1975_SGS_Consumer_Transistors_and_ICs_Databook 1975 SGS Consumer Transistors And ICs Databook
User Manual: 1975_SGS_Consumer_Transistors_and_ICs_Databook
Open the PDF directly: View PDF .
Page Count: 654
Download | ![]() |
Open PDF In Browser | View PDF |
CONSUMER TRANSISTORS & ICs ,I f' b 1\ 1975176 INTRODUCTION This databook contains data sheets on the SGS-ATES range of small signal transistors and integrated circuits intended for consumer applications. To permit ease of consultation, this book has been divided into four main sections: . General Information, Germanium Transistors, Silicon Transistors, and Integrated Circuits. . The GenGral Information section contains definitions of symbols and terms used in order to facilitate correct technical interpretation of the data sheets, as well as an alphanumerical list of types. The information on each product has been specially presented in order that the performance of the product can be readily evaluated within any required equipment design. An arrow (~) at left hand side of table indicates parameter which has been modified since previous data sheet issue. OTHER SGS-ATES DATABOOKS Data sheets on the SGS-ATES range of discrete devices and integrated circuits for professional applications, and high power devices for professional and consumer applications can be found in the following databooks: SGS-ATES Professional Databook 1 - Small Signal Discrete Devices SGS-ATES Professional Databook 2 - Bipolar Digital ICs SGS-ATES Professional Databook 3 - Linear, MaS & COS/MaS ICs SGS-ATES Power Databook - Discrete Devices I SGS·ATES GROUP OF COMPANIES INTERNAnONAl HEADQUARTERS SGS-ATES Componenti Elettronici S.p.A. Via C. Olivetti 2·20041 Agrate Brianza -Italy Tel.: 039-650341 +4/650441 +5/650841 +5 Telex: 36141-36131 BENELUX SGS-ATES Componenti Elettronici S.p.A. Benelux Sales Office -B- 1180 Bruxelles Winston Churchill Avenue. 112 Tel.: 02-3432439 Telex: 011-24149 DENMARK SGS-ATES Scandinavia AB Sales Office: 2730 Herlev Marielundvej 46A Tel.: 02-948533 Telex: 16494 FRANCE SGS-ATES France S.A. 75643 Paris Cedex 13 Residence "Le Palatino" . 17. Avenue de Choisy Tel.: 5842730 Telex: 021-25938 GERMANY SGS-ATES Deutschland Halbleiter-Bauelemente GmbH 809 Wasserburg/lnn Postfach 1269 Tel.: 08071-721 Telex: 0525143 Sales Offices: 1000 Berlin 33 Warmbrunner Strasse 39 Tel.: 030-8233038 Telex: 01 85418 3000 Hannover 1 Lange Laube 19 Tel.: 0511-17522/3 Telex: 09 23195 8000 Miinchen 40 Gernotstrasse 10 Tel.: 089-304270/304485 Telex: 05 215784 7000 Stuttgart 80 Kalifenweg 45 Tel.: 0711-713091/2 Telex: 07 255545 II ITALY SGS-ATES Componenti Elettronici S.p.A. Sales Offices: 50127 Firenze Via Giovanni Del Pian Dei Carpini 96/5 Tel.: 055-4377763 20149 Milano Via Tempesta 2 Tel.: 02-4695651 00199 Roma Piazza Gondar 11 Tel.: 06-8392848/8312777 10134 Torino Via La Loggia 51/7 Tel.: 011-634572 NORWAY SGS-ATES Scandinavia AB Sales Office: Oslo 4 Sandakerveien 104B Tel.: 213755 Telex: 11796 SINGAPORE SGS-ATES Singapore (pte) Ltd . Singapore 12 Lorong 4 & 6 - Toa Payoh Tel.: 531411 Telex: ESGIES RS 21412 SWEDEN SGS-ATES Scandinavia AB 19501 Marsta . Industrigatan 2 Tel.: 0760-40120 Telex: 042-10932 UNITED KINGDOM SGS-ATES (United Kingdom) Ltd. Aylesbury, Bucks Planar House, Walton Street Tel.: 0296-5977 Telex: 041-83245 U.S.A. SGS-ATES Semiconductor Corporation Newtonville, Mass. 02160 435 Newtonville Avenue Tel.: 617-9691610 Telex: 922482 GENERAL INFORMATION GERMANIUM TRANSISTORS SILICON TRANSISTORS INTEGRATED CIRCUITS III GENERAL INFORMATION 1. LETTER SYMBOLS FOR SEMICONDUCTOR DEVICES 1.1. QUANTITY SYMBOLS 1.2. SUBSCRIPTS FOR QUANTITY SYMBOLS Page VI ... VI VI VIII 1.3. CONVENTIONS FOR SUBSCRIPT SEQUENCE IX 1.4. ELECTRICAL PARAMETER SYMBOLS 1.5. SUBSCRIPTS FOR PARAMETER SYMBOLS X I i?~ ,1 1 " 2. ALPHABETICAL LIST OF SYMBOLS Page XI 3. RATING SYSTEMS FOR ELECTRONIC DEVICES Page XIX 3.1. DEFINITIONS OF TERMS USED XIX 3.2. ABSOLUTE MAXIMUM RATING SYSTEM XIX 3.3. DESIGN - MAXIMUM RATING SYSTEM XX 3.4. DESIGN - CENTRE RATING SYSTEM XX 4. TYPE DESIGNATION CODE Page XXI 4.1. FOR DISCRETE DEVICES 4.2. XXI FOR INTEGRATED CIRCUITS .. 4.2.1. Types designated by three letters and three figures 4.2.2. Types designated by three letters and four figures .. XXII .. XXIV 5. ALPHANUMERICAL LIST OF TYPES V XXII Page XXV 1. LETTER SYMBOLS FOR SEMICONDUCTOR DEVICES (referred to diodes, transistors and linear integrated circuits) 1.1. QUANTITY SYMBOLS a. Instantaneous values of current, voltage and power, which vary with time are represented by the appropriate lower case letter. Examples: i, v, p b. Maximum (peak), average, d.c. and root-mean-square values are represented by appropriate upper case letter. Examples: I, V, P 1.2. SUBSCRIPTS FOR QUANTITY SYMBOLS a. Total values are indicated by upper case subscripts. Examples: IC' ic ' VEB , PC' Pc b. Values of varying components are indicated by lower case subscripts. c. To distinguish between maximum (peak), average, d.c. and root-meansquare values, it is possible to represent maximum and average values' adding the subscripts m or M and respectively av or AV. Examples: lem' ICM' leav' IcAV It is possible to represent R.M.S. values by adding the subscripts (rms) and (RMS) Examples: Ie (rms) , Ic (RMS) d. List of subscripts (for examples see figure 1 and the fundamental symbols schedule e.) A, a K, k = Anode terminal = Cathode terminal VI I I E,e Emitter terminal B,b Base terminal C, c Collector terminal J,j Generic terminal (BR) Primary break-down X,x Specified circuit M,m Maximum (peak) value Min, min = Minimum value AV, av Average value (RMS), (rms) F, f R.M.S. value = Forward R, r As first subscript: Reverse. As second subscript: Repetitive 0,0 As third subscript: The terminal not mentioned is open circuited S,s = As Z = Zener. second subscript: Non repetitive. As third subscript: Short circuit between the terminal not mentioned and the reference terminal (Replaces R to indicate the actual zener voltage, current or power of voltage reference or voltage regulator diodes) e. Fundamental symbols schedule (meaning of symbol with subscript) v e b E C P istantaneus value of the variable component R.M.S. value of the variable component, or (with appropriate supplementary subscripts) the maximum or average value (direct current) of the variable component istantaneus total value average value (direct current and without signal) or (with appropriate supplementary subscripts) the total average value (with signal), or the total maximum value c B v p VII I f. Examples of the application of the rules: Figure 1 represents a transistor collector current, consisting of a direct c(Jrrent and a variable component as a function of time. '- .£ ~ o U Icm L. .1 t--""T"~-~ O~~---4----L-~L---~------~-------------- without I sign~-.,..... _ _ _ _ _ _ _wit~j9Il~ __ time ____ _ fig. 1 Ic - DC value, no signal ICAV - Average total value ICM - Maximum total value IC(RMS) - R.M.S. total value 'cav - Average value of the variable component Ie (rms) - R.M.S. value of the variable component Icm - Maximum value of the variable component ic - Instantaneous total value ie - Instantaneous volue of the variable component 1.3. CONVENTIONS FOR SUBSCRIPT SEQUENCE a. Currents For transistor the first subscript indicates the terminal carrying the current (conventional current flow from the external circuit into the terminal is positive). Instead for diodes a forward current (conventional current flow into the VIII anode terminal) is represented by the subscript F or f; a reverse current (conventional current flow out of the anode terminal) is represented by the subscript R or r. b. Voltages For transistors normally, two subscripts are used to indicate the points between which the voltage is measured. The first subscript indicates one terminal pOint and the second the reference terminal. Where there is no possibility of confusion, the second subscript may be omitted. Instead for diodes a forward voltage (anode positive with respect to cathode) is represented by the subscript F or f and a reverse voltage (anode negative with respect to cathode) by the subscript R or r. c. Supply voltages Supply voltages may be indicated by repeating the terminal subscript. Examples: VEE' Vcc' Vss The reference terminal may then be indicated by a third subscript. Examples: VEES ' VCCB ' Vssc d. In devices having more than one terminal of the same type, the terminal subscripts are modified by adding a number following the subscript and on the same line. Example: BB2_E voltage between second base and emitter In multiple unit devices, the terminal subscripts are modified by a number preceding the terminal subscripts: Example: V1S- 2S voltage between the base of the first unit and that of the second one. 1.4. ELECTRICAL PARAMETER SYMBOLS a. The values of four pole matrix parameters or other resistances, impedances admittances, etc., inherent in the device, are represented by the lower case symbol with the appropriate subscripts. Examples: h ib, Zfb' YOC' hFE Note: The symbol of the capacitances that is represented by the upper case (el is an exception to this rule. b. The four pole matrix parameters of external circuits and of circuits in which the device forms only a part are represented by the upper case symbols with the appropriate subscripts. Examples: Hi' Zo' HF, YR IX I 1.5. SUBSCRIPTS FOR PARAMETER SYMBOLS a. The static values of parameters are indicated by upper case subscripts. Examples: hlB' hFE Note: The static value is the slope of the line from the origin to the operating point on the appropriate characteristic curve, i.e. the quotient of the appropriate electrical quantities at the operating point. b. The small-signal volues of parameters are indicated by lower case subscripts. Examples: hib , Zob c. The first subscript, in matrix notation identifies the element of the four pole matrix. = input = output f (for 21) = forward transfer r (for 12) = reverse transfer Examples: V1 = hi 11 + hr V 12 = hf 11 + ho V2 i (for 11) o (for 22) 2 Notes - The voltage and current symbols in matrix notation are indicated by a single digit subscript. input; the subscript 2 output. The subscript 1 = = 2 - The voltages and currents in these equations may be complex quantities. d. The second subscript identifies the circuit configuration. e b c = common = common = common = common emitter base collector terminal, general Examples: (common base) 11 12 = Yib V1b + Yrb V2b = Yfb V1b + Yob V2b When the common terminal is understood, the second subscript may be omitted. e. If it is necessary to distinguish between real and imaginary parts of the four pole parameters, the following notations may be used. Re(h ib) etc ... for the real part Im(h ib) etc ... for the imaginary part x 2. ALPHABETICAL LIST OF SYMBOLS AMR Amplitude modulation rejection B Bandwidth Common-base, forward transfer susceptance (output short-circuited, y matrix) Common-emitter, forward transfer susceptance (output short-circuited, y matrix) Common-base, input susceptance (output short-circuited, y matrix) Common-emitter, input susceptance (output short-circuited, y matrix) Common-base, output susceptance (input short-circuited, y matrix) Common-emitter, output susceptance (input short-circuited, y matrix) Common-base, reverse transfer susceptance (input short-circuited, y matrix) b,. Common-emitter, reverse transfer susceptance (input short-circuited, y matrix) Intrinsic base-collector capacitance Intrinsic base-emitter capacitance Collector-base capacitance (emitter open to a.c. and d.c.) Cess Collector-substrate capacitance (emitter and base open to a.c. and d.c.) Emitter-base capacitance (collector open to a.c. and d.c.) Input capacitance Common-base, input capacitance (output a.c. short-circuited, hand y matrix) Common-base, input capacitance (output a.c. open-circuited) Common-emitter, input capacitance (output a.c. short-circuited, hand y matrix) Load capacitance CMRR Common mode rejection ratio Output capacitance XI Cob Common-base, output capacitance (input a.c. short-circuited, y matrix) Cobo Common-base, output capacitance (input a.c. open-circuited, h matrix) Coe Common-emitter, output capacitance (input a.c. short-circuited, y matrix) Coeo Common-emitter, output capacitance (input a.c. open-circuited, h matrix) Crb Common-base, reverse capacitance (input a.c. short-circuited, y matrix) Cre Common-emitter, reverse capacitance (input a.c. short-circuited, y matrix) d Distortion eN Noise voltage Es/b Second breakdown energy (with base-emitter junction reverse biased) Frequency of Frequency change or drift Af Frequency deviation Sf AT ( !~ ) Sf AV ( Af AV ) Frequency drift with temperature variation Frequency drift with voltage variation f hlb Common-base, cut-off frequency f hle Common-emitter, cut-off frequency fm Modulation frequency f max Maximum oscillator frequency fT Transition frequency fyle Common-emitter cut-off frequency GA Available power gain GAM Maximum available power gain Qlb Common-base, forward transconductance (input short-circuited, y matrix) XII gte Common-emitter, forward transconductance (input short-circuited, y matrix) Common-base, input conductance (output short-circuited, y matrix) Common-emitter, input conductance (output short-circuited, y matrix) gob Common-base, output conductance (input short-circuited, y matrix) goe Common-emitter, output conductance (input short-circuited, y matrix) Power gain I Common-base, power gain Common-emitter, power gain Maximum power gain Common-base, reverse transconductance (input short-circuited, y matrix) gre Common-emitter, reverse transconductance (input short-circuited, y matrix) Maximum stable power gain Transducer power gain Unilateralized power gain Maximum unilateralized power gain Voltage gain Common-base, small-signal value of the short-circuit forward current transfer ratio Common-emitter, small-signal value of the short-circuit forward current transfer ratio Common-emitter, static value of the forward current transfer ratio Common-emitter, static value of the forward current transfer matched pair ratio Common-base, small-signal value of the short-circuit input impedance Common-emitter, impedance Common-base, admittance Common-emitter, admittance small-signal small-signal small-signal XIII value value value of of of the the the short-circuit input open-circuit output open-circuit output Common-base, small-signal value of the open-circuit reverse voltage transfer ratio hr. Common-emitter, small-signal value of the open-circuit reverse voltage transfer ratio Ib Bias current 16 Base current 161 Turn-on current 162 Turn-off current 11 61 -1 621 Input offset current Base forward current Base forward peak current Base peak current Base reverse current Base reverse peak current Collector current Collector cut-off current with emitter open Collector cut-off current with specified reverse voltage between emitter and base Collector cut-off current with base open Collector cut-off current with specified resistance between emitt:?-r and base Collector cut-off current with emitter short-circuited to base . Collector cut-off current with specified reverse voltage between emitter and base Collector cut-off current with specified circuit between. emitter and base Collector peak current Drain current Emitter current Emitter cut-off current with collector open Noise current Output current Supply current XIV Output current during output short-circuit Second breakdown collector current (with base-emitter junction forward biased) Zener current m NF Modulation factor Noise figure Conversion noise figure Output power of a specified circuit PRT Power ratio test Total power dissipation rbb , Base spreading resistance rbb,Cb,c Feedback time constant Rss Base dropping resistance RSE Resistance between base and emitter Rcc Collector dropping resistance REE Emitter dropping resistance Rg Internal resistance of generator Ri Input resistance RL Load resistance Ro Output resistance Rth Thermal resistance Rth i-amb (R th i-a) Thermal resistance junction-to-ambient Rth i-case (R th i-c) Thermal resistance junction-to-case Dynamic zener resistance S+N N Signal and noise to noise ratio SR Slew rate SVR Supply voltage rejection Time Ambient temperature Case temperature Delay time xv Fall time Junction temperature Lead temperature Turn-off-time Turn-on-time Top Operating temperature tp Pulse time tr Rise time t. Storage time T. tg .(T.) Storage temperature AV AT Voltage drift with temperature variation AV Relative voltage variation V VeE 8ase-emitter voltage VSE (satl Base-emitter saturation voltage VSE1-VSE2 Base-emitter voltage difference IVBE1 -VBd Input offset voltage IVBE1-VBE21 AT Input-offset voltage temperature coefficient V(BR1 eBO Collector-base breakdown voltage with emitter open V{BR) CEO Collector-emitter breakdown voltage with base open V(BR} CER Collector-emitter breakdown voltage with specified resistance V(BR) eES Collector-emitter breakdown voltage with emitter short-circuited to base V(SR) CEV Collector-emitter breakdown voltage with specified reverse voltage between emitter and base V (SR) Collector-substrate voltage with base and emitter open CSSO V(SR) ESO Emitter-base breakdown voltage with collector open VCS Collector-base voltage VCBO Collector-base voltage with emitter open VCBV Collector-base voltage with specified reverse voltage between emitter and base Collector-emitter voltage XVI V CEK Knee voltage at specified condition V CEK (HF) High frequency knee voltage at specified condition V CEO Collector-emitter voltage with base open V CEO (sus) Collector-emitter sustaining voltage with base open VCER Collector-emitter voltage with specified resistance between emitter and base V CER (sus) Collector-emitter sustaining voltage with specified resistance between emitter and base Vcr Collector-emitter saturation voltage (sat) Collector-emitter voltage with emitter short-circuited to base Vcrs Collector-emitter sustaining voltage with emitter short-circuited to base Collector-emitter voltage with specified reverse voltage between emitter and base VC1-V (sus) Collector-emitter voltage with specified circuit between emitter and base VCEX V CFX Collector-emitter sustaining voltage with specified reverse voltage between emitter and base (sus) Collector-emitter sustaining voltage with specified circuit between emitter and base Vcss Collector-substrate voltage Vrl , Emitter-base voltage V'I\() Emitter-base voltage with collector open V, Input voltage of a specified circuit Vi (threshold) Input limiting voltage Interfering voltage Output voltage of a specified circuit Peak-to-peak voltage Punch-through voltage V,ef Reference voltage Vs Supply voltage V, Zener voltage Common-base, small-signal value of the short-circuit forward transfer admittance XVII I Common-emitter, small-signal value of the short-circuit forward transfer admittance Common-base, small-signal value of the short-circuit input admittance Common-emitter, admittance small-signal value - of the short-circuit input Yob Common-base, small-signal value of the short-circuit output admittance Yoe Common-emitter, admittance Yrb Common-base, small-signal value of the short-circuit reverse transfer admittance Yr. Common-emitter, small-signal val\Je of the short-circuit reverse transfer admittance small-signal value of the short-circuit output Impedance between base and emitter Input impedance Output impedance T) Efficiency T)c Collector efficiency "t's Storage time constant (!lIb Common-base, phase angle of the forward transadmittance (output short-circuited, Y matrix)15°C/W) Power transistor for a.f. applications (Rth j-case"",,15°C/W) Tunnel diode Transistor for h.f. applications (Rth j-case>15°C/W) Multiple of dissimilar devices (1); Miscellaneous Magnetic sensitive diode; Field probe Hall generator in an open magnetic circuit, e.g. magnetogram or signal probe Power transistor for h.f. applications (Rth j-case"""15°CIW) Hall generator in a closed electrically energised magnetic circuit, e.g. Hall modulator or multiplier P Radiation sensitive device Q Radiation generating device R Electrically triggered controlling and switching device having a breakdown characteristic (Rth j-case>15°C/W) S Transistor for switching applications (Rth j-case>15°C/W) T Electrically, or by means of light, triggered controlling and switching power device having a breakdown characteristic (Rth j-case"""15°CIW) U Power transistor for switching applications (Rth j-case"""15°CIW) X Multiplier diode, e.g. varactor, step recovery diode Y Rectifying diode, booster diode, efficiency diode Z Voltage reference or voltage regulator diode XXI 1) A multiple device is defined as a combination of similar or dissimilar active devices, contained in a common encapsulation that cannot be dismantled, and of which all electrodes of the individual devices are accessible from the outside. Multiples of similar devices as well as multiples consisting of a main device and an auxiliary device are designated according to the code for the discrete devices described above. Multiples of dissimilar devices of other nature are designated by the second letter G. The serial number is formed by: Three figures for semiconductor devices which are primarily intended for use in domestic equipment. Two figures and a letter (this letter starts back from z through y, x, etc. bears no signification). Vereion letter A version letter can be used, for instance, for a diode with up-rated voltage, for a sub-division of a transistor type in different gain ranges, a low noise· version of an existing transistor and for a diode, transistor, or thyristor with minor mechanical differences, such as finish of the leads, length of the leads etc. The letters never. have a fixed meaning, the only exception being the letter R which indicates reverse polarity. Examples Be 107 Silicon low power audio frequency transistor primarily intended for domestic equipment BUY 46 Silicon power transistor for switching applications in professional equipment 4.2. FOR INTEGRATED CIRCUITS 4.2.1. Types designated by three letters and three figures The integrated circuits are divided in four groups: ~ digital types belonging to a family of circuits; - digital solitary circuits; analogue circuits including linear circuits; mixed analogue/digital circuits. Digital Family Types First two letters: Third letter: First two figures: Third figure: family circuit function serial number operating ambient temperature XXII Digital Solitary Types First letter: Second letter: Third letter: First two figures: Third figure: "S" extension of serial number circuit function serial number operating ambient temperature range Analogue (LInear) Types First letter: Second and third letter: First two figures: Third figure: "T" extension of serial number serial number operating ambient temperature range Mixed Digital/Analogue Types First letter: Second and third letter: First two figures: Third figure: "U" extension of serial number serial number operating ambient temperature range Function H J K L N Q R S Y Combinatorial circuit Bistable or multistable sequential circuit Monostable sequential circuit Level converter Bi-metastable or multi-metastable sequential circuit Read-write memory circuit Read only memory circuit Sense amplifier with digital output Miscellaneous Operating ambient temperature range 1 2 3 4 5 6 o 0 to + 70°C -55 to + 125°C -10 to + 85°C + 15 to + 55°C -25 to + 70°C -40 to + 85 °C It means no temperature range indicated in the type number If a circuit is published for a wider temperature range, but does not qualify for a higher classification, the figure indicating the narrower temperature range is used. Version letter A version letter can be added to a type number of an existing type to indicate a different version of the same type, for instance, encapsulated XXIII in another package; with other interconnections or showing minor differences in ratings or electrical characteristics. The letter Z is used to indicate a type with discretionary wiring. 4.2.2. Types designated by three letters and four figures The serial number can be a four figure number assigned by Pro Electron or the serial number of an existing company number. The first two letters: A FAMilY CIRCUITS The FIRST TWO lETTERS give information about the family of circuits. These letters can be FA... FZ, GA. .. GZ, HA". etc. B. SOLITARY CIRCUITS The FIRST LETTER divides the solitary circuits into: S Solitary digital circuits T Analogue circuits U Mixed analogue/digital circuits The SECOND lETTER is a serial letter without any further significance. The third letter indicates the operational temperature range or another significant characteristic. The letters B thru F give information about the temperature range (note 1): B C D E F ooC -55°C -25°C -25°C -40°C to to to to to + + 70°C 125 °C + + + Other "third" letters refer to electrical or mechanical versions of a family and have no fixed meaning. If no temperature range or another characteristic is indicated, the letter A is used as a third letter. The serial number can be either a Electron or the serial number (also existing company type designation. than 4 figures are completed to a 4 the number. 4 figure number assigned by Pro numbers comprising letters) of an Company serial numbers of less figure number by "0" 's in front of A versIon letter can be used to indicate a deviation of a single characteristic of a type, either electrically or mechanically. The letter never has a fixed meaning, the only exception being the letter Z, indicating "customwired" devices.. Note 1: If a circuit is published for a wider temperature range, but does not quality for a higher classification, the leiter indicating the narrower temperature range is used. XXIV ALPHA-NUMERICAL LIST OF TYPES Type * * AF 106 AF 109 R AF 139 AF239 AF 239 S BC 107 BC 108 BC 109 BC 113 BC 114 BC 115 BC 116A BC 119 BC 125 BC 125 B BC 126 BC 132 BC 139 BC 140 BC 141 BC 153 BC 154 BC 160 BC 161 BC 177 BC178 BC179 BC204 BC205 BC206 BC207 BC208 BC209 BC225 BC297 BC298 BC300 BC301 BC302 BC303 BC304 BC377 BC378 BC393 Page 3 5 7 9 11 15 15 15 23 23 25 27 29 31 31 35 37 39 Type * BC 394 43 43 47 47 51 51 55 55 55 63 63 63 67 67 67 71 73 73 77 77 77 83 83 87 87 91 * * * * * * * * * * * * 93 95 95 99 99 103 103 103 111 115 117 119 121 123 129 135 137 137 139 139 139 143 147 153 157 159 163 167 171 175 179 183 183 183 187 191 195 199 203 203 203 207 207 211 BC440 BC441 BC460 BC461 BC477 BC478 BC479 BF 155 BF 158 BF 160 BF 161 BF 166 BF 167 BF 173 BF222 BF233 BF234 BF 257 BF258 BF259 BF271 BF 272 A BF273 BF274 BF287 BF288 BF316A BF324 BF454 BF455 BF 457 BF 458 BF 459 BF479 BF506 BF 509 BF516 BF657 BF658 BF659 BF679 BF679 M BF680 new type XXV - -- -- ----._- Type Page * M 252 * M253 * * * * * * * * * * * * * * * SAJ 210 TAA550 TAA611 A TAA 611 B TAA 611 C TAA 630 S TAA 661 TBA231 TBA 271 TBA 311 TBA331 TBA 435 TBA 625 A TBA625 B TBA 625 C TBA641 A TBA641 B TBA651 TBA 780 TBA800 TBA 810S TBA 810 AS TBA820 TCA 511 TCA 830S TCA900 TCA910 TCA 940 TCA 940 E TDA440 TDA 1054 TDA 1170 TDA 1190 TDA 1200 TDA 1270 TDA 1405 TDA 1410 TDA 1412 TDA 1415 TDA 1420 TDA 2010 TDA2020 Page 217 229 241 247 253 265 275 289 295 303 247 309 315 323 331 339 347 355 365 375 379 387 399 399 411 419 427 439 439 447 459 471 481 495 507 519 527 539 549 563 573 583 597 611 GERMANIUM TRANSISTORS I AF106 GERMANIUM MESA PNP VHF MIXER/OSCILLATOR The AF 106 is a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is particularly designed for use as preamplifier mixer and oscillator up to 260 MHz. ABSOLUTE MAXIMUM RATINGS V eBO VeEo VEBO Ie Ptot = -25 Collector-base voltage (IE 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (Ie 0) Collector current Total power dissipation at Tamb ~ 45°C = at Tease ~ V -18 V -0.3 V -10 mA 60 mW 60 mW -30 to 75°C 90 °C 66°C Storage temperature Junction temperature MECHANICAL DATA Dimensions in mm Shield lead connected to case ... ~ . . . . , . +, 0.45 m•• C-0017 TO-·72 Supersedes issue dated 7/68 3 5/73 AF106 THERMAL DATA R'h j-case Thermal resistance junction-case max 400 R'h j-amb Thermal resistance junction-ambient max 750 °C/W ELECTRICAL CHARACTERISTICS Parameter leso (Tcase = 25°C unless otherwise specified) Test conditions Collector cutoff current (IE = 0) °C!W Min. Typ. Max. Unit Vea= -12V -10 I1A VeaR) eso Collector-base breakdown voltage (Ie 0) Ie = -100 I1A -25 V VeaR) ceo Collector-emitter breakdown voltage (Ia = 0) Ic = -500 itA -18 V Ie = -100 itA -0.3 V -0.25 -0.325 -0.38 -0.28 -0.34 -0.4 V V = V(BR) ESO Emitter-base breakdown voltage (Ie = 0) Vse Base-emitter voltage Ie Ie = -1 mA = -2mA Vce =-12V VCE = -6 V hFE DC current gain Ie Ic = -1 mA = -2 mA Vee =-12V Vce = -6 V fT Transition frequency Ie f = -1 mA Vee = -12 V 100 MHz = 220 MHz Ie f == = -1 mA Vee = -12V 450 kHz 0.45 pF -C re NF Reverse capacitance Noise figure rbb, Cb'c Feedback time constant Gob Power gain '" 20 Ie = -1 mA VeE =-12V Rg = 60n f = 200 MHz Ic f 5.5 = -1 mA Vce =-12V = 2.5 MHz Ie = -3mA Ves= -i0V RL = 9200 f = 200 MHz 4 50 70 14 ~ - 7.5 dB 6 ps 17.5 dB AF109R GERMANIUM MESA PNP VHF PREAMPLIFIER The AF 109R is a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is designed for use in AGC prestages up to 260 MHz. ABSOLUTE MAXIMUM RATINGS VeBO VeEo VEBO Ie Ptot = -20 V -15 V -0.3 V -10 mA 60 mW 60 mW -30 to 75 °C Collector-base voltage (IE 0) Collector-emitter voltage (18 = 0) Emitter-base voltage (Ie 0) Collector current Total power dissipation at Tamb ~ 45°C = at Tease ~ 66°C Storage temperature Junction temperature 90 MECHANICAL DATA °C Dimensions in mm Shield lead connected to case .., 5.2 max ~ ::l+1 j: 12.7min J~ J ~E ~~ :t?~ x C-OOTI TO-72 Supersedes issue dated 6/68 5 5/73 AF109R THERMAL DATA Rth i-cas. Rth i-amb max max Thermal resistance junction-case Thermal resistance junction-ambient 400 °C/W 750 °C/W ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified) Parameter Test conditions Iceo Collector cutoff current (IE = 0) Vce= -20 V ICEO Collector cutoff current (Ie = 0) VCE = -15V Emitter cutoff current (Ic = 0) VEe ,= IEeo -0.5 -0.3 V -100 J1A Base-emitter voltage Ic Ic = -1.5 mA VCE = -12 V = -2mA VCE = -6 V hFE DC current gain Ic Ie = -1.5 mA VCE = -12 V = -2mA VCE = -6 V -C re Reverse capacitance Ic f = -1 mA VCE = -12 V = 450 kHz Gob Noise figure Power gain Ic = -2mA Rg = 60g -320 -380 -430 mV -320 -380 -430 mV 20 50 55 0.25 VCE = -12 V f = 200 MHz Ic = -2mA VCE = -12 V REE = 1 kg RL = 920g f = 200 MHz 6 -8 J1A -500 J1A VeE NF Min. Typ. Max. Unit pF 4.8 dB 13 16.5 dB AFl39 GERMANIUM MESA PNP UHF AMPLIFIER The AF 139 is a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is particularly designed for use in prestages as well as in mixer and oscillator stages up to 860 MHz. ABSOLUTE MAXIMUM RATINGS VCBO VCEO V EBO IE Ic Ptot Collector-base voltage (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (Ic = 0) Emitter current Collector current Total power dissipation at Tamb at T stg Tj ~ 45°C Tease ~ 66°C Storage temperature Junction temperature MECHANICAL DATA -22 V -15 -0.3 V 11 -10 60 60 -30 to 75 90 mA mA mW mW °C °C V Dimensions in mm Shield lead connected to case .., 0 d S.2 m• x 12.7min . . e J.{) J.{) "e- II x e +1 ..;f Id "e- ~ 4 -e. 1== O.4s max C-OOI7 TO-72 7 6/68 I AF139 THERMAL DATA Rth Rth j-ease j-amb Thermal resistance junction-case Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS Parameter max max 400 °C/W 750 °C/W (Tease = 25°C unless otherwise specified) Test conditions Min. Typ. Max. Unit Collector cutoff current (IE = 0) VCB = -22 V -s itA Collector cutoff current (Is = 0) VCE = -15 V -500 itA Emitter cutoff current (lc = 0) VES = -0.3 V -100 itA hFE DC current gain Ic = -1.5 mA VcE =-12V fr Transition frequency Ie ICBO ICEO IESO f -C re Reverse capacitance Ic f Nf Noise figure Ic 50 - = -1.5 mA VcE =-12V = 100 MHz 550 MHz = -1.5 mA VcE =-12V = 100 kHz 0.25 pF = -1.5 mA VCE = -12V f = SOO MHz 7 S.2 dB = -1.5 mA VCE = -12 V = 2.5 MHz 3 ps 11 dB 10 RQ = 60Q rbb• Cb' e Feedback time constant Ic f Gob Power gain Ic = -1.5 mA VCE = -12V = SOO MHz RL =1.4kQf 8 9 AF239 GERMANIUM MESAPNP UHF PREAMPLIFIER The AF 239 'is :a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is particularly designed a'spreamplifiar mixer and oscillator up to 900 MHz. ABSOLUTE MAXIMUM RATINGS VCES V CEO VEao Ic P tot = Collector-emitter voltage (VaE 0) Collector-emitter voltage (la = 0) Emitter-base voltage (Ie 0) Collector current Total power dissipation at Tamb ~ 45°C = at T stg Tj Tease ~ Storage temperature Junction temperature MECHANICAL DATA 66°C -20 V -15 V V -0.3 -10 mA 60 mW 60 mW -30 to 75 °C 90 °C Dimensions in mm Shield lead connected to case TO-72 9 6/68 I 'I AF239 THERMAL DATA Rth j-ease Rth j-amb Thermal resistance junction-case Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS Parameter ICES leEo IESO max max 400 750 °C/W °C/W (Tease = 25°C unless otherwise specified) Test conditions Min. Typ. Max. Unit Collector cutoff current (VSE = 0) VeE = -20 V -8 itA Collector cutoff current (16 = 0) VeE = -15V -500 itA Emitter cutoff current (Ie = 0) VES :;: -0.3 V -100 itA VBE Base-emitter voltage Ie Ie :;: -2mA = -5mA VeE =-10V VeE = -5 V hFE DC current gain Ie Ie :;:-2mA = -5mA VeE =-10V VeE = -5 V Ie f :;: -2mA VeE =-10V = 100 MHz 700 MHz Ie f = -2mA VCE = -10 V = 450 kHz 0.23 pF fT -C re NF Gob Transition frequency Reverse capacitance Noise figure Power gain -350 -400 10 30 VcE =-10V Ic = -2mA Rg = 60n f. = 800 MHz Ic = -2mA RL = 2kQ f 10 VcE =-10V = 800MHz 5 11 14 mV· mV - 6 dB dB AF 239S GERMANIUM MESA PNP UHF PREAMPLIFIER The AF 239S is a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is particularly designed as preamplifier, mixer and oscillator up to 900 MHz. ABSOLUTE MAXIMUM RATINGS = 0) = 0) V CES Collector-emitter voltage (VeE ~20 V VCEO VEeo Collector-emitter voltage (Ie ~15 V Ic P tot = Emitter-base voltage (lc 0) Collector current Total power dissipation at Tamb at ~ 45°C Tease ~ 66°C ~0.3 V ~10 mA 60 mW 60 mW -30 to 75°C Storage temperature Junction temperature 90 MECHANICAL DATA °C Dimensions in mm Shield lead connected to case .., 0 d 5.2m.. +1 12.7min II x ~ E -, ~ ~ d :e- 1== ~ ;,; j==:I 0.45 max C-0017 TO-72 11 6/68 AF239S THERMAL DATA Rtll j-c... Thermal' resi$ta(l(:,e, ju,nction-case Rlh j-amb Therma'i resi&tan.ce junction-ambient ELECTRICAL CHARACTERISTICS max max (Teas. =: 25 ac uo'ess otherwise $pecified) Test conditions Parameter 400 oCM 750 °C/W Min. Typ. Max. Unit CQ.lIect.or cu.toff current (V BE' = Q) : VeE = -20V -8. !-IA Collector cutoff current(1B =: Q} I = -15 V -500 !-LA ' ' 60 Emitter cutoff cummt (Ie 0)- . VEe -0.3 V -100 p,A VBE BaS$-emitter voltage ICES leEQ, hFE fT -Cre NF = DC current gain Transition freqt:.lency Reverse capacitance Noise figure VeE Ie = -2mA VcE =-1QV Ie "'" -5mA VCE :;:: -5V Ie = -2mA VCE 'e = -SmA Vee Ie = -2mA f =;; Ic f = 450 kHz Power gain =: -10V = -10V -350 -400 10 30 = -2mA mV mV - VeE = -10V 100 MHz Ie = -1 rnA '\ = 60n f G pb =;; 780 MHz 0.2 pF VCE. = -10V VCE = -10 V = 800 MHz 5 dB = -i0V Ie ::;: -2mA VCE R9 =60n RL = 2kO f =: 800 MHz 12 12.5 15 dB I Sll.:lCON TRANSISTORS 13 Be 107 Be 108 Be 109 SILICON PLANAR NPN LOW NOISE GENERAL PURPOSE AUDIO AMPLIFIERS The BC 107, BC 108 and BC 109 are silicon planar epitaxial NPN transistors in TO-18 metal case. They are suitable for use in driver stages, low noise input stages and signal processing circuits of television receivers. The complementary PNP types are respectively the BC 177, BC 178 and BC 179. ABSOLUTE MAXIMUM RATINGS Veso Veeo VESO IBC 107/BC 10BIBC 109 = Collector-base voltage (Ie 0) Collector-emitter voltage (Is O) Emitter-base voltage (Ie Collector current = = 0) illS" 45V 6V - ~" 20V 20V 5V 5V ...... ---------.--~ 100 rnA 0.3W 0.75W Ie P tot Total power dissipation at T.mb """ 25 °C T stg Storage temperature -55 to 175 °C Tj Junction temperature 175°C at Te • se """ 25 °C MECHANICAL DATA Dimensions in mm (aim. to TO-18) 15 4/73 I Be 107 Be 108 Be 109 THERMAL DATA Rth j-case Rth j-amb max max Thermal resistance junction-case Thermal resistance junction-ambient 200 500 °C/W °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Parameter leso Collector cutoff current (IE = 0) Test conditions 1d7 for Be VCB = 40V Vcs = 40V Tamb = 150°C for Be 108 - Be 109 Vcs = 20V Vcs = 20 V Tamb = 150°C V (BR)CSO Collector-base breakdown voltage (IE = 0) Ic VCBR)CEO 'Collector-emitter breakdown voltage (lB ~ 0) Ic VeE!sat)' Collector-emitter saturation voltage VBE " Base-emitter voltage VBE(sat)" Base-emitter saturation voltage IE 15 nA 15 [lA 15 nA 15 p,A = 10.[lA for for for Be 107 Be 108 Be 109 50 30 30 V V V for for for Be 107 Be 108 Be 109 45 20 20 V V V for for for Be 107 Be 108 Be 109 6 5 5 \j =10mA VCSR1ESO Emitter-base breakdown voltage (Ic = 0) Min. Typ. Max. Unit = 10p,A Ic Ic = 10mA 'B = 100 rnA 'B Ic Ic = 2mA = 10mA Ic Ic = 10mA Is = 100mA Is 16 = 0.5 rnA = SmA VCE = 5 V VCE = 5V = 0.5 rnA = 5mA 550 V V 70 200 250 mV 600 mV 650 700 700 mV 770 mV 750 900 mV mV Be 107 Be 108 Be 109 ELECTRICAL CHARACTERISTICS hFE . (continued) Test conditions Parameter DC current gain Ie = 2mA for "for for for for for for for for for Ie = 10)J.A for for for for for for for for for for hfe CeBo Small signal current gain Collector-base capacitance • Pulsed: pulse duration = 300 I-tS. = 2mA VeE = 5 V Be 107 Be 107 Gr. Be 107 Gr. Be 108 Be 108 Gr. Be 108 Gr. Be 108 Gr. Be 109 Be 109 Gr. Be 109 Gr. VeE = 5 V Be 107 Be 107 Gr. Be 107 Gr. Be 108 Be 108 Gr. Be 10~ Gr. Be; 108 Gr. Be 109 Be 109 Gr. Be 109 Gr. Min. Typ. Max. Unit 110 A 110 B 200 110 A 110 B 200 C 420 200 B 200 C 420 A B 40 A B 40 C 100 70 B 40 C 100 = 1 kHz Ie f for Be 107 for Be 107 Gr. A for Be 107 Gr. B for Be 108 for Be 108 Gr. A for Be 108 Gr. B for Be 108 Gr. C for Be 109 for Be 109 Gr. B for Be 109 Gr. C = 10mA VeE = 10V = 100 MHz !E f = 1 MHz - - 250 190 300 370 190 300 500 370 300 550 2 - - - - - - - - VeB = 10V =0 17 120 90 150 120 90 150 270 210 150 270 450 220 450 800 220 450 800 800 450 800 VeE = 5 V Ie f duty factor 230 180 290 350 180 290 520 350 290 520 = 1% 4 6 pF I BC 107 BC 108 Be 109· ELECTRICAL CHARACTERISTICS Parameter· CEBO NF hie Emitter-base capacitance Noise figure Input impedance Test conditions Ie f Reverse voltage ratio =0 = 1 MHz Min. Typ. Max. Unit VES = 0.5 V Ie = 0.2 rnA VeE = 5 V f = 1 kHz Rg = 2 kn B = 200 Hz for Be 107 for Be 108 for Be 109 Ie = 0.2 rnA VeE = 5 V Rg = 2 kn f = 10Hz to 10kHz B = 15.7 kHz for Be 109 Ie f h re (continued) Ie f = 2mA = 1 kHz for for for for for for for for for for = 2mA = 1 kHz for for for for for for for for for for 18 11.5 pF 2 2 1.5 10 dB 10 dB 4 dB 1.5 4 dB 4 3 4.8 5.5 3 4.8 7 5.5 4.8 7 ill ill VeE = 5 V Be 107 Be 107 Be 107 Be 108 Be 108 Be 108 Be 108 Be 109 Be 109 Be 109 Gr. A Gr. B Gr. A Gr. B Gr. C Gr. B Gr. C kn kn kn kn kn k!l kn kn VeE = 5 V Be 107 Be 107 Be 107 Be 108 Be 108 Be 108 Be 108 Be 109 Be 109 Be 109 Gr. A Gr. B Gr. A Gr. B Gr. C Gr. B Gr. C 2.2 x 10-4 1.7 x 10-4 2.7 x 10-4 3.1 x 10-4 1.7 x 10-4 2.7 x 10-4· 3.8 x 10-4 3.1 x 10-4 2.7 x 10.4 3.8 x 10-4 - - - - Be 107 Be 108 Be 109 ELECTRICAL CHARACTERISTICS Test conditions Parameter hoe (continued) Output admittance Ic f = 2mA = 1 kHz VCE for for for for for for for for for for Typical output characteristics (for Be 107 only) us 0 [mAl 0.35 mA 80 0.30 mA _I , .1 0.24 mA 0.16 mA 40 , I 0.121mA J 0.08 mA o.oJ mA 20 .I 0,04 rnA IB= 0 18 =·0 8 I bO 0. .15 mA 4 I I 1. o GS 002: I 0.20 mA 0.10 mA a Gr. B Gr. C 0.28 mA 80 0.20 mAl 20 Gr. A Gr. B Gr. C !lS !lS !lS !lS !lS !lS !lS !lS !lS llS I,; (rnA) I I 20 13 26 30 13 26 34 30 26 34 Gr. A Gr. B Typical output characteristics (for Be 108 only) 1 40 =5V Be 107 Be 107 Be 107 Be 108 Be 108 Be 108 Be 108 Be 109 Be 109 Be 109 ri.25 mA 60 Min. Typ. Max. Unit 12 16 o a VeE (V) 19 12 16 VeE IV) I Be 107 Be 108 Be 109 Typical output characteristics (for Be 109 only) DC transconductance (i Ie 0023 Ie (rnA) I (rnA) GS 0024 - - 0:.20 rnA I Vee 5V 8 0.161rnA I I 60 40 o.o~J 20 0.01 rnA lh '" 0.1 0,12 rnA :fi TYP. '/ 0.01 I '/ I o I IS =0 0.001 12 DC normalized current gain a /I 0.2 0.6 0.4 0.8 V" (V) Collector-emitter saturation voltage 0 11=IJtl e B VeE (satl (mV) 160 - -45°C II '-- 120 .. - -- j 80 .... II 1. I 10 1-1-. -- /. / 40 0.01 Ie (rnA) 20 0.1 10 IdmA) Be 107 Be 108 Be 109 Collector-base capacitance Transition frequency , nno t, J IE=O- f-1 (pFI (MHzI f--V CE 200 !\ = 10V / \ I i\ \ 0028 1 In T 1/ 180 " .......... r-- ii 160 i I 10-. \ V 140 / j 120 f-- 1/ 100 12 16 Vr.s (VI 0.1 Noise figure (for BC 109 only) 10 [":: J".- ~55 R ~~%> ""'" 2dB f = 100Hz """ K 1 B ~ 20 Hz 0.00 1 10 "f", 0.01 l"\ IJ 1\\ -~ ~ 7dB 0.1 5dB ~ 1 1 P'J VeE f V "t-H 6dB o. 1 21 I"- K I...... f\~ l'-... t'-. ~ ~ t'-. 5V "I'-.. 1'-. B - 200 Hz 0.01 ~ :5;60'. ,- "- O'&<} ~ I\- -, j>,,:~& I'\: 1'\ ~ 1\ J'.., J'.., ........ "\ rT K dB. i'. = 1KHz 0.001 Ie (mAl 1"- ~ "- i'-.. ~ 1\ l\\ ) II ~ t--:: t--.. .. ~ 4dB 5V ""'" " , ~ ~ ~~:'1'-.. VCE uS 0030 i'. [\ ~ [\f\ ~ 1'-. I' "'" O. Rg (k II ) I'\. l'\.'\ ~_ f-- "- , 0"0, '\. ~ 1'-..." 1 Noise figure (for BC 109 only) 1\..'\ f\ f\~ Rg (k!lI , Ie (mAl 10 2dB lL 3 B.~ t- ........ t- 4dB 7d\;' ~B .... ~dlB 1'.... 0.1 1,(mAI BC 107 BC 108 BC 109 Noise figure (for Be 109 only) Power rating chart GS 003 Rg Ik 11 I 10 VeE J~ ........ ...... (mW) ,S, '~ 250 ~ )~ f ~ 10 Hz to 10kHz B~~lkHZ "'" ................ ...... Plot . . . . . ~ ~~N6.y;:- ........ "'\ I '\ f'.....1:5dB ............ r-., r--... ......:-- ........... ~ r--... ................... I-- 200 "'-' 150 \ ...... -....... ---r--::-- 7dB ........... 0.1 0.01 0.1 r-~ '"1"'- '" '" I"\.. ~ ~1'~~ is.-9/1' ................ 2dB GS 0032 '\. 100 / 3d B ----;:;:; 4dB 50 ~ "-r'\.. 50 22 " '\. o ic(mA) 75 100 125 T.m' (OC) BC 113 BC 114 SILICON PLANAR NPN HIGH GAIN, LOW NOISE AUDIO AMPLIFIERS The BC 113 and BC 114 are silicon planar NPN transistors in TO-18 epoxy package. They are specifically designed for use in low-noise audio preamplifiers. ABSOLUTE MAXIMUM RATINGS VCBO Collector-base voltage (IE = 0) VCEO VEBO Collector-emitter voltage (Is = 0) Emitter-base voltage (lc = 0) Ic Collector current PtO! Total power dissipation at Tamb at Tstg Tj 30 ~ 25 °C Tcase ~ 25 °C Storage temperature Junction temperature MECHANICAL DATA V V 30 6 V 50 mA 200 mW 500 mW -55 to 125 °C 125 °C Dimensions in mm ~~'~ ~I ~ C B 10-18 epoxy 23 5/73 I BCl13 BC 114 THERMAL DATA Rth j-case Rth j-amb Thermal resistance junction-case Thermal resistance J'unction-ambient ELECTRICAL CHARACTERISTICS (Tamb Collector cutoff current (V BE 0) = 200 °C/W max 500 °C/W unless otherwise specified) Test conditions Parameter ICES = 25°C max Min. Typ. Max. Unit VCE VCE = 20V = 20V VCBR)CEO'Collector-emitter breakdown voltage (Is 0) Ic = 10mA 30 V VCBR) cBoColiector-base breakdown voltage (IE 0) Ic = 10 IlA 30 V VCBR) EBO Emitter-base breakdown voltage (lc = 0) 6 V = = Tamb IE = 10 IlA VBE Base-emitter voltage Ic = 1 mA VCE hFE DC current gain Ic Ic Ic Ic = 10 IlA 100 IlA 1 mA 10mA VCE V VCE 5V VCE = 5 V VCE 5V for BC 113 for Be 114 fr CCBO NF Transition frequency Collector-base capacitance Noise figure Ic = = = = 1 mA IE =0 Ic = 10IlA Rg = 10 kn B =5V =.5 = 0.64 120 200 0.7 1000 200 400 400 60 70 100 100 V - 170 250 = - - - = VCE 5V for Be 113 for Be 114 =5V VCE = 5 V VCB MHz MHz 2.7 4 2.5 1.5 dB 3 dB pF f = 1 kHz = 200 Hz for Be 113 for Be 114 • Pulsed: pulse duration 50 nA 5 IJ.A = 65°C 300 IJ.s, duty factor 24 = 1% Be 115 SILICON PLANAR NPN AUDIO DRIVER The BC 115 is a silicon planar epitaxial NPN transistor in a TO-39 epoxy package. It is particularly suited for use in audio driver circuits. ABSOLUTE MAXIMUM RATINGS VCBC> Collector-base voltage (IE == 0) VCEO VEBO Collector-emitter voltage (IB == Emitter-base voltage (Ic == 0) 0) Ie Collector current P,ot Total power dissipation at Tamb T stg Storage temperature Tj Junction temperature ~ 25°C at Tca.. ~ 25 °C 40 V 30 V V 5 200 mA 0.3 W 0.8 W -55 to 125 125 MECHANICAL DATA °C °C Dimensions in mm 5.1 TO-39 epoxy Supersedes issue dated 5/73 25 6/75 Be 115 THERMAL DATA Rth j-case Rth j-amb ELECTRICAL CHARACTERISTICS Parameter ICBO max max Thermal resistance junction-case Thermal resistance junction-ambient VCB = 20V VCB = 20V Tamb == = 100 V (BR)CEO'Collector-emitter breakdown voltage (lB = 0) Ic V(SR) ESO Emitter-base breakdown voltage (lc = 0) Ic = Ic Is = 100 rnA = 10mA Ic Ic =10mA VCE = 10 V = 100 rnA VCE = 10V Ic IB = 100mA = 10mA Ic Ic Ic Ic = = = = Ic = 10mA VCE = 10V IE f =0 = 1 MHz Vcs = 10 V Base-emitter voltage VSE (sat)' Base-emitter saturation voltage hF~ , fT Ccso DC current gain Transition frequency Collector-base capacitance , Pulsed: pulse duration - 100 nA 5 [1A 65°C Ic VSE °C/W Min. Typ. Max. Unit V(BR) cBoColiector-base breakdown voltage (IE = 0) VCE (sat)' Collector-emitter saturation voltage °C/W (T amb = 25°C unless otherwise specified) Test conditions Collector cutoff current (IE = 0) 125 330 40 V = 30 rnA 30 V 10~A 5 V ~A 0.4 = 300 [1s, duty factor = 1% 26 0.65 0.75 0.8 100~A VCE = 10V 1 mA VCE = 10 V 10mA VCE = 10 V 100mA VCE 10V 1 50 100 50 95 145 170 150 V V 0.9 400 V MHz 80 12 V 25 pF Be 116A SILICON PLANAR PNP GENERAL PURPOSE TRANSISTOR The BC 116A is a silicon planar epitaxial PNP transistor in a TO-39 epoxy package. It is designed as general purpose device for application over a wide range of collector current. