1976_National_TTL_Databook 1976 National TTL Databook
User Manual: 1976_National_TTL_Databook
Open the PDF directly: View PDF
.
Page Count: 562
| Download | |
| Open PDF In Browser | View PDF |
National Semiconductor
Section 1 - 54/74551 DEYICEs
Connection Diagrams • Electrical Tables
Section 2 - 54/74 MSI DEYICEs
Section 3 - National Semiconductor PROPRIETARY DEYICEs
Section 4 - National Semiconductor ADDITIONAL DEYICEs
~
NAnONAL
Manufactured under one or more of the following U.S. patents: 3083262, 3189758, 3231797, 3303356, 3317671, 3323071, 3381071, 3408542,3421025, 3426423, 3440498, 3518750.3519897,3557431,3560765,
3566218,3571630,3575609,3579059,3593069, 3597540, 3607469, 3617859, 3631312, 3633052, 3638131, 3648071, 3651565, 3693248.
National does not assume any responsibility for use of
© 1976 National Semiconductor Corp.
any
circuitry described, no circuit patent licenses are implied; and National reserves the right, at any time without notice, to change said circuitry.
•
~
-Alpha-Numerical Index
TTL Data Book
DEVICE
MIL
2502
2503
2504
5400
54HOO
54LOO
54LSOO
5401
54HOl
54LOl
54LSOl
5402
54L02
54LS02
5403
54L03
54lS03
5404
54H04
54L04
54 LS04
5405
54H05
54L05
54LS05
5406
5407
5408
54H08
54L08
54LS08
5409
54L09
54LS09
930
932
933
935
936
937
944
945
946
948
949
957
958
961
962
963
1800
1801
2502C
2503C
2504C
7400
74HOO
74LOO
74LSOO
74S00
7401
74HOl
74LOl
74LSOl
7402
74L02
74LS02
74S02
7403
74L03
74LS03
74S03
7404
74H04
74L04
74LS04
74S04
7405
74H05
74L05
74LS05
74S05
74D6
7407
7408
74H08
74L08
74LS08
7409
74L09
74LS09
DEVICE
PAGE NO.
COML
4-1
4-1
4-1
4·1
4-1
4-1
4-1
4-1
4-1
4·1
4-1
4·1
4-1
4·1
4·1
4-1
4·1
4-1
4-6
4-6
4·6
1-1,1-36
1-1,1·36
1-1, 1-36
1-1, 1-36
1-1,1·36
1-1, 1-38
(1,1·38
1-1, 1·38
1-1,1-38
1-2,1·40
1-2,1-40
1·2,1-40
1·2,1-40
1-2,1·38
!
1-2,1-38
1·2,1-38
1·2,1·38
1-2,1·36
1-2,1-36
1-2,1·36
1-2,1-36
1-2,1·36
1-3,1-38
1:3,1-38
1-3,1·38
1·3,1·38
1-3,1-38
1·3,1·42
1·3,1-42
1·4,1·44
1·4, 1-44
1-4,1-44
1-4,1-44
1·4,1-46
1-4,1-46
1-4,1·46
I
MIL
COML
5410
54H10
54L 10
54LS10
7410
74Hl0
74L10
74LS10
74S10
7411
74Hl1
74L11
74LS11
74S11
74LS12
7413
74LS13
7414
74LS14
74LS15
74S15
7416
7417
7420
74H20
74L20
74LS20
74S20
74H21
74LS21
74H22
74LS22
74S22
7423
7425
7426
74L26
74LS26
7427
74LS27
7430
74H30
74L30
74LS30
74S30
7432
74L32
74LS32
7437
74LS37
7438
74LS38
7440
74H40
74 LS40
74S40
7441A
7442
74L42A
74LS42
7445
5411
54Hll
54L11
54LSll
54LS12
5413
54LS13
5414
54LS14
54LS15
5416
5417
5420
54H20
54L20
54LS20
54H21
54LS21
54H22
54LS22
5423
5425
5426
54L26
54LS26
5427
54LS27
5430
54H30
54L30
54LS30
5432
54L32
54LS32
5437
54LS37
5438
54LS38
5440
54H40
54 LS40
5441A
5442
54L42A
54LS42
5445
DEVICE
PAGE NO.
1·4,1-36
1-4,1-36
1-4,1-36
1-4 1·36
1-4,1-36
1·5,1-44
1-5,1·44
1-5,1-44
'1·5,1-44
1·5,1·44
1-5,1-38
1·5,1·48
1-5,1·48
1-6, 1-48
1·6,1·48
1-6,1-46
1·6,1-46
1-6,1-42
1-7,1-42
1-7,1-36
1-7,1-36
1·7,1·36
1-7,1-36
1-7,1-36
1-7,1·44
1-7,1-44
1-8, '-38
1·8,1-38
1-8,1-38
1-8,1-50
1-8,1-40
1-9,1·42
1·9,1·42
1-9,1-42
1·9,1-40
1-9,1-40
1-9,1·36
1-9,1-36
1·9,1-36
1-9,1-36
1-9,1·36
1·10,1-52
1-10,1-52
1-10,1·52
1·10,1-54
1·10,1·54
1-10,1-42
1-10,1-42
1-11,1·54
1·11,1·54
1-11,154
Hl,1·54
2·1
2-3
2-3
2·3
2·6
I
MIL
COML
5446A
5447A
54LS47
5448
54LS48
54LS49
5450
54H50
5451
54H51
54L51
54LS51
7446A
7447A
74LS47
7448
74LS48
74LS49
7450
74H50
7451
74H51
74L51
74LS5l
74S51
74H52
7453
74H53
7454
74H54
74L54
74LS54
74H55
74L55
74LS55
7460
74H60
74H61
74H62
74S64
74S65
7470
74H71
74L71
7472
74H72
74L72
7473
74H73
74L73
14LS73
7474
74H74
74L74
74LS74
74S74
7475
74L75A
74LS75
7476
74H76
74LS76
74LSn
74H78
74L78
74LS78
7483
74LS83A
7485
54H52
5453
54H53
5454
54H54
54L54
54LS54
54H55
54L55
54LS55
5460
54H60
54H61
54H62
5470
54H71
54L71
5472
54H72
54L72
5473
54H73
54L73
54LS73
5474
54H74
54L74
54LS74
5475
54L75A
54LS75
5476
54H76
54LS76
54LS77
54H78
54L78
54LS78
5483
54 LS83A
5485
Note: When there are two sets of pa~e numbers, the first designates the connection diagram' page; the second indicates electrical tables.
iii
PAGE NO.
2·8
2·8
2·8
2-8
2-8
2-8
1-11,1-50
1-11, 1·50
1·12,1-56
1-12,1·56
1-12,1·56
1·12,1·56
1-12,1·56
1-13,1·50
1-13,1-50
1-13, 1-50
1-14,1-56
1·14,1-56
1·14,1-56
1-14,1·56
1·15,1·50
1·15,1·56
1·15,1-56
1·15,1·58
1-15,1·59
1·16,1-60
1·16, '·59
1-16,1·56
1·17,1-61
1-18,1·62
1-18,1·64
1-19,1-66
1·19,1-62
1·19,1·64
1-19,1-66
1·20, 1-62
1·20,1-64
1·20,1-66
1-20,1-68
1-20,1·62
1·20,1-64
1·20,1·66
1·20,1-68
1·20,1·70
2-14
2·14
2·14
1·21,1·62
1·21,1·64
1·21,1·68
2·14
1·21,1·64
'·21,1·66
1·21,1·68
2·17.
2·17
2·21
~ TTL Data Book
DEVICE
MIL
54L85
54 LS!35
5486
54L86
54LS86
5488
5489
54l89A
5490A
54L90
54LS90
5491A
54L91
5492A
54 LS'92
5493A
54L93
54LS93
5495
54L95
54LS958
5496
54LS96
54L98
54Hl03
54Hl06
54107
54LS107
54H108
54109
54LS109
54LSl12
54LS113
54LS114
54121
54LS122
54123
54L123A
54LS123
54LS124
54125
54LS125
54126
54LS126
54132
54LS132
54LS136
54LS138
COML
74185
74lS85
7486
74L86
74lS86
74S86
7488
7489
74L89A
7490A
74L90
74LS90
7491A
74L91
7492A
74LS92
7493A
74L93
74 LS93
7495
74L95
74LS958
7496
74LS96
74L98
74Hl03
74H106
74107
74LS107
74H108
74109
74LS109
74LS112
74S112
74LS113
74S113
74LS114
74S114
74121
74LS122
74123
74L123A
74LS123
74LS124
74125
74LS125
74126
74LS126
74132
74LS132
74S133
74S134
74S135
.74LS136
74S136
74LS138
74S138
Alpha-Numerical Index
DEVICE . .
PAGE NO.
2·21
2-21
1·22,1·72
1-22, 1-72
1-22,1·72
1·22, 1-72
2-25
2-28
2-89
2·30
2·30
2·30
2-34
2·34
2·30
2-30
2·30
2-30
2-30
2·36
2.36
2-36
2-39
2-39
2-42
1-23,1-74
1-23,1·74
1·23,1-62
1·23, 1-68
1-24, 1·74
1-24,1·62
1-24,1·68
1·24, 1-68
1·24, 1-70
1·25,1-68
1,25,1·70
1·25,1·68
1·25, 1-70
1-26,1-76
1-26,1·78
1·26,1·78
1·26, 1·78
1·26,1·78
2·44
1·27,1·80
1·27,1:80
1·27, 1·80
1·27,1·80
1·27,1·48
1·27,1·48
1·28,1·36
1·28,1·80
1·28,1·82
1·29,1·84
1-29,1·84
2·46
2-46
MIL
COML
54LS139
74lS139
74S139
74S140
74141
74145
74147
74148
74150
74151A
74LS151
74S151
74153
74LS153
74S153
74154
74L154A
74LS154
74155
74LS155
74156
74LS156
74157
74L157A
74LS157
74S157
74LS158
74S158
74160A
74LS160
74161A
74LS161
74162A
74LS162
74163A
74LS163
74164
74L164A
74lS164
74165
74L165A
74166
74LS168
74LS169
74170
74LS170
74173
74lS173
74174
74LS174
74S174
74175
74LS175
74S175
74176
74177
74180
74181
54141
54145
54147
54148
54150
54151A
54LS151
54153
54LS153.
54154
54L154A
54LS154
54155
54LS155
54156
54LS156
54157
54L157A
54LS157
54LS158
54160A
54LS160
54161A
54LS161
54162A
54LS162
54163A
54LS163
54164
54L 164A
54LS164
54165
54L165A
54166
54lS168
54LS169
54LS170
54173
54LS173
54174
54LS174
54175
54LS175
54176
54177
54180
54181
PAGE NO.
2·46
2·46
1-29, 1-54
2·1
2-6
2-49
2-49
2·53
2·53
2·53
2·53
2·57
2·57
2-57
2-60
2-60
2·60
2·63
2-63
2-63
2-63
2·66
2·66
2-66
2·66
2-66
2-66
2·70
2-70
2-70
2·70
2·70
2·70
2-70
2·70
2·76
2·76
2-76
2·79
2-79
2·82
2-85
2-85
2-91
2·91
2·96
2·96
2·98
2·98
2·98
2-98
2·98
2·98
2·101
2·101
2·105
2·107
DEVICE
MIL
COML
54182
74182
74S182
54184
74184
54185A
74185A
54187
74187
54L 187A
74L187A
54S189
74S189
54190
74190
54LS190
74lS190
54191
74191
54LS191
74LS191
54192
74192
54L 192
74L192
74LS192
54LS192
54193
74193
54L 193
74L193
54LS193
74LS193
54194
74194
54LS194A 74LS194A
74S194
74195
54195
54LS195A 74LS195A
74S195
54196
74196
54LS196
74LS196
54197
74197
54LS197
74LS197
54198
74198
54199
74199
54S200
74S200
54S206
74S206
54LS221
74LS221
54251
74251
54LS251
74LS251
74S251
74 LS253
54LS253
74S253
54lS257
74LS257
74S257
54 LS258
74LS258
74S258
74S260
54LS266
74LS266
54LS279
74lS279
74S280
74S281
54LS283
74LS283
54S287
74S287
54S289
74S289
54LS295A 74LS295A
74LS298
54LS298
54365
74365
54LS365
74LS365
74366
54366
54LS366
74LS366
54367
74367
54LS367
74LS367
Note: When there are two sets of page numbers, the first designates the connection diagram page; the second indicates electrical tables.
iv
PAGE NO.
2·11.3
2·113
2·116
2·116
2·122
2-122
2-125
2-128
2-128
2-128
2·128
2·133
2-133
2·133
2·133
2·133
2·133
2-140
2-140
2·140
2·144
2·144
2·144
2·101
2·101
2·101
2·101
2-148
2·148
2·154
2-157
1-30,1-76
2-160
2·160
2-160
2·163
2-163
2·165
2·165
2-165
2-165
1·31,1·40
1·31,1·84
2·168
2·170
2-173
2·17
2·177
2·179
2·182
2·184
1·32,1·86
1·32,1·86
1·32, 1·86
1·32, 1-86
1·32, 1·86
1.32,1·86
~
DEVICE
MIL
COML
54368
54LS368
54LS374
54L5386
545387
54L5395
54L5670
74368
74 LS368
74LS374
74L5386
745387
74L5395
74L5670
80L06
8090
8091
8092
8093
8094
8095
80L95
8096
80L96
8097
80L97
8098
80L98
8099
8121
81L22
8123
81L23
8130
8131
8136
8160
81L595
81L596
81L597
81L598
8200
8210
8211
8214
8219
8220
8223
8230
8280
8281
8288
8290
8291
8511
85L11
8512
85112
8520
8531
8542
8544
8546
85550
7090
7091
7092
7093
7094
7095
70L95
7096·
70L96
7097
70L97
7098
70L98
7099
7121
71L22
7123
71L23
7130
7131
7136
7160
71L595
71L596
71L597
71L598
7200
7210
7211
7214
7219
7220
7223
7230
7280
7281
7288
7290
7291
7511
75Lll
7512
75L12
7520
7542
7544
7546
Alpha-Numerical Index
TTL Data Book
DEViCE:
1·33,1·86
1·33,1·86
2·187
1·34,1·72
2-177
2·189
2·191
3-1
3·3
3-3
3·3
3-5
3-5
3-7
3-7
3-7
3-7
3-7
3-7
. 3-7
3-7
3·9
3-11
3·13
3-13
3·13
3-17
3-19
3·19
3-17
3-21
3-21
3·21
3-21
3-23
3·25
3-25
3-28
3-28
3-32
3-35
3-37
4-11
4-11
4·11
4-11
4-11
3-40
3-40
3-40
3-40
3-44
3-49
3-52
3-54
3-56
3-60
MIL
COML
7551
75L51
7552
75L52
7553
7554
75L54
7555
7556
7560
75L60
7563
75L63
75568
7570
7573
7574
7575
7576
7577
7578
8551
85L51
8552
85L52
8553
8554
85L54
8555
8556
8560
85L60
8563
85L63
85568
8570
8573
8574
8575
8576
8577
8578'
8581
8590
8595
8596
8597
8598
8599
8613
86113
86L24
86L25
86LlO
86L75
86Ll6
8678
8679
86L90
86L93
86L97
86L99
8795
8796
8853
8875A
88758
8898
8899
8280
8281
8288
8290
8291
9002C
9003C
9004C
9005C
7590
7595
7596
7597
7598
7599
7613
76L13
76L24
76L25
76LlO
76Ll5
76Ll6
7678
7679
76L90
76L93
76L97
76L99
7795
7796
7853
7875A
78758
7280
7281
7288
7290
7291
DEVICE
PAGE. NO.
PAGE NO.
MIL
3-62
3·62
3·64
3-64
3·70
3-64
3·64
3-72
3-72
3-76
3·76
~-76
3-76
3-82
3-86
3-89
3-92
3-95
3-95
3·101
3-104
3-107
3-110
3-113
3-116
3-119
3-122
3-127
3·40
3-40
3-131
3·134
3·86
3-137
3-137
3-140
3-140
3-110
3-142
3-144
3-148
3-113
3-116
3-151
3·154
3-154
3-156
3-156
4-11
4-11
4-11
4-11
4·11
4-15
4-15
4-15
4-15
9024
9300
9301
9309
9310
9311
9312
9316
9318
9322
9334
9601
9602
PAGE NO.
COML
9006C
9008C
9009C
9012C
9016C
8024
9093
9094
9097
9099
8300
8301
8309
8310
8311
8312
8316
8318
8322
8334
8601
8602
Note: When there are two sets of page numbers, the first designates the connection diagram page; the second indicates electrical tables.
v
4·15
4·15
4-15
4·15
4-15
4-17
4-1
4·1
4·1
4·1
4-19
4-22
4-24
4-27
4-33
4-24
4-27
4-36
4-38
4-40
4-43
4-46
~ TTL Data Book
Table of Contents
Alpha-Numerical I ndex _____ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
iii
TRI-STATE Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xvi
TTL Families Comparison Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
Industry Cross Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xix
Functional Index/Selection Guides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxv
Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
xli
54/74 SSI-SECTION 1
DM5400/DM7400 Quad 2-1 nput NAND Gates ........... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-1, 1-36
DM54HOO/DM74HOO Quad 2-lnput NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-36
DM54LOO/DM74LOO Quad2-lnputNANDGates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-36
DM54LSOO/DM74LSOO Quad 2-lnput NAND Gates ... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ 1-1,1-36
DM74S00 Quad 2-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . " ....... , 1-1,1-36
DM5401/DM7401 Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . l-t, 1-38
DM54H01/DM74H01 Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-38
DM54L01/DM74LOl Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-38
DM54LS01/DM74LSOl Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-38
DM5402/DM7402 Quad 2-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ............ 1-2,1-40
DM54L02/DM74L02 Quad 2-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2,1-40
DM54LS02/DM74LS02 Quad 2-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2,1-40
DM74S02 Quad 2-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2,1-40
DM5403/DM7403 Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . _ ..... , 1-2,1-38
DM54L03/DM74L03 Quad 2-lnput NAND Gates with Open-Collector Outputs ......... _ . . . . . . . . . . . . . . . . 1-2,1-38
DM54LS03/DM74LS03 Quad 2-lnput NAND Gates with Open-Collector Outputs _ ...... _ ........... _ .... 1-2,1-38
DM74S03 Quad 2-lnput NAND Gates with Open-Collector Outputs ... _ ............. _ ............. _ .. 1-2,1-38
DM5404/DM7404 Hex Inverters ........... _ ... _ ....... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2,1-36
DM54H04/DM74H04 Hex Inverters ......... _ ......... _ . _ ........ _ . . . . . . . . . . . . . . . . . . . . . _ .. 1-2, 1-36
DM54L04/DM74L04 Hex Inverters ...... _ .. _ . _ . _ . . . . . . . . . . . . . . . . . . . . . _ ............ _ ...... 1-2,1-36
DM54LS04/DM74LS04 Hex Inverters ....... _ ... _ ... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ........ 1-2, 1-36
DM74S04 Hex Inverters_ . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2, 1-36
DM5405/DM7405 Hex Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . .. 1-3, 1-38
DM54H05/DM74H05 Hex Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . _ ......... 1-3,1-38
DM54L05/DM74L05 Hex Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3,1-38
DM54LS05/DM74LS05 Hex Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . .. 1-3, 1-38
DM74S05 Hex Inverters with Open-Collector Outputs ....... _ . . . . . . . . . . . . . . . . . . . . . . . . . _ ......... 1-3,1-38
DM5406/DM7406 Hex Buffers with Open-Collector High-Voltage Outputs . . . . . . . . . . . . . . . . . . . . . . . _ . _ ... 1-3,1-42
DM5407/DM7407 Hex Buffers with Open-Collector High-Voltage Outputs . . . . . . . . . . . . . . . . . . . _ .... _ .... 1-3,1-42
DM5408/DM7408 Quad 2-lnput AND Gates _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ......... 1-4,1-44
DM54H08/DM74H08 Quad 2-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4,1-44
DM54L08/DM74L08 Quad 2-lnput AND Gates _ . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . _ .. _ ...... 1-4,1-44
DM54LS08/DM74LS08 Quad 2-lnput AND Gates . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4,1-44
DM5409/DM7409 Quad 2-lnput AND Gates with Open-Collector Outputs ..... _ . . . . . . . . . . . . . . . . . . _ .... 1-4,.1-46
DM54L09/DM74L09 Quad 2-lnput AND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4,1-46
DM54LS09/DM74LS09 Quad 2-lnput AND Gates with Open-Collector Outputs ...... _ .. _ . . . . . . . . . . . . . . . 1-4,1-46
DM5410/DM7410 Triple 3-lnput NAND Gates .. _ ............. _ . . . . . . . . . . . . . . . . . . . . . . . . . _ . _ .. 1-4,1-36
DM54Hl0/DM74Hl0 Triple 3-lnput NAND Gates _ . . . . . . . . . . . . . . . . . . . . _ ... _ .............. _ .. __ 1-4,1-36
DM54L10/DM74L10 Triple 3-lnput NAND Gates .. _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ..... 1-4,1-36
DM54LS10/DM74LS10 Triple 3-lnput NAND Gates ............. _ ..... __ . . . . . . . . . . . . . . . . . . . . . . _ 1-4,1-36
DM74S10 Triple 3-lnput NAND Gates . . . . . . . . . . . . . . _ ....... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . _. 1-4, 1-36
DM5411/DM7411 Triple 3-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . 1-5,1-44
DM54Hl1/DM74Hll Triple 3-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5,1-44
DM54L11/DM74L 11 Triple 3-lnput AND Gates ............. _ . _ ........ _ ....... _ ... _ ... ___ . . .. 1-5, 1-44
DM54LSll/DM74LS11 Triple 3-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5,1:44
DM74S11 Triple 3-lnput AND.Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ....... 1-5,1-44
DM54LS12/DM74LS12 Triple 3-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . _ . _ . _. 1-5, 1-38
DM5413/DM7413 Dual4-lnput NAND Schmitt Triggers ............. __ . _ ..... _ ... _ ...... _ ....... 1-5,1-48
DM54LS13/DM74LS13 Dual4-lnput NAND Schmitt Triggers ...... _ . . . . . . . . . . . . . . . . . . . . . . . . . __ . _. 1-5,1-48
DM5414/DM7414 Hex Schmitt Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . __ ....... _ .......... _ ... 1-6,1-48
Note: When there are two sets of page.numbers, the first designates the connection diagram page; the second indicates electrical tables.
uii
~ TTL Data Book
Table of Contents
DM54LS14/DM74LS14 Hex Schmitt Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6, lA8
DM54LS15/DM74LS15 Triple 3-lnput AND Gates with Open·Collector Outputs . . . . . . . . . . . . . . . . . . . .' ..... 1-6,1-46
DM74S15 Triple 3-lnput AND Gates with Open·Coliector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,1-6,1-46
DM5416/DM7416 Hex Buffers with Open-Collector High-Voltage Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·6,1-42
DM5417/DM7417 Hex Buffers with Open-Collector High-Voltage Outputs ................ " .... ; ...... , 1-7,1-42
DM5420/DM7420 Dual4-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7,1·36
DM54H20/DM74H20 Dual4-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,1-7,1-36
DM54L20/DM74L20 Dual 4-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . 1-7,1-36
DM54LS20/DM74LS20 Dual 4-lnput NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _. 1-7,1-36
DM74S20 Dual4-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '........ _ .... 1-7,1-36
DM54H21/DM74H21 Dual 4-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7,1-44
'DM54LS211DM74LS21 Dual 4-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '........... 1-7,1-44
DM54H22/DM74H22 Dual 4-lnput NAND Gates with Open-Collector Outputs .............. ; ........... 1-8,1-38
DM54LS22/DM74LS22 Dual4-lnput NAND Gates with Open·Coliector Outputs. . . . . . . . . . . . . . . . . . .. . . .. 1-8,1-38
DM74S22 Dual 4-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . .. 1-8,1-38
DM5423/DM7423 Expandable Dual 4·lnput NOR Gates .... , , . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. 1-8,1-50
DM5425/DM7425 Dual 4-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . .. 1-8, 1-40
DM5426/DM7426 Quad 2-lnput High-Voltage NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9,lA2
DM54L26/DM74L26 Quad 2-lnput High-Voltage NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9,1-42
DM54LS26/DM74LS26 Quad 2-lnput High-Voltage NAND Gates. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. .. 1-9,1-42
DM5427/DM7427 Triple 3·lnput NOR Gates. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9,1-40
DM54LS27/DM74LS27 Triple 3·lnput NOR Gates. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 1-9,1-40
DM5430/DM7430 8-lnput NAND Gates. . . . . . . . . . . .. .. . . . . . . .. . . . . . . . . . ... . .. . . . . . . . . . . . .. 1·9,1-36
DM54H30/DM74H30 8·lnput NAND Gates. . . . . . . . . . . . . . . . . . . . .'. . . . . . . . .. . . . . . . . . . . . . . .. . .. 1·9,1-36
DM54L30/DM74L30 8-lnput NAND Gates ........... ; . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . .. 1-9,1-36
DM54LS30/DM74LS30 8-lnput NAND Gates ... _ . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9,1-36
,DM74S30 8·lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,' . . . . . . . . . . .. 1-9,1-36
DM5432/DM7432 Quad 2-lnput OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10; 1-52
DM54L32/DM74L32 Quad 2-lnput OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ; 1-10,1-52
DM54LS32/DM74LS32 Quad 2-lnput OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '...............• 1-10,1-52
DM5437/DM7437 Quad 2-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10,1-54
DM54LS37/DM74LS37 Quad 2-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . 1-10,1-54
DM5438/DM7438 Quad 2-lnput NAND Buffers with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10,1-42
DM54LS38/DM74LS38 Quad 2-lnput NAND Buffers with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . 1-10,1-42
DM5440/DM7440 Dual4-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11, '·54
DM54H40IDM74H40 Dual 4-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11,.1-54
DM54LS40/DM74LS40 Dual 4-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11,1·54
DM74S40 Dual4-lnput NAND Buffers ...... , ............ : .... _. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11,1-54
DM5450/DM7450 Dual 2-Wide 2-lnput AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11,1-50,'
DM54H50/DM74H50 Dual 2-Wide 2-lnput AND-OR-INV ERT Gates. . . . . . . . . . .. . . . . . • . . . . . . . . . . . . .. 1-11. 1-50
DM5451/DM7451 Dual 2-Wide 2-lnput AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12.1,-56
DM54H51/DM74H51 Dual 2-Wide 2-lnput AND-OR-INVERT Gates ............. , . . . . . . . . . . . . . . . . . . 1-12,1-56
DM54L51/DM74L51 Dual 2-Wide 2-lnput AND-OR-INVERT Gates ......... " . . . . . . . . . . . . . . . . . . . . . 1-12,1-56
DM54LS51/DM74LS51 Dual 2-Wide 2-lnput AND-OR-INVERT Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12,1-56
DM74S51 Dual 2-Wide 2-lnput AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , .... 1-12, 1-56
DM54H52/DM74H52 Expandable 4-Wide AND-OR Gates ...........•... : . . . . . . . . . . . . . . . . . . . . . . . 1-13,1-50
DM5453/DM7453 Expandable 4-Wide AND·OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; .. 1-13,1-50
DM54H53/DM74H53 Expandable 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . 1-13,1-50
DM5454/DM7454 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . 1-14,1-56
DM54H54/DM74H54 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14,1-56
DM54L54/DM74L54 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; ......... , .. 1-14,1-56
DM54LS54/DM74LS54 4-Wide AND-OR-INVERT Gates ... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14,1-56
DM54H55/DM74H55 2-Wide 4-lnput AND-OR-INVERT Gates ............ ; . . . . . . . . . . . . . . . . . . . . . . . 1-15.1-50
DM54L55/DM74L55 2-Wide 4-lnput AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . ; ..........•.. " 1-15,1-56
DM54LS55/DM74LS55 2-Wide 4-lnput AND-OR-INVERT Gates . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . 1-15,1-56
DM5460/DM7460 Dual4-lnput Expanders ..................... ; ...........•.•..........•.... 1-15,1-58
DM54H60/DM74H60 Dual 4-lnput Expanders . . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . 1-15,1-59
DM54H61/DM74H61 Triple 3-lnput Expanders ... ' . . . . . . . . . . . . . . . . . . . . . : . , . . . . . . . . . . . . . . . . . . . 1-16,1-60
DM54H62/DM74H62 4-Wide AND-OR Expanders . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '... 1-16,1-59
•
Note: When there ·are two sets of page numbers, the first designates the connection diagram page; the second indicates electrical tables.
~ TTL Data Book
Table of Contents
DM74S64 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16,1-56
DM74S65 4-Wide AND-OR-INVERT Gates with Open-Collector Outputs .............................. 1-17,1-61
DM5470/DM7470 AND-Gated J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . 1-18,1-62
DM54H71/DM74H71 AND-OR-Gated J-K Master-Slave Flip-Flops with Preset . . . . . . . . . . . . . . . . . . . . . . . . . 1-18,1-64
DM54L71/DM74L71 AND-Gated R-S Master-Slave Flip-Flops with Preset and Clear ............. " ....... 1·19,1-66
DM5472/DM7472 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . 1-19,1-62
DM54H72/DM74H72 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear. . . . . . . . . . . . . . . . . . . . . . 1-19,1-64
DM54L72/DM74L72 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . 1-19,1-66
DM5473/DM7473 Dual J-K Flip-Flops with Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20,1·62
DM54H73/DM74H73 Dual J-K Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . .. 1-20, 1-64
DM54L73/DM74L73 Dual J-K Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ............ 1-20,1-66
DM54LS73/DM74LS73 Dual J-K Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " ..... 1-20,1·68
DM5474/DM7474 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . 1-20,1-62
DM54H74/DM74H74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . 1-20,1-64
DM54L74/DM74L74 Dual D Positive-Edge-Triggered Flip·Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . 1-20,1-66
DM54LS74/DM74LS74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear ...... '. . . . . . . . . . . .. 1-20, 1-68
DM74S74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20,1-70
DM5476/DM7476 Dual J-K Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21,1·62
DM54H76IDM74H76 Dual J-K Flip-Flops with Preset and Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-21, 1-64
DM54LS76/DM74LS76 Dual J-K Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21,1-68
DM54H78/DM74H78 Dual J-K Flip-Flops with Preset, Common Clear and Common CI·ock . . . . . . . . . . . . . . . .. 1-21, 1-64
DM54L78/DM74L78 Dual J-K Flip-Flops with Preset, Common Clear and Common Clock . . . . . . . . . . . . . . . . . 1-21,1-66.
DM54LS78/DM74LS78 Dual J-K Flip-Flops with Preset, Common Clear and Common Clock . . . . . . . . . . . . . . . . 1-21,1-68
DM5486/DM7486 Quad EXCLUSIVE-OR Gates . . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . 1-22,1-72
DM54L86/DM74L86 Quad EXCLUSIVE-OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 1-22,1-72
DM54LS86/DM74LS86 Quad EXCLUSIVE-OR Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22,1-72
DM74S86 Quad EXCLUSIVE-OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22,1-72
DM54Hl03/DM74Hl03 Dual J-K Negative-Edge-Triggered Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . 1-23,1-74
DM54H 106/DM74Hl 06 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear ........ '. . . . . . . .. 1-23, 1-74
DM54107/DM74107 Dual J-K Master-Slave Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23,1-62
DM54LS107/DM74LS107 Dual J-K Master-Slave Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23,1-68
DM54Hl08/DM74Hl08 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear,
and Common Clock ... " " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '" ....... 1-24,1-74
DM54109/DM74109 Dual J.j( Positive-Edge-Triggered Flip-Flops with Preset and Clear. . . . . . . . . . . . . . . . . . .. 1-24, 1-62
DM54LS109/DM74LS109 Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . 1-24,1-68
DM54LS112/DM74Ls112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . , 1-24, 1-68
DM74S112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . . 1-24,1-70
DM54LSl13/DM74LSl13 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset . . . . . . . . . . . . . . . . . . . . . . 1-25,1-68
DM74S113 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25,1-70
DM54LSl14/DM74LSl14 DlJal J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear,
and Common Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-25, 1-68
DM74S114 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Clock ....... 1-25,1-70
DM54121/DM74121 OneShots ... , ....... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26,1-76
DM54LS122/DM74LS122 Retriggerable One Shots with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26,1-78
DM54123/DM74123 Dual Retriggerable One Shots with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26,1-78
DM54L 123A/DM74L 123A Du~1 Retriggerable One Shots with Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1·26, 1·78
DM54LS123IDM74LS123 Dual Retriggerable One Shots with Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-26, 1-78
DM54125/DM74125 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . 1-27,1-80
DM54LS125/DM74LS125 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-80
DM54126IDM74126 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-80
DM54LS126(DM74LS126 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-80
DM54132/DM74132 Quad 2-lnput NAND Schmitt Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-48
DM54LS132/DM74LS132 Quad 2-lnput NAND Schmitt Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-48
DM74S133 13-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28,1-36
DM74S134 TRI-STATE 12-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28,1-80
DM74S135 Quad EXCLUSIVE-OR/NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28,1-82
DM54l-S1361DM74LS136 Quad EXCLUSIVE-OR Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . 1-29,1-84
DM74S136 Quad EXCLUSIVE-OR Gates with Open-Collector Outputs ............................... 1-29,1-84
DM74S140 Dual 50-Ohm Line Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29, 1-54
Note: When there are two sets of page numbers, the first designates the connection diagram page; the second indicates electrical tables.
ix
~ 'TTL Data Book
Table of Contents
DM54lS221/DM74LS221 Dual One Shots with Schmitt-Trigger Inputs ............•.........•......•
DM74S260 Dual 5-lnput NOR Gates ........................•............................
DM54LS266/DM74LS266 Quad EXCLUSIVE-NOR Gates with Open·Coliector Outputs ...................
DM54365/DM74365 TRI-STATE Hex Buffers .....•...•................... ' .......•...........
DM54LS365/DM74LS365 TRI·STATE Hex Buffers .............•...................•.•. ; .....
DM54366/DM74366 TRI-STATE Hex Buffers .....•..................' ..... ' •............. : . :.
DM54LS366/DM74LS366 TRI·STATE Hex Buffers ...... , ., .........................•....... ,
DM54367/DM74367 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM54LS367/DM74LS367 TRI-STATE Hex Buffers .................................... ',' ..•..
DM54368/PM74368 TRI-STATE Hex Buffers ......... ; ......... ; ...................... -.....
DM54LS368/DM74LS368 TRI-STATE Hex Buffers ................... '........................
DM54LS386/DM74LS386 Quad EXCLUSIVE·OR Gates .............................•..........
1-30,1-76
1-31,140
1-31,1-84
1·32,1·86
1~32, 1-86
1-32,1-86
1·32,1-86
1-32,1-86
1-32,1·86
1-33,1-86
1-33,1-86
1·34,1·72
54/74 MSI-SECTION 2
DM5441A/DM7441A BCD/Decimal Decoders/Drivers .... : ............ .'. . . . . . . . . . . . . . . • . • . . . ... . . .
DM5442/DM7442 BCD/Decimal Decoders . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM54L42A/DM74L42A BCD/Decimal Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . .
DM54LS42/DM74LS42 BCD/Decimal Decoders ........ '.................... _ ......... '. .. . . . . . .. .
DM5445/DM7445 BCD/Decimal Decoders/Drivers. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . .
DM5446A/DM7446A BCD!7-Segment Decoders/Drivers .......... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM5447A1DM7447A BCD!7-Segment Decoders/Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . .
DM54LS47/DM74LS47 BCD!7-Segment Decoders/Drivers .... .' .....•..........................•.. : .
PM5448/0M7448 BCD/7:Segment Decoders/Drivers ............................................ ;
DM54LS48/DM74LS48 BCD/7-Segment Decoders/Drivers ..............•.... ; .................• ; . . .
DM54LS49/DM74LS49 BCD/7-Segment Decoders/Drivers ................................. : ... ;. . • .
DM5475/DM7475 Quad Latches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . ..
DM54L75A/DM74L75A Quad Latches ................ :. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS75/DM74LS75 Quad Latches ........................... '.. . . . . . . . . . . . . . . . . . . . . . .. . ..
DM54LS77/DM74LS77 Quad Latches. . . . . . . . . . . . . . . .. . . . . . . . . . • .. . . . . . . . . . . . . . . . . . . . . . . . . .•
, DM5483/DM7483 4-Bit Binary Adders with Fast Carry ....... '. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ..
OM54LS83A/DM74LS83A 4-Bit Binary Adders with Fast Carry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM5485/DM7485 4-Bit Magnitude Comparators. . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . • . ..
DM54L85/DM74L85 4-Bit Magnitude Comparators .... '. . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . • • ..
DM54LS85/DM74LS85 4-BitMagnitude Compa~ators ......... : ......... : ................'. . . . . . . ..
DM5488/DM7488 256-Bit Read Only Memories. . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . .. ..
DM5489/DM74.89 64-Bit ReadlWrite Memories. . . . . . .. . . . . .. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OM54L89A/DM74L89A 64-Bit ReadlWrite Memories. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . •.
OM5490A/DM7490A Decade, Divide by 12, and Binary Counters. . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . ..
DM54L90/DM74L90 Decade, Divide by 12, and Binary Counters ........... '. . . . . .. . . . ... . . . . . . . . . . . . ..
DM54L!?90/DM74LS90 Decade, Divi!le by 12.-and Binary Counters. . . . . . . .. . . . . . . . . . . . . . . • . . . . . . . . . ..
DM5491A/DM7491A 8-Bit Serial Shift Registers ............... : . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . •.
DM54L91/DM74L91 8-Bit Serial Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . . ..
DM5492A/DM7492A Decade, Divide by 12, and Binary Counters ............... ' ............... '. . . . . ..
DM54LS92/DM74LS92 Decade, Divide by 12, and Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . ..
DM5493A/DM7493A Decade, Divide by 12, and Binary Counters ...........' ........ ' ............ '. . .. . ..
DM54L93/DM74L93 Decade, Divide by 12, and Binary Counters ................................ ~ . . ..
, DM54LS93/DM74LS93 Decade, Divide by 12, and Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM5495/DM7495 4·Bit ParalierAccess Shift,Registers •................ '. . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54L95/DM74L95 A·Bit Parallel Access Shift Registers . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS95B/DM74LS95B 4·Bit Parallel Access Shift Registers. . . • . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . ..
DM5496/DM7496 5·Bit Shift Registers .......................... ; . . . . . . . . . . . . . . . . . . . . . • . . . . ..
DM54LS96/DM74LS96 5-Bit Shift Registers ................................ " . . . . . . . . . . . . . . . ..
DM54L98/DM74L98 4-Bit Storage Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' ......•... '. . . . ..
DM54LS124/DM74LSI24 Dual Voltage Controlled Oscillators. . . . . . . . . . . . . . . . . . . . . . .• . . . . . . . . . . . . . ..
DM54LSI38/DM74LS138 Decoders/Demultiplexers. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . • . . . . . . . . . . • . ..
DM74S138 Decoders/Demultiplexers.. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS139/DM74LSI39 Decoders/Dem!lltiplexers .................... : ............•....... : . . ..
DM74S139 Decoders/Demultiplexers ........... ~ ...................... ; . . • ... . . . . . . . . . . . . • . ..
Note: When there are ,two sets of page numbers, the first dttsignates the confl8ction diagram. page; the second indicates electrical tables.
x
2·1
2-3
2-3
2·3
2·6
2-8
2-8
2-8
2-8
2·8
2-8
2-14
2·14
2-14'
2·14
2-17
2-17
2·21
2-21
2-21
2-25
2·28
2-28
2·30
2-30
2·30
2;34
2·34
2-30
2-30
2-30
2·30
2-30
2·36
2·36
2·36
2·39
2-39
2·42
2-44
2·46
2·46
246
2-46
~ TTL Data Book
Table of Contents
DM54141/DM74141 BCD/Decimal Decoders/Drivers . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM54145/DM74145 BCD/Deciinal Decoders/Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM54147/DM74147 Priority Encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54148/DM74148 Priority Encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54150/DM74150 Data Selectors/Multiplexers... . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54151 A/DM74151 A Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
DM54LS151/DM74LS151 Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM74S151 Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54153/DM74153 Dual4·line to l·Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS153/DM74LS153 Dual4·Line to l·Line Data Selectors/Multiplexers.. .. .... . .. . .. . . . . . . . . . . . . . ..
DM74S153 Dual4·Line to l·Line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
DM54154/DM74154 4·Line to 16·Line Decoders/Demultiplexers . . . . . . . . . . . . . . . . . '.' . . . . . . . . . . . . . . . . ..
DM54Ll54A/DM74L154A 4·Lineto 16·Line DecodersiDemultiplexers . . . . . . . . . . . . . . . . . . . . . . ,..........
DM54LSl54/DM74LS154 4·Line to 16·Line Decoders/Demultiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54155/DM74155 Dual 2·Limi to 4·Line Decoders/Demultiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS155/DM74LS155 Dual 2·Line to 4·Line Decoders/Demultiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54156/DM74156 Dual 2·Line to 4·Line Decoders/Demultiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS156/DM74LS156 Dual 2·Line to 4·Line Decoders/Demultiplexers. . . . . . . . . . . . .. . . . . . . . . . . . . . . . ..
DM54157/DM74157 Quad 2·Line to 1·Line Data Selectors/Multiplexers........... '. . . . . . . . . . . . . . . . . . . . ..
DM54L 157A/DM74L 157A Quad 2·Line to 1·Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS157/DM74LS157 Quad 2·Line to I·Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM74S157 Quad 2·Li,ne to l·Line Data Selectors/Multiplexers. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS158/DM74LS158 Quad 2·Line to 1·Line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . .' . . . . . . . ..
DM74S158 Quad 2·Line to I·Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
.. DM54160A/DM74160A Synchro·nous4·Bit,Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '......
DM54LS160/DM74LS160 Synchronous 4·BIt Counters. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54161A/DM74161A Synchronous 4·Bit Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OM54LS161/DM74LS161 Synchronous 4·Bit Counters: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54162A/DM74162A Synchronous 4·Bit Counters. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OM54LS162/DM74LS162 Synchronous 4·Bit Counters ... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ..
DM54163A/DM74163A Synchronous 4·Bit Counters. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS163/DM74LS163 Synchronous4-Bit Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . ..
OM54164/0M74164 8·Bit Serial In/Parallel Out Shift Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ..
DM54L164A/DM74L164A 8-Bit Seria,lln/Paraliel Out Shift Registers ....... '" .... " . . • . . . . . . . . . . . . . . ..
OM54LS164/DM74LS164 8;Bit Serial In/Paralle! Out Shift 'Registers ............•...•........•... ',' . . .•
OM54165/DM74165 8·Bit Parallel In/Serial Out Shift Registers •.............••••••...............• ,.
OM54L165A10M74L 165A 8-Bit Parallel In/Serial Out Shift Registers. . . . . . . . . . . . . . . . . • . . . . . . . . . . . . • • ..
OM54166/DM74166 8·Bit Parallel In/Serial Out Shift Registers . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . . . . . ..
DM54LSl68/DM74LS168 Synchronous 4·Bit Up/Down Counters. . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS169/DM74LS169 Synchronous 4·Bit Up/Down Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM74170 4 by 4 Register Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS170/DM74LS170 4by4 Register Files ..... ' . . . . . . . . . . . . . . . . . . . • . . . . . . . . . '. . . . . . . . . . . . . . .
DM54173/DM74173 TRI·STATE Quad.o Registers . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
. OM54LS173/DM74LS173 TRI·STATE Quad 0 Registers .... " ...... '.' . . . . . . . . . . . . . . . . . . . . . . . . . , ..
OM54174/0M74174 Hex/Quad 0 Flip·Flops with Clear. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . ..
OM54LSi741OM74LS174 Hex/Quad 0 Flip·Flops with Clear. . . . . . . . . . . . . . . . . • . . . • . . . . • . . . . . . . • . . . ..
DM74S174 Hex/Quad 0 Flip-Flops with Clear ....•.......•..... " . . . . . . . . . . .. . . . . . . . . . . . . • . . • ..
OM541751DM74175 Hex/Quad 0 Flip·Flops with Clear. • . . • . . . . . . . . . • . • • . • • . . • . . . • . • • . . . . . • . . . • ..
OM54LSl75/DM74:LS175 Hex/Quad 0 Flip·Flops with·Clear....•.••..•••••• , ••••' •••••..••.••.•••• "
DM74S175 Hex/Qulld 0 Flip·Flops with Clear. • • . . • . . . . • . . . . . • • . . . • • .• . . . • • • . . . • • • . • . • • . • . • • . ••
OM54176/0M74176 Pnisettable Decade and 8inary Counters••....••...•. , .• , •. , , ••.••...•••..•••.•• '
DM54177/DM74177 Presettable Decade and Binary Counters.• , ........•....•••..•.•.• , .•• , •••••..••
DM541S0JOM74180 9-Blt Parity Generators/Checkers .••....•...••......•......••.••....••••••.••
OM541Bl/OM74181 Arithmetic L09ic Unit/Function Generators •.•.• '.' •..•..•...•...•..•.••..•••• , ••
DM5418WM74182 Look-Ahead Carry Generators ..••.••..•.•..•.....••• _ •..•••.•••.•...••••••.
'OM74S182 l.Qok·Ahead Carry Generators•...••...••.•.••.... ' •... .- •..••......•••••••...•••••••
OMS418410M74184 BCP·to-Binary Bnd Binary-to-BCD Converters ...•..•...•......•••.•.•••. _ .•••••••
OM541S5A/DM14185A 6CD-to·Binary and Binary-to-BCD Converters ...............•.••••••••.• , ••. "
OM54187/0M74187 1024:Bit Read Only Memories ..•.•.••.......•. ' ...•...••••...•.•. , , .•••• , •.•
xi
2·1
2·6
249
2·49
2·53
2·53
2·53
2·53
2·57
2·57
2·57
2·60
2·60
2·60
2·63
2·63
2·63
2·63
2·66
2·66
2·66
2·66
2·66
2·66
2·70
2·70
2·70
2·70
2·70
2·70
2·70
2·70
2-76,
2·76
2·76
2-79
2·79
2·82
2·85
2·85
2·91
2·91
2·96
2·96,
2·98
2·98
2·98
2-"98
2~98
2..sa
2.1.01
2·101
2·105
2-107
2-113
2·n3
2·116
2,116
2-122
~ TTL Data Book
Table of Contents
DM54L187A/DM74L187A 1024-8itRead Only Memories . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-122
DM54S189/DM74S189 TRI-STATE 64-Bit ReadIWrite Memories ... " ... ; ... : .................... , ...... 2-125
DM54190/DM74190 Synchronous Up/Down Counters with Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 2-128
DM54LS190/DM74LS190 Synchronous Up/Down Couniers with Mode Control . . . . . . . . . . . . . . . . . . . . : . . . . .. 2-128
DM54191/DM74191 Synchronous Up/Down Counters with Mode Control. .. . . . • . . . . . . . . . . . . . . .. . . . . . . .. 2-128
DM54LS191/DM74LS191 Synchronous Up/Down Counters'with Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·128
DM54192/DM74192 Synchronous Up/Down Counters with Dual Clock .................................. 2-133
DM54L 192/DM74L 192 Synchronous Up(Down Counters with Dual Clock. . . . . . . . . . . . . . . . . . . . . . . • . . . . . .. 2-133
DM54LS192/DM74LS192 Synchronous Up/Down Counters with Dual Clock ............. " ............... 2·133
DM54193/DM74193 Synchronous Up/Down Counters with Dual Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-133
DM54L 193/DM74L 193 Synchronous Up/Down Counters with Dual Clock ...................' •............ 2-133
DM54LS193/DM74LS193 Synchronous Up/Down Counters with Dual Clock ....................•. '.: ... " 2-13~
DM54194/DM74194 4-Bit Bidirectional Universal Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ........ 2-140
DM54LS194A/DM74LS194A 4-Bit Bidirectional Universal Shift Registers ...............................• 2·140
DM74S194 ,4·Bit Bidirectional Universal Shift Registers ........ " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 2·140
DM54195/DM74195 4·Bit Parallel Access Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·144
DM54LS195A/DM74LS195A 4·Bit Parallel Access Shift Registers .......... '........... : ............... 2·144
DM74S195 4·Bit Parallel Access Shift Registers .........•................ '. . . . . . . . . . . . . . . . . . . . . . . 2·144
DM54196/DM74196 Presettable, Decade and Binary..counters . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . .. 2·101
DM54LS196/DM74LS196 Presettable Decade and Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101
DM54197/DM74197 Presettable Decade and Binary Counter~. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. 2·101
D~54LS197/DM74LS197 Presettable Decade and Binary Counters ..•.......... .' ...... , ..... ; ......... 2·101
DM54198/DM74198 8·Bit Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., ............. 2·148
DM54199/DM74199 8·Bit Shift Registers. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 2·148
DM54S200/DM74S200 TRI·STATE 256-Bit ReadIWrite Memories ...................................... 2·154
DM54S206/DM74S206 256·Bit ReadIWrite Memories with Open·Coliector Outputs: . . . . . . . . . . . . . . . . . . . . ; . .. 2·157
DM54251/DM74251 TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : .... '"
2-160
DM54LS251/DM74LS251 TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . 2·160
DM74S251 ·TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . • . . . 2·.160
DM54LS253/DM74LS253 TRI·STATE Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 2·16:t
DM74S253 TRI-STATE Data Selectors/Multiplexers . . . . . . . . . . • . . . . . . . . . . . . . . . . . . : ...... '.' .. , .... , 2·163
DM54LS257/DM74LS257 TRI·STATE Quad 2·Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . , .. 2·165
DM74S257 TRI·STATE Quad 2·Data Selectors/Multiplexers, ........................................ 2·165
DM54LS258/DM74LS258 TRI·STATE Quad 2·Dat3 Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·165
DM74S258 TRI·STATE Quad 2·Data Selectors/Multiplexers. : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·165
DM54LS279/0M74LS279 Quad S-R Latches . . . . . . . . . . . . . . . . . . . . . ' ............................... 2·168
DM74S280 9·Bit Parity Generators/Checkers. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . .. 2·170
DM74S281 4·Bit Parallel Binary Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . • • . . . . . .• 2·173
DM54LS283/DM74LS283 4·Bit Binary Adders with Fast Carry . . . . . . . . . . . . . . . . . . . . .,. . . . . . . . . . . . . . . .. 2·17
DM54S287/DM74S287 TRI·STATE 1024·Bit Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . 2-177
DM54S289/DM74S289 64·Bit ReadIWrite Memories with Open·Coliector Outputs ....•...... '............... 2·179
DM54LS295A/DM74LS295A TRI-STATE 4-Bit Parallel Access Shift Registers ..............•......•...... 2·182
DM54LS298/DM74LS298 Quad 2·Multiplexers with Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 2·184
DM54LS374/DM74LS374 TRI·STATE Octal D Flip-Flops .................. '. . . . . . . . . . . . . . . . . . . . . . . . 2·187
DM54S387/DM74S387 1024·Bit Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2~177
DM54LS395/DM74LS395 TRI·STATE 4-Bit Cascadable Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·189
DM54LS670/DM74LS670 TRI·STATE4 by 4 Register Files ....... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·191
PROPRIETARY-SECTION 3,
DM80L06 Quad 2;lnput .NA.ND Gates with Resistive Pull·Ups .... : . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . ...
DM7090/DM8090 Quad Inverters plus Dual 2·lnput .NA.ND Gates ..... : . . . . . . . . . . . . . . . . ... . . . . . . . . . .
DM7091/DM8091 Quad 2-lnput .NA.ND Buffers. . . . . . . . . . . . . . . . . . . . . • . . . . . . .. .. . . . . . . . . . . . . . . .
DM7092/DM8092 Dual 5·lnput .NA.ND Gates. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . • . .. . . . . . . . . . . . .
DM7093/DM8093 TRI·STATE Quad Buffers. . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . .. . . . . . . . . .
DM7094/DM,8094 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . '.
DM7095/DM8095 TRI-STATE Hex Buffers .............. ; ........ ". . . . . . . . . . . . . . .. . . . . . .. . .
DM70L95/DM80L95 TRI-STATE Hex Buffers ... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '.' . : . . . • . . . . . .
DM7096/DM8096 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . :. • . . . . . . . • . . . . . . • . . . . .
xii
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3·1
.3·3
3·3
3·3
3-5,
3-5
3-7
3-7
3·7
~ TTL Data Book
Table of Contents
DM70L96/DM80L96 TR I-STATE Hex 8uffers
DM7097/DM8097 TRI-STATE Hex 8uffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . .
DM70L97/DM80L97 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ .......... .
DM7098/DM8098 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM70L98/DM80L98 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ .......... .
DM7099/DM8099 TRI-STATE Quad 2-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7121/DM8121 TR I-STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM71 L22/DM81 L22 Quad 2-lnput Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . .
DM7123/DM8123 TR I-STATE Quad 2-lnput Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM71 L23/DM81 L23 TRI-STATE Quad 2-lnput Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7130/DM8130 10-Bit Magnitude Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ........ .
DM7131/DM8131 6-Bit Unified Bus Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7136/DM8136 6-Bit Unified Bus Comparators. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . .
DM7160/DM8160 6-Bit Magnitude Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . .
DM71 LS95/DM81 LS95 TRI-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _
DM71 LS96/DM81 LS96 TR I-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM71 LS97/DM81 LS97 TR I-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM71 LS98/DM81 LS98 TR I-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7200/DM8200 4-8it Magnitude Comparators . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ...... .
DM721 0/DM821 0 8-line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7211/DM8211 8-Line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7214/DM8214 TRI-STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM72191DM8219 TRI-STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7220/DM8220 9-Bit Parity Generators/Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7223/DM8223 l-Line to 8-Line Demultiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7230/DM8230 TRI-STATE Dual 2/4 Demultiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ..... .
DM7511/DM8511 Dual Gated Flip-Flops. ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L 11/DM85L 11 Dual Gated Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . .
DM7512/DM8512 Dual Gated Flip·Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L12/DM85L12 Dual Gated Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ... .
DM7520/DM8520 Modulo-N Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM8531 TRI-STATE 16k Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7542/DM8542 TR I-STATE Quad I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ............ _
DM7544/DM8544 TR I-STATE Quad Switch Debouncers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7546/DM8546 TRI-STATE 8-Bit Universal I/O Shift Reigsters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM85S50 6-Bit Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7551/DM8551 TR I-STATE 4-Bit 0 Type Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L51/DMB5L51 TRI-STATE 4-Bit 0 Type Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7552/DM8552 TRI-STATE Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L52/DM85L52 TR I-STATE Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7553/DM8553 TR I-STATE 8-Bit Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7554/DM8554 TR I-STATE Synchronous Coun~ers/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L54/DM85L54 TR I-STATE Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7555/DM8555 TRI-STATE Programmable Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7556/DM8556 TRI-STATE Programmable Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7560/DM8560 Synchronous 4-Bit Up/Down Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L60/DM85L60 Synchronous 4-Bit Up/Down Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ...... .
DM75p3IDM8563 Synchronous 4-Bit Up/Down Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L63/DM85L63 Synchronous 4-Bit Up/Down Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75S68/DM85S68 64-Bit Edge-Triggered Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7570IDM8570 8-Bit Serial In/Parallel Out Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7573/DM8573 1024-Bit Field Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7574/DM8574 TRI-STATE 1024-Bit Field Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . .
DM7575/DM8575_Programmable Logic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "' ..... .
DM7576/DM8576 Programmable Logic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '.' ......... .
DM7577/DM8577 256-Bit Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . '.' ... ' .......... .
DM7578/DM8578 TRI-STATE 256-Bit Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM8581 TRI-STATE16k Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7590/DM8590 8-Bit Parallel In/Serial Out Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . , ............. .
xiii
3-7
3-7
3-7
3-7
3-7
3-9
3-11
3-13
3-13
3-13
3-17
3-19
3-19
3-17
3-21
3-21
3-21
3-21
3-23
3-25
3-25
3-28
3-28
3-32
3-35
3-37
3-40
3-40
3-40
3-40
3-44
3-49
3-52
3-54
3-56
3-60
3-62
3-62
3-64
3-64
3-70
3-64
3-64
3-72
3-72
3-76
3-76
3-76
3-76
3·82
3-86
3-89
3-92
3-95
3-95
3-101
3-104
3-107
3-110
~ TIL Data Book
Table of Contents
DM7595/DM8595 4096-8it Read Only Memories __ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7596/DM8596 TRI-STATE 4096,Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
DM7597/DM8597 TRI'STATE 1024·Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • .
DM7598/DM8598 TR I·STATE 256-Bit Read Only Memories ............ '. . . . .. . . . . . . . . . . . . . . . .. . . . ..
DM7599/DM8599 TRI-STATE 64-Bit Random Access Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7613/DM8613 Quad Gated Flip-Flops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM76L13/DM86L 13 Quad Gated Flip·Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . ..
DM76L24/DM86L24 TRI-STATE Magnitude Comparators with A Almost Equal B . . . . . . . . . . . . . . . . . . . . . . . . .
DM76L25/DM86L25 TRI·STATE 7-Segmentto BCD Decoders ......... '" . . . . . . . • . . . . . . . . . . . . . . . . . .
DM76L70/DM86L70 8-Bit Serial In/rarallel Out Shift Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM76L75/DM86L75 Presettable Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . .
DM76L76/DM86L76 Presettable Binary Counters, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7678/DM8678 7 by 9 Character Generators .... ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7679/DM8679 7 by 9 Character Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . , .... _ . . . . . . . . . . . . . . .
DM76L90/DM86L90 8-Bit Parallel In/Serial Out Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM76L93/DM86L93 Binary Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . ;......
DM761,.97/DM86L97 TRI-STATE 1024·Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM76L99/DM86L99 TRI-STATE 64-Bit Random Access Memories . . . . . . . . . . . . . . . . . . . . . . , ..... _ ......
DM7795/DM8795 4096-Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . .
DM7796/DM8796 TRI-STATE 4096-Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7853/DM8853 Dual Retriggerable Resettable Monostable Multivibrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7875A/DM8875A TRI-STATE 4-Bit Parallel Binary Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7875B/DM8875B TRI-STATE 4-Bit Parallel Binary Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM8898 TRI-STATE BCD to Binary Converters
DM8899 TR I·STATE Binary to BCD Converters
3-113
3-116
3-119
3-122
3-127
3-40
3-40
3-131
3-134
3-86
3-137
3-137
3-140
3-140
3-110
3-142
3-144
3-148
3-113
3-116
3-151
3-154
3-154
3-156
3-156
ADDITIONAL DEVICES-SECTION 4
DM930 Dual 4-lnput Gates with Expanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
4-1
DM932 Dual 4-lnput Buffers with Expanders . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM933 Dual 4·lnput Extenders. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .
4-'
DM935 Hex Inverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM936 Hex Invert~rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . .. . ..... .
4-1
oM937 Hex Inverters . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . 4-1
4-1
DM944 Dual 4-lnput Power Gates with Expanders. , . . . . . . . . . . . . . . . . . . . . . . . . . . ', . . . . . . . . . . . . . . . . . .
4-1
DM945 R-S Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4·1
DM946 Quad 2-lnput Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM94B R-S Flip-Flops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . .
4-1
DM949 Quad 2-lnput Gates. _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . .
