1975_SGS_Consumer_Transistors_and_ICs_Databook 1975 SGS Consumer Transistors And ICs Databook

User Manual: 1975_SGS_Consumer_Transistors_and_ICs_Databook

Open the PDF directly: View PDF PDF.
Page Count: 654

Download1975_SGS_Consumer_Transistors_and_ICs_Databook 1975 SGS Consumer Transistors And ICs Databook
Open PDF In BrowserView PDF
CONSUMER TRANSISTORS & ICs

,I
f'

b

1\

1975176
INTRODUCTION
This databook contains data sheets on the SGS-ATES range of small signal
transistors and integrated circuits intended for consumer applications.
To permit ease of consultation, this book has been divided into four main
sections: .
General Information, Germanium Transistors, Silicon Transistors, and Integrated
Circuits.
.
The GenGral Information section contains definitions of symbols and terms
used in order to facilitate correct technical interpretation of the data sheets,
as well as an alphanumerical list of types.
The information on each product has been specially presented in order that
the performance of the product can be readily evaluated within any required
equipment design.
An arrow (~) at left hand side of table indicates parameter which has been
modified since previous data sheet issue.

OTHER SGS-ATES DATABOOKS
Data sheets on the SGS-ATES range of discrete devices and integrated circuits
for professional applications, and high power devices for professional and
consumer applications can be found in the following databooks:

SGS-ATES Professional Databook 1 - Small Signal Discrete Devices
SGS-ATES Professional Databook 2 - Bipolar Digital ICs
SGS-ATES Professional Databook 3 - Linear, MaS & COS/MaS ICs
SGS-ATES Power Databook - Discrete Devices
I

SGS·ATES GROUP OF COMPANIES
INTERNAnONAl HEADQUARTERS
SGS-ATES Componenti Elettronici S.p.A.
Via C. Olivetti 2·20041 Agrate Brianza -Italy
Tel.: 039-650341 +4/650441 +5/650841 +5
Telex: 36141-36131
BENELUX
SGS-ATES Componenti Elettronici S.p.A.
Benelux Sales Office
-B- 1180 Bruxelles
Winston Churchill Avenue. 112
Tel.: 02-3432439
Telex: 011-24149
DENMARK
SGS-ATES Scandinavia AB
Sales Office:
2730 Herlev
Marielundvej 46A
Tel.: 02-948533
Telex: 16494
FRANCE
SGS-ATES France S.A.
75643 Paris Cedex 13
Residence "Le Palatino"
. 17. Avenue de Choisy
Tel.: 5842730
Telex: 021-25938
GERMANY
SGS-ATES Deutschland Halbleiter-Bauelemente GmbH
809 Wasserburg/lnn
Postfach 1269
Tel.: 08071-721
Telex: 0525143
Sales Offices:
1000 Berlin 33
Warmbrunner Strasse 39
Tel.: 030-8233038
Telex: 01 85418
3000 Hannover 1
Lange Laube 19
Tel.: 0511-17522/3
Telex: 09 23195
8000 Miinchen 40
Gernotstrasse 10
Tel.: 089-304270/304485
Telex: 05 215784
7000 Stuttgart 80
Kalifenweg 45
Tel.: 0711-713091/2
Telex: 07 255545
II

ITALY
SGS-ATES Componenti Elettronici S.p.A.
Sales Offices:
50127 Firenze
Via Giovanni Del Pian Dei Carpini 96/5
Tel.: 055-4377763
20149 Milano
Via Tempesta 2
Tel.: 02-4695651
00199 Roma
Piazza Gondar 11
Tel.: 06-8392848/8312777
10134 Torino
Via La Loggia 51/7
Tel.: 011-634572
NORWAY
SGS-ATES Scandinavia AB
Sales Office:
Oslo 4
Sandakerveien 104B
Tel.: 213755
Telex: 11796
SINGAPORE
SGS-ATES Singapore (pte) Ltd .
Singapore 12
Lorong 4 & 6 - Toa Payoh
Tel.: 531411
Telex: ESGIES RS 21412
SWEDEN
SGS-ATES Scandinavia AB
19501 Marsta .
Industrigatan 2
Tel.: 0760-40120
Telex: 042-10932
UNITED KINGDOM
SGS-ATES (United Kingdom) Ltd.
Aylesbury, Bucks
Planar House, Walton Street
Tel.: 0296-5977
Telex: 041-83245
U.S.A.
SGS-ATES Semiconductor Corporation
Newtonville, Mass. 02160
435 Newtonville Avenue
Tel.: 617-9691610
Telex: 922482

GENERAL INFORMATION

GERMANIUM TRANSISTORS

SILICON TRANSISTORS

INTEGRATED CIRCUITS

III

GENERAL INFORMATION
1. LETTER SYMBOLS FOR SEMICONDUCTOR DEVICES
1.1. QUANTITY SYMBOLS
1.2. SUBSCRIPTS FOR QUANTITY SYMBOLS

Page

VI

...

VI
VI
VIII

1.3. CONVENTIONS FOR SUBSCRIPT SEQUENCE

IX

1.4. ELECTRICAL PARAMETER SYMBOLS
1.5. SUBSCRIPTS FOR PARAMETER SYMBOLS

X

I
i?~

,1 1

"

2. ALPHABETICAL LIST OF SYMBOLS

Page

XI

3. RATING SYSTEMS FOR ELECTRONIC DEVICES

Page XIX

3.1. DEFINITIONS OF TERMS USED

XIX

3.2. ABSOLUTE MAXIMUM RATING SYSTEM

XIX

3.3. DESIGN - MAXIMUM RATING SYSTEM

XX

3.4. DESIGN - CENTRE RATING SYSTEM

XX

4. TYPE DESIGNATION CODE

Page XXI

4.1. FOR DISCRETE DEVICES

4.2.

XXI

FOR INTEGRATED CIRCUITS

..

4.2.1. Types designated by three letters and three figures
4.2.2. Types designated by three letters and four figures

..

XXII

..

XXIV

5. ALPHANUMERICAL LIST OF TYPES

V

XXII

Page XXV

1. LETTER SYMBOLS FOR SEMICONDUCTOR DEVICES
(referred to diodes, transistors and linear integrated circuits)

1.1. QUANTITY SYMBOLS
a. Instantaneous values of current, voltage and power, which vary with time
are represented by the appropriate lower case letter.
Examples: i, v, p
b. Maximum (peak), average, d.c. and root-mean-square values are represented by appropriate upper case letter.
Examples: I, V, P

1.2. SUBSCRIPTS FOR QUANTITY SYMBOLS
a. Total values are indicated by upper case subscripts.
Examples: IC' ic ' VEB , PC' Pc
b. Values of varying components are indicated by lower case subscripts.

c. To distinguish between maximum (peak), average, d.c. and root-meansquare values, it is possible to represent maximum and average values'
adding the subscripts m or M and respectively av or AV.
Examples: lem' ICM' leav' IcAV
It is possible to represent R.M.S. values by adding the subscripts (rms)
and (RMS)

Examples: Ie (rms) , Ic (RMS)
d. List of subscripts (for examples see figure 1 and the fundamental symbols
schedule e.)

A, a

K, k

= Anode terminal
= Cathode terminal
VI

I
I
E,e

Emitter terminal

B,b

Base terminal

C, c

Collector terminal

J,j

Generic terminal

(BR)

Primary break-down

X,x

Specified circuit

M,m

Maximum (peak) value

Min, min

= Minimum value

AV, av

Average value

(RMS), (rms)

F, f

R.M.S. value

= Forward

R, r

As first subscript: Reverse. As second subscript: Repetitive

0,0

As third subscript: The terminal not mentioned is open
circuited

S,s

= As

Z

= Zener.

second subscript: Non repetitive. As third subscript:
Short circuit between the terminal not mentioned and the
reference terminal
(Replaces R to indicate the actual zener voltage,
current or power of voltage reference or voltage regulator
diodes)

e. Fundamental symbols schedule (meaning of symbol with subscript)

v

e
b

E
C

P

istantaneus value of the
variable component

R.M.S. value of the variable component,
or (with appropriate supplementary
subscripts) the maximum or average
value (direct current) of the variable
component

istantaneus
total value

average value (direct current and
without signal) or (with appropriate
supplementary subscripts) the total
average value (with signal), or the total
maximum value

c

B

v

p

VII

I

f.

Examples of the application of the rules:
Figure 1 represents a transistor collector current, consisting of a direct
c(Jrrent and a variable component as a function of time.

'-

.£

~

o

U

Icm

L.

.1

t--""T"~-~

O~~---4----L-~L---~------~--------------

without

I

sign~-.,.....

_ _ _ _ _ _ _wit~j9Il~

__

time
____ _

fig. 1

Ic

- DC value, no signal

ICAV

- Average total value

ICM

- Maximum total value

IC(RMS)

- R.M.S. total value

'cav

- Average value of the variable component

Ie (rms)

- R.M.S. value of the variable component

Icm

- Maximum value of the variable component

ic

- Instantaneous total value

ie

- Instantaneous volue of the variable component

1.3. CONVENTIONS FOR SUBSCRIPT SEQUENCE
a. Currents
For transistor the first subscript indicates the terminal carrying the current
(conventional current flow from the external circuit into the terminal is
positive).
Instead for diodes a forward current (conventional current flow into the

VIII

anode terminal) is represented by the subscript F or f; a reverse current
(conventional current flow out of the anode terminal) is represented by the
subscript R or r.
b. Voltages
For transistors normally, two subscripts are used to indicate the points between which the voltage is measured. The first subscript indicates one
terminal pOint and the second the reference terminal.
Where there is no possibility of confusion, the second subscript may be
omitted.
Instead for diodes a forward voltage (anode positive with respect to cathode) is represented by the subscript F or f and a reverse voltage (anode
negative with respect to cathode) by the subscript R or r.
c. Supply voltages
Supply voltages may be indicated by repeating the terminal subscript.
Examples: VEE' Vcc' Vss
The reference terminal may then be indicated by a third subscript.
Examples: VEES ' VCCB ' Vssc
d. In devices having more than one terminal of the same type, the terminal
subscripts are modified by adding a number following the subscript and
on the same line.
Example: BB2_E voltage between second base and emitter
In multiple unit devices, the terminal subscripts are modified by a number
preceding the terminal subscripts:
Example: V1S- 2S voltage between the base of the first unit and that of the
second one.

1.4. ELECTRICAL PARAMETER SYMBOLS
a. The values of four pole matrix parameters or other resistances, impedances
admittances, etc., inherent in the device, are represented by the lower case
symbol with the appropriate subscripts.
Examples: h ib, Zfb' YOC' hFE
Note: The symbol of the capacitances that is represented by the upper case
(el is an exception to this rule.
b. The four pole matrix parameters of external circuits and of circuits in which
the device forms only a part are represented by the upper case symbols
with the appropriate subscripts.
Examples: Hi' Zo' HF, YR
IX

I

1.5. SUBSCRIPTS FOR PARAMETER SYMBOLS

a. The static values of parameters are indicated by upper case subscripts.
Examples: hlB' hFE
Note: The static value is the slope of the line from the origin to the operating
point on the appropriate characteristic curve, i.e. the quotient of the
appropriate electrical quantities at the operating point.
b. The small-signal volues of parameters are indicated by lower case subscripts.
Examples: hib , Zob
c. The first subscript, in matrix notation identifies the element of the four pole
matrix.

= input
= output
f (for 21) = forward transfer
r (for 12) = reverse transfer
Examples: V1 = hi 11 + hr V
12 = hf 11 + ho V2
i (for 11)

o (for 22)

2

Notes
- The voltage and current symbols in matrix notation are indicated by a
single digit subscript.
input; the subscript 2
output.
The subscript 1

=

=

2 - The voltages and currents in these equations may be complex quantities.
d. The second subscript identifies the circuit configuration.
e
b
c

= common

= common
= common
= common

emitter
base
collector
terminal, general

Examples: (common base)
11
12

= Yib V1b + Yrb V2b

= Yfb V1b + Yob V2b

When the common terminal is understood, the second subscript may be
omitted.
e. If it is necessary to distinguish between real and imaginary parts of the four
pole parameters, the following notations may be used.
Re(h ib) etc ... for the real part
Im(h ib) etc ... for the imaginary part

x

2. ALPHABETICAL LIST OF SYMBOLS
AMR

Amplitude modulation rejection

B

Bandwidth
Common-base, forward transfer susceptance (output short-circuited,

y matrix)
Common-emitter, forward transfer susceptance (output short-circuited,
y matrix)
Common-base, input susceptance (output short-circuited, y matrix)
Common-emitter, input susceptance (output short-circuited, y matrix)
Common-base, output susceptance (input short-circuited, y matrix)
Common-emitter, output susceptance (input short-circuited, y matrix)
Common-base, reverse transfer susceptance (input short-circuited,
y matrix)

b,.

Common-emitter, reverse transfer susceptance (input short-circuited,
y matrix)
Intrinsic base-collector capacitance
Intrinsic base-emitter capacitance
Collector-base capacitance (emitter open to a.c. and d.c.)

Cess

Collector-substrate capacitance (emitter and base open to a.c. and
d.c.)
Emitter-base capacitance (collector open to a.c. and d.c.)
Input capacitance
Common-base, input capacitance (output a.c. short-circuited, hand
y matrix)
Common-base, input capacitance (output a.c. open-circuited)
Common-emitter, input capacitance (output a.c. short-circuited,
hand y matrix)
Load capacitance

CMRR

Common mode rejection ratio
Output capacitance
XI

Cob

Common-base, output capacitance (input a.c. short-circuited,
y matrix)

Cobo

Common-base, output capacitance (input a.c. open-circuited,
h matrix)

Coe

Common-emitter, output capacitance (input a.c. short-circuited,
y matrix)

Coeo

Common-emitter, output capacitance (input a.c. open-circuited,
h matrix)

Crb

Common-base, reverse capacitance (input a.c. short-circuited,
y matrix)

Cre

Common-emitter, reverse capacitance (input a.c. short-circuited,
y matrix)

d

Distortion

eN

Noise voltage

Es/b

Second breakdown energy (with base-emitter junction reverse biased)
Frequency

of

Frequency change or drift

Af

Frequency deviation

Sf
AT

( !~ )

Sf
AV

(

Af
AV

)

Frequency drift with temperature variation
Frequency drift with voltage variation

f hlb

Common-base, cut-off frequency

f hle

Common-emitter, cut-off frequency

fm

Modulation frequency

f max

Maximum oscillator frequency

fT

Transition frequency

fyle

Common-emitter cut-off frequency

GA

Available power gain

GAM

Maximum available power gain

Qlb

Common-base, forward transconductance (input short-circuited,
y matrix)

XII

gte

Common-emitter, forward transconductance (input short-circuited,
y matrix)
Common-base, input conductance (output short-circuited, y matrix)
Common-emitter, input conductance (output short-circuited, y matrix)

gob

Common-base, output conductance (input short-circuited, y matrix)

goe

Common-emitter, output conductance (input short-circuited, y matrix)
Power gain

I

Common-base, power gain
Common-emitter, power gain
Maximum power gain
Common-base, reverse transconductance (input short-circuited,
y matrix)
gre

Common-emitter, reverse transconductance (input short-circuited,
y matrix)
Maximum stable power gain
Transducer power gain
Unilateralized power gain
Maximum unilateralized power gain
Voltage gain
Common-base, small-signal value of the short-circuit forward current transfer ratio
Common-emitter, small-signal value of the short-circuit forward current transfer ratio
Common-emitter, static value of the forward current transfer ratio
Common-emitter, static value of the forward current transfer matched
pair ratio
Common-base, small-signal value of the short-circuit input impedance
Common-emitter,
impedance
Common-base,
admittance
Common-emitter,
admittance

small-signal
small-signal
small-signal

XIII

value
value
value

of
of
of

the
the
the

short-circuit

input

open-circuit

output

open-circuit

output

Common-base, small-signal value of the open-circuit reverse voltage
transfer ratio

hr.

Common-emitter, small-signal value of the open-circuit reverse
voltage transfer ratio

Ib

Bias current

16

Base current

161

Turn-on current

162

Turn-off current

11 61 -1 621

Input offset current
Base forward current
Base forward peak current
Base peak current
Base reverse current
Base reverse peak current
Collector current
Collector cut-off current with emitter open
Collector cut-off current with specified reverse voltage between
emitter and base
Collector cut-off current with base open
Collector cut-off current with specified resistance between emitt:?-r
and base
Collector cut-off current with emitter short-circuited to base
. Collector cut-off current with specified reverse voltage between
emitter and base
Collector cut-off current with specified circuit between. emitter and
base
Collector peak current
Drain current
Emitter current
Emitter cut-off current with collector open
Noise current
Output current
Supply current

XIV

Output current during output short-circuit
Second breakdown collector current (with base-emitter junction
forward biased)
Zener current
m

NF

Modulation factor
Noise figure
Conversion noise figure
Output power of a specified circuit

PRT

Power ratio test
Total power dissipation

rbb ,

Base spreading resistance

rbb,Cb,c

Feedback time constant

Rss

Base dropping resistance

RSE

Resistance between base and emitter

Rcc

Collector dropping resistance

REE

Emitter dropping resistance

Rg

Internal resistance of generator

Ri

Input resistance

RL

Load resistance

Ro

Output resistance

Rth

Thermal resistance

Rth i-amb (R th i-a)

Thermal resistance junction-to-ambient

Rth i-case (R th i-c)

Thermal resistance junction-to-case
Dynamic zener resistance

S+N
N

Signal and noise to noise ratio

SR

Slew rate

SVR

Supply voltage rejection
Time
Ambient temperature
Case temperature
Delay time

xv

Fall time
Junction temperature
Lead temperature
Turn-off-time
Turn-on-time

Top

Operating temperature

tp

Pulse time

tr

Rise time

t.

Storage time

T. tg .(T.)

Storage temperature

AV
AT

Voltage drift with temperature variation

AV

Relative voltage variation

V
VeE

8ase-emitter voltage

VSE (satl

Base-emitter saturation voltage

VSE1-VSE2

Base-emitter voltage difference

IVBE1 -VBd

Input offset voltage

IVBE1-VBE21

AT

Input-offset voltage temperature coefficient

V(BR1 eBO

Collector-base breakdown voltage with emitter open

V{BR) CEO

Collector-emitter breakdown voltage with base open

V(BR} CER

Collector-emitter breakdown voltage with specified resistance

V(BR) eES

Collector-emitter breakdown voltage with emitter short-circuited to
base

V(SR) CEV

Collector-emitter breakdown voltage with specified reverse voltage
between emitter and base

V (SR)

Collector-substrate voltage with base and emitter open

CSSO

V(SR) ESO

Emitter-base breakdown voltage with collector open

VCS

Collector-base voltage

VCBO

Collector-base voltage with emitter open

VCBV

Collector-base voltage with specified reverse voltage between emitter
and base
Collector-emitter voltage
XVI

V CEK

Knee voltage at specified condition

V CEK (HF)

High frequency knee voltage at specified condition

V CEO

Collector-emitter voltage with base open

V CEO (sus)

Collector-emitter sustaining voltage with base open

VCER

Collector-emitter voltage with specified resistance between emitter
and base

V CER (sus)

Collector-emitter sustaining voltage with specified resistance between
emitter and base

Vcr

Collector-emitter saturation voltage

(sat)

Collector-emitter voltage with emitter short-circuited to base

Vcrs

Collector-emitter sustaining voltage with emitter short-circuited to
base
Collector-emitter voltage with specified reverse voltage between
emitter and base
VC1-V (sus)

Collector-emitter voltage with specified circuit between emitter and
base

VCEX
V CFX

Collector-emitter sustaining voltage with specified reverse voltage
between emitter and base

(sus)

Collector-emitter sustaining voltage with specified circuit between
emitter and base

Vcss

Collector-substrate voltage

Vrl ,

Emitter-base voltage

V'I\()

Emitter-base voltage with collector open

V,

Input voltage of a specified circuit

Vi (threshold)

Input limiting voltage
Interfering voltage
Output voltage of a specified circuit
Peak-to-peak voltage
Punch-through voltage

V,ef

Reference voltage

Vs

Supply voltage

V,

Zener voltage
Common-base, small-signal value of the short-circuit forward transfer
admittance

XVII

I

Common-emitter, small-signal value of the short-circuit forward
transfer admittance
Common-base, small-signal value of the short-circuit input admittance
Common-emitter,
admittance

small-signal

value
-

of

the

short-circuit

input

Yob

Common-base, small-signal value of the short-circuit output admittance

Yoe

Common-emitter,
admittance

Yrb

Common-base, small-signal value of the short-circuit reverse transfer
admittance

Yr.

Common-emitter, small-signal val\Je of the short-circuit reverse
transfer admittance

small-signal

value of the short-circuit

output

Impedance between base and emitter
Input impedance
Output impedance
T)

Efficiency

T)c

Collector efficiency

"t's

Storage time constant

(!lIb

Common-base, phase angle of the forward transadmittance (output
short-circuited, Y matrix)

15°C/W)
Power transistor for a.f. applications (Rth j-case"",,15°C/W)
Tunnel diode
Transistor for h.f. applications (Rth j-case>15°C/W)
Multiple of dissimilar devices (1); Miscellaneous
Magnetic sensitive diode; Field probe
Hall generator in an open magnetic circuit, e.g. magnetogram or signal probe
Power transistor for h.f. applications (Rth j-case"""15°CIW)
Hall generator in a closed electrically energised magnetic circuit, e.g. Hall
modulator or multiplier
P Radiation sensitive device
Q Radiation generating device

R Electrically triggered controlling and switching device having a breakdown
characteristic (Rth j-case>15°C/W)
S Transistor for switching applications (Rth j-case>15°C/W)
T Electrically, or by means of light, triggered controlling and switching power
device having a breakdown characteristic (Rth j-case"""15°CIW)
U Power transistor for switching applications (Rth j-case"""15°CIW)
X Multiplier diode, e.g. varactor, step recovery diode
Y Rectifying diode, booster diode, efficiency diode
Z Voltage reference or voltage regulator diode
XXI

1) A multiple device is defined as a combination of similar or dissimilar active
devices, contained in a common encapsulation that cannot be dismantled,
and of which all electrodes of the individual devices are accessible from
the outside.
Multiples of similar devices as well as multiples consisting of a main device
and an auxiliary device are designated according to the code for the discrete
devices described above.
Multiples of dissimilar devices of other nature are designated by the
second letter G.
The serial number is formed by:
Three figures for semiconductor devices which are primarily intended for use
in domestic equipment.
Two figures and a letter (this letter starts back from z through y, x, etc. bears
no signification).
Vereion letter
A version letter can be used, for instance, for a diode with up-rated voltage,
for a sub-division of a transistor type in different gain ranges, a low noise·
version of an existing transistor and for a diode, transistor, or thyristor with
minor mechanical differences, such as finish of the leads, length of the leads
etc. The letters never. have a fixed meaning, the only exception being the
letter R which indicates reverse polarity.
Examples

Be 107 Silicon low power audio frequency transistor primarily intended for
domestic equipment
BUY 46 Silicon power transistor for switching applications in professional
equipment
4.2. FOR INTEGRATED CIRCUITS
4.2.1. Types designated by three letters and three figures
The integrated circuits are divided in four groups:
~ digital types belonging to a family of circuits;

-

digital solitary circuits;
analogue circuits including linear circuits;
mixed analogue/digital circuits.

Digital Family Types
First two letters:
Third letter:
First two figures:
Third figure:

family
circuit function
serial number
operating ambient temperature

XXII

Digital Solitary Types

First letter:
Second letter:
Third letter:
First two figures:
Third figure:

"S"
extension of serial number
circuit function
serial number
operating ambient temperature range

Analogue (LInear) Types

First letter:
Second and third letter:
First two figures:
Third figure:

"T"
extension of serial number
serial number
operating ambient temperature range

Mixed Digital/Analogue Types

First letter:
Second and third letter:
First two figures:
Third figure:

"U"
extension of serial number
serial number
operating ambient temperature range

Function

H
J
K
L
N
Q

R
S
Y

Combinatorial circuit
Bistable or multistable sequential circuit
Monostable sequential circuit
Level converter
Bi-metastable or multi-metastable sequential circuit
Read-write memory circuit
Read only memory circuit
Sense amplifier with digital output
Miscellaneous

Operating ambient temperature range

1
2
3
4
5
6

o

0 to + 70°C
-55 to + 125°C
-10 to + 85°C
+ 15 to + 55°C
-25 to + 70°C
-40 to + 85 °C
It means no temperature range indicated in the type number

If a circuit is published for a wider temperature range, but does not
qualify for a higher classification, the figure indicating the narrower
temperature range is used.
Version letter

A version letter can be added to a type number of an existing type to
indicate a different version of the same type, for instance, encapsulated

XXIII

in another package; with other interconnections or showing minor differences in ratings or electrical characteristics. The letter Z is used to
indicate a type with discretionary wiring.
4.2.2. Types designated by three letters and four figures
The serial number can be a four figure number assigned by Pro
Electron or the serial number of an existing company number.
The first two letters:
A FAMilY CIRCUITS
The FIRST TWO lETTERS give information about the family of circuits.
These letters can be FA... FZ, GA. .. GZ, HA". etc.

B. SOLITARY CIRCUITS
The FIRST LETTER divides the solitary circuits into:
S Solitary digital circuits
T Analogue circuits
U Mixed analogue/digital circuits
The SECOND lETTER is a serial letter without any further significance.
The third letter indicates the operational temperature range or another
significant characteristic.
The letters B thru F give information about the temperature range
(note 1):
B
C
D
E
F

ooC
-55°C
-25°C
-25°C
-40°C

to
to
to
to
to

+
+

70°C
125 °C

+
+

+

Other "third" letters refer to electrical or mechanical versions of a
family and have no fixed meaning. If no temperature range or another
characteristic is indicated, the letter A is used as a third letter.
The serial number can be either a
Electron or the serial number (also
existing company type designation.
than 4 figures are completed to a 4
the number.

4 figure number assigned by Pro
numbers comprising letters) of an
Company serial numbers of less
figure number by "0" 's in front of

A versIon letter can be used to indicate a deviation of a single characteristic of a type, either electrically or mechanically. The letter never has
a fixed meaning, the only exception being the letter Z, indicating "customwired" devices..
Note 1: If a circuit is published for a wider temperature range, but does not quality for a higher
classification, the leiter indicating the narrower temperature range is used.

XXIV

ALPHA-NUMERICAL LIST OF TYPES
Type

*
*

AF 106
AF 109 R
AF 139
AF239
AF 239 S
BC 107
BC 108
BC 109
BC 113
BC 114
BC 115
BC 116A
BC 119
BC 125
BC 125 B
BC 126
BC 132
BC 139
BC 140
BC 141
BC 153
BC 154
BC 160
BC 161
BC 177
BC178
BC179
BC204
BC205
BC206
BC207
BC208
BC209
BC225
BC297
BC298
BC300
BC301
BC302
BC303
BC304
BC377
BC378
BC393

Page
3
5
7
9
11
15
15
15
23
23
25
27
29
31
31
35
37
39

Type

* BC 394

43
43
47
47
51
51
55
55
55
63
63
63
67
67
67
71
73
73
77
77
77
83
83
87
87
91

*
*
*
*
*
*
*
*

*
*
*
*

93
95
95
99
99
103
103
103
111
115
117
119
121
123
129
135
137
137
139
139
139
143
147
153
157
159
163
167
171
175
179
183
183
183
187
191
195
199
203
203
203
207
207
211

BC440
BC441
BC460
BC461
BC477
BC478
BC479
BF 155
BF 158
BF 160
BF 161
BF 166
BF 167
BF 173
BF222
BF233
BF234
BF 257
BF258
BF259
BF271
BF 272 A
BF273
BF274
BF287
BF288
BF316A
BF324
BF454
BF455
BF 457
BF 458
BF 459
BF479
BF506
BF 509
BF516
BF657
BF658
BF659
BF679
BF679 M
BF680

new type

XXV
- --

-- ----._-

Type

Page

* M 252
* M253

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

SAJ 210
TAA550
TAA611 A
TAA 611 B
TAA 611 C
TAA 630 S
TAA 661
TBA231
TBA 271
TBA 311
TBA331
TBA 435
TBA 625 A
TBA625 B
TBA 625 C
TBA641 A
TBA641 B
TBA651
TBA 780
TBA800
TBA 810S
TBA 810 AS
TBA820
TCA 511
TCA 830S
TCA900
TCA910
TCA 940
TCA 940 E
TDA440
TDA 1054
TDA 1170
TDA 1190
TDA 1200
TDA 1270
TDA 1405
TDA 1410
TDA 1412
TDA 1415
TDA 1420
TDA 2010
TDA2020

Page
217
229
241
247
253
265
275
289
295
303
247
309
315
323
331
339
347
355
365
375
379
387
399
399
411
419
427
439
439
447
459
471
481
495
507
519
527
539
549
563
573
583
597
611

GERMANIUM TRANSISTORS

I

AF106

GERMANIUM MESA PNP
VHF MIXER/OSCILLATOR

The AF 106 is a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is
particularly designed for use as preamplifier mixer and oscillator up to 260 MHz.

ABSOLUTE MAXIMUM RATINGS
V eBO

VeEo
VEBO
Ie
Ptot

=

-25

Collector-base voltage (IE
0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ie
0)
Collector current
Total power dissipation at Tamb ~ 45°C

=

at

Tease ~

V

-18
V
-0.3
V
-10 mA
60 mW
60 mW
-30 to 75°C
90 °C

66°C

Storage temperature
Junction temperature

MECHANICAL DATA

Dimensions in mm

Shield lead connected to case
...
~

.

.
.

. ,

.

+,

0.45 m••
C-0017

TO-·72
Supersedes issue dated 7/68

3

5/73

AF106
THERMAL DATA
R'h j-case

Thermal resistance junction-case

max

400

R'h j-amb

Thermal resistance junction-ambient

max

750 °C/W

ELECTRICAL CHARACTERISTICS
Parameter
leso

(Tcase = 25°C unless otherwise specified)

Test conditions

Collector cutoff
current (IE = 0)

°C!W

Min. Typ. Max. Unit

Vea= -12V

-10 I1A

VeaR) eso Collector-base
breakdown voltage
(Ie
0)

Ie

= -100 I1A

-25

V

VeaR) ceo Collector-emitter
breakdown voltage
(Ia = 0)

Ic

= -500 itA

-18

V

Ie

= -100 itA

-0.3

V

-0.25 -0.325 -0.38
-0.28 -0.34 -0.4

V
V

=

V(BR)

ESO Emitter-base

breakdown voltage
(Ie = 0)
Vse

Base-emitter voltage

Ie
Ie

= -1 mA
= -2mA

Vce =-12V
VCE = -6 V

hFE

DC current gain

Ie
Ic

= -1 mA
= -2 mA

Vee =-12V
Vce = -6 V

fT

Transition frequency

Ie
f

= -1 mA Vee = -12 V
100 MHz

=

220

MHz

Ie
f

==

= -1 mA Vee = -12V
450 kHz

0.45

pF

-C re
NF

Reverse capacitance
Noise figure

rbb, Cb'c Feedback time
constant

Gob

Power gain

'"

20

Ie = -1 mA VeE =-12V
Rg = 60n f = 200 MHz

Ic
f

5.5

= -1 mA Vce =-12V
= 2.5 MHz

Ie = -3mA Ves= -i0V
RL = 9200
f
= 200 MHz

4

50
70

14

~

-

7.5 dB

6

ps

17.5

dB

AF109R

GERMANIUM MESA PNP
VHF PREAMPLIFIER

The AF 109R is a germanium mesa PNP transistor in a Jedec TO-72 metal case.
It is designed for use in AGC prestages up to 260 MHz.

ABSOLUTE MAXIMUM RATINGS
VeBO
VeEo

VEBO
Ie
Ptot

=

-20
V
-15
V
-0.3
V
-10 mA
60 mW
60 mW
-30 to 75 °C

Collector-base voltage (IE
0)
Collector-emitter voltage (18 = 0)
Emitter-base voltage (Ie
0)
Collector current
Total power dissipation at Tamb ~ 45°C

=

at

Tease ~

66°C

Storage temperature
Junction temperature

90

MECHANICAL DATA

°C

Dimensions in mm

Shield lead connected to case

..,
5.2 max

~

::l+1
j:

12.7min

J~

J

~E ~~
:t?~
x

C-OOTI

TO-72
Supersedes issue dated 6/68

5

5/73

AF109R
THERMAL DATA
Rth i-cas.
Rth i-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

400 °C/W
750 °C/W

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameter

Test conditions

Iceo

Collector cutoff
current (IE = 0)

Vce= -20 V

ICEO

Collector cutoff
current (Ie = 0)

VCE = -15V

Emitter cutoff
current (Ic = 0)

VEe

,=

IEeo

-0.5

-0.3 V

-100 J1A

Base-emitter voltage

Ic
Ic

= -1.5 mA VCE = -12 V
= -2mA VCE = -6 V

hFE

DC current gain

Ic
Ie

= -1.5 mA VCE = -12 V
= -2mA VCE = -6 V

-C re

Reverse capacitance

Ic
f

= -1 mA VCE = -12 V
= 450 kHz

Gob

Noise figure
Power gain

Ic = -2mA
Rg = 60g

-320 -380 -430 mV
-320 -380 -430 mV
20

50
55
0.25

VCE = -12 V
f = 200 MHz

Ic = -2mA VCE = -12 V
REE = 1 kg
RL = 920g
f
= 200 MHz

6

-8 J1A
-500 J1A

VeE

NF

Min. Typ. Max. Unit

pF
4.8 dB

13

16.5

dB

AFl39
GERMANIUM MESA PNP
UHF AMPLIFIER
The AF 139 is a germanium mesa PNP transistor in a Jedec TO-72 metal case.
It is particularly designed for use in prestages as well as in mixer and oscillator stages
up to 860 MHz.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
V EBO

IE
Ic

Ptot

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ic = 0)
Emitter current
Collector current
Total power dissipation at Tamb
at

T stg
Tj

~

45°C

Tease ~

66°C

Storage temperature
Junction temperature

MECHANICAL DATA

-22

V

-15
-0.3

V

11
-10
60
60
-30 to 75
90

mA
mA
mW
mW
°C
°C

V

Dimensions in mm

Shield lead connected to case

..,

0

d

S.2 m• x

12.7min

. .
e

J.{)
J.{)

"e-

II

x

e

+1

..;f

Id
"e-

~

4
-e.

1==
O.4s max
C-OOI7

TO-72

7

6/68

I

AF139
THERMAL DATA
Rth
Rth

j-ease
j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS
Parameter

max
max

400 °C/W
750 °C/W

(Tease = 25°C unless otherwise specified)

Test conditions

Min. Typ. Max. Unit

Collector cutoff
current (IE = 0)

VCB = -22 V

-s

itA

Collector cutoff
current (Is = 0)

VCE = -15 V

-500

itA

Emitter cutoff
current (lc = 0)

VES = -0.3 V

-100

itA

hFE

DC current gain

Ic

= -1.5 mA VcE =-12V

fr

Transition frequency

Ie

ICBO
ICEO
IESO

f

-C re

Reverse capacitance

Ic
f

Nf

Noise figure

Ic

50

-

= -1.5 mA VcE =-12V
= 100 MHz

550

MHz

= -1.5 mA VcE =-12V
= 100 kHz

0.25

pF

= -1.5 mA VCE = -12V
f
= SOO MHz

7

S.2 dB

= -1.5 mA VCE = -12 V
= 2.5 MHz

3

ps

11

dB

10

RQ = 60Q
rbb• Cb' e Feedback time
constant

Ic
f

Gob

Power gain

Ic

= -1.5 mA VCE = -12V
= SOO MHz

RL =1.4kQf

8

9

AF239

GERMANIUM MESAPNP
UHF PREAMPLIFIER

The AF 239 'is :a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is
particularly designed a'spreamplifiar mixer and oscillator up to 900 MHz.

ABSOLUTE MAXIMUM RATINGS
VCES
V CEO

VEao
Ic

P tot

=

Collector-emitter voltage (VaE
0)
Collector-emitter voltage (la = 0)
Emitter-base voltage (Ie
0)
Collector current
Total power dissipation at Tamb ~ 45°C

=

at
T stg

Tj

Tease ~

Storage temperature
Junction temperature

MECHANICAL DATA

66°C

-20

V

-15
V
V
-0.3
-10 mA
60 mW
60 mW
-30 to 75 °C
90 °C

Dimensions in mm

Shield lead connected to case

TO-72
9

6/68

I
'I

AF239
THERMAL DATA
Rth j-ease
Rth j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS
Parameter
ICES
leEo
IESO

max
max

400
750

°C/W
°C/W

(Tease = 25°C unless otherwise specified)

Test conditions

Min. Typ. Max. Unit

Collector cutoff
current (VSE = 0)

VeE = -20 V

-8 itA

Collector cutoff
current (16 = 0)

VeE = -15V

-500 itA

Emitter cutoff
current (Ie = 0)

VES :;: -0.3 V

-100 itA

VBE

Base-emitter voltage

Ie
Ie

:;: -2mA
= -5mA

VeE =-10V
VeE = -5 V

hFE

DC current gain

Ie
Ie

:;:-2mA
= -5mA

VeE =-10V
VeE = -5 V

Ie
f

:;: -2mA
VeE =-10V
= 100 MHz

700

MHz

Ie
f

= -2mA
VCE = -10 V
= 450 kHz

0.23

pF

fT
-C re

NF
Gob

Transition frequency
Reverse capacitance
Noise figure
Power gain

-350
-400
10
30

VcE =-10V
Ic = -2mA
Rg = 60n f. = 800 MHz
Ic = -2mA
RL = 2kQ f

10

VcE =-10V
= 800MHz

5
11

14

mV·
mV

-

6 dB
dB

AF 239S

GERMANIUM MESA PNP
UHF PREAMPLIFIER

The AF 239S is a germanium mesa PNP transistor in a Jedec TO-72 metal case.
It is particularly designed as preamplifier, mixer and oscillator up to 900 MHz.

ABSOLUTE MAXIMUM RATINGS

= 0)
= 0)

V CES

Collector-emitter voltage (VeE

~20

V

VCEO
VEeo

Collector-emitter voltage (Ie

~15

V

Ic
P tot

=

Emitter-base voltage (lc
0)
Collector current
Total power dissipation at Tamb
at

~

45°C

Tease ~

66°C

~0.3

V

~10

mA

60 mW
60 mW
-30 to 75°C

Storage temperature
Junction temperature

90

MECHANICAL DATA

°C

Dimensions in mm

Shield lead connected to case

..,

0

d

5.2m..

+1

12.7min
II

x
~
E

-,

~
~

d

:e-

1==

~

;,;

j==:I

0.45 max
C-0017

TO-72
11

6/68

AF239S
THERMAL DATA
Rtll j-c...

Thermal' resi$ta(l(:,e, ju,nction-case

Rlh j-amb

Therma'i resi&tan.ce junction-ambient

ELECTRICAL CHARACTERISTICS

max
max

(Teas. =: 25

ac

uo'ess otherwise $pecified)

Test conditions

Parameter

400 oCM
750 °C/W

Min. Typ. Max. Unit

CQ.lIect.or cu.toff
current (V BE' = Q)

: VeE = -20V

-8. !-IA

Collector cutoff
current(1B =: Q}

I

= -15 V

-500 !-LA

' ' 60

Emitter cutoff
cummt (Ie
0)-

. VEe

-0.3 V

-100 p,A

VBE

BaS$-emitter voltage

ICES
leEQ,

hFE

fT
-Cre
NF

=

DC current gain
Transition freqt:.lency
Reverse capacitance
Noise figure

VeE

Ie

= -2mA VcE =-1QV

Ie

"'" -5mA

VCE :;:: -5V

Ie

= -2mA

VCE

'e

= -SmA Vee

Ie

= -2mA

f

=;;

Ic
f

= 450 kHz

Power gain

=:

-10V

= -10V

-350
-400
10

30

= -2mA

mV
mV

-

VeE = -10V

100 MHz

Ie = -1 rnA
'\ = 60n

f

G pb

=;;

780

MHz

0.2

pF

VCE. = -10V
VCE

= -10 V

= 800 MHz

5 dB

=

-i0V
Ie ::;: -2mA VCE
R9 =60n
RL = 2kO
f
=: 800 MHz

12

12.5

15

dB

I

Sll.:lCON TRANSISTORS

13

Be 107
Be 108
Be 109

SILICON PLANAR NPN

LOW NOISE GENERAL PURPOSE AUDIO AMPLIFIERS
The BC 107, BC 108 and BC 109 are silicon planar epitaxial NPN transistors in TO-18
metal case. They are suitable for use in driver stages, low noise input stages and
signal processing circuits of television receivers.
The complementary PNP types are respectively the BC 177, BC 178 and BC 179.

ABSOLUTE MAXIMUM RATINGS
Veso
Veeo
VESO

IBC 107/BC 10BIBC 109

=

Collector-base voltage (Ie
0)
Collector-emitter voltage (Is
O)
Emitter-base voltage (Ie
Collector current

=
= 0)

illS"
45V
6V

-

~"

20V
20V
5V
5V
...... ---------.--~
100 rnA
0.3W
0.75W

Ie
P tot

Total power dissipation at T.mb """ 25 °C

T stg

Storage temperature

-55 to 175 °C

Tj

Junction temperature

175°C

at Te • se """ 25 °C

MECHANICAL DATA

Dimensions in mm

(aim. to TO-18)
15

4/73

I

Be 107
Be 108
Be 109
THERMAL DATA
Rth j-case
Rth j-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

200
500

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
leso

Collector cutoff
current (IE = 0)

Test conditions

1d7

for Be
VCB = 40V
Vcs = 40V Tamb = 150°C
for Be 108 - Be 109
Vcs = 20V
Vcs = 20 V Tamb = 150°C

V (BR)CSO Collector-base
breakdown voltage
(IE = 0)

Ic

VCBR)CEO 'Collector-emitter
breakdown voltage
(lB ~ 0)

Ic

VeE!sat)' Collector-emitter
saturation voltage
VBE "

Base-emitter voltage

VBE(sat)" Base-emitter
saturation voltage

IE

15 nA
15 [lA
15 nA
15 p,A

= 10.[lA
for
for
for

Be 107
Be 108
Be 109

50
30
30

V
V
V

for
for
for

Be 107
Be 108
Be 109

45
20
20

V
V
V

for
for
for

Be 107
Be 108
Be 109

6
5
5

\j

=10mA

VCSR1ESO Emitter-base
breakdown voltage
(Ic = 0)

Min. Typ. Max. Unit

= 10p,A

Ic
Ic

= 10mA 'B
= 100 rnA 'B

Ic
Ic

= 2mA
= 10mA

Ic
Ic

= 10mA Is
= 100mA Is
16

= 0.5 rnA
= SmA

VCE = 5 V
VCE = 5V
= 0.5 rnA
= 5mA

550

V
V

70
200

250 mV
600 mV

650
700

700 mV
770 mV

750
900

mV
mV

Be 107
Be 108
Be 109
ELECTRICAL CHARACTERISTICS

hFE

.

(continued)

Test conditions

Parameter
DC current gain

Ie

= 2mA
for
"for
for
for
for
for
for
for
for
for

Ie

= 10)J.A
for
for
for
for
for
for
for
for
for
for

hfe

CeBo

Small signal
current gain

Collector-base
capacitance

• Pulsed: pulse duration

= 300 I-tS.

= 2mA

VeE = 5 V
Be 107
Be 107 Gr.
Be 107 Gr.
Be 108
Be 108 Gr.
Be 108 Gr.
Be 108 Gr.
Be 109
Be 109 Gr.
Be 109 Gr.
VeE = 5 V
Be 107
Be 107 Gr.
Be 107 Gr.
Be 108
Be 108 Gr.
Be 10~ Gr.
Be; 108 Gr.
Be 109
Be 109 Gr.
Be 109 Gr.

Min. Typ. Max. Unit
110
A 110
B 200
110
A 110
B 200
C 420
200
B 200
C 420

A

B 40
A

B 40
C 100
70
B 40
C 100

= 1 kHz

Ie
f

for Be 107
for Be 107 Gr. A
for Be 107 Gr. B
for Be 108
for Be 108 Gr. A
for Be 108 Gr. B
for Be 108 Gr. C
for Be 109
for Be 109 Gr. B
for Be 109 Gr. C
= 10mA VeE = 10V
= 100 MHz

!E
f

= 1 MHz

-

-

250
190
300
370
190
300
500
370
300
550
2

-

-

-

-

-

-

-

-

VeB = 10V

=0

17

120
90
150
120
90
150
270
210
150
270

450
220
450
800
220
450
800
800
450
800

VeE = 5 V

Ie
f

duty factor

230
180
290
350
180
290
520
350
290
520

= 1%

4

6 pF

I

BC 107
BC 108
Be 109·
ELECTRICAL CHARACTERISTICS
Parameter·

CEBO

NF

hie

Emitter-base
capacitance

Noise figure

Input impedance

Test conditions

Ie
f

Reverse voltage ratio

=0
= 1 MHz

Min. Typ. Max. Unit

VES = 0.5 V

Ie = 0.2 rnA VeE = 5 V
f
= 1 kHz
Rg = 2 kn
B = 200 Hz
for Be 107
for Be 108
for Be 109
Ie = 0.2 rnA VeE = 5 V
Rg = 2 kn
f
= 10Hz to 10kHz
B = 15.7 kHz
for Be 109
Ie
f

h re

(continued)

Ie
f

= 2mA
= 1 kHz
for
for
for
for
for
for
for
for
for
for
= 2mA
= 1 kHz
for
for
for
for
for
for
for
for
for
for

18

11.5

pF

2
2
1.5

10 dB
10 dB
4 dB

1.5

4 dB

4
3
4.8
5.5
3
4.8
7
5.5
4.8
7

ill
ill

VeE = 5 V

Be 107
Be 107
Be 107
Be 108
Be 108
Be 108
Be 108
Be 109
Be 109
Be 109

Gr. A
Gr. B
Gr. A
Gr. B
Gr. C
Gr. B
Gr. C

kn
kn
kn
kn
kn
k!l
kn
kn

VeE = 5 V

Be 107
Be 107
Be 107
Be 108
Be 108
Be 108
Be 108
Be 109
Be 109
Be 109

Gr. A
Gr. B
Gr. A
Gr. B
Gr. C
Gr. B
Gr. C

2.2 x 10-4
1.7 x 10-4
2.7 x 10-4
3.1 x 10-4
1.7 x 10-4
2.7 x 10-4·
3.8 x 10-4
3.1 x 10-4
2.7 x 10.4
3.8 x 10-4

-

-

-

-

Be 107
Be 108
Be 109
ELECTRICAL CHARACTERISTICS

Test conditions

Parameter
hoe

(continued)

Output admittance

Ic

f

= 2mA
= 1 kHz

VCE

for
for
for
for
for
for
for
for
for
for

Typical output characteristics
(for Be 107 only)
us 0

[mAl

0.35 mA

80

0.30 mA

_I

,

.1

0.24 mA

0.16 mA
40

,

I

0.121mA

J

0.08 mA

o.oJ mA

20

.I

0,04 rnA
IB= 0

18 =·0

8

I

bO

0. .15 mA

4

I

I

1.

o

GS 002:

I

0.20 mA

0.10 mA

a

Gr. B
Gr. C

0.28 mA
80

0.20 mAl

20

Gr. A
Gr. B
Gr. C

!lS
!lS
!lS
!lS
!lS
!lS
!lS
!lS
!lS
llS

I,;
(rnA)

I

I

20
13
26
30
13
26
34
30
26
34

Gr. A
Gr. B

Typical output characteristics
(for Be 108 only)

1

40

=5V

Be 107
Be 107
Be 107
Be 108
Be 108
Be 108
Be 108
Be 109
Be 109
Be 109

ri.25 mA
60

Min. Typ. Max. Unit

12

16

o
a

VeE (V)

19

12

16

VeE IV)

I

Be 107
Be 108
Be 109

Typical output characteristics
(for Be 109 only)

DC transconductance
(i

Ie

0023

Ie
(rnA)

I

(rnA)

GS 0024

-

-

0:.20 rnA

I

Vee 5V

8
0.161rnA

I

I

60

40

o.o~J

20

0.01 rnA

lh '"

0.1

0,12 rnA

:fi

TYP.

'/

0.01

I '/

I

o

I

IS =0
0.001
12

DC normalized current gain

a

/I
0.2

0.6

0.4

0.8 V" (V)

Collector-emitter saturation voltage
0

11=IJtl
e
B

VeE (satl

(mV)

160

-

-45°C

II

'--

120

.. -

--

j

80

....

II
1.

I
10

1-1-.

--

/.

/

40
0.01

Ie (rnA)

20

0.1

10

IdmA)

Be 107
Be 108
Be 109

Collector-base capacitance

Transition frequency
, nno

t,

J
IE=O- f-1

(pFI

(MHzI f--V
CE
200

!\

= 10V

/

\

I

i\

\

0028

1 In T

1/

180

"

..........

r--

ii

160

i

I

10-.

\

V

140

/
j

120 f--

1/

100
12

16

Vr.s (VI

0.1

Noise figure (for BC 109 only)

10 ["::

J".-

~55

R ~~%>

""'"

2dB

f = 100Hz

""" K

1 B ~ 20 Hz
0.00 1

10

"f",

0.01

l"\

IJ 1\\

-~
~
7dB
0.1

5dB

~

1

1
P'J

VeE
f

V
"t-H
6dB

o. 1

21

I"-

K I......
f\~ l'-... t'-.
~ ~ t'-.
5V

"I'-..

1'-.

B - 200 Hz
0.01

~

:5;60'. ,-

"- O'&<}

~

I\-

-,

j>,,:~&

I'\:

1'\

~

1\

J'..,
J'..,
........

"\

rT

K dB.

i'.

= 1KHz

0.001

Ie (mAl

1"- ~
"-

i'-..

~

1\ l\\

)

II
~ t--:: t--.. .. ~
4dB

5V

""'" "

,

~

~ ~~:'1'-..

VCE

uS 0030

i'.

[\ ~ [\f\

~ 1'-. I' "'"

O.

Rg
(k II )

I'\. l'\.'\ ~_ f--

"-

,

0"0,

'\.

~ 1'-..."
1

Noise figure (for BC 109 only)

1\..'\ f\ f\~

Rg
(k!lI ,

Ie (mAl

10

2dB

lL

3

B.~

t-

........ t-

4dB

7d\;' ~B ....

~dlB

1'....

0.1

1,(mAI

BC 107
BC 108
BC 109

Noise figure (for Be 109 only)

Power rating chart
GS 003

Rg
Ik 11 I
10

VeE

J~

........

......

(mW)

,S,

'~

250

~ )~

f ~ 10 Hz to 10kHz
B~~lkHZ

"'"

................

......

Plot

. . . . . ~ ~~N6.y;:-

........

"'\
I

'\

f'.....1:5dB

............ r-.,

r--... ......:-- ...........
~ r--... ................... I--

200

"'-'

150

\

......

-.......

---r--::--

7dB ...........
0.1
0.01

0.1

r-~

'"1"'-

'" '"

I"\.. ~

~1'~~
is.-9/1'

................

2dB

GS 0032

'\.

100

/

3d B ----;:;:;
4dB

50

~

"-r'\..

50

22

"

'\.

o

ic(mA)

75

100

125

T.m' (OC)

BC 113
BC 114

SILICON PLANAR NPN
HIGH GAIN, LOW NOISE AUDIO AMPLIFIERS

The BC 113 and BC 114 are silicon planar NPN transistors in TO-18 epoxy package.
They are specifically designed for use in low-noise audio preamplifiers.

ABSOLUTE MAXIMUM RATINGS
VCBO

Collector-base voltage (IE = 0)

VCEO

VEBO

Collector-emitter voltage (Is = 0)
Emitter-base voltage (lc = 0)

Ic

Collector current

PtO!

Total power dissipation at Tamb
at

Tstg
Tj

30

~

25 °C

Tcase ~

25 °C

Storage temperature
Junction temperature

MECHANICAL DATA

V

V
30
6
V
50 mA
200 mW
500 mW
-55 to 125 °C
125 °C

Dimensions in mm

~~'~ ~I
~
C

B

10-18 epoxy
23

5/73

I

BCl13
BC 114
THERMAL DATA
Rth j-case
Rth j-amb

Thermal resistance junction-case
Thermal resistance J'unction-ambient

ELECTRICAL CHARACTERISTICS (Tamb

Collector cutoff
current (V BE
0)

=

200

°C/W

max

500

°C/W

unless otherwise specified)

Test conditions

Parameter
ICES

= 25°C

max

Min. Typ. Max. Unit

VCE
VCE

= 20V
= 20V

VCBR)CEO'Collector-emitter
breakdown voltage
(Is
0)

Ic

= 10mA

30

V

VCBR) cBoColiector-base
breakdown voltage
(IE
0)

Ic

= 10 IlA

30

V

VCBR) EBO Emitter-base
breakdown voltage
(lc = 0)

6

V

=

=

Tamb

IE

= 10 IlA

VBE

Base-emitter voltage

Ic

= 1 mA

VCE

hFE

DC current gain

Ic
Ic
Ic
Ic

= 10 IlA
100 IlA
1 mA
10mA

VCE
V
VCE
5V
VCE = 5 V
VCE
5V
for BC 113
for Be 114

fr

CCBO
NF

Transition frequency

Collector-base
capacitance
Noise figure

Ic

=
=
=

= 1 mA

IE

=0

Ic

= 10IlA

Rg = 10 kn
B

=5V
=.5
=

0.64
120
200

0.7

1000

200

400
400

60
70

100
100

V

-

170
250

=

-

-

-

=

VCE
5V
for Be 113
for Be 114

=5V
VCE = 5 V

VCB

MHz
MHz

2.7

4

2.5
1.5

dB
3 dB

pF

f = 1 kHz

= 200 Hz
for Be 113
for Be 114

• Pulsed: pulse duration

50 nA
5 IJ.A

= 65°C

300 IJ.s, duty factor
24

= 1%

Be 115

SILICON PLANAR NPN
AUDIO DRIVER

The BC 115 is a silicon planar epitaxial NPN transistor in a TO-39 epoxy package.
It is particularly suited for use in audio driver circuits.

ABSOLUTE MAXIMUM RATINGS
VCBC>

Collector-base voltage (IE

==

0)

VCEO
VEBO

Collector-emitter voltage (IB

==

Emitter-base voltage (Ic

==

0)

0)

Ie

Collector current

P,ot

Total power dissipation at Tamb

T stg

Storage temperature

Tj

Junction temperature

~

25°C

at Tca.. ~ 25 °C

40

V

30

V

V
5
200 mA
0.3 W
0.8 W

-55 to 125
125

MECHANICAL DATA

°C
°C

Dimensions in mm

5.1

TO-39 epoxy

Supersedes issue dated 5/73

25

6/75

Be 115
THERMAL DATA
Rth j-case
Rth j-amb

ELECTRICAL CHARACTERISTICS
Parameter
ICBO

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

VCB = 20V
VCB = 20V

Tamb

==

= 100

V (BR)CEO'Collector-emitter
breakdown voltage
(lB = 0)

Ic

V(SR) ESO Emitter-base
breakdown voltage
(lc = 0)

Ic

=

Ic
Is

= 100 rnA
= 10mA

Ic
Ic

=10mA VCE = 10 V
= 100 rnA VCE = 10V

Ic
IB

= 100mA
= 10mA

Ic
Ic
Ic
Ic

=
=
=
=

Ic

= 10mA

VCE = 10V

IE
f

=0
= 1 MHz

Vcs = 10 V

Base-emitter voltage

VSE (sat)' Base-emitter
saturation voltage
hF~

,

fT
Ccso

DC current gain

Transition frequency
Collector-base
capacitance

, Pulsed: pulse duration

-

100 nA
5 [1A

65°C

Ic

VSE

°C/W

Min. Typ. Max. Unit

V(BR) cBoColiector-base
breakdown voltage
(IE = 0)

VCE (sat)' Collector-emitter
saturation voltage

°C/W

(T amb = 25°C unless otherwise specified)

Test conditions

Collector cutoff
current (IE = 0)

125
330

40

V

= 30 rnA

30

V

10~A

5

V

~A

0.4

=

300 [1s, duty factor = 1%
26

0.65
0.75

0.8

100~A VCE = 10V
1 mA
VCE = 10 V
10mA VCE = 10 V
100mA VCE
10V

1

50
100
50

95
145
170
150

V
V

0.9

400

V

MHz

80

12

V

25

pF

Be 116A

SILICON PLANAR PNP
GENERAL PURPOSE TRANSISTOR

The BC 116A is a silicon planar epitaxial PNP transistor in a TO-39 epoxy package.
It is designed as general purpose device for application over a wide range of collector
current.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
Ptot

Collector-base voltage (IE = 0)
Collector-emitter voltage (IB = 0)
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tamb ~ 25°C
at Tcase ~ 25°C

MECHANICAL DATA

-45

V

V
-40
-5
V
-500 mA
W
W

0.3

0.8

Dimensions in mm

5.1

c
TO-39 epoxy
27

5/73

I

Be 116A
THERMAL DATA
Rth j.case
Rth j.amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

125 °C/W
330 °C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Test conditions

Parameter
Collector cutoff
current (IE = 0)

ICBO

VCB = -20 V
VCB = -20V

Min. Typ. Max. Unit
-100 nA
:..10 ~A

Tamb = 75°C

V(BR) CBO Collector-base
breakdown voltage
(IE = 0)

Ic

= -10 itA

-45

V

V(BR)CEO* Collector-em itter
breakdown voltage
(lB = 0)

Ic

= -10mA

-40

V

V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)

Ic

= -10 itA

-5

V

Ic
Ic

= -SOmA IB = -S rnA
= -150 rnA IB = -15 rnA

Ic
Ic

= -10 rnA VCE
= -50 rnA VCE

Ic
Ic

= -SOmA IB
= -150 rnA IB

Ic
Ic
Ic
Ic

= -100 itA VCE = -10 V
= -10 rnA VCE = -1 V
= -SOmA VCE = -1 V
= -150 rnA VCE = -10 V

Ic

= -30 rnA

VCE

IE
f

=0
= 1 MHz

VcB =-10V

VCE

(sat)*

VBE *
VBE

(sat/

hFE

Collector-emitter
saturation voltage
Base-emitter voltage
Base-emitter
saturation voltage
DC current gain

fT

Transition frequency

CCBO

Collector-base
capacitance

V
V

= -10 V
= -1 V

-0.70
-0.75

-1

V
V

= -SmA
= -15 rnA

-0.80
-1

-1.3

V
V

• Pulsed: pulse duration = 300 ~s. duty factor = 1%
28

-0.25
-0.40

= -10V

30
60
60
80

90
150
150
150

130

200

5

-

240

MHz

10 pF

Be 119

SILICON PLANAR NPN
AUDIO OUTPUT AMPLIFIER

The BC 119 is a silicon planar epitaxial NPN transistor in a TO-39 metal case. It is
suitable for 1 W class "A" and up to 6 W class "B" audio output stages and is available
as a pair 2 BC 119.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO

P,o,

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
Total power dissipation at Tamb ~ 25°C
at Tease ~ 25°C
at Tease ~ 100°C

T"g
Tj

Storage temperature
Junction temperature

60

V

30

V
V

5
5
2.8
-55 to 200
200

MECHANICAL DATA

W
W
W

0.8

°C
°C

Dimensions in mm

(sim. to TO-39)

29

5/73

Be 119
THERMAL DATA
Rth j-case

Thermal resistance junction-case

Rth j-amb

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS

(Tamb

= 25°C

Collector cutoff
current (IE
0)

=

V CB
VCB

= 40V
= 40V

T amb

35
220

°C/W
°C/W

unless otherwise specified)

Test conditions

Parameter
ICBO

max
max

Min. Typ. Max. Unit

100 nA
20 p.A

= 150°C

V(BR) cao Collector-base
breakdown voltage
(IE
0)

=

Ic

= 100 itA

60

V

VCEO(sus)' Collector-emitter
sustaining voltage
(la
0)

Ic

= 30 rnA

30

V

V(BR) EBO Emitter-base
breakdown voltage
0)
(lc

IE

= 100 itA

5

V

Ie
Ic
Ic

= 150 rnA la = 15 rnA
= 500 rnA IB = SOmA
=1A
la = 100 rnA

0_15
0_4
0.8

0_35

Ie
Ic

= 500 rnA VCE = 10V
= 150 rnA VCE = 1 V

1
0.85

1.8

1

V
V

Ie
Ic

= 150 rnA la = 15 rnA
=1A
IB = 0.1 A

0.9
1.4

1.2
2

V
V

Ic
Ic
Ic

= SOmA VCE == 1 V
= 150 rnA VCE =1 V
= 500 rnA VcE =10V

100
90
60

120

=

=

VCE (sat)' Collector-emitter
saturation voltage

VaE

,

Base-emitter voltage

VBE (sat)' Base-emitter
saturatior. voltage
hFE'

DC current gain

hFE/hFE2

Matched pair

Ic

= 300 rnA VCE = 5 V

fT

Transition frequency

Ic

= SOmA

VCE = 10V

Ccao

Collector-base
capacitance

IE

=0

Vca = 10V

, Pulsed: pulse duration

= 300 p.s,

duty factor
30

= 1"10

40
40
25

1.1
1.5

V
V
V

-

1.4

MHz

40
12

25

pF

BC 125
BC 125B,

SILICON PLANAR NPN
AUDIO DRIVERS

The BC 125 and BC 125 B are silicon planar epitaxial NPN transistors in TO-39 epoxy
package. They are designed for use as audio drivers.

ABSOLUTE MAXIMUM RATINGS

BC 125

BC 125 B

50V
5 V

60V
6 V

= 0)
= 0)

VeBo

Collector-base voltage (IE

VEBO

Emitter-base voltage (Ie

VeEo

Collector-emitter voltage (lB = 0)

Ie

Collector current

PtO!

