure 9 is a plot of input bias current versus RB.
100

+15V

10

"'"j

ov.I~:a~~ C>- 10/lA//lV

•

Low input offset voltage

•

1.0mV

Low input bias current

2.0 nA

• Single supply operation

10V to 50V

• Programmable bridge reference
(LH0045G)

5.0Vto 30V

• Non·interactive span and null adjust
• Over compensation capability
• Supply reversal protection

Designed for use with various sensors, the LH0045/
LH0045C will interface with thermocouples, strain
gauges, or thermistors. The use of the power
supply leads as the signal output eliminates two
or three extra wires in remote signal applications.
Also, current output minimizes susceptibility to
voltage noise spikes and eliminates line drop
problems.

The LH0045/LH0045C is intended to fulfill a wide
variety of process control, instrumentation, and
data acquisition applications. The LH0045 is
guaranteed over the temperature range of-55°C to
+125°C; whereas the LH0045C is guaranteed from
-25°C to +85°C.

equivalent schematic and connection diagrams
TO·S
LZ(V,

D2

BRIDGE
RETURN

r---....,--------....,-1~...:..aL1
INVERTING

.v,,,\-

INPUTt-)

ADJUST \

NON·INVERTING
IIIII'UII+I

OVER
COMPENSATION

TOP VIEW
-NOTE: PIN 51SSHDRTEDTD PIN 6 TO OBTAIN A

NOMINAL +UV. VREF • LEFT O'EN VREF = +IDY.
THE CASE IS ISOLATED fRIlM THE CIRCUIT

"'

FDA BOTH TO·3 ANOTO-8

'N,~~':ri'f-~ <>""---,\',,",..,..--,

Order Number LH0045G or LH0045CG
See Package 6

..

NDN'IN~NEp~~~~ <>""'--"'ItI",,'....---1

TO·3
R6

Uk
~

~

:E~~:: o.:.'--"'ItI",,'....-_I-:--+__...--'_+......~"'''"o~
OVER

COMMON

COMPENSATION
-NOTE: PlNSSHOWIII ARE FOR THE
12 'IN TO-lI."1 PACKAGE.

TOP VIEW

Order Number LH0045K or LH0045CK
See Package 19

2·70

ro
o
%

absolute maximum ratings
Supply Voltage (Ll to common)
Input Current
Input Voltage (Either Input to Common)
Differential Input Voltage
Output Current (Either L 1 or L2)
Reference Output Current
Power Dissipation
LH0045G
LH0045K
Operating Temperature Range
LH0045
LH0045C
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

0l:Io

+50V
±20 rnA
OV to V REF
±20 V
50mA
5.0 rnA

U'I

.......

r%
o
o

0l:Io

U'I

n

1.5W
3.0W
-55°C to +125°C
-25°C to +85°C
-65°C to +150°C
300°C

electrical characteristics

(Note 1)
LIMITS

PARAMETER

CONOITIONS

LH0045
MIN

MAX

0.7

2.0
3.0

MIN

TYP

UNITS
MAX

Input Offset Voltage (Ves I

15 '" 4.0 rnA. T A
Is =4.0mA

Offset Voltage Temperature

Is =4,OmA

3.0

Input Bias Current (I B)

TA = 2SOC

O.B

2.0
3.0

1.5

7.0
10

nA
nA

Input Offset Current (los)

TA

0.05

0.2
0.4

0.2

1.0
1.5

nA
nA

Open Loop
Transconductance (gMOLI

Als = 4.0 rnA to 20 rnA
Als = 10 rnA to 50 rnA

=

2SOC

LH0045C

TYP

2.0

7.5
10

mV
mV
~vl'c

6.0

Coefficient (.6Vos/aTI

=

2SOC

lOG
2xl06

lOG

10'
2xl07

2xl06

~U

la'
2xl07

~U

LHOD45G pins 5 and 6 open

9.0
15

50
50

9.0
15

50
50

V
V

LH0045G pins 5 and 6 open

1.0
1.0

3.3
7.6

1.0
1.0

3.3
7.6

V
V

Supply Voltage Range (V s )

Input Voltage Range (V IN )

Vs = 10V to 45V. Is = 4.0 mA,

Open Loop Output
Impedance (ROUT)

T A = 2SOC

Common Mode Rejection

~V'N =

Ratio (CMRR)

Is=12mA

Power Supply Rejection

AVs

1.0V to 3.3V,

= lOV

to 45V, Is

= 12 rnA

1.0

Mn

1.0

0.1

0.05

0.1

0.05

mVIV

0.1

0.01

0.1

0.01

mVIV

Ratio (PSRR)
Vs = 50V

2.0

3.0

2.0

3.0

mA

Reference Voltage Load
Regulation IAVREF/AIREF)

L\I REF = 0 rnA to 2.0 rnA,
T A =25°C

0.05

0.2

0.05

0.2

%

Reference Voltage Line
Regulation (AV REF /.6.V s )

~Vs =

0.3

0.5

0.3

0.5

mV/v

TA

Open Loop Supply Current

II SOL )

10V to 45V,

= 25°C

Reference Voltage Temperature
Coefficient (AVREF/AT)

IREF = 2.0 rnA

Reference Voltage (V REF )

I R'EF = 2.0 rnA, T A = 25°C
IREF = 2.0 rnA, TA = 25°C,
LH0045G pins 5 and 6 open

4.3
8.6

Resistor R9

Is;; 12mA, TA "" 25°C

95

Average Temperature
Coefficient of A9 ITCR g)

Is = 12 rnA

= 1.0 rnA, TA = 25"'C

5.1
10.3

5.9
12

4.3
B.6

lOa

105

95

50

300

Resistor R5

Is

1000

1050

Average Temperature
Coefficient of A5 (TCR s )

Is = 1.0mA

50

300

Input Resistance IR IN )

TA = 25°C

50

950

%I'c

0.004

0.004

950

5.1
10.3

5.9
12

V

V

lOa

lOS

n

50

300

PPMI'C

1000

1050

50

300

50

n
PPMI'C

Mn

Note 1: Unless otherwise specified, these specifications apply for +10V S Vs S +50V, pin 5 shorted to pin 6 on the LHOO45G,
over the temperature range -55°C to +125°C for the LH0045 and -25°C to +85°C; for the LHOO45C.

2-71

CJ

II)

g

typical performance characteristics

o

:5

LH0045G Maximum Power
Dissipation

......
II)

LH0045K Maximum Power
Dissipation

2.4

~

o
o

2.1

~ 1.8

...::z::

~
;::

1.5

:i!

1.2

i1i

=
.
~

==

~

I

W-- -

\.

"'";::

4.0

..=ill

3.0

:i!

0.3
50

w

~

1""-'

OJA::

25

5.0

~

......... '\
I"\,
8~
AMBIENT,
W

0.6

50

60"C

",SE,OJC=

I.........

9.9

Safe Operating Area

6.0

15

100

25

~

J

"iii

~

.........

AMBIENT.IlJA "

··G·· PACKAG·E~
PMAX ::1.5W

150

25

i

~~

30

1'-

20
10

IW

I
50

TEMPERATURE ("·CI

>-

"

..........

2.0
1.0

.~

'T'!25!C

I '-le.

40

E

I

125

I

r- ~SE.IJJC:W- r--

15

100

125

20

10

150

TEMPERATURE I·CI

30

40

50

SUPPLY VOLTAGE IVI

Open,Loop
Input Noise Voltage
IOOOmn

2.0

fffillE

1.5

~
~
~

100

1

:..

EI=I=EIllIII==:I::i:

~

"~

~

!!

~ lOB

I'-

1.0

1.0k

10k

J

!-I- r-

i""'- t- BIA

0.5

107

~

10'

~

0-15
0.10

lOOk

~

~
">-~

r--- t-

0.05
100

Tran~conductance
vs Frequency

I "put Currents

-55 -35 -15 5

FREQUENCY IHd

g:;

OFFSET

VREF = 5.1V
4.0 mAS;.lls
Vs = 24V
TA '" 25°C

105
104

103

"}..

10 2

~
~

101

IS

1.0

25 45 65 85 105 125

~20

mA

1
1I

~

I

1.0 10 100 1.0k 10k lOOk 1.0M 10M 100M
FREQUENCY 1Hz)

TEMPERATURE I"CI

Variation of VREF With
Power Supply Rejection
Ratio vs Frequency
~

_

~

~

15

VR!!I~I~.lV

100 H"*ff!!II...!::+tlI~.lVs=10V1D45V
Is '"12mA
80 ~H+~-++tlI~~

.l Vs =35V

10

S

E

OJ

z

~

~

I/r:I P'"

-20

24
22

'"

1.0k

10k

lOOk

!!

..'"
o

20

"15

lB

2.08

"

\

2.04

i

2.02

~

~

14
12

2.06

E
>-

\

16

20
10
-10

RESISTANCE 8ETWEEN PIN 5 AND PIN 31111

~~~
f4

~

II

-10

V REF vs Resistance Between
Pin 5 and Pin 3

..5,

~
VREF

...
~>

.LL

5.0

FREQUENCY IHd

!:;
>

l-

S
E

w

100

....

~

10lv
ILH0045GI

TA~25°C

~ -5.0

~

w

t- v!"

f'" 120 Hz

,:

.
..~

~

to 25'C

VREF Line Regulation

120 ~~~-rTmmr~Tm~rn~

o

;5

Temperature Normalized

"'

15 100 125

TEMPERATURE I CI

-0.8
-1.0
-15 -50 -25 0

25 50 15 100 125 150

TEMPERATURE(" CI

roo

l:

o
o

typical applications·

0l:Io

c.n

.......
roo
l:

o
o

0l:Io

c.n
n
lN914

10k

L_

0'lo"-04V

16M

...J

COLD JUNCTlIIN '--~I----""

100%=-2,IIV

1 D~A (FULL SCALE!

COMPENSATION
FOR1~AFULlSCALE.RII\I" V,.. I1"A

=SOURCEIMPEDANCEIilIPIN 11

eg,V,,,, (FULLSCAlE)=IDmV,R'N =IDk
BRIDGEIMPEDANCE·08h,

R= 10.-08k=92k

Thermocouple Input Transmitter
(SIV)

Av"

'+----=~-Wlr-~'OO
SPAN

12.5:~~~201

'1600

eg.lR4=1=FULLSCALE

Resistance Bridge I nput Transmitter

r- - - - - - - -

(51 V,

I
I
I

I
I

I

IL

___

...!:!56.!!.. _ _ _ .J

'0,%0

4.DmA"D%=G"C
2OmA·1DO""IDO~C

Electronic Temperature Sensor

--~
R,

"

+
IN914

L_
COLO JUNCTION

10k

...J

16M

L---'lM_-+---~10D.

DVM

SPAN

COMPENSATION
100.

O.25V= 25'C
1.25V= 12!i"C

"Pin numbers refer to 'G' package. All voltages indicated by ( ) are measured with respect to common, pin 3.

2-73

(J

an
~

typical applications· (con't)

o
o

• lDOpA

....:::z:::

"an

r - - - - -

~

+10V

12

~HOOlS -

"o·~lv;I"'' ' ]

390.

-

-

-

-,

5

o

I

I
I
I

o
:::z:::
.....

-1

WHERE V,N = FULL SCALE INPIfTVOLTAGE
V,N =10mVIFULLSCALE), RG = 505

".

[IV,FS)

--~'v'
1,·.-lD ••

!l"~

_ _ _ _ oJ
111V)

O%=-D.4VI21"AJ

IDO%'-20V(31"AI

*Pin numbers refer to 'G' package. All voltages indicated by I ) are measured with respect to common, pin 3.

Instrumentation Amplifier Transmitter

applications information
CIRCUIT DESCRIPTION AND OPERATION
A simplified schematic of the LH0045/LH0045C
is shown in Figure 1. Differential amplifier, A2
converts very low level signals to an output current
via transistor 01. Reference voltage diode D 1 is
used to supply voltage for operation of A2 and
to bias an external bridge. Current source 11
minimizes fluctuation in the bridge reference
voltage due to changes in Vs.
In normal operation, the LH0045/LH0045C is
used in conjunction with an external bridge
comprised of RBI through R B4 . The bridge
resistors in conjunction with bridge return resistor,
R5, bias A2 in its linear region and sense the input
signal; e.g. RB4 might be a strain sensitive resistor
in a strain gauge bridge. RT is adjusted to purposely
unbalance the bridge for 4.0 rnA output (null)
for zero signal input. This is accomplished by
forcing 2.5j.LA more through RB3 than R B4 .

The 2.5j.LA imbalance causes a voltage rise of
(2.5j.LA) x (lOOn) or 250j.LV at the top of R B3 .
Terminal L2 may be viewed as the output of an
op amp whose closed loop gain is approximately
RF/RB3 = 1600.
The 250j.LV rise at the top of RB3 causes a
voltage drop of (1600) x (250j.LV) or -0.4V across
R9. An output current, Is, equal to O.4V IR9 or
4.0 rnA is thus established in 01. If RB4 is now
decreased by 1.0n (due to application of a strain
force), a -1.0 mV change in input voltage will
result. This causes L2 to drop to -2.0V. The
output current would then be 2.0V/l00nor 20 rnA
(Full Scale). If RB3 is a resistor of the same
material as RB4 but not subjected to the strain,
temperature drift effects will be equal in the two
legs and will cancel.
In actual practice the loading effects of RB2 on
the gain (span) and RF on output current must be
taken into account.
Is "4.0 rnA (NULL, 0%)

Is" 20 rnA (100% FULL SCALE)

Vu:: -O.4V (NULL)
Vu '" -2.0V (FULL SCALE)

FIGURE 1. LH0045 Simplified Schematic

2·74

r:::t

o

applications information (con't)

o

~

THERMAL CONSIDERATIONS

The power output transistor of the LH0045 is
thermally isolated from the signal amplifier, A 2 .
Nevertheless, a change in the power dissipation
will cause a change in the temperature of the
package and thus may cause amplifier drift. These
temperature excursions may be minimized by
careful heat sinking to hold the case temperature
equal to the ambient. With the TO·8 (G) package
this is best accomplished by a clip·on heat sink
such as the Thermalloy #2240A or the Wakefield
#215-CB. The 8 lead TO-3 is particularly convenient
for heat sinking, in that it may be bolted directly
to many commercial aluminum heat sink extrusions, or to the chassis. In both packages the case
is electrically isolated from the circuit.
In addition, the power change can be minimized
by operating the device from relatively high supply
voltages in series with a relatively high load resistance. When the signal forces the supply current
higher, the voltage across the device will be
reduced and the internal power dissipation kept
nearly equal to the low current, high voltage
condition.
For example, take the case of a 4.0 mA to 20 mA
transmitter with a 24V supply and a lOOn load
resistance. The power at 4.0 mA is (23.6V) x (4.0
mAl = 94.4 mW while at full scale the power is
(22V) x (20 mAl = 440 mW. The net change in
power is 345 mW. This change in power will cause
a change in temperature and thus a change in
offset voltage of A2 .
If the optimum load resistance of 800n (from
Figure 2) is used, the power at null is [24V (4.0 mAl x (800n)] (4.0 mAl = 83 mW. The
power at full scale is [24V - (20 mAl x (800n))
(20 mAl = 160 mW. The net change is 77 mW.
This change is significantly less than without the
resistor.
If the supply voltage is increased to 48V and the
load resistance chosen to be the optimum value
from Figure 2 (1.95k), then the power at null is
[48V - (4.0 mAl x (1.95k)] (4.0 mAl = 160.8

U'I
........

mW and the power at full scale is [48 - (20) x
(1.95k)] (20 mAl = 180 mW for a net change of
19.2 mW.

r:::t

o
o

Note that the optimized load resistance is actually
the sum of the line resistance, receiver resistances
and added external load resistance. However, in
many applications the line resistance and receiver
resistances are negligible compared to the added
external load resistance and thus may be omitted
in calculations.

~

U'I

n

AUXILIARY PINS

The LH0045 has several auxiliary pins designed to
provide the user with enhanced flexibility and
performance. The following is a discussion of possible uses for these pins.
Programmable VREF - Pins 5 and 6 (LH0045G
Only)
The LH0045G provides pins 5 and 6 to allow the
user to program the value of the reference voltage.
The factory trimmed 10V value is obtained by
leaving 5 and 6 open. A short between 5 and 6
will program the reference to a. nominal 5.1V
(equivalent to the fixed value used in the
LH0045K).
A resistor or pot may be placed between pin 5
and common (pin 3) to obtain reference voltages
between 10V and 30V or between pin 5 and pin 7
for reference voltages below 10V. Increased reference voltage might be useful to extend the
positive common mode range or to accommodate
transducers requiring higher supply voltage. A plot
of resistance between pin 5 and pin 3 versus
V REF is given in the typical electrical characteristics
section. V REF may be adjusted about its nominal
value by arranging a pot from V REF to common
and feeding a resistor from the wiper into pin 5
so that it may either inject or extract current.
Lastly, pin 5 may be used as a nominal 1.7V
reference point, if care is taken not to unduly
load it with either dc current or capacitance.
Obviously, higher supply voltages must be used
to obtain the higher reference values. The minimum
supply voltage to reference voltage differential is
about 4.0V.

3.0

w

.,"

Bridge Return

2.5

/

'-'

In

~
"g
~

~'"

2.0
Is .:4-2omY

1.5

I

1.0
0.5

V

V
..........-

....

~s=10-50mA
10

20

30

40

50

60

SUPPLY VOLTAGE (VI

FIGURE 2. Optimum Load Resistance vs Supply Voltage

An applications resistor is provided in the LH0045
with a nominal value of 1.0 kn. The primary
application for the resistor is to maintain the
minimum common mode input voltage (1.0V)
required by the signal amplifier, A 2 . A typical
input application might utilize a strain gauge or
thermistor bridge where the resistance of the
sensor is lOOn. Since only 1.0 mA may be drawn
from V REF, the 1.0 kn bridge return resistor is
used to bias A2 in its linear region as shown in
Figure 3.
2-75

applications information (con't)
l.DmA

signal must be floating and 2) the calibration thus
ach ieved does not account for sensor inaccuracies
and/or errors in the signal generator.
O.SmA

1.USV

SENSOR SELECTION

+
100

Generally it is easiest to use an insulated sensor.
If it is necessary to use a grounded sensor, the
power supply must be isolated from chassis ground
to avoid extraneous circulating currents.

O.OSV

1.OmAXt.Oku=1.0V

FIGURE 3. Use of Bridge Return

DESIGN EXAMPLE

Over Compensation - Pin 8 (LH0045G),
Pin 6 (LH0045K)
Over compensation of the signal amplifier, A2 may
be desirable in dc applications where the noise·
bandwidth must be minimized. A capacitor should
be placed between pin 8 (pin 6 on the LH0045K)
and pin 3, common.

There are numerous circuit configurations that
may be utilized with the LH0045. The following
is intended as a general design example which
may be extended to specific cases.
Circuit Requirements
Output Characteristics

Typically,

~

a. 0%

4.0 mA (NULL)

b. 100% ~ 20 mA (SPAN ~ 16 mAl
c. Supply Voltage ~ 24V

f3db ~ - - - - - - 2rr R (Cl +C EXT )

where:

Input (Sensor) Characteristics

R ~400 Mn
Cl

~

Internal Compensation Capacitor

CEXT

~

External (over·compensation)
Capacitor

100 mV (Full Scale)
~

100 pF

b. V1N

0 mV (Zero Scale)

c. Source Impedance

~

1 ,on

General Characteristics

Input Guard - Pins 9 and 12 (LH0045G)

a. O°C ~ TA ~ +75°C

Pins 9 and 12 have no internal connection what·
ever and thus need not be used. In some critical
low current applications there may be an advantage
to running a guard conductor between the inputs
and the adjacent pins to intercept stray leakage
currents. Pins 9 and 12 may be connected to this
guard to simplify the PC board layout and allow
the guard to continue under the device. (See AN·63
for further discussion of guarding techniques.)

b. Overall Accuracy

~

0.5%

VREF =S.lV
III/liN

RBl

Roo

4Bk

4.6M

NULL AND SPAN ADJUSTMENTS
Most applications of the LH0045 will require
potentiometers to trim the initial tolerances of the
sensor, the external resistors and the LH 0045 itself.
The preferred adjustment procedure is to stimulate
the sensor, alternating between two known values,
such as zero and full scale. The span and null are
adjusted by monitoring the output current on a
chart recorder, meter, or oscilloscope. A full scale
stimulus is applied to the sensor and the span
potentiometer adjusted for the desired full scale.
Then, to adjust the null, apply a zero percent
signal to the sensor and adjust the null potentio·
meter for the desired zero percent current
indication.
If it is impractical to cycle t"'e sensor during the
calibration procedure, the signal may be simulated
electrically with two cautions: 1) the calibration
2·76

FIGURE 4. Design Example Circuit

Selection of RF
Input bias current to the LH0045C is guaranteed
less than 10 nA. Furthermore, the change in IB
over the temperature range of interest is typically
under 1.0 nA. If 12 SPAN is selected to be 1.01lA
(1000 A IB) errors due to AlB/A T will be less
than 0.1%. For SPAN ~ 16 mAo
VSPAN

~

AV,

~

- (16 mA)(R9)

~

-1.6V

,..

l:

o
o

applications information (con't)

~

(II

where R9 = Internal Current Set Resistor = 100Q
For 12 SPAN = 1.0pA,
-1.6V
V SPAN
RF = - - - = - - = 1.6M
12 SPAN
1.0pA

,..

.......

Hence, the current required to generate the null
voltage, 12 NULL is:

l:

o
o

12 NULL =

~

(II

n

1.0V - (-0.4 V)
- - - - - = 0.B75pA
1.6MQ
Selection of RBl and RB2
The minimum input common mode voltage, V MIN
required at the pin 10 input of A2 is 1.0V.
Furthermore, the maximum open loop supply
current (IS0L) drawn by the LH0045 is 3.0 mAo
That leaves IMIN = 4.0 mA - 3.0 mA = 1.0 mA
left to bias the bridge at null. Hence:
1.0V

1.0kQ

This current must be provided by Ros from
V REF ; hence:
V REF - V MIN
Ros=----12 NULL
The nominal value for V REF is 5.1V, therefore
the nominal value for Ros is:
5.1V - 1.0V

1.0 mA

or

0.B75pA
And,

Ros = 4.6 MQ
1.0V
V REF -1.0V
RS2

1.0V

= 1.0k (5.1 -1.0)

Alternatively, an LM 113, 1.22V reference diode,
or an op amp such as the LM 1OB may be used to
bias the signal amplifier, A2 as shown in Figure 5.
These techniques have the advantage of lowering
the impedance seen at pin 10.

It should be noted however, that the variation of
V REF may be as high as 5.9V or as low as 4.3V.
Furthermore, the tolerances of R9 (100Q), R s1 .
Rs2 , and the input Vos of A2 would predict values
for Ros as low as 3.9BM and as high as 5.43M. The
implication is that in the specific case, Ros should
be implemented with a pot, of appropriate value,
in order to accommodate the tolerances of V REF,
R9, Vos, RS1 , RS2i etc.
Selection of R
SPAN is required to be 16 mAo From feedback
theory and the gain equation we know:

Selection of Ros

R9

Ros is selected to provide the null current of
4.0 mA, V 1 NULL = 4.0 mA x 100Q = O.4V.
From previous calculations we know that V MIN =
1.0V. The voltage pin 11, V 2 is:

where:
R

R9

total impedance in signal path between
pin 10 and pin 11
Current setting resistor = 100Q
Full scale input voltage = 100 mV

for V IN = OV
5.1V

40k

v"

"",__+-__...1 10k
1.0V

FIGURE 5. Alternate Biasing Techniques

2·77

(.)

ID

g

applications information (con't)

o

:::t

(V IN ) (R F )

:.H=

...I

......

Where:

(lSPAN) (R9)

ID

VIN = Sensor full scale output voltage

(100 mY) (1.6 M£2)

~

R

:::t

R

o
o

(16 mAl (100£2)
100k£2

ERROR BUDGET ANALYSIS
Errors Due to Change in VREF (L).VREF)

...I

As before, uncertainties in device parameters might
dictate that R F be made a pot of appropriate
value.
Su mmary of the Steps to Determine
External Resistor Values
1. Select IF ULL SCAL.E = IN ULL + ISPAN for the
desired application. (I NULL is frequently
4.0 mA and IFULL SCALE is frequently
20mA.)

There are several factors which could cause a
change in V REF. First, as the ambient temperature
changes, a V REF drift of ±0:2 mVfC might
be expected. Secondly, supply voltage variations
could cause a 0.5 mV!V change in V REF . Lastly,
self·heating due to power dissipation variations
can cause drift of the reference.
An overall expression for change in V REF is:
t>V REF

2. Select 12 SPAN so that it is large compared to
L).l s . 1000 L).ls is a good value.
3.

I.

= L).V 2 = (lsPAN)(R9).

Determine VSPAN

= 1(81(t>PDlss) + t> T AJ

+

t> V REF
t> T

Y
Thermal Effects

J

t>V REF (t>Vsl

~
Supply Voltage Effects
5. Select

Where:

e
1 VOLT

RS2

? ----------

Change in avg. power dissipation

INULL - ISOL

Change in ambient temperature

Where:

Reference voltage drift
(in mV/"C)

minimum common mode input

voltage
minimum available bridge current
maximum open loop supply
current
6.

Thermal resistance, either
junction·to·ambient to junction
to case

Determine

Line regulation of V REF
Several steps may be taken to minimize the
bracketed terms in the equation above. For
example, operating the LH0045G with a heat·sink
reduces the thermal resistance from JA = 83°C/W
to JC = 60°C/W. For the LH0045K (TO·3)
JA = 40°C/W may be reduced to JC = 25°C/W
by using a heat sink. The L).P DISS term may be
significantly reduced using the power minimiza·
tion technique described under "Thermal Con·
siderations." For the design example, L).P DISS is
reduced from 384 mW to 77 ,mW (R L = 800£2.)
Evaluating the LH0045G with a heat·sink and
RL = 800£2 yields.

e

7.

Determine V 2 NULL

8.

Determine

= I NULL R9

VMIN -V2 NULL
12 NULL =

RF

9. Determine
Ros =

e
e

e

t>V REF

V REF -VMIN

-.:.~------

12 NULL

=( 6:C

(O.077W) + 75°C)(O':cmv )

O.5mV

+ - - (16V)
V

10. Determine

R=

2·78

(V IN ) (R F )

(lSPAN) (R9)

t>V REF = 24 mV

The LH0045K (TO-3) under the same operating
conditions would exhibit a L).V REF '=" 23 mY.

ro

:::E:

o

applications information (con't)
An expression for error in the output current
due to Ll.V REF is:
Als

1%) = 100 IK) IRos)(AVREF) - 11-K)IAVREF )(R F)

ISPAN

~

en
......
r-

For the design example, Ll.Vos = 0.263 mV, V IN
(Full Scale) = 100 mV. Hence, 0.26 mV';' 100 mV
or 0.26% worst case error could be expected in
output current effects.

:::E:

o
o

~

U'I

IR9)(Ros)(lsPAN)

n

Errors Due to Changes in R9

Where:
Total change in V REF
K
R9
ISPAN

Current set resistor
Change in output current from
0% to 100%

For example, Ll.V REF = 24 mV, K = 0.2, R9 =
1~On, ISPAN = 16 mAo Hence, a 0.12% worst case
error might be expected in output currents due to
Ll.V REF effects.

The temperature coefficient of R9 (TCR) will
produce errors in the output current. Changes in
R9 may be caused by self-heating of the device or
by ambient temperature changes.
Ll.ls
Ll.R9
- - (in %) = 100 - - (8 POISS
ISPAN
Ll.T

+ Ll.TA )

Where:

8

Thermal resistance either from
junction-to-ambient or junction-tocase
Change in average power dissipation

Error Due to Vos Drift

Change in ambient temperature

One of the primary causes of error in Is is caused
by Vos drift. Drift may be induced either by
self heating of the device or ambient temperature
changes. The input offset voltage drift, Ll. Vos / Ll.T,
is nominally 3.3/1V/oC per millivolt of initial offset.
An expression for the total temperature dependent
drift is:

Ll.R9
Ll.T

TCR of R9

Using the LH0045G design example, Ll.R9/Ll.T =
0.03%/oC, hence a 3.2% worst case error in output
current might be expected for operation without
a heat sink over the temperature range.
Heat sinking the device and using RL = BOOn,
reduces Ll.ls/lsPAN to 2.3%. Comparable error for
the LH0045K would also be about 2.3%.

Where:
8

Thermal resistance either junctionto-ambient or junction-to·case
Change in average power dissipation

Ll.T A

The error analysis indicates that the internal
current set resistor, R9 is inadequate to satisfy
high accuracy design criterion. In these instances,
an external lOOn resistor should be substituted
for R9.

Change in ambient temperature

The bracketed term may be minimized by
heat sinking and using the power minimization technique described under "Thermal
Considerations." For the LH0045G design
example, Ll.Vos = 0.352 mV under ambient
conditions and 0.263 mV using a heat-sink
and RL = BOOn. Comparable Vos for the
LH0045K would be 0.254 mV.
The error in output current due to Ll. Vos is:
Ll.ls
- - (in %)
ISPAN

=

100x

Ll.V

os
VIN (FULLSCALE)
RF

= 100 x ~:-=.".,...,,------:­

(R)(R9)(l sPAN )

Obviously, the TCR of the resistor should be low.
Metal film or wire-wound resistors are the best
choice offering TCR's less than 10 ppmtC versus
50 ppmtC typical drift for R9.
External Causes of Error
The components external to the LH0045 are also
critical in determining errors. Specifically, the
composition of resistors RS1 , Ros, R F , R, etc.
in the design example will influence both drift
and long term stability.
In particular, resistors and potentiometers of wire
wound construction are recommended. Also, metalfilm resistors with low TCR (::; 10 ppmtC) may
be used for fixed resistor applications.

2-79

(.)
It)

g

applications information (con't)

o

~

...I

.......

Error Analysis Summary

SOCKETS AND HEAT SINKS

The overall errors attributable to the LH0045
may be minimized using heat sinking, and utilization of an external load resistor. Although RL
reduces the compliance of the circuit, its use is
generally advisable in precision applications. External components should be selected for low
TCR and long-term stability.

Mounting sockets, test sockets, and heat sinks
are available for the G package and K package.

It)

'It

o

o

~

...I

The design example errors, using an external
lOOn wire wound resistor for R9 equal:

following
The
recom mended:

or

their

equivalents

Sockets:
G - 12 lead TO-8:

Barnes Corp. #MGX-12
Textool #212-100-323

K - 8 lead TO·3:

Keystone Elec. (N.Y.) #4626
or #4627

Heat Sinks
b.ls

- - = 0.12% + 0.26% + 0.08%
ISPAN

2-80

"-..-'

"-..-'

"-..-'

b.V REF

b.V os

b.R9

are

G - 12 lead TO-8:

Thermalloy #2240A
Wakefield #215-CB

K - 8 lead TO-3:

IERC #LAIC 3B4V

0.46%

r-

::I:

Operational Amplifiers

o

o

UI

w

.......
r::I:

o

o

UI

w
n

LH0053/LH0053C high speed sample and hold amplifier
general description

features

The LH0053/LH0053C is a high speed sample
and hold circuit capable of acquiring a 20V step
signal in under 5.0ps.

•

Sample acquisition time 5.0ps max for 20V
signal

•

FET switch for preset or reset function

•

Sample accuracy null

•

Offset adjust to OV

•

DTLlTTL compatible FET gate

•

Single storage capacitor

The device is ideally suited for a variety of high
speed data acquisition applications including analog
buffer memories for A to D conversion and
synchronous demodulation.
An auxiliary switch within the device extends its
usefulness in applications such as preset integrators.

schematic and connection diagrams
Metal Can Package
STORAGE
CAPACITOR

v'

FEEDBACK

STOAAGE

OUTPUT

CAPACITOR

Order Number LH0053G
or LH0053CG

See Package 6

ac test circuit
sco~~,*--+------.J

47k

, - -1

,,,

-

----,

+15V~

-lSV~

LL~J

___ _

Acquisition Time Test Circuit

2-81

(.)
CW)
It)

absolute maximum ratings

0
0

Supply Voltage (V+ and V- )
Gate Input Voltage (V 6 and V7 )
Analog Input Voltage (V 4 )
Input Current (Is and 15)
Power Dissipation
Output Short Circuit Duration
Operating Temperature Range
LH0053
LH0053C
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

l:
..I
.......
CW)
It)

0
0

l:
..I

electrical characteristics

±18V
±20V
±15V
±10 mA
1.5W
Continuous
-55°C to +125°C
-25°C to +85°C
-65°C to +150°C
300°C

(Note 1)
LIMITS

PARAMETER

CONDITIONS

LHOOS3
MIN

TYP

Sample (Gate ""D··)

LHOOS3C
MAX

MIN

TYP

UNITS
MAX

0.5

0.5

V

-5.0
-100

-S.O
-100

/lA
/lA

Input Voltage
Sample (Gate ""0"")
Input Current

V. =O.SV, TA =,2S"C
V. = 0.5

Hold (Gate ""1"")

4.5

4.5

V

Input Voltage'

Hold (Gate ""1"")

Vs '" 4.5V, TA == 25°C

Input Current

V. = 4.5V

1.0
1.0

±lO

Analog Input

1.0
1.0

±lO

±ll

±ll

nA
/lA
V

Voltage Range
Supply Current

V 4 =OV
Vs

Input Bias Current

13

18

13

18

mA

120

250

150

500

nA

9.0

10

11

9.0

10

11

Hl

±lO

±12

±lO

±12

= O.5V

V4 =OV,T A = 25°C

(14)

Input Resistance
Analog Output
Voltage Range
Output Offset
Voltage

RL = 2.0k
V4 =

av. Vs

"" O.SV, TA

= 25°C

5.0

70
10

50

10
15

mV
mV

0.1

0.2

0.1

0.3

%

V 4 = OV. V. = 0.5V

Sample Accuracy
(Note 2)

V 4 "" ±lOV, Vs "" O.5V, TA = 25°C

V

,

Aperture Time

!J.V. = 4.5V, T A = 25"C

10

25

10

25

n,

Sample Acquisition

V4 = ±lOV, TA = 25°C.

5.0

10

8.0

15

/l'

Time

CF = 1000 pF

Sample Acquisition

V4 =±lOV, TA ; 25°C,

Time

CF = 100pF

Output Slew Rate

4.0

4.0

/l'

~VIN =±lOV, TA = 25 C,
CF = 1000 pF

20

20

V//l'

200

200

kHz

D

Large Signal

V4 = ±lOV, TA = 25c C,

Bandwidth

CF = 1000 pF

Leakage Current

V 4 '" ±10V, T A
V 4 = ±10V

= 25°C,

6.0

30
30

10

50
3.0

pA
nA

V 4 '" ±10V, TA

= 25°C,

6.0

30

10

50

mV/s

3.0

VI,

100

300

100

300

n

(Pin 5)
Drift Rate

CF = 1000 pF
Drift Rate

V4 = ±10V. CF = 1000 pF

02 Switch ON

V7

= O.5V,

Ie::: 1.0 rnA, TA '" 25°C

30

Resistance

Note 1: Unless otherwise noted, these specifications apply for Vs

= ± 15V,

pin 9 grounded, a 1000 pF capacitor between pin

5 and pin 11, pin 3 shorted to pin 11, over the temperature range -55"C to +125°C lor the LH0053 and -25"C to +85"C for
the LH0053C. All typical values are for T A = 25°C.

Note 2: Sample accuracy may be nulled by inserting a potentiometer in the feedback loop. This compensates for source
impedance and feedback resistor tolerances.

2·82

r::J:

o
o

typical performance characteristics

C1I

Power Dissipation

~
1.5

"STILLAIR'-

1.0

0:

~

i

0..

"'

o

~

~

W

o

II
.-50 -25

lW

25

r-...

'50

~ 100
;;

i

I
I

o

5.0

10

IS

20

25

OUTPUT CURRENT ImAI

Leakage Current at Pin 5

Vs - +15V

OV

==Ys-t15V

1000 ~ ~CF"00pf . /

./

.... ,...
to
25

65

105

145

./

./

10

50

-15

100 125

f--

Ti '125O,C

1000

r"'-_

-55

75

Drift

!:;

1

50

TEMPERATURE rCI

r-J,. ~'5~
f- V3 '

f---

co
4.0

I "put Bias Current

~ 200

TA' 25"C

~ B.D

......

12

TEMPERATURE lOCI

250

r-....

~
....

I

1~

100

C1I

w
n

~ 12

.........

i'l

0.5

o

r-.... t--..

~ 13

:'\.
I'-..

::J:

o
o

........ 1-0.

~

I"'...

=
i:i
~

oS

r-J, .1±15~

16

~ 14

CLlp·ON HEAT SINK

~

20
_V!'±1!V

I'\. STILl AIR ~ITH I _

!e!
r-

Output Current Limiting

IS

J

2.0

~

Supply Current vs Temperature

o

25

TEMPERATURE lOCI

r=

CF j'000 p

75

50

o

125

100

/

o

25

TEMPERATURE 1°C}

50

75

100

125

TEMPERATURE 1°C}
Acquisition Time vs

40
3D

:>

20

oS 10
w

'"'"

~
co 10
>
~ 20

~

co

30

+10

II I I I
I I I
- I - C"I'OOJF I
F
'I'!
c i • 1'000'PF
So I'-r
I
.?
I
I I I
I
'INPUT J20J ST!P
I

1

ITA; 25 C I

I

10

20

I I I

I

I
30

40

~
~

~

10

r\ c~.loo!F H
~;::=CF"-:
,--1000pF

co

Vs =±15V

CF '100 pF

8.0

rr'/

1/

-10

I

I

/'

./
l,...o-'

1/1

J.......- I"""
4-'~5.0V r-- I--

i

2.0
-10

50

I

..... """-1

-

~

I

I

I I

VIN=±10y

TA =25°C _

+10

I

I

I

Temperatura

Output Slew Rate

Sample Acquisition Time

4.0

8.0

12

16

-50 -25

20

I
I

25

50

75

100 125

TEMPERATURE 1°C}

TlMEiP,}

TlMEiP,1

I
I

typical applications

r -'

- - - - - - - -5 - - - - - ,

I

R2

c,'
+t5V

I

I
OUTPUT

SlHLOGICo--------------'

-15V

·Polystyreneconstructlon.

Increasing Output Drive Capability

2-83

(J

M

it)

typical applications (con't)

o
o

~

-'
......
M

"

it)

-~--~Pf-l

~

I
I

o
o

-'

Sample and Hold with Reset

,-,,-----,

SI\M~~~~~~~o------------'

,,,0--_ _ _ _ _ _ _ _ _ _ _-'
Preset Integrator

applications information
SOURCE IMPEDANCE COMPENSATION
The gain accuracy (linearity) of the LH00531
LH0053C is set by two internal precision-resistors.
Circuit applications in which the source impedance
is non·zero will result in a closed loop gain error,
e.g. if Rs ~ 10Q, a gain error of 0.1 % results.
Figure 1 and 2 show methods for accommodating
non·zero source impedance.
DRIFT ERROR MINIMIZATION
In order to minimize drift error, care in selection
C F and layout of the printed circuit board is
required. The capacitor should be of high quality
teflon, polycarbonate or polystyrene construction.
Board layout and clean lines are critical particularly
at elevated temperature.
A ground guard (shield) surrounding pin 5 will
minimize leakage currents to and from the summing
junction, arising from extraneous signals. See
AN·63 for detailed recommendations.
CAPACITOR SELECTION
The size of the capacitor is determined by the
required drift rate usually at the expense of
acquisition time.

2·84

The drift is dictated by leakage current at pin 5
and is given by:

IL

dv

dt
CF
Where I L is the leakage current at pin 5 and C F
is the value of the capacitance. The room tempera,
ture leakage of the LH0053 is typical 6.0 pA, and
a 1000 pF capacitor will yield a drift rate of
6.0 mV per second.
For values of C F below 1000 pF acquisition for
the LH0053 is primarily governed by the slew
rate of the input amplifier (200V IllS) and the
setting time of output amplifier (=' 1.0I1s). For
values above C F ~ 1000 pF, acquisition time is
given by:
loss
Where:
CF
t.V

~

The value of the capacitor

~

The magnitude of the input step;
e. g. 20V

loss
tS2

~

~

The ON current of switch Q1
=' 5.0 mA
The setting time of output amplifier

=' 1.011s

I"'"

%

Q
Q
U'I

applications information (con't)

~
I"'"

%

o
o

c,

r-'
I

U'I

w
n

"

FIGURE 1. Non-Zero Source Impedance Compensation

FIGURE 2. Non-Zero Source Impedance Buffering

GATE INPUT CONSIDERATIONS

Unused Switch, 02

5.0V TTL Applications

In applications when switch Q2 is not used the
logic input (pin 7) should be returned to +5.0V
(or +15V for HTL applications) through a 10kn
resistor. Analog Input, preset (pin 8) should be
grounded.

The LH0053 Gate inputs Gate 1 (pin 6) and Gate
2 (pin 7) will interface directly with 5.0V TTL.
However, TTL gates typically pull up to 2.5V in
the logic "1" state. It is therefore advisable to
use a tOk pull·up resistor between the 5.0V, Vee,
and the output of the gate as shown in Figure 3.
+50V

10k

10k

GATE 54114

LHG053

LHD05l

BINPur

FIGURE 3. TTL. Logic Compatibility

CMOS Applications
The LH0053 gate inputs may be interfaced directly
with 74C, CMOS operating off of Vee's from
5.0V to 15V. However transient currents of
several milliamps can flow on the rising and
falling edges of the input signal. It is, therefore,
advisable to parallel the outputs of two 54C/74C
gates as shown in Figure 4.
It should be noted that leakage at pin 5 in the
hold mode will be increased by a factor of 2 to 3
when operating into 15V logic levels.

FIGURE 4. CMOS Logic Compatibility

HEAT SINKING
The LH0053 may be operated over the military
temperature range, -55°C to +125°C, without
incurring damage to the device. However, a clip
on heat sink such as the Wakefield 215 Series or
Thermolloy 2240 will reduce the internal. tempera,
ture rise by about 20°C. The result is a two-fold
improvement in drift rate at temperature.

2-85

applications information (con't)
Since the case of the device is electrically isolated
from the circuit, the LH0053 may be mounted
directly to a grounded heat sink.

capacitors in order to prevent oscillation. Should
this procedure prove inadequate, the disc capacitors
should be parallel with 4.71lF solid tantalum
electrolytic capacitors.

POWER SUPPLY DECOUPLING

DC OFFSET ADJUST

Amplifiers Aland A2 within the LH0053 are very
wide band devices and are sensitive to power supply
inductance. It is advisable to bypass V+ (pin 12)
and V- (pin 10) to ground with O.lIlF disc

Output offset error may be adjusted to zero using
the circuit shown in Figure 5. Offset null should
be accomplished in the sample mode (Vs ~ 0.5V)
and analog input (pin 4) equal to zero volts.
2DDk

·"'~'oo.

r-'
-!

41

I"

-~--~-l

R2r>r b-L~
+

: r-

1

I"

Vi

L,'r----' ',:, ___ ...J
-15V

':'"

FIGURE 5. Offset Null Circuit

2-86.,

r:::t
o
o

Operational Amplifiers

...

en

.......

r:::t

o
o
en

...

LH00611LH0061C 0.5 amp wide band operational amplifier

(')

general description
The LH0061/LH0061C is a wide band, high speed,
operational amplifier capable of supplying currents
in excess of 0.5 ampere at voltage levels of ±12V.
Output short circuit protection is set by external
resistors, and compensation is accomplished with a
single external capacitor. With a suitable heat sink
the device is rated at 20 Watts.

LH0061 is guaranteed over the temperature range
_55°C to +125°C; whereas, the LH0061C is guar·
anteed from _25°C to +85°C.

features
•
•
•
•
•

The wide bandwidth and high output power capa·
bilities of the LH0061/LH0061C make it ideal for
such applications as AC servos, deflection yoke
drivers, capstan drivers, and audio amplifiers. The

0.5 Amp
1 MHz
75 VIlls
240mW
300 nA Max

Output current
Wide large signal bandwidth
High slew rate
Low standby power
Low input current

schematic and connection diagrams
V·

.---.....-----;(i}- - ,
Al

A,

20K

20K

>

A.



70.

'--+-___-{,

f~
_.I

V·

TO·3 Package

VNON·IHV.
INPUT

TOPVIEW

Order Numbers:
LH0061K (_55°C to +125°CI
LH0061CK (_25°C to +85°C)

See Package 19

2-87

(.)

.....

absolute maximum ratings

CD

0
0

Supply Voltage
Power Dissipation
Differential Input Current (Note 2)
Input Voltage (Note 3)
Peak Output Current
Output Short Circuit Duration (Note 4)
Operating Temperature Range LH0061
LH0061C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

:::E:

..I

......
.....
CD

0
0

:::E:

..I

±18V
See Curve
±10mA
±15V
2A
Continuous
_55°C to +125°C
_25°C to +85°C
_65°C to +150°C
300°C

dc electrical characteristics

(Note 1)
LIMITS

PARAMETER

CONDITIONS

LH0061
MIN

Input Offset Voltage

RsS: 10kn, Tc::: 2SoC, Vs= ±15V

TVP
1.0

RsS: 10kn. Vs= ±15V

Voltage Drift with Temperature

4.0

=

2SoC

30

,
Tc::; 2SOC

100

Tc::: 2SOC

0.3

Input Capacitance

,

300

200

1.0

Rs

s: 10 kn, t:NCM ::; ±lOV

Vs

=

As

s: 10 kn, t:Ns

Voltage Gam

Vs = ±15V, Vo = ±lOV
=

90

60

±11

Input Voltage Range
Power Supply Rejection Ratio

AL

70

±1SV

1 kn, T c

=

±lOV

;;: 25°C

Vs = ±15V. Vo = ±lOV
RL ::: 20n

mV

IlV/watt

200
500

nA
nA
nAfC

500
1.0

0.3

mV

pvfe

5
50

'00
300

3

Common Mode Rejection Ratio

10

5

1.0
Input Resistance

UNITS
MAX

'5

5

Tc

TVP
3.0

5

Rs';;'Okll

Offset Current Orift with Temperature
Input Bias Current

MIN

6.0

Offset Voltage Change with Output Power
Input Offset Current

LH0061C
MAX

1.0

nA
pA
Mil

3

pF

80

dB

tll

V

70

80

50

70

dB

50

100

25

50

V/mV

±12

±1O

5

±1O

2.5

V/mV
±12

V

600

mA

Output Voltage SWing

Vs = ±15V, RL = 20n

Output Short Circuit Current

Vs = ±15V, T e '" 25°C, Ase = 1.0n

Power Supply Current

Vs'" ±15V, V OUT

::::

0

7

10

10

15

mA

Power Consumption

Vs = ±15V, V OUT

::::

0

2'0

300

300

450

mW

ac electrical characteristics
Slew Rate

Av = +1, R L

Power Bandwidth

RL

::::

::::

(T c = 25°C, Vs = ±15V, Ce = 3000 pF)

loon

lOOn

Small Signal Transient Aesponse

70

70

V/1J.5

1

1

MHz

30

30
20

10

ns
30

%

ps

1

1

ps

0.2

0.2

%

0.8

f:::: 1 kHz, Po :::: 0.5W

=

50

0.8

10V, Av:::: +1

b.V 1N

Overload Recovery Time
Harmonic Distortion

50

5

Small Signal Overshoot
Settling Time (0.1%1

600

Note 1: Specifications apply for ±5V ~ Vs ~ ±18V, Cc = 3000 pF, and _55°C ~ TC ~ +125°C for the LH006l K and
_25°C ~ TC ~ +85°C for the LH006l CK. Typical values are for T C = 25°C.
Note 2: The inputs are shunted with back·to·back diodes for overvoltage protection. Excessive current will flow if a differ·
ential voltage in excess of 1 V is applied between the inputs without limiting resistors.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Note 4: Rating applies as long as package power rating is not exceeded.

2·88.

r%

o
o

typical performance characteristics

...
0)

.......
Safe Operating Area

Power Derating

14

2.0

..

~
z

>=
:f

25

\

20

ill
Q

15

a:

10

3i:

I-- L'N,JE HEJSIN)- -

....

..--I-'

1.5

~

1.0

....
ill

0.5

~
Vs=±1SV

.

~

i

..'"
I!:

~
25

50

15

100

-

125

TEMPERATURE I"CI

\

10

o
o

...n

~2J"CI

0)

Vs = :!:15V
RL ",zon

\

~

1\

!;

.

!; -0.5

~

Tc

12

Tc = Z5°C

S

\

r%

Large Signal Frequency
Response

~

-1.0
-1.5

l..-- I-"

-2.0
-15

-10

~-

o
10

-5

0.5M 1M

15

2M

5M

10M 20M

50M

FREQUENCY 1Hz)

OUTPUT VOLTAGE IVI

typical applications

lK

>-"~J OUTPUT

INPUT 0--""''''''--''"1
IK

Unity Gain Driver

90.9K

SERVO

AC Servo Amplifier

2·89

(J

N

CD

Operational Amplifiers

o
o

::I:
....I
.......
N
CD

o

LH0062/LH0062C high speed FET op amp

::I:

general description

o

....I

The LH0062/LH0062C is a precision, high speed
FET input operational amplifier with more than
an order of magnitude improvement in slew rate
and bandwidth over conventional FET IC op
amps. I n addition it features very closely matched
input characteristics, very high input impedance,
and ultra low input currents with no compromise
in noise, common mode rejection ratio or open
loop gain. The device has internal unity gain frequency compensation, thus assuring stability in all
normal applications. This considerably simplifies
its application, since no external components are
necessary for operation. However, unlike most
internally compensated amplifiers, external frequency compensation may be added for optimum
performance. For inverting applications, feedforward compensation will boost the slew rate to
over 120 V /J.J.s and almost double the bandwidth.
(See LB-2, LB-14, and LB-17 for discussions of
the application of feed-forward techniques). Over·
compensation can be used with the amplifier for
greater stability when maximum bandwidth is not
needed. Further, a single capacitor can be added to
reduce the 0.1% settling time to under 1 J.J.S. In
addition it is free of latch-up and may be simply
offset nulled with negligible effect on offset drift
or CMRR.

The LH0062 is designed for applications requiring
wide bandwidth, high slew rate and fast settling
time while at the same time demanding the high
input impedance and low input currents characteristic of FET inputs. Thus it is particularly suited
for such applications as video amplifiers, sample/
hold circuits, high speed integrators, and buffers
for A/D conversion and multiplex system. The
LH0062 is specified for the full military temperature range of _55° to +125°C while the LH0062C
is specified to operate over a _25°C to +85°C
temperature range.

features
•

High slew rate

70 V/J.J.s

•

Wide bandwidth

15 MHz

•

Settling time (0.1%)

1J.J.s

•

Low input offset voltage

2 mV

•

Low input offset current

1 pA

• Wide supply range

±5V to ±20V

•

Internal 6 dB/octave frequency compensation

•

Pin compatible with std IC op amps (TO-5 pkg)

schematic and connection diagrams·
,

IAlANCEICOMPI

Metal Can Package

.

COMP!

r---"''+-_+-_.....Mr.....=O~l:UT

Order Number
LH0062H or LH0062CH

See Package 11

Dual-I n-Line Package

"ON INVERT
'N~UT

BALANCE!

COMPI

Order Number
LH0062D or LH0062CD
*Pin Numbers Shown for TO-5 Package

2-90

See Paokage 1

r::I:

o

absolute maximum ratings
Supply Voltage
Power Dissipation (see graph)

±20V
500rnW
±15V
±30V

Input Voltage INote 1)

Differential Input Voltage (Note 21

dc electrical characteristics

0)

-5S0C to +12SoC
-2SoC to +8SoC
-6SoC to +150o C
300°C

LH0062.
LH0062C.

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

Continuous

Short Circuit Duration

o

Operating Temperature

N

.....
r::I:

(Note 3)

o
o

LIMITS
PARAMETER

CONDITIONS

LH0062
MIN

TYP

Rs';; 100 kIl; TA • 25'C

Input Offset Voltage

LH0062C
MAX

2

5

Rs ';;100kn
Temperature Coefficient of
Input Offset Voltage

MIN

TYP
10

7

Rs ';;100kn

5

Offset Voltage Drift with Time

4

Input Offset Current

0.2

25

10

Temperature CoeffiCient of

15

rnV
rnV

35

~VI'C

Doubles every lOoe

o

IJ,V/week

1

2

N

20

5
2

0)

UNITS
MAX

5

pA

0.2

nA

Doubles every lOoe

Input Offset Current
Offset Current Drift with Time

0.1

Input Bias Current

5

0.1
10

10

pA/week

65

pA

2

nA

10

Doubles every 100 e

Doubles every lODe

Temperature Coefficient of
Input Bias Current

Differential Input ReSistance

10 12

10 12

n

Common Mode Input Resistance

10 '2

10 12

n

4

pF

4

I nput Capacitance
±10

±12

±10

±12

V

Rs ~ 10 kn. V IN ;: ±10V

80

90

70

90

dB

Supply Voltage Rejection Ratio

Rs';; 10 kIl.±5V';;Vs ';;±15V

80

90

70

90

dB

Large Signal Voltage Gam

R L ::: 2 kn. V OUT ::: ±10V,

50

200

25

160

VlrnV

Input Voltage Range

Vs '" ±15V

Common Mode Rejection Ratio

T A '" 2SoC, Vs

= ±t5V

AL = 2 kn, V OUT '" ±10V.
Vs '" ±15V
Output Voltage Swing

Output Current Swing

25

RL'" 2 kn, T A ;;: 25°C.
Vs = ±15V

±12

RL'" 2 kn. Vs = ±15V

±10

V OUT ::: ±lOV. T A = 25°C

±to

25
±13

'12

VlmV

'13

V

±15

rnA

V

±10
±10

±15

75

75

n

Output Short Circuit Current

T A =25°C

25

25

rnA

Supply Current

Vs = ±15V

5

Power Consumption

Vs '" ±15V

Output Resistance

ac electrical characteristics

7

8
240

(TA

12

rnA

360

rnW

= 25°C, Vs = ±15V)
LIMITS

PARAMETER

CONDITIONS

Slew Rate

Voltage Follower

large Signal Bandwidth

Voltage Follower

LH0062
MIN

TYP

50

70

UNITS

LH0062C
MAX

2

MIN
50

TYP

MAX

70

V/~s

2

MHz

Small Signal Bandwidth

15

15

MHz

Rise Time

25

25

ns

Overshoot

10

15

%

1

1

~s

t:N/N

Settling Time fO. 1%1

= 10V

09

Overload Recovery
Input Noise Voltage

Rs;: 10kn. fo = 10Hz

0.9

~s

150

150

nV/..;Hz

Input NOise Voltage

Rs;; 10 kn, fo::: 100 Hz

55

55

nV/..;Hz

Input Noise Voltage

As'" 10 kn. fo::: 1 kHz

35

35

nV/..;Hz

Input Noise Voltage

Rs ;: 10 kn, fo = 10 kHz

30

30

nV/..;Hz

Input Noise Voltage

BW", 10Hzto 10kHz, Rs'" 10kn

12

12

#Vrms

Input Noise Current

BW;; 10 Hz to 10 kHz

<.1

<1

pArms

NOI.1: For supply \/oltages less than ±lSV. the absolute ma)(lmum Input voltage IS equal to the supply voltage.
Note 2: Rating applies for mmlmum source resistance of 10 kn, for source resistances less than 10
maximum differential
mput voltage IS:tSV.
Nor. 3: Unless otherwire tpacified, these speCifications applv for :tSV < Vs < :t20V and -SS°C < TA < +12SoC for the
LH0062 and -2SoC ~ TA ~ +85°C
LH0062C. TYPical valuesara glllen'orTA" 25°C. Power supphes should be bypassed
with 0.1 IlF ceramic capacitors.

kn.

'Of

2-91

(.)

N
CD

o
o

typical performance characteristics

::r:::

Current vs Temperature

Maximum Power Dissipation

.......
N
CD

i

100

5

....I

~
Zl

li BOD

.
z

is
a:

I-

TO·5 AND DIP

50D

1\

400
300

ill
a:

100

i..

10

~

\ WITH HEAT
INK
-

FREE AIR

\.

~ 200

2

10,000

1,000

100

o
o

::r:::

Input Bia•
Current vs Temperature

Input Offset

....I

./

o

o

iD

150

200

.
~
..

~ 2Joc'

15
12

Vs= ±15V

9

TA

\

10

..

~

\

iii

.
..

\

5
~

J

2M

5M

125

25

10M 21N

0
-3 _1j'Uj
-6

"

'"

I
1\
-,","

TA = 25°C

o

50M

200

- f-

VOUTPUT

Vs '" t15V

400
TIME

-

I
I

lDO

....:c
.
..

I

~

..

~

4D

>

20

...
iii

~

10

z

.
..~

iii

16
12

~

5
~

>

FEEDFORWARD

...... J IIII!

1M

3M

lOIN

lIN
31N
FREQUENCY (Hd

-4

.

100~

~

..
~

."

-5
-10
-15

Vs=±lSV
TA = 25°C
R,-5kn
R,=5kn 100jV 1\
C,= 10pF
Cs.7 • O.I.F 10 j~

S.1I3

I

0.1

0.3
TIME '"~

'\tIN

100

Ik

:!

1);
135 rn
90

\

10

(n~

45

~

i

"

10k lOOk 1M 10M 100M

Response
120

...,

,---

~~

-,IN~UT

\

\

1 1

-'-/;

100

!-

OUTPUT

I

I

-=

..
..~
..

iD
:!!

80

~

60

>

ImV

=
~
=
5

•:iI"
...:c
."
z

ImV

>
!::

22
20

i""-

40

r-

20

IB
16
14
12

r-.I"~

t--.

./

\.
~
GAIN'

225
liD

10

100

Ik

>

:1

10k lOOk 1M 10M 100M

Voltage Follower Slew Rate

V""O~_

.......

1'1:'1:::-.

"

I'-.

10
8

'"
'"

-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE (OC)

~

100

~

90

~

t-...:: ~~

i'-

liD

f-

I--P~SI~IVE ~LE~
t-

l-

I""

NEGATIVE SLEW
80
10

Vs=±15V
Rs .. Rf "100kn
C,~

Ii-k

2.0 pF

60
-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE (OCI

1);
GO

FREQUENCY (Hd

120

:l!

135 ~

-20

J'=~15V8.-

Vs=±5V

PHA~
~

FEIEDFOIRWA~D

130
;:::: ~,='20V

V""5~ _

TA = 25O,C

.0

24
."

:r :r

r--..

~

Unity Gain Bandwidth

'i\

>

5
I!:

\. l,...-

PHASE

TIME",,)

10~V

I

10

~

J

r-....

225

lID

FREQUENCY (Hz)

-8
=-f-12 r - r - - FEEDFORWARO
TA '" 25"C
-16
Vs
=
±15V
1
-20
-0.1
0.1
0.3
0.5
0.1
0.9

Inverter Settling Time
15

TA = 25c C
Vs = t15V

-20

BOD

BOD

20

Vs ""±15V

o

125

Open Loop Frequency

i A! ~~h

..

105

r--

60

c
!:;

Inverter Pulse Response

Response

~

B5

BO

Large Signal Frequency

12

65

Open Loop Frequency
Response

--

-9

FREQUENCY (H,)

14

45

T - TEMPERATURE ec)

\

il

-12
-15

0.5M 1M

105

120

....

D..

~

c
!:;
>

o

B5

Voltage Follower
Pulse Response

Response

12

65

T - TEMPERATURE rC)

Large Signal Frequency
14

/'

10

I

45

25

TEMPERATURE ec)

~

~

/'

~

100

7"

~ 100

:rl

0.1
50

l7

..el,OOO

~a:

!!!

100

..

r:::t

o
o
m
N
......

typical performance characteristics (con't)
Total I nput Noise
Voltage· vs Frequency

Input Bias Current

vs Input Voltage
1000

I~

Vs " t1SV

~
~

~

TA = +125°C

!

'"""

400

:>

JOO

w

100

~
w

R5 =10M

"-

10

T -25"C

!!;

"....=>

:==

!!;

~

-2

-6

10

~

100

!!;

Jjl

100

lk

50
lOOk

10k

!

.."
~..
.",.

........ ~Jc/ ' T.-25"C
""I"-C

~

105 -T.-125"C

~
!; 100

-"

100
BO

w

SO

::E

40

10k

100

20

15

lk

10k

1M

Rs=2 kn
m

l!i

~

\.

'\
lOOk

10M

Power Supply Rejection

~

~

I"\.

1M

10M

BO I::::o.c
60
40

".

NEGArVE

20

-20
100

T.

i 25"C

~:!'It.~ POSI~IVESUPPLY

Sur ~
LY-'

lk

FREQUENCY (Hz)

SUPPLY VOLTAGE I'V)

lOOk

SOURCE RESISTANCE I")

T.-25"C_

20

o

95
10

mrTl

lk

100

::E

8

I-"

fo" 1 KHz

Common Mode Rejection
120

5

~

FREQUENCY IHzl

Voltage Gain

110

""

o

10

115

III

N

n

V

to" 10Hz

~ 150

Rs =lDon

COMMON MOOE INPUT VOLTAGE IV)

.

250

G

~ 200

1I111I1ll
111111111

100

~

..

~~~Im

200

JOO

r:::t
o
o
m

Vs" ~1'5V
fA : 25 C

J50

~

6....

I
-10

~

t:::,

111111
111111111
111111111

<;

~

~_
... 400

Vs=±15V
fA" 25°C

111111111

~

::.!
;;

....=>

r-

500

Total Input Noise Voltage'
vs Source Resistance

10k

'\.

lOOk

1M

FREQUENCY (Hz)

'"

10M

Closed Loop Output
Supply Current

Current Limiting

5.5

T.-~

"

.! 5.0

~

..=

14

~i-"""""

~

i

-:::

-

..... T.-25"C-

T. - 125;""4.5

12

..V

--

~

Impedance

-

10'

Vs=±15V

10

'"

ii....

..~
111-'

4.0
5

10

15

Vs "'115V
TA"'25°C

20

SUPPLY VOLTAGE ltV)

10

15

20

OUTPUT CURRENT ImA)

25

10

--

100

Av~

V

V

lk

10k

lOOk

1M

FREQUENCY 1Hz)

*Noise Voltage Includes Contribution from Source Resistance

auxiliary circuits
Feedforward Compensation for Greater

Inverting Slew Rat. t

Offset Balancing

Compensation for Minimum Settling t Time

tSlew nte typically
150Vl~.

*Bllence circuit necesary
for increued sllW.

tSlew and senling time
to0.1%fora10Vsttlp
ehanllllis80Dns.

2-93

o

N
CD

auxiliary circuits (con't)

o
o

::I:

Isolating Large Capacitive Loads

..J

......

,-""'I.--.--.....

N
CD

Overcompensation

Boosting Output Drive to ±100 rnA

OUTPUT

10pF

o
o

::I:
..J

typical applications·
Fast Voltage Follower

Fast Summing Amplifier

High Speed Subtracter

Differential Amplifier

Wide Range AC Voltmeter

I

I
I

I

:L ~___~-.2.H~

·lowl.. k'il

lD-JJpf

Fast Precision Voltage Comparator

"'

IN914

>'-"I.,....~k ~~~PUl

"'

IN!14

Video DC Restoring Amplifier

'"'"

,I
I

lOGICCQNTROL

I

<>-+D-I>-.J

L_l~O~_-.J

*Pin numbers shown for TO-5 package

2-94

"

*1000~f

High Speed Po~itive Peak Detector

r%

o

typical applications· (con't)

o
en

I\)

.......
r%

o
o
en

Precision Integrator

I\)

n

,,,,,,,,.,,m ~"r
- - - - "",,- - - - - II
CONTROL

-

•
I

-

-

--.,

:

~

ID
":"

'

--

I

I
I

-~lf-~"=' ~

•

1i"

1 I

R4

'"

VOUT " e,1R1

f -v,

dt+Vz

*Pin numbers shown for TO·5 package

Precision Wide Range Current to Period Converter

10' .--.---,.-.--.----r-.,-"'T'"-,

10' I--~
'~_+_t_--t-t--t__i

10~r'~~~~~~~

!

1

HHf--'-*++++--1

g

10- 1

I-+-+-f-'--'llr-+--+-il--l

~1~2HHH---I~"I~,,---1---1

1~' f--+-+-1--r-+~I~"r--l
10-4

1-+--+----1--1-+-+-'1"',:-1

1~5

L_~~_L_~~_~~~

10-"

10-7

11,-"9

to-Ii

INPUT CURRENT (AMPS)

rt

"

----<1-1

~"~••'

28"'1 ~I+
.----~'IM._----_,

"t~'

..

t-='~
. ". . . . . , ""
+.

2-95

....

o
....
::I:

Operational Amplifiers

-I

LH101 operational amplifier
general description
The LH101 is a ge;leral-purpose operational amplifier which is internally compensated for unity-gain
feedback. The device combines a LM101 operational amplifier and the 30 pF compensation capacitor
in a single package. As such, it is a direct, plug-in
replacement for both the LM101 and the LM709
in the majority of applications. Features of the amplifier include:
•

Operation guaranteed for supply voltages from
±5V to ±20V

•

Low current drain - even with the output saturated

•

No latch-up when common-mode range is exceeded

•

Continuous short-circuit protection

•

Input transistors protected from excessive input
voltage.

The LH101 is available in either an a-lead, lowprofile TO-5 header or a 1/4" x 1/4" metal flat
package.

schematic** and connection diagrams
r-~----'---~----~----~-----".

Order Number LH101H
See Package 11

Flat Pack

NO CONNECTION

NQCDNNECTION
NOCDNNECTION
INPUT

__, ,________;r--NO CONNECTION

Note: Pin 5 connected to bottom of package.

Order Number LH101F

See Package 3

typical applications **

Low Drift Thermocouple Amplifier+

A.

FET Operational Amplifier

lD'

"
+
OUT1'UT

"

R2
120IC

'ZOIC

'O"K
Temperature Probe

."
"
"

35.5K
R4
93.

Integrator with Bias Current Compensation
A2'
UM

2Im~~ ' ] - - p - - -.....--....,

"

12K

"

2~'

.

INPUT--'lM_+--4---1
,

24.31(

"
**Pin connections shown are for metal can.

2-96

°StI8clforllrOInIl'lrltordnft

r-

:::I:

.....

o.....

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

electrical characteristics
PARAMETER
Input Offset Voltage

±22V
500mW
±30V
±15V
Indefinite
-55°C to +125°C
-65°C to +150°C
300°C

(note 4)
CONDITIONS

MIN

T A = 25°C, Rs::; 10kn

TYP

MAX

1.0

5.0

UNITS
mV

Input Offset Current

T A = 25°c

Input Bias Current

T A =25°C

Input Resistance

T A = 25°C

Supply Current

T A = 25°C, Vs = ±20V

Large Signal Voltage Gain

T A =25°C,V s =±15V
V ouT =±10V, RL ?2kn

Input Offset Voltage

Rs:::; 10kn

Average Temperature
Coefficient of Input Offset
Voltage

Rs:::; 50n

3.0

/lVfC

Rs:::; 10kn

6.0

/lVfC

Input Offset Current

TA = +125°C
T A =-55°C

300

40

200

nA

120

500

nA

800
1.8

50

kn
3.0

160

V/mV
6.0

10
100

mA

200
500

mV

nA
nA

Input Bias Current

T A =-55°C

0.28

1.5

/lA

Supply Current

T A =+125°C, V s =±20V

1.2

2.5

mA

Large Signal Voltage Gain

V s =±15V, V ouT =±10V
RL? 2kn

V/mV

25

Output Voltage Swing

Vs= ±15V, RL = 10kn
R L = 2kn

±12
±10

Input Voltage Range

±14
±13

V
V
V

V s =±15V

±12

Common Mode Rejection Ratio

Rs:::;lOkn

70

90

dB

Supply Voltage Rejection Ratio

Rs:::; lOkn

70

90

dB

Note 1: For operating at elevated temperatures, the device must be derated based on a
150°C maximum junction temperature and a thermal resistance of 150°C/W junction to
ambient or 4SoCIW junction to case for the metal·can package. For the flat package. the

derating is based on a thermal resistance of 18SoC/W when mounted on a l/16·lnch·thick,
epoxy·glass boatd with ten, O.03·inch·wide. 2·ounce copper conductors (see curve).
Note 2: For supply voltages less than ±15V. the absolute maximum input voltage is equal
to the supply voltage.

Note 3: Continuous ;hort circuit is allowed for case temperatures to +12SoC and ambient
temperatures to +70 C.
Note 4: These specifications apply for -S5°C ~ TA ~ 12SoC. ±5V, ~ Vs ~ ±20V and
Cl = 30 pF unless otherwise specified.

2-97

......

o

X

...I

guaranteed performance characteristics
Input Voltage Range

Output Swing

ro

Voltage Gain

ror-~--'---r--.--'--'

100

•

6

.."

./

2

./

..~

8

".

~

~

·V

",.'IIi'

6

-5S"C~TAS

-55'CST"S +125 o C

I

0

10

"

SUPPLY VOlTAGE (::!:V)

+1Z5 o C

I

0

ro

15

SUPPI.Y VDLTACE (::!:: V)

......

10

ro

15

SUPPLY VOLTAGE (::!:V)

typical performance characteristics
Supply Current

20

!

IE 15

~

10

i

--

-

!SoC

T,

~TA=HOC

'I

T,

10

~

~~

-

~

~

1,,=1250(

T,,=250C

,

300

10
15
20
25
OUTPUT CURRENT (::!:: mAl

30

!

80

~ 60

~

4U
20

-20
1

10

100

--~

I"-..

25 50 15
TlMPERATURE ("C)

-

100

125

10K

lOOK

I-I100
0

2'

1M

"

-- .,

,,~

MOUNTEO FLAT PACKAGE
(NOTE 11

65
lOS
85
AMBIENT TEMPERATUR( (ot)

125

0

II

6

.~

zs-t

2
0

i\.
o

METAL CAN

8

TA =
Vh -.:!:l!iV

10M,

"'

Voltage Follower
Pulse Response

Large Signal
Frequency Response

"" ,
"

'RlQUENCT (o.)

2-98

ro

~.

i" ~FfSET

Vs ='!:.15V

lK

r-- -

-,

I" 81"
......

Tl'2'~ _-

~

IZSOC

" -, ",

VS·=ISV

16

~

J

15
10
SUPPlYVOUAGE(::!:V)

Maximum Power Dissipation

,

0
-15 - 50 -25

Open Loop
Frequency Response

....

0

Vs=zlSV

100

100

C:::;;;;;;;;

100

§ ,0

120

s5 o C

fA

ro

15.

'00

;
0

I

Input Current

r- ....... ~

=L =
I
fA 12soc

250(

SUPPlY VOLTAG£ (::!::V)

Current Limiting

~

TA

moe

TA -

10

SUPPLY VOlTAGE (::!::V)

~100

fa=

1

ro

15

I

l55"C ;;;;;;;;;

fA=

~
90

400

I

II 0

12S·e

,0'

150

Input Bias Current

Voltage Gain

lro

2'

' ....

I.

!iK

10K

FREQUENCY (Hz)

,

i\.

,

2

1\

-1--

if-OUTPUT

~

I I
I I

J

"

TA '"2S"C
v:::: +1"

!
-I 0
lOOK

I

INPtJT-I

•
6

--J --

I
I

o wm»

I I

~

~

TIME (liS)

m ro m

Operational Amplifiers
LH201 operational amplifier
general description
The LH201 is a general-purpose operational amplifier which is internally compensated for unity-gain
feedback_ The device combines a LM201 operational amplifier and the 30 pF compensation capacitor in a single package_ As such, it is a direct,
plug-in replacement for both the LM201 and the
LMl09C in the majority of applications. It is identi~al to the LH 101 except that operation is specified over a 0 to lO°C temperature range. Features
of the amplifier include:
• Operation guaranteed for supply voltages from
±5V to ±20V

•

Low current drain - even with the output saturated

•

No latch-up when common-mode range is exceeded

• Continuous short-circuit protection
•

Input transistors protected from excessive input
voltage.

The LH201 is available in either an 8-lead, lowprofile TO-5 header or a 1/4" x 1/4" metal flat
package.

schematic·· and connection diagrams
.-.....__....._.....,,-_"""?"__.....__.;..1,V.

Metal Can

OUTPUT

INPUTS

Order Number LH201 H
See Package 11
Flat Pack
NO CONNECTION
NO CONNECTION

NO CONNECTION

INPUT _....----,~""
_-..;:_ _ _ _::r-NOCONNECTION

L-__~~-~----4_---~

__

~~

___

typical applications··

~4,-

Note: Pin 5 connected to bottom of pickage.

Order Number LH201 F
SeePsckage 3

Low Drift Thermocouple Amplifier

FET Operational Amplifier

+

"

10K
1%

+15\1

".

+
OUTPUT

'""
OUTPUT

HI
120K

"'

.OK

"
""
"

L...--..................'..,"Ir--.15V

'='

Temperature Probe

"
"

35SK

..

*Must have matched temperature coefficients.
tAdJustforzeroinputoffsetvoltase.
tDrltts less than O.5J.!VrC can be obtained cllnlistendv.

I"tegrator with Bias Current Compensation

".

10M

'""

R2
12K

"'

250K

INPUT-~""-+--4-.....:..t

"

.......-'--"'--OUTPUT

243K

"

**Pin connections shown are for metal can.

2-99

...

o

N

J:

...I

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differen!ial Input Voltage
Input Voltage (Note 2)
Output Short·Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering. 60 sec)

±22V
250mW
±30V
±15V
Indefinite
OoC to +70°C
_65°C to +150oC
300°C

,

electrical characteristics

(note 4)

PARAMETER

CONDITIONS

Input Offset Voltage

TA = 25°C. Rs~ 10kn

Input Offset Current

T A = 25°C

Input Bias Current

TA = 25°C
T A =25°C
T A = 25°C. Vs = ±20V

Large Signal Voltage Gain

T A =25°C. V s "'±15V
V ouT =±10V. RL 2: 2kn
Rs:':; 10kn
Rs:':; 50n

2.0

0.25

Input Resistance

Input Offset Voltage

TVP

100

Supply Current

Average Temperature
Coefficient of Input Offset
Voltage

MIN

150

7.5
500

UNITS
mV
nA

1.5

pA

3.0

mA

Hl

400
1.8

20

MAX

V/mV

150
10

mV

6

/lVfC

Rs:':; 10kn

10

/lVfC

Input Offset Current

T A = +70°C
T A = O°C

50
150

Input Bias Current

TA =

Large Signal Voltage Gain

V s =±15V. V ouT =±10V
RL2: 2kn

O°C

0.32

Vs = ±15V. RL = 10kn
RL = 2kn

±12
±10

2.0

nA
nA
/lA
V/mV

15

Output Voltage Swing

400
750

±14
±13

V
V

Input Voltage Range

Vs= ±15V

±12

Common Mode .Rejection Ratio

Rs :':;10kn

65

90

dB

Supply Voltage Rejection Ratio

Rs:':; 10kn

70

90

dB

, .

Note 1: For op'erating at elevated temperatures, the device must be derated based on a
150°C maximum junction temperature and a thermal resistance of 150°C/W junctibn to
ambient or 4SoC/W junction to case for the metal-can package. For the flat package, the
derating is based on a thermal resistance of 18SoC/W when mounted on a 1/16-inch-thick,
epoxy·glass board with ten, O.03·inch·wide, 2·ounce copper conductors (see curve).
Note 2: For supply voltages less than ±15V. the absolute maximum input voltage is equal
to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to +125Q C and ambient
temperatures to +70°C.
Note 4: These specifications apply for _55°C ~ TA ~ 125°C. ±5V. ~ Vs ~ ±20V and
Cl '" 30 pF unless otherwise specified.

2·100

V

roo
:t
N

o

guaranteed performance characteristics
Input Voltage Range

Output Swing

I'

'".!!
~

1

.~
I;'

E5

1

V

as

1 10

1

I

10

15

"VV

r-~

as

ID

" 1---+--+-+----11--+---1

~

/. V

'"tI

L

•

~

~

Voltage Gain

IS

~

,/

~ 12

..&

~
10

SUPPlY VOlTAG[ (:V)

101---+--+-+----1--+---1

15

ID

SUPPlY VClTAG[ (:V)

SUPPlY VOLTAGE

(::!:V)

typical performance characteristics
lID

2.01--f-+--+----1--+-----1

110

~3001--f-+-+----1--+-----1

~

~

il!
~

80 s

15

10

Current Limiting

"

ill 101-t-t-t-+-+-+--+--+-+-1
V$_~15V

°S~~-~I~o-L-~IS~-L~2D

ID

SUPPlY VOLTAGE (:!':V)

(~V)

Maximum POWIr Dissipation

Input Current
lOOr-r--,-.----.-r-.-,,-~

30 f-_-+-+-+-+-+-+-f-+-f-f

.... r--ioo.
2D1-r-~~~---1---1-+-+~

1001--t-+----1--+-}--1
T".2Sec

IS

SUPPlY VOLTAGE

10 ,..-,.-,.-,.-,-,-,-,.-,.-,--,

ti

~

TA -25't

SUPPlY VOlTAGE (::!:V)

i

6200-

90

0.51--f-+--+---'T••-:2"'.-c~-f

~

~

~ 10--

100

~
10

Input Bias Currant

Voltage Glin

Supply Current
25 r---,--,----,,----.-,.----,

1200 ...
~

100

..... .....

OFFSET

!

300

~

200

I

~ BIAS

..... ~

400

...

I""l- i-..

i

~-+--+-~r,~~
r-~

1001-

METAL CAN

MOU~TED
PACKTAG.
I (NOTE 11

-

FLAT

oL---J_-L_~_~~

40

100

25

35

Large Signal
Frequency R_nse

Opan Loop
Frequency Response

55

65

"

....'NT TEM'''.IUI[ (OCI

TEMPERATURE rC)

JUNCTION TEMPERATURE ( C)

45

Voltage Follower
PuloaRespanoa
10 "r-1ri"""';-..,-1"'--"'--'--"
·~-+~+-~+-I~-+~

6f--f--f--f--t-t-t-t-t-+-1

!

80

8

'".!!

Ii!

4FI-~H-+,-jIf:-++
I-fl-'ff""'"=r""'"=j
i\.
11"'"-. I

2

I · f--f--+-If+H1M-++++I-1HI

Iii a

I

i
4

1--H-++++ttl--'lEi\++++HHI

oL--...l-J....!..1.U.l.II..---JL...J....L.J..1::I:m
5K

10K

fl£QlI£lIC/ (Hz)

1\

=:
_I

; "':~JTM

,

•

,

-

I

1 1
TA -2!ft_

-

_.I-}-}-+-+-+-+-~¥~=~+;I=1W

'I'
lK

li

lOOK

-10 L-~D-1t:D-2D=-:3D-cot.--~!iG--.l;&D--,I;lO,--;\• .---'
nME (,s)

2-101

illS

Operational Amplifiers

LH740A/LH740AC FET input operational amplifier
general description
The LH740A/LH740AC is a FET input, general
purpose operational ampl ifier with high input
impedance, closely matched input characteristics,
and good slew rates. Input offset voltage is typi·
cally 10.0 mV at 25°C, while input bias current is
less than 100 pA at 25°C. Offset current is typically less than 40 pA at 25°C_ Other important
design features include:

• Output is continuously short-circuit proof

• Internal 6 dB/octave frequency compensation

The LH740A/LH740AC is intended to fulfill a
wide variety of applications requirihg extremely
low bias currents such as integrators, sample and
hold amplifiers, and general purpose operational
amplifier applications.

• Excellent open loop gain, typically in excess of
100 dB
• Guaranteed over the full mi Iitary temperature
range

• Unity gain slew rate in excess of 6 VlJJ,s
• Unity gain bandwidth of 1 MHz
• Input offset is adjustable with a single 10k pot
• Pin compatible with LM741, LM709, LMl 01 A,
and JJ,A740

The LH740A is specified for operation over the
_55°C to +125°C military temperature range. The
LH740AC is specified for operation over the DoC
to +85°C temperature range.

• Excellent offset current match over temperature; typically 100 pA

connection diagram
Ne

vTOPYIEW

Order Number LH740AH or LH740ACH

See Package 11

typical applications
Integrator

r-- -- - - - - ---- --- Run

Transient Response

....--_v'"'

r-------~-

--------;H.';"1
I
I

A,

I
I

I

v"Q--_.J

.

Offset Null
VOUl

IIPUT

OUTPUT

v-

2-102

absolute maximum ratings
±22V
500mW
±5V
±'5V
Continuous
_55°C to +12SoC
O°C to +85°C
_65°C to +150°C
300°C

Supply Voltage
Maximum Power Dissipation

Differential Input Voltage
Input Voltage
Short Circuit Duration
Operating Temperature Range

LH740A
LH740AC

Storage Temperature Range
Lead Temperature (soldering, 10 sec.)

electrical characteristics

(Note 1 (Vs = ±15V. TA = 25°C unless otherwise noted)
LH740A

PARAMETER

MIN

CONDITIONS

Input Offset Voltage
Input Offset Current
InputCurrent!elthermput)

Input Resistance

LH740AC

MAX

TV'

Rs:=; l00kO

MIN

~

2kn, VOUT .. ;t10V

50,000

MAX

UNITS

20

mV

'50

pA

'0
60

.00 200

'00

500

1,000,000

RL

Large Signal Voltage Gain

TV'

'0 15
40 100

50,000

100,000

pA

1,000,000

Mn

100,000

VN

Output Resistance

75

15

n

Output Short·Circull Current

20

20

mA

Common Mode Rejection RaIla

.0

Supply Voltage Rejection RatiO

'0

BO
•0

d•
d.

Supply Current

3,0

Slew Rate

6.0

6.0

Unity Gain Bandwidth

'.0

'.0

V/1J.5
MH,

300
'0

"'

CL ~ 100pF, RL = 2

TranSient Response (Unity Gain)
Rlsetlme
Overshoot

krl, VIN

4,0

3,0

',0

mA

= 100mV

110
'0

20

"

(These specifications apply for -55°C::; TA ::; 125°C for the LH740A and O°C::; TA ~ 85°C for the LH740AC unless otherwise noted.)

."

m

Input Voltage Range
Common Mode Rejection Ratio

BO

Supply Voltage Relection RatiO

.0

.,.

40,000

Large Signal Voltage Gain

."

AL~10kn

Output Voltage SWing

.,0

RL~2kn

d~

'0

d'
VIV

m

.,4
'13
30

"0
20

600
'00
4,0
2.5
5.0

Input Offset Current
Input Current (either Input)
Rs~ 100K

Offset Voltage Drift

'0
40,000

'13
.5

Input Offset Voltage

V

g

V
V
mV

500

60

..,

5.0

pA
"A

jJvfc

5.0

Note 1: For supply voltages less than :t10V, the absolute maximum input voltage is equal to the
supply voltage,

typical performance characteristics
Opan Loop Frequency
Response

Maximum Power
Dissi~ation

'6'

IOU
10U

I ..

.
...
~
,'".
,.

...

I ,IO.
i!

'"1i'"
z

~

\.

c

i

~

~

f

••

50

.

,

\.
'50

TEMPERATURE rCI

20U

v.~ ...~ !~:::OC

II.

... ""I"I"
"
,. ",.
I

'OU

_

100M

FREOUENCY 1Hz)

2·103

...

--"'''00UT'U1

L..---.£o BAL/COMPENSATIDN
",---..!Ov·

INy.IN'U10"""'---;

...---..!oBALANCE
1D OUTPUT
COMPENSATION
OUTPUT

NDN.INV. INPUT o-l'13!.-_---4

Order Number LH2101AD or
LH2201AD or LH2301AD
See Package 2

BAL/COMPENSATION

'------''0 v'
Order Number LH2101AF or
LH2201AF or LH2301AF
See Package 5

auxiliary circuits
Alternate Balancing Circuit

Inverting Amplifier with Balancing Circuit

Single Pole Compensation

RI
'R'
INPUT-oI\I''''''"''"''4'''-~''''''--,

., Cs
CI

C1,;;?: R1+ R2

lOp'

...-.....".,.,.v-

Cs' 3.

fMav be zero or equal 10 pm!!el cembination
of R1 and R2 for minimum offset.

Two Pole Compensation

Feedforward Compensation

e,

VO UT

C1

~ R~'+~2

·3. p'
C2-1Oet
Cs

2-104

1
2'1110 R2
f o ·3MHz

C2.--

p'

r-

:::J:

absolute maximum ratings
Operating Temperature Range

±22V
500mW
±30V
±15V
Continuous

Supplv Voltage
Power Dissipation (Note 11
Differential Input Voltage
Input Voltage (Note 2)
Output Shar.I,Clrcult Duration

electrical characteristics

LH2101A

lH2201A
LH2301A

LH2101A

LH2201A

LH2301A

Input Offset Voltage

TA = 2S"C, Rs~ 50 kn

Input Offset Current

TA

2SoC

10

10

50

75

75

250

Input Bias Current

TA = 2S"C

Input Resistance

TA

Supply Current

T A = 25"C, Vs = ±20V

Large Signal Voltage Gain
Input Offset Voltage

;;

2S"C

TA = 2SoC, Vs = ±15V

VOUT

'"

±10V. RL ~ 2 kn

Rs:5: 50 kn

Average Temperature
Coefficient of Input
Offset Voltage
Input Offset Current
Average Temperature
Coefficient of Input
Offset Current

25°C:S: T A ~ 125°C

-55°C:5:TA :5: 25°C

T A = +125°C. Vs = ±20V
Vs = ±15V. V OUT ::: ±10V

2.0

7.5

mV Max

r-

:::J:

nA Max

N

nAMall:

0.5

MnMin

W

3.0

3.3

3.0

mAMax

..a

50
3.0

50
3.0

o

25

V/mV Min

10

mV Max

15

15

30

",V/oC Max

20

20

70

nA Max

0.1
0.2

2.5

0.1
0.2
100

0.3
0.6
300

nA/oC Max
nAloC Max
nA Max
rnA Max

2.5

25

25

15

Output Voltage Swing

"2

±12

±to

"0

±t2
±to

RL ;'2kn

o
»
.......
..a

UNITS

1.5

Vs = ±15V, R L ::: 10 kn
R L ::: 2 kn

Large Signal Voltage Gain

r-

:::J:

1.5

100

Input Bias Current
Supply Current

2.0

»
......
N
N

each side (Note 3)

CONDITIONS

::

O°C to 70D e
-6S"C to 150"C
300"C

Storage Temperature Range
Lead Temperature (Soldenng, 10 secl

LIMITS
PARAMETER

-5S"C to 12S"C
-2S"C to 8S"C

N
..a
o
..a

V/mVMin
VMin
VMin
V Min

Input Voltage Range

Vs = ±20V

±tS

±15

±12

Common Mode
Rejection Ratio

Rs~50kn

80

80

70

dB Min'

Supply Voltage
Rejection Ratio

Rs:5:50 kn

80

80

70

dB Min

Note 1: The maximum junction temperature of the LH2101A is l50oe. while that of the LH2201A is 100°C. For operating
temperatures, devices in the flat package, the derating is based on a thermal resistance of l8SoC/W when mounted on a
1/16·inch-thick epoxy glass board with O.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line
package is 100o e/W, junction to ambient.
Note 2: For supply voltages less than ±lSV. the absolute maximum input voltage is equal to the supply voltage.
Note 3: These specifications apply for ±5V 5: Vs 5: ±20V and _55°C 5: TA 5: 125°C. unless otherwise specified. With the
LH2201A. however, all temperature specifications are limited to -2Soe ~ TA ~ 85°e. For the LH2301A these specifications
apply for O°C 5: TA 5: 70°C. ±5V and 5: Vs 5: ±15V. Supply current and input voltage range are specified as Vs = ±15V for
the LH2301A. Cl = 30 pF unless otherwise specified.

2·105

»

.

Operational Amplifiers

C1l

en

«

co
o
~

N

:::E:
...I
........

co

o

~

N

:::E:

...I

LH210S/LH220S/LH230S, LH210SA/LH220SA/LH230SA
dual super beta op amp
general description
range. The LH2308A/LH2308 is specified for
operation over the O°C to +70°C temperature
range .

The LH2108A/LH2208A/LH2308A and LH21081
LH2208/LH2308 series of dual operational amp·
lifiers are two LM108A' or LM108 type op amps
in a single hermetic package. Featuring all the
same performance characteristics of the single
device, these duals also offer closer thermal track·
ing, lower weight, reduced insertion cost, and
smaller size than two single devices. For additional
information see the LM108A or LM108 data sheet
and National's linear Application Handbook.

features

The LH21 08A/LH21 08 is specified for operation
over the -55°C to +125°C military temperature
range. The LH2208A/LH2208 is specified for
operation over the -25°C to +85°C temperature

•

Low offset current

50 pA

•

Low offset voltage

0.7 mV

•

Low offset voltage

LH2108A
LH2108

0.3 mV
0.7 mV
±15V

• Wide input voltage range
• Wide operating supply range

±3V to ±20V

connection diagram
v'
OUTPUT
COMP

OUTPUT
INPUT

NON·INV
INPUT

CDMP
V'

INV
INPUT

OUTPUT

COMP
OUTPUT

COMP

NON·INV
INPUT

INPUT
V'

Order Number LH2108AD, LH2208AD,
LH2308AD, or LH2108D, LH2208D,
or LH2308D
See Package 2

Order Number LH2108F, LH2208F,
or LH2308F

See Package 5

auxiliary circuits
Standard Compensation Circuit

Alternate * Frequency Compensation

.,
-V,,-'W.....

Feedforward Compensation
C2

.2

+-~y.,.----,

VOUT

'J
C,

*tmprovesrejection
of power SLlppty

~'00PF

noise by a factor
often.
1

C2=--

2""0 R2
fa =3MHz

2·106

rJ:

...
N

absolute maximum ratings
Supplv Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short Circuit Duration

±20V
500mW
±10mA
±15V
Continuous

0

Operating Temperature Range
lH2108A!lH2108
lH2208A!lH2208
lH2308A/lH2308

-SSoC to +12SoC
-25°e to +85°e

Storage Temperature Range

-6SoC to +150°C
300'e

O°C to +70°C

Lead Temperature (Soldering, 10 sec)

electrical characteristics

CONDITIONS

LH2108

LH2208

LH2308

Input Offset Voltage

T A = 25°C

2.0

2.0

7.5

mVMax

T A = 25°C

0.2

0.2

1.0

nA Max

Input Bias Current

TA

2.0

2.0

7.0

nAMax

2SoC

Input Resistance

TA = 25°C

Supply Current

TA

Large Signal Voltage Gam

T A =25°CVs =±15V

=

30

2SOC

V OUT = ±lOV. RL

0.6
~

50

30
0.6
50

10
0.8
25

3.0
15

Average Temperature Coefficient
of Input Offset Voltage

3.0
15

C1I

~.

C1I
(II

MQM.n

mAMax
V/mVMm

10

mVMax

30

JjVtCMax

Input Offset Current

0.4

0.4

Average Temperature CoeffiCient
of Input Offset Current

2.5

2.5

10

3.0

3.0

10

04

0.4

Input Bias Current

+12S c C

Supply Current

TA

Large Signal Voltage Gain

Vs= ±15V,V ouT '" ±10V

==

en

10 kn

Input Offset Voltage

1.5

nAMax
pAtCMax

nAMax
mAMax

25

25

15

V/mVMin

RL:?: 10 kn

VMln

Output Voltage SWing

V s =±15V,R L =10kn

±13

±13

±13

Input Voltage Range

Vs=±tSV

±13.5

±13.5

±14

Cammon Mode Rejection Ratio

85

85

80

dB Min

Supply Voltage Rejection Ratio

80

80

80

dB Min

electrical characteristics each side

LIMITS
LH2108A

LH2208A

mVMax

0.2

1.0

nAMa"

20

7.0

0.5

05

Input Offset Current

TA

2S"C

02

Input Bias Current

TA, '" 2S"C

2.0

Input ReSistance

T A" 2S"C

=

30

SupplV Current

TA

Large Signal Voltage Gain

TA,=2S"CVs= !lSV
VOUT = ±lOV. RL:? 10 kU

",

25°C

0.6
80

UNITS
LH2308A
0.5

TA,;:: 2S"C

Input Offset Voltage

VMin

(Note 4)

CONDITIONS

PARAMETER

30
0.6
80

0.8
80

nA Max
MnMln

mAMax
V/mV Min

mV Max

Input Offset Voltage

1.0
5

Input Offset Current

0.4

0.4

Average Temperature CoeffiCient
of Input Offset Current

2.5

2.5

10

pAtC Max

3.0

3.0

10

nAMax

04

0.4

Input Bias Current
TA = +125°C

Large Signal Voltage Gain

Vs = ±15V. V OUT
RL:? 10 kS1

='

± 10V

1.0

10

Average Temperature Coefficient
of Input Offset Voltage

Supply Current

...

N

»

UNITS

Input Offset Current

=

rJ:

0
CO

each side (Note 4)
LIMITS

PARAMETER

CO

......

0.73

p.vtc Max
1.5

nAMax

rnA Max

40

40

60

ill

±13
±14

V/mVMin

Output Voltage SWing

Vs= ±15V, RL = lOkH

±ll

I npu t Voltage Range

V s =±15V

!13.5

i13.5

Common Mode Rejection RatiO

96

96

96

dB Min

SUpply Voltage Rejection RatiO

96

96

96

dB Min

VMIn
VMin

Note 1: The maXimum Junction temperature of the LH2108A/lH21OS II 1SOoC, while that of the LH2208A/lH2208 is
100"C and the LH2308A/LH2308 is 85"C. For operating at elevated temperatures, deVices In the flat package, the deratmg is
based on a thermal resistance of 18SoCIW when mounted on a 1/1S·inch-thick epoxy glass board With O.03·Inch,wlde, 2·ounce
cooper conductors. The thermal reSistance of the dual·m-line package IS l00"'CIW. junction to ambient.
Note 2: The Inputs are shunted With back-te-back diodes for aveNoltage protection, Therefore, excessive current will flow If
a differential input voltage in excess of IV IS applied between the inpuu unJess some limiting resistance IS used.
Not. 3: For supply voltages less than ±ISV, the absolute maximum input Voltage is equal to the wpply voltage.
Not. 4: These specifications apply for ±SV S Vs S :t20V and -5SoC S T A S 12SoC, unless otherwise speelfied. With
the LH2208A/LH22D8, however, all temperature 'Pecificatlons are limited to -2SoC S T A :::; 8SoC and With the LH2308A/
LH2308 for ±SV S VS:::; ISV and D"c S TA S 70"C.

2·107

o
.....
~

N

Operational Amplifiers

::E:

~

......
o
....
N
N

::E:
~

......
o
....

....
N
::E:
~

LH2110/LH2210/LH2310 dual voltage follower
general description
The LH2110 series of dual voltage followers are
two LMll0 type followers in a single hermetic
package. Featuring all the same performance char·
acteristics of the single, these duals offer in addi·
tion closer thermal tracking, lower weight, reduced
insertion cost and smaller size than two singles.
For additional information, see the LM 11 0 data
sheet and National's Linear Application Notebook.

fied for operation over the O°C to +70°C temper·
ature range.

features
1 nA

• Low input current

10 10 ohms

• High input resistance
• High slew rate

3OV/jJ.s

The LH2110 is specified for operation over the
-55°C to +125°C military temperature range. The
LH2210 is specified for operation over the _25°C
to +85°C temperature range. The LH2310 is speci·

• Wide bandwidth

20 MHz

connection diagram

auxiliary circuits

±5V to ±18V

• Wide operating supply range
• Output short circuit proof

v'

.---"'::'0

I

OUTPUT

INPUT

~16:.;;
•. . ._

OUTPUT

BALANCE
INPUT

RZ'
S.IK

BOOSTER
RI >100

v-

I

BALANCE

-Mly be added to reduci
inteflllidiaipation.

Increasing Negative Swing Under Load

OUTPUT
BOOSTER

RI
IK

v'
Order Number LH2110D or
LH2210D or LH2310D

See Package 2

INPUT

"'-+-v'
>"16:-:
• . . .-

Order Number LH2110F or
LH2210F or LH2310F

See Package 5
Offset Balancing Circuit

2·108

OUTPUT

I"'"

::c

±18V
500mW
±15V
Continuous

Supply Voltage
Power Dissipation (Note 1)

Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)

electrical characteristics
PARAMETER

_55°C to 125°C
-25'C to 85°C
O°C to 70D C
_65°C to 150°C
300°C

Operating'Temperature Range LH2110

LH2210
LH2310

Storage Temperature Range
Lead Temperature (Soldering. 10 sec)

Each side (Note 4)

CONDITIONS

LIMITS
LH2110

LH2210

LH2310

4.0

7.5

mVMax

Input Bias Current

TA = 25°C

3.0

3.0

7.0

nAMax

Input Resistance

T A =25°C

10'0

10'0

10'0

1.5

1.5

1.5

Output Resistance

T A = 25°C

2.5

2.5

2.5

Supply Current (Each Amplifier)

T A = 25°C

5.5

5.5

5.5

6.0

6.0

.999

.999

.999

Offset Voltage
Temperature Drift

-55°C';; T A';; 85°C
TA = 125°C

N

...o

Co)

.n Min
pF Typ
V/v Min

Input Bias Current
Large Signal Voltage Gain
Output Voltage SWing (Note 5)

Vs = ±15V. RL = 10 kn

Supply Current (Each Amplifier)

TA

Supply Voltage Rejection Ratio

±5V:5:Vs :5:±18V

""

12SoC

/lVfC
/lvtc

10

10

10

10

±10
4.0
70

-

.999

.999

±10
4.0
70

mAMax
mVMax

6
12

Vs = ±15V. V OUT = ±10V
RL = 10kn

nMax

10

6
12

Typ
Typ

nAMax

.999
±10

...
I"'"

V OUT = ±10V. RL = 8 kn

Input Offset Voltage

N
N

::c

4.0

TA = 25°C. Vs = ±15V

I"'"

::c

UNITS

T A = 25°C

Large Signal Voltage Gain

......

o
......

Input Offset Voltage

Input Capacitance

...o
N

absolute maximum ratings

V/V Min
VMin

-

mAMax

70

dB Min

Note 1: The maximum junction temperature of the LH2110 is 150°C. while that of the LH2210 is 100°C and the LH2310 is

S5°C. For operating at elevated temperatures, devices in the flat package, the derating is based on a thermal resistance of
185°C/W when mounted on a 1/16-inch-thick epoxy glass board with O.03-inch-wide, 2-ounce copper conductors. The
thermal resistance of the dual-in-Iine package is 100°C/W, junction to ambient.
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 12So C and ambient temperatures to 70o e. It is necessary
to insert a resistor greater than 2 kn in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is shorted.
Note 4: These specifications apply for ±5V ~ Vs ~ ±18V and -55°C $. TA ~ 125°C. unless otherwise specified. With the
LM210. however, all temperature specifications are limited to -25°C ~ TA ~ 85°C and for the LH2310. all temperature
specifications are limited to O°C ~ TA ~ 70°C.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between the booster and Vterminals.

2-109

(J

o

II)

N

-.t

N

illS

Operational Amplifiers

LH24250/LH24250C

dual programmable micropower op amp

J:
....

........

o
II)

N

-.t

N

. J: .

....

general description

features

The LH24250/LH2425OC series of dual programmable micropower operational amplifiers are two
LM4250 type op amps in a single hermetic package. Featuring all the same performance characteristics of the LM4250, the LH24250/LH2425OC
duals also offer closer thermal tracking, lower
weight, reduced insertion cost and smaller size
than two single devices. For additional information, see the LM4250 data sheet and National's
Linear Application Handbook.

• ±lV to ±18V power supply operation
• Standby power consumption as low as 20 JlW
• Offset current programmable from less than
0.5 nA to 30 nA
• Programmable slew rate
• May be shut-down using standard open collector
TTL
•

I nternally compensated and short circuit proof

connection diagram and auxiliary circuit
y+

Offset Null Circuit

} BALANCE

v'

DUTPUT

v} BALANCE
OUTPUT

V'

Order Number LH24250F or LH24250CF

See Package 5
Order Number LH24250D or LH24250CD

See Package 2

typical quiescent current setting resistor

(Pi ... a

Vs
±1.5

'3
±6

'9

±12
±lS'

10"A
1.5 MIl
3.3 MIl
7.5 MIl
13 MIl
lBMII
22 MIl

30"A
470kIl
1.1 MIl
2.7 MIl
4 MIl
5.6 MIl
7.5 MIl

to V-I
100"A
150kIl
330kIl
750 kIl
t.3MII
1.5 MIl
2.2 MIl

300 "A
l00kIl
220kIl
350kIl
510 kII
620kIl

S

.

~

:0= 10"A

10M

IQ "" 3OJ,lA

I-

m

z
!;

J

10= 100.A

1M

10 = 30~"A

IIIII

lOOK
0

2

4

6

8

10 12 14 16 18

SUPPLY VOLTAGE - Vs (VI

2-110

r:::E:
N

absolute maximum ratings

~

±18V

Supply Vol!age

Power DISSipatIOn (Note I)

500mW

±15V
±15V

D,fferentlallnput Voltage (Note 21
Input Voltage (Note 3)
Output Short Circuit Duration

o

........

r:::E:

300°C

N

~

each side (Note 4)

PARAMETER

N
LIMITS

CONDITIONS
LH24250

Input Offset Voltage

TA = 2S"C. Rs~ 100 kG

Input Offset Current

TA = 2S"C

Input Bias Current

TA

""

U1

-5S"C to +12S"C
O"Cto+70"C

-6SoC to +l50°C

Lead Temperature (Soldering, 10 sec)

Continuous

electrical characteristics -

N

Operating Temperature Range
LH24250
LH24250C
Storage Temperature Range

3.0

2S"C

Input ReSistance

TA = 25"C

Power Cansu mptlon

T A = 25°C, Vo '" O.

Large Signal Voltage Gain

T A = 2S"C, RL

Input Offset Voltage

Rs~ lQkn

RSET =

2.7 Mil

:2: 10 kG

10

nA Max

30

nAMax

3

3

MnMin

480

600

p.WMax

100

75

Large SIgnal Voltage Gain

RL

d:

10 kO

RL

d:

10 kO. Vs '" ±15V

Input Voltage Range

TA '" 25°C. Vs '" ±15V

Common Mode RejectIon RatIO

TAo; 25"C, Rs

Supply Voltage RejectIOn RatIO

7.5

o

UNITS

n

mVMax

5

V/mV Min

mV Max

5

15

nAMax

15

50

nAMax
V/mVMIn

Input Offset Current

Output Voltage SWing

6.0

15

4.0

Input BiaS Current

lH24250C

U1

50

50

±10

±10

VMin

±12

±12

VMm

~ 10 kG

70

70

dBMio

T A ", 25"C. Rs :s;;.10kQ

76

76

dB Min

Note 1: Derate linearly 2 mW/oC case temperature above 2SoC.
Note 2: This rating applies to maximum voltage differential between input terminals. The maximum input voltage on either
input terminal is limited to ±VS up to ±15V.
Note 3: This rating limited to ± supply voltage to a maximum of ±15V.
Note 4: These specifications apply for Vs = ±6V, Iq = 30 !lA, and -5S"C
TA
+125"C unless otherwise specified. With
the LH24250C, however, all temperature specifications are limited to O"C T A 70"C.

s:

s:

s:

s:

2-111

....
o
....

Operational Amplifiers

~

...I

LM101 operational amplifier
general description
• No latch-up when common mode range is exceeded

The LM101 is a general-purpose operational amplifier built on a single silicon chip_ The resulting close
match and tight thermal coupling gives low offsets
and temperature drift as well as fast recovery from
thermal transients. In addition, the device features:
•

• Same pin configuration as the LM709.
The unity-gain compensation specified makes the
circuit stable for all feedback configurations, even
with capacitive loads. However, it is possible to
optimize compensation for best high frequency performallce at any gain. As a comparator, the output
can be clamped at any desired level to make it
compatible with logic circuits. Further, the low
power dissipation permits high-voltage operation
and simplifies packaging in full-temperature-range
systems.

Frequency compensation with a single 30 pF
capacitor

• Operation from ±5V to ±20V
•

Low current drain: 1.8 mA at ±20V

• Continuous short-circuit protection
• Operation as a comparator with differential inputs as high as ±30V

schematic** and connection diagrams
BALANCE

Metal Can

COMPENSATION

COMPeNSATION

Note:Pm4conFlKtldtocm.

'---f-"

Y-

Order Number LM101H
See Package 11

OUTPUT

Flat Peckago
NO

NO CONNECTION

CONNeCTlO~

COMPENSATION

BALANCE/COMPENSATION
INPUT

C:::I"-+'

V'

INPUT

- - r - - " .....

OUTPUT

_ - . . ._ _ _ _J"'-BAL'NCE

Note: Pin 5 connected to bottom of package.

Order Number LM101 F
See Package 3

typical applications **
Inverting Amplifier
with Balancing Circuit

Voltage Comparator for Driving

DTL or TTL Integrated Circuits

INPUTS

OUTPUT

tMay be ztro or eqUilI to parallel
combination of R1 and RZ for
minimum offset.

Low Drift Sample
and Hold

OUTPUT-.._ _ _ _ ___------

INPUTS

"'

OUTPUT

01

OUTPUT

lMl03

J9V

Low Drift Sample and Hold
OUTPU, ...._ _ _ _ _ _ _...._ _ _ _..:::;
V'

tMayba zero or equal to parallel
combinationafR1and RZlor
minimum offset.

Voltage Comparator for Driving
RTL Logic or High Current Driver
OUTPUT

,,-

ID1~F

INPUTS

01
2N2222

.,.
CI

30pF

·PolyurbonatHlielel:triccaplcitar.

"''''Pin connections shown are for metal can.

2-115

!:
N
o

...

....
o
N

::?!

absolute maximum ratings

....I

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short·Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±22V
250mW
±30V
±15V
Indefinite,
O°C to +70°C
_65°C to +150°C
300°C

(note 4)

PARAMETER

CONDITIONS

Input Offset Voltage

T A = 25°C, Rs::; 10kH

Input Offset Current

TA = 25°C

Input Bias Current

T A =25°C

Input Resistance

T A =25°C

Supply Current

T A = 25°C, Vs = ±20V

Large Signal Voltage Gain

T A = 25°C, Vs = ±15V
V OUT = ±10V, RL~ 2kH

Input Offset Voltage

MIN

TYP
2.0
100
0.25

100

7.5
500

mV
nA

!lA

3.0

mA

kH

V/mV

150
10

RsS. 10kH

UNITS

1.5

400
1.8

20

MAX

mV

6

/lV /"C

RsS. 10kH

10

/lV /"C

Input Offset Current

TA=+70°C
T A = O°C

50
150

Input Bias Current

TA =

Large Signal Voltage Gain

Vs= ±15V, VOUT= ±10V
RL~ 2kH

Average Temperature
Coefficient of Input Offset
Voltage

RsS. 50H

O°C

0.32

Vs = ±15V, RL = 10kH
R L = 2kH

±12
±10

2.0

nA
nA
/lA
V/mV

15

Output Voltage Swing

400
750

±14
±13

V
V

Input Voltage Range

V s =±15V

±12

Common Mode Rejection Ratio

RsS.lOkH

65

90

dB

Supply Voltage Rejection Ratio

RsS.lOkH

70

90

dB

Note 1: For operating at elevated temperatures, the device must be derated based on a

e

1000 maximum junction temperature and a thermal resistance of 1 SOoC/W junction to
ambient or 4SoCIW junction to case for the metal-can package. For the flat package, the

derating is based on a thermal resistance of 18SoC/W when mounted on a 1/16·inch-thick,
epoxy-glass board with ten, O.03·inch·wide, 2-ounce copper conductors (see curve).
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal
to the supply voltage.

Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient
temperatures to 55°C.
Note 4: These specifications apply for O°C ~ T A ~ 70°C, ±5V. ~ Vs ~ ±20V and Cl
= 30 pF unless otherwise specified.

V

r-

s:

N

...

guaranteed performance characteristics
Input Voltage Range

o

Output Swing

Voltage Gain

•

1Or--r--r--'--'-~--.

10

,

8

~

./

2

,

,

'V

2

, ",. " . ~"~

/'
~.~

0

0

15

10

"5

10

SUPPLY VOLTAGE (;,:V)

10

15

10

SUI'fLYVOLTAG£C±V)

SUPPLY VOLTAGE (-:;'1)

typical performance characteristics
Voltage Gain

Supply Current

20

!

I
~
;;:

t,.....-

15

-

II 0

...-

10

loo~~---+--~--4---~~

i!

~ 100~~---+--~--+---t-~

h=2!ft

TA =2!fc

20

15

10

0
'5

10

SUPPLY VOLTAGE (.!:V)

Short Circuit Current

...

Vs= :tISV

40

100

80

60

.. ......

100

..... i'..

i"" r-- i'-.

Open Loop
Frequency Response

40

- ,,
I\.. ~

10

-10

,

TAI. 2s.c

10

1110

,

'\.. ~
·'~I"" 1\..,

,

IK

10K

lOOK

"

1M

,

o

I.

IIIII
10K

,
,
,2

lpr

100.
FAEQUENCY(Hl)

0

55

65

15

I

J

I-1-, ~ ~

~
~

2

1M

45

AMBIENT TEMPERATURE (DC)

Voltage Follower
Pulse Response

11111
10M

MoulTEO(NOTE
FLAT PA"I"
11

35

0

T~.12~'~,~

C,==30 pf,

..

~

METAL CAN

a

80

Large Signal
Frequency Response

c,-

-_.

100

Vs=.:!'"ISV

~,-lp1

FREQUENCY (Hz)

i

l"-

I'..

2"

2

\
I

60

40

l -

Vs~::!:15V

~

~

~

TEMPERATURE ( C)

JUNCTION TEMPERATURE ( C)

~

BIAS

~ OffSET

20

.. r-..

i!i

..... r-..,

0

300

!

~

"'1-1-000

20

80

Maximum Power Dissipation
4UO

lOO

'1,=:1:.15'1

a" 60

SUPPLY VOLTAGE ("':,Y)

Input Currant

0

100

15

'00

-

110

T,,=2SOC

SUPPLY VOLTAGE (±Y)

40

~

-

!

90
05

iii

Input Bias Current

120

25

10M

-I

,
,
•
a

INPUT-I

,

,

-o

10

~

II

; "':OUTPUT
I

'A-2S Cl C
'I = ±IS'I
~

~

~

m ro

~

TIME II'S)

2·117

...«

o

Operational Amplifiers

N

~

...J

.......

......o«
~

...J

LM101A/LM201A operational amplifier
general description
.
capacitor. It has advantages over internally compensated ampl ifiers in that the frequency compensation can be tailored to the particular application.
For example, in low frequency circuits it can be
overcompensated for increased stabi lity margin. Or
the compensation can be optimized to give more
than a factor of ten improvement in high frequency performance for most applications.

The LM101A and LM201A are general purpose
operational amplifiers which feature improved performance over industry standards like the LM10l
and the 709. Advanced processing techniques
make possible an order of magnitude reduction in
input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:
• Offset voltage 3 mV maximum over temperature
• Input current 100 nA maximum over temperature
• Offset current 20 nA maximum over temperature
• Guaranteed drift characteristics

The LM 101 A series offers the features of the
LM101, which makes its application nearly foolproof. In addition, the device provides better
accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or
timers, sample and hold circuits and low frequency
waveform generators. Further, replacing circuits
where matched transistor pairs buffer the inputs of
conventional Ie op amps, it can give lower offset
voltage and drift at a lower cost.

• Offsets guaranteed over entire common mode
and supply voltage ranges
• Slew rate of 10V/p.s as a summing amplifier
This amplifier offers many features which make its
application nearly foolproof: overload protection
on the input and output, no latch-up when the
common mode range is exceeded, freedom from
oscillations and compensation with a single 30 pF

The LM201A is identical to the LM101A, except
that the LM201A has its performance guaranteed
over a _25°C to 85°C temperature range, instead
of _55°C to 125°C.

schematic** and connection diagrams
Flat Package

Metal can
COlftN"'tlON

u,,,,,SfI
.. ,,'
1

''''UTI

L..

J.

.,.

tUlfUt

•

I

..,LANCE/
COWlltSA110ft

CGIII'UIS""011

"

ULAIICE

Nata: Pin 4ct1hnacttdtQ case.

NDtI: Pin 5canllllctldtobottamo'plcup.

Order Number

Order Number
LM101AH or LM201AH

See Package 11

LM101AF or LM201AF
Sea Package 3

Dual-I n-Line

....u.cll

II CIIMI'IiIATlOI

Ca.EIIUTIOII J

" v'
"

GUTNT

Note: Pin Gconnectedto battom ofplldlage.
TO' VIEW

typical applications**

Order Numb.r LM101AD or LM201AD

Se. Package 1

Fast AC/DC Converter·
Instrumentation Amplifier

*"Pin connections shown are for metal can.

2-1l8

*. tMltdlingdatenninesCMRR.

r-

s:...

...

absolute maximum ratings

0

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range LM101A
LM201A
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

»
.......

±22V
500mW
±30V
±15V
Indefinite
_55°C to 125°C
_25°C to 85°C
-65°C to 1500 e
3000 e

r-

s:N

...

0

»

(Note 4)

CONDITIONS

I nput Offset Voltage

T A = 25° C, Rs

Input Offset Current

TA = 25°C

Input Bias Current

TA = 25°C

MIN

:s 50 kn

TYP
0.7
1.5
30

Input Resistance

TA = 25°C

Supply Current

T A = 25°C, Vs = ±20V

Large Signal Voltage
Gain

TA = 25°C, Vs = ±15V
VOUT = ±10V, RL ~ 2 kn

Input Offset Voltage

Rs:S 50 kn

1.5

Input Offset Current

25°C:::; T A :::; 125°C
- 55° C :S T A
25°C

0.01
0.02

:s

Input Bias Current

mV
nA

75

nA
Mn

3.0

160

3.0

UNITS

10

mA

VIm V
3.0

Average Temperature
Coefficient of Input
Offset Voltage

Average Temperature
Coefficient of Input
Offset Current

2.0

4
1.8

50

MAX

mV

15

/J.V/oC

20

nA

0.1
0.2
100

nA/oe
nA/oC
nA

Supply Current

T A = +125°C, Vs = ±20V

Large Signal Voltage
Gain

Vs =±15V. V OUT =±10V
RL 2: 2 kn

Output Voltage Swing

Vs = ±15V, RL = 10 kn
RL = 2 kn

±12
±10

Input Voltage Range

Vs =±20V

±15

Common Mode
Rejection Ratio

Rs::;' 50 kn

80

96

dB

Supply Voltage
Rejection Ratio

Rs ::;'50 kn

SO

96

dB

1.2

25

2.5

mA

VIm V
±14
±13

V
V
V

Note1: The maximum junction temperature of the LM101A is 150°C, while that of the LM201A is lOOoe. For operating at
elevated temperatures, devices in the TO·5 package must be derated based on a thermal resistance of 150°C/W, junction to
ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 185°C/W when
mounted on a 1/16-inch-thick epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors. The thermal resistance
of the dual-in-line apckage is 100°C/W, junction to ambient.
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to +125°C and ambient temperatures to +75°C.
Note 4: These specifications apply for ±5V:S VS:S ±20V and -55°C:S TA:S 125°C, unless otherwise specified. With the
LM201A, however, aU temperature specifications are limited to -25°C :S TA S 85°C.

2-119

g

...

k;',,\Il\\"

71

c-

I

0

IZ

-51°C

10

:c'"

r--

co

O.S

10
IS
SUPPLY VOLTAGE (±VI

"

;10.0

o

fA -12S o C

o

"""

ti

SO

iii

60

i'"

40

...~

10

100

lk

-

FREQUENCY (Hz)

lOOk

;;
:!!

SO

'"

10

co

ti

.:;:
>-

"t

10k

'"

.

-

1M

~
ill

40

"

-"

I

"~

r-- ...,",
~,,~

r---~~~.....
SINGLE POLE

20

IDO
10k
FREQUENCY (Hri

r--~~~ r-#'

~~"#' ' \

"

'.",ZIClt
100

I.