4·1
DM957 Quad 2-lnput Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM958 Quad 2·lnput Power Gates. . . . . . . . . . . . . . . . . : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
4-1
DM961 Dual4-lnput Gates with Expanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM962 Triple 3-lnput Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM963 Triple 3-lnput Gates . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4·1
DM1800 Dual 5-lnput Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM1801 Dual 5·lnput Gates . . . . . . . . . . . . . . . . '. . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM2502/DM2502C Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-6
4-6
DM2503/DM2503C Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . " .........•..•...
DM2504/DM2504C Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4·6
DM'7280/DM8280 Presett<\ble Decade Counters . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . • • . • . . . . . . . • . • . . . . . 4-11
DM72811DM8281 Pr~settable Binary Counters ... : . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . . . • . . • _ ... 4'11
DM7288/DM8288 Presettable Divide by 12 Counters ........•.......................•....•..•....• 4-11
DM7290/DM8290 Presettable Decade Counters . . . . . . . . . . . . . • . . . . . . . . . . '...........••....•....... 4-11
.DM1291/DM8291 Presettable Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . 4-11
DM9002C Quad 2·lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • • 4·15
DM9003C Triple 3~lnput NAND "Gates . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . • . . . • " ........••.... 4-15
DM9004C Dual 4-lnput NAND Gates . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . • . . . . . . . • • • . . . • .' 4·15
DM9005C Expandable Dual 2·lnput AND-OR-INVERT Gates . . . • . . . . . . . . . . . . . . . • . _ • _ .........••.•.• 4·15
DM9006C Dual 4-lnput Expanders . . . . . . . . . . . . . . . . . . . . . . . . . , ......•...•.•.•...••...••.••.•• .4-15
xiv
~ TTL Data Book
Table of Contents
DM9008C Expandable 4-Wide AND-OR-INVERT Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9009C Dual 4-lnput NAND Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
DM9012C Quad 2-lnput NAND Gates with Open-Collector Outputs. . .. .. . . . . . . . . . . . . . . . . . . .. . . . . . . . ..
DM9016C Hex Inverters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9024/DM8024 Dual J-K Flip-Flops with Preset and Clear ............. _ . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9093 Dual J-K Flip-Flops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM9094 Dual J-K Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . .
DM9097 Dual J-K Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . .
DM9099 Dual J-K Flip-Flops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM9300/DM8300 4-Bit Parallel-Access Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . ..
DM9301/DM8301 1 of 10 Decoders ..... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9309/DM8309 Dual 4-Line to 1-Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9310/DM8310 Synchronous 4-Bit Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . ..
DM9311/DM8311 4-Line to 16-Line Decoders/Demultiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . _ ..... _ . . . . ..
DM9312/DM8312 8·Line to 1-Line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . ..
DM9316/DM8316 Synchronous 4-Bit Binary Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9318/DM8318 Priority Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ............ ,
DM9322/DM8322 Quad 2-Line to l-Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9334/DM8334 8-Bit Addressable Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . ..
DM9601/DM8601 Retriggerable One Shots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9602/DM8602 Dual Retriggerable, Resettable, One Shots .......... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
xv
4·15
4-15
4-15
4-15
4-17
4-1
4-1
4-1
4-1
4-19
4-22
4-24
4-27
4-33
4-24
4-27
4-36
4-38
4-40
4-43
4-46
~ T1L Data Book
TRI-STATE Selection Guide
DEVICE NO.
DM54125/DM74125
DM54LS125/DM74LS125
DM54126/DM74126
DM54 LS126/DM74LS126
DM74S134
DM54173/DM74173
DM54LS173/DM74 LS173
DM54S189/DM74S189
DM54S200/DM74S200
DM54251/DM74251
DM54LS251/DM74LS251
DM74S251
DM54LS253/DM74LS253
DM74S253
DM54 LS257 /DM74LS257
DM74S257
DM54 LS258/DM74 LS258
DM74S258
DM54S287/DM74S287
DM54 LS295A/DM74LS295A
DM54365/DM74365 .
DM54 LS365/DM74LS365
DM54366/DM74366
DM54LS366/DM74 LS366
DM54367/DM74367
DM54 LS367 /DM74 LS367
DM54368/DM74368
DM54LS368/DM74LS368
DM54LS374/DM74LS374
DM54LS395/DM74LS395
DM54 LS670/DM74LS670
DM7093/DM8093
DM7094/DM8094
DM7095/DM8095
DM70L95/DM80L95
DM7096/DM8096
DM70L96/DM80L96
DM7097/DM8097
DM70L97/DM80L97
DM7098/DM8098
DM70L98/DM80L98
DM7099/DM8099
DM7121/DM8121
DM7123/DM8123
DM71 L23/DM81 L23
DM71 LS95/DM81 LS95
DM71 LS96/DM81 LS96
DM71 LS97/DM81 LS97
DM71 LS98/DM81 LS98
DM7214/DM8214
DM7219/DM8219
. DM7230/DM8230
DM8531
DM7542/DM8542
DM7544/DM8544
DM7546/DM8546
DM7551/DM8551
DM75L51/DM85L51
DM7552/DM8552
DESCRIPTION
PAGE
NO:
TRI·STATE Quad Buffers . .' ... ; ......... , ......................... ;
1-80
TRI·STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . .' .........•.•.....
1-80
TRI·STATE Quad Buffers ...................................... , .. .
1-80
TRI·STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '," ... .
1-S0
TRI·STATE 12-lnput NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-80
TRI·STATE Quad D Registers ..................... o' • • • • • • • • • • • • • • • •
2·96
TRI·STATE Quad D Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-96
TRI·STATE64-Bit Read/Write Memories............... " ............. . 2-125
TRI·STATE 256-Bit Read/Write Memories .. ; . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-154
TR I·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-160
TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . , .. ; .. . 2.1160
TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-160
TRI·STATE Data Selectors/Multiplexers. '.' . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-163
TRI·STATE DataSelectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . : ': .... . 2:163
TR I·STA TE Quad 2-0ata Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165
TR I·STA TE Quad 2-Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165
TRI·STATE Quad 2-Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165
TRI·STATE Quad 2-Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165
TRI·STATE 1024·Bit Programmable Read Only Memories .................. . 2-177
TR I·STA TE 4-Bit Parallel Access Shift Registers .................... .' .... . . 2-182
1·86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers. " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
'-86
TRI·STATE Octal D Flip·Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-187
TRI·STATE 4·Bit Cascadable Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-189
TRI-.STATE4 By4 Register Files .. , ..................... , .......... . 2-191
3-5
TRI·STATE,Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-5
TRI·STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TR I·STA TE Hex Buffers ...... " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TR I·ST A TE Hex Buffers ................... '" .................... .
3-7
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TRI·STATE Hex Buffers ..... '................. : .................. .
3-7
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TRI·STATE Hex Buffers ................ " . . . . . . . . . . . . . . . . . . . . . . . . :
3-7
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9
TRI·STATE Quad 2·lnput NAND Buffers ....................' ......... .
3-11
TR I·STATE Data Selectors/Multiplexers ......•........................
3-13
TRI-STATE Quad 2·lnput Data Selectors/Multiplexers .. ,,' ................. ,
3-13
TRI·STATE Quad 2·lnput Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . .
3-21
TRt-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' ..
3-21
TRI·STATE Octal Buffers .......... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-21
TRI·STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-21
TR I·STA TE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3·28
TRI-STATE Qata Selectors/Multiplexers ......... '........ , ............ .
3-28
TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-37
TRI·STATE Dual 2/4 Demultiplexers ... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-49
TRI-STATE 16K Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-52
TRI·STATE Quad I/O Registers; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-54
TRI·STATE Quad Switch Debouncer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-56
TRI-STATE 8-Bit Universal I/O Shift Registers. , ............ , ........... .
3,62
TR I·STA TE 4·Bit D Type Registers . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . .
3-62
TR I·STATE 4·Bit D Type Registers ..........•.. , ................... .
3-64
TRI·STATE Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . : .
xvi
~ TTL Data Book
TRI-STATE Selection Guide'
DESCRIPTION
DEVICE NO.
DM75L52/DM85L52
DM7553/DM8553
DM7554/DM8554
DM75L54/DM85L54
DM7555/DM8555
DM7556/DM8556
DM7574/DM8574
DM7578/DM8578
DM8581
DM7596/DM8596
D M7597 /DM8597
DM7598/DM8598
DM7599/DM8599
DM76L24/DM86L24
DM76L25/DM86L25
DM76L97/DM86L97
DM76L99/mil86L99
DM7796/ DM8796
DM7875A/DM8875A
DM7875B/DM8875B
DM8898
DM8899
TRI-STATE
TRI-STATE
TR I-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
Synchronous Counters/Latches ......... '..... , ... , ......... .
8-Bit Latches ... , ...... , ..... , ...... , ..... , .... '...... .
Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synchronous Counters/Latches ........... , ................ .
Programmable Decode Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable Binary Counters .. , .... , ..... , .............. .
1024-Bit Field Programmable Read Only Memories .............. .
256-Bit Programmable Read Only Memories ................... .
16k Read Only Memories, ................ , .............. .
4096-Bit Read Only Memories. , ..... , ......... , .......... .
1024-Bit Read Only Memories ....... , .................... .
256-Bit Read Only Memories ....... , , ..... , .. , ........... .
64-Bit Ran~om Access Memories. , .. , ........ , ............. .
Magnitude Comparators with A Almost Equal B................. .
7-Segmentto BCD Decoders ............ , ................. .
1024-Bit Read Only Memories, . , ................ , ........ .
64-Bit Random Access Memories ... , . , ....... , ............. .
4096-Bit Read Only Memories ...... , ... , , ... , ...... , ..... .
4-Bit Parallel Binary Multipliers .. , ................ , ........ .
4-Bit Parallel Binary Multipliers. , .. , ... , . , .. , , , , .. , ...... , ..
BCD to Binary Converters ... '. : .................... , ..... .
BCD to Binary to BCD Converters ........ , ..... , , .. , ..... , . ,
xvii
PAGE
NO.
3-64
3-70
3-64
3-64
3-72
3-72
3-92
3-104
3-107
3-116
3-119
3-122
3-127
3-131
3-134
3-144
3-148
3-116
3-154
3-154
3-156
3-156
~
TTL Families Comparison Guide
TTL Data Book
DM54174
DM54H174H
DM54L/74L
DM54LS/74LS
00
HOO
LOO
LSoo
PARAMET,ER(lI
MIN
10H
High Level Output Current
VOH
High Level Output
Voltage
DM54
DM74
10l
VOL
TVP
los
TVP
400ltA
2.4@
MAX
,MIN
MAX
MIN
TVP
SOO
2·4@
2.5@
500IlA
2.4@
200!lA
2.4@
400/lA
2.7@
looOltA
2.7@
20
2
4
Current
DM74
16
20
3.6
S
Short Circuit OutpUt Current
'CCH SupplV Current
(Average per,'Gate)
-20
20
20
0.4@
0.5@
2mA
4mA
0.4@
0.4@
0.5@
20 rnA
0.5@
20 rnA
3.6 rnA
SmA
20 rnA
20 rnA
16mA
,
40@
5O@
10'@
20@
50@
2.4V
2.4V
2.4V
2.7V
'PV
-1.6@
-2.0@
-{l.IS@
-{l.36@
-2.0@
0.4V
0.4V
0.3V
0.4V
0.5V
High level Input Current
Low Level Input Current
V
0.3@
0.4@
0.4@'
16mA
0.4@
-55
1.0
-3
-100
-40
-15
-130
-30
0.11
2.5
itA
1000ltA
400ltA
16
DM54
UNITS
MAX
-1000
2.5@
200ltA
TVP
-400'
-200
DM54
Low Level Output
MIN
MAX
2.4@
5OO1lA
400ltA
'TVP
-500
-400
2.4@
DM74
III
MIN
low Level Output
Voltage
I'H
MAX
' DM54S/74S
rnA
V
Jl.A
rnA
-100
-40
mA
2.5
0.2
rnA
..... l
Turn "ON" Time
7
15
6.2
10
31
60
10
15
3
5
tpLH
Turn "OFF" Time
11
22
5.9
10
35
60
9
15
3
4.5
.ns
ns
Notes
(1) The 00 gate parameters were used in all cases.
(2)
The product families below will drive the indicated number of loads of each of the above products.
DM54L/74L
DM54LS174ts
DM54S/74S
DM54/74
DM54H/74H
00
HOO
LOO
LSOO
SOO
,MIN
MIN
MIN
MIN
MIN
Series DM54174
10
S
40
20
8
Series DM54HI74H
12
10
50
25
10
Series DM54L174L
2'
1
20
10
1
Series DM54LS174LS
5
4
40
20
4
Series DM54S174S
12
10
100
50
10
FANOUT CAPABILITIES(2)
...
XVIII
~ TTL Data Book
Industry Cross Reference Guide
.
This list is intended to give National replacements for competitors' parts not using the 54/74 numbering system .
Only the basic circuit numbers are cross referenced. As the pin-out sometimes varies between a flat package part and the equivalent DIP part, it is recommended that the manufacturer's specifications be consulted prior to specifying a direct replacement.
Other than parts offered only in a flat package, the dual-in-line pin-outs were used as a guide in preparing the following cross
references.
Direct Replacements were selected as pin-for-pin equivalent circuits based on similarity of electrical and mechanical characteristics as shown in currently published data. Interchangeability in any particular application is not necessarily guaranteed. Before
using a substitute, the user should compare the specifications of the substitute device with the detailed specificati'ons of the
original device.
National Semiconductor makes no warranty as to the information furnished, and buyer assumes all risk in the use thereof.
No liability is assumed for damages resulting from the use of the information contained in this list.
DEVICE
TYPE
NATIONAL DIRECT
REPLACEMENT
DEVICE
TYPE
AMD
Fairchild (con't)
DM2502/2502C
DM250212502C
DM2503/2503C
DM250312503C
DM2504/2504C
DM250412504C
DM54LS138/74LS138
DM54LS139/74LS139
DM54LS151/74LS151
DM54LS153/74LS153
DM54LS157/74LS157
DM54LS158/74LS158
DM54LS160/74LS160
DM54LS161/74LS161
DM54LS162/74LS162
DM54LS163/74LS163
DM54LS164/74LSl64
DM54LS174/74LS174
DM54LS175/74LS175
DM54181n4181
DM54LS190/74LS190
DM54LS191/74LS191
DM54LS192/74LS192
DM54LS193/74LS193
DM54LS194A/74LS194A
DM54LS195A/74LS195A
DM54LS251/74LS251
DM54LS253174LS253
DM54LS25.1 /74LS257
DM54LS258/74LS258
DM$l602/8602
DM9602/8602
DM9602/8602
DM541:z3n4123
DM54L 123A!74L123A
DM75L60/85L60
DM75L63/85L63
AM2502
AM25L02
AM2503
AM25L03.
AM2504
AM25L04
AM25LS138
AM25LS139
AM25LS151
AM25LSl53
AM25lS157
AM25LS158
AM25LS160
AM25LS161
AM25LS162
AM25LS163
AM25LS164
AM25LS174
AM25LS175
AM25LS181
AM25LS190
AM25LS191
AM25LS192
AM25LS193
AM25LSl94A
AM25LS195A
AM25LS251
AM25LS253
AM25LS257
AM25LS258
AM2602
AM26L02
AM26S02
AM26123
AM26L123
AM93L60
AM93L66
Fairchild
930
932
,
NATIONAL DIRECT
REPLACEMENT
933
935
936
937
944
945
946
948
949
961
962
963
9002
9003
.9004
9005
9006
9008
9009
9012
9016
9024
9093
9094
9097
9099
9135
9157
9158
9300
9301
9307
9309
9310
9311
9312
9315
9316
..
DM930
DM932
2~'(
xix
DM933
DM935
DM936
DM937
DM944
DM945
DM946
DM948
DM949
DM961
DM962
DM963
DM9002C
DM9003C
OM9004C
DM9005C
DM9006C
DM9008C
· DM9009C
· DM9012C
DM9016C
DM9024/8024
DM9093
OM9094
DM9097
DM9099
DM935
oM957
DM958
DM9300/8300
DM9301/8301
DM5448/7448 .
DM9309/8309
· DM9310/8310
DM9311/8311
DM9312/8312
DM5441A/7441A
DM9316/8316
~ TTL Data Book
DEVICE
TYPE
Industry Cross Reference Guide
NATIONAL DIRECT
REPLACEMENT
DEVICE
TYPE
93178
9317C
9318
9321
9322
9325
9341
9342
9345
9352,
9357A
93578
9358
9360
9366
9375
9377
9383
9385
9390
9391
9392
9393
9395
9396
DM5447A/7447A
DM5446A17446A
,DM9318/8318
DM54LS139/74LS139
DM9322/8322
DM54141/74141
DM54181/74181
DM54182/74182
DM544517445
DM544217442
DM5446A/7446A
DM5447A17447A
DM544817448
DM54192/74192
DM54193/74193
DM5475/7475
DM54LS77/74LS77
DM5483/7483
DM5485i7485
DM5490/7490
DM5491 A17491 A
DM5492/7492
DM549317493
DM5495/7495
DM5496/7496
93197
93198
93199
DM54197/74197
DM54198/74198
DM54199/74199
9601
9602
9603 '
DM9601/8601
DM9602/8602
DM54121/74121
93141
93145
93150
93151
93153
93155
93156
93157
93160
93161
93162
93163
93164
93165
93166
93170
93174
93175
93176
93177
93180
93190
93191
93194
93195
93196
DM54141/74141
DM54145174145
DM54150/74150
DM54151A/74151A
DM54153/74153
DM54155/74155
DM54156174156
DM54157/74157
DM54160A174160A
DM54161A/74161A
DM 54162A/7 4162A
DM54163A/74163A
DM54164/74164
DM54165/74165
DM54166/74166
DM74170
DM54174/74174
DM54175/74175
DM54176/74176
DM54177/74177
DM54180/74180
DM54190/74190
DM54191/74191
DM54194/74194
DM54195/74195
DM54196/74196
9HOO
9HOl
9H04
9H05
9H08
9Hl0
9Hl1
9H20
9H21
9H22
9H30
9H40
9H50
9H51
9H52
9H53
9H54
9H55
9H60
9H61
9H62
9H71
9H72
9H73
9H74
9H76
9H78
9Hl03
9Hl06
9H108
DM54HOO/74HOO,
DM54H01/74HOl
DM54H04/74H04
DM54H05/74H05
DM54H08/74H08
DM54H 10174H 10
DM54H11174Hl1
DM54H20/74H20
DM54H21174H21
DM54H22174H22
DM54H30174H30
DM54H40/74H40
DM54H50174H50
DM54H51174H51
DM54H52174H52
DM54H53174H53
DM~H54/74H54
DM 4H55/74H55
DM54H60/74H60
DM54H61174H61
DM54H62174H62
DM54H71/74H71
DM54H72/74H72
DM54H73/74H73
DM54H74174H74
DM54H76174H76
DM54H78/74H78
DM54H103/74Hl03
DM54H106/74H106
DM54H108174H108
93HOO
DM54LS195A/74LS195A
9LOO'
9L04'
9L24*
9L54'
9L86'
DM54LOO/74LOO
DM54L04/74L04
DM9024/8024
DM54L54/74L54
DM5486/7486
93LOO'
93L01'
93L09'
93L 10'
93L11'
93L12'
93L16'
93L 18'
93L22'
93L34'
93L41 ,
DM54LS195A/74LS195A
DM9301/8301
DM9309/8309
DM76L75/86L75
DM54L 154A/74L 154A
DM9312/8312
DM76L76/86L76
DM9318/8318
DM54L157A/74L157A
DM9334/8334
DM54181/74181
96L02'
DM9602/8602
Fairchild (con't)
NATIONAL DIRECT
REPLACEMENT
Fairchild (con't)
'The National Low Power circuits are "True Tenth Power," whereas the Fairchild circuits are not.
xx
~ TTL Data Book
DEVICE
TYPE
Industry Cross Reference Guide
DEVICE
TYPE
NATIONAL DIRECT
REPLACEMENT
Fairchild (con't)
Fairchild (con't)
9LSOO
9LS02
9LS03
9LS04
9LS05
9LS08
9LS09
9LS10
9LS11
9LS14
9LS15
9LS20
9LS21
9LS22
9LS27
9LS30
9LS32
9LS37
9LS38
9LS40
9LS42
9LS51
9LS54
9LS55
9LS73
9LS74
9LS83
9LS86
9LS90
9LS92
9LS93
9LS95
9LS109
9LS112
9LSl13
9lS114
9LS125
9LS126
9LS132
9LS133
9LS136
9LS138
9LS139
9LS151
9LS153
9LS155
9LS156
9LS157
9LS158
9LS160
9LS161
9LS162
9LS163
9LS164
9LS170
9LS174
NATIONAL DIRECT
REPLACEMENT
9LS175
9LS181
9LS190
9LS191
9LS192
9LS193 .
9LS194
9LS195
9LS196
9LS197
9LS251
9LS253
9LS257
9LS258
9LS259
9LS266
9LS279
9LS283
9LS295
9LS298
9LS365
9LS366
9LS367
9LS368
9LS670
DM54LSOO/74LSOO
DM54LS02/74LS02
DM54LS03/74LS03
DM54LS04/74LS04
DM54LS05/74LS05
DM54LS08/74LS08
DM54LS09/74LS09
DM54LS10/74LS10
DM54LS11/74LS11
DM54LS14/74LS14
DM54LS15/74LS15
DM54LS20/74LS20
DM54LS21/74LS21
DM54LS22!74LS22
DM54LS27/74LS27
DM54LS30/74LS30
DM54LS32/74LS32
DM54LS37/74LS37
DM54LS38/74LS38
DM54LS40/74LS40
DM54LS42/74LS42
DM54LS51/74LS51
DM54LS54/74LS54
DM54LS55174LS55
DM54LS73/74LS73
DM54LS74/74LS74
DM 54 LS83A/7 4 LS83A
DM54LS86/74LS86
DM54 LS90/74LS90
DM54LS92/74LS92
DM54LS93/74LS93
DM54LS95B/74LS858
DM54LS109/74LS109
DM54LSl12/74LSl12
DM54LSl13/74LSl13
DM54LSl14/74LSl14
DM54LS125/74LS125
DM54LS126/74LS126
DM54LS132/74LS132
DM74S133
DM54LS136/74LS136
DM54LS138/74LS138
DM54LS139/74LS139
DM54LS151/74LS151
DM54LS153/74LS153
DM54LS155/74LS155
DM54LS156/74LS156
DM54LS157/74LS157
DM54LS158/74LS158
DM54LS160/74LS160
DM54LS161/74LS161
DM54LS162/74LS162
DM54LS163/74LS163
DM54LS164/74LS164
DM54LS170174LS170
DM54LS174174LS174
9NOO
9N01
·9N02
9N03
9N04
9N05
9N06
9N07
9N08
9N09
9N10
9Nl1
9N12
9N13
9N14
9N16
9N17
9N20
9N21
9N23
9N25
9N26
9N27
9N30
9N32
9N37
9N38
9N39
9N40
9N50
"The National Low Power circuits are "True Tenth Power," whereas the Fairchild circuits are not.
xxi
DM54LS175/74LS175
DM54181/74181
DM54LS190/74LS190
DM54LS191/74LS191
DM54LS192!74LS192
DM54LS193/74LS193
DM54LS194A/74LS194A
DM54LS195A/74LS195A
DM54LS196/74LS196
DM54LS197/74LS197
DM54LS251/74LS251
DM54LS253/74LS253
DM54LS257/74LS257
DM 54 LS258/7 4LS258
DM9334/8334
DM 54 LS266/7 4 LS266
DM54LS279/74LS279
DM54LS283/74LS283
DM54LS295A/74LS295A
DM54LS298/74LS298
DM54LS365/74LS365
DM54LS366/74LS366
DM54LS367/74LS367
DM54LS368/74LS368
DM54LS670/74LS670
DM5400/7400
DM5401/7401
DM5402/7402
DM5403/7403
DM5404/7404
DM5405/7405
DM5406/7406
DM 5407 /7407
DM5408/7408
DM5409/7409
DM5410/7410
DM5411/7411
DM54LS12/74LS12
DM5413/7413
DM5414/7414
DM5416/7416
DM5417/7417
DM5420/7420
DM54LS21/74LS21
DM5423/7423
DM5425/7425
DM5426/7426
DM5427/7427
DM5430/7430
DM5432/7432
DM5437/7437
DM5438/7438
DM5401/7401
DM5440/7440
DM5450/7450
~~
TTL Data Book
DEVICE
TYPE
Industry Cross Reference Guide
DEVICE
TYPE
NATIONAL DIRECT
REPLACEMENT
Fairchild (con't)
Fairchild (con't)
9N51
9N53
9N54
9N60
9N70
9N72
9N73
9N74
9N76
9N86
9Nl07
9N122
9N123
9N132
9N279
9500
9502
9503
9504A
,9505A
9508
9509
9510
9511
9515
9520
9522
9530
9532
9540
9551
9564
9565
9574
9586
95109
95112
95113
95114
95132
95133
95134
95135
95140
93500
93510
93512
93S16
93521
93522
93541
93542
93546
93547
I
,
NATIONAL DIRECT
REPLACEMENT
DM5451/7451
DM5453/7453
DM5454/7454
DM5460/7460
DM5470/7470
DM5472/7472
OM5473/7473
OM5474/7474
OM5476/7476
DM5486/7486
OM541 07/741 07
OM54L5122/74L5122
011.154123/74123
OM54132/74132
OM54L5279/74L5279
935138
935139
935151
935153
935157
935158
935174
935175
935194
935251
935253
935257
935258
DM745138
DM745139
DM745151
OM745153
DM745157
OM745158
OM745174
OM745175
OM745194
DM745251
OM745253
DM745257
DM745258
96502
OM9602/8602
DM74500
011.174502
011.174503
011.174504
011.174505
OM74L508
OM74L509
011.174510
011.174511
011.174515
DM74520
OM74522
OM74530
OM74L532
OM74S40
DM74551
OM74564
OM74565
011.174574
OM74586
OM74L5109
OM745112
DM745113
OM745114
OM54L5132/74L5132
DM745133
DM745134
DM745135
DM745140
Motorola
MC830
MC832
MC833
MC836
MC837
MC840
MC844
MC845
MC846
MC848
MC849
MC852
MC853
MC855
MC856
MC857
Me858
MC861
MC862
MC863
011.1930
DM932
011.1933
011.1936
011.1937
011.1935
DM944
OM945
OM946
OM948
OM949
OM9099
OM9093
OM9097
OM9094
OM957
OM958
OM961
OM962
OM963
MC1BOO
MC1BOl
DM1800
DM1801
Signetics
8230
82530
8241
82541
8252
82552
8269
8280
82580
8281
82S81
8290
82590
8291
011.1745195
DM54L5160/74L5160
OM9312/8312
DM54L5161/74L5161
OM745139
OM745157
OM54181174181
OM745182
OM7160/8160
OM7160/8160
'The National Low Power circuits are "True Tenth Power," whereas the Fairchild circuits are not.
xxii
DM9312/8312
OM9312/8312
OM54L5386/74LS386
OM54L5386/74LS386
DM9301/8301
DM9301/8301
OM7200/8200
DM7280/828a
OM54LSl96174L5196
OM7281/B281
DM54LS197174LS197
OM7290/8290
DM54LS196/74LSl96
DM7291/829l
~
TTL Data Book
DEVICE
TYPE
Industry Cross Reference Guide
NATIONAL DIRECT
REPLACEMENT
DEVICE
TYPE
82S91
8292
8293
82147
82148
DM54LS197/74LS197
DM54LS196/74LS196
DM54LS197/74LS197
DM54147/74147
DM54148/74148
8415
8455
8470
8471
8480
8481
8490
DM1800
DM5440/7440
DM5410/7410
DM54LS12/74LS12
DM5400/7400
DM5403/7403
DM540417404
SN15848
SN15849
SN15857
SN15858
SN15861
SN15862
SN15863
SN151800
SN151801
SN168093
SN158094
SN158097
SN158099
DM948
DM949
DM957
DM958
DM961
DM962
DM963
DM1800
DM1801
DM9093
DM9094
DM9097
DM9099
8806
8808
8815
8828
8840
8848
8859
8875
8881
8890
8891
DM546017460
DM543017430
DM542517425
DM5474/7474
DM5451/7451
DM54LS54/74LS54
DM5440/7440
DM542717427
DM540117401
DM540417404
DM5405/7405
8H16
8H70
8H80
8H90
DM54H20/74H20
DM54H 10/74H 10
DM54HOO/74HOO
DM54H04174H04
8T10
8T22
8T54
8T95
8T96
8T97
8T98
DM7551/8551
DM9601/8601
DM544817448
DM7095/8095
DM7096/8096
DM7097/8097
DM7098/8098
SN29002
SN29003
SN29004
SN29005
SN29006
SN29008
SN29009
SN29012
SN29016
SN29024
SN29300
SN29301
SN29309
SN29310
SN29311
SN29312
SN29316
SN29318
SN29322
SN29334
SN29601
SN29602
DM9002C
DM9003C
DM9004C
DM9005C
DM9006C
DM9008C
DM9009C
DM9012C
DM9016C
DM8024
DM8300
DM8301
DM8309
DM8310
DM8311
DM8312
DM8316
DM8318
DM8322
DM8334
DM8601
DM8602
SN39024
SN39300
SN39301
SN39309
SN39310
SN39311
SN39312
SN39316
SN39318
SN39322
SN39334
SN39601
SN39602
DM9024
DM9300
DM9301
DM9309
DM9310
DM9311
DM9312
DMg316
DM9318
DM9322
DM9334
DM9601
DM9602
Signetics (con't)
TI (con't)
j
TI
SNl5830
SN15832
SN15833
SN15835
SN15836
SN15837
SN15844
SN15845
SN15846
NATIONAL DIRECT
REPLACEMENT
DM930
DM932
DM933
DM935
DM936
DM937
DM944
DM945
DM946
xxiii
~. TTL Data Book
Functional Index/Selection Guides
The following pages contain functional indexes and selection guides designed to simplify the choice of a particular function to
fit a specific application. Essential characteristics of similar or like functions are grouped for comparative analysis, and the
electrical specifications are referenced by page number. The following categories of functions are covered:
SSI FUNCTIONS
·AND Gates with Totem-Pole Outputs . . . . . . . . . . . . .
AND Gates with Open-Collector Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AND-OR-INVERT Gates with Totem-Pole Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ANDwOR-INVERT Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . .
Buffers/Clock Drivers with Totem-Pole Outputs . . . . . ' ....' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . . . . ..
Buffer and Interface Gates with Open·Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bus Interface Gates with TRI-STATE Totem-Pole Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Expandable Gates . . . . . . . . . . . . . . . . . . . . . . . . . . \. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Expanders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flip-Flops, Gated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flip·Flops, Single and Dual J·K Edge-Triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flip·Flops, Dual D-Type. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flip·Flops, Single and Dual Pulse-Triggered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Latches, 'S-R .......................... " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Line Drivers, 50·0hm/75-0hm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NAND Gates and Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NAND Gates and Inverters with Totem-Pole Outputs . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NOR Gates with Totem·Pole Outputs . . . . . . . . . . . . . . . . . . . . . . . . .
One Shots, Retriggerable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
xxvi
xxvi
xxvi
xxvii
xxvii
xxvii
xxviii
xxviii
xxviii
xxviii
xxix
xxix
xxx
xxx
xxxi
xxxi
xxxi
xxxii
xxxii
xxxiii
One Shots with Schmitt-Trigger Inputs . . . . . .' " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxiii
OR Gates with Totem-Pole Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . '.' . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxiii
Schmitt·Triggers with Totem·Pole Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii
MSI FUNCTIONS
Adders ...
Accumulators, Arithmetic Logic Units, Look-Ahead Carry Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Arithmetic Operators . . . . .
Code Converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Counters, Asynchronous (Ripple Clockl-Negative·Edge Triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Counters, Synchronous-Positive-Edge Triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Decoders/Demultiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Display Decoders/Drivers, Open-Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xxxiv
xxxiv
xxxiv
xxxiv
xxxv
xxxv
xxxvi
xxxvii
xxxviii
xxxviii
xxxix
Multipliers . . . . . . . . . . . . . . . . . ~ . . . . . . . . . . . . . . " . ; . " . . . . . . . . .' . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxix
Parity Generators/Checkers. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxix
Priority Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , xxxix
xxxix
Register Files.
xl
Registers, Other . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . .
xl
Registers, Sh if! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xxv
~
Functional Index/Selection Guides
SSI Functions
AND GATES WITH TOTEM-POLE OUTPUTS
Description
Dual4-lnput AND Gates
Triple 3-lnput AND Gates
Quad 2-lnput AND Gate.
Typ_
Typ. Power
Propagation
Dissipation
Delay Time
Per Gate·
8_2 ns
40mW
12 ns
4.25mW
4.75 ns
31 mW
8.2 ns
40mW
12 ns
Device Type and Package
Mil_
Connection
Diagram
Com!.
" - No_
Electrical
Table. Page No_
54H21
J,N
74H21
J,N
1-7
1-44
54 LS21
J,N,W
74LS21
J,N
1-7
1-44
74511
N
1-5
1-44
54Hll
J,N
74Hll
J,N
1-5
1-44
4.25 mW
54LS11
J,N,W
74LSll
J,N
1-5
1-44
12 ns
4.25 mW
54 LS08
J,N,W
74LS08
J,N
1-4
1-44
15 ns
19mW
5408
J,N,W
7408
J,N
1-4
1-44
AND GATES WITH OPEN-COLLECTOR OUTPUTS
Typ.
Description
Triple 3-lnput AND Gates
Quad 2-lnput AND Gates
ProP89ation
Delay Time
Typ. Power
Dissipation
Connection
Device Type and Package
Diagram
Mil.
Per Gate
Page No.
Coml.
y
Electrical
Tables Page No.
6 ns
28mW
74S15
N
1-6
1-46
20 ns
4.25 mW
54L515
J,N,W
74LS15
J,N
1-6
1-46
18.5 ns
19.4mW
5409
J,N,W
7409
J,N
1-4
1-46
20 ns
4.25mW
54LS09
J,N,W
74LS09
J,N
1-4
1-46
AND-OR-INVERT GATES WITH TOTEM-POLE OUTPUTS
Description
2-Wide 4-lnput
Dual 2-Wide 2-lnput
TYp.
Typ. Power
Device Type and Package
Propagation
Delay Time
Dissipation
Per Gate
MiI_
12.5 ns
2.75mW
43 ns
1.5mW
3.5 ns
28mW
6.5 ns
Connection
D~agram
Page No.
Coml.
Electrical
Tablas Page No.
54 LS55
J,N,W
74LS55
J,N
1-15
1-56
54L55
J,N,W
74L55
J,N
1-15
1-56
74S51
N
1-12
1-56
29mW
54H51
J,N
74H51
J,N
1-12
1-56
10.5 ns
14mW
5451
J,N,W
7451
J,N
1-12
1-56
12.5 ns
2.75mW
54LS51
J,N,W
74LS51
J,N
1-12
43 ns
1.5mW
54L51
J,N,W
74L51
J,N
1-12
1-56
1-56 .
1-56
4-Wide 4-2-3-2-lnput
3.5 ns
29mW
74S64
N
1-16
4-Wide 2-2-3-2-lnput
6.6 ns
41mW
54H54
J,N
74H54
J,N
1-14
I-56
4-Wide 2-lnput
10.5 ns
23mW
5454
J,N,W
7454
J,N
1-14
4-Wide 2-3-3-2-lnput
12.5 ns
4.5mW
54LS54
J,N,W
74 LS54
J,N
1-14
'-56
1-56
4-Wide 2-3-3-2-lnput
43 ns
1.5mW
54L54
J,N,W
74L54
J,N
1-14
1-56
~
Functional Index/Selection Guides
551 Functions
AND-OR-INVERT GATES WITH OPEN-COLLECTOR OUTPUTS
Typ_
Description
Propagation
Delay Time
4-Wide 4-2-3-2-lnput
5.5 ns
Typ. Power
Dissipation
Per Gate
Device Type and Package
Mil.
Connection
Diagram
Coml.
36mW
74565
Page No.
J
N
Electrical
Tables Page No.
1-61
1-17
BUFFERS/CLOCK DRIVERS WITH TOTEM-POLE OUTPUTS
(ALSO SEE CLOCK GENERATOR CIRCUITS)
Low-Level
Description
Output
Current
High-Level
Output
Current
Typ.
Typ. Power
Delay
Per
Time
Device Type and Package
Coml
Mil.
Gate
Connection
Diagram
Page No.
Electrical
1-54
T~bles
Page No.
Dual4-lnput NAND
60mA
-3mA
4 ns
44mW
74S40
N
1·11
Buffers
60mA
-1.5mA
7.5 ns
44mW
54H40
J,N
74H40
J,N
1-11
1-54
48mA
-1.2 mA
10.5 ns
26mW
5440
J,N,W
7440
J,N
1-11
1-54
24 mA
-1.2 mA
12 ns
4.3mW
74L540
J,N
12mA
-1.2 mA
12 ns
4.3 mW
54 LS40
J,N,W
Quad 2-lnput NAND
48mA
-1.2 mA
10 ns
25mW
7091
J,N,W
8091
Buffers
48mA
-1.2 mA
10.5 ns
27mW
5437
J,N,W
7437
24mA
-1.2mA
12 ns
4.3mW
74L537
12mA
-1.2mA
12 ns
4.3mW
54LS37
1-11
1-54
1-11
1-54
J,N
3-3
3-4
J,N
1-10
1-54
J,N
1-10
1-54
1-10
1-54
J,N,W
BUFFER AND INTERFACE GATES WITH OPEN-COLLECTOR OUTPUTS
High-Level
Description
Output
Voltage
Low-level
Output
Typ.
Typ. Power
Delay
Per
Current
Time
Quad 2-lnput NAND
15V
16mA
13.5 ns
10mW
Buffers
15V
8 mA
16 ns
2 mW
15V
4mA
16 ns
2mW
5.5V
48mA
12.5 ns
24.4 mW
S.5V
24mA
19 ns
4.3mW
5.5V
12 mA
19 ns
4.3 mW
30V
40mA
13 ns
21 mW
30V
30mA
13 ns
21 mW
15V
40mA
13 ns
21 mW
Hex Buffers/Drivers
Device Type and Package
Gate
15V
30mA
13 ns
21 mW
Hex Inverter Buffers!
30V
40mA
12.5 ns
26mW
Drivers
30V
30mA
12.5 ns
26mW
15V
40mA
'12.5ns
26mW
15V
30mA
12.5 ns
26mW
xxvii
Coml.
Mil.
5426
J,N
54LS26
J,N,W
5438
J,N,W
54L538
J,N,W
5407
5417
5406
Page No.
J,N
1-9
1-42
74L526
J,N
1-9
1-42
1-9
1-42
7438
J,N
1-10
1-42
74LS38
J,N
1-10
1-42
1-10
1-42
1-42
7407
J,N
1-3
1-3
1-42
7417
J,N
1-7
1-42
1-7
.1-42
7406
J,N
1-3
1-42
1-3
1-42
1-6
1-42
1-6
1-42
J,N,W
J,N,W
J,N,W
J,N,W
Electrical
Tables
7426
7416
5416
Connection
Diagram
Page No.
J,N
~
SS! Functions
Functional Index/Selection Guides
BUS INTERFACE GATES WITH TRI-STATE TOTEM-POLE OUTPUTS
Description
Typ_
Propagation
Delay Time
Quad Bus Buffers.
Hex Bus Drivers
Hex I nverter Bus Drivers
12-lnput NAND Gates
Cpnnection
Diagram
Page No.
Device Type and Package
Dissipation
Mil.
Per Gate
Coml.
Electrical Tables
Page No.
10 ns
40mW
54125
J,N,W
74125
J,N
1·27
1-80
10 ns
45mW
54126
J,N,W
74126
J,N
1··27
1-80
10 ns
40mW
7093
J,N,W
8093
J,N
3-5
3-6
10 ns
45mW
7094
J,N,W
8094
J,N
3-5
3-6
9 ns
30mW
7099
J,N,W
8099
J,N
3-9
3-10
12 ns
54mW
54365
J,W
74365
J,N
1-32
1-86
12 ns
54mW
54367
J,W
74367
J,N
1-32
1-86
12 ns
54mW
7095
J,W
8095
J,N
3-7
3-8
12 ns
54mW
7097
J,W
8097
J,N
3-7
38
33 ns
3.3mW
70L95
J,N,W
80L95
J,N
3-7
3-8
33 ns
3.3mW
70L97
J,N,W
80L97
J,N
3'7
3-8
11 ns
49mW
54366
J,W
74366
J,N
1-32
1-86
11 ns
49mW
54368
J,W
74368
J,N
1-33
1-86
11 ns
49mW
7096
J,W
8096
J,N
3-7
3-8
11 ns
49mW
7098
J,W
8098
J,N
3-7
3'8
30 ns
2.5mW
70L96
J,N,W
80L96
J,N
3-7
3·8
30 ns
2.5mW
70L98
J,N,W
80L98
J,N
3·7
3-8
13 ns
10mW
"71 LS95
N
81 LS95
N
3-21
3-22
13 ns
10mW
71 LS97
N
81 LS97
N
'3-21
3-22
9.5 ns
8mW
71 LS96
N
81 LS96
N
3-21
3·22
9.5 ns
8mW
71 LS98
N
81 LS98
N
3-21
3-22
4.5 ns
45mW
74S134
N
1-28
1-80
Octal Drivers
Octal Inverter Drivers
Typ. Power
CLOCK GENERATORS
Typ. Total
Description
Device Type and Package
Dual Voltage-Controlled Oscillators
Connection
Electrical
Diagram
Page No.
Tables
Page No.
2-44
2-45
Power
Mil.
Dissipation
90 mW
54LS124
Coml.
I
J,N,W
I
74LS124
J,N
EXPANDABLE GATES
Description
Typ.
Propagation
Delay Time
Typ. Power
Dissipation
Device Type and Package
Coml.
Mil.
Per Gate
Connection
Diagram
Pelge No.
Electrical
Tables
Page No.
2-Wide AND-OR-INVERT Gates
6.B ns
30mW
54H55
J,N
74H55
J,N
1-15
1-50
Dual2-Wide AND-OR-INVERT Gates
6.5 ns
29mW
54H50
J,N
74H50
J,N
1-11
1-50
10.5 ns
14mW
5450
J,N,W
7450.
J,N
1-11
1-50
4-Wide AND-OR Gates
9.9 ns
88mW
54H52
J,N
74H52
J,N
1-13
1-50
4·Wide AND-OR-INVERT Gates
6.6 ns
41mW
54H53
J,N
74H53
J,N
1-13
1-50
10.5 ns
23 mil'!
5453
J,N,W
7453
J,N
1-13
1-50
10.5 ns
23mW
5423
J,N,W
7423
J,N
1-8
1-50
Dual4-lnput NOR Gates With Strobe
EXPANDERS
Description
Typ. Power
Dissipation
Device Type and Package
Mil.
Per Gate
Dual4-lnput Expanders
Coml.
Connection
Diagram
Page No.
Electrical Tables
Page No.
1-58
4mW
5460
J,N,W
7460
J,N
1-15
6mW
54H60
J,N
74H60
J,N
1-15
1-59
3-2-2-3-lnput AND-OR Expanaer~
25mW
54H62
J,N
74H62
J,N
1-16
1·59
Triple 3-lnput Expanders
13mW
54H61
J,N
74H61
J,N
1-16
1-60
xxviii
~
Functional Index/Selection Guides
SSI Functions
FLIP-FLOPS, GATED
Typ. Characteristics
Data Times
fMAX
(MHzl
Pwr/F-F
Setup
(mWI
(nsl
45
105
15
30
73
24
28
110
15
10
8.0
110
9
9.3
80
7
7.3
100
Device Type and Package
-
Hold
(nsl
a
a
a
a
a
a
Mil_
Coml.
Connection
Diagram
Page No.
Electrical Tables
Page No.
7511
J,N,W
8511
J,N
3-40
3-41
7613
J,N,W
8613
J,N
3-40
3-41
7512
J,N,w
8512
J,N
3-40
3-41
75L12
J,N,W
85L12
J,N
3·40
3-41
75L11
J,N,W
85L11
J,N
3·40
3-41
76L13
J,N,W
86L13
J,N
3-40
3·41
FLIP-FLOPS, SINGLE AND DUAL J-K EDGE TRIGGERED
Typ. Characteristics
Dwg.
Data Times
Pwr/F·F
Setup
Device Type and Package
Hold
(nsl
Ref.
fMAX
(MHzl
{mWI
(nsl
A
125
75
61
at
50
100
131
01
54Hl06
45
10
201
01
45
10
201
01
125
75
61
01
50
100
131
01
54Hl08
45
10
201
01
45
10
201
01
125
75
61
0:
45
10
201
01
54LS113
50
100
13j
OJ
54Hl03
45
10
201
01
45
10
20,
OJ
40
45
1,51
101
33
10
201
51
33
45
101
35
65
201
B
C
D
E
F
Mil.
Com I.
N
1·24
1·70
J,N
74Hl06
J,N
1·23
174
54LS76
J,N,W
74LS76
N
1-21
1·68
54LSl12
J,N,W
74LSl12
J,N
1·24
1-68
745114
N
1·25
1·70
J,N
74Hl08
J,N
1·24
1·74
54LS78
.J,N,W
74LS78
J,N
1·21
1·68
54LSl14
J,N,W
74LS114
J,N
1·25
1·68
74S113
N
1-25
1·70
J,N,W
74LS113
J,N
1·25
1·68
J,N
74Hl03
J,N
1·23
1·74
54LS73
J,N,W
74LS73
J,N
1·20
1·68
54LS107
J,N
74LS107
J,N
1·23
1·68
9024
J,N,W
8024
J,N
4·17
4-17
54LS109
J,N,W
74LS109
J,N
1·24
1-68
61
54109
J,N,W
74109
J,N
1·24
1-62
51
5470
J,N,W
7470
J,N
1·18
1·62
(B)
Ur-
-<: CK
-J
T~:r
-J
--<
CK
01-
CLEAR
F·F_ K
Ii-
--(
CK
-T
-K
(E)
of--
-
TO OTHER
F·F
xxix
--Jru-
a-
K
or--
-J
-.
-
CK
CLEAR
'-----
(F)
PRESET
0-
-J
OTHER
or-
-K
for the falling edge.
-
PRESET
u-
~
(D)
(e)
.-Jm
PRESET
-J
Electrical
Tables
Page No.
74S112
t ~ The arrow indicates the edge of the clock pulse used for reference: t for the rising edge,
(AI
Connection
Diagram
Page No.
CK
arClEAR
~
~
0-
J
CK
K
a-
==r-
~
SSI Funct.ions
Functional Index/Selection Guides
""
FlIp·FlOPS, DUAL D·TVPE
Typ. Characteristics
DatalTimes
Connection
Diagram
Device Type and Package
Electrical
Tables
Page No.
Dwg.
Ref.
fMAX
(MHz)
G
110
75
31
2t
74S74
N
1-20
1-70
43
75
15t
5t
54H74
J,N
74H74
J,N
1-20
1-64
54LS74
J,N,W
1-20
1-68
J,N,W
74LS74
7474 .
J,N
5474
J,N
1-20
1-62
54L74
J,N,W
74L74
J,N
'-20
'-66
Connection
Diagram
Page No.
Electrical
Tables
Page No.
Pwr/F·F
(mW)
Hold
(ns)
Setup
(ns)
33
10
25t
25
43
20t
5t
5t
6
4
50t
15t
"Mil.
Page No.
Coml.
t.J. The arrow indicates the edge of the clock pulse used for reference: ffor the rising edge, t for the falling edge.
(G)
PRESET
-
0-
0
--(
CK
il;-CLEAR
FlIP·FlOPS, SINGLE AND DUAL PUlSE·TRIGGERED
Typ. Characteristics
Dwg.
Ref.
Data Times
Device Type and Package
fMAX
(MHz)
Pwr/F·F
Setup
(mV\()
(ns)
Hold
(ns)
30
80
Ot
01
54H73
J,N
74H73
JN
1-20
1-64
20
50
at
01
5473
J,N,W
7473
J,N
1-20
1-62
20
50
at
01
54107
J.N
74107
J,N
'-23
1·62
6
3.8
at
01
54L73
J,N,W
74L73
J.N
1·20
1·66
30
80
at
01
54H76
J.N
74H76
J.. N
1·21
1·64
20
50
ot
01
5476
J,N,W
7476
J,N
1·21
1·62
30
80
at
0;
54H78
J,N
74H78
J,N
1·21
1·64
6
3.8
ot
01
54L78
J,N,W
74L78
J,N
1·21
1·66
K
30
80
at
01
54H71
J,N
74H71
J,N
1·18
1·64
L
30
80
at
01
54H72
J,N
74H72
J,N
1·19
1·64
20
50
at
01
5472
J,N,W
7472
J,N
1-19
1·62
6
3.8
at
01
54172
J,N,W
74L72
J,N
1·19
1·66
6
3.8
at
01
54171
J,N.W
74L71
J;N
1·19
1·66
H
I
J
,
M
/II
(H)
--(
(J)
of-- -
CK
-K
--<
ilf-- -
CLEAR
0-
J
T~:r
CK
il;--
K
CLEAR
-J
III
ilf--
T-
(M)
~~- I;~r I;~~
of--
CK
OTHER
F·F_ K
Coml.
(K)
r-Jm
PRESET
-J
Mil.
TO OTHER
F·F
~
CK
-
K
xxx
CK
ill-
'--
K
.
CK
ill-
~
R
ill-
-"T-
~
Functional Index/Selection Guides
SSI Functions
LATCHES,
Description
Quad
S~R
Typ.
Typ. Total
Propagation
Power
Delay Time
Dissipation
12 ns
19mW
Latches
S-R
Connection
Diagram
Device Type and Package
I
I
Mil.
54L5279
I
J,N,W
Coml.
I
74L5279
J,N
Electrical
Page No.
Tables
Page No.
2-168
2-169
LINE DRIVERS, 50-0HM/75-0HM
Description
Dual4-lnput NAND Line
Current
Typ_
Delay
Time
Typ. Power
Per
Gate
-40 rnA
4 ns
44mW
Low~level
High-Level
Output
Output
Current
60 rnA
Device Type and Package
Coml.
Mil.
745140
I
Connection
Electrical
Diagram
Page No.
Tables
Page No.
1-29
1-54
N
Drivers
.
NAND GATES AND INVERTERS WITH OPEN-COLLECTOR OUTPUTS
Description
Dual4-lnput NAND Gates
Typ_
Typ. Power
Propagation
Dissipation
Delay Time
Per Gate
Mil.
Diagram
Page No.
Coml.
Electrical
Tables
Page No.
5 ns
17.5mW
74522
N
1-8
1-38
8 ns
22mW
54H22
J,N
74H22
J,N
1-8
1-38
16 ns
2mW
54L522
J,N,W
74L522
J,N
1-8
1-38
1-38
1-38
54L512
Triple 3-lnput NAND Gates
16 ns
2mW
Quad 2-lnput NAND Gates
5 ns
17.5 mW
8 ns
22mW
54HOl
16 ns
2mW
54L501
Hex Inverters
Connection
Device Type and Package
J,N
1-5
74S03
N
1-2
J.N
74HOl
J,N
1-1
1-38
J,N,W
74L501
J,N
1-1
1-38
J,N,W
74L512
16 ns
2mW
54L503
J,N,W
74L503
J,N
1-2
1-38
22 ns
10mW
5401
J,N,W
7401
J,N
1-1
1-38
22 ns
10mW
5403
J,N
7403
J,N
1-2
1-38
41 ns
1 mW
54LOl
W
74LOl
W
1-1
1-38
54L03
J,N
74103
J,N
1-2
1-38
80LOG
N
3-1
3-2
1-38
410s
1mW
115 ns
1.8mW
5 ns
17.5mW
8 ns
22mW
16 ns
2mW
22 ns
10mW
74S05
N
1-3,
54H05
J,N
74H05
J,N
1-3
1-38
54L505
J,N,W
74L505
J,N
1-3
1-38
5405
J,N,W
7405
J,N
1-3
1-38
.
'
.
~
551 Functions
Functional Index/Selection' Guides
NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS
Typ.
Description
Typ. Power
Dissipation
Propagation
Delay Time
Connection
Device Type and Package
Coml.
Mil.
Per Gate
Electrical
Diagram
Tables
Page No.
Page No.
3 ns
19 mW
74S20
J,N
1-7
1·36
6 ns
22mW
54H20
J,N
74H20
J,N
1·7
1·36
9,5 ns
'2 mW
54LS20
J,N,W
74LS20
J,N
1·7
1·36
10 ns
10mW
5420
J,N,W
7420
J,N
1·7
1-36
33 ns
1 mW
54L20
J,N,W
74L20
J,N
1-7
1-36
Dual 5-lnput NAND Gates
10 ns
20mW
7092
J,N,W
8092
J,N
3-3
3-4
Triple 3-lnput NAND Gates
3 ns
19mW
74S10
J,N
1-4
1-36
6 ns
22mW
54Hl0
J,N
74Hl0
J,N
1-4
1-36
9.5 ns
2mW
54LS10
J,N,W
74LSlO
J,N
1-4
1-36
10 ns
lOmW
33 ns
1 mW
Dual 4·lnput NAND Gates
Quad 2-1 nput NAND Gates
3 ns
19 mW
6 ns
22 mW
9.5 ns
2 mW
os
10mW
33 ns
1 mW
3 ns
19 mW
6 ns
22mW
10
Hex Inverters
•
7410
J,N
1-4
1-36
J,N,W
74L 10
J,N
1-4
1-36
74S00
N
1-1
1-36
54HOO
J,N
74HOO
J,N
1-1
1-36
54LSOO
J,N,W
74LSOO
J,N
1-1
1-36
5400
J,N,W
7400
J,N
1-1
1-36
54LOO
J,N,W
74LOO
J,N
1·1
1-36
74S04
N
1-2
1-36
J,N
74H04
J,N
1-2
1-36
1-36
54H04
2mW
54 LS04
J,N,W
74LS04
J,N
1-2
10 ns
10mW
5404
J,N,W
7404
J,N
1-2
1-36
11 ns
18mW
7090
J,N,W
8090
J,N
3-3
3-4
54L04
J,N,W
74L04
J,N
1-2
1-36
74S30
J,N
1-9
1-36
33 ns
1 mW
3 ns
19mW
6 ns
22mW
54H30
J,N
74H30
J,N
1-9
1-36
10 ns
10mW
5430
J,N,W
7430
J,N
1-9
1-36
54 LS30
J,N,W
74LS30
J,N
1-9
1-36
54L30
J,N,W
74L30
J,N
1-9
1-36
74S133
N
1-28
1-36
ns
2.4 mW
·33 ns
1 mW
3 ns
19mW
17
13-lnput NAND Gates
J,N,W
9.5 ns
,
8-lnput NAND Gates
5410
54Ll0
NOR GATES WITH TOTEM-POLE OUTPUTS
Typ.
Description
Dual 4-1 nput NOR Gates With Strobe
Dual 5-1 nput NOR Gates
Triple 3-lnput NOR pates
..
Quad 2-1 nput' NOR Gates
!
Propagation
Typ. Power
Dissipation
Delay Time
Per Gate
10.5 ns
23 mW
4 ns
54mW
8.5 ns
22mW
'10 ns
4.5 mW
3.5 ns
29mW
10 ns
2.75mW
10 ns
33 ns
Connection
Diagram
Device Type and Package
Coml.
Mil.
5425
Page No.
J,N,W
. Electrical Tables
Page No.
7425
J,N
1-8
1-40
74S260
N
1-31
1-40
5427
J,N,W
7427
J,N·
1-9
1-40
54 LS27
J,N,W
74LS27
J,N
1-9
1-40
74S02
N
1-2
1-40
54LS02
J,N,W
74 LS02
J,N
1-2
1-40
14mW
5402
J,N,W
7402
J,N
1-2
1-40
1.5mW
54L02
J,N,W
74L02
J,N
1-2
1-40
'.
~
Functional Index/Selection Guides
SSI Functions
ONE SHOTS, RETRIGGERABLE
No. of Inputs
Description
Dual
Device Type and Package
Typ.
Output
Pulse
Total
Range
Power
Connection
Diagram
Page No.
Electrical
Tables
Negative
Clear
2
2
Yes
45 ns- oo
30mW
54LS122
J.N,W
74LS122
J,N
1·26
1·78
2
2
Yes
50 ns-oo
90mW
9601
J,N,W
8601
J,N
4-43
4-44
1
1
Yes
45 ns- oo
230 mW
54123
J,N.W
74123
J,N
1-26
1-78
1
1
Yes
90
ns-~
25mW
54L 123A
J,N,W
74L 123A
J,N
1-26
1-78
1
1
Yes
45 ns- oo
60mW
54LS123
J,N,W
74LS123
J,N
1-26
1-78
1
1
Yes
72 ns·- oo
195mW
9602
J,N,W
8602
J,N
4-46
4-47
2
2
Yes
72 ns- oo
275 mW
7853
J,N,W
8853
J,N
3-151
3-152
Positive
Single
Direct
Mil.
Coml.
Page No.
ONE SHOTS WITH SCHMITT·TRIGGER INPUTS
Output
Pulse
Range
No. of Inputs
Description
Negative
1
2
40 ns-28
5
90mW
1
1
20 ns-70 s
23mW
1
1
20 ns-49 s
23 mW
Single
Dual
Device Type and Package
Typ. Total
Power
Dissipation
Positive
Connection
Coml.
Mil.
54121
J,N,W
54LS221
J,N,W
Electrical
Diagram
Tables
Page No.
Page No.
1-76
74121
J,N
1-26
74LS221
J,N
1-30
1-76
1-30
1·76
Connection
Diagram
Page No.
Electrical
Tables
Page No.
OR GATES WITH TOTEM-POLE OUTPUTS
Typ.
Description
Quad 2-lnput OR Gates
Propagation
Delay Time
12 ns
12 ns
Typ. Power
Dissipation
Per Gate
24mW
5mW
Device Tvpe and Package
Mil.
5432
I
54LS32
Coml.
J,N,W
7432
J,N
1-10
1-52
J,N,W
74LS32
J,N
1-10
1-52
Connection
Diagram
Page No.
Electrical
Tables
SCHMITT-TRIGGERS WITH TOTEM-POLE OUTPUTS
Description
Typ.
Device Type and Package
Typ.
Hysteresis
Delay
Time
Mil.
Coml.
Page No.
Dual4·lnput NAND
0.8V
16.5 ns
5413
J,N,W
7413
J.N
1-5
1-48
Schmitt Triggers
0.8V
16.5 ns
54LS13
J.N,W
74LS13
J,N
1-5
1-48
Quad 2·lnput NAND
0.8V
15 ns
54132
J.N,W
74132
J,N
1-27
1-48
Schmitt Triggers
0.8V
15 ns
54LS132
J,N,W
74LS132
J,N
1-27
1·48
Hex Schmitt Trigger Inverters
0,8V
15 ns
5414
J,N,W
7414
J,N
1-6
1-48
0.8V
15 ns
54LS14
J,N,W
74LS14
J,N
1-6
1-48
xxxiii
~
Functional Index/Selection Guides
MSI Functions
ADDERS
Typ.