Total power dissipation at

Tamb ~

25 °C

at

Tease ~

25 °C

30 V
0.5 A
0.3 W

Storage temperature

0.8 W
-55 to 125 0 C

Junction. temperature

125 0 C

MECHANICAL DATA

Dimensions in mm

x

5.1

6.1max

min

~ '-_1---:~-:..-:..:::__1_2---,7"= ~I
E

II

t==
F===I

M

00

III

=i:

II

"9-

P039-A

TO-39 epoxy

31

5/73

I

BC 125
BC 125B
THERMAL DATA
Rth
Rth

j-case
j-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

= 25°C

ELECTRICAL CHARACTERISTICS (T amb
Parameter
Icao

unless otherwise specified)

Test conditions

Collector cutoff
current (IE = 0)

Ic

VCEO(sUS)"Colleotor-emitter
sustaining voltage
(la == 0)

Ic

= 30mA

V(aR) EaoEmitter-base
breakdown voltage
(lc = 0)

Ic

= 10j.tA
for Be 125
for Be 125 B

VCE (sat)" Collector-emitter
saturation voltage

for Be 125
Ic = 150 mA
la = 15mA
for Be 125 B
Ic = 150 mA
la = 15mA
500mA
Ic
la = 50mA

=

= 300 j.tS,

0.5

109 nA
20 !J.A

0.5

100 nA
20 !J.A

= 10j.tA
for Be 125
for Be 125 B

" Pulsed: pulse duration

Min. Typ. Max. Unit

for BC 125
Vca = 20V
Vca = 20V T.mb = 75°C
for Be 125 B
Vca = 40V
Vca = 40V Tamb = 75°C

V(aR) caoColiector-base
breakdown voltage
(IE = 0)

125 °C/W
330 °C/W

duty factor
32

= 1%

50
60

V
V

30

V

5
6

V
V

0.2

2.5

V

0.15

0.25

V

0.4

0.8

V

BC 125
BC 125B
ELECTRICAL CHARACTERISTICS
Parameter

Base-emitter voltage

VBE

Base-emitter
saturation voltage

hFE *

Min. Typ. Max. Unit

Test conditions

VBE*
(sat)-

(continued)

DC current gain

fT

Transition frequency

CCBO

Collector-base
capacitance

Ic

= SOmA

for
Ic
IB
for
Ic
IB
Ic
IB

Be 125
= 150 mA
= 15mA

for
Ie
Ic
Ic
Ic

Be 125
= 1 mA
= 10 mA
= SOmA
= 150 mA

Ic
Ic
for
Ic
Ic
Ic
Ic

= 1 mA
=10mA
Be 125 B
= 1 mA
= 10 mA
= SOmA
= 150 mA

Be 125 B
= 150 mA
= 15mA
= 500 mA
= SOmA

VCE
VCE
VCE
VCE
VCE
VCE

=
=
=
=
=
=

1V
1V
1V
1V
10 V
10 V

Ic

VCE = 1V
VCE = 1V
VCE = 1V
VCE = 1V
= 500 mA VCE = 10V

Ic

= SOmA

VCE = 10 V

IE
f

=0
= 1 MHz

VCB = 10 V
for Be 125
for Be 125 B

* Pulsed: pulse duration

0.72

VCE = 1 V

300 J,l.S, duty factor

33

= 1%

30
30
25
30

45
40

1

1.3

V

0.87

1

V

1.1

1.3

V

-

50
70
75
60
55
75
85
100
95
80
70

200

V

350

6
5

-

-

-

-

120

MHz

12 pF
8 pF

I

Be 125 ..
'·,BC125B"
DC current gain (for BC 125 B only)

Typical output characteristics
(for BC 125 B only)
GS 0063

Ie

4.5mA

i// ~

250

.

J

50

2mA

,...

o iI'

o

1~A

60

I

40

VeE(sat )

........

\

I'\..

1/.....

r\

20

I

I

0.4

0.6

10

0.8 VeE (V)

Collector-emitter saturation voltage
0.5

"

0.5mA
IS= 0

0.2

0

V . . . .... ........"

80

1.5mA

'f//// V
'(J//
~

............ :.-. 100

2.5mA

fh'/~ V

100

120

3mA

1.'//V

15 6
J5 6
0

3.5mA

/1/ /'
'f/J . /

1'50

VCE=1V

4mA

h'/'

200

G

hFE

V

(mA)

GS

100 Ie {mAl

Power rating chart

on 65

GS 0066

I III

(W)

IC-10IS

(V)

V

0.1

0.05

0.3

"-

/
V

I'-.

0.2

It

"'-

~~~

~

0.1

0.01
0.1

q"

"- ~

o
10

25'

100 Ie {mAl

34

50

75

,

100 T~mb (OC)

Be 126
SILICON PLANAR PNP
AUDIO DRIVER
The BC 126 is a silicon planar epitaxial PNP transistor in a TO-39 epoxy package.
It is designed for audio driver applications. The complementary NPN type is the BC 125.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic

P tot

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tamb ~ 25°C
at Tease ~ 25°C

T stg
Tj

Storage temperature

V

-30
-5

V

-0.5

A

0.3

W
W

V

0.8
-55 to 125

°C

125

°C

Junction temperature

MECHANICAL DATA

-35

Dimensions in mm

.

x

'"

~ .-_+--6-,..1~m=a=X~_ _12---,7== ~
4
1===

E
C'"l

II

a:j
-e.

II

F=
P039-A

c
TO-39 epoxy
35

5/73

I

Be 126
THERMAL DATA
Rth j-case
Rth j-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

125 °C/W
330 °C/W

ELECTRICAL CHARACTERISTICS (T amb = 25 0 C unless otherwise specified)
Test conditions

Parameter
IC60

Col/ector cutoff
current (IE
0)

=

Min. Typ. Max. Unit

VC6
VC6

= -20V
= -20V

VC6R ) C60 Col/ector-base
breakdown voltage
(IE = 0)

Ic

= -10 JlA

-35

V

VC6R ) CEO Col/ector-emitter
breakdown voltage
(16 =0)

IC

= -10 mA

-30

V

VC6R ) E60 Emitter-base
breakdown voltage
(lc = 0)

IE

= -10 JlA

-5

V

Ic
16
Ic
16

= -50 mA
= -5mA

-0.25

V

= -150 mA
= -15 mA

-0.50

V

Ic

= -50mA VCE

-0.75

-1

V

Ic
16
Ic
16

:;;:
::;
=
=

-1

-1.3

V

Ic
Ic

-50mA VCE
-1 V
= -150 mA VCE = -1 V

Ic

= -50 mA VCE

= -20 V

IE
f

=0
1 MHz

= -10V

VCE (sat) Col/ector-emitter
saturation voltage

V6E

Base-emitter voltage

V6E Csatl Base-emitter
saturation voltage

hFE

DC current gain

fT

Transition frequency

CC60

Col/ector-base
capacitance

-100 nA
-20 p,A

Tamb = 75°C

= -1 V

-150 mA
-15 mA
-50mA
-5mA

-0.8

=

=

=

36

Ve6

30
30

80
60
200

5

V

-

120

MHz

pF

Be 132

SILICON PLANAR NPN
AUDIO AMPLIFIER

The BC 132 is a silicon planar NPN transistor in a TO-18 epoxy package. It is suitable
for low level audio stages and direct coupled circuits.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO

Collector-base voltage (IE

Ie

Collector current

P tot

Total power dissipation at Tamb

T stg
Tj

Storage temperature

Collector-emitter voltage
Emitter-base voltage

:=

0)

(lB :=

(lc :=

0)

6
~

20 rnA
0.2 W
0.5 W

25°C

at Tease ~ 25°C

-55 to 125

°C

125

°C

Junction temperature

MECHANICAL DATA

Dimensions in mm

2.54.

6.9max

10.2 min

~

~ ~l (r--=-~~
'l'

C

V
V
V

30
25

0)

__

B

P040-A

_

TO-18 epoxy

37

5/73

Be 132
THERMAL DATA
Rth i-case
Rth j-am~

ELECTRICAL CHARACTERISTICS

Collector cutoff
current (IE = O)

200

°C/W

500

°C/W

(T amb = 25°C unless otherwise specified)

Test conditions

Parameter
ICBO

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

VCB = 5 V
VCB = 5 V

Min. Typ. Max. Unit
100 nA
3 IJ.A

Tamb = 65°C

V(BR) cBoColiector-base
breakdown voltage
(IE = O)

Ic

= 100 itA

30

V

V(BR) CEQ Collector-emitter
breakdown voltage
(lB = O)

Ic

= 10mA

25

V

V(BR) EBOEmitter-base
breakdown voltage
(Ie = O)

IE

= 100 itA

6

V

Ic
IB

= 1 mA
=0.1 mA

Ic
Ie

= 50 itA
= 1 mA

VeE = 10 V
VeE = 10 V

IE

=0

VeB = 5 V

VCE (sat) Collector-emitter
saturation voltage

hFE
CCBO

DC current gain
Collector-base
capacitance

38

0.35

V

300

-

50
60
2.2

4 pF

Be 139
SILICON PLANAR PNP
AUDIO OUTPUT AMPLIFIER
The BC 139 is a silicon planar epitaxial PNP transistor in a TO-39 metal case. It is
particularly designed for use in audio output and driver stages. The complementary
NPN type is the BC 119.

ABSOLUTE MAXIMUM RATINGS

==

0)

Collector-emitter voltage (Ie

==

Vceo
VCEO
VEeo
Ie

Collector-base voltage (IE

P tot

Total power dissipation at Tamb

Emitter-base voltage (Ie
Collector current

Tstg

Storage temperature

Tj

Junction temperature

-40
-40

V
V

-5
-0.5

A

25°C

0.7

W

at Tease ~ 25°C

3
-55 to 200

==

0)

0)
~

200

MECHANICAL DATA

V

W

°C
°C

Dimensions in mm

(sim. to TO-39)

39

5/73

I

8C139
THERMAL DATA
Rto j-case
Rto j-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

58
250

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter

IcBO

Test conditions

Collector cutoff
current (IE
0)

=

VCB
VCB

= -30 V
= -30 V

Tamb

Min. Typ. Max. Unit

-100 nA
-'50 p.A

= 75°C

"

V(BR) cBoColiector-base
breakdown voltage
(IE
0)

Ic

= -10J.tA

-40

V

V(BR)CEO 'Collector-emitter
breakdown voltage
0)
(Is

Ic

= -10 mA

-40

V

V(BR) ESO Emitter-base_
breakdown voltage
(lc =0)

IE

= -10 J.tA

-5

V

Ic
IB
Ic
Is

= -300 mA

=

=

VCE (sat) Collector-emitter
saturation voltage

VSE

Base-emitter voltage

• Pulsed: pulse duration

= 300 J.tS,

= -30 mA
= -500mA
= -SOmA

=
=
=
=
=

-10 mA
Ic
VCE = -10V
-100 mA
Ic
VCE
-10V
-300 mA
Ic
VeE
-1 V
duty factor
40

= 1%

-0.45

-0.8

V

-1

V

-0.7

V

-0.77

V

-0.97

V

Be 139
ELECTRICAL CHARACTERISTICS

hFE

Parameter

.

(continued)

Min. Typ. Max. Unit

Test conditions
Ie = -10 rnA
VCE
-10V
-100 rnA
Ic
VCE
-10V
Ic =:: -150 rnA
VeE
-1 V
-300 rnA
Ie
VCE =:: -1 V

DC current gain

=
=

=

40

=

=

fT

Transition frequency

CCBO

Collector-base
capacitance

• Pulsed: pulse duration

Ic

=:: -50 rnA VCE =:: -10 V

IE
f

= 1 MHz

=::0

,>~ :::~
J

,.......l~

(mA)

4QO

11'- ~
JV _ -r:c~
-

r

300

'V

200

100

o

i-""'"

J/ V

f

,

1//V

o

13\\11'-

I-- ..-

2

45

-

35
200

MHz

pF

=1

%

(;:;

,

I J

....... I--

-

~

400

Ve ,

IV

-1 V

¥! /

~~J
.::;j,,'
"

I--I-I--

-

ou~,,,

i

1/

I--

300

-

4 \1)1'-

J / 1/
if/ /

200

I,! 2n'~

!J /
.-

3

-

DC transconductance
\l'

--r\"
r-

90

6

300 (.1s, duty factor

-

-

VCB =:: -10 V

Typical output characteristics
-Ie

20

90

-

o
4

h 'l

lOa

-VeE (V)

0.6

41

~~

~V
0.7

O.~

0.9

1.1 -V",IV)

Be 139
DC normalized current gain

Base-emitter voltage

GS 006

I I
Ic=-~O mA _

1

Vc,=-l V
0.8

"-

/'"

""",

.'" "

)'f"'"

0.8

o

25

50

~
~

1"r\\
.\
'\

NORMALIZATION
at
I
1,=-100 mA
V,,=-lOV

,/

hfE= 1

0.6

"

25 1,c

;;;;...;.

!;'V

/

'""

,d

"".

r-...

0.7

0.65

j"

~

0.75

45i

~

1.2

~

0.4
1,

'10

100

-I.e imA)

Power rating chart

Collector-emitter saturation voltage

Ir.~

Ptot

)0

1"'-'\

IW I
.25

"'- '\.It;.

.~'1"

1/

~~..~

1.5

/

~.

---

0.5

o
10

10'

-IC

B
TO.--18 epoxy

Supersedes issue dated 5/73

67

6/75

I

BC 207
B,C208
BC 209
THERMAL DATA
~

Rth i-case
Rth i-amb

ELECTRICAL CHARACTERISTICS
Parameter
ICBO

Collector cutoff
current (IE = 0)

VCB = 40V
VCB = 40V

Ic

V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

V(BR) ESO Emitter-base
breakdown voltage
(lc = 0)

Ic
Ic

DC current gain

Ic

j.lS,

50 nA
50 p.A

= 10 IlA
for BC 207
for BC 208-BC 209

50
25

V
V

= 10mA
for BC 207
for BC 208-BC 209

45
20

V
V

5

V

= 10mA Is

= 100 rnA IB

= 0.5 mA

BC 208
BC 208 Gr_ A
BC 208 Gr. B
BC 208 Gr. C
BC 209
BC 209 Gr. B
BC 209 Gr. C

duty factor = 1%.
68

0_25

= 5mA

=2mA
VCE = 5 V
for BC 207
for BC 207 Gr. A
for BC 207 Gr. B
for
for
for
for
for
for
for

• Pulsed: pulse duration = 300

°C/W

330 °C/W

Min. Typ. Max. Unit

Tamb= 65°C

IE ,=iOIlA

VCE Csat)* Collector-emitter
saturation voltage

200

(T amb = 25°C uniess otherwise specified)

Test conditions

VCBR) CBO Collector-base
breakdown voltage
(IE = 0)

hFE

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

0.6
110
110
200
110
110
200

V
V

-

230

450

180

220 450 -

290
350
180
290

420

520

200
200
420

350
290
520

800

-

220 450 800 800 450 800 -

BC 207
BC 208
BC 209
ELECTRICAL CHARACTERISTICS
Parameter
hFE

DC current gain

fT

Transition frequency

NF

Noise figure

(continued)

Test conditions
Ic

= 10 itA VCE = 5 V
for Be 207
for Be 207 Gr. A
for Be 207 Gr. B

40

for Be 208
for Be 208 Gr. A
for Be 208 Gr. B
for Be 208 Gr. C

40
100

120
90
150
120
90
150
270

for Be 209
for Be 209 Gr. B
for Be 209 Gr. C

70
40
100

210
150
270

-

200

MHz

VCE = 5 V
Ic

= 0.2 rnA

Rg = 2kn
B

CCBO

hie

Collector-base
capacitance

Input impedance

Min; Typ. Max. Unit

Ic

= 10mA

VCE = 5 V
f
= 1 kHz

= 200 Hz
for Be 207
for Be 208
for Be 209

-

2
2
1.5

10

dB

10 dB
4 dB

VCB = 10V

IE
f

=0
= 1 MHz

Ic
f

=2mA
VCE
5V
= 1 kHz
for Be 207
for Be 207 Gr. A
for Be 207 Gr. B

3.1

6 pF

=

kn
kn

for Be 208
for Be 208 Gr. A
for Be 208 Gr. B
for Be 208 Gr. C

4
3
4.8
5.5
3
4.8
7

kn
kn
kn

for Be 209
for Be 209 Gr. B
for Be 209 Gr. C

5.5
4.8
7

kn
kn
kn

69

kfl
kfl

I

Be 225

SILICON PLANAR PNP
AUDIO AMPLIFIER

The Be 225 is a silicon planar PNP transistor in a TO-18 epoxy package. Designed for
audio applications, it presents good current gain linearity from 10 ~A to 50 mAo

ABSOLUTE MAXIMUM RATINGS

= 0)
= 0)
(Ie = 0)

VeBo

Collector-base voltage (IE

-40

VeEo
VEBO

Collector-emitter voltage (IB

-40

Emitter-base voltage

Ie
Ptot

Collector current

T stg

Storage temperature

Tj

Junction temperature

V
V

-5
V
-100 mA
0.2 W

Total power dissipation at Tamb """ 25°C

W

0.5
-55 to 125

at Tease""" 25°C

°C
°C

125

MECHANICAL DATA

Dimensions in mm

2.54

6.9max

10.2 min

~

~ \1 tF§;i~~
'\;t

C

_

_

B

P040-A

,/''''

TO-18 epoxy
71

5/73

Be 225
THERMAL DATA
At"
At"

j-case
j-amb

ELECTRICAL CHARACTERISTICS
Parameter
Collector cutoff
current (IE = 0)

ICBO

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

200

soo

°C/W
°C/W

(T amb = 2S °C unless otherwise specified)

Test conditions

Min. Typ. Max. Unit

VCB = -30V

-100

nA

V(BR) cBoColiector-base
breakdown voltage
(IE = 0)

'c

= -10 itA

-40

V

V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

= -SmA

-40

V

V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)

IE

= -10 itA

Ic
'B
Ic
'B

=
=
=
=

Ic

= -1 mA

'c
'c
Ic
'c
Ic

=
=
=
=
=

Ic

= -1 mA

VCE = -S V

'E
f

=0
= 1 MHz

VCB = -S V

Ic
Ag
B
Ic
Ag
B

=
=
=
=

VCE

(sat)

Collector-emitter
saturation voltage

VBE

Base-emitter voltage

hFE

DC current gain

fT

Transition frequency

CCBO

Collector-base
capacitance

NF

Noise figure

-S

-10 mA
-O.S mA
-SO mA
-S mA

-10 itA
-100 itA
-1 mA
-10 mA
-SO mA

V

-0.1

VCE = -S V
VCE = -S V
VCE = -S V
VCE=-SV
VCE = -S V
VCE = -S V

-20 itA VCE = -S V
10kfl f
= 1 kHz
200 Hz
-0.2S mA VCE = -S V
f
= 1 kHz
1 kfl
= 200 Hz

90
90
90

-0.2S

V

-0.16

V

-0.6S

V

130
1SS
170
16S
140
70

-

-

MHz

4

pF

1

dB

1

dB

=

72

BC 297
BC 298

SILICON PLANAR PNP
AUDIO DRIVERS OR OUTPUT STAGES

The BC 297 and BC 298 are silicon planar epitaxial PNP transistors in TO-18
metal case. They are particularly intended for use in high current high gain applications, in driver stages of hi-fi equipments or in output stages of low power class B
amplifiers.
The complementary NPN types are the BC 377 and BC 378, respectively.

ABSOLUTE MAXIMUM RATINGS

=

VCEO

Collector-emitter voltage (V BE
0)
Collector-emitter voltage (lB ::;: 0)

V EBO

Emitter-base voltage (Ie

IE

Emitter current

Ic

IB

Collector current
Base current

P tot

Total power dissipation at Tamb

VCES

BC297

BC298

-50 V

-30 V
-25 V

-45 V

= 0)

-5 V
1.2 A
-1 A

at

~

25 °C

Tease ~

75 °C

Storage temperature
Junction temperature

MECHANICAL DATA

-0.2 A
375 mW
1W
-65 to 175 °C
175 °C

I

Dimensions in mm

(sim. to 10-18)
Supersedes issue dated 9/70

73

5/73

BC 297
BC 298
THERMAL DATA
Rth
Rth

j-case
j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

max
max

100 °C/W
400 °C/W

ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
• Test conditions

Parameter
ICES

Collector cutoff
current (VBE = 0)

for Be 297
for Be 298

VCBR ) CEQColiector-emitter
breakdown voltage
(lB = 0)

Ic

VCBRl EBO Emitter-base
breakdown voltage
(lc = 0)
VCE (sat) Collector-emitter
saturation voltage
VBE

Base-emitter voltage'

VBE (sat) Base-emitter
saturation voltage
hF~

DC current gain

Gr. 6
Gr. 7

Min • Typ. Max. Unit

.vCE =

-100 nA
-100 nA

-50 V
VCE = -30 V

= -10 mA for Be 297
for Be 298

-45
-25

V
V

-5

V

IE

= -10 !LA

Ic
IB

== -500 mA
== -50 mA

Ic

= -100 mA VCE == -1 V

Ic
IB

== -500 mA
== -50 mA

-1.2

Ic
Ic

= -100 mA VCE == -1 V 75
== -100 mA VeE == -1 V 125

150
260

Ic

= -300 mA VCE == -1 V

-0.7
-770

V
mV

V

-

-

30

-

hFE1/hFE2

Matched pair ratio

Ic

= -100 mA VCE = -1 V

fT

Transition frequency

Ic

= -50 mA VCE == -10 V

CCBO

Collector-base
capacitance

IE

=0

VCB == -10 V

8

pF

CEBO

Emitter-base
capacitance

Ic

==0

VEB = -0.5 V

30

pF

74

1.41
250

MHz

i

BC 297
BC 298

700

is16

750

~

"'I v

L
500

e-

400
60
300

e-

4
40

I-

200
2-

e-

1

e-

l,..-

20

100
-I B c50 A

-I -0.5mA
Bill

o

Ii

I,"li.1

600

so

6
l-

250

I-

S

I-

V

500

(mAl

14
12
10

V

I'

Typical output characteristics

Typical output characteristics

(mA I

'1:',

1

0.5

1.0

l5

o

-VeE (VI

DC transconductance

0.5

lO

1.5

-VeE (VI

DC normalized current gain

1

1 0 ' m• • • • •

100 _

__

1.0

1.5

-VBE (V)

75

BC 297
BC 298
Collector-emitter saturation voltage

Typical transition frequency
<>-

IT

,

(MHz )
6

hFE =10

10°

4

11

-VCE =10V

/

,
TYP

1

V

./

10'

vi-'

B

b--

6

,

4

,

e3

10 '

la'

10

-Ic (mAl

1200 H-++-H-++-H-+-+-+---1-+-+-+-H-+--I

50

100

150

4

10-'

Power rating chart

a

_0_-

......

T l'C)

76

6 B

4

6 B

4

10

6 B

-lc(mA)

Be 300
BC 301
BC 302

SILICON PLANARNPN
MEDIUM POWER AUDIO DRIVERS

The BC 300, BC 301 and BC 302 are silicon planar epitaxial NPN transistors in
TO-39 metal case. They are intended for audio driver stages in commercial and
industrial equipments. In addition they are useful as high speed saturated switches and
general purpose amplifiers. The PNP types complementary to BC 301 and BC 302
are respectively the BC 303 and BC 304.

IBe 300 IBe 301 IBe 302

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VCEV
VEBO

=

Collector-base voltage (IE
0)
Collector-emitter voltage (Is
0)
Collector-emitter voltage (VBE = -1.5 V)
Emitter-base voltage (lc

=

= 0)

Ic

Collector current

ICM
IBM

Collector peak current
Base peak current
Total power dissipation at Tamb

P tot

80 V

60 V

120 V

90 V
-"
7 V

45 V
V
-

--

0.5 A
1 A
0.5 A
~

25°C

at Tease ~ 25°C
Tst9
TJ

'illrili

Storage temperature

6W
-65 to 175°C

Junction temperature

175°C

MECHANICAL DATA

I

0.85 W

Dimensions in mm

(sim. to TO-39)

77

5/73

Be 300
Be 301
BC302
THERMAL DATA
Rth
Rth

j-ease
j-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

25
175

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (Tease = 25 C unless otherwise specified)
0

Parameter
leBo
lEBO

Test conditions

Collector cutoff
current (IE = 0)

VeB = 60V

Emitter cutoff
current (Ie = 0)

VEB = 7V

VeEOCsus) *Collector-emitter
voltage (Is = 0)

Ie

5

Ie

Ie

= 150 mA

VSE

Base-emitter voltage

Ie

= 150mA VeE = 10V

hFE

DC current gain

Ie
Ie
Ie

= 150 mA VeE = 10V
= 150 mA VeE = 10V
= 150mA VeE = 10V

Ie
Ie

= 0.1 mA

Gr. 4
Gr. 5
Gr. 6

80
60
45

V
V
V

120
90

V
V

= 100 mA VSE = -1.5 V

Collector-emitter
saturation voltage

(sat)

nA

= 100mA

for Be 300
for Be 301
VeE

20

20 nA

for Be 300
for Be 301
for Be 302
VeEvcsus)*Collector-emitter
voltage

Min. Typ. Max. Unit

Is

= 15mA

VeE = 10V
= 500mA VeE = 10V

0.2

0.5

V

0.78
40
70
120

80
140
240

20
20

V

-

fr

Transition frequency

Ie

= 10mA

VeE = 10V

120

MHz

Ceso

Collector-base
capacitance

IE

=0

Ves= 10 V

10

pF

Ie
f

= 5mA
= 1 kHz

VeE =10V
1.1

kg

hie

Input impedance

* Pulsed; pulse duration

= 300 IlS,

duty factor
78

= 1.5%

Be 300
BC 301
BC 302
ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

Reverse voltage ratio

h re

Small signal
current gain

hie

Output admittance

hoe

Ic
f

= SmA
= 1 kHz

VCE = 10 V

Ic
f

=SmA
= 1 kHz

VCE = 10V

Ic
f

= SmA
= 1 kHz

VCE = 10V

Typical output characteristics
Ie
(rnA)

400

-

140

-

14

J,tS

G 0237

Ie

5

(mAl

4

.....

1.7x10.4

DC transconductance
G·0231i

6
1/

Min. Typ. Max. Unit

I
3

300

2

VeE = 10 V

I

10'

t-

200

TYP.

1

10'

1.=0.5mA

100

I

o

5

10

15

0.5

VeE tV)

79

1.0

1.5

VBE (V)

I

Be 300
BC 301
BC 302

Collector-emitter saturation voltage

DC normalized current gain
G_0238

N

H

--

-- -

r---

--.

f--

-- -

--

TYP.

1001--- --

-

vc£= 10V

1

---

V

V, =lV

10'R§1tII1II

10'

10'

10°

Ie (mAl

Collector-emitter breakdown voltage
(for Be 300 only)

Collector cutoff current

-"

leBO

VeER ,-""rrm-TO"-rrmrr-rTTTTTIlT--'-'-;";:;':':',;
(V)

(nAl
VeB 60 V --

,/

10'

160

-

140

/

10'

120

+-

-++1+I+li+-++++++f11-....+-++l++11+-+44~~~++~tt--p~+H*~-1-i

100

10'

/

80

=

60

MAX

10'

-

++-+++++IJ---jH+++++I+-+-+f'I"I.il~·---+

,/

i-

1_';:_'
,I::i
+1";

1---I--I--i+H+II-H++Hi++-I-+++++4+-i--+ t I ,~~

"11:'

40

TYP
20

10°

1

o

5Q

100

150

a

T; ('e)

80

la'

la'

10'

104

ZB'

(n)

Be 300
BC 301
BC 302

Transition frequency

Power rating chart

- r-

f-- -+-++-+-+-++1--++-1-+++--1

50

81

lOa

150

T (Ge)

BC 303
BC 304

SILICON PLANAR PNP
MEDIUM POWER AUDIO DRIVERS

The BC 303 and BC 304 are silicon planar epitaxial PNP transistors in TO-39
metal case. They are intended particularly as audio driver 5tages in commercial and
professional equipments. In addition they are useful as high speed saturated switches
and general purpose amplifiers. The complementary NPN types are respectively the
BC 301 and BC 302.

ABSOLUTE MAXIMUM RATINGS

BC303

BC304

VCBC'J

Collector-base vOltage (IF

-85 V

-60 V

VCEO

Collector-emitter voltage (Ip, = 0)

-60 V

-45 V

VCEV

Collector-emitter voltage (VBE = 1.5 V)

-85

=.,

0)

V EBO

Emitter-base voltage (Ie .'" 0)

Ie

Collector current

V
-7 V
-0.5 A
-1 A

ICM

Collector peak current

ISM

Base peak current

-0.5 A

Pro!

Total power dissipation at Tamb ==' 25 QC

0.85 W

Storage temperature

6W
-65 to 175 nC

Junction temperature

175 oC

at Tease"'" 2'5 °C

Dimensions in mm

MECHANICAL DATA

(sim. to TO-39)

83

5/73

BC 303
BC 304
THERMAL DATA
Rth

j-case

Rth j-amb

Thermal resistance junction-case

max

Thermal resistance junction-ambient

max

ELECTRICAL CHARACTERISTICS

leBo
lEBO

(Tcase = 25°C unless otherwise specified)

Test conditions

Parameter
Collector cutoff
current (IE = 0)

VCB = -60 V

Emitter cutoff
current (Ic = 0)

VEB = -5 V

VCEO(susl*Coliector-emitter
voltage (lB = 0)

Ic

25 °C/W
175 °C/W

Min. Typ. Max. Unit

-5

-20 nA
-20 nA

= -100 mA
for Be 303 -60
for Be 304 -45

VCEV(susl*Coliector-emitter voltage
(for Be 303 only)
Ie
VCE (sat) Collector-emitter
saturation voltage

Ic
IB

VBE

Base-emitter voltage

Ic

hFE

DC current gain

Ic
Ic
Ic

Gr. 4
Gr. 5
Gr. 6

Ic
Ic

= -100 mA VBE = 1.5 V

= -150 mA
= -15 mA
= -150 mA VCE = -10 V
= -150 mA VeE = -10 V
= -150 mA VCE = -10 V
= -150 mA VCE = -10 V
= 0.1 mA VCE = -10 V
= -500 mA VCE = -10 V

V
V

-85

V

-0.25 -0.65

V

-0.78

V

40
70
120

80
140
240

20
20

-

-

fT

Transition frequency

Ie

= -10 mA

VCE

= -10V

75

MHz

CCBO

Collector-base
capacitance

IE

=0

VcB =-10V

15

pF

Ie
f

= -SmA
= 1 kHz

VeE = -10V
0.9

kQ

hie

Input impedance

* Pulsed: pulse duration

= 300 JlS,

duty factor = 1.5%
84

BC 303
BC 304
ELECTRICAL CHARACTERISTICS

hie

Reverse voltage ratio
Small signal
current gain
Output admittance

hoe

Ie
f

= -5mA
= 1 kHz

VeE

Ie
f

= -5mA
= 1 kHz
= -5 rnA
= 1 kHz

VeE

Ie
f

Typical output characteristics

400

/

VeE

----

= -10V
1.7x10-4

-

140

-

45

!-IS

= -10 V
= -10V

DC transconductance

I

_

I/~

Min. Typ. Max. Unit

Test conditions

Parameter
h re

(continued)

t-+-+-t-+-'-t-+-+-I

300 t-+-llHH-:;j,.-1'""I=t-+-H-f-+-+-+-+-j--L+

TYP.

~ -~~+4~+-~4-~~+4~+-~

-

a

5

10

15

-VeE

-~~-+-~~+-+-+~~-+-t-+~+-+

10° L-L-"--'---'-LJ-L..L--'--L-L---.L..L...l-L...L-L..L--'--.J
a
0.5
1.0
1.5
-VBE (V)

(V)

85

BC303
BC 304
Collector-emitter saturation voltage

DC normalized current gain

~
-1--

G·""

'VCE(sat )

I

m

-

hF• =10V

la'

TYP.

-Vcc= 10 V

./

TYP.

10'

10°
--

-

r-

10'
-Vcc= 1V

II
10'

10 '

la'

10 '

-Ic (mAl

-lc1mA)

Transition frequency

Collector cutoff current
G 0246

G~1I247

h

(nAI

(MHz)

-YcB=60V

-'

I

i!

VCE =10V

/

10'

TYP.

10'

III

I

I!

Ii

i

/

10'

7.
MAX.

10 1

/

/

TYP.
10°

o

I I

I
50

100

I

i

I

I
150

la'

Tj (·C)

86

la'

-Ic (mAl

BC 377
BC 378

SILICON PLANAR NPN
AUDIO DRIVERS OR OUTPUT STAGES

The BC 377 and BC 378 are silicon planar epitaxial NPN transistors in TO-18
metal case. They are particularly intended for use in high current, high gain
applications, in driver stages of hi-fi equipments or in output stages of low power
class B amplifiers. The complementary PNP types are the BC 297 and _BC 298,
respectively.

ABSOLUTE MAXIMUM RATINGS

= 0)
= 0)

VCES

Collector-emitter voltage (VEB

VCEO
VEBO

Collector-emitter voltage (lB

= 0)

BC377

BC378

50V
45V

30V
25V
6 V
-1.2 A

IE

Emitter-base voltage (lc
Emitter current

Ic

Collector current

'B
p.o.

Base current
Total power dissipation at Tomb ~ 25 °C

Tstg
Tj

Storage temperature

-65 to 175 °C

Junction temperature

175°C

1 A

at Teose ~ 75 °C

MECHANICAL DATA

0.2 A
375 mW
1 W

Dimensions in mm

(sim. to TO-18)
Supersedes issue dated 9/70

87

5/73

BC '377
BC 378
THERMAL DATA
Rth
Rth

j-ease
j-amb

ELECTRICAL CHARACTERISTICS

Collector cutoff
current (VSE = 0)

for
for

Be 377
Be 378

VCSR) ESO Emitter-base
breakdown voltage
(lc = 0)

IE

= 10 itA

VCSR) CEO Collector-emitter
breakdown voltage
(Is = 0)

Ic

= 2mA

VCE

(sat)

Base-emitter voltage

VSE
VSE

Collector-emitter
saturation voltage

(sat)

hFE

Base-emitter
saturation voltage
DC current gain

Gr. 6
Gr. 7

100 °C/W
400 °C/W

(Tease = 25°C unless otherwise specified)

Test conditions

Parameter
ICES

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

Min. Typ. Max. Unit
15 nA
15 nA

VCE = 50V
VCE = 30V

for Be 377
for Be 378

6

V

45

V
V

25

Ie
Is

= 500 rnA
= SOmA

Ie

= 100 rnA VeE =1V

Ic
Is

= 500 rnA
= SOmA

Ie
Ie

= 100 rnA VeE =1V
= 100 rnA VeE =1V

75
125

Ie

= 300 rnA VeE =1V

40

0.7
740

V
mV

1.2
150
260

V

-

hFE,/hFEZ

Matched pair ratio

Ic

= 100 rnA VeE =1V

fT

Transition frequency

Ie

= SOmA VeE = 10V

300

CCBO

COllector-base
capacitance

IE

=0

VCB = 10V

8

pF

Emitter-base
capacitance

Ic

=0

VEB = 0.5 V

30

pF

CESO

88

1.41

MHz

BC 377
BC 378
Typical output characteristics

Ie

G-0355

I(mAII- -

750

It<
rTl7

40j...-

b V 1-

]

30

20

j..-

.-

._,- _

F

rJl/l/
17

-

75

I-

1-

-

400 l-

i---

-

l300

rr

4
50

I-

2

-

~

-

--

100

Is =O.5mA

I.-50)JA

I

l10

200

rr

25

1

l=-I- -.- -

I- -

-

171--J",

17 12

.-

I-

f/

I-

1--

_..

600

I/V

-

G-0J56

1tt· ...., .Htt
,11 o

70

(mA I

B

500

250

I-

16_
12

J...:

F

p

f7

Q-I-

Typical output characteristics

15

II

o

VeE (V)

DC transconductance

0.5

1.0

1.5

DC normalized current gain
G-0J58

Ie~mIfI.

ImAI~

TYP
10 0

5

VeE =IV

I-

IIII

10-' LL---"---'---LL--'-..LJ---'-...LL.l-L.l-L.L---'---'-LJ
o
0.5
1.0
1.5

10-1

89

10 0

10'

10'

Ie (mAl

I

BC377
BC 378
Transition frequency

Collector-emitter saturation voltage

0-_

VCE(sa.t)

(mV )
hFE= 10

10'

TYP.
TVP

10'

V

-

10'

10°

10-'

.10°

la'

la'

Ie (mAl

Power rating chart

1600

H+-+-H++H-++-J-,I--+++--H-+-1

1200 H-+++--H-+++--H-+-++--t--1H-+-H

800 H-++--H-+-I-H",:&

~

"
"
" "- "" " " ",'""
:-....
"-

"'-

......

........

~

........ I........

VeE~-5V

0.1

f ~ 1 kHz
B '" 200 Hz

0.001

109

.?:~

~i&~ ~
.....

'\

......

I'-~ ........

-Ie ImA)

odB

0.1

"~ , "I'-

4dB_

J

GS 0017

..........

~

I

LI

4dB ~

0.01

~ r"

o~ t-- f-.+= 5dB
0.1

2dB

r--....

1 kHz

~

./

3dB
~

0.01

10

2dB

"'.:"

5V
V~E
f ~ 1 kHz
B~200 Hz

0.001

IdB

r--r--

"-

\

......

"

.......

';.s;'

'\ 1\ ~'\

~

ldB

~ ~ .......

Ikll ) , .

,o.~

.......

~ "'-'" .......

Rg

~J%>

'\ 1\ ,'\
~ \ \.\

I'-

Noise figure (for
GS 0016

.....

1,\

i'..

0.001

Be 478 only)

'

Rg

Ie ImA)

100

~

~

" " '~~

,,~

.......

VeE~-5V

V

o

~~

.........:

J

40

"-

"
"
"

1\
\,

V

80

0.1

"~

\

/

120

10

GS 0015

"-

160

Be 477 only)

~

I'-

" i'--.......

2dB

~~ '.5 'B'
I""-

d

0.01

\

~~

0,1

/
3dB

~dB
-Ie (rnA)

--BC 477-BC478

-·BC479
Noise figure (for BC 479 only)

Noise figure (for BC 479 only)
Rg
(kll)

GS 0018

VeE~~ t
f~

10 Hz to 10 Hz'

..........

B ~ lS.7 kHz

10

i'-...

........

r--....
.........

["0...

r--I'-.,.
......r-'-.......... I'..... r--..
................ i'-...

i'-...'
6 B

......

.-

["., r-...

'"
-

r\

i\

~"'

1', "
\

r---

2dB

,...
,~~
r-

./

_

4dB

a

-Ie (rnA)

0.1

10

I'\.

'\

'\.
0.8

-.

~~
",,1-,.(\

~/;-

0.6

0.4

-

'-...J

o

~~~"'1
'\?J:,~

-

'f-

.t.f!.t.f2 AIR
.....

0.2

o

50

'\.
...........

"

'"""'-oi~
100

1\

ldB ::;;

GS 0020

(W)

1\

4

)

Power rating chart
Ptot

Rg~2KII

Ie ~-200 p.A

'\

1/

1dB

..........

0.01

vIUIs'v

8

~~6'

..........

III

(dB)

~

......

S 0019

NF

................. ~' ~6'

r-.....

150 T. mb ('C)

110

10 2

10'

10'

10'

f (Hz)

BF155

SILICON PLANAR NPN
UHF AMPLIFIER AND MIXER-OSCILLATOR

The SF 155 is a silicon planar NPN transistor in a TO-72 metal case. It is specifically
designed for UHF amplifier and mixer-oscillator applications up to 900 MHz.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO

= 0)
= 0)
=

Collector-base voltage (IE

40

Ie

Collector-emitter voltage (IB
Emitter-base voltage (Ie
0)
Collector current

Ptot

Total power dissipation at Tamb "'" 25°C

Tstg
Tj

Storage temperature
Junction temperature

at

Tease"'"

25 °C

MECHANICAL DATA

Supersedes issue dated 4/73

V

40
V
3
V
20 mA
200 mW
300 mW
-55 to 200 °C
200°C

Dimensions in mm

111

6/75

I

THERMAL DATA
Rth j-cas.
Rth j-amb

ELECTRICAL CHARACTERISTICS
Parameter
ICBO

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

(Tamb

= 25°C

=

°C/W
°C/W

unless otherwise specified)

Test conditions

Collector cutoff
current (IE
0)

580
875

Min. Typ. Max. Unit

VCB

= 10 V

V (BR) CBO Collector-base
breakdown voltage
(IE
0)

Ic

= 100 (.l.A

40

V

V(BR)CEO 'Collector-emitter
breakdown voltage
(lB
0)

Ic

= 5mA

40

V

V (BR) EBO Emitter-base
breakdowfl voltage
(lc
0)

IE

3

V

V BE

Base-emitter voltage

Ic

hFE *

DC current gain

Ic

fT

Transition frequency

Ic

-Cr.

Reverse
capacitance

=

=

=

NF

Noise figure

G pb

Power gain

f max

* Pulsed: pulse duration

= 12V
VCE = 12V
VCE = 12V

Ic
f

Ic

= 2.5 rnA

Ic
Rg
f

300 (.l.s; duty factor

112

0.85

VCE

= 2.5 rnA VCE = 12 V
= 1 MHz
= 2.5 mA VCB = 12 V
= 50n
= 800 MHz
= 2.5 rnA VCB = 12 V
= 800 MHz

Ic
f

Maximum oscillation
frequency

= 100 (.l.A
= 2.5 mA
= 2.5 rnA
= 2.5 rnA

100 nA

VCB

= 12V

1%.

V

-

20

70

400

600

MHz

0.4

pF

7

9 dB

10

dB

2.5

GHz

8

Typical output characteristics

Typical DC current gain
(pulsed)

G-16B7
IC

G-16BB

(rnA)

B

'#

i 'L

6

r; /"
~

4

~V

rO.lmA

----=

O.OB rnA
60

./
40

0.04 rnA

/"

l

Ib =0

4

8

/"

",,'"

1

2S'C

"....

.......

O'C

\
r'\~
1\

o
10- 1

12

10

Typical input admittance

Typical transition frequency

G-1690

G-1669

VCE =12 V

~

I

400

J

f--

......

\

30

V

IC

~

"'

= 2.5 rnA

r-.
-.....

/

--

.........

..........

20

V

I

VCB =12 V

II

200

r-----

20

0.02 rnA

2

o

~

/'

0.06 rnA f==
'===

- 1"i-

~amb=6S'C I

: /~

BO

~

~

-

I

VCE = 12 V

0.14my r-" 0.12 rnA

"t-... .........

-bib

1-.........
9ib

r--.... ......

10

~

I""'-- .........

I'

o

o

300

10

113

400

500

600

700

f (104Hz)

I

Typical output admittance

Typical forward transadmittance
G-1691

Yob
(mS)

= 12 V
Ie = 2.5 mA

Vee

!---

(mS)

40
30

~
...... .....

.,.......

-

bob

--

~

Yfb

~

---

---

G-1692
VeB =12V
Ie = 2.5mA

'~
/'" ~

20
10

o

V

-10

J

/

/

/Qfb

I-

.......

'"

300

400

500

600

100

300

f (MHz)

400

500

600

700

G-1693

G-1694

Vee =12 V

Ie =2.5 mA

Ie = 2.5mA

-brb

"" ""

......

...... -;;;;

.....

./

0.5

./

-,/

-Qrb

./

o

/'

300

500

600

700

\

0.8

_......

\

0.6
0.4

~

400

f (101Hz)

Typical reverse capacitance

Typical reverse transadmittance

(mS)

~

-20

10- 1

Yrb

~
"""

0.2

"-

o
o

f (MHz)'

114

5

10

15

20

BF 158

SILICON PLANAR NPN
IF AMPLIFIER FOR TV

The BF 158 is a silicon planar NPN transistor in a TO-18 epoxy package. It is designed
for use as IF amplifier in TV receiver.

ABSOLUTE MAXIMUM RATINGS

= 0)

VCBO

Collector-base voltage (IE

VCEO
VEBO

Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)

P,o,
TS'g

Storage temperature

Tj

Junction temperature

V

30
12

V

2

V

Total power dissipation at Tamb ~ 25°C

0.2

W

at Tease ~ 25°C

0.5
-55 to 125

°C

125

°C

MECHANICAL DATA

Dimensions in mm

~~:4,.
.(0

'"

.

C

W

\1

B
10-18 epox~
115

5/73

BF 158
THERMAL DATA
Rth j.case
Rth j.amb

Thermal resistance junction-case
Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS (Tomb

Collector cutoff
current (IE
0)

=

200

°C/W

max

soo

°C/W

unless otherwise specified)

Test conditions

Parameter
Icso

= 2S °C

max

Min. Typ. Max. Unit

Vcs

= 1S V

V(SR) CBO Collector-base
breakdown voltage
(IE = 0)

Ic

= 100 ~A

30

V

VCEO (sus)Coliector-emitter
sustaining voltage
(Is
0)

Ic

= 3mA

12

V

V(SR) ESO Emitter-base
breakdown voltage
(Ic = 0)

IE

= 100 ~A

2

V

VCE (sat) Collector-emitter
saturation voltage

Ic

= 10mA

Is
VeE

=

100 nA

= 1 rnA

hFE

DC current gain

Ie

= 4mA

fT

Transition frequency

Ic

= SmA

-C re

Reverse capacitance

Ic

NF

Noise figure

Ic
Rg
f

= SmA
= 4mA
= 400.0
= 40 MHz

Ie
f

=SmA
VCE
40 MHz

= 10V

Ic
f

VCE

= 10V

G oe
gee

Power gain
Output conductance

=
= SmA
= 40 MHz

116

= 10V
VCE = 10V

O.S
20

= 10V
VCE = 10V
VCE

22

V

SO

-

700

MHz

0.8

1.2 pF

3.S

dB

26

dB

0.2

0.3 mS

BF160
SILICON PLANAR NPN
IF AMPLIFIER FOR AM/FM RADIOS
The SF 160 is a silicon planar NPN transistor in a TO-18 epoxy package. It is designed
for intermediate frequency (5.5 MHz TV - 10.7 MHz FM) and for general AM-FM
applications.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
P tot

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB
0)
Emitter-base voltage (lc = 0)
Total power dissipation at Tamb ~ 25 °C

=

at

Tease ~

25 °C

Storage temperature
Junction temperature

30

V

12

V

2
V
200 mW
500 mW

-55 to 125
125

MECHANICAL DATA

°C
°C

Dimensions in mm

~'~

~
C

B

TO-18 epoxy
117

4/73

BF160
THERMAL DATA
Rth j-case
Rth j-amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

200
500

°C/W
°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter

leBo

Test conditions

Col/ector cutoff
current (IE = 0)

VCB = 15 V
'JCB = 15 V

Min. Typ. Max. Unit

100 nA
5 ~A

Tamb = 65°C

V(BR) cBoCol/ector-base
breakdown voltage
(IE = 0)

Ic

= 1OOl-l-A

30

V

V(BR)CEO 'Col/ector-emitter
breakdown voltage
(lB = 0)

Ic

=3mA

12

V

V(BR) EBOEmitter-base
breakdown voltage
(lc = 0)

IE

= 100l-l-A

2

V

Ic

= 3mA

.

hFE

DC current gain

fT

Transition frequency

Ic

= 3mA

VCE = 10V

-C re

Reverse capacitance

Ic

=3mA

VCE = 10V

Gpe

Power gain

Ic
f

=3mA
VCE = 8 V
= 10.7 MHz

• Pulsed: pulse duration
:.

= 300 :IJ.S,

VCE = 10V

duty factor = 1%.

;-

118

20
400

28

50
600

MHz

0.8

1.2 pF

32

dB

BF 161

SILICON PLANAR NPN
UHF AMPLIFIER, OSCILLATOR AND MIXER

The SF 161 is a silicon planar NPN transistor in a TO-72 metal case, intended for
UHF tuner applications.

ABSOLUTE MAXIMUM RATINGS

P tot

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc
0)
Collector current
Total power dissipation at Tamb :::: 25°C

Tstg
Tj

Storage temperature
Junction temperature

VCBO

VCEO
VEBO
Ic

=

at Tcase::::25°C

MECHANICAL DATA

V
V
V

50
50

4

20 rnA
175 mW
260 mW
-55 to 175 °C
175°C

Dimensions in mm

(sim. to TO-72)

119

5/73

I

BF 161
THERMAL DATA
Rth

j-cas.

ELECTRICAL CHARACTERISTICS
Parameter
ICBO

Collector cutoff
current (IE = 0)

V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
VCEO

max

Thermal resistance junction-case

580

°C/W

(T amb = 25 pC unless otherwise specified)

Test conditions

Min. Typ. Max. Unit

VCB = 10 V

100 nA

Ic = 50llA

50

V

(sus) Collector-emitter

sustaining voltage
(lB = 0)

Ic

=5mA

50

V

V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)

IE

= 50llA

5

V

VBE

Base-emitter voltage

Ic

= 3mA

VCE = 24 V

hFE

DC current gain

Ic

=3mA

VCE = 10V

20

60

fr

Transition frequency

Ic

VCE

= 10V

400

550

-Cr.

Reverse capacitance

Ic
f

= 3mA
= 3mA
= 1 MHz

NF

Noise figure

Ic
f

= 1_5mA VCB
= 800 MHz

= 24 V

Ic
f

= 1.5 rnA

= 24 V

G pb

Power gain
Collector current
for ..6.G pb
30 dB

=

0.74

V

MHz

VCE = 10V
0.3

0.45 pF

6.5

dB

= 800 MHz

12

dB

Vcc = 12 V
f
= 800 MHz

8

rnA

120

VCB

I

BF 166

SILICON PLANAR NPN

HIGH FREQUENCY GENERAL PURPOSE AMPLIFIER
The BF 166 is a silicon planar NPN transistor in a TO-72 metal case. It is designed.
to be used as a gain-controlled VHF amplifier.

ABSOLUTE MAXIMUM RATINGS

=

P tot

Collector-base voltage (IE
0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ie = 0)
Total power dissipation at Tamb ~ 25°C

T stg

Storage temperature

Tj

Junction temperature

V CBO
V CEO

VEBO

at Tease ~ 25°C

40

V

40

V

3

V

175 mW
260 mW

-55 to 175°C
175°C

MECHANICAL DATA

Dimensions in mm

(sim. to TO-72)
121

5/73

BF 166
THERMAL DATA
Rth jocose

ELECTRICAL CHARACTERISTICS

(Tomb

= 2S °C

Collector cutoff
current (IE
0)

=

S80

°C/W

unless otherwise specified)

Test conditions

Parameter
ICBO

max

Thermal resistance junction-case

Min. Typ. Max. Unit

VCB = 10V

100

nA

V(BR) CBO Collector-base
breakdown voltage
(IE = 0)

Ic

= 1oo!J.A

40

V

VCEO (sus)Coliector-emitter
sustaining voltage
(Is = 0)

Ic

= 1 mA

40

V

VISR) ESO Emitter-base
breakdown voltage
(lc = 0)

IE

= 10!J.A

3

V

.
.

VSE

Base-emitter voltage

Ic

= 2_S mA VCE = 12 V

hFE

DC current gain

Ic

= 2.SmA VCE = 12 V

fT

Transition frequency

Ic

= 3mA

-C re

Reverse capacitance

Ic

= 2_SmA VCE = 12 V

NF

Noise figure

Ic
Rg
f

= Son

Ic
f

= 3mA
VCE = 10V
= 200 MHz

Gpe

Power gain (neutralized)

Ie (AGC) Collector current
for dG pb = 30 dB

• Pulsed: pulse duration

= 300 llS,

VCE = 12 V

0.9
20

SO

400

SOO

V

MHz

0.4

0.6 pF

3

S dB

18

dB

= 2.S mA VCE = 12 V

= 200 MHz

Vcc = 12V
f
= 200 MHz
duty factor = 1 %

122

16

14 mA

BF167

SILICON PLANAR NPN
TV AGC IF AMPLIFIER

The SF 167 is a silicon planar NPN transistor in a TO-72 metal case. It is particularly
designed for use in forward AGe IF amplifiers of TV receivers. It is characterized by
very low feedback capacitance due to a screening diffusion under the base pad.

ABSOLUTE MAXIMUM RATINGS
V CES

Collector-emitter voltage (VeE = 0)

VCEO

Collector-emitter voltage (Ie = 0)

VEeo
Ic

P tot
T stg
Tj

Emitter-base voltage (Ie = 0)
Collector current
Total power dissipation at Tamb ~ 25 °C
Storage temperature
Junction temperature

40
V
30
V
4
V
25 rnA
150 mW
-55 to 175 °C

175

MECHANICAL DATA

°C

Dimensions in mm

(sim. to TO-72)

123

4/73

BF167
THERMAL DATA
Rth J-amb

max

Thermal resistance junction-ambient

1000

°C/W

ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified)
Test conditions

Parameter
ICES

Collector cutoff
current (VBE = 0)

Min. Typ. Max. Unit

=

VCE
10 V
VCE = 10 V

50 nA
5 itA

Tamb = 100°C

V (BR) CES Collector-emitter
breakdown voltage
(V BE = 0)

Ic

= 1011A

40

V

V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

= 5mA

30

V

V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)

IE

= 1011A

4

V

VSE

Base-emitter voltage

Ic

=4mA

VCE = 10V

hFE*

DC current gain

Ic
Ic
Ic

= 1 rnA
= 4mA
= 10mA

VCE = 10V
VCE = 10V
VCE = 10V

.

fT

Transition frequency

Ic

= 4mA

VCE = 10V

-C re

Reverse capacitance

Ic
f

=0
= 1 MHz

VCE = 10V

Ic =4mA
Rg = 100.0

VCE = 10V
f = 36 MHz

NF
Gpe**

Noise figure
Power gain

IE
f

=4mA
VCE = 10V
= 36 MHz

* Pulsed: pulse duration = 300 lls, duty factor = 1%
** See test circuit
124

0.74
30

24

35
45
20

V

-

-

600

MHz

0.15

pF

3

dB

28

dB

BF167
ELECTRICAL CHARACTERISTICS (continued)
Parameter
\AGpe
gie
b ie
gfe

bfe

goe
b oe

Power gain control
Input conductance
Input susceptance
Forward
transconductance
Forward
transusceptance
Output conductance
Output susceptance

Test conditions

Min. Typ. Max. Unit

VEE = -25 V REE = 3.9 k.!1
f
= 36 MHz

60

dB

Ie
f

=4mA
VeE = 10 V
= 36 MHz

3.8

mS

Ie
f

= 4mA
VeE = 10V
= 36 MHz

5

mS

Ie
f

=4mA
VeE = 10V
= 36 MHz

95

mS

Ie
f

= 4mA
VeE = 10 V
= 36 MHz

34

mS

Ie
f

=4mA
VeE = 10 V
= 36 MHz

62

I!S

Ie
f

= 4mA
VeE = 10V
= 36 MHz

270

I!S

125

BF·167
Typical output characteristics
Ie

~~ ....-

(rnA)

\I.r>.'"
~~

8

V/ /..J~
IiV ~ f--

V

~V

J,lmA

V

I

DC normalized current gain

-

G

as

0001

_f1.2

o

0.4

/'

16

V- -,

NORMALIZATION
hFE = 1 at Ie = 4 rnA

VeE (V)

GS 0003

v

CE

_.-

GS 0004

f=36 MHz

\

VeE

-

"-

= 10 (V)

"
\

10

\

1\

o
- 10

\

\
\

- 20

- 30
0.5

"...

20

10
0.1

Ie (rnA)

10

Gpo

~

= 10V

I I

(dB)

1\
------

I

Power gain

30

/

\.

0.1

/

/
100

~

\

I I II

o

B

Transition frequency

500

V

....

b°e,

~

i - V eE =lOV

12

fy

,/

/

~O

o

(MHz)

V

0.8

I
I

"V
yf'

b.'>,;/

0.05 rnA

'/

0002

Ie (rnA)

126

o

2

4

IE (rnA)

BF167
Power rating chart
GS 0005

(mWI

150

'"

100

i'-...

r---..

"-

1'<1-

~

r--...

50

r---..

o
25

50

75

100

125

r-....

i'.

i'-...

T' mb ('C)

TEST CIRCUIT
Power gain (f

= 36 MHz)
3 pF

IN

50 n
OUT

50n

55 0001

127

BF173

SILICON PLANAR NPN
VIDEO IF AMPLIFIER

The SF 173 is a silicon planar epitaxial NPN transistor in a Jedec TO-72 metal case
with a very low feedback capacitance. This transistor is intended for use in video IF
amplifiers, particularly for the output stage.

ABSOLUTE MAXIMUM RATINGS

VEBO
Ie
P tot

Collector-base voltage (IE = 0)
Collector-emitter voltage (IB
0)
Emitter-base voltage (Ie
0)
Collector current
Total power dissipation at Tomb ~ 25°C

T stg
Tj

Storage temperature
Junction temperature

VeBo
V eEo

=

=

at Tease ~ 25°C

40
25
4

V
V
V
25 mA
175 mW
230 mW
-55 to 175 °C
175 °C

Dimensions in mm

MECHANICAL DATA

TO-72
129

5/73

BF173
THERMAL DATA
Rth j-amb

ELECTRICAL CHARACTERISTICS
Parameter
ICES
lEBO

max

Thermal resistance junction-ambient

850

°C/W

(Tease = 25°C unless otherwise specified)

Test conditions

Min. Typ. Max. Unit

Collector cutoff
current (VBE = 0)

VCE = 20V

20 nA

Emitter cutoff
current (lc = 0)

VEB = 4 V

100 J.l.A

VCBR) CBoCollector-base
breakdown voltage
(Ie = D)

Ic

= 100 J.l.A

40

V

VCBR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

=2mA

25

V

V BE

Base-emitter voltage

Ic

=7mA

VCE = 10V

fT

Transition frequency

Ic

= SmA

VCE = 10 V

1000

MHz

-C re

Reverse capacitance

Ic
f

= SmA
VCE = 1DV
= 0.5 MHz

0.23

pF

Ic

= 7mA

Ic
f

= 7.2mA VCE = 12 V
= 38.9 MHz

Ic
f

IB

Base current

V'
°

Output voltage

G tr

Transducer power gain

gie
C ie

Input conductance
Input capacitance

0.9

61

VCE = 10 V

185

V

J.l.A

7.7

V

= 7.2 mA VCE = 12 V
= 36.4 MHz

26

dB

Ic
f

== 7mA
V cE ==10V
== 35 MHz

3

mS

Ic
f

== 7mA
Vc~ == 10V
== 35 MHz

22

pF

6

* Voltage across the detector load RL == 2.7 kQ for 30% syncronisation pulse
compression
130

BF173
ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter
Iyrei
CPre

Iylel
CPle

goe

Coe
GUM"

• GUM

Reverse transadmittance

Min. Typ. Max. Unit

Ic
f

= 7mA
VCE = 10 V
= 35 MHz

55

Ic
f

= 7mA
VCE = 10V
= 35 MHz

2670

-

Forward transadmittance Ic
f

= 7mA
VCE = 10 V
= 35 MHz

165

mS

Ic
f

= 7mA
VCE = 10 V
= 35 MHz

336 0

-

Ic
f

= 7mA
VcE =10V
= 35 MHz

65

!-IS

Ic
f

= 7mA
VCE = 10 V
= 35 MHz

1.9

pF

Ic
f

= 7mA
VCE = 10 V
= 35 MHz

44.5

dB

Phase angle of reverse
transadmittance

Phase angle of forward
transadmittance
Output conductance
Output capacitance
Maximum unilateralized
power gain

= 10 log - - - 4 gie goe

131

J,l.S

BF173
Typical output characteristics

Typical output characteristics
G-()I,OO

G-0399

Ie

160

mA )

1/100

140

r-

(mA )

11.

12C

16

80

I-

'L~

lI-

12

60f-

100

r-

1/

80

I-

40

60

8

4

40
I8 02O ).lA

4

I8- 2O ).lA

o

4

8

16

12

f--- --

a

VeE IV)

Collector characteristic
Ie
ImA) ---

f--

---

I

Input characteristic
--

~Fl

---- --r

7--

V"olO V

10'

(,-0.01

...-

TYP.

I

f-:
f10

--

,

TYP

1=

10'

V

0

E~-=

/

f--

r-I

I

1

=

1:- _

f-

10-'

1-10'2

2

10'

10 2

18 I).lA)

132

a

1/
4

V8E IV)

BF173
Transition frequency

DC normalized current gain

f--f-++H+lH-- +-~+++Hl-+-+H+HH---++++1+tH

I
10-' L-LL-LWlJiL--Ll-LI-LWIII'lL--LLUJ.illL-L.L-LLlillJ

10- 2

10-'

10 0

10'

Ie (mAl

Ie (mAl

TEST CIRCUF
G'r test circuit
2.09pF

OA90

L!-

a.

tn
N

oj

L!-

a.

co



Ie

~-9"
C

500

°C/W

unless otherwise specified)

Test conditions

Min. Typ. Max. Unit

VCE
VCE

= 10V
= 10V

V (SR) CBO Collector-base
breakdown voltage
(IE
0)

Ic

= 10illA

25

V

V (SR) CEO Collector-emitter
breakdown voltage
(Is
0)

Ie

= 1 mA

20

V

V (SR) EBO Emitter-base
breakdown voltage
(lc
0)

4

V

=

=

=

Tomb

100 nA
50 IlA

= 100 C
0

IE

= 10[J.A

Vse

Base-emitter voltage

Ie

= 1 mA

hFE

DC current gain

Ie

= 1 mA
VCE
10V
for BF 273
for BF 273 Gr. C
for BF 273 Gr. D

35
70
35

= i0V

400

Transition frequency

Ie

= 1 mA

NF

Noise figure

Ic
f

= 1 mA
VCE = 10V
4000
= 100 MHz

Ic
f

=0
= 1 MHz

Ie

= 1 mA
VCE
= 470 kHz
= 1 mA
VeE
10.7 MHz
1 mA
VeE
100 MHz

-Cr.
Gpo

Reverse capacitance
Power gain

f
Ic
f
Ie
f

V

=

fT

Rg

0.70

VCE = 10V

VeE

120
75
600

-

MHz

=

=
=
=

154

VCE

2

dB

0.41

pF

40

dB

30

dB

21

dB

= i0V

= 10V
= 10V
= 10V

BF 273
ELECTRICAL CHARACTERISTICS

Test conditions

Parameter
9ie

Input conductance

Ic
f
Ic
f
Ic
f

b ie

Input susceptance

Ic
f
Ic
f
Ic
f

b re

Reverse
transusceptance

Ic
f
Ic
f
Ic
f

CPre

Reverse
transadrnittance phase

Ic
f
Ic
f
Ic
f

9fe

Forward
transconductance

Ic
f
Ic
f
Ic
f

b fe

Forward
transusceptance

(continued)

Ic
f
Ic
f

= 1 rnA VCE = 10 V
= 470 kHz
= 1 rnA VCE = 10 V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
= 1 rnA VCE = 10V
= 470 kHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
= 1 rnA VCE = 10V
= 470 kHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
= 1 rnA VCE = 10V
= 470 kHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10 V
= 100 MHz

= 1 rnA VCE = 10V
= 470 kHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
155

Min. Typ. Max. Unit

240

Jj.S

300

Jj.S

900

Jj.S

22

Jj.S

500

Jj.S

4.8

rnS

-1.2

Jj.S

-27.6

Jj.S

-260

Jj.S

-900

-

-900

-

-900

-

35

rnS

35

rnS

32

rnS

-1

rnS

-9

mS

BF 273
ELECTRICAL CHARACTERISTICS (continued)
Parameter

9 0e

boe

Output conductance

Output susceptance

Test conditions
Ie
f
Ie
f
Ie
f
Ie
f
Ie
f
Ie
f

= 1 rnA VeE = 10V
= 470 kHz
= 1 rnA VeE = 10V
= 10.7 MHz
= 1 rnA VeE = 10V
= 100 MHz
= 1 rnA VeE = 10V
= 470 kHz
= 1 rnA VeE = 10V
= 10.7 MHz
= 1 rnA VeE = 10 V
= 100 MHz

156

Min. Typ. Max. Unit

7

J.l.S

11

f.A.S

75

f.A.8

4.4

f.A.8

100

J.l.S

940

J.l.S

BF 274

SILICON PLANAR NPN
GAIN CONTROLLED AM-FM IF AMPLIFIER

The BF 274 is a silicon planar NPN transistor in a TO-18 epoxy package, primarily
intended for use in the gain controlled IF stages of AM and AM/FM radio receivers.