10k

Closed Loop Output Impedance
10' , - , - , - - , - - , - ,

~

~~~~:~~ATION
10

..

fA. HOC

IDO
1111<
FREQUENCY (Hz)

IDO

V,t$±I~""

20

2-120

Soc

'\. l>M$i'OV

Ii

Input Noise Current

Power Supply Rejection

~

'"

20

~I'-

T. -21C1 t

•

30

R.= Kil

T'f

OFFSET

l"""t-

I

""

Common Mode Rejection

'"

r--..

.......

I
0
-7S -50 -25 0 2S 50 75 IDO 12S
TEMPERATURE rCI

I'

5
ro 15 20 Z5
OUTPUT CURRENT (...AI

-

2

1

T. -2SoC

120
;. 100
co

I

10
IS
SUPPLY VOLTAGE (±VI

S.D

o

4
3

r""" ~

BIAS

•

V. - t15V

'-

i
~

fA -125°C

Input Noise Voltage

io--

i

~ I--

r- t-.J..

0
0
0

fA .2SoC

~

5

Currant Limiting
15.0

-

~ I-""""

I

40
0

fl.~slc-

II

20

50

I J

:!!

f

f .125°C_

>- 1.0

Input Current

i i 110

_25°C

A

8

~
ill

Voltage Gain
120

lOOk

FREQUENCY (Hz)

...~
u

::ico

~

II'
10'
10"

....

'"

"

1M 10M

..~
co

10-'
10-2

10- 3

10

100

Ik

10k

FREQUENCY (Hz)

lDOk

1M

r-

s:
.....
o.....

compensation circuits **

l>

Two Pole Compensation

Single Pote Compensation

........

Feedforward Compensation

r-

s:N

C2
RZ

o.....
l>

v"

VOUT
VOUT

VOUT

CI~JWh

Cl?JWh

Cs-JOpF

Cs-J8,F

c-d..n

a-tOCI

'.-3MHr

**Pin connections shown are for metal can.

typical performance characteristics (con't)
Open Loop Frequency Response

Open Loop Frequency Response
120

Open Loop Frequency Response
120

120

r--r---;r--r-'--'---r~

TWO POLE
100

..

!

"...
~

.

10

180 ~

;;;

60

135 ,...

.,,.

.

~

<

4lJ

90

>

20

45

~
co

100

225

i

!

10

'" 10

\' '(

~

l"-

~

~

4lJ

GA1N-

co
> 20

TA -noc
Vs -t15V
Cl -30pF
C2 -3OOpF

i\

-%0

10

100

10k lOOk 1M 10M

1k

1

10

100

Vs· t15V

I

o
lK

SINGLE
m~EI

lOOK

10K

..

1M

10M

..~
<

~

-2

co

>

-4

,

~

-6
-6
-10

,

1--

r- H---o

r-

I

--

~t'-ori;rtPUT
V
J I I
T.I'2~'C

SINGLE
I- VY±15V
POLE

FEEOFORWARO
10

100

lk

10k lOOk 1M 10M 100M

FREQUENCY (Hz)

Large Signal Frequencv Response

,

16

12

II
Vs • ±15V

T. -125°IC

\

II
II

JJ

FEEDFDRWARO

I IIIII
"'j..JJ
1M

lOOk

~

~

~

4
2

0
'" -2

~
§:

\

"

\

~

I'- olUTJUT
I

I

~OrOLIE

T~ -i5'CI

-4

Vs • ±15V

-6

CI-30pF

~ .~oo:F

-6

o

10 20 30 4lJ 50 60 70 10
TIME",.)

10M

FREQUENCY (Hz)

Inverter Pulse Response
10

I I
I I

I=~ I- INPUT

III

1M

lOOk

Voltage Follower Pulse Response

I

'----

lN

-20

10k lOOk 1M 10M

-10
TIME,,")

'\

225

r ~ ...

FREQUENCY (Hz)

10 20 30 40 50 60 70 60

I-

pJASE

...... ""-'

!:;
co 20
>

II

10k

I

INPUT_I

"

4lJ

f-...lJ

10

I

1\

"

10

r--

II

I

r-

~

'"

"- ~

"

10

T.I. 25,1C
Vs ""'·15Y- ~I

TWO POLE

Voltage Follower Pulse Response

I

<

Cl '30pF
C2-3OOpF

\
\

FREQUENCY (Hz)

10
8

~

""-

f ... _25°C

~ 12

UIII
IlIN..

111111

z

v, .1±llv l

...~
~
co

C,·3pF

111111

..".'"

16

i. ~~J!~

:\

I

m

Large Signal Frequency Response

Large Signal Frequency Response

c, -30pF\

lk

J

1

100

FREQUENCY (Hz)

FREQUENCY (Hz)

16

225

PH~E

OU'r.U~\ r-r-

I

- -- .-

~

'"

.~~

-

c-INPUT

~

T.· 25°C
Vs· illV

-2

co -4
>
-6

...

-10

Io-~r-

-HFEED FORWARD

I

L

I

012345171
TIME (,u)

2-121

...

c(

typical applications •• (con't)

o

N

::E

Variable Capacitance Multiplier

Simulated Inductor

..J

Fast Inverting Amplifier With High
Input Impedance

"c(

......o
::E
....I

c= 1+~
R,

--'-- .....- - - - - - - l l - - - - - - - - - '

Invarting Amplifier
with Balancing Circuit

Sine Wave Oscillator

LE!!Rl RlC1
,,=02
.... O.

Int""""tor with Bias Current Compensation

r-......~""'-v·

v,.-Wrl~---=--,

VOVf

a

•

tMlyb.zeroorequlltopmlll' ';" .,,'
combination of Rllnd RZ for
minimum offset.

·Adjustforzerointegrator
drifL Current drifttypiClilly
0.1 nArC over _55°C to
+125°C temparlture range.

application hints"
Protecting Against Gross
Fault Conditions

Although the LM101A is designed for trouble free operation, experience has
indicated that it is wise to observe certain precautions given below to protect the
devices from abnormal operating conditions. It might be pOinted out that the

advice given here is applicable to practically any IC op amp, although the exact
reason why may differ with different devices.
When driving either input from a low-impedance source, a limiting resistor should
be placed in series with the input lead to limit the peak instantaneous output
current of the source to something less than 100 rnA. This is especially important
when the inputs go outside a piece of equipment where they could accidentally be
connected to high voltage sources. Large capacitors on the input (greater than
0.1 JJF) should be treated as a low source impedance and isolated with a resistor.
Low impedance sources do not cause a problem unless their output voltage exceeds the supply voltage. However, the supplies go to zero when they are turned
off, so the isolation is usually needed.
Compensating For Stray Input
Capacitances Or Largo Feedback
Resistor

The output Circuitry is protected against damage from shorts to ground. However.
when the amplifier output is connected to a test point, it should be isolated by
a limiting resistor, as test points'frequently get shorted to bad places. Further,
when the amplifier drives a load external to the equipment, it is also advisable
to use some sort of limiting resistance to preclude mishaps.
Precautions should be taken to insure that the power supplies for the integrated
circuit never become reversed~even under transient conditions. With reverse voltages greater than 1V. the IC will conduct excessive current, fuzing internal
aluminum interconnects. If there is a possibility of this happening, clamp diodes
with a high peak curren~ rating should be installed on the supply lines. Reversal of
the voltage between V and V- will always cause a problem, although reversals
with respect to ground may also give difficulties in many circuits.

Isolating Large Capacitive Loads
r--""'.....~_"n""

The minimum values given for the frequency compensation capacitor are stable
only for source resistances less than 10 kn. stray capacitances on the summing
junction less than 5 pF and capacitive loads small.r than 100 pF. If any of these
conditions are not met, it becomes necessarv to overcompensate the amplifier
with a larger crompensation capacitor. Alternately, lead capacitors can be used in
the feedback network to negate the effect of stray capacitance and large feedback
resistors or an RC network can be added to isolate capacitive loads.
Although the LM101A is relatively unaffected by supply bypassing, this cannot
be ignored altogether. Generally it is necessary to bypass the supplies to ground at
least once on every circuit card, and more bypass points may be required if more
than five amplifiers are used. When feed-forward compensation is employed, however, it is advisable to bypass the supply leads of each. amplifier with low
inductance capacitors because of the higher frequencies involved.

**Pin connections shown are for metal can.

2-122

r-

Operational Amplifiers
LM301A operational amplifier
general description
example, as a summing amplifier, slew rates of
10 V//ls and bandwidths of 10 MHz can be
realized. In addition, the circuit can be used as a
comparator with differential inputs up to ±30V;
and the output can be clamped at any desired level
to make it compatible with logic circuits.

The LM301A is a general-purpose operational
amplifier which features improved performance
over the 709C and other popular amplifiers.
Advanced processing techniques make possible an
order of magnitude reduction in input currents,
and a redesign of the biasing circuitry reduces the
temperature drift of input current.

The LM301 A provides better accuracy and lower
noise than its predecessors in high impedance
circuitry. The low input currents also make it
particularly well suited for long interval integrators
or timers, sample and hold circuits and low fre·
quency waveform generators. Further, replacing
circuits where matched transistor pairs buffer the
inputs of conventional IC op amps, it can give
lower offset voltage and drift at reduced cost.

This amplifier offers many features which make its
application nearly foolproof: overload protection
on the input and output, no latch-up when the
common mode range is exceeded, freedom from
oscillations and compensation with a single 30 pF
capacitor. It has advantages over internally com·
pensated amplifiers in that the compensation can
be tailored to the particular application. For

schematic** and connection diagrams
COMPENSATION

"""'$!P""
1

&

OUTPUT

,

~

I

,

5

BAlANtE

Note: Pin4 connecud to case.

Order Number LM301AH
See Package 11

."""'0·"·. " "'

COMPENSATION
INPUT

2

1

INPUT

.
3

V'

6

,

Order Number LM301AN

See Package 20

typical applications **
Integrator with Bias Current Compensation

Low Frequency Square Wave Generator

Voltage Comparator for Driving
DTL or TTL Integrated Circuits

,."'
~_-+

Vout

___

lQW~~~!~~NCE

"
'"
"'
'"

*Adjustforzero integrator
drift. Current drift
typically 0.1 nArc over
O°Cto70"Ctemperature
range.

**Pin connections shown are for metal can.

2-123

s:

w
o
.....

»

...



~

f!!;

1;001'

"

~
I'>t-~\"~
~I
,I)~\

"I ' ......1'"

~

15

iii

10

.\''';,... ~ ....

~

-r- -~\¥<\~

0-

"~

~~\\,

co

......1 1 1
1 O'C ";TA ";10'C

94

,

.....

'"z

.t'f.

~

z

~

I I I
15

12

_.....

~ ....

-

co
>
16

O'C 

Voltage Gain

Output Swing

20

~

o

10

15

SUPPLY VOLTAGE ItVI

SUPPLY VOLTAGE ItVI

typical performance characteristics
Supply Current
2.5

~

I I I
I I I

2.0

.e
0-

ffi
::i
B
>

~

Voltage Gain

Input Current
100

120

110

~

t·25'C

~

~25!C
I- ~r-

..s

r--r-r-

z

1.5

~

100

0-

ffi

>

!!;

15

-OFFSET

I I
o

20

SUPPLY VOL lAGE (±V)

Current Limiting

40

60

10

TEMPERATURE (OCI

Input Noise Current

Input Noise Voltage
Vs =±15V

~

"\ ""'\

2i

...
I';; ..

~

"

;;
.±!. 10.0

'"
z

co

15

10

SUPPLY VOL lAGE (±Vl

5

=- o

10

~

20

B

90

0.5

-

40

f

co

10

-

BIAS

0:

'"~'"

1.0

15.0

1

10
60

9. ~

s.o

'"~

I'

co

>

I'-

~

w

is
z

I'-

~

0:

'"~
~

o

o

10

15

20

25

3D

:e

1«r'6
to

100

Open Loop
Frequency Response
120

a;
:!!

z
C

co

~ i',

10

r-....

6D

~

~

co
>

40

Vs .. t15V

"

r-.... I,C

1 =3PF

r'\. ~
r\.\

20

C, '~OpF

-20
t

10

100

IK

lOOk

100

"

10K lOOK 1M 10M

FREQUENCY (Hz!

10

~.!~~!~
Vs'" ±1SV

~ IZ

I

E

f-

1\

~

0-

C, • 30pF\

'"'"~

1\

co

>

I 11111
IK

-Z

-4
-6

~.

INPUT_I

,

-10

10K

lOOK

1M

FREQUENCY (Hz!

10M

I

' ' ' 0...
~

I

OUTPUT

1

zJ,c

TA ' ·
Vs =±15V

-8

I 11111

o

lOOK

I
I
Ir - f - f-

8

'"
~

C,-3pF

~
co

10K

Voltage Follower
Pulse Response

IB

'"
~

IK

FREQUENCY (Hz!

Large Signal
frequency Response

TAI'25'~_

100 ~ !.....

10k

Ik

FREQUENCY (Hz!

OUTPUT CURRENT l±mAI

-I I

o

10 20 3D 40 50 60 10 BD
TIME (""

2·125

...ct
~

typical applications ** (con't)

:E
....
Standard Compensation and
Offset Balancing Circuit

Fast Summing Amplifier

.,"'

+--'-I

' .. -"W......

"".

Power Bandwidth: 250 kHz
Small Signal Bandwidth: 3.5 MHz
Slew Rate: 1DVI~s

.",
Fast Voltage Follower

Bilateral CUrrent Source

,n,
"'

,... _"..."'-a.!/
Vou•

'OUT = ~~ ~I:
Power Bandwidth: 15 kHz

Slew Rate: lV11J.1

**Pin connections shown are for metal can.

2-126

R3= R4+R5

R1 =R2

.,
.""

.."
"'

r-

Operational Amplifiers
LM102 voltage follower
general description
The LM102 is a high·gain operational amplifier de·
signed specifically for unity·gain voltage follower
applications. Built on a single silicon chip, the device
incorporates advanced processing techniques to ob·
tain very low input current and high input imped·
ance. Further, the input transistors are operated at
zero collector·base voltage to virtually eliminate
high temperature leakage currents. It can therefore
be operated in a temperature stabilized component
oven to get extremely low input currents and low
offset voltage drift. Other outstanding characteris·
tics of the device include:
•
•

Fast slewing - 1tlv Ills
Low input current - 10 nA (max)

• High input resistance - 10,000 Mn
• No external frequency compensation required
• Simple offset balancing with optional 1 K poten·
tiometer
• Plug·in replacement for both the LM101 and
LM709 in voltage follower applications.
The LM 102, which is designed to operate with sup·
ply voltages between ±12V and ±15V, also features
low input capacitance as well as excellent small sig·
nal and large signal frequency response - all of
which minimize high frequency gain error. Because
of the low wiring capacitances inherent in mono·
lithic construction, this fast operation can be real·
ized without increasing power consumption.

schematic** and connection diagrams
r---;r~-r;r~---------------r--'-~'~
TOP VIEW

Note: Pin 4 connected to case.

Order Number LM102H
See Package 11
liAS

' - - - - I ' - - - -......-------""'----'-v·
Sample and Hold With
Offset Adjustment

typical applications **
Low Pass Active Filter

".

940pF

INPUT

RI

OUTPUT

24K

*Polycarbonate·dielectriccapacitor.
·Values are for 10 KHz cutoff.
Use silvered mica capacitors for
good temperature stability.

High Pass Active Filter

High Input Impedance
AC Amplifier

OUTPUT
OUTPUT

RI
lOOK

*Values are for 100 Hz cutoff. USB
metalizedpolvcarbonatecapacitors
for good temperature stability

"

2"

"

100K

**Pin connections shown are for metal can.

2-127

....os:
N

N

o....
::!
....J

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short-Circuit
Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature
(soldering, 10 sec)

±18V
500mW
±15V
Indefinite
_55°C to 125°C
_65°C to 150°C
300°C

electrical characteristics (Note 4)
PARAMETER

CONDITIONS

MIN

TYP

Offset Voltage

2

Average Temperature Coefficient of
Offset Voltage

6

Input Current

3

Input Resistance
Voltage Gain

RL.~

10 kn

10 10

10 12

0_999

0.9996

Output Resistance
Output Voltage Swing (Note 5)

0.8
RL.~8kn

±10

Supply Current

MAX

UNIT

5

mV
jlVfC

10

n

2.5

n
V

±13
3.5

nA

5.5

mA

Positive Supply Rejection

60

dB

Negative Supply Rejection

70

dB

Input Capacitance
Offset Vol tage

-55°C::; T A::; 125°C

Input Current

TA = 125°C
TA =_55°C

Voltage Gain

-55°C::;T A ::;125°C
RL.~ 10 kn

Output Voltage Swing (Note 5)

RL.~

Supply Current

T A = 125°C

10 kn

Nota 1: For operating at elevated temperatures, the device must be derated based on a
150°C maximum junction temperature and a thermal resistance of 45°C/W junction to

case or 1500 CIW junction to ambient (see curve).
Note 2: For supply voltages less than ±15V. the absolute maximum input voltage is equal
to the supply voltage.
Nota 3: Continuous short circuit is allowed for case temperatures to 125°C and ambient
temperatures to 70o e. It is necessary to insert a resistor greater than 2 kH in series with
the input when the amplifier is driven from low impedance sources to prevent damage

when the output is shorted.
Note 4: These specifications apply for TA = 2SoC. Vs = ±1SV and CL :5. 100 pF unless
otherwise noted
Note 5: Increased output swing under load can be obtained by connecting an external
resistor between the booster and V- terminals.See curve.

2-128

3
30

3.0

pF

7.5

mV

10
100

nA
nA

0.999
V

±10
2.6

4.0

mA

r-

...s:o

guaranteed performance characteristics
Input Current

II.)

Supply CUrrent

Output Swing

•

"E"[;~ffB

10 0

Vs. tl~V
Vour= tIDY

~

\

0

~
MAXIMUM

-

5

~

~

·!r:C~: ~

5

;

~55

25456585105125

TEMPERATURE

1 I1I1 1 ~1I1I1I1I~

N;;;",[

-1"";-T~P1C~L --- ~ ..
~

",,.1-\"'\)'"

Q

9

,
0
553515

10

~

1

6~ ~ ..... MlxlMLM e-e-e-

rei

3

..... -;.,,\Cp.\.

~

2

i

Vr 5V
- -IS 5

•

t

-5535

-35 -15 -5 25 45 65 85 105 125
TEMPERATURE I C)

25456585105125

TEMPERATURE ("CI

typical performance characteristics
Voltage Gain

Voltage Gain
1,.=_56°C
1... 26°C
T,.= 125"C

.999

~

5

~'3
10K

••

lOOK

FREQUENCY IHzl

Positive Output Swing

-.

5 _

-2o
.OOK

rrn

~

§

'M

I

10M

5

vs- !15V

.

0

"-"
t-~
~= ~ f=
n

,n

=

o

,

D.•

r-

,

i'"

,K

10K

g
.M

lOOK

FREOUENCY(HzI

Output Swing
Vs: !15V
Rs "'10K

; :. ~;L
:X:_- ~

~ f- g;

125"C

1,.,= 25°C
TA =-55"C

!; 1.0

f'

Vs .115V

~

TA

10

FREQUENCY 1Hz)

-.

.

o

~

Negative Output Swing

5

- - -r-- -

•.,

~~

0

~

~:!,.~v

E

ll:'-,~.",
~

5

-Ys·tISV

.9 • K

IJ,_IOI..,I

0

'~

100

I II

r-

'~tt

.9 9

~~i.~~ ~

5

0

10

20
LOAD CURRENT

30

40

LOAD CURRENT (mAl

(mA)

Large Signal Frequency Response
14 ~;;;FFliTT1-r.-T.rnTTffi
Vs "!15V
12 I--++-Hllttt TA = 25 C

DISTORTION .....5%

10

Output Resistance

0

0.999 9

Large Signal Pulse Response
5
10

~

III
WITH CLAMP

1--++tt1Htl+--++H-Htli

_.OlODE

III

Maximum Power Dissipation

~,: ,,~v

,

TA c 25 C

I"-

";"

OT

"

~O~K-~~~~IO~OK~~~~~'M
FREOUENCY(Hzl

,.~

, fD'''', 1-1I~"
-.
-5

-10

5

•
6
TIME !}.Is)

10

25

45

65

"

105

125

AMBIENT TEMPERATURE (oC)

2-129

N

o
N

Operational Amplifiers

:E
..J
LM202 voltage follower
general description

The LM202, a limited temperature range version of
the LM 102, is a high-gain operational amplifier designed specifically for unity-gain voltage follower
applications_ Built on a single silicon chip, the device incorporates advanced processing techniques
to obtain very low input current and high input
impedance_ Further, the input transistors are operated at zero collector-base voltage to virtually
eliminate high temperature leakage currents_ It can
therefore be operated in a temperature stabilized
component oven to get extremely low input currents and low offset voltage drift_ Other outstanding characteristics of the device include:
•

Fast slewing: 10V/jJ.s

•

Low input current: 15 nA (max)

• High input resistance: 10,000 Mn
• No external frequency compensation required
• Simple offset balancing with optional 1 K
potentiometer
• Specified for operation from _25°C to 85°C
• Plug-in replacement for both the LM201 and
LM709C voltage follower applications.
The LM202, which is designed to operate with
supply voltages between ±12V and ±15V, also features low input capacitance as well as excellent
small signal and large signal frequency response all of which minimize high frequency gain error_
Because of the low wiring capacitances inherent in
monolithic construction, this fast operation can be
realized without increasing power consumption_

schematic and connection diagrams
r-__~~~~________________~__~~7V'

TOP VIEW

l--J-.-::::.....~~____--.::6 OUTPUT

Note: Pin 4 connected to case.

Order Number LM202H
See Package 11

cr:~!:----t;----~~--------------t:~-------':'BIAS

'v-

typical applications

Sample and Hold With
Offset Adjustment

Low Pass Active Filter
CI-

940pF
OUTPUT
INPUT
OUTPUT

'""

INPUT-WY-<~W""'t---.lI
"Vlluesat.for10KHzclrtoff.
Usesilveredmicacapatitorsfor
good temper.ture stability.

High Pa.. Active Filter

v'
"Polycarbonate-di.lectricclpacitor.

High Input Impedance
ACAmplifier

"

1I0K

OUTPUT

OUTPUT

"Values are for 100 Hz cutoff. Use
IlllltaliHdpolYCltbonatacapaciton
forgaodtemperatutlstllbility.

2-130

r-

s:N

absolute maximum ratings

o

N
Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

±18V
500mW
±15V
Indefinite
_25°C to 85°C
_65°C to 150°C
300°C

electrical characteristics (Note 4)
CONDITIONS

PARAMETER

MIN

Offset Vol tage

TYP
3

Average Temperature Coefficient of Offset Voltage

7
1010

Input Resistance
RL~8Kn

.999

Output Resistance
RL~8

Output Voltage Swing

10

15

Input Current

Voltage Gain

MAX

Kn

60

Negative Supply Rejection

70

Input Capacitance

15

10 12

1.000

0.8

2.5

-25°C ~ TA ~85°C

Input Current

TA = 85°C

5.5

30

rnA

pF
15

1.5

T A =-25°C

n
V

3.0

Offset Voltage

nA
n

0.9995

3.5

Positive Supply Rejection

mV
/lVfC

±10

Supply Current

UNITS

5.0
50

mV
nA
nA

Note 1: For operating at elevated temperatures, the device must be derated based on a
lOOoe maximum junction temperature and a thermal resistance of 45°CIW junction to
case or 150°CIW junction to ambient (see curve).
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal
to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 85°C and ambient
temperatures to 55°C. It is necessary to insert a resistor greater than 2 kn in series with
the input when the amplifier is driven from low impedance sources to prevent damage
when the output is shorted.
Note 4: These specifications apply for TA = 2SoC, Vs
otherwise noted.

=:

±15V and CL

< 100 pF

unless

-

2-131

N

o
N

:E
...I

guaranteed perfdrmance characteristics
Input Current

Output Swing

~'DO_
.~,.

Ii;

~AXIMUM

1'-...

11O~L"'.~RI
~

~

TYPICAL~

Supply Current

, rrTT-.-r-.--rr'l-rT
I'

1 H-l-++-H
': VQUT "'±10Y_H
8 v,, ",v
1
i'

~,
:i
~

'H~1-~~1-~-+1-1

~IMAl,Ju.,H::::p0/"9f-+-i
~

&

.'!'

'~~-r+-~~~~~~

::! • ~-l'''''f''F+-+-TVPICAl
~ 3~H-l-++-+-H-+-l-+1

1"ol
IH-+-r+-r1-+-r+-~~

l.~l'':D...L.-!:IO:-'--:IO=--''''30:!:-'-:'..:--l-:'~D..J...-!..

0-30

-10

1D

30

50

D-30~-.~IO~-:'~D~3=D..J...-!50~-:'=D...L~'D

90

70

TEMPERATURE (OC)

TEMPERATURE {OCI

TEMPERATURE (OCI

typical performance characteristics

D.""

Voltage Gain

Output Resistance

Voltage Gain

10.

r-T'TTr-'--"T"'ITr-r-T'TTT'"-'

0.999

1111

10

0.99

1.0
TA. -Z5"&

H+H-+-HI1'F-";+t+tt-f

VI -±15V

...

IX

1111

,.

10K
lOOK
FREQUENCY (HI)

'M

Positive Output Swing

.".

.

~

•

n

....

~

.

.,'IOK _

~
r;;

0

10

15

'" "

~

;

7~~

30

LOAD CURRENT (mAl

Large Signal Frequency Response

00

I

2

3

8t---+-t++iK*--+-~HH+m

5

'1--t-+++tllt--4-+-H4+~

g

'1--t-+++tH",-4-+-H1+~

I!:

2

I.'

5

~~~

I I I
... ~,Jon' ~r-

-H-fr

-30

-10

10

30

..
...
50

10

!

5"~-+~1-+-i-+~1-+-i~
400

I30D

H-t"""d--t-t-H-t+1-1

~H-+++''''''HH-l-+1

a: 200 ~H-++++-Hl-"lod-+1

~

1---t---Hf-ttti*'~~1-+HIl

100 ~H-++++-HH-l-+'"

·'L.DX:-"--J.....!...u.UIU
..~K-'--I...J..J""'''!',·M
FREOUENCY (Hz)

2·132

90

Maximum Power Dissipation

Large Signal Pulse Response

~ 1DI--t-+~ffilt--4-+-H~~
o

4

~

!;32..

LOAD CURRENT (mAl

,. F~FRiiTTITr:V.-r.J,±15;;)vTT]m
121--t-+tilffilt-~fsc:~~:C< 5%
~

:}-r-

. 'E
~C"'r
~ "~i§:'~\-~~~"
:"1-1-

~

r_V.=±15V

• •

Output Swing

V,·±15V_

~ -10

~

m.

FREQUENCY 1Hz)

Negative Output Swing

15~EEHIm
~ 10
0

O.I'!:K..J..~'-='IO=K~..u.'-:-:IO!::DK:-'-J..J,J'--:-!'M

10M

FREnUENCY 1Hz)

TIME (,a)

AMBIENT TEMPERATURE lOCI

r-

Operational Amplifiers
LM302 voltage follower
general description
The LM302 is a high gain operational amplifier designed specifically for unity-gain voltage follower
applications. Built on a single silicon chip, the
device incorporates advanced processing techniques to obtain very low input current and
high input impedance. Further, the input transistors are operated at zero collector-base voltage
to virtually eliminate high temperature leakage
currents. It can therefore be operated in a
temperature stabilized component over to get
extremely low input currents and low offset
voltage drift. Other outstanding characteristics
of the device include:

• High input resistance - 1,000 Mn
• No external frequency compensation required
• Simple offset balancing with optional 1 K
potentiometer
• Specified for operation from O°C to 70°C
• Plug-in replacement for both the LM201 and
LM709C in voltage follower applications.
The LM302, wh ich is designed to operate with
supply voltages between ±12V and ±15V, also features low input capacitance as well as excellent
small signal and large signal frequency response all of which minimize high frequency gain error.
Because of the low wiring capacitances inherent in
monolithic construction, this fast operation can be
realized without increasing power consumption.

• Fast Slewing - 1OV Ills
• Low input current - 30 nA (max)

schematic and connection diagrams
BALANCE

~--~~~~----------------~--~~' v'

.l-.............__!-+_-----'-6 OUTPUT

Note: Pin 4 connectad to case.

<;,'F--1;;-----1;;-----------'I):;------...:.
~----~------+_____________~~____~.

typical applications

Order Number LM302H
See Package 11
BIAS

v-

Sample and Hold With
Offsat Adjustment

Low Pass Active Filter

OUTPUT

INPUT
OUTPUT

'""

INPUT~W"""'~W"""t-"'I

1"470".PF

·Values an far 10 KHz cutoH.
Use silvered mica caplciton for
good temperatute mbility.

High Pass Active Filter

·Polycarbonate-dielectriccapacitor.

High I nput Impedance
ACAmplifier

"

110k.
OUTPUT

OUTPUT

·Values Bre for 100 Hz cutoff. Use
mltalizedpolycarbonatecapltltors

'0"0'

C2

'"

"

lOOk.

for good temperature stability

2-133

s:

Co.)

o
N

N

o(W)
~

absolute maximum ratings

....I

±18V
400mW
±15V
Indefinite
O°Cto 70°C
_65°C to 150°C
300°C

Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

electrical characteristics

(Note 4)

PARAMETER

CONDITIONS

MIN

Offset Voltage

TYP

MAX

UNITS

5

15

mV

Average Temperature Coefficient of Offset Voltage

20

Input Current

10
10·

Input Resistance
Voltage Gain

RL> 8

Kn

RL~8

Kn

0.9985

Output Resistance
Output Voltage Swing

p.V/oC
30

n

10 12
0.9995

1.000

0.8

2.5

n
V

±10

Supply Current

nA

3.5

5.5

rnA

Positive Supply Rejection

60

dB

Negative Supply Rejection

70

dB

Input Capacitance
O°C

Input Current

TA = 70°C
TA = O°C

Note 1: For operating at elevated temperatures, the device must be derated based on a
85°C maximum junction temperature and a thermal resistance of 45°C/W junction to
case or 150o C/W junction to ambient (see curve).
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal
to the supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient
temperatures to 5SoC. It is necessary to insert a resistor greater than 2 K!1: in series with
me input when the amplifier is driven frC?m low impedance sources to prevent damage
......nen the output is shorted.
Note 4: These specifications apply for T A = 2SOC. Vs = ±15V and CL < 100 pF unless
otherwise noted.
-

2-134

pF

3.0

:s TA :s 70°C

Offset Voltage

3.0
20

20

mV

15
50

nA
nA

I"'"

s:
w

guaranteed performance characteristics

o

N
10

•

1
!;;

~

::l

~ 10

~

-

= FTVPICAL

~

•

20

••

TEMPERATURE (OC)

.
.....-

J

YOUT-tIDY

MAXIMU~

1

~

~
:;

9
I.'

•

I
I

Vs.±'SY

a'

-

_MAXIMUM-

..

Supply Current

Output Swing

Input Current
10.

_1-'1'"

~

MAXIMUM

5

.

~ 4

TYPICAL

~ 3

!1iw

3
2

'"-,

-.±::h
jPlCr'- ~

~

2
VI" :t.I5V

.

• •

80

.!

,.-,,,

1

..

c,

,.oI!!~

20
TEMPERATURE (OC'

1

..

"

..

• •

20
TEMPERATURE (OC)

.

"

typical performance characteristics
Voltage Gain

Voltage Gain
0.9999

10.

•
0.999

"'

0.99

TA

.

Output Resistance

10

n

-10

"Z5~C

VI ..

~15V

lK

VI =

-IS

III
10K

TA ;

"'

lOOK

fREQUENCY (HI)

~11v
,,;e I

-20
lOOK

1M

~15V

fA = 25'-C
10

·'n,.. '~~1d·
..

-.

1'10

V...

"'L'I~

,

,.

I;'

1.'

"

'.1 lK

10M

'OaK
fREQUENCY (HII

Negative Output Swing

Positive Output Swing

Output Swing

-15

15

1M

10K

FREQUENCV 1Hz!

I.
YOUT'" tiDY

VI -:tI!iV
TA "25°C

~ID

~ -10
a

i

~

"

30

1

2
3
LOAD CURRENT (mAl

"

Distortion

10

< 5%

i •
l; ,

•
2

•

10K

WITH

•
,

10

,

1M

-IS

,

I

2

• • •
TlME(,..s)

--

-

.--, .i"lon1 .. .. ..
1-1-

20
TEMPERATURE (OCI

Maximum Power DiSSipation
SIll

4111

Iz
230a
i
!., 200

. ,-~,
-1O~1 - T

~
100K
FREQUENCY (Hz)

f"i' r,or'

-

I.•

VI" +15V
TA • 25°C

Vs" ±'5V
TA • 25 c C

•

•

... ·"on
2.'

Large Signal Pulse Response
IS

12

~

~

••

Large Signal Frequency Response

~a

~

~ ...

10
20
15
LOAD CURRENT (mAl

-~

14 -+00

i

~•
" •

Y";V
g 5.0I-R

V. -±'5V
TA "25°C
A,-10K

.....

.... .....

~

2100

10

'"

.....

IS
45
IS
AMBIENT TEMPERATURE IGC)

"

I......
1S

2-135

....

o
N

Operational Amplifiers

:E
....

.......

...:E....o
....

LM107/LM207 operational amplifier
general description
The LM107 and LM207 are complete, general
purpose operational amplifiers, with the necessary
frequency compensation built into the chip. Advanced processing techniques make the input
currents a factor of ten lower than industry
standards like the 709. Yet, they are a direct,
plug-in replacement for the 709, LM10l, LM101A
and 741. Specifications which have been improved
include:
• Offset voltage 3 mV maximum over temperature
• Input current 100 nA maximum over temperature
• Offset current 20 nA maximum over temperature
• Guaranteed drift characteristics

• Offsets guaranteed over entire common mode
range
The LM 107 series offers the features of the
LM10l, which makes its application nearly foolproof. In addition, the device provides better
accuracy and lower noise in high impedance
circuitry. The low input currents also make it
particularly well suited for long interval integrators
or timers, sample and hold circuits and low
frequency waveform generators. Further, replacing
circuits where matched transistor pairs buffer the
inputs of conventional Ie op amps, it can give
lower offset voltage and drift at a lower cost.
The LM207 is identical to the LM 107, except that
the LM207 has its performance guaranteed over a
_25°e to 85°e temperature range, instead of
-55°e to 125°e.

schematic** and connection diagrams
Metal Can

$.
I

Z

v·

1

-

L..,'

Flat Package

•

OUT?UT

•

Note: Pin 4 conaected to cne.

Order Number
LM107H or LM207H
See Package 11

Note: Pin 5 tGnnetkd to bottom of packega.

Order Number
LM107F or LM207F
See Package 3

Dual-in-Line

11 y'

Note: Pin 6 connected to Itottom of pickage.

Order Number LM107D or LM207D
See Package 1

typical applications **
Inverting Amplifier

Non-Inverting Amplifier

Non-Inverting AC Amplifier

"

'M

YOUT "

-

.,
Ai

.

""
VIN

R1 +R2
VOUT " - . - ,-

RIN '" R1

**Pin connections shown are for metal can.

2-136

RIN " R3
R3= 81/R2

v,.

~,­
,~
V,M

R1 +82

VOUT '" - . , -

v,.

r~
0

....

absolute maximum ratings

.....

.......
Supply Voltage
Power Dissipation (Note I)
Differential Input Voltage
Input Voltage I(Note 2)
Output Short-Circuit Duration
Operating Temperature Range

±22V
500mW
±30V
±15V
Indefinite
_55°C to 125°C
_25°C to 85°C
_65°C to 150°C
300°C

LMlO7
LM207

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

r~
N

0
.....

(Note 3)

PARAMETER

CONDITIONS

Input Offset Voltage

T A ; 25°C, Rs ::; 50 kn

0_7

Input Offset Current

T A ; 25°C

1.5

Input Bias Current

TA ; 25°C

Input Resistance

T A ; 25°C

Supply Current

T A ; 25°C, Vs ; ±20V

Large Signal Voltage
Gain

T A ; 25°C, Vs ; ±15V
VOUT ; ±10V, RL ~ 2 kn

Input Offset Voltage

Rs,S 50 kn

MIN

TYP

30
1.5

2_0

50

75

nA
Mn

3_0

3_0

25°C,S T A ::; 125°C
- 55°C :S T A 25°C

Input Bias Current

mV

15

/,-V/oC

20

nA

0_1
0_2

0.01
0_02

:s

mA

VIm V

160

Input Offset Current

mV
nA

4

3_0

UNITS

10

1.8

Average Temperature
Coefficient of Input
Offset Voltage

Average Temperature
Coefficient of Input
Offset Current

MAX

100

nAloC

nA/oC
nA

Supply Current

TA ;+125°C, Vs ;±20V

Large Signal Voltage
Gain

Vs ; ±15V, VOUT
RL 2: 2 kn

Output Voltage Swing

Vs; ±15V, R L ; 10 kn
R L ; 2 kn

±12
±10

Input Voltage Range

Vs ;±20V

±15

Common Mode
Rejection Ratio

Rs::; 50 kn

80

96

dB

Supply Voltage
Rejection Ratio

Rs:S 50 kn

80

96

dB

;

1.2

2_5

mA

±10V

VIm V

25
±14
±13

V
V
V

Note 1: The maximum junction temperature of the LM107 is lS0·C, while that of the LM207 is IOO·C_ For operating at
elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to
ambient, or 4SoC/W, junction to case. For the flat package, the derating is based on a thermal resistance of 18SoC/W when
mounted on a 1I16-inch-thick epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors. The thermal resistance
of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltages less than ±1SV. the absolute maximum input voltage is equal to the supply voltage.

Note 3: These specifications apply for ±SV ::; Vs ::; ±20V and --5SoC ::; TA ::; 12SoC for the LMl07 or -2S·C ::; TA 8SoC
for the LM207. unless otherwise specified.

2-137

g

guaranteed performance characteristics
Voltage Gain

Output Swing

Input Voltage Range

100

20r-~--r----'-.,...-r-....,

1&r--t-+-~--r-t7~

14

.
..~
i

C

II

co

10

~

12

>

18
10

~\~Il~

;;;;;- ~\'i
L~1Dl: -B5°C $T. S;12SoC
- I-25°C $T. S;15°C
- I- LM207:
I I
I
I
10

5

SUPPL Y VOLTAGE (tVI

V

SUPPLY VOLTAGE (±VI

15

20

SUPPLY VOLTAGE (±VI

typical performance characteristics

_

I

-

1

..

8

1.5

i3
,..

~

I

5

I

I--

t.tO'

..
.
..~

:!!

co

>

--

".~

11111

::;;.-'"

10

0.5

o
20

15

10

- ... --

Current limiting
15.0

!co

10.0

"'\

~

o

10

TA "'25°C

~

15

20

25

30

100

Open Loop"
Frequency Response

100

..
..

:!!

10

C

l1li

co
co

-

c

40

>

20

!:i

100

50

75 100 125

lOOk

10k

FREQUENCY (HzI

Voltage Follower
Pulse Response

"

Vs=±15V

;co

..e

FREQUENCY (Hz)

1\

;:

-2
-4

-10
FREQUENCY (Hz)

I

-II

o
10K

INPUT_I

-&

r-..
lK

ro-r-r.-1r>11-r-r"
I I
~
J I r - r-r!\

i..

..

IK 10K lOOK 1M 10M

.

~

12

~

r\.

10

T.-."'25°C

....~

-20

2·138

lk

Large Signal

1\
10

25

Input Noise Current

Frequency Response

Vs =:!:1SV

'\.

1

I
0

TEMPERATURE (OCI

18

"-

l-+-

..

TAI=25°~ _

~

~

20

FREQUENCY (HzI

OUTPUT CURRENT (""AI

120

OFFSET

I'.

5.0

o

;;;

I

.......

1
0
-75 -50 -25

Vs· ±t5V

"\

TA "125°C

2

Input Noise Voltage

....~

~

...

0
0

SUPPLY VOLTAGE (±V)

SUPPLY VOLTAGE (tVI

.....

BIAS

0

4
3

15

1""--_

0

I

10

5

40

T. _1ZSoC
I

10
5

I

T~._&5l!::
T. -25 C

;;; 110

~

tA",'t5° C- I -

1.0

50

120

I -i5J,
- r-.
.J.';"

2.0

Input Current

Voltage Gain

Supply Current
2.5

lOOK

o

10 20 30 40 50 50 70 80
TIME ""I

r-

Operational Amplifiers
LM307 operational amplifier
general description
The LM307 is a complete, general purpose opera·
tional amplifier, with the necessary frequency
compensation built into the chip. Advanced pro·
cessing techniques make the input currents a factor
of ten lower than industry standards like the
709C. Yet, it is a direct, plug·in replacement for
the 709C, LM201, MC1439 and 741 in most
applications.
In addition to reduced input current, the offset
voltage and offset current are guaranteed over the
entire common mode range and maximum drift
specifications are given. The amplifier also offers
many features which make its application nearly

foolproof: overload protection on the input and
output, no latch·up when the common mode range
is exceeded, as well as freedom from oscillations.

The LM307 provides better accuracy and lower
noise than its predecessors in high impedance
circuitry. The low input currents also make it
particularly well suited for long interval integrators
or timers, sample and hold circuits and low fre·
quency waveform generators. Further, replacing
circuits where matched transistor pairs buffer the
inputs of conventional IC op amps, it can give
lower offset voltage and drift at reduced cost.

schematic·· and connection diagrams

Flat Package

Metal Can

"
Note: PiR 5 connectld to bottom of plck.gl.
Note: Pin 4 connlcted to C1S8.

Order Number LM307H
See Package 11

Cavity Dual-I n-Line Package

Order Number LM307F
See Package 3

",s"e

Molded Dual·ln·Line Package

.III.UTI

11

v·

10 DUYPUY

II11.UT

JV+

J:

V"4

.

DUUoT

IIilC

Note: Pin 4 connectld to bottom o. packagl.

"
Note: Pin 6 connected to bottom 01 package.

Order Number LM307D
See Package 1

typical applications··
Tunable Notch Filter

TOP VIEW

Order Number LM307N
See Package 20

Differential Input Instrumentation Amplifier

Vo ....

'''UT

R1- R2=R3

.

R4=R5=~

."'"

..
"'"

~

1
fa = 2lrv'C1 C2(RZ)2

'.'"

.. 60Hz

**Pin connections shown are for metal can.

2·139

3:
w
o
......

absolute maximum ratings
±18V
500mW
±30V
±15V
Indefinite
DoC to 70°C
-65°C to 150°C
300°C

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short·Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Ra~ge
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(Note 4)

CONDIIfIONS

MIN

::s; 50 kQ

TYP

MAX

2.0

7.5

UNITS
mV

Input Offset Voltage

T A = 25°C, Rs

I nput Offset Cu rrent

TA = 25°C

3

50

nA

I nput Bias Current

TA = 25°C

70

250

nA

I nput Resistance

T A = 25°C

Supply Current

T A = 25°C, Vs = ±15V

Large Signal Voltage
Gain

TA = 25°C, Vs = ±15V
V OUT = ±10V, RL~ 2 kn

Input Offset Voltage

Rs::S;50 kQ

0.5

1.8

25

Average Temperature
Coefficient of Input
Offset Voltage

6.0

25°C~

I-r-r-

L--'

....">

~~,~~

"'"
"'I "' ......1'

DgC~TA

"I'"

~

15

~

10

.'"
....=>
....=>

94

. . . t;:;

1--

~

I

...... 1'

~

100

20

ri

"

:S;JO°C

• ,a";,...
~
>I~ -r-

~.t"-

I--==- ,.-

>1"'\\'

~

..'"~

88
82

10

DoC $.T• .$ 10°C

I I

SUPPLY VOLTAGE ('VI

5

15

~

I I

...,fo'"

76
70

15

....

'I/<

~

~

Occ ,5TA .5100 C

10

5

..

~

>

",'' ' '\ .\

I I

o

"

Voltage Gain

Output Swing

Input Voltage Range

15

10

SUPPLY VOLTAGE (tVl

SUPPLY VOLTAGE ItVl

typical performance characteristics
Supply Current
2.5

C

ffi

~
>-

80

.

110

'"

100

">

90

=

t·25°C
1.5

r--

;;:

~

-

1

C
..s

~15lc

....

..~

_r-!-

ffi

'"~

1.0

~

~

Input Current
1110

120

I
I

2.0

.§

....

Voltage Gain

I

0.5

~

15

10

t- r

=
o

15

o

20

SUPPLY VOLTAGE I'VI

Current Limiting

OFFSET

40

80

60

TEMPERATURE 1°C)

Input Noise Voltage

Input Noise Current

_ 10-15

15.0

!-a

Vs= ±15V

""'I:::::: ~

"\ "\
...
I\~

10.0

~

5
~

t-

20

:!

SUPPLY VOLTAGE I,VI

;.

-

BIAS

40

....=>

80
10

60

..

.. .
N

9,

5.0

.
~

~

...

"o>

~

...

is
z

"1,

.....
~

"

~

~

o

!ii !

o

10

15

20

25

10-1•

to

30

Open Loop
Frequency Response

80

~

60

,,

"-

~

:;

">

lOOk

10k

FREQUENCY IH.)

Voltage Follower
Pulse Response

16

100 ~

.
..'"

lk

Large Signal
Frequency Response

120

~

100

FREQUENCY IH.I

OUTPUT CURRENT l'mAI

40
20

10

100

lK

~

~

'\..

,

10K lOOK 1M 10M

FREQUENCY 1Hz)

.. ..~

~\

I!:
=>

~

"

-2

">

-4

.....
10K

FREQUENCY IH.)

I\.
\

I

lOOK

OUTPUT

I
TAl. 2JoC

-8
-10

I

!~

11

-

-8

o
IK

:;

r- -f-

INPUT_I

~

5

~

I I
I I
I I

8

~

12

'"

-20
1

Vs;; ±ISV

0

Vs " ±15Y

10

TA~25°C

TAl. 25 h_

V'j"'15V

o

10 20 3D 40 50 60 70 80

TIME "a)

2-141

00

o

N

Operational Amplifiers

:E

-'
"00

...:Eo
-'

LM108/LM208 operational amplifier
general description
The LM10B and LM20B are precision operational
amplifiers ,having specifications a factor of ten
better than FET amplifiers over a -55°C to 125°C
temperature range, Selected units are available
with offset voltages less than 1,0 mV and drifts
less than 5 /lvtc, again over the military temperature range_ This makes it possible to eliminate
offset adjustments, in most cases, and obtain
performance approaching chopper stabilized
amplifiers.

• Maximum input bias current of 3.0 nA over
temperature
• Offset current less than 400 pA over temperature
• Supply current of only 300/lA, even in saturation
• Guaranteed drift characteristics
The low current error of the LM 1OB series makes
possible many designs that are not practical with
conventional amplifiers. In fact, it operates from
10 Mn source resistances, introducing less error
than devices like the 709 with 10 kn sources.
Integrators with drifts less than 500 /lV /sec and
analog time delays in excess of one hour can be
made using capacitors no larger than 1 /IF.

The devices operate with supply voltages trom
±2V to ±20V and have sufficient supply rejection
to use unregulated supplies. Although the circuit
is interchangeable with and uses the same compensation,as the LM101A, an alternate compensation
scheme can be used to make it particularly insensitive to power supply noise and to make supply
bypass capacitors unnecessary. Outstanding characteristics include:

The LM20B is identical to the LM108, except that
the LM208 has its performance guaranteed over a
_25°C to 85°C temperature range, instead of
_55°C to 125°C.

connection diagrams *

Dual-I n-Line

Metal Can

Flat Package

CDM!Z

Ne
COMP1

Ne

COMP1

•• GUARD

COMP2

,

14 Nt

•

13 Nt

•• GUARD 3

11

IN'UT &

to OUTPUT

'NPUT

'NPUT.t:::=t"--t:V

.N'UTS

Note: Pin 400nnected to Clsa.
·Pin connections shown on schematic diagram Ire for TO·5 package.
"Unusdpin(nointernalconnec:tron)toallowforinput.nti.leaklgl
guard ring on printed circuit board laVDut.

Order Number LM108H or LM208H
See Package 11

OUTPUT

..

12 COMP2

IIIPUT 4

•• GUARD - - - . . _ _ _ _ _; r - - V-

.. GUARD •

Note: Pin6 connected to bottom afpackagl.

V- 7

• Ne
• Ne

JD'VIEW

Note: Pin 7connectedte bottom ofpacug•.
"TDPVIEW

Order Number LM108F or LM208F

See Package 3

Order Number LM108D or LM208D
See Package 1

schematic diagram· and compensation circuits
,-----..-+_ _ _--I'-___1.-------1P-----" .'
Standard Compensation Circuit

c, ~ :'1+C~2
Co =30pF

Alternate* Frequency Compensation

-+---+{,

• .!..'

'-Imprave, rejlction of pGwtI'
supply noise by a flctor of tin.

2-142.

r-

...

3:
o

absolute maximum ratings
Supply Voltage
Differential Input Current INote 2)
Input Voltage INote 3)
Output Short-Circuit Duration
Operating Temperature Range LM108

........
r-

3:

N

Indefinite

o

-S5'C to 125'C
-25'C to 8S'C
-65'C to 150'C
300'C

LM208
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics (Note
PARAMETER

CO

±20V
500mW
±lOmA
±15V

Power Dissipation (Note 1)

CO

4)

CONDITIONS

MIN

Input Offset Voltage
INote S)

TYP

MAX

UNITS

0.7

2.0

mV
nA

Input Offset Current

TA=25'C

O.OS

0.2

Input Bias Current

TA =2S'C

0.8

2.0

I nput Resistance

TA=25'C

Supply Current

TA=25'C

Large Signal Voltage Gain

TA = 25'C. Vs = ±15V
VOUT = ±10V, Rc;:>: 10 k!!

30

70
0.3

50

Average Temperature
Coefficient of Input
Offset Voltage INote 5)

3.0

Input Offset Current
Average Temperature
Coefficient of Input
Offset Current

0.5

Input Bias Current

0.15

Supply Current

TA = +125'C

Large Signal Voltage Gain

Vs = ±15V, VOUT = ±10V
Rc ~ 10 k!!

Output Voltage Swing

Vs = ±15V, Rc = 10 k!!

±13

Input Voltage Range

Vs = ±15V

±13.5

Common Mode Rejection

0.6

300

Input Offset Voltage
INote 5)

nA
M!!
mA
V/mV

3.0

mV

15

!lV/'C

0.4

nA

2.5

pA/'C

3.0

nA

0.4

mA

25

g

V/mV
±14

V

85

100

dB

80

96

dB

V

Ratio
Supply Voltage Rejection
Ratio

Not~ 1: The maximum junction temperature of the LM108 is 150°C. while that of the LM208 is
100 C. For operating at elevated temperatures, devices in the TO·5 package must be derated based on

a thermal resistance of 150o C/W. junction to ambient, or 4SoC/W. junction to case. For the flat

package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16·inch·thick

epoxy glass board with tell. O.03-inch-wide, 2-ounce coppet conductors. The thermal resistance of the
dual-in-line package is 100 C/W, junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes for· overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs
unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the

supply voltage.
Note 4: These specifications apply for
wise

specified.

With

the

LM208.

±5v ~ Vs ~ ±2ov and
however, all

-55°C ~ T A ~ 125°C, unless other·
temperature specifications are limited to

_25°C ~T A ~850C.
°
Notg5: The LM1'l,8A has a guaranteed offset voltage less than 0.5mV at 25 C and 1.0mV for
-55 C ~T A ~ 125 C and Vs =,±15V. The average temperature coefficient of input offset voltage is
guaranteed to be less than 5 #JV / C for these same conditions.

2·143.

00

o

N

:!
...I

typical performance characteristics

......
00

Input Currents

...:!o

Offset Error

2.0

C

1.0

I-

0.5

r-- )~

.......

..5

i
I-

~

.
..~
E
..
w

1.5

...I

Drift Error

;; 1011
.!

-

0.15

!! 0.10
.......

O.DS

,..

>

l-

F

~ 100

10

..
..
co
co

ffi

I-

~
!!

~
ii:

1.0

I-

ill

,

OFFSET

o
-55 -35 -15 5

;;/
>

~

25 45 65 85 105 125

1M

TEMPERATURE lOCI

10M

100M

1M

INPUT RESISTANCE 101

I nput Noise Voltage

100

~

m

.
t

i

~

iii 100

~~

~

I-

~

It

!!

iii

10

100

lK

10K

r"'r.::t---r--1i-

80 I--"'d-~tt--:±=='==:-l
60

1--.t:--3~.....,-t--t----1

40

t---t--"'-c--"'''

~A. 25lC

.
~
...

~

i,....o-" ~C
~

1l
10

D

z

15

~

...
~

60

TA ~ ZSJC
TA ~

GAIN - PH~SE - - -

I-

,.~

I

V
V

'M',-

rv-

100

lK

II 11111

110

135
gO

" "

45

..

3! ~

~
~

I

10K lOOK 1M 10M

FREQUENCY IHzl

~•• 2~oC

I

lOUT =±1 mA

Vs;; ±15V

100

lK

10K lOOK

II IIIII

\

12

~

TA ·25°e

300
2110
100

TA "'_55°C

V
J..~

-

TA " 25'C
TA

"

moc

15

20

I

Vs= :!:11iV

. .~ \
..,. ... 11

a

r" .-

~

1~

OUTPUT

-2

lOOK

FREQUENCY IHzl

1M

"5

J-

-4

T••

-6

Vs"':t15~_

,

o

,

Cp'30pF

-8
-10

10K

r-

INPUT

w

,·3o,F

lK

10M

Voltage Follower Pulse Response

C,.3,F

!;

1M

10

C,· 30,F

10

/

SUPPLY VOLTAGE I±VI

Cs.l00~~ ~

-20

2·144

_55°t

tooo. ci .. 0 pF

500

1 400

Large Signal
Frequency Response

C,· 3o,F

1

10

AV'I~C"30'F

Av •

10

"

40
20

-

OUTPUT CURRENT I±mAI

Cs ' 100 ,F.--,

w

>

10- l

/'

\Av· 1000. C, ~ 30 ,F

V

20

CpJ ,F1- cr 3

" "

1\><

'J

600

~

16

80

\ I

X

FREQUENCY IHzI

\

1\

l/'

C,oO
f= 100Hz

120

:!!

1It"'

"'< '\i

1:;11"

,-

SupplV Current

I'

TA _125°&

Open Loop
Frequency Response

~~

g

ill
co

SUPPLY VOLTAGE I±VI

100

10'

Vs= +15V

10

~

I I

gO

-.

!;

~"125°C

/

I-

i

Output Swing
15

I I

D

10'

z

FREQUENCY IHzl

Voltage Gain

:!! 110

9w

f

10'

..."
~

20

FREQUENCY IHzI

120

10'

-20 '-_"'-_'-_'-.....J'-----'
100
lK
10K
lOOK
1M
10M

L..J...LU.UIL.........

100M

Closed Loop Output Impedance

Power Supply Rejection

1000mm

10M

INPUT RESISTANCE 101

120 .--.,.--..,....-..,.---.---,

10

10

o

20 40 &0 80 100 120148160
TIMEI.sl

r-

Operational Amplifiers
lM308 operational amplifier
general description
The LM308 is a precision operational amplifier
featuring input currents nearly a thousand times
lower than industry standards like the LM709C. In
fact, its performance approaches that of high
quality FET amplifiers. The circuit is directly
interchangeable with the LM301 A in low frequency circuits and incorporates the same protective features which make its application nearly
foolproof.
The device operates with supply voltages from
±2V to ±15V and has sufficient supply rejection to
use unregulated supplies. Although the circuit is
designed to work with the standard compensation
for the LM301 A, an alternate compensation
scheme can be used to make it particularly insensitive to power supply noise and to make supply
bypass capacitors unnecessary. Power consumption is extremely low, so the amplifiers are ideally
suited for battery powered applications. Out-

standing characteristics include:
• Maximum input bias current of 7.0 nA
• Offset current less than 1.0 nA
• Supply current of only 300 J1.A, even in saturation
• Guaranteed drift characteristics
The low current error of the· LM308 makes possible many designs that are not practical with conventional amplifiers. In fact, it operates from
10 Mn source resistances, introducing less error
than devices like the 709C with 10 kn sources.
I ntegrators with worst case drifts less than
1 mV {sec and analog time delays in excess of one
hour can be made using capacitors no larger than
1 J1.F. The device is well suited for use with piezoelectric, electrostatic or other capacitive transducers, in addition to low frequency active filters
with small capacitor values.

connection diagrams *
Metal Can Package

Flat Package

"

COMP2

"GUARD

"·'8'".
Dual-In-Line Package

v'
ounUTI

--:r--

·'GUARO_-..:._ _ _

INPUT-

2

1

y+

INPUt+

3

6

OUTPUT

V·

4

5

NC

Note: Pin 6 connected to bottom of package.

Note: Pm 4 connected to Clse.
Note: Pin 1 connected to bottom of package.

Order Number LM308H

Order Number LM308D

Order Number LM308F

Order Number LM308N

See Package 11

See Package 1

See Package 3

See Package 20.

schematic diagram* and compensation circuits
Standard Compensation Circuit

Co =30pF

Alternate* Frequency Compensation

.'

"'Improves rejection of power
supplV noise by a factor of ten.

2-145

s:w

o

00

co
o

COl)

:E
.....

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics

(Note 4)

PARAMETER
Input Offset Voltage

±lBV
500mW
±10mA
±15V
Indefinite
O°C to 70°C
_65°C to 150°C
300°C

TYP

MAX

UNITS

TA = 25°C

2.0

7.5

mV

CONDITIONS

MIN

Input Offset Current

T A =25°C

0.2

1

nA

Input Bias Current

TA = 25°C

1.5

7

nA

I"put Resistance

TA = 25°C

Supply Current

TA = 25°C, Vs = ±15V

Large Signal Voltage

TA = 25°C, Vs = ±15V
V OUT = ±10V, RL ~ 10 k!l

Gain

10

40
0.3

25

300

Input Offset Voltage
Average Temperature
Coefficient of Input
Offset Voltage

6.0

Input Offset Current
Average Temperature
Coefficient of Input
Offset Current

2.0

Input Bias Current
Large Signal Voltage

RL~

Output Voltage Swing

Vs = ±15V, RL = 10 k!l

±13

Vs = ±15V

±14

Common Mode

mA

V/mV
10

mV

30

jJV/oC

1.5

nA

10

pA/oC

10

nA

Vs = ±15V, V OUT = ±10V

Gain

Input Voltage Range

M!l
0.8

10k!l

15

V/mV
±14

V

80

100

dB

80

96

dB

V

Rejection Ratio
Supply Voltage
Rejection Ratio

Not8 1: The maximum junction temperature of the LM308 is 8SoC. For operating at elevatect temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150 CIW,
junction to ambient, or 4~oC/W .. junction to case. For the flat package. the derating is based on a
thermal resistance of 185 C/W when mounted on a 1/16-inch-thick epoxy glass board with ten,
O.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is
100oC/W, junction to ambient.

Note 2: The inputs are shunted with back-ta-back diodes for overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs
unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 4: These specifications apply for ±5V ~ Vs ~±15V and OOC ~TA ~70oC, unless otherwise
specified.

2-146

r-

s:

w

typical performance characteristics

o

00

Offset Error

Input Currents

I
~

.
~

I-

'"

~
>

0.25

I
.J.
r-- ~SEl- l -

....... t--..

I-

~ 0.20
0.15

'"~
~

~

g;

a:

ffi

i;:10~.
~I=aml!!

10

..S
~

H

@

~ 100

W

1

o ro w

~

100

IZ

I

0.10

f~~'~!1

~

1

ill

~

oS

w
;;
1000

1
BIAS

~

ro

~

~

1.0 L-.Ll.1lJWlI.-'-L.WlJlJ...-L..l.J.llIJII
lOOK
1M
10M
100M

1.0 L-.l....I.1lJWU-JL...LJ.JJ.WL.....L...LJ.J.LIJ"
1M
100M
10M
tOOK

INPUT RESISTANCE 11U

INPUT RESISTANCE IPl

TEMPERATURE I CI

Input Noise Voltage
1000

1111111

z

Rs "lM

>-oS
is
z

Power Supply Rejection

II

~

i

I-

Rs" 0

~

1111111

I11111111

10
10

IK

100

r--'--..,...-..--~-..,

100

t-="'r.::i--t--t-

BO I-....,.,d-..,.,.t:--C±::=='==~

~ I--+-"'-t--"~..---II----I

Rs" lOOK

~

10K

::

lOOK

TA

w

'"~

'">

10'

I-

10°

~

"

c:r:::
11:,
'DoC

\!

10- 1

-

=1::

~

....
10

CpO

.= 100 Hz

C.~30 pF

~A' 2~oC

lOUT" :1:1 mA
Vs'" .±15V

100

lK

10K

lOOK

1M

10M

Supply Current
Vs= !t5V

["I:;F==

TA

350

~

I-

ii'l

TA =25'C

T~ 'OJC

I-

I

400

10

~
~
'"

fA =25"C

100

J

FREOUENCY (Hz)

TA' 'DoC'"

'"

Av: (C.: 30 pF

Av:: 1000, C,,, OpF

'Av '1000.

10-'

Output Swing

~oC

\

'"

15

1

'"

~

/

" ~~, 1)'« ~

y

z

p-

,.

I/

10'

FREOUENCY (Hz)

Voltage Gain

z 110
C

g

-20 '-_.L..-_'-_'----'_--'
100
lK
10K
tOOK
1M
10M

120

~

10'

~

20

FREnUENCY (HI)

iii

Closed Loop Output Impedance

120

'"

111111111

100

Drift Error

~

~

1O"c--:,

TA -25"&

300
250

~

200

~

TA

"

10°C

150
100
50

90
10

5

20

15

10
OUTPUT CURRENT (:tmA)

SUPPLY VOLTAGE "VI

Open Loop

Large Signal

Voltage Follower

Frequency Response

Frequency Response

Pulse Response

1&

120
100
iii
:!!

z
C

'"

w

'"~

'"
>

15

~~

"' "' "' ~, ~ ~ '"~
"'
1: ~
"' '"
i '"~
"' "'

BO

135

Cs " 100pF----,

60

!--- '--40

GAIN

100

\ II IIII

~

C,. 3 pF

%

IK

10K lOOK 1M

FREQUENCY (Hz)

10M

~
~

l-

I

'"z

\

'"

-2

>

-4

~

-8
-10
IK

10K

lOOK

FREQUENCY IHzl

1M

,..-

ILOUTPUT

1

~

TA
VS

-6

o

~-

INPUT

~

Cf' 3D pF

I-

CS"'00;~
~
C,' 30pF

-20
10

\

12

10
TA '" 25°C
VS = ±15V

45

PH~SE - - -

I

~

90

'':;-'30pF

20

lldlll

IBO
C,' 3 PF±-C/' 3 PF/k

20

SUPPLY VOLTAGE "VI

'~5"J-

" !:15~_

Cf" 30pF

..l
o

20 40 60 BO 100 120 1@160
TlMElp.s)

2·147

~

co

o('t)

Operational Amplifiers

~
..J
.......

LM108A/LM208A/LM308A operational amplifier
general description

~

CO

o

N

The LM10BA, LM20BA and LM30BA are precision
operational amplifiers having specifications about
a factor of ten better than FET amplifiers over
their operating temperature range. In addition to
low input currents, these devices have extremely
low offset voltage, making it possible to eliminate
offset adjustments, in most cases, and obtain
performance a pproaching chopper stabilized
amplifiers.

~

..J

.......
~

CO

...

o

~

..J

The devices operate with supply voltages from
±2V to ±20V and have sufficient supply rejection
to use unregulated supplies. Although the circuit is
interchangeable with and uses the same compensa·
tion as the LM101A, an alternate compensation
scheme can be used to make it particularly insensi·
tive to power supply noise and to make supply
bypass capacitors unnecessary. Outstanding char·
acteristics include:
• Offset voltage guaranteed less than 0.5 mV
• Maximum input bias current of 3.0 nA over
temperature

• Offset current less than 400 pA over tempera·
ture
• Supply current of only 300J.lA, even in
saturation
• Guaranteed 5 J.lvre drift.

The low current error of the LM 1OBA series makes
possible many designs that are not practical with
conventional amplifiers. In fact, it operates from
10 Mn source resistances, introducing less error
than devices like the 709 with 10 kn sources. Inte·
grators with drifts less than 500 J.lV /sec and analog
time delays in excess of one hour can be made
using capacitors no larger than 1 J.lF.
The LM20BA is identical to the LM 10BA, except
that the LM20BA has its performance guaranteed
over a -25°C to B5°e temperature range, instead
of _55°C to 125°C. The LM30BA has slightlyrelaxed specifications and has its performance
guaranteed over a oOe to 70°C temperature range.

connection diagrams *

Dual-In-Line

Metal Can

Flat Package

CQMP2

COMP

Ne

COMP'

.+ GUARD

COMP2

INVERT
INPUT

COMPZ

2

IN'UT

OUTPUT

IN'UT

IN'UTS

"GUARD

vNote: Pin 4 tonnected to ClS8.
·Pin CGnne~tions shown on schematic diagram are for TO·5 package.
*·Unusedpin(nointarnalconnection),oallowforinputanti-leabge
guardtingonprintedcircuitboardlavout.

Order Number.LM10BAH or
LM20BAH or LM30BAH
See Package 11

-""-----

NON·INVERT ...::.''--,

lIT

OUTPUT

INPUT

v-

Ne

Note: Pin6 connected to bottom of package.
TOPVIEW

TOP VIEW

Order Number lM10BAF or
LM20BAF or LM30BAF
See Package 3

Order Number LM30BAN
See Package 20

schematic diagram *
Dual·ln-Line

N.
I DUffUT

COMPI
•• GUARD

I

14 Ne

•,

13 Ne
12 COMPZ

v'

INPUT 4

II

IN'UT 5

11 OUTPUT

.... GUARD

v-

, N.

,•

I

Ne

.'
Note: Pin 1 connected to bottom of package.
TO,YIEW

Order Number LM10BAD
or LM20BAD or LM30BAD
Sea Package 1

2-14B

LM108A/LM208A

compensation circuits

absolute maximum ratings

Standard Compensation Circuit
III

Supply Voltage
Power Dissipation (~ote 1)
Differential Input Current (Note 2)
Input Voltage (Note 31
Output Short-Circuit Duration
Operating Temperature Range LM10BA
LM20BA
Storage Temperature Range
-Lead Temperature (Soldering, 10 sec)

±20V
500mW
±10mA
±15V
Indefinite
_55°C to 125°C
_25°C to B5°C
_65°C to 150°C
300°C

IIJ

J

o

+

I

CO

c,~

»
......

:'1.C:2

r-

Co "3DpF

3:
N
o

o

Alternate* Frequency Compensation

.".~-,.,
... ... ,~,
+

'\1...

CO

"Improves rejection of power
supplV noise by I fac~or of ten.

~1tI"

(Note 4)
CONDITIONS

MIN

MAX

UNITS

TA = 25°C

0.3

0.5

mV

Input Offset Current

TA = 25°C

0.05

0.2

nA

Input Bias Current

TA

O.B

2.0

Input Resistance

TA = 25°C

Supply Current

TA = 25°C

Large Signal Voltage Gain

TA = 25°C, Vs = ±15V
VOUT = ±10V, R L ;;:: 10 kH

25°C

0.3

BO

0.6

Input Offset Voltage

1.0

1.0

Input Offset Current

0.5

Input Bias Current
Supply Current

T A = +125°C

Large Signal Voltage Gain

Vs

= ±15V,

0.15

RL

;;::

Output Voltage Swing

Vs = ±15V, RL = 10 kH

±13

Input Voltage Range

Vs = ±15V

±13.5

VOUT

mA

mV

5.0

0.4

Average Temperature
Coefficient of Input
Offset Current

nA

V/mV

300

Average Temperature
Coefficient of Input
Offset Voltage

»

MH

70

30

nA

2.5
3.0

nA

0.4

mA

= ±10V

10 kH

40

V/mV
±14

V
V

Common Mode Rejection
Ratio

96

110

dB

Supply Voltage Rejection
Ratio

96

110

dB

Not~ 1: The maximum junction temperature of the LM10SA is 150°C, while that of the LM20SA is
100 C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on
a thermal resistance of 150o C/W. junction to ambient, oro 4S oC/W, junction to case. For the flat
package, the derating is based on a thermal resistance of 185 C/W when mounted on a 1/16-inch-thick
epoxy glass board with ten, O.OJ.inch·wide, 2-ounce copper conductors. The thermal resistance of the
dual-in·line package is 100o C/W, junction to ambient.
Note 2: The inputs are shunted with back·to-back diodes for overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs
unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the

supply voltage.
Note 4: These specifications applv for ±5V :0:::; Vs :0:::; ±20V and _55°C :0:::; T A :0:::; 125°C, unless other·
wise

specified. With

_25°C ~TA :O:::;S5°C.

the LM208A. however. all

temperature specifications are

r-

CO

TVP

Input Offset Voltage

=

»
......
3:
W
o

I

~

electrical characteristics
PARAMETER

...

3:

III

.".~"'.',~,
'''..

r-

limited to

2-149

«

00

o

LM308A

~
.....
.......

absolute maximum ratings

(W)

«
00

o

N

~
.....
.......

«

Supply Voltage
Power 0 issipation (Note 1)
Differential Input Current (Note 2)
I nput Voltage (Note 3)
Output Short·Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

±18V
500mW
±10mA
±15V
Indefinite
O°C to 70°C
_65°C to 150°C
300°C

00

...

o

~

electrical characteristics (Note 4)

.....

PARAMETER

TYP

MAX

UNITS

Input Offset Voltage

TA = 25°C

0.3

0.5

mV

Input Offset Current

TA = 25°C

0.2

1

nA

1.5

7

CONDITIONS

In.put Bias Current

TA = 25°C

Input Resistance

T A =25°C

Supply Current

TA = 25°C, Vs = ±15V

Large Signal Voltage Gain

T A =25°C,Vs =±15V
V ouT =±10V, RL~ 10kH

MIN

10

40
0.3

80

Average Temperature
Coefficient of Input
Offset Voltage

1.0

I nput Offset Current
Average Temperature
Coefficient of Input
Offset Current

2.0

Input Bias Current
Large Signal Voltage Gain

Vs = ±15V, V OUT = ±10V
RL ;?10kH

60

Output Voltage Swing

Vs =±15V,R L = 10kH

±13

Input Voltage Range

V s =±15V

±14

mA

V/mV
0.73

mV

5.0

IlV/oC

1.5

nA

10

pA/oC

10

nA

V/mV
±14

V

dB

dB

V

Common Mode Rejection
Ratio

96

110

Suppiy Voltage Rejection
Ratio

96

110

Note 1: The maximum junction temperature of the LM308A is 8SoC. For operating at elevate~ temperatures, devices in the T2·5 package must be derated based on a thermal resistance of 150 C/W,
junction to ambient, or 45 C/W, junction to case, For the flat package, the derating is based on a
thermal resistance of 185 0 C/W when mounted on a l/1S·inch·thick epoxy glass board with ten,
O.OJ.inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is
100o CIW. junction to ambient.
Note 2: The inputs are shunted with back-TO-back diodes for overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs

unless some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 4: These specifications apply for ±5V ~ Vs ~ ±15V and OOC ~T A ~ 70°C, unless otherwise
specified.

2·150

0.8

300

Input Offset Voltage

nA
MH

r-

s:...

...

Operational Amplifiers

o
r-

........

s:N

...o

LM110/LM210 voltage follower
general description
The LM110 and LM210 are monolithic opera·
tional amplifiers internally connected as unity·
gain non· inverting amplifiers. They use super·
gain transistors in the input stage to get low
bias current without sacrificing speed. Directly
interchangeable with 101, 741 and 709 in voltage
follower applications, these devices have internal
frequency compensation and provision for offset
balancing. Outstanding characteristics include:
• Input current: 10 nA max. over temperature

The LM110 and LM210 are useful in fast sample
and hold circuits, active filters or as general·
purpose buffers. Further, the frequency response
is enough better than standard IC amplifiers
that the followers can be included in the feedback
loop without introducing instability. They are
plug·in replacements for the LM102 or LM202
voltage followers, offering lower offset voltage,
drift, bias current and noise in addition to higher
speed and wider operating voltage range.

• Small signal ba.ndwidth: 20 MHz
• Slew rate: 30V Ills
• Supply voltage range: ±5V to ±18V

The LM210 is identical to the LM110, except that
its performance is specified over a _25°C to 85°C
temperature range instead of _55°C to 125°C.

schematic** and connection diagrams
Metal Can

.. ..
AI

RZ
I~

Flat Package

II'

III
1K

"
Note: Pin 4 connected to case.

Note: Pm Sconnected to bottom of package.
TOP VIEW

Order Number

Order Number

LM110H or LM210H
See Package 11

LMll0F or LM210F

See Package 3
Dual-In-Line

12 BALANCE

,. ,

11

v·

9

BOOSTER

Order Number LM110D or LM210D
See Package 1

typical applications **

..."

Fast Inverting Amplifier with
High Input Impedance

Fast Integrator with Low Input Current

**Pin connections shown are for metal can.

2·151

0

....
N

:E
..J

"0

....
....

:E
..J

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range LMll0
LM210
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

±18V
500mW
±15V
Indefinite
_55°C to 125°C
-25°C to 85°C
_65°C to 150°C
300°C

(Note 4)

CONDITIONS

MIN

TVP

MAX

UNITS

Input Offset Voltage

TA

= 25°C

1.5

4.0

rnV

Input Bias Current

TA

= 25°C

1.0

3.0

nA

Input Resistance

TA

= 25°C

10 10

Input Capacitance

10 12
1.5

pF

0.9997

V/V

Large Signal Voltage
Gain

TA = 25°C, Vs = ±15V
VOUT = ±10V, RL = BKn

Output Resistance

TA

= 25°C

0.75

2.5

Supply Current

TA

= 25°C

3.9

5.5

rnA

6.0

rnV

0.999

Input Offset Voltage
Offset Voltage
Temperature Drift

-55°C::;; T A ::;; 85°C
TA = 125°C

Input Bias Current

10

Large Signal Voltage
Gain

Vs
RL

= ±15V, VOUT = ±10V
= 10Kn

Output Voltage Swing
(Note 5)

Vs

= ±15V, RL = 10Kn

Supply Current

TA

= 125°C

Supply Voltage
Rejection Ratio

±5V::;;Vs ::;;±18V

V

±10

2.0

70

nA
V/V

0.999

80

Note 1: The maximum junction temperature of the LM 110 is 150°C, while that of the LM210 is
100°C. For operating at elevated temperatures, devices in the TO·5 package must be derated based on
a thermal resistance of 150o C/W, junction to ambient, or 45°C/W, junction to case. For the flat

package, the derating is based on a thermal resistance of 185°C/W when mounted on a l/16-inchthick epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors. The thermal resis--

tance of the duaHn-line package is 10Qoe/W, junction to ambient.
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 125°C and ambient temperatures to 70°C. It is necessary to insert a resistor greater than 2kO in series with the input when the
amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for ±5V ::;;Vs ::;;±18V and -550C::;;T A::;; 125°C, unless otherwise
specified. With the LM210, however, all temperature specifications are limited to -2SoC::;T A ::;SSoC.
Note 5: Increased output swing under load can be obtained by connecting an external resistor between
the booster and V- terminals. See curve.

2-.152

p.vtc
p.vtc

6
12

4.0

rnA

dB

r-

s:....
....

typical performance characteristics

o

.......
r-

..~
I-

~

+151;=

VS'+15~=

~

TA"ZSoC_

~

co

10

~

ill

fl!5

">

100

t' ~

..'"

Hs

!l!
~

co

z

10

100

lk

10k

=10K

-5

1\

-10
-15

lOOk

1M

10M
TIME"',)

Voltage Gain

Voltage Gain
0.99999

10"~nm",,mml~~~~
5 ~~H*~+4+#~~~Hm

!

~ 0.9999

-5

~

~
.....

-10

'"

C;

-20

>

;>

-25

z

1-+-I+l1,mj.-++l~III-'-\hI~4IHI

~ -15

co 0.999
!:;
~

0.99

lk

Vs" ±15V
To' 25"C

FREQUENCY IH.I

Voltage Gain

10k
lOOk
FREQUENCY IH.)

Vs • ±15U'1I

To -25"&..II
lOOk

1M

~

Rs ;; 3 kn~

CI

Vs "±15Y

111111111

9405

~

Vs

R~, ~I~ .n- J:S.Hm

~:

~~

;

..... ~ 0.9999
011_=
:I

1Rs - 30 kll
111111111

1M

0.999
-55 -35 -15

100M

10M

15
Vs - +15V

~

~

I- _~.. J~

'"

.

iii

e:::>
"

1.0

lk

10k

lOOk

'"

,/

,

i-t'\

10

TA - 25"C'
DISTORTION < 5"

z

i!;
"-r-FREQUENCY 1Hz!

".s

60
50

:3

40

iii

1M

10

"
t;

...t

e:
::>
"

~

80
m

l-

~
~

30

~

~

20
10

TA "'25°C

0

Vs" ±lSV

c-- -

To--55"C

20
30
CURRENT ImA)

40

Supply Current

Power Supply Rejection

:!!

co

D
lOOk

-T. -25"C

10

90

s -±15;JhW
V

7' To -125"C '- Vs' ±15V

i!;
e:
::>
"

,/

TEMPERATURE I"CI

Large Signal Frequency Response
14

65 85 105 125

10

R.. -300t;.. " , R•• -10m
1
-55 -35 -15 5 25 45 65 85 105 125

1M

FREQUENCY 1Hz)

~

......
",

",

0.1

12

........

'"
--~~.1'"'" "","'1

I-

::>

co

/

.... -

-

YOUT =tIDY
10

25 45

Positive Output Swing

10

§

5

r- r-.

J

=+5V

TEMPERATURE I"C)

Symmetrical Output Swing

Output Resistance

z
Ii;

1

~

FREQUENCY 1Hz)

100

u

R~ _IIOk I
1·200H. -

180
135

PHASE .

-30

210
225 ;;;!

As;; 10 knJ

~

....

1\

!;

e:
::>
"

I

10

5 25 45 65 85 105 125 ..

TEMPERATURE I"C)

"

o

iii

~

0.1
-55 -35 -15

10

~

~ ;;;;:=Rs '100K

::!
Ci
z

i"'"

1.0

s:N

Large Signal Pulse Response

_ 1000
Vs'

1

15

Output Noise Voltage

Input Current
100

..... ~ ~
Vs = ±SY

f:::: ~ Vs '" ±15Y

I"=: ~~

·10

10M

100

lk

10k

lOOk

FREQUENCY 1Hz)

1M

10M

-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE I"C)

2·153

...

o
N

::E

....
.....

auxiliary circuits

...o
::E

""'

....

·MlybllddedtDreduCl

interlUlldissipation.

Offset Balancing Circuit

Increasing Negative Swing Under Load

typical applications·· (con't)

."
L~R1 Rle1
Rs eR2

R," R1

Simulated Inductor

..

Differential Input Instrumentation Amplifier

"

'0" b~1C1

Bandpass Filter

• 60Hz
R1=R2"2R3
C1-C2'"

High Q Notch Filter

..
"

·VlluH are for 10kHz
cutoff. Usesilvered mica
capacitors fOf good
temperature stability.

Low Pass Active Filter

"

I_II

tUsecapltitorwith
polycarbonateteflon
or polyethylene
dielactric.

Buffered Reference Source

Sample and Hold

"

1"rdlon,polethylene or poly·
urbonate dielectric clplcitor,
--Wom ClSII drift lea thIIn

3mVlsIC.

Low Drift Sample and Hold'
**Pin connections shown are for metal can.

2-154

High Pass Acti.e Filter

~

r-

......

3:

typical applications·· (con't)

o

.......

"'
'"

r-

3:

...
o

..'"
N

N

Comparator for Signals of Opposite Polarity

DIGITAL
SWITCH
DR'VI

Driver for AID Ladder Network
Zero Crossing Detector

Buffer for Analog Switch"
Comparator for AC Coupled Signals

.:

~

z:-:

"

INt,4

High Input Impedance AC Amplifier

Comparator for AID Converter

lOUT"