Description
Carry
Time
Typ.
Add
Time
Typ. Power
Dissipation
10 ns
15 ns
24mW
54LS83A
J,N,W
74LS83A
J,N
2-17
2·18
10 ns
15 ns
24mW
54L~283
J,N,W
74LS283
J,N
2·17
2·18
10 ns
16 ns
76mW
5483
J,W
7483
J,N
2·17
2-18
Singl. 4-Bit Full Adders
Device Type and Package
Conneetion
Diagram
Mil.
Per Bit
Coml.
Page No.
Electrical
Tables
Page No.
ACCUMULATORS, ARITHMETIC LOGIC UNITS, LOOK-AHEAD CARRY GENERATORS
Typ,
Description
4~Bit
Typ. Tot.1
Time
Typ.
Add
Time
12.5 ns
24 ns
455mW
10 ns
20 ns
720mW
Carry
Arithmetic Logic Units!
Device Type and Package
Power
Mil.
Dissipation
Coml.
54181
J
Connection
Electrical
Diagram
Page No.
Table.
Page No,
74181
J,N
2·107
2-109
745281
N
2·173
2-174
74S182
N
2·113
2-114
74182
J,N
2-113
2·114
Function Generators
4·8it Parallel Binary
Accumulators
Look-Ahead Carry Generators
7 ns
260mW
13 ns
180mW
64182
J
ARITHMETIC OPERATORS
Typ.
Delay
Time
Description
Quad 2-ln"ut EXCLUSIVE-NOR
Typ. Total
Device Type and Package
Power
Mil.
Dissipation
Coml.
Connection
Electrical
Diagram
Page No.
Tables
Page No.
18 ns
40mW
54LS266
J,N,W
74LS266
J,N
1-31
1-84
18 ns
30mW
54LS136
J,N,W
74LS136
J,N
1·29
1·84
Gates
Quad 2·lnput EXCLUSIVE-OR
Gates With Open Collector Outputs
Quad 2-lnpu, EXCLUSIVE·OR
Gates with
Totem~Pole
Outputs
Quad EXCLUSIVE-OR/NOR
7 ns
250mW
74S86
N
1-22
1·72
10 ns
30mW
54LS86
J,N,W
74LS86
J,N
1-22
1-72
10 ns
30mW
54LS386
J,N,W
74LS386
J,N
1·34
1-72
14 ns
150mW
5486
J,N,W
7486
J,N
1·22
1-72
29 ns
15mW
54L86
J,N,W
74L86
J,N
1·22
1-72
8 ns
325mW
745135
N
1·28
1·82
Gates
CODE CONVERTERS
Description
Typ.
Delay Time
Per Package
Level
6-Bit Binary to 6-Bit BCD Gonverters
Device Type and Package
Typ. Total
Connection
Power
Diagram
Dissipation
25 ns
280mW
31 ns
350mW
6-Line BCD to 6-Line Binary, or
25 ns
280mW
4·Lin. to 4-Line BCD 9'.fBCD 10'.
31 n.
350mW
54185A
54184
Converters
xxxiv
Page No.
Coml.
Mil.
J,W
J,W
Electrica'
Table.
Page No,
,74185A
J,N
2·116
2·117
8899
N
3-156
3-157
74184
J,N
2·116
2-117
8898
N
3-156
3-157
~
Functional Index/Selection Guides
MSI Functions
COMPARATORS
Description
Typ.
Typ. Total
Compare
Power
Diagram
Page No.
Electrical
Tables
Page No.
3-24
4·8it Magnitude Comparators
6·8it Magnitude Comparators
10-8 it Magnitude Comparators
Connection
Device Type and Package
Mil.
Coml.
Time
Dissipation
20 ns
175mW
7200
J,N,W
8200
J,N
3-23
21 ns
275 mW
5485
J,W
7485
J,N
2-21
2-22
70 ns
20mW
54L85
J,N,W
74L85
J,N
2-21
2-22
70 ns
75mW
76L24
J,N,W
86L24
J,N
3-131
3-132
20 ns
250 mW
7131
J,w
8131
J,N
3-19
3-20
20 ns
250 mW
7136
J,W
8136
J,N
3-19
3-20
21 ns
205mW
7160
J,W
8160
J,N
3-17
3-18
21 ns
240mW
7130
J,F
8130
J,N
3-17
3-18
Connection
Electrical
Diagram
Page No.
Tables
Page No.
COUNTERS, ASYNCHRONOUS (RIPPLE CLOCK) - NEGATIVE-EDGE TRIGGERED
Description
4-Bit Binary
Decade
Divide by 12
Device Type and Package
Typ, Total
Freq.
Parallel
Load
Clear
50 MHz
Yes
Low
240mW
54197
J,N
74197
J,N
2-101
2-102
40 MHz
Yes
Low
150mW
7291
J,N,W
8291
J,N
4-11
4-12
35 MHz
Yes
Low
150mW
54177
J
74177
J,N
2-101
2·102
35 MHz
Yes
Low
150mW
7281
J,W
8281
J,N
4-11
4-12
32 MHz
None
High
39mW
54LS93
J,N,W
74LS93
J,N
2-30
2-31
32 MHz
None
High
160mW
5493A
J,W
7493A
J,N
2-30
2-31
30 MHz
Yes
Low
60mW
54LS197
J,N,W
74L5197
J,N
2-101
2-102
6 MHz
None
High
20mW
54L93
J,N,W
74L93
J,N
2-30
2-31
6 MHz
None
High
20mW
76L93
J,N,W
86L93
J,N
3-142
3-143
Count
Power
Com I.
Mil.
Dissipation
50 MHz
Yes
Low
240mW
54196
.I,N
74196
J,N
2-101
2-102
40 MHz
Yes
Low
150mW
7290
J,N,W
8290,
J,N
4-11
4-12
35 MHz
Yes
Lo'w
150mW
54176
J
74176
J,N
2-101
2-102
35 MHz
Yes
Low
150mW
7280
J,W
8280
J,N
4-11
4-12
32 MHz
Set-to-9
High
40mW
54LS90
J,N,W
74LS90
J,N
2-30
2-31
32 MHz
Set-to-9
High
160mW
5490A
J,W
7490A
J,N
2-30
2-31
30 MHz
Yes
Low
60mW
54LS196
J,N,W
74LS196
J,N
2-101
2·102
54L90
J.N,W
74L90
J.N
2-30
2-31
7288
J,W
8288
J,N
4-11
4-12
6 MHz
5et-to-9
High
20mW
35 MHz
Yes
Low
150mW
32 MHz
None
High
39mW
54LS92
J,N,W
74LS92
J,N
2·30
2·31
32 MHz
None
High
160mW
5492A
J,W
7492A
J,N
2-30
2-31
xx:xv
~
Functional Index/Selection Guides
MSI Functions
COUNTERS, SYNCHRONOUS-POSITlVE·EDGE TRIGGERED
Typ. Total
Description
4-Bit Binary
Count
Device Type and Package
Connection
Diagram
Electrical
Freq.
Parallel
Load
25 MHz
Sync
Sync·L
93 mW
54lS163
J,N,W
74LS163
J,N
2·70
2·71
25 MHz
Sync
Async-L
93 mW
54LS161
J,N,W
74LS161
J,N
2·70
2·71
25 MHz
Sync
Sync·L
305mW
54163A
J,W
74163A
J,N
2·70
2·71
25 MHz
Sync
Async-L
305mW
54161A
J,W
74161A
J,N
2·70
2·71
25 MHz
Sync
Async-L
305mW
9316
J,W
8316
J,N
4·27
4·28
25 MHz
Sync
Sync·L
375mW
7556
J.W
8556
J,N
3·72
3·73
3·138
Clear
Power
Mil.
Dissipation
Coml.
Page No.
Tables
Page No.
6MHz
Sync
Async-L
33 mW
76L76
J,N,W
86L76
J,N
3·137
4-Bit Binary
25 MHz
Sync
None
100mW
54LS169
J,N,W
74LS169
J,N
2·85
2· 86
Up/Down
25 MHz
Async
Async-H
85mW
54LS193
J,N,W
74LS193
.J,N
2·133
2·134
20 MHz
Async
Async-H
325mW
54193
J,W
74193
J,N
2·133
2·134
20 MHz
Async
Async-H
325mW
7563
J.W
8563
J,N
3·76
3·77
54LS191
J.N,W
74LS191
J,N
2·128
2·129
54191
J.N,W
74191
J,N
2·128
2·129
Decade
20 MHz
Async
None
90mW
20 MHz
Async
None
325 mW
6 MHz
Async
Async·H
40mW
54L 193
J,N,W
74L 193
J,N
2·133
2·134
Async-H
40mW
75L63
J,N,W
85L63
J,N
3·76
3·77
J,N
2·70
2·71
2·70
2·71
2-71
6 MHz
Async
25 MHz
Sync
Sync·L
93 mW
54LS162
J,N.W
74LS162
25 MHz
Sync
Async-L
93mW
54LS160
J,N,W
74LS160
J,N
25 MHz
Sync
Sync·L
305mW
54162A
J,W
74162A
J,N
2-70
25 MHz
Sync
Async-L
305mW
54160A
J.W
74160A
J,N
2·70
2·71
25 MHz
Sync
Async-L
305mW
9310
J,W
8310
J,N
4·27
4·28
400mW
7555
J,W
8555
J,W
3·72
3-73
76L75
J,N.W
S6Ll5
J,N
3·137
3-138
2-85
2·86
25 MHz
Sync
Sync-L
6 MHz
Sync
Async-L
33 mW
Decade
25 MHz
Sync
None
100mW
54LS168
J,N,W
74LS168
Up/Down
25 MHz
Async
Async-H
85mW
54LS192
J,N,W
74LS192
20 MHz
Async
Async-H
325mW
54192
J,W
Modulo·N
J,N
' J,N
2·133
2·134
74192
J,N
2-133
2·134
2·129
20 MHz
Async
None
100mW
54LS190
J,N,W
74LS190
J,N
2·128
20 MHz
Async
None
325mW
54190
J,N,W
74190
J,N
2·128
2·129
20 MHz
Async
Async~H
325mW
7560.
J,W
8560
J,N
3·76
3-77
6 MHz
Async
Async~H
40mW
54L 192
J,N,W
74L192
J,N
2·133
2·134
6 MHz
Async
Async·H
40mW
75L60
J,N,W
85L60
J,N
3-76
3·77
15 MHz
Sync
None
250mW
7520
J.W
8520
J,N
3-44
347
Divider
xxxvi
~
Functional Index/Selection Guides
MSI Functions
DATA SELECTORS/MUL TlPLEXERS
Typ. Delay Times
Description
Quad 2-Li ne to
l-Line
Type
of
Output
TRI·
STATE
Data to
Inv.
Output
4 ns
TRI-
5 ns
STATE
Standard
4 ns
5 ns
Standard
TRISTATE
12 ns
TRI-
12 ns
STATE
Standard
7 ns
l-Line
2·165
2·166
N
2·66
2-67
74S157
N
2·66
2-67
J,N,W
74LS258
J,N
2-165
2-166
54LS257
J,N,W
74LS257
J,N
2·165
2·166
54LS158
J,N,W
74LS158
J,N
2.£6
2-67
54LS157
J,N,W
74LS157
J,N
2.£6
2·67
54157
J,W
74157
J,N
2.£6
2·67
54L157A
J,N,W
74L 157A
J,N
2.£6
2-67
9322
J,W
8322
J,N
4·38
4·39
71L22
J,N,W
81L22
J,N
3·13
3·14
7123
J,W
8123
J,N
3·13
3·14
8 ns
250mW
20 ns
35mW
54LS258
20 ns
50mW
12 ns
24mW
Standard
40 ns
60 ns
15mW
9 ns
14 ns
150mW
Mil.
Coml.
40 ns
60 ns
15mW
9.5 ns
N/A
200mW
40 ns
N/A
20mW
71 L23
J,N,W
81L23
J,N
3-13
3·14
65mW
54LS298
J,N,W
74LS298
J,N
2·184
2·185
54LS253
J,N,W
20 ns
from
clock
TRI-
12 ns
16 ns
35mW
Standard
6 ns
9.5 ns
225mW
Standard
14 ns
17 os
180mW
Standard
14 ns
17 ns
31 mW
20 ns
20 ns
13.5 ns
4.5 ns
STATE
TRI·
TRISTATE
TRISTATE
J,N
2·163
2:164
N
2-57
2·58
2·58
54153
J,W
74153
J,N
2·57
J,N,W
74LS153
J,N
2-57
2·58
135mW
9309
J,W
8309
J,N
4·24
4·25
20 ns
170mW
7214
J,W
8214
J,N
3·28
3·29
8 ns
14 ns
275 mW
74S251
N
2-160
2·161
II ns
18 ns
17 ns
155mW
17 ns
21 ns
21 ns
35mW
12 ns
TRI·
STATE
74LS253
74S153
54LS153
STATE
16-Line to '-Une
N
74S158
195mW
Standard
Standard
B-Line-to '-Line
74S257
320mW
7 ns
150mW
Storage
Dual 4-Line to
2·166
14 ns
14 ns
Standard
2·165
74S258
9 ns
l-Line With
N
280mW
Standard
TRI·
Tables
Page No.
14 ns
49mW
STATE
Electrical
Diagram
Page No.
Dissipation
14 ns
STATE
Connection
Power
9 ns
TRI·
Device Type and Package
Typ. Total
From
Enable
Standard
Standard
Quad 2-line to
Data to
Non-Inv.
Output
54251
J,W
74251
J,N
2·160
2·161
54LS251
J,N,W
74LS251
J,N
2-160
2-161
2·54
2·54
Standard
4.5 ns
8 ns
9 ns
225mW
74S151
N
2-53
Standard
8 ns
16 ns
22 ns
145mW
54151A
J,W
74151A
J,N
2-53
Standard
11 ns
18 ns
27 ns
30mW
54LS151
J,N,W
74LS151
J,N
2·53
2-54
Standard
9 ns
16 ns
17 ns
135mW
9312
J,W
8312
J,N
4·24
4-25
Standard
11 ns
18 ns
17 ns
155mW
7121
J,W
8121
J,N
3·11
3·12
Standard
22 ns
N/A
100mW
7210
J,W
8210
J,N
3·25
3-26
Standard
22 ns
20 ns
100mW
7211
J,W
8211
J,N
3-25
3-26
11 ns
18 ns
200mW
54150
J,F
74150
J,N
2-53
2·54
II ns
21 ns
225mW
7219
J,F
8219
J,N
3-28
3-29
Standard
TRISTATE
,
xxxvii
~
MSI Functions
Functional Index/Selection Guides
DECODERS/DEMUL TIPLEXERS
Typ.
Select
Time
Type of
Output
Descriptio'n
T¥P·
Typ. Total
Device Type and Package
Enable
Time
Power
Dissipation
Mil.
Dual 2-Line to
Totem-Pole
7.5 ns
6 ns
300mW
4-Line
Totem-Pole
18 ns
15 ns
30mW
TRI-
Connection
Diagram
Coml.
Electrical
Tables
Page No.
Page No.
74S139
N
2,46
2-47
54LS155
J,N,W
74LS155
J,N
2·63
2·64
20 ns
15 ns
240mW
7230
J,W
8230
J,N
3-37
3-38
Totem-Pole
21 ns
16 ns
250mW
54155
J,W
74155
J,N
2·63
2·64
Totem-Pole
22 ns
19 ns
34mW
54LS139
J,N,W
74LS139
J,N
2-46
2·47
Open-Collector
23 ns
18 ns
250mW
54156
J,W
74156
J,N
2·63
2-64
Open-Collector
33 ns
26 ns
31 mW
54LS156
J,N,W
74LS156
J,N
2-63
2·64
74S138
N
2-46
2-47
54LS138
J,N,W
74LS138
J,N
2-46
2·47
7223
J
8223
J,N
3·35
3-36
2·4
STATE
3-Line to 8-Une
Totem-Pole
8 ns
7 ns
225mW
Totem-Pole
22 ns
21 ns
31 mW
Totem-Pole
25 ns
140mW
4-Une to 10-Line,
Totem-Pole
17 ns
35mW
54LS42
J,N,W
74LS42
J,N
2-3
BCD to Decimal
Totem-Pole
17 ns
140mW
5442
J,W
7442
J,N
2-3
2-4
Totem-Pole
20 ns
125mW
9301
J,W
8301
J,N
4·22
4·23
4-Lineto 16-Line
Totem-Pole
67 ns
54l42A
J,N,W
74L42A
J,N
2-3
2·4
Totem-Pole
19.5 ns
17.5 ns
170mW
54154
J,F
74154
J,N
2-60
2·61
Totem-Pole
19,5 ns
17,5 ns
170mW
9311
J,F
8311
J,N
4-33
4·34
Totem-Pole
23 ns
19 ns
45mW
54LS154
J,N,W
74LS154
J,N
2-60
2·61
Totem-Pole
55 ns
45 ns
24mW
54L 154A
F,J,N
74L154A
J,N
2·60
2-61
Connection
Electrical
Table.
Page No.
15mW
DISPLAY DECODERS/DRIVERS, OPEN·COLLECTOR
Curr'ent
Off·State
Output
Voltage
BCD to 7-
40mA
30V
320mW
Ripple
5446A
J,N,W
7446A
J,N
2·8
2-9
Segment
40mA
15V
320mW
Ripple
5447A
J,N,W
7447A
J,N
2-8
2·9
Decoders/Drivers
24mA
15V
35'mW
Ripple
74LS47
J,N
2-8
2·9
12mA
15V
35mW
Ripple
54LS47
J,N,W
2-8
2·9
6AmA
5.5V
265mW
Ripple
5448
J,N,W
6mA
5.5V
125mW
Ripple
4mA
5.5V
40mW
Direct
54LS49
J,N,W
2mA
5.5V
125mW
Ripple
54LS48
J,N,W
BCD to Decimal
80mA
30V
215mW
Invalid Codes
5445
J,W
7445
Decoders/Drivers
80mA
15V
215mW
Invalid Codes
54145
J,W
7 mA
60V
80mW
Invalid Codes
54141
3.6mA
2,4V
75mW
76L25
Output
Description
Sink
Typ. Total
Device Type and Package
Blanking
Power
Dissipation
Diagram
Mil.
Com!.
Page No,
7448
J,N
2-8
2-9
74LS48
J,N
2-8
2-9
74LS49
J,N
2-8
2·9
2-8
2·9
J,N
2-6
2·7
74145
J,N
2·6
2-7
J,W
74141
J,N
2-1
2·2
J,N,W
86L25
J,N
3·134
3-135
7-Segment to
BCD
Direct
Decoders/Drivers
RESULTANT DISPLAYS USING 46A, 47A, 48, LS47, LS48, LS49
/fl
C,j-Il
n
j
_ I_
-rjl-1~jl-l
~=1.=1
Lij~ijl-~_ _7
11
__77_7/_711_77/_
1-1
1
2
3
4
5
6
7
8
xxxviii
9
10
11
12
13
14
15
~
Functional Index/Selection Guides
MSI Functions
LATCHES
No.
of
Bits
Clear
Outputs
Typ.
Delay
Time
Typ. Total
Power
Dissipation
Addressable Latches
8
Low
a
21 ns
280mW
DG (Clocked) Latches
4
None
0,0
11 ns
4
None
10 ns
Description
Coml.
Electrical
Tables
Page No.
441
J,W
8334
J,N
440
32mW
54LS75
J,N,W
74LS75
J,N
2·14
2-15
35mW
54LS77
W
2·14
2-15
4
None
15 os
160mW
4
None
0,0
52 ns
17.5 mW
4
None
12 ns
19mW
4
None
19 ns
180mW
TAl-STATE
4
High
Counters/Latches
4
High
4
High
4
High
8
High
a
a
a
a
a
a
a
S-A Latches
Mil.
Connection
Diagram
Page No.
9334
a
a,a
-
Device Type and Package
28 ns
330mW
95 ns
38mW
28 ns
330mW
95 ns
38mW
21 ns
330mW
5475
J,N,W
7475
J,N
2'14
2·15
54L75A
J,N,W
74L75A
J,N
2'14
2-15
54LS279
J,N,W
74LS279
J,N
2-168
2-169
7544
J,N,W
8544
J,N
3-54
3-55
7552
J,W
8552
J,N
3-64
3-65
75L52
J,N,W
85L52
J,N
3-64
3-65
7554
J,W
8554
J,N
3-64
3-65
75L54
J,N,W
85L54
J,N
3-64
3-65
7553
J,W
8553
J,N
3-70
3-71
. MULTIPLIERS
Connection
Diagram
Page No.
Device Type and Package
Description
Mil.
4-Bit by 4·8it Parallel Binary Multipliers
Coml.
7875A
J
8875A
7875B
J
8875B
I
Electrical
Tables
Page No.
J,N
3-154
3-155
J,N
3-154
3-155
PARITY GENERATORS/CHECKERS
Typ.
Delay
Typ_ Total
Time
Dissipation
35 ns
170mW
9-Bit OddlEven Parity
13 ns
335mW
Generators/Checkers
34 ns
130mW
Description
8-Bit OddlEven Parity
Generators/Checkers
Connection
Diagram
Page No.
Electrical Tables
Page No_
J,N
2-105
2-106
745280
N
2-170
2-171
8220
J,N
3-32
3-33
Device Type and Package
Power
Mil.
Coml.
54180
J,W
74180
7220
J,N,W
PRIORITY ENCODERS
Typ.
Propagation
Delay Time
Description
Device Type and Package
Typ_ Total
Power
Dissipation
Connection
Electrical
Diagram
Page No.
Tables
Page No.
Coml_
Mil.
Cascadable Octal Priority
12 ns
190mW
54148
J,W
74148
J,N
249
2-50
Encoders
12 ns
190mW
9318
J,W
8318
J,N
4-36
4-37
10 ns
225mW
54147
J,W
74147
J,N
249
2-50
Full BCD Priority
Encoders
REGISTER FILES
Description
4 Words of 4-Bits
Typ_
Address
Time
Typ_ Aead
Enable
Time
Data
Input
Rate
Typ_ Total
Power
Dissipation
27 ns
15 ns
20 MHz
125mW
30 ns
15 ns
20 MHz
635mW
Connection
Diagram
Page No_
Device Type and Package
Mil.
54LS170
Coml.
J,N,W
Electrical
Tables
Page No_
74LS170
J,N
2-91
2-92
74170
J,N
2-91
2-92
4 Words of 4-Bits
24 ns
19 ns
20 MHz
135mW
54LS670
J,N,W
74LS670
J,N
2-191
2-192
(TRI-STATE Outputs)
24 ns
19 ns
30 MHz
400mW
7542
J,W
8542
J,N
3-52
3-53
xxxix
~
MSI Functions
Functional Index/Selection Guides
REGISTERS, OTHER
Description
Freq.
Quad Bus·Buffer Registers
Quad O·Type Registers
Quad Multiplexers
Wit~
Typ. Total
Async.
Electrical
Tables
Page No.
Connection
Device Type and Package
Diagram
Power
Clear
Mil.
Dissipation
Coml.
Page,Na.
25 MHz
High
250mW
54173
J,W
74173
J,N
2·96
2·97
25 MHz
High
250mW
7551
J,W
8551
J,N
3·62
3·63
75L51
J,N,W
85L51
j,N
3-62
3-63
74S175
N
2-98
2-99
'6 MHz
High
75 MHz
Low,
30 MHz
Low
55mW
25 MHz
Low
150mW
25 MHz
None
65mW
75 MHz
Low
450mW
30MHz
Low
80mW
25 MHz
Low
15 MHz
None
25 MHz
None
28mW
300mW
54LS175
J,N,W
74LS175
J,N
2-98
2-99
54175
J,W
74175
J,N
2-98
2-99
54LS298
J,N,W
74LS298
J,N'
2-184
74S174
N
2-98
2-99
54LS174
J,N,W
74LS174
J,N
2-98
2-99
225 mW
54174
J,W
74174
J,N
2-98
2-99
400mW
7546,
J,W
8546
J,N
3-56
3-57
175mW
54LS374
J,N,W
74LS374
J,N
2-187
2-188
,
2-185
Storage
Hex O·Type Registers
a-Bit Universal Shift/Storage
Registers
Octal D-Type Registers
REGISTERS, SHIFT
Description
No,
of
Bits
Serial
Data
Shift
Freq.
Input
Clear
. . ". "a
Modes
Async.
a: oJ
rh rh
0
oJ
:I:
Typ. Total
Device Type and Package
Power
Parallel-In,
8
25 MHz
D
Low
X X X X
360mW
Parallel-Out
4
70 MHz
D
Low
X X X X
450mW
(Bidirectional)
4
25 MHz
D
Low
X X X X
75mW
Com I.
Mil.
Dissipation
54198
J
Connection
Electrical
Diagram
Page No.
Tables
Page No.
2-149
74198
J,N
2-148
74S194
N
2-140
2-141
54LS194A
J,N,W
74LS194A
J,N
2-140
2-141
J,N
2-140
2-141
2-148
2-149
4
25 MHz
D
Low
X X X X
195mW
54194
J,W
74194
Parallel-In,
8
25 MHz
J-K
Low
X
X X
360mW
54199
J
74199
J,N
Paralrel-Out
5
10 MHz
D
Low
X
X
60mW
54LS96
J,N,W
74LS96
J,N
,2-39
2-40
5
10 MHz
D
Low
X
X
240mW
5496
J,W
7496
J,N
2-39
2-40
4
70 MHz
J-K
Low
375mW
74S195
N
2-144
2-145
30 MHz
J-R
Low
X
X
X
4
X
195mW
54195
J,W
74195
J,N
2-144
2-145
4
30 MHz
J-K
Low
X
X
300mW
9300
J,N,W
8300
J,N
4-19
4-20
4
30 MHz
J-K
Low
X
X
70mW
54LS195A
J,N,W
74LS195A
J,N
2-144
2-145
4
25 MHz
D
Low
X
X
75mW
54LS395
J,N,W
74LS395
J,N
2-189
2-190
2-37
-
4
25 MHz
D
None
X
X
195mW
5495
J,W
7495
J,N
2-36
4
25 MHz
D
None
X
X
65mW
54LS95B
J,N,W
74LS95B
J,N
2-36
2-37
4
6 MHz
D
None
X
X
24mW
54L95
J,N,W
74L95
J,N
2-36
2-37
Serial·ln,
8
25 MHz
Gated D
Low
X
80mW
54LS164
J,N,W
74LS164
J,N
2-76
2-77
Parallel-Out
8
25 MHz
Gated D
Low
X
175mW
54164
J,W
74164
J,N
2-76
2-77
8
25 MHz
Gated D
Low
X
175mW
7570
J,w
8570
J,N
3-86
3-87
8
6 MHz
Gated D
Low
X
30mW
54L 164A
J,N,W
74L164A
J,N
2-76
2-77
8
6 MHz
Gated D
Low
X
30mW
76L70
J,N;W
86L70
J,N
3-86
3-87
2-80
Parallel-I n,
8
25 MHz
D
None
X
X X
200mW
54165
J,W
74165
J,N
2-79
Serial-Out
8
20 MHz
D
Low
X
X X
360mW
54166
J
74166
J,N
2-82
2-83
8
14MHz
D
None
X
X X
X X
200mW
7590
J,W
8590
J,N
3-110
3-111
3-111
8
6 MHz
D
None
X
30mW
76L90
J,N,W
86L90
J,N
3-110
Serial-In,
8
10 MHz
Gated D
None
X
175mW
5491A
J,W
7491A
'J,N
2-34
2-35
Serial-Out,
8
4 MHz
Gated D
None
X
17,5mW
54L91
J,N,W
74L91
J,N
2-34
2-35
* S-R '" shift right, Sol '" shift left_
,
xl
~ TTL Data Book
Packages
DUAL-IN-LINE PACKAGES
(N)
All devi~es ordered with the oN" suffix are supplied in either the 14-pin, l.6-pin, 20-pin, or 24-pin molded dual-in-line
package. Molding material is EPOXV B, a highly reliable compound suitable for military as well as commercial temperature
range applications. Lead material is AIJoy 42 with a hot solder dipped surface to allow for ease of solderability.
(J)
All devices ordered with the "J" suffix are supplied in either the 14-pin, 16-pin, or 24-pin ceramic dual-in-line package.
The body of the package is made of ceramic and hermeticity is accomplished through a high temperature sealing of the
package. Lead material is tin-plated kovar.
FLAT PACKAGES
(W)
All devices ordered with the "W" suffix are supplied in either the 14-pin or 16-pin ceramic flat package. The'body of
the package is made of ceramic and hermeticity is accomplished through a high temperature sealing of the package.
Lead material is tin-plated kov~r.
(F)
All devices ordered with the of'' suffix are supplied in the 24-pin glass/metal flat package. The top and bottom of the
package are gold-plated kovar as are the leads. The side walls are glass, through which the leads extend forming a
hermetic seal.
Four combinations of bottom insulator and formed leads are supplied for the W or F packages. Suffix coding is as follows:
Suffix
Bottom Insulator
-00 (Ex: DM54LOOW-OO)
-01
-06
-07
Formed Leads
No
Ves
Ves
No
No
Ves
No
Ves
If no suffix is added, parts will be supplied as if the -00 suffix had been ordered.
~tr---±-~'-'~~-::l ""71~~
.it_______ .gA'~==~L_________~
if
te:=:=::~
O.O~~~J
0.000
0.005
I
1-------- 0.365--1
±0.005
Standard Flat Pack Lead Form
xli
~ TTL Data Book
Packages
~~~~~~~~~·,I--fG~
U25
RAD
0.025
RAD
D.28t1
MAX
'-T-:T'T'l'1'"T';''M'lT"1"";T'"I';T.,-;,-I~
0.2011
~
__11_ OJ. . . .125
'-0.002
80TH eNDS
14-Pin Ceramic Dual-In-Line Package CJI
8.810
MIN
16-Pin Ceramic Duel-In-Line Package (JI
"i~~~
.LASS
0.025
RAD
0.515
~~~~~~r.r~TW~~~~"'~
~~1.L
J
1-..... -I I- •..
tUGO ---,
_II--
011
10.010""1
0.•'8
!n.DOZ
.....
"070
MIN
24-Pin Ceramic Dual-In-Line Package '(JI
0.092 DIA NOM
PiN NO.1 INDENT
r·· 1 ~r
~
lJ
f ~m+"·" U-- Lo~
JD0
0.08&
~.3Z5 -o.a1fj-i
0.015
.8.01&
f---•.30. --1 r •
~fTMAX
0.138
it
.830
!
~::--\--
I -0 325 +0.025-1
,r·
.....015
. _
- TV'
-';-05:
.
~.o
.....
wo
8.
rJ ..... -=1f
......
0.015
I--- ---I TV,I-- -II---".m MiN
16-Pin Moldid Dual-In-Lina Package INI
14-Pin Molded Dual-In-Line Package (NI
xlii
8.1.1 0.125
~TTL Data Book
Packages
0.3oo--j
-0320
.
I
B.OlO
MAX
R=r------1+------,'"l
'~
H:
OO5
[1-,009
---0.010
I
I
TV'
\-0.]45 MAX-
20-Pin Molded Dual-In-Line Package (N)
---I
I
~~~~JD5
0.062
I
RAD
0.540
·L
F~"·
L~~5
0.0T5
,
_ I 1 __
0.015
±0.015
__
I
I
1--'
11.100
TYP
---II _
I
---1 oi"
11.018
iO.ODl
0.125 MIN
MIN
24-Pin Molded Dual-in-Line Package (N)
111~~111~ r
PIN NO.1
0.275
PIN NO.1
IDENT
MAX 0.840
0.275 0.880
lOENT
G~~~S 0.900
GLASS 0.B60
23""~
--.il
I
~
II
o.D19 --i1-0,015
14-Pin Flat Package (W)
0,015
II
~
D.019~f--
16-Pin Flat Package (W)
xliii
24-Pin Flat Package (F)
~ TTL Data Book
Packages
INCHES TO MILLIMETERS CONVERSION TABLE
INCHES
MM
INCHES
MM
INCHES
MM
0.001 .
0.0254
0.010
0.254
0.100
2.54
0.002
0.0508
0.020
0.508
0.200
5.08
0.003
0.0762
0.1016
0.030
0.040
0.762
1.016
0.300
7.62
10.16
0.005
0.006
0.007
0.1270
0.1524
1.270
0.1778
0.050
0.060
0.070
0.400
0.500
1.524
1.778
0.600
0.700
15.24
17.78
0.008
0.2032
0.2286
0.080
0.090
2.0.32
0.800
0.900
20.32
0.004
0.009
2.286
xliv
12.70
22.86
National Semiconductor
54f74 SSI DEVICES
Section 1
~
54/74 SSI
Device No.
Table of Contents
Conn.
Elec.
Diag.
Char.
Pg. No. Pg. No.
Description
~
DM5400/DM7400
DM54HOO/DM74HOO
DM54LOO/DM74LOO
DM54LSOO/DM74 LSOO
DM74S00
DM5401/DM7401
DM54H01/DM74HOl
DM54L01/DM74LOl
DM54LS01/DM74LSOl
DM5402/DM7402
DM54 L02/DM74 L02
DM54LS02/DM74LS02
DM74S02
DM5403/DM7403
DM54L03/DM74L03
DM54 LS03/DM74LS03
DM74S03
bM5404/DM7404
DM54H04/DM74H04
DM54L04/DM74L04
DM54LS04/DM74LS04
DM74S04
DM5405/DM7405
DM54H05/DM74H05
DM54L05/DM74L05
DM54LS05/DM74LS05
DM74S05
DM5406/DM7406
DM5407/DM7407
DM5408/DM7408
DM54H08/DM74H08
bM54L..08/DM74L08
DM54LS08/DM74LS08
DM5409/DM7409
DM54L09/DM14L09
DM 54 LS09/DM 74 LS09
DM5410/DM7410
DM54H10/DM74H10
DM54 L1 0/OM74L 10
Quad 2:lnput NAND 'Gates
Quad 2-lciput NAND-Gates
Quad 2-lnput NAND Gates
Quad 2-lnput NAND Gates
Quad 2-lnput'NAND Gates
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-lnput NAND Gates with
,open-Coilector ,outputs
Quad 2-lnput N,oR Gates
Quad 2-lnput N,oR Gates
Quad 2-lnput N,oR Gates
Quad 2-1 nput N,o R Gates
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-1 nput NAN D Gates with
,open-Collector ,outputs
Quad 2-1 nput NAN D Gates with
Open-Collector ,outputs
Hex Inverters
Hex Inverters
Hex Inverters
Hex Inverters
Hex Inverters
Hex Inverters with ,open-Collector
,outputs
Hex Inverters with Open-Collector
,outputs
Hex Inverterswith ,open-Collector
,outputs
Hex I nverters with ,open-Collector
,outputs
Hex Inverters with Open-Collector
,outputs
Hex Buffers wjth ,open-Collector
High-Voltage ,outputs
Hex Buffers with ,open-Collector
High-Voltage ,outputs
Quad 2-lnput AND Gates
Ql.!ad 2-lnput AND Gates
Quad 2-lnput AND Gates
Quad 2-lnput ANDGates
Quad 2-lnput AND Gates with
,open-Collec~or ,outputs
Quad 2-lnput AND Gates with
,open-Collector ,outputs
Quad 2-If1put AND Gates with
,open-Collector ,outputs
Triple3-lnput NAND Gates
Triple 3_lnput NAND Gates
Triple 3-lnput NAND Gates
1·1
1-1
1-1
..
Mil
Coml
•
•
•
• N/A
•
•
1-'
1-1
1-1
1·36
1-36
1-36
1-36
1-36
1-38
1-1
1-38
1-1
1-38
N/A
1-1
1-38
1-2
1-2
1-2
1-2
1-2
1-40
1-40
1-40
1-40
1-38
•
•
•
• N/A
•
1-2
1-38
•
1-2
1-38
•
1-2
1-38
1-2
1-2
1-2
1-2
1-2
1-3
1-36,
. 1-36
1-36
1-36
1-36
1·38
1-3
1-38
1-3
1-38
1-3
1-38
1-3
1·38
1-3
1-42
"
1-3
1-42
•
1-4
1-4
1-4
1-4
1-4
l-n
J
I'"
1-44
1-44
1-44 '
1-44
1-46
1-4
1-46
1-4
1-46
1-4
1-4
1·4
1-36
1-36
1-36
•
•
•
•
•
•
Package
N
Mil Coml
•
•
•
•
•
•
•
•
'••.
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•..
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•.
•
•
•
•
•
•
Coml
• N/A •
•
• N/A •
• •
'.
•
N/A
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
W
Mil
N/A
•
•
•
•
• N/A
•
•
•
•
•
N/A
N/A
•
•
N/A
•
N/A
•
•
N/A
•
•
•
•
•
N/A
•
•
•
•
N/A
• •
• •
• •
N/A
• •
• •
• •
• •
• •
• N/A •
• •
~
Table of Contents
54n4 SSI
Device No.
DM54LS10/DM74LS10
DM74S10
DMS411/DM7411
DM54Hll/DM74Hll
DM54L 11/DM74L 11
DM54LSll/DM74LSll
DM74S11
DM54LS12/DM74LS12
DM5413/DM7413
DMS4LS13IDM74LS13
DM5414/DM7414
DMS4LS14/DM74LS14
DM54LS15/DM74LS15
DM74S1S
DMS416/DM7416
DM5417/DM7417
DM5420/DM7420
DM54H20/DM74H20
DM54L20/DM74L20
DMS4LS20/DM74 LS20
DM74S20
DM54H21IDM74H21
DMS4LS21/DM74LS21
DM54H22/DM74H22
DM 54 LS22/DM 74 LS22
DM74S22
DM5423/DM7423
DM5425/DM742S
DMS426/DM7426
DM54L26/DM74L26
DM54LS26/DM74LS26
DM5427/DM7427
DM54CS27 IDM74LS27
DM5430/DM7430
DMS4H30/DM74H30
DM54L30/DM74L30
DMS4LS30/DM74LS30
DM74S30
DM5432/DM7432
DM54L32/DM74L32
DM54LS32/DM74LS32
DM5437/DM7437
DM54LS37/DM74LS37
DM5438/DM7438
DM54LS3B/DM74LS38
Elec.
Conn.
Char.
Diag.
Pg. No. Pg. No.
Description
Triple 3·lnput NAND Gates
Triple 3-lnput NAND Gates
Triple 3-lnput AND Gates
Triple 3-lnput AND Gates
Triple 3-lnput AND Gates
Triple 3-lnput AND Gates
Triple 3-lnput AND Gates
Triple 3-lnput NAND Gates with
Open-Collector Outputs
Dual 4-lnput NAND Schmitt Triggers
Dual 4-lnput NAND Schmitt Triggers
Hex Schmitt Triggers
Hex Schmitt Triggers
Triple 3-lnput AND Gates with
Open-Collector Outputs
Triple 3-lnput AND Gates '!'lith
Open-Collector Outputs
Hex Buffers with Open-Collector
High-Voltage Outputs
Hex Buffers with Open-Collector
High-Voltage Outputs
Dual 4-lnput NAND Gates
Dual 4-lnput NAND Gates
Dual 4-lnput NAND Gates
Dual 4-lnput NAND Gates
Dual 4-lnput NAND Gates
Dual 4-lnput AND Gates
Dual 4-lnput AND Gates
Dual 4-lnput NAND Gates with
Open-Collector Outputs
Dual 4-lnput NAND Gates with
Open-Collector Outputs
Dual 4-lnput NAND Gates with
Open-Collector Outputs
Expandable Dual 4-lnput NOR Gates
Dual 4-1 nput NOR Gates
Quad 2-lnput High-Voltage NAND
Gates
Quad 2-lnput High-Voltage NAND
Gates
Quad 2-lnput High-Voltage NAND
Gates
Triple 3-lnput NOR Gates
Triple 3-lnput NOR Gates
8-lnput NAND Gates
8-lnput NAND Gates
8-lnput NAND Gates
8-lnput NAND Gates
8-lnput NAND Gates
Quad 2-1 nput 0 R Gates
Quad 2-lnput OR Gates
Quad 2-lnput OR Gates
Quad 2-lnput NAND Buffers
Quad 2-lnput NAND Buffers
Quad 2-lnput NAND Buffers with
Open-Collector Outputs
Quad 2-lnput NAND Buffers with
Open-Collector Outputs
I-iii
J
Mil Coml
• N/A
•
•
•
• N/A
•
•
•
•
•
•
•
•
Package
N
Mil Coml
•
•
•
•
•
•
•
•
W
Mil
Coml
•
•
1-4
1-4
l-S
l-S
l-S
l-S
l-S
l-S
1-36
1-36
1-44
1-44
1-44
1-44
1-44
1-38
l-S
l-S
1-6
1-6
1-6
1-48
1-48
1-48
1-48
1-46
1-6
1-46
N/A
1-6
1-42
1-7
1-42
1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-8
1-36
1-36
1-36
1-36
1-36
1-44
1-44
1-38
1-8
1-38
•
•
•
•
•
• N/A
•
•
•
•
1-8
1-38
1-8
1-8
1-9
1-S0
1-40
1-42
•
•
•
•
•
•
•
•
•
•
•
•
1-9
1-42
•
•
•
•
N/A
1-9
1-42
1-40
1-40
1-36
1-36
1-36
1-36
1-36
1-S2
1-S2
1-52
1-54
1-54
1-42
1-42
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
• N/A
•
•
•
•
•
1-10
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
1-9
1-9
1-9
1-9
1-9
1-9
1-9
1-10
1-10
1-10
1-10
1-10
1-10
•
•
•
•
•
•
• N/A
•
•
•
•
•
•
•
..
'.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
•
•
•N/A
•
• N/A
•
•
•
•
N/A
•
N/A
•
•
N/A
N/A
N/A
N/A
•
•
N/A
•
•
•N/A •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
~_54n4 SSt
Device No.
DM5440/DM7440
DM54H40/DM74H40
DM54LS40/DM74LS40
DM74S40
DM5450/DM7450
DM54H50/DM74H50
DM5451/DM7451
DM54H51/DM74H51
.
DM54L51/DM74L51
DM54LS51/DM74LS51
DM74S51
DM54H52/DM74H52
DM.5453/DM7453
DM54H53/DM74H53
DM5454/DM7454
DM54H54/DM74H54
DM54L54/DM74L54
DM54LS54/DM74LS54
DM54H55/DM74H55
DM54L55/DM74l55
DM54LS55/DM74LS55
DM5460/DM7460
DM54H60/DM74H60
DM54H61/DM74H61
DM54H62/DM74H62
DM74S64
DM74S65
DM5470/DM7470
DM54H71/DM74H71
DM54L71/DM74L71
DM5472!DM7472
DM54H72/DM74H72
DM54L72/DM74L72
DM5473/DM7473
DM54H73/DM74H73
DM54L73/DM74L 73
DM54LS73/DM74LS73
Table of Contents
Conn.
Elec.
Diag.
Char.
Pg. No. Pg. No.
Description
Dual 4·lnput NAND
Dual 4·lnput NAND
Dual 4·lnput NAND
Dual 4·lnput NAND
Dual 2Wide 2·lnput
Gates
Dual 2Wide 2·lnput
Gates
DUIlI 2·Wide 2·lnput
Gates
Dual 2·Wide 2·lnput
Buffers
Buffers
Buffers
Buffers
AND·OR·INVERT
1-11
1·11
1·11
1-11
1·11
1·54
1:54
1·54
1·54
1·50
AND·OR·INVERT
1·11
1·50
AND·OR·INVERT
(12
1·56
AND·OR·INVERT . 1·12
1·56
Gates
Dual 2·Wide 2·lnput AND·OR·INVERT
Gate,
Dual 2-Wide 2-lnput AND-OR-INVERT
Gates
Dual 2-Wide 2-lnput AND-OR-INVERT
Gates
Expandable 4Wide AND-OR
Gates
Expandable 4-Wide AND-OR
INVERT Gates
Expandable 4-Wide AND-ORINVERT Gates
4-Wide AND-OR-INVERT Gates
4-Wide AND-OR-INVERT Gates
4-Wide AND-OR-INVERT Gates
4-Wide AND-OR-INVERT Gates
2-Wide 4-lnput AND-ORINVERT Gates
2-Wide 4-lnput AND-ORINVERT Gates
2Wide 4-lnput AND-ORINVERT Gates
Dual 4-lnput Expanders
Dual 4'lnput Expanders
Triple 3-lnput Expanders
4-Wide AND-OR Expanders
4-Wide AND-OR-INVERT Gates
4-Wide AND-OR-INVERT Gates
with Open-Collector Outputs
AND-Gated J-K Positive-Edge-Triggered
Flip-Flops with Preset and Clear
AND-OR-Gated J'K Master-Slave
Flip-Flops with Preset
AN D-Gated R -S Master-Slave
Flip-Flops with Preset and Clear
AND-Gated J-K Master-Slave Flip-Flops
. with Preset and Clear
AND-Gated J-K Master-Slave Flip-Flops
with Preset and Clear
AND-Gated J-K Master-Slave Flip-Flops
with Preset and Clear
Dual J-K Flip-Flops with Clear
Dual J-K Flip-Flops with Clear
Dual J-K Flip-Flops with Clear
Dual J-K Flip-Flops with Clear
J-iv
Mil
J
Coml
•
•
.-
• •
•
N/A
• •
• •
• •
• •
• •
• •
1·12
1·56
1-12
1-56
1-12
1-56
1-13
1-50
•
1-13
1-50
1-13
1-50
•
•
1-14
1-14
1-14
1-14
1-15
1-56
1-56
1-56
1-56
1-50
1-15
1-56
1-15
1-56
1-15
1-15
1-16
1-16
1-16
1-17
1-58
1-59
1-60
1-59
1-56
1-61
1-18
1-62
1-18
1-64
1-19
1-66
1-19
1-62
1-19
1-64
1-19
1-66
1-20
1-20
1-20
1-20
1-62
1-64
1-66
1-68
Package
N
Mil
Coml
•
•
•
•
•
•
•
•
•
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
..
•
•
•
•
•
•
•
•
N/A
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Mil
•
W
Coml
N/A
• N/A
•
•
•
•
N/A
•
•
N/A
•
•
•
•
N/A
N/A
•
•
N/A
• •
N/A
• •
• N/A •
• •
• •
• N/A •
N/A
N/A
N/A
N/A
•
•
N/A
•
•
~
•
N/A
•
•
N/A
•
•
•
•
•
•
~
54n4 SSI
Device No.
DM5474/DM7474
DM54H74/DM74H74
DM54L74/DM74L74
DM54LS74/DM74LS74
DM74S74
DM5476/DM7476
DM54H76/DM74H76
DM54LS76/DM74LS76
DM54H78/DM74H78
DM54L78/DM74L78
DM54LS78/DM74LS78
DM5486/DM7486
DM54L86/DM74L86
DM54LS86/DM74LS86
DM74S86
DM54H 103/DM74H 103
DM54H 106/DM74H1 06
DM54107/DM74107
DM54LS107/DM74LS107
DM54H108/DM74H108
DM541 09/DM741 09
DM54LS1 09/DM74LS1 09
DM54LS112/DM74LS112
DM74S112
DM54LS113/DM74LS113
DM74S113
OM54LS114/DM74LS114
DM74S114
DM54121/DM74121
DM54LS122/DM74LS122
DM54123/DM74123
Table of Contents
Elec.
Conn.
Diag.
Char.
Pg. No. Pg. No.
Description
Dual D Positive·Edge·Triggered
Flip·Flops with Preset and Clear
Dual D Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual D Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual D Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual D Positive-Edge-Triggered
'Flip-Flops with Preset and Clear
Dual J-K FI ip-Flops with Preset and
Clear
Dual J-K Flip-Flops with Preset and
Clear
Dual J-K Flip-Flops with Preset and
Clear
Dual J-K FI ip-Flops with Preset,
Common Clear and Common Clock
Dual J-K Flip-Flops with Preset,
Common Clear and Common Clock
Dual J-K Flip-Flops with Preset,
Common Clear and Common Clock
Quad EXCLUSIVE-OR Gates
Quad EXCLUSIVE-OR Gates
Quad EXCLUSIVE-OR Gates
Quad EXCLUSIVE-OR Gates
Dual J-K Negative-Edge-Triggered
Flip-Flops with Clear
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-K Master-Slave Flip-Flops with
Clear
Dual J-K Master-Slave Flip-Flops with
Clear
Dual J-K Negative-Euge-Triggered
Flip-Flops with Preset, Common
Clear, and Common Clock
Dual J-i( Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-i( Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-K Negative·Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset, Common
Clear, and Common Clock
Dual J·K Negative-Edge-Triggered
Flip-Flops with Preset, Common
Clear, and Common Clock
One Shots
Retriggerable One Shots with Clear
Dual Retriggerable One Shots with Clear'
j-v
Mil
J
Coml
•
•
•
•
•
•
•
Package
N
Mil
Coml
•
•
•
•
•
•
Mil
W
Coml
•
•
1-20
1·62
1-20
1-64
1-20
1-66
1-20
1-68
1-20
1-70
1-21
1-62
•
•
1-21
1-64
•
1-21
1-68
•
1-21
1-64
1·66
•
•
1-21
1-68
•
•
1-22
1-22
1-22
1-22
1-23
1-72
1-72
1-72
1·72
1·74
•
•
•
• •
• •
• N/A •
•
1·21
•
•
•
•
•
•
•
•
• •
• •
• N/A •
•
•
•
1-23
1-74
•
•
1-23
1·62
N/A
1-68
•
•
•
•
1-23
1-24
1-74
•
•
•
•
•
•
•
•
•
•
•
•
•
1-24
1-62
•
•
1-24
1-68
1-24
1-68
•
•
•
•
•
•
•
1-24
1-70
1-25
1-68
1·25
1-70
1-25
1-68
1-25
1-70
1-26
1-26
1·26
1-76
1-78
1-78
•
•
•
•
•
•
N/A
•
•
N/A
•
•
•
•
•
•
•
•
•
•
N/A
•
•
N/A
•
•
N/A
•
•
•
•
N/A
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
,.
•
•
•
•
•
•
•
N/A
•
N/A
•
N/A
•
•
•
•
•
N/A
•
N/A
•
N/A
•
•
•
•
•
•
~
Table of Contents
54n4 SSI
Device No.
DM54L 123A/DM74L123A
DM54LS123/0M74LS123
DM54125iDM74125
DM54LS125/DM74LS125
DM5412o/DM74126
DM54LS1261DM74LS126
DM54132/DM74132
DM54LS132/DM74LS132
DM74$133
DM74S134
DM74S135
DM54LS136/DM74LS136
DM74S136
DM74S140
DM54LS221/DM74LS221
DM74S260
OM 54 LS266IDM7 4 LS266
DM54365/DM74365
DM54LS365/DM74LS365
DM54366/DM74366
DM54LS366/DM74LS366
DM54367/DM74367
DM54LS367/DM74LS367
DM54368/DM74368
DM54LS368/DM74LS368
DM54LS386/DM74LS386
Conn. Elec.
Diag. Char.
Pg. No. Pg. No.
Description
Dual Retriggerable One Shots
with Clear
Dual Retriggerable One Shots
with Clear
TRI-STATE Quad Buffers
TRI-STATE Quad Buffers
TRI-STATE Quad Buffers
TRI-STATE Quad Buffers
Quad 2-lnput NAND Schmitt
Triggers
Quad 2·lnput NAND Schmitt
Triggers
13·lnput NAND Gates
TRI·STATE 12·lnput NAND
Gates
Ql,Jad EXCLUSIVE-OR/NOR
Gates
Quad EXCLUSIVE-OR Gates
with Open·Coliector OutPl,Jts
Quad EXCL_USIVE-OR Gates
with Open·Collector Ol,Jtputs
Dual 50-Ohm Line Drivers
Dual One Shots with SchmittTrigger Inputs
Dual 5·lnput NOR Gates
Quad EXCLUSIVE·NOR Gates
with Open-Collector Outputs
TRI-STATE Hex Bl,Jffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TRI·STATE Hex Buffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TRI.STATE Hex Buffers
Quad EXCLUSIVE-OR Gates
J·vi
J
Mil
Coml
1-26
1-78
•
•
1-26
1-78
•
•
1-27
1-27
1-27
1-27
1·27
l-BO
l·BO
1-80
1-80
1·48
•
1·27
1-48
1·28
1·28
1-36
1-80
N/A
N/A
1·28
1·82
N/A
1·29
1-84
1·29
1-84
1·29
1-30
1-54
1·76
1-31
1·31
1-40
1·84
1-32
1-32
1·32
1-32
1-32
1-32
1-33
1-33
1-34
1-86
1·86
1-86
1-86
1-86
1-86
1-86
1-86
1-72
•
•
•
•
•
•
•
•
•
•
•
•
Package
'N
Mil Coml
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
N/A
N/A
•
•
•
•
• •
•
•
•
•
•
•
•
•
N/A
•
•
•
•
•
•
•
•
•
N/A
•
•
•
•
•
•
•
•
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
•
Coml
•
•
•
•
W
Mil
•
•
•
•
•
•
N/A
•
•
•
•
•
•
•
•
• •
• •
• •
• •
N/A
•
•
•
•
•
•
•
•
•
•
•
National Semiconductor
54I74 SSI DEYICES
Connection Diagrams
Section 1
~ SSI
00
DM54/DM74 Connection Diagrams/Gates
Quad 2-lnput NAND Gates
V4
B4
GND
B3
A3
Y = AS
A1
B1
Y1
A2
Y2
"
"
GNO
540017400(WI; 54L00/74LOO(WI
540017400(Jl. (NI; 54H00/74HOO(JI. (NI;
54LOO/74LOO(Jl. (NI; 54LSOO/74LSOO(JJ.(NI.(WI;
74S00(N)
See page 1-36 for electrical tables.
01
Quad 2-lnput NAND Gates with Open-Collector Outputs
14
"'
A4
GNO
B3
A3
Y= AS
5401/7401(JI. (NI; 54LS01/74LS01(JI. (NI. (WI
A1
B1
Y1
A2
B2
54H01/74H01(JI. (NI
See page 1-38 for electrical tables.
1-1
Y2
GNO
540117401 (WI; 54LOl/74LOl (W)
Y3
~ 551
02
DM54/DM74 Connection Diagrams/Gates
Quad 2-lnput NOR Gates
A3
Y4
B4
A4
GNO
"
A3
Y3
Y =A+B
Y1
52
B1
A1
540217402(JI, (N); 54L02/74L02(J), (NI;
54LS02/74LS02.(J), (NI, (INI; 74S02(NI
5402/7402(1N1; 54L02/74L02(1N1
See page 1-40 for electrical tables.
03
Quad 2-lnput NAND Gates with Open-Collector Outputs
Y=AB
5403/7403(JI, (NI; 54L03/74L03(JI. (NI;
54LS03/74LS03(Jl, (NI, (INI; 74S03(NI
See page 1·38 for electrical tables.
04
Hex Inverters
46
13
YO
12
A5
YO
A4
Y4
Y3
GNO
V1
A'
YO
GNO
YO
A5
10
11
Y=A
A1
Y1
A2
Y2
A3
5404/7404(JI, (NI; 54H04/74H04(JI, (NI;
54L04/74L04(JI, (NI; 54LS04/74LS04(JI,(NI,(INI;
74S04(NI
See page 1-36 for electrical tables.
1-2
5404/7404(1N1; 54L04/74L04(1N1
V4
~ SSI
05
DM54/DM74 Connection Diagrams/Gates·
Hex Inverters with Open-Collector Outputs
.6
14
Al
"
"
YO
11
.2
A5
11
Y2
"
A'
"
A3
Y3
GNo
"
5405174051J), IN); 54H05/74H05(J), IN);
54L05/74L051J), IN); 54LS05/74LS051J), IN), IW);
74S051N)
5405/74051W); 54L05/74L051W)
See page 1·38 for electrical tables.
06
Hex Buffers with Open-Collector High-Voltage Outputs
A6
Y6
"
"
.5
11
Y'
Y5
"
Y=A
Al
YI
A2
Y2
A3
Y3
GNo
A'
Y'
Y3
GNo
5406/74061J), IN), IW)
See page 1·42 for electrical tables.
07
Hex Buffers with Open-Collector High-Voltage Outputs
v"
14
A.
"
YB
"
A.
11
Y,
"
Y=A
Al
YI
A2
V2
A3
5407/74071J), IN), IW)
See page 1-42 for electrical tables.
'-3
.~ SSI
08
DM5.4/DM74 Connection Diagrams/Gates
Quad 2-lnput AND Gates
Y=AB
540S1740S(J), (N), (W); 54HOS174HOS(J), (N);
54l0S174l0S(J), (N), (W);
54lS0S/74lS0S(J)" (N), (W)
See page 1-44 for electrical tables.
09
Quad 2-lnput AND Gates with Open-Collector Outputs
Y= A8
5409/7409(J), (N), (W); 54l09/74l09(J), (N). (W);
54lS09174lS09(J), (N), (W)
See page 1 A6 for electrical tables.
10
Triple 3-lnput NAND Gates
C1
Y3
C3
OND
B3
'3
14
y= ABC
Al
82
541017410(J), (N); 54Hl0174Hl0(J), (N);
54l10174l10(JI, (N); 54lS10174lS10(J), (N), (W);
74S10(N)
See page 1 ~36 for electrical tables.
1-4
541017410(W); 54L 10/74l10(W)
C2
~ SSI
11
y
DM54/DM74 Connection Diagrams/Gates
Triple 3-lnput AND Gates
~
C3
"
Al
Yl
B1
C1
V1
GND
ABC
AI
B1
A1
5411/7411(Jl. (N); 54Hll/74Hl1(J), (N);
54111/74L l1(J), (N), (W); 54LSll/74LS11(J), (N), (W);
74S11(N)
See page 1-44 for electrical tables.
12
Triple 3-lnput NAND Gates with Open-Collector Outputs
y
= ABC
y
= ABCD
AI
B1
NO
C1
D1
VI
GND
5413/7413(J),(N),(W); 54LS13/74LS13(J),(N),(W)
See page 1-48 for electrical tables.
1-5
~ SSI
DM54/DM74 Connection Diagrams/Gates
14 Hex Schmitt Triggers
Y=A
5414/7414(J) ,(N) ,(W); 54LS14/74LS14(J),(N),(W)
See page 1 AS for electrical tables.
15 Triple 3-lnput AND Gates with Open-Collector Outputs
Y= ABC
54LS15/74LS15(J),(III),(W); 74S15(N)
See page 1 A46 for electrical tables.
16 Hex Buffers with Open-Collector High-Voltage Outputs
v~
14
AS
IJ
YO
12
A5
11
Y5
A4
"
V3
GNo
"
Y=A
AI
VI
A2
Y2
A3
5416/7416(J),(N),1W)
See page 1-42 for electrical tables.
