1975_SGS_Consumer_Transistors_and_ICs_Databook 1975 SGS Consumer Transistors And ICs Databook
User Manual: 1975_SGS_Consumer_Transistors_and_ICs_Databook
Open the PDF directly: View PDF
.
Page Count: 654
| Download | |
| Open PDF In Browser | View PDF |
CONSUMER TRANSISTORS & ICs
,I
f'
b
1\
1975176
INTRODUCTION
This databook contains data sheets on the SGS-ATES range of small signal
transistors and integrated circuits intended for consumer applications.
To permit ease of consultation, this book has been divided into four main
sections: .
General Information, Germanium Transistors, Silicon Transistors, and Integrated
Circuits.
.
The GenGral Information section contains definitions of symbols and terms
used in order to facilitate correct technical interpretation of the data sheets,
as well as an alphanumerical list of types.
The information on each product has been specially presented in order that
the performance of the product can be readily evaluated within any required
equipment design.
An arrow (~) at left hand side of table indicates parameter which has been
modified since previous data sheet issue.
OTHER SGS-ATES DATABOOKS
Data sheets on the SGS-ATES range of discrete devices and integrated circuits
for professional applications, and high power devices for professional and
consumer applications can be found in the following databooks:
SGS-ATES Professional Databook 1 - Small Signal Discrete Devices
SGS-ATES Professional Databook 2 - Bipolar Digital ICs
SGS-ATES Professional Databook 3 - Linear, MaS & COS/MaS ICs
SGS-ATES Power Databook - Discrete Devices
I
SGS·ATES GROUP OF COMPANIES
INTERNAnONAl HEADQUARTERS
SGS-ATES Componenti Elettronici S.p.A.
Via C. Olivetti 2·20041 Agrate Brianza -Italy
Tel.: 039-650341 +4/650441 +5/650841 +5
Telex: 36141-36131
BENELUX
SGS-ATES Componenti Elettronici S.p.A.
Benelux Sales Office
-B- 1180 Bruxelles
Winston Churchill Avenue. 112
Tel.: 02-3432439
Telex: 011-24149
DENMARK
SGS-ATES Scandinavia AB
Sales Office:
2730 Herlev
Marielundvej 46A
Tel.: 02-948533
Telex: 16494
FRANCE
SGS-ATES France S.A.
75643 Paris Cedex 13
Residence "Le Palatino"
. 17. Avenue de Choisy
Tel.: 5842730
Telex: 021-25938
GERMANY
SGS-ATES Deutschland Halbleiter-Bauelemente GmbH
809 Wasserburg/lnn
Postfach 1269
Tel.: 08071-721
Telex: 0525143
Sales Offices:
1000 Berlin 33
Warmbrunner Strasse 39
Tel.: 030-8233038
Telex: 01 85418
3000 Hannover 1
Lange Laube 19
Tel.: 0511-17522/3
Telex: 09 23195
8000 Miinchen 40
Gernotstrasse 10
Tel.: 089-304270/304485
Telex: 05 215784
7000 Stuttgart 80
Kalifenweg 45
Tel.: 0711-713091/2
Telex: 07 255545
II
ITALY
SGS-ATES Componenti Elettronici S.p.A.
Sales Offices:
50127 Firenze
Via Giovanni Del Pian Dei Carpini 96/5
Tel.: 055-4377763
20149 Milano
Via Tempesta 2
Tel.: 02-4695651
00199 Roma
Piazza Gondar 11
Tel.: 06-8392848/8312777
10134 Torino
Via La Loggia 51/7
Tel.: 011-634572
NORWAY
SGS-ATES Scandinavia AB
Sales Office:
Oslo 4
Sandakerveien 104B
Tel.: 213755
Telex: 11796
SINGAPORE
SGS-ATES Singapore (pte) Ltd .
Singapore 12
Lorong 4 & 6 - Toa Payoh
Tel.: 531411
Telex: ESGIES RS 21412
SWEDEN
SGS-ATES Scandinavia AB
19501 Marsta .
Industrigatan 2
Tel.: 0760-40120
Telex: 042-10932
UNITED KINGDOM
SGS-ATES (United Kingdom) Ltd.
Aylesbury, Bucks
Planar House, Walton Street
Tel.: 0296-5977
Telex: 041-83245
U.S.A.
SGS-ATES Semiconductor Corporation
Newtonville, Mass. 02160
435 Newtonville Avenue
Tel.: 617-9691610
Telex: 922482
GENERAL INFORMATION
GERMANIUM TRANSISTORS
SILICON TRANSISTORS
INTEGRATED CIRCUITS
III
GENERAL INFORMATION
1. LETTER SYMBOLS FOR SEMICONDUCTOR DEVICES
1.1. QUANTITY SYMBOLS
1.2. SUBSCRIPTS FOR QUANTITY SYMBOLS
Page
VI
...
VI
VI
VIII
1.3. CONVENTIONS FOR SUBSCRIPT SEQUENCE
IX
1.4. ELECTRICAL PARAMETER SYMBOLS
1.5. SUBSCRIPTS FOR PARAMETER SYMBOLS
X
I
i?~
,1 1
"
2. ALPHABETICAL LIST OF SYMBOLS
Page
XI
3. RATING SYSTEMS FOR ELECTRONIC DEVICES
Page XIX
3.1. DEFINITIONS OF TERMS USED
XIX
3.2. ABSOLUTE MAXIMUM RATING SYSTEM
XIX
3.3. DESIGN - MAXIMUM RATING SYSTEM
XX
3.4. DESIGN - CENTRE RATING SYSTEM
XX
4. TYPE DESIGNATION CODE
Page XXI
4.1. FOR DISCRETE DEVICES
4.2.
XXI
FOR INTEGRATED CIRCUITS
..
4.2.1. Types designated by three letters and three figures
4.2.2. Types designated by three letters and four figures
..
XXII
..
XXIV
5. ALPHANUMERICAL LIST OF TYPES
V
XXII
Page XXV
1. LETTER SYMBOLS FOR SEMICONDUCTOR DEVICES
(referred to diodes, transistors and linear integrated circuits)
1.1. QUANTITY SYMBOLS
a. Instantaneous values of current, voltage and power, which vary with time
are represented by the appropriate lower case letter.
Examples: i, v, p
b. Maximum (peak), average, d.c. and root-mean-square values are represented by appropriate upper case letter.
Examples: I, V, P
1.2. SUBSCRIPTS FOR QUANTITY SYMBOLS
a. Total values are indicated by upper case subscripts.
Examples: IC' ic ' VEB , PC' Pc
b. Values of varying components are indicated by lower case subscripts.
c. To distinguish between maximum (peak), average, d.c. and root-meansquare values, it is possible to represent maximum and average values'
adding the subscripts m or M and respectively av or AV.
Examples: lem' ICM' leav' IcAV
It is possible to represent R.M.S. values by adding the subscripts (rms)
and (RMS)
Examples: Ie (rms) , Ic (RMS)
d. List of subscripts (for examples see figure 1 and the fundamental symbols
schedule e.)
A, a
K, k
= Anode terminal
= Cathode terminal
VI
I
I
E,e
Emitter terminal
B,b
Base terminal
C, c
Collector terminal
J,j
Generic terminal
(BR)
Primary break-down
X,x
Specified circuit
M,m
Maximum (peak) value
Min, min
= Minimum value
AV, av
Average value
(RMS), (rms)
F, f
R.M.S. value
= Forward
R, r
As first subscript: Reverse. As second subscript: Repetitive
0,0
As third subscript: The terminal not mentioned is open
circuited
S,s
= As
Z
= Zener.
second subscript: Non repetitive. As third subscript:
Short circuit between the terminal not mentioned and the
reference terminal
(Replaces R to indicate the actual zener voltage,
current or power of voltage reference or voltage regulator
diodes)
e. Fundamental symbols schedule (meaning of symbol with subscript)
v
e
b
E
C
P
istantaneus value of the
variable component
R.M.S. value of the variable component,
or (with appropriate supplementary
subscripts) the maximum or average
value (direct current) of the variable
component
istantaneus
total value
average value (direct current and
without signal) or (with appropriate
supplementary subscripts) the total
average value (with signal), or the total
maximum value
c
B
v
p
VII
I
f.
Examples of the application of the rules:
Figure 1 represents a transistor collector current, consisting of a direct
c(Jrrent and a variable component as a function of time.
'-
.£
~
o
U
Icm
L.
.1
t--""T"~-~
O~~---4----L-~L---~------~--------------
without
I
sign~-.,.....
_ _ _ _ _ _ _wit~j9Il~
__
time
____ _
fig. 1
Ic
- DC value, no signal
ICAV
- Average total value
ICM
- Maximum total value
IC(RMS)
- R.M.S. total value
'cav
- Average value of the variable component
Ie (rms)
- R.M.S. value of the variable component
Icm
- Maximum value of the variable component
ic
- Instantaneous total value
ie
- Instantaneous volue of the variable component
1.3. CONVENTIONS FOR SUBSCRIPT SEQUENCE
a. Currents
For transistor the first subscript indicates the terminal carrying the current
(conventional current flow from the external circuit into the terminal is
positive).
Instead for diodes a forward current (conventional current flow into the
VIII
anode terminal) is represented by the subscript F or f; a reverse current
(conventional current flow out of the anode terminal) is represented by the
subscript R or r.
b. Voltages
For transistors normally, two subscripts are used to indicate the points between which the voltage is measured. The first subscript indicates one
terminal pOint and the second the reference terminal.
Where there is no possibility of confusion, the second subscript may be
omitted.
Instead for diodes a forward voltage (anode positive with respect to cathode) is represented by the subscript F or f and a reverse voltage (anode
negative with respect to cathode) by the subscript R or r.
c. Supply voltages
Supply voltages may be indicated by repeating the terminal subscript.
Examples: VEE' Vcc' Vss
The reference terminal may then be indicated by a third subscript.
Examples: VEES ' VCCB ' Vssc
d. In devices having more than one terminal of the same type, the terminal
subscripts are modified by adding a number following the subscript and
on the same line.
Example: BB2_E voltage between second base and emitter
In multiple unit devices, the terminal subscripts are modified by a number
preceding the terminal subscripts:
Example: V1S- 2S voltage between the base of the first unit and that of the
second one.
1.4. ELECTRICAL PARAMETER SYMBOLS
a. The values of four pole matrix parameters or other resistances, impedances
admittances, etc., inherent in the device, are represented by the lower case
symbol with the appropriate subscripts.
Examples: h ib, Zfb' YOC' hFE
Note: The symbol of the capacitances that is represented by the upper case
(el is an exception to this rule.
b. The four pole matrix parameters of external circuits and of circuits in which
the device forms only a part are represented by the upper case symbols
with the appropriate subscripts.
Examples: Hi' Zo' HF, YR
IX
I
1.5. SUBSCRIPTS FOR PARAMETER SYMBOLS
a. The static values of parameters are indicated by upper case subscripts.
Examples: hlB' hFE
Note: The static value is the slope of the line from the origin to the operating
point on the appropriate characteristic curve, i.e. the quotient of the
appropriate electrical quantities at the operating point.
b. The small-signal volues of parameters are indicated by lower case subscripts.
Examples: hib , Zob
c. The first subscript, in matrix notation identifies the element of the four pole
matrix.
= input
= output
f (for 21) = forward transfer
r (for 12) = reverse transfer
Examples: V1 = hi 11 + hr V
12 = hf 11 + ho V2
i (for 11)
o (for 22)
2
Notes
- The voltage and current symbols in matrix notation are indicated by a
single digit subscript.
input; the subscript 2
output.
The subscript 1
=
=
2 - The voltages and currents in these equations may be complex quantities.
d. The second subscript identifies the circuit configuration.
e
b
c
= common
= common
= common
= common
emitter
base
collector
terminal, general
Examples: (common base)
11
12
= Yib V1b + Yrb V2b
= Yfb V1b + Yob V2b
When the common terminal is understood, the second subscript may be
omitted.
e. If it is necessary to distinguish between real and imaginary parts of the four
pole parameters, the following notations may be used.
Re(h ib) etc ... for the real part
Im(h ib) etc ... for the imaginary part
x
2. ALPHABETICAL LIST OF SYMBOLS
AMR
Amplitude modulation rejection
B
Bandwidth
Common-base, forward transfer susceptance (output short-circuited,
y matrix)
Common-emitter, forward transfer susceptance (output short-circuited,
y matrix)
Common-base, input susceptance (output short-circuited, y matrix)
Common-emitter, input susceptance (output short-circuited, y matrix)
Common-base, output susceptance (input short-circuited, y matrix)
Common-emitter, output susceptance (input short-circuited, y matrix)
Common-base, reverse transfer susceptance (input short-circuited,
y matrix)
b,.
Common-emitter, reverse transfer susceptance (input short-circuited,
y matrix)
Intrinsic base-collector capacitance
Intrinsic base-emitter capacitance
Collector-base capacitance (emitter open to a.c. and d.c.)
Cess
Collector-substrate capacitance (emitter and base open to a.c. and
d.c.)
Emitter-base capacitance (collector open to a.c. and d.c.)
Input capacitance
Common-base, input capacitance (output a.c. short-circuited, hand
y matrix)
Common-base, input capacitance (output a.c. open-circuited)
Common-emitter, input capacitance (output a.c. short-circuited,
hand y matrix)
Load capacitance
CMRR
Common mode rejection ratio
Output capacitance
XI
Cob
Common-base, output capacitance (input a.c. short-circuited,
y matrix)
Cobo
Common-base, output capacitance (input a.c. open-circuited,
h matrix)
Coe
Common-emitter, output capacitance (input a.c. short-circuited,
y matrix)
Coeo
Common-emitter, output capacitance (input a.c. open-circuited,
h matrix)
Crb
Common-base, reverse capacitance (input a.c. short-circuited,
y matrix)
Cre
Common-emitter, reverse capacitance (input a.c. short-circuited,
y matrix)
d
Distortion
eN
Noise voltage
Es/b
Second breakdown energy (with base-emitter junction reverse biased)
Frequency
of
Frequency change or drift
Af
Frequency deviation
Sf
AT
( !~ )
Sf
AV
(
Af
AV
)
Frequency drift with temperature variation
Frequency drift with voltage variation
f hlb
Common-base, cut-off frequency
f hle
Common-emitter, cut-off frequency
fm
Modulation frequency
f max
Maximum oscillator frequency
fT
Transition frequency
fyle
Common-emitter cut-off frequency
GA
Available power gain
GAM
Maximum available power gain
Qlb
Common-base, forward transconductance (input short-circuited,
y matrix)
XII
gte
Common-emitter, forward transconductance (input short-circuited,
y matrix)
Common-base, input conductance (output short-circuited, y matrix)
Common-emitter, input conductance (output short-circuited, y matrix)
gob
Common-base, output conductance (input short-circuited, y matrix)
goe
Common-emitter, output conductance (input short-circuited, y matrix)
Power gain
I
Common-base, power gain
Common-emitter, power gain
Maximum power gain
Common-base, reverse transconductance (input short-circuited,
y matrix)
gre
Common-emitter, reverse transconductance (input short-circuited,
y matrix)
Maximum stable power gain
Transducer power gain
Unilateralized power gain
Maximum unilateralized power gain
Voltage gain
Common-base, small-signal value of the short-circuit forward current transfer ratio
Common-emitter, small-signal value of the short-circuit forward current transfer ratio
Common-emitter, static value of the forward current transfer ratio
Common-emitter, static value of the forward current transfer matched
pair ratio
Common-base, small-signal value of the short-circuit input impedance
Common-emitter,
impedance
Common-base,
admittance
Common-emitter,
admittance
small-signal
small-signal
small-signal
XIII
value
value
value
of
of
of
the
the
the
short-circuit
input
open-circuit
output
open-circuit
output
Common-base, small-signal value of the open-circuit reverse voltage
transfer ratio
hr.
Common-emitter, small-signal value of the open-circuit reverse
voltage transfer ratio
Ib
Bias current
16
Base current
161
Turn-on current
162
Turn-off current
11 61 -1 621
Input offset current
Base forward current
Base forward peak current
Base peak current
Base reverse current
Base reverse peak current
Collector current
Collector cut-off current with emitter open
Collector cut-off current with specified reverse voltage between
emitter and base
Collector cut-off current with base open
Collector cut-off current with specified resistance between emitt:?-r
and base
Collector cut-off current with emitter short-circuited to base
. Collector cut-off current with specified reverse voltage between
emitter and base
Collector cut-off current with specified circuit between. emitter and
base
Collector peak current
Drain current
Emitter current
Emitter cut-off current with collector open
Noise current
Output current
Supply current
XIV
Output current during output short-circuit
Second breakdown collector current (with base-emitter junction
forward biased)
Zener current
m
NF
Modulation factor
Noise figure
Conversion noise figure
Output power of a specified circuit
PRT
Power ratio test
Total power dissipation
rbb ,
Base spreading resistance
rbb,Cb,c
Feedback time constant
Rss
Base dropping resistance
RSE
Resistance between base and emitter
Rcc
Collector dropping resistance
REE
Emitter dropping resistance
Rg
Internal resistance of generator
Ri
Input resistance
RL
Load resistance
Ro
Output resistance
Rth
Thermal resistance
Rth i-amb (R th i-a)
Thermal resistance junction-to-ambient
Rth i-case (R th i-c)
Thermal resistance junction-to-case
Dynamic zener resistance
S+N
N
Signal and noise to noise ratio
SR
Slew rate
SVR
Supply voltage rejection
Time
Ambient temperature
Case temperature
Delay time
xv
Fall time
Junction temperature
Lead temperature
Turn-off-time
Turn-on-time
Top
Operating temperature
tp
Pulse time
tr
Rise time
t.
Storage time
T. tg .(T.)
Storage temperature
AV
AT
Voltage drift with temperature variation
AV
Relative voltage variation
V
VeE
8ase-emitter voltage
VSE (satl
Base-emitter saturation voltage
VSE1-VSE2
Base-emitter voltage difference
IVBE1 -VBd
Input offset voltage
IVBE1-VBE21
AT
Input-offset voltage temperature coefficient
V(BR1 eBO
Collector-base breakdown voltage with emitter open
V{BR) CEO
Collector-emitter breakdown voltage with base open
V(BR} CER
Collector-emitter breakdown voltage with specified resistance
V(BR) eES
Collector-emitter breakdown voltage with emitter short-circuited to
base
V(SR) CEV
Collector-emitter breakdown voltage with specified reverse voltage
between emitter and base
V (SR)
Collector-substrate voltage with base and emitter open
CSSO
V(SR) ESO
Emitter-base breakdown voltage with collector open
VCS
Collector-base voltage
VCBO
Collector-base voltage with emitter open
VCBV
Collector-base voltage with specified reverse voltage between emitter
and base
Collector-emitter voltage
XVI
V CEK
Knee voltage at specified condition
V CEK (HF)
High frequency knee voltage at specified condition
V CEO
Collector-emitter voltage with base open
V CEO (sus)
Collector-emitter sustaining voltage with base open
VCER
Collector-emitter voltage with specified resistance between emitter
and base
V CER (sus)
Collector-emitter sustaining voltage with specified resistance between
emitter and base
Vcr
Collector-emitter saturation voltage
(sat)
Collector-emitter voltage with emitter short-circuited to base
Vcrs
Collector-emitter sustaining voltage with emitter short-circuited to
base
Collector-emitter voltage with specified reverse voltage between
emitter and base
VC1-V (sus)
Collector-emitter voltage with specified circuit between emitter and
base
VCEX
V CFX
Collector-emitter sustaining voltage with specified reverse voltage
between emitter and base
(sus)
Collector-emitter sustaining voltage with specified circuit between
emitter and base
Vcss
Collector-substrate voltage
Vrl ,
Emitter-base voltage
V'I\()
Emitter-base voltage with collector open
V,
Input voltage of a specified circuit
Vi (threshold)
Input limiting voltage
Interfering voltage
Output voltage of a specified circuit
Peak-to-peak voltage
Punch-through voltage
V,ef
Reference voltage
Vs
Supply voltage
V,
Zener voltage
Common-base, small-signal value of the short-circuit forward transfer
admittance
XVII
I
Common-emitter, small-signal value of the short-circuit forward
transfer admittance
Common-base, small-signal value of the short-circuit input admittance
Common-emitter,
admittance
small-signal
value
-
of
the
short-circuit
input
Yob
Common-base, small-signal value of the short-circuit output admittance
Yoe
Common-emitter,
admittance
Yrb
Common-base, small-signal value of the short-circuit reverse transfer
admittance
Yr.
Common-emitter, small-signal val\Je of the short-circuit reverse
transfer admittance
small-signal
value of the short-circuit
output
Impedance between base and emitter
Input impedance
Output impedance
T)
Efficiency
T)c
Collector efficiency
"t's
Storage time constant
(!lIb
Common-base, phase angle of the forward transadmittance (output
short-circuited, Y matrix)
15°C/W)
Power transistor for a.f. applications (Rth j-case"",,15°C/W)
Tunnel diode
Transistor for h.f. applications (Rth j-case>15°C/W)
Multiple of dissimilar devices (1); Miscellaneous
Magnetic sensitive diode; Field probe
Hall generator in an open magnetic circuit, e.g. magnetogram or signal probe
Power transistor for h.f. applications (Rth j-case"""15°CIW)
Hall generator in a closed electrically energised magnetic circuit, e.g. Hall
modulator or multiplier
P Radiation sensitive device
Q Radiation generating device
R Electrically triggered controlling and switching device having a breakdown
characteristic (Rth j-case>15°C/W)
S Transistor for switching applications (Rth j-case>15°C/W)
T Electrically, or by means of light, triggered controlling and switching power
device having a breakdown characteristic (Rth j-case"""15°CIW)
U Power transistor for switching applications (Rth j-case"""15°CIW)
X Multiplier diode, e.g. varactor, step recovery diode
Y Rectifying diode, booster diode, efficiency diode
Z Voltage reference or voltage regulator diode
XXI
1) A multiple device is defined as a combination of similar or dissimilar active
devices, contained in a common encapsulation that cannot be dismantled,
and of which all electrodes of the individual devices are accessible from
the outside.
Multiples of similar devices as well as multiples consisting of a main device
and an auxiliary device are designated according to the code for the discrete
devices described above.
Multiples of dissimilar devices of other nature are designated by the
second letter G.
The serial number is formed by:
Three figures for semiconductor devices which are primarily intended for use
in domestic equipment.
Two figures and a letter (this letter starts back from z through y, x, etc. bears
no signification).
Vereion letter
A version letter can be used, for instance, for a diode with up-rated voltage,
for a sub-division of a transistor type in different gain ranges, a low noise·
version of an existing transistor and for a diode, transistor, or thyristor with
minor mechanical differences, such as finish of the leads, length of the leads
etc. The letters never. have a fixed meaning, the only exception being the
letter R which indicates reverse polarity.
Examples
Be 107 Silicon low power audio frequency transistor primarily intended for
domestic equipment
BUY 46 Silicon power transistor for switching applications in professional
equipment
4.2. FOR INTEGRATED CIRCUITS
4.2.1. Types designated by three letters and three figures
The integrated circuits are divided in four groups:
~ digital types belonging to a family of circuits;
-
digital solitary circuits;
analogue circuits including linear circuits;
mixed analogue/digital circuits.
Digital Family Types
First two letters:
Third letter:
First two figures:
Third figure:
family
circuit function
serial number
operating ambient temperature
XXII
Digital Solitary Types
First letter:
Second letter:
Third letter:
First two figures:
Third figure:
"S"
extension of serial number
circuit function
serial number
operating ambient temperature range
Analogue (LInear) Types
First letter:
Second and third letter:
First two figures:
Third figure:
"T"
extension of serial number
serial number
operating ambient temperature range
Mixed Digital/Analogue Types
First letter:
Second and third letter:
First two figures:
Third figure:
"U"
extension of serial number
serial number
operating ambient temperature range
Function
H
J
K
L
N
Q
R
S
Y
Combinatorial circuit
Bistable or multistable sequential circuit
Monostable sequential circuit
Level converter
Bi-metastable or multi-metastable sequential circuit
Read-write memory circuit
Read only memory circuit
Sense amplifier with digital output
Miscellaneous
Operating ambient temperature range
1
2
3
4
5
6
o
0 to + 70°C
-55 to + 125°C
-10 to + 85°C
+ 15 to + 55°C
-25 to + 70°C
-40 to + 85 °C
It means no temperature range indicated in the type number
If a circuit is published for a wider temperature range, but does not
qualify for a higher classification, the figure indicating the narrower
temperature range is used.
Version letter
A version letter can be added to a type number of an existing type to
indicate a different version of the same type, for instance, encapsulated
XXIII
in another package; with other interconnections or showing minor differences in ratings or electrical characteristics. The letter Z is used to
indicate a type with discretionary wiring.
4.2.2. Types designated by three letters and four figures
The serial number can be a four figure number assigned by Pro
Electron or the serial number of an existing company number.
The first two letters:
A FAMilY CIRCUITS
The FIRST TWO lETTERS give information about the family of circuits.
These letters can be FA... FZ, GA. .. GZ, HA". etc.
B. SOLITARY CIRCUITS
The FIRST LETTER divides the solitary circuits into:
S Solitary digital circuits
T Analogue circuits
U Mixed analogue/digital circuits
The SECOND lETTER is a serial letter without any further significance.
The third letter indicates the operational temperature range or another
significant characteristic.
The letters B thru F give information about the temperature range
(note 1):
B
C
D
E
F
ooC
-55°C
-25°C
-25°C
-40°C
to
to
to
to
to
+
+
70°C
125 °C
+
+
+
Other "third" letters refer to electrical or mechanical versions of a
family and have no fixed meaning. If no temperature range or another
characteristic is indicated, the letter A is used as a third letter.
The serial number can be either a
Electron or the serial number (also
existing company type designation.
than 4 figures are completed to a 4
the number.
4 figure number assigned by Pro
numbers comprising letters) of an
Company serial numbers of less
figure number by "0" 's in front of
A versIon letter can be used to indicate a deviation of a single characteristic of a type, either electrically or mechanically. The letter never has
a fixed meaning, the only exception being the letter Z, indicating "customwired" devices..
Note 1: If a circuit is published for a wider temperature range, but does not quality for a higher
classification, the leiter indicating the narrower temperature range is used.
XXIV
ALPHA-NUMERICAL LIST OF TYPES
Type
*
*
AF 106
AF 109 R
AF 139
AF239
AF 239 S
BC 107
BC 108
BC 109
BC 113
BC 114
BC 115
BC 116A
BC 119
BC 125
BC 125 B
BC 126
BC 132
BC 139
BC 140
BC 141
BC 153
BC 154
BC 160
BC 161
BC 177
BC178
BC179
BC204
BC205
BC206
BC207
BC208
BC209
BC225
BC297
BC298
BC300
BC301
BC302
BC303
BC304
BC377
BC378
BC393
Page
3
5
7
9
11
15
15
15
23
23
25
27
29
31
31
35
37
39
Type
* BC 394
43
43
47
47
51
51
55
55
55
63
63
63
67
67
67
71
73
73
77
77
77
83
83
87
87
91
*
*
*
*
*
*
*
*
*
*
*
*
93
95
95
99
99
103
103
103
111
115
117
119
121
123
129
135
137
137
139
139
139
143
147
153
157
159
163
167
171
175
179
183
183
183
187
191
195
199
203
203
203
207
207
211
BC440
BC441
BC460
BC461
BC477
BC478
BC479
BF 155
BF 158
BF 160
BF 161
BF 166
BF 167
BF 173
BF222
BF233
BF234
BF 257
BF258
BF259
BF271
BF 272 A
BF273
BF274
BF287
BF288
BF316A
BF324
BF454
BF455
BF 457
BF 458
BF 459
BF479
BF506
BF 509
BF516
BF657
BF658
BF659
BF679
BF679 M
BF680
new type
XXV
- --
-- ----._-
Type
Page
* M 252
* M253
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
SAJ 210
TAA550
TAA611 A
TAA 611 B
TAA 611 C
TAA 630 S
TAA 661
TBA231
TBA 271
TBA 311
TBA331
TBA 435
TBA 625 A
TBA625 B
TBA 625 C
TBA641 A
TBA641 B
TBA651
TBA 780
TBA800
TBA 810S
TBA 810 AS
TBA820
TCA 511
TCA 830S
TCA900
TCA910
TCA 940
TCA 940 E
TDA440
TDA 1054
TDA 1170
TDA 1190
TDA 1200
TDA 1270
TDA 1405
TDA 1410
TDA 1412
TDA 1415
TDA 1420
TDA 2010
TDA2020
Page
217
229
241
247
253
265
275
289
295
303
247
309
315
323
331
339
347
355
365
375
379
387
399
399
411
419
427
439
439
447
459
471
481
495
507
519
527
539
549
563
573
583
597
611
GERMANIUM TRANSISTORS
I
AF106
GERMANIUM MESA PNP
VHF MIXER/OSCILLATOR
The AF 106 is a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is
particularly designed for use as preamplifier mixer and oscillator up to 260 MHz.
ABSOLUTE MAXIMUM RATINGS
V eBO
VeEo
VEBO
Ie
Ptot
=
-25
Collector-base voltage (IE
0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ie
0)
Collector current
Total power dissipation at Tamb ~ 45°C
=
at
Tease ~
V
-18
V
-0.3
V
-10 mA
60 mW
60 mW
-30 to 75°C
90 °C
66°C
Storage temperature
Junction temperature
MECHANICAL DATA
Dimensions in mm
Shield lead connected to case
...
~
.
.
.
. ,
.
+,
0.45 m••
C-0017
TO-·72
Supersedes issue dated 7/68
3
5/73
AF106
THERMAL DATA
R'h j-case
Thermal resistance junction-case
max
400
R'h j-amb
Thermal resistance junction-ambient
max
750 °C/W
ELECTRICAL CHARACTERISTICS
Parameter
leso
(Tcase = 25°C unless otherwise specified)
Test conditions
Collector cutoff
current (IE = 0)
°C!W
Min. Typ. Max. Unit
Vea= -12V
-10 I1A
VeaR) eso Collector-base
breakdown voltage
(Ie
0)
Ie
= -100 I1A
-25
V
VeaR) ceo Collector-emitter
breakdown voltage
(Ia = 0)
Ic
= -500 itA
-18
V
Ie
= -100 itA
-0.3
V
-0.25 -0.325 -0.38
-0.28 -0.34 -0.4
V
V
=
V(BR)
ESO Emitter-base
breakdown voltage
(Ie = 0)
Vse
Base-emitter voltage
Ie
Ie
= -1 mA
= -2mA
Vce =-12V
VCE = -6 V
hFE
DC current gain
Ie
Ic
= -1 mA
= -2 mA
Vee =-12V
Vce = -6 V
fT
Transition frequency
Ie
f
= -1 mA Vee = -12 V
100 MHz
=
220
MHz
Ie
f
==
= -1 mA Vee = -12V
450 kHz
0.45
pF
-C re
NF
Reverse capacitance
Noise figure
rbb, Cb'c Feedback time
constant
Gob
Power gain
'"
20
Ie = -1 mA VeE =-12V
Rg = 60n f = 200 MHz
Ic
f
5.5
= -1 mA Vce =-12V
= 2.5 MHz
Ie = -3mA Ves= -i0V
RL = 9200
f
= 200 MHz
4
50
70
14
~
-
7.5 dB
6
ps
17.5
dB
AF109R
GERMANIUM MESA PNP
VHF PREAMPLIFIER
The AF 109R is a germanium mesa PNP transistor in a Jedec TO-72 metal case.
It is designed for use in AGC prestages up to 260 MHz.
ABSOLUTE MAXIMUM RATINGS
VeBO
VeEo
VEBO
Ie
Ptot
=
-20
V
-15
V
-0.3
V
-10 mA
60 mW
60 mW
-30 to 75 °C
Collector-base voltage (IE
0)
Collector-emitter voltage (18 = 0)
Emitter-base voltage (Ie
0)
Collector current
Total power dissipation at Tamb ~ 45°C
=
at
Tease ~
66°C
Storage temperature
Junction temperature
90
MECHANICAL DATA
°C
Dimensions in mm
Shield lead connected to case
..,
5.2 max
~
::l+1
j:
12.7min
J~
J
~E ~~
:t?~
x
C-OOTI
TO-72
Supersedes issue dated 6/68
5
5/73
AF109R
THERMAL DATA
Rth i-cas.
Rth i-amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
400 °C/W
750 °C/W
ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
Parameter
Test conditions
Iceo
Collector cutoff
current (IE = 0)
Vce= -20 V
ICEO
Collector cutoff
current (Ie = 0)
VCE = -15V
Emitter cutoff
current (Ic = 0)
VEe
,=
IEeo
-0.5
-0.3 V
-100 J1A
Base-emitter voltage
Ic
Ic
= -1.5 mA VCE = -12 V
= -2mA VCE = -6 V
hFE
DC current gain
Ic
Ie
= -1.5 mA VCE = -12 V
= -2mA VCE = -6 V
-C re
Reverse capacitance
Ic
f
= -1 mA VCE = -12 V
= 450 kHz
Gob
Noise figure
Power gain
Ic = -2mA
Rg = 60g
-320 -380 -430 mV
-320 -380 -430 mV
20
50
55
0.25
VCE = -12 V
f = 200 MHz
Ic = -2mA VCE = -12 V
REE = 1 kg
RL = 920g
f
= 200 MHz
6
-8 J1A
-500 J1A
VeE
NF
Min. Typ. Max. Unit
pF
4.8 dB
13
16.5
dB
AFl39
GERMANIUM MESA PNP
UHF AMPLIFIER
The AF 139 is a germanium mesa PNP transistor in a Jedec TO-72 metal case.
It is particularly designed for use in prestages as well as in mixer and oscillator stages
up to 860 MHz.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
V EBO
IE
Ic
Ptot
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ic = 0)
Emitter current
Collector current
Total power dissipation at Tamb
at
T stg
Tj
~
45°C
Tease ~
66°C
Storage temperature
Junction temperature
MECHANICAL DATA
-22
V
-15
-0.3
V
11
-10
60
60
-30 to 75
90
mA
mA
mW
mW
°C
°C
V
Dimensions in mm
Shield lead connected to case
..,
0
d
S.2 m• x
12.7min
. .
e
J.{)
J.{)
"e-
II
x
e
+1
..;f
Id
"e-
~
4
-e.
1==
O.4s max
C-OOI7
TO-72
7
6/68
I
AF139
THERMAL DATA
Rth
Rth
j-ease
j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS
Parameter
max
max
400 °C/W
750 °C/W
(Tease = 25°C unless otherwise specified)
Test conditions
Min. Typ. Max. Unit
Collector cutoff
current (IE = 0)
VCB = -22 V
-s
itA
Collector cutoff
current (Is = 0)
VCE = -15 V
-500
itA
Emitter cutoff
current (lc = 0)
VES = -0.3 V
-100
itA
hFE
DC current gain
Ic
= -1.5 mA VcE =-12V
fr
Transition frequency
Ie
ICBO
ICEO
IESO
f
-C re
Reverse capacitance
Ic
f
Nf
Noise figure
Ic
50
-
= -1.5 mA VcE =-12V
= 100 MHz
550
MHz
= -1.5 mA VcE =-12V
= 100 kHz
0.25
pF
= -1.5 mA VCE = -12V
f
= SOO MHz
7
S.2 dB
= -1.5 mA VCE = -12 V
= 2.5 MHz
3
ps
11
dB
10
RQ = 60Q
rbb• Cb' e Feedback time
constant
Ic
f
Gob
Power gain
Ic
= -1.5 mA VCE = -12V
= SOO MHz
RL =1.4kQf
8
9
AF239
GERMANIUM MESAPNP
UHF PREAMPLIFIER
The AF 239 'is :a germanium mesa PNP transistor in a Jedec TO-72 metal case. It is
particularly designed a'spreamplifiar mixer and oscillator up to 900 MHz.
ABSOLUTE MAXIMUM RATINGS
VCES
V CEO
VEao
Ic
P tot
=
Collector-emitter voltage (VaE
0)
Collector-emitter voltage (la = 0)
Emitter-base voltage (Ie
0)
Collector current
Total power dissipation at Tamb ~ 45°C
=
at
T stg
Tj
Tease ~
Storage temperature
Junction temperature
MECHANICAL DATA
66°C
-20
V
-15
V
V
-0.3
-10 mA
60 mW
60 mW
-30 to 75 °C
90 °C
Dimensions in mm
Shield lead connected to case
TO-72
9
6/68
I
'I
AF239
THERMAL DATA
Rth j-ease
Rth j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS
Parameter
ICES
leEo
IESO
max
max
400
750
°C/W
°C/W
(Tease = 25°C unless otherwise specified)
Test conditions
Min. Typ. Max. Unit
Collector cutoff
current (VSE = 0)
VeE = -20 V
-8 itA
Collector cutoff
current (16 = 0)
VeE = -15V
-500 itA
Emitter cutoff
current (Ie = 0)
VES :;: -0.3 V
-100 itA
VBE
Base-emitter voltage
Ie
Ie
:;: -2mA
= -5mA
VeE =-10V
VeE = -5 V
hFE
DC current gain
Ie
Ie
:;:-2mA
= -5mA
VeE =-10V
VeE = -5 V
Ie
f
:;: -2mA
VeE =-10V
= 100 MHz
700
MHz
Ie
f
= -2mA
VCE = -10 V
= 450 kHz
0.23
pF
fT
-C re
NF
Gob
Transition frequency
Reverse capacitance
Noise figure
Power gain
-350
-400
10
30
VcE =-10V
Ic = -2mA
Rg = 60n f. = 800 MHz
Ic = -2mA
RL = 2kQ f
10
VcE =-10V
= 800MHz
5
11
14
mV·
mV
-
6 dB
dB
AF 239S
GERMANIUM MESA PNP
UHF PREAMPLIFIER
The AF 239S is a germanium mesa PNP transistor in a Jedec TO-72 metal case.
It is particularly designed as preamplifier, mixer and oscillator up to 900 MHz.
ABSOLUTE MAXIMUM RATINGS
= 0)
= 0)
V CES
Collector-emitter voltage (VeE
~20
V
VCEO
VEeo
Collector-emitter voltage (Ie
~15
V
Ic
P tot
=
Emitter-base voltage (lc
0)
Collector current
Total power dissipation at Tamb
at
~
45°C
Tease ~
66°C
~0.3
V
~10
mA
60 mW
60 mW
-30 to 75°C
Storage temperature
Junction temperature
90
MECHANICAL DATA
°C
Dimensions in mm
Shield lead connected to case
..,
0
d
5.2m..
+1
12.7min
II
x
~
E
-,
~
~
d
:e-
1==
~
;,;
j==:I
0.45 max
C-0017
TO-72
11
6/68
AF239S
THERMAL DATA
Rtll j-c...
Thermal' resi$ta(l(:,e, ju,nction-case
Rlh j-amb
Therma'i resi&tan.ce junction-ambient
ELECTRICAL CHARACTERISTICS
max
max
(Teas. =: 25
ac
uo'ess otherwise $pecified)
Test conditions
Parameter
400 oCM
750 °C/W
Min. Typ. Max. Unit
CQ.lIect.or cu.toff
current (V BE' = Q)
: VeE = -20V
-8. !-IA
Collector cutoff
current(1B =: Q}
I
= -15 V
-500 !-LA
' ' 60
Emitter cutoff
cummt (Ie
0)-
. VEe
-0.3 V
-100 p,A
VBE
BaS$-emitter voltage
ICES
leEQ,
hFE
fT
-Cre
NF
=
DC current gain
Transition freqt:.lency
Reverse capacitance
Noise figure
VeE
Ie
= -2mA VcE =-1QV
Ie
"'" -5mA
VCE :;:: -5V
Ie
= -2mA
VCE
'e
= -SmA Vee
Ie
= -2mA
f
=;;
Ic
f
= 450 kHz
Power gain
=:
-10V
= -10V
-350
-400
10
30
= -2mA
mV
mV
-
VeE = -10V
100 MHz
Ie = -1 rnA
'\ = 60n
f
G pb
=;;
780
MHz
0.2
pF
VCE. = -10V
VCE
= -10 V
= 800 MHz
5 dB
=
-i0V
Ie ::;: -2mA VCE
R9 =60n
RL = 2kO
f
=: 800 MHz
12
12.5
15
dB
I
Sll.:lCON TRANSISTORS
13
Be 107
Be 108
Be 109
SILICON PLANAR NPN
LOW NOISE GENERAL PURPOSE AUDIO AMPLIFIERS
The BC 107, BC 108 and BC 109 are silicon planar epitaxial NPN transistors in TO-18
metal case. They are suitable for use in driver stages, low noise input stages and
signal processing circuits of television receivers.
The complementary PNP types are respectively the BC 177, BC 178 and BC 179.
ABSOLUTE MAXIMUM RATINGS
Veso
Veeo
VESO
IBC 107/BC 10BIBC 109
=
Collector-base voltage (Ie
0)
Collector-emitter voltage (Is
O)
Emitter-base voltage (Ie
Collector current
=
= 0)
illS"
45V
6V
-
~"
20V
20V
5V
5V
...... ---------.--~
100 rnA
0.3W
0.75W
Ie
P tot
Total power dissipation at T.mb """ 25 °C
T stg
Storage temperature
-55 to 175 °C
Tj
Junction temperature
175°C
at Te • se """ 25 °C
MECHANICAL DATA
Dimensions in mm
(aim. to TO-18)
15
4/73
I
Be 107
Be 108
Be 109
THERMAL DATA
Rth j-case
Rth j-amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
200
500
°C/W
°C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
leso
Collector cutoff
current (IE = 0)
Test conditions
1d7
for Be
VCB = 40V
Vcs = 40V Tamb = 150°C
for Be 108 - Be 109
Vcs = 20V
Vcs = 20 V Tamb = 150°C
V (BR)CSO Collector-base
breakdown voltage
(IE = 0)
Ic
VCBR)CEO 'Collector-emitter
breakdown voltage
(lB ~ 0)
Ic
VeE!sat)' Collector-emitter
saturation voltage
VBE "
Base-emitter voltage
VBE(sat)" Base-emitter
saturation voltage
IE
15 nA
15 [lA
15 nA
15 p,A
= 10.[lA
for
for
for
Be 107
Be 108
Be 109
50
30
30
V
V
V
for
for
for
Be 107
Be 108
Be 109
45
20
20
V
V
V
for
for
for
Be 107
Be 108
Be 109
6
5
5
\j
=10mA
VCSR1ESO Emitter-base
breakdown voltage
(Ic = 0)
Min. Typ. Max. Unit
= 10p,A
Ic
Ic
= 10mA 'B
= 100 rnA 'B
Ic
Ic
= 2mA
= 10mA
Ic
Ic
= 10mA Is
= 100mA Is
16
= 0.5 rnA
= SmA
VCE = 5 V
VCE = 5V
= 0.5 rnA
= 5mA
550
V
V
70
200
250 mV
600 mV
650
700
700 mV
770 mV
750
900
mV
mV
Be 107
Be 108
Be 109
ELECTRICAL CHARACTERISTICS
hFE
.
(continued)
Test conditions
Parameter
DC current gain
Ie
= 2mA
for
"for
for
for
for
for
for
for
for
for
Ie
= 10)J.A
for
for
for
for
for
for
for
for
for
for
hfe
CeBo
Small signal
current gain
Collector-base
capacitance
• Pulsed: pulse duration
= 300 I-tS.
= 2mA
VeE = 5 V
Be 107
Be 107 Gr.
Be 107 Gr.
Be 108
Be 108 Gr.
Be 108 Gr.
Be 108 Gr.
Be 109
Be 109 Gr.
Be 109 Gr.
VeE = 5 V
Be 107
Be 107 Gr.
Be 107 Gr.
Be 108
Be 108 Gr.
Be 10~ Gr.
Be; 108 Gr.
Be 109
Be 109 Gr.
Be 109 Gr.
Min. Typ. Max. Unit
110
A 110
B 200
110
A 110
B 200
C 420
200
B 200
C 420
A
B 40
A
B 40
C 100
70
B 40
C 100
= 1 kHz
Ie
f
for Be 107
for Be 107 Gr. A
for Be 107 Gr. B
for Be 108
for Be 108 Gr. A
for Be 108 Gr. B
for Be 108 Gr. C
for Be 109
for Be 109 Gr. B
for Be 109 Gr. C
= 10mA VeE = 10V
= 100 MHz
!E
f
= 1 MHz
-
-
250
190
300
370
190
300
500
370
300
550
2
-
-
-
-
-
-
-
-
VeB = 10V
=0
17
120
90
150
120
90
150
270
210
150
270
450
220
450
800
220
450
800
800
450
800
VeE = 5 V
Ie
f
duty factor
230
180
290
350
180
290
520
350
290
520
= 1%
4
6 pF
I
BC 107
BC 108
Be 109·
ELECTRICAL CHARACTERISTICS
Parameter·
CEBO
NF
hie
Emitter-base
capacitance
Noise figure
Input impedance
Test conditions
Ie
f
Reverse voltage ratio
=0
= 1 MHz
Min. Typ. Max. Unit
VES = 0.5 V
Ie = 0.2 rnA VeE = 5 V
f
= 1 kHz
Rg = 2 kn
B = 200 Hz
for Be 107
for Be 108
for Be 109
Ie = 0.2 rnA VeE = 5 V
Rg = 2 kn
f
= 10Hz to 10kHz
B = 15.7 kHz
for Be 109
Ie
f
h re
(continued)
Ie
f
= 2mA
= 1 kHz
for
for
for
for
for
for
for
for
for
for
= 2mA
= 1 kHz
for
for
for
for
for
for
for
for
for
for
18
11.5
pF
2
2
1.5
10 dB
10 dB
4 dB
1.5
4 dB
4
3
4.8
5.5
3
4.8
7
5.5
4.8
7
ill
ill
VeE = 5 V
Be 107
Be 107
Be 107
Be 108
Be 108
Be 108
Be 108
Be 109
Be 109
Be 109
Gr. A
Gr. B
Gr. A
Gr. B
Gr. C
Gr. B
Gr. C
kn
kn
kn
kn
kn
k!l
kn
kn
VeE = 5 V
Be 107
Be 107
Be 107
Be 108
Be 108
Be 108
Be 108
Be 109
Be 109
Be 109
Gr. A
Gr. B
Gr. A
Gr. B
Gr. C
Gr. B
Gr. C
2.2 x 10-4
1.7 x 10-4
2.7 x 10-4
3.1 x 10-4
1.7 x 10-4
2.7 x 10-4·
3.8 x 10-4
3.1 x 10-4
2.7 x 10.4
3.8 x 10-4
-
-
-
-
Be 107
Be 108
Be 109
ELECTRICAL CHARACTERISTICS
Test conditions
Parameter
hoe
(continued)
Output admittance
Ic
f
= 2mA
= 1 kHz
VCE
for
for
for
for
for
for
for
for
for
for
Typical output characteristics
(for Be 107 only)
us 0
[mAl
0.35 mA
80
0.30 mA
_I
,
.1
0.24 mA
0.16 mA
40
,
I
0.121mA
J
0.08 mA
o.oJ mA
20
.I
0,04 rnA
IB= 0
18 =·0
8
I
bO
0. .15 mA
4
I
I
1.
o
GS 002:
I
0.20 mA
0.10 mA
a
Gr. B
Gr. C
0.28 mA
80
0.20 mAl
20
Gr. A
Gr. B
Gr. C
!lS
!lS
!lS
!lS
!lS
!lS
!lS
!lS
!lS
llS
I,;
(rnA)
I
I
20
13
26
30
13
26
34
30
26
34
Gr. A
Gr. B
Typical output characteristics
(for Be 108 only)
1
40
=5V
Be 107
Be 107
Be 107
Be 108
Be 108
Be 108
Be 108
Be 109
Be 109
Be 109
ri.25 mA
60
Min. Typ. Max. Unit
12
16
o
a
VeE (V)
19
12
16
VeE IV)
I
Be 107
Be 108
Be 109
Typical output characteristics
(for Be 109 only)
DC transconductance
(i
Ie
0023
Ie
(rnA)
I
(rnA)
GS 0024
-
-
0:.20 rnA
I
Vee 5V
8
0.161rnA
I
I
60
40
o.o~J
20
0.01 rnA
lh '"
0.1
0,12 rnA
:fi
TYP.
'/
0.01
I '/
I
o
I
IS =0
0.001
12
DC normalized current gain
a
/I
0.2
0.6
0.4
0.8 V" (V)
Collector-emitter saturation voltage
0
11=IJtl
e
B
VeE (satl
(mV)
160
-
-45°C
II
'--
120
.. -
--
j
80
....
II
1.
I
10
1-1-.
--
/.
/
40
0.01
Ie (rnA)
20
0.1
10
IdmA)
Be 107
Be 108
Be 109
Collector-base capacitance
Transition frequency
, nno
t,
J
IE=O- f-1
(pFI
(MHzI f--V
CE
200
!\
= 10V
/
\
I
i\
\
0028
1 In T
1/
180
"
..........
r--
ii
160
i
I
10-.
\
V
140
/
j
120 f--
1/
100
12
16
Vr.s (VI
0.1
Noise figure (for BC 109 only)
10 ["::
J".-
~55
R ~~%>
""'"
2dB
f = 100Hz
""" K
1 B ~ 20 Hz
0.00 1
10
"f",
0.01
l"\
IJ 1\\
-~
~
7dB
0.1
5dB
~
1
1
P'J
VeE
f
V
"t-H
6dB
o. 1
21
I"-
K I......
f\~ l'-... t'-.
~ ~ t'-.
5V
"I'-..
1'-.
B - 200 Hz
0.01
~
:5;60'. ,-
"- O'&<}
~
I\-
-,
j>,,:~&
I'\:
1'\
~
1\
J'..,
J'..,
........
"\
rT
K dB.
i'.
= 1KHz
0.001
Ie (mAl
1"- ~
"-
i'-..
~
1\ l\\
)
II
~ t--:: t--.. .. ~
4dB
5V
""'" "
,
~
~ ~~:'1'-..
VCE
uS 0030
i'.
[\ ~ [\f\
~ 1'-. I' "'"
O.
Rg
(k II )
I'\. l'\.'\ ~_ f--
"-
,
0"0,
'\.
~ 1'-..."
1
Noise figure (for BC 109 only)
1\..'\ f\ f\~
Rg
(k!lI ,
Ie (mAl
10
2dB
lL
3
B.~
t-
........ t-
4dB
7d\;' ~B ....
~dlB
1'....
0.1
1,(mAI
BC 107
BC 108
BC 109
Noise figure (for Be 109 only)
Power rating chart
GS 003
Rg
Ik 11 I
10
VeE
J~
........
......
(mW)
,S,
'~
250
~ )~
f ~ 10 Hz to 10kHz
B~~lkHZ
"'"
................
......
Plot
. . . . . ~ ~~N6.y;:-
........
"'\
I
'\
f'.....1:5dB
............ r-.,
r--... ......:-- ...........
~ r--... ................... I--
200
"'-'
150
\
......
-.......
---r--::--
7dB ...........
0.1
0.01
0.1
r-~
'"1"'-
'" '"
I"\.. ~
~1'~~
is.-9/1'
................
2dB
GS 0032
'\.
100
/
3d B ----;:;:;
4dB
50
~
"-r'\..
50
22
"
'\.
o
ic(mA)
75
100
125
T.m' (OC)
BC 113
BC 114
SILICON PLANAR NPN
HIGH GAIN, LOW NOISE AUDIO AMPLIFIERS
The BC 113 and BC 114 are silicon planar NPN transistors in TO-18 epoxy package.
They are specifically designed for use in low-noise audio preamplifiers.
ABSOLUTE MAXIMUM RATINGS
VCBO
Collector-base voltage (IE = 0)
VCEO
VEBO
Collector-emitter voltage (Is = 0)
Emitter-base voltage (lc = 0)
Ic
Collector current
PtO!
Total power dissipation at Tamb
at
Tstg
Tj
30
~
25 °C
Tcase ~
25 °C
Storage temperature
Junction temperature
MECHANICAL DATA
V
V
30
6
V
50 mA
200 mW
500 mW
-55 to 125 °C
125 °C
Dimensions in mm
~~'~ ~I
~
C
B
10-18 epoxy
23
5/73
I
BCl13
BC 114
THERMAL DATA
Rth j-case
Rth j-amb
Thermal resistance junction-case
Thermal resistance J'unction-ambient
ELECTRICAL CHARACTERISTICS (Tamb
Collector cutoff
current (V BE
0)
=
200
°C/W
max
500
°C/W
unless otherwise specified)
Test conditions
Parameter
ICES
= 25°C
max
Min. Typ. Max. Unit
VCE
VCE
= 20V
= 20V
VCBR)CEO'Collector-emitter
breakdown voltage
(Is
0)
Ic
= 10mA
30
V
VCBR) cBoColiector-base
breakdown voltage
(IE
0)
Ic
= 10 IlA
30
V
VCBR) EBO Emitter-base
breakdown voltage
(lc = 0)
6
V
=
=
Tamb
IE
= 10 IlA
VBE
Base-emitter voltage
Ic
= 1 mA
VCE
hFE
DC current gain
Ic
Ic
Ic
Ic
= 10 IlA
100 IlA
1 mA
10mA
VCE
V
VCE
5V
VCE = 5 V
VCE
5V
for BC 113
for Be 114
fr
CCBO
NF
Transition frequency
Collector-base
capacitance
Noise figure
Ic
=
=
=
= 1 mA
IE
=0
Ic
= 10IlA
Rg = 10 kn
B
=5V
=.5
=
0.64
120
200
0.7
1000
200
400
400
60
70
100
100
V
-
170
250
=
-
-
-
=
VCE
5V
for Be 113
for Be 114
=5V
VCE = 5 V
VCB
MHz
MHz
2.7
4
2.5
1.5
dB
3 dB
pF
f = 1 kHz
= 200 Hz
for Be 113
for Be 114
• Pulsed: pulse duration
50 nA
5 IJ.A
= 65°C
300 IJ.s, duty factor
24
= 1%
Be 115
SILICON PLANAR NPN
AUDIO DRIVER
The BC 115 is a silicon planar epitaxial NPN transistor in a TO-39 epoxy package.
It is particularly suited for use in audio driver circuits.
ABSOLUTE MAXIMUM RATINGS
VCBC>
Collector-base voltage (IE
==
0)
VCEO
VEBO
Collector-emitter voltage (IB
==
Emitter-base voltage (Ic
==
0)
0)
Ie
Collector current
P,ot
Total power dissipation at Tamb
T stg
Storage temperature
Tj
Junction temperature
~
25°C
at Tca.. ~ 25 °C
40
V
30
V
V
5
200 mA
0.3 W
0.8 W
-55 to 125
125
MECHANICAL DATA
°C
°C
Dimensions in mm
5.1
TO-39 epoxy
Supersedes issue dated 5/73
25
6/75
Be 115
THERMAL DATA
Rth j-case
Rth j-amb
ELECTRICAL CHARACTERISTICS
Parameter
ICBO
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
VCB = 20V
VCB = 20V
Tamb
==
= 100
V (BR)CEO'Collector-emitter
breakdown voltage
(lB = 0)
Ic
V(SR) ESO Emitter-base
breakdown voltage
(lc = 0)
Ic
=
Ic
Is
= 100 rnA
= 10mA
Ic
Ic
=10mA VCE = 10 V
= 100 rnA VCE = 10V
Ic
IB
= 100mA
= 10mA
Ic
Ic
Ic
Ic
=
=
=
=
Ic
= 10mA
VCE = 10V
IE
f
=0
= 1 MHz
Vcs = 10 V
Base-emitter voltage
VSE (sat)' Base-emitter
saturation voltage
hF~
,
fT
Ccso
DC current gain
Transition frequency
Collector-base
capacitance
, Pulsed: pulse duration
-
100 nA
5 [1A
65°C
Ic
VSE
°C/W
Min. Typ. Max. Unit
V(BR) cBoColiector-base
breakdown voltage
(IE = 0)
VCE (sat)' Collector-emitter
saturation voltage
°C/W
(T amb = 25°C unless otherwise specified)
Test conditions
Collector cutoff
current (IE = 0)
125
330
40
V
= 30 rnA
30
V
10~A
5
V
~A
0.4
=
300 [1s, duty factor = 1%
26
0.65
0.75
0.8
100~A VCE = 10V
1 mA
VCE = 10 V
10mA VCE = 10 V
100mA VCE
10V
1
50
100
50
95
145
170
150
V
V
0.9
400
V
MHz
80
12
V
25
pF
Be 116A
SILICON PLANAR PNP
GENERAL PURPOSE TRANSISTOR
The BC 116A is a silicon planar epitaxial PNP transistor in a TO-39 epoxy package.
It is designed as general purpose device for application over a wide range of collector
current.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
Ptot
Collector-base voltage (IE = 0)
Collector-emitter voltage (IB = 0)
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tamb ~ 25°C
at Tcase ~ 25°C
MECHANICAL DATA
-45
V
V
-40
-5
V
-500 mA
W
W
0.3
0.8
Dimensions in mm
5.1
c
TO-39 epoxy
27
5/73
I
Be 116A
THERMAL DATA
Rth j.case
Rth j.amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
125 °C/W
330 °C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Test conditions
Parameter
Collector cutoff
current (IE = 0)
ICBO
VCB = -20 V
VCB = -20V
Min. Typ. Max. Unit
-100 nA
:..10 ~A
Tamb = 75°C
V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
Ic
= -10 itA
-45
V
V(BR)CEO* Collector-em itter
breakdown voltage
(lB = 0)
Ic
= -10mA
-40
V
V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)
Ic
= -10 itA
-5
V
Ic
Ic
= -SOmA IB = -S rnA
= -150 rnA IB = -15 rnA
Ic
Ic
= -10 rnA VCE
= -50 rnA VCE
Ic
Ic
= -SOmA IB
= -150 rnA IB
Ic
Ic
Ic
Ic
= -100 itA VCE = -10 V
= -10 rnA VCE = -1 V
= -SOmA VCE = -1 V
= -150 rnA VCE = -10 V
Ic
= -30 rnA
VCE
IE
f
=0
= 1 MHz
VcB =-10V
VCE
(sat)*
VBE *
VBE
(sat/
hFE
Collector-emitter
saturation voltage
Base-emitter voltage
Base-emitter
saturation voltage
DC current gain
fT
Transition frequency
CCBO
Collector-base
capacitance
V
V
= -10 V
= -1 V
-0.70
-0.75
-1
V
V
= -SmA
= -15 rnA
-0.80
-1
-1.3
V
V
• Pulsed: pulse duration = 300 ~s. duty factor = 1%
28
-0.25
-0.40
= -10V
30
60
60
80
90
150
150
150
130
200
5
-
240
MHz
10 pF
Be 119
SILICON PLANAR NPN
AUDIO OUTPUT AMPLIFIER
The BC 119 is a silicon planar epitaxial NPN transistor in a TO-39 metal case. It is
suitable for 1 W class "A" and up to 6 W class "B" audio output stages and is available
as a pair 2 BC 119.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
P,o,
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
Total power dissipation at Tamb ~ 25°C
at Tease ~ 25°C
at Tease ~ 100°C
T"g
Tj
Storage temperature
Junction temperature
60
V
30
V
V
5
5
2.8
-55 to 200
200
MECHANICAL DATA
W
W
W
0.8
°C
°C
Dimensions in mm
(sim. to TO-39)
29
5/73
Be 119
THERMAL DATA
Rth j-case
Thermal resistance junction-case
Rth j-amb
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS
(Tamb
= 25°C
Collector cutoff
current (IE
0)
=
V CB
VCB
= 40V
= 40V
T amb
35
220
°C/W
°C/W
unless otherwise specified)
Test conditions
Parameter
ICBO
max
max
Min. Typ. Max. Unit
100 nA
20 p.A
= 150°C
V(BR) cao Collector-base
breakdown voltage
(IE
0)
=
Ic
= 100 itA
60
V
VCEO(sus)' Collector-emitter
sustaining voltage
(la
0)
Ic
= 30 rnA
30
V
V(BR) EBO Emitter-base
breakdown voltage
0)
(lc
IE
= 100 itA
5
V
Ie
Ic
Ic
= 150 rnA la = 15 rnA
= 500 rnA IB = SOmA
=1A
la = 100 rnA
0_15
0_4
0.8
0_35
Ie
Ic
= 500 rnA VCE = 10V
= 150 rnA VCE = 1 V
1
0.85
1.8
1
V
V
Ie
Ic
= 150 rnA la = 15 rnA
=1A
IB = 0.1 A
0.9
1.4
1.2
2
V
V
Ic
Ic
Ic
= SOmA VCE == 1 V
= 150 rnA VCE =1 V
= 500 rnA VcE =10V
100
90
60
120
=
=
VCE (sat)' Collector-emitter
saturation voltage
VaE
,
Base-emitter voltage
VBE (sat)' Base-emitter
saturatior. voltage
hFE'
DC current gain
hFE/hFE2
Matched pair
Ic
= 300 rnA VCE = 5 V
fT
Transition frequency
Ic
= SOmA
VCE = 10V
Ccao
Collector-base
capacitance
IE
=0
Vca = 10V
, Pulsed: pulse duration
= 300 p.s,
duty factor
30
= 1"10
40
40
25
1.1
1.5
V
V
V
-
1.4
MHz
40
12
25
pF
BC 125
BC 125B,
SILICON PLANAR NPN
AUDIO DRIVERS
The BC 125 and BC 125 B are silicon planar epitaxial NPN transistors in TO-39 epoxy
package. They are designed for use as audio drivers.
ABSOLUTE MAXIMUM RATINGS
BC 125
BC 125 B
50V
5 V
60V
6 V
= 0)
= 0)
VeBo
Collector-base voltage (IE
VEBO
Emitter-base voltage (Ie
VeEo
Collector-emitter voltage (lB = 0)
Ie
Collector current
PtO!
Total power dissipation at
Tamb ~
25 °C
at
Tease ~
25 °C
30 V
0.5 A
0.3 W
Storage temperature
0.8 W
-55 to 125 0 C
Junction. temperature
125 0 C
MECHANICAL DATA
Dimensions in mm
x
5.1
6.1max
min
~ '-_1---:~-:..-:..:::__1_2---,7"= ~I
E
II
t==
F===I
M
00
III
=i:
II
"9-
P039-A
TO-39 epoxy
31
5/73
I
BC 125
BC 125B
THERMAL DATA
Rth
Rth
j-case
j-amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
= 25°C
ELECTRICAL CHARACTERISTICS (T amb
Parameter
Icao
unless otherwise specified)
Test conditions
Collector cutoff
current (IE = 0)
Ic
VCEO(sUS)"Colleotor-emitter
sustaining voltage
(la == 0)
Ic
= 30mA
V(aR) EaoEmitter-base
breakdown voltage
(lc = 0)
Ic
= 10j.tA
for Be 125
for Be 125 B
VCE (sat)" Collector-emitter
saturation voltage
for Be 125
Ic = 150 mA
la = 15mA
for Be 125 B
Ic = 150 mA
la = 15mA
500mA
Ic
la = 50mA
=
= 300 j.tS,
0.5
109 nA
20 !J.A
0.5
100 nA
20 !J.A
= 10j.tA
for Be 125
for Be 125 B
" Pulsed: pulse duration
Min. Typ. Max. Unit
for BC 125
Vca = 20V
Vca = 20V T.mb = 75°C
for Be 125 B
Vca = 40V
Vca = 40V Tamb = 75°C
V(aR) caoColiector-base
breakdown voltage
(IE = 0)
125 °C/W
330 °C/W
duty factor
32
= 1%
50
60
V
V
30
V
5
6
V
V
0.2
2.5
V
0.15
0.25
V
0.4
0.8
V
BC 125
BC 125B
ELECTRICAL CHARACTERISTICS
Parameter
Base-emitter voltage
VBE
Base-emitter
saturation voltage
hFE *
Min. Typ. Max. Unit
Test conditions
VBE*
(sat)-
(continued)
DC current gain
fT
Transition frequency
CCBO
Collector-base
capacitance
Ic
= SOmA
for
Ic
IB
for
Ic
IB
Ic
IB
Be 125
= 150 mA
= 15mA
for
Ie
Ic
Ic
Ic
Be 125
= 1 mA
= 10 mA
= SOmA
= 150 mA
Ic
Ic
for
Ic
Ic
Ic
Ic
= 1 mA
=10mA
Be 125 B
= 1 mA
= 10 mA
= SOmA
= 150 mA
Be 125 B
= 150 mA
= 15mA
= 500 mA
= SOmA
VCE
VCE
VCE
VCE
VCE
VCE
=
=
=
=
=
=
1V
1V
1V
1V
10 V
10 V
Ic
VCE = 1V
VCE = 1V
VCE = 1V
VCE = 1V
= 500 mA VCE = 10V
Ic
= SOmA
VCE = 10 V
IE
f
=0
= 1 MHz
VCB = 10 V
for Be 125
for Be 125 B
* Pulsed: pulse duration
0.72
VCE = 1 V
300 J,l.S, duty factor
33
= 1%
30
30
25
30
45
40
1
1.3
V
0.87
1
V
1.1
1.3
V
-
50
70
75
60
55
75
85
100
95
80
70
200
V
350
6
5
-
-
-
-
120
MHz
12 pF
8 pF
I
Be 125 ..