ABSOLUTE MAXIMUM RATINGS

= 0)

V eBo

Collector-base voltage (IE

VeEo

Collector-emitter voltage (IB = 0)

V EBO

Emitter-base voltage (Ie
Collector current

Ie

Ptot
T stg
Tj

= 0)
~

Junction temperature

V
V

25 °C

200 mW
-55 to 125°C
125

MECHANICAL DATA

°C

Dimensions in mm

%~2.54,
C

V

20
4

30 mA

Total power dissipation at Tamb
Storage temperature

'*

25

t,
V

~I

E

TO-18 epoxy
157

4/73

I

BF 274
THERMAL DATA
Rth i-amb

Thermal resistance junction-ambient

max

500

°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Test conditions

Parameter

Iq;S

Collector cutoff
current (V SE = 0)

VeE = 10V
VCE = 10V

Min. Typ. Max. Unit
100 nA
50 itA

Tamb = 1000 C

V(BR) cso Collector-base
breakdown voltage
(IE = 0)

Ic

= 10(kA

25

V

V (BR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

= 1 mA

20

V

V(BR) ESO Emitter-base
breakdown voltage
(lc = 0)

IE

= 10lJ,A

4

V

VSE

Base-emitter voltage

Ic

= 1 mA

hFE

DC current gain

Ic

= 1 mA
VCE = 10V
for BF 274
for BF 274 Gr. B
for BF 274 Gr. C

70
100
70
400

fT

Transition frequency

Ie

= 1 mA

VeE = 10V

-C re

Reverse capacitance

Ie
f

=0
= 1 MHz

VCE = 10V

Ie
f
Ic

Gee

AG pe

Power gain

Power gain control

0.70

VcE =10V

V

250
120

-

700

MHz

0.41

pF

1 mA
VCE = 10V
470 kHz
1 mA
VCE = 10V
10.7 MHz

40

dB

f

=
=
=
=

30

dB

Ic
f

= 100lJ,A VCE = 10V
=470 kHz

20

dB

158

BF 287

SILICON PLANAR NPN
AM MIXER-OSCILLATOR AND AM-FM AMPLIFIER

The SF 287 is a silicon planar NPN transistor in a TO-72 metal case. It is primarily
intended for use in the AM mixer-oscillator stage and as IF amplifier of AM-FM radios.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
Ptot

= 0)

Collector-base voltage (IE

Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc
0)
Collector current

=

~

Total power dissipation at Tamb

40

V

40

V

4

V

20 mA
2'5°C

250 mW
220 mW

at Tease ~ 45°C
Storage temperature

-55 to 200°C

Junction temperature

200

MECHANICAL DATA

°C

Dimensions in mm

x

'"

.

~1~[r~3mi 12~d~
-Q. -Q.

11=
P072-B

(sim. to TO-72)

159

5/73

BF 287
THERMAL DATA
Rth j •.amb

max

Thermal resistance junction-ambient

700

°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter

ICES

Collector cutoff
current (VBE = 0)

Test conditions

Min. Typ. Max. Unit

100

VCE = 10V

nA

V(BR) CBO Collector-base
breakdown voltage
(IE = 0)

Ic

= 10JA,A

40

V

VCEO (sus) Collector-emitter
sustaining voltage
(lB = 0)

Ic

=5mA

40

V

V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)

4

V

IE

= 100 JA,A

VBE

Base-emitter voltage

Ic
Ic

= 1 mA
=2mA

VCE = 7 V
VCE = 10V

hFE

DC current gain

Ic
Ic

= 1 mA
= 2mA

VCE = 7 V
VCE = 10V

fT

Transition frequency

Ic
f
Ic
f

= 1 mA
VCE = 7 V
= 100 MHz
=2mA
VCE = 10 V
= 100 MHz

Ie

= 1 mA
VCE = 7 V
f
= 470 kHz
f
= 10.7 MHz
=2mA
VCE = 10V
= 5.5 MHz

Gpe

Power gain

Ic
f
gie

b ie

Input conductance

Input susceptance

Ic

Ic

710
740

mV
mV

50
60

-

600

MHz

700

MHz

42
18

45
22

dB
dB

25

29

dB

= 1 mA
VCE = 7 V
f
= 470kHz
f
= 10.7 MHz

0.17
0.25

mS
mS

= 1 mA
VCE = 7 V
f
= 470 kHz
f
= 10.7 MHz

24
0.52

{lS
mS

160

30
40

-

BF 287
ELECTRICAL CHARACTERISTICS (continued)
Parameter
9fe

Forward
transconductance

Min. Typ. Max. Unit

Test conditions

Ie

== 1 rnA
VeE == 7V
== 470 kHz
== 10.7 MHz

f
f
-b fe

Forward
transusceptance

Ii;

Output conductance

Ie

Output susceptance

Ie

==
==

VeE == 7 V
470kHz
10.7 MHz

== 1 rnA
VeE
f
== 470kHz
f

boe

rnS
rnS

40
0.96

tJ,S
rnS

6
11

,tJ,S
,tJ,S

4.5
100

p.S
,tJ,S

== 1 rnA
f
f

9 ee

35
35

==
f
f

==

==

7V

10.7 MHz

1 rnA
VeE == 7 V
== 470 kHz
== 10.7 MHz

I

161

BF 288

SILICON PLANAR NPN
GAIN CONTROLLED AM-FM IF AMPLIFIER

The BF 288 is a silicon planar NPN transistor in a TO-72 metal case. It is primarily
intended for use in the gain controlled IF stages of AM and AM/FM radio receivers.

ABSOLUTE MAXIMUM RATINGS
V CBO
VCEO

VEBO
Ic

Ptot

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tamb ~ 25°C

40
V
40
V
4
V
20 rnA
250 mW
220 rnW
.-55 to 200°C

at Tamb ~ 45°C
Storage temperature
Junction temperature

200

MECHANICAL DATA

°C

Dimensions in rnm

5.3 max

"III

.

12.7mm.

E

~r~f I" i~~
P072-B

(sim. to TO-72)
163

5/73

BF 288
THERMAL DATA
Rth

j-amb

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS

ICES

Collector cutoff
current (VBE :::: 0)

V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
VCEO

=

V(BR) EBO Emitter-base
breakdown voltage
(lc
0)

=

VBE

Base-emitter voltage

hFE

DC current gain

fT

Transition frequency

-C re

Reverse capacitance

G pe

Power gain

10~A

Ic

=

Ic

= 5mA

= 100 ~A
Ic = 1 rnA
VCE = 7 V
Ic = 1 rnA
VCE = 7 V
Ic = 1 rnA
VCE = 7 V
f
= 1 MHz
VCE = 7 V
Ic = 1 rnA
VCE = 7 V
f
= 470 kHz
IE

Input conductance

Ic

= 10.7 MHz

100

nA

40

V

40

V

4

V

Input susceptance

Forward
transconductance

Ic

Ic

65

42
18

740

mV

90

-

500

MHz

0.24

pF

45
22

dB
dB

= 1 rnA VCE = 7 V
= 470 kHz
= 10_7 MHz
= 1 rnA VCE = 7 V
f
= 470kHz
f
= 10.7 MHz

0.17
0_25

mS
mS

24
0.52

~S

= 1 rnA VCE = 7 V
= 470 kHz
= 10.7 MHz

35
35

mS
mS

f
f

9fe

Min. Typ. Max. Unit

VCE = 7 V

f

b ie

°C/W

(sus) Collector-emitter

sustaining voltage
(IB
0)

9ie

700

(T amb = 25°C unless otherwise specified)

Test conditions

Parameter

max

f
f

164

mS

,
I!

i

BF 288

!~

ELECTRICAL CHARACTERISTICS (continued)
Parameter

-b fe

9 0e

Forward
transusceptance

Output conductance

Test conditions

Ie

Ie

= 1 rnA VCE = 7 V
= 470 kHz
= 10.7 MHz
= 1 rnA VCE = 7 V
= 470 kHz
f
f
= 10.7 MHz
f
f

boe

Output susceptance

Ie

=7V

= 1 rnA
VeE
f
470 kHz
f
10.7 MHz

=
=

165

Min. Typ. Max. Unit

40
0.95

:jJ.S
rnS

6
11

p.S
p.S

4.5
100

,IlS
'jJ.S

BF 316A

SILICON PLANAR PNP
UHF MIXER OSCILLATOR

The SF 316 A is a silicon planar epitaxial PNP transistor in a TO-72 metal case. It is
specifically designed for use as oscillator-mixer in UHF tuners.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO

VEBO

Ie

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB
Emitter-base voltage (lc
0)
Collector current

-40

= 0)

=

T"9

Total power dissipation at T.mb ="'=' 25 °C
Storage temperature

T;

Junction temperature

P,o,

-35

V
V

-3

V

-20 mA
200 mW
-55 to 200 oC

200°C

MECHANICAL DATA

Dimensions in mm

(sim. to TO-72)
Supersedes issue dated 4/73

167

6/75

BF 316A
THERMAL DATA
Rth

j.amb

Thermal resistance junction-ambient

max

875

°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter

ICBO

Collector cutoff
current (IE = 0)

Test conditions

Min. Typ. Max. UnH

VCB = -20V

-100 nA

V(BR) CBO Collector-base
breakdown voltage
(IE = 0)

Ic

= -10 Il-A

-40

V

V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

= -3mA

-35

V

V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)

IE

= -101l-A

-3

V

VBE

Base-emitter voltage

Ic

= -3mA

VCE

Ic

= -3mA

VCE = -10V

= -10V

hFE

DC current gain

fT

Transition frequency

Ic

= -3mA

VCE = -10 V

-C re

Reverse capacitance

Ic
f

=0
= 1 MHz

VCE = -10V

Ic
Rg
f
Ic
Rg
f

= -3mA VCB = -10V
=50n
= 800 MHz
= -3mA VCB = -10V
= son
= 500 MHz

Ic
RL
f
Ic
RL
f

= -3mA VCB = -10V
= 2kn
= 800 MHz
= -3mA VCB = -10V
=2kn
= 500 MHz

NF

Gpb

Noise figure

Power gain

168

-0.75

30

V

50

-

600

MHz

0.25

pF

5

dB

3.5

dB

12

dB

17

dB

BF 316A
ELECTRICAL CHARACTERISTICS
Parameter
9ib

bib

Input conductance

Input susceptance

bob

91b

bIb

9 rb

b rb

Output conductance

Output susceptance

Forward
transconductance

Forward
transusceptance

Reverse
transconductance

Reverse
transusceptance

Min. Typ. Max. Unit

Test conditions

Ic
f
Ic
f

= -3 rnA Vce =
= 800 MHz

-10V

= -3 rnA Vce = -10V
= 500 MHz

Ic
f

=
=
=
=

-3 rnA Vce = -10V
800 MHz
-3 rnA Vce = -10V
500 MHz

Ic
f
Ic
f

=
=
=
=

-3 rnA Vce = -10V
800 MHz
-3 rnA Vce = -10 V
500 MHz

Ic
f
Ic
f

=
=
=
=

-3 rnA Vce = -10V
800 MHz
-3 rnA VcB =-10V
500 MHz

Ic
f
Ic
f

= -3 rnA Vce = -10V
= 800 MHz
= -3 rnA Vce = -10V
500 MHz

Ic
f
Ic
f

=
=
=
=

-3 rnA Vce = -10V
800 MHz
-3 rnA Vce = -10 V
500 MHz

Ic
f
Ic
f

=
=
=
=

-3 rnA VcB =-10V
800 MHz
-3 rnA VcB =-10V
500 MHz

Ic
f
Ic
f

=
=
=
=

-3 rnA Vce = -10V
800 MHz
-3 rnA Vce = -10V
500 MHz

Ic

f

90b

(continued)

=

169

4.6

mS

17

mS

-23

mS

-37

mS

0.6

mS

0.32

mS

5

mS

3.2

mS

16

mS

10

mS

13

mS

39

mS

-0.1

mS

-0.04

mS

-0.32

mS

-0.26

mS

ELECTRICAL CHARACTERISTICS (continued)
Parameter
fb

Phase angle of the
forward transadmittance

Ic
f

= 1 mA
VCE = 10 V
= 100 MHz
1600

-

gob

Output conductance

22

(kS

bob

Output susceptance

0.86

mS

I

177

BF 455

SILICON PLANAR NPN
PREAMPLIFIER AND AM/FM IF AMPLIFIER

The SF 455 is a silicon planar NPN transistor in TO-18 epoxy package, with low
reverse capacitance, very low noise, high output impedance.
The SF 455 is especially suited for FM tuners, IF amplifiers in AM/FM receivers, AM
input stages of car-radios.

ABSOLUTE MAXIMUM RATINGS

=

VCEO

Collector-base voltage (IE
0)
Collector-emitter voltage (IB = 0)

VEBO
Ie

Emitter-base voltage (lc
Collector current

Ptot

Total power dissipation at Tomb

====

25°C

at Tease

====

25°C

VCBO

= 0)

Storage temperature
Junction temperature

125

°C

Dimensions in mm

~zY~2.54
B

C

V
25
V
4
V
20 mA
200 mW
500 mW

-55 to 125°C

MECHANICAL DATA

. P

35

!r,
\:f

~I

E

TO-18 epoxy
179

5/73

BF 455
THERMAL DATA
Rth

j.amb

Thermal resistance junction-ambient

max

500

°C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter

ICBO

Test conditions

Collector cutoff
current (IE = 0)

Min. Typ. Max. Unit

200 nA

VCB = 10V

V(BR) cBoColiector-base
breakdown voltage
(IE = 0)

Ic

= 100 IlA

35

V

VCEO(sus) 'Collector-emitter
sustaining voltage
(lB = 0)

Ic

= 1 mA

25

V

V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)

IE

= 10 IlA

4

V

VBE

Base-emitter voltage

Ic

= 1 mA

VCE = 10V

hFE

DC current gain
Ic
Ic
Ic

= 1 mA
= 1 mA
= 1 mA

VCE = 10V
VCE = 10V
VCE = 10 V

Ic
f

= 1 mA
VCE = 10V
= 100 MHz

400

Ic
f

=0
= 1 MHz

0.5

0.8 pF

3

dB

Gr. C
Gr. D

fr
-C re
NF

Transition frequency
Reverse capacitance
Noise figure

• Pulsed: pulse duration

duty factor = 1%
180

V
120
75
125

68
38
35

-

-

MHz

VCE = 10V

VCE = 10V
Ic = 1 mA
Rg = 1000
f
= 100 MHz

= 300 IlS,

0.71

BF 455
ELECTRICAL CHARACTERISTICS
Parameter

(continued)

Test conditions

Min. Typ. Max. Unit

gib

Input conductance

38

mS

-bib

Input susceptanr.e

2

mS

34

mS

IYfbl

Forward transadmittance

CPfb

Phase angle of the
forward transadmittance

Ic
f

= 1 mA VCE = 10 V
= 100 MHz

1500

-

gob

Output conductance

13

\.1S

bob

Output susceptance

0.8

mS

181

BF457
BF 458
BF4S9·

SILICON PLANAR NPN

PRELIMINARY DATA
HIGH VOLTAGE VIDEO AMPLIFIERS
The SF 457, SF 458 and SF 459 are silicon planar epitaxial NPN transistors in Jedec
TO-126 plastic package. They are particularly intended for use as video output stages in
colour and black and white TV receivers, class A output stages and drivers for horizontal
deflection circuits. These transistors hav~ been studied in order to guarantee the maximum
resistance against flash over.

ABSOLUTE MAXIMUM RATINGS

VCBO
VCEO
V EBO
ICM
IBM

Ptot

SF 457

Collector-base voltage (I E = 0)
Collector-emitter voltage (I B = 0)
Emitter-base voltage (lc = 0)
Collector peak current
Base peak current
Total power dissipation at Tamb <; 25°C
T case <; 25°C
Storage temperature
Junction temperature

MECHANICAL DATA

Supersedes issue dated 10/74

SF 458

SF 459

160 V

250 V
300 V
250 V
300 '!.5V
300 mA
50 mA
1.25 W
12.5 W
-55t0150°C
150°C

~60V

Dimensions in mm

183

6/75

THERMAL DATA
Rth j-case
Rth j-amb

10 DC/W
100 DC/W

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS (T case = 25 DC unless otherwise specified)
Parameter
ICBo

Collector cutoff
current (IE = 0)

Test conditions

for BF 457
for BF 458
for BF 459

V(BR) CEO' Collector-emitter
sustaining voltage
(lB = 0)

Ic = 10 mA

V(BR)EBO Emitter-base
breakdown voltage
(lc = 0)

IE = 100 /1A

V CB = 100V
V CB = 200V
V CB = 250V

for BF 457
for BF 458
for BF 459

Collector-emitter
saturation voltage

Ic=50mA

IB = 10 mA

hFE

DC current gain

Ic =30 mA

V CE = 10V

fT

Transition frequency

Ic = 30 mA

V CE = 10V

-C re

Reverse capacitance

Ic =0
f = 1 MHz

V CE = 30V

Ic == 0
f = 1 MHz

V CE = 30V

VCE(sat)

Coe

Output capacitance

* Pulsed: pulse duration = 300/15. duty cycle 1%

184

Min. Typ. Max. Unit

50
50
50

nA
nA
nA

160
250
300

V
V
V

5

V

1
30

V

80

-

90

MHz

4

pF

5

pF

Typical collector-emitter
voltage

Typical DC current gain

saturation
1

6-'411

I'

VCECsatl

i

(v)

FE='

0.15
100

V

VCE"IOV

0.1

-~
50

V

0.05

~

o
4

,

••

..

..

o
4

••

IC (rnA)

10

Typical transition frequency

..

ICImA)

10

Typical output and reverse capacitance

-

6-1411

G ..,.

C

Iy
(104Hz)

(pi')

VCE "IOV
=20 MHz

=1MHz

Ie-o

8

150
6

t"..

"

100

CoefCref-

50

o

10

20

30

40

o

IC(mAl

185

10

20

30

VCE (V)

I;,

BF 479

SILICON PLANAR PNP

'·1.,

1

I

I1
I~J

PRELIMINARY DATA
LOW-NOISE ULTRA LINEAR UHF-VHF AMPLIFIER
The SF 479 is a PNP silicon planar epitaxial transistor in aT-plastic package mainly
intended for high current UHF-VHF stages of TV tuners.
In this application, combined with a PIN diode attenuator circuit, it presents very low
noise and very good cross modulation performances up to 900 MHz.

ABSOLUTE MAXIMUM RATINGS
VCBO

VCEO
V EBO
Ic

P tot
T stg
Tj

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tomb ~ 45°C
Storage temperature
Junction temperature

MECHANICAL DATA

-30
V
-25
V
-3
V
-50 mA
170 mW
-55 to 150°C
150 °C

Dimensions in mm
g!G.S

{n

Within this region thp cross

section of the leads, is uncontrolled

187

5/73

BF479
THERMAL DATA
Rth

j-omb

ELECTRICAL CHARACTERISTICS

Collector cutoff
current (IE = 0)

600

°C/W

(Tomb = 25°C unless otherwise specified)

Test conditions

Parameter
ICBO

max

Thermal resistance junction-ambient

Min. Typ. Max. Unit

VCB = -20V

-100 nA

VeBR) CBO Collector-base
breakdown voltage
(IE = 0)

Ic

= -1oo!J.A

-30

V

VeBR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

= -5mA

-25

V

VeBR) EBO Emitter-base
breakdown voltage
(lc = 0)

IE =-1O !J.A

-3

V

20

-

hFE

DC current gain

Ic

= -10 mA VCE =-10 V

fT

Transition frequency

lc
f

=-10mA VCE = -10V
= 100 MHz

1.4

GHz

CCBO

Collector-base
capacitance

IE
f

=0
= 1 MHz

0.7

pF

2.5
3.3
3.5
4

dB
dB
dB
dB

NF

Noise figure

VCB = -10V
Ic
Ic
Ic
Ic

Gob

Power gain

=
=
=
=

-3mA
-10 mA
-3mA
-10 mA

VCB = -10V
Rg = 50n
f
f
f
f

=
=
=
=

200 MHz
200 MHz
800 MHz
800 MHz

Ic = -10 mA VCB = -10V
f = 800 MHz
RL = 2kn

188

15

18

5.5
6

dB

BF 479
Typical noise figure

Typical noise figure
G-101U1
NF
(dB)

~---t--+-+-~-H~----~-1-1-+~HHH

r---~--+-+-r+~~~;;~OM~Z
f----+--t--t-H-t+-H-vCB " 'OV

Rg '" 50

1----~--+-+-r+-+++l_VCB

7.5

n

"'0 V
f-__-+__t-t-l-++++t-_',C'-"_'..:.OmT_A--+--+-++-t-ttl

-

,.5

6

10

8

,0

-Ie (rnA)

Typical transition frequency

6

,

8

6

f (MHz)

8

10 3

I

Typical output voltage
(intermodulation -40 dB)

VCE =-10V

-I--+-

=
.-

t--t--t--t--t--r-r- -r--

12

,6

20

24

12

Ie (rnA)

189

'6

20 Ie (rnA)

SILICON PLANAR PNP
VHF OSCILLATOR MIXER
The BF 506 is a silicon planar epitaxial PNP transistor in Jedec TO-92 plastic package.
It is intended for use as mixer and oscillator in the VHF range. However, it may also be
used as not controlled preamplifier at low noise.

ABSOLUTE MAXIMUM RATINGS
Vcso
V CEO
V ESO
Ic
Is
Ptot
T stg
Tj

Collector-base voltage (IE = 0)
Collector-emitter voltage (Is = 0)
Emitter-base voltage (lc = 0)
Collector current
Base current
Total power dissipation at Tamb :;;;;45°C
Storage temperature
Junction temperature

MECHANICAL DATA

~upersedes

issue dated 10/74

-40
-35
-4
-30
-5
250
-55 to 150
150

V
V
V
mA
mA
mW
°C
°C

Dimensions in mm

191

6/75

THERMAL DATA
Rtn

j-amb

Thermal resistance junction-ambient

max

420 °C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
ICBO

Min. Typ. Max. Unit

V CB = -20V

-200

nA

V(BR)CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic = -5 rnA

-35

V

V(BR)EBO Emitter-base
breakdown voltage
(lc = 0)

IE = -10 IlA

-4

V

hFE

DC current gain

Ic =-3 rnA

V CE = -10V

fT

Transition frequency

Ic =-1 rnA
f = 100 MHz

V CE = -10V

IE =0
f = 1 MHz

V CB = -10V

Ic =0
f = 1 MHz

V CB = -10V

Ic=-1mA
Rg =50n
f = 200 MHz

Vcc=-6V

Ic =.-3 rnA
RL = 1k!2
f = 200 MHz

Vcc= -10.8\

CCBO

Crb

NF*I**

Gpb *

*

Collector cutoff
current
(lE=O)

Test conditions

Collector-base
capacitance

Reverse capacitance

Noise figure

Power gain

See TEST CI RCU IT

** Input adapting for optimum source admittance
192

40

-

400

MHz

0.8

pF

0.13

pF

2.5

14

17

4

dB

dB

Typical input admittance

Typical transfer admittante
IHHI

G 1389

bib
(mS)

.'UV

- V

o

r-..

r-..

_~Blll~

)

200_

eo

10.7 MHz

1

1/

r-..

~

-20

1/

100

60

]

5
100
,\1

-40

..

.A

-

200

-60

.

36

I"..
3

m

20

¥

""0

o

100

50

-ISO

150 glb (mS)

Typical output admittance
G 1390/1

I I

bob
(mS)

200MHz

o.e
1

/-Ic =5mA

]

0.6

II
100

I
1

Q.2

1/

o

-Ie'l IRA

103

o

136

-vee -10

,....10.7

0.02

0.04

0.06

0.08 90b (mS)

193

-100

-so

o

9'blmS)

TEST CIRCUIT
Power gain and noise figure

:t
-~
~ ~:I"'n-F-~~---J
) 1,

lkn

Vee

VEE

• Leaca. . c.,.mic disc capacitor

S-O'77

L1-3turns 0..6"", Mamt'I,I.mn dia.

L2=2lurns

~

I mil _mel, 6.Snm dia.

194

SILICON PLANAR PNP
VHF AGC AMPLIFIER
The BF 509 is a silicon planar epitaxial PNP transistor in Jedec TO-92 plastic package.
It is intended for use as controlled VHF preamplifier when a high gain level with particularly
reduced noise is required.

ABSOLUTE MAXIMUM RATINGS
Vcso
VCEO
V EBO
Ic
Is
Ptot
T stg
Tj

Collector-base voltage (I E = 0)
Collector-emitter voltage (Is = 0)
Emitter-base voltage (lc = 0)
Collector current
Base current
Total power dissipation at Tamb ,,;;; 45°C
Storage temperature
Junction temperature

MECHANICAL DATA

-40
-35
-4

-30
-5
250
-55 to 150
150

V
V
V
mA
mA
mW
°C
°C

Dimensions in mm

I

I:~

11

195

10/74

THERMAL DATA
Rth j"-ilmb

Thermal resistance junction-ambient

max

420 °C/W

ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified)
Parameter
I cBO

Collector cutoff
current
(lE=O)

Test conditions

Min. Typ. Max. Unit

VCB=-20V

-200

nA

V(BR)CEO Collector-emitter
breakdown voltage
(lB ;= 0)

Ic =-5 mA

-35

V

V(BR)EBO Emitter-base
breakdown voltage
(lc =0)

I E =-10J.LA

-4

V

hFE

DC current gain

Ic =-3mA

V CE = -10V

fT

Transition frequency

Ic =-3mA
f = 100 MHz

V CE = -10V

IE =0
f = 1 MHz

V CB = -10V

Ic =0
f = 1 MHz

V CB = -10V

Ic =-3mA
Rg = 50n
f=200MHz

Vcc=-10.8V

CCBO

,C'b
NF*I**

G pb *

Collector-base
capacitance
Reverse capacitance
Noise figure

Power gain

Ic

= -3 mA

70

-

700

MHz

0.8

pF

0.13

pF

1.5

2.5

dB

Vcc=-10.8V

RL = 1 kn
IC(AGC) * Collector current for
flG pb = 30 dB

f=200MHz

15

Vcc= 10.8V
f = 200 MHz

7.3

* See TEST CI R<;:UIT
** Input adapting for optimum source admittance.

196

18

dB

8.8 mA

~., ','

. . •.'. . . . . . .•.•. •. •. .:':.•.•,'".....':.: ., .• . ':,.<.•.,:". . . ::. •. ,'.:'. . •.•.•. . . :. . . •.:.'.:. . ,. .,. •. .,. . . . . . . . . . . . . . . . . . . .

, .. ,.

Typical input admittance

Bf<5:09
,.

" , ...

;",

,,;.,

0'"

""

,""_"

Typical transfer admittance
G-ll9]

G-1J95

bib

b,b

H-

l

,",S)

(mS)

I

o

r-.

1

-Y

80

:1110V

-YCB"

,

Y
I

10.7
-20

I

60

~

3

I

36

200 MHz

1/

100

V

1 .....

200 114Hz

5

100

,

40

-I • 5mA

1\1/,
X,

If

-60

20

3

,

1

.,

,

I'\.

Ib~ 10.7

l'

Ic" mA

,

o

-80

o

100

50

150

-150

Glb ,",5)

Typical output admittance

-100

-50

0

g'b (mS)

Typical power gain variation
current

VS.

0_1394

bob
(mS)

A

08

G.1392

AGpb
(dB)

r+-

i/ 200MHz

I

,I

+-

-10

I

1

-I C·5m

3

AGe

I "200 MHz
-YCC"lO.BY

1\

-20

Q.6

'\,

\

\

100

-30

OA

1\
h.

Q.2

-Yea .10Y

1\

-40

,

10.7
n02

Q04

o

no6

197

8 -Ic (mA)

I

TEST CIRCUIT
Power gain, AGe and noise figure

,T

v,

C4

12

Yo

1510

GpF

lOto~D.
t,OpF

"

~-4--""'''''''-II,nF

I

111,-nF--....-~-....
Ikn

VEE

Vee

• Leadless c.... mic disc capacitor
Ll=3turns O.6nm ft'Iameol,4nm dia.
L2=2turns 1 mn enamet, 6.Smn dia.

198

S-0877

BF516

SILICON PLANAR PNP
UHF-VHF AMPLIFIER

The BF 516 is a silicon planar epitaxial PNP transistor in a TO-72 metal case, intended
as general purpose amplifier up to 1 GHz.

ABSOLUTE MAXIMUM RATINGS
VeBo
VeEo
VEBO
Ie
Ptot
T stg
Tj

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ie = 0)
Collector current
Total power dissipation at Tamb "'" 25°C
Storage temperature
Junction temperature

MECHANICAL DATA

V
-40
V
-35
-3
V
-20 rnA
200 mW
-55 to 200 °C
200 °C

Dimensions in mm

(sim. to 10-72)
Supersedes issue dated 4/73

199

6/75

BF 516
THERMAL DATA
Rth j.omb

Thermal resistance junction-ambient

max

875

°C/W

ELECTRICAL CHARACTERISTICS (Tomb = 25°C unless otherwise specified)
Parameter

ICBO

Collector cutoff
current (IE = 0)

Test conditions

Min. Typ. Max. Unit

VCB = -20 V

-100 nA

V(BR) CBO Collector-base
breakdown voltage
(IE = 0)

Ic

= -10 !-LA

-40

V

V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

= -3mA

-35

V

V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)

IE

= -10 !-LA

-3

V

VBE

Base-emitter voltage

Ic

= -3mA

VCE = -10V

hFE

DC current gain

Ic

= -3mA

VCE = -10V

fT

Transition frequency

Ic

= -3mA

VCE = -10V

-Cr.

Reverse capacitance

Ic
f

=0
= 1 MHz

VCB = -10V

Crb

Reverse capacitance

Ic
f

=0
= 1 MHz

VCE = -10V

NF

Gpb

Noise figure

Power gain

Ie = -3mA VCB
Rg = 50n
f
= 800 MHz
Ic = -3mA VeB
Rg = 50n
f
= 200 MHz
Ie = -3mA VCB
RL = 2kn
f
= 800 MHz
Ie = -3mA VeB
RL = 2kn
f
= 200 MHz
200

-0.75
25

50

V

-

850

MHz

0.3

pF

0.05

pF

3.5

6 dB

2.5

dB

14

dB

19

dB

= -12V
= -12V
= -12 V
= -12 V

11

BF 516
Transition frequency

Normalized DC current gain
GS 0037

f,
(MH,)

VCE =-lOV

1.6

800 I - -

1.2

45' C

-

0.8
NORMA.LIZA.TION

"'"

0.4 I - h" ~ 1 at Ie =

I--IT,ml·
0.1

fr

- 3 mA

VeE,'-lO

03

/

400

/

\
1

/

200

I

\\

V

o
3

0.1

-Ie (mA)

0.3

3

-Ie (mA)

Noise figure
GS 0039

-ere
(pF)

I = 0
C

~

'90041

NF

I

(dB)

-

Rg

50 II

VeE

-lOV

f- r-

"'- ~

" '""-

\
\

/

Reverse capacitance

0.5

1\

/

600

"\

1-,,\

/

......
25' C

/

f=lOOMHz

j\,

/

"'-. """-

0.1
10

30

-VeE (V)

201

50

100

200

500 f (MHz)

SILICON PLANAR NPN
PRELIMINARY DATA
MEDIUM POWER VIDEO AMPLIFIERS
The BF 657, BF 658 and BF 659 are silicon planar epitaxial NPN transistors in TO-39
metal case. They are particularly designed for application with precision "IN-LINE" large
screen CRT !thermal resistance :s;;; 20°C/W).

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
ICM

Ptot

BF657

Collector-base voltage. (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ic = 0)
Collector current
Collector peak current
Total power dissipation at T case:S;;; 6qoC
at T case :s;;; l40 C
Storage temperature
Junction temperature
Q

Tstg
Tj

MECHANICAL DATA

l60V
-160 V

BF658

BF659

250 V
300 V
250
V
300~
-..r
5V
100mA
200mA
7W
3W
-55 to 200°C
200 °C

Dimensions in mm

203

4/75

I

THERMAL DATA
Rth j-case
Rth j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

max
max

20 °CIW
175 °CIW

ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
ICBo

Collector cutoff
current (IE = 0)

Test conditions

for BF 657
for BF 658
for BF 659

V(BR)CBO Collector-base
breakdown voltage
(IE =0)

Ic = 100pA

V (BR)CE6' Collector-emitter
breakdown voltage
(lB = 0)

Ic = 10 mA

V(BR)EBO Emitter-base
breakdown voltage
(lc = 0)

IE = 100 IlA

V CB = 100V
V CB = 200V
V cB =250V

160
250
300

V
V
V

for BF 657
for BF 658
for BF 659

160
250
300

V
V
V

5

V

Ic =30 mA

IB =6 mA

hFE *

DC current gain

Ic = 30 mA

V CE = 10V

fT

Transition frequency

Ic = 15 mA

V CE = 10V

-C re

Reverse capacitance

Ic =0
f = 1 MHz

V cE =30V

204

50 nA
50 nA
50 nA

for BF 657
for BF 658
for BF 659

V CE(sat) * Collector-emitter
saturation voltage

* Pulsed: pulse duration = 300 IlS, duty factor = 1%

Min. Typ. Max. Unit

1

V
-

25
90

3

MHz

pF

Typical collector-emitter
voltage

Typical DC current gain
G 1623/1

saturation

VCE(sat)

IV )
80

./

/'

-

0.8
J

0.6

..,..

60

---

40

'51

"
0.4
VeE =10V

V

0.2

20

o

,

.

Ie

10

,

.

o

4

8

10

G-1646/1

InA )

6

(mA)

Typical collector cutoff current
leeo

I-""

C
Ipl)

...

6

•

IclmA)

10'

Typical collector-base and reverse capacitances
-1685

4

,

10'

•
,
10'
•
,
10
••
,

BF657

Veo-IOOV
200V
250V

BF658

..........

BF659

r-.........

..........

6
4

.......

",-

e,.

, ,......
..........

6
4

50

..........

............. .......

.......

V

o
25

eceo

.......... ~

75

100

125 Tambl'C)

205

•• 10

4

•

,

VeB (V) 10'

I

Typical transition frequency

Safe operati ng areas
G-1413

G-162.lofl

IC
8
(mA)

IC MAX (CONTINUOUS )~

6

I

)

Tease =60·C

VCE =lOV
f= 20 M-iz

4

150
2

10

100
8
6
4

50
BF657 VCEO MAX = 160V _ _
2

BF658 VCEO MAX= 250VBF659 VCEO MAX= 300V

10

6

8

102

F
6

•

o

VCE (V)

206

10

20

30

IJJ

IC(mA)

SILICON PLANAR PN P
UHF-VHF AGC AMPLIFIER AND OSCILLATOR MIXER
The BF 679 and BF 679M are silicon planar epitaxial PNP transistors in T-plastic package
intended for the use in UHF-VHF range up to 900 MHz. Because of its low noise and gain
characteristics versus current, the BF 679 is particularly suited as a controlled preamplifier
stage in TV varicap tuners. The BF 679M because of its low thermal drift and high oscillation
stability is particularly suggested as oscillator mixer.

ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
IB

Ptot
T stg
ToJ

Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ic= 0)
Collector current
Base cu rrent
Total power dissipation at Tamb ..;; 45 °C
Storage temperature
Junction temperature

MECHANICAL DATA

Supersedes issue dated 9/74

-40
-35
-3
-30
-5
170
-55 to 150
150

V
V
V
rnA
rnA
mW
°C
°C

Dimensions in mm

207

6/75

THERMAL DATA
Rth

j-amb

Thermal resistance junction-ambient

600

max

°C/W

ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified)
Parameter
ICBo

Collector cutoff
cu rrent (I E = 0)

Test conditions

Min. Typ. Max. Unit

V CB = -20V

-100 nA

V(BR)CBO Collector-base
breakdown voltage
(IE = 0)

Ic = -100 J,tA

-40

V

V(BR)CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic =-5 mA

-35

V

V(BR)EBO Emitter-base
breakdown voltage
(lc = 0)

IE=-10J,tA

-3

V

hFE

DC current gain

Ic = -3 mA

fT

Transition frequency

Ic =-3 mA V CE = -10V
f = 100 MHz

V CE = -10V

700 1000

CCBO

Collector-base
capacitance

V CB = -10V
IE = 0
f = 100 MHz

0.6

pF

0.07

pF

3.5

5 dB

15

dB

Crb

Reverse capacitance

Ic =0
V CB = -10V
f = 100 MHz

NF*

Noise figure

Ic =-3 mA Vcc= -10.BV
Rg = 5012
f = BOO MHz

Gpb *

Power gain

IC(AGC) * Collector current
for!::" Gpb = 30 dB

25

Ic = -3 mA Vcc= -10.BV
RL = 2 k12
f = BOO MHz

12

for BF 679 only
f =800 MHz Vcc= -10.BV

6.4

*See TEST CIRCUIT

208

60
MHz

7.B mA

Typical transition frequency

Typical input admittance
(for BF 679 only)
G.llGOIl

tT
(MHz)

v

-bib

1

1

(mS)

• -10V

1200
8F679M 1

1000

.............

~
800
600

r-...

h

IAi
'I

IN

BF679

30

"-

"\

20

~

400

'0

200

I
/

t

'{

V \

/

I

r-

I

Typical transfer admittance
(for BF 679 only)
b'b

"l

-

2mA\

I

II

11..

/1

VCS=-10V

1\

'=600MH. ""I

.A
(

40

500MH

\

30

f=60MH:z:

20

:,,

,"

\
\

\
)I

l"- II\.
......

10

1\

lmA/

/

f/j
0.5

1

t--;tf
-120

-tOO

-80

-60

-40

-20

~"H~

VCS=-IOV

r

200 MHz

~ 100MHz

Jl

I

o

f= 8

/.~
r-2mA
~ t-5mA

~500MHZ
~V

860MHz

I'..

80

~

'5

)..-- ~

II

/

.F/

'\. \

\

1(X}MHz

\

V

/ooMHZ

~

1,=-lmA-

'mA

200">«

Y

2D

\

50

1\

/
/ ./

bob
(mS)

"

/

60

/
/

Typical output admittance
(for BF 679 only)

lc=-5m

(mS)

IOOMHz

1\ poMH./

o

-Ie (rnA)

~I'..

il

~ r""-I

~
6

VCB~-10V

SmA .......

200M Hz

I c =-lmA\

o

~

,<"

50

60MHz

I

0 g,.(mS)

02

209

as

os

90b{mS)

Typical power gain
(for SF 679 only)
to· 1111/1

Gpb

(dBI

10

t-10

-20

~

t ::800 MHz
Rl::

no

"'CC="'1O.BV

~~-+-+--+-~'-++-I--!-H-+-HH-H-+-f

-30
.1, (mAl

TEST CIRCUIT
Power gain, AGe and noise figure

B20n

5-0466

210

SILICON PLANAR PNP
PRELIMINARY DATA
UHF MIXER-OSCILLATOR
The BF 680 is a PNP silicon planar epitaxial transistor in T -plastic package. It is
intended for use in TV varicap tuners as mixer-oscillator stage up to 900 MHz.

ABSOLUTE MAXIMUM RATINGS
Vcso
VCEO
VESO
Ic
's
Ptot
T,tg
Tj

Collector-base voltage (IE = 0)
Collector-emitter voltage (Is = 0)
Emitter-base voltage (lc = 0)
Collector current
Base current
Total power dissipation at Tomb ~ 45°C
Storage temperature
Junction temperature

MECHANICAL DATA

Supersedes issue dated 8/73

-40
V
-35
V
-3
V
-30 mA
-5 mA
17.0 mW
-55 to 150 °C
150 °C

Dimensions in mm

211

6/75

THERMAL DATA
Rth j.omb

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS
Parameter
ICBO

Collector cutoff
current (IE = 0)

max

600

°C/W

(Tomb = 25°C unless otherwise specified)

Test conditions

Min. Typ. Max. Unit

VCB = -20 V

-100

nA

VeBR) cBoCollector-base
breakdown voltage
(I E = 0)

Ic

= -100 itA

-40

V

VeBR) CEO Collector-emitter
breakdown voltage
(lB = 0)

Ic

= -5 rnA

-35

V

VeBR) EBO Emitter-base
breakdown voltage
(lc = 0)

-3

V

IE

= -10 itA

hFE

DC current gain

Ic

= -3 rnA

fT

Transition frequency

Ic
f

= -3 rnA VcE =-10V
= 100 MHz

650

MHz

IE
f

VCB = -10V
=0
= 100 MHz

0.6

pF

Ic
f

VCB = -10V
=0
= 100 MHz

0.07

pF

Ic = -3mA VCB = -10V
Rg = 50n
f
= 800 MHz

5.5

dB

14

dB

CeBo

~rb
NF*

Gpb *

Collector-base
capacitance
Reverse capacitance
Noise figure

Power gain

VcE =-10V

Ic = -3mA VeB = -10 V
RL = 2 kn
f
= 800 MHz

* See TEST CIRCUIT
212

35

11

50

-

ELECTRICAL CHARACTERISTICS
Parameter

gib

-bib

!yfbl

CJlfb

gob

bob

Input conductance

Input susceptance

Forward transadmittance

Phase angle of the
forward transadmittance

Output conductance

Output susceptance

(continued)

Test conditions

Ie

Ie

Ie

Ie

Ie

Ie

= -2 mA
= -2 mA
= -2 mA

= -2 mA
= -2 mA
= -2 mA

213

=
=
f = 500 MHz
VeE = -10V
f = 860 MHz
f = 500 MHz
VeE = -10 V
f = 860 MHz
f = 500 MHz
VeE
-10 V
f
860 MHz

7

mS

14

mS

19
24

mS

=
=
f = 500 MHz
VeE = -10 V
f = 860 MHz
f = 500 MHz
VeE
-10 V
f
860 MHz

mS

25

mS

42

mS

=

VeE
-10V
f
860 MHz
f
500 MHz

=
=

Min. Typ. Max. Unit

50 0
1100

-

-

0.8

mS

0.4

mS

2.5
1.6

mS
mS

I

Typical DC current gain

Typical transition frequency
G 1125

fT
(MHz )

VCE=-IOV
f = 100 MHz

800

50

t=t::t;;tiE~nWjj

600

~ ~~
__~~.~~1~1__~-+~~~
1--+---·VCC- 10V
30

-

.J'

--+11--+----1----1-++1-+\-1

-f--T-

-

I'-...
.........

400

'"

1

20 1--+----l-----+-I--W--I-+l_ _-+--l---I---I--I-l-I-I-I
200
10

..

...

-,,(mAl 10

8 -Ie (rnA)

TEST CIRCUIT
Power gain and noise figure

5 -0486/1

214

INTEGRATED CIRCUITS

215

MOS INTEGRATED CIRCUIT

M 252
PRELIMINARY DATA

RHYTHM GENERATOR
• LOW POWER DISSIPATION: < 120 mW
• DRIVES 8 SOUND GENERATORS (INSTRUMENTS)
• 15 PROGRAMMABLE RHYTHMS (NOT AVAILABLE IN COMBINATION)
• MASK PROGRAMMABLE RESET COUNTS: 24 or 32
• DOWN BEAT OUTPUT
• EXTERNAL RESET
• OPEN DRAIN OUTPUTS
• STANDARD MUSIC CONTENT AVAILABLE
• TECHNICAL NOTE NO 131 AVAILABLE FOR FULL INFORMATION
The M 252 is a monolithic rhythm generator specifically designed for electronic organs and
other musical instruments.
Constructed on a single chip using low threshold P - channel silicon gate technology it is
supplied in a 16 - lead dual in-line ceramic or plastic package.

ABSOLUTE MAXIMUM RATINGS
VGG *
Vi *

'0

T stg
Top

Source supply voltage
Input voltage
Output current (at any pin)
Storage temperature
Operating temperature

-20 to 0.3
-20 to 0.3
3
-65 to 150
o to 70

V
V
mA

°c
°c

* This voltage is with respect to Vss pin voltage
ORDERING NUMBERS: M 252 B1 XX for dual in-line plastic package
M 252 D1 XX for dual in-line ceramic package
M 252 B 1 or D 1 AA for standard music content

MECHANICAL DATA

Dimensions in mm

~l
~.::

:::::
217

2/75

CONNECTION DIAGRAMS

M 252 D 1 or B 1 - AA
Standard content configuration

(top view)
INPUT 4

16

iN'PU"Ti

1Al'iln

[ 1

16

INPUT 8

15

iNPiJiI

INPIin

[ 2

15

OUTPUTS

14

OUTPUT 4

CONGA
DRUM

[ 3

14

LOW BONGO

~t!!

OUTPUT7

l

4

OUTPUT8

13

OUTPUT 3

",if

[ 4

13

HIGH BONGO

12

OUTPUT 2

:;;~ CYMBALS [ 5

·,2

SNARE DRUM
OR CLAVES

MARACAS [ 6

11

BASS DRUM

LONG

lE .... CYMBALS
::>::>
0: 0

SHORT

~~

OUTPUTS

11

EXTERNAL
RESET/
DOWN -BEAT

OUTPUT 1

10

CLOCK
' - - _ _ _ _- J

..

[,

10

[ 8

9

VGG

EXTERNAL
RESET/
DOWN-BEAT

V,S

CLOCK

VSS

,.>0,'1'"

"'."/'

* This output must be connected so as to drive the ·snare drum" when the rhythms from 1 to 9 (see
rhythm selectionlare selected. and the Hclaves"when the rhythms from 10 to 15 (see rhythm selection)
are selected.
** This pin generates a down-beat trigger which can be used to drive an external lamp to indicate the start
of each measure.

RHYTHM SELECTION
The following binary code must be generated to select each rhythm (logic positive)
RHYTHM
1
2
3
4

5
6

7
8

9
10
11
12
13
14
15
No selected
rhythm

CODE
INPUT 8

INPUT 4

INPUT 2

INPUT 1

1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1

1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1

1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

218

STANDARD
CONTENT
Waltz
Jazz Waltz
Tango
March
Swing
Foxtrot
Slow Rock
Rock Pop
Shuffle
Mambo
Beguine
Cha Cha
Bajon
Samba
Bossa Nova

3/4
3/4
2/4
2/4
4/4
4/4
6/8
4/4
2/4
4/4
4/4
4/4
4/4
4/4
4/4

:~;6:~;:.;~":;f;;' ::~)t~ ~:: ·':::/:.~'c:

11

I
I

I

I'><'
IS(

n::

If-

D<:

I
I
I

D<: ~

~~.4

I'"

n;;;

25
26

IL.. ,L-

n;;;

,

27
28

29
32

4

U
T

DOWN BEAT

INSTRUMENT BEATS*

II;;;

II;;;

~l~ ~,

30

0
U
T
P
U
T

IL-

I'><'

J'S(

~jo

14
15
16
17
18
19
20
21
22
23

3

0

U
T
P
U
T

I 1"-

152
I'><'

2

1

n;: ~

"5('

rx'

0

0 0
U U U
T T T
P P P
U U U
T T T

0
U
T
P
U
T

r.>c:

6
7
8
9

EXTERNAL
RESET

1'5<'1'><'

r.>c:

OWN
EAT
I GNAL

I .....

I
I

---

1-';;;:;':::;

-

o.
> 1>-

-18

I

~

* The lowering of the music signals depends on the intrinsic decay time of the sound generator and not
on the length of the I,lnable pulses. Each beat can therefore last for more than one elementary time

222

TYPICAL APPLICATIONS
Figure 1 shows the typical application of the M 252(AA).
With two M 252 devices it is possible to increase the number of rhythms or the number of
instruments available, or the number of elementary times, as shoiNn in figures 2, 3 and 4
respectively.
The use of a memory matrix allows the customer complete flexibility, since modification of
the memory is quick and relatively cheap.
Fig. 1 - Rhythm system (standard content)
RHVTHM