1·6
~. SSI
DM54/DM74 Connection Diagrams /Gates
17 Hex Buffers with Open-Collector High-Voltage Outputs
A6
14
13
V6
A5
Y5
A4
Y4
YJ
GNO
D2
C2
10
12
Y=A
Al
Y1
A2
Y1
AJ
5417 /7417(J) ,IN),(W)
See page 1-42 for electrical tables.
20
Dual 4-lnput NAND Gates
vc
D2
13
Y
=
C2
NO
B2
A2
D1
12
"
13
"
GNO
12
Y1
10
ABeD
Al
"
NO
01
Yl
GNO
B2
5420/7420(J),(N); 54H20/74H20(J),(N);
54L20/74L20(J),IN); 54LS20/74LS20(J),IN),IW);
74S20(N)
5420/7420(W); 54L20/74L20(W)
See page 1-36 for electrical tables.
21 Dual 4-lnput AND Gates
NO
D2
14
Y
13
B2
A2
Y1
12
= ABeD
Al
"
54H21/74H21 (J) ,IN);54LS21/74LS21 (JI,(NI,(W)
See page 1 ·44 for electrical tables.
1-7
~ SSI
22
DM54/DM74 Connection Diagrams/Gates
Dual 4-lnput NAND Gates with Open Collector Outputs
"
D1
14
Y
B2
NO
A2
Y2
Yl
GNO
12
13
ABCD
~
C1
81
54H22/74H22(J),(N); 54LS22/74LS22IJ),(N),(W);
74S22(N)
See page 1 ~38 for electrical tables.
23
Expandable Dual 4-lnput NOR Gates with Strobe
Xl
D2
=
Gl (A1+B1+C1+DlI+X
Y2
=
G2 (A2+B2+C2+D2)
STROBE
G2
82
A2
Y2
C1
D1
Yl
GNO
14
16
Yl
C2
X = output of 5460/7460
XI
Al
STRUBE
G1
B1
5423/7 423(J), (N) ,(W)
See page 1 ~50 for electrical tables.
25
Dual 4-lnput NOR Gates with Strobe
STROBE
Vee
02
14
Y
=
13
C1
G2
B2
12
G(A+B+C+D)
Al
B1
5425/7 425(J) ,IN) ,(W)
See page 1-40 for electrical tables.
1-8.
A2
Y2
~ 551
26
DM54/DM74 Connection Diagrams/Gates
Quad 2-lnput High-Voltage NAND Gates
Y = AB
A1
B1
Y1
A2
B2
Y2
GND
542611426(J),(N);54L26114L26(J),(N);
54LS26/7 4LS26( J), (N) ,(WI
See page 1-42 for electrical tables.
27
Triple 3-lnput NOR Gates
BJ
CJ
A1
B1
A'
A3
Y3
Y2
"
542711427(J),(NI,(W); 54LS27114LS27(J),(N),(W)
See page 1-40 for electrical tables.
30
a-Input NAND Gates
NC
114
I"
NC
12
11
I"
2
3
,
4
NC
I.
-s
Y = ABCDEFGH
1
NC
•
NC
GND
11
10
)0-
I'
GND
"
See page 1·36 for electrical tables.
543011430(J),(N);54H30114H30(J),(N);
54L30114L30(J).(N);54LS30/74LS30(J),(N),(W)
74S30(N)
1-9
543011430(W),54L30114L30(W)
~ 881
32
DM54/DM74 Connection Diagrams/Ga~es
Quad 2-lnput OR Gates
Y=A+B
.,
"
Y1
.2
B2
Y2
GNO
543211432(J),(N),(W);54L32114L32(J),(N),(W);
54LS32/74LS32(J),(N),(W)
See page 1 ~52 for ele'etrical tables.
37
Quad 2-lnput NAND Buffers
Y=Ae
.,
"
Y1
A2
B2
Y'
GNO
5437 /7437(J) ,(N) ,(WI ;54LS37/74LS37(J) ,(N ),(W)
See page 1-54 for electrical tables.
38
Quad 2-lnput NAND Buffers with Open-Collector Outputs
Y=Ae
.,
"
Y1
'2
B2
Y'
GNO
5438/7438(J),(N),(W);54LS38174LS38(,J),(N),(W)
See page '·42 for electrical tables.
1·10
~ SSI
40
DM54/DM74 Connection Diagrams/Gates
Dual 4-lnput NAND Buffers
D2
"
C2
NC
B2
A2
V2
.,
12
Il
C1
B1
Il
14
12
ON.
V2
11
.2
C2
A2
82
D2
C2
10
y= ABeD
AI
B1
Ne
C1
.,
VI
GN.
AI
VI
Ne
5440/7440(JI, (NI; 54H40/74H40(JI, (NI;
54LS40/74LS40(JI, (NI, (W); 74S40(N)
V"
Ne
5440/7440(WI
See page 1 ~54 for electrical tables.
50
Dual 2-Wide, 2-lnput, AND-DR-INVERT Gates
v"
.,
B1
C1
VI
.,
"
y
C1
Il
GN.
VI
12
V2
11
"
=.AB+Ci5+X
50:
X = output of 5460/7460
H50: X = output of 54H60/74H60
or 54H62/74H62
AI
A2
82
&2
.,
V2
5450/7450(J), (N); 54H50/74H50(JI, (N)
See page 1-50 for electrical tables.
1-11
GN.
82
5450/7450(W)
··~SSI
DM54/DM74 Connection Diagrams/Gates
51 Dual 2·Wide, 2·lnput AND·DR·INVERT Gates
v"
81
"
.2
MAKE NO EXTERNAL
CONNECTION
~
01
C1
Y1
. 01
C1
Y1
GNO
Y2
02
C2
Al
v"
81
.,
B2
51, H51, 551
Y
= A8+Ci:5
B2
C2
0'
GNO
MA~AL
CONNECTION
5451/7451(J), (N); 54H51/74H51(J),(N);
74S51(N)
5451/7451(W)
L51, U51
Y1 = (AI' 81' Cl) + (01' El •. Fl)
Y2
= (A2
• 82)
+ (C2
• 02)
54L51/74L51 (J),(N); 54LS51/74LS51(J),(N),(W)
See page 1-56 for electrical
t~bl.s.
1-12
54L51/74L51(W)
~ 551
52
y
~
DM54/DM74 Connection Diagrams/Gates
Expandable 4-Wide AND-OR Gates
AB+COE+FG+HI+X
X
~
output of 54H61174H61
NC
GND
54H52/74H52(J). (N)
See page 1-50 for electrical tables.
53
Expandable 4-Wide AND-OR-INVERT Gates
GND
NO
10
53
Y
AB+CO+EF+GH+X
X = output of 5460/7460
5453/7453(J). (N)
5453/7453(W)
H53
Y
=
-;AC'B:C+C'C"'O"+:-;E'""'F'""'G""+:-;H7."C
1+~X
X
= output of 54H60/74H60
or 54H62174H62
GND
54H53/74H53(J), (N)
See page 1-50 for electrical tables.
1-13
~SSI
DM54/DM74 Connection Diagrams/Gates
54 4-Wide AND-OR-INVERT Gates
GND
NC
10
54
Y
~A:;:Bc;+-;;C:;:Dc;+"E"F'7+-;;G:;-;H
Ne
GNO
MAKE NO EXTERNAL
CONNECTION
5454/7454W, IN)
545417454IW)
MAKE NO EXTERNAL
CONNECTION
Ne
~
14
"
12
H54
Y =A
-;;-;;B'"'+""c"'D:-:+-;E'"'F:-;G"""+'"'H-;-;1
L541J, N), LS54
Y = AB+CDE+FGH+IJ
GNo
GNo
54H54/74H541J), IN)
54L54174L54IJI,IN}; 54LS54/74LS541J) ,IN) ,IW)
Ne
GND
L54(W)
Y = '=A-=Bc.:
C-c+-=D-=E""+-=F-=G-c+7":H"'"'IJ
54L54174L541W)
See pagel-56 for electrical tables.
1-14
~ 551
DM54/DM74 Connection Diagrams/Gates
55 2-Wide, 4-lnput AND-DR-INVERT Gates
Ne
"
13
12
H55 (EXPANDABLE)
y ~ ABCO+EFGH+X
X ~ output of 54H60/74H60
or 54H62/74H62
L55(J, NI. LS55
Y
~
ASCO+EFGH
Ne
Ne
GNO
54H55/7 4H55(J),(N)
Ne
GNO
54L55/7 4L55(J),(N); 54LS55/74LS55(J),(N),(W)
Ne
GNO
Ne
Ne
L55(W)
Y ~ "A"'S"'CC::O-+-=EC:-F-=-G'"'H
54L55/74L55(W)
See page 1-50 (H551. 1-56 (L55 and LS55) for electrical tables.
60
Dual4-lnput Expanders
v"
01
x,
x,
X2
X2
02
X2
14
X2
02
"
60
GNO
C2
11
B2
A2
C1
01
10
X =- ABeD when connected, to X and
X inputs of 542317423, 5450/7450
or 5453/7453
H60
X = ABeD when connnected to X
and X inputs of 54H50/74H50,
54H53/74H53, or 54H55/74H55
A'
B1
C1
A2
B2
C2
5460/7460(J),(N); 54H60/74H60(J),(N)
See page 1-58 (60), 1-59 (H60) for electrical tables.
1-15
GNO
x,
x,
A1
v"
B1
5460/7460(W)
~ SSl
61
DM54/DM74 Connection Diagrams/Gates
Triple 3·lnput Expanders
X3
11
XI
X2
C2
GNO
10
x = ABC when connected to X input
of 54H52/74H52
BI
AI
A2
CI
"
54H61/74H61(J) ,(N)
See page 1-60 for electrical tables.
62
4·Wide AND·OR Expander
v"
14
13
12
X = AB + CDE + FGH + iJ when
co nnected to X and X inputs
of 54H50/74H50, 54H53/74H53
or 54H55/74H55
.NO
54H62/74H62(J) ,(N)
See page 1-59 for electrical tables.
64
4 Wide AND·OR·INVERT Gates
14
13
12
Y = ABCD + EF + GHI + JK
GNO
74S64(N)
See page 1-56 for electrical tabies.
1-16
~ 551
65
DM54/DM74 Connection Diagrams/Gates
4 Wide AND-OR-INVERT Gates with Open-Collectbr Outputs
T
14
•
c
13
12
•
K
I,.
11
/,
I
Y = ABeD + EF + GHI + JK
y
•
~
-
,
•
2
,
J
F
,
G
74S65(N)
See page 1-61 for electrical tables.
1-17
J
.I'
H
!'
I
C!:
~ 551
DM54/DM74 Connection Diagrams/Flip-Flops
70 AND-Gated J-K Positive-edge-Triggered Flip-Flops with Preset and Clear
PA
elK
K'
eLR
J1
J2
KI
TRUTH TABLE
INPUTS
OUTPUTS
PR
CLR
CLK
J
K
a
L
H
L
X
X
H
a
L
H
L
L
X
X
L
H
L
L
X
X
X
H'
H'
H
H
t
L
L
ao
00
H
H
H
L
H
L
H
H
H
t
t
L
H
L
H
H
t
H
H
TOGGLE
H
H
L
X
X
ao
NC
GND
5470/7470(J),(N)
00
J=Jl ·J2·J
K=Kl ·K2·K
If inputs J and Kare not used, they
must be grounded.
J'
GNO
"
Preset or Clear function can occur
only when clock input is low.
KI
elK
PR
v"
CLR
NC
J1
5470/7470(W)
See page 1·62 for electrical tables.
H71 AND-DR-Gated J-K Master-Slave Flip'Flops with Preset
v"
TRUTH TABLE
INPUTS
14
elK
J
K
a
L
x
X
X
H
L
H
.JL
.JL
.JL
.JL
L
L
00
GO
H
L
H
L
L
H
L
H
H
H
TOGGLE
H
H
K"
KA'
KB1
JA'
JB2
PR
KAI
13
OUTPUTS
PR
H
elK
a
J = UIA • JIB) + (J2A - J2B)
K = (KIA· K1B) + (K2A' K2B)
JAI
JB1
GND
54H71/74H71(J) ,(N)
See page 1·64 for electrical tables.
Notes: ....JL "" high-level pulse; data inputs should be held constant while clock is hi,gh; data is transferred to output on the falling edge of the
~~,
'
00 = the level of Q before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.
1-18
~ SSI
OM 54/0M74 Connection Oiag rams/Flip-Flops
l71 AND-Gated R-S Master-Slave Flip-Flops with Preset and Clear
TRUTH TABLE
INPUTS
OUTPUTS
PR
CLR
CLK
S
R
Q
Q
L
H
X
X
X
H
L
H
L
X
X
X
L
H
L
L
X
X
H
H
H'
00
H'
60
H
H
H
L
H
L
H
H
L
H
L
H
H
H
..1L
..1L
..1L
..1L
X
L
H
H
L
NC
S2
GNO
53
INDETERMINATE
=
51
54l71/14L71(JI.(N)
RJ
R2
GNO
53
52
Nt
51
"
R = Rl • R2' R3
5
CLR
SI ·52· S3
Rl
ClK
PR
V"
ClR
54l71/74l71(W)
See page 1-66 for electrical tables.
72
AND-Gated J-K Master-Slave Flip-Flops with Preset and ciear
v"
TRUTH TABLE
INPUTS
K
Q
L
H
X
X
X
H
L
H
L
X
X
X
L
H
L
L
X
X
X
H
H
..1L
..1L
..1L
..1L
L
L
H
H
H
H
H
ClK
KJ
K2
K1
KJ
K2
GNO
JJ
"
OUTPUTS
PR CLR ClK J
H
PR
Q
H' H*
00 60
H
L
H
L
L
H
L
H
H
H
TOGGLE
J = Jl·J2·J3
K=Kl'K2'K3
5472/1472(J) ,(N );54H72/7 4H72(J) ,(N);
54L72/74L72(J),(N)
5472/1 472(W) ;54l 72/1 4l 72 (WI
See page 1-62 (72),1-64 (H721.1-66 (L72) for electrical tables.
Notes: ..JL '" high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the
pulse.
ao "" the level
of Q before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level o,n each active transition (pulse) of the clock.
"'This configuration is nonstable; that is, it will not'persist when preset and clear inputs return to their inactive (high) level.
1-19
~ SSI
DM54/DM74 Connection Diagrams/Flip-Flops
73 Dual J-K Flip-Flops witn Clear
TRUTH TABLE
73,H73,L73
INPUTS
TRUTH TABLE
LS73
OUTPUTS
ClK
J
K
Q
Q
ClR
ClK
l
X
X
X
l
H
l
H
JL
JL
JL
JL
l
l
00
60
H
l
H
l
H
L
H
H
H
H
H
OUTPUTS
INPUTS
ClR
J
K
Q
X
X
X
l
Q
H
H
j
l
l
00
60
L
H
H,
l
H
l
H
I
I
l
H
H
l
H
TOGGLE
H
I
H
H
H
H
X
X
TOGGLE
00
60
See page 1-62 (73),1-64 (H73), 1-66 (L73), 1-68 (LS73) for electrical tables_
547317473('.1), (N), (W); 54H73174H73(J),(N);
54L73/74L73 (.I), (N), (W);
54LS73174LS73(J), (N), (W)
74 Dual D Positive-Edge-Triggered Flip-Flops witn Preset and Clear
TRUTH TABLE
INPUTS
Vee
eLR 2
elR l
01
D2
eLK 1
eLK 2
PR Z
02
Pfl 1
01
01
.ND
OUTPUTS
PR
ClR
ClK
l
H
H
L
L
L
H
H
H
H
X
X
X
t
t
H
H
l
'0
Q
Q
X
X
H
L
L
H
X
H'
H'
H
H
L
L
l
H
X
00
60
5474/7474(J),(N); 54H74/74H74(J),(N);
54L74/74L74(J),(N); 54LS74/74LS74(J),(N),(Wl;
74S74(N)
PR 1
"
.,
13
lil
ii2
GND
02
PR2
"
12
5474/7474(Wl; 54L74/74L74(Wl
See page 1-62 (74), 1-64 (H74), 1-66 (L74), 1-68 (LS74), 1-70 (S74) for electrical tables.
Notes: JL "" high-level pulse; data inputs should be held constant while clock is high; data is transferred to output
~~
on the falling edge of the
,
00 = the level of Q before the indicated input conditions were established.
TOGGLE: Each output changes'to the complement of its previous level on each active transition (pulse) of the clock.
*This configuration is nonstable; that 'is, it w'ill not persist when preset and clear inputs return to their inactive (high) level.
1-20
~ 551
76
DM54/DM74 Connection Diagrams/Flip-Flops
Dual J-K Flip-Flops with Preset and Clear
TRUTH TABLE
LS76
TRUTH TABLE
76, H76
INPUTS
INPUTS
OUTPUTS
OUTPUT&
PR
CLR
CLK
J
K
a
a
PR
CLR
CLK
J
K
a
L
H
H
X
X
X
H
L
L
H
X
X
X
H
L
L
X
X
X
L
H
H
L
X
X
X
L
H
H'
L
H
L
X
X
X
H
4-
L
H
L
W
00
W
00
L
H
L
L
H
H
H
H
L
TOGGLE
X
X
00
L
L
X
X
X
H
H
H
~
L
L
W
00
H
~
H
L
H
L
H
H
H
H
~
L
H
L
H
H
H
H
H
~
H
H
TOGGLE
H
H
t
t
t
H
H
H
00
a
00
elK 1
PR 1
ClR 1
J1
Vee
elK 2
PR 2
elR 2
5476/7476(J). (N), (W); 54H76/74H76(J), (N);
54LS76/74LS76(J), (N). (W)
See page 1-62 (76).1-64 (H76), 1-68 (LS76) for electrical tables.
78
Dual J-K Flip-Flops with Preset, Common Clear, and Common Clock
TRUTH TABLE
H78, L78
INPUTS
OUTPUTS
PR
CLR
eLK
J
K
a
L
H
X
X
X
H
L
H
L
X
X
X
L
H
W
00
L
L
X
X
X
H
H
~
L
L
W
00
a
H
H
~
H
L
H
L
H
H
~
L
H
L
H
H
H
~
H
H
.,
TOGGLE
., .,
J1
.,
.,
GND
54H78/7 4H78(J) ,(N)
TRUTH TABLE
LS78
INPUTS
OUTPUTS
PR
CLR
ClK
J
K
a
L
H
X
X
X
H
a
L
H
L
X
X
X
L
H
L
L
X
X
X
H
H
t
L
L
W
00
W
00
H
H
4-
H
L
H
L
H
H
4-
L
H
L
H
H
H
4-
H
H
TOGGLE
H
H
H
X
X
00
00
54L78/74l78(J), (N), (W);
54lS78/74lS78(J), (N).(W)
See page 1-64 .(H78), 1-66 (L78), 1-68 (LS78) for electrical tables.
Notes:
.JL
=
pulse.
high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the
'
QO = the level of Q before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.
1·21
~ 551
86
DM54/DM74 Connection Diagrams/Gates
Quad 2-lnput EXCLUSIVE-OR Gates
.,
B1
Y1
.2
B2
Y2
GND
548617486(J), (N), (W);
54LS86174LS86(J), (N), (W); 74S86(N)
A3
TRUTH TABLE
(86, L86, LS86, S86)
INPUTS
OUTPUT
Y
A
B
L
L
L
L
H
H
H
L
H
H
H
L
Y=A0B=AB + AS
A1
B1
Y1
V2
.2
B2
GND
AJ
VJ
54L86174L,86JJ),(N)
V4
84
A4
GND
OJ
54L86174L86(W)
See page 1-72 for electrical tables.
1·22
~ SSI
DM54/DM74 Connection Diagrams/Flip-Flops
103 Dual J-K Negative-Edge-Triggered Flip-Flops with Clear
J1
01
.2
K2
GND
Q1
02
TRUTH TABLE
INPUTS
OUTPUTS
ClR
ClK
J
K
Q
L
X
X
X
L
H
H
L
L
00
60
H
L
H
L
L
H
L
H
H
I
I
I
I
H
H
TOGGLE
H
H
X
X
00
H
H
Q
60
54H 103/74H 103(J),(N)
See page 1 ~74 for electrical tables.
106 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear
K1
., .,
GND
K2
Jl
Vee
.2
.2
J2
TRUTH TABLE
INPUTS
OUTPUTS
PR
ClR
ClK
J
K
a
L
H
X
X
H
L
H
L
X
X
L
H
X
x
H'
H'
L
L
00
60
H
L
H
L
L
H
L
H
H
H
TOGGLE
X
X
00
H
H
X
X
X
I
I
I
I
H
H
H
L
L
H
H
H
H
H
H
a
elK1
PRl
elRl
CLK2
PR2
ClR2
60
54H106/74H106(J), (N)
See page 1-74 for electrical tables.
107 Dual J-K Master-Slave Flip-Flops with Clear
TRUTH TABLE
INPUTS
OUTPUTS
CLR
ClK
J
K
Q
L
X
X
X
L
H
H
SL
SL
SL
SL
L
L
00
60
H
L
H
L
L
H
L
H
H
H
H
H
H
Q
TOGGLE
J1
=
K1
.2
li2
GND
54107/74107(J),(N);
54lS107/74lS107(J), (N), (W)
See page 1-62 (1071.1-68 (LS107) for electrical tables.
Notes; JL
U1
high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the
pulse.
00 = the level of Q before the indicated input cc;inditio!,",s were establ ished.
TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) pf the clock.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their i'nactive '(high) level.
1·23
~ SSI
DM54/DM74 Connection Diagrams/Flip-Flops
108 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Clock
TRUTH TABLE
INPUTS
OUTPUTS
PR
elR
elK
J
K
Q
L
H
X
X
H
L
H
L
X
X
X
X
l
H
l
W
00
aD
L
H
L
H
l
H
l
L
X
X
H
H
j
H
H
H
H
H
j
l
H
H
j
l
X
H
j
H
H
H
H
X
X
Q
W
., .,
TOGGLE
00
aD
oz
JT
0'
.z
GND
54Hl0S/74Hl08(J), (N)
See page 1-74 for electrical tables.
109 Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear
Vee
eLR 2
J2
eLR1
Jl
Kl
K2
ClK2
PRl
02
0'
PR 1
01
.,
GND
TRUTH TABLE
INPUTS
OUTPUTS
PR
qR
elK
J
K
a
a
l
H
X
X
X
H
l
H
l
X
X
X
l
H
l
l
X
X
X
W
W
H
H
H
H
H
H
t
L
L
t
t
t
H
L
L
H
H
00
H
l
X
X
00
H
H
H
H
H
L
TOGGLE
H
aD
l
aD
eLK 1
54109/74109(JI, (N). (W);
54lS109n4lS109(J), (N). (W)
See page 1-62 (109). 1-68 (lSI09) for electrical tables_
112 Dual J-K Negative-Ed\le-Triggered Flip-Flops with Preset and Clear
Vee
eLR 1
eLR z
eLK 2
K2
JZ
PR'
.z
eLK 1
Kt
JT
PR1
.,
.,
li%
GND
TRUTH TABLE
OUTPUTS
INPUTS
PR
ClR
ClK
J
K
a
L
H
X
X
H
l
H
l
X
X
X
X
l
H
l
Q
l
H
X
X
X
H
H
j
L
l
W
00
ao
H
j
H
l
H
L
H
H
H
H
H
H
l
H
H
H
l
TOGGLE
X
X
00
H
••
H
W
aD
54LSl12n4LSl12(J), (N), (W); 74S112(N)
See page 1-68 (LSI12). 1-70 (5112) for electrical tables_
Notes;
00 = the level of
a before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each active transition of the clock.
*Thjs configuration is nonstable; that is, it will not persist when preset and,clear inputs return to their inactive (high) level.
1-24
~ SSI
DM54/DM74 Connection Diagrams/Flip-Flops
113 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset
eLK 2
Vee
k2
J2
PR 2
.2
02
TRUTH TABLE
INPUTS
OUTPUTS
a
PR
ClK
J
K
0
l
x
X
X
H
l
H
j
L
L
00
00
H
j
H
L
H
L
H
j
L
H
l
H
H
j
H
H
TOGGLE
H
H
X
X
00
00
elK 1
54LS113/74LS113(J), (N),
(wf; 74S113(N)
See page 1-68 (LS113), 1-70 (5113) for electrical tables.
114 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, .and Common Clock
TRUTH TABLE
INPUTS
OUTPUTS
ClR
elK
J
K
a
L
H
L
L
X
X
X
H
H
X
X
X
L
H
H*
H*
L
00
00
PR
a
L
L
X
X
X
H
H
j
L
H
H
j
H
L
H
l
H
H
j
L
H
L
H
H
H
j
H
H
TOGGLE
H
H
H
X
X
00
CtR
00
K'
J1
PR 1
.,
ii,
GND
54LS114/74LS114(J), (N), (W); 74S114(N)
See page 1-68 (LS1141, 1-70 (5114) for electrical tables.
Notes:
00 = the level of Q before the indicated input conditions were established.
TOG,GLE: Each output changes to the complement of its previous level on each active transition of the clock.
*This configuration is nonstable; that is. it will not persist when preset and clear inputs return to their inactive (high) level.
1-25
~ 88.1
DM54/DM74 Connection Diagrams/One 8hots
121 One Shots
TRUTH TABLE
INPUTS
OUTPUTS
A1
A2
B
0
0
L
X
H
L
H
X
L
H
L
H
X
X
L
L
H
H
H
X
L
H
.JL
.JL
.JL
.JL
.JL
lS
lS
lS
lS
lS
H
t
H
t
t
H
H
t
H
L
X
t
X
L
t
NO
Al
GND
'2
5412f/74121(J), (N), (W)
See page 1~ 76 for electrical tables.
122 Retriggerable One Shots with Clear
TRUTH TABLE
INPUTS
OUTPUTS
CLEAR
A1
A2
B1
B2
0
Q
L
X
X
X
X
L
H
X
H
H
X
X
L
H
X
X
X
L
X
L
H
X
X
X
X
L
L
H
X
L
X
H
H
L
H
JL
JL
LJ
LJ
H
L
X
t
H
H
L
X
H
t
H
X
L
H
H
L
H
H
X
L
t
H
LJ
H
X
L
H
t
JL
JL
H
H
I
H
H
H
I
I
H
H
H
I
H
H
H
t
t
L
X
H
H
X
L
H
H
See page 1 ~78 for electrical
JL
JL
JL
JL
JL
LJ
LJ
54LS122(J), (W); 74LS122(J), (N)
LJ
LJ
-LJ
LJ
ta~les.
123,123A Dual Retriggerable One Shots with Clear
REXT 1
Vee
CEXT
CEXT 1
14
02
III
"
12
elR 2
82
.2
REXT 2
GND
11
TRUTH TABLE
INPUTS
OUTPUTS
A
B
CLR
0
0
H
X
H
L
H
X
L
H
L
H
L
t
H
LJ
t
H
H
.JL
.JL
X
X
L
L
H
lS
Al
81
ClR 1
(11
Q2
CEXT 2
CeXT
54123n4123(J), IN), (W);
54L 123An4L 123A(J), (N),(W);
54LS123n4LS123(J), (N), (W)
See page 1~78 for electrical tables.
Notes: .....IL- = one high-level pulse, I S = one low-level pulse.
To use the internal timing resi~tor of 54121/74121, connect RINT to VeeAn external timing capacitor ':11ay be connected between CEXT and REXT/CeXT (positive),
For accurate repeatable pulse widths, connect an external resistor between REXT/CEXT and Vee with RINT oPBI!-circuited.
To obtain variable pulse widths, connect external variable resistance between RINT or REXT/CEXT and VCC·
1·26
~ SSI
125
DM54/DM74 Connection Diagrams/Gates
TRI-STATE Quad Buffers
C4
14
A4
Il
12
V4
11
"
AJ
VJ
V2
GND
I'
TRUTH TABLE
INPUTS
OUTPUT
A
C
Y
H
L
H
L
L
L
X
H
HI-Z
Y=A
01
AI
VI
C2
A2
54125/74125(J), (NI. (WI;
54LS125174LS125(JI. (NI. (WI
See page 1-80 for electrical tables.
126
TRI-STATE Quad Buffers
C4
A4
12
Il
V4
II
TRUTH TABLE
INPUTS
"
I'
AJ
VJ
A2
V2
GND
OUTPUT
A
C
y
H
H
H
L
H
L
X
L
Hi-Z
Y=A
01
AI
VI
C2
54126174126(J). (N). (WI;
54LS126174LS126(JI. (N), (WI
See page 1-80 for electrical tables.
132
Quad 2-lnput NAND Schmitt Triggers
Y=AB
54132/74132(JI. (N). (W);
54LS132174LS132(J). (N). (W)
See page 1-48 for electrical tables.
1-27
~ 551
133
DM54/DM74 Connection Diagrams/Gates
13-lnput NAND Gates
I"
Y
"
15
13
11
~
= ABCDEFGHIJKLM
2
1
3
,
I"
11
,
4
r-s
I'
6
p
I'
GNO
74S133(N)
See page 1-36 for electrical tables.
134
TRI-STATE 12-lnput NAND Gates
Vee
OUTPUT
CONTROL
J"
J"
"
13
11
11
,
1"
~
Y - ABCDEFGHIJKL
Output is off (disabled) when
output control is high.
)0-
2
1
3
,
4
3
,
E.
I'
I'
GNO
74S134(NI
See page '1-80 for electrical tables.
135
Quad EXCLUSIVE-OR/NOR Gates
TRUTH TABLE
OUTPUT
INPUTS
Y
A
B
C
L
L
L
L
L
H
L
H
H
L
L
H
H
H
L
L
L
L
H
H
L
L
H
H
H
L
H
L
H
H
H
H
Al
B1
VI
&1, C2
A2
Y= (A0SI0c=
ABC + ABC + ABC + ABC
74S135(NI
See page 1--82 for electrical tables.
1·28
82
Y2
GNO
~ 551
136
DM54/DM74 Connection Diagrams/Gates
Quad EXCLUSIVE-OR Gates with Open-Collector Outputs
B4
V'"
I"
13
A
OUTPUT
Y
B
L
L
L
L
H
H
H
L
H
H
H
L
Y = A
0
YO
12
83
11
~L>-
B = AB + AS
1
1
VJ
3
9
•
~L>,
1
8 12
AI
10
5))- Err
TRUTH TABLE
INPUTS
1~
,
1
85
2
A2
"
6
Y2
J:
54LSI36174LSI36(J), (N), (W)
74S136(N)
See page 1-84 for electrical tables.
140
Dual 50-Ohm Line Drivers
Vl~
14
D2
13
C2
12
NC
I"
--
Y2
B2
10
T9
8
~
Y=ABCD
1
AI
2
"
J:
,
C1
74S140(N)
See page 1 ~54 for electrical tables.
1·29
5
01
~
t J:
~ 551
DM54/DM74 Connection Diagrams/One Shots
221 Dual One Shots with Schmitt-Trigger Inputs
Vee
RUTI
CexT 1
CEXT 1
Q1
ii2
ClR2
Q2
CEXT 2
82
'2
Run!
GNU
TRUTH TABLE
INPUTS
OUTPUTS
CLEAR
A
B
Q
Q
L
X
X
L
H
X
H
H
X
X
L
L
X
L
H
H
L
t
H
j
H
JL LJ
JL l J '
.,
CEXT 2
54LS221/74LS221(J), (N), (W)
See page 1-76 for electrical tables.
Notes:
..Jl.... == one high-level pulse, L r = one low-level pulse.
An external timing capacitor may be cohnected between CEXT and ReXT/CEXT (positive).
For accurate repeatable pulse widths, connect an external resistor between R EXT/CEXT and Vee.
To obtain variable pulse widths, connect external variable resistance between ReXT!CeXT and Vee.
'-30
~ 551
260
DM54/DM74 Connection Diagrams/Gates
Dual 5-lnput NOR Gates
I..
E1
E1
D1
I"I
i"L.-
11
D2
B2
C2
•
1D
•
r--y
~
A+B+C+D+E
~
2
1
"
B1
l
C1
C
I
4
A2
I'
V1
6
V2
74S260(N)
See page 1-40 for electrical tables.
266
Quad EXCLUSIVE-NOR Gates with Open-Collector Outputs
TRUTH TABLE
INPUTS
B
A
OUTPUT
Y
L
L
L
H
L
H
L
L
H
H
H
y ~ A
0
H
B ~ AB
+
AB
54LS266/74LS266(Jl. (N), (W)
See page 1-84 for electrical tables.
1-31
I'
GNO
~ 551
DM54/DM74 Connection Diagrams/Buffers
365, TRI-STATE Hex Buffers
TRUTH TABLE
OUTPUT
INPUTS
Gl
G2
A
Y
H
X
X
L
H
X
X
Z
Z
H
H
L
L
L
L
L
54365(JI. (WI174365(JI. (NI. (WI;
54LS365174LS365(JI. (NI. (WI
See page 1·86 for electrical tables.
366 TRI-8TATE Hex Buffers
Vee
112
A'
ill
Al
Yl
y,
AS
Y5
A4
Y4
A2
Y2
A3
VJ
GND
TRUTH TABLE
INPUTS
OUTPUT
Gl
G2
A
Y
H
X
Z
X
H
X
X
L
L
H
L
L
L
L
H
Z
54366(J1. (WI174366(JI. (N). (W);
54LS366/74lS366(J). (N). (WI
See page 1-86 for electrical tables.
367 TRI-STATE Hex Buffers
Vee
G2
A'
Y'
A5
Y5
A4
V4
Al
Yl
A2
"
A3
Y3
GND
TRUTH TABLE
INPUTS
-G=A-
OUTPUT
Y
H
X
Z
L
H
H
L
L
L
54367(JI. (W)174367(J1. (N). (WI;
54LS367174LS367(JI. INI. (WI
See page 1-86 for electrical tables.
1-32
~ SSI
368
DM54/DM74 Connection Diagrams/Buffers
TRI·STATE Hex Buffers
AS
Y5
A5
Y5
A4
y.
y,
A2
V2
'3
Y3
GND
TRUTH TABLE
INPUTS
--=-G
A
OUTPUT
Y
H
X
Z
L
H
L
L
L
H
54368(J), (W)/74368(J), (N), (W);
54LS368/74LS368(J), (N), (W)
See page
1~86
for electrical tables.
1-33
~ 551
386
DM54/DM74 Connection Diagrams/Gates
Quad EXCLUSIVE-OR Gates
TRUTH TABLE
INPUTS
r--A
B
OUTPUT
L
L
L
L
H
H
H
L
H
H
H
L
Y=A0s = AS +AB
54LS386174LS386(J), (N), (WI
See page 1-72 for electrical tables.
1-34
National Semiconductor
54f74 SSI DEVICES
Electrical Tables
Section I
Max Ratings/Operating Conditions
RATINGS
Maximum Allowable
Supply Voltage
Guaranteed Operating
Supply Voltage Range
54/74
54H/74H
54L/74L
SERIES
SERIES
SERIES
7
7
8
54LS/74LS SERIES
DIODE
EMITTER
INPUTS
INPUTS
7
7
54S/74S
SERIES
7
4.50 to 5.50
4.75 to 5.25
154
J74
UNITS
V
V
Maximum Input Voltage
5.5
5.5
5.5
7
5.5
5.5
V
Maximum Voltage to OpenCollector Outputs*
7
7
8
7
7
7
V
Operating Free·Air
Temperature Range
154
174
Storage Temperature Range
*Except for selected high voltage types, as specified in electrical tables.
1-35
-55 to +125
o to +70
DC
-65 to +150
DC
Electrical Characteristics
over recommended operating free·air temperature range (unless otherwise noted).
CONDITIONS
PARAMETER
MIN
V'H
High Level Input Voltage
V'l
low Level Input Voltage
V,
Input Clamp Voltage
DM54/74
DM54HI74H
DM54L/74L
DM54 LS/74 LS
DM74S
00,04
10,20,30
HOO, H04
Hl0, H20, H30
LOO, L04
L 10, L20, L30
LSOO
LS04, LS10
LS20, LS30 '
SOO, S04
S10, S20
S30, S133
TYP(l)
MAX
2
Vee
= Min
I
~~8
It =
TYP(1)
MAX
2
MIN
TYP(1)
OB
-1.5
High Level Output Current
VOH
High Level Output Voltage
-1.5
IOH
10l
VOL
Low Level Output Current
Low Level Output Voltage
Vee
V 1H
w
Z
C
G)
til
S-
se..
~
CD
~
CD
iil
Electrical Characteristics
CONDITIONS
PARAMETER
MIN
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
IOH
VOH
High Level Output Current
High Level Output Voltage
Vee = Min
Low Level Output Voltage
Others
Vee. = Min
J,.
IOL = Max
V'H = 2V
Input Current at Maximum
Vee = Max
I rrput Voltage
High Level
IIH
Input Current
Data Inputs
Strobe of 25
All Inputs
Vee = Max
IlL
Data Inputs
Input Current
Strobe of 25
,
Short Circuit Output
Current
Supply Current
IcC
02,25,27
L02
LS02, LS27
S02, S260·
TYP(1)
MAX
Vce
=Max
TYP(l)
MAX
2
Vee = Max (2)
MIN
TYPO)
MAX
2
MIN
TYP(l)
UNITS
2
0.7
0.7
N/A
DM74
0.8
0.7
0.8
0.8
N/A
N/A
-1.5
-1.2
-200
-400
-1000
25,27
-800
Others
-400
~
V
0.8
-1.5
en
MAX
DM54
V
V
f.lA
2.4
DM54
2.4
3.4
2.4
3.3
2,5
3.4
N/A
DM74
2.4
3.4
2.4
3.2
2.7
3.4
2.7
V
3.4
DM54
16
2
4
N/A
DM74
16
3.6
8
20
DM54
0,2
0.4
0.15
0.3
0.25
0.4
N/A
DM74
0,2
0.4
0.2
0.4
0.35
0.5
0.5
DM74
mA
V
0.4
V, = 5.5V
1
0.1
1
0.1
V, = 2.4V
40
10
160
N/A
=2.7V
=0.3V
mA
0
s:U'I
~
.......
C
f.lA
20
50
s:
li!
0
N
-0.18
-1.6
V, = OAV
V,
Vee = Max
MIN
V, = 7V
V,
All Inputs
lOS
IOL =4 rnA
V,
All Inputs
Low Level
DM74S
LS27
Low Level Output Current
o
II
DM54LS/74LS
I, =-18rnA
IOH = Max
VOL
DM54L!74L
I, =-12mA
Vee = Min
V'L = Max
IOL
DM54/74
2
Input Clamp Voltage
VI
~
over recommended operating free-air temperature range (unless otherwise noted).
-0.36
N/A
-6.4
mA
=0.5V
-2
DM54
-20
-55
-3
-15
-30
-130
DM74
-18
-55
-3
-15
-30
-130
N/A
-40
-100
All typical values are at Vee = 5V, TA = 25°C.
Not more than one output should be shorted at a time, and for DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.
National Semiconductor temporarily reserves the right to ship DM54/0M74LS02, LS27 devices which have a minimum lOS = 5.0 rnA.
en
Z
0
Notes
(21
(31
en
N
0
See Table
(1)
mA
N
U'I
N
....
::D
C)
I»
It
en
748260 To Be An';ouneed In 1976
--
-
Supply Currents
DEVICE
I
ICCH (rnA)
Total With Outputs High
TYP
02
25
Switching Characteristics
8
8
ICCl (rnA)
Total With Outputs Low
MAX
TYP
MAX
16
14
27
16
10
19
DEVICE
atVcc~5V,TA~25°C
CONDITIONS
MIN
02
25
CL
~
15 pF,
RL ~
400£2
27
27
L02
10
0.8
16
1.6
16
1.4
TYP
MAX
tpHl (ns)
Propagation Delay Time,
High-To-Low Level Output
MIN
TYP
I
~
en
en
MAX
12
22
8
15
13
22
8
15
7
11
10
15
26
L02
CL
~
50 pF,
RL ~4k£2
31
60
35
60
L502, L527
CL
~
15 pF,
RL ~
2 k£2
10
15
10
15
2.6
L502
1.6
3.2
2.8
5.4
L527
2.0
4
3.4
6.8
502.
17
29
26
45
5260
17
29
26
45
502
.j:,.
tPlH (ns)
Propagation Delay Time,
Low-To-High Level Output
5260
CL
~
15 pF,
RL ~
280£2
3.5
5.5
3.5
5.5
CL
~
50 pF,
RL ~
280£2
5
7.5
5
7.5
CL
~
15 pF,
RL
= 280£2
4
5.5
4
6
o
s:
U'I
.fa
.....
o
s:
~
o
N
N
U'I
N
:oJ
en
N
en
o
Z
o
:a
C)
III
;
III
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted).
OM54/14
CONDITIONS
PARAMETER
06,07,16,17
MIN
V,H
High Level Input Voltage
V,L
Low Level Input Voltage
Input Clamp Voltage
I, :-12 rnA
Vee::: Min
10H
High Level Output Current
VOH
High Level Output Voltage
26
MAX
2
I OM54
OM74
V,
TYP(11
11 -
VOH
Low Level Output Voltage
-
V,, 121
.i>
'"
Input Current at
Maximum Input Voltage
I,
High Level Input Current
I'H
Low Level I nput Current
I,L
Supply Current
Icc
Vee"" Max
L26
MAX
TYP(11
0.8
0.8
-1.5
-1.5
250
30
16,17
15
1000
MIN
TYP(1t
LS38
MAX
'2
0.8
0.8
06,07
LS26
MAX
2
2
0.8
MIN
MIN
TYP(1)
MAX
0.7
0.7
0.7
0.8
0.8
N/A
N/A
N/A
1.5
200
50
1.5
1000
250
250
5.5
15
15
30
16
48
2
4
12
40
16
48
3.6
8
24
DM54
0.7
0.4
0.4
0.7
0.4
0.4
IOL-4mA
IOL '" 12mA
DM74
0.4
V , ·5.5V
1
1
.1
40
40
40
0.15
0.3
0.25
0.4
0.4
0.4
0.35
0.5
0.5
0.25
0.4
0.1
0.1
0.1
20
20
-{J.36
-{J.36
10
-1.6
-1.6
1.6
Notes
(1)
All typical values are at Vee· 5V, TA· 25°e.
(2)
The input
~Itage
is VIH
U'I
~
......
0
~
en
b.....
0
mA
iJA
:.a
en
:.a
.....
en
W
N
CO
mA
0
i::l
See Table
Max
0
~
~
mA
V
-{J.18
VI'" O.3V
V1 - O.4V
pA
0.4
IOL -16mA
VI =2.4V
V
5.5
DM74
OM74
en
en
V
V
15
DM54
OM74
UNITS
V
2
0.7
V, - 2.7V
Vee'" Max
=
TYP(1)
~
OM54LS/74LS
VI=7V
Vee::: Max
Vee
MIN
50
Max
IOL '" Max
Vee"': Min
38
MAX
lamA
low Level Output Current
VOL
TYP(1)
-1.5
Others
10L
MIN
2
0.8
V OH ::: 12V
Vee'" Min
V,, (21
OM54LJ74L
0
2-
= 2V or VIL :::;: max, as appropriate.
(i'
~
LS38 To Be Announced In 1976
0
:"
;,
<
0
I
;
;:;'
I»
CC
CD
m
c
::::
CD
"'-
Ci1
-------
-
Supply Currenu
DEVICE
Switching Characteristics at Vee; 5V, T A; 25°C
ICCH (mA)
Total With Outputs High
TYP
MAX
ICCl (mA)
Total With Outputs Low
TYP
MAX
DEVICE I CONDITIONS
tplH (ns)
Propagation Delay Time,
Low-To-High Level Output
MIN
06, 16
30
42
27
07, 17
29
41
21
30
26
4
8
12
22
38
5
8.5
34
54
L26
0.48
0.8
1.32
2.04
LS26
0.8
1.6
2.4
4.4
LS38
0.9
2
6
12
06, 16
07,17
CL ;15pF
RL ;
110n
26
CL
15 pF
;
RL ;
38
RL ;
L26
133n
I CL ; 15 pF
RL ;
LS38
1 H~
I C L ; 45 pF
I CL
;
RL ;
w
MAX
10
15
6
10
MIN
TYP
MAX
15
20
23
30
~
en
en
38
LS26
.;,.
TYP
tpHl (ns)
Propagation Delay Time,
High-To-Low Level Output
4 kn
15 pF
2 kn
I Cl ; 45 pF
Rl
; 667n
16
24
11
17
C
s:
U'I
~
.......
14
22
11
18
C
s:-..J
~
0
40
90
25
60
0)
17
32
15
28
:....
0)
20
32
18
28
0
-..J
~
N
0)
W
00
0
't:I
CD
::l
0
2.
Ii"
...
n
...
0
J::
<:0
;:::;'
I»
(Q
CD
IXJ
c:....
....
CD
iil
~
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).
PARAMETER
COIllDITIONS
MIN
V,H
High level Input Voltage
V,L
Low Level Input Voltage
V,
DM54174
DM54H/74H
DM54L174L
DM54LS174LS
DM74S
08,11
H08, H11, H21
L08, Lll
LS08, LSll, LS21
S11
TVP(H MAX
2
I
Input Clamp Voltage
MIN
TVP(l)
DM54
DM74
I
0.8
0.8
1,=-12mA
MIN
TVP(1)
High Level Output Current
High Level Output
Vee
Voltage
IOH = Max
IOl
VOL
I,
0.7
0.8
0.8
-1.5
N/A
-1.5
-1.2
N/A
Low Level Output
Input Current at
I'H
High Level I nput Current
I,l
Low Level Input Current
Vee = Min
lOL
=
tOL
-4mA
V 1l = Max
Vee = Max
Max
3.3
2.5
3.4
DM74
2.4
3.4
2.4
3.4
2.4
3.2
2.7
3.4
Vee
= Max
,
2
4
N/A
20
3.6
8
20
DM54
0.2
0.4
0.2
0.4
0.15
0.3
0.25
0.4
N/A
0.2
0.4
0.2
0.4
0.2
0.4
0.35
0.5
0.4
0.5
1
1
1
0.1
0.1
= 2.7V
= 0.3V
Short Circuit Output
Current
ICC
Supply Current
Vee = Max(2)
Vee = Max
20
V, - O.4V
-2
-1.6
50
-{l.36
V
rnA
JlA
rnA
-2
I
DM54
DM74
-20
-55
-18
-55
-
--40
-40
-100
-3
-15
-30
-130
-100
-3
-15
-30
-130
See Table
Notes
All typical values are at Vee = 5V, T A = 25°C.
(2) Not more than one output should be shorted at a time, and for DM54H/DM74H, DM54LS/DM74LS and DM74S, duration 01 short circuit should not exceed one second.
(1)
rnA
-{l.18
V, - 0.5V
los
;tA
'10
50
40
,
V
V
3.4
20
V,=7V
V,
N/A
2.7
DM74
DM74
V, = 5.5V
V,
-1000
--400
2.4
V, = 2.4V
Vc;.c = Max
-200
3.4
16
"
V
2.4
16
V
0.8
-500
CJ)
CJ)
MAX
N/A
3.4
DM54
TVP(l)
0.7
2.4
DM74
MIN
0.7
DM54
Low Level Output
Maximum Input Voltage
..,
= 2V
MAX
2
N/A
Current
Voltage
J,.
= Mi'n, V 1H
TVP(lI
0.8
-1.5
-800
IOH
MIN
2
1,- 18mA
VOH
MAX
2
II =-8mA
Vee = lYlin
MAX
2
UNITS
N/A
-40
100
0
3:
rnA
c.n
~
........
0
3:
.....
~
0
CO
~
...&
LS11, LS21 To Be Announced In 1976
N
...&
»Z
0
C)
I»
...
~
en
Supply Currents
DEVICE
Switching Characteristics at Vee
ICCH (rnA)
Total With Outputs High
TYP
ICCL (rnA)
Total With Outputs Low
MAX
TYP
MAX
21
20
33
DEVICE
I CONDITIONS I
~ 5V, TA ~ 25°C
tpLH (ns)
Propagation Delay Time
Low-To-High Level Output
MIN
OB
~
(J1
I
I
OB,ll
CL
~
15 pF
RL ~
400£1
11
B
15
14
22
HOB
2B
40
42
64
Hll
lB
30
30
4B
HOB, Hll
CL
~
25 pF
H21
RL ~
280£1
H21
~
11
12
20
20
32
tpHL (ns)
Propagation Delay Time,
High-To-Low Level Output
TYP
MAX
27
12
19
12
B.8
12
TYP
MAX
17.5
7.6
MIN
LOB
1.1
2.1
2.0
3.3
LOB
CL
50 pF
45
90
45
90
L 11
1.0
1.5
1.6
2.2
Lll
RL ~
4 k£1
40
BO
45
90
LSOB
2.4
4.B
4.4
B.B
LSOB, LS11
CL
15 pF
LS21
RL ~
2 k£1
10
15
12
20
CL
4.5
7
5
7.5
6
9
7.5
11
LSll
l.B
3.6
3.3
6.6
LS21
1.2
2.4
2.2
4.4
Sll
13.5
24
24
42
Sll
~
~
~
15 pF
RL ~
280£1
CL
~
50 pF
RL ~
2BO£1
2.5
2.5
~
en
en
c
s:C1I
~
.......
C
s:
~
o
00
:::
N
~
»z
c
C)
II)
;
III
Electrical Characteristics
DM54/74
CDNDITIONS
PARAMETER
High Level Input Voltage
V,L
low Level I nput Voltage
Input Clamp Voltage
V,
IOH
High Level Output Current
VOH
High Level Output Voltage
IOl
Low Level Output Current
Low Level Output Voltage
VOL
Input Current at Maximum Input Voltage
.,.
C>
High level Input Current
I'H
Vee::: Min
Vee::: Min
lO9
MAX
:::
Vee"" Max
Max
IOl =4 mA
V, = 5.5V
LS09, LS15
MAX
2
MIN
Supply Current
Vee::: Max
TYP(1)
UNITS
V
2
DM74
0.8
0.7
0.8
0.8
-1.5
NfA
-1.5
-1.2
NfA
V
V
250
50
100
250
IJA
5.5
5.5
5.5
5.5
V
DM54
16
2
4
N/A
DM74
16
3.6
8
20
DM54
0.2
0.4
0.15
0.3
0.25
0.4
NfA
DM74
0.2
0.4
0.2
0.4
0.35
0.5
0.5
DM74
rnA
V
0.4
1
0.1
1
0.1
40
10
20
50
0
rnA
IJA
-0.18
-1.6
-0.36
rnA
s:
C1I
~
.......
0
s:.....
~
0
CD
-2
:...
See Table
C1I
0
Notes
(11
en
en
MAX
NfA
V, = 0.5V
Icc
MIN
0.7
V, = 2.7V
V, = O.4V
S15
MAX
2
V, -7V
V, =2.4V
TYP(l)
0.7
V, = 0.3V
Vee == Max
TYP(1)
DM74S
0.8
I, =-12 rnA
Max
Vee == Max
MIN
1,=-18rnA
tOl :::
DM54LSfDM74LS
DM54
Vee" Min, V ,H = 2V, V OH = 5.5V
Low Level Input Current
I,L
TYP(ll
2
V 1L
I,
DM54LfDM74L
09
MIN
V,H
~
over recommended operating free-air temperature range (unless otherwise noted).
"
All typical values are at VCC= 5V, T A = 25°C.
~
::J
LS15 To Be Announced In 1976
(')
2-
cr
~
0
~
»
z
O·
G)
C\)
CS'
en
'-
Supply Currents
DEVICE
I
Switching Characteristics at V cc
ICCH (rnA)
Total With Outputs High
ICCl (rnA)
Total With Outputs Low
TYP
MAX
TYP
MAX
09
11
21
20
33
L09
1.1
2.1
2
3.3
LS09
2.4
4.8
4.4
8.8
LS15
1.8
3.6
3.3
6.6
S15
10.5
19.5
24
42
DEVICE
CONDITIONS
~ 5V,
L09
LS09,LS15
S15
'CL~15pF
RL
~
400Q
CL
~
15pF
RL
~
4 kQ
CL
RL
~
15 pF
~
2 kQ
CL
~
15 pF
RL
~
280Q
CL
~
50 pF
RL
~
280Q
~ 25° C
tplH (ns)
Propagation Delay Time,
Low-To-High Level Output
MIN
09
TA
2.5
TYP
MAX
21
tpHl (ns)
Propagation Delay Time,
High-To-Low Level Output
TYP
MAX
32
16
24
50
110
50
110
20
35
20
35
5.5
8.5
6
9
8.5
13
8
12
MIN
2.5
~
en
en
o
~
(JI
.;,.
-..J
~
.......
o
~
~
o
CD
:....
(JI
o
i::I
(")
2-
~
g
...
»
z
o
C')
C»
;
en
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).
DM54/74
CONDITIONS
PARAMETER
13
MIN
MIN
MAX
Vee
'=
5V
1.5
1.7
2
1.5
1.7
2
VT-
Negative-Going Threshold Voltage
Vee
~
5V
0.6
0.9
1.1
0.6
0.9
1.1
Vee ~ 5V
Hysteresis
Input Clamp Voltage
V,
Vee
0.4
~-12mA
I,
= Min
I, -
High Level Output Current
High Level Output Voltage
Low Level Output Voltage
O.B
-1.5
MAX
1.5
1.7
2
0.6
0.9
1.1
0.4
O.B
TYPO)
MAX
1.4
1.6
1.9
0.5
O.B
1.0
MIN
0.4
-1.5
-1.5
-1.5
--BOO
-800
-400
2.4
3.4
2.4
3.4
2.4
3.4
2.5
3.4
IOH
DM74
2.4
3.4
2.4
3.4
2.4
3.4
2.7
3.4
=:
Max
=:
IOL ~ 8 mA
IT+
Input Current at Positive-Going Threshold
Vee:: 5V, VI
IT-
Input Current at Negative-Going Threshold
Vee
I,
Input Current at Maximum Input Voltage
~
5V. V,
I
16
16
16
4
DM74
16
16
16
B
DM74
0.2
IOL -16mA
0.4
0.2
0.2
0.4
V
V
IlA
0.25
0.4
0.35
0.5
mA
V
0.4
VT +
--{l.65
-0.43
--{l.43
-0.14
rnA
~
VT -
-0.85
--{l.56
-0.56
--{l.18
rnA
Vee:: Max
Vee:o: Max
I,L
Low Level Input Current
Vee = Max,
los
Short Circuit Output Current
Vee ~ Max (2)
Icc
Supply Current
~
V,
~7.0V
V,
~
2AV
V,
~
2.7V
5.5\1
V, =QV
20
-1.0
V,
~
4.5V
-1.6
-55
--{l.S
-18
-1.2
-55
--{l.a
-18
-1.2
-55
-30
rnA
2.9
6
16
5.9
11
LS13
4.1
7
lS14
12
21
LS132
8.2
14
Others
14
20
23
32
22
39
36
60
15
26
24
40
p./i;
rnA
8.6
0
3:
CJ'I
.po
.......
-130
LS14
LS132
mA
-0.4
lS13
Others
Total Output Low
40
40
40
-18
Vee = Max
1
0.1
V,~O.4V
Total Output High
1
1
-
V
'=
V,
en
en
V
DM54
10L ~4mA
Min
UNITS
V
O.B
DM54
Vee
High Level Input Current
.
TYPO)
Vee"'" Min, V! :::: V T -- Min
Vj::::VT+Max
I'H
MIN
lBmA
l,.ow Level Output Current
VOL
0.4
-800
IOH
VOH
IOL
O.B
LS13. LS14. LS132
132
TYPO)
Positive-Going Threshold Voltage
VT-
'"
14
MAX
VT+
VT+
.;,.
TYP(l)
~
DM54LS/74LS
0
3:
~
-"
W
:..
.1)0
:..
W
N
rnA
en
(')
=r
3
;::;:
....
-4
Notes
(1)
All typical values are at V CC ~ 5V. T A ~ 25' C.
(2)
Not more than one output should be shorted at a time, and for OM54LS/DM74LS, duration of short circuit should not exceed one second.
LS13, LS14, LS132 To Be Announced In 1976
-~-
::I.
CQ
CQ
CD
iil
Switching Characteristics at Vee = 5V, TA = 25°C
DEVICE
13
14, 132
LS13
LS14, LS132
ct
I
CONDITIONS
CL
= 15 pF,
RL
= 400n
CL
= 15 pF,
RL
= 2 kn
tpLH (nsl
Propagation Delay Time,
I Low-To-High Level Output
tpHL (nsl
Propagation Delay Time,
High-To-Low Level Output
TYP
MAX
TYP
MAX
18
27
22
15
15
15
22
22
15
15
22
22
18
15
27
22
I
~
CJ)
CJ)
c
s:U'I
~
.......
c
3:
....~
W
~
~
~
W
N
CJ)
n
':
3
a
-t
~
eC'
eQ
~
ii1
Electrical Characteristics
DM54/74
PARAMETER
CONDITIONS
o
VIH
High Level Input Voltage
Vll
Low Level I nput Voltage
VI
Input Clamp Voltage
TYP(l)
II,
MAX
MIN
TYP(l)
MIN
TYP(l)
VOH
High Level Output Voltage
IOl
Low Level Output Current
VOL
Low Level Output Voltage
Vee = Min, V, = (2). IOL = Max
II
Input Current at Maximum I nput Voltage
Vee = Max, V, = 5.5V
IIH
High Level Input Current
Vee = Min, V, = (2). IOH = Max
UNITS
0.8
0.8
-1.5
-1.5
-800
-400
3.4
2.4
3.4
0.8
16
0.2
0.4
0.2
20
0.4
0.2
1
V
V
/J.A
V
3.4
16
1
Vee =Max, V, =2.4V
-500
2.4
-
V
-1.5
2.4
en
en
MAX
2
~-8 mA
High Level Output Current
Data Inputs
MAX
2
1I,=-12mA
IOH
Strobe of 23
H50, H52
H53, H55
50,53
2
Vee = Min
DM54H/74H
23
,
MIN
'"
~
over recommended operating free-air temperature range (unless otherwise noted).
0.4
1
40
40
50
160
N/A
N/A
mA
V
mA
/J.A
0
s:
UI
~
.......
0
s:
....,
~
N
W
Low Level I nput Current
III
Data Inputs
Strobe of 23
Short Circuit Output Current
los
Vee = Max, V, = O.4V
Vee = Max (3)
Vee ~ Max
Supply Current
Icc
-1.6
-2
-1.6
-
-6.4
N/A
N/A
I DM54
-20
-55
-20
-55
-40
-100
I DM74
-18
-55
-18
-55
-40
-100
mA
U1
0
J:
UI
mA
N
U1
W
See Table
J:
UI
UI
Notes
(1)
All typical values are at VCC = 5V, T A = 25°C.
(21
The input voltage is V I H
(31
Not more than one output should be shorted at a time, and for the DM54H/DM74H, duration of short circuit should not exceed one second.
=
m
><
2V or V I L = V I L max, as appropriate.