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO Ic Ptot Collector-base voltage (IE = 0) Collector-emitter voltage (IB = 0) Emitter-base voltage (lc = 0) Collector current Total power dissipation at Tamb ~ 25°C at Tcase ~ 25°C MECHANICAL DATA -45 V V -40 -5 V -500 mA W W 0.3 0.8 Dimensions in mm 5.1 c TO-39 epoxy 27 5/73 I Be 116A THERMAL DATA Rth j.case Rth j.amb max max Thermal resistance junction-case Thermal resistance junction-ambient 125 °C/W 330 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Test conditions Parameter Collector cutoff current (IE = 0) ICBO VCB = -20 V VCB = -20V Min. Typ. Max. Unit -100 nA :..10 ~A Tamb = 75°C V(BR) CBO Collector-base breakdown voltage (IE = 0) Ic = -10 itA -45 V V(BR)CEO* Collector-em itter breakdown voltage (lB = 0) Ic = -10mA -40 V V(BR) EBO Emitter-base breakdown voltage (lc = 0) Ic = -10 itA -5 V Ic Ic = -SOmA IB = -S rnA = -150 rnA IB = -15 rnA Ic Ic = -10 rnA VCE = -50 rnA VCE Ic Ic = -SOmA IB = -150 rnA IB Ic Ic Ic Ic = -100 itA VCE = -10 V = -10 rnA VCE = -1 V = -SOmA VCE = -1 V = -150 rnA VCE = -10 V Ic = -30 rnA VCE IE f =0 = 1 MHz VcB =-10V VCE (sat)* VBE * VBE (sat/ hFE Collector-emitter saturation voltage Base-emitter voltage Base-emitter saturation voltage DC current gain fT Transition frequency CCBO Collector-base capacitance V V = -10 V = -1 V -0.70 -0.75 -1 V V = -SmA = -15 rnA -0.80 -1 -1.3 V V • Pulsed: pulse duration = 300 ~s. duty factor = 1% 28 -0.25 -0.40 = -10V 30 60 60 80 90 150 150 150 130 200 5 - 240 MHz 10 pF Be 119 SILICON PLANAR NPN AUDIO OUTPUT AMPLIFIER The BC 119 is a silicon planar epitaxial NPN transistor in a TO-39 metal case. It is suitable for 1 W class "A" and up to 6 W class "B" audio output stages and is available as a pair 2 BC 119. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO P,o, Collector-base voltage (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (lc = 0) Total power dissipation at Tamb ~ 25°C at Tease ~ 25°C at Tease ~ 100°C T"g Tj Storage temperature Junction temperature 60 V 30 V V 5 5 2.8 -55 to 200 200 MECHANICAL DATA W W W 0.8 °C °C Dimensions in mm (sim. to TO-39) 29 5/73 Be 119 THERMAL DATA Rth j-case Thermal resistance junction-case Rth j-amb Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS (Tamb = 25°C Collector cutoff current (IE 0) = V CB VCB = 40V = 40V T amb 35 220 °C/W °C/W unless otherwise specified) Test conditions Parameter ICBO max max Min. Typ. Max. Unit 100 nA 20 p.A = 150°C V(BR) cao Collector-base breakdown voltage (IE 0) = Ic = 100 itA 60 V VCEO(sus)' Collector-emitter sustaining voltage (la 0) Ic = 30 rnA 30 V V(BR) EBO Emitter-base breakdown voltage 0) (lc IE = 100 itA 5 V Ie Ic Ic = 150 rnA la = 15 rnA = 500 rnA IB = SOmA =1A la = 100 rnA 0_15 0_4 0.8 0_35 Ie Ic = 500 rnA VCE = 10V = 150 rnA VCE = 1 V 1 0.85 1.8 1 V V Ie Ic = 150 rnA la = 15 rnA =1A IB = 0.1 A 0.9 1.4 1.2 2 V V Ic Ic Ic = SOmA VCE == 1 V = 150 rnA VCE =1 V = 500 rnA VcE =10V 100 90 60 120 = = VCE (sat)' Collector-emitter saturation voltage VaE , Base-emitter voltage VBE (sat)' Base-emitter saturatior. voltage hFE' DC current gain hFE/hFE2 Matched pair Ic = 300 rnA VCE = 5 V fT Transition frequency Ic = SOmA VCE = 10V Ccao Collector-base capacitance IE =0 Vca = 10V , Pulsed: pulse duration = 300 p.s, duty factor 30 = 1"10 40 40 25 1.1 1.5 V V V - 1.4 MHz 40 12 25 pF BC 125 BC 125B, SILICON PLANAR NPN AUDIO DRIVERS The BC 125 and BC 125 B are silicon planar epitaxial NPN transistors in TO-39 epoxy package. They are designed for use as audio drivers. ABSOLUTE MAXIMUM RATINGS BC 125 BC 125 B 50V 5 V 60V 6 V = 0) = 0) VeBo Collector-base voltage (IE VEBO Emitter-base voltage (Ie VeEo Collector-emitter voltage (lB = 0) Ie Collector current PtO! Total power dissipation at Tamb ~ 25 °C at Tease ~ 25 °C 30 V 0.5 A 0.3 W Storage temperature 0.8 W -55 to 125 0 C Junction. temperature 125 0 C MECHANICAL DATA Dimensions in mm x 5.1 6.1max min ~ '-_1---:~-:..-:..:::__1_2---,7"= ~I E II t== F===I M 00 III =i: II "9- P039-A TO-39 epoxy 31 5/73 I BC 125 BC 125B THERMAL DATA Rth Rth j-case j-amb max max Thermal resistance junction-case Thermal resistance junction-ambient = 25°C ELECTRICAL CHARACTERISTICS (T amb Parameter Icao unless otherwise specified) Test conditions Collector cutoff current (IE = 0) Ic VCEO(sUS)"Colleotor-emitter sustaining voltage (la == 0) Ic = 30mA V(aR) EaoEmitter-base breakdown voltage (lc = 0) Ic = 10j.tA for Be 125 for Be 125 B VCE (sat)" Collector-emitter saturation voltage for Be 125 Ic = 150 mA la = 15mA for Be 125 B Ic = 150 mA la = 15mA 500mA Ic la = 50mA = = 300 j.tS, 0.5 109 nA 20 !J.A 0.5 100 nA 20 !J.A = 10j.tA for Be 125 for Be 125 B " Pulsed: pulse duration Min. Typ. Max. Unit for BC 125 Vca = 20V Vca = 20V T.mb = 75°C for Be 125 B Vca = 40V Vca = 40V Tamb = 75°C V(aR) caoColiector-base breakdown voltage (IE = 0) 125 °C/W 330 °C/W duty factor 32 = 1% 50 60 V V 30 V 5 6 V V 0.2 2.5 V 0.15 0.25 V 0.4 0.8 V BC 125 BC 125B ELECTRICAL CHARACTERISTICS Parameter Base-emitter voltage VBE Base-emitter saturation voltage hFE * Min. Typ. Max. Unit Test conditions VBE* (sat)- (continued) DC current gain fT Transition frequency CCBO Collector-base capacitance Ic = SOmA for Ic IB for Ic IB Ic IB Be 125 = 150 mA = 15mA for Ie Ic Ic Ic Be 125 = 1 mA = 10 mA = SOmA = 150 mA Ic Ic for Ic Ic Ic Ic = 1 mA =10mA Be 125 B = 1 mA = 10 mA = SOmA = 150 mA Be 125 B = 150 mA = 15mA = 500 mA = SOmA VCE VCE VCE VCE VCE VCE = = = = = = 1V 1V 1V 1V 10 V 10 V Ic VCE = 1V VCE = 1V VCE = 1V VCE = 1V = 500 mA VCE = 10V Ic = SOmA VCE = 10 V IE f =0 = 1 MHz VCB = 10 V for Be 125 for Be 125 B * Pulsed: pulse duration 0.72 VCE = 1 V 300 J,l.S, duty factor 33 = 1% 30 30 25 30 45 40 1 1.3 V 0.87 1 V 1.1 1.3 V - 50 70 75 60 55 75 85 100 95 80 70 200 V 350 6 5 - - - - 120 MHz 12 pF 8 pF I Be 125 .. '·,BC125B" DC current gain (for BC 125 B only) Typical output characteristics (for BC 125 B only) GS 0063 Ie 4.5mA i// ~ 250 . J 50 2mA ,... o iI' o 1~A 60 I 40 VeE(sat ) ........ \ I'\.. 1/..... r\ 20 I I 0.4 0.6 10 0.8 VeE (V) Collector-emitter saturation voltage 0.5 " 0.5mA IS= 0 0.2 0 V . . . .... ........" 80 1.5mA 'f//// V '(J// ~ ............ :.-. 100 2.5mA fh'/~ V 100 120 3mA 1.'//V 15 6 J5 6 0 3.5mA /1/ /' 'f/J . / 1'50 VCE=1V 4mA h'/' 200 G hFE V (mA) GS 100 Ie {mAl Power rating chart on 65 GS 0066 I III (W) IC-10IS (V) V 0.1 0.05 0.3 "- / V I'-. 0.2 It "'- ~~~ ~ 0.1 0.01 0.1 q" "- ~ o 10 25' 100 Ie {mAl 34 50 75 , 100 T~mb (OC) Be 126 SILICON PLANAR PNP AUDIO DRIVER The BC 126 is a silicon planar epitaxial PNP transistor in a TO-39 epoxy package. It is designed for audio driver applications. The complementary NPN type is the BC 125. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO Ic P tot Collector-base voltage (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (lc = 0) Collector current Total power dissipation at Tamb ~ 25°C at Tease ~ 25°C T stg Tj Storage temperature V -30 -5 V -0.5 A 0.3 W W V 0.8 -55 to 125 °C 125 °C Junction temperature MECHANICAL DATA -35 Dimensions in mm . x '" ~ .-_+--6-,..1~m=a=X~_ _12---,7== ~ 4 1=== E C'"l II a:j -e. II F= P039-A c TO-39 epoxy 35 5/73 I Be 126 THERMAL DATA Rth j-case Rth j-amb max max Thermal resistance junction-case Thermal resistance junction-ambient 125 °C/W 330 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25 0 C unless otherwise specified) Test conditions Parameter IC60 Col/ector cutoff current (IE 0) = Min. Typ. Max. Unit VC6 VC6 = -20V = -20V VC6R ) C60 Col/ector-base breakdown voltage (IE = 0) Ic = -10 JlA -35 V VC6R ) CEO Col/ector-emitter breakdown voltage (16 =0) IC = -10 mA -30 V VC6R ) E60 Emitter-base breakdown voltage (lc = 0) IE = -10 JlA -5 V Ic 16 Ic 16 = -50 mA = -5mA -0.25 V = -150 mA = -15 mA -0.50 V Ic = -50mA VCE -0.75 -1 V Ic 16 Ic 16 :;;: ::; = = -1 -1.3 V Ic Ic -50mA VCE -1 V = -150 mA VCE = -1 V Ic = -50 mA VCE = -20 V IE f =0 1 MHz = -10V VCE (sat) Col/ector-emitter saturation voltage V6E Base-emitter voltage V6E Csatl Base-emitter saturation voltage hFE DC current gain fT Transition frequency CC60 Col/ector-base capacitance -100 nA -20 p,A Tamb = 75°C = -1 V -150 mA -15 mA -50mA -5mA -0.8 = = = 36 Ve6 30 30 80 60 200 5 V - 120 MHz pF Be 132 SILICON PLANAR NPN AUDIO AMPLIFIER The BC 132 is a silicon planar NPN transistor in a TO-18 epoxy package. It is suitable for low level audio stages and direct coupled circuits. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO Collector-base voltage (IE Ie Collector current P tot Total power dissipation at Tamb T stg Tj Storage temperature Collector-emitter voltage Emitter-base voltage := 0) (lB := (lc := 0) 6 ~ 20 rnA 0.2 W 0.5 W 25°C at Tease ~ 25°C -55 to 125 °C 125 °C Junction temperature MECHANICAL DATA Dimensions in mm 2.54. 6.9max 10.2 min ~ ~ ~l (r--=-~~ 'l' C V V V 30 25 0) __ B P040-A _ TO-18 epoxy 37 5/73 Be 132 THERMAL DATA Rth i-case Rth j-am~ ELECTRICAL CHARACTERISTICS Collector cutoff current (IE = O) 200 °C/W 500 °C/W (T amb = 25°C unless otherwise specified) Test conditions Parameter ICBO max max Thermal resistance junction-case Thermal resistance junction-ambient VCB = 5 V VCB = 5 V Min. Typ. Max. Unit 100 nA 3 IJ.A Tamb = 65°C V(BR) cBoColiector-base breakdown voltage (IE = O) Ic = 100 itA 30 V V(BR) CEQ Collector-emitter breakdown voltage (lB = O) Ic = 10mA 25 V V(BR) EBOEmitter-base breakdown voltage (Ie = O) IE = 100 itA 6 V Ic IB = 1 mA =0.1 mA Ic Ie = 50 itA = 1 mA VeE = 10 V VeE = 10 V IE =0 VeB = 5 V VCE (sat) Collector-emitter saturation voltage hFE CCBO DC current gain Collector-base capacitance 38 0.35 V 300 - 50 60 2.2 4 pF Be 139 SILICON PLANAR PNP AUDIO OUTPUT AMPLIFIER The BC 139 is a silicon planar epitaxial PNP transistor in a TO-39 metal case. It is particularly designed for use in audio output and driver stages. The complementary NPN type is the BC 119. ABSOLUTE MAXIMUM RATINGS == 0) Collector-emitter voltage (Ie == Vceo VCEO VEeo Ie Collector-base voltage (IE P tot Total power dissipation at Tamb Emitter-base voltage (Ie Collector current Tstg Storage temperature Tj Junction temperature -40 -40 V V -5 -0.5 A 25°C 0.7 W at Tease ~ 25°C 3 -55 to 200 == 0) 0) ~ 200 MECHANICAL DATA V W °C °C Dimensions in mm (sim. to TO-39) 39 5/73 I 8C139 THERMAL DATA Rto j-case Rto j-amb max max Thermal resistance junction-case Thermal resistance junction-ambient 58 250 °C/W °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Parameter IcBO Test conditions Collector cutoff current (IE 0) = VCB VCB = -30 V = -30 V Tamb Min. Typ. Max. Unit -100 nA -'50 p.A = 75°C " V(BR) cBoColiector-base breakdown voltage (IE 0) Ic = -10J.tA -40 V V(BR)CEO 'Collector-emitter breakdown voltage 0) (Is Ic = -10 mA -40 V V(BR) ESO Emitter-base_ breakdown voltage (lc =0) IE = -10 J.tA -5 V Ic IB Ic Is = -300 mA = = VCE (sat) Collector-emitter saturation voltage VSE Base-emitter voltage • Pulsed: pulse duration = 300 J.tS, = -30 mA = -500mA = -SOmA = = = = = -10 mA Ic VCE = -10V -100 mA Ic VCE -10V -300 mA Ic VeE -1 V duty factor 40 = 1% -0.45 -0.8 V -1 V -0.7 V -0.77 V -0.97 V Be 139 ELECTRICAL CHARACTERISTICS hFE Parameter . (continued) Min. Typ. Max. Unit Test conditions Ie = -10 rnA VCE -10V -100 rnA Ic VCE -10V Ic =:: -150 rnA VeE -1 V -300 rnA Ie VCE =:: -1 V DC current gain = = = 40 = = fT Transition frequency CCBO Collector-base capacitance • Pulsed: pulse duration Ic =:: -50 rnA VCE =:: -10 V IE f = 1 MHz =::0 ,>~ :::~ J ,.......l~ (mA) 4QO 11'- ~ JV _ -r:c~ - r 300 'V 200 100 o i-""'" J/ V f , 1//V o 13\\11'- I-- ..- 2 45 - 35 200 MHz pF =1 % (;:; , I J ....... I-- - ~ 400 Ve , IV -1 V ¥! / ~~J .::;j,,' " I--I-I-- - ou~,,, i 1/ I-- 300 - 4 \1)1'- J / 1/ if/ / 200 I,! 2n'~ !J / .- 3 - DC transconductance \l' --r\" r- 90 6 300 (.1s, duty factor - - VCB =:: -10 V Typical output characteristics -Ie 20 90 - o 4 h 'l lOa -VeE (V) 0.6 41 ~~ ~V 0.7 O.~ 0.9 1.1 -V",IV) Be 139 DC normalized current gain Base-emitter voltage GS 006 I I Ic=-~O mA _ 1 Vc,=-l V 0.8 "- /'" """, .'" " )'f"'" 0.8 o 25 50 ~ ~ 1"r\\ .\ '\ NORMALIZATION at I 1,=-100 mA V,,=-lOV ,/ hfE= 1 0.6 " 25 1,c ;;;;...;. !;'V / '"" ,d "". r-... 0.7 0.65 j" ~ 0.75 45i ~ 1.2 ~ 0.4 1, '10 100 -I.e imA) Power rating chart Collector-emitter saturation voltage Ir.~ Ptot )0 1"'-'\ IW I .25 "'- '\.It;. .~'1" 1/ ~~..~ 1.5 / ~. --- 0.5 o 10 10' -IC B TO.--18 epoxy Supersedes issue dated 5/73 67 6/75 I BC 207 B,C208 BC 209 THERMAL DATA ~ Rth i-case Rth i-amb ELECTRICAL CHARACTERISTICS Parameter ICBO Collector cutoff current (IE = 0) VCB = 40V VCB = 40V Ic V(BR) CEO Collector-emitter breakdown voltage (lB = 0) Ic V(BR) ESO Emitter-base breakdown voltage (lc = 0) Ic Ic DC current gain Ic j.lS, 50 nA 50 p.A = 10 IlA for BC 207 for BC 208-BC 209 50 25 V V = 10mA for BC 207 for BC 208-BC 209 45 20 V V 5 V = 10mA Is = 100 rnA IB = 0.5 mA BC 208 BC 208 Gr_ A BC 208 Gr. B BC 208 Gr. C BC 209 BC 209 Gr. B BC 209 Gr. C duty factor = 1%. 68 0_25 = 5mA =2mA VCE = 5 V for BC 207 for BC 207 Gr. A for BC 207 Gr. B for for for for for for for • Pulsed: pulse duration = 300 °C/W 330 °C/W Min. Typ. Max. Unit Tamb= 65°C IE ,=iOIlA VCE Csat)* Collector-emitter saturation voltage 200 (T amb = 25°C uniess otherwise specified) Test conditions VCBR) CBO Collector-base breakdown voltage (IE = 0) hFE max max Thermal resistance junction-case Thermal resistance junction-ambient 0.6 110 110 200 110 110 200 V V - 230 450 180 220 450 - 290 350 180 290 420 520 200 200 420 350 290 520 800 - 220 450 800 800 450 800 - BC 207 BC 208 BC 209 ELECTRICAL CHARACTERISTICS Parameter hFE DC current gain fT Transition frequency NF Noise figure (continued) Test conditions Ic = 10 itA VCE = 5 V for Be 207 for Be 207 Gr. A for Be 207 Gr. B 40 for Be 208 for Be 208 Gr. A for Be 208 Gr. B for Be 208 Gr. C 40 100 120 90 150 120 90 150 270 for Be 209 for Be 209 Gr. B for Be 209 Gr. C 70 40 100 210 150 270 - 200 MHz VCE = 5 V Ic = 0.2 rnA Rg = 2kn B CCBO hie Collector-base capacitance Input impedance Min; Typ. Max. Unit Ic = 10mA VCE = 5 V f = 1 kHz = 200 Hz for Be 207 for Be 208 for Be 209 - 2 2 1.5 10 dB 10 dB 4 dB VCB = 10V IE f =0 = 1 MHz Ic f =2mA VCE 5V = 1 kHz for Be 207 for Be 207 Gr. A for Be 207 Gr. B 3.1 6 pF = kn kn for Be 208 for Be 208 Gr. A for Be 208 Gr. B for Be 208 Gr. C 4 3 4.8 5.5 3 4.8 7 kn kn kn for Be 209 for Be 209 Gr. B for Be 209 Gr. C 5.5 4.8 7 kn kn kn 69 kfl kfl I Be 225 SILICON PLANAR PNP AUDIO AMPLIFIER The Be 225 is a silicon planar PNP transistor in a TO-18 epoxy package. Designed for audio applications, it presents good current gain linearity from 10 ~A to 50 mAo ABSOLUTE MAXIMUM RATINGS = 0) = 0) (Ie = 0) VeBo Collector-base voltage (IE -40 VeEo VEBO Collector-emitter voltage (IB -40 Emitter-base voltage Ie Ptot Collector current T stg Storage temperature Tj Junction temperature V V -5 V -100 mA 0.2 W Total power dissipation at Tamb """ 25°C W 0.5 -55 to 125 at Tease""" 25°C °C °C 125 MECHANICAL DATA Dimensions in mm 2.54 6.9max 10.2 min ~ ~ \1 tF§;i~~ '\;t C _ _ B P040-A ,/'''' TO-18 epoxy 71 5/73 Be 225 THERMAL DATA At" At" j-case j-amb ELECTRICAL CHARACTERISTICS Parameter Collector cutoff current (IE = 0) ICBO max max Thermal resistance junction-case Thermal resistance junction-ambient 200 soo °C/W °C/W (T amb = 2S °C unless otherwise specified) Test conditions Min. Typ. Max. Unit VCB = -30V -100 nA V(BR) cBoColiector-base breakdown voltage (IE = 0) 'c = -10 itA -40 V V(BR) CEO Collector-emitter breakdown voltage (lB = 0) Ic = -SmA -40 V V(BR) EBO Emitter-base breakdown voltage (lc = 0) IE = -10 itA Ic 'B Ic 'B = = = = Ic = -1 mA 'c 'c Ic 'c Ic = = = = = Ic = -1 mA VCE = -S V 'E f =0 = 1 MHz VCB = -S V Ic Ag B Ic Ag B = = = = VCE (sat) Collector-emitter saturation voltage VBE Base-emitter voltage hFE DC current gain fT Transition frequency CCBO Collector-base capacitance NF Noise figure -S -10 mA -O.S mA -SO mA -S mA -10 itA -100 itA -1 mA -10 mA -SO mA V -0.1 VCE = -S V VCE = -S V VCE = -S V VCE=-SV VCE = -S V VCE = -S V -20 itA VCE = -S V 10kfl f = 1 kHz 200 Hz -0.2S mA VCE = -S V f = 1 kHz 1 kfl = 200 Hz 90 90 90 -0.2S V -0.16 V -0.6S V 130 1SS 170 16S 140 70 - - MHz 4 pF 1 dB 1 dB = 72 BC 297 BC 298 SILICON PLANAR PNP AUDIO DRIVERS OR OUTPUT STAGES The BC 297 and BC 298 are silicon planar epitaxial PNP transistors in TO-18 metal case. They are particularly intended for use in high current high gain applications, in driver stages of hi-fi equipments or in output stages of low power class B amplifiers. The complementary NPN types are the BC 377 and BC 378, respectively. ABSOLUTE MAXIMUM RATINGS = VCEO Collector-emitter voltage (V BE 0) Collector-emitter voltage (lB ::;: 0) V EBO Emitter-base voltage (Ie IE Emitter current Ic IB Collector current Base current P tot Total power dissipation at Tamb VCES BC297 BC298 -50 V -30 V -25 V -45 V = 0) -5 V 1.2 A -1 A at ~ 25 °C Tease ~ 75 °C Storage temperature Junction temperature MECHANICAL DATA -0.2 A 375 mW 1W -65 to 175 °C 175 °C I Dimensions in mm (sim. to 10-18) Supersedes issue dated 9/70 73 5/73 BC 297 BC 298 THERMAL DATA Rth Rth j-case j-amb Thermal resistance junction-case Thermal resistance junction-ambient max max 100 °C/W 400 °C/W ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified) • Test conditions Parameter ICES Collector cutoff current (VBE = 0) for Be 297 for Be 298 VCBR ) CEQColiector-emitter breakdown voltage (lB = 0) Ic VCBRl EBO Emitter-base breakdown voltage (lc = 0) VCE (sat) Collector-emitter saturation voltage VBE Base-emitter voltage' VBE (sat) Base-emitter saturation voltage hF~ DC current gain Gr. 6 Gr. 7 Min • Typ. Max. Unit .vCE = -100 nA -100 nA -50 V VCE = -30 V = -10 mA for Be 297 for Be 298 -45 -25 V V -5 V IE = -10 !LA Ic IB == -500 mA == -50 mA Ic = -100 mA VCE == -1 V Ic IB == -500 mA == -50 mA -1.2 Ic Ic = -100 mA VCE == -1 V 75 == -100 mA VeE == -1 V 125 150 260 Ic = -300 mA VCE == -1 V -0.7 -770 V mV V - - 30 - hFE1/hFE2 Matched pair ratio Ic = -100 mA VCE = -1 V fT Transition frequency Ic = -50 mA VCE == -10 V CCBO Collector-base capacitance IE =0 VCB == -10 V 8 pF CEBO Emitter-base capacitance Ic ==0 VEB = -0.5 V 30 pF 74 1.41 250 MHz i BC 297 BC 298 700 is16 750 ~ "'I v L 500 e- 400 60 300 e- 4 40 I- 200 2- e- 1 e- l,..- 20 100 -I B c50 A -I -0.5mA Bill o Ii I,"li.1 600 so 6 l- 250 I- S I- V 500 (mAl 14 12 10 V I' Typical output characteristics Typical output characteristics (mA I '1:', 1 0.5 1.0 l5 o -VeE (VI DC transconductance 0.5 lO 1.5 -VeE (VI DC normalized current gain 1 1 0 ' m• • • • • 100 _ __ 1.0 1.5 -VBE (V) 75 BC 297 BC 298 Collector-emitter saturation voltage Typical transition frequency <>- IT , (MHz ) 6 hFE =10 10° 4 11 -VCE =10V / , TYP 1 V ./ 10' vi-' B b-- 6 , 4 , e3 10 ' la' 10 -Ic (mAl 1200 H-++-H-++-H-+-+-+---1-+-+-+-H-+--I 50 100 150 4 10-' Power rating chart a _0_- ...... T l'C) 76 6 B 4 6 B 4 10 6 B -lc(mA) Be 300 BC 301 BC 302 SILICON PLANARNPN MEDIUM POWER AUDIO DRIVERS The BC 300, BC 301 and BC 302 are silicon planar epitaxial NPN transistors in TO-39 metal case. They are intended for audio driver stages in commercial and industrial equipments. In addition they are useful as high speed saturated switches and general purpose amplifiers. The PNP types complementary to BC 301 and BC 302 are respectively the BC 303 and BC 304. IBe 300 IBe 301 IBe 302 ABSOLUTE MAXIMUM RATINGS VCBO VCEO VCEV VEBO = Collector-base voltage (IE 0) Collector-emitter voltage (Is 0) Collector-emitter voltage (VBE = -1.5 V) Emitter-base voltage (lc = = 0) Ic Collector current ICM IBM Collector peak current Base peak current Total power dissipation at Tamb P tot 80 V 60 V 120 V 90 V -" 7 V 45 V V - -- 0.5 A 1 A 0.5 A ~ 25°C at Tease ~ 25°C Tst9 TJ 'illrili Storage temperature 6W -65 to 175°C Junction temperature 175°C MECHANICAL DATA I 0.85 W Dimensions in mm (sim. to TO-39) 77 5/73 Be 300 Be 301 BC302 THERMAL DATA Rth Rth j-ease j-amb max max Thermal resistance junction-case Thermal resistance junction-ambient 25 175 °C/W °C/W ELECTRICAL CHARACTERISTICS (Tease = 25 C unless otherwise specified) 0 Parameter leBo lEBO Test conditions Collector cutoff current (IE = 0) VeB = 60V Emitter cutoff current (Ie = 0) VEB = 7V VeEOCsus) *Collector-emitter voltage (Is = 0) Ie 5 Ie Ie = 150 mA VSE Base-emitter voltage Ie = 150mA VeE = 10V hFE DC current gain Ie Ie Ie = 150 mA VeE = 10V = 150 mA VeE = 10V = 150mA VeE = 10V Ie Ie = 0.1 mA Gr. 4 Gr. 5 Gr. 6 80 60 45 V V V 120 90 V V = 100 mA VSE = -1.5 V Collector-emitter saturation voltage (sat) nA = 100mA for Be 300 for Be 301 VeE 20 20 nA for Be 300 for Be 301 for Be 302 VeEvcsus)*Collector-emitter voltage Min. Typ. Max. Unit Is = 15mA VeE = 10V = 500mA VeE = 10V 0.2 0.5 V 0.78 40 70 120 80 140 240 20 20 V - fr Transition frequency Ie = 10mA VeE = 10V 120 MHz Ceso Collector-base capacitance IE =0 Ves= 10 V 10 pF Ie f = 5mA = 1 kHz VeE =10V 1.1 kg hie Input impedance * Pulsed; pulse duration = 300 IlS, duty factor 78 = 1.5% Be 300 BC 301 BC 302 ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Reverse voltage ratio h re Small signal current gain hie Output admittance hoe Ic f = SmA = 1 kHz VCE = 10 V Ic f =SmA = 1 kHz VCE = 10V Ic f = SmA = 1 kHz VCE = 10V Typical output characteristics Ie (rnA) 400 - 140 - 14 J,tS G 0237 Ie 5 (mAl 4 ..... 1.7x10.4 DC transconductance G·0231i 6 1/ Min. Typ. Max. Unit I 3 300 2 VeE = 10 V I 10' t- 200 TYP. 1 10' 1.=0.5mA 100 I o 5 10 15 0.5 VeE tV) 79 1.0 1.5 VBE (V) I Be 300 BC 301 BC 302 Collector-emitter saturation voltage DC normalized current gain G_0238 N H -- -- - r--- --. f-- -- - -- TYP. 1001--- -- - vc£= 10V 1 --- V V, =lV 10'R§1tII1II 10' 10' 10° Ie (mAl Collector-emitter breakdown voltage (for Be 300 only) Collector cutoff current -" leBO VeER ,-""rrm-TO"-rrmrr-rTTTTTIlT--'-'-;";:;':':',; (V) (nAl VeB 60 V -- ,/ 10' 160 - 140 / 10' 120 +- -++1+I+li+-++++++f11-....+-++l++11+-+44~~~++~tt--p~+H*~-1-i 100 10' / 80 = 60 MAX 10' - ++-+++++IJ---jH+++++I+-+-+f'I"I.il~·---+ ,/ i- 1_';:_' ,I::i +1"; 1---I--I--i+H+II-H++Hi++-I-+++++4+-i--+ t I ,~~ "11:' 40 TYP 20 10° 1 o 5Q 100 150 a T; ('e) 80 la' la' 10' 104 ZB' (n) Be 300 BC 301 BC 302 Transition frequency Power rating chart - r- f-- -+-++-+-+-++1--++-1-+++--1 50 81 lOa 150 T (Ge) BC 303 BC 304 SILICON PLANAR PNP MEDIUM POWER AUDIO DRIVERS The BC 303 and BC 304 are silicon planar epitaxial PNP transistors in TO-39 metal case. They are intended particularly as audio driver 5tages in commercial and professional equipments. In addition they are useful as high speed saturated switches and general purpose amplifiers. The complementary NPN types are respectively the BC 301 and BC 302. ABSOLUTE MAXIMUM RATINGS BC303 BC304 VCBC'J Collector-base vOltage (IF -85 V -60 V VCEO Collector-emitter voltage (Ip, = 0) -60 V -45 V VCEV Collector-emitter voltage (VBE = 1.5 V) -85 =., 0) V EBO Emitter-base voltage (Ie .'" 0) Ie Collector current V -7 V -0.5 A -1 A ICM Collector peak current ISM Base peak current -0.5 A Pro! Total power dissipation at Tamb ==' 25 QC 0.85 W Storage temperature 6W -65 to 175 nC Junction temperature 175 oC at Tease"'" 2'5 °C Dimensions in mm MECHANICAL DATA (sim. to TO-39) 83 5/73 BC 303 BC 304 THERMAL DATA Rth j-case Rth j-amb Thermal resistance junction-case max Thermal resistance junction-ambient max ELECTRICAL CHARACTERISTICS leBo lEBO (Tcase = 25°C unless otherwise specified) Test conditions Parameter Collector cutoff current (IE = 0) VCB = -60 V Emitter cutoff current (Ic = 0) VEB = -5 V VCEO(susl*Coliector-emitter voltage (lB = 0) Ic 25 °C/W 175 °C/W Min. Typ. Max. Unit -5 -20 nA -20 nA = -100 mA for Be 303 -60 for Be 304 -45 VCEV(susl*Coliector-emitter voltage (for Be 303 only) Ie VCE (sat) Collector-emitter saturation voltage Ic IB VBE Base-emitter voltage Ic hFE DC current gain Ic Ic Ic Gr. 4 Gr. 5 Gr. 6 Ic Ic = -100 mA VBE = 1.5 V = -150 mA = -15 mA = -150 mA VCE = -10 V = -150 mA VeE = -10 V = -150 mA VCE = -10 V = -150 mA VCE = -10 V = 0.1 mA VCE = -10 V = -500 mA VCE = -10 V V V -85 V -0.25 -0.65 V -0.78 V 40 70 120 80 140 240 20 20 - - fT Transition frequency Ie = -10 mA VCE = -10V 75 MHz CCBO Collector-base capacitance IE =0 VcB =-10V 15 pF Ie f = -SmA = 1 kHz VeE = -10V 0.9 kQ hie Input impedance * Pulsed: pulse duration = 300 JlS, duty factor = 1.5% 84 BC 303 BC 304 ELECTRICAL CHARACTERISTICS hie Reverse voltage ratio Small signal current gain Output admittance hoe Ie f = -5mA = 1 kHz VeE Ie f = -5mA = 1 kHz = -5 rnA = 1 kHz VeE Ie f Typical output characteristics 400 / VeE ---- = -10V 1.7x10-4 - 140 - 45 !-IS = -10 V = -10V DC transconductance I _ I/~ Min. Typ. Max. Unit Test conditions Parameter h re (continued) t-+-+-t-+-'-t-+-+-I 300 t-+-llHH-:;j,.-1'""I=t-+-H-f-+-+-+-+-j--L+ TYP. ~ -~~+4~+-~4-~~+4~+-~ - a 5 10 15 -VeE -~~-+-~~+-+-+~~-+-t-+~+-+ 10° L-L-"--'---'-LJ-L..L--'--L-L---.L..L...l-L...L-L..L--'--.J a 0.5 1.0 1.5 -VBE (V) (V) 85 BC303 BC 304 Collector-emitter saturation voltage DC normalized current gain ~ -1-- G·"" 'VCE(sat ) I m - hF• =10V la' TYP. -Vcc= 10 V ./ TYP. 10' 10° -- - r- 10' -Vcc= 1V II 10' 10 ' la' 10 ' -Ic (mAl -lc1mA) Transition frequency Collector cutoff current G 0246 G~1I247 h (nAI (MHz) -YcB=60V -' I i! VCE =10V / 10' TYP. 10' III I I! Ii i / 10' 7. MAX. 10 1 / / TYP. 10° o I I I 50 100 I i I I 150 la' Tj (·C) 86 la' -Ic (mAl BC 377 BC 378 SILICON PLANAR NPN AUDIO DRIVERS OR OUTPUT STAGES The BC 377 and BC 378 are silicon planar epitaxial NPN transistors in TO-18 metal case. They are particularly intended for use in high current, high gain applications, in driver stages of hi-fi equipments or in output stages of low power class B amplifiers. The complementary PNP types are the BC 297 and _BC 298, respectively. ABSOLUTE MAXIMUM RATINGS = 0) = 0) VCES Collector-emitter voltage (VEB VCEO VEBO Collector-emitter voltage (lB = 0) BC377 BC378 50V 45V 30V 25V 6 V -1.2 A IE Emitter-base voltage (lc Emitter current Ic Collector current 'B p.o. Base current Total power dissipation at Tomb ~ 25 °C Tstg Tj Storage temperature -65 to 175 °C Junction temperature 175°C 1 A at Teose ~ 75 °C MECHANICAL DATA 0.2 A 375 mW 1 W Dimensions in mm (sim. to TO-18) Supersedes issue dated 9/70 87 5/73 BC '377 BC 378 THERMAL DATA Rth Rth j-ease j-amb ELECTRICAL CHARACTERISTICS Collector cutoff current (VSE = 0) for for Be 377 Be 378 VCSR) ESO Emitter-base breakdown voltage (lc = 0) IE = 10 itA VCSR) CEO Collector-emitter breakdown voltage (Is = 0) Ic = 2mA VCE (sat) Base-emitter voltage VSE VSE Collector-emitter saturation voltage (sat) hFE Base-emitter saturation voltage DC current gain Gr. 6 Gr. 7 100 °C/W 400 °C/W (Tease = 25°C unless otherwise specified) Test conditions Parameter ICES max max Thermal resistance junction-case Thermal resistance junction-ambient Min. Typ. Max. Unit 15 nA 15 nA VCE = 50V VCE = 30V for Be 377 for Be 378 6 V 45 V V 25 Ie Is = 500 rnA = SOmA Ie = 100 rnA VeE =1V Ic Is = 500 rnA = SOmA Ie Ie = 100 rnA VeE =1V = 100 rnA VeE =1V 75 125 Ie = 300 rnA VeE =1V 40 0.7 740 V mV 1.2 150 260 V - hFE,/hFEZ Matched pair ratio Ic = 100 rnA VeE =1V fT Transition frequency Ie = SOmA VeE = 10V 300 CCBO COllector-base capacitance IE =0 VCB = 10V 8 pF Emitter-base capacitance Ic =0 VEB = 0.5 V 30 pF CESO 88 1.41 MHz BC 377 BC 378 Typical output characteristics Ie G-0355 I(mAII- - 750 It< rTl7 40j...- b V 1- ] 30 20 j..- .- ._,- _ F rJl/l/ 17 - 75 I- 1- - 400 l- i--- - l300 rr 4 50 I- 2 - ~ - -- 100 Is =O.5mA I.-50)JA I l10 200 rr 25 1 l=-I- -.- - I- - - 171--J", 17 12 .- I- f/ I- 1-- _.. 600 I/V - G-0J56 1tt· ...., .Htt ,11 o 70 (mA I B 500 250 I- 16_ 12 J...: F p f7 Q-I- Typical output characteristics 15 II o VeE (V) DC transconductance 0.5 1.0 1.5 DC normalized current gain G-0J58 Ie~mIfI. ImAI~ TYP 10 0 5 VeE =IV I- IIII 10-' LL---"---'---LL--'-..LJ---'-...LL.l-L.l-L.L---'---'-LJ o 0.5 1.0 1.5 10-1 89 10 0 10' 10' Ie (mAl I BC377 BC 378 Transition frequency Collector-emitter saturation voltage 0-_ VCE(sa.t) (mV ) hFE= 10 10' TYP. TVP 10' V - 10' 10° 10-' .10° la' la' Ie (mAl Power rating chart 1600 H+-+-H++H-++-J-,I--+++--H-+-1 1200 H-+++--H-+++--H-+-++--t--1H-+-H 800 H-++--H-+-I-H" ,:& ~ " " " "- "" " " ",'"" :-.... "- "'- ...... ........ ~ ........ I........ VeE~-5V 0.1 f ~ 1 kHz B '" 200 Hz 0.001 109 .?:~ ~i&~ ~ ..... '\ ...... I'-~ ........ -Ie ImA) odB 0.1 "~ , "I'- 4dB_ J GS 0017 .......... ~ I LI 4dB ~ 0.01 ~ r" o~ t-- f-.+= 5dB 0.1 2dB r--.... 1 kHz ~ ./ 3dB ~ 0.01 10 2dB "'.:" 5V V~E f ~ 1 kHz B~200 Hz 0.001 IdB r--r-- "- \ ...... " ....... ';.s;' '\ 1\ ~'\ ~ ldB ~ ~ ....... Ikll ) , . ,o.~ ....... ~ "'-'" ....... Rg ~J%> '\ 1\ ,'\ ~ \ \.\ I'- Noise figure (for GS 0016 ..... 1,\ i'.. 0.001 Be 478 only) ' Rg Ie ImA) 100 ~ ~ " " '~~ ,,~ ....... VeE~-5V V o ~~ .........: J 40 "- " " " 1\ \, V 80 0.1 "~ \ / 120 10 GS 0015 "- 160 Be 477 only) ~ I'- " i'--....... 2dB ~~ '.5 'B' I""- d 0.01 \ ~~ 0,1 / 3dB ~dB -Ie (rnA) --BC 477-BC478 -·BC479 Noise figure (for BC 479 only) Noise figure (for BC 479 only) Rg (kll) GS 0018 VeE~~ t f~ 10 Hz to 10 Hz' .......... B ~ lS.7 kHz 10 i'-... ........ r--.... ......... ["0... r--I'-.,. ......r-'-.......... I'..... r--.. ................ i'-... i'-...' 6 B ...... .- ["., r-... '" - r\ i\ ~"' 1', " \ r--- 2dB ,... ,~~ r- ./ _ 4dB a -Ie (rnA) 0.1 10 I'\. '\ '\. 0.8 -. ~~ ",,1-,.(\ ~/;- 0.6 0.4 - '-...J o ~~~"'1 '\?J:,~ - 'f- .t.f!.t.f2 AIR ..... 0.2 o 50 '\. ........... " '"""'-oi~ 100 1\ ldB ::;; GS 0020 (W) 1\ 4 ) Power rating chart Ptot Rg~2KII Ie ~-200 p.A '\ 1/ 1dB .......... 0.01 vIUIs'v 8 ~~6' .......... III (dB) ~ ...... S 0019 NF ................. ~' ~6' r-..... 150 T. mb ('C) 110 10 2 10' 10' 10' f (Hz) BF155 SILICON PLANAR NPN UHF AMPLIFIER AND MIXER-OSCILLATOR The SF 155 is a silicon planar NPN transistor in a TO-72 metal case. It is specifically designed for UHF amplifier and mixer-oscillator applications up to 900 MHz. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO = 0) = 0) = Collector-base voltage (IE 40 Ie Collector-emitter voltage (IB Emitter-base voltage (Ie 0) Collector current Ptot Total power dissipation at Tamb "'" 25°C Tstg Tj Storage temperature Junction temperature at Tease"'" 25 °C MECHANICAL DATA Supersedes issue dated 4/73 V 40 V 3 V 20 mA 200 mW 300 mW -55 to 200 °C 200°C Dimensions in mm 111 6/75 I THERMAL DATA Rth j-cas. Rth j-amb ELECTRICAL CHARACTERISTICS Parameter ICBO max max Thermal resistance junction-case Thermal resistance junction-ambient (Tamb = 25°C = °C/W °C/W unless otherwise specified) Test conditions Collector cutoff current (IE 0) 580 875 Min. Typ. Max. Unit VCB = 10 V V (BR) CBO Collector-base breakdown voltage (IE 0) Ic = 100 (.l.A 40 V V(BR)CEO 'Collector-emitter breakdown voltage (lB 0) Ic = 5mA 40 V V (BR) EBO Emitter-base breakdowfl voltage (lc 0) IE 3 V V BE Base-emitter voltage Ic hFE * DC current gain Ic fT Transition frequency Ic -Cr. Reverse capacitance = = = NF Noise figure G pb Power gain f max * Pulsed: pulse duration = 12V VCE = 12V VCE = 12V Ic f Ic = 2.5 rnA Ic Rg f 300 (.l.s; duty factor 112 0.85 VCE = 2.5 rnA VCE = 12 V = 1 MHz = 2.5 mA VCB = 12 V = 50n = 800 MHz = 2.5 rnA VCB = 12 V = 800 MHz Ic f Maximum oscillation frequency = 100 (.l.A = 2.5 mA = 2.5 rnA = 2.5 rnA 100 nA VCB = 12V 1%. V - 20 70 400 600 MHz 0.4 pF 7 9 dB 10 dB 2.5 GHz 8 Typical output characteristics Typical DC current gain (pulsed) G-16B7 IC G-16BB (rnA) B '# i 'L 6 r; /" ~ 4 ~V rO.lmA ----= O.OB rnA 60 ./ 40 0.04 rnA /" l Ib =0 4 8 /" ",,'" 1 2S'C ".... ....... O'C \ r'\~ 1\ o 10- 1 12 10 Typical input admittance Typical transition frequency G-1690 G-1669 VCE =12 V ~ I 400 J f-- ...... \ 30 V IC ~ "' = 2.5 rnA r-. -..... / -- ......... .......... 20 V I VCB =12 V II 200 r----- 20 0.02 rnA 2 o ~ /' 0.06 rnA f== '=== - 1"i- ~amb=6S'C I : /~ BO ~ ~ - I VCE = 12 V 0.14my r-" 0.12 rnA "t-... ......... -bib 1-......... 9ib r--.... ...... 10 ~ I""'-- ......... I' o o 300 10 113 400 500 600 700 f (104Hz) I Typical output admittance Typical forward transadmittance G-1691 Yob (mS) = 12 V Ie = 2.5 mA Vee !--- (mS) 40 30 ~ ...... ..... .,....... - bob -- ~ Yfb ~ --- --- G-1692 VeB =12V Ie = 2.5mA '~ /'" ~ 20 10 o V -10 J / / /Qfb I- ....... '" 300 400 500 600 100 300 f (MHz) 400 500 600 700 G-1693 G-1694 Vee =12 V Ie =2.5 mA Ie = 2.5mA -brb "" "" ...... ...... -;;;; ..... ./ 0.5 ./ -,/ -Qrb ./ o /' 300 500 600 700 \ 0.8 _...... \ 0.6 0.4 ~ 400 f (101Hz) Typical reverse capacitance Typical reverse transadmittance (mS) ~ -20 10- 1 Yrb ~ """ 0.2 "- o o f (MHz)' 114 5 10 15 20 BF 158 SILICON PLANAR NPN IF AMPLIFIER FOR TV The BF 158 is a silicon planar NPN transistor in a TO-18 epoxy package. It is designed for use as IF amplifier in TV receiver. ABSOLUTE MAXIMUM RATINGS = 0) VCBO Collector-base voltage (IE VCEO VEBO Collector-emitter voltage (lB = 0) Emitter-base voltage (lc = 0) P,o, TS'g Storage temperature Tj Junction temperature V 30 12 V 2 V Total power dissipation at Tamb ~ 25°C 0.2 W at Tease ~ 25°C 0.5 -55 to 125 °C 125 °C MECHANICAL DATA Dimensions in mm ~~:4,. .(0 '" . C W \1 B 10-18 epox~ 115 5/73 BF 158 THERMAL DATA Rth j.case Rth j.amb Thermal resistance junction-case Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS (Tomb Collector cutoff current (IE 0) = 200 °C/W max soo °C/W unless otherwise specified) Test conditions Parameter Icso = 2S °C max Min. Typ. Max. Unit Vcs = 1S V V(SR) CBO Collector-base breakdown voltage (IE = 0) Ic = 100 ~A 30 V VCEO (sus)Coliector-emitter sustaining voltage (Is 0) Ic = 3mA 12 V V(SR) ESO Emitter-base breakdown voltage (Ic = 0) IE = 100 ~A 2 V VCE (sat) Collector-emitter saturation voltage Ic = 10mA Is VeE = 100 nA = 1 rnA hFE DC current gain Ie = 4mA fT Transition frequency Ic = SmA -C re Reverse capacitance Ic NF Noise figure Ic Rg f = SmA = 4mA = 400.0 = 40 MHz Ie f =SmA VCE 40 MHz = 10V Ic f VCE = 10V G oe gee Power gain Output conductance = = SmA = 40 MHz 116 = 10V VCE = 10V O.S 20 = 10V VCE = 10V VCE 22 V SO - 700 MHz 0.8 1.2 pF 3.S dB 26 dB 0.2 0.3 mS BF160 SILICON PLANAR NPN IF AMPLIFIER FOR AM/FM RADIOS The SF 160 is a silicon planar NPN transistor in a TO-18 epoxy package. It is designed for intermediate frequency (5.5 MHz TV - 10.7 MHz FM) and for general AM-FM applications. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO P tot Collector-base voltage (IE = 0) Collector-emitter voltage (lB 0) Emitter-base voltage (lc = 0) Total power dissipation at Tamb ~ 25 °C = at Tease ~ 25 °C Storage temperature Junction temperature 30 V 12 V 2 V 200 mW 500 mW -55 to 125 125 MECHANICAL DATA °C °C Dimensions in mm ~'~ ~ C B TO-18 epoxy 117 4/73 BF160 THERMAL DATA Rth j-case Rth j-amb max max Thermal resistance junction-case Thermal resistance junction-ambient 200 500 °C/W °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Parameter leBo Test conditions Col/ector cutoff current (IE = 0) VCB = 15 V 'JCB = 15 V Min. Typ. Max. Unit 100 nA 5 ~A Tamb = 65°C V(BR) cBoCol/ector-base breakdown voltage (IE = 0) Ic = 1OOl-l-A 30 V V(BR)CEO 'Col/ector-emitter breakdown voltage (lB = 0) Ic =3mA 12 V V(BR) EBOEmitter-base breakdown voltage (lc = 0) IE = 100l-l-A 2 V Ic = 3mA . hFE DC current gain fT Transition frequency Ic = 3mA VCE = 10V -C re Reverse capacitance Ic =3mA VCE = 10V Gpe Power gain Ic f =3mA VCE = 8 V = 10.7 MHz • Pulsed: pulse duration :. = 300 :IJ.S, VCE = 10V duty factor = 1%. ;- 118 20 400 28 50 600 MHz 0.8 1.2 pF 32 dB BF 161 SILICON PLANAR NPN UHF AMPLIFIER, OSCILLATOR AND MIXER The SF 161 is a silicon planar NPN transistor in a TO-72 metal case, intended for UHF tuner applications. ABSOLUTE MAXIMUM RATINGS P tot Collector-base voltage (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (lc 0) Collector current Total power dissipation at Tamb :::: 25°C Tstg Tj Storage temperature Junction temperature VCBO VCEO VEBO Ic = at Tcase::::25°C MECHANICAL DATA V V V 50 50 4 20 rnA 175 mW 260 mW -55 to 175 °C 175°C Dimensions in mm (sim. to TO-72) 119 5/73 I BF 161 THERMAL DATA Rth j-cas. ELECTRICAL CHARACTERISTICS Parameter ICBO Collector cutoff current (IE = 0) V(BR) CBO Collector-base breakdown voltage (IE = 0) VCEO max Thermal resistance junction-case 580 °C/W (T amb = 25 pC unless otherwise specified) Test conditions Min. Typ. Max. Unit VCB = 10 V 100 nA Ic = 50llA 50 V (sus) Collector-emitter sustaining voltage (lB = 0) Ic =5mA 50 V V(BR) EBO Emitter-base breakdown voltage (lc = 0) IE = 50llA 5 V VBE Base-emitter voltage Ic = 3mA VCE = 24 V hFE DC current gain Ic =3mA VCE = 10V 20 60 fr Transition frequency Ic VCE = 10V 400 550 -Cr. Reverse capacitance Ic f = 3mA = 3mA = 1 MHz NF Noise figure Ic f = 1_5mA VCB = 800 MHz = 24 V Ic f = 1.5 rnA = 24 V G pb Power gain Collector current for ..6.G pb 30 dB = 0.74 V MHz VCE = 10V 0.3 0.45 pF 6.5 dB = 800 MHz 12 dB Vcc = 12 V f = 800 MHz 8 rnA 120 VCB I BF 166 SILICON PLANAR NPN HIGH FREQUENCY GENERAL PURPOSE AMPLIFIER The BF 166 is a silicon planar NPN transistor in a TO-72 metal case. It is designed. to be used as a gain-controlled VHF amplifier. ABSOLUTE MAXIMUM RATINGS = P tot Collector-base voltage (IE 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (Ie = 0) Total power dissipation at Tamb ~ 25°C T stg Storage temperature Tj Junction temperature V CBO V CEO VEBO at Tease ~ 25°C 40 V 40 V 3 V 175 mW 260 mW -55 to 175°C 175°C MECHANICAL DATA Dimensions in mm (sim. to TO-72) 121 5/73 BF 166 THERMAL DATA Rth jocose ELECTRICAL CHARACTERISTICS (Tomb = 2S °C Collector cutoff current (IE 0) = S80 °C/W unless otherwise specified) Test conditions Parameter ICBO max Thermal resistance junction-case Min. Typ. Max. Unit VCB = 10V 100 nA V(BR) CBO Collector-base breakdown voltage (IE = 0) Ic = 1oo!J.A 40 V VCEO (sus)Coliector-emitter sustaining voltage (Is = 0) Ic = 1 mA 40 V VISR) ESO Emitter-base breakdown voltage (lc = 0) IE = 10!J.A 3 V . . VSE Base-emitter voltage Ic = 2_S mA VCE = 12 V hFE DC current gain Ic = 2.SmA VCE = 12 V fT Transition frequency Ic = 3mA -C re Reverse capacitance Ic = 2_SmA VCE = 12 V NF Noise figure Ic Rg f = Son Ic f = 3mA VCE = 10V = 200 MHz Gpe Power gain (neutralized) Ie (AGC) Collector current for dG pb = 30 dB • Pulsed: pulse duration = 300 llS, VCE = 12 V 0.9 20 SO 400 SOO V MHz 0.4 0.6 pF 3 S dB 18 dB = 2.S mA VCE = 12 V = 200 MHz Vcc = 12V f = 200 MHz duty factor = 1 % 122 16 14 mA BF167 SILICON PLANAR NPN TV AGC IF AMPLIFIER The SF 167 is a silicon planar NPN transistor in a TO-72 metal case. It is particularly designed for use in forward AGe IF amplifiers of TV receivers. It is characterized by very low feedback capacitance due to a screening diffusion under the base pad. ABSOLUTE MAXIMUM RATINGS V CES Collector-emitter voltage (VeE = 0) VCEO Collector-emitter voltage (Ie = 0) VEeo Ic P tot T stg Tj Emitter-base voltage (Ie = 0) Collector current Total power dissipation at Tamb ~ 25 °C Storage temperature Junction temperature 40 V 30 V 4 V 25 rnA 150 mW -55 to 175 °C 175 MECHANICAL DATA °C Dimensions in mm (sim. to TO-72) 123 4/73 BF167 THERMAL DATA Rth J-amb max Thermal resistance junction-ambient 1000 °C/W ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified) Test conditions Parameter ICES Collector cutoff current (VBE = 0) Min. Typ. Max. Unit = VCE 10 V VCE = 10 V 50 nA 5 itA Tamb = 100°C V (BR) CES Collector-emitter breakdown voltage (V BE = 0) Ic = 1011A 40 V V(BR) CEO Collector-emitter breakdown voltage (lB = 0) Ic = 5mA 30 V V(BR) EBO Emitter-base breakdown voltage (lc = 0) IE = 1011A 4 V VSE Base-emitter voltage Ic =4mA VCE = 10V hFE* DC current gain Ic Ic Ic = 1 rnA = 4mA = 10mA VCE = 10V VCE = 10V VCE = 10V . fT Transition frequency Ic = 4mA VCE = 10V -C re Reverse capacitance Ic f =0 = 1 MHz VCE = 10V Ic =4mA Rg = 100.0 VCE = 10V f = 36 MHz NF Gpe** Noise figure Power gain IE f =4mA VCE = 10V = 36 MHz * Pulsed: pulse duration = 300 lls, duty factor = 1% ** See test circuit 124 0.74 30 24 35 45 20 V - - 600 MHz 0.15 pF 3 dB 28 dB BF167 ELECTRICAL CHARACTERISTICS (continued) Parameter \AGpe gie b ie gfe bfe goe b oe Power gain control Input conductance Input susceptance Forward transconductance Forward transusceptance Output conductance Output susceptance Test conditions Min. Typ. Max. Unit VEE = -25 V REE = 3.9 k.!1 f = 36 MHz 60 dB Ie f =4mA VeE = 10 V = 36 MHz 3.8 mS Ie f = 4mA VeE = 10V = 36 MHz 5 mS Ie f =4mA VeE = 10V = 36 MHz 95 mS Ie f = 4mA VeE = 10 V = 36 MHz 34 mS Ie f =4mA VeE = 10 V = 36 MHz 62 I!S Ie f = 4mA VeE = 10V = 36 MHz 270 I!S 125 BF·167 Typical output characteristics Ie ~~ ....- (rnA) \I.r>.'" ~~ 8 V/ /..J~ IiV ~ f-- V ~V J,lmA V I DC normalized current gain - G as 0001 _f1.2 o 0.4 /' 16 V- -, NORMALIZATION hFE = 1 at Ie = 4 rnA VeE (V) GS 0003 v CE _.- GS 0004 f=36 MHz \ VeE - "- = 10 (V) " \ 10 \ 1\ o - 10 \ \ \ - 20 - 30 0.5 "... 20 10 0.1 Ie (rnA) 10 Gpo ~ = 10V I I (dB) 1\ ------ I Power gain 30 / \. 0.1 / / 100 ~ \ I I II o B Transition frequency 500 V .... b°e, ~ i - V eE =lOV 12 fy ,/ / ~O o (MHz) V 0.8 I I "V yf' b.'>,;/ 0.05 rnA '/ 0002 Ie (rnA) 126 o 2 4 IE (rnA) BF167 Power rating chart GS 0005 (mWI 150 '" 100 i'-... r---.. "- 1'<1- ~ r--... 50 r---.. o 25 50 75 100 125 r-.... i'. i'-... T' mb ('C) TEST CIRCUIT Power gain (f = 36 MHz) 3 pF IN 50 n OUT 50n 55 0001 127 BF173 SILICON PLANAR NPN VIDEO IF AMPLIFIER The SF 173 is a silicon planar epitaxial NPN transistor in a Jedec TO-72 metal case with a very low feedback capacitance. This transistor is intended for use in video IF amplifiers, particularly for the output stage. ABSOLUTE MAXIMUM RATINGS VEBO Ie P tot Collector-base voltage (IE = 0) Collector-emitter voltage (IB 0) Emitter-base voltage (Ie 0) Collector current Total power dissipation at Tomb ~ 25°C T stg Tj Storage temperature Junction temperature VeBo V eEo = = at Tease ~ 25°C 40 25 4 V V V 25 mA 175 mW 230 mW -55 to 175 °C 175 °C Dimensions in mm MECHANICAL DATA TO-72 129 5/73 BF173 THERMAL DATA Rth j-amb ELECTRICAL CHARACTERISTICS Parameter ICES lEBO max Thermal resistance junction-ambient 850 °C/W (Tease = 25°C unless otherwise specified) Test conditions Min. Typ. Max. Unit Collector cutoff current (VBE = 0) VCE = 20V 20 nA Emitter cutoff current (lc = 0) VEB = 4 V 100 J.l.A VCBR) CBoCollector-base breakdown voltage (Ie = D) Ic = 100 J.l.A 40 V VCBR) CEO Collector-emitter breakdown voltage (lB = 0) Ic =2mA 25 V V BE Base-emitter voltage Ic =7mA VCE = 10V fT Transition frequency Ic = SmA VCE = 10 V 1000 MHz -C re Reverse capacitance Ic f = SmA VCE = 1DV = 0.5 MHz 0.23 pF Ic = 7mA Ic f = 7.2mA VCE = 12 V = 38.9 MHz Ic f IB Base current V' ° Output voltage G tr Transducer power gain gie C ie Input conductance Input capacitance 0.9 61 VCE = 10 V 185 V J.l.A 7.7 V = 7.2 mA VCE = 12 V = 36.4 MHz 26 dB Ic f == 7mA V cE ==10V == 35 MHz 3 mS Ic f == 7mA Vc~ == 10V == 35 MHz 22 pF 6 * Voltage across the detector load RL == 2.7 kQ for 30% syncronisation pulse compression 130 BF173 ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter Iyrei CPre Iylel CPle goe Coe GUM" • GUM Reverse transadmittance Min. Typ. Max. Unit Ic f = 7mA VCE = 10 V = 35 MHz 55 Ic f = 7mA VCE = 10V = 35 MHz 2670 - Forward transadmittance Ic f = 7mA VCE = 10 V = 35 MHz 165 mS Ic f = 7mA VCE = 10 V = 35 MHz 336 0 - Ic f = 7mA VcE =10V = 35 MHz 65 !