CODES

141-~-t--t--+--,

M252 "1----4--+-1'--,
AA

u

11-----

~~~~~~~+H
EXT!RMAl

RESET

22

kG

~~.~-~~-----o~

"-11

Fig. 2 - Increase in number of rhythms (positive logic)
INPUTS

EXTERNAL
RESET

......~~,...<>-OvS5

5- t 031/1

1
8
~

223

i
I,

TYPICAL APPLICATIONS (continued)
Fig. 3 - Increase in number of instruments
INPUTS

DOWN

T 2 ;; 8

BEAT (DB)

EXTER

CLOCK

RESET

I---+--+--+--+-~

M252
2

M252

16
INSTRUMENTS

INSTRUMENTS

s-'(m/'

Fig. 4 - Increasing the number of elementary times

DOWN-BEAT
CLOCK

E.rTEii£Sjfil.o_....._ _ _ _--1~W!. CUlC'

M252
2

1 2 ;; i
INPUTS

Note: The total number of elementary times is given by the sum of the elementary times of the individual devices

224

II 252
CIRCUIT FOR CHANGING THE NUMBER OF ELEMENTARY TIMES
DOWN-BEAT

Vss

(OBI

iNPUf1

..

INPUT2

16

INSTRUMENT

7

INSTRUMENT

•

,

INSTRUJrotENT 5

iiiPiTr"4

14

INSTRUMENT 4

iNPUfi

"

M 252

INSTRUMENT 3

INSTRUMENT

2

INSTRUMENT I

VOG

G.,03'"

To obtain a required number of elementary times "N" simply put a cross in the "N + 1" position of the column which now represents the reset output, rather than the 8th instrument.
Thp. DB output can be used as down-beat because it appears at the beginning of each
measure. Since the pulse is only 2 - 3 p.s long it must, however, be stretched and buffered to
enable it to drive a lamp.
Full information on the use of the M 252 in electronic organs and other applications will be
found in Technical Note no. 131 available on request.

COMPLETING THE TRUTH TABLE
The ROM truth table has been organized in 32 rows which represent elementary times and
120 columns (15 groups of 8) where each group represents a rhythm which has as its disposition 8 programmable instruments. To programme each rhythm one indicates (with a cross)
in the appropriate boxes the timin!l for each beat required for each instrument.
In -i:he given truth table we show an example of how to programme three imaginary rhythms,
the first is in 4/4 time, the second in 3/4 time and the third in different time, chosen
randomly. Each cross corresponds to a beat of the indicated instrument or, in logic terms, to
the presence of a "1" level (positive logic) at the output.
The absence of a cross indicates that the corresponding instrument is not used in that part
of the rhythm. Rhythm 3 is an example of how to programme for a time which differs from
4/4 or 3/4. This is achieved by using output 8 to reset the rhythm and not to drive an
instrument. The rhythm is valid till elementary time no. 15.

225

,',
I
"

COUNT
TO
32

RHYTHM 6
COUNT
TO
32

0 0 00 0 0 0 0 0

RHYTHM 8

RHYTHM 7

o

0

o

0

o

0

o

RHYTHM 10

RHYTHM 9

0 00 00 0 0 0 0 00

o

0 000 0

o

0 00

o

0 0

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T To T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 567 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 456 7 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
21
22
23
24
25
26
27
28
29
30
31
3~

226

COUNT
TO
32

RHYTHM
0
0
0
U U U U U
T T T T T

o

o

11
RHYTHM 12
RHYTHM
000 0
0
0
0
0 00
0
U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T

o

o

o

o

o

RHYTHM 15
13
RHYTHM 14
000 00
0 00 00 0 00 00
00
U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T

o

o

P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 678 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9
10
11

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

227

M253'

liDS INTEGRATED CIRCUIT

PRELIMINARY DATA
RHYTHM GENERATOR
• LOW POWER DISSIPATION: < 120 mW
• DRIVES 8 SOUND GENERATORS (INSTRUMENTS)
• 12 PROGRAMMABLE RHYTHMS (ALSO AVAILABLE IN COMBINATION)
• MASK PROGRAMMABLE RESET COUNTS: 24 or 32
• DOWN BEAT-OUTPUT
• EXTERNAL RESET
• OPEN DRAIN OUTPUTS
• STANDARD MUSIC CONTENT AVAILABLE
• TECHNICAL NOTE NO 131 AVAILABLE FOR FULL INFORMATION
The M 253 is a monolithic rhythm generator specifically designed for electronicorgans and
other musical instruments.
Constructed on a single chip using low threshold P - channel silicon gate technology it is
supplied in a 24 - lead dual in-line ceramic or plastic package.

ABSOLUTE MAXIMUM RATINGS
V GG*
VI *

10
T stg
Top

Source supply voltage
Input voltage
Output current (at any pin)
Storage temperature
Operating temperature

-20 to 0.3
-20 to 0.3
3
-65 to 150
0 to 70

V
V
mA
°C
°C

* This voltage is with respect to Vss pin voltage
ORDERING NUMBERS: M 253 B1 XX for dual in-line plastic package
M 253 01 XX for dual in-line ceramic package
M 253 B 1 or D 1 AA for standard music content

MECHANICAL DATA

Dimensions in mm

.

~
..

..

LS.····.· . . . . . ".....1r,±;}
i+, ....

1.

- i

229

2794
. 114

"1
..•
11.2.54 •

--r

I
i

l5.24

I

2/75

CONNECTION DIAGRAMS

M 253 01 or B 1 - AA
Standard content configuration

(top view)
VSS
VGG

CLOCK INPUT
EXTERNAL RESETI
DOWN-BEAT

5

VSS

CLOCK INPUT

VGG

EXTERNAL RESET!
DOWN-BEAT

OUTPUT I

OUTPUT

OUTPUT 2

OUTPUT 6

OUTPUT ]

OUTPUT 1

i5a.rASS DRUM
~ SNARE DRUM

OUTPUT 4

OUTPUT 8

~ ~ HIGH BONGO

'" BASS SELECTION

0--5

g
:!w

INPUT 1

INPUT 12

LOW BONGO

~~0

BOSSA NOVA 4/4

.TANGO

INPUT 2

INPUT 11

WALTZ

]/4

INPUT 10

SHUFFLE

214

iNPUT'4

INPUT 9

MARCH

214

BEGUINE 414

INPUT 5

INPUT

INPUT 6

iNPiJT1

414

ROCK POP 414

SAMBA 4/4
CHA CHA

414

RUMBA 414

SLOW ROCK

SWING

5

:::>0

ii'iPiiTJ

8

~~

zK

LONG CYMBALS ~w

OR CLAVES

0

MARACAS

SHORT CVMBAL 5 ~

S-"tJ4S/1

5- 1038/1

• This output allows the musician to obtain a "basso alternato" accompaniment using two notes of
his choice.
* * This output must be connected so as to drive the "snare drum" when the rhythms corresponding to
pins 7, 8, 9, 10, 11, 12 and 13 are generated, and the."claves" when the rhythms corresponding to
pins 14,15,16,17 and 18 are generated. It can also be used to modulate a chord played on the organ.
This pin generates a down-beat trigger which can be used to drive an external lamp to indicate
the start of each measu reo

BLOCK DIAGRAM

307211TS
MATRIX

MULTIPLEXER

liiFUrs

230

STATIC ELECTRICAL CHARACTERISTICS(positive logic,V GG =-11.4 to-12.6V,
Vss= 4.75 to 5.25V, T. mb = 0 to 70°C unless otherwise specified)
Parameter

Test conditions

CLOCK INPUT
V 1H

Clock high voltage

Vss -l.6

V 1L

Clock low voltage

Vaa

Vss

V

Vss -4.1

V

Vss

V

Vss -4.1

V

DATA INPUTS (lN1 ..... IN12)
V 1H

Input high voltage

Vss -l.5

V 1L

Input low voltage

IVGG

ILl

Input leakage current

V j = V ss -10V

T. mb = 25°C

10

IlA

vss

V

Vss -4.1

V

EXTERNAL RESET
V 1H

Input high voltage

Vss -1.6

V 1L

Input low voltage

VGG

RIN

Internal resistance to V GG Vo=Vss-5V

400 600

kn

DATA OUTPUTS
RON

Output resistance

V 0= Vss-1 to Vss

V OH

Output high voltage

IL = 1 rnA

I Lo

Output leakage current

V j =V 1H

250
Vss-O.5

Vss

V

10 Il A

POWER DISSIPATION
7

231

n

Vo=Vss-10V

T. mb = 25°C

Supply current

500

Output voltage vs. external supply
voltage (VExrVss)

Output voltage vs. supply voltage
(VGG-V ss )

G 1UI

r;m
¥ss

(mY)

INSTR.

bVoo .Q~xr

v.

RL

./

500

...... [RL =10kO

.......

160

m

vGG

i-""

200

-

ffi ..

.2~
v

Yo

-I

240

G 15lt

Yo

RL .5kO

.-

400

./
120
80

40

o

r- - - -~ ~-

-

r--

......
.......

-9

_f-

l,'

::, >:':·'''/;':.~':~~~.qfJS~~~

;I~~l

i',,:,,;:,'\"i~le:,

, e/;. ~ :':'" '.

= -11.4 to

VGG

-12.6V, Vss= 4.75 to 5.25V, T amb = 0 to 70 °C unless otherwise specified)

Parameter

Test conditions

Min. Typ.

CLOCK INPUT
f

Clock repetition rate

DC

tpw *

Pulse width

5

tr **

Rise time

100

t f **

Fall time

100 j1.s

100 kHz
j1.s
j1.s

EXTERNAL RESET
Pulse width

j1.s

* Measured at 50% of the swing

** Measured be,tween 10% and 90% of the swing
TIMING WAVEFORMS (positive logic)

\n.2
EI::::::!~I:::E:;n.Ci:l=DIIC=I::J=I=C:~I! : I
I

32

I

2

I

:u-u-u--tsL

CLOCK
INPUT
tpw

EXTERNAL
RESET

r--'--!

I
I
I

_ _ _ _ _ _ _ _ _ _~r--lL_ _ _ _ _ _ _ _~
I
I

h-sL--

OUTPUT
SIGNAL

I

I

~
I

EXTERNAL
INSTUMENT

I
I

DOWN-BEAT

_ _ _ _ _ _- - ' r - - l L_ _ _ _ __

~

I

I

S.102'"

Note: In these timing waveforms it has been assumed, for example, that in the truth table bits n + 1 and 2
have not been programmed i.e. the musical instrument has not been introduced.
All the other bits have been programmed for the introduction of the instrument.

233

INSTRUMENT BEATS VERSUS RHYTHM PROGRAM
EXTER
CLOCK

TRUTH TABLE
{Rhythm programl

0

Count

~
1
2
3
4

¥
P
U
T
1

0
U
T
P
U
T
2

0
U
T
P
U
T
3

0
U
T
P
U
T
4

DEVICE OUTPUT SIGNALS

EXTERNAL
RESET

0
U
T
P
U
T

0
U
T
P
U
T

5

6

0
U
T
P
U
T
7

0
U
T
P
U
en >.T 0
",,""
8 > 0:.5

~I

0
U
T
P
U

0 0
U U
T T
P P
U U
T T
2 3

;r
1

0
U
T
P
U
T
4

iX X

I2S.

X

I
I

iX

X

5
6
7

0 0
U U
T T

P P

P P

U U
T T
5 6

U U
T T
7 B

I
N
S
T
R.

I
I I
I I
N N N N N
S S S S S
T T T T T
R. R. R. R. R.

I
N
S
T
R.

I
N
S
T
R.

1

2

7

8

3

4

5

6

~

-

I...,

I ....

IL..
I~

I

X

0 0
U U
T T

DOWN BEAT

INSTRUMENT BEATS*

X

8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23

X

X

1-1

-~;'

25
26
27
2B

X

....

C><

IX
X

....
I!-

X

IX

....

IX

29
30

IX IX

C><

XX

32

* The lowering of the music signals depends on the intrinsic decay time of the sound generator and not
on the length of the enable pulses. Each beat can therefore last for more than one elementary time

234

TYPICAL APPLICATIONS
Figure 1 shows the typical application of the M 253 (AA).
With two M 253 devices it is possible to increase the number of rhythms or the number of
instruments available, or the number of elementary times, as shown in figures 2, 3 and 4
respectively.
The use of a memory matrix allows the customer complete flexibility, since modification of
the memory is quick and relatively cheap.
Fig. 1 - Rhythm system (standard content)
'55

OOWN(OB)
BEAT
EXTERNAL
litE ET

22

22

22

k1l

kn

klI.

22
kn

23 19

10

LOW BONGO

20

LONG CYMBALS

21

SHORT CYMBAL 5

11

12

M253

"

AA

22

MARACAS

HIGH BONGO

14

SNARE 0 UM
or CLAVES

15
16

BASS

DRUM

17

1-+-+-"--+-+-++8A55 SELECT!ON

c.....,---c..+--'~.J

:~

----~-t_-_+_+~--~~--+---OvGG

S-IOloJ/2

Fig. 2 - Increase in number of rhythms
EXTERNAL
RESET

"s5-

~.--~-~==============~--l

(DI)

AHnHMS1~
The rhythms may be selectl!d from both devices simultaneously.
23-5

TYPICAL APPLICATIONS (continued)
Fig. 3 - Increase in number of instruments

EXTERNAL

VSS~
DOWN
BEAT
(DB)

"'~"~"f.cctitoeiCi·'1....,-__LJ_--f ClOCfI.

IRESET

M2S3

EXlER

RESET

M2S3

,

2

INSTRUMENTS

5-.. 41/'

Fig. 4 - Increasing the number of elementary times

~~+--" 0 - - - - 0

"ss

Vss

M253
2

;

ii
INPUTS

Note: The total number of elementary times is given by the sum of the elementary times of the individual devices

236

Ii

~

Ii
,1
I

CIRCUIT FOR CHANGING THE NUMBER OF ELEMENTARY TIMES
'55

VGG

,

1

23 ,.

10

20

INSTR~ENT

7

21

INSTRUMENT

6

22

INSTRUMENT

5

INSTRUMENT

4

INSTRUMENT

,

11

2

M253

13

,.
15

"

'-------~---1f---_+-~---<>--+--4---_<'lVGG
S-1044/1

To obtain a required number of elementary times "N" simply put a cross in the "N + 1"
position of the column which now represents the reset output, rather than the 8th
instrument.
The DB output can be used as down-beat because it appears at the beginning of each
measure. Since the pulse is only 2 - 3IJ.s long it must, however, be stretched and buffered to
enable it to drive a lamp.
Full information on the use of the M 253 in electronic organs and other applications will be
found in Technical Note no. 131 available on request.

COMPLETING THE TRUTH TABLE
The ROM truth table has been organized in 32 rows which represent elementary times and
96 columns (12 groups of 8) where each group represents a rhythm which has at its disposition 8 programmable instruments. To programme each rhythm one indicates (with a cross)
in the appropriate boxes the timing for each beat required for each instrument.
In the given truth table we show an example of how to programme three imaginary rhythms,
the first is in 4/4 time, the second in 3/4 time and the third in different time, chosen
randomly. Each cross corresponds to a beat of the indicated instrument or, in logic terms, to
the presence of a "'" level (positive logic) at the output.
The absence of a cross indicates that the corresponding instrument is not used in that part
of the rhythm. Rhythm 3 is an example of how to programme for a time which differs from
4/4 or 3/4. This is achieved by using output 8 to reset the rhythm and not to drive an
instrument. The rhythm is valid till elementary time no. 15.

237

COUNT
TO
32

RHYTHM 6
COUNT
TO

32

RHYTHM 7

00 00 000 00

o

RHYTHM 8

0 0 00 0 00 00 00 0 0 0

RHYTHM 10

0 00 00 00 0 00

o

0

o

0 0

P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 567 8 1 2 3 4 5 6 7 8 1 2 3 4 5 678 1 2 3 4 5 6 7 8 1 2 3 456 7 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

RHYTHM 9

o

U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T

-

238

RHYTHM 12

RHYTHM 11
COUNT
TO
32

a a a a a a a a a a a a a a a a

U
T
P
U
T
1

U
T
P
U
T
2

U
T
P
U
T
3

U
T
P
U
T
4

U
T
P
U
T
5

U
T
P
U
T
6

U
T
P
U
T
7

U
T
P
U
T

U
T
P
U
T
B 1

U
T
P
U
T
2

U
T
P
U
T
3

U
T
P
U
T
4

U U U
T T T
P P P
U U U
T T T
5 6 7

U
T

P

U
T

B

1
2
3
4
5
6
7

B
9
10

11
12
13

14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

239

LINEAR INTEGRATED CIRCUIT

SAJ 210

7-STAGE FREQUENCY DIVIDER FOR ELECTRONIC ORGANS
• HIGH CROSSTALK IMMUNITY - TYP. 70 dB
• OUTPUT SHORT CIRCUIT PROTECTION
The SAJ 210 is a monolithic integrated circuit in a 14-lead quad in-line or dual in-line
plastic package. It has been created by means of the standard bipolar technique and
especially developed for use as frequency divider for electronic organs. Seven flipflops connected in 5 groups are housed on one silicon chip. The input and the output
of each flip-flop is externally accessible.

ABSOLUTE MAXIMUM RATINGS
V,
V;

V
P,ot
T,tg
Top

Supply voltage
Input voltage
Output current
Power dissipation at Tamb -==: 70°C
Storage temperature
Operating temperature

V

14

Vi

= V,

5 mA
0.5
W
-55 to 125 °C
o to 70 °C

• With reference to Fig. 5, the current can be greater than 5 mA, but for t

< 0.1

mS

ORDERING NUMBERS:
SAJ .210 AX2 (for 14-lead quad in-line plastic package)
SAJ 210 AX7 (for 14-lead dual in-line plastic package)

MECHANICAL DATA

Dimensions in mm

SAJ 210 AX7

SAJ 210 AX2

241

5/73

SAJ210
CONNECTION DIAGRAM

SCHEMATIC DIAGRAM

(top view)

(each flip-flop)

OUT 1

GND
INPUT

1

2

OUT 2

INPUT

3

3

OUT 3

INPUT

5

4

OUT 4

INPUT

b

5

OUT 5

INPUT 7

b

OUT b
OUT 7

+vs

INPUT
S5 0014

ELECTRICAL CHARACTERISTICS
(T amb

= 25

0

C, V,

= 9 V unless otherwise specified)

Parameter

Test conditIons

DATA INPUT
V1L

Input low level

V, = 8t014V

0

VIH*

Input high level

V, = 8to 14 V

6

IIH

Input high level current

Vi = 8V

1.5

V
V

1

3 rnA

DATA OUTPUT
VOL

Output low level

RL =3k!l

V

Output voltage impressed Low level

VOH

Output high level

RL =3k!l
V. = 12 V

RL =3k!l

0.1

V

6

V
V
V

7
,.'

9.5

tr

Rise time

Vi = 8V

CL =10pF

0.1

itS

tf

Fall time

RL =3k!l

CL = 10 pF

0.2

itS

Id

Total current drain

RL =3k!l
All flip-flops at high level
All flip-flops at low level

242

35
16

rnA
rnA

SAJ 210
Fig. 4 - Power rating chart

Fig.3 - Typical input voltage
for triggering

GS 0148

v

l;""

(V I

/"

10

l;""
,/

V

V

V

(mWl r---t---t---t---r---r---r--1
800~__+-__+-__+-__~__r-__r-~

I-'

V

12

Plot

V

bOO~

__+-__+-__+-__r-__r-__r-~

V

V

400r---t---t---t-~r---r---r--1

.
o~

11

10

12

o

13 Vs (VI

Fig. 5 - Typical output current
vs output voltage
, m.

10
(rnA)

.lV)9 v

20

-rv;:o

"-

,

15
\

"~

10

\
\

o

o

\

244

__

~

10

__

~

20

__

__ __
40 50

~~

30

~

~

__

bO

~

Tamb (DCI

SAJ 210
TYPICAL APPLICATIONS

OUTPUT WAVEFORM

OUT

IN

0l-8A 130

RL

=

3 Kil

RS

=

IBOO

245

I

LINEAR INTEGRATED CIRCUIT

TAA 550
TBA 271

VOLTAGE STABILIZER
• LOW TEMPERATURE COEFFICIENT
• LOW ZENER RESISTANCE

The TAA 550/TBA 271 is a monolithic integrated voltage stabilizer in a TO-18 two pins
metal case. It is especially designed as voltage supplier for varicap diodes in television
tuners.
The TAA 550/TBA 271 is supplied in 3 groups of stabilized voltage identified by a letter
after the code, as shown in the "ORDERING NUMBERS".

ABSOLUTE MAXIMUM RATINGS
Zener current at Tease ~ 70°C
Storage temperature
Operating temperature

* Refer to

15 rnA
-20 to 150°C

*

"Power rating chart" (Fig. 1)

ORDERING NUMBERS: TAA 550 A or TBA 271 A (for V z range: 30-32 V)
TAA 550 B or TBA 271 B (for V l range: 32-34 V)
TAA 550 C or TBA 271 C (for Vz range: 34-36 V)

MECHANICAL DATA

Dimensions in mm

Lead 1 connected to case

if
en,

...;f
~~L-..,

d
~
POI8-E

247

5/73

TAA550
TBA 271
CONNECTION DIAGRAM

(bottom view)

550036

SCHEMATIC DIAGRAM

·550037

248

TAA 550
TBA 271
TEST CIRCUITS
Circuit No.1 (for Vz measurement)

Digital Voltmeter

DVM

+

V z - Vre!

t

Vre!

30V

V DVM

Circuit No.2 (for rz measurement)

lAC = 0.5 rnA

!

Vsv
0.5rnA

249

=, KHz

TAA550
TBA 271
THERMAL DATA
R,h j.ca..
R'h j •• mb

ELECTRICAL CttARAqTERISTICS (Tomb
Parameter
Vz

rz

AVz
AT.mb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

Zener voltage

Zener dynamic
resistance
Temperature coefficient

= 25°C

unless otherwise specified)

Test conditions
I. = 5 mA (circuit No.1)
for TAA 550 A/TBA 271 A
for TAA 550 B/TBA 271 B
for TAA 550 C/TBA 271 C
I.
f

= 5mA

150 °C/W
400 °C/W

Min. Typ. Max
30
32

34

31

33
35

36

V
V
V

25

n

32.2
34.2

IAC= 0.5 rnA

= 1 kHz (circuit No.2)

10

Unit

=

Iz
5 rnA
AT. mb = Ot050°C

250

-3.2

+1.6 mV/cC

I

TAA 550
TBA 271

II
;

i

I
~

!d

Fig. 1 - Power rating chart

Fig.2 - Typical zener dynamic
resistance vs zener current
GS 0201

~22

\

rz
(0)

1

I

rz = ; (lz)

..

1

I
f

~

I
1KHz

,f

JAr ;~

"

10

Fig. 3 - Typical temperature
coefficient

I

\

20

1

II

'", .

[

~r--...

r-

I I

o

6

9

12 Jz(mA)

;lVz(t)

Fig. 4 - Typical

vs time
AVz(oo)

GS 0203

AV z
AT amb

GS 0204

!

I} =

J

(mV/oC)

5·~A

+2
FREE Al

~ ZTH

+1

o

1\

0.8

"'",-

-1

--.

0.6
0.4

-2

0.2

-3

-4

o

3

6

9

o

12 Jz(mA)

251

HEAT SINK (65°C/W)

II
I
1

11

Ii

II
o

4

6

8 t (min)

TAA 550
TBA 271
TYPICAL APPLICATION
Rp= 18K

-- -- -

)
15KOl

V, = 160V

~~-----~
-----+--~- - - --~
TO VARICAPS

252

850040

1AA611A

LINEAR INTEGRATED CIRCUIT
AUDIO AMPLIFIER
•
•
•
•

OUTPUT POWER 1.8 W (9 V - 4 il)
LOW DISTORTION
LOW QUIESCENT CURRENT
HIGH INPUT IMPEDANCE

The TAA 611 A is a monolithic integrated circuit in a 14-lead quad in-line plastic
package or in a TO-100 metal case.
It is particularly designed for use in radio receivers and record-players as audio
amplifier. The usable range of supply voltage varies from 6 V to 12 V and the circuit
requires a minimum number of external components.

ABSOLUTE MAXIMUM RATINGS
V,

TAA 611 A12 TAA 611 ASS

Supply voltage

12

1 A

Output peak current

~Tstg.

Tj

• For Vs

Power dissipation at Tamb ~

25°C

at Tcase ~

70°C

1.35 W

at Tcase ~ 100°C
Storage and junction temperature

<

12 V. Vi max

ORDERING NUMBERS:

V

-0.5 to 12 V

Input voltage

0.57 W
1.6 W

3.1 W
-40 to 150°C·

= Vs
TAA 611 A55 (for TO-100 metal case)
TAA 611 A12 (for quad in-line plastic package)
Dimensions in mm

MECHANICAL DATA

.'

.19
'.~-

~
~

••••••• ___ . . . . . ____ .J

_M

0.45

2.54

15.24

~.
~;".

_ _.u

~

.TAA 611 ASS

Supersedes issue dated 5/73

253

TAA611A12

6/75

1AA611A
CONNECTION DIAGRAMS
For TAA 611 A12

For TAA 611 ASS

BOOTSTRAP

VS

NC

NC

COMPo

OUT

COMPo

NC

FEED-BACK

GND

NC

NC

IN

GND

BOOTSTRAP

7 FEEDBACK

GND

550051

S80050

SCHEMATIC DIAGRAM
(5)

7

9 (3)

r---~--II-+-----_-o 1 (14)

6

(7)

"'---1>--'"1-.-+--o

lOW

c--,.--t----+--r:::::JI-l----+--o

2 (12)

,----t----~_o B (4)

4 (10)
SS 0052

254

The pin numbers in
brackets refer to the
TAA 611 A12 and those
without brackets refer
to the TAA 611 ASS.

I:

1AA611A'

II
II~
•
"

i

::;

TEST CIRCUITS
Circuit No.1 (G v = 50)

+

Vs

IN

D.l
f.LF

I

r

+
lODf.LF/I2V

55 0053

Circuit No.2 (G v

= 250)
+ Vs

5S 0054

255

TAA611A
THERMAL DATA
~

R'h j-ca,.
R'h j-amb

I

(maximum values)

TAA 611 A121 TAA 611 A55

I

Thermal resistance junction-case
Thermal resistance junction-ambient

16 ac/W
93 aG/W

I

50 °C/W
220 °G/W

ELECTRICAL CHARACTERISTICS
(Tamb = 25 aG, Vs

=9

V, refer to the test circuit no. 2 unless otherwise specified)

Parameter
Va
Id
Id

Quiescent output
voltage

4.8

3

mA

Quiescent drain current
cif output transistors

1

rnA

170

mA

Drain current

Ib

Input bias current

P •
a

Output power

Pa =1.15W

=

RL

8n

0.1
d

= 2%
= 6V

f

d
Vs
Vs
Vs
Vs

= 10%
= 6V
= 6V
= 9V

f

= 9V

Internal feedback
resistance (see
schematic diagram)
Input impedance
(open loop)

256

=

=
RL
RL
RL
RL

0.8

IJ.A

1 kHz

RL = 4n
RL = 8n
RL = 4n
RL = 8n

Vs
Vs = 6V
Vs = 9V
Vs = 9V

Zi

V

Total quiescent
drain current

Id

R/

Min. Typ. Max. Unit

Test conditions

0.50
0.35
1.4
0.9

W
W
W
W

0.65
0.45
1.8
0.85 1.15

W
W
W
W

7.5

kn

5

Mn

1 kHz

= 4n
=
=

=

8n
4n
8n

1AA611A
ELECTRICAL CHARACTERISTICS

Min. Typ. Max. Unit

Test conditions

Parameter

Test circuit 1

Distortion

d

(continued)

= 50 mW
= 8.n
Po = 0.5 W
RL == an

Vs
f
Vs
f

= 9V
= 1 kHz
= 9V
= 1 kHz

Vs
f
Vs
f

= 9V
= 1 kHz
= 9V
= 1 kHz

Po

RL

0.4

%

0.3

Ofo

1.7

Ofo

1.2

0/.

68

dB

Test circuit 2

= 50 mW
= 8.n
Po = 0.5W
RL = 8.n
Po

RL

Gv

Voltage gain
(open loop)

RL

= 8.n

* External heatsink not required except for TAA 611 A55 at Vs

Fig. 1 - Typical output power
vs load resistance

=

9 V. RL

=

4 Q

Fig.2 - Typical output power
vs load resistance
GS

GS 022

22

Po
(W)

)'\

f

1KHz
At clippinr,
v I L5

1.2

"'
0.8

0.4

r.... r'-

~

~

""

1.6

I. .1

!

r\
r"-..

1.2

~
......... v!
'''9

........ .......

Ii

--

10

-r-

~

0.8

-

r- -=-s~6'yr-

4

257

i

[,

8

10

I
!

~ r---....

--

0.4

12

1O~

d

Gvi25

~"'9v

~6V
---r-

f = 1KHz

r12

....... r'-_

RL (U

TAA611A
Fig. 3 -Typical distortion
vs output pewer

Fig. 4 - Typical distortion
vs output pewer

22.

d
(%)

8

Vs -9V
f- RL =80
1 = 1KHz

-

0226

d
(%)

10

W~s-9V
RL =40
1--1 = 1KHz

I

/,

1/,

"{

/ II

-

o

-

o

TEST CIRCUIT 2
TEST CIRCUIT 1
0.2

0.4

0.6

/

~

"- ........ ,...TEST CIRCUIT 2

J

........

V

/ I
/11
J

TEST CIRCUIT 1 L

:....--'"

I

0.8

Po(W)

0.8

0.4

Fig.5 - Typical relative
frequency response

1.2

1.6

Fig. 6 - Typical relative
frequency response
S 0227

G

=8

G

jdB)

Po (W)

(dB)

o
'\

/

\

/

I

\

-5

-5

Vs -9VII
RL =80

-10

TW rlRr~ITll

-15
0.01

0.1

irl

-10

Vs -9 V
RL =80

I

-15
10

f (kHz)

0.01

258

0.1

Cl

jCI\I2

II
10

f (kHz)

TAA611A
Fig. 7 - Typical voltage gain (open loop) vs frequency
Gy

GS 02..2.J

r-....

(dB)

r--.....

1\

60

"'\..

l'....

50

"-

40

"

r'-.
\

t'o-.

~"~'"

1"<

30

I

~

~~

\~

"''\.""

'\

,>'.....

I-r-----

1\

""

Vs -9 V I

10
10K

lK

100

10

\~

I\.

RL =BD

20

\toca

'\.

\

1M

lOOK

f (Hz)

Curve 1: TAA611 A 55, C9-B = B2pF

CB-2 = 1.2 nF

ClO_1=0.lIL F

TAA 611 A 12, C3-4 = B2pF

C4-12 = 1.2nF

CI-14 = O.lILF

q_

Curve 2: T AA 611 A 55, C B = 56pF

CB- 2 = 150 pF

ClO-1 =O.IILF

TAA611 A 12, C3- 4 = 56pF

C4-12 = 150pF

Cl-14 =O.lILF

Fig. 9 - Typical output power
vs input voltage

Fig. 8 - Typical output power
vs input voltage
GS 02 0

GS 0231

•

(W)

-

TEST CIRCUIT 1

-

RL =BD

(WI

/
/

/

TEST CIRCUIT 2
RL =BD

-

J

O.B

O.B

/

V

1/

0.6

/

0.6

/

/

/

0.4

0.2

V

V

/

/
0.2

o

./
10

20

/

0.4

30

40

50

V.(mV)

259

-

V

/

........
3

7

V,(mV)

i.

r

1AA611A
Fig. 10 - Typical power dissipation
and efficiency
vs output power

Fig. 11 - Typical power dissipation
and efficiency
vs output power

,

--"" J>U

Ptot
(W)

V

0.6

Ptot

./

0.4

/
0.2

I

/

l>~

l..-

2

(W)

/

0.8

.......

/'

i'-- r--

V
40

/

0.6

/

0.4

/

I
I

'l1

V

20

/

Vs~9

0.2

0.4

O.B

0.6

/'

0.2

V

RLiB0i

.....-

/

60

V

-

pto \

(%)

-...-

Vs~9

I
0.4

Fig. 12 - Typical power dissipation
and efficiency
vs output power

-

60

40

20

v
-

RL =40 -

o

Po(W)

BO

/'

[/

I-

f-""

(%)

I--

I

1.2

0.8

Fig. 13 - Typical power dissipation
and efficiency
vs output power
GS 0235

GS 02 4

~

Ptot

Pto.t

(W)

0.6

0.4

/

/

V

V

/

.....V

,.,.,-

(W)

60

0.6

(%)

60

"......

Ptot

-

Ptot
~

0.2

(%)

V

40

0.4

20

0.2

t

v:.
V

......- /""

I

0.1

0.2

0.3

I
0.4

40

~

Vs~6

V -

20

-

RL =4:0.

Vs·~6V .- r--

RL =80

~

o

J

0

o

Po (~)

2'60

0.1

0.2

0.3

0.4

0.5

Po(W)

1AA611A
Fig. 14 - Typical drain current
vs output power

Fig. 15 - Maximum power dissipation
vs load resistance

r.. 0236

I,
(rnA )

Ptot

GS 02

(W)
",-

RL =80

150

./

V
100

/

\.

V

\

V

I\.

0.8

'\.

/

0.6

'"

/

/

o

""

0.4

1/

50

l-- ~

'~"'.9f'"v
r--...

-v

I"'---- :-..

~"'6

r-. r-

0.2

t"-'

rJ
o

0.2

0.4

0.6

0.8

Fig. 16 - Power rating chart
(T AA 611 ASS)
PIOI
(W)

10

Po(w)

.....

12

Fig. 17 - Power rating chart
(TAA 611 A12)

-

G 1683

-

G 1682

Ptot
(W)

WITH INFINITE HEATSINK
1.5
WITH INFINITE HEATSINK

"
FREE AIR

FREE AIR

05

,....
o.

-so

o

50

-50

261

o

50

1AA611A
Fig. 19 - Typical quiescent drain
current vs ambient
temperature

Fig. 18 - Typical quiescent drain
current vs supply voltage
,

G~

0240

Vs~9 V

'.

(mA)

[mAl

-

I

--

\ [total)

~.!-r-'-

'. (total)

I, [output transistors)
". (output transistors)

o

o
6

Fig. 20 - Typical quiescent output
voltage vs ambient
temperatu re

-1

-

--

---.:

-2

-3

r---

•

Vs~9

2 2

--.. ......
...........

V

I

-4

o

o

Vs (V)

10

20

30

40

50

262

10

20

30

40

50

r.s

0241,

1AA611A
TYPICAL APPLICATIONS
Fig. 21 - Audio amplifier for record-player
+ v,

=9V

150n
+
25/LF/6V

I-

55 0055

Fig. 22 - Audio amplifier for radio

+ Vs -9V

"'::2. '"
30n

I-

+

50/LF/6V

56pF

150pF
S50956

The pin numbers in brackets refer to the TAA 611 A12 and those without brackets refer
to the TAA 611 ASS.

263

LINEAR INTEGRATED CIRCUIT

lAA6118

AUDIO AMPLIFIER
•
•
•
•

OUTPUT POWER 2.1 W (12 V - 80.)
LOW DISTORTION
LOW QUIESCENT CURRENT
HIGH INPUT IMPEDANCE

The TAA 611 8 is a monolithic integrated circuit in a 14-lead quad in-line plastic
package.
It is particularly designed for use in radio receivers and record-players as audio
amplifier. The usable range of supply voltage varies from 6 V to 15 V and the circuit
requires a minimum number of external components.

ABSOLUTE MAXIMUM RATINGS
Vs
Vi'

Supply voltage

I"

Output peak current

P tot

Power dissipation at Tamb ~ 25°C
Storage and junction temperature

~Tstg, T j

, For Vs

<

15 V, Vi max

ORDERING NUMBER:

-0.5 to 15

V
V

1
1.35

W

-40 to 150

°C

15

Input voltage

A

= Vs
TAA 611 812

MECHANICAL DATA

Supersedes issue dated 5/73

Dimensions in mm

265

6/75

TAA6118
SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

BOOTSTRAP 1

14·V s

N.C.

13 N.C.

FREQ.COMP. 3

12 OUTPUT

FREQ.COMP. 4

11 N.C.

FEED-BACK 5

10 GND

"

l2

N.C.

9 N.C.

INPUT

8 GND
10

S80044

550045

TEST CIRCUITS
Circuit No.1 (G v

= 50)

Circuit No.2 (G v
+V,

266

= 250)

1AA6118
THERMAL DATA
-+ Rth j·ca,e
Rth

j·amb

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

16 °C/W
93. o C/W

ELECTRICAL CHARACTERISTICS
(Tamb = 25°C, refer to the test circuit no. 2 unless otherwise specified)
Parameter

Vo

Id

Id

Id

Ib

"

Po

R'f

Z;

Quiescent output
voltage
Total quiescent
drain current
Quiescent drain current
01 output transistors
Drain current

Input bias current
Output power

Test conditions

V, = 9V
V, = 12V

...

4.8
6.3

..

V
V

-

3

V, = 9V
V, = 12V

3.5

rnA
rnA

V, = 9V
V, = 12 V

1
1.2

rnA
rnA

170
235

rnA
rnA

RL = 8n
P o =1.15W
Po =2.1W

V, = 9V
Vs = 12 V

V, = 9V
V, = 12 V

60
0.1

d = 2%
V, = 9 V
V, = 12 V

f = 1 kHz
RL = 8 Q
RL = 8 Q

d = 10%
V, = 9V
V, = 12 V

1 = 1 kHz
RL = 8 Q
RL = 8 Q

Internal feedback
resistance (see
schematic diagram)
Input impedance

Min. Typ. Max. Unit

open loop

267

1.5

1

nA
itA

0.9
1.7

W
W

1.15
2.1

W
W

7.5

kn

5

Mn

TAA611B
ELECTRICAL CHARACTERISTICS
Parameter
d

Distortion

(continued)

Test conditions

Min. Typ. Max. Unit

Test circuit 1
RL = 8.n
P o =50mW
Po = 50 mW
Po = 0.5W
Po = 1 W

f

= 1 kHz

V,
V,
V,
V,

=
=
=
=

9V
12 V
9V
12 V

0.4
0.3
0.3
0.2

%
%
%
%

RL = 8.n
Po = 50 mW
P o =50mW
Po = 0.5W
Po = 1 W

f

=
=
=
=
=

1 kHz
9V
12 V
9V
12 V

1.7
1.5
1.2
1

%
%

%

RL = 8.n
RL = 8.n

V, = 9V
V, = 12 V

68
70

dB
dB

Test circuit 2

Gv

Voltage gain
(open loop)

268

V,
V,
V,
V,

0/.

1AA6118
Fig. 1 - Typical output power
vs load resistance

Fig.2 - Typical output power
vs load resistanc<>
GS'0205

G

I

1

fl=lK~Z
At clipping

"-

1.6

l'......

1.2

"0.8

-..

0.4

"-

vi

" ,I<>v
- r_-

I'"

'i"-..~'9

1

~

Vs':6 V 1

~

"-

~

1.6
1.2

..........

0.8

-

r-..

'-.!j'1

~r-

"

b-.

v

'Z'9 v

'-....

~V

0.4

0206

r-

f = 1 KHz
d·lO%

-

1

.......

I

I

-

12

--r-'"-

12

Fig. 3 - Typical distortion
vs output power

Fig. 4 - Typical distortion
vs output power
GS 020:

d

GS 0 208

d
(% )

(%)

-

-

'Vs~'12·~V I

r-

RL = 8D
f = 1KHz

f-

V;~9IV

J,

RL = 8D
=lKHz
f

,

fj

III
I

-Test Circuit 2
-:.Test Circuit 1
0.5

I

VI

-

r-:: ::Test

/y

I--'V'

-

f- - Test Circuit 1

,/

1.5

Circuit 2

a
Po (W)

269

a

0.2

0.4

~

0.6

I

I II
/

,/

0.8

Po (W)

TAA611B
Fig."S - Typical voltage gain (open loop) vs frequency

Fig. 7 - Typical relative
frequency response

Fig. 6 - Typical relative
frequency response
G

G

2

(dB)

/

/

\

\

-5

-5

- 10

0"11

G

(dB)

Vs= 12 V

II

-15
0.01

-10

RL =80
Test Circuit 1

I
0.1

IIII

I

0.01

f (kHz)

270

RL =80
Test Ci rcuit 2

II

-15
10

Vs=12V

-

I
0.1

I III

I
10

f (kHz)

1AA6118
Fig. 8 - Typical output power
vs input voltage

Fig. 9 - Typical output power
vs input voltage
021

S 021

(W)

)

II

I-- Test Circuit 1
RL = 8D
I--

t--

J

Vs~12V,

J

I--'Vs~i2V

II

1.6

II

Test Circuit 2
RL =8D

II

1.6
J

J

II

1.2

f7

1.2

I

J

V

0.8

V

0.8

/
0.4

/

/ '"

/ '"

0.4

.-V

V

20

40

60

80

o

V; (mV)

Fig. 10 - Typical power dissipation
and efficiency vs
output power
GS 021'

Ptot
(W)

(%)

0.8

'/

0.6

1/
0.4

0.2

p,.,
(W )

~

~

V

V ......

j~

V
V
0.2

I I I
0.2

0.4

0.6

0.8

I

V

Vs~9

R

V

= 8D
LI
I

o

Po(W)

271

0.2

f-

"

40

20

/

t-

p

V

(%)

60

r""--'f'..,.

.IV -' V

0.4

_ fRL = 16 D _

021

I"

0.6

Vs~12V

V; (mV)

 V•

~

..............

v
"9
'v

....... .......

i'-~

0.2

r-

-

FREE AIR

o.
10

Po(W)

0-1 ~z

:Jtot
(W)

r\.

'-

1.5

0.5

Fig. 15 - Power rating chart

\

\.

V

100

GS 0211

1

V

150

Fig. 14 - Maximum power dissipation
vs load resistance
(W)

~

. /.....
~

20

I
o

'1
(%)

12

-50

272

o

50

TAA6118
Fig. 17 - Typical quiescent drain
current vs ambient
temperature

Fig. 16 - Typical quiescent drain
current vs supply voltage
GS

I_

GS 0221

0220

l_

--

(mAl

-

f..- f..-

-

I_

I ut transistors)
I,lou p.

-

l ulput tninsistors)
0

vs~Lv

o
10

Vs lV)

Fig. 18 - Quiescent output voltage
variation vs ambient
temperature

-1

I, (total)

ImA)

f..- f..-I-'""

,.'\tOt!\)

l-

I

- --

--

.z

"""'- .........

"-J

Vs ·12 V

·3
-4
10

20

30

40

50

273

o

I
10

20

30

40

50

TAA611,8,
TYPICAL APPLICATIONS
Fig. 19 - Audio amplifier for radio

IN ..

5O/LF/6V

I!

Fig. 20 - Audio amplifier for record-player

IN.

274

LINEAR INTEGRATED CIRCUIT

TAA 611C

AUDIO AMPLIFIER
•
•
•
•
•

OUTPUT POWER 3.3 W (15 V - 8 il)
LOW DISTORTION
LOW QUIESCENT CURRENT
SELF CENTERING BIAS
HIGH IMPEDANCE

The TAA 611C is a monolithic integrated circuit in a 14-lead quad in-line power
plastic package.
It is particularly designed for use as audio amplifier in radio receivers, record players
and portable TV sets. The usable range of supply voltage varies from 6 to 18 V, and
the circuit requires a minimum number of external components.
The package has very low thermal resistance. To decrease the thermal resistance
further an external heat-sink can easily be mounted by means of ordinary hardware.

ABSOLUTE MAXIMUM RATINGS
Vs
Vs
Vi'
10
-+P'ot

-+Tstg , Tj

Supply voltage (no signal)
Operating supply voltage
Input voltage
Output peak current
Power dissipation at Tamb tf

25 °C"
at Tamb ,!f 25 °C '"
at Tea,. tf 100 0 C
Storage and junction temperature

22
18
-0.5 to 20
1
1.35
2
3.1
-40 to 150

V
V
V
A
W
W
W
°C

=

, For Vs < 20 V, Vi max
Vs
For TAA611 C72
••• For TAA 611 CX1 and TAA 611 C11
ORDERING NUMBERS:

TAA 611 C72 (for quad in-line plastic package with spacer)
TAA 611 CX1 (for quad in-line plastic package with external bar)
TAA 611 C11 (for quad in-line plastic package with inverted external bar)

Supersedes issue dated 5/73

275

6/75

TAA 611C
MECHANICAL DATA

(Dimensions in mm)

Quad in-line plastic package
with spacer for TAA 611 C72
(see also "MOUNTING
INSTRUCTIONS")

C-0058

Quad in-line plastic package
with external bar
for TAA 611 CX1

8

35

Q25

44

r - - - - - - - - - - ' - ' - - - - - - - - , o:fotA(2HoIesl

Quad in-line plastic package
with inverted external bar
for TAA 611 C11

276

PO04-B

TAA 611C
SCHEMATIC DIAGRAM

CONNECTION DIAGRAM

I.
BOOTSTRAP

I

I. V.

N. C.

13 N.C.

FREQ. COMPo

3

12 OUT

FREQ. COMPo

4

II N. C.

FEED- BACK

5

10 GND

12

N. C.

9

N.C.

IN

S GND

TEST CIRCUITS
Circuit No_ 1 (G v

= 50)

Circuit No.2 (G v

IN

= 250)

I~

I

~lOOf.l.F
~25V

277

lOO"F
25V

TAA611C
TAA611 C72

THERMAL DATA
~ Rth

j-case Thermal resistance junction-case

~ Rth I-amb Thermal resistance junction-ambient

TAA611 CX1
TAA611 C11

max

16

°C/W

16 °C/W

max

93

°C/W

63

°C/W

ELECTRICAL CHARACTERISTICS
(Tamb = 25°C, refer to the test circuit no_ 2 unless otherwise specified)
Parameter

Vo

Id

Id

Id

Quiescent output
voltage
Total quiescent
d rai n cu rrent
Quiescent drain current
of output transistors
Drain current

Test conditions

Vs
V.

= 12 V
= 15 V

6.3
7.9

V
V

V.
V.

= 12V,
= 15 V

3.5
4

rnA

Vs
V.

= 12 V

1.2
1.8

mA
mA

235

mA

300

mA

75
0.1

1 I1A

= 15 V

V. = 12 V
RL = 8n
V.
15 V
RL 8n

=
=

Ib

p.
°

Inp,l,!t bil:\s,current
Output power

Min. Typ. Max. Unit

= 12 V
= 15 V
d = 2%
Vs = 9V
Vs = 9V
Vs = 12 V
Vs = 15 V
V. = 15 V
d = 10%
V. = 9V
V. = 9V
V. = 12 V
Vs = 15 V
V. = 15 V

Po

= 2.1 W

Po

= 3.3W

V.
Vs

f

f

nA

=

1 kHz

RL
RL
RL
RL
RL

= 4n
= 8n
= 8n
= 8n
= 16n

1.4
0.9
1.7
2.8
1.6

W
W
W
W
W

1 kHz
RL = 4n
RL = 8n
RL = 8n
RL = 8n
RL = 16n

1.8
1.15
2.1
3.3
1_9

W
W
W
W
W

=

• External heatsink not required except for the conditions V.
278

mA

2.5

= 15 V,

RL

=8 Q

TAA 611e
ELECTRICAL CHARACTERISTICS
Parameter
R' f

(continued)

Test conditions

Internal feedback
resistance (see
schematic diagram)

Zi

Input impedance

d

Distortion

Min. Typ. Max. Unit

7.5
open loop

5

n
Mn

Circuit No.1
RL
Vs
Vs
Vs
Vs

= an
= 12 V
= 15 V
= 12 V
= 15 V

f

Po
Po
Po
Po

= 1 kHz
= 50 mW
= 50 mW
= 1W
= 1W

0.3
0.3
0.2
0.2

%

°/.
%
%

Circuit No.2

Gv

Voltage gain
(open loop)

RL =
Vs =
Vs =
Vs =
Vs =

an

f

12 V
15 V
12 V
15 V

Po
Po
Po
Po

= 1 kHz
= 50 mW
= 50mW.
= 1W
= 1W

1.5
1.5
1
1

=
=

12 V
15 V

RL
RL

=
=

an
an

70
72

Vs
Vs

279

%
%

%
%

dB
dB

TAA611C
Fig. 2 - Typical distortion vs

Fig. 1 - Typical distortion vs
output power

output power
n< "'2

d

7
I

(%)
Vs~15V
~

RL = 16 n
f = 1KHz

--t.---

~

d
(%)
Vs~15

V

f - - e- R~ = 8n

.

l-

f

=IKHz

/

I

V

-j

Test Circuit I ,

/

Test Circuit 2

::::..--

V

V

Test Circuit2,.... ,./

1""'Po (W)

0.5

Fig. 3 - Typical distortion vs
output power
o

2'

(W)

"-

-

V

........ ~

i"'--

i"-

·v

'1'-~s~9l/

l - t-

V

1.5

f=lKHz
At clipping l -I -

~~j"-_ _ P. C. board

287

TAA 611C
MOUNTING INSTRUCTIONS

(continued)

Heat-sinking with external bar.
Power dissipation can be achieved by means of an additional external heat-sink fixed
with two screws (both packages) or by soldering the pins of the external bar to
suitable copper areas on the p.c. board (TAA611 C11).
A.

In the former case, the thermal resistance case-ambient of the added heat-sink
can be calculated as follows:

Rth

B.

= ------------

where:
T jmax

Max junction temperature

Tamb

Ambient temperature

P tot

Power dissipation

Rth j.eas.

Thermal· resistance· junction-case

If copper areas on the p.c. board are used (TAA 611 C11) the diagrams enclosed
give the maximum power dissipation as a function of copper area, with copper
thickness 35!, and ambient temperature 55°C.

/

PC BOARD

GSIl144

4

I

r---'~

,r
l

I
~i -I': ,L:
I

i

r~L'

P"

~"

I"::lLI

'

I

(~

Tr <..:;l'rf""'l.3'n=.r 1
U

U

U

I,
,
I

:

I

-I-- l-

~i

2

./

f-

V V

V

1

\

\

rIA 6,1, c,~

1
3

0

10
COPPER ARE"" 35 /J. THICKNESS

288

20

30

40 J((I1mj

TAA630S
LINEAR INTEGRATED CIRCUIT

SYNCHRONOUS DEMODULATOR FOR PAL COLOUR TV SETS
The TAA 630 S is a silicon monolithic integrated circuit in a 16-lead dual in-line
plastic package. It incorporates the following functions:
-

active synchronous demodulators for F (S-Y) and ± F (R-Y) signals

-

matrix for G-Y signal [G-Y = -0.51 (R-Y) -0.19 (S-Y)]
flip-flop

- PAL switch and colour killer.
It is intended for PAL colour television receivers employing colour difference output
stages with clamping circuits.

ABSOLUTE MAXIMUM RATINGS
Supply voltage (between pins 6 and 16 - see note)
Reverse identification input voltage
Identification input current
Output current (from pins 4, 5 and 7)
Total power dissipation: at Tamb ~ 50°C (see note)
Storage temperature
Operating temperature

V
V
mA
5 mA
550 mW
-20 to 125°C
-20 to 60°C
13.2
-5

=

NOTE: Vs
16 V and P,o,= 800 mW (at Tamb ~ 50°C) are permissible during warm up
time of tubes in mixed sets

MECHANICAL DATA

Dimensions in mm

289

11,72

TAA630S
ELECTRICAL CHARACTERISTICS
(measured using the test circuit of fig. 3 at

Parameter

Tamb

= 25°C)

Test conditions

Min.

STATIC (DC) CHARACTERISTICS
II
VI

Input current for
identification circuit ON

86

Input voltage for
identification circuit ON

0.75

VI

Input voltage for
identification circuit OFF

V·
4

DC voltage at (R-V)
output

V·
5
V7
V IO

VIO

itA
V

0.4

V

V lo """0.9V
see note

V

DC voltage at (G-V)
output

see note

V

DC voltage at (8- V)
output

7.3

V

Killer input voltage
for colour ON

0.9

V

Killer input voltage
for colour OFF

0.3

V

DYNAMIC CHARACTERISTICS

VI
V3
V4
Vs
V7

Peak to peak identification input voltage
Peak to peak flip-flop
output voltage

VIO """ 0.9 V

R-V output voltage
swing
G-V output voltage
swing

V lO """ 0.9 V f = 4.4 MHz
Linearity m """ 0.7

B-V output voltage
swing

290

4

V

2.5

V

f = 7.8 kHz

3.2

V

1.8

V

4

V

TAA630S
ELECTRICAL CHARACTERISTICS

Test conditions

Parameter
V2"

(continued)

R-Y reference input
voltage
VlO ==== 0.9 V

V"
a

B-Y reference input
voltage

V l4

Peak flip-flop input
voltage
VlO ==== 0.9 V

VIS

Peak flip-flop input
voltage

f

f

Min. Typ. Max. Unit

,

= 4.4 MHz

= 15.6 kHz

1

V

1

V

-2.5

-5

V

-2.5

-5

V

ViVI3'" R-Y demodulator gain

V7

V l3
_.V9 V 4
R9
C9
Rl3

B-Y demodulator gain
to R-Y demodulator
gain ratio

Parallel input capacitance at pin 9
Parallel input resistance
at pin 13
Parallel input capacitance at pin 13

Iz41
IZsl
Iz7 1
Iz2 1

R-Y output impedance

NOTES:

= 4.4 MHz
= 50 mV

Parallel input resistance
at pin 9

C l3

IZal

V lO ====0.9V
f
Vi (peak to peak)

7

-

1.78

Q

800

VlO ==== 0.9 V
Vi
20mV

=

f

= 4.4 MHz

10

Q

800

-

G-Y output impedance

VIO ==== 0.9 V

B-Youtput impedance
. Parallel input
impedance at pin 2
Parallel input
impedance at pin 8

VIO ==== 0.9 V
Vi
400mV

=

f

= 4.4 MHz

pF

10

pF

100

Q

100

Q

100

Q

900

Q

900

Q

• Adjustable to the same level of V7 by variable reSistors, or by variable
voltages === 1.2 V, connected between pins 11 and 16 for V4 and between
pins 12 and 16 for Vs'
., Maximum permissible range : 0.5 to 2 V (peak to peak) .
••• Peak to peak output voltage to peak to peak input voltage ratio.

291

TAA630S
Fig. 1 - Schematic diagram

Jv.

R,

~

~~
-- ~~

.

t~'

~r

R6" R , :

rt tt:'

'"

T,

T11

T,

~I
tJ

8-0217

Rll

R12

R,

R"

.1.

r-

t-

'---

I"

T.

."

,

,.

T39

~

....-- h

t:

rr-:::.:

T",

e,

A~

T"

~

3

~

"48

T25

I

.-

T38

R52

R53

IE

r~ ~rt '

L--

6

-'""..""--

Ie--

~!,-----J

~u~

'"

A14

..

~h

~

r-=
T31

~

R,

A13

T,

LR37

~

T12

",

~~
I "'" I

~

I~~~

T3

'"

A]9

T.

m

""

As

R3

fn

R,

>---- 1--'1/

f-

T"

V

-.-;;~'

"T23

""

R28

,

13

~'"
,

156

Ai's

~6

14

RS7

12

A",

•

11

G-088 1/1

Fig. 2 - Power rating chart

Flot
\mW I
800

600

400

200

a
o

292

20

40

60

8010mb lOCI

TAA630S
Fig. 3 - Test circuit
B-V
Input
ret,

R-V

Ident.

Input
ref.

F(8-V) . rller

Input

Input

:!:Fo=:i-Y)

Input

;~-JI-------o
O.1,uF

~~~~!al

... 5-021

Input

Fig. 4 - Typical application circuit
7.8kHz output

6-Y

~put

!l2kll

2.2nF

.12V
• 250V
0.47

~F

I
G-Y

~PUt
15kO

2.2nF

D.L.

18kU

R-Y

~put
lOkU

2.2nF

,kG
Orizontal
flyback
input

·5V
5-0219

293

LINEAR INTEGRATED CIRCUIT

TAA 661

FM IF AMPLIFIER-LIMITER AND DETECTOR
•
•
•
•
•

HIGH GAIN
FREQUENCY RANGE 5 kHz to 60 MHz
THRESHOLD LIMITING VOLTAGE 100 (l.V (5.5 MHz)
COINCIDENCE GATE DETECTOR
AUDIO OUTPUT VOLTAGE 1.4 Vrms (d = 1%)

The TAA 661 is a monolithic integrated circuit in' a 14-lead quad in-line plastic
package or in a Jedec TO-100 metal case. Particularly designed for use in TV sound
IF or FM IF amplifiers, it includes: a limiter amplifier, a coincidence detector and
a voltage regulator. By using the TAA 661 the ratio detector transformer is eliminated
and the audio signal is capable of driving an output amplifier directly. Detector
alignment is obtained by adjusting a single coil which provides the quadrature signal
to the coincidence gate detector.

ABSOLUTE MAXIMUM RATINGS
Supply voltage
Power dissipation at T.mb === 70°C
Storage temperature
Operating temperature

ORDERING NUMBERS:

for TAA 661 ASS
for TAA 661 BX2

15
V
350 mW
500 mW
-25 to 125°C
o to 70°C

TAA 661 A55 (for TO-100 metal case)
TAA 661 BX2 (for 14-lead quad in':;line plastic package)

MECHANICAL DATA

Dimensions in mm

12.7",un.

~

TAA661 BX2

TAA661 ASS
./

295

5/73

TAA661
SCHEMATIC DIAGRAM
De-emphasis

+---I---f-:~

C/pF Rp/kO

33
100
100

-

68

,

27

-

8 10 0

6

8 10 2

V, (mV)

- - - - - - - - - - - - - - - - - - - - - - - - - - _.._ 300

TAA 661
Fig. 4 - Typical recovered
output voltage
GS 02

Vo

,\a
'"

(vofij

II
1.6
1.4

1.2
1.0

0.8
0.6

Fig. 5 - Phase response of the
TAA 661 wide band amplifier
measured at 25 °C

- I-

1\

-r-. " 1\h
'\.\ ~t
'\

Vs=12 v
1=5.5 MHz
-.1 f±50 kHz
V'7 101m1V

0.4
4

I

6 8 10 1

\\d

1\

\ \e

".1
2

C, (pF)

TYPICAL APPLICATION

680 [)

TAA 661 in TV receiver.

::c

+24V

I

1001,F

O.lI'F I

!J..:

lSOD

LINEAR

680 D

Notes:
- Pin numbers shown are for the TAA 661 BX2.
- L1 = 24 turns of 0.16 mm nylon covered copper wired with tapping at turn 12
from ground.
- L2 = 35 turns of 0.16 mm nylon. covered copper wired.
- Neosid former K4/21.5/0.5 - Neosid core GW4 x 0.5 x 10FE10{Qo=80).
301

LINEAR INTEGRATED CIRCUIT

TBA 231

DUAL LOW NOISE OPERATIONAL AMPLIFIER
•
•
•
•
•
•
•

SINGLE or DUAL SUPPLY OPERATION
LOW NOISE FIGURE
HIGH GAIN
LARGE INPUT VOLTAGE RANGE
EXCELLENT GAIN STABILITY VERSUS SUPPLY VOLTAGE
NO LATCH UP
OUTPUT SHORT CIRCUIT PROTECTED

The TBA 231 is a monolithic integrated dual operational amplifier in a 14-lead dual
in-line plastic package.
These low-noise, high-gain amplifiers show extremely stable operating characteristics
over a wide range of supply voltage and temperatures.
The device is intended for a variety of applications requiring two high performance
operational amplifiers, such as phono and tape stereo preamplifier, TV remote control
receiver, etc.

ABSOLUTE MAXIMUM RATINGS
V,

Supply voltage
Differential input voltage
• Common mode input voltage
Power dissipation at Tamb ~ 60 °C
Storage temperature
Operating temperature

• For Vs ~ ± 15 V, Vi max
ORDERING NUMBER:

± 18
± 5
± 15

V
V
V
500 mW
-40 to 150 °C
o to 70 cC

= V,

TBA 231

MECHANICAL DATA

Supersedes issue dated 5/73

Dimensions in mIT'

303

6/75

SCHEMATIC DIAGRAM
+v,

r
,

Fr~~
OUTPUT
'A

1

OUTPUT

2

'"

3
LAG A

1

.J

'~

~

LAG A

INPUT

J

y.

~
...

~rl.
OUTPUT B

.

12

1

4

10

5

6

NON INVERTING

INVERTING

INPUT A

INPUT A

7

6

-

OUTPUT LAG B

11

>--;

r

r

""-----

9

INVERTING

NON INVERTING

INPUT B

INPUT 8

CONNECTION DIAGRAM

INPUT
, LAG B

5S0023

TEST CIRCUIT
Frequency response

OUTPUT A

14 V+

OUTPUT LAG A 2

13 OUTPUT B

R1
INPUT LAG A

3

OUTPUT LAG B

INPUT LAG A

11 INPUT LAG B

NON INV. INP. A

10 INPUT LAG B

INV. INPUT A

6

9 NONINV. INP. B

V-

7

8 INV. INPUT B
5S 00.:1:2

304

SS 0024

TRA 231
THERMAL DATA
~ Rth j'amb

Thermal resistance junction-ambient

max

180 °C/W

ELECTRICAL CHARACTERISTICS
(Tamb = 25°C, RL = 50 k!l to pin 7 unless otherwise specified)
Parameter

v.

Test conditions

± 15 V

Id

Quiescent drain current

IVsE1 -V 6 dlnput offset voltage

=0
R, = 200!l
Vo

11 61 -1 62 1 Input offset current
Ib

Input bias current
Common mode input
voltage range

9.

14 mA

1

6 mV

50

1000 nA

250

2000 nA

±10 ±11

= 1 kHz
Vo = ±5V

Rj

Input resistance

Gv

Voltage gain

6500 20.000

-

Vo

Positive output voltage
swing

+12 +13

V

Negative output voltage
swing

-14 -15

Y

5

k!l

90

dB

50

~V/V

1

V/J.ts

Vo

f

V
k!l

Ro

Output resistance

f

CMRR

Common mode
rejection ratio

R,

SVR

Supply voltage rejection

SR

Slew rate

Channel separation
NF

Noise figure

37 150

= 1 kHz

= 200!l
R, = 200!l
Unity gain
C 1 = 0.1 J.tF
Rl = 4.7!l
see frequency response
test circuit

= 10 k!l f = 10 kHz
R, = 10k!l
B = 10Hz to 10kHz

R,

305

70

140

dB

1.5

dB

T8A231
ELECTRICAL CHARACTERISTICS (continued)
Parameter

v, =

Test conditions

± 4V
Quiescent drain current

Id

iVSECVBE21 Input offset voltage

=0
Rs = 200n

Vo

11 61 -1 62 1 I nput, offset current
Ib

Input bias current

Gv

Voltage gain

Vo
Vo

2.5

rnA

1

6 mV

50

1000 nA

250

nA

250015.000

-

Positive output voltage
swing

+2.5 +2.8

V

Negative output voltage
swing

-3.6

Vo

= ±1 V

-4

V

Fig.2 - Typical output capability
vs supply voltage

Fig. 1 - Power rating chart

VOr--'r--.---.---r---r--~~",63
(Vrms) I-f_=-IlI-K_H_.Z+-_+-_t-_t-_I---;
0.8 f-+-I-I-+-I-I-+-HH--HH--HH-+-I-+-I

121---~--+--+--+-~--II-~
10~-4-~--+--+--

0.6 f-+-I-I-+-I-I-+-I-H--HH--HH-+-I-+-I

2~£4--+--+--+-~--II----I

o

LL~~~~~~~~~~~~

-50

o

50

100

6

Tamb ('C)

306

8

10

12

14

~

Vs (V)

TBA 231
Fig.3 - Typical quiescent drain
current vs suppiy voltage

Fig. 4 - Typical open loop voltage
gain vs supply voltage
GS 0165

-+__-+__~

(rnA) ~__~__~__~__~__

(dB)

20K

12

~--+---

15K

~
--~
~

-

P

...10K

::::--f-

R~ =

00

RL = 50K D

I

RL - 10K D_ f - -

I-RL

5K D

R L - 3K D
f

= 1 KHz

5K

o L-__
4

~

__-L__
8

~

____L-__L-__

10

12

14

~

__-J

o

±vs (V)

4

Fig. 5 - Typical open loop frequency
response using recommended
compensation networks

6

8

10

12

14

± Vs

(V)

Fig.6 - Output voltage swing vs
frequency for various
compensation networks

-20 W...J...ll-L-LLLL...L...Ll..LL...L...LJ..LL-L...LUJ
100
10K
f (Hz).
1K
100K

0.1L-~LL-+--+-LU

100

307

1K

__~-LU--L-+-~~~~U
10K

100K

f (Hz)

,

'~-,:;~":

~,'::.'

-,

. ".-

Fig. 8 - Typical input noise current
vs frequency

Fig. 7 - Typical input noise voltage
vs frequency
e

~

0'"

I I III

z_

Vs

GS 0169

I III

N

2

' lSV

zli=

Vs

± lSV

I--

RS

= 100K.o

.......

-

.......

10- 26
lK

100

10K.

10

nHz)

Fig. 9 - Typical closed loop gain
vs frequency

100

lK

10K

Fig. 10 - Typical open loop voltage
gain vs temperature
7

I _

VS=±lSV

(dB)

(dB)

60

I I

f

Rl = 470.0

II

c 1 = O.OOl/J. F

II I
Rl

20

a
-10
100

C l = O.Ol/.<.F

I I

Rl = 33.0

Cl = O.l/LF

I il

Rl

II;
lK

..........

"-

20K

\

= 4.7.0

III I
10K

lOOK

~~
Ii _~
. I. - 50/(1{

\

1,1 I

II

""" ...........
........

\

= lS0.o

II I

111

01.71

30K

40

I I

fl.!:.

= ± lSV
= lK!-Iz

Vs

I
C l = 300pF

f (Hz)

..:::::: :::::::::::--

10K
R

"'-

~

o

f (Hz)

308

o

10

20

30

= lO~.o,

40

SO

T("G)

"II NEAR INT EGRA TED CIRe UIT

TBA 311

TV SIGNAL PROCESSING CIRCUIT
The TBA 311 is a monolithic integrated circuit in a 16-lead dual in-line or quad in-line
plastic package. It is intended for use as signal processing circuit for black and
white and colour television sets.
The circuit is designed for receivers equipped with tubes or transistors in the deflection
and video output stages, and with PNP or NPN "transistors in the tuner and NPN in
the IF amplifier.
Only signals with the negative modulation can be handled by the circuit. The circuit
is protected against short circuit between video output and GND. The TBA 311 includes:
•
•
•
•
•
•

VIDEO PREAMPLIFIER with EMITTER FOLLOWER OUTPUT
GATED AGC for VIDEO IF AMPLIFIER and TUNER
NOISE INVERTER CIRCUIT for GATING AGC and SYNC. PULSE SEPARATOR
HORIZONTAL SYNC. PULSE SEPARATOR
VERTICAL SYNC. PULSE SEPARATOR
BLANKING FACILITY for the VIDEO AMPLIFIER

ABSOLUTE MAXIMUM RATINGS
Vs
Ptot
T stg
Top

Supply voltage
Power dissipation at T amb """ 70°C
Storage temperature
Operating temperature

16
V
500 mW
-55 to 125°C
-25 to 70 °C

ORDERING NUMBERS:

TBA 311 A22 (for 16-lead quad in-line plastic package)
TBA 311 A17 (for 16-lead dual in-line plastic package)

309

5/73

I

TBA311
MECHANICAL DATA (Dimensions in mm)

Quad in-line plastic package
for TBA 311 A22

~

I• 1.5.08.1
I
10.16
•
POOf- D

Dual in-line plastic package
forTBA311 AU

310

TRA 311
CONNECTION DIAGRAM

,.

,.

CAIZ. SYNC. OUTPUT
PNP TUNE RAGe

,

FLY BACK PU LSE
IF - AGe

•

GROUND
\lERl. SYNC. OUTPUT

I.

VERT. SYNC. TIME CONST.

13

SYNC, TIME CONSTANT

SUPPLY VOLTAGE

12

VIDEO OUTPUT

NPN TUNER AGe

11

BLANKING

I.

TUNER AGe DELAY

INPUT VIDEO PREAMP.

NOISE SEPARATOR

NOISE SEPARATOR

TIMcCONSTANT

TIME CONSTANT

SS 0041

SCHEMATIC DIAGRAM

,.

11

12

13

,.

550042

311

IBA 311
TEST CIRCUIT

TUNER
NPN or PNP

:zoonO:zoon26pF

SOpF

Hh +71h.
L_. _ _ _ _ _ _ _ _

AGC PNP
+12V o-_--t---op--'t:~

I1

V

'

'

I
I

I

I

I

10KSl

r-+--1[

&OVpp

312

VIdooAmpllf.

TBA 311
ELECTRICAL CHARACTERISTICS
(T. mb

= 25°C,

Vs

= 12 V

unless otherwise specified, see also test circuit)

Parameter
Id

Min. Typ. Max. Unit

Quiescent drain current

14

mA

VIDEO AMPLIFIER
Ri

Input resistance (pin 10)

2.7

kn

Ci

Input capacitance (pin 10)

0.8

pF

B

Bandwidth (-3 dB)

Gv

Voltage gain

Vi

Peak to peak video input voltage (pin 10)

Vo

MHz

5
9.5

dB

(1 )

2

V

Peak to peak video output voltage (pin 12)

(2)

6

V

V

Black level at the output (pin 12)

(3)

5

V

10

Available video peak output current

(4)

20

~

Video output voltage temperature drift

(5)

1

mV/O(

Black level temperature drift

0.2

mV/oC

Black level drift at the output with supply voltage
variation

0.5

V!V

AT,mb
AV
AT. mb
AV

-AVs

mA

VIDEO BLANKING
Vi

Peak to peak input voltage (pin 11)

Ri

Input resistance (pin 11)

1

5
1

V
kn

AGC CIRCUIT
V

Control voltage IF amplifier (pin 4)

o to 7.5

V

V

Control voltage tuner NPN (pin 6)
PNP (pin 2)

Oto 6.5
12 to 6

V
V

313

I

TBA311
ELECTRICAL CHARACTERISTICS

(continued)

Parameter
t:.V j

Min. Typ. Max. Unit

t:.V

Signal expansion for full control of IF amplifier
and tuner

V

Peak to peak keying input pulse (pin 3)

Rj

Input resistance (pin 3)

(6)

%

10

1

5

V

2

k!l

10

V

100

!l

9.5

V

2

k!l

SYNC. CIRCUITS
Vo

Output voltage of horizontal sync. pulse (pin 1)

Zo

Horizontal output impedance (pin 1)

Vo

Output vctltage of vertical sync. pulse (pin 15)

Zo

Vertical

'

..

~ "

outpu~-impedance

8.4

8.4

(pin 15)

NOTES:
1) Negative going video signal (no pre-bias needed for the detector).
2) Video signal with negative going sync. pulse.
3) Only valid if the video signal is in accordance with the CCIR standard.
4) The total load on pin 12 must be such that under nominal conditions 10

"'"

20 mAo

5) Because the integrated circuit reaches 95% of its final working temperature in 100
seconds, the temperature variations to be considered are t~ose caused by the
slower rise in cabinet lemperature and by changes in room temperature.
6) The TBA 311 may be operated unkeyed but then point 3 must be connected to the
positive supply line via a resistor of suitable value (e.g. 10 k!l). However, the
following consequences should be borne in mind:
-

The decoupling capacitors at the IF and tuner control points must be larger to
prevent ripple voltages due to the vertical sync pulses. In consequence the AGC
will not follow fast signal fluctuations (aircraft flutter).

314

LINEAR INTEGRATED CIRCUIT

TBA 331

GENERAL PURPOSE
The TBA 331 is an assembly of 5 silicon NPN transistors on a common monolithic
substrate in a Jedec TO-116 14-lead dual in-line plastic package. Two transistors
are internally connected to form a differential amplifier.
The transistors of the TBA 331 are well suited to low noise general purposes and
to a wide variety of applications in low power systems in the DC through VHF range.
They may be used as discrete components in conventional circuits, in addition, they
provide the very significant inherent integrated circuit advantages of close electrical
and thermal matching.

ABSOLUTE MAXIMUM RATINGS

VCBO

VCEO
Vcss·

VEBO
Ie

P,ot

=

Collector-base voltage (IE
O)
Collector-emitter voltage (lB
O)
Collector-substrate voltage
Emitter-base voltage (Ie
O)
Collector current
Total power dissipation at T.mb ~ 55°C

=

=

at T.mb > 55°C
Storage and junction temperature

Each
Total
transistor package
20
V
15
V
V
20
V
5
rnA
50
750 mW
300
Derate at 6.67 mW/oC
-40 to 150

o to

Operating temperature

85

°C
°C

• The collector of each transistor of the TBA 331 is isolated fr.om the substrate by
an integrated diode. The substrate (pin 13) must be connected to the most
negative pOir.t in the external circuit to maintain isolation between transistors and
to provide fer normal transistor action.

MECHANICAL DATA

Dimensions in mm

TO-116

Supersedes issue dated 5/73

315

6/75

·:~~';' .~:/t, .: :" ':·";.;~L{; .~'; . ;-'

~!-~'
'"

,:;;'(',."

,-

SCHEMATIC DIAGRAM

5

2

11

8

4

14

5-0018

6

3

7

9

10

13

12

Substrate

ELECTRICAL CHARACTERISTICS (Tomb =
Parameter

IC80
ICEO

11 61 -1 62 1

Test conditions

25°C unless otherwise specified)
Min.

Typ.

Max.

Unit

Fig.

Collector cutoff
current (IE
0)

Vca

= 10V

0.002

40

nA

1

Collector cutoff
current (Is
0)

VCE

= 10V

see
curve

0.5

p.A

2

Ic
VCE

= 1 rnA
=3V

2

p.A

7

=

=

Input offset
current

316

0.3

TBA 331
ELECTRICAL CHARACTERISTICS
Parameter
VCBO
VCEO
Vcss
V CE

(sat)

VEBO

VBI:

Min.

Typ.

Max.

Unit

Fig.

Ic

= 10Jl.A

20

60

V

-

Collector-emitter
voltage (lB = 0)

Ic

= 1 mA

15

24

V

-

Call ecto r-su bstrate
voltage (lcss = 0)

Ic

= 10Jl.A

20

60

V

-

IB
Ic

= 1 mA
= 10mA

0.23

V

-

IE

= 10Jl.A

7

V

-

IE
VCE
IE
VCE

= 1 mA
=3V
= 10mA
=3V

0.715

V

4

0.8

V

= 1 mA
=3V

"

Ic
VCE

0.45

5

mV

4-6

Ic
VCE

= 1 mA
=3V

0.45

5

mV

4-6

Ic
VCE

= 1 mA
=3V

0.45

5

mV

4-6

Ic
VeE

= 1 mA
=3V

0.45

5

mV

4-6

Ic
VCE

= 1 mA
=3V

-1.9

mY/DC

5

Ic
VCE

= 1 mA
=3V

1.1

!J.V/oC

6

Collector-emitter
saturation voltage
Emitter-base •
voltage (lc = 0)
Base-emitter
voltage

IVBE3-V BE411 nput offset
voltage

IVBE4- VBESI I nput offset
voltage

IVBES-VBE41 I n put offset
voltage

~

Test conditions

Collector-base
voltage (IE = 0)

IVBE1-VBd Input offset
voltage

AVBE

(continued)

Base-emitter
voltage
temperature
coefficient

IVBE1-VBd Input offset
voltage
AT
temperature
coefficient

317

5

TBA 331
ELECTRICAL CHARACTERISTICS

hFE

fr

NF

Parameter

Test conditions

DC current gain

Ic =
VCE =
Ie =
VCE.=
Ic =
VCE =

10mA
3V
1 mA
3V
10 !-LA
3V

Ic =
VCE =
Ic =
VCE =

3mA
3V

Transition
frequency
Noise figure

hie

Input impedance

hie

Forward current
transfer ratio

hoe

Yie

Yfe

Yre

Reverse voltage
transfer ratio

Output
admittance

Input
admittance

Forward
transadmittance

Reverse
transadmittance

100 !-LA
3V
1 kHz
1 kn

=
=
Ic = 1 mA
VCE = 3 V
f
= 1 kHz
f
Rg

"r.

(continued)

VCE

= 1 mA
=3V

f

= 1 kHz

Ic

VCE

= 1 mA
=3V

f

= 1 kHz

Ic

Ic = 1 mA
VCE = 3 V
f
= 1 kHz

Min.

40

300

Typ.

Max.

Unit

Fig.

100

-

3

100

-

3

54

-

3

550

MHz

14

3.25

dB

8

3.5

kn

9

110

-

9

1.8x10-4

-

9

(J.S

9

15.6

•
= 1 mA
VCE = 3 V
f
= 1 MHz

0.3+jO.04

mS

11

Ic = 1 mA
VCE = 3 V
f
= 1 MHz

31-j1.5

mS

10

Ic = 1 mA
VCE = 3 V
f
= 1 MHz

see curve

mS

13

Ic

318

TBA 331
ELECTRICAL CHARACTERISTICS

Test Conditions

Parameter
Output
admittance

Yoe

C EBO

Ic = 1 rnA
VCE = 3 V
= 1 MHz
f

Emitter-base
capacitance
Collector-base
capacitance

CCBO

Collector-sustrate
capacitance

Ccss

(continued)

r-

•

//J

pF

-

Ic =0
Vcss= 3 V

2.8

pF

-

Fig. 2 - Typical collector cutoff current

I
-

~I'

.,f~ [...I

.:.

40

-

I

80

120

160

12

0.58

'/

I

mS

IE =0
VeB = 3 V

-

!.-

Fig.

-

1///Vcs =5V

100

+ jO.03

Unit

pF

1
10

¥=,

1-.

0.001

Max.

0.6

G-OA56

I CBO

Typ.

Ic =0
VEB = 3 V

Fig. 1- Typical collector
.
,cutoff current

(nA)

Min.

Ta ("C)

319

"T8A331
Fig. 3 - Typical DC current gain
-

G 045&

~E=3V

h FEX

I

I

hFEV

G 0459/1

VBE

I

6VBE

VcE =3V

(V)

(mV)

I
/'

1.1

120.

0.7

hFE

VBE

,/

100

f-

/'

80

60

Fig. 4 - Typical input voltage and
input voltage offset

I~IORI hFE'\
hFE2

I-""

0.6

h FE ,

0.9

,/

0.8

./

0.5

VIO /

/'

I---

a

o

IE (mA)

IE (mA)

Fig. 5 - Typical input characteristic
for each transistor

Fig. 6 - Typical input voltage offset
(mV)

VCE =3V

IV)

G-046111

6VBE

G 0460

v"E

VcE =3V

l-

1'0.
0.8

10

r-...

I-"

3

f-

10.7

3

0.6

0.5
0.4
-60

r-

1

0.60

r-... ;. . . i"-r-......:.

0.40

IE=0.5mA

I E=O.lmA

~

:
-20

a

20

60

100

T. (OC)

320

-60

-20

0

2Q

60

100 TambfC)

TBA 331
Fig. 7 - Typical input current offset
for matched transistor pair

Fig. 8 - Typical noise figure

G-0462

G-0463

NF

(I'A)

VcE=3V
Rs=lkO

(dB)

veE

=3V

0.1

15

/
/

1/

/

10

TYR

/

7

~

1

5

~
~

[:;;;

I--'

-

~

-

/

I =lOkHz

Ie (rnA)

Ie (rnA)

Fig. 9 - Typical normalized h
parameters

Fig. 10 - Typical forward admittance

tit,

G-0464

G-01,65

VeE =3V
I =lmA

9"

VeE =3V
1=lkHz

(mS )

40

h ••

r-. 1--..

9,.
.......

10 '

20

V

!III

1/

o

h,.

+-.

\.

b,.
V

h,.
I-

I--: .....
/
1

-20

III

hi

IIII

III

-40

Ie (rnA)

321

III
10-1

10'

10'

I (MHz)

Fig. 11 - Typical input admittance

Fig. 12 - Typical output admittance
G-0466

G-0467

b..
9~

VCE =3V
( =lmA

VCE =3V
( =lmA

[mS)
bit'

b..