Using a Binary-Weighted Network

~~~;

""1

R3=R4+R5

R1;; R2

Bilateral Current Source

"

Ull
1%

"

LDllle

AULOG

IIPUT

R4

i_

"
I ,··,
... "

...."

Comparator for AID Converter
Using.a Ladder Network

**Pin connections shown are for metal can.

Sine Wave Oscillator

2-155

...o

M

Operational Amplifiers

~

....I

LM310 voltage follower
general description
The LM310 is a monolithic operational amplifier
internally connected as a unity-gain non-inverting
amplifier_ It uses super-gain transistors in the input
stage to get low bias current without sacrificing
speed_ Directly interchangeable with 301, 741 C
and 709C in voltage follower applications, this
device has internal frequency compensation and
provision for offset balancing_ Outstanding characteristics include:
• Input current: 10 nA max_ over temperature
• Small signal bandwidth: 20 MHz

• Slew rate: 30V//J-s
• Supply voltage range: ±5V to ±18V
The LM310 is useful in fast sample and hold
circuits, active filters or as a general-purpose buffer_
Further, the frequency response is enough better
than standard IC amplifiers that the follower can
be included in the feedback loop without introducing instability_ It is a plug-in replacement for
the LM302 voltage follower, offering lower offset
voltage, drift, bias current and noise in addition to
higher speed and wider operating voltage'range_

schematic·· and connection diagrams
,...

...

Flat Package

Metal Can

,Note: Pin 4 connected to case.

Note: Pin 5 connected to bottom ofpackege.

Order Number LM310H
See Package 11

Order Number LM310F
See Package 3

Dual-I n-Line Package

"lAIC( l
II

v'

Note: Pm6 connected to bottom ofpackaga.

Order Number LM310D
See Package 1

Dual-I n-Line Package

"'' ' B' ' ' '
Ne

2

IN'UT

J

v-

4

~

2-156

5

BOOSTER

Order Number LM310N
See Packaga 20_

tUseceplcitorwithpolycarbonate
teflon or polyethylene dielectric.

""Pin connections shown are for metal can.

v.

OUTl'UT

rOPV.EW

typical applications·-

Sample and Hold

J

I

Low Drift Sample and Hold"

r-

s:w

...

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Input Voltage (Note 2)
Output Short Circuit Duration (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

o
±18V
500mW
±15V
Indefinite
O°C to 70°C
_65°C to 150°C
300°C

(Note 4)

CONDITIONS

MIN

TVP

MAX

UNITS

Input Offset Voltage

TA

= 25°C

2.5

7.5

mV

Input Bias Current

TA

= 25°C

2.0

7.0

nA

Input Resistance

TA

= 25°C

10'0

Input Capacitance

10'2

0

1.5

pF

0.9999

V/V

Large Signal Voltage
Gain

TA = 25°C, Vs = ±15V
VOUT = ±10V, RL = SKO

Output Resistance

TA

= 25°C

0.75

2.5

0

Supply Current

TA

= 25°C

3.9

5.5

mA

0.999

Input Offset Voltage

10

Offset Voltage
Temperature Drift

10

Large Signal Voltage
Gain

Vs
RL

= ±15V, VOUT = ±10V
= 10KO

Output Voltage Swing
(Note 5)

Vs

= ±15V, RL = 10KO

Supply Voltage
Rejection Ratio

/lvtc

10

Input Bias Current

±5V $; Vs $; ±18V

0.999

nA

V/V

±10

70

mV

V

80

dB

Note 1: The maximum junction temperature of the LM310 is 8SoC. For operating at elevated
temperatures, devices in the TO-S package must be derated based on a thermal resistance of 150oCfW.

junction to ambient, or 45°C/W. junction to case, For the flat package, the derating is based on a
thermal resistance of 18SoC/W when mounted on a 1I16-inch-thick epoxy glass board with ten,
O.03·inch-wide. 2-ounce copper conductors. The thermal resistance of the dual-in-line package is
100oC/W, junction to ambient.

Not8 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the

supply voltage.
Note 3: Continuous short circuit is allowed for case temperatures to 70°C and ambient temperatures
to 55°C. It is necessary to insert a resistor greater than 2 kn in series with the input when the
amplifier is driven from low impedance sources to prevent damage when the output is shorted.

Note 4: These specifications apply for ±5V $; Vs $; ±18V and DoC $;TA $; 70°C. unless otherwise
specified.
Note 5: I ncreased output swing under load can be obtained by connecting an external resistor
between the booster and V- terminals. See curve.

2·157

g

o
....

CW)

typical performance characteristics

:::E
...I

Input Current

Output Noise Voltage

I-

ill

..~
~

-

~

f!!

1.0

Vs· ±15~=
To ·25°C_

i

10

.

15

~
Vs - +15V

!

co

>

...
..~

to ~
~

c;
z

10

20

30

40

50

60 70

80

~

10
10

Voltage Gain

100

lk

~

Z

~

~
~

> -25

0.999

~
co

co
> 0.99

1M

10M
TIME '",)

Voltage Gain

-

-40

1M

225
180

PHASE .

90

I 1111111

45

Rrl;'~Lkn-~

Vs. !15V'11

IRs· 30 kn

To ·25"C..II

I I 111111

1M

lOOk

FREQUENCV (HI')

Output Resistance

0.999

10M

VOUT

20

Positive Output Swing
Vs" ±15V

.

~

-.
10

r- To ·25"C :--.
r- -TA "OOt

~

.
~
l-

~
=

i-

I

T•• TO'C

I

co

-

10k

1k

o

1M

lOOk

20

12

-h

10

\

~

0

10

60

~

50

ill

10M

30

40

Supply Current

C
S

:::::::1-0.

..
I-

ill

40

Vs·

,fv== r=::: I==:::: ~.±15V

---=

~
>

30

~

20
10

TA = 25°C
Vs " ±1SV

0
-10

"r-.

20
CURRENT ImA)

70

z

~

FREQUENCY IH.)

80

80

::l>

5
eo
g

1M

70

Power Supply Rejection

Vs.±15~JW)

TA ;; 25°C
DISTORTION < 5%

~

lOOk

50 60

90

co

o

30 40

TEMPERATURE rC)

Large Signal Frequency Response

14

I

0
10

FREQUENCY IH.)

2-158

15

=±10Y

IIIIJ.II

1.0

10

SUPPLY VOLTAGE I'V)

15

: ~~ :.;~~~

0.1

.

5

100M

Symmetrical Output Swing

10

. /r-

~
co

>

In

~

~O.9999

10

9

~

.
I ....
~

FREOUENCY 1Hz!

100

I-

"~ ~

135 ~

Rs ·'Okn~

-30

lOOk

~

Rs ·3kn.lfml

-15

Rs ·10K
'·200 H.
TA - 25°C

270

\

-10
-20

0.99999

f',

-35

z

-15

-5

...
~

10k

~

-10

lOOk

m

1k

-5

Voltage Gain

z

u

10k

10

;;0.9999

..
.iii.

10K

Vs =±1SV
To ·25"C

FREQUENCY 1Hz)

0.99999

~

=

I

TEMPERATURE I'C)

.

~

~

Rs

\

~

5

~Rs·'00K

z

0

..

10

~

.J

1

lOU

~

0.1

~

Large Signal Pulse Response

_ 1000

100

o
100

lk

10k

lOOk

FREQUENCY 1Hz!

1M

10M

01020

30

40

~

"

TEMPERATURE rC)

10

"

r
~

auxiliary circuits **

....

W

o

".
'"
4Mav beadded to reduce
IdternaldlSSlpatlon.

Offset Balancing Circuit

Increasing Negative Swing Under Load

typical applications** (con't)

1
f o " 271'81 Cl

·60Hz
RI-02=283

CI"C2=~
Fast Inverting Amplifier with
High Input Impedance

High Q Notch Filter

""

Rs;; R2

Rp " AI

Simulated Inductor

Fast Integrator with Low Input Current

""

Bandpass Filter

'"

N"

'""

Differential Input Instrumentation Amplifier

Use silvered mica capacitors for
good temperature stability.

Low Pass Active Filter

"

11. .

,....",

".

UhF

'..UI--1
Buffered Reference Source

*Valuesarefor 100 Hz cutoff.
Use metallzed polvtarbonate
capacitonforgoodtemperaturu
stability.

High Pass Active Filter

**Pin connections shown are for metal can.

2·159

...

o

M

~

typical applications** (con't)

..J

"'"
"'
'"
"

Comparator for Signals of Opposite Polarity

CIt,I/Al

,.,
"

$WlleH

DR'Vf

,.1""

"'"

Driver for AID Ladder Network

Zero Crossing Detector

r

*Switchsubstratesareboolstrapped
to leduce output capacitance of switch.

Buffer for Analog Switch*
Comparator for AC Coupled Signals

"'

IOU

High Input Impedance AC Amplifier

Comparator for AID Converter
Using a Binary-Weighted Network

RlV IN

lOUT =

R"i'Fi5

R3= R4+R5
R1 = R2

Bilateral Current Source

1000F

"
"'
"

lOOK

""

'"lOGIC

"'

m,
Comparator for AID Converter

Using a Ladder Network
**Pin connections shown are for metal can.

2-160

Sine Wave Oscillator

r-

...s:
Operational Amplifiers
rs:
...
LM112/LM212 operational amplifier
N

.......
N
N

general description
The LMl12 and LM212 are micropower operational amplifiers with very low offset-voltage and
input-current errors-at least a factor of ten better
than FET amplifiers over a -55°C to 125°C
temperature range. Similar to the LM 108 series,
that also use sUpergain transistors, * they differ in
that they include internal frequency compensation
and have provisions for offset adjustment with a
single potentiometer.
These amplifiers will operate on supply voltages of
±2V to ±20V, drawing a quiescent current of only
300/lA. Performance is not appreciably affected
over this range of voltages, so operation from
unregulated power sources is easily accomplished.
They can also be run from a single supply like the
5V used for digital circuits. Some noteworthy
features are:
• Maximum input bias current of 3.0 nA over
tem peratu re

• Offset current less than 400 pA over temperature
• Low noise
• Guaranteed drift specifications
The LMl12 series are the first IC amplifiers to
improve reliability by including overvoltage protection for the MOS compensation capacitor.
Without this feature, IC's have been known to
su ffer catastrophic failure caused by shortduration overvoltage spikes on the supplies. Unlike
other internally-compensated IC amplifiers, it is
possible to overcompensate with an external
capacitor to increase stability margin.
The LM212 is identical to the LMl12, except that
the LM212 has its performance guaranteed over a
-25°C to 85°C temperature range instead of
_55° C to 125° C.
'Patent pending

schematic diagram**

auxiliary circuits **
Offset Balancing

.,

tOOK

v'

Overcompensation for Greater Stability
Margin

C,

T'OODPF

* *Pin connections shown are for metal can.
Dual-In-Line

connection diagrams
Metal Can

Flat Package

"

,Note: Pin 4 connectad to case.

Note: Pin 6 connected to bottom of package.
Compensation terminal not brought out on
flat package.

11 y'

Note: Pm 7 connected to bottom of package.

TOP ViEW

Order Number LM112H or LM212H

See Package 11

Order Number LM112F or LM212F
See Package 3

Order Number LM112D or LM212D
See Package 1

2-161

...

N
N

:!:
.....

absolute maximum ratings

N

Power Dissipation (Note 1)

.......

......

:!:
.....

Supply Voltage

±20V
500mW
±'IOmA
±15V

Differential Input Current (Note 2)

I nput Voltage (Note 31
Output Short-Circuit Duration
Operating Temperature Range LM112

Indefinite

_55°C to 125°C
_25°C to 85°C
_65°C to 150°C
300°C

LM212
Storage Temperature Range
Lead Temperature (Soldering, 10 secl

electrical characteristics (Note 4)
PARAMETER

CONDITIONS

MIN

TVP

MAX

UNITS

Input Offset Voltage

T A =25°C

0.7

2.0

mV

Input Offset Current

TA = 25°C

0.05

0.2

nA

Input Bias Current

TA ~25°C

0.8

2.0

Input Resistance

TA = 25°C

Supply Current

TA = 25°C

Large Signal Voltage Gain

TA = 25°C, Vs = ±15V
V OUT = ±10V, RL ~ 10 k!!

30

70
0.3

50

nA
M!!

0.6

mA

V/mV

300

Input Offset Voltage

3.0

mV

Average Temperature
Coefficient of Input

Offset Voltage

3.0

15

Input Offset Current

/-IV/oC

0.4

nA

2.5

pA/oC

Average Temperature
Coefficient of Input

Offset Current

0.5

Input Bias Current

Supply Current

TA = +125°C

Large Signal Voltage Gain

Vs = ±15V, V OUT = ±10V

Output Voltage Swing

Vs = ±15V, RL = 10 k!!

±13

Input Voltage Range

V s = ±15V

±13.5

0.15

RL~10k!!

3.0

nA

0.4

mA

25

V/mV
±14

V

Common Mode Rejection
Ratio

85

100

dB

Supply Voltage Rejection
Ratio

80

96

dB

V

Nots 1: The maximum junction temperature of the LM112 is 150°C, while that of the LM212 is

100 C. For operating at elevated temperatures, devIces in the TO-5 package must be derated based on
a thermal resistance of 150o C/W, junction to ambient, or 45°C/W, junction to case. For the flat
package, the derating is based on a thermal resistance of 18SoC/W when mounted on a 1/16-inch-thick
epoxy glass board with tep, O.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the
dual·in-line package is 100 ~/W, junction to ambient.
Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive
current will flow if a differential input voltage in excess of 1 V is applied between the inputs unless
some limiting resistance is used.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage.

Note 4: These specifications apply for ±5V ~ Vs ~ ±20V and -55°C ~ T A ~ 125°C, unless otherwise

specified.

With

_25°C ~T A ~850C.

2-162

the

LM212,

however, all

temperature specifications are

limited

to

r-

3:
..&

typical performance characteristics

..&

N

Offset Error

Input Currents
2.0

;;
oS 100

1.5

'"
!:;

Drift Error

10001lli~

~

~
....
ffi
a:

0.5

~

0.15

~
~

i'-.

1.0

........

'"

.IB1AJ- f - f -

r-

">

r-

~

10

z

1.0

~.3
"

"....=>

0.10

I"'-- I--.

0.05

....
~

OffSET

::i

t:

g;

'">

-55 -35 -15 5

ffi

25 45 65 85 105 125

1M

Input Noise Voltage
lZ0

..~

'"..

100
80

~

60

~

m

As 'IM

~

100

"t;

..;;:

111111
As -lOOK

~

~

~

i!!

~
i'11111

10
10

100

IK

20

POSITIVE SUPPLY

lOOK

100

Voltage Gain

fA

~25°C

............

!

~

iA'r

100

>

IK

10

C
-

....=>

"

20

15

"

GAIN
PHASE

"-

100
80

i"I..

Cs

60
4D
20

t---I--t-,"'t--+-+---t

10°

1--1--;/9---t-+-+---1

" 10-'

1-71--t--t-+-+---1
100

,

..

'\OOO~~~

3

....

~
~

~-5i,c

-

"I-- t-I-- I-- ~
."Cs'
1000
pF
t-- t--

90

:l!

~
~

~

::;
45

"-

~

100

1K 10K lOOK 1M

o

FREQUENCY 1Hz)

T~ - +lZl·c

I I
I I

10

5

15

20

SUPPLY VOLTAGE I±V)

Voltage Follower Pulse
Response
10

~

i

~
~

'"'"
"

!:;
>

"

.....

Vs· ±15Y

- 'J!- I-

INPUT

Ll

~

=>

TA =25°C

I I
I I
I I

l-

i'"

100

T~' +Z5JC

-

100

'"

o

-20
10

/,...

300
200

..

TA =2SoC
Vs'" ±15V

I'

.......
0.1

400

.. ,...10i I---

I

180
135

10M

T.· -55'C

Large Signal Frequency
Response

12

1M

I I

SOD

OUTPUT CURRENT I±mA)

1==;=

10K lOOK

600

III

o

IK

FREQUENCY IItz)

16

120

'"'"

10'

10M

Vs '" +15V

TA

Open Loop Frequency
Response

!:;
>

1M

~

!~

Supply Current

TA '25'Ci

=>

-

SUPPLY VOLTAGE I±V)

~

lOOK

TA '" 125°C

o
10

'"z~

10K

I--

....~

90

iii

-..,

-"

'"z

TA ::_55°C

~

'"'"

10'

Output Swing
15

f: 1 Hz

110

."

FREQUENCY 1Hz)

120

'"z~

§

~

~

-20

10K

100M

~

"",,-NEGATIVE SUPPLY

" ""

40

10M

Closed Loop Output Impedance

Vs = ±15V
TA "'25°t
A· I· '

FREQUENCY 1Hz)

iii

1M

INPUT RESISTANCE In)

Power Supply Rejection

1000

~

100M

10M

INPUT RESISTANCE 1m

TEMPERATURE (OC)

~
~

10

;;;

o

is

100

a:
a:

-2
-4

I

III
I

OUTPUT

If

-6
-8
-10

IK

10K

FREQUENCY 1Hz)

lOOK

o 50 100150200250300350 4D0
TIME"..)

2-163

......
r3:
N
..&
N

Operational Amplifiers
LM312 operational amplifier
general description
The LM312 is a micropower operational amplifier
with very low offset voltage and i'nput-current
errors-approaching that of FET amplifiers over its
operating temperature range_ Similar to the LM308
series, that also uses supergain transistors t , it differs in that it includes internal frequency compensation and has provisions for offset adjustment
with a single potentiometer_

• Low noise

The LM312 series is the first IC amplifier to improve reliability by including overvoltage protection for the MOS compensation capacitor. Without
this feature, IC's have been known to be sensitive
to catastrophic failure caused by short-duration
overvoltage spikes on the supplies. Unlike other
internally-compensated IC amplifiers, it is possible
to overcompensate with an external capacitor to
increase stability margin.
The low current error of the LM312 makes
possible many designs that are not practical with
conventional amplifiers. In fact, it operates from
10 Mn source resistances, introducing less error
than devices like the l09C with 10 kn sources_
Integrators with worst case drifts less than 1 mV I
sec and analog time delays in excess of one hour
can be made using capacitors no larger than l/lF.
The device is well suited for use with piezo-electric,
electrostatic or other capacitive tranducers, in
addition to low frequency active filters with small
capacitor values.

• Guaranteed drift specifications

tpatent pending

This amplifier will operate on supply voltages of
±2V to ±20V, drawing a quiescent current of only
300/lA. Performance is not appreciably affected
over this range of voltages, so operation from
unregulated power sources is easily accomplished.
It can also be run from a single supply like the 5V
used for digital circuits. Some noteworthy features
are:
• Maximum input bias current of l.O nA
• Offset current less than 1.0 nA

schematic diagram **

auxiliary circuits **
Offset Balancing

.,

lOOK

v'

Overcompensation for Greater Stability
Margin

C,

~'ODDPF

**Pin connections shown are for metal can.

Dual-In-line

connection diagrams
Metal Can

Flat Package
12 IAlANCE
II Y'

,-

Note: Pin 4 connected to case.

Order Number LM312H
See Package 11

2-164

Nate: Pin 6 connected to bottom of package.
Compensation terminal not brought out on
flat package.

Order Number LM312F
See Package 3

Note: Pm 1 connec,td,o bottom 01 picklge.

Order Number LM312D
See Package 1

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±18V
500mW
±10mA
±15V
Indefinite
O°C to 70°C
_65°C to 150°C
300°C

(Note 4)

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

I nput Offset Voltage

TA

= 25°C

2.0

7.5

mV

Input Offset Current

TA

= 25'C

0.2

1

nA

I nput Bias Current

TA

= 25'C

1.5

7

Input Resistance

TA

= 25'C

Supply Current

TA

= 25'C, Vs = ±15V

Large Signal Voltage

TA = 25'C, Vs = ±15V
V OUT = ±10V, RL ~ 10 kQ

Gain

10

40
0.3

25

0.8

mA

V/mV

300

I nput Offset Voltage

nA
M!!

10

mV

30

/J.V/oC

1.5

nA

10

pA/'C

10

nA

Average Temperature
Coefficient of Input

Offset Voltage

6.0

Input Offset Current

Average Temperature
Coefficient of Input
Offset Current

2.0

Input Bias Current

= ±15V, V OUT = ±10V

Large Signal Voltage

Vs

Gain

RL~

Output Voltage Swing

Vs

= ±15V, RL = 10 kfl

±13

Input Voltage Range

Vs

=±15V

±14

Common Mode

10k!!

15

V/mV
±14

V

80

100

dB

80

96

dB

V

Rejection Ratio

Supply Voltage
Rejection Ratio

Note 1: The maximum junction temperature of the LM312 is 85°C. For operating at elevate1 tem-

peratures, devices in the Tg-5 package must be derated based on a thermal resistance of 150 C/W,
junction to ambient, or 4g C/W, junction to case. For the flat package, the derating is based on a
thermal resistance of 185 C/W when mounted on a 1/16-inch-thick epoxy glass board with ten,
O.O~inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is
100 C/W, junction to ambient.

•

Note 2: The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive
current will flow if a differential input voltage in excess of 1V is applied between the inputs unless
Some limiting resistance is used.
~han ±15V, the absolute maximum inpu~ voltage is equal to the
supply voltage.
Note 4: These specifications apply for ±5V S Vs S±15V and OOC STA 'S70oC, unless otherwise
specified.

Note 3: For supply voltages less

2·165

...
N

('I)

:E

typical performance characteristics

....I

Offset Error

Input Currents

..

I

...

~
>

~

~
a:

~

.25

~
!!;

.......

.20

TA _25°&

w

~IAS

~

., 1000

I"---

~

r- ~SET- t--

!!;

...
>

:;

o

10

20

30

40

50

60

10

~

80

111111111

1.0

lOOK

~
1!i

~

111111
Rs -lOOK

>-

=>
~

!'Ii III
100

lK

['...

80

" "

60

......

20

POSITIVE SUPPL Y

lOOK

10K

100

lK

= ±15V

TA

= 25°&

Av

=

10'

1

~

'"' "'"

10K

lOOK

1M

100

10M

FREQUENCY IH>I

~z

TA _1 250 &

10

...=>

0

350

j

300

i

250
200

~

100

...

t~\oo/

~

100

Vr±;5V
TA I~ Oo~

TA~25°C~

~

=10 e

10K

lOOK

1M

10M

Supply Current
400

i""li: F::::

P"'T. ~ DoC

1K

FREQUENCY 1Hz!

Output Swing
f= 1 Hz

~>

Closed Loop Output 1mpedance

Vs

15

TA

100M

~

40

Voltage Gain

V

10M

INPUT RESISTANCE Ill)

-20

120

w

1M

100M

""'NEGATIVE SUPPLY

FREQUENCY 1Hz!

:ii
...

10M

Power Supply Rejection

100

110

11111

1M

120

11111
Rs=lM

Z

C>

TYPICAL

Input Noise Voltage

~

i<

INPUT RESISTANCE Inl

1000

10

t=EEEEI!~~~

~

MAXIMUM

10

TEMPERATURE rCI

10

100

g;

..~

.10

miIB.

tiD."

~

100

co

.15

o

Drift Error

~ 1000

>-

co

-

~A ~oJc

f--

-f..--

150

TA ::25°C

TA " 10 0 e

50

o

90
10

20

15

SUPPLY VOLTAGE I±VI

Large Signal Frequency

Response

Response

"

100

'":ii
z

..'"~

PHASEI~

80

1"'-

60

>

20

Co

r-z 1"'-

w

40

---

GAIN

I-- I-I-- I-- J-

~ \000 ~~;f

"-

t-- t--

R-.

135

90

~

~

~

1;

I--

45

:3

.

~

1\

12

100

lK

10K lOOK 1M

FREQUENCY 1Hz!

2-166

10

=25°&
= ±15V

..'"

I
INPUT

~

...~=>
~

TA ;25°&
Vs " ±15V.

f-

'"

i\

-II FFI
j

w

!:;
co

>

o

-20
10

Voltage Follower Pulse
Response

~

......
0.1

TA
Vs

100

lK

"

10K

FREQUENCY IH,I

20

15

ISUPPLY VOLTAGE I±VI

16
180

-

Co~1000.F-'

10

5
OUTPUT CURRENT I""AI

Open Loop Frequency

120

m

o

o

-2
-4

OUTPUT

V

-6

-8
-10
lOOK

o 50 100150200250300350400
TIME 1",1

Operational Amplifiers
LM216/LM216A/LM316/LM316A operational amplifier
general description
These devices are precision, high input impedance
operational amplifiers designed for applications
requiring extremely low input-current errors. They
use supergain transistors in a Darlington input
stage to get input bias currents that are equal to
high-quality FET amplifiers-even in limited temperature range operation. The low input current is,
however, obtained with some sacrifice to offset
voltage, offset voltage drift and noise when compared to the non-Darlington LM 112 series. Noteworthy specifications include:
• Guaranteed bias currents as low as 50 pA
•

Maximum offset currents down to 15 pA

• Operates from supplies of ±3V to ±20V
• Supply current only 300 /J.A at ±20V
These operational amplifiers are internally frequency compensated and have provisions for offset
balancing with a single external potentiometer.

Further, unlike most other internally compensated
amplifiers, the MOS compensation capacitor is
protected to prevent catastrophic failure from
overvoltage spikes on the supplies.
The low current error of these amplifiers make
possible many designs that were previously impractical with monolithic amplifiers. They will
operate from 100 M.\1 source resistances, introducing less error than general purpose amplifiers
with 10 k.\1 sources. Integrators with worst case
drifts less than 10/J.V/sec and analog time delays in
excess of one day can also be made using capacitors no larger than 1 /J.F.
The LM216A and LM316A are high performance
versions of the LM216 and LM316. The LM216
and LM216A are specified for operation from
_25°C to 85°C, while the LM316 and LM316A
are specified from 0° C to 55° C.

schematic diagram

auxiliary circuits **
Overcompensation for Greater

Stability Margin

C1

JIDDO"
Offset Balancing

.,
tOOK

v-

**Pin connections shown are for metal can.

Dual·ln-Line

connection diagrams
Metal Can

Flat Package

"
I

,Note: Pin 4 connected to else.

CDMPUISATIOI

Note: Pm 8 connected to bottom of pickage.
CompBnsation termin.1 not brought out on
flit package.

Note: Pin 1 tonnectedto hottom of pickage.

Order Number LM216F or
LM216AF or LM316F or
LM316AF
See Package 3

Order Number LM216D
or LM216AD or LM316D
or LM316AD
See Pack~ge 1

tOPIIlEW

Order Number LM216H or
LM216AH or LM316H or
LM316AH
See Package 11

2-167



10M

1M

100M

IZO
100

i'..

80

~

~

~ 1,000

Ul 40
a:

~

~w

~

~
I-+Ht

60

~

"-

'i'oo.

~

POSITIVE SUPPLy-...

"

10

TA'Z5'C

'"z

TA' 85'C"

1;;

TA =25'C-

~

TA - -25'C

iii

o

ZO

...

~ 300

§

-

; 200

~

z

60

..

40

Cs = 1000 pF;

135

I- Cs = 1000 pF

~
~

90 ~

,

r-

GAIN
r-PHASE---

45

......

-20

i

10

100

Ik

10k lOOk 1M

FREQUENCY (Hzl

-

1
TA=85'C-

10

;12

Voltage Follower

INPUT

w

=

>

,
Ik

10k

FREoUENCY (Hz)

'/

--

1/

i\

iii

..'"~

Vs;; ±15V

-

-,

~
'"z

"iii'"

TA = 25'C

8

Vs " ±15V

1;;

!!. ~ 4

20

Pulse Response

\

100

-

15

10

o

-40
0.1

~

SUPPLY VOLTAGE (,VI

TA :2S0C

~

-

~V
5

16

20

10M

o

o

180

I'

1M

100

Large Signal
Frequency Response

100
80

lOOk

TA = 2"JC

I...--'"

OUTPUT CURRENT ('mAl

120

m

10k

TA - _25°C

.3

en

I I

Frequency Response

=
>

C 400

\

.!l 10

I

10
15
SUPPLY VOLTAGE (,VI

1k

FREoUENCY (Hzl

Supply Current

:>

Open Loop

w

100

1M

100

5

~

r-Tt--+-+-+--r--1

500

0

95

'"~

010- 1

Vs - ±lSV

TA = 85'C

o

>

lOOk

1=1, Hz

LJ,c "-

r--1-.M--+-+---1r--1

~

15

I I

:!11D

105

10k

100

;

Output Swing

115

~

Ik

r--1--+~~-+-~r--1

FREQUENCY (Hz)

Voltage Gain
IZO

~

100

10'

~

\

-20

102

U

~

-2
-4
-6

/ OUTPUT

1/

r

-8
lOOk

-10
I DO

ZOO

300

...

en

W

"' ' -

lOOk

Ik
10k
FREQUENCY (Hz)

§

s:
W

»

10' ,......-,---r-....-,---;r--.,

~GATIVE SUPPLY

ZO

0.3

0.2

Closed Loop Output
Impedance

Vs "'±15V
TA = 25'C
Av= 1

'r-...

0.1

DIFFERENTIAL INPUT VOLTAGE (VI

Power Supply Rejection

~

..
'"

-0.3 -0.2 -0.1

1000M

INPUT RESISTANCE (n)

Input Noise Voltage

100

r-

-100

1.0

TEMPERATURE ('CI

:;;~

...en

........

-80

90

10'OOO~111

........
r-

\.

- -60

~
10

»
s:
W

~

~ -40

;;

50

N

1\

...u -20

MAXIMUM LMZI6A1LM316A

~

-

...en

TA ,IZ5'C

~

10

~

s:

II

5 20

~O

I-.

OFFSET

10
5

60

o

~IAS

,

80

'"~

-

""-

........
r-

Input Current

Offset Error

Input Currents

400

TIME ""I

2·169

...

~r----------------------------------------------------------------'

N

~

Operational Amplifiers

...I
......

...
~

~

...I

LM118/LM218 operational amplifier
general description
The LM118 and LM218 are precision high speed
operational amplifiers designed for applications
requiring wide bandwidth and high slew rate. They
feature a factor of ten increase in speed over gen·
eral purpose devices without sacrificing DC performance.

compensated amplifiers, external frequency com
pensation may be added for optimum performance
For inverting applications, feedforward compen
sat ion will boost the slew rate to over 150V Ips
and almost double the bandwidth. Overcompensa·
tion can be used with the amplifier for greater
stability when maximum bandwidth is not needed.
Further, a single capacitor can be added to reduce
the 0.1% settling time to under 1 ps.

features
•
•
•
•
•
•
•

15 MHz small signal bandwidth
Guaranteed 50V Ips slew rate
Maximum bias current of 250 nA
Operates from supplies of ±5V to ±20V
Internal frequency compensation
Input and output overload protected
Pin compatible with general purpose op amps

The high speed and fast settl ing time of these op
amps make them useful in AID converters, oscillators, active filters, sample and hold circuits, or
general purpose amplifiers. These devices are easy
to apply and offer an order of magnitude better
AC performance than industry standards such as
the LM709.

The LM 118 has internal unity gain frequency com·
pensation. This considerably simplifies its application since no external components are necessary
for operation. However, unlike most internally

The LM218 is identical to the LMl18 except that
the LM218 has its performance specified over a
_25°C to 85°C temperature range, instead of
_55°C to 125°C.

schematic and connection diagrams

Metal Can Package

Order Number LM118H or LM218H
See Package 11

Flat Package

..

BALANCEI
COMPENSATlON·1

I"LANCEI

- ' -_ _ _. . J - tOMNSATIDN_1

Order Number LM118F or LM218F
Se. Package 3

. '8.

Dual-ln·Line Package

*Pin connections shown on schematic diagram and typical applications are

Nt

for TO-5 package.

I.IIl..uCE!

COWEIiUTION.l

typical applications

2-170

nIt

II cOWt:"'AnON·!

IItPUTS.

~

OUTPUT

Fast Voltag. Follower

r

3

Fast Summing Amplifier

'"PUT--.''~"rL'''''

Differential Amplifier

-

11 yo

"OUTPUT

V' •

• ::~~:~~110.-3

Ne

•

J

Ie

Order Number LM118D or LM218D
See Packago 1

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
I nput Voltage .( Note 3)
Output Short-Circuit Duration
Operating Temperature Range LM 118
LM218
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

±20V
SOOmW
±10mA
±lSV
Indefinite
-SSoC to 12SoC
- 2SoC to 8SoC
-6SoC to lS0°C
300°C

(Note 4)
CONDITIONS

MIN

TYP

MAX

UNITS

Input Offset Voltage

TA = 25°C

2

4

mV

Input Offset Current

T A = 25°C

6

50

nA

Input Bias Current

TA = 25°C

120

250

nA

Input Resistance

T A = 25°C

3

Supply Current

T A = 25°C

5

Large Signal Voltage Gain

T A = 2SoC, Vs = ±15V
V OUT = ±10V, RL ~ 2 kf!

50

200

V/mV

Slew Rate

T A = 25°C, Vs = ±15V, Av = 1

50

70

V/lls

Small Signal Bandwidth

TA = 25°C, Vs= ±15V

15

MHz

Input Offset Voltage

Mf!

8

mA

6

mV

Input Offset Current

100

nA

Input Bias Current

500

nA

7

mA

Supply Current

T A =+125°C

Large Signal Voltage Gain

Vs = ±15V, V OUT = ±10V
RL~2 kf!

4.S

25

Output Voltage Swing

Vs = ±15V. RL = 2 kf!

±12

Input Voltage Range

V s =±15V

±11.5

g

VlmV

±13

V
V

Common Mode Rejection Ratio

80

100

dB

Supply Voltage Rejection Ratio

70

80

dB

Note 1: The maximum junction temperature of the LMl18 is 150°C. while that of the LM218 is
lOOoe. For operating at elevated temperatures, devices in the TO-S package must be derated based on
a thermal resistance of 150°C/W. junction to ambient, or 4S o C/W, junction to case. For the flat package, the derating is based on a thermal resistance of 18SoC/W when mounted on a 1/16-inch-thick
epoxy glass board with ten, O.03-inch-wide, 2'Qunce copper conductors. The thermal resistance of the
dual-in-line package is lOOoe/W. junction to ambient.

Note 2: The inputs are shunted with back-ta-back diodes for overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of lV is applied between the inputs
unless some limiting resistance is used.
Note 3: For supply voltages less than ±lSV, the absolute maximum input voltage is equal to the
supply VOltage:
Note 4: These specifications apply for ±5V ~ Vs ~ ±20V and _55°C 5. T A ~ 125°C, unless otherwise specified. With the LM218, however, all temperature specifications are limited to -2SoC.s. TA ~
85°C. Also, power supplies must be bypassed with 0.1 ~F disc capacitors.

2-171

...

00
N

:E
...I

typical performance characteristics

......

...
:E

00

Input Current

100

115

Vs" ±lSV

~ ..!!AS

150

...I

100

....... ~5!C

iii 110
:!!

50

..
;

10
8

OFFSET

r-c;

;:

105 - TA '125"C

'"

100

..

I
I

o

~

It:

25 45 65

85 105 125

5

Input Noise Voltage

10

:!! 100

z

'"Ei
:;;a:

~ 300

~ tOO

w

..i!l'"'"
....

3D
10

8

80
60

100

FREQUENCY IHzl

u

10'
AV l'1000

z

10'

~

10'

"'"

........

!; 10- 1

~

'"

10-2
10-3

"

'\j

--- -

10

100

1-

~

\

V r-

,.

::;
~
z
:Ii
z

~

.'"
>
!:

22

18

~

~=2VC

!!!

iii

~

~

10

~t:::~

t--.. r--:: l"::::;:

12

r-..

.......

10

8
-55 -35 -15

5

25 45 65 85 105 125

TEMPERATURE I"CI

2-172

.......

110

]
~

~

20

.\

-200

i

20

15

-600
-0.8 -0.6 -OA -0.2

25

r- _

r--

....

..
w

;

90

'">!;

NEGATIVE SLEW

10

Vs=±15V
Rs =R f =10kn
C,'5pF

60
-55 -35 -15 5

Ii--{...

~

'"

TEMPERATURE I"CI

lmV

100+

Vs" ,15V
TA '" 25"C
-5
-10
-15

25 45 65 85 105 125

10~V

I

10

~

100

80

0.2 0.4 0.6 0.8

Inverter Settling Time
15

P~SljIVE ~LE~

~

0

DIFFERENTIAL INPUT IVI

Voltage Follower Slew Rate
120

Vs=:!:5V

200

OUTPUT CURRENT ImAI

Vs=±.10V_

15

10

-400

1M

J,+VH-

~

a:

./

l""-

14

iiii

'"

I""-

-

TA ;; 25°&

V

.... t"'~

-

I nput Current

~

lOOk

10M

SUPPLY VOLTAGE I'VI

400

z

:::::~,"20V

16

5

!;

10k

'"

4.0

10M

T
10f--t---t--tt---+If--l

130

.......

"

1M

/'

ill

12~~--+-~~~-1

~

1M

TA'25"C-

TA'125";'4.5

600

Unity Gain Bandwidth

20

lOOk

~

It:

~

,,/'

~
a:

\.

Current Limiting

24

~

10k

TA-~
5.0

14 r---r--'---.--~--,
Vs=±15V

FREQUENCY 1Hz!

~

Ik

lOOk

Supply Current

V AV=y

Ik

10k

lk

FREQUENCY 1Hz!

".s

FREQUENCY IHzl

Vs -±15V
TA =25"C

,...

Rs=2kn

20

Closed Loop Output
Impedance

~

TA'25"C-

40

tOOk

10k

"-

5.5

o

S
w

20

-20
100

20

15

-'"

;;;

1000

lk

TA '" 25°C

~OSITIVE SUPPLY

NEGATlVES~

40

Common Mode Rejection
120

10'

60

..

SUPPLY VOLTAGE I'VI

3000

100

80 ~

ill

TEMPERATURE I"CI

'"

OJ
a:

95

-55 -35 -15 5

.

.

!
'"§

...... TA '25"C

z

;;:

III

Power Supply Rejection

Voltage Gain

200

"1\
lmV

As" 5k"
A,= 5k" IOOiV

C,= 10pF
C5,7 '0.1 pF
0.03

0.1

I,umv
-II

0.3
TIME

Ip~

r-

....3:

....
Q)

typical performance characteristics (con't)
Large Signal Frequency
Response
120

14

~

TA! 2J·CI

,

1Z
10

'"z

~

!z

;;:

..'"
'"

\

5

100

Vs" :!:15V

\

20

1---0

"-

60

w

!:;
C>
>

~

"

co

40

K'
\

20

-

J

2M

5M

10M 20M

10

50M

tOO

tk

FREnUENCY IH')

90
45

TA :::25 C
Vs" !15V
u

..'"

10

z

'"z
...~

;;:

'"
w

'"

~

~
>

FEEOFORWARO

o

1M

......
3M

10M

a

>

I r-j-M-

~

\

INPU~-

J I II
30M

tOO

.......

-8
-12

Vs":!:15V
TA '"2SoC-

-20
-0.2

0.2

0.6

80

I

t'-.

4D

t- V

20

~ P:~

FErOFOIRWA,O

"-

225

10

100

lk

~
z

t: '"

135 ~

90
45

-20
IOI1M

20
16
12

1803!!

GAliN'

FREQUENCY 1Hz)

10k lOOk 1M 10M 100M

~

f

~w

'"

I ~>

-t--

,

I

r\

-8

~

-12

FEEOFORWARD

-16
-20
-0.1

_OUTPUT

I
1/

1
-4

I
0.1

0.3

FREOUENCY IH')

- TA =25°C
Vs'" :!:1SV

0.5

0.7

TIMEhul

tSllWlndsettingtimeto
O.l%f01l 10V step change
i5 100 "s.
tSlaw rate typicaliV 1501V/lS.

Feedforward Compensation for Greater
Inverting Slew Rate t

Isolating Large Capacitive Loads

I

't-t-

-~iINPUT-

auxiliary circuits

Offset Balancing

1.8

Inverter Pulse Response

V~= "~V

60

1.4

1.0

TIME I.,)

TA =2S·C -

f".

II-OUTPUT

II

\

-16

10k lOOk 1M 10M 10DM

....

N

H.

-4

Opon Loop Frequency
Response
120

-

12

0

3:

I

I

FREOUENCY 1Hz)

Large Signal Frequency
Response
14

4

w

. ~..'"
i ~

"'

-20

0.5M 1M

~

t: '"

0;;

r-

I

16
12

135 "'

GAIN'

o

~

T!=25!C
V,="5V- 225
i I
180 3!!
PHASE

'~

80

.......

Voltage Follower Pulse
Response

Open Loop Frequency
Response

Compensation for Minimum

Settling t Time

Overcompensation

0.9

Q)

...

co
N

...

::!

typical applications (can't)

........

......

co

...

::!
'pF
5K

OUTPUT
OUTPUT

INPur .....- - . . . . . ,

+Dptional-Reducessettlingtime.

SAMPLE

Fast Sample and Hold

D/A Converter Using Ladder Network

"
'pF

OUTPUT

"Dptionll- Reduces settling time.

D/A Converter Using Binary Weighted Network
Fast Summing Amplifier
with Low Input Current

.,
'50

LM11I

>O-+_OUTPUT

.,

'UK

"

Wein Bridge Sine Wave Oscillator

2-174

·Glin~

20DK
R;-

Instrumentation Amplifier

for1.5KS;R,S;200K

Operational Amplifiers
LM318 operational amplifier
general description
for operation. However, unlike most internally
compensated amplifiers, external frequency com·
pensation may be added for optimum performance.
For inverting applications, feedforward compen·
sation will boost the slew rate to over 150V Ills
and almost double the bandwidth. Overcompensa·
tion can be used with the amplifier for greater
stability when max imum bandwidth is not needed.
Further, a single capacitor can be added to reduce
the 0.1% settling time to under 1 Ils.

The LM318 is a precision high speed operational
amplifier designed for applications requiring wide
bandwidth and high slew rate. It features a factor
of ten increase in speed over general purpose
devices without sacrificing DC performance.

features
•
•
•
•
•
•
•

15 MHz small signal bandwidth
Guaranteed 50V Ills slew rate
Maximum bias current of 500 nA
Operates from supplies of ±5V to ±20V
Internal frequency compensation
Input and output overload protected
Pin compatible with general purpose op amps

The high speed and fast settling time of these op
amps make them usefu I in AID converters, oscil·
lators, active filters, sample and hold circuits, or
general purpose amplifiers. These devices are easy
to apply and offer an order of magnitude better
AC performance than industry standards such as
the LM709.

The LM318 has internal unity gain frequency com·
pensation. This considerably simplifies its applica·
tion since no external components are necessary

The LM318 is specified for operation over O°C
to 70°C.

schematic diagram and typical application

*Gain

~

ZOOK for 1.5K::; A, < 200K

",

Instrumentation Amplifier

connection diagrams
Metal Can Package-

Dual·ln·Line Package

Dual-In-Line Package

·"·.·'8·". ·' "'8""
Ie

I

II

."LANCEI
CDMPENIATIOII-I J

·Pin connections shown on schematic
diagram Bnd typical applications are for

INPUT

I

I

v~

I"PUT

I

I

OUTPUT

V"

t

5IALJCOIII'_3

II~

ItCD"EIdATIDJt.1

INPUrs<

:::ml
ru!:~'IDII-3

V· •

I

Ie r

I/le

TO·S package.
Order Number LM31BH

Order Number LM31BN

Order Number LM31BD

See Package 11

See Package 20

See Package 1

2-175

CD
~

('I)

:E

absolute maximum ratings

...I
Supply Voltage
Power Dissipation (Note 1)
Differential Input Current (Note 2)
Input Voltage (Note 3)
Output Short-Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

±20V
500mW
±10mA
±15V
Indefinite
O°C to 70°C
_65°C to 150°C
300°C

(Note 4)
CONDITIONS

MIN

TYP

MAX

UNITS

Input Offset Voltage

TA = 25°C

4

10

mV

Input Offset Current

TA = 25°C

30

200

nA

Input Bias Current

TA = 25°C

150

500

nA

Input Resistance

TA = 25°C

0_5

3
5

Mn
mA

Supply Current

TA = 25°C

Large Signal Voltage Gain

TA = 25°C, Vs= ±15V
V OUT = ±10V, RL ~ 2 kn

25

200

V/mV

Slew Rate

TA = 25°C, Vs= ±15V,Av = 1

50

70

Vllls

Small Signal Bandwidth

TA = 25°C, V s =±15V

10

MHz

15

Input Offset Voltage

15

mV

Input Offset Current

300

nA

750

nA

Input Bias Current
Large Signal Voltage Gain

Vs = ±15V, V OUT = ±lOV
RL ~2 kn

VIm V

20

Output Voltage Swing

V s =±15V,R L =2kn

±12

Input Voltage Range

Vs = ±15V

±".5

±13

V

V

Common Mode Rejection Ratio

70

100

dB

Supply Voltage Rejection Ratio

65

80

dB

Note 1: The maximum junction temperature of the LM318 is 85°C. For operating at elevated temperatures, devices in the
TO-S package must be derated based on a thermal resistance of 150°CIW. junction to ambient, or 4SoC/W, junction to case.
The thermal resistance of the dual-in-line package is 100°CIW, junction to ambient.
Note 2: The inputs are shunted with back-ta-back diodes for avervaltage protection. Therefore, excessive current will flow if
a differential input voltage in excess of 1 V is applied between the inputs unless some limiting resistance is used.
Nota 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage_
Nota 4: These specifications apply for ±5V ,<;, Vs ,<;, ±20V and O°C ,<;, TA ,<;, 70°C, unless otherwise specified_ For proper
operation, the power supplies must be bypassed with 0.1 IJF disc capacitors.

2-176

typical performance characteristics
Voltage Gain

Input Current

Power Supply Rejection
100

115 , - - - - , - - - , - - - , - - - , - . , - - ,

200
150

~
~
~
;!;

80

BIAS

~ 100
.... 50

1----1--,'r--+-+-+--1

CD 110

i~105 !'===It.L~$~
~

40
3D

~

OFFSET

20

TA ::25"C

1----1--t--+-+-+-----l

:> 100

10

o

95

o

10

20

3D

40

50

60

10

5

Input Noise Voltage

~

~

II!I

..

a:
w

"~
""8

10

10k

80

40

~

10°

~

~

I"\.

10- 1
10-2

-

-

10-3

10

\j

100

V

'" \

~

10k

lOOk

,

~

1M

iA =0

E

;: 5.0

..-

a:

/" I( -r- I--

>-

/ T : 1=25 C \

~

8
~ 4,5

I\,.

~

t:L~

;;

10k

lk

lOOk

1M

-

10

15

20

SUPPL V VOLTAGE I' V)

Input Current
600

12-

400

:> 10 I--+--+--t-Hft---I

~
...

200

\

~

AV=y'

\

~ -200

/

;!;

\

-400

\

Vs=!15V

O'---'----'----'---'---W-----'
lOOk

10M

fA) 10 C
5

10M

1la:'i

10k

""

Supply Current

,---,---,---,--',--0

./
lk

25°C

FREQUENCV IHd

Current Limiting
14

SU~ ,.

lk

FREQUENCV IHd

-

/

I

-20
100

=

4.0

100

TA = 2S'C

AV'= 1000

NEGATIVE

20

Rs=2kH
TA=25'C-

20

lOOk

Vs=i15V

-

10'
10'

~

i

20

i\

60

Closed Loop Output Impedance
10'

z

15

r--

100

FREQUENCV (Hd

w
u

40

fA

.....,~OS1T1VE SUPPL V

5.5

o
Ik

100

§

~

Common Mode Rejection

~

is
z

60

120

1000

100
3D

z

-,

SUPPL V VOLTAGE (-V)

3000

~

..

~~_~_-L_-L_~~

70

TEMPERATURE ('C)

~ 300

m

o

1M

10

15

20

25

-600
-0.8 -0,6 -0.4 -0,2

Unit Gain Bandwidth

0.2 0.4

0.6 0.8

Inverter Settling Time

Voltage Follower Slew Rate

15 rTTnTrr--~rTTnmr--"

120

-r--

POS1T1VE SLEW
110

V)±15V I
Rs "'R,=lDKn
C,=5 pF

]; 100

;::

~

0

DIFFERENTIAL INPUT (V)

OUTPUT CURRENT ImA)

FREQUENCV IHd

90

80

-5

-

NEGATIVE SLEW

r-- I--

-10

70
10

20

30

40

50

TEMPERATURE 1'C)

60

70

o

10

20

30

40

50

TEMPERATURE ('C)

60

70

0.1

0,3
TIME I.,)

2-177

co
po

CW)

:E

typical performance characteristics (con't)

....I
Large Signal Frequency
Response
14

TA~2ic'

12

~

Open Loop Frequency
Response
120

\

10

100

Vs" '15V

.....

;;;
:!!

\

'"z

80

,

z

~

~

\

~

,
!

i

!;;
co

I

..'"

2M

5M

10M 20M

60

!:;
co
>

10

50M

100

lk

Vs::

,

120
100

~15V

80

~

60

'"

..

40

>

20

w

~

FEEOFORWARD

"-

o
1M

~
z

I
I

~

3M

-

8

10M

1\

w

J I II
30M

-.....

I

/

I

+I t-

-16

Vs '" :!.15V
TA ~ 25'"C-

-4

'"

-20
-0.2

10k lOOk 1M 10M 100lIl

0.2

0.6

1.0

1.4

1.8

TIME 1.,1

Inverter Pulse Response
V; ~

±1~V

TA~25°C

-

225

r- V

~

FEIEOFOIRWA~O

180 ~
1);
PHAtr 135 ~

~

90

'-

45

1\

100

lk

i

~
'"z

8

I

~

..

-4

co -8
>
-12

10k lOOk 1M 10M 100M

fo-

1\
\
\

/
1/

-_.

-20
-0.1

I
0.1

0.3

Compensation for Minimum

Settling t Time

0,

Isolating Large Capacitive Loads

0.5

TIME 1.,1

tSlew and settling
timetoO.l%fofa
10Vstepchangl'
jsaDDns.

Feedforward Compensation for Greater
Inverting Slew Rate t

h--OUTPUT

FEEOFORWARD

FREQUENCY IHzl

fSlewratlltypicallV 150VlJ.ls.
·Balancecircuitnecesurvfor
increased slew.

"'H-

INPUT-

w

'"
!:;

I

-- -ri-

-16

-20
10

12

I

..... r-....

GAIN'
100M

20
16

auxiliary circuits

2-178

-OUTPUT

!:;
-8
>
-12

"'

i'-

FREQUENCY 1Hz!

Offset Balancing

1

-iVt-

INPUT-

\

~

..'"

n

Open Loop Frequency

1\

co

1 1

FREQUENCY IHzl

10

~

:i

\

-20

i A; ~J,~'

'"-

'"

K' .-

~
"z

16
12

Response

14

!;;

i

~

GAIN'\

Response

z

Response

=25°C

'15V- 225
I
180 ~
1);
PHASE /
135 ~

V

20

Large Signal Frequency

~

,

40

FREQUENCY 1Hz!

12

TA

w

i

0
0.5M 1M

!---o

Voltage Follower Pulse
20

Overcompensation

-

TA " 25"C
Vs= "1SV

0.7

0.9

....
3:
w
....
00

typical applications (con't)

Differential Amplifier

Fast Summing Amplifier

Fast Voltage Follower

·Optional- Reduces settling tima.

Fast Sample and Hold

'"
"

CIA Converter Using
Ladder Network

,.,
"

IZDK

"

,.,
"

..

llOK

""

110K

INPU~-""'+----"'i--'-;';"........~-.--.:j

\

,
INPUT

---

--'"

I

14DK

",

,
25K'

T4DK

",

Output zero •
• "Y"zero

1S0K

+ "X"uro

"

t FuUsulead;ust.

Four Quadrant Multiplier

"."

'"""
C1"C2

1
f·-hR1 C1

Fast Summing AmpUfer
with Low Input Current

Wein Bridge Sine Wave

Oscillator

2-179

...
N

(W)

Operational Amplifiers

:E
.....
......

...
N
N

:E
.....
......

...
...:E

N

.....

LM1211LM2211LM321 precision preamplifier
general description
The LM121 series are precision preamplifiers
designed to operate with general purpose opera·
tional amplifiers to drastically decrease DC errors.
Drift, bias current, common mode and supply
rejection are more than a factor of 10 better than
standard op amps alone. Further, the added DC
gain of the LM121 decreases the closed loop gain
error.
The LM121 operates with supply voltages from
±3V to ±20V and has sufficient supply rejection
to operate from unregulated supplies. The operat·
ing current is programmable from 5J.1A to 200J.lA
so bias current, offset current, gain and noise can
be optimized for the particular application while
still realizing very low drift. Super·gain transistors
are used for the input stage so input error currents
are lower than conventional amplifiers at the same
operating current. Further, the initial offset voltage
is easily nulled to zero.

advantages
•
•

Permits optimization of general purpose op amps
Replaces many specialized op amps

features
• Guaranteed drift less than 1J.1V1°C when nulled
• Offset voltage less than 0.7 mV

•

Bias current less than 10 nA at 10J.lA operating
current

• CMRR 120dB minimum
•

114 dB supply rejection

•

Easily nulled offset voltage

The extremely low drift of the LM121 will improve
accuracy on al most any precision DC circuit. For
example, instrumentation amplifier, strain gauge
amplifiers and thermocouple amplifiers now using
chopper amplifiers can be made with the LM121.
The full differential input and high common mode
rejection are another advantage over choppers. For
applications where low bias current is more impor·
tant than drift, the operating current can be reo
duced to low values. High operating currents can
be used for low voltage noise with low source
resistance. The programmable operating current of
the LM121 allows tailoring the input character·
istics to match those of special ized op amps.
The LM121
temperature
85°C range
temperature

is specified over a -55°C to 125°C
range, the LM221 over a -25°C to
and the LM321 over a O°C to 70°C
range.

A lower drift version of the LM121 - the LM121A
series - is available for applications requiring
0.2J.1V 1°C offset voltage drift.

schematic and connection diagrams
Metal Can Package

Dual·1 n-Line Package

,,'
DUTPUTI Z

DUTl'llr"'_ _ _ _ _-!___--4

OUAAD J

'"PUT'·
IIiPUTI'
;UAAO'

'"
Note: Pm4connectedtocase.

Note: Pin 7 connected to bottom of package.

INPUT 2

"'
WI

Order Number LM121D,
LM221D Dr LM321D
See Package 1

Order Number LM121H,
LM221H Dr LM321H
Se. Package 11

Flat Package

~.~'------~

~.~'--------~

'""mffi'~"""
c~p

Z

I

¥

INPUT.

l

I

,AlA .. eE

I.un·

J

,Allin

GUARD

a

V'

5

Note: Pin6 connected to bottom of package.

Order Number LM121F,
LM221F Dr LM321F
See Package 3
·Pin connections shown on schematic diagram and typical applications are for TO-5 package.
Note: Outputs are inverting from
the input of the same number.

2·180

~

....3:

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage (Notes 2, 3)
Input Voltage (Note 3)
Operating Temperature Range
LM121
LM221
LM321
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

N

N
N

....

-55°C to 125°C
-25°C to 85°C
O°C to 70°C
-65°Cto 150°C
300°C

electrical characteristics
PARAMETER
Input Offset Voltage

....
......
~
3:

±20V
500mW
±15V
±15V

......
~

3:
w

....N

(Note 41
CONDITIONS

TA = 25°C
6.4k ::; RSet

70k

0.7

UNITS

LM321
1.5

mV

Max

RSet = 70k
RSet = 6.4k

1
10

2
20

nA
nA

Max
Max

Input Bias Current

T A = 25°C RSet = 70k
RSet = 6.4k

10
100

18
180

nA
nA

Max
Max

Input Resistance

T A = 25°C RSet = 70k
RSet = 6.4k

4
0.4

2
0.2

Mn
Mn

Min
Min

Supply Current

T A = 25°C

1.5

2.2

mA

Max

Input Offset Voltage

6.4k ::; RSet

1

2.5

mV

Max

Input Offset Current

TA

= 25°C

::;

LM121
LM221

=

70k

Input Bias Current

RSet = 70k
RSet = 6.4k

30
300

28
280

nA
nA

Max
Max

Input Offset Current

RSet = 70k
RSet = 6.4k

3
30

4
40

nA
nA

Max
Max

1

1

/lV/oC

Max

2.5

3.5

mA

Max

Average Temperature Coefficient
of I nput Offset Voltage

Rs < 200n 6.4k < RSet < 70k
Offset Voltage Nulled

Supply Current

±13

±13

V

Min

RSet = 6.4k (Note 5)

+7
-13

+7
-13

V

Min

Common Mode Rejection Ratio

RSet = 70k
RSet = 6.4k

120
114

114
114

dB
dB

Min
Min

Supply Voltage Rejection Ratio

RSet = 70k
RSet = 6.4k

120
114

114
114

dB
dB

Min
Min

Noise

RSet = 0

8

8

mV/.JHZ

Typ

16

12

V!V

Min

Input Voltage Range

Voltage Gain

Vs = ±15V RSet = 70k

T A = 25°C RSet = 70k
RL
3 meg

>

Note 1: The maximum junction temperature of the LM121 is 150D C, while that of the LM221 is lOOoe. The maximum
junction temperature of the LM321 is 8SoC. For operating at elevated temperature, devices In the TO-S package must be
derated based on a thermal resistance of lS(fC/W, junction to ambient. or 4So C/W. junction to case. For the flat package,
the derating is based on a thermal resistance of 18So C/W VIIhen mounted on a 1/6-inch-thick epoxy glass board with ten,
O.03-inch-wide, 2-ounce cooper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.
Note 2: The Inputs are shunted with back·to·back diodes in series with a 500n resistor for overvoltage protection. Therefore,
excessive current will flow if a differential input voltage in excess of 1 V is applied between the inputs.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for ±S ~Vs< ±20V and -55De ~ TA ~ 12SDe, unless otherwise specified. With the
LM221, however, all temperature specifications are limited to -2sDe ~ TA ~ 8So e, and for the LM321 the specifications
apply over a oDe to 70De temperature range.
Note 5: External precision ...esistors-O.l%-can be placed from pins 1 and 8 to 7 to increase positive common mode range.

2·181

g

...

N

C")

:E

typical applications

...
...I

.......
N
N

Low Drift Op Amp Using the LM121 as a Preamp

:E
...I

Gain of 1000 Instrumentation Amplifier*

...

,.

'.

......
:E

.......
N

"

...I

·Offsetadjust.
tSeetablefor
frequency

compenution.

tSatterthan 1%llnearity for input signals up to
±1D mV gain stability typical ±2%'rom -55 to 125~C.

FIGURE 2.

FIGURE 1.

frequency compensation
Universal Frequency Compensation

Alternate Compensation

The additional gain of the LM121 preamplifier
when used with an operational amplifier usually
necessitates additional frequency compensation.
When the closed loop gain of the op amp with the
LM121 is less than the gain of the LM121 alone,
more compensation is needed. The worst case
situation is when there is 100% feedback - such
as a voltage follower or integrator - and the gain
of the LM121 is high. When high closed loop gains
are used - for example Av = 1000 - and only
an addition gain of 200 is inserted by the LM121,
the frequency compensation of the op amp will
usually suffice.

The two compensation capacitors can be made
equal for improved power supply rejection. In this
case the formula for the compensation capacitor
is

The frequency compensation shown here is designed·
to operate with any unity·gain stable op amp.
Figure 1 shows the basic configuration of frequency
stabilizing network. In operation the output of the
LM121 is rendered single ended by a O.OlMF
bypass capacitor to ground. Overall frequency
compensation then is achieved by an integrating
capacitor a~ound the op amp.

Table 1 shows typical values for the two compensating capacitors for various gains and operating
currents.
TABLE 1.
CURRENT SET RESISTOR

CLOSED

LOOP
GAIN

120kn

60kn

30k!l

12kn

6kn

Av - 1

68

130

270

680

1300

Av '" 5

15

27

56

130

270

Av = 10

10

15

27

68

130

15

27

Av = 50

10

Av = 100
Av = 500
Av = 1000

Bandwidth at unity gain

~

12
---21TR Set C

4

for 0.5 MHz bandwidth C = - s - 10 Rset
For use with higher frequency op amps such as
the LM11B the bandwidth may be increased to
about 2 MHz.
If the closed loop gain is greater than unity ..c..
may be decreased by
C=

4
lOs ACL RSet

2·1B2

This table applies for the LM10B, LM101A,
LM741, LM11B. Capacitance is in pF.
Design equations for the LM121 series:
1.2 X 106
Gain Av""

RSet

Null Pot Value should be 10% of RSet
2 X 0.65V
Operating Current"" - - - -

Rset

Positive Common
+
Mode Limit
"" V -

[0.65V X 50k]
0.6 +

RSet

Operational Amplifiers

LM121A/LM221A/LM321A precision preamplifiers

general description

features

The LM121 A series are precision preamplifiers designed
to operate with general purpose operational amplifiers to
drastically decrease dc errors. Drift, bias current, common
mode and supply rejection are more than a factor of 50
better than standard op amps alone. Further, the added
dc gain of the LM 121 A decreases the closed loop gain
error.

•
•
•
•
•
•

Guaranteed drift less than 0.2p.V I"c when nulled
Offset voltage less than 0.4 mV
Bias current less than 10 nA at 10p.A operating current
CMRR 126 dB minimum
120 dB supply rejection
Easily nulled offset voltage

The extremely low drift of the LM121A will improve
accuracy on almost any precision dc circuit. For example,
instrumentation amplifier, strain gauge amplifiers and
thermocouple amplifiers now using chopper amplifiers
can be made with the LM 121 A. The full differential in·
put and high common·mode rejection are another
advantage over choppers. For applications where low bias
current is more important than drift, the operating cur·
rent can be reduced to low values. High operating cur·
rents can be used for low voltage noise with low source
resistance. The programmable operating current of the
LM121A allows tailoring the input characteristics to
match those of specialized op amps.

The LM 121 A operates with supply voltages from ±3V
to ±20V and has sufficient supply rejection to operate
from unregulated supplies. The operating current is pro·
grammable from 5p.A to 200p.A so bias current, offset
current, gain and noise can be optimized for the particu·
lar application while still realizing very low drift. Super·
gain transistors are used for the input stage so input error
currents are lower than conventional amplifiers at the
same operatirig current. Further, the initial offset voltage
is easily nulled to zero.

advantages

The LM121A is specified over a -55°C to +125°(;
temperature range, the LM221A over a -25°C to +85°C
range and the LM321A over a O°C to +70°C tempera'
ture range.

• No chopper noise
• Allows optimized input characteristics
• Improves dc accuracy

connection diagrams
Dual-In-Line Package

NC

1

Metal Can Package

14 Ne

OUTPUT 1

13 Ne

OUTPUTZ
GUARD 3

12 OUTPUT 1

INPUT 1 4

11

INPUT2

1D BALANCE

GUARD

BALANCE

V'

OUTPUT z

vi-

• NC

Flat Package

c:::=1:r:=~;:=~:=J OUTPUT 1

GUARD

v+

INPUT 111::::r'-----'

BALANCE

If.lPUT zC::::I-='------'

BALANCE

GUARD

V-

V'

NOTE: Pin 7 ~onn.cttd to bottom of pach,8.

N01e:Pm4connectedtocase.

NOTE: Pin 6 CDnl1l!Cted to bonom of package.

TOP VIEW

TOP VIEW

TOP VIEW

Order Number LM121AD.
LM221AD or LM321AD

Order Number LM121AH,
LM221AH or LM321AH
See Package 11

Order Number LM121AF,
LM221AF or LM321AF

See Package 1

See Package 3

Nota: Outputs are inverting from
the input of the same number.

2-183

...

c(

N

CW)

....:E

~

...

N
N

:E
....

~

......
:E
N

....

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage (Notes 2 and 3)
Input Voltage (Note 3)
Operating Temperature Range
LM121A
LM221A
LM321A
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics
PARAMETER

-55°e to +125°e
-25°C to +85°e
oOe to +70oe
-u5°e to +150oe
300°C

(Note 4)

CONDITIONS

Input Offset Voltage

TA = 25°C,
604k ~ RSET ~ 70k

Input Offset Current

TA

Input Bias Current

TA = 25°C, RSET
RSET

Input Resistance

±20V
500mW
±15V
±15V

LM121A, LM221A
MIN

= 25°C, RSET = 70k
RSET = 604k

= 70k
= 604k
TA = 25°C, RSET = 70k
RSET = 604k

4
004

= 70k

LM321A

TYP

MAX

0.2

UNITS

TYP

MAX

0.4

0.2

0.4

mV

0.3

0.5·
5

0.3

0.5
5

nA
nA

5
50

10
100

5
50

15
150

nA
nA

8

MIN

2
0.2

8

Mn
Mn

Supply Current

T A = 25°C, RSET

0.8

1.5

0.8

2.2

mA

Input Offset Voltage

604k ~ RSET ~ 70k

0.5

0.65

0.5

0.65

mV

Input Bias Current

RSET
RSET

= 70k
= 604k

15
150

30
300

15
150

25
250

nA
nA

Input Offset Current

RSET = 70k
RSET .= 604k

0.5
5

1
10

0.5
5

1
10

nA
nA

Input Offset Current
Drift

RSET

Average Temperature
Coefficient of Input
Offset Voltage

Rs ~ 200n, 604k ~ RSET ~ 70k
Offset Voltage Nulled

= 70k

3

3
0.07

Long Term Stability

3

Supply Current

1

= 70k
= 6.4k

0.2

0.07

pAtC
0.2

jJ.V/yr

3
2.5

1

jJ.V/oC

3.5

mA

Input Voltage Range

Vs = ±15V, RSET
(Note 5)
RSET

Common·Mode
Rejection Ratio

RSET
RSET

= 70k
= 604k

126
120

140
130

126
120

140
130

dB
dB

Supply Voltage
Rejection Ratio

RSET
RSET

= 70k
= 604k

120
114

126
120

118
114

126
120

dB
dB

Voltage Gain

TA = 25°C, RSET
RL >3 meg

16

20

12

20

= 70k

±13
+7,-13

±13
+7, -13

V
V

VIV

Note 1: The maximum junction temperature of the LM121A is 1S0°C, while that of the LM221A is 100°C. The maximum junction temperature
of the LM321A is 8SoC. For operating at elevated temperature, devices in the TO·S package must be derated based on a thermal resistance of
1S0°CIW, junction to ambient, or 4SoC/W, junction to case. For the flat package, the derating is based on a thermal resistance of 18SoC/W when
mounted on a 1/B·inch·thick epoxy glass board with ten, 0.03-inch wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line
package if 100°C/W junction to ambient.
Note 2: The inputs are shunted with back-to-back diodes in series with a soon resistor for overvoltage protection. Therefore, excessive current
will flow if a differential input voltage in excess of 1V is applied between the inputs.
Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.
Note 4: These specifications apply for ±5 ~ Vs < ±20V and -55°C ~ TA ~ 125°C, unless otherwise specified. With the LM221A, however, all
temperature specifications are limited to -2SoC ::5 TA ::5 8SoC, and for the LM321A the specifications apply over a O°C to 70°C temperature
range.
Note 5: External precision resistor-O.1%-can be placed from pins 1 and 8 to 7 to increase positive common-mode range.

frequency compensation
UNIVERSAL COMPENSATION

ALTERNATE COMPENSATION

The additional gain of the LM 121 A preamplifier when
used with an operational amplifier usually necessitates
additional frequency compensation. When the closed
loop gain of the op amp with the LM121 A is less than
the gain of the LM121 A alone, more compensation is
needed. The worst case situation is when there is 100%
feedback-such as a voltage follower or integrator-and
the gain of the LM121A is high. When high closed loop
gains are used-for example Av = 1000-and only an
addition gain of 200 is inserted by the LM121A, the frequency compensation of the op amp will usually suffice.

The two compensation capacitors can be made equal for
improved power supply rejection. In this case the formula for the compensation capacitor is:
B

Table I shows typical values for the two compensating
capacitors for various gains and operating currents.
TABLE I
CLOSED
LOOP
GAIN

The frequency compensation shown here is designed to
operate with any unity·gain stable op amp. Figure 1
shows the basic configuration of frequency stabilizing
network. In operation the output of the LM121A is
rendered single ended by a O.OlJ.lF bypass capacitor to
ground. Overall frequency compensation then is achieved
by an integrating capacitor around the op amp.

Bandwidth at unity·gain

==

120kU

60kU

30kU

12kU

6kU

68

130

270

680

1300

Av '" 5

15

27

56

130

270

Av = 10

10

15

27

68

130

1

3

5

15

27

1

3

5

10

1

1

Av

Av
Av
Av
Av

12
2rrR sET C

CURRENT SET RESISTOR

=1

= 50
= 100
= 500
= 1000

-

-

-

-

-

-

3

-

This table applies for the LM108, LM101A, LM741,
LMl18. Capacitance is in pF.

4
for 0.5 MHz bandwidth C=

DESIGN EQUATIONS FOR THE LM121A SERIES

106 RSET

1.2 X 106
Gain Av ""
For use with higher frequency op amps such as the
LM 118 the bandwidth may be increased to about 2 MHz.
If the closed loop gain is greater than unity,
decreased to:

RSET

Null Pot Value should be 10% of RSET
2 X 0.65V
Operating Current ""

"c" may be

RSET

4

Positive Common· _
+ [
0.65V X 50k ]
V - 0.6- - - - Mode Limit
RSET

C=

106

ACL RSET

typical applications
R6
3M
0.1%

R,

INPUT __;;R,:,........-.!.r_...:.J..--'}.!.--J~...!.f
OUTPUT

INPUT
OUTPUT

R1
":' 50k
1%

·Offsetldjust

·Offsetadjust.

fSee table for frequency compenutlon.

tGaintllm

' - - - + _ - - -..... vv-

FIGURE 1. Low Drift Op Amp Using the LM121A as a Preamp

tBetterthan 1% hnearity for input $Ignals up 10
±10 mV gain stability typical ±2% from -55 to
1Z5°C
Match of R5 and R6 effect power supply rejection

Gain of 1000 Instrumentation Amplifier.

2-185

typical applications (con't)
~

____

LM10J-1.8
~~

______. -__ v·

250pF

2.2k

'pF

INPUT ---4~""-l

>...;:..-......

~OUTPUT

lM121A

*Bandwldth=10MHz
Slew Rate=40V//ls

High Speed* Inverting Amplifier with Low Drift

+15V
Rll
10k

RS

RS

JUOk

99Sk

~:>'~~~~-------~~r-------,
LM113

RIO
10k

R.
R6
l.15k

CHROMEL·
AlUMEL

1k

OUTPUT
(10mVrC)

LM121A

~

!iOpF

-

r
-

100pF

·Set lor 2.9BV at output wIth
LM11Jshorted.Outputshould

equal ambient temperalure at

'------15V

10mVI"K.
tAdjustforoutputreadingmoC.

Thermocouple Amplifier with Cold Junction Compensation

INPUTS!

~

OUTPUT

JOpF

*Bandwidth=3.5MHl
Slew Rate= 1.1 V!IJ.S

Medium Speed* General Purpose Amplifier

2·186

typical applications (con't)

v'

25k"

LM1ZIA

"Matth to 0.1%
tDepeods on dose loop gam

Increased Common-Mode Range at High Operating Currents

schematic diagram-

v'

OUTPUT

OUTPUT

0'
5Dk

,

0'
5Dk

o~

LG

.,;'

".II

06
1SDk

i
;::

>

t::s

~SET=6.4kn

f" f'..

~'

40
10

lk

100

10k

lOOk

~

RSET

~
~w'"

=6.4 kn

10k

.sw

RSET

".......

0.1

'"'"

2.0

~
>

1.6

i;;

1.2

it

0.8

=

lk

100

10k

Differential Voltage Gain

L
V

i:ia:

~

~

200

gn!HI
100

SET CURRENTISIDE (.AI

1.4

1.6

1.8

2.0

1.6

-

1.0

~

0.8

~

0.6

~

10

R2

1.8

I::
lk

,..... i-""

,..

f--'"
.......

cr:

!
z

100

Rl

V1.2

=

10k

-~

Set Current

1M

~ lOOk

2·188

/

IL

v+

RSET RATIO R2/Rl

~to

50

/

lOOk

9

20

0.4

Set Resistor and Set Current

'V;:,;r;,;rnr==t=t+r:m:n:=l

400 ~Vs-±15V
, -100 H'I!+--+-+-I-++-HofII--l

10

V

V

FREQUENCV (Hd

FREQUENCV (Hd

SET CURRENTISIDE (pAl

TA =25 C C

2.'

1
10

lOOk

-

=6.4 k~_

~

FRsET "'70 kn

lOOk

10k

Offset Voltage Adjustment

;;

"I

0.01

lk

lk

FREQUENCV (Hd

3.2

~

~
100

100

2.8

~

10

10

10

~

RSET "70kn

l===

lOOk

I "put Noise Current

100~~
~JO~
~

10k

FREQUENCV (H.)

I "put Noise Voltage

10

lk

100

FREQUENCV (H.)

0,4
0.2
-55

-15

25

65

TEMPERATURE rCI

105

typical performance characteristics (con't)

Common-Mode Limits

i!!

"."
:0
w

"

15

"~

-4
-6
-B

~

REFlRRlD T1SUPPLY VOLTAGES

1"""1-1--ASET

2:
....

=6.4ln I"'--

"..
"
""15
:0

l-

t"-

-10

~

-12
2

RSET = 70 kn

-55

-15

25

65

-2
-4

TA
-6

II

V2

105

-55"C

5

10

50

z

1.1

..:.."
>

I-

-5

=>

..

....=>

100

REFERRED TO_HI--I--I+~_-.j

-B

_9

200

POSITIVE SUPPL Y

~-u~~-L-LLULW~

5

2

1/

1.0
0.9

i"'"

O.B
-55

/'
-15

,.,-

//

25

65

TEMPERATURE I CI

10

20

50

100

200

SET CURRENT/SIDE I"AI

Supply Current

'15V

1.4

.~
~

1.0

i
105

Vs

.
.§

1.2

~

=

f::: 300 Hz

1.3

~

;;;.

-4

-6
"8".... _7~~~III--~H~~~

1.6
Vs

lTTTff
IIIIII

-3

~

Differential Voltage Gain
1.4

.

f"o.,..

SET CURRENT/SIDE I"Ai

TEMPERATURE I"CI

~:0

-1

-2

~

< TA < +l25"C
20

w

"
>

:+lzI5

-10

2:

..

o25'~iffi

t 1c
REFERRED TO J
SlUr!1
liltTAGjS II

-B

2

RSET =6.4 kn

ir

v+

~ ~ I!~lll··cI~LI

RSET =7UkU

-2

2:

Output Common·Mode Voltage

Common-Mode Limits
v+

v+

=

'15V

1.2
RSET

,,

O.B
0.6

I
I

=6.4 k:!-- ~ f.-

J

SET =

_f-

0.4
0.2
-55

-15

10 kn

- I-

65

105

g

I
I
25

TEMPERATURE I"CI

2-189

Operational Amplifiers
LM124/LM224/LM324 quad op amps
general description

advantages

The LM124 series consists of four independent, high
gain, internally frequency compensated operational amplifiers which were designed specifically to operate from
a single power supply over a wide range of voltages.
Operation from split power supplies is also possible and
the low power supply current drain is independent of the
magnitude of the power supply voltage.

•

Eliminates need for dual

•

Four internally compensated op amps in a single
package

•

Allows directly sensing near GND and V OUT also
goes to GND

•

Compatible with all forms of logic

•

Power drain suitable for battery operation

Application areas include transducer amplifiers, dc gain
blocks and all the conventional op amp circuits which
now can be more easily implemented in single power
supply systems. For example, the LM 124 series can be
directly operated off of the standard +5 V DC power
supply voltage which is used in digital systems and will
easily provide the required interface electronics without
requiring the additional ±15 V DC power supplies.

unique characteristics
•

•

•

The unity gain
compensated.

features
•

I nternally frequency compensated for unity gain

•
•

Large dc voltage gain
Wide bandwidth (unity gain)
(temperature compensated)

•

Wide power supply range:
Single supply
or dual supplies

•

In the linear mode the input common-mode voltage
range includes ground and the output voltage can also
swing to ground, even though operated from only a
single power supply voltage.
cross frequency

is temperature

•
•
•
•

The input bias
compensated.

current

is

also

temperature

connection diagram

•

INPUT 4-

INPUT4+

OUTPUT 1

INPUT 1-

INPUT

,+

GND

Very low supply current drain (800)1A) - essentially
independent of supply voltage (1 mW/op amp at
+5 VDd
45 nA Dc
Low input biasing current
(temperature compensated)
2 mV DC
Low input offset voltage
5 nA Dc
and offset current
I nput common-mode voltage range includes ground
Differential input voltage range equal to the power
supply voltage
o V DC to V+ - 1.5 V DC
Large output voltage
swing

schematic diagram

v+

INPUT3+

INPUT 3-

OUTPUTJ

z+

INPUT 2-

OUTPUT 2

INPUT

TOP VIEW

Order Number LM124D, LM224D or LM324D

See Package 1
Order Number LM124F

See Package 4
Order Number LM324N

See Package 22

2·190

100 dB
1 MHz

3 V DC to 30 V DC
±1.5 V DC to ±15 V DC

(Each Amplifier)

Dual-l n~Line and Flat Package
OUTPUT 4

supplies

v'

r-

...

3:

absolute maximum ratings
Supply Voltage. V+

32 Vee or ±16 Vee

Differential Input Voltage
Input Voltage
Power Dissipation (Note 11

Molded DIP
Cavity DIP
Flat Pack

32 Vec
-0.3 Vec to +32 Vec
570mW
900mW
BOOmW

ILM324NI
ILM124D. LM224D & LM324DI
ILM124FI

Output Short-Circuit to GND (Note 2) (One Amplifier)

Continuous

SOmA

Input Current IV'N <-0.3 VocilNote 31
Operating Temperature Range

O°C to +70°C
-25°C to +85°C

LM324
LM224
LM124

-55°C to +125°C

N

~
r3:
N
N

~

.......

Storage Temperature Range

300°C

Lead Temperature (Soldering, 10 seconds)

r-

3:

W
N

~

electrical characteristics

(v+ = +5.0 Voc. Note 4) LM124

PARAMETER

CONDITIONS

MIN

TVP
±2

Input Offset Voltage

T A = +2SoC INote SI

Input Bias Current INote 61

IIN(+) or IINI_I. TA

Input Offset Current

IINI+I- IINI_I. T A = +2SDC

Input Common-Mode Voltage

V+ = 30 Vec, T A = +2Soc

= +2So C

4S
±3
0

MAX
±S
1S0

UNITS
mVoc

"Aoe

±30

"Aoe

V+-l.S

Vec

Range INote 71
Supply Current

0.8

RL = 00 On All Op Amps

2

mADe

Over Full Temperature Range
Large Signal Voltage Gain

V+ = +15 Voe (For large Va Swing)
RL~2kn, TA =+2SoC

SO

100

Common-Mode Reiection

DC, T A = +2SoC

70

85

dB

Power Supply Rejection Ratio

DC, T A = +2SoC

65

100

dB

Amplifier-ta-Amplifier
Coupling INote 81

f = 1 kHz to 20 kHz, T A = +25°C
(Input Referredl

-120

dB

VlmV

Ratio

Output Current
Source
Sink

V 1N + = +1 Voe. V 1N - = 0 Voe.
V+ = 15 Vec, TA = +25°C

20

40

mAce

V 1N - = +1 Voe. V 1N + = 0 Vo"c.
V+ = 15 Voe. TA = +25°C

10

20

mAce

V 1N - = +1 Voe. V 1N + = 0 Voe.
TA = +25°C, Vo = 200 mVec

12

50

pAoe

I nput Offset Voltage

INote 51

Input Offset Voltage Drift

Rs= on

Input Offset Current

IIN(+I-IIN{-1

±7

±100
10

Input Offset Current Drift
Input Bias Current

IIN(+I or IIN(_I

Input Common-Mode Voltage

V+=30V ec

0

V+ = +15 Vee (For Large Va Swing)

2S

mVoc

Ilvi"c

7

nAoe

pAeci"c
300

nAee

V+-2

Vec

Range INote 71
Large Signal Voltage Gain

VlmV

RL ~2 kn
Output Voltage SWing

V OH

V+ = +30 Vec, RL = 2 kn
RL~lOkn

VeL
Output Current
Source

Sink
Differential I nput Voltage

26
27

5

v+ = +S Vec. RL "; 10 kn
V 1N +""+1 Vec,VIN-=OVee,V+= 15V ec

V 1N - = +1 Voe. V 1N + =

a Vee, V+ = 15 Vee

Vec
Vec

28

10

20

S

B

20

mVec

mA
mA
V+

Vec

INote 71

2-191

fJI

electrical characteristics

(v+ = +5.0 Voc. Note 4) LM224. LM324

PARAMETER

CONOITIONS

MIN

TVP
±2

MAX
±7

UNITS

Input Offset Voltage

T A = +25°C INote 51

Input Bias Current (Nole 61

IIN(+) or IIN( _I, T A = +25°C

Input Offset Current

IINI+) - IIN(-l, T A = +25°C

Input Common·Mode Voltage
Range (Note 71

v+ = 30 V oc , TA = +25°C

Supply Current

RL = ~ On All Op Amps
Over Full Temperature Range

Large Signal Voltage Gain

V+ = +15 Voc (For Large Vo Swing)
RL ~ 2 kn. T A = +25°C

25

100

Common-Mode Rejection
Ratio

DC. T A = +25°C

65

85

dB

Power Supply Rejection Ratio

OC. T A = +25°C

65

100

dB

Amplifier·to-Amplifier
Coupling (Note 8)

f = 1 kHz to 20 kHz. T A = +25°C
(Input Referred)

-120

dB

Output Current
Source
Sink

45
±5

a
0.8

250

mVoc
nAoe

±50

nAoe

V'-1.5

Voc

2

mAoe
V/mV

V IN +=+l VOC,VIN-=OVOC,
V+ = 15 '(oc, TA = +2SOC

20

40

mAoe

V IN - = +1 V oc , V IN + = 0 Voe,
V+ = 15 Vee. TA = +25°C

10

20

rnA DC

V 1N - = +1 Voe. V IN + = a Voe.
T A = 1-2Soc, Vo = 200 mVoc

12

50

!lAoc

Input Offset Voltage

(Note 51

Input Offset Voltage Drift

Rs=

Input Offset Current

IIN(+)-IIN(_)

±9

on

mVoc
!lvtc

±150

10

Input Offset Current Drift
Input Bias Current

IIN(+) or IIN(_)

Input Common-Mode Voltage
Range (Note 71

V'=30V oc

o

Large Signal Voltage Gain

V+ = +15 Voe (For Large Vo Swing)
RL ~ 2 kn

15

V'=+30V oc . RL =2kn

26
27

nAoe
pAoctC

500

nAoc

V+-2

Voc
V/mV

Output Voltage Swing

VOH

RL~10kn

VOL
Output Current
Source
Sink

V+ = +5 Voc. RL S 10 kn

5

V 1N + = +1 V oe , V IN - = 0 Vee, V+

= 15 Voe

V IN -=+l VOC,VIN+=QVOC,V+= 15V oc

Voc
Voc

28
20

mVoc

10

20

mA

5

8

mA

Differential Input Voltage
(Nole 71

Note 1: For operating at high temperatures, the LM324 must be derated based on a +12SoC maximum junction temperature and a thermal
resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM224 and LM124

can be derated based on a +150°C maximum junction temperature. The dissipation is the total of all four amplifiers-use external resistors, where
possible, to allow the amplifier to saturate or to reduce the power which is dissipated in the integrated circuit.
Note 2: Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately
40 rnA independent of the magnitude of V+. At values of supply voltage in excess of +15 VDC. continuous short-circuits can exceed the power
dissipation ratings and cause eventual destruction.
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of
the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral
NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V+ voltage level (or
to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will
re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 VDC.

:s

:s

Nota 4: These specifications apply for V+ =: +5 VDC and -55°C
TA
+125°C, unless otherwise stated. With the LM224, all temperature
specifications are limited to -25°C < TA < +85°C and the LM324 temperature specifications are limited to O°C < TA < +70°C.
Not.5: VO'" 1.4 VOC. RS =

on ,;;;ith V+ from 5 VOC to 30 VOC; and over the full

input common-mode rangeto V;-C to V+ - 1.5 VOCI.

Note 6: The direction of the input current is out of the Ie due to the PNP input stage. This current is essentially constant, independent of the
state of the output so no loading change exists on the input lines.
Note 7: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of
the common-mode voltage range is V+ - 1.5V. but either or both inputs can go to +32 V DC without damage.
Note 8: Due to proximity of external components, insure that coupling is not originating via stray capacitance between these external parts. This
typically can be detected as this type of capacitive coupling increases at higher frequencies.

2-192

typical performance characteristics

Input Voltage Range

Input Current

15

90

1
1
I-

10

::l

;;

30

~

,

"'

-

60
50
40

v+ '" +15 Voc.

~

DC

l - I--

_

l - t--

'1 I I' f-- l- f--

I I I

-55 -35 -15 5

V+ OR V- - POWER SUPPLY VOLTAGE I,VDc)

25 45 65

~
z

RL "'20kn

120

~

:ii

""i--..

W

'"

«

~

,
J

=

120

z

100

W

80

:ii

RL =2 kn

'"~

80

Q

,

>

;
10

20

30

r---,-----::::------,

".('~'"
V+I2~
V+=30V:c &

60 1-+-II-"~-55'C'; TA ,;; +125"C

1.0

10

100 1.0k 10k lOOk 1.0M 10M
f - FREQUENCY 1Hz)

500

/

Q«
"'"
,!:;

1\

/

00

\

W

«
'"

~>

~,

~~

t>b
II

400

350

~.,"

!-30

IN~UT

OUrU}

250
20

10

40

'0

50pf

~

~

.J 300

'I-

T

1

Q

z'"
- «
> >

~

VI I

0

40

''""

20

Output Characteristics

>

Q

I-

~ ~

'.~

I--

-.

,...
-Pc

'"z

-

~

ii
!;

~

1

0.1

10

0

8

lk

10

100

;

80

W

..s

70

'"
!:;

ffi
'"~
!;
0.1

10+- OUTPUT SOURCE CURRENT (mADe>

60
50
40

~
o

3D

~

10

,

0.1

10

100

10-- OUTPUT SINK CURRENT ImAocl

- :-- '-- -

~'---

--

+

-r-.

20

o
0.01

1M

Current Limiting
90

0.01
0.001

lOOk

10k

f - FREOUENCY 1Hz)

~
0.01

r-rr-----=-----,

15

U

,

1M

0

0

~

1111

lOOk

f - FREQUENCY 1Hz)

~

~

W

10k

>

!;

.

>

lk

,

I
TA =+25"&
v+ =+30 Voe

>

, ::;

o

100

'IV""

~IIIIIIIII

~

0

!; z

111'

Q

«

'"

-

111.

111111111

Output Characteristics
Current Sinking

"

~.
.".

0

'"'"
i:i

10

1

Y..

t-TIME Ips)

Current Sourcing

W

60

W

c

Large Signal Frequency
Response

o

I-TIME ,",)

«
'" ::
I- +
0; >

80

20

;; 450
I-.§

V+"15V DC

f-

~~

;i!i

1l

Voltage Follower Pulse
Response (Small Signal)

RL ;:::2.0k

~~
I-W

120

Q

i= 100

8,

o

Voltage Follower Pulse
Response

~

~

40

v+ - SUPPLY VOLTAGE (Vocl

»

I

20

40

30

Common Mode Rejection
Ratio

>

40

20

10

v+ - SUPPLY VOLTAGE 1Vocl

Response
140

1

TA"-55"C' -

B5 105 125

Open Loop Frequency
160

.-

!

i

TA - TEMPERATURE 1°C)

Voltage Gain

i
i

-~tTA"O°CTO+~-

I-- V· = +5 Voe

10

15

_

I

"

- OV

I I

- -

20

V

v+" +30 VOC1

o
10

r-

I I I

I I I

BO
10

'"
B

Supply Current

-55 -35 -15 5

-

r-

25 45 65 85 105 125

TA - TEMPERATURE (ge)

2·193

application hints
The LM124 series are op amps which operate with only
a single power supply voltage, have true-differential
inputs, and remain in the linear mode with an input
common-mode voltage of 0 V DC- These amplifiers
operate over a wide range of power supply voltage with
little change in performance characteristics_ At 25°C
amplifier operation is possible down to a minimum
supply voltage of 2_3 VDC -

be used, from the output of the amplifier to grou nd to
increase the class A bias current and prevent crossover
distortion_ Where the load is directly coupled, as in dc
applications, there is no crossover distortion_
Capacitive loads which are applied directly to the output
of the amplifier reduce the loop stability margin_ Values
of 50 pF can be accommodated using the worst-case noninverting unity gain connection_ Large closed loop gains
or resistive isolation should be used if larger load
capacitance must be driven by the amplifier_

The pinquts of the package have been designed to
simplify PC board layouts_ Inverting inputs are adjacent
to outputs for all of the amplifiers and the outputs have
also been placed at the corners of the package (pins 1,
7, 8, and 14)_

The bias network of the LM 124 establishes a drain
current which is independent of the magnitude of the
power supply voltage over the range of from 3 V DC to
30 V DC-

Precautions should be taken to insure that the power
supply for the integrated circuit never becomes reversed
in polarity or that the unit is not inadvertently installed
backwards in a test socket as an unlimited current surge
through the resulting forward diode within the IC could
cause fusing of the internal conductors and result in a
destroyed unit_

Output short circuits either to ground or to the positive
power supply should be of short time duration_ Units
can be destroyed, not as a result of the short circuit
current causing metal fusing, but rather due to the large
increase in IC chip dissipation which will cause eventual
failure due to excessive junction temperatures_ Putting
direct short-circuits on more than one amplifier at a time
will increase the total IC power dissipation to destructive
levels, if not properly protected with external dissipation
limiting resistors in series with the output leads of the
amplifiers_ The larger value of output source current
which is available at 25°C provides a larger output current capability at elevated temperatures (see typical
performance characteristics) than a standard IC op amp_

Large differential input voltages can be easily accommodated and, as input differential voltage protection
diodes are not needed, no large input currents result
from large differential input voltages_ The differential
input voltage may be larger than V+ without damaging
the device_ Protection should be provided to prevent the
input voltages from going negative more than -0_3 V DC
(at 25° C)_ An input clamp diode with a resistor to the
IC input terminal can be used_
To reduce the power supply current drain, the amplifiers
have a class A output stage for small signal levels which
converts to class B in a large signal mode_ This allows the
amplifiers to both source and sink large output currents_
Therefore both NPN and PNP external current boost
transistors can be used to extend the power capability of
the basic amplifiers_ The output voltage needs to raise
approximately 1 diode drop above ground to bias the
on-chip vertical PNP transistor for output current sinking
applications_

The circuits presented in the section on typical applications emphasize operation on only a single power supply
voltage_ If complementary power supplies are available,
all of the standard op amp circuits can be used_ In
general. introducing a pseudo-ground (a bias voltage
reference of V+/2) will allow operation above and below
this value in single power supply systems_ Many application circuits are shown which take advantage of the wide
input common-mode voltage range which includes
ground_ In most cases, input biasing is not required and
input voltages which range to ground can easily be
accommodated_

For ac applications, where the load is capacitively
coupled to the output of the amplifier, a resistor should

typical single-supply applications (v+ = 5_0 VDcl
DC Summing Amplifier

Non-Inv... ting DC Gain (OV Input = OV Output)
+5V

------

(VIN'S

2: 0 VDC AND Vo 2: 0 VDC)

•

100k

'Vo
Vo

.,

•

10k

100k
VIN (mV)

Where: vo" V, + V2 - V3 - v4
IV, + V:2) ~ IV, + V..) to .eep Yo > 0 voe

2-194

typical single-supply applications (con't) (v+=5.ov o d
High Input Z. DC Differential Amplifier

Photo Voltaic·Cell Amplifier

R2

R,

tOOk

1M

Vo

(CELL HASOV

.v,o-----I

Fo.

!!.!. : ~
RZ

RJ

ACROSS IT)

Vo

(eMRR depends on this

reslslorrallDmatchl

High Input Z Adjustable·Gain

Using Symmetrical Amplifiers to

DC Instrumentation Amplifier

Reduce Input Current (General Concept)

RI
tOOk

"N
+VIN

o--ilt----!

Vo

If R1 = R5 S. RJ = R4 = R6:: R7 (eMRR depends on match)
Vo

"

R
1.5M

-I,

INPUT CURRENT

COMPENSATION

1+~ (V2 -V,1

Asshown

Vo = 101 (V2 - V,)

Bridge Current Amplifier
Power Amplifier
RI
910k

R,

Vo

,...-....>-QVo

Vo = 0 Voe for V IN = 0 Vee

For Ii «1 andR,»R

Av=1D
VO~VREF (

') R
R,
Z

2·195

~

N

(W)

typical single-supply applications (con't) (v+ ~ 5.0 vDcl

::E
....I

.......
~

N
N

Ground Referencing A Differential Input Signal

AC Coupled Inverting Amplifier

.,

::E
....I

.......

TOOk

~

...::E
N

~.:.,

....I

/\/\
V

1
3 Vpp

vo

T

_10k

":"
Av =

~

(As shown, Av = 10)

DC Coupled Low-Pass RC Active Filter

AC Coupled Non-Inverting Amplifier

.,

lOOk

.2
1M

/\/\1

\I'V PP

.,

16k

v," o-""",'V\~~'V\,.".... .---I

T

,""F1'
C2

.,

lOOk

Vo

fo =1 kHz
Q=1
Av=

.2
1 + R1

Av =2

Av= 11 (As shown}

Bandpass Active Filter

Vo

2-196

.,

lOOk

'0

typical single-supply applications (can't) (v+ ~ 5.0 v oc )

"BI-QUAD" RC Active Bandpass Filter

Fixed Current Sources

AI

V·

lOOk

C1
JJDpf

A2
lOOk

V'N

2V

RJ

2V

2k

AI

2k

R2

A5
470k

D--,\Mr-HH
C2

AJ
IUllk

JJDpF

-------------r------OVo

~1-~~__

R1

lOOk

r-------~------------~~~~OV·
fa ~ 1 kHz
Q= 50

Av" 100 (40 dB)

Current Monitor

Lamp Driver

RI'
0.1
v'D-~~M~~-----------,

LED Driver
V·

R2
100

lOrnA

100
RJ
1k

"(Increase RI fOll L small)

Driving TTL

Pulse Generator
AI
1M

R2
lOOk

IN914

IN914

Voltage Follower

Vo
R4
tOOk

2·197

typical single-supply applications (con't) (v+ = 5.0 vocl

Squarewave Oscillator

Pulse Generator
Rl
'Ilk

IN914

R'

lOOk

Low Drift Peak Detector

High Compliance Current Sink

R,
1

10= 1 amp/voltV 1N
{Increase RE for 10 smalll

Comparator with Hysteresis
+VIN

R

INPUT CURRENT

1M

COMPENSATION

()oo-----!
Vo

Rl
10k

Voltage Controlled Oscillator (VCOI

oDS,.,F
R/2
lOOk

51k
OUTPUT 1

R/2
SDk

'----------+-0
OUTPUT'
10k
"Wide Control Voltage Range: 0 Voe < Vc <2 (V+ - 1.5 Vael

2·198

Operational Amplifiers

LM143/LM343 high voltage operational amplifier

general description

features

The LM143 is a general purpose high voltage operational
amplifier featuring operation to ±40V, complete input
overvoltage protection up to ±40V and input currents
comparable to those of other super-{l op amps. Increased
slew rate, together with higher common·mode and supply rejection, insure improved performance at high sup·
ply voltages. Operating characteristics, in particular
supply current, slew rate and gain, are virtually independent of supply voltage and temperature. Furthermore,
gain is unaffected by output loading at high supply voltages due to thermal symmetry on the die. The LM 143
is pin compatible with general purpose op amps and has
offset null capability.
Application areas include those of general purpose op
amps, but can be extended to higher voltages and higher
output power when externally boosted. For example,
when used in audio power applications, the LM143 pro·
vides a power bandwidth that covers the entire audio
spectrum. In addition, the LM143 can be reliably
operated in environments with large overvoltage spikes
on the power supplies, where other internally-compensated op amps would suffer catastrophic failure.
The LM343 is similar to the LM143 for applications in
less severe supply voltage and temperature environments.

±4.0V to ±40V

• Wide supply voltage range
•

Large output voltage swing

±37V
±38V

• Wide input common·mode range
•

Full ±40V

Input overvoltage protection

• Supply current is virtually independent of supply
voltage and temperature

unique characteristics
•

Low input bias current

8.0 nA

•

Low input offset current

1.0 nA

•

High slew rate-essentially independent
of temperature and supply voltage

•

High voltage gain-virtuallY independent
of resistive loading, temperature, and
supply voltage

•

Internally compensated for unity gain

2.5V/lls

lOOk min

• Output short circuit protection
• Pin compatible with general purpose op amps

connection diagrams
Metal Can Package

NC

INVERTING

Flat Package

Dual·1 n-Line Package

NO

14 Ne

NO

13 Ne

OFFSET NUll

12 Ne

NO
OFFSET
NULL

NO
NO

INVE~~~~~ C~--~""

2

INPUT

INVERTING INPUT
NON-INVERTING

NDN-INVE~~~~~
5

l:::::::J---I1;/

v-

OFFSET NULL

NO

NO

vNOTE: Pin 4 connected to cue.

TOP VIEW

TOP VIEW

Order Number LM143H
or LM343H

Order Number LM143D
or LM343D

See Package 11

See Package 1

OUTPUT

OFFSEl

v-

INPUT

v'
NULL

TOPVIEW
Note: PJn 5 connected 10 boUom of package,

Order Number LM143F
See Package 3

2-199

CW)

•
CW)

!
....•
;;,
~

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage (Note 2)
Input Voltage (Note 2)
Operating Temperature Range
Storage Temperature Range
Output Short eircuit Duration

PARAMETER

LM343

±40V

±34V

500mW
80V
±40V
-55°e to +125°e
-ti5°e to +150 oe

-ti5°e to +150 o e

5 seconds
300 0 e

5 seconds
3000 e

Lead Temperature (Soldering. 10 seconds)

electrical characteristics

LM143

500mW
68V
±34V
oOe to +70oe

(Note 3)

CONDITIONS

LM143
MIN

TYP

LM343
MAX

MIN

TYP

MAX

UNITS

Input Offset Voltage

TA

= 25°C

2.0

5.0

2.0

B.O

mV

Input Offset Current

TA

= 25°C

1.0

3.0

1.0

10

nA

Input Bias Current

TA

= 25°C

B.O

20

B.O

40

Supply Voltage
Rejection Ratio

TA

= 25°C

10

100

10

200

Output Voltage Swing

TA

= 25°C.

Large Signal Voltage
Gain

TA = 25°C. V OUT
RL ~ 100 kU

Common-Mode
Rejection Ratio

TA

Input Voltage Range
Supply Current (Note 41

RL ~ 5 kU

22

25

20

25

lOOk

lBOk

70k

lBOk

= 25°C

BO

90

70

90

TA

= 25°C

24

TA

= 25°C

= ±10V.

26
2.0

22
4.0

V
VIV
dB

26
2.0

nA

p.v1V

V
5.0

rnA

Short Circuit Current

TA

= 25°C

20

20

rnA

Slew Rate

TA

= 25°C. Av = 1

2.5

2.5

Vips

Power Bandwidth

TA
RL

= 25°C. V OUT = 40 V p . P •
= 5 kU. THD::; 1%

20k

20k

Hz

Unity Gain Frequency

1.0M

TA

= 25°C

Input Offset Voltage

TA
T";;

= Max
= Min

Input Offset Current

TA
TA

= Max
= Min

O.B
1.B

4.5
7.0

Input Bias Current

TA
TA

= Max
= Min

5.0
16

35
35

Large Signal Voltage
Gain

RL ~ 100 kU. TA
RL ~ 100 kU. TA

Output Voltage Swing

RL ~ 5.0 kU. T A
RL > 5.0 kU. T A

= Max
= Min
= Max
= Min

Hz

1.0M
6.0
6_0

10
10

mV
mV

O.B
1.B

14
14

nA
nA

5.0
16

55
55

nA
nA

50k
50k

150k
220k

50k
50k

150k
220k

22
22

26
25

20
20

26
25

VIV
VIV
V
V

Note 1: The maximum junction temperature of the LM143 is 150°C, while that of the LM343 is 100°C. For operating at elevated temperatures,
devices in the TO-5 package must be derated based on a thermal resistance of 150°CIW, junction to ambient, or 45°C/W, junction to case. For the

flat package, the derating is based on a thermal resistance of 185°C/W when mounted on a 1/16·inch-thick epoxy glass board with ten, O.03-inchwide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is 100°C/W, junction to ambient.

Note 2: For supply voltage less than ±40V for the LM143 and less than ±34V for the LM343. the absolute maximum input voltage is equal to the
supply voltage.
Note 3: These specifications apply for Vs = ±28V unless otherwise specified.
For LM143. T A = max = 125°C and T A = min = -55°C.
For LM343. T A = max = 70°C and T A = min = O°C.
Not. 4: The maximum supply currents are guaranteed at Vs = ±40V for the LM143 and Vs = ±34V for the LM343.
2-200

schematic diagran:v'

7

""

20

.....P--....,&:OOUTPUT

""
27

Cl
J.OpF

03

0'
R24
Uk

"23

Uk

R25
39k

L-~~--------~-+--------~-+--~--~----~--4---~--~--~~VOFFSET
NULL

OFFSET
NULL

typical performance characteristics

..,z
~

./

30

~

~
>
....

100
30f--+-+-f--+-t--b'

'"
;;

~
~

;l!

..,

120

40 r--r--,--r-r--r--r-"'T""""

./

~

Voltage Gain

Output Voltage Swing

Input Voltage Range
40

C>

80
&0
40

>

10

~

./

TA

20

o

o

o

10

20

30

40

10

Supply Current

.~

2.0

1l
>

~
iil

1.0

24

-

r

I
II

Tr 2'jC-

1&

!....

i
~

8.0

20

40

30

SUPPLY VOLTAGE ('VI

-

40

"'

2.0

--

10

30

40

I
I

120

vs(~ '218V

81AS

100

;

80

~

~

&0

;

40

z

C>

>
OFFSET

-55 -35 -15 5

20

Voltage Gain

I

......

o

SUPPLY VOLTAGE ('VI

..,

o
10

30

Input Current

3.0

oS
....

20

SUPPL V VDL TAGE (:!:V)

SUPPLY VOLTAGE (tV)

;;

~2"C

~L ~100kn_

y2'iC

25 4, &5 85 '05 12'

TEMPERATURE ('CI

Vee = ~28V

20

Rt~'rT-55-35-15

5 25 45 &5

85 105 125

TEMPERATURE fOCI

2·201

typical performance characteristics (con't)

Supply Current

Voltage Follower Slew Rate
5.0

I
JEGJ'Vl SLlw

.....

POSITIVE SLEW

13

4.0
3.0

~

~

~

.....

2.0

~

2.0

~

L"25"C._

1.0

~

3.0

Vs =±2BV

~

13'"

-55 -35 -15

1.0

-55-35-15

TEMPERATURE ("C)

I- -,...

--

~

~
z

~

5

28

~

10

1

-

...... r--

r--- J

1

T
I I

'j

,

25 45 65 85 105 125

1

sJu~

ili
-55 -35 -15 5

25 45 65 85 105 125

TEMPERATURE ("C)

I "put Noise Voltage

~
1.0

~

IkE

Unity Gain Bandwidth

:;;'"

~'NL
l:.i-

TEMPERATURE ("C)

1.5
~

"r

1"

5 25 45 65 85 105 125

I I

30

20

u
'"

I I I

o

40

,g

4.0

,g

]
~

Short Circuit Current

5.0

Input Noise Current

l- t-

0.5

...>

1'" j 1-

§

28

-55-35 -15 5

1.0 L...J..J.J,.WlLJL.J.
100

10

25 45 65 85 105 125

TEMPERATURE (OC)

lk

lOOk

10k

100

10

lk

10k

lOOk

FREQUENCY (Hz)

FREQUENCY (Hz)

Large Signal Frequency
120

~
z

"

~

80

'"g
w

60

'!!

40

"~

20

i!i

120

T~ " 25!C

100

I-- ~

1.0

10

100

lk

80

~

60

~

40

"~
>

~

10k

"-

lOOk

'""

~
z

NEGATIVE

20

1.0

10

100

b.

60

">

180

~

I"

20
T. " 25"C
-Vi"±T

PHASE

I

135
90

I"

I"

,

45

3!
1:1
~

~

~
~

!!l

Vs "'±28V
Rl "5kn

i"-

lOOk

T,~,~,~ 1%

1M

100

100

1k

10k lOOk 1M

FREQUENCY (Hz)

10k

lOOk

1M

FREQUENCY (Hz)

Inverter Pulse Response

12

16
INPUT

~

~
>

~

II

"1Jl'"
'"'"

12

--

-8
-12

\~UTIUT

I

-4

, I

;A-tt:
Y' r

t-

"1' 28

-20
10

lk

20

-16

-20

2-202

TA =25"C

16

~AIN

80

40

10

20

z

w

10k

15

Response

120

'"'"~

lk

"-

Voltage Follower Pulse

Response

~

1"-

20

FREQUENCY (Hz)

Open Loop Frequency

~

SUPj.L:~

o

FREQUENCY (Hz)

100

~

TA=25°C

1M

25

;~SUPPLY

100

Vs "±28V-

"- 1"-

Response

Power Supply Rejection

Common-Mode Rejection

10M

10

20
TIME (/Js)

30

40

"1Jl'"
'"'"
~>

t-

f-"

I'NPJT

--1"--

\

!I

-4
-8

rl-

~-I\-

-12

OUTPUT

r'"1'28~-

I

-20
10

- --

T. "25"C-

I

-16

20
TIME (us)

30

40

application hints
The LM 143 is designed for trouble free operation at any
supply voltage up to and including the guaranteed maximum of ±40V_ Input overvoltage protection, both
common-mode and differential, is 100% tested and
guaranteed at the maximu~ supply voltage_ Furthermore, all possible high voltage destructive modes during
supply voltage turn-on have been eliminated by design_
As with most IC op amps, however, certain precautions
should be observed to insure that the LM 143 remains
virtually blow-out ·proof.
Although output short circuits to ground or either supply
can be sustained indefinitely at lower supply voltages,
these short circuits should be of short duration when
operating at higher supply voltages_ Units can be destroyed by the resulting high power dissipation which
causes failure due to excessive die temperature_ This is
also true when driving low impedance loads or loads that
can revert to low impedance; for example, the LM143
can drive most general purpose op amps outside of their
maximum input voltage range, causing heavy current to
flow and possibly destroying both devices_
Precautions should be taken to insure that the power
supplies never become reversed in polarity-even under
transient conditions. With reverse voltage, the IC will
conduct excessive current, fusing the internal aluminum
interconnects. Voltage reversal between the power supplies will almost always result in a destroyed unit.

,.I

In high voltage applications which are sensitive to very
low input currents, special precautions should be exercised_ For example, with high source resistances, care
should be taken to prevent the magnitude of the PC
board leakage currents, although quite small, from
approaching those of the op amp input currents. These
leakage currents become larger at 12SoC and are made
worse by high supply voltages. To prevent this, PC
boards should be properly cleaned and coated to prevent
contamination and to provide protection from condensed
water vapor when operating below O°C. A guard ring is
also recommended to significantly reduce leakage currents from the op amp input pins to the adjacent high
voltage pins in the standard op amp pin connection as
shown in Figure 1. Figures 2, 3 and 4 show how the
guard ring is connected for the three most common op
amp configurations.
Finally, caution should be exercised in high voltage
applications as electrical shock hazards are present. Since
the negative supply is connected to the case, users may
inadvertantly contact voltages equal to those across the
power supplies.
The LM143 can be used as a plug-in replacement in most
general purpose op amp applications. The circuits presented in the following section emphasize those applications which take advantage of the unique high voltage
capabilities of the LM143.

NC

v'

OUTPur,&

1

/

OFFSET NULL

V'
I

GUARD
OFFSET NULL

•

'

v-/'
FIGURE 2. Guarded Voltage Follower
BOTTOM VIEW

FIGURE 1. Printed Circuit Layout for Input Guarding
with TO-S Package
R1

R2

INPUTo-JllVIIo_t----'W'v----.

.,

.2
v'

GUARD
R3"'RSQURCE

INPUT o------A...:..t
R1

R3

R1 X R2
.3--R1+R2

x A2

+ ~ '"

RSOURCE

V-

FIGURE 3. Guarded Non-Inverting Amplifier

FIGURE 4. Guarded Inverting Amplifier

2-203

typical applications:j:

(For more detail see AN-1271

VON

A'

10k

A5
1.OM

VCUT

A3
lOOk

v-· -38V 0--...- - - -...
R4

lOOk
V,
Y-"'-38V

Av '" (

140 Vp_p Drive Across a Floating Load

R4=RB

RS-R1

±36V Common-Mode I nstrumentation Amplifier

r----....--------1~-::C7:-<~---'f':+___±OUTPUT VOLTAGE

ADJUSTMENT

A'

WHERE:

4R2 may be adjustlble to trrmth.gain.
**R7 may be adjusted to compensate lor the resistance tolerance of R4 - R1 for best eMR.

V+=+JBV

A5

22k

2A') A5
'+-R4
R2

O.I#J F

CERAMIC~

C3

~

....oo() ~~5:EGULATED

tD.uF
100Y

10k

C' +
10/.lF " ' "
SOV..L

A3

22k

A'

lOOk

C2

+

'IlpF"....

.,

25V...L

2N4014

Rl&
'Ok

A2

A8
lOOk

3.&k

t----t---+---.
A17":'"
'Ok

,%

2.OW

V+)

r-------~i4~~--~--~~--~-o~
DB

,N52JO

A15
0.56

DB
'N3938

tPut on common heat sink.
All Resiston are 1/2 watt, 5%. exctpt IS noted.

.....__- - - - - - -...- ...--0

U~~~GULATED

Tracking ±65V. 1 Amp Power Supply with Short Circuit Protection

:f:The 38V supplies allow for a 5% 'voltage tolerance. All resistors are 1/2 watt, except as noted.

2-204·

±&5V

:~~~~:T£D

typical applications

t

(con't)

(For more detail see AN-1271
Rl
2MEG

vt

......~-1~----.
C5

= +J8Vo-.....---1~-----

R.

D.1/lF
TeERAMIC

2.1k

R.
2.7k

I-............- I - - -....- -.....---+.......J"V"V"'Y"'-.....--o DUTPUT

VON

C7

RJ
lOOk

TO.D~F

+

R,
2.1k

R8
2.1k

tpUI lin common f1eat smk
"l4turnsofno.20wlreonIJ/B"form
....Adjust R610 set 10 '" 100 rnA

C6
O.tIJF
TCERAM'C

y-" -JaV

1 DOW Audio Power Amplifier with Safe Area Protection
V+=+J8V

Rl1
lOOk
1%

C3
O.I/JF

R.

'"

T= CERAMIC

R8

D"
>~--4>---I 1--+--+--+---....-0
1.OW

VON

O----1I....::-t

VOUT

R9

0.68
tOW

R'

m

tPut on common hulslnk.
All Diodes liD lNJ'9J.
V- =-Jay

1 Amp Power Amplifier with Short Circuit Protection
4:The 38V supplies allow for a 5% voltage tolerance. All resistors are 1/2 watt, except as noted.

2-205

Operational Amplifiers
LM158/LM25.8/LM358 dual op amps
general description
The LM158 series consists of two independent, high
gain, internally frequency compensated operational amplifiers which were designed specifically to operate from
a single power supply over a wide range of voltages.
Operation from split power supplies is also possible and
the low power supply current drain is independent of the
magnitude of the power supply voltage.
Application areas include transducer amplifiers, dc gain
blocks and all the conventional op amp circuits which
now can be more easily implemented in single power
supply systems. For example, the LM 158 series can be
directly operated off of the standard +5 Vee power
supply voltage which is used in digital systems and will
easily provide the required interface electronics without
requiring the additional ±15 Vec power supplies.

unique characteristics
•

In the linear mode the input common-mode voltage
range includes ground and the output voltage can also
swing to ground, even though operated from only a
single power supply voltage.

• The unity gain cross frequency
compensated.
• The input bias
compensated.

current

is

is temperature

also

temperature

advantages
•

Eliminates need for dual supplies

• Two internally compensated op amps in a single
package

connection diagrams

• Allows directly sensing near GND and VOUT also
goes to GND
• Compatible with all forms of logic
• Power drain s.uitable for battery operation
• Pin-out same as LM 1558/LM 1458 dual operational
amplifier

features
• Internally frequency compensated for unity gain
• Large dc voltage gain
100 dB
• Wide bandwidth (unity gainl
1 MHz
(temperature compensatedl
• Wide power supply range:
Single supply
3 Vee to 30 Vee
or dual supplies
±1.5 Vee to ±15 Vee
• Very low supply current drain (500IlA) - essentially
independent of supply voltage (1 mW/op amp at
+5 Vecl
• Low input biasing current
45 nAee
(temperature compensated)
• Low input offset voltage
2mVec
5 nAee
and offset current
• Input common-mode voltage range includes ground
• Differential input voltage range equal to the power
supply voltage
o Vee to V+ -- 1.5 Vee
• Large output voltage
swing

schemati.c diagram

(Each Amplifier)

Metal Can Package
v'

v'

GND
TOP VIEW

Order Number LM158H, LM258H Dr LM358H
See Package 11

Dual-In-Line Package
OUTPUT A

y4"

INVERnNIi INPUT A

NON.INVERTING

OUTPUT B

3

INVERTING INPUT B

INPUT A

GND""",I----'

TOP VIEW

Order Number LM358N

See Package 20

NON·INVERTING
INPUTS

i

absolute maximum ratings

-"

U1
Supply Voltage, V+
32 VDC or ±16 VDC
Differential Input Voltage
32VDC
Input Voltage
-0_3 VDC to +32 VDC
Power Dissipation (Note 11
Molded DIP
(LM358N)
570mW
Metal Can
(LM158H, LM258H & LM358H)
500mW
Output Short-Circuit to GND (Note 2)
(One Amplifier)
Continuous
V+ ~ 15 VDC and TA = 25"C

Input Current (VIN

< -0.3

VOL) (Note 3)

50mA

Operating Temperature Range
LM358
LM258
LM158

o"C to +70°C
-25"C to +85"C
-55"C to +125°C

Storage Temperature Range

-65"C to +150"C
300"C

Lead Temperature (Soldering, 10 seconds)

00

........

i

N

U1

CO

.......

iw
U1

00

electrical characteristics

(v+ = +5.0 V oc , Note 4) LM158

PARAMETER

CONDITIONS

Input Offset Voltage

T A = +25"C (Note 5)

Input Bias Current (Note 6)

IINt+) or IINt-J. T A == +25°C

Input Offset Current

'INt+) - 'INt-). T A == +25°C

Input Common-Mode Voltage
Range (Note 7)

V+ == 30 Vec. T A == +25°C

Supply Current

RL

MIN

TYP
±2

45
±3

o

= On All Op Amps

±5
150
±30
V'-1.5

0.5

00

MAX

1.2

UNITS
mVoc
nAoe

nAoe

Voc
mAce

Over Full Temperature Range
Large Signal Voltage Gain

V+ = +15 Vec (For large Vo Swing)
RL ~ 2 kn. TA = +25"C

50

100

Common-Mode Rejection

DC. T A = +25"C

70

85

dB

= +25"C

65

laO

dB

-120

d8

V/mV

PJII

Ratio
Power Supply Rejection Ratio

DC, T A

Amplifier-ta-Amplifler
Coupling (Note 8)

f = 1 kHz to 20 kHz. T A = +25"C
(Input Referred)

Output Current
Source
Sink

V ,N + == +1 Vec. V IN - == 0 Vee.
V+ == 15 Vec. TA == +2SoC

20

40

mAce

VIN - == +1 Vec. V IN" == a Vee.
V+ == 15 Vee. T A :::: +25 u C

10

20

mADe

V IN -:::: +1 Vec. V IN +:::: aVec.
TA = +25"C, Va = 200 mVoe

12

50

J.LAcc

Input Offset Voltage

(Note 5)

Input Offset Voltage Drift

Rs

±7

= on

mVoc

/-lvtc
±100

Input Offset Current

Input Offset Current Drift
Input Bias Current

IIN(+) or IINI_J

Input Common-Mode Voltage

V" ::::30Vec

o

V .. :::: +15 Vec (For Large Vo Swing)

25

nAoe

pAoctC

10

300

nAoe

V+-2

Vee

Range (Note 7)
Large Signal Voltage Gain

V/mV

RL:? 2 kH
Output Voltage Swing

VOH
VOL

V' = +30 Voc. RL = 2 kH
RL> 10kH

26
27

5

V' =+5V ee , RL 

>

~

1

~

z

"''"

~

Rl =2 kU

40

.l

}
10

20

30

100 1.0k 10k lOOk 1.0M 10M

»0=

-

/

/

~~

z'"
-"

I ...

»~5

1\

;; 450
I-oS

"'
~.

~>

I

I

1

of

-

400

30

I-

350

~

40

..

I-- r-

"....

T

~I

50PF

INPUT

VII

I

TA

Output Characteristics
Current Sourcing

15

5

10

=
1
0

>

+25~C

V+ = +30 Voe

o

1

0

8

..~

"'" 2:
:;"';.

:=
~ ~

g

-

CUrrent Limiting

.

"
=
1

ffi

~

-1111

> ~

TAl

r,1111

i ,i2

0.01

0.1

"'
:;
"'"

ffi

=

c

80

0.1

0

>

r-

-

I-

60

5

40

~

30

~
~

10

t- r-

-55 -35 -15 5

100

10+- OUTPUT SOURCE CURRENT (mAod

---~'-

10 - OUTPUT SINK CURRENT (mADe)

+

-

.... J-

2b

o
10

- r-

oS 10 a:
B
50

1

1111 I IIII I IIII L
1
0.001

j

5
~

'I~'~E~E~~EN~ ~~'~+'

z~

~

=
>

10

1M

f - FREQUENCV 1Hz)

90

2:

lOOk

10k

lk

Output Characteristics
Current Sinking

"

1M

;

10

~

lOOk

20

:!

'"
ii'"

.-

I

10k

f - FREOUENCV 1Hz)

t-TIME (ps)

t-TIME (/-lsi

~

lk

large Signal Frequency
Response

N··
I A

OUrUj
300
250

20

40
20

Voltage Follower Pulse
Response (Small Signal)

\

10

60

1'l

500

"'"
=I:;"

~

a:

w

=
=
~
8''""
1

10

f - FREQUENCV 1Hz)

V+ = 15 Voe

30

=
~ 100
a:
z
= 80

o

RL ;:::2.0k

~­
...
~

l

20

10

Ratio

40

y+ -SUPPLVYOLTAGE IY oc )

5>

T --55°CAJ

I

:!!

~fZ~

1.0

00

ii 120

Y+=30Y';"& I
60 1--+-f--''J\Io.....

•v, o-."".>J\Io....

•

tOOk

•

1Dok

.,

10k

w,o-."".>J\Io...,

.v, o--'VlIIr--'

•

tOOk
Where: Vo = V1 + Voz V3 V4
(Vl+V2):;:;(V3+V4)tokeepVo

2·210

·avoc

i...

typical single-supply applications (con't) (v+=5.ov o cl

U'I

High Input Z. DC Differential Amplifier

CD
........

Photo Voltaic.cell Amplifier

r-

~

RZ
1110k

R,

N

1M

U'I

CD
........

iw

vo
(CELL HAS DV

.v,o-----I

U'I

ACROSS IT)

CD

.v,o---------------i

Bridge Current Amplifier
AS SHOWN: Vo = 2(V2

-

VI)

Driving TTL

vo

.".

R,

forh«landR,»R
VO'VRE:.F

':'

ClZ R
R,

Pulss Generator

Squarewave Oscillator
RI
lOk

RI
lOOk

IN914

vo

R2
150k

:L..fU1..

v'

;SL...1L
R3
lOOk

R5
lOOk
':'

Voltage Controlled Oscillator (VCa)
OOS.. F

RIZ
lOOk

+Vc'
51k

OUTPUT 1

RIZ
5Dk

L - - - - - - - - - + - o OUTPUT 2
10k

·W.de Control VoltaDe Range: II Voe < Vc <2 (Y> - 1.5 Vael

2-211

typical single-supply applications (can't) (v+ = 5.0 Vocl

Ground Referencing A Differential Input Signal

AC Coupled Inverting Amplifier
R,
lOOk

~~

/\/\

V

R,

1
T

3Vpp
Vo

':' 10k

v' O--'IoM..-4.-.M,..,.....
R3
+ lOOk

10.'1'
Cl

*
':'

Av =

(As shown,

Av" 101

AC Coupled Non·lnverting Amplifier

.,

DC Coupled Low-Pa.. RC Active Filter

.,

lOOk

1M

/\/\1
V 3Vpp

Rl
16k
V'N o--'IoM~'-''VI''''''''---f

T

Vo

vo~
c'
10.'1'

Ay

"

fo '" kHz
0= 1

R'

1+n,

Av"'2

R4
lOOk

o

'0

Av= 11 IAsshownJ

Current Monitor

0.1

R."

Bandpass Active Filter

-

Cl

'L

o.at~F

.,

390k

Rl

R6
120k

390k
V'N o--'IoMrl~4~-I

.,

620

Vo

R3
620k
C3

.3
1k

2·212

·UncreaseRI forlL small)

''"'1

R1
lOOk

RB
lOOk

v'

fo=lkHl
0-25

typical single-supply applications (con't) (v+ =

5.0

Fixed Current Source

OJ
2k

.,

1M

2V

.,
2k

0'1
00

.......

Pulse Generator

v'

2V

i...

vod

02
lOOk

iN

IN914

0'1
00

IN914

.......
r-

.2

3:

w

0'1
00

••

lOOk

LED Driver

Lamp Driver

v'

2-213

Operational Amplifiers
LM709 operational amplifier
general description
The LM709 is a monolithic operational amplifier
intended for general-purpose applications_ Operation is completely specified over the range of voltages commonly used for these devices_ The design,
in addition to providing high gain, minimizes both
offset voltage and bias currents_ Further, the class-8
output stage gives a large output capabil ity with
minimum power drain_
External components are used to frequency compensate the amplifier_ Although the unity-gain com-

pensation network specified will make the amplifier
unconditionally stable in all feedback configurations, compensation can be tailored to optimize
high-frequency performance for any gain setting_
The fact that the amplifier is built on a single silicon chip provides low offset and temperature drift
at minimum cost. It also ensures negligible drift
due to temperature gradients in the vicinity of the
amplifier_

schematic and connection diagrams
INPUT fREQUENCY COMPENSATION

r-____~~J+-----~8+_~p-----~~~--_.--v+

Metal Can

.---.....-I-.,.H-+-- OUTPUT

OUTPUT

"ao_....--+_FREQUENCY
Ql3 COMPENSATION

Note: Pin 4 connected to c:ase.

Order Number LM709H
See Package 11

Rll

14K

typical applications*
Offset Balancing Circuit

Voltage Follower

01

R3'

-----AJ""--...----

VeM (MAXI--~f-1.....

Cl
5000p'

OUTPUT

R5

R4

ISOK

lOOK

v---JtJVV......W~-----V+

RZ'
51
RZ'
51

INPUT----:j

">..::....."'""M..... OUTPIlT

*To b. used with any capacitive
loading on outpul.
tShould be equal to de source
resistance on input.

CZ
ZOOp!

*Tobtusedwithanv
aplcitivaloadingon
output

Unity Gain Inverting Amplifier

C2
100pf

FET Operational Amplifier
R4
10K

"""'M-...--OUTPUT

r - - -cl

1700p'
R3
10K
INPUT-JW.,......."'i

R2'
R1'
51

51

>..::.......J.,JVIr-OUTPIl1

*To be used with Iny capacitive
loading on output

R5
10K

*Pin connections shIMn are ~r Meta' Can package,
2-214

*Toblusedwithlnycapacitiva
loading on output.

r-

s:
....,
o

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential I nput Voltage
I nput Voltage
Output Short-Circuit Duration (TA; 25°C)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics

CD

±lBV
300mW
±5V
±10V
5 sec
_65°C to +150°C
_55°C to +125°C
300°C

(Note 2)

PARAMETER

CONDITION

MIN_

TA; 25°C, Rs:510 kn

Input Offset Voltage

TYP.
1.0

MAX.
5.0

UNITS
mV

Input Bias Current

TA;25°C

200

500

nA

I nput Offset Current

TA; 25°C

50

200

nA

I nput Resistance

TA; 25°C

Output Resistance

TA;25°C

Supply Current

TA; 25°C, Vs; ±15V

Transient Response

VIN; 20 mV, CL::;;100 pF
TA;25°C

Risetime

150

400

kn

150

n

2.6

0.3

Overshoot

10

Slewing Rate

TA; 25°C

Input Offset Voltage

Rs::S;lOkn

5.5

mA

1.0

pS

30

%

VipS

0.25
6.0

mV

Average Temperature
Coefficient of Input

Rs ;50n
Rs; 10 kn

Offset Voltage

3.0

pvfc

6.0

pvfc

Vs; ±15V, RL~2 kn

Large-Signal

VouT;±10V

Voltage Gain
Output Voltage Swing
I nput Voltage Range
Common Mode
Rejection Ratio

25,000

45,000

Vs; ±15V, RL ;10 kn

±12

±14

V

Vs; ±15V, R L ; 2 kn

±10

±13

V

±10

V

90

db

VS;±15V

±B.O

Rs::S;lO kn

70

70,000

Sup'ply Voltage
Rejection Ratio
I nput Offset Current

Rs:510 kn

25

150

pV/V

TA ;+125°C

20

200

nA

TA; -55°C

100

500

Input Bias Current

TA ;-55°C

I nput Resistance

TA; -55°C

0.5

40

100

1.5

nA

pA
kn

Nota ',: For operating at elevated temperatures, the device must be derated based

on a 160°C maximum junctlg" temperature and 8 thermal resistance of 1500 C/W
Junction to ambient or 45 C/W Junction to caSB for the matal-can P8C~8g8.
For the flat package, the derating Is based on a thermal resistance of 185 C/W
when mounted on 8 1/16-lnch..thlck, epoxv-glass board with ten, O.03-lnchwide, 2-ounce copper conductors (see curve).

Nota 2: These specifications apply for -55°C::;; T A ::;; +1250 C, ± 9V :5 Vs

'::;;.:!:15V, Cl

=

5000 pF, Rl

=

1.6K, C2 = 200 pF and R2 = 51n unless other-

wise specified.

2-215

mr---------------------------------------------------------------~

o
.....

:E

guaranteed performance characteristics

...I

Input Common Mode

Voltage Range

Output Voltage Swing
15

I I I
~

-55°C

T.

~

90

i

80

~
Ii!

70

I

60

~
~

I I

1lII!!-"

I I

5

9

",

J ?\.~\ ~
~~~~~f"'~
"',;;.. ~~\~~",
ItI'r'T

10

11

12

55'C!:T,,!" +lZS'C

':.

+125°C

I I I
I I I

~\",,,,

"""

50
40

13

14

10

15

11

SUPPLY VOLTAGE (±V)

Maximum Power Dissipation

300

~

~

~~

'I\.

- - METAL CAN ""'AGE

o
25

65

45

85

i-

I

~~~\"'"'"
::;o;o.or

10

125

~

~

Ioo~

80

105

I

T.. -2S·C

l~~.cl~l

r"

1110

'-i- """f"';"', ......' ...,.11

15

--

~~~

".1\.

2110

iii
c;

14

Supply Current

100

~

13

Voltage Gain

4110

Ii
;;.

12

SUPPLY VOLTAGE (:tV)

11

AMBIENT TEMPERATURE (Oe)

12

13

SUPPLY VOLTAGE

14

15

10

II

12

13

14

,~

SUPPLY VOLTAGE (±V)

(:!:v)

typical performance characteristics
Input Offset Current

I "put Bias Current

200

10
VI = ±ISV

~ 160

~

1

I

120

~
"

~

1'liiio..

80

"

E
!Il

-75 -50 -25

~

..... Ito..
~
0

25

VI = ±15V

08

1

'" "-

04

""'"
-75-50 -25

100 125

80

z

;;:

'"w
'"«
'='

'"!!

I

~
Ii!
5

C1 '" 5000pF,
1111
A, = 1.5kn,C2 - 200pF

&I

~

-75 -SO -25

12
10
80

0

25

50

75

100

125

TEMPERATURE (C)

Output Voltage Sw ing
15 r-.-,-,--r-r-.-.-.--r-o

"" ...
~

12

.15V

~~;t++:tV'~
-rfT.~+25C-r-

II

'".,..

60
40
20

1111

. cj -20

125

14

T A =25°C

jill

1110

i6

15V

R1 '" 1.5kn,C2 - 20pF

"- 20
g

111111111111111

100

lK

10K

lOOK

FREQUENCY (Hz)

2·216

±

c, ~'500pF:1

>

IS

Vs -

C1 = l00pF,

0

75

Output Voltage SWing as

R 1 = 1.5kn,C2 - 3pF
40

60

a Function of Frequency

A1 = O'C 2 3pF

60

25

Frequency Responce For

I 1111

-

10

.....

Various ClosedaLoop Gains
C:~II,op~.I11

20

Vs= ±15V

i

"
0

30

TEMPERATUR[ ("CI

TEMPERATURE I"CI

~

I

06

0.2

75

50

Supply Current
40

I I I

1M

10M

1K

10K

100<

FREQUENCY (Hz)

1M

10M

10

20

30

OUTPUT CURRENT (:tmAI

40

50

Operational Amplifiers
LM709A operational amplifier
general description
The LM709A is a monolithic operational amplifier
intended for general-purpose applications. Operation is completely specified over the range of voltages commonly used for these devices. The design,
in addition to providing high gain, minimizes both
offset voltage and bias currents_ Further, the class-B
output stage gives a large output capability with
minimum power drain.
External components are used to frequency compensate the amplifier. Although the unity-gain com-

pensation network specified will make the amplifier
unconditionally stable in all feedback configurations, compensation can be tailored to optimize
high-frequency performance for any gain setting_
The fact that the amplifier is built on a single silicon chip provides low offset and temperature drift
at minimum cost. It also ensures negligible drift
due to temperature gradients in the vicinity of the
amplifier.

schematic and connection diagrams
INPUT FREQUENCY COMPENSATION
~____~~I+-____~8~~~____-.~.-__~__ v+

Met.1 Can

~--+--f"""N'-+--OUfPUf

L----I--.....:....t----~rt--~~t_--_l_-OUTPUT
au

fREQUENCY
COMPENSATION

Note: Pin 4 connected to case.

Order Number LM709AH
See Package 11
'13
75

.....~......._ - - - _ -__ v-

typical applications
Offset Balancing Circuit

Voltage Follower

01
R3t
VeM (MAl)--~I-1---~C-I.I\f',(V-- .....---- OUTPUT

R5

R4

I60K

lOOK

5ll00pf

R2'
51
R2'
51

INPUT-----:.j

>...::........"""',.,..-OUTPUT

*To be used with anyeapacitive
loadingonoutpuf.

C2
200 pi

tShouidbeequaitodc5Durce
resistance on input.

"'To be used with anv
capacitive loading on
output.

Unity Gain Inverting Amplifier

C2
200 pi

FEY Operational Amplifier

R4
20K

r----C~I.JtJ..,.,-....- - OUTPUT
2700 pi
R3
20K
INPUT _ _.-4_-1

R5
10K

R2"
51

R2'
51

>..:......~'M,....OUTPUT
"To be used with anvcapacitive
loading on output.

2,217

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
I nput Voltage
Output Short-Circuit Duration (TA = 25°C)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±18V
300mW
±5V
±10V
5 sec
_65°C to +150°C
_55°C to +125°C
300°C

(Note 2)

PARAMETER

CONDITIONS

MIN

TYP

MAX

Input Offset Voltage

TA = 25°C, Rs ~ 10kn

Input Bias Current

TA = 25°C

100

200

Input Offset Current

TA = 25°C

10

50

I nput Resistance

T A= 25°C

Output Resistance

TA = 25°C

Supply Current

TA = 25°C, V s =±15V

Transient Response
Risetime

0.6

350

mV
nA
nA
kn

150

n

2.5

3.6

mA

1.5

p.s

V IN = 20 mV, CL ~ 100 pF
TA = 25°C

30

Slewing Rate

TA = 25°C

Input Offset Voltage

Rs~ 10 kn

Rs= 50n

Rs= 10 kn
Large·Signal Voltage Gain

2.0

700

Overshoot

Average Temperature Coefficient
of Input Offset Voltage

UNITS

0.25

%

V/p.s
3.0

mV

TA = 25°Cto+125°C

1.8

10

p.vtc

TA = 25°C to -55°C

1.8

10

p.vtc

TA = 25°C to +125°C

2.0

15

p.V/oC

T A = 25°C to -55°C

4.8

25

p.vl"c

Vs=±15V,RL~2kn

70,000

25,000

V OUT = ±10V
Output Voltage Swing

Vs = ±15V, RL = 10 kn

±12

±14

V

V s =±15V, RL =2 kn

±10

±13

V

110

dB

Input Voltage Range

Vs =±15V

±8.0

Common Mode Rejection Ratio

Rs~ 10 kn

80

Supply Voltage Rejection Ratio

Rs~10kn

I nput Offset Current

TA = +125°C

V

40
3.5

100

p.VIV

50

nA
nA

T A =-55°C

40

250

Input Bias Current

TA=-55°C

300

600

I nput Resistance

TA=-55°C

85

170

nA
kn

Note 1: For operating at elevated temperatures. the device must be derated based on a 150Q C maximum junction temperature
and a thermal resistance of 150°C/W junction to ambient or 45° CIW junction to case for the metal can package.

Note 2: These specifications apply for-5S'C ~TA ~ +12S'C, ±9V ~ Vs ~ ±15V, C1

and R2 "" 51 n unless otherwise specified.

2·218

= 5000 pF,

R1

= 1.5K,C2=200pF

guaranteed performance characteristics
I "put Common Mode

Output Voltage Swing

15

1 1 1 1 1 1

~

;;

-55°C S' T. :5 +125°C

13

:;

Voltage Range

LllL
1

11

11 1

~

""

g

I I';,.;;;"
,,,~~~.~1'f-':"~

~

9

&

7i1!!!:

I

12

11

13

80

60
~
50
~
.0

I I I

10

T. < +12S-C

I

~I
1 1 1

"" 1

9

of"

g 70

;:;'\l",,\l~

5

-we

90

Voltage Gain

9

15

I'

10

11

12

13

14

9

15

10

11

12

13

14

15

SUPPLY VOLTAGE (tV)

SUPPLY VOLTAGE HV)

SUPPLV VOLTAG[ f±.VJ

typical performance characteristics
Input Bias Current as a Function

Input Offset Current 85 a Function
of Ambient Temperature
50 ,-r-,--,-,-,-,--.--.--,--,

of Ambient Temperatura

1 400 f-t-t-+-+-+-++++-J
t-

z

"1,\c+-t--+--+--+--+--+--j--jH

~ 300

~

« 200 f-t-''Ir-+-+--+--+--+-If-H
a;

~

;;;

........

~
~

~t-+-+-+-++1--r-t---1

!

f---~+-+-++++++--1

is

40 1\

!3 30
u

1\

tu

~ 20

~

;::

r--Ir-t~~-r-t-+-t-r-t

10 1-+-+-+1'---'1-...!:-t-lf-f-H

:---

o

-60

-60 -20

20

60

100

140

200

i'"

100

\.

60

100

o

140

25

IS
65
85
105
AMBIENT TEMPERATURE (OC)

TEMPERATURE I"C)

TEMPERATURE I" C)

I-

- - METAL CAN MCKlGE

L.J.-L---'--'--'-L..l---'----'-~

20

300

~

iii

,

OL-L-L-L-L-L-L-L..JL..JL..J

-20

,

~

o
100 f-+-+-+'-""d--+--+-If-H

Maximum Power Dissipation

.00

125

Slew Rate as a Function of
Closed· Loop Gain Using
I"put Bias Currant as a Function

Recommended
Compensation Networks

of Supply Voltage

H--+-+-++++-+ TA = 25
t-

~
"

C

H-+-+-t-+++-H-+:::lo,",

1100
95

f-:::::I:..I-1''''f+++-H--+-+--I

u
~ 90

H--+-+-++++-H--+-+--1

a;

Supply Current

.0

100 "VC:-s~_"'+"'1'::5V7""""Tlrrr--r--r"-"
G

t-

T A -,25°C

~

V.=

.....

10

1

tt

I

3:
~ 1.0

ili

w

~

~

9

10

11

12

13

14

15

SUPPLY VOLTAGE I± V)

~
z

80

10

Output Voltage Swing as
a Function of frequency

R1 =O,C:;>=3pF

II11

40 M'"MI"'M'TII"1-r.",..-H~d-Ntt-t
C,· 500PF:I!:+1-tJ±lf-=IIHtrt'ttt-1

A,=

1.5kn.c!:-,+-!;3:"PFH+tH~-tH

Rl

1.5ku,C 2- 20pF

=

10K

lOOK

1M

SO
TEMPERATURE { C~

Output Voltage Swing

~~;t:::j:::j:::+V.=

~

I
~

0 J-R,:.'.MI"'1.,..5k"T!l",C~-',,.--:'2!;J~0:'.!0;P"TFo--lt--+~~~_~~~

FREQUENCY (Hz)

75 100 125

-25 0 25

12 f-

!;

~

l!l
III
c3 -20 wl...ullL,-,--Jlll,,-,-lIl.wLlUL.LII-'-liC--,--"~
lK

-SO

15

~ 20 J-c':',MI.-50"'0"'OP"F"',I"T
'" l"';"III-H-HIo..l--Hli--t

100

0
-75

1000

Vs - ± 15V
TA=25°C

I 1111

;

~

100

Frequency Responce For

60 C,. 100pF lLlJlI

o
>

1

CLOSED-LOOP GAIN

~

'"

0.1

Various Closed ·Loop Gains

c,= lOpF.l1I

-

20
10

~ 85 H--+-+-++++-H--+-+--1
;::
BO~-L~~~-L~~-L~

:!:l~v

30

.15V_fC-f-

T•• +25

9
6
3

0

10M

0
FREQUENCY 1Hz)

10

20

30

40

so

OUTPUT CURRENT !tmAl

2·219

CJ

en

o
,....

Operational Amplifiers

:E
...I

LM709C operational amplifier
general description
The LM709C is a monolithic operational amplifier
intended for general-purpose applications_ Operation is completely specified over the range of voltages commonly used for these devices. The design,
in addition to providing high gain, minimizes both
offset voltage and bias currents. Further, the class-B
output stage gives a large output capability with
minimum power drain.

configurations, compensation can be tailored to
optimize high-frequency performance for any gain
setting.
The fact that the amplifier is built on a single
silicon ship provides low offset and temperature
drift at minimum cost. It also ensures negligible
drift due to temperature gradients in the vicinity
of the amplifier.

External components are used to frequency compensate the amplifier. Although the unity-gain
compensation network specified will make the
amplifier unconditionally stable in all feedback

The LM709C is commercial-industrial version of
the LM709. It is identical to the LM709 except
that it is specified for operation from OOC to
70°C.

schematiC'· and connection diagrams
Metal Can

IIilPUT
fREDUnCy

COMPENSATION -y.....-'-""'~.....

,AI

Note: Pin 4 connected to case.

Order Number LM709CH
See Package 11
Dip Package

"n

INPUT FREQUENCY

J

INPUT.

II

v·

INPUT I

10 OUTPUT

~=£~:~I~E,,"~~

COMfEMUTlONIIJ

OUTPUTFREOUt:IICY
tOMPlNSATlON

Order Number LM709CN
See Package 22

typical applications **
Voltage Follower

Offset Balancing Circuit
R3t

Dl
VCMIMAXI

--fo.....,....--.JVVv-.....- - OUTPUT
Cl
5000 pF

R5

R4

160K

100K

v- --'lirIfY-'V\""--- v+

RZ'
51

INPUT

----..;=-1

INPUTS

·l(t be used with any
eapacitiveloading an output.
tShould be equal to

CZ
ZOOpF

*Tobeused with any capacitive

de source resistance on input.

loading on output.

Unity Gain I nverting Amplifier

RZ51
:~"'::-t-.I\IIfr- OUTPUT

CZ
ZOO pF

FET Operational Amplifier
R4
ZOK

1""'--~M""'"""Ir-- OUTPUT

R3
ZOK

INPUT -J,Wi_e-"'!

"To be used with any
Clpacitiveloading on output
... Pin connections shown lI'e for
metal Cln PiCkage.

2-220

R5
10K

RZ51

RZ51

>.::......"'""IM~OUTPUT
*To be used with any capacitive
loadmgonoutput.

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage
Output Short-Circuit Duration (T A = 25°C)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

±18V
250mW
±5V
±10V
5 sec
-65°C to +150°C
O°C to +70°C
300°C

(Note 2)

CONDITION

MIN

TYP
2_0

MAX
7_5

UNITS

Input Offset Voltage

T A = 25°C, Rs::; 10 H2

Input Offset Current

TA = 25°C

Input Bias Current

TA = 25°C

Input Resistance

TA = 25°C

Output Resistance

TA = 25°C

Supply Current

T A = 25°C, Vs = ±15V

Transient Response
Risetime
Overshoot

V1N = 20 mV, C L ::; 100 pF
TA = 25°C

Slewing Rate

TA = 25°C

Input Offset Voltage

Rs::; 10 kn

Average Temperature
Coefficient of Input
Offset Voltage

Rs = 50n
Rs= 10 kn

Large-Signal
Voltage Gain

Vs = ±15V, RL~ 2 kn
VOUT =±10V

Output Voltage Swing

Vs = ±15V, RL = 10 kn
Vs = ±15V, RL = 2 kn

Input Voltage Range

Vs = ±15V

±8_0

Common Mode
Rejection Ratio

Rs::; 10 kn

65

Supply Voltage
Rejection Ratio

Rs::; 10 kn

25

200

/J-V/V

Input Offset Cu rrent

TA = +70°C
TA = O°C

75
125

400
750

nA
nA

Input Bias Current

TA = O°C

100
0_3
50

500
1.5

mV
nA
/J-A

250

kn

150

n

2_6

6_6

0_3
10

1.0
30

0_25

mA

/J-s
%
V//J-s

10

6_0
12

mV

/J-vfc
/J-vtc

15,000

45,000

±12
±10

±14
±13

V
V

±10

V

90

dB

0_36

2_0

/J-A

Note 1: For operating at elevated temperatures, the device must be derated
based on 8 1 DOoe maximum junction temperature and a thermal resistance
of 45°C/W junction to case or 150o C/W junction to ambient for the metal

can package. For the flat package, the derating is based on a thermal
resistance of 18SoC/W when mounted on a l/1G-inch-thlck. epoxy-glass
board with ten, O,03·1nch·wide. 2-ounce co~er conductors.
Note 2: Thesespecifications apply for DoC T A :::;;:+70o C. ±9V::;; Vs :::;;:±lS\I,
c, = 5000 pF,
= 1.5K, C2 = 200 pF and R2 = 510 unless otherwise
specified.

R,

2-221

o

en
~

guaranteed performance characteristics

~

...J

Input Common Mode
Voltage Range

Output Voltage Swing

Voltege Gain

~ 10.0

..
..~~

~ 13~~-i=t~~=r~~+-~
w

">
~

~

."
..'"'"

90

;a

_55°C < TA < +125°C

w 9.0

:a

"
...'"

C 85

0:

w B.O

HHH-+-+-+

11

1.0

""

6.0

w

.~\\",

f-,I~"''"'f-++++++-t-i

"

",,'fo'

">

10

11

12

13

14

~

"~

:!

""

5.0

8

4.0

:!
:!

",~~1-

!:; 80

w

9
7

~
>

..
z

""

. . II'"

15

~

10
10

15

11

12

13

14

9

15

10

11

12

13

14

15

SUPPLY VOLTAGES (,VI

SUPPLY VOLTAGE (±VI

SUPPLY VOLTAGE "VI

typical performance characteristics

Input Current

Output Voltege Swing

500

ffi

i"o..

300

0:
0:

..... ",.f/lls

~ 200

liZ

!;

o

-

Of~SEr

i"o..

100

20

-~
~

TA ·25"C

o

80

o

o

10

BO

rnmrrrrnrrrrnrTTTIr.c-~

r+",..n'11r+im;"'-+II~tttH

..

40

~~"'*-Fm+~iod---NlH

~

20

w

~

>

r+",..+;*..,..m+1"Ii~-HH

I

~ -20

u

40

50

c:::I

II

w

"l\.

~ 1.0
!:;
~ 6.0

L..J..J.JJ......L...l..LU.-'---UJL--L....J...UL...J....J....

2.0
O~.~~~~~WL.~~~

lOOK

FREQUENCY (Hz)

1M

13

14

15

~.

10M

~

I

w

10K

12

10

~

....

lK

11

Voltege Follower Pulse

lB~Wl!ffB,N1

o

10K

10

Response

~14~
12
3!
go
ii 10

~

lK

9

SUPPLY VOLTAGES ('VI

~ 4.0

100

2·222

30

Output Voltege Swing as
a Function of Frequency

60

..

20

OUTPUT CURRENT (±mAI

Frequency Responce For
Various Closed- loop Gains

;a

",,'"

~

TEMPERATURE (OCI

:a
~

.

I!:
::0
60

4D

~

~
>

"

o

TA " +25°C-

.!!. 12

w

..... too..

::0

Vs=±15V -

..
.~

S

Vs" ±15V

400

!

SupplV Current

15

I

-2
-4

: LDUTPUT

J

I

-6 ~
-8

-10

Vs

o

..

II 1\

INPUT

!I

20 4D

60

\

~

.. ~

~±15V

80 100 120

TIME (ps)

Operational Amplifiers
LM725A/LM725/LM725C instrumentation operational amplifier
general description

features

The LM725A/LM725/LM725C are operational am·
plifiers featuring superior performance in applica·
tions where low noise, low drift, and accurate
closed· loop gain are required. With high common
mode rejection and offset null capability, it is
especially suited for low level instrumentation.
applications over a wide supply voltage range.

• High open loop gain

3,000,000

•

0.6jlV/"C

Low input voltage drift

• High commo'n mode rejection

The LM 725A has tightened electrical performance
with higher input accuracy and like the LM725, is
guaranteed over a _55°C to +125°C temperature
range. The LM725C has slightly relaxed specifica·
ti,?ns and ohas its performance guaranteed over a
OCto 70 C temperature range.

•

Low input noise current

•

120dB
0.15 pA/v'Hz

Low input offset current

2 nA

• High input voltage range

±14V

• Wide power supply range

±3V to ±22V

• Offset null capability
• Output short circuit protection

Matal Can Package

schematic and connection diagrams

Order Number LM725H or
LM725AH or LM725CH
See Package 11

Dual-In-Line Package

"::t1'O·::t:

H

INVE~:;~~

z

1 ,.

I OUTPUT

NONINV£RTlNG 3

INPUT

V' 4

S CDMP

auxiliary circuits
Voltage Offset Null Circuit

Frequency Compensation Circuit

Order Number LM725CN

See Package 20

Dual-In-Line Package

OF~~iI

Compensation Component Values

AVCl

Rl
Ii!)

Cl
I"FI

R2
Ii!)

10,000
1,000
100
10
1

10K
470
47
27
10

50pF
.001
.01
05
05

-

-

-

270
39

0015
02

3

*UseRJ=51nwhenthe
amplifi8risoperatedwith
capacitivuload.

C2
.,FI

Order Number LM725D
See Package 1

2·223

CJ

an

,...
N

:E
....I
......
an

N
,...

:E
....I
......


.......
r-

absolute maximum ratings
Supply Voltage
Internal Power Dissipation (Note 1)
Differential Input Voltage

Input Voltage (Note 2)
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)

3:

"N

±22V
SOOmW
±SV
±22V
-6Soe to +lS00e
-ssoe to +12Soe
3000e

(J1

.......
r-

3:

"
N

(J1

n
electrical characteristics

(Note 3)

PARAMETER

CONOITIONS

Input Offset Voltage (Without External Trim)

T A = 2Soe, Rs ~ 10 k!l

MIN

TVP
O.S

Input Offset Current

TA = 2Soe

Input Bias Current

TA = 2Soe

42

Input Noise Voltage

TA = 2Soe, fo = 10 Hz
fo= 100Hz
10 = 1 kHz

IS
9.0
8.0

Input Noise Current

TA = 2Soe, fo= 10Hz
fo= 100Hz
fo = 1 kHz

Input Resistance

TA = 2Soe

Input Voltage Range

TA = 2Soe

2.0

TA = 2Soe, RL ~ 2 kn, V OUT = ±10V
T A = 2Soe, Rs ~ 10 kn

Power Supply Rejection Ratio

T A =2Soe, Rs~ 10kn

Output Voltage Swing

T A = 2Soe, RL ~ 10 kn
RL~2kn

1,000,000
110

Rs~

Average Input Offset Voltage Orift
(Without External Trim)

Rs= SOO

2,0

Average Input Offset Voltage Drilt
(With External Trim)

Rs= son

0.6

Input Offset Current

TA = +12Soe
TA = -ssoe

1.2
7.S

80

10kn

Average Input Offset Current Drift

Large Signal Voltage Gain

RL ~ 2 kn, TA = +125°e
RL ~ 2 kn, T A = -S5°e
10kn

Rs~

10kn

Output Voltage Swing

RL~2kn

Mn
V

dB
10

±13.S
±13.S

TA = 2Soe

TA = +12Soe
TA = -ssoe

nA

pA/../Hz
pA/../Hz
pA/VHz

120

Input Offset Voltage (Without External Trim)

Input Bias Current

nA

3,000,000

2.0
±12
±10

UNITS
mV

nW/Hz
nV/../Hz
nV/../Hz

±14

Power Consumption

Rs~

20
100

1.S

Large Signal Voltage Gain

Common Mode Rejection Ratio

1.0

1.0
0.3
O.lS

±13.S

Common Mode Rejection Ratio

Power Supply Rejection Ratio

MAX

pvtv
V
V

lOS

mW

1.S

mV

S.O

/lv/oe
/lvte

20
40

nA
nA

3S

ISO

pAte

20
80

100
200

nA
nA

1,000,000
250,000
dB

100
20
±10

/lvtv
V

Note 1: Derate at 150°C/W for operation at ambient temperatures above 75°C.
Note 2: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: These specifications apply for Vs = ±15V unless otherwise specified.

2-225

LM725C
absolute maximum ratings
Supply Voltage
Internal Power Dissipation (Note 1)
Differential Input Voltage

Input Voltage (Note 2)
Storage Temperature Range
Operating Temperature Range

Lead Temperature (Soldering, 10 sec)

electrical characteristics

±22V
500mV
±5V
±22V
_65°C to + 150°C
O°C to +70°C
300°C

(Note 3)

CONDITIONS

PARAMETER
Input Offset Voltage (Without External Trim)

TA = 25°C, Rs~ 10kf!

MIN

TYP
0.5

Input Offset Current

TA = 25°C

Input Bias Current

TA =25°C

42

2.0

Input Noise Voltage

TA = 25°C, fa = 10 Hz
fo= 100 Hz
fa = 1 kHz

15
9.0
B.O

Input Noise Current

TA = 25°C, fa = 10 Hz
fo= 100Hz
fa = 1 kHz

MAX
2.5
35
125

Input Resistance

TA = 25°C
TA = 25°C

±13.5

250,000 3,000,000

nA
nA
nVA/Hz
nV/..jHz
nV/..jHz
pA/..jHz
pAl..jHz
pAl..jHz

1.0
0.3
0.15

Input Voltage Range

UNITS
mV

Mf!

1.5
±14

V

Large Signal Voltage Gain

TA = 25°C, RL ~ 2 kf!, VOUT = ±10V

Common Mode Rejection Ratio

T A = 25°C, Rs ~ 10 kf!

Power Supply Rejection Ratio

T A = 25°C, Rs ~ 10 kf!'

Output Voltage Swing

T A =25°C, RL~ 10kf!
RL~ 2 kf!

Power Consumption

TA = 25°C

Input Offset IIoltage (Without External Trim)

Rs~10kf!

Average Input Offset Voltage Drift
(Without External Trim)

Rs = 50n

2.0

mV
p.V/oC

Average Input Offset Voltage Drift
(With External Trim)

Rs= 50f!

0.6

p.V/oC

Input Offset Current

TA = +70°C
TA = O°C

1.2
4.0

94

2.0
±12
±10

35

150
3·9

TA = +70°C
TA = O°C

Large Signal Voltage Gain

RL~2kf!, TA =+70°C
RL ~ 2 kf!, T A = O°C

Common Mode Rejection Ratio

Rs~

10kf!

115

Power Supply Rejection Ratio

Rs~10kf!

20

Output Voltage Swing

RL~2

kf!

mW

35
50

nA
nA

125
250

nA
nA

pAtC

10

Input Bias Current

p.VIV
V
V

±13.5
±13.5
80

Average Input Offset Current Drift

125,000
125,000

±10

Note 1: Rating applies for case temperature to 70°C.
Note 2: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: These specifications apply for Vs = ±15V unless otherwise specified.

2-226

dB

120

dB
p.VIV
V

r-

3:
.....

typical performance characteristics

N

UI

»
......
r3:

Open Loop Voltage Gain vs

Temperature for Various
Supply Voltages
140

-:;;:
z

~ • .>l~

lZo

Vs=±1DV

"

"~

-f--

Vs-±5V

~

">

~

V -:t15V

....

""

~

1.0
Vs=±15V

100

~

RL~2Kn

.5

,/

50

"

V

~

100

"

i

........

~

~ -50

Bo

-Zo

ZO

60

100

140

~

-60

-ZO

ZO

60

100

140

.".

D.4

3:
.....

~

....

N

k

UI

o
-60

-ZO

Input Bias Current

Input Offset Current

vs Temperature

V5

ZO

fiO

Common Mode Input Voltage

"s Supply Voltage

Temperature

~

Zo

"
~

Vs= ±5V

o

~

Vs=±15V

,~

60

~

,/

Z

1\

Vs=±2OV

140

100

TEMPERATURE I'C)

100
BO

......
r-

.... r'

TEMPERATURE I'C)

TEMPERATURE I'C)

~
....
::;

UI

Vs - ±15V

0.6

!!!

~ -100

60
-60

N

o.B

~ o.z

!!!
~

!!;

.....

;;

VosS5p.VAT25°C

"
....

~

::;

Un nulled Input Offset
Voltage vs Temperature

Nulled Input Offset
Voltage vs Temperature

15

ZO

SUPPLY VOLTAGE ('V)

Values for Suggested
Compensation Networks for
Various Closed Loop
Voltage Gains

Input Noise Current
vs Frequency

.0Ok

....

I

10-"
10-"

~

u

III
Z

~

~a:



10
60

!;

40

Iico

O'ii.

f-o-

20

TEMPERATURE ('C)

I

400

I

12&
TIME FROM POWER APPLICATION (MIN)

Transient Response Test Circuit

1200

-400

2-228

65

TEMPERATURE ('C)

160

I

I-

20

~

Power Consumption
vs Temperature

~

Vs=±15

PREVIOUS Vos': I.V

>

~f-

TIME FROM HEAT APPLICATION (sec)

8

TA -25°C
30

Z

-20

Iz
co
i

40

co

~

j:

Vs=±15V
PREVIOUS QUIESCENT

'"'"~

,"

500

i

V

>

i

~
w

&00
2l,c &J,c

w

...co~

Stabilization Time of Input
Offset Voltage from Power
Turn-On

Absolute Maximum Power

Dissipation vs Ambient
Temperatura

J

S =;,5I

TA ' 25'C
RL =2K!1
C, =160pF

AyCL '" 100
RISE TIME

! I
III

Operational Amplifiers
lM741/lM741C operational amplifier
general description
The LM741 and LM741C are general purpose
operational amplifiers which feature improved per·
formance over industry standards like the LM709.
They are direct, plug·in replacements for the
709C, LM201, MC1439 and 748 in most
applications.
The offset. voltage and offset current are guaran·
teed over the entire common mode range. The
amplifiers also offer many features which make

their application nearly foolproof: overload pro·
·tection on the input and output, 110 latch·up when
the common mode range is exceeded, as well ~s
freedom from oscillations.
The LM741 C i's identical to the LM741 except
that the LM741 C has its performance guaranteed
over a DoC to 70°C temperature range, instead of
_55°C to 125°C.

schematic and connection diagrams

""'
OUTPut

".

'"

"Q"

OFFSET NULL

Nt

INYEATINGINPUT

-

v*'

NON LNVERTING INPUT

•

OUTPUT

v-

OFFSET NULL

Note: Pm 5 connected to bottom of packlge.
V"

Note: Pin 4 connected to case.

Order Number LM741F
See Package 3

TD'IIIEW

Order Number LM741H or LM741CH
See Package 11

,,'

14 11C
IlICC

"FS"NULLO'"

INVERTINGIN'UT

Z

1

~

NOli-INVERTING

3

6

OUTPUT

4

5

OFFSET NULL

OFFSET

NULL

3

IZ NC

INPUT
y_

Order Number LM741CN
See Package 20

,"
Order Number LM741CD
See Package 1
Order Number LM741CN·14
See Package 22

2-229

absolute maximum ratings
Supply Voltage

LM741

±22V
±18V

lM741C
Power Dissipation (Note 1J
Differential Input Voltage

500mW
±30V

Input Voltage (Note 21

±15V
Indefmite

Output Short-Circuit Duration

-5SoC to 12Soc
oDe to 70co C
-6SoC to 150°C
loo°C

Operating Temperature Range LM741
lM741C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER
Input Offset Voltage

(Note 3)

CONDITIONS

MIN

TA '" 2SoC,R s $10kH

lM741
TYP

MAX

1.0

5.0

MIN

lM741C
TYP
MAX
1.0

6.0

Input Offset Current

TA '"

2Sc C

lO

200

30

200

Input Bias Current

TA '" 2SoC

200

500

200

500

Input Resistance

TA= 2SoC

Supply Current

Large Signal Voltage Gain

O.l

TA=2SDC.Vs=:!:lSV

1.7

1.0

1.7

2.8

50

25

160

Rs$10Hl

nA
nA
Mn

2.8

160

mA

300

500

0.8

1.5

Input Bias Current

Large Signal Voltage Gain

Vs'" ±15V, VOUT

Output Voltage SWing

Vs'" 115V. RL = 10 kU
RL = 2k!2

±12
±10
±12

=

V/mV

7.5

6.0

Input Offset Current

mV
nA
"A

±lOV

RL~2kn

15

25
±14
±13

±12
±10

V/mV
±14
±13

V
V
V

±12

Input Voltage Range

Vs

Common Mode
Rejection Ratio

Rs ~ 10 k!2

70

90

70

90

dB

Supply Voltage
Rejection Ratio

Rs'510k!2

77

96

77

96

dB

=

±t5V

Note 1: The maximum junction temperature of the LM741 is 150'C, while that of the LM741C is
100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on
a thermal resistance of 150°CfW, junction to case,
Note 2: For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the
supply voltage.
Note 3: These specifications apply for Vs ~ ±15V and -55'C ::;: TA ::;: 125'C, unless otherwise
specified. With the LM741C, however, all specifications are limited to O'C::;: TA::;: 70'C and VS=±15V.

2-230

mV

'T A =2So C,Vs =±15V

VOUT = :!:lOV. RL?: 2 kU
Input Offset Voltage

O.l

1.0

UNITS

Operational Amplifiers

LM747/LM747C dual operational amplifier
general description
The LM747 and the LM747C are general purpose
dual operational amplifiers. The two amplifiers
share a common bias network and power supply
leads. Otherwise, their operation is completely
independent.

No frequency compensation required

• Short-circuit protection
• Wide common-mode and differential voltage
ranges

schematic diagram

•

No latch-up

• Balanced offset null
Additional features of the LM747 and LM747C
are: no latch-up when input common mode range
is exceeded, freedom from oscillations, and package flexibility.

features
•

• ·Low-power consumption

The LM747C is identical to the LM747 except
that the LM747C has its specifications guaranteed
over the temperature range from O°C to 70°C
instead of _55°C to +125°C.

(each amplifier)

No" Numb ... lnP.,.nlllo ... AII'rn N"ne.,,'ar Ampl,t",8 OIPOnlv

connection diagrams
Metal Can Package

Flat Package

NON ::::::::: ::::::

Dual-In-Line Packages

=:lrlr-:---'-':;E= :::~~ NULLA
OUTPUT A

NOIilINVEIITlIIIIIN.UTI

::::J~----n:::c:

n°'
Dfun lULL I
INVERTIIIGIN'LlTB

Order Number LM747H or LM747CH
See Package 14

Order Number LM747F or LM747CF
See Package 4

Order Number LM747D or LM747CD
See Package 1
Order Number LM747CN
See Package 22

2-231

absolute maximum ratings
Supply Voltage

LM747
LM747C
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output ~hort-Circuit Duration
Operating Temperature Range LM747
LM747C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±22V
±18V
800mW
±30V
±15V
Indefinite
_55°C to 125°C
O°C to 70°C
_65°C to 150°C
300°C

(Note 3)
LM747

PARAME1"ER

CONDITIONS

MIN

Input Offset Voltage
Input Offset Current
Input Bias Current
Input Resistance
Supply Current Both
Amplifiers
Large Signal Voltage Gain

0.3
TA = 2SoC, Vs = ±lSV
T A =2SoC,V s =±lSV
V ouT =±10V, RL~2kn

MAX

1.0

S.O

TYP
1.0

6.0

UNITS
mV

80

200

nA

200

SOO

200

SOO

nA

1.0

0.3
5.6

160

3.0

SO

5.6

7.5
300

1.5

rnA

V/mV

160

500

Input Bias Current

Mn

1.0

6.0

Input Offset Current

0.8

mV
nA

IlA

Vs = ±lSV, V OUT = ±10V
RL~2kn

25

Output Voltage Swing

Vs = ±lSV, RL = 10 kn
RL = 2 kn

±12
±10

Input Voltage Range

Vs=±15V

±12

V/mV

25
±14
±13

±12
±10

±14
±13

V
V
V

±12

Common Mode
Rejection Ratio

70

90

70

90

dB

Supply Voltage
Rejection Ratio

77

96

77

96

dB

Note 1: The maximum junction temperature of the LM747 is 150·C, while that of the LM747C is
100°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on
a thermal resistance of 150°C/W, junction to ambient, or 4SoC/W. junction to case. For the flat

package, the derating is based on a thermal resistance of 18SoC/W when mounted on a 1/16-inchthick epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-Iine package is 100o e/W, junction to ambient.
Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the

supply voltage.
Note 3: These specifications apply for Vs = ±15V and -5SoC ~ TA ~ 12SoC, unless otherwise
specified. With the LM747C, however, all specifications are limited to
~ T A ~ 70·C Vs = ±15V.

a·c

2-232

MAX

200

Input Offset Voltage

Large Signal Voltage Gain

MIN

80

3.0

50

LM747C

TYP

typical performance characteristics
Input Bias and Offset Currents

DC Parameters vs

vs Ambient Temperature

Supply Voltage

200
180
;0

~
~
~

iii

120

1.4

~

110

~

~

zQ

1::

1.2

~

1.0

Vs:!:15V

Q

160

.s 140

....
i:'l

Common Mode Rejection
Ratio vs Frequency

120

"-

100
80

::;

i'

60

j\1- -

40

t-~

20

~NJ'~JE~:S t-

" OF~F-

INPUT
.,-- CURRENT

~=

...

-20

20

100

60

I-H-t-t.,,,',-!'!- ::

0.6

I-HA--t++ ~~: -_ _-_-_

:;

10,

~

32

'"

28

~

5

24

~

'"~

16

Q

~

Output Voltage Swing

Output Voltage Swing
vs Load Resistance

12

....
Q

:~
1'-

100

lk

10k

lOOk

1M

0.1

.::
c
>
w
>

~
=

1.0

,.

16

Q

iiiz

12

;::

Q

10

~

<

RANGE tV

A

12

n

;::

14

1£' INPUT VOLTAGE_

"

Q

!:j

I

.~

I

,.z

L

1

I

I

10

:;l

15

~

20

SUPPLY VOLTAGE I'V)

Ambient Temperature

w

'"

Vs "':!:15V

~t-I-

1.0

~
=
0.8

OUTPUT
-5

OUTPUT

1.2

~

..1--1':

~ J.-"

jL~R~TE

1"

~

Vs.R.