-IS Ic f = 7mA VCE = 10 V = 35 MHz 1.9 pF Ic f = 7mA VCE = 10 V = 35 MHz 44.5 dB Phase angle of reverse transadmittance Phase angle of forward transadmittance Output conductance Output capacitance Maximum unilateralized power gain = 10 log - - - 4 gie goe 131 J,l.S BF173 Typical output characteristics Typical output characteristics G-()I,OO G-0399 Ie 160 mA ) 1/100 140 r- (mA ) 11. 12C 16 80 I- 'L~ lI- 12 60f- 100 r- 1/ 80 I- 40 60 8 4 40 I8 02O ).lA 4 I8- 2O ).lA o 4 8 16 12 f--- -- a VeE IV) Collector characteristic Ie ImA) --- f-- --- I Input characteristic -- ~Fl ---- --r 7-- V"olO V 10' (,-0.01 ...- TYP. I f-: f10 -- , TYP 1= 10' V 0 E~-= / f-- r-I I 1 = 1:- _ f- 10-' 1-10'2 2 10' 10 2 18 I).lA) 132 a 1/ 4 V8E IV) BF173 Transition frequency DC normalized current gain f--f-++H+lH-- +-~+++Hl-+-+H+HH---++++1+tH I 10-' L-LL-LWlJiL--Ll-LI-LWIII'lL--LLUJ.illL-L.L-LLlillJ 10- 2 10-' 10 0 10' Ie (mAl Ie (mAl TEST CIRCUF G'r test circuit 2.09pF OA90 L!- a. tn N oj L!- a. co Ie ~-9" C 500 °C/W unless otherwise specified) Test conditions Min. Typ. Max. Unit VCE VCE = 10V = 10V V (SR) CBO Collector-base breakdown voltage (IE 0) Ic = 10illA 25 V V (SR) CEO Collector-emitter breakdown voltage (Is 0) Ie = 1 mA 20 V V (SR) EBO Emitter-base breakdown voltage (lc 0) 4 V = = = Tomb 100 nA 50 IlA = 100 C 0 IE = 10[J.A Vse Base-emitter voltage Ie = 1 mA hFE DC current gain Ie = 1 mA VCE 10V for BF 273 for BF 273 Gr. C for BF 273 Gr. D 35 70 35 = i0V 400 Transition frequency Ie = 1 mA NF Noise figure Ic f = 1 mA VCE = 10V 4000 = 100 MHz Ic f =0 = 1 MHz Ie = 1 mA VCE = 470 kHz = 1 mA VeE 10.7 MHz 1 mA VeE 100 MHz -Cr. Gpo Reverse capacitance Power gain f Ic f Ie f V = fT Rg 0.70 VCE = 10V VeE 120 75 600 - MHz = = = = 154 VCE 2 dB 0.41 pF 40 dB 30 dB 21 dB = i0V = 10V = 10V = 10V BF 273 ELECTRICAL CHARACTERISTICS Test conditions Parameter 9ie Input conductance Ic f Ic f Ic f b ie Input susceptance Ic f Ic f Ic f b re Reverse transusceptance Ic f Ic f Ic f CPre Reverse transadrnittance phase Ic f Ic f Ic f 9fe Forward transconductance Ic f Ic f Ic f b fe Forward transusceptance (continued) Ic f Ic f = 1 rnA VCE = 10 V = 470 kHz = 1 rnA VCE = 10 V = 10.7 MHz = 1 rnA VCE = 10V = 100 MHz = 1 rnA VCE = 10V = 470 kHz = 1 rnA VCE = 10V = 10.7 MHz = 1 rnA VCE = 10V = 100 MHz = 1 rnA VCE = 10V = 470 kHz = 1 rnA VCE = 10V = 10.7 MHz = 1 rnA VCE = 10V = 100 MHz = 1 rnA VCE = 10V = 470 kHz = 1 rnA VCE = 10V = 10.7 MHz = 1 rnA VCE = 10 V = 100 MHz = 1 rnA VCE = 10V = 470 kHz = 1 rnA VCE = 10V = 10.7 MHz = 1 rnA VCE = 10V = 100 MHz = 1 rnA VCE = 10V = 10.7 MHz = 1 rnA VCE = 10V = 100 MHz 155 Min. Typ. Max. Unit 240 Jj.S 300 Jj.S 900 Jj.S 22 Jj.S 500 Jj.S 4.8 rnS -1.2 Jj.S -27.6 Jj.S -260 Jj.S -900 - -900 - -900 - 35 rnS 35 rnS 32 rnS -1 rnS -9 mS BF 273 ELECTRICAL CHARACTERISTICS (continued) Parameter 9 0e boe Output conductance Output susceptance Test conditions Ie f Ie f Ie f Ie f Ie f Ie f = 1 rnA VeE = 10V = 470 kHz = 1 rnA VeE = 10V = 10.7 MHz = 1 rnA VeE = 10V = 100 MHz = 1 rnA VeE = 10V = 470 kHz = 1 rnA VeE = 10V = 10.7 MHz = 1 rnA VeE = 10 V = 100 MHz 156 Min. Typ. Max. Unit 7 J.l.S 11 f.A.S 75 f.A.8 4.4 f.A.8 100 J.l.S 940 J.l.S BF 274 SILICON PLANAR NPN GAIN CONTROLLED AM-FM IF AMPLIFIER The BF 274 is a silicon planar NPN transistor in a TO-18 epoxy package, primarily intended for use in the gain controlled IF stages of AM and AM/FM radio receivers. ABSOLUTE MAXIMUM RATINGS = 0) V eBo Collector-base voltage (IE VeEo Collector-emitter voltage (IB = 0) V EBO Emitter-base voltage (Ie Collector current Ie Ptot T stg Tj = 0) ~ Junction temperature V V 25 °C 200 mW -55 to 125°C 125 MECHANICAL DATA °C Dimensions in mm %~2.54, C V 20 4 30 mA Total power dissipation at Tamb Storage temperature '* 25 t, V ~I E TO-18 epoxy 157 4/73 I BF 274 THERMAL DATA Rth i-amb Thermal resistance junction-ambient max 500 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Test conditions Parameter Iq;S Collector cutoff current (V SE = 0) VeE = 10V VCE = 10V Min. Typ. Max. Unit 100 nA 50 itA Tamb = 1000 C V(BR) cso Collector-base breakdown voltage (IE = 0) Ic = 10(kA 25 V V (BR) CEO Collector-emitter breakdown voltage (lB = 0) Ic = 1 mA 20 V V(BR) ESO Emitter-base breakdown voltage (lc = 0) IE = 10lJ,A 4 V VSE Base-emitter voltage Ic = 1 mA hFE DC current gain Ic = 1 mA VCE = 10V for BF 274 for BF 274 Gr. B for BF 274 Gr. C 70 100 70 400 fT Transition frequency Ie = 1 mA VeE = 10V -C re Reverse capacitance Ie f =0 = 1 MHz VCE = 10V Ie f Ic Gee AG pe Power gain Power gain control 0.70 VcE =10V V 250 120 - 700 MHz 0.41 pF 1 mA VCE = 10V 470 kHz 1 mA VCE = 10V 10.7 MHz 40 dB f = = = = 30 dB Ic f = 100lJ,A VCE = 10V =470 kHz 20 dB 158 BF 287 SILICON PLANAR NPN AM MIXER-OSCILLATOR AND AM-FM AMPLIFIER The SF 287 is a silicon planar NPN transistor in a TO-72 metal case. It is primarily intended for use in the AM mixer-oscillator stage and as IF amplifier of AM-FM radios. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO Ic Ptot = 0) Collector-base voltage (IE Collector-emitter voltage (lB = 0) Emitter-base voltage (lc 0) Collector current = ~ Total power dissipation at Tamb 40 V 40 V 4 V 20 mA 2'5°C 250 mW 220 mW at Tease ~ 45°C Storage temperature -55 to 200°C Junction temperature 200 MECHANICAL DATA °C Dimensions in mm x '" . ~1~[r~3mi 12~d~ -Q. -Q. 11= P072-B (sim. to TO-72) 159 5/73 BF 287 THERMAL DATA Rth j •.amb max Thermal resistance junction-ambient 700 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Parameter ICES Collector cutoff current (VBE = 0) Test conditions Min. Typ. Max. Unit 100 VCE = 10V nA V(BR) CBO Collector-base breakdown voltage (IE = 0) Ic = 10JA,A 40 V VCEO (sus) Collector-emitter sustaining voltage (lB = 0) Ic =5mA 40 V V(BR) EBO Emitter-base breakdown voltage (lc = 0) 4 V IE = 100 JA,A VBE Base-emitter voltage Ic Ic = 1 mA =2mA VCE = 7 V VCE = 10V hFE DC current gain Ic Ic = 1 mA = 2mA VCE = 7 V VCE = 10V fT Transition frequency Ic f Ic f = 1 mA VCE = 7 V = 100 MHz =2mA VCE = 10 V = 100 MHz Ie = 1 mA VCE = 7 V f = 470 kHz f = 10.7 MHz =2mA VCE = 10V = 5.5 MHz Gpe Power gain Ic f gie b ie Input conductance Input susceptance Ic Ic 710 740 mV mV 50 60 - 600 MHz 700 MHz 42 18 45 22 dB dB 25 29 dB = 1 mA VCE = 7 V f = 470kHz f = 10.7 MHz 0.17 0.25 mS mS = 1 mA VCE = 7 V f = 470 kHz f = 10.7 MHz 24 0.52 {lS mS 160 30 40 - BF 287 ELECTRICAL CHARACTERISTICS (continued) Parameter 9fe Forward transconductance Min. Typ. Max. Unit Test conditions Ie == 1 rnA VeE == 7V == 470 kHz == 10.7 MHz f f -b fe Forward transusceptance Ii; Output conductance Ie Output susceptance Ie == == VeE == 7 V 470kHz 10.7 MHz == 1 rnA VeE f == 470kHz f boe rnS rnS 40 0.96 tJ,S rnS 6 11 ,tJ,S ,tJ,S 4.5 100 p.S ,tJ,S == 1 rnA f f 9 ee 35 35 == f f == == 7V 10.7 MHz 1 rnA VeE == 7 V == 470 kHz == 10.7 MHz I 161 BF 288 SILICON PLANAR NPN GAIN CONTROLLED AM-FM IF AMPLIFIER The BF 288 is a silicon planar NPN transistor in a TO-72 metal case. It is primarily intended for use in the gain controlled IF stages of AM and AM/FM radio receivers. ABSOLUTE MAXIMUM RATINGS V CBO VCEO VEBO Ic Ptot Collector-base voltage (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (lc = 0) Collector current Total power dissipation at Tamb ~ 25°C 40 V 40 V 4 V 20 rnA 250 mW 220 rnW .-55 to 200°C at Tamb ~ 45°C Storage temperature Junction temperature 200 MECHANICAL DATA °C Dimensions in rnm 5.3 max "III . 12.7mm. E ~r~f I" i~~ P072-B (sim. to TO-72) 163 5/73 BF 288 THERMAL DATA Rth j-amb Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS ICES Collector cutoff current (VBE :::: 0) V(BR) CBO Collector-base breakdown voltage (IE = 0) VCEO = V(BR) EBO Emitter-base breakdown voltage (lc 0) = VBE Base-emitter voltage hFE DC current gain fT Transition frequency -C re Reverse capacitance G pe Power gain 10~A Ic = Ic = 5mA = 100 ~A Ic = 1 rnA VCE = 7 V Ic = 1 rnA VCE = 7 V Ic = 1 rnA VCE = 7 V f = 1 MHz VCE = 7 V Ic = 1 rnA VCE = 7 V f = 470 kHz IE Input conductance Ic = 10.7 MHz 100 nA 40 V 40 V 4 V Input susceptance Forward transconductance Ic Ic 65 42 18 740 mV 90 - 500 MHz 0.24 pF 45 22 dB dB = 1 rnA VCE = 7 V = 470 kHz = 10_7 MHz = 1 rnA VCE = 7 V f = 470kHz f = 10.7 MHz 0.17 0_25 mS mS 24 0.52 ~S = 1 rnA VCE = 7 V = 470 kHz = 10.7 MHz 35 35 mS mS f f 9fe Min. Typ. Max. Unit VCE = 7 V f b ie °C/W (sus) Collector-emitter sustaining voltage (IB 0) 9ie 700 (T amb = 25°C unless otherwise specified) Test conditions Parameter max f f 164 mS , I! i BF 288 !~ ELECTRICAL CHARACTERISTICS (continued) Parameter -b fe 9 0e Forward transusceptance Output conductance Test conditions Ie Ie = 1 rnA VCE = 7 V = 470 kHz = 10.7 MHz = 1 rnA VCE = 7 V = 470 kHz f f = 10.7 MHz f f boe Output susceptance Ie =7V = 1 rnA VeE f 470 kHz f 10.7 MHz = = 165 Min. Typ. Max. Unit 40 0.95 :jJ.S rnS 6 11 p.S p.S 4.5 100 ,IlS 'jJ.S BF 316A SILICON PLANAR PNP UHF MIXER OSCILLATOR The SF 316 A is a silicon planar epitaxial PNP transistor in a TO-72 metal case. It is specifically designed for use as oscillator-mixer in UHF tuners. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO Ie Collector-base voltage (IE = 0) Collector-emitter voltage (lB Emitter-base voltage (lc 0) Collector current -40 = 0) = T"9 Total power dissipation at T.mb ="'=' 25 °C Storage temperature T; Junction temperature P,o, -35 V V -3 V -20 mA 200 mW -55 to 200 oC 200°C MECHANICAL DATA Dimensions in mm (sim. to TO-72) Supersedes issue dated 4/73 167 6/75 BF 316A THERMAL DATA Rth j.amb Thermal resistance junction-ambient max 875 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Parameter ICBO Collector cutoff current (IE = 0) Test conditions Min. Typ. Max. UnH VCB = -20V -100 nA V(BR) CBO Collector-base breakdown voltage (IE = 0) Ic = -10 Il-A -40 V V(BR) CEO Collector-emitter breakdown voltage (lB = 0) Ic = -3mA -35 V V(BR) EBO Emitter-base breakdown voltage (lc = 0) IE = -101l-A -3 V VBE Base-emitter voltage Ic = -3mA VCE Ic = -3mA VCE = -10V = -10V hFE DC current gain fT Transition frequency Ic = -3mA VCE = -10 V -C re Reverse capacitance Ic f =0 = 1 MHz VCE = -10V Ic Rg f Ic Rg f = -3mA VCB = -10V =50n = 800 MHz = -3mA VCB = -10V = son = 500 MHz Ic RL f Ic RL f = -3mA VCB = -10V = 2kn = 800 MHz = -3mA VCB = -10V =2kn = 500 MHz NF Gpb Noise figure Power gain 168 -0.75 30 V 50 - 600 MHz 0.25 pF 5 dB 3.5 dB 12 dB 17 dB BF 316A ELECTRICAL CHARACTERISTICS Parameter 9ib bib Input conductance Input susceptance bob 91b bIb 9 rb b rb Output conductance Output susceptance Forward transconductance Forward transusceptance Reverse transconductance Reverse transusceptance Min. Typ. Max. Unit Test conditions Ic f Ic f = -3 rnA Vce = = 800 MHz -10V = -3 rnA Vce = -10V = 500 MHz Ic f = = = = -3 rnA Vce = -10V 800 MHz -3 rnA Vce = -10V 500 MHz Ic f Ic f = = = = -3 rnA Vce = -10V 800 MHz -3 rnA Vce = -10 V 500 MHz Ic f Ic f = = = = -3 rnA Vce = -10V 800 MHz -3 rnA VcB =-10V 500 MHz Ic f Ic f = -3 rnA Vce = -10V = 800 MHz = -3 rnA Vce = -10V 500 MHz Ic f Ic f = = = = -3 rnA Vce = -10V 800 MHz -3 rnA Vce = -10 V 500 MHz Ic f Ic f = = = = -3 rnA VcB =-10V 800 MHz -3 rnA VcB =-10V 500 MHz Ic f Ic f = = = = -3 rnA Vce = -10V 800 MHz -3 rnA Vce = -10V 500 MHz Ic f 90b (continued) = 169 4.6 mS 17 mS -23 mS -37 mS 0.6 mS 0.32 mS 5 mS 3.2 mS 16 mS 10 mS 13 mS 39 mS -0.1 mS -0.04 mS -0.32 mS -0.26 mS ELECTRICAL CHARACTERISTICS (continued) Parameter fb Phase angle of the forward transadmittance Ic f = 1 mA VCE = 10 V = 100 MHz 1600 - gob Output conductance 22 (kS bob Output susceptance 0.86 mS I 177 BF 455 SILICON PLANAR NPN PREAMPLIFIER AND AM/FM IF AMPLIFIER The SF 455 is a silicon planar NPN transistor in TO-18 epoxy package, with low reverse capacitance, very low noise, high output impedance. The SF 455 is especially suited for FM tuners, IF amplifiers in AM/FM receivers, AM input stages of car-radios. ABSOLUTE MAXIMUM RATINGS = VCEO Collector-base voltage (IE 0) Collector-emitter voltage (IB = 0) VEBO Ie Emitter-base voltage (lc Collector current Ptot Total power dissipation at Tomb ==== 25°C at Tease ==== 25°C VCBO = 0) Storage temperature Junction temperature 125 °C Dimensions in mm ~zY~2.54 B C V 25 V 4 V 20 mA 200 mW 500 mW -55 to 125°C MECHANICAL DATA . P 35 !r, \:f ~I E TO-18 epoxy 179 5/73 BF 455 THERMAL DATA Rth j.amb Thermal resistance junction-ambient max 500 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Parameter ICBO Test conditions Collector cutoff current (IE = 0) Min. Typ. Max. Unit 200 nA VCB = 10V V(BR) cBoColiector-base breakdown voltage (IE = 0) Ic = 100 IlA 35 V VCEO(sus) 'Collector-emitter sustaining voltage (lB = 0) Ic = 1 mA 25 V V(BR) EBO Emitter-base breakdown voltage (lc = 0) IE = 10 IlA 4 V VBE Base-emitter voltage Ic = 1 mA VCE = 10V hFE DC current gain Ic Ic Ic = 1 mA = 1 mA = 1 mA VCE = 10V VCE = 10V VCE = 10 V Ic f = 1 mA VCE = 10V = 100 MHz 400 Ic f =0 = 1 MHz 0.5 0.8 pF 3 dB Gr. C Gr. D fr -C re NF Transition frequency Reverse capacitance Noise figure • Pulsed: pulse duration duty factor = 1% 180 V 120 75 125 68 38 35 - - MHz VCE = 10V VCE = 10V Ic = 1 mA Rg = 1000 f = 100 MHz = 300 IlS, 0.71 BF 455 ELECTRICAL CHARACTERISTICS Parameter (continued) Test conditions Min. Typ. Max. Unit gib Input conductance 38 mS -bib Input susceptanr.e 2 mS 34 mS IYfbl Forward transadmittance CPfb Phase angle of the forward transadmittance Ic f = 1 mA VCE = 10 V = 100 MHz 1500 - gob Output conductance 13 \.1S bob Output susceptance 0.8 mS 181 BF457 BF 458 BF4S9· SILICON PLANAR NPN PRELIMINARY DATA HIGH VOLTAGE VIDEO AMPLIFIERS The SF 457, SF 458 and SF 459 are silicon planar epitaxial NPN transistors in Jedec TO-126 plastic package. They are particularly intended for use as video output stages in colour and black and white TV receivers, class A output stages and drivers for horizontal deflection circuits. These transistors hav~ been studied in order to guarantee the maximum resistance against flash over. ABSOLUTE MAXIMUM RATINGS VCBO VCEO V EBO ICM IBM Ptot SF 457 Collector-base voltage (I E = 0) Collector-emitter voltage (I B = 0) Emitter-base voltage (lc = 0) Collector peak current Base peak current Total power dissipation at Tamb <; 25°C T case <; 25°C Storage temperature Junction temperature MECHANICAL DATA Supersedes issue dated 10/74 SF 458 SF 459 160 V 250 V 300 V 250 V 300 '!.5V 300 mA 50 mA 1.25 W 12.5 W -55t0150°C 150°C ~60V Dimensions in mm 183 6/75 THERMAL DATA Rth j-case Rth j-amb 10 DC/W 100 DC/W max max Thermal resistance junction-case Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS (T case = 25 DC unless otherwise specified) Parameter ICBo Collector cutoff current (IE = 0) Test conditions for BF 457 for BF 458 for BF 459 V(BR) CEO' Collector-emitter sustaining voltage (lB = 0) Ic = 10 mA V(BR)EBO Emitter-base breakdown voltage (lc = 0) IE = 100 /1A V CB = 100V V CB = 200V V CB = 250V for BF 457 for BF 458 for BF 459 Collector-emitter saturation voltage Ic=50mA IB = 10 mA hFE DC current gain Ic =30 mA V CE = 10V fT Transition frequency Ic = 30 mA V CE = 10V -C re Reverse capacitance Ic =0 f = 1 MHz V CE = 30V Ic == 0 f = 1 MHz V CE = 30V VCE(sat) Coe Output capacitance * Pulsed: pulse duration = 300/15. duty cycle 1% 184 Min. Typ. Max. Unit 50 50 50 nA nA nA 160 250 300 V V V 5 V 1 30 V 80 - 90 MHz 4 pF 5 pF Typical collector-emitter voltage Typical DC current gain saturation 1 6-'411 I' VCECsatl i (v) FE=' 0.15 100 V VCE"IOV 0.1 -~ 50 V 0.05 ~ o 4 , •• .. .. o 4 •• IC (rnA) 10 Typical transition frequency .. ICImA) 10 Typical output and reverse capacitance - 6-1411 G ..,. C Iy (104Hz) (pi') VCE "IOV =20 MHz =1MHz Ie-o 8 150 6 t".. " 100 CoefCref- 50 o 10 20 30 40 o IC(mAl 185 10 20 30 VCE (V) I;, BF 479 SILICON PLANAR PNP '·1., 1 I I1 I~J PRELIMINARY DATA LOW-NOISE ULTRA LINEAR UHF-VHF AMPLIFIER The SF 479 is a PNP silicon planar epitaxial transistor in aT-plastic package mainly intended for high current UHF-VHF stages of TV tuners. In this application, combined with a PIN diode attenuator circuit, it presents very low noise and very good cross modulation performances up to 900 MHz. ABSOLUTE MAXIMUM RATINGS VCBO VCEO V EBO Ic P tot T stg Tj Collector-base voltage (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (lc = 0) Collector current Total power dissipation at Tomb ~ 45°C Storage temperature Junction temperature MECHANICAL DATA -30 V -25 V -3 V -50 mA 170 mW -55 to 150°C 150 °C Dimensions in mm g!G.S {n Within this region thp cross section of the leads, is uncontrolled 187 5/73 BF479 THERMAL DATA Rth j-omb ELECTRICAL CHARACTERISTICS Collector cutoff current (IE = 0) 600 °C/W (Tomb = 25°C unless otherwise specified) Test conditions Parameter ICBO max Thermal resistance junction-ambient Min. Typ. Max. Unit VCB = -20V -100 nA VeBR) CBO Collector-base breakdown voltage (IE = 0) Ic = -1oo!J.A -30 V VeBR) CEO Collector-emitter breakdown voltage (lB = 0) Ic = -5mA -25 V VeBR) EBO Emitter-base breakdown voltage (lc = 0) IE =-1O !J.A -3 V 20 - hFE DC current gain Ic = -10 mA VCE =-10 V fT Transition frequency lc f =-10mA VCE = -10V = 100 MHz 1.4 GHz CCBO Collector-base capacitance IE f =0 = 1 MHz 0.7 pF 2.5 3.3 3.5 4 dB dB dB dB NF Noise figure VCB = -10V Ic Ic Ic Ic Gob Power gain = = = = -3mA -10 mA -3mA -10 mA VCB = -10V Rg = 50n f f f f = = = = 200 MHz 200 MHz 800 MHz 800 MHz Ic = -10 mA VCB = -10V f = 800 MHz RL = 2kn 188 15 18 5.5 6 dB BF 479 Typical noise figure Typical noise figure G-101U1 NF (dB) ~---t--+-+-~-H~----~-1-1-+~HHH r---~--+-+-r+~~~;;~OM~Z f----+--t--t-H-t+-H-vCB " 'OV Rg '" 50 1----~--+-+-r+-+++l_VCB 7.5 n "'0 V f-__-+__t-t-l-++++t-_',C'-"_'..:.OmT_A--+--+-++-t-ttl - ,.5 6 10 8 ,0 -Ie (rnA) Typical transition frequency 6 , 8 6 f (MHz) 8 10 3 I Typical output voltage (intermodulation -40 dB) VCE =-10V -I--+- = .- t--t--t--t--t--r-r- -r-- 12 ,6 20 24 12 Ie (rnA) 189 '6 20 Ie (rnA) SILICON PLANAR PNP VHF OSCILLATOR MIXER The BF 506 is a silicon planar epitaxial PNP transistor in Jedec TO-92 plastic package. It is intended for use as mixer and oscillator in the VHF range. However, it may also be used as not controlled preamplifier at low noise. ABSOLUTE MAXIMUM RATINGS Vcso V CEO V ESO Ic Is Ptot T stg Tj Collector-base voltage (IE = 0) Collector-emitter voltage (Is = 0) Emitter-base voltage (lc = 0) Collector current Base current Total power dissipation at Tamb :;;;;45°C Storage temperature Junction temperature MECHANICAL DATA ~upersedes issue dated 10/74 -40 -35 -4 -30 -5 250 -55 to 150 150 V V V mA mA mW °C °C Dimensions in mm 191 6/75 THERMAL DATA Rtn j-amb Thermal resistance junction-ambient max 420 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Parameter ICBO Min. Typ. Max. Unit V CB = -20V -200 nA V(BR)CEO Collector-emitter breakdown voltage (lB = 0) Ic = -5 rnA -35 V V(BR)EBO Emitter-base breakdown voltage (lc = 0) IE = -10 IlA -4 V hFE DC current gain Ic =-3 rnA V CE = -10V fT Transition frequency Ic =-1 rnA f = 100 MHz V CE = -10V IE =0 f = 1 MHz V CB = -10V Ic =0 f = 1 MHz V CB = -10V Ic=-1mA Rg =50n f = 200 MHz Vcc=-6V Ic =.-3 rnA RL = 1k!2 f = 200 MHz Vcc= -10.8\ CCBO Crb NF*I** Gpb * * Collector cutoff current (lE=O) Test conditions Collector-base capacitance Reverse capacitance Noise figure Power gain See TEST CI RCU IT ** Input adapting for optimum source admittance 192 40 - 400 MHz 0.8 pF 0.13 pF 2.5 14 17 4 dB dB Typical input admittance Typical transfer admittante IHHI G 1389 bib (mS) .'UV - V o r-.. r-.. _~Blll~ ) 200_ eo 10.7 MHz 1 1/ r-.. ~ -20 1/ 100 60 ] 5 100 ,\1 -40 .. .A - 200 -60 . 36 I".. 3 m 20 ¥ ""0 o 100 50 -ISO 150 glb (mS) Typical output admittance G 1390/1 I I bob (mS) 200MHz o.e 1 /-Ic =5mA ] 0.6 II 100 I 1 Q.2 1/ o -Ie'l IRA 103 o 136 -vee -10 ,....10.7 0.02 0.04 0.06 0.08 90b (mS) 193 -100 -so o 9'blmS) TEST CIRCUIT Power gain and noise figure :t -~ ~ ~:I"'n-F-~~---J ) 1, lkn Vee VEE • Leaca. . c.,.mic disc capacitor S-O'77 L1-3turns 0..6"", Mamt'I,I.mn dia. L2=2lurns ~ I mil _mel, 6.Snm dia. 194 SILICON PLANAR PNP VHF AGC AMPLIFIER The BF 509 is a silicon planar epitaxial PNP transistor in Jedec TO-92 plastic package. It is intended for use as controlled VHF preamplifier when a high gain level with particularly reduced noise is required. ABSOLUTE MAXIMUM RATINGS Vcso VCEO V EBO Ic Is Ptot T stg Tj Collector-base voltage (I E = 0) Collector-emitter voltage (Is = 0) Emitter-base voltage (lc = 0) Collector current Base current Total power dissipation at Tamb ,,;;; 45°C Storage temperature Junction temperature MECHANICAL DATA -40 -35 -4 -30 -5 250 -55 to 150 150 V V V mA mA mW °C °C Dimensions in mm I I:~ 11 195 10/74 THERMAL DATA Rth j"-ilmb Thermal resistance junction-ambient max 420 °C/W ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified) Parameter I cBO Collector cutoff current (lE=O) Test conditions Min. Typ. Max. Unit VCB=-20V -200 nA V(BR)CEO Collector-emitter breakdown voltage (lB ;= 0) Ic =-5 mA -35 V V(BR)EBO Emitter-base breakdown voltage (lc =0) I E =-10J.LA -4 V hFE DC current gain Ic =-3mA V CE = -10V fT Transition frequency Ic =-3mA f = 100 MHz V CE = -10V IE =0 f = 1 MHz V CB = -10V Ic =0 f = 1 MHz V CB = -10V Ic =-3mA Rg = 50n f=200MHz Vcc=-10.8V CCBO ,C'b NF*I** G pb * Collector-base capacitance Reverse capacitance Noise figure Power gain Ic = -3 mA 70 - 700 MHz 0.8 pF 0.13 pF 1.5 2.5 dB Vcc=-10.8V RL = 1 kn IC(AGC) * Collector current for flG pb = 30 dB f=200MHz 15 Vcc= 10.8V f = 200 MHz 7.3 * See TEST CI R<;:UIT ** Input adapting for optimum source admittance. 196 18 dB 8.8 mA ~., ',' . . •.'. . . . . . .•.•. •. •. .:':.•.•,'".....':.: ., .• . ':,.<.•.,:". . . ::. •. ,'.:'. . •.•.•. . . :. . . •.:.'.:. . ,. .,. •. .,. . . . . . . . . . . . . . . . . . . . , .. ,. Typical input admittance Bf<5:09 ,. " , ... ;", ,,;., 0'" "" ,""_" Typical transfer admittance G-ll9] G-1J95 bib b,b H- l ,",S) (mS) I o r-. 1 -Y 80 :1110V -YCB" , Y I 10.7 -20 I 60 ~ 3 I 36 200 MHz 1/ 100 V 1 ..... 200 114Hz 5 100 , 40 -I • 5mA 1\1/, X, If -60 20 3 , 1 ., , I'\. Ib~ 10.7 l' Ic" mA , o -80 o 100 50 150 -150 Glb ,",5) Typical output admittance -100 -50 0 g'b (mS) Typical power gain variation current VS. 0_1394 bob (mS) A 08 G.1392 AGpb (dB) r+- i/ 200MHz I ,I +- -10 I 1 -I C·5m 3 AGe I "200 MHz -YCC"lO.BY 1\ -20 Q.6 '\, \ \ 100 -30 OA 1\ h. Q.2 -Yea .10Y 1\ -40 , 10.7 n02 Q04 o no6 197 8 -Ic (mA) I TEST CIRCUIT Power gain, AGe and noise figure ,T v, C4 12 Yo 1510 GpF lOto~D. t,OpF " ~-4--""'''''''-II,nF I 111,-nF--....-~-.... Ikn VEE Vee • Leadless c.... mic disc capacitor Ll=3turns O.6nm ft'Iameol,4nm dia. L2=2turns 1 mn enamet, 6.Smn dia. 198 S-0877 BF516 SILICON PLANAR PNP UHF-VHF AMPLIFIER The BF 516 is a silicon planar epitaxial PNP transistor in a TO-72 metal case, intended as general purpose amplifier up to 1 GHz. ABSOLUTE MAXIMUM RATINGS VeBo VeEo VEBO Ie Ptot T stg Tj Collector-base voltage (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (Ie = 0) Collector current Total power dissipation at Tamb "'" 25°C Storage temperature Junction temperature MECHANICAL DATA V -40 V -35 -3 V -20 rnA 200 mW -55 to 200 °C 200 °C Dimensions in mm (sim. to 10-72) Supersedes issue dated 4/73 199 6/75 BF 516 THERMAL DATA Rth j.omb Thermal resistance junction-ambient max 875 °C/W ELECTRICAL CHARACTERISTICS (Tomb = 25°C unless otherwise specified) Parameter ICBO Collector cutoff current (IE = 0) Test conditions Min. Typ. Max. Unit VCB = -20 V -100 nA V(BR) CBO Collector-base breakdown voltage (IE = 0) Ic = -10 !-LA -40 V V(BR) CEO Collector-emitter breakdown voltage (lB = 0) Ic = -3mA -35 V V(BR) EBO Emitter-base breakdown voltage (lc = 0) IE = -10 !-LA -3 V VBE Base-emitter voltage Ic = -3mA VCE = -10V hFE DC current gain Ic = -3mA VCE = -10V fT Transition frequency Ic = -3mA VCE = -10V -Cr. Reverse capacitance Ic f =0 = 1 MHz VCB = -10V Crb Reverse capacitance Ic f =0 = 1 MHz VCE = -10V NF Gpb Noise figure Power gain Ie = -3mA VCB Rg = 50n f = 800 MHz Ic = -3mA VeB Rg = 50n f = 200 MHz Ie = -3mA VCB RL = 2kn f = 800 MHz Ie = -3mA VeB RL = 2kn f = 200 MHz 200 -0.75 25 50 V - 850 MHz 0.3 pF 0.05 pF 3.5 6 dB 2.5 dB 14 dB 19 dB = -12V = -12V = -12 V = -12 V 11 BF 516 Transition frequency Normalized DC current gain GS 0037 f, (MH,) VCE =-lOV 1.6 800 I - - 1.2 45' C - 0.8 NORMA.LIZA.TION "'" 0.4 I - h" ~ 1 at Ie = I--IT,ml· 0.1 fr - 3 mA VeE,'-lO 03 / 400 / \ 1 / 200 I \\ V o 3 0.1 -Ie (mA) 0.3 3 -Ie (mA) Noise figure GS 0039 -ere (pF) I = 0 C ~ '90041 NF I (dB) - Rg 50 II VeE -lOV f- r- "'- ~ " '""- \ \ / Reverse capacitance 0.5 1\ / 600 "\ 1-,,\ / ...... 25' C / f=lOOMHz j\, / "'-. """- 0.1 10 30 -VeE (V) 201 50 100 200 500 f (MHz) SILICON PLANAR NPN PRELIMINARY DATA MEDIUM POWER VIDEO AMPLIFIERS The BF 657, BF 658 and BF 659 are silicon planar epitaxial NPN transistors in TO-39 metal case. They are particularly designed for application with precision "IN-LINE" large screen CRT !thermal resistance :s;;; 20°C/W). ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO Ic ICM Ptot BF657 Collector-base voltage. (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (Ic = 0) Collector current Collector peak current Total power dissipation at T case:S;;; 6qoC at T case :s;;; l40 C Storage temperature Junction temperature Q Tstg Tj MECHANICAL DATA l60V -160 V BF658 BF659 250 V 300 V 250 V 300~ -..r 5V 100mA 200mA 7W 3W -55 to 200°C 200 °C Dimensions in mm 203 4/75 I THERMAL DATA Rth j-case Rth j-amb Thermal resistance junction-case Thermal resistance junction-ambient max max 20 °CIW 175 °CIW ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified) Parameter ICBo Collector cutoff current (IE = 0) Test conditions for BF 657 for BF 658 for BF 659 V(BR)CBO Collector-base breakdown voltage (IE =0) Ic = 100pA V (BR)CE6' Collector-emitter breakdown voltage (lB = 0) Ic = 10 mA V(BR)EBO Emitter-base breakdown voltage (lc = 0) IE = 100 IlA V CB = 100V V CB = 200V V cB =250V 160 250 300 V V V for BF 657 for BF 658 for BF 659 160 250 300 V V V 5 V Ic =30 mA IB =6 mA hFE * DC current gain Ic = 30 mA V CE = 10V fT Transition frequency Ic = 15 mA V CE = 10V -C re Reverse capacitance Ic =0 f = 1 MHz V cE =30V 204 50 nA 50 nA 50 nA for BF 657 for BF 658 for BF 659 V CE(sat) * Collector-emitter saturation voltage * Pulsed: pulse duration = 300 IlS, duty factor = 1% Min. Typ. Max. Unit 1 V - 25 90 3 MHz pF Typical collector-emitter voltage Typical DC current gain G 1623/1 saturation VCE(sat) IV ) 80 ./ /' - 0.8 J 0.6 ..,.. 60 --- 40 '51 " 0.4 VeE =10V V 0.2 20 o , . Ie 10 , . o 4 8 10 G-1646/1 InA ) 6 (mA) Typical collector cutoff current leeo I-"" C Ipl) ... 6 • IclmA) 10' Typical collector-base and reverse capacitances -1685 4 , 10' • , 10' • , 10 •• , BF657 Veo-IOOV 200V 250V BF658 .......... BF659 r-......... .......... 6 4 ....... ",- e,. , ,...... .......... 6 4 50 .......... ............. ....... ....... V o 25 eceo .......... ~ 75 100 125 Tambl'C) 205 •• 10 4 • , VeB (V) 10' I Typical transition frequency Safe operati ng areas G-1413 G-162.lofl IC 8 (mA) IC MAX (CONTINUOUS )~ 6 I ) Tease =60·C VCE =lOV f= 20 M-iz 4 150 2 10 100 8 6 4 50 BF657 VCEO MAX = 160V _ _ 2 BF658 VCEO MAX= 250VBF659 VCEO MAX= 300V 10 6 8 102 F 6 • o VCE (V) 206 10 20 30 IJJ IC(mA) SILICON PLANAR PN P UHF-VHF AGC AMPLIFIER AND OSCILLATOR MIXER The BF 679 and BF 679M are silicon planar epitaxial PNP transistors in T-plastic package intended for the use in UHF-VHF range up to 900 MHz. Because of its low noise and gain characteristics versus current, the BF 679 is particularly suited as a controlled preamplifier stage in TV varicap tuners. The BF 679M because of its low thermal drift and high oscillation stability is particularly suggested as oscillator mixer. ABSOLUTE MAXIMUM RATINGS VCBO VCEO VEBO Ic IB Ptot T stg ToJ Collector-base voltage (IE = 0) Collector-emitter voltage (lB = 0) Emitter-base voltage (Ic= 0) Collector current Base cu rrent Total power dissipation at Tamb ..;; 45 °C Storage temperature Junction temperature MECHANICAL DATA Supersedes issue dated 9/74 -40 -35 -3 -30 -5 170 -55 to 150 150 V V V rnA rnA mW °C °C Dimensions in mm 207 6/75 THERMAL DATA Rth j-amb Thermal resistance junction-ambient 600 max °C/W ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified) Parameter ICBo Collector cutoff cu rrent (I E = 0) Test conditions Min. Typ. Max. Unit V CB = -20V -100 nA V(BR)CBO Collector-base breakdown voltage (IE = 0) Ic = -100 J,tA -40 V V(BR)CEO Collector-emitter breakdown voltage (lB = 0) Ic =-5 mA -35 V V(BR)EBO Emitter-base breakdown voltage (lc = 0) IE=-10J,tA -3 V hFE DC current gain Ic = -3 mA fT Transition frequency Ic =-3 mA V CE = -10V f = 100 MHz V CE = -10V 700 1000 CCBO Collector-base capacitance V CB = -10V IE = 0 f = 100 MHz 0.6 pF 0.07 pF 3.5 5 dB 15 dB Crb Reverse capacitance Ic =0 V CB = -10V f = 100 MHz NF* Noise figure Ic =-3 mA Vcc= -10.BV Rg = 5012 f = BOO MHz Gpb * Power gain IC(AGC) * Collector current for!::" Gpb = 30 dB 25 Ic = -3 mA Vcc= -10.BV RL = 2 k12 f = BOO MHz 12 for BF 679 only f =800 MHz Vcc= -10.BV 6.4 *See TEST CIRCUIT 208 60 MHz 7.B mA Typical transition frequency Typical input admittance (for BF 679 only) G.llGOIl tT (MHz) v -bib 1 1 (mS) • -10V 1200 8F679M 1 1000 ............. ~ 800 600 r-... h IAi 'I IN BF679 30 "- "\ 20 ~ 400 '0 200 I / t '{ V \ / I r- I Typical transfer admittance (for BF 679 only) b'b "l - 2mA\ I II 11.. /1 VCS=-10V 1\ '=600MH. ""I .A ( 40 500MH \ 30 f=60MH:z: 20 :,, ," \ \ \ )I l"- II\. ...... 10 1\ lmA/ / f/j 0.5 1 t--;tf -120 -tOO -80 -60 -40 -20 ~"H~ VCS=-IOV r 200 MHz ~ 100MHz Jl I o f= 8 /.~ r-2mA ~ t-5mA ~500MHZ ~V 860MHz I'.. 80 ~ '5 )..-- ~ II / .F/ '\. \ \ 1(X}MHz \ V /ooMHZ ~ 1,=-lmA- 'mA 200">« Y 2D \ 50 1\ / / ./ bob (mS) " / 60 / / Typical output admittance (for BF 679 only) lc=-5m (mS) IOOMHz 1\ poMH./ o -Ie (rnA) ~I'.. il ~ r""-I ~ 6 VCB~-10V SmA ....... 200M Hz I c =-lmA\ o ~ ,<" 50 60MHz I 0 g,.(mS) 02 209 as os 90b{mS) Typical power gain (for SF 679 only) to· 1111/1 Gpb (dBI 10 t-10 -20 ~ t ::800 MHz Rl:: no "'CC="'1O.BV ~~-+-+--+-~'-++-I--!-H-+-HH-H-+-f -30 .1, (mAl TEST CIRCUIT Power gain, AGe and noise figure B20n 5-0466 210 SILICON PLANAR PNP PRELIMINARY DATA UHF MIXER-OSCILLATOR The BF 680 is a PNP silicon planar epitaxial transistor in T -plastic package. It is intended for use in TV varicap tuners as mixer-oscillator stage up to 900 MHz. ABSOLUTE MAXIMUM RATINGS Vcso VCEO VESO Ic 's Ptot T,tg Tj Collector-base voltage (IE = 0) Collector-emitter voltage (Is = 0) Emitter-base voltage (lc = 0) Collector current Base current Total power dissipation at Tomb ~ 45°C Storage temperature Junction temperature MECHANICAL DATA Supersedes issue dated 8/73 -40 V -35 V -3 V -30 mA -5 mA 17.0 mW -55 to 150 °C 150 °C Dimensions in mm 211 6/75 THERMAL DATA Rth j.omb Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS Parameter ICBO Collector cutoff current (IE = 0) max 600 °C/W (Tomb = 25°C unless otherwise specified) Test conditions Min. Typ. Max. Unit VCB = -20 V -100 nA VeBR) cBoCollector-base breakdown voltage (I E = 0) Ic = -100 itA -40 V VeBR) CEO Collector-emitter breakdown voltage (lB = 0) Ic = -5 rnA -35 V VeBR) EBO Emitter-base breakdown voltage (lc = 0) -3 V IE = -10 itA hFE DC current gain Ic = -3 rnA fT Transition frequency Ic f = -3 rnA VcE =-10V = 100 MHz 650 MHz IE f VCB = -10V =0 = 100 MHz 0.6 pF Ic f VCB = -10V =0 = 100 MHz 0.07 pF Ic = -3mA VCB = -10V Rg = 50n f = 800 MHz 5.5 dB 14 dB CeBo ~rb NF* Gpb * Collector-base capacitance Reverse capacitance Noise figure Power gain VcE =-10V Ic = -3mA VeB = -10 V RL = 2 kn f = 800 MHz * See TEST CIRCUIT 212 35 11 50 - ELECTRICAL CHARACTERISTICS Parameter gib -bib !yfbl CJlfb gob bob Input conductance Input susceptance Forward transadmittance Phase angle of the forward transadmittance Output conductance Output susceptance (continued) Test conditions Ie Ie Ie Ie Ie Ie = -2 mA = -2 mA = -2 mA = -2 mA = -2 mA = -2 mA 213 = = f = 500 MHz VeE = -10V f = 860 MHz f = 500 MHz VeE = -10 V f = 860 MHz f = 500 MHz VeE -10 V f 860 MHz 7 mS 14 mS 19 24 mS = = f = 500 MHz VeE = -10 V f = 860 MHz f = 500 MHz VeE -10 V f 860 MHz mS 25 mS 42 mS = VeE -10V f 860 MHz f 500 MHz = = Min. Typ. Max. Unit 50 0 1100 - - 0.8 mS 0.4 mS 2.5 1.6 mS mS I Typical DC current gain Typical transition frequency G 1125 fT (MHz ) VCE=-IOV f = 100 MHz 800 50 t=t::t;;tiE~nWjj 600 ~ ~~ __~~.~~1~1__~-+~~~ 1--+---·VCC- 10V 30 - .J' --+11--+----1----1-++1-+\-1 -f--T- - I'-... ......... 400 '" 1 20 1--+----l-----+-I--W--I-+l_ _-+--l---I---I--I-l-I-I-I 200 10 .. ... -,,(mAl 10 8 -Ie (rnA) TEST CIRCUIT Power gain and noise figure 5 -0486/1 214 INTEGRATED CIRCUITS 215 MOS INTEGRATED CIRCUIT M 252 PRELIMINARY DATA RHYTHM GENERATOR • LOW POWER DISSIPATION: < 120 mW • DRIVES 8 SOUND GENERATORS (INSTRUMENTS) • 15 PROGRAMMABLE RHYTHMS (NOT AVAILABLE IN COMBINATION) • MASK PROGRAMMABLE RESET COUNTS: 24 or 32 • DOWN BEAT OUTPUT • EXTERNAL RESET • OPEN DRAIN OUTPUTS • STANDARD MUSIC CONTENT AVAILABLE • TECHNICAL NOTE NO 131 AVAILABLE FOR FULL INFORMATION The M 252 is a monolithic rhythm generator specifically designed for electronic organs and other musical instruments. Constructed on a single chip using low threshold P - channel silicon gate technology it is supplied in a 16 - lead dual in-line ceramic or plastic package. ABSOLUTE MAXIMUM RATINGS VGG * Vi * '0 T stg Top Source supply voltage Input voltage Output current (at any pin) Storage temperature Operating temperature -20 to 0.3 -20 to 0.3 3 -65 to 150 o to 70 V V mA °c °c * This voltage is with respect to Vss pin voltage ORDERING NUMBERS: M 252 B1 XX for dual in-line plastic package M 252 D1 XX for dual in-line ceramic package M 252 B 1 or D 1 AA for standard music content MECHANICAL DATA Dimensions in mm ~l ~.:: ::::: 217 2/75 CONNECTION DIAGRAMS M 252 D 1 or B 1 - AA Standard content configuration (top view) INPUT 4 16 iN'PU"Ti 1Al'iln [ 1 16 INPUT 8 15 iNPiJiI INPIin [ 2 15 OUTPUTS 14 OUTPUT 4 CONGA DRUM [ 3 14 LOW BONGO ~t!! OUTPUT7 l 4 OUTPUT8 13 OUTPUT 3 ",if [ 4 13 HIGH BONGO 12 OUTPUT 2 :;;~ CYMBALS [ 5 ·,2 SNARE DRUM OR CLAVES MARACAS [ 6 11 BASS DRUM LONG lE .... CYMBALS ::>::> 0: 0 SHORT ~~ OUTPUTS 11 EXTERNAL RESET/ DOWN -BEAT OUTPUT 1 10 CLOCK ' - - _ _ _ _- J .. [, 10 [ 8 9 VGG EXTERNAL RESET/ DOWN-BEAT V,S CLOCK VSS ,.>0,'1'" "'."/' * This output must be connected so as to drive the ·snare drum" when the rhythms from 1 to 9 (see rhythm selectionlare selected. and the Hclaves"when the rhythms from 10 to 15 (see rhythm selection) are selected. ** This pin generates a down-beat trigger which can be used to drive an external lamp to indicate the start of each measure. RHYTHM SELECTION The following binary code must be generated to select each rhythm (logic positive) RHYTHM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 No selected rhythm CODE INPUT 8 INPUT 4 INPUT 2 INPUT 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 218 STANDARD CONTENT Waltz Jazz Waltz Tango March Swing Foxtrot Slow Rock Rock Pop Shuffle Mambo Beguine Cha Cha Bajon Samba Bossa Nova 3/4 3/4 2/4 2/4 4/4 4/4 6/8 4/4 2/4 4/4 4/4 4/4 4/4 4/4 4/4 :~;6:~;:.;~":;f;;' ::~)t~ ~:: ·':::/:.~'c: 11 I I I I'><' IS( n:: If- D<: I I I D<: ~ ~~.4 I'" n;;; 25 26 IL.. ,L- n;;; , 27 28 29 32 4 U T DOWN BEAT INSTRUMENT BEATS* II;;; II;;; ~l~ ~, 30 0 U T P U T IL- I'><' J'S( ~jo 14 15 16 17 18 19 20 21 22 23 3 0 U T P U T I 1"- 152 I'><' 2 1 n;: ~ "5(' rx' 0 0 0 U U U T T T P P P U U U T T T 0 U T P U T r.>c: 6 7 8 9 EXTERNAL RESET 1'5<'1'><' r.>c: OWN EAT I GNAL I ..... I I --- 1-';;;:;':::; - o. > 1>- -18 I ~ * The lowering of the music signals depends on the intrinsic decay time of the sound generator and not on the length of the I,lnable pulses. Each beat can therefore last for more than one elementary time 222 TYPICAL APPLICATIONS Figure 1 shows the typical application of the M 252(AA). With two M 252 devices it is possible to increase the number of rhythms or the number of instruments available, or the number of elementary times, as shoiNn in figures 2, 3 and 4 respectively. The use of a memory matrix allows the customer complete flexibility, since modification of the memory is quick and relatively cheap. Fig. 1 - Rhythm system (standard content) RHVTHM CODES 141-~-t--t--+--, M252 "1----4--+-1'--, AA u 11----- ~~~~~~~+H EXT!RMAl RESET 22 kG ~~.~-~~-----o~ "-11 Fig. 2 - Increase in number of rhythms (positive logic) INPUTS EXTERNAL RESET ......~~,...<>-OvS5 5- t 031/1 1 8 ~ 223 i I, TYPICAL APPLICATIONS (continued) Fig. 3 - Increase in number of instruments INPUTS DOWN T 2 ;; 8 BEAT (DB) EXTER CLOCK RESET I---+--+--+--+-~ M252 2 M252 16 INSTRUMENTS INSTRUMENTS s-'(m/' Fig. 4 - Increasing the number of elementary times DOWN-BEAT CLOCK E.rTEii£Sjfil.o_....._ _ _ _--1~W!. CUlC' M252 2 1 2 ;; i INPUTS Note: The total number of elementary times is given by the sum of the elementary times of the individual devices 224 II 252 CIRCUIT FOR CHANGING THE NUMBER OF ELEMENTARY TIMES DOWN-BEAT Vss (OBI iNPUf1 .. INPUT2 16 INSTRUMENT 7 INSTRUMENT • , INSTRUJrotENT 5 iiiPiTr"4 14 INSTRUMENT 4 iNPUfi " M 252 INSTRUMENT 3 INSTRUMENT 2 INSTRUMENT I VOG G.,03'" To obtain a required number of elementary times "N" simply put a cross in the "N + 1" position of the column which now represents the reset output, rather than the 8th instrument. Thp. DB output can be used as down-beat because it appears at the beginning of each measure. Since the pulse is only 2 - 3 p.s long it must, however, be stretched and buffered to enable it to drive a lamp. Full information on the use of the M 252 in electronic organs and other applications will be found in Technical Note no. 131 available on request. COMPLETING THE TRUTH TABLE The ROM truth table has been organized in 32 rows which represent elementary times and 120 columns (15 groups of 8) where each group represents a rhythm which has as its disposition 8 programmable instruments. To programme each rhythm one indicates (with a cross) in the appropriate boxes the timin!l for each beat required for each instrument. In -i:he given truth table we show an example of how to programme three imaginary rhythms, the first is in 4/4 time, the second in 3/4 time and the third in different time, chosen randomly. Each cross corresponds to a beat of the indicated instrument or, in logic terms, to the presence of a "1" level (positive logic) at the output. The absence of a cross indicates that the corresponding instrument is not used in that part of the rhythm. Rhythm 3 is an example of how to programme for a time which differs from 4/4 or 3/4. This is achieved by using output 8 to reset the rhythm and not to drive an instrument. The rhythm is valid till elementary time no. 15. 225 ,', I " COUNT TO 32 RHYTHM 6 COUNT TO 32 0 0 00 0 0 0 0 0 RHYTHM 8 RHYTHM 7 o 0 o 0 o 0 o RHYTHM 10 RHYTHM 9 0 00 00 0 0 0 0 00 o 0 000 0 o 0 00 o 0 0 U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U T T T T T T T To T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1 2 3 4 567 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 456 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 30 31 3~ 226 COUNT TO 32 RHYTHM 0 0 0 U U U U U T T T T T o o 11 RHYTHM 12 RHYTHM 000 0 0 0 0 0 00 0 U U U U U U U U U U U U U U U U T T T T T T T T T T T T T T T T o o o o o RHYTHM 15 13 RHYTHM 14 000 00 0 00 00 0 00 00 00 U U U U U U U U U U U U U U U U U U U T T T T T T T T T T T T T T T T T T T o o P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 678 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 227 M253' liDS INTEGRATED CIRCUIT PRELIMINARY DATA RHYTHM GENERATOR • LOW POWER DISSIPATION: < 120 mW • DRIVES 8 SOUND GENERATORS (INSTRUMENTS) • 12 PROGRAMMABLE RHYTHMS (ALSO AVAILABLE IN COMBINATION) • MASK PROGRAMMABLE RESET COUNTS: 24 or 32 • DOWN BEAT-OUTPUT • EXTERNAL RESET • OPEN DRAIN OUTPUTS • STANDARD MUSIC CONTENT AVAILABLE • TECHNICAL NOTE NO 131 AVAILABLE FOR FULL INFORMATION The M 253 is a monolithic rhythm generator specifically designed for electronicorgans and other musical instruments. Constructed on a single chip using low threshold P - channel silicon gate technology it is supplied in a 24 - lead dual in-line ceramic or plastic package. ABSOLUTE MAXIMUM RATINGS V GG* VI * 10 T stg Top Source supply voltage Input voltage Output current (at any pin) Storage temperature Operating temperature -20 to 0.3 -20 to 0.3 3 -65 to 150 0 to 70 V V mA °C °C * This voltage is with respect to Vss pin voltage ORDERING NUMBERS: M 253 B1 XX for dual in-line plastic package M 253 01 XX for dual in-line ceramic package M 253 B 1 or D 1 AA for standard music content MECHANICAL DATA Dimensions in mm . ~ .. .. LS.····.· . . . . . ".....1r,±;} i+, .... 1. - i 229 2794 . 114 "1 ..• 11.2.54 • --r I i l5.24 I 2/75 CONNECTION DIAGRAMS M 253 01 or B 1 - AA Standard content configuration (top view) VSS VGG CLOCK INPUT EXTERNAL RESETI DOWN-BEAT 5 VSS CLOCK INPUT VGG EXTERNAL RESET! DOWN-BEAT OUTPUT I OUTPUT OUTPUT 2 OUTPUT 6 OUTPUT ] OUTPUT 1 i5a.rASS DRUM ~ SNARE DRUM OUTPUT 4 OUTPUT 8 ~ ~ HIGH BONGO '" BASS SELECTION 0--5 g :!w INPUT 1 INPUT 12 LOW BONGO ~~0 BOSSA NOVA 4/4 .TANGO INPUT 2 INPUT 11 WALTZ ]/4 INPUT 10 SHUFFLE 214 iNPUT'4 INPUT 9 MARCH 214 BEGUINE 414 INPUT 5 INPUT INPUT 6 iNPiJT1 414 ROCK POP 414 SAMBA 4/4 CHA CHA 414 RUMBA 414 SLOW ROCK SWING 5 :::>0 ii'iPiiTJ 8 ~~ zK LONG CYMBALS ~w OR CLAVES 0 MARACAS SHORT CVMBAL 5 ~ S-"tJ4S/1 5- 1038/1 • This output allows the musician to obtain a "basso alternato" accompaniment using two notes of his choice. * * This output must be connected so as to drive the "snare drum" when the rhythms corresponding to pins 7, 8, 9, 10, 11, 12 and 13 are generated, and the."claves" when the rhythms corresponding to pins 14,15,16,17 and 18 are generated. It can also be used to modulate a chord played on the organ. This pin generates a down-beat trigger which can be used to drive an external lamp to indicate the start of each measu reo BLOCK DIAGRAM 307211TS MATRIX MULTIPLEXER liiFUrs 230 STATIC ELECTRICAL CHARACTERISTICS(positive logic,V GG =-11.4 to-12.6V, Vss= 4.75 to 5.25V, T. mb = 0 to 70°C unless otherwise specified) Parameter Test conditions CLOCK INPUT V 1H Clock high voltage Vss -l.6 V 1L Clock low voltage Vaa Vss V Vss -4.1 V Vss V Vss -4.1 V DATA INPUTS (lN1 ..... IN12) V 1H Input high voltage Vss -l.5 V 1L Input low voltage IVGG ILl Input leakage current V j = V ss -10V T. mb = 25°C 10 IlA vss V Vss -4.1 V EXTERNAL RESET V 1H Input high voltage Vss -1.6 V 1L Input low voltage VGG RIN Internal resistance to V GG Vo=Vss-5V 400 600 kn DATA OUTPUTS RON Output resistance V 0= Vss-1 to Vss V OH Output high voltage IL = 1 rnA I Lo Output leakage current V j =V 1H 250 Vss-O.5 Vss V 10 Il A POWER DISSIPATION 7 231 n Vo=Vss-10V T. mb = 25°C Supply current 500 Output voltage vs. external supply voltage (VExrVss) Output voltage vs. supply voltage (VGG-V ss ) G 1UI r;m ¥ss (mY) INSTR. bVoo .Q~xr v. RL ./ 500 ...... [RL =10kO ....... 160 m vGG i-"" 200 - ffi .. .2~ v Yo -I 240 G 15lt Yo RL .5kO .- 400 ./ 120 80 40 o r- - - -~ ~- - r-- ...... ....... -9 _f- l,' ::, >:':·'''/;':.~':~~~.qfJS~~~ ;I~~l i',,:,,;:,'\"i~le:, , e/ ;. ~ :':'" '. = -11.4 to VGG -12.6V, Vss= 4.75 to 5.25V, T amb = 0 to 70 °C unless otherwise specified) Parameter Test conditions Min. Typ. CLOCK INPUT f Clock repetition rate DC tpw * Pulse width 5 tr ** Rise time 100 t f ** Fall time 100 j1.s 100 kHz j1.s j1.s EXTERNAL RESET Pulse width j1.s * Measured at 50% of the swing ** Measured be,tween 10% and 90% of the swing TIMING WAVEFORMS (positive logic) \n.2 EI::::::!~I:::E:;n.Ci:l=DIIC=I::J=I=C:~I! : I I 32 I 2 I :u-u-u--tsL CLOCK INPUT tpw EXTERNAL RESET r--'--! I I I _ _ _ _ _ _ _ _ _ _~r--lL_ _ _ _ _ _ _ _~ I I h-sL-- OUTPUT SIGNAL I I ~ I EXTERNAL INSTUMENT I I DOWN-BEAT _ _ _ _ _ _- - ' r - - l L_ _ _ _ __ ~ I I S.102'" Note: In these timing waveforms it has been assumed, for example, that in the truth table bits n + 1 and 2 have not been programmed i.e. the musical instrument has not been introduced. All the other bits have been programmed for the introduction of the instrument. 