4

I

I

IT

3

I
179;.
2

I g..
II
Ib
10'

10'

1()"'

Fig. 13 - Typical reverse admittance

b,.

:....

o

f (MHz)

10'

10'

I [MHz)

Fig. 14 - Transition frequency

G-0468

IT

9,.

~~~~~~~~r~~~~~~G~-~~~"

(MHz)~-+~+-~~~~C~E~=3~V~~~~~+-~~

[mS)

o

g"
\.
\

-0.5

I
b"

VCE =3 V
(c=lmA

-1

-1.5
10°

10'

10'

o

I [MHz)

322

4

6

8

Ic [mAl

LINEAR INTEGRATED CIRCUIT

I,:

TBA 435

I
,.'j'

VOLTAGE REGULATOR
•
•
•
•
•

OUTPUT CURRENT ~ 100 mA
TIGHT TOLERANCE for OUTPUT VOLTAGE
LOAD REGULATION ~ 1%
RIPPLE REJECTION 57 dB TYPICAL
OVERLOAD and SHORT CIRCUIT PROTECTION

The TBA 435 is an integrated monolithic 8.5 V voltage regulator in TO-39 metal case
which can supply more than 100 mAo The device features high temperature stability,
internal overload and short circuit protection, low output impedance and excellent
transient response. The TBA 435 is intended for use as voltage supply for consumer
circuits and for any other industrial application.

ABSOLUTE MAXIMUM RATINGS
Vi
Ptot
T stg

Tj
Top

Input voltage
Power dissipation at Tamb
at Tease
Storage temperature
Junction temperature
Operating temperature

ORDERING NUMBER:

20
0.75
4
-55 to 150
175
o to 70

= 25°C
= 25 °C

V

W
W
°C
°C
°C

TBA 435A X5

MECHANICAL DATA

Dimensions in mm

Ground connected to ca.se

i

!

'~

I

Fl008....a

I:

I'

i

Ii

Supersedes issue dated 5/73

323

6/75

T8A4.35
SCHEMATIC DIAGRAM

vIO-_ _ _- _ - - - _............

,..--C::J-...-oO

Vo

THERMAL DATA
Rtb
Rth

j.case
j.amb

ELECTRICAL CHARACTERISTICS (T j
Parameter

Vo
AVo

Output voltage

Load regulation

Vo

10

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

Regulated current

°C/W
°C/W

= 25°C unless otherwise specified)

Test conditions

Vi
10

= 11.5 V to 20 V
= 5mA CL = 10 J-LF

Vi
10
CL

= 11.5Vto20V
= 5 mA to 100 mA
= 10 JLF

Vi

= 15 V
324

37.5
200

AVo ~1%
Vo

Min. Typ. Max. Unit

8.1

8.5

0.3
100

140

8.9

V

1 %
mA

TBA 435
ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

10

Max. regulated current

Vi

Ro

Output resistance

Vi

10
tlVo

Line regulation

Vo
SVR

eN

Vi

10
Supply voltage rejection

Output noise voltage

= 15V
= 15V
= 5 mA to 100 mA

Vi = 13.5 V
10 = SmA
f = 100 Hz

Vi = 15V
10 = SmA
CL = 10 ~F
B = 100 Hz to 100 kHz

tlVo

Temperature coefficient

Vi = 15V
10 = SmA
CL = 10~F
Tamb = 0 to 70°C
Vi

= 20V

325

200 mA

0.1

.n

0.15

46

Vi = 20V

Output short
circuit current

150

0.6

%

tlV i = 4 Vpp
CL = 10 ~F

Quiescent drain current

I,e

130

= 11.5 V to 20 V
= SmA

Id

tl Tamb

Min. Typ. Max. Unit

10 =0

Vo = 0

5

57

dB

100

~V

9

16 mA

rnVjoC

0.85
40

60

mA

TBA435
Fig. 1 - Typical output voltage
vs output cu rrent

Fig. 2 - Power rating chart
,.02,

S 024

Ptot
(w)

J

"")

Vi ~ 15 V

RNf'"INltf:
..... ~tSIN/(

/

....... t - -

V

V

/
/

V
o

o

FREE AIR

V
20

40

60

80

100

120

10 (rnA)

40

20

Fig. 3 - Maximum output current
vs junction temperature

Fig. 4 - Typical ripple rejection
vs regulated output current
GS 0250

GS 0251

SVR

(rnA)

150

I'-....

(dB)

~

60

..........

125

r---.....
r--..........

100

40
..............

Vi ~ 15 V

i"--,
20

75

Vi~

13.5 V

I - - .lV,=4V pp
f=lOOHz

50
25

50

75

100

20

125

326

40

60

80

100

10 (rnA)

TBA 435
Fig. 5 - Typical ripple rejection
vs frequency
SVR
(dB)

-

66 r---

1

V, 13.15
0

10~5

Fig.6 - Maximum output current
vs input voltage

,

.

~I

f.-

58

i J ,,25° C

150

,

I I

140

,/

56
54

iJ~O'e

-

160

j,'V ~4vppl

-

60

-

(rnA)

mAl

64
62

n"

10

i J " 70 0e

-

130

52
120

50
10

lK

100

10 K

12

10

f (Hz)

16

14

18

V, (V)

Fig.8 - Typical short circuit
output current vs
junction temperature

Fig. 7 - Typical short circuit
output current vs
input voltage
, no<.

Is e

uS 0255

Ise
(rnA )

(rnA)

44
60
42

40

-

~

- - --

40

b",..".

10-

-

r--..

20

38

----

V;~115V

o

36
10

12

14

16

18

25

V, (V)

327

50

75

100

125

:~

!.

TBA435
Fig. 9 - Typical dropout voltage
vs output current

Fig. 10 - Typical quiescent drain
current vs junction
temperature
.-

GS 0256

o

5

I•

.-

V

2.2

1.8

/

./

7

/"

(rnA)

l.--

~ r--...

9

-........::::

8

~
{,"-S"''''~ t--.....
00",

-......;:

V,-20 V

1.6

~

1.4
il. Votvo-l%

o

20

60

40

80

25

10 (rnA)

100

Fig. 11 - Typical quiescent drain
current vs input voltage

11 1e

(rnA)

1J"'O ~ ~

q

-~ H 1

8.8

_L-

8.6

.10c

"25~

rf

~

L- L-

-!--

8.2

100

T, (0C)

125

10000

1--.....
I-- .....

11 ",1 10oe -", ~ ~

8.4

75

Fig. 12 - Typical output resistance
vs frequency
GS 02 8

I.

50

)

, n",-

V,-l.5 V

C,,--O.lI'-F
1000

1/

!...10 -5 to

~

Ibo rnA.

100

~

I-""

i..-'

10 -0
-I

l'

7.8

10

12

14

1&

18

10

v, (V)

1

328

10

100

f (kHz)

TBA 435
Line transient response
(10 = 5 rnA)

Turn-on time
(10 = 100 rnA)

f\ ....

V,= 15V

/
II
VIi-8.S V

\

~

Q

/ . . . . r---..

/

8.5 V

o

100:0 JQCns !ol»s 1Ol» 1Ol»
h0261

GS 026"0

IOO1s lOOn

TYPICAL APPLICATIONS
Fig. 13 - Positive output voltage regulator

Fig. 14 - Negative output voltage regulator

)e---+--......- - -.......--_~-o

Vo~ -8.5 V

lO/LF

5S 0067

329

TBA,435,
Typical adjustable output
voltage vs output current

Fig. 15 - Adjustable output voltage regulator

0"

v

v0

~~--~----~-----oVo

IV)

6800

-

12

R2

",1 1200
"I.

10

VO""V 1 (1+ ::.)

+

I-R2

V

=0

V l)
/ /'

IG R2

v/ /'

V,,,,lSY

Vo·8.5 to II V

2

10> 80 rnA
Ro _100 mu

a

o

R2 = potentiometer 0 to 150 u

Fig. 16 - PNP current boost circuit
0.33fl

V,o--1r-C:J-_-=\:

/

Y

20, 40

60

80

100

10 (mAl

120

Typical output voltage vs
output current

r----------------,

S023

V,
(V,

1000

Vo

150

-

V,·IS V

/

/

8200

/

/

/

V,-IS V
Vo =8.5 V
10=2 A

......... V

Ro:::20 m u

0.5

330

/'
1.5

formA)

TBA 625A

LINEAR INTEGRATED CIRCUIT

Ii1

1

I

~
j •.

VOLTAGE REGULATOR
•
•
•
•
•

OUTPUT CURRENT ~ 100 rnA
TIGHT TOLERANCE for OUTPUT VOLTAGE
LOAD REGULATION ~ 1%
RIPPLE REJECTION 60 dB TYPICAL
OVERLOAD and SHOR! CIRCUIT PROTECTION

The TBA 625A is an integrated monolithic 5 V voltage regulator in TO-39 metal case
which can supply more than 100 rnA. The device features high temperature stability.
internal overload and short circuit protection, low output impedance and excellent
transient response. The TBA 625A is intended for use as voltage supply for digital
circuits and for any other industrial application.

ABSOLUTE MAXIMUM RATINGS
Vi
Ptot
T stg
Tj
Top

Input voltage
Power dissipation at Tomb
at Tease
Storage temperature
Junction temperature
Operating temperature

ORDERING NUMBER:

MECHANIC~L

20

= 25°C
= 25°C

0.75
4
-55 to 150
175
o to 70

V
W
W

°C
°C
°C

TBA 625A X5

Dimensions in mm

DATA

Ground connected to case

,s.sma•• ,

12.7 min.

~

.~~o
=
"l===lI ......

1[[]3'
...

1

....1

~x

~ ~

~~

'.

1lL.

.....

Supersedes issue dated 5/73

331

~

.!I

6/75

SCHEMATIC DIAGRAM

THERMAL DATA
R,h i-case
R,h i-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

max
max

37.5 °C/W
200 °C/W

ELECTRICAL CHARACTERISTICS (Ti = 25°C unless otherwise specified)
Parameter

Vo
AVo

Output voltage

Load regulation

Va

10

Regulated current

Test conditions

Vi
10

= 8 Vt020V
= 5mA CL = 10 J,LF

Vi
10
CL

= 8 Vto 20V
= 5 rnA to 100 rnA
= 10 J,L

Vi

= 12V
332

AVo
Va

"""1%

Min. Typ. Max. Unit

4.75

5

0.3
100

140

5.25

V

1 %
rnA

TBA 625A
ELECTRICAL CHARACTERISTICS (continued)
Farameter

Test conditions

10

Max. regulated current

Vi = 12V

Ro

Output resistance

Vi = 12V
10 = 5 mA to 100 mA

_Il. Vo
Vo

Line regulation

SVR

Supply voltage rejection

eN

Output noise voltage

Min. Typ. Max. Unit
130
I

0.2

46

Vi = 12 V
10 = SmA
CL = 10 IlF
B = 10 Hz to 100 kHz

60

%

IlV
16 rnA

Il.Vo
Il.Tamb

Temperature coefficient

V j = 12V
10 =5mA
CL = 10llF
Tamb = Oto 70 0 C

0.5

Vi = 20V

45

10 =0

Vo = 0

5

dB

9

Id

333

1

70

Vi = 20V

Output short
circuit current

n

Il.Vi =4Vpp
CL = 10 IlF

Quiescent drain current

Isc

200 rnA

0.1

Vi = 8 Vto 20V
CL = 10 IlF
I" = SmA
Vi = 10V
10 = SmA
f = 100 Hz

150

~V/oC

65 rnA

TBA 625A
Fig. 2 - Power rating chart

Fig. 1 - Typical output voltage
vs output current
illUlZli4

I
i

(w)

!

!

I

i

I

I;

f.--.-i-- v:~ 12 v
I.

I

I

I

I

1

I

-I

V

y!
,

IL

o
a

20

40

/t'

~'<:-"I'1'1""

I

I

....... ~'1"
SIf\tk"
....... ~-

3

D
I

I

VI J
I

FREE AIR

o

60

80

100

120

10 (rnA)

10

Fig. 3 - Maximum output current
vs junction temperature

20

30

40

50

60

Tom' ('C)

Fig. 4 - Typical ripple rejection
vs regulated output current
GS 0267

GS 026 6

10

SVR

(rnA)

150

2

,.1
il<1'1"/i

I

I

I

r·

4

I

i

OS

Ptot

(dB)

"-- .............

60

.......
125

r-........
...

V;~12

100

V

"--

40

........

b.....
V,~

20
75

r--

d

10 v

V;~4Vpp

If-lO~ Hz

o

50
25

50

75

100

o

n5

334

20

40

60

80

100

10 (mA)

TBA 625A
Fig. 6 - Maximum output current
vs input voltage

Fig. 5 - Typical ripple rejection
vs frequency
0261

(dB)

68

10~5

-

~

J

160

pp

66

J =ioc l

(rnA)

~ 10 v II--j- -1--1-++--+---+-1-++---1
AV;=4 V !

V,

~

~

rnA

TJ

I

64 I--H-H- --

- --

~f+t-+-+

~

r--

150

=zJc

l-

62

I

~

140

60
58

r---

-1-

56

269

OS

II

SVR

TJ =70° C

I--

-+~+--+--+-H+--I

I

I

130

--I--~+-f-H-_+~--

I

I

54
52

120
100

10

f (Hz)

10K

lK

8

Fig. 7 - Typical short circuit
output cu rrent vs
input voltage

12

10

14

16

18 V, (V)

Fig. 8 - Typical short circuit
output current vs
junction temperature
GS 0270

GS 0271

Isc

Isc
(rnA)

(rnA)

50
60

48

46

-- -

---

i--I -

40

v,~

f-""

44

i.--

r-- r--

.....

--

r-- I---

12 V

20

II

42
10

12

14

16

18

25

V, (V)

335

50

75

100

125

-

T816251
Fig.9 - Typical dropout voltage
vs output cu rrent

(V)

~

2.2

1.8
1.6

/

V

./'"

V

Fig. 10 - Typical quiescent drain
current vs junction
temperature
0273

GS 0272

--

I.
(rnA)

~ ..........

-.......::

~ N~lOo

~t--..--......;

10~S 17)4

J.Vo/Vo~l%

V,~20

1.4

~

V

1.2
6

20

40

60

80

100

o

10 (rnA)

Fig. 11 - Typical quiescent drain
current vs input voltage
GS Q;u.

10cl

"\
~

8.8

,,\)

--h:Jc

"\

_1

.- ~~rf

~

8.6

l - I-"'"

1

,,1

8.4

-

~

.-~

\)oc

~

I-"'"
(mil)

V
~

~

I-l -

125

)i~1112 V

f-rt-- C,~O.lp.F
r-

1000 -

~

I

T

I

--

1/

~

"\j~i""""

~

8.2

100

GS 0275

10000

I

f-

75

Fig. 12 - Typical output resistance
vs frequency

10~O

I.
(rnA)

50

25

100

f-

10~5

to 100 rnA

........ V

~

I-"'"

7,8

10
10

12

14

16

18

V, (V)

10

336

100

f (kHz)

TBA 625A
Turn-on time
(10 = 100 mAl

Line transient response
(10 = 5 mAl

4.V.-5

v
V.-9.5Y

II
I

/

1\
........

o~

__~.__+-__~_____

I
Vo~5

V

.0 -'---I-.....-f----+-----

lOOn lOOns lOOns lOOns lOOns
GS(l277.

lOOns lOOns

GS 0276

TYPICAL APPLICATIONS
Fig. 13 - Positive output voltage regulator

Fig. 14 - Negative output voltage regulator

!»----+--......------...--------1r--O vo~ 1OI-'F
5S DOn

337

5V

T8A625A
Fig. 15 - Adjustable output voltage regulator

Typical adjustable output
voltage vs output current

vo

.....

v,

h~~_--

-_~vo

(V)

R2 '" 200 n
430n

V

.,,"

J
V

R2 0 0

V

/

")
/v

./
Vo~5

V

to 9 V

10> 80 rnA

/ ./

o

Ro~100mu

o

R2 = potentiometer 0 to 250 11

Fig. 16 - PNP current boost circuit

./

20

40

bO

80

100 120

10 (rnA)

Typical output voltage vs
output current
lOS 0279

0.33n
v'o-__c:J-_.....:;
.;::.--____--.

I-- 1--

lOon

V,.12 V

f-- - - I--

-

1--_.-4---0 Vo
15n

II

500n

/

SS0075/1

V,~12V

Vo=5 V
lo~2 A
Ro :.::;20 m U

o

338

o

V
0.5

v

V
1.5

10~(A)

LINEAR INTEGRATED CIRCUIT

TBA 625B

VOLTAGE REGULATOR
•
•
•
•
•

OUTPUT CURRENT ~ 100 mA
TIGHT TOLERANCE
for OUTPUT VOLTAGE
..... ,.
LOAD REGULATION ~ 1%
RIPPLE REJECTION 54 dB TYPICAL
OVERLOAD and SHORT CIRCUIT PROTECTION

The TBA 625B is an integrated monolithic 12V voltage regulator in TO-39 metal case
which can supply more than 100 mAo The device features high temperature stability,
internal overload and short circuit protection, low output impedance and excellent
transient response. The TBA 625B is intended for use as voltage supply for digital
circuits with high noise immunity, linear integrated circuits and for any other industrial
applications.

ABSOLUTE MAXIMUM RATINGS
Vi
Ptot
T stg
Tj
Top

Input voltage
Power dissipation at Tamb
at Tcase
Storage temperature
Junction temperature
Operating temperature

ORDERING NUMBER:

= 25°C
= 25°C

27
0.75
4
-55 to 150
175
o to 70

V

W
W
°C
°C
°C

TBA 625B X5

MECHANICAL DATA

Dimensions in mm

Ground connected to case

Supersedes issue dated 5/73

339

6/75

TBA·625B
SCHEMATIC DIAGRAM
V,

O--"'~r-""""-_---

_ _ _,",

,-cJ-.......-O

Vo

THERMAL DATA
Rth
Rth

j-case
j-amb

ELECTRICAL CHARACTERISTICS (T j
Parameter

Vo
avo
Vo

10

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

Output voltage
Load regulation
coefficient

Regulated current

= 25°C unless otherwise specified)

Test conditions

Vi = 15 V to 27 V .
CL = 10J.tF
10 = 5mA

Min. Typ. Max. Unit

11.4

Vi = 15Vto27V
10 = 5 rnA to 100 rnA
CL = 10",F
Vi = 12 V

340

°C/W
°C/W

37.5
200

avo
Vo

~1%

12

0.3
100

140

12.6

V

1 %
rnA

TBA 625B
ELECTRICAL CHARACTERISTICS
Parameter

(continued)

Test conditions

Min. Typ. Max. Unit

10

Max. regulated current

Vi = 21 V

Ro

Output resistance

Vi = 21 V
10 = 5 rnA to 100 rnA

0.1

Vi = 15 Vto 27 V
CL = 10 J.tF
10 = SmA

0.2

0.5

Ofo

= 17V
10 = SmA
f = 100 Hz

46

54

dB

I:J.Vo
Vo
SVR

eN

Line regulation
ccefficient
Supply voltage rejection

Output noise voltage

Id

Quiescent drain current

I:J.Vo
I:J.Tamb

Voltage/temperature
coefficient

I,e

Output short
circuit current

Vi

120

10 =0

Vi = 21 V
10 = SmA
CL = 10 J.tF
Tamb = Ot070°C
Vi = 27V

341

200 mA

n

I:J.Vi = 4 Vpp
CL = 10 J.tF

Vi = 21 V
10 = SmA
CL = 10 J.tF
B = 10 Hz to 100 kHz
Vi = 27V

150

Vo = 0

6

150

J.tV

10

18 rnA

0.85
35

,,"v/oe
55 rnA

TBA 625B
Fig. 2 - Power rating chart

Fig. 1 - Typical output voltage
vs output current
as 0280

0.' .,

Plot

(W}

I

4

II'/li

~"'fO/"'/"'E::

12

I)

1
10
V

V,~21

/

-

. . . ~.,.s

/"'1(-

V

........

//

/

/

o
o

20

40

60

V
FREE AIR

80

100

120

'0 (mA)

o

10

20

30

40

50

60

Fig. 4 - Typical ripple rejection
vs regulated output current

Fig.3 - Maximum output current
vs junction temperature

GS 02

GS 0282

SVR

(mA)

150

I,m' (oC)

(dB)

............

60

............ ......

....................

125

............
v,~21

100

........

V

-

40

...............

V,~17

V
.1V,"4Vpp
f = 100 Hz

20

75

o

50
25

50

75

100

125

o

I, (OC)

342

20

40

60

80

100

'0 (mA)

TBA 625B
Fig. 5 - Typical ripple rejection
vs frequency
SVR
(dB)

~

62

~

Fig.6 - Maximum output current
vs input voltage
GS

TnT

GS 0285

284

(rnA)

V,~17VII
lV,~4Vpp

160

TJ =O°C

I--

TJ =25°C

I--

In~5 rnA

60

150

58

-~

56
54

........

....... ~

140
TJ =70°C

52

50

I--

130

48

46

120
10

100

lK

15

f (Hz)

10K

Fig. 7 - Typical short circuit
output cu rrent vs
input voltage

17

19

23

21

25

V, (V)'

Fig.8 - Typical short circuit
output current vs
junction temperature
GS 0287

GS 0286

Ise

Ise

(rnA)

(rnA)

40
60
38
40
36

t--- t--- I---

I..I-- I-- l..I-- I-- l..-

34

V,~21

I..-

o

32

15

17

19

-

V

20

,21

23

25

v, (V)

343

o

25

50

75

100

t-- t---

125

T, (oG)

TBA625B
Fig. 9 - Typical dropout voltage
vs output current

Fig. 10 - Typical quiescent drain
current vs junction
temperature
GS 0288

--

..... v

2.2

/'
./

/

1.8

1.6

/

GS 0289

(rnA)

f:::::::. r-....

10

~

V
IJ.VoIV

0

~

I

0~100

{,~S
~
1JJ-4

-1%

~~

.......

V,-27 V

1.4
1.2

20

60

40

100

80

10 (rnA)

25

Fig. 11 - Typical quiescent drain
current vs input voltage

(rnA)

9.8
9.6
9.4

9.2

10000

-

--

,.i"

f.- -~~

~

~

---

,,1\)OC

'.i___ -

--

100

125

~

GS 0291

I

Ro
(mil )

\)Jc i.---' f.- f.f..f.- -11'>oc_ f.-

10

75

Fig. 12 - Typical output resistance
vs frequency
GS 0290

I~ = b

I.

50

V,~21

V

C L = 0.1 I-'F
1000

1/

~
100

10 -5 to 100 rnA

....... I-"""

V

f.-

8.8

15

17

19

21

23

25

10

v, (V)

10

344

100

f (kHz)

TBA 625B
Turn-on time
(10 = 100 rnA)

Line transient response
(10

= 5 rnA)

VI ·.la.5 v

I

V

1

II

V, 21

1\

'"

-......

vI
V

I

..

I

11

I

V

lOOns 100" 11),,", 1000 lOOns

DOns lOOn

TYPICAL APPLICATIONS
Fig, 13 - Positive output voltage regulator

I
Fig. 14 - Negative output voltage regulator

58 0.078

345

TBA625B
Fig. 15 - Adjustable output voltage regulator

Typical adjustable output
voltage vs output current
4

v,

v.

v.

-

(V)

-Rf'13r

'I

12
10

/

.B

/ /

R2 = 0

10"F

/

)

/V/V
V

//

V,~24

l~ V

v.

V.~12

to 15 V'
1.>.80mA
Ro':: 100 mU
R, ~ potentiometer 0 to 150 u

~V

o
o

Fig. 16 - PNP current boost circuit

20

40

60

80

100 120

I. (mA)

Typical output voltage vs
output current
GS02

0.330

V,O-_'-;:=J-_",",

r--------,

)

V,~21 V

lOon
12

10

BFYb4

Isn

1--+-+---0. Vo
lO"F

/
I

1200n

V

V

550080/1

VJ=21 V
Vo= 12 V
lo~2

V V

A

Ro ::::20mu

O.s

346

1.5

10 (AI

LINEAR INTEGRATED CIRCUIT

TBA 625C

VOLTAGE REGULATOR
•
•
•
•
•

OUTPUT CURRENT ~ 100 rnA
TIGHT TOLERANCE for OUTPUT VOLTAGE
LOAD REGULATION""" 1%
RIPPLE REJECTION 51 dB TYPICAL
OVERLOAD and SHORT CIRCUIT PROTECTION

The TBA 625C is an integrated monolithic 15 V voltage regulator in TO-39 metal case
which can supply more than 100 rnA. The device features high temperature stability,
internal overload and short circuit protection, low outpUt impedance and excellent
transient response. The TBA 625C is intended for Lis~ as voltage supply for digital
circuits with high noise immunity, linear integrated cir'eUits iliid for any other industrial
applications.

ABSOLUTE MAXIMUM RATINGS
Vi
Ptot
Top
Ti
Top

Input voltage
Power dissipation at Tamb
at Teas.
Storage temperature
Junction temperature
Operating temperature

ORDERING NUMBER:

= 25 C
= 25 °C
0

4

V
W
W

-55 to 150
175
o to 70

°C
°C
°C

27
0.75

TBA 625C X5

MECHANICAL DATA

Dimensions inmm

Ground connected to case

Supersedes issue dated 5/73

347

6/75

SCHEMATIC DIAGRAM

THERMAL DATA
R,h
R'h

j-case
j-amb

ELECTRICAL CHARACTERISTICS
Parameter

Vo

avo

max
max

Thermal resistance junction-case
Thermal resistance junction-ambient

Output voltage

Load regulation

Vo

Regulated current

°C!W

200

°C!W

(T j = 25 0 C unless otherwise specified)

Test conditions

Vi = 18 Vto27V
10 =5mA
CL = 10 J.l.F

Min. Typ. Max. Unit

14_25

Vi = 18Vto27V
10 = 5 mA to 100 mA
CL
10 I4F

=

10

37_5

Vi = 24V

348

avo
Vo

~10f0

15 15.75

0.3
100

140

1

V

°/0
mA

TBA 625C
ELECTRICAL CHARACTERISTICS (continued)
Fllrameter

Test conditions

,10

Max. regulated current

Vi

Ro

Output resistance

Vi
10

AVo
Vo

Line regulation

SVR

Supply voltage rejection

eN

Id

~
ATamb

Ise

Vi
10

Output noise voltage

Vi
10
f

= 24V
= 24V
= SmAto100mA
= 18 Vto 27 V
= SmA CL = 10 .... F
= 20V
AV i = 4 Vpp
= SmA CL = 10 .... F
= 100 Hz
= 24V
10 = SmA
= 27V

Vi

Temperature coefficient

Vi = 24V
10
CL = 10 .... F .
Tamb = 0 to 70°C

= SmA

Vi = 27V

=0

Output short
circuit current

120

10 =0

Vo

1S0

200 mA

n

0.1

0.2S

46

Vi
CL = 10 .... F
B = 10 Hz to 100 kHz

Quiescent drain current

.,

Min. Typ. Max. Unit

6

O.S

%

S1

dB

200

....V

10

18 rnA

~V/oC

1.S
30

SO

rnA

I
349

TBA> 625C
Fig. 1 - Typical output voltage
vs output current

Fig. 2 - Power rating chart
'6

j

Vo

I

(V)

V,-24V

12
10

/

/

GS 0297

I"'\.

(w)

lJ

4

,I
Wll'/i
RAt'<:-IAt
Il"l:

...... -....!!.!.41'SIIVII_

3

.......

/
/
o

o

/
20

/

/

FREE AIR

...

40

60

o

80

100

120

10 (mA)

Fig. 3 - Maximum output current
vs junction temp,erature

o

20

40

Fig. 4 - Typical ripple rejection
vs regulated output current
GS 029"8

I.,

GS 0 ' "

SVR

(mA)

150 i'--...

(dB)

60

..................

"' ............

125

............ .......
V,-24V

-

40

I'-......-

100

20

V,-20 V
'--:- .1 V,-4 V"
f = 100 Hz

75

o

50
25

50

75

100

125

350

o

20

40

60

80

100

10 (rnA)

TBA 625C
Fig.

5 - Typical

ripple rejection
vs frequency

Fig. 6 - Maximum output current
vs input voltage
n'01

::. U.:lUU

SVR

II

(dB)

bO f-f--

.I.

(mA)

I

V)20V I

~J

160

v.> 4 Vpp

10~5

mA

56

1TJ =25°e

150

-

~~

-

52

,".'

140

V

48

= oDe

T J =70 0e
,130

44

120
10

lK

100

10K

17

f 1Hz)

Fig. 7 - Typical short circuit
output current vs
input voltage

19

21

23

25

Fig. 8 - Typical short circuit
output current vs
junction temperature
GS 0302

0303

I

IBe

(mA)

(mA)

34
60
32

30

-

f-

28

40

-

~

~l -

r--

-r---r---

20

V,~24

I---

V

I
26

17

19

21

23

V, (V)

25

25

V, (V)

351

50

75

100

125

II

TBA625C
Fig. 9 - Typical dropout voltage
vs output current

Fig. 10 - Typical quiescent drain
current vs junction
temperature
GS 03

.. J.H' U305

I.
(rnA)

2.2

2

V

V
./

l.B

V

.....-V

~

10

~

117",

'0"'5 117", .

~

-.....:::

/"

1.6

~

t1V o iV o -l%

1.4

v'-r v

1.2

1

~~
o "'lao

a

7
20

40

60

BO

.In(mA)

100

a

Fig. 11 - Typical quiescent drain
current vs input voltage

I _ ~C
I..--l.l-O.....- I..---

10

I..---

-n

-

I,oc

~
9.4

,...-

9.2

1 I,,10 ~c_ ~ ~

~,....

75

100

125

S'o 07

10000

----

1.l,,75.........- I--

_r---

50

Fig. 12 - Typical output resistance
vs frequency
S 0306

I.
(rnA)

25

Ro
(mil )

V,-24V

1000

-

C, ~O.l i'-F

I

I

10 -5 to 100 rnA
100

I

L

.--i-""""

V

10l-O

8.B

10

17

19

21

23

25

1

V, IV)'

352

10

100

f (kHz)

TBA 625C
Turn-on time
(10 = 100 rnA)

Line transient response
(10

= 5 rnA)

V 21.5V

I

vi /

v

1\

V

""

lOOn lOOns lOOns

o

If
~-

'-..

V

//

oOns~ons
lOOns lOOns OOns

TYPICAL APPLICATIONS
Fig. 13 - Positive output voltage regulator

Fig. 14 - Negative output voltage regulator

Vo -15 V

SS U083

353

JBA'~825C

Fig. 15 - Adjustable output vbltage regulator

Typical adjustable output
voltage vs output current
GS!l31

Vo

V,

IV) f - - R2

Vo

I

~

910

16

J
7\

14 f - - I--R2 - 0

/j

IO"F
12

V/

10

VO.V I

I/V
/ V

(l+~) + IG R2 •

~

V,.:J.6V
Vo==15 to 17
"10> 80 rnA

o

Ro,!=,IOOmu
R2 _potentiometer : O,to 150 U I

Fig. 16 - PNP current boost circuit

o

~
20

W

40

60

80

100

10 ImA)

120

Typical output voltage vs
output cu rrent

0.33ll

""

V0

-...,

IV)
2

II

Y,-24 V
BFY64

10
1-_~4--o()Vo

8

15ll

V

. 1500ll

V

4

V

S5008'I,

2

V,_24 V
Vo..15 V
lo .. ii! A

0

V

0.5

Ro ,=20m U

354

V

J

LINEAR INTEGRATED CIRCUIT

18A641A

AUDIO AMPLIFIER
• OUTPUT POWER 2.2 W (9 V - 4 il)
• LOW DISTORTION
• LOW QUIESCENT CURRENT
• SELF CENTERING BIAS
• HIGH INPUT IMPEDANCE

The TBA 641 A is a monolithic integrated circuit in a 14-lead quad in-line plastic
package. It is particularly designed for use as audio power amplifier in portable radio
receivers, tape recorders, record players and in industrial applications which require
high output power, low distortion and high reliability performance.
Special features of the circuit include a low quiescent current, self centering bias
operation at supply voltage ranging from 6 V to 12 V, direct coupling of the input.
The circuit requires a minimum of external components.

ABSOLUTE MAXIMUM RATINGS
VS
Vi
10
-;, Ptot
T stg
Tj

Supply voltage
Input voltage
Output peak current
Power dissipation at Tomb

~

at Teas.
Storage temperature
Junction temperature

~

25°C
100°C

12
-0.5 to +Vs
2
1.5

3.8
-40 to 150
150

V
V
A
W
W
°C
°C

ORDERING NUMBERS:
TBA 641 A72 for quad in-line plastic package with spacer
TBA 641 A12 for quad in-line plastic package

Supersedes issue dated 6/73

355

6/75

MECHANICAL DATA

(Dimensions in mm)

Quad in-line plastic package
with spacer for TBA 641 A72
(see also "MOUNTING
INSTRUCTIONS")
C-0058

M
(~)

Quad in-line plastic package
for TBA 641 A12

1Ll0.16
I. 5.081 .1
POO'!;-A

CONNECTION DIAGRAM

OUTPUT

SUPPLY VOLTAGE

NC

NC

GROUNO

BOOTSTRAP

NC

11

NC

GROUND

10

RIPPLE BY-PASS

COMPENSA liON

NC

INPUT

FEED-BACK

S5 0086

356

TBA641A
SCHEMATIC DIAGRAM
.--...-_ _ _ _ _ _ _ _ _ _----,---014
r--~--,___,_-_t_--o 12

10o-----+_--;

R'f

TEST AND APPLICATION CIRCUIT

Vi

IOO,oF
IOV

5-0378/1

357

I

TBA641A
THERMAL DATA
~ Rth j-case
~

R'h i-8mb

Thermal resistance junction-case
Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS
(See test circuit; Tamb

= 25°C,

V,

= 9 V and

= 4n

unless otherwise specified)

Test conditions

Parameter

Vo

RL

13 °C/W
83 °C/W

max
max

Quiescent output
voltage (pin 1)

Min. Typ. Max. Unit

4

4_5

5

V

Total quiescent
drain current

Po

=0

8

18 mA

Quiescent drain current
of output transistors

Po

=0

6

mA

Id

Drain current

Po

= 2.2W

340

mA

Ib

Bias current (pin 7)

Po

Output power

R' f

Internal feedback
resistance

Id
Id

0.1
d
Gv

= 10%

= 46 dB

f

1

J.tA

= 1 kHz
2.2

W

See schematic diagram

7

kn

Internal feedback
resistance

See schematic diagram

35

n

Zj

Input impedance (pin 7)

f

3

Mn

d

Distortion

f

0.6
0.6 .

%
%

46

dB

2.5

{J.V

R'.I

Gv

Voltage gain

eN

Input noise voltage

= 1 kHz
= 1 kHz

=0
R, = 22 kn

1.8

= 46 dB
Gv = 46dB
Po = 50mW
Po = 1 W

Gv

Rf

358

B

= 10 kHz

18A641A
Fig. 1 - Typical output power vs
supply voltage

Fig. 2 - Typical distortion vs output
power
('1082

G-l081

d

Po
(W)

-

d =10"/0

2A

9

/

f-- f =lkHz

/t--

Rf=O

I

/
/

II

('10)

-.

Vs =9V
Rl =4U

f----

f= 1kHz

---

R, =0

I

I

RL=~
1.6

:/
1.2

0.8

0.4

/

V

./
I'
./'

V

RL~ey

,/

V
./

,/

/

I

'"

Fig. 3 - Typical voltage gain vs
feedback resistance (R,)

10- 1

2

1

, ,,
Po (W)

Fig. 4 - Typical value of C b vs Rf for
various values of B

-

G 1060

1000

G 1059

LL~

(G v )

-I

400
Vs

=9V

~=l'=k~~

200

A"'"

""

,./

~

VII"

60

l-

40

-I""'

B=10kHz

;

1',
100
80

,

, 6'
10- 2

I

V

I-

v ...

I

-~

B=20kHz

,..1---

-

20

I

10
50

100

150 R, (ll)

200

359

20

40

60

80

100

120 R, (ll)

160

TBA641A
Fig. 5 - Typical output power vs
input voltage

Fig. 6 - Typical power dissipation
and efficiency vs output
power
G

G 1083

Pto t·
(W)

Po

(W)

2A

- r- RL=4Q

-

r- r-

/

--

0.8

1.6

V

1.2
0.8

I

--

",

V

V

0.6

/

60

-

Ptot

=1kHz

_.

-j"

, ,.

1.2

Rf =0

7

,/

Vs =9V

f

0.4

(oJ

/

1.4

2.8

1084

.... ...... 1-0..

/

50

,

"I

I

-l-- - - -

40

30

.Vs =9V

f--+-

'R L =4Q

0.4

10

0.2

i-""

o
12

10

0.4

14 Vj(mV)

os

1.2

2.4

1.6

2.8 Po (W)

Fig. 8 - Maximum power dissipation'

Fig. 7 - Typical drain current vs
output power

G 1015

G 10B5

Id

Pto t

(mA)

(W)
RL

=4Jl

400

/"
I

....".

320

1.6

.... 1-'
./

160

",

//
,

RL=4Jl

I-- -

0.8

V
....".

j

0"

II

o ..

V

Vs =9V

/
80

V

1.2

V

",,'

,,"

",.
240

OJ.

os

20

1.2

lS

10

11

v. (v)

• The dotted I ine refers to TBA 641 A72
with additional heat-sink

360

TBA641A
Fig. 9 - Power rating chart

Fig. 10 - Typical quiescent drain
current vs supply voltage

-

G_l076

G 1680

Ptot

V

(W)

V

11

WITH INFINITE

4

HEATSINK

V

/v
Id(tot)

/

;I'
FREE AIR

V

l./

V
V

/'"

!/

K

V

/

V

/

1/

,

(out put

transi~tors)

..... 1:.7

11

o
o

-50

50

100 Tamb I'C)

Fig. 11 - Typical quiescent drain
current vs ambient
temperature

10

Fig. 12 - Typical quiescent output
voltage vs ambient
temperature

G-1087

G

toes

Va

ld
(mA) ~-+

__~-+__~~__~__~-+__+-~

(V)

Id (totail

Vs

=9V

4.8

4.6

r--.. r- i--

Id (output transistors)
4.4

4.2

-10

10

30

-10

50

361

10

30

50

70

Tamb ('1:)

I

TBA641A
-

G 1074

Fig. 13 - Typical quiescent output
'voltage vs supply voltage

Vo

(V)

5.5

/
/

45

4

3.5

3

V

lL

/

V

/

B

TYPICAL APPLICATION
Fig. 14 - Portable record-player amplifier

INPUT

362

V

V

V

/

/

9

10

11

VsM

TBA641A
MOUNTING INSTRUCTIONS
Fig. 15 shows a method of mounting the TBA 641 A with the spacer, satisfactory both
mechanically and from the point of view of heat dissipation. Better thermal contact
between package and heat-sink can be obtained by using a small quantity of silicon
grease. For heat dissipation the desired thermal resistance is obtained by fixing the
elements shown to a heat-sink of suitable dimensions.

Fig. 15

~-I----

hlN.l Sink

-----Contact
(Silicon g ...... )

~.:>.,-

_ _ P. C. board

Ij
I

Ij

363

LINEAR INTEGRATED CIRCUIT

18A6418

AUDIO AMPLIFIER
• OUTPUT POWER 4.5 W (14 V - 40)
• LOW DISTORTION
• LOW QUIESCENT CURRENT
• HIGH INPUT IMPEDANCE

The TBA 641 B is a monolithic integrated circuit in a 14-lead quad in-line power plastic
package. It is particularly designed for use as audio power amplifier in radio and
television receivers, and in industrial applications which require high output power,
low distortion and high reliability performance. Special features of the circuit include

a low quiescent current, self centering bias for operation at supply voltage ranging
from 6 V to 16 V, direct coupling of the input. The circuit requires a minimum of
external components.

ABSOLUTE MAXIMUM RATINGS

~

V,
V,
Vi
10

Supply voltage (no signal)
Operating supply voltage
Input voltage

Ptot

Power dissipation at Tamb £c. 25°C *
Tamb £c. 25°C **

Peak output current

Tease

T,tg, Ti

18
16

£c. 70°C

Storage and junction temperature

-0.5 to +V,
2.5
1.5

V
V
V
A
W

2.3

W

6
-40 to 150

W
°C

i

* For TBA 641 B72

** For TBA 641 BX1 and TBA 641 B11
ORDERING NUMBERS:

TBA 641 B72 for quad in-line plastic package with spacer
TBA 641 BX1 for quad in-line plastic package with external bar
TBA 641 B11 for quad ifl-line plastic package with inverted external bar

Supersedes issue dated 6/73

I

365

6/75

MECHANICAL DATA (Dimensions in mm)
Quad in-line plastic package
with spacer for TBA 641 B72
(see also "MOUNTING
INSTRUCTIONS")

~
C-0058

Quad in-line plastic package
with external bar
for TBA 641 BX1

8

.~

.

, '"'

Quad in-line plastic package
with inverted external bar
for TBA 641 B11

366

18A6418
CONNECTION

DIA~RAM

OUTPUT

14

SUPPLY VOLTAGE

NC

13

NC

GROUND

12

BOOTSTRAP

NC

11

NC

GROUND

10

RIPPLE BY-PASS

COMPENSA TION

NC

INPUT

FEED·BACK

55 0086

SCHEMATIC DIAGRAM

r-~----------------------~------~-o14

r---~----~~~----+--o12

10o---------~~

R'f

I
II(

Ii
I:'

h

I:
367

I

T8A.6418
TEST AND APPLICATION CIRCUIT
r---------~>---.......-O+Vs

Vi
100,uF
25 V

5-0395

TBA641 B72

TBA641 BX1
TBA641 B11

THERMAL DATA
~ Rth i-ca.e

-+ Rth J-omb

Thermal resistance junction-case
Thermal resistance junction-ambient

max

13 °C/W

13 oC , W

max

83°C/W

55°CjW

ELECTRICAL CHARACTERISTICS
(See test circuit; T 8mb

= 25 0C, V. = 14 V and RL = 4 n unless ot!'lerwise specified)
Test conditions

P.rameter
Vo

Id
Id

Quiescenfoutput
voltage (pin 1)

~.

Po

Quiescent drain current
of output transistors

Po

Id

Drain current

Ib

Bias current (pin 7)

6.5

...•. ,

Total quiescent
drain current

Min. Typ. Max. Unit

=0

=0
Po = 4.5W

368

7

8

V

16

32 mA

13

mA

485

mA

250

nA

TBA641B
ELECTRICAL CHARACTERISTICS
Parameter

Test conditions

Output power

Po

(continued)

d
Gy

= 10%
= 46 dB

f

Min. Typ. Max. Unit

= 1 kHz
4

4.5

W

Internal feedback
resistance

See schematic diagram

7

kil

Internal feedback
resistance

See schematic diagram

35

il

Zj

Input impedance (pin 7)

f

3

Mil

d

Distortion

R'f
R'.I

Gy

Voltage gain

eN

Input noise voltage

= 1 kHz
f = 1 kHz
Po = 50mW
Po = 2W
Rf = 0
Rs = 22 kil

Gy
Gy

B

= 46 dB
= 46 dB

= 10 kHz

0.3
0.8

%
%

46

dB

3.4

p.V

Fig. 2 - Typical distortion vs output
power

Fig. 1 - Typical output power vs
supply voltage
G 1090

I-- -

I-- -

I

d=10O/a
Rl=4n

Rf"O
f=lkHz

V

V

/

V

V

G-\091

d

J

("!o)

V

12

1---+-++++t-ttt----'-+++f++H-+-++-H+I-H
Vs=14V
1---+-++++tft1 RL =" n t-+-t-ttttt--+++++ttH
I---+-++++++H, ~;:~z t-+-t-ttttt--+++++ttH

10

./

1/
, 'B
10

12

'"

16

10-2

Vs (v)

369

to-I

, ,,
1

-

, '8
Po(W)

Fig. 3 - Typical voltage gain vs
feedback resistance (R I )

Fig. 4 - Typical value of Cb VS RI for
various values of B
G-1119

1000

2

Cb
(G y

)

~~-

-11 T

(pF )

G 1059

I

v. ='4V
RL= 40
t"lkHz

200

~

B=~

-l-

i--

V

"

V

V

40

V-

1--'-

V

..... 1-1"

B=20kH

60

'"

~

i I

--

I i
I

I

I

20

i

10
150 R, (Jl)

100

50

200

II

I

20

Fig. 5 - Typical output power vs
input voltage

40

60

80

100

120 R, <.n)

G 1693

'1l

Ptot

( 'I,)

(W)
Vs =14V
~ ~ RL=4fl

Vs=14V

R, =0

1---1-

160

Fig. 6 - Typical power dissipation and
efficiency vs output power
G 1092

I--- I--

f=lkHz

Rl= 4(1

80

II

I

I

r7
I

V

1..1

1./

1/

Ptot

V

...V V
JV

IV

V

J...,...oj....-'

a

I

-1-- - t -

;,.-

[\1'-.
80

I

I

400

100

I :
I I

I

Cc=5 Cj

12

16

20 Vi (mV)

370

V

j7

V

~

~V

-

60

t-40

20

18A6418
Fig. 8 - Maximum power dissipation
vs supply voltage

Fig.7 - Typical drain current vs
output p')wer
c-

./

400

Y

300

/'

V'

Ptot

V

(W)

.. f-----

-- _.
RL=411

I

--f-----t
----L_-:

I

I

I!

/"
i

/V
200

100

Vi

.

I

I

Vs= 14

-/iIIII

I
I

l -f---

RL=4U

......V

I

."

.",

V

./'

-. ._.

!

.-~

VI
I

i

I

I
12

10

Fig. 9 - Power rating chart
(TBA 641 BX1 and
TBA 641 B11)

Fig. 10 - Power rating chart
(TBA 641 B72)

-

-

G 1679

G l6U

Ptot
(W)

Ptot
(W)

WITH INFINITE
WITH

I

HEATSINK

INFINITE HEATSINK

\
4
FREE AIR
FREE AIR

f....

o
-50

o

50

100

\

~

f..J

o.

Tamb ('C)

-50

371

o

50

--tSI8418
,

'

j""

'.

,"

' . .'"'

.

"

Fig. 12 - Typical quiescent drain
current vs ambient
temperature

Fig. 11 - Typical quiescent drain
current vs supply \ioltage

I.
ImA)

!l.L

-t~

f-- - -

r

16

__ .L__ ,
Id(tota~

12

I--

./

V

17

-JL
V ___ f--

~

I
Id (total)

16

'5

14

ILLi

Id (outPL!t transistors)

I

13

'/(coutput transistors

7/

12

'"

"

./

0-1.098

I

ImA)

Vs

=l'V

10
10

12

14

10

-10

Fig. 13 - Typical quiescent output
voltage vs ambient
temperature

20

30

40

50

Tamb (·C)

Fig.14 - Typical quiescent output
voltage vs supply voltage
6-1100

Vo

IV)

Vs=14,v

!
-- r--

7.2

,

i'-- t-- I--.

/

6.6
-10

30

50

V

V

V

/

'0

70 rambl'C)

372

/

V

12

V

7

k:

TBA641B
TYPICAL APPLICATION
Vs

,------,-----,-------------t~---OI4V

I)JF IZ5V
0.1

100),lF

5-0408

MOUNTING INSTRUCTIONS

-1----

hut sink

_ _ _ _ _ Contad
(Silicon 9 ..... )
Rth

Fig. 15-Shows a method of mounting
the TBA 641 B with the spacer,
satisfactory both mechanically and
from the point of view of heat dissipation. Better thermal contact between package and heat-sink can
be obtained by using a small quantity of silicon grease. For heat dissipation the desired thermal resistance is obtained by fixing the elements shown to a heat-sink of suitable dimensions.

~--"r--p.

373

."cjw

c. board

I

18A6418
MOUNTING INSTRUCTIONS (continued)
Power dissipation can be achieved by means of an additional external heat-sink fixed
with two screws (both packages) or by soldering the pins of the external bar to
suitable copper areas on the p.c. board (TBA 641 B11)
A.

In the former case, the thermal resistance case-ambient of the added heat-sink
can be calculated as follows:

where:

B.

T jmax

Max junction temperature

Tomb

Ambient temperature

P,o,

Power dissipation

R'h

Thermal resistance junction-case

j.case

If copper areas on the p.c. board are used (TBA 641 B11) the diagrams enclosed
give the maximum power dissipation as a function of copper area, with copper
thickness 35 J.t and ambient temperature 55

ae.

/

l

l

GS0144

4

7

r--'~

,r

PC BOARD

p,.

I

r~J...'-r:1L.I...ro......J.r"'-~

:

1

h1<>-=--

\

r
I

q :

I ,LrrL!:rr;t..:rIl="'TrJ

i

TJA aJ, B'~

(W)
3

I

I

l - t- l -

!l

V I.---

2

,,-

/

V

-I- I--

I

T

0

10

COPPER AREA. 35 IJ- THICKNESS

374

20

30

40 Jl ' v,

r - - - - - - i = } - - - - -......

THERMAL DATA
~

Rth j·amb

Thermal resistance junction-ambient

max

280 cG/W

ELECTRICAL CHARACTERISTICS
(T amb = 25 cG, Vs = 12 V unless otherwise specified)
Parameter
Id

Quiescent drain current

Vi

Input voltage at pin 1

Vo

Recovered audio output
voltage

Test conditions

signal to noise
ratio = 26 dB
d
fm

= 50/0

f
m
Vi
V;

= 1.6 MHz

=

1 kHz

= 0.3
= 100 ~V
= 1.5 ~V
377

f
m

= 1.6 MHz
= 0.8

Min. Typ. Max. Unit
11.5

mA

10

IJ-V

100

mV

0.5
180

V
mV

fm = 1 kHz

TBA 651
ELECTRICAL CHARACTERISTICS
Parameter

Vi

Ri
Ri

Test conditions

Min. Typ. Max. Unit

Signal handling
capability at pin 1
AGe range

Ri

(continued)

for 10 dB expansion of
output voltage

1

V

80

dB

rf amplifier input
resistance at pin 1

f

= 1.6 MHz

1.4

kn

Mixer input
resistance at pin 4

f

= 1.6 MHz

2.5

IF amplifier input
resistance at pin 13

kn
I---

f

= 455 kHz

4

kn

Fig. 1 - Typical output voltage
vs input voltage

1000 1-++H---+-1-+I~.e-,\.lLATING SIGNAL 1m =1KHz

. U.~U..
. .
..-

y\ WI'OO

't\\~

100

'" ..

. -.

11'~\)."3.
""

-ttt-t-H+I-+-t+tt-i

-

~~~~rf~fj~~~~2~6~dB!t~fm~~~~~

10

- ~/I-H++-I-++++-+-+-+++-+--+++H
t-lft'OUT M.0DULATING SIGNAL

-HtH-+ttt
1-

O~~~~-LLil~~~-LW-~~~~~

0.1

378

10

100

1K

10K

LINEAR INTEGRATED CIRCUIT

TBA 780

WIDE-BAND AMPLIFIER, FM DETECTOR, AUDIO
PREAMPLIFIER/DRIVER
The TBA 780 provides, in a single monolithic silicon chip, a major subsystem for the
sound section of TV receivers in a 14-lead quad in-line or dual in-line plastic package.
As shown in the schematic diagram the TBA 780 contains a multistage wide-band IF
amplifier/limiter section, active filter, an FM-detector stage, electronic attenuator,
a Zener diode regulated power supply section and AF amplifier section specifically
designed to directly drive an NPN power transistor or high-transconductance tube.
In the TBA 780, the demodulation can be effected by a single tuned discriminator coil
(differential peak detector).
Because of the circuit beeing so inclusive, a minimum number of external components
is required. A particular feature of the TBA 780 is the electronic attenuator, which
performs the conventional volume control function.

ABSOLUTE MAXIMUM RATINGS
Supply current (pin 5)
Output current (pin 12)
Input-signal voltage (between pins 1 and 2)
Total power dissipation: at Tomb
Storage temperature
Operating temperature
ORDERING NUMBERS:

~

50 mA
6 mA

±3

V

850 mW
-25 to 150°C
Ot085°C

25°C

TBA 780 X2 for quad in-line plastic package
TBA 780 X7 for dual· in-line plastic package

MECHANICAL DATA

Di,nensions in mm

i

~

I,

I:

"".,

TBA

TBA 780X2

Supersedes issue dated 4/72

379

78~X7

5/73

TBA 780
ELECTRICAL CHARACTERISTICS (T amb = 25°C, DC volume control P2 = 0 and
Vs = +30 V applied to terminal 5 through a 620 n resistor, unless otherwise specified)
Parameter
Is

Supply current

Vi(thre,hold) Input limiting
voltage (pin 2)

Vo

Recovered audio
voltage (pin 8)

d

Distortion (pin 8)

Vo

Audio output
voltage (pin 12)

Vo

Test conditions
Vs = 9 V (applied
direct. to pin 5)

Vj = 100 mV
f
= 5.5 MHz
fm = 1 kHz
Af = ±50 kHz

d
f

=5%
= 1 kHz

Ro

mA

-

200

400

/tV

-

f

Vrrn ,

3
0.9

2

2

Vrrn ,

2.5
11.75
80

Ufo

V

-

3
0.075

1 . mV

17

kQ

3.25

kQ

= 5.5 MHz

380

4

dB

00

Input resistance
(pin 2)
Output resistance
(pin 9)

24

0.5 0.75

60
P2 =

Fig.

16

8.5

DCvolume
control range

Rj

10

f
= 5.5 MHz
fm = 1 kHz
Af = ±50kHz

DC output
voltage (pin 12)

Max. play-through
voltage

Min. Typ. Max. Unit

-

TBA 780
ELECTRICAL CHARACTERISTICS

Test conditions

Parameter
Ro
Ro
Ro
Cj

G.

Output resistance
(pin 7)

f

AMR

270

Cl

7.5

kCl

300

Cl

4

pF

7.5

pF

17.5

20

dB

343

370

40

50

= 1 kHz

Output resistance
(pin 8)
Input capacitance
(pin 2)
Output capacitance
(pin 9)
Audio voltage
gain

f

Vj
Ptot

Min. Typ. Max. Unit

Output resistance
(pin 12)

f

Co

(continued)

= 5.5 MHz
= 1 kHz
= 0.1 V

Total power
dissipation
Amplitude
modulation
rejection

t

= 5.5 MHz

381

400

mW

dB

Fig.

-

-

4

3

TBA 780
SCHEMATIC DIAGRAM
Fig. 1

13

Fig. 2 - Typical application using TBA 780 and class A output transistor
1) T, = 5.5 MHz transformer
L p = 5.5 J1H; Qo=80; 19 'turns
o 0.15 mm silk-covered
copper wi re with powdered-iron core
Ls = 9 turns 0 0.15 mm
Audio ouiput transfor·
mer:
The dimensions of the
transformer and of the
circuit parameters are
to be evaluated on the
basis of the output
power desired and of
the load to be used
Single tuned discriminator coil: 12 J1H; Q o =
50 (58 turns (21 0.08 mm
with powdered-iron core)

382

TBA 780
Fig. 3 - Input limiting voltage, AM rejection, recovered audio, total
harmonic distortion, maximum
attenuation, maximum "playthrough" test circuit

Fig. 4 - Audio voltage gain (undistorted output) test ci rcuit

6200.
1W

B
S1

Vi

r--i-

~
:---

FM

O.01jJF

~I--;on

-

Gl:'nerator

O.47~F

I

Fig. 5 - IF amplifier voltage gain test
circuit

To diode
detector and
oscilloscope

383

TBA 780
Fig. 6 - Typical IF amplifier voltage
gain

Fig. 7 - Typical AF amplifier voltage
gain

G-OS80

G,

Gv

(dB )

.-~~~r-~~~-~~~-~~~

(dB) 1-+-+++i+H+--+-+f+H+lI Ta =25·C
V, =100mVI-H+--+-+H+-fHI

Ta =25·C
V; =l00IJVrms

70

......

60
50

40
30
20

\.

10

o

6

•

4

10-1

6

o

•

f (MHz) 10

Fig. 8 - Typical FM detector output
voltage versus input voltage
250

i

I:

V

II

(mV)C
1-200 1----

I'~

rT

n

._--- l -

i-r

10'

f=5.5 MHz ,
""=15 kHz
fm=lkHz

•

(dB)

6

4 68

1

2

10

II

,

!

1

4

f (MHz) 10'

f=5.5MHz
Af·~15kHz

150 1-[

I---J
II

4 6 8

4

-LI-W---I--c-l-m./-lj

~. ~-

2

10-1

G-058311

AMR

IT

t·

4 6 B

Fig. 9 - Typical amplitude-modulation
rejection versus input voltage

~~~~~~~~~~~_~~,",G-;.<;'OS'i\':82/1

VO 1----

2

1()'

--

10

t"
~

m=30·/.
m=lkHz

,
6

I

4

100

I

50

2

4

10-1

111111

6.

4

·1

6 8

2

10

4

Vi (mV)

6 8

2

102

10-1

384

4 68

I

11111
2

4 68

10

2

4

68

2

111I
4 6 8

102 Vi (mV) 10'

TBA 780
Fig. 10 - Typical gain reduction
versus resistance (P2)
(tErminal 6 to gnd)

-_.

40~1-++tTrHr71~--~~+H~-~-++THffi
l

OL-~~4~6~6L-~~4~6~6L-~'~~4~6~6

10

10'

P, (kO) 10'

Fig. 11 - P.C. board layout. 1:1 scale (fig. 2 circuit)

·~8

'-~

C7

385

LINEAR INTEGRATED CIRCUIT

TBA 800

AUDIO POWER AMPLIFIER
The TBA 800 is an monolithic integrated power amplifier in a 12-lead quad in-line
plastic package. The external cooling tabs enable 2.5 W output power to be achieved
without external heat-sink and 5 W output power using a small area of the P.C.
board Copper as a heat sink.
It is intended for use as a low frequency Class B amplifier.
The TBA 800 provides 5 W output power at 24 V/16 n and works with a wide range
of supply voltage (5 to 30 V); it gives high output current (up to 1.5 A), high efficiency
(75% at 5 W output), very low harmonic distortion and no cross-over distortion.

ABSOLUTE MAXIMUM RATINGS
Vs
io

10
Ptot
T stg , T j

Supply voltage
Peak output current (non repetitive)
Peak output current (repetitive)
Power dissipation at Tamb = 80°C
at T tab = 90°C
Storage and junction temperature

30
2
1.5

V
A
A
W

5
-40 to 150

W
°C

ORDERING NUMBER: TBA 800

MECHANICAL DATA

Supersedes issue dated 5/74

Dimensions in mm

387

6/75

TBA 800
CONNECTION AND SCHEMATIC DIAGRAMS

5-0329

TEST CIRCUIT
+Vs=24V

Vi

R2
l00kQ

C2
500)JF
15 V

• C3, C7 see fig_ 5

388

TBA 800
THERMAL DATA
Rth j-tab
Rth j-amb

Thermal resistance junction-tab
Thermal resistance junction-ambient

max
max

12 °C/W
70' °C/W

• Obtained with tabs soldered to printed circuit with minimized copper area.

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tamb
Vs

= 24 V,

RL

= 16 n,

Parameter
Vo
Id

Test conditions

Quiescent output
voltage (pin 12)

Bias current (pin 8)

Po

Output power

11

d

= 100/0

f

= 1 kHz

Vi (rms) Input saturation voltage
V,*
,

Input sensitivity

Ri

Input resistance (pin 8)

B

Frequency response
(-3 dB)

Gy
Gy

Min. Typ. Max. Unit
12

Quiescent drain
current (pin 1 )

Ib

d

4.4

Po

= 5W

f

= 1 kHz

Po
f

Voltage gain
(open loop)

f

= 1 kHz

Voltage gain
(closed loop)

f

= 1 kHz

C3

* See fig. 6

389

13

V

9

20 mA

1

5 J.tA

5

W
mV

220

= 330 pF
= 50 mW to 2.5 W
= 1 kHz

Distortion

= 25°C,

unless otherwise specified)

80

mV

5

Mel

40 to 20,000

Hz

0.5

%

80

dB

42

45 dB

39

I

,

TBA-800
ELECTRICAL CHARACTERISTICS (continued)
Parameter

eN

Input noise voltage

Rg =0
B(-3 dB)=40to 20,000 Hz

5

JJ.V

B(-3 dB)=40 to 20,000 Hz

0.2

nA'

75

%

35
38

dB
dB

280

rnA

iN

Input noise current

11

Efficiency

Po = 5W

SVR

Supply voltage
rejection ratio

frippl.

Drain current

Id

f

= 100 Hz
C5 =
C5 =

25~F
1oo~F

Fig.2 - Maximum power dissipation
versus supply voltage G-0805~

(j

6

= 1 kHz

Po =5W

Fig. 1 - Typical output power versus
supply voltage
08 11/1
Po
(w) I-I--

Min. Typ. Max. Unit

Test conditions

Ptot

b!,OOfo

(W)

f=lkHz
I-- Rf = 560

4

1/
RL=BO

----

4

L

I
'I RL=160

/-- tt r--- ,--- - ,---

RL=SO

)

V

/
2

/

V

V ./
V 1/
-:;

o

.....

10

~

o
20

V

/

./
~
~

V

390

V

""

10

Vs (V)

,./ i-"

./ "'RL=16D.

15

20

25 Vs (V)

I

II¥

TBA 800
Fig. 3 - Typical distortion versus
output power

Fig. 4 - Typical distortion versus
frequency
G 080611

d
('Io)

d
('Io)

"1

8

Vs=24V
RL =160
j=lkHz
Rj =560

ffff-

G

-ossm

j

(Hz)

I IIIII

s= 24V
RL= 160 _
Rj= 56Q

4

II
Po =50mW

3

6

4

o=2.5W

I

1\

IT
2

1\
./

o
o

4

10

Po{W)

Fig. 5 - Value of C3 versus Rf for
various values of B
C3

5-0692/3

,

Vj
(mV)

(pF),
C7~5XP

_

..

j...

,
,
,

20kHz

,

f.--

I---

10

~ I'-

.........1....... I..--

F'
I=' 1=1='
l - I- f- ,
f= f=

,
,
,

,

l- I- IVj(Po =0.05W)

~

.,

10

,

1/

,

,

, ,

Rj{O)

50

391

Gv

-I-,

~

Vj(Po =5W)

•,

,

l/
17
10

RL= ISO
f = 1kHz

~

/

10'

Vs=24V

,

,

...----15kHz

10'

Fig. 6 - Typical voltage gain (closed
loop) and typical input
voltage versus R,
G 125711

,

/,lO;kHZ

'7
10',

,

10'

10'

100

Rf (0)

i'

TBABOO
Fig. 7 - Typical power dissipation
and efficiency versus
output power

Fig. 8 - Typical quiescent output
voltage (pin 12) versus
supply voltage

6-083311

Ptot
(W)

15

'1

u
Ptot

( ",)

Vo

70

(V)

V

so
10
1.5

50
t-

~

+.

V

40
Vs=24V
RL=IS!l
f =lkH

30

5

20

,/

0.5

1/

1/

/

L

G- 059011

1/

V

V

/

V

10

a
a

a

4 po(W)

2

Fig.9 - Typical quiescent current
versus supply voltage

10

20

Vs(V)

30

Fig. 10 -' Typical supply voltage
rejection ratio
G1258/1

SVR

~

(dB)

L

)

Vs = 24V

RL =lSLl
'ripplo=100Hz

Id (tot)

o
6
-10

4
Id (output transistors)

2

I'

-20

-.

-30

--i- t-....
c-- -

'" ='i'--1'"'....... r-

-40

-

~=25p

C5=100)JF-50

o

10

20

30

o

Vs(V)

392

50

100

TBA 800
APPLICATION INFORMATION
Fig. 11 - Circuit with the load connected to the supply voltage

R2

100 k £l

Compared with the other
circuits, this configuration
entails a smaller number
of external components
and can be used at low
supply voltages.

C4
O.1~F

R1
10

• C3, C7 see fig. 5

Fig. 12 - Circuit with load connected to ground without bootstrap
+Vs=24V

This circuit is only
for use at high voltages.
The pin 3
is left open circuit,
this automatically inserts diodes D2 - D3
(see schematic diagram) and this enables a symmetrical
wave to be obtained
at the output. Refer
to figs. 13 and 14 for
distortion and output
power.
• C3, C7 see fig. 5

393

I

I

Fig.14 - Typical output power versus
supply voltage (fig. 12circuit)

Fig. 13 - Typical distortion versus
output power (fig. 12 circuit)

G.OSIO

G 0806

d
('10)

8

r-- r-- -

Vs=24 V
R,=16.Q
f=lkHz
Rf =560

I

6

I
/
I

6

d =10"10
f=lkHz
Rf = 56

I

/

4

1/

4

R,=SQ

/

2

/

2

J

2

o

3

/R, =160

V

1/

/

V

~ r.,...-

o

IV

10

/

20

Fig. 15 - Circuit with load connected to ground with bootstrap
+ Vs=24V
RX
o---~--'-----~-+-~-l
150.0
I
I
I

I

Vi

100kO
500}'F
15V

The bootstrap capacitor
C8 enables the same
electrical characteristics
as those of the tesl
circuit to be achieved ...
For low supply vGltage
operation (e.g. 9 to 14 V),
RX (150,0) is connected
between pin 1 and pin 4.

--+---.....---J

• C3, C7 see fig. 51..-............

N.B. - For the circuits of figures 12 and 15 an excellent supply voltage ripple rejection
is obtained by connecting the capacitor C5 (10 to 100 IJ.F • 15 V) between
pin 7 and ground.

394

TBA 800
MOUNTING INSTRUCTIONS
The tabs on the TBA 800 can be used to conduct away the heat generated in the
integrated circuit so that the junction temperature does not exceed the permissible
maximum (150°C).
This may be done by connecting tabs to an external heat sink, or by soldering them to
a suitable Copper area of the printed circuit board (fig. 16 a).
Fig. 16 b shows a simple type of heat sink. Assuming an area of copper on the printed
circuit board of only 2 cm 2, the total Rth between junction to ambient is approximately
28°C/W.

External heat sink or printed circuit copper area must be connected to electrical
ground.
In the latter case, fig. 17 shows the maximum disSipated power (for Tomb = 55"C and
Tomb = 70 ~C) as a function of the side of two equal square Copper areas having a
thickness of 35 ~ (1.4 mils).
During soldering the tabs temperature must not exceed 260 0 C and the soldering time
must not be longer than 12 seconds.

Fig. 16 a - Example of an area of P.C.
board copper soldered to
the tabs of the TBA 800,
wich is used as a heat
sink

Fig. 16 b - Example of TBA 800 with
external heatsink

BOARD

395

TBA 800
Fig. 17 - Power that can be
dissipated versus "I"

Fig. 18 - Power rating characteristics
G- 0952

Ptot
(w)

Rth
CIW)

80

B

G-09

5

1.

60

6

t-.

3

Rth '-amb

N-.J:

4

2

Ptot
(W)

,

~~

£

""-:s:

,y~

~-'--.J "\~§1-1'-~

~

"i-

""'"fn

-s.;,,,

~G'

~

1\.'%,

40

\&

If
"'W~
'?-

3

Ptot

1/

2

o

Rttn)

Fig. 8 - Typical quiescent output voltage (pin 12) versus supply
voltage

Plot
Ys =14.4Y
RL=4fl

8

10 2

10

Fig. 7 - Typical power dissipation
and efficiency versus output
power
(W)

III••

10 2

40

4

6

8

Po (IN)

40

4

20

2

o
o

404

4

8

12

16 Vs(V) 20

TBA 810S
TBA810AS
Fig. 9 - Typical quiescent current
versus supply voltage

Fig. 10 - Typical supply voltage
rejection

G 0950

SVR

I

(dB)

Vs =14·4 V
R,=4Q
C5 =100)JF
=100Hz

o

f",.,.

15

-10
I (total)

-20

10

-30

'" .........

-40

5

I

ut ut transistors

-50

I

o

5

10

r--.

-60
15

o

Vs(V)

50

I"""

100

Rf (0)

For portable equipment the cirouit in Fig. 11 has the advantages of fewer external
oomponents and a better behaviour at low supply voltages (down to 4 V).

Fig. 11 - Typical oircuit
with load
oonnected to the
supply voltage

R2
IOOka

* C3, C7 see fig. 6

405

TBA810S
TBA810AS
SVR
(dB)

Fig. 12 - Typical supply voltage rejection
versus RI (fig. 11 circuit)

Vs = 14·4
RL=4Q
f,;ool. =100Hz

o
-10

-20
-30
-40

o

50

150

100

Rf (0)

MOUNTING INSTRUCTIONS
The thermal power dissipated in the circuit may be removed by connecting the tabs
to an ~xternal heat sink (TBA 810 AS - fig, 13) or by soldering them to an area of
copper on the printed circuit board (TBA 810 S - fig. 14),
During soldering the tabs temperature must not exceed 260°C and the soldering time
must not be longer than 12 seconds.
Fig. 15a and 15b show two ways that can be used for mounting the device.
G-Q951

Fig. 13 - Maximum power dissipation
versus ambient temperature
(for TBA 810 AS only)

Ptot
(w)

"-

'"'"

~

'5-:\

';

~

4

~~

.,,~

"

3

~

%
'%

"';3>t,

~~~

-.;

......'*'

o
-50

o

50

100

150Tamb{'t)

406

TBA 8108
TBA810A8
Fig. 14 - Maximum power dissipation
(for TBA 810 S only)

COPPER

versus

copper

area

AREA 35}-' THICKNESS

P. C. BOARD

G-0952

Ptot
(W)

Rth

CNI)
80

6

60

~h I-amb
4

40

~
t1-

j::

PJit (Ta m b-55'C)
T~

20

Ptot (Ta,m?= iO~C

o
o

10

20

30

407

40

I (mm)

of

the

P.C.

board

la"·.··.·8J08.