-
~
Q)
:::J
C.
Q)
C"
~
C)
...
Q)
(1)
en
-~------.-
-~-
Electrical Characteristics
using expander inputs, Vee
= Min,
Ix (mAl
(Ix for H521
Expander Current
DEVICE
CONDITIONS
MIN
TYP(l)
DM5423
Vxx "O.4V
DM5450
IOL""16mA
DM5453
DM7423
Vxx "O.4V
DM7450
10L" 16mA
DM7453
DM54H50
Vx" 1.4V
DM54H53
Ix" 0
DM54H55
tOl =
DM74H50
Vx "l.4V
DM74H53
Ix = 0
DM74H55
IOL = 0
TA
= Min
MAX
CONDITIONS
-3.5
Ix + Ix" 410pA
-2.9
Rxx
-2.9
IOL::: 16mA
-3.5
Ix + Ix " 620pA
-3.1
RX- x
-3.1
t oL =16mA
'=
=
MIN
TYP(1)
Rx:x
0;;
MAX
0
0
CONDITIONS
0
Rxx
=
IOl =
0
TYP(l)
CONDITIONS
MAX
2.4
R xx "138>1
3.4
10H "-400pA
IOL'"
2.4
Ix" -270pA
3.4
0.4
0.2
0.4
0.2
0.4
0.2
0.4
C
0.2
0.4
......
Ix + Ix" 470pA
2.4
Ix" -320pA
3.4
Rxx " 6811
IOL=20mA
10H "-500pA
Ix + Ix" 600pA
Ix" 570pA
Ix" -570pA
2.4
3.4
Rxx " 63>1
IOL =20mA
10H "-500pA
20 rnA
0.2
16 rnA
Rxx " 130>1
Ix" 320pA
1.0
MAX
IOL = 16 rnA
10H "-400pA
1.1
TYP(l)
Ix + Ix " 430pA
Ix" 270pA
1.0
MIN
Ix + Ix" 300pA
Ix "-150pA
Ix+Ix:: 1.1mA
-6.3
MIN
(J)
(J)
Low Level Output Voltage
Ix" 150pA
1.1
IOL ::: 20 rnA
0
VOL (V)
VOH (V)
High Level Output Voltage
Ix + Ix" 700pA
-5·85
~
(unless otherwise noted) (4), (5), (6)
VBEIOJ (V)
Base-Emitter Voltage of
Output Transistor Q
s:
(J1
~
Ix - -300pA
DM54H52
Vx" lV
DM74H52
10H" -500pA
Vx "1V
-4.5
-2.7
10H "-500pA
2.4
3.4
.j::o
IOL = 20 rnA
TA
=
Max
~
Notes
(1) All typical values are at Vec" 5V, T A" 25°C.
(4) The 23, 50, and 53 are designed for"use with up to four 60 expanders.
(5) The HSO, H53, and H55 are designed for use with up to four H60 expanders or one H62 expander.
(6) The H52 is designed for use with up to six H61 expanders.
N
W
Switching Characteristics
DEVICE
at Vee
CONDITIONS
23.50.53
DEVICE
Iccl. (rnA)
Total With Outputs Low
tplH (ns)
Propagation Delay Time,
low·To·High Level Output
MAX
TYP
~
15 pF. RL "40011
MAX
0
tpHl (ns)
Propagation Delay Time,
High-To-Low Level Output
TYP
MAX
CL
"
15 pF. RL "400>1
W
::I:
22
8
15
15
30
10
20
6.8
11
6.2
11
From Input of 60 Expander
8
16
10
19
50
4
8
7.4
14
H52
CL = 25 pF. RL "280>1
10.6
15
9.2
15
H53
Expander Pins Open
7
11
6.2
11
7
11
6.5
11
53
4
8
5.1
9.5
H50
8.2
12.8
15.2
24
H55
H50
CL "25 pF. RL = 280>1
N
(J1
13
23
H50
J::
(J1
MAX
Expander Pins Open
50
TYP
CL
(n
= 5V, T A = 25°C
TYP
Supply Currents
ICCH (rnA)
Total With Outputs High
C
s:
(J1
(J1
,.,m><
II)
::l
C.
II)
11
7.4
cr
CD
H52
20
31
15.2
24
H52
C " 15 pF. (GND to
14.8
9.8
C')
H53
7.1
11
9.4
14
H53
H50. H53. or H55; or
11.4
7.4
H55
4.5
6.4
7.5
12
H55
to X of H52)
11.4
7.7
Ii
en
X of
II)
Electrical Characteristics
CONDITIONS
PARAMETER
MIN
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
Input Clamp Voltage
VI
DM54/74
DM54L/74L
DM54 LS/74 LS
32
L32
LS32
TYPll)
High Level Output Voltage
V OH
Vee = Min
TYP(l)
MAX
MIN
TYP(l)
V
0.8
0.7
0.7
DM74
0.8
0.7
0.8
-1.5
N/A
Input Current at Ma,ximum Input Voltage
II
High Level Input Current
IIH
Low Level Input Current
IlL
Short Circuit Output Current
lOS
Supply Current
Icc
I Total, Outputs High
I Total, Outputs Low
Notes
(1) All typical values are at Vee = 5V, T A = 25"e.
(2)
V
V
-1.5
N/A
-400
-200
Vee = Min, V'H = 2V, IOH = Max
IOL = Max
DM54
2.4
3.4
2.4
2.8
2.5
3.4
DM74
2.4
3.4
2.4
2.8
2.7
3.4
fJ.A
Vee = Max
Vee = Max
Vee = Max
V
DM54
16
2
4
DM74
16
3.6
8
DM54
0.2
0.4
DM74
0.2
0.4
0.15
0.3
0.25
0.4
0.35
IOL =4 mA DM74
'"
MAX
DM54
-800
en
en
~
Vee = Min, V'L = Max
'"
UNITS
2
2
I, =-12 mA
Low Level Output Voltage
VOL
MIN
1,=-18mA
Low Level Output Current
IOL
MAX
2
High Level Output Current
IOH
~
over recommended operating free·air temperature range (unless otherwise noted).
mA
0.4
0.5
V
0.4
V, = 5.5V
1
0.1
V, = 7V
mA
0.1
V,=2.4V
40
10
V, = 2.7V
fJ.A
20
V, = 0.3V
-0.12
-0.18
-1.6
V, =O.4V
Vee = Max(2)
Vee = Max
mA
-0.36
DM54
-20
-55
-3
DM74
-18
-55
-3
...g
...g
-15
-30
-130
-15
-30
-130
15
22
1.5
2.2
3.1
6.2
23
38
2.3
3.8
4.9
9.8
\
Not more than one output should be shorted at a time, and for Of\154LS/DM74lS, duration of short circuit should not exceed one second.
mA
mA
-
C
3:
(J1
.p.......
C
3:
~
W
N
0
::u
G')
III
;
(II
-----
Switching Characteristics at Vee = 5V, TA = 25°C
DEVICE
I
CONDITIONS
I
tpLH (ns)
Propagation Delay Time,
Low-To-High Level Output
MIN
32
L32
LS32
RL = 400Q
CL = 50 pF
RL =4kQ
CL = 15pF
RL = 2 kQ
TYP
MAX
10
tpHL (os)
Propagation Delay Time,
High-To-Low Level Output
MIN
TYP
MAX
15
14
22
40
80
50
100
14
22
14
22
~
CJ)
CJ)
'"
w
c
s:
(11
~
........
C
s:
ii!eN
N
oII
C)
...
Q)
~
en
Electrical Characteristics
PARAMETER
CONDITIONS
DM54/74
DM54H/74H
DM54LS174LS
DM74S
37,40
H40
LS37, LS40
S40, S140
MIN' TYP(l)
V,H
High Level I nput Voltage
V,L
Low Level Input Voltage
V,
MAX
2
Input Clamp Voltage
I,
Vee
10H
= Min
~-8
MIN
TYP(l)
MAX
2
MIN
TYPO)
MAX
DM54
0.8
0.8
0.7
DM74
0.8
0.8
0.8
mA
MIN
TYP(l)
12mA
I, ~-18 rnA
V
N/A
0.8
-1.5
-1.5
-1.2
-1.2
-3
I
I
IOH
= Max
-40
2.4
3.3
2.4
3.4
2.7
V'L - 0.5V, Ro
~
...en
VOL
Low Level Output Current
Low Level Output Voltage
Vee:::: Min
V ,H
~
2V
Input Current at Maximum Input Voltage
I,
Vee:::: Max
I'H
I,L
los
Icc
High Level Input Current
Vee
= Max
Vee
= Max
Vee
~
Low Level Input Current
Short Circuit Output Current
Supply Current
IOL :: Max
IOL - 12 mA
V,
~
V,
~
2.7
50n to
~
2.4V
~
2.7V
V,
~
O.4V
V,
~
0.5V
Max (2)
Vcc=Max
V
DM54
48
60
12
N/A
DM74
48
60
24
60
DM54
0.2
0.4
0.2
0.4
0.25
0.4
N/A
DM74
0.2
0.4
0.2
0.4
0.35
0.5
0.5
DM74
rnA
V
0.4
1
1
0.1
40
100
20
-4
-1.6
100
-0.36
-4
DM54
-20
-70
DM74
-18
-70
-40
-40
-125
-125
-30
-130
-30
-130
C
3:
U1
1
7V
V,
3.4
2
5.5V
V,
rnA
3.4
'oH--3mA
GND, S140 Only
10L
V
V
-1.2
Others
V1L=Max
MAX
-1.5
High Level Output Current
Vee = Min
en
en
-1.5
I, -
High Level Output Voltage
UNITS
:i
2
S140
VOH
~
over recommended operating free-air temperature range (unless otherwise noted).
-50
N/A
-225
See Table
~
rnA
p.A
rnA
rnA
.......
C
3:
.....
~
W
.....
~
0
en
....
~
0
III
Notes
(1) All typical values are at Vee ~ 5V, TA ~ 25°e.
(2r Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second for 37, L537, 40, H40 or LS40; or 100 milliseconds for 540 and 5140.
LS37, LS40 To Be Announced In 1976
C
=
CD
til
.......
C
...<'
CD
til
Supply Currents
DEVICE
I
Switching Characteristics
ICCH (rnA)
Total With Outputs High
TYP
'"
Ul
ICCL (rnA)
Total With Outputs Low
MAX
TYP
MAX
37
9
15_5
34
54
40
4
8
17
27
H40
10.4
16
25
40
LS37
0.9
2
6
12
LS40
0.45
1
3
6
S40
10
18
25
44
S140
10
18
25
44
DEVICE
atV cc =5V,T A =25°C
tpLH (ns)
Propagation Delay Time,
Low-To-High Level Output
CONDITIONS
MIN
37
CL = 45 pF, RL = 133Q
tpHL Ins)
Propagation Delay Time,
High-To-Low Level Output
TYP
MAX
MIN
TYP
13
22
8
I ~enen
MAX
15
40
CL = 15 pF, RL = 133Q
13
22
8
15
H40
CL =25pF,R L =93Q
8.5
12
6.5
12
12
24
I
12
24
4
6.5
6
9
I
f--LS37
LS40
r------S40
S140
I CL = 45 pF, RL = 667Q
I
CL = 50 pF, RL = 93Q
CL = 150 pF, RL = 93Q
I
I
2
2
4
6.5
6
9
c
3:
C1I
tc
3:
~
~
~
o
en
....
~
o
OJ
c:
::::::
CD
~
C
~
~.
U;
Electrical Characteristics
CDNDITIONS(l )
PARAMETER
MIN
V,H
V,L
V,
DM54/74
DM54H/74H
DM54l/74l
DM54lS174lS
DM74S
51,54
H51, H54
L51, l54
l55
lS51, lS54
lS55
551, S64
TYP(1)
MAX
2
High Level Input Voltage
Low Level Input Voltage
Input Clamp Voltage
MIN
TYP(1)
MAX
2
MIN
TYP(1)
2
High Level Output Current
High Level Output Voltage
V 1L = Max
IOH
10L
VOL
= Max
Low Level Output Voltage
'"
Vee -= Min
V'H =2V
C1l
I,
Input Current at Maximum
Input Voltage
I'H
I,L
High level Input Current
Vee = Max
Vee = Max
IOL =Max
Vee -= Max
0.7
N/A
0.7
0.8
0.8
Short Circuit Output
~1.5
~1.2
~4oo
~lOoo
N/A
Icc
Supply Current
Current
V
V
N/A
~200
-500
J.lA
2.4
DM54
2.4
3.4
2.4
3.4
2.4
3.3
2.5
3.4
DM74
2.4
3.4
2.4
3.4
2.4
3.2
2.7
3.4
N/A
2.7
V
3.4
DM54
16
20
2
4
N/A
DM74
16
20
3.6
8
20
DM54
0.2
0.4
0.2
0.4
0.15
0.3
0.25
0.4
N/A
DM74
0.2
0.4
0.2
0.4
0.2
0.4
0.35
0.5
0.5
e
mA
1
~
.......
V
40·
50
1
mA
50
20
J.lA
-1.6
-2
-0.36
rnA
~2
DM54
~20
DM74
-18
-55
~40
~55
-40
Vee -= Max
~100
~100
~3
~15
~3
~15
bI
~
U1
U1
-0.18
= O.4V
~
U1
~
10
V, = 2.7V
e
~
0.1
0.1
= 2.4V
~
U1
0.4
1
V, = 7V
Vee = Max (2)
-
N/A
~1.5
~1.5
V, = 0.5V
loS
en
en
V
2
0.7
IOL = 4 mA DM74
V,
MAX
0.8
V, = 0.3V
Low level Input Current
TYP(1)
0.8
V, = 5.5V
V,
MIN
0.8
lS54
Low Level Output Current
MAX
0.8
1,=~12mA
Others
TYP(1)
DM74
-400
Vee"" Min
MIN
2
I, = lBmA
10H
MAX
UNITS
DM54
I, =-8mA
Vee = Min
VOH
~
over recommended operating free-air temperature range (unless otherwise noted)_
-30
-130
-30
~130
N/A
-40
See Table
~100
en
en
~
mA
~
e
I
0
:::D
Notes
All typical values are at VCC = 5V, TA = 25°C.
I
:;,
(1)
(2)
Not more than one output should be shorted at a time, and for DM54H/DM74H, DM54LS/DM74LS and DM74S, duration of the short circuit should not exceed one second.
(3)
National Semiconductor. temporarily reserves the right to ship DM54/DM74LS51, lS54, lS55 devices which have a minimum lOS = 5.0 mAo
<
CD
::I.
G')
...
74S51 To Be Announced In 1976
Q)
CD
(I)
---------
----
-
- - - - - - - - - - - - - - - - - - - - - ----------------
--- - - - -
---
Supply Currents
DEVICE
c:n
-..J
l
I
I
Switching Characteristics at Vee = 5V, T A = 25°C
ICCH (mA)
Total With Outputs High
ICCl (mA)
Total With Outputs Low
TYP
MAX
TYP
MAX
51
4
8
7.4
14
54
4
8
5.1
9.5
H51
8.2
12.8
15.2
24
H54
7.1
11
9.4
14
DEVICE
CONDITIONS
tplH (ns)
Propagation Delay Time,
Low-To-High Level Output
MIN
TYP
MAX
tpHl (ns)
Propagation Delay Time,
High·To·Low Level Output
MIN
TYP
CL
= 15 pF,
RL
= 400Q
13
22
8
15
H51
CL
= 25 pF,
RL
= 280Q
6.8
11
6.2
11
H54
CL = 25 pF,
RL
= 280Q
7
11
6.2
11
CL = 50 pF,
RL
= 4 kQ I
50
90
35
60
L51
0.44
0.8
0.76
1.3
L54
0.39
0.8
0.60
0.99
L55
I
en
~
MAX
51,54
L51, L54
~
L55
0.22
0.4
0.38
0.65
L551,L555
CL = 15 pF,
RL
= 2 kQ
12
20
12.5
20
L551
0.8
1.6
1.4
2.8
L554
CL = 15pF,
RL
=2kQ
16
20
12.5
20
L554
0.8
1.6
1.0
2
L555
0.4
0.8
0.7
1.3
CL = 15 pF,
RL =
3.5
5.5
3.5
5.5
o
CL = 50 pF,
RL
5
8
5.5
8
U1
551
8.2
17.8
13.6
22
564
7
12.5
8.5
16
551,564
280Q
= 280Q
2
2
3:
~
.......
c
3:
~
...
U1
U1
~
Ut
U1
en
en
~
»
z
c
6XI
I
::l
~
~
C)
Ql
i
Electrical Characteristics
~
over recommended operating free-air temperature range (unless otherwise noted).
DM54
PARAMETER
60
60
CONDITIONS
VIH
DM74
High Level Input Voltage
MIN
TYP(1)
MAX
VXXIONI
On-State Voltage Between
Vee = 4.5V, V IH = 2V
Expander Outputs
Vx = 1.lV, Ix = 3.5 mA
V x =lV,lx=3.5mA
0.4
V
Vee = 4.75V, V IH = 2V
-Q.3
-Q.43
Vx = lV, Ix = 0
mA
TA = O°C
Vee = 4.5V, V IL = 0.8V
Vx = 4.5V, Rx = 1.2 kn
150
T A =-55°C
~
V
TA = O°C
TA =-55°C
Off-State Expander Current
V
0.8
Vee = 4.75V, V IH = 2V
0.4
Vee = 4.5V, V IH = 2V
Vx = 1.1V, Ix =0
Vee = 4.75V, V IL =0.8V
. Vx = 4.5V, Rx = 1.2 kn
270
IlA
mA
TA = O°C
II
Input Current at Maximum Input Voltage
Vee = 5.5V, VI = 5.5V
1
Vee = 5.25V, VI = 5.5V
1
IIH
High Level Input Current
Vee = 5.5V, VI = 2.4V
40
Vee = 5.25V, VI = 2.4V
40
IlA
IlL
Low Level Input Current
Vee = 5.5V, VI = O.4V
-1.6
Vee = 5.25V, VI = O.4V
-1.6
mA
'CCIONI
Supply Current, Expander On
1.2
2.5
mA
2
4
mA
Vee = 5.5V, VI = 4.5V
Vx = O_85V, Ix = 0
ICCIOFFI
Supply Current, Expander Off
Vee = 5.5V, VI = 0
Vx = 0.85V, Ix = 0
en
en
MAX
2
TA =-55°C
IXIOFF)
TYP(l)
0.8
Low Level Input Voltage
On-State Expander Current
MIN
2
VIL
IXIONI
CONDITIONS
UNITS
1.2
2.5
2
4
Vee = 5.25V, VI = 4.5V
Vx = 0.85V, Ix = 0
0
Vee = 5.25V, VI = 0
Vx = 0.85V, Ix = 0
3:
U1
~
.......
0
Notes
111 All typical values are at VCC = 5V, TA = 25°C.
3:
~
0)
0
m
)(
'0
I»
::;,
Co
CD-
til
----- -
- - - - - ---------
Electrical Characteristics
DM54H
DM74H
H60, H62
PARAMETER
CONDITIONS
VIH
High Level Input Voltage
Vil
Low Level Input Voltage
VXX{ON)
On-State Voltage Between Expander Outputs
MIN
H60, H62
TYP(l)
MAX
Vee = 4.5V, V IH = 2V
On-State Expander Current
V
V
Vee = 4.75V, V IH = 2V
0.4
Vee = 5.5V, V IH = 2V
Vee = 5.25V, V IH = 2V
0.4
0.4
V x = 1V, I x: = 6.3 mA
T A = O°C
V
0.4
V x =lV,Ix:=7.4mA
T A = 70°C
Vee = 4.5V, V IH = 2V
Vee = 4.75V, V IH = 2V
-470
V x =lV,Ix:=O
TA =-55°C
Off-State Expander Current
(I)
MAX
0.8
T A = -55°C
Vx = lV, IX: = 0
IXIOFF)
UNITS
TYP(l)
0.8
Vx = lV, Ix: = 7.85 mA
(!)
MIN
2
TA = 125°C
'"
CONDITIONS
2
Vx = lV, Ix: =5.85 mA
IXIONI
~I
(1)1
over recommended operating free-air temperature range (unless otherwise noted).
-BOO
JlA
T A = O°C
Vee = 4.5V, V IL = 0.8V
Vee = 4.75V, V IL = 0.8V
Vx: = 4.5V, Rx = 575[2
320
T A = -55°C
Vx: = 4.5V, Rx = 575[2
570
JlA
T A = O°C
II
Input Current at Maximum Input Voltage
Vee = 5.5V, VI = 5.5V
1
Vee = 5.25V, VI = 5.5V
1
mA
i lH
High Level Input Current
Vee = 5.5V, VI = 2.4V
50
Vee = 5.25V, VI = 2.4V
50
JlA
C
~
III
Low Level I nput Current
Vee = 5.5V, VI = O.4V
mA
-.....
ICCION)
ICCIOFF)
Supply Current, Expander On
Supply Current, Expander Off
Expander Output Capacitance
Cx
-2
Vee = 5.25V, VI = O.4V
H60
Vee = 5.5V, VI = 4.5V
1.9
3.5
Vee = 5.25V, VI = 4.5V
1.9
3.5
H62
Vx = 0.85V, Ix: = 0
3.8
7
Vx = 0.85V, IX: = 0
3.8
7
H60
Vee = 5.5V, VI = 0
3
4.5
Vee
3
4.5
H62
Vx = 0.85V, Ix: = 0
6
9
V x =0.85,1x:=0
6
9
H60
Vee, I nputs, and X
5.4
Vee, I nputs, and X
5.4
H62
Open; f = 1 MHz
6.0
Open; f = 1 MHz
6.0
= 5.25V, VI = 0
mA
mA
U1
~
C
~
~
:t:
c:n
0
J:
c:n
pF
N
m
><
"0
Notes
III
-2
Q)
All typical values are at Vee
= 5V lexcept ex), TA = 25°e.
:l
0.
.,
CD
en
-
..
---------
--
Electrical Characteristics
~
over recommended operating free-air temperature range (unless otherwise noted)_
DM54H/74H
PARAMETER
H61
CONDITIONS
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VX(ONI
On-State Expander Output Voltage
UNITS
MIN
TYP(l)
MAX
2
Vee
(J)
(J)
V
0_8
V
= Min, V ,H = 2V, Ix = 4.5 mA for DM54H61
= Min
1
V
5.35 mA lor DM74H61, T A
cr,
IX(OFFI
Off-State Expander Current
Vee
= Min, V ,L = 0.8V, Vx = 2.2V, TA = Max
50
I1A
11
Input Current at Maximum Input Voltage
Vee
= 5.5V, V, = 5.5V
1
mA
IIH
High Level Input Current
Vee
= 5.5V, V, = 2AV
50
I1A
IlL
Low Level I nput Current
Vee
= 5.5V, V, = OAV
ICC(ONI
Supp,ly Current, Expander On
Vee
= 5.5V, V, = 4.5V
11
16
mA
ICCIOFFI
Supply Current, Expander Off
Vee
= 5.5V, V, = a
5
7
mA
Cx
Expander Output Capacitance
Vee and I nputs Open, I
-2
mA
a
= 1 MHz
504
pF
Noles
(11
All typical values are at VCC = 5V (except CX), TA
(21
The H52 is designed for use with up to six H61 expanders.
=
25°C.
C
s:
U'I
~
.......
C
s:
"::t
~
...
en
,
m
><
'0
III
:::I
C-
...
CD
1/1
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted).
~
DM74S
PARAMETER
CONDITIONS
S65
MIN
VIH
High Level Input Voltaqe
Vil
Low Level Input Voltage
VI
Input Clamp Voltage
IOH
High Level Output Current
TYP(1)
UNITS
MAX
2
Vee
= Min,
Vee
= Min, VIL = 0.8V
= 5.5V
V OH
11
Cf)
Cf)
V
= -18 mA
0_8
V
-1.2
V
250
/.l-A
V
VOH
High Level Output Voltage
5.5 .
IOl
Low Level Output Current
20
mA
V
VOL
Low Level Output Voltage
Vee
= Min, V IH = 2V,l oL = 20 mA
0.5
II
Input Current at Maximum Input Voltage
Vee
= Max, VI = 5.5V
1
mA
C
~
IIH
High Level Input Current
Vee
= Max, VI = 2.7V
50
/.l-A
Cf)
-..J
6>1
III
Low Level I nput Current
Vee
= Max, VI = 0.5V
ICCH
Supply Current, Output High
Vee
= Max
6
11
mA
ICCl
Supply Current, Output Low
Vee
= Max
8.5
16
mA
-2
mA
~
0)
U1
0
"C
CD
:::s
C")
Notes
(1) All typical values are at
0
Vee ==
CD
5V, T A = 25° c.
....
(")
...
I»z
0
Switching Characteristics
at Vee
= 5V, T A = 25°C
19
DM74S
CONDITIONS
PARAMETER
1
S65
MIN
tplH
tpHL
Propagation Delay Time, Low-To-High Level Output
Propagation Delay Time, High-To-Low Level Output
= 15 pF, RL = 28011
CL = 50 pF, RL = 28OS2
2
= 15 pF, RL = 28OS2
= 50 pF, RL = 28011
2
CL
CL
CL
TYP
UNITS
0
:Xl
,
S"
MAX
<
5
7_5
ns
8
12
ns
5.5
8.5
ns
6.5
10
ns
CD
::+
C)
....CD
C)
1/1
Electrical Characteristics
~
over recommended operating free-air temperature range (unless otherwise noted).
DM54/74
PARAMETER
CONDITIONS
70
MIN
V,H
High Level Input Voltage
V ,L
Low Level Input Voltage
V,
Input Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Vpltage
Low Level Output Current
VOL
Low Level Output Voltage
Vee
Vee
= Min,
I,
= -12
-
= Min, V ,H = 2V
= O.SV, IOH = Max
2.4
V'L
High Level Input Current
Vee
= Max, V, = 5.5V
0.2
Preset
Vee
= Max, V, = 2.4V
Clock
I'L
D, J, K, or K
Clear
Preset
Vee
= Max, V,
= O.4V
I DM54
I DM74
Clock
Icc
Current
Vee
= Max(2)
Supply Current (Average per Flip-Flop)
Vee
= Max(3)
TYP(1)
MAX
MIN
TYP(1)
V
0.8
O.S
-1.5
-1.5
-1.5
-400
-400
-400
-1200
2.4
2.4
3.4
16
0.4
0.2
16
0.4
0.2
0.4
0.2
mA
0.4
V
1
1
1
1
40
40
40
SO
SO
120
160
SO
SO
40
SO
40
SO
SO
SO
-1.6
-1.6
-1.6
-1.6
-3.2
-3.2
-3.2
-4.S
-3.2
-3.2
-1.6
-3.2
-3.2
-20
-55
-20
-55
-30
-55
-S5
-lS
-57
-18
-55
-18
-55
-30
-55
-S5
10
15
26
17
9
S.5
15
mA
C
p.A
3:
c.n
~
.......
C
mA
-3.2
-20
~57
13
V
p.A
16
40
-3.2
V
V
2.4
3.4
C/)
C/)
MAX
2
0.8
-1.6
Short Circuit Output
loS
MIN
-1.5
3.4
D, J, K, or K
Clear
MAX
UNITS
109
2
16
Input Current at Maximum Input Voltage
Low Level I nput Current
TYP(l)
74
2
mA
= Min, V ,H = 2V
= O.SV, IOL = 16 mA
Vee
I'H
0,
MIN
0.8
I,
N
MAX
2
V'L
10L
TYP(l)
72, 73, 76, 107
mA
rnA
3:
~
.....
....N0
....W
....
....en
~
Notes
(1)
(2)
(3)
.
All typical values are at VCC = 5V, TA = 25°C.
Not more than one output should be shorted at a tlme._
With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement. the clock input is at 4.5V for.the 70, and is grounded for all the others.
:..
0
.....
:..
0
CD
~
'CI
."
0"
'C
III
~
Switching Charjlcteristics at Vcc = 5V, T A = 25°C
DM54/74
PARAMETER
fMAX
Maximum Clock Frequency
tpLH
Propagation Delay Time,
Low-ta-High Level Output
tpHl
Propagation Delay Time,
tplH
Propagation Delay Time,
FROM
(INPUT)
tpHl
Propagation Delay Time,
tpLH
Propagation Delay Time,
CONDITIONS
(as applicable)
TYP
20
35
20
MAX
TYP
20
25
MAX
MIN
TYP
30
40
fJ)
fJ)
UNITS
MAX
MHz
25
9
14
D
50
25
40
40
18
29
50
16
25
25
9
14
50
25
40
40
17
25
27
50
16
25
14
25
12
18
18
50
25
40
20
40
19
28
ns
CL = 15 pF. RL = 400Q
ns
(as applicable)
0
ns
OorO
High-ta-Low Level Output
""w
15
109
74.
MIN
25
Propagation Delay Time,
Clock High
TYP
16
D
Clock
Pulse Width
MIN
50
Low-ta-High Level Output
tw
MAX
0
Clear
High-ta-Low Level Output
tPHl
72, 73, 76, 107
70
MIN
Preset
High-ta-Low Level Output
Low-ta-High Level Output
TO
(OUTPUT)
20
20
30
20
Clock Low
30
47
37
20
Preset or Clear Low
25
25
30
20
C
~
U1
ns
tsETUP
Input Setup Time(4)
20t
ot
20t
15t
ns
tHOLD
Input Hold Time(4)
5t
01
5t
lOt
ns
~
.......
C
~
-.J
~
-.J
0
;".,.
Notes
(4)
t
-l-
The arrow indicates the edge of the clock pulse used for reference: t for the rising edge, ~ for the falling edge.
N
;".,.
to)
~
;".,.
0')
~
0
-.J
~
0
to
"T1
"9'
"T1
0"
'0
/II
-
~-
Electrical Characteristics
~
over recommended operating free·air temperature range (unless otherwise noted).
DM54Hn4H
PARAMETER
CONDITIONS
H71
MIN
VIH
High Level I nput Voltage
V IL
Low Level I nput Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
V OH
High Level Output Voltage
Low Level Output Current
VOL
Low Level Output Voltage
Vee = Min, V ,H = 2V
,L = O.BV, IOH = Max
Vee
I,
Input Current at Maximum Input Voltage
IIH
High Level I nput Current
= Min, V ,H
Vee
= 2V
a.av, IOL
= Max, V,
Low Level Input Current
MAX
0,2
MIN
TYP(1)
MAX
2
MIN
TYP(1)
2
V
O.S
0.8
V
-1.5
-1.5
-1.5
-1.5
V
-500
--500
-1000
--500
pA
2,4
2,4
3,4
3,4
20
0.4
0.2
2,4
3,4
20
0,4
0.2
0.4
0.2
V
20
mA
0.4
V
1
1
1
1
D,J, or K
50
50
50
50
Clear
N/A
100
150
200
150
100
100
100
100
50
100
100
Vee = Max, V, = 2,4V
-2
D,J,or K
Clear
Vee = Max, V,
Preset
N/A
= O.4V
--5
-4
Clock
-40
Vee = Max(2)
loS
Short Circuit Output Current
Icc
Supply Current (Average per Flip·Flop)
Vee = Max(3)
1lDM54
DM74
-100
-40
-2
-2
-2
-4
-4
-4
-a
-2
-4
-2
-4
-4
'-100
-100
-40
-100
19
30
16
25
15
21
16
25
19
30
16
25
15
25
16
25
Notes
All typical values are at Vee = 5V, T A = 25°e.
(2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
(3) With all outputs open, ICC is measured with the Q and Qoutputs high in turn. At the time of measurement, the clock input is grounded.
(1)
-40
en
en
MAX
0.8
= 20 mA
= 5.5V
UNITS
H78
O.S
3,4
Clock
I'L
TYP(1}
20
Preset
""
2,4
MIN
H74
2
Vee = Min, 'I, = -S mA
V ,L =
a,
MAX
2
V
10L
TYP(1)
H72,H73,H76
mA
C
3:
U1
JiA
~
......
C
3:
~
mA
:s
-"
~
mA
mA
....
N
~
....W
~J:
....en
~
....CO
."
'9'
."
0'
'0
(II
-
-
Switching Characteristics atV cc =5V,T A =25°C
~
DM54H174H
FROM
(INPUT)
PARAMETER
fMAX
Maximum Clock Frequency.
tpLH
Propagation Delay Time,
TO
(OUTPUT)
H71, H72
H73,H76,H78
CONDITIONS
MIN
TYP
25
30
Q
Low-to-High Level Output
6
Cf)
Cf)
H74
MAX
MIN
TYP
35
43
13
UNITS
MAX
MHz
20
Preset las applicable)
tpHL
Propagation Delay Time,
0
High-to-Low Level Output
tpLH
ns
Propagation Delay Time,
0
Low-to-H igh Level Output
C L = 25 pF,
RL =
280[2
12
24
30
6
13
20
12
24
30
Clear las applicable)
tpHL
Propagation Delay Time,
High-to-Low Level Output
0.,
tpLH
14
tSETUP
tHOLD
Setup Time(4)
15
~
-..J
ns
22
High-to-Low Level Output
tw
8.5
21
0
GorO
Propagation Delay Time,
Pulse Width
U1
~
Propagation Delay Time,
Clock
tpHL
~
........
Low-to-High Level Output
01
0
ns
G
27
13
Clock High
12
15
Clock Low
28
13.5
Clear or Preset Low
16
25
High Level Data
ot
lOt
Low Level Data
ot
15t
ot
5t
Hold Time(4)
~
:I:
20
....
-..J
:I:
-..J
N
ns
~
-..J
W
ns
~
ns
~
-..J
~
-..J
Q)
Notes
(4) .} t The arrow indicates the edge of the clock pulse used for reference; t for the rising edge,
~
+for the falling edge.
00
~
~.
'"T1
0"
'C
(II
-_ ... _ - - - -
--_ .. -
-------------------
----
-
-
-
-------
-
Electrical Characteristics
~
over recommended operating free-air temperature range (unless otherwise noted).
DM54U74L
L71, L72
CONDITIONS
PARAMETER
MIN
VIH
High Level Input Voltage
Vil
Low Level Input Voltage
TVP(1)
MAX
High Level Output Current
VOH
High Level Output Voltage
VOL
II
Vee
::0
Min, V'H "" 2V
Low Level Output Current
Low Level Output Voltage
IIH
MIN
TVP(1)
MAX
MIN
TVP(1)
0.6
V
0.7
0.6
0.7
0.7
0.7
0.7
-200
-200
-200
-200
DM54L
2.4
3.3
2.4
3.3
2.4
3.3
2.4
3.3
DM74L
2.4
3.2
2.4
3.2
2.4
3.2
2.4
3.2
DM54
2
2
2
2
DM74
3.6
3.6
3.6
3.6
DM54L
0.15
0.3
0.15
0.3
0.15
0.3
0.15
0.3
V 1L
DM74L
0.2
0.4
0.2
0.4
0.2
0.4
0.2
0.4
Max, IOL ::::: Max
Iflput Current at
R, S, J, K, or 0
100
100
100
100
Clear
200
200
300
400
Vee
High Level Input Current
Max, V, o5.5V
200
200
200
200
Clock
200
200
200
400
R, S, J, K, or 0
10
10
10
10
20
20
30
40
20
20
20
20
Clock
-200
-200
20
-400
R,S.J, K, or 0
-(J.18
-(J.18
-(J.18
-(J.18
-0.36
-(J.36
-0.36
-0.72
-(J.36
-(J.36
-(J.18
-(J.36
-0.36
-(J.36
-(J.36
-(J.72
Vee
Preset
low level I nput Current
0
Clear
Vee
Preset
0
0
Max, V, o2.4V
Max, V, °0.3V
Clock
loS
Short Circuit Output Current
Vee
= Max
IcC
Supply Current
Vee
0
Notes
(1) All typical values are at VCC 5V, TA = 25°C.
(2) With all outputs open, ICC is measured with the
-3
-9
-15
-3
1.44
0.76
Maxl2)
-9
1.52
-15
2.88
-3
--9
1.6
-15
3.0
-3
-9
1.52
V
I"A
V
Vee::::: Min, V 1H = 2V
=;
(J)
(J)
MAX
2
Maximum Input Voltage
Clear
til
MAX
UNITS
L78
2
0.6
Preset
6Q)
TVP(1)
2
Clock Input
V!L ::::: Max, IOH = Max
IOl
MIN
2
All Other Inputs
IOH
L74
L73
-15
2.88
rnA
V
I"A
0
3:
I"A
U1
.j::o.
......
0
rnA
3:
~
Ci
Ci
N
~
rnA
rnA
Ci
~
.-
0
Q
and Q outputs high in turn. At the time of measurement, the clock input is grounded.
Ci
.j::o.
Ci
CO
"T1
~
"T1
6"
tI
III
_ ..
--
-_.
--
-
----
Switching Characteristics
at Vee; 5V, T A
;
~
25°C
DM54L/74L
FROM
(INPUT)
PARAMETER
L71, L72, L73, L78
-
Maximum Clock Frequency
tpLH
Prop~gation
6
Delay Time,
Preset or Clear
Low-to-High Level Output
Oor
I
Propagation Delay Time,
High-to-Low Level Output
tpLH
CONDITIONS
MIN
fMAX
tpHL
TO
(OUTPUT)
0
-' (Clock High)
Preset or Clear
(Clock Low)
OorO
Clock
OorO
C L ; 50 pF, RL ; 4
Propagation Delay Time,
Pulse Width
a,
....,
MIN
6
TYP
UNITS
MAX
U)
U)
-
MHz
11
35
75
40
60
60
150
60
120
150
60
120
10
35
75
10
50
90
10
60
150
10
60
120
ns
ns
ns
Propagation Delay Time,
High-to-Low Level Output
tw
MAX
11
kn
Low-to-High Level Output
tpHL
TYP
L74
Clock High
100
75
Clock Low
100
75
Clear or Preset Low
100
75
ns
C
s:<11
tSETUP
Setup Time(3)
ot
50t
ns
~
.......
tHOLD
Hold Time(3)
ot
15t
ns
s:
C
~
~
Notes
(3)
t.J, The arrow indicates the
~
Ci
N
edge of the clock pulse used for reference: t for the rising edge 4. for the falling edge.
Ci
to)
Ci
~
Ci
CO
"T1
'9'
"T1
0'
'C
(II
-
-
-
-
-
--- - -
- - - - _ .. _--
----
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted).
~
DM54LS/74LS
PARAMETER
LS73. LS76, LS107
LS112, LSl13
CONDITIONS
MIN
V,H
High Level Input Voltage
V,L
Low level Input Voltage
V,
Input Clamp Voltage
High Level Output Current
VOH
High Level Output Voltage
VOL
Vee;:: Min, V 1H
=
2V
V 1L "'- Max. IOH
= -40QuA
Low Level Output Current
Low Level Output Voltage
Vee
= Min
I I OL
V 1H '" 2V
Input Current at Maximum
=
V,
D, J, K, or k
Input Voltage
Clear
m
00
Preset
Vee
= Max
~ Max
l' Ot -4mA
Max
~
7V
V,
5.5V
High Level Input Current
r
DM74
0.8
0.8
0.8
0.8
-1.5
-1.5
-1.5
-1.5
-400
-400
-400
-400
DM54
2.5
DM74
2.7
3.4
2.5
3.4
2.7
(2)
(4)
2.5
3.4
-2.5
3.4
3.4
2.7
3.4
2.7
3.4
DM54
4
4
4
4
OM74
8
8
8
8
0.25
0.4
0.25
0.4
0.25
DM74
0.35
0.5
0.35
0.5
0.35
DM74
0.4
0.4
0.25
0.4
0.5
0.35
0.5
0.6
0.2
0.2
0.2
20
120
80
60
40
60
40
80
40
160
40
D,J,Kor K
-0.36
-0.4
-0.36
-0.4
Clear
-0.8
-1.2
-1.6
-1.6
-0.8
-0.8
-0.8
-0.8
-0.72
-0.8
-1.44
-0.8
Supply Current
Vee
=:
Max(3)
4
-30
8
-130
4
8
-30
-130
4
8
....
~
'"
~
rnA
"'"
0)
CO
:...
....
0
20
-130
""3:0
W
0.8
20
-30
~
en
....
0.2
0.4
U'I
r-
r-
0.3
0.3
5.5V
60
Vee ~ Max(2)
V
0.4
0.3
5.5V
Vee"" Max, VI == OAV
rnA
0.1
0.3
0
3:
en
0.1
0.1
0.1
Vee =- Max, V, = 2.7V
V
/1A
0.4
0.4
0.4
-
V
V
20
Current
(3)
3.4
DM54
en
en
V
2
60
Short Circuit Output
Notes
(1) All typical values are at Vee
MAX
D,J,K or K
Preset
Icc
TYP(1)
0.7
Clock
los
MIN
0.7
Clock
Low Level I nput Current
MAX
Clear
Preset
I,L
TYP(l)
UNITS
0.7
V, -7V
I'H
MIN
2
2
V, -7V
V,
MAX
LS109
0.7
VI -7V
Clock
TYP(1)
5.5V
V,
V,
MIN
LS78, LSl14
DM54
Vee"" Min, II "" -18 rnA
V1L
I,
MAX
2
10H
10L
TYP(1)
LS74
-30
4
:...
pA
0
CD
:...
~
N
:...
rnA
~
W
:...
~
~
~130
rnA
0
8
rnA
!.
C
!!
= 5V, TA
25°C.
Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement; the clock input is grounded.
=:
National Semiconductor temporarily reserves the right to ship DM54/DM74LS73, LS74, LS76, LS78, LS107, LS109, LS112, LS113, LSl14
devices which have a minimum lOS
= 5.0 rnA.
_ .. -
_._.-
-
"9'
'TI
0'
"C
C/)
Switching Characteristics atV cc =5V,T A =25°C
~
DM54LSi74LS
PARAMETER
fMAX
Maximum Clock Frequency
tplH
PropagatIon Delay Time,
IpHL
FROM
(INPUT)
Low-ta-High Level Output
Clear, Preset, or Clock
Propagation Delay Time,
{as appropriate}
TO
(OUTPUT)
Oor
6.
CONDITIONS
CL
=
LS73, LS76, LS78, LS107
LS112, LS113, LS114
MIN
TYP
30
45
15pF,R L =2kU
Hlgh-ta-Low level Output
'w
Pulse WIdth
tSETUP
Setup Time(5J
tHOlO
MAX
LS74
MIN
TYP
25
33
LS109
MAX
MIN
TYP
25
33
MHz
20
13
25
13
25
ns
15
30
25
40
25
40
ns
20
25
25
Preset or Clear Low
25
25
25
High Level Data
201
251
201
Low Level Data
201
201
201
01
51
51
en
en
MAX
11
Clock High
Hold Tlme(5)
UNITS
ns
C
s:U1
~
r
en
ns
........
ns
....s:
C
~
Notes
(5) t t The arrow indicates the edge of the clock pulse used for reference: t for the rising edge,
-J.
for the falling edge.
r
....en
to)
m
to
",,-"
~
en
CO
:...
....0
:...
0
e.g
:...
....
N
....
:...
to)
:...
....
~
C
I:
~
"
"9'
"0'
"C
III
Electrical Characteristics
~
over recommended operating free-air temperature range (unless otherwise noted!.
DM74S
CONDITIONS
PARAMETER
S74
MIN
VIH
High Level Input Voltage
Vil
Low Level I nput Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
Vee
Vee
10l
Low Level Output Current
VOL
Low Level Output Voltage
II
Input Current at Maximum Input Voltage
IIH
High Level I nput Current
= Min, I, = -18 mA
= Min, V'H = 2V
= 0.8V, IOH = -1 rnA
2.7
= Max, V, = 5.5V
J, K, or 0
Preset
Vee
= Max, V, = 2.7V
Clock
III
Low Level I nput Current
TYP(1)
MAX
-1.2
-1.2
-1.2
-1
-1
-1
3.4
2.7
los
Icc
Supply Current
Vee
= Max(3}
20
mA
0.5
0.5
0.5
0.5
V
1
1
1
1
50
50
50
50
200
150
100
N/A
100
100
100
100
100
100
100
200
-4
-100
30
V
20
-7
-40
3.4
V
mA
20
-4
= Max(2)
2.7
3.4
V
20
-7
Vee
V
-1
2.7
50
-1.6
-100
30
50
Notes
(1) All typical values are at VCC = 5V, T A = 25"C.
(2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
(3) With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.
-14
-7
-7
-4
-40
-100
30
50
rnA
fJ.A
C
-1.6
N/A
-4
-40
C/)
C/)
MAX
-1.2
-1.6
Clock
TYP(11
2
0.8
-2
Short Circuit Output Current
MIN
0.8
-6
= Max, V, = 0.5V
MAX
UNITS
0.8
Clear
Vee
TYP(l)
2
J, K, or 0
Preset
MIN
S114
0.8
3.4
= Min, V'H = 2V
V'L = 0.8V, 10L = 20 mA
Vee
MIN
S113
2
Vee
Clear
.:..,
MAX
2
V'L
o
TYP(1)
S112
rnA
-8
-40
30
-100
mA
50
mA
3:
~
C/)
.....
,J:o
en...
N
en...
Co)
...
C/)
,J:o
C
c
!!!.
~
'CI
.."
S"
'C
(II
Switching Characteristics at Vee; 5V, T A ; 25°C
~
DM74S
FROM
(INPUT)
PARAMETER
fMAX
Maximum Clock Frequency
tpLH
Propagati on Del ay Ti me,
Low-to-High Level Output
-tPHL
Propagation Delay Time,
High-to-Low Level Output
tpLH
Preset or Clear
Preset or Clear
TO
(OUTPUT)
Oor
High)
II (Clock
(Clock Low)
CONDITIONS
S74
MIN
TYP
75
110
a
Oor 0
;
15 pF,
RL ;
280[1
Low-to·High Level Output
Clock
tpHL
Oor
tHOLD
125
6
2
4
7
9
13.5
2
5
7
5
8
2
5
7
6
9
2
4
7
Pulse Width
6
9
2
Clock High
6
Clock Low
7.3
6.5
Clear or Preset Low
7
8
Input Setup
High Level Data
3t
3-1,
Time(4)
Low Level Data
3t
3-1,
2t
0-1,
Input Hold Time(4)
Notes
141 t! The arrow indicates the edge of the clock pulse used for reference: t for the rising edge, .\. for the falling edge.
en
en
MHz
ns
ns
ns
Propagation Delay Time,
.:.,
tSETUP
80
0
H igh-to-Low Level Output
tw
TYP
Propagation Delay Time,
MAX
UNITS
MAX
MIN
4
CL
S112,Sl13,Sl14
5
7
6
ns
C
~
ns
ns
.....
~
en
.....
~
en
...
en
......w
......en
N
~
C
c:
Q)
::!!
"9
"T1
0'
'C
(/)
.,
Electrical Characteristics
DM54/74
CONDITIONS
PARAMETER
High Level Input Voltage
V,L
Low Level I nput Voltage
V,
IOH
High Level Output Current
High level Output Voltage
IOL
VOL
MIN
TYPll)
2
2
0.8
0.7
0.8
0.8
-1.5
-1.2
-1.5
N/A
N/A
-200
-400
3.4
V 1L
DM74
2.4
3.4
2.4
3.2
2.7
3.4
::::
Max
Vee = Max
Max
IOL =4mA
V,
=
5.5V
V,
=
7V
1000
N/A
2.7
V
V
i'A
V
3.4
DM54
16
2
4
N/A
DM74
16
3.6
8
20
DM54
0.2
OA
0.15
0.3
0.25
0.4
N/A
DM74
0.2
0.4
0.2
0.4
0.35
0.5
0.5
mA
V
C
OA
DM74
1
0.2
1
0.2
mA
N
I'H
I,L
High Level I nput Current
Vee
=
Max
V, = 2.4V
V,
Low Level I nput Current
Vee == Max
40
20
V, - 2.7V
=
40
0.3V
50
'-1.6
-0.6
mA
V, = 0.5V
los
ICCH
'eeL
Vee
Short Circuit Output Current
Supply Current, All Outputs High
Supply Current, All Olltputs Low
=
Max(2)
Vee = Max(3)
/lA
-0.36
V,=OAV
-20
-55
-3
-15
-30
-130
DM74
-18
-55
-3
-15
-30
-·130
N/A
-40
-100
DM54
30
43
2.2
4.4
6.1
10
N/A
DM74
30
50
2.2
4.4
6.1
10
50
36
57
3.8
6.68
Vee = Max(4)
s:
(J1
~
......
0
s:
l!
00
0)
-2
DM54
fJ)
fJ)
V
DM74
2.5
tOL ::::
UNITS
MAX
N/A
33
Max
TYPll)
2
2A
IOH ::::
MIN
0.7
3.4
Max,
586
MAX
0.7
2.4
Vee:::: Min
I nput Voltage
TYPll)
0.8
1,--18mA
Low Level Output Current
Input Current at Maximum
MIN
DM54
::::
DM74S
LS86, LS386
MAX
Vee:::: Min, V 1H = 2V
VIL
.:.,
L86
MAX
-800
Low Level Output Voltage
DM54 LS/74 LS
DM54
I, =-8 mA
Vee = Min
V'H = 2V
I,
TYP(11
2
Input Clamp Voltage
VOH
DM54l/74L
86
MIN
V,H
~
over recommended operating free-air temperature range (unless otherwise noted).
jrnA
fJ)
W
00
0)
75
rnA
rnA
m
X
(")
I""
C
Notes
All typical values are at V CC = 5V, T A = 25° C.
fJ)
(1)
pe shorted at a time, and for
(2)
Not more than one output should
(3)
leCH is measured with all outputs open, one input of each gate at 4.5V. and the other inputs grounded.
leeL is measured with all outputs open and all inputs at 4.5V.
(4)
DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.
<:m
6::D
C')
III
...
m
_.
__ ._-
--
Switching Characteristics
DEVICE
CONDITIONS
(FROM INPUT A OR B)
I
tpLH (ns)
Propagation Delay Time,
Low-to-High Level Output
TYP
86
Other I nput Low
15
23
11
18
30
13
17
22
I C L = 50 pF
Other I nput Low
37
60
21
60
= 4k[1
Other I nput High
25
60
35
60
= 15 pf
Other I nput Low
12
23
10
17
= 2k[1
Other Input High
18
30
13
22
= 15 pF
Other I nput Low
12
23
10
17
= 2k[1
Other I nput High
18
30
13
22
IC L =15pF
Other I nput Low
7
10.5
6.5
10
= 280[1
Other I nput High
7
10.5
6.5
10
IC
L
IC
L
RL
S86
~I
.:.
w
,
MAX
Other Input High
RL
LS386
TYP
= 400[1
RL
LS86
MAX
tpHL (ns)
Propagation Delay Time,
High-to-Low Level Output
I CL = 15 pF
RL
L86
~
atV cc =5V,T A =25°C
RL
m
m
c
3:
(J1
0l:Io
.......
c
3:
~
CD
en
Im
eN
CD
en
~
("')
E
m
<:m
6,;J
C)
!a
CD
III
Electrical Characteristics
~
over recommended operating free-air temperature range (unless otherwise noted).
DM54H/74H
CONDITIONS
PARAMETER
H103
MfN
VIH
High Level Input Voltage
VIL
Low Level I nput Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
TYP(1)
Vee
~
Min, II
Vee
~
Min, V IH
~
2V
O.BV, IOH
~
-500JlA
Min, V IH
~
2V
O.BV, IOL
~
20 mA
~
~
-B mA
2.4
V IL
II
Input Current at Maximum Input Voltage
IIH
High Level Input Current
Vee
~
~
~
Max, VI
~
Clear
Vee
~
Max, VI
~
Low Level I nput Current
0.2
5.5V
2.4V
Clock
Clear
Preset
Vee
~
Max, VI
~
O.4V
Clock
loS
Short Circuit Output Current
Vee ~ Max(2)
Icc
Supply Current
Vee
~
Max, (3)
TYP(1)
MAX
V
2
O.B
O.S
V
-1.5
-1.5
V
-500
-500
-500
2.4
3.4
2.4
0.4
0.2
0.4
0.2
mA
0.4
V
1
1
1
50
50
100
100
200
N/A
100
100
-1
-1
0
-1
-2
-1
-2
-1
-2
-1
-2
-1
-2
-2
-4
N/A
-1
-2
-1
-2
-3
-4.B
-3
-4.B
---u
-9.6
-40
-100
40
-40
76
= 5V, T A = 25 C.
(1)
All typical values are at VCC
(2)
Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
With all outputs open, ICC is measured with the Q and Q outputs high .in turn. At the time of measurement, the clock input is grounded.
0
-100
40
76
-40
40
JlA
20
50
0
-
V
3.4
20
NoteS
(3)
MIN
O.B
-1
0
Any J or K
MAX
-1.5
3.4
Any J or K
Preset
IlL
TYP(1)
20
Vee
Low Level Output Voltage
.:...
",.
MIN
en
en
UNITS
H10S
2
Low Level Output Current
VOL
MAX
2
V IL
10L
H106
mA
0
~
JlA
U'I
mA
.......
0
~
mA
J:
~
0
~
~
W
-100
mA
J::
76
mA
en
~
0
J:
~
0
00
0
C
!!..
;!;!
"0
I
."
0"
"0
fI)
'---------..
Switching Characteristics
FROM
(INPUT)
PARAMETER
f MAX
Maximum Clock Frequency
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Preset or Clear
Propagation Delay Time,
High-to-Low Level Output
tplH
~
atV cc :5V,T A :25°C
Preset or Clear
II Clock High
Clock Low
TO
(OUTPUT)
Oor
a
Oor
a
MIN
TYP
40
50
8
CL
:
25 pF,
RL :
280n
Propagation Delay Time,
Low-to-High Level Output
Clock
tpHL
CONDITIONS
Propagation Delay Time,
Oor
.:..,
Pulse Width
tSETUP Setup Time(4)
01
tHOLD
Clock High
10
15
Clear or Preset Low
16
Hold Time(4)
CJ)
CJ)
12
15
20
23
35
10
15
16
20
ns
ns
ns
Clock Low
I High Level Data
I Low Level Data
UNITS
MHz
a
High-to-Low Level Output
tw
MAX
lOt
13~
O~
ns
0
3:
(J'I
~
ns
.......
ns
3:
.....
0
~
Notes
t The arrow indicates that the falling edge of the clock pulse is used for reference.
(4)
...::I:
l:
...
...::I:
0
W
0
0'1
0
CIO
C
c:
Q)
"T1
'CI
"T1
5"
'C
!II
---_._-------
--
-----
Electrical Characteristics
CONDITIONS
PARAMETER
MIN
Vol~age
VT+
Positive-Going Threshold
VT-
Negative-Going Threshold Voltage at A Input
at A Input
VT+
Positive-Going Threshold Voltage at B Input
V T-
Negative-Going Threshold Voltage at B Input
VI
Vee"" Min
Vee
=
Vee
=
.:..,
IOH
High Level
High Level Output Voltage
VOL
I,
=
= -400fJ.A
Low Level Output Current
Low Level Output Voltage
Input Current at Maximum Input Voltage
Min
Vee::: Max
High Level I nput Current
10L = 8 mA
Supply Current
TYP(l)
1.0
1.4
0.7
1.0
DM74
0.8
1.4
0.8
1.0
DM54
0.8
1.35
0.7
0.9
DM74
0.8
1.35
0.8
0.9
2
1.0
V, - 2.7V
Vce = Max(2)
Vee = Max
2
2.4
3.4
2.5
3.5
DM74
2.4
3.4
2.7
3.5
2
V
fJ.A
V
16
4
DM74
16
8
0.2
V
V
DM54
DM74
V
V
-400
DM54
en
en
MAX
-1.5
0:25
0.4
0.35
0.5
mA
V
0.4
1
V, = 7V
V, = 2.4V
UNITS
-1.5
V, = 5.5V
Low Level Input Current
Short Circuit Output Current
MIN
10L = 4 mA
:=;
Vee = Max, V, = O.4V
ICC
2
-400
'.
los
MAX
1.4
-18 mA
Vee = Min
Vee::: Max
III
TYP(l)
0.8
10L = 16 mA
IIH
LS221
Current
Vee
II
121
1.55
Vee == Min
10H
0)
DM54LS/74LS
DM54
Min
Vee = Min
V OH
IOl
Min
DM54/74
1,=-12mA
Input Clamp Voltage
O~tput
~
over recommended operating free-air temperature range (unless otherwise noted).
0.1
Al or A2
40
B
80
mA
0
~
fJ.A
......
U1
20
All
Al or A2
-1.6
--0.36
B
-3.2
--0.44
Clear
N/A
-{).54
DM54
-20
-55
-30
-150
DM74
18
-55
-30
-150
Quiescent
13
25
4.7
11
Triggered
23
40
19
27
~
0
~
I1)A
~
...
....
N
mA
r-
en
N
N
mA
....
0
::l
Notes
(1) All typical values are at VCC ~ 5V, T A ~ 25°C.
(2) Not more than one output should be shorted at a time, and for DM54LS221/DM74LS221, duration of short circuit should not exceed one second.
LS221 To Be Announced In 1976
CD
en
:r
...
0
1/1
Switching Characteristics at Vee = 5V, T A = 25° C
PARAMETER
~
FROM
(INPUT)
TO
(OUTPUT)
DM54/74
DM54LS/74LS
121
LS221
CONDITIONS
MIN
TYP
MAX
TYP
Al or A2
Q
45
70
45
70
ns
tpLH
Propagation Delay Time, Low-ta-High Level Output
B
Q
35
55
35
55
ns
tplH
Propagation Delay Time, low-ta-High Level Output
Clear
Q
CT = 80 pF
65
ns
tpHL
Propagation Delay Time, High-ta-Low Level Output
Al or A2
Q
RINT to Vee
50
80
ns
tpHL
Propagation Delay Time, High-ta-Low Level Output
B
Q
40
65
ns
tPHL
Propagation Delay Time, High-to"Low Level Output
Clear
Q
55
'"
tW(OUn
Output Pulse Width
CT
50
80
R T =2kSl
40
65
C L =15pF
RL
I nternal Timing Resistor
= 400~2
N/A
CT -- 80 pF
70
CT
Al, A2 or B
External Timing Resistor
Oar
6.
=
RINT
110
150
30
50
700
800
0
to Vee
C, = 100 pF
RT
=
10 kU
CT
"
1~F
R T =10kU
600
6
80 pF
N/A
7
8
CL
=
15 pF
RL
=
2 kU
C EXT =80pF
R EX1 = 2 ki2
CE X
T =
R EXT
=
2 kSZ
CT = 100pF
R T =10kU
CT
RT
70
120
150
20
47
70
600
6-10
750
6
67
75
0
0
1V F
=
10kU
tWON)
Input Pulse Width
50
40
tWICLEAR)
Clear Pulse Width
N/A
40
dv/dt
Rate of Rise or Fall
Schmitt Input, B
1
1
of Input Pulse
Logic I nput, A
REXT
External Timing Resistance
CEXT
External Timing Capacitance
tsETUP
Clear-Inactive State Setup Time
Duty Cycle
1
ns
1
VifJs
30
DM54
14
70
DM74
14
40
DM74
14
100
0
1000
1000
15
RT = 2 kll
67
RT
RT
90
RT = Max RT
=
Max
c
ms
Vis
1.4
N/A
ns
ns
DM54
0
(f)
(f)
MAX
Propagation Delay Time, Low-ta-High Level Output
RINT to Vee
-..J
MIN
tplH
Zero-Timing Capacitance
.:.,
CONDITIONS
UNITS
2Hl
67
90
kS2
0
3:
vF
U1
ns
.......