233 INSTRUMENT BEATS VERSUS RHYTHM PROGRAM EXTER CLOCK TRUTH TABLE {Rhythm programl 0 Count ~ 1 2 3 4 ¥ P U T 1 0 U T P U T 2 0 U T P U T 3 0 U T P U T 4 DEVICE OUTPUT SIGNALS EXTERNAL RESET 0 U T P U T 0 U T P U T 5 6 0 U T P U T 7 0 U T P U en >.T 0 ",,"" 8 > 0:.5 ~I 0 U T P U 0 0 U U T T P P U U T T 2 3 ;r 1 0 U T P U T 4 iX X I2S. X I I iX X 5 6 7 0 0 U U T T P P P P U U T T 5 6 U U T T 7 B I N S T R. I I I I I N N N N N S S S S S T T T T T R. R. R. R. R. I N S T R. I N S T R. 1 2 7 8 3 4 5 6 ~ - I..., I .... IL.. I~ I X 0 0 U U T T DOWN BEAT INSTRUMENT BEATS* X 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 X X 1-1 -~;' 25 26 27 2B X .... C>< IX X .... I!- X IX .... IX 29 30 IX IX C>< XX 32 * The lowering of the music signals depends on the intrinsic decay time of the sound generator and not on the length of the enable pulses. Each beat can therefore last for more than one elementary time 234 TYPICAL APPLICATIONS Figure 1 shows the typical application of the M 253 (AA). With two M 253 devices it is possible to increase the number of rhythms or the number of instruments available, or the number of elementary times, as shown in figures 2, 3 and 4 respectively. The use of a memory matrix allows the customer complete flexibility, since modification of the memory is quick and relatively cheap. Fig. 1 - Rhythm system (standard content) '55 OOWN(OB) BEAT EXTERNAL litE ET 22 22 22 k1l kn klI. 22 kn 23 19 10 LOW BONGO 20 LONG CYMBALS 21 SHORT CYMBAL 5 11 12 M253 " AA 22 MARACAS HIGH BONGO 14 SNARE 0 UM or CLAVES 15 16 BASS DRUM 17 1-+-+-"--+-+-++8A55 SELECT!ON c.....,---c..+--'~.J :~ ----~-t_-_+_+~--~~--+---OvGG S-IOloJ/2 Fig. 2 - Increase in number of rhythms EXTERNAL RESET "s5- ~.--~-~==============~--l (DI) AHnHMS1~ The rhythms may be selectl!d from both devices simultaneously. 23-5 TYPICAL APPLICATIONS (continued) Fig. 3 - Increase in number of instruments EXTERNAL VSS~ DOWN BEAT (DB) "'~"~"f.cctitoeiCi·'1....,-__LJ_--f ClOCfI. IRESET M2S3 EXlER RESET M2S3 , 2 INSTRUMENTS 5-.. 41/' Fig. 4 - Increasing the number of elementary times ~~+--" 0 - - - - 0 "ss Vss M253 2 ; ii INPUTS Note: The total number of elementary times is given by the sum of the elementary times of the individual devices 236 Ii ~ Ii ,1 I CIRCUIT FOR CHANGING THE NUMBER OF ELEMENTARY TIMES '55 VGG , 1 23 ,. 10 20 INSTR~ENT 7 21 INSTRUMENT 6 22 INSTRUMENT 5 INSTRUMENT 4 INSTRUMENT , 11 2 M253 13 ,. 15 " '-------~---1f---_+-~---<>--+--4---_<'lVGG S-1044/1 To obtain a required number of elementary times "N" simply put a cross in the "N + 1" position of the column which now represents the reset output, rather than the 8th instrument. The DB output can be used as down-beat because it appears at the beginning of each measure. Since the pulse is only 2 - 3IJ.s long it must, however, be stretched and buffered to enable it to drive a lamp. Full information on the use of the M 253 in electronic organs and other applications will be found in Technical Note no. 131 available on request. COMPLETING THE TRUTH TABLE The ROM truth table has been organized in 32 rows which represent elementary times and 96 columns (12 groups of 8) where each group represents a rhythm which has at its disposition 8 programmable instruments. To programme each rhythm one indicates (with a cross) in the appropriate boxes the timing for each beat required for each instrument. In the given truth table we show an example of how to programme three imaginary rhythms, the first is in 4/4 time, the second in 3/4 time and the third in different time, chosen randomly. Each cross corresponds to a beat of the indicated instrument or, in logic terms, to the presence of a "'" level (positive logic) at the output. The absence of a cross indicates that the corresponding instrument is not used in that part of the rhythm. Rhythm 3 is an example of how to programme for a time which differs from 4/4 or 3/4. This is achieved by using output 8 to reset the rhythm and not to drive an instrument. The rhythm is valid till elementary time no. 15. 237 COUNT TO 32 RHYTHM 6 COUNT TO 32 RHYTHM 7 00 00 000 00 o RHYTHM 8 0 0 00 0 00 00 00 0 0 0 RHYTHM 10 0 00 00 00 0 00 o 0 o 0 0 P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1 2 3 4 567 8 1 2 3 4 5 6 7 8 1 2 3 4 5 678 1 2 3 4 5 6 7 8 1 2 3 456 7 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 RHYTHM 9 o U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T - 238 RHYTHM 12 RHYTHM 11 COUNT TO 32 a a a a a a a a a a a a a a a a U T P U T 1 U T P U T 2 U T P U T 3 U T P U T 4 U T P U T 5 U T P U T 6 U T P U T 7 U T P U T U T P U T B 1 U T P U T 2 U T P U T 3 U T P U T 4 U U U T T T P P P U U U T T T 5 6 7 U T P U T B 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 239 LINEAR INTEGRATED CIRCUIT SAJ 210 7-STAGE FREQUENCY DIVIDER FOR ELECTRONIC ORGANS • HIGH CROSSTALK IMMUNITY - TYP. 70 dB • OUTPUT SHORT CIRCUIT PROTECTION The SAJ 210 is a monolithic integrated circuit in a 14-lead quad in-line or dual in-line plastic package. It has been created by means of the standard bipolar technique and especially developed for use as frequency divider for electronic organs. Seven flipflops connected in 5 groups are housed on one silicon chip. The input and the output of each flip-flop is externally accessible. ABSOLUTE MAXIMUM RATINGS V, V; V P,ot T,tg Top Supply voltage Input voltage Output current Power dissipation at Tamb -==: 70°C Storage temperature Operating temperature V 14 Vi = V, 5 mA 0.5 W -55 to 125 °C o to 70 °C • With reference to Fig. 5, the current can be greater than 5 mA, but for t < 0.1 mS ORDERING NUMBERS: SAJ .210 AX2 (for 14-lead quad in-line plastic package) SAJ 210 AX7 (for 14-lead dual in-line plastic package) MECHANICAL DATA Dimensions in mm SAJ 210 AX7 SAJ 210 AX2 241 5/73 SAJ210 CONNECTION DIAGRAM SCHEMATIC DIAGRAM (top view) (each flip-flop) OUT 1 GND INPUT 1 2 OUT 2 INPUT 3 3 OUT 3 INPUT 5 4 OUT 4 INPUT b 5 OUT 5 INPUT 7 b OUT b OUT 7 +vs INPUT S5 0014 ELECTRICAL CHARACTERISTICS (T amb = 25 0 C, V, = 9 V unless otherwise specified) Parameter Test conditIons DATA INPUT V1L Input low level V, = 8t014V 0 VIH* Input high level V, = 8to 14 V 6 IIH Input high level current Vi = 8V 1.5 V V 1 3 rnA DATA OUTPUT VOL Output low level RL =3k!l V Output voltage impressed Low level VOH Output high level RL =3k!l V. = 12 V RL =3k!l 0.1 V 6 V V V 7 ,.' 9.5 tr Rise time Vi = 8V CL =10pF 0.1 itS tf Fall time RL =3k!l CL = 10 pF 0.2 itS Id Total current drain RL =3k!l All flip-flops at high level All flip-flops at low level 242 35 16 rnA rnA SAJ 210 Fig. 4 - Power rating chart Fig.3 - Typical input voltage for triggering GS 0148 v l;"" (V I /" 10 l;"" ,/ V V V (mWl r---t---t---t---r---r---r--1 800~__+-__+-__+-__~__r-__r-~ I-' V 12 Plot V bOO~ __+-__+-__+-__r-__r-__r-~ V V 400r---t---t---t-~r---r---r--1 . o~ 11 10 12 o 13 Vs (VI Fig. 5 - Typical output current vs output voltage , m. 10 (rnA) .lV)9 v 20 -rv;:o "- , 15 \ "~ 10 \ \ o o \ 244 __ ~ 10 __ ~ 20 __ __ __ 40 50 ~~ 30 ~ ~ __ bO ~ Tamb (DCI SAJ 210 TYPICAL APPLICATIONS OUTPUT WAVEFORM OUT IN 0l-8A 130 RL = 3 Kil RS = IBOO 245 I LINEAR INTEGRATED CIRCUIT TAA 550 TBA 271 VOLTAGE STABILIZER • LOW TEMPERATURE COEFFICIENT • LOW ZENER RESISTANCE The TAA 550/TBA 271 is a monolithic integrated voltage stabilizer in a TO-18 two pins metal case. It is especially designed as voltage supplier for varicap diodes in television tuners. The TAA 550/TBA 271 is supplied in 3 groups of stabilized voltage identified by a letter after the code, as shown in the "ORDERING NUMBERS". ABSOLUTE MAXIMUM RATINGS Zener current at Tease ~ 70°C Storage temperature Operating temperature * Refer to 15 rnA -20 to 150°C * "Power rating chart" (Fig. 1) ORDERING NUMBERS: TAA 550 A or TBA 271 A (for V z range: 30-32 V) TAA 550 B or TBA 271 B (for V l range: 32-34 V) TAA 550 C or TBA 271 C (for Vz range: 34-36 V) MECHANICAL DATA Dimensions in mm Lead 1 connected to case if en, ...;f ~~L-.., d ~ POI8-E 247 5/73 TAA550 TBA 271 CONNECTION DIAGRAM (bottom view) 550036 SCHEMATIC DIAGRAM ·550037 248 TAA 550 TBA 271 TEST CIRCUITS Circuit No.1 (for Vz measurement) Digital Voltmeter DVM + V z - Vre! t Vre! 30V V DVM Circuit No.2 (for rz measurement) lAC = 0.5 rnA ! Vsv 0.5rnA 249 =, KHz TAA550 TBA 271 THERMAL DATA R,h j.ca.. R'h j •• mb ELECTRICAL CttARAqTERISTICS (Tomb Parameter Vz rz AVz AT.mb max max Thermal resistance junction-case Thermal resistance junction-ambient Zener voltage Zener dynamic resistance Temperature coefficient = 25°C unless otherwise specified) Test conditions I. = 5 mA (circuit No.1) for TAA 550 A/TBA 271 A for TAA 550 B/TBA 271 B for TAA 550 C/TBA 271 C I. f = 5mA 150 °C/W 400 °C/W Min. Typ. Max 30 32 34 31 33 35 36 V V V 25 n 32.2 34.2 IAC= 0.5 rnA = 1 kHz (circuit No.2) 10 Unit = Iz 5 rnA AT. mb = Ot050°C 250 -3.2 +1.6 mV/cC I TAA 550 TBA 271 II ; i I ~ !d Fig. 1 - Power rating chart Fig.2 - Typical zener dynamic resistance vs zener current GS 0201 ~22 \ rz (0) 1 I rz = ; (lz) .. 1 I f ~ I 1KHz ,f JAr ;~ " 10 Fig. 3 - Typical temperature coefficient I \ 20 1 II '", . [ ~r--... r- I I o 6 9 12 Jz(mA) ;lVz(t) Fig. 4 - Typical vs time AVz(oo) GS 0203 AV z AT amb GS 0204 ! I} = J (mV/oC) 5·~A +2 FREE Al ~ ZTH +1 o 1\ 0.8 "'",- -1 --. 0.6 0.4 -2 0.2 -3 -4 o 3 6 9 o 12 Jz(mA) 251 HEAT SINK (65°C/W) II I 1 11 Ii II o 4 6 8 t (min) TAA 550 TBA 271 TYPICAL APPLICATION Rp= 18K -- -- - ) 15KOl V, = 160V ~~-----~ -----+--~- - - --~ TO VARICAPS 252 850040 1AA611A LINEAR INTEGRATED CIRCUIT AUDIO AMPLIFIER • • • • OUTPUT POWER 1.8 W (9 V - 4 il) LOW DISTORTION LOW QUIESCENT CURRENT HIGH INPUT IMPEDANCE The TAA 611 A is a monolithic integrated circuit in a 14-lead quad in-line plastic package or in a TO-100 metal case. It is particularly designed for use in radio receivers and record-players as audio amplifier. The usable range of supply voltage varies from 6 V to 12 V and the circuit requires a minimum number of external components. ABSOLUTE MAXIMUM RATINGS V, TAA 611 A12 TAA 611 ASS Supply voltage 12 1 A Output peak current ~Tstg. Tj • For Vs Power dissipation at Tamb ~ 25°C at Tcase ~ 70°C 1.35 W at Tcase ~ 100°C Storage and junction temperature < 12 V. Vi max ORDERING NUMBERS: V -0.5 to 12 V Input voltage 0.57 W 1.6 W 3.1 W -40 to 150°C· = Vs TAA 611 A55 (for TO-100 metal case) TAA 611 A12 (for quad in-line plastic package) Dimensions in mm MECHANICAL DATA .' .19 '.~- ~ ~ ••••••• ___ . . . . . ____ .J _M 0.45 2.54 15.24 ~. ~;". _ _.u ~ .TAA 611 ASS Supersedes issue dated 5/73 253 TAA611A12 6/75 1AA611A CONNECTION DIAGRAMS For TAA 611 A12 For TAA 611 ASS BOOTSTRAP VS NC NC COMPo OUT COMPo NC FEED-BACK GND NC NC IN GND BOOTSTRAP 7 FEEDBACK GND 550051 S80050 SCHEMATIC DIAGRAM (5) 7 9 (3) r---~--II-+-----_-o 1 (14) 6 (7) "'---1>--'"1-.-+--o lOW c--,.--t----+--r:::::JI-l----+--o 2 (12) ,----t----~_o B (4) 4 (10) SS 0052 254 The pin numbers in brackets refer to the TAA 611 A12 and those without brackets refer to the TAA 611 ASS. I: 1AA611A' II II~ • " i ::; TEST CIRCUITS Circuit No.1 (G v = 50) + Vs IN D.l f.LF I r + lODf.LF/I2V 55 0053 Circuit No.2 (G v = 250) + Vs 5S 0054 255 TAA611A THERMAL DATA ~ R'h j-ca,. R'h j-amb I (maximum values) TAA 611 A121 TAA 611 A55 I Thermal resistance junction-case Thermal resistance junction-ambient 16 ac/W 93 aG/W I 50 °C/W 220 °G/W ELECTRICAL CHARACTERISTICS (Tamb = 25 aG, Vs =9 V, refer to the test circuit no. 2 unless otherwise specified) Parameter Va Id Id Quiescent output voltage 4.8 3 mA Quiescent drain current cif output transistors 1 rnA 170 mA Drain current Ib Input bias current P • a Output power Pa =1.15W = RL 8n 0.1 d = 2% = 6V f d Vs Vs Vs Vs = 10% = 6V = 6V = 9V f = 9V Internal feedback resistance (see schematic diagram) Input impedance (open loop) 256 = = RL RL RL RL 0.8 IJ.A 1 kHz RL = 4n RL = 8n RL = 4n RL = 8n Vs Vs = 6V Vs = 9V Vs = 9V Zi V Total quiescent drain current Id R/ Min. Typ. Max. Unit Test conditions 0.50 0.35 1.4 0.9 W W W W 0.65 0.45 1.8 0.85 1.15 W W W W 7.5 kn 5 Mn 1 kHz = 4n = = = 8n 4n 8n 1AA611A ELECTRICAL CHARACTERISTICS Min. Typ. Max. Unit Test conditions Parameter Test circuit 1 Distortion d (continued) = 50 mW = 8.n Po = 0.5 W RL == an Vs f Vs f = 9V = 1 kHz = 9V = 1 kHz Vs f Vs f = 9V = 1 kHz = 9V = 1 kHz Po RL 0.4 % 0.3 Ofo 1.7 Ofo 1.2 0/. 68 dB Test circuit 2 = 50 mW = 8.n Po = 0.5W RL = 8.n Po RL Gv Voltage gain (open loop) RL = 8.n * External heatsink not required except for TAA 611 A55 at Vs Fig. 1 - Typical output power vs load resistance = 9 V. RL = 4 Q Fig.2 - Typical output power vs load resistance GS GS 022 22 Po (W) )'\ f 1KHz At clippinr, v I L5 1.2 "' 0.8 0.4 r.... r'- ~ ~ "" 1.6 I. .1 ! r\ r"-.. 1.2 ~ ......... v! '''9 ........ ....... Ii -- 10 -r- ~ 0.8 - r- -=-s~6'yr- 4 257 i [, 8 10 I ! ~ r---.... -- 0.4 12 1O~ d Gvi25 ~"'9v ~6V ---r- f = 1KHz r12 ....... r'-_ RL (U TAA611A Fig. 3 -Typical distortion vs output pewer Fig. 4 - Typical distortion vs output pewer 22. d (%) 8 Vs -9V f- RL =80 1 = 1KHz - 0226 d (%) 10 W~s-9V RL =40 1--1 = 1KHz I /, 1/, "{ / II - o - o TEST CIRCUIT 2 TEST CIRCUIT 1 0.2 0.4 0.6 / ~ "- ........ ,...TEST CIRCUIT 2 J ........ V / I /11 J TEST CIRCUIT 1 L :....--'" I 0.8 Po(W) 0.8 0.4 Fig.5 - Typical relative frequency response 1.2 1.6 Fig. 6 - Typical relative frequency response S 0227 G =8 G jdB) Po (W) (dB) o '\ / \ / I \ -5 -5 Vs -9VII RL =80 -10 TW rlRr~ITll -15 0.01 0.1 irl -10 Vs -9 V RL =80 I -15 10 f (kHz) 0.01 258 0.1 Cl jCI\I2 II 10 f (kHz) TAA611A Fig. 7 - Typical voltage gain (open loop) vs frequency Gy GS 02..2.J r-.... (dB) r--..... 1\ 60 "'\.. l'.... 50 "- 40 " r'-. \ t'o-. ~"~'" 1"< 30 I ~ ~~ \~ "''\."" '\ ,>'..... I-r----- 1\ "" Vs -9 V I 10 10K lK 100 10 \~ I\. RL =BD 20 \toca '\. \ 1M lOOK f (Hz) Curve 1: TAA611 A 55, C9-B = B2pF CB-2 = 1.2 nF ClO_1=0.lIL F TAA 611 A 12, C3-4 = B2pF C4-12 = 1.2nF CI-14 = O.lILF q_ Curve 2: T AA 611 A 55, C B = 56pF CB- 2 = 150 pF ClO-1 =O.IILF TAA611 A 12, C3- 4 = 56pF C4-12 = 150pF Cl-14 =O.lILF Fig. 9 - Typical output power vs input voltage Fig. 8 - Typical output power vs input voltage GS 02 0 GS 0231 • (W) - TEST CIRCUIT 1 - RL =BD (WI / / / TEST CIRCUIT 2 RL =BD - J O.B O.B / V 1/ 0.6 / 0.6 / / / 0.4 0.2 V V / / 0.2 o ./ 10 20 / 0.4 30 40 50 V.(mV) 259 - V / ........ 3 7 V,(mV) i. r 1AA611A Fig. 10 - Typical power dissipation and efficiency vs output power Fig. 11 - Typical power dissipation and efficiency vs output power , --"" J>U Ptot (W) V 0.6 Ptot ./ 0.4 / 0.2 I / l>~ l..- 2 (W) / 0.8 ....... /' i'-- r-- V 40 / 0.6 / 0.4 / I I 'l1 V 20 / Vs~9 0.2 0.4 O.B 0.6 /' 0.2 V RLiB0i .....- / 60 V - pto \ (%) -...- Vs~9 I 0.4 Fig. 12 - Typical power dissipation and efficiency vs output power - 60 40 20 v - RL =40 - o Po(W) BO /' [/ I- f-"" (%) I-- I 1.2 0.8 Fig. 13 - Typical power dissipation and efficiency vs output power GS 0235 GS 02 4 ~ Ptot Pto.t (W) 0.6 0.4 / / V V / .....V ,.,.,- (W) 60 0.6 (%) 60 "...... Ptot - Ptot ~ 0.2 (%) V 40 0.4 20 0.2 t v:. V ......- /"" I 0.1 0.2 0.3 I 0.4 40 ~ Vs~6 V - 20 - RL =4:0. Vs·~6V .- r-- RL =80 ~ o J 0 o Po (~) 2'60 0.1 0.2 0.3 0.4 0.5 Po(W) 1AA611A Fig. 14 - Typical drain current vs output power Fig. 15 - Maximum power dissipation vs load resistance r.. 0236 I, (rnA ) Ptot GS 02 (W) ",- RL =80 150 ./ V 100 / \. V \ V I\. 0.8 '\. / 0.6 '" / / o "" 0.4 1/ 50 l-- ~ '~"'.9f'"v r--... -v I"'---- :-.. ~"'6 r-. r- 0.2 t"-' rJ o 0.2 0.4 0.6 0.8 Fig. 16 - Power rating chart (T AA 611 ASS) PIOI (W) 10 Po(w) ..... 12 Fig. 17 - Power rating chart (TAA 611 A12) - G 1683 - G 1682 Ptot (W) WITH INFINITE HEATSINK 1.5 WITH INFINITE HEATSINK " FREE AIR FREE AIR 05 ,.... o. -so o 50 -50 261 o 50 1AA611A Fig. 19 - Typical quiescent drain current vs ambient temperature Fig. 18 - Typical quiescent drain current vs supply voltage , G~ 0240 Vs~9 V '. (mA) [mAl - I -- \ [total) ~.!-r-'- '. (total) I, [output transistors) ". (output transistors) o o 6 Fig. 20 - Typical quiescent output voltage vs ambient temperatu re -1 - -- ---.: -2 -3 r--- • Vs~9 2 2 --.. ...... ........... V I -4 o o Vs (V) 10 20 30 40 50 262 10 20 30 40 50 r.s 0241, 1AA611A TYPICAL APPLICATIONS Fig. 21 - Audio amplifier for record-player + v, =9V 150n + 25/LF/6V I- 55 0055 Fig. 22 - Audio amplifier for radio + Vs -9V "'::2. '" 30n I- + 50/LF/6V 56pF 150pF S50956 The pin numbers in brackets refer to the TAA 611 A12 and those without brackets refer to the TAA 611 ASS. 263 LINEAR INTEGRATED CIRCUIT lAA6118 AUDIO AMPLIFIER • • • • OUTPUT POWER 2.1 W (12 V - 80.) LOW DISTORTION LOW QUIESCENT CURRENT HIGH INPUT IMPEDANCE The TAA 611 8 is a monolithic integrated circuit in a 14-lead quad in-line plastic package. It is particularly designed for use in radio receivers and record-players as audio amplifier. The usable range of supply voltage varies from 6 V to 15 V and the circuit requires a minimum number of external components. ABSOLUTE MAXIMUM RATINGS Vs Vi' Supply voltage I" Output peak current P tot Power dissipation at Tamb ~ 25°C Storage and junction temperature ~Tstg, T j , For Vs < 15 V, Vi max ORDERING NUMBER: -0.5 to 15 V V 1 1.35 W -40 to 150 °C 15 Input voltage A = Vs TAA 611 812 MECHANICAL DATA Supersedes issue dated 5/73 Dimensions in mm 265 6/75 TAA6118 SCHEMATIC DIAGRAM CONNECTION DIAGRAM BOOTSTRAP 1 14·V s N.C. 13 N.C. FREQ.COMP. 3 12 OUTPUT FREQ.COMP. 4 11 N.C. FEED-BACK 5 10 GND " l2 N.C. 9 N.C. INPUT 8 GND 10 S80044 550045 TEST CIRCUITS Circuit No.1 (G v = 50) Circuit No.2 (G v +V, 266 = 250) 1AA6118 THERMAL DATA -+ Rth j·ca,e Rth j·amb max max Thermal resistance junction-case Thermal resistance junction-ambient 16 °C/W 93. o C/W ELECTRICAL CHARACTERISTICS (Tamb = 25°C, refer to the test circuit no. 2 unless otherwise specified) Parameter Vo Id Id Id Ib " Po R'f Z; Quiescent output voltage Total quiescent drain current Quiescent drain current 01 output transistors Drain current Input bias current Output power Test conditions V, = 9V V, = 12V ... 4.8 6.3 .. V V - 3 V, = 9V V, = 12V 3.5 rnA rnA V, = 9V V, = 12 V 1 1.2 rnA rnA 170 235 rnA rnA RL = 8n P o =1.15W Po =2.1W V, = 9V Vs = 12 V V, = 9V V, = 12 V 60 0.1 d = 2% V, = 9 V V, = 12 V f = 1 kHz RL = 8 Q RL = 8 Q d = 10% V, = 9V V, = 12 V 1 = 1 kHz RL = 8 Q RL = 8 Q Internal feedback resistance (see schematic diagram) Input impedance Min. Typ. Max. Unit open loop 267 1.5 1 nA itA 0.9 1.7 W W 1.15 2.1 W W 7.5 kn 5 Mn TAA611B ELECTRICAL CHARACTERISTICS Parameter d Distortion (continued) Test conditions Min. Typ. Max. Unit Test circuit 1 RL = 8.n P o =50mW Po = 50 mW Po = 0.5W Po = 1 W f = 1 kHz V, V, V, V, = = = = 9V 12 V 9V 12 V 0.4 0.3 0.3 0.2 % % % % RL = 8.n Po = 50 mW P o =50mW Po = 0.5W Po = 1 W f = = = = = 1 kHz 9V 12 V 9V 12 V 1.7 1.5 1.2 1 % % % RL = 8.n RL = 8.n V, = 9V V, = 12 V 68 70 dB dB Test circuit 2 Gv Voltage gain (open loop) 268 V, V, V, V, 0/. 1AA6118 Fig. 1 - Typical output power vs load resistance Fig.2 - Typical output power vs load resistanc<> GS'0205 G I 1 fl=lK~Z At clipping "- 1.6 l'...... 1.2 "0.8 -.. 0.4 "- vi " ,I<>v - r_- I'" 'i"-..~'9 1 ~ Vs':6 V 1 ~ "- ~ 1.6 1.2 .......... 0.8 - r-.. '-.!j'1 ~r- " b-. v 'Z'9 v '-.... ~V 0.4 0206 r- f = 1 KHz d·lO% - 1 ....... I I - 12 --r-'"- 12 Fig. 3 - Typical distortion vs output power Fig. 4 - Typical distortion vs output power GS 020: d GS 0 208 d (% ) (%) - - 'Vs~'12·~V I r- RL = 8D f = 1KHz f- V;~9IV J, RL = 8D =lKHz f , fj III I -Test Circuit 2 -:.Test Circuit 1 0.5 I VI - r-:: ::Test /y I--'V' - f- - Test Circuit 1 ,/ 1.5 Circuit 2 a Po (W) 269 a 0.2 0.4 ~ 0.6 I I II / ,/ 0.8 Po (W) TAA611B Fig."S - Typical voltage gain (open loop) vs frequency Fig. 7 - Typical relative frequency response Fig. 6 - Typical relative frequency response G G 2 (dB) / / \ \ -5 -5 - 10 0"11 G (dB) Vs= 12 V II -15 0.01 -10 RL =80 Test Circuit 1 I 0.1 IIII I 0.01 f (kHz) 270 RL =80 Test Ci rcuit 2 II -15 10 Vs=12V - I 0.1 I III I 10 f (kHz) 1AA6118 Fig. 8 - Typical output power vs input voltage Fig. 9 - Typical output power vs input voltage 021 S 021 (W) ) II I-- Test Circuit 1 RL = 8D I-- t-- J Vs~12V, J I--'Vs~i2V II 1.6 II Test Circuit 2 RL =8D II 1.6 J J II 1.2 f7 1.2 I J V 0.8 V 0.8 / 0.4 / / '" / '" 0.4 .-V V 20 40 60 80 o V; (mV) Fig. 10 - Typical power dissipation and efficiency vs output power GS 021' Ptot (W) (%) 0.8 '/ 0.6 1/ 0.4 0.2 p,., (W ) ~ ~ V V ...... j~ V V 0.2 I I I 0.2 0.4 0.6 0.8 I V Vs~9 R V = 8D LI I o Po(W) 271 0.2 f- " 40 20 / t- p V (%) 60 r""--'f'..,. .IV -' V 0.4 _ fRL = 16 D _ 021 I" 0.6 Vs~12V V; (mV) V• ~ .............. v "9 'v ....... ....... i'-~ 0.2 r- - FREE AIR o. 10 Po(W) 0-1 ~z :Jtot (W) r\. '- 1.5 0.5 Fig. 15 - Power rating chart \ \. V 100 GS 0211 1 V 150 Fig. 14 - Maximum power dissipation vs load resistance (W) ~ . /..... ~ 20 I o '1 (%) 12 -50 272 o 50 TAA6118 Fig. 17 - Typical quiescent drain current vs ambient temperature Fig. 16 - Typical quiescent drain current vs supply voltage GS I_ GS 0221 0220 l_ -- (mAl - f..- f..- - I_ I ut transistors) I,lou p. - l ulput tninsistors) 0 vs~Lv o 10 Vs lV) Fig. 18 - Quiescent output voltage variation vs ambient temperature -1 I, (total) ImA) f..- f..-I-'"" ,.'\tOt!\) l- I - -- -- .z """'- ......... "-J Vs ·12 V ·3 -4 10 20 30 40 50 273 o I 10 20 30 40 50 TAA611,8, TYPICAL APPLICATIONS Fig. 19 - Audio amplifier for radio IN .. 5O/LF/6V I! Fig. 20 - Audio amplifier for record-player IN. 274 LINEAR INTEGRATED CIRCUIT TAA 611C AUDIO AMPLIFIER • • • • • OUTPUT POWER 3.3 W (15 V - 8 il) LOW DISTORTION LOW QUIESCENT CURRENT SELF CENTERING BIAS HIGH IMPEDANCE The TAA 611C is a monolithic integrated circuit in a 14-lead quad in-line power plastic package. It is particularly designed for use as audio amplifier in radio receivers, record players and portable TV sets. The usable range of supply voltage varies from 6 to 18 V, and the circuit requires a minimum number of external components. The package has very low thermal resistance. To decrease the thermal resistance further an external heat-sink can easily be mounted by means of ordinary hardware. ABSOLUTE MAXIMUM RATINGS Vs Vs Vi' 10 -+P'ot -+Tstg , Tj Supply voltage (no signal) Operating supply voltage Input voltage Output peak current Power dissipation at Tamb tf 25 °C" at Tamb ,!f 25 °C '" at Tea,. tf 100 0 C Storage and junction temperature 22 18 -0.5 to 20 1 1.35 2 3.1 -40 to 150 V V V A W W W °C = , For Vs < 20 V, Vi max Vs For TAA611 C72 ••• For TAA 611 CX1 and TAA 611 C11 ORDERING NUMBERS: TAA 611 C72 (for quad in-line plastic package with spacer) TAA 611 CX1 (for quad in-line plastic package with external bar) TAA 611 C11 (for quad in-line plastic package with inverted external bar) Supersedes issue dated 5/73 275 6/75 TAA 611C MECHANICAL DATA (Dimensions in mm) Quad in-line plastic package with spacer for TAA 611 C72 (see also "MOUNTING INSTRUCTIONS") C-0058 Quad in-line plastic package with external bar for TAA 611 CX1 8 35 Q25 44 r - - - - - - - - - - ' - ' - - - - - - - - , o:fotA(2HoIesl Quad in-line plastic package with inverted external bar for TAA 611 C11 276 PO04-B TAA 611C SCHEMATIC DIAGRAM CONNECTION DIAGRAM I. BOOTSTRAP I I. V. N. C. 13 N.C. FREQ. COMPo 3 12 OUT FREQ. COMPo 4 II N. C. FEED- BACK 5 10 GND 12 N. C. 9 N.C. IN S GND TEST CIRCUITS Circuit No_ 1 (G v = 50) Circuit No.2 (G v IN = 250) I~ I ~lOOf.l.F ~25V 277 lOO"F 25V TAA611C TAA611 C72 THERMAL DATA ~ Rth j-case Thermal resistance junction-case ~ Rth I-amb Thermal resistance junction-ambient TAA611 CX1 TAA611 C11 max 16 °C/W 16 °C/W max 93 °C/W 63 °C/W ELECTRICAL CHARACTERISTICS (Tamb = 25°C, refer to the test circuit no_ 2 unless otherwise specified) Parameter Vo Id Id Id Quiescent output voltage Total quiescent d rai n cu rrent Quiescent drain current of output transistors Drain current Test conditions Vs V. = 12 V = 15 V 6.3 7.9 V V V. V. = 12V, = 15 V 3.5 4 rnA Vs V. = 12 V 1.2 1.8 mA mA 235 mA 300 mA 75 0.1 1 I1A = 15 V V. = 12 V RL = 8n V. 15 V RL 8n = = Ib p. ° Inp,l,!t bil:\s,current Output power Min. Typ. Max. Unit = 12 V = 15 V d = 2% Vs = 9V Vs = 9V Vs = 12 V Vs = 15 V V. = 15 V d = 10% V. = 9V V. = 9V V. = 12 V Vs = 15 V V. = 15 V Po = 2.1 W Po = 3.3W V. Vs f f nA = 1 kHz RL RL RL RL RL = 4n = 8n = 8n = 8n = 16n 1.4 0.9 1.7 2.8 1.6 W W W W W 1 kHz RL = 4n RL = 8n RL = 8n RL = 8n RL = 16n 1.8 1.15 2.1 3.3 1_9 W W W W W = • External heatsink not required except for the conditions V. 278 mA 2.5 = 15 V, RL =8 Q TAA 611e ELECTRICAL CHARACTERISTICS Parameter R' f (continued) Test conditions Internal feedback resistance (see schematic diagram) Zi Input impedance d Distortion Min. Typ. Max. Unit 7.5 open loop 5 n Mn Circuit No.1 RL Vs Vs Vs Vs = an = 12 V = 15 V = 12 V = 15 V f Po Po Po Po = 1 kHz = 50 mW = 50 mW = 1W = 1W 0.3 0.3 0.2 0.2 % °/. % % Circuit No.2 Gv Voltage gain (open loop) RL = Vs = Vs = Vs = Vs = an f 12 V 15 V 12 V 15 V Po Po Po Po = 1 kHz = 50 mW = 50mW. = 1W = 1W 1.5 1.5 1 1 = = 12 V 15 V RL RL = = an an 70 72 Vs Vs 279 % % % % dB dB TAA611C Fig. 2 - Typical distortion vs Fig. 1 - Typical distortion vs output power output power n< "'2 d 7 I (%) Vs~15V ~ RL = 16 n f = 1KHz --t.--- ~ d (%) Vs~15 V f - - e- R~ = 8n . l- f =IKHz / I V -j Test Circuit I , / Test Circuit 2 ::::..-- V V Test Circuit2,.... ,./ 1""'Po (W) 0.5 Fig. 3 - Typical distortion vs output power o 2' (W) "- - V ........ ~ i"'-- i"- ·v '1'-~s~9l/ l - t- V 1.5 f=lKHz At clipping l -I - ~~j "-_ _ P. C. board 287 TAA 611C MOUNTING INSTRUCTIONS (continued) Heat-sinking with external bar. Power dissipation can be achieved by means of an additional external heat-sink fixed with two screws (both packages) or by soldering the pins of the external bar to suitable copper areas on the p.c. board (TAA611 C11). A. In the former case, the thermal resistance case-ambient of the added heat-sink can be calculated as follows: Rth B. = ------------ where: T jmax Max junction temperature Tamb Ambient temperature P tot Power dissipation Rth j.eas. Thermal· resistance· junction-case If copper areas on the p.c. board are used (TAA 611 C11) the diagrams enclosed give the maximum power dissipation as a function of copper area, with copper thickness 35!, and ambient temperature 55°C. / PC BOARD GSIl144 4 I r---'~ ,r l I ~i -I': ,L: I i r~L' P" ~" I"::lLI ' I (~ Tr <..:;l'rf""'l.3'n=.r 1 U U U I, , I : I -I-- l- ~i 2 ./ f- V V V 1 \ \ rIA 6,1, c,~ 1 3 0 10 COPPER ARE"" 35 /J. THICKNESS 288 20 30 40 J((I1mj TAA630S LINEAR INTEGRATED CIRCUIT SYNCHRONOUS DEMODULATOR FOR PAL COLOUR TV SETS The TAA 630 S is a silicon monolithic integrated circuit in a 16-lead dual in-line plastic package. It incorporates the following functions: - active synchronous demodulators for F (S-Y) and ± F (R-Y) signals - matrix for G-Y signal [G-Y = -0.51 (R-Y) -0.19 (S-Y)] flip-flop - PAL switch and colour killer. It is intended for PAL colour television receivers employing colour difference output stages with clamping circuits. ABSOLUTE MAXIMUM RATINGS Supply voltage (between pins 6 and 16 - see note) Reverse identification input voltage Identification input current Output current (from pins 4, 5 and 7) Total power dissipation: at Tamb ~ 50°C (see note) Storage temperature Operating temperature V V mA 5 mA 550 mW -20 to 125°C -20 to 60°C 13.2 -5 = NOTE: Vs 16 V and P,o,= 800 mW (at Tamb ~ 50°C) are permissible during warm up time of tubes in mixed sets MECHANICAL DATA Dimensions in mm 289 11,72 TAA630S ELECTRICAL CHARACTERISTICS (measured using the test circuit of fig. 3 at Parameter Tamb = 25°C) Test conditions Min. STATIC (DC) CHARACTERISTICS II VI Input current for identification circuit ON 86 Input voltage for identification circuit ON 0.75 VI Input voltage for identification circuit OFF V· 4 DC voltage at (R-V) output V· 5 V7 V IO VIO itA V 0.4 V V lo """0.9V see note V DC voltage at (G-V) output see note V DC voltage at (8- V) output 7.3 V Killer input voltage for colour ON 0.9 V Killer input voltage for colour OFF 0.3 V DYNAMIC CHARACTERISTICS VI V3 V4 Vs V7 Peak to peak identification input voltage Peak to peak flip-flop output voltage VIO """ 0.9 V R-V output voltage swing G-V output voltage swing V lO """ 0.9 V f = 4.4 MHz Linearity m """ 0.7 B-V output voltage swing 290 4 V 2.5 V f = 7.8 kHz 3.2 V 1.8 V 4 V TAA630S ELECTRICAL CHARACTERISTICS Test conditions Parameter V2" (continued) R-Y reference input voltage VlO ==== 0.9 V V" a B-Y reference input voltage V l4 Peak flip-flop input voltage VlO ==== 0.9 V VIS Peak flip-flop input voltage f f Min. Typ. Max. Unit , = 4.4 MHz = 15.6 kHz 1 V 1 V -2.5 -5 V -2.5 -5 V ViVI3'" R-Y demodulator gain V7 V l3 _.V9 V 4 R9 C9 Rl3 B-Y demodulator gain to R-Y demodulator gain ratio Parallel input capacitance at pin 9 Parallel input resistance at pin 13 Parallel input capacitance at pin 13 Iz41 IZsl Iz7 1 Iz2 1 R-Y output impedance NOTES: = 4.4 MHz = 50 mV Parallel input resistance at pin 9 C l3 IZal V lO ====0.9V f Vi (peak to peak) 7 - 1.78 Q 800 VlO ==== 0.9 V Vi 20mV = f = 4.4 MHz 10 Q 800 - G-Y output impedance VIO ==== 0.9 V B-Youtput impedance . Parallel input impedance at pin 2 Parallel input impedance at pin 8 VIO ==== 0.9 V Vi 400mV = f = 4.4 MHz pF 10 pF 100 Q 100 Q 100 Q 900 Q 900 Q • Adjustable to the same level of V7 by variable reSistors, or by variable voltages === 1.2 V, connected between pins 11 and 16 for V4 and between pins 12 and 16 for Vs' ., Maximum permissible range : 0.5 to 2 V (peak to peak) . ••• Peak to peak output voltage to peak to peak input voltage ratio. 291 TAA630S Fig. 1 - Schematic diagram Jv. R, ~ ~~ -- ~~ . t~' ~r R6" R , : rt tt:' '" T, T11 T, ~I tJ 8-0217 Rll R12 R, R" .1. r- t- '--- I" T. ." , ,. T39 ~ ....-- h t: rr-:::.: T", e, A~ T" ~ 3 ~ "48 T25 I .- T38 R52 R53 IE r~ ~rt ' L-- 6 -'""..""-- Ie-- ~!,-----J ~u~ '" A14 .. ~h ~ r-= T31 ~ R, A13 T, LR37 ~ T12 ", ~~ I "'" I ~ I~~~ T3 '" A]9 T. m "" As R3 fn R, >---- 1--'1/ f- T" V -.-;;~' "T23 "" R28 , 13 ~'" , 156 Ai's ~6 14 RS7 12 A", • 11 G-088 1/1 Fig. 2 - Power rating chart Flot \mW I 800 600 400 200 a o 292 20 40 60 8010mb lOCI TAA630S Fig. 3 - Test circuit B-V Input ret, R-V Ident. Input ref. F(8-V) . rller Input Input :!:Fo=:i-Y) Input ;~-JI-------o O.1,uF ~~~~!al ... 5-021 Input Fig. 4 - Typical application circuit 7.8kHz output 6-Y ~put !l2kll 2.2nF .12V • 250V 0.47 ~F I G-Y ~PUt 15kO 2.2nF D.L. 18kU R-Y ~put lOkU 2.2nF ,kG Orizontal flyback input ·5V 5-0219 293 LINEAR INTEGRATED CIRCUIT TAA 661 FM IF AMPLIFIER-LIMITER AND DETECTOR • • • • • HIGH GAIN FREQUENCY RANGE 5 kHz to 60 MHz THRESHOLD LIMITING VOLTAGE 100 (l.V (5.5 MHz) COINCIDENCE GATE DETECTOR AUDIO OUTPUT VOLTAGE 1.4 Vrms (d = 1%) The TAA 661 is a monolithic integrated circuit in' a 14-lead quad in-line plastic package or in a Jedec TO-100 metal case. Particularly designed for use in TV sound IF or FM IF amplifiers, it includes: a limiter amplifier, a coincidence detector and a voltage regulator. By using the TAA 661 the ratio detector transformer is eliminated and the audio signal is capable of driving an output amplifier directly. Detector alignment is obtained by adjusting a single coil which provides the quadrature signal to the coincidence gate detector. ABSOLUTE MAXIMUM RATINGS Supply voltage Power dissipation at T.mb === 70°C Storage temperature Operating temperature ORDERING NUMBERS: for TAA 661 ASS for TAA 661 BX2 15 V 350 mW 500 mW -25 to 125°C o to 70°C TAA 661 A55 (for TO-100 metal case) TAA 661 BX2 (for 14-lead quad in':;line plastic package) MECHANICAL DATA Dimensions in mm 12.7",un. ~ TAA661 BX2 TAA661 ASS ./ 295 5/73 TAA661 SCHEMATIC DIAGRAM De-emphasis +---I---f- :~ C/pF Rp/kO 33 100 100 - 68 , 27 - 8 10 0 6 8 10 2 V, (mV) - - - - - - - - - - - - - - - - - - - - - - - - - - _.._ 300 TAA 661 Fig. 4 - Typical recovered output voltage GS 02 Vo ,\a '" (vofij II 1.6 1.4 1.2 1.0 0.8 0.6 Fig. 5 - Phase response of the TAA 661 wide band amplifier measured at 25 °C - I- 1\ -r-. " 1\h '\.\ ~t '\ Vs=12 v 1=5.5 MHz -.1 f±50 kHz V'7 101m1V 0.4 4 I 6 8 10 1 \\d 1\ \ \e ".1 2 C, (pF) TYPICAL APPLICATION 680 [) TAA 661 in TV receiver. ::c +24V I 1001,F O.lI'F I !J..: lSOD LINEAR 680 D Notes: - Pin numbers shown are for the TAA 661 BX2. - L1 = 24 turns of 0.16 mm nylon covered copper wired with tapping at turn 12 from ground. - L2 = 35 turns of 0.16 mm nylon. covered copper wired. - Neosid former K4/21.5/0.5 - Neosid core GW4 x 0.5 x 10FE10{Qo=80). 301 LINEAR INTEGRATED CIRCUIT TBA 231 DUAL LOW NOISE OPERATIONAL AMPLIFIER • • • • • • • SINGLE or DUAL SUPPLY OPERATION LOW NOISE FIGURE HIGH GAIN LARGE INPUT VOLTAGE RANGE EXCELLENT GAIN STABILITY VERSUS SUPPLY VOLTAGE NO LATCH UP OUTPUT SHORT CIRCUIT PROTECTED The TBA 231 is a monolithic integrated dual operational amplifier in a 14-lead dual in-line plastic package. These low-noise, high-gain amplifiers show extremely stable operating characteristics over a wide range of supply voltage and temperatures. The device is intended for a variety of applications requiring two high performance operational amplifiers, such as phono and tape stereo preamplifier, TV remote control receiver, etc. ABSOLUTE MAXIMUM RATINGS V, Supply voltage Differential input voltage • Common mode input voltage Power dissipation at Tamb ~ 60 °C Storage temperature Operating temperature • For Vs ~ ± 15 V, Vi max ORDERING NUMBER: ± 18 ± 5 ± 15 V V V 500 mW -40 to 150 °C o to 70 cC = V, TBA 231 MECHANICAL DATA Supersedes issue dated 5/73 Dimensions in mIT' 303 6/75 SCHEMATIC DIAGRAM +v, r , Fr~~ OUTPUT 'A 1 OUTPUT 2 '" 3 LAG A 1 .J '~ ~ LAG A INPUT J y. ~ ... ~rl. OUTPUT B . 12 1 4 10 5 6 NON INVERTING INVERTING INPUT A INPUT A 7 6 - OUTPUT LAG B 11 >--; r r ""----- 9 INVERTING NON INVERTING INPUT B INPUT 8 CONNECTION DIAGRAM INPUT , LAG B 5S0023 TEST CIRCUIT Frequency response OUTPUT A 14 V+ OUTPUT LAG A 2 13 OUTPUT B R1 INPUT LAG A 3 OUTPUT LAG B INPUT LAG A 11 INPUT LAG B NON INV. INP. A 10 INPUT LAG B INV. INPUT A 6 9 NONINV. INP. B V- 7 8 INV. INPUT B 5S 00.:1:2 304 SS 0024 TRA 231 THERMAL DATA ~ Rth j'amb Thermal resistance junction-ambient max 180 °C/W ELECTRICAL CHARACTERISTICS (Tamb = 25°C, RL = 50 k!l to pin 7 unless otherwise specified) Parameter v. Test conditions ± 15 V Id Quiescent drain current IVsE1 -V 6 dlnput offset voltage =0 R, = 200!l Vo 11 61 -1 62 1 Input offset current Ib Input bias current Common mode input voltage range 9. 14 mA 1 6 mV 50 1000 nA 250 2000 nA ±10 ±11 = 1 kHz Vo = ±5V Rj Input resistance Gv Voltage gain 6500 20.000 - Vo Positive output voltage swing +12 +13 V Negative output voltage swing -14 -15 Y 5 k!l 90 dB 50 ~V/V 1 V/J.ts Vo f V k!l Ro Output resistance f CMRR Common mode rejection ratio R, SVR Supply voltage rejection SR Slew rate Channel separation NF Noise figure 37 150 = 1 kHz = 200!l R, = 200!l Unity gain C 1 = 0.1 J.tF Rl = 4.7!l see frequency response test circuit = 10 k!l f = 10 kHz R, = 10k!l B = 10Hz to 10kHz R, 305 70 140 dB 1.5 dB T8A231 ELECTRICAL CHARACTERISTICS (continued) Parameter v, = Test conditions ± 4V Quiescent drain current Id iVSECVBE21 Input offset voltage =0 Rs = 200n Vo 11 61 -1 62 1 I nput, offset current Ib Input bias current Gv Voltage gain Vo Vo 2.5 rnA 1 6 mV 50 1000 nA 250 nA 250015.000 - Positive output voltage swing +2.5 +2.8 V Negative output voltage swing -3.6 Vo = ±1 V -4 V Fig.2 - Typical output capability vs supply voltage Fig. 1 - Power rating chart VOr--'r--.---.---r---r--~~",63 (Vrms) I-f_=-IlI-K_H_.Z+-_+-_t-_t-_I---; 0.8 f-+-I-I-+-I-I-+-HH--HH--HH-+-I-+-I 121---~--+--+--+-~--II-~ 10~-4-~--+--+-- 0.6 f-+-I-I-+-I-I-+-I-H--HH--HH-+-I-+-I 2~£4--+--+--+-~--II----I o LL~~~~~~~~~~~~ -50 o 50 100 6 Tamb ('C) 306 8 10 12 14 ~ Vs (V) TBA 231 Fig.3 - Typical quiescent drain current vs suppiy voltage Fig. 4 - Typical open loop voltage gain vs supply voltage GS 0165 -+__-+__~ (rnA) ~__~__~__~__~__ (dB) 20K 12 ~--+--- 15K ~ --~ ~ - P ...10K ::::--f- R~ = 00 RL = 50K D I RL - 10K D_ f - - I-RL 5K D R L - 3K D f = 1 KHz 5K o L-__ 4 ~ __-L__ 8 ~ ____L-__L-__ 10 12 14 ~ __-J o ±vs (V) 4 Fig. 5 - Typical open loop frequency response using recommended compensation networks 6 8 10 12 14 ± Vs (V) Fig.6 - Output voltage swing vs frequency for various compensation networks -20 W...J...ll-L-LLLL...L...Ll..LL...L...LJ..LL-L...LUJ 100 10K f (Hz). 1K 100K 0.1L-~LL-+--+-LU 100 307 1K __~-LU--L-+-~~~~U 10K 100K f (Hz) , '~-,:;~": ~,'::.' -, . ".- Fig. 8 - Typical input noise current vs frequency Fig. 7 - Typical input noise voltage vs frequency e ~ 0'" I I III z_ Vs GS 0169 I III N 2 ' lSV zli= Vs ± lSV I-- RS = 100K.o ....... - ....... 10- 26 lK 100 10K. 10 nHz) Fig. 9 - Typical closed loop gain vs frequency 100 lK 10K Fig. 10 - Typical open loop voltage gain vs temperature 7 I _ VS=±lSV (dB) (dB) 60 I I f Rl = 470.0 II c 1 = O.OOl/J. F II I Rl 20 a -10 100 C l = O.Ol/.<.F I I Rl = 33.0 Cl = O.l/LF I il Rl II; lK .......... "- 20K \ = 4.7.0 III I 10K lOOK ~~ Ii _~ . I. - 50/(1{ \ 1,1 I II """ ........... ........ \ = lS0.o II I 111 01.71 30K 40 I I fl.!:. = ± lSV = lK!-Iz Vs I C l = 300pF f (Hz) ..:::::: :::::::::::-- 10K R "'- ~ o f (Hz) 308 o 10 20 30 = lO~.o, 40 SO T("G) "II NEAR INT EGRA TED CIRe UIT TBA 311 TV SIGNAL PROCESSING CIRCUIT The TBA 311 is a monolithic integrated circuit in a 16-lead dual in-line or quad in-line plastic package. It is intended for use as signal processing circuit for black and white and colour television sets. The circuit is designed for receivers equipped with tubes or transistors in the deflection and video output stages, and with PNP or NPN "transistors in the tuner and NPN in the IF amplifier. Only signals with the negative modulation can be handled by the circuit. The circuit is protected against short circuit between video output and GND. The TBA 311 includes: • • • • • • VIDEO PREAMPLIFIER with EMITTER FOLLOWER OUTPUT GATED AGC for VIDEO IF AMPLIFIER and TUNER NOISE INVERTER CIRCUIT for GATING AGC and SYNC. PULSE SEPARATOR HORIZONTAL SYNC. PULSE SEPARATOR VERTICAL SYNC. PULSE SEPARATOR BLANKING FACILITY for the VIDEO AMPLIFIER ABSOLUTE MAXIMUM RATINGS Vs Ptot T stg Top Supply voltage Power dissipation at T amb """ 70°C Storage temperature Operating temperature 16 V 500 mW -55 to 125°C -25 to 70 °C ORDERING NUMBERS: TBA 311 A22 (for 16-lead quad in-line plastic package) TBA 311 A17 (for 16-lead dual in-line plastic package) 309 5/73 I TBA311 MECHANICAL DATA (Dimensions in mm) Quad in-line plastic package for TBA 311 A22 ~ I• 1.5.08.1 I 10.16 • POOf- D Dual in-line plastic package forTBA311 AU 310 TRA 311 CONNECTION DIAGRAM ,. ,. CAIZ. SYNC. OUTPUT PNP TUNE RAGe , FLY BACK PU LSE IF - AGe • GROUND \lERl. SYNC. OUTPUT I. VERT. SYNC. TIME CONST. 13 SYNC, TIME CONSTANT SUPPLY VOLTAGE 12 VIDEO OUTPUT NPN TUNER AGe 11 BLANKING I. TUNER AGe DELAY INPUT VIDEO PREAMP. NOISE SEPARATOR NOISE SEPARATOR TIMcCONSTANT TIME CONSTANT SS 0041 SCHEMATIC DIAGRAM ,. 11 12 13 ,. 550042 311 IBA 311 TEST CIRCUIT TUNER NPN or PNP :zoonO:zoon26pF SOpF Hh +71h. L_. _ _ _ _ _ _ _ _ AGC PNP +12V o-_--t---op--'t:~ I1 V ' ' I I I I I 10KSl r-+--1[ &OVpp 312 VIdooAmpllf. TBA 311 ELECTRICAL CHARACTERISTICS (T. mb = 25°C, Vs = 12 V unless otherwise specified, see also test circuit) Parameter Id Min. Typ. Max. Unit Quiescent drain current 14 mA VIDEO AMPLIFIER Ri Input resistance (pin 10) 2.7 kn Ci Input capacitance (pin 10) 0.8 pF B Bandwidth (-3 dB) Gv Voltage gain Vi Peak to peak video input voltage (pin 10) Vo MHz 5 9.5 dB (1 ) 2 V Peak to peak video output voltage (pin 12) (2) 6 V V Black level at the output (pin 12) (3) 5 V 10 Available video peak output current (4) 20 ~ Video output voltage temperature drift (5) 1 mV/O( Black level temperature drift 0.2 mV/oC Black level drift at the output with supply voltage variation 0.5 V!V AT,mb AV AT. mb AV -AVs mA VIDEO BLANKING Vi Peak to peak input voltage (pin 11) Ri Input resistance (pin 11) 1 5 1 V kn AGC CIRCUIT V Control voltage IF amplifier (pin 4) o to 7.5 V V Control voltage tuner NPN (pin 6) PNP (pin 2) Oto 6.5 12 to 6 V V 313 I TBA311 ELECTRICAL CHARACTERISTICS (continued) Parameter t:.V j Min. Typ. Max. Unit t:.V Signal expansion for full control of IF amplifier and tuner V Peak to peak keying input pulse (pin 3) Rj Input resistance (pin 3) (6) % 10 1 5 V 2 k!l 10 V 100 !l 9.5 V 2 k!l SYNC. CIRCUITS Vo Output voltage of horizontal sync. pulse (pin 1) Zo Horizontal output impedance (pin 1) Vo Output vctltage of vertical sync. pulse (pin 15) Zo Vertical ' .. ~ " outpu~-impedance 8.4 8.4 (pin 15) NOTES: 1) Negative going video signal (no pre-bias needed for the detector). 2) Video signal with negative going sync. pulse. 3) Only valid if the video signal is in accordance with the CCIR standard. 4) The total load on pin 12 must be such that under nominal conditions 10 "'" 20 mAo 5) Because the integrated circuit reaches 95% of its final working temperature in 100 seconds, the temperature variations to be considered are t~ose caused by the slower rise in cabinet lemperature and by changes in room temperature. 6) The TBA 311 may be operated unkeyed but then point 3 must be connected to the positive supply line via a resistor of suitable value (e.g. 10 k!l). However, the following consequences should be borne in mind: - The decoupling capacitors at the IF and tuner control points must be larger to prevent ripple voltages due to the vertical sync pulses. In consequence the AGC will not follow fast signal fluctuations (aircraft flutter). 314 LINEAR INTEGRATED CIRCUIT TBA 331 GENERAL PURPOSE The TBA 331 is an assembly of 5 silicon NPN transistors on a common monolithic substrate in a Jedec TO-116 14-lead dual in-line plastic package. Two transistors are internally connected to form a differential amplifier. The transistors of the TBA 331 are well suited to low noise general purposes and to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete components in conventional circuits, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching. ABSOLUTE MAXIMUM RATINGS VCBO VCEO Vcss· VEBO Ie P,ot = Collector-base voltage (IE O) Collector-emitter voltage (lB O) Collector-substrate voltage Emitter-base voltage (Ie O) Collector current Total power dissipation at T.mb ~ 55°C = = at T.mb > 55°C Storage and junction temperature Each Total transistor package 20 V 15 V V 20 V 5 rnA 50 750 mW 300 Derate at 6.67 mW/oC -40 to 150 o to Operating temperature 85 °C °C • The collector of each transistor of the TBA 331 is isolated fr.om the substrate by an integrated diode. The substrate (pin 13) must be connected to the most negative pOir.t in the external circuit to maintain isolation between transistors and to provide fer normal transistor action. MECHANICAL DATA Dimensions in mm TO-116 Supersedes issue dated 5/73 315 6/75 ·:~~';' .~:/t, .: :" ':·";.;~L{; .~'; . ;-' ~!-~' '" ,:;;'(',." ,- SCHEMATIC DIAGRAM 5 2 11 8 4 14 5-0018 6 3 7 9 10 13 12 Substrate ELECTRICAL CHARACTERISTICS (Tomb = Parameter IC80 ICEO 11 61 -1 62 1 Test conditions 25°C unless otherwise specified) Min. Typ. Max. Unit Fig. Collector cutoff current (IE 0) Vca = 10V 0.002 40 nA 1 Collector cutoff current (Is 0) VCE = 10V see curve 0.5 p.A 2 Ic VCE = 1 rnA =3V 2 p.A 7 = = Input offset current 316 0.3 TBA 331 ELECTRICAL CHARACTERISTICS Parameter VCBO VCEO Vcss V CE (sat) VEBO VBI: Min. Typ. Max. Unit Fig. Ic = 10Jl.A 20 60 V - Collector-emitter voltage (lB = 0) Ic = 1 mA 15 24 V - Call ecto r-su bstrate voltage (lcss = 0) Ic = 10Jl.A 20 60 V - IB Ic = 1 mA = 10mA 0.23 V - IE = 10Jl.A 7 V - IE VCE IE VCE = 1 mA =3V = 10mA =3V 0.715 V 4 0.8 V = 1 mA =3V " Ic VCE 0.45 5 mV 4-6 Ic VCE = 1 mA =3V 0.45 5 mV 4-6 Ic VCE = 1 mA =3V 0.45 5 mV 4-6 Ic VeE = 1 mA =3V 0.45 5 mV 4-6 Ic VCE = 1 mA =3V -1.9 mY/DC 5 Ic VCE = 1 mA =3V 1.1 !J.V/oC 6 Collector-emitter saturation voltage Emitter-base • voltage (lc = 0) Base-emitter voltage IVBE3-V BE411 nput offset voltage IVBE4- VBESI I nput offset voltage IVBES-VBE41 I n put offset voltage ~ Test conditions Collector-base voltage (IE = 0) IVBE1-VBd Input offset voltage AVBE (continued) Base-emitter voltage temperature coefficient IVBE1-VBd Input offset voltage AT temperature coefficient 317 5 TBA 331 ELECTRICAL CHARACTERISTICS hFE fr NF Parameter Test conditions DC current gain Ic = VCE = Ie = VCE.= Ic = VCE = 10mA 3V 1 mA 3V 10 !-LA 3V Ic = VCE = Ic = VCE = 3mA 3V Transition frequency Noise figure hie Input impedance hie Forward current transfer ratio hoe Yie Yfe Yre Reverse voltage transfer ratio Output admittance Input admittance Forward transadmittance Reverse transadmittance 100 !