TBA.·.···8JQAS··

Fig. 15a shows a method, of mounting the TBA 810 S, that is satisfactory both from
the point of view of heat dissipation and from mechanical considerations. For
TBA 810 AS the desired thermal resistance is obtained by fixing the elements shown in
fig. 15b, to a suitably dimensioned plate. This plate can also act as a support for
the whole printed circuit board; the mechanical stresses do not damage the integrated
circuit. This is firmly fixed to the element, in fig. 15b.

Fig.15a

HEAT SINK

R'h

Fig. 15b

408

=30°C/W

TBA 810S
TBA810AS
THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent), or an above-limit ambient
temperature can be easily supported
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction
temperature: all that happens is that Po (and therefore Ptot) and Id are reduced
(fig. 16).

Fig. 16 - Output power and drain current
versus package temperature

G-0953!1

Po
(W)
Vs=l4.4 Ii
RL=40

8
Po (d=lO"/,)

6
I

4
lcI(d=10%)

j

--

0.8
0.6

2

0.4

0.2

o

409

o
50

100

150 Tcase("C)

18A810S
18A810AS
Fig. 17 - P.C. board and component layout for the test and application circuit

Fig. 18 - P.C. board and component layout for the fig. 11 circuit

410

TBA 820

LINEAR INTEGRATED CIRCUIT

AUDIO AMPLIFIER
The TBA 820 is an integrated monolithic audio amplifier in a 14:-lead quad in-line
plastic package.
It is intended for use as low frequency class B amplifier with wide range of supply
voltage: 3 to 16 V.
Main features are: minimum working voltage of 3 V, low quiescent current, low number
of external components, good ripple rejection, no cross-over distortion, mounting
compatibility with TAA 611 (see note on last page).
Output power:

p.

:=:

2 W at 12 V - 8Q • Po

1.6 W at 9 V - 4Q •

p.

1.2 W at 9 V - aQ

ABSOLUTE MAXIMUM RATINGS
V,

Supply voltage

10

Output peak current
Power dissipation at Tamb :=: 50 °C
Storage and junction temperature

P tot
T stg ; T j

16
1.5
1.25

V
A
W

-40 to 150°C

MECHANICAL DATA

Dimensions in mm

pE~l

~
2.54

~
I~.I
POOt-G

Supersedes issue dated 5/73

411

6/75

18A820
CONNECTION DIAGRAM

14

~rT~E

RIPPLE
REJECTION

13

COMPENSATION

N. C.

12

OUTPUT

BOOTSTRAP

COMPENSATION

N.C.

4

FEEDBACK

10

GROUND

N.C.

9

N.C.
GROUND
(SUBSTRATE)

INPUT

SCHEMATIC DIAGRAM

14

Rl

:J--I--+--~--+--C:J-I--+-'-"""'-+--012

2K

5

412

"

10

13

TBA 820
TEST AND APPLICATION CIRCUITS
r--.--.------.------1~-O

c:l:. C6*
150)JF

+ Vs

1 10V

I
I

Fig. 1
Circuit diagram with
load connected to th~
supply voltage

I

In

R1

100Kll
C1
100)JF
6V

.----_-.--------1~--()

+ Vs

C2
100,uFI
15 V

-=-

Fig. 2
Circuit diagram
with load connected
to ground

C7
100~F

15V

cs
1000}JF
15V

R1

100KO

C1
100,uF
6V

5-0211/2

• Capacitor C6 must be used when high ripple rejection is requested

413

18A820
THERMAL DATA
Rth j •• mb

Thermal resistance junction-ambient (copper frame)

I

80

max

°C/W

ELECTRICAL CHARACTERISTICS
(T amb == 25°C unless otherwise specified)
Parameter

Test conditions

Min. Typ. Max. Unit

Fig.

16

V

-

5

V

-

V,

Supply voltage

Vo

Quiescent output
voltage (pin 12)

V, == 9V

Quiescent drain
current

V, == 9V

4

12 rnA

-

10

Bias current (pin 7)

V, = 9V

0.1

0.7 p.A

-

Po

Output power

d =
Af =
V, =
V, =
V, =
V, ==
V, =

Id

Vi

Vi

(rmsl

(rms)

Input sensitivity

Input sensitivity

Ri

Input resistance

B

Frequency response
(-3 dB)

3
4

10%
1200
12 V
9V
9V
6V
3.5 V

f

= 1 kHz

AL
AL
AL
AL
AL

==

4.5

2
1.6
1.2
0.75
0.22

W
W
W
W
W

== 1.2 W V, = 9V
f = 1 kHz
== 80
=330
== 1200

16
60

mV
mV

1

Po = 50 mW V, == 9 V
f == 1 kHz
AL == 80
Af ==330
Rf = 1200

3.5
12

mV
mV

1

5

MO

Po
AL
AI
Af

80
= 40
== 80
== 40
== 40

0.9

Cs == 680 pF
Cs == 220 pF
Distortion

-

AL == 80

V, == 9V

AI = 1200

d

1

Po == 500 mW V, == 9V
f = 1 kHz
RL == 80
Rf =33n
RI == 1200
414

1
25 to 7000
25 to 20000

Hz
Hz

0.8
0.4

%
%

1

TIA 820
ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

Gv

Voltage gain
(open loop)

Vs = 9V
f = 1 kHz

RL = 80

Gv

Voltage gain
(closed loop)

Vs
f
RI
RI

RL = 80

=
=
=
=

9V
1 kHz
330
1200

Min. Typ. Max.

Unit

75

dB

45
34

dB
dB

Fig.

-

31

37

eN

Input noise voltage

Vs = 9V
B (-3dB) =
= 25 to 20000 Hz

3

IJ.V

-

iN

Input noise current

B (-3 dB) =
Vs = 9V
= 25 to 20000 Hz

0.4

nA

-

S+N
-N

Signal and noise
to noise ratio

RL = 80
Vs = 9V
Rf =1200 B (-3dB) =
= 25 to 20000 Hz
R1 = 100 kO Po = 1.2W

70

dB

-

RL = 80
Vs = 9V
f (ripple) = 100 Hz
C6= 50IJ.F
Rf = 1200

42

dB

2

SVR

Supply voltage
rejection

Fig. 3 - Typical power output

Fig. 4 - Typical distortion
G-0850

d
("I.)

Po
(W)

=.1.0'/,
=lkHz
=120 n

3

12

RL=8n- RL=16n-

2

-

G 0851

I
Vs=9V
1\=80
Rf=120
f=lkHz

8

L=411

4

J
II'

o

4

8

12

16

o

Vs(V)

415

OA

0.8

12 Po(W)

TBAB20
Fig.6 - Maximum power dissipation
(sine wave operation)

Fig. 5 - Typical power dissipation
and efficiency

G -0853

G-atS2

'l
('(,)

Plot
(W)

RL =80
V~=9V
HkHz

80

Ptotmax
(w)

Tamb =50 'C

1.6

'l

Q5
=41

60

Q4

R=8

1.2

D.3
40

0.8

1/

02

Ii
0.4

20
0.1

1..1

o
0.5

1.5

o

Po(W)

Fig. 7 - Typical value of C B versus Ri

f, =10kHz

10'

~

CB=220p

-1

l/~

CB :680pF

-2

8

\

\

\

I

-3

-4

./
6

10

Vs(V)

Rf =120 (11

t, :-

I\)
I\)

I
I
I
I
I
I
I
I
I
I
I
I

)j ;

r: f ~~~i18WALi

I
I
I
I
I
I
__________ --1

Oscillator

Oscillator

I

VERTICAL
SECTION

Vertical
amp'litude
control

5-0212
Horizontal
output

TeA 511
Fig. 2 - Test circuit
O.3ms.

ITHorizontal
section

1

100j.JF~

J:

C,

~onF

27kO
R4

~'
r Rl
l1.5kQ

sync

C10

,W

I

8

fp;-'

9

16

I

I

3000
Rs

:iii

r

'J

~~OnF 15n~;:

Cs Tcs

C9

PJ

220

fi8k n
Ru

...
5,0213/1

Tolerances :
(non electrolytic)

V ,4 and V

220ko

=~20nF

CB

output

V".

Vert; cal
freq uency

Vertical
output

b

Horizontal

Resistors
Capacitors

~

P,

~~~

TCA 511

2kO

150ko
( R9

1M

3.9kO

>---

68n~
=
C4

Fig. 3 -

J: [~~kO

ver\iCl~
size

~ ~~3nF

18kO
R3

·Vs

1OC\-

~

&ightness
oont~1

3.9
kQ
Horizontal

100"~freq.

~Anode

6V
16
kil

~_._

azon

OF"oc1.5

'--<'i~11

0.120V
S-0363

(*) The jungle circuit TBA 311 performs the following functions:

video preamplifier, IF AGe, PNP and NPN tuner AGe, sync. separator, noise gate.
It is particularly suitable for driving the TeA 511 sync. inputs.

TeA 511
APPLICATION INFORMATION
Power Supply
The circuit can work with stabilized supply voltage having a value from 9 to 15 V.
A dropping resistor and a filter capacitor may be used to obtain the supply from higher
voltages; however, the voltage on pins 3 and 4 must never exceed the maximum
permitted voltage.

Synchronization
Pins 2 and 6 can be DC driven if the reference level of the synchronization pulses is
less than 1 V. With reference levels greater than this value, a coupling capacitor must
be inserted in series with the input, and pins 2 and 6 must be connected to ground
via a resistor.

Vertical Oscillator
The capacitor connected to pin 1 must be selected with regard to the frequency
tolerance, to the thermal stability and to the capacitor's ageing.
The width of the output pulse, to be chosen according to the needs of the output
stages, is defined by the resistor connected between pin 1 and pin 16.

Vertical Output
The vertical output is taken from pin 14, which is a buffered output of the sawtooth
voltage generated at pin 15.
The output current from pin 14 is defined by an internal resistor in the integrated
circuit. If a greater current is needed, a resistor may be connected between pin 14
and pin 3.
The oscillator output pulse is available at pin 15 if the capacitor C9 is not connected.
This configuration is used for driving output stages in which the sawtooth is generated
by Miller effect.

Horizontal Oscillator
The capacitor connected between pin 10 and ground must be selected with regard
to the frequency tolerance, to the thermal stability and to the capacitor's ageing.
In multistandard receivers, the oscillation frequency may be changed by switching the
value of the capacitor connected to pin 10.

425

TeA51l
APPLICATION INFORMATION

(continued)

Phase Comparator
The phase comparator's output consists of current pulses acting on the oscillator
control voltage.
The external components C2, C3, C4, C5, R4, R5 and R6 (fig. 2) define the circuit
performance with respect to the pull-in range, the hold-in range and the frequency
variations that occur on switching-on and switching-off.
Moreover the pull-in range depends on the absolute value of the voltage divider
R2, P1 and R3.
A coincidence detector is connected to pin 7; this modifies the pull-in range and
the noise immunity, depending on whether the system is synchronised or is searching
for synchronization. The time constant applied to pin 7 avoids uncertainty during
the switch from one state to the other.

Horizontal Output
The collector of the output transistor is connected to pin 12; its load resistor, externally connected between pin 12 and pin 4, defines the amplitude of the output
current pulse.
The width of the output pulse can be varied between 13 and 35 !lS by means of the
resistor connected between pin 11 and ground, or else by means of a voltage ~ 5.3 V
applied between pin 11 and ground. This control acts upon the trailing edge of the
pulse, hence the phase advance of the leading edge stays constant with respect to
the synchronism,

426

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA·
AUDIO POWER AMPLIFIER WITH THERMAL SHUT-DOWN
The TCA 8305 is a monolithic integrated circuit in a 12-lead quad in-line plastic
package, intended for use as a low frequency class B amplifier. The TCA 8305
provides 4.2 W output power @ 14 V/4 n, 3.4 W @ 12 V/4 n, 2 W @ 9 V/4 n, 3.7 W
@ 16 V/8 nand 2.3 W @ 12 V/8 n.
It works with a wide range of supply voltages (4 to 20 V), gives high output current
(up to 2 A) and very low harmonic and cross-over distortion. The circuit is provided
with a thermal limiting circuit which fundamentally changes the criteria normally
used in determining the size of the heatsink, in addition the ToCA 8305 can withstand
short-circuit on the load for supply voltages up to 14 V.
The TCA 8308 is pin to pin equivalent to the TBA 8108.

ABSOLUTE MAXIMUM RATINGS
V.

10
10
Ptot
T. tg • T j

5upply voltage
Output peak current (non-repetitive)
Output peak current (repetitive)
Power dissipation: at Tomb = 80°C
at Ttab = 90°C
8torage and junction temperature

20
2.5
2

V
A
A
W

5
-40 to 150

W

°C

ORDERING NUMBER: TCA 8308
Dimensions in mm

MECHANICAL DATA

Supersedes issue dated 6/74

427

6/75

CONNECTION AND SCHEMATIC DIAGRAMS

~

4

"

"

.~"

QII.,j

Q(f

SUPPlY
VOLTAGE

12

OUTPUT

N.C.

"

N. C.

N. C.

8
Q'

GROUND

BOOTSTRAP

GROUND
(SUBSTRATE)

COMPENSATION

INPUT

FEEDBACK

RIPPLE
REJECTION

"

Q2~

GROUND

"

9

TEST AND APPLICATION CIRCUIT
Vs

R3
C7
O.l,uF

I

Vi

Rl
lOOkO

= C3

SEE FIG.6

428

'"
" "

'"

12

DO

"

Q

r"

--..f11

'-

'

Q

R6[

01

~4

~

k k

't---

5-0289

+

Q12

~Q'

Q~

~
'"

r.~~

"
5

1

Q"

'

Q9

'~"
1<7

R8

"

T
10

S-O?~3

THERMAL DATA
Rth j.tab
Rth j·amb

Thermal resistance junction-tab
Thermal resistance junction-ambient

max
max

12 °C/W
70· °C/W

• Obtained with tabs solderad to printed circuit with minimized copper area

ELECTRICAL CHARACTERISTICS
Parameter

(Refer to the test circuit, Tomb = 25°C)

Test conditions

Min. Typ. Max. Unit

V,

Supply voltage (pin 1)

Vo

Quiescent output
voltage (pin 12)

V, = 12 V

Quiescent drain
current

V, =9V

8.5

16 mA

Ib

Bias current (pin 8)

V, = 12V

0.2

llA

Po

Output power

d
V,
V,
V,
V,
V,
V,

4.2
3.4
2
0.8
3.7
2.3

W
W
W
W
W
W

Id

ViCrms)

Voltage for input
saturation

Vj

Input sensitivity

B
d

4

= 10%
= 14V
= 12V
=9V
=6V
= 16 V
= 12V

5.3

f
RL
RL
RL
RL
RL
RL

=
=
=
=
=
=
=

1 kHz
4n
4n
4n
4n
8n
8n

Po = 3.4 W
RL = 4n

V, = 12 V
f = 1 kHz

V, = 12 V
RL = 4n
C3 = 390 pF

Distortion

Po = 50 mW to 2 W
V, = 12 V
f = 1 kHz

Input resistance (pin 8)

Gy

Voltage gain
(open loop)

V

6.7

V

mV

220

Frequency response
(-3 dB)

Rj

2.5

6

20

V, = 12 V
f = 1 kHz
429

50

mV

40 to 10,000

Hz

0.3

%

RL = 4n
5

Mn

75

dB

RL = 4n

I

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Gv

Test conditions

Voltage gain
(closed loop)

Vs = 12 V
f = 1 kHz

eN

Input noise voltage

iN

Input noise current

1]

SVR

Id

Efficiency
Supply voltage
rejection ratio

Drain current
• Thermal shut-down
case temperature

Min. Typ. Max. Unit

RL = 40
37

40 dB

R1 = 0
Vs = 12 V
B (-3 dB)=40 to 10,000 Hz

2

!lV

Vs = 12 V
B (-3 dB) =40 to 10,000 Hz

0.1

nA

Po = 3.4W V. = 12V
f = 1 kHz
RL = 40

62

%

V. = 12 V
RL = 40
frippl. = 100 Hz
C2 = 100!lF
C2 = 25!lF

45
38

dB
dB

Po = 3.4W V. = 12V
RL =40

430

mA

P tot = 2.2W

130

°C

• See figs. 8 and 14

430

34

Fig. 1 - Typical output power
versus supply voltage

Fig. 2 - Maximum power dissipation
versus supply voltage
(sine wave operation)
G-1275

Ptot
(W)

I

f--+-H+-H-+-l-li't-+-+-H--H
I--

f--

d =1 •
RI =56 n

-

G 1276

Po
(W)

RL =411

II

=80

I =lkHz

,
RL =811

V

15

10

o

V.(V)

G 1277

,

II
VS =12 V

~

4

.."

-

V,=12 V
I =1 kHz
RL=411

\

10',

q

Gv

..... i--'"

-Vi

a:-'

I

r----

--

- -:..--

,......

, r-Vi
/

,

,

./ ./

,

.

f

o

PO(W)

431

-

Po -3.3W

Po =50 mW

........... f-

10.

o

Vs ( V)

,G y

=
- =
- =

a:

15

10

II
~

V

Fig. 4 - Typical voltage gain (closed
loop) and typical input
voltage versus feedback
resistance (R,)
G-4218

Fig.3 - Typical distortion versus
output power

RI =5611
I =1 kHz

....

100

200

f--

•10'
I-

,

Fig. 6 - Typical value of C3 versus Rf
for different bandwidths

Fig. 5 - Typical distortion versus
frequency
d

I

C3

I

I I

('/.)

G 1279

Ii

!

(pF)

-----+--

I

G-1280

:==:CF-

--

"",S=5kHz

....

/"

10'

... S=lOkHz

8

/S=2OkHz

/
v. =12V
RL=411
Rf =56 01--

./
10'

IIII
Po =50mW

8

-.

Po=2W

~I

-

-I'"

,,/ .,/"

6

•

10'

10

f (Hz)

10'

10

Fig.8 - Typical power dissipation
and efficiency versus
output power

Fig. 7 - Typical supply voltage
rejection ratio
G-1281

-

G 1282

SVR
(dS)

-

-

'l
( "I.)

V.=12V

---RL =8n
- RL =4n

80

,.

-'u

'l
'l

60

-20
PIOI
V.=12 V
RL=4 Jl.

-30

/

/"

C2=IOOJ-'F

.....
........

fripple = 100 Hz

.......

~

"-t-I-

-50

-

//
IJ'/

-

-

~
1

to~

20

I
o

-50

o

50

o

100

432

•.

~~a::8··.·t)AS···.··
iJ'U

, ',-,/-"

Fig. 10 - Typical quiescent current
versus supply voltage
-

G 12&4

-to

)

t-

1/

15

1/

6

""-

ld total
10

1/

i'"

V

o

Id (output transistors)

10

15

o

Vs (V)

10

15

Vs (V)

APPLICATION INFORMATION
For portable use the circuit in fig. 11 has the advantage of fewer external components.
Fig. 11 - Typical
circuit with load
connected to the
supply voltage

O.I!'F

I

V,

111.

*=C3 SEE FIG. 6

433

APPLICATION INFORMATION
For line operated equipment the bootstrap can be eliminated using the circuit of
fig. 12. Gain is depended on RX/R f •

Fig. 12 - Circuit
with load connected to ground and
without bootstrap,
in which Gy spread
is reduced

Fig. 13 - Typical output power
versus supply voltage
(see fig. 12)

:L:~~. 1-++-+-++-+-++..-1-++-1
f+-t-f-+-t-f-+-t-f-++1
I

o

=1 kHz

10

15

434

THERMAL SHUT-DOWN
The. presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent) or an above-limit ambient
temperature can be easily supported
2) the heatsink can have a smaller factor of safety compared with that of a conventional
circuit. There is no device damage in the case of too high a junction temperature;
all that happens is that Po (and therefore P tot ) and Id are reduced (fig. 14).

G-12e6

Fig. 14 - Output power and drain
current versus package
temperature

Vs=IZV
RL=4Jl
d =10-/.

P.

Id

o

435

50

100

MOUNTING INSTRUCTION
The thermal power dissipated in the circuit may be removed by connecting the tabs
to an external heatsink or by soldering them to an area of copper on the printed
circuit board (fig. 15).
Fig. 16 shows a simple type of heatsink. Assuming an area of copper on the printed
circuit board of only 2 cm 2 , the total

Rth

between junction and ambient is approximately

28°C/W.
The external heatsink or area of printed circuit copper must be connected to electrical
ground.
Fig. 17 gives the maximum power that can be dissipated (for Tamb = 55 and 70°C) as
a function of the side of two equal square copper areas having a thickness of 35 ~
(1.4 mil). During soldering the tabs temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.

Fig. 15 - Example of are~ of P.C.
board copper soldered to
the tabs of the TCA 8305
which is used as a heatsink

Fig. 16 - Example of TCA 8305 with
external heatsink

COPPER AREA 35}J THICKNESS

HEATSINK

Rth = 30°C/W

p.e.BOARD

436

Fig. 17 - Power that can be
dissipated versus "I"

Fig. 18 - Maximum allowable power
dissipation versus ambient
temperature
0-12&&

-

G 1287

Ptot
(W )

Rth

t

('CIW)

80

60
WITH INFINITE

Rth j-aml>
4

40

I-

-

HEATSINK
I

~J

20

~ITHOUT

20
Ptot (Taml>=70'C)

~

~-

4'
'''6,..

30

HEATSINK

1j.

l-[{.-IS'.

hTT-o

10

v~

,~

"tot (Taml> =55 'C)

o

1<-

It..,

40

I (nvn)

N..

Ct,..

-,....,...

0

-50

o

50

100

Ta mb('C)

Fig. 19 - P.C. board and component layout of the test and application circuit (1:1 scale).

I
437

LINEAR INTEGRATED CIRCUITS

TCA 900
TCA 910
PRELIMINARY DATA

MOTOR SPEED REGULATORS
The TeA 900 and TeA 910 are linear integrated circuits in Jedec TO-126 plastic
package. They are designed for use as speed regulators for De motors of record
players, tape recorders and cassettes.
The TeA 900 is particularly suitable for battery operated portable equipments, and the
TeA 910 for car-battery and mains operations.

ABSOLUTE MAXIMUM RATINGS
Vs

Supply voltage

Ptot

Total power dissipation at Tamb =

Tstg , Ti

Storage and junction temperature

70°C

at Tease = 100°C
~

MECHANICAL DATA

;:,upersedes Issue dated 5 73

TCA 900

TCA 910

14 V

20 V
0.8 W

5W
-40 to 150°C

Dimensions

In

mrn

6 75

TCA 900
TCA 910
THERMAL DATA
-.,. Rth
-.,. Rth

i-case
i-arob

Thermal resistance junction-case
Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS
Parameter
V rer

Id3

Vm

Vm

V'.2

Reference voltage
(between pins 2 and 3)
Quiescent current
(at pin 3)
Output voltage
(for TeA 900 only)
Output voltage
(for TCA 910 only)
Dropout voltage

Limiting output current
(at pin 2)

I,

K = l11/l11 3

max.
max.

10
100

°C/W
°C/W

(T amb = 25°C and Rs = co unless otherwise
specified)

Test conditions

Min. Typ. Max. Unit

Fig.

Vs = 5.5 V
1m = 70 rnA
RT =0

2.6

V

1

V'.3 = 5.5 V
12 =0
RT =0

2.6

rnA

.-

V, = 5.5V
1m = 70 rnA
RT = 91 n

3.6

3.9

V

1

V, = 9V
I~ = 70 rnA
RT = 270n

5.6

6.3

V

1

l1Vm fV m = -1%
70 rnA
1m
RT = 91 n

1.2

V

1

= 5.5 V
=0

400

rnA

-

Vs = 5.5V
-70 rnA
12
l112 = ±10 rnA
RT =0

8.5

-

1

V, = 5.5 Vto 12 V
1m = 70 rnA
RT = 91 n

0.1

=

V'.3
V2.3

=

l1Vm

--Il1V,
Vm

Line regulation
(for TCA 900 only)

440

"ioN

1

TCA 900
TCA 910
ELECTRICAL CHARACTERISTICS
Parameter
~Vm
-/~V,

Vm

Line regulation
(for TCA 910 only)

(continued)

Test conditions

V,
I,"

Min. Typ. Max. Unit

Fig.

= 10 V to 16 V
= 70mA

RT =

270n

0.1

%/V

1

1

~Vm

--/~lm

Load regulation

Vm

= 5.5V
= 40 to 100 rnA
=0

0.005

%/mA

= 5.5 V
= -70 mA
Tamb = -20 to 70 °c

0.01

%/oc

V,
1m

RT

I -~Vr.t
- I~
Vret

Tamb

Temperature
coefficient

V1. 3
12

-

I

Fig. 1 - Test circuit.

1
5·0281

441

TeA 900
TCA 910

Fig. 2 - Typical application circuit.

~Im

M
Vm

I
5-0282

-::-

Fig.3 - Normalized Kversus 12

Fig. 4 - Dropout
voltage versus
output current

-

G 083012

VI_2

1.4

f-t+-t-++-f-++--1H-+--1H-+--1H--H-+--I

. 1.2

f-t+-t-++-H-+--1H-+--1H-+--1H--H-+--I

I

(V)

AVm
=_1°/.
Vm

/

1.8

/
/

1.6
1.4

./

1.2

k'"
40

80

120

o

160 -[,(rnA)

442

'"

""

0.6

o

." V

/

20

40

60

80

100

12.0 -12(mA)

TeA 900
TeA 910

-

G 0940/1

Pto t
(W)

WITH

~

~

'*1
1-

1-~

~~
~

Fig. 5 - Maximum
allowable power
dissipation versus
ambient
temperature

~
~

~."

~1<
~
J'I.'~'?1<
~
XG' ('>
),.~

~

3'~~
'~~

...,...,c-J?~~

1

""';''''J?

L~~

o
o

-50

50

100 Tamb ('e)

APPLICATION INFORMATION
The regulator supplies the motor in such a way as to keep its speed constant.
independent of supply voltage, applied torque and ambient temperature variations.
The basic equation for the motor is:

Vm
Where:

= Eo + Rm 1m = a1 n + a2 c
Vm

supply voltage applied to the motor

Eo

back electromotive force

n

motor speed (r.p.m)

Rm

internal resistance (of the motor)

current absorbed (by the motor)
1m
a 1 and a2
constants

=

c

=

drive torque

443

TCA 900
TCA 910
A voltage supply with the following characteristics
E

Ro

-Rm

E

electromotive force

Ro

output resistance

gives performance required.
This means that a variation in current absorbed by the motor, due to a variation in
torque applied, causes a proportional variation in regulator output voltage.

In fig. 6 is shown the minimum allowable Eo versus RT •
6-0828/3

EO

I

(V)

RT-KxR m

Fig. 6 - Minimum ED
allowable versus RT -

3.B

3.6

/"

/'"

/'

3.4

V

3.2

V

'"

'"

/"

2.B

2.6

o

40

80

120

160

200

240 RT (fi]

444

TCA 900
TCA 910
The TCA·900 and TCA 910 give a reference constant voltage Vref (between pins 2
and 3) independent of variations of V" 12 and ambient temperature.
They also give:
13

= Id3 + I/K

Where:

13

total current at pin 3

Id3
quiescent current at pin 3 (12
12
current at pin 2
K = constant.

0)

The output voltage V m' applied to the motor has the following value:

Term 2

Term

Term 1 equals Eo and fixes the motor speed by means of the variable resistor R,;
1m
Term 2

- . RT equals the term Rm • 1m and, therefore, compensates variations of
K

torque applied.
Complete compensation is achieved when:

RT = K Rm
If

RT max

>

K

Rm min

instability may occur.

445

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
10 W AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT PROTECTION
AND THERMAL SHUT-DOWN
The TCA 940 is a monolithic integrated circuit in a 12-lead quad in-line plastic package,
intended for use as a low frequency class B amplifier. The TCA 940 provides 10 W
output power @ 20V/4n, 9W @ 18 V/4n, 7W @ 16V/4n, 6.5W @ 20V/8n and
5W @ 18V/8n.
It gives high output current (up to 3 A), very low harmonic and cross-over distortion.
Besides the thermal shut-down, the device contains a current limiting circuit which
restricts the operation within the safe operating area of the power transistors.
The TCA 940 is pin to pin equivalent to the TBA 810 AS.

ABSOLUTE MAXIMUM RATINGS
Vs

10
10
Ptot
T stg ' T j

Supply voltage
Output peak current (non-repetl!ive)
Output peak current (repetitive)
Power dissipation: at Tamb = 50°C
at T tab = 70 0 C
Storage and junction temperature

24

V

3.5
3
1.25

A
A

8
-40 to 150

W
W
°C

ORDERING NUMBER: TCA 940

MECHANICAL DATA

Supersedes issue dated 4/74

Dimensions in mm

447

6/75

CONNECTION AND SCHEMATIC DIAGRAMS

SUPPLY

VOLTAGE

12

.,
.,

OUTPUT

N. C.

N.C.
N.C.

~'

GROUND

GROUND

GROUND

BOOTSTRAP

(SUBSTRATE)

COMPENSATION

INPUT
RIPPLE
REJECTION

FEEDBACK
,"",89

TEST AND APPLICATION CIRCUIT
Vs

R3

V

C9

OJI'F

C6

~~o.tF

lOon

R2
IOOkO

*=C3 ,C7 SEE FIG. 7

448

THERMAL DATA
Rth j.tab

Thermal resistance junction-tab

Rth j.amb

Thermal resistance junction-ambient

ELECTRICAL CHARACTERISTICS
Parameter

Test conditions

Supply voltage (pin 1)

Va

Quiescent output
voltage (pin 12)

V,

= 18V

Id

Quiescent drain current

V,

Ib

Bias current (pin 8)

V,

Po

Output power

d
V,
V,
Vs
Vs
Vs

= 24V
= 18V
= 10% f = 1 kHz
= 20 V, RL = 4n
= 18 V, RL = 4 n
= 16V, RL = 4n
= 20V, RL = 8n
= 18 V, RL = 8n

Vi

d

Frequency response
(-3 dB)
Distortion

8.2

9
20

24

V

9.8

V

42 mA

0.5

7

10
9
7
6.5
5

= 9W V, = 18 V
= 4n f = 1 kHz
Vs = 18 V
RL = 4n
C3 = 1000 pF
Po = 50 rnW to 5 W
V, = 18 V
RL = 4n
f = 1 kHz

3

!!A
W
W
W
W
W
mV

250

Po

RL

B

°C/W
°C/W

Min. Typ. Max. Unit
6

Voltage for input
saturation
Input sensitivity

10
80

(Refer to the test circuit, Tamb = 25°C)

V,

Vi(rms)

max
max

449

90

mV

40 to 20,000

Hz

0.3

%

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

Min. Typ. Max. Unit
5

Mn

75

dB

Ri

Input resistance (pin 8)

Gy

Voltage gain
(op€n loop)

Vs == 18V
f == 1 kHz

RL == 4 n

Voltage gain
(closed loop)

Vs == 18V
f == 1 kHz

RL == 4 n

Input noise voltage

Vs == 18V
Rg == 0
B (-3 dB) == 40 Hz to
20,000 Hz

3

ltV

Vs == 18V
B (-3 dB) == 40 Hz to
20,000 Hz

0.15

nA

Gy
eN

iN

1)

SVR

Id

Input noise current

Efficiency

Po == 9 W
RL = 4n
f = 1 kHz

34

RL ==4n
Vs ==24V
frippl. == 100 Hz

Drain current

Po == 9 W
RL == 4 n
P tot == 4.8 W

• See figs. 9 and 15

450

40

dB

Vs = 18 V

Supply voltage
rejection ratio

• Thermal shut-down·
case temperature

37

65

%

45

dB

770

rnA

110

DC

Vs == 18 V

Fig.2 - Maximum power dissipation
versus supply voltage
(sine wave operation)

Fig. 1 - Typical output power
versus supply voltage

G-1237f1

G- 1236

r- r-

)

12

6

10

d=IO·I.
:Rf =5611
f:lkH z

J

/
10'

".1'
".1'

-::::: ~
5

.....
~

/

V

1/

4

o

--

/

/

RL=411

R =411

X

....1

RL=8Q

RL=SIl

".

".1'"
./

i.--'

10

5

V.(V)

Fig.3 - Typical distortion
versus output power

..... .....

./

'"
V. (V)

15

Fig. 4 - Typical voltage gain
(closed loop) and typical
input voltage versus
feedback resistance (R f )
G-1238

G-1239/t

10

VI.

f--+--+-+'..-'--c!.+.4+---f-+-r+-HHIH
q
Vo=18 V

R f =56 11
f =lkHz

l:;l

"-'

II:

...

"

• - r- V·

Po =5W -

;; ....
-;;. :;.:::

" Gv

"-'

II:

10'

• Gv

Vo=IS V
f =lkHz
••RL =811
L =411

(mV)'

:'1.)

r-

f- f-'

o
15

,/

.,- ./

~

10

/

+-

i'

•

..J.Po =9W

L
,

-

-Vi

-

-t

o

10-'

451

Vi

Po =0.05 W

·r
. • -t-

10'

--

-

Po =0.05 W c-- -

Vi

50

100

10

Fig. 5 - Typical distortion versus
frequency (RL = 4 [1)

Fig. 6 - Typical distortion versus
frequency (RL = 8 [1)

G-124O

d
('I.)

8

6-1241

~LIIIII
1-t-++t+1+lI---+'o"--'-!-';!-Uj-IIII-t-+HtI-itt---+++t+ttfI
I-H*ftttl----t RL= 4 It I-H++I-Hlf-+++H++II
1-t-t-t+ftttI--tVs= 18 v 1-t-t-t+I-Hlf-H-tti++ll
1-t-t-t+ftttI--t R,= 56 .!l1-t-t-t+I-Hlf-++tti++ll

II

(',,)

RL =8 It
Vs =18 V
R,=56

6

Po = 0.05

•

Po

10'

Po - 2.5

1.'1

"""'• " ,.
J IIIII

Ll

o

-o.osw

2

, (Hz)

10

10'

10'

10'

G-1242

, (Hz)

G-1243

~~ - -

C3
(pF)'

6=10 kHz

f--I- - -

+-~---t--r1 +-+-++--1

___L

Ol-l--l--H---+---+---+---+---+---+---+--+--+--+-+--l

V

- 10

I-l--l--H---+---+---+---+---+--+- +---l--I-f---lH

-50

-1--., .

'"";""2J Hz

./

10'

468

Fig.8 - Typical supply voltage
rejection ratio

Fig. 7 - Typical value of C3 versus RI
for different bandwidths

V...

j~

./

.' II lUll

o

/
C7'SC 3

/

10'

- 60
6

10

,

. - - -I--t-+-+-+--+I-+-+-+-+-~t-I
'---,--"'---'---'.......L........L........L........L........L........L........L--'---'---'--'---'

o

10'

452

50

100

Fig. 10 - Typical power dissipation
and efficiency versus output
power (RL
80)

Fig. 9 - Typical power dissipation
and efficiency versus output
power (RL
4 0)

=

-

G 1245/1

Fiat

(
Ptot

(

(W)

n

II.

1/

=

G-I21.1011

60

"""

60

40

5=1 V

40

Fiat

L·4!l.

V

V. =l8V

II

RL =sn

20

20

o

o

o

4

Fig. 11 - Typical quiescent output
voltage (pin 12') versus
supply voltage

o
4

6

8

Il,(W)

Fig. 12 - Typical quiescent current
versus supply voltage

G-1246il

G-1247

(~~) f-+-+-~+-+I----l-_-I--l-+-+I-f-+I+-+-_+p'-_I-"f---1--"t---","--i--_-+1-1__
-+-+-lr-_-j-_t"ld_~ot:"'p.-k"-j--rH---j---H-i

15

15

10

10

~

H-+-+-+-+-+-+--+-~~+-+-+-+-+--+-~~/1
+_

-fI
f---j---j--+-+-j---j--+--t-~+

~

o
10

15

20

O'---'---'---'----'---'----'----'--.J-L--L---'---'----"---J----L---'----'----'---'---I
5
10
15
20

V5 (v)

453

SHORT CIRCUIT PROTECTION
The most important innovation in the TCA 940 is an original circuit which limits the
current of the output transistors. Fig. 13 shows that the maximum output current is
a function of thecol\ector-emitter voltage; hence the circuit works within the safe
operating area of the output power transistors. This can therefore be considered as
being power limiting rather than simple current limiting. The TCA 940 is thus protected
against temporary overloads or short circuit by the above circuit. Should the short
circuit exists for a longer time, the thermal shut-down comes into action and keeps
the junction's temperature within safe limits.

Fig. 13 - Maximum output current
versus voltage (VeE) across
each output transistor

Fig. 14 - Test circuit for the limiting
characteristics

v,

r-...

::Fl:::R:t-

~

,

,~

oad lin.
t: Vs =18V

,

t=50Hz

I......

R =4fi
560

."
1'.1

o

5

lOOk 0

10

454

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent). or an above-limit ambient
temperature can be easily supported
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction
temperature: all that happens is that Po (and therefore P tot ) and Id are reduced
(fig. 15).

G-121.9

Fig. 15 - Output power and drain
current versus package
temperature

Po
(W)

I-- -

~

-j-

- -

--

f-I--I,.......-f--+-+++-j

~!v.=tSV
I 1+--+-+-+-1{~)
d=IO"/.
--RL=4fiIHH-+-j
----R =SD

12 f.-HH-+-+-+-+-+-.---?1T"''l--HH-j t.2
10

HH-+-I-t--.j--jH-+
Po

!
1"\

1-=~I--I--Io4-+..j...+-F-Fo.t~"++~H O.S
.- - -I-I--t- 'd
6

4

-I-- I-- J - j - Po
•- -

2 I- -

.

+-N+-+-+-

i;; f.-I-HH-+-+~>+--I--

•-

+--+--HH-+-+-

-_. --j-I---

50

455

~

0.6

MOUNTING INSTRUCTION
The power dissipated in the circuit may be removed by connecting the tabs
to an external heatsink according to fig. 16. The desired thermal resistance may be
obtained by fixing the TCA 940 to a suitably dimensioned plate as shown in fig. 17.
This plate can also act as a support for the whole printed circuit board: the mechani~al
stresses do not damage the integrated circuit. During soldering the pins temperature
must not exceed 2600C and the soldering time must not be longer than 12 seconds.

Fig. 16 - Maximum allowable power
dissipation versus ambient
temperature

Fig. 17 - Mounting example

G-1250

)

UJ
WITH INFINITE HEAT SINK

ALUMINIUM
3.5nm THICKNESS

K

. tlJm
-

wiTH

HEAT SINK

HAVI~G

l'.~
[,(,

+-H
_

I

WI~OUTHEAT"slNKi

~ffi-f
o
-so

I

i•

+-

6 f.":
"/0.... - I

!\

++-

r -~th£;..\~

TI- ""N..,
.

r-d-

.

~

50

456

Fig. 18 - P.C. board and component

layout of the test and application circuit

(1:1 Scale).

R

C5-0033

457

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT PROTECTION AND
THERMAL SHUT-DOWN
The TCA 940E is a monolithic integrated circuit in a 12-lead quad in-line plastic package,
intended for use as a low frequency class B amplifier. The TCA 940E provides 6.5W output
power @20 V/8 nand 5.4 W @ 18 V/8 n.
It gives very low harmonic and cross-over distortion. Besides the thermal shut-down, the
device contains a current limiting circuit which restricts the operation within the safe
operating area of the power transistors.
The TCA 940E is pin to pin equivalent to the TBA 810S.

ABSOLUTE MAXIMUM RATINGS
Supply voltage
Output peak current (non-repetitive)
Output peak current (repetitive)
Power dissipation: at Tamb = 80°C
at T tab = 90°C
Storage and junction temperature

24
3.5
3
1
5
-40 to 150

V

A
A
W
W
°C

ORDERING NUMBER: TCA 940E

MECHANICAL DATA

Supersedes issue dated 11/74

Dimensions in mm

459

6/75

CONNECTION AND SCHEMATIC DIAGRAMS
01.

••

SUPPlY
VOLTAGE

12

.,

N. C.

N.C.

N.C.

OUTPUT

10

GROUND
01

GROUND

GRO\.JIIO

0.
BOOTSTRAP

04

COMPENSATION

INPUT

0'

RiPPlE
REJECTION

FEEDBACI(
S-0289

.,

TEST AND APPLICATION CIRCUIT
R3

.*=C3,C7 SEE FIG.6

460

04

THERMAL DATA
Rth j-tab
Rth j-amb

12

max
max

Thermal resistance junction-tab
Thermal resistance junction-ambient

70*

°C/W
°C/W

* Obtained with tabs soldered to printed circuit with minimized copper area

ELECTRICAL CHARACTERISTICS(Refer to the test circuit, Tamb = 25°C)
Parameter

Test conditions

Min. Typ. Max. Unit

Vs

Supply voltage (pin 1)

Vo

Quiescent output voltage
(pin 12)

Vs = 18V

Id

Quiescent drain current

Vs = 24V

20

Ib

Bias cu rrent (pi n 8)

Vs = 18V

0.5

Po

Output power

d = 10%
Vs = 20V,
Vs = l8V,

6
8.2

f
= 1 kHz
RL -= 8 n
RL =8 n

9

24

V

9.8

V

42 mA

6.5
5.4

5

3

J.1A

W
W

I
I

Vi(rms) Voltage for input
saturation
Vi

B

d

Input sensitivity

250
Po =5.4W
RL = 8 n

Vs = 18V
f
= 1 kHz

Frequency response
(-3 dB)

Vs = 18V
C 3 = 1000 pF

RL

Distortion

Po = 50 mW to 3.5W
RL =8n
Vs = 18V
f
= 1 kHz

461

mV

110

mV

40 to 20,000

Hz

0.2

%

= 8n

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Min. Typ. Max. Unit

Test conditions

R;

Input resistance (pin B)

Gv

Voltage gain
(open loop)

Vs = lBV
f = 1 kHz

RL =Bn

Voltage gain
(closed loop)

Vs = lBV
f = 1 kHz

RL =Bn

Input noise voltage

Vs = lBV
R2 =0
B (-3 dB) = 40 Hz to
20,000 Hz

3

p.V

Vs = lBV
B (-3 dB) = 40 Hz to
20,000 Hz

0.15

nA

70

%

45

dB

460

mA

120

°c

Gv
eN

I nput noise current

iN

Efficiency

'T/
SVR

Supply voltage
rejection ratio

..
Id

Drairi current

Po =5AW
RL ==Bn

34

Vs = lBV
f = 1 kHz

Vs = 22V
RL =
f';PPle = 100 Hz
Po = 5AW
. RL == Bn

5

Mn

75

dB

37

40

dB

Bn

Vs = lBV

* Thermal shut-down
case temperature

Ptot = 2.BW

* See figs. Band 14

462

Fig. 2 - Maximum power dissipation
vs. supply voltage (sine wave
operation)

Fig. 1 - Typical output power vs. supply voltage
G 1442

G-1443

P lo I

Po
(W)

(W)

rrf-

d =10-1.
R,=56n
1= 1 kHz
RL = en

RL=en

4

I

V

o

12

8

o

16 Vs (V)

e

4

Fig. 3 - Typical distortion vs. output
power

12

16

Vs(V)

Fig. 4 - Typical voltage gain (closed
loop) and typical input voltage vs. feedback resistance (R f )

G 1444

d

(mV),

1

---6

--

••

Vi •

I

('10)

, Gy

. 'r--.

Vs = lev
RL = en

10'

R, :15k6n

".. ~

~

f - f-V'

l- I-

4

10.

I-

,

Po =5.4W

_r--

o

,
10-'

.

b; ,

Po = 0.05W

Vs = 18 V
, =1kHz I--RL

463

40

80

10'

,

-

=8n

o

,

••
•,•

I--- I--- Vi

,

r--

-

-.

10

Fig. 5 - Typical distortion vs. frequency

Fig. 6 - Typical value of C3 vs. Rf for
different bandwidths

-

0-1241

G 1242

C3
(PF)'

d
('I.)

RL -ell.
v.=lev
RI -S6 n

8

8.: to kHz

V

~I
8=20kHz

VI,.;

6

/

10'

C7= SC3

/

·o.osw

p.

=2.5

III

7

.'

o

II

10

,,'I

J

451

10'

10'

10'

r.. 11I

m

10'

1 " 6'

10

HHz)

Fig. 7 - Typical supply voltage rejection ratio

,

G 141091

SVR
(dB)

..

10'

Fig. 8 - Typical power dissipation and
efficiency vs. output power

-

G 1446

P tot

(

(W)

'I

o

60

-10

1""-

-20

40

V•• 22V

-30

K

-40

t-..

-50
-60

P to

~.en
C5=100,.F
rlppl•• l00Hz

20

VS=18V

R •

eo

I I
I I
o

50

o
o

100

464

4

6

8

Po (W)

Fig. 10 - Typical quiescent current vs.
supply voltage

Fig.9 - Typical quiescent output voltage (pin 12) vs. supply voltage
6-12461,

0-121.7

~ ~-+4-~-+4-~~~+-~-+4-~~

)

Iv) ~-+4-~-+4-~-+~+-~-+4-~~

'd ~ol.1

15

15

10

10

r.;;;

output transistors

-

()

o
10

15

20

v.

5

IV)

10

15

20

V.IV)

APPLICATION INFORMATION
The application diagram in fig. 11 is advised if the device's gain spread is to be contained
within ± 1 dB (for stereo applications)
Fig. 11 - Recommended circuit for maintaining the gain spread within ± 1 dB max.

I
I

465

SHORT CIRCUIT PROTECTION
The most important innovation in the TCA 940E is an original circuit which limits the
current of the output transistors. Fig. 12 shows that the maximum output current is
a function of the collector-emitter voltage; hence the circuit works within the safe operating area of the output power transistors. This can therefore be considered as being power
limiting rather than simple current limiting. The TCA 940E is thus protected against temporary overloads or short circuit by the above circuit. Should the short circuit exists for a
longer time, the thermal shut-down comes into action and keeps the junction temperature within safe limits.

Fig. 12 -Maximum output current vs.
voltage (V CE) across each output transistor

Fig. 13 - Test circuit for the limiting
characteristics

-

G 1441

~'"

t>o-"'"

LOAD LINE
at: VS.18V
RL= 8ll

-,....
No.

o

,.....
10

466

i'

Ii:

I~

Ii,
,~
'to

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported
2) the heatsink can have a smaller factor of safety compared with that of a conventional
circuit. There is no device damage in the case of too high a junction temperature: all that
happens is that Po (and therefore P tot ) and Id are reduced (fig. 14)

G 1448

Fig. 14 -Output power and drain current vs. package temperature

Po

I

(W)

(

Vs =18V
RL=8fl
d" 10

12

10

8

Q8
Po

as

6

4

04

ld

02

o
o

467

20

40

60

80

100

Tease (·C)

MOUNTING INSTRUCTION
The power dissipated in the circuit may be removed by connecting the tabs to an external
heatsink, or by soldering them to an area of copper on the printed circuit board (Fig. 15).
Fig. 16 shows a simple type of heatsink; assuming an area of copper on the printed circuit
board of only 2 cm 2 , the total Rth between junction and ambient is approximately
28 °C/W.
The external heatsink or area of printed circuit copper must be connected to electrical
ground.
Fig. 17 gives the maximum dissipable power (for Tamb = 55 and 70°C) as a function of the
side of two equal square copper areas having a thickness of 3511. (1.4 mil).
During soldering the tabs temperature must not exceed 260°C and the soldering time must
not be longer than 12 seconds.

Fig. 15 - Example of area of P.C. board
copper soldered to the tabs of
the TCA940E which is used
as a heatsink
CoPPER

Fig. 16 - Example of TCA940E with
external heats ink

AREA J'j,.. THICKNESS
HEATSINK

Rth ~ DOCjW

/

P.t.BOARD

468

Fig. 17-Power that can be dissipated
VS.

Fig. 18 - Maximum allowable power
dissipation vs. ambient temperature

"Q"
G-0952

Ptot

o lua

Rth

t

cm)

(W)

B

eo

6

60

-~

WITH INFINITE

Rth j-amb

r-..:

4

40
~

fPt;.;t(T;;:;;h:-55'C)
~
~

I-

~

"'"

~

!-vITHOUT

20

20

I

1<-

\~

~~.~ 'l...

h6+-tr.

-~ I
30

40

I (mm)

'!:-.~

!'

HEATSINK

,-ptot (Tamb= 70'C

10

It.
'fY,-~

ft-t--

:IrLIIl.::rl'~6,~

o
o

HEATSINK
I

. t--

f-l ~~~

-so

o

-l-

f; l'--~

0
50

100

TambC·C)

Fig. 19 - P.C. board and component layout of the test and appl ication circuit (1: 1 Scale)

I

II NEAR IN TEGRAT ED GIRGUIT
PRELIMINARY DATA
COMPLETE TV VISION IF SYSTEM
The TDA 440 is a silicon monolithic integrated circuit in a 16 lead dual in-line plastic
package. The functions incorporated are:
- gain controlled vision I F amplifier
synchronous detector
AGC detector with gating facility
AGC amplifier for PNP tuner drive with variable delay
video preamplifier with positive and negative outputs.
It is intended for use in black and white and colour TV receivers.

ABSOLUTE MAXIMUM RATINGS
Vs
V5

Supply voltage (pin 13)
Voltage at pin 5

VlO

Voltage at pin 10

Vl1

Voltage at pin 11 (with load connected to V5)
Output current
Supply current (into pin 14)
Total power dissipation at Tamb ~ 70°C
Storage and junction temperature

111. 112
114

->-

Ptot
Tstg • Tj

ORDERING NUMBER:

15
20

) -~
8
5
55
800
-40 to 150

V
V
V
V
V
mA
mA
mW
°C

TDA 440

MECHANICAL DATA

Supersedes issue dated 11/74

Dimensions in mm

471

6/75

CONNECTION AND BLOCK DIAGRAMS

INPUT

"

INPUT

..

BIAS
OECOUPlING

... S
CECOUPl.INO

ZENER

GROUND

STABILIZER

AGe TIME
CONSTANT

,

SUPPLY

13

VOLTAGE
POSITIVE

TUNERAGC

"

OUTPUT

TUNER AGC

VIDEO
OUTPUT
NEGATIVE

11

DELAV

VIDEO
OUTPUT

••

FlV8ACK
PULSE INPUT

CARRIER

OUTPUT
VOLTAGE

REGULATION
CARRIER

TUNING

TUNING

SCHEMATIC DIAGRAM

~

®
2

~

~U

CD

L

(@----~Irt
.
f,.. ~~

1

t-

tQ

.)

~

f-j-K

f-t ~ ~fl t-~~fl

1~

Q

~~~ ~ r'±
l..

}1f

1
6

n

I~

I~>- r=:= ~

l----t'

~

Il-t

k1

~

~

n

d>

5)

472

~
10

~

\ - - - f-'

,~

1J

4<

~

10 I

[

13

CfJ

-r

3

u

~

1;

J

j

l
5-0969

-®

Fig. la - Test circuit for measurement
of 113 , V 11 , V 12 , V 14 and
I::N l1 //:"V 13

Fig. 1 b - Test circuit for measurement
of 111 and /:"Vll//:"V s

lOA 440
lOA 440

10

3, •

3, •
Rl

2.5
k.Cl

5-097'
TO A FOR

.o.
6,.

Vll TEST ; TO 8 FOR

Fig. 2 - Dynamic test circuit
VIDEO
OUTPUT

·C'·f.-_ _~p-_ _~_~_...,(POSIT1VE)

VIDEO
OUTPUT

(NEGATIVE)

B

C5

IF

25i'F

I

'i~r:'

C2
2200
pF

'"
14

13

12

11

10

TDA 440

R2

C6

62
k.Cl

5i'F

Rt.

5kn

,ov

G
AGe OUTPUT
(TO TUNER)

473

5-0117211

-1"

TEST

Fig. 3a - Set-up for measurement of dim

I----r--.~ ~~:6MC:~:~~7E':~~;U~~~~~~:.~::
SOUND CARRIER INPUT LEVEL: -24dB

B

~~-0-A
lOdBfslep

TEST
CIRCUIT

5r

(flg.2)

0

ld~/step I-+_...!j---I
SElECTIVE
VOL TMETER

!':o

.0913

Fig. 3b -Set-up for measurement of 6.V o

AC VOLTMETER
UP TO 5.5 MHr
5_0914

Fig. 3c - Set-up for measurement of 15. Vi' 6.V i •
Vo. V 11 and V 12
.

• AC

.SELECTIVE VOLTMETER

VOL TMETER

FOR LEAKAGE TEST
5.09'5

Fig.3d - Set-up for measure. ment of B. V 11 and
V 12
V

AC VOLTMETER

o (UP TO 15MHt)

SOUNO CARRIER INPUT LEVEL

~JOdB

TO A FOR FREaUENCY RESPONSE TEST
TO 8 FOR SOUND I F OUTPUT TEST

474

$-0976

THERMAL DATA
max

Rth j-amb Thermal resistance junction-ambient

100

°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Tamb = 25°C)
Test conditions

Parameter

STATIC (DC) CHARACTERISTICS
Supply current (pin 13)

Is
-Ill

(1)

Vs

Output current

Vs = 12V

Supply voltage (pin 13) 114 = 40 mA

V ll (2) Output voltage

Vs = 12V

V 12 (2) Output voltage

Vs=12V

14

19

25

mA

la

2.3

3.5

4.8 mA

lb

10

15

V

4.8

6.4

V

5.6

V ll = 5.5V
5.5

6

V
6.5

-

la

V

V 14

Stabilized voltage

114 = 40 mA

tNll

~

Output voltage drift

Vs = 11 to 14V

3,5

%

lb

tNll
liV 13

Output voltage drift

V13=11 to15V
114 =40 mA

0.4

%

la

DYNAMIC CHARACTERISTICS (refer to fig. 2 test circuit, Vs = 12V)
Is

Supply current

15 (3)

Tuner AGC current

V7
V·(4)
I
tNi

Vo

V 7 =0
R4 =5 kn
fo = 38.9 MHz

AGC gating pulse input
f
peak voltage
Input sensitivity
AGe range

Peak to peak output
voltage at pin 11

=15.6kHz

48

57

66 mA

6

8

mA

3c

V

-

-5

-1.5

V 7 =0
fo= 38.9MHz
140 200
Vu = 3.3V peak to peak
V 7 =0
tNo= 1 dB
fo = 38.9 MHz
Vu = 3.3V peak to peak

50

55

V 7,=0
Vu = 5.5V
fo = 38,9 MHz
Vi = see note (5)

2.6

3.3

475

280

p.V

dB

4.2

-

V

3c

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter
Video output varia· V 7
V 11
tion over the AGC
range (0 to 5.5 MHz) fo
fm

tNo

V ll • V 12

Sound I F at video
outputs (5.5 MHz)

Differential error of
the output voltage
(B &W)
V ll • Vl<.

Vu. V 12

B

dim

Ri

Ci

NOTES:

Min. Typ. Max. Unit

=0 tNi = 50 dB
= 3.3V peak to peak
= 38.9 MHz
= 0 to 5.5 MHz

1

Video carrier and
video carrier 2 nd har·
monic leakage at
video outputs

15

V 7 =0
= see note (5)
Video carrier leakage Vi
= 38.9 MHz
fo
at video outputs

Input resistance
(between pins 1
and 16)
Input capacitance
(between pins 1
and 16)

3b

mV

3d

15

%

-

30

mV
3c

5

Frequency response
(-3 dB)
Intermodulation
products at video
outputs

dB

2

V 7 =0 Vi= see note (5)
fo (vision) = 38.9 MHz
30
fo (sound) = 33.4 MHz
V 7 =0 fo = 38.9 MHz
V 11 = 3.3V peak to peak

8
V 7 =0 Vi = see
fo (vision) = 38.9
fo (sound) = 33.4
fo (chroma)= 34.5

V 7 =0
Vi = see note (5)
fo = 38.9 MHz

Fig.

note (5)
MHz
MHz
MHz

15

mV

MHz

3d

dB

3a

1.4

kn

-

2

pF

-

10

-50

-40

(1) Current flowing into pin 11 with the load connected to Vs.
(2) V II and V 12 are adjustable Simultaneously by means of the resistance. or by a variable
voltage';;;; 0.6V. connected between pin 10 and ground.
(3) Measured with an input voltage 10 dB higher than the Vi at which the tuner AGC
current starts.

(4) RMS value of the unmodulated video carrier (modulation down).
(5) The input voltage Vi can have any value within the AGC range.

476

Fig. 5 - Tuner AGC output current
VS. I F gain variation

Fig. 4 - AGC regulation voltage vs.
input voltage variation
G-l1ol1

v

2.5

,.

1.5

0.5

/'

--

-....-

....- ....- ........