CLOSED LOOP

RL o:2k
CL = 100 pF

-10

RESPONSE

r-r--

C

>
w
>

Q

~~~~~~~RCUIT I-

IVs =t15V
TIRAJSIE~T

:>

1

8AjOjlDjH

.

0.6
-20

20

60

100

140

.200

AOO .600 .800

Frequency Characteristics vs

Output Resistance vs
Frequency

160

§

1.2

w
u

::

z

::;

~
iii
=
5

1.0

~

0.8

:>

100

60

20
0.6
15

SUPPLY VOLTAGE ltV)

20

10'

z


c

10'
10'
10'

Q

Vs '"±15V
T. = 25'C

........

RL~2Kn

~AIN

45
~

"\

PHA~

SHIFT

"- ~
'\..

10

~
Ay -1

o
100

140

Characteristics vs Frequency

Av -l0

40

100

10"

II
II

80

60

Open Loop Transfer

. .
~.

120

20

-20

TEMPERATURE /'CI

Supply Voltage

10

-60

T"',I

140

~

...

/.

.K-'

20

10

INPUT

!;

1.4

a:

5.0

10

AMBIENT TEMPERATURE I'CI

~

2.0

5

i"J::::: L-

0.2
-60

w

1.0

~ 16

SWING - VPiI

24

~
....

18

-'
I- OUTPUT VOLTAGE

/.

0.5

20

I
I

1.4

;;
.g

0.4

o

I

_L

15

. . . f=.1k~;~pl-

.-

Supply Voltage

V5

RL =2Kn

~'
0.2

10k lOOk 1M 10M

Frequency Characteristics vs

"t; F=:t.::.. ...

o.B
0.6

28

Transient Response

POWER SUPPLY
CURRENT

1.4
1.2

Range
40
36
32

LOAD RESISTANCE Ikn)

IN~U) RE!IST~NCIEY.J;":'I~

I-t-I-t-

lk

6~~~~~~-L~~

Normalized DC Parameters
vs Ambient Temperature
1.8

100

Output Swing and Input

/
1/

FREQUENCY 1Hz)

2.0

\.

FREQUENCY IHzl

24 1-+-H+t:lol'f!-++-t-ttlftH
22 t--+-t-H'Hiiit---t-++tttffi
20 t--+-t-~Hiiit--+-++tttffi
18 1--+-b~+Hftt--t-H-I+tItl
16 1-+'71-I+ttttt-++-t-ttlftH
14 t---\l+++Hiiit--+-++tttffi

1\

o

30

20
10
10

VS'" ±15V f-++++lt----,H+1-H'IH
T. = 25'C ++Wlll"'"..,.."j-o,,*,,!'=FFml

28
26

Vs=±15V
RL =10KO

'"~

~

20

vs Frequency

20

,

80
70
60
50
40

SUPPLY VOLTAGE ItVI

TA "'+25°C

1.8

15

10

140

TEMPERATURE I'CI

36

=

w

o
-60

Ul
Q
Q

0.8

t-H--t7f+-t-

t-

§

Vs=±1SV

T.=25'C

,
~

\

-45

~m~

-90

:!j

-135

i

-180

10.1

lk

10k

lOOk

FREQUENCY 1Hz)

1M

10

100

lk

10k lOOk 1M 10M

FREQUENCY (Hz)

2-233

g

typical performance characteristics (con't)
Broadband Noise for

Input Resistance and Input
Capacitance vs Frequency

Various Bandwidths

]

100

10M

>

100

.:.

s~

ii
10

1M

!:i
n

~

~

ii

~ lOOk

~

.a

'"

!!i

Ik

10k

lOOk

1M

~

!!i

"....

10

"

~

i

0:
~

0

~
~

"....
Ii

0.1
Ik

100

Input Noise Voltage and
C~rrent

i;1~

100

100

10

10

"!:;'"

....
"
~

0

is

1.0

1.0

!!]

10

100

Ik

FREQUENCY (Hz!

2-234

10k

lOOk

Voltage Follower Large
Signal Pulse Response

vs Frequency

~

">

10k

SOURCE RESISTANCE

FREQUENCY (Hz)

lOOk

...

.
"ill
...

LM141 SLEW RATE
Vs=±15V

INPJT

TA = 25°C

;:

g
~
....

~*

OUTPUT

~..~

I20

•

40

..

•

60
TIME(P.)

80

100

120

Operational Amplifiers
LM748/LM748C operational amplifier
general description
The LM748/LM748C is a general purpose operational amplifier built on a single silicon chip. The
resulting close match and tight thermal coupling
gives low offsets and temperature drift as well as
fast recovery from thermal transients. In addition,
the device features:
• Frequency compensation with a single 30 pF
capacitor
• Operation from ±5V to ±20V
• Low current drain: 1.8 mA at ±20V
• Continuous short-circuit protection
• Operation as a comparator with differential inputs as high as ±30V

• No latch-up when common mode range is
exceeded.
• Same pin configuration as the LM101.
The unity-gain compensation specified makes the
circuit stable for all feedback configurations, even
with capacitive loads. However, it is possible to
optimize compensation for best high frequency
performance at any gain. As a comparator, the
output can be clamped at any desired level to make
it compatible with logic circuits.
The LM748 is specified for operation over the
-55°C to +125°C military temperature range. The
LM748C is specified for operation over the O°C
to +70°C temperature range.

connection diagrams
COMP

v'
OUTPUT

BALANCE

V·

Note: Pin 4 cOhnected to case.

Order Number LM748H Dr LM748CH
See Packag. 11

TOP VIEW

Order Number LM748CN
Se. Packaga 20

typical applications
Inverting Amplifier with Balancing Circuit

.,

Voltage Comparator for Driving

.2

DTL Dr TTL Integrated Circuits

INPUTo-"",'V\o~~-"""'V\o"""--.,

~~.....-() OUTPUT

1Mayllazefoorequalto
parallel combination af

R1 and R2 for minimum
offset.

Low Drift Sample and Hold

Voltage Comparator for Driving
RTL Logic or High Current Driver

v·

C1
3DpF

OUTPUT

·Polvcarbonate·dielectricClplcitOf.

2-235

absolute maximum ratings
±22V
500mW
±30V
±15V
Indefinite
_55°C to +125°C
0°Cto+70°C
-65°C to +150°C
300°C

Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Input Voltage (Note 2)
Output Short-Circuit Duration (Note 3)
Operating Temperature Range: LM748
LM748C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

(Note 4)
CONDITIONS

Input Offset Voltage

TA = 25°C, Rs:S; 10 kn

Input Offset Current

TA = 25°C

I nput Bias Current

TA=25°C

Input Resistance

TA = 25°C

Supply Current

T A = 25°C, Vs = ±15V

Large Signal Voltage Gain

TA = 25°C, V s =±15V
VOUT=±10V, RL2:2 kn

MIN

TYP
'_0

300

200

120

500

800

Rs~10kn

Average Temperature
Coefficient of I nput Offset
Voltage

Rs~50n

3_0

Rs~10kn

6_0

TA =O°Coto 70°C °
TA=-55 Cto125 C

Input Bias Current

TA =O°Cto 70°C
TA = -55°C to 125°C

Supply Current

TA =+12;oC, Vs :±15V
TA=-55 Cto125 C

Large Signal Voltage Gain

Vs = ±15V, VOUT = ±lOV
RL2:2 Kn

Output Voltage Swing

Vs=±15V, RL = 10n
RL = 2 kn

±12
±10
±12

Input Voltage Range

Vs = ±15V

Supply Voltage Rejection Ratio

2_8

mV
nA
nA

mA

V/mV
6_0

I nput Offset Cu rrent

UNITS

kn

160

Input Offset Voltage

Common Mode Rejection Ratio

5_0

40

1_8

50

MAX

300
500

mV

nA
nA

0_8
1_5
1.2
1.9

25

2_25
3_3

mA
mA

VIm V
±14
±13

V
V
V

Rs~10 kn

70

90

dB

Rs<10kn

77

90

dB

Note 1: For operating at elevated temperatures the devices must be derated based on a maximum
junction to case thermal resistance of4SoC per watt, or 150°C per watt junction to ambient. (See Curves).

Note 2: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the
supply voltage_
Note'3: Continuous short circuit is allowed for case temperatures to +125°C and ambient tempera·
tures to +70°C.
Noto4: These specifications apply for ±5V S Vs S +15V and _55°C S TA S 125°C, unless
otherwise specified. With the LM748C, however, all temperature specifications are limited to
DoC S TA S 70°C_

guaranteed performance characteristics
Input Voltage Range

Output Swing

..,.
..~

.!C

16

w

Z

c

Voltage Gain

20r-~---r--'---~-'--~

20

;;-

(Note 4)

12

....

......

.. ..

15r-~r--+---+---+---b~~

..".
~

10

~~

>

~

1/

i!

V

B4
88

w

\.~

co

..'"
z

/

w

100

82

co

>

4.~u'"

P

i.-"'"

16

10

15

SUPPLY VOLTAGE (,VI

10

20

15

10

20

10

5

SUPPLY VOLTAGE (±VI

15

20

SUPPL Y VOLTAGE (±VI

typical performance characteristics
Supply Current

Voltage Gain

2.5
I

C

2.0

.§

...
ill
,.,.

...
u

~
ii:

1.5
1.0

-

--

Input Bias Current

120

- .'"..

--t!.-5S'C

~2S'C

I

".

w

tA • l1S'C- r--

100

C

!:;
>

co

0.5

10

-

~~

--

I

Current Limiting
15.0

..
~...
..

!

I!:

a

i--

I

'\

'"

...
,.ill

~

5

15

20

25

30

.§

z

co

"\

"-

,.is

1'0...

"...

~~
~ 1"-

60

w

c
!:;
co
>

f'.

40
20

!II

........

r-

10

100

Ii!

Vs· ±15V

lK

..
...iii
..~

!

o

50 15 100 125

25

f'.C, -3pF

"""

j\

10K lOOK 1M 10M

FREQUENCY (Hz)

45

&5

85

Voltage Follower

VS = t15V

C, =3pF

10

..
~
.

~

LJ I
1.1 I

I J Lr -I-- I--

I--

1\

INPUT_I

w

C, -lOpF:\

IIIIII
lK

c
!:;
co
>

1\

-4

10K

lOOK

1M

FREQUENCY (Hz)

r--

1

\

-

T.'= 2~'C

vy

-8

~

I

-..-.

OUTPUT

-2
-&

111111

o

12&

Pulse Response

12

co

105

AMBIENT TEMPERATURE ('CI

i. ~~J!~

z

1"-

100

Frequency Response

j\

-20
1

25

1&

T.'=25'~ __

C, = 30pF

LMI48
LMl48C

200

Large Signal

100 ~ioo.

20

"-

400

TEMPERATURE ('CI

Frequency Response

120

10

0

500

300
E
iii

BIAS

-. ~T"

-15 -50 -25

Open Loop

z

10
15
SUPPLY VOLTAGE (tVI

!E

OUTPUT CURRENT (±mAl

..'"

T. = 125'c

Maximum Power Dissipation

-I-10

T. = 25'C

20

~

200

~ 100

o

=- --

600

..s

5.0

o

~

100

TA=I-sso c

-

Vs=:l:1SV

C 300

TA '" Z5°C

TA '" 125°C

-

Input Current
Vs" ±15V

::- 1"'000.

10.0

200

lOO

I

400

~

13
:l
;;;

..s

...

TA • 125'C

10
15
SUPPLY VOLTAGE (±VI

5

.....
,.,.ill

T. = 2S C

7

ID
20

10
15
SUPPLY VOLTAGE (tVI

I

Tl'-5slc --

110

z

AI

400

t15V

-10
10M

o 10 20 lO 40 50 60 10 10
TIME ""I

2-237

00

an

~
....

Operational Amplifiers

::E
....I

.......
00
an
an

....
::E
....I

LM1558/LM1458 dual operational amplifier
general description
The LM 1558 and the LM 1458 are general purpose
dual operational amplifiers. The two amplifiers
share a common bias network and power supply
leads. Otherwise, their operation is completely
independent. Features include:

• Low-power consumption
• 8-lead TO-5 and 8-lead mini DIP
• No latch up when input common mode range is
exceeded

• No frequency compensation required
The LM1458 is identical to the LM1558 except
that the LM 1458 has its specifications guaranteed
over the temperature range from O°C to 70°C
instead of -55°C to +125°C.

• Short-circuit protection
• Wide common-mode and differential voltage
ranges

schematic and connection diagrams
I,"

..
II

1(11

aU11'UT

'"
"

...
"'"

..,
OJ

...

""

.'",

"'"

Note: Numbers in parentheses are ,in numbeR for amplifier B.

Metal Can Package

Dual-In-Line Package

'"
INVERTING INPUY A

A...L.J..--.--OU1l'VT.

Dual·1 n-L ine Package

"
"

OUTPIIT.
12 OUTPUT.

Ie

IIII'IIIIYIIIG 1111""I

I

lIIa.IIIIVUITI.a

INPUT I

Order Number LM1458H or LM1558H
See Package 11

2-238

.IVERT
lIMA
ION-IIiVERT

Ii

•

•

INPUT A

I

V"

IIIVERT
•.. UTI
IIIJ.UIVlRT
~M'

TO'VI,.

llI,VlEW

Order Number LM1458N
See Package 20

Order Number LM1458-14
See Package 22

r-

...s:

absolute maximum ratings
Supply Voltage LM lSS8
LM14S8
Power Dissipation (Note 1) LM1SS8H/LM14S8H
LM14S8N
Input Voltage (Note 2)

PARAMETER

Indefinite
-SS·C to 12S·C
O·C to 70·C
-6S·C to lS0·C
300·C

Output Short-Circuit Duration

±22V
±18V
SOOmW
400mW
±30V
±15V

Differential Input Voltage

electrical characteristics

U1
U1

Operating Temperature Range LM1SS8
LM14S8

Storage Temperature Range
Lead Temperature (Soldering, 10 secl

MIN

LM1SS8
TYP
MAX

MIN

LM14S8
TYP

MAX

Input Offset Current

TA = 2S·C

80

200

80

200

nA

Input Bias Current

T A =2S·C

200

SOO

200

SOO

nA

TA = 2S·C
TA = 2S·C. Vs = ±lSV

1.0

0.3

S.O

0.3

1.0
3.0

1.0

S.O

6.0

UNITS

TA = 2S·C, Rs :510kn

Input Resistance

1.0
3.0

mV

Mn
S.6

mA

Amplifiers

large Signal Voltage Gain

Input Offset Voltage

TA = 2S·C, Vs = ±lSV
V OUT = ±10V, RL 2: 2 kn

SO

160

Vs = ±15V. V OUT = ±10V
RL 2:2kn

Output Voltage Swing

Vs = ±15V, RL = 10 kn
RL = 2 kn

±12
±10

Input Voltage Range

Vs = ±15V

±12

Supply Voltage

Rejection Ratio

7.S
300
0.8

1.S

Large Signal Voltage Gain

25

±12
±10

mV
nA
IJA

V/mV

15
±14
±13

V/mV

160

SOO

Input Bias Current

Rejection Ratio

20
6.0

Rs:510 kn

Input Offset Current

Common Mode

...s:
~

CO

Input Offset Voltage

Supply Current Both

r-

U1

(Note 3)

CONDITIONS

CO

.......

±14
±13

±12

V
V
V

Rs :510kn

70

90

70

90

dB

Rs:510 kn

77

96

77

96

dB

Note 1: The maximum junction temperature of the LM1558 IS 150°C, while that of the lM1458 IS 10CtC. For operating at
elevated temperatures, devices in the TO-S package must be derated based on a thermal resistance of 150°C/W, junction to
ambient or 45"CIW. junction to case. For the DIP the device must be derated based on a thermal resistance of 187"C/W,
junction to ambient.

Nate 2: For supply voltages less than .t15V. the absolute malCimum Input voltage is eQual to the supply voltage.
Note 3: These specifications apply for V~ :> :t15V and -55"C 5. T A 5. 125"C. unless otherwise specified. With the LM1458.
however. all specifications are limited to 0 C 5. T A 5. 70" C and Vs .. :t15V.

2-239

o
o

en
:E

Operational Am plifiers

N

...I

LM2900 quad amplifier
general description

features

The LM2900 consists of four independent, dual
input, internally compensated amplifiers which
were designed specifically for automotive and
industrial applications. They operate off a single
power supply voltage and provide a large output
voltage swing. These amplifiers make use of a
current mirror to achieve the non·inverting input
function.
Applications include: AC amplifiers, RC active
filters; low frequency triangle, squarewave and
pulse waveform generation circuits; tachometers
and low speed, high voltage digital logic gates.
For additional information, see Application Note

72, "The LM3900 - A New Current-Differencing
Quad of ± Input Ampl ifiers."

•
•
•
•
•
•

Wide single supply
voltage range
4 Voc to 36 Voc
Supply current drain independent of supply
voltage
30 nA
Low input biasing current
70dB
High open· loop gain
2.5 MHz (Unity Gain)
Wide bandwidth
Larger gain·bandwidth product in non·inverting
mode (Av = 100 @ f = 1 MHz)

• Large output voltage swing
• I nternally frequency compensated for unity gain
• Output short·circuit protection
• Eliminates need for dual supplies
•

Reduces package count

schematic and connection diagrams
Dual-In-Line Package

.",UT1+

INPUT2.+

Order Number LM2900N
See Package 22

CUARUT

MIAAaA

typical applications (v+= 15V DC )

y+

VODe;

Av ~

"2

.,
iii

Inverting Amplifier

Frequency-Doubling Tachometer

Triangle/Square Generator

-V,,,

"

T '·'
y+

.,2

VODC= -

Av'"

Ai

High gain-bandwidth example:
Av "1DOfi.i1 MHz
(Seenote2,page2J

Low VIN-VOUT Voltage Regulator

2-240

Non-Inverting Amplifier

Boosting to ~O mA Loads

r-

absolute maximum ratings

3:

Supply Voltage

+36 Voc
±18 Voc
570mW
20 mA DC
Continuous

Power Dissipation (T A = 25°C) (Note 1)
Input Currents, IIN+ or IINOutput Short Circuit Duration - One
Amplifier T A = 25°C
(See Application Hints)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrica I cha racteristics
PARAMETER

N
CD

o
o

-40 0 C to +85 0 C
_65°C to +150°C
300°C

(v+ = +15 V oc and T A = 25°C unless otherwise noted)

CONDITIONS

MIN

TYP

Open Loop
Voltage Gain
Input Resistance
Output Resistance

f=100Hz
I nverting Input

Unity Gain Bandwidth

Inverting Input (Note 2)

Input Bias Current

I nverting Input

30

Slew Rate

Positive Output Swing
Negative Output Swing

20

Supply Current

RL = 00 On All Amplifiers

Output Voltage Swing

UNITS

1
8

VIV
Mn
kn

2.5

MHz

2800

200

V Ills
V/lls

0.5

6.2

nA

10

mADC

RL = 5.1k

V OUT High

IIN- = 0, IIN+ = 0

V OUT Low

IIN- = 101lA,IIN+ = 0

Output Current Capability
Source
Sink

1200

MAX

13.5

0.09

3
(Note 3)

Power Supply Rejection

f = 100 Hz

Mirror Gain

IIN+ = 200llA (Note 4)

Mirror Current

(Note 5)

Negative I nput Current

(Note 6)

14.2

0.5

Voc
0.2

mADC

18

mADC

1.3

dB

70

1.1

0.90
10
1.0

Voc

500

1lA!IlA
IlA DC
mADC

Note 1: For operating at high temperatures, the device must be derated based on a 12SoC maximum junction temperature and
a thermal resistance of 17SoC/W which applies for the device soldered in a printed circuit board, operating in a still air ambient.
Note 2: When used as a "non-inverting amplifier" (see bottom of page 1) the gain-bandwidth product is not limited to 2.5 MHz.
The isolation provided by the "current mirror" allows a constant unity voltage gain feedback for the main inverting amplifier.
This means that large values of gain can be achieved at high frequencies and the dominate limit is due to the slew rate of the
amplifier. For example: a voltage gain of 100 is easily obtained at 1 MHz and an output voltage swing of 160 mVp-p can be
achieved prior to slew rate limiting. This operational mode is useful for signal frequencies in the 50 kHz to 1 MHz range as would
be encountered in I F or carrier frequency applications.
Note 3: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. This
is shown in the section on Typical Characteristics.
Note 4: This spec indicates the current gain of the current mirror which is used as the non-inverting input.
Note 5: Input Vee match between the non-inverting and the inverting inputs occurs for a mirror current (non-inverting
input current) of approximately 10 $lA. This is therefore a typical design center for many of the application circuits.
Nots 6: Clamp transistors are included on the IC to prevent the input voltages from swinging below ground more than
approximately -0.3 VOC. The negative input currents which may result from large signal overdrive with capacitance input
coupling need to be externally limited to values of approximately 1 rnA. Negative input currents in excess of 4 mA will cause
the output voltage to drop to a low voltage. This maximum current applies to anyone of the input terminals. If more than one
of the input terminals are simultaneously driven negative smaller maximum currents are allowed. Common-mode current biasing can be used to prevent negative input voltages; for example. see the "Differentiator Circuit" in the applications section.

2·241

fJI

N

o
en
N

Operational Amplifiers

;S
LM2902 quad op amp
general description

The LM2902 consists of four independent, high
gain, internally frequency compensated operational
amplifiers which were designed specifically for
automotive and industrial control systems. They
operate from a single power supply over a wide
range of voltages. Operation from split power
supplies is also possible and the low power supply
current drain is independent of the magnitude of
the power supply voltage.

In the linear mode the input common-mode
voltage range includes ground and the output
voltage can also swing to ground, even though
operated from only a single power supply
voltage.

• The unity gain -cross frequency is temperature
compensated.
• The input bias current is also temperature
compensated.
Application areas include transducer amplifiers,
DC gain blocks and all the conventional op amp
circuits which now can be more easily implemented
in single power supply systems. For example,
the LM2902 can be directly operated off of the
standard +5V oc power supply voltage which is
used in digital systems and will easily provide the
required interface electronics without requiring
the additional ±15V oc power supplies.

advantages
•

Four internally compensated op amps in a'
single package

• Allows directly sensing near GND and VOUT
also goes to G N D
• Compatible with all forms of logic
•

Power drain suitable for battery· operation

features

unique characteristics
•

•

•

Internally frequency compensated for unity
gain

•

Large DC voltage gain

100 dB
1 MHz

• Wide bandwidth (unity gain)
(temperature compensated)

• Wide power supply range
Single supply
3 Voc to 26 Voc
or dual supplies
±1.5 Voc to ±13 Voc
• Very low supply current drain (800IlA)
essentially independent of supply voltage (1
mW/op amp at +5V o cl
•

Low input biasing current
(temperature compensated)

•

Low input offset voltage
and offset current

•

Input common·mode voltage range includes
ground

•

Differential input voltage range equal to the
power supply voltage

•

Large output voltage
swing

Eliminates need for dual supplies

45 nAoc
2mVoc
5nAoc

OVoc to v+ - 1.5V oc

schematic and connection diagrams
v'

Dual-In-Line Package
DUTPU14 INPU14-

INPUT4+

GND

INPUU·

INPUT3-

IN'UT1+

y+

INPun+

INPUT2-

OUTPUT l

......--t--o OUTPUT

OUTPUT! INPun-

Order Number LM2902N
See Package 22

2-242

OUTPun

r-

3:

N
CD

absolute maximum ratings

o

Supply Voltage. V+

N

32 Vee or ±13 Vee

26Ve~

Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)

-0.3 Vee to +26 Vee
570mW
Continuous

Output Short-Circuit to GND (Note 2)
V+::; 15 Vee and T A = 25°C
Operating Temperature Range

-40°C to+B5°C
-65°C to +150 oC
300°C

Storage Temperature Range
Lead Temperature (Soldering. 60 sec)

electrical characteristics
PARAMETER

(v+

= +5V oe

and T A

CONDITIONS

= 25°C unless otherwise noted)
TYP

MAX

UNITS

2

10

mVoc

I'N(+) or IIN(_)

45

500

nAoe

I'N(+) -I'N(_)

±5

±50

nAoe

Input Offset Voltage

R, =on

Input Bias Current (Note 3)
Input Offset Current
Input Common-Mode Voltage
Range (Note 4)

MIN

a

Supply Current

RL = ~ On All Op Amps

Large Signal Voltage Gain

RL ~2kn

V+-1.5
0.8

2

100

a

Voe
mAoc
V/mV

V+-1.5

Output Voltage Swing

RL = 2 kn

Common Mode Rejection
Ratio

DC

85

dB

Power Supply Rejection
Ratio

DC

100

dB

Amplifier·to-Amplifier
Coupling

f = 1 kHz to 20 kHz
(Input Referred)

-120

dB

Output Current Source

V,N+=+1 Voe. V'N-~OVoe

20

40

mAce

Output Current Sink

V'N-=+1 Voc. V'N+=OVoe

8

20

mAce

Voc

Note 1: For operating at high temperatures, the LM2902 must be derated based on a +12SoC maximum junction temperature
and a thermal resistance of 17So CIW which applies for the device soldered in a printed circuit board operating in a still air
ambient.
Not8 2: Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output

current is approximately 40 rnA independent of the magnitude of V+. At values of supply voltage in excess of +15VOC,
continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction.
Note 3: The direction of the input current is out of the Ie due to the PNP input stage. This current is essentially constant,
independent of the state of the output so no loading change exists on the input lines.
Note 4: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than
O.3V. The upper end of the common-mode voltage range is V+ - , .6V, but either or both inputs can go to +26VOC without
damage.

2-243

g

typical performance cha racteristics

Supplv Current

g

4

"
.!!

".
z

3

a

..
0-

ill

2

13~

~,

1

"

~

90

75

.!! 70

g

g
.s
'"

i13

,

~TA"'OOCT~ I"20

..-

25

3D

BO

0

~

~

RL : ; : ; _

§
iilw
a
a

~

40

'"
.'",

'"

8

10

20

...il

3D

v+ -SUPPLY VOLTAGE IVDeI

;!

'"

~

0-

r-

-=-

r-

10

w

'"~

60

,

!:

40

5
.l

20
0
100

lk

10k

lOOk

.j

~·r:131
v+/z

~C::;:TA$+85OC

60
40
20

I- v+=10TO

15VDC~

~D'CfA fB5'IC

0

1M

+JV IIC

+

1

10

100

lk

2K

~Z

3

a"
"''''

2

,~

oa

1
0

~~

r-

5

RL~2k

/

o-w

»

~w

z'"

II

v+= 15 VDC

\

\

I-

3

2

-",

'0z~

1

>!;

0
lk

10k

lOOk

I - FREQUENCY IHzl

1M

~

10k lOOk 1M 10M

, - FREQUENCY 1Hz)

4

~

... _

~=26VDC&

Voltage Follower Pulse

I-

2-244

~

BO

Response

i;

,

100

'00

I - FREQUENCY IHzl

1\

~

Response

'"z~

f~

f-

v... '\,.

25 45 65 B5 105 125

Open Loop Frequency

BO

lOOK

r15

-r-.

20

;;; 120

Large Signal Frequency

20

-

140

Response

..

+'

TA - TEMPERATURE I'CI

.

,
0

-

40

0
-55 -35 -16 5

3D

'"

>

g

20

10

;;; 120
a
"'~ 100

w

~

,

~'--

~

3D

Common-Mode Rejection
Ratio

RL =20kn

'""

~
a

50

v+ -SUPPLY VOLTAGE IVocl

160

120

5

60

f- -

r- f- -

~ 10

Voltage Gain

'"z~

V
I-TA =+25'C

~

T --40'CAI
I
10

50

V+ - SUPPLY VOLTAGE IVocl

=

.....13
0-

ill

~

l!!

BO

'"

0-

.E

0

Current Limiting

Input Current
100

0

I10

ZD

I-TIME ""I

3D

40

i

N
CD

application hints
The LM2902 op amps operate with only a
single power supply voltage, have true-differential
inputs, and remain in the linear mode with an
input common-mode voltage of OVDC' These
amplifiers operate over a wide range of power
supply voltage with little change in performance
characteristics. At 25°C amplifier operation is
possible down to a minimum supply voltage of
2.3V DC _
The pinouts of. the package have been designed to
simplify PC board layouts. Inverting inputs are
adjacent to outputs for all of the amplifiers and
the outputs have also been placed at the corners
of the package (pins 1, 7, 8, and 14).
Precautions should be'taken to insure that the
power supply for the integrated circuit never
becomes reversed in polarity or that the unit is not
inadvertently installed backwards in a test socket
as an unlimited current surge through the resulting
forward diode within the IC could cause fUSing of
the internal conductors and result in a destroyed
unit.
Large differential input voltages can be' easily
accommodated and, as input differential voltage
protection diodes are not needed, no large input
currents result from large differential input voltages. The differential input voltage may be larger
than V+ without damaging the device. Protection
should be provided to prevent the input voltages
from going negative more than -0.3V DC (at 25°C).
An input clamp consisting of a diode-connected
NPN transistor (C-B short) can be .used.
To reduce the power supply current drain, the
amplifiers have a class A output stage for small
signal levels which converts to class B in a large
signal mode. This allows the amplifiers to both
source and sink large output currents. Therefore
both NPN and PNP external current boost transistors can be used to extend the power capability
of the basic amplifiers. The output voltage needs
to raise approximately 1 diode drop above ground
to bias the on-chip vertical PNP transistor for
output current sinking applications.
For AC applications, where the load is capacitively
coupled to the output of the amplifier, a resistor

typical single-supply applications

should be used, from the output of the amplifier
to ground to increase the class A bias current and
prevent crossover distortion. Where the load is
directly coupled, as in DC applications, there is no
crossover distortion.
Capacitive loads which are applied directly to the
output of the amplifier reduce the loop stability
margin. Values of 50 pF can be accommodated
using the worst-case non-inverting unity gain connection. Large closed loopgainsor resistive isolation
should be used if larger load capacitance must be
driven by the amplifier_
The bias network of the LM2902 establishes a
drain current which is independent of the magnitude of the power supply voltage over the range
of from 3V oc to 26V DC '
Output short circuits either to ground or to the
positive power supply should be of short time
duration. Units can be destroyed, not as a result
of the short circuit current causing metal fusing,
but rather due to the large increase in IC chip
dissipation which will cause eventual failure due to
excessive junction temperatures. Putting direct
short-circuits on more than one amplifier at a
time will increase the total IC power dissipation to
destructive levels, if not properly protected with
external dissipation limiting resistors in series with
the output leads of the amplifiers. The larger value
of output source current which is available at
25°C provides a larger output current capability
at elevated temperatures (see typical performance
characteristics) than a standard IC op amp.
The circuits presented in the section on typical
applications emphasize operation on only a single
power supply voltage. If complementary power
supplies are available, all of the standard op amp
circuits can be used. In general, introducing a
pseudo-ground (a bias voltage reference of V+12)
will allow operation above and below this value
in single power supply systems. Many application
circuits are shown which take advantage of the
wide input common-mode voltage range which
includes ground. In most cases, input biasing is
not required and input voltages which range to
ground can easily be accommodated.
(V+; 5 Voc~
DC Summing Amplifier

Non-Inverting DC Gain IOV Input

= OV Output)

iVIN'S ~ OVDC AND Vo ~ OVDC)

,
+5V

------

lOOK

Yo

'Y o

GAIN~I+~
~IDI

"'

10K

(AS SHOWN]

Vo=V, +VZ-Vl-V.
(V, + V2)2 (VJ

+V.J TO KEE.Vo >OVDe

2-245

o

N

N

oen

typical single-supply applications (con't)

N

~

(V+=5V o cl

High Input Z, DC Differential Amplifier

Photo Voltaic-Cell Amplifier
R,
1M

"

AS SHOWN

VO =Z(V 2 -V, 1

High Input Z Adjustable·Gain
DC Instrumentation Amplifier

Using Symmetrical Amplifiers to
Reduce I nput Current (General Concepti

"

lOOK

-'"

+VIPf

0-_---1

IF III-R5& R3-F\4= A&=Rl(CMRR DEPENDS ON MATCH)
R
15M

2Al
\
Vo· 1+fi2 (V,-V,]

INPUT CURRENT

COMPENSATION

Vo ·1II1(V,-V\1

Low Drift Peak Detector

R
1M

2-246

Bridge Current Amplifier

INPUT CURRENT
COMPENSATION

typical single-supply applications (con't)
AC Coupled Inverting Amplifier

'M

1

T
.-¥-""

AI

10K

,:".21(

,.
R3

(AS SHOWN, Ay

l

Co

'1' R,v,

~

o

N

R2

AI
Ili0K

'

N
CD

AC Coupled Non·1 nverting Amplifier

R,
lOOK

Ay

i

(V+=5V oc )

1
O-¥-2V,.
T

v,

RL
,,::,101(

R4
'OOK

....-+-"11,.,...Ov·

~ 101

"

lOOK

Ay "l1(ASSHOWN)

Ground Referencing A Differential Input Signal

DC Coupled Low·Pass RC Active Filter

AI

·AI
'M

1&K

v,

v,
v,

.v~

..,

"

lo-IKHI

1M

...'WI.--.....--'WI.----'

Avo!

"

v'CL
•

I,

lOOK

VO"VA

Fixed Current Sources

Bandpass Active Filter

v·

2V

AI

3901(

"

lK

v,. 0-...".,.,.......-+-1

v,

"

&20K

"BI·QUAD" RC Active Bandpass Filter
AI

lOOK

"

llDpF

R2
lOOK

"

lOOK

H .......'W....- - - - - I - - - - o v ,

fo"IKHI
n-50
Av "IOO(40dBI

2·247

N

o

~

typical single-supply applications (con't)

!

(V+=5V o cl

High Compliance Current Sink

Pulse Generator

Voltage Follower

"'

'OK

IN914

,,,.
R2

'0

'0

+VIIII

.' O-""".....

---'\N.-...J

R3

lOOK

115

'00'

lo-IAMI'lVOLTV1N

,nR.

UNtREASERE FOR 10 SMAlLI

Pulse Generator
R1

Squarewave Oscillator

IIIIB14 -

'M

"'

INI14

lOOK

c

ii'"

'0

'0

;Lf1..f1.

Rt

IDOK
R4
lOOK

"

lOOK

R3
"OK

Voltage Controlled Oscillator (VCO)
o.Os,.F

+Vc*

OUTPUT I

L-_ _ _ _ _ _ _-+-oOUTPUT2

1O.

"WIOE CONTROL VOLTAGE RANGE:

Power Amplifier

a VOl:::: Vc ::::2(V+ _1 5 Vocl

Driving TTL

Comparator With Hysteresis

"'

!lIOK

" .. 0----1

"'
'"

2-248

'0'

typical single-supply applications (can't)

iN

(V+; 5 Vocl

U)

o

N

Lamp Driver

LED Driver

"

Current Monitor

,.0-......""".....- - - - ,

2·249

o
o

en

Operational Am plifiers

C")

:E

....I

lM3900 quad amplifier
general

features

de~cription

The LM3900 consists of four independent, dual
input, internally compensated amplifiers which
were designed specifically to operate off of a
single power supply voltage and to provide a
large output voltage swing_ These amplifiers make
use of a current mirror to achieve the non-inverting
input function_ Application areas include: AC
amplifiers, RC active filters; low frequency triangle,
squarewave and pulse waveform generation circuits, tachometers and low speed, high voltage
digital logic gates_

• Wide single supply
voltage range
4 Vee to 36 Vee
or dual supplies
±2 Vee to ±18 Vee
• Supply current drain independent of supply
voltage
• Low input biasing current
30 nA
• High open-loop gain
70 dB
• Wide bandwidth
2_5 MHz (Unity Gain)
• Large output voltage swing
(V+ -1) Vp _p
• Internally frequency compensated for unity gain
• Output short-circu it protection

schematic and connection diagrams
v·

Dual-In-Line Package

CURRENT

Order Numb., LM3900N
S•• Packag. 22

MIRROR

typical applications (v+= 15Voc )

,.

V-o-I\N""""...,

V~

v'

VOOC V-

AV

2"

R'
5!!-Ri

Inverting Amplifier

Frequency-Doubling Tachometer

Triangle/Square Generator

-v.

T'"
V.

f"'
~r·

2-250

VODC5!!-~V­
Ay

"on
Low VIN-VOUT Voltage Regulator

V.

Non-Inverting Amplifier

5!!

Negative Supply Biasing

R'
ii1

I"'"

s:w

absolute maximum ratings

CD

Supply Voltage
Power Dissipation (T A = 25°C) (Note 1)
Input Currents, IIN+ or-IINOutput Short Circuit Duration - One
Amplifier T A = 25°C
(See Application Hints)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics
PARAMETER

o
o

+32 VDC
±18 VDC
570mW
20mA DC
Continuous

O°C to +70°C
-65°C to +150°C
300°C

(v+ = +15 VDC and T A = 25°C unless otherwise noted)

CONDITIONS

MIN

TYP

Open Loop
Voltage Gain
I nput Resistance
Output Resistance

f=100Hz
Inverting Input

Unity Gain Bandwidth

Inverting Input

Input Bias Current

I nverting Input

30

Slew Rate

Positive Output Swing
Negative Output Swing

0.5
20

Supply Current

RL = 00 On All Amplifiers

Output Voltage Swing

RL = 5.1k

V OUT High

IIN- = 0, IIN+ = 0

V OUT Low

IIN- = 101lA, IIN+ = 0

Output Current Capability
Source
Sink

1200

Power Supply Rejection

f= 100 Hz

Mirror Gain

IIN+ = 200llA (Note 3)

Mirror Current

(Note 4)

Negative I nput Current

(Note 5)

2800

13.5

V/V
Mn
kn

2.5

MHz
200

10

mADC

VDC

14.2
0.2

VDC

mADC

18

mADC

1.3

dB

70

1.1

0.9
10

nA
V Ills
V/lls

0.09

0.5

UNITS

1
8

6.2

3
(Note 2)

MAX

500

1.0

IlA/IlA
IlADC
mADC

Note 1: For operating at high temperatures, the device mllst be derated based on a 125°C maximum junction temperature and
a thermal resistance of 17SoCIW which applies for the device soldered in a printed circuit board, operating in a still air ambient.
Note 2: The output current sink capability can be increased for large signal conditions by overdriving the inverting input. Tt;lis

is shown in the section on Typical Characteristics.
Note 3: This spec indicates the current gain of the current mirror which is used as the non-inverting input.

Note 4: Input VBE match between the non~inverting and the inverting inputs occurs for a mirror current (non~inverting
input currend of approximately 10 IlA. This is therefore a typical design center for many of the application circuits.
Note 5: Clamp transistors are included on the Ie to prevent the input voltages from swinging below ground more than
approximately -0.3 VDC. The negative input currents which may result from large signal overdrive with capacitance input
coupling need to be externally limited to values of approximately 1 mAo Negative input currents in excess of 4 mA will cause
the output voltage to drop to a low voltage. This maximum current applies to anyone of the input terminals. If more than one
of the input terminals are simultaneously driven negative smaller maximum currents are allowed. Common~mode current bias~
ing can be used to prevent negative input voltages; see for example the "Differentiator Circuit" in the applications section.

2·251

g

o
o

c»
CW)

typical performance characteristics

:e

...I

;

..~

100

Jo

z

co

>

cl
<

LOAJ

;

4'5.1K

80

;;:

~

Voltage Gain

Voltage Gain

Open-Loop Gain
100

80

...
<
!:;
co
>

,
0

<

"-

o
10'

10'

10<

60

~

"-

20

---

80

z

;;:

R!~k"'~

40

100 , - . , - - , - - , - - . , - - - ,

10'

40

RL " -

-

!

80

z

..~~
co

40 b--+--1--~--+~~

~

20b--+--1--~--+-~

,

>

20

601----1--+-+--+--1

01......---1_--'-_-'-_-'---'

10'

10

10'

f, FREQUENCY (Hz)

15

20

25

o

30

25

75

50

100

125

TA, TEMPERATURE ("C)

V', SUPPLY VOLTAGE (VDcl

Large Signal Frequency
Supply Current

Input Current
100

!

10

80

..

60

~

40

3

20

I-

ill

:~i,wC

o

o

25

o

75

50

100

125

Output Sink Current

3D

~

I

".s
I-

~
~

IIN-= 1D/JA

i!

IIN-"1 IJ.A

.E

.E

o

15

20

25

~

ill

!

tJ-.
10'

10'

10<

2-252

i

'\'\

2.0

10'

"
~
.s

_T•• W~'x :-1 T.- 25"C-

1.0

I-

~
co

rt

TA-rc\1
20

(

o

10

TA ·25°C

15

TA -75"C
10

I

.E

o

15

20

25

o

30

10

15

20

25

30

V', SUPPLY VOLTAGE (VDd

Maximum Mirror Current

1.16

20

".s

1.12

16

I-

~

1.08

z 1.04
;;:

:i1

..

1.00

.i

0.98

12

~

co

10'

10M

,-

70

~

- o

25

50

75

I"--..

~

IIN+""0p.A

i

10'

1M

Output Souce Current

~

i

f, FREQUENCY (Hz)

lOOk

f, FREQUENCY (Hz)

~

f"'"'.,...

20

~
10k

3D

Mirror Gain

~

40

25

V.. SUPPLY VOLTAGE (VDcl

80
80

20

I-

Supply Rejaction

.

15

3.0

3D

100

~
:5

\

25

Y+,SUPPLY VOLTAGE (VDd

z

10

4.0

o

;

10k,;; RL,;;-

co

5.0

i§

10

12

1;

z

20
fO

~

5

Output Class-A Bias Current

V d:J= ~

40

z

co

14

V" SUPPLY VOLTAGE (VDcI

50

in

~

~
0
>

T., TEMPERATURE ("C)

I-

.t

J TA,25"C

UTA'70"~1

-....... -.......

~

I-

16

z

B

".s
~..

Response

N,;'0.9i

~

.... 1

o
100

TA , TEMPERATURE ("C)

125

o

25

50

75-

100

TA, TEMPERATURE ("C)

125

r-

application hints
When driving either input from a low-impedance
source, a limiting resistor should be placed in series
with the input lead to limit the peak input current_
Currents as large as 20 mA will not damage the
device, but the current mirror on the non-inverting
input will saturate and cause a loss of mirror gain
at mA current levels - especially at high operating
temperatures_
Precautions should be taken to insure that the
power supply for the integrated circuit never
becomes reversed in polarity or that the unit is
not inadvertently installed backwards in a test
socket as an unlimited current surge through the
resulting forward diode within the IC could cause
fuzing of the internal conductors and result in a
destroyed unit_
Output short circuits either to ground or to the
positive power supply should be of short time
duration_ Units can be destroyed, not as a result
of the short circu it current causing metal fuzing,
but rather due to the large increase in IC chip
dissipation which will cause eventual failure due
to excessive junction temperatures_ For example,
when operating from a well-regulated +15 VDC
power supply at T A = 25°C with a 100 kn shuntfeedback resistor (from the output to the inverting
input) a short directly to the power supply will not
cause catastrophic failure but the current magnitude will be approximately 50 mA and the junction
temperature will be above TJ max_ Larger feedback
resistors will reduce the current, 11 Mn provides
approximately 30 mA, an open circuit provides
1.3 mA, and a direct connection from the output
to the non-inverting input will result in catastrophic failure when the output is shorted to V+ as
this then places the base-emitter junction of the
input transistor directly across the power supply_
Short-circuits to ground will have magnitudes of
approximately 30 mA and will not cause catastrophic failure at T A '" 25°C_

Unintentional signal coupling from the output to
the non-inverting input can cause oscillations_
This is likely only in breadboard hook-ups with
long component leads and can be prevented by a
more careful lead dress or by locating the noninverting input biasing resistor close to the IC_
A quick check of this condition is to bypass the
non-inverting input to ground with a capacitor.
High impedance biasing resistors used in the noninverting input circuit make this input lead highly
susceptible to unintentional AC signal pickup_
Operation of this amplifier can be best understood
by noticing that input currents are differenced at
the inverting-input terminal and this difference
current then flows through the external feeoback
resistor to produce the output voltage_ Common
mode current biasing is generally useful to allow
operating with signal levels near ground or even
negative as this maintains the inputs biased at
+V BE - Internal clamp transistors (see note 5)
catch negative input voltages at approximately
-0_3 VDC but the magnitude of current flow has
to be limited by the external input network_ For
operation at high temperature, this limit should
be approximately 100 Il-A_
This new "Norton" current-differencing amplifier
can be used in most of the applications of a
standard IC op amp_ Performance as a DC amplifier using only a single supply is not as precise as
a standard IC op amp operating with split supplies
but is adequate in many less critical applications_
New functions are made possible with this amplifier which are useful in single power supply systems_ For example, biasing can be designed separately from the AC gain as was shown in the
"inverting amplifier", the "difference integrator"
allows controlling the charging and the discharging
of the integrating capacitor using only positive
voltages, and the "frequency doubling tachometer"
provides a simple circuit which reduces the ripple
voltage on a tachometer output DC voltage_

typical applications (con't)

RAMP DOWN

.f1.. o-..,'y"",'"'~+i
RAMP UP

.f1.. o--",'''y'..---t+t

vBi-Quad Active Filter
Low·Drift Ramp & Hold Circuit

(2nd Degree State-Variable Network)

2-253

3:
w

CD

o
o

typical applications (con't)

,.

loS:IA
Yo",UVDC

+

T'Ol'F

.,0K

1K

47K ":'

,M
QIIOZ
ABSORI

:

,M

H,V'N

)

!.IV

~ 10 -, mAiVOlTY,~

Voltage-Controlled Current Source

(Transconductance Amplifier)
V·

v,

110U

"

.

,
+VCM I

Ground-Referencing a

Differential Input Signal

Voltage Regulator

'
·
r

V·

LM3IDD

Fixed Current Sources

V·

,ooK
+Vo

vo·V".

110K

+

,.

+v..

1K

,,,Jl.I'L

> ....+-...-0

+VODC

.V,.o-""',.,......- - - - + I

VIN >V8E

2DOK

VODC ;A'IN

·Allom Vo to go tODl'O

Voltage·Controlied Current Sink

Buffer Amplifier

Tachometer

(Transconductance Amplifier)
V·
V·

• V.

0-""""... . . . . . -1--1

No negatiYe volhge limit
if properly biased
LAMP

Vo
Vo

lOOK

'V, .. 0-_""",-4+1
Low-Voltage Comparator

Power Comparator

Comparator

'"
v"

0--'1/1"""'-1
Vo

v·

0-"""'.,.,........_""',..._....1
Schmitt·Trigger

2·254

Vo

Vo

-""'''''''-....I

V·o-"II\,..,.....

Square-Wave Oscillator

--"I""'-....

v· o-AN......

Pulse Generator

I"L.Jl..

r-

~

w
o
o

typical applications (con't)

CD

'"

'"
f,JL...Jl..
>----j0-0

f,rLnJ

f,JL...Jl..

VODe

V,,,,

'., o----'Wlrlol

Frequency Averaging Tachometer

Frequency Differencing Tachometer

,.
,.
RESET

rL

"

'"
SL

.oM

Differentiator (Common-Mode

Squaring Amplifier (W/Hysteresis)

Biasing Keeps Input at +VSE)

Bi-Stable Multivibrator

Difference Integrator

"AND" Gate

"OR" Gate

RESET

n

"

"

"

~hl-F--'M~t-+I

',:..n....n.

VSE " D.5V oc

*2 Steps/cycle

VOOC"VBE

Low Pass Active Filter

Staircase Generator

(1+~)

Av =:: -

.2

Ai

V BE Biasing

~OPF

""I

One-Shot Multivibrator

Low-Frequency Mixer

2-255

o
o

en

typical applications (con't)

M

:E

-I

-DRESET

PUtSE

Supplying liN with Aux. Amp
Ito Allow High Z Feedback Networks)

"

"

Free-Running Staircase
Generator/Pulse Counter

Non-Inverting DC Gain to (O.O)
Bandpass Active Filter

,.

O.DS.uF

V,

o-J t--'III/I~

10M
10M

IOIlK

Power Amplifier

,v,

oun

10M

10M

lOOK

V-o---'Wlr-"'~

Trips at VIN e.: D.Bv'"
VIN must fall < O.8V+

priortDt2•

Channel Selection by DC Control
(or Audio Mixer)

2-256

One-Shot wI DC Input Comparator

r-

s:
w

typical applications (con't)

CD

o
o

"'f':::::

Vw~

,1K

fo

=1kHz

v'n

High Pass Active Filter

.IlRESET

v,
V'

O--JV<>h--+I

Sample·Hold & Compare with New +VIN

Sawtooth Generator

split-supply applications

(v+= +15V oc & v-= -15V oc )

.vo

AC Amplifier
Inverting DC Gain

2·257

u
o

in

Operational Amplifiers

N

~

...
::E

.......

o

in

N

~

...
::E

LM4250/LM4250C programmable operational amplifier
general description
The LM4250 and LM4250C are extremely versatile
programmable monolithic operational amplifiers.
A single external master bias current setting resistor
programs the input bias current, input offset cur·
rent, quiescent power consumption, slew rate,
input noise, and the gain·bandwidth product.
The device is a truly general purpose operational
amplifier.

•
•
•
•
•
•

Standby power consumption as low as 500 nW
No frequency compensation required
Programmable electrical characteristics
Offset Voltage nulling capability
Can be powered by two flashlight batteries
Short circu it protection

The LM4250C is identical to the LM4250 except
that the LM4250C has its performance guaranteed
over a O°C to 70°C temperature range instead of
the -55°C to +125°C temperature range of the
LM4250.

features
• ±lV to ±18V power supply operation
• 3 nA input offset current

schematic diagrams

,...

typical applications

""

UK

'.

R3

VIN~o-..3,,"iI.- -12

30

I
I

-15

Unnulled Input Offset Voltage
1000

=
!;i
i::

-4

1.0

100

o

I

Change vs Temperature

u

TA =25c C
·,.SV;':Vs S:15V

.1

60

U'I

n

Vs=±15V

TEMPERATURE I'CI

Unnulled Input Offset Voltage
Change ys ISET

'"

20

~

N

I 1\
I

-10

"lI I I I

-20

I

~A ~ I'~T';;
, ,IIDJA,

-5

Vs= 1,5V

V,= 15V

'SETf#.,IA)

co_
«>
~ E

~
.9

I I l'
I
I

3:

Vs -+l.5V

I~I

10
-60

100

I

Vs=±15V

1IJ.A

roo

I I I

Vs - ±1.5V

I It-

'SET'"

.1

10

I I I

Isn= 10#J.A

-30

100

o

........

Input Offset Current vs
Temperature

Input Bias Current vs
Temperature

Input Bias Current vs ISET

lOOk

10k

.4

o
1M

Quiescent Current U q ) vs

Temperature

Quiescent Current IIql Ys ISET

,....,.,.-,rr""'-'-""'"'T'"T"T-r,....,..,

1000
70

f--

I SET ;; tUliA

T. =2S'C

_I- Vs '" ±15~_

60

100

1-++H-+++H-H+H-+7F1H+--l

10

1-+Ht-+-l-I±H-LJ,H+-+::HtH
V ""±15V
Vs = :t1.5V

40

~

50

_'3

30

.:

s

20
10 -

-t- Ys =:!:15V-

ISET=l#J.A

Vs" <1.5V
:t2

14

±8

-GO

18 ±1D 112 114 :t16

-20

SUPPLY VOLTAGE (VI

20

60

100

140

10

Open Loop Voltage Gain

Gain Bandwidth Product

Slew Rate ys ISET

YS

100

ISET ~A)

TEMPERATURE I'CI

ISET

ys ISET

10

."

-'!

t;

1.0

g"

~

lOOk

f

~

l-

:c

e

:;
~
:i

«

!l

ZIOk."

~

.01

Z

~

.001
.01

.1

1.0
I..T!.AI

10

100

.1

1.0

10

ISETWA)

100

.1

1.0

10

100

ISET~)

2-261

(.)

o

It)

typical performance characteristics (can't)

N
lilt

:IE
....

.......

o
N

lilt

:IE
....

Input Noise Current Un} and
Voltage lEn} YS Frequencv

Phase Margin YS ISET

It)

e'"
:i:

ez

B4

..

~

iE

..~

RL -100kn

72

z

10

V.=±15'Y"

60

......

iii 46

'""

RSET

f-

12

~

10

1.0

v~=I.a~

1M

-

Vs '±t·5V

~

lOOK

~

.....

.1

III

10M

"iii
S
<
"~ >
S
~

rfrr-

24

ISET

~

Vs"±1.5V

36

YS

100M

100

T.-25·C

'00

10K

100

10

.01

10

.1

FREQUENCY 1Hz)

I... !.AI

100

ISET("aA)

typical applications (con't)
'.,

tl-fi

2-'PF~

DI
IN'14

..

"
"SE

QuiescentPD = I.8#o!W
-Met!r movement ID-IDDpA.2 kn) marked

OROUI'IID*

forO-IDOnAfullscalt.

Note 1: QuiesclntPo " 10/lW.
Note 2: R2. R3. R4, R5, R6, and R7 are 1% resistors.
Note 3: R11 and CI Ire for DC and AC common mode
rejection adjustments.

Floating Input Meter Amplifier
100 Nano·Ampere Full Scale

X100 Instrumentation Amplifier 10 p.W
y'

y'

ISET EQUATIONS:

OUT

OUT

ISET '"

v~~~ 5

whlre RSET iaconn.ted 10 ground.

y.

V·

RSET Connected to V-

RSET Connected to Ground
yo

y.

'R,

y,

y.

Transistor Current Source Bissing
*R1 limits 'SET maximum

2·262

FET Current Source Biasing

Offset Null Circuit

r-

~r-

1l1~ Voltage Comparators/Buffers

."

~r-

LF1111LF2111LF311 voltage comparators

."

W

::i

general description
The LF111, LF211 and LF311 are FET input voltage
comparators that virtually eliminate input current errors.
Designed to operate over a 5.0V to ±15V range the
LF111 can be used in the most critical applications.

Further, the LF111 can be used in place of the LM111
eliminating errors due to input currents.

advantages

The extremely low input currents of the LF111 allows
the use of a simple comparator in applications usually
requiring input current buffering. Leakage testing, long
time delay circuits, charge measurements, and high
source impedance voltage comparisons are easily done.

•

Eliminates input current errors

•

Interchangeable with LM 111

•

No need for input current buffering

connection diagrams*
Metal Can Package

Flat Package

v'

Dual·1 n·line Package
v'

GROUND

".

INPUT

" - ' - -_ _....r-

GND

"

14 Nt
13 NC

2

BALANCEI
STROBE

'2 NC

BALANCE

INPUT

NOTE: Pin 5 connected to bottom ofpacka!le.

10 NC

TDPVIEW

NOTE: Pin 4 connected to case.
TOPVIEW

Order Number lF111F, lF211F
Dr lF311F
See Package 3

OUTPUT

8

BALANCEI
STROBE

Note: Pin 6 connected 10 bottom of package.
TOPVIEW

Order Number lF111D, lF211D
Dr lF311D
See Package 1

schematic diagram and auxiliary circuits

.

9

J

BALANCE

Order Number lF111H, lF211H
Dr lF311H
See Package 11
*Pi n connections shown on schematic diagram
and typical applications are for TO·S package.

BALANCEISTRDBE

v- •

R2
JOk

,

BALANCE

v'
RJ

R4

lao

300

• v'
AI

'"

.,.

R2

Offset BalanCing

R9

AS

.OU

"

TTL
STROBE

OUTPUT

Strobing

015

.

A13

'--+'.---~.
v-

GND

"Increisestypicil common mod.
slew from 7.0VlJ.lSto 18V1/4.

Increasing Input

Stage Current-

3·1

absolute maximum ratings
LF311

LF111/LF211

electrical characteristics

36V
40V
30V
±30V
±15V
500mW
10 seconds

36V
50V
30V
±30V
±15V
500mW
10 seconds

Total, Supply Voltage (VS4 )
Output to Negative Supply Voltage (V 74 )
Ground to Negative Supply Voltage (V 14)
Differential Input Voltage
Input Voltage (Note 1)
Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range
LF111
LF211
LF311
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

-55°C to +125°C
-25°C to +85°C
-o5°C to +150°C
300°C

O°C to +70°C
-o5°C to +150°C
300°C

(LF111/LF211) (Note3)

PARAMETER

CONDITIONS

MIN

TYP

MAX

Input Offset Voltage (Note 4)

TA = 25°C, Rs

0.7

4.0

mV

Input Offset Current (Note 4)

T A = 25°C, V CM = 0 (Note 6)

5.0

25

pA

Input Bias Current

TA = 25°C, VCM = 0 (Note 6)

20

50

(:iA

Voltage Gain

TA = 25°C

200

V/mV

Response Time (Note 5)

TA = 25°C

200

ns

Saturation Voltage

V ,N ~ -5.0 mV, lOUT = 50 mA, T A = 25°C

0.75

Strobe On Current

TA = 25°C

3.0

Output Leakage Current

V,N ~ 5.0 mV, V OUT = 35V, T A = 25°C

0.2

Input Offset Voltage (Note 4)

1.5

UNITS

V

mA
10

nA

6.0

mV

Input Offset Current (Note 4)

Vs = ±15V, V CM = 0 (Note 6)

2.0

3.0

nA

Input Bias Current

Vs = ±15V, V CM = 0 (Note 6)

5.0

7.0

nA

Input Voltage Range

Saturation Voltage

+14
-13.5
V+ ~ 4.5V, V- = 0
V'N ~ -0.0 rnV, ISINK ~ B.O rnA
~

V
V

0.23

0.4

V

Output Leakage Current

V ,N

0.1

0.5

/lA

Positive Supply Current

TA = 25°C

5.1

6.0

mA

Negative Supply Current

TA = 25°C

4.1

5.0

mA

5.0 mV, V OUT = 35V

Nota 1: This rating applies for :t15V supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit
is equal to the negative supply voltage or 30V below the positive supply, whichever is less.

Not. 2: The maximum junction temperature of the LFlll is +150° C, the LF211 is +110° C and the LF311 is +85° C. For operating at elevated
temperatures, devices in the TO·5 package must be derated based on a thermal resistance of +150°C/W, junction to ambient, or +45°C/W, junction
to case, For the flat package, the derating is based on a thermal resistance of +185° C/W when mounted on a l/IS-inch·thick epoxy glass board with
ten, 0.03-inch·wide, 2·ounce copper conductors. The thermal resistance of the dual·in·line package is+l OO°CIW, junction to ambient.
Note 3: These specifications apply for Vs = ± 15V and -55°C < T A < +125°C for the LF111, unless otherwise stated. With the LF211, however,
all temperature specifications are limited to-25°C ~ TA ~ +85°C-and for the LF311 O°C ~ TA ~ +70°C. The offset voltage, offset current and bias
current specifications applv for any supply voltage from a single 5.0 mV supply up to ±15V supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a
1.0 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitionsl is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15V abov,e the negative supply the bias and offset currents will increase-see typical performance curves.

3-2

r-

electrical characteristics

;
......

(LF311) (Note 3)

PARAMETER

MIN

CONDITIONS

=25°C,

TYP

MAX

UNITS

Input Offset Voltage (Note 4)

TA

2.0

10

mV

Input Offset Current (Note 4)

TA = 25°C, V CM = 0 (Note 6)

5.0

75

pA

Input Bias Current

TA = 25°C, V C !V1 = 0 (Note 6)

25

150

pA

Voltage Gain

TA = 25°C

200

Rs ::; 50k

= 25°C

Response Time (Note 5)

TA

Saturation Voltage

V 1N ::; -10 mV, lOUT = 50 mA, TA = 25°C

0.75

Strobe On Current

T A = 25°C

3.0

Output Leakage Current

V 1N ~ 10 mV, V OUT = 35V, TA = 25°C

0.2

Input Offset Voltage (Note 4)

Rs::; 50k

Input Offset Current (Note 4)

Vs = ±15V, V CM = 0 (Note 6)

Input Bias Current

Vs = ±15V, V CM = 0 (Note 6)

V/mV
ns

200

1.5

V
mA

10

nA

15

mV

1.0

nA

3.0

nA

+14
-13.5

Input Voltage Range

V
V

Saturation Voltage

V+ ~ 4.5V, V- = 0
V IN ::; -10 mV, ISINK ::; B.O mA

0.23

0.4

V

Positive Supply Current

TA = 25°C

5.1

7.5

mA

Negative Supply Current

T A = 25°C

4.1

5.0

mA

Note 1: This rating applies for ±15V supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit
is equal to the negative supply voltage or 30V below the positive supply. whichever is less.
Note 2: The maximum junction temperature of the LFlll is +lS0°C. the LF211 is +110°C and the LF311 is +8SoC. For operating at elevated
temperatures, devices in the TO-S package must be derated based on a thermal resistance of +150° C/W, junction to ambient, or +450 C/W. junction
to case. For the flat package, the derating is based on a thermal resistance of +18SoC/W when mounted on a 1/16-inch-thick epoxy glass board with
ten, O.03·inch·wide, 2·ounce copper conductors. The thermal resistance of the dual-in-line package is +1 00° C/W, junction to ambient.
Note 3: These specifications apply for Vs = ±lSV and -SSoC ::::: T A::::: +12SoC for the LFlll, unless otherwise stated. With the LF211, however,
all temperature specifications are limited to-25°C.:5. TA :5 +85°C and for the LF311 O°C.:5. TA ~ +70°C. The offset voltage, offset current and bias
current specifications apply for any supply voltage from a single 5.0 mV supply up to ± 15V supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a
1.0 rnA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5.0 mV overdrive.
Note 6: For input voltages greater than 15V above the negative supply the bias and offset currents will increase-see typical performance curves.

typical applications
RI

Y·o50V

J9k

R4
500

".
R1

R3
'Ok

':'"

"

2N2ZZZ

':"

I,

Lf111

"'

'Ok

"."'

SQUARE

1 1 ....

+ •

RZ
'Ok

V··50V

RJ
'Ok

if~~~~'

r---<

~

R1
lOOk

:~~:UT'

"'

".
-TTL

Of

>''----4>- OUTPUT

R2
lOOk

H.wl-/,'" .
O~:'FI v~

R3
50.

OTL fanout oftwo.

-Solidtantllum

Low Voltage Adjustable Reference Supply

100 kHz Free Running Multivibrator

Crystal Oscillator

3-3

r-

."

N
..a

..a
......
r."

W

::i

typical performance
Input Bias Current
vs Temperature

Input Bias Current
vs Common Mode

ETA '+25"C

«
.!!o1.000

«
.!!o1.0DO

/

~
=
100

I-

~

~

=
~

0;

~

60

I:Vs ·,15V
VCM "'0
w

~

V

10

/

8.0

12

16

20

24

..
..~
!:;

>

I-

;;
oS

:l:

"~

5.0

II
I
1/

'.,mV

3.0

S.OmV

2.0

l.OmV

1.0

Vs;; ±15V

Il

."

.
5
..~
!:;

f-

TA =25°C

I I
I I

>

-

ptDD SOY

V,N

100

."

Vour -

-

0.4

0.2

;!!

..'"

..
!:;

>

!:;

0.6

3.0
2.0
1.0

\

20rY"
S.OmV
l.OmV

.. r..:~

I-

~
6

a

0.7

w

0.6

-

!:;

0.5

>

0.4

>=

0.3

I-

0.2

-

Your

;Fl11

I

I
~p.

'~s'±15V- iAT"j- -

-50

0.2

;!!

0.4

0.6

."
..
...

§
~

I y" I

/

A.

.

-10

;;
oS -15

~
..
>

I

'~
-

2.0mV

~

~

VOUT

Q

2K

.'"

.
..'"
w

!:;

Vs-±15~tTA=25°C
2.0

3.0

15
5.0

-5.0

20~

-+-5.0mV
-,-

l.OmV

~~ ~ '~
f--

.1

100
50

-

-

LF111

v-

I-

ill

=
~

Vsl'±l~V r-

r-

>

i

POSITIVE
"- r-... OUTPUT
LOW
r--.

SUPP~-r-

6.0

...... I'ooo....!

4.0

3.0

2.0
r-i

4.0

-,......

-

POSITIVE AND ~
r-NEGATIVE SUPPL~-

7I

UT

T IGH

o
2.0

Vs" ±15V

I I

oS

2K

1

1.0

50

40

I I
I I

B.O

«

VOUl

TAl' 25"C

;!!

30

Supply Current

:\.

10

~

4.0

20

OUTPUT CURRENT (rnA)

>

I-

1.0

10

10

-10

Y'

~

o

'~5 "C

y'

;;
oS -15

LF111

w

0
-50
~
> -100

i'

l-

ii!

-1.0

Input Overdrives

;;
oS

-

- If'''

50

I

Response Time for Various

a

1.1

'rv

I

4.0

'I

o
TEMPERATURE ("C)

Response Time for Various
I nput Overdrives

w

10

-55 -35 -15 5.0 25 45 65 85 105 125

28

INPUT COMMON MODE VOLTAGE (V)

a

EMITTER
FOLLOWER
OUTPUT
RL =61JO

20

.r

1.0
4.0

30

>

10

Vs '30V _
TA -25"C_

40

!:;

;!!

V-

RL =t.Ok
Vt-t= SOV

I-

0;

1.0

.."

.."
..
...~

100

NORMAL OUTPUT

50

a

ill

8

;!!

Transfer function

10.000

10.000

I"-

I I
I I

-55 -35 -15 5.0 25 45 65 85 105 125
TEMPERATURE ("C)

Supply Current

Output Limiting Characteristics

140

1

TA '"' 25°e

~'~
5 100
~~'
=
= 80 r-~~~
1:
!::

120

1:

60

..Ii:

40

=
u
ill

,

..,

..

0.4 ~

ill

~

0.5 ~

'i

.A

'--

i..

0.3 ~

~"O;;-"CI

.-iI/CUlT' CURRENT

0.2
0.1

20

o

3-4

~

0.6

Leakage Currents

6.0

0.7

oS

jg Vs = ±15V

5.0

'"

4.0

I-

~

3.0

::;

2.0

1:

~

./

1.0
0

o

5.0
10
OUTPUT VOLTAGE (V)

15

OUTPUT You> - 50V -

0

5.0

10

15

20

SUPPLY VOLTAGE (V)

25

30

10- 11

25

45

B5

85

TEMPERATURE rC)

10&

126

r-

typical applications (con't)

~r-

CI
1000D,Ft

."

".

~r-

HI

>=--....

TRIANGULAR

."

---WAVE
OUTPUT

"'st.

R5

'"

R3
31Clk

~

OJ
IN151

D4
IN151

"

ZOk"

~15V

'---+---------4.--+--------.,,,"
*Adjustforsymmetritalsqulra
WllVilimewhenV1N -5.0mV.
tMinimumclplcitlhce2DpF.
Mlxlmum frequency 50 kHz.

,,,
""

SQUARE

WAVE
OUTPUT

""
'"
_ISV

10 Hz to 10 kHz Voltage Controlled Oscillator

HI

".
INPUT---+---'-l

OUTPUT

Frequencvrange:
InpUI-5.0 kHz 1r:t50 kHz
Output-10kHz 10 100kHz

Frequency Doubler

r---.---.-

Y•

TOMOS
lOGIC

,,,
R3

Y-

V-:-1GV

Zero Crossing Detector Driving MOS Switch

Zero Crossing Detector
Driving MOS Logic

y.

INPUTS'

·'nputpollritylSrlYlrsedwhell
using Pin 1 as output.""
y-

Driving Ground-Referred Load

Comparator and Solenoid Driver

3-5

typical applications (con't)
,....-....- - -....---4~v'
D1
IN457

"

3.9.

RZ
lOOk

v-

RZ'
56'

. . .- - - - - - - - - - - -. . . . OUTPUT

1%

R3

IOOh

.,

".
R1

INPUT

MeR2911Z

C1

R4

DI"F

"

RS

R6

300

620

-+__..._ ...... v-

L-_ _

NEGATIVE

f-...- ...--40--.....>--...- -.... ~~:'~'~AL
·Ovar-voltagettlnsientcontrol,
tDetermintsfiringvoltllJl,5.0Vlsshown.

Crowbar Over.Voltage Protector

SWitching Powsr Amplifier

FROMDIANETWORK
r----~t---~._v+=5.av

...
R1

R3

2.Ok
TIL

ANALOG
INPUT

OUTPUT

TTL •
STROBE

+Typicil inputcLlrrentis
50pAwithinputsstrobedoff.

MAGNETIC
PICKUP

Detector for Magnetic Transducer

Strobing Off Both Input"
and Output Stages

v'

INPUTS

•5

."

R4

JIlOk

.,

.9

".

J9I

.

.n

"

."
51'

TTL

-Absorbs inductive kickblck01

STROlE relay Ind protects Ie frm II'1II.
valtlp transients on V++lint.

C1
O.22J1F

"

151

REFERENCE

.,

III

INPUT

SWitching Power Amplifier

3-6

Relav Driver with Strobe

r-

~r-

typical applications (con't)
.,5V

"T1

~r-

INPUT

"T1

R1

".

OUTPUT

w

..
Rl'

1O.

:::I

'Ok

"

1.01

PositivB Peak Detector
>~--i"It---4O-----ir-- OutPUT
TTl

INPUT

OUTPUT

"Solidtantllum
tAdjusttosetcllmpll'llel

Precision Squarer
-15V

Negative Peak Detector

..----1---1- v+ ~

SOV

"

1.Ok

TO TTL

LOGIC

ct'

"V.luesshown Irl'or I
Oto30VloIIClWlnllind
al5Vthreshold.

Using Clamp Diodes to I mprova Response

TTL Interface with High Level Logic

·sv

YO"SUy

j~~!.'--+:----"1o--~---r-V+'5.av
R5
SD.

Rl
1.0.

R1
lOa

TTl

fROM
TTl
GATE

OUTPUT

OUTPUT

RJ

IO.

R2

C,

SDk

DO!"F

' -_ _ _...._

Digital Transmission Isolator

*R2 sets lh,comp.,ison level.
At compillson. the pholodiad.
....._ - - ' his less than S.OmV Icrosslt,
d,cr'"Slng Illkages by In a,dlK
o'magnitude.

Precision Photodiode Comparator

3·7

...

('I)

illS

N

J:

...

...I

.......
N
N

Voltage Comparators/Buffers

LH21111LH22111LH.2311 dual voltage comparator
general description

J:
.......

......
...I

The LH2lll series of dual voltage comparators are
two LMlll type comparators in a single hermetic
package. Featuring all the same performance char·
acteristics of the single, these duals offer in addi·
tion closer thermal tracking, lower weight, reduced
insertion cost and smaller size than two singles.
For additional information see the LMll1 data
sheet and National's Linear Application Handbook.

N

J:

...I

fied for operation over the 0° C to 70° C tempera·
ture range.

features

•

The LH21ll is specified for operation over the
_55°C to +125°C military temperature range. The
LH22ll is specified for operation over the _25°C
to +85°C temperature range. The LH23ll is speci-

connection diagram

"

±15V to a
single +5V

• Wide operating supply range

6nA

Low input currents

10llV

• High sensitivity

±30V

• Wide differential input range

50 mA, 50V

• High output drive

auxiliary circuits

IIAL/STROBE
A
BAL A

v,'

.."
m
STROBE

Y-

BALS IIALISTROBE

Order Number LH2111D or
LH2211D or LH2311D
See Package 2

"

Offset Balancing

Strobing

Order Number LH2111 F or
LH2211F or LH2311F
See Package 5

*lncrelSestypicalcemmon

mode slew from 1.DV/jJ.s
to lBv/ps.

Increasing Input Stage Current*

Driving Ground·Referrad Load

Using Clamp Diodes to Improve Responses

FlIIIM O/A NlTWORK

R5

"

ANAlOG

INPUT
TO TTL LOBle

m

STAOBE

*Typicalinputcorrenti.
50 pA with inputsltrobed off.

Comparator and Solenoid Driver

3-8

Strobing off Both Input'
and Output Stages

·V.lues shown are for a 0 to 30V
logicswinganda 15Vthreshold.
t May belddedto control speed
and reduca susceptibility to noise
qlikes.

TTL Interface with High Le.el Logie

r-

::t
N

absolute maximum ratings
Total Supply Voltage IV+ - V-I

Output to Negative Supply Voltage (V OUT - V-I
Ground to Negative Supply Voltage (GND - V-I
Differential Input Voltage
Input Voltage (Note 11

...a
...a
...a

36V
50V
30V
±30V

Output Short Circuit Duration
Operating Temperature Range LH2111

10 sec
_55°C to 12SoC

LH2211
LH2311

±15V

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

_25°C to 8SoC
O°C to 70 0 e
-6SoC to 150°C

500mW

Power Dissipation (Note 2)

electrical characteristics PARAMETER

N
N

...a

300°C

...a
......

r-

each side (Note 3)

CONDITIONS
25°C. As';; 50k

::t
LIMITS

LH2111

mV Max

50

nAMax

Input Offset Current (Note 4)

TA = 2SoC

Input Bras Current

TA ·2SoC

10
100

10
100

250

nAMax

Voltage Gain

TA = 2S"C

200

200

200

V/mV Typ

Response Time (Note 5)

TA = 25°C

200

200

V IN ~

200
1.5

nsTyp

Saturation Voltage

1.5

3.0

LH2311
7.5

TA

-s mV,l OUT == 50 rnA

3.0

LH2211

1.5

N
W

UNITS

Input Offset Voltage (Note 4)

•

......
r::t

...a
...a

V Max

TA ·2SoC
Strobe On Current

TA = 2SoC

Output Leakage Current

V IN

~

S mV, V OUT = 35V

3.0
10

3.0
10

3.0

mATyp

50

nAMax

TA = 2SoC

lis';; 50k

4.0

10

mV Max

20

20

70

nAMax

Input Bias Current

150

150

300

nAMax

Input Voltage Range

±14

±14

±14

VTyp

Input Offset Voltage (Note 4)

Input Offset Current (Note 4)

4.0

0.4

0.4

0.4

V Max

Positive Supply Current

V·  0.6
z
~

~

V1N"'·SmV

.,'-400",,_

I-"""

-n

0:

8

" ....
o

-75 -50 -25

~

i

OFFSET

0

25

zJm~

~

10mV

-75 -50 -25

0 +25 +50 +75 +1001+125

TEMPERATURE 1°C)

Short Circuit Output Current

-- ....

0,4

.-'-6.-

Y+"+11V

I-

~

~

Of

",N --5mV

I"

f'.

-

ZmV-

o
-76 -60 -25 0 +25 +60 ~ 76 +100 +125 +160
JUNCTION TEMPERATURE (OCI

Response Time For
Various Input Overdrives

T

",F

rill
~'OO ~~+4~+4-++-~'

-50

V+=+12~r
V-·-6V

"'~

-100

Tj j+j'O,C

i

o

50 75 100 125

20

40 60 80
TIME(ns)

100 120

5D~~+4~+4-++-~

>

20

40

60

.ZO
V+·+12V

;

TA " -55'"C

BI

...

.~

",,,,,,,,,

~
2

100 120

Power Consumption

Negative Supply Current
110

~

au

TIME (ns)

r--r-,--,--,--y--'

c

4

....

.~,

o,\,vl

.s • 1---+--/--+

iw

......

~

Positive Supply Current

'

>

Ii!

"r-.. r-..."

o

-5

-4

-

I v..

I I

TEMPERATURE (OC)

.0

-3

II .
IU

II

--- ..

~0:

~

-2

0 +25 +50 +75 +100 +125
TEMPERATURE (OC)

IL

V'=',2V_
V- = -6V

....... ~ls

20

['\.

t-

Response Time For
Various Input Overdrives

I"put Current

1 '0

r-...

§: ZO

VIN "'+5mV
-75 -50

+25 +50 +1& +100 +125

40
30

~

t.....

v+ .. +1ZV

I
0

I

......

I, "1

-r;"V-;'-I2V

TEMPERATURE lOCI

...~

-,

I-- t- C--';'O~A

-15 -50 -25

~

INPUT VOLTAGE ImY)

~~

'L-SDmA

o

.."'

)'12~ ~"'OV_ l -

f-- v' ='OV

4D

-3V~V-~-15V

--ssoe

+1

~

" 0.4 - S
I-I~ .'61mA
;$o.z

fA

~w

Positive Output Level

Y+"+12V
-3V ~ y. ~-12V

....

+2

7

~ I-- t-.~.,o~mA

-

~

.0 t--

z

,.1

10-+3

~

2:

.0·

o

.0

;;

.. TA.;~~5OC

:/ ,';! "Jooc

,

--

.go

v+ -+12V

.1

r-

Voltage Gain

Transconductance

•

....... ...

- - -- I--

TA

"'

TA =+25°C

+125°C

iz

~

iiico
ill

~

.00
90

",N --5mV

r-t- 10..

10
70
&D

I-- Y'N = +5 mV
F-~

-'"

V-=-&V

-

10..,

50
40

!o.....

r-

30

o
+10

+12

POS,T.VE SUPPLY VOLTAGE (VI

3·12

'15

-3

-12
-I
-9
NEGATIVE SUPPLY VOLTAGE (VI

-15

-15 -50 -25

0 +25 +50 +75 +100 +125
TEMPERATURE (OC)

r-

3:

Voltage Comparators/Buffers

CAl

o
en

LM306 voltage comparator/buffer
general description
The LM306 is a high-speed voltage comparator
designed to accurately detect low-level analog signals and drive a digital load. It is equivalent to an
LM710C, combined with a two input NAND gate
and an output buffer. The circuit can drive RTL,
DTL or TTL integrated circuits directly. Furthermore, the output can switch voltages up to 24V at
currents as high as 100 mA. Other features
include:
• Improved accuracy: 5 mV (max) offset
• Fan-out of 10 with DTL or TTL
• Added logic or strobe capability
• Useful as a relay or lamp driver

• Plug-in replacement for the LM710C.
• 40 ns maximum response time
The device has short-circuit protection which
limits the inrush current when it is used to drive
incandescent lamps, in addition to preventing
damage from accidental shorts. The speed is
equivalent to that of an LM710C. However, it is
even faster where buffers and additional logic
circuitry can be eliminated by the increased flexibility of the LM306. It can also be operated from
any negative supply voltage between -3V and
-12V with little effect on performance. The LM306
is identical to the LM 106, except that it is specified
over a 0° C to 70° C temperature range.

schematic and connection diagrams**

Metal Can
TDPVIEW

v'

,".
D3
UY

t-_+_-,-J OUTPUT

INPUT

vNote: Pin 4 conned.dto Clse,

,".

y-;.'------'

Order Number LM306H
See Package 11

·"Pin CllIJnections mown are for TO·5 paWl"

typical applications**
Level Detector and Lamp Driver

yt-12V

Fast Response Peak Detector
DI

y'

fOil"

""'

Adjustable Threshold Line Receiver

Relay Driver
OUTPUT
F.P ~ID

·Optionllforr!sponsetimecontrol.

3-13

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Output Voltage
Output to Negative Supply Voltage
Oifferential Input Voltage
Input Voltage
Power Dissipation (Note II
Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 secl

15V
-15V
24V
30V
±5V
±7V
600mW
10 sec
O°C to 70°C
-65°C to +150°C
300°C

electrical characteristics

(Note 21
TYP

MAX

Input Offset Voltage

Note 3

CONDITIONS

1.6

5.0

mV

Input Offset Cur(ent

Note 3

1.8

5.0

Il A

PARAMETER

MIN

Input Bias Current

UNITS

16

25

iJ.A

28

40

ns

Response Time

Note 4, RL = 390.\1 to +5V,
C L = 15 pF

Saturation Voltage

V'N :::;"-7mV,l ouT = 100mA

0.8

2.0

V

Output Leakage Current

V'N~ 7mV,8V:::;"VOUT~24V

0.02

2.0

IlA

6.5

mV

electrical characteristics
The following specifications apply for DoC ~ T A ~ 70°C (Note 51
Input Offset Voltage

Note 3

Average Temperature Coefficient
of Input Offset Voltage

5

Ilvtc

Note 3, DoC ~ T A < 25°C
25°C~ TA ~ 70°C

Average Temperature Coefficient
of Input Offset Current

25°C~ T A :::;" 70°C
0°C~TA~25°C

15
24

50
100

nAtC
nAtC

Input Bias Current

DoC ~ T A < 25°C

25

40
25

IlA
IlA

2.4

25°C ~ T A ~ 70°C
Input Voltage Range

-7V~V-~-12V

7.5
5.0

IlA
IlA

V

±5.0
±5.0

Differential Input Voltage Range

V

Saturation Voltage

V'N ~ -8 mV, lOUT = 50 mA

1.0

V

Saturation Voltage

V'N'::; -8mV,loUT= 16mA

0.4

V

Positive Output Level

V'N ~ 8mV, lOUT = - 400llA

5.5

V

Output Leakage Current

V'N ~ 8 mV, 8V ~ VOUT ~ 24V
O°C ~ T A ~ 25°C

2.5

2.0
100

25°C

-IlL' 1100 ~A

-1

-2

±

..
1-

:l

OA

~"~

0.3

80

v+ .. +12V
V-· -6V

r--. ......

VIN=-SmV

..... .....

!;

"
~
U
'"
'"~

y+. +12V

.....

'L~O~A

-3V;:'V-;:'-12V
V1N "'+5mV

40

60

20

80

40

60

0.2

1-

80

20

TEMPERATURE I"C)

40

....

v+ =+12V

30

.....

20

r- ,.!!ts

10

1-

.....

:!i

, 10mV

~
"
;;

<

'..~"

I

~ .....
20

40

I
J-.-..

T.10"C
TA =25"C
TA'70"C ~

... -

.~~.

">

60

~

80

s:
~

a

V+·+12V

-&II

v- '-6V

-100

TA "+2SO C

!!

o

20

40 80

80 100 120

~
>

5lJ

i

20

40

::=;~

~ ~ TA'O"C

~TA'25"C
1 TA j711"C

POSITIVE SUPPLY VOLTAGE IV)

+15

f~

TA' 25"C

~

+12

~ 100

1-.' ..

~

:,:.;

~~
~

.-1'"

I-

-~

-3

I-

L
-6

-9

'.."
z

80
S
iii
Q

jA j7j"C

o

aD

100 120

Power Dissipation
120

ITAI. o~c

~

60

TIMElnsl

Negative Supply Current

-;::::;. r,:;.

...-"'i:l ~

100

TlMElnsl

-3V;:'V-;;'-12V
+10

Ii

~

I

~

-5mV

Y,N =
5mV

~>

~

a

.5

Positive Supply CUrrent
10

VIN '"

T ""

.·2;'V

TEMPERATURE I"C)

r-

sm~J-

~

Ii

)-

.•

a

~t.:t>t.-

~
>

V-. -6V

80

Input Overdrives

IIIII
N.J._I
I 1\ 2~mV '.

~

60

Response Time for Various

I nput Overdrives

a

40

JUNCTION TEMPERATURE I'C)

Response Time for Various

~
~
~

60

0.4

~

IL -0

Il "'16mA

0.2

I "put Current

1-

40

1-

20

,3.

I I
I I

Short Circuit Output Current

IL ·-400 "A

TEMPERATURE I"C)

..

--

V+ ;o10V

'-

20

~

ill

;:
~

-

~

TEMPERATURE I"C)

i"'""

IL =50mA

-3V>V->-15V

",)

..... r--- II' ~
"l~
It--

-4 -5

-3

I

l- f-

V+".+12V......
-3V.,V-.,-12V
V1N "'-5mV

0.6

20

Positive Output level

1.0
0.8

">

I

r---

INPUT VOLTAGE ImV)

Saturation Voltage

to

40

!::;

y+. +12V

0

+1

INPUT VOLTAGE ImVI

..'"
~

r- -3V;::V-;::-12V
10-8
~;!.C
...
I I I
10'"

-0.2 -0.1 0.0

..~

~z
~

TA =10°Ci:

- -::

~

;; 60

J

f

r- -

-

,

1

V-·-6V _L -I

')' Ii

1.2

Voltage Gain
80

60

I

V>+I2V_

I

-

V'N "'+5mv

r- I-

'"~

Ii!

I

I
I V ·-6V
~ .!Jill '" -511JV
I I I-

f- r--

40

-

20
-12

NEGATIVE SUPPLY VOLTAGE IV)

-15

20

40

60

80

TEMPERATURE I"C)

3·15

..-

N

Voltage Comparatorsl Buffers

~

...I

......
...~

...I

LM111/LM211 voltage comparator
general description
., Differential input voltage range: ±30V

The LM 111 and LM211 are voltage comparators
that have input currents nearly a thousand times
lower than devices like the LM106 or LM710.
They are also designed to operate over a wider
range of supply voltages: from standard ±15V op
amp supplies down to the single 5V supply used
for IC logic. Their output is compatible with RTL,
DTL and TTL as well as MOS circuits. Further,
they can drive lamps or relays, switching voltages
up to 50V at currents as high as 50 mAo Out·
standing characteristics include:

• Power consumption: 135 mW at ±15V
Both the inputs and the outputs of the LM 111 or
the LM211 can be isolated from system ground,
and the output can drive loads referred to ground,
the positive supply or the negative supply. Offset
balancing and strobe capability are provided and
outputs can be wire OR'ed. Although slower than
the LM106 and LM710 (200 ns response time vs
40 ns) the devices are also much less prone to
spurious oscillations. The LM 111 tlas the same pin
configuration as the LM106 and LM710.

• Operates from single 5V supply

The LM211 is identical to the LM 111, except that
its performance is specified over a -25°C to 85°C
temperature range instead of _55°C to 125°C.
"

• Input current: 150 nA max. over temperature
• Offset current: 20 nA max. over temperature

schematic diagram and auxiliary circuits **

. .

'~l""ClISUDIE

,."

.... UfllCl

,.M

Offset Balancing

'"

STROll

Strobing

*lnCI88Sestypicalcommon
mode slew from 7.OV/1l1
to 18V1j.!s.

Increasing Input Stage Current-

connection diagrams**
Metal Can

Flat Package

'"
Note: Pin 4 tonnemd
ttl ma.

Dual-In-Line

"'S""
I

U

typical application

_c

J.

I'

~c

4

II

v'

~

10

~c

•

I

auttul

,

•

UlA_CI
STRall

"n.
""

Note: Pin 6 connected to bottom of PiCkage.

Order Number
LM111H or LM211H
See Package 11

Order Number
LM111F or LM211F

See Package 3

• ... Pln connectIOns shown are for metal can.

3·16

Order Number
LM111D or LM211D
See Package 1

Detector for Magnetic Transducer

I""

......
3:
...

3:
absolute maximum ratings

.......

Total Supply Voltage IV84)
Output to Negative Supply Voltage IV 74)
Ground to Negative Supply Voltage IV 14)
Differential I nput Voltage
Input Voltage (Note 1)
Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range LM 111
LM211
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

electrical characteristics
PARAMETER

I""

36V
50V
30V
±30V
±15V
500mW
10 sec
_55°C to 125°C
_25°C to 85°C
_65°C to 150°C
300°C

N

(Note 3)

CONDITIONS

MIN

TYP

MAX

UNITS

Input Offset Voltage (Note 4)

TA = 25°C, Rs~50k

0,7

Input Offset Current (Note 4)

TA = 25°C

4.0

Input Bias Current

T A = 25°C

60

Voltage Gain

T A = 25°C

200

V/mV

200

ns

Response Time (Note 5)

T A = 25°C

Saturation Voltage

VIN ~ -5 mY, lOUT = 50 mA
T A = 25°C

0.75

Strobe On Current

T A = 25°C

3.0

Output Leakage Current

VIN ~5 mY,
TA = 25°C

Input Offset Voltage (Note 4)

Rs ~ 50k

3.0

mV

10

nA

100

nA

1.5

V
mA

g

V OUT = 35V
0.2

10
4.0

Input Offset Current (Note 4)
Input Bias Current

20

nA

150

nA

±14

Input Voltage Range

nA
mV

V

Saturation Voltage

V+ ~ 4.5V, V- = 0
VIN ~ -6 mY, ISINK ~ 8 mA

0.23

0.4

V

Output Leakage Current

VIN ~ 5 mY, V OUT = 35V

0.1

0.5

p.A

Positive Supply Current

TA = 25°C

5.1

6.0

mA

Negative Supply Current

TA = 25°C

4.1

5.0

mA

Note 1: This rating applies for ±15V supplies. The poSitive input voltage limit is 30V above the
negative supply. The negative input voltage limit is equal to the negative supply voltage or 30V below

the positive supply. whichever is less.

Note 2: The maximum junction temperature of the LM111 is 150°C, while that of the LM211 is
110°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on
a thermal resistance of 150o C/W, junction to ambient, or 4S oC/W. junction to case. For the flat
package, the derating is based on a thermal resistance of 18SoC/W when mounted on a 1/16-inch-thick
epoxy glass board with ten, O.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the
dual-in-line package is 100oC/W, junction to ambient.

Note 3: These specifications apply for Vs = ±15V and -55°C ~TA ~ 125°C, unless otherwise stated.
With the' LM211, however, all temperature specifications are limited to -2SoC ~T A :::;85°C. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V
supply up to ±15V supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the
output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band
and take into account the worst case effects of voltage gain and input impedance.
Note 5: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

3·17

....
....
N

~

typical performance characteristics

....I

.......

....
....
....

Input Bias Current

Input Offset Current

~

Vs - +15V

....I

C
.s 300
>-

I
~

~

..

~

10

--

1"0. ISHORT PINS

-55 -35 -15 5 Z5 45 85 85 105 125

TEMPERATURE 1°C)

~

C
.s lZ0
>-

.

::i

100

~

10

;;

80

~

40

:.!
~

lOOk

-0.5

REFERRED TO SUPPLY VOLTAGES

..

'"
w

~

I-'N~RM~L O~TPU~

50 I-

~
w

RL" lK

~

-1.5

">>-

-

0.4

~

I-

O.Z

ZO

~

g

f- ~! :~:~C-

Vt+· 50V

I40

I I

c

:::;

""'z"
"'"

10M

Transfer Function
60

~ -1.0

I-

1M

INPUT RESISTANCE IIlI

Common Mode Limits

T.'Z5'C

140

~

V+

J.! ±\5~

180

~

TEMPERATURE eCI

I "put Characteristics
180

10

I"'S -NORMAL ~GiAN~81 >-~
l""oooI.
c

o

-55 -35 -15 5 Z5 45 65 85 105 lZ5

~
"
i

>-

RAISED

">~

ifDRMAT- f-- t--

IDO

C

">

8

ZOO

:/
;;

~

V.=±15V-

zo

>-

::i

..
w

~

RAISED
ISHDRT PINS_-=
5, 6, AND 81

Offset Error

>

.! 100

30

400

30
EMITTER
FOLLOWER
OUTPUT
RL = GOOIl

ZD
10

V-

-16 -IZ'"

8

-4

lZ

-55 -35 -15

16

DIFFERENTIAL INPUT VOLTAGE IVI

Response Time for Various
I "put Overdrives

~

w.

">>-

~

mV

"'"
'"c
~

=25°C -

TA

J I
I

50

VOUT

I LM'I"

~

O.Z

~

-

0.4

I

ZmV

.

>

.

0.8

w

c

15

">>'"~
"

10

5mV

~

>
.!

ZmV
-5
-10
-15

V

'"c

~>

'W
-

VOUT

ZK

-50
-100

II

~

~ -100

' i ' = r i - f--

>~

0.5
0.4

0.2
0.1

~

0.2

0.4

0.6

0.1

v-

V.=±15~t-

T. =Z5'C

r- ~~

.

~~~~ IJ

.

0.3

o

~~ ~Tt
o

10

":5'C
ZO

40

30

50

OUTPUT CURRENT ImAI

Response Time for Various

'"~
">>-

15
10

~

"'"

Output Limiting Characteristics

Input Overdrives

~

-5
-10
>
.! -15
w
100
50

140

," ,

ZOi~ ~ \
5mV

ZmV~

'&r:=
-

,

Your

'K-

"ILM'" v-

-

-

V. I,

±1~V

'"~
">>-

TA =25°C

-;;z.
r?\~.,.",~ -

C lZ0
.!

..
>-

::i

100

8

80

..
."
!::

f-TyZ5~C f--

fl

60

;:;

40

>-

ill

,,>'"

0.6
0.5

~

..iii

0.4

;z'SO:;-'

0.3

i'l

0.2

"z

-

,

~

1'.~IIICUlrCURRENf

20

0.1

o
0

TIME(p.1

0.7

I-~~~~

0

~

TIME (P.I

'"~
"z>
"~
'"
S

0.6

0:

V.-±15V- -

~

~

3-18

v'

LM111

w

LM11I

~ -50

w

L

1-'1

c

T. - lZ5'C

0.7

TIME 1",1

Response Time for Various
I"put Overdrives
ZOmV

w

YOUT

t-J

TIME (psI

~

~

V

w

-

I

0.6

~

5~V"

g

Output Saturation Voltage
0.1

I

.!

-

+

">

ZO~V)

'"~

,J

~oo"

v'N

100

'"~
">>-

Vs" ±15V

If
~

>

.!
w

I I

'r
ZO,mV
IJ
5mV JI

I

.5

DIFFERENTIAL INPUT VOLTAGE ImVI

,J I
1\
,N ~~D!!

w

-.5

-1

Response Time for Various
Input Overdrives

.~

I

'"C~

5 Z5 45 65 15 105 lZ5

TEMPERATURE eCI

10
OUTPUT VOLTAGE IV)

15

~
::!

!

r-

................
3:
...
3:

typical performance characteristics (con't)
Supply Current

Supply Current
10

Vs '" ±15V

I I
I I

r-...
~

15

20

25

o

3D

N

I

POSITIVE SUPPF!="_
r-..,0UTPUT LOW

...... -r,....

POSITIVE AND ~
r-NEGATIVE SUPPLY,r-,UTPi T ,'GH I I

10

r-

r-

I I I I I

-55 -35 -15 5 25 45 65 85 105 125
TEMPERATURE ("C)

SUPPLY VOLTAGE IV)

r-

Leakage Currents

I I

TEMPERATURE ("CI

typical applications (con 't)

.....--.....,.

,--

Zero Crossing Detector Driving MOS Switch

100 kHz Free Running Multivibrator

"
*Inputpolarltyis
reversed when using

pin1asDutput.

Driving

Ground~Referred

Load

"

JIOM

'-_....._______....._+_____........

~Wt"E

ClUTP1IT

*Adjust for svmmetncal square
wavetimawhen VIN • 5 mY.
tMinimum upaatance 2B pF
Muimum frequency 50 kHz

...

"

."
"

10 Hz to 10 kHz Voltage Controlled Oscillator

Using Clamp Diodes to Improve Response

.....
,"

·Values shown ara for
lOla 30V logi~swing
anda15Vthreshold.
'-_~""'-+_..1 tMay be added to control

speedandreducesuscepta·
bllitytonoisaspikes.

TTL Interface with High Level Logic

Crystal Oscillator

Comparator and Solenoid Driver

3·19

......
N

:E
...I
......

typical applications (con't)

.........
:E

..
"

...I

m
,~,

*Solldtantalum.

Low Voltage Adjustable Reference Supply
tAdjusttosetclamplnel.

Precision Squarer

Zero Crossing Detector driving MOS logic

Positive Peak Detector
m

ounUT

,Digital Transmission Isolator
Negative Peak Dectector

""'

A""lCG
INPUT

m

*R2setsthecomparison

STRGIE

leveL At comparison, the
ph01Ddiodehasiessthan
5 mV across it, decreasing
leakage by an ordel of
magnitude.

*Typical input current is 5D pA
withinputsstlobedoff.

Strobing off Both I"put*
and Output Stages

Precision Photodiode Comparator

Relay Driver with Strobe

r - - t - - - t - -.........

"."'

"

Switching Power Amplifier

3-20

..

m

Switching Power Amplifier

r-

3:

w
......

Voltage Comparators/Buffers

......

LM311 voltage comparator
general description
The LM311 is a voltage comparator that has input
currents more than a hundred times lower than de·
vices like the LM306 or LM710C. It is also de·
signed to operate over a wider range of supply
voltages: from standard ±15V op amp supplies
down to the single 5V supply used for IC logic. Its
output is compatible with RTL, DTL and TTL as
well as MOS circuits. Further, it can drive lamps or
relays, switching voltages up to 40V at currents as
high as 50 mAo

• Maximum offset current: 50 nA
• Differential input voltage range: ±30V
• Power consumption: 135 mW at ± 15V
Both the input and the output of the LM311 can
be isolated from system ground, and the output
can drive loads referred to ground, the positive
supply or the negative supply. Offset balancing
and strobe capability are provided and outputs can
be wire OR'ed. Although slower than the LM306
and LM710C (200 ns response time vs 40 ns) the
device is also much less prone to spurious oscilla·
tions. The LM311 has the same pin configuration
as the LM306 and LM71 OC .

features
• Operates from single 5V supply
• Maximum input current: 250 nA

schematic diagram and auxiliary circuits

.

IALANCE/STROIE

.

'""

""

,

BAlANCE

*Pin connections shown on schematic diagram
and typical applications are for TO·S package.

,~

r-~---'~~-'--~--~~--~-------'--'-----------------~"

"
'"

"
'"

Offset Balancing

..."

In
STROBE

,

OUTPUT

Strobing

~--~~~~~~~.~,

Package

Dual-! n-Line Package

Flat Package

'""""'8'"
IN'UTl

UlANCI
Sl~OU

Note: Pin 5 ctInnected to bottom of package.

Note: Pm 4 connlcted to ClSI!.

Order Number LM311H
See Package 11

to lBW}.!s.

Increasing Input Stage Current*
Dual.I,-".~in,:

"

,.

*Increasestypicalcommon
modeslewfrom7.DV/Jl.s

BROUND

y'

connection diagrams *
Metal Can

.

'"

Order Number LM311 F
See Package 3

I"PUll

V".

11

v'

JOUTPUT

5

BUNCE

STIIOIE

!8ALJlNC[

Order Number LM311N
See Package 20

Not.: Pm6 connected to bottom ofpacklgl.

Order Number LM311 D
See Package 1
Order Number LM311N-14
See Package 22

3·21

....
....
M

~

....I

absolute maximum ratings
Total Supply Voltage (V 84 )
Output to Negative Supply Voltage (V 74 )
Ground to Negative Supply Voltage (V 14)
Differential Input Voltage
Input Voltage (Note 1)
Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range
Storage Temperature Range
Lead Temperature (soldering, 10 sec)

electrical characteristics

36V
40V
30V
±30V
±15V
500mW
10 sec
DoC to 70°C
_65°C to 150°C
300°C

(Note 3)

CONDITIONS

PARAMETER

MIN

TYP

MAX

UNITS

Input Offset Voltage (Note 4)

T A = 25°C, Rs ~ 50K

2.0

Input Offset Current (Note 4)

T A = 25°C

6.0

Input Bias Current

T A =25°C

100

Voltage Gain

TA = 25°C

200

V/mV

200

ns

Response Time (Note 5)

TA = 25°C

Saturation Voltage

Y'N ~ -10 mV, lOUT = 50 mA
TA = 25°C

0.75

Strobe 0 n Current

TA = 25°C

3.0

Output Leakage Current

Y'N ~ 10 mV,
TA = 25°C

Input Offset Voltage (Note 4)

Rs ~ 50K

7.5
50
250

1.5

mV
nA
nA

V
mA

VOUT = 35V
0.2

Input Offset Current (Note 4)
Input Bias Current

50

nA

10

mV

70

nA

300

nA

±14

Input Voltage Range

V

Saturation Voltage

V+ 2 4.5V, v- = 0
Y'N ~ -10mV, ISINK ~8mA

0.23

0.4

V

Positive Supply Current

TA = 25°C

5.1

7.5

mA

Negative Supply Current

TA = 25°C

4.1

5.0

mA

Note 1: This rating applies for ±15V supplies. The positive input voltage limit is 30V above the
negative supply. The negative Input voltage limit is equal to the negative supply voltage or 30V below
the positive supply. whichever is less.

Note 2: The maximum junction temperature of the LM311 is 8SoC. For operating at elevated

temperatures, devices in the TO·S package must be derated based on a thermal resistance of 150o C/W,
junction to ambient, or 45°C/W, junction to case. For the flat package, the derating is based on a
thermal resistance of 185°C/W when mounted on a 1/16-inch-thick epoxy glass board with ten,
0.03-inch-wide, 2-ounce copper conductors. The thermal resistance of the dual-in-line package is
1OOoC/W, junction to ambient.

Note 3: These specifications apply for Vs = ±15V and OOC --

:ll

il!
B

..~~

-

10

O!

~

o

~

n

zoo

-

i

I-

:ll
a:

~

:\l
iii

~

O!

~

E
I!!

150

;e

~

.

..,."
..,.,.
w

100

z

15
50

I-

~

o

~

ro

~

~

4D

n

~

~

8

4

lZ

8

~

I

..
'"
w

..
..~
~

ZujmV

5

02

o

~

I-

5mV

~

w

~

I

>

O.Z

O!

ZO~V
I

-

1

;;

.

-

•

~

-

~DDn- .s

50

~

VOUT

I

I

0.4

~

4D

10

-

1-

0.6

D.'

5m,V,
ZmV

11

~

~~t-o.I

Output Saturation Voltage
0.8

.
..'"
.

E
w

vou ,

4

0.5
0.4

'"

§

~ -50

I-

Vs =-:!:15V-

jAOri-

O.Z

0.4

rr-

0.6

>
z

>=

4

:ij

....

0.3
O.Z
0.1

o

0.6

TA -Z5°C I-

0.1

~

w

~
!:

.5

-.5

-1

I

1-'

~ -tOO

V, ° 30V
~ TA 'Z5°C

DIFFERENTIAL INPUT VOLTAGE (mV)

vpi~'n
•

,

I

J

o

n

~

EMITTER
FOLLOWER
OUTPUT
RL ° 600n

zo

Response Time for Various
I "put Overdrives

I I

V1f4

100

30

TEMPERATURE (OC)

I •.'

Il.

;;

Vs =±lSV

1
'I

ZmV

ro

I ov

TA=Z5°C

V++ =40V

40

>

I I

,.'v
If

I

~

NORMAL OUTPUT
Rt. =lk

50

E

0.4

16

10M

1M

Transfer Function

-1.5

I "put Overdrives

>

lOOk

60

-1.0

Response Time for Various
w

10k

INPUT RESISTANCE (fII

REFERRED TO SUPPLY VOLTAGES

~.5

DIFFERENTIAL INPUT VOLTAGE (V)

.
..'"
..""
..s'"

li,ilillor nil"

~w

V-

E

TYPICAL

O!

Z5
0

V

10

~

NORMAL

:::;

lZ5

-4

MAXIMUM

>

Common Mode Limits

fA'" 25°C

-16 -IZ -8

TA -Z5°C

'">

V+

J, ~ ±\5~

r-

Vs '" ±15V

100

TEMPERATURE (OC)

I"put Characteristics

115

..

.sw

~.R~
r- ....
SHORT PINS
5, 6, AND 8)

TEMPERATURE (OC)

ZZ5

:;;

I

~

""l

~
I-

I I

o

Offset Error

I "put Offset Current
ZO

500

0.8

a

10

ZO

40

30

50

OUTPUT CURRENT (mA)

.'"
..
.."
...s'"

Response Time for Various
Input Overdrives

E
w
~

15

10
5
0
~
-5
-10
;; -15
w
0
-50

>

5

~

>

w

ZOmV

5mV

.
..'"
.~ ..~
.s
..
..'"
II

Response Time for Various
Input Overdrives

E

Ir

II

/

ZmV

V

~

v'

>

I-

-

v ou ,

2K

V'

V"±15~J-

-100

15
10

TA ' Z5°C

-5
-10
;;
-15
w 100
50
~
0
>

"'H\.

ZOi~\
5mV 1.
Zm."!"

I

-

\.'

13
I-

80

-

~

60

v,l. ±1~V -

;:;

2K-

V"

-

I-

I-

s?t-:<.'~
,/>'"7
1-f-\-;'1>.t~

TIME (j.lsi

0.6

;!i
0.5
0.4

~

, ~"O}-"~/I/CUIr-CURRENT

a:

~

e=

-

40

0.3
O.Z

.
~
..

ai

;l:

:!

z
~

0.1

ZO

o
0

O!

TIME 11'11

a:

You,

0.1
TA =2SoC

lZ0

0

i!

O!

i:5
a:

100

.~=
TyZ5~C

l-

l-

i!

...s

-

\.

Output Limiting Characteristics
140

10

15

OUTPUT VOLTAGE (V)

3 .. 23

P'
P'

('I)

~

typical performance characteristics (con't)
Supply Current

Supply Current

Leakage Currents

10

10'"

Vs· ±15V

5

I

5 10-9

POSITIVE SUPPLYOUTPUT LOW

r-r--

o
15

20

25

3D

OUTPUT Vou>

=4o~

t:
~

~10-0.

r--+-

SUPPLY VOLTAGE (V)

~,

I

J
o ro H

~

~

~

H H n

TEMPERATURE ('C)

I

a:
a:

POSITIVE AND
NEGATIVE SUPPL YOUTPUT HIGH

10

Vs· tl5Y

INPUT VON

-

35

45

=I&V ...

6&

55

1&

TEMPERATURE rC)

typical applications

."',

"·sv
V·,IV

,--.---.-"
n,

""

ounUT

lGUoIRf

.",VI
DUTPUT'

-TTL or DTL hnout of two.

Detector for Magnetic Transducer

Zero Crossing Detector
Driving MOS Switch

100 kHz Fr•• Running Multivibrator

"

*Inputpolarityisrevened
when using pin 1 IS output.

Driving Ground·Referred Load

I.'"

_+______._

L - _....._ _ _ _ _ _ _...

..

*Adjustforsymmetriellsquare

wave time when VIN '" 5 mY.
tMinimum C1l1ltitlnca 20 pF
Maximum frequency 50kHz

::~:::

'"

...

"

.""

10 Hz to 10 kHz Voltage Controlled Oscillator

Using Clamp Diodes to Improve Response

,.,
"

TTL Interface with High Lavel Logic

3-24

Crystal Oscillator

Comparator and Solenoid Driver

r

s:w

typical applications (con't)

J~~

V"IV

...

.:

m
IIIPI/1

Low Voltage Adjustable Reference Supply
tAdiu$ttosetcl~mplevel.

Precision Squarer

Zero Crossing Detector driving MOS logic

Positive Peak Detector

'"

OU""T

Digital Transmission Isolator
Negative Peak Dectector

""
'"

•.,,,t

"ULOG

OUTPUt

'"

*R2setsthacomp.,isonleval.
Atcomparison,thephotodiode
hallessthan5mVacrossit.
dtcreasinglealtagesbVlnorder

n~UlE

+Typiglinputcurrentis5DpA
with inpull strobed olf.

+Absorbsimluttivekickback
of relay and protecb ICfrom

01 magnitude.

severe voltage transienU on
V++lina.

Strobing off Both I nput*
and Output Stages

Precision Photodiode Comparator

,-,....--t--....... ,.

Relay Driver with Strobe

"

..."

..."

""

.....

SWitching Power Amplifier

.,
g

Switching Power Amplifier

3-25

...

en
N

Voltage Comparators/Buffers

:E

....I
.....

en
...
:E
....I

LM119/LM219 high speed dual comparator
general description
The LM119{LM219 are precision high speed dual
comparators fabricated on a single monolithic
cn ip. They are designed to operate over a wide
range of supply voltages down to a single 5V logic
supply and ground. Further, they have higher
gain and lower input currents than devices like
the LM710. The uncommitted collector of the
output stage makes the LM 119 compatible with
RTL, DTL and TTL as well as capable of driving
lamps and relays at currents up to 25 mAo Outstanding features include:

features
•
•
•
•

Two independent comparators
Operates from a single 5V supply
Typically 80 ns response time at ±15V
Minimum fan-out of 2 each side

• Maximum input current of 1 /lA over temperature
• Inputs and outputs can be isolated from system
ground
• High common mode slew rate
Although designed primarily for applications requiring operation from digital logic supplies, the
LM119 is fully specified for power supplies up to
±15V. It features faster response than the LMlll
at the expense of higher power dissipation. However, the high speed, wide operating voltage range
and low package count make the LM 119 much
more versati Ie than older devices like the LM 711.
The LM219 is identical to the LM 119, except that
its performance is specified over a -25°C to 85°C
temperature range instead of -55°C to 125°C.

schematic and connection diagrams

Dual-In-Line-Package

'""'
+1KI'UT14

,,,.n! ~
Order Number LM119D or LM219D
See Package 1

Metal Can Package

typical applications

Order Number LM119H or LM219H
See Package 12

Flat Package

Order Number LM119F or LM219F
Relay Driver

3-26

Window Detector

See Packloge 3

~

...s:

absolute maximum ratings
Total Supply Voltage
Output to Negative Supply Voltage

Ground to Negative Supply Voltage
Ground to Positive Supply Voltage
Differential Input Voltage

Power Dissipation (Note 2)
Output Short Circuit Duration
Operating Temperature Range LM119

lBV
±5V

LM219

±15V

Input Voltage (Note 1)

electrical characteristics
PARAMETER

36V
36V
25V

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

MIN

TYP

MAX

UNITS

4.0

mV

T A = 25°C, Rs";; 5k

Input Offset Current INote 4)

TA = 25°C

30

75

Input Bias Current

TA = 25°C

150

sao

Voltage Gain

TA = 25°C

0.7

10

...

V/mV

80

ns

TA= 2SoC V S =±15V
V'N";; -5 mV, lOUT = 25 rnA
TA = 2SoC

0.75

1.5

Output Leakage Current

V'N ~ S mV, VOUT = 35V
T A = 25°C

0.2

2

I'A

Input Offset Voltage INote 4)

Rs";; 5k

7

mV

Input Offset Current INote 4)
Input Bias Current

Vs = ±15V
V' = 5V, V- = a

V

100

nA

1000

nA

±13

3

CD

nA

40

Response Time (Note 5)

V
V

V+~4.5V, v-=o

V'N";; -6 mV, IS'NK";; 3.2 rnA
TA ~O°C
TA ";;O°C
Output Leakage Current

~

s:N

nA

Saturation Voltage

Saturation Voltage

CD

......

(Note 3)

CONDITIONS

Input Offset Voltage INote 4)

Input Voltage Range

...

SOOmW
10 sec
-SSoC to 12SoC
- 2SoC to 8SoC
-6SoC to lS0°C
300°C

0.23

0.4
0.6

V'N ~ 5 mV, VOUT = 35V

10
±5

Differential Input Voltage

V
V
I'A
V

Pos"itive Supply Current

TA = 25°C, V+ = 5V, V- = 0

4.3

Positive Supply Current

T A = 25°C Vs = ±lSV

8

11.5

rnA

Negative Supply Current

TA = 25°C Vs =±15V

3

4.5

rnA

rnA

Note 1: For supply voltages less than ±15V the absolute maximum input voltage is equal to the supply voltage.
Note 2: The maximum junction temperature of the LM119 IS 150°C, while that of the LM219 IS 110°C. For operating at
elevated temperatures, devices in the TO·5 package must be derated based on a thermal resistance of 150°C/W, junction to
ambient, or 4SoCIW, junction to case. For the flat package, the derating IS based on a thermal resistance of 18SoCIW when
mounted on a 1/16-lnch-thick epoxy glass board with ten, 0.03-lnch·wide, 2·ounce copper conductors. The thermal reSistance
of the dual-in·line package IS 100D C/W, junction to ambient.
Note3: These speCificatiOns apply for Vs = ±15V and -5SoC ~ TA ~ 125°C, unless otherwise stated. With the LM219,
however, all temperature speCifications are limited to -2SoC ~ T A ~ 8S D C. The offset voltage, offset current and bias current
specifications apply for any supply voltage from a Single SV supply up to ±15V supplies.
Note 4: The offset voltages and offset currents given are the maximum values required to drive the output Within a volt of either supply With almA load. Thus, these par9meters define an error band and take into account the worst case effects of
voltage gain and input Impedance.
Note 5: The response time speCified IS for a 100 mV input step with 5 mV overdrive.

3-27

typical performance characteristics

Input Currents

~

~

5 150
B
!; tOO

~ -O.B f--t--+---l'''''-Jc-t-''F''".....j;d
I-

--rFt-

o

~ -1.6

~ -2.0 1-+--+--+---i-+-+--+--+--1

z

i"
-

l- i -

>

2.

Vs =5.DV
RL = SOon

or-

~ '\.T. = 2~OC

~

2omv'

.... Z

L-~~~~~~~~

\

5.DmV

1.0

"'w

c~

2.0mV

>

.'\.
;;:

oS

~~
!:~

0

II.
I

20mV

2.0
1.0

0
100

h

5.0

s!
CI

S
>

i

3.0

~

I

V, =±15V
RL = 500n
I ~=5.0V
2omV\ 1\
\"t-\: 5.0 mV T.' 25°C

\

:,,2.0 mV

;;:

1--

"'W
~'"

1-'"
",IC>~

2.0

c

\

1.0

>

o

4.0
3.0
1.0

f~

!:~

;!;

1

~

6.01-+-1-+-:>"1'-+--+-1--1

>
~
II:

4.01-+"fC--(--

I'r-

I

15

20

I

I
I

I

I

I

I
r-I- 1MAX~:~~TD~~~~:~~TlAL t - t -

-100
-10

-6.0

-2.0

2.0

6.0

10

20 ~-I---I---IIf-l--1

5.0mV
Vs'" S.OV
RL "'500n

y++= 5.0V
TA '" 25°C

~

!:i

10

5;
c

5.0

0.2

50 100 150 200 250 300 350

0.4

0.6

0.8

1.0

OUTPUT VOL TAGE (VI

Output Limiting Characteristics

12

120

r---,-....,.-....,.-...,....-~--,

1.2

10

1'00

I--If'r--t--+--t---f--j

1.0

~ 80

1-+-11---'10..--1--+-+--:1

0.8 ~

~

H4-+-~~~:t--I

0.6

~

IIC
IC

IC

~ 6.0

~

~

SUPPLY VOLTAGE (±VI

I
I

1
5 Hi

2.0mV

60

IC

~ 4.0

2.0 t-t...t'--=F-+--+-II--+--;

I

-H'"

Output Saturation Voltage

~ 8.0

8.0

10

0

Supply Current

oS

5.0

tOO

TIME (n.1

lol-+---+-I--+--+-II---t--:l

0

1.0

I

Supply Current

3-28

I
/I

- .J.J.
o

TIME (nsl

ill

I
20mV

50

50 100 150 200 250 300 350

12,...-'T""""T'"--'--'--'T""""--'--'

0.6

DIFFERENTIAL INPUT VOLTAGE (VI

g

>

~

~

50 100 150 200 250 300 350

oS 100

~'"

0.2

25

2.0

;;:

- ~ -100

IC

~

Response Time for Various
Input Overdrives

0
~ ~ -50

"

1

TIME (ns)

6.0
5.0

-0.2

200

y++= 5.oV

o

Response Time for Various
I nput Overdrives

4.0

z

TA = 25°C

50 100 150 200 250 300 350

-D.6

Vs" ±lSV
-T.=25°C

I-

Vs = ±15V
Rl = 5000.

TIME (ns)

~~

~300

g

o

=-=-."'"_'~i!:.L....L..L...l--L..J

~

1.0 -

Input Characteristics

2.0mV

50

~

2.0

400

-5.omV

'U

3.0 ~

1-+--+-+-+ff--I--+--+-1rl
-1.0

~

40~
.~

I

10

1'02
_
6.0 :;I

5.0 ~

o-

I

5;~ 3.0

0

6.0

~

8.0

DIFFERENTIAL INPUT VOLTAGE (VI

'0' rl

4.0

~=~~

II
I

~

Response Time for Various
Input Overdrives

y++. 5.0V

v++ '" l6V

±15V

~ ~
Q

I-+-+-+-+--+--f-I-+-I

6.0
5.0

=

~ 25

V-

Response Time for Various

3.0

30

0.4

TEMPERATURE (OCI

1\
\

-

G

5.0

TEMPERATURE eCI

;;: 4. 0

Rl.=1AkU+++''''''''''1''''''I=t
T. = 25°C
1---'f---tC--i-+++-+--+-+-I

> 15

-55 -35 -15 5.0 25 45 65 B5 105 125

1--

r-~~~..,--...,....-r....,.....,.-r--,

_;>, 35

~:j:+=+~=t:t!jj

1.2
o.B

Input Overdrives

"'w
~'"
1-'"
"'lcC:

I-+--+--+-i-l--+--+--=l'''''-I

-55-35 -15 5.0 25 45 65 85 105 125

6. 0
5.0

40

~

2-1.2
::;

:- lI'-

r-...
50

t-f"'''E'~q

-0.4

-

Bt

i'-

IC

~

r-.,.-...,........,.--,-,-.,.-...,........,.--,

Vs

Vs "'f15V

r--..
200

Transfer Function

Common Mode Limits

V+

25 0

;:; 40

Ie
c

2.0

ili

20

14-11-:71"'---+-+-+-1 OA

1hA--t-+-t-+---I 0.2

o

-55 -35 -15 5.0 25 45 65 85 105 125
TEMPERATURE (OCI

5.0

10

OUTPUT VOLTAGE (VI

"~
~
~

~

Voltage Comparators/Buffers
LM319 high speed dual comparator
general description
•

The LM319 is a precision high speed dual comparator fabricated on a single monolithic chip. It is
designed to operate over a wide range of supply
voltages down to a single 5V logic supply and
ground. Further, it has higher gain and lower
input currents than devices like the LM710. The
uncommitted collector of the output stage makes
the LM319 compatible with RTL, DTL and TTL
as well as capable of driving lamps and relays at
currents up to 25 rnA.

Minimum fan-out of 2 each side

• Maximum input current of 1 /-I-A
• Inputs and o~tputs can be isolated from system
ground
• High common mode slew rate
Although designed primarily for applications
requiring operation from digital logic supplies, the
LM319 is fully specified for power supplies up to
±15V. It features faster response than the LM111
at the expense of higher power dissipation. However, the high speed, wide operating voltage range
and low package count make the LM319 much
more versatile than older devices like the LM711.

features
• Two independent comparators
• Operates from a single 5V supply
• Typically 80 ns response time at ±15V

The LM319 has its performance specified over a
O°C to 70°C temperature range.

schematic and connection diagrams
Dual In-Line-Packago

.

'00'

GNOI J

"fllPUTI4

"
120utrUfi
IIV·

-IIPUTIIi

I"'"'UTJ

'I-I

I +l1II'UTZ

outl'un

Motal Can Packago t

1

I IHIDI

Order Number

Order Number

Order Number

LM319D
Soo Package 1

LM319N
See Package 22

LM319H
Soe Package 12

typical applications

YOUT

=

5Vfor

VUSVINSVUT

VOUT=Dfol
VIN S;VLT orVIN : 15
~
10

~

~
OFFSET

I--

4.0

2.0

10

20

3D

40

50

60

10

20

~

~::

6.0
5.0

Vs "S.OV
RI.. '" sOOn

3.0

2. Dr-

"

\ 1\
20mV\ \

t-~

v++: 5.0V
25°C

I\:A :

~~

1

:>1-

Z.OmV

5.0mV

1. 0

4.0

2.0

_

1.0
0

~~
==~

-50

c: -100
>

5.0
4.0

I!:~

3.0

Q~

2.0

=>~

>
S

20mV\ \

1.0

I

I
\"' -\5.0mV

,

~

:>~

:>1e ~

>

o

S

1111
I rr-

2.0

1.0

;!;

0

V+

10

~-O.8

-0.4

~

v'+: 5.0V

c 5.0

~-1.6

I
10

20

0.2

40

DA

D.•

0.6

1.0

.13~
..~

I I

50

TEMPERATURE (OCI

60

1.0

~

I-

80

1---f-11---"Ic--+-+-+-----::I

D•• ~

60

HH--+--+--3Io1Cio=i1---i

0.6

iii

U 40

1-f-f-7'l"---+-+-+--l

0.4

i

Q

Ie

Q
IhA-+--t---I--t-; 0.2
iii 20

I I I I
3D

VVI

~100 f--ffltr---+--+-t---i---i

~l

D•• f--vs::O ±15V; Vs + '" 5.0V, Vs -0

o

/

Output Limiting Characteristics

I I I I I

0.4

SUPPL Y VOLTAGE I±VI

10

120 .--'--r--r-""'-~--' 1.2

REFERRED TO SUPPLY VOLTAGES

~ 1.2

V-

6.0

OUTPUT VOLTAGE IVI

I Vsl. 5.0~. vsL 0
\±151'

"

20

2.0

s :.t15V
INPUT OVERDRIVE = 5.0 mV

50 100 150 200 250 300 350

r--

~-Z.O

15

-2.0

~

Vs '" S.OV
RL '" soon

~-1.2

10

-6.0

20

Common Mode limits

Supply Current
12

5.0

I

0

TIME Ins)

2.0

I

5 15
~ 10

TA '" ZSQc

o

8~

I
I

;

-100
-10

«
.s

S.OmV

- I,.Jj.

TIME (nsl

4.0

I
I

Output Saturation Voltage

2.0 mV

I-~

6.0

I
I

/ T A :25°C

~ ~ 50
:! ~ 0
>

•.0

i-' -t'

DIFFERENTIAL INPUT VOLTAGE IVI

~/I

...s 100

50 100 150 200 250 300 350

fi

~

1DO 150 200 250 300 350

II'
20 mV I

4.0

~ ~ 3.0

TA '" 25"C

1.0

25

5.0
I-

0.6

1-11- IMAX\:~:/~ri~~~~~TIAll I-- f50

Vs=±15V
RL '" SOOn

v>+. 5.0V

>

.
13,..

~ 100

Response Time for Various
I "put Overdrives

~ ~ -50
- ~ -100

I-

B

Vs '" ±15V

TIME 1",1

E
1-;;;

".s:'il

I-

6.0

'2.0mV

=>1Q

~JOD

AI.. = soon
v'+: 5.0V
TA '" 25"&

100 150 200 250 300 350

I

y

o
0.2

I

25"C

:'il
a:: 200

50

Response Time for Various
Input Overdrives
6.0

-0.2

Vs" ±15V

>

50

.l'

-0.6

r- TA :

l.UmV

TIME I"sl

S

I I
I

1'/

It.
IIJI

1.0 -

400

II-i f-5.0mV

20mV

3.0

CC::
>

~r"

.s 100

o

-1.0

2.0~

I

-

o

10

3.0 ~

Input Characteristics

>

1--

~

DIFFERENTIAL INPUT VOLTAGE IVI

Response Time for Various

~

:>~

60

4.0 ~

~f
I

TEMPERATURE lOCI

1-a..

50

Input Overdrives

~ 4.0

c:
>

40

Input Overdrives

:>~

o

3D

5.0 ~

/1.'

20

5.0

10

..

6.0 ~

v++ '" s.nv

/

25

~

Q

C

Q

Response Time for Various

5.0
~ ~

..

I
o

6. 0

t-

1.0

3D

"'";;:
'"
!:;

TEMPERATURE lOCI

:>1-

~

Q

150
100

10

E

'.0

y++= l6V

AI..:: 1.4 kn
fA'" 25"&

35

10

5.0

~

:!

10

OUTPUT VOLTAGE IVI

3-31

Voltage Comparators/Buffers
LM139/LM239/LM339 quad comparator
general description
The lM 139 series consists of four independent
voltage comparators which were designed specifi·
cally to operate from a single power supply over a
wide range of voltages. Operation from split power
supplies is also possible and the low power supply
current drain is independent of the magnitude of
the power supply voltage. These comparators also
have a unique characteristic in that the input
common·mode voltage range includes ground,
even though operated from a single power supply
voltage.
Application areas include limit comparators, simple
analog to digital converters; pulse, squarewave and
time delay generators; wide range VCO; MOS clock
timers; multivibrators and high voltage digital logic
gates. The lM 139 series was designed to directly
interface with TTL and CMOS. When operated
from both plus and minus power supplies, the
LM339 will directly interface with MOS logic where the low power drain of the lM339 is a
distinct advantage over standard comparators.

advantages
•

•

Allows sensing near GND

•

Compatible with all forms of logic

•

Power drain suitable for battery operation

features
•

Wide single supply
Voltage range
2 V DC to 36 V DC
or dual supplies
±1 V DC to ±18 V DC
Very low supply current drain (0.8 mAl independent of supply voltage (1 mW/compara·
tor at +5 V DC )
35 nA
low input biasing current
3nA
low input offset current
and offset voltage
3mV
Input common·mode voltage range includes
ground
Differential input voltage range equal to the
power supply voltage

•

•
•
•
•

1 mV at 5JlA
70 mV at 1 mA

•

low output
saturation voltage

•

Output voltage compatible with TTL (fanout of
2). DTl, ECl, MOS and CMOS logic systems

Eliminates need for dual supplies

schematic and connection diagrams
Dual-In-Line and Flat Package
v'
INPUT3.

OUTPUTlDUTPUT4

OUTPUT20UTPUTI

Order Number
LM139F
See Package 4

typical applications

v'

INPUT 1+

INPUT2-

INPUTJ·

INPUT 2+

Order Number
Order Number
LM139D, LM239D,
LM339N
or LM339D
See Package 22
See Package 1
+5Voc

+5V DC

v,

10M

Driving TTL

3·32

Driving CMOS

Comparator with Hysteresis

i...

absolute maximum ratings
Supply Voltage. V+

Input Current (V IN

36 Voe or ±18 Voe

Differential Input Voltage

-0.3 V DC to +36 V DC

Output Short,Clrcult to GND (Note 21

Continuous

electrical characteristics

(v+ = +5.0

PARAMETER
Input Offset Voltage

T A,

IINI" or IINI.) With Output

Voe.

+2SoC (Note 9)

Linear Range. T A

==

-6SoC to +150D C

Lead Temperature (Soldering, 10 seconds)

MIN

Input Bias Current (Note 5)

;;

Storage Temperature Range

In

.-

300"e

3:
w

w
CD

LM239. LM339
MAX

MIN

TVP

MAX

UNITS

±2

±5.0

'2

±50

mVoc

25

100

25

250

nAoe

+2SOC

Input Offset Current

'IN,_,-IINI ,. TA = +2Soc

Input Common-Mode Voltage

TA = +2SoC

±3

±25
V+-1.5

0

±5

0

±5Q

nAoe

V+-1.5

Voe

2.0

mAec

Range (Note 6)
Supply Current

RL =00 On All Comparators
TA = +2SoC

VoltageGalO

RL ;:: lS kH. T A =+2SoC

200

200

V/mV

Large Signal Response Time

VIN = TTL Logic SWing.
VREF = +1.4 Vec. VRL :::;
S.O Voc and RL :::; S.l k!l

300

300

n,

Response Time (Note 71

V' RL = S.OVoc and RL =
S.l k!l. TA =+2S"C

1.3

1.3

"'

Output Sink Current

VINI .)

+1.0 Vec . VIN •t , = 0
andVo~+l.SVoc. TA :::;+2SoC

16

mAoc

Saturation Voltage

VINI ' ;::+1.0Voc. VINlt , =0
and ISINK ~ 4.0 rnA. TA :::; +2Soc

Output Leakage Current

V1N!f);:: +1.0 Voc. V,N !., :::; 0
and VOUT = 5.0 Vee. TA :: +2SoC

Input Offset Voltage

(Note g)

~

Input Offset Current

IIN!f) - IIN!_)

Input Bias Current

liN If' or 11NH With Output in
Linear Range

Input Common-Mode Voltage
Range

0.8

6

2.0

16
250

0.8

6
500

250

500

mVoc

9.0

9.0

mVoc

±100

.1:150

nAoc

300

400

nAoe

V+-2.0

Voe

0.1

0

0.1

V+-2.0

0

nAoc

Saturation Voltage

VIN !_} ~+1.0 Vee. VIN!fJ = 0
and ISINK $' 4.0 rnA

700

700

mVec

Output Leakage Current

VINlfJ ;:-+1.0Voc. VIN1_J =0
and VOUT = 30 Vec

1.0

1.0

IJAoe

Differential Input Voltage

KeepAIIVIN'S~OVDC

36

36

Voe

INot.81

V-, if used)

(or

N

.......

see Note 4)
TVP

i

W
CD

-55"e to +125"e

LM139

CONDITIONS

oDe to +70DC
-2S o C to +85°C

LM339
LM239
LM139

570mW
900mW
800mW

.......

50mA

Operating Temperature Range

36 Vee

Input Voltage

Power DisSipation (Note 11
Molded DIP
(LM339NI
Cavity DIP
ILM139D. LM239D & LM339DI
Flat Pack
ILM139FI

W
CD

< -0.3 Voc)(Note 3)

Note 1: For operating at high temperatures, the LM339 must be derated based on +125°e maximum junction temperature and a thermal
resistance of +17SoC/W whieh applies for the device soldered in a printed circuit board, operating in a still air ambient. The LM239 and
LM139 must be derated based on a +150°C maximum junction temperature. The low bias dissipation and the ON-OFF characteristic of the
outputs keeps the chip dissipation very small (Pd < 100 mWI, provided the output transistors are allowed to saturate.
Note 2: Short circuits from the output to V+ ~an cause ~cessive heating and eventual destruction. The maximum output current is
approximately 20 rnA independent of the magnitude of V .
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base
junction of the input PNP' transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action,
there is also I~eral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators
to go to the V voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive
and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 Vec.
Note 4: These specifications apply for V+ = +5.0 Vec and -55°C $. TA :S +125°C, unless otherwise stated. With the LM239, all
temperature specifications are limited to -25D C $. TA $. +85°C and the LM339 temperature specifications are limited to oOe :S T A$. +70°C.
Note 5: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of
the state of the output so no loading change exists on the reference or input lines.
Note 6: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3V. The upper
end of the cammon-mode voltage range is v+ -1.5V, but either or both inputs can go to +30 Vec without damage.
Note 7: The response time specified is for a 100 mV input step with 5.0 mV overdrive. For larger overdrive signal5 300 ns can be obtained,
see typical performance characteristics section.
Note 8: The positive excursions of the input can exceed the power supply voltage level, and if the other input voltage remains within the
common-mode voltage range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 VOC
(or 0.3 Vec below the magnitude of the negative power supply voltage, if used).
Note 9: At output switch point, Va ~ 1.4 Vec, RS :::: on with V+ from 5Vec to 30 Voe; and over the full input common mode range (0 Vee to V+
±1.5VDCI.

3-33

typical performance characteristics
Input Current

Supply Current
1.0

C
..5 O.B ~

.
:
~

0.6

il

i.
I

+-

0.4

0.2

Output Saturation Voltage
10

TA • -55·c:...I-- I"'-"

--;
,

"8
'"

.~
.'"
'"
..'"

T:~
,e!

~2S'C
J.

1.0

TA -+12S·C·- I--

IJi

0.01

I

'::0.001
10

20

40

3D

10

v+ - SUPPLY VOLTAGE (Vocl

6

..'"

~-

"'>
>-

!;~

~

g
~S
~~
Z

1.0

10

IOU

10 - OUTPUT SINK CURRENT (rnA)

Response Time for Various

6r---==.--.=-:-:r---,-,
"-INPUT OVERDRIVE -100 mV

IIII
'.."

100mV

0

",-

>

2

~

I I

0.1

20m~_~.

3
1

.

I

4

~

I"put Overdrives - Positive
Transition

SmV' INPUT OVERDRIVE

S

IA~

~ VI 1
~ V ...... TA ·+2S·C

0.01

40

30

v+ -SUPPLY VOLTAGE (Voc)

Response Time for Various
Input Overdrives - Negative
Transition
~.

20

I-

~TA'-5S'C

~

R'i~
0

I

0.1

IC

I'

~

6UT 6F {

TA::;+125°~

>

I--

TA=+10°C

...... 1-""'

I

l - I-- t-S~TUR~TlOIN

 -100
~

0.5

1.0

1.5

2.0

TlME(_)

0.5

I.S
TIME,",..)

application hints
The LM139 is a high gain, wide bandwidth
device; which, like most comparators, can easily
oscillate if the output lead is inadvertently allowed
to capacitively couple to the inputs via stray
capacitance. This shows up only during the output
voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board
layout is helpful as it reduces stray input-output
coupling. Reducing the input resistors to <10 kn
reduces the feedback signal levels and finally,
adding even a small amount (1 to 10 mY) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are
not possible. Simply socketing the IIC and attaching resistors to the pins will cause input-output
oscillations during the small transition intervals
unless hysteresis is used. If the input signal is a
pulse waveform, with relatively fast rise and fall
times, hysteresis is not required.
All pins of any unused comparators should be
grounded.
The bias network of the LM 139 establ ishes a
drain current which is independent of the magnitude of the power supply voltage over the range of
from 2Voc to 30 Voc.
It is usually unnecessary to use a bypass capacitor
across the power supply line.
3-34

The differential input voltage may be larger than
V+ without damaging the device. Protection should
be provided to prevent the input voltages from
going negative more than -0.3 V DC (at 25°C). An
input clamp diode and input resistor can be used
as shown in the applications section.
The output of the LM139 is the uncommitted
collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output "pullup" resistor can be connected to any available
power supply voltage within the permitted supply
voltage range and there is no restriction on this
voltage due to the magnitude of the voltage which
is applied to the V+ terminal of the LM139 package. The output can also be used as a simple SPST
switch to ground (when a "pull-up" resistor is not
used). The amount of current which the output
device can sink is limited by the drive available
(which is independent of V+) and the /3 of this
device. When the maximum current limit is
reached (approximately 16 mAl, the output transistor will come out of saturation and the output
voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60n
rsat of the output transistor. The low offset voltage
of the output transistor (1 mV) allows the output
to clamp essentially to ground level for small load
currents.

r-

...s:

typical applications (can't)

w

CD

.......

+SVoc

r-

s:

v'

N
W
CD

'"

lOOk

.......

r-

s:
W

12VDt.

TEMPERATURE
SENSING

W
CD

·ClAMPS··O" LEVEL

THERMOCOUPLE

MOS to TTL Logic Translator

Ground Referenced Thermocouple

in Single Supply System

v'
t5Vocl

51h
+5V cx::

.....

'00

"I

P

20'

I

..-/

'"

50'

\

IN9'4

IIlk

t----If--t
1M

fVRH •

10.
Remote Temperature Sensing

'00

HI

+5Voc

P
+VllfFl

10.
+5VI)C

V"

'".
P

TTL to MOS Logic Converter

+ISVoc
+VREF2

10.

Rl

1M

Dl
'N9,4

+5VDc

"

lOOk

'00

P

"

'N914

8DpF

P

+VRHI

v'

61'~D

'"

.M

10'

+15Voc

o-'W.........,

1M

Visible Voltage Indicator

'FOR LARGE RATIOS OF AI/A2.
01 CAN BE OMITTED

Pulse Generator

3-35

typical applications (con't)
V·
V·

lOIl~

2.lJk

V:..ru

~'F

I

~

100 kHl
Vo

Vo

lOOk

lOOk

v'O-~~~--~~--~
lOOk

Squarewave Oscillator

Crystal Controlled Oscillator

V·

lOOk

V·

500pF

'"

'"

'V,
FREQUENCY

> ............

CONTROL

~DOl1TPUTl

VOLTAGE

INPUT

OUTPUl2

,.,

~---------------------+~

."
V"+]OV DC

+250mVoc ,Vc,,+50Voc

10DHl<"fo

ii!

0.8

0.4

I

.~C

-

g

t,..;;,=-

~

0.6

~

"t.

fl

Input Current

80

~~

~

,

1...

I:

1A '" +70 c C
1A "'+125 C-- I-D

~

0.2

0

I R,.~
I '1
10

i

40

~
I

20

T~'

I
I

V'NleMI" 0 Voc
RINICMI ~

f

T '+1 2S'C

C\ I 1A ,'" +25. C
o

10

30

~~

~::

6.0
5.0
4.0

..

2.0

~

0

C::.s

> z

H

3.0

~

~>

201m~

1.0

~~,'=
.

'~'-

.

tOOmV

-

i

t '~5,JL I

~> -100

~
D

0.5

~

0.01

~ rl I
~V "TA • +2S'C

0

1.0

1.5

2.0

TIME I.,)

I I

tL;

>

0.01

0.1

1.0

10

100

10 - DUTPUT SINK CURRENT ImAI

Response Time for Various

Input Overdrives - Positive
Transition

~

...'"

~-

~~

~::

~
~

I I

0
-50

~ r-

I 1Ai'

V+ - SUPPLY VOLTAGE (Voe>

S.O mV' INPUT DVERDRIVE

.I

f

$TA'-SS'C

40

Response Time for Various
Input Overdrives - Negative
Transition

~

0.1

0.001
20

DUf6F
S~TURtfIDIN

TA"+125~~

>
z
;:

I

iA·tcl-

I
0

V+ - SUPPLY VDLTAGE IVoc)

...'"

..
..
."'"

is'c

h

1.0

'"'"
!:;

TA ::DoC

.3

r- -

~
w

109n

~

40

30

20

60

Output Saturation Voltage
10

g

~~
> z

~>

6.0
5.0
4.0

INPUT DVERDRIVE • 100 mA

II

II

3.0

5.0mV

2.0

/20mV

1.0
0
100

TA =25D e

50

..~..~,

I I
I J

0

~

0

0.5

II

IJ
1.0

1.5

2.0

TIME I.,)

application hints
The LM139A is a high gain, wide bandwidth
device; which, like most comparators, can easily
oscillate if the output lead is inadvertently allowed
to capacitively couple to the inputs via stray
capacitance. This shows up only during the output
voltage transition intervals as the comparator
changes states. Power supply bypassing is not
required to solve this problem. Standard PC board
layout is helpful as it reduces stray input-output
coupling. Reducing the input resistors to < 10 kn
reduces the feedback signal levels and finally,
adding even a small amount (1.0 to 10 mV) of
positive feedback (hysteresis) causes such a rapid
transition that oscillations due to stray feedback
are not possible. Simply socketing the IC and
attaching resistors to the pins will cause inputoutput oscillations during the small transition
intervals unless hysteresis is used. If the input
signal is a pulse waveform, with relatively fast
rise and fall times, hysteresis is not required.
All pins of any unused comparators should be
grounded.
The bias network of the LM139A establishes a
drain current which is independent of the magnitude of the power supply voltage over the range
of from 2.0 Vec to 30 Vec.
It is usually unnecessary to use a bypass capacitor
across the power supply line.
3-40

The differential input voltage may be larger than
V+ without damaging the device (see Note 8).
Protection should be provided to prevent the input
voltages from going negative more than -0.3 Vec
(at 25°C). An input clamp diode can be used as
shown in the applications section.

The output of the LM 139A is the uncommitted
collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to
provide an output OR'ing function. An output
pull-up resistor can be connected to any available
power supply voltage within the permitted supply
voltage range and there is no restriction on this
voltage due to the magnitude of the voltage which
is applied to the V+ terminal of the LM 139A
package. The output can also be used as a simple
SPST switch to ground (when a pull-up resistor is
not used). The amount of current which the
output device can sink is limited by the drive
available (which is independent of V+) and the f3
of this device. When the maximum current limit
is reached (approximately 16 mA), the output
transistor will come out of saturation and the
output voltage will rise very rapidly. The output
saturation voltage is limited by the approximately
60n rsa, of the output transistor. The low offset
voltage of the output transistor (1.0 mV) allows
the output to clamp essentially to ground level
for small load cu rrents ..

typical applications (con't) (v+; 5.0 vocl
v'
3Dk

v'
51k

IODk

MAGNETIC
PICKUP

II

vo

v,
vo

TEMPERATURE

SENSING
THERMOCOUPLE

Comparator with Hysteresis

10k

Ground Referenced Thermocouple

in Single Supply System

Transducer Amplifier

'

v'

vo

10k

Av:IOD

\
I

Low Frequency Op Amp
(VO; OV for VIN ; OV)

Uk

vo
Av:l00

Low Frequency Op Amp

Comparing Input Voltages
of Opposite Polarity

3-41

illS Voltage

Comparators/Buffers

LM160/LM260/LM360 high speed differential comparator
general description

features

The LM 160/LM260/LM360 is a very high speed
differential input, complementary TTL output
voltage comparator with improved characteristics
over the /1A760//1A760C, for which it is a pin-forpin replacement_ The device has been OPtimized
for greater speed, input impedance and fan-out,
and lower input offset voltage_ Typically delay
varies only 3 ns for overdri.ve variations of 5 mV·
to 500 mV.

• Guaranteed high speed

Complementary outputs having minimum skew
are provided. Appl ications involve high speed
analog to digital convertors and zero-crossing
detectors in disc file systems.

20 ns max

• Tight delay matching on both outputs
• Complementary TTL outputs
• High input impedance
•

Low speed variation with overdrive variation

•

Fan-out of 4

•

Low input offset voltage

• Series 74 TTL compatible

Metal Can Package
v'

schematic and connection diagrams

"

.

Order Number LM160H, LM260H or LM360H
See Package 11
Dual-I n-Line Package

.....-----or.vERTIiG

y+

OUTPUT 1

Dun

Dun

GND

~
~
Order Number LM360N-8
See Package 20
Dual-In-Line and Flat Packages
"

v'

Order Number LM160D, LM260D or LM3600
"See Package 1
Order Number LM360N-14
See Package 22
Order Number LM160F
See Package"

3-42

~

s::...

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage

+8V
-BV
20 mA
±5V
~ V-

v+;::: V 1N

en
o
......

Operating Temperature Range
LM160
LM260
LM360

~

-5S0C to +12SOC
-2SOC to +85°C

s::
N

oDe to +70°C
-6S0C to +150°C
300'C

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

en
o

......
~

s::w
electrical characteristics

en

o

(T MIN STA STMAX )

PARAMETER

CONDITIONS

MIN

TYP

MAX

UNITS

Operating Conditions

Supply Voltage Vee +

4.5

5

6.5

-

-4.5

-S

-6.S

V

2

S

mV

Supply Voltage Vee
Input Offset Voltage

Rs::; 200n

:1

p.A

20

p.A

13

2S

ns

12

2(j

ns

.S

Input Offset Current

S

Input Bias Current

Output Resistance (Either Output)

V OUT

Response Time

TA

= V OH

.f!

100

= 2S'C, Vs =±SV (Note 1)
TA = 2S'C, Vs = ±SV (Note 2)
T A = 2SOC. Vs = ±5V (Note 3)

V

14

ns

Response Time Difference Between Outputs
(tpd Of+V'N') - (tpd Of-V IN2 )

TA

ns

TA

= 2S'C, (Note 1)
= 2S'C, (Note 1)

2

(tPd of +V'N2) - (tpd of -V ,N ,)

2

ns

(tpd of +V'N') - (tpd of +V'N2)

T A = 2S'C, (Note 1)

2

ns

(tpd of -V'N') - (tpd of -V'N2)

T A = 2S'C, (Note 1)

2

ns
kn

Input Resistance

f= 1 MHz

17

Input Capacitance

f= 1 MHz

3

pF

Average Temperature Coefficient of Input

Rs

= 500

8

p.V/·C

7

nA/'C

±4.S

V

g

Offset Voltage
Average Temperature Coefficient of Input
Offset Current
Common Mode Input Voltage Range

Vs

= ±6.SV

±4

V

±S

Differential Input Voltage Range

2.4

V

3

Output High Voltage (Either Output)

lOUT = -320p.A, Vs = ±4.SV

Output Low Voltage (Either Output)

IS'NK

Positive Supply Current

Vs

=±6.SV

18

32

rnA

Negative Supply Current

Vs = ±6.SV

-9

-16

rnA

= 6.4 rnA

.2S

.4

V

Note 1: Response time measured from the 50% point of a 30 mVp.p 10 MHz sinusoidal input to the SO% point of the output.
Note 2: Response time measured from the 50% point of a 2 Vp.p 10 MHz sinusoidal input to the SO% point of the output.
Note 3: Response time measured from the start of a 100 mV input step with 5 mV overdrive to the time when the output
crosses the logic threshold.

3·43

....

CD

illS

('I)

:!:
.....
......
....

Voltage Comparators/Buffers

LM161/LM261/LM361 high speed differential comparators

CD
N

:!:

.....

......
....

....

CD

:!:
.....

general description

features

The LM161/LM261/LM361 is a very high speed
differential input, complementary TTL output
voltage comparator with improved characteristics
over the SE529/NE529 for which it is a pin-for-pin
replacement_ The device has been optimized for
greater speed performance and lower input offset
voltage_ Typically delay varies only 3 ns for
over-drive variations of 5 mV to 500 mV _ It may
be operated from op amp supplies (±15V)_

•

Independent strobes

•

Guaranteed high speed

Complementary outputs having minimum skew
are provided_ Applications involve high speed
analog to digital convertors and zero-crossing
detectors in disc file systems_

20 ns max

• Tight delay matching on both outputs
• Complementary TTL outputs
• Operates from op amp supplies

±15V

•

Low speed variation with overdrive variation

•

Low input offset voltage

•

Versatile supply voltage range

schematic and connection diagrams

Dual-In-Line and Rat Package
Vee

",,---+--0 OUTI'IlT I

stROlE'

NC

OUTPUH

Order Number LM361N
See Package 22
Order Number LM161D, LM261D
or LM361D
See Package 1
Order Number LM161 F
See Package 4

'--+---.--0'"
~:;:=~;::::;::::;=~--oSTROBE2

Metal Can Package
".

t--f---f---oouIPun
Order Number LM161H, LM261H
or LM361H
See Package 12

logic diagram
".

1\r

LIl

INPUT'

ru
3-44

OUTPUT I

r-

absolute maximum ratings

operating conditions
MIN

Positive Supply Voltage, V+
Negative Supply Voltage, V-

+16V
-16V
+7V
+7V
±SV
±6V
600mW
-6Soe to +1S0oe

Gate Supply Voltage, Vee
Output Voltage
Differential Input Voltage
Input Common Mode Voltage

Power Dissipation
Storage Temperature Range
Operating Temperature Range
LM161
LM261
LM361
Lead Temperature (Soldering, 10 sec)

...3:
...
......

Supply Voltage V+
LM161/LM261
LM361
Supply Voltage VLM161/LM261
LM361
Supply Voltage Vee
LM161/LM261
LM361

CJ)

TYP

MAX

SV
SV

1SV
1SV

-6V
-6V

-1SV
-1SV

r-

3:

N

...
CJ)

......
r-

SV
SV

4.SV
4.7SV

3:

S.SV
S.2SV

W

...

--5Soe to +12Soe

CJ)

-2S D C to +8SD C
oDe to +70o C
3000 e

electrical characteristics

(v+ = +10V. Vee = +5V, v- = -10V, TMIN s;: T A ~ T MAX • unless noted I
LIMITS

PARAMETER

CONDITIONS

MIN

TV.

UNITS

LM361

LM1S1/LM261

MAX

MIN

TV.

MAX

Input Offset Voltage

mV

10

pA
pA

Input Bias Current

TA = 2SoC

Input Offset Current

TA =2SD C

pA
pA

Voltage Gain

TA '" 25°C

V/mV

Input Reslstana>

T A = 2SD C, f = 1 kHz

Logical "1" Output Voltage

Vee = 4.75V.
ISOURCE = -.5

Logical "0" Output Voltage

Vee = 4.75V,
ISINK = 6.4 rnA

Strobe Input "'" Current

Vee = 5.25V,
VSTR08E = 2.4V

Strobe Input "0" Current

Vee = 5.25V,
VSTROBE =.4V

Strobe Input "0" Voltage

Vee = 4.75V

Strobe Input "1" Voltage

Vee = 4.75V

Output Short CirCUit Current

Vee = 5.25V, VOUT = OV

SUpply Current 1+

v+ = lOV, V- = -lOV,
Vee = 5.25V,
-55°C5T A :S 12SoC

Supply Current 1+

V+:o lOV, V- = -lOV,
Vee = 5.25V,
OGC~TA ~70°C

Supply CUrrent I

v+ '" lOV, V- = -lOV,
Vee = 5.25V,
-'5Soc :ST,A. 5125°C

Supply Current I

30

20

rnA

20
24

2.4

3.3
.4
200

200

V+ = lOV, V-::: -10V,
Vee'" S.25V,
-5SGC:STA 5l2SGC

Supply Current lee

V+::: 10V, V-::: -10V,
Vee =:; 5.2SV,
OGC~TA '$;70GC

TRANSIENT RESPONSE

V 1N

:;

-1.6

.a

.a

itpd(O) J

TA = 2SGC

PropagatIOn Delay Time

it PdU ) 1

TA = 2SGe

Delay Between Output A and B

mA
V
V

-,a

-55

-,a

-55

4.5

mA
mA

mA

,Q

mA

'0

,a

mA

mA

20

mA

20

ns

SO rnV Overdrive

Propagation Delay Time

T,A. = 25GC

tt pdlO)1

T,A.= 2SGe

Strobe Delay Time ttpd(1)l

T,A."'2SGC

Strobe Delay Time

V
pA

-1.6

OGC~TA ~70°C

Supply Current lec

V

..

V+ = 10V, V- = -lDV,
Vee =: 5.2SV,

-

kll

20

3.3

14

"

20
20

"

14

20

3-45

Voltage Comparators/Buffers
LM710 voltage comparator
general description
saturating comparator applications. In fact, the low
stray and wiring capacitances that can be real ized
with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.
The LM710 is useful as a pulse height discriminator, a voltage comparator in high-speed AID converters or a go, no-go detector in automatic test
equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an
interface between logic types. In addition, the low
cost of the unit suggests it for applications replacing relatively simple discrete component circuitry.

The LM710 is a high-speed voltage comparator
intended for use as an accurate, low-level digital
level sensor or as a replacement for operational
amplifiers in comparator applications where speed
is of prime importance. The circuit has a differential input and a single-ended output, with saturated
output levels compatible with practically all types
of integrated logic.
The device is built on a single silicon chip which
insures low offset and thermal drift. The use of
a minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the
circuit much faster than operational amplifiers in

schematic* and connection diagrams
,...._ _ _...._ _. -....._

V'

Metal Can

INI'UTS

T -+---"'"""i~

GROUND

-~===:::l--..l~

Note: Pin 4 connected to clSe.