-LA 3V 1 kHz 1 kn = = Ic = 1 mA VCE = 3 V f = 1 kHz f Rg "r. (continued) VCE = 1 mA =3V f = 1 kHz Ic VCE = 1 mA =3V f = 1 kHz Ic Ic = 1 mA VCE = 3 V f = 1 kHz Min. 40 300 Typ. Max. Unit Fig. 100 - 3 100 - 3 54 - 3 550 MHz 14 3.25 dB 8 3.5 kn 9 110 - 9 1.8x10-4 - 9 (J.S 9 15.6 • = 1 mA VCE = 3 V f = 1 MHz 0.3+jO.04 mS 11 Ic = 1 mA VCE = 3 V f = 1 MHz 31-j1.5 mS 10 Ic = 1 mA VCE = 3 V f = 1 MHz see curve mS 13 Ic 318 TBA 331 ELECTRICAL CHARACTERISTICS Test Conditions Parameter Output admittance Yoe C EBO Ic = 1 rnA VCE = 3 V = 1 MHz f Emitter-base capacitance Collector-base capacitance CCBO Collector-sustrate capacitance Ccss (continued) r- • //J pF - Ic =0 Vcss= 3 V 2.8 pF - Fig. 2 - Typical collector cutoff current I - ~I' .,f~ [...I .:. 40 - I 80 120 160 12 0.58 '/ I mS IE =0 VeB = 3 V - !.- Fig. - 1///Vcs =5V 100 + jO.03 Unit pF 1 10 ¥=, 1-. 0.001 Max. 0.6 G-OA56 I CBO Typ. Ic =0 VEB = 3 V Fig. 1- Typical collector . ,cutoff current (nA) Min. Ta ("C) 319 "T8A331 Fig. 3 - Typical DC current gain - G 045& ~E=3V h FEX I I hFEV G 0459/1 VBE I 6VBE VcE =3V (V) (mV) I /' 1.1 120. 0.7 hFE VBE ,/ 100 f- /' 80 60 Fig. 4 - Typical input voltage and input voltage offset I~IORI hFE'\ hFE2 I-"" 0.6 h FE , 0.9 ,/ 0.8 ./ 0.5 VIO / /' I--- a o IE (mA) IE (mA) Fig. 5 - Typical input characteristic for each transistor Fig. 6 - Typical input voltage offset (mV) VCE =3V IV) G-046111 6VBE G 0460 v"E VcE =3V l- 1'0. 0.8 10 r-... I-" 3 f- 10.7 3 0.6 0.5 0.4 -60 r- 1 0.60 r-... ;. . . i"-r-......:. 0.40 IE=0.5mA I E=O.lmA ~ : -20 a 20 60 100 T. (OC) 320 -60 -20 0 2Q 60 100 TambfC) TBA 331 Fig. 7 - Typical input current offset for matched transistor pair Fig. 8 - Typical noise figure G-0462 G-0463 NF (I'A) VcE=3V Rs=lkO (dB) veE =3V 0.1 15 / / 1/ / 10 TYR / 7 ~ 1 5 ~ ~ [:;;; I--' - ~ - / I =lOkHz Ie (rnA) Ie (rnA) Fig. 9 - Typical normalized h parameters Fig. 10 - Typical forward admittance tit, G-0464 G-01,65 VeE =3V I =lmA 9" VeE =3V 1=lkHz (mS ) 40 h •• r-. 1--.. 9,. ....... 10 ' 20 V !III 1/ o h,. +-. \. b,. V h,. I- I--: ..... / 1 -20 III hi IIII III -40 Ie (rnA) 321 III 10-1 10' 10' I (MHz) Fig. 11 - Typical input admittance Fig. 12 - Typical output admittance G-0466 G-0467 b.. 9~ VCE =3V ( =lmA VCE =3V ( =lmA [mS) bit' b.. 4 I I IT 3 I 179;. 2 I g.. II Ib 10' 10' 1()"' Fig. 13 - Typical reverse admittance b,. :.... o f (MHz) 10' 10' I [MHz) Fig. 14 - Transition frequency G-0468 IT 9,. ~~~~~~~~r~~~~~~G~-~~~" (MHz)~-+~+-~~~~C~E~=3~V~~~~~+-~~ [mS) o g" \. \ -0.5 I b" VCE =3 V (c=lmA -1 -1.5 10° 10' 10' o I [MHz) 322 4 6 8 Ic [mAl LINEAR INTEGRATED CIRCUIT I,: TBA 435 I ,.'j' VOLTAGE REGULATOR • • • • • OUTPUT CURRENT ~ 100 mA TIGHT TOLERANCE for OUTPUT VOLTAGE LOAD REGULATION ~ 1% RIPPLE REJECTION 57 dB TYPICAL OVERLOAD and SHORT CIRCUIT PROTECTION The TBA 435 is an integrated monolithic 8.5 V voltage regulator in TO-39 metal case which can supply more than 100 mAo The device features high temperature stability, internal overload and short circuit protection, low output impedance and excellent transient response. The TBA 435 is intended for use as voltage supply for consumer circuits and for any other industrial application. ABSOLUTE MAXIMUM RATINGS Vi Ptot T stg Tj Top Input voltage Power dissipation at Tamb at Tease Storage temperature Junction temperature Operating temperature ORDERING NUMBER: 20 0.75 4 -55 to 150 175 o to 70 = 25°C = 25 °C V W W °C °C °C TBA 435A X5 MECHANICAL DATA Dimensions in mm Ground connected to ca.se i ! '~ I Fl008....a I: I' i Ii Supersedes issue dated 5/73 323 6/75 T8A4.35 SCHEMATIC DIAGRAM vIO-_ _ _- _ - - - _............ ,..--C::J-...-oO Vo THERMAL DATA Rtb Rth j.case j.amb ELECTRICAL CHARACTERISTICS (T j Parameter Vo AVo Output voltage Load regulation Vo 10 max max Thermal resistance junction-case Thermal resistance junction-ambient Regulated current °C/W °C/W = 25°C unless otherwise specified) Test conditions Vi 10 = 11.5 V to 20 V = 5mA CL = 10 J-LF Vi 10 CL = 11.5Vto20V = 5 mA to 100 mA = 10 JLF Vi = 15 V 324 37.5 200 AVo ~1% Vo Min. Typ. Max. Unit 8.1 8.5 0.3 100 140 8.9 V 1 % mA TBA 435 ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions 10 Max. regulated current Vi Ro Output resistance Vi 10 tlVo Line regulation Vo SVR eN Vi 10 Supply voltage rejection Output noise voltage = 15V = 15V = 5 mA to 100 mA Vi = 13.5 V 10 = SmA f = 100 Hz Vi = 15V 10 = SmA CL = 10 ~F B = 100 Hz to 100 kHz tlVo Temperature coefficient Vi = 15V 10 = SmA CL = 10~F Tamb = 0 to 70°C Vi = 20V 325 200 mA 0.1 .n 0.15 46 Vi = 20V Output short circuit current 150 0.6 % tlV i = 4 Vpp CL = 10 ~F Quiescent drain current I,e 130 = 11.5 V to 20 V = SmA Id tl Tamb Min. Typ. Max. Unit 10 =0 Vo = 0 5 57 dB 100 ~V 9 16 mA rnVjoC 0.85 40 60 mA TBA435 Fig. 1 - Typical output voltage vs output cu rrent Fig. 2 - Power rating chart ,.02, S 024 Ptot (w) J "") Vi ~ 15 V RNf'"INltf: ..... ~tSIN/( / ....... t - - V V / / V o o FREE AIR V 20 40 60 80 100 120 10 (rnA) 40 20 Fig. 3 - Maximum output current vs junction temperature Fig. 4 - Typical ripple rejection vs regulated output current GS 0250 GS 0251 SVR (rnA) 150 I'-.... (dB) ~ 60 .......... 125 r---..... r--.......... 100 40 .............. Vi ~ 15 V i"--, 20 75 Vi~ 13.5 V I - - .lV,=4V pp f=lOOHz 50 25 50 75 100 20 125 326 40 60 80 100 10 (rnA) TBA 435 Fig. 5 - Typical ripple rejection vs frequency SVR (dB) - 66 r--- 1 V, 13.15 0 10~5 Fig.6 - Maximum output current vs input voltage , . ~I f.- 58 i J ,,25° C 150 , I I 140 ,/ 56 54 iJ~O'e - 160 j,'V ~4vppl - 60 - (rnA) mAl 64 62 n" 10 i J " 70 0e - 130 52 120 50 10 lK 100 10 K 12 10 f (Hz) 16 14 18 V, (V) Fig.8 - Typical short circuit output current vs junction temperature Fig. 7 - Typical short circuit output current vs input voltage , no<. Is e uS 0255 Ise (rnA ) (rnA) 44 60 42 40 - ~ - - -- 40 b",..". 10- - r--.. 20 38 ---- V;~115V o 36 10 12 14 16 18 25 V, (V) 327 50 75 100 125 :~ !. TBA435 Fig. 9 - Typical dropout voltage vs output current Fig. 10 - Typical quiescent drain current vs junction temperature .- GS 0256 o 5 I• .- V 2.2 1.8 / ./ 7 /" (rnA) l.-- ~ r--... 9 -........:::: 8 ~ {,"-S"''''~ t--..... 00", -......;: V,-20 V 1.6 ~ 1.4 il. Votvo-l% o 20 60 40 80 25 10 (rnA) 100 Fig. 11 - Typical quiescent drain current vs input voltage 11 1e (rnA) 1J"'O ~ ~ q -~ H 1 8.8 _L- 8.6 .10c "25~ rf ~ L- L- -!-- 8.2 100 T, (0C) 125 10000 1--..... I-- ..... 11 ",1 10oe -", ~ ~ 8.4 75 Fig. 12 - Typical output resistance vs frequency GS 02 8 I. 50 ) , n",- V,-l.5 V C,,--O.lI'-F 1000 1/ !...10 -5 to ~ Ibo rnA. 100 ~ I-"" i..-' 10 -0 -I l' 7.8 10 12 14 1& 18 10 v, (V) 1 328 10 100 f (kHz) TBA 435 Line transient response (10 = 5 rnA) Turn-on time (10 = 100 rnA) f\ .... V,= 15V / II VIi-8.S V \ ~ Q / . . . . r---.. / 8.5 V o 100:0 JQCns !ol»s 1Ol» 1Ol» h0261 GS 026"0 IOO1s lOOn TYPICAL APPLICATIONS Fig. 13 - Positive output voltage regulator Fig. 14 - Negative output voltage regulator )e---+--......- - -.......--_~-o Vo~ -8.5 V lO/LF 5S 0067 329 TBA,435, Typical adjustable output voltage vs output current Fig. 15 - Adjustable output voltage regulator 0" v v0 ~~--~----~-----oVo IV) 6800 - 12 R2 ",1 1200 "I. 10 VO""V 1 (1+ ::.) + I-R2 V =0 V l) / /' IG R2 v/ /' V,,,,lSY Vo·8.5 to II V 2 10> 80 rnA Ro _100 mu a o R2 = potentiometer 0 to 150 u Fig. 16 - PNP current boost circuit 0.33fl V,o--1r-C:J-_-=\: / Y 20, 40 60 80 100 10 (mAl 120 Typical output voltage vs output current r----------------, S023 V, (V, 1000 Vo 150 - V,·IS V / / 8200 / / / V,-IS V Vo =8.5 V 10=2 A ......... V Ro:::20 m u 0.5 330 /' 1.5 formA) TBA 625A LINEAR INTEGRATED CIRCUIT Ii1 1 I ~ j •. VOLTAGE REGULATOR • • • • • OUTPUT CURRENT ~ 100 rnA TIGHT TOLERANCE for OUTPUT VOLTAGE LOAD REGULATION ~ 1% RIPPLE REJECTION 60 dB TYPICAL OVERLOAD and SHOR! CIRCUIT PROTECTION The TBA 625A is an integrated monolithic 5 V voltage regulator in TO-39 metal case which can supply more than 100 rnA. The device features high temperature stability. internal overload and short circuit protection, low output impedance and excellent transient response. The TBA 625A is intended for use as voltage supply for digital circuits and for any other industrial application. ABSOLUTE MAXIMUM RATINGS Vi Ptot T stg Tj Top Input voltage Power dissipation at Tomb at Tease Storage temperature Junction temperature Operating temperature ORDERING NUMBER: MECHANIC~L 20 = 25°C = 25°C 0.75 4 -55 to 150 175 o to 70 V W W °C °C °C TBA 625A X5 Dimensions in mm DATA Ground connected to case ,s.sma•• , 12.7 min. ~ .~~o = "l===lI ...... 1[[]3' ... 1 ....1 ~x ~ ~ ~~ '. 1lL. ..... Supersedes issue dated 5/73 331 ~ .!I 6/75 SCHEMATIC DIAGRAM THERMAL DATA R,h i-case R,h i-amb Thermal resistance junction-case Thermal resistance junction-ambient max max 37.5 °C/W 200 °C/W ELECTRICAL CHARACTERISTICS (Ti = 25°C unless otherwise specified) Parameter Vo AVo Output voltage Load regulation Va 10 Regulated current Test conditions Vi 10 = 8 Vt020V = 5mA CL = 10 J,LF Vi 10 CL = 8 Vto 20V = 5 rnA to 100 rnA = 10 J,L Vi = 12V 332 AVo Va """1% Min. Typ. Max. Unit 4.75 5 0.3 100 140 5.25 V 1 % rnA TBA 625A ELECTRICAL CHARACTERISTICS (continued) Farameter Test conditions 10 Max. regulated current Vi = 12V Ro Output resistance Vi = 12V 10 = 5 mA to 100 mA _Il. Vo Vo Line regulation SVR Supply voltage rejection eN Output noise voltage Min. Typ. Max. Unit 130 I 0.2 46 Vi = 12 V 10 = SmA CL = 10 IlF B = 10 Hz to 100 kHz 60 % IlV 16 rnA Il.Vo Il.Tamb Temperature coefficient V j = 12V 10 =5mA CL = 10llF Tamb = Oto 70 0 C 0.5 Vi = 20V 45 10 =0 Vo = 0 5 dB 9 Id 333 1 70 Vi = 20V Output short circuit current n Il.Vi =4Vpp CL = 10 IlF Quiescent drain current Isc 200 rnA 0.1 Vi = 8 Vto 20V CL = 10 IlF I" = SmA Vi = 10V 10 = SmA f = 100 Hz 150 ~V/oC 65 rnA TBA 625A Fig. 2 - Power rating chart Fig. 1 - Typical output voltage vs output current illUlZli4 I i (w) ! ! I i I I; f.--.-i-- v:~ 12 v I. I I I I 1 I -I V y! , IL o a 20 40 /t' ~'<:-"I'1'1"" I I ....... ~'1" SIf\tk" ....... ~- 3 D I I VI J I FREE AIR o 60 80 100 120 10 (rnA) 10 Fig. 3 - Maximum output current vs junction temperature 20 30 40 50 60 Tom' ('C) Fig. 4 - Typical ripple rejection vs regulated output current GS 0267 GS 026 6 10 SVR (rnA) 150 2 ,.1 il<1'1"/i I I I r· 4 I i OS Ptot (dB) "-- ............. 60 ....... 125 r-........ ... V;~12 100 V "-- 40 ........ b..... V,~ 20 75 r-- d 10 v V;~4Vpp If-lO~ Hz o 50 25 50 75 100 o n5 334 20 40 60 80 100 10 (mA) TBA 625A Fig. 6 - Maximum output current vs input voltage Fig. 5 - Typical ripple rejection vs frequency 0261 (dB) 68 10~5 - ~ J 160 pp 66 J =ioc l (rnA) ~ 10 v II--j- -1--1-++--+---+-1-++---1 AV;=4 V ! V, ~ ~ rnA TJ I 64 I--H-H- -- - -- ~f+t-+-+ ~ r-- 150 =zJc l- 62 I ~ 140 60 58 r--- -1- 56 269 OS II SVR TJ =70° C I-- -+~+--+--+-H+--I I I 130 --I--~+-f-H-_+~-- I I 54 52 120 100 10 f (Hz) 10K lK 8 Fig. 7 - Typical short circuit output cu rrent vs input voltage 12 10 14 16 18 V, (V) Fig. 8 - Typical short circuit output current vs junction temperature GS 0270 GS 0271 Isc Isc (rnA) (rnA) 50 60 48 46 -- - --- i--I - 40 v,~ f-"" 44 i.-- r-- r-- ..... -- r-- I--- 12 V 20 II 42 10 12 14 16 18 25 V, (V) 335 50 75 100 125 - T816251 Fig.9 - Typical dropout voltage vs output cu rrent (V) ~ 2.2 1.8 1.6 / V ./'" V Fig. 10 - Typical quiescent drain current vs junction temperature 0273 GS 0272 -- I. (rnA) ~ .......... -.......:: ~ N~lOo ~t--..--......; 10~S 17)4 J.Vo/Vo~l% V,~20 1.4 ~ V 1.2 6 20 40 60 80 100 o 10 (rnA) Fig. 11 - Typical quiescent drain current vs input voltage GS Q;u. 10cl "\ ~ 8.8 ,,\) --h:Jc "\ _1 .- ~~rf ~ 8.6 l - I-"'" 1 ,,1 8.4 - ~ .-~ \)oc ~ I-"'" (mil) V ~ ~ I-l - 125 )i~1112 V f-rt-- C,~O.lp.F r- 1000 - ~ I T I -- 1/ ~ "\j~i"""" ~ 8.2 100 GS 0275 10000 I f- 75 Fig. 12 - Typical output resistance vs frequency 10~O I. (rnA) 50 25 100 f- 10~5 to 100 rnA ........ V ~ I-"'" 7,8 10 10 12 14 16 18 V, (V) 10 336 100 f (kHz) TBA 625A Turn-on time (10 = 100 mAl Line transient response (10 = 5 mAl 4.V.-5 v V.-9.5Y II I / 1\ ........ o~ __~.__+-__~_____ I Vo~5 V .0 -'---I-.....-f----+----- lOOn lOOns lOOns lOOns lOOns GS(l277. lOOns lOOns GS 0276 TYPICAL APPLICATIONS Fig. 13 - Positive output voltage regulator Fig. 14 - Negative output voltage regulator !»----+--......------...--------1r--O vo~ 1OI-'F 5S DOn 337 5V T8A625A Fig. 15 - Adjustable output voltage regulator Typical adjustable output voltage vs output current vo ..... v, h~~_-- -_~vo (V) R2 '" 200 n 430n V .,," J V R2 0 0 V / ") /v ./ Vo~5 V to 9 V 10> 80 rnA / ./ o Ro~100mu o R2 = potentiometer 0 to 250 11 Fig. 16 - PNP current boost circuit ./ 20 40 bO 80 100 120 10 (rnA) Typical output voltage vs output current lOS 0279 0.33n v'o-__c:J-_.....:; .;::.--____--. I-- 1-- lOon V,.12 V f-- - - I-- - 1--_.-4---0 Vo 15n II 500n / SS0075/1 V,~12V Vo=5 V lo~2 A Ro :.::;20 m U o 338 o V 0.5 v V 1.5 10~(A) LINEAR INTEGRATED CIRCUIT TBA 625B VOLTAGE REGULATOR • • • • • OUTPUT CURRENT ~ 100 mA TIGHT TOLERANCE for OUTPUT VOLTAGE ..... ,. LOAD REGULATION ~ 1% RIPPLE REJECTION 54 dB TYPICAL OVERLOAD and SHORT CIRCUIT PROTECTION The TBA 625B is an integrated monolithic 12V voltage regulator in TO-39 metal case which can supply more than 100 mAo The device features high temperature stability, internal overload and short circuit protection, low output impedance and excellent transient response. The TBA 625B is intended for use as voltage supply for digital circuits with high noise immunity, linear integrated circuits and for any other industrial applications. ABSOLUTE MAXIMUM RATINGS Vi Ptot T stg Tj Top Input voltage Power dissipation at Tamb at Tcase Storage temperature Junction temperature Operating temperature ORDERING NUMBER: = 25°C = 25°C 27 0.75 4 -55 to 150 175 o to 70 V W W °C °C °C TBA 625B X5 MECHANICAL DATA Dimensions in mm Ground connected to case Supersedes issue dated 5/73 339 6/75 TBA·625B SCHEMATIC DIAGRAM V, O--"'~r-""""-_--- _ _ _,", ,-cJ-.......-O Vo THERMAL DATA Rth Rth j-case j-amb ELECTRICAL CHARACTERISTICS (T j Parameter Vo avo Vo 10 max max Thermal resistance junction-case Thermal resistance junction-ambient Output voltage Load regulation coefficient Regulated current = 25°C unless otherwise specified) Test conditions Vi = 15 V to 27 V . CL = 10J.tF 10 = 5mA Min. Typ. Max. Unit 11.4 Vi = 15Vto27V 10 = 5 rnA to 100 rnA CL = 10",F Vi = 12 V 340 °C/W °C/W 37.5 200 avo Vo ~1% 12 0.3 100 140 12.6 V 1 % rnA TBA 625B ELECTRICAL CHARACTERISTICS Parameter (continued) Test conditions Min. Typ. Max. Unit 10 Max. regulated current Vi = 21 V Ro Output resistance Vi = 21 V 10 = 5 rnA to 100 rnA 0.1 Vi = 15 Vto 27 V CL = 10 J.tF 10 = SmA 0.2 0.5 Ofo = 17V 10 = SmA f = 100 Hz 46 54 dB I:J.Vo Vo SVR eN Line regulation ccefficient Supply voltage rejection Output noise voltage Id Quiescent drain current I:J.Vo I:J.Tamb Voltage/temperature coefficient I,e Output short circuit current Vi 120 10 =0 Vi = 21 V 10 = SmA CL = 10 J.tF Tamb = Ot070°C Vi = 27V 341 200 mA n I:J.Vi = 4 Vpp CL = 10 J.tF Vi = 21 V 10 = SmA CL = 10 J.tF B = 10 Hz to 100 kHz Vi = 27V 150 Vo = 0 6 150 J.tV 10 18 rnA 0.85 35 ,,"v/oe 55 rnA TBA 625B Fig. 2 - Power rating chart Fig. 1 - Typical output voltage vs output current as 0280 0.' ., Plot (W} I 4 II'/li ~"'fO/"'/"'E:: 12 I) 1 10 V V,~21 / - . . . ~.,.s /"'1(- V ........ // / / o o 20 40 60 V FREE AIR 80 100 120 '0 (mA) o 10 20 30 40 50 60 Fig. 4 - Typical ripple rejection vs regulated output current Fig.3 - Maximum output current vs junction temperature GS 02 GS 0282 SVR (mA) 150 I,m' (oC) (dB) ............ 60 ............ ...... .................... 125 ............ v,~21 100 ........ V - 40 ............... V,~17 V .1V,"4Vpp f = 100 Hz 20 75 o 50 25 50 75 100 125 o I, (OC) 342 20 40 60 80 100 '0 (mA) TBA 625B Fig. 5 - Typical ripple rejection vs frequency SVR (dB) ~ 62 ~ Fig.6 - Maximum output current vs input voltage GS TnT GS 0285 284 (rnA) V,~17VII lV,~4Vpp 160 TJ =O°C I-- TJ =25°C I-- In~5 rnA 60 150 58 -~ 56 54 ........ ....... ~ 140 TJ =70°C 52 50 I-- 130 48 46 120 10 100 lK 15 f (Hz) 10K Fig. 7 - Typical short circuit output cu rrent vs input voltage 17 19 23 21 25 V, (V)' Fig.8 - Typical short circuit output current vs junction temperature GS 0287 GS 0286 Ise Ise (rnA) (rnA) 40 60 38 40 36 t--- t--- I--- I..I-- I-- l..I-- I-- l..- 34 V,~21 I..- o 32 15 17 19 - V 20 ,21 23 25 v, (V) 343 o 25 50 75 100 t-- t--- 125 T, (oG) TBA625B Fig. 9 - Typical dropout voltage vs output current Fig. 10 - Typical quiescent drain current vs junction temperature GS 0288 -- ..... v 2.2 /' ./ / 1.8 1.6 / GS 0289 (rnA) f:::::::. r-.... 10 ~ V IJ.VoIV 0 ~ I 0~100 {,~S ~ 1JJ-4 -1% ~~ ....... V,-27 V 1.4 1.2 20 60 40 100 80 10 (rnA) 25 Fig. 11 - Typical quiescent drain current vs input voltage (rnA) 9.8 9.6 9.4 9.2 10000 - -- ,.i" f.- -~~ ~ ~ --- ,,1\)OC '.i___ - -- 100 125 ~ GS 0291 I Ro (mil ) \)Jc i.---' f.- f.f..f.- -11'>oc_ f.- 10 75 Fig. 12 - Typical output resistance vs frequency GS 0290 I~ = b I. 50 V,~21 V C L = 0.1 I-'F 1000 1/ ~ 100 10 -5 to 100 rnA ....... I-""" V f.- 8.8 15 17 19 21 23 25 10 v, (V) 10 344 100 f (kHz) TBA 625B Turn-on time (10 = 100 rnA) Line transient response (10 = 5 rnA) VI ·.la.5 v I V 1 II V, 21 1\ '" -...... vI V I .. I 11 I V lOOns 100" 11),,", 1000 lOOns DOns lOOn TYPICAL APPLICATIONS Fig, 13 - Positive output voltage regulator I Fig. 14 - Negative output voltage regulator 58 0.078 345 TBA625B Fig. 15 - Adjustable output voltage regulator Typical adjustable output voltage vs output current 4 v, v. v. - (V) -Rf'13r 'I 12 10 / .B / / R2 = 0 10"F / ) /V/V V // V,~24 l~ V v. V.~12 to 15 V' 1.>.80mA Ro':: 100 mU R, ~ potentiometer 0 to 150 u ~V o o Fig. 16 - PNP current boost circuit 20 40 60 80 100 120 I. (mA) Typical output voltage vs output current GS02 0.330 V,O-_'-;:=J-_",", r--------, ) V,~21 V lOon 12 10 BFYb4 Isn 1--+-+---0. Vo lO"F / I 1200n V V 550080/1 VJ=21 V Vo= 12 V lo~2 V V A Ro ::::20mu O.s 346 1.5 10 (AI LINEAR INTEGRATED CIRCUIT TBA 625C VOLTAGE REGULATOR • • • • • OUTPUT CURRENT ~ 100 rnA TIGHT TOLERANCE for OUTPUT VOLTAGE LOAD REGULATION""" 1% RIPPLE REJECTION 51 dB TYPICAL OVERLOAD and SHORT CIRCUIT PROTECTION The TBA 625C is an integrated monolithic 15 V voltage regulator in TO-39 metal case which can supply more than 100 rnA. The device features high temperature stability, internal overload and short circuit protection, low outpUt impedance and excellent transient response. The TBA 625C is intended for Lis~ as voltage supply for digital circuits with high noise immunity, linear integrated cir'eUits iliid for any other industrial applications. ABSOLUTE MAXIMUM RATINGS Vi Ptot Top Ti Top Input voltage Power dissipation at Tamb at Teas. Storage temperature Junction temperature Operating temperature ORDERING NUMBER: = 25 C = 25 °C 0 4 V W W -55 to 150 175 o to 70 °C °C °C 27 0.75 TBA 625C X5 MECHANICAL DATA Dimensions inmm Ground connected to case Supersedes issue dated 5/73 347 6/75 SCHEMATIC DIAGRAM THERMAL DATA R,h R'h j-case j-amb ELECTRICAL CHARACTERISTICS Parameter Vo avo max max Thermal resistance junction-case Thermal resistance junction-ambient Output voltage Load regulation Vo Regulated current °C!W 200 °C!W (T j = 25 0 C unless otherwise specified) Test conditions Vi = 18 Vto27V 10 =5mA CL = 10 J.l.F Min. Typ. Max. Unit 14_25 Vi = 18Vto27V 10 = 5 mA to 100 mA CL 10 I4F = 10 37_5 Vi = 24V 348 avo Vo ~10f0 15 15.75 0.3 100 140 1 V °/0 mA TBA 625C ELECTRICAL CHARACTERISTICS (continued) Fllrameter Test conditions ,10 Max. regulated current Vi Ro Output resistance Vi 10 AVo Vo Line regulation SVR Supply voltage rejection eN Id ~ ATamb Ise Vi 10 Output noise voltage Vi 10 f = 24V = 24V = SmAto100mA = 18 Vto 27 V = SmA CL = 10 .... F = 20V AV i = 4 Vpp = SmA CL = 10 .... F = 100 Hz = 24V 10 = SmA = 27V Vi Temperature coefficient Vi = 24V 10 CL = 10 .... F . Tamb = 0 to 70°C = SmA Vi = 27V =0 Output short circuit current 120 10 =0 Vo 1S0 200 mA n 0.1 0.2S 46 Vi CL = 10 .... F B = 10 Hz to 100 kHz Quiescent drain current ., Min. Typ. Max. Unit 6 O.S % S1 dB 200 ....V 10 18 rnA ~V/oC 1.S 30 SO rnA I 349 TBA> 625C Fig. 1 - Typical output voltage vs output current Fig. 2 - Power rating chart '6 j Vo I (V) V,-24V 12 10 / / GS 0297 I"'\. (w) lJ 4 ,I Wll'/i RAt'<:-IAt Il"l: ...... -....!!.!.41'SIIVII_ 3 ....... / / o o / 20 / / FREE AIR ... 40 60 o 80 100 120 10 (mA) Fig. 3 - Maximum output current vs junction temp,erature o 20 40 Fig. 4 - Typical ripple rejection vs regulated output current GS 029"8 I., GS 0 ' " SVR (mA) 150 i'--... (dB) 60 .................. "' ............ 125 ............ ....... V,-24V - 40 I'-......- 100 20 V,-20 V '--:- .1 V,-4 V" f = 100 Hz 75 o 50 25 50 75 100 125 350 o 20 40 60 80 100 10 (rnA) TBA 625C Fig. 5 - Typical ripple rejection vs frequency Fig. 6 - Maximum output current vs input voltage n'01 ::. U.:lUU SVR II (dB) bO f-f-- .I. (mA) I V)20V I ~J 160 v.> 4 Vpp 10~5 mA 56 1TJ =25°e 150 - ~~ - 52 ,".' 140 V 48 = oDe T J =70 0e ,130 44 120 10 lK 100 10K 17 f 1Hz) Fig. 7 - Typical short circuit output current vs input voltage 19 21 23 25 Fig. 8 - Typical short circuit output current vs junction temperature GS 0302 0303 I IBe (mA) (mA) 34 60 32 30 - f- 28 40 - ~ ~l - r-- -r---r--- 20 V,~24 I--- V I 26 17 19 21 23 V, (V) 25 25 V, (V) 351 50 75 100 125 II TBA625C Fig. 9 - Typical dropout voltage vs output current Fig. 10 - Typical quiescent drain current vs junction temperature GS 03 .. J.H' U305 I. (rnA) 2.2 2 V V ./ l.B V .....-V ~ 10 ~ 117", '0"'5 117", . ~ -.....::: /" 1.6 ~ t1V o iV o -l% 1.4 v'-r v 1.2 1 ~~ o "'lao a 7 20 40 60 BO .In(mA) 100 a Fig. 11 - Typical quiescent drain current vs input voltage I _ ~C I..--l.l-O.....- I..--- 10 I..--- -n - I,oc ~ 9.4 ,...- 9.2 1 I,,10 ~c_ ~ ~ ~,.... 75 100 125 S'o 07 10000 ---- 1.l,,75.........- I-- _r--- 50 Fig. 12 - Typical output resistance vs frequency S 0306 I. (rnA) 25 Ro (mil ) V,-24V 1000 - C, ~O.l i'-F I I 10 -5 to 100 rnA 100 I L .--i-"""" V 10l-O 8.B 10 17 19 21 23 25 1 V, IV)' 352 10 100 f (kHz) TBA 625C Turn-on time (10 = 100 rnA) Line transient response (10 = 5 rnA) V 21.5V I vi / v 1\ V "" lOOn lOOns lOOns o If ~- '-.. V // oOns~ons lOOns lOOns OOns TYPICAL APPLICATIONS Fig. 13 - Positive output voltage regulator Fig. 14 - Negative output voltage regulator Vo -15 V SS U083 353 JBA'~825C Fig. 15 - Adjustable output vbltage regulator Typical adjustable output voltage vs output current GS!l31 Vo V, IV) f - - R2 Vo I ~ 910 16 J 7\ 14 f - - I--R2 - 0 /j IO"F 12 V/ 10 VO.V I I/V / V (l+~) + IG R2 • ~ V,.:J.6V Vo==15 to 17 "10> 80 rnA o Ro,!=,IOOmu R2 _potentiometer : O,to 150 U I Fig. 16 - PNP current boost circuit o ~ 20 W 40 60 80 100 10 ImA) 120 Typical output voltage vs output cu rrent 0.33ll "" V0 -..., IV) 2 II Y,-24 V BFY64 10 1-_~4--o()Vo 8 15ll V . 1500ll V 4 V S5008'I, 2 V,_24 V Vo..15 V lo .. ii! A 0 V 0.5 Ro ,=20m U 354 V J LINEAR INTEGRATED CIRCUIT 18A641A AUDIO AMPLIFIER • OUTPUT POWER 2.2 W (9 V - 4 il) • LOW DISTORTION • LOW QUIESCENT CURRENT • SELF CENTERING BIAS • HIGH INPUT IMPEDANCE The TBA 641 A is a monolithic integrated circuit in a 14-lead quad in-line plastic package. It is particularly designed for use as audio power amplifier in portable radio receivers, tape recorders, record players and in industrial applications which require high output power, low distortion and high reliability performance. Special features of the circuit include a low quiescent current, self centering bias operation at supply voltage ranging from 6 V to 12 V, direct coupling of the input. The circuit requires a minimum of external components. ABSOLUTE MAXIMUM RATINGS VS Vi 10 -;, Ptot T stg Tj Supply voltage Input voltage Output peak current Power dissipation at Tomb ~ at Teas. Storage temperature Junction temperature ~ 25°C 100°C 12 -0.5 to +Vs 2 1.5 3.8 -40 to 150 150 V V A W W °C °C ORDERING NUMBERS: TBA 641 A72 for quad in-line plastic package with spacer TBA 641 A12 for quad in-line plastic package Supersedes issue dated 6/73 355 6/75 MECHANICAL DATA (Dimensions in mm) Quad in-line plastic package with spacer for TBA 641 A72 (see also "MOUNTING INSTRUCTIONS") C-0058 M (~) Quad in-line plastic package for TBA 641 A12 1Ll0.16 I. 5.081 .1 POO'!;-A CONNECTION DIAGRAM OUTPUT SUPPLY VOLTAGE NC NC GROUNO BOOTSTRAP NC 11 NC GROUND 10 RIPPLE BY-PASS COMPENSA liON NC INPUT FEED-BACK S5 0086 356 TBA641A SCHEMATIC DIAGRAM .--...-_ _ _ _ _ _ _ _ _ _----,---014 r--~--,___,_-_t_--o 12 10o-----+_--; R'f TEST AND APPLICATION CIRCUIT Vi IOO,oF IOV 5-0378/1 357 I TBA641A THERMAL DATA ~ Rth j-case ~ R'h i-8mb Thermal resistance junction-case Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS (See test circuit; Tamb = 25°C, V, = 9 V and = 4n unless otherwise specified) Test conditions Parameter Vo RL 13 °C/W 83 °C/W max max Quiescent output voltage (pin 1) Min. Typ. Max. Unit 4 4_5 5 V Total quiescent drain current Po =0 8 18 mA Quiescent drain current of output transistors Po =0 6 mA Id Drain current Po = 2.2W 340 mA Ib Bias current (pin 7) Po Output power R' f Internal feedback resistance Id Id 0.1 d Gv = 10% = 46 dB f 1 J.tA = 1 kHz 2.2 W See schematic diagram 7 kn Internal feedback resistance See schematic diagram 35 n Zj Input impedance (pin 7) f 3 Mn d Distortion f 0.6 0.6 . % % 46 dB 2.5 {J.V R'.I Gv Voltage gain eN Input noise voltage = 1 kHz = 1 kHz =0 R, = 22 kn 1.8 = 46 dB Gv = 46dB Po = 50mW Po = 1 W Gv Rf 358 B = 10 kHz 18A641A Fig. 1 - Typical output power vs supply voltage Fig. 2 - Typical distortion vs output power ('1082 G-l081 d Po (W) - d =10"/0 2A 9 / f-- f =lkHz /t-- Rf=O I / / II ('10) -. Vs =9V Rl =4U f---- f= 1kHz --- R, =0 I I RL=~ 1.6 :/ 1.2 0.8 0.4 / V ./ I' ./' V RL~ey ,/ V ./ ,/ / I '" Fig. 3 - Typical voltage gain vs feedback resistance (R,) 10- 1 2 1 , ,, Po (W) Fig. 4 - Typical value of C b vs Rf for various values of B - G 1060 1000 G 1059 LL~ (G v ) -I 400 Vs =9V ~=l'=k~~ 200 A"'" "" ,./ ~ VII" 60 l- 40 -I""' B=10kHz ; 1', 100 80 , , 6' 10- 2 I V I- v ... I -~ B=20kHz ,..1--- - 20 I 10 50 100 150 R, (ll) 200 359 20 40 60 80 100 120 R, (ll) 160 TBA641A Fig. 5 - Typical output power vs input voltage Fig. 6 - Typical power dissipation and efficiency vs output power G G 1083 Pto t· (W) Po (W) 2A - r- RL=4Q - r- r- / -- 0.8 1.6 V 1.2 0.8 I -- ", V V 0.6 / 60 - Ptot =1kHz _. -j" , ,. 1.2 Rf =0 7 ,/ Vs =9V f 0.4 (oJ / 1.4 2.8 1084 .... ...... 1-0.. / 50 , "I I -l-- - - - 40 30 .Vs =9V f--+- 'R L =4Q 0.4 10 0.2 i-"" o 12 10 0.4 14 Vj(mV) os 1.2 2.4 1.6 2.8 Po (W) Fig. 8 - Maximum power dissipation' Fig. 7 - Typical drain current vs output power G 1015 G 10B5 Id Pto t (mA) (W) RL =4Jl 400 /" I ....". 320 1.6 .... 1-' ./ 160 ", // , RL=4Jl I-- - 0.8 V ....". j 0" II o .. V Vs =9V / 80 V 1.2 V ",,' ,," ",. 240 OJ. os 20 1.2 lS 10 11 v. (v) • The dotted I ine refers to TBA 641 A72 with additional heat-sink 360 TBA641A Fig. 9 - Power rating chart Fig. 10 - Typical quiescent drain current vs supply voltage - G_l076 G 1680 Ptot V (W) V 11 WITH INFINITE 4 HEATSINK V /v Id(tot) / ;I' FREE AIR V l./ V V /'" !/ K V / V / 1/ , (out put transi~tors) ..... 1:.7 11 o o -50 50 100 Tamb I'C) Fig. 11 - Typical quiescent drain current vs ambient temperature 10 Fig. 12 - Typical quiescent output voltage vs ambient temperature G-1087 G toes Va ld (mA) ~-+ __~-+__~~__~__~-+__+-~ (V) Id (totail Vs =9V 4.8 4.6 r--.. r- i-- Id (output transistors) 4.4 4.2 -10 10 30 -10 50 361 10 30 50 70 Tamb ('1:) I TBA641A - G 1074 Fig. 13 - Typical quiescent output 'voltage vs supply voltage Vo (V) 5.5 / / 45 4 3.5 3 V lL / V / B TYPICAL APPLICATION Fig. 14 - Portable record-player amplifier INPUT 362 V V V / / 9 10 11 VsM TBA641A MOUNTING INSTRUCTIONS Fig. 15 shows a method of mounting the TBA 641 A with the spacer, satisfactory both mechanically and from the point of view of heat dissipation. Better thermal contact between package and heat-sink can be obtained by using a small quantity of silicon grease. For heat dissipation the desired thermal resistance is obtained by fixing the elements shown to a heat-sink of suitable dimensions. Fig. 15 ~-I---- hlN.l Sink -----Contact (Silicon g ...... ) ~.:>.,- _ _ P. C. board Ij I Ij 363 LINEAR INTEGRATED CIRCUIT 18A6418 AUDIO AMPLIFIER • OUTPUT POWER 4.5 W (14 V - 40) • LOW DISTORTION • LOW QUIESCENT CURRENT • HIGH INPUT IMPEDANCE The TBA 641 B is a monolithic integrated circuit in a 14-lead quad in-line power plastic package. It is particularly designed for use as audio power amplifier in radio and television receivers, and in industrial applications which require high output power, low distortion and high reliability performance. Special features of the circuit include a low quiescent current, self centering bias for operation at supply voltage ranging from 6 V to 16 V, direct coupling of the input. The circuit requires a minimum of external components. ABSOLUTE MAXIMUM RATINGS ~ V, V, Vi 10 Supply voltage (no signal) Operating supply voltage Input voltage Ptot Power dissipation at Tamb £c. 25°C * Tamb £c. 25°C ** Peak output current Tease T,tg, Ti 18 16 £c. 70°C Storage and junction temperature -0.5 to +V, 2.5 1.5 V V V A W 2.3 W 6 -40 to 150 W °C i * For TBA 641 B72 ** For TBA 641 BX1 and TBA 641 B11 ORDERING NUMBERS: TBA 641 B72 for quad in-line plastic package with spacer TBA 641 BX1 for quad in-line plastic package with external bar TBA 641 B11 for quad ifl-line plastic package with inverted external bar Supersedes issue dated 6/73 I 365 6/75 MECHANICAL DATA (Dimensions in mm) Quad in-line plastic package with spacer for TBA 641 B72 (see also "MOUNTING INSTRUCTIONS") ~ C-0058 Quad in-line plastic package with external bar for TBA 641 BX1 8 .~ . , '"' Quad in-line plastic package with inverted external bar for TBA 641 B11 366 18A6418 CONNECTION DIA~RAM OUTPUT 14 SUPPLY VOLTAGE NC 13 NC GROUND 12 BOOTSTRAP NC 11 NC GROUND 10 RIPPLE BY-PASS COMPENSA TION NC INPUT FEED·BACK 55 0086 SCHEMATIC DIAGRAM r-~----------------------~------~-o14 r---~----~~~----+--o12 10o---------~~ R'f I II( Ii I:' h I: 367 I T8A.6418 TEST AND APPLICATION CIRCUIT r---------~>---.......-O+Vs Vi 100,uF 25 V 5-0395 TBA641 B72 TBA641 BX1 TBA641 B11 THERMAL DATA ~ Rth i-ca.e -+ Rth J-omb Thermal resistance junction-case Thermal resistance junction-ambient max 13 °C/W 13 oC , W max 83°C/W 55°CjW ELECTRICAL CHARACTERISTICS (See test circuit; T 8mb = 25 0C, V. = 14 V and RL = 4 n unless ot!'lerwise specified) Test conditions P.rameter Vo Id Id Quiescenfoutput voltage (pin 1) ~. Po Quiescent drain current of output transistors Po Id Drain current Ib Bias current (pin 7) 6.5 ...•. , Total quiescent drain current Min. Typ. Max. Unit =0 =0 Po = 4.5W 368 7 8 V 16 32 mA 13 mA 485 mA 250 nA TBA641B ELECTRICAL CHARACTERISTICS Parameter Test conditions Output power Po (continued) d Gy = 10% = 46 dB f Min. Typ. Max. Unit = 1 kHz 4 4.5 W Internal feedback resistance See schematic diagram 7 kil Internal feedback resistance See schematic diagram 35 il Zj Input impedance (pin 7) f 3 Mil d Distortion R'f R'.I Gy Voltage gain eN Input noise voltage = 1 kHz f = 1 kHz Po = 50mW Po = 2W Rf = 0 Rs = 22 kil Gy Gy B = 46 dB = 46 dB = 10 kHz 0.3 0.8 % % 46 dB 3.4 p.V Fig. 2 - Typical distortion vs output power Fig. 1 - Typical output power vs supply voltage G 1090 I-- - I-- - I d=10O/a Rl=4n Rf"O f=lkHz V V / V V G-\091 d J ("!o) V 12 1---+-++++t-ttt----'-+++f++H-+-++-H+I-H Vs=14V 1---+-++++tft1 RL =" n t-+-t-ttttt--+++++ttH I---+-++++++H, ~;:~z t-+-t-ttttt--+++++ttH 10 ./ 1/ , 'B 10 12 '" 16 10-2 Vs (v) 369 to-I , ,, 1 - , '8 Po(W) Fig. 3 - Typical voltage gain vs feedback resistance (R I ) Fig. 4 - Typical value of Cb VS RI for various values of B G-1119 1000 2 Cb (G y ) ~~- -11 T (pF ) G 1059 I v. ='4V RL= 40 t"lkHz 200 ~ B=~ -l- i-- V " V V 40 V- 1--'- V ..... 1-1" B=20kH 60 '" ~ i I -- I i I I I 20 i 10 150 R, (Jl) 100 50 200 II I 20 Fig. 5 - Typical output power vs input voltage 40 60 80 100 120 R, <.n) G 1693 '1l Ptot ( 'I,) (W) Vs =14V ~ ~ RL=4fl Vs=14V R, =0 1---1- 160 Fig. 6 - Typical power dissipation and efficiency vs output power G 1092 I--- I-- f=lkHz Rl= 4(1 80 II I I r7 I V 1..1 1./ 1/ Ptot V ...V V JV IV V J...,...oj....-' a I -1-- - t - ;,.- [\1'-. 80 I I 400 100 I : I I I Cc=5 Cj 12 16 20 Vi (mV) 370 V j7 V ~ ~V - 60 t-40 20 18A6418 Fig. 8 - Maximum power dissipation vs supply voltage Fig.7 - Typical drain current vs output p')wer c- ./ 400 Y 300 /' V' Ptot V (W) .. f----- -- _. RL=411 I --f-----t ----L_-: I I I! /" i /V 200 100 Vi . I I Vs= 14 -/iIIII I I l -f--- RL=4U ......V I ." .", V ./' -. ._. ! .-~ VI I i I I 12 10 Fig. 9 - Power rating chart (TBA 641 BX1 and TBA 641 B11) Fig. 10 - Power rating chart (TBA 641 B72) - - G 1679 G l6U Ptot (W) Ptot (W) WITH INFINITE WITH I HEATSINK INFINITE HEATSINK \ 4 FREE AIR FREE AIR f.... o -50 o 50 100 \ ~ f..J o. Tamb ('C) -50 371 o 50 --tSI8418 , ' j"" '. ," ' . .'"' . " Fig. 12 - Typical quiescent drain current vs ambient temperature Fig. 11 - Typical quiescent drain current vs supply \ioltage I. ImA) !l.L -t~ f-- - - r 16 __ .L__ , Id(tota~ 12 I-- ./ V 17 -JL V ___ f-- ~ I Id (total) 16 '5 14 ILLi Id (outPL!t transistors) I 13 '/(coutput transistors 7/ 12 '" " ./ 0-1.098 I ImA) Vs =l'V 10 10 12 14 10 -10 Fig. 13 - Typical quiescent output voltage vs ambient temperature 20 30 40 50 Tamb (·C) Fig.14 - Typical quiescent output voltage vs supply voltage 6-1100 Vo IV) Vs=14,v ! -- r-- 7.2 , i'-- t-- I--. / 6.6 -10 30 50 V V V / '0 70 rambl'C) 372 / V 12 V 7 k: TBA641B TYPICAL APPLICATION Vs ,------,-----,-------------t~---OI4V I)JF IZ5V 0.1 100),lF 5-0408 MOUNTING INSTRUCTIONS -1---- hut sink _ _ _ _ _ Contad (Silicon 9 ..... ) Rth Fig. 15-Shows a method of mounting the TBA 641 B with the spacer, satisfactory both mechanically and from the point of view of heat dissipation. Better thermal contact between package and heat-sink can be obtained by using a small quantity of silicon grease. For heat dissipation the desired thermal resistance is obtained by fixing the elements shown to a heat-sink of suitable dimensions. ~--"r--p. 373 ."cjw c. board I 18A6418 MOUNTING INSTRUCTIONS (continued) Power dissipation can be achieved by means of an additional external heat-sink fixed with two screws (both packages) or by soldering the pins of the external bar to suitable copper areas on the p.c. board (TBA 641 B11) A. In the former case, the thermal resistance case-ambient of the added heat-sink can be calculated as follows: where: B. T jmax Max junction temperature Tomb Ambient temperature P,o, Power dissipation R'h Thermal resistance junction-case j.case If copper areas on the p.c. board are used (TBA 641 B11) the diagrams enclosed give the maximum power dissipation as a function of copper area, with copper thickness 35 J.t and ambient temperature 55 ae. / l l GS0144 4 7 r--'~ ,r PC BOARD p,. I r~J...'-r:1L.I...ro......J.r"'-~ : 1 h1<>-=-- \ r I q : I ,LrrL!:rr;t..:rIl="'TrJ i TJA aJ, B'~ (W) 3 I I l - t- l - !l V I.--- 2 ,,- / V -I- I-- I T 0 10 COPPER AREA. 35 IJ- THICKNESS 374 20 30 40 Jl ' v, r - - - - - - i = } - - - - -...... THERMAL DATA ~ Rth j·amb Thermal resistance junction-ambient max 280 cG/W ELECTRICAL CHARACTERISTICS (T amb = 25 cG, Vs = 12 V unless otherwise specified) Parameter Id Quiescent drain current Vi Input voltage at pin 1 Vo Recovered audio output voltage Test conditions signal to noise ratio = 26 dB d fm = 50/0 f m Vi V; = 1.6 MHz = 1 kHz = 0.3 = 100 ~V = 1.5 ~V 377 f m = 1.6 MHz = 0.8 Min. Typ. Max. Unit 11.5 mA 10 IJ-V 100 mV 0.5 180 V mV fm = 1 kHz TBA 651 ELECTRICAL CHARACTERISTICS Parameter Vi Ri Ri Test conditions Min. Typ. Max. Unit Signal handling capability at pin 1 AGe range Ri (continued) for 10 dB expansion of output voltage 1 V 80 dB rf amplifier input resistance at pin 1 f = 1.6 MHz 1.4 kn Mixer input resistance at pin 4 f = 1.6 MHz 2.5 IF amplifier input resistance at pin 13 kn I--- f = 455 kHz 4 kn Fig. 1 - Typical output voltage vs input voltage 1000 1-++H---+-1-+I~.e-,\.lLATING SIGNAL 1m =1KHz . U.~U.. . . ..- y\ WI'OO 't\\~ 100 '" .. . -. 11'~\)."3. "" -ttt-t-H+I-+-t+tt-i - ~~~~rf~fj~~~~2~6~dB!t~fm~~~~~ 10 - ~/I-H++-I-++++-+-+-+++-+--+++H t-lft'OUT M.0DULATING SIGNAL -HtH-+ttt 1- O~~~~-LLil~~~-LW-~~~~~ 0.1 378 10 100 1K 10K LINEAR INTEGRATED CIRCUIT TBA 780 WIDE-BAND AMPLIFIER, FM DETECTOR, AUDIO PREAMPLIFIER/DRIVER The TBA 780 provides, in a single monolithic silicon chip, a major subsystem for the sound section of TV receivers in a 14-lead quad in-line or dual in-line plastic package. As shown in the schematic diagram the TBA 780 contains a multistage wide-band IF amplifier/limiter section, active filter, an FM-detector stage, electronic attenuator, a Zener diode regulated power supply section and AF amplifier section specifically designed to directly drive an NPN power transistor or high-transconductance tube. In the TBA 780, the demodulation can be effected by a single tuned discriminator coil (differential peak detector). Because of the circuit beeing so inclusive, a minimum number of external components is required. A particular feature of the TBA 780 is the electronic attenuator, which performs the conventional volume control function. ABSOLUTE MAXIMUM RATINGS Supply current (pin 5) Output current (pin 12) Input-signal voltage (between pins 1 and 2) Total power dissipation: at Tomb Storage temperature Operating temperature ORDERING NUMBERS: ~ 50 mA 6 mA ±3 V 850 mW -25 to 150°C Ot085°C 25°C TBA 780 X2 for quad in-line plastic package TBA 780 X7 for dual· in-line plastic package MECHANICAL DATA Di,nensions in mm i ~ I, I: ""., TBA TBA 780X2 Supersedes issue dated 4/72 379 78~X7 5/73 TBA 780 ELECTRICAL CHARACTERISTICS (T amb = 25°C, DC volume control P2 = 0 and Vs = +30 V applied to terminal 5 through a 620 n resistor, unless otherwise specified) Parameter Is Supply current Vi(thre,hold) Input limiting voltage (pin 2) Vo Recovered audio voltage (pin 8) d Distortion (pin 8) Vo Audio output voltage (pin 12) Vo Test conditions Vs = 9 V (applied direct. to pin 5) Vj = 100 mV f = 5.5 MHz fm = 1 kHz Af = ±50 kHz d f =5% = 1 kHz Ro mA - 200 400 /tV - f Vrrn , 3 0.9 2 2 Vrrn , 2.5 11.75 80 Ufo V - 3 0.075 1 . mV 17 kQ 3.25 kQ = 5.5 MHz 380 4 dB 00 Input resistance (pin 2) Output resistance (pin 9) 24 0.5 0.75 60 P2 = Fig. 16 8.5 DCvolume control range Rj 10 f = 5.5 MHz fm = 1 kHz Af = ±50kHz DC output voltage (pin 12) Max. play-through voltage Min. Typ. Max. Unit - TBA 780 ELECTRICAL CHARACTERISTICS Test conditions Parameter Ro Ro Ro Cj G. Output resistance (pin 7) f AMR 270 Cl 7.5 kCl 300 Cl 4 pF 7.5 pF 17.5 20 dB 343 370 40 50 = 1 kHz Output resistance (pin 8) Input capacitance (pin 2) Output capacitance (pin 9) Audio voltage gain f Vj Ptot Min. Typ. Max. Unit Output resistance (pin 12) f Co (continued) = 5.5 MHz = 1 kHz = 0.1 V Total power dissipation Amplitude modulation rejection t = 5.5 MHz 381 400 mW dB Fig. - - 4 3 TBA 780 SCHEMATIC DIAGRAM Fig. 1 13 Fig. 2 - Typical application using TBA 780 and class A output transistor 1) T, = 5.5 MHz transformer L p = 5.5 J1H; Qo=80; 19 'turns o 0.15 mm silk-covered copper wi re with powdered-iron core Ls = 9 turns 0 0.15 mm Audio ouiput transfor· mer: The dimensions of the transformer and of the circuit parameters are to be evaluated on the basis of the output power desired and of the load to be used Single tuned discriminator coil: 12 J1H; Q o = 50 (58 turns (21 0.08 mm with powdered-iron core) 382 TBA 780 Fig. 3 - Input limiting voltage, AM rejection, recovered audio, total harmonic distortion, maximum attenuation, maximum "playthrough" test circuit Fig. 4 - Audio voltage gain (undistorted output) test ci rcuit 6200. 1W B S1 Vi r--i- ~ :--- FM O.01jJF ~I--;on - Gl:'nerator O.47~F I Fig. 5 - IF amplifier voltage gain test circuit To diode detector and oscilloscope 383 TBA 780 Fig. 6 - Typical IF amplifier voltage gain Fig. 7 - Typical AF amplifier voltage gain G-OS80 G, Gv (dB ) .-~~~r-~~~-~~~-~~~ (dB) 1-+-+++i+H+--+-+f+H+lI Ta =25·C V, =100mVI-H+--+-+H+-fHI Ta =25·C V; =l00IJVrms 70 ...... 60 50 40 30 20 \. 10 o 6 • 4 10-1 6 o • f (MHz) 10 Fig. 8 - Typical FM detector output voltage versus input voltage 250 i I: V II (mV)C 1-200 1---- I'~ rT n ._--- l - i-r 10' f=5.5 MHz , ""=15 kHz fm=lkHz • (dB) 6 4 68 1 2 10 II , ! 1 4 f (MHz) 10' f=5.5MHz Af·~15kHz 150 1-[ I---J II 4 6 8 4 -LI-W---I--c-l-m./-lj ~. ~- 2 10-1 G-058311 AMR IT t· 4 6 B Fig. 9 - Typical amplitude-modulation rejection versus input voltage ~~~~~~~~~~~_~~,",G-;.<;'OS'i\':82/1 VO 1---- 2 1()' -- 10 t" ~ m=30·/. m=lkHz , 6 I 4 100 I 50 2 4 10-1 111111 6. 4 ·1 6 8 2 10 4 Vi (mV) 6 8 2 102 10-1 384 4 68 I 11111 2 4 68 10 2 4 68 2 111I 4 6 8 102 Vi (mV) 10' TBA 780 Fig. 10 - Typical gain reduction versus resistance (P2) (tErminal 6 to gnd) -_. 40~1-++tTrHr71~--~~+H~-~-++THffi l OL-~~4~6~6L-~~4~6~6L-~'~~4~6~6 10 10' P, (kO) 10' Fig. 11 - P.C. board layout. 1:1 scale (fig. 2 circuit) ·~8 '-~ C7 385 LINEAR INTEGRATED CIRCUIT TBA 800 AUDIO POWER AMPLIFIER The TBA 800 is an monolithic integrated power amplifier in a 12-lead quad in-line plastic package. The external cooling tabs enable 2.5 W output power to be achieved without external heat-sink and 5 W output power using a small area of the P.C. board Copper as a heat sink. It is intended for use as a low frequency Class B amplifier. The TBA 800 provides 5 W output power at 24 V/16 n and works with a wide range of supply voltage (5 to 30 V); it gives high output current (up to 1.5 A), high efficiency (75% at 5 W output), very low harmonic distortion and no cross-over distortion. ABSOLUTE MAXIMUM RATINGS Vs io 10 Ptot T stg , T j Supply voltage Peak output current (non repetitive) Peak output current (repetitive) Power dissipation at Tamb = 80°C at T tab = 90°C Storage and junction temperature 30 2 1.5 V A A W 5 -40 to 150 W °C ORDERING NUMBER: TBA 800 MECHANICAL DATA Supersedes issue dated 5/74 Dimensions in mm 387 6/75 TBA 800 CONNECTION AND SCHEMATIC DIAGRAMS 5-0329 TEST CIRCUIT +Vs=24V Vi R2 l00kQ C2 500)JF 15 V • C3, C7 see fig_ 5 388 TBA 800 THERMAL DATA Rth j-tab Rth j-amb Thermal resistance junction-tab Thermal resistance junction-ambient max max 12 °C/W 70' °C/W • Obtained with tabs soldered to printed circuit with minimized copper area. ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tamb Vs = 24 V, RL = 16 n, Parameter Vo Id Test conditions Quiescent output voltage (pin 12) Bias current (pin 8) Po Output power 11 d = 100/0 f = 1 kHz Vi (rms) Input saturation voltage V,* , Input sensitivity Ri Input resistance (pin 8) B Frequency response (-3 dB) Gy Gy Min. Typ. Max. Unit 12 Quiescent drain current (pin 1 ) Ib d 4.4 Po = 5W f = 1 kHz Po f Voltage gain (open loop) f = 1 kHz Voltage gain (closed loop) f = 1 kHz C3 * See fig. 6 389 13 V 9 20 mA 1 5 J.tA 5 W mV 220 = 330 pF = 50 mW to 2.5 W = 1 kHz Distortion = 25°C, unless otherwise specified) 80 mV 5 Mel 40 to 20,000 Hz 0.5 % 80 dB 42 45 dB 39 I , TBA-800 ELECTRICAL CHARACTERISTICS (continued) Parameter eN Input noise voltage Rg =0 B(-3 dB)=40to 20,000 Hz 5 JJ.V B(-3 dB)=40 to 20,000 Hz 0.2 nA' 75 % 35 38 dB dB 280 rnA iN Input noise current 11 Efficiency Po = 5W SVR Supply voltage rejection ratio frippl. Drain current Id f = 100 Hz C5 = C5 = 25~F 1oo~F Fig.2 - Maximum power dissipation versus supply voltage G-0805~ (j 6 = 1 kHz Po =5W Fig. 1 - Typical output power versus supply voltage 08 11/1 Po (w) I-I-- Min. Typ. Max. Unit Test conditions Ptot b!,OOfo (W) f=lkHz I-- Rf = 560 4 1/ RL=BO ---- 4 L I 'I RL=160 /-- tt r--- ,--- - ,--- RL=SO ) V / 2 / V V ./ V 1/ -:; o ..... 10 ~ o 20 V / ./ ~ ~ V 390 V "" 10 Vs (V) ,./ i-" ./ "'RL=16D. 15 20 25 Vs (V) I II¥ TBA 800 Fig. 3 - Typical distortion versus output power Fig. 4 - Typical distortion versus frequency G 080611 d ('Io) d ('Io) "1 8 Vs=24V RL =160 j=lkHz Rj =560 ffff- G -ossm j (Hz) I IIIII s= 24V RL= 160 _ Rj= 56Q 4 II Po =50mW 3 6 4 o=2.5W I 1\ IT 2 1\ ./ o o 4 10 Po{W) Fig. 5 - Value of C3 versus Rf for various values of B C3 5-0692/3 , Vj (mV) (pF), C7~5XP _ .. j... , , , 20kHz , f.-- I--- 10 ~ I'- .........1....... I..-- F' I=' 1=1=' l - I- f- , f= f= , , , , l- I- IVj(Po =0.05W) ~ ., 10 , 1/ , , , , Rj{O) 50 391 Gv -I-, ~ Vj(Po =5W) •, , l/ 17 10 RL= ISO f = 1kHz ~ / 10' Vs=24V , , ...