~

8

fj
I
R6=5kn

I
1
I
II

f.38.9MHz
Vs .12 V
V7 • 0
VI(OdB)= 200j.lV
Vo =3.3Vpp

f-

~7

3kn

Okn

-

f

&

3&9 MHz

Va • 12V

r-- -

V7 = 0

o

o

10

20

30

Gma•

506Vi(dEII

Fig. 6 - Output black level vs. supply voltage

-20

-40

-60

-80

6G(dB)

Fig. 7 -- Output noise vs. input voltage

G 1431

Vn

N
(mV)

(V)

B=10MHz
f=38.9MHz
V•• 12V
V,.O
I Vo .3.3Vpp

200

-

2.2

160

120

1.8

80
f.3B.9MHz
Vi .70mV
V,.O

1.6

10

11

12

13

14

15 Vs (V)

477

i

1\
\
\
1\

40

I

o

0.5

,I 1-"2.5 VI (V)

APPLICATION INFORMATION
The TDA 440 enables very compact I F amplifiers to be designed and provides the performance demanded by high quality receivers.
The input tuning-trapping circuitry and the detector network can be aligned independently
with respect to each other.
The value of Q for the parallel tuned circuit between pin 8 and 9 is not critical, although
the higher it is, the better is the chroma-sound beat rejection but the tuning is more critical.
Values of Q from 30 to 50 give good rejection with non-critical tuning.
The LC circuit between pins 8 and 9 is tuned to the vision carrier thus appreciably attenuating the sidebands. Hence a small amount of signal can be removed whose amplitude is
almost constant over the whole working range of the AGC and it can be used to drive the
AFC circuit.
The black level at the output is very stable against variations of V 5 and of temperature:
this enables the contrast control to be kept simple. The AGC is of the gated type and can
take the top of the synchronism or the black level (back porch) as its reference: when the
latter is used, the output black level is particularly stable.
For a more detailed description of the TDA 440 and related performance refer to SGSATES Application Note n. 127.

Fig. 8 - Typical application circuit.
C14 10,.."
-

~6Y
*
C16

VIDEO
OUTPUT
(NEGATIVE)

R4
160
J).

~"'F
16V

"'3121110

TDA 440

*

Tantatum

Ll

::oO.42,.,H-00""0- 6turnsS-O.2Zrrm{c1oHWOund)

LZ.Ll.L7 .. Q.3,uH- Q O",'10 - 5.5turnsf4=O.22nm(clos. wound)

l4
L5.l6
L8

;It

MANUAL GAIN
R3
CONTROL 0---C::::J--+-t--+-4
l00kll

O.22.uH-QO::oIIO-4.SlurnsB=O.22nm(cloH wound)

=

I ,.,H- QO.l10- 10turns'hO.22trm(clos@'wound)

=

1.2,..H-00.,110- IOturnsB=o.22rrrn(clOw wound)

51
k/l '---+---QAGC TUNER

L' tal7: eoil 'orm., 8A 271P,cor. GW4.0.S.13 Fl00 Nf.osid,
set ••,,,ng can 8R 10IST

5-0'9'1

478

I"

I'"~~
I~

I$

i!,'

I~

Typical performance of the Fig. 8 circuit
Frequency response (fo vision = 38.9 MHz, fo sound
Sound carrier attenuation
31.9 MHz trap attenuation
40.4 MHz trap attenuation
41.4 M Hz trap attenuation
AGC range
Overall gain including I F filter and trap circuits (note 1)
Intermodulation products over the whole AGC range (note 2)
NOTES:

33.4 MHz) standard CCIR
dB
28
~60
dB
~56
dB
~44
dB
dB
55
86
dB
- 55
dB

(1) The gain is measured at video output 3.3V peak to peak and is defined as peak to peak
output voltage to RMS input voltage (modulation down).
(2) Measured at 1.07 MHz, vision carrier level = 0 dB, chroma carrier level
-6 dB, sound
carrier level = -6 dB.

=

G 1441

Fig. 9 - Overall frequency response
of the fig. 8 circuit.

dB
1.9 MHz
334MHz

8.9MHz
40.4MHz
4t.4MHz

o
i\

-20

;....

-40
~

-60

28

479

32

36

4C!

44 I (MHz)

Fig. 10 - Circuit options for tuner AGC driving

r-------------

I

I

I

I
I
I
I
I
L ____ ~~l.u..!:!~___ _
5-0980

r----------

TDA 440

I
I

:

PIN DIODE TUNER

I
I
I
I

J.

----------5-0981

680

n

TDA440

r-NPNTUN'E;-----I
I
I
I

I

IL ___________ _

5-0982

480

LINEAR INTEGRATED CIRCUIT

IOA·.··1054
PRELIMINARY DATA

PREAMPLIFIER FOR CASSETTE RECORDERS WITH ALC
•
o
•
•
•
•

EXCELLENT VERSATILITY in USE (V s from 4 to 20V)
HIGH OPEN LOOP GAIN
LOW DISTORTION
LOW NOISE
LARGE AUTOMATIC LEVEL CONTROL RANGE
GOOD SUPPLY RIPPLE REJECTION

The TDA 1054 is a monolithic integrated circuit in a 16-lead dual in-line plastic package.
The functions incorporated are:
- low noise preamplifier
- automatic level control system (ALC)
- high gain equalization amplifier
- supply voltage rejection facility (SVRF)
It is intended as preamplifier in tape and cassette recorders and players, dictaphones, com·
pressor and expander in telephonic equipments, Hi-Fi preamplifiers and in wire diffusion
receivers etc.

ABSOLUTE MAXIMUM RATINGS
Supply voltage
Total power dissipation at Tamb
50°C
Storage and junction temperature

<

ORDERING NUMBER:

20
500
-40 to 150

V
mW
°C

TDA 1054

MECHANICAL DATA

Dimensions in mm

481

5/75

I

CONNECTION AND SCHEMATIC DIAGRAMS

Ale OUTPUT

=~OSUPPLY2
g~ i'l~iEC TOR

3

01 BASE
Q1 EMITTER

,.

0'2 EMITTER

02 COllECTOR

7

"'-PASS

INVERTING
INPUT

.......
QI

1 ."'.
Q2

EQUALIZATION AMPLIFIER

ALe

TEST CiRCUIT

I"'---------------o.v.
9V

2.2 ..n
tM7uF

4.71JF

~~71

~~--------~rll~

51

8.

..

.2 ..

IVO

n

Ao

2704

S2

482

THERMAL DATA
Rth

j-amb

max

Thermal resistance junction-ambient

200

°C/W

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C)
Parameter
Vs

5upply voltage

Id

Ouiescent drain current

hFE

DC current gain
(01 and 02)

eN

Input noise voltage
(01)

iN

Input noise current
(01)

NF

Noise figure
(01)

Gy

Vo

Test conditions

Min. Typ. Max. Unit
4

Ro =00
Vs =9V
51 =52 =53= B
Ie = 0.1 mA

Ie =0.1 mA
f = 1 kHz

V eE = 5V

300

20

V

6

mA

500

-

2

nV
v'Hz

V eE = 5V
0.5

pA

v'Hz

V eE = 5V
Ie =0.1 mA
Rg =4.7kn
B(-3 dB)= 20 to 10,000 Hz

0.5

4 dB

Open loop voltage gain
(equalization amplifier)

Vs =9V
f = 1 kHz

60

dB

Output voltage with ALC

Vs =9V
f = 1 kHz

0.95

V

Vi = 100mV
51=S2=53=A

R1

(for 5VRF system)

7.5

kn

R2

(for 5VRF system)

120.

n

eN

Equivalent input noise
voltage (for equalization
ampl ifier pin 11)

1.3

Jl.V

0.8

V

Drop-out (between pins
14and 2)

Vs =9V
Rg= 4.7 kn
GY(Closed) =1 00 51= B
B(-3 dB)= 20 to 20,000 Hz
Id =6mA

483

Vs=9V

Fig. 1 - Equivalent input spot voltage
and noise current vs. bias current (input transistor a1)

Fig. 2 - Equivalent input noise cur rent vs. frequency (input transistor al)

-

-1583

o

G 118211

eN •

lDH

( nV )'

I

•

10.

z
./

iN'

pA ).
('1pAHZ)( '/Hi'

Vtf; ,

10.'

IN

10.

lmA

'kH •

"" ~

lDkH

k::'

10.

~

.//

,

r-

i--"

, ,

.

100....

,

10'

10.

SO,...

eN

,. ~~~ LJ ,.
I

10.'

10.0.,

,

10-'

10.-'

,
10.

Ie ("A)

..

• •• 10'

10'

f(Hz)

Fig. 4 - Typical noise figure vs. bias
current (input transistor a1)

Fig. 3 - Equivalent input noise voltage vs. frequency (input transistor a1)

.

G~'S85

G 1S84

eN •

Rg •

.

nY)',
(VH.

B(-3dB).2OHz to 10kHz

(kll.)'

"-

!/
.~

10.'

..

,

0.';\'

10

•

"2

!II
3dB

./

r-,.'r-....

10.

So.IJA

,
10

..

10 '

,

..

lmA

10'

•11Hz)
••

10'

484

,

..

10 '

r-

.,.

,
10'

..

Ie (}lA)

Y>~i:S;.;~:;;j,~.h;:<~;;;j\, :?':, '-'
;/~Ak;dj)':?,.:,'::: .;.'·,l ;,:'~'""

Fig. 5 - Optimum source resistance
and minimum NF vs. bias
current (input transistor Q1)

"

Fig. 6 - Typical current gain vs. collector current (input transistor Q1)

-

c; 1511

Rg opt.
(ktl) •

~
10

~~

500

10

......
,I":
"-"'t>.

1

1kHz

R

••

• ••

• "w

102

300

z

10-1
4

400

NF

1kHz
10kHz

11OO~

10

....

100Hz

10-'

200

'C (pAl

,
10

Fig. 7 - Typical open loop gain vs.
frequency (equalization amplifier)

..

. ..

10'

...

10'

Fig. 8 - Typical open loop phase response vs. frequency (equalization amplifier)
C;

CHUa

G.
Ide)

'o"

(D~)

60

"
i'\

50

40 COMPENSATION
C12-13 =680pF
30

-60

01.
~

""

33O~ 1

1'\

20

.,,

"'.."r ...

-120

1\,11",

47

1511

-

!:.'

l'\

-

,

-180

,

-240

(\

10

~

-300

1\

o
I

10'

.. Ii

t " Ii I

I " Ii

10'

10'

2

10'

"I

t"

t

'I

10', (Hz)

10'

485

.. Ii I

,

10'

I.

I

10'

..

, It

..

'I

1 0 ' , (Hz)

APPLICATION INFORMATION
Fig. 9 - Typical application circuit for battery-main tape and cassette player and recorder

Fig. 10 - P.C. board and component layout of fig. 9 circuit (1: 1 scale)

486

Typical performance of circuit in fig. 9 (T amb = 25°C, Vs = 9V)
Parameter

Test conditions

Min. Typ. Max. Unit

PLAY-BACK

Gv

Voltage gain
(open loop)

f = 20 to 20,000 Hz

110

dB

Gv

Voltage gain
(closed loop)

f = 1 kHz

57

dB

IZI

I nput impedance

f= 100 Hz
f = 1 kHz
f=10kHz

10
41
43

kn
kn
kn

IZo I

Output impedance

f = 1 kHz

12

B

Frequency response

d

Distortion
Output back-ground noise

*** Output weighted back-

n

see fig. 12
0.1

%

1.3

mV

1.3

mV

Vo= 1V
Zg = 300 n + 120 mH

52

dB

Vo= 1V

f = 1 kHz

Zg= 300 n + 120 mH
(DIN 45405)

ground noise
S+N

35

N

Signal to noise ratio

SVR

Supply voltage ripple
rejection at the output

f(riPPle)= 100 Hz

30

dB

Switch-on time

Vo= 1V

500

ms

ton **

RECORDING

Gv

Voltage gain
(open loop)

f = 20 to 20,000 Hz

110

dB

Gv

Voltage gain
(closed loop)

f = 1 kHz

70

dB

B

Frequency response

d*

Distortion without ALC

Vo= 1V

f = 1 kHz

0.3

%

d

Distortion with ALC

Vo= 0.9V

f = 1 kHz

0.4

%

see fig. 14

487

Typical performance of circuit in fig. 9 (continued)

ALC

Automatic level control
range (for 3 dB of output
voltage variation)

Vi ";;40 mV

Output voltage before
clipping without ALC

f = 1 kHz

Vo

Output voltage with ALC

Vi=30mV

tl**

Limiting time
(see fig. 11)

tset **

Level setting time
(see fig. 11)

tree **

Recovery time
(see fig. 11)

tNi= -40 dB

ton **

Switch-on time

Vo= 1V

S+N

Signal to noise ratio
with ALC

Vo= 1V

Vo

N

Min. Typ. Max. Unit

Test conditions

Parameter

t:Ni= +40 dB

f = 10 kHz

f = 1 kHz

54

dB

2.3

V

0.9

V

75

ms

300

ms

180

s

500

ms

56

dB

f = 1 kHz

f = 1 kHz

Rg =470n

* Measured with selective voltmeter
** This value depends on external network
*** When the DIN 45511 norm for the frequency response is not mandatory the equaliza·
tion peak at 10kHz can be avoided-so halving the output noise
Fig. 11 - Limiting, level setting, recovery time

"~
'0

'I 1:1IMITING TIME
tnt -lEVEL SETTING TIME

'r1'C5:RECOVERV TIME
5_1112

488

Fig. 13 - Typical distortion vs. frequency of fig. 9 circuit (Play-back)

Fig. 12 - Typical relative frequency response of fig. 9 circuit
(Play- back)

-

6o1S1111

& 1590

Gy

d

I

(dB)

{

i\

1/

,

\

I

12

('Ie)

'

I

t6

\

1

u

i
lL

r\
\

o II

\
\

--

Gy atOdB-S7dB

-4

II IIIII
I I Ijl~

0.8

-

,

Vo ·1V

0.4 I--

10'

10'

10'

,

'--

o

2,,&62411824682101,

to

........

I-

II 11111

1

•• , 1 4 ' .

10

t( Hz}

Fig. 14 - Typical relative frequency response of fig. 9 circuit
( Recording)

2

10'

10'

....

'41,

10'

I (Hz I

Fig. 15 - Typical output voltage variation and distortion with ALe
vs. input voltage of fig_ 9
circuit (Recording)

Gl.UII

CJ-1S92

Gy

I II 11111
I II 11111
11111111

(dB)

Gy atOdB=70dB
12

-

'\

V
3dB

2,8

54dB

8

-8

-

o
-4

Vo ·l0dB=9S0mV
1=10 kH
d

./

16
12

08

Cl-'
J

10

t

468

10'

461:1

10'

468

10'

J

t

468

10

I (Hz)

489

t

1;6'

10'

t

468

10'

:2

468

10'

10'8

Vi (pvl

o

I

Fig. 16 - Typical distortion vs. frequen·
cy with ALe of fig. 9 circuit
( Recording)

Fig.17 - Typical limiting and level setting time vs. input signal variation

-

-

G 1594/1

('/.)

1m

1.6

'm

!i

G IS95

I

'i
I

1.2

300

!

I

0.8

I

Vo =0.9

1'

I

• t

200

vi

....

I
I

0.4

100

I

o
10

... ...
10'

,
10'

..

....
•

10'

tt

....

• 8

I (Hz)

Fig. 18 - Economical application circuit

490

o

10

20

30

.6Vi (dB)

Fig. 19 - P.C. board and component layout of fig. 18 circuit (1:1 scale)

CS-0062

Typical performance of circuit in fig. 18 (T amb= 25°C, V s= 9V)
Parameter

Test conditions

Min. Typ.

PLAY-BACK
18

rnA

f = 1 kHz

56

dB

Frequency response

f= 100 Hz
f = 1 kHz
f = 6 kHz
f=10kHz
f = 60 kHz

12
0
5
11
10

dB
dB
dB
dB
dB

Distortion

Vo= 1V

Id

Quiescent drain current

Gy

Voltage gain (closed loop)

B

d

Output weighted background noise

f = 1 kHz

Zg= 300 .n + 120 mH
(DIN 45405)
491

0.6

%

1.3

mV

Typical performance of circuit in fig. 18 (continued)
Parameter

Test conditions

Min. Typ. Max. Unit

RECORDING

Gv

Voltage gain
(closed loop)

f = 1 kHz

70

dB

B

Frequency response

f=140Hz
f = 1 kHz
f = 10 kHz

-3
0
4

dB
dB
dB

d

Distortion

Vo= 0.9V

f = 10 kHz

0.7

%

ALC

Range for 3 dB of output
voltage variation

f=10kHz

Vi ';;;;40 mV

54

dB

Fig. 20 - Complete cassette player and recorder

492

Fig. 21 - Hi-Fi preamplifier for magnetic and ceramic pick-ups

PIEZO OR
CERAMIC MAGNETIC

4?On

"

pF

1,1Okll

1.5kD.

,

I

1- ___________________________ I

Typical performance of circuit in fig. 21 (T amb = 25°C, Vs
Parameter
Vs

Supply voltage

Vi

I nput sensitivity for
magnetic pick-ups

Test conditions

Vo

Min. Typ. Max. Unit
10

Vo= 300 mV
Vi

= 15V)

f

= 1 kHz

I nput sensitivity for
ceramic pick-ups
Output voltage before
clipping

f

RJAA equalization for
magnetic pick-ups

B = 40 to 18,000 Hz

= 1 kHz

493

18

V

2.5

mV

100

mV

2.5

V

±1

dB

Typical performance of circuit in fig. 21 (continued)
Parameter
S+N

Test conditions

Min. Typ. Max. Unit

Rg =4.7 kn
B (-3 dB) = 20 to 20,000 Hz

N

Signal to noise ratio for
magnetic pick-ups

IZ;I

Input impedance for
magnetic pick-ups

47

kn

IZ;I

Input impedance for tuner f = 1 kHz

470

kn

IZII

Input impedance for
ceramic pick-up

100

kn

Fig. 22 - Typical distortion vs. frequen·
cy (fig. 21 circuit)

66

dB

Fig. 23- Typical frequency response
(fig. 21 circuit)

G"".'7

d
('to)

i

18

:/

12

•

03

o

r-

'£

-s

0.2

"

OJ

-12

ill

~

-24

III

o
J

10

J

". •

10'

... 8

J

10'

I"

-I.

Vo·300~

............

". •

I

10'

J

....

f (Hz)

10

494

"II

I

10'

"II

J

10'

•• 1

10'

l'

II

I (Hz)

lINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
TV VERTICAL DEFLECTION SYSTEM
The TDA 1170 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic
package. It is designed mainly for use in large and small screen black and white TV receivers.
The functions incorporated 'are:
- oscillator
- voltage ramp generator
- high power gain amplifier
fly back generator

ABSOLUTE MAXIMUM RATINGS
Vs
V 4 -V S
Va

Supply voltage (pin 2)
Flyback peak voltage
Sync. input voltage

27
58
± 12

V IO

Power amplifier input voltage

f

10

Output peak current (non-repetitive) @ t 2 ms
S@ f = 50 Hz, t" 10 J.!s
Output peak current @ f 50 Hz, t > 10 J.!S

10

Ptot

=

t

=

Power dissipation: at T tab = 90°C
at Tamb = 80°C (free air)
Storage and junction temperature

10
-0.5
2
2.5
1.5
5
1
-40 to 150

V
V
V
V
V
A
A
A
W
W
°C

ORDERING NUMBER: TDA 1170

MECHANICAL DATA

Dimensions in mm

495

5/75

CONNECTION AND BLOCK DIAGRAMS
~-------"-----()".

ftlEOUlAno
WOlTAGt

HEIGHT ADjUSt

SCHEMATIC DIAGRAM

z,

.,

496

THERMAL DATA
Rth j-tab
Rth j-amb

Thermal resistance junction-tab
Thermal resistance junction-ambient

max
max

12
70*

°C/W
°C/W

* Obtained with tabs soldered to printed circuit with minimized area

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs

25V,

Tamb = 25°C unless otherwise specified)
Parameter

Test conditions

STATIC (DC) CHARACTERISTICS
-19
-110
-112

Oscillator bias
current

V9 = 1V

0.2

1 IlA

1a

Amplifier input
bias current

V10 = 1V

0.15

1 IlA

1b

0.05

0.5 IlA

1a

Ramp generator
bias current

Vs

Supply voltage

V4

Quiescent output
voltage

V6 , V7

10
R2= 10 kn
Vs = 25V, R1=30kn
Vs=10V, R1 = 10 kn

Regulated voltage

EN6 EN7
Li ne regulation
ENs' 6.V s

V

-

,

8
4

8.8
4.4

9.6
4.8

V
V

6

6.5

7

V

Vs = 10 to 27V

1.5

mV!V

140

mA

1a

1b

DYNAMIC CHARACTERISTICS (f = 50 Hz)
Is

Supply current

Iv

Peak to peak yoke
current (pin 4)

V4

Flyback voltage

VB

Peak sync. input
voltage (positive
or negative)

Iv = 1A

1.6
Iv = 1A

51
1

497

A
V
V

2

I

,

ELECTRICAL CHARACTERISTICS (continued)
Parameter
Vg

Min. Typ. Max. Unit

Test conditions

Peak to peak oscil·
lator sawtooth
voltage

2.4

V
kn

Sync. input resist·
ance

Vs= 1V

3.5

tflY

Flyback time

Iy = 1A

0.6

lif

Pull-in range
(below 50 Hz)

lif
6.V s

Oscillator frequency
drift with supply
voltage
Vs =10to27V

0.01

V

lif
6.Ttab

Oscillator frequency
drift with tab
temperature
T tab = 40 to 120°C

0.015

Hz
QC

Rs

TDA 1170

ms
2

7

Hz

Hz

Fig. 1b - Static test circuit for measu·
rement of -lID. Vs. V7 •
6.V s /6.V s and 6.V 7 /6.V s

Fig. 1a - Static test circuit for measu·
rement of -Ig. -112 and V4

9

0.8

Fig.

4

TDA 1170

9
6

sv

498

7

10

Fig. 2 - Dynamic test circuit
r---------~~------~----~~--------------------<).~=25Y

01

JOy
lA

C9

C3

IODI'F 25Yr-~_..../,.;=~......
5
3

11~

SYNC INPUT 8

__

~

________--'

C7

IDA 1170

1000 .uF/16 Y

10~--~------~-C==~

YOKE

IOn.
20mH

R7*

5.SkD.

C5O.II'F
RIO

10.

S-n1811

Fig. 4 - Relative quiescent voltage va·
riation vs. tab temperature

Fig. 3 - Relative quiescent voltage va·
riation vs. supply voltage

G ·\600

6-1598

AV,

""V4

Vo = 25V

('J.)

Tam b=25'C

0.2

0.1

....

o

....

-0.1

.1

-0.2

-0.3
• 2

10

15

20

25

20

Va (V)

499

'0

60

80

Fig. 5 - Regulated voltage vs. supply
voltage

Fig. 6 - Regulated voltage vs. tab temperature·
0·1601

6.56

=25 v H-+--!-H-++-H

H-+-+-H-+--f V•

6.52

6.52
6.50

l-

I

1.48

6.48
6.46

Tamb~2S'C

6.44

6.40.

10

15

20.

25

v. (v)

20.

Fig. 7- Frequency variation of unsynchronized oscillator vs. supply
voltage

Fig. 8 -

40

eo

60.

Frequency variation of unsynchronized oscillator vs. tab
temperature
G-1603l1

6-180211

61

61

ClIz)

(Hz)

I
v. =25V

0.2
0..1
0.

1/

0.

-0.1
-0.2

-0.4

amb-ZS'

-0.8

10

15

20.

25

v. Iv)

20.

500

40.

60.

80

10.0. Ttab("Cl

APPLICATION INFORMATION
The thermistor in series to the yoke is not required because the current feedback enables the
yoke current to be independent of yoke resistance variations due to thermal effects. The
oscillator is directly synchronized by the sync. pulses (positive or negative), therefore its free
frequency must be lower than the sync. frequency. The flyback generator applies a voltage,
about twice the supply voltage,to the yoke. This produces short flyback time together witha
high useful power to dissipated power ratio.
The flyback time is:
t f1y

~

2

-3

Lv

where:

Lv Iv

--Vs

Vs

Iv

Yoke inductance
Supply voltage
Peak to peak yoke current

The supply current is :
Is -

-

Iv
8

+

0.02

(A)

It does not depend on the value of Vs but only on yoke characteristics. The minimum value
of Vs necessary for the required output current permits the maximum efficiency.
The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8 and
R9 (refer to fig. 2) according to:

V4

V

R7

+

10

R8
R7

+

R9

Pin 10 is the inverting input of the amplifier and its voltage is V 10 ~ 2V.
For a more detailed description of the TDA 1170 and related performance refer to SGSATES Application note N. 129.

501

Fig. 9 - Typical application circuit for B & W 24" 110° TV sets
.. Vs= 22V

01

"'1

3OV/IA
5DC~F

25V

Cl[C3

'00", " ' ,
R9 15 kil
11

SYNC INPUT 8

C7

TOA 1170

1000 .... F/16 v

RB_

10

C6
15"F110V
YOKE

12

Ion
20 mH

R7S.6kil

cs-

..... C2*
OlS"F

O.1"F
RIO

*

lil

5-06 !312

Tolerance- SOle

Typical performance of circuit in fig. 9
(V s = 22V; Iv

Is
t f1y

Iv
Vs
Ptot

= 1 A;

Rv = 10 1:2; Lv

= 20 mH)

Supply current
Flyback time
Maximum scanning current (peak to peak)
Operating supply voltage
TDA 1170 power dissipation

140
0.75
1.2
20 to 24
2.2

mA
ms
A
V
W

For safe working up to T amb = 50 0 e a heatsink of Rth = 40° C/W is required and each
tab of the TDA 1170 must be soldered to 1 cm 2 copper area of the printed circuit board.

502

Fig. 10 - Typical application circuit for B & W small screen TV sets
r - -_ _ _. -_ _ _-+-_ _-.-_ _ _ _ _ _ _ _ _-o.VS·10.eV
Stab.

11
SYNC 1NPUT 8

t----<~----'

C7

TDA 1170

2OO0,oF/'lJV

IOI--or__----..-C=::JH
56kn

u

It--~-_,

I

C6
7/-,FI10V

YOKE

PI

RJ
470
kG

*

CS*
O.1/-,F
R10
5-112012

Typical performance of circuit in fig. 10
(V, 10.8V; Iv
1 A; Rv 4n; Lv

=

=

=

= 7.5 mH)

Supply current
Flyback time
Maximum scanning current (peak to peak)
Operating supply voltage
TDA 1170 power dissipation

150
0.7
1.15
10.8
1.3

rnA

ms
A
V
W

For safe working up to Tamb = 50°C a heatsink of Rth = 30 °C!W is required and each tab
of the TDA 1170 must be soldered to 1 cm 2 copper area of the printed circuit board.

503

Fig. 11 - P.C. board and component layout for the circuit of fig. 9 and fig. 10 (1: 1 scale)

+Vs

GND

YOKE

YOKE SYNC.

GND

C9 is not mounted on the P.C. board.

MOUNTING INSTRUCTIONS
The junction to ambient thermal resistance of the TDA 1170 can be reduced by soldering
the tabs to a suitable copper area of the printed circuit board (fig. 12) or to an external
heatsi nk (fig. 13).
The diagram of fig. 16 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the side "s" of two equal square copper areas having a thickness of 35 P. (1.4 mil).
During soldering the tab temperature must not exceed 260 °C and the soldering time must
not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

504

oj~: ",

"/',:::' ,::
",

AREA 35}J

i ,,(:; '"
, ",~"

. Fig. 13 - Example of TDA 1170 with
external heatsink

Fig. 12 - Example of P.C. board copper
area used as heatsink
(OPPER

;' ,;

THICKNESS
HEATSINK

Rlh:: 30°Cjw

P (,BOARD

Fig. 15- Maximum allowable power
dissipation versus ambient
temperature

Fig. 14 - Maximum power dissipation
and junction-ambient thermal resistance vs. "5"

G 1419/1

G 1476/1

Rth

Pto t

( 'c/W)

(W)

80

4

60

R

j-amb
I

;--

4

40
I

Ptot (Tamb' 55'CL
.~

t-

::,.r-n

-

10

1

20

+---

,

I

---+--- 1>.totF~,_=rC)
,1 L I
i
i '
a

i

.c,

--.

-~

it+-tt-+--

I
30

20

o

o

40 s (mm)

H-t--H-++H+H-l---H-50

505

a

50

100

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
COMPLETE TV SOUND CHANNEL
The TDA 1190 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic
package. It performs all the functions needed for the TV sound channel:
IF limiter-ampl ifier
- active low-pass filter
- F M detector
- DC volume control
- . AF preampl ifier
- AF output stage
The TDA 1190 can give an output power of 4.2W (d = 10%) into a 16n load at Vs = 24V,
or 1.5W (d = 10%) into an 8 n load at V5 = 12V. This performance, together with the F M-I F
section characteristics of high sensitivity, high AM rejection and low distortion, enables the
device to be used in almost every type of television receivers. The device has no irradiation
problems, hence no external screening is needed.

ABSOLUTE MAXIMUM RATINGS
Vs

Vi
Itj

10
Ptot
T stg , Tj

Supply voltage (pin 10)
Ihput signal voltage (pin 1)
Output peak current (non-repetitive)
Output peak current (repetitive)
Power dissipation: at T tab = 90°C
at Tamb = 80°C (free air)
Storage and junction temperature

28
1
2
1.5
5
1
-40 to 150

V
V
A
A
W
W
°C

ORDERING NUMBER: TDA 1190

MECHANICAL DATA

Supersedes issue dated 11/74

Dimensions in mm

507

6/75

CONNECTION AND BLOCK DIAGRAMS

SCHEMATIC DIAGRAM
6

~

l
t:----

q},

J
~

1,/

J'

~~~
r
It

508

r<
....

1 I

-

K
~

'--J"'--

,)

lE~fl')
==

~

-

~ -~

<>

~
~

0-

IJ

::J

~'

,.

251di2
00=80

so

J
o

o

zo

60

,

,.

,

,.

,

1)-'

80

Fig. 8 - Typical distortion vs. tuning
frequency change

Fig. 7 - Typical distortion vs. frequency deviation
G 1462

G 14631'

d

d

1'1.)

('I.)
Po =IW
Rl =16ll

"-

\

I-- I---

I--

-

YI=lmV
Rl 'I6A
Rf"IOA
10=S.5MH

\

fm-1kHz

1l,=2SO-

V

V

/

RI =lOll
10 =5.5MHz
61 ='25 kHz
Vi =lmV

\

00=80

,.

Po (W)

/

/

00=80

\

/

r\

/

/

/

V

\
~

/

o

o

>20

-so

'80 611kHz)

513

-30

-10

0

·10

.30 61 (kHz)

I

Fig.9 - Typical audio amplifier frequency response

...

Vo

Fig. 10 - Typical overall frequency response
6--1.t,65

146",

Vo

CdB)

(dB)

---

o I-4

ft

-8

!I

l-

1£

Rl-en

V
s-

Rl~n
Rt

Jl

.1'X-:

Q: 3dB

'8ll

-12

Rg_son
Cl0-220
C12-1

-16

"I
I
1

...

,.

~/f

-10

r\
\

Vi =lmV

--- -

Rl =16.11
Rt=IOA
'0 =5.5 MHz
At =t. 2511Hz cons

-20

VI -COnSt.

10

-

-

\Is -12 V

-

••

10'

I

10'

I

...

11111111
11111111
II 11111

... , .

• I

, (Hz)

10'

10

Fig. 11 - Typical supply voltage ripple
rejection vs. ripple frequency

"

G-....

SVR

(dB )

(dB )

60

60

......
=16.11
=lOll
= 2.2 kJl

I II

o

I
•

10

• t

20

11111
11111
11111111

10

11
•

10'

It

"6'

tm(Hz)

t"-=lOlnv
Vi
V'ipple=2 Vpp
=161l.
Rl
=10.11
R,
t 'ipplo =100 Hz
lit
=0

1/

I Vrippl~ == 2 Vpp

10

10'

I.....

=0

PI

2

...

,

l,...-

Rl
R,

l

&-1 67

so

20

6.

1l'

10'

Fig. 12 - Typical supply voltage ripple
rejection vs. vol ume control
attenuation

SVR

Vi

\

RC=SO~5

-!,D

...

r\

2

,e

I
I

I

o

10'

514

-10

-20

-30

-!,D

-so

-60

(dB)

Fig. 14 - Maximum power dissipation
vs. supply voltage (sine wave
operation)

Fig. 13 - Typical output power vs. supply voltage

-

G-1468

G 1469

Ptol
(w)
Vi =1mV
c- d = 10 0/0

10 = 5.5 101Hz
I m =lkHz
AI =.25kHz
QO=80

-

-

RL -S.ll

I

)

b

-

-

1/

Vi =1mV

d -10 0/0
10 =5.5MHz
I m 'lkHz

RL ·16.ll

1I

6f =!.25kHZ

QO'80

0.5

20

25

30

'is

/
V. V

o

(v)

)RL'16.ll.

/

L

1/
j

/

15

JRt'SIl.

J

15

V

VV
V. V
10

-

-

j

IJ

~

2.5

II

./

/

15

10

20

2S

30

Fig. 16 - Typical quiescent output vol'
tage (pin 9) vs. supply voltage

Fig. 15 - Typical power dissipation and
efficiency vs. output power
G--U.70

/
t5

~

Ptot

---"

I

. /V

I

G-1411

'1

Vo

(oJ.)

-l-

r-,..- V

(v)

I

/

80

10

/

60

V

I~

/

l/r;'

/

Vs (v)

/

V

5

/

/

/

20

/

V

o

o

10

515

15

20

25

30

'Is (v)

APPLICATION INFORMATION
The electrical characteristics of the TDA 1190 remain almost constant over the frequency
range 4.5 to 6 MHz, therefore it can be used in all television standards (FM mod.).
The TDA 1190 has a high input impedance, so it can function with a ceramic filter or with
a tuned circuit that provide the necessary input selectivity.
The val ue of the resistor connected to pin 7, determines the AC gain of the audio frequency
amplifier.
This enables the desired gain to be selected in relation to the frequency deviation at which
the AF amplifier's output stage must enter into clipping.
The capacitance connected between pins 9 and 8 determines the upper cut-off frequency
of the audio band.
The capacitance connected between pin 12 and ground, together with the internal resistor
of 10 kn, forms the de-emphasis network. The Boucherot cell eliminates the high frequency
oscillations caused by the inductive load and the wires connecting the loudspeaker.
For a more detailed description of the TDA 1190 and related performance refer to
SGS-ATES Application Note n. 128.

Fig. 17 - Typical application circuit
Cl
R4
INo----II--~:::::h

~16V

250,uFT16V

C5

12

.,

11

IDA 1191
4
C6

TABS

68pF

516

Fig. 18 - P.C. board and component layout of the circuit shown in fig. 17 (1:1 scale)

C 5-0039

MOUNTING INSTRUCTION
The Rth j-amb of the TDA 1190 can be reduced by soldering the tabs to a suitable copper
area of the printed circuit board (Fig. 19) or to an external heatsink (Fig. 20).
The diagram of figure 21 shows the maximum dissipable power Ptot and the Rth j-amb as a
function of the side "Q" of two equal square copper areas having a thickness of 35 J1
(1.4 mils).
During soldering the tab temperature must not exceed 260°C and the soldering time must
not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.

517

Fig. 19 - Example of p.e.board copper
area which is used as heatsink

Fig.20 - External heatsink mounting
example

COPPER AREA 35,.. THICKNESS

p.e.BOARD

Fig.21 - Maximum dissipable power
and junction to ambient thermal resistance vs. side "Q"
G 0952

Ptot

Fig. 22 - Maximum allowable power
dissipation vs. ambient temperature

Rth

CfW)

(w)

eo

B

G-

Ptot

(wI
5

I\.~~

r"i

6

4

60

~

r--

o

"!.

lIO,

~~
~
~~
~.
~ ~~.

20

~It-

...... 1....

o
20

~

~6

Ptot (lamb= 7O"C

10

'&

~

40

~

~

'l-G'

Ptnt (lamh= 55°C
~

""'"

.~~

2
2

.~
-1/1'1-

3

Rth j-amb

4

""

I\.~.>

30

40 I (mm)

."N

0
-50

518

o

50

100

150 lambicl

LINEAR INTEGRATED CIRCUIT

PRELIMINARY DATA

FM-IF RADIO SYSTEM
•
•
•
•
•
•

TOA1200

HIGH LIMITING SENSITIVITY
HIGH AMR
HIGH RECOVERED AUDIO
GOOD CAPTURE RATIO
LOW DISTORTION
MUTING CAPABILITY

The TDA 1200 is a silicon monolithic integrated circuit in a 16-lead dual in-line plastic
package. It provides a complete subsystem for amplification of FM signals.
The functions incorporated are:
- FM amplification and detection
- interchannel controlled muting
- AFC and delayed AGC for FM tuner
- switching of stereo decoder
- driving of a field strength meter·
The TDA 1200 cal) be used for FM-IF amplifier application in HI-FI, car-radios and
communication receivers.

ABSOLUTE MAXIMUM RATINGS
Supply voltage
Output current (from pin 15)
Total power dissipation at T amb "'" 70 DC
Storage temperature
Operating temperature

16

V

2 mA
500 mW
-55 to 150 DC
-25 to 70 DC

ORDERING NUMBER: TDA 1200

MECHANICAL DATA

Supersedes issue dated 6/73

Dimensions in mm

519

4/74

10A1200
CONNECTION DIAGRAM

IF INPUT

N.C.

BYPASS

AGe OUTPUT

BYPASS
GROUND

GROUND
FIELD STRENGTH
METER

MUTE INPUT

MUTE OUTPUT

AUDIO OUTPUT

SUPPLY VOLTAGE

AFC OUTPUT

REF.

QUAil OUTPUT

QUAD. INPUT

BIAS

5-0398/1

BLOCK DIAGRAM

TO STEREO
THRESHOLD
LOGIC CIRCUITS

MUTING
SENSITIVITY

520

10A1200
(~

~~~~~
~

•i~

~.g

a

r.;

~

(ii"
T

~Ib
~

a;

0

§"

------i.14

f--J~

!f;;
§

~Lj r:!l

~'
--H

<---

"'"
T1t

~i1"-1

T

. r~
..~
<

~

.

..

~I=1"-1

II

;

ti,-1

;

~

iil.o;

?t

t1

i

~~11'

-~

~~

~
~L: }T-t
__

:;

__

~

__

I'

&!

0'

N

521

I

.~
~
~

~

0-

..tl

J,U

-®

~

I'

i

r:t

;

-t:.~

~ "~o

-'~'1

.

~

~

II:

~

~

~

. r~

•

§

II:

l!

;;:

"--

~

I'

.~

~'LI

~

~
~

I'

--

~

;

~

•
.'f ..

•• 1/0

'-0

8

a~

il

.'&f '.

~

"
~.
._ N}

.- .

~I

~

~O~

~

~

.
• ld.

~

•
a

• g

"

,.-

a

J

~~

-<;?-

5

&

n~

I

Ss

~

~

~

®

.. '

@-----II'

~

"

I

®-----I

!I

:

I~,FL~~

.•

I

~

. ~~
•

~

;

,

~

~

~

n

§~~

=

IDA 1200
TEST CIRCUIT
20,uF

r---U::,o=-n-=-F----+~--'{) Vs·'2V
llOkfi

470kU

'~F
FIELD STRENGTH
METER OUTPUT

t

33kll

3.9kfi

4.7k.Q
13

12

11

10

9

I

I

22pH

I
I

I

'------Ir---~.FC
OUTPUT

IOnF
IOnF
5-0626/2

THERMAL DATA
~

Rth

j.8mb

Thermal resistance junction-ambient

max

160 °C/W

ELECTRICAL CHARACTERISTICS
(Refer to the test circuit; V.

= 12 V, Tamb = 25°C)

Parameter

Test conditions

STATIC (DC) CHARACTERISTICS

I,

Supply current

23

mA

VI

Voltage at the IF
amplifier input

1.9

V

Voltage at the
input bypassing

1.9

V

Voltage at the
audio output

5.6

V

Reference bias voltage

5.6

V

V2 ,V3
V6
VIO

522

lOA 1200
ELECTRICAL CHARACTERISTICS

(continued)

Test conditions

Parameter
DYNAMIC CHARACTERISTICS

Vi(thresholdl Input limiting voltage
(-3 dB) at pin 1

Vo

Recovered audio
voltage (pin 6)

d

Distortion

S+N
N

Signal and noise
to noise ratio

AMR

Amplitude modulation
rejection

Vi
AV l5
AV i
AI7

6f

fa
fm
Af

= 10.7 MHz
= 1 kHz
= ±25 kHz
-

Vi === 50 JJ.V
10.7 MHz
fa
fm
1 kHz
Af = ±25 kHz
Vi === 1 mV
10.7 MHz
fa
fm
1 kHz
Af
±75 kHz

=
=
=

Vi === 1 mV
10.7 MHz
fa
fm
1 kHz
Af
±25 kHz
0.3
m

=
=
=
=

Vi === 10 mV
10.7 MHz
fa

=

AFC control slope

AV13
AV i

Field strength m ter
output slope

Vl3

Field strength meter
output sensitivity

JJ.V

140

mV

0.5

%

60

dB

40

dB

10

mV

40

dB

1

JJ.A
-kHz

42

dB

1.7

V

=
=

Input voltage for delayea
AGC action(pin 1)
AGC control slope

12

Vi
fa

= 1 mV
= 10.7 MHz

523

IDA 1200
Typical relative recovered audio and
noise output versus input voltage

Typical capture ratio versus input
voltage

"TITmr"nm~'lnllmrlllll-lnITm~nTmmN
1--++l-HtIl--H+tttttt--++++-ItHt-l-t+ttttll-t+tHtHI(d B)

~~~rH~~oIJ~I~lhoU~-H~
I--++l-Htll-I!-l+tttttt--++tt+tttt~~ :~~~z

&-103011

CAPTURE
RATIO

111111111

(dB)

11111111
fm=lkHz
Vs =12 V
fo = lQ.7MHz
Tamb=25 D C
6.f =.! 25kHz

-20

I--J-LLLftIN-H+tttttt--+++++ttttfo= 10.1MHz
Tamb=25CC
·-ftlI-A.-tt+ttt~++ttttttt.M =! 25k Hz

1--++l-Ht~-H~tttt--++++-ItHt-l-t+ttttll-t+tHtHI-40

1--++l-HtHlH--H+1'ttlll--+O""'d"B·. 14oinv,'-'+-ItHt--+-++HllII
I--++l-Ht~-H+tttttt--+nli

N

I--~+W~++~II-++hnlm-III-H~OO--H+tt~-oo

CAPTURE RATIO

1111
1111
1111

111111111

I

I11111111

10'

10'

Vi

10'

10

CuV)'

Typical AGC (VIS) and field strength
meter output (VI3) versus input signal

Typical AFC output current versus
change-in tuning frequency
G-I021Jl

G-l0ZS/2

AFC

M=O

17

V. =12V
f,=tO.7MHz
Tam b=25°C

v

'Is =12'1
Vi =10mV

(pA)

L

lamb = 25°C

60

40

r-

VIS

20

\
-20

-40

V13

-60

-BO

I-'
10

10'

10'

10' Vi (!lV)

-tOO

524

-80

-so -40

-20

20

40

if (kHz) 100

TDA1200
Typical AMR (relative to the value of
fo= 10.7 MHz) versus change-in
tuning frequency

Typical amplitude modulation
rejection versus input signal

G 10281

AMR

AAMR

(dB)

(dB)

I

I
-1

34

I

Ii

~ ~

Vj=200pV

38

!

V;=20}JV

i

I

-3
Vs=12V

22

Vs =12 V

Tamb= 2S·C

r.1O.7MHZ

-4

m:;:Q.3

-5

m=lkH:z:
6f=!.25kH:z

/

14

11111
Ifill

10
2

10

"611

2

..

68

10 2

2

II

68

2

'Kl"

1()3

I

I

-2

26

I

I

I

I

'\

30

1S

I ~; ~2mV. U.

I

I'

42

,

10

-6

68

~ ~~m=b,:~;oc
I i Af~'25kHz

i

m= Q3

If'itlI

11111111111

Vj(pV)10 5

-75

-50

-25

I!'I
25

50

75 &t(kHz)

APPLICATIONS
PC board and component layout of the circuit on next page (1:1 scale).

CSo

®

-&

@~@
-t:::Jli7

n

PI?

,,~'RS

a

@

RI

@
(:5-0024

525

I

10A1200
Typical application circuit

,-------------1

.~
?

lOOn.

I:

~

=~OnF
C1

FIELD

STRENGTH

.L

1

In,,,F

.. 1
1

"l~F

±,onF
-'--

F

TUN

J

AGC

2i~pF
II

270P;

:-"r;;c

,--

=

CERAMIC
FILTER

-----

'20!!Q

.uea

I
I
I
I

R'

'Okll

1-·
I

l'~r

15

14

12

11

..L.

--------...,I
-~

-- _.:.:~..2:!....!! - .....

9

LlI

,

2

I

'~~F*

'---~

~~nF:~

3

4

••

[ **
R1

['

•

1

ni.icJi.
•

I

I
I
I
I

=~~pF

:

R2

10

CONTROL

221JH :

T ~,' J~30Jl
R'

I
I

13

MUTE

p,

19k1l

L

16

410""

R3

r----

R6*

Vs= tty

. See

Note(l)- .

R4

:=~~F

=:1onF
C6

TOAll DID

"

AMP!..

'c9,i- _._._.
I
10"."
_.
I______ ~
_______
J
J.

5-0402/1

NOTES: (1) When V. is less than 12 V, a resistor RS:.= 12 k!l must be connected
between audio output and ground, and the Integrator capacitor C5 must
be changed to 10 nF, as follows:
4.7kll

pin 6

o--C:J-.......- _ - O V a

5-040'

* Dependent on field strength meter sensitivity.
** Dependent on the tuner's AFC circuit..

526

lINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
TV VERTICAL DEFLECTION SYSTEM
The TDA 1270 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic
package. It is desi.gned mainly for driving complementary vertical deflection output stages
in colour TV receivers.
The functions incorporated are:
- oscillator
- voltage ramp generator
- high power gain amplifier

ABSOLUTE MAXIMUM RATINGS
V5
V4
V8

Supply voltage (pins 2 and 5)
Voltage at pin 4
Sync. input voltage

V 10

Power ampl ifier input voltage

~ 10

~Io
Ptot
T stg , T j

40
41
± 12

I-0.510

Output peak current (non-repetitive) for t = 2 ms
, @ f = 50 Hz t ~ 10 J.Ls
Output peak current
@ f = 50
t> 10 J.LS

t

HZ:

Power dissipation: at T tab = 90°C
at Tamb = 80°C (free air)
Storage and junction temperature

2
2.5
1.5
5
-40 to 150

V
V
V
V
V
A
A
A

W
W
°C

ORDERING NUMBER: TDA 1270

MECHANICAL DATA

Supersedes issue dated 11/74

Dimensions in mm

527

6/75

CONNECTION AND BLOCK DIAGRAMS
,-------,-----0·'.

REGL'LATED
VOLTAGE

Note:PIN3lnternally connected,must bE' lE'ft open

SCHEMATIC DIAGRAM

02

21

02

Rl

528

THERMAL DATA
Rth j-tab
Rth j-amb

Thermal resistance junction-tab
Thermal resistance junction-ambient

12
70*

max
max

°C/W
°C/W

* Obtained with tabs soldered to printed circuit with minimized copper area

ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 32V,
Tamb = 25°C unless otherwise specified)
Parameter

Test conditions

STATIC (DC) CHARACTERISTICS
-19

-110
-112

Oscillator bias
current

V9 = 1V

0.2

1

JJ.A

1a

Amplifier input
bias current

VIO= 1V

0.15

1

JJ.A

1b

0.05

0.5

JJ.A

1a

Ramp generator
bias current

Vs

Supply voltage

V4

Quiescent output
voltage

V6 , V 7

10

R2= 10 kfl
Vs = 32V, R1=30kn
Vs=10V, R1=10kn

Regulated voltage

/,;V 6 /';V 7
--Li ne regulation
/';V s ' /';V s

_.

Is
~

Iv

Supply current

Iy

c

-

1a

8
4

8.8
4.4

9.6
4.8

V
V

6

6.5

7

V

Vs =10t040V

DYNAMIC CHARACTERISTICS

V

1.5

mV!V

I

lb

0.5A

rnA

70

_._Peak to peak yoke
current (pin 4)
--

1

Peak sync. input
voltage (positive

1

~~tive)

529

I

I

(f = 50 Hz)

A

r---

Va

I

V

2

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Vg

Test conditions

Min. Typ. Max. Unit

Peak to peak oscillator sawtooth
voltage

2.4

V

Sync. input resistance at pin 8

Vs=lV

3.5

kS1

t f1y

Flyback time

Iy= 0.5A

0.7

ms

of

Pull-in range
(below 50 Hz)

7

Hz

of
tNs

Oscillator frequency
drift with supply
voltage
Vs = 10 t040V

0.01

V-

Oscillator frequency
drift with tab
T tab = 40 to 120°C
temperature

0.015

Hz
°C

Rs

of
6T tab

2

Fig. 1a ~ Static test circuit for measurement of -Ig. -112 and V4

9

rOA 1270

Fig.

Hz

Fig. 1 b- Static test circuit for measureMent of -1 10 • V6 • V7 •
6V 6 /6V s and 6V 7 /6V s

4

9

5V

530

rOA 1270

10

Fig. 2 - Dynamic test circuit
r-------~----~--~--------------~.~

C.
OJ,..F

"I-~

Jl

SYNC. "PUT •

V

lOA 1270

___-.J
C9

~~~----~~H
A9...kA

"
es_

Al_
390ldl

D.',.F

CI0.1,uF

5-100&

Fig. 4 - Relative quiescent voltage variation vs. tab temperature

Fig. 3 - Relative quiescent voltage variation vs. supply voltage

-

G 1472

~
4

G '473

I I I
I I I

('/ol

Tamb

Vs • 3:zV

=2S'C

0.2

/'

o
......

-0.2

L

/

......

o

.....-;

...

.

'"

-

'"

-Q.4

10

20

30

Vs (V)

20

531

60

80

.....

Fig. 5 - Regulated voltage vs. supply
voltage

Fig. 6 - Regulated voltage vs. tab temperature

-

G 1474

G 1475

Tamb .2S·C

6.54

6.52

..... 1-"'"

6.50

6.46

......

L...- ......

L...- ~

..... .....

Vs .32V

6.56

6.48

6.44

6.42

6.40
10

30

20

v.(V)

20

G.1476

80

u

I I

(Hz)

Tamb = 25'C

V.

0.2

=32V

0.4

,.,.
:,.....

o

-0.2

60

Fig. 8 - Frequency variation of unsynchronized oscillator vs. tab
temperature

Fig. 7 - Frequency variation of unsynchronized oscillator vs. supply
voltage
If
(Hz)

40

--

_......

.....

o

...... 1'

-0.4

-o.s
-0.4
10

20

30

v.(V)

20

532

40

60

80

100 Ttab('C)

APPLICATION INFORMATION
The high current capability of the TDA 1270 allows low current gain transistors to be used
in driving low impedance yokes. The oscillator is directly synchronized by the sync. pulses,
therefore its free frequency must be lower than the sync. frequency. The sync. input (pin 8)
can be driven by positive or negative pulses.
The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8, and
R9 (refer to fig. 9) according to:
R7 + R8 + R9
R9
Pin. 10 is the inverting input of the amplifier and its voltage is VlO "" 2V.
Fig. 9 - Typical application circuit for large screen colour TV sets
r-___._--~-___._-----------~--_o·vs

C7

.3

220
kll

.13

In
SYNC INPUT

• TDA1270101--c--~_ _-1"-l=---t

H::=J'-;--1""-D

.,4
III

YOKE

"

C9

P2

*R2

to
Correction
Circuit

4000JJF/20Y
150
kll

:r:: 3.5mH ImH
~ 3.2
1.
v. 32
25

RlO*
680ka

.B 18
R11 0.33
R12 10

22

V
k.!l

0.22

Jl

.S

.!l

Typical performance of circuit in fig. 9

YOKE

I.

Supply current
Flyback time
Iv
Maximum scanning current (peak to peak)
".
Operating supply voltage
Ptot
TDA 1270 power dissipation
Ptot
Output transistors power dissipation
!=Ith tab-amb Heatsink Rth required for TDA 1270
Rth case-amb Rth of output transistors heatsink (total)
t lly

3.5 mH
3.25 fl

1 mH
1.6 n

0.5 A
0.7 ms
4A
28 to 36V
1.5W
11 W
35°C/W
6°CIW

0.8 A
0.6 ms
7.5A
23 to 27V
2W
13W
30°C/W
5°CIW

Stable continuous operation is ensured up to an ambient temperature of 55°C

533

Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale)

Q2
Q2
Q1
YOKE +Vs
GND
Q1
EMITTER BASE EMITTER
..::Q:.:.1_~.:::Q~2 BASE

YOKE SYNC.
INPUT

COLLECTOR

Fig. 11 - Typical application circuit for 12" to 17" (110°,20 mm neck) B & W TV sets
r-_-r_.-:-_ _-r_ _ _ _ _ _ _ _ _-o. Vs .,Z5V

C9

1OOO.uf/16V

YOKE
9Jt
17.SmH

.9'

5.6kll

14

534

Typical performance of circuit in fig. 11

15
t lly
Iy
Vs
Ptot

Supply current
Flyback time
Maximum scanning current (peak to peak)
Operating supply voltage
TDA 1270 power dissipation

110
0.8
0.9
23 to 27
2.4

mA
ms
A
V
W

For safe working up to Tamb = 50°C a heatsink of Rth = 30 °C/W is required and each tab
of the TOA 1270 must be soldered to 1 cm 2 copper area of the printed circuit board.

Fig. 12 - P.C. board and component layout for the circuit of fig. 11 (1: 1 scale)

+Vs

GND

YOKE

YOKE SYNC. GND

535

Fig. 13 shows an output stage employing two NPN power transistors and a service switch
that stops the vertical deflection during convergence adjustment.
For a more detailed description of the TDA 1270 and related performance refer to SGSATES Application Note N. 129.

Fig. 13 - Vertical deflection circuit employing two NPN power output transistors

r---~------~----~r---------------------------------~r------{)'Vs=32V

CI

C3
lOO~F

35V

4

TABS

R3
220
kn
11 1---4-----.

SVNCINPUT
8

03
BD663 or BD 437
RI3

In

C10

TDA 1270 10 .--_-:I:-1.5-n-F...-----I ___ ~

RI4

In
.--___._---19

5.6kn

* Tolerance 5'/,

536

5-101411

to
Correction
Circuit

Fig. 14 - Vertical deflection circuit for large screen colour TV employing the integrated
darlington pair TDA 1410

30V
R9
2.7kn

4

SYNC. INPUT 8

lOA
1270

C4
33pF

11

4

C5
J:,1.5nF

Cll

10

Q.47}JF

9

R12
In

RIO
22kO

5-1188

Typical performance of circuit in fig. 14
(V s = 30V; Ry = 3.25 fl; Ly = 3.5 mH)

Is
tfly

Vs
Ptot
Ptot
Rth case-ilmb

I

Supply current
Flyback time
Operating supply voltage
TDA 1270 power dissipation
TDA 1410 power dissipation
Thermal resistance' of TDA 1410 heatsink

0.5
0.8
28 to 36
0.5
11
6

A
ms
V
W
W

°e/W

MOUNTING INSTRUCTION
The junction to ambient thermal resistance of the TDA 1270 can be reduced by soldering
the tabs to a suitable copper area of the printed circuit board (fig. 15) or to an external
heatsink (fig. 16).
Fig. 17 gives the maximum power that can be dissipated (for Tamb = 55 and 70 °e) as a func·
tion of the side "s" of two equal square copper areas having a thickness of 35 Il (1.4 mil).
During soldering the tab temperature must not exceed 260 °e and the soldering time must
not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.
537

I

Fig. 16 - Example of TDA 1270 with
external heatsink

Fig. 15 - Example of P.C. board copper
area used as heatsink
COPPER AREA 35)-1 THICKNESS

p. C. BOARD

Fig.17 - Maximum power dissipation
and junction-ambient ther·
mal resistance vs. "s"

Fig. 18 - Maximum allowable power
dissipation versus ambient
temperature
G 1479f1

G-1478/1

Rth

Ptot
(W)

('C/Wl

8

80

6

60
j·amb

R

4

f

""i-.....
I

1--l-l-+Pt!,QO!Lt;..:(T:!1-amb

4

=55'C)

,

40

---t

o
o

10

20

30

40 s (mm)

-50

538

50

100

150 Tamb('C)

LINEAR INTEGRATED CIRCUIT

5 V VOLTAGE REGULATOR

>

• OUTPUT CURRENT
600 mA
• TIGHT TOLERANCE for OUTPUT VOLTAGE
•
•
•
•

LOAD REGULATION LESS THAN 1%
RIPPLE REJECTION 60 dB TYPICAL
LOW OUTPUT IMPEDANCE
EXCELLENT TRANSIENT RESPONSE

• HIGH TEMPERATURE STABILITY
The TDA 1405 is a silicon monolithic voltage regulator in..Jedec ,TO-126 plastic package
which can supply more than 600 mA. It incorporates the following functions:
- internal overload protection
-

short-circuit protection

The TDA 1405 can be used for voltage regulation in consumer applications.