Order Number LM710H
See Package 11

."'
typical applications!*
Schmidt Trigger

INPUT

Line Receiver With
Increased Output
Sink Current

> __

r--OUTI'tIT

Level Detector With
Pulse Width Modulator

Lamp Driver

0I2V

INPUT

DCINP\lT

·Pin connections shown are for metal can.

3-46

y'

absolute maximum ratings
14.0V
-7.0V
lOmA
±S.OV
±7.0V

Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Power Dissipation
TO·99 (Note 1)
Flat Package (Note 2)
Operating Temperature Range
Storage Temperature Range
lead Temperature (Soldering, 60 sec)

300mW
200mW
_55°C to +12S o C
-65°C to +lS0°C
300°C

electrical characteristics

(Note 3)

PARAMETER

Input Offset Voltage

CONDITIONS

MAX

UNITS

2.0

mY

3.0

p.A

= OV

Input Offset Current

TA = 2SoC, V OUT

Input Bias Current

T A =2SQ C

Voltage Gain

TA = 2SOC

Output Resistance

TA = 2SOC

=

0.75

1.4V

13
1250

20

p.A

1700
n

200

TA = 2SoC. VIN ::;-5 mV
V OUT

Response Time

TYP
0.6

TA = 2SoC, Rs$200n
"eM

Output Sink Current

MIN

2.0

2.5

rnA

=0
ns

40

TA '" 2SoC

(Note 4)

Input Offset Voltage

As~20on.

Average Temperature

-55°C$TA~125°C

Coefficient of Input

3.0

V CM = OV

10

mY

p.vte

Rs~50n

3.0

TA = 12SOC

0.25

3.0

p.A

1.8

7.0

p.A

DI

Offset Voltage
Input Offset Current

TA

Average Temperature
Coefficient of Input

= -5SoC

15

75

nAte
nAte

27

45

p.A

5.0

25°e~TA~125°e
-55°C::;TA~25°C

25

Offset Current

Input Bias Current

TA = _55°C

Input Voltage Range

V- = -7.0V

15.0

Common Mode Rejection Ratio

Rs';: 200\"!

80

dB

V

±5.0V

Differential Input
Voltage Range

1000

Voltage Gain
Positive Output Level

V
100

VIN 2:5mV,

2.5

3.2

4.0

V

0

V

D'S'oUT ::;-SmA

-1.0

-0.5

~-5 mV

0.5

1.7

rnA

'" OV
=-55°C, V 1N ~-5 rnV

1.0

2.3

rnA

Negative Output level

VIN ::;-5 mV

Output Sink Current

TA =

12SoC, V 1N

V OUT
TA

V OUT

Positive Supply Current

V 1N

=0

$-5 mV

Negative Supply Current
Power Consumption

V 1N :::;-5 mV

5.2

9.0

rnA

4.6

7.0

rnA

90

150

rnW

lOUT =0 rnA
Note 1: Rating applies for case temperatures to +12Soe; derate linearly at 5.6 mWre for ambient temperatures above +1 osoe.
Note 2: Derate linearly at 4.4 mwtC for ambient temperatures above +100oe.
Note 3: These specifications apply for V+ = l2.0V. V- = ·-S.DV. -55°C::; TA ::; +12SoC unless otherwise specified. The
input offset voltage and input offset current Isee definitions) are specified for a logic threshold voltage of 1.8V at -5SoC,
1.4V at +2Soe. and 1.0V at +12SoC.
Note 4: The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive.

3-47

typical performance characteristics
Voltage Gain

Transfer Function
4.0

l."ooo"'T'"T

V-·-6.0V

~

•

3.0

w

~
>

z

~

I~

I~

-.

-5.0

--

2.0

;;:

V'.,2V'
V-·-6.0V-

...
=
=
3
z
w

~

u

\.

-15 -50 -25

i...

i'.

I'- 10-.
0

25

'">

~

3.0

2.0

50

,

2Jm~

IOmY

~

1.0

4.0

W

3.0

2.0

'.0

""- r-...

.00

2.0

...~

75 .00 .25

.J

r-: ~ioG/cr

.Jj 11\

Response
;;

S.OmV

~

0 ~ ~
TEMPERATURE I'C)

J

0

'''~'M --f-

w

~2.0

~

v+= 12V
V-"-6.OV
TA = 25°C

>
...

, I , ,

20

40

60

80

100

I

120

......

1.0

1 1
1 1

0

~

.~

.20

160

Maximum Power

Dissipation
400

V+= 12V
r'-f'OV

,~

'"~

2.0

~

1.5

,

\l'OLfTOJ 2\1'

•

~~

No

~
-

1.0
~

80

40

TIME(ns)

3.5

=

1
1

1

TIME Insl

~ 2.5

1 1 1
~

~." 25 C -

~

5

.1 .._
T~

I
NEGATlVE oui-luT L~VE~ ~

~~:~~V-

~2.0

~

1 3.0

1 1 1
1 1

I

1 1 1

-1.0

~3.0
~ 1.0

i'

0

0.4

Common Mode Pulse

1
~

0.2

INPUT VOLTAGE IVI

Current

~ HRESHOlO VOL

1.0

-0.2

-0.4

Output Sink

.!. J. ...L). V'" '2V
........POS!TiVE OUTPUT LEVEL -V-. -6.0V

3.0

3-48

50

l.OmY

20mV

Output Voltage
Level

~

25

.L.J.
II ,l

~

120

TIME(ns)

~

0

~-100

~

-

.....

~-50

50

IOUT-O
TA -25 C

NEGAhvJ_

;;

>

40

V+" 12V
V-. -6.0V

0_1.0

~

14

'3

~

-75 -50 -25

~

'2

f-phSIT!VE

~

~

ii 'OO
80

"

Supply Current

E

60

.0

y+" 12V

z

~

I

40

"""':;;"-

I"""~

POSITIVE SUPPLY VOLTAGE IV'

Various Input Overdrives

Y+:12V
V-"-S.OV
1 ... ,,25 C

20

.,

i,;'

~

~

100 125

Response Time For

2.0mV

J 'I

~

N

....
\\'11/ /~ ~ ~

TEMPERATURE 1°C)

~.O~vl-

'1'1 J

r- '-- f-..(

v-· -6.0V

•°

15 100 125

~
~

0 25 50 75
TEMPERATURE I'C,

""'"

.,1"""
.000 1/

~

Response Time For
Various Input Overdrives

~

.500

>

,1--

1

'0

TEMPERATURE I'C)

w

~

500
-25

o

°

~ 4.0

"\.

I

1.,.;\.~'1

w

Input Offset Current

Input Bias Current
40

"

z
;;: 2000

150D

'300
-75 -50

5.0

-1.0
1.0
3.0
INPUT VOLTAGE ImVI

,

..

"

°

.400

1--3.0

"-

I

T... -Z5C>C

2500

>

J

I

v+" 12Y
V-" -6.DV

:- ......

~ 160
w

.

~

'.0

§

Voltage Gain
3000

1700

TA =125°C
T..,= 2SD C
T."-5n

'II.
'Ii .......

~ 2.0

~

°

'80

I I.

y." 12V

-75 -50 -25

°

o
25

50

TEMPERATURE lOCI

75

.00

'25

25

METAL·CAN'PACKAGE

j-j I~OTE FLy
MOUNTE0
" 1

45

65

85

I-

PtKt E I.05

AMBIENT TEMPERATURE IcoCI

.25

Voltage Comparators/Buffers
LM710C voltage comparator
general description
with monolithic construction make the device difficult to duplicate with discrete components operating at equivalent power levels.

The LM710e is a high-speed voltage comparator
intended for use as an accurate, low-level digital
level sensor or as a replacement for operational
amplifiers in comparator applications where speed
is of prime importance. The circuit has a differential input and a single-ended_output, with saturated
output leVels compatible with practically all types
of integrated logic.

The LM710e is useful as a pulse height discriminator, a voltage comparator in high-speed AID converters or a go, no-go detector in automatic test
equipment. It also has applications in digital systems as an adjustable-threshold line receiver or an
interface between logic types. In addition, the low
cost of the unit suggests it for applications replacing
relatively simple discrete component circuitry.
The LM710e is the commercial/industrial version
of the LM710A_ It is identical to the LM710A except that operation is specified over a oOe to 700e
temperature range.

The device is built on a single silicon chip which
insures low offset and thermal drift_ The use of a
minimum number of stages along with minoritycarrier lifetime control (gold doping) makes the
circuit much faster than operational amplifiers in
saturating comparator applications_ In fact, the low
stray and wiring capacitances that can be realized

e';

schematic* and connection diagrams

Metal Can Package

~-------.----~~~v·

...

,

"'"

GRQlHl

\

1

,-~,

,CUTI'IJI"

Ii

ItIlCCNIIECI'II)1

- :. . . . oo••

"'~

Nate: Pin4 connected to case.

Order Number LM710CH
See Package 11
IN'UTS

+

-+-----I~

Dual-In-Line Package
OUTPUT

(_)INPUT

-VccISUPPlYi

14

Ne

11

'Y

i'" ......

4.0
3.0
2.0
1.0

-I..J..

IU

~

60

70

-0.4

~

II I I
120

20

40

60
80
TIMEtn$}

=

0.4

V~"12V ,_

I

V ;-G.OV
A ;2Soc -

;:1.0

~

100

0.2

~ 2.0

TA
80

0

~3.0

5.DmV

:60

-0.2

~

I
2.DmV

I

0

~2.0
~ 1.0

V+= 12V
y- =-6.0V

TIME Ins)

louT"O
TA "25°C

Common Mode Pulse
Response

\I,~

50

40

Y+" 12Y
Y-·-6.0Y

INPUT VOLTAGE (VI

Q-I.D

~ 100

20

I

NEGA~IVJ-

I'

\

2DmV

I.

13

r-...

TA = 25°C

E

~

10

Response Time For
Various Input Overdrives

W

12

II

POSITIYE SUPPLY YOLTAGE (VI

20
30
40
50
TEMPERATURE (OCI

TEMPERATURE (OCI

Response Time For
Various Input Overdrives

-

pbSITivE

I"- r-

o

40°,0

70

Vf>= 12V
V-=-6.0V

Y-=-6.DV

o

60

~-dJl..i;;;ooo ~
''!:,;~ ...... ~

Supply Current

V"" t2V

i'

,

,

1200

Input Offset Current

30

~

~

:>

TEMPERATURE (DC)

Input Bias Current

w

i"'..

800

INPUT VOLTAGE (mV)

....... J'oo..

~I

~

1300

-5.0

,.,J....~ !'-

~ 1600

.....

1400

_I~~-L-L~~~~~

L'2:0C

z 20110

0(

1.0

r2400

IGOO
z

n

Voltage Gain

Voltage Gain

Transfer Function
'.0

:-

25°C
100

~ 0

120

g

~
son

LKl1

vou•

r+f-+-

~

I I I
I I I
80
'0
TIMElnsl

1

I I

120

160

3-51

Voltage Comparators/Buffers
LM711 dual comparator
general description
The LM711 contains two voltage comparators
with separate differential inputs, a common output and provision for strobing each side indepen·
dently. Similar to the LM710, the device features
low offset and thermal drift, a large input voltage
range, low power consumption, fast recovery from
large overloads and compatibility with mos) inte·
grated logic circuits.
With the addition of an external resistor network,
the LM711 can be used as a sense amplifier for
core memories. The input thresholding, combined
with the high gain of. the comparator, eliminates
many of the inaccuracies encountered with con·

ventional sense amplifier designs. Further, it has
the speed and accuracy needed for reliably detect·
ing the outputs of cores as small as 20 mils.

The LM711 is also useful in other applications
where a dual comparator with OR'ed outputs is
required, such as a double·ended limit detector. By
using common circuitry for both halves, the device
can provide high speed with lower power dissipa·
tion than two single comparators. The LM 711 is
available in either an 10·lead low profile TO·5
header or a 1/4" by 1/4" metal flat package.

schematic·· and connection diagrams
r---t----------1~~t_--_.----~--~----------._--~~~,.

"
INPUTS

Nota: Pin 5 alnn.~tedtaClI ••

Order Number LM711 H
See Package 14

typical applications··
Sense Amplifier With Supply Strobing
for Reduced Power Consumption·

Double-Ended Limit Detector
With Lamp Driver

&I.
"

"

INJ55

"

IS'

ZN403!

lMn,

:~~~I:('_"'"",-"
lOS
,,,

Rl

UK

12K

STAOIE

.n

"'"
FADM

sElm
":'

LOWtR
LIMIT
VOLT.lG!

,.
Ali

"Sundby dissipation luboU140 mW.

3-52

UPPER
liMIT
VOLTAGE

.. "Pin connections shown are for metal can.

absolute maximum ratings
Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Strobe Voltage
Internal Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics
PARAMETER
Input Offset Voltage

+14.0V
-r:OV
25mA
±5.0V
±7.0V
o to +6.0V
300mW
·55°C to 125°C
·65°C to 150°C
300°C

(These specifications apply for T A = 25°C, V+ = 12V, V- = -6V)

C9NDITIONS" 1400

II

-3.0

)'12~-

1100

~ 1600

TA.'"7rC

16

-5.0

Voltage Gain

1800

TA-O°Cj;M-

V-· -6.0V

1.0

n

-

v··-uv

~z

."ii:~

T..... 25"C

140

130

"

8 12.
~

~

110
l00~~~~~~~L-L-~~

o

10

20

30

40

50

TEMPERATURE (OC)

60

70

-50

-lD

-10

10

3D

INPUT VOLTAGE (mV)

3·57

~

:;
~

illS

.......

...
...

Voltage Comparatorsl Buffers

~

It)

:!
...I
LM1514/LM1414 dual differential voltage comparator
general description
The LM1514/LM1414 is a dual differential voltage
comparator intended for applications requiring
high accuracy and fast response times. The device
is constructed on a single monolithic silicon chip.
The LM1514/LM1414 is useful as a variable thresh·
old Schmitt trigger, a pulse height discriminator,
a voltage comparator in high·speed A·D converters,
a memory sense amplifier or a high noise immunity
line receiver. The output of the comparator is
compatible with all integrated logic forms. The
LM1514/LM1414 meet or exceed the specifications
for the MC1514/MC1414 and are pin-for-pin replacements. The LM 1514 is available in the ceramic
dual-in-line package. The LM1414 is available in
either the ceramic or molded dual-in-line package.

The LM1514 is specified for operation over the
_55°C to +125°C military temperature range. The
LM 1414 is specified for operation over the O°C
to + 70°C temperature range.

features
• Two totally separate comparators per package
• Independent strobe capability
• High speed 30 ns typ
• Low input offset voltage and current
• High output sink current over temperature
• Output compatible with TTLlDTL logic
• Molded or ceramic dual-in-line package

schematic and connection diagram

Dual·ln-Line Package

. .

OllTf'Ul

ITlIDt£

liD
C1IIII1

+t""Ul

_IMPIIl
,.

Order Number LM1414J or LM1514J

Se. Package 16
Order Number LM1414N
Sea Package 22

3-58

r-

absolute maximum ratings

...s:

(Note 1)

....r:o
"s:r....r:o...
U1

Positive Supply Voltage
Negative Supply Voltage
Peak Output Current
Differential Input Voltage
Input Voltage
Power Dissipation (Note 2)
Operating Temperature Range

+14.0V
-7.0V
10mA
±5.0V
±7.0V
600mW
-55°C to +125°C
O°C to +70°C
-65°C to +150°C
300°C

LM1514
LM1414

Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics
PARAMETER

for TA

= 25°C,

CONOITIONS

Input Offset Voltage

Rs ~ 200n, V CM = av. VOUT = 1.4V

Input Offset Current

V CM

::;

V+
MIN

.r:o

=+12V, V- = -6V, unless otherwise specified
LM1514
TYP

av, V OUT '" 1.4V

MAX

MIN

LM1414
TYP

0.6

2.0

1.0

5.0

mV

3.0

1.2

5.0

~A

20
1250

Output Resistance

25

~A

1000
200

Differential Input Voltage Range

UNITS

0.8

Input Bias Current
Voltage Gain

MAX

200

±5,a

±s.a

±s.a

±5.0

f!
V

Input Voltage Range

V- = -7.0V

Common Mode Rejection Ratio

Rs

Positive Output Voltage

VIN ~7 0 mV, 0

2.5

3.2

2.5

3.2

4.0

V

Negative Output Voltage

VIN $-7 0 mV

-1.0

-0.5

0

-1.0

-0.5

0

V

Strobed Output Voltage

VSTRoeE ~ O.3V

-1.0

-0.5

0

-1.0

-0.5

0

V

Strobe "0" Current

VSTROBE

-1.2

-2.5

-1.2

-2.5

mA

Positive Supply Current

VIN $-7 mV

18

18

mA

Negative Supply Cu~rent

VIN

'5,-7 mV

-14

-14

mA

300

mW

~

200f!. V- = -7.0V

=

'5: lOUT $-5.0 rnA

80

100 mV

Power Consumption

Response Time

180

~ TA ~

As ~ 200n, V OUT = 1.BV for T A = T L
= 1.0V forT A :::; TH

300

180

HI

ns

6.5
6.5
40

45

VCM '" OV. VOUT :::: 1.BV. T A:::; TL
VCM :: OV. VOUT = 1.OV. TA = TH

7.0
3.0

mY. VOUT

~OV

2.8

~A

7.5
7.5

~A
~A

800

1000

Voltage Gain

mV
mV
~VrC

5.0

3.0

VIN $-9.0

dB

30

3.0
3.0

Input Bias Current
Temperature Coefficient of
Input Offset Voltage

Output Sink Current

4.0

V
100

T H (Note 4) unless otherwise specified

VCM =--OV. VOUT

Input Offset.Current

70

30

(Note 31

LM1514/LM1414: The following apply for T L.
Input Offset Voltage

100

4.0

1.6

2.5

mA

Note 1: Voltage values are with respect to network ground terminal. Positive current is defined as current into the referenced
pin.

Note 2: LM1514 ceramic package: The maximum junction temperature is +150°C, for operating at elevated temperatures,
devices must be derated linearly at 12.5 mWfC. LM1414 ceramic package: The maximum junction temperature is +95°e for
operating at elevated temperatures, devices must be derated linearly at 12.5 mWrC. LM1414 molded package: The maximum
junction temperature is +115°C, for operating at elevated temperatures, devices must be derated linearly at 6.7 mw/oe.
Note 3: The response time specified (see definitions) for a 100~mV input step with 5 mV overdrive.
Note 4: For LM1514, TL = -55·C, TH = +125·C. For LM1414, TL = O·C, TH = +70·C.

3-59

S
en

illS

~

Voltage Comparators/Buffers

LM2901 quad comparator
general description
The LM2901 consists of four independent voltage
compatators which were designed specifically for
automotive and industrial control systems. They
operate from a single power supply over a wide
range of voltages and the low power supply current
drain is independent ofthe magnitude of the power
supply voltage. These comparators also have a
unique characteristic in that the input commonmode voltage range includes ground, even though
operated from a single power supply voltage.
Application areas include limit comparators, simple
analog to digital converters; pulse, squarewave and
time delays generators; wide range VCO; MOS
clock timers; multivibrators and high voltage digital
logic gates. The LM2901 was designed to directly
interface with CMOS-where the low power drain
of the LM2901 is a large advantage over standard
comparator products.

•

Compatible with all forms of logic

•

Power drain suitable for battery operation

features
• Wide single supply
2 V DC to 36 VDC
voltage range
• Very low supply current drain (0.8 mAl independent of supply voltage (1 mW/comparator at +5 VDcl
35nA
• Low input biasing current
3nA
• Low input offset current
and offset voltage
3mV
• Input common·mode voltage range includes
ground
• Differential input voltage range equal to the
power supply voltage
1 mV at 5JlA
70 mV at 1 mA

Low output
saturation voltage

advantages

•

•

• Output voltage compatible with CMOS logic
systems

Eliminates need for dual supplies

• Allows sensing near GND

schematic and connection diagrams
v'
Dual~ln-Line

Package

+INPUT
OUTPUT

·'NPUT

O-----.,!---+-_.....J

Order Number LM29D1N
See Package 22

typical applications

(v+ = 5 Vocl

"'' ' 'II

v.

PlCIIU'

TEMPERATURE

tEllUIIIG
THERMOCOUPlE

3-60

...

r-

3:

N
CD

absolute maximum ratings

o

Supply Voltage, V+
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Output Short·Circuit to GND (Note 2)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 60 sec)

36 Voc
36 Voc
-0.3 Voc to +36 Voc
570mW
Continuous
-40° C to +85° C
-65°C to 150°C
300°C

electrical characteristics
PARAMETER

(v+ ~ +5 Voc and TA ~ 25°C unless otherwise noted)

CONDITIONS

MIN

Input Offset Voltage

At Output Switch Point, Vo ~ 1.4 V DC;
VREF = +1.4 Vee and Rs = on

Input Bias Current (Note 3)

I'N(+) or

Input Offset Current

I'N(+) -IINH

IIN(_)

With Output

In

TYP

2

Linear Range

Input Common-Mode Voltage
Range (Note 41
RL

Voltage Gain

R L =15kn

:::

00

25

250

nAoe

±50

mADe

V+-1.5

Vee

Response Time (Note 5)

VR L = 5.0 Vee and R L = 5.1 kn
V1N(_1

Saturation Voltage

V 1N (_) = +1 Voe. V 1N (+) = 0 and I SINK

Output Leakage Current

V1N(+1

= +1

mADe

Vim V

200

Output Sink Current

= +1

mVoc

0.8

On All Comparators

Voe, V 1N (+)

Voe. V 1NH

=0
=

and Vo

1.3

:S + 1.5 Voc
:::

3 rnA

0 and V OUT ::: 5 Voc

6

UNITS

±5
0

Supply Current

MAX

jJ.S

16
200
0.1

mADe

400

mVoc
nAoe

Note 1: For operating at high temperatures, the LM2901 must be derat~d based on a +125° C maximum junction temperature
and a thermal resistance of 175°C/W which applies for the device soldered in a printed circuit board, operating in a still air am·
bient. The low bias dissipation and the ON·OFF characteristic of the outputs keeps the chip dissipation very small
"
(Pd < 100 mW), provided the output transistors are allowed to saturate.
Not; 2: Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output
current is approximately 20 mA independent of the magnitude of V+.
Note 3: The direction of the input current is out of the Ie due to the PNP input stage. This current is essentially constant,
independent of the state of the output so no loading change exists on the reference or input lines.
Note 4: The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than
0.3V. The upper end of the common-mode voltage range is V+ -1.SV, but either or both inputs can go to +30 VOC without
damage.
Note 5: The response time specified is for a 100 mV input step with 5 mV overdrive. For larger overdrive signals 300 ns can be
obtained, see typical performance characteristics section.

3·61

g

o
G)

N

~

typical performance characteristics

-'

Supply Current

c

oS

I-

:i
0:
~

0.1

;'

~

.

0.6

./
0

~

".

10

z

-

ZO

j

I

ZO

0
30

40

0

co

0.1

TA '+Z5'C- t - - -

5ig;

TA -~15'C- t - - -

~

0.01

.J--

.j

I
10

V', SUPPL V VOLTAGE (VDe!

ZO

r-~~~~-4~~~~

Z0 m
; 1-'0+0-m-Hi-I'9:..: .:::.:

=t

v

~

0

~;;

0

~~

-50

~:-.

I-+~~+-f-+-I+-I
11-1

I-I--I--I--+-+-+--+l.+-Il
J -+-

5> -100 HH--+--+-++T =Z5'C~t I-I
0.5

1.0

1.5

Z.O

TIME (.,)

['TA=O"C
TA --40'C-

~v
0.1

I
1

10

100

Response Time for Various
Input Overdrives - Positive
Transition

56r::====-:::::-.:r-r1
~INPUT OVERDRIVE - 100 mV

4~~~+1_~~1;+-ri-t
3
Z

1

t-t-t-t-+-+-+-+-+-+-i

~

10 , OUTPUT SINK CURRENT (mA)

Response Time for Various

6r-ro~5-mV~=~'~NP~UT~O~V~ER~OR~'V"-E'
H--trr1-,r~-:P4-t-li-t
11-1

G

I

.~ V

0.01

V',SUPPLV VOLTAGE (VDe)

5

TA '" +25 C_

0.001
40

30

Input Overdrives - Negative
Transition

4

TA='15'~~

>

I-

!!

1

~
co

40

c
a;

.~

"''"

T.lO·C'

1l

TA 1= +15'C I - - -

0

60

0:

A=.Z5·5,.oo1o-

"::.

TA =IO'C

:i
0:

TA=O"~

..-'f
, -' .....-r

0:

1l

!

I-

/'

1.0

10

10

/~!c-

RL .. ""

1.2

Output Saturation Voltage

I "put Current

H-Hf-HII---I:--<
11*-1--t--l
II 5mV
ZO mV II

': H-:'.,:~ H~"J?o

I IJ

II

0.5

1.5
TIME I.,)

application hints
The LM2901 is a high gain, wide bandwidth
device; which, like most comparators, can easily
oscillate if the output lead is inadvertently allowed
to capacitively couple to the inputs via stray
capacitance, This shows up only during the output voltage transition intervals as the comparator
changes states, Power supply bypassing is not required to solve this problem. Standard PC board
layout is helpful as it reduces stray input-output
coupling. Reducing the input resistors to <10 kn
reduces the feedback signal levels and finally,
adding even a small amount (1 to 10 mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback are
not pos~ible. Simply socketing the IC and attaching resistors to the pins will cause input-output
oscillations ·during the small transition intervals
unless hysteresis is used. If the input signal is a
pulse waveform, with relatively fast rise and fall
times, hysteresis is not required.
All pins of any unused comparators should be
grounded.
Thtt bias network of the LM2901 establishes a
drain current which is independent of the magnitude 'of the power supply voltage over the range of
from 2Voc to 30 Voc.
It is usually unnecessary to use a bypass capacitor
across the power supply line.
3-62

The differential input voltage may be larger than
V+ without damaging the device. Protection should
be provided to prevent the input voltages from
going negative more than -0.3 VDC (at 25°C). An
input clamp diode can be used as shown in the
applications section.
The output of the LM2901 is the uncommitted
collector of a grounded-emitter NPN output transistor. Many collectors can be tied together to provide an output OR'ing function. An output pullup resistor can be connected to any available
power supply voltage within the permitted supply
voltage range and there is no restriction on this
voltage due to the magnitude of the voltage which
is applied to the V+ terminal of the LM2901 package. The output can also be used as a simple SPST
switch to ground (when a pull-up resistor is not
used). The amount of current which the output
device can sink is 'Iimited by the drive available
(which is independent of V+) and the (3 of this
device. When the maximum current limit is
reached (approximately 16 mA), the output transistor will come out of saturation and the output
voltage will rise very rapidly. The output saturation voltage is limited by the approximately 600
rsat of the output transistor. The low offset voltage
of the output transistor (1 m V) allows the output
to clamp essentially to ground level for small load
currents.

typical applications (can't) (v+ =

i

N
CD

15 vocl

g

V·
V·

"

IN914.

112

"

IN'14

'OBK

V;n.s
Vo

V;.rUl.
i"~:'

'.IDOkHI

101,

V.

'2

·FORlARGERATIOSOfRIIR1,
01 CAN IE OM'TTEO

Crystal Controlled Oscillator

Pulse Generator

Squarewave Oscillator

V·

5DUpf
'Vo
FIIEo.UfNCY
CONTROL

~_---..,~D~TPUT'

VOLTAGE
INPUT

M

L..-------------lf-c OUTPUT

V'~+lOV""

+25DmVDC:"Vc<+SOVoc
100 Hz.
v,

"'

"

Low Frequency Op Amp with Offset Adjust

split-supply applications

(v+

Zero Crossing Detector (Single Power Supply)

= +15 Voe

& v-

= -15 Vod

v'

Y,

Zero Crossing Detector

v,

MOS Clock Driver

Comparator With a Negative Reference

3·65

N

o

~

lIJN Voltage Comparators/Buffers
LM3302 quad comparator
general description
The LM3302 consists of four independent voltage
comparators which were designed specifically to operate
from a single power supply over a wide range of voltages.
Operation from split power supplies is also possible and
the low power supply current drain is independent of
the magnitude of the power supply voltage. These
comparators also have a unique characteristic in that the
input common·mode voltage range includes ground, even
though operated from a single power supply voltage.

• Compatible with all forms of logic
• Power drain suitable for battery operation

features
• Wide single supply
Voltage range
2 Vee to 28 Vee
or dual supplies
±1 Vee to ±14 Vee
• Very low supply current drain (0.8 mAl - independent
of supply voltage (1 mW/comparator at +5 Vee!
• Low input biasing current
35 nA
3nA
• Low input offset current
and offset voltage
3mV
• Input common·mode voltage range includes ground
• Differential input voltage range equal to the power
supply voltage
• Low output
1 mV at 5J.LA
saturation voltage
70 mV at 1 mA
• Output voltage compatible with TTL (fanout of 2),
DTL, ECL, MOS and CMOS logic systems

Application areas include limit comparators, simple
analog to digital converters; pulse, squarewave and time
delay generators; wide range VCO; MOS clock timers;
multivibrators and high voltage digital logic gates. The
LM3302 was designed to directly interface with TTL and
CMOS. When operated from both plus and minus power
supplies, the LM3302 will directly interface with MOS
logic-where the low power drain of the LM3302 is a
distinct advantage over standard comparators.

advantages
• Eliminates need for dual supplies
• Allows sensing near GND

schematic and connection diagrams
Dual·ln·Line Package
OUTPUT3 OUTPUH

GND

OUTPUT 2 OUTPUT t

v"

INPUT 4+

IN'U14-

INPUT3+

IN'U13-

+INPUT

OUTPUT

INPUT 1-

INPUT 1+

INPUT 2-

INPUT 2+

rOPVIEW

Order Number LM3302N
See Package 22

typical applications
+&VDC

+5V oc

Y,

10M

Driving TTL

3·66

Driving CMOS

Comparator with Hysteresis

iw

absolute maximum ratings

w

Supply Voltage, V+
Differential Input Voltage
Input Voltage
Power Dissipation (Note 1)
Output Short-Circuit to GND (Note 2)
Input Current (V IN
-0_3 Vocl (Note 3)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

<

electrical characteristics

N

(v+=+5_ov Dcl (Note 4)

PARAMETER
Input Offset Voltage

o

28 V DC or ±14 V DC
28V DC
-0_3 V DC to +28 V DC
570mW
Continuous
50mA
-40°C to +85°C
-65°C to +150°C
300°C

CONDITIONS

MIN

At Output Switch Point, Va 2: 1.4 Voe.

VREF = +1.4 VDC , Rs = on. TA = +25'c
Input Bias Current (Note 51

'INI+) or 'IN(-)

TA

=+2SoC

With Output in Linear Range,

Input Offset Current

'IN(+I - 'INi-l. TA

Input Common-Mode Voltage Range (Note 6)

TA

=

Supply Current

RL

=

Voltage Gain

RL

;:::

Large Signal Response Time

V 1N

VRL

MAX

UNITS

±3

±20

mVoc

25

= +2SoC

±3

o

+2SoC
00

TVP

On All Comparators, TA

= +2SoC

nA DC

±100

nAoc

V+ -1.5
0.8

15 kn. TA = +25'C

500

2

V/mV

30

= TTL

ns

300

Logic Swing, V REF = +1.4 Voe.
=5.0V DC • RL =5.1 kn

VDC
mADC

Response Time (Note 7)

VRL = 5.0 VDC.

1.3

I's

Output Sink Current

V,NH ;:: +1.0 VDC. V,N1.' = O.
VD ::; +1.5 VDC' T A = +25'c

16

mAoc

Saturation Voltage

V,NH ;:: +1.0 VDC. V'N (" = O.
'SINK::;: 4.0 rnA, TA = +2SoC

250

Output Leakage Current

V 1N (+) ~ +1.0 Voe. V 1NH = 0,
VDUT = 5.0 VDC. TA = +25'C

0.1

Input Offset Voltage

At Output Switch Point, Va === 1.4 V DC.

RL

= 5.1 kn. TA =+25'C

500

mVoe

0

nAoc

40

mVoe

VREF = +1.4 VDC' Rs = on
'nput Offset Current

IIN(+) - IINH

±100

"Aoe

Input Bias Current

IIN(+) or IINH With Output in Linear Range

1000

nAoe

Input Common-Mode Voltage Range

0

Saturation Voltage

VINH ~ +1.0 V oc , V 1N (+) = 0,

Output Leakage CUrrent

V 1N (+) ~ +1.0 V oc , V 1NH = 0,

ISINK ::;

4.0

V+ -2.0

VDC

700

mVoc

1

/JAoc

rnA

VDUT = 28 VDC
Differential Input Voltage (Note 8)

Keep All VIN'S;:: 0 VDC (or V-. if used)

Vcc

VDC

Note 1: FDr Dperating at high temperatures, the LM3302 must be derated based on +125' C maximum junction temperature and a thermal
resistance of 175'C/W which applies for the device sDldered in a printed circuit board, operating in a still air ambient.
Note 2: Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately
20 mA independent of the magnitude Df V+_
Note 3: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of
the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition tD this diode action, there is also lateral
NPN parasitic transistor action on the Ie chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level
(or to ground for a large Dverdrive) fDr the time duratiDn that an input is driven negative_ This is not destructive and nDrmal output states will
re-establish when the input vDltage, which was negative, again returns to a value greater than -0_3 VOC.
Note 4: These specifications apply for V+ = +5_0 VOC and -40·C:5 TA :5 +85'C_
Note 5: The directiDn of the input current is out of the IC due tD the PNP input stage_ This current is essentially cDnstant, independent of the state
of the output so no loading change exists on the reference or input lines.
Note 6: The input common-mode vDltage or either input signal voltage should not be allowad to go negative by more then 0_3V_ The upper end of
the common-mode vDltage range is V+ - 1.5V, but either or both inputs can go tD +30 VOC without damage_
Note 7: The response time specified is fDr a 100 mV input step with 5.0 mV overdrive_ For larger Dverdrive signals 300 ns can be obtained, see
typical performance characteristics section.
Note 8: The pDsitive excursions Df the inputs can exceed the power supply voltage level and if the other input voltage remains within the commonmode vDltage range, the comparator will provide a proper output state_ The low input vDltage state must not be less than -0.3 VOC (or 0.3 VOC
below the magnitude of the negative power supply voltage, if used).

3-67

typical performance characteristics
Supply Current
1.0
C

A 0.8

I-

ili
I<
I<

0.&

~

>

~

0.4

I

'2

2!

T~


"~
"~

~

I

0.1

10
20
30
v+ -SUPPLY VOLTAGE (Voc'

0

>

40

f

~

t--

g
!l-

IA~

ill
I<

~

~TA=-55'C

10 -

I

20

T

I 1
0.1
10
1.0
100
OUTPUT SINK CURRENT (mAl

=+125'C~

1 ~..l
1 1

0

Response Time for Various

Input Overdrives - Positive
Transition

6.0
I 5.0 mV - INPUT OVERDRIVE
5.0
.'
4.0
H
~~ 3.0 20,m~
~~
I
'.'2.0
100mV
~
1.0
".,; 0
I I I
~> 0

.,;

<

~1?=
.
.

..

I I I
-It =~5,L
,- i

-50

~> ·100

0

0.5

1.0
1.5
TIME (psoe,

2.0

6
5
4
~~ 3
~::i'
2
~
i:l
1
0
~
::S 100

:l:'
<

I-

C;.!

50

~>

0

> z

TA =+25"C
DT.O';10'C:_

ill

20
10
30
V+ - SUPPLY VOLTAGE (Vocl

Input Overdrives - Negative

I-

~

TA = O'C

Response Time for Various

..

aVoc

T~' -J5'C

40

~

Transition

"A
> z

V1NICMI '"

R1NICMI!l! 1PO

~

!!;

~;r ''-fA o+25'C

0.001 ~
0.01

I
1

60

I-

~ V11

0.01

I

RLi~

OUT JF

-S~TURtTl~

80

TA=+125c~

I<

TA =+125'C- r--

"- 0.2
0

f-

< 1.0
!:i

TA =+10"C

,

-

.."'

_, J.

~

Output Saturation Voltage

Input Currant

lO

TA=-55'~ f-

40

I '\ INPUT OVERDRIVE - 100 mV
f\...
11.
~

5mVl

II
120mV

III
~

r-rl' 15}-.l-.l-.l

!!;

0

0.5

1?II

II

I

".-

'.

'.

1

1
1.5
TIME "".. I

,,"'

-.l
2

application hints
The LM3302 is a high gain, wide bandwidth device;
which, like most comparators, can easily oscillate if the
output lead is inadvertently allowed to capacitively
couple to the inputs via stray capacitance, This shows up
only during the output voltage transition intervals as the
comparator changes states. Power supply bypassing is
not required to solve this problem, Standard PC board
layout is helpful as it reduces stray input-output cou·
piing, Reducing the input resistors to < 10 kn reduces
the feedback signal levels and finally, adding even a
small amount (1 to 10 mV) of positive feedback
(hysteresis) causes such a rapid transition that oscillations due to stray feedback are not possible. Simply
socketing the IIC and attaching resistors to the pins will
cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input
signal is a pulse waveform, with relatively fast rise and
fall times, hysteresis is not required,
All pins of any unused comparators should be grounded.
The bias netwo'rk of the LM3302 establishes a drain
current which is independent of the magnitude of the
power supply voltage over the range of from 2 Vee
to 28 Vee.

It is usually unnecessary to use a bypass capacitor across
the power supply line.

3·68

The differential input voltage may be larger than V+
without damaging the device. Protection should be provided to prevent the input voltages from going negative
more than -Q.3 Vee (at 25°C). An input clamp diode
and input resistor can be used as shown in the applications section.
The output of the LM3302 ,is the uncommitted collector
of a grounded·emitter NPN output ,transistor. Many
collectors can be tied together to provide an output
OR'ing function. An output "pull-up" resistor can be
connected to any available power supply voltage within
the permitted supply voltage range and there is no
restriction on this voltage due to the magnitude of the
voltage which is applied to the V+ terminal of the
LM3302 package. The output can also be used as a
simple SPST switch to ground (when a "pull-up" resistor
is not used). The amount of current which the output
device can sink is limited by the drive available (which
is indepeJident of V+) and the ~ of this device. When the
maximum current limit is reached (approximately 16
rnA), the output transistor will come out of saturation
and the output voltage will rise very rapidly. The output
saturation voltage ~s limited by the approximately 60n
rsat of the output transistor. The low offset voltage of
the output transistor (1 mV) allows the output to clamp
essentially to ground level for small load currents.

r-

3:

typical applications (con't)

w
w
o

N
+15 Voc

+ISV oc
+15VDc

10k

MAGNETIC
PICKUP

Uk

II

Va

Uk
Uk

Av= 100

'Ok

Av =tlDO

Low Frequency Op Amp

Low Frequency Op Amp
(VO = OV for VIN = OVI

Transducer Amplifier

+15V oc

>",,--0 va
V"

Va

Va

STROBE
INPUT

-15V oc

Zero Crossing Detector

• OR lOGIC GATE
WITHOUT PULL-UP RESISTOR

Output Strobing

-15Voc

o

Comparator with a Negative Reference

3-69

r-

3:
..&

Functional Blocks

N
N
.......

r-

3:

N
N
N

LM122/LM222/LM322 precision timer

.......

r-

general description
The LM 122 is a precision timer that offers great
versatility with high accuracy. It operates off
unregulated supplies from 4.5V to 40V while
maintaining constant timing periods from microseconds to hours. Internal logic and regulator cir·
cuits complement the basic timing function enabling the LM122 to operate in many different
applications with a minimum of external com·
ponents.
The output of the timer is a floating transistor
with built in current limiting. It can drive either
ground referred or supply referred loads up to 40V
and 50 mAo The floating nature of this output
makes it ideal for interfacing, lamp or relay driving, and signal conditioning where an open colIp.ctor or emitter is required. A "logic reverse" cir·
cuit can be programmed by the user to make the
output transistor either "on" or "off" during the
timing period.
The trigger input to the LM 122 has a threshold of
1.6V independent of supply voltage, but it is fully
protected against inputs as high as ±40V - even
when using a 5V supply. The circuitry reacts only
to the rising edge of the trigger signal, and is
immune to any trigger voltage during the timing
periods.

3:

with an external source through the VADJ pin.
Timing ratios of 50: 1 can be easily achieved.

W
N
N

The comparator used in the LM 122 utilizes high
gain PNP input transistors to achieve 300 pA typical input bias current over a common mode range
of OV to 3,<. A boost terminal, allows the user to
increase comparator operating current for timing
periods less than 1 ms. This lets the timer operate over a 3Jls to multi-hour timing range with
excellent repeatabil ity.
The LM122 operates over a temperature range of
-55°e to +125°e. An electrically identical LM222
is specified from -25°e to +85°e. The timer is
available in TO-5, flat package, and dual-in-line
packages.

features
•

Immune to changes in trigger voltage during
timing interval

• Timing periods from microseconds to hours
•

Internal logic reversal

•

Immune to power supply ripple or noise during
the timing interval

• Operates from 4.5V to 40V supplies
An internal 3.15V regulator is included in the
timer to reject supply voltage changes and to pro·
vide the user with a convenient reference for applications other than a basic timer. External loads up
to 5 mA can be driven by the regulator. An internal 2V divider between the reference and ground
sets the timing period to 1 Re. The timing period
can be voltage controlled by driving this divider

•

Input protected to ±40V

•

Floating transistor output with internal current
limiting

•

Internal regulated reference

• Timing period can be voltage controlled
• TIL compatible input and output

connection diagrams

Metal Can Package
EMITTER

Flat Package

D.

TRIGGER

,
2

VREF

RIc

4

1

5

,

GNU
GND

EMITTER
COLLECTOR
BOOST

y+
VACJ

TOPVIEW

14 Ne

EMITIER

ID

LOGIC.

1:1 Nt

LOGIC

12 COLLECTOR

TRIGGER

11 SOOST

VREF

RIC

10 V.

GND

NO

VA~

NO

TOPVIEW

TOP VIEW

Order Number LM122H.
LM22H or LM322H
See Package 14

Order Number LM122F

See Package 3

Order Number LM322N
See Package 22

4-1

N
N

absolute maximum ratings

C")

:IE
...J

Power Dissipation
V+ Voltage
Collector Output Voltage
V REF Current
Trigger Voltage
V ADJ Voltage (Forced)
Logic Reverse Voltage
Output Short Circuit Duration (Note 1)
Lead Temperature (Soldering, 10 sec)

.......
N
N
N

:IE
...J

.......
N
N

p-

:IE
...J

LM122/LM222
electrical characteristics
PARAMETERS

500mW
40V
40V
5mA
±40V
5V
5.5V
300°C

(Note 2)

CONDITIONS

Timing Ratio (Note 3)

T A = 25°C, 4.5V :::;; V+ :::;; 40V
Boost Tied to V+

Comparator I nput Current

T A = 25°C, 4.5V :::;; V+ :::;; 40V
Boost Tied to V+

Trigger Voltage

T A = 25°C, 4.5V :::;; V+ :::;; 40V

Trigger Current

T A = 25°C, VTR1G = 2V

Supply Current

T A = 25°C, 4.5V:::;; V+ :::;; 40V

Timing Ratio

4.5V :::;; V+ :::;; 40V
Boost Tied to V+

Comparator Input Current
(Note 4)

4.5V :::;; V+ :::;; 40V
Boost Tied to V+

Trigger Voltage

4.5V :::;; V+ :::;; 40V

Trigger Current

VTR1G = 2.5V

Output Leakage Current

VCE = 40V

Capacitor Saturation Voltage

Rt~l

MIN

TVP

.626
.620

1
100

1.6

2

2.5
.620
.620

V

4

rnA
.644
.644

-5

5
100
.8

2.5
200
1

150

Reference Voltage

TA = 25°C

Reference Regulation

0:::;; lOUT:::;; 3 rnA
4.5V :::;; V+ :::;; 40V

Coliector Saturation Voltage

IL = 8mA
IL = 50 rnA

Emitter Saturation Voltage

IL = 3 rnA
TA = 25°C
IL = 50 rnA

Average Temperature
Coefficient of Timing Ratio
Minimum Trigger Width

VTR1G = 3.0V

3

nA
nA
V

p.A
p.A
mV
mV

2.5
25

Reset Resistance

nA
nA

p.A

25

Mn
Rt = 10kn

UNITS

.638
.644

.3
30
1.2

MAX

.632
.632

n

3.15
20
6

3.3
50
25

.25
.7
1.8
2.1

V

mV
mV

.4
1.4

V
V

2.2
3

V
V

.003

%loC

.25

p.s

Note 1: Continuous output shorts are not allowed. Short circuit duration at ambient temperatures of 40°C may be
calculated from t = 120/VCE seconds, where VeE is the collector to emitter voltage across the output transistor during the
short.

Note 2: Specifications include the temperature range, --5SoC ~ TA ~ +12S"C for the LM122 and -2SoC ~ TA ~ +8SoC for
the LM222.
Note 3: Output pulse width can be calculated from the following equation: t = (Rtl(Ctl [1 - 2(0.632 - rl - VCIVREFl where
r is timing ratio and

Vc

is capacitor saturation voltage. This reduces to t = (Rt)(Ct ) for all but the most critical applications.
> 100Q C) where comparator input current is predominately leakage.

Note 4: Sign reversal may occur at high temperatures (
See typical curves.

4-2

r-

...s::

absolute maximum ratings
Power Dissipation
V+ Voltage

N
N

500 mW
40V
40V
5mA
±40V
5V
5.5V

Collector Output Voltage
V R EF Current
Trigger Voltage
V ADJ Voltage (Forced)
Logic Reverse Voltage
Output Short Circuit Duration (Note 1)
Lead Temperature (Soldering, 10 sec)

.......
r-

s::

N
N
N

.......

r-

s::
W

300°C

N
N

LM322
electrical cha racte rist ics
PARAMETERS

(Note 2)

CONDITIONS

Timing Ratio (Note 3)

T A : 25°C, 4.5V ~ V+ ~ 40V
Boost Tied to V+

Comparator I nput Current

T A: 25°C, 4.5V ~ V+ ~ 40V
Boost Tied to V+

Trigger Voltage

T A: 25°C, 4.5V ~ V+ ~ 40V

Trigger Current

T A: 25°C, V TR1G : 2V

Supply Current

T A: 25°C, 4.5V ~ V+ ~ 40V

Timing Ratio

4.5V ~ V+ ~ 40V
Boost Tied to V+

Comparator I nput Current
(Note 4)

4.5V ~ V+ ~ 40V
Boost Tied to V+

Trigger Voltage

4.5V ~ V+ ~ 40V

Trigger Current

V TR1G : 2.5V

Output Leakage Current

VeE: 40V

Capacitor Saturation Voltage

Rt~l MQ
Rt : 10kQ

MIN

1.2

T A: 25°C
0~louT~3mA

.3

1
100

1.6

2

25

4.5V ~ V+

s: 40V

I L : 8 mA
I L : 50 mA
I L : 3 mA
IL:50mA

2.5

Average Temperature
Coefficient of Timing Ratio

-2

4.5

2
150

.8

2.5

mA

nA
nA
V

200

!1A

5

!1A
mV
mV

91

Q

3.15
20
6

3.3
50
25

V
mV
mV

.7

.4
1.4

V
V

1.8
2.1

2.2
3

V
V

.003
V TR1G :3.0V

V

.654
.654

.25

TA : 25°C

nA
nA

!1A

.610
.610

3

UNITS

.644
.644

150

Reference Regulation

Minimum Trigger Width

MAX

2.5
25

Reference Voltage

Emitter Saturation Voltage

.632
.632
30

Reset Resistance

Collector Saturation Voltage

TYP

.620
.620

.25

%I"c
!1S

Note 1: Continuous output shorts are not allowed. Short circuit duration at ambient temperatures of 40°C may be
calculated from t = 120/VCE seconds, where VeE is the collector to emitter voltage across the output transistor during the
short.
Note 2: Specifications include the temperature range aOc to +70°C for the LM322 unless otherwise noted.
Note 3: Output pulse width can be calculated from the following equation: t = (Rt)(Ctl [1 - 2(0.632 - rI- VCIVREFl where
r is timing ratio and Vc is capacitor saturation voltage. This reduces to t = (RtHC t ) for all but the most critical applications.
Note 4: Sign reversal may occur at high temperatures ( > 70°C) where comparator input current is predominately leakage.
See typical curves.

4-3

N
N
(V)

typical performance characteristics

:iii
...I
......
N
N
N

:iii
...I
......
N
N

...:iii

Comparato~

Comparator Bias Current
.4

I

I

Bias Current

Comparator Bias Currant

5.6
4.8

TA '" -55<>C

30
TA

_55°C

",

25

:1

.2

.
~

l-

i:i

:1
a;

...I

TA-25°C
r-- LTRIGGER
"HI"

3.2

i:i

2.4

I-

\

~

TA = 100"C

:1
a;

"

-.2

1.5 •

•5

~
~=125°C

.8

2.5

I-

TRIGGER "LO"
I-TA~II11/"C

1.6

-.8
-1.6
-2A

-.4

o

TA " 25"C

~

i:i

~ r;.

TRIGGER "HI"
TA= 125°Cr-

COMPARATOR INPUT VOLTAGE (V)

I.S

.5

1l
:1
a;

r- ~

I
o

~

20 -TA=125°C
TRIGGER "HI"
15 -,!!!!!STTIEO TO V'
10

o

2.S

2.S
T)-SSoC

/'

oS

T = 2S"C
TA= 12SoC

I-

~
~

~or

I-

o "-_'-_'-_'----JL----J
16
24
32
o
40

.8
.6

/'

.4

.2

o

l

/P'''

.8

.
..~
I-

i:i

in

I



..,'"
i:i

$
..

TA -12SoC

,;- l-S

i!5

..'"

..'"

80

Q

>

..,'"

-10

5

-16

o

40
20

~

~

-60

-40

:i -80
=
u -100
16

24

V'

(V)

32

40

II

1G

la

101

TA = 12SoC

T... ·ZIi'CWOIISTCASE
r.... 1ZI·cn'"CAL

/<--,-",1V"'--'/U./..._.J.L:
I_.J.J

.1 ..........

I.S

2.S

lOOk

1M

10M

100M

lG

TIMING RESISTOR (n)

Suggested Timing Components
lk

80

-20

i!5

~

4·4

100

!:;

.r~~:~:KELECTADNICS
~-r:-'NGFOFl47~~TIIIIIIIGCAPAC:fOFltMINUTE$'

Reference Regulation

:>

'"

IDS

Timing Error Due to
Comparator Bias Current

SATURATION VOLTAGE (V)

oS

10

65

I

.S

200

15

2S

TEMPERATURE (OC)

'l

~

Reference Regulation

'"~

-16

-SS

~

SATURATION VOLTAGE (mV)

5:
oS

I

o
40

i""'~

r--- t--..

J'/

40

TA = -55<>C

80

~r-

....... ....J

TA = 2SoC

/
80

...... -...J.
..... TYPICAl' ~

WORST CASE "0·

100

120

r-...

I-

TA = -SS"C

oS

WORST CASE "I"

:"'-

~

Characteristics at High Current

I-

l

............

i"'--

or

I
32

I.S

ffi

160

.6

I

Q

>

Collector Output Saturation

I

J-- -j-TA=12SoC

A

24

I

I

~ 125<>e

TRIGGER VOLTAGE (V)

Output Transistor Saturation
Characteristics at Low Currents



"
E~~~~~""

______

'lN_ _ _ _ _- '

v . , , - - - - - - - - - -....- .....---~I-+__+---OK

~c

....---_r-------_+---__1f_+__+-~

'.D-t::::::~::----~---!---JL-~---JL--l--JL-JL~-l--l--l~r:~---l~
TRIGGER

LOGIC

4·5

N
N
CW)

typical applications

:E
..J

......
N
N
N

:E
......

+ZBV

TRIGGER

TRIGGER
INPUT

..J

INPUT

+Vcc

N
N

...:E
..J

~---l

----.J

INPUT

L--L

Basic Timer-Emitter Output and Timing Chart

5V Logic Supply Driving 28V Relay

TRIGGER
INPUT

TRIGGER

INPUT

.,v

1---

18,1

---,

I~I----I

OUTPUT

VREF

r

COLLECTOR

1--....-

Vom

R,

~

c,

--'I
TRIGGER
~
INPUT

Basic Timer..collector Output and Timing Chart

30V Supply I nterfacing to 5V Logic

+Vcc

TRIGGER
lOGIC

BOOST

v+

V REF •

CDLLECTDR,t-. .-

. .- - ,

R,

c,

Time Out On Power Up
Relay Energized Until Rt Ct Seconds After VCC i. Applied

4-6

c,

Time Out On Power Up
Relay Energized R t Ct Seconds After VCC is Applied

typical applications (con't)

tVee
R1
4.1K

C1

.. Vee

_--<.-_">1-_'"

.01

TRIGGER-j
INPUT

1-...

ClOSETD~
START

TRIGGER
LOGIC

51

BOOST

v+

TIMING

....- - - -.....-1 V REf

COLLECTOR

VOUT

R,

END CYCLE
VflEF

75M"

S1--o--'V'h....-I

COLLECTOR

I,-~!-~r-l

RESET

R,

RIC

EMITTER

Your

*Dearborn Electronics lP9A1A476K
polytatbollatc.

C,

One Hour Timer with Reset & Manual Cycle End

Zero Power Dissipation Between Timing Intarva's

RZ
IsDn

V RH

COLLECTORI-----'

lW
V flEF

01
umBO

COLLECTOR

RIC

R3
1.5M

EMITTER
GNO

FAST
RECDVERY

R4

C,
.D03J"F

JK
....__I-_-+__+ .....""'M
...._Vouy t5V
R5
2K

C2
.1

Frequency to Voltage Converter (Tachometer)
Output Independent of Supply Voltage

5V Switching Regulator with 1 Amp
Output and S.5V Minimum Input

C1
.001

-.J 1--.__--,

r:;:l

TRIGGER
INPUT.

--1UUlrul~

RI

tVee

4.7K

I

I
I

I

COllECTOR
R,

RIC

EMITTER

C,

Timer Triggered by Negative Edge of Input Pulse

4-7

typical applications (con"t) "
C1

,01

+Vcc

+15V

--.J 1---1.....- - - ,

TRIGGER
INPUT!

V'
VOUT

VREF

VOUT (±15V)

COLLECTOR

R,

....-4.....- - - -. .- - 4....-- 15V
·Eminer terminal or emitter load must
b.tiedto"GND"pinaftimlf.

Operating off ±15V Supplies·

Comparator with OV to 3V Threshold

VOUT(21

VOUTIH

TRIGGER
INPUT

---,

+Vcc

r..L-- l

.,&:-,
- ,

r

I-

J

c'...,

u
~

11

OUTPUT 1

TFUGGER INPUT

OUTPU13

Lr

LJ

nL..____

Chain of Timers and Timing Chart

- v."''''

I

'-,

...L L_-T.J

C,

4·8

I

,R,

-I
I,

R,

rl
+Vcc

I

I
I

Functional Blocks

~

U'I
U'I
U'I

general description
The LM555 is a highly stable device for generating
accurate time delays or oscillation. Additional terminals
are provided for triggering or resetting if desired. In the
time delay mode of operation, the time is precisely con·
trolled by one external resistor and capacitor. For astable
operation as an oscillator, the free running frequency and
duty cycle are accurately controlled with two external
resistors and one capacitor. The circuit may be triggered
and reset on falling waveforms, and the output circuit
can source or sink up to 200 mA or drive TTL circuits.

features
• Direct replacement for SE555/NE555
• Timing from microseconds through hours
• Operates in both astable and monostable modes

•
•
•
•
•

Adjustable duty cycle
Output can source or sink 200 mA
Output and supply TTL compatible
Temperature stability better than 0.005% per
Normally on and normally off output

n
°c

applications
•
•
•
•
•
•
•

Precision timing
Pulse generation
Sequential timing
Time delay generation
Pulse width modulation
Pulse position modulation
Linear ramp generator

schematic diagram
8

V~O---------~~r-------~------~~----------------------~------~~~----,
Rl1
Q22

RJ
5k

6.2k

R&
Uk

&

THRESHOLD

R"
5k

1

_--~r-o() OUTPUT

GND

TRIGGER

2

R5
5k

DISCHARGE

7

connection diagrams
Dual-In-Line Package

Metal Can Package
+Vcc

GND

TRIGGER

OUTPUT

RESET
RESET
TOP VIEW

U'I
U'I
U'I
........

r-

LM555/LM555C timer

CONTROL 5
VOLTAGE

r~

TOPYIEW

Order Number LM555H or LM555CH

Order Number LM555CN

See Package 11

See Package 20

4·9

absolute maximum ratings
Supply Voltage

+18V

Power Dissipation (Note 1)

600mW

Operating Temperature Ranges
O°C to +70°C

LM555C

-55°C to +125°C

LM555

--65°C to +150°C

Storage Temperature Range

300°C

Lead Temperature (Soldering. 10 seconds)

electrical characteristics

(T A

=25°C, Vee =+5V to +15V, unless otherwise specified)
LIMITS

PARAMETER

CONDITIONS

LM555
MIN

Supply Voltage
Supply Current

4.5
Vee =5V, RL =00
Vee = 15V, RL =~
(Low State) (Note 2)

Timing Error, Monostable
Initial Accuracy

Drift with Temperature

TYP

RA • RB = lk to 100 k,
e = O.I/JF. (Note 3)

Accuracy over Temperature
Drift with Supply

LM555C
MAX

MIN

18

4.5

UNITS

TYP

MAX
16

V

6
15

mA
mA

3
10

5
12

3
10

0.5
30

2

1
50

-1.5
0.05
-

3.0
0.2-

1.5
0.1

%
ppm/oC
%
%IV

Timing Error, Astable

Initial Accuracy
Drift with Temperature

1.5
90
2.5
0.15

Accuracy over Temperature
Drift with Supply

Threshold Voltage

Trigger Voltage

0.667
Vee = 16V
Vee = 5V

4.8
1.45

5
1.67

0.4

0.5

Trigger Current

Reset Current
(Note 4)

Control Voltage Level

Vee = 15V
Vee = 5V

9.6
2.9

Pin 7 Leakage Output High

Output Voltage Drop (Low)

Output Voltage Drop (High)

Vee = 15V, I, = 15 mA
Vee = 4.5V. I, = 4.5 mA

0.4

IsouAeE = 200 mA, Vee = 15V
IsouAeE = 100 mAo Vee = 15V
Vee = 5V

x Vee
V
V
/JA

0.5

1

0.1

0.1

0.25

10
3.33

10.4
3.8

1

100

9
2.6

150
70

Vee = 15V
ISINK = 10 rnA
ISINK = 50 mA
ISINK = 100 mA
ISINK = 200 mA
Vee = 5V
ISINK =8 mA
ISINK = 5 rnA

0.667

0.5
1

0.1

Threshold Current

%
ppml"C
%
%IV

5
1.67

0.5

Reset Voltage

Pin 7 Sat (Note 5)
Output Low
Output Low

5.2
1.9

2.25.
150
3.0
0.30

0.1

0.25

10
3.33

11
4

1

100

180
80

0.1
0.4
2
2.5

0.15
0.5
2.2

0.1

0.25

0.1
0.4

2

12.5
13.3
3.3

12.75
2.75

/JA
V
V
nA
mV
mV

0.25
0.75
2.5

2.5

0.25
13
3

V
mA

0.35

V
V
V
V
V
V

12.5
13.3
3.3

V
V
V

Rise Time of Output

100

100

ns

Fall Time of Output

100

100

ns

Note 1: For operating at elevated temperatures the device must be derated based on a +150°C maximum junction temperature and a thermal
resistance of +45°elW junction to case for TO·5 and +150o elW junction to ambient for both packages.
Note 2: Supply current when output high typie~IIY 1 mA less at Vee = 5V.
Note 3: Tested at Vee = 5V and Vee = 15V.
Note 4: .This will determine the maximum value of RA + RS for 15V operation. The maximum total (RA + RS) is 20 MO.
Note 5: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

4·10

~

typical performance characteristics

~

=
....

"j;
~
w

!!i

"Z;;;

High Output Voltage vs

Supply Current vs
Supply Voltage

Minimum Pulse Width
Required for Triggering

Output Source Current

12

1.2
1.1
1.0
0.9
D.B
0.1
0.6
D.S
0.4
0.3
0.2
0.1

Vee = 15V

I.B
10

T =+125°C

-SS'C

".s::i....

'-J...Ij

.
~

TO+~S!C __

~

.....~

::;

~

~P'

UI
UI
UI

......

1.6
1.4

~

J

+25°C

~~ V +125°C

1.2

I

D.B

J

0.6

-'U-~~'C

-

-

......

,....

~

UI
UI
UI

TA =+25°C

./

1 I

n

TA '" +125°C

0.4

TjoiSn

0.2

SV~Vee ~ ISV

o
0.1

0.2

S

0.4

O.l

IS

10

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE (X Vecl

10

SUPPLY VOLTAGE (V)

'SOURCE

Low Output Voltage vs

Low Output Voltage vs

Low Output Voltage vs

Output Sink Current

Output Sink Current

Output Sink Current
10

10
Vee -lOV

Vee" 5V

10mmi

11

-SS'C

I'O~.
~
+12S'C;f9

0.1

0.01

2S'C

I

~

-I-

~

0.01

.....

I

T :+25°C

Vee;; 5.0V

~

:;"

&

~ 400·

~

"
If

"">

1/
1/1/

~I'

;::

Vee;; lOV, 15V

200

o

"~"
"
If

I
o

0.1

0.2

Discharge Transistor (Pin 7)
Voltage vs Sink Current

'I

+lO'c..L
BOO
600

. . .W

~

J

0.1

10

"'"IO'IC

ISSi C I

o

lOU

0:

VIlV

200

o

2

+2~'cIL

400

0.3

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE (X Vecl

100

1000

"" 1000

BOO

10
ISiNK (mA)

~Iis,b

Vee"" 15V

1000

~~

~
1.0

Voltage Level of Trigger Pulse
1200

600

0.01
100

Output Propagation Delay vs

1200

~

1+21'C

0.1

ISINK (mA)

Output Propagation Delay vs
Voltage Level of Trigger Pulse

"z
";::

-

>

SS'C

10

ISINK (mA)

>

~

+2S'C~~

1.0

~ +12S'C

~

0.1

100

I II

1.0

+125°C

5

II
10

:=Vc.e °ISV

I

1.0

~
~

III~,-ss~l'c
1.0

]

100
(mA)

0.2

1.0 Ll..LWWLl..llJ.WIL.....LJ.llWlL.J...L

0.01

O.l

LOWEST VOLTAGE LEVEL OF TRIGGER PULSE IX Vecl

0.1

1.0

10

100

ISINK (mA) PIN 7

Discharge Transistor (Pin 7)

Voltage vs Sink Current
1000

~

z

§~~~I

100

0:

S

.s
~
::

10

0.1

1.0

10

100

ISINK (mA) PIN 1

4-11

(,)
It)
It)
It)

applications information

:E
.....

MONOSTABLE OPERATION

.......
It)
It)
It)

:E
.....

100

In this mode of operation, the timer functions as a
one-shot (Figure 1). The external capacitor is initially
held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 Vcc
to pin 2, the flip·flop is set which both releases the short
circuit across the capacitor and drives the output high.

10

~

~

~

"cz

1

f

0.1

~

!:

3
I

"

0.01

~---~R'~S'~T--t~'~'V~T~D~"~'V~~-o~~

r--

I
!
~g:~t~~~ t

TRIGGER

R,

"0=-

4

I
NORMALLY
"OFF" LOAD

... - TIME DELAY
8

DISCHARGE

7
LM555

Ii

CONTROL

3

~

FIGURE 3. Time Delay
THRESHOLD

'fj:'-'--c

OUTPUT

~RL

~

1O,us 1OOps lmslDmsl00msls 10. laOs

RA

2

I

I I VI
I
~II
-~;
",'" ..}(I V
V
~ +'"
r- VI17f
VI VV

L---j-'----'

P.01,~'

multivibrator. The external capacitor charges through
RA + RB and discharges through RB. Thus the duty
cycle may be precisely set by the ratio of these two
resistors.

r-------....-----4~-O+vcc
I

I

FIGURE 1. Monostable

I
I

The voltage across the capacitor then increases exponentially for a period of t = 1.1 RAe, at the end of which
time the voltage equals 2/3 Vee. The comparator then
resets the flip·flop which in turn discharges the capacitor
and drives the output to its low state. Figure 2 shows
the waveforms generated in thi~ mode of operation.
Since the charge and the threshold level of the comparator are both directly proportional to supply voltage,
the timing internal is independent of supply.

II

I

~R'

'-- 2

_r•

RA
I

.

7

I

I

lM55&

I

I

3

~R'

I

•

'D-

-·'-c

,J'

""F01

II

FIGURE 4. Astable

In this mode of operation, the capacitor charges and
discharges between 1/3 Vcc and 2/3 Vcc. As in the
triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

1/

I

1/
Vee ·5V
TIME = 0.1 ms/DIV.
R" -'.Ikn

Top Tnu: InP\rt5V!Dlv.

Figure 5 shows the waveforms generated in this mode

of operation.

Mlddll Tnce: Output 5V/Div.
Bottom Tr.e: Clpaator Voitall' 2V/Olv.

C=O.O.pF

u

FIGURE 2. Monostabla Waveforms

During the timing cycle when the output is high, the
further application of a trigger pulse will not effect the
circuit. However the circuit can be reset during this time
by the application of a negative pulse to the reset
terminal (pin 4). The output will then remain in the low
state until a trigger pulse is again applied.

v

When the reset function is not in use, it is recommended
that it be connected to Vee to avoid any possibility of
false triggering.

v

I\, /

1\

v

Vee" 5V

Top TBee: Oltpllt IiV/O...

TIME .. 21Ji,11iDIV.
R..... 3.1 tn
II. -3 kn
C-UlpF

Battom Tr_: C.paitlr VoltlllllV/O".

FIGURE 5. Astable Waveforms

values for various time delays.

The charge time (output high) is given by:
t, = 0.693 (R A + RB ) C

ASTABLE OPERATION

And the discharge time (output low) by:
t2 = 0.693 (Rs) C

Figure 3 is a nomograph for easy determination of R, C

If the circuit is connected as shown in Figure 4 (pins 2
and 6 connected) it will trigger itself and free run as a
4·12

Thus the total period is:
T

=t, + t2 =0.693 (R A + 2R B) C

s:r-UI

applications information (con't)

UI

UI
.....
r-

The frequency of oscillation is:

1

v

1.44

f=-=---T (R A + 2 RB ) C

s:UI

I'-.

Figure 6 may be used for quick determination of these
RC values.

r Ir h

RB
0=-"""::'RA + 2RB

The duty cycle is:

r-..

I
I

II
II

10

n

~n

11

II H
II ~ I

Vee" 5V
TIME = 0.2 mS/DIV.
Ro\, =9.1 ku
C"D.OI,uF

100

UI
UI

n

II

Tap Trw: Mudulatlon IV/Dlv.
Banom TrIC': Dutput2VJDIY.

FIGURE 9. Pulse Width Modulator
~

~
c::;

D.'

I
u

0.01

~

PULSE POSITION MODULATOR

0.001
0.1

10

100

lk

10k

lOOk

1- FREE·RUNNING FREQUENCY (Hz)

FIGURE 6. Free Running Frequency

FREQUENCY DIVIDER

This application uses the· timer connected for astable
operation, as in Figure 10, with a modulating signal
again applied to the control voltage terminal. The pulse
position varies with the modulating signal, since the
threshold voltage and hence the time delay is varied.
Figure 11 shows the waveforms generated for a triangle
wave modulation signal.

The monostable circuit of Figure 1 can be used as a
frequency divider by adjusting the length of the timing
cycle. Figure 7 shows the waveforms generated in a
divide by three circuit.

II

II

fl

fl

II

II

u

...--...- - - - - - 4 1 > - 0 +Vcc
RA

II

u

R.

'"'

r- e-e-

MODULATION
OUTPUT

--

f-.......

Vcc· SV
TIME " 2IJ,.!siDIV.

R,."9.1 kn
C=O.DI,.F

,......

TapTrace:lnput4VJDI,.
M,ddleT'ICI:Dutput2V/D".
BoltomT'Ic:e:C.pKlto,2VIDlv.

FIGURE 10. Pulse Position Modulator

FIGURE 7. Frequency Divider

PULSE WIDTH MODULATOR
When' the timer is connected in the monostable mode
and triggered with a continuous pulse train, the output
pulse width can be modulated by a signal applied to pin
5. Figure 8 shows the circuit, and in Figure g are some
.......
waveform examples.
, -.....- - - -...-o+vcc
RA
7 DISCHARGE

TRIGGER

lM555

,/

I--..

v-

........ ./

"-

........

hrlr-Innllniinll~
~~
II
II II lIT ill
II

UlIllIlII

Vee ·5V
TIME = 0.1 ms/DIV.
RA -J.9kn
RB =3kn
C"'o'01,uF

Top Trac.: Modulation Input IV/DI,.
Bottom Trice: Output2V/DIv.

THRESHOLD

MODULATION

FIGURE 11. Pulse Position Modulator

INPUT
OUTPUT

LINEAR RAMP
FIGURE B. Pulse Width Modulator

When the pullup resistor, RA , in the monostable circuit
is replaced by a constant current source, a linear ramp is

4·13

applications information (con't)
generated. Figure 12 shows a circuit configuration that
will perform th is function.

put high is the same as previous, t, = 0.693 RA C.
For the output low it is t2 =

I-~T""-"";V="'--s-"'-+--O'V"

r-

· · 'J EQU'V

TRIGGERo-- 2:

RE

AI

ZNUSO

DR

LM&55

6

'IJ- 1, "'

DUTPUTo-- 3

L..--.-'iI ---'

1

Thus the frequency of oscillation is f;' - - t, + t2

r---.-----....-o.V"

r

I

-r;:OI'~'

1....J

,--_..-1
""'-+-

~

R.

R.

m

m
, t--t-o'IfIf'r"

FIGURE 12.
LM555

Figure 13 shows waveforms generated by the linear ramp.
QUTPUTo-- 3

The time interval is given by:

T=

2/3 Vee Re (R, + R2 ) C

--"-~'::"--'-----:'--

R, Vee -Vee (R, + R2 )
Vee"" 0.6V

./
Rl "47 kn
R2 -IDOkU
RE = 2.1 kll
C=O.OIJ1f

./
TopTnce:lnput3V10".
MlddltTllc!:Output5V/DIV.
Bonum Trice: ClplCltor Voltl. IV/O".

FIGURE 13. Line.r Ramp

50% DUTY CYCLE OSCILLATOR
For a 50% duty cycle, the resistors RA and Re may be
connected as in Figure 14. The time period for the out-

4-14

., '1-1- ,,;:rI ~.OM.

L--'-i1r---' T

0.01"

~
FIGURE 14. 50% Duty Cycle Oscillator

Note that this circuit will not oscillate if R e is greater
than 1/2 RA because the junction of RA and Re cannot
bring pin 2 down to 1/3 Vee and trigger the lower
comparator.

I

Vcc=5V
TIME = 2141s/DIV.

61-+--"

ADDITIONAL INFORMATION
Adequate power supply bypassing is necessary to protect
associated circuitry. Minimum recommended is O.l~F in
parallel with l~F electrolytic.
Lower comparator storage time can be as long as 10~s
when pin 2 is driven fully to ground for triggering. This
limits the monostable pulse width to 10~s minimum.
Delay time reset to output is 0.47~s typical. Minimum
reset pu Ise width must be 0.3/ls, typical.
Pin 7 current switches within 30 ns of the output
(pin 3) voltage.

r-

s:N

Functional Blocks

CD

o

U'I

"s:
W
r-

LM2905/LM3905 precision timer
general description
The LM3905 is a precision timer that offers great
versatility with high accuracy. It operates off
unregulated supplies from 4.5V to 40V while
maintaining constant timing periods from milliseconds to hours. Internal logic and regulator circuits complement the basic timing function enabling the LM3905 to operate in many different
applications with a minimum of external components.
The output of the timer is a floating transistor
with built in current limiting. It can drive either
ground referred or supply referred loads up to 40V
and 50 mAo The floating nature of this output
makes it ideal for interfacing, lamp or relay driving, and signal conditioning where an open col·
Ip.ctor or emitter is required. A "logic reverse" cir·
cuit can be programmed by the user to make the
output transistor either "on" or "off" during the
timing period.
The trigger input to the LM3905 has a threshold of
1.6V independent of supply voltage, but it is fully
protected against inputs as high as ±40V - even
when using a 5V supply. The circuitry reacts only
to the rising edge of the trigger signal, and is
immune to any trigger voltage during the timing
periods.

typical applications

CD

o

An internal 3.15V regulator is included in the
timer to reject supply voltage changes and to provide the user with a convenient reference for applications other than a basic timer. External loads up
to 5 mA can be driven by the regulator. An internal 2V divider between the reference and ground
sets the timing period to 1 RG.

U'I

The comparator used in the LM3905 utilizes high
gain PNP input transistors to achieve 300 pA typical input bias current over a common mode range
of OV to 3V.

features
•

Immune to changes in trigger voltage during
timing interval

• Timing periods from milliseconds to hours
•

Internal logic reversal

•

Immune to power supply ripple or noise during
the timing interval

•

Operates from 4.5V to 40V supplies

•

Input protected to ±40V

•

Floating transistor output with internal current
limiting

•

Internal regulated reference

• TTL compatible input and output

connection diagram
Dual·1 n-line Package

+Vcc

,.e--

r-!

.

-:!:-.

-

TRIGGER

OUTl'UT
LOGIC TIED TO VRfF

lOGIC

~ VRH

COLLECTOR -

TRIGGER...!

!--(R (&,)---\

u

~LOGIC

t)

rL-EMITTER

OUTPUT
lOGIC TIED TO GNO

R,

LCOLLECTOR

~---l

---1

INPUT

L-L

ONO...!
TOP VIEW

Basic Timer-Emitter Output and Timing Chart

Order Number LM2905N or LM3905N
See Package 20

4-15

It)

o
en
M
.:2:

absolute maximum ratings
Power Dissipation
V+ Voltage
Collector Output Voltage
V REF Current
Trigger Voltage
Logic ReversE! Voltage
Output Short Circuit Duration (Note 1)
Lead Temperature (Soldering, 10 sec)

...I
.....
It)

o

en
N

:2:
,...I

500mW
40V
40V
5mA
±40V
5.5V

LM2905/LM3905
electrical characteristics
PARAMETERS
Timing Ratio (Note 3)

(Note 21

CONDITIONS

MIN

Comparator I nput Current

T A = 25°C, 4.5V::;; V' ::;: 40V

Trigger Voltage

T A = 25°C, 4.5V ::;; V' ::;; 40V

Trigger Current

T A = 25°C, V TR1G = 2V

Supply Current

'T A = 25°C, 4.5V :5: V' :5: 40V

Timing Ratio

4.5V :5: V+ :5: 40V

Comparator Input Current
(Note 4)

4.5V :5: V+ :5: 40V

Trigger Voltage

4.5V:5: V+ ::;: 40V

Trigger Current

V TR1G = 2.5V

Output Leakage Current

V CE = 40V

Capacitor Saturation Voltage

Rt~l

1.2

.3

1

1.6

2

2.5

V

4.5

2

.8

2.5
200
5
2.5
25

Reference Regulation

0:5:louT:5:3mA
4.5V :5: V· 40V

Collector Saturation Voltage

IL = 8 mA
IL = 50mA

Emitter Saturation Voltage

IL=3mA
IL = 50mA

Average Temperature
Coefficient of Timing Ratio
V TR1G = 2.5V

3.3
50
25

.25
.7
TA=250C

V
/lA
/lA

n

3.15
20
6

<

nA

mV
mV

150

3

mA

.654

-2

T A = 25°C

nA

/lA

.610

Mn

UNITS

.644

25

Rt = 10 kn

Minimum Trigger Width,

MAX

.632

Reset Resistance
Reference Voltage

TYP

T A = 25°C, 4.5V ::;: V' ::;: 40V

1.8
2.1

V
mV
mV

.4
1.4

V
V

2.2
3

V
V

.003

%/oC

.25

/lS

Note 1: Continuous output shorts are not allowed. Short circuit duration at ambient temperatures of 40°C may be
calculated from t = 50/VeE seconds, where VeE is the collector to emitter voltage across the output transistor during the

short.

Not. 2: Specifications include the temperature range -40°C ~ TA ~ +8SoC for the LM290S and O"c ~ TA ~ +70°C for the
LM390S unless otherwise noted.
Not. 3: Output pulse width can be calculated from the following equation: t = (R t )(C r l[l - 2(0.632 - r) - VCIVREFl where
r is timing ratio 'and Vc is capacitor saturation voltage. This reduces to t = (Rt)(Ct) for all but the most critical applications.
Note 4: Sign reversal may occur at high temperatures (
typical curves.

4·16

> 70°C)

where comparator input current is predominately leakage. See

r-

s:

typical performance characteristics

N
CD

o

.4

;;

.2

oS

TA"'-55°C

4.a
;;

l

TA"2SOC

f- TRIGGER "HI"

>-

~

TA '" 100

0

e

~

iO

3.2

I"

2.4

>-

::i

1\
f'..,

-.2

;;

oS

.3

>-

TRIGGER "LO"
1.6 I- fA ~ 100"C I
TA " 125"C\

~

.a

iO

0

-2.4
.5

1.5

2.5

COMPARATOR INPUT VOLTAGE IV)

-

1.5

.5

z

0:

~

......
o

I

.s
>-

~
~

'""'
'"'"
ii:
>24

16

32

f--

;;

'"0;z

Trigger Threshold

~

.6

>

~>
'"

;; 120

TTA" 125"C

.s

I

>-

J

I

I /

I

o

~

TA"25'C

I

I

I
'L

'"

ao

0;

40

TA" -55"C

-55

40

.......

:::::r

r-... ...... TYPI,~lS
~
~

....... ....J

....... 1-...

120

160

.5

200

10

j~~
TA

~ i-

"

125°C

-5

w
u

::i

~

'"

!!!

40
20
0
-20
-40

-15

'"u -100-2

24

32

~rllll$GF~RU~FTIMI.GCA'AC,lTaRIIII$Ulnl
It

40

II

5GII

/
fA:;

125"C

.1 L--..l:J'IL-LLL/_...lL_.l..J
100M
lG
1M
tOM
tOOk

2.5

1.5

TIMING RESISTOR (n)

Suggested Timing Components
lk

-80

S
g;

I

0-.."

...;;;

10

10k

60

'" ...0

V" IV)

r'~~~~A:"E~~~~.ru""''';;;''';;;''1'~~~~~~

80

-10

:i

105

TA = 25°C

Reference Regulation

co
>

65

Timing Error Due to

SATURATION VOLTAGE IV)

.s
"S'"

25

Comparator Bias Current

;;: 100

16

-15

f' t-.....

TEMPERATURE I"C)

'f

V
aD

32

/, /
h/
V

z

/
/

40

24

100

w

'"z

I
WO RST CASE "1"

WORST CASE "0"

TA = -55"C

!!!

"0

....... t-.....

160

I

u

$

1.5

Collector Output Saturation
Characteristics at High Current

,

15

::i

...... 1---.

I"-

>-

.2

Reference Regulation

;;:

r-..

'"w
'"ii:
'"

.4

SATURATION VOLTAGE 'mV)

.s
'"

2.5

w

16

::i

.4

o

I

LOGIC PIN VOLTAGE IV)

"'"

40

.6

.2

I
o

TRIGGER VOLTAGE IV)

I
I

I
II

.a

~
~

Rr =VyF

1
o

U1

1 1

2

Output Transistor Saturation
Characteristics at Low Currents

>-

-100

2.5

.8

V" IV)

.s

V

TA = 25°C

-200

;;
TA-125'C

o

I

TRIGGER "HI"
-50

Trigger Input Characteristics

T " 25"C

W
CD

V RIC =0

I

-150

1.2 , - - , - - , - - , , - - , - - - ,

o

I

50

COMPARATOR INPUT VOLTAGE IV)

Supply Current

s:

THRESHOLO FOR
1
1
150 ~ OUTPUT SWITCHING 1
1
1150 mV TYPICAL
100
TRIGGER "LO"

u

'I

-.a

-.4

TRIGGER "HI"
TA"125'C"'-

~~

-1.6

I

r-

200

5.6

I

U1

......

Logic Pin Characteristics

Comparator Bias Current

Comparator Bias Current

i§
~
1::

lOOk

I;;

.........

ill
~25"C_

-1""'" ~

TA - 25"C
TA

;;

-55"C

'"

OUTPUT CURRENT ImA)

.

'"'";;

0.1

1M
10M

0.01

100M

0,001

>=

~

~

0.0001

lG
100

10M

10k

TlMEbec)

4-17

schematic diagram
COLLECTOR
OUTPUT

y'

RJ4

R2I
JQO

E~~~~~""

______WI.-_ _ _---'

VIlEF-----------.---1~---<~+__+-t_-+_---...jf__-__+---._.....-F_..!!~-....

"'c:....---+---------4----I-+-+-I-r-;

AI
5K

GND'-l~::::~::~---~---l....--L-~---....l-....l--JL-JL--l........l-....)-~~--....l....J
TRIGGER

lOGIC

typical applications(con't)

+Vcc

R1
4.7K

C1

01

01
TRIGGER-----.J

INPurl

1-...---1....-

+Vcc

IN457

...01--..

CLOSETD~
START

TRIGGER
LOGIC

51

V'

TIMING

R,
VREF

V'

VOUT

R,
END CYCLE

VREF

COLLECTOR

RIC

52

COLLECTOR

15Mu

RESET

R,

RIC

EMITTER

YOUT

C,

Zero Power Dissipation BetwBen Timing Intervals

4·18

*Dearborn Electronics LpgA1A476K
polvcarbonate.

One Hour Timer with Reset & Manual Cycle End

r-

s:

typical applications (con't)

N
CD

o

U1

........

r-

s:
w

CI
01

TRIGGER~ f-+-----,
INPUT

·Z8V

TRIGGER
INPUT

I

CD

o

'5V

U1
V'

VRH

COLLECTOR

VOUT ('15V)

R,
·Emiltelt~rminal

oremitlerloadmllst

betiedto"GNO"
pmoftlmer.

C,
L-~~

_ _ _ _""_"""~__ 15V

SV Logic Supply Driving 28V Relay

Operating off ±15V Supplies*

TRIGGER

TRIGGER
INPUT

INPUT

TRIGGER
lOGIC

'5V

VAH

VOUT

COllECTORI--....- VOUT

R,

c,

~---l
--..JINPUT~

Basic Timer-Collector Output and Timing Chart

30V Supply Interfacing to 5V Logic

+Vee
+Vee
TRIGGER
lOGIC

VAH

v·

CDllECTORI-....-

. . .-.J

R,

c,

Time Out On Power Up
Relay Energized Until R t Ct Seconds After

Vee is Applied

Time Out On Power Up
Relay Energized Rt Ct Seconds After Vee is Applied

4-19

typical applications (con't)

V O UTI21

V OUTC "

L....J
jl

LJ

OUTPUT I

nL-____

TRIGGER INPUT

Chain of Timers and Timing Chart

C1
001

---lo

TRIGGER ~
INPUT!

UUII'UI

L-

1---11>--,
RI

+Vee

4.1K

I
I
I

lOGIC

V'

I

VRH

COLLECTOR

R,

c,

Timer Triggered by Negative Edge of Input Pulse

4-20

VOUT

r-

s:
....
......

Consumer Circuits

o

.......

r-

s:

LM170/LM270/LM370 agc/squelch amplifier

II.)

......

general description

o

.......

The LM170 is a direct coupled monolithfc amplifier whose voltage gain is controlled by an external
DC voltage. The device features:

• Sensitive squelch threshold set by single external resistor.

r-

• Large Gain Control Range

In addition to communication system squelch and
AGC applications, the LM 170 'is useful as con·
stant·amplitude audio oscillator, linear low fre·
quency modulator, single·sideband automatic load
control, and as a variable DC gain element in
analog computation.

o

• Self·contained AGC/Squelch system, with fast·
attack, slow·release.
• Low Distortion
• Minimum DC output shift as gain is varied
• Differential inputs, with large common-mode
input range
• Outputs of several amplifiers may be directly
summed in multichannel systems.
• Dissipates only 18 mW from +4.5V supply,
usable with supply up to +24V.

s:W

......

The LM 170 is specified for operation over the
_55 DC to +125 DC military temperature range. The
LM270 is specified for operation over the _25 DC
to + 75°C temperature range. The LM370 is speci·
fied for operation over the ODC to +70 DC tempera·
ture range.

schematic** and connection diagrams,

....-t-+....

o

-QOUT

Order Number LM170H
or LM270H or LM370H
See Package 14

Order Number LM370N
See Package 22

typical applications**
AGe Using Built-in Detection, Driven By Additional

Squelched Preamplifier with Hysteresis

System Gain

, - - . - - - - - -. .--.uv

,----~t---~t--.1ZV

0I'J2T

"

A... • uti

""

our

CHA"GIIIIG

RESISTOR

OUT

DI~F

'"

......M..-..c!'"

Squelch Threshold

2Dlm

AGCthreshold.

c~~~~

ISHORTTD GROUIilD TO
DEFEA' HYSTERESIS)

I

+
ShF

-=

""Pin Cllnnections shown ara'or metal can,

5·'

o

":!E
C")

absolute maximum ratings

...I

Supply Voltage
Storage Temperature
Operating Temperature LM 170
LM270
LM370
Differential Input Voltage
Common-mode Input Voltage
Output Short Circuit Duration
Voltage applied to Pin 3 or 4
Voltage applied to Pin 2
Surge power into Pin 6 (1 second max.)
Continuous power into Pin 6

........

o

":!E
N

...I

........

o

"...:!E
...I

electrical characteristics
PARAMETER

24V
-65°C to +150°C
-55°C to +125°C
-25°C to +75°C
O°C to +70°C
±19.5V
(Vee + O.4)V
Indefinite
+6.0V
+12.0V
1000 mW
100mW

(Note 1)

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

DC CHARACTERISTICS

DC Output Voltage

VolDCI

VIN (dd)::: 0,
V (gain control) '" 0

+5,0

+6.0

+7,0

v

DC Output Voltage

VolDCI

VIN (dd) = 0
V (gain control) = +3.0

+5.0

+6.0

+7.0

v

DC Output Shift

t.VoIDCI

VIN {ddJ = 0
V (gain control) changed
from 0 to +3.0V

Power Supply Drain

Ips

LM170

-200

0

+200

LM270

-500

0

+500

LM370

-1000

0

1000

Vee == +12V

LM170, 270

LM370
Input Bias Current

mA

13.5
4.0

Vee::: +24V
Vee'" +4.5V

LM170,270

LM370

mV
mV

B.O
B.O

10.0
12.0

5.0
5.0

10.0
12.0

mA
mA

AC CHARACTERISTICS
Ay

Voltage Gain

V (gain controll ;; 0

LM170.270

37.5

40.0

LM370

35.0

40.0

dB

-BO.O

dB

f = t KHz

Gain Reduction Range

Note 1: TA

t.Ay

= 25°e, Vee = +12V, VINlcm)

v (gam con troll changed
from 0 to +3.0V. Gain
reduction occ;urs for
control ~Itages between
+2.1 and +2.5 volts, pin 3
or pin 4. f = 1 KHz

= +6V.

operating notes
Voltage gain is continuously variable from a maximum value, dependent upon supply voltage, to a
minimum value, by application of a DC control
voltage at Pin 3 or 4. DC output voltage is substantially independent of gain· changes, provided
that differential DC input voltage is minimized, so
that direct-coupled or fast gain-control operation
is possible with minimum disturbance of succeeding ampl ifiers.
Input characteristics are similar to those of an
operational amplifier, with common-mode input
range extending from +4.5 volts up to and including the positive supply voltage. Lowest distortion
occurs at input levels of 20 mV POp or less. Outputs of several ampl ifiers, wh ich wi II have qu iescent DC levels approximately half of the positive
5-2

supply, may be directly connected together in
multi-channel summing systems, without damage.
Emitter-follower control. inputs, Pins 3 and 4, may
be used as positive peak detectors by connecting a
smoothing capacitor at Pin 2, in AGC applications.
A sensitive squelch detector, independent of the
amplifier's gain, provides fast-attack, slow release
control at Pin 6, with threshold set by an external
resistance from Pin 7 to ground. Injecting a portion of the control voltage at Pin 6 into this threshold results in a hys~eresis, reducing response to
erratic inputs. Since threshold is dependent on DC
levels, differential DC input voltage should be held
constant for squelch operation.

r-

s:...

.....
o

variable gain characteristics
Voltage Gain vs Control Voltage
+50
+40
+30
m

~

z;

+20

~

+10

~

-10

..'"

-

'"

\

0

+125°C

"

-3D

"z~

,

1\

I 1\
I \i\

> -20

:;

-55"1:

~

7

Vee· +t2V

-40
-50
+1.6

+2.0

+2.4

+2.8

1.0

V
Vee'" +t2V

0.5

+3.2

-70 -60 -50 ..,40 -3D -20 -10

+40
~

+20

Z

+10

..."
:;:

rVee" +12V

.= 1 KHz

w

~>

2.0

0-

1.5

~

1.0

''""

-

"l!l
z

Vm"'ZDmVp-p_

-10
-20

2!

r-

7

MINIMUM GAIN

1

/

2.5
2.0

V

1.0

,/1/

0.5

Vee'" +f2V

{=·I KH!' 1-

I-55 -35 -15 +5 +25 +45 +65 +85 +105 +125

.0

TEMPERATURE, "C

Maximum Voltage Gain

Common-Mode Rejection Ratia

vs Temperature

60

~

V.nlcml - +BV

1\

1="1- I-' +2h

">

40

'"
'"'"

20

,

"

1\

Vinlcml- +4.5V

~
3D

50

i\

40

~

40

::~ r-1-5~"I:

Vintcml c +12V

~

3D

Output Dynamic Range
vs Control Voltage

BO_

r--,r----r-..,...--.--"r"~

20

Vinlp_pl,mV

.s Supply Voltage

z·

;C

3.0

0.5

m

w

~'"~tl+·21
!t-+-J. :-t--4..
V~e =~."'~ml ~

..5

TEMPERATURE, "C

r-

-70 -60 -50 -40 -3~ -20 -10

vs Input Amplitude

1 1

-50
-55 -35 -15 +5 +25 +45 +&5 +85 +105 +125

..'"

.\.

3.5

~

-3~

.....
o

Total Harmonic Distortion

m

-40

50

-

r-

s:CAl

GAIN REDUCTION, dB

Bandwidth vs Temperature
2.5

MAXIMUM GAIN

+30

-BO

0

GAIN REDUCTION, dB

Maximum and Minimum Voltage
Gain vs Temperatura

I

~

I I l

........

\.

I'

i-

Vml cm ) ;; +12V

CONTROL VOLTAGE IV}. PIN 3 OR 4

+50

-

Yee::: +12V

1.5

-BO

1 1

.....
o

Vlnlp.pl - 10 mV

'=2 KHz

''ii""

\ +25"C

s:N

.L I J .1,_

2.0

2!

1\ 1 I'

\

Total Harmonic Distortion
vs Gain Reduction

Bandwidth vs Gain Reduction

I
I1\.

.......
r-

\

Vee -+12V_
'=1 KHz

H\;: -

-

+12So C

o
+8

+4

+12

+16

+20

+24

-55 -35 -15 -5 +25 +45+65 +85+105+125

2.0

TEMPERATURE, "C

SUPPLY VOLTAGE, Vee. V

2.5

3.0

CONTROL VOLTAGE. V

squelch characteristics
Squelch Threshold Voltage
VI

~

~ l -i -

-55"1:

g
-f-

'll

///
1.'1

r/,
I/JI/

Time Constant Capacitance

r--,-,......,......,-,-,-,......,.......,...,.

••0
.9

.u

:!!~

1.50

I- l - f -

+·f5"C

:

2.5

.7

~B
~ ~

.6

~

1

::c

c

.

»
:.

'

.5
.4

~ ~ .3

z

I Vec '+l2V- :0~~

SQUELCH THRESHOLD RESISTANCE, RsQ• Kn

1.25

.8

z

l-

E

'i. ~HZ 1 -

2.0

> ~
!

...:

WI

+2SoC

..'"
~
.:a
ti ~

1.75

Squelch Release Time vs

V5

w

I

•. 5

Squelch Hysteresis Voltage
Squelch Threshold Voltage

Threshold Resistance

~!:.

1.00

:il

.2

..

0.75 '-L-L....JL-I--L--L-L-L......1..-I
10

20

3D

40

50

SQUELCH TURN·ON THRESHOLD VOLTAGE, mV 1m.

.0

15

20

25

TIME CONSTANT CAPACITANCE. pF

5-3

o

":!:
tv)

input and output characteristics

...I

......

o

":!:
N

Input Resistance vs
Common-Mode Input Voltage

...I

......

90

o

":!:...

rlz

...I

'"

~

5

!i

10
60
50
40
3D
20

~

10

1-'

tz..
~

~

I'

KHz

~e~' +12V

t!:

~

.
rl

40

'"

3D

C;

~

~

60

1'~5'C:

~I

80

l2

~

~ ~

'Ii

z

In

..ill....

J

~c

E

I

!i

-55'

10

I

,.:

..
ill

or:
~

I

!....

15

10

..ri
'"
ili
.
C;

I-

z

In

,l,Ll I I
12

16

20

:~n~c::~2~v

!i

20

24

~'·''i'·I

u

;

~

Power Supply Current

vs Supply Voltage

-~~

9

IP'

~

16

'"j.E

~~
~

....>-

!
DL-L-~~--~~~~

12

16

20

II

12

I-"

ill
or:

~

SUPPLY VOLTAGE, V

_

-j'"r"tVI-

II UJ

TEMPERATURE, 'c

TEMPERATURE, 'c

Vee ·+12V ' -

10

I II I I
II III

\.

-55 -35 -15 +5 +25 +45 

L

50

Input Bias Current
vs Supply Voltage

I

.L

60

....

E

/

80
10

SUPPLY VOLTAGE, V

E

!i

I--

11*
fTlJ..1oo-

12

Input Bias Current
vs Temperature

\

~i-'
fu.
2 ~

VinCcml .. Vee

20

COMMON-MODE INPUT VOLTAGE, V

20

Yinlcml'"

50

vs Temperatura
90

TEMPERATURE' +25'1:
10

1-

Input Resistance

Input Resistance

vs Supply Voltage

24

~
-55"~~

~

+25°C;"
,,

1

+lf5

12

16

20

SUPPLY VOLTAGE, Vee, V

24

Consumer Circuits
LM1711LM2711LM371 integrated rf/if amplifier
general description
The LM171/LM271/LM371 is a monolithic RF-IF
amplifier capable of emitter coupled or cascade
operation from DC to 250 MHz. Wide versatility is
offered by having all inputs and outputs brought
out so many circuit configurations are possible.

•

As cascade, wide AGC range with constant input
admittance
• As differential DC amplifier, low input offset
voltage and wide dynamic range
• As video amplifier, externally selected gain,
and high gain·bandwidth product
• 100 MHz tuned power gain
(Em itter Coupled)
24.6 dB
(Cascade)
27.5 dB

features
•
•
•

Low internal feedback, allowing high stabilitylimited gain
Versatility through user-connected configura·
tions
As emitter coupled amplifier, symmetrical, non·
saturated limiting

In addition to amplifier service, the circuit is useful
in mixer, oscillator, detector, modulator, and numerous other applications. The LM271 is a plug-in
replacement for the 911 C type.

schematic and connection diagrams
Metal Can Package
DUTPUT



=+12V,

\

'\
1'-

80

----

-60

-20

20

60

TEMPERATURE ('C)

100

140

-80

-20

ZOO

3"

160

I

20

60

3

I

120

r-

BO

I:;:

40

0

0

~

CASCaDE

EMIT';:jCOUPLED

40
20

-<

240

100

0
140

TEMPERATURE ('C)

5-7

cascode configuration
The common-emitter, common-base, or cascade,
configuration is useful as a tuned R F or I F amplifier to 250 MHz. Two common-base stages are
formed by the differential pair, Ql and Q2, which
may be used as a gain control system by applying
a differential gain oontrol voltage between pins 1
and 7. With Ql cut off, maximum gain is obtained,
being reduced as Ql is progressively turned on and
Q2 turned off. The input common-emitter transistor presents a nearly constant input admittance as
AGC is applied.

Pin 3 may be used as the DC reference for the AGC
input, to assure adequate bias voltage for the collector of Q3. Where large AGC voltages are used, an
external resistive divider, from pin 3 to 1 to the
AGC voltage may be used to optimize the DC AGC
requirements. VAGC is defined as the voltage between pin 1 and 7.
At some frequencies, bypassing may be required at
pins 1, 3, 4 or the Vee connection.

DC input bias is obtained through the input inductor from the bias chain, pin,4.

Input Resistance and

Output Resistance and
Capacitance vs Vee

Capacitance vs Vee
16

2000

550

100MHz

1150

14

g 1500
'"
~'1250

r-

~f-

.

12

C,

~

~. 350

~

~

4

I'..

6

8 10 12 14 16 18

0:

g

Z. 4

1400

Z8
Cp

~ g

n

20
16

0:

."

~ :i
::;
z

12.~

~

400

.r'

zoo

~
100

10

-200

10

100

1000

.'"

;S

z

Vee'" +12V

0:

I"-

20
15

\

10

!O

f

,
\k-

-5
-10

BIASING MATCHED TO 50
)OHM SDURCE AND LDAD.
;\
B~NDi1DiH 1PP~OXi 4.51MHj

t--

-200

-100

100

VAGe (mV) PIN 1 TO PIN 7

200

30

3D

~

'"

Z5

G21
153'
3

~

r-..

20

200

10 [

10

o
0.1

i-"

8"

o
10

100

FREQUENCY (MHz)

Tuned Power Gain YS AGe
Voltage

..

~ E
.!

f

35

25

100

~
40
~
~ ~

;

FREQUENCY (MHz)

3D

~

50

"

0.1
0.1

-100

60

~ '"

Vee'" 12V, VMeAs ;:: 20 mVrms
PINS 1 AND 1 TIED TOGETHER

FREQUENCY (MHz)

5-8

o

Forward Transadmittance vs
Frequency, V AGe = OV

~'

1000

10

\'111--.
VAGe (mV) PIN 1 TO 7

\

~

o
10

ZO

Rp

10

~

i'-~

10

100

In

"

600

0.1

8 10 lZ 14 16 18

g

~
~

R,

100

24 -<

Rp

r--

Output Resistance and
Capacitance vs frequency
32

~ 800

20

m

IO M

G21 .10DMHz

SUPPLY VOLTAGE Vee (V)

12 Vo)t'Vee

riz 1000

6

"zn '"
~

1'-1-

20

B
30

50
"

J I i' ~

~ 40

E

.!

!2

G2~

.n

I'.

0

1600

~12DO

!

2

~ 150

Input Resistance and
Capacitance vs Frequency

co

3

-<

....

SUPPLY VOLTAGE. VecfV)

@

c
-<

C,

r:3 250

R,

4

60

~

50

:;I

0:

4 .n

\

250

c

Z ~45D

~

~ ~

~ 750
~ 500

..

1017M~'

co

-<
10 ~

L

~ 1000

Forward Transadmittance vs

AGe Voltage
60

1000

emitter coupled configuration
The common-collector, common-base, or emittercoupled configuration is useful as a symmetrically non-saturated limiting R F or IF amplifier to
150 MHz. Basically a differential amplifier, this
configuration is especially suited to FM IF strips
using 'conventional interstage tuning_ While available gain is lower and noise figure higher than the
cascode, emitter coupled operation may be considered wherever fast recovery from large-signal overdrive or excellent AM rejection is required_

nal, and is equally divided when no signal is present,
assuring inherently symmetrical operation_ DC bias
for pin 7 is obtained from the divider chain, and
through the input inductor, the same bias is applied
to pin 1.
For non-saturated operation, the output load must
be chosen so that the collector voltage of the output transistor is higher than the DC reference voltage, with all source current shunted into the output, for the particular bias levels used_

Q3 is used as a current source, obtaining its bias
from the diode chain_ Current available from 03 is
shunted through 01 or 02, depending on input sig-

Output Resistance and
Capacitance vs Vee

Input Resistance and

Capacitance vs

At some frequencies, bypassing of pins 3, 6, 7, or
the Vee co'nnection may be required_

Vee

Forward Transadmittance

vsVee

550

15
l'

10.7 MHz

_ 13

"
~11

-

~.

~

......

in

~ 5

12

~

~

g45D

-t

~

•

..-~
-

4

6

8

10 12 14

16 18

"-

'"
~ 250
0-

3

Cp

\

2

0-

~150

~

1

:-1-

50

Rp

2

20

4

6

8 10 12 1. 16 18

10

6

~ 2 ~~~~H+~~H-~H+~

~

,

~

.

8

Cp

OL-J.-UJ.-.L...LJ..JcL.J---'-UL.l-L..l.LL...JO

10

12

45MHz

lo~

3"

g.

6

!.

8"

14

16

18

o

Forward Transadmittance
vs-Frequency

~; (J ee l• WV)

10

111\

1

\

.~!!.
~21' (Vee = '~~

III

G" (Vee' 6V)

7 rn~

~

- ~

1000

e:;

12

I

20

,.=i In'"

.. .iii

14

....."..

SUPPLY VOLTAGE. Vee IV)

Rp

~.

~

P'

.~~

• .~
2

100

Ii
I(

~

,.

Rp

10

..

100

~ O!Sg
10
n
-t

~.

0.1

II-

.~ '"

100MHz
B21~

-:t

Cp

~

./

10

Output Resistance and
Capacitance vs Frequency

Vcc==+12

;:;

,.=i

V"

/

20

100

~

G21

SUPPl V VOLTAGE Vee IV)

Input Resistance and
Capacitance vs Frequency

O!S
~

~ "l!oS

16

~HZ
G,,/ ~

45kHz

-; 12

o

SUPPLY VOLTAGE, Vee IV)

]
.g

• ,.

l'

n

o
2

~

16

~
-t

ril50
z

~

Rp

;:;

10.7 MHz

10 ~

Cp

I'.
I"-

18

Vee

=

0.1

FREQUENCY (MHz)

o

0.1
1000

100

10

-

B" (Veil ~IV)

12V. VMEAS " 20 mVrms

PINS 1 AND 7 TIED TDGETHER

FREQUENCY (MHz)

III I 1111
0.1

10

100

o
1000

FREQUENCY (MHz)

Input Resistance and
Capacitance vs Input
Signal Level
35

-

~

25

~

u

z

20

~

15

'"

~

Vee" 12V
10.1 MHz

30

10

1\

RPV

Cp

"-

l'
12
10

~

-t

i:

~

vV'

..i

t:;><

k-'~

-

o
100

200

300

400

500

rms INPUT VOLTAGE (mV)

5-9

dc, audio and video configuration
Direct Coupled Test Circuit
(Connect R L Between Pins 8
and 10, or Connect Pin 2 to 8
for Internal RLI

Convenient self-contained biasing, excellent monolithic matching, and high gain-bandwidth product
make a wide variety of applications possible using
resistive loads.

vcc-uv

1I11F

10-1

The biasing shown in Figure 3 uses R2 as collector
load for a single-ended output, differential input
amplifier. By 'choosing" the: proper external load
resistor, bias configuration, and supply voltage,
video amplifiers may be constructed to meet
specific gain and bandwidth requ irements, in
either cascode or em itter coupled form.

OOT

,-

" -,
--

I

I
I

.DO

OHMS

I

With matched pairs of external load resistors, true
differential DC ampl ifiers may be constructed, with
large common-mode input range, input offset voltages typically 0.3 mV,and monolithically matched,
self-contained current sources easily tailored to specific operating point requirements.
FIGURE 4

Cascode and Emitter Coupled
Video Amplifiers Voltage Gain

Voltage Gain, DC Output
Voltage (RL = R21 &
Dynamic Range vs VCC

and Load Resistance vs

Bandwidth
40

30

20 1--+-j-Jf+I-ttfj-+~ttttHl

o
8

10

12 14

16

10

18

Cascode Video Amplifier Voltage
Gain & Dynamic Range vs AGC
Voltage

Cascode & Emitter Coupled Video
Amplifiers Dynamic Range vs
Load Resistance
10

:/
V

V

12

50

~e8c' ~~~V FOR ICAScdOE)

/

40

5-10

.... r-.,

Av(dB)

..~
..
z

I '\

;;:

~

20
10

>

-10

10

\

iii
:!! 30

m:

\

VOUT (p.p)

icc j +12i

-200

LOAD RESISTANCE (kf!)

100

3 dB BANDWIDTH (MHz)

SUPPLY VOLTAGE, Vee (V)

kHZ

-100

\
100

VAGC (mV) (PIN 1 TO 1)

,
1\ o
200

r-

...

!:
.....

Consumer Circuits

N

......
r-

!:
N
.....

LM172/LM272/LM372 am if strip
general description
The LMl72/LM272/LM372 is a broadband AM
receiver subsystem, including a high gain amplifier,
an active detector, and self-contained automatic
gain control. It is intended for IF or TRF applications from 50 kHz to 2 MHz_ Bandpass shaping is
performed by a single, external filter, which may
be ceramic, crystal, mechanical, or LC, having
~ingle or multiple poles_ The I F strip features:
• AGC Range: 60 dB
• Audio Output of 0_8V pop for 80% modulated
inputs, at carrier levels as low as 50 IJ-V rms_
• Total dissipation only 8.4 mW from +6V supply,
usable with supply up to +15V.

N

......
r-

• AGC time constant and audio frequency response selected by choice of external capacitors_

!:
W
.....

• Internal supply regulators eliminate individual
stage decoupling_

N

• AGC voltage available to drive receiver "front
end_"

The LM 172 is specified for operation over the
_55°C to +125°C military temperature range_ The
LM272 is specified for operation over the -25°C
to +75°C temperature range. The LM372 is specified for operation over the O°C to +70°C temperature range.

schematic and connection diagrams

Order Number LM172H
or LM272H or LM372H
See Packaga 11

"'

RfiN l

roc '

o'"

o CDf~~tT
*,1:4

s~~

Pinconnectionslr1IforHpackag•.

n

NC

CAINSTA~:"';''t--[>-_rlG AUP111DUTPUT
NC i

I

fit

I DCFEEDI"CK

Order Number LM272N or LM372N
See Package 22

typical application

5-11

N

":IE
CW)

absolute maxium ratings

...I

"N

":IE

Supply Voltage Range
Storage Temperature
Operating Temperature

N

...I

"N

"...:IE

+6V to +15V
-65°C to +150°C
_55°C to +125°C
_25°C to + 75°C
O°C to +70°C
500 mV rms

LMI72
LM272
LM372

RF Input Level, Pin 2

...I

electrical characteristics
PARAMETER

(T A = 25°C)

SYMBOL

Power Supply Drain

CONDITIONS

Ip.

AGCR

AGC Range

MAX

UNITS

Vee = 6V, Input = 50 mV
f = 455 kHz

1.4

rnA

Vee = 6V, Input = 50 IJV
f = 455 kHz

1.7

rnA

Vee = 15V, Input = 50 mV
f = 455 kHz
LM172/272
LM372

2.5
2.5

Vee = 6V, f = 455 kHz
LMl72/272
LM372

50
47

= 6V, f = 455 kHz

AGC Threshold

V,N(th)

Vee

Maximum Usable
Frequency

MUF

Vee = 6V

V OUT

V IN Between 50 IJV and
50 mV, 455 kHz, 80% modu·
lated by 100 Hz,

Audio Output
Voltage

TYP

MIN

rnA
rnA

2.65
3.2

69
69

dB
dB

50

IJV,rms

2.0

MHz

Vee = 6V
LM172/272
LM372

0.4
0.35

0.8
0.8

V, p.p
V, p.p

Vee = 15V
LMl72/272
LM372

0.45
0.40

0.9
0.9

V, p.p
V, p.p

input-output impedance characteristics
AGC Stage Input Resistance

AGC Stage Output Resistance
vs Temperature

vs Temperature
5.0

205
Ie = 455 kHz, Vee = 6V

~

4.5

z

~

;

I-

"
~

.......

4.0

3.5

..... 1'"

t;

'"
+25
TEMPERATURE I'CI

5-12

..

115

145

l-

!;.,"
+125

g 1.88

V

~

u
Z

iliIC

3.0
-55

!;

....

115

85
-55

1.9

/

fe • 455 kHz, Vee;; 6V

1/ I'"

~

Detector Output Resistance
vs Temperature

..

$

'"

V

V

I-

~

.,~
+125

/

V

1.86

V
1.84

1.82

+25

80% MOD, 40B H.

~

u
Z

t;

TEMPERATURE rCI

Vee" 9V. VIN =5 mV JIm
fe =455 kHz

V

V

-55

+25
TEMPERATURE rCI

+125

typical characteristics

Audio Distortion vs %
AGe Threshold V5 Vee
B5

~

>
3

65

"
"

55

i'".,
'"

1.--'

15

45
35
25

,-

/v

m
L

AGe Range

"'""

69

V5

'"z
'"'"

Tr
Ie

...

51

12

15

6

...{"

69
Vee= 6V

> 105

5

"
.,...~
.,
~

AI-V cc '6V

+125°C

65

'"'"
~

z

~

'"'"

~>

45

61

i!

['-.I
..... .... i\

.,z
~

~

a
.,

J,

lif. >--

51

Ie

5000

-55

FREQUENCY 1kHz!

2

15

/
_55°C
+125°C

/

10

Audio Output Noise vs
Temperature

p.p Audio Output V5 Vee

.2,5:;'
'7s0~

"2:
O,B

lilJJ

5

§

'"

0.6

mil

0.4

Ve~ ~I~~

Ie' 455kHz.
80% MOD 400 Hz

0.2

~

~

~
"g

'"

!>

1.0

0.8

bol-"'1--+--t-f-+'--':-;:7:;1

.!

0.6

I-+-+-+--t-t-+-+-+--t

...z
.,~

0.4

0.2

SpV

SOIAV

.5mV

5mV

50mV

12

.

;;:

..'"

0,1

r\.

~

r-..

0.5 MHz

CARRIER FREQUENCY

t-.p..<1"-.!:~-=F~"'t'''"'1'-l

~

.65 I-lc.j.'-:4~55'-:k"'H.j.z-I-""e:-+

'N "5mV

'"N
V,N'50mV
N
ttl

--..:

Ie =455 kHz, Vee· 9V

OUTPUT AUDIO BW 5 kHz +25

~
+125

~

:g

10.

r-rrTTT11nrTTTTTmr-;-nrmn

1.5

~~ljjjjIs*l:!iI!tt.

5.0

t-H++F~-.j;dtttlllt--;

~

.15

I L

... . cl
,e

6

...z

~_

2.5

Vee" 6V. Y'N '" 5 mV

Jl H[
50kHz

"""'1oo;;±:::-+-+++'-:-::::l'''''I

.,'"
"a

80% MD D, 400 Hz
Vee'" 6V. V,N ;; 5 mV rms

0.5

.B5

V,N " SOJ,lV

Audio Output Noise vs Input
Carrier Voltage

~

...

'r

/~ I '

TEMPERATURE ("CI

V5 Output
Smoothing Capacitance

~

a

-55

p.p Audio Output

-.

.,~

15

"cetVI

Frequency

0.9

I

.. ~
2

p.p Audio Output vs Carrier

~

4.5

§

I=±::::-+-+-+-+-

CARRIER VOLTAGE Irmsl

...

1/

~
~

a

.,

1111111 .llilllllL I Lilli

1.1

SDmV

5mV

1.2

1,0

~.,

O.5mV

CARRIER VOLTAGE Irms)

p.p Audio Output vs Input
1,2

~

..t~5~

50J,lV

TEMPERATURE (OCI

Carrier Voltage

.

'"
~

+125

+25

50% MOO.40TIIII

...;;!
..."

53
500

BO

Ie" 455 kHz, Vec" 9V

20

~

'~55kHZ

80% MOO, 400 Hz

25

10

50

30
25

In

"i!!

Vee'" 12 TO 15V

fI

+2S O C.
50

30

Audio Distortion vs Input
Carrier Voltage

.- ....

' - Vcc '9V

IJ'~

.,

_55°C (Vee '" +1,5V~

65

15

PERCENTMOOULATION

.·os:.....

;;;

11

B5

I--'~

12

AGe Range vs Temperature

145

1/

/

Vee IV)

AGe Threshold vs Carrier
Frequency

I

/

I

I I
_55°C

""4-.

Vcc (VI

~

'455k~z

80% MD D. 400 Hz

r,

53

6

-

f",od"'400 Hz

+12S o C

61

-,~

Vee'" 9V, Y,N '" 5 mV rms

le'455kHz

+25°C

~

BD% MOD, 400 Hz

. . .}';rs:-;'

3

JJ

'1",-

~

Ie =455kHz

BO%IMyrOHz

Modulation

:'"

65

;1251C

125

Vee

BO%MOO
5MHz

O.OS
COUT IJ,lFI

0,1

0L-J--'-'.UJIIL-J'-1.1J.LW.L.....J'-LJ.w.w
50pV
O.SmV
50mV
5mV
CARRIER VOLTAGE hmsl

5·13

power supply characteristics
Power Supply Current

Power Supply Current vs

Input Carrier Voltage

Power Supply Current YS VCC
2.4 r-r-,.--r-.---r-.:--r-:c-1

2.1 ......----~'"TT1mr...""

c

vs Temperature
2.2

~

i 1.9
.5

>-

>-

.!i

5

1.8

~

1.5 Httillttbof'ftttfllc

..
lI:

Vee'" 9V
~

Y'N=5DmV

-...; ::;.. !--V,.-5mV

l""- i'--.

B 1.G

13
~

;:::: t--..

r--. ...... ......

V1N =1Dp.V -iJ

1.3

r"" ~
~~

V1N =50 1lV
1.2 .....J..WIIL-J..J..I.wLL...J...UJIIJL..u.LJWIII
5IJV

SOpV

.5mY

CARRIER VOLTAGE

5mY

50mV

OJ! L-1-1-.l-...L-...L...J.......J......J...-J
12
15

VcclVI

I,m~

Minimum Operating VCC

+25

TEMPERATURE I'CI

5-14

........

1.0

-55

+125

I"" ~

...... t'--

+25

TEMPERATURE I'CI

vs Temperature

-55

~

+125

Consumer Circuits
LM273/LM373 am/fm/ssb if amp/detector
LM274/LM374 am/fm/ssb if video amp/detector
general description
The LM273/LM373 and LM274/LM374 are broadband communications subsystems, capable of performing the diverse functions required in AM, FM
or single sideband receivers and transmitters_ In
addition, the LM274/LM374 may operate as high
gain AGC'd video amplifier_ Bandpass shaping may
be performed by a single external filter, connected
between amplifier sections, at frequencies from
audio up to 30 MHz_ The first section of the
LM273/LM373 is optimized to drive low impedance loads, such as mechanical or ceramic filters_
The LM274/LM374 has a high output impedance,
ideal for high-Z crystal, LC or ceramic filters_

•

Low feedthrough between amplifier sections,
typically better than 65 dB

The LM273 and LM274 are specified for operation
over the _25°C to +100°C military temperature
range_ The LM373 and LM374 are specified for
operation over the O°C to + 70°C temperature range_

• Double balanced product detector
• Self contained audio peak AGC system
• Easy external tailoring of AGC characteristic
for desired AGC figure of merit

features

CONNECTED FOR VIDEO AMPLIFIER
OPERATION

CONNECTED FOR FM OPERATION
• Three emitter coupled limiting stages and simple
quadrature detector
• Detection of ±5 kHz deviation FM at either
455 kHz or 10.7 MHz
• Two separated amplifier blocks, allowing filtering in two or more blocks
• No DC paths required through external filters or
through quadrature network
CONNECTED FOR SSB OPERATION

CONNECTED FOR AM OPERATION
•
•
•
•
•
•
•

High gain; typical sensitivity of 10 JlV at
455 kHz
Wide bandwidth; 30 MHz capability
Self-contained detector and AGC system
Wide AGC range, greater than 60 dB for a 10 dB
output change at 27 MHz
Less than ±1 dB change in audio output _20°C
to +100°C, typically
Access to detector input for SIN improvement
No DC paths required through external filters

•
•
•

Internal video peak detector for video AGC
High and low level video outputs
Gated video AGC capability

In addition, these versatile microcircuits may be
used as:
• Constant amplitude or amplitude modulated
R F oscillator
• Synchronous demodulating I F strip
• Mixer and IF, using AGe section as a mixer
• Double sideband modulator with audio AGC

connection diagrams
Metal Can Package

Dual-In-Line Package

18 :,~~mTO"

•

=!~Vci~~~I:tIIRi
f--"----t·'-:.\W£~:~:~

Order Number LM273H Dr LM373H
LM274H Dr LM374H
. See Package 14

Order Number LM373N Dr LM374N
See Package 22

5-15

absolute maximum ratings
18V
24V
1.4V""

Supply Voltage, Operating
Supply Voltage, Surge (100 ms max)
AC Voltage Applied to Any Pin
DC Voltage Applied to AGe Section Output Pin
LM273/LM373
LM274/LM374

.8V, -0.5V
150°C
_65°C to +150°C

DC Voltage Applied to Any Other Pin
Junction Temperature (Note 1)

Storage Temperature Range
Operating Temperature Range

_25°C to +100°C
O°C to +70°C

LM273, LM274
LM373, LM374

+10V, -0.5V
+18V, -0.5V

electrical characteristics
ITA'" 2SoC, Vee'" +12V unless otherwise noted) (Subscript numbers in parentheses are DIP pin numbers)

DC CHARACTERISTICS
SYMBOL

PARAMETER
Power Supply Current

CONDITIONS

LM273/LM274
MIN

Vee = 12V, AM Mode

1'01141

TYP
14

-20°C';;; T A';;; +100°C
AGe I nj1ut Current

50

-20°C';;; T A';;; +100°C
AGe Section Quiescent Output

V 9 (12)

V AGe = OV, LM273/LM373

19 (12)

V AGe = OV, LM274/LM374

AGe Section Output Shift

Second Section Qu iescent
Output Voltage

Peak Detector Quiescent
Output Voltage

V AGC

= OV to

V AGC

MIN

20

TYP

MAX

14

20

50

110

21

VAGc~5V

I,

LM373/LM374

MAX

~A
~A

4.75

4.75
0.7

rnA
rnA

110
110

0.5

UNITS

1.0

0.7

0.5

V
1.0

rnA

= 5V

6V9 (121

LM273/LM373

0.1

0.1

6191121

LM274/LM374

-0.1

-0.1

V

V 7 (91

3.8

3.8

V

VS(101

3.8

3.8

V

rnA

VIDEO CHARACTERISTICS
AGC Section Voltage Gain

V AGe = OV, 1= 455 kHz

A 2 - 9I1l )

32

30

AGC Section Transconductance

9m2-gill)

-20°C';;; T A ';;; 100°C
LM273/LM373

28

V AGe = OV, 1 = 455 kHz

28

-20°C';;; T A ';;; 100°C
LM274/LM374

28

40

ZL = lkll3 pF

V 9 (12) maxp.p

RL = lk, VAGC=OV,
V 2 = ±300 mV,

0.95

-20°C';;; T A ';;; 100°C

0.7

A 4 _ 7(111

28

40

30

SWAGC

Second Section Voltage Gain

-40

dB
dB

mmhos
mmhos

AGC Section Output Swing

AC,AGC

32

dB

AGC Section Bandwidth

AGC Section Conversion
Voltage Gain

29
-40

V AGC = 4.5V

30

1.4

0.78

MHz

1.4

Vp"f'
Vp"f'

I, = 30 MHz, 12 =
22

30.455 MHz, e2 = 800mVrms
ISee Figure 8)

1 = 455 kHz

32.5

37

22
39

29.5

37

dB

-

dB

31

TA=l00°C
Second Section Bandwidth

BW2

ZL = lOOk 113 pF

Second Section Output Swing

V 7(11) maxp.p

V 3 _ 4 = ±100 mVp.p

0.93

20

-20°C';;; T A ';;; 100°C

0.75

1.4

20
.83

1.4

MHz
Vp"f'
Vp"f'

AC PORT PARAMETERS (Typical, elN = 20 mVrms)
TERMINAL

LM273/LM373

LM274/LM374

1 = 455 kHz

1= 10.7 MHz

1=27MHz

1 = 455 kHz

f .. 10.7 MHz

f=27MHz

2 (V AGe = OV)

1.2k 112.5pF

1.2k 112.5 pF

1.15k 112.S pF

1.2k 112.5 pF

1.2k 112.5 pF

1.15k 112.S pF

2 (V A'Ge = 5VI

1.18k 113pF

1.18k1l3pF

1.1k 112.7 pF

1.18k 113pF

1.18k 113pF

1.lk 112.7 pF

4

4.5k 114 pF

5k 115pF

4.3k 115.5 pF

4.5k 114 pF

5k 115pF

4.3k 115.5 pF

S(8)

3.0k 117.7 pF

3.0k 117.7 pF

3.0k 118.0 pF

3.0k 117.7 pF

3.0k 117.7 pF

3.0k 118.0 pF

7(91

1.0k IISpF

1.0k lis pF

1.0k 115pF

1.0k IlspF

1.0k IISpF

I.Ok 115pF

9(121

70n II-l00pF

son 115pF

200n 11-90 pF

SOOk 115.5 pF

lOOk 113.3 pF

10k 113.5 pF

Note 1: For operation at elevated temperatures, derate devices based on 150°C maximum junction temperature and 150°C/W
junction to ambient or 4SoC/W junction to case thermal coefficients for the metal can.

5-16

electrical characteristics (con't)
TYPICAL AM PERFORMANCE (See Figures 1 and 21
t = 455 kHz

t= 10.7 MHz

t=27MHz

Sensitivity

PARAMETER

(Signal + NoisellNoise:::: 10 dB

10

15

30

IlVrms

AGe Threshold

Output 3 dB below extrapolated

35

55

110

I1Vrms

68

63

60

d8

CONDITIONS

UNITS

low level gain curve value for

same input
AGe Figure of Merit

Number (dB) input change from
100 mVrms for 10 dB output change

Gain Control Range

V,=OtoV,=+5V

Audio Output

RAGe = 2.4k, VIN 100 mVrms

80

70

66

dB

100

100

100

mVrms

As above, T A:::: 100°C
LM273 and LM274 only

90

90

90

mVrms

M = 0.7 to M = 0

42

38

40

dB

fm=lkHz.m:O.7

Signal to Noise Ratio

elN :::

30 mVrms

M '" 0.7. f m

Audio Distortion

::::

5

1 kHz,

3.5

2.8

%

lOmV

elN::::

TYPICAL FM PERFORMANCE ISee Figures 3 and 41
Limiting Threshold

eo

= 3 dB from value at
laO mVrms

elN::::

/:If

== ±75 kHz

61:::: ±5 kHz

Mfm

AM Rejection Ratio

800

-

J.lVrms

800

-

J1Vrms

-

dB

-

dB

1, Mam:::: 0.3

::::

elN::::

800

10 mVrms

61:::: ±75 kHz

45

f!,t = ±S kHz

Audio Output

35

10 mVrms

elN ==

f!,f = ±75 kHz

70

@TA::: 100°C, ~f

38

= ±75 kHz

50

@T A == 100°C, 6f '" ±5 kHz

40

19

LM273 and LM274 only
Audio Distortion

-

80

M=±5kHz

myrms
mVrms

mVrms
mVrms

elN'" 10 mVrms
/!,f= ±75 kHz

6f

1.5

= ±5 kHz

2

1.0

-

%
%

TYPICAL SSB PERFORMANCE ISee Figures 5 and 61
Sensitivity

(Signal + Noisel/Noise
eLO '" 60 mVrms

= 10 dB

25

30

60

",Vrms
",Vrms

AGe Threshold

Same as AM

300

300

500

AGC Figure of Merit

Same as for AM

60

60

50

dB

Audio Output Voltage

= 100 mVrms
TA = 100°C

60

80

85

mVrms

40

55

60

mVrms

elN

LM273 and LM274 onlv

schematic diagram
AGe STAGE OUT'UT
LIlUJtI3Jf

",!
~------

".....,,"

Ii

i9-fI
r-;J

'"

STAGE

Il-~I

LOWt:m~

,

UItBALANCElSSI.FDIII'UT

r---

yi In
I

QUADAATUAEIIETECTOR/
AlII'tlflEMAODUCT
OETlCTOAOUTPUT

FIIIlUADAATUAE~AJl.MIX£R

'-- i---

AGelNM

.

.

"=

8=~
on

)-,

OK

~

J

..

,"

FinD

STAGE"
INPUT

h

t

I

i Ir

[IOCHEOBAtK
IYPASS

H

r-r--

rrI

I;;: h"
f\
~

1 1

:.J

-

,-

1

r

h-~

JV
I

!

,- ~

--:-T

t-~~t;:rECTOA

"

1

SUISF ATE

Pin connections shown Ire fOT TO-5 pack!gl only.

5-17

typical performance characteristics
Power Supply Current
vs Supply Voltage

Power Supply Current vs
14

14

--

LM27,l.

".s
I-

ffi
a:

12

-~.,

LM274

10
TA =Z5°C

-

a:
c

:::; 12

~
a:

~

a:

o
10

12

14

16

40

18

~

c--

36

w

I-

.... ....

34

c

20

-20

(VAGc=D) -

"g~

....

LM274

PIN 7191
4.0 I- (FM/SSB MOOESI

~ 3.5

!--r::-'" ,:;*.:.f....

_,-

PIN Bll01
IAi MOIEI

3.0

~

I 9~~
I I

32

1

30
-20

0

20

40

60

65

60
55

~
-<
'"~

_

g

30

50

"

3,6

3.7

3.B

~ .I=I~JJ!I~

~ 30

p.1>4 .. lloIliI . . . .

Vee'" 12V

4.2

100

BO

'"i!:'"

....

RL1

"~

~

40

LM274/lM374

1.0
10
FREQUENCY IMHzl

Vcc= 12V.TA =2S"C

>

>

0<

oct

w

w

>=
~

Vee:: 12V

-20

Wide Band FM Audio
Output vs I F Input Voltage

~

c
c

Vee = +12V
flF =455 kHz

100

50

lk

10k

lOOk

,.
"!O:'"

-4

40 ~

~

-6

30

>

-8

3
~

f lF = 10.1 MHz
6i= ±15kHz
Vee =+12V

-10

0.1

1.0

10

100

IF INPUT VOLTAGE ImVI

",."'"
-<

20 (;
10 .;

JtlliC1m

1I1III 1111111

IF INPUT VOLTAGE ",V)

60

AUDIO OUTPUT

~ -2

w

I1111111111
10

30

Illlllllll

'~I~=mll

-30

10

FREQUENCY IMHz)

111I11

TA = 25°C

lOOk

WlL
1.0

0.1

100

~~1~25"C

~ -10

g

l'OD'~

~

.'

c

g -20

"

'""

T'"irlli

i!:

~ -10

c

10k

~:RL2~'llk

c; 60

c
> 20

0.1

~
!o

100

Cascaded Sections Video
Gain vs Frequency,
LM274/LM3740nlv

Relative AM Audio Output
vs IF Input Voltage, Referred
to 100 mV Inputs

IF INPUT VOLTAGE I"VI

1.0
10
FREQUENCY IMHzl

0.1

Vrm~

I-

lk

4.1

10

0;

100

4.0

>

=455kHz

AM I F Audio Output
vs I F Input Voltage

10

RL = lk

'.