----15kHz 10' Fig. 6 - Typical voltage gain (closed loop) and typical input voltage versus R, G 125711 , /,lO;kHZ '7 10', , 10' 10' 100 Rf (0) i' TBABOO Fig. 7 - Typical power dissipation and efficiency versus output power Fig. 8 - Typical quiescent output voltage (pin 12) versus supply voltage 6-083311 Ptot (W) 15 '1 u Ptot ( ",) Vo 70 (V) V so 10 1.5 50 t- ~ +. V 40 Vs=24V RL=IS!l f =lkH 30 5 20 ,/ 0.5 1/ 1/ / L G- 059011 1/ V V / V 10 a a a 4 po(W) 2 Fig.9 - Typical quiescent current versus supply voltage 10 20 Vs(V) 30 Fig. 10 -' Typical supply voltage rejection ratio G1258/1 SVR ~ (dB) L ) Vs = 24V RL =lSLl 'ripplo=100Hz Id (tot) o 6 -10 4 Id (output transistors) 2 I' -20 -. -30 --i- t-.... c-- - '" ='i'--1'"'....... r- -40 - ~=25p C5=100)JF-50 o 10 20 30 o Vs(V) 392 50 100 TBA 800 APPLICATION INFORMATION Fig. 11 - Circuit with the load connected to the supply voltage R2 100 k £l Compared with the other circuits, this configuration entails a smaller number of external components and can be used at low supply voltages. C4 O.1~F R1 10 • C3, C7 see fig. 5 Fig. 12 - Circuit with load connected to ground without bootstrap +Vs=24V This circuit is only for use at high voltages. The pin 3 is left open circuit, this automatically inserts diodes D2 - D3 (see schematic diagram) and this enables a symmetrical wave to be obtained at the output. Refer to figs. 13 and 14 for distortion and output power. • C3, C7 see fig. 5 393 I I Fig.14 - Typical output power versus supply voltage (fig. 12circuit) Fig. 13 - Typical distortion versus output power (fig. 12 circuit) G.OSIO G 0806 d ('10) 8 r-- r-- - Vs=24 V R,=16.Q f=lkHz Rf =560 I 6 I / I 6 d =10"10 f=lkHz Rf = 56 I / 4 1/ 4 R,=SQ / 2 / 2 J 2 o 3 /R, =160 V 1/ / V ~ r.,...- o IV 10 / 20 Fig. 15 - Circuit with load connected to ground with bootstrap + Vs=24V RX o---~--'-----~-+-~-l 150.0 I I I I Vi 100kO 500}'F 15V The bootstrap capacitor C8 enables the same electrical characteristics as those of the tesl circuit to be achieved ... For low supply vGltage operation (e.g. 9 to 14 V), RX (150,0) is connected between pin 1 and pin 4. --+---.....---J • C3, C7 see fig. 51..-............ N.B. - For the circuits of figures 12 and 15 an excellent supply voltage ripple rejection is obtained by connecting the capacitor C5 (10 to 100 IJ.F • 15 V) between pin 7 and ground. 394 TBA 800 MOUNTING INSTRUCTIONS The tabs on the TBA 800 can be used to conduct away the heat generated in the integrated circuit so that the junction temperature does not exceed the permissible maximum (150°C). This may be done by connecting tabs to an external heat sink, or by soldering them to a suitable Copper area of the printed circuit board (fig. 16 a). Fig. 16 b shows a simple type of heat sink. Assuming an area of copper on the printed circuit board of only 2 cm 2, the total Rth between junction to ambient is approximately 28°C/W. External heat sink or printed circuit copper area must be connected to electrical ground. In the latter case, fig. 17 shows the maximum disSipated power (for Tomb = 55"C and Tomb = 70 ~C) as a function of the side of two equal square Copper areas having a thickness of 35 ~ (1.4 mils). During soldering the tabs temperature must not exceed 260 0 C and the soldering time must not be longer than 12 seconds. Fig. 16 a - Example of an area of P.C. board copper soldered to the tabs of the TBA 800, wich is used as a heat sink Fig. 16 b - Example of TBA 800 with external heatsink BOARD 395 TBA 800 Fig. 17 - Power that can be dissipated versus "I" Fig. 18 - Power rating characteristics G- 0952 Ptot (w) Rth CIW) 80 B G-09 5 1. 60 6 t-. 3 Rth '-amb N-.J: 4 2 Ptot (W) , ~~ £ ""-:s: ,y~ ~-'--.J "\~§1-1'-~ ~ "i- ""'"fn -s.;,,, ~G' ~ 1\.'%, 40 \& If "'W~ '? - 3 Ptot 1/ 2 o Rttn) Fig. 8 - Typical quiescent output voltage (pin 12) versus supply voltage Plot Ys =14.4Y RL=4fl 8 10 2 10 Fig. 7 - Typical power dissipation and efficiency versus output power (W) III•• 10 2 40 4 6 8 Po (IN) 40 4 20 2 o o 404 4 8 12 16 Vs(V) 20 TBA 810S TBA810AS Fig. 9 - Typical quiescent current versus supply voltage Fig. 10 - Typical supply voltage rejection G 0950 SVR I (dB) Vs =14·4 V R,=4Q C5 =100)JF =100Hz o f",.,. 15 -10 I (total) -20 10 -30 '" ......... -40 5 I ut ut transistors -50 I o 5 10 r--. -60 15 o Vs(V) 50 I""" 100 Rf (0) For portable equipment the cirouit in Fig. 11 has the advantages of fewer external oomponents and a better behaviour at low supply voltages (down to 4 V). Fig. 11 - Typical oircuit with load oonnected to the supply voltage R2 IOOka * C3, C7 see fig. 6 405 TBA810S TBA810AS SVR (dB) Fig. 12 - Typical supply voltage rejection versus RI (fig. 11 circuit) Vs = 14·4 RL=4Q f,;ool. =100Hz o -10 -20 -30 -40 o 50 150 100 Rf (0) MOUNTING INSTRUCTIONS The thermal power dissipated in the circuit may be removed by connecting the tabs to an ~xternal heat sink (TBA 810 AS - fig, 13) or by soldering them to an area of copper on the printed circuit board (TBA 810 S - fig. 14), During soldering the tabs temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. Fig. 15a and 15b show two ways that can be used for mounting the device. G-Q951 Fig. 13 - Maximum power dissipation versus ambient temperature (for TBA 810 AS only) Ptot (w) "- '"'" ~ '5-:\ '; ~ 4 ~~ .,,~ " 3 ~ % '% "';3>t, ~~~ -.; ......'*' o -50 o 50 100 150Tamb{'t) 406 TBA 8108 TBA810A8 Fig. 14 - Maximum power dissipation (for TBA 810 S only) COPPER versus copper area AREA 35}-' THICKNESS P. C. BOARD G-0952 Ptot (W) Rth CNI) 80 6 60 ~h I-amb 4 40 ~ t1- j:: PJit (Ta m b-55'C) T~ 20 Ptot (Ta,m?= iO~C o o 10 20 30 407 40 I (mm) of the P.C. board la"·.··.·8J08. TBA.·.···8JQAS·· Fig. 15a shows a method, of mounting the TBA 810 S, that is satisfactory both from the point of view of heat dissipation and from mechanical considerations. For TBA 810 AS the desired thermal resistance is obtained by fixing the elements shown in fig. 15b, to a suitably dimensioned plate. This plate can also act as a support for the whole printed circuit board; the mechanical stresses do not damage the integrated circuit. This is firmly fixed to the element, in fig. 15b. Fig.15a HEAT SINK R'h Fig. 15b 408 =30°C/W TBA 810S TBA810AS THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction temperature: all that happens is that Po (and therefore Ptot) and Id are reduced (fig. 16). Fig. 16 - Output power and drain current versus package temperature G-0953!1 Po (W) Vs=l4.4 Ii RL=40 8 Po (d=lO"/,) 6 I 4 lcI(d=10%) j -- 0.8 0.6 2 0.4 0.2 o 409 o 50 100 150 Tcase("C) 18A810S 18A810AS Fig. 17 - P.C. board and component layout for the test and application circuit Fig. 18 - P.C. board and component layout for the fig. 11 circuit 410 TBA 820 LINEAR INTEGRATED CIRCUIT AUDIO AMPLIFIER The TBA 820 is an integrated monolithic audio amplifier in a 14:-lead quad in-line plastic package. It is intended for use as low frequency class B amplifier with wide range of supply voltage: 3 to 16 V. Main features are: minimum working voltage of 3 V, low quiescent current, low number of external components, good ripple rejection, no cross-over distortion, mounting compatibility with TAA 611 (see note on last page). Output power: p. :=: 2 W at 12 V - 8Q • Po 1.6 W at 9 V - 4Q • p. 1.2 W at 9 V - aQ ABSOLUTE MAXIMUM RATINGS V, Supply voltage 10 Output peak current Power dissipation at Tamb :=: 50 °C Storage and junction temperature P tot T stg ; T j 16 1.5 1.25 V A W -40 to 150°C MECHANICAL DATA Dimensions in mm pE~l ~ 2.54 ~ I~.I POOt-G Supersedes issue dated 5/73 411 6/75 18A820 CONNECTION DIAGRAM 14 ~rT~E RIPPLE REJECTION 13 COMPENSATION N. C. 12 OUTPUT BOOTSTRAP COMPENSATION N.C. 4 FEEDBACK 10 GROUND N.C. 9 N.C. GROUND (SUBSTRATE) INPUT SCHEMATIC DIAGRAM 14 Rl :J--I--+--~--+--C:J-I--+-'-"""'-+--012 2K 5 412 " 10 13 TBA 820 TEST AND APPLICATION CIRCUITS r--.--.------.------1~-O c:l:. C6* 150)JF + Vs 1 10V I I Fig. 1 Circuit diagram with load connected to th~ supply voltage I In R1 100Kll C1 100)JF 6V .----_-.--------1~--() + Vs C2 100,uFI 15 V -=- Fig. 2 Circuit diagram with load connected to ground C7 100~F 15V cs 1000}JF 15V R1 100KO C1 100,uF 6V 5-0211/2 • Capacitor C6 must be used when high ripple rejection is requested 413 18A820 THERMAL DATA Rth j •• mb Thermal resistance junction-ambient (copper frame) I 80 max °C/W ELECTRICAL CHARACTERISTICS (T amb == 25°C unless otherwise specified) Parameter Test conditions Min. Typ. Max. Unit Fig. 16 V - 5 V - V, Supply voltage Vo Quiescent output voltage (pin 12) V, == 9V Quiescent drain current V, == 9V 4 12 rnA - 10 Bias current (pin 7) V, = 9V 0.1 0.7 p.A - Po Output power d = Af = V, = V, = V, = V, == V, = Id Vi Vi (rmsl (rms) Input sensitivity Input sensitivity Ri Input resistance B Frequency response (-3 dB) 3 4 10% 1200 12 V 9V 9V 6V 3.5 V f = 1 kHz AL AL AL AL AL == 4.5 2 1.6 1.2 0.75 0.22 W W W W W == 1.2 W V, = 9V f = 1 kHz == 80 =330 == 1200 16 60 mV mV 1 Po = 50 mW V, == 9 V f == 1 kHz AL == 80 Af ==330 Rf = 1200 3.5 12 mV mV 1 5 MO Po AL AI Af 80 = 40 == 80 == 40 == 40 0.9 Cs == 680 pF Cs == 220 pF Distortion - AL == 80 V, == 9V AI = 1200 d 1 Po == 500 mW V, == 9V f = 1 kHz RL == 80 Rf =33n RI == 1200 414 1 25 to 7000 25 to 20000 Hz Hz 0.8 0.4 % % 1 TIA 820 ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Gv Voltage gain (open loop) Vs = 9V f = 1 kHz RL = 80 Gv Voltage gain (closed loop) Vs f RI RI RL = 80 = = = = 9V 1 kHz 330 1200 Min. Typ. Max. Unit 75 dB 45 34 dB dB Fig. - 31 37 eN Input noise voltage Vs = 9V B (-3dB) = = 25 to 20000 Hz 3 IJ.V - iN Input noise current B (-3 dB) = Vs = 9V = 25 to 20000 Hz 0.4 nA - S+N -N Signal and noise to noise ratio RL = 80 Vs = 9V Rf =1200 B (-3dB) = = 25 to 20000 Hz R1 = 100 kO Po = 1.2W 70 dB - RL = 80 Vs = 9V f (ripple) = 100 Hz C6= 50IJ.F Rf = 1200 42 dB 2 SVR Supply voltage rejection Fig. 3 - Typical power output Fig. 4 - Typical distortion G-0850 d ("I.) Po (W) =.1.0'/, =lkHz =120 n 3 12 RL=8n- RL=16n- 2 - G 0851 I Vs=9V 1\=80 Rf=120 f=lkHz 8 L=411 4 J II' o 4 8 12 16 o Vs(V) 415 OA 0.8 12 Po(W) TBAB20 Fig.6 - Maximum power dissipation (sine wave operation) Fig. 5 - Typical power dissipation and efficiency G -0853 G-atS2 'l ('(,) Plot (W) RL =80 V~=9V HkHz 80 Ptotmax (w) Tamb =50 'C 1.6 'l Q5 =41 60 Q4 R=8 1.2 D.3 40 0.8 1/ 02 Ii 0.4 20 0.1 1..1 o 0.5 1.5 o Po(W) Fig. 7 - Typical value of C B versus Ri f, =10kHz 10' ~ CB=220p -1 l/~ CB :680pF -2 8 \ \ \ I -3 -4 ./ 6 10 Vs(V) Rf =120 (11 t, :- I\) I\) I I I I I I I I I I I I )j ; r: f ~~~i18WALi I I I I I I __________ --1 Oscillator Oscillator I VERTICAL SECTION Vertical amp'litude control 5-0212 Horizontal output TeA 511 Fig. 2 - Test circuit O.3ms. ITHorizontal section 1 100j.JF~ J: C, ~onF 27kO R4 ~' r Rl l1.5kQ sync C10 ,W I 8 fp;-' 9 16 I I 3000 Rs :iii r 'J ~~OnF 15n~;: Cs Tcs C9 PJ 220 fi8k n Ru ... 5,0213/1 Tolerances : (non electrolytic) V ,4 and V 220ko =~20nF CB output V". Vert; cal freq uency Vertical output b Horizontal Resistors Capacitors ~ P, ~~~ TCA 511 2kO 150ko ( R9 1M 3.9kO >--- 68n~ = C4 Fig. 3 - J: [~~kO ver\iCl~ size ~ ~~3nF 18kO R3 ·Vs 1OC\ - ~ &ightness oont~1 3.9 kQ Horizontal 100"~freq. ~Anode 6V 16 kil ~_._ azon OF"oc1.5 '--<'i~11 0.120V S-0363 (*) The jungle circuit TBA 311 performs the following functions: video preamplifier, IF AGe, PNP and NPN tuner AGe, sync. separator, noise gate. It is particularly suitable for driving the TeA 511 sync. inputs. TeA 511 APPLICATION INFORMATION Power Supply The circuit can work with stabilized supply voltage having a value from 9 to 15 V. A dropping resistor and a filter capacitor may be used to obtain the supply from higher voltages; however, the voltage on pins 3 and 4 must never exceed the maximum permitted voltage. Synchronization Pins 2 and 6 can be DC driven if the reference level of the synchronization pulses is less than 1 V. With reference levels greater than this value, a coupling capacitor must be inserted in series with the input, and pins 2 and 6 must be connected to ground via a resistor. Vertical Oscillator The capacitor connected to pin 1 must be selected with regard to the frequency tolerance, to the thermal stability and to the capacitor's ageing. The width of the output pulse, to be chosen according to the needs of the output stages, is defined by the resistor connected between pin 1 and pin 16. Vertical Output The vertical output is taken from pin 14, which is a buffered output of the sawtooth voltage generated at pin 15. The output current from pin 14 is defined by an internal resistor in the integrated circuit. If a greater current is needed, a resistor may be connected between pin 14 and pin 3. The oscillator output pulse is available at pin 15 if the capacitor C9 is not connected. This configuration is used for driving output stages in which the sawtooth is generated by Miller effect. Horizontal Oscillator The capacitor connected between pin 10 and ground must be selected with regard to the frequency tolerance, to the thermal stability and to the capacitor's ageing. In multistandard receivers, the oscillation frequency may be changed by switching the value of the capacitor connected to pin 10. 425 TeA51l APPLICATION INFORMATION (continued) Phase Comparator The phase comparator's output consists of current pulses acting on the oscillator control voltage. The external components C2, C3, C4, C5, R4, R5 and R6 (fig. 2) define the circuit performance with respect to the pull-in range, the hold-in range and the frequency variations that occur on switching-on and switching-off. Moreover the pull-in range depends on the absolute value of the voltage divider R2, P1 and R3. A coincidence detector is connected to pin 7; this modifies the pull-in range and the noise immunity, depending on whether the system is synchronised or is searching for synchronization. The time constant applied to pin 7 avoids uncertainty during the switch from one state to the other. Horizontal Output The collector of the output transistor is connected to pin 12; its load resistor, externally connected between pin 12 and pin 4, defines the amplitude of the output current pulse. The width of the output pulse can be varied between 13 and 35 !lS by means of the resistor connected between pin 11 and ground, or else by means of a voltage ~ 5.3 V applied between pin 11 and ground. This control acts upon the trailing edge of the pulse, hence the phase advance of the leading edge stays constant with respect to the synchronism, 426 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA· AUDIO POWER AMPLIFIER WITH THERMAL SHUT-DOWN The TCA 8305 is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier. The TCA 8305 provides 4.2 W output power @ 14 V/4 n, 3.4 W @ 12 V/4 n, 2 W @ 9 V/4 n, 3.7 W @ 16 V/8 nand 2.3 W @ 12 V/8 n. It works with a wide range of supply voltages (4 to 20 V), gives high output current (up to 2 A) and very low harmonic and cross-over distortion. The circuit is provided with a thermal limiting circuit which fundamentally changes the criteria normally used in determining the size of the heatsink, in addition the ToCA 8305 can withstand short-circuit on the load for supply voltages up to 14 V. The TCA 8308 is pin to pin equivalent to the TBA 8108. ABSOLUTE MAXIMUM RATINGS V. 10 10 Ptot T. tg • T j 5upply voltage Output peak current (non-repetitive) Output peak current (repetitive) Power dissipation: at Tomb = 80°C at Ttab = 90°C 8torage and junction temperature 20 2.5 2 V A A W 5 -40 to 150 W °C ORDERING NUMBER: TCA 8308 Dimensions in mm MECHANICAL DATA Supersedes issue dated 6/74 427 6/75 CONNECTION AND SCHEMATIC DIAGRAMS ~ 4 " " .~" QII.,j Q(f SUPPlY VOLTAGE 12 OUTPUT N.C. " N. C. N. C. 8 Q' GROUND BOOTSTRAP GROUND (SUBSTRATE) COMPENSATION INPUT FEEDBACK RIPPLE REJECTION " Q2~ GROUND " 9 TEST AND APPLICATION CIRCUIT Vs R3 C7 O.l,uF I Vi Rl lOOkO = C3 SEE FIG.6 428 '" " " '" 12 DO " Q r" --..f11 '- ' Q R6[ 01 ~4 ~ k k 't--- 5-0289 + Q12 ~Q' Q~ ~ '" r.~~ " 5 1 Q" ' Q9 '~" 1<7 R8 " T 10 S-O?~3 THERMAL DATA Rth j.tab Rth j·amb Thermal resistance junction-tab Thermal resistance junction-ambient max max 12 °C/W 70· °C/W • Obtained with tabs solderad to printed circuit with minimized copper area ELECTRICAL CHARACTERISTICS Parameter (Refer to the test circuit, Tomb = 25°C) Test conditions Min. Typ. Max. Unit V, Supply voltage (pin 1) Vo Quiescent output voltage (pin 12) V, = 12 V Quiescent drain current V, =9V 8.5 16 mA Ib Bias current (pin 8) V, = 12V 0.2 llA Po Output power d V, V, V, V, V, V, 4.2 3.4 2 0.8 3.7 2.3 W W W W W W Id ViCrms) Voltage for input saturation Vj Input sensitivity B d 4 = 10% = 14V = 12V =9V =6V = 16 V = 12V 5.3 f RL RL RL RL RL RL = = = = = = = 1 kHz 4n 4n 4n 4n 8n 8n Po = 3.4 W RL = 4n V, = 12 V f = 1 kHz V, = 12 V RL = 4n C3 = 390 pF Distortion Po = 50 mW to 2 W V, = 12 V f = 1 kHz Input resistance (pin 8) Gy Voltage gain (open loop) V 6.7 V mV 220 Frequency response (-3 dB) Rj 2.5 6 20 V, = 12 V f = 1 kHz 429 50 mV 40 to 10,000 Hz 0.3 % RL = 4n 5 Mn 75 dB RL = 4n I ELECTRICAL CHARACTERISTICS (continued) Parameter Gv Test conditions Voltage gain (closed loop) Vs = 12 V f = 1 kHz eN Input noise voltage iN Input noise current 1] SVR Id Efficiency Supply voltage rejection ratio Drain current • Thermal shut-down case temperature Min. Typ. Max. Unit RL = 40 37 40 dB R1 = 0 Vs = 12 V B (-3 dB)=40 to 10,000 Hz 2 !lV Vs = 12 V B (-3 dB) =40 to 10,000 Hz 0.1 nA Po = 3.4W V. = 12V f = 1 kHz RL = 40 62 % V. = 12 V RL = 40 frippl. = 100 Hz C2 = 100!lF C2 = 25!lF 45 38 dB dB Po = 3.4W V. = 12V RL =40 430 mA P tot = 2.2W 130 °C • See figs. 8 and 14 430 34 Fig. 1 - Typical output power versus supply voltage Fig. 2 - Maximum power dissipation versus supply voltage (sine wave operation) G-1275 Ptot (W) I f--+-H+-H-+-l-li't-+-+-H--H I-- f-- d =1 • RI =56 n - G 1276 Po (W) RL =411 II =80 I =lkHz , RL =811 V 15 10 o V.(V) G 1277 , II VS =12 V ~ 4 .." - V,=12 V I =1 kHz RL=411 \ 10', q Gv ..... i--'" -Vi a:-' I r---- -- - -:..-- ,...... , r-Vi / , , ./ ./ , . f o PO(W) 431 - Po -3.3W Po =50 mW ........... f- 10. o Vs ( V) ,G y = - = - = a: 15 10 II ~ V Fig. 4 - Typical voltage gain (closed loop) and typical input voltage versus feedback resistance (R,) G-4218 Fig.3 - Typical distortion versus output power RI =5611 I =1 kHz .... 100 200 f-- •10' I- , Fig. 6 - Typical value of C3 versus Rf for different bandwidths Fig. 5 - Typical distortion versus frequency d I C3 I I I ('/.) G 1279 Ii ! (pF) -----+-- I G-1280 :==:CF- -- "",S=5kHz .... /" 10' ... S=lOkHz 8 /S=2OkHz / v. =12V RL=411 Rf =56 01-- ./ 10' IIII Po =50mW 8 -. Po=2W ~I - -I'" ,,/ .,/" 6 • 10' 10 f (Hz) 10' 10 Fig.8 - Typical power dissipation and efficiency versus output power Fig. 7 - Typical supply voltage rejection ratio G-1281 - G 1282 SVR (dS) - - 'l ( "I.) V.=12V ---RL =8n - RL =4n 80 ,. -'u 'l 'l 60 -20 PIOI V.=12 V RL=4 Jl. -30 / /" C2=IOOJ-'F ..... ........ fripple = 100 Hz ....... ~ "-t-I- -50 - // IJ'/ - - ~ 1 to~ 20 I o -50 o 50 o 100 432 •. ~~a::8··.·t)AS···.·· iJ'U , ',-,/-" Fig. 10 - Typical quiescent current versus supply voltage - G 12&4 -to ) t- 1/ 15 1/ 6 ""- ld total 10 1/ i'" V o Id (output transistors) 10 15 o Vs (V) 10 15 Vs (V) APPLICATION INFORMATION For portable use the circuit in fig. 11 has the advantage of fewer external components. Fig. 11 - Typical circuit with load connected to the supply voltage O.I!'F I V, 111. *=C3 SEE FIG. 6 433 APPLICATION INFORMATION For line operated equipment the bootstrap can be eliminated using the circuit of fig. 12. Gain is depended on RX/R f • Fig. 12 - Circuit with load connected to ground and without bootstrap, in which Gy spread is reduced Fig. 13 - Typical output power versus supply voltage (see fig. 12) :L:~~. 1-++-+-++-+-++..-1-++-1 f+-t-f-+-t-f-+-t-f-++1 I o =1 kHz 10 15 434 THERMAL SHUT-DOWN The. presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent) or an above-limit ambient temperature can be easily supported 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction temperature; all that happens is that Po (and therefore P tot ) and Id are reduced (fig. 14). G-12e6 Fig. 14 - Output power and drain current versus package temperature Vs=IZV RL=4Jl d =10-/. P. Id o 435 50 100 MOUNTING INSTRUCTION The thermal power dissipated in the circuit may be removed by connecting the tabs to an external heatsink or by soldering them to an area of copper on the printed circuit board (fig. 15). Fig. 16 shows a simple type of heatsink. Assuming an area of copper on the printed circuit board of only 2 cm 2 , the total Rth between junction and ambient is approximately 28°C/W. The external heatsink or area of printed circuit copper must be connected to electrical ground. Fig. 17 gives the maximum power that can be dissipated (for Tamb = 55 and 70°C) as a function of the side of two equal square copper areas having a thickness of 35 ~ (1.4 mil). During soldering the tabs temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. Fig. 15 - Example of are~ of P.C. board copper soldered to the tabs of the TCA 8305 which is used as a heatsink Fig. 16 - Example of TCA 8305 with external heatsink COPPER AREA 35}J THICKNESS HEATSINK Rth = 30°C/W p.e.BOARD 436 Fig. 17 - Power that can be dissipated versus "I" Fig. 18 - Maximum allowable power dissipation versus ambient temperature 0-12&& - G 1287 Ptot (W ) Rth t ('CIW) 80 60 WITH INFINITE Rth j-aml> 4 40 I- - HEATSINK I ~J 20 ~ITHOUT 20 Ptot (Taml>=70'C) ~ ~- 4' '''6,.. 30 HEATSINK 1j. l-[{.-IS'. hTT-o 10 v~ ,~ "tot (Taml> =55 'C) o 1<- It.., 40 I (nvn) N.. Ct,.. -,....,... 0 -50 o 50 100 Ta mb('C) Fig. 19 - P.C. board and component layout of the test and application circuit (1:1 scale). I 437 LINEAR INTEGRATED CIRCUITS TCA 900 TCA 910 PRELIMINARY DATA MOTOR SPEED REGULATORS The TeA 900 and TeA 910 are linear integrated circuits in Jedec TO-126 plastic package. They are designed for use as speed regulators for De motors of record players, tape recorders and cassettes. The TeA 900 is particularly suitable for battery operated portable equipments, and the TeA 910 for car-battery and mains operations. ABSOLUTE MAXIMUM RATINGS Vs Supply voltage Ptot Total power dissipation at Tamb = Tstg , Ti Storage and junction temperature 70°C at Tease = 100°C ~ MECHANICAL DATA ;:,upersedes Issue dated 5 73 TCA 900 TCA 910 14 V 20 V 0.8 W 5W -40 to 150°C Dimensions In mrn 6 75 TCA 900 TCA 910 THERMAL DATA -.,. Rth -.,. Rth i-case i-arob Thermal resistance junction-case Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS Parameter V rer Id3 Vm Vm V'.2 Reference voltage (between pins 2 and 3) Quiescent current (at pin 3) Output voltage (for TeA 900 only) Output voltage (for TCA 910 only) Dropout voltage Limiting output current (at pin 2) I, K = l11/l11 3 max. max. 10 100 °C/W °C/W (T amb = 25°C and Rs = co unless otherwise specified) Test conditions Min. Typ. Max. Unit Fig. Vs = 5.5 V 1m = 70 rnA RT =0 2.6 V 1 V'.3 = 5.5 V 12 =0 RT =0 2.6 rnA .- V, = 5.5V 1m = 70 rnA RT = 91 n 3.6 3.9 V 1 V, = 9V I~ = 70 rnA RT = 270n 5.6 6.3 V 1 l1Vm fV m = -1% 70 rnA 1m RT = 91 n 1.2 V 1 = 5.5 V =0 400 rnA - Vs = 5.5V -70 rnA 12 l112 = ±10 rnA RT =0 8.5 - 1 V, = 5.5 Vto 12 V 1m = 70 rnA RT = 91 n 0.1 = V'.3 V2.3 = l1Vm --Il1V, Vm Line regulation (for TCA 900 only) 440 "ioN 1 TCA 900 TCA 910 ELECTRICAL CHARACTERISTICS Parameter ~Vm -/~V, Vm Line regulation (for TCA 910 only) (continued) Test conditions V, I," Min. Typ. Max. Unit Fig. = 10 V to 16 V = 70mA RT = 270n 0.1 %/V 1 1 ~Vm --/~lm Load regulation Vm = 5.5V = 40 to 100 rnA =0 0.005 %/mA = 5.5 V = -70 mA Tamb = -20 to 70 °c 0.01 %/oc V, 1m RT I -~Vr.t - I~ Vret Tamb Temperature coefficient V1. 3 12 - I Fig. 1 - Test circuit. 1 5·0281 441 TeA 900 TCA 910 Fig. 2 - Typical application circuit. ~Im M Vm I 5-0282 -::- Fig.3 - Normalized Kversus 12 Fig. 4 - Dropout voltage versus output current - G 083012 VI_2 1.4 f-t+-t-++-f-++--1H-+--1H-+--1H--H-+--I . 1.2 f-t+-t-++-H-+--1H-+--1H-+--1H--H-+--I I (V) AVm =_1°/. Vm / 1.8 / / 1.6 1.4 ./ 1.2 k'" 40 80 120 o 160 -[,(rnA) 442 '" "" 0.6 o ." V / 20 40 60 80 100 12.0 -12(mA) TeA 900 TeA 910 - G 0940/1 Pto t (W) WITH ~ ~ '*1 1- 1-~ ~~ ~ Fig. 5 - Maximum allowable power dissipation versus ambient temperature ~ ~ ~." ~1< ~ J'I.'~'?1< ~ XG' ('> ),.~ ~ 3'~~ '~~ ...,...,c-J?~~ 1 ""';''''J? L~~ o o -50 50 100 Tamb ('e) APPLICATION INFORMATION The regulator supplies the motor in such a way as to keep its speed constant. independent of supply voltage, applied torque and ambient temperature variations. The basic equation for the motor is: Vm Where: = Eo + Rm 1m = a1 n + a2 c Vm supply voltage applied to the motor Eo back electromotive force n motor speed (r.p.m) Rm internal resistance (of the motor) current absorbed (by the motor) 1m a 1 and a2 constants = c = drive torque 443 TCA 900 TCA 910 A voltage supply with the following characteristics E Ro -Rm E electromotive force Ro output resistance gives performance required. This means that a variation in current absorbed by the motor, due to a variation in torque applied, causes a proportional variation in regulator output voltage. In fig. 6 is shown the minimum allowable Eo versus RT • 6-0828/3 EO I (V) RT-KxR m Fig. 6 - Minimum ED allowable versus RT - 3.B 3.6 /" /'" /' 3.4 V 3.2 V '" '" /" 2.B 2.6 o 40 80 120 160 200 240 RT (fi] 444 TCA 900 TCA 910 The TCA·900 and TCA 910 give a reference constant voltage Vref (between pins 2 and 3) independent of variations of V" 12 and ambient temperature. They also give: 13 = Id3 + I/K Where: 13 total current at pin 3 Id3 quiescent current at pin 3 (12 12 current at pin 2 K = constant. 0) The output voltage V m' applied to the motor has the following value: Term 2 Term Term 1 equals Eo and fixes the motor speed by means of the variable resistor R,; 1m Term 2 - . RT equals the term Rm • 1m and, therefore, compensates variations of K torque applied. Complete compensation is achieved when: RT = K Rm If RT max > K Rm min instability may occur. 445 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA 10 W AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT PROTECTION AND THERMAL SHUT-DOWN The TCA 940 is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier. The TCA 940 provides 10 W output power @ 20V/4n, 9W @ 18 V/4n, 7W @ 16V/4n, 6.5W @ 20V/8n and 5W @ 18V/8n. It gives high output current (up to 3 A), very low harmonic and cross-over distortion. Besides the thermal shut-down, the device contains a current limiting circuit which restricts the operation within the safe operating area of the power transistors. The TCA 940 is pin to pin equivalent to the TBA 810 AS. ABSOLUTE MAXIMUM RATINGS Vs 10 10 Ptot T stg ' T j Supply voltage Output peak current (non-repetl!ive) Output peak current (repetitive) Power dissipation: at Tamb = 50°C at T tab = 70 0 C Storage and junction temperature 24 V 3.5 3 1.25 A A 8 -40 to 150 W W °C ORDERING NUMBER: TCA 940 MECHANICAL DATA Supersedes issue dated 4/74 Dimensions in mm 447 6/75 CONNECTION AND SCHEMATIC DIAGRAMS SUPPLY VOLTAGE 12 ., ., OUTPUT N. C. N.C. N.C. ~' GROUND GROUND GROUND BOOTSTRAP (SUBSTRATE) COMPENSATION INPUT RIPPLE REJECTION FEEDBACK ,"",89 TEST AND APPLICATION CIRCUIT Vs R3 V C9 OJI'F C6 ~~o.tF lOon R2 IOOkO *=C3 ,C7 SEE FIG. 7 448 THERMAL DATA Rth j.tab Thermal resistance junction-tab Rth j.amb Thermal resistance junction-ambient ELECTRICAL CHARACTERISTICS Parameter Test conditions Supply voltage (pin 1) Va Quiescent output voltage (pin 12) V, = 18V Id Quiescent drain current V, Ib Bias current (pin 8) V, Po Output power d V, V, Vs Vs Vs = 24V = 18V = 10% f = 1 kHz = 20 V, RL = 4n = 18 V, RL = 4 n = 16V, RL = 4n = 20V, RL = 8n = 18 V, RL = 8n Vi d Frequency response (-3 dB) Distortion 8.2 9 20 24 V 9.8 V 42 mA 0.5 7 10 9 7 6.5 5 = 9W V, = 18 V = 4n f = 1 kHz Vs = 18 V RL = 4n C3 = 1000 pF Po = 50 rnW to 5 W V, = 18 V RL = 4n f = 1 kHz 3 !!A W W W W W mV 250 Po RL B °C/W °C/W Min. Typ. Max. Unit 6 Voltage for input saturation Input sensitivity 10 80 (Refer to the test circuit, Tamb = 25°C) V, Vi(rms) max max 449 90 mV 40 to 20,000 Hz 0.3 % ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Min. Typ. Max. Unit 5 Mn 75 dB Ri Input resistance (pin 8) Gy Voltage gain (op€n loop) Vs == 18V f == 1 kHz RL == 4 n Voltage gain (closed loop) Vs == 18V f == 1 kHz RL == 4 n Input noise voltage Vs == 18V Rg == 0 B (-3 dB) == 40 Hz to 20,000 Hz 3 ltV Vs == 18V B (-3 dB) == 40 Hz to 20,000 Hz 0.15 nA Gy eN iN 1) SVR Id Input noise current Efficiency Po == 9 W RL = 4n f = 1 kHz 34 RL ==4n Vs ==24V frippl. == 100 Hz Drain current Po == 9 W RL == 4 n P tot == 4.8 W • See figs. 9 and 15 450 40 dB Vs = 18 V Supply voltage rejection ratio • Thermal shut-down· case temperature 37 65 % 45 dB 770 rnA 110 DC Vs == 18 V Fig.2 - Maximum power dissipation versus supply voltage (sine wave operation) Fig. 1 - Typical output power versus supply voltage G-1237f1 G- 1236 r- r- ) 12 6 10 d=IO·I. :Rf =5611 f:lkH z J / 10' ".1' ".1' -::::: ~ 5 ..... ~ / V 1/ 4 o -- / / RL=411 R =411 X ....1 RL=8Q RL=SIl ". ".1'" ./ i.--' 10 5 V.(V) Fig.3 - Typical distortion versus output power ..... ..... ./ '" V. (V) 15 Fig. 4 - Typical voltage gain (closed loop) and typical input voltage versus feedback resistance (R f ) G-1238 G-1239/t 10 VI. f--+--+-+'..-'--c!.+.4+---f-+-r+-HHIH q Vo=18 V R f =56 11 f =lkHz l:;l "-' II: ... " • - r- V· Po =5W - ;; .... -;;. :;.::: " Gv "-' II: 10' • Gv Vo=IS V f =lkHz ••RL =811 L =411 (mV)' :'1.) r- f- f-' o 15 ,/ .,- ./ ~ 10 / +- i' • ..J.Po =9W L , - -Vi - -t o 10-' 451 Vi Po =0.05 W ·r . • -t- 10' -- - Po =0.05 W c-- - Vi 50 100 10 Fig. 5 - Typical distortion versus frequency (RL = 4 [1) Fig. 6 - Typical distortion versus frequency (RL = 8 [1) G-124O d ('I.) 8 6-1241 ~LIIIII 1-t-++t+1+lI---+'o"--'-!-';!-Uj-IIII-t-+HtI-itt---+++t+ttfI I-H*ftttl----t RL= 4 It I-H++I-Hlf-+++H++II 1-t-t-t+ftttI--tVs= 18 v 1-t-t-t+I-Hlf-H-tti++ll 1-t-t-t+ftttI--t R,= 56 .!l1-t-t-t+I-Hlf-++tti++ll II (',,) RL =8 It Vs =18 V R,=56 6 Po = 0.05 • Po 10' Po - 2.5 1.'1 """'• " ,. J IIIII Ll o -o.osw 2 , (Hz) 10 10' 10' 10' G-1242 , (Hz) G-1243 ~~ - - C3 (pF)' 6=10 kHz f--I- - - +-~---t--r1 +-+-++--1 ___L Ol-l--l--H---+---+---+---+---+---+---+--+--+--+-+--l V - 10 I-l--l--H---+---+---+---+---+--+- +---l--I-f---lH -50 -1--., . '"";""2J Hz ./ 10' 468 Fig.8 - Typical supply voltage rejection ratio Fig. 7 - Typical value of C3 versus RI for different bandwidths V... j~ ./ .' II lUll o / C7'SC 3 / 10' - 60 6 10 , . - - -I--t-+-+-+--+I-+-+-+-+-~t-I '---,--"'---'---'.......L........L........L........L........L........L........L--'---'---'--'---' o 10' 452 50 100 Fig. 10 - Typical power dissipation and efficiency versus output power (RL 80) Fig. 9 - Typical power dissipation and efficiency versus output power (RL 4 0) = - G 1245/1 Fiat ( Ptot ( (W) n II. 1/ = G-I21.1011 60 """ 60 40 5=1 V 40 Fiat L·4!l. V V. =l8V II RL =sn 20 20 o o o 4 Fig. 11 - Typical quiescent output voltage (pin 12') versus supply voltage o 4 6 8 Il,(W) Fig. 12 - Typical quiescent current versus supply voltage G-1246il G-1247 (~~) f-+-+-~+-+I----l-_-I--l-+-+I-f-+I+-+-_+p'-_I-"f---1--"t---","--i--_-+1-1__ -+-+-lr-_-j-_t"ld_~ot:"'p.-k"-j--rH---j---H-i 15 15 10 10 ~ H-+-+-+-+-+-+--+-~~+-+-+-+-+--+-~~/1 +_ -fI f---j---j--+-+-j---j--+--t-~+ ~ o 10 15 20 O'---'---'---'----'---'----'----'--.J-L--L---'---'----"---J----L---'----'----'---'---I 5 10 15 20 V5 (v) 453 SHORT CIRCUIT PROTECTION The most important innovation in the TCA 940 is an original circuit which limits the current of the output transistors. Fig. 13 shows that the maximum output current is a function of thecol\ector-emitter voltage; hence the circuit works within the safe operating area of the output power transistors. This can therefore be considered as being power limiting rather than simple current limiting. The TCA 940 is thus protected against temporary overloads or short circuit by the above circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction's temperature within safe limits. Fig. 13 - Maximum output current versus voltage (VeE) across each output transistor Fig. 14 - Test circuit for the limiting characteristics v, r-... ::Fl:::R:t- ~ , ,~ oad lin. t: Vs =18V , t=50Hz I...... R =4fi 560 ." 1'.1 o 5 lOOk 0 10 454 THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent). or an above-limit ambient temperature can be easily supported 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction temperature: all that happens is that Po (and therefore P tot ) and Id are reduced (fig. 15). G-121.9 Fig. 15 - Output power and drain current versus package temperature Po (W) I-- - ~ -j- - - -- f-I--I,.......-f--+-+++-j ~!v.=tSV I 1+--+-+-+-1{~) d=IO"/. --RL=4fiIHH-+-j ----R =SD 12 f.-HH-+-+-+-+-+-.---?1T"''l--HH-j t.2 10 HH-+-I-t--.j--jH-+ Po ! 1"\ 1-=~I--I--Io4-+..j...+-F-Fo.t~"++~H O.S .- - -I-I--t- 'd 6 4 -I-- I-- J - j - Po •- - 2 I- - . +-N+-+-+- i;; f.-I-HH-+-+~>+--I-- •- +--+--HH-+-+- -_. --j-I--- 50 455 ~ 0.6 MOUNTING INSTRUCTION The power dissipated in the circuit may be removed by connecting the tabs to an external heatsink according to fig. 16. The desired thermal resistance may be obtained by fixing the TCA 940 to a suitably dimensioned plate as shown in fig. 17. This plate can also act as a support for the whole printed circuit board: the mechani~al stresses do not damage the integrated circuit. During soldering the pins temperature must not exceed 2600C and the soldering time must not be longer than 12 seconds. Fig. 16 - Maximum allowable power dissipation versus ambient temperature Fig. 17 - Mounting example G-1250 ) UJ WITH INFINITE HEAT SINK ALUMINIUM 3.5nm THICKNESS K . tlJm - wiTH HEAT SINK HAVI~G l'.~ [,(, +-H _ I WI~OUTHEAT"slNKi ~ffi-f o -so I i• +- 6 f.": "/0.... - I !\ ++- r -~th£;..\~ TI- ""N.., . r-d- . ~ 50 456 Fig. 18 - P.C. board and component layout of the test and application circuit (1:1 Scale). R C5-0033 457 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT PROTECTION AND THERMAL SHUT-DOWN The TCA 940E is a monolithic integrated circuit in a 12-lead quad in-line plastic package, intended for use as a low frequency class B amplifier. The TCA 940E provides 6.5W output power @20 V/8 nand 5.4 W @ 18 V/8 n. It gives very low harmonic and cross-over distortion. Besides the thermal shut-down, the device contains a current limiting circuit which restricts the operation within the safe operating area of the power transistors. The TCA 940E is pin to pin equivalent to the TBA 810S. ABSOLUTE MAXIMUM RATINGS Supply voltage Output peak current (non-repetitive) Output peak current (repetitive) Power dissipation: at Tamb = 80°C at T tab = 90°C Storage and junction temperature 24 3.5 3 1 5 -40 to 150 V A A W W °C ORDERING NUMBER: TCA 940E MECHANICAL DATA Supersedes issue dated 11/74 Dimensions in mm 459 6/75 CONNECTION AND SCHEMATIC DIAGRAMS 01. •• SUPPlY VOLTAGE 12 ., N. C. N.C. N.C. OUTPUT 10 GROUND 01 GROUND GRO\.JIIO 0. BOOTSTRAP 04 COMPENSATION INPUT 0' RiPPlE REJECTION FEEDBACI( S-0289 ., TEST AND APPLICATION CIRCUIT R3 .*=C3,C7 SEE FIG.6 460 04 THERMAL DATA Rth j-tab Rth j-amb 12 max max Thermal resistance junction-tab Thermal resistance junction-ambient 70* °C/W °C/W * Obtained with tabs soldered to printed circuit with minimized copper area ELECTRICAL CHARACTERISTICS(Refer to the test circuit, Tamb = 25°C) Parameter Test conditions Min. Typ. Max. Unit Vs Supply voltage (pin 1) Vo Quiescent output voltage (pin 12) Vs = 18V Id Quiescent drain current Vs = 24V 20 Ib Bias cu rrent (pi n 8) Vs = 18V 0.5 Po Output power d = 10% Vs = 20V, Vs = l8V, 6 8.2 f = 1 kHz RL -= 8 n RL =8 n 9 24 V 9.8 V 42 mA 6.5 5.4 5 3 J.1A W W I I Vi(rms) Voltage for input saturation Vi B d Input sensitivity 250 Po =5.4W RL = 8 n Vs = 18V f = 1 kHz Frequency response (-3 dB) Vs = 18V C 3 = 1000 pF RL Distortion Po = 50 mW to 3.5W RL =8n Vs = 18V f = 1 kHz 461 mV 110 mV 40 to 20,000 Hz 0.2 % = 8n ELECTRICAL CHARACTERISTICS (continued) Parameter Min. Typ. Max. Unit Test conditions R; Input resistance (pin B) Gv Voltage gain (open loop) Vs = lBV f = 1 kHz RL =Bn Voltage gain (closed loop) Vs = lBV f = 1 kHz RL =Bn Input noise voltage Vs = lBV R2 =0 B (-3 dB) = 40 Hz to 20,000 Hz 3 p.V Vs = lBV B (-3 dB) = 40 Hz to 20,000 Hz 0.15 nA 70 % 45 dB 460 mA 120 °c Gv eN I nput noise current iN Efficiency 'T/ SVR Supply voltage rejection ratio .. Id Drairi current Po =5AW RL ==Bn 34 Vs = lBV f = 1 kHz Vs = 22V RL = f';PPle = 100 Hz Po = 5AW . RL == Bn 5 Mn 75 dB 37 40 dB Bn Vs = lBV * Thermal shut-down case temperature Ptot = 2.BW * See figs. Band 14 462 Fig. 2 - Maximum power dissipation vs. supply voltage (sine wave operation) Fig. 1 - Typical output power vs. supply voltage G 1442 G-1443 P lo I Po (W) (W) rrf- d =10-1. R,=56n 1= 1 kHz RL = en RL=en 4 I V o 12 8 o 16 Vs (V) e 4 Fig. 3 - Typical distortion vs. output power 12 16 Vs(V) Fig. 4 - Typical voltage gain (closed loop) and typical input voltage vs. feedback resistance (R f ) G 1444 d (mV), 1 ---6 -- •• Vi • I ('10) , Gy . 'r--. Vs = lev RL = en 10' R, :15k6n ".. ~ ~ f - f-V' l- I- 4 10. I- , Po =5.4W _r-- o , 10-' . b; , Po = 0.05W Vs = 18 V , =1kHz I--RL 463 40 80 10' , - =8n o , •• •,• I--- I--- Vi , r-- - -. 10 Fig. 5 - Typical distortion vs. frequency Fig. 6 - Typical value of C3 vs. Rf for different bandwidths - 0-1241 G 1242 C3 (PF)' d ('I.) RL -ell. v.=lev RI -S6 n 8 8.: to kHz V ~I 8=20kHz VI,.; 6 / 10' C7= SC3 / ·o.osw p. =2.5 III 7 .' o II 10 ,,'I J 451 10' 10' 10' r.. 11I m 10' 1 " 6' 10 HHz) Fig. 7 - Typical supply voltage rejection ratio , G 141091 SVR (dB) .. 10' Fig. 8 - Typical power dissipation and efficiency vs. output power - G 1446 P tot ( (W) 'I o 60 -10 1""- -20 40 V•• 22V -30 K -40 t-.. -50 -60 P to ~.en C5=100,.F rlppl•• l00Hz 20 VS=18V R • eo I I I I o 50 o o 100 464 4 6 8 Po (W) Fig. 10 - Typical quiescent current vs. supply voltage Fig.9 - Typical quiescent output voltage (pin 12) vs. supply voltage 6-12461, 0-121.7 ~ ~-+4-~-+4-~~~+-~-+4-~~ ) Iv) ~-+4-~-+4-~-+~+-~-+4-~~ 'd ~ol.1 15 15 10 10 r.;;; output transistors - () o 10 15 20 v. 5 IV) 10 15 20 V.IV) APPLICATION INFORMATION The application diagram in fig. 11 is advised if the device's gain spread is to be contained within ± 1 dB (for stereo applications) Fig. 11 - Recommended circuit for maintaining the gain spread within ± 1 dB max. I I 465 SHORT CIRCUIT PROTECTION The most important innovation in the TCA 940E is an original circuit which limits the current of the output transistors. Fig. 12 shows that the maximum output current is a function of the collector-emitter voltage; hence the circuit works within the safe operating area of the output power transistors. This can therefore be considered as being power limiting rather than simple current limiting. The TCA 940E is thus protected against temporary overloads or short circuit by the above circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction temperature within safe limits. Fig. 12 -Maximum output current vs. voltage (V CE) across each output transistor Fig. 13 - Test circuit for the limiting characteristics - G 1441 ~'" t>o-"'" LOAD LINE at: VS.18V RL= 8ll -,.... No. o ,..... 10 466 i' Ii: I~ Ii, ,~ 'to THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction temperature: all that happens is that Po (and therefore P tot ) and Id are reduced (fig. 14) G 1448 Fig. 14 -Output power and drain current vs. package temperature Po I (W) ( Vs =18V RL=8fl d" 10 12 10 8 Q8 Po as 6 4 04 ld 02 o o 467 20 40 60 80 100 Tease (·C) MOUNTING INSTRUCTION The power dissipated in the circuit may be removed by connecting the tabs to an external heatsink, or by soldering them to an area of copper on the printed circuit board (Fig. 15). Fig. 16 shows a simple type of heatsink; assuming an area of copper on the printed circuit board of only 2 cm 2 , the total Rth between junction and ambient is approximately 28 °C/W. The external heatsink or area of printed circuit copper must be connected to electrical ground. Fig. 17 gives the maximum dissipable power (for Tamb = 55 and 70°C) as a function of the side of two equal square copper areas having a thickness of 3511. (1.4 mil). During soldering the tabs temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. Fig. 15 - Example of area of P.C. board copper soldered to the tabs of the TCA940E which is used as a heatsink CoPPER Fig. 16 - Example of TCA940E with external heats ink AREA J'j,.. THICKNESS HEATSINK Rth ~ DOCjW / P.t.BOARD 468 Fig. 17-Power that can be dissipated VS. Fig. 18 - Maximum allowable power dissipation vs. ambient temperature "Q" G-0952 Ptot o lua Rth t cm) (W) B eo 6 60 -~ WITH INFINITE Rth j-amb r-..: 4 40 ~ fPt;.;t(T;;:;;h:-55'C) ~ ~ I- ~ "'" ~ !-vITHOUT 20 20 I 1<- \~ ~~.~ 'l... h6+-tr. -~ I 30 40 I (mm) '!:-.~ !' HEATSINK ,-ptot (Tamb= 70'C 10 It. 'fY,-~ ft-t-- :IrLIIl.::rl'~6,~ o o HEATSINK I . t-- f-l ~~~ -so o -l- f; l'--~ 0 50 100 TambC·C) Fig. 19 - P.C. board and component layout of the test and appl ication circuit (1: 1 Scale) I II NEAR IN TEGRAT ED GIRGUIT PRELIMINARY DATA COMPLETE TV VISION IF SYSTEM The TDA 440 is a silicon monolithic integrated circuit in a 16 lead dual in-line plastic package. The functions incorporated are: - gain controlled vision I F amplifier synchronous detector AGC detector with gating facility AGC amplifier for PNP tuner drive with variable delay video preamplifier with positive and negative outputs. It is intended for use in black and white and colour TV receivers. ABSOLUTE MAXIMUM RATINGS Vs V5 Supply voltage (pin 13) Voltage at pin 5 VlO Voltage at pin 10 Vl1 Voltage at pin 11 (with load connected to V5) Output current Supply current (into pin 14) Total power dissipation at Tamb ~ 70°C Storage and junction temperature 111. 112 114 ->- Ptot Tstg • Tj ORDERING NUMBER: 15 20 ) -~ 8 5 55 800 -40 to 150 V V V V V mA mA mW °C TDA 440 MECHANICAL DATA Supersedes issue dated 11/74 Dimensions in mm 471 6/75 CONNECTION AND BLOCK DIAGRAMS INPUT " INPUT .. BIAS OECOUPlING ... S CECOUPl.INO ZENER GROUND STABILIZER AGe TIME CONSTANT , SUPPLY 13 VOLTAGE POSITIVE TUNERAGC " OUTPUT TUNER AGC VIDEO OUTPUT NEGATIVE 11 DELAV VIDEO OUTPUT •• FlV8ACK PULSE INPUT CARRIER OUTPUT VOLTAGE REGULATION CARRIER TUNING TUNING SCHEMATIC DIAGRAM ~ ® 2 ~ ~U CD L (@----~Irt . f,.. ~~ 1 t- tQ .) ~ f-j-K f-t ~ ~fl t-~~fl 1~ Q ~~~ ~ r'± l.. }1f 1 6 n I~ I~>- r=:= ~ l----t' ~ Il-t k1 ~ ~ n d> 5) 472 ~ 10 ~ \ - - - f-' ,~ 1J 4< ~ 10 I [ 13 CfJ -r 3 u ~ 1; J j l 5-0969 -® Fig. la - Test circuit for measurement of 113 , V 11 , V 12 , V 14 and I::N l1 //:"V 13 Fig. 1 b - Test circuit for measurement of 111 and /:"Vll//:"V s lOA 440 lOA 440 10 3, • 3, • Rl 2.5 k.Cl 5-097' TO A FOR .o. 6,. Vll TEST ; TO 8 FOR Fig. 2 - Dynamic test circuit VIDEO OUTPUT ·C'·f.-_ _~p-_ _~_~_...,(POSIT1VE) VIDEO OUTPUT (NEGATIVE) B C5 IF 25i'F I 'i~r:' C2 2200 pF '" 14 13 12 11 10 TDA 440 R2 C6 62 k.Cl 5i'F Rt. 5kn ,ov G AGe OUTPUT (TO TUNER) 473 5-0117211 -1" TEST Fig. 3a - Set-up for measurement of dim I----r--.~ ~~:6MC:~:~~7E':~~;U~~~~~~:.