'·,BC125B"
DC current gain (for BC 125 B only)
Typical output characteristics
(for BC 125 B only)
GS 0063
Ie
4.5mA
i// ~
250
.
J
50
2mA
,...
o iI'
o
1~A
60
I
40
VeE(sat )
........
\
I'\..
1/.....
r\
20
I
I
0.4
0.6
10
0.8 VeE (V)
Collector-emitter saturation voltage
0.5
"
0.5mA
IS= 0
0.2
0
V . . . .... ........"
80
1.5mA
'f//// V
'(J//
~
............ :.-. 100
2.5mA
fh'/~ V
100
120
3mA
1.'//V
15 6
J5 6
0
3.5mA
/1/ /'
'f/J . /
1'50
VCE=1V
4mA
h'/'
200
G
hFE
V
(mA)
GS
100 Ie {mAl
Power rating chart
on 65
GS 0066
I III
(W)
IC-10IS
(V)
V
0.1
0.05
0.3
"-
/
V
I'-.
0.2
It
"'-
~~~
~
0.1
0.01
0.1
q"
"- ~
o
10
25'
100 Ie {mAl
34
50
75
,
100 T~mb (OC)
Be 126
SILICON PLANAR PNP
AUDIO DRIVER
The BC 126 is a silicon planar epitaxial PNP transistor in a TO-39 epoxy package.
It is designed for audio driver applications. The complementary NPN type is the BC 125.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
P tot
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tamb ~ 25°C
at Tease ~ 25°C
T stg
Tj
Storage temperature
V
-30
-5
V
-0.5
A
0.3
W
W
V
0.8
-55 to 125
°C
125
°C
Junction temperature
MECHANICAL DATA
-35
Dimensions in mm
.
x
'"
~ .-_+--6-,..1~m=a=X~_ _12---,7== ~
4
1===
E
C'"l
II
a:j
-e.
II
F=
P039-A
c
TO-39 epoxy
35
5/73
I
Be 126
THERMAL DATA
Rth j-case
Rth j-amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
125 °C/W
330 °C/W
ELECTRICAL CHARACTERISTICS (T amb = 25 0 C unless otherwise specified)
Test conditions
Parameter
IC60
Col/ector cutoff
current (IE
0)
=
Min. Typ. Max. Unit
VC6
VC6
= -20V
= -20V
VC6R ) C60 Col/ector-base
breakdown voltage
(IE = 0)
Ic
= -10 JlA
-35
V
VC6R ) CEO Col/ector-emitter
breakdown voltage
(16 =0)
IC
= -10 mA
-30
V
VC6R ) E60 Emitter-base
breakdown voltage
(lc = 0)
IE
= -10 JlA
-5
V
Ic
16
Ic
16
= -50 mA
= -5mA
-0.25
V
= -150 mA
= -15 mA
-0.50
V
Ic
= -50mA VCE
-0.75
-1
V
Ic
16
Ic
16
:;;:
::;
=
=
-1
-1.3
V
Ic
Ic
-50mA VCE
-1 V
= -150 mA VCE = -1 V
Ic
= -50 mA VCE
= -20 V
IE
f
=0
1 MHz
= -10V
VCE (sat) Col/ector-emitter
saturation voltage
V6E
Base-emitter voltage
V6E Csatl Base-emitter
saturation voltage
hFE
DC current gain
fT
Transition frequency
CC60
Col/ector-base
capacitance
-100 nA
-20 p,A
Tamb = 75°C
= -1 V
-150 mA
-15 mA
-50mA
-5mA
-0.8
=
=
=
36
Ve6
30
30
80
60
200
5
V
-
120
MHz
pF
Be 132
SILICON PLANAR NPN
AUDIO AMPLIFIER
The BC 132 is a silicon planar NPN transistor in a TO-18 epoxy package. It is suitable
for low level audio stages and direct coupled circuits.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Collector-base voltage (IE
Ie
Collector current
P tot
Total power dissipation at Tamb
T stg
Tj
Storage temperature
Collector-emitter voltage
Emitter-base voltage
:=
0)
(lB :=
(lc :=
0)
6
~
20 rnA
0.2 W
0.5 W
25°C
at Tease ~ 25°C
-55 to 125
°C
125
°C
Junction temperature
MECHANICAL DATA
Dimensions in mm
2.54.
6.9max
10.2 min
~
~ ~l (r--=-~~
'l'
C
V
V
V
30
25
0)
__
B
P040-A
_
TO-18 epoxy
37
5/73
Be 132
THERMAL DATA
Rth i-case
Rth j-am~
ELECTRICAL CHARACTERISTICS
Collector cutoff
current (IE = O)
200
°C/W
500
°C/W
(T amb = 25°C unless otherwise specified)
Test conditions
Parameter
ICBO
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
VCB = 5 V
VCB = 5 V
Min. Typ. Max. Unit
100 nA
3 IJ.A
Tamb = 65°C
V(BR) cBoColiector-base
breakdown voltage
(IE = O)
Ic
= 100 itA
30
V
V(BR) CEQ Collector-emitter
breakdown voltage
(lB = O)
Ic
= 10mA
25
V
V(BR) EBOEmitter-base
breakdown voltage
(Ie = O)
IE
= 100 itA
6
V
Ic
IB
= 1 mA
=0.1 mA
Ic
Ie
= 50 itA
= 1 mA
VeE = 10 V
VeE = 10 V
IE
=0
VeB = 5 V
VCE (sat) Collector-emitter
saturation voltage
hFE
CCBO
DC current gain
Collector-base
capacitance
38
0.35
V
300
-
50
60
2.2
4 pF
Be 139
SILICON PLANAR PNP
AUDIO OUTPUT AMPLIFIER
The BC 139 is a silicon planar epitaxial PNP transistor in a TO-39 metal case. It is
particularly designed for use in audio output and driver stages. The complementary
NPN type is the BC 119.
ABSOLUTE MAXIMUM RATINGS
==
0)
Collector-emitter voltage (Ie
==
Vceo
VCEO
VEeo
Ie
Collector-base voltage (IE
P tot
Total power dissipation at Tamb
Emitter-base voltage (Ie
Collector current
Tstg
Storage temperature
Tj
Junction temperature
-40
-40
V
V
-5
-0.5
A
25°C
0.7
W
at Tease ~ 25°C
3
-55 to 200
==
0)
0)
~
200
MECHANICAL DATA
V
W
°C
°C
Dimensions in mm
(sim. to TO-39)
39
5/73
I
8C139
THERMAL DATA
Rto j-case
Rto j-amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
58
250
°C/W
°C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
IcBO
Test conditions
Collector cutoff
current (IE
0)
=
VCB
VCB
= -30 V
= -30 V
Tamb
Min. Typ. Max. Unit
-100 nA
-'50 p.A
= 75°C
"
V(BR) cBoColiector-base
breakdown voltage
(IE
0)
Ic
= -10J.tA
-40
V
V(BR)CEO 'Collector-emitter
breakdown voltage
0)
(Is
Ic
= -10 mA
-40
V
V(BR) ESO Emitter-base_
breakdown voltage
(lc =0)
IE
= -10 J.tA
-5
V
Ic
IB
Ic
Is
= -300 mA
=
=
VCE (sat) Collector-emitter
saturation voltage
VSE
Base-emitter voltage
• Pulsed: pulse duration
= 300 J.tS,
= -30 mA
= -500mA
= -SOmA
=
=
=
=
=
-10 mA
Ic
VCE = -10V
-100 mA
Ic
VCE
-10V
-300 mA
Ic
VeE
-1 V
duty factor
40
= 1%
-0.45
-0.8
V
-1
V
-0.7
V
-0.77
V
-0.97
V
Be 139
ELECTRICAL CHARACTERISTICS
hFE
Parameter
.
(continued)
Min. Typ. Max. Unit
Test conditions
Ie = -10 rnA
VCE
-10V
-100 rnA
Ic
VCE
-10V
Ic =:: -150 rnA
VeE
-1 V
-300 rnA
Ie
VCE =:: -1 V
DC current gain
=
=
=
40
=
=
fT
Transition frequency
CCBO
Collector-base
capacitance
• Pulsed: pulse duration
Ic
=:: -50 rnA VCE =:: -10 V
IE
f
= 1 MHz
=::0
,>~ :::~
J
,.......l~
(mA)
4QO
11'- ~
JV _ -r:c~
-
r
300
'V
200
100
o
i-""'"
J/ V
f
,
1//V
o
13\\11'-
I-- ..-
2
45
-
35
200
MHz
pF
=1
%
(;:;
,
I J
....... I--
-
~
400
Ve ,
IV
-1 V
¥! /
~~J
.::;j,,'
"
I--I-I--
-
ou~,,,
i
1/
I--
300
-
4 \1)1'-
J / 1/
if/ /
200
I,! 2n'~
!J /
.-
3
-
DC transconductance
\l'
--r\"
r-
90
6
300 (.1s, duty factor
-
-
VCB =:: -10 V
Typical output characteristics
-Ie
20
90
-
o
4
h 'l
lOa
-VeE (V)
0.6
41
~~
~V
0.7
O.~
0.9
1.1 -V",IV)
Be 139
DC normalized current gain
Base-emitter voltage
GS 006
I I
Ic=-~O mA _
1
Vc,=-l V
0.8
"-
/'"
""",
.'" "
)'f"'"
0.8
o
25
50
~
~
1"r\\
.\
'\
NORMALIZATION
at
I
1,=-100 mA
V,,=-lOV
,/
hfE= 1
0.6
"
25 1,c
;;;;...;.
!;'V
/
'""
,d
"".
r-...
0.7
0.65
j"
~
0.75
45i
~
1.2
~
0.4
1,
'10
100
-I.e imA)
Power rating chart
Collector-emitter saturation voltage
Ir.~
Ptot
)0
1"'-'\
IW I
.25
"'- '\.It;.
.~'1"
1/
~~..~
1.5
/
~.
---
0.5
o
10
10'
-IC
B
TO.--18 epoxy
Supersedes issue dated 5/73
67
6/75
I
BC 207
B,C208
BC 209
THERMAL DATA
~
Rth i-case
Rth i-amb
ELECTRICAL CHARACTERISTICS
Parameter
ICBO
Collector cutoff
current (IE = 0)
VCB = 40V
VCB = 40V
Ic
V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
V(BR) ESO Emitter-base
breakdown voltage
(lc = 0)
Ic
Ic
DC current gain
Ic
j.lS,
50 nA
50 p.A
= 10 IlA
for BC 207
for BC 208-BC 209
50
25
V
V
= 10mA
for BC 207
for BC 208-BC 209
45
20
V
V
5
V
= 10mA Is
= 100 rnA IB
= 0.5 mA
BC 208
BC 208 Gr_ A
BC 208 Gr. B
BC 208 Gr. C
BC 209
BC 209 Gr. B
BC 209 Gr. C
duty factor = 1%.
68
0_25
= 5mA
=2mA
VCE = 5 V
for BC 207
for BC 207 Gr. A
for BC 207 Gr. B
for
for
for
for
for
for
for
• Pulsed: pulse duration = 300
°C/W
330 °C/W
Min. Typ. Max. Unit
Tamb= 65°C
IE ,=iOIlA
VCE Csat)* Collector-emitter
saturation voltage
200
(T amb = 25°C uniess otherwise specified)
Test conditions
VCBR) CBO Collector-base
breakdown voltage
(IE = 0)
hFE
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
0.6
110
110
200
110
110
200
V
V
-
230
450
180
220 450 -
290
350
180
290
420
520
200
200
420
350
290
520
800
-
220 450 800 800 450 800 -
BC 207
BC 208
BC 209
ELECTRICAL CHARACTERISTICS
Parameter
hFE
DC current gain
fT
Transition frequency
NF
Noise figure
(continued)
Test conditions
Ic
= 10 itA VCE = 5 V
for Be 207
for Be 207 Gr. A
for Be 207 Gr. B
40
for Be 208
for Be 208 Gr. A
for Be 208 Gr. B
for Be 208 Gr. C
40
100
120
90
150
120
90
150
270
for Be 209
for Be 209 Gr. B
for Be 209 Gr. C
70
40
100
210
150
270
-
200
MHz
VCE = 5 V
Ic
= 0.2 rnA
Rg = 2kn
B
CCBO
hie
Collector-base
capacitance
Input impedance
Min; Typ. Max. Unit
Ic
= 10mA
VCE = 5 V
f
= 1 kHz
= 200 Hz
for Be 207
for Be 208
for Be 209
-
2
2
1.5
10
dB
10 dB
4 dB
VCB = 10V
IE
f
=0
= 1 MHz
Ic
f
=2mA
VCE
5V
= 1 kHz
for Be 207
for Be 207 Gr. A
for Be 207 Gr. B
3.1
6 pF
=
kn
kn
for Be 208
for Be 208 Gr. A
for Be 208 Gr. B
for Be 208 Gr. C
4
3
4.8
5.5
3
4.8
7
kn
kn
kn
for Be 209
for Be 209 Gr. B
for Be 209 Gr. C
5.5
4.8
7
kn
kn
kn
69
kfl
kfl
I
Be 225
SILICON PLANAR PNP
AUDIO AMPLIFIER
The Be 225 is a silicon planar PNP transistor in a TO-18 epoxy package. Designed for
audio applications, it presents good current gain linearity from 10 ~A to 50 mAo
ABSOLUTE MAXIMUM RATINGS
= 0)
= 0)
(Ie = 0)
VeBo
Collector-base voltage (IE
-40
VeEo
VEBO
Collector-emitter voltage (IB
-40
Emitter-base voltage
Ie
Ptot
Collector current
T stg
Storage temperature
Tj
Junction temperature
V
V
-5
V
-100 mA
0.2 W
Total power dissipation at Tamb """ 25°C
W
0.5
-55 to 125
at Tease""" 25°C
°C
°C
125
MECHANICAL DATA
Dimensions in mm
2.54
6.9max
10.2 min
~
~ \1 tF§;i~~
'\;t
C
_
_
B
P040-A
,/''''
TO-18 epoxy
71
5/73
Be 225
THERMAL DATA
At"
At"
j-case
j-amb
ELECTRICAL CHARACTERISTICS
Parameter
Collector cutoff
current (IE = 0)
ICBO
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
200
soo
°C/W
°C/W
(T amb = 2S °C unless otherwise specified)
Test conditions
Min. Typ. Max. Unit
VCB = -30V
-100
nA
V(BR) cBoColiector-base
breakdown voltage
(IE = 0)
'c
= -10 itA
-40
V
V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
= -SmA
-40
V
V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)
IE
= -10 itA
Ic
'B
Ic
'B
=
=
=
=
Ic
= -1 mA
'c
'c
Ic
'c
Ic
=
=
=
=
=
Ic
= -1 mA
VCE = -S V
'E
f
=0
= 1 MHz
VCB = -S V
Ic
Ag
B
Ic
Ag
B
=
=
=
=
VCE
(sat)
Collector-emitter
saturation voltage
VBE
Base-emitter voltage
hFE
DC current gain
fT
Transition frequency
CCBO
Collector-base
capacitance
NF
Noise figure
-S
-10 mA
-O.S mA
-SO mA
-S mA
-10 itA
-100 itA
-1 mA
-10 mA
-SO mA
V
-0.1
VCE = -S V
VCE = -S V
VCE = -S V
VCE=-SV
VCE = -S V
VCE = -S V
-20 itA VCE = -S V
10kfl f
= 1 kHz
200 Hz
-0.2S mA VCE = -S V
f
= 1 kHz
1 kfl
= 200 Hz
90
90
90
-0.2S
V
-0.16
V
-0.6S
V
130
1SS
170
16S
140
70
-
-
MHz
4
pF
1
dB
1
dB
=
72
BC 297
BC 298
SILICON PLANAR PNP
AUDIO DRIVERS OR OUTPUT STAGES
The BC 297 and BC 298 are silicon planar epitaxial PNP transistors in TO-18
metal case. They are particularly intended for use in high current high gain applications, in driver stages of hi-fi equipments or in output stages of low power class B
amplifiers.
The complementary NPN types are the BC 377 and BC 378, respectively.
ABSOLUTE MAXIMUM RATINGS
=
VCEO
Collector-emitter voltage (V BE
0)
Collector-emitter voltage (lB ::;: 0)
V EBO
Emitter-base voltage (Ie
IE
Emitter current
Ic
IB
Collector current
Base current
P tot
Total power dissipation at Tamb
VCES
BC297
BC298
-50 V
-30 V
-25 V
-45 V
= 0)
-5 V
1.2 A
-1 A
at
~
25 °C
Tease ~
75 °C
Storage temperature
Junction temperature
MECHANICAL DATA
-0.2 A
375 mW
1W
-65 to 175 °C
175 °C
I
Dimensions in mm
(sim. to 10-18)
Supersedes issue dated 9/70
73
5/73
BC 297
BC 298
THERMAL DATA
Rth
Rth
j-case
j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
max
max
100 °C/W
400 °C/W
ELECTRICAL CHARACTERISTICS (Tease = 25°C unless otherwise specified)
• Test conditions
Parameter
ICES
Collector cutoff
current (VBE = 0)
for Be 297
for Be 298
VCBR ) CEQColiector-emitter
breakdown voltage
(lB = 0)
Ic
VCBRl EBO Emitter-base
breakdown voltage
(lc = 0)
VCE (sat) Collector-emitter
saturation voltage
VBE
Base-emitter voltage'
VBE (sat) Base-emitter
saturation voltage
hF~
DC current gain
Gr. 6
Gr. 7
Min • Typ. Max. Unit
.vCE =
-100 nA
-100 nA
-50 V
VCE = -30 V
= -10 mA for Be 297
for Be 298
-45
-25
V
V
-5
V
IE
= -10 !LA
Ic
IB
== -500 mA
== -50 mA
Ic
= -100 mA VCE == -1 V
Ic
IB
== -500 mA
== -50 mA
-1.2
Ic
Ic
= -100 mA VCE == -1 V 75
== -100 mA VeE == -1 V 125
150
260
Ic
= -300 mA VCE == -1 V
-0.7
-770
V
mV
V
-
-
30
-
hFE1/hFE2
Matched pair ratio
Ic
= -100 mA VCE = -1 V
fT
Transition frequency
Ic
= -50 mA VCE == -10 V
CCBO
Collector-base
capacitance
IE
=0
VCB == -10 V
8
pF
CEBO
Emitter-base
capacitance
Ic
==0
VEB = -0.5 V
30
pF
74
1.41
250
MHz
i
BC 297
BC 298
700
is16
750
~
"'I v
L
500
e-
400
60
300
e-
4
40
I-
200
2-
e-
1
e-
l,..-
20
100
-I B c50 A
-I -0.5mA
Bill
o
Ii
I,"li.1
600
so
6
l-
250
I-
S
I-
V
500
(mAl
14
12
10
V
I'
Typical output characteristics
Typical output characteristics
(mA I
'1:',
1
0.5
1.0
l5
o
-VeE (VI
DC transconductance
0.5
lO
1.5
-VeE (VI
DC normalized current gain
1
1 0 ' m• • • • •
100 _
__
1.0
1.5
-VBE (V)
75
BC 297
BC 298
Collector-emitter saturation voltage
Typical transition frequency
<>-
IT
,
(MHz )
6
hFE =10
10°
4
11
-VCE =10V
/
,
TYP
1
V
./
10'
vi-'
B
b--
6
,
4
,
e3
10 '
la'
10
-Ic (mAl
1200 H-++-H-++-H-+-+-+---1-+-+-+-H-+--I
50
100
150
4
10-'
Power rating chart
a
_0_-
......
T l'C)
76
6 B
4
6 B
4
10
6 B
-lc(mA)
Be 300
BC 301
BC 302
SILICON PLANARNPN
MEDIUM POWER AUDIO DRIVERS
The BC 300, BC 301 and BC 302 are silicon planar epitaxial NPN transistors in
TO-39 metal case. They are intended for audio driver stages in commercial and
industrial equipments. In addition they are useful as high speed saturated switches and
general purpose amplifiers. The PNP types complementary to BC 301 and BC 302
are respectively the BC 303 and BC 304.
IBe 300 IBe 301 IBe 302
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VCEV
VEBO
=
Collector-base voltage (IE
0)
Collector-emitter voltage (Is
0)
Collector-emitter voltage (VBE = -1.5 V)
Emitter-base voltage (lc
=
= 0)
Ic
Collector current
ICM
IBM
Collector peak current
Base peak current
Total power dissipation at Tamb
P tot
80 V
60 V
120 V
90 V
-"
7 V
45 V
V
-
--
0.5 A
1 A
0.5 A
~
25°C
at Tease ~ 25°C
Tst9
TJ
'illrili
Storage temperature
6W
-65 to 175°C
Junction temperature
175°C
MECHANICAL DATA
I
0.85 W
Dimensions in mm
(sim. to TO-39)
77
5/73
Be 300
Be 301
BC302
THERMAL DATA
Rth
Rth
j-ease
j-amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
25
175
°C/W
°C/W
ELECTRICAL CHARACTERISTICS (Tease = 25 C unless otherwise specified)
0
Parameter
leBo
lEBO
Test conditions
Collector cutoff
current (IE = 0)
VeB = 60V
Emitter cutoff
current (Ie = 0)
VEB = 7V
VeEOCsus) *Collector-emitter
voltage (Is = 0)
Ie
5
Ie
Ie
= 150 mA
VSE
Base-emitter voltage
Ie
= 150mA VeE = 10V
hFE
DC current gain
Ie
Ie
Ie
= 150 mA VeE = 10V
= 150 mA VeE = 10V
= 150mA VeE = 10V
Ie
Ie
= 0.1 mA
Gr. 4
Gr. 5
Gr. 6
80
60
45
V
V
V
120
90
V
V
= 100 mA VSE = -1.5 V
Collector-emitter
saturation voltage
(sat)
nA
= 100mA
for Be 300
for Be 301
VeE
20
20 nA
for Be 300
for Be 301
for Be 302
VeEvcsus)*Collector-emitter
voltage
Min. Typ. Max. Unit
Is
= 15mA
VeE = 10V
= 500mA VeE = 10V
0.2
0.5
V
0.78
40
70
120
80
140
240
20
20
V
-
fr
Transition frequency
Ie
= 10mA
VeE = 10V
120
MHz
Ceso
Collector-base
capacitance
IE
=0
Ves= 10 V
10
pF
Ie
f
= 5mA
= 1 kHz
VeE =10V
1.1
kg
hie
Input impedance
* Pulsed; pulse duration
= 300 IlS,
duty factor
78
= 1.5%
Be 300
BC 301
BC 302
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test conditions
Reverse voltage ratio
h re
Small signal
current gain
hie
Output admittance
hoe
Ic
f
= SmA
= 1 kHz
VCE = 10 V
Ic
f
=SmA
= 1 kHz
VCE = 10V
Ic
f
= SmA
= 1 kHz
VCE = 10V
Typical output characteristics
Ie
(rnA)
400
-
140
-
14
J,tS
G 0237
Ie
5
(mAl
4
.....
1.7x10.4
DC transconductance
G·0231i
6
1/
Min. Typ. Max. Unit
I
3
300
2
VeE = 10 V
I
10'
t-
200
TYP.
1
10'
1.=0.5mA
100
I
o
5
10
15
0.5
VeE tV)
79
1.0
1.5
VBE (V)
I
Be 300
BC 301
BC 302
Collector-emitter saturation voltage
DC normalized current gain
G_0238
N
H
--
-- -
r---
--.
f--
-- -
--
TYP.
1001--- --
-
vc£= 10V
1
---
V
V, =lV
10'R§1tII1II
10'
10'
10°
Ie (mAl
Collector-emitter breakdown voltage
(for Be 300 only)
Collector cutoff current
-"
leBO
VeER ,-""rrm-TO"-rrmrr-rTTTTTIlT--'-'-;";:;':':',;
(V)
(nAl
VeB 60 V --
,/
10'
160
-
140
/
10'
120
+-
-++1+I+li+-++++++f11-....+-++l++11+-+44~~~++~tt--p~+H*~-1-i
100
10'
/
80
=
60
MAX
10'
-
++-+++++IJ---jH+++++I+-+-+f'I"I.il~·---+
,/
i-
1_';:_'
,I::i
+1";
1---I--I--i+H+II-H++Hi++-I-+++++4+-i--+ t I ,~~
"11:'
40
TYP
20
10°
1
o
5Q
100
150
a
T; ('e)
80
la'
la'
10'
104
ZB'
(n)
Be 300
BC 301
BC 302
Transition frequency
Power rating chart
- r-
f-- -+-++-+-+-++1--++-1-+++--1
50
81
lOa
150
T (Ge)
BC 303
BC 304
SILICON PLANAR PNP
MEDIUM POWER AUDIO DRIVERS
The BC 303 and BC 304 are silicon planar epitaxial PNP transistors in TO-39
metal case. They are intended particularly as audio driver 5tages in commercial and
professional equipments. In addition they are useful as high speed saturated switches
and general purpose amplifiers. The complementary NPN types are respectively the
BC 301 and BC 302.
ABSOLUTE MAXIMUM RATINGS
BC303
BC304
VCBC'J
Collector-base vOltage (IF
-85 V
-60 V
VCEO
Collector-emitter voltage (Ip, = 0)
-60 V
-45 V
VCEV
Collector-emitter voltage (VBE = 1.5 V)
-85
=.,
0)
V EBO
Emitter-base voltage (Ie .'" 0)
Ie
Collector current
V
-7 V
-0.5 A
-1 A
ICM
Collector peak current
ISM
Base peak current
-0.5 A
Pro!
Total power dissipation at Tamb ==' 25 QC
0.85 W
Storage temperature
6W
-65 to 175 nC
Junction temperature
175 oC
at Tease"'" 2'5 °C
Dimensions in mm
MECHANICAL DATA
(sim. to TO-39)
83
5/73
BC 303
BC 304
THERMAL DATA
Rth
j-case
Rth j-amb
Thermal resistance junction-case
max
Thermal resistance junction-ambient
max
ELECTRICAL CHARACTERISTICS
leBo
lEBO
(Tcase = 25°C unless otherwise specified)
Test conditions
Parameter
Collector cutoff
current (IE = 0)
VCB = -60 V
Emitter cutoff
current (Ic = 0)
VEB = -5 V
VCEO(susl*Coliector-emitter
voltage (lB = 0)
Ic
25 °C/W
175 °C/W
Min. Typ. Max. Unit
-5
-20 nA
-20 nA
= -100 mA
for Be 303 -60
for Be 304 -45
VCEV(susl*Coliector-emitter voltage
(for Be 303 only)
Ie
VCE (sat) Collector-emitter
saturation voltage
Ic
IB
VBE
Base-emitter voltage
Ic
hFE
DC current gain
Ic
Ic
Ic
Gr. 4
Gr. 5
Gr. 6
Ic
Ic
= -100 mA VBE = 1.5 V
= -150 mA
= -15 mA
= -150 mA VCE = -10 V
= -150 mA VeE = -10 V
= -150 mA VCE = -10 V
= -150 mA VCE = -10 V
= 0.1 mA VCE = -10 V
= -500 mA VCE = -10 V
V
V
-85
V
-0.25 -0.65
V
-0.78
V
40
70
120
80
140
240
20
20
-
-
fT
Transition frequency
Ie
= -10 mA
VCE
= -10V
75
MHz
CCBO
Collector-base
capacitance
IE
=0
VcB =-10V
15
pF
Ie
f
= -SmA
= 1 kHz
VeE = -10V
0.9
kQ
hie
Input impedance
* Pulsed: pulse duration
= 300 JlS,
duty factor = 1.5%
84
BC 303
BC 304
ELECTRICAL CHARACTERISTICS
hie
Reverse voltage ratio
Small signal
current gain
Output admittance
hoe
Ie
f
= -5mA
= 1 kHz
VeE
Ie
f
= -5mA
= 1 kHz
= -5 rnA
= 1 kHz
VeE
Ie
f
Typical output characteristics
400
/
VeE
----
= -10V
1.7x10-4
-
140
-
45
!-IS
= -10 V
= -10V
DC transconductance
I
_
I/~
Min. Typ. Max. Unit
Test conditions
Parameter
h re
(continued)
t-+-+-t-+-'-t-+-+-I
300 t-+-llHH-:;j,.-1'""I=t-+-H-f-+-+-+-+-j--L+
TYP.
~ -~~+4~+-~4-~~+4~+-~
-
a
5
10
15
-VeE
-~~-+-~~+-+-+~~-+-t-+~+-+
10° L-L-"--'---'-LJ-L..L--'--L-L---.L..L...l-L...L-L..L--'--.J
a
0.5
1.0
1.5
-VBE (V)
(V)
85
BC303
BC 304
Collector-emitter saturation voltage
DC normalized current gain
~
-1--
G·""
'VCE(sat )
I
m
-
hF• =10V
la'
TYP.
-Vcc= 10 V
./
TYP.
10'
10°
--
-
r-
10'
-Vcc= 1V
II
10'
10 '
la'
10 '
-Ic (mAl
-lc1mA)
Transition frequency
Collector cutoff current
G 0246
G~1I247
h
(nAI
(MHz)
-YcB=60V
-'
I
i!
VCE =10V
/
10'
TYP.
10'
III
I
I!
Ii
i
/
10'
7.
MAX.
10 1
/
/
TYP.
10°
o
I I
I
50
100
I
i
I
I
150
la'
Tj (·C)
86
la'
-Ic (mAl
BC 377
BC 378
SILICON PLANAR NPN
AUDIO DRIVERS OR OUTPUT STAGES
The BC 377 and BC 378 are silicon planar epitaxial NPN transistors in TO-18
metal case. They are particularly intended for use in high current, high gain
applications, in driver stages of hi-fi equipments or in output stages of low power
class B amplifiers. The complementary PNP types are the BC 297 and _BC 298,
respectively.
ABSOLUTE MAXIMUM RATINGS
= 0)
= 0)
VCES
Collector-emitter voltage (VEB
VCEO
VEBO
Collector-emitter voltage (lB
= 0)
BC377
BC378
50V
45V
30V
25V
6 V
-1.2 A
IE
Emitter-base voltage (lc
Emitter current
Ic
Collector current
'B
p.o.
Base current
Total power dissipation at Tomb ~ 25 °C
Tstg
Tj
Storage temperature
-65 to 175 °C
Junction temperature
175°C
1 A
at Teose ~ 75 °C
MECHANICAL DATA
0.2 A
375 mW
1 W
Dimensions in mm
(sim. to TO-18)
Supersedes issue dated 9/70
87
5/73
BC '377
BC 378
THERMAL DATA
Rth
Rth
j-ease
j-amb
ELECTRICAL CHARACTERISTICS
Collector cutoff
current (VSE = 0)
for
for
Be 377
Be 378
VCSR) ESO Emitter-base
breakdown voltage
(lc = 0)
IE
= 10 itA
VCSR) CEO Collector-emitter
breakdown voltage
(Is = 0)
Ic
= 2mA
VCE
(sat)
Base-emitter voltage
VSE
VSE
Collector-emitter
saturation voltage
(sat)
hFE
Base-emitter
saturation voltage
DC current gain
Gr. 6
Gr. 7
100 °C/W
400 °C/W
(Tease = 25°C unless otherwise specified)
Test conditions
Parameter
ICES
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
Min. Typ. Max. Unit
15 nA
15 nA
VCE = 50V
VCE = 30V
for Be 377
for Be 378
6
V
45
V
V
25
Ie
Is
= 500 rnA
= SOmA
Ie
= 100 rnA VeE =1V
Ic
Is
= 500 rnA
= SOmA
Ie
Ie
= 100 rnA VeE =1V
= 100 rnA VeE =1V
75
125
Ie
= 300 rnA VeE =1V
40
0.7
740
V
mV
1.2
150
260
V
-
hFE,/hFEZ
Matched pair ratio
Ic
= 100 rnA VeE =1V
fT
Transition frequency
Ie
= SOmA VeE = 10V
300
CCBO
COllector-base
capacitance
IE
=0
VCB = 10V
8
pF
Emitter-base
capacitance
Ic
=0
VEB = 0.5 V
30
pF
CESO
88
1.41
MHz
BC 377
BC 378
Typical output characteristics
Ie
G-0355
I(mAII- -
750
It<
rTl7
40j...-
b V 1-
]
30
20
j..-
.-
._,- _
F
rJl/l/
17
-
75
I-
1-
-
400 l-
i---
-
l300
rr
4
50
I-
2
-
~
-
--
100
Is =O.5mA
I.-50)JA
I
l10
200
rr
25
1
l=-I- -.- -
I- -
-
171--J",
17 12
.-
I-
f/
I-
1--
_..
600
I/V
-
G-0J56
1tt· ...., .Htt
,11 o
70
(mA I
B
500
250
I-
16_
12
J...:
F
p
f7
Q-I-
Typical output characteristics
15
II
o
VeE (V)
DC transconductance
0.5
1.0
1.5
DC normalized current gain
G-0J58
Ie~mIfI.
ImAI~
TYP
10 0
5
VeE =IV
I-
IIII
10-' LL---"---'---LL--'-..LJ---'-...LL.l-L.l-L.L---'---'-LJ
o
0.5
1.0
1.5
10-1
89
10 0
10'
10'
Ie (mAl
I
BC377
BC 378
Transition frequency
Collector-emitter saturation voltage
0-_
VCE(sa.t)
(mV )
hFE= 10
10'
TYP.
TVP
10'
V
-
10'
10°
10-'
.10°
la'
la'
Ie (mAl
Power rating chart
1600
H+-+-H++H-++-J-,I--+++--H-+-1
1200 H-+++--H-+++--H-+-++--t--1H-+-H
800 H-++--H-+-I-H",:&
~
"
"
" "- "" " " ",'""
:-....
"-
"'-
......
........
~
........ I........
VeE~-5V
0.1
f ~ 1 kHz
B '" 200 Hz
0.001
109
.?:~
~i&~ ~
.....
'\
......
I'-~ ........
-Ie ImA)
odB
0.1
"~ , "I'-
4dB_
J
GS 0017
..........
~
I
LI
4dB ~
0.01
~ r"
o~ t-- f-.+= 5dB
0.1
2dB
r--....
1 kHz
~
./
3dB
~
0.01
10
2dB
"'.:"
5V
V~E
f ~ 1 kHz
B~200 Hz
0.001
IdB
r--r--
"-
\
......
"
.......
';.s;'
'\ 1\ ~'\
~
ldB
~ ~ .......
Ikll ) , .
,o.~
.......
~ "'-'" .......
Rg
~J%>
'\ 1\ ,'\
~ \ \.\
I'-
Noise figure (for
GS 0016
.....
1,\
i'..
0.001
Be 478 only)
'
Rg
Ie ImA)
100
~
~
" " '~~
,,~
.......
VeE~-5V
V
o
~~
.........:
J
40
"-
"
"
"
1\
\,
V
80
0.1
"~
\
/
120
10
GS 0015
"-
160
Be 477 only)
~
I'-
" i'--.......
2dB
~~ '.5 'B'
I""-
d
0.01
\
~~
0,1
/
3dB
~dB
-Ie (rnA)
--BC 477-BC478
-·BC479
Noise figure (for BC 479 only)
Noise figure (for BC 479 only)
Rg
(kll)
GS 0018
VeE~~ t
f~
10 Hz to 10 Hz'
..........
B ~ lS.7 kHz
10
i'-...
........
r--....
.........
["0...
r--I'-.,.
......r-'-.......... I'..... r--..
................ i'-...
i'-...'
6 B
......
.-
["., r-...
'"
-
r\
i\
~"'
1', "
\
r---
2dB
,...
,~~
r-
./
_
4dB
a
-Ie (rnA)
0.1
10
I'\.
'\
'\.
0.8
-.
~~
",,1-,.(\
~/;-
0.6
0.4
-
'-...J
o
~~~"'1
'\?J:,~
-
'f-
.t.f!.t.f2 AIR
.....
0.2
o
50
'\.
...........
"
'"""'-oi~
100
1\
ldB ::;;
GS 0020
(W)
1\
4
)
Power rating chart
Ptot
Rg~2KII
Ie ~-200 p.A
'\
1/
1dB
..........
0.01
vIUIs'v
8
~~6'
..........
III
(dB)
~
......
S 0019
NF
................. ~' ~6'
r-.....
150 T. mb ('C)
110
10 2
10'
10'
10'
f (Hz)
BF155
SILICON PLANAR NPN
UHF AMPLIFIER AND MIXER-OSCILLATOR
The SF 155 is a silicon planar NPN transistor in a TO-72 metal case. It is specifically
designed for UHF amplifier and mixer-oscillator applications up to 900 MHz.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
= 0)
= 0)
=
Collector-base voltage (IE
40
Ie
Collector-emitter voltage (IB
Emitter-base voltage (Ie
0)
Collector current
Ptot
Total power dissipation at Tamb "'" 25°C
Tstg
Tj
Storage temperature
Junction temperature
at
Tease"'"
25 °C
MECHANICAL DATA
Supersedes issue dated 4/73
V
40
V
3
V
20 mA
200 mW
300 mW
-55 to 200 °C
200°C
Dimensions in mm
111
6/75
I
THERMAL DATA
Rth j-cas.
Rth j-amb
ELECTRICAL CHARACTERISTICS
Parameter
ICBO
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
(Tamb
= 25°C
=
°C/W
°C/W
unless otherwise specified)
Test conditions
Collector cutoff
current (IE
0)
580
875
Min. Typ. Max. Unit
VCB
= 10 V
V (BR) CBO Collector-base
breakdown voltage
(IE
0)
Ic
= 100 (.l.A
40
V
V(BR)CEO 'Collector-emitter
breakdown voltage
(lB
0)
Ic
= 5mA
40
V
V (BR) EBO Emitter-base
breakdowfl voltage
(lc
0)
IE
3
V
V BE
Base-emitter voltage
Ic
hFE *
DC current gain
Ic
fT
Transition frequency
Ic
-Cr.
Reverse
capacitance
=
=
=
NF
Noise figure
G pb
Power gain
f max
* Pulsed: pulse duration
= 12V
VCE = 12V
VCE = 12V
Ic
f
Ic
= 2.5 rnA
Ic
Rg
f
300 (.l.s; duty factor
112
0.85
VCE
= 2.5 rnA VCE = 12 V
= 1 MHz
= 2.5 mA VCB = 12 V
= 50n
= 800 MHz
= 2.5 rnA VCB = 12 V
= 800 MHz
Ic
f
Maximum oscillation
frequency
= 100 (.l.A
= 2.5 mA
= 2.5 rnA
= 2.5 rnA
100 nA
VCB
= 12V
1%.
V
-
20
70
400
600
MHz
0.4
pF
7
9 dB
10
dB
2.5
GHz
8
Typical output characteristics
Typical DC current gain
(pulsed)
G-16B7
IC
G-16BB
(rnA)
B
'#
i 'L
6
r; /"
~
4
~V
rO.lmA
----=
O.OB rnA
60
./
40
0.04 rnA
/"
l
Ib =0
4
8
/"
",,'"
1
2S'C
"....
.......
O'C
\
r'\~
1\
o
10- 1
12
10
Typical input admittance
Typical transition frequency
G-1690
G-1669
VCE =12 V
~
I
400
J
f--
......
\
30
V
IC
~
"'
= 2.5 rnA
r-.
-.....
/
--
.........
..........
20
V
I
VCB =12 V
II
200
r-----
20
0.02 rnA
2
o
~
/'
0.06 rnA f==
'===
- 1"i-
~amb=6S'C I
: /~
BO
~
~
-
I
VCE = 12 V
0.14my r-" 0.12 rnA
"t-... .........
-bib
1-.........
9ib
r--.... ......
10
~
I""'-- .........
I'
o
o
300
10
113
400
500
600
700
f (104Hz)
I
Typical output admittance
Typical forward transadmittance
G-1691
Yob
(mS)
= 12 V
Ie = 2.5 mA
Vee
!---
(mS)
40
30
~
...... .....
.,.......
-
bob
--
~
Yfb
~
---
---
G-1692
VeB =12V
Ie = 2.5mA
'~
/'" ~
20
10
o
V
-10
J
/
/
/Qfb
I-
.......
'"
300
400
500
600
100
300
f (MHz)
400
500
600
700
G-1693
G-1694
Vee =12 V
Ie =2.5 mA
Ie = 2.5mA
-brb
"" ""
......
...... -;;;;
.....
./
0.5
./
-,/
-Qrb
./
o
/'
300
500
600
700
\
0.8
_......
\
0.6
0.4
~
400
f (101Hz)
Typical reverse capacitance
Typical reverse transadmittance
(mS)
~
-20
10- 1
Yrb
~
"""
0.2
"-
o
o
f (MHz)'
114
5
10
15
20
BF 158
SILICON PLANAR NPN
IF AMPLIFIER FOR TV
The BF 158 is a silicon planar NPN transistor in a TO-18 epoxy package. It is designed
for use as IF amplifier in TV receiver.
ABSOLUTE MAXIMUM RATINGS
= 0)
VCBO
Collector-base voltage (IE
VCEO
VEBO
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
P,o,
TS'g
Storage temperature
Tj
Junction temperature
V
30
12
V
2
V
Total power dissipation at Tamb ~ 25°C
0.2
W
at Tease ~ 25°C
0.5
-55 to 125
°C
125
°C
MECHANICAL DATA
Dimensions in mm
~~:4,.
.(0
'"
.
C
W
\1
B
10-18 epox~
115
5/73
BF 158
THERMAL DATA
Rth j.case
Rth j.amb
Thermal resistance junction-case
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS (Tomb
Collector cutoff
current (IE
0)
=
200
°C/W
max
soo
°C/W
unless otherwise specified)
Test conditions
Parameter
Icso
= 2S °C
max
Min. Typ. Max. Unit
Vcs
= 1S V
V(SR) CBO Collector-base
breakdown voltage
(IE = 0)
Ic
= 100 ~A
30
V
VCEO (sus)Coliector-emitter
sustaining voltage
(Is
0)
Ic
= 3mA
12
V
V(SR) ESO Emitter-base
breakdown voltage
(Ic = 0)
IE
= 100 ~A
2
V
VCE (sat) Collector-emitter
saturation voltage
Ic
= 10mA
Is
VeE
=
100 nA
= 1 rnA
hFE
DC current gain
Ie
= 4mA
fT
Transition frequency
Ic
= SmA
-C re
Reverse capacitance
Ic
NF
Noise figure
Ic
Rg
f
= SmA
= 4mA
= 400.0
= 40 MHz
Ie
f
=SmA
VCE
40 MHz
= 10V
Ic
f
VCE
= 10V
G oe
gee
Power gain
Output conductance
=
= SmA
= 40 MHz
116
= 10V
VCE = 10V
O.S
20
= 10V
VCE = 10V
VCE
22
V
SO
-
700
MHz
0.8
1.2 pF
3.S
dB
26
dB
0.2
0.3 mS
BF160
SILICON PLANAR NPN
IF AMPLIFIER FOR AM/FM RADIOS
The SF 160 is a silicon planar NPN transistor in a TO-18 epoxy package. It is designed
for intermediate frequency (5.5 MHz TV - 10.7 MHz FM) and for general AM-FM
applications.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
P tot
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB
0)
Emitter-base voltage (lc = 0)
Total power dissipation at Tamb ~ 25 °C
=
at
Tease ~
25 °C
Storage temperature
Junction temperature
30
V
12
V
2
V
200 mW
500 mW
-55 to 125
125
MECHANICAL DATA
°C
°C
Dimensions in mm
~'~
~
C
B
TO-18 epoxy
117
4/73
BF160
THERMAL DATA
Rth j-case
Rth j-amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
200
500
°C/W
°C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
leBo
Test conditions
Col/ector cutoff
current (IE = 0)
VCB = 15 V
'JCB = 15 V
Min. Typ. Max. Unit
100 nA
5 ~A
Tamb = 65°C
V(BR) cBoCol/ector-base
breakdown voltage
(IE = 0)
Ic
= 1OOl-l-A
30
V
V(BR)CEO 'Col/ector-emitter
breakdown voltage
(lB = 0)
Ic
=3mA
12
V
V(BR) EBOEmitter-base
breakdown voltage
(lc = 0)
IE
= 100l-l-A
2
V
Ic
= 3mA
.
hFE
DC current gain
fT
Transition frequency
Ic
= 3mA
VCE = 10V
-C re
Reverse capacitance
Ic
=3mA
VCE = 10V
Gpe
Power gain
Ic
f
=3mA
VCE = 8 V
= 10.7 MHz
• Pulsed: pulse duration
:.
= 300 :IJ.S,
VCE = 10V
duty factor = 1%.
;-
118
20
400
28
50
600
MHz
0.8
1.2 pF
32
dB
BF 161
SILICON PLANAR NPN
UHF AMPLIFIER, OSCILLATOR AND MIXER
The SF 161 is a silicon planar NPN transistor in a TO-72 metal case, intended for
UHF tuner applications.
ABSOLUTE MAXIMUM RATINGS
P tot
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc
0)
Collector current
Total power dissipation at Tamb :::: 25°C
Tstg
Tj
Storage temperature
Junction temperature
VCBO
VCEO
VEBO
Ic
=
at Tcase::::25°C
MECHANICAL DATA
V
V
V
50
50
4
20 rnA
175 mW
260 mW
-55 to 175 °C
175°C
Dimensions in mm
(sim. to TO-72)
119
5/73
I
BF 161
THERMAL DATA
Rth
j-cas.
ELECTRICAL CHARACTERISTICS
Parameter
ICBO
Collector cutoff
current (IE = 0)
V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
VCEO
max
Thermal resistance junction-case
580
°C/W
(T amb = 25 pC unless otherwise specified)
Test conditions
Min. Typ. Max. Unit
VCB = 10 V
100 nA
Ic = 50llA
50
V
(sus) Collector-emitter
sustaining voltage
(lB = 0)
Ic
=5mA
50
V
V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)
IE
= 50llA
5
V
VBE
Base-emitter voltage
Ic
= 3mA
VCE = 24 V
hFE
DC current gain
Ic
=3mA
VCE = 10V
20
60
fr
Transition frequency
Ic
VCE
= 10V
400
550
-Cr.
Reverse capacitance
Ic
f
= 3mA
= 3mA
= 1 MHz
NF
Noise figure
Ic
f
= 1_5mA VCB
= 800 MHz
= 24 V
Ic
f
= 1.5 rnA
= 24 V
G pb
Power gain
Collector current
for ..6.G pb
30 dB
=
0.74
V
MHz
VCE = 10V
0.3
0.45 pF
6.5
dB
= 800 MHz
12
dB
Vcc = 12 V
f
= 800 MHz
8
rnA
120
VCB
I
BF 166
SILICON PLANAR NPN
HIGH FREQUENCY GENERAL PURPOSE AMPLIFIER
The BF 166 is a silicon planar NPN transistor in a TO-72 metal case. It is designed.
to be used as a gain-controlled VHF amplifier.
ABSOLUTE MAXIMUM RATINGS
=
P tot
Collector-base voltage (IE
0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ie = 0)
Total power dissipation at Tamb ~ 25°C
T stg
Storage temperature
Tj
Junction temperature
V CBO
V CEO
VEBO
at Tease ~ 25°C
40
V
40
V
3
V
175 mW
260 mW
-55 to 175°C
175°C
MECHANICAL DATA
Dimensions in mm
(sim. to TO-72)
121
5/73
BF 166
THERMAL DATA
Rth jocose
ELECTRICAL CHARACTERISTICS
(Tomb
= 2S °C
Collector cutoff
current (IE
0)
=
S80
°C/W
unless otherwise specified)
Test conditions
Parameter
ICBO
max
Thermal resistance junction-case
Min. Typ. Max. Unit
VCB = 10V
100
nA
V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
Ic
= 1oo!J.A
40
V
VCEO (sus)Coliector-emitter
sustaining voltage
(Is = 0)
Ic
= 1 mA
40
V
VISR) ESO Emitter-base
breakdown voltage
(lc = 0)
IE
= 10!J.A
3
V
.
.
VSE
Base-emitter voltage
Ic
= 2_S mA VCE = 12 V
hFE
DC current gain
Ic
= 2.SmA VCE = 12 V
fT
Transition frequency
Ic
= 3mA
-C re
Reverse capacitance
Ic
= 2_SmA VCE = 12 V
NF
Noise figure
Ic
Rg
f
= Son
Ic
f
= 3mA
VCE = 10V
= 200 MHz
Gpe
Power gain (neutralized)
Ie (AGC) Collector current
for dG pb = 30 dB
• Pulsed: pulse duration
= 300 llS,
VCE = 12 V
0.9
20
SO
400
SOO
V
MHz
0.4
0.6 pF
3
S dB
18
dB
= 2.S mA VCE = 12 V
= 200 MHz
Vcc = 12V
f
= 200 MHz
duty factor = 1 %
122
16
14 mA
BF167
SILICON PLANAR NPN
TV AGC IF AMPLIFIER
The SF 167 is a silicon planar NPN transistor in a TO-72 metal case. It is particularly
designed for use in forward AGe IF amplifiers of TV receivers. It is characterized by
very low feedback capacitance due to a screening diffusion under the base pad.
ABSOLUTE MAXIMUM RATINGS
V CES
Collector-emitter voltage (VeE = 0)
VCEO
Collector-emitter voltage (Ie = 0)
VEeo
Ic
P tot
T stg
Tj
Emitter-base voltage (Ie = 0)
Collector current
Total power dissipation at Tamb ~ 25 °C
Storage temperature
Junction temperature
40
V
30
V
4
V
25 rnA
150 mW
-55 to 175 °C
175
MECHANICAL DATA
°C
Dimensions in mm
(sim. to TO-72)
123
4/73
BF167
THERMAL DATA
Rth J-amb
max
Thermal resistance junction-ambient
1000
°C/W
ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified)
Test conditions
Parameter
ICES
Collector cutoff
current (VBE = 0)
Min. Typ. Max. Unit
=
VCE
10 V
VCE = 10 V
50 nA
5 itA
Tamb = 100°C
V (BR) CES Collector-emitter
breakdown voltage
(V BE = 0)
Ic
= 1011A
40
V
V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
= 5mA
30
V
V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)
IE
= 1011A
4
V
VSE
Base-emitter voltage
Ic
=4mA
VCE = 10V
hFE*
DC current gain
Ic
Ic
Ic
= 1 rnA
= 4mA
= 10mA
VCE = 10V
VCE = 10V
VCE = 10V
.
fT
Transition frequency
Ic
= 4mA
VCE = 10V
-C re
Reverse capacitance
Ic
f
=0
= 1 MHz
VCE = 10V
Ic =4mA
Rg = 100.0
VCE = 10V
f = 36 MHz
NF
Gpe**
Noise figure
Power gain
IE
f
=4mA
VCE = 10V
= 36 MHz
* Pulsed: pulse duration = 300 lls, duty factor = 1%
** See test circuit
124
0.74
30
24
35
45
20
V
-
-
600
MHz
0.15
pF
3
dB
28
dB
BF167
ELECTRICAL CHARACTERISTICS (continued)
Parameter
\AGpe
gie
b ie
gfe
bfe
goe
b oe
Power gain control
Input conductance
Input susceptance
Forward
transconductance
Forward
transusceptance
Output conductance
Output susceptance
Test conditions
Min. Typ. Max. Unit
VEE = -25 V REE = 3.9 k.!1
f
= 36 MHz
60
dB
Ie
f
=4mA
VeE = 10 V
= 36 MHz
3.8
mS
Ie
f
= 4mA
VeE = 10V
= 36 MHz
5
mS
Ie
f
=4mA
VeE = 10V
= 36 MHz
95
mS
Ie
f
= 4mA
VeE = 10 V
= 36 MHz
34
mS
Ie
f
=4mA
VeE = 10 V
= 36 MHz
62
I!S
Ie
f
= 4mA
VeE = 10V
= 36 MHz
270
I!S
125
BF·167
Typical output characteristics
Ie
~~ ....-
(rnA)
\I.r>.'"
~~
8
V/ /..J~
IiV ~ f--
V
~V
J,lmA
V
I
DC normalized current gain
-
G
as
0001
_f1.2
o
0.4
/'
16
V- -,
NORMALIZATION
hFE = 1 at Ie = 4 rnA
VeE (V)
GS 0003
v
CE
_.-
GS 0004
f=36 MHz
\
VeE
-
"-
= 10 (V)
"
\
10
\
1\
o
- 10
\
\
\
- 20
- 30
0.5
"...
20
10
0.1
Ie (rnA)
10
Gpo
~
= 10V
I I
(dB)
1\
------
I
Power gain
30
/
\.
0.1
/
/
100
~
\
I I II
o
B
Transition frequency
500
V
....
b°e,
~
i - V eE =lOV
12
fy
,/
/
~O
o
(MHz)
V
0.8
I
I
"V
yf'
b.'>,;/
0.05 rnA
'/
0002
Ie (rnA)
126
o
2
4
IE (rnA)
BF167
Power rating chart
GS 0005
(mWI
150
'"
100
i'-...
r---..
"-
1'<1-
~
r--...
50
r---..
o
25
50
75
100
125
r-....
i'.
i'-...
T' mb ('C)
TEST CIRCUIT
Power gain (f
= 36 MHz)
3 pF
IN
50 n
OUT
50n
55 0001
127
BF173
SILICON PLANAR NPN
VIDEO IF AMPLIFIER
The SF 173 is a silicon planar epitaxial NPN transistor in a Jedec TO-72 metal case
with a very low feedback capacitance. This transistor is intended for use in video IF
amplifiers, particularly for the output stage.
ABSOLUTE MAXIMUM RATINGS
VEBO
Ie
P tot
Collector-base voltage (IE = 0)
Collector-emitter voltage (IB
0)
Emitter-base voltage (Ie
0)
Collector current
Total power dissipation at Tomb ~ 25°C
T stg
Tj
Storage temperature
Junction temperature
VeBo
V eEo
=
=
at Tease ~ 25°C
40
25
4
V
V
V
25 mA
175 mW
230 mW
-55 to 175 °C
175 °C
Dimensions in mm
MECHANICAL DATA
TO-72
129
5/73
BF173
THERMAL DATA
Rth j-amb
ELECTRICAL CHARACTERISTICS
Parameter
ICES
lEBO
max
Thermal resistance junction-ambient
850
°C/W
(Tease = 25°C unless otherwise specified)
Test conditions
Min. Typ. Max. Unit
Collector cutoff
current (VBE = 0)
VCE = 20V
20 nA
Emitter cutoff
current (lc = 0)
VEB = 4 V
100 J.l.A
VCBR) CBoCollector-base
breakdown voltage
(Ie = D)
Ic
= 100 J.l.A
40
V
VCBR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
=2mA
25
V
V BE
Base-emitter voltage
Ic
=7mA
VCE = 10V
fT
Transition frequency
Ic
= SmA
VCE = 10 V
1000
MHz
-C re
Reverse capacitance
Ic
f
= SmA
VCE = 1DV
= 0.5 MHz
0.23
pF
Ic
= 7mA
Ic
f
= 7.2mA VCE = 12 V
= 38.9 MHz
Ic
f
IB
Base current
V'
°
Output voltage
G tr
Transducer power gain
gie
C ie
Input conductance
Input capacitance
0.9
61
VCE = 10 V
185
V
J.l.A
7.7
V
= 7.2 mA VCE = 12 V
= 36.4 MHz
26
dB
Ic
f
== 7mA
V cE ==10V
== 35 MHz
3
mS
Ic
f
== 7mA
Vc~ == 10V
== 35 MHz
22
pF
6
* Voltage across the detector load RL == 2.7 kQ for 30% syncronisation pulse
compression
130
BF173
ELECTRICAL CHARACTERISTICS (continued)
Test conditions
Parameter
Iyrei
CPre
Iylel
CPle
goe
Coe
GUM"
• GUM
Reverse transadmittance
Min. Typ. Max. Unit
Ic
f
= 7mA
VCE = 10 V
= 35 MHz
55
Ic
f
= 7mA
VCE = 10V
= 35 MHz
2670
-
Forward transadmittance Ic
f
= 7mA
VCE = 10 V
= 35 MHz
165
mS
Ic
f
= 7mA
VCE = 10 V
= 35 MHz
336 0
-
Ic
f
= 7mA
VcE =10V
= 35 MHz
65
!-IS
Ic
f
= 7mA
VCE = 10 V
= 35 MHz
1.9
pF
Ic
f
= 7mA
VCE = 10 V
= 35 MHz
44.5
dB
Phase angle of reverse
transadmittance
Phase angle of forward
transadmittance
Output conductance
Output capacitance
Maximum unilateralized
power gain
= 10 log - - - 4 gie goe
131
J,l.S
BF173
Typical output characteristics
Typical output characteristics
G-()I,OO
G-0399
Ie
160
mA )
1/100
140
r-
(mA )
11.
12C
16
80
I-
'L~
lI-
12
60f-
100
r-
1/
80
I-
40
60
8
4
40
I8 02O ).lA
4
I8- 2O ).lA
o
4
8
16
12
f--- --
a
VeE IV)
Collector characteristic
Ie
ImA) ---
f--
---
I
Input characteristic
--
~Fl
---- --r
7--
V"olO V
10'
(,-0.01
...-
TYP.
I
f-:
f10
--
,
TYP
1=
10'
V
0
E~-=
/
f--
r-I
I
1
=
1:- _
f-
10-'
1-10'2
2
10'
10 2
18 I).lA)
132
a
1/
4
V8E IV)
BF173
Transition frequency
DC normalized current gain
f--f-++H+lH-- +-~+++Hl-+-+H+HH---++++1+tH
I
10-' L-LL-LWlJiL--Ll-LI-LWIII'lL--LLUJ.illL-L.L-LLlillJ
10- 2
10-'
10 0
10'
Ie (mAl
Ie (mAl
TEST CIRCUF
G'r test circuit
2.09pF
OA90
L!-
a.
tn
N
oj
L!-
a.
co
Ie
~-9"
C
500
°C/W
unless otherwise specified)
Test conditions
Min. Typ. Max. Unit
VCE
VCE
= 10V
= 10V
V (SR) CBO Collector-base
breakdown voltage
(IE
0)
Ic
= 10illA
25
V
V (SR) CEO Collector-emitter
breakdown voltage
(Is
0)
Ie
= 1 mA
20
V
V (SR) EBO Emitter-base
breakdown voltage
(lc
0)
4
V
=
=
=
Tomb
100 nA
50 IlA
= 100 C
0
IE
= 10[J.A
Vse
Base-emitter voltage
Ie
= 1 mA
hFE
DC current gain
Ie
= 1 mA
VCE
10V
for BF 273
for BF 273 Gr. C
for BF 273 Gr. D
35
70
35
= i0V
400
Transition frequency
Ie
= 1 mA
NF
Noise figure
Ic
f
= 1 mA
VCE = 10V
4000
= 100 MHz
Ic
f
=0
= 1 MHz
Ie
= 1 mA
VCE
= 470 kHz
= 1 mA
VeE
10.7 MHz
1 mA
VeE
100 MHz
-Cr.
Gpo
Reverse capacitance
Power gain
f
Ic
f
Ie
f
V
=
fT
Rg
0.70
VCE = 10V
VeE
120
75
600
-
MHz
=
=
=
=
154
VCE
2
dB
0.41
pF
40
dB
30
dB
21
dB
= i0V
= 10V
= 10V
= 10V
BF 273
ELECTRICAL CHARACTERISTICS
Test conditions
Parameter
9ie
Input conductance
Ic
f
Ic
f
Ic
f
b ie
Input susceptance
Ic
f
Ic
f
Ic
f
b re
Reverse
transusceptance
Ic
f
Ic
f
Ic
f
CPre
Reverse
transadrnittance phase
Ic
f
Ic
f
Ic
f
9fe
Forward
transconductance
Ic
f
Ic
f
Ic
f
b fe
Forward
transusceptance
(continued)
Ic
f
Ic
f
= 1 rnA VCE = 10 V
= 470 kHz
= 1 rnA VCE = 10 V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
= 1 rnA VCE = 10V
= 470 kHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
= 1 rnA VCE = 10V
= 470 kHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
= 1 rnA VCE = 10V
= 470 kHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10 V
= 100 MHz
= 1 rnA VCE = 10V
= 470 kHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
= 1 rnA VCE = 10V
= 10.7 MHz
= 1 rnA VCE = 10V
= 100 MHz
155
Min. Typ. Max. Unit
240
Jj.S
300
Jj.S
900
Jj.S
22
Jj.S
500
Jj.S
4.8
rnS
-1.2
Jj.S
-27.6
Jj.S
-260
Jj.S
-900
-
-900
-
-900
-
35
rnS
35
rnS
32
rnS
-1
rnS
-9
mS
BF 273
ELECTRICAL CHARACTERISTICS (continued)
Parameter
9 0e
boe
Output conductance
Output susceptance
Test conditions
Ie
f
Ie
f
Ie
f
Ie
f
Ie
f
Ie
f
= 1 rnA VeE = 10V
= 470 kHz
= 1 rnA VeE = 10V
= 10.7 MHz
= 1 rnA VeE = 10V
= 100 MHz
= 1 rnA VeE = 10V
= 470 kHz
= 1 rnA VeE = 10V
= 10.7 MHz
= 1 rnA VeE = 10 V
= 100 MHz
156
Min. Typ. Max. Unit
7
J.l.S
11
f.A.S
75
f.A.8
4.4
f.A.8
100
J.l.S
940
J.l.S
BF 274
SILICON PLANAR NPN
GAIN CONTROLLED AM-FM IF AMPLIFIER
The BF 274 is a silicon planar NPN transistor in a TO-18 epoxy package, primarily
intended for use in the gain controlled IF stages of AM and AM/FM radio receivers.