II~L"I'kllll

a:

v~c::: llV

vl"lolllll

~ 20
~
o

TA ::25°C

-30

3.9

TA =100°C

'"'"w

15

>

1.0
10
RF INPUT FREQUENCY 1M Hz!

~

> 10

....

TA = 25°C

20

1
1

'-

40

0.1

'T."25"C
.' ' "

t--

-.Y.

Second Section Voltage
Gain vs Frequency

~ 25

8"

~ 20

AGe VOLTAGE, VAGe (V)

0;

flF

"

~

0

First Section Conversion
Voltage Gain vs Frequency

10

'""

-60

BO 100

'iii" 30

1\\,

-40

;.

-

l\
1,\

~

~
~

1

RL ::: lk

~ -20

>

11111111 1 111111 .1
.ll WllLT l~
T."+100"C_\. U I~II~, ,.1'
I-,T. = -20"C

=+12V_

t '" 455 kHz

T~" -2~"C =+- ~

I-T~"'0~"C~
I- T. "25"C

~

50 ~
45 ~

40

40

20

0 +20 +40 +60 +80 +100

AMBIENTTEMPERATURE I"CI

First Section Voltage
Gain vs Frequency

Vee
.~

AM81ENT TEMPERATURE I"CI

>

-20

40

~

I

,- ~
...

0 +20 +40 +60 +80 +100

First Section Voltage
Gain vs AGe Voltage

f---Ivcc~~

>

5·18

~ 4.5

AM81ENT TEMPERATURE I"CI

I

f=' 1 MHz
RL'" lk
V, "OV -

38

~

......

1'. 1'-..

~

First Section Voltage Gain
or Transconductance
vs Temperature

~

PIN 91121 (LM2730NLYI

~

I-

SUPPLY VOLTAGE

"c

5.0

;::

LM273

10

6

~
'"~

i

I"- "

~ 11
~

~

'"'"~

Vee:: +lZV

--

""
"

.§ 13

a:
~
~

~"

Output Terminal Voltage
vs Temperature

Ambient Temperature

lk

typical performance characteristics (con't)
455 kHz N FM I F Audio Output,
AM Rejection Ratio, and Signal
to Noise vs I F Input Voltage

AM Rejection Ratio vs IF

Input Voltage for Wide
Band FM

10.7 MHz NFM I F Audio
Output vs I F Input Voltage
1111111

I

50

~

40

:!!!
~ -10

f'F'"

ZO

~

-20

Vee = 12V

..~

-40

111111 II
fA "'25°C
~.IIIIIIII
•
TA =125°C

-30
Vee = 12V
'0.7 MHz

,=

Ilfll,i i~ mi,

,T,f = Z5'C

o
1.0

10
100
IF INPUT VOLTAGE (mVI

III
II,

f- I ~:"= -ZO'C

'">

to.7 MHz

l!.f:±75 kHz
m=O.JIAMI

....

10

1111111

m

'k

'.0

0.,

'00
'0
IF INPUT VOLTAGE ImVI

,k

'00

'k

10k

lOOk

'M

IF INPUT VOLTAGE C.Vrm,'

SSB I F Audio Output and
SSB I F Audio Output
vs I F Input Voltage

Intermodulation Products YS

IF Input Level

..

1kHz

5

~ -1 0 f-t1Httffif:.1;I'mI~

""g -20

"~

-30

~

-40

100

lk

'Ok

'OOk

IF 'NPUT VOLTAGE C.VI

~

~

I-+~Mttrn~

1,IF

-10

b\fflIIHtHillH-tt 'IF =455 kHz
= 1 kHz
Vcc=+12V
VSFO = 60 mVrms

;:::

~ -30

..

II I
U5UI

Vee = 12V

~=WC

; -20

'AUDIO

-50

'0

A~DlO

~ O~~

:!!!

~

SSB I F Audio Output
vs BFO Voltage

'IF"

10 mVrms

1---t---l-t-t-i=h;4oH
NOISE

_--

-40 ~~=-~~-1--~~~11

L...L.L.WWL-J,."""'........LWIL.1.l.WL.1-"""

'0

'00
'k
'Ok
lOOk
IF INPUT VOLTAGE C.Vrm,1

'0

30

50

100

BFO INPUT VOLTAGE ImVrmsi

APPLICATION HINTS
The LM273/LM373 and LM274/LM374 devices
have been designed for stability and minimum
usage of external components, while at the same
time offering wide versatility through access to
inputs and outputs of nearly every major functional block of the device. This makes possible the
detection of AM, FM,and SSB signals with a single
device with a minimum of circuitry switching.
Experience has shown that for optimum performance of the multiple mode IF strip, the following
suggestions should be noted.
First, as with any radio frequency gain device,
proper layout and minimum lead length should be
observed. The first gain block, Pin 2 to Pin g, shows
a typical gain of 32 dB and the second gain
block, Pin 4 to Pin 7, shows a typical gain of 37
dB so it is clear why any stray coupling or long
leads should be kept clear from any of the gain
input pins. Despite it's high gain, however, the
device does not require any shielding between
stages. Construction on a copperclad printed circuit type board is more than adequate. It should
also be observed that good power supply bypassing directly at Pin 10 and DC feedback bypassing
at Pin 3 is always necessary.

The devices can be wide-band coupled to provide
video gain response up to approximately 50 MHz.
For AM operation, however, it is much more desirable to limit the I F bandwidths. This will greatly
increase both input sensitivity and AGC figure of
merit by preventing the device from AGCing on
wide band detected noise. There are two ways of
accomplishing this. One is to insert filtering from
the first gain block to the second, Pin 9 to Pin 4,
but the most effective way is to AC couple an L-C
tank from the input of the active peak detector to
ground. A lossy filter from Pin g to Pin 4 should be
avoided as this will greatly reduce the audio output
and AGC figure merit. In addition the tank on Pin
7 should have high enough Q to limit noise yet
low enough to pass the full IF signal. It should
also have a high enough impedance (>5k) to avoid
affecting the gain of that stage. Proper audio output is attained by a small capacitor at Pin 8 to
peak detect the R F envelope, followed by a series
RC roll off to shape the audio response. Here
again excessive loading will reduce available output. There is a trade off available between audio
level out and AGC range so the feedback resistor
from Pin 8 to the AGC feedback, Pin 1, should be
adjusted to give the desired results. Pin 1 must

5-19

be filtered well with approximately 15 J.LF capaci'
tor or larger to prevent any AC variation from
causing erratic AGC action.

place symmetrically around the resonant frequency
of the tank. Since the audio output for FM is at
Pin 7, it should be RF bypassed along with audio
roll off and de·emphasis.

For proper FM operation, the input level needs to
be larger, on the order of 1 mV to give full limiting
which is necessary for good AM rejection. Here
again low loss coupling from Pin 9 to Pin 4 is
desired. The phase shift network on 'Pin 6 should
be shielded to prevent any extraneous RF pickup
or radiation. Also the Q of the network should be
adjusted to give the proper bandwidth for the
type of signal to be detected, whether wide band or
narrowband FM. Obviously, it should be tuned
to the same center. frequency as the I F input and
the Pin 9 to Pin 4 filtering so that detection takes

For SSB operation, the devices operate almost
the same as in the AM mode, with the excep·
tion that the product detector which was un·
balanced and used as a simple gain stage for
AM is now balanced and used for detection. The
local oscillator signal is fed into Pin 6 at an opti·
mum level around 60 mVrms. For better AGC, a
capacitor may be added to Pin 8 in addition to
the one already at Pin 1 to provide even more
filtering for AGC feedback voltage. The output
level and AGC figure of merit is still adjusted by
the feedback resistors from Pin 8 to Pin 1.

typical applications

C1

·Caplcitors notad by asterisk are 0.1 at 455 kHz. L is Miller No. 43AfD5CBI for 455 kHz; 8 turns No. 26
AWG on Micromebls T25-2 Carbonyle Core CD.ZSS DO It 0.180 ID x D.096W1 'or 10.7 MHz; 31/2 turns
No. 20 AWG 5/1&" di. x 1/4"'009 far 21 MHz.

C2

C3

.01

1000

.012

C4

1000

250

1000

500

.22~H

1000

lBO

300

500

.12/-1H

.001

r------------------------------------------~----l

rr

.'.f'

r--------

I
I

I

I

I

I
I

I

I
I

I

J

Dhf'l
FIGURE 1. LM273/LM373 AM IF Connection

r-----------------------------------------------l
r-------I
I

I

I
I

I

1'" L___________ .

I

I

I

I

I

,~ ~--"­
1

+12V~

".F~

I

I

___ 1

':'

."1;
*Sae Figura 1 fOI component vaIUBS.

FIGURE 2. LM274/LM374 AM IF Connection
T Prj Stutns No. 32, sec. 30 turns No. 32. Core Micrometals T25-2 (Ref. figure 1).

IUIIM.

flT,

. Iq

,~ ~-. -,

"ZVo--j".

."1; ... ...

FIGURE 3. LM273/LM373 Wide Band FM IF Connection

5·20

-

__

I

.JI

lO.5J.1H

typical applications (con't)

*For455 IIHr, T is BIB. &Dr No. 36 AWG on MicrometalsT25·3 COrllC.rbonvl HP, 0.255 00 x 0.120 ID
x a.0geW); L is GOD wrRS univenal wound No. 38 enlmel with 10--32 x 1/4" Carbonyl HPeorl. For
to.7 MHz, T is 51 A lOt of No. 32 AWG on Mictametlls 725-2 core; L il 371 No. 36 AWG all 0.200
dil 'orm with 10-32 x 1/4" Carbonyl E Cor. (DAv = 170).

C1RCZC3C4C5C6

455k.Hz

500

0

10 7 MHz

.01

300

.01

.05

5000

33

150

500

43

47

82

I
I
IL ___________ ,
,MAUDIO

"l
LOll TOO

T
':'

Ull .'
UI.F

J

'"'

FIGURE 4. LM273/LM373 Narrow Band FM IF Connection

r-----------------------------------------------l
r--------

I
I

I

I
I
I

I
I
I

I
.J

lIa"QAlI
~

FIGURE 5. LM273/LM373 SSB & CW I F Connection

r-----------------------------------------------l
r--------

I
I
I
I

I

I

I

I

1',!',L-----------.

JDhF

51

:~UAl
CD~TlUIl

I
I
I

I
.J

J2hF

FIGURE 6. LM274/LM374 SSB & CW IF Connection

~·21

typical applications (con't)
r-------------r::====~~,------------------------,
I
I '.
I
I
le.f

I~.

I

! 1')' i

2

I

'

i

I

I

.~;;~-!-'

eo'.f+,

J

-=
"r~H

lEVEl
¥tDED

'"'
MANUAL
U

~~~RDL

FIGURE 7. LM274/LM374 Video Amplifier Configuration
·Capaciton noted by asterisk Ire 0.1.t 455 kHz. L is Miller No. 43A105CBI for 455 kHI;8turns No. 2&
AWG on Microm.bls T25-2 Carbonvl. Core (0.255 00 x 0.110 10 x O.096WI far 10.7 MHz; 3--1/2
turns No. 20 AWG 5/16" die x 114"'0111 for 21 MHz.

r-----------------------------------------------,
r-------i
I

"

'fF

I

I
I

I
I
I

I

J

FIGURE 8. LM274/LM374, LM273/LM373 First Stage Converter Operation for AM Signa' Detection @455 kHz

5-22

Consumer Circuits
LM175/LM275/LM375 oscillator and buffer with TTL output
general description

features

The LM175/LM275/LM375 is a monolithic, differential pair, general purpose oscillator. It may be
used with crystal control or with LC or RC tanks.
Two output configurations are possible. It may be
connected to the internal isolating buffer to pro·
vide sine or square wave outputs, or to the internal
logic buffer with output levels and switch ing times
compatible with TTL and DTL logic circuitry. It
provides extremely high temperature and power
supply versus frequency rejection.

• Oscillation up to 200 MHz

The LM 175 is specified for operation over the
-55°C to +125°C military temperature range. The
LM275 is specified for operation over the _25°C
to +85°C temperature range. The LM375 is specified for operation over the O°C to +70°C temperature range.

•

Operation from supplies from 4.5V to 24V
(Logic buffer maximum supply at 7.0V)

•

High supply voltage rejection, typically
0.1 ppmIV

•

Low temperature coefficient, typically
0.05 ppm/DC

•

Variable drive to crystal to limit dissipation

• Capable of fundamental or overtone, series or
parallel mode of operation
• Separate power supply lead for logic buffer for
noise isolation
•

Low power dissipation

schematic and connection diagrams

Dual·ln-Line Package

140SCILLATORVcc

13

lOGICeUFFERVcc

11

LOGICBUffEAINPUT

10 ~i;~i~pRRENT
MEQIUMCUARENT
BIASlAP

Order Number LM 1750
or LM2750 or LM3750

See Package 1
Order Number LM375N
See Package 22

typical applications

OSCillATOR
OUTPUT

~10.'

FIGURE 1. 10 MHz L-C Sine Wave Oscillator

FIGURE 2. 1 MHz Crystal Oscillator with TTL Output

5·23

absolute maximum ratings
Supply Operating Voltage (Pin 14)
Supply Operating Voltage (Pin 13)

24V
7V
5V
5V
500mW

Differential Input Voltage 6V P4 to Pin 6

IN P2 to Pin 3
Power Dissipation (Note 1)

electrical characteristics
PARAMETER

Storage Temperature Range
Operating Temperature Range

LM175
LM275
LM375

_65°C to +150°C·
_55°C to +125°C
- 2SoC to +85°C

O°C to 70°C
300°C

Lead Temperature (Soldering, 10 sec)

(TA = 25°C, Vee = 5V unless, otherwise noted)

SYMBOL

CONDITIONS

MIN

TYP

MAX

UNITS

DC CHARACTERISTICS
Power Supply Current (Pin 14)

IpSt4

Vee = 24V

4.0

6.0

12.0

rnA

Power Supply Current (Pin 13)

IpSt3

No Load at Pin 12

4.0

6.0

14.0

rnA

Oscillator Output Current

lose

R L (Pin 5) = 1 kf!
Pin 9 Open, Pin 10 Open
Pin 9 Tied to Pin 10
Pin 9 Grounded, Pin 10 Open
Pin 10 Grounded, Pin 9 Open

120
160
300
750

140
190
360
1000

Buffer Output Current

IBUF

Logic Buffer Output Voltage

V TTL

Input LOW
Input HIGH
ISINK = 1.6 rnA

The Following Specifications apply to _55°C < TA
Oscillator Output Current

Buffer Ouptut Current

lose

2.5

3.0

2.1

2.7
200

/lAp""
/lAp""
/lAp""
/lAp""

mAp-p

400

mV

< +125°C

R~
Pin
Pin
Pin
Pin

(Pin 5) = 1 kf!
9 Open, Pin 10 Open
9 Tied to Pin 10
9 Grounded, Pin 10 Open
10 Grounded, Pin 9 Open

I BUF

100
130
250
600

/lAp""
/lAp.p
/lAp ..
/lAp.p

2.0

mA p _p

AC CH,i\RACTERISTICS
Oscillator Gain (at 1 kHz)

grnosc

Pin 9 Open, Pin 10 Open
Pin 9 Tied to Pin 10
Pin 9 Grounded, Pin 10 Open
Pin 9 Open, Pin 10 Grounded

Oscillator 3 dB Bandwidth

BWose

Rs = RL (Pin 5) = 500

Buffer Gain (at 1 kHz)

gmBuF

RL (Pin 1) = 500f!
Linear Mode
Limiting Mode

Buffer 3 dB Bandwidth

BW BUF

Rs = RL (Pin 1) = 500
Linear Mode
Limiting Mode

mmhos

1.4
1.9
3.6
10.0

mmhos
mmhos
mmhos

MHz

200

mmhos

B
30

mmhos

MHz
MHz

200
80

Logic Buffer Rise Time

20

50

ns

Logic Buffer Fall Time

20

50

ns

Note 1: For operation at elevated temperatures, the device must be operated based on a 150°C maximum junction
temperature with a thermal resistance of 1400 C/W for the metal DIP package and 1000 e maximum junction temperature
with a thermal resistance of 150°C/W for the plastic DIP package.

5·24

r-

s:
electrical characteristics

~

(con't)

U1

......

r-

PARAMETER

SYMBOL

CONOITIONS

MIN

TYP

MAX

s:

UNITS

~
U1
......

OSCILLATOR CHARACTERISTICS (See Oscillator Circuit)

r-

Frequency vs Power Supply

Rejection

5V

10

100

1000

FREQUENCY IMHz)

..'"
Q

~

~ -150

-SO

!:;

/

-100

:\l
;::

1

Rs: son +ttltll--+++++tt-+l
RL=sOn
TA ", 25°C

:;

z

lii.....

.2

Vee '" 5V

z

-H-H+I--+-+-lff++l-+l

TA :: 25°&

~ -ZOO

.6

.4

ose Buffer Bandwidth

Vee = 5V

-250

.B

FREQUENCY IMHz)

TA 1°C)

-300

1.0

OL...:;~....aL......J....u..LWll---L...l...UJJJU

lBO
-3S

r-rnmn1r-TTTTT111r"rrnnn

~

>

J

BO

~

P9 OPEN
Pl0 OPEN

1.2

>

3D

lii

P9GND

-

Rs: son
RL =50n
TA : 2SoC

i5 -20 t--+-++t++l-tt--I-f-Ir+t-fttl

...

600
400

-120

~ -10

~ 800

j

ose Stage Bandwidth

-IBO r-~~..,rmr--'---'TTnm
Vee'" 5V

Q

>
>

~

~

1--++t+1ItHY/-++++ttttl

O~
100

10

1000

0
10

FREQUENCY IMHz)

100

1000

FREQUENCY IMHz)

dc test circuit
nL BUFFER Vee

I~

"

10K

S4
1Z

O.UT,

Sl.S2

83
S4
55
S6

Usadtoselectdesired DSClllatllfcurrent.
Used to SWlngo$clllator output and measure lose.
Used to SWIng buffer output and melsure 'aUF.
Used to SWItch TIL buffer til high and low states.
Switches in maximum guaranteed TIL load to measure VTTL in the low state.

5-27

Consumer Circuits
LM377 dual 2 watt audio amplifier
general description
The LM377 is a monolithic dual power amplifier which
offers high quality performance for stereo phonographs,
tape players, recorders, and AM-FM stereo receivers, etc.
The LM377 will deliver 2W!channel into 8 or l6n loads.
The amplifier is designed to operate with a minimum of
external components and contains an internal bias regulator to bias each amplifier_ Device overload protection
consists of both internal current limit and thermal
shutdown.

features
•
•
•
•
•
•

Avo typical 90 dB
2W per channel
70 dB ripple rejection
75 dB channel separation
Internal stabilization
Self centered biasing

• 3 Mn input impedance
• 10-26Voperation
• Internal current limiting
• Internal thermal protection

applications
•
•
•
•
•
•
•
•
•
•

Multi-channel audio systems
Tape recorders and players
Movie projectors
Automotive systems
Stereo phonographs
Bridge output stages
AM-FM radio receivers
Intercoms
Servo amplifiers
Instrument systems

schematic diagram

connection diagram

typical applications

DaaHn·Line Package

14y'

BIAS

13 OUTPUT 2

OUTPUT 1

12 GND

GND
4

GND

11

TOP VIEW

GND

GND

INPUT 1

INPUT 2

FEEDBACK 1

FEEDBACk 2

TOP VIEW

Order Number LM377N
See Package 22

5-28

15W Per Channel Audio Amplifier

absolute maximum ratings
Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 secondsl

26V
OV - VSUPPLY
O°C to +70°C
-65°C to +150°C
150°C
300°C

electrical characteristics
Vs = 20V, T TAB = 25°C, R L = an, Av = 50 (34 dB!. unless otherwise specified.
PARAMETER
Total Supply Current

CONDITIONS

MIN

POUT = OW
POUT = 1.5W/Channel

DC Output Level

MAX

15
430

50
500

10

Output Power

T.H.D. =<5%

T.H.D.

POUT = 0.05W/Channel, f = 1 kHz
POUT = lW/Channel, f = 1 kHz
POUT = 2W/Channel, f = 1 kHz

2

Offset Voltage
Input Bias Current

26

0.25
0.07
0.10

%
%
%

100

Rs= on

66

V
W

mV
nA
Mn

3

Output Swing

mA
mA

2.5

15

Input Impedance

UNITS

V

10

Supply Voltage

Open Loop Gain

TYP

90
V s-6

dB
V p.p

Channel Separation

CF = 250,uF, f = 1 kHz

50

70

dB

Ripple Rejection

f = 120 Hz, CF = 250,uF

60

70

dB

1.5

A

Current Limit
Slew Rate
Equivalent Input Noise Voltage

1.4
Rs = 600n, 100 Hz - 10 kHz

3

GIl

V/,us
,uVrms

Note1: For operation at ambient temperatures greater than 2SoC the LM377 must be derated based on a maximum 150°C junction temperature
using a thermal resistance which depends upon device mounting techniques.
Note 2: Dissipation characteristics are shown for four mounting configurations.
a. Infinite sink - 13.4°C/W
'

b. P.C. board +V7 sink - 21°C/W. P.C. board ;s 2 112 square inches. Staver V7 sink is 0.02 inch thick copper and has a radiating surface
area of 10 square inches.
c. P.C. board only - 29°C/W. Device soldered to 2 1/2 square inch P.C. board.
d. Free air - 5SoC/W.

5·29

typical performance characteristics
Maximum Dissipation vs
Ambient Temperature

...,

~

10

Supply Current YS
100

INFINITE SINK

i

.......

1

I

>=

:

r--..

1
PC BOARD

w

"

~

."

INFINITE SINK 1l.4'CIW
PC IOAIID+V,21'C!W

;(

21I2S0IN.pcaOARDU'CNi

"

FREE AIR SI'CIW

10

20

....
..

--

30

.......

50

.,!:;

40

~
~

20

~

J

60

10

100

~

'"

1:
2

.

-

100

~

r--...

99

5;

!;.,

.........

10

20

30

40

50

60

OUTPUT POWER' 0.5W
FREOUENCY • 1 kHz

c;

500

'"~

1/1

0.6

R:'I~.V~2!..f;:;:

J

0.5
0.4

~;:

....

1,.0-

0.3

h
Q

l:i

~

14

100

200

16

16

20

22

24

300

400

....
~

..

./

~

....

-

~
m

i!i

50

n

40

~
~

.
in

30

!;l
~

20

as

10

600
500

./

300

V

200

Channel Separation

;;;

i

I

~

1--

1'~

..:r:~

1.5
0.5
POWER OUTPUT (W/CHANNELI

.... 1-

40
3D

4'

20
10
0
2

OUTPUT POWER (W/CHANNELI

10

90
80
10

~

1.5

100

=50. RL '" l6n, Vs =24V. F =1000

60
60

"

-

/
0.5

>=
w

.......

.....

OUTPUT POWER IWICHANNELI

1

5-30

Vs '" 20V. RL '" an, Av =.50

> 100

Dissipation and Efficiency

60

1.5

l:i

.sPOUT

10

r-

100

~ 400

Dissipation and Efficiency

;;. >' ~

I

.... 10-

YSPOUT

-

".s....

/

Av

16
14-::: 1,..0<

800

OUTPUT POWER (W/CHANNELI

10

18

0.5

1

BO

!-l- I-

POWER OUTPUT IW/CHANNELI

V

500

an, F"'1 kc

~ I--

Supply Current Y5 POUT

....

GAIN (Avl

Vs = 18, RL '"

26

Av • 50. RL • 16n. Vs' 24V. f· 1000

300

;;

2~V

i""'"

400

100

10

T.H.D.· 3%

12

200

60

.....

12

~

w

/

0.2
0.1

..-:

'6n

Supply Current.s
Output Power

RL=B.Ve=l8/!

§! 0.1

L

50

~

. / I--""

VSUPPLY (VI

".si!i....

J
V

1#

10

1,.0-

=an

s'

...-:: VR

10

40

Power Dissipation vs

Rl,

14
12

30

Power Output

RL =16n/

10

./

20

/

16

6

o

0.6

In

10

TA - AMBIENT TEMPERATURE ('CI

Vs

18

Distortion vs Gain

.,iii

1M

f= 1 kc

TA - TEMPERATURE ('CI

i!i

I

22

101

0.9

lOOk

10k

1k

Output Swing Y5

20

98

20V

10 -12V

f - fREQUENCY (Hzl

102

§:
5;

..

15

0

as

~

25
20 ~26V

~

I

DC Output Level .s
Temperature

.,
""
>

".s....

60

TA - AMBIENTTEMPERATURE ('CI

..
~

30

"

BO

w

>

f-.

40

35

:;l
~'"
it",

40

....

~

~

....

200llF
20,uF

=

250, Vs

r?

=

Po

=O.05W

30
20

IIII

16n

ttiJ

O~
lW

Av' 50

't:N

C v~~N,~S ARE ,~,I,:PlE F,lh~!R
10

=

~~ - O.05W

Js~Iiov.

10

Av =250. Vs =24V. Rl

0.5W
lW

M

"'w

Distortion vs Frequency

lav. RL =I~~- rttl

-m

~~

~

Av

I III

~w

w'"

Distortion vs Frequency

III

100

1000

o

10k

lOOk

10

10k

lk

100

lOOk

10

FREQUENCY (Hz)

FREQUENCY (Hz)

Distortion vs Frequency

lk

10k

lOOk

FREQUENCY (Hz)

Distortion vs Frequency

Distortion vs Frequency
Av

100

= 100, Vs = 24V. RL = 16n

Av = 50, Vs" 24V, RL "" 16n

Po=O.5W

Po =O.D5W

fo~J~
I.IJI![

O.SW
lW
2W

lW

~ ~~l

o
10

100

lk

10k

lOOk

100

10

FREQUENCY (Hz)

10k

lk

lOOk

V

o

01.~W

m:"
10

100

lk

10k

lOOk

FREQUENCY (Hz)

FREQUENCY (Hz)

Distortion vs Frequency
Av" 100. Vs= 18. RL =8n

J~o -O.OSW

1~_~

0.5w

WI

~
10

100

lk

10k

lOOk

FREQUENCY (Hz)

5-31

typical applications

O.02,uF

lOOk

8n
INPUT1

0-1

811
INPUT 1

0-1

C,
D.01/lF

TAB GND
":"

'::"

INPUT2~
an

81.

O.02"F

Simple Stereo Amplifier with Bass Boost

Simple Stereo Amplifier

O.1/JF

~ 1------....>-----------,

SIGNAL
INPUT~

R
1M

R
1M

O.47.uF

"k

4W Bridge Amplifier

5-32

Consumer Circuits
LM378 dual 4 watt audio amplifier
general description
The LM378 is a monolithic dual power amplifier which
offers high quality performance for stereo phonographs,
tape players: recorders, and AM-FM stereo receivers, etc_
The LM378 will deliver 4W channel into 8 or 16n loads_
The amplifier is designed to operate with a minimum of
external components and contains an internal bias regulator to bias each amplifier. Device overload protection
consists of both internal current limit and thermal
shutdown_

features
•
•
•
•
•

Avo typical 90 dB
4W per channel
70 dB ripple rejection
75 dB channel separation
Internal stabilization

• Self centered biasing
• 3 Mn input impedance
• Internal current limiting
• Internal thermal protection

applications
•
•
•
•
•
•
•

Multi-channel audio systems
Tape recorders and players
Movie projectors
Automotive systems
Stereo phonographs
Bridge output stages
AM-FM radio receivers

• Intercoms
• Servo amplifiers
• Instrument systems

schematic diagram

M.

~'--t--f'L!..' ' ..

connection diagram

typical applications
Vs+JOV

Dual-In-Line Package

BIAS

OUTPUT'
GND
GND

U GND

,

11

TOP VIEW

GND

10 GND

GND
INPUT 1

INPUTZ

FEEDBACK I

FEEDBACK 2

TOP VIEW

Order Number LM378N
See Package 22

15W Per Channel Audio Amplifier

5-33

absolute maximum ratings
Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)

35V
OV - VSUPPLY
O°C to +70°C
-65°C to +150°C
150°C
300°C

electrical characteristics
Vs = 24V, T TAB

= 25°C,

RL

= an, Av = 50 (34 dB),

PARAMETER
Total Supply Current

unless otherwise specified.

CONDITIONS

MIN

POUT = OW
POUT = 1.5W/Channel

DC Output Level

T.H.D.

MAX

UNITS

15
430

50
500

mA
mA

12

Supply Voltage
Output Power

TYP

10
T.H.D. =
T.H.D. =

< 5%, RL = an
< 5%, RL = 16n

4
4

POUT = 0.05W/Channel, f = 1 kHz
POUT = lW/Channel, f = 1 kHz
POUT 2W/Channel, f = 1 kHz

V

V

5

W

5

W·

0.25
0.07
0.10

%
%
%

Offset Voltage

15

mV

Input Bias Current

100

nA

3

Input Impedance
Open Loop Gain

RS

=

on

Channel Separation

CF

=

2501lF, f

Ripple Rejection

f

=

1 kHz

= 120 Hz, C F = 250llF

Current Limit

90

dB

50

70

dB

60

70

dB

1.5

A

1.4

Slew Rate
Equivalent I nput Noise Voltage

Mn

66

Rs = 600n, 100 Hz - 10 kHz

3

V/Ils
IlVrms

Note 1: For operation at ambient temperatures greater than 25°C the LM378 must be derated based on a maximum 150°C junction temperature
using a thermal resistance which depends upon device mounting techniques.
Note 2: Dissipation characteristics are shown for four mounting configurations.

a. Infinite sink - 13.4°C/W
b. P.C. board +V7 sink - 21°C/W. P.C. board is 2 1/2 square inches. Staver V7 sink is 0.02 inch thick copper and has a radiating surface
area of 10 square inches.

c. P.C. board only - 29°C/W. Device soldered to 21/2 square inch P.C. boarll.
d. Free air - 5SoC/W.
"Tested at Vs = 30V.

5·34

typical performance characteristics
Power Dissipation vs

Maximum Dissipation vs
10

tOO

INFINITE SINK

~

I
I

""
~

..........

"

PC+ V7

ill
c

r-

1

W

--

PC BOARD

u

1::

1i"

FREl AIR

.."x

INFINITE SINK 1J4'CIW
PCUDARD+V,2"CIW
21f2SQ IN 'C BOARQ 29'Cffl
fREEAIRWCIW

"

to

20

30

BO

~

60

r-..

z

I'.....

."
~
W

-- -.........

>

50

60

r-..
r-..

40

I

.a

1=

40

"'

20

70

tOO

tk

TA - AMBIENTTEMPERATURE ("C)

500

"Iw'"
0:=
o:W
,,~

u"

400
JOO

~w

~~
w'"

"u

"''''
wOO
>"'
'"
0:1-

tOO

"S!ii

-z
0:0:

o:~
u ..

""
~yf

/

>~

200

."

V

/

V

~i

II

~o

Power Dissipation vs

600

./

500
400

>"'

tOO

V

V

V

JoO
200

'"

Av= 50, Vs=24V. RL ",an. f= 1 kHz

/
II
POWER OUTPUT (W/CHANNEL)

OUTPUT POWER (w/CHANNEL)

Distortion vs Frequency

Distortion vs Frequency

Channel Separation

15
~

POWER OUTPUT (w/CHANNEL)

Power Output

700

"':z:
0:1-

w"

Av=5D. Vs= JOV, RL '" l6n,'= 1 kHz

BOD

OUTPUTPOWER (W/CHANNEL)

..

tM

Supply Current vs
Output Power

Output Power

"-"."

tOOk

tOk

f - FREQUENCY (Hd

Supply Current v.

1--

Power Output

Open Loop Gain

Ambient Temperature

70

Av " 50. Vs - 24V, RL " 16n

Av ..

'slfR L - Bn:'"s -18V

60

=

~
~

;;
~

50

o

40
100

tk

tOk

to

tOOk

0.9
O.B

i!
15

~

0.5
0,4

C

0,3

In

0.2
O.t

".

RL = B, Vc = t8/1

/

R: =

~

70

IIII

21-

60

2DO.uF
20.uF

!;!"
I-~

1/1

0.6

t~, vo;;.j!.:;;;

".

/
y

~:5
~"
WI0:"
>w
~o:
ito:
"w
~
o:W
wo:

200

JOO

GAIN (Av)

tOOk

tOO

10

40

.

30

~

to

400

500

Output Swing vs Vs
f= 1 kHz

'J

~

2

IIII
J, ~Ijov, Av' 50

15

!;

10

100

tODD

FREQUENCY (Hd

V

~

'"

C VAL,V,~S ARE m,~PLE %~~R
10k

~

o
tOOk

RL=\SY

20

"

~

t.F

to

tOOk

25

r-ml

20

10k

lk

FREQUENCY (Hz)

1111

50

o
tOO

10k

Supply Rejection vs
Frequency
Bo

0.7

tk

100

tW'
~'

o

FREQUENCY (Hz)

Distortion vs Gain
OUTPUT POWER = 0.5W
FREQUENCY = 1kHz / '

IlI!r

~

FREQUENCY (Hd

t

11111 1l01J~

IW
0.5W

Vs " 20V, RL - 8n
Av" 50. CF - 25DJ.lF

to

11I1I~1I1I~lIlp!oj-lol'O!5Wl

Po =O.05W

10

15

A

K=~!!

20

25

JO

35

VSUPPLY (V)

5·35

co
(:;

!

typical applications (con't)
lOOk

D.1JJF

~

SIGNAL
INPUT~

1---------.-----------,
In

Vs"22V
INPUT 1

o-:II---...-<:,..:..j
c.
O.OIIJF

'0
1M

10k

8W Bridge Amplifier

5-36

'M
'QQk

Simple Stereo Amplifier

Consumer Circuits
LM379 dual 6 watt audio amplifier
general description
The LM379 is a monolithic dual power amplifier which
offers high quality performance for stereo phonographs,
tape players, recorders, and AM-FM stereo receivers, etc_
The LM379 will deliver 7W/channel to an an load_ The
amplifier is designed to operate with a minimum of
external components and contains an internal bias regulator to bias each amplifier_ Device overload protection
consists of both internal current limit and thermal
shutdown_

features
•
•
•
•
•

Avo typical 90 dB
7W per channel
70 dB ripple rejection
75 dB channel separation
Internal stabilization

• Self centered biasing
• 3 Mn input impedance
• Internal current limiting
• Internal thermal protection

applications
•
•
•
•
•
•
•
•
•
•

Multi-channel audio systems
Tape recorders and players
Movie projectors
Automotive systems
Stereo phonographs
Bridge output stages
AM- F M radio receivers
Intercoms
Servo amplifiers
Instrument systems

schematic diagram

connection diagram

typical applications
D.l#lF

~

SIGNAL
INPUT -----.

DuaHn-Line Package
V·/Z GND OUT 2 GND

Ne

t-------.------------,
250.u F

p

Nt +IN 2 -IN 2

Vs= 2BV

o
1M

y+ GND OUT 1 GND Nt

1M

Ne +IN 1 -IN 1

TOPVIEW

Order Number LM379M
See Package 36

OA1 .u F

1••

14W Bridge Amplifier

5-37

absolute maximum ratings
Supply Voltage
Input Voltage
Operating Temperature
Storage Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)

35V
OV - VSUPPLY
O°C to +70°C
--65°C to +150°C
150°C
300°C

electrical characteristics
Vs ~ 28V, T TAB ~ 25°C, RL ~ 8n, Av ~ 50 (34 dB), unless otherwise specified.

PARAMETER
Total Supply Current

CONDITIONS

MIN

POUT ~ OW
POUT~ 1.5W/Channel

DC Output Level
Supply Voltage
Output Power
T.H.D.

TYP

MAX

15
430

65

POUT
POUT

~
~

~
~

5%
10%

lW/Channel, f
4W/Channel, f

6
~
~

V

6
7

W
W

V

0.07
0.2

1 kHz
1 kHz

Offset Voltage

15

Input Bias Current

100

Input Impedance
Rs~

Channel Separation

CF

Ripple Rejection

f

~

~

nA

90

dB

250llF, f = 1 kHz

50

70

dB

70

dB

1.5

A

120 Hz, C F = 250llF

1.4
~

mV

66

Slew Rate
Rs

%
%

On

Current limit

Equivalent Input Noise Voltage

1

Mn

3

Open Loop Gain

mA
mA

14
10
T.H.D.
T.H.D.

UNITS

600n, 100 Hz - 10 kHz

3

VIlis
IlVrms

Note': For operation at ambient temperatures greater than 2SoC the LM379 must be derated based on a maximum 150°C junction temperature
using a thermal resistance which depends upon device mounting techniques.

5·38

typical performance characteristics
Maximum Dissipation vs
Ambient Temperature

22

"l=co

20

iii

18

::
C

'\

W

u

~

1i,.
x

,.'"

100

.

~1~!.~.d~I~K

~

16

"-

80

:s

"~

60

W

1\

10

"'

1'\

14

~>

40

~

20

I

'\

0

12

o

10

20

30

40

50

60

70

100

80

8fi

I-'

i~
~"

"'"
Wu
'"",

600

:<

-"

V

ffi~
",=

"'~
"co
u.,

.

>~

300

I

~w

300

5I~
Wu 200

/

~~
~m

2

4

100

70

III

~t;

60

20o"F
2o"F

~!:

50

~co

1

~=
g,,,,

"W
.,~

",w
w'"

40

3

4

Channel Separation

Distortion vs Frequency

r:'Av~0~5"0m:.V-:-s~0"!24!!V"'."R,~0~'''6''''nr-1"T

4

r?

I.F

30

III

20

Po - .05W

J, ~120V.

;0:

~

2

POWER OUTPUT iWlCHANNELI

-m

WI-

>W

I

rIll

I-~

=co

V

QUTPUTPOWER IWICHANNEL)

Supply Rejection vs
Frequency

iD

/

V

5

OUTPUT POWER iWICHANNEL)

:s

Power Output

'"

Av'" 50. Vs=28V. RL. ==8fl, f;; 1 kHz

80

/'

400

~"
~

1

4

Av'" 50, Vs=30, RL '" l6n, f= 1 ~

e'" 500

/

~i: 200
"'co
~ca 100

3

POWER OUTPUT iWICHANNEL)

Power Dissipation vs

,.........1-'

600
='"
"'~ 500
"co
u,"
400

1

1M

Supply Current V5 POUT

800
700

lOOk

f - FREQUENCY 1Hz)

Supply Current vs
Output Power

.s~

10k

lk

TA -AM8IENTTEMPERATURE I"C)

:<

Power Dissipation vs
Power Output

Open Loop Gain

10

IV

Av c 50

o
10

100

1000

10k

0

0.9
0.8

§

§

0.7

"co

~

0.6

:;;co

:;;
co

In

Po =.05W

c

W
~:=

o
10

100

lk

FREQUENCY 1Hz)

10k

lOOk

C

OUTPUT POWER

Output Swing

0.2
0.1

25

i--"

O.5W

FREQUENCY 0 1 kHz

~

1/1 I
/

R; 01 16.

V~ 2!..1=:

15

I-

10

YS

Vs

Ih

~

~

1/

20

."'

~

1/

/'

co

V

~ KO~l!

o
100

200

300

GAIN IAv)

lOOk

R,o\sy

f= 1 kHz

/

R, 08. Vc 018/1

0.5
0.4
0.3

==

10k

FREQUENCY (Hz)

Distortion vs Gain

=8n:'vs ;; 18V'

lk

100

FREQUENCY 1Hz)

Distortion vs Frequency

In

10

lOOk

FREQUENCY 1Hz)

Av =50, Rl

lW
.5W
2W

CVAh~~SAR~m~PLE FlmR

400

500

10

15

20

25

30

35

V SUPPLY IVI

5·39

typical applications (con't)

lOOk

8!!
INPUT 1

0-1

81l

INPUT 1

C,
O.D1).1f

0-1
C,
D.D1~F

TAB GND

2.4,13,15
':'

':'

81!

B!!

Simple Stereo Amplifier

5-40

Simple Stereo Amplifier with Bass Boost

r-

3:
w

Consumer Circuits

CO

o

LM380 audio power amplifier
general description
The LM3BO is a power audio amplifier for con·
sumer application. In order to hold system cost to
a minimum, gain is internally fixed at 34 dB. A
unique input stage allows inputs to be grou nd
referenced. The output is automatically self ent·
ering to one half the supply voltage.
The output is short circuit proof with internal'
thermal limiting. The package outline is standard
dual·in·line. A copper lead frame is used with the
center three pins on either side comprising a heat
sink. This makes the device easy to use in standard
p·c layout. A mini dual·in·line package version
with reduced power capability also available.
Uses include simple phonograph amplifiers, inter·
coms, line drivers, teaching machine outputs,

alarms, ultrasonic drivers, TV sound systems, AM·
FM radio, small servo drivers, power converters,etc.

features
•
•
•
•
•
•
•
•

Wide supply voltage range
Low quiescent power drain
Voltage gain fixed at 50
High peak current capability
Input referenced to GND
High input impedance
Low distortion
Quiescent output voltage is at one·half of the
supply voltage
• Standard dual·in·line package

block and connection diagrams
Dual-In-Line Package

Dual-In-Line Package

aVPlSS

v.

BYPASS

"'0'"' '

V.

NON INVERTlNIl INPUT 2

.")

lIGNO"
Your

INVERTINIlIN'UTJ

,"

•ltVERTlNGINPUT5

GNIl4

• vou,

Order Number LM3BON
See Package 22

JV.

I You,

SGND

Order Number LM3B0N·B
See Package 20

schematic diagram
, - - - - - - - - - -.....--_t-""V.U41

-+___....

r-_ _-'\M,._ _ _

--o~~TPUT

typ~o----"",

5·41

absolute maximum ratings
Supply Voltage
Peak Current
Package Dissipation 14 Pin DIP (Note 6)
Package Dissipation 8 Pin DIP (Note 7)
Input Voltage
Storage Temperature
Operating Temperature
Junction Temperature
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER
Output Power

22V
1.3A
5.0W
660mW
±0.5V
_65°C to +150°C
O°Cto +70°C
+150°C
+300°C

(Note 1)

SYMBOL

CONDITIONS
(Notes 3, 4) RL = 8n, THO = 3%

POUT(RMSI

Gain

Av

Output Voltage Swing

V OUT

Input Resistance

Z'N

Total Harmonic Distortion

THO

(Note 4, 5)

Power Supply Rejection Ratio

PSRR

(Note 2)

Supply Voltage

Vs

Bandwidth

BW

Quiescent Supply Current

10

Quiescent Output Voltage

V OUTO

Bias Current

I BIAS

Short Circu it Current

Isc

MIN

TYP

MAX

W

2.5
40

RL =8n

50

60

Vpf>

150k

n
%
dB

38
8

22

Inputs Floating

V
Hz

lOOk

B

VIV

14

0.2

POUT = 2W, RL = 8n

UNITS

7

25

9.0

10

100
1.3

mA

V
nA
A

Note 1: Vs = 18V and TA = 2SoC unless otherwise specified.
Note 2: Rejection ratio referred to the output with CBYPASS = 51J.F.
Note 3: With device Pins 3, 4, 5,10,11,12 soldered into a 1116" epoxy glass board with 2 ounce copper foil with a minimum
surface of 6 square inches.
Not84: If oscillation exists under some load conditions, add 2.7!l and 0.1 J.l.fd series network from Pin 8 to Gnd.

Note 5: CBYPASS = 0.47 !lfd on Pin 1.
Note 6: Pins 3, 4. 5. 10. 11. 12 at 25°C derate 25°C/W above 25°C case.
Nota 7: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature
and a thermal resistance of 187°C/W junction to ambient.

heat sink dimensions

5·42

I

I

I
I
I

I
I
I

I

I

CDPPERWINGS
2REnUiRED
SOLDERED TO
I'INS1,4.5,
10,11,12

THICKNESS 0.04
INCHES

,..
3:
w
00
o

typical performance characteristics
Maximum Device Dissipation vs Ambient Temperature
6.0

TcMEASURED
DN PIN 4 DR 11
5.0 ~~~V:-:::;=-+--I(NOTE: 6)

~

~z

4.0

~

3.0

C

2.0

CI

"in
en

w

u

:;:
w

1.0

c

o

o

10 20 30 40 50 60 70 80 90 100
TA - AMBIENT TEMPERATURE

Device Dissipation vs Output
Power - 4!l. Load
3.5
3.0

.

2.5

li
;a
z

2.0

E 1.5

iii
2i

1.0

~

u

~

/

;:>-

V

10V- ~
9V

I--

/'

,-

/'

15

-

""~

-

10%

l~JUL
L

x

"

0.5

:E

o

0.5 1.0 1.5 2.0

3.0

~

ill

II V- i . - -

2.0

;::
;t

l~~V'
18

1.5

iii
~

.
~

o 0.5

2.5 3.0 3.5 4.0

I
>-

~

--

8.0
7.0
6.0

.......

5.0
4.0

a:

~

3.0

~

2.0

.!:

1.0

,

i!
" 2.0

..
z

3% OIST.

~Ift-

10%
OIST.
LEVEL

~

.
~

-

TA ""25"C-

..
z

I .•

~

1.6

10

12

14

16

18

20

1.41-++l+-f-f-H-1-+-l
2i 1.2 I-++l+-f-f-H-I-+-I
~ 1.0 ~+-H+-+-+-I+l-+--l
~ D.• I-++l+-f-f-H-I-+-l

100 200

40

fz 1 kHz
Vee;; 22V

.

20

~
>

15

'"

500

.

'"

10

0.4

111 r

ill
;::

0.3

~
tl 0.2

2i

w
u

~

2.0
~ 1.0

0.1

V
l-

II

~ 40dB

I I
I

I

0.2

0.5

1.8

2.0

5.0

Po - OUTPUT POWER (WATTS)

10

0.1

0.2

10k

0.3

lOOk

1M

360"
10M

II
5.F

II
II
U
2.F

0.4

OUTPUT POWER (WATTS)

V

3adB

~ 20d

~

II

.~

D.47~F

1111111

10d Bi-

ND

Vee = 9V

.Y~l~~I~APACITOR
111111111

0
0.1

i
~

..- f:;~o fill/
lA'
I I
fll- ~'3%THO
R," 4011 I

lk

rn

300"

Supply Decoupling vs Frequency

I I
I L...

I-R, "1611

100

0

FREBUENCY (Hz)

R',".;'_I-

V

240

=

10

10k 20k

~

lBOo~
RL "8u I
POUT 2W

50d.

e
~

b
"
~

5k

120"

P,AiEI

Device Dissipation vs Output

HEATSINK" TWO
COPPER WINGS
SEE FIG. PAGE 4

5.0
4.0

2k

60'

III

Power

CBYPASS'" 5J.1F

6.0

lk

D·

~, ~J

'"gz 25
w

Vee'" 18V

III

;;; 30

0.5

Rl"'SH

t; 7.0

3.0

III

35

FREQUENCY (Hd

Total Harmonic Distortion
vs Output Power

~ B.O

~

1.5 2.0 2.5 3.0 3.5 4.04.55.0

Output Voltage Gain and
Phase vs Frequency

~+-H+-+-+-I+}~8V== ou

~

22

LEIVE~

o

0

~ 9.0

~

0.5

o 0.5 1.0

2.0 . -.......;-,-,--..:...,.-..-.......-...,...--,

V' SUPPLY VOLTAGE (V)

:

:f- ~ ~- ....

1.0

~

[11--T
~tl
1T

OUTPUT POWER )WATTS)

~

8.0

~

...
I::'~ f- !-~ >-..;,

u

0

§ 10

'-~

;:: 1.5
;t

Total Harmonic Distortion
vs Frequency

Supply Voltage
10.0
9.0

3% OIST.
LEVEL

~

OUTPUT POWER (WATTS)

Power Supply Current vs

....

~

11

iii 2.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

OUTPUT POWER IWATTS)

<
..s

::--1--..
b;-~

I-

16V 1-'1.0 14V
12V I..... P'"
0.5

2i

u

3.0

r-.

V

2.5

!

-7" -;-., i
/'

I-

"'"

-

Device Dissipation vs Output
Power - lSn Load

Device Dissipation vs Output
Power - an Load

3.5

3%0IST.
LEVEL

~

re)

0.5

10 Hz

100Hz

1 kHz

II II
10kHz

FREQUENCY

5-43

o

CO

~

typical applications

....I
Bridge Amplifier

Phono Amplifier

"

"
CRYSTAL

CAIIYRrD8E

Phase Shift Oscillator

Intercom

"

,
L__________________________
-

I

5-44

!-.-)
:

~

T'T'T'
':"

":"

":"

Consumer Circuits
LM3811LM381A low noise dual preamplifier
general description
,additional external compensation for narrow band
applications.

The LM381/LM381A is a dual preamplifier for
the amplication of low level signals in applications
requiring optimum noise performance. Each of the
two amplifiers is completely independent, with
individual internal power supply decoupler·
regulator, providing 120 dB supply rejection and
60 dB channel separation. Other outstanding
features include high gain (112 dB), large output
voltage swing (Vee -2V) p.p, and wide power
bandwidth (75 kHz, 20Vp.p). The LM381/LM381A
operates from a single supply across the wide range
of 9 to 40V.

features

Either differential input or single ended input
configurations may be selected. The amplifier
is internally compensated with the provision for

•
•
•
•
•
•
•
•
•
•

Low Noise - .5 p.V total input noise
High Gain - 112 dB open loop
Single Supply Operation
Wide supply range 9-40V
Power supply rejection 120 dB
Large output voltage swing (Vee -2V)p.p
Wide bandwidth 15 MHz unity gain
Power bandwidth 75 kHz, 20 Vp_p
Internally compensated
Short circuit protected

schematic and connection diagrams
Dual-In-line Package

----I
I
I
I
I
' -_ _+-+-<>IJ,II

ll-IN(OIFf) (2)

12-INISEI12J

-INIS.Elnll

liND 4

I

.I

14+IN(ZI

+INml

-INIDIFFJ (112

I'} EXT. COMPo
10

,

EXT. COMP,{ 5

111

6

OU1PU1(111

(2)
v~

8UU1'U1(2)

TOP VIEW

Order Number LM381N, LM381AN
See Package 22

typical applications

30V

II
Typical Tape Playback Amplifier

Typical Magnetic Phono Preamp.

U.BI

IZOpf

I

:l2IlI(

~"F~"F".
Two-Pole Fast Turn-On NAB Tape Preamp

Audio Mixer

5·45

...



25

50

75

o

I----+.~~'---+----+_--_+

1.1
1.0
.9

i ':

/1--1"-.

i'- /

/

~"

~~

__

100

I I__• - L
I __

~~

lk

10k

lOOk

~~

1M

10M

30
20
10

lk

10k

40

10

100

I--

Voltage Gain v. Supply
Voltage
15

f------

60

"'..t_+--l::

PHASE--p_....

."\
I-+--+--+--+--+_"\.~~-l
.\

'1.\

120
110
100

31

~
~~: ~

90

NOTE: Rs-O

MODE·SINGLE ENDED

~~

81---!"I.t--f-Htfflr-+++++t+H

~

~~

-J..~

SUPPLY VOLTAGE (VI

Pulse Respo,:",5e

HH-+-+-+-+A~ =\0 r-

NOTE: Rs'" SDk

MDDE·SINGLE ENDED

.5

r:J:;;;;j;:::~=:j:=l==l
F-

1---1---+-+-+--1---1
1--+'--+--1--1---+---1
1--+-+-+--1--+---1
1--+-+-+--1--+---1

80
70
601---+--+--4--~--~__l
50 1---1--+-+-+--1---1
40 1--+-+-+--1--+---1
30 1--+-+-+--1--+---1
20 1---+--+--4--~--~__l
10
__
__
__
10
15
20
25
30
35
40

Noise Current vs Frequency

r---r=,,",",,=:--~~~'TT1

1 kHz 10 kHz 100 kHz 1 MHz

FREQUENCY (HzI

FREQUENCY 1Hz)

\

40

30

lOOk

135
150
165
o ~-J..__~-L_",-~__-'---' 180
1
10 100 lk 10k 1M 1M 10M

Noise Voltage vs Frequency

10

100

1--+~~"\.f'''''"'i:G~1N

FREQUENCY IHzI

12

35

"=

:~: ~

~:
:~

30

lOr- ::c \0:: -+---11---1----1

~~~__~-L__4~0~d8~-L~

10

80

25

20

~+--+--+--60d8 ./9

.2

1:: I--+"''I.c-l'..-",+--+-+--+---l !:

== _ "ry-f---h=:=

10

~

Gain and Phase Response

80 - ' 70

50

FREQUENCY (HzI

r--,---,---,...--,---,---,

J

60

z

~

NAB EnUIVALENT ",.--JI-+-+-4

:;

PSRR vs Frequency

110

iii
o

.6

40

20

Channel Separation

:s

o

30

15

Vee = 12V +_+--+--+--1--1

SUPPLY VOLTAGE IVI

m

10

70

.5

.1

120

5

SUPPLY VOLTAGE (VI

% Distortion

/

130

9

100

.7

20

it

TEMPERATURE reI

1----+----"../'---+-----1

10

10

105

.8

10

~

.s

110

P-P Output Voltage Swing v.
Vee

20

W

....CO
»

11

z

100M

.-----....,-----r----,----,

3:

12

FREQUENCY (HzI

40

Vee v.lee
13

120

.4 P"'i;;;::Hf+ttffl---+-++++t+H
.3

~+-t_++ttttl_r---f=t=9"i-H~
\

21-++++++f++--++++++Hl

\

.1 I-+++Htf++--++++++Hl
-1

100

lk
I (Hz!

10k

100

lk
11Hz!

10k

-20 -10 0 10 20 30 40 50 60 70 80

TIME l$.Isl

5·47

Consumer Circuits
LM382 low noise dual preamplifier
general description
The LM382 is a dual preamplifier for the amplication of low level signals in applications requiring optimum noise performance_ Each of the two
amplifiers is completely independent, with individual internal power supply decoupler-regulator,
providing 120 dB supply rejection and 60 dB channel separation_ Other outstanding features include
high gain (100 dB). large output voltage swing
(Vcc -2V) Pop, and wide power bandwidth
(75 kHz, 20 Vpop) _ The LM382 operates from a
single supply across the wide range of 9 to 40V_

circuit is supplied in the 14 lead dual-in-line
package_

features
•
•
•
•
•
•
•
•
•
•

A resistor matrix is provided on the chip to allow
the user to select a variety of closed loop gain
options and frequency response characteristics
such as flat-band, NAB or RIAA equalization_ The

Low noise - 0_8 /l-V total equivalent input noise
High gain - 100 dB open loop
Single supply operation
Wide supply range 9 to 40V
Power supply rejection - 120 dB
Large output voltage swing
Wide bandwidth - 15 MHz unity gain
Power bandwidth - 75 kHz, 20 Vp-p
Internally compensated
Short circu it protected_

schematic and connection diagrams
Dual-In-Line Package

+IN(t) 1

14 +IN(2)

-INIl) 2

13 -IN(l)
12 GAIN CDNTROL(2)

GAIN CQN1RDL(1) 3
GND 4

11

Vee

GAIN CONTROL(1) 5

10 GAIN CONTRDL(2)

GAIN CONTADU11 6

8

GAIN CONTROL(2)

OUTPUTII) 7

8

OUTPUT(2)

TOP VIEW

Order Number LM382N
Saa Package 22

typical applications

"
Tape Reamplifier (NAB Equilizationl

.OD11i"F

Phono Pre-Amp (RIAA Equilizationl

Flat Response - Fixed Gain
Configuration

5-48

iw

absolute maximum ratings

CO
N

+40V
800mW
O°C to 70°C
-65°C to +150°C

Supply Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

300°C

electrical characteristics

CONDITIONS

PARAMETER

Voltage Gain
Supply Current

TA = 25°C, Vee = 14V, unless otherwise stated.

MIN

MAX

100,000

Open Loop (Differential Input)
Vee 9 to 40V, RL =

TYP

10

00

UNITS

VIV
16

mA

Input Resistance
(Positive Input)

100

kn

(Negative Input)

200

kn

I nput Current
0.5

(Negative Input)

JlA
n

150

Output Resistance

Open Loop

Output Current

Source

8

mA

Sink

2

mA

Output Voltage Swing

Peak·to·Peak, R = 10k

V

Vee - 2
15

Small Signal Bandwidth
Power Bandwidth

20 V p _p (Vee = 24V)

Maximum Input Voltage

Linear Operation

Supply Rejection Ratio

f = 1 kHz

MHz

75

120

mVrms
dB
dB

Channel Separation

f = 1 kHz

Total Harmonic Distortion

60 dB Gain, f = 1 kHz

0.1

0.3

%

Total Equivalent Input
Noise

Rs = 600n, 100 - 10,000 Hz

0.8

1.2

JlVrms

Noise Figure

50 kn, 100 - 10,000 Hz

1.0

dB

10 kn, 100 - 10,000 Hz

1.6

dB

5 kn, 100 - 10,000 Hz

2.8

dB

40

g

kHz
300

60

5-49

typical performance characteristics
Large Signal Frequency

Response

'""

~
w

'"<~
0

>

!;

~

0

'"~

::;
<

~

Gain vs Temperature

22
Vee::: 40V. Av::: 1000

20
lB
16
14
12
10

..

<1% DISTORTION

:!!

;;:
"

'"w

12
105 ,

11

"

.!!
jl

100

'"<

B
6
4
2
0

\

0

>

\

"..........
1M

7
90

10M

6

100M

0

/

3D

~0

'"~

~

/

20

"i=
0

0:
0

/

10

::;

t;

c;

/

~

1.1
1.0
.9
.B
.7
.6
.5
.4
.3
.2
.1

110
0:
0:

I

100

f--

90

f--

BO

f--

~

V

,

100

T

f--

'.'.

0

_

I

I

lk

10k

0

f--

I

lOOk

~

NAB EQUIVALENT "-

1M

10M

L

10

lk

100

~

oS

10

20

~

10

"

Av::: 1000

t-Vcc_~ 12V
10

120
110 ~
100
....
90
BO
I'
70
:!!
z
60 t- PHASE
;;: 50
40
30
20
10
0
10 100 lk
1

"'

1 kHz 10 kHz 100 kHz 1 MHz

FREQUENCY (Hzl

Voltage Gain vs Supply
Voltage

15
30
45
t- t- 60 ~
75
90 ~
Z
'\":
105
Ii:
120
135
.\ 150
165
lBO
10k .IM 1M 10M

~k)N

.,....

'"

100

110
100
90

~
z

;;:

.'"
w

., ~
0

>

"

BO
70
60
50
40
30
20
10
0
10

FREQUENCY (Hz)

15

20

25

Noise Current vs Frequency

r-

~

6

7

O.B i'oo..
0.6

....

6

0

4

~

r--

w
~

0.4

i

5
3

II

2
1

0.2

6

0
100

lk
I (Hzl

5-50

10k

100

40

A~=\O -

8

1.0

~
:?
:!

35

Pulse Response

NOTE: R,= 50k

\

30

SUPPLY VOLTAGE (VI

9

z

:>

3D

lOOk

10k

NOTE: R =0

12

~

40

40dB

Noise Voltage vs Frequency

-

40

.....

50

z

16

~
:;;

35

w

r--

~~ I '

FREQUENCY (Hzl

14

3D

~

b.

..

t--

25

60

Gain and Phase Response

:--~=

!-

70
10

f0- r-....

20

70

FREQUENCY (Hz)

130

!

.
~
i=
<
0:

40

30

15

:!!

PSRR vs Frequency

120

10

SUPPLY VOLTAGE (VI

Vee'" 12V

SUPPLY VOLTAGE (V)

V

5

Channel Separation

·0
20

10

0

0

75

% Distortion

40

0

50

25

TEMPERATURE (OCI

P-P Output Voltage Swing vs
Vee

>

.... ~

9
B

95

FREQUENCY (Hz)

!;

10

~

1kHz 10 kHz 100kHz

"'"~
w
'"<~

Vee vs ICC
13

110

1k

f(Hz)

10k

I[

-1
-20 -10 0 10 20 3D 40 50 6D 70 BO
TIME (."

Consumer Circuits
LM386 low voltage audio power amplifier
general description
The LM386 is a power amplifier designed for use in low
voltage consumer applications. The gain is internally
set to 20 to keep external part count low, but the
addition of an external resistor and capacitor between
pins 1 and 8 will increase the gain to any value up
to 200.
The inputs are ground referenced while the output is
automatically biased to one half the supply voltage. The
quiescent power drain is only 18 milliwatts when oper·
ating from a 6 volt supply, making the LM386 ideal
for battery operation.

features
• Battery operation
• Minimum external parts
• Wide supply voltage range
• Low quiescent current drain

4-12 Volts
3mA

•
•
•
•
•

Voltage gains from 20 to 200
Ground referenced input
Self·centering output quiescent voltage
Low distortion
Eight pin dual·in·line package

applications
• AM·FM radio amplifiers
• Portable tape player amplifiers
•
•
•
•
•
•

Intercoms
TV sound systems
Line drivers
Ultrasonic drivers
Small servo drivers
Power converters

equivalent schematic and connection diagrams
v,
Dual-In-Line Package

GAIN

GAIN

-INPUT

BYPASS

+INPUT

v,

VOUT

-INPUT

GND

VOUT

TOP VIEW

Order Number LM386N
See Package 20
GND

typical applications
Amplifier with Gain = 20
Minimum Parts

Amplifier with Gain

= 200

v,

Z50Jlf

v,"

+~

t-' ~

8

v,"

5·51

absolute maximum ratings
Supply Voltage
Package Dissipation 8 Pin DIP (Note 1)
Input Voltage
Storage Temperature
Operating Temperature
Junction Temperature
Lead Temperature (Soldering, 10 seconds)

15V
660mW
±OAV
--65°C to +150°C
O°C to +70°C
+150°C
+300°C

electrical characteristics T A = 25°C
PARAMETER

CONDITIONS

MIN

Operating Supply Voltage (V s )

TVP

4

Quiescent Current (10)

Vs = 6V, V IN = 0

Output Power (POUT) (Note 2)

Vs = 6V, RL = 8£1, THD = 10%,
Vs = 9V, RL = 16£1, THD = 10%

Voltage Gain (Av)

12
3

250

MAX

8

UNITS
V
mA

325
500

mW
mW

Vs = 6V, f = 1 kHz
10/lF from Pin 1 to 8

26
46

dB
dB

Bandwidth (BW)

Vs = 6V, Pins 1 and 8 Open

300

Total Harmonic Distortion (THD)

Vs = 6V, RL = 8£1, POUT = 125 mW
f = 1 kHz, Pins 1 and 8 Open

0.2

%

Power Supply Rejection Ratio (PSRR)

Vs = 6V, f = 1 kHz, CSYPASS = 10/lF
Pins 1 and 8 Open, Referred to Output

50

dB

50

k£1

250

nA

In put Resistance (R IN)
Input Bias Current (ISlAS)

Vs = 6V, Pins 2 and 3 Open

kHz

Note 1: For operating at elevated temperatures, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 187°C/W junction to ambient.
Note 2: If oscillation exists under some load conditions, add 10n and O.05~F series network from pin 5 to ground.

application hints
GAIN CONTROL

INPUT BIASING

To make the LM386 a more versatile amplifier, two pins
(1 and 8) are provided for gain control. With pins 1 and
8 open the 1.35 k£1 resistor sets the gain at 20 (26 dB).
If a capacitor is put from pin 1 to 8, bypassing the
1.35 k£1 resistor, the gain will go up to 200 (46 dB). If
a resistor is placed in series with the capacitor, the gain
can be set to any value from 20 to 200. Gain control can
also be done by capacitively coupling a resistor (or FET)
from pin 1 to ground.

The schematic shows that both inputs "are biased to
ground with a 50 k£1 resistor. The base current of the
input transistors is about 250 nA, so the inputs are at
about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than 250 k£1 it will
contribute very little additional offset (about 2,5 mV at
the input, 50 mV at the output), If the dc source
resistance is less than 10 k£1, then shorting the unused
input to ground will keep the offset low (about 2.5 mV
at the input, 50 mV at the output). For dc source
resistances between these values we can eliminate excess
offset by putting a resistor from the unused input to
ground, equal in value to the dc source resistance, Of
course all offset problems are eliminated if the input is
capacitively coupled.

Additional external components can be placed in parallel
with the internal feedback resistors to tailor the gain and
frequency response for individual applications. For example, we can compensate poor speaker bass response
by frequency shaping the feedback path. This is done
with a series RC from pin 1 to 5 (paralleling the internal
15k£1 resistor). For 6 dB effectivebass boost: R ~ 15 k£1,
the lowest value for good stable operation is R = 10 k£1
if pin 8 is open. If pins 1 and 8 are bypassed then R as
low as 2 k£1 can be used. This restriction is because the
amplifier is only compensated for closed-loop gains
greater than 9.

When using the LM386 with higher gains (bypassing
the 1.35 k£1 resistor between pins 1 and 8) it is necessary
to bypass the unused input, preventing degradation of
gain and possible instabilities. This is done with a 0.1/lF
capacitor or a short to ground depending on the dc
source resistance on the driven input.

typical performance characteristics

Power Supply Rejection Ratio

(Referred to the Output I

Ouiescent Supply Current
vs Supply Voltage

Peak-to-Peak Output Voltage
Swing V5 Supply Voltage

vs Frequency
10

l,...-

I-I-

I-

'"""'

-

=

~

'""
'"~
~
~

40

~

~

10

~

"/

./. ,.....

lO
20

'"

;'-? ~

RL
50

~

~~

~~
~

,.!. :-4-

r-

o
9

10

11

FREQUENCY (Hz)

SUPPLY VOLTAGE (VOL lS)

Voltage Gain vs Frequency
&0

.'"
"~

..
!:;

'">

Distortion vs Frequency

~

"'"
~

11111111

40

~! !I~I~

lO

in

r\

2>

20

~
~

I-

~

o
100

lk

10k

lOOk

1M

=6V

~

0.1

";::'"

0.6

~

0.4

:1:
w

~

~

~

;::

:1:

ili
2>
w

~

:::
'"

0.1

0.01

Device DiSSipation vs Output

0.1
0.&
0.5
0.4

O.l
0.2
0.1

Power - 16fl Load

Load

I

0.9
0.8

an

-

.1 .I_
Vs-~

1 .1 J

... F' ~C~:T~~U~~S

.....t-

r-~

~1~1i!'~1!!!

,--¥. ::;;!.v.j- ~f
~Vs -6V ~~
f/f I

1.0

0.1

POWER OUT IWATTS)

10% DIST._
LEVEL

3%0IST.

LEVEL

-

I

0.1 0.2 O.l 0.4 0.5 0.6 0.1 0.8 0.9 1.0

OUTPUT POWER (WATTS)

0.001

5k 10k 20k

Device Dissipation vs Output
Power -

~

0.2

1

o
50 100 200 500 lk 2k

FREQUENCY (Hz)

i'!
I-

O.l

,/

t-

1.0

0.5

-f

o

Device Dissipation vs Output

0.9

lHI--+-++++IIII--HlI+l!llI

f - 1 kHz lHI--t+t+tttIl--H1tt1!lll

t-...

0.2

Power - 4n Load

0.8

RL =8n

0.&
0.4

20

1.0

..

Vs - &V

I I.
r-

FREQUENCY (Hz)

~

I

1.2

0.8

12

Distortion vs Output Power

POUT ;r.125mW
Av =26dB(C"s=O)

1.4

1.0

.

10

Vs

RL - 81!

1.&

i1i
iE

11

10

1.8

~

10

SUPPLY VOLTAGE IVOLTS)

2.0

c!.!~I\t

50

9

4

12

OUTPUT POWER (WATTS)

0.5

VS;22V

~

0.4

"'"
;::

O.l

ili

0.2

~
:1:

2>
w

~

~

0.1

.,- r:::-

I

Ivr~

j~~

",.[.. ... ~
.,....

p

10% DIST.
LEVEL

l% DIST.
LEVEL

rr

0.1 0.2 O.l 0.4 0.5 0.& 0.1 O.B 0.9 1.0

OUTPUT POWER (WATTS)

5-53

typical applications (con't)
Low Distortion Power Wienbridge Oscillator
390

Amplifier with Gain = 50

V'":l.
10'1

J

85

I

ElDEMA
CF-$·Z158

:5",,~'

Vo

~PAssl
-y-

.L

-=-

T":"

O.05.uF
~

Amplifier with Bass Boost

Frequency Response with

Bass Boost

v,

27
2&
25

~

ZSIJJ,JF

V'"c:1
10'1

+

~vo

z

>

20
19

..
'"

T·-~'

~

21

I
I

I

'\
\

,
r--.

18
17
20

-t

50 100 200 500 lk 2k
FREQUENCY (Hz)

Square Wave Oscillator

v,

O,M*
1k

f;; 1 kHz

5-54

..'"

23
22

~

!p,l"e

I

24

5k 10k 20k

Consumer Circuits
LM387 low noise dual preamplifier
general description

features

The LM387 is a dual preamplifier for the amplication
of low level signals in applications requiring optimum
noise performance. Each of the two amplifiers is completely independent, with an internal power supply
decoupler-regulator, providing 110 dB supply rejection
and 60 dB channel separation. Other outstanding features
include high gain (104 dB). large output voltage swing
(V cc -2V)p-p, and wide power bandwidth (75 kHz,
20 Vp-p). The LM387 operates from a single supply
across the wide range of 9 to 40V.

• Low noise
• High gain
• Single supply operation

0.8/lV total input noise
104 dB open loop

• Wide supply range
• Power supply rejection
• large output voltage swing (V cc-2V)p-p

9 to 40V
110 dB

• Wide bandwidth 15 MHz unity gain
• 'Power bandwidth 75 kHz, 20 Vp-p
• Internally compensated
• Short circuit protected

The amplifiers are internally compensated for. All gains
greater than 10. The LM387 is available in an 8 lead
dual-in-line package.

schematic and connection diagrams

----,I
I
I
I

RI

DI

I

50

I
1

'------+-1-0 14•51

ZI

I

I

R,
10k

---

_____l

I

_ _ _ _ ---.J

3

Dual·ln-Lina Package

+IN(1)

+1111(2)

-IN

-IN 121

GND

Vee

OUTPUT (2)

OUTPur(1)
TOP VIEW

Order Number LM3s7N

Sea Package 20

5-55.

absolute maximum ratings
Su pply Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical cha racteristics
PARAMETER

+40V
660mW
O°C to +70°C
--il5°C to +150°C
300°C

T A = 25°C, Vee = 14V, unless otherwise stated.

CONDITIONS

Voltage Gai n

Open Loop

Supply Current

Vee 9 to 40V, RL =

TYP

MAX

UNITS

160,000

VN

10

mA

Input Resistance
Positive Input
Negative Input

100
200

kQ
kQ

Input Current
Negative Input

0.5

/1A

00

Output Resistance

Open Loop

150

Output Current

Source
Sink

8
2

Output Voltage Swing

Peak-to-Peak

Vee -2

Small Signal Bandwidth

5-56

MIN

0.
mA
mA
V
MHz

15

Power Bandwidth

20 Vp·p (Vee = 24V)

Maximum Input Voltage

Linear Operation

kHz

75
300

mVrms

Supply Rejection Ratio

f = 1 kHz

110

dB

Channel Separation

f = 1 kHz

60

dB

Total Harmonic Distortion

75 dB Gain, f = 1 kHz

0.1

Total EqUivalent Input
Noise

Rs = 6000., 100 - 10,000 Hz

0.8

Noise Figure

50 kn, 10 - 10,000 Hz
10 kn, 10 - 10,000 Hz
5 kQ, 10 - 10,000 Hz

1.0
1.6
2.8

%
1.4

/1Vrms
dB
dB
dB

iw

typical performance characteristics

CO
.....

Large Signal Frequency

Response

'"

~w

'"'"
!:i
co

>

!;

~

'"~'"

''""
~

Vee =

13

110

kov. Av ~ 1000

12

<1% DISTORTION

105

m

11

z

~
w

B
6
4
2
0

100

'"'"
~

\

>

\
1M

'"

!;

0

1.1
1.0
0.9
0.8
0.1
0.6
0.5
0.4
0.3
0.2
0.1

g

/

~

>=

'"~

/

c;

/

:l:
~

0

15

20

5

10

30

40

15

20

25

30

35

40

Channel Separation
10

Vee = 12V

~
z

co

50

'"'"
~

40

>=

NAB EQUIVALENT "'-

60

'"

.~

30

~

1""~F-:::::

w

~-

z

20

'"~

10

z

..,

Av

100

10

10

lOOk

10k

lk

SUPPLY VOLTAGE (VI

= 1000

Vee =12V

40dB

0
10

0

-

SUPPLY VOLTAGE (VI

% Distortion

/

10

50

25

TEMPERATURE (OCI

30

~

:5'"

......

6

100M

40

20

9

90
10M

~

>

Jl

B

p.p Output Voltage Swing
vsVee

'"
!:i
co

.s

10

1

FREQUENCY (Hzl

w

~

95

.........

1 kHz 10kHz 100kHz

'"

Vee vs lee

Gain vs Temperature

22
20
lB
16
14
12
10

100

1 kHz 10 kHz 100kHz 1 MHz

FREQUENCY (Hz)

FREQUENCY (Hd

Voltage Gain vs

PSR R vs Frequency

110
100

J

m

'"'"

V

I----

80

r--

10

r-- t-

-

I

60
10

100

lk

120
110
100
90
80
10
60
50
40
30
20
10
0

"

:-.~=

90

If

/'" I--

r--

~
z

~

I----

r--

L= I
10k

lOOk 1M

10M

........
'\

r--

J

"

!z

.

'"'"

~

~
w

~

>

"

10

100

lk

10

15

20

25

30

~~;!

NOTE: Rs= 50k

~ 0.8

!

r-

!;

~
co

I--

0.6

w
~

z

~0.4

8
6

A~' \0

8
1

1.0

~

5
4

3

\
\

2
0

I (Hz)

10k

100

lk
flHzl

10k

-

6

1

0.2

lk

40

Pulse Response
9

i'

100

35

SUPPL Y VOLTAGE (VI

FREQUENCY (Hz)

\

10

r-

Frequency

NOTE:

oS

~klN

PHASE

110
100
90
80
10
60
50
40
30
20
10
0

Noise Current vs

16

12

15
3D
45
60
15
90 ~
Z
~
105 c
m
120
~
135
,\ 150
165
180
10k O.IM 1M 10M

"-

1

Noise Voltage vs
Frequency

~:;;

"'\.

FREQUENCY (Hzl

14

SupplV Voltage

Gain and Phase Response

120

1/

-1
-20 -10 0 10 20 30 40 50 60 10 80
TIME (••1

5·57

"~

typical applications

:E
....

rr
4"

3DV
24V

11.81+

0111F

(4,5)

14.51

LMJ87
(2,7)

",

A~I--:W~-'-'-I

131

,~'1-'-,y,f'V<'-<.

2400

c ~ '\-'~\i"..O..
k ___.....- -.......,79..,01..-_ _. .

240

tOOk

.,

!>'J

500k

;

2.4k

NO---II--~-'"

Audio Mixer

Typical Magnetic Phono Preamplifier

24V
24V

14.51
>----<..--00.5 Vrms
120pF

220k

"
':"

2k

240k

2k
,4k

T21lF *,'"

':"

Two-Pole Fast Turn-On NAB Tape Preamplifier

5-58

II
Typical Tape Playback Amplifier

r-

s::

Consumer Circuits

s::

U'I

general description

The LM565H is specified for operation over the
-55°C to +125°C military temperature range_ The
LM565CH and LM565CN are specified for operation over the O°C to + 70°C temperature range_

features
• 200 ppmtC frequency stability of the VCO
• Power su ppl y range of ±5 to ± 12 volts with
100 ppm/% typical

m
U'I

•
•

0_2% linearity of demodulated output
Linear triangle wave with in phase zero crossings
available
• TIL and DTL compatible phase detector input
and square wave output
• Adjustable hold in range from ±1% to > ±60%_

(")

applications
•
•
•
•
•
•
•
•
•
•
•

Data and tape synchronization
Modems
FSK demodulation
FM demodulation
Frequency synthesizer
Tone decoding
Frequency multiplication and division
SCA demodulators
Telemetry receivers
Signal regeneration
Coherent demodulators_

schematic and connection diagrams

Metal Can Package

Dual-In-Line Package

,I_G
C",ACIlQR

"101.1" ~O"P"'R~'OR
YCGIMPIIT

m
U'I
......
r-

LM565/LM565C phase locked loop
The LM565 and LM565C are general pu rpose phase
locked loops containing a stable, highly linear voltage controlled oscillator for low distortion FM
demodulation, and a double balanced phase detector with good carrier su ppression_ The VCO frequency is set with an external resistor and capacitor, and a tuning range of 10: 1 can be obtained
with the same capacitor_ The characteristics of the
closed loop system-bandwidth, response speed,
capture and pull in range-may be adjusted over a
wide range with an external resistor and capacitor_
The loop may be broken between the VCO and
the phase detector for insertion of a digital frequency divider to obtain frequency multiplication_

U'I

I ~:::~aR

Order Number LM565H or LM565CH

Order Number LM565CN

See Package 14

See Package 22

5-59

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 1)
Differential Input Voltage
Operating Temperature Range LM565H
LM565CH, LM565CN
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

±12V
300mW
±1V
_55°C to t125°C
DoC to 70°C
_65°C to +150°C
300°C

(AC Test Circuit, T A = 25·C, Vc = ±6V)
LM565

PARAMETER

LM565C

CONDITIONS

UNITS
MIN

TYP

MAX

8.0

12.5

MIN

TYP

MAX

8.0

12.5

7

10

5

kn

500

500

kHz

Operating Frequency
Temperature Coefficient

100

200

ppmtC

Frequency Drift with
Supply Voltage

100

200

ppm/%

Power Supply Current
Input Impedance (Pins 2, 3)

-1Ji.vm

5::

~~ -1.0

Phase Shift vs Frequency

'-

./

/' I'"

IBO

"
;;;

Vee - :!:6V

1;

TA=7

....
ie

160

"z

120

"'"

100

~

60

>
zw

40
2U

l!l

./2

31f/4

21'1'

31f/2

.A

h

±6V

J.~

~

O.B

ff:
~
1.0

1.2

1.4

NORMALIZED FREQUENCY

TA=25~C' I-Vee = ±6V I--

Z

~ 2.0'0 I--H+Htttt-t-++
~

"~
"~

::::i 1.0'0

i

"z

r-

rr-

2:

~

::,;

ff-

PI--

==

I-I--

t-I-I--

f-L-

L-

IUD

IK

+1.0

f-

CI

"-

10K

lOOK

RESISTANCE BETWEEN PINS 6 AND 7 In)

-50 -25 0 25 50 75 100 125
TEMPERATURE I·C)

85

a Function

II},
~

- ! ~~~~!,-+I'....3ot'+f
I'-H
1++-1

--~7"'''i'''1="'+-,-r+~~~tttt-1

-1.0

f-+-+-'+1-1'I--I-+-+-~+--I
I I I
0.2

,

........ .........

f-h+-+-++-+-~:C=~~~~

III

~
~

rr-

-

r-....

-1:5

~

"

~

rr-

.........

-l.D

Hold in Range
of RS.7

Resistance

:ji

1.0
0.5

~-2.0

Loop Gain vs Load
3.0 I. r-1rrr'T1T11n--nT

..

"'"~ -0.5

V

0.6

il:

1.5

Z

'J

I'

Vee = ±6V

2.0

Z

~
./

~

iii
il:
Z

~

BO

Ii:

49V

Vee '" ±12V

140

u

--

~

TA :25·C

;!

i".. ./

Function of Temperature

~

0.6

1.0

1.4

I.B

RELATIVE FREE RUNNING VCO FREQUENCY

ac test circuit
M~~~o-

____________

+-~

OffSET

VOLTAGl

DEM:U~T~{(rfD

lhF~

Nate: S, open for output offset voltage fV7 - VII} measurement.
IIlUARE""n

""'"'

5·61

CJ

It)

:g

typical applications ~

:!
.oJ

......
It)

CD

It)

:!
.oJ

r".I-. . .-t--<:0
,..
FSK Demodulator (2025-2225 cpsl

2400 Hz Synchronous AM Demodulator

FSK Demodulator with DC Restoration.

IIIIPUT

'.

Ir--;:~==+=::-r;:-

___

I-oaUlpuT
'0"

I RIG Channel 13 Demodulator

Frequency Multiplier (x101

5·62

applications information
In designing with phase locked loops such as the
LM565, the important parameters of interest are:

The natural bandwidth of the closed loop response
may be fou nd from:

lJK:Ko"

FREE RUNNING FREQUENCY

fn = 2rrJ~

f ",, _ _
1_
0 - 3.7 RoC o

Associated with this is a damping factor:

LOOP GAIN: relates the amount of phase change
between the input signal and the VCO signal for a
shift in input signal frequency (assuming the loop
remains in lock). In servo theory, this is called
the "velocity error coefficient".
Loop gain

(s~c)

KoKo

radians/sec)
oscillator sensitivity (
volt

Ko

Ko = phase detector sensitivity

C~~~:sJ

Ii _

! ) __1'---_

- 2

R 1 C1 KoKo

For narrow band applications where a narrow noise
bandwidth is desired, such as applications involving
tracking a slowly varying carrier, a lead lag filter
should be used. In general, if 1/R 1 C1 < KoKd,
the damping factor for the loop becomes quite
small resulting in large overshoot and possible
instability in the transient response of the loop.
In this case, the natural frequency of the loop
may be found from

The loop gain of the LM565 is dependent on
supply voltage, and may be found from:
33.6 fo

R2 is selected to produce a desired damping factor

--v;:-

Ii, usually between 0.5 and 1.0. The damping

VCO frequency in Hz

factor is found from the approximation:

Vc = total supply voltage to circuit.
Loop gain may be reduced by connecting a resistor
between pins 6 and 7 ; this reduces the load imped·
ance on the output amplifier and hence the loop
gain.
HOLD I N RANGE: the range of frequencies that
the loop will remain in lock after initially being
locked.

+~

fo

These two equations are plotted for convenience.
III'

!.:;

10"

free running frequency of VCO

(~~~)

10'

SEC

RAD

~

10>

10"

Vc

Vc = total supply voltage to the circuit.

~

~

10'
Ut'

111"

111"
11+T2

10-'

10

(secl

Filter Time Constant vs Natural Frequency

THE LOOP FILTER
In almost all applications, it will be desirable to
filter the signal at the output of the phase detector
(pin 7) this filter may take one of two forms:

.......,.,,,

,---

, - - -.....-

II1'EnI
10"

.....-0 ·"'cc

10',,_

Simpl. Lag Filter

Lag-L.ad Filter

A simple lag filter may be used for wide closed
loop bandwidth applications such as modulation
following where the frequency deviation of the
carrier is fairly high (greater than 10%), or where
wideband modulating signals must be followed.

111"

"
Damping Time Constant vs

10-'

10-'

Natural Frequency

Capacitor C2 should be much smaller than C1 since
its function is to provide filtering of carrier. In
general C2 ~ 0.1 C, .
5·63

(,)

CD
CD

Consumer Circuits

an

:E
....I

......
CD
CD

an

LM566/LM566C voltage

:E
....I

controll~d

oscillator

general description
The LM566/LM566C are general purpose voltage
controlled oscillators which may be used to generate square and triangular waves, the frequency of
which is a very linear function of a control voltage. The frequency is also a function of an external
resistor and capacitor.

• High temperature stability
• Excellent supply voltage rejection
• 10 to 1 frequency range with fixed capacitor
• Frequency programmable by means of current,
voltage, resistor or capacitor.

The LM566 is specified for operation over the
-55°C to +125°C military temperature range. The
LM566C is specified for operation over the O°C
to +70°C temperature range.

applications
•
•
•
•
•

features
• Wide supply voltage range: 10 to 24 volts
• Very linear modulation characteristics

FM modulation
Signal generation
Function generation
Frequency shift keying
Tone generation
Metal Can

schematic and connection diagrams

Order Number LM566H or LM566CH
See Package 11
Dual-In-Line Package
•

v~

7T1M1NOCAPACITOII

Ii MODULATIOAI

''''''

Order Number LM566CN
See Package 20

typical application

applications information

1 kHz and 10 kHz TTL Compatible
Voltage Controlled Oscillator

The LM566 may be operated from either a single supply
as shown in this test circuit, or from a split (i) power
supply. When operating from a split supply, the square
wave output (pin 4) is TTL compatible (2 mA current
sink) with the addition at a 4.7 kn resistor from pin 3 to
ground.

'"
f,ThE--

A .001 /IF capacitor is connected between pins 5 and 6
to prevent parasitic oscillations that may occur during
veo switching.
2(V+ - V.)

~

I

,

101

":'

5-64

":'

I

QglOU1Uftl:
TTL!DII'ATIIU
aUTPIlT

':'

~~"'TtILE

LMIII

,

......

fo=

111

R,C 1 V+

where

2K < R, <20K
and VFj is voltage between pin 5 and pin 1

absolute maximum ratings
Power Supply Voltage
Power Dissipation (Note 1 )
Operating Temperature Range

LM566
LM566C
Lead Temperature (Soldering, 10 sec)

electrical characteristics

26V
300mW
_55°C to +125°C
O°C to 70°C
300°C

Vee = 12V, T A = 25°C, A'c Test Circuit

LM566
PARAMETER

UNITS
MIN

Maximum Operating Frequency

Supply Voltage Rejection

Maximum Sweep Rate
Sweep Range
Output Impedance Pin 3
Pin 4
:
:

10k
10k

Vee

MIN

5.0
2.0
45

TYP

MAX
MHz

3/4 Vee

Vee

100

200

1

2

1
6600
.2

fo: 10 kHz
± 10% Deviation

R L1
R L2

MAX

1

3/4 Vee

Average Temperature Coefficient
of Operating Frequency

Square Wave Output Level
Triangle Wave Output Level
Square Wave Duty Cycle

TYP
1

Ro= 2k
Co: 2.7 pF

Input Voltage Range Pin 5

Input Impeciance Pin 5
VCO Sensitivity
FM Distortion

LM566C

CONDITIONS

ppmtC

%IV

1
6600
.2

.75

MHz

1

1

10:1

10:1

50
50

50
50

5.4
2.4
50

55

5.0
2.0
40

1.5

Mn
HzlV
%

n
n

5.4
2.4
50

60

V p.p
Vp·p
%

Square Wave Rise Time

20

20

ns

Square Wave Fall Time

50

50

ns

Triangle Wave Linearity

.2

.5

%

Note 1: The maximum junction temperature of the LM566 is 150'C, while that of the LM566C
is 100°C. For operating at elevated junction temperatures, devices in the TO·5 package must be
derated based on a thermal resistance of 150°C/W. The thermal resistance of the dual-in-line package
is 100'C/W.

5·65

typical performance characteristics
Operating Frequency as B
Function of Timing Capacitor

Operating Frequency as a
Function of Timing Resistor

lOOK

10

TA - 25"C

"\

AC TEST CIRC U1T

...

....
t;

;;;
w

10K

~

w

.1

5

.01

TA - 25"C

UK

""-"r\.
"\

1.0

10

NORMALIZED FREQUENCY

Power Supply Current

1.0

.iii
co

V

.5

10'

10'

10'

10'

I'

g
~

i5

::0

~

TYPICAL

..'"
w

Rl =4K
T.=25"C
AC TEST CIRCUIT

~

5

20

25

-1.0
-1.5

1.0

1.5

;i
.... >
w::o~~:
:fQa::

I~
~

I

a

~~

~~~~
~ ~ '7
~ r;;"

A

~
.... f':" ~

....;;:

SUPPL Y VOLTAGE (VI

0

~~:

a

50

I'\.

+4

2.5

3.0

I I
/I'\J I 1/

lI\.lA

I\. /

TA "25"C
AC TEST CIRCUIT
~~

-~

;S~ +10
:iC)E

25

+6
+5

+12

~

'7

-2.0
-2.5
-75 -50 -25

2.0

VCO Waveforms
>

AC TEST CIRCUIT

1.0

!! -0.5

1.1

CONTROL VOLTAGE IV,-V,I(V)

w

2.5
2.0
1.5
+.6
0

~

/

.5

111"

Temperature Stability

MAXIMUM

15

co
~
:::;

FREQUENCY (Hz)

20

10

1.5

~
1

10

AC TEST CIRCUIT

i5

.

\.

.0001

0.1

~

S
if

.001

~

TA "25c e

AC TEST CIRCUIT

I\.

f

~

Function of Control Voltage
2.0

3

S

Normalized Frequency as a

+B

+B

+4

3.

75 100 125

TEMPERATURE ("C)

4.

wl_

Frequency Stability vs Load

Frequency Stability vs Load
Impedance (Triangle Outputl

Resistance (Square Wave

Output)

Square Wave Output
Characteristics
7.0

AC TEST CIRCUIT

+8

TA ·25a e
RL2 = 10K

g

..'"
w

z

~
~

..'"
w

+6

I

~

-0.1

~

-0.2
-0.3

+2

~

-0.4
-0.5
-11.6
-0.7

~

~

"
lk

100

..

10k

RL1 PIN lTD GROUND (f!)

./

w

'"~

5

~

AC TEST CIRCUIT
TA '" 25"e
RL1 '"lDK

I
100

....
..'"~

3.0
lk

10k

ac test circuit

J
I

w

2.2

>

5
~

2.1

1

":;1

ACTESTCIRC UIT
TA .. 25"C
2.0
lk
RL2 PIN 4 TO GROUND (n)

5-66

SGUAREWAve
DUTPUT

TRIANGlE

100

11111

100

lk
RL1 PIN 3 TO GROUND (n)

/

2.3

4.0

:;1

'1
~

/

5.0

">

2.4

0:

6.0

0:

R" PIN 4 TO GROUND (n)

Triangle Wave Output
Characteristics

TA =25"&

~

+4

i5

AC TEST CIRCUIT

'1

g

WAV£QUUut

10k

~s

Consumer Circuits

LM5611LM567C tone decoder
general description
The LM567 and LM567C are general purpose tone
decoders designed to provide a saturated transistor
switch to ground when an input signal is present
within the passband. The circuit consists of an I
and Q detector driven by a voltage controlled
oscillator which determines the center frequency
of the decoder. External components are used to
independently set center frequency. bandwidth
and output delay.

features
• 20 to 1 frequency range with an external resistor
• Logic compatible output with 100 mA current
sinking capability
• Bandwidth adjustable from 0 to 14%

• High rejection of out of band signals and floise
• Immunity to false signals
• Highly stable center frequency
• Center frequency adjustable from 0.01 Hz to
500 kHz

applications
•
•
•
•
•
•
•

Touch tone decoding
Precision oscillator
Frequency monitoring and control
Wide band FSK demodulation
Ultrasonic controls
Carrier current remote controls
Communications paging decoders

schematic and connection diagrams
Mot.1 Can Package

Dual-In-Line Package

',~m:~.,""",
Laop

J

Z

fllTlR

"
Order Number LM567H or LM567CH
See Package 11

...

INPUT

3

+
V

4

......
.,,,....

GND
& TIM.MIl
CAPACITOR

5 TIMING
RESISTOR

Ordor Numbor LM567CN
Soo Package 20

5·67

absolute maximum ratings
Supply Voltage Pin
Power Dissipation (Note 1)
Vs
V3
V3
Storage Temperature Range

..

10V
300mW
l5V
-10V
Vs + Q.5V
-65°C to +150°C

.

..

electrical characteristics

tAC Test Circuit, T A::; 25°C. Vc = 5V)

LM567
PARAMETERS

CONDITIONS

MIN
4.75

Power Supply Voltage Range
Power Supply Current

MAX

5.0

9.0

6
Rt.

=

4.75

TYP

MAX

5.0

9.0

Activated

11
20

Smallest Detectable Input Voltage

'L = 100 rnA, fl= fo

:

20

Largest No Output Input Voltage

Ie,:" lOa rnA, fl = ~o

'10.

15

largest Simultaneous Outband Signal to Inband Signal Ratio
8 n = 140 kH~

Largest Detection Bandwidth

12

Largest Detection Bandwidth Skew

8

V

7

10

mA

13

12

15

mA

25

mVrms

25

20
15

mVrms

6

6

dB

-6

-6

10

14

16

1

2

10

18

%offo

2

3

%offo

±O.l

Largest Detection Bandwidth Variati~n with Supply Voltage

±2

±2

100

-55 < T A

500

100

< +125

35± 140

Center Frequency Shift with Supply Voltage

0.5

Fastest ON·OFF Cycling Rate

fo/20

%I"c
%V
kHz

500

ppml"C

35± 60

35 ± 60

0

100

;!;

I/I

25

50

75 100 125

50

V

~

4

6

8

10

~
~
~

~

~ ~ ~ t---

t--- t---

0

2

4

20

6

8

10

12

BANDWIDTH 1% OF '.)

.
~

"

15

.. v

10

-

V

5
0
4

16

25

50 75

100 125

'\

10

'.,.,""
I-

;;

I-

'"
:li

5
TA ::;25°C

i

Vee 5V

TA=25C

14

0
100

16

lL

lk

10k

11000

I

500

~

w

..,>-

,/

..,

'\

I\.

1"\

....

30
20

10

9

8

Vcc:z 5V
TA - 25°C

300 ~ r BAN~~H LIMiTEr ~YI C2 200
I
BANDWIDTH LIMITED BY
EXTERNAL RESISTOR
100
IMINIMUM C2)
50

I\.

10
7

1M

Greatest Number of Cycles
Before Output

V5

'-;;;;;~SCEN1 CUR~ENT
6

lOOk

CENTER FREQUENCY 1Hz)

V

I-

~ [\.

0

-15 -50 -25

TA -25"C
NO LOAD ··DN" CURRENV

".s

I-

-1.5

:;;

LJ J

TA '" 25°C
Vee::; 5V

10'

..5

BANDWIDTH I%DF f.,)

25

.? 10'

-

12

Typical Supply Current

"I
.s

-1.0

'"'"

OI'TIOMALSENSITIVITY

Supply Voltage

~

z

/

--

(

:E

-ADJUSTMENT RfQUIRfD

Function of C2 and C3

10'

"::1-

~
~

Detection Bandwidth as a

I

-D.5

....

Largest Detection Bandwidth

-NOOU1PU1

2

0

10'

~

".

II/ ~ ~ ~
- .-

TEMPERATURE I"C)

~

'"ww

~

TEMPERATURE I"C)

I I I"-"

I

.&":

0

0

15

-10
-75 -50 -25

75 100 125

"; c--;,. r§... ... "
§r-§

~
~

'"

;!; -7.5

'"'"

50

0.5

'"'"
;;
§

300

250
§
> 200

2.5

r---.

25

0

ffi
:E

Bandwith vs Input Signal
Amplitude

+V ·7.0V (1)

0

+V =4.15V

1.0

TEMPERATURE I"C)

Temperature (Mean and S.D.)

g

-

5.0
2.5

w

1.5

t
~

:;;
0.5

:E

'"'"

~

14

+V=5.15V

~

Typical Frequency Drift with
IMean and S.D.I Temperature

with Temperature

3

5

10

2030 50

100

BANDWIDTH 1% OF 1.1

SUPPLY VOLTAGE IV)

Typical Output Voltage vs
Temperature
1.0
0.9

2

0.8

'"
'""

0.7

0:
w

0.6

~>

0.5

S

0.3

.,

0.2

I!:
~

r-v~C'~V

:

I

I

V

f- ~ .... IL -100 mA

0.4

/

1
",

IL=30mA

0.1
0

-75 -50 -25

0

25

50

75 100 125

TEMPERATURE I"C)

5·69

typical applications
Touch-Tone Decoder

Oscillator with Quadratura Output

"

.~"
LSL

Connect pin 3to 2.BV to invert output.

Oscillator with Double Frequency Output

JUUlf ..
...f1.Jl... •.

Precision Oscillator Drive 100 rnA Loads

"
Component values (typ)
Rt 6.8 to 15k
R2 Uk

ac test circuit

R3

20k

C1
C2
C3

OJOmfd
1.0mfd6V
2.2mfd6V

C4

250mfd6V

'CD

TERMINAL

1-""

applications information
The center frequency of the tone decoder is equal
to the free ru'nning frequency of the veo. This is
given by

The bandwidth of the filter may be found from
the approximation

BW

1070~f:~2

in%offo

Where:
f," 1DOkHz+5V

Vi

Input voltage (volts rmsl. VI::; 200 mV

C2

Capacitance at Pin 2 (IlF)

·Not8: Adjultforfo -100 kHz.

5-70

r-

....3:

Consumer Circuits

o

W

r-

LM703L low power drain rflif amplifier
general description
The LM703L is a monolithic RF-IF amplifier,
having an efficient DC biasing system, reducing
demands upon power supply and decoupling elements_ Its low internal feedback guarantees a high
stability-limited gain.
Applications include limiting and nonlimiting amplifiers, mixers. and RF oscillators. The LM703L
is specifically characterized for operation in consumer applications such as TV sound IF, FM-IF

limiter amplifier, and Chroma reference oscillator
for color TV_

features
•
•
•
•
•

Power Consumption
Forward Transadmittance
Input Conductance
Output Conductance
Peak-to-Peak Output Current

96 mW (max.)
33 mmhos
0.35 mmhos
0.03 mmhos
5.0mA

schematic and connection diagrams

"loon
R1

II.

.

'""""'8'"
GNO

Z

1

DECOUPLING

IN'UTLOW

3

8

y+

NC"

5

OUTPUT

GROUND

TOPVIEW

Note: Pin 4 cannected to case.

Pin connections an for Hpackagl.

Ordar Number LM703LN
See Package 20.

Order Number LM703LH
See Package 11

typical applications
100 MHz Narrow Band Amplifier

RC Coupled Video Amplifier
+12V

....., - _. . .-OUT

.I~

L, =L2 -1t#16.1I4"i.d.,spaced 1 turn.

Four Stage 10.7 MHz FM-IF Amplifier

5-71

....I
C")

....o

absolute maximum ratings

::E

....I

Supply Voltage
Output Collector Voltage
Voltage Between Input
Terminals
Internal Power Dissipation

±5.0V
200mW

electrical characteristics

(Note 1)

Operating Temperature
Range
Storage Temperature
Range
Lead Temperature
(Soldering, 10 sec)

20V
24V

PARAMETER

CONDITIONS

MIN

OoC to 70°C
-65°C to 150°C
300°C

TYP
71

Power Consumption

ein = 0

Quiescent Output Current

ern = 0

1.5

2.5

Peak·to-Peak Output Current

ern = 400 mV rms, f = 10.7 MHz

3.0

5.0

MAX

UNIT

96

mW

3.3

mA
mA

Output Saturation Voltage

1.7

V

Forward Transadmittance

ern = 10 mV rms, f:::; 10.7 MHz

Reverse Transadmittance

ern = 10 mV rms, f ~ 10.7 MHz

0.002

I nput Conductance

ern = < 10 mV rms, f:::; 10.7 MHz

0.35

I nput Capacitance

e'n< 10 mV rms, f:::; 10.7 MHz

9.0

12.5

pF

Output Capacitance

f< 10.7 MHz

2.6

4.0

pF

Output Conductance

f< lb.7 MHz

0.03

0.05

mmho

Noise Figure

Rs = 5000., f = 10.7 MHz
Rs = 5000., f = 100 MHz

6.0
8.0

dB
dB

Maximum Stable Gain

f= 100 MHz

28.0

dB

Note 1: These specifications apply for TA

=

25°C, V+

=

24.0

33.0

mmho
mmho
1.0

mmho

12V unless otherwise specified.

typical performance characteristics
Output Currant as a Function
of Ambient Temperatura

Power Consumption as a

Function of Supply Voltage

..

iI

T.. -li"e

•

J

.."

SUPrlYVOLTAGE!V)

5·72

11

11

•

Y+-IZV

... ·a

~ "a

B

i2

-80...q-za 0 zt 40

sa

HI.,HI.

nM'EAATURE("C)

Forward Transadmittance as a

Function of Ambient
Temperatura
1

!

i

iII '10

,
,

'"

'50

V+·IZV

·,

'10

"

....

•

'50

I

Power Consumption as a
Function of Ambient
Temperatura

50

.

yt-IIV

Ih-n ..v,..
faUIb

E "

..

I"

,

"
a

..1-41-21 0 2114110 10101120141
TEMPEI'IATUAE("C)

i "•

....

-41~D

•

za

4110 IG ,.,21140

TEM,ERATURE("CI

Consumer Circuits
LM733/LM733C differential video amp
general description

features

The LM733/LM733C is a two· stage, differential
input, differential output, wide·band video ampli·
fier. The use of internal series·shunt feedback gives
wide bandwidth with low phase distortion and high
gain stability. Emitter·follower outputs provide a
high current drive, low impedance capability. It's
120 MHz bandwidth and selectable gains of 10,
100, and 400, without need for frequency compen·
sation, make it a very useful circuit for memory
element drivers, pulse amplifiers, and wide band
linear gain stages.

•
•
•
•
•

120 MHz bandwidth
250 kn input resistance
Selectable gains of 10, 100,400
No frequency compensation
High common mode rejection ratio at high
frequencies.

applications
•
•
•
•
•

The LM733 is specified for operation over the
_55°C to +125°C military temperature range. The
LM733C is specified for operation over the O°C
to +70°C temperature range.

Magnetic tape systems
Disk file memories
Thin and thick film memories
Woven and plated wire memories
Wide band video amplifiers.
Dual-In-Line Package

schematic and connection diagrams

CAIN

nueT
C...

.

III'UT

1114)

IiAIIi

SEUCT

{

'n" ' .•

,

OUTPUT
G,.

.

OUTPUT

~A~
SEUCT

Order Number LM733D or LM733CD
See Package 1

lDIIZIGu.

Order Number LM733CN
See Package 22
Metal Can Package

...,,.
5~;)

Numbers in parentheses show DIP connections,
V·

Note: Pin 5 connected to case.

Order Number LM733H or LM733CH
See Package 14

test circuits
Voltage Gain Adjust Circuit
Test Circuit 2

Test Circuit 1

v"

VgUl

::~
il:-~~
-= -=

":'

':'

Vs "6V,TA = 25 C
(Pin numbers apply to TO·5 package)
Q

5-73

absolute maximum ratings
Differential Input Voltage
Common Mode Input Voltage
Vcc
Output Current
Power Dissipation (Note 1)
Junction Temperature
Storage Temperature Range
Operating Temperature Range LM733
LM733C
Lead Temperature (Soldering, 10 sec)

electrical characteristics
CHARACTER ISTICS

±5V
±6V
±8V
10mA
500mW
+150°C
-65°C to +150°C
-55°C to +125°C
O°C to +70°C
300°C

(TA = 25°C,unless otherwise specified,see test circuits, Vs = ±6.0V)

TEST
CIRCUIT

TEST CONDITIONS

1

RL "'2kn VouT=3Vp-p

LM733
MIN

TYP

LM733C
MAX

MIN

500
110
11

250
80
8.0

TYP

UNITS
MAX

Differential Voltage Gain

Gain 1 (Note 2)
Gain 2 (I"ote 3)
Gain 3 (Note 4)

300
90
9.0

400
100
10

400
100
10

600
120
12

Bandwidth

Gain 1
Gain 2

40
90
120

2

Gain 3

40
90
120

MHz
MHz
MHz

Rise Time

Gain 1
Gain 2
Gain 3

V OUT :: 1 V p _p

2

Propagation Delay

Gain 1
Gain 2

10.5
4.5
2.5

10

10.5
4.5
2.5

12

ns
ns
ns

7.5
6.0
3.6

10

7.5
6.0
3.6

10

ns
ns
ns

VOUT = 1 Vp .p
2

Gain 3

Input Resistance
Gain 1

Gain 2

20

Gain 3

Input Capacitance

Gain 2

4.0
30
250
2.0

Input Offset Current

0.4

Input Bias Current

9.0

Input Noise Voltage

BW= 1 kHzto lOMHz

Input Voltage Range

1

Common Mode Rejection Ratio
Gain 2
Gain 2

1

10

2.0
3.0

0.4

20

9.0

12

pF

5.0
30

12

±l.Q
V CM '" ±lV f:5: 100 kHz
V cM =±1V f= 5MHz

kll
kll
kll

4.0
30
250

MA
MA
/.Nrms

±1.0

V

60

86
60

60

86
60

dB
dB

50

70

50

70

dB

Supply Voltage Rejection Ratio
Gain 2

1

iNs

1

RL.

Output Common Mode Voltage

1

RL = 00

Output Voltage Swing

1

RL

== ±O.5V

Output Offset Voltage
Gain 1
Gain 2 and 3

=

=

2k

Output Sink Current

5-74

1.5
1.0

2.4

2.9

3.4

3.0

4.0
3.6

2.5

2.5

Output Resistance
Power Supply Current

0.6
0.35

00

20
1

RL =

00

18

0.6
0.35

1.5
1.5

V
V

2.4

2.9

3.4

V

3.0

4.0
3.6

rnA

20
24

18

11
24

rnA

r-

3:
....
w
w
......

electrical characteristics
(The following specifications apply for _55°C < T A

< 125°C for the LM733 and O°C < T A < 70°C for the LM733C, Vs = ±6.0V)

TEST
CHARACTERISTICS

LM733

TEST CONDITIONS

CIRCUIT

MIN

r-

LM733C

TYP

MAX

MIN

TYP

MAX

3:
....w
w

UNITS

Differential Voltage Gain
Gain 1

200

600

250

600

Gain 2

80

120

80

120

Gain 3

12.0

8.0

8

Input Resistance Gain 2

kU

8

Input Offset Current
Input Bias Current
Input Voltage Range

"

12.0

8.0

5

6

~A

40

40

~A

±1

±1

V

50

50

dB

50

50

d8

Common Mode Rejection Ratio
Gain 2

VCM =±lV,

f~

100 kHz

Su~ly Voltage Rejection Ratio

Gain 2

tN.' ±0.5V

Output Offset Voltage
Gain 1

1.5

1.5

Gain 2 and 3

1.2

1.5

RL

Output Voltage Swing

::::

2k

V

2.8

2.5
2.2

Output Sink Current

V

Vpp

mA

2.5
27

Power Supply Current

mA

27

Note 1: The maximum junction temperature of the LM733 is 150°C, while that of the LM733C is lOOoe. For operation
at elevated temperatures devices in the TO-100 package must be derated based on a thermal resistance of 150°C/W junction
to ambient or 4SoC/W junction to case. Thermal resistance of the dual-in-line package is 100°C/W.
Note 2: Pins GIA and Gl B connected together.
Note 3: Pins G2A and G2B connected together.
Note 4: Gain select pins open.

typical performance characteristics

~

1.6 .--r-r-r-'-'-'-"T":":~""""

1.6 r-r-;r-;r-;-..,1"'I-r.:G"AI;;;N.2'

1.4
1.2

1.4
1.2

1.0

.. o.s

t-t-+-+
I++-+-t~=:~:~c
1

KIl

RL .l

cfllIcv.:/±+-+-f--j

.

,+++-+-t

§!

1-1---::~IH'f-r-.l'oo"+++-I

>

I-t---=GfAI:::;N,:,2
GAIN 3
GAIN 1
0.6 I-H""t~,'-fr0.4 1--1-+-+-11-1'''-!--I--+-+---1-1

-

0.2
0

~

..

~

Pulse Response vs
Supply Voltage

Pulse Response vs
Temperature

Pulse Response

~

....
~

~

1--I-+-+JI-+-I--+-+---1-1

~

H-+-+,J4-+-H-+-+--I

..

-11.2 I-I--HH-l-l-l-l-l-l
-0.4 L-I-L......JL......J---'---'--'---'---'--'
-15 -10 -5 0 5 10 15 20 25 3D 35

TIME

0.6
0.4
0.2
0

Vs ·,6V
T"_550C RL '1 K!l

~

rl

§!

I-t~-+,.I'+--f-+-+--H-t

~

-15

"

~

I'

1

2

3

4

5

6

1

FREQUENCY (MHzl

8

0.4
0.2

9 10

••

1--I-+-+-fI',+-+-+-t-"H
I--I-+-+J*""-+-+-+-t-,H

10

>

Vs - ±6V
T•• 25°C-/-+++-I--+-+....
GAIN 2
50 I-I---H~-l-l-l-l~-I

>

40

'"

;:::

..:.:.
....
.."
ffi

-150

GAIN 3

-250

60

I-I---HH-l-TI-l-l-l-l

10

-~V

ffi

1

5 10

50 100

FREQUENCY (MHz)

500 1000

1-t-+~+-I-t~V~-t-i
V

3D

>
EO
>

-350
0

0.8 1-t-+-+---!if-j;;;;;;V~s~ '3~V++-I
0.6 I-l-+-+--III'-I+~'-T"-'--I-t-t

o ~~-+~~+-+-~~

....

-300

-25

s

T.·25°C

Differential Overdrive
Recovery Time

~ -200

I'

-20

I

TIME (nsl

-50

~

il:

t=!=l=j=~tdv~s::;.~
:"8=V:l;;;R~L:'::1FKIl::j
,
V ',6V

-0.2 HH-++~+-+-H~
-0.4 '--I-L......J---'---'--'----'---'---'-'
-15-10 -5 0 5 10 1520 25 3035

0

GAIN 2
Vs= ±6V
T.· 25°C

iii

I

1.2
1.0

(n~

;:: -100
-10

1.4

Phase Shift vs Frequency

....
t

5
~

-0.2 I-t-t-t-t-t-t-+-+--t-i
-11.4 L-I-L......J---'---'---'--'---'---'--'
-15-10 -5 0 5 10 15 20 25 3D 35
TIME

-5

z::l:

rr-T,'125°C

1-l-l-Hr+-I-+-+-+-+-1
1--t--f-+If-++-+-+---1-t

In~

I'

1.6 .--,-.,-,-,-...1...--r.::G""AI"'N""2--'

1 1

I
r-1T:;;-'~'Z!25~OC~~~j!!~~~~

1.0
0.8 r-T.'1Il"C

Phase Shift vs Frequency
0

1 1

o'--I-L......JL......J'-'---''-''-'--'--'

o

20 40 60 80 100120 140160180200

DIFFERENTIAL INPUT VOLTAGE (mV)

5-75

typical performance c!1aracteristics (con't)
Gain vs Frequency
Temperature

Voltage Gain vs Frequency

60
m

'"z~

50

r-

40

w

'";

...
.
..

t~1

-

20

w

ill
~

'"z~

..'"
~
..:;:

RL =1KU

w

"

GAIN2

3D

>

li1

Vs" ±6Y
TA "'25°e

r-

-

tl3

10

>

ill

~

'"

z

60

Vs'" ±6V
RL "'1 Kn

50

-10
I

50100

5 10

3D
20

Tfl21~oct

I

T. = 125°C

5 10

w

~

'"

;::

~

..'"

"'
100

1.05

~

1.0

.~

......

I---

..

5.0

I-H*-t-t-t1H-+-t1t+1H

4.0

l-i-I*-t.....t:+iH-+-t1t+1H

~

3.0

I-H*-+-t~~++t+1H

'"~

2.0

I-H-H--+-t-Hlt'lrt--H++H

1.0

I-H+I--+-++t+-'++t-H"""'l

\r"-

.95

1\

.90

r-H+I--+-t-Hft-+ T.=25°C

RL=IKn

50100

3.0

;;:

20

~
]Alr2

&0

100

GAIN 2
90 H+tt_+-i+lIH-t-Ht- VS = .&V
80 H-HiH""I-Idt+-ttit-TA =25°C
70 H+I+-t-+++P'k-H+H-t-H+--l
60

H+I+-t-++-H-+-l-f'Iokd-t-H+--l

50

HtIt++tIfH-+ttl--Pi-HH

40 HtIt++tIfH-+ttl-+rH~
30 H+I+-t-++-H-+-H+H-t-f-H--l

H+I+-t-++-H-+-H+H-t-H+--l
H+I+-+++-H-+-t+tH-t-Ht--l
1M

10M

FREQUENCY (Hz!

5·76

w

>

a.

1.2

V

1.1
GAIN 3

1.0

.9 I-'T'
J...1'"
.8
GAIN 2.;'
.7
I./[
.6
V.GAINI
.5
1
.4

4.0

5.0

&.0

SUPPLY VOLTAGE (,VI

7.0

Output Voltage Swing vs
Load Resistance
7.0

-;.

Vs=±6V

-e..

5.0

w

4.0

!::;
>

3.0

.'"~
...'"
'"~
'"

8.0

T. = 25°C

6.0

r

2.0
1.0

ro10

'"~

..'"
w

~

>
w

~

'"'"
~

!!!

100M

50 100200 500 Ik

5k 10k

LOAD RESISTANCE (n)
Supply Current and Input

. Resistance vs

100

.5

-~

....

140

GAIN 2
90 H-tliH-+++++-+-tI vs '" ±6V
80 H-ttH-+ttt-H-+-tIT. " 25°C
70 H-ItH-+ttt+-H~!BW = 10 MHz

Temperat~re

21

70

20

60

IS

10

&0
50
40
30

20

20
10

14

0
lOOk

!::;

,.'"

Input Noise Voltage vs
Source Resistance

~~-r~Tr~nT~-r~

10k

w

T. =25°C

1.3

SUPPLY VOLTAGE (V)

Common Mode Rejection
Ratio vs Frequency

10

...
'"
2

'{I
-20

r3V

SOD 1000

Voltage Gain vs
Supply Voltage

.... n
\

5001000

50100

FREQUENCY (MHz)

~AI~3

.85

FREQUENCY (MHz!

20

V~ i
5 10

24 "'--"'----'---'---'-71
22
20
18 1--1--1-.
1&
14
12 I--b"~
10
'1---1---1--1

Vs=±6V

100

Vs = ±8V

v~~ ~6V

-10

Supply Current, Output Voltage
and Current Swing vs Supply
Voltage

60

5 10

"'

TEMPERATURE (OCI

1:

~

..'"~

10

II

.\

.80
-&0

10k

Ik

7.0 r-1"'T'n-"T"""''''''"'T'~TC!:-t

I

20

SOD 1000

\GAINI

Output Voltage Swing vs
Frequency

~~

'"

'"

1.4

RADJ(nl

.

:;:

Vs = ±6Y

;::

10

2:

50 100

1\

1.10

w

>
w
>

is
10

2

~

,

'"

40

Voltage Gain vs Temperature

1.15

!::;
> 100

!::;
>

3D

.'"

TA =25°C
RL=1 Kn

FREQUENCY (MHz!

Vs = ±6V
TA =25c C

..'"

50

in

-10

5001000

Voltage Gain vs RADJ

'"
~

T. - -55°C

GAIN 2

li1

'"'".;;:
w

III

TA "'7[rC_

10

FREQUENCY (MHz)

1000

GAIN2

,

40

in

in

Gain vs Frequency vs
Supply Voltage
60

I

10

100

Ik

SOURCE RESISTANCE (!II

10k

-80

~20

20

&0

100

TEMPERATURE (OCI

140

~

Consumer Circuits
lM746 color television chroma demodulator
general description
features
The LM746 is a monolithic silicon integrated
ci'rcuit which demodulates the chroma subcarrier
information contained in a color television video
signal and provides color-difference signals at the
outputs
The low DC voltage drift of the outputs insures
excellent performance in direct-coupled chrominance output circuitry.

•

Low output voltage drift with temperature

•

Doubly balanced demodulation

•

Internal color-difference matrix for NTSC color
television

•

10V peak-to-peak E8 - Ey output

schematic and block diagrams
Dual·' n-Line Package

Order Number LM746N or LM746N-01

See Packages 22 and 24
Pin numben shown for Du.I·ln·Linl Pilcklgl.

typical application

test circuit 1

fDGAHN

faRED

'"

CATIIODE

CIIlKODf

'"

E._l

T

11 F
•

z~~O--+-+---f-+-++--1H--1""

'""

R£HREIVCE A 11<1

>--:tl-.,---------'
10rCfromrtftrenceA.

Pin numbet'l shown far DUII·ln·Line PICkagl.

5-77

absolute maximum ratings
Power Dissipation
T A = 70°C or less
T A ::: 70°C or more

450mW
8.2mW/·C
o"C to+70·C

Operating Temperature

electrical cha racteristics
PARAMETER

SYMBOL

(T A

_65°C to +150°C
+30V
5V
5V

Storage Temperature
Supply Voltage

Derate Linearly

Reference Input Volt (p-p)

Chroma Input Voltage tp·p)

= 25°C)

(V CC

TEST
CKT

= 24V)

(R L

= 3.3K

CONDITIONS

MIN

TYP

MAX

UNITS

5.5

9.0

12.5

mA

9.0

13.0

mA

25.5

mA

STATIC
Supply Current

Is

1

ec = 0 RL = 1M

Supply Current

Is

1

ec = 0 RL = 1M T A = 70°C

Supply Current

Is

1

ee=O RL =3.3k

16.5

22

Supply Current

Is

1

ec=O RL =3.3k TA = 70°C

Power Dissipation

Po

1

ec = 0

340

430

mW

Power Dissipation

Po

1

ec = 0 T A = 70°C

340

445

mW

DC Output Volts

V9. VII. V13

1

ee = 0 RL = 3.3k

13.2

14.5

15.8

V

DC Output Volts

V9. VII. V13

1

ec = 0 TA = 70°C RL = 3.3k

13.0

14.5

16.0

V

Absolute Value of DC Difference

.1 LIVe I

.6

V

22

ee=O RL =3.3k

rnA

.15

Voltage Between any 2 Output

Terminals
Temperature Coefficient

ec = 0

-5.0

-.3

.4

.7

Vp ..

3.5

3.8

4.2

V p ..

1.0

1.25

V p ..

+50

rnVfC

DYNAMIC
Chroma Input Voltage Sensitivity

ee

1

Es -E y =5Vp "p

ER - Ey Output Voltage

VII

1

EB - Ey = 5 Vp"p

Eo - Ey Output Voltage

V9

1

Ee - Ey "" 5 Vp-p

Maximum Ee - Ey Output
Voltage

V13

1

ec"" 1.5Vp.p

EB - Ey De mod Angle Relative

ER4>

1

E'e - Ey = 5 V p.p

101

106

111

degrees

EG~

1

EB - Ey

= 5 Vp-p

-96

-104

-112

degrees

1

ec = 0

.75
8.0

10.0

VD..

to ER-Ey
Ee - Ey Demod Angle Relative
toEO-E y

AC Unbalance@ Any Output
Terminal

5-78

.1

.8

V D..

r-

s::...a

Consumer Circuits

W

o

W

LM1303 stereo preamplifier

general description

features

The LM 1303 consists of two identical operational
amplifiers constructed on a single silicon chip.
Intended for amplification of low·level stereo
signals, the LM1303 features low input noise volt·
age, high open-loop voltage gain, large output
voltage swing and short circuit protection.

• Large Output Voltage Swing 4.0V rms min
• High Open-Loop Voltage Gain 6,000 min
.• Channel Separation 60 dB min at 10kHz

schematic and connection diagrams
IIi'Ur~~Gl

"

II

Dual·ln·Line Package

OUTPUTLlG!

"

11

~~~'lUT

"

lIa'''''V~:,TJ~~
.Jl:VtIlTlNG
IID'UT2

I' '~~:r

f

I

I

~:,~~NIYUTlNG

I ::~~~~IIIG

Order Number LM1303N
See Package 22

IIIIV::~

Io,---l--.,

NOli III\I~N~~~~ I

.,

,..,UTUU

.

aunt/HAIIZ

typical application and characteristic
Magnetic Phono Playback Preamplifier/R IAA Equalized

~ +20

t+\oIIttH-tttltlll-ttttttllf-tttltlll

~

t+HItIN-tttltlll-ttttttllf-tttllllll

~

g
~

Valtau_pin •..•....•...
Input overload point ••..•.••
Outputvoltapswinl ••.••.••
Output naiselevll •••••••••

0

t+HltlH-ttflll\l..ttttttllf-t

::; -10

t+HltlH-tttltlll-tttH!ll--t

-ZII

I+HllII1H-mmll-tt+H!III--l

~
~

34dBitl KHz
100 mVrms a. 1 KHz
5.DVrmsatl KHzandD.1%THD
BeUer than 70 dB below 10 mV
phonoinput(inputshortedl

+10

if
10

100

Uk

10k

10011.

f, fREQUENCY (Hz!

FIGURE 1

5-79

M

o

...
:i
M

absolute maximum ratings
Supply Voltage

..I

±15V
415mW
Oto 75"C
_6S D C to 1sooe

Power Dissipation (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

300'C

electrical characteristics
PARAMETER

(Note 2)
MIN

TYP

Input Offset Voltage

1.5

Input Offset Current

0.2

Input Bias Current

1.0

MAX

UNITS

10

mV

0.4

Supply Current Both

~A

10

~A

15

mA

Amplifiers V OUT "" OV

large Signal Voltage Gain

6,000

10,000

60

70

Channel Separation

V/V
dB

'=10kHz

4.0

Output Voltage Swing

V~.

5.5

Rc"IOkll

Nota 1: The maximum junction temperature of the LM1303 is 100o e. For operating at elevated temperatures. devices
must be derated based on a thermal resistance of 150°CIW. junction to ambient.
Note 2: These specifications apply for Vs = ±13V and TA = 25°C, unless otherwise specified.

typical application and characteristic
Tape Head Playback Preamplifier/NAB Equalization
Ii

"~+20 U~l~

tmt-

~ +10
,.~

'--+---0-'.

~

,

~'n

Ii:

Fa-to
iii

hlj'Tn

~ -.20

C=- 15UQ pF for 3 314 jll/s
c= rnUpFfor71/2in/i

Voltage Gain'" 35 dB at Uk Hz
Output Voltage Swing .. 5.0 Vrms

I I III

:l

'--w,_--'

"

IIID

Uk

IIIk

lOIIIt

f, FREOUENCY (Hz)

FIGURE 2

typical performance characteristics
Input Noise Voltage
..

Input Noise Current

vs Frequency

vs Frequency

~,It21

~1a-14

~

u

i'~D

~11t1S

!ll

~'D'"ZI

;

~1O-Z4

~
10

10.

,Ok
FREOUENCY (Hz)

5-.80

="Ir
~

25

'OOk

10

tot

111

lDk

FREQUENCY (Hz)

,...

r-

s:...

Consumer Circuits

w

o

,J:I.

......
r-

...s:
w
o

UI
......

LM1304/LM1305/LM1307/LM1307E
FM multiplex stereo demodulator

r-

...s:w

o
......

"r-

...s:

general description

w

The LM1304, LM1305, LM1307 and LM1307E are
designed to derive the left and right channel audio
information from the detected composite stereo
signal. The LM1304 eliminates the need for an
external stereo-channel separation control. The
LM1305 is similar to the LM1304 but permits the
use of an external stereo-channel separation control
for maximum separation. The LM 1307 is also
similar to the LM 1304 but does riot have the audio
mute control, or the stereo/mono switch. The
LM1307E is similar to the LM1307 but has the

o
m

option of emitter-follower output drivers for buffers or high current applications.

"

features
• Operation over a wide power supply range
• Built in stereo-indicator lamp driver 100 mA typical
• Automatic switching between stereo and
monaural
• Audio mute control

circuit schematics
,

I.c'~"n

."

DOUILUTIUIK
__

,

I.CTAUI

II

'1

~OUTPUT

II

+-_-+-__-+_...'1 ::~:~::l

....

.

$lEMO
SWlTC"

AUDIO

LM1304
Order Number LM1304N
or LM1305N or LM1307N
or LM1307EN

Order Number LMI304N-Ol
or LMI305N-Ol or LMI307N-Ol
or LM1307EN.lJl

Sae Package 22

See Package 24

5-81

W
r0-

oP)

...::E

absolute maximum ratings
Power Supply Voltage
Lamp Driver Current
Power Dissipation
Derate Above T A = +25°C
Operating Temperature Range (Ambient)
Storage Temperature Range
Output Current (LM1307E)
Lead Temperature (Soldering, 10 sec)

...I

r::o

...::E

P)

...I

.......

an

+22V
120mA
625mW
5.0 mW/oC
O°C to +75°C
-65°C to +150°C
25mA
300°C

o

...

M

::E
...I

electrical characteristics

.......

(Vee = 12V, TA = 25°C, 75j.1s de-emphasis unless otherwise noted)

~

o

PARAMETER

...::E

M

...I

CONDITIONS

Input Impedance

f = 1 kHz

Stereo Channel Separation (Note 1)
(Note J)

f=100Hz
f = 1 kHz
f= 10kHz

MIN

TYP

12

20

kn

JO

J5
45
30

dB
dB
dB

MAX

Channel Balance

Monaural Input = 200 mV

0.2

1.0

Total Harmonic Distortion (Note 1)

f MOD = 1 kc

0.5

1.0

Ultrasonic Frequency Rejection
(Note 2)

19 kHz
JB kHz

Inherent SCA Rejection
(Without De-Emphasis)

60 kHz, 67 kHz, 74 kHz

Lamp I nd icator

RA = 180n
Min 19 kHz Input Level for Lamp On
Max 19 kHz Input Level for Lamp Off

Power Dissipation

20

5.0

Without Lamp

UNITS

dB

%

30
25

dB
dB

50

dB

16
14

25

150

JOO

mVrms

mVrms
mW

Audio Muting (LM1J04/5 Only)

Stereo·Monaural Switching
(LM1J04/5 Only)

Mute On (Pin 5 Voltage)
Mute Off (Pin 5 Voltage)
Attenuation in Mute Mode

0.6
I.J

Stereo (Pin 4 Voltage)
Monaural (Pin 5 Voltage)

l.J
0.6

.8
1.6
55
1.6

.8

1.0
2.0

V
V
dB

2.0
1.0

V
V

Notet: Measurement made with standard multiplex composite signal. L = 1, R = 0 or L = 0, R = 1;
composite signal defined as 564 mV peak to peak (100 mVrms as read on Ballantine 310~A voltmeter)

with a 20 mVrms 19 kHz pilot carrier.
Note 2: Referenced to 1 kHz output signal with signal per Note 1.
Note 3: Stereo channel separation is adjusted for maximum separation in the LM 1305 with a resistor
from Pin 9 to GND.

(R A = 180n, All voltages measured with respect to GND)
(Vee = 12V, 2.7 kn in series w/Pin 81

5-82

Pins

1

2

3

4

5

6

7

8

9

10

11

12

13

14

LM1304

12

2.3

3.0

1.9

1.9

0.8

0

4_6

12

3.9

9.7

9.7

3.9

1.9

LM1305

12

2.3

3.0

1.9

1.9

0.8

0

12

0.36

3.9

9.7

9.7

3.9

1.9

LM1307

12

2.3

3.0

-

0.8

0

-

12

3.9

9.7

9.7

3.9

1.9

LM1307E

12

2.3

3.0

-

.8

12

0

9.7

9.0

9.0

9.7

3.9

3.9

1.9

I"'"

...

3:

w

circuit schematics (con't)

0

~

.......
I"'"

...w3:
,

IIKtTAIKI

0

."

DUUllUTAliK

__
II

II

U1

RDUINT

.......

IT

I"'"

...
3:

w

0
.....
.......
I"'"

...

3:

HlI'lU

DUllllnl

W

0

.....

m

I ~::::TIQN

LM1305

'""

"Kt:,••n,

"I~TA ••

'

lCMoVIM!LDU"UT

"
~~~--~---t------~--------~~+---~~~-1--+---------~~'~

::

LM1307

5-83

w
.....

...:Eo

circuit schematics (con't)

CW)

.."'

...I

~

, ,

-

oCW)

~'

...:E

"
P-

...I

.......

"

It)

o

"

...
:E
CW)

..'" 1

~

" "'

.. ..
..

H

...

(W)

rG

."

M

~~~'

r f-

..