0
oS
~
3:
.....
.
REX1
....
....N
~
(f)
N
....N
0
::::I
CD
(f)
':!'
...
0
III
---
--
--
--
. Electrical Characteristics
PARAMETER
CONDITIONS
MIN
VIH
High Level Input Voltage
Vil
Low Level Input Voltage
VI
High Level Output Current
VOH
High Leyel Output Voltage
~
00
VOL
II
IIH
123
L123A
LS122, LS123
TYP(1)
MAX
MIN
TYP(1)
Vee = Min, IOH = Max(3)
Vee = Min IOL = Max
(3)
IOL = 4 mA
Input Current at Maximum Input Voltage
Vee = Max
2
Vee = Max
Data Inputs
Clear Input
los
Short Circuit Output Current
Icc
Supply Current (Quiescent or Triggered)
MIN
TYP(1)
2
V
0.7
0.7
DM74
0.8
0.8
0.8
-1.5
-N/A
-1.5
-200
-400
DM54
2.4
3.4
2.4
3.4
2.5
'3.5
DM74
2.4
3.4
2.4
3.4
2.7
3.5
DM54
16
2.0
4
16
3.6
8
0.2
0.4
DM74
0.2
0.4
0.22
0.3
0.25
0.4
0.4
0.35
0.5
0.25
0.4
DM74
VI = 5.5V
1
0.1
VI=7V
0.1
40
V
/lA
mA
0
V
20
mA
-10
/lA
-{l.18
-{l.4
-1.6
-Q.18
-Q.4
-12
-2.5
LS122
Vee = Max(4)(5)(6)
Others
46
66
5
7.5
N
N
:..
N
-1.6
-40
~
...
W
20
Vee = Max(2) (3)
s:....
r-
10
VI = 2.7V
Vee = Max, VI = O.4V
~
........
0
10
80
s:UI
en
VI = 2.7V
VI = 2.4V
V
V
DM74
DM54
en
en
MAX
0.8
VI = 2.4V
Data Inputs
MAX
UNITS
DM54
-800
Low Level Output Voltage
Low Level I nput Current
DM54 LS/74 LS
I
Clear Input
IlL
DM54L174L
.111=-12mA
Vee = Min
II =-18 mA
Low Level Output Current
High Level Input Current
DM54/74
2
Input Clamp Voltage
10H
10l
~
over recommended operating free·air temperature range (unless otherwise noted).
-30
-150
6
11
12
20
:...
N
mA
W
mA
0
»
C
0
m
mA
:::l
CD
-
en
:::l"
0
...
1/1
Switching Characteristics
PARAMETER
FROM
(INPUT)
Propagation Delay Time,
A
LON-ta-High Level Output
B
Propagation Delay Time,
A
High-ta-Low Level Output
B
DM54/74
DM54l/74L
123
L123A
TO
(OUTPUT)
CONDITIONS
tplH
tpHL
Q
D
Q
High-ta-Low Level Output
Propagation Delay Time,
Low-ta-High Level Output
tWQ(MIN) Minimum Width of Pulse
Aor B
at Output 0
Width of Pulse at Output
tWQ
C EXT
"'"
0
TYP
MAX
TYP
MAX
120
175
22
33
19
28
86
135
29
44
30
40
120
180
30
45
27
36
86
135
37
56
18
27
R EXT = 32 k[1
C L = 15 pF
18
27
Pulse Width
-:.,
<0
C L =15pF
RL = 2 kQ
30
45
Q
45
65
220
330
116
200
ns
34.0
37.4
4.5
5
ns
Q
R EXT = 10 kQ
C L =15pF
CEXT = 1000 pF
2.76
3.03
3.37
R EXT = 100 kQ
C L = 50 pF
CEXT = 1000 pF
30.6
RL = 4 kQ
R EXT = 10 k[1
C L = 15 pF
130
40
40
130
~
(J'1
ns
.j:a
........
40
~
5
25
5
200
5
225
DM74
5
50
5
400
5
360
0
kQ
~
-.J
.j:a
No Restriction
~
DM74
No Restriction
r
No Restriction
50
40
50
50
50
50
pF
...en
N
N
:...
N
Vee
(2)
Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
Ground CEXT to measure VOH at Q, VOL at
or lOS at O. CEXT is open to measure VOH at 5, VOL at Q, or lOS at Q.
Quiescent i-cc is measured (after clearing) with 2.4V applied to all clear and A inputs, B inputs grounded, all outputs open, CEXT:=: O.02JJ.F, and REXT = 25 krl.
ICC is measured in the triggered state with 2.4V applied to all clear and 8 inputs. A inputs grounded, all outputs OPen, CEXT = O.02,uF, and REXT = 25 krl.
With all outputs open and 4.5V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5V, is applied to clock. (LS122, LS123)
(6)
0
40
All typical values are at
(5)
4
RL = 2 kQ
Notes
(4)
ns
140
( 1)
(3)
ns
95
I
Terminal
ns
40
40
Wiring Capacitance at
REXT/CEXT
65
130
External Capacitance
C W1RE
45
40
External Timing Resistance
CEXT
C L = 50 pF
I A or B Inputs High
A or 8 Inputs Low
MAX
30
CEXT = 1000 pF
I Clear Low
REXT
C EXT = 0
TYP
en
en
REXT = 5 k[1
RL = 4 kQ
RL = 400Q
tw
a
CONDITIONS
MIN
UNITS
33
GEXT =
MIN
LS122, LS123
D
Q
A or B
CONDITIONS
DM54LS/74LS
22
RL = 400Q
Clear
tpLH
MIN
R ExT = 5 kQ
Propagation Delay Time,
tpHl
~
atV cc =5V,T A =25°C
= 5V, TA == 25°C.
a,
to,)
:..
N
to,)
:t>
0
C
Q)
LS122, LS123 To Be Announced In 1976
0
::l
CD
en
:r
...
0
1/1
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted).
PARAMETER
CONDITIONS
MIN
V'H
High Level Input Voltage
V'L
Low Level Input Voltage
VI
10H
VOH
I nput Clamp Voltage'
Vee: Min
Vee: Min, V ,H
High Level Output Voltage
0;::
~
2V
Max, IOH = Max
Low Level Output Current
Low Level Output Voltage
o
IIH
III
los
Icc
Vee
~
Min
V ,H
:
2V
V jL
:=
Max
IOL :::.:
Max
IOL ~4n:A
Off-State (High Impedance State)
Output Current
II
Input Current at Maximum Input Voltage
High Level I nput Current
Low Level I nput Current
Short Circuit Output Current
Supply Current
125,126
LS125, LS126
S134
TYP(1)
MAX
MIN
TYP(1?
V'L : O.7V
~
V ,H
~
Vee
Max
V'L : O.8V
~
Max
Vee: Max
Vee: Max
Vee
~
Max(2)
Vee: Max
V,
~
t/)
t/)
MAX
V
0.8
0.7
N/A
DM74
0.8
0.8
0.8
-1.5
-1.2
V
-1.5
DM54
-2.0
-1.0
N/A
DM74
-5.2
-2.6
-6.5
DM54
2.4
3.3
2.4
3.4
DM74
2.4
3.1
2.4
3.1
V
16
8
16
16
20
DM54
0.4
0.4
N1A
DM74
0.4
0.5
0.5
Va
~
mA
3.2
DM74
DM74
V
N/A
2.4
DM54
N/A
rnA
C
V
Va
~
0.5V
Va
~
2.4V
C
s:
20
-40
/1A
-50
40
5.5V
1
(J1
~
N
1
rnA
0.1
V,: 2AV
40
V, : 2.7V
20
V,: O.4V
-1.6
/1A
50
-0.4
mA
-2
-30
-70
-30
-130
DM74
-28
-70
-30
-130
See Table
en
en
->
W
~
~
V,: 0.5V
DM54
...
~
N
50
V, : 7.0V
(J1
........
-20
2.7V
s:
~
0.4
Notes
111 All typical values are at Vee = 5V, T A = 25°C.
.121 Not more than one output should be shorted at a time, and for DM54LS/OM74LS and DM74S, duration of short circuit should not exceed one second.
131 Data for DM54LS/74LS125, 126 is preliminary.
LS125, .LS126 To Be Announced In 1976
TYP(1)
UNITS
DM54
Vo~O.4V
2V
MIN
~
2
Vo~O.4V
Vee
MAX
2
1,:-12rnA
High Level Output Current
00
10iOFF)
DM74S
I, :-18rnA
,
VOL
DM54 LS/74 LS
2
V lL
IOL
DM54174
N/A
-40
:::0
,
en
rnA
-100
i
~
~
m
IXJ
t:
.....
.....
CD
...
C/I
Supply Currents
~
CONDITIONS
DEVICE
I
OUTPUT
INPUTS
CONTROLS
OV
125
(J)
Icc (rnA)
DATA
MIN
TYP(1)
MAX
4.5V
32
54
1W
W
W
~
~
LS125
OV
4.5V
11
18
LS126
OV
OV
12
21
S134
OV
OV
7
13
5V
OV
9
16
5V
5V
14
25
Switching Characteristics at
Vee ~ 5V,
TA
~
~ 25°C
DM54/74
Co I
PARAMETER
CONDITIONS
125
MIN
tpLH
I
tpHL
I
Propagation Delay Time,
Low-la-High Level Oulput
Propagation Delay Time.
High-to-Low Level Output
----------1
tZH
I
Output Enable Time
to High Level
C ~ 50 pF
L
RL ~ 400[2
RL
~ 2 krl
(LS)
I.
DM54LS/74LS
126
TVP
MAX
10
12
MIN
LS125
TYP
MAX
15
10
18
12
MIN
TVP
MAX
15
10
18
12
MIN
CONDITIONS
TVP
MAX
15
10
15
18
12
18
I
Output Enable Time
to Low Level
Output Disable Time
tHZ
tLZ
I
U1
~
TVP
MAX
C ~ 15 pF. R ~ 280[2
CL ~ 50 pF, RL ~ 280[2
4
5.5
6
9
ns
CL ~ 15 pF. RL ~ 280[2
CL - 50 pF. RL ~ 280[2
5
7
7.5
11
ns
.......
o
3:
...,
~
.....
N
181
_
13
191
_
12
181
_
13
I
191
.
25
16
25
10
16
16
25
16
~
50 pF, RL
~
13
19.5 I
ns
N
0)
280[2
I
25
:.
14
21
I
ns
en.....
w
~
~
----------1
Output Disable Time
RL ~ 2 krl (LS)
From Low Level
3:
U1
12
16
CL 5 pF
RL ~ 400[2
From High Level
I UNITS
S134
MIN
CL
tZL
o
DM74S
LS126
I
5
9
8
14
I
14
20
1
5
9
8
14
I
10
14
16
20
I
5.5
8_5
9
14
I
ns
CL ~ 5 pF. RL ~ 280[2
ns
-I
::JJ
in
-I
~
m
OJ
s::
....
....
CD
iil
Electrical Characteristics
CONDITIONS
PARAMETER
MIN
60
'"
~
over recommended operating free-air temperature range (unless otherwise notedL
DM74S
S135
TYP(1)
UNITS
MAX
VIH
High Level Input Voltage
2
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
IOL
Low Level Output Current
VOL
Low Level Output Voltage
Vee ~ Min, V'H ~ 2V,V'L ~ O_BV, IOL ~ 20 mA
II
Input Current at Maximum Input Voltage
Vee
~
Max,V,
~
5.5V
1
mA
IIH
High Level Input Current
Vee
~
Max, V,
~
2.7V
50
IlA
IlL
Low Level I nput Current
Vee
~
Max, V,
~
0.5V
lOS
Short Circuit Output Current
Vee
~
Max(2)
Icc
Supply Current
Vee ~ Max(3)
Vee
~
Min, I,
~
0_8
V
-1-2
V
-1
2.7
3.4
-40
65
mA
V
20
mA
0.5
V
-2
mA
-100
mA
99
mA
C
3:
~
...
en
Notes
Vee =
(1)
All typical values are at
(2)
Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
ICC is measured with the inputs grounded and the outputs open.
(3)
-
V
-18 mA
Vee ~ Min, V'H ~ 2V, V'L ~ O.BV, IOH ~ -1 mA
en
en
5V, T A
:=
W
25° C.
U'I
m
X
n
rC
en
<:
m
0
::D
Z
0
::D
C>
.~
CD
1/1
- - --
.
- - - - - - _ .. -
--- - - - - - - - - -
"----
Switching Characteristics at Vee
~
= 5V, TA = 25°C
..
DM74S
FROM (INPUT)
PARAMETER(4)
CONDITIONS
S135
MIN
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-ta-Low Level Output
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-te-Low Level Output
tpLH
Propagation Delay Time, Low-te-High Level Output
tPHL
Propagation Delay Time, High-to-Low Level Output
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-te-Low Level Output
tpLH
Propagation Delay Time, Low-te-High Level Output
tpHL
Propagation Delay Time, High-to-Low Level Output
tpLH
Propagation Delay Time, Low-te-High Level Output
tpHL
Propagation Delay Time, High-te-Low Level Output
TYP
MAX
Aar B
B or A" L, C" L
8.5
11
13
15
ns
Aar B
B or A" H, C" L
8
9
12
13.5
ns
A or B
B or A" L, C" H
10
6.5
15
10
ns
8.5
7
12
11
ns
8
9.5
14.5
CL
tpLH
UNITS
A or B
B or A" H, C" H
C
A"B
C
A*B
"
15 pF,
RL
en
en
"280£2
7.5
8
12
11.5
12
ns
ns
00
w
C
3:
-..I
.
~
en
-'
W
(11
m
X
C")
r
C
en
<:m
0
:XI
I
Z
0
:XI
G)
II)
SIII
Electrical Characteristics
CONDITIONS
PARAMETER
MIN
VIH
High Level I nput Voltage
VIL
Low Level Input Voltage
VI
Input Clamp Voltage·
IOH
High Level Output Current
VOH
High Level Output Voltage
IOL
Low Level Output Current
Low Level Output Voltage
...00
II
Input Current at Maximum Input Voltage
IIH
High Level I nput Current
IlL
Low Level Input Current
Icc
Supply Current
DM54LS/74LS
DM74S
LS136,LS266
S136
TYP(11
MAX
2
Vee
Vee
V ,L
VOL
~
over recommended operating free-air temperature range (unless otherwise noted!.
~
~
~
Min, I,
~-18
Min, V ,H
Vee
~
Min
V ,H
~
2V
V ,L
~
Max
4 mA
~
Max
0.8
-1.5
-1.2
5.5
5.5
4
N/A
DM74
8
20
DM54
0.25
0.4
N/A
DM74
0.35
0.5
0.5
DM74
s:
V
.......
U'I
5.5V
V,
~
7V
0.2
2.7V
40
V,~O.4V
-0.6
~
~
Notes
(11 All typical values are at Vee ~ 5V, T A~ 25"C.
(21 Icc is measured with one input of each gate at 4.5V, the other inputs grounded, and
s:
"-I
....W
,...Ol
V
mA
V
50
-2
LS136
6.1
10
8
13
0
::s
1
Others
en
N
Ol
Ol
'C
CD
0.5V
Vee ~ Max(2)
I1A
0.4
~
V,
250
DM54
V,
~
0
V
.~
~
Vee
N/A
0.8
100
IOL
Max, V,
0.7
DM74
5.5V
Max
~
V
DM54
2V
~
~
Vee
MAX
2
mA
IOL
Vee ~ Max
TYP(1)
en
en
0
~
Max, V OH
MIN
UNITS
50
75
mA
/lA
mA
mA
(")
0
i(')
g
.
m
X
(")
r-
C
en
<:m
th~
outputs open.
0
::c
Z
0
::c
C)
I»
CD
,..
rJl
Switching Characteristics at Vee = 5V, T A = 25°C
PARAMETER
FROM
(INPUT)
~
CONDITIONS
MIN
tpLH
I Propagation Delay Time,
Low-to-High Level Output
tPHL
I Propagation Delay Time,
Aor B
Other Input Low
I
tpLH
I Propagation Delay Time,
Low-to-High Level Output
tpHL
I Propagation Delay Time,
High-to-Low Level Output
AorB
Other Input High
I
DM74S
LS136,LS266
S136
CJ)
CJ)
TYP
MAX
18
30
8
12.5
18
30
7.5
12
ns
1(11
18
30
8
12.5
ns
0
13:
18
30
7.5
12
ns
MIN
TYP
UNITS
MAX
I
ns
·0
3:
= 15 pF
RL = 2 kQ (54LS/74LS)
RL = 280Q (74S)
CL
High-to-Low Level Output
DM54LS/74LS
,J:Io
"
"...
,J:Io
I~
i-
CJ)
N
0)
0)
60
(Jl
0
'tI
CI)
:J
(1
!2.
CD
(')
g
....
m
X
(1
rC
CJ)
<:
m
0
:::c
Z
0
:::c
C')
...
II)
CI)
C/l
Electrical Characteristics
PARAMETER
CONDITIONS
DM54/74
DM54 LS/74 LS
365,366,367,368
LS365,LS366
LS367, LS368
MIN
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VI
IOH
VOH
IOL
00
a>
VOL
TYP(1)
MAX
2
Input Clamp Voltage
DM54
0.8
0.7
0.8
0.8
-1.5
-1.5
DM54
-2.0
-1.0
DM74
-5.2
-2.6
DM54
2.4
3.1
2.4
3.4
V IL = Max, IOH = Max
DM74
2.4
3.1
2.4
3.1
DM74
32
16
IOL = 16 mA, DM74
IOL = 32 mA
Vee = Max
V IH = 2V
0.5
IIH
IlL
High Level I nput Current
Vo = 0.4V
-40
Vo = 2.4V
40
Low Level Input Current
A Input
Short Circuit Output Current
ICC
Supply Current
VI = 2.7V
20
Vee = Max
-40
-20
-1.6
-0.4
-1.6
-0.4
-115
-40
Vee = Max(2)
3:
~
W
Ol
C1I
W
Ol
.....
mA
Ol
CO
-t
:JJ
,
40
VI", 0.4V
G Input
los
0.1
Vee = Max VI = 0.4V, Both G Inputs at O.4V
........
W
20
VI = 0.5V, Both G Inputs at 2V
3:
.j:I.
W
I1A
1
VI = 2.4V
C
Ol
Ol
-20
VI = 7.0V
Vee = Max
V
0.4
VI = 5.5V
Vee = Max
mA
0.4
Vo = 2.7V
Input Current at Maximum Input Voltage
mA
C
8
V IL = Max
V
C1I
32
V IH = 2V
V
V
DM54
IOL =8mA
-
MAX
DM74
Vee = Min
en
en
V
Vee = Min, V IH = 2V
Low Level Output Current
Low Level Output Voltage
TYP(1)
11=-18mA
High Level Output Current
High Level Output Voltage
MIN
UNITS
2
II =-12 mA
Vee = Min
IOIOFF) Off-State (High Impedance State) Output Current
II
~
over recommended operating free-air temperature range (unless otherwise noted).
-30
-130
365, LS365,367, LS367
65
85
22
28
366, LS366, 368, LS368
59
77
20
26
I1A
I1A
mA
rnA
~
~
m
J:
~
OJ
C
rnA
::t
...
(I)
(I)
-_ ... _--_ .. _
...
_-----
at Vee ~ 5V, T A ~ 25°C
Switching Characteristics
DM54/74
PARAMETER
tPLH
CONDITIONS
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-to-Low Level Output
tZH
Output Enable Time to High Level
tZL
Output Enable Ti me to Low Level
tHZ
Output Disable Time From High Level
CL
C,Output Disable Time From Low Level
tLZ
Notes
111 All typical values are at Vee
121
131
= 50 pF,
= 5 pF,
RL
RL
= 400D.
= 400D.
365,367
366,368
TYP
MAX
TYP
MAX
10
16
11
17
14
22
10
16
21
35
21
35
24
37
24
6
11
6
CONDITIONS
27
16
LS365, LS367
TYP
MAX
16
LS366, LS368
TYP
UNITS
17
ns
16
ns
35
35
ns
37
37
37
ns
11
11
11
ns
27
27
ns
27
=
~
15 pF,
5pF,
RL
RL
= 2 kD.
en
en
MAX
22
CL
CL
16
~
DM54LS/74LS
= 2kD.
C
3:
(J1
=
5V, T A = 25° C.
Not more than one output should be
shor~ed
~
.......
at a time, and duration of short circuit should not exceed one second.
C
Data for DM54LS/74LS is preliminary.
3:
-..J
LS365, LS366, LS367, LS368 To Be Announced In 1976
~
to)
0')
Co
-..j
(J1
W
0')
0')
W
0')
-..J
W
0')
00
-I
::D
in
-I
~
m
::I:
CD
><
OJ
I:
...
CD
1/1
----
-------
National5emiconductor
54;/74 MSI DEVICES
Section 2
~ 54/74 MSI
Max Ratings/Operating Conditions
RATINGS
Maximum Allowable
Supply Voltage
Guaranteed Operating
Supply Voltage Range
54/74
54H/74H
SERIES
SERIES
7
54L/74L 54LS/74LS SERIES 54S/745
DIODE EMITTER'
SERIES
SERIES
INPUTS INPUTS
8
7
7
7
7
4.50 to 5.50
4.75 to 5.25
154
UNITS
V
V
Maximum Input Voltage
5.5
5.5
5.5
7
5.5
5.5
V
Maximum Voltage to Open·
Collector Outputs*
7
7
8
7
7
7
V
Operating Free-Air
Temperature Range
-55 to +125
p4
o to+70
Storage Temperature Range
-65 to +150
* Except for selected high voltage types, as specified in electrical tables.
2-ii .
~
54/74 MSI
Table of Contents
DM5441 A/DM7441 A
DM5442/DM7442
DM54 L42A/DM 74 L42A
DM54LS42/DM74LS42
DM5445/DM7445
DM5446A/DM7446A
DM5447A/DM7447A
DM54LS47/DM74LS47
DM5448/DM7448
DM54LS48/DM74LS48
DM54LS49/DM74 LS49
DM54 75/DM74 75
DM54L75A/DM74L75A
DM54LS75/DM74LS75
DM54LSn/DM74LSn
DM5483/DM7483
DM54LS83A/DM74LS83A
DM5485/DM7485
DM54L85/DM74L85
DM54LS85/DM74LS85
DM5488/DM7488
DM5489/DM7489
DM54L89A/DM74L89A
DM5490A/DM7490A
DM54L90/DM74L90
DM54LS90/DM74LS90
DM5491 A/DM7491 A
DM54L91/DM74L91
DM5492A/DM7492A
DM54LS92IDM74LS92
DM5493A/DM7493A
DM54L93/DM74L93
DM54LS93/DM74LS93
DM5495/DM7495
DM54L95/DM74L95
OM 54 LS95BIDM74 LS95B
DM5496/DM7496
DM54LS96/DM74LS96
DM54L98/DM74L98
DM54LS124/DM74LS124
DM54LS138/DM74LS138
DM74S138
DM54LS139IDM74LS139
DM74S139
DM54141/DM74141
DM54145/DM74145
DM54147/DM74147
DM54148/DM74148
DM54150/DM74150
DM54151A/DM74151A
DM54LS151IDM74LS151
DM74S151
DM54153JDM74153
DM54LS153/DM74LS153
Page
No.
Description
Device No.
BCD/Decimal
BCD/Decimal
BCD/Decimal
BCD/Decimal
BCD/Decimal
DecoderslDrivers
Decoders
Decoders
Decoders
Decoders/Drivers
BCDI7~Segment Decoders/Drivers
BCDI7~Segment Decoders/Drivers
BCDI7~Segment Decoders/Drivers
BCDI7~Segment Decoders/Drivers
BCDI7 ~Segment Decoders/Drivers
BCDI7 ~Segment Decoders/Drivers
Quad Latches
Quad Latches
Quad Latches
Quad Latches
4~Bit Binary Adders with Fast Carry
4~Bit Binary Adders with Fast Carry
4~Bit Magnitude Comparators
4~Bit Magnitude Comparators
4~Bit Magnitude Comparators
256~Bit Read Only Memories
64~Bit Read/Write Memories
64~8it Read/Write Memories
Decade, Divide by 12, and Binary Counters
Decade, Divide by 12, and Binary Counters
Decade, Divide by 12, and Binary Counters
8~Bit Serial Shift Registers
8~Bit Serial Shift Registers
Decade, Divide by 12, and Binary Counters
Decade. Divide by 12, and Binary Counters
Decade, Divide by 12, and 8inary Counters
Decade, Divide by 12, and Binary Counters
Decade, Divide by 12, and Binary Counters
4~Bit Parallel Access Shift Registers
4~Bit Parallel Access Shift Registers
4~Bit Parallel Access Shift Registers
5~Bit Shift Registers
5~Bit Shift Registers
4~Bit Storage Registers
Dual Voltage Controlled Oscillators
Decoders/Demu Iti plexers
Decoders/Demultiplexers
Decoders/Demu Iti p!ex ers
Decoders/Demu Iti plexers
BCD/Decimal Decoders/Drivers
8CD/Decimal Decoders/Drivers
Priority Encoders
Priority Encoders
Data Selectors/Multiplexers
Data Selectors/Multiplexers
Data Selectors/Multiplexers
Data Selectors/Multiplexers
Dual 4~Line to 1 ~Line Data Selectors/
Multiplexers
Dual 4-Line to 1 ~Line Data Selectors/
Multiplexers
2-iii
2·1
2·3
2~3
2~3
2~6
2~8
2~8
2~8
2~8
2~8
2~8
2~ 14
2~ 14
2~ 14
2~14
2~ 17
2~ 17
2~21
2~21
2~21
2~25
2~28
2~28
2~30
2~30
2~30
2~34
2~34
2~30
2~30
2~30
2~30
2~30
2~36
2~36
2~36
2-39
2-39
2-42
2~44
2-46
2~46
2-46
2~46
2-1
2~6
2-49
2-49
2~53
2~53
2~53
2~53
2~57
2~57
J
Mil
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Coml
Package
N
Mil
Coml
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
N/A
• •
N/A
• •
• •
• •
• •
• •
• •
• •
N/A
•
• •
.,
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
'.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
W
Mil
Coml
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
·••
'
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
N/A
• •
N/A
• •
• •
• •
• •
• •
• •
• N/A •
• •
• •
~~ 54/74
MSI
Device No.
DM74S153
DM54154/DM74154
DM54L 154A/DM74L 154A
DM54LS154/DM74LS154
DM54155/DM74155
DM54LS155/DM74LS155
DM54156/DM74156
DM54LS156/DM74LS156
DM54157/DM74157
DM54L157A/DM74L 157 A
DM54 LS157 /DM74LS157
DM74S157
DM54LS158/DM74LS158
DM74S158
DM54160A/DM74160A
DM54LS160/DM74LS160
DM54161 A/DM74161A
DM54LS161/DM74LS161
DM54162A/DM74162A
DM54l,.S162/DM74LS162
DM54163A/DM74163A
DM54LS163/DM74 LS163
DM54164/DM74164
DM54L 164A/DM74L 164A
DM54LS164/DM74LS164
DM54165/DM74165
DM54L 165A/DM74L 16,5A
DM54166/DM74166
DM54LS168/DM74LS168
DM54LS169/DM74LS169
DM74170
DM54LS170/DM74LS170
DM54173/DM74173
DM54LS173/DM74LS173
DM54174/DM74174
DM54LS174/DM74LS174
DM74S174
DM54175/DM74175
DM54LS175/DM74LS175
DM74S175
DM54176/DM74176
DM54177 /DM74177
DM54180/DM74180
DM54181/DM74181
DM54182/DM74182
Table of Contents
Package
Page
Description
'No.
Dual 4-Line to 1-Line Data Selectors/
Multiplexers
4-Line to 16-Line Decoders/Demultiplexers
4-Line to 16-Line Decoders/Demultiplexers
4-Line to 16-Line Decoders/Demultiplexers
Dual 2-Line to 4-Line Decoders/
Demultiplexers
Dual 2-Line to 4-Line Decoders/
Demultiplexers
Dual 2-Line to 4-Line Decoders/
Demultiplexers
Dual 2-Line to 4-Line Decoders/
Demultiplexers
Quad 2-Line to 1-Line Data Selectors/
Multiplexers
Quad 2-Line to 1 Line Data Selectors/
Multiplexers
Quad 2-Line to 1 Line Data Selectors/
Multiplexers
Quad 2-Line to 1-Line Data Selectors/
Multiplexers
Quad 2-Line to 1-Line Data Selectors/
Multiplexers
Quad 2-Line to 1-Line Data Selectors/
Multiplexers
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
8-Bit Serial In/Parallel Out Shift Registers
8-Bit Serial In/Parallel Out Shift Registers
8-Bit Serial In/Parallel Out Shift Registers
8-Bit Parallel In/Ser;al Out Shift Registers
8-Bit Parallel In/Serial Out Shift Registers
8-Bit Parallel In/Serial Out Shift Registers
Synchronous 4-Bit Up/Down Counters
Synchronous 4-Bit Up/Down Counters
4 by 4 Register Files
4 by 4 Register Files
TRI-STATE Quad 0 Registers
TRI-STATE Quad 0 Registers
Hex/Quad 0 Flip-Flops with Clear
He~/Quad 0 Flip-Flops with Clear
Hex/Quad 0 Flip-Flops with Clear
Hex/Quad 0 Flip-Flops with Clear
Hex/Quad 0 Flip-Flops with Clear
Hex/Quad 0 Flip-Flops with Clear
Presettable Decade and Binary Counters
Presettable Decade and Binary Counters
9-Bit Parity Generators/Checkers
Arithmetic Logic Unit/Function Generators
Look-Ahead Carry Generators
2-iv
J
Mil
2-60
2-60
2-60
2-63
2-63
2-63
2-63
2-66
2-66
2-66
•
•
•
•
•
•
•
•
•
2-70
2-70
2-70
2-70
2-70
2-70
2-70
2-76
2-76
2:76
2-79
2-79
2-82
2-85
2-85
2-91
2-91
2-96
2-96
2-98
2-98
2-98
2-98
2-98
2-98
2-101
2-101
2-105
2-107
2-113
,.
•
•
•
•
•
•
N/A
2-66
2-70
•
•
•
•
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
..
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
•
•
•
•
•
•
N/A
Coml
Mil
•
•
•
•
•
•
•
•
•
•
2-66
2-66
Mil
N/A
2-57 -
W
N
Coml
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Com I
N/A
(F)
(F)
(F)
(F)
(F)
(F)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
•
N/A
•
•
•
•
•
•
•
•
• •
• •
• •
• •
• •
• •
• •
• •
• N/A •
• •
•
N/A
•
•
•
•
•
• •
• •
N/A
• •
• •
•
•
N/A
N/A
N/A
•
N/A
N/A
•
~
54/74 MSI
Device No.
DM74S182
DM54184/DM74184
DM54185A/DM74185A
DM54187/DM74187
DM54L 187A/DM74L 187 A
DM54S189/DM74S189
DM54190/OM74190
DM54LS190/DM74LS190
DM54191/OM74191
DM54LS191/DM74LS191
DM54192/OM74192
DM54L 192/DM74L 192
DM54LS192/DM74LS192
DM54193/DM74193
DM54L 193/DM74L 193
DM54LS193/OM74LS193
DM54194/DM74194
DM54LS194A/DM74LS194A
DM74S194
DM54195/DM74195
DM54LS195A/DM74LS195A
DM74S195
DM54196/DM74196
DM54LS196/DM74LS196
DM54197/DM74197
DM54LS197/DM74LS197
DM54198/DM74198
DM54199/DM74199
DM54S200/DM74S200
DM54S206/DM74S206
DM54251/DM74251
DM54LS251/DM74LS251
DM74S251
DM54LS253/DM74LS253
DIIII74S253
DM54 LS257 /OM74LS257
DM74S257
DM54LS258/DM74LS258
DM74S258
DM54LS279/DM74LS279
DM74S280
Table of Contents
Page
No.
Description
Look-Ahead Carry Generators
BCD-to-Binary and Binary-to-BCD Converters
BCD-to-Binary and Binary-to-BCD Converters
1024-Bit Read Only Memories
1024-Bit Read Only Memories
TRI-STATE 64-Bit Read/Write Memories
Synchronous Up/Down Counters with
Mode Control
Synchronous Up/Down Counters with
Mode Control
Synchronous Up/Down Counters with
Mode Control
Synchronous Up/Down Counters with
Mode Control
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
4-Bit Bidirectional Universal Shift Registers
4-Bit Bidirectional Universal Shift Registers
4-Bit Bidirectional Universal Shift Registers
4-Bit Parallel Access Shift Registers
4-Bit Parallel Access Shift Registers
4-Bit Parallel Access Shift Registers
Presettable Decade and Binary Counters
Presettable Decade and Binary Counters
Presettable Decade and Binary Counters
Presettable Decade ahd Binary Counters
8-Bit Shift Registers
8-Bit Shift Registers
TRI-STATE 256-Bit Read/Write Memories
256-Bit Read/Write Memories with OpenCollector Outputs
TR I-ST ATE Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
TR I-ST ATE Quad 2-Data Selectors/
Multiplexers
TR I-STATE Quad 2-Data Selectors/
Multiplexers
TRI-STATE Quad 2-Data Selectors/
Multiplexers
T R I-STATE Quad 2-Data Selectors/
Multiplexers
Quad S-R Latches
9-Bit Parity Generators/Checkers
2-v
2-113
2-116
2-116
2-122
2-122
2-125
2-128
J
Mil
Coml
Package
N
Mil
Coml
•
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2-133
•
2-133
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2-128
2-128
2-128
2-133
2-133
2-133
2-133
2-140
2-140
2-140
2144
2-144
2-144
2-101
2-101
2-101
2-101
2-148
2-148
2-154
2-157
2-160
2-160
2160
2-163
2-163
2-165
•
•
•
•
•
•
•
•
•
•
•
N/A
•
•
•
•
•
•
•
•
•
•
N/A
•
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
•
2-165
2-168
2-170
•
•
•
•
•
• N/A •
• •
2-165
2-165
•
•
•
•
•
N/A
•
N/A
•
•
W
Mil
Coml
N/A
•
•
•
•
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
•
•
•
• •
• •
• •
N/A
• •
• •
N/A
N/A
•
N/A
•
•
•
N/A
N/A
•
•
• •
• •
• •
N/A
• •
N/A
• •
N/A
•
•
N/A
•
N/A
•
~ 54n4
Table of Contents
MS1
Device No.
OM74S281
OM 54 LS283/0M 74 LS283
OM54S287/0M74S287
OM54S289/0M74S289
OM 54 LS295A/OM 74 LS295A
OM54 LS298/0M 74 LS298
OM54LS3}4/0M74LS374
OM54S387/0M74S387
OM 54 LS395/0M74 LS395
OM54LS670/0M74LS670
Page
No.
Description
4-Bit Parallel Binary Accumulators
4-Bit Binary Adders with Fast Carry
TRI-STATE 1024-8it Programmable Read
Only Memories
64-Bit Read/Write Memories with OpenCollector Outputs
TR I-STATE 4-Bit Parallel Access Shift
Registers
Quad 2-Multiplexers with Storage
TRI-STATE Octal 0 Flip-Flops
1024-Bit Programmable Read Only Memories
TRI-STATE 4-Bit Cascadable Shift Registers
TR I-STATE 4 by 4 Register Files
2-vi
2-173
2-17
2-177
2-179
2-182
2-184
2-187
2-177
2-189
2-191
Package
J
Mil
Mil
N/A
•
N/A
•
•
•
•
N/A
•
•
W
N
Coml
•
•
•
•
•
•
•
•
•
•
•
•
•
Coml
•
•
•
•
•
•
•
•
•
•
Mil
Com I
N/A
• N/A •
N/A
•
•
•
•
•
•
•
N/A
•
•
•
~ MSI
DM54/DM7441A.141
BCD/Decimal Decoders/Drivers
General Description
The DM5441A/DM7441A is a BCD-to-decimal decoder
designed to drive gas-filled NI XI E tubes. The device is
also capable of driving other types of low·current lamps
and relays.
a minimum of external circuitry, can use these invalid
codes in blanking leading· and/or trailing-edge zeros in a
display.
An over-range decoding feature provides that if binary
numbers between 10 and 15 are applied to the input,
the least significant bit (0-5) will be decoded on the
output.
voltage transitions in order to minimize transmission-line
Input clamp diodes are also provided to clamp negative·
effects.
Features
•
•
•
The DM54141/DM74141 is a BCD-to·decimal decoder
designed specifically to drive cold-cathode indicator
tubes.
Full decoding is provided for all possible input states.
For binary inputs 10 through 15, all the outputs are
off. Therefore the DM54141/DM74141, combined with
Connection Diagram
.
•
OUTPUTS
o
Drive cold'cathode, numeric indicator tubes directly
Fully decoded inputs
Low leakage current
1.aIlA@50V
DM54/7441A
50llA @55V
DM54/74141
Low power dissipation
DM54/7441A
105 mW typical
55 mW typical
DM54/74141
,
OUTPUTS
13
10
4
15
16
14
p-
o-
1
3
Z
,
9
A
,
4
~
~
OUTPUTS
INPUTS
7
B
0
C
~
INPUTS
Z
OUTPUT
5441A(JI, (WI; 7441A(JI, (NI, (WI;
54141(JI, (WI; 74141(JI, (NI, (WI
Truth Tables
5441 A/7441 A
INPUT
54141/74141
OUTPUT
A
ow
L
L
L
H
L
H
L
L
L
H
H
3
L
H
L
L
4
D
C
B
L
L
L
L
L
INPUT
A
OUTPUT
ON"
L
L
0
L
H
1
L
H
L
2
L
L
H
H
3
L
H
L
L
4
D
C
B
0
L
L
1
L
L
2
L
L
H
L
H
5
L
H
L
H
5
L
H
H
L
6
L
H
H
L
6
L
H
H
H
7
L
H
H
H
7
H
L
L
L
8
H
L
L
L
8
H
L
L
H
9
H
L
L
H
9
lOVER RANGEl
lOVER RANGEl
H
L
H
L
0
H
L
H
L
NONE
H
L
H
H
1
H
L
H
H
NONE
H
H
L
L
2
H
H
L
L
NONE
H
H
L
H
3
H
H
L
H
NONE
H
H
H
L
4
H
H
H
L
NONE
H
H
H
H
5
H
H
H
H
NONE
H = High Level, L == Low Level
* All other outputs are off
2-1
~ MSI
DM54/DM7441A,141
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER
CONDITIONS
41A
MIN
V,H
High Level Input Voltage
V,L
low Level Input Voltage
V,
Input Clamp Voltage
VOL
On-State Output Voltage
MIN
TYP(1)
Vee'" Min, II ;;:: -12 rnA
Vee
0::
Max
V o -: 50V
V
N/A
Off-State Reverse Current
for Input Counts 10-15
VOH
Off-State Output Voltage
I,
Input Current at Maximum
Input Voltage
I'H
High Level I nput Current
I,L
Low Leve! I nput Current
. Icc
Supply Current
Vee"" Max, Vo = 30V
Vee = Max
125"c
3.0
3.0
60
40
55°C, oOe, 25"e
=
50
TA : 55°e
N/A
TA _70 o e
N/A
10: 0.5 mA
Vee: Max, V, : O.4V
5
15
60
10 - 1.0 mA
Max, VI '" 2.4V
V
IJ.A
1.8
A Input
3
8, C, or 0 Input
3
~1.0
A Input
B, C, or 0 Input
Vee: Max(2)
1
1.0
40
40
~1.6
21
36
Notes
(1)
All typical values are at Vee: 5V, TA: 25°C.
(2)
ICC is measured with all inputs grounded and outputs open.
Logic Diagrams
5441A17441A
54141/74141
Vee - 5
GND -12
2-2
80
40
~1.6
~1.0
IJ.A
V
70
Vee;;:: Max, VI = 5.5V
Vee
V
2.5
Vo - 55V
IOH
V
~1.5
2.5
TA : 70°C
~
0.8
~55"c to +70"c
T A =125°c
TA
MAX
2
0.8
Vee =Min,f o =7mA
UNITS
141
MAX
2
Off-State Reverse Current
IOH
TYP(l)
mA
IJ.A
-
~1.6
~3.2
11
25
mA
mA
~ MSI
DM54/DM7442,L42A,LS42
BCD/Decimal Decoders
General Description
These BCD-to-decimal decoders consist of eight inverters
and ten, four-input NAND gates. The inverters are
connected in pairs to make BCD input data available for
decoding by the NAND gates. Full decoding of input
logic ensures that all outputs remain off for all invalid
(10-15) input conditions.
•
•
TYPE
Features
•
Also for application as 4-line-to-16-line decoders; 3Iine-to-8-1 ine decoders
All outputs are high for invalid input conditions
TYPICAL
TYPICAL
POWER DISSIPATION
PROPAGATION DELAY
140mW
L42A
15mW
17 ns
53 ns
LS42
35mW
17 ns
42
Diode clamped inputs
Connection Diagram
Logic Diagram
OUTPUTS
0'
I"
15
"
11
13
11
10
p-
r<
,
9
2
J
4
•
5
I'
7
GNO
OUTPUTS
5442(JI, (W); 7442(J), IN), (W);
54L42A/74L42A(J), (N), (W);
54LS42/74LS42(Jl. (N), (W)
Truth Table
42, L42A, LS42
BCD INPUT
NO.
0
C
B
A
0
1
2
3
4
5
6
7
8
9
a
L
L
L
L
L
H
H
H
H
H
H
H
H
H
1
L
L
L
H
H
L
H
H
H
H
H
H
H
H
2
L
L
H
L
H
H
L
H
H
H
H
H
H
H
3
L
L
H
H
H
H
H
L
H
H
H
H
H
H
4
L
H
L
L
H
H
H
H
L
H
H
H
H
H
H
5
L
H
L
H
H
H
H
H
H
l.
H
H
H
6
L
H
H
L
H
H
H
H
H
H
L
H
H
H
7
L
H
H
H
H
H
H
H
H
H
H
L
H
H
8
H
L
L
L
H
H
H
H
H
H
H
H
L
H
9
H
L
L
H
H
H
H
H
H
H
H
H
H
L
H
L
H
L
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H'
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
:::;
~
H
L
~
:=
ALL TYPES
DECIMAL OUTPUT
High Level
Low Level
2-3
Electrical Characteristics
over recommended operating free·air temperature range (unless otherwise noted)
CONDITIONS
PARAMETER
MIN
VIH
V IL
High Level Input Voltage
DM54/74
DM54L/74L
DM54LS/74LS
42
L42A
LS42
TYPO)
MAX
TYPO)
MAX
2
2
Low Level Input Voltage
MIN
MIN
TYP(1)
~
UNITS
s:
(J)
MAX
V
2
DM54
0.8
0.7
0.7
DM74
0.8
0.7
0.8
V
.
VI
Input Clamp Voltage
Vec = Min
IOH
High Level Output Current
VOH
High Level Output Voltage
-1.5
I, = -12 rnA
N/A
I, =-18mA
-800
Vee = Min
V ,H = 2V
IOH = Max
-200
VOL
N
Low Level Output Current
Low Level Output Voltage
.i>.
Vee = Min
V ,H = 2V
IOL = 4 mA
IOL = Max
V'L = Max
Input Current at Maximum Input Voltage
II
IIH
IlL
los
Icc
High Level I nput Current
Vee = Max
Vee = Max
Low Level I nput Current
Vee = Max
Short Circuit OutputCurrent
Suppiy Current
Notes:
11) All typical values are at
Vee = Max(2)
Vee = Max(3)
Vee =
-400
DM54
2.4
3.4
2.4
3.4
2.5
3.5
DM74
2.4
3.4
2.4
3.4
2.7
3.5
V'L = Max
IOL
-1.5
N/A
DM54
16
2
4
16
3.6
8
0.25
0.2
0.4
0.15
0.3
0.25
0.4
DM74
0.2
0.4
0.2
0.4
0.35
0.5
V, = 55V
0.1
1
0.1
V, =2.4V
40
10
20
V, = 2.7V
. ---0.18
V I = 0.3V for L42A
V
mA
IlA
0
mA
-1.6
V I = 0.4 V for Others
mA
0.4
DM54
V, =7V
IlA
V
DM74
DM74
V
---0.4
DM54
-20
-55
-3
-15
-30
-130
DM74
-18
-55
-3
-15
-30
-130
DM54
28
41
3.0
5.3
7
13
DM74
28
56
3.0
5.3
7
13
5V,'TA = 25°C.
(2)
Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
(3)
ICC is measured with all outputs open and all inputs grounded.
s:
C1I
,J:lo
mA
........
0
rnA
,J:lo
,J:lo
s:-..I
N
~
N
'l>
r-
(J)
,J:lo
N
-- -- ---- - - - - -
Switching Characteristics vee = 5V, T A = 25°C
PARAMETER
CONDlTIONS
tpHL
~
DM54/74
DM54L{74L
DM54 LS/74 LS
42
L42A
LS42
MIN
TYP
MAX
14
25
17
30
CONDITIONS
MIN
TYP
MAX
65
130
70
140
CONDITIONS
MIN
UNITS
TYP
MAX
14
25
ns
17
30
ns
s:
en
Propagation Delay Time, High-to-Low Level
Output From A, B, C, or D Through 2
Levels of Logic
tpHL
Propagation Delay Time, High-to-Low Level
Output From A, B, C, or D Through 3
Levels of Logic
tpLH
Propagation Delay Time, Low-to-High Level
Output From A, B, C, and D Through 2
= 15 pF
RL = 400n
CL
CL
RL
= 50 pF
= 4 kn
CL
RL
= 15pF
= 2 kfl
- 10
25
30
60
10
25
ns
17
30
35
70
17
30
ns
Levels of Logic
tpLH
Propagation Delay Time, Low-to-High Level
Output From A, B, C, and D Through 3
Levels of Logic
'"
en
~
N
~ MSI
DM54/DM7445,145
BCD/Decimal Decoders/Drivers
General Description
These BCD-to-decimal decoders/drivers consist of eight
inverters and ten, four-input NAND gates. The inverters
are connected in pairs to make BCD input data available
for decoding by the NAND gates. Full decoding of BCD
input logic ensures that all outputs remain off for all
invalid (10-15) binary input conditions. These decoders
feature high-performance, NPN output transistors de·
signed for use as indicator/relay drivers, or as open·
collector logic-circuit drivers. The high·breakdown output
Connection Diagram
0'
14
13
'9
Full decoding of input logic
80 mA sink-current capability
•
All outputs are off for invalid BCD input conditions
7'
8
9
10
11
12
P-
r<
I
•
•
'OUTPUTS
INPUTS
15
Features
Logic Diagram
vee
1,6
transistors are compatible for interfacing with most MOS
integrated circuits.
2
3
4
7
6
5
18
GNO
OUTPUTS
5445(J), (W); 7445(J), (N), (W);
54145(J), IW); 74145(J), (N), (W)
Truth Table
INPUTS
OUTPUTS
NO.
0
C
B
A
0
1
2
3
4
5
6
7
8
9
a
L
L
L
L
L
H
H
H
H
H
H
H
H
H
1
L
L
L
H
H
L
H
H
H
H
H
H
H
H
2
L
L
H
L
H
H
L
H
H
H
H
H
H
H
3
4
5
L
L
H
H
H
H
H
L
H
H
H
H
H
H
L
H
L
H
H
H
H
L
H
H
H
H
H
L
H
L
L
H
H
H
H
H
H
L
H
H
H
H
6
L
H
H
L
H
H
H
H
H
H
L
H
H
H
7
L
H
H
H
H
H
H
H
H
H
H
L
H
H
8
H
L
L
L
H
H
H
H
H
H
H
H
L
H
9
H
L
L
H
H
H
H
H
H
H
H
H
H
L
H
L
H
L
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
0
:::;
~
H
= High
Level (Off), L
= Low Level
(On)
2-6
~
MSI
DM54/ DM7445 ,145
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER
CONDITIONS
MIN
VIH
High Level Input Voltage
V IL
Low Level I nput Voltage
VI
Input Clamp Voltage
Vce
~
Min, I,
VO(ONI
On-State Output Voltage
Vee
~
Min, V ,H
Off-State Output Voltage
Vee
V'L
II
Input Current at Maximum
Input Voltage
IIH
High Level I nput Current
IlL
Low Level Input Current
Icc
Supply Current
TYP(l)
V
~ ~12
~
mA
I
I
2V
~
Min, V
~ O_SV,
,H
~
1010NI ~ SO mA
2V
1010FFI
0.5
~ 250llA
I
I
45
30
145
15
V
~1.5
V
0.9
V
V
Vee
~
Max, V,
~
5.5V
Vee
~
Max, V,
~
2AV
40
Il A
Vee
~
Max, V,
~
OAV
~1.6
mA
Vee
~
Max(2)
1
I
I
DM54
43
62
DM74
43
70
Notes
All typical values are at Vee = 5V, T A = 25°C.
(21 ICC is measured with all inputs grou'nded and outputs open.
Switching Characteristics vee ~ 5V, T A ~ 25°C
DM54/74
PARAMETER
CONDITIONS
Propagation Delay Time,
Low-to-High Level Output
Propagation Delay Time,
~
15 pF
RL ~
100n
CL
High-to-Low Level Output
2-7
UNITS
45, 145
MIN
tpHL
O.S
OA
1010NI ~ 20 mA
(11
tpLH
MAX
2
V'L ~ O.SV
VO(OFFI
UNITS
45, 145
TYP
MAX
30
ns
30
ns
mA
mA
.
~ MSI
~
DM54/DM7446A.47A,L$47.48.LS48.LS49
BCD/7-$egment Decoders/Drivers
General Description.
Features
The 46A, 47Aand LS47 feature active-low outputs
designed for driving common-anode LED's or incandescent indicators directly; and the 48, LS48 and LS49
feature active-high outputs for driving lamp buffers or
common-cathode LED's. All of the circuits except the
LS49 have full ripple-blanking input/output controls
and a lamp test input. The LS49 features a direct
blanking input. Segment identification and resultant
displays are shown on a following page. Display patterns
for BCD input counts above nine are unique symbols
to authenticate input conditions.
• All circuit types feature lamp intensity modulation
capability
5446A/7446A, 5447A/7447A, 54LS47/74LS47
• Open-collector outputs drive indicators directly
• Lamp-test provision
• Leading/trailing zero suppression
5448/7448,54LS48/74LS48
•
•
•
All of the circuits except the LS49 incorporate automatic leading and/or trailing-edge, zero-blanking control
(RBI and RBO). Lamp test (LT) of these devices may
be performed at any time when the BI/RBO node is at
a high logic level. All types (including LS49) contain
an overriding blanking input (BI) which can be used
to control the lamp intensity (by pulsing) , or to inhibit
the outputs.
Internal pull-ups eliminate need for external resistors
Lamp-test provision
Leadingltrailing zero suppression
54lS49/74LS49
• 'Open-collector outputs
• Blanking input
DRIVER OUTPUTS
TYPE
TYPICAL
ACTIVE
OUTPUT
SINK
MAX
POWER
LEVEL
CONFIGURATION
CURRENT
VOLTAGE
DISSIPATION
DM5446A
low
open-collector
40mA
30V
320mW
J. N,W
DM5447A
low
open-collector
40 mA
15V
320mW
J, N, W
DM5448
high
2-H2 pull·up
6.4 mA
5.SV
265mW
J, N,W
DM54LS47
low
open-collector
12 mA
15V
35mW
J, N, W
DM54LS48
high
2 kr! pull-up
2mA
5.5V
125mW
J, N, W
DM54LS49
high
open-collector
4mA
5.5V
40mW
J,N,W·
open·collector
open-collector
40mA
30V
320mW
J, N,W
rnA
15V
320 mW
J,N,W
J,N,W
.PACKAGES
DM7446A
low
DM7447A
low
DM7448
high
2-kr! pull-up
6.4 rnA
5.5V
265mW
DM74LS47
low
open-collector
24 mA
15V
35mW
J,N,W
DM74LS48
high
2 kr! pull-up
6mA
5.5V
125mW
J,N,W
DM74LS49
high
open-collector
SmA
5.5V
40mW
J, N,W
40
Connection Diagrams
OUTPUTS
2
7
~
INPUTS
LAMP SI/RBO RBI
TEST
~
INPUTS
5446A/7446A(J), (N), (W);
5447A/7447A(J), (N), (W);
54LS47174LS47(J), (N), (W)
GND
~
INPUTS
LAMP BI/RBO RBI
TEST
~
INPUTS
544817448(J), (N), (W);
54LS48174LS48(J), (N), (W)
2-8
GND
~
BI
INPUTS
e
OUTPUT
GND
54LS49174LS49(J), (N), (W)
LS47-.
LS~8.
LS49 To Be Announced In 1976
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER
CONDITIONS
46A.47A
MIN
VIH
High Level Input Voltage
V ,L
Low Level Input Voltage
V,
Input Clamp Voltage
IOH
High Level
Output Current
VOH
IOL
BI/RBO
-
-
Vee - Min, V 1H - 2V
a thru 9
BI/RBO
'"'
o
o
~
U1
~
........
o
~
~
~
0)
l>
~
l>
r-
C/)
~
-..J
~
(X)
r-
C/)
~
(X)
i-
C/)
~
C.D
~ MSI
OM54/0M7446A.47 A.lS47.48 .lS48 .lS49
Output Display
SEGMENT
IDENTIFICATION
NUMERICAL DESIGNATIONS AND RESULTANT DISPLAYS
Truth Tables
46A. 47 A, LS47
DECIMAL
OR
FUNCTION
o
INPUTS
OUTPUTS
1--.-----,-------1 BI/RBOllll------------l
LT RBI
D
C
B
A
H
H
H
X
H
H
x
x
x
x
H
x
H
x
L
H
x
H
H
x
x
x
x
x
x
H
H
H
10
H
11
H
12
H
L
H
L
H
H
H
L
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
l.
L
H
H
H
H
L
H
H
x
x
x
H
x
x
x
x
RBI
H
x
L
H
H
H
61
H
H
H
15
H
H
L
H
H
H
H
L
H
H
H
H
H
H
L
H
H
H
14
x
H
H
13
LT
L
H
x
x
H
x
L
H
NOTE
H
H
L
L
H
H
H
H
H
L
L
L
H
H
H
L
H
H
H
H
H
H
H
L
H
H
L
H
H
H
H
L
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
121
L
L
L
L
L
L
H
H
H
H
H
H
H
H
131
H
H
H
H
141
H
151
4B, LS48
DECIMAL
OR
FUNCTION
o
INPUTS
H
H
H
X
H
x
x
x
x
x
x
H
H
H
H
H
H
• 9
H
10
H
11
H
12
H
13
H
14
H
15
H
BI
x
RBI
H
LT
OUTPUTS
t - - , - - , - - - - - - - - i BI/RBOl11 1 - - - - - - - - - - - - - \ NOTE
LT RBI
D
C
B
A
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
L
H
H
H
H
H
H
L
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
X
X
X
X
H
H
H
H
x
x
x
x
x
H
H
H
H
H
H
H
H
H
H
H
x
x
x
x
H
H
H
H
H
H
H
L
H
H
H
H
H
L
L
H
R
H
L
H
H
L
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
L
H
131
L
x
x
x
x
x
121
H
H
H
H
H
141
H
H
H
151
Notes
(1)
BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).
(21
The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input
(RBi) must be open or high if blanking of a decimal zero is not desired.
(3)
When a low logic leveils applied directly to the blanking input (BII, all segment outputs are H regardless of the level of any other input.
(4)
When ripple-blanking input (RBI) and inputs A, B, C, and 0 are at a low level with the lamp test input high, all segment outputs go H and the
ripple-blanking output (RBO) goes to a low level (response condition).
(5)
When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment
outputs are L
H = High Level, L == Low Level, X == Don't.Care
2·11
~.MSI
OM54/0M7446A,47A,LS47.48 ,LS48 ,LS49
Truth Tables (Continued)
LS49
DECIMAL
OR
FUNCTiON
INPUTS
8
OUTPUTS
NOTE
81
a
b
c
d
e
f'
L
H
H
H
H
H
H
H
L
H
H
L
H
H
L
L
L
L
L
H
H
L
H
H
H
L
L
H
H
L
L
H
H
H
H
L
H
H
L
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
H
L
L
H
H
L
L
H
H
L
H
L
H
H
L
L
H
H
A
D
C
0
L
L
L
1
L
L
L
2
L
L
H
L
H
H
H
3
L
L
H
H
H
H
H
4
L
H
L
L
H
L
H
5
L
H
L
H
H
H
L
6
7
L
H
H
L
H
L
L
H
H
H
H
H
8
H
L
L
L
H
H
9
H
L
L
H
H
H
10
H
L
H
L
H
L
11
H
L
H
H
H
L
9
12
H
H
L
L
H
L
H
L
L
L
H
13
H
H
L
H
H
H
L
L
H
L
H
H
14
H
H
H
L
H
L
L
L
H
H
H
H
15
H
H
H'
H
H
L
L
L
L
L
L
L
BI
X
X
X
X
L
L
L
L
L
L
L
L
111
121
Notes
(1) The blanking input (81) must be open or held at a high logic level when output functions 0 through 15 are desired.
(2)
H
=
When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.
High Level, L = Low Level, X
=
Don't Care
Logic Diagrams
46A,47A, LS47
2·12
~ MSI
DM54/DM7446A.47A.LS47.48.LS48.LS49
Logic Diagrams (Continued)
48, LS48
LS49
2-13
~ MSI
DM54/DM7475 ,L75A,LS75 ,LS77
Quad Latches
General Description
These latches are ideally suited for use as temporary
storage for binary information between processing units
and input/output or indicator units. I nformation present
at a data (0) input is transferred to the o output when
the enable (G) is high, and the 0 output will-follow
the data input as long as the enable remains high. When
the enable goes low, the information (that was pre~ent
at the data input at the time the transition occurred) is
retained at the 0 output until the enable is permitted
to go high.
The OM5475/0M7475, OM54L75A/OM74L75A, and
OM54LS75/DM74LS75 feature. complementary 0 and
Q outputs from a 4-bit latch, and are available in 16-pin
packages. For higher component density applications,
the OM54LS77/0M74LS77 4-bit latches are available
in 14-pin flat packages (only).