ABSOLUTE MAXIMUM RATINGS
= 0)
V eBo
Collector-base voltage (IE
VeEo
Collector-emitter voltage (IB = 0)
V EBO
Emitter-base voltage (Ie
Collector current
Ie
Ptot
T stg
Tj
= 0)
~
Junction temperature
V
V
25 °C
200 mW
-55 to 125°C
125
MECHANICAL DATA
°C
Dimensions in mm
%~2.54,
C
V
20
4
30 mA
Total power dissipation at Tamb
Storage temperature
'*
25
t,
V
~I
E
TO-18 epoxy
157
4/73
I
BF 274
THERMAL DATA
Rth i-amb
Thermal resistance junction-ambient
max
500
°C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Test conditions
Parameter
Iq;S
Collector cutoff
current (V SE = 0)
VeE = 10V
VCE = 10V
Min. Typ. Max. Unit
100 nA
50 itA
Tamb = 1000 C
V(BR) cso Collector-base
breakdown voltage
(IE = 0)
Ic
= 10(kA
25
V
V (BR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
= 1 mA
20
V
V(BR) ESO Emitter-base
breakdown voltage
(lc = 0)
IE
= 10lJ,A
4
V
VSE
Base-emitter voltage
Ic
= 1 mA
hFE
DC current gain
Ic
= 1 mA
VCE = 10V
for BF 274
for BF 274 Gr. B
for BF 274 Gr. C
70
100
70
400
fT
Transition frequency
Ie
= 1 mA
VeE = 10V
-C re
Reverse capacitance
Ie
f
=0
= 1 MHz
VCE = 10V
Ie
f
Ic
Gee
AG pe
Power gain
Power gain control
0.70
VcE =10V
V
250
120
-
700
MHz
0.41
pF
1 mA
VCE = 10V
470 kHz
1 mA
VCE = 10V
10.7 MHz
40
dB
f
=
=
=
=
30
dB
Ic
f
= 100lJ,A VCE = 10V
=470 kHz
20
dB
158
BF 287
SILICON PLANAR NPN
AM MIXER-OSCILLATOR AND AM-FM AMPLIFIER
The SF 287 is a silicon planar NPN transistor in a TO-72 metal case. It is primarily
intended for use in the AM mixer-oscillator stage and as IF amplifier of AM-FM radios.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
Ptot
= 0)
Collector-base voltage (IE
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc
0)
Collector current
=
~
Total power dissipation at Tamb
40
V
40
V
4
V
20 mA
2'5°C
250 mW
220 mW
at Tease ~ 45°C
Storage temperature
-55 to 200°C
Junction temperature
200
MECHANICAL DATA
°C
Dimensions in mm
x
'"
.
~1~[r~3mi 12~d~
-Q. -Q.
11=
P072-B
(sim. to TO-72)
159
5/73
BF 287
THERMAL DATA
Rth j •.amb
max
Thermal resistance junction-ambient
700
°C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
ICES
Collector cutoff
current (VBE = 0)
Test conditions
Min. Typ. Max. Unit
100
VCE = 10V
nA
V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
Ic
= 10JA,A
40
V
VCEO (sus) Collector-emitter
sustaining voltage
(lB = 0)
Ic
=5mA
40
V
V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)
4
V
IE
= 100 JA,A
VBE
Base-emitter voltage
Ic
Ic
= 1 mA
=2mA
VCE = 7 V
VCE = 10V
hFE
DC current gain
Ic
Ic
= 1 mA
= 2mA
VCE = 7 V
VCE = 10V
fT
Transition frequency
Ic
f
Ic
f
= 1 mA
VCE = 7 V
= 100 MHz
=2mA
VCE = 10 V
= 100 MHz
Ie
= 1 mA
VCE = 7 V
f
= 470 kHz
f
= 10.7 MHz
=2mA
VCE = 10V
= 5.5 MHz
Gpe
Power gain
Ic
f
gie
b ie
Input conductance
Input susceptance
Ic
Ic
710
740
mV
mV
50
60
-
600
MHz
700
MHz
42
18
45
22
dB
dB
25
29
dB
= 1 mA
VCE = 7 V
f
= 470kHz
f
= 10.7 MHz
0.17
0.25
mS
mS
= 1 mA
VCE = 7 V
f
= 470 kHz
f
= 10.7 MHz
24
0.52
{lS
mS
160
30
40
-
BF 287
ELECTRICAL CHARACTERISTICS (continued)
Parameter
9fe
Forward
transconductance
Min. Typ. Max. Unit
Test conditions
Ie
== 1 rnA
VeE == 7V
== 470 kHz
== 10.7 MHz
f
f
-b fe
Forward
transusceptance
Ii;
Output conductance
Ie
Output susceptance
Ie
==
==
VeE == 7 V
470kHz
10.7 MHz
== 1 rnA
VeE
f
== 470kHz
f
boe
rnS
rnS
40
0.96
tJ,S
rnS
6
11
,tJ,S
,tJ,S
4.5
100
p.S
,tJ,S
== 1 rnA
f
f
9 ee
35
35
==
f
f
==
==
7V
10.7 MHz
1 rnA
VeE == 7 V
== 470 kHz
== 10.7 MHz
I
161
BF 288
SILICON PLANAR NPN
GAIN CONTROLLED AM-FM IF AMPLIFIER
The BF 288 is a silicon planar NPN transistor in a TO-72 metal case. It is primarily
intended for use in the gain controlled IF stages of AM and AM/FM radio receivers.
ABSOLUTE MAXIMUM RATINGS
V CBO
VCEO
VEBO
Ic
Ptot
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tamb ~ 25°C
40
V
40
V
4
V
20 rnA
250 mW
220 rnW
.-55 to 200°C
at Tamb ~ 45°C
Storage temperature
Junction temperature
200
MECHANICAL DATA
°C
Dimensions in rnm
5.3 max
"III
.
12.7mm.
E
~r~f I" i~~
P072-B
(sim. to TO-72)
163
5/73
BF 288
THERMAL DATA
Rth
j-amb
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS
ICES
Collector cutoff
current (VBE :::: 0)
V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
VCEO
=
V(BR) EBO Emitter-base
breakdown voltage
(lc
0)
=
VBE
Base-emitter voltage
hFE
DC current gain
fT
Transition frequency
-C re
Reverse capacitance
G pe
Power gain
10~A
Ic
=
Ic
= 5mA
= 100 ~A
Ic = 1 rnA
VCE = 7 V
Ic = 1 rnA
VCE = 7 V
Ic = 1 rnA
VCE = 7 V
f
= 1 MHz
VCE = 7 V
Ic = 1 rnA
VCE = 7 V
f
= 470 kHz
IE
Input conductance
Ic
= 10.7 MHz
100
nA
40
V
40
V
4
V
Input susceptance
Forward
transconductance
Ic
Ic
65
42
18
740
mV
90
-
500
MHz
0.24
pF
45
22
dB
dB
= 1 rnA VCE = 7 V
= 470 kHz
= 10_7 MHz
= 1 rnA VCE = 7 V
f
= 470kHz
f
= 10.7 MHz
0.17
0_25
mS
mS
24
0.52
~S
= 1 rnA VCE = 7 V
= 470 kHz
= 10.7 MHz
35
35
mS
mS
f
f
9fe
Min. Typ. Max. Unit
VCE = 7 V
f
b ie
°C/W
(sus) Collector-emitter
sustaining voltage
(IB
0)
9ie
700
(T amb = 25°C unless otherwise specified)
Test conditions
Parameter
max
f
f
164
mS
,
I!
i
BF 288
!~
ELECTRICAL CHARACTERISTICS (continued)
Parameter
-b fe
9 0e
Forward
transusceptance
Output conductance
Test conditions
Ie
Ie
= 1 rnA VCE = 7 V
= 470 kHz
= 10.7 MHz
= 1 rnA VCE = 7 V
= 470 kHz
f
f
= 10.7 MHz
f
f
boe
Output susceptance
Ie
=7V
= 1 rnA
VeE
f
470 kHz
f
10.7 MHz
=
=
165
Min. Typ. Max. Unit
40
0.95
:jJ.S
rnS
6
11
p.S
p.S
4.5
100
,IlS
'jJ.S
BF 316A
SILICON PLANAR PNP
UHF MIXER OSCILLATOR
The SF 316 A is a silicon planar epitaxial PNP transistor in a TO-72 metal case. It is
specifically designed for use as oscillator-mixer in UHF tuners.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ie
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB
Emitter-base voltage (lc
0)
Collector current
-40
= 0)
=
T"9
Total power dissipation at T.mb ="'=' 25 °C
Storage temperature
T;
Junction temperature
P,o,
-35
V
V
-3
V
-20 mA
200 mW
-55 to 200 oC
200°C
MECHANICAL DATA
Dimensions in mm
(sim. to TO-72)
Supersedes issue dated 4/73
167
6/75
BF 316A
THERMAL DATA
Rth
j.amb
Thermal resistance junction-ambient
max
875
°C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
ICBO
Collector cutoff
current (IE = 0)
Test conditions
Min. Typ. Max. UnH
VCB = -20V
-100 nA
V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
Ic
= -10 Il-A
-40
V
V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
= -3mA
-35
V
V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)
IE
= -101l-A
-3
V
VBE
Base-emitter voltage
Ic
= -3mA
VCE
Ic
= -3mA
VCE = -10V
= -10V
hFE
DC current gain
fT
Transition frequency
Ic
= -3mA
VCE = -10 V
-C re
Reverse capacitance
Ic
f
=0
= 1 MHz
VCE = -10V
Ic
Rg
f
Ic
Rg
f
= -3mA VCB = -10V
=50n
= 800 MHz
= -3mA VCB = -10V
= son
= 500 MHz
Ic
RL
f
Ic
RL
f
= -3mA VCB = -10V
= 2kn
= 800 MHz
= -3mA VCB = -10V
=2kn
= 500 MHz
NF
Gpb
Noise figure
Power gain
168
-0.75
30
V
50
-
600
MHz
0.25
pF
5
dB
3.5
dB
12
dB
17
dB
BF 316A
ELECTRICAL CHARACTERISTICS
Parameter
9ib
bib
Input conductance
Input susceptance
bob
91b
bIb
9 rb
b rb
Output conductance
Output susceptance
Forward
transconductance
Forward
transusceptance
Reverse
transconductance
Reverse
transusceptance
Min. Typ. Max. Unit
Test conditions
Ic
f
Ic
f
= -3 rnA Vce =
= 800 MHz
-10V
= -3 rnA Vce = -10V
= 500 MHz
Ic
f
=
=
=
=
-3 rnA Vce = -10V
800 MHz
-3 rnA Vce = -10V
500 MHz
Ic
f
Ic
f
=
=
=
=
-3 rnA Vce = -10V
800 MHz
-3 rnA Vce = -10 V
500 MHz
Ic
f
Ic
f
=
=
=
=
-3 rnA Vce = -10V
800 MHz
-3 rnA VcB =-10V
500 MHz
Ic
f
Ic
f
= -3 rnA Vce = -10V
= 800 MHz
= -3 rnA Vce = -10V
500 MHz
Ic
f
Ic
f
=
=
=
=
-3 rnA Vce = -10V
800 MHz
-3 rnA Vce = -10 V
500 MHz
Ic
f
Ic
f
=
=
=
=
-3 rnA VcB =-10V
800 MHz
-3 rnA VcB =-10V
500 MHz
Ic
f
Ic
f
=
=
=
=
-3 rnA Vce = -10V
800 MHz
-3 rnA Vce = -10V
500 MHz
Ic
f
90b
(continued)
=
169
4.6
mS
17
mS
-23
mS
-37
mS
0.6
mS
0.32
mS
5
mS
3.2
mS
16
mS
10
mS
13
mS
39
mS
-0.1
mS
-0.04
mS
-0.32
mS
-0.26
mS
ELECTRICAL CHARACTERISTICS (continued)
Parameter
fb
Phase angle of the
forward transadmittance
Ic
f
= 1 mA
VCE = 10 V
= 100 MHz
1600
-
gob
Output conductance
22
(kS
bob
Output susceptance
0.86
mS
I
177
BF 455
SILICON PLANAR NPN
PREAMPLIFIER AND AM/FM IF AMPLIFIER
The SF 455 is a silicon planar NPN transistor in TO-18 epoxy package, with low
reverse capacitance, very low noise, high output impedance.
The SF 455 is especially suited for FM tuners, IF amplifiers in AM/FM receivers, AM
input stages of car-radios.
ABSOLUTE MAXIMUM RATINGS
=
VCEO
Collector-base voltage (IE
0)
Collector-emitter voltage (IB = 0)
VEBO
Ie
Emitter-base voltage (lc
Collector current
Ptot
Total power dissipation at Tomb
====
25°C
at Tease
====
25°C
VCBO
= 0)
Storage temperature
Junction temperature
125
°C
Dimensions in mm
~zY~2.54
B
C
V
25
V
4
V
20 mA
200 mW
500 mW
-55 to 125°C
MECHANICAL DATA
. P
35
!r,
\:f
~I
E
TO-18 epoxy
179
5/73
BF 455
THERMAL DATA
Rth
j.amb
Thermal resistance junction-ambient
max
500
°C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
ICBO
Test conditions
Collector cutoff
current (IE = 0)
Min. Typ. Max. Unit
200 nA
VCB = 10V
V(BR) cBoColiector-base
breakdown voltage
(IE = 0)
Ic
= 100 IlA
35
V
VCEO(sus) 'Collector-emitter
sustaining voltage
(lB = 0)
Ic
= 1 mA
25
V
V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)
IE
= 10 IlA
4
V
VBE
Base-emitter voltage
Ic
= 1 mA
VCE = 10V
hFE
DC current gain
Ic
Ic
Ic
= 1 mA
= 1 mA
= 1 mA
VCE = 10V
VCE = 10V
VCE = 10 V
Ic
f
= 1 mA
VCE = 10V
= 100 MHz
400
Ic
f
=0
= 1 MHz
0.5
0.8 pF
3
dB
Gr. C
Gr. D
fr
-C re
NF
Transition frequency
Reverse capacitance
Noise figure
• Pulsed: pulse duration
duty factor = 1%
180
V
120
75
125
68
38
35
-
-
MHz
VCE = 10V
VCE = 10V
Ic = 1 mA
Rg = 1000
f
= 100 MHz
= 300 IlS,
0.71
BF 455
ELECTRICAL CHARACTERISTICS
Parameter
(continued)
Test conditions
Min. Typ. Max. Unit
gib
Input conductance
38
mS
-bib
Input susceptanr.e
2
mS
34
mS
IYfbl
Forward transadmittance
CPfb
Phase angle of the
forward transadmittance
Ic
f
= 1 mA VCE = 10 V
= 100 MHz
1500
-
gob
Output conductance
13
\.1S
bob
Output susceptance
0.8
mS
181
BF457
BF 458
BF4S9·
SILICON PLANAR NPN
PRELIMINARY DATA
HIGH VOLTAGE VIDEO AMPLIFIERS
The SF 457, SF 458 and SF 459 are silicon planar epitaxial NPN transistors in Jedec
TO-126 plastic package. They are particularly intended for use as video output stages in
colour and black and white TV receivers, class A output stages and drivers for horizontal
deflection circuits. These transistors hav~ been studied in order to guarantee the maximum
resistance against flash over.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
V EBO
ICM
IBM
Ptot
SF 457
Collector-base voltage (I E = 0)
Collector-emitter voltage (I B = 0)
Emitter-base voltage (lc = 0)
Collector peak current
Base peak current
Total power dissipation at Tamb <; 25°C
T case <; 25°C
Storage temperature
Junction temperature
MECHANICAL DATA
Supersedes issue dated 10/74
SF 458
SF 459
160 V
250 V
300 V
250 V
300 '!.5V
300 mA
50 mA
1.25 W
12.5 W
-55t0150°C
150°C
~60V
Dimensions in mm
183
6/75
THERMAL DATA
Rth j-case
Rth j-amb
10 DC/W
100 DC/W
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS (T case = 25 DC unless otherwise specified)
Parameter
ICBo
Collector cutoff
current (IE = 0)
Test conditions
for BF 457
for BF 458
for BF 459
V(BR) CEO' Collector-emitter
sustaining voltage
(lB = 0)
Ic = 10 mA
V(BR)EBO Emitter-base
breakdown voltage
(lc = 0)
IE = 100 /1A
V CB = 100V
V CB = 200V
V CB = 250V
for BF 457
for BF 458
for BF 459
Collector-emitter
saturation voltage
Ic=50mA
IB = 10 mA
hFE
DC current gain
Ic =30 mA
V CE = 10V
fT
Transition frequency
Ic = 30 mA
V CE = 10V
-C re
Reverse capacitance
Ic =0
f = 1 MHz
V CE = 30V
Ic == 0
f = 1 MHz
V CE = 30V
VCE(sat)
Coe
Output capacitance
* Pulsed: pulse duration = 300/15. duty cycle 1%
184
Min. Typ. Max. Unit
50
50
50
nA
nA
nA
160
250
300
V
V
V
5
V
1
30
V
80
-
90
MHz
4
pF
5
pF
Typical collector-emitter
voltage
Typical DC current gain
saturation
1
6-'411
I'
VCECsatl
i
(v)
FE='
0.15
100
V
VCE"IOV
0.1
-~
50
V
0.05
~
o
4
,
••
..
..
o
4
••
IC (rnA)
10
Typical transition frequency
..
ICImA)
10
Typical output and reverse capacitance
-
6-1411
G ..,.
C
Iy
(104Hz)
(pi')
VCE "IOV
=20 MHz
=1MHz
Ie-o
8
150
6
t"..
"
100
CoefCref-
50
o
10
20
30
40
o
IC(mAl
185
10
20
30
VCE (V)
I;,
BF 479
SILICON PLANAR PNP
'·1.,
1
I
I1
I~J
PRELIMINARY DATA
LOW-NOISE ULTRA LINEAR UHF-VHF AMPLIFIER
The SF 479 is a PNP silicon planar epitaxial transistor in aT-plastic package mainly
intended for high current UHF-VHF stages of TV tuners.
In this application, combined with a PIN diode attenuator circuit, it presents very low
noise and very good cross modulation performances up to 900 MHz.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
V EBO
Ic
P tot
T stg
Tj
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (lc = 0)
Collector current
Total power dissipation at Tomb ~ 45°C
Storage temperature
Junction temperature
MECHANICAL DATA
-30
V
-25
V
-3
V
-50 mA
170 mW
-55 to 150°C
150 °C
Dimensions in mm
g!G.S
{n
Within this region thp cross
section of the leads, is uncontrolled
187
5/73
BF479
THERMAL DATA
Rth
j-omb
ELECTRICAL CHARACTERISTICS
Collector cutoff
current (IE = 0)
600
°C/W
(Tomb = 25°C unless otherwise specified)
Test conditions
Parameter
ICBO
max
Thermal resistance junction-ambient
Min. Typ. Max. Unit
VCB = -20V
-100 nA
VeBR) CBO Collector-base
breakdown voltage
(IE = 0)
Ic
= -1oo!J.A
-30
V
VeBR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
= -5mA
-25
V
VeBR) EBO Emitter-base
breakdown voltage
(lc = 0)
IE =-1O !J.A
-3
V
20
-
hFE
DC current gain
Ic
= -10 mA VCE =-10 V
fT
Transition frequency
lc
f
=-10mA VCE = -10V
= 100 MHz
1.4
GHz
CCBO
Collector-base
capacitance
IE
f
=0
= 1 MHz
0.7
pF
2.5
3.3
3.5
4
dB
dB
dB
dB
NF
Noise figure
VCB = -10V
Ic
Ic
Ic
Ic
Gob
Power gain
=
=
=
=
-3mA
-10 mA
-3mA
-10 mA
VCB = -10V
Rg = 50n
f
f
f
f
=
=
=
=
200 MHz
200 MHz
800 MHz
800 MHz
Ic = -10 mA VCB = -10V
f = 800 MHz
RL = 2kn
188
15
18
5.5
6
dB
BF 479
Typical noise figure
Typical noise figure
G-101U1
NF
(dB)
~---t--+-+-~-H~----~-1-1-+~HHH
r---~--+-+-r+~~~;;~OM~Z
f----+--t--t-H-t+-H-vCB " 'OV
Rg '" 50
1----~--+-+-r+-+++l_VCB
7.5
n
"'0 V
f-__-+__t-t-l-++++t-_',C'-"_'..:.OmT_A--+--+-++-t-ttl
-
,.5
6
10
8
,0
-Ie (rnA)
Typical transition frequency
6
,
8
6
f (MHz)
8
10 3
I
Typical output voltage
(intermodulation -40 dB)
VCE =-10V
-I--+-
=
.-
t--t--t--t--t--r-r- -r--
12
,6
20
24
12
Ie (rnA)
189
'6
20 Ie (rnA)
SILICON PLANAR PNP
VHF OSCILLATOR MIXER
The BF 506 is a silicon planar epitaxial PNP transistor in Jedec TO-92 plastic package.
It is intended for use as mixer and oscillator in the VHF range. However, it may also be
used as not controlled preamplifier at low noise.
ABSOLUTE MAXIMUM RATINGS
Vcso
V CEO
V ESO
Ic
Is
Ptot
T stg
Tj
Collector-base voltage (IE = 0)
Collector-emitter voltage (Is = 0)
Emitter-base voltage (lc = 0)
Collector current
Base current
Total power dissipation at Tamb :;;;;45°C
Storage temperature
Junction temperature
MECHANICAL DATA
~upersedes
issue dated 10/74
-40
-35
-4
-30
-5
250
-55 to 150
150
V
V
V
mA
mA
mW
°C
°C
Dimensions in mm
191
6/75
THERMAL DATA
Rtn
j-amb
Thermal resistance junction-ambient
max
420 °C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
ICBO
Min. Typ. Max. Unit
V CB = -20V
-200
nA
V(BR)CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic = -5 rnA
-35
V
V(BR)EBO Emitter-base
breakdown voltage
(lc = 0)
IE = -10 IlA
-4
V
hFE
DC current gain
Ic =-3 rnA
V CE = -10V
fT
Transition frequency
Ic =-1 rnA
f = 100 MHz
V CE = -10V
IE =0
f = 1 MHz
V CB = -10V
Ic =0
f = 1 MHz
V CB = -10V
Ic=-1mA
Rg =50n
f = 200 MHz
Vcc=-6V
Ic =.-3 rnA
RL = 1k!2
f = 200 MHz
Vcc= -10.8\
CCBO
Crb
NF*I**
Gpb *
*
Collector cutoff
current
(lE=O)
Test conditions
Collector-base
capacitance
Reverse capacitance
Noise figure
Power gain
See TEST CI RCU IT
** Input adapting for optimum source admittance
192
40
-
400
MHz
0.8
pF
0.13
pF
2.5
14
17
4
dB
dB
Typical input admittance
Typical transfer admittante
IHHI
G 1389
bib
(mS)
.'UV
- V
o
r-..
r-..
_~Blll~
)
200_
eo
10.7 MHz
1
1/
r-..
~
-20
1/
100
60
]
5
100
,\1
-40
..
.A
-
200
-60
.
36
I"..
3
m
20
¥
""0
o
100
50
-ISO
150 glb (mS)
Typical output admittance
G 1390/1
I I
bob
(mS)
200MHz
o.e
1
/-Ic =5mA
]
0.6
II
100
I
1
Q.2
1/
o
-Ie'l IRA
103
o
136
-vee -10
,....10.7
0.02
0.04
0.06
0.08 90b (mS)
193
-100
-so
o
9'blmS)
TEST CIRCUIT
Power gain and noise figure
:t
-~
~ ~:I"'n-F-~~---J
) 1,
lkn
Vee
VEE
• Leaca. . c.,.mic disc capacitor
S-O'77
L1-3turns 0..6"", Mamt'I,I.mn dia.
L2=2lurns
~
I mil _mel, 6.Snm dia.
194
SILICON PLANAR PNP
VHF AGC AMPLIFIER
The BF 509 is a silicon planar epitaxial PNP transistor in Jedec TO-92 plastic package.
It is intended for use as controlled VHF preamplifier when a high gain level with particularly
reduced noise is required.
ABSOLUTE MAXIMUM RATINGS
Vcso
VCEO
V EBO
Ic
Is
Ptot
T stg
Tj
Collector-base voltage (I E = 0)
Collector-emitter voltage (Is = 0)
Emitter-base voltage (lc = 0)
Collector current
Base current
Total power dissipation at Tamb ,,;;; 45°C
Storage temperature
Junction temperature
MECHANICAL DATA
-40
-35
-4
-30
-5
250
-55 to 150
150
V
V
V
mA
mA
mW
°C
°C
Dimensions in mm
I
I:~
11
195
10/74
THERMAL DATA
Rth j"-ilmb
Thermal resistance junction-ambient
max
420 °C/W
ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified)
Parameter
I cBO
Collector cutoff
current
(lE=O)
Test conditions
Min. Typ. Max. Unit
VCB=-20V
-200
nA
V(BR)CEO Collector-emitter
breakdown voltage
(lB ;= 0)
Ic =-5 mA
-35
V
V(BR)EBO Emitter-base
breakdown voltage
(lc =0)
I E =-10J.LA
-4
V
hFE
DC current gain
Ic =-3mA
V CE = -10V
fT
Transition frequency
Ic =-3mA
f = 100 MHz
V CE = -10V
IE =0
f = 1 MHz
V CB = -10V
Ic =0
f = 1 MHz
V CB = -10V
Ic =-3mA
Rg = 50n
f=200MHz
Vcc=-10.8V
CCBO
,C'b
NF*I**
G pb *
Collector-base
capacitance
Reverse capacitance
Noise figure
Power gain
Ic
= -3 mA
70
-
700
MHz
0.8
pF
0.13
pF
1.5
2.5
dB
Vcc=-10.8V
RL = 1 kn
IC(AGC) * Collector current for
flG pb = 30 dB
f=200MHz
15
Vcc= 10.8V
f = 200 MHz
7.3
* See TEST CI R<;:UIT
** Input adapting for optimum source admittance.
196
18
dB
8.8 mA
~., ','
. . •.'. . . . . . .•.•. •. •. .:':.•.•,'".....':.: ., .• . ':,.<.•.,:". . . ::. •. ,'.:'. . •.•.•. . . :. . . •.:.'.:. . ,. .,. •. .,. . . . . . . . . . . . . . . . . . . .
, .. ,.
Typical input admittance
Bf<5:09
,.
" , ...
;",
,,;.,
0'"
""
,""_"
Typical transfer admittance
G-ll9]
G-1J95
bib
b,b
H-
l
,",S)
(mS)
I
o
r-.
1
-Y
80
:1110V
-YCB"
,
Y
I
10.7
-20
I
60
~
3
I
36
200 MHz
1/
100
V
1 .....
200 114Hz
5
100
,
40
-I • 5mA
1\1/,
X,
If
-60
20
3
,
1
.,
,
I'\.
Ib~ 10.7
l'
Ic" mA
,
o
-80
o
100
50
150
-150
Glb ,",5)
Typical output admittance
-100
-50
0
g'b (mS)
Typical power gain variation
current
VS.
0_1394
bob
(mS)
A
08
G.1392
AGpb
(dB)
r+-
i/ 200MHz
I
,I
+-
-10
I
1
-I C·5m
3
AGe
I "200 MHz
-YCC"lO.BY
1\
-20
Q.6
'\,
\
\
100
-30
OA
1\
h.
Q.2
-Yea .10Y
1\
-40
,
10.7
n02
Q04
o
no6
197
8 -Ic (mA)
I
TEST CIRCUIT
Power gain, AGe and noise figure
,T
v,
C4
12
Yo
1510
GpF
lOto~D.
t,OpF
"
~-4--""'''''''-II,nF
I
111,-nF--....-~-....
Ikn
VEE
Vee
• Leadless c.... mic disc capacitor
Ll=3turns O.6nm ft'Iameol,4nm dia.
L2=2turns 1 mn enamet, 6.Smn dia.
198
S-0877
BF516
SILICON PLANAR PNP
UHF-VHF AMPLIFIER
The BF 516 is a silicon planar epitaxial PNP transistor in a TO-72 metal case, intended
as general purpose amplifier up to 1 GHz.
ABSOLUTE MAXIMUM RATINGS
VeBo
VeEo
VEBO
Ie
Ptot
T stg
Tj
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ie = 0)
Collector current
Total power dissipation at Tamb "'" 25°C
Storage temperature
Junction temperature
MECHANICAL DATA
V
-40
V
-35
-3
V
-20 rnA
200 mW
-55 to 200 °C
200 °C
Dimensions in mm
(sim. to 10-72)
Supersedes issue dated 4/73
199
6/75
BF 516
THERMAL DATA
Rth j.omb
Thermal resistance junction-ambient
max
875
°C/W
ELECTRICAL CHARACTERISTICS (Tomb = 25°C unless otherwise specified)
Parameter
ICBO
Collector cutoff
current (IE = 0)
Test conditions
Min. Typ. Max. Unit
VCB = -20 V
-100 nA
V(BR) CBO Collector-base
breakdown voltage
(IE = 0)
Ic
= -10 !-LA
-40
V
V(BR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
= -3mA
-35
V
V(BR) EBO Emitter-base
breakdown voltage
(lc = 0)
IE
= -10 !-LA
-3
V
VBE
Base-emitter voltage
Ic
= -3mA
VCE = -10V
hFE
DC current gain
Ic
= -3mA
VCE = -10V
fT
Transition frequency
Ic
= -3mA
VCE = -10V
-Cr.
Reverse capacitance
Ic
f
=0
= 1 MHz
VCB = -10V
Crb
Reverse capacitance
Ic
f
=0
= 1 MHz
VCE = -10V
NF
Gpb
Noise figure
Power gain
Ie = -3mA VCB
Rg = 50n
f
= 800 MHz
Ic = -3mA VeB
Rg = 50n
f
= 200 MHz
Ie = -3mA VCB
RL = 2kn
f
= 800 MHz
Ie = -3mA VeB
RL = 2kn
f
= 200 MHz
200
-0.75
25
50
V
-
850
MHz
0.3
pF
0.05
pF
3.5
6 dB
2.5
dB
14
dB
19
dB
= -12V
= -12V
= -12 V
= -12 V
11
BF 516
Transition frequency
Normalized DC current gain
GS 0037
f,
(MH,)
VCE =-lOV
1.6
800 I - -
1.2
45' C
-
0.8
NORMA.LIZA.TION
"'"
0.4 I - h" ~ 1 at Ie =
I--IT,ml·
0.1
fr
- 3 mA
VeE,'-lO
03
/
400
/
\
1
/
200
I
\\
V
o
3
0.1
-Ie (mA)
0.3
3
-Ie (mA)
Noise figure
GS 0039
-ere
(pF)
I = 0
C
~
'90041
NF
I
(dB)
-
Rg
50 II
VeE
-lOV
f- r-
"'- ~
" '""-
\
\
/
Reverse capacitance
0.5
1\
/
600
"\
1-,,\
/
......
25' C
/
f=lOOMHz
j\,
/
"'-. """-
0.1
10
30
-VeE (V)
201
50
100
200
500 f (MHz)
SILICON PLANAR NPN
PRELIMINARY DATA
MEDIUM POWER VIDEO AMPLIFIERS
The BF 657, BF 658 and BF 659 are silicon planar epitaxial NPN transistors in TO-39
metal case. They are particularly designed for application with precision "IN-LINE" large
screen CRT !thermal resistance :s;;; 20°C/W).
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
ICM
Ptot
BF657
Collector-base voltage. (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ic = 0)
Collector current
Collector peak current
Total power dissipation at T case:S;;; 6qoC
at T case :s;;; l40 C
Storage temperature
Junction temperature
Q
Tstg
Tj
MECHANICAL DATA
l60V
-160 V
BF658
BF659
250 V
300 V
250
V
300~
-..r
5V
100mA
200mA
7W
3W
-55 to 200°C
200 °C
Dimensions in mm
203
4/75
I
THERMAL DATA
Rth j-case
Rth j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
max
max
20 °CIW
175 °CIW
ELECTRICAL CHARACTERISTICS (T amb = 25°C unless otherwise specified)
Parameter
ICBo
Collector cutoff
current (IE = 0)
Test conditions
for BF 657
for BF 658
for BF 659
V(BR)CBO Collector-base
breakdown voltage
(IE =0)
Ic = 100pA
V (BR)CE6' Collector-emitter
breakdown voltage
(lB = 0)
Ic = 10 mA
V(BR)EBO Emitter-base
breakdown voltage
(lc = 0)
IE = 100 IlA
V CB = 100V
V CB = 200V
V cB =250V
160
250
300
V
V
V
for BF 657
for BF 658
for BF 659
160
250
300
V
V
V
5
V
Ic =30 mA
IB =6 mA
hFE *
DC current gain
Ic = 30 mA
V CE = 10V
fT
Transition frequency
Ic = 15 mA
V CE = 10V
-C re
Reverse capacitance
Ic =0
f = 1 MHz
V cE =30V
204
50 nA
50 nA
50 nA
for BF 657
for BF 658
for BF 659
V CE(sat) * Collector-emitter
saturation voltage
* Pulsed: pulse duration = 300 IlS, duty factor = 1%
Min. Typ. Max. Unit
1
V
-
25
90
3
MHz
pF
Typical collector-emitter
voltage
Typical DC current gain
G 1623/1
saturation
VCE(sat)
IV )
80
./
/'
-
0.8
J
0.6
..,..
60
---
40
'51
"
0.4
VeE =10V
V
0.2
20
o
,
.
Ie
10
,
.
o
4
8
10
G-1646/1
InA )
6
(mA)
Typical collector cutoff current
leeo
I-""
C
Ipl)
...
6
•
IclmA)
10'
Typical collector-base and reverse capacitances
-1685
4
,
10'
•
,
10'
•
,
10
••
,
BF657
Veo-IOOV
200V
250V
BF658
..........
BF659
r-.........
..........
6
4
.......
",-
e,.
, ,......
..........
6
4
50
..........
............. .......
.......
V
o
25
eceo
.......... ~
75
100
125 Tambl'C)
205
•• 10
4
•
,
VeB (V) 10'
I
Typical transition frequency
Safe operati ng areas
G-1413
G-162.lofl
IC
8
(mA)
IC MAX (CONTINUOUS )~
6
I
)
Tease =60·C
VCE =lOV
f= 20 M-iz
4
150
2
10
100
8
6
4
50
BF657 VCEO MAX = 160V _ _
2
BF658 VCEO MAX= 250VBF659 VCEO MAX= 300V
10
6
8
102
F
6
•
o
VCE (V)
206
10
20
30
IJJ
IC(mA)
SILICON PLANAR PN P
UHF-VHF AGC AMPLIFIER AND OSCILLATOR MIXER
The BF 679 and BF 679M are silicon planar epitaxial PNP transistors in T-plastic package
intended for the use in UHF-VHF range up to 900 MHz. Because of its low noise and gain
characteristics versus current, the BF 679 is particularly suited as a controlled preamplifier
stage in TV varicap tuners. The BF 679M because of its low thermal drift and high oscillation
stability is particularly suggested as oscillator mixer.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
VEBO
Ic
IB
Ptot
T stg
ToJ
Collector-base voltage (IE = 0)
Collector-emitter voltage (lB = 0)
Emitter-base voltage (Ic= 0)
Collector current
Base cu rrent
Total power dissipation at Tamb ..;; 45 °C
Storage temperature
Junction temperature
MECHANICAL DATA
Supersedes issue dated 9/74
-40
-35
-3
-30
-5
170
-55 to 150
150
V
V
V
rnA
rnA
mW
°C
°C
Dimensions in mm
207
6/75
THERMAL DATA
Rth
j-amb
Thermal resistance junction-ambient
600
max
°C/W
ELECTRICAL CHARACTERISTICS (Tamb = 25°C unless otherwise specified)
Parameter
ICBo
Collector cutoff
cu rrent (I E = 0)
Test conditions
Min. Typ. Max. Unit
V CB = -20V
-100 nA
V(BR)CBO Collector-base
breakdown voltage
(IE = 0)
Ic = -100 J,tA
-40
V
V(BR)CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic =-5 mA
-35
V
V(BR)EBO Emitter-base
breakdown voltage
(lc = 0)
IE=-10J,tA
-3
V
hFE
DC current gain
Ic = -3 mA
fT
Transition frequency
Ic =-3 mA V CE = -10V
f = 100 MHz
V CE = -10V
700 1000
CCBO
Collector-base
capacitance
V CB = -10V
IE = 0
f = 100 MHz
0.6
pF
0.07
pF
3.5
5 dB
15
dB
Crb
Reverse capacitance
Ic =0
V CB = -10V
f = 100 MHz
NF*
Noise figure
Ic =-3 mA Vcc= -10.BV
Rg = 5012
f = BOO MHz
Gpb *
Power gain
IC(AGC) * Collector current
for!::" Gpb = 30 dB
25
Ic = -3 mA Vcc= -10.BV
RL = 2 k12
f = BOO MHz
12
for BF 679 only
f =800 MHz Vcc= -10.BV
6.4
*See TEST CIRCUIT
208
60
MHz
7.B mA
Typical transition frequency
Typical input admittance
(for BF 679 only)
G.llGOIl
tT
(MHz)
v
-bib
1
1
(mS)
• -10V
1200
8F679M 1
1000
.............
~
800
600
r-...
h
IAi
'I
IN
BF679
30
"-
"\
20
~
400
'0
200
I
/
t
'{
V \
/
I
r-
I
Typical transfer admittance
(for BF 679 only)
b'b
"l
-
2mA\
I
II
11..
/1
VCS=-10V
1\
'=600MH. ""I
.A
(
40
500MH
\
30
f=60MH:z:
20
:,,
,"
\
\
\
)I
l"- II\.
......
10
1\
lmA/
/
f/j
0.5
1
t--;tf
-120
-tOO
-80
-60
-40
-20
~"H~
VCS=-IOV
r
200 MHz
~ 100MHz
Jl
I
o
f= 8
/.~
r-2mA
~ t-5mA
~500MHZ
~V
860MHz
I'..
80
~
'5
)..-- ~
II
/
.F/
'\. \
\
1(X}MHz
\
V
/ooMHZ
~
1,=-lmA-
'mA
200">«
Y
2D
\
50
1\
/
/ ./
bob
(mS)
"
/
60
/
/
Typical output admittance
(for BF 679 only)
lc=-5m
(mS)
IOOMHz
1\ poMH./
o
-Ie (rnA)
~I'..
il
~ r""-I
~
6
VCB~-10V
SmA .......
200M Hz
I c =-lmA\
o
~
,<"
50
60MHz
I
0 g,.(mS)
02
209
as
os
90b{mS)
Typical power gain
(for SF 679 only)
to· 1111/1
Gpb
(dBI
10
t-10
-20
~
t ::800 MHz
Rl::
no
"'CC="'1O.BV
~~-+-+--+-~'-++-I--!-H-+-HH-H-+-f
-30
.1, (mAl
TEST CIRCUIT
Power gain, AGe and noise figure
B20n
5-0466
210
SILICON PLANAR PNP
PRELIMINARY DATA
UHF MIXER-OSCILLATOR
The BF 680 is a PNP silicon planar epitaxial transistor in T -plastic package. It is
intended for use in TV varicap tuners as mixer-oscillator stage up to 900 MHz.
ABSOLUTE MAXIMUM RATINGS
Vcso
VCEO
VESO
Ic
's
Ptot
T,tg
Tj
Collector-base voltage (IE = 0)
Collector-emitter voltage (Is = 0)
Emitter-base voltage (lc = 0)
Collector current
Base current
Total power dissipation at Tomb ~ 45°C
Storage temperature
Junction temperature
MECHANICAL DATA
Supersedes issue dated 8/73
-40
V
-35
V
-3
V
-30 mA
-5 mA
17.0 mW
-55 to 150 °C
150 °C
Dimensions in mm
211
6/75
THERMAL DATA
Rth j.omb
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS
Parameter
ICBO
Collector cutoff
current (IE = 0)
max
600
°C/W
(Tomb = 25°C unless otherwise specified)
Test conditions
Min. Typ. Max. Unit
VCB = -20 V
-100
nA
VeBR) cBoCollector-base
breakdown voltage
(I E = 0)
Ic
= -100 itA
-40
V
VeBR) CEO Collector-emitter
breakdown voltage
(lB = 0)
Ic
= -5 rnA
-35
V
VeBR) EBO Emitter-base
breakdown voltage
(lc = 0)
-3
V
IE
= -10 itA
hFE
DC current gain
Ic
= -3 rnA
fT
Transition frequency
Ic
f
= -3 rnA VcE =-10V
= 100 MHz
650
MHz
IE
f
VCB = -10V
=0
= 100 MHz
0.6
pF
Ic
f
VCB = -10V
=0
= 100 MHz
0.07
pF
Ic = -3mA VCB = -10V
Rg = 50n
f
= 800 MHz
5.5
dB
14
dB
CeBo
~rb
NF*
Gpb *
Collector-base
capacitance
Reverse capacitance
Noise figure
Power gain
VcE =-10V
Ic = -3mA VeB = -10 V
RL = 2 kn
f
= 800 MHz
* See TEST CIRCUIT
212
35
11
50
-
ELECTRICAL CHARACTERISTICS
Parameter
gib
-bib
!yfbl
CJlfb
gob
bob
Input conductance
Input susceptance
Forward transadmittance
Phase angle of the
forward transadmittance
Output conductance
Output susceptance
(continued)
Test conditions
Ie
Ie
Ie
Ie
Ie
Ie
= -2 mA
= -2 mA
= -2 mA
= -2 mA
= -2 mA
= -2 mA
213
=
=
f = 500 MHz
VeE = -10V
f = 860 MHz
f = 500 MHz
VeE = -10 V
f = 860 MHz
f = 500 MHz
VeE
-10 V
f
860 MHz
7
mS
14
mS
19
24
mS
=
=
f = 500 MHz
VeE = -10 V
f = 860 MHz
f = 500 MHz
VeE
-10 V
f
860 MHz
mS
25
mS
42
mS
=
VeE
-10V
f
860 MHz
f
500 MHz
=
=
Min. Typ. Max. Unit
50 0
1100
-
-
0.8
mS
0.4
mS
2.5
1.6
mS
mS
I
Typical DC current gain
Typical transition frequency
G 1125
fT
(MHz )
VCE=-IOV
f = 100 MHz
800
50
t=t::t;;tiE~nWjj
600
~ ~~
__~~.~~1~1__~-+~~~
1--+---·VCC- 10V
30
-
.J'
--+11--+----1----1-++1-+\-1
-f--T-
-
I'-...
.........
400
'"
1
20 1--+----l-----+-I--W--I-+l_ _-+--l---I---I--I-l-I-I-I
200
10
..
...
-,,(mAl 10
8 -Ie (rnA)
TEST CIRCUIT
Power gain and noise figure
5 -0486/1
214
INTEGRATED CIRCUITS
215
MOS INTEGRATED CIRCUIT
M 252
PRELIMINARY DATA
RHYTHM GENERATOR
• LOW POWER DISSIPATION: < 120 mW
• DRIVES 8 SOUND GENERATORS (INSTRUMENTS)
• 15 PROGRAMMABLE RHYTHMS (NOT AVAILABLE IN COMBINATION)
• MASK PROGRAMMABLE RESET COUNTS: 24 or 32
• DOWN BEAT OUTPUT
• EXTERNAL RESET
• OPEN DRAIN OUTPUTS
• STANDARD MUSIC CONTENT AVAILABLE
• TECHNICAL NOTE NO 131 AVAILABLE FOR FULL INFORMATION
The M 252 is a monolithic rhythm generator specifically designed for electronic organs and
other musical instruments.
Constructed on a single chip using low threshold P - channel silicon gate technology it is
supplied in a 16 - lead dual in-line ceramic or plastic package.
ABSOLUTE MAXIMUM RATINGS
VGG *
Vi *
'0
T stg
Top
Source supply voltage
Input voltage
Output current (at any pin)
Storage temperature
Operating temperature
-20 to 0.3
-20 to 0.3
3
-65 to 150
o to 70
V
V
mA
°c
°c
* This voltage is with respect to Vss pin voltage
ORDERING NUMBERS: M 252 B1 XX for dual in-line plastic package
M 252 D1 XX for dual in-line ceramic package
M 252 B 1 or D 1 AA for standard music content
MECHANICAL DATA
Dimensions in mm
~l
~.::
:::::
217
2/75
CONNECTION DIAGRAMS
M 252 D 1 or B 1 - AA
Standard content configuration
(top view)
INPUT 4
16
iN'PU"Ti
1Al'iln
[ 1
16
INPUT 8
15
iNPiJiI
INPIin
[ 2
15
OUTPUTS
14
OUTPUT 4
CONGA
DRUM
[ 3
14
LOW BONGO
~t!!
OUTPUT7
l
4
OUTPUT8
13
OUTPUT 3
",if
[ 4
13
HIGH BONGO
12
OUTPUT 2
:;;~ CYMBALS [ 5
·,2
SNARE DRUM
OR CLAVES
MARACAS [ 6
11
BASS DRUM
LONG
lE .... CYMBALS
::>::>
0: 0
SHORT
~~
OUTPUTS
11
EXTERNAL
RESET/
DOWN -BEAT
OUTPUT 1
10
CLOCK
' - - _ _ _ _- J
..
[,
10
[ 8
9
VGG
EXTERNAL
RESET/
DOWN-BEAT
V,S
CLOCK
VSS
,.>0,'1'"
"'."/'
* This output must be connected so as to drive the ·snare drum" when the rhythms from 1 to 9 (see
rhythm selectionlare selected. and the Hclaves"when the rhythms from 10 to 15 (see rhythm selection)
are selected.
** This pin generates a down-beat trigger which can be used to drive an external lamp to indicate the start
of each measure.
RHYTHM SELECTION
The following binary code must be generated to select each rhythm (logic positive)
RHYTHM
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
No selected
rhythm
CODE
INPUT 8
INPUT 4
INPUT 2
INPUT 1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
218
STANDARD
CONTENT
Waltz
Jazz Waltz
Tango
March
Swing
Foxtrot
Slow Rock
Rock Pop
Shuffle
Mambo
Beguine
Cha Cha
Bajon
Samba
Bossa Nova
3/4
3/4
2/4
2/4
4/4
4/4
6/8
4/4
2/4
4/4
4/4
4/4
4/4
4/4
4/4
:~;6:~;:.;~":;f;;' ::~)t~ ~:: ·':::/:.~'c:
11
I
I
I
I'><'
IS(
n::
If-
D<:
I
I
I
D<: ~
~~.4
I'"
n;;;
25
26
IL.. ,L-
n;;;
,
27
28
29
32
4
U
T
DOWN BEAT
INSTRUMENT BEATS*
II;;;
II;;;
~l~ ~,
30
0
U
T
P
U
T
IL-
I'><'
J'S(
~jo
14
15
16
17
18
19
20
21
22
23
3
0
U
T
P
U
T
I 1"-
152
I'><'
2
1
n;: ~
"5('
rx'
0
0 0
U U U
T T T
P P P
U U U
T T T
0
U
T
P
U
T
r.>c:
6
7
8
9
EXTERNAL
RESET
1'5<'1'><'
r.>c:
OWN
EAT
I GNAL
I .....
I
I
---
1-';;;:;':::;
-
o.
> 1>-
-18
I
~
* The lowering of the music signals depends on the intrinsic decay time of the sound generator and not
on the length of the I,lnable pulses. Each beat can therefore last for more than one elementary time
222
TYPICAL APPLICATIONS
Figure 1 shows the typical application of the M 252(AA).
With two M 252 devices it is possible to increase the number of rhythms or the number of
instruments available, or the number of elementary times, as shoiNn in figures 2, 3 and 4
respectively.
The use of a memory matrix allows the customer complete flexibility, since modification of
the memory is quick and relatively cheap.
Fig. 1 - Rhythm system (standard content)
RHVTHM
CODES
141-~-t--t--+--,
M252 "1----4--+-1'--,
AA
u
11-----
~~~~~~~+H
EXT!RMAl
RESET
22
kG
~~.~-~~-----o~
"-11
Fig. 2 - Increase in number of rhythms (positive logic)
INPUTS
EXTERNAL
RESET
......~~,...<>-OvS5
5- t 031/1
1
8
~
223
i
I,
TYPICAL APPLICATIONS (continued)
Fig. 3 - Increase in number of instruments
INPUTS
DOWN
T 2 ;; 8
BEAT (DB)
EXTER
CLOCK
RESET
I---+--+--+--+-~
M252
2
M252
16
INSTRUMENTS
INSTRUMENTS
s-'(m/'
Fig. 4 - Increasing the number of elementary times
DOWN-BEAT
CLOCK
E.rTEii£Sjfil.o_....._ _ _ _--1~W!. CUlC'
M252
2
1 2 ;; i
INPUTS
Note: The total number of elementary times is given by the sum of the elementary times of the individual devices
224
II 252
CIRCUIT FOR CHANGING THE NUMBER OF ELEMENTARY TIMES
DOWN-BEAT
Vss
(OBI
iNPUf1
..
INPUT2
16
INSTRUMENT
7
INSTRUMENT
•
,
INSTRUJrotENT 5
iiiPiTr"4
14
INSTRUMENT 4
iNPUfi
"
M 252
INSTRUMENT 3
INSTRUMENT
2
INSTRUMENT I
VOG
G.,03'"
To obtain a required number of elementary times "N" simply put a cross in the "N + 1" position of the column which now represents the reset output, rather than the 8th instrument.
Thp. DB output can be used as down-beat because it appears at the beginning of each
measure. Since the pulse is only 2 - 3 p.s long it must, however, be stretched and buffered to
enable it to drive a lamp.
Full information on the use of the M 252 in electronic organs and other applications will be
found in Technical Note no. 131 available on request.
COMPLETING THE TRUTH TABLE
The ROM truth table has been organized in 32 rows which represent elementary times and
120 columns (15 groups of 8) where each group represents a rhythm which has as its disposition 8 programmable instruments. To programme each rhythm one indicates (with a cross)
in the appropriate boxes the timin!l for each beat required for each instrument.
In -i:he given truth table we show an example of how to programme three imaginary rhythms,
the first is in 4/4 time, the second in 3/4 time and the third in different time, chosen
randomly. Each cross corresponds to a beat of the indicated instrument or, in logic terms, to
the presence of a "1" level (positive logic) at the output.
The absence of a cross indicates that the corresponding instrument is not used in that part
of the rhythm. Rhythm 3 is an example of how to programme for a time which differs from
4/4 or 3/4. This is achieved by using output 8 to reset the rhythm and not to drive an
instrument. The rhythm is valid till elementary time no. 15.
225
,',
I
"
COUNT
TO
32
RHYTHM 6
COUNT
TO
32
0 0 00 0 0 0 0 0
RHYTHM 8
RHYTHM 7
o
0
o
0
o
0
o
RHYTHM 10
RHYTHM 9
0 00 00 0 0 0 0 00
o
0 000 0
o
0 00
o
0 0
U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P
U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T To T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 567 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 456 7 8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
2
21
22
23
24
25
26
27
28
29
30
31
3~
226
COUNT
TO
32
RHYTHM
0
0
0
U U U U U
T T T T T
o
o
11
RHYTHM 12
RHYTHM
000 0
0
0
0
0 00
0
U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T
o
o
o
o
o
RHYTHM 15
13
RHYTHM 14
000 00
0 00 00 0 00 00
00
U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T
o
o
P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P
U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 678 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
227
M253'
liDS INTEGRATED CIRCUIT
PRELIMINARY DATA
RHYTHM GENERATOR
• LOW POWER DISSIPATION: < 120 mW
• DRIVES 8 SOUND GENERATORS (INSTRUMENTS)
• 12 PROGRAMMABLE RHYTHMS (ALSO AVAILABLE IN COMBINATION)
• MASK PROGRAMMABLE RESET COUNTS: 24 or 32
• DOWN BEAT-OUTPUT
• EXTERNAL RESET
• OPEN DRAIN OUTPUTS
• STANDARD MUSIC CONTENT AVAILABLE
• TECHNICAL NOTE NO 131 AVAILABLE FOR FULL INFORMATION
The M 253 is a monolithic rhythm generator specifically designed for electronicorgans and
other musical instruments.
Constructed on a single chip using low threshold P - channel silicon gate technology it is
supplied in a 24 - lead dual in-line ceramic or plastic package.
ABSOLUTE MAXIMUM RATINGS
V GG*
VI *
10
T stg
Top
Source supply voltage
Input voltage
Output current (at any pin)
Storage temperature
Operating temperature
-20 to 0.3
-20 to 0.3
3
-65 to 150
0 to 70
V
V
mA
°C
°C
* This voltage is with respect to Vss pin voltage
ORDERING NUMBERS: M 253 B1 XX for dual in-line plastic package
M 253 01 XX for dual in-line ceramic package
M 253 B 1 or D 1 AA for standard music content
MECHANICAL DATA
Dimensions in mm
.
~
..
..
LS.····.· . . . . . ".....1r,±;}
i+, ....
1.
- i
229
2794
. 114
"1
..•
11.2.54 •
--r
I
i
l5.24
I
2/75
CONNECTION DIAGRAMS
M 253 01 or B 1 - AA
Standard content configuration
(top view)
VSS
VGG
CLOCK INPUT
EXTERNAL RESETI
DOWN-BEAT
5
VSS
CLOCK INPUT
VGG
EXTERNAL RESET!
DOWN-BEAT
OUTPUT I
OUTPUT
OUTPUT 2
OUTPUT 6
OUTPUT ]
OUTPUT 1
i5a.rASS DRUM
~ SNARE DRUM
OUTPUT 4
OUTPUT 8
~ ~ HIGH BONGO
'" BASS SELECTION
0--5
g
:!w
INPUT 1
INPUT 12
LOW BONGO
~~0
BOSSA NOVA 4/4
.TANGO
INPUT 2
INPUT 11
WALTZ
]/4
INPUT 10
SHUFFLE
214
iNPUT'4
INPUT 9
MARCH
214
BEGUINE 414
INPUT 5
INPUT
INPUT 6
iNPiJT1
414
ROCK POP 414
SAMBA 4/4
CHA CHA
414
RUMBA 414
SLOW ROCK
SWING
5
:::>0
ii'iPiiTJ
8
~~
zK
LONG CYMBALS ~w
OR CLAVES
0
MARACAS
SHORT CVMBAL 5 ~
S-"tJ4S/1
5- 1038/1
• This output allows the musician to obtain a "basso alternato" accompaniment using two notes of
his choice.
* * This output must be connected so as to drive the "snare drum" when the rhythms corresponding to
pins 7, 8, 9, 10, 11, 12 and 13 are generated, and the."claves" when the rhythms corresponding to
pins 14,15,16,17 and 18 are generated. It can also be used to modulate a chord played on the organ.
This pin generates a down-beat trigger which can be used to drive an external lamp to indicate
the start of each measu reo
BLOCK DIAGRAM
307211TS
MATRIX
MULTIPLEXER
liiFUrs
230
STATIC ELECTRICAL CHARACTERISTICS(positive logic,V GG =-11.4 to-12.6V,
Vss= 4.75 to 5.25V, T. mb = 0 to 70°C unless otherwise specified)
Parameter
Test conditions
CLOCK INPUT
V 1H
Clock high voltage
Vss -l.6
V 1L
Clock low voltage
Vaa
Vss
V
Vss -4.1
V
Vss
V
Vss -4.1
V
DATA INPUTS (lN1 ..... IN12)
V 1H
Input high voltage
Vss -l.5
V 1L
Input low voltage
IVGG
ILl
Input leakage current
V j = V ss -10V
T. mb = 25°C
10
IlA
vss
V
Vss -4.1
V
EXTERNAL RESET
V 1H
Input high voltage
Vss -1.6
V 1L
Input low voltage
VGG
RIN
Internal resistance to V GG Vo=Vss-5V
400 600
kn
DATA OUTPUTS
RON
Output resistance
V 0= Vss-1 to Vss
V OH
Output high voltage
IL = 1 rnA
I Lo
Output leakage current
V j =V 1H
250
Vss-O.5
Vss
V
10 Il A
POWER DISSIPATION
7
231
n
Vo=Vss-10V
T. mb = 25°C
Supply current
500
Output voltage vs. external supply
voltage (VExrVss)
Output voltage vs. supply voltage
(VGG-V ss )
G 1UI
r;m
¥ss
(mY)
INSTR.
bVoo .Q~xr
v.
RL
./
500
...... [RL =10kO
.......
160
m
vGG
i-""
200
-
ffi ..
.2~
v
Yo
-I
240
G 15lt
Yo
RL .5kO
.-
400
./
120
80
40
o
r- - - -~ ~-
-
r--
......
.......
-9
_f-
l,'
::, >:':·'''/;':.~':~~~.qfJS~~~
;I~~l
i',,:,,;:,'\"i~le:,
, e/;. ~ :':'" '.
= -11.4 to
VGG
-12.6V, Vss= 4.75 to 5.25V, T amb = 0 to 70 °C unless otherwise specified)
Parameter
Test conditions
Min. Typ.
CLOCK INPUT
f
Clock repetition rate
DC
tpw *
Pulse width
5
tr **
Rise time
100
t f **
Fall time
100 j1.s
100 kHz
j1.s
j1.s
EXTERNAL RESET
Pulse width
j1.s
* Measured at 50% of the swing
** Measured be,tween 10% and 90% of the swing
TIMING WAVEFORMS (positive logic)
\n.2
EI::::::!~I:::E:;n.Ci:l=DIIC=I::J=I=C:~I! : I
I
32
I
2
I
:u-u-u--tsL
CLOCK
INPUT
tpw
EXTERNAL
RESET
r--'--!
I
I
I
_ _ _ _ _ _ _ _ _ _~r--lL_ _ _ _ _ _ _ _~
I
I
h-sL--
OUTPUT
SIGNAL
I
I
~
I
EXTERNAL
INSTUMENT
I
I
DOWN-BEAT
_ _ _ _ _ _- - ' r - - l L_ _ _ _ __
~
I
I
S.102'"
Note: In these timing waveforms it has been assumed, for example, that in the truth table bits n + 1 and 2
have not been programmed i.e. the musical instrument has not been introduced.
All the other bits have been programmed for the introduction of the instrument.
233
INSTRUMENT BEATS VERSUS RHYTHM PROGRAM
EXTER
CLOCK
TRUTH TABLE
{Rhythm programl
0
Count
~
1
2
3
4
¥
P
U
T
1
0
U
T
P
U
T
2
0
U
T
P
U
T
3
0
U
T
P
U
T
4
DEVICE OUTPUT SIGNALS
EXTERNAL
RESET
0
U
T
P
U
T
0
U
T
P
U
T
5
6
0
U
T
P
U
T
7
0
U
T
P
U
en >.T 0
",,""
8 > 0:.5
~I
0
U
T
P
U
0 0
U U
T T
P P
U U
T T
2 3
;r
1
0
U
T
P
U
T
4
iX X
I2S.
X
I
I
iX
X
5
6
7
0 0
U U
T T
P P
P P
U U
T T
5 6
U U
T T
7 B
I
N
S
T
R.
I
I I
I I
N N N N N
S S S S S
T T T T T
R. R. R. R. R.
I
N
S
T
R.
I
N
S
T
R.
1
2
7
8
3
4
5
6
~
-
I...,
I ....
IL..
I~
I
X
0 0
U U
T T
DOWN BEAT
INSTRUMENT BEATS*
X
8
9
0
11
12
13
14
15
16
17
18
19
20
21
22
23
X
X
1-1
-~;'
25
26
27
2B
X
....
C><
IX
X
....
I!-
X
IX
....
IX
29
30
IX IX
C><
XX
32
* The lowering of the music signals depends on the intrinsic decay time of the sound generator and not
on the length of the enable pulses. Each beat can therefore last for more than one elementary time
234
TYPICAL APPLICATIONS
Figure 1 shows the typical application of the M 253 (AA).
With two M 253 devices it is possible to increase the number of rhythms or the number of
instruments available, or the number of elementary times, as shown in figures 2, 3 and 4
respectively.
The use of a memory matrix allows the customer complete flexibility, since modification of
the memory is quick and relatively cheap.
Fig. 1 - Rhythm system (standard content)
'55
OOWN(OB)
BEAT
EXTERNAL
litE ET
22
22
22
k1l
kn
klI.
22
kn
23 19
10
LOW BONGO
20
LONG CYMBALS
21
SHORT CYMBAL 5
11
12
M253
"
AA
22
MARACAS
HIGH BONGO
14
SNARE 0 UM
or CLAVES
15
16
BASS
DRUM
17
1-+-+-"--+-+-++8A55 SELECT!ON
c.....,---c..+--'~.J
:~
----~-t_-_+_+~--~~--+---OvGG
S-IOloJ/2
Fig. 2 - Increase in number of rhythms
EXTERNAL
RESET
"s5-
~.--~-~==============~--l
(DI)
AHnHMS1~
The rhythms may be selectl!d from both devices simultaneously.
23-5
TYPICAL APPLICATIONS (continued)
Fig. 3 - Increase in number of instruments
EXTERNAL
VSS~
DOWN
BEAT
(DB)
"'~"~"f.cctitoeiCi·'1....,-__LJ_--f ClOCfI.
IRESET
M2S3
EXlER
RESET
M2S3
,
2
INSTRUMENTS
5-.. 41/'
Fig. 4 - Increasing the number of elementary times
~~+--" 0 - - - - 0
"ss
Vss
M253
2
;
ii
INPUTS
Note: The total number of elementary times is given by the sum of the elementary times of the individual devices
236
Ii
~
Ii
,1
I
CIRCUIT FOR CHANGING THE NUMBER OF ELEMENTARY TIMES
'55
VGG
,
1
23 ,.
10
20
INSTR~ENT
7
21
INSTRUMENT
6
22
INSTRUMENT
5
INSTRUMENT
4
INSTRUMENT
,
11
2
M253
13
,.
15
"
'-------~---1f---_+-~---<>--+--4---_<'lVGG
S-1044/1
To obtain a required number of elementary times "N" simply put a cross in the "N + 1"
position of the column which now represents the reset output, rather than the 8th
instrument.
The DB output can be used as down-beat because it appears at the beginning of each
measure. Since the pulse is only 2 - 3IJ.s long it must, however, be stretched and buffered to
enable it to drive a lamp.
Full information on the use of the M 253 in electronic organs and other applications will be
found in Technical Note no. 131 available on request.
COMPLETING THE TRUTH TABLE
The ROM truth table has been organized in 32 rows which represent elementary times and
96 columns (12 groups of 8) where each group represents a rhythm which has at its disposition 8 programmable instruments. To programme each rhythm one indicates (with a cross)
in the appropriate boxes the timing for each beat required for each instrument.
In the given truth table we show an example of how to programme three imaginary rhythms,
the first is in 4/4 time, the second in 3/4 time and the third in different time, chosen
randomly. Each cross corresponds to a beat of the indicated instrument or, in logic terms, to
the presence of a "'" level (positive logic) at the output.
The absence of a cross indicates that the corresponding instrument is not used in that part
of the rhythm. Rhythm 3 is an example of how to programme for a time which differs from
4/4 or 3/4. This is achieved by using output 8 to reset the rhythm and not to drive an
instrument. The rhythm is valid till elementary time no. 15.
237
COUNT
TO
32
RHYTHM 6
COUNT
TO
32
RHYTHM 7
00 00 000 00
o
RHYTHM 8
0 0 00 0 00 00 00 0 0 0
RHYTHM 10
0 00 00 00 0 00
o
0
o
0 0
P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P
U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 2 3 4 567 8 1 2 3 4 5 6 7 8 1 2 3 4 5 678 1 2 3 4 5 6 7 8 1 2 3 456 7 8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
RHYTHM 9
o
U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
-
238
RHYTHM 12
RHYTHM 11
COUNT
TO
32
a a a a a a a a a a a a a a a a
U
T
P
U
T
1
U
T
P
U
T
2
U
T
P
U
T
3
U
T
P
U
T
4
U
T
P
U
T
5
U
T
P
U
T
6
U
T
P
U
T
7
U
T
P
U
T
U
T
P
U
T
B 1
U
T
P
U
T
2
U
T
P
U
T
3
U
T
P
U
T
4
U U U
T T T
P P P
U U U
T T T
5 6 7
U
T
P
U
T
B
1
2
3
4
5
6
7
B
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
239
LINEAR INTEGRATED CIRCUIT
SAJ 210
7-STAGE FREQUENCY DIVIDER FOR ELECTRONIC ORGANS
• HIGH CROSSTALK IMMUNITY - TYP. 70 dB
• OUTPUT SHORT CIRCUIT PROTECTION
The SAJ 210 is a monolithic integrated circuit in a 14-lead quad in-line or dual in-line
plastic package. It has been created by means of the standard bipolar technique and
especially developed for use as frequency divider for electronic organs. Seven flipflops connected in 5 groups are housed on one silicon chip. The input and the output
of each flip-flop is externally accessible.