M

o

..

"

:K~

~I

,..

rl"

.....

..

...I

..--

~"

..

.......
"lit

,

n

y "

u

.!, Le,
....

.
I

.... .. ..
"'=f

~~f

.n

~

..
.. t-t:"
..
E

.
"

i;"..

:E
...I

,~

.. f:..

..

IK

m

"

.n

0"

0"

0"

J"~
~.
..'"
on)",

II
~

.",.. ...
W

II
.n

Jnl'l

~
iK

II

..

110M

'"

CllI

1111

'"

LM1307E

typical performance characteristics
Channel Separation vs

Composite Input Level

Channel Separation vs VCC
70

..
..::="
...
....
z
;:

'0'" 1 kHz

60

50

III
z
z

70

,/

!

-

.-

,-:" kHz
Vee =12V
60

"~

=

~...

50

~

40

.
z

40

~

~

30

30
10

11

12

13

3110

14

Total Hannonic Distortion vs
Composite Input Level
4.0

100
Vee = 12V

Vee =12V

~
>

= 3.0
is

"iii

'"
~
..."

1.0

...

~...
~
...ii:

)
./

~~~~ I--""

V

~

r-

60
40

400

600

800

COMPOSITE INPUT LEVEL (mVnn,)

1000

1\
i'

20
0

200

5·84

80

.!

"
In

2.0

900

700

Multiplex Sensitivity vs
19 kHz Gain Adjustment

~
;:

""=
..

500

COMPOSITE INPUT (mVnn~

Vee (V)

g

:---. ......

V

LAMP OFF
100

150

LAMP ON

I III
200

R•• 19 kHz GAIN ADJUSTMENT (ll)

250

r-

3:
....a

circuit configurations

W

o

~
......

r-

3:
....a
W

o

CJ1

......
r-

1---.....---1r----oLHTCHANNHOUTJlIIT
1------_
.....__

3:
....a

--oAIGHTCH ..MNUOPT'UT

W

o

SUREOIIIDtCATDIIUM.

~

'uXSUh,A

r-

3:

....a

W

Ll, LZ: 333 turns, Ou = 55 8.0 mH nominal Miller No. 1361 or equivalent.
L3: 420 turns No. 38 AWG. tap Bt42 turns, Du :55 B.O mH nominal,
M.ller No. 1362 or equivalent.

o
.....

m

·RA .. 1UDn nominal, adjusted for limp sensitivity 10 19 kHz pilot.

LM1304 Typical Circuit Configuration

DOhF

5hF

1-__.....___1-__-<> LEFTCHANNUDUTPUT
1------_.....

c~;~~ ~ I-+-:--i

----oRIGHTCHANMUaUTPLIT

STEAEO INDLCATOII LAM.

'''U SUD ...
"~'

'°Rso.

L1. L2: 333 turns, Ou " 55 8.0 mH nominal, Miller No. 1361 or equivalent.
l3: 420 turns,. No. 38 AWG, tap at 42 turns, llu = 55 8.0 mH nominal,
Miller No. 1362 or equivalent.
*RA = IBOn nominal, adjusted for lamp SBl\$ltivity to 19 kHz pilot.
"RSEP '" lIOn nominal, adjusted for maximum cl&annel separation.

LM1305 Typical Circuit Configuration

I - - -.....----,r----<> UfTCHAJIltU OIlTPUT

1-_____...........__-oAIUHTCHlItNELDIlTPUT
stERfO INOltATOR lAMP

'MAl:!:"· ....

L1. L2: 333 turns, au '" 55 BoO mH nominal Miller No. 1361 or equivalent.
L3: 420 turns No. 38 AWG, tiP at 42 turns, Du '" 55 B.O mH nominal,
Miller No. 1362 or equivalent.
-RA "180n mlminal, adjusted for lamp sensitivity to 19 kHz pilot.

LM1307 Typical Circuit Configuration

5-85

,...w

o('I)

circuit configurations (con't)

....
:!
....
......

,...
o('I)

....

:!
....
......
It)
o('I)

IUhF

'"

....
:!
....
......

1+---!~---f,------;r-;:J----J_---1==--_LEfTCHAflNElOUTPUT
1--------<~---oAIGHTCHANNlUDU"UT
1 - - - - - - - - - - - 0 unaUfFERED DU1'f'UT

L+__--\;-__+ __--\f-!J-----------o

~

RIGHT 8UfFEAfD OUTPUT

o('I)

....

:!
....

STEAEO INtllCATOR lAMP
IMAXS 12C111tA

L3: 420 turns No. 38 AWn, tap at 42 turns. Ou .. 55 8.0 mH nomiql
Miller No. 13&2 or equivalent
*RA = tBOa nominal.ldjusted for lamp sensitivity to 19 kHz pilot

LM1307E Tvpical Circuit Configuration

.1

5-86

<.

r-

......3:

Consumer Circuits

Co\)

o

LM1310 phase locked loop FM stereo demodulator
general description

features

The LM1310 is an integrated FM stereo demodu·
lator using phase locked loop techniques to regen·
erate the 38 kHz subcarrier. A second version
also available is the LM1800 (see separate data
sheet) which adds superb power supply rejection
and buffered (emitter follower) Otltputs to the
basic phase locked decoder circuit. The features
available in these integrated circuits make possible
a system delivering high fidelity sound within the
cost restraints of inexpensive stereo receivers.

• Automatic stereo/monaural switching

connection diagram

•

No coils, all tuning performed with single
potentiometer

• Wide supply operating voltage range
•

Excellent channel separation

typical application

Dual-In-Line Package

veo
CONTROL

LOOP
FILTER

PHASE
DETEC·
TOR

LOOP
FILTER

INPUTS

THRESH·
OLD
FILTER

PILOT
MONITOR

THRESH·
OLD
FILTER

16k

OSCillATOR
ADJUST

POWER COMPOSITE
SUPPLY

INPUT

AUDIO
AMP
OUTPUT

RIGHT

LEFT
OUTPUT

OUTPUT

DEEMPHASIS

DEEM·
PHASIS

•

LAMP
DRIVER

•

5k

STEREO
INDICATOR
LAMP
nOOmA)

GNO

TOP VIEW

Order Number LM1310N
See Peckage 22

typical performance characteristics
Channel Separation
60

;
~

i=

""
=

19000 ±10 Hz

55

2) PIN 6 OPEN

3) 800 mV p.p

50

~

45

-'
w

z
z

40

~

35

Stereo/Monaural Switch Point Adjustment

1) VCO@

lOOk

COMPOSITE
C, -lo"Fd

/1'f./
I'
0.3

lOOk

Cl-INPUT COUPLING
CAPACITOR
1.0

3.0

Rl
10k

LM1310

~

30

t

CCW

I-"'"

10

CENTER
30

6.2k

':'

CW

Rl PDT SETTING

AUDIO FREQUENCY (H, X 100)

5-87

...:E...
o

CW)

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 3)
Operating Temperature Range

....I

18V

electrical characteristics
PARAMETER

Operating Supply Voltage Range
+10V to +18V
-55°C to +150°C
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)
300°C

(Note 1)
CONOITIONS

MIN

TVP

MAX

Supply Current

Lamp "off"

18

30

Lamp Driver Saturation

100:nA Lamp Current

1.3

1.8

Lamp Driver Leakage

Pin 11 Adjusted to 19.00 kHz

Pilot Level for Lamp "off"

Pin 11 Adjusted to 19.00 kHz

Stereo Lamp Hysteresis
Stereo Channel Separation

100 Hz (Note 2)
1000 Hz (Note 2)
10000 Hz (Note 2)

16

rnA
V
nA

1.0

Pilot Level for Lamp "on"

UNITS

23

mVrms

3.0

8.0

mVrms

3.0

6.0

dB

30

40
45
45

dB
dB
dB

Monaural Channel Unbalance

200 mVrms, 1000 Hz Input

0.3

1.5

Monaural Voltage Gain

200 mVrms, 1000 Hz Input

130

190

mVrms

Total Harmonic Distortion (Mono)

500 mVrms, 1000 Hz Input

0.2

1.0

%

Total Harmonic Distortion (Stereo)

1000 Hz (Note 2)

0.2

%

Capture Range

25 mVrms of Pilot

±3.0

%of fa

Ultrasonic Freq. Rejection

Combined 19 and 38 kHz,
Ref. to Outputs

Dynamic Input Resistance
SCA Rejection

90

20
200 mVrms Composite at 67 kHz

dB

33

dB

45

kO

50

dB

Note 1: TA = 25'C and V+ = 12V unless otherwise specified.
Note 2: The stereo input signal is made by summing 123 mVrms LEFT or RIGHT modulated signal with 25 mVrms of 19 kHz
pilot tone, measuring all voltages with an average responding meter calibrated in rms. The resulting waveform is about

800 mVp-p.
Note 3: The maximum junction temperature is +125°C and the package should be derated at +17SoC/W junction to ambient.

5-88,

r-

...3:
w
Consumer Circuits ...
U1

LM1351 FM detector. limiter and audio amplifier
general description

features

The LM1351 is a monolithic integrated circuit
FM detector, limiter and audio amplifier that re·
quires a minimum of external components for
operation. It includes three stages of IF limiting
and a balanced product detector. The audio ampli·
fier is capable of driving a single external transistor
class A·audio output stage.

• A direct replacement for MC1351
• Simple detector alignment: one coil or ceramic
filter.
• Sensitivity: 3 dB limiting voltage 80 /lV typo
• Low harmonic distortion
• High IF voltage gain
• High audio preamplifier open loop gain

schematic diagram

...

.. ....
"

""

....

...

...
•n

.n

.".

'"

'"

"""

Order Number LM1351N

Order Number LM1351 N·01

See Package 22

See Package 24

block diagram

12 - - - - - - _ _ _ _ _ _ _ _ _ _ ,

I
I
I

I
I
I

I

R"

v+ -11.6
0.031

5·89

absolute maximum ratings
Supply Voltage
Input Signal Voltage (Pin 4)
Power Dissipation
TA :: 2SoC or less
T A :: 2SoC or more

QOeta 7SoC

Operating Temperature Range
Storage Temperature Range

16V
0.7Vrms

-65°C to +l50°C
3OO'C

Lead Temperature (Soldering, 10 sec)
850mW
Derate Linearly 6.67 mW('C

electrical characteristics

(TA = 2lfC, Vcc=12V, unless otherwise noted!

UNITS

CONDITIONS

PARAMETER
STATIC CHARACTERISTICS

I z = 5 mA
Iz = 5 mA
Iz = 5mA

Supply Current
Power Dissipation
Nominal Zener Voltage

mA
mW
V

DYNAMIC CHARACTERISTICS fa = 4.5 MHz,lIF = ±25 kHz, unless otherwise noted
Amplifier Voltage Gain

AVIIF )

Audio Preamplifier
Open Loop Gain

AVIAFI

V IN ~ 0.3 mVrms
V ,N = 500 mV @400 Hz

Input Limiting Threshold

VINILlM)

FM =400 Hz

Recovered Audio Output

VO(AFI

Recovered Audio Output

V01AF )

Total Harmonic

65

d8

40

d8

80
0.35

160

p.vrms

0.50

Vrms

fo = 5.5 MHz, AF = ±50 kHz

0.8

Vrms

THO

Q L = 24,M = 7.5 kHz

1.0

%

Audio Output Voltage

VOMAX

Audio Gain = 10

3.5

Vrms

AM Suppression

AMR

AM: 1 kHz@ 30%, V ,N = 20 mV'

Distortion

Maximum Undistorted

test circuit

6·90

QL

= 24
38

45

dB

r-

s:
....

Consumer Circuits

C1I

CD

en

"s:r....
~

LM1596/LM1496 balanced modulator-demodulator
general description

features

The LM1596/LM1496 are double balanced modulator-demodulators which produce an output
voltage proportional to the product of an input
(signal) voltage and a switching (carrier) signal.
Typical applications include suppressed carrier
modulation, amplitude modulation, synchronous
detection, FM or PM detection, broadband frequency doubling and chopping_

•

CD

en

Excellent carrier suppression
65 dB typical at 0_5 MHz
50 dB typical at 10 MHz

• Adjustable gain and signal handling

The LM1596 is specified for operation over the
-55°C to +125°e military temperature range_ The
LM1496 is specified for operation over the oOe
to +70°C temperature range_

•

Fully balanced inputs and outputs

•

Low offset and drift

• Wide frequency response up to 100 MHz
Metal Can Package

schematic and connection diagrams

liAS

Note: Pin 10 is ~onnectt!deleclricallytothe
CIluthroughthldevu:asubstrate.

Order Number LM1496H or LM1596H
See Package 11

CARRIER
INPUT

SIGNAL

Dual-In-Line Package

IN'UT

t--_____t--_=O .GAIN
.

D~UST

,-O::;;;:...-+-----4~------'

12

-OUTPUT

10

-CARRlfflIN'UT

•

+CARRIERINPUT

Numben in parentheses show DIP connectiollS.

Order Number LM1496N
See Package 22

typical application and test circuit
UK

UK

1----+-;-0·',
LMTIN

...___...___---tll11

.....-O-,.

MODUL~=o,,,-·

4141'111 4)

.11211-----~

illil

'"
Numbers in parentheses show DIP connl!Ctions.

"K
Note:S, Isclosedfo, "adjusted" measu,ements.

Suppressed Carrier Modulator

5-91

absolute maximum ratings
Internal Power Dissipation (Note 1)

500mW
30V
±5.0V
±(5+I SR e IV
5.0V
12mA

Applied Voltage (Note 2)

Differential Input Signal (V7 - Va)

Differential Input Signal (V 4 - V,)
Input Signal (V2 - V1. V3 - V4)

Bias Current (l5)

_55°C to +125°C

Operating Temperature Range LM1596

O°C to +70D e

LM1496
Storage Temperature Range

"'-65°C to +150°C

Lead Temperature (Soldering, 10 sec)

300°C

electrical characteristics
PARAMETER
Carrier Feedthrough

(T A ~ 25°C, unless otherwise specified, see test circuit)
CONDITIONS

LM1596
MIN

TYP

LM1496
MAX

MIN

TYP

MAX

UNITS

Vc - 60 mVrms sine wave
fe = 1.0 kHz, offset adjuste~

40

40

1JVrms

Vc = 60 mVrms sine wave
fe'" 10 MHz, offset adjusted

140

140

.uVrms

0.04

Vc = 300 mVpp square wave
fe = 1.0 kHz, offset adjusted

Vc

=

300 mVpp square wave

20

0.04

0.2
100

20

0.2
150

mVrms

mVrms

fe = 1.0 kHz, offset not adjusted

Carrier Suppression

1S = 10 kHz, 300 mVrms

50

65

dB

50

50

dB

300

300

MHz

80

80

MHz

65

50

fc'" 500 kHz, 60 mVrms sine wave
offset adjusted
fs'" 10 kHz, 300 mVrms
fC = 10 MHz, 60 mV rms sine wave
offset adjusted
Transadmittance Bandwidth

RL" 5011
Carrier Input Port, Vc '" 60 mVrms sine wave
fs'" 1.0 kHz, 300 mVrms sine wave
Signal Input Port, Vs = 300 mVrms sine wave
V7 - Va '" 0.5Vdc

Voltage Gain, Signal Channel

V s '" 100 mVrms, f
V 7 - Va = O.5Vdc

Input Resistance, Signal Port

I" 5.0 MHz
V 7 - Va

Input Capacitance, Signal Port

= 1.0 kHz

2.5

3.5

2.5

200

VIV

3.5
200

kll

= 0.5 Vdc

I" 5.0 MHz

2.0

pF

2.0

V 7 - Va = 0.5 Vdc
Single Ended Output Resistance

f = 10 MHz

Single Ended Output
Capacitance

I" 10 MHz

Input Bias Current

II, + 14112

12

25

12

30

~A

Input Bias Current

II, + Isll2

12

25

12

30

~A

Input Offset Current

II, -141

0.7

5.0

0.7

5.0

Input Offset Current

II, - lsi

0.7

5.0

5.0

5.0

Average Temperature

I_55°C < TA < +125°CI

2.0

Coefficient of Input
Offset Current

(ODC

40

116 -191

14

I_55°C < TA < +125°C)
10°C 

50

z'"
,,'" 60
~u
'"

70

~

~

,/
1--+-I-H+--+-H++t~F-W'H

"'

1-+---+-t-It-l";'FI-,"",,~ 31e

..... ~

'"
::l

~e=~~~~LLU-~-L~

0.5 1.0

0.05 0.1

0.1

I-I-H-tI'I/Q-f-t1++-+tH

ffi

",/

Ie

I-I--H-++--+-I-HI+-+,,7offl

~

;~40I-+--+-t-It-t-H-It-+--.."I-tt

~ ffi
IDa:

1.0

~Ol ~~~~~~~~~wu

50

5.0 10

0.05 0.1

CARRIER FREQUENCY (MHz)

CARRIER INPUT LEVEL (mVrm.)

0.5 1.0

5.0 10

50

CARRIER FREQUENCY (MHz)

Sideband and Signal Port

1

~ 2.0

~

Sideband Output vs

Transadmittances vs

Si gnal-Port Frequency

Carrier Levels

Frequency

Response

""-'-"-"'--1""-"-"'--""--'1
1

Q

;;;
f·2
0.8

~=1~~t~~[-~~~~i~;~~40~0~lm~v~
~

S 0.4

1--~~~;.J.-I""""'if-+--;,;:;.:-1

z~

0

100
150
50
CARRIER LEVEL (mVrm.)

VIN (sIGNAlI

Y21 -

RL ,,1.!Ikn, R.-2.D kn

~

~

;-10r.R~')·~II·i~~T;·"~I·~~I·tlr·~·,~,,~~I~'=tnt~

V7-Va "'0.5 VIk:

~ -20 J,~U,.I.,'vl'H-t+tH-NtH

lOUT tEACH SIDEBAND)

1

RL "'1.!IK,R.,-SOOu

~ o Ill! IJ III

SIDEBAND
TAANSADMITTANCE

~ 0.2

ftL =l.!kU, ft." 1.0 kn

10

~

SIGNAL PORT
TRANSADMITTANCE

~

100mV

~

1-+,+,"till,-+--,I-IHl-+-N.thHI-tIH
S"IEBAND

; 0.4 Y21"~ VOUT~O

~~~V~·~~~~~~-+~20~0·m~v
fo"'"

r-rTTT--.-TTTror-,"T"nrT",.".....,

SIGNAL PORT

0.8

r&

300 mV

~:;,..-

~

!

1

SIGNAL INPUT· &00 mV

=
§
"

1.0

j

1 -1
1.6 I--!--+-I-+
1-+-+--1-

z

VOUT = 0

...

;;; -30

0.01

200

w!'tr.;

L..J...LJJ'-L...J...U.J....L.....I.J..1.I-..L-J..J.J"-J

0.1

1.0

10

100

FREQUENCY (MHz)

CARRIER FREQUENCY (MHz)

typical applications (con't)

' "' ',. "
JDOmVnIlI

$SISIGNAl

.N.UT

0 - -....- - - - - - ; 7 ( ••

~" r--''''·''''.--I11101

,nO) t~:·

I~F!- -4:o-jit
1-....
1\

Itil

T... "

lM1H1

lK
hF
1-__-1~""''""''I>--lL-IlEMIlIlUlATEO
J ~AfIlUTPUT

------/1111

4141101141

....
1 ..

3.U

IDDIi

1(111.

5111

[

.001

I.DOS~

"T "1'

Numbers in parlntflesesmow DIP connections.

SSB Product Detector
This figure shows the LM1596 used as a single sideband (SSB) suppressed carrier demodulator (product detector). The
carrier signal is applied to the carrier input port with sufficient amplitude for switching operation. A carrier input level

of 300 mVrm. is optimum. The compo.ite 5SB .igna' is applied to the .igna' input port with an amplitude of 5.0 to
500 mVrms. All output signal components except the desired demodulated audio are filtered out, so that an offset
adjustment is not required. This circuit may also be used as an AM detector by applying composite and carrier signals
in the same manner as described for product detector operation.

5·93

typical applications (con't)

"

""'+---+-0

Ave.cDlZ""t

lMISN

".
Numben in plrentheslS show DIP ~onnections.
UK

-IV*

Broadband Frequency Doubler
The frequency doubler circuit shown will double low·level signals with low distortion. The value of C should be chosen

for low reactance at the operating frequency.
Signal level at the carrier input must be less than 25 mV peak 10 maintain operation in the linear region of the switching
differential amplifier. Levels to 50 mV peak may be used with some distortion of the output waveform. If a larger input
signal is available a resistive divider may be used at the carrier input, with full signal applied to the signal input.

5·94

i

~

Consumer Circuits

00

o
o

LM1800 phase locked loop FM stereo demodulator
general description

features

The LM 1800 is a second generation integrated
FM stereo demodulator using phase locked loop
techniques to regenerate the 38 kHz subcarrier.
The numerous features integrated on the die make
possible a system delivering high fidelity sound
while still meeting the cost requirements of inexpensive stereo receivers. More information available
in AN-81.

• Automatic stereo/monaural switching

connection diagram

POWER

veo

PHASE
DElEe-

LOOP

lOOP

TOR

SUPPl V CONTROL FILTER FILTER

• 45 dB power supply rejection
• No coils, all tuning performed with single
potentiometer
• Wide operating supply voltage range
• Excellent channel separation
• Emitter follower output buffers

typical application

THRESH· THRESH·

PilOT

OLD

OLD

INPUTS MONITOR FILTER FilTER

COMPOSITE AUDIO
LEFT
LEFT
RIGHT RIGHT
LAMP
INPUT
AMP
LOAD OUTPUT OUTPUT LOAD DRIVER
OUTPUT
&
&
DEEMPHAS1S
DEEMPHASIS

GND

':"

lEfT

RIGHT

':'"

OUTPUT OUTPUT

TOP VIEW

Order Number LM1800N
See Package 23

typical performance characteristics
Supply Ripple Rejection
60

55

55

~

50

§

45

~

;;J
IC

m

~

V+z l2V

v+.~

40
35
200 Hz RIPPLEI

Channel Separation

Supply Ripple Rejection

60

" ""-

3D

I

50 _

z
=

45

IC

40

~

60

I

Y+·12V
O.6V RMS RIPPy

/

/

;
z
=
;::

"

~

30
0.2

0.6

1.0

RIPPLE LEVEL IV

1.2
Rf~S)

1.4

45

~

35

19000±10 Hz

21 PIN 6 OPEN
3) BOD mV p.p

50

IC

..""'

1) VCO@

55

z

40

ij

35

COMPOSITE
C, ·IOpFd

~/
V

~

CI· INPUT COUPLING
CAPACITOR

3D
1.0

3.0

10

30

RIPPLE FREQUENCY (Hz X 100)

100

0.3

1.0

3.0

10

3D

AUDIO FREQUENCY (Hz X 100)

5-95

o
o

....00

absolute maximum ratings

...
:E

Supply Voltage
Power Dissipation (Note 3)
Operating Temperature Range
Operating Supply Voltage Range
Storage Temperature Range
Lead Temperature (Soldering. 10 seconds)

electrical characteristics
PARAMETER

lBV
575mW
O°C to +70°C
+lOV to +lBV
-5SoC to +150°C
300°C

(Note 1)
TYP

MAX

Supply Current

Lamp "off"

CONDITIONS

21

30

Lamp Driver Saturation

100 rnA Lamp Current

1.3

loB

MIN

Lamp Driver Leakage
Pilot Level for Lamp "on"

Pin 11 Adjusted to 19.00 kHz
Pin 11 Adjusted to 19.00 kHz

Stereo Lamp Hysteresis
Stereo Channel Separation

100 Hz (Note 21
1000 Hz (Note 21
10000 Hz (Note 21

Monaural Channel Unbalance

200 mVrms. 1000 Hz Input

Monaural Voltage Gain

200 mVrms. 400 Hz Input

Total Harmonic Distortion

500 mVrms. 1000 Hz Input

Capture Range

26 mVrms of Pilot

Supply Ripple Rejection

600 mVrms of 200 Hz Ripple

Dynamic Input Resistance

16

V

23

mVrms

3.0

8.0

mVrms

3.0

6.0

dB

30

40
45
45

dB
dB
dB

140

0.3

1.5

dB

200

260

mVrms

0.5
±2.0

1.0

%

±6.0

%0110

35

45

dB

20

45

k!1

900

Dynamic Output Resistance

mA

nA

1.0

Pilot Level for Lamp "off"

UNITS

1300

2000

!1

SCA Rejection

200 mVrms composite at 67 kHz

50

dB

Ultrasonic Freq. Rejection

Combined 19 and 38 kHz, Ref. to Output

33

dB

Note 1: TA = 2SoC and V+ = 12V unless otherwise specified.
Note 2: The stereo input signal is made by summing 123 mVrms LEFT or RIGHT modulated signal with 25 mVrms of 19 kHz
pilot tone, measuring all voltages with an average responding meter calibrated in rms. The resulting waveform is about
800 mVp-p.
Note 3: The maximum junction temperature is +125°C and the package should be derated at +17SoC/W junction to ambient.

5-96

Consumer Circuits

3:...
00

o

00

LM1808 monolithic TV sound system

general description

features

The LM1808 2 watt sound IF circuit is designed for
television and related applications. The circuit is com·
prised of two independent functions: a sound I F and an
audio power amplifier. The sound I F portion of the
circuit utilizes circuitry similar to the LM3065. An
improved volume control circuit is included, however,
so that recovered audio is a linear function of the
resistance of the control potentiometer. Audio power
amplification is accomplished with circuitry similar to
the popular LM380 audio power amplifier, featuring
both short circuit and thermal protection.

• Two watt minimum undistorted output

schem atic diagram

75 dB range

•

Linear volume control

•

Fixed voltage gain in audio amplifier

• Short circuit and thermal protection
• Standard dual·in·line package

(For power amplifier section of schematic see page 3)

10

IF and Detector

5·97

co

o

CO

!

absolute maximum ratings
Supply Voltage Vee (Pin 2)
Input Current I MAX (Pin 6)
Input Signal Voltage (Between Pins 12 and 13)
Storage Temperature Range
Operating Temperature Range
Maximum Junction Temperature
Lead Temperature (Soldering, 10 seconds)

electrical characteristics

26V
50 mA
3 Vp-p
-65°C to +150°C
O°C to +70°C
150°C
300°C

+24V Supply (See Test Circuit)

PARAMETER

CONDITIONS

Zener Regulating Voltage (Pin 6)

MIN

TYP

MAX

10.5

11.5

12.5

UNITS
V

Thermal Resistance (Junction to Case)

17

°C/W

Output Swing (Pin 1)

19

Vp-p

Feedthrough Signal (Pin 1)

R Pin 7

~

on

Current into Pin 6

V Pin 6

~

10V

7

AM Rejection

V 1N ~ 1.0 to 100 mVrms,
':>f ~ 25 kHz, AM ~ 30%

40

Recovered Audio (Pi n 8)

350

Input Limiting Voltage at 4.5 MHz

~

R Pin 7

10 kn

Distortion (Pin 8)

':>F

~

25 kHz, fo

Distortion

Po

~

2W

V2

~

24V

~

4.5 MHz

Input Impedance (Pin 16)
Current into Pin 2 (Zero Audio Output at
Pin 1)

typical performance characteristics
Volume Control Characteristic
0.6
0.5
0.4
0.3
0.2

r;r;--r-r-r,-,--,-..,-,
T~.i5"C1
10.4.5 MHz
alo· 25 kHz

+--+-1-+-+71""1

l/V
HH-+-+-++-Y++-l
f-+-+-+-+-+-:./lf-V-+-+-+-l
HH-+--t.,Lf-++++-l

0.1

/
1

2

v

3 4

5

6

7

BOlO

VOLUME CONTROL SETTI~G (k OHMS)

mVrms

15

mA

mVrms

500

40

Output Noise, Input Signal Removed (Pin 1)

15

dB

200

Audio Power Amp Voltage Gain
(Pin 16 to Pin 1)

5-98

10.8

400

I1V

60

V!V

70

150

1.2

2

%

1.2

2

%

50

200

2

5

mVrms

kn
20

mA

i...

typical application and test circuit

CD

o

CD

r--..;..------...-----o
25o,.F
25V

'24V

*

L-.

470

O.DI/-IF

\

~r-~~------~--~--~
":"

DETECTOR
OUTPUT

,

6B,F

,

n

LM1808

10

11

'2

13

1"2 PF
O.1/-1F

~'F'NPUT
Television Sound System

schematic diagram (can't)

"

1B

Power Amplifier

5-99

00

~

connection diagram

~
If
OUT

OET VOLUME IF
OUT CONTROL Vee

18
DETECTOR If.
REF
INPUT
GND BYPASS

IF
IN

--.....--' POWER " - - - - ' "

HEAT

AMP

SINK

INPUT

TOP VIEW

Order Number LM1BOBN
See Package 29

5-100

POWER GNU

r-

s:....

Consumer Circuits

00
N

o

LM1820 AM radio system
general description
• Separately accessible amplifiers

The LM 1820 is a monolithic integrated circuit
AM radio system. It includes two amplifiers a
mixer·oscillator; an AGe detector and a zener
regulator.

•

Regulated supply

•

AGe for R F stage

features
• Overvoltage protection

schematic and block diagrams

" ,
RI7
AI

R"

95'

80.

1.2,

RIO

R1
5K

5.6K
RIS

'OK

R4

'"

"
'"

3.JK

Order Number LM1820N
See Package 22

5-101

o

N
CO

...

absolute maximum ratings

:E
-I

Supply Voltage
Current into Supply Terminal (Pin 3)
Power Dissipation
T A = 25°C or Less
T A = 25°C or More
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

16V
35mA
850mW
Derate Linearly 6.67 mW/oC
-25°C to +85°C
-65°C to +150°C
300°C

electrical characteristics

(T A = 25°C, v+ = 12V, Figure 1)

PARAMETER

I

CONDITIONS

MIN

LIMITS
TYP

MAX

UNITS

STATIC CHARACTERISTICS
Su~ply

Current (I)

18

rnA

Zener Regulator (V 3 1

12 + 13

= 15 rnA

7.1

V

Local Oscillator Current (12)

12 + 13

= 15 rnA

1.2

rnA

IF Current (16)

12 + 13

= 15 rnA

4.5

rnA

RF Current (1'31

12 + 13

= 15 rnA

5.6

rnA

Mixer Current (I,.)

300

jJ.A

120

rnrnhos

DYNAMIC CHARACTERISTICS
RF Transconductance (i'3/e'21

f'2 - 1 MHz, e'2 - 100!'V, e5
51 in Pos 1

RF Input Resistance (R'21

f'2

IF Transconductance (i6/e71

f7

= 1 MHz, 51

=0

1

in Pos 2

= 260 kHz, e7 = 1 rnVrrns

90

IF Input Resistance (R71

f7

= 260 kHz

1

Mixer Transconductance (i,./e, 1

f,

= 1 MHz, e, = 1 rnVrrns

2.5

mmhos

Mixer Input Resistance (R, 1

f,

= 1 MHz

1.4

kQ

1.7

Vrrns

Oscillator Voltage (e2)

test circuit

MUtERIN

..

i't

.

"
V+·IIV

~

,

~

,

~
31O,F

A7~f

AIIelll

,
,

~i--',

..."
Ifill

~

...

~I
!.MilIa

n

,.

h14,:;~OK!

.

q~4'

,

~''''F

Figure 1.

5·102

kQ
rnrnhos

~~r

~~

~~f

kQ

i

Consumer Circuits
LM1829 TV chroma processor
general description
The LM1829 is a monolithic integrated circuit which
provides complete color TV chroma signal processing
except for tint control and chroma demodulation. Subcarrier regeneration is performed by a phase locked loop
utilizing sample-and-hold techniques. A crystal controlled voltage controlled oscillator (VCO) provides
stable output with only an initial trimmer capacitor
adjustment.

The LM1829 may be used with the LM3067 chroma
demodulator for a complete color processing system.

The chroma section uses a synchronous chroma burst
level detector in an automatic chrominance control
(ACC) loop with color killer. The burst signal is gated
out of the chroma signal and the chroma output is then
determined by a manual dc saturation control. In addition, an overload detector corrects for variations in
burst-to-chrominance ratio.

• Supplementary ACC with overload detector

block diagram

features
• Phase-locked loop subcarrier regenerator
• Automatic chrominance control (ACC) with color
killer

•

Burst-cancelled chroma output

•

Linear dc saturation control

•

Internal zener-regulated reference potentials
45pF

~~~~:~"

1

DOI,..F

SUPPLY
VOLTAGE
Y+-30V

10k

'Ok

TOPIN 12

J-+-,--o g~~~~:
SWOPEN
Vo -Z.1V

l.9k

SWCLD5ED
Yo "O.5Y

'Ok

2.Ok

r-".DV

...J

L,v

5,~sWIDTH

HORIZONTAL
KEY INPUT

5-103

absolute maximum ratings

(TA = 25°)

DC Supply Voltage between Terminals 5 and 12'
12V
Device Dissipation:
600mW
Up to T A = 70°C
Above T A = 70°C derate linearly at
7.5 mWtC
--40°C to +80°C
Operating Ambient Temperature Range
-65°C to +150°C
Storage Ambient Temperature Range
Lead Temperature (Soldering, 10 seconds)
+265°C
At distance not less than 1/32" (0.79 mm) from case
*This rating does not apply when using the internal zener reference in conjunction with an external pass transistor.

dc electrical characteristics
(T A = 25°C) Test Circuit No.1, S" S2 normally OFF.
MIN

TYP

Supply Current (1'2)

PARAMETER

15

25

Zener Reference (V'4)

11.0

11.7

12.7

V

Chroma Input (V,)

1.3

2.0

2.7

V

CONDITIONS

MAX
35

UNITS
mA

AFPC Filter (V 2 )

S,ON

7.0

7.8

8.6

V

AFPC Filter (V 3 )

S, OFF

6.9

7.8

8.7

V

Pin 2-3 Offset (V 2-V 3)

V2, V3 measured as above

RF Bypass (V 4 )

-100

+100

mV

6.0

7.5

9.0

V

7.0

8.1

9.2

V

VCO Loop (V 7 )

1.3

2.0

2.7

V

Subcarrier Output (V 8)

6.0

7.5

9.0

V

VCO Loop (V s )

S2 0N

ACC Filter (V,o)

S, OFF

7.0

7.8

8.6

V

ACC Filter (V,,)

S, ON

6.8

7.8

8.8

V

Pin 10-11 Offset (V lO-V,,)

V10, V" measured as above

Overload Detector (V'3)
Chroma Output (V'5)

S3 0N

-200

+200

mV

0.3

0.5

0.6

V

4.5

6.0

8.5

V

MIN

TYP

MAX

0.5

1.0

1.6

Vp·p

ac electrical characteristics
Test Circuit No.2, S, normally OFF.
CONDITIONS

PARAMETER
Subcarrier Output (V 8)

f = 3.579545 MHz

Pull·ln Range

5-104

UNITS

'Hz

±250

100% Chroma Output (V'5)

V, = 0.5 Vp·p

1.6

2.7

3.9

Vp·p

Overload Detector (V'5)

S, ON

375

475

575

mVp·p

Killer Threshold (V,)

V'5:O;: 20 mVp-p

10

60

mVp-p

connection diagram
Dual-In-Line Package

ZENER

OVER
LOAD

CHROMA REFER·

DEfEe·

CHROMA

GAIN

CONTROL OUTPUT

CHROMA

INPUT

ENCE

~
AFPC FILTER

TOR

Vee

RF

GND

BYPASS

Ace FILTER

KEY
PULSE

~

INPUT

~SUBCARRIER
CRYSTAL
OUTPUT

FILTER

TDPYIEW

Order Number LM1829N
See Package 23

ac test circuits

20V

l1.2V

B.lk

10k

16

I1.ZV

15

6Bk

14

Test Circuit No.1

All reSIStant. va'ues are m oh,ns.
UnlessolherwLseindicated,allcapacltance
valunlessthan1.0aninmlcrofarads
1.0orgreuerarem picofarads.

15V

"

Jk

LX

0.01

"=1Jk

KEVING
PULSE

"'T
LM18Z9

001
CHROMA ...-- ~4~ ~

SUBCARRIER
OUT

1N~vv~

I

JJ
"

j5.D'G.Z5J.lS
KEYING

KEYING 51GNAliNPUT

PULSE

0:-

Test Circuit No.2

5-105

Consumer Circuits
LM1845 signal processin~ system
general description
The LM1845 is a 'signal processing system for television
receivers which performs the functions of AGe and
sync separation. It provides both positive and negative
going sync signals and includes an internal AGe amplifier with noise cancelling. AGe outputs are available
for both I F and tuner.

•

features

• Two delayed tuner AGe outputs; one for an NPN
bipolar tuner and one for a FET, tube, or PNP

• Video internally delayed for total noise inversion

Low impedance noise cancelled positive and negative
going sync outputs

• No noise threshold or AGe detector level adjustment
•

Low impedance video output for driving luminance
channel or a video output stage

schematic diagram

..

NOISECAllitEltEO svlle

VIO!DOUTPUT

INPUT

SYNC

,

IY~HO'UZDNTAl

STROIEIIf

STROlE IN

"

.

'n,

VIDEO

INPIIT'

.

11
AGe
filTER

VIOEO
OUT'UT

Order Number LM 1845N
See Package 23

12
MAX
GAIN
liAS

Order Number LM1845N'()1
See Package 25

typical circuit configuration

5-106

"

"
AG'

'""

DfLAV£OTUNERAGC

fORFET,TIIBE,DRPN'

14
FErlUIE

15
IfI'M

.PN'II'OlARI'POLAR.
DELAYED TUNfR AGC
OUTPUts

absolute maximum ratings
Supply Voltage
Power Dissipation (Note 2)
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering. 10 seconds)

electrical characteristics

30V
625mW
oOe to 70 0 e
_55°e to +150o e
3000 e

(Note 1)

PARAMETERS

CONDITIONS

AGC Threshold

MIN

TYP

MAX

5.3

4.65

Negative Sync Output (Low)

IP4 = 100·ILA

Negative Sync Output (High)

V P4 = OV

Positive Sync Output (Low)

Vp4 = oit

Positive Sync Output (High)

Ip4 = 100ILA

V
V

1.7

Threshold Separation

UNITS

2.5

V
V

23.9
0.1

V
V

20.5
1.70

mA

AGC Filter Charge Current

20

mA

Reverse Tuner AGC Maximum Current

3.2

mA

Forward Tuner AGC Maximum Current

9.8

mA

10

mA

AGC Filter Discharge Current

Supply Current
Note 1: T

1 Kohm between P6 and P7

= 25°C and Vee = 24V.

Nota 2: The maximum junction temperature of the LM1845 is 12SoC. For operating at elevated temperatures the derating factor is
17SoC/W junction to ambient.

5-107

Consumer Circuits
LM2111 FM detector and limiter
general description
The LM2111 is a monolithic integrated circuit
FM detector and limiter that requires a minimum
of external components for operation. It includes
three stages of IF limiting and a balanced product
detector.

• Simple detector alignment: one coil or ceramic
filter

features

• Low harmonic distortion

• A direct replacement for ULN2111A and
MC1357

• High IF voltage gain

• Sensitivity: 3 dB limiting voltage 300 p,V typo

schematic diagram

Order Number LM2111 N
See Peckege 22

Order Number LM2111N·01
See Package 24

block diagram

---------,I
I
I
I
I
I
I

--" --qr.:.r: f.'.' "'
T 3IJBII ,F!
":'"

5·108

":'"

'='

'="

OUT""

r-

3:

Supply Voltage
Input Signal Voltage (Pin 4)
Power Dissipation
TA = 25°C or less
T A = 2SoC or more

O°C to +BSoC

Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

15V
3.5V

_65°C to +l50°C
300°C

850mW

Derate Linearly 6.67

electrical characteristics
PARAMETER

SYMBOL

mwtc

ITA = 25°C, Vee = 12V)

TEST
CIRCUIT

I

CONDITIONS

I

LIMITS
MIN

TYP

MAX

12

17

22

UNITS

STATIC CHARACTERISTICS
Supply Current

1'3

Amplifier Input Reference

V.

1.45

Detector Input Reference

V2

3.65

Amplifier High Output Level

V,o

1.25

1.45

Amplifier Low Output Level
Detector Output Level

V.

0.125

0.145

0.20

V

V,

4.3

5.0

5.7

V

Rd

7.2

8.8

10.8

kll

De-emphasis Resistance
DYNAMIC CHARACTERISTICS

Amplifier Voltage Gain

A'F

1

VIN~O.3mVrms

Amplifier Output Voltage

V 100F I

I

V ,N = 10 mV

2
2
2
2

FM = 400 Hz

VINCLIMI

Recovered Audio Output

VO(afl

Output Distortion
AM Suppression

THO
AMR

DYNAMIC CHARACTERISTICS fa

Amplifier Voltage Gain

=

V,NILlMI

Recovered Audio Output
Output Distortion

V 01Blf)
THO
AMR

AM Suppression

= 400 Hz

FM

0.5

V ,N

~

1

V ,N

= 10mV

V ,N

= 1 MHz,

40

I'

Source Resistance

= 400 Hz

FM

T r~ ~",r
¥'"'~ r
~ I"

...d::

...

= 10 mV

TEST CIRCUIT 1

"""111

ATUO

IOR!UUIVIU

QIR1,LII

6S

80

1011

'01

20

120

20
M

3'

JO
00
20

~.t-"
-:1~

-' "

300003
000'

47

001

%

.J
".F

dB

=-,1;~

a

I.. I. :n I 1"1 .' I
,II

Vrms

40

~r

-.n'IIAI,un

.," "-' "'

pVrms

0.3

AM: 1 kHz@30%, V ,N

.....

dB
V p .p

0.3

100% FM Modulation

~

.

= son

53
300

= 60 mV,

."~

.111111

%
dB

1.45

',"/AIII

"

800

46

0.3 mVrms

.,.
I,

dB

Vp •p
.uVrms
Vrms

1.5

= 10 mV

FM =400Hz

2
2
2
2

son

0.6

100% FM Modulation
AM: 1 kHz@30%, V ,N

I

V

1.45
400

= 60 mV,

test circuit

fj&~t'I"
":::'" .. "'~, .. [I..
. ., "' " 11}

V
1.65

58

1.25

10.7 MHz, I'IF = ±75 kHz, Peak Separation

A'F
V 101lF)

Amplifier Output Voltage
Input Limiting Threshold

V ,N

55

mA
V

fa = 4.5 MH I'IF = ±25 kHz, Peak Separation = 15.0 kHz, Source Resistance =

Input Limiting Threshold

......

N

absolute maximum ratings

"'

"

1

.. , I "

'""V( ....LurK
tDRla~ln\lIlT!

<111m
II,F

f,. ,j'

r·of

"

DIITOATIO'
IDRIOUIVIUII'1l

.J-

TEST CIRCUIT 2

5-109

Consumer Circuits
LM2113 FM detector and limiter
general description
The LM2113 is a monolithic integrated circuit
FM detector and limiter that requires a minimum
of external components for operation. It includes
three stages of IF limiting and a balanced product
detector.

• Simple detector alignment: one coil or ceramic
filter
• Sensitivity: 3 dB limiting voltage 300 p.V typo
• Low harmonic distortion

features

• High I F voltage gain

• A direct replaceme'nt for ULN 2113A

• Nominal

av supply

schematic diagram

Order Number LM2113N
See Package 22

Order Number LM2113N.(JI
See Package 24

block diagram
V·

---------,
,,·~::IJt

""TL

I
I
I
I
I
I
I

tI,-· "
.t~f

I

L_

.,.

5·110

i

...

N

absolute maximum ratings
Supply Voltage

Input Signal Voltage (Pin 4)
Power Dissipation
T A ::: 2SoCor less
T A = 2Soc or more

W

aOc to +85°C

Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

14V
3.5V

_65°C to +150°C
300°C

850rnW
Derate Linearly 6.67 mwtc

electrical characteristics
PARAMETER

SYMBOL

ITA

= 25°C. Vee = 8.2V)

TEST
CIRCUIT

I

CONDITIONS

I

LIMITS
MIN

TYP

MAX

11

16

22

UNITS

STATIC CHARACTERISTICS
Supply Current

1'3

Amplifier Input Reference

V.

1.45

V

Detector Input Reference

V,

3.65

V

rnA

V

Amplifier High Output Level

V,o

1.25

1.45

1.65

Amplifier Low Output level
Detector Output level

V.

0.125

0.145

0.20

V

V,

3.0

3.8

4.5

V

Rd

7.2

8.8

10.8

k!!

De-emphasIs Resistance
DYNAMIC CHARACTERISTICS

fa = 4.5 MH, 6f = ±25 kHz, Peak Separation = 150 kHz, Source Resistance = son
~

Amplifier Voltage Gain

A'F

1

V 1N

Amplifier Output Voltage

V 1Q(lFJ

1

V 1N = 10mV

Input Limiting Threshold

V'NILIMI

2

FM

Recovered Audio Output

V Olaf)

2

V ,N

Output Distortion

THO

2

100% FM Modulation

AM Suppression

AMR

2

AM: 1 kHz @30%. V ,N

DYNAMIC CHARACTERISTICS

to

0.3 mVrms

58

= 400 Hz
= 60 rnV.

A'F

1

V IN ~ 0.3 mVrms

Vl0tlFI

1

V'N = 10mV

Input limiting Threshold

V'NtLIMI
V Otafl

2

= 400 Hz
V ,N = 60 mV.

THO
AMR

2

100% FM Modulation

2

AM: 1 kHz@30%, V 1N

AM Suppression

1.5

= 10 mV

I.

230

FM

2

FM

= 400 Hz

~

"", " .," "

0.3

OfRI.LII

.
a

80
20

HIO
120

20

3t

30
20

lO

H

500

0.4

0.5

~,t1

r;tr
"
"

O(lll
001

dB

Tr't~ .

""

-]

,

.

I

"

"

!G~llwn~I.TJ

UII11l

""
.r f.. r ref .

•,.,

IlV
Vrms
%

40

10 mV

I .. l" I"T I " I" I'~ I
65
107

TEST CIRCUIT 1

.. ..

C........,IfTVIlLUU

I

Vpp

300
1.0

=

-

"

dB

1.45

UIlIU

l' !~ ~.,!
¥"'~ 1
~ I"

dB

53

'ODUD~"M

".±

%

46

test circuits

'it'n,;"
~t
"'~;~.~. ~1J" , ", "

Vrms

0.5

= 10.7 MHz. 6f =±75 kHz. Peak Separation = 550 kHz. Source Resistance =50n

Amplifier Output Voltage

Output Distortion

SJ,Vrms

300

= 400 Hz

FM

Amplifier Voltage Gain

Recovered Audio Output

dB

Vp _p

1.45

11.'

DIPDRflD.

_._UUI'

WDITIIIUI
IOIIDUIVAUIITJ

Q

,j,
TEST CIRCUIT 2

5-111

Consumer Circuits

LM3011 wide band amplifier
general description

features

The LM3011 is a monolithic wide band amplifier
circuit that requires a minimum of external
components for operation. It includes three stages
of limiting.

• A direct replacement for CA3011
• High amplifier gain
• Excellent limiting characteristics
• Wide frequency capability

schematic diagram
r - - -....-

01

...--~~--'-O"

D7

08

o.

o.
011

block diagram

connection diagram
v'"

1FJ

INPUT

>=-¢-----....--<> ~UTPUT
OUTPUT

Order Number LM3011H
Sea Packaga 12

5-112

r-

3:

w

absolute maximum ratings
15V
±3V
300mW

Supply Voltage
Input Signal (Pin 1)

Power Dissipation

electrical characteristics
PARAMETER

Operating Temperature Range

Storage Temperature Range
Lead Temperature (Soldering. 10 sec)

-5S0C to +12SoC
--65°C to +150°C
300·C

(TA ~ 25°C)
CONDITIONS

UNITS

STATIC CHARACTERISTICS
Total Device Dissipation (PTI

Vee:::: 6V (Figure 11

mW

Total Device Dissipation (PTI

Vee = 7,5V (Figure 1)

mW

DYNAMIC CHARACTERISTICS Vee::: 7.SV. F '" 4.5 MHz, unless otherwise noted

Voltage Gain (AI

Vee:::: 6V, f = 1 MHz (Figure 2)

60

66

dB

Voltage Gain (AI

Vee = 7.5V, f = , MHz (Figure 2)

65

70

dB

Voltage Gain (AI

Vee = 7.5V, f = 10.7 MHz (FIgure 2)

55

61

dB

Parallel Input Resistance (R IN )

k!1
pF

Parallel Input Capacitance (C IN )

k!1

Parallel Output Resistance (ROUT)

31.5

Parallel Output Capacitance (COUT )

4.2

pF

Noise Figure (NFl

8.7

dB

Input Limiting Voltage (VINIL,m)1

(-3 dB) (Figure 2)

300

400

J.lV

test circuits
.v~

,....--...-o.v~

FIGURE 1

o

FIGURE 2

5-t 13.

(f)

an

o

Consumer Circuits

CW)

:!
....

.......
m
00
N

o

(f)

:!
....

.......
c(
00
N

oCW)
:!
....

LM3028A/LM3028B/LM3053 differential rf/if amplifier
general description
The LM3028A/LM3028B/LM3053 is a monolithic
RF/IF amplifier intended for emitter-coupled (differential) or cascode amplifier operation from DC
to 120 MHz in industrial and communications
equipment_ The LM3028A/LM302BB and LM3053
are plug-in replacements for the CA302BA/
CA302BB and CA3053 respectively. The LM302BB
is similar to the LM302BA but has premium performance with tighter limits in offset voltage and
current, bias current and voltage gain. The LM3053
is similar to the LM302BA/LM3028B but is recommended for I F amplifier operation with less
critical DC parameters.

features
• Controlled for input offset voltage, input offset
current, and input bias current'
• Balanced differential amplifier configuration
with controlled constant-current source to provide unexcelled versatility

•
•
•
•

Si ngle- and dual-ended operation
Operation from DC to 120 MHz'
Balanced-AGC capabil ity'
Wide operating-current range.

°Does not apply to the LM3053.

applications
•

R F and I F linear amplifiers, both differential
and cascode

• Mixers
• Oscillators
• Converters in commercial FM
• DC, audio and sense amplifiers
• Limiting I F amplifiers
• Hybrid building block
• Emitter coupled switches

schematic and connection diagrams

Metal Can Package
ounUT
,~

Order Number LM3028AH or
LM3028BH or LM3053H
See Package 11

typical applications

.,.0-----+--,
~.o-~----------~

A Balanced Differential Amplifier with a Controlled
Constant-Current-Source Drive and AGC Capability
"

Oscillator

.

.... o---------.!j

.,.0-------'1

A Cascade Amplifier with a Constant-Impedance
AGC Capability

5-114

Mixer

r-

s::w

absolute maximum ratings
LM3028AI
LM3028B

ov to +20V
+5V to -l1V
+5Vto-1V

Voltage Between 5 & 6
Voltage Between 2 & 3
Voltage Between 2 & 4

Storage Temperature

±12V

±sv
ov to +20V

Differential Input Voltage

Voltage Between 1 & 8

N
DO

LM3053

±15V

Supply Operating Voltage

o
±5V

Operating Temperature
Power Dissipation @ 2SoC

ov to +15V

......
r-

450mW

Derate 5 mwtC Above 8SoC
Soldering Temperature (10 seconds)
Lead Temperature (Soldering, 10 sec)

OVto+15V
+5V to -11V
+5V to -lV

»
s::
W

_650 C to 2000 C
_55°C to 12SoC

300·C

o

N
DO

dc electrical characteristics
SYMBOL

TEST
CIRCUIT

Input Olhet Voltage

Inpul Oflset Current

InputB,asCurrent

LM3028B

LM3D2BA

Vee

V"

TV'

MAX

12

-6
-12

50
50

04
04

20
20

12

-b
-12

50
50

015
025

20
2.0

12

-6
-12

MIN

TV'

75
17

MAX

MIN

50

7.5
17

106

MIN

LMl053
TYP

-6
-12

O.g
2.3

125
315

20
5.0

1.1

2.5

1.25
3.15

UI

"

1.5
40

2.3

12

V"'Gc=9V

12

V"oc"12V

11
1.5

Terminal 7

-6
-12

12

-6
-12

Power DISSipation

35
50

0.5
10

07

1.5

1.1
22

24

35

54

120

170

260

05
10
24
120

07

15
35
170

mA
mA
mA
mA
mA
mA

105
1.45

12

I,

22
315

B5
125

1.1
1.5

12
Input Currenllnto

s::

W

1.2

AGe Bias Current Into
Terminal 7

1.1
22

mA
mA

42
220

12

4B
91

BO
150

LMJ05J
TYP

MAX

mW
mW
mW
mW

ac electrical characteristics
SYMBOL
100 MHz Pow~r Gam

A,

TEST
CIRCUIT

Vee

MIN

E(Cascodel

17
145

FIOIIf'
107 MHz Power Gam

100 MHz NOls~ FlglHe

InputAdmlttanc~

al107 MHz

Reverse

TrcmsadmlltanC~

all0.7MHz

Forward Transadmlltance
at 107 MHz
OutpulAdmlttanc~

at 107 MHz

Output

Pow~r IUntun~dl

all0.7MHz

A,

NF

EICascode)
FIOlffl

67

59

v"
v"

Cascode
Olf!.

.g
.g

-32+)5

v"

Cascode
Olf!.

.g
.g

0+)100
20+)160

A.

HICascodel
HOIIf.1

Rallo

K

145

dB
dB

36
29

42

335

dB
dB

gO
gO

67

59

gO
gO

dB
dB

05+11.3
04+,0.58

05+j13
04+,058

mmho

02+/0
10+,02

~mho

95-j27

mmho

mmho

~mho

-32+j.5

0+j100
20+j160

5.7

~mho

0+"00
20+j160

57

Ilmho

5.7

76

76

76

40

40

.B
.B

30

dB

30

30

-,
-,
-,
-,
-,

12

-12

40

3B
42.5

12

-12

1B

22

12

-12

12
CMRR

12

35

dB
dB

112
127
-25

-12

-5
60

'0

-12

47

12

42
45

11

P~ak

10 Peak Output
Current VIN 400 mV
al 10.7 MHz

UNITS

22
IB5

40

Common·Mod~

R~jecllon

MIN

+9
"'9

3 dB Bandwidth

InPllC VoUage Range

MAX

.g

MaKlmumP~akloPeak

Output Voltage al 1 kHz

17

LMJ0288
TYP

95-)27

.g

"

MIN

0.5+)1.3
04+,058

+9
+9

.g
.g

Differential I kHz
Volta\l8Gam

Common·Mod~

335

Dill.

AGC Range al 10.7 MHz
Voltaoe Gain at 10 7 MHz

42

29

Cascode
Ollf

v"

MAX

22
18.5

3B

EICascodel
FIOlff )
Cascod~

LMJ02BA
TYP

3.5

,5

10

25
4.5

-3.210+4.5
-710+9

110
90

dB
dB

4.7

6.5

r-

o

60

12

O:J
......
W

40

13

12

UNITS
mV
mV

12
Output Quiescent
Operating Current

MAX

4.7

35

65

10

mA
mA

5-115

CW)

LD

o

CW)

test circuits

:E
...I

........

m
00
N

o

CW)

:E
...I

........

«

00
N

oCW)

v"

Test Circuit B: IOS.IBIAS. PD.la & 17 for
LM302BA & LM302BB

Te.t Circuit A: VOS LM3028A & LM3028B

:E

...I

r----..........-H~-(o)Ls:O

"

FROM'5Q(l.

SOURCl

~""
"

...
Test Circuit 0: IAGC vs
VAGC and 17 for
LM302BA & LM3028B

Te.t Circuit C: IBIAS.
PD. I a for LM3053

1

10.7MH;r:

"

L1

3-5~H
~H

100MHE

.1-.25,.H

L2

3-5

.15-.3~H

Cl
C2
C3

8-35 pF
39 pF
8-35 pF

20pF

C4

36 pF

2.S-11pF
2.5-11 pF

Test Circuit E: Ca.code Ap & NF 10.7 MHz & 100 MHz

..,

LOAP

.Dlilf

~DIJT'UT
10.7 MHz
No"SoIIAGCcoDlfotloVcc

LI
L2
CI
C2
C.
CO

,...lIon kI. ApaNF

J

'D011PF

3-6~H

3-6"H
8-35 pF
39pF
8-35 pF
36pF

100 MHz

.........>---o().,~

.2-.5,.H
.2-.5 pH
2.5-1' pF
2.5-11 pF

Test Circuit G: Po (Untunedl for
LM302BA & LM302BB

Te.t Circuit F: Differential Ap. NF and AGC Range. 10.7 MHz & 100 MHz

....- .....- - - - - - ,

.v~o-

""rtf'."'

,,,.

T"

In~H

~OUTPUT
Ol!F

""::"

-:

I

""r~'"

11"
Test Circuit H: Cascade Ay and Transfer Function.
10.7 MHz

Te.t Circuit I: Differential Mode
Function. 10.7 MHz

Av and Transfer

r-

s:w

test circuits (con't)

"'"

o

N
CO
)-

......

~"~'

r-

~~F

s:

OI,nRlNTIAl

)
L...-_~

L...-_ _ _ _--o

DIFFlIIfNTlAL
) OUTPUT

_ _-o

Note: Fur Vee

'"

out,LIT

=

12V, VEE"

-nv. R = UK

For vee'" av, VEE" -6V, R =2K

Test Circuit J: Av, VOUT, MAX, pIp B.W. for LM3028B

W

o

N
CO
a::I

'"

......
r-

Test Circuit K: CMRR and VCM Range for LM3028B

s:

W

o

U1
W

5·'117

Consumer Circuits
LM3064 television automatic fine tuning
general description

features

The LM3064 is a monolithic integrated circuit
designed primarily for AFT (automatic fine tuning)
applications. It includes a zener regulated power
supply, IF amp, differential peak detector, and
an AGC circuit.

• Primarily intended for AFT applications

The LM3064 is supplied in both the formed and
straight lead TQ.5 and 14 lead dual·in·line package.

schematic and connection diagrams

• High gain input amp (18 mV for rated output)
• Differential output correction voltage
• Wide operating temperature -40°C to +85°C
• Formed leads available for easy PC board design

Metal Can Package

Order Number LM3064H
Se. Package 14
Dual·ln·Line Package
and are in ohms.

test circuits
" '
Order Number LM3064N, N'()l
See Package 22 & 24

DC p.,ameter test circuit tests:
Wfotal device dissipation.

·Zener regulating voltage.
'"'Quiascent opmting cumn •.
+Ouil$Ctntcurrent into pin 2.

5·118,

Test Circuit 1

Test Circuit 2

Correction Voltage Test Circuit

DC Parameter Test Circuit

absolute maximum ratings
Power Dissipation
TA = 2SoC or Less
TA = 2SoC or More

electrical characteristics
PARAMETER

_400 C to +850 C

Operating Temperature Range
Storage Temperature Range
Power Supply Current

700mW
Derate Linearlv 5.6 mWI"C for TD·5
Derate Linearlv 10 mWfC for DIP

_65°C to +150°C
SOmA

(T A = 25°C)
TEST
CIRCUIT

SYMBOL

LIMITS

CONDITIONS

I

MIN

MAX

J
I

UNITS

STATIC
Device Dissipation

Vee

Current Drain

V,o= 1O,5V

Zener Regulating Voltage

Vee::; 30V; As = 1.5k

Quiescent Current
Into Pin 2

Vee = 30V; Rs = 1.5k

Quiescent Voltage
at Pin 4

Vee

30V; Rs "" 1.5k

5.0

B.O

v

Quiescent Voltage
at Pin 5

Vee = 30V; Rs.= 1.5k

5.0

B.O

v

Output Offset Voltage
between Pins 4 & 5

Vee = 30V; Rs '" 1.5k

-1.0

+1.0

v

130

30V; Rs - 1.5k

=

150

4.0

9.5

10.9

12.8

mW
mA
V

mA

DYNAMIC - Output Voltage vs Frequency DevIation AFT

Correction Voltage
as Shown Below
Correction Control
Voltage at Pin 4

Vee;; 30V; Rs;; 1.5k
VI:: 18mV

%01

%al

V,a

V..

f = 45.75 - .03 MHz
f;; 45.75 + .03 MHz

85

f = 45.75 -.9 MHz

BO

v
25

35
BO

f = 45.75 - 1.5 MHz
f = 45.75 + 1.5 MHz

CorrectIon Control
Voltage. at Pin 5
See Curves

35
25

85
35
80

f = 45.75 - 1.5 MHz

35

tD"TR:RVA:Lc,.r~~;- ~g:;ADlVDLtAGE
(crlerll

a 10.0
~

s:

7.5

~

U

PIN 4

III

12.5

III

CORRECTIDII
CDIURDlVDLTAGE

Z':lD.D

I)!'

"".111

.11114

l"Il

,

~

..J.I~l'

~

Cl)1If1UTlOfil

CDnROlVDLTAGE

""

s:

7.'

~

5.0

~

-'r'~11

2.5

,IIOVID

.'~VI1D

2.'

•

.~~~~~~~~~

-O.DJO
-0.020
+0.010
-+0.030
-0.010
45.75D
+D.D20
INPUT FREQUENCY DEVIATION (MHzl

-2.0

-1.0

45.750

1.0

2.0

INPUT FREQUENCY DEVIATION (MHz)

coil winding data
COIL DATA FOR DISCRIMINATOR WINDINGS

L, - Discriminator Primary: 3-1/6 turns; No. 20
Enamel·covered wire-close-wound, at bottoM of
coil form. Inductance of Ll '" 0.165IJH; 0 0 '" 120
at to '" 45.75 MHz.
Start winding at Terminal No.6; finish at Terminal No. 1. See Notes below.

L2 - Tertiary Windings: 2-1/6 turns; No. 20
Enamel·covered wire-close- wound over bottom
end of L 1• Start winding at Terminal No.3; finish
at Terminal No.4. See Nates below.
L3 - Discriminator Secondary:
3-1/2 turns;
center·tapped, space wound at bottom of coil form.
Inductance of L3
0.180 J.LH; 0 0
150 at to ;;
45.75 MHz.
Start winding at Terminal No.2; finish at Terminal No.5, connect center tap to Terminal No.7.
See Notes.

=

=

Note 1: Coil Forms; Cvlindrical; -0.30" dia. max.
Note 2: Tuning Core: 0.250" dia. x 0.37" length.
Material: Carbinal J or equivalent.
Note 3: Coil Form Base: See drawing below_
Note 4: End of coil nearest terminal board to be

dt:eSig:~~the winding start end.
;o......".~~~

l~~,

L, iSI'ignedfDrsymmetr;':al bandwidth
Dn either side Df 45.150 MHz.

~r;g ~:2~::::,~~::::i.~~;;~:i~':;~;~::HL
__ TV'

V
V

80

correction control voltage
bit

V

V

f '- 45.75 + 1.5 MHz

12.5

V

V

f;; 45.75 -.9 MHz
f = 45.75 +.9 MHz

V
V

f = 45.75 - .03 MHz
f = 45.75 + .03 MHz

V
V

f = 45.75 +.9 MHz

V

Consumer Circuits
LM3065 television sound system
general description
The LM3065 is a monolithic integrated circuit
television sound system that requires a minimum
of external components for operation_ It includes
three stages of IF limiting, an FM detector, an
electronic attenuator or volume control, an audio
amplifier-driver, and a temperature stable regulated power supply_ Volume control is accomplished by varying bias leveis of the electronic
attenuator with a potentiometer between pin 6
and ground_ Because no audio signal is present in
this control, hum and noise pickup are easily filtered_ Unshielded wire may be used for volume
control. Features include:
• Electronic attenuator: replaces conventional ac
volume control

• Volume reduction range: >60 dB
• Sensitivity: 3 dB limiting voltage-200 p.V typically
• High stability
• Low harmonic distortion
• Audio drive capability: 6 mA Pop
• Undistorted audio output voltage: 7V Pop
• Differential peak detector
• Simple detector alignment: one coil
• Internal zener diode regulator
• Excellent AM rejection-50 dB typ_

@

4_5 MHz

schematic and connection diagrams
Dual-In-line Package
IW\lTLOW

1

UKtIlUfl,£1

"cc

J

(REGULATtOI
VOLUME'

CO"TlIOL

TOP VIEW

Order Number LM3D65N

See Package 22
Order Number LM3D65N-Dl
All resistlnce values Ire in ohms, III capacitance
VIIulISlr&inpiCGfarads.

block diagram

5-120-

See Package 24

r-

3:
w
en

absolute maximum ratings

electrical characteristics
PARAMETER

SYMBOL

o

Power Dissipation
BSOmW
T A = 2SoC or less
Derate Linearly 6.67 mWfC
T A = 2SoC or more
-40° C to +8So C
Operating Temperature Range
-6SoC to +lS0°C
Storage Temperature Range
300°C
Lead Temperature (Soldering, 10 seconds I

±3V
7SmA

Input Signal Voltage (Between Pin 1 and 21
Power Supply Current (pin SI

TEST
CIRCUIT

CONOITIONS

LIMITS
MIN

TYP

MAX

U1

UNITS

Static Characteristics
Zener Regulating Voltage

10.3

QUiescent Supply Current

11.5

12.2

Voltage@Pm 12
Current Into Terminal 5

Vs '" 9V

V
mA

2B
4.0

5.2

10.0

12.3

5.B

V

24

mA

400

.V

Dynamic Characteristics
IF Amplifier/Detettor
Input Limiting Voltage
(-3 dB point)

Recovered Audio

10:::14.5 MHz
fm: 400 Hz @±25 kHz
Volaf)

fa =: 4.5 MHz, V 1N '" 100 mV
fm: 400 Hz @ ±25 kHz

AM Rejection

AMR

fo:z 4.5 MHz,
fm: 400 Hz @ ±25 kHz
AM: 1 kHz@30%

Total Harmonic
Distortion
Attenuatar

THD

fo '" 4.5 MHz, V 1N '" 100 mV
fm: 400 Hz@±25kHz

Volume Reduction Range

fa = 4.5 MHz
fm: 400 Hz @±25 kHz

200
500

750

mVrms

40

50

dB

.9

60

%

dB

RA = 0 for max·volume;
RA 011 for minimum volume

=

Audio Driver

Voltage Gain

Av(af)

V IN

Total Harmonic Distortion

THD

Vo =2Vrms@400cps

1.5

%

THO'" 5%@"00cps

2.5

Vrms

Undistorted Output Voltage

:::

100 mV@400cps

17.5

20

dB

test circuits

O'UNLOADEDI .. 50
Tests: Recovered audio THO
-3 dB limiting voltage
AM rejection
Volume control range
Plavthoughvolbge

TEST CI RCUI T 1

Tllb: AudiodrivBrvoltagegain
Audio driver THO
Undistortecloutput

TEST CIRCUIT 2

5·121.

Consumer Circuits
LM3067 chroma demodulator
general description
The LM3067 is a monolithic integrated circuit
designed primarily for color signal demodulation
in color television receivers. A DC tint control
is also included. The reference subcarrier and
chroma signals are applied and the three de·
modulated R-Y, G-Y, B-Y color difference
signals are delivered with close DC balance and
proper amplitude ratios. The tint control achieves
a 100°+ phase adjustment by means of a customer·
operated DC control. A limiting amplifier and phase
shift network provide constant amplitude carriers
phase shifted 76° which then feed demodulator
drive amplifiers. The demodulators consist of two
sets of balanced detectors which receive the
reference subcarrier and chroma signal. The chroma
signal is then demodulated, matrixed, and DC
shifted in voltage. The LM3067 and LM3066

Chroma Signal Processor constitute a complete
chroma system for color television receivers.

features
• Balanced chroma demodulators
• DC tint control
• Color difference matrix
• Low output impedance drivers for direct
coupling
• Reference subcarrier limiter
• Zener regu lated voltage reference
• Internal RF filtering of demodulation components

schematic diagram

..

Oft

lin
UK

IIZI
HIl

..

.~

RU

IIZl

RU

!K

U

5K

Note: 037 through 051 all emitter
followerl.AllresistlncevaluH.rein
ohms.Allcapatitancevaluasl,einpF.

Order Number LM3067N
See Package 23

5-122

Order Number LM3067N·01
Se. Package 25

r

3:
w
o
m

absolute maximum ratings

....

Power Dissipation

TA = 700 e or less
Above 700 e

600mW
derate linearly 7.7 mW/QC

Ambient Temperature Range

-40 to +B5°C
-65 to +150°C
+12V
50 mA

Operating
Storage
Power Supply Voltage (Pin 131
Power Supply Current (Pin 13)

electrical characteristics

(T A

PARAMETERS

= 25°C and V+ = 11.2Vt
CHARACTERISTICS

MIN

LIMITS
TYP

MAX

UNITS

Static Characteristics (Test Circuit 11
Voltage Inputs
Tint Control Input (V 2 )

12 = 0.25 mA

3.5
2.1

Reference Subcarrier (Va)

10.6

Zener Regulator Ref. IV 41

11.9

12.6

V

5.7

B-Y, R-V Oscillator Ref. Inputs (V 6 .V'2)

5.0

Balance (B-Y. R-YI (V,.V"I
4.2

B-Y. G-Y. R-Y Outputs (VB.9 •101

5.0

5.B
0.3

-0.3

Difference Outputs (Note 11, (6V e AVg .I:N 10)

Chroma Inputs (V,4,V,sl

3.0

Tint Amplifier Balance (V 161

4.7

Input Currents
Tint Amplifier Output (min.) (I l (min.))

V,. = 8V

Total Supply (I, + 1131

0.16

mA

0.37

15

24

160

250

33

Dynamic Characteristics (Test Circuit 2)
Tint Amplifier Output

Sensitivity (V 1)

V3 = 7 mVRMS

limiting Knee (V 1)

V3 = 35 mVRMS

Limiting IV,I

V3

=350 mVRMS
=70mVRMS

Tint Amplifier Phase Ref. (Note 21 (q, 6 1

V3

Tint Amplifier Phase Ref. (Note 3) (M.)

V3 = 70 mVRMS

mVRMS

300
380
185

220

90

105

235

degrees
degrees

Demodulated Chroma Outputs
R-Y (V,.I

V3 = 70mVRMS

Ratio of G-Y to R-Y (VgiV ,.1

0.25
0.36

0.44

1.0

1.2

1.4

V'4 = 35 mVRMS
Ratio of B-Y to R-Y (VBiV,.1

VRMS

0.15
0.28

Color Difference Output
450

BW at 3.3 dB (BWo,ff.l

550

kHz

Color Difference Outputs (max. input signals);
3.0

R-Y (V,.I
G-Y (Vgl
B-Y (VBI

V3 = 70 mVRMS

1.1

V'4 212 mVRMS

3.6

Vp'f'

Small Signal Input Resistance
Terminal Number 3 (ril
Terminal Numbers 6 and 12 (ri)

550

n

22

Small Signal Output Resistance
Terminal Numbers 8, 9, and 10 (rol

5

+ VlO )
_
(va+ V 9+ V lO)
(VB+V9+ V l0) ,Ll. V lO=VlO- ( Va + V9
Note 1: Ll.Va-Va3
3
,Ll. V9=V93
Note 2: Thermal No.3 is phase reference.

Note 3: Read phase shift as tint control is varied.

5·123

~

o

~

::E
..I

block and functional diagram
r-r..-j---v.iIY-.....................- - -....- . nzv

':>---

~ ~

I

f

c

w>

I

300

I

~-

~-

~~

~~~~~9~5N~~~ SIGNAL -

c;;!;

t-""'+-+-++-+-t-t--:t-l
II

200

>"

u"' 100
cw
~

....

:55
....

111

I

11 1

0 " 3.579545 MH., OSCILLATOR
ITLOCKED STANDARD NTSC SIGNAL

~

z ....
w=>

o

ZOO

400

600

BOD

~Q

1000

ZOO

<5

PEAK-TO·PEAK BURST INPUT
LEVEL AT APC DETECTOR INPUT (mV)

400

BOD

BO~

PEAK·TO·PEAK BURST INPUT
LEVEL AT ACC DETECTOR INPUT (mV)

dc test circuit
47011W

r - - -...- - -...---------~~--...- - -...'V\,.,..-Ov··"v

,.

,.

,.

,.

"

16

TO

11

LM307D

1

""t

,

$'''"'

3

5TO

lOOK

1,1
0,,£00
".

,

•

5

4

•

t·, t·,

".

':"

":"

S,
1

03

l'
TEST CIRCUIT 1

5-127

o

S
CW)

ac test circuit

:E
....
OFF

o

22'
UM

'lD
r--+-.....- -.....+-I--...--f---f-.....--1~--.....- -..........-_""'-Ov·
·NY

'lK

"

"

11

LM30nl

'IK

"'

fERRITE
lEAD

'10

&5pF

nail

"

al"F~

.

2

'='

15",F

UK

JL.--IL
4S"s+4Vpn.,MII'
cengrldantllrbvrsl

'='
TEST CIRCUIT 2

r

Consumer Circuits
LM3071 television chroma IF amplifier
general description
The LM3071 is a two stage chroma IF amplifier
on a single silicon chip encapsulated in a 14 lead
molded·Dual·ln·Line Package. The first stage is an
automatic gain controlled amplifier, and its output
from Pin 6 is used to drive the ACC detector of
the LM3070 or an equivalent circuit. The output
from the ACC detector is applied to Pins 1 and 14
to control the gain of the stage. The second ampli·
fier stage is driven from the output of the first at
Pin 7, and the gain is controlled by adjusting the
DC voltage at Pin 10. The output from Pin 9
supplies the chroma drive signal to the chroma
demodulator circuit. In addition, the second stage

may be gated "OFF" to provide "color killing"
action in the absence of color signal at the output
of the first stage. The killer trip point is adjusted
externally.

features
• Very effective gain control of both stages
• Good signal handling capability
• Excellent gain stability with temperature and
supply voltage variations
•

Low distortion

schematic and functional diagrams

Order Number LM3071 N
See Package 22
Order Number LM3071N·Ol
See Package 24

test circuits

Insum.UDR
V.. -IIV

Test Circuit 1

Test Circuit 2

5·129

3:
w
o

:::i

absolute maximum ratings
V+ = 30V

Supply Voltage
Internal Power Dissipation at 700e
Above 70 0 e derate at 7 mW/oe
Operating Temperature
Storage Temperature

550mW
_40 oe to +85°e
-65°C to +150O C

electrical characteristics
PARAMETER

T A ~ 25°C

.;-

v+ ~ 24V

SYMBOL

CONOITIONS.

I

MIN

LIMITS
TYP

I

I MAX

UNIT

STATIC (Refer to Test CLrcult 1)
Supply Current

Is

17

24

31

rnA

Bias Voltage at Pin 12

V,z

14

15.3

16.5

V

Vortage at Input 1

Vz

1.7

V

Voltage at Input 2

V,

1.4

V

Voltage at Output 1

V.

VAce

15.5

17.5

20

V

Voltage at Output 2

V.

V,o'" OV

17.25

18.25

19

V

SA Position 1, V, .. V'4= lOV

14

16.5

19

db

DYNAMIC (Refer to Test Circuit 2)

= V1 -

V14 = OV

f = 3.58 MHz

Av ,

Gain, ACe Amplifier Stage
Gain Reduction of ACe Amplifier

14

SA Position 2. R, set for V 14 - V 1 = 75 mV

MaXimum Gain, Chroma Level Amplifier

Avz

5 e Position " V,o= OV

90% Chroma Gain Control
Reference Voltage

V,c

Se Position 1, R2 set for 90%
of Maximum Gain

10% Chroma Gain Control

V,c

Se Position " R2 Set for 10%
of Maximum Gain

Reference Voltage
Maximum Chroma Output Before Distorting

V.

ACC Amplifier Bandwidth

BW,

3.5

2.3
17

20
5.5

,58 Position " V,o= OV
SA

Position 1

Level Amplifier Bandwidth

awz

Killer on Threshold

V'3

58 Position 2, Adjust R3 to Kill Output

Gain Variation with V+, Level

llAv2

R2 set for 10% of maximum Gain

Amplifier Stage

db

15.5

13

db

4.8

Voc

21.7

Voc
V p _p

12

MHz

30

MHz

16.5

Voc

0.3

db

0.5

db

V+ =24±3V

Gain Variation with Temperature,

A2 set for 10% of Maximum Gain

llAv2

T A = 2SoC to T A = 70°C

Level Amplifier Stage
ACC Amplifier Input Resistance

R,1

2.0

k!l

ACC Amplifier Input Capacitance

C,1

5

pF

Level Amplifier Input Resistance

R,2

2.2

k!l

Level Amplifier Input Capacitance

C,2

4.2

pF

typical performance characteristics
ACC Amplifier Gain as a
Function of Differential
DC Voltage at ACC Input
Terminals

"
-"
c:
:t

TA"25°C
V+"24V

,

,.,
32

=

21!

t2

a:

zo !l

10

i ,•
" •
~ ,

l' ~

15.1i~
11

2

.

LMJ071

,

•

0
0
-300 -200 -'DO
100
3DO
DiffERENTIAL DC VOLTAGE
AT ACC INPUT TERMINALS IV, - V, ..I (mV)

•

5·130

17

,

~

Chroma Level Amplifier Gain
as a Function of DC Voltage
at Chroma Level Control
Terminal

:E
:r= ,

11 ~

rA "2Soc

11.8.2

V+=24V

•
~ •
! ,

15.51

::;

~

~

~

,;

:i

5

14

~

I:
:;;

12 ~

3

1.5 ;

• iii

;;

,

L~JO}1

0
0

• ,

1Z

"

zo

.

DC VOLTAGE AT
CHROMA LEVEL CONTROL TERMINAL IV)

0

,

~

Consumer Circuits

LM3075 FM detector/limiter and audio preamplifier
general description
The LM3075 is a monolithic integrated circuit
FM detector/limiter and audio preamplifier that
requires a minimum of external components for
operation. It includes three stages of I F limiting
and a differential-peak-detection circuit.

•

Simple detector alignment: one coil

•

Sensitivity: 3 dB limiting voltage 250!1V typical
at 10.7 MHz

•

Low harmonic distortion

features

•

Excellent AM rejection 55 dB typo at 10.7 MHz

•

•

Internal audio preamplifier

A direct replacement for the CA3075

schematic diagram

Allresistan~evaluesareinDhms.

All capacitance values are in pF.

Order Number LM3075N

See Package 22
Order Number LM3075N-Ol
See Package 24

block diagram

typical application

5-131

absolute maximum ratings
Power Supply Current (Pin 5)
30mA
Supply Voltage (Pin 5)
12.5V
Power Dissipation
TA = 25°C or Less
850 mW
TA = '25°C or More Derate Linearly 6.67 mwfc

electrical characteristics
PARAMETER

SYMBOL

Operating Temperature Range
-40°C to +85°C
Storage Temperature Range
--65°C to +150°C
Lead Temperature (Soldering, 10 seconds) 300°C

TA = 25°C
TEST
CIRCUIT

CONDITIONS

I
I

LIMITS
MIN

I

TYP

MAX

I
I UNITS

STATIC CHARACTERISTICS

Supply Current

8.5

Vee"" B.5V
Vee· 11.2V

I,

17.5

Vee = 12.5V
Detector Output Level (High)

V,

Detector Output level (Low)

VB

Audio Amplifier Output level

V 12

15
19

Vee::' 11.2V

29

rnA
rnA
rnA

6.1

V

5.4

V

5.2

V

DYNAMIC CHARACTERISTICS AT V+·l1.2V.fo ""'O.7 MHz• .6.f '" ±75 kHz, 1m -400 Hz

Input Limiting Threshold

V1NCLIMI

1

250
AM: 1 kHz@30%

AM Rejection

AMR

1

Recovered AF Voltage

Vo(AFI

1

1.5

THO

1

1

Voltage Gain

AV(afl

2

V 1N

Total Harmonic Distortion

THO

2

V OUT

V1N

::

l00mV

600

55

~V

d8
V

(At Terminal 12)
Total Harmonic Distortion

2

%

Audio Preamplifier

test circuits

100 mV, f::. 400 Hz
""

2V. f

=

400 Hz

21
1,5

"

TEST CIRCUIT 1

5·132

""

TEST CIRCUIT 2

dB
5

%

r-

s:...

...

Transistor/Diode Arrays

~
......

r-

....s:

....
~

l>
LM114/LM114A. LM115/LM115A matched dual monolithic transistors

r-

s:....
....

U1
......

r-

s:....
....

U1

»

general description
These devices contain a pair of junction-isolated
NPN transistors fabricated on a single silicon substrate. This monolithic structure makes possible
extremely·tight parameter matching at low cost.
Further, advanced processing techniques yield exceptionally high current gains at low collector cur-

• High current gain-500 minimum at 10 IlA
• Tight beta match-1 0% maximum
• High breakdown voltage-to GOV
• Matching guaranteed over a OV to 45V collectorbase voltage range.

rents, virtual elimination of "popcorn noise," low

leakages and improved long·term stability. Some
of the major feature$ of these pairs are indicated
by the following specifications:

Although designed primarily for high breakdown
voltage and exceptional dc characteristics, these
transistors have surprisingly good high-frequency
performance. The gain-bandwidth product is
450 MHz with 1 rnA collector current and 5V
collector-base voltage and 22 MHz with 10 IlA collector current. Collector-base capacitance is only
1.3pFat5V.

• Low offset voltage-0.5 mV maximum
• Low drift-2 IlV;"C maximum from -55°C to
125°C

,
0

connection diagram

2

•

1

•

TOP VIEW

Ordor Numbor LM114H or LMl14AH
LMl15H or LM115AH
Soo Packago 1G

absolute maximum ratings

Collector-Base Voltage (BV CBO )
Collector-Emitter Voltage (BV CER )
Collector-Collector Voltage
Emitter-Emitter Voltage
Emitter-Base Voltage (BV EBO )
Collector Current
Tot~1 Power Dissipation (Note 1)
Operating Junction Temperature
Storage Temperature
Lead Temperature (soldering, 10 sec)

LM114
LM114A
45V
45V
45V
45V

LM115
LM115A
GOV
GOV
GOV
GOV

GV
20 rnA
1.BW
_55°C to 150°C
-G5°C to 150°C
300°C

Note 1: The maximum dissipation given is for a 2S'C case temperature. For operation under other
conditions, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance of 70°C/W junction to case or 230°C/W junction to ambient.

G-1

-".

-

"

\.fl.J,._ ~~

. . . _...."'}.

11-----

+-_~~~:~--~,~~~
LM", -

Z

~.

cz

-r5DpF

""" 3

~:.7k

R3
lOOk

-=

1%

r_'~~'~--~~---t

8

'"TeILlbstypeQI1+D.3%I"C
YouT""Vperdecldl

Fast. Accurate Logging Amplifier, VIN -10V to 0.1 mV or liN -1 mA to 10 nA

6-4

r-

....s:
CD
:t
r-

typical applications (con't)
v'

+15V

f·'
-f'~.
,••

D1STDRTIDN< D.1Y.
BANDWIDTH'" 1 MHz

s:W

C3

'oF

CD

.s
50'

~

C4

0.1

100 dB GAIN RANGE

VOUT

.7

'Ok

01
IN451

C2

.2

2k

.s

L------.O<2OD

INPUT

••

215
02
lN451

RID
2.5k

L-_ _.........""'_ -15V

Voltage Controlled Variable Gain Amplifier

+15V

+

.2
ZOOk
D.25%

.,

2k

.,

200k
D.25~

OUTPUT

IBIAs<25nA

los <250pA
Vas (untrlmmedl < 125/1V
(.l.Vos'..lT) .... O.2I1VrC
CMRR ..... 12DdB

·C"ZODpFforunltygl'"
C-30pFforAv"10
C"5I1FlorAv '" 100
C=OlorAv ::::l000

AVOl ..... 2,500.000

Precision Low Drift Operational Amplifier

6·5

typical applications (con't)

...••",
2.4M

(X) INPUT

LI-JtI'vv......:.j

p ....'II\IIr--LJ IZI INPUT

(VI INPUT

(XIIVI

·TypiClllhll88lltyO.l%.

VotJT"~;POSIUvtlnputsonly.

High Accuracy One Quadrant Multiplier/Divider

6-6

Transistor/Diode Arrays

LM195/LM295/LM395 power transistors
general description
The LM195/LM295/LM395 are fast, monolithic
power transistors with complete overload protection_ These devices, which act as high gain power
transistors, have included on the chip, current
limiting, power limiting, and thermal overload
protection making them virtually impossible to
destroy from any type of overload_ In the standard
TO-3 transistor power package, the LM 195 will
deliver load currents in excess of 1_0A and can
switch 40V in 500 ns_
The inclusion of thermal limiting, a feature not
easily available in discrete designs, provides virtually
absolute protection against overload_ Excessive
power dissipation or inadequate heat sinking
causes the thermal limiting circuitry to turn off
the device preventing excessive heating_

features
•
•
•
•
•
•
•

Internal thermal limiting
Greater than 1_0A output current
3_01lA typical base current
500 ns switching time
2_0V saturation
Base can be driven up to 40V without damage
Directly interfaces with CMOS or TTL

The LM 195 offers a significant increase in reliability a; well as simplifying power circuitry_ In some
applications, where protection is unusually difficult,
such as switching regulators, lamp or solenoid
drivers where normal power dissipation is low, the
LM195 is especially advantageous_
"

The LM195 is easy to use and only a few precautions need be observed. Excessive collector to
emitter voltage can destroy the LM 195 as with
any power transistor. When the device is used as
an emitter follower with low source impedance, it
is necessary to insert a 5.0k resistor in series with
the base lead to prevent possible emitter follower
oscillations. Although the device is usually stable
as an emitter follower, the resistor eliminates the
possibility of trouble without degrading performance. Finally, since it has good high frequency
response, supply by passing is recommended.

The LM195/LM295/LM395 are available in standard TO-3 power packages and solid Kovar TO-5.
The LM195 is rated for operation from -55°C to
+150°C, the LM295 from -25°C to +150°C and
the LM395 from OoC to +125°C.

simplified circuit and connection diagrams

,..------

I

---,

I

I

I
BA"I
I

I

'.1

IL _ _ _ _ _ _ _ _ _

I
I
I
I EMITTER

Q'

TO-5 Metal Can Package
EMITTER

2~BASf

I

I
I

I

TO-3 Metal Can Package

I
I
I

J

COllECTOR

CASEISEMITIER
BOTTOM VIEW
BOTTOM VIEW

Order Number LM195K.
LM295K or LM395K
See Package 18

Order Number LM195H,
LM295H or LM395H
See Package 9

Simplified Circuit of the LM195

6-7

absolute maximum ratings
Collector to Emitter Voltage
LM195, LM295
LM395
Collector to Base Voltage
LM195, LM295
LM395
Base to Emitter Voltage (Forward)
LM195, LM295
LM395
Base to Emitter Voltage (Reverse)
Collector Current
Power Dissipation
Operating Temperature Range
LM195
LM295
LM395
Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

electrical characteristics

42V
36V
42V
36V
42V
36V
20V
Internally Limited
Internally Limited
-55°C
-25°C
O°C
-65°C

to +150°C
to +150°C
to +125°C
to +150°C
300°C

(Note 1)

LM195, LM295
PARAMETER

CONDITIONS

MIN

TVP

Sic S I MAX

Collector-Emitter Operating Voltage

10

Base to Emit!er Breakdown Voltage

O-:;VCE SVCEMAX

42

VeE ~ 15V
VeE ~ 7.0V

1.2
1.2

LM395
MAX

UNITS

MIN

TVP

36

60

V

1.0
1.0

2.0
2.0

A
A

42

MAX

V

36

Collector Current
TO·3
TO·5

2.0
2.0

Saturation Voltage

Ie ~ 1.0A

1.8

2.0

1.8

2.2

V

Base Current

Os Ie ~IMAX
as VeE SVCEMAX

3.0

5.0

3.0

10

p,A

2.0

5.0

2.0

10

rnA

Quiescent Current

V be

=0

Os 'lee 5 VeE MAX
= 1.0A, TA

Base to Emitter Voltage

Ie

:::: +2SoC

0.9

0.9

V

Switching Time

VeE = 36V, RL = 36!l,
T A =+25°C

500

500

ns

Thermal Resi.ltance Junction to

TO-3 Package
TO-5 Package

2.3
12

Case (Note 2)

3.0
15

2.3
12

3.0
15

"CIW
"CIW

Note 1; Unless otherwise specified, these specifications apply for -55"C ~ Tj ~ +150"C for the LM195,-25"C::; Tj ::; +150"C
for the LM295 and O"C ::; +125"C for the LM395.
Note 2: Without a heat sink, the thermal resistance of the TO-5 package is about +150'C/W, while that of the TO-3 package
is +35'C/W.

6-8

i

--

typical performance characteristics

CD

UI
........

i

N
Collector Characteristics

S
ffi

'"

I-

~

~

0.8
0.4

TO·3

~

;:;

:5

H-:::::J;;.--+-'F+
5.0

10

15

20

iii

25

30

iG
I-

ffi

11i

2.4

~

1.2

'"'"

1.0

w

..'"

2.0

!:;

1.6

~'"

1.2

1iWl

0.8

g

0.4
5.0

10

15

20

25

30

0.8

10

---

35

20

25

30

~

0.4

r-

-

l-

r- ..... r-~

."'"

1.5

"

1.0

5

~
w

~

>

~

0.5

rr

u'

A

",""

~ -3.0
~

-4.0

:i

-5.0

1.0

1.5

,.

I

I

I

1.5

2.0

, fj

ITA· _55°C

-

r-t- fA = +25°C
I

-7.0

-0.8 -0.4

0

OA

0.8

1.2

20

40

BASE EMITTER VOLTAGE (VI

Response Time

20

;-

~
,. , -Y+.35Yrr-

~

;-

...

'"

~
>

12

I-

'"

8.0

,

\

V+", 10V

2.0

TIME (/.Is)

TA I. +25lC

Y+·35V
16

l''r"--

/

w

...

1.0

1.2

I
I

-6.0

I

COLLECTOR CURRENT (AI

I
0.8

-1.0

5 -2.0

...J TA = 25c C

20

10

I

TA = +125°Cl
~

3

I

,....

I

Base Current

Response Time

3D

I

1.0

r- IC~

0.2

UI

TA =+125°~,

COLLECTOR CURRENT (AI

I

i"'- :-

CD

\

0.8

35

I~ - ,!5A

0.4

40

0.5

'"~

I

1.2

TEMPERATURE (OCI

2.0

~

'"a;

ffi

-55 -35 -15 5.0 25 45 65 85 105 125

~

~

15

I- r-

0.5

Saturation Voltage

>
~

I I

o

2.5

!:;

~~

I-

0.4

COLLECTOR VOLTAGE (VI

w

3

Base Emitter Voltage
1.4

5

d

TA ·+25°C-

iw

f---

~T"!l:o
~ r- TA1.-55°C
X ~

1.6

COLLECTOR·EMITTER VOLTAGE (VI

Quiescent Current

l-

~

TA • -55T'" ~

5.0

35

2.8
~

TA =+125°C

1.0

COLLECTOR·EMITTER VOLTAGE (VI

.s

~

1.5

0.5

t+25!C_

2.0

2.0

I-

UI

.......

2.4

ffi

G
1.2

-

S

1.6

B

:5

2.5

2.0

CD

Bias Current

Short Circuit Current

2.4

~

4.0

-

'"It+·20V

-Q II

='~
f-'

"

~-

... C.AIO~

3.0

0.4

0.8

I""'""

1.2

TIME (.sl

6·9

typical performance characteristics (con't)
10V Transfer Function

36V Transfer Function
1.2

2.0 r--r--r--,-r--r--r-::l=

TA :::+25°C

v+" 36V

:5

1.6

~

~

1.2

i

~

O.B

B

0.4

....
iii

.

....

O.B

TALJy I

~
8

I

0.4

j
OA

O.B

1.2

II

1/

~

I

JJ
0.4

1.&

fA" -55Q C

1.2

O.B

1.6

BASE·EMITTER VOLTAGE IV)

BASE·EMITTER VOLTAGE IV)

Small Signal Frequency

Transconductance
10

Response

t= T +25°C
i='-50kHZ

TA=+25°C

A •

"i

1
"

3.0

I.
."

1.0

S
~

~

~
....

~ -100

,r

2:

"

;-200

it

III

III

I

P~ASE

~
-,

Ic=O.1A

..,

II!

rill

~C.O.'A

Ie" t.OA

Gj

0.3

I

0.1
0.01

0.1

1.0

10

lOOk

COLLECTOR CURRENT IA)

1.0M

10M

FREQUENCV 1Hz)

schematic diagram
CllllECTOR

D3
6.3v

RZ!

R22
0.1

6-10

30

i....

typical applications

CD

C1I
........

C.

iN

~.D'~

CD

C1I
........

.------------~~--+15V
R,
IDk

roo

3:
W

CD

C1I

R,
IDk
INPUT-'V\r.r....-

...-'"!

.....'V\r.r....--+-...-OUT'UT

L----------1~---15V

"SOLID TANTALUM

CS"

%,.OJ.'F
1.0 Amp Voltage Follower

"~--....- - EMITTER

"""r.r....-;

BASE ......

500pF'"

02
LM195

L-_"__

COllECTOR

"PROTECTS AGAINST EXCESSIVE BASE DRIVE

·"NEEDED FOR STABILITY

Power PNP

3~~~------------------,
Cl
-,-O.I~F

~

C2
D.01IJF

Time Delay

,;.-1......--------,
Al

A6
25

510k

I-....- - - - - - - - - - -.....-OUT'UT

A2
150k

01
LM195
01

1003
BULB

A3
47k

lN914

1.0 MHz Oscillator

1.0 Amp Lamp Flasher

6-11

typical applications (con't)

10/-iFt
)-~

______~__~___ O~~~T
1.0A

R2
2.4k

R3
I ••

L-------------+-_____ vtSOLID TANTALUM

1.0 Amp Negative Regulator

v,.
J6.

1.0 Amp Positive Voltage Regulator

...----....--+

r----p--y+

OUTPUT

n1
LM19S

Rl
1DDk

-.-

Rl
500

--.....--.....

Fast Optically Isolated Switch

Optically Isolated Power Transistor
--~,....--.ov

Rl
.0

"DRIVE VOLTAGE OV TO 2:1.0V:;:42V

CMOS Dr TTL Lamp Interface

6·12

Two Terminal Current Limiter

40V Switch

r-

...3:

e.g
UI

typical applications (con't)

.....

3:

VOUT

V"

N
e.g
UI

D1

S.OV
0'

.....
r-

LM19S

3:

01

w

C1

e.g
UI

5DpF

6.0V Shunt Regulator with Crowbar

Two Terminal100 rnA Current Regulator

12V

R'

1.5M

<1

.---.----\M,--<"'- OUTPUT

O.lIlF

Rl
02
LM195

01
LM195

.....----<~OUTPUT
T" RIC
R2 "JR1

TURN ON '" ]50 rnV
TURN OFF "" 200 mV

R2~82k

Low Level Power Switch
Power One-Shot

_ -....-_V'
Rl
S.Ok"
INPUT -'VV",,""+!

- -.....--+15V

01

01

LM195

LM195

OUTPUT

I-_....-OUTPUT

- -....---15V
-NEED FORSTAS1L1TY

High Input Impedance AC Emitter Follower

Emitter Follower

- -.....--V'
Rl
S.Ok

01
lM195

INPUT -""'''''.....-H

OUTPUT

V-

·PREVENTSSTORAGE WITH FAST FAll
TIME snUARE WAVE DRIVE

Fast Follower

6-13

typical applications (con't)

".
R.

+1&V

...

HI

"

51.

D1
.Me51
OUTPUT

INPUT

RS

RI

Uk

10k

-'lM.-B5"C
Note 2: The collector of each tranSistor of the LM301B and LM3018A IS Isolated from the substrate by an Integral diode. The
substrate (terminal 10) must be connected to the most negative point in the external Circuit to marntain Isolation between
transistors and to provide for normal transistor Bctlon.

6·16

MH,

500

pF
.58
2.B

pF
pF

r-

3:
w

typical performance characteristics

o
Typical Collector-Ta-Base
Cutoff Current vs Ambient

"ffi

Typical Collector-Ta-Emitter

Temperature for Each
Transistor

.s

10'

'"~

10

Temperature for Each

"

Ie =0

I-

i

'"

10'
10

~
~

!

10'2

~

~~1~1

I==='

'"c

~

25

ti.:.
I"
w::!
~a

5V

50

75

100

125

J 10-3 0

hFE2

BOOO

fA =25°&

.B

/

6

lOoO

i

.6

lO00

1

.5

/

4000

oJ

1000

o

.s

i-""

IE =10jA

11111111

.01

-

......

-75 -50 -25

0

25

50

-

111111111

>"

::i~

~w
iii

15

50

'"~Z

I

22: 1.75
~f

~

:::;~ 1.50

01-

"''''
,:::;

1.4

m ..

1/....

''''
~ c:a 1.3

0"
w'"
~C1

~

~

~~
~
lmA ~ ..... ~
1.00 r- H3m~~
1.26

.5jA/

.".

1.2
75 100 125

75 100 125

VeE" lV

1.6

.75
-75 -50 -25

10

.1

IE - EMITTER (mA)

0

25

50

::::::

15 100 125

T. -AMBIENTTEMPERATURE I"C)

Noise Figure vs Collector
Current, RS = 1kn
30 r--r"""""""'rTT1..---r-r"1"T'T'TTT1

VCE = 3V
Rs = 500n
TA =25°&

25
20

25

2.25
VeE =3V

fA =25°&

lO

..

"'" ~

Typical Static Input Voltage
Characteristic for Darlington
Pair (Q3 and Q4) vs Ambient
Temperature

Noise Figure vs Collector
Current, RS = 500n

:!!

ImAO
o.,mA(

T. - AMBIENTTEMPERATURE I"C)

~~

......

".lmA~~ t--..

-75 -50 -25 0

10

1.7

TA - AMBIENT TEMPERATURE I"C)

m

-

.4

.1

!!E ~ 1.5
"!z

I

o

...
....
~~
~

.1mA

.25

f"':: ~ t--..

Typical Static Input
Voltage Characteristic for
Darlington Pair (Q3 and
~) vs Emitter Cu rrent

lJA

.50

~t-..

IE - EMITTER (mAl

I

.75

VeE =lV

~

• IVI"'I'II ~iu;;.

Typical Offset Voltage
Characteristic vs
Ambient Temperature

:>

Typical Base-Ta-Emitter
Voltage Characteristic for
Each Transistor vs Ambient
Temperature

m~SETVOLTAGE

I, - EMITTER ImA)

1

,I

V.,

.4

10

VeE =lV

10
IE - EMITTER (mA)

.".

~

.1

.01

125

100

I

VeE = 3V
fA'" 25°C

.7

5000

75

Emitter Voltage Characteristic

ffi
1=

6000

50

l>

h"
I
I

70
60

and Input Offset Voltage for
01 and 02 vs Emitter Current

~

hFE1

50
25

o

•00

1/

"}'

Typical Static Base-To-

........

VeE = lV

7000

OR

T. - AMBIENTTEMPERATURE I"C)

Typical Static Forward
Current-Transfer Ratio for
Darlington-connected
Transistors Q3 and 04 vs
Emitter Current

J

Vee -lOV

10.2

T. - AMBIENT TEMPERATURE I"C)

::
~
,

90

1 1

1

1

~..,

~~
..,,,

1.1

Ih"'1 Ih"'1

~g BO

10. 1

8

10. 3

100

lvlll I
"""l. I,

Ve , ·
TA =25°C

110

~~
",,,,
3: '"
c~

c

:=Ve.·,5V T

10"

c

......
r3:
w

and Q2 vs Emitter Current

120

fl.·O

I-

~

c

~

Transistor
10'

.s

•00

Typical Static Forward
Current-Transfer Ratio and
Beta Ratio for Transistors 0,

Cutoff Current vs Ambient

VCE =3V

25

R•• 1000
c

"'"

0.7

"

a:

0.6

u

0.5

~

c

25

I
~
u

w
u

'"

I

5

~

w

g

0

25

50

75 100 125

I

&
0
0

25

50

75 100 125

Diode Ouad·To.substrate

.,,,
""

4

... t;
~~
:il§

Z

~~

2

3

4

Voltage

6

.,N;:::

1

VA - REVERSE VOLTAGE ACROSS DIODE (V)

Diode Quad-To-Substrate
Capacitance vs Reverse

Voltage

~'i

0

TA - AMBIENT TEMPERATURE ,'C)

Capacitance vs Reverse

....C

2

;;

./

0
-75 -50 -25

TA - AMBIENT TEMPERATURE ,'CI

4

;'!

u
:1:

.!:
0.4
-75 -50 -25

TA '" 25°C
f= 1 MHz

.e

j

10

c

6

/

L

15

ffi

.........

I

20

w

........

I

~

VA ACROSS DIODE' -4V

"....

~I'-..
I'-....

Diode) vs Reverse Voltage

30

~A

oS

w

Diode Capacitance (Any

I'-- I"-

ffi~

-

TA

:::

6

C

....

25°C

TA - 25°C
'=1 MHz

a;;:
a: ~

.,-

f"'1MHz

~;:::

~~

4

""
"''''
!E:i
a: a:
Ww

.... 1=

wLI.I
~!:i:

2

55
,,=>
5 rn

0

"a:

ti~
,,=
=>
~

~~

0
0

1

Z

3

4

0
VR

VA - DC REVERSE VOLTAGE BETWEEN TERMINAL
Z OR 6 AND SUBSTRATE (TERMINAL 7)

-

1

Z

3

4

DC REVERSE VOLTAGE BETWEEN TERMINALS
5 OR B AND SUBSTRATE (TERMINAL 7)

series gate switching test setup

",v
~

J\JJL

"'"-ill n ~ ~
4.7K

\ J T u . $ ( 0 mV,.,

2

~LM""I'-..

· ·!·'·1 ~(

f~"10MHz

'\.,

.".

~50'

v1-

~

50'

OSCillOSCOPE:
TEKTRONIX TVPE
585wtTHTVPE-8
PLUG·INUNIT
DR EQUIVALENT

4.1K

..v

.".

6·21

Transistor/Diode Arrays
CD
N

o

LM3026, LM3054 transistor arrays

CW)

:E
..J

general description
The LM3026 and LM3054 each consists of two
independent differential ampl ifiers with associated
constant-current transistors on a common monolithic substrate_ The six NPN transistors which
comprise the amplifiers are general purpose devices
which exhibit low llf noise and a value of fT in
excess of 300 MHz_ These features make the
LM3026 and LM3054 useful from DC to 120 MHz_
Bias and load resistors have been omitted to provide maximum application flexibility_
The monolithic construction of the LM3026 and
LM3054 provides close electrical and thermal
matching of the amplifiers_ This feature makes
these devices particularly useful in dual channel
applications where matched performance of the
two channels is required_

•

Independently accessible inputs and outputs

•

Maximum input offset voltage

•

Full military temperature
range capability

•

Li mi ted temperature
range, LM3054

±5 mV
-55°C to +125°C
O°C to +85°C

applications
•

Dual sense amplifiers

•

Dual Schmitt triggers

•

Multifunction
combinations

RF mixer
oscillator converter IF

The LM3026 is sup-plied in a hermetic 12-lead
TO-5 style package and is rated for full military
operating temperature range of -55°C to +125°C_

•

IF amplifiers (differential and or cascade)

•

Product detectors

The LM3054 is supplied in a 14-lead molded
dual-in-line package with a limited temperature
range_ The availability of extra terminals allows
the introduction of an independent substrate connection for maximum flexibility_

•

Doubly balanced modulators and demodulators

•

Balanced quadrature detectors

features

•

• Two differential amplifiers on a common
substrate

• Synthesizer mixers

• Cascade limiters
• Synchronous detectors

•

Pairs of balanced mixers

Balanced (push-pull) cascode ampl ifiers

schematic and connection diagrams
Dual-In-Line Package
NC

Metal Can Package

SUBSTRATE

TOPVIEW

6-22

TOP\tIEW

Order Number LM3026H

Order Number LM3054N

Se. Package 7

See Package 22

r-

absolute maximum ratings
LM3026

:s:

(T A = 25°C)

Co)

o

LM3054

N

The following ratings apply for each transistor in the device:

Power Dissipation
Any One Transistor

300mW
600mW

Total Package
For TA > 5SoC

Derate at 5 mwtc

-5SoC to +12SoC
Operating Temperature Range
--6SoC to +150°C
Storage Temperature Range
lead Temperature (Soldermg, 10 sec)

300mW
750mW
6.67 mWtC
-40°C to +8SoC
-6S0Cto +150°C
300"C

dc electrical characteristics

0)
15V
20V
20V
5V
50 rnA

Collector to Emitter Voltage (V CEO)
Collector to Base Voltage (VeBol
Collector to Substrate Voltage (V CIO) (Note)
Emitter to Base Voltage (VeBol

Collector Current

r-

:s:
Co)

o

C1I
~

(TA = 25°C)

PARAMETER

CONDITIONS

I

MIN

I

TVP

I

MAX

UNITS

STATIC CHARACTERISTICS
For Each Differential Amplifier
Input Offset Voltage (Viol
Input Offset Current (1

,0 1

Input Bias Current (t,l
Quiescent Operating Current Ratio

Temperature Coefficient
Magnitude of Input Offset Voltage

(~

Vee

or le/o5))

IC(Q21

I E (Q3)

IC(Q61

.45

5

mV

.3

2

p.A

24

p.A

10

= 3V

= I E (Q41:=

.9a to
1.02

2 mA

(Ill~~ol )

1.1

p.V/"C

For Each Transistor

DC Forward Base to Emitter Voltage (V BE )

.630
.715
.750
.800

['e ° 50p.A

~~~

V cB =3V

lOrnA

.700
.800
.850
.900

V

Temperature Coefficient of Base to Emitter
Voltage

M

(llVBe)

V CB

= 3V,

-1.9

Ie = 1 mA

.002

p.V/"C
100

nA

Collector Cutoff Current (leBO)

VeB ° 10V, Ie ° 0

Collector to Emitter Breakdown Voltage (VtBRJCEOI

Ic"" 1 mA,IB""O

15

24

V

Collector to Base Breakdown Voltage (V(BRICBOI

leol0p.A,leoO

20

60

V

20

60

V

5

7

V

100

dB

75

dB

32

dB

105

dB

60

dB

a

Collector to Substrate Breakdown Voltage (~BR)CIO)

Ie

Emitter to Base Breakdown Voltage IV (BRJEBO)

leol0p.A,leoO

= 10,uA,

ICI ""

ac electrical characteristics
PVNAMIC

CHt\RACTJ;RISTI~

Common Mode Rejection Ratio For Each Amplifier (CMR)

AGC Range, One Stage (AGC)
Voltage Gain, Single Stage Double Ended Output (AI
AGe Range, Two Stage (AGC)

Vec
VEe

= l2V
= -6V

V,o-3.3V
f

= 1 kHz

Voltage Gain, Two Stage Double Ended Output (A)

low· Frequency , Small Signal Equivalent Circuit
Characteristics: (For Single Transistor)

110

Forward Current Transfer Ratio (hfel
Short Circuit Input Impedance (hie)

folkHz,V ee o3V,
Ic"" 1 mA

Open Circuit Output Impedance (hoe)

3.5

kl"!

15.6

,umho

1.8 x 10-4

Open Circuit Reverse Voltage Transfer Ratio (hrel

llf Noise Figure (For Single Transistor) (NFl

f ° 1 kHz, Vee ° 3V

Gain Bandwidth Product (For Single Transistor) (fTI

VeE ° 3V, Ie = 3 mA

3.25
550

dB

MHz

Admittance Characteristics; Differential Circuit
Configuration: (For Each Amplifier)
Note: The collector of each transistor of the LM3026 and LM3054 is isolated from the substrate by an integral diode. The
substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation
between transistors and provide for normal transistor action. The substrate should be maintained at signal (AC) ground by
means of a suitable grounding capacitor, to avoid undesired coupling between transistors.

6-23

~

It)

~

ac electrical characteristics (con't)

::E
....

PARAMETER

CONDITIONS

MIN

TYP

Forward Transfer Admittance (V2')
Input Admittance (V1,)
Output Admittance (Y22)

Reverse Transfer Admittance (Y12)

MAX

UNITS

-20+ jO

mmho

.22+ jO.l

mmho

Vee = 3V
Each Collector
Ie'" 1.25 mA
t= 1 MHz

.01 + jO

mmho

-0.003+ jO

mmho

68-jO

mmho

= 3V

.55 + jO

mmho

Admittance Characteristics; Cascode Circuit
Configuration: (For Each Amplifier)

Forward Transfer Admittance (Y2')
Vee

Input Admittance (V1,)

Total Stage

Output Admittance (Y221

Ie =::: 2.5 rnA
t= 1 MHz

Reverse Transfer Admittance (Y12)
Noise Figure (NFl

0+ jO.02

mmho

.004- j.005

I.lmho

t= 100MHz

dB

typical performance characteristics
Collector-To-Ba.e Cutoff
Current vs Ambient

Temperature for

Current for Each

Transistor

Each Transistor
100

~

r~~B.~3it

VcB =3V

1/

!==VCB ",15V.

~ 10-' ~~1:~
~
8

10 2
111- 3

I

j

1

10"
25

50

15

100

V

1

Vca=3V

....

.§

....

*~

.75

-It

.25

I

IE "'0jA

-

.....

I

1

.50

J.

•

I

-75 -50 -25

0

25

50

75 100 125

TA - AMBIENT TEMPERATURE rCI

6-24

"

~

:;;

:l
J
I

.1mA

,.

.8
VCB -3V
TA = 25°C

~
.1

I-

1
.1

J

,,~

,f~

1
.5

9~
S~

iffiM~SETVDLT'GE

-IVr'j'liu~

...., 111111111

111111111

IE - EMITTER {mAl

25

50

15 100 125

Input Offset Current for
Matched Differential Pairs
vs Collector Current

~ :;;
I
.§
~i
~~

:;r

.6

«

TA - AMBIENT TEMPERATURE eel

Static BaseaTo..Emitter
Voltage Characteristic
and Input Off.et Voltage
for Differential Pairs vs
Emitter Current

iii
.;
~

-75 -50 -25

Ic - COLLECTOR {mAl

Offset Voltage Characteristic
vs Ambient Temperature for
Differential Pairs
;;

..

10

.1

125

TA - AMBIENT TEMPERATURE ( C)

I

Base-To-Emitter Voltage
Characteristic for Each
Transistor vs Ambient
Temperature

I"put Bias Current
Characteristic vs Collector

,.

5

~
i
I

0

,.
Ic - COLLECTOR {mAl

typical performance characteristics (con't)
Forward Current-Transfer

Ratio (hie), Short·Circuit
Input Impedance (hie), Open·
Circuit Output Impedance
(hoel, and Open-Circuit

I"'"'

3:
w
o
c.n

Reverse Voltage-Transfer
Gain-Bandwidth Product

Ratio (h re ) vs Collector

Current for Each Transistor

(fT) vs Collector Current

100

i

=
10

:I:

600

400

0

~

0

N

;;:

i

II

JOO

~
~,

1-+

200

z

100

~~

~

.:
10

01

,....

....

SOO

%
0-

~

Vca=3V
TA, "25 C

100

i

0-

~

BOO

1

23

Ie - COLLECTOR (mAl

45

6

Forward Transfer Admittance

'"
0

IV 21)
20

~

z

~1
~E

~=

10

~~

..
..~Ji'

V5

Input Admittance (V11)

~'~; :~J~ T~l~~l~~o" 1.liJll~A

vs Frequency

~:~:2:;~1~ TWi'~~~R ~ \W~~J
If

I'

I
b,

rg~

I

~

-10

,,,
H1

-20

~c~; !~J~ TJA~lsll~~~R

j~

1-"11'ii

o
.1

lUOO

10

.I

100

Forward Transfer Admittance

Input Admittance (V 11)
vs Frequency

V5

Frequency

80

VcB =3V

i:~~o~A·-t*fIfIIt--tffiiitlt-tJ

b,

100

10

Output Admittance (V 22)

~
I

.!!

;;;

VcB'"lV

10

TA=Z5°C

•

fl-

I

0

c

-6

1

~
~

..~

-6
b"

~

-12
10
f - FREQUENCY (MHzl

100

100

f - FREQUENCY (MHz)

Reverse Transfer Admittance

-4

-10

HH-I-HiilHffi>Hllb n

f - FREQUENCY IMHzl

vs Frequency

I

,,,ttl."Ttttlffit--

N 1/

100

f - FREQUENCY (MHzl

Ic ""Z.5 mA

100

(V21)

VcB =3V
Ic ... Z.5mA
TA = 25°C

~
~

10

f - FREnUENCY (MHz)

J:~I

-2

,,,

o

f - FREDUENCY (MHz)

10

~

zsQ

b"

Reverse Transfer Admittance
(V 12) V5 Frequency

oS

=

!)

f - FREQUENCY (MHl)

10

rt

.. 1.25mA

TA

.2

1/

100

10

.5

.4

.J

~
",0

... z
~B

B 91D

Output Admittance (V22)

Frequency

T.-2· T

1

Ie - COLLECTOR (mAl

,

l!.

'"

0

~

z

(V12) vs Frequency

.

~1
~~
~

100
10

~~

~~
=~

~~

!1
~I

I

g

.01
.001

E2;l;Hll!lEBIE
10

100

f - FREQUENCY (MHz)

6-25

typical performance characteristics (con't)

Vx

Vcc·+12V

Common Mode Rejection Ratio
iii 1,:19

Vee =+12V
VEE ;;-BV

'"
o

5z
o

§

V

100

V

~

..... ~

o

o
:0

"

z

o

I'

I.

0.5K

-.

ID

o

-3

-2

-1

Vx - DC BIAS VOLTS ON TERMINALS
8(11)
VEE --liV Vec·+12V

Vx

Vcc "+llV

Single-Stage Voltage Gain

81111

"

~.
z

"

~

25

~

r1\

~
!i!w

1\

11

~w

Vcc··'2V

~ -25

..'"

VEl! --6V
f·1kHI
SIGHAllNPUT '"'0 mYrna

1

-50

o

::: :~::::: =:O'~~::~:~I~E!~EAFRDERF~~~:3az.

C.M

-2

-.

-3

-4

r--5

-II

Vx - DC BIAS VOLTS ON TERMINALS

~

8(111

VEE--eV Vcc"+I2V

Two-Stage .voltage Gain
75

1
1K
V,,--BV

1\

T

Vee"

1 mVnns

o
NUMBERS WITH PARENTHESIS ARE FOR LM3D54

Vcc·+1ZV

6-26

-1

-2

-3

-4

c5

-6

Vx - DC BIAS VOLTS ON TERMINALS
2 III AND.(111

PIN NUMBERS WITHOUT PARENTHES'S AAE FOR LM3028

"It

+12vrf-H-+++-HH
f-H-+++-HN

VEE,,-BV

-50

r-

s:w
o

N

m

The following chart gives the range of voltages which can be applied to the terminals listed vertically with
respect to the terminals listed horizontally. For example, the voltage range between vertical terminal 1 t and
horizontal terminal 3 t is +15V to -5V.
LM3054
TERMINAL NO.

I

-

LM3026
TERMINAL
NO.

13

10

14

1

11

12

2

3

1

2

+5
-5

0
-20

4

6

3

4

+15
-5

·
·

7

8

5

9

7

6

11

8

12

9

14

11

1

12

2

1

+15
-5

3

2

+1
-5

4

3

6

4

7

5

B

6

9

7

+15
-5

11

B

+1
-5

12

9

·

5

9

Ref
Substrate

+20
.0

+20
0

· ·
· · ·
· · · ·
· · · ·
· · · · ·
·
.
· ·
· ·
+5
-5

0
-20

',N

LM3026
TERMINAL NO.

mA

13

10

5

.1

14

11

50

.1

(Note 21

+20
0
+20
0

·

+15
-5

-20
0

LM3054
TERMINAL NO.

~

9

10

+20
0

o
c.n

5

(Note 2) (Nate 21

13

.

r-

s:w

+20
0
+20
0

·

lOUT

mA

1

12

50

.1

2

1

5

.1

3

2

5

4

3

6

4

5

.1

7

5

50

.1

B

6

50

.1

9

7

5

.1

11

B

5

.1

12

9

.1
.1

.1

-50

50

Note 1: In the LM3026 terminal NO.9 is connected to the emitter of Q4, the reference substrate, and the case; therefore, the
case should not be grounded. Two terminal 9 columns LM3026 appear in the voltage rating chart because it is a composite
chart for both the LM3026 and the LM3054. Wherever an asterisk is shown in one column 9 and a rating is shown in the other
column 9, the asterisk should be ignored.

Nota 2: Terminal No.1 0 of LM3054 is not used.

t LM3026; corresponding terminals for LM3054 are vertical terminal 2 and horizontal terminal 4.
*Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the
specified limits between all ather terminals are not exceeded.

6·27

Transistor/D iode Arrays

LM3039 diode array
general description
The LM3039 consists of six ultra-fast, low capacitance silicon diodes on a common monolithic substrate_ Five of the diodes are independently accessible, the sixth shares a common terminal with the
substrate. Integrated circuit construction assures
excellent static and dynamic matching of the
diodes, making the array extremely useful for a
wide variety of applications in communication and
switching systems.

•

Lowdiode
capacitance

Co = .65 pF typ
at V R = '-2V

applications
• Balanced modulators or demodulators
•

Ring modulators

•

High speed diode gates

• Analog switches

features
• Excellent reverse recovery time
• Matched monolithic
construction

For applications such as balanced modulators or
ring modulators where capacitive balance is important, the substrate should be returned to a DC
potential which is significantly more negative
(with respect to the active diodes) than the peak
signal applied.

1 ns typ
VF matched
'Within 5 mV

schematic and connection diagrams

www
~~~
-t:t
2

1

11

,

12

10

SUBSTRATE

AND CASE

Metal Can Package

TOP VIEW

Order Number LM3039H

See Package, 7

6-28

9

r-

3:
Co)
o

absolute maximum ratings

Co)

CD

Power Dissipation
Any One Diode
100mW
Total For Device
600mW
Derate Linearly 5.7 mW/"C
For TA > 55°C
Operating Temperature Range
-55°C to +125°C
Storage Temperature Range
-65°C to +150°C
Peak Inverse Voltage, PIV for: Dl - D5
5V
D6
.5V
+20, -lV
Peak Diode to Substrate Voltage, VOl for Dl - D5
(Term. 1,4,5,8 or 12 to Term. 10)
DC Forward Current, IF
25mA
Peak Recurrent Forward Current, If
100mA
Peak Forward Surge Current, If (SU RGE)
100mA

electrical characteristics
(T A = 25°C) Characteristics apply for each diode unit, unless otherwise specified.
PARAMETER

CONDITIONS

MIN

IF = 50llA
DC Forward Voltage Drop (V F)

TYP

MAX

.65

.69

V

UNITS

1 mA

.73

,78

V

3mA

.76

.80

V

.81

.90

V

10mA

V

DC Reverse Breakdown Voltage (V(BR)R)

IR = -101lA

5

7

DC Reverse Breakdown Voltage Between Any
Diode Unit and Substrate (V (BR)R)

IR = -101lA

20

DC Reverse (Leakage) Current (I R)

V R = -4V

.016

100

nA

DC Reverse (Leakage) Current Between Any
Diode Unit and Substrate (lR)

V R = -10V

.022

100

nA

Magnitude of Diode Offset Voltage (Difference
in DC Forward Voltage Drops of Any Two
Diode Units) (lV F, - V F2 1l

IF= 1 mA

.5

5

mV

V

Temperature Coefficient of IV F, - V F2 1

(~IVF~; VF21)

IF = 1 mA

1

Jlvtc

IF= 1 mA

-1.9

mVtC

Temperature Coefficient of Forward Drop

(~~F)
DC Forward Voltage Drop for Anode·to·
Substrate Diode (Ds) (V F)

.65

IF= 1 mA

Reverse Recovery Time (t .... )

IF = 10 mA, IR = 10 mA

Diode Resistance (Ro)

f = 1 kHz, IF = 1 mA

Diode Capacitance (CD)

V R = -2V, IF = 0

Diode-to·Substrate Capacitance (COl)

V OI =+4V,I F =0

V
ns

1
25

30

45
.65

3.2

n
pF
pF

6·29

typical performance characteristics
DC Forward Voltage Drop
(Any Diode) and Diode
Offset Voltage vs DC

DC Reverse (Leakage) Current
(Diodes 1,2,3,4,5) vs
Temperature

Forward Current

~

C>

~

0.7

4

~
I

1

0.1

0.01

"'

.

C>

.If 0.01

ffi

0.1

1:;

1:;
~

u

C>

I

10

I, - DC FORWARD (rnA)

i

--

C>

"'

0.7

is

0.6

C>
C>

I

~
>

0.5

I

~

D.4

~

0.3
-75 -50 -25

O.B

.

0.7

u

0.6

"-

I,=I"'Y V

0

25 50

75

l,...;

I
C>

1,1"

"-

0.5
0.4
-75 -50 -25

100 125

25

75 100 125

1000

50

75 100 125

0.01

0.1
I, - DC FORWARD (rnA)

Diode-to-Substrate

Capacitance vs
Reverse Voltage

T~ =25l C

"- I'....

IF "'0

6-30

50

"

T; =25~C

V. - DC REVERSE VOLTS ACROSS DIDDE

25

Diode Resistance (Any Diode)
vs DC Forward Current

TA - AMBIENTTEMPERATURE lOCI

o

0

TA - AMBIENTTEMPERATURE rCI

lL-u..J..LLU.IL-LJ.J..LLU.IL-J....LJL.WW
0

Diode Capacitance (Diodes
1,2,3,4,5) YS Reverse
Voltage

o

~A

"-

I

~

TA - AMBIENTTEMPERATURE 1°C)

6

75 100 125

,,~

C>

IF",o.1mA

50

0.9

IF:!!~ ~

--

25

DC Forward Voltage Drop
(Any Diode) vs Temperature

Diode Offset Voltage (Any

:>

0

0.01
0.001
-75 -50 -25

TA - AMBIENT TEMPERATURE (OC)

Diode) vs Temperature

.s

I
~

0.001
-75 -50 -25

0.1

C>

L'

"'C>C>
is

10

~

>

~

0.6

~

v. =-10V =J.

Ff.

!

"''"" ffi
!:;
'"
C>

u

C>

V.' -4v:::

I

~
a:

10

~
>

0.8

DC Reverse (Leakage) Current
Between Diodes (1, 2, 3, 4, 5)
and S~bstrata vs Temperatura

o

IF =0

. . . r- r-

o

DC REVERSE VOLTS IV.) BETWEEN TERMINALS " 4. 5, B.
--OR 12 AND SUBSTRATE (TERMINAL lof

10

r-

s:

w

Transistor/Diode Arrays

o

~

UI

r-

s:w
o

LM3045. LM3046. LM3086 transistor arrays
general description

features

The LM3045, LM3046, and LM3086 each consist
of five general purpose silicon NPN transistors on
a common monolithic substrate. Two of the tran·
sistors are internally connected to form a differ·
entially·connected pair. The transistors are well
suited to a wide variety of applications in low
power system in the DC through VH F range. They
may be used as discrete transistors in conventional
circuits however, in addition, they provide the
very significant inherent integrated circuit advan·
tages of close electrical and thermal matchin~. The
LM3045 is supplied in a 14·lead cavity dual·in·line
package rated for operation over the full military
temperature range. The LM3046 and LM3086 are
electrically identical to the LM3045 but are
supplied in a 14·lead molded dual-in-line package
for applications requiring only a limited temperature range.

• Two matched pairs of transistors
VSE matched ±5 mV
Input offset current 2p.A max at Ie = 1 mA
• Five general purpose monolithic transistors
• Operation from DC to 120 MHz
• Wide operating current range
• Low noise figure
3.2 dB typ at 1 kHz
• Full military
temperature range (LM3045) -55°C to +125°C

~
G)

r-

s:w
o

CX)
G)

applications
• General use in all types of signal processing
systems operating anywhere in the frequency
range from DC to VH F
• "custom designed differential amplifiers
• Temperature compensated amplifiers

schematic and connection diagram
Dual-I n-Lina Package
SUBSTRATE

14

13

12

11

10

Q3

TOP VIEW

Order Numbar LM3045D
Sae Package 1
or
Order Number LM3046N or LM3086N
Saa Package 22

6-31

CD
CO

0

absolute maximum ratings

CW)

(TA = 25°C)

::E
.....

LM3045

CD
~

0

Each
Transistor

Total
Package

300

750

Power Dissipation:
TA = 25°C
T A = 25°C to 55°C
TA > 55°C
T A = 25°C to 75°C
TA > 75°C
Collector to Emitter Voltage, VCEO
Collector to Base Voltage, VCBO
Collector to Substrate Voltage, VCIO (Note 1)
Emitter to Base Voltage, VEBO
Collector Current, Ic
Operating Temperature Range
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

CW)

::E
.....
II)

~

0

CW)

::E
.....

electrical characteristics

LM3046/LM3086
Each
Transistor

Total
Package

Units

750
300
300
750
Derate at 6.67

300
750
Derate at 8
15
20
20
5
50
-55°C to +125°C
--£5°C to +150°C
300

mW
mW
mWtC
mW
mWtC
V
V
V
V
mA

15
20
20
5
50
O°C to +85°C
-25°C to +85°C
300

°c

(T A = 25°C unless otherwise specified)

PARAMETER

CONDITIONS
MIN

LIMITS

LIMITS

LM3045. LM3046

LM3086

TVP

MAX

MIN

TVP

UNITS
MAX

Collector to Base Breakdown Voltage (V1BAICBO)

Ie'

=a

20

60

20

60

V

Collector to Emitter Breakdown Voltage (VIBA1CEOJ

Ie = 1 mA, Ie = 0

15

24

15

24

V

Ie = 10,uA, lei = 0

20

60

20

60

V

5

7

5

7

Collector to Substrate Breakdown Voltage

10~A.