ABSOLUTE MAXIMUM RATINGS
Input supply voltage
Total power dissipation at Tamb

~

25°C

at Tease ~ 25°C
Storage and junction temperature
Operating temperature

MECHANICAL DATA

14

V
W
W

-55 to 150

°C

a to

°C

20
1.25

70

Dimensions in mm

Pin 3 cQnne<:t~d to metal- part of. mounting surface

(t} Within. this

r-eglO(.1 the- cross· sedlon Of the le-ads IS

Supersedes issue dated to/T3

uncon!roU~d

539

6/75

BLOCK DIAGRAM
SERIES

1 - - - - . - - - - _ - - { 2 ) 2 Vo

5-0371

SCHEMATIC DIAGRAM
V;

:-----i ;--------------------i

--

---------~----I

R9

E
~~~----~----~,-L~----~~~Q9

Rl3

I

I

_____ ...1

-----., I

RIO
C2

r06

B
Rl4

R8

~ _____ J !____________________

'- ____________

540

J

5-0433

TEST CIRCUIT with output characteristic
V Axis
osciHoscopt"

X Axis
oscilloscope

500n

In

5_0521

Output

~

voltage

50
mV

Change

SOOmA

lOrnA

forego

loMAX

~

10

I

5-0436

I

I

,I

THERMAL DATA
Rth j-case
Rth j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient
541

max
max

9 °C/W
100 °C/W

ELECTRICAL CHARACTERISTICS
(T j = 25 aC, Vi = 12 V unless otherwise specified)

Parameter
Va
!:iVa'

Load regulation

I •
a

Regulated output
current

loMAX'

Maximum output
current

7.5 V ~ Vi ~20V
10 = 10mA CL = 1O ILF

Min. Typ. Max. Unit

4.75

10 = 10 to 600 rnA
CL = 1O ILF
!:iVa
-Va

~

1%

600

5

5.25

V

0.3

1 DfoV

850

rnA

Teo>e = 25 ac
Tease = 70°C

0.93
1

1.2

A
A

Output short-circuit
current

Va = 0

200

250

rnA

Id

Quiescent drain current

Vi = 20V

!:iVa

Line regulation

Vi = 7.5 to 12 V
10 = 10 rnA CL = 1O IL F

5

10 = 10mA CL = 10 ILF
Tamb = Ot070°C

0.5

mV/O(

10 = 10 rnA
CL " = 20 ILF
B = 10 Hz to 100 kHz

70

ILV

15

mil

60

dB

Ise

,

Output voltage

Test conditions

!:iVa
!:iTamb

Temperature coefficient

eN

Output noise voltage

10 =0

Ra

Output resistance

10 = 600 rnA

SVR

Supply voltage rejection

Vi = 10V
10 = 10mA
!:iVi = 4 V peak to peak
f = 100 Hz CL = 10 I-tF

Refer to the test circuit

" Tantalum capacitor

542

rnA

9

46

23

mV

Typical output voltage versus outpu.t
current
61035

Power rating chart

I I

Ptot
(W)

Vo
(v)

14

)

.......""rly

/

I

I

~"I"'r~

12

/

I

~1y~04r

,..."S,,,,,

..... l - I--

10

,.-

V

V

-----

1/
~

1

.J

V

I-- I-

FREE'AIR

!

200

I I

0100

800

600

1000 lo(mA)

Typical regulated output current
versus junction temperature
G

10

20

30

40

50

60

Tamb ("e)

Maximum output current versus
junction temperature

1152

-

G 1153

lo{reg
(A)

Vi

= 12V

_.

0.9

r---..1-.,

I

r--....

"'"

1'-...
~

I":

0.7

i

1'-...
......

1'-...
~

0.7

I'

0.6

0.6,
-I,/)

I

Vi =12V

!lVo =1".

-20

20

40

60

so

100

120 Tj ('C)

-I,/)

543

-20

20

'40

60

eo

100

120

T) ('C)

Typical dropout voltage versus
junction temperature

Typical short-circuit current versus
input voltage

-

G 1154

G 1040

(V)

260

In ,SOOmA
~

2.5

y

~= 400mA

220

~
10 = 200mA

.,...

6~

IS

....

Tj,25'C

....

V ....
V
/'

180

....

=1-'.
140

100
-20

20

IIJ

60

80

100

120

140 TJ ('C)

10

Typical short-circuit current versus
junction temperature
G-1155
Id
(mA )

~~-+~+-~~-+~+-~~-+~+-~~

16

18 Vj(V)

G- 1156

I
I I
10 ==

260

14

Typical quiescent drain current
versus junction temperature

Ise
(mA)

12

V· ,12 V

0

9.5

240
220

No,20V

200

f"

180

N

~

Vj =12V

160

8.5

~

140
120

")"0.,

100
-20

20

40

60

80

100

120

140 T)<'C)

-20

544

20

IIJ

60

80

·100

120

140 Tamb('C)

Typical quiescent drain current
variation versus junction temperature

Typical supply voltage rejection
versus frequency

G-1157

G- 'O'o~

61d

SVR

l

I

I

(~A) ~-+~~+-~-+~~+-~~~~+-~-i

(dB)

I
I

-

..,....10-

t.,...-l--

62

l/

60

Vi =lOV
bVj =4Vpeak to peak

10 =10mA

to!': 50mA

~

~

-

100

58

56
20

-20

40

BO

60

100

120

Typical supply voltage rejection
versus regulated output current

10

,

46.

46'

140 T J ("C)

6 B

104

10'

10 2

2

468

f (Hz)"

10 5

Typical output resistance versus
frequency

G 10105

G- 0'6

SVR
(dB)
Vi =10 V

60

58

I

)

........

t-....

AVj =4Vpeak to peak
f = 100 Hz

4

I--

1"

t-...

56

Vi =12V
CL D.1JJF
10 ·100ml

=

2

,

10 2

.......

r-....

4

l'

2

V

.

t"-..

54

""

10

...... 1'-..

6

4

52

2

I IIII

50
100

200

300

400

4

500 lo(reg)(mA)

545

6'

10

4

III

6.

f (kHz)

Typical line transient response

AVj = 5V
Vj=9.5V

AVo = 50mV
Vo= 5 V

dz
C

/

1\
I

......

I'--..

roons lOOns lOOns lOOns lOOns
5-0437

APPLICATION INFORMATION
Typical connection circuit

Vi

TDA1405

1---,---(;
10pF

Ci

5-0522

546

Vo= 5V

APPLICATION INFORMATION

(continued)

Circuit for increasing output voltage
R2
Vo= VI (1+""R1) + Id ·R2

Vi

TDA1405

Vi = 16 V
Id = 9 rnA
tild
tiTamb

--= -7 fJ.A/oC typo
tild
tiV.

= 30 fJ.AIV typo

o

5-0523

Circuit for increasing output current
Vi

Vi = 12V
loMAX= 5A

Ql
vo=5V
o---~--~
r------------------~--_O

Ro""'2rnil
01 = PNP transistor
3.311

hFEOl ~ 20 at ICOI = 5 A

TDA1405
10,uF

I
5- 0524

Switching regulator with short-circuit protection
Vo = 5V
lo~4A

~VO "'" 100 rnV peak to peak
f"'" 10 kHz

v,

4W

O.2n

27 n

Po
T] =--""'65%
Pi

Vi = 10to 20V
01 = BOX 70
02 = BC 116
01 = Diode with IFM = 5 A
L""'1.5rnH

547

,

LINEAR INTEGRATED CIRCUIT

.....,.......

~: , ) . '~,;:,."~:
..',:":,..,•..•.•............•••... .....

\

:

"':'-~'

;' ':.:..\"..•....•......:':..';.:.•.....;"...."'.,....••.;•...'.,:,.•........ "" ....•.•:..,.'.: •..........• '.:.. :.'.•...:::."""'.....•.':\... .•......':":".:.:'......•
.-

.... .•..... ...

•..

...."':•... '

".;"

TDI1410
PRELIMINARY DATA

MONOLITHIC QUASI-COMPLEMENTARY DUAL DARLINGTON IN
PENTAWATT® PACKAGE
The TDA 1410 is a monol ithic integrated circuit in Pentawatt® plastic package consisting of
a pair of quasi-complementary (NPN-PNP) darlingtons with the associated biasing system.
Each darlington' can deliver a current in excess of 3A and can withstand a supply voltage
of 36V. The device is intended for applications as:
- booster for operational amplifier
- DC motor driver
- stepping motor driver
- output stage for AC power amplifier up to 12W in Hi-Fi systems
- output stage for vertical deflection systems in colour TV etc.

ABSOLUTE MAXIMUM RATINGS
V CEO

V CBO

10
10
IF Dl
IF D2
Ptot
T j • T stg

Collector-emitter voltage(lB = 0)
Collector-base voltage(I E = 0)
Output peak current (repetitive)
DC output current
01 forward current
02 forward current
Total power dissipation at T case = 60°C
Junction and storage temperature

36
50
3.5
3
0.3

v
V
A
A

A

3

A

30
-40 to 150

W
°C

ORDERING NUMBERS: TDA 1410 H
TDA 1410 V

MECHANICAL DATA

Dimensions in mm

549

5/75

I

CONNECTION AND SCHEMATIC DIAGRAMS

2o--.._---t-C

'----.----04

5·1128

THERMAL DATA
Rth J-case

, max.

Thermal resistance junction-case

3 °C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C)
Parameter
V CEO

V CBO

Test conditions

Collector-emitter
breakdown voltage
Collector-base
breakdown voltage

Ic = 500 IlA

V (B R)CSSO Collector-substrate
breakdown voltage
hFE(NPN) DC forward current
transfer ratio
hFE(PN'P)

DC forward current
transfer ratio

Min. Typ. Max. Unit

36

V

50

V

50

V

Ic =2A

V CE = 5V

2000 5000

-

Ic = -2A

V CE = -5V

800 2500

-

550

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

Quiescent drain
current

Id

Collector-emitter
saturation voltage
(NPN-PNP)

VeE (sa!)

VBE(NPN) Base-emitter voltage
(pins 2-4)

Min. Typ. Max. Unit

12 - 1 = 5 rnA

V, = 34V

Ie = 12AI

hFE= 200

20

mA

11.71 12.31

V

Ie =2A

2

V

VBE(PNP)

Base-emitter voltage
(pins 1-4)

Ie = -2A

-0.9

V

V F(01)

D 1 forward voltage

V 3-5 = -34V
I F(01)= 0.3A

1.5

V

V F(02)

D2 forward voltage

I F(02)= 3A

5

V

f TlNPN)

Cutoff frequency

Ie

fT(PNP)

Cutoff frequency

Ie = -2A

=

2A

V eE = 10V

10

MHz

V eE = -10V

5

MHz

Fig. 2 - Typical quiescent drain current VS. case temperature

Fig. 1 - Typical quiescent drain current vs. 12 - 1

-

G·164411

G 1645/2

I

)

V• • 34 V

Tease

40

=2S'C
30

/

30

./

V

.... I--"

20
20

/
,/'

o

'"

'"

I

I

I

V
Vo'3 V

'2_1· 5mA

/

10

..... 1'

r-

10

/
6

'2-1 (mA)

551

o

20

40

60

80

100

120 Teas.(·C)

I

Fig. 3 - Typical quiescent drain cur·
rent vs. supply voltage

Fig. 4 - Typical DC current gain vs.
collector current

-

G 16fJOfI

Id

G 163M'

(rnA

VCE=5V

40
'2_1=5mA

10'

Tca s e =2Soc

30

NPN

,

•
PNP

\- -

20
10'

•

10

.,

10'

o

10

20

30

40

v.

(V)

Fig. 6 -

Fig. 5 - Typical VCE(sat) vs. collector
current

-

..

Ie (A)

Typical V BE vs. collector
current

G 1627

Va(U t

G 1628"

(V)

veE

= 5V

4

1

hFE 200

./

NPN

/

. . . .V
...,...,

-

i---"

~

o

o

552

--

......-

-

V
/'
~

./'
./

,

Ie (AI

Fig. 8 - Typical pulse response
(falling edge)

Fig. 7 - Typical pulse response
(rising edge)
,
)

-H-t--+-~

I
,

,

t-

)

,

1-+1.+-,

30

20

l_'--ct-I NPUT PULSE

20

,

1

!

'

.

\~

IT,

.

I

i

a
0.2

0.4 Ir

0.3

R~SP

-YOAI41a

J '

I

(.us)

T

1

0.6

0.4

0.2

NSE

!I

INPUrP~W-;-

ITTT

0.8 If

(,us)

Fig. 10 - Safe operating areas

Fig. 9 - Typical output voltage swing
vs. freauencv
,--;-;-rrnm--'I-;-'-TTTm---r-rrG"'-rr'6m
7 O/l

G 163'511

Ie

(vpp)I--++++I-H+l---H
IH-++++t+--HH-+++Hi

8

r-'----i Teas@' =25-C

(A),~_

I

30

1

I

~.

!

Vo

r-

Vs=!.1? Y

mill:lP-'-l-JT

~m"

10

10

0.1

D_

RL -4A

-+ \ .-j:

'-TDAI410 RESf'1 NSE

o

.1-'

t-+-++.l-+-+--+
H-+-.!-j : ' i

H=

:VS=t17V

-

G t66811

,

-JR L =411.

+

40

G 1669/1

I !-.1- I.ttl

_

I

IC MAX (PULSED)

W~PERATION

e-

IC MAX (CONTINUOUS)I

I

I

,

1ms

iI

500ms

t

~\
'\.\\ \ . - -

D C OPERATION-

,~[--,aams

=-~Egm~m~ :.:f

1"--:

=-:-~-:
:
._____ *. ___ ~L~=-"'~----+~_--_-_-__ ~ t-·· f1

,--RL =4ll.
I--+-++H+*-++I-+I~vs =117V

o

,
10'

10'

..

10'

FOR SINGLE NON
REPETITIVE PULSE

--

--

r----.--- -

. ,.

,
10

f (Hz)

553

.

VCE (V)

I

Fig. 11 - Derating characteristic

P IOI
(WI

~

30

~

~'"

~~

~

20

\~

~

I~
I\.

10

o
.so

o

so

100

Tamb

reI

APPLICATION INFORMATION
Fig. 12- Hi-Fi audio amplifier with short circuit protection

100

J:~F

1

_ _ _ _ _ _ _ .J

5-",,/2

554

Typical performance of circuit in fig. 12
Parameter
Output power

Po

B

Id

d
f
Vs
Vs

=1%
Gv = 30 dB
= 40 to 15,000 Hz
=25V
RL=4n
= 27V
RL=an

d
f
Vs
Vs

=
=
=
=

Vs = 25V
Gv = 30dB

Drain current

Vs
Po
Vs
Po

=
=
=
=

d

.. ,

o

II

Vs =25V
RL = 40

1.2

TT

w
w

20 to 100,000

Hz

960

rnA

575

rnA

~ig. 14 - Typical distortion vs. out·
put power (R L = 4n) G-1636
~

I

16
12

FlL = an

('10)

I

W
w

RL=4n

25V
law
27V
12W

,

7(

12
9

RL=4n

Fig. 13 - Output characteristics of the
protected class B stage G 16&512

!I

10
a

10%
Gv = 30 dB
40 to 15,000 Hz
25V
RL=4n
27V
RL=an

Frequency response
(-3 dB)

;17

Min. Typ. Max. Unit

Test conditions

IIIIII
I
_._15kHz
1kHz
---40Hz

I-..

NPN
DAR INGTON

0.8

o

0.6

PNP
DARLINGTON

1"--

-1

IiI
r:/

0.4

-2
~

-3

0.2

'10....

o

-4

o

F=:.:t-

I

10

20
-20

-10

10- '

o

555

. .. ,-

••• 10

• ••

Po (WI

Fig. 16 - Sensitivity vs. output power
(R L =4n)

Fig. 15 - Typical distortion vs. output
power (R L = 4n)

-

-

G 1638/1

G 1637

d
('/,)

II

Vi
(mV)

V• • 25V
RL .41\
I =1kHz
G 'JOdB

-

Vs • 25V
H- RL = 4fl
H- f =1 kHz
H- Gy '30dB

300

f- -

v

6

200
4

1/

100

. ..

o

,

.. ./

,

10

1

..

J

o

Po (W)

=

-

G 164011

d
('/.)

(W)

8

6

I

1
-

80

10

16 Po (W)

12

Fig. 18 - Typical distortion vs. output
power (R L
8n)

Fig. 17 - Typical power dissipation
and efficiency vs. output
power (R L = 4n)
G 163'
PIOI

8

4

60

0,6

40

0.4

20

0.2

o

o

V•• 27V
RL' all.
Gy' JOd8

-'-15kHz
- - 1kHz
---40 Hz

''I.
4

Vs ·25V

R • 4V

I

o

4

8

12

16

Po(W)

556

-- - -.

~--

• •

-

"'-

..

Po (W)

i·:>~,;:;,;.,;);:'!;'1~f .,.h.
;

' " , '~."
,;
".
,'- >' 1.~ .. >, \(,' ".,\.,

Fig. 19 - Typical distortion vs. output
power (R L = Sn)

Fig. 20- Typical sensitivity vs. output
power (R L
sn)

=

d

Vi

('1.)

11111

,- f--- 1---- -- I-- 1----

(mV)

Vs =27V
Rl= a1l.
I = 1kHz
G = 30dB

-

I

- - - ,-I--

I

300
250

6

./

V

200

c- -

4

150

...

o

10

Vs' 27V
Rl= an
f = 1kHz

/

100
50

/

/

I

G. =30dB

I

I
I

0

Po (W)

Fig.21 - Typical power dissipation
and efficiency vs. output
power(R L
Sn)

r--- -r--- -r--- - r -

6

12

9

Po

(W)

Fig. 22- Typical output power vs.
supply voltage

=

I

G 164311

, ./

P tot
(W)

'l.

Po

('/,)

(W)

60

15

d.l'1o
Gy =30dB

./

V
". 1/ ...... t--..
P t

1/

4

1/

/

>-

>

/

i'....

'l.

11

I-I--

40

.......

15kHz

/

~40Hz

10

30

---- I--

II

20

v. = 27V

I

1/

Rl

=an

I

·lkHz

a

4n

10

~

Y

r

15kHz

sn

-I--

I
6

I'l

-

IL 1

o

50

o
10

12

Po (W)

0
10

557

15

20

25

Vs (V)

Fig. 23 - H-Fi stereo amplifier with preamplifier-equalizer for ceramic pick-ups.
The final stage is identical to fig. 12.

"
,:.. _____________ J:

Fig. 24- Booster for operational amplifier

.r

D.l"F

--- - - - - --I
I
I

$100jAF

R
Rt

-Vs
1 .. 112,

558

Fig.25- L 141 + TDA 1410 output
voltage swing vs. frequency

Fig.26- L 141 +TDA 1410transient
response
o'6Im

G-Ile&

.a

RLliI 4
Ys .. !l' y

30

RL -4Jl.
Vs="7V

.14V
90~.

f20 L141·TDA1410

L141

o
\.
\.

o
10'

. ..

\

-1'Y

,

..

10'

. ..
,

i!:

~
RISE
IME

o

(Hz)

1\

i

iff
I

\
10

...

~

20

40

60

80

100

Performance of circuit in fig. 24

L 141 + TDA 1410
± 18V

Max. supply voltage
Max. power dissipation
Input offset voltage
Input offset current
Input bias current
Voltage gain
Max. DC output current

30W at T case = 60°C
5mV
~ 200 nA
~ 500 nA
;;;. 86 dB (R L = 4n)
3A
~

559

120

t

(ps)

I

Fig.27 - Position control of DC motor

L-----~--------~--------------------~------------------------~~o·vs
5-1I3Vl

Fig.28 - Stepping motor driver

B

G.

T74193

Q<

UP

f---t-H---

Gb f-~-ti--T---j

f----+'--+rl

DOWN

CLOCK

FORWARD! BACKWARD

560

Fig.29- Bidirectional speed control of DC motor

r---c=J-----~-----~--------------~O·~

470

36
kO

R,

~2

O.1,..F

-11-

VOLTAGE
REFERENC

470

o-----~+---~~-+--~--~==~--~--+_--~~--_r__o~

Fig.30 - Programmable supply voltage

,Vs

LOGIC
INPUTS

j---

---

DAC

6

4

RL

5-1132/2

561

I

Fig.31 - Output stage for vertical deflection system
.V,

lOV

C9

CIO

cn
47IJF

At2

tn

An

nUn
s-uso

562

LINEAR INTEGRATED CIRCUIT

TOA 1412

12V VOLTAGE REGULATOR
•
•
•
•
•
•
•

OUTPUT CURRENT > 500 rnA
TIGHT TOLERANCE for OUTPUT VOLTAGE
LOAD REGULATION LESS THAN 1%
RIPPLE REJECTION 60 dB TYPICAL
LOW OUTPUT IMPEDANCE
EXCELLENT TRANSIENT RESPONSE
HIGH TEMPERAtURE STABILITY

The TDA 1412 is a silicon monolithic voltage regulator in Jedec TO-12a plastic package
which can supply more than 500 rnA. It incorporates the following functions:
-

internal overload protection
short-circuit protection

The TDA 1412 can be used for voltage regulation in consumer applications.

ABSOLUTE MAXIMUM RATINGS
Input supply voltage
Total power dissipation at Tamb ~ 25°C
at Tease ~ 25°C
Storage and junction temperature
Operating temperature

MECHANICAL DATA

Supersedes issue dated 10/73

27
V
1.25 W
14 W
-55 to 150°C
Oto70

°C

Dimensions in mm

563

6/75

I

BLOCK DIAGRAM
v,

~----~o-----j

I

o

5-0377

SCHEMATIC DIAGRAM
r--- - -1 r - - -- - -_. - -- - - - - - - - - Vi

I

-"l

I
"

R9

1
1

1

Al

RS

A

1
"i
-I

E

'":I-I~-='----.....-='-"!I-.rQll :
L-~'~-+

__~~____-LL-~_ _~~~Q9

RI3

_____ ...1

01

rII
1
1

I

21

22

RI4

F

I
I

t _____ J !____________________ J

5-0433

564

TEST CIRCUIT with output characteristic
Y Axis
oscilloscope

O.lfJF

O.lfJF

In

X Axis
oscilloscope

5-0526

Vo

Output

~-=tt:=::======;:;:::;==~::::==~VOltage

mV --i
120

Change

L~L
SOOmA

10mA

10 reg.

loMAX

10
5-0444

THERMAL DATA
Rth j-case
Rth j-amb

Thermal resistance junction-case
Thermal resistance junction-ambient

565

max
max

9 °C/W
100 °C/W

ELECTRICAL CHARACTERISTICS
(Ti = 25°C, Vi = 21 V unless otherwise specified)
Test conditions

Parameter
Vo
l:;.Vo"
I0"
loMAX"

Load regulation
Regulated output
current
Maximum output
current

14.5 V ~ Vi ~ 27 V
10 = 10 mA CL =10/-tF

11.4

10 = 10 to 500 mA
CL = 10/-tF
l:;.Vo

--~1%

500

Vo

12

12.6

V

0.3

1 OfoV

720

mA

Tease = 25°C
Tease = 70°C

0.75
0.8

Output short-circuit
current

Vo = 0

100

200 mA

Id

Quiescent drain current

Vi = 27V

10

mA

l:;.Vo

Line regulation

Vi = 14.5 to 21 V
10 = 10mA CL = 10 /-tF

6

33 mV

10 = 10 mA CL = 10/-tF
T amb = 0 to 70 °C

1.2

mV/oC

10 = 10mA CL ""= 20/-tF
B = 10 Hz to 100 kHz

150

/-tV

20

m!l

60

dB

Ise

•

Output voltage

Min. Typ. Max. Unit

.l:;.Vo
l:;.Tamb

Temperature coefficient

eN

Output noise voltage

10 =0

Ro

Output resistance

10 = 500 mA

SVR

Supply voltage rejection

Vi = 19V
10 = 10mA
l:;.V i = 4 V peak to peak
f = 100 Hz CL = 10 /-tF

Refer to the test circuit

"" Tantalum capacitor

566

46

1

A
A

Power rating chart

Typical output voltage versus output
current
vo

Plot

(v)

(W)

14

14

12

I I
......If,frly

.12

/

10

,V

I"'-Iy~~.r

10

/

V

I

~f'"fr~
t--

./

"S~...... r-- r--

-

"
r--

1/

-

100

200

300

400

500

600

70010 (mA)

Typical regulated output current
versus junction temperature

10

loMAX

i
720

(mA)

1""-

680
660
640
620

Vi

'\

560
40

60

80

100

120

50

I

r----

60

lamb (VC)

G '1SQ

---l-

r"\.

Vi

=21V

~-

I
--

~

640

800
-40

567

-20

20

40

60

eo

100

120

i

I

~

i

620

140 Tj ('I:)

~

I

r"\..

660

1\

20

'" "'-

680

580

-20

"

700

"

AVo =1Dlo

-40

"-

720

600

40

i

1--- -"

740

I"

=21 V

3D

I

760

" " '\

700

20

Maximum output current versus
junction temperature

G - 1158

)

i

FREE AIR

_._-

./

140 Tj('C)

Typical dropout voltage versus
junction temperature

Typical short-circuit current versus
input voltage

G 1160

-

G 1051

Ise
(mA)
~

25

140

Io=500mA

~

f--

2.3

21

130

F

'"

2.2

,...

f.,..

,....

10

/V

= 200mA

90

1.9

rNo= ,gl

l'

T j =25°C

/

80

~

/

70
60

1.7

20

-20

40

60

80

100

120

140 Tj ('e)

14

Typical short-circuit current versus
junction temperature
G-I161
Id

Ise
(mA)

//

100

I'

1.8

V

110

r--.

I'
f.,..

V

120

- 350mA

I

16

18

20

22

24

26

28

30

Typical quiescent drain current
versus junction temperature
.---

V; (V)

G- 1162

(mA )

~~_-+~~+-~_-+~+-~~_~~+-~-+~

10.4

120
110

10.2

I

100

1"-.

90

---I~

d

70

Vi

VI =27V

as

,....

80

,....

10

i-

,X

9.6
9.4

=21V

10 •

9.2

60

I- ---

50

.. .-

40
-20

20

-,...

V; _-----

lo=10mA
Vi 19 V

=

..... f.-

AY, =4Vpeak to P"M

i'"

150

-

V

62

i'"
61

130

...

110

r- v,. = 21\1

90

~

10 = SOmA

/

60

roo

70

50

59

- 20

·0

20

40

60

80

100

120

4

140 TI(·C)

10

Typical supply voltage rejection
versus regulated output current

Ie

,
10'

• s.

10'

,

so

, • s,
10 5

10" f(Hz)

Typical output resistance versus
frequency
G 105'1'

SYR

Ro

(dB)

(mil )

60

.......

.~:!;V
CL = O.I.uF

........

56

,
r--...

I

= 100mA

)~

10'

•

.............

r-....

56

..............

54

-

.....
10

Vi =19 V
AV i :::4Vpl!a.k to peak
1=100Hz

o

52

...

50

o

100

200

300

400

500 lo(rog)lmA)

569

10

Typical line transient response

I

!
LI Vj :5V
Vj :18.SV

[

L1Vo: BOrnV
Vo: 12 V

!

/
\
-....
I '"

lo::5mA

..........

lOOns lOOns lOOns lOOns lOOns

5-0445

APPLICATION INFORMATION
Typical connection circuit

Vi

TDA 1412

1--"---oVo
10,uF

Ci

5-0527

570

'.'.

':.,

.

':.'

:

.

fqt.*t?~{f~i;Yi;~i:m~~j~~};:·~:~-~·:/':~1~:~'<;~,~,:

APPLICATION INFORMATION (continued)
Negative output voltage circuit

.... *

r'

:: ~ lO"F

>---

...

'L

-...J
Vi

TDA1412

~

-5-0528

Parallel

connecte~ voltage reguiators and its output characteristibs

TDA

•

Vo

1412

12

AVo

~

t

Vi

/

10

J

1

.-....

-

VO
(V)

TDA
1412

/

lOJ..IF

/
AVo =Vol-Vo2

/

I

/

/
5-0529

V
0.4

571

'18

1.2

1.6

2

lo(A)

LINEAR INTEGRATED CIRCUIT

15 V VOLTAGE REGULATOR
• OUTPUT CURRENT > 450 mA
• TIGHT TOLERANCE for OUTPUT VOLTAGE
• LOAD REGULATION LESS THAN 1%
• RIPPLE REJECTION 56 dB TYPICAL
• LOW OUTPUT IMPEDANCE
• EXCELLENT TRANSIENT RESPONSE
• HIGH TEMPERATURE STABILITY
The TDA 1415 is a silicon monolithic voltage regulator in Jedec TO-126 plastic package
which can supply more than 450 mAo It incorporates the following functions:
- internal overload protection
- short-circuit protection
The TDA 1415 can be used for voltage regulation in consumer applications.

ABSOLUTE MAXIMUM RATINGS
Input supply voltage
Total power dissipation at Tamb ~ 25°C
at Tease ~ 25°C'
Storage and junction temperature
Operating temperature

MECHANICAL DATA

Supersedes issue dated 10/73

27
1.25

V
W

14
-55 to 150

°C

o to

°C

70

W

Dimensions in mm

573

6175

BLOCK DIAGRAM
SERIES
Vi

(j)---.-------.--------l

TRANSISTOR

1-----.------.---{22J Vo

A

S-0317

SCHEMATIC DIAGRAM
Vi

~-----i

;--------------------i
R9

R2

Rl

E
~_r--~--~~---.~,-L-+------.-~Q9

Rll

I

I

_____ -' I
I
I

I

RIO

C2

R12

I

I

I

,I

Rll

R14
1
I

1
1
I
I
~

_____ J !_____________________I

5-<1433

574

TEST CIRCUIT with output characteristic
Y Axis
oscitloscope

~

v, o---.----j TDA 1415

_ _.Jl

osmsec.ll.50msec.1
1.5

kIl

O---~--------~

X AJL:is
oscilloscope

O.l,l1F

5-0530

__~-----+----~------~

~

~~

Change
150mV_t~C:=::===::~;;;:::::::;==~:::==1VOllage

L~45~omA
loreg.

10 MAX

10
5 0411

THERMAL DATA
Rth J-case
Rth J-omb

Thermal resistance ,junction-case
Thermal resistance junction-ambient

575

max
max

9 °C/W
100 °C/W

ELECTRICAL CHARACTERISTICS
T j = 25°C, Vi = 24 V unless otherwise specified)
Parameter

Vo
ilVo'

Output voltage
Load regulation

I0'

Regulated output
current

loMAX'

Maximum output
current

Test conditions

17.5 V ="" Vi ="" 27 V
CL = 10 ~F
10 =10mA

ilVo
--=""1%
Vo

450

Id

Quiescent drain current

Vi = 27V

ilVo

Line regulation

Vi = 17.5 to 24 V
10 = 10mA CL =

eN

Output noise voltage

10 =0

10 = 10mA CL
T amb = 0 to 70 °C

10~F

Ro

Output resistance

10 = 450 rnA

SVR

Supply voltage rejection

Vi = 22V
10 = 10mA
il Vi = 4 V peak to peak
f = 100 Hz CL = 10 ~F

Refer to the test circuit
'* Tantalum capacitor

576

1 %V

600

rnA

O.S

A
A

85

16C rnA

10

rnA

6

33 mV

1.5

180

46

V

0.3

= 10 ~F

10 = 10mA
CL " = 20 ~F
B = 10 Hz to 100 kHz

,

15 15.75

0.68
0.8

Tcase = 25°C
Tcase = 70°C
Vo = 0

ilVo
Temperature coefficient
ilT. mb '

14.25

10 = 10to 450 rnA
CL = 10 ~F

o utput.sho rt- c i rcu it
current

Isc

Min. Typ. Max. Unit

~VloC

~V

60

mil

56

dB

Typical output voltage versus output
current

Power rating chart
G-1151

Ptot

I)

14

L
12

I I

--- --

(W)

W'rIy

/

,

~,

tvl"~
,1y~4r
~S'1v
--

12

10

..::to.... -

10

1/

1- --

/

-

- --

/

V

/
/

100

- I200

300

400

500

600

700 'o(mA)

Typical regulated output current
versus junction temperature
r.

J-

10

FREI AIR

20

30

40

50

60

lamb (ac)

Maximum output current versus
junction temperature

11 ~

I
v"",

lo{r,pg )

loMAX

(mA)

(rnA)

G 1165

I

640
620

"-

600
580

700

"-

560
540

520
Vi

480
460
-40

= 24V

AVo

soo

i
-20

=,o/a

" "-

680

'" '"

660

'\

640
620

""

1

"-

600

I.

'\

I!

580

" "'

560

"'

540

-40

577

II

"-

Vi ",2·4\1

"

I:

-20

20

40

60

80

100

120

140 TjC'!:)

Typical dropout voltage versus
junction temperature

Typical short-circuit current versus
input voltage

V'j -Vo

G l0i5

'5e

(V)

I

(mA)

2.4 .

.90
10

2.3

=0

85

~

f'

2.1

f'

,.....

70

f'

V

V

Tj

=25'C

60

AVo=10J0

1.7

/

65

10=15 mA

1.8

I

75

""I"

I

/

80

' " lo=200mA

1.9

/

mA

R

22

55

I

50

1.6

-20

'_e

-

G-1166

0

20

40

60

80

100

120

140 Tj('C)

14

Typical short-circuit current versus
0_'16'
junction temperature

16

18

20

22

24

26

28

30

Typical quiescent drain current
versus junction temperature

VI (V)

G-1168

Id

(mA)~-+~+-~~~~-+~+-~~~~~

(mA)~-+~+-~~4-~-+~+-~~4-+-~
10.4

120
Vi '="24 V

110

10.2

100

10

90

9.8

80

9.6

70

9,4

60

9.2

Vi =21V

Vi =24 V

50
88

40
-20

20

40

60

90

100

120

-20

140 Tj ('C)

578

20

40

60

80

100

120

140 Tj('C)

I

I~

i,l

I:I:

II

I'

Typical quiescent drain current
variation versus junction temperature

Typical supply voltage rejection
versus frequency

G 1169

G ~1069

SVR

f-

I

lo-.

210
190

10

170

f.-

=ADOrnA

,...

'10..
10::

I-

61

200m A

60

~

--

~

130

I-

57

56

70

55

/

54

50

20

-20

40

eo

60

100

120

140 Tj ('C)

Typical supply voltage rejection
versus regulated output current
SVR

1/1--'

58

lo::50mA

90

(dB)

I

59

10-.

110

-lJlJlllll

Io.=10mA
Vi:: 221/
,AliI =4 vpeak to peak

62

~

,...

150 I-

VI =24V

I

(d B )

.

Vi =22 Y
AVj II! 4Vp.ak to pqk
1=100Hz

, 6.
10

la'

'6 •

468

to'

10 4

2

46 B

f (Hz)

lOS

Typical output resistance versus
frequency

G 1070

I--

57

56
55

.......

t-.......

54

......

r-....

53

Vj=24V

f' t-....

CL::O.l,uF
Io=loomA

10

J"": r........

52
51

50
50

100

150

200

250

300

350

, 6' 10

400 lo(regl(mA)

579

, 6.

,

10'

6 8

t(kHz)

Typical line transient response

II Vi =SV
Vi =2lSV

L /

lIVo =100mV
Vo = 15 V

/

\
-....

IO=SmA

~ '-...

lOOns lOOns lOOns lOOns lOOns

5-0412

APPLICATION INFORMATION
Typical connection circuit

TDA 1415

1--.......- - O V o

·5-0531

580

APPLICATION INFORMATION
Symmetrical

(continued)

± 15 V voltage regulator circuit

TDA1415

1-~_-.-_----.~_~_-.-_----oVo=·15V

500,uF

TDA 1415
IO,uF

500,uF

BAl28

lOll

: -__' - - -_ _-+_ _ _ _-A-_~-_+__

OVo=-15V

__4--~_ _

S _ 0532

Series regulators circuit connection

f--~-o'lo=30V
4S0mA

lo,.uF

No short-cirCUil)
( pt"otlPction

1--r--+------{)'Io=15V
4S0mA
500,uF

sean

5_0533

581

APPLICATION INFORMATION (continued)
Low consumption circuit to increase output voltage

Id =10mA
Vi

= 25V

Old

-amb
- = -7 JJ.A/oC typo
oT

Vi

TDA1415

Old

RI
3JOO II

W, = 30 JJ.AIV typo
OV

BE
-=

oT.mb

Vo= 18V

-2mV/oC

5-0534

582

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
MONOLITHIC QUASI-COMPLEMENTARY DUAL DARLINGTON IN
PENTAWATT® PACKAGE
The TDA 1420 is a monolithic integrated circuit in Pentawatt® plastic package consisting of
a pair of quasi-complementary (NPN-PNP) darlingtons with the associated biasing system.
Each darlington can deliver a current in excess of 3A and can withstand a supply voltage
of 44V. The device is intended for applications as:
- booster for operational amplifier
- DC motor driver
- stepping motor driver
- output stage for AC power amplifier up to 20W in Hi-Fi systems
- output stage for vertical deflection systems in colour TV etc.

ABSOLUTE MAXIMUM RATINGS
V CEO

VCBO
10
10
IF
IF

D1
D2

Ptot
Tj • Tstg

Collector-emitter voltage(lB = 0)
0)
Collector-base voltage (IE
Output peak current (repetitive)
DC output current
01 forward current
02 forward current
Total power dissipation at T case 60°C
Junction and storage temperature

=

=

44

V

55
3.5
3

V

0.3
3
30
-40 to 150

A
A
A
A
W
°C

ORDERING NUMBERS: TDA 1420 H
TDA 1420 V

MECHANICAL DATA

Dimensions in mm

583

5/75

CONNECTION AND SCHEMATIC DIAGRAMS
5
2n--_+_-l-r

01

02
5·112B

5-t127

THERMAL DATA
max.

Rth j-case Thermal resistance junction-case

3 °C/W

ELECTRICAL CHARACTERISTICS (T amb = 25°C)
Parameter

V CEO

Vcso

Test conditions

Collector-emitter
breakdown voltage
Collector-base
breakdown voltage

44

V

55

V

60

V

V CE = 5V

10002500

-

V CE = -5V

500

1000

-

Ic=500MA

V(S R)CSSO Collector-substrate
breakdown voltage
hFE(NPN)

hFE(PNP)

DC forward current
transfer ratio

Ic =3A

DC forward current
transfer ratio

Ic

= -3A
584

Min. Typ. Max. Unit

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Test conditions

Quiescent drain
current

Id
VCE(sat)

Collector-emitter
saturation voltage
(NPN-PNP)

Min. Typ. Max. Unit

12 - 1= 5 mA

Vs = 40V

Ic =13AI

hFE= 200

mA

20
12.31 12.71

V

VSE(NPN) Base-emitter voltage
(pins 2-4)

Ic =3A

2.5

V

VSE(PNP) Base-emitter voltage
(pins 1-4)

Ic = -3A

-1.2

V

1.7

V

5

V

VF(Dl)

Dl forward voltage

V 3-5 = -40V
I F(D1)= 0.3A

V F(D2)

D2 forward voltage

I F(D2)= 3A

fT(NPN)

Cutoff frequency

Ic = 2A

V CE = 10V

10

MHz

fT(PNP)

Cutoff frequency

Ic = -2A

V CE = -10V

5

MHz

Fig. 2 - Typical quiescent drain cur·
rent vs. case temperature

Fig. 1 - Typical quiescent drain current vs. 12-1

-

G-15691Z

G 1625/2

Id
'mA)

=40V
Tea" =25-C
Y.

40

V

30

30

V

20

/

10

V
o

~

/
.....

20

V

.,.'"

.,.

/'

Vs=4 V

12_1=5mA

/

r--

10

6

o

12 - 1 (mA)

585

20

40

60

60

100

120 Tease'·C)

Fig. 3 - Typical quiescent drain current vs. supply voltage

Fig. 4 - Typical DC current gain vs.
collector current

G 1570/2

(;.-11l6n

Id

(mA )
40

12_1· SmA
Tcase z 2S·C

30

NPN

10'
o

PNP

20

10'

\

VCE=sv

10

10'

o

10

20

Fig. 5 - Typical
current

40

30

VCE(sat)

Fig. 6 -

vs. collector

,

• •

Y$ (Y)

-

Typical V BE vs. collector
current j

G 1127

YeE(s. t

.

Ie (A)

G 162811

(Y)

VCE·SV

4

4

1
hFE

200

...,./

-o

/

NPN

l/

V

~

3

,..,...

./

-- - ,
........

"

o

'e(A)

586

./

/'

/'

!-- r-

4

Ie (A)

Fig. 7 - Typical pulse response
(rising edge)

Fig. 8 - Typical pulse response
(falling edge)

-

Cr 1!I7",

Vi.VO

Ll

RL .4l1.
Vs

40

G- Isaoi2

-

(Vppl

"lev
I

RL '411
V.=>18V

r-

I

30

1\\

,

30

,

20

~r-INPUT PULSE

20

~

ld

TDA 1420 RESP( NSE

~

J

I

,

o

:\'

"~.,.,. TDAI420 RESPONSE

1'1-.'

I

7NPUT PULSE

ITT
o

0.1

0.2

0.3

o

0.4 I, b.sl

0.6

0.2

0.8 I,

Fig. 10 - Safe bperating areas

Fig. 9 - Typical output voltage swing

-

o tUII'

G IS76n

Vo

Ie. -----i Tease. 2S'C

(Vpp I

(A)

30

f--

25

I----I-----

20

I----I-----

15

I-----

~~th
~:=
2
:-,...
INPUTV'"

10'

=~

~ !\-

1-1OOms
SOOms

-* ~~~~~~iE P~~E
I,

10'

~ ~ f- 1m.

DC OPERATION-

RL "4ft
Ys=J.18V

..

PULSE OPERATION

I

V.

,

~

IC MAX (CONTINUOUS)

0---'''''
IOO~

10

o

•
IC MAX (PULSED)

~g

(~.)

..

• • 10

, (HzI

587

,

.

"cE (V)

I

G-1S7111

Fig. 11 - Derating characteristic

P tot
(W)
I

~

30

'1.

~

~~

~

20

I"~..,...._

-s;,

'S-+

1'1:

10

o
-so

o

so

100

Tamb ("C)

APPLICATION INFORMATION
Fi"g. 12- Hi-Fi audio amplifier with short circuit protection

::I:

100
,uF

I
------~

S-J09211

588

Typical performance of circuit in fig. 12

Parameter

Test conditions

Output power

Po

B

Id

Min. Typ. Max. Unit

d
f
Vs
Vs

=1%
G v = 30 dB
= 40 to 15,000 Hz
= 34V
RL = 4D
= 36V
RL=BD

d
f
Vs
Vs

= 10%
= 1 kHz
= 34V
=36V

RL = 4D

Drain current

Vs = 34V
Po = 30W

RL =4S2

Vs = 36V
Po = 20W

RL = BD

Fig. 13 - Output characteristics of the
protected class B stage

W
W

20 to 100,000

Hz

1.3

A

720

mA

d
("1.1

I-

v. =34 V

+-l-- I

NPN

+-

DA~~+TON

o

II

RL =4Jl.
Gv =30 dB
- ·-·15kHz
1kHz
---40Hz

0.8

1/ ---

0.6

0.4
PNP
DARLIN TON

-,
-3

30
20

Fig. 14 - Typical distortion vs. out·
put power (R L = 4S2)
G-1572

1~6012

-1/ --l- 1'-.1';;

-2

W
W

RL = 4D
RL = BD

Vs = 34V
Gv = 30 dB

+--

22
17

G v = 30 dB

Frequency response
(-3 dB)

G

20
15

I
0.2

-

t-;

~

e- -

e-

-4

20
-20

')

. ~'F-:

o

30 VeE NPN (v)

-10

0

589

,

,.

. ..

r/
10

. ,.

Po (wI

Fig. 15 - Typical distortion vs. output
power (R L
4n)

=

Fig. 16 - Sensitivity vs. output power
(R L =4n)

G-1&30

~

8
30.0.
./

Vs=34V
RL=4n
f -1kHz
Gv"3CdB

6

-

G tl31

I

- --

r"

250.

V-

20.0.

4

ISO.

/

'"

'"

Vs,.4V
RL'4A
t =1kHz
Gv"3CdB

/

/

I- -

-

- - - -

r-

c-

ICC

50.

o

• •• 1

•'!.(WI
••

• ••

-24

r"

20.

I'"

V

4

"'l.

,v.

II

0.8

0..6

40
Ptot

IV
'I

30

0..4

.,~I

20

I.

0.2

rl
1

;::-

10

8

12

l'

_.

lB

=3tiV
RL = BA
G.·30dB
-·_·-15kHz
lkH
----4CHz

80

0.

o

d

('to'

70.

50

I./. ~

12

8

'"

'"

12

6-1574

'\.
('tol

~

6

Fig. 18 - Typical distortion vs. output
power (R L = 8n)

=

V. =34V
RL ·4A
I :lkHz

_.

0.

Fig. 17 - Typical power dissipation
and efficiency vs. output
power (R L
4n)
G-1$73

--

I

II

24

Po (wI

590

0.

,

.. - ..

Ij

,

10

•Po(Wl
••

Fig. 19 - Typical distortion vs. output
power (R L = 8n)
o

Fig. 20 - Typical sensitivity vs. output
power (R L = 8n)
G tl3]

161211

d

(.,.)

8

)

-

500
~.-

Vs ·l6V
Rl • 8.0.

V

400

,

=1kHz
Gv' lO dll

!/I
I.....--

lOO
~

~

1---

100

o

PIOI
(W )

. ..

• ••

10-1

•••

Fig.21 - Typical poWer dissipation
and efficiency vs. output
power (R L = 8n)
G-tl751
I
- ..

I

--

V•• l6Y

14

12

I-- I--

18

Po (w)

I-- I--

V

/
12

6

Fig. 22 - Typical output power vs.
supply voltage

-

G U5'8

'I.

Po

('!.)

(W)

1-_ d =1"1.
Gv clOd

140

RL=8A
f .lkHz

RL =8.0.
=lkHz
G."lOdS
f

V

o

Po (w)

10

V. =l6Y

/

200

-

V

"7

120

20
15kHz

10

I....

8

4

100

L....

i

J
II

'" '"
Pn
IPo'1

L..o

17

~

-I-1'10..

I...-

80

15

1.1
15kHz

60

4.11.

40

10

-I-

1/

20

j

II

o

1/40 Hz

[lin

0

6

9

12

15

20

18

591

25

30

l5

v. (V)

I

Fig. 23 - Hi-Fi stereo amplifier with preamplifier-equalizer for magnetic pick-ups.
The final stage is identical to fig. 12.

Fig. 24 - Booster for operational amplifier

1.8
kO

------- --------- I
I
I

$IOO"F

INPUT

0-,""1--..--=1
>"--+-+--...---{b)OUTPUT
15nF

RI

470

592

Fig.25- L 141 + TDA 1420 output
voltage swing vs. frequency

Fig. 26- L 141 +TDA 1420 transient
response

-

-

G l!lnl1

G 1578,"2

Yo
(Vpp)

n

RL= 4
Vs=!18V

30

RL '4il
Vs"18V

.14V

".

90-;.

t-

20 LI41.TOA 1420

L141

....

I-,B

o

=>

'"
I

'!';

0

\

\.

10

o

,
10'

..

G.

-14V

\..

,

..

4

10'

••

RISE

IME

o

11Hz)

20

40

60

80

100

120

Performance of circuit in fig. 24

L 141 +TDA 1420

± 22V

Max. supply voltage
Max. power dissipation
Input offset voltage
Input offset current
Input bias current
Voltage gain
Max. DC output current

.;;;;
.;;;;
.;;;;
;:;.

593

30W at T case = 60°C
5mV
200 nA
500 nA
86 dB (R L = 4r2)
3A

I

(1-'.)

I

Fig. 27 - Position control of DC motor

;----4----------~------------~------~~~--------r_----------_t~.~

L-____________~------------------~--------------------.--+-~~.
5-to9911

Fig. 28 - Stepping motor driver

Qd

B Q.~-+++----~
C174193Qb~-*++--~~
Q,

UP

~--+O--+.-l

DOWN

CLOCK

FORWARD I BACKWARD

"----4-+--+__-{)

594

Fig.29 - Bidirectional speed control of DC motor
r--{:~--~--~~---------o.V.
470

VOLTAGE o--I"=I-+-:!i
REFERENC

-+-+__......_+_+---C4=1nS--~>--_+-_+-+__-+-{).V.

0-_ _

S~110112

Fig. 30 - Programmable supply voltage

r------~---~-------_o.vs

LOGIC
INPUTS

j=== L-_-'
OAC

6

4

5-110312

595

Fig.31 - Output stage for vertical deflection system

30V

en
411JF

RI2

In

RlI

o.nn
S·I091/1

596

LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
12 W Hi-Fi AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT
PROTECTION AND THERMAL SHUT -DOWN
The TDA 2010 is a monolithic integrated operational amplifier in a 14-lead quad in-line*
plastic package, intended for use as a low frequency class B power amplifier. Typically it
provides 12 W output power (d = 1%) at ± 14 V /4 n; at V s = ± 14 V the guaranteed output
power is 10 Won a 4 n load and 8 W on a 8 n load (DIN norm 45500). The TDA 2010
provides high output current (up to 3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates an original (and patented) short circuit protection
system, comprising an arrangement for automatically limiting the dissipated power so as to
keep the working point of the output transistors within their safe operating area.
A conventional thermal shut-down system is also included. The TDA 2010 is pin to pin
equivalent to TDA 2020.
*(or, optionally, dual in-line)

ABSOLUTE MAXIMUM RATINGS
Vs
Vi
Vi

10
Ptot

Tstg , Tj

Supply voltage
Input voltage
Differential input voltage
Output peak current (internally limited)
Power dissipation at T case .;;;; 95 °C
Storage and junction temperature '"

ORDERING NUMBERS: TDA
TDA
TDA
TDA

2010
2010
2010
2010

B82
B92
BC2
BD2

± 18

V

Vs
±15
3.5
18
-40 to 150

V
A

W

DC

dual in-line plastic package
quad in-line plastic package
dual in-line plastic package with spacer
quad in-line plastic package with spacer

MECHANICAL DATA

Dimensions in mm

597

6/75

I

CONNECTION AND SCHEMATIC DIAGRAMS

"
OUTPUT

1~

-SUPPlY VOlTAGE:]

POWEFt lINITING

"
10

COMPENSATION

9

COMPENSATION

8 INVERTING INPUT

The copper slug is electrically
connected to pin 5 (substrate)

TEST CIRCUIT

10,,"

Vi~J-_-_-----4
Vo

14

R4

10
4.7/1'

C3

R5

R3

13kn

100

4.7jE

kO

R2

5-1131

THERMAL DATA
Thermal resistance junction-case

598

max

3

ELECTRICAL CHARACTERISTICS

±14V,

(Refer to the test circuit, Vs

T amb = 25°C unless otherwise specified)
Parameter
Vs

Supply voltage

Id

Quiescent drain current

Ib

Bias current

Vi

(off)

Test conditions

Min. Typ. Max. Unit
±5

Vs = ± 18V

I nput offset voltage

±18

V

45

mA

0.15

p.A

5

mV

0.05

p.A

10

100 mV

Vs = ± 17V
Ii

(off)

V0
Po

(off)

Input offset current
Output offset voltage
Output power

Gy = 30 dB
d =1%
T case";; 70°C
f = 40 to 15,000 Hz
RL =4n
RL =8n
d = 10%
Tease ..;; 70°C

I nput sensitivity

Gy = 30 dB
Po
P0

=10W
= SW

B

Frequency response(-3 dB) RL =4n

d

Distortion

12

W
W

15
12

W
W

220
250

mV
mV

10 to 160,000

Hz

Gy = 30 dB
f = 1 kHz

RL =4n
RL r= 8n
Vi

9

10
8

f

= 1 kHz

RL =4n
RL =SQ
C4 = 68 pF

=100mWtol0W
Gy = 30 dB
RL =4n
T case";; 70°C
Po

f
f

= 1 kHz
= 40 to 15,000 Hz

0.1
0.3

1

%
%

0.1
0.2

1

%
%

= 100 mW to 8 W
RL =8n
Gy = 30 dB
Tease";; 70 "c
Po

f
f

= 1 kHz
= 40 to 15,000 Hz

599

ELECTRICAL CHARACTERISTICS (continued)
Parameter

Min. Typ. Max. Unit

Test conditions

Ri

Input resistance (pin 7)

Gv

Voltage gain (open loop)

Gv

Voltage gain (closed loop)

eN

Input noise voltage

RL =4n

4

p.V

iN

I nput noise current

B(-3dB) = 10 to 20,000 Hz

0.1

nA

SVR

Supply voltage rejection
ratio

G v = 30 dB
RL =4n
friPPle = 100 Hz

50

dB

0.8
0.5

A

145

°C

120

°C

Drain current

Id

f = 1 kHz

RL =4n

29.5

RL =4n
RL =8n

Po = 12 W
P0 = 9W

Thermal shut-down
junction temperature

5

Mn

100

dB

30

30.5

dB

A

* Thermal shut-down case
Ptot = 10.5 W

temperature
• See fig. 15

Fig. 2 - Typical output power vs. supply voltage (d = 10%)

Fig. 1 - Typical output power vs. supply voltage (d = 1%)

G 164711

G-1648

Po
(WI

d .1'/,

16

Gy. ]OdS

.

",/

12

,tJ,"'~'//
",'

~~~t'"

/
4

4n ~

/

./

/

12

/

/

./, /

/

L'( '~"'"
,,<,
/

/

d .10'/,
I .1kHz
Gv '30dB

16

4~

~o"'"

4

~

......

,/

/

/

/

//

/'

e!l.

o

o
10

12

11

14

600

13

./

/

Fig. 4 - Typical distortion vs. output
power (R L = 4.11)

Fig. 3 - Typical distortion vs. output
· power (R L = 4 n )

G-1 .SO

G 1649

d

I

,0'0)

Vs = !14V

Vs =!14V

0.8

111111
RL = 4n
, =1kHz
Go .JOdB

RL = 4n
'!>v=JOdB

0.6

15KHz

0.4

II

0.2

o

--

i

40Hz

· ,.

., .

7i.H;

10

., .

10

G-16S1

d

I

("I.)

0.8

I
I

("I.)

I

IY

Po (WI

Fig. 6 - Typical distortion vs. output
power (R L = 8.11)
Go -1652

Fig. 5 - Typical distortion vs. output
power (R L = 8 n )
d

. ,.

a

Po (W)

8

s ;; !.14V

Vs =J.14V

,

RL =8n

RL =8n
G.'JOdB

0.6

G.

.6

=1kHz
=JOdB

0.4

0.2

o

---,

5 kHz

· ,.

-r

40Hz
1kHz

,

..

, ,
10

.

a

Po (W)

601

. ..

,

..

10

Po (w)

Fig. 8 - Typical output power vs.
frequency

Fig. 7 - Typical distortion vs.
frequency
G-165312

d
('/,)

0-16510

Po

IIIIIII II

(W)

-RL=4Il Po =10W
-.-RL =BIl Po= BW

16

Vs =!14V

Gy =30dB
4t\

12

8Il

8

06

Vs =!.14V

Gy =30dB

,

4

,

..

4

,

••

4

,

••

10'

10'

10

4

o

..

Z

III

.,

4" •

-0 2

10'

10'1

1

to"
I (Hz)

Fig. 10- Typical sensitivity vs. output
pOW-er(RL = 8.11)
G-lSS6

G 1655

Vi

Vi

(mV)

-

'Is

(mV)

=.1,14

350

f-- RL :4.0
f-- f =lkHz
./

240

'Is =14V

--- ~~I=~O

300

l./
. / Gy =30dB

200

.",

/?- -.

120

/

BO

II
!/
f....;o

/

-6

.30dE

./

200

'--

r-

".,...

",- Gy

250

V

160

o

4" •

t

10

I (Hz)

Fig. 9 - Typical sensitiv:ty vs. output
,.,
power (R L = 4.11)

40

=,,,.

d

1/

0.2

Gy =40 d

-

150
100
50

I I I
I I
8

10

o

12

602

I
I
I ./
f/

i--

-r G =40dB

I
4

--

./

y

I
I I

10

12

Po (W)

Fig. 11 - Open loop frequency response
with different values of the
i"blloff capacitor C4

Fig.12 - Typical value of C4 vs. voltage gain for different bandwidths

G-1550

160kHz

"""

.......

10

2

405e

10'

2

46.

10'

2 " 61

10'

2

10'

461

10'

2

(Hz)

10

.

10'

,

Fig. 14 - Typical supply voltage rejection ratio vs. voltage gain

Fig. 13 .. Typical quiescent current vs.
supply voltage

G-1664

G 1651

SVR

,

I

••

'6&

f

(dB)
Vs ·<14 V

80

fripple' 100 Hz I -

80

I

60

60

I

40

I

r--.....

...........

40

t-'

Id (TOTAL)

........

...........

.........

Id (OUTPUT TRANSISTORS

...........

........

20

20

...........

I

o
9

11

13

15

17

v. (V)

o

603

20

30

40

SO

Gy(dB)

Fig. 16- Maximum power dissipation
vs. supply voltage (sine wave
operation)

Fig.15- Typical power dissipation and
efficiency vs. output power
G- Isse

_ _ 411

Ptot

---all

(W)

-

G 1659

.,.)

Ptot

80

16

60

12

40

a

'I
(

(Wl

Ptot

l-

10

I
/

a

I.....

"'"
'I

V

"'"

6

V
K;

V
/"

...... Ptot

/
4

.,../
Vs =14V
f=lkHz
Gv :IOdS

=

o

a

12

16

20

4

o

0

I~
I-

..........~ ~ ~

--

11

Po(W)

APPLICATION INFORMATION
Fig. 17 - Typical amplifier with spl it power supply

604

I-- ~

13

......

Fig. 18- P.C. board and component layout for the circuit of fig. 17 (1: 1 scale)

CS-0064

Fig.19- lOW Hi-Fi stereo amplifier with preamplifier-equalizer for ceramic PICK-UpS
+V$(18V max)

....
" '"

____ nZ.2"f

'"

j

1.2.n

III

l?~~,,,

.ro

4?k.ll

lJon

~l~PFI

.

In 4nn

2.Z,..F

22.11

."11

Inn

.. "",

2.1k/l

:i2.2I"F
,~

:~..

I

IIOkn

I.""'

r

BALANCE

".

I

"'

(-i1E,r
no.n
(*.1...,
,aon

00

'~33Pf

"'

."'f!-:-l
"

"'- ,----L
,"0

'"

F""

"

F""

~

~

011"F

I

I

TREBLE

,.

VOLUME

I

I

01"F

J.

l

,.,

,OOkll

2,2'n

,~,

r
100kll

II"..,

U./l

19U1

~'r:::

l09_

4.1/,r

l.3MIl

..

2.lkn

BASS

.Jr'DA1OS~

t-li.1?1

""
r--

,,~1

'80n

~r
~.."

, ""4

Ol"F

",

;

2.2~n

220'I!
log.

'000

:t'' "

."""
"'

f---

oo~fF

'"

"'AW

220kn
I.og.

.~""'

"'

oo.~

J~''''
.ro,,~
"

f'~'
,"0
~

FOll'F

(lav",.. )

605

'0

p.o"

F""
-v.

I:c(],

r

.l.
5-".0

Fig. 20 - Typical stereo amplifier with split power supply

4A

Wll>---+-_ _ _ _-+-__-ci+ v•

. v.

4A

v, o--I------jII-c--4--J

Fig.21 - Typical bridge amplifier configuration with split power supply (Po

Vs

=±

13V, RL

=8

n, d ..;;;

1%)

.V.
Q.15,u F

l

V,o--+----U..--...-----l.I

OOkll

606

20 W ,

SHORT CIRCUIT PROTECTION
The most important innovation in the TDA 2010 is an original circuit which limits the
current of the output transistors. Fig. 22 shows that the maximum output current is a
function of the collector-emitter voltage; hence the output transistors work within their safe
operating area (fig. 23). This function can therefore be considered as being peak power
limiting rather than simple current limiting. The TDA 2010 is thus protected against temporary overloads or short circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction temperature within safe lirriits.

Fig. 22 - Maximum output current vs.
voltage (V CE) across each output transistor

Fig.23- Safe operating area and collector characteristics of the
protected power transistor

-

G 1686

IC
(A)

i'..
Ie

\
\..a-Ptot =k
\

Ie max.. \
~

I--

Ql

o

Q2

I

-1

-2

r-.

-3

5-0161,/1

-4

o

10

VCEQ2tvl -30

20
-20

30 VCEQ1 (V)

-10

0

607

THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported since the T j cannot be higher than 150°C
2) the heatsink can have a smaller factor of safety compared with that of a conventional
circuit. There is no possibility of device damage due to high junction temperature.
If, for any reason, the junction temperature increases up to 150°C, the thermal shut-down
simply reduces the power dissipation and the curn~nt consumption.

Fig.25- Output power and drain current vs. case temperature

Fig.24- Output power and drain current ""S. case temperature

(R L =4[2)

(R L =8[2)
G- 1661

" 1662

Po

(wI

Vs =:t. 14 V

RL =8.n

Vs =11, V

f- - -

RL =8n

r- f -

Po

12

12

'\

10.

10

i\

Po

......

Id

\

0.8

I'\.
0..6

Id

f""""

0..6

1\
\

0..4

0..4
0..2

0-2

\

0.
0.

50.

0.

100

608

50

100

0.

MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink as
shown in figs. 26 and 27.
The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied
with the device.
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by
the pressure which the screws exert via· the spacer and the printed circuit board; this is due
to the particular shape of the spacer.
Note:
the most negative supply voltage is connected to the copper slug, hence to the
heatsink (because it is in contact with the slug).

Fig.26 - Mounting system of TDA 2010

I

Fig.27 - Cross-section of mounting
system

~=~Ip.ce.

609

The maximum allowable power dissipation depends upon the size of the external heatsink
Ii. e. its thermal resistance); fig. 28 shows this dissipable power as a function of ambient temperature for different thermal resistance.

-

G '"'

Fig. 28 - Maximum allowable power
dissipation vs. ambient temperature

16

~.~

12

...

~
~._
~I~~
.
...
~
~"'G'
T." '\'i> ~_

.... ...
.... I .

f-' . .r~

...,~

~

-9.

a

.

~

. N···t
't

'~.

.

...
~

('...~

~

~

oe

lj.. ...
~

ill.

;;

1\
~

N

o
-50

o

100

Tambt*t)

For a more detailed description of the TDA 2010 and related performance refer to
SGS-ATES Application Note n. 130.

610

LINEAR INTEGRATED CIRCUIT

lOA 2020
PRELIMINARY DATA

20 W Hi-Fi AUDIO POWER AMPLI FIER WITH SHORT CIRCUIT
PROTECTION AND THERMAL SHUT-DOWN
The TDA 2020 is a monolithic integrated operational amplifier in a 14-lead quad in-line*
plastic package, intended for use as a low frequency class B power amplifier. Typically it
provides 20 W output power (d = 1%) at ± 18 V/4 n; the guaranteed output power at
± 17 V /4 n is 15 W (01 N norm 45500). The TDA 2020 provides high output current (up to
3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates
an original (and patented) short circuit protection system, comprising an arrangement for
automatically limiting the dissipated power so as to keep the working point of the output
transistors within their safe operating area. A conventional thermal shut-down system is also
included. The TDA 2020 is pin to pin equivalent to TDA 2010.
*(or, optionally, dual in-line)

ABSOLUTE MAXIMUM RATINGS

V,
Vi
Vi
10
Ptot
T,tg, T j

Supply voltage
Input voltage
Differential input voltage
Output peak current (internally limited)
Power dissipation at Tease .:;;; 75°C
Storage and junction temperature

ORDERING NUMBERS: TDA
TDA
TDA
TDA

2020
2020
2020
2020

A82
A92
AC2
AD2

± 22

V

V,
± 15

V

3.5
25
-40 to 150

A

W
°C

dual in-line plastic package
quad in-line plasticp.ac)lY VOLTAGE 3

12

-SUPPLY VOLTAGE 5

10

POWER LIMITING

COMPENSATION

COIo'lPENSATION
8

INYERTING

INPUT

The copper slug is electrically
connected to pin 5 (substrate)

TEST CIRCUIT

68pF

C4IH---_.

lO"F

Vi

9

cfo1jt-~-~----__'_l

TDA 2020

>"'14'---_~I_-vfo--__,
R4

4.7"F

In

C3

R5

R3

13kn

100
kn

RI
33
kO

o.1~l_;l

5·,.

C7

C8

R2

5-11103

THERMAL DATA
Thermal resistance junction-case

max
612

3

°C/W

ELECTRICAL CHARACTERISTICS

±17V,

(Refer to the test circuit, Vs

Tam"b= 25°C unless otherwise specified)
Parameter
Vs

Supply voltage

Id

Quiescen,t drain current

Ib

Bias current

V; (off)

Input offset voltage

Test conditions

Min. Typ. Max. Unit
±5

Vs = ± 22V

±22

V

60

mA

0.15

/lA

5

mV

0.05

/lA

10

100 mV

18.5
20
16.5

W
W
W

24
20

W
W

260
380

mV
mV

10 to 160,000

Hz

Vs=±17V
1;(Off)

I nput offset current

Va (off) Output offset voltage
Po

VI

Output power

I nput sensitivity

Gy = 30 dB
d =1%
T case ..;; 70°C
f = 40 to 15,000 Hz
Vs = ± 17V
Vs = ± 18V
V s =±18V

RL =4 n
RL =4 n
RL =8 n

d = 10%
T case ..;; 70°C

Gy = 30 dB
f = 1 kHz

Vs = ± 17V
Vs = ± 18V

RL =4 n
RL =8 n

Gy = 30 dB
Po = 15W

f

Vs = ± 17V
Vs = ± 18V

RL =4 n
RL =8 n

B

Frequency response( -3 dB) RL =4 n

d

Distortion

15

= 1 kHz

C4 = 68 pF

Po = 150 mW to 15W
Gy = 30 dB
RL =4 n
T case";; 70°C
f = 1 kHz
f = 40 to 15,000 Hz

0.2
0.3

1

%
%

Po = 150 mW to 15W
Vs = ± 18V
RL =8n
Gy = 30 dB
T case ..;; 70°C
f
f

= 1 kHz
= 40 to 15,000 Hz

613

0.1
0.25

%
%

ELECTRICAL CHARACTERISTICS (continued)
Test conditions

Parameter

Min. Typ. Max. Unit

RI

Input resistance (pin 7)

Gy

Voltage gain (open loop)

Gy

Voltage gain (closed loop)

eN

Input noise voltage

RL =411

4

J.lV

iN

I nput noise current

B (-3 dB) = 10 to 20,000 Hz

0.1

nA

SVR

Supply voltage rejection
ratio

50

dB

1

A

0.7

A

145

°C

105

°C

f = 1

RL =411

Drain current

29.5

Mn
dB

30

30.5

dB

G y = 30 dB

RL = 411

Hz

frlPPle = 100

Id

kHz

5
100

Po = 18.5W

RL =4n

Po = 16.5W
RL =8 11

Vs =

± 18V

Thermal shut-down
junction temperature

* Thermal shut-down case
Ptot = 15.5W

temperature

* See fig. 15
Fig. 2 - Typical output power vs. supply voltage (d = 10%) " , G-""

Fig. 1 - Typical output power vs. sup_ ply voltage (d = 1%)
Po

t' :

d .10'"

(w)

f =1 kHz

24

G "JOdS

V
4fi

20

16

4

aft
12

10

12

14

16

la

20 1Vs (v)

10

614

12

14

16

la 'Vs Iv)

Fig. 4 - Typical distortion
power (R L = 4n)

Fig. 3 - Typical distortion VS. output
power (R L = 4 n)

VS.

G 15U

6-1542

d

d

('I.)

('I.)

f--

Ys:U.11V

Rl ·4.n.
Gy=JOdB

0.8

6

0.4

4

o

-"

111111

• ••

10-'

V

15kHz

40Hz-lkH

v. "17V
Rl' 4n
I . 1kHz

I-- Gy -JOdS

0.6

0.2

output

j

...

. ..

10

0.

Po (w)

. ..

• •• 1

4

10.

Fig. 6 - Typical distortion VS~ output
power (R L = 8 n)

Fig. 5 - Typical distortion VS. output
power (R L = 8 n )

-

G ....

G 1544/1

d
('I.)

0.8

••

Po(W)

I

Vs =!.1BV

Vs=!.18V

Rl ' 811

Rl·SA
I 'lkHz

G.'30Ll.

Gy '3CdB
6

0..6

0..4 _ .

_
.........
..

0..2

/15 kHz

lk_IiL
4CHz

Ii

0.

,

1O~'

68

4

o

6.

4

10.

6.

Po (w)

615

...

~
10

Po(W)

Fig. 7 - Typical distortion vs.
frequency

Fig. 8 - Typical output power vs.
frequency

-

G 1546/2

d

II11111

('/.)

~Vs='17V

II
RL

I- --Vs ='18V R

=4!
=8!

Po ·15W
G -JOdB

VsDt.17V

20 f -

RL =4

11111
11111

16

Vs =.t1av

I--

RL =8

12

G. =JOd
d =1'/.

0.6

02
2

••• 10'

461

10'

10

~

-

-

468

Fig. 9 - Typical sensitivity
power (R L = 4n)

2

46

2

a

10'

I(Hz)

VS.

output

10

•

'61

II

10'

10'

"t

Fig. 10- Typical sensitivity
power (R L = 8n)

a,

I,

10'

I (Hz)

VS.

output

6-16"

Vi

I

(mV)

280 -

RL'4n

"...

- I =lkHz

240

(my)

400

/

H-lrr~l,.
L+-~++H-+++-f--J+-H
VS =
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:18 19:10:15-08:00
Modify Date                     : 2017:07:18 19:28:28-07:00
Metadata Date                   : 2017:07:18 19:28:28-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:e2366f95-c3ec-bb4a-b2e3-7f9b5314fcec
Instance ID                     : uuid:697c4d61-3b6d-2544-bf22-a0e8200e2d22
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 654
EXIF Metadata provided by EXIF.tools

Navigation menu