ABSOLUTE MAXIMUM RATINGS
V,
V;
V
P,ot
T,tg
Top
Supply voltage
Input voltage
Output current
Power dissipation at Tamb -==: 70°C
Storage temperature
Operating temperature
V
14
Vi
= V,
5 mA
0.5
W
-55 to 125 °C
o to 70 °C
• With reference to Fig. 5, the current can be greater than 5 mA, but for t
< 0.1
mS
ORDERING NUMBERS:
SAJ .210 AX2 (for 14-lead quad in-line plastic package)
SAJ 210 AX7 (for 14-lead dual in-line plastic package)
MECHANICAL DATA
Dimensions in mm
SAJ 210 AX7
SAJ 210 AX2
241
5/73
SAJ210
CONNECTION DIAGRAM
SCHEMATIC DIAGRAM
(top view)
(each flip-flop)
OUT 1
GND
INPUT
1
2
OUT 2
INPUT
3
3
OUT 3
INPUT
5
4
OUT 4
INPUT
b
5
OUT 5
INPUT 7
b
OUT b
OUT 7
+vs
INPUT
S5 0014
ELECTRICAL CHARACTERISTICS
(T amb
= 25
0
C, V,
= 9 V unless otherwise specified)
Parameter
Test conditIons
DATA INPUT
V1L
Input low level
V, = 8t014V
0
VIH*
Input high level
V, = 8to 14 V
6
IIH
Input high level current
Vi = 8V
1.5
V
V
1
3 rnA
DATA OUTPUT
VOL
Output low level
RL =3k!l
V
Output voltage impressed Low level
VOH
Output high level
RL =3k!l
V. = 12 V
RL =3k!l
0.1
V
6
V
V
V
7
,.'
9.5
tr
Rise time
Vi = 8V
CL =10pF
0.1
itS
tf
Fall time
RL =3k!l
CL = 10 pF
0.2
itS
Id
Total current drain
RL =3k!l
All flip-flops at high level
All flip-flops at low level
242
35
16
rnA
rnA
SAJ 210
Fig. 4 - Power rating chart
Fig.3 - Typical input voltage
for triggering
GS 0148
v
l;""
(V I
/"
10
l;""
,/
V
V
V
(mWl r---t---t---t---r---r---r--1
800~__+-__+-__+-__~__r-__r-~
I-'
V
12
Plot
V
bOO~
__+-__+-__+-__r-__r-__r-~
V
V
400r---t---t---t-~r---r---r--1
.
o~
11
10
12
o
13 Vs (VI
Fig. 5 - Typical output current
vs output voltage
, m.
10
(rnA)
.lV)9 v
20
-rv;:o
"-
,
15
\
"~
10
\
\
o
o
\
244
__
~
10
__
~
20
__
__ __
40 50
~~
30
~
~
__
bO
~
Tamb (DCI
SAJ 210
TYPICAL APPLICATIONS
OUTPUT WAVEFORM
OUT
IN
0l-8A 130
RL
=
3 Kil
RS
=
IBOO
245
I
LINEAR INTEGRATED CIRCUIT
TAA 550
TBA 271
VOLTAGE STABILIZER
• LOW TEMPERATURE COEFFICIENT
• LOW ZENER RESISTANCE
The TAA 550/TBA 271 is a monolithic integrated voltage stabilizer in a TO-18 two pins
metal case. It is especially designed as voltage supplier for varicap diodes in television
tuners.
The TAA 550/TBA 271 is supplied in 3 groups of stabilized voltage identified by a letter
after the code, as shown in the "ORDERING NUMBERS".
ABSOLUTE MAXIMUM RATINGS
Zener current at Tease ~ 70°C
Storage temperature
Operating temperature
* Refer to
15 rnA
-20 to 150°C
*
"Power rating chart" (Fig. 1)
ORDERING NUMBERS: TAA 550 A or TBA 271 A (for V z range: 30-32 V)
TAA 550 B or TBA 271 B (for V l range: 32-34 V)
TAA 550 C or TBA 271 C (for Vz range: 34-36 V)
MECHANICAL DATA
Dimensions in mm
Lead 1 connected to case
if
en,
...;f
~~L-..,
d
~
POI8-E
247
5/73
TAA550
TBA 271
CONNECTION DIAGRAM
(bottom view)
550036
SCHEMATIC DIAGRAM
·550037
248
TAA 550
TBA 271
TEST CIRCUITS
Circuit No.1 (for Vz measurement)
Digital Voltmeter
DVM
+
V z - Vre!
t
Vre!
30V
V DVM
Circuit No.2 (for rz measurement)
lAC = 0.5 rnA
!
Vsv
0.5rnA
249
=, KHz
TAA550
TBA 271
THERMAL DATA
R,h j.ca..
R'h j •• mb
ELECTRICAL CttARAqTERISTICS (Tomb
Parameter
Vz
rz
AVz
AT.mb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
Zener voltage
Zener dynamic
resistance
Temperature coefficient
= 25°C
unless otherwise specified)
Test conditions
I. = 5 mA (circuit No.1)
for TAA 550 A/TBA 271 A
for TAA 550 B/TBA 271 B
for TAA 550 C/TBA 271 C
I.
f
= 5mA
150 °C/W
400 °C/W
Min. Typ. Max
30
32
34
31
33
35
36
V
V
V
25
n
32.2
34.2
IAC= 0.5 rnA
= 1 kHz (circuit No.2)
10
Unit
=
Iz
5 rnA
AT. mb = Ot050°C
250
-3.2
+1.6 mV/cC
I
TAA 550
TBA 271
II
;
i
I
~
!d
Fig. 1 - Power rating chart
Fig.2 - Typical zener dynamic
resistance vs zener current
GS 0201
~22
\
rz
(0)
1
I
rz = ; (lz)
..
1
I
f
~
I
1KHz
,f
JAr ;~
"
10
Fig. 3 - Typical temperature
coefficient
I
\
20
1
II
'", .
[
~r--...
r-
I I
o
6
9
12 Jz(mA)
;lVz(t)
Fig. 4 - Typical
vs time
AVz(oo)
GS 0203
AV z
AT amb
GS 0204
!
I} =
J
(mV/oC)
5·~A
+2
FREE Al
~ ZTH
+1
o
1\
0.8
"'",-
-1
--.
0.6
0.4
-2
0.2
-3
-4
o
3
6
9
o
12 Jz(mA)
251
HEAT SINK (65°C/W)
II
I
1
11
Ii
II
o
4
6
8 t (min)
TAA 550
TBA 271
TYPICAL APPLICATION
Rp= 18K
-- -- -
)
15KOl
V, = 160V
~~-----~
-----+--~- - - --~
TO VARICAPS
252
850040
1AA611A
LINEAR INTEGRATED CIRCUIT
AUDIO AMPLIFIER
•
•
•
•
OUTPUT POWER 1.8 W (9 V - 4 il)
LOW DISTORTION
LOW QUIESCENT CURRENT
HIGH INPUT IMPEDANCE
The TAA 611 A is a monolithic integrated circuit in a 14-lead quad in-line plastic
package or in a TO-100 metal case.
It is particularly designed for use in radio receivers and record-players as audio
amplifier. The usable range of supply voltage varies from 6 V to 12 V and the circuit
requires a minimum number of external components.
ABSOLUTE MAXIMUM RATINGS
V,
TAA 611 A12 TAA 611 ASS
Supply voltage
12
1 A
Output peak current
~Tstg.
Tj
• For Vs
Power dissipation at Tamb ~
25°C
at Tcase ~
70°C
1.35 W
at Tcase ~ 100°C
Storage and junction temperature
<
12 V. Vi max
ORDERING NUMBERS:
V
-0.5 to 12 V
Input voltage
0.57 W
1.6 W
3.1 W
-40 to 150°C·
= Vs
TAA 611 A55 (for TO-100 metal case)
TAA 611 A12 (for quad in-line plastic package)
Dimensions in mm
MECHANICAL DATA
.'
.19
'.~-
~
~
••••••• ___ . . . . . ____ .J
_M
0.45
2.54
15.24
~.
~;".
_ _.u
~
.TAA 611 ASS
Supersedes issue dated 5/73
253
TAA611A12
6/75
1AA611A
CONNECTION DIAGRAMS
For TAA 611 A12
For TAA 611 ASS
BOOTSTRAP
VS
NC
NC
COMPo
OUT
COMPo
NC
FEED-BACK
GND
NC
NC
IN
GND
BOOTSTRAP
7 FEEDBACK
GND
550051
S80050
SCHEMATIC DIAGRAM
(5)
7
9 (3)
r---~--II-+-----_-o 1 (14)
6
(7)
"'---1>--'"1-.-+--o
lOW
c--,.--t----+--r:::::JI-l----+--o
2 (12)
,----t----~_o B (4)
4 (10)
SS 0052
254
The pin numbers in
brackets refer to the
TAA 611 A12 and those
without brackets refer
to the TAA 611 ASS.
I:
1AA611A'
II
II~
•
"
i
::;
TEST CIRCUITS
Circuit No.1 (G v = 50)
+
Vs
IN
D.l
f.LF
I
r
+
lODf.LF/I2V
55 0053
Circuit No.2 (G v
= 250)
+ Vs
5S 0054
255
TAA611A
THERMAL DATA
~
R'h j-ca,.
R'h j-amb
I
(maximum values)
TAA 611 A121 TAA 611 A55
I
Thermal resistance junction-case
Thermal resistance junction-ambient
16 ac/W
93 aG/W
I
50 °C/W
220 °G/W
ELECTRICAL CHARACTERISTICS
(Tamb = 25 aG, Vs
=9
V, refer to the test circuit no. 2 unless otherwise specified)
Parameter
Va
Id
Id
Quiescent output
voltage
4.8
3
mA
Quiescent drain current
cif output transistors
1
rnA
170
mA
Drain current
Ib
Input bias current
P •
a
Output power
Pa =1.15W
=
RL
8n
0.1
d
= 2%
= 6V
f
d
Vs
Vs
Vs
Vs
= 10%
= 6V
= 6V
= 9V
f
= 9V
Internal feedback
resistance (see
schematic diagram)
Input impedance
(open loop)
256
=
=
RL
RL
RL
RL
0.8
IJ.A
1 kHz
RL = 4n
RL = 8n
RL = 4n
RL = 8n
Vs
Vs = 6V
Vs = 9V
Vs = 9V
Zi
V
Total quiescent
drain current
Id
R/
Min. Typ. Max. Unit
Test conditions
0.50
0.35
1.4
0.9
W
W
W
W
0.65
0.45
1.8
0.85 1.15
W
W
W
W
7.5
kn
5
Mn
1 kHz
= 4n
=
=
=
8n
4n
8n
1AA611A
ELECTRICAL CHARACTERISTICS
Min. Typ. Max. Unit
Test conditions
Parameter
Test circuit 1
Distortion
d
(continued)
= 50 mW
= 8.n
Po = 0.5 W
RL == an
Vs
f
Vs
f
= 9V
= 1 kHz
= 9V
= 1 kHz
Vs
f
Vs
f
= 9V
= 1 kHz
= 9V
= 1 kHz
Po
RL
0.4
%
0.3
Ofo
1.7
Ofo
1.2
0/.
68
dB
Test circuit 2
= 50 mW
= 8.n
Po = 0.5W
RL = 8.n
Po
RL
Gv
Voltage gain
(open loop)
RL
= 8.n
* External heatsink not required except for TAA 611 A55 at Vs
Fig. 1 - Typical output power
vs load resistance
=
9 V. RL
=
4 Q
Fig.2 - Typical output power
vs load resistance
GS
GS 022
22
Po
(W)
)'\
f
1KHz
At clippinr,
v I L5
1.2
"'
0.8
0.4
r.... r'-
~
~
""
1.6
I. .1
!
r\
r"-..
1.2
~
......... v!
'''9
........ .......
Ii
--
10
-r-
~
0.8
-
r- -=-s~6'yr-
4
257
i
[,
8
10
I
!
~ r---....
--
0.4
12
1O~
d
Gvi25
~"'9v
~6V
---r-
f = 1KHz
r12
....... r'-_
RL (U
TAA611A
Fig. 3 -Typical distortion
vs output pewer
Fig. 4 - Typical distortion
vs output pewer
22.
d
(%)
8
Vs -9V
f- RL =80
1 = 1KHz
-
0226
d
(%)
10
W~s-9V
RL =40
1--1 = 1KHz
I
/,
1/,
"{
/ II
-
o
-
o
TEST CIRCUIT 2
TEST CIRCUIT 1
0.2
0.4
0.6
/
~
"- ........ ,...TEST CIRCUIT 2
J
........
V
/ I
/11
J
TEST CIRCUIT 1 L
:....--'"
I
0.8
Po(W)
0.8
0.4
Fig.5 - Typical relative
frequency response
1.2
1.6
Fig. 6 - Typical relative
frequency response
S 0227
G
=8
G
jdB)
Po (W)
(dB)
o
'\
/
\
/
I
\
-5
-5
Vs -9VII
RL =80
-10
TW rlRr~ITll
-15
0.01
0.1
irl
-10
Vs -9 V
RL =80
I
-15
10
f (kHz)
0.01
258
0.1
Cl
jCI\I2
II
10
f (kHz)
TAA611A
Fig. 7 - Typical voltage gain (open loop) vs frequency
Gy
GS 02..2.J
r-....
(dB)
r--.....
1\
60
"'\..
l'....
50
"-
40
"
r'-.
\
t'o-.
~"~'"
1"<
30
I
~
~~
\~
"''\.""
'\
,>'.....
I-r-----
1\
""
Vs -9 V I
10
10K
lK
100
10
\~
I\.
RL =BD
20
\toca
'\.
\
1M
lOOK
f (Hz)
Curve 1: TAA611 A 55, C9-B = B2pF
CB-2 = 1.2 nF
ClO_1=0.lIL F
TAA 611 A 12, C3-4 = B2pF
C4-12 = 1.2nF
CI-14 = O.lILF
q_
Curve 2: T AA 611 A 55, C B = 56pF
CB- 2 = 150 pF
ClO-1 =O.IILF
TAA611 A 12, C3- 4 = 56pF
C4-12 = 150pF
Cl-14 =O.lILF
Fig. 9 - Typical output power
vs input voltage
Fig. 8 - Typical output power
vs input voltage
GS 02 0
GS 0231
•
(W)
-
TEST CIRCUIT 1
-
RL =BD
(WI
/
/
/
TEST CIRCUIT 2
RL =BD
-
J
O.B
O.B
/
V
1/
0.6
/
0.6
/
/
/
0.4
0.2
V
V
/
/
0.2
o
./
10
20
/
0.4
30
40
50
V.(mV)
259
-
V
/
........
3
7
V,(mV)
i.
r
1AA611A
Fig. 10 - Typical power dissipation
and efficiency
vs output power
Fig. 11 - Typical power dissipation
and efficiency
vs output power
,
--"" J>U
Ptot
(W)
V
0.6
Ptot
./
0.4
/
0.2
I
/
l>~
l..-
2
(W)
/
0.8
.......
/'
i'-- r--
V
40
/
0.6
/
0.4
/
I
I
'l1
V
20
/
Vs~9
0.2
0.4
O.B
0.6
/'
0.2
V
RLiB0i
.....-
/
60
V
-
pto \
(%)
-...-
Vs~9
I
0.4
Fig. 12 - Typical power dissipation
and efficiency
vs output power
-
60
40
20
v
-
RL =40 -
o
Po(W)
BO
/'
[/
I-
f-""
(%)
I--
I
1.2
0.8
Fig. 13 - Typical power dissipation
and efficiency
vs output power
GS 0235
GS 02 4
~
Ptot
Pto.t
(W)
0.6
0.4
/
/
V
V
/
.....V
,.,.,-
(W)
60
0.6
(%)
60
"......
Ptot
-
Ptot
~
0.2
(%)
V
40
0.4
20
0.2
t
v:.
V
......- /""
I
0.1
0.2
0.3
I
0.4
40
~
Vs~6
V -
20
-
RL =4:0.
Vs·~6V .- r--
RL =80
~
o
J
0
o
Po (~)
2'60
0.1
0.2
0.3
0.4
0.5
Po(W)
1AA611A
Fig. 14 - Typical drain current
vs output power
Fig. 15 - Maximum power dissipation
vs load resistance
r.. 0236
I,
(rnA )
Ptot
GS 02
(W)
",-
RL =80
150
./
V
100
/
\.
V
\
V
I\.
0.8
'\.
/
0.6
'"
/
/
o
""
0.4
1/
50
l-- ~
'~"'.9f'"v
r--...
-v
I"'---- :-..
~"'6
r-. r-
0.2
t"-'
rJ
o
0.2
0.4
0.6
0.8
Fig. 16 - Power rating chart
(T AA 611 ASS)
PIOI
(W)
10
Po(w)
.....
12
Fig. 17 - Power rating chart
(TAA 611 A12)
-
G 1683
-
G 1682
Ptot
(W)
WITH INFINITE HEATSINK
1.5
WITH INFINITE HEATSINK
"
FREE AIR
FREE AIR
05
,....
o.
-so
o
50
-50
261
o
50
1AA611A
Fig. 19 - Typical quiescent drain
current vs ambient
temperature
Fig. 18 - Typical quiescent drain
current vs supply voltage
,
G~
0240
Vs~9 V
'.
(mA)
[mAl
-
I
--
\ [total)
~.!-r-'-
'. (total)
I, [output transistors)
". (output transistors)
o
o
6
Fig. 20 - Typical quiescent output
voltage vs ambient
temperatu re
-1
-
--
---.:
-2
-3
r---
•
Vs~9
2 2
--.. ......
...........
V
I
-4
o
o
Vs (V)
10
20
30
40
50
262
10
20
30
40
50
r.s
0241,
1AA611A
TYPICAL APPLICATIONS
Fig. 21 - Audio amplifier for record-player
+ v,
=9V
150n
+
25/LF/6V
I-
55 0055
Fig. 22 - Audio amplifier for radio
+ Vs -9V
"'::2. '"
30n
I-
+
50/LF/6V
56pF
150pF
S50956
The pin numbers in brackets refer to the TAA 611 A12 and those without brackets refer
to the TAA 611 ASS.
263
LINEAR INTEGRATED CIRCUIT
lAA6118
AUDIO AMPLIFIER
•
•
•
•
OUTPUT POWER 2.1 W (12 V - 80.)
LOW DISTORTION
LOW QUIESCENT CURRENT
HIGH INPUT IMPEDANCE
The TAA 611 8 is a monolithic integrated circuit in a 14-lead quad in-line plastic
package.
It is particularly designed for use in radio receivers and record-players as audio
amplifier. The usable range of supply voltage varies from 6 V to 15 V and the circuit
requires a minimum number of external components.
ABSOLUTE MAXIMUM RATINGS
Vs
Vi'
Supply voltage
I"
Output peak current
P tot
Power dissipation at Tamb ~ 25°C
Storage and junction temperature
~Tstg, T j
, For Vs
<
15 V, Vi max
ORDERING NUMBER:
-0.5 to 15
V
V
1
1.35
W
-40 to 150
°C
15
Input voltage
A
= Vs
TAA 611 812
MECHANICAL DATA
Supersedes issue dated 5/73
Dimensions in mm
265
6/75
TAA6118
SCHEMATIC DIAGRAM
CONNECTION DIAGRAM
BOOTSTRAP 1
14·V s
N.C.
13 N.C.
FREQ.COMP. 3
12 OUTPUT
FREQ.COMP. 4
11 N.C.
FEED-BACK 5
10 GND
"
l2
N.C.
9 N.C.
INPUT
8 GND
10
S80044
550045
TEST CIRCUITS
Circuit No.1 (G v
= 50)
Circuit No.2 (G v
+V,
266
= 250)
1AA6118
THERMAL DATA
-+ Rth j·ca,e
Rth
j·amb
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
16 °C/W
93. o C/W
ELECTRICAL CHARACTERISTICS
(Tamb = 25°C, refer to the test circuit no. 2 unless otherwise specified)
Parameter
Vo
Id
Id
Id
Ib
"
Po
R'f
Z;
Quiescent output
voltage
Total quiescent
drain current
Quiescent drain current
01 output transistors
Drain current
Input bias current
Output power
Test conditions
V, = 9V
V, = 12V
...
4.8
6.3
..
V
V
-
3
V, = 9V
V, = 12V
3.5
rnA
rnA
V, = 9V
V, = 12 V
1
1.2
rnA
rnA
170
235
rnA
rnA
RL = 8n
P o =1.15W
Po =2.1W
V, = 9V
Vs = 12 V
V, = 9V
V, = 12 V
60
0.1
d = 2%
V, = 9 V
V, = 12 V
f = 1 kHz
RL = 8 Q
RL = 8 Q
d = 10%
V, = 9V
V, = 12 V
1 = 1 kHz
RL = 8 Q
RL = 8 Q
Internal feedback
resistance (see
schematic diagram)
Input impedance
Min. Typ. Max. Unit
open loop
267
1.5
1
nA
itA
0.9
1.7
W
W
1.15
2.1
W
W
7.5
kn
5
Mn
TAA611B
ELECTRICAL CHARACTERISTICS
Parameter
d
Distortion
(continued)
Test conditions
Min. Typ. Max. Unit
Test circuit 1
RL = 8.n
P o =50mW
Po = 50 mW
Po = 0.5W
Po = 1 W
f
= 1 kHz
V,
V,
V,
V,
=
=
=
=
9V
12 V
9V
12 V
0.4
0.3
0.3
0.2
%
%
%
%
RL = 8.n
Po = 50 mW
P o =50mW
Po = 0.5W
Po = 1 W
f
=
=
=
=
=
1 kHz
9V
12 V
9V
12 V
1.7
1.5
1.2
1
%
%
%
RL = 8.n
RL = 8.n
V, = 9V
V, = 12 V
68
70
dB
dB
Test circuit 2
Gv
Voltage gain
(open loop)
268
V,
V,
V,
V,
0/.
1AA6118
Fig. 1 - Typical output power
vs load resistance
Fig.2 - Typical output power
vs load resistanc<>
GS'0205
G
I
1
fl=lK~Z
At clipping
"-
1.6
l'......
1.2
"0.8
-..
0.4
"-
vi
" ,I<>v
- r_-
I'"
'i"-..~'9
1
~
Vs':6 V 1
~
"-
~
1.6
1.2
..........
0.8
-
r-..
'-.!j'1
~r-
"
b-.
v
'Z'9 v
'-....
~V
0.4
0206
r-
f = 1 KHz
d·lO%
-
1
.......
I
I
-
12
--r-'"-
12
Fig. 3 - Typical distortion
vs output power
Fig. 4 - Typical distortion
vs output power
GS 020:
d
GS 0 208
d
(% )
(%)
-
-
'Vs~'12·~V I
r-
RL = 8D
f = 1KHz
f-
V;~9IV
J,
RL = 8D
=lKHz
f
,
fj
III
I
-Test Circuit 2
-:.Test Circuit 1
0.5
I
VI
-
r-:: ::Test
/y
I--'V'
-
f- - Test Circuit 1
,/
1.5
Circuit 2
a
Po (W)
269
a
0.2
0.4
~
0.6
I
I II
/
,/
0.8
Po (W)
TAA611B
Fig."S - Typical voltage gain (open loop) vs frequency
Fig. 7 - Typical relative
frequency response
Fig. 6 - Typical relative
frequency response
G
G
2
(dB)
/
/
\
\
-5
-5
- 10
0"11
G
(dB)
Vs= 12 V
II
-15
0.01
-10
RL =80
Test Circuit 1
I
0.1
IIII
I
0.01
f (kHz)
270
RL =80
Test Ci rcuit 2
II
-15
10
Vs=12V
-
I
0.1
I III
I
10
f (kHz)
1AA6118
Fig. 8 - Typical output power
vs input voltage
Fig. 9 - Typical output power
vs input voltage
021
S 021
(W)
)
II
I-- Test Circuit 1
RL = 8D
I--
t--
J
Vs~12V,
J
I--'Vs~i2V
II
1.6
II
Test Circuit 2
RL =8D
II
1.6
J
J
II
1.2
f7
1.2
I
J
V
0.8
V
0.8
/
0.4
/
/ '"
/ '"
0.4
.-V
V
20
40
60
80
o
V; (mV)
Fig. 10 - Typical power dissipation
and efficiency vs
output power
GS 021'
Ptot
(W)
(%)
0.8
'/
0.6
1/
0.4
0.2
p,.,
(W )
~
~
V
V ......
j~
V
V
0.2
I I I
0.2
0.4
0.6
0.8
I
V
Vs~9
R
V
= 8D
LI
I
o
Po(W)
271
0.2
f-
"
40
20
/
t-
p
V
(%)
60
r""--'f'..,.
.IV -' V
0.4
_ fRL = 16 D _
021
I"
0.6
Vs~12V
V; (mV)
V•
~
..............
v
"9
'v
....... .......
i'-~
0.2
r-
-
FREE AIR
o.
10
Po(W)
0-1 ~z
:Jtot
(W)
r\.
'-
1.5
0.5
Fig. 15 - Power rating chart
\
\.
V
100
GS 0211
1
V
150
Fig. 14 - Maximum power dissipation
vs load resistance
(W)
~
. /.....
~
20
I
o
'1
(%)
12
-50
272
o
50
TAA6118
Fig. 17 - Typical quiescent drain
current vs ambient
temperature
Fig. 16 - Typical quiescent drain
current vs supply voltage
GS
I_
GS 0221
0220
l_
--
(mAl
-
f..- f..-
-
I_
I ut transistors)
I,lou p.
-
l ulput tninsistors)
0
vs~Lv
o
10
Vs lV)
Fig. 18 - Quiescent output voltage
variation vs ambient
temperature
-1
I, (total)
ImA)
f..- f..-I-'""
,.'\tOt!\)
l-
I
- --
--
.z
"""'- .........
"-J
Vs ·12 V
·3
-4
10
20
30
40
50
273
o
I
10
20
30
40
50
TAA611,8,
TYPICAL APPLICATIONS
Fig. 19 - Audio amplifier for radio
IN ..
5O/LF/6V
I!
Fig. 20 - Audio amplifier for record-player
IN.
274
LINEAR INTEGRATED CIRCUIT
TAA 611C
AUDIO AMPLIFIER
•
•
•
•
•
OUTPUT POWER 3.3 W (15 V - 8 il)
LOW DISTORTION
LOW QUIESCENT CURRENT
SELF CENTERING BIAS
HIGH IMPEDANCE
The TAA 611C is a monolithic integrated circuit in a 14-lead quad in-line power
plastic package.
It is particularly designed for use as audio amplifier in radio receivers, record players
and portable TV sets. The usable range of supply voltage varies from 6 to 18 V, and
the circuit requires a minimum number of external components.
The package has very low thermal resistance. To decrease the thermal resistance
further an external heat-sink can easily be mounted by means of ordinary hardware.
ABSOLUTE MAXIMUM RATINGS
Vs
Vs
Vi'
10
-+P'ot
-+Tstg , Tj
Supply voltage (no signal)
Operating supply voltage
Input voltage
Output peak current
Power dissipation at Tamb tf
25 °C"
at Tamb ,!f 25 °C '"
at Tea,. tf 100 0 C
Storage and junction temperature
22
18
-0.5 to 20
1
1.35
2
3.1
-40 to 150
V
V
V
A
W
W
W
°C
=
, For Vs < 20 V, Vi max
Vs
For TAA611 C72
••• For TAA 611 CX1 and TAA 611 C11
ORDERING NUMBERS:
TAA 611 C72 (for quad in-line plastic package with spacer)
TAA 611 CX1 (for quad in-line plastic package with external bar)
TAA 611 C11 (for quad in-line plastic package with inverted external bar)
Supersedes issue dated 5/73
275
6/75
TAA 611C
MECHANICAL DATA
(Dimensions in mm)
Quad in-line plastic package
with spacer for TAA 611 C72
(see also "MOUNTING
INSTRUCTIONS")
C-0058
Quad in-line plastic package
with external bar
for TAA 611 CX1
8
35
Q25
44
r - - - - - - - - - - ' - ' - - - - - - - - , o:fotA(2HoIesl
Quad in-line plastic package
with inverted external bar
for TAA 611 C11
276
PO04-B
TAA 611C
SCHEMATIC DIAGRAM
CONNECTION DIAGRAM
I.
BOOTSTRAP
I
I. V.
N. C.
13 N.C.
FREQ. COMPo
3
12 OUT
FREQ. COMPo
4
II N. C.
FEED- BACK
5
10 GND
12
N. C.
9
N.C.
IN
S GND
TEST CIRCUITS
Circuit No_ 1 (G v
= 50)
Circuit No.2 (G v
IN
= 250)
I~
I
~lOOf.l.F
~25V
277
lOO"F
25V
TAA611C
TAA611 C72
THERMAL DATA
~ Rth
j-case Thermal resistance junction-case
~ Rth I-amb Thermal resistance junction-ambient
TAA611 CX1
TAA611 C11
max
16
°C/W
16 °C/W
max
93
°C/W
63
°C/W
ELECTRICAL CHARACTERISTICS
(Tamb = 25°C, refer to the test circuit no_ 2 unless otherwise specified)
Parameter
Vo
Id
Id
Id
Quiescent output
voltage
Total quiescent
d rai n cu rrent
Quiescent drain current
of output transistors
Drain current
Test conditions
Vs
V.
= 12 V
= 15 V
6.3
7.9
V
V
V.
V.
= 12V,
= 15 V
3.5
4
rnA
Vs
V.
= 12 V
1.2
1.8
mA
mA
235
mA
300
mA
75
0.1
1 I1A
= 15 V
V. = 12 V
RL = 8n
V.
15 V
RL 8n
=
=
Ib
p.
°
Inp,l,!t bil:\s,current
Output power
Min. Typ. Max. Unit
= 12 V
= 15 V
d = 2%
Vs = 9V
Vs = 9V
Vs = 12 V
Vs = 15 V
V. = 15 V
d = 10%
V. = 9V
V. = 9V
V. = 12 V
Vs = 15 V
V. = 15 V
Po
= 2.1 W
Po
= 3.3W
V.
Vs
f
f
nA
=
1 kHz
RL
RL
RL
RL
RL
= 4n
= 8n
= 8n
= 8n
= 16n
1.4
0.9
1.7
2.8
1.6
W
W
W
W
W
1 kHz
RL = 4n
RL = 8n
RL = 8n
RL = 8n
RL = 16n
1.8
1.15
2.1
3.3
1_9
W
W
W
W
W
=
• External heatsink not required except for the conditions V.
278
mA
2.5
= 15 V,
RL
=8 Q
TAA 611e
ELECTRICAL CHARACTERISTICS
Parameter
R' f
(continued)
Test conditions
Internal feedback
resistance (see
schematic diagram)
Zi
Input impedance
d
Distortion
Min. Typ. Max. Unit
7.5
open loop
5
n
Mn
Circuit No.1
RL
Vs
Vs
Vs
Vs
= an
= 12 V
= 15 V
= 12 V
= 15 V
f
Po
Po
Po
Po
= 1 kHz
= 50 mW
= 50 mW
= 1W
= 1W
0.3
0.3
0.2
0.2
%
°/.
%
%
Circuit No.2
Gv
Voltage gain
(open loop)
RL =
Vs =
Vs =
Vs =
Vs =
an
f
12 V
15 V
12 V
15 V
Po
Po
Po
Po
= 1 kHz
= 50 mW
= 50mW.
= 1W
= 1W
1.5
1.5
1
1
=
=
12 V
15 V
RL
RL
=
=
an
an
70
72
Vs
Vs
279
%
%
%
%
dB
dB
TAA611C
Fig. 2 - Typical distortion vs
Fig. 1 - Typical distortion vs
output power
output power
n< "'2
d
7
I
(%)
Vs~15V
~
RL = 16 n
f = 1KHz
--t.---
~
d
(%)
Vs~15
V
f - - e- R~ = 8n
.
l-
f
=IKHz
/
I
V
-j
Test Circuit I ,
/
Test Circuit 2
::::..--
V
V
Test Circuit2,.... ,./
1""'Po (W)
0.5
Fig. 3 - Typical distortion vs
output power
o
2'
(W)
"-
-
V
........ ~
i"'--
i"-
·v
'1'-~s~9l/
l - t-
V
1.5
f=lKHz
At clipping l -I -
~~j"-_ _ P. C. board
287
TAA 611C
MOUNTING INSTRUCTIONS
(continued)
Heat-sinking with external bar.
Power dissipation can be achieved by means of an additional external heat-sink fixed
with two screws (both packages) or by soldering the pins of the external bar to
suitable copper areas on the p.c. board (TAA611 C11).
A.
In the former case, the thermal resistance case-ambient of the added heat-sink
can be calculated as follows:
Rth
B.
= ------------
where:
T jmax
Max junction temperature
Tamb
Ambient temperature
P tot
Power dissipation
Rth j.eas.
Thermal· resistance· junction-case
If copper areas on the p.c. board are used (TAA 611 C11) the diagrams enclosed
give the maximum power dissipation as a function of copper area, with copper
thickness 35!, and ambient temperature 55°C.
/
PC BOARD
GSIl144
4
I
r---'~
,r
l
I
~i -I': ,L:
I
i
r~L'
P"
~"
I"::lLI
'
I
(~
Tr <..:;l'rf""'l.3'n=.r 1
U
U
U
I,
,
I
:
I
-I-- l-
~i
2
./
f-
V V
V
1
\
\
rIA 6,1, c,~
1
3
0
10
COPPER ARE"" 35 /J. THICKNESS
288
20
30
40 J((I1mj
TAA630S
LINEAR INTEGRATED CIRCUIT
SYNCHRONOUS DEMODULATOR FOR PAL COLOUR TV SETS
The TAA 630 S is a silicon monolithic integrated circuit in a 16-lead dual in-line
plastic package. It incorporates the following functions:
-
active synchronous demodulators for F (S-Y) and ± F (R-Y) signals
-
matrix for G-Y signal [G-Y = -0.51 (R-Y) -0.19 (S-Y)]
flip-flop
- PAL switch and colour killer.
It is intended for PAL colour television receivers employing colour difference output
stages with clamping circuits.
ABSOLUTE MAXIMUM RATINGS
Supply voltage (between pins 6 and 16 - see note)
Reverse identification input voltage
Identification input current
Output current (from pins 4, 5 and 7)
Total power dissipation: at Tamb ~ 50°C (see note)
Storage temperature
Operating temperature
V
V
mA
5 mA
550 mW
-20 to 125°C
-20 to 60°C
13.2
-5
=
NOTE: Vs
16 V and P,o,= 800 mW (at Tamb ~ 50°C) are permissible during warm up
time of tubes in mixed sets
MECHANICAL DATA
Dimensions in mm
289
11,72
TAA630S
ELECTRICAL CHARACTERISTICS
(measured using the test circuit of fig. 3 at
Parameter
Tamb
= 25°C)
Test conditions
Min.
STATIC (DC) CHARACTERISTICS
II
VI
Input current for
identification circuit ON
86
Input voltage for
identification circuit ON
0.75
VI
Input voltage for
identification circuit OFF
V·
4
DC voltage at (R-V)
output
V·
5
V7
V IO
VIO
itA
V
0.4
V
V lo """0.9V
see note
V
DC voltage at (G-V)
output
see note
V
DC voltage at (8- V)
output
7.3
V
Killer input voltage
for colour ON
0.9
V
Killer input voltage
for colour OFF
0.3
V
DYNAMIC CHARACTERISTICS
VI
V3
V4
Vs
V7
Peak to peak identification input voltage
Peak to peak flip-flop
output voltage
VIO """ 0.9 V
R-V output voltage
swing
G-V output voltage
swing
V lO """ 0.9 V f = 4.4 MHz
Linearity m """ 0.7
B-V output voltage
swing
290
4
V
2.5
V
f = 7.8 kHz
3.2
V
1.8
V
4
V
TAA630S
ELECTRICAL CHARACTERISTICS
Test conditions
Parameter
V2"
(continued)
R-Y reference input
voltage
VlO ==== 0.9 V
V"
a
B-Y reference input
voltage
V l4
Peak flip-flop input
voltage
VlO ==== 0.9 V
VIS
Peak flip-flop input
voltage
f
f
Min. Typ. Max. Unit
,
= 4.4 MHz
= 15.6 kHz
1
V
1
V
-2.5
-5
V
-2.5
-5
V
ViVI3'" R-Y demodulator gain
V7
V l3
_.V9 V 4
R9
C9
Rl3
B-Y demodulator gain
to R-Y demodulator
gain ratio
Parallel input capacitance at pin 9
Parallel input resistance
at pin 13
Parallel input capacitance at pin 13
Iz41
IZsl
Iz7 1
Iz2 1
R-Y output impedance
NOTES:
= 4.4 MHz
= 50 mV
Parallel input resistance
at pin 9
C l3
IZal
V lO ====0.9V
f
Vi (peak to peak)
7
-
1.78
Q
800
VlO ==== 0.9 V
Vi
20mV
=
f
= 4.4 MHz
10
Q
800
-
G-Y output impedance
VIO ==== 0.9 V
B-Youtput impedance
. Parallel input
impedance at pin 2
Parallel input
impedance at pin 8
VIO ==== 0.9 V
Vi
400mV
=
f
= 4.4 MHz
pF
10
pF
100
Q
100
Q
100
Q
900
Q
900
Q
• Adjustable to the same level of V7 by variable reSistors, or by variable
voltages === 1.2 V, connected between pins 11 and 16 for V4 and between
pins 12 and 16 for Vs'
., Maximum permissible range : 0.5 to 2 V (peak to peak) .
••• Peak to peak output voltage to peak to peak input voltage ratio.
291
TAA630S
Fig. 1 - Schematic diagram
Jv.
R,
~
~~
-- ~~
.
t~'
~r
R6" R , :
rt tt:'
'"
T,
T11
T,
~I
tJ
8-0217
Rll
R12
R,
R"
.1.
r-
t-
'---
I"
T.
."
,
,.
T39
~
....-- h
t:
rr-:::.:
T",
e,
A~
T"
~
3
~
"48
T25
I
.-
T38
R52
R53
IE
r~ ~rt '
L--
6
-'""..""--
Ie--
~!,-----J
~u~
'"
A14
..
~h
~
r-=
T31
~
R,
A13
T,
LR37
~
T12
",
~~
I "'" I
~
I~~~
T3
'"
A]9
T.
m
""
As
R3
fn
R,
>---- 1--'1/
f-
T"
V
-.-;;~'
"T23
""
R28
,
13
~'"
,
156
Ai's
~6
14
RS7
12
A",
•
11
G-088 1/1
Fig. 2 - Power rating chart
Flot
\mW I
800
600
400
200
a
o
292
20
40
60
8010mb lOCI
TAA630S
Fig. 3 - Test circuit
B-V
Input
ret,
R-V
Ident.
Input
ref.
F(8-V) . rller
Input
Input
:!:Fo=:i-Y)
Input
;~-JI-------o
O.1,uF
~~~~!al
... 5-021
Input
Fig. 4 - Typical application circuit
7.8kHz output
6-Y
~put
!l2kll
2.2nF
.12V
• 250V
0.47
~F
I
G-Y
~PUt
15kO
2.2nF
D.L.
18kU
R-Y
~put
lOkU
2.2nF
,kG
Orizontal
flyback
input
·5V
5-0219
293
LINEAR INTEGRATED CIRCUIT
TAA 661
FM IF AMPLIFIER-LIMITER AND DETECTOR
•
•
•
•
•
HIGH GAIN
FREQUENCY RANGE 5 kHz to 60 MHz
THRESHOLD LIMITING VOLTAGE 100 (l.V (5.5 MHz)
COINCIDENCE GATE DETECTOR
AUDIO OUTPUT VOLTAGE 1.4 Vrms (d = 1%)
The TAA 661 is a monolithic integrated circuit in' a 14-lead quad in-line plastic
package or in a Jedec TO-100 metal case. Particularly designed for use in TV sound
IF or FM IF amplifiers, it includes: a limiter amplifier, a coincidence detector and
a voltage regulator. By using the TAA 661 the ratio detector transformer is eliminated
and the audio signal is capable of driving an output amplifier directly. Detector
alignment is obtained by adjusting a single coil which provides the quadrature signal
to the coincidence gate detector.
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Power dissipation at T.mb === 70°C
Storage temperature
Operating temperature
ORDERING NUMBERS:
for TAA 661 ASS
for TAA 661 BX2
15
V
350 mW
500 mW
-25 to 125°C
o to 70°C
TAA 661 A55 (for TO-100 metal case)
TAA 661 BX2 (for 14-lead quad in':;line plastic package)
MECHANICAL DATA
Dimensions in mm
12.7",un.
~
TAA661 BX2
TAA661 ASS
./
295
5/73
TAA661
SCHEMATIC DIAGRAM
De-emphasis
+---I---f-:~
C/pF Rp/kO
33
100
100
-
68
,
27
-
8 10 0
6
8 10 2
V, (mV)
- - - - - - - - - - - - - - - - - - - - - - - - - - _.._ 300
TAA 661
Fig. 4 - Typical recovered
output voltage
GS 02
Vo
,\a
'"
(vofij
II
1.6
1.4
1.2
1.0
0.8
0.6
Fig. 5 - Phase response of the
TAA 661 wide band amplifier
measured at 25 °C
- I-
1\
-r-. " 1\h
'\.\ ~t
'\
Vs=12 v
1=5.5 MHz
-.1 f±50 kHz
V'7 101m1V
0.4
4
I
6 8 10 1
\\d
1\
\ \e
".1
2
C, (pF)
TYPICAL APPLICATION
680 [)
TAA 661 in TV receiver.
::c
+24V
I
1001,F
O.lI'F I
!J..:
lSOD
LINEAR
680 D
Notes:
- Pin numbers shown are for the TAA 661 BX2.
- L1 = 24 turns of 0.16 mm nylon covered copper wired with tapping at turn 12
from ground.
- L2 = 35 turns of 0.16 mm nylon. covered copper wired.
- Neosid former K4/21.5/0.5 - Neosid core GW4 x 0.5 x 10FE10{Qo=80).
301
LINEAR INTEGRATED CIRCUIT
TBA 231
DUAL LOW NOISE OPERATIONAL AMPLIFIER
•
•
•
•
•
•
•
SINGLE or DUAL SUPPLY OPERATION
LOW NOISE FIGURE
HIGH GAIN
LARGE INPUT VOLTAGE RANGE
EXCELLENT GAIN STABILITY VERSUS SUPPLY VOLTAGE
NO LATCH UP
OUTPUT SHORT CIRCUIT PROTECTED
The TBA 231 is a monolithic integrated dual operational amplifier in a 14-lead dual
in-line plastic package.
These low-noise, high-gain amplifiers show extremely stable operating characteristics
over a wide range of supply voltage and temperatures.
The device is intended for a variety of applications requiring two high performance
operational amplifiers, such as phono and tape stereo preamplifier, TV remote control
receiver, etc.
ABSOLUTE MAXIMUM RATINGS
V,
Supply voltage
Differential input voltage
• Common mode input voltage
Power dissipation at Tamb ~ 60 °C
Storage temperature
Operating temperature
• For Vs ~ ± 15 V, Vi max
ORDERING NUMBER:
± 18
± 5
± 15
V
V
V
500 mW
-40 to 150 °C
o to 70 cC
= V,
TBA 231
MECHANICAL DATA
Supersedes issue dated 5/73
Dimensions in mIT'
303
6/75
SCHEMATIC DIAGRAM
+v,
r
,
Fr~~
OUTPUT
'A
1
OUTPUT
2
'"
3
LAG A
1
.J
'~
~
LAG A
INPUT
J
y.
~
...
~rl.
OUTPUT B
.
12
1
4
10
5
6
NON INVERTING
INVERTING
INPUT A
INPUT A
7
6
-
OUTPUT LAG B
11
>--;
r
r
""-----
9
INVERTING
NON INVERTING
INPUT B
INPUT 8
CONNECTION DIAGRAM
INPUT
, LAG B
5S0023
TEST CIRCUIT
Frequency response
OUTPUT A
14 V+
OUTPUT LAG A 2
13 OUTPUT B
R1
INPUT LAG A
3
OUTPUT LAG B
INPUT LAG A
11 INPUT LAG B
NON INV. INP. A
10 INPUT LAG B
INV. INPUT A
6
9 NONINV. INP. B
V-
7
8 INV. INPUT B
5S 00.:1:2
304
SS 0024
TRA 231
THERMAL DATA
~ Rth j'amb
Thermal resistance junction-ambient
max
180 °C/W
ELECTRICAL CHARACTERISTICS
(Tamb = 25°C, RL = 50 k!l to pin 7 unless otherwise specified)
Parameter
v.
Test conditions
± 15 V
Id
Quiescent drain current
IVsE1 -V 6 dlnput offset voltage
=0
R, = 200!l
Vo
11 61 -1 62 1 Input offset current
Ib
Input bias current
Common mode input
voltage range
9.
14 mA
1
6 mV
50
1000 nA
250
2000 nA
±10 ±11
= 1 kHz
Vo = ±5V
Rj
Input resistance
Gv
Voltage gain
6500 20.000
-
Vo
Positive output voltage
swing
+12 +13
V
Negative output voltage
swing
-14 -15
Y
5
k!l
90
dB
50
~V/V
1
V/J.ts
Vo
f
V
k!l
Ro
Output resistance
f
CMRR
Common mode
rejection ratio
R,
SVR
Supply voltage rejection
SR
Slew rate
Channel separation
NF
Noise figure
37 150
= 1 kHz
= 200!l
R, = 200!l
Unity gain
C 1 = 0.1 J.tF
Rl = 4.7!l
see frequency response
test circuit
= 10 k!l f = 10 kHz
R, = 10k!l
B = 10Hz to 10kHz
R,
305
70
140
dB
1.5
dB
T8A231
ELECTRICAL CHARACTERISTICS (continued)
Parameter
v, =
Test conditions
± 4V
Quiescent drain current
Id
iVSECVBE21 Input offset voltage
=0
Rs = 200n
Vo
11 61 -1 62 1 I nput, offset current
Ib
Input bias current
Gv
Voltage gain
Vo
Vo
2.5
rnA
1
6 mV
50
1000 nA
250
nA
250015.000
-
Positive output voltage
swing
+2.5 +2.8
V
Negative output voltage
swing
-3.6
Vo
= ±1 V
-4
V
Fig.2 - Typical output capability
vs supply voltage
Fig. 1 - Power rating chart
VOr--'r--.---.---r---r--~~",63
(Vrms) I-f_=-IlI-K_H_.Z+-_+-_t-_t-_I---;
0.8 f-+-I-I-+-I-I-+-HH--HH--HH-+-I-+-I
121---~--+--+--+-~--II-~
10~-4-~--+--+--
0.6 f-+-I-I-+-I-I-+-I-H--HH--HH-+-I-+-I
2~£4--+--+--+-~--II----I
o
LL~~~~~~~~~~~~
-50
o
50
100
6
Tamb ('C)
306
8
10
12
14
~
Vs (V)
TBA 231
Fig.3 - Typical quiescent drain
current vs suppiy voltage
Fig. 4 - Typical open loop voltage
gain vs supply voltage
GS 0165
-+__-+__~
(rnA) ~__~__~__~__~__
(dB)
20K
12
~--+---
15K
~
--~
~
-
P
...10K
::::--f-
R~ =
00
RL = 50K D
I
RL - 10K D_ f - -
I-RL
5K D
R L - 3K D
f
= 1 KHz
5K
o L-__
4
~
__-L__
8
~
____L-__L-__
10
12
14
~
__-J
o
±vs (V)
4
Fig. 5 - Typical open loop frequency
response using recommended
compensation networks
6
8
10
12
14
± Vs
(V)
Fig.6 - Output voltage swing vs
frequency for various
compensation networks
-20 W...J...ll-L-LLLL...L...Ll..LL...L...LJ..LL-L...LUJ
100
10K
f (Hz).
1K
100K
0.1L-~LL-+--+-LU
100
307
1K
__~-LU--L-+-~~~~U
10K
100K
f (Hz)
,
'~-,:;~":
~,'::.'
-,
. ".-
Fig. 8 - Typical input noise current
vs frequency
Fig. 7 - Typical input noise voltage
vs frequency
e
~
0'"
I I III
z_
Vs
GS 0169
I III
N
2
' lSV
zli=
Vs
± lSV
I--
RS
= 100K.o
.......
-
.......
10- 26
lK
100
10K.
10
nHz)
Fig. 9 - Typical closed loop gain
vs frequency
100
lK
10K
Fig. 10 - Typical open loop voltage
gain vs temperature
7
I _
VS=±lSV
(dB)
(dB)
60
I I
f
Rl = 470.0
II
c 1 = O.OOl/J. F
II I
Rl
20
a
-10
100
C l = O.Ol/.<.F
I I
Rl = 33.0
Cl = O.l/LF
I il
Rl
II;
lK
..........
"-
20K
\
= 4.7.0
III I
10K
lOOK
~~
Ii _~
. I. - 50/(1{
\
1,1 I
II
""" ...........
........
\
= lS0.o
II I
111
01.71
30K
40
I I
fl.!:.
= ± lSV
= lK!-Iz
Vs
I
C l = 300pF
f (Hz)
..:::::: :::::::::::--
10K
R
"'-
~
o
f (Hz)
308
o
10
20
30
= lO~.o,
40
SO
T("G)
"II NEAR INT EGRA TED CIRe UIT
TBA 311
TV SIGNAL PROCESSING CIRCUIT
The TBA 311 is a monolithic integrated circuit in a 16-lead dual in-line or quad in-line
plastic package. It is intended for use as signal processing circuit for black and
white and colour television sets.
The circuit is designed for receivers equipped with tubes or transistors in the deflection
and video output stages, and with PNP or NPN "transistors in the tuner and NPN in
the IF amplifier.
Only signals with the negative modulation can be handled by the circuit. The circuit
is protected against short circuit between video output and GND. The TBA 311 includes:
•
•
•
•
•
•
VIDEO PREAMPLIFIER with EMITTER FOLLOWER OUTPUT
GATED AGC for VIDEO IF AMPLIFIER and TUNER
NOISE INVERTER CIRCUIT for GATING AGC and SYNC. PULSE SEPARATOR
HORIZONTAL SYNC. PULSE SEPARATOR
VERTICAL SYNC. PULSE SEPARATOR
BLANKING FACILITY for the VIDEO AMPLIFIER
ABSOLUTE MAXIMUM RATINGS
Vs
Ptot
T stg
Top
Supply voltage
Power dissipation at T amb """ 70°C
Storage temperature
Operating temperature
16
V
500 mW
-55 to 125°C
-25 to 70 °C
ORDERING NUMBERS:
TBA 311 A22 (for 16-lead quad in-line plastic package)
TBA 311 A17 (for 16-lead dual in-line plastic package)
309
5/73
I
TBA311
MECHANICAL DATA (Dimensions in mm)
Quad in-line plastic package
for TBA 311 A22
~
I• 1.5.08.1
I
10.16
•
POOf- D
Dual in-line plastic package
forTBA311 AU
310
TRA 311
CONNECTION DIAGRAM
,.
,.
CAIZ. SYNC. OUTPUT
PNP TUNE RAGe
,
FLY BACK PU LSE
IF - AGe
•
GROUND
\lERl. SYNC. OUTPUT
I.
VERT. SYNC. TIME CONST.
13
SYNC, TIME CONSTANT
SUPPLY VOLTAGE
12
VIDEO OUTPUT
NPN TUNER AGe
11
BLANKING
I.
TUNER AGe DELAY
INPUT VIDEO PREAMP.
NOISE SEPARATOR
NOISE SEPARATOR
TIMcCONSTANT
TIME CONSTANT
SS 0041
SCHEMATIC DIAGRAM
,.
11
12
13
,.
550042
311
IBA 311
TEST CIRCUIT
TUNER
NPN or PNP
:zoonO:zoon26pF
SOpF
Hh +71h.
L_. _ _ _ _ _ _ _ _
AGC PNP
+12V o-_--t---op--'t:~
I1
V
'
'
I
I
I
I
I
10KSl
r-+--1[
&OVpp
312
VIdooAmpllf.
TBA 311
ELECTRICAL CHARACTERISTICS
(T. mb
= 25°C,
Vs
= 12 V
unless otherwise specified, see also test circuit)
Parameter
Id
Min. Typ. Max. Unit
Quiescent drain current
14
mA
VIDEO AMPLIFIER
Ri
Input resistance (pin 10)
2.7
kn
Ci
Input capacitance (pin 10)
0.8
pF
B
Bandwidth (-3 dB)
Gv
Voltage gain
Vi
Peak to peak video input voltage (pin 10)
Vo
MHz
5
9.5
dB
(1 )
2
V
Peak to peak video output voltage (pin 12)
(2)
6
V
V
Black level at the output (pin 12)
(3)
5
V
10
Available video peak output current
(4)
20
~
Video output voltage temperature drift
(5)
1
mV/O(
Black level temperature drift
0.2
mV/oC
Black level drift at the output with supply voltage
variation
0.5
V!V
AT,mb
AV
AT. mb
AV
-AVs
mA
VIDEO BLANKING
Vi
Peak to peak input voltage (pin 11)
Ri
Input resistance (pin 11)
1
5
1
V
kn
AGC CIRCUIT
V
Control voltage IF amplifier (pin 4)
o to 7.5
V
V
Control voltage tuner NPN (pin 6)
PNP (pin 2)
Oto 6.5
12 to 6
V
V
313
I
TBA311
ELECTRICAL CHARACTERISTICS
(continued)
Parameter
t:.V j
Min. Typ. Max. Unit
t:.V
Signal expansion for full control of IF amplifier
and tuner
V
Peak to peak keying input pulse (pin 3)
Rj
Input resistance (pin 3)
(6)
%
10
1
5
V
2
k!l
10
V
100
!l
9.5
V
2
k!l
SYNC. CIRCUITS
Vo
Output voltage of horizontal sync. pulse (pin 1)
Zo
Horizontal output impedance (pin 1)
Vo
Output vctltage of vertical sync. pulse (pin 15)
Zo
Vertical
'
..
~ "
outpu~-impedance
8.4
8.4
(pin 15)
NOTES:
1) Negative going video signal (no pre-bias needed for the detector).
2) Video signal with negative going sync. pulse.
3) Only valid if the video signal is in accordance with the CCIR standard.
4) The total load on pin 12 must be such that under nominal conditions 10
"'"
20 mAo
5) Because the integrated circuit reaches 95% of its final working temperature in 100
seconds, the temperature variations to be considered are t~ose caused by the
slower rise in cabinet lemperature and by changes in room temperature.
6) The TBA 311 may be operated unkeyed but then point 3 must be connected to the
positive supply line via a resistor of suitable value (e.g. 10 k!l). However, the
following consequences should be borne in mind:
-
The decoupling capacitors at the IF and tuner control points must be larger to
prevent ripple voltages due to the vertical sync pulses. In consequence the AGC
will not follow fast signal fluctuations (aircraft flutter).
314
LINEAR INTEGRATED CIRCUIT
TBA 331
GENERAL PURPOSE
The TBA 331 is an assembly of 5 silicon NPN transistors on a common monolithic
substrate in a Jedec TO-116 14-lead dual in-line plastic package. Two transistors
are internally connected to form a differential amplifier.
The transistors of the TBA 331 are well suited to low noise general purposes and
to a wide variety of applications in low power systems in the DC through VHF range.
They may be used as discrete components in conventional circuits, in addition, they
provide the very significant inherent integrated circuit advantages of close electrical
and thermal matching.
ABSOLUTE MAXIMUM RATINGS
VCBO
VCEO
Vcss·
VEBO
Ie
P,ot
=
Collector-base voltage (IE
O)
Collector-emitter voltage (lB
O)
Collector-substrate voltage
Emitter-base voltage (Ie
O)
Collector current
Total power dissipation at T.mb ~ 55°C
=
=
at T.mb > 55°C
Storage and junction temperature
Each
Total
transistor package
20
V
15
V
V
20
V
5
rnA
50
750 mW
300
Derate at 6.67 mW/oC
-40 to 150
o to
Operating temperature
85
°C
°C
• The collector of each transistor of the TBA 331 is isolated fr.om the substrate by
an integrated diode. The substrate (pin 13) must be connected to the most
negative pOir.t in the external circuit to maintain isolation between transistors and
to provide fer normal transistor action.
MECHANICAL DATA
Dimensions in mm
TO-116
Supersedes issue dated 5/73
315
6/75
·:~~';' .~:/t, .: :" ':·";.;~L{; .~'; . ;-'
~!-~'
'"
,:;;'(',."
,-
SCHEMATIC DIAGRAM
5
2
11
8
4
14
5-0018
6
3
7
9
10
13
12
Substrate
ELECTRICAL CHARACTERISTICS (Tomb =
Parameter
IC80
ICEO
11 61 -1 62 1
Test conditions
25°C unless otherwise specified)
Min.
Typ.
Max.
Unit
Fig.
Collector cutoff
current (IE
0)
Vca
= 10V
0.002
40
nA
1
Collector cutoff
current (Is
0)
VCE
= 10V
see
curve
0.5
p.A
2
Ic
VCE
= 1 rnA
=3V
2
p.A
7
=
=
Input offset
current
316
0.3
TBA 331
ELECTRICAL CHARACTERISTICS
Parameter
VCBO
VCEO
Vcss
V CE
(sat)
VEBO
VBI:
Min.
Typ.
Max.
Unit
Fig.
Ic
= 10Jl.A
20
60
V
-
Collector-emitter
voltage (lB = 0)
Ic
= 1 mA
15
24
V
-
Call ecto r-su bstrate
voltage (lcss = 0)
Ic
= 10Jl.A
20
60
V
-
IB
Ic
= 1 mA
= 10mA
0.23
V
-
IE
= 10Jl.A
7
V
-
IE
VCE
IE
VCE
= 1 mA
=3V
= 10mA
=3V
0.715
V
4
0.8
V
= 1 mA
=3V
"
Ic
VCE
0.45
5
mV
4-6
Ic
VCE
= 1 mA
=3V
0.45
5
mV
4-6
Ic
VCE
= 1 mA
=3V
0.45
5
mV
4-6
Ic
VeE
= 1 mA
=3V
0.45
5
mV
4-6
Ic
VCE
= 1 mA
=3V
-1.9
mY/DC
5
Ic
VCE
= 1 mA
=3V
1.1
!J.V/oC
6
Collector-emitter
saturation voltage
Emitter-base •
voltage (lc = 0)
Base-emitter
voltage
IVBE3-V BE411 nput offset
voltage
IVBE4- VBESI I nput offset
voltage
IVBES-VBE41 I n put offset
voltage
~
Test conditions
Collector-base
voltage (IE = 0)
IVBE1-VBd Input offset
voltage
AVBE
(continued)
Base-emitter
voltage
temperature
coefficient
IVBE1-VBd Input offset
voltage
AT
temperature
coefficient
317
5
TBA 331
ELECTRICAL CHARACTERISTICS
hFE
fr
NF
Parameter
Test conditions
DC current gain
Ic =
VCE =
Ie =
VCE.=
Ic =
VCE =
10mA
3V
1 mA
3V
10 !-LA
3V
Ic =
VCE =
Ic =
VCE =
3mA
3V
Transition
frequency
Noise figure
hie
Input impedance
hie
Forward current
transfer ratio
hoe
Yie
Yfe
Yre
Reverse voltage
transfer ratio
Output
admittance
Input
admittance
Forward
transadmittance
Reverse
transadmittance
100 !-LA
3V
1 kHz
1 kn
=
=
Ic = 1 mA
VCE = 3 V
f
= 1 kHz
f
Rg
"r.
(continued)
VCE
= 1 mA
=3V
f
= 1 kHz
Ic
VCE
= 1 mA
=3V
f
= 1 kHz
Ic
Ic = 1 mA
VCE = 3 V
f
= 1 kHz
Min.
40
300
Typ.
Max.
Unit
Fig.
100
-
3
100
-
3
54
-
3
550
MHz
14
3.25
dB
8
3.5
kn
9
110
-
9
1.8x10-4
-
9
(J.S
9
15.6
•
= 1 mA
VCE = 3 V
f
= 1 MHz
0.3+jO.04
mS
11
Ic = 1 mA
VCE = 3 V
f
= 1 MHz
31-j1.5
mS
10
Ic = 1 mA
VCE = 3 V
f
= 1 MHz
see curve
mS
13
Ic
318
TBA 331
ELECTRICAL CHARACTERISTICS
Test Conditions
Parameter
Output
admittance
Yoe
C EBO
Ic = 1 rnA
VCE = 3 V
= 1 MHz
f
Emitter-base
capacitance
Collector-base
capacitance
CCBO
Collector-sustrate
capacitance
Ccss
(continued)
r-
•
//J
pF
-
Ic =0
Vcss= 3 V
2.8
pF
-
Fig. 2 - Typical collector cutoff current
I
-
~I'
.,f~ [...I
.:.
40
-
I
80
120
160
12
0.58
'/
I
mS
IE =0
VeB = 3 V
-
!.-
Fig.
-
1///Vcs =5V
100
+ jO.03
Unit
pF
1
10
¥=,
1-.
0.001
Max.
0.6
G-OA56
I CBO
Typ.
Ic =0
VEB = 3 V
Fig. 1- Typical collector
.
,cutoff current
(nA)
Min.
Ta ("C)
319
"T8A331
Fig. 3 - Typical DC current gain
-
G 045&
~E=3V
h FEX
I
I
hFEV
G 0459/1
VBE
I
6VBE
VcE =3V
(V)
(mV)
I
/'
1.1
120.
0.7
hFE
VBE
,/
100
f-
/'
80
60
Fig. 4 - Typical input voltage and
input voltage offset
I~IORI hFE'\
hFE2
I-""
0.6
h FE ,
0.9
,/
0.8
./
0.5
VIO /
/'
I---
a
o
IE (mA)
IE (mA)
Fig. 5 - Typical input characteristic
for each transistor
Fig. 6 - Typical input voltage offset
(mV)
VCE =3V
IV)
G-046111
6VBE
G 0460
v"E
VcE =3V
l-
1'0.
0.8
10
r-...
I-"
3
f-
10.7
3
0.6
0.5
0.4
-60
r-
1
0.60
r-... ;. . . i"-r-......:.
0.40
IE=0.5mA
I E=O.lmA
~
:
-20
a
20
60
100
T. (OC)
320
-60
-20
0
2Q
60
100 TambfC)
TBA 331
Fig. 7 - Typical input current offset
for matched transistor pair
Fig. 8 - Typical noise figure
G-0462
G-0463
NF
(I'A)
VcE=3V
Rs=lkO
(dB)
veE
=3V
0.1
15
/
/
1/
/
10
TYR
/
7
~
1
5
~
~
[:;;;
I--'
-
~
-
/
I =lOkHz
Ie (rnA)
Ie (rnA)
Fig. 9 - Typical normalized h
parameters
Fig. 10 - Typical forward admittance
tit,
G-0464
G-01,65
VeE =3V
I =lmA
9"
VeE =3V
1=lkHz
(mS )
40
h ••
r-. 1--..
9,.
.......
10 '
20
V
!III
1/
o
h,.
+-.
\.
b,.
V
h,.
I-
I--: .....
/
1
-20
III
hi
IIII
III
-40
Ie (rnA)
321
III
10-1
10'
10'
I (MHz)
Fig. 11 - Typical input admittance
Fig. 12 - Typical output admittance
G-0466
G-0467
b..
9~
VCE =3V
( =lmA
VCE =3V
( =lmA
[mS)
bit'
b..
4
I
I
IT
3
I
179;.
2
I g..
II
Ib
10'
10'
1()"'
Fig. 13 - Typical reverse admittance
b,.
:....
o
f (MHz)
10'
10'
I [MHz)
Fig. 14 - Transition frequency
G-0468
IT
9,.