Connection Diagrams
ENABLE
01
01
02
1~2
GND
il3
03
04
01
01
ENABLE
1-1
GNO
NC
03
04
14
ill
01
02
ENABLE
03
Voc
04
NC
01
il4
3-4
5475/7475(J), (N), (W); 54L75A/74L75A(J), (N), (W);
54LS75/74LS75(Jl. (N), (W)
54LS77 /74LS77(W)
Truth Table (Each Latch)
INPUTS
H
=
OUTPUTS
ci
D
G
Q
L
H
L
H
H
H
L
X
L
00
Cia
H
High Level, L = Low Level, X = Don't Care
of Q Before the High-to-Low Transition of G
00 = The Level
Logic Diagrams (Each Latch)
75,L75
ENABLE
DATA
LS75
LS77
"'::+>?S
. ' ......... :
OTHER
LATCH
ro
ENABLE
ENABLE
Tentative Data For LS75, LS77
"m~.
OTHER
LATCH
2-14
0
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
CONDITIONS
MIN
VIH
High Level Input Voltage
Vll
Low Level Input Voltage
VI
Input Clamp Voltage
IOH
High Level Output Current
VO H
High Level Output Voltage
VOL
Vee
~
I,
Min
Vee
Low Level Output Voltage
Vee
~
==
Min, V ,H
Max,
IOH
~
Min, VIIi
Input Current at Maximum Input Voltage
Vee
lOS
Icc
~
Short Circuit Output Current
TYP(l)
MAX
TYP(l)
MIN
~
~
Max(2)
Supply Current
~
TYP(l)
V
2
2
0.7
0.7
DM74
0.8
0.7
0.8
-1.5
-1.5
2.4
3.4
2.4
3.4
2.5
3.5
DM74
2.4
3.4
2.4
3.4
2.7
3.5
10L
10L
~
~
~
4 mA
Max
5.5V
V,
~
7V
V,
~
2.4V
V
V
-400
-200
DM54
2V,
2.7V
16
2
4
DM74
16
3.6
8
0.25
0.4
0.3
0.25
0.4
0.4
0.35
0.5
DM74
0.2
0.4
DM74
0.2
0.4
0.2
D Input
1
0.2
G Input
1
0.4
D Input
0.1
G Input
0.4
D Input
80
20
G Input
80
40
D Input
20
G Input
80
~
V,
~
0.3V, 54L174L
D Input
-3.2
-0.36
-0.4
V,
~
O.4V, Others
G Input
-3.2
-0.72
-1.6
DM54
-20
-55
-3
-9
-15
-30
-130
DM74
-18
-55
-3
-9
-15
-30
-130
DM74
LS75
Others
32
46
3.5
.5.0
LS75
Others
32
50
3.5
mA
V
mA
C
~
UI
V,
Max(3)
pA
V
DM54
DM54
~
rJ)
MAX
0.8
2V
~
UNITS
DM54
Max
DM54
Vee
MIN
~
Max
Vee~Max
Vee
MAX
~
-1.5
Max
High Level Input Current
Low Level Input Current
LS75, LS77
==
V,
Vee
IlL
L75A
-400
V'L ~ Max
IIH
75
-12 mA
~
<.n
II
DM54LS/74LS
1,~-18mA
Low Level Output Current
~
DM54L/74L
2
V 1L
IOl
DM54/74
5.0
6.3
12
6.9
13
6.3
12
6.9
13
pA
~
......
C
~
~
mA
-..J
UI
mA
UI
Cj
l>
r
rJ)
mA
-..J
UI
i-
rn
-..J
-..J
------_._-
-
-
._-
-----
-----
----
---
-
-- '----
Switching Characteristics Vee ~ 5V, T A ~ 25°C
PARAMETER
FROM
(INPUT)
DM54/74
DM54L/74L
75
L75A
TO
(OUTPUT)
CONDITIONS
'PLH
MIN
Propagation Delay Time.
low-to_-High Level Output
D
tpHL
Propagation Delay Time,
tplH
Propagation Delay Time,
D
tpHl
tplH
11
19
9
17
9
17
120
12
20
N/A
80
7
15
N/A
30
55
100
15
14
25
50
100
24
40
75
7
15
32
MIN
MIN
s:
en
ns
CL = 50 pF
HL
C L = 15 pF
~
R L =2kll
= 4 kfl
16
30
50
100
15
27
10
18
7
15
32
80
14
25
10
18
16
30
48
100
16
30
N/A
7
15
38
80
7
15
N/A
ns
Q
High-ta-Low Level Output
Low-ta-High Level Output
G
27
MAX
RL = 400[2
Propagation Delay Time,
MAX
TYP
C L = 15 pF
tpLH
TYP
MAX
Propagation Delay Time,
PropagatLon Delay Time,
CONDITIONS
TYP
High-ta-Low Level Output
tPHl
MIN
UNITS
Q
Propagation Delay Time,
G
'"
16
CONDITIONS
LS77
ns
Low-ta-High Level Output
~
MAX
LS75
Q
High-te-Low Level Output
low-ta-High Level Output
TYP
~
DM54LS/74LS
Q
ns
tpHl
Propagation Delay~ Time,
tw
Width of Enabling Pulse
20
100
20
20
ns
tSETUP
Setup Time
20
100
20
20
ns
tHOLD
Hold Time
5
25
0
0
ns
High-ta-low Level Output
0
s:c.n
Notes
(1) All typical values are at VCC ~ 5V, T A ~ 2SoC.
~
(2)
Not more than one output should be shorted at a time, and for the OM54LS/74LS duration of short circuit should not exceed one second.
........
(3)
ICC is tested with all inputs grounded and all outputs open.
0
,
s:
~
-.J
c.n
Ci
c.n
'r-!>
en
-.J
U1
;-
en
-.J
-.J
~ MSI
DM54/DM7483.LS83A.LS283
4-Bit Binary Adders with Fast Carry
General Description
Features
These full adders perform the addition of two 4-bit
binary numbers. The sum (2:) outputs are provided for
each bit and the resultant carry (C4) is obtained from
the fourth bit. These adders feature full internal look
ahead across all four bits. This provides the system
designer with partial look-ahead performance at the
economy and reduced package count of a ripple-carry
implementation.
• Full-carry look·ahead across the four bits
• Systems achieve partial look-ahead performance with
the economy of ripple carry
The adder logic, including the carry, is implemented in
its true form meaning that the end-around carry can be
accomplished without the need for logic or level inversion.
83
LS83A
25 ns
LS283
25 ns
TYPICAL ADD TIMES
TWO
TWO
8-BIT
16-BIT
WORDS
WORDS
23 ns
43 ns
45 ns
45 ns
TYPE
TYPICAL POWER
DISSIPATION PER
4-BIT ADDER
290mW
95mW
95mW
Connection Diagrams and Truth Table
B4
C4
15
'6
A4
,,3
,.
A3
co
I"
"
..I'
B3
A'
B'
G~O
13
>:2
Vee
10
.2
"
A3
'3
A2
'"
5483(J), (W); 7483(J), (N), (W);
54LS83A/74LS83A(J), (N), (WI
A2
B'
B4
A4
L1
A'
C4
"
"
13
14
10
co
B'
G!:
54LS283/74LS283(J), (N), (W)
OUTPUT
~~
INPUT
CO~
L
CO~
H
WHEN
C2~ L
WHEN
C2~ H
.~ ~ ~ ~ ~ ~ ~ ~ ~ ~
A4
83
A3
H
L
H
H
H
L
H
L
L
H
L
H
L4
C4
L
2:3
2:4
H
L
L
L
H
L
H
L
L
L
H
H
H
L
H
L
H
H
H
L
H
L
H
H
H
H
H
L
L3
84
L
L
H
H
L
L
H
H
H
L
L
H
H
H
H
L
L
H
L
L
H
L
H
H
L
H
H
H
L
L
H
L
H
L
H
H
H
L
L
H
H
H
L
H
L
L
H
H
H
H
L
L
H
H
H
L,
H
L
H
H
H
H
L
H
H
H
L
H
L
H
H
H
H
L
H
L
H
H
H
H
H
H
L
H
H
H
H
H
H "" High Level, L "" Low Level
Note: Input conditions at A 1, 81, A2, 82, and CO are used to determine outputs 1: 1 and 2;2 and the value
of the internal carry C2. The values at C2, A3, 83, A4, and 84 are then used to determine outputs I:3, 1':4,
and C4.
2-17
LS83A, LS283 To Be Announced In 1976
~
MSI
DM54/DM7483.LS83A.LS283
Electrical Characteristics
over recommended operating free·air temperature range (unless otherwise noted)
PARAMETER
CDNDITIONS
DM54174
DM54lS/74lS
83
LS83A, lS283
UNITS
MIN TYP(1) MAX MIN TYP(1) MAX
V,H
High Level Input Voltage
V,l
Low Level Input Voltage
V,
IOH
2
Vee'" Min
High Leve,1 Output Current
I,
Input Cllrrent at
High level Input Current
-1.5
-1.5
-400
-400
-400
Vee == Min, V 1H
2V
:=
Any Output Except C4
Vee '''' Min
IOL = 4 rnA
V 1H = 2V
IOL - 8 rnA
V 1L
IOL
=
Max
Vee
'=
2.4
3.4
2.5
3.4
DM74
2.4
3.4
2.7
3.4
16
4
16
8
DM54
8
4
DM74
8
8
0.2
Max
V,
c
0.25
0.4
0.35
0.5
0.2
5.5V
1
Low Level I nput Current
Any A or B
CO
lOS
Short Circuit Output
40
V,"2.4V
80
Output C4
Icc' Supply Current
-3.2
-0.8
-0.4
3.2
DM54
··20
-55
-30
-130
DM74
-18
-55
-30
-130
DM54
-20
-70
-30
-130
DM74
··18
-70
-30
-130
All Inputs
Grounded
All B Low, Other
Vee =. Max
Outputs Open
' I nputs at 4.SV
All Inputs at
4.5V
58
79
Notes
= SV, TA = 2S"C.
(1)
All typical values are at VCC
(21
Only one output should be shorted at a time, and for 54LS174LS duration
;
2·18
p.A
20
Vee"" Max, VI == O.4V
Vee" Max(2)
mA
0.1
V, "2.7V
Any Output Except C4
Current
V
80
V, o2.7V
III
rnA
1
V, o2.4V
=Max
I'A
0.4
V, -7V
Vee
V
V
DM74
DM74
V
."
DM54
V, o7V
Max
Any Aor.B
CO
=
DM54
V, "5.5V
AnyAor8
CO
I'H
O.B
-800
Low level Output Voltage
Maximum I nput Voltage
O.B
Any Output Except C4
Output C4
VOL
·DM74
',-··18mA
V)L = Max, IOH =Max
Low Level Olltput Current
0.7
Output C4
VOH High Level Output Voltage
IOl
0.8
l,o-12mA
Input Clamp Voltage
V
2
DM54
of short cifcuit should not exceed one second.
22
39
19
34
19
34
mA
mA
mA
~ MSI
DM54/DM7483,LS83A,LS283
Switching Characteristics
Vee
= 5V, T A = 25°C
DM54LS/74LS
DM54/74
FROM
(INPUT)
PARAMETER
TO
(OUTPUT)
CONDITIONS
tpLH
Propagation Delay Time,
Low-to-Hlgh Level Output
CO
tpHl
Propagation Delay Time,
Propagation Delay Time,
Low-to-Hlgh Level Output
CO
tpHl
tPLH
Propagation Delay Time,
32
16
24
ns
20
32
15
24
ns
28
47
16
24
ns
22
38
15
24
ns
28
47
16
24
ns
28
47
15
24
ns
38
15
24
ns
33
15
24
ns
12
19
11
17
ns
12
19
11
17
ns
12
19
11
17
ns
12
19
12
17
ns
22
C L = 15 pF
Propagation Delay Time,
R L =400l2
Propagation Delay Time,
"
Ai or B j
~,
Propagation Delay Time,
Hlgh-to-Low Level Output
Propagation Delay Time,
Low-ta-High Level Output
CO
tpHL
tplH
C4
Propagation Delay Time,
High-to-Low Level Output
C L "15pF
Propagation Delay Time,
RI-
o
78011
Low-to-High Level Output
Ai or S,
tpHL
C L = 15pF
RL = 2 kn
Propagatlon Delay Time,
Low-ta-High Level Output
tpLH
MIN
~4
High-to-Low Level Output
tPHL
CONDITIONS
"
High-ta-Low Level Output
CO
tPlH
MAX
MAX
-3
Lovv-ta-High Level Output
tPHL
TYP
TYP
:'::1 or 2.:2
High·to-Low Level Output
tplH
MIN
UNITS
LS83A, LS283
83
C4
Propagation Delay Time,
High·to-Low Level Output
Logic Diagrams
83
B3 ;.;(4",1....- r -.......
A'::"3LI:j~C=:>~-1HH1-------------------~
(
2-19
~ MSI
DM54/DM7483,LS83A,LS283
Logic Diagrams (Continued)
LS83A, LS283
)0_ _ _...;.;14"",(9;;.1 C4
Note: Pin numbers shown in parenthesis are for, LS283
2-20
~
MSI
DM54/DM7485.L85.LS85
4-Bit Magnitude C6mparators
General Description
A> B and A < B inputs. The cascading paths of the 85,
and LS85 are implemented with only a two-gate-Ievel
delay to reduce overall comparison times for long words.
These four-bit magnitude comparators perform comparison of straight binary or BCD codes.
Three
fully-decoded decisions about two, 4-bit words (A, B)
are made and are externally available at three outputs.
These devices are fully expandable to any number of
bits without external gates. Words of greater length may
be compared by connecting comparators in cascade. The
A > B, A < B, and A = B outputs of a stage handling
less-significant bits are connected to the corresponding
inputs of the next stage handling more-significant bits.
The stage handling the least-significant bits must have a
high-level voltage applied to the A = B input and in
addition for the L85, low-level voltages applied to the
Features
TYPICAL
DELAY
(4-BIT WORDSI
TYPICAL
POWER
DISSIPATION
TYPE
85
L85
LS85
275mW
20mW
52mW
23 n'
55 n'
24 n'
Connection Diagrams
DATA INPUTS
T
16
A3
82
"
A2
13
14
INPUTS
Al
12
r
AD
81
11
8D
10
vI'
9
16
r-
I
.3
DATA
INPUT
OUTPUTS
A>.
'3
15
A<.
13
14
INPUTS
,
~
A3
11
12
B1
AD
pD
10
Z
3
4
A=B
A>8
,
6
A>'
A"'8
CASCADING INPUTS
7
A<'
1
J:
82
2
A2
J
INPUTS
OUTPUTS
9
l-
~
A<8
\
3
A=8
OUTPUT
,
4
,A>B
6
A:B,
A<.
CASCADING INPUTS
7
Al
INPUT
J:
54L85174L85(JI, (NI, (WI
5485(JI, (WI: 7485(JI, (NI, (WI:
54LS85174LS85(JI, (NI, (WI
Truth Tables
CASCADING
INPUTS
COMPARING
INPUTS
OUTPUTS
A3,83
A2,82
Al,81
AO, BO
A>B
AB
AB3
x
x
x
H
L
L
x
x
H
L
A2> 82
x
X
X
X
X
L
A3 = 83
x
x
x
x
x
A3 <83
x
x
H
L
L
x
X
L
H
L
x
X
H
L
L
x
X
L
H
L
X
X
H
L
L
x
X
L
H
L
L
L
H
L
L
A3 = 83
A2 < 82
x
X
A3 = 82
A2 = 82
A1 >81
A3 = 83
A2 = 82
A1 <81
x
x
A3 = 63
A2 = 82
A1 = 81
AO> 80
A3 = 83
A2 = 82
A1 = 81
AO<80
x
x
x
x
x
A3 = 83
A2 = 82
A1 = 81
AD = 80
H
A3 = 83
A2 = 82
A1 = 81
AD = 80
L
H
L
L
H
L
A3 = 83
A2 = 82
A1 = 81
AO = 80
L
L
H
L
L
H
A3 = 83
A2 = 82
Al = 81
AD = 80
X
X
H
L
L
H
A3 = 83
A2 = 82
Al
= 81
AO = BO
H
H
L
L
L
L
A3 = B3
A2 = B2
Al = 81
AD = 80
L
L
L
H
H
L
A3 = 83
A2 = B2
Al = 81
AD = 80
L
H
H
L
H
H
A3 = 83
A2 = 82
Al = Bl
AD = 80
H
L
H
H
L
H
A3 = 83
A2 = 82
Al = 81
AO = 80
H
H
H
H
H
H
A3 = 83
A2 = B2
Al = 81
AD = 80
H
H
L
H
H
L
A3 = 83
A2 = 82
Al = 81
AO = 80
L
L
L
L
L
L
85, LS85
l85
H = High Level, L = Low Level, X = Don't Care
2-21
LS85 To Be Announced In 1976
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54Ln4L
DM54/74
CONDITIONS
PARAMETER
85
MIN
VIH
High Level Input Voltage
Vil
Low Level Input Voltage
VI
High Level Output Current
VOH
High Level Output Voltage
Vee;;:: Min
VOL
==
L6w,Level Output Voltage
II
Input Current at Maximum
A< B,A> B,
I nput Voltage
orA = B 15)
:::
Max
High Level Input Current
=:
Max
Vee == Max
Icc
0.8
-1.5
N/A
2.4
N/A
1.5
-200
-400
2.4
2.4
16
2
4
DM74
16
3.6
8
DM54
0.4
0.15
0.3
0.25
DM74
0.4
0.2
0.4
0.35
0,5
0.25
0.4
DM74
1.0
0.1
1.0
0.3
40
10
120
30
V, = 7V
Vee::; Max
V, - 2.7V
20
-{l.4
-1.6
-{l.54
V, - 0.3V
Condition B
IlA
rnA
V
.rnA
IlA
60
V , =O.4V
Condition A
Vee == Max
V
-{l.18
4.8
V, - O.4V
Supply Current
V
0.3
V , = 2.4V
Vee = Maxl2)
. -
0.4
0.1
V, = 5.5V
3:
0
V
3.4
DM54
V, = 0.3V
All Other Inputs
los
0.7
0.7
V, = 2.7V
A< B, A>B,
or A = B 15)
Short Circuit Output Current
0.7
1.3
V,=2.4V
All Other Inputs
Low Level Input Current
IOL-4mA
V
2
V, = 7V
AB,
or A = B 15)
III
=- Max
MAX
1.3
V, = 5.5V
Vee
All Other Inputs
IIH
IOL
TYP(ll
0.8
Max, IOH == Max
Vee == Min
MIN
0.8
18mA
Low.Level Output Current
V1L
'"
'"
1.3
-800
V'H = 2V
N
2
MAX
DM74
Vee:::: Min, V tH == 2V
V1L
IOl
TYP(l)
DM54
I, =-12 mA
I, -
MIN
UNITS
LS85
l85
MAX
2
Input Clamp Voltage
10H
TYP(l)
~
DM54Lsn4LS
rnA
CJ1
1.2
DM54
-20
-55
-3
-15
-30
-130
DM74
-18
-55
-3
-15
-30
-130
.j::o
mA
6.6
131
141
88
"3:0
~
7.0
55
0
3:
mA
10.4
20
.j::o
00
CJ1
r""
00
CJ1
fen
00
CJ1
- - _ ... -
Switching Characteristics Vce
5V, T A ~ 25°C
DM54/74
PARAMETER
FROM
INPUT
TO
OUTPUT
NUMBER OF
GATE LEVELS
85
CONDITIONS
Low-ta-High Level Output
Any A or B
Any A or B
Propagation Delay Time,
Low-ta-High Level Output
tpHL
High-ta-Low Level Output
Propagation Delay Time,
tplH
Low-ta-High Level Output
Propagation Delay Time,
tPHL
"-'
w
'"
High-ta-Low Leve1 Output
Propagation Delay Time,
tplH
low-ta-High Level Output
Propagation Delay Time,
tpHl
High-to-Low Level Output
TYP
MAX
CONDITIONS
MIN
TYP
70
115
115
19
3
17
26
70
115
24
36
A-B
4
23
35
70
115
23
40
1
11
55
90
11
AB
2
15
55
90
15
3
20
30
55
90
20
30
A=B
4
20
30
55
90
20
30
A>B
1
7
11
55
100
14
22
ns
A < B or A = B
CL = 15 pF
= 400n
C L = 50 pF
RL
= 4 kn
3:
Ul
MAX
70
RL
Propagation Delay Time,
MIN
12
Data Input
tpLH
CONDITIONS
7
Propagation Delay Time,
High-ta-Low Level Output
MAX
UNITS
LS85
L85
TYP
1
AB
Data Input
tpHL
MIN
~
DM54LS/74LS
2
Propagation Delay Time,
tpLH
DM54L/74L
14
CL = 15 pF
RL
ns
I
ns
= 2 kr!
AB
1
11
17
40
65
11
17
ns
A=B
A=B
2
13
20
55
100
13
20
ns
A=B
A=B
2
11
17
40
65
11
17
ns
A> B or A = B
ABorA=B
A--<
~
~y
pJfr
A2
(13)
)0-
2 U4J
A<8
~
irfo+---' D--
(2)
131
A>B
16)
~
~
(ll)
6=8=s ~8v-
~~hl1l
..,........,
--<
AD
BO
A=8
14)
,(12)
B1
A>'
(10)
")0-IS)
~
)--
L85
AJ {l5)
83 {141
A2 (2)
6211)
A1 (1)
Bl t91
AutIO)
80 (11 )
A:>8(4)
A<..B (5)
;tl} A"'S
OUTPUT
A=B (6)
2·24
A<'
~MSI
OM54/0M7488
256-Bit Read Only Memories
General Description
These custom-programmed, 256-bit, read-only memories
are organized as 32 words of eight bits each. Each 32-word
memory array is addressed in straight 5-bit binary with
full on-chip decoding. An overriding memory-enable
input is provided which, when taken high, will inhibit the
32 address gates and cause all eight outputs to remain
high (off). Data, as specified by the customer, are
permanently programmed into the monol ithic structure
for the 256-bit locations. This organization is expandable
to n-words of N-bit length.
only one decoding gate is addressed at a time, only one
of the 32 transistors can supply current to the output
buffers at a time.
Input buffers lower the fan-in requirement to only one
normalized DM54/74 load for all inputs including enable
(G). The open-collector outputs are capable of sinking
12 milliamperes of current and may be wire-AND
connected to increase the number of words available. An
external pull-up resistor from each output to the supply
. line (V cel is required to define the high-level output
voltage. Where multiple devices are used in a memory
system, the enable input allows easy decoding of additional address bits.
The address of an eight-bit word is accomplished through
the buffered, binary select inputs which are decoded by
the 32, five-input address gates. When the memoryenable input is high, all 32 gate outputs are low, turning
off the eight output buffers.
Features
Data are programmed into the memory at the 32,
eight-emitter transistors. The programming process involves connecting or not connecting each of the 256
emitters. If an emitter is connected, a low-level voltage
is read out of that bit location when its decoding gate is
addressed. If the emitter is not connected, a high-level
voltage is read when addressed. Those decoding-gate
outpu~ emitters which are used are connected to their
respective bit lines to.drive the eight output buffers. Since
•
•
•
•
•
•
•
Typical access time: 20 ns
Typical power dissipation: 240 mW
Applications in computer subroutines
Useful in display systems and readouts
Memory organized as 32 words of 8 bits each
Input clamping diodes simplify system design
Open-collector outputs permit wire-AND capability
Connection and Schematic Diagrams
BINARY SElECT
ENABLE
v~
r"
OUTPUT
G
VB
"
14
13
3
4
"
11
10
,
,
1
9
r-
,
1
,~VI____
V_'___V_3____V~4___V_'____
V6____V~7
OUTPUTS
I'
GNO
".
5488(J), (W); 7488(J), (N), (W)
r--------~"1
I
I
I
I
I
I
I
TO]10THER
DECODING GATES
I
I
PROGRAMMABLE
LlNKS
(256 POSSIBLE)
1 OF 32 ADDRESS
DECODING GATES
L _________ ...l
r---'--I
I
--,
I
I
360
I
IB~T
I ~~~;~~s
I
I
I
I
1k
":"
Yl
va
V5
Y4
YJ
V2
VI
I'
~------------------~
2-25
,
~
DM54/DM7488
MSI
Electrical Characteristics
over recommended operating free·air temperature range (unless otherwise noted)
DM54/74
CONDITIONS
PARAMETER
VIH
High level Input Voltage
low level I.nput Voltage
VI
Input Clamp Voltage
Vcc=Min,
1,"-12mA
IOH
High level Output Current
Vcc=Min,
V,H
V'L "0.8V,
VOH "5.5V
Low Level Output Current
VOL
low level Output Voltage
TYP(1)
MAX
V
2
Vll
IOl
UNITS
88
MIN
~
2V
V;L "a.av,
V,H "2V
10L " 12 rnA
Vee
:=
Min,
0.2
0.8
V
-1.5
V
40
/lA
12
mA
0.4
V
II
Input Current at Maximum Input Voltage
Vcc" Max,
V, "5.5V
1
IIH
High level I nput Current
Vee
:=
Max,
V, " 2.4V
25
III
Low level I nput Current
Vee
=0-
Max,
V, "O.4V
ICCH
Supply Current, All Outputs High
0
Maxl2)
Icel
Supply Current, All Outputs low
Vcc
-1
37
65
48
80
mA
/lA
mA
rnA
Notes
(1)
All typical values are at VCC " 5V, T A" 25'C.
(2)
All 32 words are addressed separately to ensure that the supply current does not exceed the stated maximum. The typical value shown is for
the worst-case condition of all eight outputs driven low at one time.
Switching Characteristics vee
= 5V, T A
= 25°C
DM54/74
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
CONDITIONS
tplH
Propagation Delay Time,
low·to·High Level Output
tpHl
Propagat(on Defay Time,
High-to·Low Level Output
Enable
Any
Enable
Any
CL " 30 pF
UNITS
88
MIN
TYP
MAX
19
35
ns
18
35
ns
21
35
ns
17
35
ns
RLl "400n
tplH
Propagation Delay Time,
low·to·High Level Output
tpHL
Propagation Delay Time,
High·ta·Low Level Output
Select
Any
Select
Any
Ru "600n
Ordering Instructions
Each card in the data 'deck prepared by the purchaser
identifies the word specified and describes the levels at
the eight outputs for that word. All addresses must have
all outputs defined and columns designated as "blank"
must not be punched. Cards should be punched according
to the data card format shown.
Programming instructions for the DM5488 or DM7488
are solicited in the form of a sequenced deck of 32
standard 80·column data cards providing the information
requested under "data card format," accompanied by a
properly sequenced listing of these cards, and the
supplementary ordering data. Upon receipt of these
items, a computer run will be made from the deck of
cards which will prodUCe a complete function table of
the requested part. This function table, showing output
conditions for each of the 32 words, will be forwarded
to the purchaser as verification of the input data as
interpreted by the computer·automated design (CAD)
program. This single run also generates mask and test
program data; therefore, verification of the function
table should be completed promptly.
Supplementary Ordering .Data
Submit the following information with the data cards:
a. Customer's name and address
b. Customer's purchase order number
c. Customer's drawing number
2.-26
~ MSI
OM54/0M7488
DataCard Format
Column
Punch a right·justified integer representing the
positive-logic binary input address (00-31) for
the word described on the card.
31-34
Blank
35
Punch "H," "L," or "X" for output Y2.
36-39
Blank
3-4
Blank
40
Punch "H," "L," or "X" for output Y1.
5
Punch "H," "L," or "X" for output Y8.
H = high-voltage-level output, L = low-voltage·
41-49
Blank
50-51
Punch a right-justified integer representing the
current calendar day of the month.
52
Blank
1-2
level output, X
= output
irrelevant.
6-9
Blank
10
Punch "H," "L," or "X" for output Y7.
53-55 Punch an alphabetic abbrev iation representing
11-14
Blank
15
Punch "H," "L," or "X" for output Y6.
56
16-19
Blank
57-58 Punch the last two digits of the current year.
the current month.
Blank
20
Punch "H," "L," or "X" for output Y5.
59
Blank
21-24
Blank
60-61
Punch "OM"
25
Punch "H," "L," or "X" for output Y4.
26-29
Blank
62-65 Punch the National Semiconductor part number
5488 or 7488.
30
Punch "H," "L," or "X" for output Y3.
66-70 Blank
Logic Diagram
Word Select Table
INPUTS
WORD
E
c
D
L
L
I
lW+~¥R-~lf~\8~--r·t~~t-+-T-l
19
L
H
H
L
H
H
4
L
H
L
L
L
H
L
H
6
L
H
H
L
H
H
H
L
H
L
L
L
L
H
L
L
H
10
H
L
H
L
11
H
L
H
H
12
H
H
13
H
H
L
H
14
H
H
H
L
15
H
H
H
H
16
H
L
L
L
L
17
H
L
L
L
H
18
H
19
H
L
Y
H
20
H
H
H
21
H
.22
H
H
H
L
L
H
H
23
H
L
H
H
24
H
H
L
L
L
25
H
H
L
H
26
H
H
L
H
L
27
H
H
L
H
H
28
H
H
H
L
29
H
H
H
H
30
H
H
H
H
L
31
H
H
H
H
H
H = High Level, L
2-27
A
5
9
BINARY
SELECl
B
:=
Low Level
H
~ MSI
DM541DM7489,l89A
64-Bit Read/Write Memories
General Description
denote that full "tenth-power" technology has been
employed in building this RAM.
The DM5489/DM7489, DM54L89A/DM74L89A are fully
decoded 64-bit RAMs organized as 16, 4-bit words. The
memory is addressed by applying a binary number to
the four Address inputs. After addressing, information
may be either written into or read from the memory.
To write, both the Memory Enable and the Write Enable
inputs must be in the logical "0" state_ Information
applied to the four Write inputs will then be written
info the addressed ic;lcation. To read information from
the memory the Memory Enable input must be in the
logical "0" state and the Write Enable input in the logical
"1" state. Information will be read as the complement
of what was written into the memory. When the Memory
Enable input is in the logical "1" state, the outputs will
go to the logical "1" state.
Features
•
•
•
•
•
•
For application as a "scratch pad" memory with
nondestructive read-out
Fully decoded memory organized as 16 words of
four bits each
DM54/74-35 ns typical
Fast access ti me
DM54l/74L-110 ns
Diode-clamped, buffered inputs
Open-collector outputs provide wire-OR capability
Typical power dissipation
.DM54/74-400 mW
DM54L!74L-75 mW
Pin compatible with 3101, MM5501
The "A" suffix on the low power versions is used to
•
Connection Diagram
Truth Table
SENSE
OUTPUT
3
MEMORY
ENABLE
WRITE
ENABLE
OPERATION
0
0
Write
Logical "'" State
0
1
Read
Complement of Data
1
X
Hold
OUTPUTS
Stored in Memory
SELECT MEMORY WRITE
'----v---'
INPUT A
ENABLES
DATA
INPUT
1
SENSE
OUTPUT
t
DATA'
INPUT
2
SENSE
OUTPUT
2
GND
5489IJ); 7489IJ), IN);
54L89A/74L89AIJ), IN)' IW)
Logic Diagram
rAU~::
I~AI
AI
Al
ADDRESS
INPUTS
A2
~ A2
A2
AJ
~
A3
AJ
DI
DZ
D3
OATA
INPUTS
D.
WE
ME
2-28
Logical" 1" State
~
MSI
OM54/0M7489,L89A
Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted)
DM54/74
CONDITIONS
PARAMETER
High Level I nput Voltage
UNITS
L89A
TVP(1)
MIN
V,H
DM54L174L
89
MAX
MIN
TVP(1)
MAX
V
2
2
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
Vee = Min, I, = -12 mA
IOH
High Level Output Current
Vee = Min, V'H = 2V
DM54
100
50
V 1L == Max. V OH '" 5.5V
DM74
20
50
VOH
High Level Output Voltage
IOL
Low Level Output Current
VOL
Low Level Output Voltage
Input Current at Maximum
I,
0.8
0.7
V
-1.5
--1.5
V
IJA
V
5.5
5.5
DM54
12
2.0
DM74
12
3.6
Vee = Min, V'H = 2V
DM54
0.4
0.3
V 1L
DM74
0.4
0.4
Vee = Max, V, = 5.5V
1
0.1
mA
Vee = Max, V, = 2.4V
40
10
IJA
==
Max,
IOL ==
Max
mA
V
Input Voltage
I'H
High Level Input Current
I,L
Low Level Input Current
V, = 0.3V
Vee == Max
-0.18
-1.6
V,=OAV
ICC
Supply Current
Vee = Max(2)
80
Co
Off-State Output Capacitance
Vee = 5V, Va = 2.0V, f = 1 MHz
6
120
15
19
mA
mA
pF
N/A
Notes
(1) AU. typical values are at V CC
= 5V, T A = 25° c.
ICC is measured with all inputs grounded.
(2)
Switching Characteristics vee
= 5V, T A
= 25°C
DM54/74
PARAMETER
CONDITIONS
MIN
tpLH
Propagation De:lay Time, Low-ta-High
Level Output From Memory Enable
tpHL
Propagation Delay Time. High-ta-Low
Level Output From Me~ory Enable
tpLH
tpHL
CL
Ru = 300n
Level Output From Select
RL2 = 600n
Level Output From Select
Sense Recovery Time After Writing
tw
Width of Write-Enable Pulse
!sETUP Setup Time, Data Input With Respect to
Write Enable
!sETUP Select Input Setup Time With Respect to
Write Enable
tHOLD
Hold Time, Data Input With Respect to
Write Enable
tHOLD
Select Input Hold Time after Writing
TVP
MAX
23
UNITS
TVP
MAX
35
64
90
ns
23
35
33
60
ns
34
50
90
150
ns
35
50
78
150
ns
35
50
110
165
ns
MIN
CL
Propagation Delay Time, High-ta-Low
L89A
CONDITIONS
= 30 pF
Propagation Delay Time, Low-la-High
!sR
DM54L/74L
89
RL
= 50 pF
= 4 kn
40
50
ns
a
a
ns
a
0
ns
0
a
ns
5
0
ns'
2-29
~MSI
DM54/DM7490A. L90. LS90 .92A.LS92 .93A. L93 .LS93
Decade.Divide by 12. and Binary Counters
General Description
Each of these monolithic counters contains four
master-slave flip-flops and additional gating to provide
a divide-by-two counter and a three-stage binary counter
for which the count cycle length is divide-by-five for the
90A, L90, and LS90, divide-by-six for the 92A and
LS92, and divide-by-eight for the 93A. L93, and LS93.
obtained from the 90A, L90, or LS90 counters by
connecting the Q D output to the A input and applying
the input count to the B input which gives a divide-byten square wave at output QA'
Features
All of these counters have a gated zero reset and the
90A, L90, and LS90 also have gated set-to-nine inputs
for use in BCD nine's complement applications.
TYPICAL
POWER DISSIPATION
TYPE
90A
L90
LS90
92A. 93A
LS92, LS93
L93
To use their maximum count length (decade, divideby-twelve, or four-bit binary, the. B input is connected
to the Q A output. The input count pulses are applied to
input A and the outputs are as described in the appropriate
truth table. A symmetrical divide-by-ten count can be
COUNT
FREQUENCY
145mW
20mW
45mW
130'mW
45mW
16mW
42
11
42
42
42
15
MHz
MHi
MHz
MHz
MHz
MHz
Connection Diagrams
INPUT
GN10
A
12
14
INPUT
D,
Nr
A
10
11
14
aD
D,
11
12
I"
B
-c>
1
2
,
RO(11
RO 121
Jc
4
INPUT
B
..1
6
5
1
1
R9111
Vee
R9121
B
5490A17490A(JI. (NI. (WI;
54L90/74L90(JI, (NI. (WI;
54LS90174LS90(JI. (NI, (WI
INPUT
A
14
T
13
a.
aD
12
11
T
10
Nle'
NV
INPUT
Nle'
.15
6
1
Vee
ROlli
ROl21
5492A17492A(JI. (N). (WI;
54LS92174LS92(JI, (NI. (WI
a,
9
INPUT
ae
A
I.
B
a.
13
00
12
GND
1"
Dc
10
D,
INPUT
B
B
9
-0
<10-
2
INPUT
ROlli
,
ROl21
R0(11
ROl21
B
5493A/7493A(JI. (NI, (WI;
54LS93/74LS93(JI, (N). (WI
54L93174L93fJ1. (NI. (WI
2-30
LS90, LS92, LS93 To Be Anno.unced In 1976
Electrical Characteristics
DM54/74
PARAMETER
CONDITIONS
V,H
High Level Input Voltage
V,L
Low Level I nput Voltage
High Level Output Current
VOH
H'gh Level Output Voltage
~-12
I,
Vee:::; Min
~
Min, V ,H
2
Vee = Min
0.7
0.8
DM54
2.4
3.4
Max
DM74
2.4
3.4
V'H ~ 2V
I,
Input Current at Maximum
I nput Voltage
==
Max
High Level Input Current
Vee == Min
Vec ~ Max
ce
V
==
B Input
Icc
Short Circuit Output Current
Supply Current
2.4
3.4
2.4
2.7
3.4
2
4
16
3.6
8
0.15
0.3
DM74
0.2
0.4
0.2
0.4
DM74
5.5V
1
0.1
1
0.2
V,
~
5.5V
V,
~
2.7V for LS
V,
~
204V for Others
Vee
Vee
~
~
Max
V,
~
0.3V for L
VI
~
0.4 V for Others
Max(2)
Max(4)
pA
V
16
004
0.25
0.4
0.35
0.5
0.25
0.4
C
rnA
L90
V
1
0.4
0.8
40
10
20
20
120
93
80
20
40
Others
120
40
80
-1.6
-0.18
--0.4
-32
-0.36
-2.4
93
-3.2
-0.36
-1.6
Others
-4.8
-0.72
-3.2
DM54
-20
-57
-3
-9
-15
-30
-130
DM74
-18
-57
-3
-9
-15
-30
-130
90A
29
42
26
39
5.5
s:...,
CD
0
rnA
l>
r-
0.2
80
Others
"C
.j::a
0.4
Others
s:
U1
.j::a
:
0.1
Any Reset
A Input
los
~
-400
2.5
0.2
V, - 5.5V
B Input
Low Level I nput Current
4 rnA
-200
DM54
Any Reset
A Input
I,L
~
V
-1.5
V,~7V
B Input
I'H
IOL
V,
Any Reset
A Input
Max (3)
V
N/A
N/A
=
s:
-
m
V
2
0.8
-1.5
UNITS
MAX
DM74
2V
~
.TYP(l)
0.7
~
IOL
MIN
0.7
DM54
Low Level Output Voltage
LS90, LS92, LS93
MAX
0.8
rnA
Low Level Output Current
V1L
'"
~
TYP(l)
DM54
DM74
VOL
MIN
-800
Vee
DM54LS/74LS
L90, L93
MAX
I, ---18 rnA
V 1L = Max,,1oH
10L
TYP(l)
2
I nput Clamp Voltage
IOH
DM54L/74L
90A, 92A, 93A
MIN
V,
~
over recommended operating free-air temperature range (unless otherwise noted)
·9
15
CD
0
rm
pA
CD
0
(g
N
»
rnA
rm
CD
N
rnA
rnA
(g
W
»
r-
CD
W
rm
CD
w
~
Switching Characteristics V cc =5V,T A =25°C
DM54L/74L
DM54/74
FROM
(lNPUTI
PARAMETER
f max
tpLH
Maximum Count Frequency
TO
(OUTPUT 1
B
GA
Gs
A
GA
A
CONDITIONS
90A, LS90
MIN
TYP
32
42
16
Propagation Delay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time.
CL = 50 pF
Low-ta-High Level Output
A
tpHL
GD
High-ta-Low Level Output
CL =15pF
tplH
Propagation Delay Time,
For All Others
tpHL
Propagation Delay Time,
B
Gs
92A, LS92
MIN
TYP
32
42
93A, LS93
MAX
16
MIN
TYP
32
42
MIN
TYP
6
11
MAX
MIN
TYP
6
15
UNITS
MHz
16
10
16
10
16
10
16
12
18
12
18
12
18
32
48
32
48
46
70
175
300
210
400
34
50
34
50
46
70
190
300
230
400
10
16
10
16
10
16
C
3:
C1I
ns
RL = 400n
14
21
14
21
14
21
21
32
10
16
21
32
23
35
14
21
23
35
21
32
21
32
34
51
23
35
23
35
34
51
Any
26
40
26
40
26
40
GA.O O
20
30
Gs.Clc
26
40
3:
'"w
'"
Propagation Delay Time,
Low·to-High Level Output
B
tpHL
Propagation Delay Time,
Clc
High-ta-Low Level Output
tpLH
Propagation Delay Time,
tpHL
Propagation Delay Time,
RL = 2 HI
ns
For lS90. LS92
and LS93
RL=4kfl
Low-ta-High Level Output
B
GD
ns
For L90 and L93
High-to-Low Level Output
"'Hl
Propagation Delay Time,
Set-to-O
High-to-Low Level Output
tpLH
Purse Width
I A Input
I B Input
I Reset Input
tSETUP
»
,...
-
1
I'
GND
CLOCK2
L-SHIFT
. OU.TPUTS
OUTPUTS
CLOCK2
OUTPUTS
2
IN~UT 8
SERIAL
,
14
INPUT C
INPUT
5495(JI, (W); 7495(J), (N), (W);
54LS95B174LS95B(J), (N), (W)
Vee'
•
5
INPUT 0
7
MODE
CLOCK 1
CONTROL
R·SHIFT
54L95174L95(J), (N) ,(WI
Logic Diagram
DATA INPUTS
A
2,(14)
';12l
•
c
4. III
o
',I.l
MODE 6,(61
CONTROL
Note: Pin numbers in
parenthesis ar,e for L95
t3,(13)
0.
".I12l
o.
OUTPUTS
Tentative 'Oata For LS95B
2·36
LS9SB To Be Announced In 1976
Electrical Characteristics
~
over recommended operating free·air temperature range (unless otherwise noted)
DM54/74
PARAMETER
CONDITIONS
95
MIN
VIH
High Level Input Voltage
VIL
Low Level I nput Voltage
IOH
High Level Output Current
V OH
High Level Output Voltage
~
Min
Vee
~
Min, V ,H
VOL
II
=
Max,
Low Level Output Voltage
Input Current at Maximum
Mode Control
I nput Voltage
Others
IOH :::
Vee
~
Min
V ,H
=
2V
MIN
TYP(I)
0.7
DM74
0.8
0.7
0.8
~1.5
N/A
~1.5
N/A
~200
~400
DM54
2.4
3.4
2.4
3.1
2.5
3.4
Max
DM74
2.4
3.4
2.4
3.1
2.7
3.4
IOL
V,
~
V,
~
~4mA
16
2
4
DM74
16
3.6
8
0.2
0.4
0.13
0.3
0.25
DM74
0.2
0.4
0.2
0.4
0.35
0.5
0.25
0.4
1
0.2
1
0.1
V
I'A
0.4
0.2
7V
V
mA
DM54
5.5V
V)
V
DM54
DM74
~
V
2
0.7
2V
IOL ::: Max
UNITS
MAX
V
mA
0.1
Mode Contcal
Others
Vee
Clock Inputs
~
Mode Control
Others
Mode Control
V,
=
2.4V
V,
=
2.7V
V,
~
Max
Others
Low Level Input Current
2
Vee"" Max
Others
High Level Input Current
IlL
~
MAX
0.8
mA
Low Level Output Current
Clock Inputs
IIH
TYP(1)
DM54
11~~18mA
V'L ~ Max
""....
w
~~12
MIN
~800
V 1,L
10L
II
Vee
LS95B
L95
MAX
2
Input Clamp Voltage
VI
TVP(I)
DM54LS/74LS
DM54L/74L
20
40
10
40
~
<11
~
~0.18
OAV
~1.6
Short Circuit Output Current
Vee
~
Max(2)
Icc
Supply Current
Vee
~
Max(3)
~18
~57
50
75
mA
.......
C
~
-130
mA
CD
<11
21
mA
-D.4
-D.8
~1.6
Others
lOS
C
~
-D.36
0.3V
~3.2
V,
I'A
20
Vee:::: Max
Clocks
80
~
~0.4
~3
--9
4.8
~15
8
~30
13
r-
CD
<11
Notes
All typical values are at VCC ~ 5V, T A ~ 25'C.
r-
( 1)
V)
(2)
Not more than one output should be shorted at a time, and for DM54LS174LS duration of short circuit should not exceed one second.
131
ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5V; and a momentary 3V, then ground, applied to both clock inputs.
--
~~
CD
<11
CO
Vcc ~ 5V, T A ~ 25°C
Switching Characteristics
DM54/74
PARAMETER
Maximum Clock Frequency
MIN
TYP
25
36
MAX
CONDITIONS
MIN
6
~
DM54LS/74LS
L95
95
CONDITIONS
f max
DM54L!74L
UNITS
LS95B
TYP
MAX
CONDITIONS
14
MIN
TYP
25
36
MAX
3:
en
-
MHz
Propagation Delay- Time,
tPLH
Low"to"High Level Output
CL
From Clock
~
25
15 pF
35
42
C L ~ 50 PF:
RL ~ 400n
RL
~
90
CL~15pF"
18
27
ns
21
32
ns
RL ~ 2 kn
4 kn
Propagation Delay Time,
tpHl
High"to"Low Level Output
25
48
35
90
From Clock
90
25
ns
tSETUP
Setup Time, High-Level Data
20
10
50
20
ns
tSETUP
Setup Time, Low"Level Data
20
10
50
20
ns
0
10
ns
120
20
ns
15
tW(CLOCK) Width of Clock Pulse
Hold Time. High"Level or
tHOLD
0
Low"Level Data
'"w
00
tENABLE 1 Time to Enable Clock 1
-10
20
tENABLE2 Time io Enable Clock 2
15
100
20 '
ns
tlNHIBITl
Time to I nhibit Clock 1
10
0
20
ns
tiNHIBIT2
Time to Inhibit Clock 2
10
0
20.
ns
Truth Table
INPUTS
MODE
CLOCKS
CONTROL
2 (Ll
1 (Rl
H
H
X
X
X
•
•
H
H
L
L
L
t
t
t
t
-----
A
B
C
D
X
X
X
X
X
X
a
b
c
d
X
Qat
Oct
d
X
L
H
X
X
X
•
H
X
X
X
X
3:
X
X
X
X
<4
o.
Ce
00
OAO
a
OBO
b
OCO
e
0 00
d
OBo
Oeo
0 00
d
OAO
H
L
OBO
OAO
Dco
OBo
000
Oeo
OAo
OBo
Oeo
L
L
L
L
X
X
X
X
X
OAO
OBO
OeD
L
X
X
X
X
X
OAO
OBO
L
H
X
X
X
X
X
OAO
OBO
Dco
Dco
000
0 00
0 00
H
L
X
X
X
X
X
QAO
OBO
OeD
0 00
OAO
0,,0
Dco
0 00
H
----
PARALLEL
X
X
•
SERIAL
Oat
X
•
C
OUTPUTS
H
X
X
- - ---------------- -----
X
X
X
CJ1
oIlo
.......
C
3:
tShifting left requires external connection ofinput D.
H = High Level (Steady State),_ L
transitions)
= Low
aS to A, QC to s,' QD to C. Serial data is entered at
Level (Steady StateL X
=:
Don't Care (Any input, including
:g
(D
CJ1
r-
(D
t"" Transition from high to low level, t = Transition from low'to high level
a, b, c, d = The level of steady state input at inputs A, B, C, or D, respectively.
OAO, aBO., 0CO, 000 ~ The level of 0A. 0B. 0C, or 00. respectively, before the indicated steady
state input conditions were established.
(D
0An, 0Sn, 0Cn, oDn ~ The level of 0A. OS. 0C, or 00, respectively. before the most recent I
transition of the clock.
OJ
CJ1
r-
en
CJ1
~ MSI
DM54/DM7496,LS96
5-Bit Shift Registers
General Description
These shift registers consist of five R-S master-slave
flip-flops connected to perform parallel-to-serial or serialto-parallel conversion of binary data. Since both inputs
and outputs for all flip-flops are accessible, parallel-in/
parallel-out or serial-in/serial-out operation may also be
performed.
Transfer of information to the outputs occurs on the
positive-going edge of the clock pUlse. The proper information must be set up at the R-S inputs of each
flip-flop prior to the rising edge of the clock input
waveform. The serial input provides this information
to the first flip-flop, while the outputs of the subsequent
flip-flops provide information for the remaining R-S
inputs. The clear input must be high and the preset or
preset enable inputs must be low when clocking occurs.
All flip-flops are simultaneously set to a low output
level by applying a low-level voltage to the clear input
while the preset is low. Clearing is independent of the
level of the clock input.
The register may be parallel loaded by using the clear
input in conjunction with the preset inputs. After
clearing all stages to low output levels, data to be loaded
is applied to the individual preset inputs (A, B, C, D,
and E) and a high-level load pulse is applied to the
preset enable input. Presetting is also independent of
the level of the clock input.
Features
•
N-bit serial·to·parallel converter
•
N-bit parallel-to-serial converter
•
N-bit storage register
Connection Diagram
OUTPUTS
CLEAR
OUTPUTS
10
' GA
16
15
11
12
13
14
SERIAL
INPUT
fiE
GN
10
-
-
-p
CLOCK
,A
15
B'
E
Vee
PRESET
ENABLE
PRESET
PRESET
5496(J), (W); 7496(JI, (N), (W);
54LS96/74LS96(J), (N), (W)
Truth Table
OUTPUTS
INPUTS
CLEAR
PRESET
PRESET
ENABLE
A
B
C
D
L
X
X
L
X
X
X
L
L
L
H
CLOCK
SERIAL
X
X
X
H
H
H
H
H
H
H
L
L
L
H
H
H
L
H
H
L
H
L
X
X
X
X
L
H
L
X
X
X
X
t
H
L
X
X
x
H
X
X
X
X
X
X
X
X
X
X
H
L
X
aA
'as
ac
00
L
L
L
aE
L
H
H
H
H
H
GAO
G BO
Geo
GOO
G EO
H
GBO
H
GOO
H
GAO
GBO
GAn
Goo
GCn
G EO
H
L
GAn
Dco
G Bn
GBn
Dcn
G on
Gon
= high level (steady state), L = low level (steady state)
X = don't care (any input, including transitions)
H
t
= transition from low to high level
QAO, Os 0, etc. = the level of QA, 0B, etc., respectively before the indicated steady state input conditions were established.
0An, 0Sn, etc. = the level of QA, 0B, etc., respectively before the most recent t transition of the clock.
Tentative Data For LS96
2-39
LS96 To Be Announced In 1976
~
DM54/DM7496.lS96
MSI
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM54i74
CONDITIONS
PARAMETER
MIN
V ,H
High Level Input Voltage
V,l
Low Level Input Voltage
TYPO)
10H
High Level Output Current
VOH
High Level Output Voltage
Vee
=
Min
Vee
0--
Min, V 1H
VOL
Low Level Output Voltage
=-
High Level Input Current
V iH
=
2V
V1L
'"
Max
Vee
=
Max
2V
Low Level Input Current
IOL
~
tOL
=4mA
Max
2.4
3.4
2.5
3.5
DM74
2.4
3.4
2.7
3.5
16
4
DM74
16
8
DM54
0.2
0.4
0.25
0.4
DM74
0.2
0.4
0.35
0.5
0.25
0.4
DM74
1
0.1
V, = 2.4V
V, - 2.7V
20
V, = 2.4V
200
=
Max, VI = GAV
Preset Enable
los
Icc
Short Circuit Output Current
Vee ~ Max(2)
Supply Current
~A
rnA
V
rnA
~A
20
V, - 2.7V
Vee
V
40
Any Input Except
Preset Enable
V
V
DM54
VI '=7V
Preset Enable
Vee "'Max
-400
DM54
V,"5.5V
Any I nput Except
Preset Enable
I,l
0.8
-1.5
Max., IqH = -400.uA
Vee:::' Min
Input Current at MaXimum Input Voltage
I'H
0.8
-1.5
Low Level Output Current
I,
V
0.7
11 ""--lamA
'"
MAX
0.8
-400
V 1l.
IOl
TYP(l)
2
Ij 0;0--12 mA
Input Clamp Voltage
UNITS
LS96
MIN
MAX
2
DM54
DM74
V,
DM54 LS/74 LS
96
Vee = MaxI31
-1.6
-0.4
-·8
-2
DM54
-20
--57
-30
-130
DM74
-18
-57
-30
-·130
DM54
48
68
12
20
DM74
48
79
12
20
rnA
rnA
rnA
Notes
(1)
All typical values are at VCC = 5V. TA = 25°C.
(21
Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
ICC is measured with the clear input grounded and all other inputs and outputs open.
(3)
Switching Characteristics vee
= 5V. T A = 25°C
DM54 LS/74LS
DM54/74
PARAMETER
96
CONDITIONS
,fmax
tplH
Maximum Shift Frequency
LS96
MIN
Propagation Delay Time, High-tolow Level Output From Clock
tplH
Propagation Delay Time, Low-to-
CONDITIONS
UNITS
MIN
TYP
MAX
10
25
40
25
40
CL = 15pF.RL =400f!
MHz
25
40
ns
25
40
ns
28
35
ns
55
ns
CL ·15pF.RL =2kf!
High Level Output From Preset
or Preset Enable
tPHl
MAX
10
Propagation Delay Time, Low·toHigh Level Output From Clock
tpHl
TYP
25
35
Propagation Delay Time, High-to55
Low Level Output From Clear
tW(CLOCKI Width of Clock Input Pulse
35
35
ns
tw
Width of Preset and Clear Input Pulse
30
30
ns
tSETUP
Serial Input Setup Time
30
30
ns
tHOlD
Seriailnput Hold Time
0
0
ns
2-40
~ MSI
DM54/DM7496,LS96
Logic Diagram
PRESET
A
PRESET
B
OUTPUT
UA
(2)
PRESET
C
OUTPUT
(3)
a,
(15)
PRESET
E
PRESET
0
OUTPUT
(4)
(6)
a,
OUTPUT
ae
(7)
(11)
(13)
(14)
OUTPUT
00
(10)
::!~~;~~--------------~~-----r-----r~-----+-----+-.-----t-----;~~----r----;~
a
INPUT
Timing Diagram
TYPICAL CLEAR, SHIFT, PRESET, AND SHIFT SEQUENCES
CLOCK
_-+______..
-+______-;-;__________________________________
PRESET __
ENA8LE
~
CLEAR
SERIAL
INPUT
A
PRESETS
--,
OA __ .'
I
--"
OB __ ... I
OUTPUTS
--.,I
Dc __ -'
I
°D --,
___
I
OE::]I
n
(I
n
I
I
-n
n
I
r-LJ
I ~
n
SHIFT
PRESET
CLEAR
2-41
I
H
SHIFT
LI L
H
~MSI
DM54/DM74L98
4-Bit Storage Registers
General Description
These data selectors/storage registers are composed of
four S-R master-slave flip-flops, four AND-OR INVERT
gates, one buffer, and six inverter/drivers.
word select will cause the selection of word 2 (A2, 82,
C2, D2). The selected wq~d is shifted to the output
terminals on the negative·going edge of the clock pulse.
When the word select input is low, word 1 (A 1, 81,
C1, D1) is applied to the flip·flops. A high level input to
Typical clock frequency is 12 MHz.
Connection Diagram
OUTPUTS
Vee
116
15
14
INPUT
1)1
OUTPUT
00
ClOCK
12
11
10
13
,--
9
f-
1
A2
WORD
SELECT
3
2
AI
81
6
5
4
01
82
02
7
D2
P
GND
INPUTS
Word select luw for wotd 1, wilrd select hIgh for word 2, see descnpl1011
54l98/74L98(J). (N), (W)
logic Diagram
(15)
ft.
(14)
1131
(111
ClOCK:,;(I;;OI_ _ _ _ _ _ _ _ _~
> _____....
2-42
0.
Oc
1lo
~
MSI
DM54/0M74L98
Electrical Characteristics
over recommended operating free-air temperature range lunless otherwise noted)
DM54L!74L
PARAMETER
CONDITIONS
VIH
High Level Input Vo1tage
VIL
Low Level Input Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
MAX
V
0_7
-200
Vee
~
~
Min,
V IH
~
2V
0.7V,
I OH
~
-200j1A
Low Level Output Current
Low Level Output Voltage
VOL
TYP(1)
2
V IL
10L
UNITS
198
MIN
Vee
V IL
~
~
DM54
2
DM74
3.6
Min,
V 1H
~
2V
DM54
IOL
~
Max
DM74
'I
Input Current at Maximum Input Voltage
Vee
~
Max,
VI
IIH
High Level I nput Current
Vee
~
Max,
VI~2-4V
IlL
Low Level I nput Current
Vee
~
Max,
VI
lOS
Short Circuit Output Current
Vee
~
Max
Icc
Supply Current
Vee
~
Maxl2)
~
j1A
V
2-4
0.7V,
V
0_15
0.3
0-4
5.5V
mA
V
100
j1A
10
j1A
-0.18
mA
-15
mA
8
mA
~
0.3V
-3
-9
6
Notes
(1)
(2)
~ 5V, TA ~ 2SoC.
ICC is measured with all inputs grounded and all outputs open.
All typical values are at VCC
Switching Characteristics
Vee ~ 5V, TA ~ 25°C
DM54L!74l
PARAMETER
CONDITIONS
MIN
f max
Maximum Clock Frequency
tpLH
Propagation Delay Time, Low-to-High
6
Level Output From Clock
tpHL
CL
~
50 pF, RL = 4 kr2
Propagation Delay Time, High-to·Low
Level Output From Clock
tW(CLOCKI Width of Clock Pulse
tSETUP(HI
tSETUPILI
Setup Time for High-Level Data
Setup Time for Low·Level Data
100
A, 8, C, or D
100
Word Select
150
A, B, C, or D
120
Word Select
100
2-43
UNITS
L98
TYP
MAX
MHz
12
40
80
ns
65
100
ns
65
ns
ns
ns
~ MSI
DM54/DM74lS124
Dual Voltage Controlled Oscillators
General Description
The DM54LS124/DM74LS124 features two fully independent voltage~controlled oscillators (VCO's) in a single
monolithic chip. The output frequency of each is
establ ished by a single external component, either a
capacitor or a crystal, in combination with two voltage·
sensitive inPuts, one for frequency range and one for
frequency control. An enable input is provided that can
be used to start or stop the output pulses when it is
low or high, respectively. The internal oscillator runs
continuously, even while the output is disabled. A pulse
synchronizer ensures that the first output pulse is
neither clipped nor extended. Duty cycle of the output,
pulses is fixed at approximately 50 percent.
The enable input and the buffered output operate at
standard Schottky-clamped TTL levels. The enable input
is tine standard' load in each series. Although these
devices can operate from a single 5·volt supply, separate
supply-voltage and ground pins are provided for the
digital logic and for the oscillator/range control circuits
so that effective isolation can be accomplished in the
system.