~:: SOUND CARRIER INPUT LEVEL: -24dB B ~~-0-A lOdBfslep TEST CIRCUIT 5r (flg.2) 0 ld~/step I-+_...!j---I SElECTIVE VOL TMETER !':o .0913 Fig. 3b -Set-up for measurement of 6.V o AC VOLTMETER UP TO 5.5 MHr 5_0914 Fig. 3c - Set-up for measurement of 15. Vi' 6.V i • Vo. V 11 and V 12 . • AC .SELECTIVE VOLTMETER VOL TMETER FOR LEAKAGE TEST 5.09'5 Fig.3d - Set-up for measure. ment of B. V 11 and V 12 V AC VOLTMETER o (UP TO 15MHt) SOUNO CARRIER INPUT LEVEL ~JOdB TO A FOR FREaUENCY RESPONSE TEST TO 8 FOR SOUND I F OUTPUT TEST 474 $-0976 THERMAL DATA max Rth j-amb Thermal resistance junction-ambient 100 °C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Tamb = 25°C) Test conditions Parameter STATIC (DC) CHARACTERISTICS Supply current (pin 13) Is -Ill (1) Vs Output current Vs = 12V Supply voltage (pin 13) 114 = 40 mA V ll (2) Output voltage Vs = 12V V 12 (2) Output voltage Vs=12V 14 19 25 mA la 2.3 3.5 4.8 mA lb 10 15 V 4.8 6.4 V 5.6 V ll = 5.5V 5.5 6 V 6.5 - la V V 14 Stabilized voltage 114 = 40 mA tNll ~ Output voltage drift Vs = 11 to 14V 3,5 % lb tNll liV 13 Output voltage drift V13=11 to15V 114 =40 mA 0.4 % la DYNAMIC CHARACTERISTICS (refer to fig. 2 test circuit, Vs = 12V) Is Supply current 15 (3) Tuner AGC current V7 V·(4) I tNi Vo V 7 =0 R4 =5 kn fo = 38.9 MHz AGC gating pulse input f peak voltage Input sensitivity AGe range Peak to peak output voltage at pin 11 =15.6kHz 48 57 66 mA 6 8 mA 3c V - -5 -1.5 V 7 =0 fo= 38.9MHz 140 200 Vu = 3.3V peak to peak V 7 =0 tNo= 1 dB fo = 38.9 MHz Vu = 3.3V peak to peak 50 55 V 7,=0 Vu = 5.5V fo = 38,9 MHz Vi = see note (5) 2.6 3.3 475 280 p.V dB 4.2 - V 3c ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter Video output varia· V 7 V 11 tion over the AGC range (0 to 5.5 MHz) fo fm tNo V ll • V 12 Sound I F at video outputs (5.5 MHz) Differential error of the output voltage (B &W) V ll • Vl<. Vu. V 12 B dim Ri Ci NOTES: Min. Typ. Max. Unit =0 tNi = 50 dB = 3.3V peak to peak = 38.9 MHz = 0 to 5.5 MHz 1 Video carrier and video carrier 2 nd har· monic leakage at video outputs 15 V 7 =0 = see note (5) Video carrier leakage Vi = 38.9 MHz fo at video outputs Input resistance (between pins 1 and 16) Input capacitance (between pins 1 and 16) 3b mV 3d 15 % - 30 mV 3c 5 Frequency response (-3 dB) Intermodulation products at video outputs dB 2 V 7 =0 Vi= see note (5) fo (vision) = 38.9 MHz 30 fo (sound) = 33.4 MHz V 7 =0 fo = 38.9 MHz V 11 = 3.3V peak to peak 8 V 7 =0 Vi = see fo (vision) = 38.9 fo (sound) = 33.4 fo (chroma)= 34.5 V 7 =0 Vi = see note (5) fo = 38.9 MHz Fig. note (5) MHz MHz MHz 15 mV MHz 3d dB 3a 1.4 kn - 2 pF - 10 -50 -40 (1) Current flowing into pin 11 with the load connected to Vs. (2) V II and V 12 are adjustable Simultaneously by means of the resistance. or by a variable voltage';;;; 0.6V. connected between pin 10 and ground. (3) Measured with an input voltage 10 dB higher than the Vi at which the tuner AGC current starts. (4) RMS value of the unmodulated video carrier (modulation down). (5) The input voltage Vi can have any value within the AGC range. 476 Fig. 5 - Tuner AGC output current VS. I F gain variation Fig. 4 - AGC regulation voltage vs. input voltage variation G-l1ol1 v 2.5 ,. 1.5 0.5 /' -- -....- ....- ....- ........ ~ 8 fj I R6=5kn I 1 I II f.38.9MHz Vs .12 V V7 • 0 VI(OdB)= 200j.lV Vo =3.3Vpp f- ~7 3kn Okn - f & 3&9 MHz Va • 12V r-- - V7 = 0 o o 10 20 30 Gma• 506Vi(dEII Fig. 6 - Output black level vs. supply voltage -20 -40 -60 -80 6G(dB) Fig. 7 -- Output noise vs. input voltage G 1431 Vn N (mV) (V) B=10MHz f=38.9MHz V•• 12V V,.O I Vo .3.3Vpp 200 - 2.2 160 120 1.8 80 f.3B.9MHz Vi .70mV V,.O 1.6 10 11 12 13 14 15 Vs (V) 477 i 1\ \ \ 1\ 40 I o 0.5 ,I 1-"2.5 VI (V) APPLICATION INFORMATION The TDA 440 enables very compact I F amplifiers to be designed and provides the performance demanded by high quality receivers. The input tuning-trapping circuitry and the detector network can be aligned independently with respect to each other. The value of Q for the parallel tuned circuit between pin 8 and 9 is not critical, although the higher it is, the better is the chroma-sound beat rejection but the tuning is more critical. Values of Q from 30 to 50 give good rejection with non-critical tuning. The LC circuit between pins 8 and 9 is tuned to the vision carrier thus appreciably attenuating the sidebands. Hence a small amount of signal can be removed whose amplitude is almost constant over the whole working range of the AGC and it can be used to drive the AFC circuit. The black level at the output is very stable against variations of V 5 and of temperature: this enables the contrast control to be kept simple. The AGC is of the gated type and can take the top of the synchronism or the black level (back porch) as its reference: when the latter is used, the output black level is particularly stable. For a more detailed description of the TDA 440 and related performance refer to SGSATES Application Note n. 127. Fig. 8 - Typical application circuit. C14 10,.." - ~6Y * C16 VIDEO OUTPUT (NEGATIVE) R4 160 J). ~"'F 16V "'3121110 TDA 440 * Tantatum Ll ::oO.42,.,H-00""0- 6turnsS-O.2Zrrm{c1oHWOund) LZ.Ll.L7 .. Q.3,uH- Q O",'10 - 5.5turnsf4=O.22nm(clos. wound) l4 L5.l6 L8 ;It MANUAL GAIN R3 CONTROL 0---C::::J--+-t--+-4 l00kll O.22.uH-QO::oIIO-4.SlurnsB=O.22nm(cloH wound) = I ,.,H- QO.l10- 10turns'hO.22trm(clos@'wound) = 1.2,..H-00.,110- IOturnsB=o.22rrrn(clOw wound) 51 k/l '---+---QAGC TUNER L' tal7: eoil 'orm., 8A 271P,cor. GW4.0.S.13 Fl00 Nf.osid, set ••,,,ng can 8R 10IST 5-0'9'1 478 I" I'"~~ I~ I$ i!,' I~ Typical performance of the Fig. 8 circuit Frequency response (fo vision = 38.9 MHz, fo sound Sound carrier attenuation 31.9 MHz trap attenuation 40.4 MHz trap attenuation 41.4 M Hz trap attenuation AGC range Overall gain including I F filter and trap circuits (note 1) Intermodulation products over the whole AGC range (note 2) NOTES: 33.4 MHz) standard CCIR dB 28 ~60 dB ~56 dB ~44 dB dB 55 86 dB - 55 dB (1) The gain is measured at video output 3.3V peak to peak and is defined as peak to peak output voltage to RMS input voltage (modulation down). (2) Measured at 1.07 MHz, vision carrier level = 0 dB, chroma carrier level -6 dB, sound carrier level = -6 dB. = G 1441 Fig. 9 - Overall frequency response of the fig. 8 circuit. dB 1.9 MHz 334MHz 8.9MHz 40.4MHz 4t.4MHz o i\ -20 ;.... -40 ~ -60 28 479 32 36 4C! 44 I (MHz) Fig. 10 - Circuit options for tuner AGC driving r------------- I I I I I I I I L ____ ~~l.u..!:!~___ _ 5-0980 r---------- TDA 440 I I : PIN DIODE TUNER I I I I J. ----------5-0981 680 n TDA440 r-NPNTUN'E;-----I I I I I IL ___________ _ 5-0982 480 LINEAR INTEGRATED CIRCUIT IOA·.··1054 PRELIMINARY DATA PREAMPLIFIER FOR CASSETTE RECORDERS WITH ALC • o • • • • EXCELLENT VERSATILITY in USE (V s from 4 to 20V) HIGH OPEN LOOP GAIN LOW DISTORTION LOW NOISE LARGE AUTOMATIC LEVEL CONTROL RANGE GOOD SUPPLY RIPPLE REJECTION The TDA 1054 is a monolithic integrated circuit in a 16-lead dual in-line plastic package. The functions incorporated are: - low noise preamplifier - automatic level control system (ALC) - high gain equalization amplifier - supply voltage rejection facility (SVRF) It is intended as preamplifier in tape and cassette recorders and players, dictaphones, com· pressor and expander in telephonic equipments, Hi-Fi preamplifiers and in wire diffusion receivers etc. ABSOLUTE MAXIMUM RATINGS Supply voltage Total power dissipation at Tamb 50°C Storage and junction temperature < ORDERING NUMBER: 20 500 -40 to 150 V mW °C TDA 1054 MECHANICAL DATA Dimensions in mm 481 5/75 I CONNECTION AND SCHEMATIC DIAGRAMS Ale OUTPUT =~OSUPPLY2 g~ i'l~iEC TOR 3 01 BASE Q1 EMITTER ,. 0'2 EMITTER 02 COllECTOR 7 "'-PASS INVERTING INPUT ....... QI 1 ."'. Q2 EQUALIZATION AMPLIFIER ALe TEST CiRCUIT I"'---------------o.v. 9V 2.2 ..n tM7uF 4.71JF ~~71 ~~--------~rll~ 51 8. .. .2 .. IVO n Ao 2704 S2 482 THERMAL DATA Rth j-amb max Thermal resistance junction-ambient 200 °C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C) Parameter Vs 5upply voltage Id Ouiescent drain current hFE DC current gain (01 and 02) eN Input noise voltage (01) iN Input noise current (01) NF Noise figure (01) Gy Vo Test conditions Min. Typ. Max. Unit 4 Ro =00 Vs =9V 51 =52 =53= B Ie = 0.1 mA Ie =0.1 mA f = 1 kHz V eE = 5V 300 20 V 6 mA 500 - 2 nV v'Hz V eE = 5V 0.5 pA v'Hz V eE = 5V Ie =0.1 mA Rg =4.7kn B(-3 dB)= 20 to 10,000 Hz 0.5 4 dB Open loop voltage gain (equalization amplifier) Vs =9V f = 1 kHz 60 dB Output voltage with ALC Vs =9V f = 1 kHz 0.95 V Vi = 100mV 51=S2=53=A R1 (for 5VRF system) 7.5 kn R2 (for 5VRF system) 120. n eN Equivalent input noise voltage (for equalization ampl ifier pin 11) 1.3 Jl.V 0.8 V Drop-out (between pins 14and 2) Vs =9V Rg= 4.7 kn GY(Closed) =1 00 51= B B(-3 dB)= 20 to 20,000 Hz Id =6mA 483 Vs=9V Fig. 1 - Equivalent input spot voltage and noise current vs. bias current (input transistor a1) Fig. 2 - Equivalent input noise cur rent vs. frequency (input transistor al) - -1583 o G 118211 eN • lDH ( nV )' I • 10. z ./ iN' pA ). ('1pAHZ)( '/Hi' Vtf; , 10.' IN 10. lmA 'kH • "" ~ lDkH k::' 10. ~ .// , r- i--" , , . 100.... , 10' 10. SO,... eN ,. ~~~ LJ ,. I 10.' 10.0., , 10-' 10.-' , 10. Ie ("A) .. • •• 10' 10' f(Hz) Fig. 4 - Typical noise figure vs. bias current (input transistor a1) Fig. 3 - Equivalent input noise voltage vs. frequency (input transistor a1) . G~'S85 G 1S84 eN • Rg • . nY)', (VH. B(-3dB).2OHz to 10kHz (kll.)' "- !/ .~ 10.' .. , 0.';\' 10 • "2 !II 3dB ./ r-,.'r-.... 10. So.IJA , 10 .. 10 ' , .. lmA 10' •11Hz) •• 10' 484 , .. 10 ' r- .,. , 10' .. Ie (}lA) Y>~i:S;.;~:;;j,~.h;:<~;;;j\, :?':, '-' ;/~Ak;dj)':?,.:,'::: .;.'·,l ;,:'~'"" Fig. 5 - Optimum source resistance and minimum NF vs. bias current (input transistor Q1) " Fig. 6 - Typical current gain vs. collector current (input transistor Q1) - c; 1511 Rg opt. (ktl) • ~ 10 ~~ 500 10 ...... ,I": "-"'t>. 1 1kHz R •• • •• • "w 102 300 z 10-1 4 400 NF 1kHz 10kHz 11OO~ 10 .... 100Hz 10-' 200 'C (pAl , 10 Fig. 7 - Typical open loop gain vs. frequency (equalization amplifier) .. . .. 10' ... 10' Fig. 8 - Typical open loop phase response vs. frequency (equalization amplifier) C; CHUa G. Ide) 'o" (D~) 60 " i'\ 50 40 COMPENSATION C12-13 =680pF 30 -60 01. ~ "" 33O~ 1 1'\ 20 .,, "'.."r ... -120 1\,11", 47 1511 - !:.' l'\ - , -180 , -240 (\ 10 ~ -300 1\ o I 10' .. Ii t " Ii I I " Ii 10' 10' 2 10' "I t" t 'I 10', (Hz) 10' 485 .. Ii I , 10' I. I 10' .. , It .. 'I 1 0 ' , (Hz) APPLICATION INFORMATION Fig. 9 - Typical application circuit for battery-main tape and cassette player and recorder Fig. 10 - P.C. board and component layout of fig. 9 circuit (1: 1 scale) 486 Typical performance of circuit in fig. 9 (T amb = 25°C, Vs = 9V) Parameter Test conditions Min. Typ. Max. Unit PLAY-BACK Gv Voltage gain (open loop) f = 20 to 20,000 Hz 110 dB Gv Voltage gain (closed loop) f = 1 kHz 57 dB IZI I nput impedance f= 100 Hz f = 1 kHz f=10kHz 10 41 43 kn kn kn IZo I Output impedance f = 1 kHz 12 B Frequency response d Distortion Output back-ground noise *** Output weighted back- n see fig. 12 0.1 % 1.3 mV 1.3 mV Vo= 1V Zg = 300 n + 120 mH 52 dB Vo= 1V f = 1 kHz Zg= 300 n + 120 mH (DIN 45405) ground noise S+N 35 N Signal to noise ratio SVR Supply voltage ripple rejection at the output f(riPPle)= 100 Hz 30 dB Switch-on time Vo= 1V 500 ms ton ** RECORDING Gv Voltage gain (open loop) f = 20 to 20,000 Hz 110 dB Gv Voltage gain (closed loop) f = 1 kHz 70 dB B Frequency response d* Distortion without ALC Vo= 1V f = 1 kHz 0.3 % d Distortion with ALC Vo= 0.9V f = 1 kHz 0.4 % see fig. 14 487 Typical performance of circuit in fig. 9 (continued) ALC Automatic level control range (for 3 dB of output voltage variation) Vi ";;40 mV Output voltage before clipping without ALC f = 1 kHz Vo Output voltage with ALC Vi=30mV tl** Limiting time (see fig. 11) tset ** Level setting time (see fig. 11) tree ** Recovery time (see fig. 11) tNi= -40 dB ton ** Switch-on time Vo= 1V S+N Signal to noise ratio with ALC Vo= 1V Vo N Min. Typ. Max. Unit Test conditions Parameter t:Ni= +40 dB f = 10 kHz f = 1 kHz 54 dB 2.3 V 0.9 V 75 ms 300 ms 180 s 500 ms 56 dB f = 1 kHz f = 1 kHz Rg =470n * Measured with selective voltmeter ** This value depends on external network *** When the DIN 45511 norm for the frequency response is not mandatory the equaliza· tion peak at 10kHz can be avoided-so halving the output noise Fig. 11 - Limiting, level setting, recovery time "~ '0 'I 1:1IMITING TIME tnt -lEVEL SETTING TIME 'r1'C5:RECOVERV TIME 5_1112 488 Fig. 13 - Typical distortion vs. frequency of fig. 9 circuit (Play-back) Fig. 12 - Typical relative frequency response of fig. 9 circuit (Play- back) - 6o1S1111 & 1590 Gy d I (dB) { i\ 1/ , \ I 12 ('Ie) ' I t6 \ 1 u i lL r\ \ o II \ \ -- Gy atOdB-S7dB -4 II IIIII I I Ijl~ 0.8 - , Vo ·1V 0.4 I-- 10' 10' 10' , '-- o 2,,&62411824682101, to ........ I- II 11111 1 •• , 1 4 ' . 10 t( Hz} Fig. 14 - Typical relative frequency response of fig. 9 circuit ( Recording) 2 10' 10' .... '41, 10' I (Hz I Fig. 15 - Typical output voltage variation and distortion with ALe vs. input voltage of fig_ 9 circuit (Recording) Gl.UII CJ-1S92 Gy I II 11111 I II 11111 11111111 (dB) Gy atOdB=70dB 12 - '\ V 3dB 2,8 54dB 8 -8 - o -4 Vo ·l0dB=9S0mV 1=10 kH d ./ 16 12 08 Cl-' J 10 t 468 10' 461:1 10' 468 10' J t 468 10 I (Hz) 489 t 1;6' 10' t 468 10' :2 468 10' 10'8 Vi (pvl o I Fig. 16 - Typical distortion vs. frequen· cy with ALe of fig. 9 circuit ( Recording) Fig.17 - Typical limiting and level setting time vs. input signal variation - - G 1594/1 ('/.) 1m 1.6 'm !i G IS95 I 'i I 1.2 300 ! I 0.8 I Vo =0.9 1' I • t 200 vi .... I I 0.4 100 I o 10 ... ... 10' , 10' .. .... • 10' tt .... • 8 I (Hz) Fig. 18 - Economical application circuit 490 o 10 20 30 .6Vi (dB) Fig. 19 - P.C. board and component layout of fig. 18 circuit (1:1 scale) CS-0062 Typical performance of circuit in fig. 18 (T amb= 25°C, V s= 9V) Parameter Test conditions Min. Typ. PLAY-BACK 18 rnA f = 1 kHz 56 dB Frequency response f= 100 Hz f = 1 kHz f = 6 kHz f=10kHz f = 60 kHz 12 0 5 11 10 dB dB dB dB dB Distortion Vo= 1V Id Quiescent drain current Gy Voltage gain (closed loop) B d Output weighted background noise f = 1 kHz Zg= 300 .n + 120 mH (DIN 45405) 491 0.6 % 1.3 mV Typical performance of circuit in fig. 18 (continued) Parameter Test conditions Min. Typ. Max. Unit RECORDING Gv Voltage gain (closed loop) f = 1 kHz 70 dB B Frequency response f=140Hz f = 1 kHz f = 10 kHz -3 0 4 dB dB dB d Distortion Vo= 0.9V f = 10 kHz 0.7 % ALC Range for 3 dB of output voltage variation f=10kHz Vi ';;;;40 mV 54 dB Fig. 20 - Complete cassette player and recorder 492 Fig. 21 - Hi-Fi preamplifier for magnetic and ceramic pick-ups PIEZO OR CERAMIC MAGNETIC 4?On " pF 1,1Okll 1.5kD. , I 1- ___________________________ I Typical performance of circuit in fig. 21 (T amb = 25°C, Vs Parameter Vs Supply voltage Vi I nput sensitivity for magnetic pick-ups Test conditions Vo Min. Typ. Max. Unit 10 Vo= 300 mV Vi = 15V) f = 1 kHz I nput sensitivity for ceramic pick-ups Output voltage before clipping f RJAA equalization for magnetic pick-ups B = 40 to 18,000 Hz = 1 kHz 493 18 V 2.5 mV 100 mV 2.5 V ±1 dB Typical performance of circuit in fig. 21 (continued) Parameter S+N Test conditions Min. Typ. Max. Unit Rg =4.7 kn B (-3 dB) = 20 to 20,000 Hz N Signal to noise ratio for magnetic pick-ups IZ;I Input impedance for magnetic pick-ups 47 kn IZ;I Input impedance for tuner f = 1 kHz 470 kn IZII Input impedance for ceramic pick-up 100 kn Fig. 22 - Typical distortion vs. frequen· cy (fig. 21 circuit) 66 dB Fig. 23- Typical frequency response (fig. 21 circuit) G"".'7 d ('to) i 18 :/ 12 • 03 o r- '£ -s 0.2 " OJ -12 ill ~ -24 III o J 10 J ". • 10' ... 8 J 10' I" -I. Vo·300~ ............ ". • I 10' J .... f (Hz) 10 494 "II I 10' "II J 10' •• 1 10' l' II I (Hz) lINEAR INTEGRATED CIRCUIT PRELIMINARY DATA TV VERTICAL DEFLECTION SYSTEM The TDA 1170 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic package. It is designed mainly for use in large and small screen black and white TV receivers. The functions incorporated 'are: - oscillator - voltage ramp generator - high power gain amplifier fly back generator ABSOLUTE MAXIMUM RATINGS Vs V 4 -V S Va Supply voltage (pin 2) Flyback peak voltage Sync. input voltage 27 58 ± 12 V IO Power amplifier input voltage f 10 Output peak current (non-repetitive) @ t 2 ms S@ f = 50 Hz, t" 10 J.!s Output peak current @ f 50 Hz, t > 10 J.!S 10 Ptot = t = Power dissipation: at T tab = 90°C at Tamb = 80°C (free air) Storage and junction temperature 10 -0.5 2 2.5 1.5 5 1 -40 to 150 V V V V V A A A W W °C ORDERING NUMBER: TDA 1170 MECHANICAL DATA Dimensions in mm 495 5/75 CONNECTION AND BLOCK DIAGRAMS ~-------"-----()". ftlEOUlAno WOlTAGt HEIGHT ADjUSt SCHEMATIC DIAGRAM z, ., 496 THERMAL DATA Rth j-tab Rth j-amb Thermal resistance junction-tab Thermal resistance junction-ambient max max 12 70* °C/W °C/W * Obtained with tabs soldered to printed circuit with minimized area ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs 25V, Tamb = 25°C unless otherwise specified) Parameter Test conditions STATIC (DC) CHARACTERISTICS -19 -110 -112 Oscillator bias current V9 = 1V 0.2 1 IlA 1a Amplifier input bias current V10 = 1V 0.15 1 IlA 1b 0.05 0.5 IlA 1a Ramp generator bias current Vs Supply voltage V4 Quiescent output voltage V6 , V7 10 R2= 10 kn Vs = 25V, R1=30kn Vs=10V, R1 = 10 kn Regulated voltage EN6 EN7 Li ne regulation ENs' 6.V s V - , 8 4 8.8 4.4 9.6 4.8 V V 6 6.5 7 V Vs = 10 to 27V 1.5 mV!V 140 mA 1a 1b DYNAMIC CHARACTERISTICS (f = 50 Hz) Is Supply current Iv Peak to peak yoke current (pin 4) V4 Flyback voltage VB Peak sync. input voltage (positive or negative) Iv = 1A 1.6 Iv = 1A 51 1 497 A V V 2 I , ELECTRICAL CHARACTERISTICS (continued) Parameter Vg Min. Typ. Max. Unit Test conditions Peak to peak oscil· lator sawtooth voltage 2.4 V kn Sync. input resist· ance Vs= 1V 3.5 tflY Flyback time Iy = 1A 0.6 lif Pull-in range (below 50 Hz) lif 6.V s Oscillator frequency drift with supply voltage Vs =10to27V 0.01 V lif 6.Ttab Oscillator frequency drift with tab temperature T tab = 40 to 120°C 0.015 Hz QC Rs TDA 1170 ms 2 7 Hz Hz Fig. 1b - Static test circuit for measu· rement of -lID. Vs. V7 • 6.V s /6.V s and 6.V 7 /6.V s Fig. 1a - Static test circuit for measu· rement of -Ig. -112 and V4 9 0.8 Fig. 4 TDA 1170 9 6 sv 498 7 10 Fig. 2 - Dynamic test circuit r---------~~------~----~~--------------------<).~=25Y 01 JOy lA C9 C3 IODI'F 25Yr-~_..../,.;=~...... 5 3 11~ SYNC INPUT 8 __ ~ ________--' C7 IDA 1170 1000 .uF/16 Y 10~--~------~-C==~ YOKE IOn. 20mH R7* 5.SkD. C5O.II'F RIO 10. S-n1811 Fig. 4 - Relative quiescent voltage va· riation vs. tab temperature Fig. 3 - Relative quiescent voltage va· riation vs. supply voltage G ·\600 6-1598 AV, ""V4 Vo = 25V ('J.) Tam b=25'C 0.2 0.1 .... o .... -0.1 .1 -0.2 -0.3 • 2 10 15 20 25 20 Va (V) 499 '0 60 80 Fig. 5 - Regulated voltage vs. supply voltage Fig. 6 - Regulated voltage vs. tab temperature· 0·1601 6.56 =25 v H-+--!-H-++-H H-+-+-H-+--f V• 6.52 6.52 6.50 l- I 1.48 6.48 6.46 Tamb~2S'C 6.44 6.40. 10 15 20. 25 v. (v) 20. Fig. 7- Frequency variation of unsynchronized oscillator vs. supply voltage Fig. 8 - 40 eo 60. Frequency variation of unsynchronized oscillator vs. tab temperature G-1603l1 6-180211 61 61 ClIz) (Hz) I v. =25V 0.2 0..1 0. 1/ 0. -0.1 -0.2 -0.4 amb-ZS' -0.8 10 15 20. 25 v. Iv) 20. 500 40. 60. 80 10.0. Ttab("Cl APPLICATION INFORMATION The thermistor in series to the yoke is not required because the current feedback enables the yoke current to be independent of yoke resistance variations due to thermal effects. The oscillator is directly synchronized by the sync. pulses (positive or negative), therefore its free frequency must be lower than the sync. frequency. The flyback generator applies a voltage, about twice the supply voltage,to the yoke. This produces short flyback time together witha high useful power to dissipated power ratio. The flyback time is: t f1y ~ 2 -3 Lv where: Lv Iv --Vs Vs Iv Yoke inductance Supply voltage Peak to peak yoke current The supply current is : Is - - Iv 8 + 0.02 (A) It does not depend on the value of Vs but only on yoke characteristics. The minimum value of Vs necessary for the required output current permits the maximum efficiency. The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8 and R9 (refer to fig. 2) according to: V4 V R7 + 10 R8 R7 + R9 Pin 10 is the inverting input of the amplifier and its voltage is V 10 ~ 2V. For a more detailed description of the TDA 1170 and related performance refer to SGSATES Application note N. 129. 501 Fig. 9 - Typical application circuit for B & W 24" 110° TV sets .. Vs= 22V 01 "'1 3OV/IA 5DC~F 25V Cl[C3 '00", " ' , R9 15 kil 11 SYNC INPUT 8 C7 TOA 1170 1000 .... F/16 v RB_ 10 C6 15"F110V YOKE 12 Ion 20 mH R7S.6kil cs- ..... C2* OlS"F O.1"F RIO * lil 5-06 !312 Tolerance- SOle Typical performance of circuit in fig. 9 (V s = 22V; Iv Is t f1y Iv Vs Ptot = 1 A; Rv = 10 1:2; Lv = 20 mH) Supply current Flyback time Maximum scanning current (peak to peak) Operating supply voltage TDA 1170 power dissipation 140 0.75 1.2 20 to 24 2.2 mA ms A V W For safe working up to T amb = 50 0 e a heatsink of Rth = 40° C/W is required and each tab of the TDA 1170 must be soldered to 1 cm 2 copper area of the printed circuit board. 502 Fig. 10 - Typical application circuit for B & W small screen TV sets r - -_ _ _. -_ _ _-+-_ _-.-_ _ _ _ _ _ _ _ _-o.VS·10.eV Stab. 11 SYNC 1NPUT 8 t----<~----' C7 TDA 1170 2OO0,oF/'lJV IOI--or__----..-C=::JH 56kn u It--~-_, I C6 7/-,FI10V YOKE PI RJ 470 kG * CS* O.1/-,F R10 5-112012 Typical performance of circuit in fig. 10 (V, 10.8V; Iv 1 A; Rv 4n; Lv = = = = 7.5 mH) Supply current Flyback time Maximum scanning current (peak to peak) Operating supply voltage TDA 1170 power dissipation 150 0.7 1.15 10.8 1.3 rnA ms A V W For safe working up to Tamb = 50°C a heatsink of Rth = 30 °C!W is required and each tab of the TDA 1170 must be soldered to 1 cm 2 copper area of the printed circuit board. 503 Fig. 11 - P.C. board and component layout for the circuit of fig. 9 and fig. 10 (1: 1 scale) +Vs GND YOKE YOKE SYNC. GND C9 is not mounted on the P.C. board. MOUNTING INSTRUCTIONS The junction to ambient thermal resistance of the TDA 1170 can be reduced by soldering the tabs to a suitable copper area of the printed circuit board (fig. 12) or to an external heatsi nk (fig. 13). The diagram of fig. 16 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the side "s" of two equal square copper areas having a thickness of 35 P. (1.4 mil). During soldering the tab temperature must not exceed 260 °C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. 504 oj~: ", "/',:::' ,:: ", AREA 35}J i ,,(:; '" , ",~" . Fig. 13 - Example of TDA 1170 with external heatsink Fig. 12 - Example of P.C. board copper area used as heatsink (OPPER ;' ,; THICKNESS HEATSINK Rlh:: 30°Cjw P (,BOARD Fig. 15- Maximum allowable power dissipation versus ambient temperature Fig. 14 - Maximum power dissipation and junction-ambient thermal resistance vs. "5" G 1419/1 G 1476/1 Rth Pto t ( 'c/W) (W) 80 4 60 R j-amb I ;-- 4 40 I Ptot (Tamb' 55'CL .~ t- ::,.r-n - 10 1 20 +--- , I ---+--- 1>.totF~,_=rC) ,1 L I i i ' a i .c, --. -~ it+-tt-+-- I 30 20 o o 40 s (mm) H-t--H-++H+H-l---H-50 505 a 50 100 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA COMPLETE TV SOUND CHANNEL The TDA 1190 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic package. It performs all the functions needed for the TV sound channel: IF limiter-ampl ifier - active low-pass filter - F M detector - DC volume control - . AF preampl ifier - AF output stage The TDA 1190 can give an output power of 4.2W (d = 10%) into a 16n load at Vs = 24V, or 1.5W (d = 10%) into an 8 n load at V5 = 12V. This performance, together with the F M-I F section characteristics of high sensitivity, high AM rejection and low distortion, enables the device to be used in almost every type of television receivers. The device has no irradiation problems, hence no external screening is needed. ABSOLUTE MAXIMUM RATINGS Vs Vi Itj 10 Ptot T stg , Tj Supply voltage (pin 10) Ihput signal voltage (pin 1) Output peak current (non-repetitive) Output peak current (repetitive) Power dissipation: at T tab = 90°C at Tamb = 80°C (free air) Storage and junction temperature 28 1 2 1.5 5 1 -40 to 150 V V A A W W °C ORDERING NUMBER: TDA 1190 MECHANICAL DATA Supersedes issue dated 11/74 Dimensions in mm 507 6/75 CONNECTION AND BLOCK DIAGRAMS SCHEMATIC DIAGRAM 6 ~ l t:---- q}, J ~ 1,/ J' ~~~ r It 508 r< .... 1 I - K ~ '--J"'-- ,) lE~fl') == ~ - ~ -~ <> ~ ~ 0- IJ ::J ~' ,. 251di2 00=80 so J o o zo 60 , ,. , ,. , 1)-' 80 Fig. 8 - Typical distortion vs. tuning frequency change Fig. 7 - Typical distortion vs. frequency deviation G 1462 G 14631' d d 1'1.) ('I.) Po =IW Rl =16ll "- \ I-- I--- I-- - YI=lmV Rl 'I6A Rf"IOA 10=S.5MH \ fm-1kHz 1l,=2SO- V V / RI =lOll 10 =5.5MHz 61 ='25 kHz Vi =lmV \ 00=80 ,. Po (W) / / 00=80 \ / r\ / / / V \ ~ / o o >20 -so '80 611kHz) 513 -30 -10 0 ·10 .30 61 (kHz) I Fig.9 - Typical audio amplifier frequency response ... Vo Fig. 10 - Typical overall frequency response 6--1.t,65 146", Vo CdB) (dB) --- o I-4 ft -8 !I l- 1£ Rl-en V s- Rl~n Rt Jl .1'X-: Q: 3dB '8ll -12 Rg_son Cl0-220 C12-1 -16 "I I 1 ... ,. ~/f -10 r\ \ Vi =lmV --- - Rl =16.11 Rt=IOA '0 =5.5 MHz At =t. 2511Hz cons -20 VI -COnSt. 10 - - \Is -12 V - •• 10' I 10' I ... 11111111 11111111 II 11111 ... , . • I , (Hz) 10' 10 Fig. 11 - Typical supply voltage ripple rejection vs. ripple frequency " G-.... SVR (dB ) (dB ) 60 60 ...... =16.11 =lOll = 2.2 kJl I II o I • 10 • t 20 11111 11111 11111111 10 11 • 10' It "6' tm(Hz) t"-=lOlnv Vi V'ipple=2 Vpp =161l. Rl =10.11 R, t 'ipplo =100 Hz lit =0 1/ I Vrippl~ == 2 Vpp 10 10' I..... =0 PI 2 ... , l,...- Rl R, l &-1 67 so 20 6. 1l' 10' Fig. 12 - Typical supply voltage ripple rejection vs. vol ume control attenuation SVR Vi \ RC=SO~5 -!,D ... r\ 2 ,e I I I o 10' 514 -10 -20 -30 -!,D -so -60 (dB) Fig. 14 - Maximum power dissipation vs. supply voltage (sine wave operation) Fig. 13 - Typical output power vs. supply voltage - G-1468 G 1469 Ptol (w) Vi =1mV c- d = 10 0/0 10 = 5.5 101Hz I m =lkHz AI =.25kHz QO=80 - - RL -S.ll I ) b - - 1/ Vi =1mV d -10 0/0 10 =5.5MHz I m 'lkHz RL ·16.ll 1I 6f =!.25kHZ QO'80 0.5 20 25 30 'is / V. V o (v) )RL'16.ll. / L 1/ j / 15 JRt'SIl. J 15 V VV V. V 10 - - j IJ ~ 2.5 II ./ / 15 10 20 2S 30 Fig. 16 - Typical quiescent output vol' tage (pin 9) vs. supply voltage Fig. 15 - Typical power dissipation and efficiency vs. output power G--U.70 / t5 ~ Ptot ---" I . /V I G-1411 '1 Vo (oJ.) -l- r-,..- V (v) I / 80 10 / 60 V I~ / l/r;' / Vs (v) / V 5 / / / 20 / V o o 10 515 15 20 25 30 'Is (v) APPLICATION INFORMATION The electrical characteristics of the TDA 1190 remain almost constant over the frequency range 4.5 to 6 MHz, therefore it can be used in all television standards (FM mod.). The TDA 1190 has a high input impedance, so it can function with a ceramic filter or with a tuned circuit that provide the necessary input selectivity. The val ue of the resistor connected to pin 7, determines the AC gain of the audio frequency amplifier. This enables the desired gain to be selected in relation to the frequency deviation at which the AF amplifier's output stage must enter into clipping. The capacitance connected between pins 9 and 8 determines the upper cut-off frequency of the audio band. The capacitance connected between pin 12 and ground, together with the internal resistor of 10 kn, forms the de-emphasis network. The Boucherot cell eliminates the high frequency oscillations caused by the inductive load and the wires connecting the loudspeaker. For a more detailed description of the TDA 1190 and related performance refer to SGS-ATES Application Note n. 128. Fig. 17 - Typical application circuit Cl R4 INo----II--~:::::h ~16V 250,uFT16V C5 12 ., 11 IDA 1191 4 C6 TABS 68pF 516 Fig. 18 - P.C. board and component layout of the circuit shown in fig. 17 (1:1 scale) C 5-0039 MOUNTING INSTRUCTION The Rth j-amb of the TDA 1190 can be reduced by soldering the tabs to a suitable copper area of the printed circuit board (Fig. 19) or to an external heatsink (Fig. 20). The diagram of figure 21 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the side "Q" of two equal square copper areas having a thickness of 35 J1 (1.4 mils). During soldering the tab temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. 517 Fig. 19 - Example of p.e.board copper area which is used as heatsink Fig.20 - External heatsink mounting example COPPER AREA 35,.. THICKNESS p.e.BOARD Fig.21 - Maximum dissipable power and junction to ambient thermal resistance vs. side "Q" G 0952 Ptot Fig. 22 - Maximum allowable power dissipation vs. ambient temperature Rth CfW) (w) eo B G- Ptot (wI 5 I\.~~ r"i 6 4 60 ~ r-- o "!. lIO, ~~ ~ ~~ ~. ~ ~~. 20 ~It- ...... 1.... o 20 ~ ~6 Ptot (lamb= 7O"C 10 '& ~ 40 ~ ~ 'l-G' Ptnt (lamh= 55°C ~ ""'" .~~ 2 2 .~ -1/1'1- 3 Rth j-amb 4 "" I\.~.> 30 40 I (mm) ."N 0 -50 518 o 50 100 150 lambicl LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA FM-IF RADIO SYSTEM • • • • • • TOA1200 HIGH LIMITING SENSITIVITY HIGH AMR HIGH RECOVERED AUDIO GOOD CAPTURE RATIO LOW DISTORTION MUTING CAPABILITY The TDA 1200 is a silicon monolithic integrated circuit in a 16-lead dual in-line plastic package. It provides a complete subsystem for amplification of FM signals. The functions incorporated are: - FM amplification and detection - interchannel controlled muting - AFC and delayed AGC for FM tuner - switching of stereo decoder - driving of a field strength meter· The TDA 1200 cal) be used for FM-IF amplifier application in HI-FI, car-radios and communication receivers. ABSOLUTE MAXIMUM RATINGS Supply voltage Output current (from pin 15) Total power dissipation at T amb "'" 70 DC Storage temperature Operating temperature 16 V 2 mA 500 mW -55 to 150 DC -25 to 70 DC ORDERING NUMBER: TDA 1200 MECHANICAL DATA Supersedes issue dated 6/73 Dimensions in mm 519 4/74 10A1200 CONNECTION DIAGRAM IF INPUT N.C. BYPASS AGe OUTPUT BYPASS GROUND GROUND FIELD STRENGTH METER MUTE INPUT MUTE OUTPUT AUDIO OUTPUT SUPPLY VOLTAGE AFC OUTPUT REF. QUAil OUTPUT QUAD. INPUT BIAS 5-0398/1 BLOCK DIAGRAM TO STEREO THRESHOLD LOGIC CIRCUITS MUTING SENSITIVITY 520 10A1200 (~ ~~~~~ ~ •i~ ~.g a r.; ~ (ii" T ~Ib ~ a; 0 §" ------i.14 f--J~ !f;; § ~Lj r:!l ~' --H <--- "'" T1t ~i1"-1 T . r~ ..~ < ~ . .. ~I=1"-1 II ; ti,-1 ; ~ iil.o; ?t t1 i ~~11' -~ ~~ ~ ~L: }T-t __ :; __ ~ __ I' &! 0' N 521 I .~ ~ ~ ~ 0- ..tl J,U -® ~ I' i r:t ; -t:.~ ~ "~o -'~'1 . ~ ~ II: ~ ~ ~ . r~ • § II: l! ;;: "-- ~ I' .~ ~'LI ~ ~ ~ I' -- ~ ; ~ • .'f .. •• 1/0 '-0 8 a~ il .'&f '. ~ " ~. ._ N} .- . ~I ~ ~O~ ~ ~ . • ld. ~ • a • g " ,.- a J ~~ -<;?- 5 & n~ I Ss ~ ~ ~ ® .. ' @-----II' ~ " I ®-----I !I : I~,FL~~ .• I ~ . ~~ • ~ ; , ~ ~ ~ n §~~ = IDA 1200 TEST CIRCUIT 20,uF r---U::,o=-n-=-F----+~--'{) Vs·'2V llOkfi 470kU '~F FIELD STRENGTH METER OUTPUT t 33kll 3.9kfi 4.7k.Q 13 12 11 10 9 I I 22pH I I I '------Ir---~.FC OUTPUT IOnF IOnF 5-0626/2 THERMAL DATA ~ Rth j.8mb Thermal resistance junction-ambient max 160 °C/W ELECTRICAL CHARACTERISTICS (Refer to the test circuit; V. = 12 V, Tamb = 25°C) Parameter Test conditions STATIC (DC) CHARACTERISTICS I, Supply current 23 mA VI Voltage at the IF amplifier input 1.9 V Voltage at the input bypassing 1.9 V Voltage at the audio output 5.6 V Reference bias voltage 5.6 V V2 ,V3 V6 VIO 522 lOA 1200 ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter DYNAMIC CHARACTERISTICS Vi(thresholdl Input limiting voltage (-3 dB) at pin 1 Vo Recovered audio voltage (pin 6) d Distortion S+N N Signal and noise to noise ratio AMR Amplitude modulation rejection Vi AV l5 AV i AI7 6f fa fm Af = 10.7 MHz = 1 kHz = ±25 kHz - Vi === 50 JJ.V 10.7 MHz fa fm 1 kHz Af = ±25 kHz Vi === 1 mV 10.7 MHz fa fm 1 kHz Af ±75 kHz = = = Vi === 1 mV 10.7 MHz fa fm 1 kHz Af ±25 kHz 0.3 m = = = = Vi === 10 mV 10.7 MHz fa = AFC control slope AV13 AV i Field strength m ter output slope Vl3 Field strength meter output sensitivity JJ.V 140 mV 0.5 % 60 dB 40 dB 10 mV 40 dB 1 JJ.A -kHz 42 dB 1.7 V = = Input voltage for delayea AGC action(pin 1) AGC control slope 12 Vi fa = 1 mV = 10.7 MHz 523 IDA 1200 Typical relative recovered audio and noise output versus input voltage Typical capture ratio versus input voltage "TITmr"nm~'lnllmrlllll-lnITm~nTmmN 1--++l-HtIl--H+tttttt--++++-ItHt-l-t+ttttll-t+tHtHI(d B) ~~~rH~~oIJ~I~lhoU~-H~ I--++l-Htll-I!-l+tttttt--++tt+tttt~~ :~~~z &-103011 CAPTURE RATIO 111111111 (dB) 11111111 fm=lkHz Vs =12 V fo = lQ.7MHz Tamb=25 D C 6.f =.! 25kHz -20 I--J-LLLftIN-H+tttttt--+++++ttttfo= 10.1MHz Tamb=25CC ·-ftlI-A.-tt+ttt~++ttttttt.M =! 25k Hz 1--++l-Ht~-H~tttt--++++-ItHt-l-t+ttttll-t+tHtHI-40 1--++l-HtHlH--H+1'ttlll--+O""'d"B·. 14oinv,'-'+-ItHt--+-++HllII I--++l-Ht~-H+tttttt--+nli N I--~+W~++~II-++hnlm-III-H~OO--H+tt~-oo CAPTURE RATIO 1111 1111 1111 111111111 I I11111111 10' 10' Vi 10' 10 CuV)' Typical AGC (VIS) and field strength meter output (VI3) versus input signal Typical AFC output current versus change-in tuning frequency G-I021Jl G-l0ZS/2 AFC M=O 17 V. =12V f,=tO.7MHz Tam b=25°C v 'Is =12'1 Vi =10mV (pA) L lamb = 25°C 60 40 r- VIS 20 \ -20 -40 V13 -60 -BO I-' 10 10' 10' 10' Vi (!lV) -tOO 524 -80 -so -40 -20 20 40 if (kHz) 100 TDA1200 Typical AMR (relative to the value of fo= 10.7 MHz) versus change-in tuning frequency Typical amplitude modulation rejection versus input signal G 10281 AMR AAMR (dB) (dB) I I -1 34 I Ii ~ ~ Vj=200pV 38 ! V;=20}JV i I -3 Vs=12V 22 Vs =12 V Tamb= 2S·C r.1O.7MHZ -4 m:;:Q.3 -5 m=lkH:z: 6f=!.25kH:z / 14 11111 Ifill 10 2 10 "611 2 .. 68 10 2 2 II 68 2 'Kl" 1()3 I I -2 26 I I I I '\ 30 1S I ~; ~2mV. U. I I' 42 , 10 -6 68 ~ ~~m=b,:~;oc I i Af~'25kHz i m= Q3 If'itlI 11111111111 Vj(pV)10 5 -75 -50 -25 I!'I 25 50 75 &t(kHz) APPLICATIONS PC board and component layout of the circuit on next page (1:1 scale). CSo ® -& @~@ -t:::Jli7 n PI? ,,~'RS a @ RI @ (:5-0024 525 I 10A1200 Typical application circuit ,-------------1 .~ ? lOOn. I: ~ =~OnF C1 FIELD STRENGTH .L 1 In,,,F .. 1 1 "l~F ±,onF -'-- F TUN J AGC 2i~pF II 270P; :-"r;;c ,-- = CERAMIC FILTER ----- '20!!Q .uea I I I I R' 'Okll 1-· I l'~r 15 14 12 11 ..L. --------...,I -~ -- _.:.:~..2:!....!! - ..... 9 LlI , 2 I '~~F* '---~ ~~nF:~ 3 4 •• [ ** R1 [' • 1 ni.icJi. • I I I I I =~~pF : R2 10 CONTROL 221JH : T ~,' J~30Jl R' I I 13 MUTE p, 19k1l L 16 410"" R3 r---- R6* Vs= tty . See Note(l)- . R4 :=~~F =:1onF C6 TOAll DID " AMP!.. 'c9,i- _._._. I 10"." _. I______ ~ _______ J J. 5-0402/1 NOTES: (1) When V. is less than 12 V, a resistor RS:.= 12 k!l must be connected between audio output and ground, and the Integrator capacitor C5 must be changed to 10 nF, as follows: 4.7kll pin 6 o--C:J-.......- _ - O V a 5-040' * Dependent on field strength meter sensitivity. ** Dependent on the tuner's AFC circuit.. 526 lINEAR INTEGRATED CIRCUIT PRELIMINARY DATA TV VERTICAL DEFLECTION SYSTEM The TDA 1270 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic package. It is desi.gned mainly for driving complementary vertical deflection output stages in colour TV receivers. The functions incorporated are: - oscillator - voltage ramp generator - high power gain amplifier ABSOLUTE MAXIMUM RATINGS V5 V4 V8 Supply voltage (pins 2 and 5) Voltage at pin 4 Sync. input voltage V 10 Power ampl ifier input voltage ~ 10 ~Io Ptot T stg , T j 40 41 ± 12 I-0.510 Output peak current (non-repetitive) for t = 2 ms , @ f = 50 Hz t ~ 10 J.Ls Output peak current @ f = 50 t> 10 J.LS t HZ: Power dissipation: at T tab = 90°C at Tamb = 80°C (free air) Storage and junction temperature 2 2.5 1.5 5 -40 to 150 V V V V V A A A W W °C ORDERING NUMBER: TDA 1270 MECHANICAL DATA Supersedes issue dated 11/74 Dimensions in mm 527 6/75 CONNECTION AND BLOCK DIAGRAMS ,-------,-----0·'. REGL'LATED VOLTAGE Note:PIN3lnternally connected,must bE' lE'ft open SCHEMATIC DIAGRAM 02 21 02 Rl 528 THERMAL DATA Rth j-tab Rth j-amb Thermal resistance junction-tab Thermal resistance junction-ambient 12 70* max max °C/W °C/W * Obtained with tabs soldered to printed circuit with minimized copper area ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 32V, Tamb = 25°C unless otherwise specified) Parameter Test conditions STATIC (DC) CHARACTERISTICS -19 -110 -112 Oscillator bias current V9 = 1V 0.2 1 JJ.A 1a Amplifier input bias current VIO= 1V 0.15 1 JJ.A 1b 0.05 0.5 JJ.A 1a Ramp generator bias current Vs Supply voltage V4 Quiescent output voltage V6 , V 7 10 R2= 10 kfl Vs = 32V, R1=30kn Vs=10V, R1=10kn Regulated voltage /,;V 6 /';V 7 --Li ne regulation /';V s ' /';V s _. Is ~ Iv Supply current Iy c - 1a 8 4 8.8 4.4 9.6 4.8 V V 6 6.5 7 V Vs =10t040V DYNAMIC CHARACTERISTICS V 1.5 mV!V I lb 0.5A rnA 70 _._Peak to peak yoke current (pin 4) -- 1 Peak sync. input voltage (positive 1 ~~tive) 529 I I (f = 50 Hz) A r--- Va I V 2 ELECTRICAL CHARACTERISTICS (continued) Parameter Vg Test conditions Min. Typ. Max. Unit Peak to peak oscillator sawtooth voltage 2.4 V Sync. input resistance at pin 8 Vs=lV 3.5 kS1 t f1y Flyback time Iy= 0.5A 0.7 ms of Pull-in range (below 50 Hz) 7 Hz of tNs Oscillator frequency drift with supply voltage Vs = 10 t040V 0.01 V- Oscillator frequency drift with tab T tab = 40 to 120°C temperature 0.015 Hz °C Rs of 6T tab 2 Fig. 1a ~ Static test circuit for measurement of -Ig. -112 and V4 9 rOA 1270 Fig. Hz Fig. 1 b- Static test circuit for measureMent of -1 10 • V6 • V7 • 6V 6 /6V s and 6V 7 /6V s 4 9 5V 530 rOA 1270 10 Fig. 2 - Dynamic test circuit r-------~----~--~--------------~.~ C. OJ,..F "I-~ Jl SYNC. "PUT • V lOA 1270 ___-.J C9 ~~~----~~H A9...kA " es_ Al_ 390ldl D.',.F CI0.1,uF 5-100& Fig. 4 - Relative quiescent voltage variation vs. tab temperature Fig. 3 - Relative quiescent voltage variation vs. supply voltage - G 1472 ~ 4 G '473 I I I I I I ('/ol Tamb Vs • 3:zV =2S'C 0.2 /' o ...... -0.2 L / ...... o .....-; ... . '" - '" -Q.4 10 20 30 Vs (V) 20 531 60 80 ..... Fig. 5 - Regulated voltage vs. supply voltage Fig. 6 - Regulated voltage vs. tab temperature - G 1474 G 1475 Tamb .2S·C 6.54 6.52 ..... 1-"'" 6.50 6.46 ...... L...- ...... L...- ~ ..... ..... Vs .32V 6.56 6.48 6.44 6.42 6.40 10 30 20 v.(V) 20 G.1476 80 u I I (Hz) Tamb = 25'C V. 0.2 =32V 0.4 ,.,. :,..... o -0.2 60 Fig. 8 - Frequency variation of unsynchronized oscillator vs. tab temperature Fig. 7 - Frequency variation of unsynchronized oscillator vs. supply voltage If (Hz) 40 -- _...... ..... o ...... 1' -0.4 -o.s -0.4 10 20 30 v.(V) 20 532 40 60 80 100 Ttab('C) APPLICATION INFORMATION The high current capability of the TDA 1270 allows low current gain transistors to be used in driving low impedance yokes. The oscillator is directly synchronized by the sync. pulses, therefore its free frequency must be lower than the sync. frequency. The sync. input (pin 8) can be driven by positive or negative pulses. The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8, and R9 (refer to fig. 9) according to: R7 + R8 + R9 R9 Pin. 10 is the inverting input of the amplifier and its voltage is VlO "" 2V. Fig. 9 - Typical application circuit for large screen colour TV sets r-___._--~-___._-----------~--_o·vs C7 .3 220 kll .13 In SYNC INPUT • TDA1270101--c--~_ _-1"-l=---t H::=J'-;--1""-D .,4 III YOKE " C9 P2 *R2 to Correction Circuit 4000JJF/20Y 150 kll :r:: 3.5mH ImH ~ 3.2 1. v. 32 25 RlO* 680ka .B 18 R11 0.33 R12 10 22 V k.!l 0.22 Jl .S .!l Typical performance of circuit in fig. 9 YOKE I. Supply current Flyback time Iv Maximum scanning current (peak to peak) ". Operating supply voltage Ptot TDA 1270 power dissipation Ptot Output transistors power dissipation !=Ith tab-amb Heatsink Rth required for TDA 1270 Rth case-amb Rth of output transistors heatsink (total) t lly 3.5 mH 3.25 fl 1 mH 1.6 n 0.5 A 0.7 ms 4A 28 to 36V 1.5W 11 W 35°C/W 6°CIW 0.8 A 0.6 ms 7.5A 23 to 27V 2W 13W 30°C/W 5°CIW Stable continuous operation is ensured up to an ambient temperature of 55°C 533 Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale) Q2 Q2 Q1 YOKE +Vs GND Q1 EMITTER BASE EMITTER ..::Q:.:.1_~.:::Q~2 BASE YOKE SYNC. INPUT COLLECTOR Fig. 11 - Typical application circuit for 12" to 17" (110°,20 mm neck) B & W TV sets r-_-r_.-:-_ _-r_ _ _ _ _ _ _ _ _-o. Vs .,Z5V C9 1OOO.uf/16V YOKE 9Jt 17.SmH .9' 5.6kll 14 534 Typical performance of circuit in fig. 11 15 t lly Iy Vs Ptot Supply current Flyback time Maximum scanning current (peak to peak) Operating supply voltage TDA 1270 power dissipation 110 0.8 0.9 23 to 27 2.4 mA ms A V W For safe working up to Tamb = 50°C a heatsink of Rth = 30 °C/W is required and each tab of the TOA 1270 must be soldered to 1 cm 2 copper area of the printed circuit board. Fig. 12 - P.C. board and component layout for the circuit of fig. 11 (1: 1 scale) +Vs GND YOKE YOKE SYNC. GND 535 Fig. 13 shows an output stage employing two NPN power transistors and a service switch that stops the vertical deflection during convergence adjustment. For a more detailed description of the TDA 1270 and related performance refer to SGSATES Application Note N. 129. Fig. 13 - Vertical deflection circuit employing two NPN power output transistors r---~------~----~r---------------------------------~r------{)'Vs=32V CI C3 lOO~F 35V 4 TABS R3 220 kn 11 1---4-----. SVNCINPUT 8 03 BD663 or BD 437 RI3 In C10 TDA 1270 10 .--_-:I:-1.5-n-F...-----I ___ ~ RI4 In .--___._---19 5.6kn * Tolerance 5'/, 536 5-101411 to Correction Circuit Fig. 14 - Vertical deflection circuit for large screen colour TV employing the integrated darlington pair TDA 1410 30V R9 2.7kn 4 SYNC. INPUT 8 lOA 1270 C4 33pF 11 4 C5 J:,1.5nF Cll 10 Q.47}JF 9 R12 In RIO 22kO 5-1188 Typical performance of circuit in fig. 14 (V s = 30V; Ry = 3.25 fl; Ly = 3.5 mH) Is tfly Vs Ptot Ptot Rth case-ilmb I Supply current Flyback time Operating supply voltage TDA 1270 power dissipation TDA 1410 power dissipation Thermal resistance' of TDA 1410 heatsink 0.5 0.8 28 to 36 0.5 11 6 A ms V W W °e/W MOUNTING INSTRUCTION The junction to ambient thermal resistance of the TDA 1270 can be reduced by soldering the tabs to a suitable copper area of the printed circuit board (fig. 15) or to an external heatsink (fig. 16). Fig. 17 gives the maximum power that can be dissipated (for Tamb = 55 and 70 °e) as a func· tion of the side "s" of two equal square copper areas having a thickness of 35 Il (1.4 mil). During soldering the tab temperature must not exceed 260 °e and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. 537 I Fig. 16 - Example of TDA 1270 with external heatsink Fig. 15 - Example of P.C. board copper area used as heatsink COPPER AREA 35)-1 THICKNESS p. C. BOARD Fig.17 - Maximum power dissipation and junction-ambient ther· mal resistance vs. "s" Fig. 18 - Maximum allowable power dissipation versus ambient temperature G 1479f1 G-1478/1 Rth Ptot (W) ('C/Wl 8 80 6 60 j·amb R 4 f ""i-..... I 1--l-l-+Pt!,QO!Lt;..:(T:!1-amb 4 =55'C) , 40 ---t o o 10 20 30 40 s (mm) -50 538 50 100 150 Tamb('C) LINEAR INTEGRATED CIRCUIT 5 V VOLTAGE REGULATOR > • OUTPUT CURRENT 600 mA • TIGHT TOLERANCE for OUTPUT VOLTAGE • • • • LOAD REGULATION LESS THAN 1% RIPPLE REJECTION 60 dB TYPICAL LOW OUTPUT IMPEDANCE EXCELLENT TRANSIENT RESPONSE • HIGH TEMPERATURE STABILITY The TDA 1405 is a silicon monolithic voltage regulator in..Jedec ,TO-126 plastic package which can supply more than 600 mA. It incorporates the following functions: - internal overload protection - short-circuit protection The TDA 1405 can be used for voltage regulation in consumer applications. ABSOLUTE MAXIMUM RATINGS Input supply voltage Total power dissipation at Tamb ~ 25°C at Tease ~ 25°C Storage and junction temperature Operating temperature MECHANICAL DATA 14 V W W -55 to 150 °C a to °C 20 1.25 70 Dimensions in mm Pin 3 cQnne<:t~d to metal- part of. mounting surface (t} Within. this r-eglO(.1 the- cross· sedlon Of the le-ads IS Supersedes issue dated to/T3 uncon!roU~d 539 6/75 BLOCK DIAGRAM SERIES 1 - - - - . - - - - _ - - { 2 ) 2 Vo 5-0371 SCHEMATIC DIAGRAM V; :-----i ;--------------------i -- ---------~----I R9 E ~~~----~----~,-L~----~~~Q9 Rl3 I I _____ ...1 -----., I RIO C2 r06 B Rl4 R8 ~ _____ J !____________________ '- ____________ 540 J 5-0433 TEST CIRCUIT with output characteristic V Axis osciHoscopt" X Axis oscilloscope 500n In 5_0521 Output ~ voltage 50 mV Change SOOmA lOrnA forego loMAX ~ 10 I 5-0436 I I ,I THERMAL DATA Rth j-case Rth j-amb Thermal resistance junction-case Thermal resistance junction-ambient 541 max max 9 °C/W 100 °C/W ELECTRICAL CHARACTERISTICS (T j = 25 aC, Vi = 12 V unless otherwise specified) Parameter Va !:iVa' Load regulation I • a Regulated output current loMAX' Maximum output current 7.5 V ~ Vi ~20V 10 = 10mA CL = 1O ILF Min. Typ. Max. Unit 4.75 10 = 10 to 600 rnA CL = 1O ILF !:iVa -Va ~ 1% 600 5 5.25 V 0.3 1 DfoV 850 rnA Teo>e = 25 ac Tease = 70°C 0.93 1 1.2 A A Output short-circuit current Va = 0 200 250 rnA Id Quiescent drain current Vi = 20V !:iVa Line regulation Vi = 7.5 to 12 V 10 = 10 rnA CL = 1O IL F 5 10 = 10mA CL = 10 ILF Tamb = Ot070°C 0.5 mV/O( 10 = 10 rnA CL " = 20 ILF B = 10 Hz to 100 kHz 70 ILV 15 mil 60 dB Ise , Output voltage Test conditions !:iVa !:iTamb Temperature coefficient eN Output noise voltage 10 =0 Ra Output resistance 10 = 600 rnA SVR Supply voltage rejection Vi = 10V 10 = 10mA !:iVi = 4 V peak to peak f = 100 Hz CL = 10 I-tF Refer to the test circuit " Tantalum capacitor 542 rnA 9 46 23 mV Typical output voltage versus outpu.t current 61035 Power rating chart I I Ptot (W) Vo (v) 14 ) .......""rly / I I ~"I"'r~ 12 / I ~1y~04r ,..."S,,,,, ..... l - I-- 10 ,.