~~~~~~~~r~~~~~~G~-~~~"
(MHz)~-+~+-~~~~C~E~=3~V~~~~~+-~~
[mS)
o
g"
\.
\
-0.5
I
b"
VCE =3 V
(c=lmA
-1
-1.5
10°
10'
10'
o
I [MHz)
322
4
6
8
Ic [mAl
LINEAR INTEGRATED CIRCUIT
I,:
TBA 435
I
,.'j'
VOLTAGE REGULATOR
•
•
•
•
•
OUTPUT CURRENT ~ 100 mA
TIGHT TOLERANCE for OUTPUT VOLTAGE
LOAD REGULATION ~ 1%
RIPPLE REJECTION 57 dB TYPICAL
OVERLOAD and SHORT CIRCUIT PROTECTION
The TBA 435 is an integrated monolithic 8.5 V voltage regulator in TO-39 metal case
which can supply more than 100 mAo The device features high temperature stability,
internal overload and short circuit protection, low output impedance and excellent
transient response. The TBA 435 is intended for use as voltage supply for consumer
circuits and for any other industrial application.
ABSOLUTE MAXIMUM RATINGS
Vi
Ptot
T stg
Tj
Top
Input voltage
Power dissipation at Tamb
at Tease
Storage temperature
Junction temperature
Operating temperature
ORDERING NUMBER:
20
0.75
4
-55 to 150
175
o to 70
= 25°C
= 25 °C
V
W
W
°C
°C
°C
TBA 435A X5
MECHANICAL DATA
Dimensions in mm
Ground connected to ca.se
i
!
'~
I
Fl008....a
I:
I'
i
Ii
Supersedes issue dated 5/73
323
6/75
T8A4.35
SCHEMATIC DIAGRAM
vIO-_ _ _- _ - - - _............
,..--C::J-...-oO
Vo
THERMAL DATA
Rtb
Rth
j.case
j.amb
ELECTRICAL CHARACTERISTICS (T j
Parameter
Vo
AVo
Output voltage
Load regulation
Vo
10
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
Regulated current
°C/W
°C/W
= 25°C unless otherwise specified)
Test conditions
Vi
10
= 11.5 V to 20 V
= 5mA CL = 10 J-LF
Vi
10
CL
= 11.5Vto20V
= 5 mA to 100 mA
= 10 JLF
Vi
= 15 V
324
37.5
200
AVo ~1%
Vo
Min. Typ. Max. Unit
8.1
8.5
0.3
100
140
8.9
V
1 %
mA
TBA 435
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test conditions
10
Max. regulated current
Vi
Ro
Output resistance
Vi
10
tlVo
Line regulation
Vo
SVR
eN
Vi
10
Supply voltage rejection
Output noise voltage
= 15V
= 15V
= 5 mA to 100 mA
Vi = 13.5 V
10 = SmA
f = 100 Hz
Vi = 15V
10 = SmA
CL = 10 ~F
B = 100 Hz to 100 kHz
tlVo
Temperature coefficient
Vi = 15V
10 = SmA
CL = 10~F
Tamb = 0 to 70°C
Vi
= 20V
325
200 mA
0.1
.n
0.15
46
Vi = 20V
Output short
circuit current
150
0.6
%
tlV i = 4 Vpp
CL = 10 ~F
Quiescent drain current
I,e
130
= 11.5 V to 20 V
= SmA
Id
tl Tamb
Min. Typ. Max. Unit
10 =0
Vo = 0
5
57
dB
100
~V
9
16 mA
rnVjoC
0.85
40
60
mA
TBA435
Fig. 1 - Typical output voltage
vs output cu rrent
Fig. 2 - Power rating chart
,.02,
S 024
Ptot
(w)
J
"")
Vi ~ 15 V
RNf'"INltf:
..... ~tSIN/(
/
....... t - -
V
V
/
/
V
o
o
FREE AIR
V
20
40
60
80
100
120
10 (rnA)
40
20
Fig. 3 - Maximum output current
vs junction temperature
Fig. 4 - Typical ripple rejection
vs regulated output current
GS 0250
GS 0251
SVR
(rnA)
150
I'-....
(dB)
~
60
..........
125
r---.....
r--..........
100
40
..............
Vi ~ 15 V
i"--,
20
75
Vi~
13.5 V
I - - .lV,=4V pp
f=lOOHz
50
25
50
75
100
20
125
326
40
60
80
100
10 (rnA)
TBA 435
Fig. 5 - Typical ripple rejection
vs frequency
SVR
(dB)
-
66 r---
1
V, 13.15
0
10~5
Fig.6 - Maximum output current
vs input voltage
,
.
~I
f.-
58
i J ,,25° C
150
,
I I
140
,/
56
54
iJ~O'e
-
160
j,'V ~4vppl
-
60
-
(rnA)
mAl
64
62
n"
10
i J " 70 0e
-
130
52
120
50
10
lK
100
10 K
12
10
f (Hz)
16
14
18
V, (V)
Fig.8 - Typical short circuit
output current vs
junction temperature
Fig. 7 - Typical short circuit
output current vs
input voltage
, no<.
Is e
uS 0255
Ise
(rnA )
(rnA)
44
60
42
40
-
~
- - --
40
b",..".
10-
-
r--..
20
38
----
V;~115V
o
36
10
12
14
16
18
25
V, (V)
327
50
75
100
125
:~
!.
TBA435
Fig. 9 - Typical dropout voltage
vs output current
Fig. 10 - Typical quiescent drain
current vs junction
temperature
.-
GS 0256
o
5
I•
.-
V
2.2
1.8
/
./
7
/"
(rnA)
l.--
~ r--...
9
-........::::
8
~
{,"-S"''''~ t--.....
00",
-......;:
V,-20 V
1.6
~
1.4
il. Votvo-l%
o
20
60
40
80
25
10 (rnA)
100
Fig. 11 - Typical quiescent drain
current vs input voltage
11 1e
(rnA)
1J"'O ~ ~
q
-~ H 1
8.8
_L-
8.6
.10c
"25~
rf
~
L- L-
-!--
8.2
100
T, (0C)
125
10000
1--.....
I-- .....
11 ",1 10oe -", ~ ~
8.4
75
Fig. 12 - Typical output resistance
vs frequency
GS 02 8
I.
50
)
, n",-
V,-l.5 V
C,,--O.lI'-F
1000
1/
!...10 -5 to
~
Ibo rnA.
100
~
I-""
i..-'
10 -0
-I
l'
7.8
10
12
14
1&
18
10
v, (V)
1
328
10
100
f (kHz)
TBA 435
Line transient response
(10 = 5 rnA)
Turn-on time
(10 = 100 rnA)
f\ ....
V,= 15V
/
II
VIi-8.S V
\
~
Q
/ . . . . r---..
/
8.5 V
o
100:0 JQCns !ol»s 1Ol» 1Ol»
h0261
GS 026"0
IOO1s lOOn
TYPICAL APPLICATIONS
Fig. 13 - Positive output voltage regulator
Fig. 14 - Negative output voltage regulator
)e---+--......- - -.......--_~-o
Vo~ -8.5 V
lO/LF
5S 0067
329
TBA,435,
Typical adjustable output
voltage vs output current
Fig. 15 - Adjustable output voltage regulator
0"
v
v0
~~--~----~-----oVo
IV)
6800
-
12
R2
",1 1200
"I.
10
VO""V 1 (1+ ::.)
+
I-R2
V
=0
V l)
/ /'
IG R2
v/ /'
V,,,,lSY
Vo·8.5 to II V
2
10> 80 rnA
Ro _100 mu
a
o
R2 = potentiometer 0 to 150 u
Fig. 16 - PNP current boost circuit
0.33fl
V,o--1r-C:J-_-=\:
/
Y
20, 40
60
80
100
10 (mAl
120
Typical output voltage vs
output current
r----------------,
S023
V,
(V,
1000
Vo
150
-
V,·IS V
/
/
8200
/
/
/
V,-IS V
Vo =8.5 V
10=2 A
......... V
Ro:::20 m u
0.5
330
/'
1.5
formA)
TBA 625A
LINEAR INTEGRATED CIRCUIT
Ii1
1
I
~
j •.
VOLTAGE REGULATOR
•
•
•
•
•
OUTPUT CURRENT ~ 100 rnA
TIGHT TOLERANCE for OUTPUT VOLTAGE
LOAD REGULATION ~ 1%
RIPPLE REJECTION 60 dB TYPICAL
OVERLOAD and SHOR! CIRCUIT PROTECTION
The TBA 625A is an integrated monolithic 5 V voltage regulator in TO-39 metal case
which can supply more than 100 rnA. The device features high temperature stability.
internal overload and short circuit protection, low output impedance and excellent
transient response. The TBA 625A is intended for use as voltage supply for digital
circuits and for any other industrial application.
ABSOLUTE MAXIMUM RATINGS
Vi
Ptot
T stg
Tj
Top
Input voltage
Power dissipation at Tomb
at Tease
Storage temperature
Junction temperature
Operating temperature
ORDERING NUMBER:
MECHANIC~L
20
= 25°C
= 25°C
0.75
4
-55 to 150
175
o to 70
V
W
W
°C
°C
°C
TBA 625A X5
Dimensions in mm
DATA
Ground connected to case
,s.sma•• ,
12.7 min.
~
.~~o
=
"l===lI ......
1[[]3'
...
1
....1
~x
~ ~
~~
'.
1lL.
.....
Supersedes issue dated 5/73
331
~
.!I
6/75
SCHEMATIC DIAGRAM
THERMAL DATA
R,h i-case
R,h i-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
max
max
37.5 °C/W
200 °C/W
ELECTRICAL CHARACTERISTICS (Ti = 25°C unless otherwise specified)
Parameter
Vo
AVo
Output voltage
Load regulation
Va
10
Regulated current
Test conditions
Vi
10
= 8 Vt020V
= 5mA CL = 10 J,LF
Vi
10
CL
= 8 Vto 20V
= 5 rnA to 100 rnA
= 10 J,L
Vi
= 12V
332
AVo
Va
"""1%
Min. Typ. Max. Unit
4.75
5
0.3
100
140
5.25
V
1 %
rnA
TBA 625A
ELECTRICAL CHARACTERISTICS (continued)
Farameter
Test conditions
10
Max. regulated current
Vi = 12V
Ro
Output resistance
Vi = 12V
10 = 5 mA to 100 mA
_Il. Vo
Vo
Line regulation
SVR
Supply voltage rejection
eN
Output noise voltage
Min. Typ. Max. Unit
130
I
0.2
46
Vi = 12 V
10 = SmA
CL = 10 IlF
B = 10 Hz to 100 kHz
60
%
IlV
16 rnA
Il.Vo
Il.Tamb
Temperature coefficient
V j = 12V
10 =5mA
CL = 10llF
Tamb = Oto 70 0 C
0.5
Vi = 20V
45
10 =0
Vo = 0
5
dB
9
Id
333
1
70
Vi = 20V
Output short
circuit current
n
Il.Vi =4Vpp
CL = 10 IlF
Quiescent drain current
Isc
200 rnA
0.1
Vi = 8 Vto 20V
CL = 10 IlF
I" = SmA
Vi = 10V
10 = SmA
f = 100 Hz
150
~V/oC
65 rnA
TBA 625A
Fig. 2 - Power rating chart
Fig. 1 - Typical output voltage
vs output current
illUlZli4
I
i
(w)
!
!
I
i
I
I;
f.--.-i-- v:~ 12 v
I.
I
I
I
I
1
I
-I
V
y!
,
IL
o
a
20
40
/t'
~'<:-"I'1'1""
I
I
....... ~'1"
SIf\tk"
....... ~-
3
D
I
I
VI J
I
FREE AIR
o
60
80
100
120
10 (rnA)
10
Fig. 3 - Maximum output current
vs junction temperature
20
30
40
50
60
Tom' ('C)
Fig. 4 - Typical ripple rejection
vs regulated output current
GS 0267
GS 026 6
10
SVR
(rnA)
150
2
,.1
il<1'1"/i
I
I
I
r·
4
I
i
OS
Ptot
(dB)
"-- .............
60
.......
125
r-........
...
V;~12
100
V
"--
40
........
b.....
V,~
20
75
r--
d
10 v
V;~4Vpp
If-lO~ Hz
o
50
25
50
75
100
o
n5
334
20
40
60
80
100
10 (mA)
TBA 625A
Fig. 6 - Maximum output current
vs input voltage
Fig. 5 - Typical ripple rejection
vs frequency
0261
(dB)
68
10~5
-
~
J
160
pp
66
J =ioc l
(rnA)
~ 10 v II--j- -1--1-++--+---+-1-++---1
AV;=4 V !
V,
~
~
rnA
TJ
I
64 I--H-H- --
- --
~f+t-+-+
~
r--
150
=zJc
l-
62
I
~
140
60
58
r---
-1-
56
269
OS
II
SVR
TJ =70° C
I--
-+~+--+--+-H+--I
I
I
130
--I--~+-f-H-_+~--
I
I
54
52
120
100
10
f (Hz)
10K
lK
8
Fig. 7 - Typical short circuit
output cu rrent vs
input voltage
12
10
14
16
18 V, (V)
Fig. 8 - Typical short circuit
output current vs
junction temperature
GS 0270
GS 0271
Isc
Isc
(rnA)
(rnA)
50
60
48
46
-- -
---
i--I -
40
v,~
f-""
44
i.--
r-- r--
.....
--
r-- I---
12 V
20
II
42
10
12
14
16
18
25
V, (V)
335
50
75
100
125
-
T816251
Fig.9 - Typical dropout voltage
vs output cu rrent
(V)
~
2.2
1.8
1.6
/
V
./'"
V
Fig. 10 - Typical quiescent drain
current vs junction
temperature
0273
GS 0272
--
I.
(rnA)
~ ..........
-.......::
~ N~lOo
~t--..--......;
10~S 17)4
J.Vo/Vo~l%
V,~20
1.4
~
V
1.2
6
20
40
60
80
100
o
10 (rnA)
Fig. 11 - Typical quiescent drain
current vs input voltage
GS Q;u.
10cl
"\
~
8.8
,,\)
--h:Jc
"\
_1
.- ~~rf
~
8.6
l - I-"'"
1
,,1
8.4
-
~
.-~
\)oc
~
I-"'"
(mil)
V
~
~
I-l -
125
)i~1112 V
f-rt-- C,~O.lp.F
r-
1000 -
~
I
T
I
--
1/
~
"\j~i""""
~
8.2
100
GS 0275
10000
I
f-
75
Fig. 12 - Typical output resistance
vs frequency
10~O
I.
(rnA)
50
25
100
f-
10~5
to 100 rnA
........ V
~
I-"'"
7,8
10
10
12
14
16
18
V, (V)
10
336
100
f (kHz)
TBA 625A
Turn-on time
(10 = 100 mAl
Line transient response
(10 = 5 mAl
4.V.-5
v
V.-9.5Y
II
I
/
1\
........
o~
__~.__+-__~_____
I
Vo~5
V
.0 -'---I-.....-f----+-----
lOOn lOOns lOOns lOOns lOOns
GS(l277.
lOOns lOOns
GS 0276
TYPICAL APPLICATIONS
Fig. 13 - Positive output voltage regulator
Fig. 14 - Negative output voltage regulator
!»----+--......------...--------1r--O vo~ 1OI-'F
5S DOn
337
5V
T8A625A
Fig. 15 - Adjustable output voltage regulator
Typical adjustable output
voltage vs output current
vo
.....
v,
h~~_--
-_~vo
(V)
R2 '" 200 n
430n
V
.,,"
J
V
R2 0 0
V
/
")
/v
./
Vo~5
V
to 9 V
10> 80 rnA
/ ./
o
Ro~100mu
o
R2 = potentiometer 0 to 250 11
Fig. 16 - PNP current boost circuit
./
20
40
bO
80
100 120
10 (rnA)
Typical output voltage vs
output current
lOS 0279
0.33n
v'o-__c:J-_.....:;
.;::.--____--.
I-- 1--
lOon
V,.12 V
f-- - - I--
-
1--_.-4---0 Vo
15n
II
500n
/
SS0075/1
V,~12V
Vo=5 V
lo~2 A
Ro :.::;20 m U
o
338
o
V
0.5
v
V
1.5
10~(A)
LINEAR INTEGRATED CIRCUIT
TBA 625B
VOLTAGE REGULATOR
•
•
•
•
•
OUTPUT CURRENT ~ 100 mA
TIGHT TOLERANCE
for OUTPUT VOLTAGE
..... ,.
LOAD REGULATION ~ 1%
RIPPLE REJECTION 54 dB TYPICAL
OVERLOAD and SHORT CIRCUIT PROTECTION
The TBA 625B is an integrated monolithic 12V voltage regulator in TO-39 metal case
which can supply more than 100 mAo The device features high temperature stability,
internal overload and short circuit protection, low output impedance and excellent
transient response. The TBA 625B is intended for use as voltage supply for digital
circuits with high noise immunity, linear integrated circuits and for any other industrial
applications.
ABSOLUTE MAXIMUM RATINGS
Vi
Ptot
T stg
Tj
Top
Input voltage
Power dissipation at Tamb
at Tcase
Storage temperature
Junction temperature
Operating temperature
ORDERING NUMBER:
= 25°C
= 25°C
27
0.75
4
-55 to 150
175
o to 70
V
W
W
°C
°C
°C
TBA 625B X5
MECHANICAL DATA
Dimensions in mm
Ground connected to case
Supersedes issue dated 5/73
339
6/75
TBA·625B
SCHEMATIC DIAGRAM
V,
O--"'~r-""""-_---
_ _ _,",
,-cJ-.......-O
Vo
THERMAL DATA
Rth
Rth
j-case
j-amb
ELECTRICAL CHARACTERISTICS (T j
Parameter
Vo
avo
Vo
10
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
Output voltage
Load regulation
coefficient
Regulated current
= 25°C unless otherwise specified)
Test conditions
Vi = 15 V to 27 V .
CL = 10J.tF
10 = 5mA
Min. Typ. Max. Unit
11.4
Vi = 15Vto27V
10 = 5 rnA to 100 rnA
CL = 10",F
Vi = 12 V
340
°C/W
°C/W
37.5
200
avo
Vo
~1%
12
0.3
100
140
12.6
V
1 %
rnA
TBA 625B
ELECTRICAL CHARACTERISTICS
Parameter
(continued)
Test conditions
Min. Typ. Max. Unit
10
Max. regulated current
Vi = 21 V
Ro
Output resistance
Vi = 21 V
10 = 5 rnA to 100 rnA
0.1
Vi = 15 Vto 27 V
CL = 10 J.tF
10 = SmA
0.2
0.5
Ofo
= 17V
10 = SmA
f = 100 Hz
46
54
dB
I:J.Vo
Vo
SVR
eN
Line regulation
ccefficient
Supply voltage rejection
Output noise voltage
Id
Quiescent drain current
I:J.Vo
I:J.Tamb
Voltage/temperature
coefficient
I,e
Output short
circuit current
Vi
120
10 =0
Vi = 21 V
10 = SmA
CL = 10 J.tF
Tamb = Ot070°C
Vi = 27V
341
200 mA
n
I:J.Vi = 4 Vpp
CL = 10 J.tF
Vi = 21 V
10 = SmA
CL = 10 J.tF
B = 10 Hz to 100 kHz
Vi = 27V
150
Vo = 0
6
150
J.tV
10
18 rnA
0.85
35
,,"v/oe
55 rnA
TBA 625B
Fig. 2 - Power rating chart
Fig. 1 - Typical output voltage
vs output current
as 0280
0.' .,
Plot
(W}
I
4
II'/li
~"'fO/"'/"'E::
12
I)
1
10
V
V,~21
/
-
. . . ~.,.s
/"'1(-
V
........
//
/
/
o
o
20
40
60
V
FREE AIR
80
100
120
'0 (mA)
o
10
20
30
40
50
60
Fig. 4 - Typical ripple rejection
vs regulated output current
Fig.3 - Maximum output current
vs junction temperature
GS 02
GS 0282
SVR
(mA)
150
I,m' (oC)
(dB)
............
60
............ ......
....................
125
............
v,~21
100
........
V
-
40
...............
V,~17
V
.1V,"4Vpp
f = 100 Hz
20
75
o
50
25
50
75
100
125
o
I, (OC)
342
20
40
60
80
100
'0 (mA)
TBA 625B
Fig. 5 - Typical ripple rejection
vs frequency
SVR
(dB)
~
62
~
Fig.6 - Maximum output current
vs input voltage
GS
TnT
GS 0285
284
(rnA)
V,~17VII
lV,~4Vpp
160
TJ =O°C
I--
TJ =25°C
I--
In~5 rnA
60
150
58
-~
56
54
........
....... ~
140
TJ =70°C
52
50
I--
130
48
46
120
10
100
lK
15
f (Hz)
10K
Fig. 7 - Typical short circuit
output cu rrent vs
input voltage
17
19
23
21
25
V, (V)'
Fig.8 - Typical short circuit
output current vs
junction temperature
GS 0287
GS 0286
Ise
Ise
(rnA)
(rnA)
40
60
38
40
36
t--- t--- I---
I..I-- I-- l..I-- I-- l..-
34
V,~21
I..-
o
32
15
17
19
-
V
20
,21
23
25
v, (V)
343
o
25
50
75
100
t-- t---
125
T, (oG)
TBA625B
Fig. 9 - Typical dropout voltage
vs output current
Fig. 10 - Typical quiescent drain
current vs junction
temperature
GS 0288
--
..... v
2.2
/'
./
/
1.8
1.6
/
GS 0289
(rnA)
f:::::::. r-....
10
~
V
IJ.VoIV
0
~
I
0~100
{,~S
~
1JJ-4
-1%
~~
.......
V,-27 V
1.4
1.2
20
60
40
100
80
10 (rnA)
25
Fig. 11 - Typical quiescent drain
current vs input voltage
(rnA)
9.8
9.6
9.4
9.2
10000
-
--
,.i"
f.- -~~
~
~
---
,,1\)OC
'.i___ -
--
100
125
~
GS 0291
I
Ro
(mil )
\)Jc i.---' f.- f.f..f.- -11'>oc_ f.-
10
75
Fig. 12 - Typical output resistance
vs frequency
GS 0290
I~ = b
I.
50
V,~21
V
C L = 0.1 I-'F
1000
1/
~
100
10 -5 to 100 rnA
....... I-"""
V
f.-
8.8
15
17
19
21
23
25
10
v, (V)
10
344
100
f (kHz)
TBA 625B
Turn-on time
(10 = 100 rnA)
Line transient response
(10
= 5 rnA)
VI ·.la.5 v
I
V
1
II
V, 21
1\
'"
-......
vI
V
I
..
I
11
I
V
lOOns 100" 11),,", 1000 lOOns
DOns lOOn
TYPICAL APPLICATIONS
Fig, 13 - Positive output voltage regulator
I
Fig. 14 - Negative output voltage regulator
58 0.078
345
TBA625B
Fig. 15 - Adjustable output voltage regulator
Typical adjustable output
voltage vs output current
4
v,
v.
v.
-
(V)
-Rf'13r
'I
12
10
/
.B
/ /
R2 = 0
10"F
/
)
/V/V
V
//
V,~24
l~ V
v.
V.~12
to 15 V'
1.>.80mA
Ro':: 100 mU
R, ~ potentiometer 0 to 150 u
~V
o
o
Fig. 16 - PNP current boost circuit
20
40
60
80
100 120
I. (mA)
Typical output voltage vs
output current
GS02
0.330
V,O-_'-;:=J-_",",
r--------,
)
V,~21 V
lOon
12
10
BFYb4
Isn
1--+-+---0. Vo
lO"F
/
I
1200n
V
V
550080/1
VJ=21 V
Vo= 12 V
lo~2
V V
A
Ro ::::20mu
O.s
346
1.5
10 (AI
LINEAR INTEGRATED CIRCUIT
TBA 625C
VOLTAGE REGULATOR
•
•
•
•
•
OUTPUT CURRENT ~ 100 rnA
TIGHT TOLERANCE for OUTPUT VOLTAGE
LOAD REGULATION""" 1%
RIPPLE REJECTION 51 dB TYPICAL
OVERLOAD and SHORT CIRCUIT PROTECTION
The TBA 625C is an integrated monolithic 15 V voltage regulator in TO-39 metal case
which can supply more than 100 rnA. The device features high temperature stability,
internal overload and short circuit protection, low outpUt impedance and excellent
transient response. The TBA 625C is intended for Lis~ as voltage supply for digital
circuits with high noise immunity, linear integrated cir'eUits iliid for any other industrial
applications.
ABSOLUTE MAXIMUM RATINGS
Vi
Ptot
Top
Ti
Top
Input voltage
Power dissipation at Tamb
at Teas.
Storage temperature
Junction temperature
Operating temperature
ORDERING NUMBER:
= 25 C
= 25 °C
0
4
V
W
W
-55 to 150
175
o to 70
°C
°C
°C
27
0.75
TBA 625C X5
MECHANICAL DATA
Dimensions inmm
Ground connected to case
Supersedes issue dated 5/73
347
6/75
SCHEMATIC DIAGRAM
THERMAL DATA
R,h
R'h
j-case
j-amb
ELECTRICAL CHARACTERISTICS
Parameter
Vo
avo
max
max
Thermal resistance junction-case
Thermal resistance junction-ambient
Output voltage
Load regulation
Vo
Regulated current
°C!W
200
°C!W
(T j = 25 0 C unless otherwise specified)
Test conditions
Vi = 18 Vto27V
10 =5mA
CL = 10 J.l.F
Min. Typ. Max. Unit
14_25
Vi = 18Vto27V
10 = 5 mA to 100 mA
CL
10 I4F
=
10
37_5
Vi = 24V
348
avo
Vo
~10f0
15 15.75
0.3
100
140
1
V
°/0
mA
TBA 625C
ELECTRICAL CHARACTERISTICS (continued)
Fllrameter
Test conditions
,10
Max. regulated current
Vi
Ro
Output resistance
Vi
10
AVo
Vo
Line regulation
SVR
Supply voltage rejection
eN
Id
~
ATamb
Ise
Vi
10
Output noise voltage
Vi
10
f
= 24V
= 24V
= SmAto100mA
= 18 Vto 27 V
= SmA CL = 10 .... F
= 20V
AV i = 4 Vpp
= SmA CL = 10 .... F
= 100 Hz
= 24V
10 = SmA
= 27V
Vi
Temperature coefficient
Vi = 24V
10
CL = 10 .... F .
Tamb = 0 to 70°C
= SmA
Vi = 27V
=0
Output short
circuit current
120
10 =0
Vo
1S0
200 mA
n
0.1
0.2S
46
Vi
CL = 10 .... F
B = 10 Hz to 100 kHz
Quiescent drain current
.,
Min. Typ. Max. Unit
6
O.S
%
S1
dB
200
....V
10
18 rnA
~V/oC
1.S
30
SO
rnA
I
349
TBA> 625C
Fig. 1 - Typical output voltage
vs output current
Fig. 2 - Power rating chart
'6
j
Vo
I
(V)
V,-24V
12
10
/
/
GS 0297
I"'\.
(w)
lJ
4
,I
Wll'/i
RAt'<:-IAt
Il"l:
...... -....!!.!.41'SIIVII_
3
.......
/
/
o
o
/
20
/
/
FREE AIR
...
40
60
o
80
100
120
10 (mA)
Fig. 3 - Maximum output current
vs junction temp,erature
o
20
40
Fig. 4 - Typical ripple rejection
vs regulated output current
GS 029"8
I.,
GS 0 ' "
SVR
(mA)
150 i'--...
(dB)
60
..................
"' ............
125
............ .......
V,-24V
-
40
I'-......-
100
20
V,-20 V
'--:- .1 V,-4 V"
f = 100 Hz
75
o
50
25
50
75
100
125
350
o
20
40
60
80
100
10 (rnA)
TBA 625C
Fig.
5 - Typical
ripple rejection
vs frequency
Fig. 6 - Maximum output current
vs input voltage
n'01
::. U.:lUU
SVR
II
(dB)
bO f-f--
.I.
(mA)
I
V)20V I
~J
160
v.> 4 Vpp
10~5
mA
56
1TJ =25°e
150
-
~~
-
52
,".'
140
V
48
= oDe
T J =70 0e
,130
44
120
10
lK
100
10K
17
f 1Hz)
Fig. 7 - Typical short circuit
output current vs
input voltage
19
21
23
25
Fig. 8 - Typical short circuit
output current vs
junction temperature
GS 0302
0303
I
IBe
(mA)
(mA)
34
60
32
30
-
f-
28
40
-
~
~l -
r--
-r---r---
20
V,~24
I---
V
I
26
17
19
21
23
V, (V)
25
25
V, (V)
351
50
75
100
125
II
TBA625C
Fig. 9 - Typical dropout voltage
vs output current
Fig. 10 - Typical quiescent drain
current vs junction
temperature
GS 03
.. J.H' U305
I.
(rnA)
2.2
2
V
V
./
l.B
V
.....-V
~
10
~
117",
'0"'5 117", .
~
-.....:::
/"
1.6
~
t1V o iV o -l%
1.4
v'-r v
1.2
1
~~
o "'lao
a
7
20
40
60
BO
.In(mA)
100
a
Fig. 11 - Typical quiescent drain
current vs input voltage
I _ ~C
I..--l.l-O.....- I..---
10
I..---
-n
-
I,oc
~
9.4
,...-
9.2
1 I,,10 ~c_ ~ ~
~,....
75
100
125
S'o 07
10000
----
1.l,,75.........- I--
_r---
50
Fig. 12 - Typical output resistance
vs frequency
S 0306
I.
(rnA)
25
Ro
(mil )
V,-24V
1000
-
C, ~O.l i'-F
I
I
10 -5 to 100 rnA
100
I
L
.--i-""""
V
10l-O
8.B
10
17
19
21
23
25
1
V, IV)'
352
10
100
f (kHz)
TBA 625C
Turn-on time
(10 = 100 rnA)
Line transient response
(10
= 5 rnA)
V 21.5V
I
vi /
v
1\
V
""
lOOn lOOns lOOns
o
If
~-
'-..
V
//
oOns~ons
lOOns lOOns OOns
TYPICAL APPLICATIONS
Fig. 13 - Positive output voltage regulator
Fig. 14 - Negative output voltage regulator
Vo -15 V
SS U083
353
JBA'~825C
Fig. 15 - Adjustable output vbltage regulator
Typical adjustable output
voltage vs output current
GS!l31
Vo
V,
IV) f - - R2
Vo
I
~
910
16
J
7\
14 f - - I--R2 - 0
/j
IO"F
12
V/
10
VO.V I
I/V
/ V
(l+~) + IG R2 •
~
V,.:J.6V
Vo==15 to 17
"10> 80 rnA
o
Ro,!=,IOOmu
R2 _potentiometer : O,to 150 U I
Fig. 16 - PNP current boost circuit
o
~
20
W
40
60
80
100
10 ImA)
120
Typical output voltage vs
output cu rrent
0.33ll
""
V0
-...,
IV)
2
II
Y,-24 V
BFY64
10
1-_~4--o()Vo
8
15ll
V
. 1500ll
V
4
V
S5008'I,
2
V,_24 V
Vo..15 V
lo .. ii! A
0
V
0.5
Ro ,=20m U
354
V
J
LINEAR INTEGRATED CIRCUIT
18A641A
AUDIO AMPLIFIER
• OUTPUT POWER 2.2 W (9 V - 4 il)
• LOW DISTORTION
• LOW QUIESCENT CURRENT
• SELF CENTERING BIAS
• HIGH INPUT IMPEDANCE
The TBA 641 A is a monolithic integrated circuit in a 14-lead quad in-line plastic
package. It is particularly designed for use as audio power amplifier in portable radio
receivers, tape recorders, record players and in industrial applications which require
high output power, low distortion and high reliability performance.
Special features of the circuit include a low quiescent current, self centering bias
operation at supply voltage ranging from 6 V to 12 V, direct coupling of the input.
The circuit requires a minimum of external components.
ABSOLUTE MAXIMUM RATINGS
VS
Vi
10
-;, Ptot
T stg
Tj
Supply voltage
Input voltage
Output peak current
Power dissipation at Tomb
~
at Teas.
Storage temperature
Junction temperature
~
25°C
100°C
12
-0.5 to +Vs
2
1.5
3.8
-40 to 150
150
V
V
A
W
W
°C
°C
ORDERING NUMBERS:
TBA 641 A72 for quad in-line plastic package with spacer
TBA 641 A12 for quad in-line plastic package
Supersedes issue dated 6/73
355
6/75
MECHANICAL DATA
(Dimensions in mm)
Quad in-line plastic package
with spacer for TBA 641 A72
(see also "MOUNTING
INSTRUCTIONS")
C-0058
M
(~)
Quad in-line plastic package
for TBA 641 A12
1Ll0.16
I. 5.081 .1
POO'!;-A
CONNECTION DIAGRAM
OUTPUT
SUPPLY VOLTAGE
NC
NC
GROUNO
BOOTSTRAP
NC
11
NC
GROUND
10
RIPPLE BY-PASS
COMPENSA liON
NC
INPUT
FEED-BACK
S5 0086
356
TBA641A
SCHEMATIC DIAGRAM
.--...-_ _ _ _ _ _ _ _ _ _----,---014
r--~--,___,_-_t_--o 12
10o-----+_--;
R'f
TEST AND APPLICATION CIRCUIT
Vi
IOO,oF
IOV
5-0378/1
357
I
TBA641A
THERMAL DATA
~ Rth j-case
~
R'h i-8mb
Thermal resistance junction-case
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS
(See test circuit; Tamb
= 25°C,
V,
= 9 V and
= 4n
unless otherwise specified)
Test conditions
Parameter
Vo
RL
13 °C/W
83 °C/W
max
max
Quiescent output
voltage (pin 1)
Min. Typ. Max. Unit
4
4_5
5
V
Total quiescent
drain current
Po
=0
8
18 mA
Quiescent drain current
of output transistors
Po
=0
6
mA
Id
Drain current
Po
= 2.2W
340
mA
Ib
Bias current (pin 7)
Po
Output power
R' f
Internal feedback
resistance
Id
Id
0.1
d
Gv
= 10%
= 46 dB
f
1
J.tA
= 1 kHz
2.2
W
See schematic diagram
7
kn
Internal feedback
resistance
See schematic diagram
35
n
Zj
Input impedance (pin 7)
f
3
Mn
d
Distortion
f
0.6
0.6 .
%
%
46
dB
2.5
{J.V
R'.I
Gv
Voltage gain
eN
Input noise voltage
= 1 kHz
= 1 kHz
=0
R, = 22 kn
1.8
= 46 dB
Gv = 46dB
Po = 50mW
Po = 1 W
Gv
Rf
358
B
= 10 kHz
18A641A
Fig. 1 - Typical output power vs
supply voltage
Fig. 2 - Typical distortion vs output
power
('1082
G-l081
d
Po
(W)
-
d =10"/0
2A
9
/
f-- f =lkHz
/t--
Rf=O
I
/
/
II
('10)
-.
Vs =9V
Rl =4U
f----
f= 1kHz
---
R, =0
I
I
RL=~
1.6
:/
1.2
0.8
0.4
/
V
./
I'
./'
V
RL~ey
,/
V
./
,/
/
I
'"
Fig. 3 - Typical voltage gain vs
feedback resistance (R,)
10- 1
2
1
, ,,
Po (W)
Fig. 4 - Typical value of C b vs Rf for
various values of B
-
G 1060
1000
G 1059
LL~
(G v )
-I
400
Vs
=9V
~=l'=k~~
200
A"'"
""
,./
~
VII"
60
l-
40
-I""'
B=10kHz
;
1',
100
80
,
, 6'
10- 2
I
V
I-
v ...
I
-~
B=20kHz
,..1---
-
20
I
10
50
100
150 R, (ll)
200
359
20
40
60
80
100
120 R, (ll)
160
TBA641A
Fig. 5 - Typical output power vs
input voltage
Fig. 6 - Typical power dissipation
and efficiency vs output
power
G
G 1083
Pto t·
(W)
Po
(W)
2A
- r- RL=4Q
-
r- r-
/
--
0.8
1.6
V
1.2
0.8
I
--
",
V
V
0.6
/
60
-
Ptot
=1kHz
_.
-j"
, ,.
1.2
Rf =0
7
,/
Vs =9V
f
0.4
(oJ
/
1.4
2.8
1084
.... ...... 1-0..
/
50
,
"I
I
-l-- - - -
40
30
.Vs =9V
f--+-
'R L =4Q
0.4
10
0.2
i-""
o
12
10
0.4
14 Vj(mV)
os
1.2
2.4
1.6
2.8 Po (W)
Fig. 8 - Maximum power dissipation'
Fig. 7 - Typical drain current vs
output power
G 1015
G 10B5
Id
Pto t
(mA)
(W)
RL
=4Jl
400
/"
I
....".
320
1.6
.... 1-'
./
160
",
//
,
RL=4Jl
I-- -
0.8
V
....".
j
0"
II
o ..
V
Vs =9V
/
80
V
1.2
V
",,'
,,"
",.
240
OJ.
os
20
1.2
lS
10
11
v. (v)
• The dotted I ine refers to TBA 641 A72
with additional heat-sink
360
TBA641A
Fig. 9 - Power rating chart
Fig. 10 - Typical quiescent drain
current vs supply voltage
-
G_l076
G 1680
Ptot
V
(W)
V
11
WITH INFINITE
4
HEATSINK
V
/v
Id(tot)
/
;I'
FREE AIR
V
l./
V
V
/'"
!/
K
V
/
V
/
1/
,
(out put
transi~tors)
..... 1:.7
11
o
o
-50
50
100 Tamb I'C)
Fig. 11 - Typical quiescent drain
current vs ambient
temperature
10
Fig. 12 - Typical quiescent output
voltage vs ambient
temperature
G-1087
G
toes
Va
ld
(mA) ~-+
__~-+__~~__~__~-+__+-~
(V)
Id (totail
Vs
=9V
4.8
4.6
r--.. r- i--
Id (output transistors)
4.4
4.2
-10
10
30
-10
50
361
10
30
50
70
Tamb ('1:)
I
TBA641A
-
G 1074
Fig. 13 - Typical quiescent output
'voltage vs supply voltage
Vo
(V)
5.5
/
/
45
4
3.5
3
V
lL
/
V
/
B
TYPICAL APPLICATION
Fig. 14 - Portable record-player amplifier
INPUT
362
V
V
V
/
/
9
10
11
VsM
TBA641A
MOUNTING INSTRUCTIONS
Fig. 15 shows a method of mounting the TBA 641 A with the spacer, satisfactory both
mechanically and from the point of view of heat dissipation. Better thermal contact
between package and heat-sink can be obtained by using a small quantity of silicon
grease. For heat dissipation the desired thermal resistance is obtained by fixing the
elements shown to a heat-sink of suitable dimensions.
Fig. 15
~-I----
hlN.l Sink
-----Contact
(Silicon g ...... )
~.:>.,-
_ _ P. C. board
Ij
I
Ij
363
LINEAR INTEGRATED CIRCUIT
18A6418
AUDIO AMPLIFIER
• OUTPUT POWER 4.5 W (14 V - 40)
• LOW DISTORTION
• LOW QUIESCENT CURRENT
• HIGH INPUT IMPEDANCE
The TBA 641 B is a monolithic integrated circuit in a 14-lead quad in-line power plastic
package. It is particularly designed for use as audio power amplifier in radio and
television receivers, and in industrial applications which require high output power,
low distortion and high reliability performance. Special features of the circuit include
a low quiescent current, self centering bias for operation at supply voltage ranging
from 6 V to 16 V, direct coupling of the input. The circuit requires a minimum of
external components.
ABSOLUTE MAXIMUM RATINGS
~
V,
V,
Vi
10
Supply voltage (no signal)
Operating supply voltage
Input voltage
Ptot
Power dissipation at Tamb £c. 25°C *
Tamb £c. 25°C **
Peak output current
Tease
T,tg, Ti
18
16
£c. 70°C
Storage and junction temperature
-0.5 to +V,
2.5
1.5
V
V
V
A
W
2.3
W
6
-40 to 150
W
°C
i
* For TBA 641 B72
** For TBA 641 BX1 and TBA 641 B11
ORDERING NUMBERS:
TBA 641 B72 for quad in-line plastic package with spacer
TBA 641 BX1 for quad in-line plastic package with external bar
TBA 641 B11 for quad ifl-line plastic package with inverted external bar
Supersedes issue dated 6/73
I
365
6/75
MECHANICAL DATA (Dimensions in mm)
Quad in-line plastic package
with spacer for TBA 641 B72
(see also "MOUNTING
INSTRUCTIONS")
~
C-0058
Quad in-line plastic package
with external bar
for TBA 641 BX1
8
.~
.
, '"'
Quad in-line plastic package
with inverted external bar
for TBA 641 B11
366
18A6418
CONNECTION
DIA~RAM
OUTPUT
14
SUPPLY VOLTAGE
NC
13
NC
GROUND
12
BOOTSTRAP
NC
11
NC
GROUND
10
RIPPLE BY-PASS
COMPENSA TION
NC
INPUT
FEED·BACK
55 0086
SCHEMATIC DIAGRAM
r-~----------------------~------~-o14
r---~----~~~----+--o12
10o---------~~
R'f
I
II(
Ii
I:'
h
I:
367
I
T8A.6418
TEST AND APPLICATION CIRCUIT
r---------~>---.......-O+Vs
Vi
100,uF
25 V
5-0395
TBA641 B72
TBA641 BX1
TBA641 B11
THERMAL DATA
~ Rth i-ca.e
-+ Rth J-omb
Thermal resistance junction-case
Thermal resistance junction-ambient
max
13 °C/W
13 oC , W
max
83°C/W
55°CjW
ELECTRICAL CHARACTERISTICS
(See test circuit; T 8mb
= 25 0C, V. = 14 V and RL = 4 n unless ot!'lerwise specified)
Test conditions
P.rameter
Vo
Id
Id
Quiescenfoutput
voltage (pin 1)
~.
Po
Quiescent drain current
of output transistors
Po
Id
Drain current
Ib
Bias current (pin 7)
6.5
...•. ,
Total quiescent
drain current
Min. Typ. Max. Unit
=0
=0
Po = 4.5W
368
7
8
V
16
32 mA
13
mA
485
mA
250
nA
TBA641B
ELECTRICAL CHARACTERISTICS
Parameter
Test conditions
Output power
Po
(continued)
d
Gy
= 10%
= 46 dB
f
Min. Typ. Max. Unit
= 1 kHz
4
4.5
W
Internal feedback
resistance
See schematic diagram
7
kil
Internal feedback
resistance
See schematic diagram
35
il
Zj
Input impedance (pin 7)
f
3
Mil
d
Distortion
R'f
R'.I
Gy
Voltage gain
eN
Input noise voltage
= 1 kHz
f = 1 kHz
Po = 50mW
Po = 2W
Rf = 0
Rs = 22 kil
Gy
Gy
B
= 46 dB
= 46 dB
= 10 kHz
0.3
0.8
%
%
46
dB
3.4
p.V
Fig. 2 - Typical distortion vs output
power
Fig. 1 - Typical output power vs
supply voltage
G 1090
I-- -
I-- -
I
d=10O/a
Rl=4n
Rf"O
f=lkHz
V
V
/
V
V
G-\091
d
J
("!o)
V
12
1---+-++++t-ttt----'-+++f++H-+-++-H+I-H
Vs=14V
1---+-++++tft1 RL =" n t-+-t-ttttt--+++++ttH
I---+-++++++H, ~;:~z t-+-t-ttttt--+++++ttH
10
./
1/
, 'B
10
12
'"
16
10-2
Vs (v)
369
to-I
, ,,
1
-
, '8
Po(W)
Fig. 3 - Typical voltage gain vs
feedback resistance (R I )
Fig. 4 - Typical value of Cb VS RI for
various values of B
G-1119
1000
2
Cb
(G y
)
~~-
-11 T
(pF )
G 1059
I
v. ='4V
RL= 40
t"lkHz
200
~
B=~
-l-
i--
V
"
V
V
40
V-
1--'-
V
..... 1-1"
B=20kH
60
'"
~
i I
--
I i
I
I
I
20
i
10
150 R, (Jl)
100
50
200
II
I
20
Fig. 5 - Typical output power vs
input voltage
40
60
80
100
120 R, <.n)
G 1693
'1l
Ptot
( 'I,)
(W)
Vs =14V
~ ~ RL=4fl
Vs=14V
R, =0
1---1-
160
Fig. 6 - Typical power dissipation and
efficiency vs output power
G 1092
I--- I--
f=lkHz
Rl= 4(1
80
II
I
I
r7
I
V
1..1
1./
1/
Ptot
V
...V V
JV
IV
V
J...,...oj....-'
a
I
-1-- - t -
;,.-
[\1'-.
80
I
I
400
100
I :
I I
I
Cc=5 Cj
12
16
20 Vi (mV)
370
V
j7
V
~
~V
-
60
t-40
20
18A6418
Fig. 8 - Maximum power dissipation
vs supply voltage
Fig.7 - Typical drain current vs
output p')wer
c-
./
400
Y
300
/'
V'
Ptot
V
(W)
.. f-----
-- _.
RL=411
I
--f-----t
----L_-:
I
I
I!
/"
i
/V
200
100
Vi
.
I
I
Vs= 14
-/iIIII
I
I
l -f---
RL=4U
......V
I
."
.",
V
./'
-. ._.
!
.-~
VI
I
i
I
I
12
10
Fig. 9 - Power rating chart
(TBA 641 BX1 and
TBA 641 B11)
Fig. 10 - Power rating chart
(TBA 641 B72)
-
-
G 1679
G l6U
Ptot
(W)
Ptot
(W)
WITH INFINITE
WITH
I
HEATSINK
INFINITE HEATSINK
\
4
FREE AIR
FREE AIR
f....
o
-50
o
50
100
\
~
f..J
o.
Tamb ('C)
-50
371
o
50
--tSI8418
,
'
j""
'.
,"
' . .'"'
.
"
Fig. 12 - Typical quiescent drain
current vs ambient
temperature
Fig. 11 - Typical quiescent drain
current vs supply \ioltage
I.
ImA)
!l.L
-t~
f-- - -
r
16
__ .L__ ,
Id(tota~
12
I--
./
V
17
-JL
V ___ f--
~
I
Id (total)
16
'5
14
ILLi
Id (outPL!t transistors)
I
13
'/(coutput transistors
7/
12
'"
"
./
0-1.098
I
ImA)
Vs
=l'V
10
10
12
14
10
-10
Fig. 13 - Typical quiescent output
voltage vs ambient
temperature
20
30
40
50
Tamb (·C)
Fig.14 - Typical quiescent output
voltage vs supply voltage
6-1100
Vo
IV)
Vs=14,v
!
-- r--
7.2
,
i'-- t-- I--.
/
6.6
-10
30
50
V
V
V
/
'0
70 rambl'C)
372
/
V
12
V
7
k:
TBA641B
TYPICAL APPLICATION
Vs
,------,-----,-------------t~---OI4V
I)JF IZ5V
0.1
100),lF
5-0408
MOUNTING INSTRUCTIONS
-1----
hut sink
_ _ _ _ _ Contad
(Silicon 9 ..... )
Rth
Fig. 15-Shows a method of mounting
the TBA 641 B with the spacer,
satisfactory both mechanically and
from the point of view of heat dissipation. Better thermal contact between package and heat-sink can
be obtained by using a small quantity of silicon grease. For heat dissipation the desired thermal resistance is obtained by fixing the elements shown to a heat-sink of suitable dimensions.
~--"r--p.
373
."cjw
c. board
I
18A6418
MOUNTING INSTRUCTIONS (continued)
Power dissipation can be achieved by means of an additional external heat-sink fixed
with two screws (both packages) or by soldering the pins of the external bar to
suitable copper areas on the p.c. board (TBA 641 B11)
A.
In the former case, the thermal resistance case-ambient of the added heat-sink
can be calculated as follows:
where:
B.
T jmax
Max junction temperature
Tomb
Ambient temperature
P,o,
Power dissipation
R'h
Thermal resistance junction-case
j.case
If copper areas on the p.c. board are used (TBA 641 B11) the diagrams enclosed
give the maximum power dissipation as a function of copper area, with copper
thickness 35 J.t and ambient temperature 55
ae.
/
l
l
GS0144
4
7
r--'~
,r
PC BOARD
p,.
I
r~J...'-r:1L.I...ro......J.r"'-~
:
1
h1<>-=--
\
r
I
q :
I ,LrrL!:rr;t..:rIl="'TrJ
i
TJA aJ, B'~
(W)
3
I
I
l - t- l -
!l
V I.---
2
,,-
/
V
-I- I--
I
T
0
10
COPPER AREA. 35 IJ- THICKNESS
374
20
30
40 Jl ' v,
r - - - - - - i = } - - - - -......
THERMAL DATA
~
Rth j·amb
Thermal resistance junction-ambient
max
280 cG/W
ELECTRICAL CHARACTERISTICS
(T amb = 25 cG, Vs = 12 V unless otherwise specified)
Parameter
Id
Quiescent drain current
Vi
Input voltage at pin 1
Vo
Recovered audio output
voltage
Test conditions
signal to noise
ratio = 26 dB
d
fm
= 50/0
f
m
Vi
V;
= 1.6 MHz
=
1 kHz
= 0.3
= 100 ~V
= 1.5 ~V
377
f
m
= 1.6 MHz
= 0.8
Min. Typ. Max. Unit
11.5
mA
10
IJ-V
100
mV
0.5
180
V
mV
fm = 1 kHz
TBA 651
ELECTRICAL CHARACTERISTICS
Parameter
Vi
Ri
Ri
Test conditions
Min. Typ. Max. Unit
Signal handling
capability at pin 1
AGe range
Ri
(continued)
for 10 dB expansion of
output voltage
1
V
80
dB
rf amplifier input
resistance at pin 1
f
= 1.6 MHz
1.4
kn
Mixer input
resistance at pin 4
f
= 1.6 MHz
2.5
IF amplifier input
resistance at pin 13
kn
I---
f
= 455 kHz
4
kn
Fig. 1 - Typical output voltage
vs input voltage
1000 1-++H---+-1-+I~.e-,\.lLATING SIGNAL 1m =1KHz
. U.~U..
. .
..-
y\ WI'OO
't\\~
100
'" ..
. -.
11'~\)."3.
""
-ttt-t-H+I-+-t+tt-i
-
~~~~rf~fj~~~~2~6~dB!t~fm~~~~~
10
- ~/I-H++-I-++++-+-+-+++-+--+++H
t-lft'OUT M.0DULATING SIGNAL
-HtH-+ttt
1-
O~~~~-LLil~~~-LW-~~~~~
0.1
378
10
100
1K
10K
LINEAR INTEGRATED CIRCUIT
TBA 780
WIDE-BAND AMPLIFIER, FM DETECTOR, AUDIO
PREAMPLIFIER/DRIVER
The TBA 780 provides, in a single monolithic silicon chip, a major subsystem for the
sound section of TV receivers in a 14-lead quad in-line or dual in-line plastic package.
As shown in the schematic diagram the TBA 780 contains a multistage wide-band IF
amplifier/limiter section, active filter, an FM-detector stage, electronic attenuator,
a Zener diode regulated power supply section and AF amplifier section specifically
designed to directly drive an NPN power transistor or high-transconductance tube.
In the TBA 780, the demodulation can be effected by a single tuned discriminator coil
(differential peak detector).
Because of the circuit beeing so inclusive, a minimum number of external components
is required. A particular feature of the TBA 780 is the electronic attenuator, which
performs the conventional volume control function.
ABSOLUTE MAXIMUM RATINGS
Supply current (pin 5)
Output current (pin 12)
Input-signal voltage (between pins 1 and 2)
Total power dissipation: at Tomb
Storage temperature
Operating temperature
ORDERING NUMBERS:
~
50 mA
6 mA
±3
V
850 mW
-25 to 150°C
Ot085°C
25°C
TBA 780 X2 for quad in-line plastic package
TBA 780 X7 for dual· in-line plastic package
MECHANICAL DATA
Di,nensions in mm
i
~
I,
I:
"".,
TBA
TBA 780X2
Supersedes issue dated 4/72
379
78~X7
5/73
TBA 780
ELECTRICAL CHARACTERISTICS (T amb = 25°C, DC volume control P2 = 0 and
Vs = +30 V applied to terminal 5 through a 620 n resistor, unless otherwise specified)
Parameter
Is
Supply current
Vi(thre,hold) Input limiting
voltage (pin 2)
Vo
Recovered audio
voltage (pin 8)
d
Distortion (pin 8)
Vo
Audio output
voltage (pin 12)
Vo
Test conditions
Vs = 9 V (applied
direct. to pin 5)
Vj = 100 mV
f
= 5.5 MHz
fm = 1 kHz
Af = ±50 kHz
d
f
=5%
= 1 kHz
Ro
mA
-
200
400
/tV
-
f
Vrrn ,
3
0.9
2
2
Vrrn ,
2.5
11.75
80
Ufo
V
-
3
0.075
1 . mV
17
kQ
3.25
kQ
= 5.5 MHz
380
4
dB
00
Input resistance
(pin 2)
Output resistance
(pin 9)
24
0.5 0.75
60
P2 =
Fig.
16
8.5
DCvolume
control range
Rj
10
f
= 5.5 MHz
fm = 1 kHz
Af = ±50kHz
DC output
voltage (pin 12)
Max. play-through
voltage
Min. Typ. Max. Unit
-
TBA 780
ELECTRICAL CHARACTERISTICS
Test conditions
Parameter
Ro
Ro
Ro
Cj
G.
Output resistance
(pin 7)
f
AMR
270
Cl
7.5
kCl
300
Cl
4
pF
7.5
pF
17.5
20
dB
343
370
40
50
= 1 kHz
Output resistance
(pin 8)
Input capacitance
(pin 2)
Output capacitance
(pin 9)
Audio voltage
gain
f
Vj
Ptot
Min. Typ. Max. Unit
Output resistance
(pin 12)
f
Co
(continued)
= 5.5 MHz
= 1 kHz
= 0.1 V
Total power
dissipation
Amplitude
modulation
rejection
t
= 5.5 MHz
381
400
mW
dB
Fig.
-
-
4
3
TBA 780
SCHEMATIC DIAGRAM
Fig. 1
13
Fig. 2 - Typical application using TBA 780 and class A output transistor
1) T, = 5.5 MHz transformer
L p = 5.5 J1H; Qo=80; 19 'turns
o 0.15 mm silk-covered
copper wi re with powdered-iron core
Ls = 9 turns 0 0.15 mm
Audio ouiput transfor·
mer:
The dimensions of the
transformer and of the
circuit parameters are
to be evaluated on the
basis of the output
power desired and of
the load to be used
Single tuned discriminator coil: 12 J1H; Q o =
50 (58 turns (21 0.08 mm
with powdered-iron core)
382
TBA 780
Fig. 3 - Input limiting voltage, AM rejection, recovered audio, total
harmonic distortion, maximum
attenuation, maximum "playthrough" test circuit
Fig. 4 - Audio voltage gain (undistorted output) test ci rcuit
6200.
1W
B
S1
Vi
r--i-
~
:---
FM
O.01jJF
~I--;on
-
Gl:'nerator
O.47~F
I
Fig. 5 - IF amplifier voltage gain test
circuit
To diode
detector and
oscilloscope
383
TBA 780
Fig. 6 - Typical IF amplifier voltage
gain
Fig. 7 - Typical AF amplifier voltage
gain
G-OS80
G,
Gv
(dB )
.-~~~r-~~~-~~~-~~~
(dB) 1-+-+++i+H+--+-+f+H+lI Ta =25·C
V, =100mVI-H+--+-+H+-fHI
Ta =25·C
V; =l00IJVrms
70
......
60
50
40
30
20
\.
10
o
6
•
4
10-1
6
o
•
f (MHz) 10
Fig. 8 - Typical FM detector output
voltage versus input voltage
250
i
I:
V
II
(mV)C
1-200 1----
I'~
rT
n
._--- l -
i-r
10'
f=5.5 MHz ,
""=15 kHz
fm=lkHz
•
(dB)
6
4 68
1
2
10
II
,
!
1
4
f (MHz) 10'
f=5.5MHz
Af·~15kHz
150 1-[
I---J
II
4 6 8
4
-LI-W---I--c-l-m./-lj
~. ~-
2
10-1
G-058311
AMR
IT
t·
4 6 B
Fig. 9 - Typical amplitude-modulation
rejection versus input voltage
~~~~~~~~~~~_~~,",G-;.<;'OS'i\':82/1
VO 1----
2
1()'
--
10
t"
~
m=30·/.
m=lkHz
,
6
I
4
100
I
50
2
4
10-1
111111
6.
4
·1
6 8
2
10
4
Vi (mV)
6 8
2
102
10-1
384
4 68
I
11111
2
4 68
10
2
4
68
2
111I
4 6 8
102 Vi (mV) 10'
TBA 780
Fig. 10 - Typical gain reduction
versus resistance (P2)
(tErminal 6 to gnd)
-_.
40~1-++tTrHr71~--~~+H~-~-++THffi
l
OL-~~4~6~6L-~~4~6~6L-~'~~4~6~6
10
10'
P, (kO) 10'
Fig. 11 - P.C. board layout. 1:1 scale (fig. 2 circuit)
·~8
'-~
C7
385
LINEAR INTEGRATED CIRCUIT
TBA 800
AUDIO POWER AMPLIFIER
The TBA 800 is an monolithic integrated power amplifier in a 12-lead quad in-line
plastic package. The external cooling tabs enable 2.5 W output power to be achieved
without external heat-sink and 5 W output power using a small area of the P.C.
board Copper as a heat sink.
It is intended for use as a low frequency Class B amplifier.
The TBA 800 provides 5 W output power at 24 V/16 n and works with a wide range
of supply voltage (5 to 30 V); it gives high output current (up to 1.5 A), high efficiency
(75% at 5 W output), very low harmonic distortion and no cross-over distortion.
ABSOLUTE MAXIMUM RATINGS
Vs
io
10
Ptot
T stg , T j
Supply voltage
Peak output current (non repetitive)
Peak output current (repetitive)
Power dissipation at Tamb = 80°C
at T tab = 90°C
Storage and junction temperature
30
2
1.5
V
A
A
W
5
-40 to 150
W
°C
ORDERING NUMBER: TBA 800
MECHANICAL DATA
Supersedes issue dated 5/74
Dimensions in mm
387
6/75
TBA 800
CONNECTION AND SCHEMATIC DIAGRAMS
5-0329
TEST CIRCUIT
+Vs=24V
Vi
R2
l00kQ
C2
500)JF
15 V
• C3, C7 see fig_ 5
388
TBA 800
THERMAL DATA
Rth j-tab
Rth j-amb
Thermal resistance junction-tab
Thermal resistance junction-ambient
max
max
12 °C/W
70' °C/W
• Obtained with tabs soldered to printed circuit with minimized copper area.
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, Tamb
Vs
= 24 V,
RL
= 16 n,
Parameter
Vo
Id
Test conditions
Quiescent output
voltage (pin 12)
Bias current (pin 8)
Po
Output power
11
d
= 100/0
f
= 1 kHz
Vi (rms) Input saturation voltage
V,*
,
Input sensitivity
Ri
Input resistance (pin 8)
B
Frequency response
(-3 dB)
Gy
Gy
Min. Typ. Max. Unit
12
Quiescent drain
current (pin 1 )
Ib
d
4.4
Po
= 5W
f
= 1 kHz
Po
f
Voltage gain
(open loop)
f
= 1 kHz
Voltage gain
(closed loop)
f
= 1 kHz
C3
* See fig. 6
389
13
V
9
20 mA
1
5 J.tA
5
W
mV
220
= 330 pF
= 50 mW to 2.5 W
= 1 kHz
Distortion
= 25°C,
unless otherwise specified)
80
mV
5
Mel
40 to 20,000
Hz
0.5
%
80
dB
42
45 dB
39
I
,
TBA-800
ELECTRICAL CHARACTERISTICS (continued)
Parameter
eN
Input noise voltage
Rg =0
B(-3 dB)=40to 20,000 Hz
5
JJ.V
B(-3 dB)=40 to 20,000 Hz
0.2
nA'
75
%
35
38
dB
dB
280
rnA
iN
Input noise current
11
Efficiency
Po = 5W
SVR
Supply voltage
rejection ratio
frippl.
Drain current
Id
f
= 100 Hz
C5 =
C5 =
25~F
1oo~F
Fig.2 - Maximum power dissipation
versus supply voltage G-0805~
(j
6
= 1 kHz
Po =5W
Fig. 1 - Typical output power versus
supply voltage
08 11/1
Po
(w) I-I--
Min. Typ. Max. Unit
Test conditions
Ptot
b!,OOfo
(W)
f=lkHz
I-- Rf = 560
4
1/
RL=BO
----
4
L
I
'I RL=160
/-- tt r--- ,--- - ,---
RL=SO
)
V
/
2
/
V
V ./
V 1/
-:;
o
.....
10
~
o
20
V
/
./
~
~
V
390
V
""
10
Vs (V)
,./ i-"
./ "'RL=16D.
15
20
25 Vs (V)
I
II¥
TBA 800
Fig. 3 - Typical distortion versus
output power
Fig. 4 - Typical distortion versus
frequency
G 080611
d
('Io)
d
('Io)
"1
8
Vs=24V
RL =160
j=lkHz
Rj =560
ffff-
G
-ossm
j
(Hz)
I IIIII
s= 24V
RL= 160 _
Rj= 56Q
4
II
Po =50mW
3
6
4
o=2.5W
I
1\
IT
2
1\
./
o
o
4
10
Po{W)
Fig. 5 - Value of C3 versus Rf for
various values of B
C3
5-0692/3
,
Vj
(mV)
(pF),
C7~5XP
_
..
j...
,
,
,
20kHz
,
f.--
I---
10
~ I'-
.........1....... I..--
F'
I=' 1=1='
l - I- f- ,
f= f=
,
,
,
,
l- I- IVj(Po =0.05W)
~
.,
10
,
1/
,
,
, ,
Rj{O)
50
391
Gv
-I-,
~
Vj(Po =5W)
•,
,
l/
17
10
RL= ISO
f = 1kHz
~
/
10'
Vs=24V
,
,
...----15kHz
10'
Fig. 6 - Typical voltage gain (closed
loop) and typical input
voltage versus R,
G 125711
,
/,lO;kHZ
'7
10',
,
10'
10'
100
Rf (0)
i'
TBABOO
Fig. 7 - Typical power dissipation
and efficiency versus
output power
Fig. 8 - Typical quiescent output
voltage (pin 12) versus
supply voltage
6-083311
Ptot
(W)
15
'1
u
Ptot
( ",)
Vo
70
(V)
V
so
10
1.5
50
t-
~
+.
V
40
Vs=24V
RL=IS!l
f =lkH
30
5
20
,/
0.5
1/
1/
/
L
G- 059011
1/
V
V
/
V
10
a
a
a
4 po(W)
2
Fig.9 - Typical quiescent current
versus supply voltage
10
20
Vs(V)
30
Fig. 10 -' Typical supply voltage
rejection ratio
G1258/1
SVR
~
(dB)
L
)
Vs = 24V
RL =lSLl
'ripplo=100Hz
Id (tot)
o
6
-10
4
Id (output transistors)
2
I'
-20
-.
-30
--i- t-....
c-- -
'" ='i'--1'"'....... r-
-40
-
~=25p
C5=100)JF-50
o
10
20
30
o
Vs(V)
392
50
100
TBA 800
APPLICATION INFORMATION
Fig. 11 - Circuit with the load connected to the supply voltage
R2
100 k £l
Compared with the other
circuits, this configuration
entails a smaller number
of external components
and can be used at low
supply voltages.
C4
O.1~F
R1
10
• C3, C7 see fig. 5
Fig. 12 - Circuit with load connected to ground without bootstrap
+Vs=24V
This circuit is only
for use at high voltages.