IE

(V(BR1CIOJ

Emitter to Base Breakdown Voltage (V IBR1EBOI

Ie'" 10j.lA,lc =O

Collector Cutoff Current (I CBO )

Vea = lOV, Ie =

Collector Cutoff Current (leEO)

VeE = lOV, la = 0

Static Forward Current Transfer Ratio (Static
Beta) (hFEI

Input Offset Current for Matched Pair 0, and O2
1101-11021

a
10mA

Vce=3V \'C'
le= t rnA
Ie = 10pA

.002

V

.002
.5

40

100
100
54

40

Vce=3V, le= 1 rnA

.3
.715
.800

100

nA

5

~A

100
100
54
~A

2
.715
.800

Base to Emitter Voltage IV BE)

V

Magnitude of Input Offset Voltage for
Differential Pair IV eE , - V BE2 1

VCE = 3V, Ic '" 1 mA

.45

5

mV

Magnitude of Input Offset Voltage for Isolated
Transistors IVBE3 -VBE4I, IV BE4 -VBESI,
IV BE5 - V BE3 1

VCE = 3V, Ic = 1 mA

.45

5

mV

CE

=3V {IE= 1 rnA
IE = 10 rnA

40

V

Temperature Coefficient of Base to Emitter
Voltage

(l>~;e)

Collector to Emitter Saturation Voltage (VCEISATII

V cE =3V,l c "'lmA

Is= 1 rnA, le= lOrnA

-1.9
.23

-1.9
.23

mV/oC

V

Temperature Coefficient of Input Offset
Voltage

(l>l>~O)

V cE "'3V, Ic= 1 rnA

1.1

pvtc

Note 1: The collector of each transistor of the LM3045, LM3046, and LM3086 is isolated from the substrate by an integral
diode. The substrate (terminal 13) must be connected to the most negative point in the external circuit to maintain isolation
between transistors and to provide for normal transistor action,

6-32

r-

s::

electrical characteristics (con't)

to)

0

CONDITIONS

PARAMETER

TVP

MIN

f = 1 kHz, VeE = 3V, Ie = 100llA
Rs = 1 kn

Low Frequency Noise Figure (NF)

MAX

3.25

~

UNITS

U1

dB

r-

s::

Low Frequency. Small Signal Equivalent Circuit Characteristics:

to)
110 (LM3045, LM3046)
(LM3086)

Forward Current Transfer Ratio (h fe )

Short Circuit Input Impedance (hie)

f= 1 kHz, V eE =3V, le= 1 rnA
Open Circuit Output Impedance (hoe)

0

~

3.5

kn

en

15.6

pmho

r-

s::

1.8xl0- 4

Open Circuit Reverse Voltage Transfer Ratio (h re )

to)

Admittance Characteristics:

Forward Transfer Admittance (Y'e)

31 - j 1.5

Input Admittance (Y le )

0.3+j 0.04

0

00

en

f = 1 MHz, VeE = 3V, Ie = 1 rnA
0.001 +j 0.03

Output Admittance IV oe)

Reverse Transfer Admittance IV reI

See curve

Gain Bandwidth Product (f T )

V eE =3V, Ie = 3 rnA

Emitter to Base Capacitance (C es )

V ES = 3V,I E = 0

.6

pF

Collector to Base Capacitance (Cca )

Ves = 3V, Ie = 0

.58

pF

Collector to Substrate Capacitance (CCI)

Ves=3V,Ie=0

300

550

pF

2.8

typical performance characteristics
Typical Collector To Base

Typical Collector To Emitter
Curoff Current vs Ambient
Temperature for Each
Transistor

Cutoff Current vs Ambient
Temperature for Each
Transistor

Typical Static Forward
Current-Transfer Ratio and
Beta Ratio for Transistors Q,
and 02 vs Emitter Current
120
VeE

c

TAI=,2~8d)!, I.

100

IhFE'
1
hFE2

a:

"iii

::

90

;::
t;

80

u

"

VCE -lOU

I

5V

OR

TA - AMBIENTTEMPERATURE I'C)

50

10

I
I

~

15

/

125

100

10
IE - EMITTER (rnA)

.8

a:

~

.1

.6

~
I

10

v••

i-'"

"""
INPUT OFFSET VOLTAGE

.5

~
.01 I..-L.J..UllJUL.....,W,.J.LLWI.......I....I..UWIJ

,I

l-

ill

"

:i;

I

VCE "'JV
fA'" 25c C

~

Ie - COLLECTOR (rnA)

::g

Typical Static Base To Emitter
Voltage Characteristic and Input
Offset Voltage for Differential
Pair and Paired Isolated
Transistors vs Emitter Curreht

10

.1

:;:
::;
o

0.8

.01

TA -AMBIENTTEMPERATURE I'C)

Typical I nput Offset Current
for Matched Transistor Pair
0, 02 vs Collector Current

.01

=
m

0,9

I

hFE

50

125

V

Ihml
hFE1

'j'

60

100

1.1

=Jv,'lll I

110

.4
.01

J IIIIIIII IIIIIIIJY
I L111111

I 11111111

.1

10

I. - EMITIER ImAI

6-33

typical performance characteristics (con't)
Tvpicallnput Offset Voltage
Characteristics for Differential

Typical Base To Emitter
Voltage Characteristic for
Each Transistor vs Ambient

Pair and Paired Isolated
Transistors vs Ambient

Typical Noise Figure vs

Temperature

Temperature

Collector Current

VeE'" 3V

VeE "'3V

~ .9

m
~

'"""
w

~

1

,:

~r-..

.B

.s

~~~

.1

1,=3mA ~
1 mA f7
.6 I-- '-0.5 mA
1

f

t;

*

~~

!;

~

""~

.5

.4
-15 -50 -25

-

:>

1

.15

25

50

V

~
w

20

'"

'"w

15

c

10

;;:
~

.25

I

-15 -50 -25

15 100 125

0

25

15 100 125

Typical Noise Figure vs

Typical Noise Figure vs

Collector Current

Collector Current
VeE =3V

Rs = 100011 tl-H+l-++Htlttl

Rs = 10.00011
T. = 25°C I I

25

;;;

:s

20

~
;;:

15

w

1& 1--t-t-H-ttHt--t-bl'tttHJ

w

w

C

C

~

~

2

Ie - COLLECTOR (mAl

Typical Normalized Forward
Current Transfer Ratio, Short
Circuit I nput Impedance.
Open Circuit Output Impedance.
and Open Circuit Reverse
Voltage Transfer Ratio vs
Collector Current

w

~

..........

---

8::
"'"

20

~~

i'

TA =25°C
VeE ==3V
Ie ==t rnA

I-~

1

.J

" E
,,t;~
2

r-j'j
-10

\

r--

E

b,;/'

-20

1-"
~~

~~
z~

~~

-I

,

~.a

II
100

/

L&
11111

o
10
f - FREQUENCY IMHz)

b•• /

I'

~fb

1

2SJc

VeE:: 3V
Ie "'1 rnA

le::t rnA

21-

.1

6·34

TA ~

~Ve,=3V

C"

10

Typical Output Admittance
vs Frequency

TA == 2S0C

~!

10

.1

Ie - COLLECTOR (mAl

Ie - COLLECTOR (mAl

~2

"'''

~
~

'11

vs Frequency

~,~

"

~

z

.1

.01

wz

~~

1m

Typical Input Admittance

co E

~~

W

N

Admittance vs Frequency
40

10

~
co

Typical Forward Transfer

Z

30

""'"

1 kHz

Ie - COLLECTOR (mA)

"

~

I-

10

o

"t; -;

~

\l 0.1 kH•. /

2

.1

10 kHz

.01

100

VeE =lV

TA = 25°C

g;

I

.01

T. - AMBIENTTEMPERATURE rCI

~
2ol--t-t-H-ttHt--t-H-t+tJ.H
w

1 kHz

o

50

30

~
;;:

1-0.1 kH'L .....

~

2

.1 rnA

T. - AMBIENT TEMPERATURE rCI

25

Rs = 50011
T.=25°C

25

~

lJA

o
0

I

.50

VeE = 3V

V

Ie "'lDjA

0

,;

30

I

.1

10
f - FREQUENCY (MH.I

1D~

k:::

o
.1

10
I-FREQUENCY IMHz)

g••

100

typical performance characteristics (con't)

'"o

Typical Reverse Transfer
Admittance vs Frequency

,,, is !Jl!!I~T F~EdJElIJ!!ls:\
LESS THAN 500 MHz

~

Typical Gain-Bandwidth
Product vs Collector Current

'"....

~
u

~

0
0

'"

....
'"0

~

;;l
Z

TA = Z5°C
VeE = JV
Ie = 1 rnA

~
I

r-

BOO
1 .• 1
700 f- VeE =JV
TA " 25 u C
600
500
400
300

V

V

3:
w
o

1-1- l -

~

en

II

r-

3:
w
o

200
100

.:
10

100

f - FREQUENCY (MHz)

2

J

4

5

6

7

8

CO

9 10

en

Ie - COLLECTOR (rnA)

6-35

Transistor/Diode Arrays

LM3118/LM3118A matched monolithic high voltage transistor arrays

general description
The LM3118/LM3118A consist of four general purpose high voltage silicon NPN transistors on a common monolithic substrate_ Two of the four transistors
are connected in the Darlington configuration_ The substrate is cor:mected to a separate terminal for maximum
flexibility_ The transistors are well suited to a wide
variety of applications in low-power systems in the dc
through VHF range. They may be used as discrete transistors in conventional circuits but in addition they
provide the advantages of close electrical and thermal
matching inherent in integrated circuit construction.

• VBE matched ±5 mV

features

• General use in signal processing systems in dc through
VHF range

• High voltage matched monolithic general purpose
transistors

• Operation from dc to 120 MHz
• Wide operating current range
•

Low noise figure

applications

• Custom designed differential amplifiers
• Temperature compensated amplifiers

• hFE matched ±10%

connection diagram

Metal Can Package

CASE AND
SUBSTRATE

TDPVIEW

Order Number LM311BH or LM311BAH

Sea Package 7

6·36

3.2 dB typ at 1 kHz

• Full military temperature
range capabil ity

r-

s::w

...

absolute maximum ratings

00

LM3118A

LM3118

Each Transistor

Each Transistor

Any One Transistor

300

300

mW

Total Package

450

450

mW

Operating Temperature Range

-55°C to +125°C

-55°C to +125°C

Storage Temperature Range

-65°C to +150°C

-65°C to +150°C

.......

r-

s::
w

Units

::::t

Power Dissipation (Note 1)

Collector to Emitter Voltage, V CEO

40

30

V

Collector to Base Voltage, V CBO

50

40

V

Collector to Substrate Voltage, VCIO (Note 2)

50

40

V

5

5

V

50

50

300

300

mA
°c

Emitter to Base Voltage, V EBO (Note 3)
Collector Current, Ic
Lead Temperature (Soldering, 10 seconds)

dc electrical characteristics

00

l>

T A = 25°C
LIMITS

PARAMETER

LM3ll8A

CONDITIONS
MIN

TYP
0.002

LM3ll8
MAX

MIN

TYP

UNITS
MAX
100

nA

5

IlA

Collector Cutoff Current (lCBO)

V CB = 10V, IE =0

Collector Cutoff Current IleEO)

VeE = 10V, IB = 0

5

Collector Cutoff Current Darlington
Pair (leEOD)

VeE = 10V, IB =0

5

Collector to Emitter Breakdown

Ie = 1 mA, IB = 0

40

56

30

56

V

Collector to Base Breakdown
Voltage IVIBA)eBo)

Ic = 1OIlA, IE = 0

50

72

40

72

V

Emitter to Base Breakdown

IE = 10llA, Ie = 0

5

7

5

7

V

Collector to Substrate Breakdown
Voltage IV(BA)cIO)

lei = 10llA, IB = 0,
IE = 0

50

72

40

72

V

Collector to Emitter Saturation

IB = 1 mA, Ie = 10 rnA

0.33

V

100

0.002

IlA

Voltage IVCSA)eEO)

.Voltage IVIBA ) EBO) INote 3)

0.33

Voltage IVeE (SAT))

Static Forward Current Transfer
Ratio Ih FE )

VeE = 5V,I c = lOrnA
VeE = 5V, Ie = 1 rnA
VeE = 5V, Ie = 10llA

30

85
100
90

Magnitude of Static Beta Ratio
(Isolated Transistors 01 and 02)

VeE = 5V, Ie, = le2 =
1 mA

0.9

1.0

Static Forward Current Transfer

VeE = 5V, Ie = 1 rnA

1500

9000

0.63

1.1

30

85
100
90

0.9

1.0

1500

9000

1.1

Ratio Darlington Pair 103 and 04)
Ih FED )
Sase to Emitter Voltage IV BE )

VeE = 3V, IE = 1 rnA

Input Offset Voltage II V BE ' - v BE2 1)

VeE = 5V, I E)= 1 mA

Temperature Coefficient Base to
Emitter Voltage 01, 02
IlliVBEl!liT)

VCE = 5V, IE = 1 mA

Sase 103) to Emitter 1041 Voltage
Darlington Pair [V BED IV g _, I]

VCE =5V,I E = 10mA
VeE = 5V, IE = 1 mA

,Temperature Coefficient Base to

VeE = 5V, IE = 1 mA

0.73

0.83

0.48

5

-1.9

1.46
1.32

0.63

0.73

0.83

0.48

5

-1.9

1.46
1.32

V
mV
mVfC

V
V

-4.4

-4.4

mVfC

1.1

1.1

Ilvfc

Emitter Voltage Darlington Pair

03, Q411liV BED /fliT)
Temperature Coefficient Magnitude
of Input Offset Voltage
IIV sE , - V BE2 1!liTI

VeE = 5V,
IC1 = IC2 = 1 mA

6-37

ac electrical characteristics

TA = 2SoC
LIMITS

PARAMETER

CONDITIONS
MIN

TYP

UNITS

LM3118

LM3118A
MAX

MIN

TYP

MAX

3.25

dB

Low Frequency Noise Figure (NF)

f= 1 kHz. VCE = 5V.
Ic = 10Oj.tA. Source
Resistance = 1 k12

Gain Bandwidth Product (fT )

VCE = 5V.lc = 3 mA

500

MHz

Emitter to Base Capacitance (C EB )

VEB=5V.IE=0

0.70

0.70

pF

Collector to Base Capaciti,"ce (CCB)

VCB = 5V. Ic = 0

0.37

0.37

pF

Collector to Substrate Capacitance
(Cc,)

V c , = 5V. I c ,= 0

2.2

2.2

pF

3.25

300

300

500

LOW FREQUENCY. SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS
Forward Current Transfer Ratio (h'e)

f= 1 kHz.VCE =5V.
Ic =1 mA

100

100

Short Circuit Input Impedance (hie)

f= 1 kHz. VCE = 5V.
Ic = 1 mA

2.7

3.5

Open Circuit Output Impedance (h o.)

f= 1 kHz. VCE = 5V.
Ic = 1 mA

15.6

15.6

Open Circuit Reverse Voltage
Transfer Ratio (h,.)

f= 1 kHz. VCE = 5V.
Ic =1 mA

1.8x

1.8x

10-'

10-'

Forward Transfer Admittance (V,.)

f= 1 MHz. VCE = 5V.
Ic = 1 mA

31j 1.5

31j 1.5

mmho

Input Admittarice (Vie)

f= 1 MHz. VCE = 5V.
Ic = 1 mA

0.35+
j 0.04

0.3+
j 0.04

mmho

Output Admittance (Vo.)

f= 1 MHz. VCE = 5V.
Ic = 1 mA

0.001 +
j 0.03

0.001 +
j 0.03

mmho

Reverse Transfer Admittance (Yre )

f= 1 MHz. VCE = 5V.
Ic= 1 mA

(Note 4)

(Note 4)

mmho

k12
I1mho

ADMITTANCE CHARACTERISTICS

Note 1: Derate at 5 mWt C for T A > +85° C.
Note 2: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be c"nnected to a vortage which is
more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid un~
desired coupling betmen transistors, the substrate terminal should be maintained at either de or signal (ae) ground. A suitable bypass capacitor can
be used to establish a signal ground.
Note 3: If the transistors are forced into zener breakdown (V (BRJEBOJ degradation of forward transfer current ratio (hFE) can occur.
Note 4: See curve.

typical performance characteristics

!...
ill

10'

IC

to'

~
~

10

~

ICEO vs T A for Any

ICBO vs T A for Any

Tansistor

Transistor

i...

~ 1. =a

i
~
~

co

~

1

~

~

VCE = 10V

1:1

~

10.3

.910. 3

j

10'·

,

,

0

a

25

50

15

100

TA - AMBIENT TEMPERATURE ("CI

6-38

10"

10.2

BV

125

-a

Transistor

;::

160

~
......

t40

:Ii

...

1

IC

10"

II,

la'

co

IC

~1:1

10'

hFE vslC for Any
co

llllI

VCE = 5V

TAilr~

t20

IIII

IC

~:

to· 2

0

25

i,

11
50

100
Bo

co

60

;

40

....

215;C

III,
-55"C

IC

15

100

T. - AMBIENTTEMPERATURE eCI

125

~
"co,

1

20
0.01

IIIII
D.t

1

Ie - COLLECTOR CURRENT (mAl

to

typical performance characteristics (con't)

VBE vs T A for Any
Transistor
0.9

~

'"
i!!
t:
~

"

f:::: ~

0.8

~ ~3mA

0.7

IE = 1 mA"

:,

0.6

;

O.S

~

Vr"'5V

I-

w

1.5

~~

1.25

1-"

1.0

TA

u>

;~
B~

~~

0.75

.

~~
~

0.5

!:

0.25

/

25

50

75

10

1.l

:i!5
=z
""'"
,:;

0'"

/1-'

1.25

-""

;:co

.,

-

~
I-

~,
;:

~

lO

40

0.01

~

0.1

1.0

.1
VBE

.,

NF vs Ie

,

",2

;~

1'1;:;

~~

«

INPUT OFFSET VOLTAGE

0.4
0.01

11IIII111

iVIB'l'l1

-~

~~17'

-<

0.1

J

0

50

@

1

0.75

~

.; 0.25

I

o

-15 -50 -25

15 100 125

NF vs Ie

=5V

20

~

20

15

'"
1;:

15

w

f=O.l kHz

;;:

"..

15 100 125
I

@

Rs = 1 kn

~

C;

~

1 kHz

I

f=O.l kHz ~

w

10

0.01

50

VeE = 5V
Rs -lOOOn
TA"' 25"C

25

o
10

25

lO

~
;;:
z

0

TA - AMBIENT TEMPERATURE lOCI

RS = soon

w

C;

V

lJA
0.1 rnA

~

~

-~

l0iA

=

,

I

25

Ie

:: 0.50

TA =25"C

w

l

f""'"

-~

Rs = 500n

25

~

111111111

Ie - EMITTER (rnA)

VeE

<
5

i--'

,,~

=mttmi

~
r5 jA

10

Ie - COLLECTOR CURRENT ImAI

VIO vs TA for Q1 and Q2

~~~

~~
1 rnA
r- ~lm~~

lO

z"

0.5

_55°C

111111

TA - AMBIENTTEMPERATURE lOCI

I

VeE - 5V

TA =25"C

0.6

111111
WlI

VeE" 5V

0.15
-15 -50 -25

10

0.8

C.

20

1.15

VBE and VIO vs I E for
Q1 and Q2

'"~

""""
g;!:

s

Ie - EMITTER (rnA)

0.7

25°C

II~fi

,.....

;oS

'"
·~Z
6:

0.1

~

lllllJ.

u'"
,z

co:;
",,,,

.§

~I-

1.2

111111

10

VeE "'5V

~~ 1.50

0"
'''''
;

:i~

"'z
"'''
=>1-

::;10

2.25

1/
1.4

w~

VBE vs T A for Darlington
Pair (Q3 and Q4)

TA '" 2Sa C

~~

12

2""

Ie - COllECTOR CURRENT ImAI

VeE =5V

1.S

1-I-!:

Til ~1125°c

,

100 125

1.7

~~

V
Vh
V

.I.l.WI.

VeE'" SV

u""
co'"

VBE vs I E for Darlington
Pair (Q3 and Q4)

:§::

14

~I-

TA - AMBIENT TEMPERATURE lOCI

6~

16

~~

~

0

'"w
!!!

~

FE

~g;

Jffi

-75 -50 -25

1.6

=25"C

"
'I,,~

0.4

'"
"~>

hFE vs Ie for Darlington
Pair (Q3 and Q4)

VCE(SAT) vs IC for Anv
Transistor

i""
10kHz

0.1

Ie - COLLECTOR ImAI

z

10

/

.~

-~ I

o
0.01

1 kHz

0.1

Ie - COLLECTOR ImAI

6-39

typical performance characteristics (con't)

NF vs IC @ Rs = 10 k'{)'

life. hie. hoe. hr. vs IC
w

30

.
::!!
w

.
§

;;:

25
20

=>~

o

1 kHz

w

15
Z

10

:..-~

V
'-'"

o

0.01

wz
"'"

~~
"'''
~~

il!;

"II

I

0.1

~.CI

~

0.1

10

~~

=>'"

01
I
•

I
=
~
~
"
:il

"..t:

o
0.1

100

100

10

TA

Ie =1 rnA
10

CEB. CCB. CCI vs Bias
Voltage
1A

~~:E=~:~C

600

400
300

=25°C

.......

r- l-

V

500

...... ~,

I
CEO

..... ~r-

100

o
4

5

6

7

Ie - COLLECTOR tmA)

8

9 10

100

, - FREQUENCY tMHz)

800
700

=25°C

VeE" 5V

'-FREQUENCY tMHz)

2 3

6·40

0

110.

2: ZOO
I

~

-.5

w
0,
'" .-1.5
~.s5
'"I -2.0

1..1

• .1

.&

t,- vs IC
~

FJElJEWWS_
LESS THAN 500 MHZ. \

~

,- FREQUENCY tMHz)

~

lJm~T

:ieg: -1.0

=>"

II

o

~~

en l-

,,~

o-w

~~

-I
I
!

g" is

.5

2i.!
"w

bOil

020
20",
00-

I'

1.0

"z
~S
gi

g~

~:;1.

100

Vre vs f

'"ow

VeE =JV
Ie '" 1 rnA

z~.!e
;!.!

=>0
~=>
Z0

10
,- FREQUENCY tMHz)

g

'"

c'"
llt:
"w
0-"

-20

r\

l"'-

0.1

TA "'2S C

0_

le"'l rnA

"'g~

r]'i
II

-10

10

Voe vs f

TA " 25°C
VeE'" 5V

E
E

10

Ie - COLLECTOR tmA)

Vie vs f

"Z

20

~

0.1

VeE'" 5V

..... Ie =1 rnA

0- 0

Ie - COLLECTOR tmA)

~j

30

E

8;:

1m

TA =25°C

~,~

Z

'"t;"i

\! O.tkHz/ V

15

40

"

VeE'" 5V

Rs '" 10,OOOn
TA -25'C I I

Co.

J:
o

1 2

3

4

5

6

7

BIAS VOLTAGE tV)

8

I9 10

Transistor/Diode Arrays

LM3145/LM3145A, LM3146/LM3146A high voltage transistor arrays

general description

features

The LM3145/LM3145A and LM3146/LM3146A each
consist of five high voltage general purpose silicon NPN
transistors on a common monolithic substrate. Two of
the transistors are internallY connected to form a differ·
entially-connected pair. The transistors are well suited to
a wide variety of applications in low power system in
the dc through VHF range. They may be used as discrete transistors in conventional circuits however, in
addition, they provide the very significant inherent inte·
grated circuit advantages of close electrical and thermal
matching. The LM3145 and LM3145A are each supplied
in a 14-lead cavity dual-in·line package rated for opera·
tion over the full military temperature range. The
LM3146 and LM3146A are electrically identical to the
LM3145 and LM3145A respectively but are supplied in
a 14·lead molded dual-in-line package for applications
requiring only a limited temperature range.

• High voltage matched pairs of transistors, VBE
matched ±5 rnV, input offset current 211A max at
Ie = 1 rnA
• Five general purpose monolithic transistors
• Operation from dc to 120 MHz
• Wide operating current range
• Low noise figure
3.2 dB typ at 1 kHz
• Full military temperature
-55°C to +125°C
range (LM3145)

applications
• General use in all types of signal processing systems
operating anywhere in the frequency range from dc to
VHF
• Custom designed differential amplifiers
• Temperature compensated amplifiers

connection diagram
Dual-I n-Line Package

TOP VIEW

Order Number LM3l45D or
LM3l45AD

Order Number LM3l46N or
LM3l46AN

See Package 1

See Package 22

6-41

ca:

CD

•...

absolute maximum ratings

CW)

!
.......

•...
CD

CW)

:E
.....

ttl.
U)

•...
C")

:E
.....

.......
U)

•...
C")

:E
.....

LM3145A
Power Dissipation: Each Transistor
TA =25°C to 55°C
TA > 55°C
TA =25°C to 75°C
TA > 75°C
Power Dissipation: Total Package
TA = 25°C
TA > 25°C
TA = 25°C to 75°C
TA > 75°C
Collector to Emitter Voltage, VCEO
Collector to Base Voltage, VCBO
Collector to Substrate Voltage, VCIO (Note 1)
Emitter to Base Voltage, V EBO (Note 2)
Collector Current, Ic
Operating Temperature Range
. Storage Temperature Range
Lead Temperature (Soldering, 10 seconds)

dc electrical characteristics

LM3145

LM3146A

UNITS

LM3146

300
300
Derate at 6.67

mW
mWtC
mW
mW/oC

500
500
Derate at 6.67

mW
mWtC
mW
mWtC

40
30
50
40
40
50
5
5
50
50
-40°C to +B5°C
-65°C to +150°C
300

V
V
V
V

300
300
Derate at 8.0

750
750
Derate at B.O
40
30
50
40
50
40
5
5
50
50
-55°C to +125°C
-65°C to +150°C
300

mA

°c

TA = 25°C
LIMITS

PARAMETER

CONDITIONS

LM3145A, LM3146A

TYP

72

40

72

V

40

56

30

56

V

ICI = lallA. IB = O.
IE = a

50

72

40

72

V

Ic =O.IE = lallA

5

7

5

7

V

TYP

Ic = 10llA,I E =0

50

Ic = 1 rnA. IB = a

Voltage (VIBRICIO)

Emitter to Base Breakdown Voltage

Collector to Base Breakdown

UNITS

LM3145. LM3146
MIN

MIN

MAX

MAX

Voltage (VIBRICBO)
Collector to Emitter Breakdown

Voltage (VIBRICEO)

Collector to Substrate Breakdown

(VIBRIEBO) (Note 2)
Collector CUtoff Current (leBo)

V CB = 10V, IE = a

0.002

Collector Cutoff Current (lCEO)

VCE = 10V, IB = a

(Note 3)

Static Forward Current Transfer
Ratio (Static Beta) (h FE )

Ic = 10 rnA, VCE = 5V
Ic=lmA,VCE=5V
Ic = 101lA, VCE = 5V

Input Offset Current for Matched
Pair 01 and 02 liB, - IB21

Ic, = IC2 = 1 rnA,
VCE = 5V

Base to Emitter Voltage (V BE )

Ic = 1 rnA, VCE = 3V

Magnitude of Input Offset Voltage
for Differential Pair IV BE , - V BE2 1

VCE = 5V. IE = 1 mA

Temperature Coefficient of Base

VCE = 5V, IE = 1 mA

30

0.002

100

(Note 3)

5

85
100

30

90

0.63

0.3

2

0.73

0.83

0.48

5

-1.9

nA
IlA

2

IlA

85
100
90
0.3

0.63

100
5

0.73

0.83

0.48

5

-1.9

V
mV
mVtC

to Emitter Voltage (aVBE/aT)

Collector to Emitter Saturation

Ic = 10 rnA, IB = 1 mA

0.33

0.33

Ic = 1 rnA, V CE = 5V

1.1

1.1

V

Voltage (VCEISATI)
Temperature Coefficient of Input

IlVtC

Offset Voltage (aV,o/aT)

Note 1: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is
more negative than any collector voltage in order to maintain isolation between transitors and provide normal transistor action. To avoid undesired
coupling between transistors, the substrate terminal should be maintained at either de or signal (ae) ground. A suitable bypass capacitor can be
used to establish a signal ground.

Not.2: If the transistors are forced into zener breakdown (V (BR)EBO), degradation of forward transfer current ratio (hFE) can occur.
Not. 3: See curve.

6·42

r-

3:

ac electrical characteristics

w
....
~

LIMITS
PARAMETER

CONDITIONS

LM3145A, LM3146A
MIN

Low Frequency Noise Figure (NF)

1= 1 kHz, VeE = 5V,
Ie = 100llA, Rs = 1 k!1

Gain Bandwidth Product (IT)

V eE =5V,l e =3mA

TYP

MAX

U1

LM3145, LM3146
MIN

3.25

TYP

UNITS

3.25

dB

W
....
~

500

MHz

l>

U1

300

500

300

Emitter to Base Capacitance (C EB )

V EB =5V,I E =0

0.70

0.70

pF

V CB = 5V, Ic =

a
VCI = 5V,I c = a

0.37

0.37

pF

2.2

2.2

pF

r-

3:

W
....
~

Q)

.......

LOW FREQUENCY, SMALL SIGNAL EQUIVALENT CIRCUIT CHARACTERISTICS

r-

Forward Current Transfer Ratio (h fe )

1= 1 kHz, VCE = 3V,
Ic = 1 mA

100

100

Short Circuit Input Impedance (hie)

1= 1 kHz, VCE =3V,
Ic = 1 mA

2.7

3.5

Open Circuit Output Impedance (hoe)

1= 1 kHz, VCE = 3V,
Ic = 1 mA

15.6

15.6

Open Circuit Reverse Voltage

1= 1 kHz, VCE = 3V,
Ic = 1 mA

1.8 x
10-"

1.8 x
10-"

1= 1 MHz, VCE = 3V,
Ic.= 1 mA

31j 1.5

31j 1.5

f= 1 MHz, VCE = 3V,
Ic = 1 mA

0.35+
j 0.04

j 0.04

1= 1 MHz, VCE = 3V,
Ic = 1 mA

0.001 +

0.001 +

j 0.03

j 0.03

(Note 3)

(Note 3)

Transfer Ratio (h re )

3:

....

W

~

k!1

Q)

l>
Ilmho

ADMITTANCE CHARACTERISTICS
Forward Transfer Admittance (Y fe )

Input Admittance (Y,e)

Output Admittance (Y ee )
Reverse Transfer Admittance (Y re )

r-

3:

MAX

Collector to Base Capacltance (Cee )

Collector to Substrate Capacitance
(CCI)

.......

1= 1 MHz, VCE = 3V,
Ic = 1 mA

0.3+

mmho

mmho
mmho
mmho

Note 1: The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is
more negative than any collector voltage in order to maintain isolation between transitors and provide normal transistor action. To avoid undesired
coupling between transistors, the substrate terminal should be maintained at either dc or signal (ac~ ground. A suitable bypass capacitor can be
used to establish a signal ground.
Note 2: If the transistors are forced into zener breakdown (V(BR~E80~, degradation of forward transfer current ratio (hFE) can occur.
Note 3: See curve.

6·43

typical performance characteristics

..
.s

ICEO vs TA for
Any Transistor

i.

~ 1. - 0

i13

10'

10. 1

E=

13

VeE -lOV

10"

!

I

j

25

50

75

100

125

~
0:

0.8

~

0.1

VeE = 5V

50

J

VeE = 5V

~.
I

.J
I

i""

IE=lDjA

15 100 125

100

125

--V

I~A

0.50

10

110 vs IC (01 and 02)

=10
0.1

-75 -50 -25

0

25

50

30

40

'-",-,..LUUJII.-1--'-'

0.01

0:

NF vs IC
:!'

0

",;;
;~

2 ..

o~

0.6

e;;:

a~

~

«

-:=

0.5

-4

=
:s

RS = 500il

20

w

0:

=>

'"w

15

;;

10

~

f·o.lkH,

~

2

~

0

TA - AMBIENT TEMPERATURE I"CI

@

VeE = 5V
Rs = SOOn
fA "25°C

25

I

0.7

l-

!;;

10

3D

~

J
75 100 125

0.1
Ie - COLLECTOR CURRENT ImAI

O.B

I

o

20

t:

1

10

Ie - COLLECTOR CURRENT ImAI

Ie - COLLECTOR CURRENT ImAI

6

0.1 mA

0.1

10

iii

i--'"

IIII

20
0.01

I

VBE and VIO vs
IE for 01 and 02

1

0.75

J 0.25

6-44

75

0.01
25

VIO vs TA for 01 and 02

.s

-55"C

V

TA - AMBIENTTEMPERATURE I"CI

;;

50

FE

0.5

0

JII

40

V

0.4
-15 -50 -25

25"C

V
Lh

I

..:

Jll

f-'"

60

TA = 25°C

IE=l~ ~

0.6

Bo

~

10.4

~ ~.3mA

~

~

VCE(SAT) vs IC for
Any Transistor

~~

~

100

TA - AMBIENT TEMPERATURE I"CI

VBE vs TA for
Any Transistor
0.9

TAllr~

120

ffi
I

25

TA - AMBIENT TEMPERATURE (OC)

lilll

VeE'" 5V

0:

I

.El0,3

140

..
~
."

10'~

0

160

~
~

10.2

5V

~

I-

0:

10. 2

hFE vs IC for
Any Transistor

~

~
~

I-

g;

~

Ie =0

..

10

~

10'

I-

10'

~

;

~

10'

l-

..

ICBO vs TA for
Any Transistor

0.1
IE - EMITTER (rnA)

10

o
0.01

V

1 kHz

10 kHz
0.1
Ie - COLLECTOR ImAI

typical performance characteristics (con'tJ

NF vs IC @ RS = 1 kn

NF vs IC = RS = 10 kn

hte. hie. hoe. hre vs IC

3D
VeE = 5V
Rs '" 1D,oDon

VeE;; 5V

Rs '10DDn t+tttt-+++++Htl
TA ' 25"C

25

~ 2of--+-+-H-++I+l--+-H+I+I04

25

;;

:s

TA • 25"C

II

20

~! 0.1 kHz/ V

w

a:

15

t--+-+-t+Ht1It--t-t:.ft-ttt1J

1'0.1 kHz,/
10 t--t-++~~~~~I~k~Hz~Htl

~~31~~fj~jjI0flkHmz

..'"'"

g;
40

"

Ie -

'"
~1

30

1&1

r-

COLLECTOR CURRENT (mAl

TA = 25°C

VeE = 5V
Ic;;1 rnA

VeE" 5V
Ie::: 1 rnA

TA =2S"C
VeE "'3V
Ie = 1 rnA

C-j'j

~.1 -10
~
I

a

I'

\

i""-

~~

II

-20

1111

o

0.1

10

100

1.0

"
Z

~S

... is

0.5

~E

U1J11~T
JElJE~JJ1IL
LESS THAN
MHz \

-0.5

~

~~

-1.0

z~

....~

800
VeE ~
100 -T = 25°C
A
600

~

500

%

"'"C
%
....
C

~z

:;;

'"'
~ .J -1.5

"g,

TA :::25°C
VeE;; 5V
Ie '" 1 rnA

a:
I

o

10

0.1

100

I-FREQUENCY (MHz)

5J

400
300

TA =25C C

10

100

I - FREQUENCY (MHz)

.....

--

"

r--. ~'

f
CEO

200

i'- J- I-

100

.t:

-2.0

1

110.

CEB. CCB. CCI vs Bias
Voltage

a: "

~~

ko'

I - FREQUENCY (MHz)

500

8:
w'"

100

10

0.1

Yre vs f

a:
w

Ii

.&

I - FREQUENCY (MHz)

C

b.oj

~a

a:
"
wz

~~

Ie - COLLECTOR CURRENT (mAl

Voe vs f

TA " 25°C

20

~ ~ to
....a: "'"

10

0.1

0.1

Via vs f

C E

~..s

1[J1

-- "/I

--

0.01

COLLECTOR CURRENT (rnA)

~,~

Z

,/

~

Yfe vs f

w

u

10

o

0.1
Ie -

1 kHz

w

is
z

oL
0.01

15

o
1

2 J
Ie -

4

5

6

1

COLLECTOR (rnA)

8

9 10

o

1

2

J

4

5

6

1

eCB

r-

8

9 10

BIAS VOLTAGE (V)

6-45

»

:I:

o

Analog Switches

o
.....
.,::..

»
o
:I:

AH0014/ AH0014C· OPOT, AH0015/ AH0015C quad SPST,
AH0019/AH0019C· dual OPST-TTL/OTL compatible

o
.....
.,::..

MOS analog switches

(')

»

general description
This series ot TTUDTL compatible MaS analog
switches feature high speed with internal level
shifting and driving. The package contains two
monolithic integrated circu it chips: the MaS analog chip is similar to the MM450 type which
consists of four MaS analog switch transistors;
the second chip is a bipolar I.C. gate and level
shifter. The series is available in both hermetic
dual-in-line package and flatpack.

features
• Large analog voltage switch ing
±10V
500 ns
• Fast switching speed
• Operation over wide range of power supplies
• Low ON resistance
• High OFF resistance

• Includes gating and level shifting

I

.M.LOG~'I'
IM,u
I
I
I, _.ALae

""! ~' ~i~.
L_-"1

l

___

Ift.'~1

\O~IC

.1

1M!

~~~u

":

MA~~~~:;~DG

"'ALOO~lII.LOC

::5::::0

.Ml:::~!!
'~4
I:
I

I

I

•

au"

ii' ~' f'~' ~f;.
L...

_

_

L __ 'jj

.

r--------,

_

.J

lO:II;HO~'CS L~:'ClL:GIC'

Note: All logic inputs shown at logic "1,"

typical applications
Integrator

'Previo~sly .called

Il

___

»
:I:

o
o.....

.J

.

Note: All loglcmpuls
sbown at logic "1,"

LO;,.

"LO:'I

Order Number AH0014D or AH0014CD

See Package 1
Dual DPST

:::::;n~-Gl.
I

lUI

I

I

~"~~~~I
1
:
:
IUIALDG
I~U

I

I

:: ~'
L..,

~'

I - i j 11

tD'(~

Order Number
See
Order Number
See

I

AltOGIL
II

,.

'_00
QUT,

A~.LD'

Q~TI

It:::
tev

%

analog switch characteristics
RON vs Temperature
125
VIN

i

w

75

:e
"z
to'"

~

~

50

= VOUT " +1OV

V:N °

_

]

, k'"

.....

-

w

"z

75

.

50

~

~

f'

25

_150

25'

&5'

'"

~

_15'

25'

,

50

10

i
co
'"'"

5

z
z

CHANNEL "ON" CHANNEL "ON"-:
V· ° -20V
- V···OV

w

",

z

~

&5'

~'::NEL

(")

,/

l>

10'

%

,;

125

o
o
U1
......

...

.".
_15'

r-...

25

......

0

&5'

IDS'

l>
%

o
o

...

Driver Gate Y,N vs VOUT
~
w

co

..~
...'"

,

+10

125'C

~

-10

25'C

~

-15

=
~

-20

Y+=8.0V

....

0
-5

U1
(")

.

Vee = 5.0V
V-o-22V

+5

>
w
>

ii;

't-...

-25

25'

AMBIENT TEMPERATURE I'C)

=

~

CHANNEL "OFF"
"ON"
V"o-20V
V-· -10V
1
-10 -I -6 -4-2 0 +2 +4 +8 +8 +10

oIiIo

V

100
_55 0

105'

Y+ '" +10V
V- NO EFFECT

w

~

...o

150

Leakage vs VIN (Channel "OFF")

50

2

"z

175

w

AMBIENTTEMPERATURE rc)

75

20

I

%

o

k-'

0
_55'

105 0

V,~ ° Jourl. _110V

200

~

v+= tOY

'"

"

25

CINVSVIN

'"z

,/

z

AMB1ENTTEMPERATURE rC)

'"~

225

/

-

:t
l>

RON vs Temperature

~ou~ ° oJ

100

.e

.... _r-

0
-55'C

U

...o

RON vs Temperature

125
100

o

(Note 2)

l>

-5SoC

%

...oo

CD

i;

z

-50

%

!!;

-75

o
o

-25
+10

ANALOG V'N IV)

0

-10

0

0.5

ANALOG V'N IV)

1.0

1.5

2.0

2.5

3.0

...

3.5

INPUT VOLTAGE (V)

CD
(")

Schematic (Single Driver Gate
and MOS Switch Shown)

.....,... ~.."
'"

~

t,

Analog Switching Time Test Cir... it

"~;:n:'J

MALO.

.,..

-~
'"

'. -D-

R.

UII:

.,..

..

our

"~
IV'
,
,
,I

t$-.
.
."

:

I

''
I

I,
~"
I
I

DV

!IV

I
I

I
I

~IIIN-l

I
I

}--Io.. -{

selecting power supply voltage
The graph shows the boundary conditions which
must be used for proper operation of the unit.
The range of operation for power supply V- is
shown on the X axis, It must be between -25V
and -avo The allowable range for power supply
v+ is governed by supply V-. With a value chosen
for V-, V+ may be selected as any value along a
vertical line passing through the V- value and
terminated by the boundaries of the operating
region, A voltage difference between power supplies of at least 5V should be maintained for
adequate signal swing.

~.

25
20
15
10
5

OPERATING

v-

0
-25

-15

l7

-5

-5
-10
-15
-20
-25

7·3

III

·cCD

Analog Switches

CD

U)

e

CD

5

J:

AH0120/ AH0130/ AH0140/ AH0150/ AH0160
series analog switches

c:(

.......

e
In
we

general description
The AH0100 series represents a complete family
of junction FET analog switches. The inherent
flexibility of the family allows the designer to
tailor the device selection to the particular application. Switch configurations available include dual
DPST, dual SPST, DPDT, and SPDT. rdslON) ranges
from 10 ohms through 100 ohms. The series is
available in both 14 lead flat pack and 14 lead
cavity DIP. Important design features include:

J:
c:(

.......

e
lilt
we

J:
c:(

.......

eC"')
we

• TTLJDTL and RTL compatible logic inputs
• Up to 20V p-p analog input signal
• rdslON) less than 10n (AH0140, AH0141,
AH0145, AH0146)
• Analog signals in excess of 1 MHz
• "OFF" power less than 1 mW

J:
c:(

.......

e
N
we

J:

•
•

Gate to drain bleed resistors eliminated
Fast switching, tON is typically .4lls, tOFF is
1.0 Ils
• Operation from standard op amp supply voltages, ±15V, available (AH0150/AH0160 series)
• Pin compatible with the popular DG 100 series.
The AH01 00 series is designed to fulfill a wide
variety of analog switching applications including
commutators, multiplexers, DJ A converters, sample
and hold circuits, and modulators/demodulators.
The AH0100 series is guaranteed over the temperature range _55°C to +125°C; whereas, the
AH01 OOC series is guaranteed over the temperature
range _25° C to +85° C.
.

schematic diagrams

c:(

DUAL DPST and DUAL SPST

Note: Dotted hne portions are not apphcable to the dual SPST.

DPDT Idiff.) and SPDT (diff.)

Note: Dotted line portions are not applicable to the SPOT (ditfereRtil\l.

logic and connection diagrams
Order any of the devices below using the part number with a 0 or F suffix. See Packages 1 and 4.
DUAL DPST

DPOT 10iff)

SPDT IDif1)

HIGH LEVEL 111DV)

HIGH LEVEL 1:!:10V)

HIGH LEVEL l:tl0VI

HIGH LEVEL (± 10V!

AHD140110n)
AHOl29 130m
AH0126 180.01

AH0141110nl
AHOl33 130.0)
AHOl34 IBOn)

AH0145 (1on)
AHOl39 (30.01
AH0142 (80n)

AH0146 (1on!
AH0144 (30m
AH0143 (80m

MEDIUM LEVEL U:7.SVI

MEDIUM LEVEL U:1.61

MEDIUM LEVEL (t7.6VJ

AHD163I1Sn)
AH0164 (SOm

AHO~61 (1sn)
AHQ162 (son)

MEDIUM LEVEL !±7.6VI
AH0153115f/:1
AHOl54 (50.01

7-4

DUAL SPST

AH0151 115n)
AH0152ISOn)

»

:::t
o

absolute maximum ratings

N

High
Level

o

Medium
Level

........

»

:::t
o

Total Supply Voltage (V+ - V-I
36V
34V
Analog Signal Voltage (V+ - V A or V A - V-I
30V
25V
Positive Supply Voltage to Reference (V+ - V A)
25V
25V
22V
22V
Negative Supply Voltage to Reference (VA - V-I
25V
25V
Positive Supply Voltage to Input (V+ - V IN )
±6V
±6V
Input Voltage to Reference (V IN - VA)
±6V
±6V
Differential Input Voltage (VIN - V IN2 )
30mA
Input Current, Any Terminal
30mA
Power Dissipation
See Curve
_55°C to +125°C
Operating Temperature Range AH0100 Series
_25° C to +85° C
AH0100C Series
_65°C to +150°C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)
300°C

Co)

o

~

»:::t

o
~
o

........

»
:::t

o

U1

electrical characteristics

DEVICE TYPE

PARAMETER

LogiC ","
Input Current

Logic

SYMBOL

DUAL
OPST

Input Current

Positive Supply Current

DUAL

SPST

DPDr
101FF)

liNtON)

SPOT

101FF)

»

Note 2

TA '" 25"c

MAX

2.0

60
120
.1
2.0
3.0
3.3

Over Temp. Rangp

Note 2

TA '" 25°C
Over Temp. Range
T A "'2SoC
Over Temp. Range

01
22

All CircUits

One Dnver ON Note 2

I-tONI

All Circuits

One Driver ON Note 2

Reference Input
(Enable) ON Current

I AION )

All CircUits

One Drrver ON Note 2

TA=2SoC
Over Temp. Range

-1.0

Positive Supply
Current SWItch OFF

I+'OFFI

All CircUits

V,N1 = V ,N2 '" O.BV

T A =25°C
Over Temp. Range

1.0

Negative Supply
Current Switch OFF

I-(OFFI

All CirCUIts

V ,N1 = V,N2 = O.BV

TA = 25°C
Over Temp. Range

-1.0

= V ,N2 = O.BV

TA = 25°C
Over Temp. Range

-1.0

Negative Supply

Current Switch ON

TA

::

ZSoC

-1.0

IRIOFFI

Switch ON Resistance

rmlON}

AH0126

AHQ134

AH0142

AH0143

Vo = lOV
10 = 1 mA

TA = 25°C
Over Temp. Range

45

SWitch ON Resistance

rdJlONJ

AH0129

AH0133

AH0139

AH0144

Va'" 10V
10 = 1 mA

TA = 25°C
Over Temp. Range

25

SWitch ON Resistance

rdslON)

AH0140

AHOl41

AH0145

AH0146

Vo = 10V
IF = 1 mA

TA = 25°C
Over Temp. Range

8

Driver Leakage Current

110 + IsloN

Switch Leakage
Current

'SCOFFIOR
'OIOFFI

Switch leakage
Current

IS(OFFIOR

Switch Turn-ON Time

tON

All CirCUits

Vo=Vs=-1OV

'ON

Switch Turn-OFF Time

tOFF

tOFF

T A :: 25°C

.01

Over Temp. Range

Vas'" ±20V

T. = 25°C
Over Temp. Range

08

Vas

T A "'25°C
Over Temp. Range

4

-1.4

-1.6
10
25
-10
25
-10
-25
80
150
30
60
10
20
1
100
1
100
10
1.0

AH0126
AH0129

AH0134
AH0133

AH0142
AH0139

AH0143
AH0144

AH0140

AH0141

AH0145

AHOl46

AH0126
AH0129

AH0134
AH0133

AH0142
AH0139

AH0143
AH0144

See Test Circuit
V A =±10V
TA = 25°C

0.5

0.8

See Test Circuit

0.8

1.0

See Test Circuit
T A :: 2Soc
±10V

0.9

1.6

See Test Circuit
T A "'25°C
VA "'±1OV

1.1

2.5

±20V

=:

'OIOFFI

Switch Turn-ON Time

SWitch Turn-OFF Time

V ,N1

-1.8

-2.0

Over Temp. Range

Reference Input
(Enable) OFF Current

All Circuits

AH0140

AH0141

AH014S

AH0146

AH0126

AH0134
AHa133

AH0142
AH0139

AH0143
AH0144

AHOI29
AH014Q

AH0141

AH0145

AH0146

-

o
en
o

UNITS
TYP

I+(ONI

SWitch ON

:::t

LIMITS

y+ '" 12.0V. V- '" -10,av, V R " O.OV

All CIrcuits

11NtOFFJ

........

CONDITIONS

All CircUits

"a"

o

for "HIGH LEVEL" Switches (Note 1)

V A =±10V
VA

TA= 2SoC

=:

.A
.A
•A
.A
mA
mA
mA
mA
mA
mA
.A
.A
.A
.A
.A
.A

CJ)
(1)
::::! •

(1)

en

n
n
n
n
n
n
nA
nA
nA
nA
nA
.A

.'
.'
.'
.'

Note 1: Unless otherwise specified these limits apply for -55°C to +125°C for the AH0100 series
and -25°C to +B5°C for the AHOl OOC series. All typical values are for T A = 25°C.
Note 2: For the DPST and Dual DPST, the ON condition is for VIN = 2.5V; the OFF condition
is for VIN = O.BV. For the differenti.al switches and SWl and 2 ON, VIN2 = 2.5V, VINl = 3.0V.
For SW3 and 4 ON, VIN2 = 2.5V, VIN1 = 2.0V.

7-5

II)

CI)

';:

electrical characteristics

CI)

Ul

0

...

for "MEDIUM LEVEL" Switches (Note 1)

DEVICE TYPE

CD

PARAMETER

SYMBOL

0
:::E:


o

AHOI43. AHOI42.
AH0126. AHOl34

u

~
~ 0.8

100

~

o

.......

en
CD

AHOI54. AHOI52.AHOI64. AHOl62 ~

1.0

:!.

CD

(II

Is "1 mA

0.1

1.0
-75 -50 -25 0 25 50 75 100 125
TEMPERATURE I'C}

0.1
25

45

65

85

105

2.0

i
i=

~ 2.0

"'"

~ SWlrCH~S ON-

~ ;W

1.0

:>

..... ......

'"g
~

~

~

l - I- ALL SWITCHES

z

IVIN1 - V1N21

25

45

OF~ ~

65
85
105
TEMPERATURE I'CI

125

Differential Switch Input
Threshold vs Temperature

Single Ended Switch Input
Threshold vs Temperature

~

125

TEMPERATURE I'C}

~SWITCHES
~

f- ALL SWITCHES OFF

I-

~ 1.0
>

ON.-

....

.....

'"'"
z

~ O.3~

:>

VR=DV

or-V-=30V

o
-75 -50 -25 0 25 50 75 100 125
TEMPERATURE I'C}

-75 -50 -25 0 25 50 75 100 125
TEMPERATURE I'C}

switching time test circuits
Differential Input

Single Ended Input

'"
nv
I
~
I
I
5V

' ..

'"''u'''

Y",

~..

IV

I

__

~

"

_

-

.VA

I
I

OUTPUT

aUlIUT

I

I

,~

I

---:t. .f-I

7-7

en

G)
.~

applications information

G)

Ul

o
CD
.....

1. INPUT LOGIC COMPATIBILITY
A. Voltage Considerations

o

::J:

In general, the AH0100 series is compatible with
most DTL, TTL, and RTL logic families. The ONinput threshold is determined by the V BE of the
input transistor plus the Vf of the diode in the
emitter leg, plus I x R1, plus V R. At room
temperature and V R = OV, the nominal ON threshold is:0.7V+0.7V+0.2V,= 1.6V.Over temperature
and manufacturing tolerances, the threshold may
be as high as 2.SV and as low as 0.8V. The rules
for proper operation are:


2.SV). The V R terminal can be driven from most
TTL and DTL gates.
3. DIFFERENTIAL INPUT CONSIDERATIONS
The differential switch driver is essentially a differential amplifier. The input requirements for proper
operation are:
)V IN1 - V IN2 1:::: 0.3V
2.S ~ (V IN1 or VIN2 ) - V R ~ SV
The differential driver may be furnished by a DC
level as shown below. The level may be derived
from a voltage divider to V+ or the 5V Vcc of
the DTL logic. In order to assure proper operation,
the divider should be "stiff" with respect to IIN2'
Bypassing R 1 with a 0.1 p.F disc capacitor will
prevent degradation of tON and to FF.

Rl

'.

-!

 2
where:
Rp = value of the pull-up resistor in kn
N = number of drivers.

C. Input Slew Rate
The slew rate of the logic input must be in excess
of 0.3V /p.s in order to assure proper operation of
the analog switch. DTL, TTL, and RTL output
rise times are far in excess of the minimum slew
rate requirements. Discrete logic designs, however,
should include consideration of input rise time.

2. ENABLE CONTROL
The application of a positive signal at the V R

7-8

-

---

"

'='

v-

Connection of almA current source between V R
and V- will allow operation over a ±10V common
mode range. Differential input voltage must be less
than the 6V breakdown, and input threshold of
2.5V and 300mV differential overdrive still prevail.

»
~

4. ANALOG VOLTAGE CONSIDERATIONS

N

The rules for operating the AH0100 series at
supply voltages other than those specified essen·
tially breakdown into OFF and ON considerations.
The OFF considerations are dictated by the maxi·
mum negative swing of the analog signal and the
pinch off of the JFET switch. In the OFF state,
the gate of the FET is at V- + VBe + VSAT or
about 1.0V above the V- potential. The maximum
Vp of the FET switches is 7V. The most negative
analog voltage, V A, swing which can be accomo·
dated for any given supply voltage is:
IVAI':::; IV-I- Vp

-

...o

VA':::; V+ - VSAT - VBe -1.0V or
VA':::; v+ - 2.0V or V+

o
.....
»~

?:. VA + 2.0V

For the standard high level switches, VA = 12 2.0V = +10V.

...w

o

o
.....

5. SWITCHING TRANSIENTS

»
~

Due to charge stored in the gate·to·source and
gate-to-drain capacitances of the FET switch, transients may appear in the output during switching.
This is particularly true during the OFF to ON
transition. The magnitude and duration of the
transient may be minimized by making source
'and load impedance levels as small as practical.

VBe - VSAT or

Iv AI~lv-I-B.o or IV-I~IV AI+B.OV

...

o
~
o

......

»~

...o

~
'''"'~

For the standard high level switches, VA <1- 1B I
+B = -10V. The value for V+ is dictated-by the
maximum positive swing of the analog input voltage. Essentially the collector to base junction of
the turn-on PNP must remain reversed biased for
all positive value of analog input voltage. The base
of the PNP is at V+ - VSAT - V Be or V+ - 1.0V.
The PNP's collector base junction should have at
least 1.0V reverse bias. Hence, the most positive
analog voltage swing which may be accommodated
for a given value of V+ is:

U'I

o
.....

"""--"

=l>-J

»~

1'"

9en

Furthermore, transients may be minimized by
operating the switches in the differential mode;
i.e., the charge delivered to the load during the
ON to OFF transition is, to a large extent, cancelled by the OF F to ON transition.

o
en
CD
~

Cir
III

typical applications
Programmable One Amp Power Supply

I

I

I
I
I

.LiVo-!l
.15\1~

I
L,

'

!
:
!
:

nllo
ADJUST

VOUT = I± Polarity) x (BCD Code) x VREF
lOUT -2A peak, IA c;ontinuous

VOUT Range - ±12V
Full Scale AcqulsitianTLme-Olls

Four to ren Bit 0 to A Converter (4 Bits Shown)

MALIa
OUTPUT

'""

.SettlngTime: 1,.,.$
Accuracy: 0.2%
-Note; All resLstorsare 0.1%

7-9

en

CD

'i:

typical applications (con't)

CD

U)

Four Channel Differential Transducer Commutator

o

...o
CD

J:

«
.......

...ooan

.~

J:

«

.......

Gain: 22

oqo

...
o

Commutation Rate: 500 kHz

J:
.......

«

...oo
M

4 x 4 Cross Point Analog Switch

J:

«
.......
o

...

,I

N

o 1

o

1

J:

.1

«

1

-1----.-----------1

Switching Time - BOD os
"ON" Resistance-45!1
"OFF" Resistance-10 'O n

Delta Measurement System for Automatic Linear Circuit Tester

r----------,
I

~~~:~=~E

1
1

I '----~-'
I
I
1

I

"jAM;;; - - .._-_1+,'--____:::::-_---.

1
1

,

1

L

I

I

:
I

1

I

I

I.

:
--'

1

____ J

~1v

_

':[

11
~

'-------~~---e_._a' ~

Note: 81 must be open lot 50J,l5 min to take first reading with IL " 50 rnA. Second readmg is taken with
"='
52 closed. With 81 Ind other set-up forcing functions under computer control, system will measure line
Bnd load regulation on voltage regulators. voltage gam, offset cummt. eMRR and PSRR on op amps as
welln utller circuiU requiring meaSurement of the change of a parameter with the change of a forCing function.

Precision Long Time Constant Intagrator with Reset

Integratlonlnternal=1Dsec
·Integration Error = 1DO,uV
Reset Time: 3O,us

7-10

Analog Input Range-±7.5V
EouT = 10x (Analog Input 2-Analog Input 11
Error Rite - 0.01% f .sJsec

Four Channal Commutator

Analog Signal Range: 15Vp.p
Sample Rate: 1 MHz
AcquisitionTime:21J.us
Drift Rate: 0.5 mY/sec

Analog Switches
AH2114/AH2114C DPST analog switch
general description
The AH2114 is a DPST analog switch circuit com·
prised of two junction FET switches and their
associated driver. The AH2114 is designed to fulfill
a wide variety of high level analog switching appli·
cations including multiplexers, A to D Converters,
integrators, and choppers. Design features include:
•

Low ON resistance, typically 75n

•

High OFF resistance, typically 1011n

•

Large output voltage swing, typically ±1 OV

• Powered from standard op·amp supply voltages
of ±15V
•

Input signals in excess of 1 MHz

• Turn·ON and turn·OFF times typically 1 /.lS
The AH2114 is guaranteed over the temperature
range _55°C to +125°C whereas the AH2114C is
guaranteed over the temperature range O°C to
+85°C.

schematic and connection diagrams
Metal Can Package

"

t","""Sho,,"

IDBK

w,'~

v, .. lo,c I

"'

IOIK

"'

108K

Order Number AH2114G or AH2114CG

See Package 6A

ac test circuit and waveforms
V"1l -1511

IIOUT>

llOUT1

..

'

FIGURE 1.

FIGURE 2.

7·11

absolute maximum ratings
Vplus Supply Voltage

+25V
-25V
40V
25V
1.3SW

Vminus Supply Voltage

Vplus-Vminus Differential Voltage
Logic Input Voltage
Power Dissipation (Note 3)

Operating Temperature Range
AH2114
AH2114C

_55°C to +125°C
aOc to +8SoC
-S5'C to +125'C
300'C

Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics

CONDITIONS

PARAMETER
Static Drain-Source

"On" Resistance

(Notes 1 and 2)
AH2114
MIN

10= 1.0mA, VGs=OV, T A =25'C
10 = 1.0 mA, V GS = OV

TVP
75

MIN

100
150

TVP
75

MAX
125
ISO

UNITS

n
n

Drain-Gate
Leakage Current

Vos = 20V, V GS = -7V, TA = 25°C

FET Gate-Source
Breakdown Voltage

IG = 1.01lA
Vos = OV

Drain-Gate
Capacitance

VOG = 20V, Is = 0
f= 1.0 MHz, TA = 25'C

4.0

5.0

4.0

5.0

pF

Source-Gate

V oG =20V,1 0 =0
f= 1.0MHz, TA = 25'C

4.0

5.0

4.0

5.0

pF

Capacitance
Input 1 Turn-ON Time

VIN1

.::

0.2

AH2114C
MAX

1.0
SO

35

lOV, TA"" 2SoC

0.2

5.0
SO

V

35

35

SO

nA
nA

35

SO

ns

(See Figure 1)

Input 2 Turn-ON Time

V,N2 = 10V, TA = 25'C

1.2

1.5

1.2

1.2

Ils

O.S

0.75

0.6

0.75

IlS

(See Figure 1)

Input 1 Turn·OFF Time V'N! = 10V, TA = 25'C
(See Figure 1)
:::: lOV, TA =- 25°C
ISee Figure 1)

Input 2 Turn-OFF Time VIN2

50

80

50

80

DC Voltage Range

TA = 25'C
(See Figure 2)

±9.0

±1O.0

±9.0

±10.0

V

AC Voltage Range

TA =25°C
(See Figure 2)

±9.0

±10.0

±9.0

±10.0

V

Note 1: Unless otherwise specified these specifications apply for pin 12 connected to +15V. pin 2
connected to -15V, _55°C to 125°C for the AH2114, and OoC to 85°C for the AH2114C.
Note 2: All

typical val ues are for T A = 2SoC.

Not. 3: Derate linearly at 1000 CIW above 25°C.

.,

7-12

ns

»

:::J:
U1

Analog Switches

o

o

CD

AH5009 series low cost analog current switches
general description

features

The AH5009 series is a versatile family of analog
switches designed to economically fulfill a wide
variety of multiplexing and analog switching applications_

•

Large analog signal range

•

Excellent isolation
between channels

Even numbered switches (AH5010, AH5012,
AH5014, etc.,) may be driven directly from
standard (5V) TTL; whereas the odd numbered
switches (AH5009, AH5011, AH5013, etc.') are
intended for applications utilizing open-collector
(15V) structures.

• Very low leakage

50 pA

•

High switching speed

150 ns

•

Low on resistance

•

Interfaces with standard TTL

functional and schematic diagrams
MUX Switches
(4 channel version shown)

'o----c1f"
1 o---~

B~

4

7o--_J

.~.
I

• o--_.J

SOdS
at 1 kHz

loon

(See additional types on page 7·1S.)

SPST Switches

MUX Switches

(quad version shown)

(4 channel version shown)

SPST Switches
(quad version shown)

, o----a"t'I "--0

1

'~'

• o----a"t'I "--0

I

r~~,

20- __ ..1

J 0--_..1

L--t

110----0"i"'".L........ot
I

lOo- _ _ .J

Il~

14

o---o'f"~16

o------J

15

o--_.J

14

±10V peak

I

•

!,

I"TT'
lD
!"TT"
r---'l
II
i-12

":'"

ulllto....'nEDDRAINS

connection diagrams

·
O

Dual-In-Line Package

,
,

.

Dual~ln·Line

Package

Dual-I n-Line Package

,

.
.

Order Number:

AH5017CN
AH5018CN
AH5019CN
AH5020CN
AH5020CN
AH5021CN
AH5022CN
AH5023CN
AH5024CN
See Package 20

Order Number:

AH5009CN
AH5010CN
AH5013CN
AH5014CN
See Package 22

Order Number

AH5011CN
AH5012CN
AH5015CN
AH5016CN
See Package 23

7·13

en

o
o
In
:::t
,'--"'-0

VOUT

·'E1
7-15

G'I

o

o
It)

applications information

:I:

Theory of Operation



VAIMAX) AD

>

VA(MAX)

(2b)

loss/10
which ever is worse.
Peak amplitude of the ana·
log input signal
Desired accuracy

AD
1010N)

Leakage at a given Is

loss

Saturation current of the
FET switch

..

,"

FIGURE 1. Use of Compensation FET

(2a)

101ON)

or:

Where: VA(MAX)

R2 + rOS(ON)Q2

AvcL

FIGURE 2. On Leakage Current, IOIONI

~

20 mA

In a typical application, VA might = ±10V, Ao
0.1%, O°C < TA < 85°C. The criterion of equation
(2b) predicts: 10V
R1(MIN) >---= 5kn
- 20MA
10

For R, = R2 , gain accuracy is determined by the
rOS(ON) match between a, and O 2 , Standard
match between a, and O2 is 50n resulting in a
gain accuracy of 0.5% (for R, = R2 = 10k).
Tighter rOSION) match versions are available.
Noise Immunity
The switches with the source diodes grounded
exhibit improved noise immunity for positive
analog signals in the "OFF" state. With VIN = 15V
and the VA = +10V, the source of a, is clamped
to about 0.6V by the diode (V GS = 14.4V). The
"ON" impedance of the diode is about 26n
ensuring that AC signals imposed on the +10V
will not gate the FET "ON."

For R, = 5k, Is ~ 10V/5k or 2 mAo The electrical
characteristics guarantee an 10(ON) :::; l/LA at 85°C
for the AH5010C. Per the criterion of equation
(2a):
(1 OV)( 10- 3 )
R1(MIN) >
> 10kn
1 x 10-6
Since equation (2a) predicts a higher value, the
10k resistor should be used.

y.,o-Wo.-(].....- ,

Selection of Gain Setting Resistors
Since the AH5009 series of analog switches are
operated current mode, it is generally advisable to
make the signal current as large as possible. tiow·
ever, current through the FET switch tends to for·
ward bias the gate to channel (source) diode
resulting in leakage across the diode. This leakage,
10ION), increases exponentially with increasing Is.
As shown in Figure 2, 10(ON) represents a finite
error in the current reaching the summing junction
of the op amp.
7·16

FIGURE 3.

The "OFF" condition of the FET also effects gain
accuracy. As shown in Figure 3, the leakage across
O2 , 10IOFF) represents a finite error in the current
arriving at the summing junction of the op amp.

»

::J:

applications information (con't)

UI

o
o

CD

ANALOG
IN'UTIV... I

r------~+5V

I
I

I
I
I
I

I
I
I
__ I

I

I

L!!}!!.:~_-':_"':'...J
FIGURE 4. Interfacing with +5V Logic

ANALOG

IN.UTIV .. 1

ANALOG

uutrur

I
I
I
__ I

I
I..!!:!.~~

__~.£..J

FIGURE 5. Interfacing with +15V Open Collector Logic

Accordingly:
VA(MIN) Ao
RlIMAX ) <---'--'--(N) IO(OFF)
Where: VA(MIN)
Ao

Minimum value for the ana·
log input signal
Desired accuracy

N

Number of channels

lo(oFF)

OFF leakage of a given FET
switch

As an example, if N ~ 10, Ao ~ 0.1%, and lo(oFF)
::; 10 nA at 8SoC for the AH5009C, RlIMAX ) is:

and the odd numbered types from lSV open
collector TTL.
Standard TTL gates pull·up to about 3.5V (no
load). In order to ensure turn·off of the even
numbered switches such as AHS010, a pull-up
resistor, R EXT , of at least 10 kn should be placed
between the SV Vee and the gate output as shown
in Figure 4.
Likewise, the open-collector, high voltage TTL
outputs should use a pull-up resistor as shown in
Figure S. In both cases, t(OFF) is improved for
lower values of R EXT and the expense of power
dissipation in the low state.

(lV)(10- J )
R'(MAX) ::;-----~~ 10k
(10)(10 x 10- 9 )

DI

I

Ros1gN1COMPlNSATINO
ELEMENT

,I

Selection of R2 , of course, depends on the gain
desired and for unity gain R, ~ R2 •
Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset
voltage of the op amp - all of which should be
considered in setting the overall gain accuracy of
the circuit.

SHUNT""""'"
HEMEIiIT

FIGURE 6. Definition of Terms

TTL Compatibility
Two input logic drive versions of AHS009 series
are available: the even numbered part types are
specified to be driven from standard 5V-TTL logic

Definition of Terms
The terms referred to in the electrical characteristics tables are as defined in Figure 6.
7·17

G)

o
o
It)

device schematics and pin connections

J:

«

FOUR CHANNEL
AH5009CN (ROS(ON) !> lOOn 15V - TTL)
AH5010CN (ROS(ON) !> 150n 5V - TTL)
14PIN DIP

AH5011CN (ROS(ON) !> loon 15V • TTL)
AH5012CN (ROS(ON) !> 150n 5V . TTL)
16PIN DIP

'~'

t L

.~.

t

!,

"~.

t12

b,o

"~"

t13

.ts

THREE CHANNEL
AH5013CN (ROS(ON) :; loon 15V - TTL)
AH5014CN (ROS(ON) !> 150n 5V - TTL)
14PIN DIP

AH5015CN (ROS(ON) !> loon 15V - TTL)
AH5016CN (ROS(ON) :; 150n 5V - TTL)
16 PIN DIP

'~"

t

L

.~"

t

1,

"~.'

t12 1,0

TWO CHANNEL
AH5017CN (ROS(ON) :; loon 15V - TTL)
AH5018CN (ROS(ON) :; 150n 5V· TTL)
8 PIN DIP

AH5019CN (ROS(ON) :; loon 15V • TTL)
AH5020CN (ROS(ON) !> 150n 5V - TTL)
8PIN DIP

'~'A

t

1,

'Tr"
11

\4

,

It

,

13

SINGLE CHANNEL
AH5021CN (ROS(ON) !> loon 15V - TTL)
AH5022CN (ROS(ON) !> 150n 5V . TTL)
8PIN DIP

'TIT-Cr'
,

,

AH5023CN (ROS(ON) !> loon 15V· TTL)
AH5024CN (ROS(ON) !> 150n 5V • TTL)
8 PIN DIP

'~'

,

Package Types - 8, 14, 16 pin epoxy "8"

7-18

1. !,

»
J:

typical applications

UI

o

o

16-Channel Multiplexer

Gain Programmable Amplifier

(D

fOUT

I
--'Mr'!!.'I';.-.---,
' ..,-

,

I

E'NO~w."4·'i-.-...,
,

I

I
I

I~"

"

I

'-- _ _ _ _ _ ....J

I
I
I
I
I
I
I

L_
CharacteristiCS: Gam = -EOUT "R FB

I,"

(OUT

Low Cost Demultiplexer

Note: The analog sWitch between lire
op amp and the 16 input switches
reduces the errors due to leakage.
Chara£temtlcs: Error" D.4,uV typ@Z5°C
10IlVtyp@10°C

All resistors are 10k.

Low Cost Multiplexer/Mixer

g
I

"

100/(3

-RJ

AVCl "

Hz

=-1

(V+j (R3)
VODe >= - R ' - "+10V

7-19

N

o
o
:E

Analog Switches

~

«

~

o
o

AM1000.AM1001.AM1002 silicon N-channel
high speed analog switch

~

:E

«
o
o

o

~

~

general description
The AMl 000 series are junction FET integrated cir·
cuit analog switches. These devices commutate
faster and with less voltage spiking than any other
analog switch presently available. By comparison,
discrete JFET switches require elaborate drive cir·
cuits to obtain reasonable performance for high
toggle rates. Encapsulated in a four pin TO·72
package, these units require a minimum of circuit
board area. Switching transients are greatly reduced
by a monolithic integrated circuit process. The
resulting analog switch device provides the follow·
ing features:
• Low ON Resistance
• High Analog Signal Frequency

Jon
100 MHz

schematic and connection diagram

.

•
•
•
•

4MHz
250pA
±15V

High Toggle Rate
Low Leakage Cu rrent
Large Analog Signal Swing
Break Before Make Action

The AM 1000 series of analog switches are particu·
larly suitable for the following applications:
• High Speed Commutators
• Multiplexers
• Sample and Hold Circuits
• Reset Switching
• Video Switching

equivalent circuit

TO·72 Package

",,@:~".

OUTPUT

1

,

INPUT Z

]

~::: ~o---o---rg---o :::~:;

v" ••

ANALOG

EXTERNAL
DIDOEREOUIRED

Order Number AM1000H
or AM1001H or AM1002H
See Package 9A

External diode required
fordrivl!rswithpull·upcireuit.

liAS

typical applications
'10 Volt Swing Analog Switch 0.5% Accuracy

±15 Volt Swing Analog Switch

r--AM1iiO)

r---;:"~

AJI~~~J~=f~;

I
CIIANNEl

SELlCT
IIIPUT

7·20

'

I

s:»....
o
o
o

absolute maximum ratings
AM1000
AM1002

AM1DOl
VIN (Note 1!

+~OV

V OUT (Note 1)

+50V
-50V
+50V

VORIVE (Note 11
V B1AS (Note 1)

300mW
1.7mWtC
15QmW

Power DisSipation @ T A " 25°C
Lmear Derating Factor
Power Dissipation @T c ::; 12S"C

+40V
+40V
-40V
+4DV

Lmear Derating Factor
Maximum Junction Operating Temperature

Storage Temperature
Lead Temperature (Soldermg, 10 sec)

»
s:
....
o
o....

6mWtC
-5SoC to +150°C
+200°C
+300o C

electrical characteristics
ON CHARACTERISTICS (Note 2J

»

MIN

TYP

RON

VORIVE = +15V, V S1AS '" -1SV
liN'" 1 rnA, V OUT '" OV

AM100l

20

40

50

n

s:
....
o

RON

VORIVE =

+10V, V S1AS = -lOV
liN:: 1 rnA, V.o UT = OV

AM1000
AM1002

20
20

25
50

30
100

n
n

N

PARAMETER

CONOITION

MAX

UNITS

o

OFF CHARACTERISTICS

PARAMETER

AM1000
AM100l

CONDITION
MIN
VOAlve = -20V, V B1AS :: -lOV
VIN = -lOV, V OUT = +10V
TA = +2SoC
TA = +12SoC

IOUTIOFF)

IOUT(OFF)

VORIVE "" -20V, VB lAS '"

AM100Z

TYP

MAX

.05
.025

.05
05

MIN

UNITS

TYP

MAX

.25
.25

0.5
0.2

1
1

~A

.25
.25

0.5
0.2

1
1

~A

TVP

MAX

UNITS

5

10

mA

nA

-lOV

VIN = +lOV, VOUT = -lOV
T A +2SoC
T A = + 12SOC

=

nA

DRIVE CHARACTERISTICS (Note 3)
PARAMETER

CONDITION
VOAlve =- -20V, V BIAS = -10V
VIN ±lOV, VOUT = ±10V

'DAIVE
(Switch OFF)

MIN
AM1000, 1001, 1002

=

SWITCHING CHARACTERISTICS
PARAMETER

CONDITION

tON

AM1000
MAX

AM10Dl
MAX

AM1002
MAX

UNITS

100

150

200

ns

100

100

100

ns

See Switching Time
Test Circuit

tOFF

Note 1: The maximum voltage ratings may be applied between any pin or pins simultaneously. Power dissipation may be
exceeded in some modes if the voltage pulse exceeds 10 ms. Normal operation will not cause excessive power dissipation
even in a "D.C." switching application.
Note 2: All parameters are measured with external silicon diodes. See electrical connection diagram for proper diode
placement.
Note 3: I(BIAS) (Switch OFF) is equal to I(DRIVE) (Switch OFFI.I(BIAS) (Switch ON), is equal to external diode leakage.

Note 4: Rise and fall times of VDRIVE shall be 15 ns maximum for switching time testing.

switching time test circuit and waveforms
r----D.iJ.T.'I
I
I

.

~.
100y--av
VOU'9G"~:

~>-~lJ--t· vo~
OOO:--.1V

I

T.:

I

I

:.

L ____ .J

':"".

VIIR1YE

I

:

-YOUl

i
,

i'

+IDV

:

IN91.

-IIIN_!

~

,,
,,
,,I
,
,

~av

:--lo..

7·21

•oan

Analog Switches

an
:E
:E
.......

•oan
•:E

AM2009/AM2009C/MM4504/MM5504
six channel MOS multiplex switches
general description

:E

.......
CJ

The AM2009/ AM2009C/MM4504/MM5504 are six
channel multiplex switches constructed on a single
silicon chip using low threshold P·channel MOS
process. The gate of each MOS aevice is protected
by a diode circuit.

en

o
o

N

:E
c(

features

en
o

•
•
•
•
•

.......

o

N

:E

Typical low "on" resistance
Typical low "off" leakage
Typical large analog voltage range
Zero inherent offset voltage
Normally off with zero gate voltage

The AM2009/ AM2009C/MM4504/M M5504 are de·
signed for applications such as time division multi·
plexing of analog or digital signals. Switching
speeds are primarly determined by conditions
external to the device such as signal source imped·
ance, capacitive loading and the total number of
channels used in parallel.

150n
100 pA

The AM2009/MM4504 are specified for operation
over the -55°C to +125°C military temperature
range. The AM2009C/MM5504 are specified for
operation over the -25°C to +85°C temperature
range.

±10V

c(

schematic diagram

.
"

If

f-

"f-

~

..

~

..

~~

Pin numlJanin
parenthesis.ppfy
for the MM4504/

J."

MM5504 only.

~

"

.L

>-- .!.o

>---

"

.L
>---

"

.

~
>---

,

,

,

Order Number
AM2009F or AM2009CF
MM4504F or MM5504F
See Package 4

.

,

l:

.

Order Number
AM2009D or AM2009CD
MM4504D or MM5504D
See Pack_ 1

typical applications

ANALOG INPUTS

TTL

INPUTS

:..-----.
1

ANALOG
OUTPUT

ANALOG

OUTPUT

...

ADDRESS SELECT

TTL Compatible 6 Channel MUX

7·22

ADDRESS SELECT
1-12

32 Channel MUX

»

absolute maximum ratings

N

(V BULK = OV)

Voltage on Any Source or Drain
Voltage on Any Gate
Positive Voltage on Any Pin
Source or Drain Current
Gate Current (forward direction of zener clamp)

-30V
-35V
+0.3V
50mA
0.1 mA

electrical characteristics

3:

o

Total Power Dissipation (at T A = 2SoC)
Power Dissipation - each gate circuit
Operating Temperature Range AM2009
AM2009C
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

o
CD
......

900mW
150mW
-5SoC to +12SoC
- 2SoC to +8SoC
-6SoC to +150°C
300°C

»

3:

N

o
o

(Note 1)

CD

LIMITS
PARAMETER

MIN
Threshold Voltage

V GS

DC ON Resistance

V GS = -20V, los =
TA = 25Q C

DC ON Resistance

VGS = -10V, VSB
los

'"

-100~A,

=-100~A, TA = 25°C

DC ON Resistance

VGs:= -lOV, VSB

los

,J:Io
CJ1

150

o

-20V.

V GS = -20V, los = -100

,J:Io

500

......
3:
3:

~A

= -20V,

= -100 ~A

V GS = -20V, Note 2
VGS = -20V, Note 2. TA = 25°C

Input Leakage

......
3:
3:

TVP

-1.0

los = -1 pA

'" YOSt

DC ON Resistance

Gate Leakage

(')

CONOITIONS

CJ1
CJ1

100

o

,J:Io

Vos = -20V. Note 2

Vos = -20V, Note 2, TA '" 25°C
Output Leakage

Vso "" -20V. Note 2
Vso '" -20V. Note 2, TA = 25('C

Gate-Bulk Breakdown

1GB = -10 ~A, Note 2

100

500
-35

Voltage
Source-Drain Breakdown
Voltage
Drain-Source Breakdown
Voltage

Iso = -10 pAt VGO = D.
Note 2
IDS

v

-30

= -10 ~A, V GS = 0,

Note 2

-30

V

Transconductance

mhos

4000

Gate Capacitance

Note 3, f '" 1 MHz

4.7

8

pF

Input Capacitance

Note 3, f

4.6

8

pF

Output Capacitance

Note 3, f = 1 MHz

20

pF

=

1 MHz

16

Note 1: Ratings apply over the specified temperature range and VeULK = 0, unless otherwise specified.
Note 2: All other pins grounded.
Note 3: Capacitance measured on dual-in-line package between pin under measurement to all other pins. Capacitances are
guaranteed bV design.

typical performance characteristics
"ON" Resistance us Gate-toSource Voltage

UON'" Resistance vs T
Temperature
soo

Input Leakage Current vs
Temperature

til

vV

4DO

........ y

-J

JOO

IDO

-30

-Z5

-zo

........ ~(ls:-IOV;VBS=+ZOV

ZDO

..-

~

0

-15
VGsIV)

-10

-5

-50 -Z5

frY°r

0 25
50 J5
TEMPERATURE I C)

IDO

125
TEMPERATURE ('CI

7-23

Analog Switches
AM370S/AM370SC a-channel MOS analog multiplexer
general description
The AM370S/AM370SC is an eight-channel MOS
analog mUltiplex switch. TTL compatible logic
inputs that require no level shifting or input
pull-up resistors and operation over a wide range
of supply voltages is obtained by constructing the
device with low threshold P-channel enhancement
MOS technology. To simplify external logic requirements, a one-of· eight decoder and an output
enable are included in the device.
Important design features include:
•
•
•
•
•

TTLlDTL compatible input logic levels
Operation from standard +SV and -lSV supplies
Wide analog voltage range - ±SV
One-of-eight decoder on chip
Output enable control

•
•
•

Low ON resistance - lS0n
Input gate protection
Low leakage currents - O.S nA

The AM370S/AM370SC is designed as a low cost
analog multiplex switch to fulfill a wide variety of
data acquisition and data distribution applications
including cross-point switching, MUX front ends
for A/D converters, process controllers, automatic
test gear, programmable power supplies and other
military or industrial instrumentation applications.
The AM370S is specified for operation over the
-SSoC to +12SoC military temperature range. The
AM370SC is specified for operation over the - 2SoC
to +8SoC temperature range.

schematic and connection diagrams

---11"'''''''---

.'

"

..

" ..

v" •

'"

15

v" •

1:1 VelD

14

~

.'

..

11 $,

5

s, •
s, ,

"
",

".

~

s,
s,

TO.VI£W

Order Number
AM3705D or AM3705CD

See Package 2
AM3705F or AM3705CF

See Package 5

block diagram

(MIL-STD-8068)

truth table
CHANNEL

LOGIC INPUTS

" " "
L
H
L
H
L

CHANNEl NO'S

Lhhhhhhh

o DATA OUTPUT

L
L

L
L
L
L
H

DE

ON

H

S,
S,
S,
S.
S,

H

H

H
L
L

L
H

H

H
H

H
H
H
H
H
H

x

x

X

L

H

H

H

So
S,

50
OFF

typical application
Buffered a-Channel Multiplex, Sample and Hold

22

OUTPUT
ENABlE

- - - - - - - - *BothVsslines.reinternallv
LOGIC INPUT
connected; either one or
both may bB used.

7-24

...... \
'19\1l1

An.log Sign.1 Ringe - O.SV
AcquisitionTiml-2Sns
Drift Rite - 0.5 mVls!C
AperatureTime-25Dns

>

3:
~
o
c.n
.......

absolute maximum ratings
Positive Voltage on Any Pin (Note 1)
Negative Voltage on Any Pin (Note 1)
Source to Drain Current
Logic Input Current
Power Dissipation (Note 2)
Operating Temperature Range AM3705
AM370SC
Storage Temperature Range
Lead Temperature (Soldering, 10 sec)

electrical characteristics
PARAMETER

+0.3V
-35V
t30mA
to.l mA
500mW
_55°C to +12SoC
- 2SoC to +85°C
_65°C to +150°C
300°C

>

3:
w

......

o
c.n

(')

(Note 3)

SYMBOL

CONDITIONS

MIN

LIMITS
TYP

MAX

UNITS

80

250

fl

160

400

fl

400
400

fl

ON Resistance

RON

V IN = VSS; lOUT = 100/JA

ON Resistance

RON

V IN = -5V; lOUT = -100/JA

ON Resistance
AM370S
AM370SC

RON

V IN = -SV; lOUT = -100/JA
TA = +12SoC
TA=+70°C

ON Resistance

RON

V IN = +SV; V OD = -lSV;
lOUT = 100/JA

100

fl

ON Resistance

RON

V IN = OV, Voo = -lSV,
lOUT = -100/JA

ISO

fl

ON Resistance

RON

V IN = -5V; Voo = -15V;
lOUT = -100 /JA

2S0

OFF Resistance

ROFF

n
n

Output Leakage Current
AM370S
AM370SC

, LO
, LO
, LO

Data Input Leakage Current
AM370S
AM370SC

I LOI
'LDI

Vss - V IN = 15V
Vss - V IN = 15V;TA = 125°C
Vss - V IN = 15V; TA = 70°C

Logic Input Leakage Current
AM370S
AM370SC

ILl
'Ll

VSS - VLOQICln =

'Ll

15V;T A
Vss - V LogIC In = 15V; TA

Logic Input LOW Level

V IL

Vss = +5.0V

Logic Input LOW Level
Logic Input HIGH Level
Logic Input HIGH Level

V IL
V IH

ILDI

Channel Switching Time-Positive

V'H
t+

Channel Switching Time-Negative

t-

Channel Separation

10'0
O,S
150
3S

VSS - VOUT = lSV
VSS-VOUT= lSV;T A = 12SoC
Vss - V OUT = lSV; TA = 70°C

Vss -

VLOQlCln

0,1
2S
O.S

= 15V
=
=

.001
.OS
.05

12SoC
70 e

Vss = +5.0V

l

Switching Time
Test Circuit

I

0

O.S
Voo
3.0
Vss - 2.0

n

10
SOD
SOO

nA
nA
nA

3.0
SOD
SOO

nA
nA
nA

1
10
10

/JA
/JA
/JA

1.0
Vss - 4.0

3.S
Vss + 0.3
300

V
V
V
V
ns

600

ns

f = 1 kHz

62

dB

35

pF

Output Capacitance

Cdb

Vss - V OUT = 0; f = 1 MHz

Data Input Capacitance

C'"

Vss - V o ,. = 0; f = 1 MHz

Logic I"put Capacitance

Cog

VSS-VLogicln=O;f= 1 MHz

Power Dissipation

Po

Voo = -31V, Vss = OV

6.0

pF

6.0
125

g

pF

175

mW

Note 1: All voltages referenced to VSS.
Not. 2: Ratings applies for ambient temperatures to +2SoC, derate linearly at 3 mWfC for ambient temperatures above +2SoC.
Not. 3: Specifications apply for TA = 25°C, -24V ~ VDD ~ -20V, and +5.0V ~ VSS ~ +7.0V; unless otherwise specified
(all voltages are referenced to groundJ.

7-25

typical performance characteristics
ON Resistance vs Analog
Input Voltage

ON Resistance vs
Ambient Temperature

300

voo" -20V
_ Vss=+7V
TA = +25~C

250 JElrlDilT

400
350

lOUT "'-100/JA

200
~ 150

I III

100

t-

50

~l\Ul::
T~;Wo1Nis

cr 250

--rr

=150

II

100

-3

-1 0 +1

+3

+5

+1

50

V1NPUT "" +7V

1111 I

o

-5

200

VINPUT" -5V

"'io 200

-75 -50 -25

0

25

50

~

Output Leakage Current vs
Ambient Temperature

--

VOUT ;; -S.OV-

,.......

"""'l

~

r

"'f+5

VOUT= D.DV-

r--

o

75 100 125

-10

-15

-20

-25

VDD SUPPLY IVI

switching time test circuit

l§VOUT-Vss -15V

TEST~S

r-"

~.-.J

/
y .. ,

"
:t1-

~:--

.---- -

''''

OUlfUT

Y,.,_·W

V

50

.......

t- V

10'

25

'r"-jDIJA

~

TEMPERATURE rCI

INPUT IVI

TA ;; 25°C
Vss =+5V

2;0

TI

50

o

.~

I IJ I I

Vss=+1V
lOUT = -lDOJ.lA

300

TEST POINT--<

r"-r-

£

Voo =-lOY

ON Resistance vs V DO
Supply Voltage

,"

100

75

,"

125

TEMPERATURE I'CI

typical applications (con't.)
Differential Input MUX

16·Channel Commutator

"""""I.
'H,aITTL,l
t~~IUITTU

·""""1.
~M'''''(l'

Voltago Gain "'ZOO
DlfferentiallnputResistancl"'1010n
CMRR"100dB
Input CUITent=O.5 nA

SoChannel Demultiplexer with Sample and Hold

Wide Input Range Analog Switch

..· .. 1
""IITS

AnaloglnputRange-25V
Slew R.t. - 5 V//JI

7-26

Analog Switches
MM450/MM550. MM451/MM551.
MM452/MM552. MM455/MM555 MOS analog switches
general description
Large Analog Input Swing
± 10 Volts
Low Supply Voltage
VSU LK ; +10 Volts
VGG ; -20 Volts
-10V
150n
• Low ON Resistance VIN
+10V
75n
V 1N
200 pA@25°C
• Low Leakage Current
• I nput Gate Protection
• Zero Offset Voltage
•
•

The MM450, and MM550 series each contain
four p channel MOS enhancement mode transistors built on a single monolithic chip_ The four
transistors are arranged as follows:
MM450, MM550

Dual Differential
Switch
Four Channel
Switch
Four MOS Transistor Package
Three MOS Transistor Package

MM451, MM551
MM452, MM552
MM455, MM555

Each gate input is protected from static charge
build-up by the incorporation of zener diode protective devices connected between the gate input
and device bulk_

These devices are useful in many airborne and
ground support systems requiring multiplexing,
analog transmission, and numerous signal routing
appl ications_ The use of low threshold transistors
(VTH ; 2 volts) permits operations with large analog input swings (± 10 volts) at low gate voltages
(-20 volts) _Significant features, then, include:

Th!l MM450, MM451, MM452 and MM455 are
specified for operation over the -55°C to +125°C
military temperature range_ The MM550, MM551,
MM552 and MM555 are specified for operation
over the -25°C to +70°C temperature range_

schematic and connection diagrams

-:;:::::L.___E=:::;-::--SOURCEt

Note1:Pins1 and 8connectad to cau and
devictbulk.DrILnandSourcemaybeintercllanged.
MM452f. MMSS2F.
Note 2: MM452D and MM552D fdual·m·line packages)
hive ume pin cOllnectionl as MM45ZF and MM552F
snoWllabove.

Note: Pin 5 connected to use and device bulk.
MM45D. MM550

Order Number MM452F or MM552F

Order Number MM45DH or MM55DH
See Package 12

See Package 4
Order Number MM452D or MM552D

See Package 1
DUIPUT
(SOURCEI

IUUt

Note: PinScDnn8ctedtD~aStlnddevicEl
bulk,Drain and Source may beinmchanged.
MM455. MM555

Note: Pin 5 connected to case and device bulk.
MM451.MM551

Order Number MM451H or MM551H
See Package 12

Order Number MM455H or MM555H
See Package 12

typical applications
EQUIVALENT

l

fP

TOGGlEo--i-+--+....I---1~+--+-l
INPUT o-+-"-+---1~
IL ______ _
SWITCH #1
OUTPUT

I

I
I
I

I

_J
SWITCH #2
OUTPUT

DPDT Analog Switch

7-27

absolute maximum ratings

MM450, MM451, MM452, MM455

Gate Voltage (VGG)
Bulk Voltage (V BULK)
Analog Input (V IN )

+10V
+10V to -20V

Power Dissipation
Operating Temperature
Storage Temperature

-SS·C to +12S·C
-6S·C to +l50·C

MM550, MM551, MM552, MM555
+lOV 10 -30V
+lOV
+lOV 10-20V

+lOV 10 -30V

200 mW
-2S· C to 70· C
-6S·C to +lS0·C

200 mW

electrical characteristics
STATIC CHARACTERISTICS (Note 1)
CONDITION

PARAMETER
Analog Input Voltage
Threshold Voltage (V GS(T))

VOG=O,lo=l!LA

ON Resistance

V IN = -10V

ON Resistance

V IN = Vss

OFF Resistance
Gate Leakage C~rrent (lGse)
Input (Drain) Leakage Current
MM450, MM451, MM452, MM455

MIN

TYP

1.0

2.2

VGS = -25V, Ves = 0, T A = 25°C

MAX

UNITS

±10
3.0

V
V

150

600

n

75

200

n

10 10

n

20

pA

.025
.002
.025

100
1.0
1.0

nA
!LA
!LA

T A = 25°C
TA = 70°C

0.1
.030

100
1.0

!LA

Output (Source) Leakage Current
MM450, MM451, MM452, MM455

T A =25°C

.040

100

nA

Output (Source) Leakage Current
MM450
MM451
MM452, MM455
MM450, MM451, MM452, MM455

TA = 85°C
TA = 85°C
T A =85°C
TA = 125°C

1.0
1.0
1.0
1.0

!LA
!LA
!LA
!LA

Output (Source) Leakage Current
MM550
MM551
MM552, MM555

TA=70°C
TA = 70°C
TA = 70°C

1.0
1.0
1.0

!LA
!LA
!LA

Input (Drain) Leakage Current
MM550, MM551, MM552, MM555

TA = 25°C
T A =85°C
TA = 125°C

nA

DYNAMIC CHARACTERISTICS
Large Signal Transconductance

Vos = -10V, 10 = 10 mA
f = 1 kHz

4000

!Lmhos

CAPACITANCE CHARACTERISTICS (Note 2)
DEVICE TYPE

PARAMETER

MIN

TYP

MAX

UNITS

8

10

pF

Output (Source) Capacitance (CSB )

MM450,
MM451,
MM452,
MM455,

MM550
MM551
MM552
MM555

11
20
7.5
7.5

14
24
11
11

pF
pF
pF
pF

MM450, MM550
MM451, MM551
MM452, MM552
MM455, MM555

10
5.5
5.5
5.5

13

Gate Input Capacitance (C Ge)

8
9
9

pF
pF
pF
pF

Gate to Ou~put Capacitance (C Gs )

ALL

3.0

5

pF

Analog Input (Drain) Capacitance (COB)

ALL

Note 1: The resistance specifications apply for -5SoC

S TA S + 85°C,

VGG = -20V, VeULK =

+10V, and a test 'current of 1 rnA. Leakage current is measured with all pins held at ground except

the pin being measured which is biased at -2SV.
Note 2: All capacitance measurements are made at 0 volts bias at 1 MHz.

7·28

typical dynamic input characteristics

(TA = 25Q C Unless Otherwi.e Noted)

CONDITION 1:
ANALOG INPUT VOLTAGE
AT+l0VOLTS

Dynamic Ron
10.000

Vas" +10Y

V

r
T

,N

ZJZT A ' -SS"C

V

~~~ O~

1000

]

TA;z 25~C

W

ff

'rTA -85"C
VaB " +10V
VIN "+1DV

."

".s

c

z

'"

,~ ~

100

Voo

10
-8

'8

-zz

-16

-0.6

CONDITION Z:
ANALOG INPUT VOLTAGE
ATOVOLTS

10 r-------r-~--~~~
8

§§V •• ' '10V
=I=V IN 'OV

ov~vaUT

T

TA

1000

!."

-

=85°~~

TA =25°&

~T. - -SS"C

rt

,

100

VGO

10

o

-4

-8

".s
z

:::::~

-12

-16

-20

-0.6

-82

CONDITION 3:
ANALOG INPUT VOLTAGE
AT -10 VOLTS

r
LU

Yaa =+lDV
Y,N ,. -IOV
V
auT

8

10.000

::=

I
rt

"

1000

VGG

100
-16

TA' 25"C
};-j.=TA '-55"C-

=

+lDY

V,N

'

-IOV

I

-18

~:: :=1~

..

~
I

-19

10
-1.0

-20

I

-0.6

-0.2

-so
-45

~ -40
CI:

-35

a

lOGO

-3D

z -25
C
:; -20
l00mme

-

~ -15
-10

-5
-8
VGG

-12
(VI

-16

-20

r-IVG;~? plo

New Products
3:

Q)

z

LM3089 FM receiver IF system

general description
The LM3089 has been designed to provide all the major
functions required for modern FM IF designs of auto·
motive, high·fidelity and communicati~ns receivers.

features
• Three stage IF amplifier/limiter provides 1211V (typ)
-3 dB limiting sensitivity

• Balanced product detector and audio amplifier pro·
vide 400 mV (typ) of recovered audio and distortion
as low as 0.1 % with proper external coil designs.
• Four internal carrier level detectors provide delayed
AGC signal to tuner, tuning meter drive current and
interchannel mute control.
• AFC amplifier provides AFC current for tuner and/or
center tuning meters .
• A direct replacement for CA3089E

block diagram

AUre$lstancevalues,remohms
*Ltuneswitltl00 pF (C) at 10.7 MHz
00 0l!/G.T.EX22741 orequinlent}
4.1k

to.1MHz
INPUT
0.01

1-

12

'"
.-""''11--0---+----0
13

8-4

TUNING METER OUTPUT

TOSTEREO
THRESHOLD
LOGIC CIRCUITS

120.

'·' ' '1

SODk

MUTING
SENSITIVITY

cCD

....

Definition of Terms

~.

o
~

voltage regulators
Current-Limit Sense Voltage: The voltage across
the current limit terminals required to cause the
regulator to current-limit with a short circuited
output. This voltage is used to determine the value
of the external current·limit resistor when external
booster transistors are used.
Dropout Voltage: The input·output voltage differential at which the circuit ceases to regulate
against further reductions in input voltage.
Feedback Sense Voltage: The voltage. referred to
ground. on the feedback terminal of the regulator
while it is operating in regulation.
Input Voltage Range: The range of DC input volt·
ages over which the regulator will operate within
specifications.
Line Regulation: The change in output voltage for
a change in the input voltage. The measurement is
made under conditions of low dissipation or by
using pulse techniques such that the average chip
temperature is not significantly affected.
Load ~egulation: The change in ~utPut voltage
for a change in load current at constant chip
temperature.

o
....
Output-Input Voltage Differential: The voltage
difference between the unregulated input voltage
and the regulated output voltage for which the'
regulator will operate within specifications.

""'CD
..."

3

1/1

Output Noise Voltage: The RMS AC voltage at the
output with constant load and no input ripple.
measured over a specified frequency range.
Output Voltage Range: The range of regulated
output voltages over which the specifications
apply.
Output Voltage Scale Factor: The output voltage
obtained for a unit value of resistance between the
adjustment terminal and ground.
Quiescent Current: That part of input current to
the regu lator that is not del ivered to the load.
Ripple Rejection: The line regulation for AC input
signals at or above a given frequency with a specified value of bypass capacitor on the reference
bypass terminal.

Long Term Stability: Output voltage stability
under accelerated life-test conditions at 125°C
with maximum rated voltages and power dissipation for 1000 hours.

Standby Current Drain: That part of the operating
current of the regulator which does not contribute
to the load current.

Maximum Power Dissipation: The maximum total
device dissipation for which the regulator will
operate within specifications.

Temperature Stability: The percentage change in
output voltage for a thermal variation from room
temperature to either temperature extreme.

operational amplifiers
Bandwidth: That frequency at which the voltage
gain is reduced to l/-v'i times the low frequency
value.
Common Mode Rejection Ratio: The ratio of the
input voltage range to the peak·to·peak change
in input offset voltage over this range.
Harmonic Distortion: That percentage of har·
monic distortion being defined as one·hundred
times the ratio of the root-mean·square (rms) sum
of the harmonics to the fundamental. % harmonic
distortion =
(V 2 2 +

vl + V 4 2

+ .. . )'/2 (100%)

V,
where V, is the rms amplitude of the fundamental
and V2 • V3 • V4 •... are the rms amplitudes of the
individual harmonics.

Input Bias Current: The average of the two input
currents.
Input Impedance: The ratio of input voltage to
input current under the stated conditions for
source resistance (Rs) and load resistance (Rd.
Input Offset Current: The difference in the cur·
rents into the two input terminals when the out·
put is at zero.
Input Offset Voltage: That voltage which must be
applied between the input terminals through two
equal resistances to obtain zero output voltage.
Input Resistance: The ratio of the change in input
voltage to the change in input current on either
input with the other grounded.
Input Voltage Range: The range of voltages on the
input terminals for which the amplifier operates
within specifications.

9·1

III

E
...

{!

operational amplifiers (con't)

....o
c
.2
.~
c
OJ:

CI)

C

Large-Signal Voltage Gain: The ratio of the output
voltage swing to the change in input voltage
required to drive the output from zero to this
voltage.

Settling Time: The time between the initiation of
the input step function and the time when the
output voltage has settled to within a specified
error band of the final output voltage .

Output Impedance: The ratio of output voltage to
output current under the stated conditions for
source resistance (Rs) and load resistance (Rd.

Slew Rate: The internally-limited rate of change
in output voltage with a large-amplitude step function applied to the input.

Output Resistance: The small signal resistance
seen at the output with the output voltage near
zero.

Output Voltage Swing: The peak output voltage
swing, referred to zero, that can be obtained
without clipping.

Supply Current: The current required from the
power supply to operate the amplifier with no
load and the output at zero.
Transient Response: Theciosed-Ioop step-function
response of the amplifier under small-signal
conditions.

Offset Voltage Temperature Drift: The average
drift rate of offset voltage for a thermal variation
from room temperature to the indicated temperature extreme.

Unity Gain Bandwidth: The frequency range from
DC to the frequency where the amplifier open
loop gain rolls off to one.

Power Supply Rejection: The ratio of the change
in input offset voltage to the change in power
supply voltages producing it.

Voltage Gain: The ratio of output voltage to input voltage under the stated conditions for source
resistance (Rs) and load resistance (Rd.

voltage comparators/buffe rs
Input Bias Current: The average of the two input
currents.
Input Offset Current: The absolute value of the
difference between the two input currents for
which the output will be driven higher than or
lower than specified voltages.
Input Offset Voltage: The absolute value of the
voltage between the input terminals required to
make the output voltage greater than or less than
specified voltages.
Input Voltage Range: The range of voltage on the
input terminals (common mode) over which the
offset specifications apply.
Logic Threshold Voltage: The voltage at the output of the comparator at which the loading logic
circuitry changes its digital state.
Negative Output Level: The negative DC output
voltage with the comparator saturated by a differential input equal to or greater than a specified
voltage.
Output Leakage Current: The current into the
output terminal with the output voltage within a
given range and the input drive equal to or greater
than a given value.
Output Resistance: The resistance seen looking
into the output terminal with the DC output level
at the logic threshold voltage.
Output Sink Current: The maximum negative current that can be delivered by the comparator.

9-2

Positive Output Level: The high output voltage
level with a given load and the input drive equal to
or greater than a specified value.
Power Consumption: The power requ ired to operate the comparator with no output load. The power
will vary with signal level, but is specified as a
maximum for the entire range of input signal
conditions.
Response Time: The interval between .the application of an input step function and the time when
the output crosses the logic threshold voltage. The
input step drives the comparator from some initial,
saturated input voltage to an input level just barely
in excess of that required to bring the output from
saturation to the logic threshold voltage. This
excess is referred to as the voltage overdrive.
Saturation Voltage: The low-output voltage level
with the input drive equal to or greater than a
specified value.
Strobe Current: The current out of the strobe
terminal when it is at the zero logic level.
Strobed Output Level: The DC output voltage,
independent of input conditions, with the voltage
on the strobe terminal equal to or less than the
specified low state.
Strobe ON Voltage: The maximum voltage on
either strobe terminal required to force the output
to the specified high state independent of the
input voltage.

voltage comparators/buffers (con't)
~

Strobe OFF Voltage: The minimum voltage on the
strobe terminal that will guarantee that it does not
interfere with the operation of the comparator.
Strobe Release Time: The time required for the
output to rise to the logic threshold voltage after
the strobe terminal has been driven from zero to
the one logic level.

0'

Supply Current: The current required from the
positive or negative supply to operate the com·
parator with no output load. The power will vary
with input voltage, but is specified as a maximum
for the entire range of input voltage conditions.

::s
o....

-I

...CD

Voltage Gain: The ratio of the change in output
voltage to the change in voltage between the input
terminals producing it.

3

!II

functional blocks
(LM122/LM222/LM322. LM2905/LM3905 only)
Maximum Power Dissipation: The maximum total
device dissipation for which the timer will operate
within specifications.
Timing Ratio: The ratio of the firing voltage at the
RIC pin to the reference voltage.
Comparator Input Current: The average current
flowing from the RIC pin during the timing cycle.
Trigger Voltage: The voltage required at the trigger
terminal to initiate a timing cycle, referenced to
the ground pin.
Output Leakage Current: The maximum current
flowing into the collector of the output transistor
when the transistor is in the "off" state.
Reset Resistor: The equivalent resistor which may
be used to calculate the discharge time of the tim·
ing capacitor. tDISCHARGE = (51 (Ctl (RREsETI.

Collector Saturation Voltage: The collector to
emitter voltage on the output transistor when it is
in the "on" state with specified sink current flow·
ing into the collector terminal.
Emitter Saturation Voltage: The voltage across the
output transistor when the collector is tied to V+,
the transistor is in the "on" state, and the speci·
fied output current is flowing from the emitter
terminal.
Capacitor Saturation Voltage: The offset voltage
remaining on the timing capacitor after capacitor
discharge current has dropped to zero.
Trigger Current: The current flowing into or out
of the trigger terminal at the specified trigger vol·
tage.
Rt : Timing resistor connected between V REF and
the RIC terminal.
Ct : Timing capacitor connected between the RIC
terminal and the ground terminal.

consumer circuits
AGC DC Output Shift: The shift of the quiescent
IC output voltage of the AGC section for a given
change in AGC central voltage.
AGC Figure of Merit (AGC Range): The widest
possible range of input Signal level required to
make the output drop by a specified amount from
the specified maximum output level.
AGC Input Current: The current required to bias
the central voltage input of the AGC section.
AM Rejection Ratio: The ratio of the recovered
audio output produced by a desired FM signal of
specified level and duration to the recovered audio
output produced by an unwanted AM signal of
specified amplitude and modulating index.
Channel Separation: The level of output signal of
an undriven amplifier with respect to the output
level of an adjacent driven amplifier.

Detection Bandwidth: That frequency range about
the free running frequency of the tone decoderl
phase locked loop where a signal above a specified
level will cause a detected signal condition at the
output.
Detection Bandwidth Skew: The measure of how
well the detection bandwidth is centered about
the free running frequency. It is equal to the maxi·
mum detection bandwidth frequency plus the
minimum detection bandwidth frequency minus
twice the free running frequency.
Hold In Range: That range of frequencies about
the free running frequency for which the phase
locked loop will stay in lock if initially starting
out in lock.
Input Bias Current: The average of the two input
currents.

9·3

..
UI

E

consumer circuits (con't)

CD

t-

....o

Input Resistance: The ratio of the change in input
voltage to the change in input current on either
input with the other grounded.

c
o
.;;

Input Sensitivity: The minimum level of input
signal at a specified frequency required to produce
a specified signal·to-noise ratio at the recovered
aud io output .

.5
....

CD

Input Voltage Range: The range of voltages on
the input terminals for which the amplifier operates
within specifications.

C

Phase Detector Sensitivity: The change in the output voltage of the phase detector for a given change
in phase between the two input signals to the
phase detector.
Power Bandwidth: That fre.suency at which the
voltage gain reduces to '/";2 with respect to the
flat band voltage gain specified for a given load
and output power.

Large-Signal Voltage Gain: The ratio of the output
voltage swing to the change in input voltage required to drive the output from zero to this
voltage.

Power Supply Rejection: The ratio of the change
in input offset voltage to the change in power
supply voltages producing it.

Limiting Threshold: In FM the input signal level
which causes the recovered audio output level to
drop 3 dB from the output level with a specified
large signal input.

Slew Rate: The internally limited rate of change
in output voltage with a large amplitude step
function applied to the input.

Lock In Range: That range of frequencies about
the free running frequency for which the phase
locked loop will come into lock if initially starting
out of lock.

Supply Current: The current requ ired from the
power supply to operate the amplifier with no load
and the output at zero.

Maximum Sweep Rate: The maximum rate that
the VCO may be made to vary its oscillating frequency over its Sweep Range.
Output Resistance: The ratio of the change in
output voltage to the change in output current
with the output around zero.

Sweep Range: That ratio of maximum oscillating
frequency to minimum operating frequency pro·
duced by varying the central voltage of the VCO
from its maximum value to its minimum value
with fixed values of timing resistance and
capacitance.

Output Voltage Swing: The peak output voltage
swing, referred to zero, that can be obtained
without clipping.

VCO Sensitivity: The change in operating frequency for a given change in VCO central voltage.

analog switches
Driver Leakage Current: The sum of the currents
into the source and drain switch terminals, with
both held at the same specified voltage.
Logic "'" Input Voltage: The voltage level which
is guaranteed to be interpreted by the device as a
logical "true" signal.

9-4

Switch Leakage Current: The current seen when a
specified voltage is applied between drain and
source of a channel that is logically turned off.
Switch On Resistance: The equ ivalent resistance
from source to drain, tested by forcing a specified
current and measuring the resultant voltage drop.

Logic "0" Input Voltage: The voltage level which
is guaranteed to be interpreted by the device as a
logical "false" signal.

Switch Turn-Off Time: The interval between the
time that the logic input passes through the threshold voltage and the time that the output goes to
a specified voltage level in the test circuit.

Logic Input Slew Rate: The voltage difference
between the logic "'" and logic "0" states divided
by the transistion time.

Switch Turn-On Time: The interval between the
time that the logic input passes through the threshold voltage and the time that the output goes to
90% of its final value in the specified test circuit.

Physical Dimensions
(All dimensions are in inches.)

c
3

IG~::SI
1615"

lJ

lZ

11

III

:::J

10',

!!!.

o

0280

1~r.rr.rr.r~r.nr.nr.I-=C

t "'''j
MAX

Pi
~0325 -0.015
~OZS~

:::J

1/1

"~::N; ~D31$"AX
0.050

..
IfOU
DB
0050
100'0

0.165

J~ 4100~ ~~D015 ~~~5
tDBID

i~':~

0019

Package 1
14 Lead Cavity DIP (0)

Package 2
16 Lead Cavity DIP (0)

[

1~

If-- DO"
PCl40

0.004

PINNOI

PIN NO.1
.DENT

J

MAX
"'"

....

"DB'
MAX

DO"
D.OOB

IDENT

J

I. DZ•
1-00411

DO" II

..,,--H-

0019-11--

11.019

Package 3
10 Lead Flat Package IF)

Package 4
14 Lead Flat Package IF)

Package 5
16 Lead Flat Package IF)

~:~::D"~
~~: 011.-1

I

\

19--1

11.185
0.185

'EA"NG

~~ ~ ~ ~~-=:f"'NE

II .,,,
_oU- lOII

"ASS

Package 6
12 Lead TO·S Metal Can IG)

Package SA
12 Lead TO·S Metal Can IG)
IAH2114/AH2114C only)

Package 7
12 Lead TO.a Metal Can IH)

9·5

III

~:D1A·t
."
~l-::::D1A.--I

C

o
cQ)

'iii

,5
c

iWt

I:m
,M.MA,
i....

SEATIIIIG
'LANE - - ,

2.~:ADS

.:.

n n JO. j".
U

.o12 DIA•

~~;;:::j
--i i

t:·~::

SEATINGPlANE

~ml"l0

DDO~

0.50 MIN

~

:~~~
fiMiJm

:~~:--ll--

D,G190lA

II]fij

1 LEADS

.IN

0500

U~

.100
.050

Package 8
2 Lead TO·46 Metal Can (H)

Package 9
3 Lead TO·39 Metal Can (H)

Package 9A
4 Lead TO·72 Metal Can (H)

~~:D1A~

J ....
""L~I~:DIAI

J
"'''Lifl:~~:D1A''.'50
m:D1'~

tT=
~
'~J~ ~l

~

~~:
UIf"-- 8 LEADS

nn

0.018 DIA tD LEADS

:::: OIA

D.019

Package 11
8 Lead TO·5 Metal Can (H)

~~

'fT:

;-

,-111

~

E:J~ ~ ~l'.IHDlA

O.l2OOIA

D.OI6oIAIDLEADS..J
II I
u.o19
---i~

0.160

Package 12
10 Lead TOoS Metal Can (H)
(Low Profile)

'"
J"~
~
!,;-~rl:
"'1 .,.

Package 10
6 Lead TO·5 Metal Can (H)

0.160

Package 13
10 Lead TO·5 Metal Can (HI
(High Profile)

\ -_ _ _ .9IG'01O _ _ _ _. ,

tl

~

D

.110
,'21

t
_U_::::OIA.'DUAtlS

r----.

1OO'D10

"~l

~"RA.lCllD

..2~
. .-~=======~-.l

.I90MAX

SWAGE PIN co..DZI'ocn OIA
IOLBER COATED

Dlmlnsiu IsO.155/0.115far.n prodlWll IRtpt II

IlIIIovn:OJ.&1I/I.nlfIHUlOOI\tH/LHGOD,CH,LKGOO3I
LHOD03CH,lndLf1DOO4ILHOD04CH,D.Z40/0.260'"
LHIlOOSAHfLHOODSKlLHIIODSCH;G.llD/11.1Ulfor

MHDOO1HfMHoaOlCH.

Package 14
10 Lead TO·5 Metal Can (H)

9·6

Package14A
10 Lead Metal Can (H·03)

Package 15
8 Lead Cavity Package (J)

."

::r

<(II

(i'
I»

c
3'

DaZ5

.AD

a.ozs
.AD

CD
:::J
(II

0'
:::J

(II

I ,,11 I
1--1a.02&------l

I

'.315
I
~!0.025--l

Package 16
14 Lead Cavity DIP IJ)

rll·I1~I:AlCl

r~~:-l

,r,--~I
........L
I-c.= .
L - II

~~:: r=c::=L...l

D.3S1

0.31Z~ts.eATING'lAHE

"

...
DIANDr.!

TSEATINGPlANE

--H-::~:

MIN

Package 17
16 Lead Cavity DIP IJ)

"Fr.

PIN NO.1 INDENT

11.085
11.100

a.ZZD
0.210

---, r--D.040 TVP

D.l1I R MAX
BOTH ENDS

0420

....,'----'--'.....-'

...

'.oJ.

IrD~:a

~~
TVP

MAX

'J

0.065

0.001
D.au

2 MOUNTING HOLES

IlL3.2S ta.D2S I

~

:::::OIA

-O.IIIS-I

,,,.

to.DU

O.13D
.to.OOS

--

~,

~ ~Il-- '''' ~:~.

MIN

iD•DD3

0.100
TVP

Package 18
2 Lead TO·3 Metal Can I K)

0.092
DIANDM

"J9:
' ,. ,
'J

D.OIZ DIANDM
PIN NO. I INDENT

PINNO.IIOENT

Iro.12o

MAX

~D.3ZS::::~

...09
D.OI!i

...

~~
~,
. ." ~cl~'011
--l
.... '.::,~ MI'
1.0&$

Package 20
8 Lead Molded Mini DIP IN)

Package 19
8 Lead TO·3 Metal Can IK)

TVI"

0.130
to-ODS

-

tlLU15

to.OIl3

r-....1

~'l'

Ir""h~x

[:]F....

f1-0-3.25 ~~+'01S
_0.115-1

'J~
U- L -lL ::=r;:,,,
~D.130

tooas

~

0.065

0.015
:tCI..015

a.ll1O
TVP

001.
iO.oDJ

D~I~5

MIN

m

Package 21
10 Lead Molded DIP IN)

Package 22
14 Lead Molded DIP IN)

9·7

/I)

c
o
';
c
CD
E

:------i

is

~!lbJll!..!!lb!!l!dl!b!l!~!

....

iiiCo)

';
~

9o:'i'T.~;A';A'0T'i;r;';Fir.F ~D5

Ft

Q.

'''D

lrll.lZO

~""
TI

D....
MAX

:l:D.aOlio.OZl

La"

I ...". I
j-uzli -0.015-1

.. GIZDIANOM

'OII

D"T-J
D."

:t1.ll15

I

I, I

I-- --r-TY~

=r'

II .", ~',~5

-1~tIUI03

Package 23
16 Lead Molded DIP (N)

Package 24
14 Lead Molded DIP (N·D1)
(Staggered Leads)

0.012 OlANO.,

r=-------t-hL
0.130

Package 25
16 Lead Molded DIP (N.lJ1)
(Staggered Leads)

Package 26
3 Lead TO·22D Power Package (T)

.,,'

DIANDM

PINND.1IDENT

Package 29
18 Lead Molded DIP (N)

9·8

""D

.,,,

-!,r

0.190

o.oas
0105

IT

±~:~:------i

I-R

;,::~

tOaDS

..,OD

ioaDS

.."

!.

c

3'
CD

:::s
en

iF'====l=,

REF

0'
:::s
en

PIN1'NDERT

II

0.019

---!t-OIl26
0.313
0.317

Package 36
16 Lead Wide Track Power Package (M)

Package 37
3 lead TO-202 (P)

"'i¥T
11.1145 1.135

100NDN 1D'NOY

Package 38
3 Lead TO-92 Plastic Package (Z)

0"O~
1r=
rD''''1
:l:LgJ

Package 39'
14 Lead "SGS" Type Power DIP (S)

0.370

0.315

~

t

• INCHES TO MILLIMETERS CONVERSION TABLE

SEATING
JPlANE

t!-~09

L~ ~ ~~~.:~:
~
0.200

TX1
4 Lead TO-5 Metal Can PacKage

INCHES

MM

INCHES

MM

INCHES

MM

0,001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.0254
0.0508
0.0762
0.1016
0.1270
0.1524
0.1778
0.2032
0.2286

0.010
0.020
0.030
0.040
0.050
0.060
0.070
0.080
0.090

0.254
0.508
0.762
1.016
1.270
1.524
1.778
2.032
2.286

0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900

2.54
5.08
7.62
10.16
12.70
15.24
17.78
20.32
22.86

TX2
4 Lead T0-46 Metal Can Package

9-9

...

o

In
CO
M

MIL-STO-883/MIL-M-38510

I

:E

MI L-STD-883
Mil-Standard-883 is a Test Methods and Procedures
Document for Microelectronic Circuits. It was
derived from MIL.S-19500, MIL·STD-750, and
MI L·STD-202C for transistors and diodes at about
the time that National Semiconductor Corporation
was entering the military microelectronics market.
As a result, our standard quality control operations
are written around MI L-STD-883. The bonding
control, visual inspections, and post seal screening
requirements set forth by 883 (as well as added
control procedures beyond the requirements of
883) have been part of National's quality control
procedures almost from the start. Our Quality
Assurance Procedures Manual is available upon
request.

I

....I

:E

.......
M
CO
CO
I

C

t-

en
I

....I

:E

We offer a complete line of linear/883 (Class B)
products as standard, off-the·shelf items. Special
Linear /883 data sheets have been prepared to
reflect this capability. They show process flow,
electrical parameters, end of test criteria, and test
circuits. We save you the problem of specifying test
and inspection procedures, and offer significant
cost savings by having an off-the·shelf, "to the
letter" 883 program. In addition, we will test any
of our integrated circuits to any class of MILSTD-883.
The detailed information concerning MI L·STD·883
screening is contained in National's specification
NSC 10002.
MIL-M-38510
MIi..·M-38510 specifies the general requirements
for supplying microcircuits. These are; product
assurance, which includes screening and quality
conformance inspection; design and construction;
marking; and workmanship. The screening and
quality conformance inspection are conducted in
accordance with MI L-STD·883.
Screening
All microcircuits delivered in accordance with Mi LM-38510 must have been subjecte'd to, and passed
all the screening tests detailed in Method 5004 of
MIL·STD·883 for the type of microcircuit and
product assurance level.
The device electrical and package requirements of
MIL·M·38510are detailed by a device specification
referred to as a slash sheet. Each slash sheet defines
the microcircuit electrical performance and mech·
anical requirements. Each device listed on a slash
sheet is referred to as a slash number and the group
of the microcircuits contained on a slash sheet is
defined as a family of devices. The device may be
Class B o~ C as defined by MI L·STD·883, Method
5004 and 5005. Three lead finishes are allowed
by the slash sheet, pot solder dip, bright tin plate,
and gold plate.
The MIL·M·38510 specs for standard linear devices
require 100% DC testing at 25°C, -55°C and
+125°C. AC testing is performed at +25°C. The
electrical parameters specified are tighter than the
normal data sheet guaranteed limits. Additionally,
9-10

MIL·M·38510 requires device traceability, exten·
sive documentation and closely matched mainten·
ance.
Quality Conformance
Quality conformance inspection is conducted in
accordance with the applicable requirements of
Group A, (electrical test), Group Band C, (environ·
mental test) of Method 5005, MIL·STD·883. These
tests are conducted on a sample basis with GroupA
performed on each sublot, Group B on each lot,
and Group C as specified (usually every three
months).
To supply devices to MIL·M-38510, the IC manu·
facturer must quality the devices he plans to supply
to the detail specifications. Qualification consists
of notifying the qualifying activity of one's intent
to qual ify to MIL -M-3S51 O. After passi ng comprehensive audits of facilities and documentation
systems, the IC manufacturer will subject tl)e
device to and demonstrate that they satisfy all of
. the Group A, B, and C requirements of Method
5005 of MI L·STD-883 for the specified classes and
types of IC. The qualification tests shall be monitored by the qualifying agency. Finally the IC
manufacturer shall prepare and submit qualifica·
tion test data to the qualifying agency. Groups A,
B, and C inspections then shall be performed at
intervals no greater than three months.
The purpose of qualification testing is to assure
that the device and lot quality conform to certain
standard limits. In effect, lot qualification tests
tend to ensure that once a particular device type
is demonstrated to be acceptable,. it's production,
including materials, processing, and testing will
continue to be acceptable. These limits are specified in MIL·STD·883 in terms of LTPD's (Lot
Tolerance Percent Defective) for the various quali·
fication test sub-groups. Qualification testing is
performed-on a sample of devices which are chosen
at random from a lot of devices that has satisfactorily completed the screening of Method 5004
must be performed on each device, i.e. on a 100%
basis as opposed to qualification testing (Method
5005) which occurs on a random sample basis.
In summary, the entire purpose of MIL-M-38510
and MIL-STD-883 is to provide the military,
through its contractors with standard devices.
We at National Semiconductor have supplied and
are supplying devices to the MIL-M-38510 specifications. To order a MIL-M-38510 microcircuit,
specify the following:
For example; to specify an LM741 in a DIP
processed to the requirements of MI L-M-38510,
Class B, with gold plated leads, specify M-38510/
10101BCC.
MM385101

---r-

Specifies the
General Requirementsof
MIL-M·38510

xxx

xx

I, I
Slash

Sheet
No.

Device
Type

X

x

I

I

Device
Class

Case
Outline

x

I
lead
Finish

National Semiconductor Corporation
2900 Semiconductor Drive
Santa Clara, Cal ifornia 95051
(408) 732-5000
TWX: 910-339-9240
National Semiconductor GmbH
o 808 Fuerstenfeldbruck
Industriestrasse 10
West Germany
Telephone : (08141) 1371
Telex : 05-27649

NS Electronics SDN BHD
Batu Berendam
Free Trade Zone
Malacca, Malaysia
Telephone: 5171
Telex: NSELECT 519 MALACCA (c/o Kuala Lu mpur)

National Semiconductor (UK) Ltd.
Larkfield Industrial Estate
Greenock, Scotland
Telephone: GOUROCK 33251
Telex : 778 632

NS Electronics (PTE) LId.
No. 1100 Lower Delta Rd.
Singapore 3
Telephone : 630011
Telex: NATSEM I RS 21402

REGIONAL AND DISTRICT SALES OFFICES
ALABAMA
DIXIE REGIONAL OFFICE
3322 Memorial Parkway, S.W. #67
HuntSVille, Alabama 35802
(205) 881.Q622
•
TWX : 810-726·2207

FLORIDA
CARIBBEAN REGIONAL OFFICE
2721 South Bay,hore Drive, Suite 121
Miami, Florida 33133
(305) 446-8309
TWX : 810-848-9725

ARIZONA
ROCKY MOUNTAIN REGIONAL OFFICE
7349 Sixth Avenue
Scottsd ale, Arizona 85251
(602) 945-8473
TWX: 910·950-1195

ILLINOIS
NATIONAL SEMICONDUCTOR
WEST-C ENTRAL REGIONAL OFFICE
800 E. Northwe,t Highway, Suite 203
Mt. Prospect, Illinois 60056
(312) 394-8040
TWX: 910-689-3346

CALIFORNIA
NORTH·WEST REGIONAL OFFICE
2680 Bayshore Frontage Road, Sultel~2
Mountain View, California 94043
(415) 961·4740
TWX: 910·379-6432
NATIONAL SEMICONDUCTOR
LOS ANGELES REGIONAL OFFICE
Valley Freeway Center Building
15300 Ventura Boulevard, Suite 305
Sherman Oak., California 91403
(213) 783-8272
TWX: 910-495-1773
NATIONAL SEMICONDUCTOR
SOUTHERN CALIFORNIA REGIONAL OFFICE
17452 Irvine Boulevard, Suite M
Tustin, California 92680
(714) 832-8113
TWX : 910-595-1523
CONNECTICUT
DISTRICT OFFICE
Commerce Park
Danbury, Connecticut 0681 0
(203) 744-2350
MID·ATLANTIC REGIONAL SALES OFFICE
26 Sylvan Road South
Westport, Connecticut 06880
(203) 226-6833

INDIANA
NATIONAL SEMICONDUCTOR
NORTH·CENTRAL REGIONAL OFFICE
P.O. Box 40073
Indianapolis, Indiana 46240
(317) 255·5822
MARYLAND
CAPITAL REGIONAL SALES OFFICE
300 Hospital Drive, No. 232
Glen Burnie, Maryland 21061
(301) 780-5220
TWX: 710-861-0519
MASSACHUSETTS
NORTH·EAST REGIONAL OFFICE
# 8 Wallis Ct.
Lex ingt on, Massachusetts 02173
Telephone : (617) 861-6090
TWX: 71 0-332-0166

MINNESOTA
DISTRICT SALES OFFICE
8053 Bloomington Freeway, Suite 101
Minneapolis, Minnesota 55420
(612) 888-3060
Telex: 290·766
NEW J ERSEY
DISTRICT SALES OFFICE
140 Sylvan Avenue
Englewood Cliffs , New Jersey 07632
(201 ) 461·5959
TWX : 710-991 -9734
AREA OFFICE
14 Commerce Drive
Cranford, New Jersey 07016
(201) 272-3344
TWX : 710·996-5803
NEW YOR K
CAN·AM REGIONAL SALES OFFICE
104 Pickard Drive
Syracuse, New York 13211
(315) 455-5858
OH IO
DISTRICT SALES OFFICE
Financial South Building
5335 Far Hills, Suite 214
Dayton, Ohio 45429
(513) 434-0097
TWX : 810-459·1615
TEXAS
SQUTH-CENTRAL REGION AL OFFICE
5~25 Forest Lane, SUite 205
Dallas, Texa. 75230
(214) 233-6801
TWX : 910-860-5091

MICHIGAN
REGIONAL OFFICE
23629 Liberty Street
Farmington, Mich igan 48024
(313) 477-0400
TWX: 810-242-2902

WASHINGTON
DISTRI CT OFFICE
300 120th Avenue N.E.
Building 2, Sulle 205
Bellevue, Washington 98005
(206) 454-4800

AUSTRALIA
NS ELECTRONICS PTY, LTD.
Cnr. Stud Road & Mountain Highway
Bay,water, Victoria 3153
Australia
Telephone: 03-729-6333
Telex : 32096

ENGLAND
NATIONAL SEMICONDUCTOR (UK) LTD.
The Precinct
Broxbourne, Hertfordshire •
EN 107 HY
England
Telephone : Hoddesdon 69571
Telex: 267-204

ITALY
NATIONAL SEMICONDUCTOR ITALY
Via Valassina 24
20159 Milano
Telephone : (02) 688 4617
Telex ' 36-540

BELGI UM
NATIONAL SEMICONDUCTOR BELGIUM
789 Ave . Houba de Strooper
1020 Bruxelle,
Telephone : 02-478-3400
Telex: 61 007 NatSem B

FRANCE
NATIONAL SEMICONDUCTOR FRANCE
EXPANSION 10000
28 rue de la Redouts
92·260 Fountenay Aux Roses
Telephone : 660.81.40
Telex : NSF 25956F+

INTERNATIONAL SALES OFFICES

CANAOA
NATIONAL SEMICONDUCTOR
DISTRICT OFFICE
1111 Finc h Avenue West
Suite 154
Down view, Ontario
M3J 2E5
(416) 630-5751
TWX: 610·492-1337
DENMARK
NATIONAL SEMICONDUCTOR DENMARK
Nyhavn 69
1051 Copenhagen
Telephone: (1) 153110
Telex : 16039

JAPAN
.
NATIONAL SEMICONDUCTOR JAPA~
Nakazawo Building
1-19 Yotsuya, ShlnJuku- Ku 160 '
Tokyo , Japan
Telephone: 03-359-4571
Telex: J 28592

GERMANY
NATIONAL SEMICONDUCTOR GmbH
8000 Munchen 81
Coslmastr. 411
Telephone: 089/915027
Telex : 05-22772

SWEDEN
NATIONAL SEMICONDUCTOR SWEDEN
Slkvagen 17
13500 Tyreso-Stockho lm
Teleph one : 08(71204 80
Telex : 11293

HONG KONG
NS ELECTRONICS (HONG KO NG) Ltd.
11th Floor
4 Hing Yip Street
Kwun Tong
Kowloon, Hong Kong
Telephone : 3-411241-8
Telex : 73866 NSE HK HX
Cab le : NATSE MI

TAIWAN
NS ELECTRONICS (HK) LTD.
TAIWAN LIAISON OFFICE
# 60 Teh Hwei Sireet
P.O. Box 68-332
Ta ipei Taiwan ROC
Telephone : 563354
Cable : NSTW TAIPEI

CP50M15

111975 NATIONAL SEMICONDUCTOR CORP. PRINTED IN U.S.A.



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:20 18:49:34-08:00
Modify Date                     : 2017:06:20 19:16:53-07:00
Metadata Date                   : 2017:06:20 19:16:53-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:0baf43e4-ecd5-5f4d-87f2-5bffde8e185b
Instance ID                     : uuid:fe474689-8176-514f-9bb9-9ccb48bc125e
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 706
EXIF Metadata provided by EXIF.tools

Navigation menu