- V V ----- 1/ ~ 1 .J V I-- I- FREE'AIR ! 200 I I 0100 800 600 1000 lo(mA) Typical regulated output current versus junction temperature G 10 20 30 40 50 60 Tamb ("e) Maximum output current versus junction temperature 1152 - G 1153 lo{reg (A) Vi = 12V _. 0.9 r---..1-., I r--.... "'" 1'-... ~ I": 0.7 i 1'-... ...... 1'-... ~ 0.7 I' 0.6 0.6, -I,/) I Vi =12V !lVo =1". -20 20 40 60 so 100 120 Tj ('C) -I,/) 543 -20 20 '40 60 eo 100 120 T) ('C) Typical dropout voltage versus junction temperature Typical short-circuit current versus input voltage - G 1154 G 1040 (V) 260 In ,SOOmA ~ 2.5 y ~= 400mA 220 ~ 10 = 200mA .,... 6~ IS .... Tj,25'C .... V .... V /' 180 .... =1-'. 140 100 -20 20 IIJ 60 80 100 120 140 TJ ('C) 10 Typical short-circuit current versus junction temperature G-1155 Id (mA ) ~~-+~+-~~-+~+-~~-+~+-~~ 16 18 Vj(V) G- 1156 I I I 10 == 260 14 Typical quiescent drain current versus junction temperature Ise (mA) 12 V· ,12 V 0 9.5 240 220 No,20V 200 f" 180 N ~ Vj =12V 160 8.5 ~ 140 120 ")"0., 100 -20 20 40 60 80 100 120 140 T)<'C) -20 544 20 IIJ 60 80 ·100 120 140 Tamb('C) Typical quiescent drain current variation versus junction temperature Typical supply voltage rejection versus frequency G-1157 G- 'O'o~ 61d SVR l I I (~A) ~-+~~+-~-+~~+-~~~~+-~-i (dB) I I - ..,....10- t.,...-l-- 62 l/ 60 Vi =lOV bVj =4Vpeak to peak 10 =10mA to!': 50mA ~ ~ - 100 58 56 20 -20 40 BO 60 100 120 Typical supply voltage rejection versus regulated output current 10 , 46. 46' 140 T J ("C) 6 B 104 10' 10 2 2 468 f (Hz)" 10 5 Typical output resistance versus frequency G 10105 G- 0'6 SVR (dB) Vi =10 V 60 58 I ) ........ t-.... AVj =4Vpeak to peak f = 100 Hz 4 I-- 1" t-... 56 Vi =12V CL D.1JJF 10 ·100ml = 2 , 10 2 ....... r-.... 4 l' 2 V . t"-.. 54 "" 10 ...... 1'-.. 6 4 52 2 I IIII 50 100 200 300 400 4 500 lo(reg)(mA) 545 6' 10 4 III 6. f (kHz) Typical line transient response AVj = 5V Vj=9.5V AVo = 50mV Vo= 5 V dz C / 1\ I ...... I'--.. roons lOOns lOOns lOOns lOOns 5-0437 APPLICATION INFORMATION Typical connection circuit Vi TDA1405 1---,---(; 10pF Ci 5-0522 546 Vo= 5V APPLICATION INFORMATION (continued) Circuit for increasing output voltage R2 Vo= VI (1+""R1) + Id ·R2 Vi TDA1405 Vi = 16 V Id = 9 rnA tild tiTamb --= -7 fJ.A/oC typo tild tiV. = 30 fJ.AIV typo o 5-0523 Circuit for increasing output current Vi Vi = 12V loMAX= 5A Ql vo=5V o---~--~ r------------------~--_O Ro""'2rnil 01 = PNP transistor 3.311 hFEOl ~ 20 at ICOI = 5 A TDA1405 10,uF I 5- 0524 Switching regulator with short-circuit protection Vo = 5V lo~4A ~VO "'" 100 rnV peak to peak f"'" 10 kHz v, 4W O.2n 27 n Po T] =--""'65% Pi Vi = 10to 20V 01 = BOX 70 02 = BC 116 01 = Diode with IFM = 5 A L""'1.5rnH 547 , LINEAR INTEGRATED CIRCUIT .....,....... ~: , ) . '~,;:,."~: ..',:":,..,•..•.•............•••... ..... \ : "':'-~' ;' ':.:..\"..•....•......:':..';.:.•.....;"...."'.,....••.;•...'.,:,.•........ "" ....•.•:..,.'.: •..........• '.:.. :.'.•...:::."""'.....•.':\... .•......':":".:.:'......• .- .... .•..... ... •.. ...."':•... ' ".;" TDI1410 PRELIMINARY DATA MONOLITHIC QUASI-COMPLEMENTARY DUAL DARLINGTON IN PENTAWATT® PACKAGE The TDA 1410 is a monol ithic integrated circuit in Pentawatt® plastic package consisting of a pair of quasi-complementary (NPN-PNP) darlingtons with the associated biasing system. Each darlington' can deliver a current in excess of 3A and can withstand a supply voltage of 36V. The device is intended for applications as: - booster for operational amplifier - DC motor driver - stepping motor driver - output stage for AC power amplifier up to 12W in Hi-Fi systems - output stage for vertical deflection systems in colour TV etc. ABSOLUTE MAXIMUM RATINGS V CEO V CBO 10 10 IF Dl IF D2 Ptot T j • T stg Collector-emitter voltage(lB = 0) Collector-base voltage(I E = 0) Output peak current (repetitive) DC output current 01 forward current 02 forward current Total power dissipation at T case = 60°C Junction and storage temperature 36 50 3.5 3 0.3 v V A A A 3 A 30 -40 to 150 W °C ORDERING NUMBERS: TDA 1410 H TDA 1410 V MECHANICAL DATA Dimensions in mm 549 5/75 I CONNECTION AND SCHEMATIC DIAGRAMS 2o--.._---t-C '----.----04 5·1128 THERMAL DATA Rth J-case , max. Thermal resistance junction-case 3 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C) Parameter V CEO V CBO Test conditions Collector-emitter breakdown voltage Collector-base breakdown voltage Ic = 500 IlA V (B R)CSSO Collector-substrate breakdown voltage hFE(NPN) DC forward current transfer ratio hFE(PN'P) DC forward current transfer ratio Min. Typ. Max. Unit 36 V 50 V 50 V Ic =2A V CE = 5V 2000 5000 - Ic = -2A V CE = -5V 800 2500 - 550 ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Quiescent drain current Id Collector-emitter saturation voltage (NPN-PNP) VeE (sa!) VBE(NPN) Base-emitter voltage (pins 2-4) Min. Typ. Max. Unit 12 - 1 = 5 rnA V, = 34V Ie = 12AI hFE= 200 20 mA 11.71 12.31 V Ie =2A 2 V VBE(PNP) Base-emitter voltage (pins 1-4) Ie = -2A -0.9 V V F(01) D 1 forward voltage V 3-5 = -34V I F(01)= 0.3A 1.5 V V F(02) D2 forward voltage I F(02)= 3A 5 V f TlNPN) Cutoff frequency Ie fT(PNP) Cutoff frequency Ie = -2A = 2A V eE = 10V 10 MHz V eE = -10V 5 MHz Fig. 2 - Typical quiescent drain current VS. case temperature Fig. 1 - Typical quiescent drain current vs. 12 - 1 - G·164411 G 1645/2 I ) V• • 34 V Tease 40 =2S'C 30 / 30 ./ V .... I--" 20 20 / ,/' o '" '" I I I V Vo'3 V '2_1· 5mA / 10 ..... 1' r- 10 / 6 '2-1 (mA) 551 o 20 40 60 80 100 120 Teas.(·C) I Fig. 3 - Typical quiescent drain cur· rent vs. supply voltage Fig. 4 - Typical DC current gain vs. collector current - G 16fJOfI Id G 163M' (rnA VCE=5V 40 '2_1=5mA 10' Tca s e =2Soc 30 NPN , • PNP \- - 20 10' • 10 ., 10' o 10 20 30 40 v. (V) Fig. 6 - Fig. 5 - Typical VCE(sat) vs. collector current - .. Ie (A) Typical V BE vs. collector current G 1627 Va(U t G 1628" (V) veE = 5V 4 1 hFE 200 ./ NPN / . . . .V ...,..., - i---" ~ o o 552 -- ......- - V /' ~ ./' ./ , Ie (AI Fig. 8 - Typical pulse response (falling edge) Fig. 7 - Typical pulse response (rising edge) , ) -H-t--+-~ I , , t- ) , 1-+1.+-, 30 20 l_'--ct-I NPUT PULSE 20 , 1 ! ' . \~ IT, . I i a 0.2 0.4 Ir 0.3 R~SP -YOAI41a J ' I (.us) T 1 0.6 0.4 0.2 NSE !I INPUrP~W-;- ITTT 0.8 If (,us) Fig. 10 - Safe operating areas Fig. 9 - Typical output voltage swing vs. freauencv ,--;-;-rrnm--'I-;-'-TTTm---r-rrG"'-rr'6m 7 O/l G 163'511 Ie (vpp)I--++++I-H+l---H IH-++++t+--HH-+++Hi 8 r-'----i Teas@' =25-C (A),~_ I 30 1 I ~. ! Vo r- Vs=!.1? Y mill:lP-'-l-JT ~m" 10 10 0.1 D_ RL -4A -+ \ .-j: '-TDAI410 RESf'1 NSE o .1-' t-+-++.l-+-+--+ H-+-.!-j : ' i H= :VS=t17V - G t66811 , -JR L =411. + 40 G 1669/1 I !-.1- I.ttl _ I IC MAX (PULSED) W~PERATION e- IC MAX (CONTINUOUS)I I I , 1ms iI 500ms t ~\ '\.\\ \ . - - D C OPERATION- ,~[--,aams =-~Egm~m~ :.:f 1"--: =-:-~-: : ._____ *. ___ ~L~=-"'~----+~_--_-_-__ ~ t-·· f1 ,--RL =4ll. I--+-++H+*-++I-+I~vs =117V o , 10' 10' .. 10' FOR SINGLE NON REPETITIVE PULSE -- -- r----.--- - . ,. , 10 f (Hz) 553 . VCE (V) I Fig. 11 - Derating characteristic P IOI (WI ~ 30 ~ ~'" ~~ ~ 20 \~ ~ I~ I\. 10 o .so o so 100 Tamb reI APPLICATION INFORMATION Fig. 12- Hi-Fi audio amplifier with short circuit protection 100 J:~F 1 _ _ _ _ _ _ _ .J 5-",,/2 554 Typical performance of circuit in fig. 12 Parameter Output power Po B Id d f Vs Vs =1% Gv = 30 dB = 40 to 15,000 Hz =25V RL=4n = 27V RL=an d f Vs Vs = = = = Vs = 25V Gv = 30dB Drain current Vs Po Vs Po = = = = d .. , o II Vs =25V RL = 40 1.2 TT w w 20 to 100,000 Hz 960 rnA 575 rnA ~ig. 14 - Typical distortion vs. out· put power (R L = 4n) G-1636 ~ I 16 12 FlL = an ('10) I W w RL=4n 25V law 27V 12W , 7( 12 9 RL=4n Fig. 13 - Output characteristics of the protected class B stage G 16&512 !I 10 a 10% Gv = 30 dB 40 to 15,000 Hz 25V RL=4n 27V RL=an Frequency response (-3 dB) ;17 Min. Typ. Max. Unit Test conditions IIIIII I _._15kHz 1kHz ---40Hz I-.. NPN DAR INGTON 0.8 o 0.6 PNP DARLINGTON 1"-- -1 IiI r:/ 0.4 -2 ~ -3 0.2 '10.... o -4 o F=:.:t- I 10 20 -20 -10 10- ' o 555 . .. ,- ••• 10 • •• Po (WI Fig. 16 - Sensitivity vs. output power (R L =4n) Fig. 15 - Typical distortion vs. output power (R L = 4n) - - G 1638/1 G 1637 d ('/,) II Vi (mV) V• • 25V RL .41\ I =1kHz G 'JOdB - Vs • 25V H- RL = 4fl H- f =1 kHz H- Gy '30dB 300 f- - v 6 200 4 1/ 100 . .. o , .. ./ , 10 1 .. J o Po (W) = - G 164011 d ('/.) (W) 8 6 I 1 - 80 10 16 Po (W) 12 Fig. 18 - Typical distortion vs. output power (R L 8n) Fig. 17 - Typical power dissipation and efficiency vs. output power (R L = 4n) G 163' PIOI 8 4 60 0,6 40 0.4 20 0.2 o o V•• 27V RL' all. Gy' JOd8 -'-15kHz - - 1kHz ---40 Hz ''I. 4 Vs ·25V R • 4V I o 4 8 12 16 Po(W) 556 -- - -. ~-- • • - "'- .. Po (W) i·:>~,;:;,;.,;);:'!;'1~f .,.h. ; ' " , '~." ,; ". ,'- >' 1.~ .. >, \(,' ".,\., Fig. 19 - Typical distortion vs. output power (R L = Sn) Fig. 20- Typical sensitivity vs. output power (R L sn) = d Vi ('1.) 11111 ,- f--- 1---- -- I-- 1---- (mV) Vs =27V Rl= a1l. I = 1kHz G = 30dB - I - - - ,-I-- I 300 250 6 ./ V 200 c- - 4 150 ... o 10 Vs' 27V Rl= an f = 1kHz / 100 50 / / I G. =30dB I I I 0 Po (W) Fig.21 - Typical power dissipation and efficiency vs. output power(R L Sn) r--- -r--- -r--- - r - 6 12 9 Po (W) Fig. 22- Typical output power vs. supply voltage = I G 164311 , ./ P tot (W) 'l. Po ('/,) (W) 60 15 d.l'1o Gy =30dB ./ V ". 1/ ...... t--.. P t 1/ 4 1/ / >- > / i'.... 'l. 11 I-I-- 40 ....... 15kHz / ~40Hz 10 30 ---- I-- II 20 v. = 27V I 1/ Rl =an I ·lkHz a 4n 10 ~ Y r 15kHz sn -I-- I 6 I'l - IL 1 o 50 o 10 12 Po (W) 0 10 557 15 20 25 Vs (V) Fig. 23 - H-Fi stereo amplifier with preamplifier-equalizer for ceramic pick-ups. The final stage is identical to fig. 12. " ,:.. _____________ J: Fig. 24- Booster for operational amplifier .r D.l"F --- - - - - --I I I $100jAF R Rt -Vs 1 .. 112, 558 Fig.25- L 141 + TDA 1410 output voltage swing vs. frequency Fig.26- L 141 +TDA 1410transient response o'6Im G-Ile& .a RLliI 4 Ys .. !l' y 30 RL -4Jl. Vs="7V .14V 90~. f20 L141·TDA1410 L141 o \. \. o 10' . .. \ -1'Y , .. 10' . .. , i!: ~ RISE IME o (Hz) 1\ i iff I \ 10 ... ~ 20 40 60 80 100 Performance of circuit in fig. 24 L 141 + TDA 1410 ± 18V Max. supply voltage Max. power dissipation Input offset voltage Input offset current Input bias current Voltage gain Max. DC output current 30W at T case = 60°C 5mV ~ 200 nA ~ 500 nA ;;;. 86 dB (R L = 4n) 3A ~ 559 120 t (ps) I Fig.27 - Position control of DC motor L-----~--------~--------------------~------------------------~~o·vs 5-1I3Vl Fig.28 - Stepping motor driver B G. T74193 Q< UP f---t-H--- Gb f-~-ti--T---j f----+'--+rl DOWN CLOCK FORWARD! BACKWARD 560 Fig.29- Bidirectional speed control of DC motor r---c=J-----~-----~--------------~O·~ 470 36 kO R, ~2 O.1,..F -11- VOLTAGE REFERENC 470 o-----~+---~~-+--~--~==~--~--+_--~~--_r__o~ Fig.30 - Programmable supply voltage ,Vs LOGIC INPUTS j--- --- DAC 6 4 RL 5-1132/2 561 I Fig.31 - Output stage for vertical deflection system .V, lOV C9 CIO cn 47IJF At2 tn An nUn s-uso 562 LINEAR INTEGRATED CIRCUIT TOA 1412 12V VOLTAGE REGULATOR • • • • • • • OUTPUT CURRENT > 500 rnA TIGHT TOLERANCE for OUTPUT VOLTAGE LOAD REGULATION LESS THAN 1% RIPPLE REJECTION 60 dB TYPICAL LOW OUTPUT IMPEDANCE EXCELLENT TRANSIENT RESPONSE HIGH TEMPERAtURE STABILITY The TDA 1412 is a silicon monolithic voltage regulator in Jedec TO-12a plastic package which can supply more than 500 rnA. It incorporates the following functions: - internal overload protection short-circuit protection The TDA 1412 can be used for voltage regulation in consumer applications. ABSOLUTE MAXIMUM RATINGS Input supply voltage Total power dissipation at Tamb ~ 25°C at Tease ~ 25°C Storage and junction temperature Operating temperature MECHANICAL DATA Supersedes issue dated 10/73 27 V 1.25 W 14 W -55 to 150°C Oto70 °C Dimensions in mm 563 6/75 I BLOCK DIAGRAM v, ~----~o-----j I o 5-0377 SCHEMATIC DIAGRAM r--- - -1 r - - -- - -_. - -- - - - - - - - - Vi I -"l I " R9 1 1 1 Al RS A 1 "i -I E '":I-I~-='----.....-='-"!I-.rQll : L-~'~-+ __~~____-LL-~_ _~~~Q9 RI3 _____ ...1 01 rII 1 1 I 21 22 RI4 F I I t _____ J !____________________ J 5-0433 564 TEST CIRCUIT with output characteristic Y Axis oscilloscope O.lfJF O.lfJF In X Axis oscilloscope 5-0526 Vo Output ~-=tt:=::======;:;:::;==~::::==~VOltage mV --i 120 Change L~L SOOmA 10mA 10 reg. loMAX 10 5-0444 THERMAL DATA Rth j-case Rth j-amb Thermal resistance junction-case Thermal resistance junction-ambient 565 max max 9 °C/W 100 °C/W ELECTRICAL CHARACTERISTICS (Ti = 25°C, Vi = 21 V unless otherwise specified) Test conditions Parameter Vo l:;.Vo" I0" loMAX" Load regulation Regulated output current Maximum output current 14.5 V ~ Vi ~ 27 V 10 = 10 mA CL =10/-tF 11.4 10 = 10 to 500 mA CL = 10/-tF l:;.Vo --~1% 500 Vo 12 12.6 V 0.3 1 OfoV 720 mA Tease = 25°C Tease = 70°C 0.75 0.8 Output short-circuit current Vo = 0 100 200 mA Id Quiescent drain current Vi = 27V 10 mA l:;.Vo Line regulation Vi = 14.5 to 21 V 10 = 10mA CL = 10 /-tF 6 33 mV 10 = 10 mA CL = 10/-tF T amb = 0 to 70 °C 1.2 mV/oC 10 = 10mA CL ""= 20/-tF B = 10 Hz to 100 kHz 150 /-tV 20 m!l 60 dB Ise • Output voltage Min. Typ. Max. Unit .l:;.Vo l:;.Tamb Temperature coefficient eN Output noise voltage 10 =0 Ro Output resistance 10 = 500 mA SVR Supply voltage rejection Vi = 19V 10 = 10mA l:;.V i = 4 V peak to peak f = 100 Hz CL = 10 /-tF Refer to the test circuit "" Tantalum capacitor 566 46 1 A A Power rating chart Typical output voltage versus output current vo Plot (v) (W) 14 14 12 I I ......If,frly .12 / 10 ,V I"'-Iy~~.r 10 / V I ~f'"fr~ t-- ./ "S~...... r-- r-- - " r-- 1/ - 100 200 300 400 500 600 70010 (mA) Typical regulated output current versus junction temperature 10 loMAX i 720 (mA) 1""- 680 660 640 620 Vi '\ 560 40 60 80 100 120 50 I r---- 60 lamb (VC) G '1SQ ---l- r"\. Vi =21V ~- I -- ~ 640 800 -40 567 -20 20 40 60 eo 100 120 i I ~ i 620 140 Tj ('I:) ~ I r"\.. 660 1\ 20 '" "'- 680 580 -20 " 700 " AVo =1Dlo -40 "- 720 600 40 i 1--- -" 740 I" =21 V 3D I 760 " " '\ 700 20 Maximum output current versus junction temperature G - 1158 ) i FREE AIR _._- ./ 140 Tj('C) Typical dropout voltage versus junction temperature Typical short-circuit current versus input voltage G 1160 - G 1051 Ise (mA) ~ 25 140 Io=500mA ~ f-- 2.3 21 130 F '" 2.2 ,... f.,.. ,.... 10 /V = 200mA 90 1.9 rNo= ,gl l' T j =25°C / 80 ~ / 70 60 1.7 20 -20 40 60 80 100 120 140 Tj ('e) 14 Typical short-circuit current versus junction temperature G-I161 Id Ise (mA) // 100 I' 1.8 V 110 r--. I' f.,.. V 120 - 350mA I 16 18 20 22 24 26 28 30 Typical quiescent drain current versus junction temperature .--- V; (V) G- 1162 (mA ) ~~_-+~~+-~_-+~+-~~_~~+-~-+~ 10.4 120 110 10.2 I 100 1"-. 90 ---I~ d 70 Vi VI =27V as ,.... 80 ,.... 10 i- ,X 9.6 9.4 =21V 10 • 9.2 60 I- --- 50 .. .- 40 -20 20 -,... V; _ ----- lo=10mA Vi 19 V = ..... f.- AY, =4Vpeak to P"M i'" 150 - V 62 i'" 61 130 ... 110 r- v,. = 21\1 90 ~ 10 = SOmA / 60 roo 70 50 59 - 20 ·0 20 40 60 80 100 120 4 140 TI(·C) 10 Typical supply voltage rejection versus regulated output current Ie , 10' • s. 10' , so , • s, 10 5 10" f(Hz) Typical output resistance versus frequency G 105'1' SYR Ro (dB) (mil ) 60 ....... .~:!;V CL = O.I.uF ........ 56 , r--... I = 100mA )~ 10' • ............. r-.... 56 .............. 54 - ..... 10 Vi =19 V AV i :::4Vpl!a.k to peak 1=100Hz o 52 ... 50 o 100 200 300 400 500 lo(rog)lmA) 569 10 Typical line transient response I ! LI Vj :5V Vj :18.SV [ L1Vo: BOrnV Vo: 12 V ! / \ -.... I '" lo::5mA .......... lOOns lOOns lOOns lOOns lOOns 5-0445 APPLICATION INFORMATION Typical connection circuit Vi TDA 1412 1--"---oVo 10,uF Ci 5-0527 570 '.'. ':., . ':.' : . fqt.*t?~{f~i;Yi;~i:m~~j~~};:·~:~-~·:/':~1~:~'<;~,~,: APPLICATION INFORMATION (continued) Negative output voltage circuit .... * r' :: ~ lO"F >--- ... 'L -...J Vi TDA1412 ~ -5-0528 Parallel connecte~ voltage reguiators and its output characteristibs TDA • Vo 1412 12 AVo ~ t Vi / 10 J 1 .-.... - VO (V) TDA 1412 / lOJ..IF / AVo =Vol-Vo2 / I / / 5-0529 V 0.4 571 '18 1.2 1.6 2 lo(A) LINEAR INTEGRATED CIRCUIT 15 V VOLTAGE REGULATOR • OUTPUT CURRENT > 450 mA • TIGHT TOLERANCE for OUTPUT VOLTAGE • LOAD REGULATION LESS THAN 1% • RIPPLE REJECTION 56 dB TYPICAL • LOW OUTPUT IMPEDANCE • EXCELLENT TRANSIENT RESPONSE • HIGH TEMPERATURE STABILITY The TDA 1415 is a silicon monolithic voltage regulator in Jedec TO-126 plastic package which can supply more than 450 mAo It incorporates the following functions: - internal overload protection - short-circuit protection The TDA 1415 can be used for voltage regulation in consumer applications. ABSOLUTE MAXIMUM RATINGS Input supply voltage Total power dissipation at Tamb ~ 25°C at Tease ~ 25°C' Storage and junction temperature Operating temperature MECHANICAL DATA Supersedes issue dated 10/73 27 1.25 V W 14 -55 to 150 °C o to °C 70 W Dimensions in mm 573 6175 BLOCK DIAGRAM SERIES Vi (j)---.-------.--------l TRANSISTOR 1-----.------.---{22J Vo A S-0317 SCHEMATIC DIAGRAM Vi ~-----i ;--------------------i R9 R2 Rl E ~_r--~--~~---.~,-L-+------.-~Q9 Rll I I _____ -' I I I I RIO C2 R12 I I I ,I Rll R14 1 I 1 1 I I ~ _____ J !_____________________I 5-<1433 574 TEST CIRCUIT with output characteristic Y Axis oscitloscope ~ v, o---.----j TDA 1415 _ _.Jl osmsec.ll.50msec.1 1.5 kIl O---~--------~ X AJL:is oscilloscope O.l,l1F 5-0530 __~-----+----~------~ ~ ~~ Change 150mV_t~C:=::===::~;;;:::::::;==~:::==1VOllage L~45~omA loreg. 10 MAX 10 5 0411 THERMAL DATA Rth J-case Rth J-omb Thermal resistance ,junction-case Thermal resistance junction-ambient 575 max max 9 °C/W 100 °C/W ELECTRICAL CHARACTERISTICS T j = 25°C, Vi = 24 V unless otherwise specified) Parameter Vo ilVo' Output voltage Load regulation I0' Regulated output current loMAX' Maximum output current Test conditions 17.5 V ="" Vi ="" 27 V CL = 10 ~F 10 =10mA ilVo --=""1% Vo 450 Id Quiescent drain current Vi = 27V ilVo Line regulation Vi = 17.5 to 24 V 10 = 10mA CL = eN Output noise voltage 10 =0 10 = 10mA CL T amb = 0 to 70 °C 10~F Ro Output resistance 10 = 450 rnA SVR Supply voltage rejection Vi = 22V 10 = 10mA il Vi = 4 V peak to peak f = 100 Hz CL = 10 ~F Refer to the test circuit '* Tantalum capacitor 576 1 %V 600 rnA O.S A A 85 16C rnA 10 rnA 6 33 mV 1.5 180 46 V 0.3 = 10 ~F 10 = 10mA CL " = 20 ~F B = 10 Hz to 100 kHz , 15 15.75 0.68 0.8 Tcase = 25°C Tcase = 70°C Vo = 0 ilVo Temperature coefficient ilT. mb ' 14.25 10 = 10to 450 rnA CL = 10 ~F o utput.sho rt- c i rcu it current Isc Min. Typ. Max. Unit ~VloC ~V 60 mil 56 dB Typical output voltage versus output current Power rating chart G-1151 Ptot I) 14 L 12 I I --- -- (W) W'rIy / , ~, tvl"~ ,1y~4r ~S'1v -- 12 10 ..::to.... - 10 1/ 1- -- / - - -- / V / / 100 - I200 300 400 500 600 700 'o(mA) Typical regulated output current versus junction temperature r. J- 10 FREI AIR 20 30 40 50 60 lamb (ac) Maximum output current versus junction temperature 11 ~ I v"", lo{r,pg ) loMAX (mA) (rnA) G 1165 I 640 620 "- 600 580 700 "- 560 540 520 Vi 480 460 -40 = 24V AVo soo i -20 =,o/a " "- 680 '" '" 660 '\ 640 620 "" 1 "- 600 I. '\ I! 580 " "' 560 "' 540 -40 577 II "- Vi ",2·4\1 " I: -20 20 40 60 80 100 120 140 TjC'!:) Typical dropout voltage versus junction temperature Typical short-circuit current versus input voltage V'j -Vo G l0i5 '5e (V) I (mA) 2.4 . .90 10 2.3 =0 85 ~ f' 2.1 f' ,..... 70 f' V V Tj =25'C 60 AVo=10J0 1.7 / 65 10=15 mA 1.8 I 75 ""I" I / 80 ' " lo=200mA 1.9 / mA R 22 55 I 50 1.6 -20 '_e - G-1166 0 20 40 60 80 100 120 140 Tj('C) 14 Typical short-circuit current versus 0_'16' junction temperature 16 18 20 22 24 26 28 30 Typical quiescent drain current versus junction temperature VI (V) G-1168 Id (mA)~-+~+-~~~~-+~+-~~~~~ (mA)~-+~+-~~4-~-+~+-~~4-+-~ 10.4 120 Vi '="24 V 110 10.2 100 10 90 9.8 80 9.6 70 9,4 60 9.2 Vi =21V Vi =24 V 50 88 40 -20 20 40 60 90 100 120 -20 140 Tj ('C) 578 20 40 60 80 100 120 140 Tj('C) I I~ i,l I:I: II I' Typical quiescent drain current variation versus junction temperature Typical supply voltage rejection versus frequency G 1169 G ~1069 SVR f- I lo-. 210 190 10 170 f.- =ADOrnA ,... '10.. 10:: I- 61 200m A 60 ~ -- ~ 130 I- 57 56 70 55 / 54 50 20 -20 40 eo 60 100 120 140 Tj ('C) Typical supply voltage rejection versus regulated output current SVR 1/1--' 58 lo::50mA 90 (dB) I 59 10-. 110 -lJlJlllll Io.=10mA Vi:: 221/ ,AliI =4 vpeak to peak 62 ~ ,... 150 I- VI =24V I (d B ) . Vi =22 Y AVj II! 4Vp.ak to pqk 1=100Hz , 6. 10 la' '6 • 468 to' 10 4 2 46 B f (Hz) lOS Typical output resistance versus frequency G 1070 I-- 57 56 55 ....... t-....... 54 ...... r-.... 53 Vj=24V f' t-.... CL::O.l,uF Io=loomA 10 J"": r........ 52 51 50 50 100 150 200 250 300 350 , 6' 10 400 lo(regl(mA) 579 , 6. , 10' 6 8 t(kHz) Typical line transient response II Vi =SV Vi =2lSV L / lIVo =100mV Vo = 15 V / \ -.... IO=SmA ~ '-... lOOns lOOns lOOns lOOns lOOns 5-0412 APPLICATION INFORMATION Typical connection circuit TDA 1415 1--.......- - O V o ·5-0531 580 APPLICATION INFORMATION Symmetrical (continued) ± 15 V voltage regulator circuit TDA1415 1-~_-.-_----.~_~_-.-_----oVo=·15V 500,uF TDA 1415 IO,uF 500,uF BAl28 lOll : -__' - - -_ _-+_ _ _ _-A-_~-_+__ OVo=-15V __4--~_ _ S _ 0532 Series regulators circuit connection f--~-o'lo=30V 4S0mA lo,.uF No short-cirCUil) ( pt"otlPction 1--r--+------{)'Io=15V 4S0mA 500,uF sean 5_0533 581 APPLICATION INFORMATION (continued) Low consumption circuit to increase output voltage Id =10mA Vi = 25V Old -amb - = -7 JJ.A/oC typo oT Vi TDA1415 Old RI 3JOO II W, = 30 JJ.AIV typo OV BE -= oT.mb Vo= 18V -2mV/oC 5-0534 582 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA MONOLITHIC QUASI-COMPLEMENTARY DUAL DARLINGTON IN PENTAWATT® PACKAGE The TDA 1420 is a monolithic integrated circuit in Pentawatt® plastic package consisting of a pair of quasi-complementary (NPN-PNP) darlingtons with the associated biasing system. Each darlington can deliver a current in excess of 3A and can withstand a supply voltage of 44V. The device is intended for applications as: - booster for operational amplifier - DC motor driver - stepping motor driver - output stage for AC power amplifier up to 20W in Hi-Fi systems - output stage for vertical deflection systems in colour TV etc. ABSOLUTE MAXIMUM RATINGS V CEO VCBO 10 10 IF IF D1 D2 Ptot Tj • Tstg Collector-emitter voltage(lB = 0) 0) Collector-base voltage (IE Output peak current (repetitive) DC output current 01 forward current 02 forward current Total power dissipation at T case 60°C Junction and storage temperature = = 44 V 55 3.5 3 V 0.3 3 30 -40 to 150 A A A A W °C ORDERING NUMBERS: TDA 1420 H TDA 1420 V MECHANICAL DATA Dimensions in mm 583 5/75 CONNECTION AND SCHEMATIC DIAGRAMS 5 2n--_+_-l-r 01 02 5·112B 5-t127 THERMAL DATA max. Rth j-case Thermal resistance junction-case 3 °C/W ELECTRICAL CHARACTERISTICS (T amb = 25°C) Parameter V CEO Vcso Test conditions Collector-emitter breakdown voltage Collector-base breakdown voltage 44 V 55 V 60 V V CE = 5V 10002500 - V CE = -5V 500 1000 - Ic=500MA V(S R)CSSO Collector-substrate breakdown voltage hFE(NPN) hFE(PNP) DC forward current transfer ratio Ic =3A DC forward current transfer ratio Ic = -3A 584 Min. Typ. Max. Unit ELECTRICAL CHARACTERISTICS (continued) Parameter Test conditions Quiescent drain current Id VCE(sat) Collector-emitter saturation voltage (NPN-PNP) Min. Typ. Max. Unit 12 - 1= 5 mA Vs = 40V Ic =13AI hFE= 200 mA 20 12.31 12.71 V VSE(NPN) Base-emitter voltage (pins 2-4) Ic =3A 2.5 V VSE(PNP) Base-emitter voltage (pins 1-4) Ic = -3A -1.2 V 1.7 V 5 V VF(Dl) Dl forward voltage V 3-5 = -40V I F(D1)= 0.3A V F(D2) D2 forward voltage I F(D2)= 3A fT(NPN) Cutoff frequency Ic = 2A V CE = 10V 10 MHz fT(PNP) Cutoff frequency Ic = -2A V CE = -10V 5 MHz Fig. 2 - Typical quiescent drain cur· rent vs. case temperature Fig. 1 - Typical quiescent drain current vs. 12-1 - G-15691Z G 1625/2 Id 'mA) =40V Tea" =25-C Y. 40 V 30 30 V 20 / 10 V o ~ / ..... 20 V .,.'" .,. /' Vs=4 V 12_1=5mA / r-- 10 6 o 12 - 1 (mA) 585 20 40 60 60 100 120 Tease'·C) Fig. 3 - Typical quiescent drain current vs. supply voltage Fig. 4 - Typical DC current gain vs. collector current G 1570/2 (;.-11l6n Id (mA ) 40 12_1· SmA Tcase z 2S·C 30 NPN 10' o PNP 20 10' \ VCE=sv 10 10' o 10 20 Fig. 5 - Typical current 40 30 VCE(sat) Fig. 6 - vs. collector , • • Y$ (Y) - Typical V BE vs. collector current j G 1127 YeE(s. t . Ie (A) G 162811 (Y) VCE·SV 4 4 1 hFE 200 ...,./ -o / NPN l/ V ~ 3 ,..,... ./ -- - , ........ " o 'e(A) 586 ./ /' /' !-- r- 4 Ie (A) Fig. 7 - Typical pulse response (rising edge) Fig. 8 - Typical pulse response (falling edge) - Cr 1!I7", Vi.VO Ll RL .4l1. Vs 40 G- Isaoi2 - (Vppl "lev I RL '411 V.=>18V r- I 30 1\\ , 30 , 20 ~r-INPUT PULSE 20 ~ ld TDA 1420 RESP( NSE ~ J I , o :\' "~.,.,. TDAI420 RESPONSE 1'1-.' I 7NPUT PULSE ITT o 0.1 0.2 0.3 o 0.4 I, b.sl 0.6 0.2 0.8 I, Fig. 10 - Safe bperating areas Fig. 9 - Typical output voltage swing - o tUII' G IS76n Vo Ie. -----i Tease. 2S'C (Vpp I (A) 30 f-- 25 I----I----- 20 I----I----- 15 I----- ~~th ~:= 2 :-,... INPUTV'" 10' =~ ~ !\- 1-1OOms SOOms -* ~~~~~~iE P~~E I, 10' ~ ~ f- 1m. DC OPERATION- RL "4ft Ys=J.18V .. PULSE OPERATION I V. , ~ IC MAX (CONTINUOUS) 0---''''' IOO~ 10 o • IC MAX (PULSED) ~g (~.) .. • • 10 , (HzI 587 , . "cE (V) I G-1S7111 Fig. 11 - Derating characteristic P tot (W) I ~ 30 '1. ~ ~~ ~ 20 I"~..,...._ -s;, 'S-+ 1'1: 10 o -so o so 100 Tamb ("C) APPLICATION INFORMATION Fi"g. 12- Hi-Fi audio amplifier with short circuit protection ::I: 100 ,uF I ------~ S-J09211 588 Typical performance of circuit in fig. 12 Parameter Test conditions Output power Po B Id Min. Typ. Max. Unit d f Vs Vs =1% G v = 30 dB = 40 to 15,000 Hz = 34V RL = 4D = 36V RL=BD d f Vs Vs = 10% = 1 kHz = 34V =36V RL = 4D Drain current Vs = 34V Po = 30W RL =4S2 Vs = 36V Po = 20W RL = BD Fig. 13 - Output characteristics of the protected class B stage W W 20 to 100,000 Hz 1.3 A 720 mA d ("1.1 I- v. =34 V +-l-- I NPN +- DA~~+TON o II RL =4Jl. Gv =30 dB - ·-·15kHz 1kHz ---40Hz 0.8 1/ --- 0.6 0.4 PNP DARLIN TON -, -3 30 20 Fig. 14 - Typical distortion vs. out· put power (R L = 4S2) G-1572 1~6012 -1/ --l- 1'-.1';; -2 W W RL = 4D RL = BD Vs = 34V Gv = 30 dB +-- 22 17 G v = 30 dB Frequency response (-3 dB) G 20 15 I 0.2 - t-; ~ e- - e- -4 20 -20 ') . ~'F-: o 30 VeE NPN (v) -10 0 589 , ,. . .. r/ 10 . ,. Po (wI Fig. 15 - Typical distortion vs. output power (R L 4n) = Fig. 16 - Sensitivity vs. output power (R L =4n) G-1&30 ~ 8 30.0. ./ Vs=34V RL=4n f -1kHz Gv"3CdB 6 - G tl31 I - -- r" 250. V- 20.0. 4 ISO. / '" '" Vs,.4V RL'4A t =1kHz Gv"3CdB / / I- - - - - - - r- c- ICC 50. o • •• 1 •'!.(WI •• • •• -24 r" 20. I'" V 4 "'l. ,v. II 0.8 0..6 40 Ptot IV 'I 30 0..4 .,~I 20 I. 0.2 rl 1 ;::- 10 8 12 l' _. lB =3tiV RL = BA G.·30dB -·_·-15kHz lkH ----4CHz 80 0. o d ('to' 70. 50 I./. ~ 12 8 '" '" 12 6-1574 '\. ('tol ~ 6 Fig. 18 - Typical distortion vs. output power (R L = 8n) = V. =34V RL ·4A I :lkHz _. 0. Fig. 17 - Typical power dissipation and efficiency vs. output power (R L 4n) G-1$73 -- I II 24 Po (wI 590 0. , .. - .. Ij , 10 •Po(Wl •• Fig. 19 - Typical distortion vs. output power (R L = 8n) o Fig. 20 - Typical sensitivity vs. output power (R L = 8n) G tl3] 161211 d (.,.) 8 ) - 500 ~.- Vs ·l6V Rl • 8.0. V 400 , =1kHz Gv' lO dll !/I I.....-- lOO ~ ~ 1--- 100 o PIOI (W ) . .. • •• 10-1 ••• Fig.21 - Typical poWer dissipation and efficiency vs. output power (R L = 8n) G-tl751 I - .. I -- V•• l6Y 14 12 I-- I-- 18 Po (w) I-- I-- V / 12 6 Fig. 22 - Typical output power vs. supply voltage - G U5'8 'I. Po ('!.) (W) 1-_ d =1"1. Gv clOd 140 RL=8A f .lkHz RL =8.0. =lkHz G."lOdS f V o Po (w) 10 V. =l6Y / 200 - V "7 120 20 15kHz 10 I.... 8 4 100 L.... i J II '" '" Pn IPo'1 L..o 17 ~ -I-1'10.. I...- 80 15 1.1 15kHz 60 4.11. 40 10 -I- 1/ 20 j II o 1/40 Hz [lin 0 6 9 12 15 20 18 591 25 30 l5 v. (V) I Fig. 23 - Hi-Fi stereo amplifier with preamplifier-equalizer for magnetic pick-ups. The final stage is identical to fig. 12. Fig. 24 - Booster for operational amplifier 1.8 kO ------- --------- I I I $IOO"F INPUT 0-,""1--..--=1 >"--+-+--...---{b)OUTPUT 15nF RI 470 592 Fig.25- L 141 + TDA 1420 output voltage swing vs. frequency Fig. 26- L 141 +TDA 1420 transient response - - G l!lnl1 G 1578,"2 Yo (Vpp) n RL= 4 Vs=!18V 30 RL '4il Vs"18V .14V ". 90-;. t- 20 LI41.TOA 1420 L141 .... I-,B o => '" I '!'; 0 \ \. 10 o , 10' .. G. -14V \.. , .. 4 10' •• RISE IME o 11Hz) 20 40 60 80 100 120 Performance of circuit in fig. 24 L 141 +TDA 1420 ± 22V Max. supply voltage Max. power dissipation Input offset voltage Input offset current Input bias current Voltage gain Max. DC output current .;;;; .;;;; .;;;; ;:;. 593 30W at T case = 60°C 5mV 200 nA 500 nA 86 dB (R L = 4r2) 3A I (1-'.) I Fig. 27 - Position control of DC motor ;----4----------~------------~------~~~--------r_----------_t~.~ L-____________~------------------~--------------------.--+-~~. 5-to9911 Fig. 28 - Stepping motor driver Qd B Q.~-+++----~ C174193Qb~-*++--~~ Q, UP ~--+O--+.-l DOWN CLOCK FORWARD I BACKWARD "----4-+--+__-{) 594 Fig.29 - Bidirectional speed control of DC motor r--{:~--~--~~---------o.V. 470 VOLTAGE o--I"=I-+-:!i REFERENC -+-+__......_+_+---C4=1nS--~>--_+-_+-+__-+-{).V. 0-_ _ S~110112 Fig. 30 - Programmable supply voltage r------~---~-------_o.vs LOGIC INPUTS j=== L-_-' OAC 6 4 5-110312 595 Fig.31 - Output stage for vertical deflection system 30V en 411JF RI2 In RlI o.nn S·I091/1 596 LINEAR INTEGRATED CIRCUIT PRELIMINARY DATA 12 W Hi-Fi AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT PROTECTION AND THERMAL SHUT -DOWN The TDA 2010 is a monolithic integrated operational amplifier in a 14-lead quad in-line* plastic package, intended for use as a low frequency class B power amplifier. Typically it provides 12 W output power (d = 1%) at ± 14 V /4 n; at V s = ± 14 V the guaranteed output power is 10 Won a 4 n load and 8 W on a 8 n load (DIN norm 45500). The TDA 2010 provides high output current (up to 3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates an original (and patented) short circuit protection system, comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included. The TDA 2010 is pin to pin equivalent to TDA 2020. *(or, optionally, dual in-line) ABSOLUTE MAXIMUM RATINGS Vs Vi Vi 10 Ptot Tstg , Tj Supply voltage Input voltage Differential input voltage Output peak current (internally limited) Power dissipation at T case .;;;; 95 °C Storage and junction temperature '" ORDERING NUMBERS: TDA TDA TDA TDA 2010 2010 2010 2010 B82 B92 BC2 BD2 ± 18 V Vs ±15 3.5 18 -40 to 150 V A W DC dual in-line plastic package quad in-line plastic package dual in-line plastic package with spacer quad in-line plastic package with spacer MECHANICAL DATA Dimensions in mm 597 6/75 I CONNECTION AND SCHEMATIC DIAGRAMS " OUTPUT 1~ -SUPPlY VOlTAGE:] POWEFt lINITING " 10 COMPENSATION 9 COMPENSATION 8 INVERTING INPUT The copper slug is electrically connected to pin 5 (substrate) TEST CIRCUIT 10,," Vi~J-_-_-----4 Vo 14 R4 10 4.7/1' C3 R5 R3 13kn 100 4.7jE kO R2 5-1131 THERMAL DATA Thermal resistance junction-case 598 max 3 ELECTRICAL CHARACTERISTICS ±14V, (Refer to the test circuit, Vs T amb = 25°C unless otherwise specified) Parameter Vs Supply voltage Id Quiescent drain current Ib Bias current Vi (off) Test conditions Min. Typ. Max. Unit ±5 Vs = ± 18V I nput offset voltage ±18 V 45 mA 0.15 p.A 5 mV 0.05 p.A 10 100 mV Vs = ± 17V Ii (off) V0 Po (off) Input offset current Output offset voltage Output power Gy = 30 dB d =1% T case";; 70°C f = 40 to 15,000 Hz RL =4n RL =8n d = 10% Tease ..;; 70°C I nput sensitivity Gy = 30 dB Po P0 =10W = SW B Frequency response(-3 dB) RL =4n d Distortion 12 W W 15 12 W W 220 250 mV mV 10 to 160,000 Hz Gy = 30 dB f = 1 kHz RL =4n RL r= 8n Vi 9 10 8 f = 1 kHz RL =4n RL =SQ C4 = 68 pF =100mWtol0W Gy = 30 dB RL =4n T case";; 70°C Po f f = 1 kHz = 40 to 15,000 Hz 0.1 0.3 1 % % 0.1 0.2 1 % % = 100 mW to 8 W RL =8n Gy = 30 dB Tease";; 70 "c Po f f = 1 kHz = 40 to 15,000 Hz 599 ELECTRICAL CHARACTERISTICS (continued) Parameter Min. Typ. Max. Unit Test conditions Ri Input resistance (pin 7) Gv Voltage gain (open loop) Gv Voltage gain (closed loop) eN Input noise voltage RL =4n 4 p.V iN I nput noise current B(-3dB) = 10 to 20,000 Hz 0.1 nA SVR Supply voltage rejection ratio G v = 30 dB RL =4n friPPle = 100 Hz 50 dB 0.8 0.5 A 145 °C 120 °C Drain current Id f = 1 kHz RL =4n 29.5 RL =4n RL =8n Po = 12 W P0 = 9W Thermal shut-down junction temperature 5 Mn 100 dB 30 30.5 dB A * Thermal shut-down case Ptot = 10.5 W temperature • See fig. 15 Fig. 2 - Typical output power vs. supply voltage (d = 10%) Fig. 1 - Typical output power vs. supply voltage (d = 1%) G 164711 G-1648 Po (WI d .1'/, 16 Gy. ]OdS . ",/ 12 ,tJ,"'~'// ",' ~~~t'" / 4 4n ~ / ./ / 12 / / ./, / / L'( '~"'" ,,<, / / d .10'/, I .1kHz Gv '30dB 16 4~ ~o"'" 4 ~ ...... ,/ / / / // /' e!l. o o 10 12 11 14 600 13 ./ / Fig. 4 - Typical distortion vs. output power (R L = 4.11) Fig. 3 - Typical distortion vs. output · power (R L = 4 n ) G-1 .SO G 1649 d I ,0'0) Vs = !14V Vs =!14V 0.8 111111 RL = 4n , =1kHz Go .JOdB RL = 4n '!>v=JOdB 0.6 15KHz 0.4 II 0.2 o -- i 40Hz · ,. ., . 7i.H; 10 ., . 10 G-16S1 d I ("I.) 0.8 I I ("I.) I IY Po (WI Fig. 6 - Typical distortion vs. output power (R L = 8.11) Go -1652 Fig. 5 - Typical distortion vs. output power (R L = 8 n ) d . ,. a Po (W) 8 s ;; !.14V Vs =J.14V , RL =8n RL =8n G.'JOdB 0.6 G. .6 =1kHz =JOdB 0.4 0.2 o ---, 5 kHz · ,. -r 40Hz 1kHz , .. , , 10 . a Po (W) 601 . .. , .. 10 Po (w) Fig. 8 - Typical output power vs. frequency Fig. 7 - Typical distortion vs. frequency G-165312 d ('/,) 0-16510 Po IIIIIII II (W) -RL=4Il Po =10W -.-RL =BIl Po= BW 16 Vs =!14V Gy =30dB 4t\ 12 8Il 8 06 Vs =!.14V Gy =30dB , 4 , .. 4 , •• 4 , •• 10' 10' 10 4 o .. Z III ., 4" • -0 2 10' 10'1 1 to" I (Hz) Fig. 10- Typical sensitivity vs. output pOW-er(RL = 8.11) G-lSS6 G 1655 Vi Vi (mV) - 'Is (mV) =.1,14 350 f-- RL :4.0 f-- f =lkHz ./ 240 'Is =14V --- ~~I=~O 300 l./ . / Gy =30dB 200 .", /?- -. 120 / BO II !/ f....;o / -6 .30dE ./ 200 '-- r- ".,... ",- Gy 250 V 160 o 4" • t 10 I (Hz) Fig. 9 - Typical sensitiv:ty vs. output ,., power (R L = 4.11) 40 =,,,. d 1/ 0.2 Gy =40 d - 150 100 50 I I I I I 8 10 o 12 602 I I I ./ f/ i-- -r G =40dB I 4 -- ./ y I I I 10 12 Po (W) Fig. 11 - Open loop frequency response with different values of the i"blloff capacitor C4 Fig.12 - Typical value of C4 vs. voltage gain for different bandwidths G-1550 160kHz """ ....... 10 2 405e 10' 2 46. 10' 2 " 61 10' 2 10' 461 10' 2 (Hz) 10 . 10' , Fig. 14 - Typical supply voltage rejection ratio vs. voltage gain Fig. 13 .. Typical quiescent current vs. supply voltage G-1664 G 1651 SVR , I •• '6& f (dB) Vs ·<14 V 80 fripple' 100 Hz I - 80 I 60 60 I 40 I r--..... ........... 40 t-' Id (TOTAL) ........ ........... ......... Id (OUTPUT TRANSISTORS ........... ........ 20 20 ........... I o 9 11 13 15 17 v. (V) o 603 20 30 40 SO Gy(dB) Fig. 16- Maximum power dissipation vs. supply voltage (sine wave operation) Fig.15- Typical power dissipation and efficiency vs. output power G- Isse _ _ 411 Ptot ---all (W) - G 1659 .,.) Ptot 80 16 60 12 40 a 'I ( (Wl Ptot l- 10 I / a I..... "'" 'I V "'" 6 V K; V /" ...... Ptot / 4 .,../ Vs =14V f=lkHz Gv :IOdS = o a 12 16 20 4 o 0 I~ I- ..........~ ~ ~ -- 11 Po(W) APPLICATION INFORMATION Fig. 17 - Typical amplifier with spl it power supply 604 I-- ~ 13 ...... Fig. 18- P.C. board and component layout for the circuit of fig. 17 (1: 1 scale) CS-0064 Fig.19- lOW Hi-Fi stereo amplifier with preamplifier-equalizer for ceramic PICK-UpS +V$(18V max) .... " '" ____ nZ.2"f '" j 1.2.n III l?~~,,, .ro 4?k.ll lJon ~l~PFI . In 4nn 2.Z,..F 22.11 ."11 Inn .. "", 2.1k/l :i2.2I"F ,~ :~.. I IIOkn I.""' r BALANCE ". I "' (-i1E,r no.n (*.1..., ,aon 00 '~33Pf "' ."'f!-:-l " "'- ,----L ,"0 '" F"" " F"" ~ ~ 011"F I I TREBLE ,. VOLUME I I 01"F J. l ,., ,OOkll 2,2'n ,~, r 100kll II".., U./l 19U1 ~'r::: l09_ 4.1/,r l.3MIl .. 2.lkn BASS .Jr'DA1OS~ t-li.1?1 "" r-- ,,~1 '80n ~r ~.." , ""4 Ol"F ", ; 2.2~n 220'I! log. '000 :t'' " .""" "' f--- oo~fF '" "'AW 220kn I.og. .~""' "' oo.~ J~'''' .ro,,~ " f'~' ,"0 ~ FOll'F (lav",.. ) 605 '0 p.o" F"" -v. I:c(], r .l. 5-".0 Fig. 20 - Typical stereo amplifier with split power supply 4A Wll>---+-_ _ _ _-+-__-ci+ v• . v. 4A v, o--I------jII-c--4--J Fig.21 - Typical bridge amplifier configuration with split power supply (Po Vs =± 13V, RL =8 n, d ..;;; 1%) .V. Q.15,u F l V,o--+----U..--...-----l.I OOkll 606 20 W , SHORT CIRCUIT PROTECTION The most important innovation in the TDA 2010 is an original circuit which limits the current of the output transistors. Fig. 22 shows that the maximum output current is a function of the collector-emitter voltage; hence the output transistors work within their safe operating area (fig. 23). This function can therefore be considered as being peak power limiting rather than simple current limiting. The TDA 2010 is thus protected against temporary overloads or short circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction temperature within safe lirriits. Fig. 22 - Maximum output current vs. voltage (V CE) across each output transistor Fig.23- Safe operating area and collector characteristics of the protected power transistor - G 1686 IC (A) i'.. Ie \ \..a-Ptot =k \ Ie max.. \ ~ I-- Ql o Q2 I -1 -2 r-. -3 5-0161,/1 -4 o 10 VCEQ2tvl -30 20 -20 30 VCEQ1 (V) -10 0 607 THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported since the T j cannot be higher than 150°C 2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If, for any reason, the junction temperature increases up to 150°C, the thermal shut-down simply reduces the power dissipation and the curn~nt consumption. Fig.25- Output power and drain current vs. case temperature Fig.24- Output power and drain current ""S. case temperature (R L =4[2) (R L =8[2) G- 1661 " 1662 Po (wI Vs =:t. 14 V RL =8.n Vs =11, V f- - - RL =8n r- f - Po 12 12 '\ 10. 10 i\ Po ...... Id \ 0.8 I'\. 0..6 Id f"""" 0..6 1\ \ 0..4 0..4 0..2 0-2 \ 0. 0. 50. 0. 100 608 50 100 0. MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink as shown in figs. 26 and 27. The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied with the device. Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by the pressure which the screws exert via· the spacer and the printed circuit board; this is due to the particular shape of the spacer. Note: the most negative supply voltage is connected to the copper slug, hence to the heatsink (because it is in contact with the slug). Fig.26 - Mounting system of TDA 2010 I Fig.27 - Cross-section of mounting system ~=~Ip.ce. 609 The maximum allowable power dissipation depends upon the size of the external heatsink Ii. e. its thermal resistance); fig. 28 shows this dissipable power as a function of ambient temperature for different thermal resistance. - G '"' Fig. 28 - Maximum allowable power dissipation vs. ambient temperature 16 ~.~ 12 ... ~ ~._ ~I~~ . ... ~ ~"'G' T." '\'i> ~_ .... ... .... I . f-' . .r~ ...,~ ~ -9. a . ~ . N···t 't '~. . ... ~ ('...~ ~ ~ oe lj.. ... ~ ill. ;; 1\ ~ N o -50 o 100 Tambt*t) For a more detailed description of the TDA 2010 and related performance refer to SGS-ATES Application Note n. 130. 610 LINEAR INTEGRATED CIRCUIT lOA 2020 PRELIMINARY DATA 20 W Hi-Fi AUDIO POWER AMPLI FIER WITH SHORT CIRCUIT PROTECTION AND THERMAL SHUT-DOWN The TDA 2020 is a monolithic integrated operational amplifier in a 14-lead quad in-line* plastic package, intended for use as a low frequency class B power amplifier. Typically it provides 20 W output power (d = 1%) at ± 18 V/4 n; the guaranteed output power at ± 17 V /4 n is 15 W (01 N norm 45500). The TDA 2020 provides high output current (up to 3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates an original (and patented) short circuit protection system, comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A conventional thermal shut-down system is also included. The TDA 2020 is pin to pin equivalent to TDA 2010. *(or, optionally, dual in-line) ABSOLUTE MAXIMUM RATINGS V, Vi Vi 10 Ptot T,tg, T j Supply voltage Input voltage Differential input voltage Output peak current (internally limited) Power dissipation at Tease .:;;; 75°C Storage and junction temperature ORDERING NUMBERS: TDA TDA TDA TDA 2020 2020 2020 2020 A82 A92 AC2 AD2 ± 22 V V, ± 15 V 3.5 25 -40 to 150 A W °C dual in-line plastic package quad in-line plasticp.ac) lY VOLTAGE 3 12 -SUPPLY VOLTAGE 5 10 POWER LIMITING COMPENSATION COIo'lPENSATION 8 INYERTING INPUT The copper slug is electrically connected to pin 5 (substrate) TEST CIRCUIT 68pF C4IH---_. lO"F Vi 9 cfo1jt-~-~----__'_l TDA 2020 >"'14'---_~I_-vfo--__, R4 4.7"F In C3 R5 R3 13kn 100 kn RI 33 kO o.1~l_;l 5·,. C7 C8 R2 5-11103 THERMAL DATA Thermal resistance junction-case max 612 3 °C/W ELECTRICAL CHARACTERISTICS ±17V, (Refer to the test circuit, Vs Tam"b= 25°C unless otherwise specified) Parameter Vs Supply voltage Id Quiescen,t drain current Ib Bias current V; (off) Input offset voltage Test conditions Min. Typ. Max. Unit ±5 Vs = ± 22V ±22 V 60 mA 0.15 /lA 5 mV 0.05 /lA 10 100 mV 18.5 20 16.5 W W W 24 20 W W 260 380 mV mV 10 to 160,000 Hz Vs=±17V 1;(Off) I nput offset current Va (off) Output offset voltage Po VI Output power I nput sensitivity Gy = 30 dB d =1% T case ..;; 70°C f = 40 to 15,000 Hz Vs = ± 17V Vs = ± 18V V s =±18V RL =4 n RL =4 n RL =8 n d = 10% T case ..;; 70°C Gy = 30 dB f = 1 kHz Vs = ± 17V Vs = ± 18V RL =4 n RL =8 n Gy = 30 dB Po = 15W f Vs = ± 17V Vs = ± 18V RL =4 n RL =8 n B Frequency response( -3 dB) RL =4 n d Distortion 15 = 1 kHz C4 = 68 pF Po = 150 mW to 15W Gy = 30 dB RL =4 n T case";; 70°C f = 1 kHz f = 40 to 15,000 Hz 0.2 0.3 1 % % Po = 150 mW to 15W Vs = ± 18V RL =8n Gy = 30 dB T case ..;; 70°C f f = 1 kHz = 40 to 15,000 Hz 613 0.1 0.25 % % ELECTRICAL CHARACTERISTICS (continued) Test conditions Parameter Min. Typ. Max. Unit RI Input resistance (pin 7) Gy Voltage gain (open loop) Gy Voltage gain (closed loop) eN Input noise voltage RL =411 4 J.lV iN I nput noise current B (-3 dB) = 10 to 20,000 Hz 0.1 nA SVR Supply voltage rejection ratio 50 dB 1 A 0.7 A 145 °C 105 °C f = 1 RL =411 Drain current 29.5 Mn dB 30 30.5 dB G y = 30 dB RL = 411 Hz frlPPle = 100 Id kHz 5 100 Po = 18.5W RL =4n Po = 16.5W RL =8 11 Vs = ± 18V Thermal shut-down junction temperature * Thermal shut-down case Ptot = 15.5W temperature * See fig. 15 Fig. 2 - Typical output power vs. supply voltage (d = 10%) " , G-"" Fig. 1 - Typical output power vs. sup_ ply voltage (d = 1%) Po t' : d .10'" (w) f =1 kHz 24 G "JOdS V 4fi 20 16 4 aft 12 10 12 14 16 la 20 1Vs (v) 10 614 12 14 16 la 'Vs Iv) Fig. 4 - Typical distortion power (R L = 4n) Fig. 3 - Typical distortion VS. output power (R L = 4 n) VS. G 15U 6-1542 d d ('I.) ('I.) f-- Ys:U.11V Rl ·4.n. Gy=JOdB 0.8 6 0.4 4 o -" 111111 • •• 10-' V 15kHz 40Hz-lkH v. "17V Rl' 4n I . 1kHz I-- Gy -JOdS 0.6 0.2 output j ... . .. 10 0. Po (w) . .. • •• 1 4 10. Fig. 6 - Typical distortion VS~ output power (R L = 8 n) Fig. 5 - Typical distortion VS. output power (R L = 8 n ) - G .... G 1544/1 d ('I.) 0.8 •• Po(W) I Vs =!.1BV Vs=!.18V Rl ' 811 Rl·SA I 'lkHz G.'30Ll. Gy '3CdB 6 0..6 0..4 _ . _ ......... .. 0..2 /15 kHz lk_IiL 4CHz Ii 0. , 1O~' 68 4 o 6. 4 10. 6. Po (w) 615 ... ~ 10 Po(W) Fig. 7 - Typical distortion vs. frequency Fig. 8 - Typical output power vs. frequency - G 1546/2 d II11111 ('/.) ~Vs='17V II RL I- --Vs ='18V R =4! =8! Po ·15W G -JOdB VsDt.17V 20 f - RL =4 11111 11111 16 Vs =.t1av I-- RL =8 12 G. =JOd d =1'/. 0.6 02 2 ••• 10' 461 10' 10 ~ - - 468 Fig. 9 - Typical sensitivity power (R L = 4n) 2 46 2 a 10' I(Hz) VS. output 10 • '61 II 10' 10' "t Fig. 10- Typical sensitivity power (R L = 8n) a, I, 10' I (Hz) VS. output 6-16" Vi I (mV) 280 - RL'4n "... - I =lkHz 240 (my) 400 / H-lrr~l,. L+-~++H-+++-f--J+-H VS =
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:18 19:10:15-08:00 Modify Date : 2017:07:18 19:28:28-07:00 Metadata Date : 2017:07:18 19:28:28-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:e2366f95-c3ec-bb4a-b2e3-7f9b5314fcec Instance ID : uuid:697c4d61-3b6d-2544-bf22-a0e8200e2d22 Page Layout : SinglePage Page Mode : UseNone Page Count : 654EXIF Metadata provided by EXIF.tools