The pin 3
is left open circuit,
this automatically inserts diodes D2 - D3
(see schematic diagram) and this enables a symmetrical
wave to be obtained
at the output. Refer
to figs. 13 and 14 for
distortion and output
power.
• C3, C7 see fig. 5
393
I
I
Fig.14 - Typical output power versus
supply voltage (fig. 12circuit)
Fig. 13 - Typical distortion versus
output power (fig. 12 circuit)
G.OSIO
G 0806
d
('10)
8
r-- r-- -
Vs=24 V
R,=16.Q
f=lkHz
Rf =560
I
6
I
/
I
6
d =10"10
f=lkHz
Rf = 56
I
/
4
1/
4
R,=SQ
/
2
/
2
J
2
o
3
/R, =160
V
1/
/
V
~ r.,...-
o
IV
10
/
20
Fig. 15 - Circuit with load connected to ground with bootstrap
+ Vs=24V
RX
o---~--'-----~-+-~-l
150.0
I
I
I
I
Vi
100kO
500}'F
15V
The bootstrap capacitor
C8 enables the same
electrical characteristics
as those of the tesl
circuit to be achieved ...
For low supply vGltage
operation (e.g. 9 to 14 V),
RX (150,0) is connected
between pin 1 and pin 4.
--+---.....---J
• C3, C7 see fig. 51..-............
N.B. - For the circuits of figures 12 and 15 an excellent supply voltage ripple rejection
is obtained by connecting the capacitor C5 (10 to 100 IJ.F • 15 V) between
pin 7 and ground.
394
TBA 800
MOUNTING INSTRUCTIONS
The tabs on the TBA 800 can be used to conduct away the heat generated in the
integrated circuit so that the junction temperature does not exceed the permissible
maximum (150°C).
This may be done by connecting tabs to an external heat sink, or by soldering them to
a suitable Copper area of the printed circuit board (fig. 16 a).
Fig. 16 b shows a simple type of heat sink. Assuming an area of copper on the printed
circuit board of only 2 cm 2, the total Rth between junction to ambient is approximately
28°C/W.
External heat sink or printed circuit copper area must be connected to electrical
ground.
In the latter case, fig. 17 shows the maximum disSipated power (for Tomb = 55"C and
Tomb = 70 ~C) as a function of the side of two equal square Copper areas having a
thickness of 35 ~ (1.4 mils).
During soldering the tabs temperature must not exceed 260 0 C and the soldering time
must not be longer than 12 seconds.
Fig. 16 a - Example of an area of P.C.
board copper soldered to
the tabs of the TBA 800,
wich is used as a heat
sink
Fig. 16 b - Example of TBA 800 with
external heatsink
BOARD
395
TBA 800
Fig. 17 - Power that can be
dissipated versus "I"
Fig. 18 - Power rating characteristics
G- 0952
Ptot
(w)
Rth
CIW)
80
B
G-09
5
1.
60
6
t-.
3
Rth '-amb
N-.J:
4
2
Ptot
(W)
,
~~
£
""-:s:
,y~
~-'--.J "\~§1-1'-~
~
"i-
""'"fn
-s.;,,,
~G'
~
1\.'%,
40
\&
If
"'W~
'?-
3
Ptot
1/
2
o
Rttn)
Fig. 8 - Typical quiescent output voltage (pin 12) versus supply
voltage
Plot
Ys =14.4Y
RL=4fl
8
10 2
10
Fig. 7 - Typical power dissipation
and efficiency versus output
power
(W)
III••
10 2
40
4
6
8
Po (IN)
40
4
20
2
o
o
404
4
8
12
16 Vs(V) 20
TBA 810S
TBA810AS
Fig. 9 - Typical quiescent current
versus supply voltage
Fig. 10 - Typical supply voltage
rejection
G 0950
SVR
I
(dB)
Vs =14·4 V
R,=4Q
C5 =100)JF
=100Hz
o
f",.,.
15
-10
I (total)
-20
10
-30
'" .........
-40
5
I
ut ut transistors
-50
I
o
5
10
r--.
-60
15
o
Vs(V)
50
I"""
100
Rf (0)
For portable equipment the cirouit in Fig. 11 has the advantages of fewer external
oomponents and a better behaviour at low supply voltages (down to 4 V).
Fig. 11 - Typical oircuit
with load
oonnected to the
supply voltage
R2
IOOka
* C3, C7 see fig. 6
405
TBA810S
TBA810AS
SVR
(dB)
Fig. 12 - Typical supply voltage rejection
versus RI (fig. 11 circuit)
Vs = 14·4
RL=4Q
f,;ool. =100Hz
o
-10
-20
-30
-40
o
50
150
100
Rf (0)
MOUNTING INSTRUCTIONS
The thermal power dissipated in the circuit may be removed by connecting the tabs
to an ~xternal heat sink (TBA 810 AS - fig, 13) or by soldering them to an area of
copper on the printed circuit board (TBA 810 S - fig. 14),
During soldering the tabs temperature must not exceed 260°C and the soldering time
must not be longer than 12 seconds.
Fig. 15a and 15b show two ways that can be used for mounting the device.
G-Q951
Fig. 13 - Maximum power dissipation
versus ambient temperature
(for TBA 810 AS only)
Ptot
(w)
"-
'"'"
~
'5-:\
';
~
4
~~
.,,~
"
3
~
%
'%
"';3>t,
~~~
-.;
......'*'
o
-50
o
50
100
150Tamb{'t)
406
TBA 8108
TBA810A8
Fig. 14 - Maximum power dissipation
(for TBA 810 S only)
COPPER
versus
copper
area
AREA 35}-' THICKNESS
P. C. BOARD
G-0952
Ptot
(W)
Rth
CNI)
80
6
60
~h I-amb
4
40
~
t1-
j::
PJit (Ta m b-55'C)
T~
20
Ptot (Ta,m?= iO~C
o
o
10
20
30
407
40
I (mm)
of
the
P.C.
board
la"·.··.·8J08.
TBA.·.···8JQAS··
Fig. 15a shows a method, of mounting the TBA 810 S, that is satisfactory both from
the point of view of heat dissipation and from mechanical considerations. For
TBA 810 AS the desired thermal resistance is obtained by fixing the elements shown in
fig. 15b, to a suitably dimensioned plate. This plate can also act as a support for
the whole printed circuit board; the mechanical stresses do not damage the integrated
circuit. This is firmly fixed to the element, in fig. 15b.
Fig.15a
HEAT SINK
R'h
Fig. 15b
408
=30°C/W
TBA 810S
TBA810AS
THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent), or an above-limit ambient
temperature can be easily supported
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction
temperature: all that happens is that Po (and therefore Ptot) and Id are reduced
(fig. 16).
Fig. 16 - Output power and drain current
versus package temperature
G-0953!1
Po
(W)
Vs=l4.4 Ii
RL=40
8
Po (d=lO"/,)
6
I
4
lcI(d=10%)
j
--
0.8
0.6
2
0.4
0.2
o
409
o
50
100
150 Tcase("C)
18A810S
18A810AS
Fig. 17 - P.C. board and component layout for the test and application circuit
Fig. 18 - P.C. board and component layout for the fig. 11 circuit
410
TBA 820
LINEAR INTEGRATED CIRCUIT
AUDIO AMPLIFIER
The TBA 820 is an integrated monolithic audio amplifier in a 14:-lead quad in-line
plastic package.
It is intended for use as low frequency class B amplifier with wide range of supply
voltage: 3 to 16 V.
Main features are: minimum working voltage of 3 V, low quiescent current, low number
of external components, good ripple rejection, no cross-over distortion, mounting
compatibility with TAA 611 (see note on last page).
Output power:
p.
:=:
2 W at 12 V - 8Q • Po
1.6 W at 9 V - 4Q •
p.
1.2 W at 9 V - aQ
ABSOLUTE MAXIMUM RATINGS
V,
Supply voltage
10
Output peak current
Power dissipation at Tamb :=: 50 °C
Storage and junction temperature
P tot
T stg ; T j
16
1.5
1.25
V
A
W
-40 to 150°C
MECHANICAL DATA
Dimensions in mm
pE~l
~
2.54
~
I~.I
POOt-G
Supersedes issue dated 5/73
411
6/75
18A820
CONNECTION DIAGRAM
14
~rT~E
RIPPLE
REJECTION
13
COMPENSATION
N. C.
12
OUTPUT
BOOTSTRAP
COMPENSATION
N.C.
4
FEEDBACK
10
GROUND
N.C.
9
N.C.
GROUND
(SUBSTRATE)
INPUT
SCHEMATIC DIAGRAM
14
Rl
:J--I--+--~--+--C:J-I--+-'-"""'-+--012
2K
5
412
"
10
13
TBA 820
TEST AND APPLICATION CIRCUITS
r--.--.------.------1~-O
c:l:. C6*
150)JF
+ Vs
1 10V
I
I
Fig. 1
Circuit diagram with
load connected to th~
supply voltage
I
In
R1
100Kll
C1
100)JF
6V
.----_-.--------1~--()
+ Vs
C2
100,uFI
15 V
-=-
Fig. 2
Circuit diagram
with load connected
to ground
C7
100~F
15V
cs
1000}JF
15V
R1
100KO
C1
100,uF
6V
5-0211/2
• Capacitor C6 must be used when high ripple rejection is requested
413
18A820
THERMAL DATA
Rth j •• mb
Thermal resistance junction-ambient (copper frame)
I
80
max
°C/W
ELECTRICAL CHARACTERISTICS
(T amb == 25°C unless otherwise specified)
Parameter
Test conditions
Min. Typ. Max. Unit
Fig.
16
V
-
5
V
-
V,
Supply voltage
Vo
Quiescent output
voltage (pin 12)
V, == 9V
Quiescent drain
current
V, == 9V
4
12 rnA
-
10
Bias current (pin 7)
V, = 9V
0.1
0.7 p.A
-
Po
Output power
d =
Af =
V, =
V, =
V, =
V, ==
V, =
Id
Vi
Vi
(rmsl
(rms)
Input sensitivity
Input sensitivity
Ri
Input resistance
B
Frequency response
(-3 dB)
3
4
10%
1200
12 V
9V
9V
6V
3.5 V
f
= 1 kHz
AL
AL
AL
AL
AL
==
4.5
2
1.6
1.2
0.75
0.22
W
W
W
W
W
== 1.2 W V, = 9V
f = 1 kHz
== 80
=330
== 1200
16
60
mV
mV
1
Po = 50 mW V, == 9 V
f == 1 kHz
AL == 80
Af ==330
Rf = 1200
3.5
12
mV
mV
1
5
MO
Po
AL
AI
Af
80
= 40
== 80
== 40
== 40
0.9
Cs == 680 pF
Cs == 220 pF
Distortion
-
AL == 80
V, == 9V
AI = 1200
d
1
Po == 500 mW V, == 9V
f = 1 kHz
RL == 80
Rf =33n
RI == 1200
414
1
25 to 7000
25 to 20000
Hz
Hz
0.8
0.4
%
%
1
TIA 820
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test conditions
Gv
Voltage gain
(open loop)
Vs = 9V
f = 1 kHz
RL = 80
Gv
Voltage gain
(closed loop)
Vs
f
RI
RI
RL = 80
=
=
=
=
9V
1 kHz
330
1200
Min. Typ. Max.
Unit
75
dB
45
34
dB
dB
Fig.
-
31
37
eN
Input noise voltage
Vs = 9V
B (-3dB) =
= 25 to 20000 Hz
3
IJ.V
-
iN
Input noise current
B (-3 dB) =
Vs = 9V
= 25 to 20000 Hz
0.4
nA
-
S+N
-N
Signal and noise
to noise ratio
RL = 80
Vs = 9V
Rf =1200 B (-3dB) =
= 25 to 20000 Hz
R1 = 100 kO Po = 1.2W
70
dB
-
RL = 80
Vs = 9V
f (ripple) = 100 Hz
C6= 50IJ.F
Rf = 1200
42
dB
2
SVR
Supply voltage
rejection
Fig. 3 - Typical power output
Fig. 4 - Typical distortion
G-0850
d
("I.)
Po
(W)
=.1.0'/,
=lkHz
=120 n
3
12
RL=8n- RL=16n-
2
-
G 0851
I
Vs=9V
1\=80
Rf=120
f=lkHz
8
L=411
4
J
II'
o
4
8
12
16
o
Vs(V)
415
OA
0.8
12 Po(W)
TBAB20
Fig.6 - Maximum power dissipation
(sine wave operation)
Fig. 5 - Typical power dissipation
and efficiency
G -0853
G-atS2
'l
('(,)
Plot
(W)
RL =80
V~=9V
HkHz
80
Ptotmax
(w)
Tamb =50 'C
1.6
'l
Q5
=41
60
Q4
R=8
1.2
D.3
40
0.8
1/
02
Ii
0.4
20
0.1
1..1
o
0.5
1.5
o
Po(W)
Fig. 7 - Typical value of C B versus Ri
f, =10kHz
10'
~
CB=220p
-1
l/~
CB :680pF
-2
8
\
\
\
I
-3
-4
./
6
10
Vs(V)
Rf =120 (11
t, :-
I\)
I\)
I
I
I
I
I
I
I
I
I
I
I
I
)j ;
r: f ~~~i18WALi
I
I
I
I
I
I
__________ --1
Oscillator
Oscillator
I
VERTICAL
SECTION
Vertical
amp'litude
control
5-0212
Horizontal
output
TeA 511
Fig. 2 - Test circuit
O.3ms.
ITHorizontal
section
1
100j.JF~
J:
C,
~onF
27kO
R4
~'
r Rl
l1.5kQ
sync
C10
,W
I
8
fp;-'
9
16
I
I
3000
Rs
:iii
r
'J
~~OnF 15n~;:
Cs Tcs
C9
PJ
220
fi8k n
Ru
...
5,0213/1
Tolerances :
(non electrolytic)
V ,4 and V
220ko
=~20nF
CB
output
V".
Vert; cal
freq uency
Vertical
output
b
Horizontal
Resistors
Capacitors
~
P,
~~~
TCA 511
2kO
150ko
( R9
1M
3.9kO
>---
68n~
=
C4
Fig. 3 -
J: [~~kO
ver\iCl~
size
~ ~~3nF
18kO
R3
·Vs
1OC\-
~
&ightness
oont~1
3.9
kQ
Horizontal
100"~freq.
~Anode
6V
16
kil
~_._
azon
OF"oc1.5
'--<'i~11
0.120V
S-0363
(*) The jungle circuit TBA 311 performs the following functions:
video preamplifier, IF AGe, PNP and NPN tuner AGe, sync. separator, noise gate.
It is particularly suitable for driving the TeA 511 sync. inputs.
TeA 511
APPLICATION INFORMATION
Power Supply
The circuit can work with stabilized supply voltage having a value from 9 to 15 V.
A dropping resistor and a filter capacitor may be used to obtain the supply from higher
voltages; however, the voltage on pins 3 and 4 must never exceed the maximum
permitted voltage.
Synchronization
Pins 2 and 6 can be DC driven if the reference level of the synchronization pulses is
less than 1 V. With reference levels greater than this value, a coupling capacitor must
be inserted in series with the input, and pins 2 and 6 must be connected to ground
via a resistor.
Vertical Oscillator
The capacitor connected to pin 1 must be selected with regard to the frequency
tolerance, to the thermal stability and to the capacitor's ageing.
The width of the output pulse, to be chosen according to the needs of the output
stages, is defined by the resistor connected between pin 1 and pin 16.
Vertical Output
The vertical output is taken from pin 14, which is a buffered output of the sawtooth
voltage generated at pin 15.
The output current from pin 14 is defined by an internal resistor in the integrated
circuit. If a greater current is needed, a resistor may be connected between pin 14
and pin 3.
The oscillator output pulse is available at pin 15 if the capacitor C9 is not connected.
This configuration is used for driving output stages in which the sawtooth is generated
by Miller effect.
Horizontal Oscillator
The capacitor connected between pin 10 and ground must be selected with regard
to the frequency tolerance, to the thermal stability and to the capacitor's ageing.
In multistandard receivers, the oscillation frequency may be changed by switching the
value of the capacitor connected to pin 10.
425
TeA51l
APPLICATION INFORMATION
(continued)
Phase Comparator
The phase comparator's output consists of current pulses acting on the oscillator
control voltage.
The external components C2, C3, C4, C5, R4, R5 and R6 (fig. 2) define the circuit
performance with respect to the pull-in range, the hold-in range and the frequency
variations that occur on switching-on and switching-off.
Moreover the pull-in range depends on the absolute value of the voltage divider
R2, P1 and R3.
A coincidence detector is connected to pin 7; this modifies the pull-in range and
the noise immunity, depending on whether the system is synchronised or is searching
for synchronization. The time constant applied to pin 7 avoids uncertainty during
the switch from one state to the other.
Horizontal Output
The collector of the output transistor is connected to pin 12; its load resistor, externally connected between pin 12 and pin 4, defines the amplitude of the output
current pulse.
The width of the output pulse can be varied between 13 and 35 !lS by means of the
resistor connected between pin 11 and ground, or else by means of a voltage ~ 5.3 V
applied between pin 11 and ground. This control acts upon the trailing edge of the
pulse, hence the phase advance of the leading edge stays constant with respect to
the synchronism,
426
LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA·
AUDIO POWER AMPLIFIER WITH THERMAL SHUT-DOWN
The TCA 8305 is a monolithic integrated circuit in a 12-lead quad in-line plastic
package, intended for use as a low frequency class B amplifier. The TCA 8305
provides 4.2 W output power @ 14 V/4 n, 3.4 W @ 12 V/4 n, 2 W @ 9 V/4 n, 3.7 W
@ 16 V/8 nand 2.3 W @ 12 V/8 n.
It works with a wide range of supply voltages (4 to 20 V), gives high output current
(up to 2 A) and very low harmonic and cross-over distortion. The circuit is provided
with a thermal limiting circuit which fundamentally changes the criteria normally
used in determining the size of the heatsink, in addition the ToCA 8305 can withstand
short-circuit on the load for supply voltages up to 14 V.
The TCA 8308 is pin to pin equivalent to the TBA 8108.
ABSOLUTE MAXIMUM RATINGS
V.
10
10
Ptot
T. tg • T j
5upply voltage
Output peak current (non-repetitive)
Output peak current (repetitive)
Power dissipation: at Tomb = 80°C
at Ttab = 90°C
8torage and junction temperature
20
2.5
2
V
A
A
W
5
-40 to 150
W
°C
ORDERING NUMBER: TCA 8308
Dimensions in mm
MECHANICAL DATA
Supersedes issue dated 6/74
427
6/75
CONNECTION AND SCHEMATIC DIAGRAMS
~
4
"
"
.~"
QII.,j
Q(f
SUPPlY
VOLTAGE
12
OUTPUT
N.C.
"
N. C.
N. C.
8
Q'
GROUND
BOOTSTRAP
GROUND
(SUBSTRATE)
COMPENSATION
INPUT
FEEDBACK
RIPPLE
REJECTION
"
Q2~
GROUND
"
9
TEST AND APPLICATION CIRCUIT
Vs
R3
C7
O.l,uF
I
Vi
Rl
lOOkO
= C3
SEE FIG.6
428
'"
" "
'"
12
DO
"
Q
r"
--..f11
'-
'
Q
R6[
01
~4
~
k k
't---
5-0289
+
Q12
~Q'
Q~
~
'"
r.~~
"
5
1
Q"
'
Q9
'~"
1<7
R8
"
T
10
S-O?~3
THERMAL DATA
Rth j.tab
Rth j·amb
Thermal resistance junction-tab
Thermal resistance junction-ambient
max
max
12 °C/W
70· °C/W
• Obtained with tabs solderad to printed circuit with minimized copper area
ELECTRICAL CHARACTERISTICS
Parameter
(Refer to the test circuit, Tomb = 25°C)
Test conditions
Min. Typ. Max. Unit
V,
Supply voltage (pin 1)
Vo
Quiescent output
voltage (pin 12)
V, = 12 V
Quiescent drain
current
V, =9V
8.5
16 mA
Ib
Bias current (pin 8)
V, = 12V
0.2
llA
Po
Output power
d
V,
V,
V,
V,
V,
V,
4.2
3.4
2
0.8
3.7
2.3
W
W
W
W
W
W
Id
ViCrms)
Voltage for input
saturation
Vj
Input sensitivity
B
d
4
= 10%
= 14V
= 12V
=9V
=6V
= 16 V
= 12V
5.3
f
RL
RL
RL
RL
RL
RL
=
=
=
=
=
=
=
1 kHz
4n
4n
4n
4n
8n
8n
Po = 3.4 W
RL = 4n
V, = 12 V
f = 1 kHz
V, = 12 V
RL = 4n
C3 = 390 pF
Distortion
Po = 50 mW to 2 W
V, = 12 V
f = 1 kHz
Input resistance (pin 8)
Gy
Voltage gain
(open loop)
V
6.7
V
mV
220
Frequency response
(-3 dB)
Rj
2.5
6
20
V, = 12 V
f = 1 kHz
429
50
mV
40 to 10,000
Hz
0.3
%
RL = 4n
5
Mn
75
dB
RL = 4n
I
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Gv
Test conditions
Voltage gain
(closed loop)
Vs = 12 V
f = 1 kHz
eN
Input noise voltage
iN
Input noise current
1]
SVR
Id
Efficiency
Supply voltage
rejection ratio
Drain current
• Thermal shut-down
case temperature
Min. Typ. Max. Unit
RL = 40
37
40 dB
R1 = 0
Vs = 12 V
B (-3 dB)=40 to 10,000 Hz
2
!lV
Vs = 12 V
B (-3 dB) =40 to 10,000 Hz
0.1
nA
Po = 3.4W V. = 12V
f = 1 kHz
RL = 40
62
%
V. = 12 V
RL = 40
frippl. = 100 Hz
C2 = 100!lF
C2 = 25!lF
45
38
dB
dB
Po = 3.4W V. = 12V
RL =40
430
mA
P tot = 2.2W
130
°C
• See figs. 8 and 14
430
34
Fig. 1 - Typical output power
versus supply voltage
Fig. 2 - Maximum power dissipation
versus supply voltage
(sine wave operation)
G-1275
Ptot
(W)
I
f--+-H+-H-+-l-li't-+-+-H--H
I--
f--
d =1 •
RI =56 n
-
G 1276
Po
(W)
RL =411
II
=80
I =lkHz
,
RL =811
V
15
10
o
V.(V)
G 1277
,
II
VS =12 V
~
4
.."
-
V,=12 V
I =1 kHz
RL=411
\
10',
q
Gv
..... i--'"
-Vi
a:-'
I
r----
--
- -:..--
,......
, r-Vi
/
,
,
./ ./
,
.
f
o
PO(W)
431
-
Po -3.3W
Po =50 mW
........... f-
10.
o
Vs ( V)
,G y
=
- =
- =
a:
15
10
II
~
V
Fig. 4 - Typical voltage gain (closed
loop) and typical input
voltage versus feedback
resistance (R,)
G-4218
Fig.3 - Typical distortion versus
output power
RI =5611
I =1 kHz
....
100
200
f--
•10'
I-
,
Fig. 6 - Typical value of C3 versus Rf
for different bandwidths
Fig. 5 - Typical distortion versus
frequency
d
I
C3
I
I I
('/.)
G 1279
Ii
!
(pF)
-----+--
I
G-1280
:==:CF-
--
"",S=5kHz
....
/"
10'
... S=lOkHz
8
/S=2OkHz
/
v. =12V
RL=411
Rf =56 01--
./
10'
IIII
Po =50mW
8
-.
Po=2W
~I
-
-I'"
,,/ .,/"
6
•
10'
10
f (Hz)
10'
10
Fig.8 - Typical power dissipation
and efficiency versus
output power
Fig. 7 - Typical supply voltage
rejection ratio
G-1281
-
G 1282
SVR
(dS)
-
-
'l
( "I.)
V.=12V
---RL =8n
- RL =4n
80
,.
-'u
'l
'l
60
-20
PIOI
V.=12 V
RL=4 Jl.
-30
/
/"
C2=IOOJ-'F
.....
........
fripple = 100 Hz
.......
~
"-t-I-
-50
-
//
IJ'/
-
-
~
1
to~
20
I
o
-50
o
50
o
100
432
•.
~~a::8··.·t)AS···.··
iJ'U
, ',-,/-"
Fig. 10 - Typical quiescent current
versus supply voltage
-
G 12&4
-to
)
t-
1/
15
1/
6
""-
ld total
10
1/
i'"
V
o
Id (output transistors)
10
15
o
Vs (V)
10
15
Vs (V)
APPLICATION INFORMATION
For portable use the circuit in fig. 11 has the advantage of fewer external components.
Fig. 11 - Typical
circuit with load
connected to the
supply voltage
O.I!'F
I
V,
111.
*=C3 SEE FIG. 6
433
APPLICATION INFORMATION
For line operated equipment the bootstrap can be eliminated using the circuit of
fig. 12. Gain is depended on RX/R f •
Fig. 12 - Circuit
with load connected to ground and
without bootstrap,
in which Gy spread
is reduced
Fig. 13 - Typical output power
versus supply voltage
(see fig. 12)
:L:~~. 1-++-+-++-+-++..-1-++-1
f+-t-f-+-t-f-+-t-f-++1
I
o
=1 kHz
10
15
434
THERMAL SHUT-DOWN
The. presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent) or an above-limit ambient
temperature can be easily supported
2) the heatsink can have a smaller factor of safety compared with that of a conventional
circuit. There is no device damage in the case of too high a junction temperature;
all that happens is that Po (and therefore P tot ) and Id are reduced (fig. 14).
G-12e6
Fig. 14 - Output power and drain
current versus package
temperature
Vs=IZV
RL=4Jl
d =10-/.
P.
Id
o
435
50
100
MOUNTING INSTRUCTION
The thermal power dissipated in the circuit may be removed by connecting the tabs
to an external heatsink or by soldering them to an area of copper on the printed
circuit board (fig. 15).
Fig. 16 shows a simple type of heatsink. Assuming an area of copper on the printed
circuit board of only 2 cm 2 , the total
Rth
between junction and ambient is approximately
28°C/W.
The external heatsink or area of printed circuit copper must be connected to electrical
ground.
Fig. 17 gives the maximum power that can be dissipated (for Tamb = 55 and 70°C) as
a function of the side of two equal square copper areas having a thickness of 35 ~
(1.4 mil). During soldering the tabs temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.
Fig. 15 - Example of are~ of P.C.
board copper soldered to
the tabs of the TCA 8305
which is used as a heatsink
Fig. 16 - Example of TCA 8305 with
external heatsink
COPPER AREA 35}J THICKNESS
HEATSINK
Rth = 30°C/W
p.e.BOARD
436
Fig. 17 - Power that can be
dissipated versus "I"
Fig. 18 - Maximum allowable power
dissipation versus ambient
temperature
0-12&&
-
G 1287
Ptot
(W )
Rth
t
('CIW)
80
60
WITH INFINITE
Rth j-aml>
4
40
I-
-
HEATSINK
I
~J
20
~ITHOUT
20
Ptot (Taml>=70'C)
~
~-
4'
'''6,..
30
HEATSINK
1j.
l-[{.-IS'.
hTT-o
10
v~
,~
"tot (Taml> =55 'C)
o
1<-
It..,
40
I (nvn)
N..
Ct,..
-,....,...
0
-50
o
50
100
Ta mb('C)
Fig. 19 - P.C. board and component layout of the test and application circuit (1:1 scale).
I
437
LINEAR INTEGRATED CIRCUITS
TCA 900
TCA 910
PRELIMINARY DATA
MOTOR SPEED REGULATORS
The TeA 900 and TeA 910 are linear integrated circuits in Jedec TO-126 plastic
package. They are designed for use as speed regulators for De motors of record
players, tape recorders and cassettes.
The TeA 900 is particularly suitable for battery operated portable equipments, and the
TeA 910 for car-battery and mains operations.
ABSOLUTE MAXIMUM RATINGS
Vs
Supply voltage
Ptot
Total power dissipation at Tamb =
Tstg , Ti
Storage and junction temperature
70°C
at Tease = 100°C
~
MECHANICAL DATA
;:,upersedes Issue dated 5 73
TCA 900
TCA 910
14 V
20 V
0.8 W
5W
-40 to 150°C
Dimensions
In
mrn
6 75
TCA 900
TCA 910
THERMAL DATA
-.,. Rth
-.,. Rth
i-case
i-arob
Thermal resistance junction-case
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS
Parameter
V rer
Id3
Vm
Vm
V'.2
Reference voltage
(between pins 2 and 3)
Quiescent current
(at pin 3)
Output voltage
(for TeA 900 only)
Output voltage
(for TCA 910 only)
Dropout voltage
Limiting output current
(at pin 2)
I,
K = l11/l11 3
max.
max.
10
100
°C/W
°C/W
(T amb = 25°C and Rs = co unless otherwise
specified)
Test conditions
Min. Typ. Max. Unit
Fig.
Vs = 5.5 V
1m = 70 rnA
RT =0
2.6
V
1
V'.3 = 5.5 V
12 =0
RT =0
2.6
rnA
.-
V, = 5.5V
1m = 70 rnA
RT = 91 n
3.6
3.9
V
1
V, = 9V
I~ = 70 rnA
RT = 270n
5.6
6.3
V
1
l1Vm fV m = -1%
70 rnA
1m
RT = 91 n
1.2
V
1
= 5.5 V
=0
400
rnA
-
Vs = 5.5V
-70 rnA
12
l112 = ±10 rnA
RT =0
8.5
-
1
V, = 5.5 Vto 12 V
1m = 70 rnA
RT = 91 n
0.1
=
V'.3
V2.3
=
l1Vm
--Il1V,
Vm
Line regulation
(for TCA 900 only)
440
"ioN
1
TCA 900
TCA 910
ELECTRICAL CHARACTERISTICS
Parameter
~Vm
-/~V,
Vm
Line regulation
(for TCA 910 only)
(continued)
Test conditions
V,
I,"
Min. Typ. Max. Unit
Fig.
= 10 V to 16 V
= 70mA
RT =
270n
0.1
%/V
1
1
~Vm
--/~lm
Load regulation
Vm
= 5.5V
= 40 to 100 rnA
=0
0.005
%/mA
= 5.5 V
= -70 mA
Tamb = -20 to 70 °c
0.01
%/oc
V,
1m
RT
I -~Vr.t
- I~
Vret
Tamb
Temperature
coefficient
V1. 3
12
-
I
Fig. 1 - Test circuit.
1
5·0281
441
TeA 900
TCA 910
Fig. 2 - Typical application circuit.
~Im
M
Vm
I
5-0282
-::-
Fig.3 - Normalized Kversus 12
Fig. 4 - Dropout
voltage versus
output current
-
G 083012
VI_2
1.4
f-t+-t-++-f-++--1H-+--1H-+--1H--H-+--I
. 1.2
f-t+-t-++-H-+--1H-+--1H-+--1H--H-+--I
I
(V)
AVm
=_1°/.
Vm
/
1.8
/
/
1.6
1.4
./
1.2
k'"
40
80
120
o
160 -[,(rnA)
442
'"
""
0.6
o
." V
/
20
40
60
80
100
12.0 -12(mA)
TeA 900
TeA 910
-
G 0940/1
Pto t
(W)
WITH
~
~
'*1
1-
1-~
~~
~
Fig. 5 - Maximum
allowable power
dissipation versus
ambient
temperature
~
~
~."
~1<
~
J'I.'~'?1<
~
XG' ('>
),.~
~
3'~~
'~~
...,...,c-J?~~
1
""';''''J?
L~~
o
o
-50
50
100 Tamb ('e)
APPLICATION INFORMATION
The regulator supplies the motor in such a way as to keep its speed constant.
independent of supply voltage, applied torque and ambient temperature variations.
The basic equation for the motor is:
Vm
Where:
= Eo + Rm 1m = a1 n + a2 c
Vm
supply voltage applied to the motor
Eo
back electromotive force
n
motor speed (r.p.m)
Rm
internal resistance (of the motor)
current absorbed (by the motor)
1m
a 1 and a2
constants
=
c
=
drive torque
443
TCA 900
TCA 910
A voltage supply with the following characteristics
E
Ro
-Rm
E
electromotive force
Ro
output resistance
gives performance required.
This means that a variation in current absorbed by the motor, due to a variation in
torque applied, causes a proportional variation in regulator output voltage.
In fig. 6 is shown the minimum allowable Eo versus RT •
6-0828/3
EO
I
(V)
RT-KxR m
Fig. 6 - Minimum ED
allowable versus RT -
3.B
3.6
/"
/'"
/'
3.4
V
3.2
V
'"
'"
/"
2.B
2.6
o
40
80
120
160
200
240 RT (fi]
444
TCA 900
TCA 910
The TCA·900 and TCA 910 give a reference constant voltage Vref (between pins 2
and 3) independent of variations of V" 12 and ambient temperature.
They also give:
13
= Id3 + I/K
Where:
13
total current at pin 3
Id3
quiescent current at pin 3 (12
12
current at pin 2
K = constant.
0)
The output voltage V m' applied to the motor has the following value:
Term 2
Term
Term 1 equals Eo and fixes the motor speed by means of the variable resistor R,;
1m
Term 2
- . RT equals the term Rm • 1m and, therefore, compensates variations of
K
torque applied.
Complete compensation is achieved when:
RT = K Rm
If
RT max
>
K
Rm min
instability may occur.
445
LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
10 W AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT PROTECTION
AND THERMAL SHUT-DOWN
The TCA 940 is a monolithic integrated circuit in a 12-lead quad in-line plastic package,
intended for use as a low frequency class B amplifier. The TCA 940 provides 10 W
output power @ 20V/4n, 9W @ 18 V/4n, 7W @ 16V/4n, 6.5W @ 20V/8n and
5W @ 18V/8n.
It gives high output current (up to 3 A), very low harmonic and cross-over distortion.
Besides the thermal shut-down, the device contains a current limiting circuit which
restricts the operation within the safe operating area of the power transistors.
The TCA 940 is pin to pin equivalent to the TBA 810 AS.
ABSOLUTE MAXIMUM RATINGS
Vs
10
10
Ptot
T stg ' T j
Supply voltage
Output peak current (non-repetl!ive)
Output peak current (repetitive)
Power dissipation: at Tamb = 50°C
at T tab = 70 0 C
Storage and junction temperature
24
V
3.5
3
1.25
A
A
8
-40 to 150
W
W
°C
ORDERING NUMBER: TCA 940
MECHANICAL DATA
Supersedes issue dated 4/74
Dimensions in mm
447
6/75
CONNECTION AND SCHEMATIC DIAGRAMS
SUPPLY
VOLTAGE
12
.,
.,
OUTPUT
N. C.
N.C.
N.C.
~'
GROUND
GROUND
GROUND
BOOTSTRAP
(SUBSTRATE)
COMPENSATION
INPUT
RIPPLE
REJECTION
FEEDBACK
,"",89
TEST AND APPLICATION CIRCUIT
Vs
R3
V
C9
OJI'F
C6
~~o.tF
lOon
R2
IOOkO
*=C3 ,C7 SEE FIG. 7
448
THERMAL DATA
Rth j.tab
Thermal resistance junction-tab
Rth j.amb
Thermal resistance junction-ambient
ELECTRICAL CHARACTERISTICS
Parameter
Test conditions
Supply voltage (pin 1)
Va
Quiescent output
voltage (pin 12)
V,
= 18V
Id
Quiescent drain current
V,
Ib
Bias current (pin 8)
V,
Po
Output power
d
V,
V,
Vs
Vs
Vs
= 24V
= 18V
= 10% f = 1 kHz
= 20 V, RL = 4n
= 18 V, RL = 4 n
= 16V, RL = 4n
= 20V, RL = 8n
= 18 V, RL = 8n
Vi
d
Frequency response
(-3 dB)
Distortion
8.2
9
20
24
V
9.8
V
42 mA
0.5
7
10
9
7
6.5
5
= 9W V, = 18 V
= 4n f = 1 kHz
Vs = 18 V
RL = 4n
C3 = 1000 pF
Po = 50 rnW to 5 W
V, = 18 V
RL = 4n
f = 1 kHz
3
!!A
W
W
W
W
W
mV
250
Po
RL
B
°C/W
°C/W
Min. Typ. Max. Unit
6
Voltage for input
saturation
Input sensitivity
10
80
(Refer to the test circuit, Tamb = 25°C)
V,
Vi(rms)
max
max
449
90
mV
40 to 20,000
Hz
0.3
%
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test conditions
Min. Typ. Max. Unit
5
Mn
75
dB
Ri
Input resistance (pin 8)
Gy
Voltage gain
(op€n loop)
Vs == 18V
f == 1 kHz
RL == 4 n
Voltage gain
(closed loop)
Vs == 18V
f == 1 kHz
RL == 4 n
Input noise voltage
Vs == 18V
Rg == 0
B (-3 dB) == 40 Hz to
20,000 Hz
3
ltV
Vs == 18V
B (-3 dB) == 40 Hz to
20,000 Hz
0.15
nA
Gy
eN
iN
1)
SVR
Id
Input noise current
Efficiency
Po == 9 W
RL = 4n
f = 1 kHz
34
RL ==4n
Vs ==24V
frippl. == 100 Hz
Drain current
Po == 9 W
RL == 4 n
P tot == 4.8 W
• See figs. 9 and 15
450
40
dB
Vs = 18 V
Supply voltage
rejection ratio
• Thermal shut-down·
case temperature
37
65
%
45
dB
770
rnA
110
DC
Vs == 18 V
Fig.2 - Maximum power dissipation
versus supply voltage
(sine wave operation)
Fig. 1 - Typical output power
versus supply voltage
G-1237f1
G- 1236
r- r-
)
12
6
10
d=IO·I.
:Rf =5611
f:lkH z
J
/
10'
".1'
".1'
-::::: ~
5
.....
~
/
V
1/
4
o
--
/
/
RL=411
R =411
X
....1
RL=8Q
RL=SIl
".
".1'"
./
i.--'
10
5
V.(V)
Fig.3 - Typical distortion
versus output power
..... .....
./
'"
V. (V)
15
Fig. 4 - Typical voltage gain
(closed loop) and typical
input voltage versus
feedback resistance (R f )
G-1238
G-1239/t
10
VI.
f--+--+-+'..-'--c!.+.4+---f-+-r+-HHIH
q
Vo=18 V
R f =56 11
f =lkHz
l:;l
"-'
II:
...
"
• - r- V·
Po =5W -
;; ....
-;;. :;.:::
" Gv
"-'
II:
10'
• Gv
Vo=IS V
f =lkHz
••RL =811
L =411
(mV)'
:'1.)
r-
f- f-'
o
15
,/
.,- ./
~
10
/
+-
i'
•
..J.Po =9W
L
,
-
-Vi
-
-t
o
10-'
451
Vi
Po =0.05 W
·r
. • -t-
10'
--
-
Po =0.05 W c-- -
Vi
50
100
10
Fig. 5 - Typical distortion versus
frequency (RL = 4 [1)
Fig. 6 - Typical distortion versus
frequency (RL = 8 [1)
G-124O
d
('I.)
8
6-1241
~LIIIII
1-t-++t+1+lI---+'o"--'-!-';!-Uj-IIII-t-+HtI-itt---+++t+ttfI
I-H*ftttl----t RL= 4 It I-H++I-Hlf-+++H++II
1-t-t-t+ftttI--tVs= 18 v 1-t-t-t+I-Hlf-H-tti++ll
1-t-t-t+ftttI--t R,= 56 .!l1-t-t-t+I-Hlf-++tti++ll
II
(',,)
RL =8 It
Vs =18 V
R,=56
6
Po = 0.05
•
Po
10'
Po - 2.5
1.'1
"""'• " ,.
J IIIII
Ll
o
-o.osw
2
, (Hz)
10
10'
10'
10'
G-1242
, (Hz)
G-1243
~~ - -
C3
(pF)'
6=10 kHz
f--I- - -
+-~---t--r1 +-+-++--1
___L
Ol-l--l--H---+---+---+---+---+---+---+--+--+--+-+--l
V
- 10
I-l--l--H---+---+---+---+---+--+- +---l--I-f---lH
-50
-1--., .
'"";""2J Hz
./
10'
468
Fig.8 - Typical supply voltage
rejection ratio
Fig. 7 - Typical value of C3 versus RI
for different bandwidths
V...
j~
./
.' II lUll
o
/
C7'SC 3
/
10'
- 60
6
10
,
. - - -I--t-+-+-+--+I-+-+-+-+-~t-I
'---,--"'---'---'.......L........L........L........L........L........L........L--'---'---'--'---'
o
10'
452
50
100
Fig. 10 - Typical power dissipation
and efficiency versus output
power (RL
80)
Fig. 9 - Typical power dissipation
and efficiency versus output
power (RL
4 0)
=
-
G 1245/1
Fiat
(
Ptot
(
(W)
n
II.
1/
=
G-I21.1011
60
"""
60
40
5=1 V
40
Fiat
L·4!l.
V
V. =l8V
II
RL =sn
20
20
o
o
o
4
Fig. 11 - Typical quiescent output
voltage (pin 12') versus
supply voltage
o
4
6
8
Il,(W)
Fig. 12 - Typical quiescent current
versus supply voltage
G-1246il
G-1247
(~~) f-+-+-~+-+I----l-_-I--l-+-+I-f-+I+-+-_+p'-_I-"f---1--"t---","--i--_-+1-1__
-+-+-lr-_-j-_t"ld_~ot:"'p.-k"-j--rH---j---H-i
15
15
10
10
~
H-+-+-+-+-+-+--+-~~+-+-+-+-+--+-~~/1
+_
-fI
f---j---j--+-+-j---j--+--t-~+
~
o
10
15
20
O'---'---'---'----'---'----'----'--.J-L--L---'---'----"---J----L---'----'----'---'---I
5
10
15
20
V5 (v)
453
SHORT CIRCUIT PROTECTION
The most important innovation in the TCA 940 is an original circuit which limits the
current of the output transistors. Fig. 13 shows that the maximum output current is
a function of thecol\ector-emitter voltage; hence the circuit works within the safe
operating area of the output power transistors. This can therefore be considered as
being power limiting rather than simple current limiting. The TCA 940 is thus protected
against temporary overloads or short circuit by the above circuit. Should the short
circuit exists for a longer time, the thermal shut-down comes into action and keeps
the junction's temperature within safe limits.
Fig. 13 - Maximum output current
versus voltage (VeE) across
each output transistor
Fig. 14 - Test circuit for the limiting
characteristics
v,
r-...
::Fl:::R:t-
~
,
,~
oad lin.
t: Vs =18V
,
t=50Hz
I......
R =4fi
560
."
1'.1
o
5
lOOk 0
10
454
THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent). or an above-limit ambient
temperature can be easily supported
2) the heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no device damage in the case of too high a junction
temperature: all that happens is that Po (and therefore P tot ) and Id are reduced
(fig. 15).
G-121.9
Fig. 15 - Output power and drain
current versus package
temperature
Po
(W)
I-- -
~
-j-
- -
--
f-I--I,.......-f--+-+++-j
~!v.=tSV
I 1+--+-+-+-1{~)
d=IO"/.
--RL=4fiIHH-+-j
----R =SD
12 f.-HH-+-+-+-+-+-.---?1T"''l--HH-j t.2
10
HH-+-I-t--.j--jH-+
Po
!
1"\
1-=~I--I--Io4-+..j...+-F-Fo.t~"++~H O.S
.- - -I-I--t- 'd
6
4
-I-- I-- J - j - Po
•- -
2 I- -
.
+-N+-+-+-
i;; f.-I-HH-+-+~>+--I--
•-
+--+--HH-+-+-
-_. --j-I---
50
455
~
0.6
MOUNTING INSTRUCTION
The power dissipated in the circuit may be removed by connecting the tabs
to an external heatsink according to fig. 16. The desired thermal resistance may be
obtained by fixing the TCA 940 to a suitably dimensioned plate as shown in fig. 17.
This plate can also act as a support for the whole printed circuit board: the mechani~al
stresses do not damage the integrated circuit. During soldering the pins temperature
must not exceed 2600C and the soldering time must not be longer than 12 seconds.
Fig. 16 - Maximum allowable power
dissipation versus ambient
temperature
Fig. 17 - Mounting example
G-1250
)
UJ
WITH INFINITE HEAT SINK
ALUMINIUM
3.5nm THICKNESS
K
. tlJm
-
wiTH
HEAT SINK
HAVI~G
l'.~
[,(,
+-H
_
I
WI~OUTHEAT"slNKi
~ffi-f
o
-so
I
i•
+-
6 f.":
"/0.... - I
!\
++-
r -~th£;..\~
TI- ""N..,
.
r-d-
.
~
50
456
Fig. 18 - P.C. board and component
layout of the test and application circuit
(1:1 Scale).
R
C5-0033
457
LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT PROTECTION AND
THERMAL SHUT-DOWN
The TCA 940E is a monolithic integrated circuit in a 12-lead quad in-line plastic package,
intended for use as a low frequency class B amplifier. The TCA 940E provides 6.5W output
power @20 V/8 nand 5.4 W @ 18 V/8 n.
It gives very low harmonic and cross-over distortion. Besides the thermal shut-down, the
device contains a current limiting circuit which restricts the operation within the safe
operating area of the power transistors.
The TCA 940E is pin to pin equivalent to the TBA 810S.
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Output peak current (non-repetitive)
Output peak current (repetitive)
Power dissipation: at Tamb = 80°C
at T tab = 90°C
Storage and junction temperature
24
3.5
3
1
5
-40 to 150
V
A
A
W
W
°C
ORDERING NUMBER: TCA 940E
MECHANICAL DATA
Supersedes issue dated 11/74
Dimensions in mm
459
6/75
CONNECTION AND SCHEMATIC DIAGRAMS
01.
••
SUPPlY
VOLTAGE
12
.,
N. C.
N.C.
N.C.
OUTPUT
10
GROUND
01
GROUND
GRO\.JIIO
0.
BOOTSTRAP
04
COMPENSATION
INPUT
0'
RiPPlE
REJECTION
FEEDBACI(
S-0289
.,
TEST AND APPLICATION CIRCUIT
R3
.*=C3,C7 SEE FIG.6
460
04
THERMAL DATA
Rth j-tab
Rth j-amb
12
max
max
Thermal resistance junction-tab
Thermal resistance junction-ambient
70*
°C/W
°C/W
* Obtained with tabs soldered to printed circuit with minimized copper area
ELECTRICAL CHARACTERISTICS(Refer to the test circuit, Tamb = 25°C)
Parameter
Test conditions
Min. Typ. Max. Unit
Vs
Supply voltage (pin 1)
Vo
Quiescent output voltage
(pin 12)
Vs = 18V
Id
Quiescent drain current
Vs = 24V
20
Ib
Bias cu rrent (pi n 8)
Vs = 18V
0.5
Po
Output power
d = 10%
Vs = 20V,
Vs = l8V,
6
8.2
f
= 1 kHz
RL -= 8 n
RL =8 n
9
24
V
9.8
V
42 mA
6.5
5.4
5
3
J.1A
W
W
I
I
Vi(rms) Voltage for input
saturation
Vi
B
d
Input sensitivity
250
Po =5.4W
RL = 8 n
Vs = 18V
f
= 1 kHz
Frequency response
(-3 dB)
Vs = 18V
C 3 = 1000 pF
RL
Distortion
Po = 50 mW to 3.5W
RL =8n
Vs = 18V
f
= 1 kHz
461
mV
110
mV
40 to 20,000
Hz
0.2
%
= 8n
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Min. Typ. Max. Unit
Test conditions
R;
Input resistance (pin B)
Gv
Voltage gain
(open loop)
Vs = lBV
f = 1 kHz
RL =Bn
Voltage gain
(closed loop)
Vs = lBV
f = 1 kHz
RL =Bn
Input noise voltage
Vs = lBV
R2 =0
B (-3 dB) = 40 Hz to
20,000 Hz
3
p.V
Vs = lBV
B (-3 dB) = 40 Hz to
20,000 Hz
0.15
nA
70
%
45
dB
460
mA
120
°c
Gv
eN
I nput noise current
iN
Efficiency
'T/
SVR
Supply voltage
rejection ratio
..
Id
Drairi current
Po =5AW
RL ==Bn
34
Vs = lBV
f = 1 kHz
Vs = 22V
RL =
f';PPle = 100 Hz
Po = 5AW
. RL == Bn
5
Mn
75
dB
37
40
dB
Bn
Vs = lBV
* Thermal shut-down
case temperature
Ptot = 2.BW
* See figs. Band 14
462
Fig. 2 - Maximum power dissipation
vs. supply voltage (sine wave
operation)
Fig. 1 - Typical output power vs. supply voltage
G 1442
G-1443
P lo I
Po
(W)
(W)
rrf-
d =10-1.
R,=56n
1= 1 kHz
RL = en
RL=en
4
I
V
o
12
8
o
16 Vs (V)
e
4
Fig. 3 - Typical distortion vs. output
power
12
16
Vs(V)
Fig. 4 - Typical voltage gain (closed
loop) and typical input voltage vs. feedback resistance (R f )
G 1444
d
(mV),
1
---6
--
••
Vi •
I
('10)
, Gy
. 'r--.
Vs = lev
RL = en
10'
R, :15k6n
".. ~
~
f - f-V'
l- I-
4
10.
I-
,
Po =5.4W
_r--
o
,
10-'
.
b; ,
Po = 0.05W
Vs = 18 V
, =1kHz I--RL
463
40
80
10'
,
-
=8n
o
,
••
•,•
I--- I--- Vi
,
r--
-
-.
10
Fig. 5 - Typical distortion vs. frequency
Fig. 6 - Typical value of C3 vs. Rf for
different bandwidths
-
0-1241
G 1242
C3
(PF)'
d
('I.)
RL -ell.
v.=lev
RI -S6 n
8
8.: to kHz
V
~I
8=20kHz
VI,.;
6
/
10'
C7= SC3
/
·o.osw
p.
=2.5
III
7
.'
o
II
10
,,'I
J
451
10'
10'
10'
r.. 11I
m
10'
1 " 6'
10
HHz)
Fig. 7 - Typical supply voltage rejection ratio
,
G 141091
SVR
(dB)
..
10'
Fig. 8 - Typical power dissipation and
efficiency vs. output power
-
G 1446
P tot
(
(W)
'I
o
60
-10
1""-
-20
40
V•• 22V
-30
K
-40
t-..
-50
-60
P to
~.en
C5=100,.F
rlppl•• l00Hz
20
VS=18V
R •
eo
I I
I I
o
50
o
o
100
464
4
6
8
Po (W)
Fig. 10 - Typical quiescent current vs.
supply voltage
Fig.9 - Typical quiescent output voltage (pin 12) vs. supply voltage
6-12461,
0-121.7
~ ~-+4-~-+4-~~~+-~-+4-~~
)
Iv) ~-+4-~-+4-~-+~+-~-+4-~~
'd ~ol.1
15
15
10
10
r.;;;
output transistors
-
()
o
10
15
20
v.
5
IV)
10
15
20
V.IV)
APPLICATION INFORMATION
The application diagram in fig. 11 is advised if the device's gain spread is to be contained
within ± 1 dB (for stereo applications)
Fig. 11 - Recommended circuit for maintaining the gain spread within ± 1 dB max.
I
I
465
SHORT CIRCUIT PROTECTION
The most important innovation in the TCA 940E is an original circuit which limits the
current of the output transistors. Fig. 12 shows that the maximum output current is
a function of the collector-emitter voltage; hence the circuit works within the safe operating area of the output power transistors. This can therefore be considered as being power
limiting rather than simple current limiting. The TCA 940E is thus protected against temporary overloads or short circuit by the above circuit. Should the short circuit exists for a
longer time, the thermal shut-down comes into action and keeps the junction temperature within safe limits.
Fig. 12 -Maximum output current vs.
voltage (V CE) across each output transistor
Fig. 13 - Test circuit for the limiting
characteristics
-
G 1441
~'"
t>o-"'"
LOAD LINE
at: VS.18V
RL= 8ll
-,....
No.
o
,.....
10
466
i'
Ii:
I~
Ii,
,~
'to
THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported
2) the heatsink can have a smaller factor of safety compared with that of a conventional
circuit. There is no device damage in the case of too high a junction temperature: all that
happens is that Po (and therefore P tot ) and Id are reduced (fig. 14)
G 1448
Fig. 14 -Output power and drain current vs. package temperature
Po
I
(W)
(
Vs =18V
RL=8fl
d" 10
12
10
8
Q8
Po
as
6
4
04
ld
02
o
o
467
20
40
60
80
100
Tease (·C)
MOUNTING INSTRUCTION
The power dissipated in the circuit may be removed by connecting the tabs to an external
heatsink, or by soldering them to an area of copper on the printed circuit board (Fig. 15).
Fig. 16 shows a simple type of heatsink; assuming an area of copper on the printed circuit
board of only 2 cm 2 , the total Rth between junction and ambient is approximately
28 °C/W.
The external heatsink or area of printed circuit copper must be connected to electrical
ground.
Fig. 17 gives the maximum dissipable power (for Tamb = 55 and 70°C) as a function of the
side of two equal square copper areas having a thickness of 3511. (1.4 mil).
During soldering the tabs temperature must not exceed 260°C and the soldering time must
not be longer than 12 seconds.
Fig. 15 - Example of area of P.C. board
copper soldered to the tabs of
the TCA940E which is used
as a heatsink
CoPPER
Fig. 16 - Example of TCA940E with
external heats ink
AREA J'j,.. THICKNESS
HEATSINK
Rth ~ DOCjW
/
P.t.BOARD
468
Fig. 17-Power that can be dissipated
VS.
Fig. 18 - Maximum allowable power
dissipation vs. ambient temperature
"Q"
G-0952
Ptot
o lua
Rth
t
cm)
(W)
B
eo
6
60
-~
WITH INFINITE
Rth j-amb
r-..:
4
40
~
fPt;.;t(T;;:;;h:-55'C)
~
~
I-
~
"'"
~
!-vITHOUT
20
20
I
1<-
\~
~~.~ 'l...
h6+-tr.
-~ I
30
40
I (mm)
'!:-.~
!'
HEATSINK
,-ptot (Tamb= 70'C
10
It.
'fY,-~
ft-t--
:IrLIIl.::rl'~6,~
o
o
HEATSINK
I
. t--
f-l ~~~
-so
o
-l-
f; l'--~
0
50
100
TambC·C)
Fig. 19 - P.C. board and component layout of the test and appl ication circuit (1: 1 Scale)
I
II NEAR IN TEGRAT ED GIRGUIT
PRELIMINARY DATA
COMPLETE TV VISION IF SYSTEM
The TDA 440 is a silicon monolithic integrated circuit in a 16 lead dual in-line plastic
package. The functions incorporated are:
- gain controlled vision I F amplifier
synchronous detector
AGC detector with gating facility
AGC amplifier for PNP tuner drive with variable delay
video preamplifier with positive and negative outputs.
It is intended for use in black and white and colour TV receivers.
ABSOLUTE MAXIMUM RATINGS
Vs
V5
Supply voltage (pin 13)
Voltage at pin 5
VlO
Voltage at pin 10
Vl1
Voltage at pin 11 (with load connected to V5)
Output current
Supply current (into pin 14)
Total power dissipation at Tamb ~ 70°C
Storage and junction temperature
111. 112
114
->-
Ptot
Tstg • Tj
ORDERING NUMBER:
15
20
) -~
8
5
55
800
-40 to 150
V
V
V
V
V
mA
mA
mW
°C
TDA 440
MECHANICAL DATA
Supersedes issue dated 11/74
Dimensions in mm
471
6/75
CONNECTION AND BLOCK DIAGRAMS
INPUT
"
INPUT
..
BIAS
OECOUPlING
... S
CECOUPl.INO
ZENER
GROUND
STABILIZER
AGe TIME
CONSTANT
,
SUPPLY
13
VOLTAGE
POSITIVE
TUNERAGC
"
OUTPUT
TUNER AGC
VIDEO
OUTPUT
NEGATIVE
11
DELAV
VIDEO
OUTPUT
••
FlV8ACK
PULSE INPUT
CARRIER
OUTPUT
VOLTAGE
REGULATION
CARRIER
TUNING
TUNING
SCHEMATIC DIAGRAM
~
®
2
~
~U
CD
L
(@----~Irt
.
f,.. ~~
1
t-
tQ
.)
~
f-j-K
f-t ~ ~fl t-~~fl
1~
Q
~~~ ~ r'±
l..
}1f
1
6
n
I~
I~>- r=:= ~
l----t'
~
Il-t
k1
~
~
n
d>
5)
472
~
10
~
\ - - - f-'
,~
1J
4<
~
10 I
[
13
CfJ
-r
3
u
~
1;
J
j
l
5-0969
-®
Fig. la - Test circuit for measurement
of 113 , V 11 , V 12 , V 14 and
I::N l1 //:"V 13
Fig. 1 b - Test circuit for measurement
of 111 and /:"Vll//:"V s
lOA 440
lOA 440
10
3, •
3, •
Rl
2.5
k.Cl
5-097'
TO A FOR
.o.
6,.
Vll TEST ; TO 8 FOR
Fig. 2 - Dynamic test circuit
VIDEO
OUTPUT
·C'·f.-_ _~p-_ _~_~_...,(POSIT1VE)
VIDEO
OUTPUT
(NEGATIVE)
B
C5
IF
25i'F
I
'i~r:'
C2
2200
pF
'"
14
13
12
11
10
TDA 440
R2
C6
62
k.Cl
5i'F
Rt.
5kn
,ov
G
AGe OUTPUT
(TO TUNER)
473
5-0117211
-1"
TEST
Fig. 3a - Set-up for measurement of dim
I----r--.~ ~~:6MC:~:~~7E':~~;U~~~~~~:.~::
SOUND CARRIER INPUT LEVEL: -24dB
B
~~-0-A
lOdBfslep
TEST
CIRCUIT
5r
(flg.2)
0
ld~/step I-+_...!j---I
SElECTIVE
VOL TMETER
!':o
.0913
Fig. 3b -Set-up for measurement of 6.V o
AC VOLTMETER
UP TO 5.5 MHr
5_0914
Fig. 3c - Set-up for measurement of 15. Vi' 6.V i •
Vo. V 11 and V 12
.
• AC
.SELECTIVE VOLTMETER
VOL TMETER
FOR LEAKAGE TEST
5.09'5
Fig.3d - Set-up for measure. ment of B. V 11 and
V 12
V
AC VOLTMETER
o (UP TO 15MHt)
SOUNO CARRIER INPUT LEVEL
~JOdB
TO A FOR FREaUENCY RESPONSE TEST
TO 8 FOR SOUND I F OUTPUT TEST
474
$-0976
THERMAL DATA
max
Rth j-amb Thermal resistance junction-ambient
100
°C/W
ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Tamb = 25°C)
Test conditions
Parameter
STATIC (DC) CHARACTERISTICS
Supply current (pin 13)
Is
-Ill
(1)
Vs
Output current
Vs = 12V
Supply voltage (pin 13) 114 = 40 mA
V ll (2) Output voltage
Vs = 12V
V 12 (2) Output voltage
Vs=12V
14
19
25
mA
la
2.3
3.5
4.8 mA
lb
10
15
V
4.8
6.4
V
5.6
V ll = 5.5V
5.5
6
V
6.5
-
la
V
V 14
Stabilized voltage
114 = 40 mA
tNll
~
Output voltage drift
Vs = 11 to 14V
3,5
%
lb
tNll
liV 13
Output voltage drift
V13=11 to15V
114 =40 mA
0.4
%
la
DYNAMIC CHARACTERISTICS (refer to fig. 2 test circuit, Vs = 12V)
Is
Supply current
15 (3)
Tuner AGC current
V7
V·(4)
I
tNi
Vo
V 7 =0
R4 =5 kn
fo = 38.9 MHz
AGC gating pulse input
f
peak voltage
Input sensitivity
AGe range
Peak to peak output
voltage at pin 11
=15.6kHz
48
57
66 mA
6
8
mA
3c
V
-
-5
-1.5
V 7 =0
fo= 38.9MHz
140 200
Vu = 3.3V peak to peak
V 7 =0
tNo= 1 dB
fo = 38.9 MHz
Vu = 3.3V peak to peak
50
55
V 7,=0
Vu = 5.5V
fo = 38,9 MHz
Vi = see note (5)
2.6
3.3
475
280
p.V
dB
4.2
-
V
3c
ELECTRICAL CHARACTERISTICS (continued)
Test conditions
Parameter
Video output varia· V 7
V 11
tion over the AGC
range (0 to 5.5 MHz) fo
fm
tNo
V ll • V 12
Sound I F at video
outputs (5.5 MHz)
Differential error of
the output voltage
(B &W)
V ll • Vl<.
Vu. V 12
B
dim
Ri
Ci
NOTES:
Min. Typ. Max. Unit
=0 tNi = 50 dB
= 3.3V peak to peak
= 38.9 MHz
= 0 to 5.5 MHz
1
Video carrier and
video carrier 2 nd har·
monic leakage at
video outputs
15
V 7 =0
= see note (5)
Video carrier leakage Vi
= 38.9 MHz
fo
at video outputs
Input resistance
(between pins 1
and 16)
Input capacitance
(between pins 1
and 16)
3b
mV
3d
15
%
-
30
mV
3c
5
Frequency response
(-3 dB)
Intermodulation
products at video
outputs
dB
2
V 7 =0 Vi= see note (5)
fo (vision) = 38.9 MHz
30
fo (sound) = 33.4 MHz
V 7 =0 fo = 38.9 MHz
V 11 = 3.3V peak to peak
8
V 7 =0 Vi = see
fo (vision) = 38.9
fo (sound) = 33.4
fo (chroma)= 34.5
V 7 =0
Vi = see note (5)
fo = 38.9 MHz
Fig.
note (5)
MHz
MHz
MHz
15
mV
MHz
3d
dB
3a
1.4
kn
-
2
pF
-
10
-50
-40
(1) Current flowing into pin 11 with the load connected to Vs.
(2) V II and V 12 are adjustable Simultaneously by means of the resistance. or by a variable
voltage';;;; 0.6V. connected between pin 10 and ground.
(3) Measured with an input voltage 10 dB higher than the Vi at which the tuner AGC
current starts.
(4) RMS value of the unmodulated video carrier (modulation down).
(5) The input voltage Vi can have any value within the AGC range.
476
Fig. 5 - Tuner AGC output current
VS. I F gain variation
Fig. 4 - AGC regulation voltage vs.
input voltage variation
G-l1ol1
v
2.5
,.
1.5
0.5
/'
--
-....-
....- ....- ........
~
8
fj
I
R6=5kn
I
1
I
II
f.38.9MHz
Vs .12 V
V7 • 0
VI(OdB)= 200j.lV
Vo =3.3Vpp
f-
~7
3kn
Okn
-
f
&
3&9 MHz
Va • 12V
r-- -
V7 = 0
o
o
10
20
30
Gma•
506Vi(dEII
Fig. 6 - Output black level vs. supply voltage
-20
-40
-60
-80
6G(dB)
Fig. 7 -- Output noise vs. input voltage
G 1431
Vn
N
(mV)
(V)
B=10MHz
f=38.9MHz
V•• 12V
V,.O
I Vo .3.3Vpp
200
-
2.2
160
120
1.8
80
f.3B.9MHz
Vi .70mV
V,.O
1.6
10
11
12
13
14
15 Vs (V)
477
i
1\
\
\
1\
40
I
o
0.5
,I 1-"2.5 VI (V)
APPLICATION INFORMATION
The TDA 440 enables very compact I F amplifiers to be designed and provides the performance demanded by high quality receivers.
The input tuning-trapping circuitry and the detector network can be aligned independently
with respect to each other.
The value of Q for the parallel tuned circuit between pin 8 and 9 is not critical, although
the higher it is, the better is the chroma-sound beat rejection but the tuning is more critical.
Values of Q from 30 to 50 give good rejection with non-critical tuning.
The LC circuit between pins 8 and 9 is tuned to the vision carrier thus appreciably attenuating the sidebands. Hence a small amount of signal can be removed whose amplitude is
almost constant over the whole working range of the AGC and it can be used to drive the
AFC circuit.
The black level at the output is very stable against variations of V 5 and of temperature:
this enables the contrast control to be kept simple. The AGC is of the gated type and can
take the top of the synchronism or the black level (back porch) as its reference: when the
latter is used, the output black level is particularly stable.
For a more detailed description of the TDA 440 and related performance refer to SGSATES Application Note n. 127.
Fig. 8 - Typical application circuit.
C14 10,.."
-
~6Y
*
C16
VIDEO
OUTPUT
(NEGATIVE)
R4
160
J).
~"'F
16V
"'3121110
TDA 440
*
Tantatum
Ll
::oO.42,.,H-00""0- 6turnsS-O.2Zrrm{c1oHWOund)
LZ.Ll.L7 .. Q.3,uH- Q O",'10 - 5.5turnsf4=O.22nm(clos. wound)
l4
L5.l6
L8
;It
MANUAL GAIN
R3
CONTROL 0---C::::J--+-t--+-4
l00kll
O.22.uH-QO::oIIO-4.SlurnsB=O.22nm(cloH wound)
=
I ,.,H- QO.l10- 10turns'hO.22trm(clos@'wound)
=
1.2,..H-00.,110- IOturnsB=o.22rrrn(clOw wound)
51
k/l '---+---QAGC TUNER
L' tal7: eoil 'orm., 8A 271P,cor. GW4.0.S.13 Fl00 Nf.osid,
set ••,,,ng can 8R 10IST
5-0'9'1
478
I"
I'"~~
I~
I$
i!,'
I~
Typical performance of the Fig. 8 circuit
Frequency response (fo vision = 38.9 MHz, fo sound
Sound carrier attenuation
31.9 MHz trap attenuation
40.4 MHz trap attenuation
41.4 M Hz trap attenuation
AGC range
Overall gain including I F filter and trap circuits (note 1)
Intermodulation products over the whole AGC range (note 2)
NOTES:
33.4 MHz) standard CCIR
dB
28
~60
dB
~56
dB
~44
dB
dB
55
86
dB
- 55
dB
(1) The gain is measured at video output 3.3V peak to peak and is defined as peak to peak
output voltage to RMS input voltage (modulation down).
(2) Measured at 1.07 MHz, vision carrier level = 0 dB, chroma carrier level
-6 dB, sound
carrier level = -6 dB.
=
G 1441
Fig. 9 - Overall frequency response
of the fig. 8 circuit.
dB
1.9 MHz
334MHz
8.9MHz
40.4MHz
4t.4MHz
o
i\
-20
;....
-40
~
-60
28
479
32
36
4C!
44 I (MHz)
Fig. 10 - Circuit options for tuner AGC driving
r-------------
I
I
I
I
I
I
I
I
L ____ ~~l.u..!:!~___ _
5-0980
r----------
TDA 440
I
I
:
PIN DIODE TUNER
I
I
I
I
J.
----------5-0981
680
n
TDA440
r-NPNTUN'E;-----I
I
I
I
I
IL ___________ _
5-0982
480
LINEAR INTEGRATED CIRCUIT
IOA·.··1054
PRELIMINARY DATA
PREAMPLIFIER FOR CASSETTE RECORDERS WITH ALC
•
o
•
•
•
•
EXCELLENT VERSATILITY in USE (V s from 4 to 20V)
HIGH OPEN LOOP GAIN
LOW DISTORTION
LOW NOISE
LARGE AUTOMATIC LEVEL CONTROL RANGE
GOOD SUPPLY RIPPLE REJECTION
The TDA 1054 is a monolithic integrated circuit in a 16-lead dual in-line plastic package.
The functions incorporated are:
- low noise preamplifier
- automatic level control system (ALC)
- high gain equalization amplifier
- supply voltage rejection facility (SVRF)
It is intended as preamplifier in tape and cassette recorders and players, dictaphones, com·
pressor and expander in telephonic equipments, Hi-Fi preamplifiers and in wire diffusion
receivers etc.
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Total power dissipation at Tamb
50°C
Storage and junction temperature
<
ORDERING NUMBER:
20
500
-40 to 150
V
mW
°C
TDA 1054
MECHANICAL DATA
Dimensions in mm
481
5/75
I
CONNECTION AND SCHEMATIC DIAGRAMS
Ale OUTPUT
=~OSUPPLY2
g~ i'l~iEC TOR
3
01 BASE
Q1 EMITTER
,.
0'2 EMITTER
02 COllECTOR
7
"'-PASS
INVERTING
INPUT
.......
QI
1 ."'.
Q2
EQUALIZATION AMPLIFIER
ALe
TEST CiRCUIT
I"'---------------o.v.
9V
2.2 ..n
tM7uF
4.71JF
~~71
~~--------~rll~
51
8.
..
.2 ..
IVO
n
Ao
2704
S2
482
THERMAL DATA
Rth
j-amb
max
Thermal resistance junction-ambient
200
°C/W
ELECTRICAL CHARACTERISTICS (Refer to the test circuit, T amb = 25°C)
Parameter
Vs
5upply voltage
Id
Ouiescent drain current
hFE
DC current gain
(01 and 02)
eN
Input noise voltage
(01)
iN
Input noise current
(01)
NF
Noise figure
(01)
Gy
Vo
Test conditions
Min. Typ. Max. Unit
4
Ro =00
Vs =9V
51 =52 =53= B
Ie = 0.1 mA
Ie =0.1 mA
f = 1 kHz
V eE = 5V
300
20
V
6
mA
500
-
2
nV
v'Hz
V eE = 5V
0.5
pA
v'Hz
V eE = 5V
Ie =0.1 mA
Rg =4.7kn
B(-3 dB)= 20 to 10,000 Hz
0.5
4 dB
Open loop voltage gain
(equalization amplifier)
Vs =9V
f = 1 kHz
60
dB
Output voltage with ALC
Vs =9V
f = 1 kHz
0.95
V
Vi = 100mV
51=S2=53=A
R1
(for 5VRF system)
7.5
kn
R2
(for 5VRF system)
120.
n
eN
Equivalent input noise
voltage (for equalization
ampl ifier pin 11)
1.3
Jl.V
0.8
V
Drop-out (between pins
14and 2)
Vs =9V
Rg= 4.7 kn
GY(Closed) =1 00 51= B
B(-3 dB)= 20 to 20,000 Hz
Id =6mA
483
Vs=9V
Fig. 1 - Equivalent input spot voltage
and noise current vs. bias current (input transistor a1)
Fig. 2 - Equivalent input noise cur rent vs. frequency (input transistor al)
-
-1583
o
G 118211
eN •
lDH
( nV )'
I
•
10.
z
./
iN'
pA ).
('1pAHZ)( '/Hi'
Vtf; ,
10.'
IN
10.
lmA
'kH •
"" ~
lDkH
k::'
10.
~
.//
,
r-
i--"
, ,
.
100....
,
10'
10.
SO,...
eN
,. ~~~ LJ ,.
I
10.'
10.0.,
,
10-'
10.-'
,
10.
Ie ("A)
..
• •• 10'
10'
f(Hz)
Fig. 4 - Typical noise figure vs. bias
current (input transistor a1)
Fig. 3 - Equivalent input noise voltage vs. frequency (input transistor a1)
.
G~'S85
G 1S84
eN •
Rg •
.
nY)',
(VH.
B(-3dB).2OHz to 10kHz
(kll.)'
"-
!/
.~
10.'
..
,
0.';\'
10
•
"2
!II
3dB
./
r-,.'r-....
10.
So.IJA
,
10
..
10 '
,
..
lmA
10'
•11Hz)
••
10'
484
,
..
10 '
r-
.,.
,
10'
..
Ie (}lA)
Y>~i:S;.;~:;;j,~.h;:<~;;;j\, :?':, '-'
;/~Ak;dj)':?,.:,'::: .;.'·,l ;,:'~'""
Fig. 5 - Optimum source resistance
and minimum NF vs. bias
current (input transistor Q1)
"
Fig. 6 - Typical current gain vs. collector current (input transistor Q1)
-
c; 1511
Rg opt.
(ktl) •
~
10
~~
500
10
......
,I":
"-"'t>.
1
1kHz
R
••
• ••
• "w
102
300
z
10-1
4
400
NF
1kHz
10kHz
11OO~
10
....
100Hz
10-'
200
'C (pAl
,
10
Fig. 7 - Typical open loop gain vs.
frequency (equalization amplifier)
..
. ..
10'
...
10'
Fig. 8 - Typical open loop phase response vs. frequency (equalization amplifier)
C;
CHUa
G.
Ide)
'o"
(D~)
60
"
i'\
50
40 COMPENSATION
C12-13 =680pF
30
-60
01.
~
""
33O~ 1
1'\
20
.,,
"'.."r ...
-120
1\,11",
47
1511
-
!:.'
l'\
-
,
-180
,
-240
(\
10
~
-300
1\
o
I
10'
.. Ii
t " Ii I
I " Ii
10'
10'
2
10'
"I
t"
t
'I
10', (Hz)
10'
485
.. Ii I
,
10'
I.
I
10'
..
, It
..
'I
1 0 ' , (Hz)
APPLICATION INFORMATION
Fig. 9 - Typical application circuit for battery-main tape and cassette player and recorder
Fig. 10 - P.C. board and component layout of fig. 9 circuit (1: 1 scale)
486
Typical performance of circuit in fig. 9 (T amb = 25°C, Vs = 9V)
Parameter
Test conditions
Min. Typ. Max. Unit
PLAY-BACK
Gv
Voltage gain
(open loop)
f = 20 to 20,000 Hz
110
dB
Gv
Voltage gain
(closed loop)
f = 1 kHz
57
dB
IZI
I nput impedance
f= 100 Hz
f = 1 kHz
f=10kHz
10
41
43
kn
kn
kn
IZo I
Output impedance
f = 1 kHz
12
B
Frequency response
d
Distortion
Output back-ground noise
*** Output weighted back-
n
see fig. 12
0.1
%
1.3
mV
1.3
mV
Vo= 1V
Zg = 300 n + 120 mH
52
dB
Vo= 1V
f = 1 kHz
Zg= 300 n + 120 mH
(DIN 45405)
ground noise
S+N
35
N
Signal to noise ratio
SVR
Supply voltage ripple
rejection at the output
f(riPPle)= 100 Hz
30
dB
Switch-on time
Vo= 1V
500
ms
ton **
RECORDING
Gv
Voltage gain
(open loop)
f = 20 to 20,000 Hz
110
dB
Gv
Voltage gain
(closed loop)
f = 1 kHz
70
dB
B
Frequency response
d*
Distortion without ALC
Vo= 1V
f = 1 kHz
0.3
%
d
Distortion with ALC
Vo= 0.9V
f = 1 kHz
0.4
%
see fig. 14
487
Typical performance of circuit in fig. 9 (continued)
ALC
Automatic level control
range (for 3 dB of output
voltage variation)
Vi ";;40 mV
Output voltage before
clipping without ALC
f = 1 kHz
Vo
Output voltage with ALC
Vi=30mV
tl**
Limiting time
(see fig. 11)
tset **
Level setting time
(see fig. 11)
tree **
Recovery time
(see fig. 11)
tNi= -40 dB
ton **
Switch-on time
Vo= 1V
S+N
Signal to noise ratio
with ALC
Vo= 1V
Vo
N
Min. Typ. Max. Unit
Test conditions
Parameter
t:Ni= +40 dB
f = 10 kHz
f = 1 kHz
54
dB
2.3
V
0.9
V
75
ms
300
ms
180
s
500
ms
56
dB
f = 1 kHz
f = 1 kHz
Rg =470n
* Measured with selective voltmeter
** This value depends on external network
*** When the DIN 45511 norm for the frequency response is not mandatory the equaliza·
tion peak at 10kHz can be avoided-so halving the output noise
Fig. 11 - Limiting, level setting, recovery time
"~
'0
'I 1:1IMITING TIME
tnt -lEVEL SETTING TIME
'r1'C5:RECOVERV TIME
5_1112
488
Fig. 13 - Typical distortion vs. frequency of fig. 9 circuit (Play-back)
Fig. 12 - Typical relative frequency response of fig. 9 circuit
(Play- back)
-
6o1S1111
& 1590
Gy
d
I
(dB)
{
i\
1/
,
\
I
12
('Ie)
'
I
t6
\
1
u
i
lL
r\
\
o II
\
\
--
Gy atOdB-S7dB
-4
II IIIII
I I Ijl~
0.8
-
,
Vo ·1V
0.4 I--
10'
10'
10'
,
'--
o
2,,&62411824682101,
to
........
I-
II 11111
1
•• , 1 4 ' .
10
t( Hz}
Fig. 14 - Typical relative frequency response of fig. 9 circuit
( Recording)
2
10'
10'
....
'41,
10'
I (Hz I
Fig. 15 - Typical output voltage variation and distortion with ALe
vs. input voltage of fig_ 9
circuit (Recording)
Gl.UII
CJ-1S92
Gy
I II 11111
I II 11111
11111111
(dB)
Gy atOdB=70dB
12
-
'\
V
3dB
2,8
54dB
8
-8
-
o
-4
Vo ·l0dB=9S0mV
1=10 kH
d
./
16
12
08
Cl-'
J
10
t
468
10'
461:1
10'
468
10'
J
t
468
10
I (Hz)
489
t
1;6'
10'
t
468
10'
:2
468
10'
10'8
Vi (pvl
o
I
Fig. 16 - Typical distortion vs. frequen·
cy with ALe of fig. 9 circuit
( Recording)
Fig.17 - Typical limiting and level setting time vs. input signal variation
-
-
G 1594/1
('/.)
1m
1.6
'm
!i
G IS95
I
'i
I
1.2
300
!
I
0.8
I
Vo =0.9
1'
I
• t
200
vi
....
I
I
0.4
100
I
o
10
... ...
10'
,
10'
..
....
•
10'
tt
....
• 8
I (Hz)
Fig. 18 - Economical application circuit
490
o
10
20
30
.6Vi (dB)
Fig. 19 - P.C. board and component layout of fig. 18 circuit (1:1 scale)
CS-0062
Typical performance of circuit in fig. 18 (T amb= 25°C, V s= 9V)
Parameter
Test conditions
Min. Typ.
PLAY-BACK
18
rnA
f = 1 kHz
56
dB
Frequency response
f= 100 Hz
f = 1 kHz
f = 6 kHz
f=10kHz
f = 60 kHz
12
0
5
11
10
dB
dB
dB
dB
dB
Distortion
Vo= 1V
Id
Quiescent drain current
Gy
Voltage gain (closed loop)
B
d
Output weighted background noise
f = 1 kHz
Zg= 300 .n + 120 mH
(DIN 45405)
491
0.6
%
1.3
mV
Typical performance of circuit in fig. 18 (continued)
Parameter
Test conditions
Min. Typ. Max. Unit
RECORDING
Gv
Voltage gain
(closed loop)
f = 1 kHz
70
dB
B
Frequency response
f=140Hz
f = 1 kHz
f = 10 kHz
-3
0
4
dB
dB
dB
d
Distortion
Vo= 0.9V
f = 10 kHz
0.7
%
ALC
Range for 3 dB of output
voltage variation
f=10kHz
Vi ';;;;40 mV
54
dB
Fig. 20 - Complete cassette player and recorder
492
Fig. 21 - Hi-Fi preamplifier for magnetic and ceramic pick-ups
PIEZO OR
CERAMIC MAGNETIC
4?On
"
pF
1,1Okll
1.5kD.
,
I
1- ___________________________ I
Typical performance of circuit in fig. 21 (T amb = 25°C, Vs
Parameter
Vs
Supply voltage
Vi
I nput sensitivity for
magnetic pick-ups
Test conditions
Vo
Min. Typ. Max. Unit
10
Vo= 300 mV
Vi
= 15V)
f
= 1 kHz
I nput sensitivity for
ceramic pick-ups
Output voltage before
clipping
f
RJAA equalization for
magnetic pick-ups
B = 40 to 18,000 Hz
= 1 kHz
493
18
V
2.5
mV
100
mV
2.5
V
±1
dB
Typical performance of circuit in fig. 21 (continued)
Parameter
S+N
Test conditions
Min. Typ. Max. Unit
Rg =4.7 kn
B (-3 dB) = 20 to 20,000 Hz
N
Signal to noise ratio for
magnetic pick-ups
IZ;I
Input impedance for
magnetic pick-ups
47
kn
IZ;I
Input impedance for tuner f = 1 kHz
470
kn
IZII
Input impedance for
ceramic pick-up
100
kn
Fig. 22 - Typical distortion vs. frequen·
cy (fig. 21 circuit)
66
dB
Fig. 23- Typical frequency response
(fig. 21 circuit)
G"".'7
d
('to)
i
18
:/
12
•
03
o
r-
'£
-s
0.2
"
OJ
-12
ill
~
-24
III
o
J
10
J
". •
10'
... 8
J
10'
I"
-I.
Vo·300~
............
". •
I
10'
J
....
f (Hz)
10
494
"II
I
10'
"II
J
10'
•• 1
10'
l'
II
I (Hz)
lINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
TV VERTICAL DEFLECTION SYSTEM
The TDA 1170 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic
package. It is designed mainly for use in large and small screen black and white TV receivers.
The functions incorporated 'are:
- oscillator
- voltage ramp generator
- high power gain amplifier
fly back generator
ABSOLUTE MAXIMUM RATINGS
Vs
V 4 -V S
Va
Supply voltage (pin 2)
Flyback peak voltage
Sync. input voltage
27
58
± 12
V IO
Power amplifier input voltage
f
10
Output peak current (non-repetitive) @ t 2 ms
S@ f = 50 Hz, t" 10 J.!s
Output peak current @ f 50 Hz, t > 10 J.!S
10
Ptot
=
t
=
Power dissipation: at T tab = 90°C
at Tamb = 80°C (free air)
Storage and junction temperature
10
-0.5
2
2.5
1.5
5
1
-40 to 150
V
V
V
V
V
A
A
A
W
W
°C
ORDERING NUMBER: TDA 1170
MECHANICAL DATA
Dimensions in mm
495
5/75
CONNECTION AND BLOCK DIAGRAMS
~-------"-----()".
ftlEOUlAno
WOlTAGt
HEIGHT ADjUSt
SCHEMATIC DIAGRAM
z,
.,
496
THERMAL DATA
Rth j-tab
Rth j-amb
Thermal resistance junction-tab
Thermal resistance junction-ambient
max
max
12
70*
°C/W
°C/W
* Obtained with tabs soldered to printed circuit with minimized area
ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs
25V,
Tamb = 25°C unless otherwise specified)
Parameter
Test conditions
STATIC (DC) CHARACTERISTICS
-19
-110
-112
Oscillator bias
current
V9 = 1V
0.2
1 IlA
1a
Amplifier input
bias current
V10 = 1V
0.15
1 IlA
1b
0.05
0.5 IlA
1a
Ramp generator
bias current
Vs
Supply voltage
V4
Quiescent output
voltage
V6 , V7
10
R2= 10 kn
Vs = 25V, R1=30kn
Vs=10V, R1 = 10 kn
Regulated voltage
EN6 EN7
Li ne regulation
ENs' 6.V s
V
-
,
8
4
8.8
4.4
9.6
4.8
V
V
6
6.5
7
V
Vs = 10 to 27V
1.5
mV!V
140
mA
1a
1b
DYNAMIC CHARACTERISTICS (f = 50 Hz)
Is
Supply current
Iv
Peak to peak yoke
current (pin 4)
V4
Flyback voltage
VB
Peak sync. input
voltage (positive
or negative)
Iv = 1A
1.6
Iv = 1A
51
1
497
A
V
V
2
I
,
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Vg
Min. Typ. Max. Unit
Test conditions
Peak to peak oscil·
lator sawtooth
voltage
2.4
V
kn
Sync. input resist·
ance
Vs= 1V
3.5
tflY
Flyback time
Iy = 1A
0.6
lif
Pull-in range
(below 50 Hz)
lif
6.V s
Oscillator frequency
drift with supply
voltage
Vs =10to27V
0.01
V
lif
6.Ttab
Oscillator frequency
drift with tab
temperature
T tab = 40 to 120°C
0.015
Hz
QC
Rs
TDA 1170
ms
2
7
Hz
Hz
Fig. 1b - Static test circuit for measu·
rement of -lID. Vs. V7 •
6.V s /6.V s and 6.V 7 /6.V s
Fig. 1a - Static test circuit for measu·
rement of -Ig. -112 and V4
9
0.8
Fig.
4
TDA 1170
9
6
sv
498
7
10
Fig. 2 - Dynamic test circuit
r---------~~------~----~~--------------------<).~=25Y
01
JOy
lA
C9
C3
IODI'F 25Yr-~_..../,.;=~......
5
3
11~
SYNC INPUT 8
__
~
________--'
C7
IDA 1170
1000 .uF/16 Y
10~--~------~-C==~
YOKE
IOn.
20mH
R7*
5.SkD.
C5O.II'F
RIO
10.
S-n1811
Fig. 4 - Relative quiescent voltage va·
riation vs. tab temperature
Fig. 3 - Relative quiescent voltage va·
riation vs. supply voltage
G ·\600
6-1598
AV,
""V4
Vo = 25V
('J.)
Tam b=25'C
0.2
0.1
....
o
....
-0.1
.1
-0.2
-0.3
• 2
10
15
20
25
20
Va (V)
499
'0
60
80
Fig. 5 - Regulated voltage vs. supply
voltage
Fig. 6 - Regulated voltage vs. tab temperature·
0·1601
6.56
=25 v H-+--!-H-++-H
H-+-+-H-+--f V•
6.52
6.52
6.50
l-
I
1.48
6.48
6.46
Tamb~2S'C
6.44
6.40.
10
15
20.
25
v. (v)
20.
Fig. 7- Frequency variation of unsynchronized oscillator vs. supply
voltage
Fig. 8 -
40
eo
60.
Frequency variation of unsynchronized oscillator vs. tab
temperature
G-1603l1
6-180211
61
61
ClIz)
(Hz)
I
v. =25V
0.2
0..1
0.
1/
0.
-0.1
-0.2
-0.4
amb-ZS'
-0.8
10
15
20.
25
v. Iv)
20.
500
40.
60.
80
10.0. Ttab("Cl
APPLICATION INFORMATION
The thermistor in series to the yoke is not required because the current feedback enables the
yoke current to be independent of yoke resistance variations due to thermal effects. The
oscillator is directly synchronized by the sync. pulses (positive or negative), therefore its free
frequency must be lower than the sync. frequency. The flyback generator applies a voltage,
about twice the supply voltage,to the yoke. This produces short flyback time together witha
high useful power to dissipated power ratio.
The flyback time is:
t f1y
~
2
-3
Lv
where:
Lv Iv
--Vs
Vs
Iv
Yoke inductance
Supply voltage
Peak to peak yoke current
The supply current is :
Is -
-
Iv
8
+
0.02
(A)
It does not depend on the value of Vs but only on yoke characteristics. The minimum value
of Vs necessary for the required output current permits the maximum efficiency.
The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8 and
R9 (refer to fig. 2) according to:
V4
V
R7
+
10
R8
R7
+
R9
Pin 10 is the inverting input of the amplifier and its voltage is V 10 ~ 2V.
For a more detailed description of the TDA 1170 and related performance refer to SGSATES Application note N. 129.
501
Fig. 9 - Typical application circuit for B & W 24" 110° TV sets
.. Vs= 22V
01
"'1
3OV/IA
5DC~F
25V
Cl[C3
'00", " ' ,
R9 15 kil
11
SYNC INPUT 8
C7
TOA 1170
1000 .... F/16 v
RB_
10
C6
15"F110V
YOKE
12
Ion
20 mH
R7S.6kil
cs-
..... C2*
OlS"F
O.1"F
RIO
*
lil
5-06 !312
Tolerance- SOle
Typical performance of circuit in fig. 9
(V s = 22V; Iv
Is
t f1y
Iv
Vs
Ptot
= 1 A;
Rv = 10 1:2; Lv
= 20 mH)
Supply current
Flyback time
Maximum scanning current (peak to peak)
Operating supply voltage
TDA 1170 power dissipation
140
0.75
1.2
20 to 24
2.2
mA
ms
A
V
W
For safe working up to T amb = 50 0 e a heatsink of Rth = 40° C/W is required and each
tab of the TDA 1170 must be soldered to 1 cm 2 copper area of the printed circuit board.
502
Fig. 10 - Typical application circuit for B & W small screen TV sets
r - -_ _ _. -_ _ _-+-_ _-.-_ _ _ _ _ _ _ _ _-o.VS·10.eV
Stab.
11
SYNC 1NPUT 8
t----<~----'
C7
TDA 1170
2OO0,oF/'lJV
IOI--or__----..-C=::JH
56kn
u
It--~-_,
I
C6
7/-,FI10V
YOKE
PI
RJ
470
kG
*
CS*
O.1/-,F
R10
5-112012
Typical performance of circuit in fig. 10
(V, 10.8V; Iv
1 A; Rv 4n; Lv
=
=
=
= 7.5 mH)
Supply current
Flyback time
Maximum scanning current (peak to peak)
Operating supply voltage
TDA 1170 power dissipation
150
0.7
1.15
10.8
1.3
rnA
ms
A
V
W
For safe working up to Tamb = 50°C a heatsink of Rth = 30 °C!W is required and each tab
of the TDA 1170 must be soldered to 1 cm 2 copper area of the printed circuit board.
503
Fig. 11 - P.C. board and component layout for the circuit of fig. 9 and fig. 10 (1: 1 scale)
+Vs
GND
YOKE
YOKE SYNC.
GND
C9 is not mounted on the P.C. board.
MOUNTING INSTRUCTIONS
The junction to ambient thermal resistance of the TDA 1170 can be reduced by soldering
the tabs to a suitable copper area of the printed circuit board (fig. 12) or to an external
heatsi nk (fig. 13).
The diagram of fig. 16 shows the maximum dissipable power Ptot and the Rth j-amb as a function of the side "s" of two equal square copper areas having a thickness of 35 P. (1.4 mil).
During soldering the tab temperature must not exceed 260 °C and the soldering time must
not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.
504
oj~: ",
"/',:::' ,::
",
AREA 35}J
i ,,(:; '"
, ",~"
. Fig. 13 - Example of TDA 1170 with
external heatsink
Fig. 12 - Example of P.C. board copper
area used as heatsink
(OPPER
;' ,;
THICKNESS
HEATSINK
Rlh:: 30°Cjw
P (,BOARD
Fig. 15- Maximum allowable power
dissipation versus ambient
temperature
Fig. 14 - Maximum power dissipation
and junction-ambient thermal resistance vs. "5"
G 1419/1
G 1476/1
Rth
Pto t
( 'c/W)
(W)
80
4
60
R
j-amb
I
;--
4
40
I
Ptot (Tamb' 55'CL
.~
t-
::,.r-n
-
10
1
20
+---
,
I
---+--- 1>.totF~,_=rC)
,1 L I
i
i '
a
i
.c,
--.
-~
it+-tt-+--
I
30
20
o
o
40 s (mm)
H-t--H-++H+H-l---H-50
505
a
50
100
LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
COMPLETE TV SOUND CHANNEL
The TDA 1190 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic
package. It performs all the functions needed for the TV sound channel:
IF limiter-ampl ifier
- active low-pass filter
- F M detector
- DC volume control
- . AF preampl ifier
- AF output stage
The TDA 1190 can give an output power of 4.2W (d = 10%) into a 16n load at Vs = 24V,
or 1.5W (d = 10%) into an 8 n load at V5 = 12V. This performance, together with the F M-I F
section characteristics of high sensitivity, high AM rejection and low distortion, enables the
device to be used in almost every type of television receivers. The device has no irradiation
problems, hence no external screening is needed.
ABSOLUTE MAXIMUM RATINGS
Vs
Vi
Itj
10
Ptot
T stg , Tj
Supply voltage (pin 10)
Ihput signal voltage (pin 1)
Output peak current (non-repetitive)
Output peak current (repetitive)
Power dissipation: at T tab = 90°C
at Tamb = 80°C (free air)
Storage and junction temperature
28
1
2
1.5
5
1
-40 to 150
V
V
A
A
W
W
°C
ORDERING NUMBER: TDA 1190
MECHANICAL DATA
Supersedes issue dated 11/74
Dimensions in mm
507
6/75
CONNECTION AND BLOCK DIAGRAMS
SCHEMATIC DIAGRAM
6
~
l
t:----
q},
J
~
1,/
J'
~~~
r
It
508
r<
....
1 I
-
K
~
'--J"'--
,)
lE~fl')
==
~
-
~ -~
<>
~
~
0-
IJ
::J
~'
,.
251di2
00=80
so
J
o
o
zo
60
,
,.
,
,.
,
1)-'
80
Fig. 8 - Typical distortion vs. tuning
frequency change
Fig. 7 - Typical distortion vs. frequency deviation
G 1462
G 14631'
d
d
1'1.)
('I.)
Po =IW
Rl =16ll
"-
\
I-- I---
I--
-
YI=lmV
Rl 'I6A
Rf"IOA
10=S.5MH
\
fm-1kHz
1l,=2SO-
V
V
/
RI =lOll
10 =5.5MHz
61 ='25 kHz
Vi =lmV
\
00=80
,.
Po (W)
/
/
00=80
\
/
r\
/
/
/
V
\
~
/
o
o
>20
-so
'80 611kHz)
513
-30
-10
0
·10
.30 61 (kHz)
I
Fig.9 - Typical audio amplifier frequency response
...
Vo
Fig. 10 - Typical overall frequency response
6--1.t,65
146",
Vo
CdB)
(dB)
---
o I-4
ft
-8
!I
l-
1£
Rl-en
V
s-
Rl~n
Rt
Jl
.1'X-:
Q: 3dB
'8ll
-12
Rg_son
Cl0-220
C12-1
-16
"I
I
1
...
,.
~/f
-10
r\
\
Vi =lmV
--- -
Rl =16.11
Rt=IOA
'0 =5.5 MHz
At =t. 2511Hz cons
-20
VI -COnSt.
10
-
-
\Is -12 V
-
••
10'
I
10'
I
...
11111111
11111111
II 11111
... , .
• I
, (Hz)
10'
10
Fig. 11 - Typical supply voltage ripple
rejection vs. ripple frequency
"
G-....
SVR
(dB )
(dB )
60
60
......
=16.11
=lOll
= 2.2 kJl
I II
o
I
•
10
• t
20
11111
11111
11111111
10
11
•
10'
It
"6'
tm(Hz)
t"-=lOlnv
Vi
V'ipple=2 Vpp
=161l.
Rl
=10.11
R,
t 'ipplo =100 Hz
lit
=0
1/
I Vrippl~ == 2 Vpp
10
10'
I.....
=0
PI
2
...
,
l,...-
Rl
R,
l
&-1 67
so
20
6.
1l'
10'
Fig. 12 - Typical supply voltage ripple
rejection vs. vol ume control
attenuation
SVR
Vi
\
RC=SO~5
-!,D
...
r\
2
,e
I
I
I
o
10'
514
-10
-20
-30
-!,D
-so
-60
(dB)
Fig. 14 - Maximum power dissipation
vs. supply voltage (sine wave
operation)
Fig. 13 - Typical output power vs. supply voltage
-
G-1468
G 1469
Ptol
(w)
Vi =1mV
c- d = 10 0/0
10 = 5.5 101Hz
I m =lkHz
AI =.25kHz
QO=80
-
-
RL -S.ll
I
)
b
-
-
1/
Vi =1mV
d -10 0/0
10 =5.5MHz
I m 'lkHz
RL ·16.ll
1I
6f =!.25kHZ
QO'80
0.5
20
25
30
'is
/
V. V
o
(v)
)RL'16.ll.
/
L
1/
j
/
15
JRt'SIl.
J
15
V
VV
V. V
10
-
-
j
IJ
~
2.5
II
./
/
15
10
20
2S
30
Fig. 16 - Typical quiescent output vol'
tage (pin 9) vs. supply voltage
Fig. 15 - Typical power dissipation and
efficiency vs. output power
G--U.70
/
t5
~
Ptot
---"
I
. /V
I
G-1411
'1
Vo
(oJ.)
-l-
r-,..- V
(v)
I
/
80
10
/
60
V
I~
/
l/r;'
/
Vs (v)
/
V
5
/
/
/
20
/
V
o
o
10
515
15
20
25
30
'Is (v)
APPLICATION INFORMATION
The electrical characteristics of the TDA 1190 remain almost constant over the frequency
range 4.5 to 6 MHz, therefore it can be used in all television standards (FM mod.).
The TDA 1190 has a high input impedance, so it can function with a ceramic filter or with
a tuned circuit that provide the necessary input selectivity.
The val ue of the resistor connected to pin 7, determines the AC gain of the audio frequency
amplifier.
This enables the desired gain to be selected in relation to the frequency deviation at which
the AF amplifier's output stage must enter into clipping.
The capacitance connected between pins 9 and 8 determines the upper cut-off frequency
of the audio band.
The capacitance connected between pin 12 and ground, together with the internal resistor
of 10 kn, forms the de-emphasis network. The Boucherot cell eliminates the high frequency
oscillations caused by the inductive load and the wires connecting the loudspeaker.
For a more detailed description of the TDA 1190 and related performance refer to
SGS-ATES Application Note n. 128.
Fig. 17 - Typical application circuit
Cl
R4
INo----II--~:::::h
~16V
250,uFT16V
C5
12
.,
11
IDA 1191
4
C6
TABS
68pF
516
Fig. 18 - P.C. board and component layout of the circuit shown in fig. 17 (1:1 scale)
C 5-0039
MOUNTING INSTRUCTION
The Rth j-amb of the TDA 1190 can be reduced by soldering the tabs to a suitable copper
area of the printed circuit board (Fig. 19) or to an external heatsink (Fig. 20).
The diagram of figure 21 shows the maximum dissipable power Ptot and the Rth j-amb as a
function of the side "Q" of two equal square copper areas having a thickness of 35 J1
(1.4 mils).
During soldering the tab temperature must not exceed 260°C and the soldering time must
not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.
517
Fig. 19 - Example of p.e.board copper
area which is used as heatsink
Fig.20 - External heatsink mounting
example
COPPER AREA 35,.. THICKNESS
p.e.BOARD
Fig.21 - Maximum dissipable power
and junction to ambient thermal resistance vs. side "Q"
G 0952
Ptot
Fig. 22 - Maximum allowable power
dissipation vs. ambient temperature
Rth
CfW)
(w)
eo
B
G-
Ptot
(wI
5
I\.~~
r"i
6
4
60
~
r--
o
"!.
lIO,
~~
~
~~
~.
~ ~~.
20
~It-
...... 1....
o
20
~
~6
Ptot (lamb= 7O"C
10
'&
~
40
~
~
'l-G'
Ptnt (lamh= 55°C
~
""'"
.~~
2
2
.~
-1/1'1-
3
Rth j-amb
4
""
I\.~.>
30
40 I (mm)
."N
0
-50
518
o
50
100
150 lambicl
LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
FM-IF RADIO SYSTEM
•
•
•
•
•
•
TOA1200
HIGH LIMITING SENSITIVITY
HIGH AMR
HIGH RECOVERED AUDIO
GOOD CAPTURE RATIO
LOW DISTORTION
MUTING CAPABILITY
The TDA 1200 is a silicon monolithic integrated circuit in a 16-lead dual in-line plastic
package. It provides a complete subsystem for amplification of FM signals.
The functions incorporated are:
- FM amplification and detection
- interchannel controlled muting
- AFC and delayed AGC for FM tuner
- switching of stereo decoder
- driving of a field strength meter·
The TDA 1200 cal) be used for FM-IF amplifier application in HI-FI, car-radios and
communication receivers.
ABSOLUTE MAXIMUM RATINGS
Supply voltage
Output current (from pin 15)
Total power dissipation at T amb "'" 70 DC
Storage temperature
Operating temperature
16
V
2 mA
500 mW
-55 to 150 DC
-25 to 70 DC
ORDERING NUMBER: TDA 1200
MECHANICAL DATA
Supersedes issue dated 6/73
Dimensions in mm
519
4/74
10A1200
CONNECTION DIAGRAM
IF INPUT
N.C.
BYPASS
AGe OUTPUT
BYPASS
GROUND
GROUND
FIELD STRENGTH
METER
MUTE INPUT
MUTE OUTPUT
AUDIO OUTPUT
SUPPLY VOLTAGE
AFC OUTPUT
REF.
QUAil OUTPUT
QUAD. INPUT
BIAS
5-0398/1
BLOCK DIAGRAM
TO STEREO
THRESHOLD
LOGIC CIRCUITS
MUTING
SENSITIVITY
520
10A1200
(~
~~~~~
~
•i~
~.g
a
r.;
~
(ii"
T
~Ib
~
a;
0
§"
------i.14
f--J~
!f;;
§
~Lj r:!l
~'
--H
<---
"'"
T1t
~i1"-1
T
. r~
..~
<
~
.
..
~I=1"-1
II
;
ti,-1
;
~
iil.o;
?t
t1
i
~~11'
-~
~~
~
~L: }T-t
__
:;
__
~
__
I'
&!
0'
N
521
I
.~
~
~
~
0-
..tl
J,U
-®
~
I'
i
r:t
;
-t:.~
~ "~o
-'~'1
.
~
~
II:
~
~
~
. r~
•
§
II:
l!
;;:
"--
~
I'
.~
~'LI
~
~
~
I'
--
~
;
~
•
.'f ..
•• 1/0
'-0
8
a~
il
.'&f '.
~
"
~.
._ N}
.- .
~I
~
~O~
~
~
.
• ld.
~
•
a
• g
"
,.-
a
J
~~
-<;?-
5
&
n~
I
Ss
~
~
~
®
.. '
@-----II'
~
"
I
®-----I
!I
:
I~,FL~~
.•
I
~
. ~~
•
~
;
,
~
~
~
n
§~~
=
IDA 1200
TEST CIRCUIT
20,uF
r---U::,o=-n-=-F----+~--'{) Vs·'2V
llOkfi
470kU
'~F
FIELD STRENGTH
METER OUTPUT
t
33kll
3.9kfi
4.7k.Q
13
12
11
10
9
I
I
22pH
I
I
I
'------Ir---~.FC
OUTPUT
IOnF
IOnF
5-0626/2
THERMAL DATA
~
Rth
j.8mb
Thermal resistance junction-ambient
max
160 °C/W
ELECTRICAL CHARACTERISTICS
(Refer to the test circuit; V.
= 12 V, Tamb = 25°C)
Parameter
Test conditions
STATIC (DC) CHARACTERISTICS
I,
Supply current
23
mA
VI
Voltage at the IF
amplifier input
1.9
V
Voltage at the
input bypassing
1.9
V
Voltage at the
audio output
5.6
V
Reference bias voltage
5.6
V
V2 ,V3
V6
VIO
522
lOA 1200
ELECTRICAL CHARACTERISTICS
(continued)
Test conditions
Parameter
DYNAMIC CHARACTERISTICS
Vi(thresholdl Input limiting voltage
(-3 dB) at pin 1
Vo
Recovered audio
voltage (pin 6)
d
Distortion
S+N
N
Signal and noise
to noise ratio
AMR
Amplitude modulation
rejection
Vi
AV l5
AV i
AI7
6f
fa
fm
Af
= 10.7 MHz
= 1 kHz
= ±25 kHz
-
Vi === 50 JJ.V
10.7 MHz
fa
fm
1 kHz
Af = ±25 kHz
Vi === 1 mV
10.7 MHz
fa
fm
1 kHz
Af
±75 kHz
=
=
=
Vi === 1 mV
10.7 MHz
fa
fm
1 kHz
Af
±25 kHz
0.3
m
=
=
=
=
Vi === 10 mV
10.7 MHz
fa
=
AFC control slope
AV13
AV i
Field strength m ter
output slope
Vl3
Field strength meter
output sensitivity
JJ.V
140
mV
0.5
%
60
dB
40
dB
10
mV
40
dB
1
JJ.A
-kHz
42
dB
1.7
V
=
=
Input voltage for delayea
AGC action(pin 1)
AGC control slope
12
Vi
fa
= 1 mV
= 10.7 MHz
523
IDA 1200
Typical relative recovered audio and
noise output versus input voltage
Typical capture ratio versus input
voltage
"TITmr"nm~'lnllmrlllll-lnITm~nTmmN
1--++l-HtIl--H+tttttt--++++-ItHt-l-t+ttttll-t+tHtHI(d B)
~~~rH~~oIJ~I~lhoU~-H~
I--++l-Htll-I!-l+tttttt--++tt+tttt~~ :~~~z
&-103011
CAPTURE
RATIO
111111111
(dB)
11111111
fm=lkHz
Vs =12 V
fo = lQ.7MHz
Tamb=25 D C
6.f =.! 25kHz
-20
I--J-LLLftIN-H+tttttt--+++++ttttfo= 10.1MHz
Tamb=25CC
·-ftlI-A.-tt+ttt~++ttttttt.M =! 25k Hz
1--++l-Ht~-H~tttt--++++-ItHt-l-t+ttttll-t+tHtHI-40
1--++l-HtHlH--H+1'ttlll--+O""'d"B·. 14oinv,'-'+-ItHt--+-++HllII
I--++l-Ht~-H+tttttt--+nli
N
I--~+W~++~II-++hnlm-III-H~OO--H+tt~-oo
CAPTURE RATIO
1111
1111
1111
111111111
I
I11111111
10'
10'
Vi
10'
10
CuV)'
Typical AGC (VIS) and field strength
meter output (VI3) versus input signal
Typical AFC output current versus
change-in tuning frequency
G-I021Jl
G-l0ZS/2
AFC
M=O
17
V. =12V
f,=tO.7MHz
Tam b=25°C
v
'Is =12'1
Vi =10mV
(pA)
L
lamb = 25°C
60
40
r-
VIS
20
\
-20
-40
V13
-60
-BO
I-'
10
10'
10'
10' Vi (!lV)
-tOO
524
-80
-so -40
-20
20
40
if (kHz) 100
TDA1200
Typical AMR (relative to the value of
fo= 10.7 MHz) versus change-in
tuning frequency
Typical amplitude modulation
rejection versus input signal
G 10281
AMR
AAMR
(dB)
(dB)
I
I
-1
34
I
Ii
~ ~
Vj=200pV
38
!
V;=20}JV
i
I
-3
Vs=12V
22
Vs =12 V
Tamb= 2S·C
r.1O.7MHZ
-4
m:;:Q.3
-5
m=lkH:z:
6f=!.25kH:z
/
14
11111
Ifill
10
2
10
"611
2
..
68
10 2
2
II
68
2
'Kl"
1()3
I
I
-2
26
I
I
I
I
'\
30
1S
I ~; ~2mV. U.
I
I'
42
,
10
-6
68
~ ~~m=b,:~;oc
I i Af~'25kHz
i
m= Q3
If'itlI
11111111111
Vj(pV)10 5
-75
-50
-25
I!'I
25
50
75 &t(kHz)
APPLICATIONS
PC board and component layout of the circuit on next page (1:1 scale).
CSo
®
-&
@~@
-t:::Jli7
n
PI?
,,~'RS
a
@
RI
@
(:5-0024
525
I
10A1200
Typical application circuit
,-------------1
.~
?
lOOn.
I:
~
=~OnF
C1
FIELD
STRENGTH
.L
1
In,,,F
.. 1
1
"l~F
±,onF
-'--
F
TUN
J
AGC
2i~pF
II
270P;
:-"r;;c
,--
=
CERAMIC
FILTER
-----
'20!!Q
.uea
I
I
I
I
R'
'Okll
1-·
I
l'~r
15
14
12
11
..L.
--------...,I
-~
-- _.:.:~..2:!....!! - .....
9
LlI
,
2
I
'~~F*
'---~
~~nF:~
3
4
••
[ **
R1
['
•
1
ni.icJi.
•
I
I
I
I
I
=~~pF
:
R2
10
CONTROL
221JH :
T ~,' J~30Jl
R'
I
I
13
MUTE
p,
19k1l
L
16
410""
R3
r----
R6*
Vs= tty
. See
Note(l)- .
R4
:=~~F
=:1onF
C6
TOAll DID
"
AMP!..
'c9,i- _._._.
I
10"."
_.
I______ ~
_______
J
J.
5-0402/1
NOTES: (1) When V. is less than 12 V, a resistor RS:.= 12 k!l must be connected
between audio output and ground, and the Integrator capacitor C5 must
be changed to 10 nF, as follows:
4.7kll
pin 6
o--C:J-.......- _ - O V a
5-040'
* Dependent on field strength meter sensitivity.
** Dependent on the tuner's AFC circuit..
526
lINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
TV VERTICAL DEFLECTION SYSTEM
The TDA 1270 is a silicon monolithic integrated circuit in a 12-lead quad in-line plastic
package. It is desi.gned mainly for driving complementary vertical deflection output stages
in colour TV receivers.
The functions incorporated are:
- oscillator
- voltage ramp generator
- high power gain amplifier
ABSOLUTE MAXIMUM RATINGS
V5
V4
V8
Supply voltage (pins 2 and 5)
Voltage at pin 4
Sync. input voltage
V 10
Power ampl ifier input voltage
~ 10
~Io
Ptot
T stg , T j
40
41
± 12
I-0.510
Output peak current (non-repetitive) for t = 2 ms
, @ f = 50 Hz t ~ 10 J.Ls
Output peak current
@ f = 50
t> 10 J.LS
t
HZ:
Power dissipation: at T tab = 90°C
at Tamb = 80°C (free air)
Storage and junction temperature
2
2.5
1.5
5
-40 to 150
V
V
V
V
V
A
A
A
W
W
°C
ORDERING NUMBER: TDA 1270
MECHANICAL DATA
Supersedes issue dated 11/74
Dimensions in mm
527
6/75
CONNECTION AND BLOCK DIAGRAMS
,-------,-----0·'.
REGL'LATED
VOLTAGE
Note:PIN3lnternally connected,must bE' lE'ft open
SCHEMATIC DIAGRAM
02
21
02
Rl
528
THERMAL DATA
Rth j-tab
Rth j-amb
Thermal resistance junction-tab
Thermal resistance junction-ambient
12
70*
max
max
°C/W
°C/W
* Obtained with tabs soldered to printed circuit with minimized copper area
ELECTRICAL CHARACTERISTICS (Refer to the test circuits, Vs = 32V,
Tamb = 25°C unless otherwise specified)
Parameter
Test conditions
STATIC (DC) CHARACTERISTICS
-19
-110
-112
Oscillator bias
current
V9 = 1V
0.2
1
JJ.A
1a
Amplifier input
bias current
VIO= 1V
0.15
1
JJ.A
1b
0.05
0.5
JJ.A
1a
Ramp generator
bias current
Vs
Supply voltage
V4
Quiescent output
voltage
V6 , V 7
10
R2= 10 kfl
Vs = 32V, R1=30kn
Vs=10V, R1=10kn
Regulated voltage
/,;V 6 /';V 7
--Li ne regulation
/';V s ' /';V s
_.
Is
~
Iv
Supply current
Iy
c
-
1a
8
4
8.8
4.4
9.6
4.8
V
V
6
6.5
7
V
Vs =10t040V
DYNAMIC CHARACTERISTICS
V
1.5
mV!V
I
lb
0.5A
rnA
70
_._Peak to peak yoke
current (pin 4)
--
1
Peak sync. input
voltage (positive
1
~~tive)
529
I
I
(f = 50 Hz)
A
r---
Va
I
V
2
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Vg
Test conditions
Min. Typ. Max. Unit
Peak to peak oscillator sawtooth
voltage
2.4
V
Sync. input resistance at pin 8
Vs=lV
3.5
kS1
t f1y
Flyback time
Iy= 0.5A
0.7
ms
of
Pull-in range
(below 50 Hz)
7
Hz
of
tNs
Oscillator frequency
drift with supply
voltage
Vs = 10 t040V
0.01
V-
Oscillator frequency
drift with tab
T tab = 40 to 120°C
temperature
0.015
Hz
°C
Rs
of
6T tab
2
Fig. 1a ~ Static test circuit for measurement of -Ig. -112 and V4
9
rOA 1270
Fig.
Hz
Fig. 1 b- Static test circuit for measureMent of -1 10 • V6 • V7 •
6V 6 /6V s and 6V 7 /6V s
4
9
5V
530
rOA 1270
10
Fig. 2 - Dynamic test circuit
r-------~----~--~--------------~.~
C.
OJ,..F
"I-~
Jl
SYNC. "PUT •
V
lOA 1270
___-.J
C9
~~~----~~H
A9...kA
"
es_
Al_
390ldl
D.',.F
CI0.1,uF
5-100&
Fig. 4 - Relative quiescent voltage variation vs. tab temperature
Fig. 3 - Relative quiescent voltage variation vs. supply voltage
-
G 1472
~
4
G '473
I I I
I I I
('/ol
Tamb
Vs • 3:zV
=2S'C
0.2
/'
o
......
-0.2
L
/
......
o
.....-;
...
.
'"
-
'"
-Q.4
10
20
30
Vs (V)
20
531
60
80
.....
Fig. 5 - Regulated voltage vs. supply
voltage
Fig. 6 - Regulated voltage vs. tab temperature
-
G 1474
G 1475
Tamb .2S·C
6.54
6.52
..... 1-"'"
6.50
6.46
......
L...- ......
L...- ~
..... .....
Vs .32V
6.56
6.48
6.44
6.42
6.40
10
30
20
v.(V)
20
G.1476
80
u
I I
(Hz)
Tamb = 25'C
V.
0.2
=32V
0.4
,.,.
:,.....
o
-0.2
60
Fig. 8 - Frequency variation of unsynchronized oscillator vs. tab
temperature
Fig. 7 - Frequency variation of unsynchronized oscillator vs. supply
voltage
If
(Hz)
40
--
_......
.....
o
...... 1'
-0.4
-o.s
-0.4
10
20
30
v.(V)
20
532
40
60
80
100 Ttab('C)
APPLICATION INFORMATION
The high current capability of the TDA 1270 allows low current gain transistors to be used
in driving low impedance yokes. The oscillator is directly synchronized by the sync. pulses,
therefore its free frequency must be lower than the sync. frequency. The sync. input (pin 8)
can be driven by positive or negative pulses.
The quiescent output voltage (pin 4) is fixed by the voltage feedback network R7, R8, and
R9 (refer to fig. 9) according to:
R7 + R8 + R9
R9
Pin. 10 is the inverting input of the amplifier and its voltage is VlO "" 2V.
Fig. 9 - Typical application circuit for large screen colour TV sets
r-___._--~-___._-----------~--_o·vs
C7
.3
220
kll
.13
In
SYNC INPUT
• TDA1270101--c--~_ _-1"-l=---t
H::=J'-;--1""-D
.,4
III
YOKE
"
C9
P2
*R2
to
Correction
Circuit
4000JJF/20Y
150
kll
:r:: 3.5mH ImH
~ 3.2
1.
v. 32
25
RlO*
680ka
.B 18
R11 0.33
R12 10
22
V
k.!l
0.22
Jl
.S
.!l
Typical performance of circuit in fig. 9
YOKE
I.
Supply current
Flyback time
Iv
Maximum scanning current (peak to peak)
".
Operating supply voltage
Ptot
TDA 1270 power dissipation
Ptot
Output transistors power dissipation
!=Ith tab-amb Heatsink Rth required for TDA 1270
Rth case-amb Rth of output transistors heatsink (total)
t lly
3.5 mH
3.25 fl
1 mH
1.6 n
0.5 A
0.7 ms
4A
28 to 36V
1.5W
11 W
35°C/W
6°CIW
0.8 A
0.6 ms
7.5A
23 to 27V
2W
13W
30°C/W
5°CIW
Stable continuous operation is ensured up to an ambient temperature of 55°C
533
Fig. 10 - P.C. board and component layout for the circuit of fig. 9 (1:1 scale)
Q2
Q2
Q1
YOKE +Vs
GND
Q1
EMITTER BASE EMITTER
..::Q:.:.1_~.:::Q~2 BASE
YOKE SYNC.
INPUT
COLLECTOR
Fig. 11 - Typical application circuit for 12" to 17" (110°,20 mm neck) B & W TV sets
r-_-r_.-:-_ _-r_ _ _ _ _ _ _ _ _-o. Vs .,Z5V
C9
1OOO.uf/16V
YOKE
9Jt
17.SmH
.9'
5.6kll
14
534
Typical performance of circuit in fig. 11
15
t lly
Iy
Vs
Ptot
Supply current
Flyback time
Maximum scanning current (peak to peak)
Operating supply voltage
TDA 1270 power dissipation
110
0.8
0.9
23 to 27
2.4
mA
ms
A
V
W
For safe working up to Tamb = 50°C a heatsink of Rth = 30 °C/W is required and each tab
of the TOA 1270 must be soldered to 1 cm 2 copper area of the printed circuit board.
Fig. 12 - P.C. board and component layout for the circuit of fig. 11 (1: 1 scale)
+Vs
GND
YOKE
YOKE SYNC. GND
535
Fig. 13 shows an output stage employing two NPN power transistors and a service switch
that stops the vertical deflection during convergence adjustment.
For a more detailed description of the TDA 1270 and related performance refer to SGSATES Application Note N. 129.
Fig. 13 - Vertical deflection circuit employing two NPN power output transistors
r---~------~----~r---------------------------------~r------{)'Vs=32V
CI
C3
lOO~F
35V
4
TABS
R3
220
kn
11 1---4-----.
SVNCINPUT
8
03
BD663 or BD 437
RI3
In
C10
TDA 1270 10 .--_-:I:-1.5-n-F...-----I ___ ~
RI4
In
.--___._---19
5.6kn
* Tolerance 5'/,
536
5-101411
to
Correction
Circuit
Fig. 14 - Vertical deflection circuit for large screen colour TV employing the integrated
darlington pair TDA 1410
30V
R9
2.7kn
4
SYNC. INPUT 8
lOA
1270
C4
33pF
11
4
C5
J:,1.5nF
Cll
10
Q.47}JF
9
R12
In
RIO
22kO
5-1188
Typical performance of circuit in fig. 14
(V s = 30V; Ry = 3.25 fl; Ly = 3.5 mH)
Is
tfly
Vs
Ptot
Ptot
Rth case-ilmb
I
Supply current
Flyback time
Operating supply voltage
TDA 1270 power dissipation
TDA 1410 power dissipation
Thermal resistance' of TDA 1410 heatsink
0.5
0.8
28 to 36
0.5
11
6
A
ms
V
W
W
°e/W
MOUNTING INSTRUCTION
The junction to ambient thermal resistance of the TDA 1270 can be reduced by soldering
the tabs to a suitable copper area of the printed circuit board (fig. 15) or to an external
heatsink (fig. 16).
Fig. 17 gives the maximum power that can be dissipated (for Tamb = 55 and 70 °e) as a func·
tion of the side "s" of two equal square copper areas having a thickness of 35 Il (1.4 mil).
During soldering the tab temperature must not exceed 260 °e and the soldering time must
not be longer than 12 seconds.
The external heatsink or printed circuit copper area must be connected to electrical ground.
537
I
Fig. 16 - Example of TDA 1270 with
external heatsink
Fig. 15 - Example of P.C. board copper
area used as heatsink
COPPER AREA 35)-1 THICKNESS
p. C. BOARD
Fig.17 - Maximum power dissipation
and junction-ambient ther·
mal resistance vs. "s"
Fig. 18 - Maximum allowable power
dissipation versus ambient
temperature
G 1479f1
G-1478/1
Rth
Ptot
(W)
('C/Wl
8
80
6
60
j·amb
R
4
f
""i-.....
I
1--l-l-+Pt!,QO!Lt;..:(T:!1-amb
4
=55'C)
,
40
---t
o
o
10
20
30
40 s (mm)
-50
538
50
100
150 Tamb('C)
LINEAR INTEGRATED CIRCUIT
5 V VOLTAGE REGULATOR
>
• OUTPUT CURRENT
600 mA
• TIGHT TOLERANCE for OUTPUT VOLTAGE
•
•
•
•
LOAD REGULATION LESS THAN 1%
RIPPLE REJECTION 60 dB TYPICAL
LOW OUTPUT IMPEDANCE
EXCELLENT TRANSIENT RESPONSE
• HIGH TEMPERATURE STABILITY
The TDA 1405 is a silicon monolithic voltage regulator in..Jedec ,TO-126 plastic package
which can supply more than 600 mA. It incorporates the following functions:
- internal overload protection
-
short-circuit protection
The TDA 1405 can be used for voltage regulation in consumer applications.
ABSOLUTE MAXIMUM RATINGS
Input supply voltage
Total power dissipation at Tamb
~
25°C
at Tease ~ 25°C
Storage and junction temperature
Operating temperature
MECHANICAL DATA
14
V
W
W
-55 to 150
°C
a to
°C
20
1.25
70
Dimensions in mm
Pin 3 cQnne<:t~d to metal- part of. mounting surface
(t} Within. this
r-eglO(.1 the- cross· sedlon Of the le-ads IS
Supersedes issue dated to/T3
uncon!roU~d
539
6/75
BLOCK DIAGRAM
SERIES
1 - - - - . - - - - _ - - { 2 ) 2 Vo
5-0371
SCHEMATIC DIAGRAM
V;
:-----i ;--------------------i
--
---------~----I
R9
E
~~~----~----~,-L~----~~~Q9
Rl3
I
I
_____ ...1
-----., I
RIO
C2
r06
B
Rl4
R8
~ _____ J !____________________
'- ____________
540
J
5-0433
TEST CIRCUIT with output characteristic
V Axis
osciHoscopt"
X Axis
oscilloscope
500n
In
5_0521
Output
~
voltage
50
mV
Change
SOOmA
lOrnA
forego
loMAX
~
10
I
5-0436
I
I
,I
THERMAL DATA
Rth j-case
Rth j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
541
max
max
9 °C/W
100 °C/W
ELECTRICAL CHARACTERISTICS
(T j = 25 aC, Vi = 12 V unless otherwise specified)
Parameter
Va
!:iVa'
Load regulation
I •
a
Regulated output
current
loMAX'
Maximum output
current
7.5 V ~ Vi ~20V
10 = 10mA CL = 1O ILF
Min. Typ. Max. Unit
4.75
10 = 10 to 600 rnA
CL = 1O ILF
!:iVa
-Va
~
1%
600
5
5.25
V
0.3
1 DfoV
850
rnA
Teo>e = 25 ac
Tease = 70°C
0.93
1
1.2
A
A
Output short-circuit
current
Va = 0
200
250
rnA
Id
Quiescent drain current
Vi = 20V
!:iVa
Line regulation
Vi = 7.5 to 12 V
10 = 10 rnA CL = 1O IL F
5
10 = 10mA CL = 10 ILF
Tamb = Ot070°C
0.5
mV/O(
10 = 10 rnA
CL " = 20 ILF
B = 10 Hz to 100 kHz
70
ILV
15
mil
60
dB
Ise
,
Output voltage
Test conditions
!:iVa
!:iTamb
Temperature coefficient
eN
Output noise voltage
10 =0
Ra
Output resistance
10 = 600 rnA
SVR
Supply voltage rejection
Vi = 10V
10 = 10mA
!:iVi = 4 V peak to peak
f = 100 Hz CL = 10 I-tF
Refer to the test circuit
" Tantalum capacitor
542
rnA
9
46
23
mV
Typical output voltage versus outpu.t
current
61035
Power rating chart
I I
Ptot
(W)
Vo
(v)
14
)
.......""rly
/
I
I
~"I"'r~
12
/
I
~1y~04r
,..."S,,,,,
..... l - I--
10
,.-
V
V
-----
1/
~
1
.J
V
I-- I-
FREE'AIR
!
200
I I
0100
800
600
1000 lo(mA)
Typical regulated output current
versus junction temperature
G
10
20
30
40
50
60
Tamb ("e)
Maximum output current versus
junction temperature
1152
-
G 1153
lo{reg
(A)
Vi
= 12V
_.
0.9
r---..1-.,
I
r--....
"'"
1'-...
~
I":
0.7
i
1'-...
......
1'-...
~
0.7
I'
0.6
0.6,
-I,/)
I
Vi =12V
!lVo =1".
-20
20
40
60
so
100
120 Tj ('C)
-I,/)
543
-20
20
'40
60
eo
100
120
T) ('C)
Typical dropout voltage versus
junction temperature
Typical short-circuit current versus
input voltage
-
G 1154
G 1040
(V)
260
In ,SOOmA
~
2.5
y
~= 400mA
220
~
10 = 200mA
.,...
6~
IS
....
Tj,25'C
....
V ....
V
/'
180
....
=1-'.
140
100
-20
20
IIJ
60
80
100
120
140 TJ ('C)
10
Typical short-circuit current versus
junction temperature
G-1155
Id
(mA )
~~-+~+-~~-+~+-~~-+~+-~~
16
18 Vj(V)
G- 1156
I
I I
10 ==
260
14
Typical quiescent drain current
versus junction temperature
Ise
(mA)
12
V· ,12 V
0
9.5
240
220
No,20V
200
f"
180
N
~
Vj =12V
160
8.5
~
140
120
")"0.,
100
-20
20
40
60
80
100
120
140 T)<'C)
-20
544
20
IIJ
60
80
·100
120
140 Tamb('C)
Typical quiescent drain current
variation versus junction temperature
Typical supply voltage rejection
versus frequency
G-1157
G- 'O'o~
61d
SVR
l
I
I
(~A) ~-+~~+-~-+~~+-~~~~+-~-i
(dB)
I
I
-
..,....10-
t.,...-l--
62
l/
60
Vi =lOV
bVj =4Vpeak to peak
10 =10mA
to!': 50mA
~
~
-
100
58
56
20
-20
40
BO
60
100
120
Typical supply voltage rejection
versus regulated output current
10
,
46.
46'
140 T J ("C)
6 B
104
10'
10 2
2
468
f (Hz)"
10 5
Typical output resistance versus
frequency
G 10105
G- 0'6
SVR
(dB)
Vi =10 V
60
58
I
)
........
t-....
AVj =4Vpeak to peak
f = 100 Hz
4
I--
1"
t-...
56
Vi =12V
CL D.1JJF
10 ·100ml
=
2
,
10 2
.......
r-....
4
l'
2
V
.
t"-..
54
""
10
...... 1'-..
6
4
52
2
I IIII
50
100
200
300
400
4
500 lo(reg)(mA)
545
6'
10
4
III
6.
f (kHz)
Typical line transient response
AVj = 5V
Vj=9.5V
AVo = 50mV
Vo= 5 V
dz
C
/
1\
I
......
I'--..
roons lOOns lOOns lOOns lOOns
5-0437
APPLICATION INFORMATION
Typical connection circuit
Vi
TDA1405
1---,---(;
10pF
Ci
5-0522
546
Vo= 5V
APPLICATION INFORMATION
(continued)
Circuit for increasing output voltage
R2
Vo= VI (1+""R1) + Id ·R2
Vi
TDA1405
Vi = 16 V
Id = 9 rnA
tild
tiTamb
--= -7 fJ.A/oC typo
tild
tiV.
= 30 fJ.AIV typo
o
5-0523
Circuit for increasing output current
Vi
Vi = 12V
loMAX= 5A
Ql
vo=5V
o---~--~
r------------------~--_O
Ro""'2rnil
01 = PNP transistor
3.311
hFEOl ~ 20 at ICOI = 5 A
TDA1405
10,uF
I
5- 0524
Switching regulator with short-circuit protection
Vo = 5V
lo~4A
~VO "'" 100 rnV peak to peak
f"'" 10 kHz
v,
4W
O.2n
27 n
Po
T] =--""'65%
Pi
Vi = 10to 20V
01 = BOX 70
02 = BC 116
01 = Diode with IFM = 5 A
L""'1.5rnH
547
,
LINEAR INTEGRATED CIRCUIT
.....,.......
~: , ) . '~,;:,."~:
..',:":,..,•..•.•............•••... .....
\
:
"':'-~'
;' ':.:..\"..•....•......:':..';.:.•.....;"...."'.,....••.;•...'.,:,.•........ "" ....•.•:..,.'.: •..........• '.:.. :.'.•...:::."""'.....•.':\... .•......':":".:.:'......•
.-
.... .•..... ...
•..
...."':•... '
".;"
TDI1410
PRELIMINARY DATA
MONOLITHIC QUASI-COMPLEMENTARY DUAL DARLINGTON IN
PENTAWATT® PACKAGE
The TDA 1410 is a monol ithic integrated circuit in Pentawatt® plastic package consisting of
a pair of quasi-complementary (NPN-PNP) darlingtons with the associated biasing system.
Each darlington' can deliver a current in excess of 3A and can withstand a supply voltage
of 36V. The device is intended for applications as:
- booster for operational amplifier
- DC motor driver
- stepping motor driver
- output stage for AC power amplifier up to 12W in Hi-Fi systems
- output stage for vertical deflection systems in colour TV etc.
ABSOLUTE MAXIMUM RATINGS
V CEO
V CBO
10
10
IF Dl
IF D2
Ptot
T j • T stg
Collector-emitter voltage(lB = 0)
Collector-base voltage(I E = 0)
Output peak current (repetitive)
DC output current
01 forward current
02 forward current
Total power dissipation at T case = 60°C
Junction and storage temperature
36
50
3.5
3
0.3
v
V
A
A
A
3
A
30
-40 to 150
W
°C
ORDERING NUMBERS: TDA 1410 H
TDA 1410 V
MECHANICAL DATA
Dimensions in mm
549
5/75
I
CONNECTION AND SCHEMATIC DIAGRAMS
2o--.._---t-C
'----.----04
5·1128
THERMAL DATA
Rth J-case
, max.
Thermal resistance junction-case
3 °C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C)
Parameter
V CEO
V CBO
Test conditions
Collector-emitter
breakdown voltage
Collector-base
breakdown voltage
Ic = 500 IlA
V (B R)CSSO Collector-substrate
breakdown voltage
hFE(NPN) DC forward current
transfer ratio
hFE(PN'P)
DC forward current
transfer ratio
Min. Typ. Max. Unit
36
V
50
V
50
V
Ic =2A
V CE = 5V
2000 5000
-
Ic = -2A
V CE = -5V
800 2500
-
550
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test conditions
Quiescent drain
current
Id
Collector-emitter
saturation voltage
(NPN-PNP)
VeE (sa!)
VBE(NPN) Base-emitter voltage
(pins 2-4)
Min. Typ. Max. Unit
12 - 1 = 5 rnA
V, = 34V
Ie = 12AI
hFE= 200
20
mA
11.71 12.31
V
Ie =2A
2
V
VBE(PNP)
Base-emitter voltage
(pins 1-4)
Ie = -2A
-0.9
V
V F(01)
D 1 forward voltage
V 3-5 = -34V
I F(01)= 0.3A
1.5
V
V F(02)
D2 forward voltage
I F(02)= 3A
5
V
f TlNPN)
Cutoff frequency
Ie
fT(PNP)
Cutoff frequency
Ie = -2A
=
2A
V eE = 10V
10
MHz
V eE = -10V
5
MHz
Fig. 2 - Typical quiescent drain current VS. case temperature
Fig. 1 - Typical quiescent drain current vs. 12 - 1
-
G·164411
G 1645/2
I
)
V• • 34 V
Tease
40
=2S'C
30
/
30
./
V
.... I--"
20
20
/
,/'
o
'"
'"
I
I
I
V
Vo'3 V
'2_1· 5mA
/
10
..... 1'
r-
10
/
6
'2-1 (mA)
551
o
20
40
60
80
100
120 Teas.(·C)
I
Fig. 3 - Typical quiescent drain cur·
rent vs. supply voltage
Fig. 4 - Typical DC current gain vs.
collector current
-
G 16fJOfI
Id
G 163M'
(rnA
VCE=5V
40
'2_1=5mA
10'
Tca s e =2Soc
30
NPN
,
•
PNP
\- -
20
10'
•
10
.,
10'
o
10
20
30
40
v.
(V)
Fig. 6 -
Fig. 5 - Typical VCE(sat) vs. collector
current
-
..
Ie (A)
Typical V BE vs. collector
current
G 1627
Va(U t
G 1628"
(V)
veE
= 5V
4
1
hFE 200
./
NPN
/
. . . .V
...,...,
-
i---"
~
o
o
552
--
......-
-
V
/'
~
./'
./
,
Ie (AI
Fig. 8 - Typical pulse response
(falling edge)
Fig. 7 - Typical pulse response
(rising edge)
,
)
-H-t--+-~
I
,
,
t-
)
,
1-+1.+-,
30
20
l_'--ct-I NPUT PULSE
20
,
1
!
'
.
\~
IT,
.
I
i
a
0.2
0.4 Ir
0.3
R~SP
-YOAI41a
J '
I
(.us)
T
1
0.6
0.4
0.2
NSE
!I
INPUrP~W-;-
ITTT
0.8 If
(,us)
Fig. 10 - Safe operating areas
Fig. 9 - Typical output voltage swing
vs. freauencv
,--;-;-rrnm--'I-;-'-TTTm---r-rrG"'-rr'6m
7 O/l
G 163'511
Ie
(vpp)I--++++I-H+l---H
IH-++++t+--HH-+++Hi
8
r-'----i Teas@' =25-C
(A),~_
I
30
1
I
~.
!
Vo
r-
Vs=!.1? Y
mill:lP-'-l-JT
~m"
10
10
0.1
D_
RL -4A
-+ \ .-j:
'-TDAI410 RESf'1 NSE
o
.1-'
t-+-++.l-+-+--+
H-+-.!-j : ' i
H=
:VS=t17V
-
G t66811
,
-JR L =411.
+
40
G 1669/1
I !-.1- I.ttl
_
I
IC MAX (PULSED)
W~PERATION
e-
IC MAX (CONTINUOUS)I
I
I
,
1ms
iI
500ms
t
~\
'\.\\ \ . - -
D C OPERATION-
,~[--,aams
=-~Egm~m~ :.:f
1"--:
=-:-~-:
:
._____ *. ___ ~L~=-"'~----+~_--_-_-__ ~ t-·· f1
,--RL =4ll.
I--+-++H+*-++I-+I~vs =117V
o
,
10'
10'
..
10'
FOR SINGLE NON
REPETITIVE PULSE
--
--
r----.--- -
. ,.
,
10
f (Hz)
553
.
VCE (V)
I
Fig. 11 - Derating characteristic
P IOI
(WI
~
30
~
~'"
~~
~
20
\~
~
I~
I\.
10
o
.so
o
so
100
Tamb
reI
APPLICATION INFORMATION
Fig. 12- Hi-Fi audio amplifier with short circuit protection
100
J:~F
1
_ _ _ _ _ _ _ .J
5-",,/2
554
Typical performance of circuit in fig. 12
Parameter
Output power
Po
B
Id
d
f
Vs
Vs
=1%
Gv = 30 dB
= 40 to 15,000 Hz
=25V
RL=4n
= 27V
RL=an
d
f
Vs
Vs
=
=
=
=
Vs = 25V
Gv = 30dB
Drain current
Vs
Po
Vs
Po
=
=
=
=
d
.. ,
o
II
Vs =25V
RL = 40
1.2
TT
w
w
20 to 100,000
Hz
960
rnA
575
rnA
~ig. 14 - Typical distortion vs. out·
put power (R L = 4n) G-1636
~
I
16
12
FlL = an
('10)
I
W
w
RL=4n
25V
law
27V
12W
,
7(
12
9
RL=4n
Fig. 13 - Output characteristics of the
protected class B stage G 16&512
!I
10
a
10%
Gv = 30 dB
40 to 15,000 Hz
25V
RL=4n
27V
RL=an
Frequency response
(-3 dB)
;17
Min. Typ. Max. Unit
Test conditions
IIIIII
I
_._15kHz
1kHz
---40Hz
I-..
NPN
DAR INGTON
0.8
o
0.6
PNP
DARLINGTON
1"--
-1
IiI
r:/
0.4
-2
~
-3
0.2
'10....
o
-4
o
F=:.:t-
I
10
20
-20
-10
10- '
o
555
. .. ,-
••• 10
• ••
Po (WI
Fig. 16 - Sensitivity vs. output power
(R L =4n)
Fig. 15 - Typical distortion vs. output
power (R L = 4n)
-
-
G 1638/1
G 1637
d
('/,)
II
Vi
(mV)
V• • 25V
RL .41\
I =1kHz
G 'JOdB
-
Vs • 25V
H- RL = 4fl
H- f =1 kHz
H- Gy '30dB
300
f- -
v
6
200
4
1/
100
. ..
o
,
.. ./
,
10
1
..
J
o
Po (W)
=
-
G 164011
d
('/.)
(W)
8
6
I
1
-
80
10
16 Po (W)
12
Fig. 18 - Typical distortion vs. output
power (R L
8n)
Fig. 17 - Typical power dissipation
and efficiency vs. output
power (R L = 4n)
G 163'
PIOI
8
4
60
0,6
40
0.4
20
0.2
o
o
V•• 27V
RL' all.
Gy' JOd8
-'-15kHz
- - 1kHz
---40 Hz
''I.
4
Vs ·25V
R • 4V
I
o
4
8
12
16
Po(W)
556
-- - -.
~--
• •
-
"'-
..
Po (W)
i·:>~,;:;,;.,;);:'!;'1~f .,.h.
;
' " , '~."
,;
".
,'- >' 1.~ .. >, \(,' ".,\.,
Fig. 19 - Typical distortion vs. output
power (R L = Sn)
Fig. 20- Typical sensitivity vs. output
power (R L
sn)
=
d
Vi
('1.)
11111
,- f--- 1---- -- I-- 1----
(mV)
Vs =27V
Rl= a1l.
I = 1kHz
G = 30dB
-
I
- - - ,-I--
I
300
250
6
./
V
200
c- -
4
150
...
o
10
Vs' 27V
Rl= an
f = 1kHz
/
100
50
/
/
I
G. =30dB
I
I
I
0
Po (W)
Fig.21 - Typical power dissipation
and efficiency vs. output
power(R L
Sn)
r--- -r--- -r--- - r -
6
12
9
Po
(W)
Fig. 22- Typical output power vs.
supply voltage
=
I
G 164311
, ./
P tot
(W)
'l.
Po
('/,)
(W)
60
15
d.l'1o
Gy =30dB
./
V
". 1/ ...... t--..
P t
1/
4
1/
/
>-
>
/
i'....
'l.
11
I-I--
40
.......
15kHz
/
~40Hz
10
30
---- I--
II
20
v. = 27V
I
1/
Rl
=an
I
·lkHz
a
4n
10
~
Y
r
15kHz
sn
-I--
I
6
I'l
-
IL 1
o
50
o
10
12
Po (W)
0
10
557
15
20
25
Vs (V)
Fig. 23 - H-Fi stereo amplifier with preamplifier-equalizer for ceramic pick-ups.
The final stage is identical to fig. 12.
"
,:.. _____________ J:
Fig. 24- Booster for operational amplifier
.r
D.l"F
--- - - - - --I
I
I
$100jAF
R
Rt
-Vs
1 .. 112,
558
Fig.25- L 141 + TDA 1410 output
voltage swing vs. frequency
Fig.26- L 141 +TDA 1410transient
response
o'6Im
G-Ile&
.a
RLliI 4
Ys .. !l' y
30
RL -4Jl.
Vs="7V
.14V
90~.
f20 L141·TDA1410
L141
o
\.
\.
o
10'
. ..
\
-1'Y
,
..
10'
. ..
,
i!:
~
RISE
IME
o
(Hz)
1\
i
iff
I
\
10
...
~
20
40
60
80
100
Performance of circuit in fig. 24
L 141 + TDA 1410
± 18V
Max. supply voltage
Max. power dissipation
Input offset voltage
Input offset current
Input bias current
Voltage gain
Max. DC output current
30W at T case = 60°C
5mV
~ 200 nA
~ 500 nA
;;;. 86 dB (R L = 4n)
3A
~
559
120
t
(ps)
I
Fig.27 - Position control of DC motor
L-----~--------~--------------------~------------------------~~o·vs
5-1I3Vl
Fig.28 - Stepping motor driver
B
G.
T74193
Q<
UP
f---t-H---
Gb f-~-ti--T---j
f----+'--+rl
DOWN
CLOCK
FORWARD! BACKWARD
560
Fig.29- Bidirectional speed control of DC motor
r---c=J-----~-----~--------------~O·~
470
36
kO
R,
~2
O.1,..F
-11-
VOLTAGE
REFERENC
470
o-----~+---~~-+--~--~==~--~--+_--~~--_r__o~
Fig.30 - Programmable supply voltage
,Vs
LOGIC
INPUTS
j---
---
DAC
6
4
RL
5-1132/2
561
I
Fig.31 - Output stage for vertical deflection system
.V,
lOV
C9
CIO
cn
47IJF
At2
tn
An
nUn
s-uso
562
LINEAR INTEGRATED CIRCUIT
TOA 1412
12V VOLTAGE REGULATOR
•
•
•
•
•
•
•
OUTPUT CURRENT > 500 rnA
TIGHT TOLERANCE for OUTPUT VOLTAGE
LOAD REGULATION LESS THAN 1%
RIPPLE REJECTION 60 dB TYPICAL
LOW OUTPUT IMPEDANCE
EXCELLENT TRANSIENT RESPONSE
HIGH TEMPERAtURE STABILITY
The TDA 1412 is a silicon monolithic voltage regulator in Jedec TO-12a plastic package
which can supply more than 500 rnA. It incorporates the following functions:
-
internal overload protection
short-circuit protection
The TDA 1412 can be used for voltage regulation in consumer applications.
ABSOLUTE MAXIMUM RATINGS
Input supply voltage
Total power dissipation at Tamb ~ 25°C
at Tease ~ 25°C
Storage and junction temperature
Operating temperature
MECHANICAL DATA
Supersedes issue dated 10/73
27
V
1.25 W
14 W
-55 to 150°C
Oto70
°C
Dimensions in mm
563
6/75
I
BLOCK DIAGRAM
v,
~----~o-----j
I
o
5-0377
SCHEMATIC DIAGRAM
r--- - -1 r - - -- - -_. - -- - - - - - - - - Vi
I
-"l
I
"
R9
1
1
1
Al
RS
A
1
"i
-I
E
'":I-I~-='----.....-='-"!I-.rQll :
L-~'~-+
__~~____-LL-~_ _~~~Q9
RI3
_____ ...1
01
rII
1
1
I
21
22
RI4
F
I
I
t _____ J !____________________ J
5-0433
564
TEST CIRCUIT with output characteristic
Y Axis
oscilloscope
O.lfJF
O.lfJF
In
X Axis
oscilloscope
5-0526
Vo
Output
~-=tt:=::======;:;:::;==~::::==~VOltage
mV --i
120
Change
L~L
SOOmA
10mA
10 reg.
loMAX
10
5-0444
THERMAL DATA
Rth j-case
Rth j-amb
Thermal resistance junction-case
Thermal resistance junction-ambient
565
max
max
9 °C/W
100 °C/W
ELECTRICAL CHARACTERISTICS
(Ti = 25°C, Vi = 21 V unless otherwise specified)
Test conditions
Parameter
Vo
l:;.Vo"
I0"
loMAX"
Load regulation
Regulated output
current
Maximum output
current
14.5 V ~ Vi ~ 27 V
10 = 10 mA CL =10/-tF
11.4
10 = 10 to 500 mA
CL = 10/-tF
l:;.Vo
--~1%
500
Vo
12
12.6
V
0.3
1 OfoV
720
mA
Tease = 25°C
Tease = 70°C
0.75
0.8
Output short-circuit
current
Vo = 0
100
200 mA
Id
Quiescent drain current
Vi = 27V
10
mA
l:;.Vo
Line regulation
Vi = 14.5 to 21 V
10 = 10mA CL = 10 /-tF
6
33 mV
10 = 10 mA CL = 10/-tF
T amb = 0 to 70 °C
1.2
mV/oC
10 = 10mA CL ""= 20/-tF
B = 10 Hz to 100 kHz
150
/-tV
20
m!l
60
dB
Ise
•
Output voltage
Min. Typ. Max. Unit
.l:;.Vo
l:;.Tamb
Temperature coefficient
eN
Output noise voltage
10 =0
Ro
Output resistance
10 = 500 mA
SVR
Supply voltage rejection
Vi = 19V
10 = 10mA
l:;.V i = 4 V peak to peak
f = 100 Hz CL = 10 /-tF
Refer to the test circuit
"" Tantalum capacitor
566
46
1
A
A
Power rating chart
Typical output voltage versus output
current
vo
Plot
(v)
(W)
14
14
12
I I
......If,frly
.12
/
10
,V
I"'-Iy~~.r
10
/
V
I
~f'"fr~
t--
./
"S~...... r-- r--
-
"
r--
1/
-
100
200
300
400
500
600
70010 (mA)
Typical regulated output current
versus junction temperature
10
loMAX
i
720
(mA)
1""-
680
660
640
620
Vi
'\
560
40
60
80
100
120
50
I
r----
60
lamb (VC)
G '1SQ
---l-
r"\.
Vi
=21V
~-
I
--
~
640
800
-40
567
-20
20
40
60
eo
100
120
i
I
~
i
620
140 Tj ('I:)
~
I
r"\..
660
1\
20
'" "'-
680
580
-20
"
700
"
AVo =1Dlo
-40
"-
720
600
40
i
1--- -"
740
I"
=21 V
3D
I
760
" " '\
700
20
Maximum output current versus
junction temperature
G - 1158
)
i
FREE AIR
_._-
./
140 Tj('C)
Typical dropout voltage versus
junction temperature
Typical short-circuit current versus
input voltage
G 1160
-
G 1051
Ise
(mA)
~
25
140
Io=500mA
~
f--
2.3
21
130
F
'"
2.2
,...
f.,..
,....
10
/V
= 200mA
90
1.9
rNo= ,gl
l'
T j =25°C
/
80
~
/
70
60
1.7
20
-20
40
60
80
100
120
140 Tj ('e)
14
Typical short-circuit current versus
junction temperature
G-I161
Id
Ise
(mA)
//
100
I'
1.8
V
110
r--.
I'
f.,..
V
120
- 350mA
I
16
18
20
22
24
26
28
30
Typical quiescent drain current
versus junction temperature
.---
V; (V)
G- 1162
(mA )
~~_-+~~+-~_-+~+-~~_~~+-~-+~
10.4
120
110
10.2
I
100
1"-.
90
---I~
d
70
Vi
VI =27V
as
,....
80
,....
10
i-
,X
9.6
9.4
=21V
10 •
9.2
60
I- ---
50
.. .-
40
-20
20
-,...
V; _-----
lo=10mA
Vi 19 V
=
..... f.-
AY, =4Vpeak to P"M
i'"
150
-
V
62
i'"
61
130
...
110
r- v,. = 21\1
90
~
10 = SOmA
/
60
roo
70
50
59
- 20
·0
20
40
60
80
100
120
4
140 TI(·C)
10
Typical supply voltage rejection
versus regulated output current
Ie
,
10'
• s.
10'
,
so
, • s,
10 5
10" f(Hz)
Typical output resistance versus
frequency
G 105'1'
SYR
Ro
(dB)
(mil )
60
.......
.~:!;V
CL = O.I.uF
........
56
,
r--...
I
= 100mA
)~
10'
•
.............
r-....
56
..............
54
-
.....
10
Vi =19 V
AV i :::4Vpl!a.k to peak
1=100Hz
o
52
...
50
o
100
200
300
400
500 lo(rog)lmA)
569
10
Typical line transient response
I
!
LI Vj :5V
Vj :18.SV
[
L1Vo: BOrnV
Vo: 12 V
!
/
\
-....
I '"
lo::5mA
..........
lOOns lOOns lOOns lOOns lOOns
5-0445
APPLICATION INFORMATION
Typical connection circuit
Vi
TDA 1412
1--"---oVo
10,uF
Ci
5-0527
570
'.'.
':.,
.
':.'
:
.
fqt.*t?~{f~i;Yi;~i:m~~j~~};:·~:~-~·:/':~1~:~'<;~,~,:
APPLICATION INFORMATION (continued)
Negative output voltage circuit
.... *
r'
:: ~ lO"F
>---
...
'L
-...J
Vi
TDA1412
~
-5-0528
Parallel
connecte~ voltage reguiators and its output characteristibs
TDA
•
Vo
1412
12
AVo
~
t
Vi
/
10
J
1
.-....
-
VO
(V)
TDA
1412
/
lOJ..IF
/
AVo =Vol-Vo2
/
I
/
/
5-0529
V
0.4
571
'18
1.2
1.6
2
lo(A)
LINEAR INTEGRATED CIRCUIT
15 V VOLTAGE REGULATOR
• OUTPUT CURRENT > 450 mA
• TIGHT TOLERANCE for OUTPUT VOLTAGE
• LOAD REGULATION LESS THAN 1%
• RIPPLE REJECTION 56 dB TYPICAL
• LOW OUTPUT IMPEDANCE
• EXCELLENT TRANSIENT RESPONSE
• HIGH TEMPERATURE STABILITY
The TDA 1415 is a silicon monolithic voltage regulator in Jedec TO-126 plastic package
which can supply more than 450 mAo It incorporates the following functions:
- internal overload protection
- short-circuit protection
The TDA 1415 can be used for voltage regulation in consumer applications.
ABSOLUTE MAXIMUM RATINGS
Input supply voltage
Total power dissipation at Tamb ~ 25°C
at Tease ~ 25°C'
Storage and junction temperature
Operating temperature
MECHANICAL DATA
Supersedes issue dated 10/73
27
1.25
V
W
14
-55 to 150
°C
o to
°C
70
W
Dimensions in mm
573
6175
BLOCK DIAGRAM
SERIES
Vi
(j)---.-------.--------l
TRANSISTOR
1-----.------.---{22J Vo
A
S-0317
SCHEMATIC DIAGRAM
Vi
~-----i
;--------------------i
R9
R2
Rl
E
~_r--~--~~---.~,-L-+------.-~Q9
Rll
I
I
_____ -' I
I
I
I
RIO
C2
R12
I
I
I
,I
Rll
R14
1
I
1
1
I
I
~
_____ J !_____________________I
5-<1433
574
TEST CIRCUIT with output characteristic
Y Axis
oscitloscope
~
v, o---.----j TDA 1415
_ _.Jl
osmsec.ll.50msec.1
1.5
kIl
O---~--------~
X AJL:is
oscilloscope
O.l,l1F
5-0530
__~-----+----~------~
~
~~
Change
150mV_t~C:=::===::~;;;:::::::;==~:::==1VOllage
L~45~omA
loreg.
10 MAX
10
5 0411
THERMAL DATA
Rth J-case
Rth J-omb
Thermal resistance ,junction-case
Thermal resistance junction-ambient
575
max
max
9 °C/W
100 °C/W
ELECTRICAL CHARACTERISTICS
T j = 25°C, Vi = 24 V unless otherwise specified)
Parameter
Vo
ilVo'
Output voltage
Load regulation
I0'
Regulated output
current
loMAX'
Maximum output
current
Test conditions
17.5 V ="" Vi ="" 27 V
CL = 10 ~F
10 =10mA
ilVo
--=""1%
Vo
450
Id
Quiescent drain current
Vi = 27V
ilVo
Line regulation
Vi = 17.5 to 24 V
10 = 10mA CL =
eN
Output noise voltage
10 =0
10 = 10mA CL
T amb = 0 to 70 °C
10~F
Ro
Output resistance
10 = 450 rnA
SVR
Supply voltage rejection
Vi = 22V
10 = 10mA
il Vi = 4 V peak to peak
f = 100 Hz CL = 10 ~F
Refer to the test circuit
'* Tantalum capacitor
576
1 %V
600
rnA
O.S
A
A
85
16C rnA
10
rnA
6
33 mV
1.5
180
46
V
0.3
= 10 ~F
10 = 10mA
CL " = 20 ~F
B = 10 Hz to 100 kHz
,
15 15.75
0.68
0.8
Tcase = 25°C
Tcase = 70°C
Vo = 0
ilVo
Temperature coefficient
ilT. mb '
14.25
10 = 10to 450 rnA
CL = 10 ~F
o utput.sho rt- c i rcu it
current
Isc
Min. Typ. Max. Unit
~VloC
~V
60
mil
56
dB
Typical output voltage versus output
current
Power rating chart
G-1151
Ptot
I)
14
L
12
I I
--- --
(W)
W'rIy
/
,
~,
tvl"~
,1y~4r
~S'1v
--
12
10
..::to.... -
10
1/
1- --
/
-
- --
/
V
/
/
100
- I200
300
400
500
600
700 'o(mA)
Typical regulated output current
versus junction temperature
r.
J-
10
FREI AIR
20
30
40
50
60
lamb (ac)
Maximum output current versus
junction temperature
11 ~
I
v"",
lo{r,pg )
loMAX
(mA)
(rnA)
G 1165
I
640
620
"-
600
580
700
"-
560
540
520
Vi
480
460
-40
= 24V
AVo
soo
i
-20
=,o/a
" "-
680
'" '"
660
'\
640
620
""
1
"-
600
I.
'\
I!
580
" "'
560
"'
540
-40
577
II
"-
Vi ",2·4\1
"
I:
-20
20
40
60
80
100
120
140 TjC'!:)
Typical dropout voltage versus
junction temperature
Typical short-circuit current versus
input voltage
V'j -Vo
G l0i5
'5e
(V)
I
(mA)
2.4 .
.90
10
2.3
=0
85
~
f'
2.1
f'
,.....
70
f'
V
V
Tj
=25'C
60
AVo=10J0
1.7
/
65
10=15 mA
1.8
I
75
""I"
I
/
80
' " lo=200mA
1.9
/
mA
R
22
55
I
50
1.6
-20
'_e
-
G-1166
0
20
40
60
80
100
120
140 Tj('C)
14
Typical short-circuit current versus
0_'16'
junction temperature
16
18
20
22
24
26
28
30
Typical quiescent drain current
versus junction temperature
VI (V)
G-1168
Id
(mA)~-+~+-~~~~-+~+-~~~~~
(mA)~-+~+-~~4-~-+~+-~~4-+-~
10.4
120
Vi '="24 V
110
10.2
100
10
90
9.8
80
9.6
70
9,4
60
9.2
Vi =21V
Vi =24 V
50
88
40
-20
20
40
60
90
100
120
-20
140 Tj ('C)
578
20
40
60
80
100
120
140 Tj('C)
I
I~
i,l
I:I:
II
I'
Typical quiescent drain current
variation versus junction temperature
Typical supply voltage rejection
versus frequency
G 1169
G ~1069
SVR
f-
I
lo-.
210
190
10
170
f.-
=ADOrnA
,...
'10..
10::
I-
61
200m A
60
~
--
~
130
I-
57
56
70
55
/
54
50
20
-20
40
eo
60
100
120
140 Tj ('C)
Typical supply voltage rejection
versus regulated output current
SVR
1/1--'
58
lo::50mA
90
(dB)
I
59
10-.
110
-lJlJlllll
Io.=10mA
Vi:: 221/
,AliI =4 vpeak to peak
62
~
,...
150 I-
VI =24V
I
(d B )
.
Vi =22 Y
AVj II! 4Vp.ak to pqk
1=100Hz
, 6.
10
la'
'6 •
468
to'
10 4
2
46 B
f (Hz)
lOS
Typical output resistance versus
frequency
G 1070
I--
57
56
55
.......
t-.......
54
......
r-....
53
Vj=24V
f' t-....
CL::O.l,uF
Io=loomA
10
J"": r........
52
51
50
50
100
150
200
250
300
350
, 6' 10
400 lo(regl(mA)
579
, 6.
,
10'
6 8
t(kHz)
Typical line transient response
II Vi =SV
Vi =2lSV
L /
lIVo =100mV
Vo = 15 V
/
\
-....
IO=SmA
~ '-...
lOOns lOOns lOOns lOOns lOOns
5-0412
APPLICATION INFORMATION
Typical connection circuit
TDA 1415
1--.......- - O V o
·5-0531
580
APPLICATION INFORMATION
Symmetrical
(continued)
± 15 V voltage regulator circuit
TDA1415
1-~_-.-_----.~_~_-.-_----oVo=·15V
500,uF
TDA 1415
IO,uF
500,uF
BAl28
lOll
: -__' - - -_ _-+_ _ _ _-A-_~-_+__
OVo=-15V
__4--~_ _
S _ 0532
Series regulators circuit connection
f--~-o'lo=30V
4S0mA
lo,.uF
No short-cirCUil)
( pt"otlPction
1--r--+------{)'Io=15V
4S0mA
500,uF
sean
5_0533
581
APPLICATION INFORMATION (continued)
Low consumption circuit to increase output voltage
Id =10mA
Vi
= 25V
Old
-amb
- = -7 JJ.A/oC typo
oT
Vi
TDA1415
Old
RI
3JOO II
W, = 30 JJ.AIV typo
OV
BE
-=
oT.mb
Vo= 18V
-2mV/oC
5-0534
582
LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
MONOLITHIC QUASI-COMPLEMENTARY DUAL DARLINGTON IN
PENTAWATT® PACKAGE
The TDA 1420 is a monolithic integrated circuit in Pentawatt® plastic package consisting of
a pair of quasi-complementary (NPN-PNP) darlingtons with the associated biasing system.
Each darlington can deliver a current in excess of 3A and can withstand a supply voltage
of 44V. The device is intended for applications as:
- booster for operational amplifier
- DC motor driver
- stepping motor driver
- output stage for AC power amplifier up to 20W in Hi-Fi systems
- output stage for vertical deflection systems in colour TV etc.
ABSOLUTE MAXIMUM RATINGS
V CEO
VCBO
10
10
IF
IF
D1
D2
Ptot
Tj • Tstg
Collector-emitter voltage(lB = 0)
0)
Collector-base voltage (IE
Output peak current (repetitive)
DC output current
01 forward current
02 forward current
Total power dissipation at T case 60°C
Junction and storage temperature
=
=
44
V
55
3.5
3
V
0.3
3
30
-40 to 150
A
A
A
A
W
°C
ORDERING NUMBERS: TDA 1420 H
TDA 1420 V
MECHANICAL DATA
Dimensions in mm
583
5/75
CONNECTION AND SCHEMATIC DIAGRAMS
5
2n--_+_-l-r
01
02
5·112B
5-t127
THERMAL DATA
max.
Rth j-case Thermal resistance junction-case
3 °C/W
ELECTRICAL CHARACTERISTICS (T amb = 25°C)
Parameter
V CEO
Vcso
Test conditions
Collector-emitter
breakdown voltage
Collector-base
breakdown voltage
44
V
55
V
60
V
V CE = 5V
10002500
-
V CE = -5V
500
1000
-
Ic=500MA
V(S R)CSSO Collector-substrate
breakdown voltage
hFE(NPN)
hFE(PNP)
DC forward current
transfer ratio
Ic =3A
DC forward current
transfer ratio
Ic
= -3A
584
Min. Typ. Max. Unit
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Test conditions
Quiescent drain
current
Id
VCE(sat)
Collector-emitter
saturation voltage
(NPN-PNP)
Min. Typ. Max. Unit
12 - 1= 5 mA
Vs = 40V
Ic =13AI
hFE= 200
mA
20
12.31 12.71
V
VSE(NPN) Base-emitter voltage
(pins 2-4)
Ic =3A
2.5
V
VSE(PNP) Base-emitter voltage
(pins 1-4)
Ic = -3A
-1.2
V
1.7
V
5
V
VF(Dl)
Dl forward voltage
V 3-5 = -40V
I F(D1)= 0.3A
V F(D2)
D2 forward voltage
I F(D2)= 3A
fT(NPN)
Cutoff frequency
Ic = 2A
V CE = 10V
10
MHz
fT(PNP)
Cutoff frequency
Ic = -2A
V CE = -10V
5
MHz
Fig. 2 - Typical quiescent drain cur·
rent vs. case temperature
Fig. 1 - Typical quiescent drain current vs. 12-1
-
G-15691Z
G 1625/2
Id
'mA)
=40V
Tea" =25-C
Y.
40
V
30
30
V
20
/
10
V
o
~
/
.....
20
V
.,.'"
.,.
/'
Vs=4 V
12_1=5mA
/
r--
10
6
o
12 - 1 (mA)
585
20
40
60
60
100
120 Tease'·C)
Fig. 3 - Typical quiescent drain current vs. supply voltage
Fig. 4 - Typical DC current gain vs.
collector current
G 1570/2
(;.-11l6n
Id
(mA )
40
12_1· SmA
Tcase z 2S·C
30
NPN
10'
o
PNP
20
10'
\
VCE=sv
10
10'
o
10
20
Fig. 5 - Typical
current
40
30
VCE(sat)
Fig. 6 -
vs. collector
,
• •
Y$ (Y)
-
Typical V BE vs. collector
current j
G 1127
YeE(s. t
.
Ie (A)
G 162811
(Y)
VCE·SV
4
4
1
hFE
200
...,./
-o
/
NPN
l/
V
~
3
,..,...
./
-- - ,
........
"
o
'e(A)
586
./
/'
/'
!-- r-
4
Ie (A)
Fig. 7 - Typical pulse response
(rising edge)
Fig. 8 - Typical pulse response
(falling edge)
-
Cr 1!I7",
Vi.VO
Ll
RL .4l1.
Vs
40
G- Isaoi2
-
(Vppl
"lev
I
RL '411
V.=>18V
r-
I
30
1\\
,
30
,
20
~r-INPUT PULSE
20
~
ld
TDA 1420 RESP( NSE
~
J
I
,
o
:\'
"~.,.,. TDAI420 RESPONSE
1'1-.'
I
7NPUT PULSE
ITT
o
0.1
0.2
0.3
o
0.4 I, b.sl
0.6
0.2
0.8 I,
Fig. 10 - Safe bperating areas
Fig. 9 - Typical output voltage swing
-
o tUII'
G IS76n
Vo
Ie. -----i Tease. 2S'C
(Vpp I
(A)
30
f--
25
I----I-----
20
I----I-----
15
I-----
~~th
~:=
2
:-,...
INPUTV'"
10'
=~
~ !\-
1-1OOms
SOOms
-* ~~~~~~iE P~~E
I,
10'
~ ~ f- 1m.
DC OPERATION-
RL "4ft
Ys=J.18V
..
PULSE OPERATION
I
V.
,
~
IC MAX (CONTINUOUS)
0---'''''
IOO~
10
o
•
IC MAX (PULSED)
~g
(~.)
..
• • 10
, (HzI
587
,
.
"cE (V)
I
G-1S7111
Fig. 11 - Derating characteristic
P tot
(W)
I
~
30
'1.
~
~~
~
20
I"~..,...._
-s;,
'S-+
1'1:
10
o
-so
o
so
100
Tamb ("C)
APPLICATION INFORMATION
Fi"g. 12- Hi-Fi audio amplifier with short circuit protection
::I:
100
,uF
I
------~
S-J09211
588
Typical performance of circuit in fig. 12
Parameter
Test conditions
Output power
Po
B
Id
Min. Typ. Max. Unit
d
f
Vs
Vs
=1%
G v = 30 dB
= 40 to 15,000 Hz
= 34V
RL = 4D
= 36V
RL=BD
d
f
Vs
Vs
= 10%
= 1 kHz
= 34V
=36V
RL = 4D
Drain current
Vs = 34V
Po = 30W
RL =4S2
Vs = 36V
Po = 20W
RL = BD
Fig. 13 - Output characteristics of the
protected class B stage
W
W
20 to 100,000
Hz
1.3
A
720
mA
d
("1.1
I-
v. =34 V
+-l-- I
NPN
+-
DA~~+TON
o
II
RL =4Jl.
Gv =30 dB
- ·-·15kHz
1kHz
---40Hz
0.8
1/ ---
0.6
0.4
PNP
DARLIN TON
-,
-3
30
20
Fig. 14 - Typical distortion vs. out·
put power (R L = 4S2)
G-1572
1~6012
-1/ --l- 1'-.1';;
-2
W
W
RL = 4D
RL = BD
Vs = 34V
Gv = 30 dB
+--
22
17
G v = 30 dB
Frequency response
(-3 dB)
G
20
15
I
0.2
-
t-;
~
e- -
e-
-4
20
-20
')
. ~'F-:
o
30 VeE NPN (v)
-10
0
589
,
,.
. ..
r/
10
. ,.
Po (wI
Fig. 15 - Typical distortion vs. output
power (R L
4n)
=
Fig. 16 - Sensitivity vs. output power
(R L =4n)
G-1&30
~
8
30.0.
./
Vs=34V
RL=4n
f -1kHz
Gv"3CdB
6
-
G tl31
I
- --
r"
250.
V-
20.0.
4
ISO.
/
'"
'"
Vs,.4V
RL'4A
t =1kHz
Gv"3CdB
/
/
I- -
-
- - - -
r-
c-
ICC
50.
o
• •• 1
•'!.(WI
••
• ••
-24
r"
20.
I'"
V
4
"'l.
,v.
II
0.8
0..6
40
Ptot
IV
'I
30
0..4
.,~I
20
I.
0.2
rl
1
;::-
10
8
12
l'
_.
lB
=3tiV
RL = BA
G.·30dB
-·_·-15kHz
lkH
----4CHz
80
0.
o
d
('to'
70.
50
I./. ~
12
8
'"
'"
12
6-1574
'\.
('tol
~
6
Fig. 18 - Typical distortion vs. output
power (R L = 8n)
=
V. =34V
RL ·4A
I :lkHz
_.
0.
Fig. 17 - Typical power dissipation
and efficiency vs. output
power (R L
4n)
G-1$73
--
I
II
24
Po (wI
590
0.
,
.. - ..
Ij
,
10
•Po(Wl
••
Fig. 19 - Typical distortion vs. output
power (R L = 8n)
o
Fig. 20 - Typical sensitivity vs. output
power (R L = 8n)
G tl3]
161211
d
(.,.)
8
)
-
500
~.-
Vs ·l6V
Rl • 8.0.
V
400
,
=1kHz
Gv' lO dll
!/I
I.....--
lOO
~
~
1---
100
o
PIOI
(W )
. ..
• ••
10-1
•••
Fig.21 - Typical poWer dissipation
and efficiency vs. output
power (R L = 8n)
G-tl751
I
- ..
I
--
V•• l6Y
14
12
I-- I--
18
Po (w)
I-- I--
V
/
12
6
Fig. 22 - Typical output power vs.
supply voltage
-
G U5'8
'I.
Po
('!.)
(W)
1-_ d =1"1.
Gv clOd
140
RL=8A
f .lkHz
RL =8.0.
=lkHz
G."lOdS
f
V
o
Po (w)
10
V. =l6Y
/
200
-
V
"7
120
20
15kHz
10
I....
8
4
100
L....
i
J
II
'" '"
Pn
IPo'1
L..o
17
~
-I-1'10..
I...-
80
15
1.1
15kHz
60
4.11.
40
10
-I-
1/
20
j
II
o
1/40 Hz
[lin
0
6
9
12
15
20
18
591
25
30
l5
v. (V)
I
Fig. 23 - Hi-Fi stereo amplifier with preamplifier-equalizer for magnetic pick-ups.
The final stage is identical to fig. 12.
Fig. 24 - Booster for operational amplifier
1.8
kO
------- --------- I
I
I
$IOO"F
INPUT
0-,""1--..--=1
>"--+-+--...---{b)OUTPUT
15nF
RI
470
592
Fig.25- L 141 + TDA 1420 output
voltage swing vs. frequency
Fig. 26- L 141 +TDA 1420 transient
response
-
-
G l!lnl1
G 1578,"2
Yo
(Vpp)
n
RL= 4
Vs=!18V
30
RL '4il
Vs"18V
.14V
".
90-;.
t-
20 LI41.TOA 1420
L141
....
I-,B
o
=>
'"
I
'!';
0
\
\.
10
o
,
10'
..
G.
-14V
\..
,
..
4
10'
••
RISE
IME
o
11Hz)
20
40
60
80
100
120
Performance of circuit in fig. 24
L 141 +TDA 1420
± 22V
Max. supply voltage
Max. power dissipation
Input offset voltage
Input offset current
Input bias current
Voltage gain
Max. DC output current
.;;;;
.;;;;
.;;;;
;:;.
593
30W at T case = 60°C
5mV
200 nA
500 nA
86 dB (R L = 4r2)
3A
I
(1-'.)
I
Fig. 27 - Position control of DC motor
;----4----------~------------~------~~~--------r_----------_t~.~
L-____________~------------------~--------------------.--+-~~.
5-to9911
Fig. 28 - Stepping motor driver
Qd
B Q.~-+++----~
C174193Qb~-*++--~~
Q,
UP
~--+O--+.-l
DOWN
CLOCK
FORWARD I BACKWARD
"----4-+--+__-{)
594
Fig.29 - Bidirectional speed control of DC motor
r--{:~--~--~~---------o.V.
470
VOLTAGE o--I"=I-+-:!i
REFERENC
-+-+__......_+_+---C4=1nS--~>--_+-_+-+__-+-{).V.
0-_ _
S~110112
Fig. 30 - Programmable supply voltage
r------~---~-------_o.vs
LOGIC
INPUTS
j=== L-_-'
OAC
6
4
5-110312
595
Fig.31 - Output stage for vertical deflection system
30V
en
411JF
RI2
In
RlI
o.nn
S·I091/1
596
LINEAR INTEGRATED CIRCUIT
PRELIMINARY DATA
12 W Hi-Fi AUDIO POWER AMPLIFIER WITH SHORT CIRCUIT
PROTECTION AND THERMAL SHUT -DOWN
The TDA 2010 is a monolithic integrated operational amplifier in a 14-lead quad in-line*
plastic package, intended for use as a low frequency class B power amplifier. Typically it
provides 12 W output power (d = 1%) at ± 14 V /4 n; at V s = ± 14 V the guaranteed output
power is 10 Won a 4 n load and 8 W on a 8 n load (DIN norm 45500). The TDA 2010
provides high output current (up to 3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates an original (and patented) short circuit protection
system, comprising an arrangement for automatically limiting the dissipated power so as to
keep the working point of the output transistors within their safe operating area.
A conventional thermal shut-down system is also included. The TDA 2010 is pin to pin
equivalent to TDA 2020.
*(or, optionally, dual in-line)
ABSOLUTE MAXIMUM RATINGS
Vs
Vi
Vi
10
Ptot
Tstg , Tj
Supply voltage
Input voltage
Differential input voltage
Output peak current (internally limited)
Power dissipation at T case .;;;; 95 °C
Storage and junction temperature '"
ORDERING NUMBERS: TDA
TDA
TDA
TDA
2010
2010
2010
2010
B82
B92
BC2
BD2
± 18
V
Vs
±15
3.5
18
-40 to 150
V
A
W
DC
dual in-line plastic package
quad in-line plastic package
dual in-line plastic package with spacer
quad in-line plastic package with spacer
MECHANICAL DATA
Dimensions in mm
597
6/75
I
CONNECTION AND SCHEMATIC DIAGRAMS
"
OUTPUT
1~
-SUPPlY VOlTAGE:]
POWEFt lINITING
"
10
COMPENSATION
9
COMPENSATION
8 INVERTING INPUT
The copper slug is electrically
connected to pin 5 (substrate)
TEST CIRCUIT
10,,"
Vi~J-_-_-----4
Vo
14
R4
10
4.7/1'
C3
R5
R3
13kn
100
4.7jE
kO
R2
5-1131
THERMAL DATA
Thermal resistance junction-case
598
max
3
ELECTRICAL CHARACTERISTICS
±14V,
(Refer to the test circuit, Vs
T amb = 25°C unless otherwise specified)
Parameter
Vs
Supply voltage
Id
Quiescent drain current
Ib
Bias current
Vi
(off)
Test conditions
Min. Typ. Max. Unit
±5
Vs = ± 18V
I nput offset voltage
±18
V
45
mA
0.15
p.A
5
mV
0.05
p.A
10
100 mV
Vs = ± 17V
Ii
(off)
V0
Po
(off)
Input offset current
Output offset voltage
Output power
Gy = 30 dB
d =1%
T case";; 70°C
f = 40 to 15,000 Hz
RL =4n
RL =8n
d = 10%
Tease ..;; 70°C
I nput sensitivity
Gy = 30 dB
Po
P0
=10W
= SW
B
Frequency response(-3 dB) RL =4n
d
Distortion
12
W
W
15
12
W
W
220
250
mV
mV
10 to 160,000
Hz
Gy = 30 dB
f = 1 kHz
RL =4n
RL r= 8n
Vi
9
10
8
f
= 1 kHz
RL =4n
RL =SQ
C4 = 68 pF
=100mWtol0W
Gy = 30 dB
RL =4n
T case";; 70°C
Po
f
f
= 1 kHz
= 40 to 15,000 Hz
0.1
0.3
1
%
%
0.1
0.2
1
%
%
= 100 mW to 8 W
RL =8n
Gy = 30 dB
Tease";; 70 "c
Po
f
f
= 1 kHz
= 40 to 15,000 Hz
599
ELECTRICAL CHARACTERISTICS (continued)
Parameter
Min. Typ. Max. Unit
Test conditions
Ri
Input resistance (pin 7)
Gv
Voltage gain (open loop)
Gv
Voltage gain (closed loop)
eN
Input noise voltage
RL =4n
4
p.V
iN
I nput noise current
B(-3dB) = 10 to 20,000 Hz
0.1
nA
SVR
Supply voltage rejection
ratio
G v = 30 dB
RL =4n
friPPle = 100 Hz
50
dB
0.8
0.5
A
145
°C
120
°C
Drain current
Id
f = 1 kHz
RL =4n
29.5
RL =4n
RL =8n
Po = 12 W
P0 = 9W
Thermal shut-down
junction temperature
5
Mn
100
dB
30
30.5
dB
A
* Thermal shut-down case
Ptot = 10.5 W
temperature
• See fig. 15
Fig. 2 - Typical output power vs. supply voltage (d = 10%)
Fig. 1 - Typical output power vs. supply voltage (d = 1%)
G 164711
G-1648
Po
(WI
d .1'/,
16
Gy. ]OdS
.
",/
12
,tJ,"'~'//
",'
~~~t'"
/
4
4n ~
/
./
/
12
/
/
./, /
/
L'( '~"'"
,,<,
/
/
d .10'/,
I .1kHz
Gv '30dB
16
4~
~o"'"
4
~
......
,/
/
/
/
//
/'
e!l.
o
o
10
12
11
14
600
13
./
/
Fig. 4 - Typical distortion vs. output
power (R L = 4.11)
Fig. 3 - Typical distortion vs. output
· power (R L = 4 n )
G-1 .SO
G 1649
d
I
,0'0)
Vs = !14V
Vs =!14V
0.8
111111
RL = 4n
, =1kHz
Go .JOdB
RL = 4n
'!>v=JOdB
0.6
15KHz
0.4
II
0.2
o
--
i
40Hz
· ,.
., .
7i.H;
10
., .
10
G-16S1
d
I
("I.)
0.8
I
I
("I.)
I
IY
Po (WI
Fig. 6 - Typical distortion vs. output
power (R L = 8.11)
Go -1652
Fig. 5 - Typical distortion vs. output
power (R L = 8 n )
d
. ,.
a
Po (W)
8
s ;; !.14V
Vs =J.14V
,
RL =8n
RL =8n
G.'JOdB
0.6
G.
.6
=1kHz
=JOdB
0.4
0.2
o
---,
5 kHz
· ,.
-r
40Hz
1kHz
,
..
, ,
10
.
a
Po (W)
601
. ..
,
..
10
Po (w)
Fig. 8 - Typical output power vs.
frequency
Fig. 7 - Typical distortion vs.
frequency
G-165312
d
('/,)
0-16510
Po
IIIIIII II
(W)
-RL=4Il Po =10W
-.-RL =BIl Po= BW
16
Vs =!14V
Gy =30dB
4t\
12
8Il
8
06
Vs =!.14V
Gy =30dB
,
4
,
..
4
,
••
4
,
••
10'
10'
10
4
o
..
Z
III
.,
4" •
-0 2
10'
10'1
1
to"
I (Hz)
Fig. 10- Typical sensitivity vs. output
pOW-er(RL = 8.11)
G-lSS6
G 1655
Vi
Vi
(mV)
-
'Is
(mV)
=.1,14
350
f-- RL :4.0
f-- f =lkHz
./
240
'Is =14V
--- ~~I=~O
300
l./
. / Gy =30dB
200
.",
/?- -.
120
/
BO
II
!/
f....;o
/
-6
.30dE
./
200
'--
r-
".,...
",- Gy
250
V
160
o
4" •
t
10
I (Hz)
Fig. 9 - Typical sensitiv:ty vs. output
,.,
power (R L = 4.11)
40
=,,,.
d
1/
0.2
Gy =40 d
-
150
100
50
I I I
I I
8
10
o
12
602
I
I
I ./
f/
i--
-r G =40dB
I
4
--
./
y
I
I I
10
12
Po (W)
Fig. 11 - Open loop frequency response
with different values of the
i"blloff capacitor C4
Fig.12 - Typical value of C4 vs. voltage gain for different bandwidths
G-1550
160kHz
"""
.......
10
2
405e
10'
2
46.
10'
2 " 61
10'
2
10'
461
10'
2
(Hz)
10
.
10'
,
Fig. 14 - Typical supply voltage rejection ratio vs. voltage gain
Fig. 13 .. Typical quiescent current vs.
supply voltage
G-1664
G 1651
SVR
,
I
••
'6&
f
(dB)
Vs ·<14 V
80
fripple' 100 Hz I -
80
I
60
60
I
40
I
r--.....
...........
40
t-'
Id (TOTAL)
........
...........
.........
Id (OUTPUT TRANSISTORS
...........
........
20
20
...........
I
o
9
11
13
15
17
v. (V)
o
603
20
30
40
SO
Gy(dB)
Fig. 16- Maximum power dissipation
vs. supply voltage (sine wave
operation)
Fig.15- Typical power dissipation and
efficiency vs. output power
G- Isse
_ _ 411
Ptot
---all
(W)
-
G 1659
.,.)
Ptot
80
16
60
12
40
a
'I
(
(Wl
Ptot
l-
10
I
/
a
I.....
"'"
'I
V
"'"
6
V
K;
V
/"
...... Ptot
/
4
.,../
Vs =14V
f=lkHz
Gv :IOdS
=
o
a
12
16
20
4
o
0
I~
I-
..........~ ~ ~
--
11
Po(W)
APPLICATION INFORMATION
Fig. 17 - Typical amplifier with spl it power supply
604
I-- ~
13
......
Fig. 18- P.C. board and component layout for the circuit of fig. 17 (1: 1 scale)
CS-0064
Fig.19- lOW Hi-Fi stereo amplifier with preamplifier-equalizer for ceramic PICK-UpS
+V$(18V max)
....
" '"
____ nZ.2"f
'"
j
1.2.n
III
l?~~,,,
.ro
4?k.ll
lJon
~l~PFI
.
In 4nn
2.Z,..F
22.11
."11
Inn
.. "",
2.1k/l
:i2.2I"F
,~
:~..
I
IIOkn
I.""'
r
BALANCE
".
I
"'
(-i1E,r
no.n
(*.1...,
,aon
00
'~33Pf
"'
."'f!-:-l
"
"'- ,----L
,"0
'"
F""
"
F""
~
~
011"F
I
I
TREBLE
,.
VOLUME
I
I
01"F
J.
l
,.,
,OOkll
2,2'n
,~,
r
100kll
II"..,
U./l
19U1
~'r:::
l09_
4.1/,r
l.3MIl
..
2.lkn
BASS
.Jr'DA1OS~
t-li.1?1
""
r--
,,~1
'80n
~r
~.."
, ""4
Ol"F
",
;
2.2~n
220'I!
log.
'000
:t'' "
."""
"'
f---
oo~fF
'"
"'AW
220kn
I.og.
.~""'
"'
oo.~
J~''''
.ro,,~
"
f'~'
,"0
~
FOll'F
(lav",.. )
605
'0
p.o"
F""
-v.
I:c(],
r
.l.
5-".0
Fig. 20 - Typical stereo amplifier with split power supply
4A
Wll>---+-_ _ _ _-+-__-ci+ v•
. v.
4A
v, o--I------jII-c--4--J
Fig.21 - Typical bridge amplifier configuration with split power supply (Po
Vs
=±
13V, RL
=8
n, d ..;;;
1%)
.V.
Q.15,u F
l
V,o--+----U..--...-----l.I
OOkll
606
20 W ,
SHORT CIRCUIT PROTECTION
The most important innovation in the TDA 2010 is an original circuit which limits the
current of the output transistors. Fig. 22 shows that the maximum output current is a
function of the collector-emitter voltage; hence the output transistors work within their safe
operating area (fig. 23). This function can therefore be considered as being peak power
limiting rather than simple current limiting. The TDA 2010 is thus protected against temporary overloads or short circuit. Should the short circuit exists for a longer time, the thermal shut-down comes into action and keeps the junction temperature within safe lirriits.
Fig. 22 - Maximum output current vs.
voltage (V CE) across each output transistor
Fig.23- Safe operating area and collector characteristics of the
protected power transistor
-
G 1686
IC
(A)
i'..
Ie
\
\..a-Ptot =k
\
Ie max.. \
~
I--
Ql
o
Q2
I
-1
-2
r-.
-3
5-0161,/1
-4
o
10
VCEQ2tvl -30
20
-20
30 VCEQ1 (V)
-10
0
607
THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1) an overload on the output (even if it is permanent), or an above-limit ambient temperature can be easily supported since the T j cannot be higher than 150°C
2) the heatsink can have a smaller factor of safety compared with that of a conventional
circuit. There is no possibility of device damage due to high junction temperature.
If, for any reason, the junction temperature increases up to 150°C, the thermal shut-down
simply reduces the power dissipation and the curn~nt consumption.
Fig.25- Output power and drain current vs. case temperature
Fig.24- Output power and drain current ""S. case temperature
(R L =4[2)
(R L =8[2)
G- 1661
" 1662
Po
(wI
Vs =:t. 14 V
RL =8.n
Vs =11, V
f- - -
RL =8n
r- f -
Po
12
12
'\
10.
10
i\
Po
......
Id
\
0.8
I'\.
0..6
Id
f""""
0..6
1\
\
0..4
0..4
0..2
0-2
\
0.
0.
50.
0.
100
608
50
100
0.
MOUNTING INSTRUCTIONS
The power dissipated in the circuit must be removed by adding an external heatsink as
shown in figs. 26 and 27.
The system for attaching the heatsink is very simple: it uses a plastic spacer which is supplied
with the device.
Thermal contact between the copper slug (of the package) and the heatsink is guaranteed by
the pressure which the screws exert via· the spacer and the printed circuit board; this is due
to the particular shape of the spacer.
Note:
the most negative supply voltage is connected to the copper slug, hence to the
heatsink (because it is in contact with the slug).
Fig.26 - Mounting system of TDA 2010
I
Fig.27 - Cross-section of mounting
system
~=~Ip.ce.
609
The maximum allowable power dissipation depends upon the size of the external heatsink
Ii. e. its thermal resistance); fig. 28 shows this dissipable power as a function of ambient temperature for different thermal resistance.
-
G '"'
Fig. 28 - Maximum allowable power
dissipation vs. ambient temperature
16
~.~
12
...
~
~._
~I~~
.
...
~
~"'G'
T." '\'i> ~_
.... ...
.... I .
f-' . .r~
...,~
~
-9.
a
.
~
. N···t
't
'~.
.
...
~
('...~
~
~
oe
lj.. ...
~
ill.
;;
1\
~
N
o
-50
o
100
Tambt*t)
For a more detailed description of the TDA 2010 and related performance refer to
SGS-ATES Application Note n. 130.
610
LINEAR INTEGRATED CIRCUIT
lOA 2020
PRELIMINARY DATA
20 W Hi-Fi AUDIO POWER AMPLI FIER WITH SHORT CIRCUIT
PROTECTION AND THERMAL SHUT-DOWN
The TDA 2020 is a monolithic integrated operational amplifier in a 14-lead quad in-line*
plastic package, intended for use as a low frequency class B power amplifier. Typically it
provides 20 W output power (d = 1%) at ± 18 V/4 n; the guaranteed output power at
± 17 V /4 n is 15 W (01 N norm 45500). The TDA 2020 provides high output current (up to
3.5 A) and has very low harmonic and cross-over distortion. Further, the device incorporates
an original (and patented) short circuit protection system, comprising an arrangement for
automatically limiting the dissipated power so as to keep the working point of the output
transistors within their safe operating area. A conventional thermal shut-down system is also
included. The TDA 2020 is pin to pin equivalent to TDA 2010.
*(or, optionally, dual in-line)
ABSOLUTE MAXIMUM RATINGS
V,
Vi
Vi
10
Ptot
T,tg, T j
Supply voltage
Input voltage
Differential input voltage
Output peak current (internally limited)
Power dissipation at Tease .:;;; 75°C
Storage and junction temperature
ORDERING NUMBERS: TDA
TDA
TDA
TDA
2020
2020
2020
2020
A82
A92
AC2
AD2
± 22
V
V,
± 15
V
3.5
25
-40 to 150
A
W
°C
dual in-line plastic package
quad in-line plasticp.ac)lY VOLTAGE 3
12
-SUPPLY VOLTAGE 5
10
POWER LIMITING
COMPENSATION
COIo'lPENSATION
8
INYERTING
INPUT
The copper slug is electrically
connected to pin 5 (substrate)
TEST CIRCUIT
68pF
C4IH---_.
lO"F
Vi
9
cfo1jt-~-~----__'_l
TDA 2020
>"'14'---_~I_-vfo--__,
R4
4.7"F
In
C3
R5
R3
13kn
100
kn
RI
33
kO
o.1~l_;l
5·,.
C7
C8
R2
5-11103
THERMAL DATA
Thermal resistance junction-case
max
612
3
°C/W
ELECTRICAL CHARACTERISTICS
±17V,
(Refer to the test circuit, Vs
Tam"b= 25°C unless otherwise specified)
Parameter
Vs
Supply voltage
Id
Quiescen,t drain current
Ib
Bias current
V; (off)
Input offset voltage
Test conditions
Min. Typ. Max. Unit
±5
Vs = ± 22V
±22
V
60
mA
0.15
/lA
5
mV
0.05
/lA
10
100 mV
18.5
20
16.5
W
W
W
24
20
W
W
260
380
mV
mV
10 to 160,000
Hz
Vs=±17V
1;(Off)
I nput offset current
Va (off) Output offset voltage
Po
VI
Output power
I nput sensitivity
Gy = 30 dB
d =1%
T case ..;; 70°C
f = 40 to 15,000 Hz
Vs = ± 17V
Vs = ± 18V
V s =±18V
RL =4 n
RL =4 n
RL =8 n
d = 10%
T case ..;; 70°C
Gy = 30 dB
f = 1 kHz
Vs = ± 17V
Vs = ± 18V
RL =4 n
RL =8 n
Gy = 30 dB
Po = 15W
f
Vs = ± 17V
Vs = ± 18V
RL =4 n
RL =8 n
B
Frequency response( -3 dB) RL =4 n
d
Distortion
15
= 1 kHz
C4 = 68 pF
Po = 150 mW to 15W
Gy = 30 dB
RL =4 n
T case";; 70°C
f = 1 kHz
f = 40 to 15,000 Hz
0.2
0.3
1
%
%
Po = 150 mW to 15W
Vs = ± 18V
RL =8n
Gy = 30 dB
T case ..;; 70°C
f
f
= 1 kHz
= 40 to 15,000 Hz
613
0.1
0.25
%
%
ELECTRICAL CHARACTERISTICS (continued)
Test conditions
Parameter
Min. Typ. Max. Unit
RI
Input resistance (pin 7)
Gy
Voltage gain (open loop)
Gy
Voltage gain (closed loop)
eN
Input noise voltage
RL =411
4
J.lV
iN
I nput noise current
B (-3 dB) = 10 to 20,000 Hz
0.1
nA
SVR
Supply voltage rejection
ratio
50
dB
1
A
0.7
A
145
°C
105
°C
f = 1
RL =411
Drain current
29.5
Mn
dB
30
30.5
dB
G y = 30 dB
RL = 411
Hz
frlPPle = 100
Id
kHz
5
100
Po = 18.5W
RL =4n
Po = 16.5W
RL =8 11
Vs =
± 18V
Thermal shut-down
junction temperature
* Thermal shut-down case
Ptot = 15.5W
temperature
* See fig. 15
Fig. 2 - Typical output power vs. supply voltage (d = 10%) " , G-""
Fig. 1 - Typical output power vs. sup_ ply voltage (d = 1%)
Po
t' :
d .10'"
(w)
f =1 kHz
24
G "JOdS
V
4fi
20
16
4
aft
12
10
12
14
16
la
20 1Vs (v)
10
614
12
14
16
la 'Vs Iv)
Fig. 4 - Typical distortion
power (R L = 4n)
Fig. 3 - Typical distortion VS. output
power (R L = 4 n)
VS.
G 15U
6-1542
d
d
('I.)
('I.)
f--
Ys:U.11V
Rl ·4.n.
Gy=JOdB
0.8
6
0.4
4
o
-"
111111
• ••
10-'
V
15kHz
40Hz-lkH
v. "17V
Rl' 4n
I . 1kHz
I-- Gy -JOdS
0.6
0.2
output
j
...
. ..
10
0.
Po (w)
. ..
• •• 1
4
10.
Fig. 6 - Typical distortion VS~ output
power (R L = 8 n)
Fig. 5 - Typical distortion VS. output
power (R L = 8 n )
-
G ....
G 1544/1
d
('I.)
0.8
••
Po(W)
I
Vs =!.1BV
Vs=!.18V
Rl ' 811
Rl·SA
I 'lkHz
G.'30Ll.
Gy '3CdB
6
0..6
0..4 _ .
_
.........
..
0..2
/15 kHz
lk_IiL
4CHz
Ii
0.
,
1O~'
68
4
o
6.
4
10.
6.
Po (w)
615
...
~
10
Po(W)
Fig. 7 - Typical distortion vs.
frequency
Fig. 8 - Typical output power vs.
frequency
-
G 1546/2
d
II11111
('/.)
~Vs='17V
II
RL
I- --Vs ='18V R
=4!
=8!
Po ·15W
G -JOdB
VsDt.17V
20 f -
RL =4
11111
11111
16
Vs =.t1av
I--
RL =8
12
G. =JOd
d =1'/.
0.6
02
2
••• 10'
461
10'
10
~
-
-
468
Fig. 9 - Typical sensitivity
power (R L = 4n)
2
46
2
a
10'
I(Hz)
VS.
output
10
•
'61
II
10'
10'
"t
Fig. 10- Typical sensitivity
power (R L = 8n)
a,
I,
10'
I (Hz)
VS.
output
6-16"
Vi
I
(mV)
280 -
RL'4n
"...
- I =lkHz
240
(my)
400
/
H-lrr~l,.
L+-~++H-+++-f--J+-H
VS =
Source Exif Data:
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.3
Linearized : No
XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date : 2017:07:18 19:10:15-08:00
Modify Date : 2017:07:18 19:28:28-07:00
Metadata Date : 2017:07:18 19:28:28-07:00
Producer : Adobe Acrobat 9.0 Paper Capture Plug-in
Format : application/pdf
Document ID : uuid:e2366f95-c3ec-bb4a-b2e3-7f9b5314fcec
Instance ID : uuid:697c4d61-3b6d-2544-bf22-a0e8200e2d22
Page Layout : SinglePage
Page Mode : UseNone
Page Count : 654
EXIF Metadata provided by EXIF.tools