Features
The highly stable oscillator can be set to operate at any
frequency between 0.12 Hz and 50 MHz typically. The
output frequency can be approximated as follows:
where: fo
CEXT
~
~
• Two fully independent yeO's in a 16-pin package
• Output frequency set by single external component:
Crystal for high-stability fixed-frequency operation
Capacitor for fixed- or variable-frequency operation
• Separate supply voltage pins for isolation of ,inputs
and oscillators from logic circuitry
• Stable operation over specified temperature and/or
supply voltage ranges
output frequency in MHz
external capacitance in pF
Connection Diagram
Y2
OUTPUT
10
I
I
9
6
J
rl
1
2
2
1 ,
3
RANGE 1
I
'I
~
14
tEXT
1
1
5
Cexrl
FREQUENCY CONTROL
6
7
Yl
lil
ENABLE OUTPUT
el:o
Note: While the enable input is low, the output is enabled. Whil~ the enable input is high,
the output is high.
54LS124/74LS124(J), (N), (WI
TentatIve Data
2-44
To Be Announced In 1976
~
MSI
OM54/0M74LS124
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM54
PARAMETER
CDNDITIONS
V,H
High Level Input Voltage at Enable
V,L
Low Level Input Voltage at Enable
V,
Input Clamp Voltage at Enable
10H
High Level Output Current
VOH
High Level Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
DM74
LS124
LS124
MIN TYP(l} MAX
MIN TYP(l} MAX
2
Vee =- Min, Ij =
Vee
= Min,
~~18
V 1H
=
2
mA
2V, IOH
=
-1.2 mA
2.5
V
0.7
0.8
-1.5
-1.5
V
-1.2
-1.2
rnA
24
rnA
2.7
3.4
Vee
= Min, VENABLE == V 1L IOl = 12 rnA
= Vee (Minj-2V IOL = 24 rnA
0.25
0.4
Freq Control
Input Current
or range
I,
Input Current at Maximum
Input Voltage
I'H
High Level Input Current
I,L
Low Level Input Current
los
Short Circuit Output Current
Icc
Supply Current, Total into
Vee =- Max
Vee
= Max,
Enable
Vee
= Max,
Enable
Vee'" Max, VI
Enable
Vee =- Max,
50
250
50
250
10
50
10
50
1V
JJ.A
0.1
2.7V
20
20
JJ.A
= O.5V
--0.4
--0.4
rnA
-150
rnA
37
rnA
=
VENABLE
= 4.5V(2)
-30
-150
22
Input Voltage at Frequency
V,
V
0.1
Vee = Max(3}
Pins 15 and 16
0.4
0.5
V,
V, = 7V
VI
0.25
0.35
V,=5V
=
V
V
3.4
12
Pins 4 and 13
I,
UNITS
37
0
Control or Range Input
-30
22
5
rnA
5
0
V
Notes
(1) All typical values are at Vee:::: 5V, TA = 25°C.
(2) Not mpre than one output should be shorted at a time and duration of the short circuit should not exceed one second.
(3) ICC is measured with the outputs disabled and open.
Switching Characteristics
Vee = 5V, RL = 667.11,C L =45pF, TA = 25°C
PARAMETER
Output Frequency
I.
C
-2
EXT -
Output Duty Cycle
F
P
iVI(FREQ)
°5V,
VI(FREQJ
OV,
I
Output From Enable
~
TYP
V1(RNGi =
OV
35
50
V1(RNG} -
5V
11
20
CEXT = 8.3 pF to 500llF
50%
fo 21 Hz
30+(4}
Propagation Delay Time, High-ta-Low Level
tPHl
MIN
CONDITIONS
MAX
UNITS
MHz
ns
Notes
(4)
The delay will typically be 30 ns plus up to one half the period of one cycle O.e. 30 ns to 30 ns + 5 x 108 /f o (HZ)) depending upon the timing
of the enable pulse with respect to the signal generated by the internal oscillator.
2-45
~ MSI
DM54/DM74lS138.S138.lS139.S139
Decoders/ Demulti plexers
General Description
These Schottky-clamped circuits are designed to be used
in high-performance memory-decoding or data-routing
applications, requiring very short propagation delay
times_ In high-performance memory systems these decoders can be used to minimize the effects of system
decoding. When used with high-speed memories, the
delay times of these decoders are usually less than the,
typical access time of the memory. This means that the
effective system delay introduced by the decoder is
negligible,
All of these decoders/demultiplexers fe'ature fully
buffered inputs, presenting only one normalized load
to its driving circuit. All inputs are clamped with highperformance Schottky' diodes to suppress line-ringing
and simplify system design.
The LS138 and S138 decode one-of-eight lines, based
upon the conditions at the three binary select inputs
and the three enable inputs. Two active-low and one
active-high enable inputs reduce the need for ,external
gates or inverters when ~xpanding. A 24-line decoder
can be implemented with no external inverters. and a
32-line decoder requires only one inverter, An enable
input can be used as a data input for demultiplexing
applications.
• S138 and LS138 3-to-8-line decoders incorporate
3 enable inputs to simplify cascading and/or data
reception
• S139 and LS139 contain two fully independent
2-to-4-line decoders/demultiplexers
• Schottky clamped for high performance
Features
•
Designed specifically for high-speed:
Memory decoders
Data transmission systems
TYPICAL
TYPE
(3 LEVELS OF LOGIC)
LS138
The LS139 and S139 comprise two separate two-line-tofour-line decoders in a single package. The active-low
enable input can be used as a data line in demultiplexing
applications.
S138
LS139
S139
TYPICAL
PROPAGATION DELAY
POWER DISSIPATION
21 ns
32mW
8 ns
245 mW
21 ns
34mW
7.5 ns
300 mW
Connection and Logic Diagrams
DATA OUTPUTS
YO
116
Y1
15
Y2
14
YO
1)
Y6
11
11
0-
r-
1
•
10
2
3
4
5
6
,~G2_A_~G2_'_ _G~1.1
SELECT
I'
1
OU~~UT
GNO
ENABLE
54LS138174LS138(J), IN), (WI; 74S138(N)
54LS139/74LS139IJ), (N), (W); 74S139(N)
LS138,5138
LS139, S139
DATA
OUTPUTS
DATA
OUTPUTS
A (1)
2Y1
(2)
INPUTS
"'cui
IJI
2-46
To Be Announced In 1976
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
CONDITIONS
High Level Input Voltage
Vll
Low Level Input Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
10l
VOL
LS138, LS139
S138,S139
TYPO)
MAX
MIN
N/A
0.8
0.8
-1.5
-1.2
-400
-1000
2.5
3,4
N/A
V'L = Max, IOH = Max
DM74
2.7
3,4
2.7
V'L = Max
IOL = Max
IOL = 4 mA
V
0.7
DM54
3:
CJ).
MAX
DM74
Vee = Min, V'H = 2V
Vee = Min, V'H = 2\1
UNITS
DM54
Vee = Min, I, = -18 mA
Low Level Output Voltage
TYP(1)
~
2
2
Low Level Output Current
.'".;,.
DM74S
MIN
r
VIH
DM54LS/74LS
V
V
flA
V
3,4
DM54
4
NiA
DM74
8
20
DM54
0.25
0,4
N/A
DM74
0.35
0.5
0.5
rnA
V
0,4
DM74
-..J
II
Input Current at Maximum Input Voltage
IIH
High Level I nput Current
III
Low Level Input Current
lOS
Icc
Short Circuit Output Current
Supply Current
Vee = Max
Vee = Max
Vee:::: Max
V, = 5.5V
1
V, = 7V
0.1
V, = 2,7V
20
V, =O.4V
-{),36
-2
DM54
-30
-130
DM74
-30
-130
N/A
-40
-100
Vcc = Max
LS138,S138
6,3
10
49
74
Outputs Enabled and Open
LS139,S139
6.8
11
60
90
Notes
All typical values are at Vee = 5V. TA = 25°C.
(2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
(1)
0
50
V, = 0,5V
Vee = Max(2)
rnA
flA
3:
(11
rnA
.......
0
mA
~
3:
'oJ
~
r-
...
en
...
CJ)
rnA
W
(X)
W
(X)
r-
...
...
CJ)
W
CD
CJ)
W
CD
Switching Characteristics vee
~ 5V, T A ~ 25°C
DM54 LS174 LS
FROM
!INPUT)
PARAMETER
TO
(OUTPUT)
LEVELS
OF DELAY
CONDITIONS
LS138
MIN
tPLH
Propagation Delay Time,
Low-ta-High Level Output
DM74S
DM54LSI74LS
MAX
13
MIN
S138
CONDITIONS
LS139
TYP
~
DM74S
S139
TYP
MAX
20
13
20
4.5
7
5
7.5
ns
27
41
22
33
7
10.5
6.5
10
ns
18
27
18
29
7.5
12
7
12
ns
26
39
25
38
8
12
8
12
ns
MIN
MAX
MIN
TYP
UNITS
TYP
MAX
s:
-
CJ)
2
tpHl
Propagation Delay Time,
High-ta-Low Level Output
tplH
Binary
Any
Select
Propagation Delay Time,
l.ow-ta-High Level Out'put
3
tpHL
tpLH
Propagation Delay Time,
High-ta-Low Level Output
CL
Propagation Delay Time,
RL
= 15pF
= 2 krl
CL
RL
low-ta-High Level Output
= 15 pF
= 28012
12
18
16
24
5
8
5
8
ns
21
32
21
32
7
11
6.5
10
ns
17
26
N/A
7
11
N/A
ns
25
38
N/A
7
11
N/A
ns
2
tpHL
Propagation Delay Time,
High-ta-Low level Output
Any
Enable
tpLH
Propagation Delay Time,
Low-ta-High Level Output
3
"".j:,.ex>
tPHL
Propagation Delay Time,
High-ta-Low level Output
0
s:
Truth Tables
(J1
.
~
LS138, S138
.......
0
s:
INPUTS
G1
G2'
OUTPUTS
SELECT
ENABLE
C
B
A
YO
Y1
Y2
Y3
Y4
LS139, S139
Y5
Y6
Y7
INPUTS
~
r'
OUTPUTS
CJ)
X
H
X
H
H
H
H
H
H
ENABLE
X
X
X
H
X
X
X
H
L
H
H
H
H
H
H
H
H
G
B
A
YO
Y1
Y2
Y3
H
L
L
L
L
L
H
H
H
H
H
H
H
L
H
L
H
H
H
H
L
H
H
H
H
H
H
X
H
H
X
L
H
H
H
H
H
H
H
H
H
H
L
L
H
L
L
L
L
L
H
L
H
H
L
L
H
H
H
L
H
H
H
H
H
H
H
H
L
H
L
H
L
H
H
L
H
L
H
H
H
H
H
L
H
L
L
H
L
H
L
L
H
H
H
H
L
H
H
H
H
L
H
L
H
H
H
H
H
H
L
H
H
H
L
H
H
L
H
H
H
H
H
H
L
H
H
L
H
H
H
H
H
H
H
H
H
H
L
'G2 ~ G2A + G2B
H::: High level, L = low level, X :::: don't care
H
=
SELECT
high level, L::: low level, X ::: don't care
"""
to)
00
...
CJ)
to)
00
...
r'.
CJ)
to)
to
...
CJ)
to)
to
~
DM54/DM74147.148
MSI
Priority Encoders
General Description
Features
These TTL encoders feature priority decoding of the
input data to ensure that only the highest-order data line
is encoded. The DM54147 and DM74147 encode nine
data lines to four-line (8-4-21) BCD. The implied
decimal zero condition requires no input condition as
zero is encoded when all nine data lines are at a high
logic level. All inputs are buffered to represent one
normalized Series 54/74 load. The DM54148 and
DM74148 encode eight data lines to three-line (4-2-1)
binary (octal). Cascading circuitry (enable input EI and
enable output EO) has been provided to allow octal
expansion without the need for external circuitry. For
all types, data inputs and outputs are active at the low
logic level.
DM54147, DM74147
..•
..
Encodes 10-1 ine deci mal to 4-line BCD
Applications include:
Keyboard encoding
Range selection
Typical data delay
Typical power dissipation
•
10 ns
225 mW
DM54148, DM74148
•
Encodes 8 data lines to 3-line binary (octal)
Applications include:
N-bit encoding
Code converters and generators
Typical data delay
Typical power dissipation
•
•
•
10 ns
190mW
Connection Diagrams
T
OUTPUT
0
Ne
L5
16
.
INPUTS
,
3
2
13
14
T
1
2
•
6
5
•
3
5
7
8
6
,
INPUTS
INPUTS
,
GS
3
I.
15
,
1
2
13
12
10
11
2
,•
9
0-
1
G!:
OUTPUT
AD
0
r-----,
~
MSI
DM54/DM74150.151A.LS151.S151
Data Selectors/Multiplexers
General Description
Features
These data selectors/multiplexers contain full on-chip
decoding to select the desired data source. The 150
selects one-of-sixteen data sources; the 151 A, LS151,
and S151 select one-of-eight data sources. The 150,
151A, LS151, and S151 have a strobe input which must
be at a low logic level to enable these devices. A high
level at the strobe forces the W output high, and the Y
output (as applicable) low.
•
•
•
•
•
The 151A, LS151, and S151 feature complementary
Wand Y outputs whereas the 150 has an inverted (W)
output only.
L4
'10
23
22
21
E12
Ell
20
E13
19
E14
18
E15
\
A
16
17
8
, E7
3
'5
'6
4
E4
5
6
E3
E2
7
8
10
9
,
11
o
EO STROBE W
'1
LS151
DATA INPUTS
04
05
07
06
14
13
30mW
4.5 ns
225mW
54150/74150
STROBE
13
D
C
B
A
S
X
X
X
X
H
L
L
L
L
L
L
L
H
L
L
L
H
L
L
L
L
H
H
L
L
H
L
L
L
L
H
L
H
L
L
H
H
L
L
L
H
H
H
L
H
L
L
L
L
J,12
H
L
L
H
L
H
L
H
L
L
GNO
H
L
H
H
L
H
H
L
L
L
H
H
L
H
L
E13
H
H
H
L
L
E14
H
H
H
H
L
E15
C
11
10
I-
r--
,03
02
3
01
DATA INPUTS
DO
,
6
5
4
Y
H
EO
El
Ez
E3
E4
E5
E6
-E7
E8
E9
El0
Ell
-
E12
54151A/74151A,54LSI51174LSI51,
74S151
9
INPUTS
2
W
L
SELECT
1
OUTPUT
\
8
A
12
135mW
SELECT
l76
15
200mW
9 ns
INPUTS
DATA SElECT
,
11 ns
12.5 ns
S151
54150(JI. (F); 74150(J), (N), (F)
v
DISSIPATION
150
OUT OATA
SELECT
DATA INPUTS
,
POWER
DATA INPUT TO W OUTPUT
C
14
15
TYPICAL
PROPAGATION DELAY TIME
151A
to-
2
Also for use as Boolean function generator
DATA SElECT
,.....
1
Permits multiplexing from N lines to one line
Truth Tables
DATA INPUTS
'9
Performs parallel·to-serial conversion
TYPICAL AVERAGE
Connection Diagrams
'8
Others select one-of-eight data lines
TYPE
The 151A incorporates address buffers which have
symmetrical propagation delay times through the complementary paths. This reduces the possibility of transients
occurring at the output(s) due to changes made at the
select inputs, even when the 151A outputs are enabled
(i.e., strobe low).
Vee
150 selects one-of-sixteen data lines
W
,
7
STROBE
J:
H
C
B
X
L
OUTPUTS
STROBE
Y
A
S
X
X
H
L
L
L
L
DO
L
L
H
L
01
L
H
L
L
D2
L
H
H
L
D3
H
L
L
L
D4
H
L
H
L
D5
H
H
L
L
06
H
H
H
L
07
W
H
-
DO
01
i52
D3
D4
55
-
06
OJ
= High Level, L = Low Level, X = Don't Care
Eo, E1 ... E15 = the complement of the level of the
OUTPUTS
respectiVe E input
DO, .01 ... 07 = the level of the respective 0 input
54151A(J), (W); 74151A(J), (N), (W);
54LS151174LS151(J), (N), (W); 74S151(N)
2-53
Electrical Characteristics
CONDITIONS
PARAMETER
MIN
VIH
High level Input Voltage
V IL
low level I nput Voltage
Input Clamp Voltage
VI
10H
High level Output Current
V OH
High level Output Voltage
10L
VOL
low level Output Voltage
.
Vee = Min
Input Current at Maximum
High level I nput Current
IIH
low level I nput Current
IlL
los
IcC
Short Circuit Output Current
DM54/74
DM74S
150, 151A
lS151
S151
TYP(l)
MAX
MIN
TYP(1)
0.8
0.7
N/A
0.8
0.8
0.8
-1.5
-1.2
-800
3.4
N/A
V'L = Max, IOH = Max
DM74
2.4
2.7
3.4
2.7
Vee = Max(2)
Supply Current
IOL = Max
IOL =4 mA
16
4·
N/A
DM74
16
8
20
DM54
0.4
0.25
0.4
N/A
DM74
0.4
0.35
0.5
0.5
DM74
(4)
V
/lA
V
3.4
DM54
mA
V
0.4
V, = 5.5V
1
1
V, = 7V
0.1
V, = 2.4V
mA
40
V, = 2.7V
20
-1.6
V, = O.4V
50
-0.4
-2
V, - 0.5V
DM54
-20
-55
-30
-130
DM74
-18
-55
~30
-130
150
40
68
151A
27
48
Others
(3)
-1000
-400
2.5
Vee = Max
V
-1.5
2.4
Vee = Max
(/)
V
DM74
DM54
Vee = Max
s:
MAX
DM54
I, =-18 mA
Vee = Min, V ,H =2V
TYP(l)
UNITS
2
N/A
-100
-40
/lA
mA
0
s:U1
~
........
0
mA
s:
...
:...
...
l>
......r~
~
U1
mA
6
N~tes
(2)
MIN
Vee = Min, V ,H = 2V
Vee = Max(3)
(1)
MAX
2
I, =-12 mA
V,L = Max
Input Voltage
DM54/74
2
low level Output Current
'"
r-
UI'
rJ)
....
UI
....
....
....UI
rJ)
-
------
~ MSI
DM54/DM74150.151A.lS151.S151
Logic Diagrams
150
ISlA. S151
STROBE (9)
(ENABLE)
(B)
EO
-C
p-
>-c
Ft-'
>-;:::::
Ft-'
m
£1
(61
E2
(5)
EJ
~
(4)
E4
>--c
(3)
E5
DATA
INPUTS
~
~
Ft)--:-
SEE ADDRESS BUFFERS BElOW
>--c
(1)
E7
>-c p--(231
E8
(22)
~
(21)
~
(201
~
-
E9
£10
Ell
f=I'"
(19)
E12
(10)
OUTPUT W
~
r;:::::;
ADDRESS BUFFERS FOR 54151A174151A
5----
j
(~
t::r
A
(141
B
(13)
ADDRESS BUFFERS FOR 54lS151174lS151. 74S151
~
1161
E15
DATA
SElECT
B
(BINARY)
B
t
c
(11)
.
C
Ft-'
(17)
A~7nill
SE~~~~ IB
Ft-'
(18)
£14
:
~
(BINARY)
Ell
(BINARY)
~
~
DATA
INPUTS
DATA
SELECT
}f..ASS'CC
(2)
E6
D4(1",8)t=f=f:f$~f3J
D
0
2-56
l ·=~i·illl
B
c
~MSI
DM54/DM74153.LS153.S153
Dual 4-Line to 1-Line Data Selectors/Multiplexel'S
General Description
Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary,
on-chip, binary decoding data selection to the AND-ORinvert gates. Separate strobe inputs are provided for
each of the two four-line sections.
• Strobe (enable) line provided for cascading (N lines
to n lines)
• High fan-out, low-impedance, totem-pole outputs
TYPICAL AVERAGE
PROPAGATION DELAY TIMES
FROM
FROM
FROM
TYPE
Features
• Permits multiplexing from N lines to 1 line
• Performs parallel-to-serial conversion
Connection Diagram
153
LS153
S153
DATA
STROBE
SELECT
11 ns
14 ns
6 ns
18 ns
19 ns
9.5 ns
20 ns
22 ns
TYPICAL
POWER
DISSIPATION
170mW
31 mW
225mW
12 ns
Truth Table
SELECT
INPUTS
DATA INPUTS
54153(JI, (W); 74153(J), (N), (W);
54LS153/74LS153(J), (N), (W);
74S153(N)
A
CO
Cl
C2
C3
G
V
x
x
x
L
L
L
i..
L
H
L
H
X
L
X
L
H
H
x
H
L
x
x
x
x
x
x
x
H
L
x
x
x
x
L
X
L
L
H
L
X
X
H
X
L
H
H
H
X
X
X
L
L
L
H
H
X
X
X
H
L
H
X
x
L
L
L
H
L
L
L
H
Select inputs A and B are common to both sections.
H = High Level, L = Low Level, X = Don't Care
.....-,
1p,~16",1--------+++
1C1.!!5!!.,1--------+=:f::t=:t=L...J
DATA 1
1C2.:;14;:..1--'---_-+++i-+-.&..-'
1C3 .f13!L1______+~$$=lJ
___++i_~~r-~
DATA 2
2C2 "'112;;:.I-----"'1=1==t=~-"'\
2C3~11~3Ibf;:==========~~~~r=~
115)
OUTPUT
x
STROBE G1 lH
STROBE G2
STROBE
B
Logic Diagram
2C1~11~1I----
DATA INPUTS
Electrical Characteristics over recommended o'perating free-air temperature range (unless otherwise noted)
PARAMETER
CONDITIONS
MIN
VIH
High level Input Voltage
VIL
low level Input Voltage
Input Clamp Voltage
VI
10H
High level Output Current
VOH
High level Output Voltage
DM54lS/74lS
DM74S
153
lS153
S153
TYP(1)
Vee; Min
VOL
low level Output Voltage
Input Current at Maximum
II
Input Voltage
High level Input Current
IIH
low,level Input Current
III
Short Circuit Output Current
los
Supply Current
ICC
0.7
N/A
0.8
-1.5
-1.2
-1.5
-800
DM54
DM74
2.4
2.4
3.2
3.2
3.4
N/A
3.4
2.7
16
16
DM54
0.2
DM74·
DM74lS
0.2
-1000
-400
2.5
2.7
0.25
0.4
0.4
0.35
V
V
/lA
V
3.4
4
N/A
8
20
0.4
0.5
N/A
0.5
mA
/
V
0.4
Vee; Max
V,; 5.5V
V,;7V
1
V,'; 2.4V
40
Vee; Max(3)
V
0.8
IOL; 4 mA
Vee; Max(2)
MAX
0.8
V'L; Max
Vee; Max
TYP(1)
0.8
DM54
Vee; Max
MIN
2
I, --18 mA
IOL ; Max
MAX
3:
f!!
UNITS
DM54
,
V'H ; 2V
TYP(1)
~
DM74
1,;-12mA
Vee; Min, V'H ; 2V
V'L = Max,l oH ; Max
Vee = Min
MIN
2
DM74
'"81
MAX
2
low level Output Current
10l
DM54/74
1
0.1
V,; 2.7V
20
V,';O.4V
,-1.6
50
-0.36
mA
/lA
C
mA
V, ; 0.5V
3:
en
'-2
DM54
-20
-55
-30
-130
DM74
-18
-'57
-30
-130
DM54
34
52
6.2
10
DM74
34
60
6.2
10
N/A
-40
-100
N/A
45
70
~
.......
0
mA
3:
~
en
mA
~
W
Not_
(1)
(2)
All typical values are at Vcc; 5V, TA; 2SoC.
(3)
ICCl is measured with the outputs open and all inputs grounded.
National Semiconductor temporarily reserves the right to ship'OM54LS/OM74LS153 devices which have a minimum lOS = 5.0 rnA.
(4)
t;....
-
en
Not more than one output should be shorted at a time, and for DM54lS/74LS or DM74S duration of short circuit should not exceed one second.
W
en
....
en
w
.,
-
Switching Characteristics vee = 5V, T A = 25°C
PARAMETER
FROM
(INPUT)
~
DM54/74
DM54 LS/74 LS
DM74S
153
LS153
S153
TO
(OUTPUT)
CONDITIONS
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-ta-Law Level Output
MIN
TYP
MAX
CONDITIONS
MIN
TYP
MAX
CONDITIONS
MIN
UNITS
TYP
MAX
Data
Y
11
18
10
15
6
9
ns
Data
Y
10
23
17
26
6
9
ns
Select
Y
20
34
19
29
11.5
18
ns
CL
Select
y
Strobe
Strobe
~
C L = 15pF
30 pF
RL = 400Q
s:
V)
C L = 15pF
RL = 2 kQ
RL =28012
20
34
25
38
12
18
ns
y
19
30
16
24
10
15
ns
y
17
23
21
32
9
13.5
ns
N
c:n
0
s:
(J1
~
........
0
s:
~
(J1
w
lV)
...
...
(J1
W
V)
(J1
W
-
_.-
~
MSI
DM54/DM74154,L154A,LS154
4-Line to 16-Line Decoders/Demultiplexers
General Description
Features
Each of these 4-line-to-16-line decoders utilizes TTL
circuitry to decode four binary-coded inputs into one
of sixteen mutually exclusive outputs when both the
strobe inputs, G 1 and G2, are low. The demultiplexing
function is performed by using the 4 input lines to
address the output line, passing data from one of the
strobe inputs with the other strobe input low. When
either strobe input is high, all outputs are high. These
demultiplexers are .ideally suited for implementing,highperformance memory decoders. All inputs are buffered
and input clamping diodes are provided to minimize
transmission-I ine effects and thereby simplify system
design.
•
•
•
•
Decodes 4 binary-coded inputs into one of 16 mutually
exclusive outputs
Performs the demultiplexing func.tion by distributing
data from one input line to anyone of 16 outputs
Input clamping diodes simplify system design
High fan-out, low-i mpedance, totem-pole outputs
TYPICAL
TYPE
TYPICAL
PROPAGATION DELAY
3 LEVELS OF LOGIC
POWER
STROBE·
DISSIPATION
154
L154A
19 ns
18 ns
170mW
55'ns
LS154
23 ns
45 ns
19 ns
24mW
45mW
Connection and Logic Diagrams
Ii.
M
Wo
B
C
0
A
INPUTS
t
A
B
0
C
22
23
21
G2
20
G1
19
,
Gl (lB)
OUTPUTS
15
18
13
14
16
17
62
11
12
15
(4)3
13
14
I--
i
10-
INPUTS
rv
1
2
1
5
4
]
2
]
4
7
6
5
6
9
B
7
8
10
9
A
(6)5
A
B
B(22)
l
e l2l )
,,
(1)5
B
-v
t::~
c
C
~
11 J12
10.
GNO
(5/ 4
C
A (23)
r<
)oELz
•
G
(19)
(2'1
(8/ 7
OUTPUTS
{9)S
Or" ~r(10)9
0
D (20)
I
OUTPUTS
54154(JI. (F); 74154(J), (N), (F);
54L 154A/74L 154A(J), (N), (F);
54LS154/74LSl54(J), (N), (F)
t::l--
D
0
(11)10
(13)11
c
(14) 12
(15)13
B
A
(16)14
A
G
B
C
Tentative Data For LS154
2-60
OJI Is
O~
LS 154 To Be Announced In 1976
Electrical Characteristics
PARAMETER
CONDITIONS
MIN
VIH
High Level I nput Voltage
VIL
Low Level Input Voltage
Input Clamp Voltage
VI
IOH
High Level Output Current
VOH
High Level Output Voltage
'"~
Vee ~ Min
Low Level Output Voltage
IIH
IlL
Input Current at Maximum Input Voltage
High Level Input Current
Vee
Icc
Supply Current
L 154A
LS154(4)
TYP(1)
MAX
MIN
TYP(1)
Vee
~
Min, V ,H
2
Vee
~
Vee
= Max
Max
~
Max
Vee ~ Max(2)
Vee
~
Max(3)
~
5.5V
V,
~
7V
V,
= 2.4V
V,
~
2.7V
V,
~
0.3V
V,
= 0.4V
0.7
O.B
N/A
-1.5
-200
-400
DM54
2.4
3.4
2.4
2.B
2.5
3.5
DM74
2.4
3.4
2.4
2.8
2.7
3.5
DM54
16
2
4
16
3.6
8
DM54
0.25
0.4
0.15
0.3
0.25
0.4
DM74
0.25
0.4
0.20
0.4
0.35
0.5
0.1
1
0.1
40
V
V
IlA
V
DM74
10
20
mA
V
mA
IlA
-0.18
-1.6
-0.36
DM54
-20
-55
-3
--9
-15
-30
-130
DM74
-18
-57
-3
--9
-15
-30
-130
DM54
34
49
4.8
6.0
9
14
DM74
34
56
4.8
6.0
9
14
mA
mA
0
~
(J1
~
.......
0
~
-..J
mA
~
....
(J1
~
!:
Notes
All typical values are at Vee = 5V, TA = 25°C.
(21 Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
(4)
V
O.B
-1.5
~
en
MAX
2
(J1
(1)
(3)
TYP(1)
DM74
mA
V,
MIN
0.7
~-lBmA
= 2V
MAX
UNITS
0.7
~-12
~ Min, V ,H ~ 2V
= Max, IOH = Max
Low Level I nput Current
Short Circuit Output Current
154
-BOO
Vee
loS
DM54LS/74LS
0.8
I,
V'L ~ Max, IOL ~ Max
II
DM54L/74L
DM54
I,
Low Level Output Current
VOL
DM54/74
2
V'L
IOL
~
over recommended operating free-air temperature range (unless otherwise noted)
~
»
ren
....
ICC is measured with all inputs grounded and all outputs open.
Tentative data.
(J1
~
----------
Switching Characteristics vee
~ 5V, TA ~ 25°C
DM54/74
DM54L/74L
DM54 LS174 lS
154
L154A
LS154(4)
PARAMETER
CONDITIONS
tpLH
Propagation Delay Time,
MIN
TYP
MAX
18
36
21
33
CONDITIONS
MIN
TYP
MAX
35
70
75
150
CONDITIONS
MIN
~
UNITS
TYP
MAX
24
36
nS
22
33
ns
s:
C/)
Low~to~High
Level Output, From A, B, C, o-r D Inputs
Through 3 Levels of Logic
tpHL
tpLH
Propagation Delay Time,
High~to~Low
Level Output, From A, 8, C, or D Inputs
CL =15pF
Through 3 Levels of Logic
HL
Propagation Delay Time,
RL
Low~to~High
Level Output, From Either Strobe Input
tpHL
Propagation Delay Time,
High~to~Low
Level Output, From Either Strobe Input
'"0,
'"
CL = 50 pF
=400n
C L = 15pF
= 4 kn
RL
='2kn
17
30
35
70
20
30
ns
18
27
55
110
18
27
ns
Truth Table
INPUTS
OUTPUTS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
G1
G2
D
C
B
A
o~
L
L
L
L
L
L
L
L
L
L
L
H
15
L
L
L
L
H
L
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
H
L
l
H
H
H
H
L
H
H
H
H
H
H
H
,H
H
H
H
L
L
L
H
L
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
L
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
H
If
H
H
H
L
H
H
H
H
H
H
H
H
C
s:C11
01=0
.......
C
s:-...I
L
L
H
L
L
L
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
L
L
H
L
L
H
H
H
H
H
H
H
H
H
H,
L
H
H
H
H
H
H
L
L
H
L
H
L
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
l
H
l
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
l
l
H
H
l
l
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
01=0
L
l
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
l
l
H
H
H'
l
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
s:
C11
l
l
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
H
X
X
X
X
H
H~
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
l
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
...
01=0
C11
01=0
l>
ro-
...
C/)
C11
H = High Level, L;:: Low Level, X = Don't Care
01=0
~ MSI
DM54/DM74155.LS155.156.LS156
Dual 2-Une to 4-Une Decoders/Demultiplexers
General Description
Features
These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binaryaddress inputs in a single 16-pin package .. When both
sections are enabled by the strobes, the common address
inputs sequentially select and route associated input data
to the appropriate output of each" section. The individual
strobes permit activating or inhibiting each of the 4.bit
sections as desired. Data applied to input C1 is inverted
at its outputs and data applied at C2 is true through its
outputs. The inverter following the C1 data input permits
use as a 3-to-8-line decoder, or 1-to-8-line demultiplexer,'
without external gating. Input clamping diodes are
provided on these circuits to minimize transmission-line
effects and simplify system design.
•
Applications:
Dual 2-to-4-line decoder
Dual 1-to-4-line demultiplexer
3-to-8-line decoder
1-t0-8-line demultiplexer
•
Individual strobes simplify cascading for decoding or
demultiplexing larger words
•
Input clamping diodes simplify system design
•
Choice of outputs:
Totem-pole (155, LS1551
Open-collector (156, LS1561
Connection Diagram
Truth Tables
2-LlNE-TO-4-LlNE DECODER
OR 1-LlNE-TO-4-LINE DEMULTIPLEXER
INPUTS
SELECT
OUTPUTS
STROBE
DATA
Cl
B
A
Gl
1Y0
lY2
lY3
H
X
X
H
X
H
H
H
L
L
L
H
L
H
H
H
L
H
L
H
H
L
H
H
H
H
L
L
H
H
H
L
H
H
L
H
H
H
H
L
X
X
X
L
H
H
H
H
INPUTS
SELECT
B
541551J), IW); 741551J), INl.IW);
54LS155174LS155IJ), IN), IW);
5415SIJl. IW); 7415SIJ), IN), IW);
54LS156174LS15SIJ), IN), IW)
lYl
OUTPUTS
STROBE
DATA
A
G2
C2
2YO
2Yl
2Y2
2Y3
X
X
H
X
H
H
H
H
L
L
L
L
L
H
H
H
L
H
L
L
H
L
H
H
H
L
L
L
H
H
L
H
H
H
L
L
H
H
H
L
X
X
X
H
H
H
H
H
Logic Diagram
3-LlNE-TO-8-LlNE DECODER
OR 1-LlNE-TO-8-LlNE DEMULTIPLEXER
INPUTS
Ct
B
X
L
OA~~ ",115..
1 _ _- .
10)
11)
12)
13)
14)
15)
IS)
(7)
A
Gi
X
X
H
H
H
H
H
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
L
L
H
L
H
L
H
H
H
H
H
H
L
H
L
L
H
H
L
H
H
H
H
H
2YO 2Yl 2Y2 2Y3 1Y0 1Yl lY2 1Y3
L
H
H
L
H
H
H
L
H
H
H
H
H
L
L
L
H
H
H
H
L
H
H
H
H
L
H
L
H
H
H
H
H
L
H
H
H
H
L
L
H
H
H
H
H
H
L
H
H
H
H
L
H
H
H
H
H
H
H
L
tC
STRO~i ",114;;..1_ _- ,
OUTPUTS
STROBE
OR DATA
SELECT
= inputs C1 and C2 connected together
+G == inputs G 1 and G2 connected together
H = high level, L
2-63
= low
level, X
= don't care
LS155, LS156 To Be Announced In 1976
Electrical Characteristics
DM54LS/74LS
DM54174
CONDITIONS
PARAMETER
155
MIN
V ,H
High Level Input Voltage
V ,L
Low Level Input Voltage
Input Clamp-Voltage
V,
TYP(1)
=:
Min
MIN
TYP(1)
MAX
2
MIN
TYP(1)
2
=;
High Level Output Voltage
Vee
V 1L
= Min, V 1H
= Max, IOH
=:;
=:
TYP(l)
0.7
DM74
0.8
0.8
0.8
0.8
-1.5
-1.5
1.5
1.5
Max, V OH
=:
100
250
5.5V
400
2V
DM54
2.4
2.5
3.4
Max
DM74
2.4
2.7
3.4
Low Level Output Current
Low Level Output Voltage
VOL
'"
~
Vee
=:;
Min, V 1H
=:;
2V
V'L = 0.8V
Input Current at Maximum
I,
Vee::: Max
Input Voltage
High Level I nput Current
I'H
I,L
Low Level Input Current
los
Short Circuit Output
Cu~rent
Supply Current
Icc
Vee
= Max
16
16
4
4
16
16
8
8
4 mA
10L - 8 mA, DM74
IOL -16mA
V, = 5.5V
Vee = Max(3)
0.4
1
1
0.4
0.25
0.4
0.35
0.5
0.35
0.5
V, = 2.7V
-1.6
-1.6
DM54
-20
-32
-55
DM74
-18
-32
-55
0.1
0.1
20
20
-0.36
-0.36
40
40
V, = 2.4V
-30
N/A
p.A
mA
0.25
V, = 7V
Vee = Max, V, = O.4V
Vee = Max(2)
0.4
V
V
DM74
=:
V
5.5
DM54
IOL
s:
-en
V
2
0.7
5.5
10L
MAX
0.8
800
VOH
MIN
0.8
18mA
Vee"" Min, V 1H == 2V, V 1l
UNITS
LS156
MAX
DM54
1,=-12mA
I, -
LS155
156
MAX
2
Vee
High Level Output Curren!
IOH
~
over recommended operating free-air temperature range (unless otherwise noted)
,
-130
-130
-30
N/A
DM54
25
35
25
35
6.1
10
6.1
10
DM74
25
40
25
40
6.1
10
6.1
10
V
rnA
0
p.A
s:
rnA
~
.......
mA
s:.....
mA
U1
0
....
U1
~
U1
,...
en
....
Notes
(1)
All typical values are at VCC = SV, T A = 2SoC.
(2)
Not more than one output should be shorted at a time, and for DM54LSJ74LS duration of short circuit should not exceed one second.
(3)
ICC is measured with outputs open, A, B, and C1 inputs at 4_.5V, and C2, G1 and G2 inputs grounded.
..
U1
U1
:...
U1
m
r-
en
....
U1
m
_.
,
Switching Characteristics vcc = 5V, T A = 25°C
~
DM54LSI74LS
DM54/74
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
LEVELS
OF LOGIC
155
CONDITIONS
MIN
tPLH
156
TYP
MAX
13
20
MIN
LS155
CONDITIONS
TYP
MAX
15
23
MIN
LS156
TYP
MAX
10
15
MIN
UNITS
TYP
MAX
25
40
' Propagation
Delay Time,
A, B, C2
Low-to-H igh
Gl or G2
Y
2
Level Output
tPHl
s:
CJ)
ns
-
Propagation
Delay Time,
A, B, C2
H igh-to-Low
Gl or G2
Y
2
Y
3
18
27
19
30
18
27
21
32
19
30
34
51
ns
17
26
31
46
ns
Level Output
tPLH
Propagation
Delay Time,
Low-ta-High
Aor B
Level Output
CL = 15 pF
CL
= 15 pF
= 40011
RL
= 2 kl1
RL
tpHL
Propagation
Delay Time,
High-ta-Low
'"en
A or B
Y
3
17
26
18
27
19
30
34
51
ns
C1
y
3
17
24
19
27
18
27
32
48
ns
Level Output
(J'1
tPLH
Propagation
Delay Time,
Low-ta-High
Level Output
tpHl
0
Propagation
Delay Time,
High-ta-Low
C1
y
3
17
26
18
Level Output
27
18
27
32
48
ns
s:U1
~
........
0
s:
"...
~
U1
U1
r-
....U1
CJ)
U1
:..
U1
O'l
r-
....
CJ)
U1
O'l
--
~ MSI
DM54/DM74157 ,l157A.lS157 ,S157 ,lS158 ,S158
Quad 2-line to 1-line Data Selectors/Multiplexers
General Description
Features
These data selectors/multiplexers contain inverters and
drivers to supply full on-chip data selection to the .four
output gates. A separate strobe input is provided. A
4-bit word is selected from one of two sources and is
routed to the four outputs. The 157, L 157 A, LS157, and
S 157 present true data whereas the LS 158 and S 158
present inverted data to minimize propagation delay time.
•
Buffered inputs and outputs
• Three speed/power ranges available
TYPICAL
PROPAGATION
TYPICAL
POWER
TIME
DISSIPATION
9 ns
40 ns
150mW
TYPE
Applications
157·
L157A
LS157
• Expand any data input point
• Multiplex dual data buses
• Generate four functions of two variables (one variable
is common)
• Source programmable counters
S157
9 ns
5 ns
15mW
49mW
250mW
LS158
S158
7 ns
4 ns
24mW
195mW
Connection Diagrams
STROBE
T
16
,
G
INPUTS
A4
15
INPUTS
B'
I.
13
OUTPUT
V.
OUTPUT
A3
12
B3
11
T
vCC
Y3
10
9
1
SElECT
2
, AI
1
.,
•
VI
6
5
02
82
OUTPUT
INPUTS
,
7
V2
OUTPUT
INPUTS
,,.._......_-,,
G
A4
15
16
s
STROBE
84
14
INPUTS'
OUTPUT
V4
13
,
12
OUTPUT
Vl
BJ
A3
10
11
-
1
J:
3
2
AI
S
4
VI
81
OUTPUT
SElECT
INPUTS
INPUTS
low level at S sefects A inputs
High level at S selec1s B inputs
5
,A2
7
6
82
,
Y2
, OUTPUT
61:
INPUTS
lowlevtl at Sselects A inputs
High level at S selects B inputs
54157(JI, (W); 74157(JI, (NI, (WI;
54L 157A174L 157A(JI, (N), (WI;
54LS157174LS157(JI, (N), (WI; 74S157(NI
54LS158174LS158(JI, INI, (WI;
74S158(NI
Truth Table
INPUTS
OUTPUT Y
i57. L157A
LS157, S157
LS158
S158
H
STROBE
SELECT,
A
B
H
X
x
x
L
L
L
X
L
L
L
L
H
X
H
H
L
L
H
X
L
L
H
L
H
x
H
H
L
H = High Level, L. = Low Level, X = Don't Care
2-66
LS157, LS158 To Be Announced In 1976
~
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54L174L
DM54n4
PARAMETER
CONDITIDNS
V'H
High Level Input Voltage
V'l
Low Level I nput Voltage
V,
IOH
High Level Output Current
High Level Output Voltage
~
I,
Vee"" Min
Low level Output Voltage
= Min,
Vee
V IL
''""
Input Current at
Any Input
Max'imum Input Voltage
S or G Input
-.J
=::
0=
""
High Levell nput Current
Low Level Input Current
2
2
0.8
07
0.7
N/A
0.8
07
0.8
0.8
-1.5
N/A
--1.5
-1.2
ICC
Supply Current
-400
-200
N/A
Max, IOH
'='
Max
DM74
2,4
3.4
2.4
2.7
3.4
2,7
Max
10L
V,
Vee = Max
Vee ""Max
Vee'" Max
Vee ~ Maxl2!
Vee ~ Maxl3!
=4
mA
V,
16
2
4
N/A
DM74
16
36
8
20
DM54
0.4
0.3
0.25
0.4
DM74
0.4
0.4
0.35
0.5
1
0,1
OM74
0.25
~5.5V
~
~2.4V
V,
~
2,7V
V,
~
0,3V
V,
~
OAV
V,
~
0.5V
V
V
/lA
rnA
0.4
N/A
0,5
V
0
1
rnA
0.2
7V
V,
0
40
50
20
50
/lA
(,J1
-0.8
-1.6
-0.4
rnA
-20
DM74
-18
157
30
158
N/A
·-55
'-55
·3
48
-15
-30
-9
-15
-30
3
4
N/A
-130
-130
N/A
--40
-100
9,7
16
50
78
4.8
8
39
61
Notes
'-I
!:;
(,J1
-2
DM54
~
~
'0.18
1.6
~9
(,J1
.......
10
-3
~
~
0.1
40
-
V
3.4
DM54
'-I
mA
mA
l>
i(J)
....
'-I
en....
(,J1
(,J1
'-I
(1)
All typical values are at V CC = 5V, T A ~ 25" c.
(2)
Not more than one output should be shorted at a time, and for the DM54LS/74~S or DM74S duration of the short circuit should not excee.d one second.
ICC is measured with 4.5V applied to all inputs and all outputs open.
(3)
-1000
3.4
~
(J)
V
OM74
-'12 mA
10L ::: Max
UNITS
MAX
OM54
2.5
Min
TYP(1)
2
2.4
Any Input
Short Circuit Output Current
MIN
3,4
Any Input
lOS
S157, S158
MAX
2.4
S or G Input
A or B Input
TYP(1)
OM54
A or B Input
I'L
MIN
2V
Any Input
S or G Input
LS157, LS158
MAX
~
A or B Input
I'H
TYP(1)
DM74S
V 1H
V'H ~ 2V
I,
MIN
1,",-18rnA
Low Level Output Current
VOL
MAX
-800
Vee
V 1L
IOl
TYPI1!
2
Input Clamp Voltage
V OH
L157A
157
MIN
DM54LS/74LS
i(J)
....
(,J1
CO
en
....
(,J1
CO
--
-
_ .. -
-
Switching Characteristics V cc =5V,T A =25°C
DM54L/74L
DM54/74
FROM
(INPUT)
PARAMETER
tplH
Propagation Delay
Time, Low-to-High
Level Output
L157A
157
CONDITIONS
~
158
MIN
DM54 LS/74 LS
TYP
8
MAX
Co'NDITIONS
14
MIN
LS157, LS158
TYP
40
N/A
MAX
CONDITIONS
MIN
80
N/A
~
DM74S
S157, S158
TYP
MAX
CONDITIONS
MIN
UNITS
TYP
MAX
9
14
5
7.5
8
13
4
6
s:
en
ns
Data
tpHL
Propagation Delay
Time, High-to-Low
Level OutPlJt
tPlH
Propagation Delay
Time, Low·to-High
157
10
f--;ss
157
13
f--;ss
Strobe
Propagation Delay
Time, High-to·Low
Level Output
Propagation Delay
tpLH
Time, Low-to-High
Level Output
40
157
20
60
RL
~
CL 0 50 pF
400f!
15
157
23
19
4.5
6.5
13
4
6
16
25
8.5
12.5
14
25
6.5
11.5
RL 02 kf!
60
70
ns
ns
C L 0 15pF
RL
120
N/A
N/A
12
8
C L 0 15pF
RL 04 kf!
21
N/A
f-;58
120
N/A
C L 0 15 pF
14
7s
80
N/A.
N/A
Level Output
tpHL
14
N/A
140
N/A
o
280n
17
27
7.5
12
16
27
7
12
16.5
26
9.5
15
13
20
8
12
19
30
9.5
15
16
24
8
12
ns
ns
,'t;-J
.0>
Propagation Delay
tpHl
Time, High-to-Low
cOO
Level Output
157
f--;ss
17
N/A
27
50
100
N/A
a
s:
Select
(J1
ns
~
'"a
s:
......
~
--'
-
(J1
......
!::
(J1
......
l>
r-
en
--'
(J1
......
en
--'
(J1
......
l-
en
--'
(J1
co
en
...
(J1
co
-
-
~ MSI
OM 54/DM74157 .L157A.LS157. S157 .LS158 .5158
Logic Diagrams
157, L 157A
STROBE US)
L5157
L5158
m
Al
m
8t l31
81
131
A2 (51
A2
151
8Z'S!
"
At
(11)
Al (It)
8l
••
161
AJ
110)
BJ
(14)
(111)
(14)
A4
(O)
84 (13 )
B4
STROBE G /151
STROBE G (1S)
SElECT S
SelECT
{1}
s
(1)
5157
5158
Al
..::12~1-----;==========r-~
8t (3)
A2 (S)
82 (6)
A3 01}
83 (10)
A4 (14)
84(13)
2-69
.~ MSI
OM54/0M14160A.LS160.161A.LS161.162A.LS162.163A,LS163
Synchronous 4-Bit Counters
law level at the clear input sets all faur af the flip-flap
autputs law after the next clack pulse, regardless af the
levels af the enable inputs. This synchronous clear
allows the count length to. be modified easily, as decading
the maximum count desired can be accomplished with
one external NAND gate. The gate autput is connected
to. the clear input to. synchronously clear the counter to.
all law autputs. Low-ta-high transitians at the clear
input af the 162A and 163A are also permissible regardless af the logic levels on the clock, enable, or load inputs.
General Description
These synchronous, presettable counters feature an
internal carry look-ahead for application in high-speed·
counting designs. The 160A, 162A, LS160, LS162, are
decade counters and the 161A, 163A, LS161, LS163
are 4-bit binary counters. The carry outPUt is decoded
by means of a NOR gate, thus preventing spikes during
the normal counting mode of operation. Synchronous
operation is provided by having all flip-flops clocked
simultaneously so that the outputs change coincident
with each other when so instructed by the count-enable
inputs and internal gating. This mode ·of operation
eliminates the output co.unting spikes which are normally
associated with asynchronous (ripple clock) counters.
A buffered clock input triggers the four flip-flops on
the rising (positive-going) edge of the clock input
waveform.
The carry laok-ahead circuitry pravides far cascading
caunters far n-bit synchranous applicatians withaut
additianal gating. Instrumental in accomplishing this
functian are twa caunt-enable inputs and a ripple carry
autput. Bath caunt-enable inputs (P and T) must be
high to caunt, and input T is fed forward to enable the
ripple carry autput. The ripple carry autput thus enabled
will praduce a high-level output pulse with a duration
approximately equal to. the high-level portion af the Q A
output. This high-level overflaw ripple carry pulse can
be used to. enable successive cascaded sfages. High-tolow-level transitions at the enable P ar T inputs af the
160A thraugh 163A ar LS160 through LS163, may
occur regardless af the lagic level an the clack.
These counters are fully programmable; that is, the
outputs may be preset to either level. As presetting is
synchronous, setting up a low level at the Io.ad input
disables the counter and causes the outputs to agree
with the setup data after the next clock pulse regardless
of the levels of the enable input_ Low-to-high transitions
at the laad input af the 160A thraugh 163A ar LS160
thraugh LS163 are perfectly act:eptable, regardless af the
lagic levels an the clack or enable inputs. The clear
function far the 160A, 161A, LS160, and LS161 is
asynchronaus; and a law level at the clear input sets all
faur af the flip-flap autputs law regardless af the levels
af clock, laad, ar enable inputs. The clear functian far
the 162A, 163A, LS162, LS163, is synchranaus; and a
LS160 through LS163 feature a fully independent clack
circuit. Changes made to control inputs (enable P ar T,
laad ar clear) that will modify the aperating made have
no effect until clocking accurs. The functian of the
caunter (whether enabled, disabled, loading, ar caunting)
will be dictated salely by the canditians meeting the
stable setup and hold times.
Features
• Synchranously programmable
• Internallaok-ahead far fast caunting
• Carry output for n-bit cascading
• Synchranaus caunting
• Load cantralline
• Diade-clamped inputs
TYPE
160 thru 163
LS160 thru LS163
TYPICAL PROPAGATION
TIME, CLOCK TO
TYPICAL
TYPICAL
CLOCK
Q OUTPUT
FREQUENCY
POWER
DISSIPATION
14
14
ns
ns
35 MHz
32 MHz
Connection Diagram
I
vCC
16
OUTPUTS
RIPPLE
CARRY
OUTPUT
ENABLE
T
15
13
14
12
LOAD
10
"
54160A(J), (W); 74160A(J), (N), (W);
54LS160/74LS160IJ), (N), (W);
54161A(J), (W); 74161A(J), (N), (W);
54LS161/74LS161 (J), (N.), (W);
54162A(J), (W); 74162A(J), 010, (W);
54LS162/74LS162(J), (N), (W);
54163A(J), (W); 74163A(J), (N), (W);
54LS163/74LS163(J), (N), (W)
1
2
CLEAR
CLOCK
4
3
,
A
B
7
6
5
C
0
,
ENABLE
P
J:
DATA INPUTS
2-70
315mW
93mW
~
OM54/0M74160A.LS160.161A.LS161.162A.LS162.163A.LS163
MSI
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
"
PARAMETER
CONDITIONS
DM54/74
DM54LS/74LS
160A,161A
162A,163A
LS160, LS161
LS162, LS163
UNITS
MIN TVPl11 MAX MIN TYPl11 MAX
V ,H
High Level Input Voltage
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
2
DM74
IOH
High Level Output CUrrent
V OH
High Level Output Voltage
1
I
Vee
=
==
Min, V IH
2V
=
Max, IOH ::: Max
Low Level Output Voltage
Vcc=Min
tOl =
V 1H = 2V
Input Current ax Maximum
All
Input Voltage
Data or Enable P
/
Load, Clock, or Enable T
Clear ILS160, LS1611
Max
i Ol ==4 mA
VI L = Max
I,
0.8
0.8
-1.5
II::: -18 mA
Low Level Output Current
VOL
0.7
-800
V 1L
IOL
0.8
-1.5
1 =--'2 mA
Vee"" Min
V
2
DM54
V,
= 5.5V
VI
=
-400
DM54
2.4
3.4
2.5
DM74
2A
3A
2.7
3A
3A
16
4
DM74
16
8
0.2
DM74
0.2
OA
OA
0.25
DM74
I'H
0.5
0.25
OA
Data
\
Enable P
Clear {160, 1611
0.1
Vcc=Max
0.2
7V
0.2
Vcc=Max
V,
V,
= 2AV
= 2.7V
1160A-163AI
ILS160-LS1631
Data, Enable P
Clock
Load
Enable T
Vee = Max
V, =OAV
"-
Clear 1160, 1611
ICCH
Iccj.-
Supply Current, All Outputs High
Supply Current, All Outputs Low
40
40
80
40
40
20
40
20
40
20
40
40
-1.6
-0.4
-3.2
1.2
-1.6
0.8
-3.2
0.8
-1.6
-{)A
-1.6
Clear 1162, 1631
Short CirCUit Output Current
los
Vee"" Max(2)
Vee::: Max(3)
Vee = Max(4)
-20
-57
-30
-130
DM74
-18
-57
-30
-130
DM54
59
85
18
31
DM74
59
94
18
31
DM54
63
91
19
32
DM74
63
101
19
32
11)
All typical values are at VCC ~ 5V, TA ~ 25°C.
121
Not more than one output should be shorted at a time, and for OM54LS/74LS duration of short circuit should not exceed one second.
ICCH is measured with the load input high, then again with the load input low, with all o~her inputs high and all outputs open.
leel is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open .
14)
.~
2-71
pA
mA
-{).8
DM54
Notes
131
mA
0.1
Clear 1162, 1631
Low Level Input Current
I,L
V
1
Load
Clock, Enable T
mA
OA
0.35
Clear {LS162, LS1631
High Level I nput Current
V
pA
V
DM54
DM54
V
mA
mA
mA
~
DM54/DM74160A,LS160,161A,LS161,162A,LS162,163A,LS163
MSI
Switching Characteristics
vcc = 5V, T A = 25° C
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
DM54174
DM54LS/74LS
160A, 161A, 162A, 163A
LS160, LS161, LS162, LS163
CONDITIONS
f MAX
Maximum Clock Frequency
tpLH
Propagation Delay Time,
25
Low-ta-High Level Output
Clock
Propagation Oe.lay Time,
tpHl
MIN TYP MAX CONDITIONS
Propagation Delay Time,
tpHL
Clock
(Loap Input High)
Propagation Delay Time,
tPHl
tpLH
tpHl
Propagation Delay Time,
RL = 40011
Clock
(Load Input Low)
Low-ta-High Level Output
Enable T
Propagation Delay Time',
High-to-Low Level Output
tW(CLOCK)
Width of Clock Pulse
tW(ClEAR)
Width of Clear Pulse
tSETUP
Setup Time
tHOlO
35
ns
16
24
23
35
ns
14
20
16,
24
ns
16
23
18
27
ns
17
25
ns
Clearl5)
RL = 2 kH
14
21
18
25
19
29
ns
10
15
15
23
ns
12
16
15
23
ns -
24
36
26
38
ns
Any Q
Ripple
carry
High-ta-Low Level Output
tpHl
23
CL = 15 pF
High·ta-Low Level Output
Propagation Delay Time,
27
CL =15pF
Propagation Delay Time,
Low-ta-High Level Output
18
Any Q
High-to-Low Level Output
tpLH
MHz
carry
Propagation Delay Time,
Low-to-H igh Level Output
32
Ripple
High-ta-Low Level Output
tpLH
25
35
UNITS
MIN TYP MAX
Any Q
Data Inputs
25
25
ns
20
20
ns
A.B.C.D
Enable P
20
20
20
25
Load
25
25
Clear(6)
20
25
Hold Time at
0
Any Input
0
ns
ns
Notes
(5)
Propagation delay for clearing is measured from the clear input for the l60A, LS160, 161 A and LS161 or from the clock input transition for
the 162A, LS162, 163A and ['S163.
(6)
This applies only for ,162, 163, LS1~2 and LS163, which have synchronous clear inputs.
!
2-72
~MSI
DM54/DM74160A,LS160,161A,LS161,162A,LS162,163A,LS163
Logic Diagrams
160A, LS160
'2'
ClOCK---{;»---'-~======ttjj:~C===]rt
il'
DATAA----...J
111
CLEAR
DATA
'41
8--------++--1++1-1"'\
DATA
C-------H-t1++-t+l-1"'\
DATA
16'
D-------I+++-H+H-1-,
151
162A, LS162 are similar; however,
the clear is svochronousas shown
for the 163A, LS163 binary counters.
163A, LS163
Q,
DATAi.c.31_ _ _ _---'
Q,
171
ENABLEP
Oil}
ENA8LET--r::">--+--~
'"
OATAC-------H~F=:l=I:::j::j:::j::::::f..,
'6161-------+-Wd=UJJ:k~r:;:=~-~
OATAD-
161A, lS161 are similar; however,
the clear isasynchroflousasshown
for 160A, lS160 decade counters.
lJJ:~~~~~~~~~g®=)c
2-73
~MSI
DM54/DM74160A,LS160,161A,LS161,162A,LS162,163A,LS163
Timing Diagrams
160, 162, lS160, LS162 SYNCHRONOUS DECADE COUNTERS
TYPICAL CLEAR; PRESET, COUNT AND INHIBIT SEQUENCES
CLEAR
160A, LS16D
CLEAR
162A,LS162
LOAD
r---f-----.--------------
,----+--,-------------DATA [
:
'--+--'r= _===_========
INPUTS: _ _+----L
ClOCK---+'
160A,lSl11D
CLOCK
162A,LS162
HIIASLEP
---+-+'
ENABlET
---+-+'
RIPPLECARRY _ _ _
OUTPUT
+_+:--l-:-~
a
9
Sequence:
(1) Clear outputs to zero
(2)
Preset to BCD seven
(3)
Count 10 eight, nine, zero, one, two, and three
(4)
Inhibit
I'
0
I
2
3
- - - - - - COUNT----I----INHIBIT - - - CLEAR PRESET
161, LS161, 163, LS163 SYNCHRONOUS BINARY COUNTERS
TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES
CLEAR
161A LS161
CLEAR
163A,lS163
LOAD
r--------------
INDp~ ~ ~~~~~~::~~~~.Lr
==============
,----+--,-------------[ D:'
L _ _ _ _ _ _ _ '_ _ _ _ _ _ _
""'--+---"T- - - - - - - - - - - - - Sequence:
(1) Clear outputs to zero
(2) Preset to binary twelve
{3) Count to thirteen, fourteen, fifteen, zero, one, and two
ClOCK---+'
16lA,LSt61
CLOCK
16lA,LS163
ENABlEP
ENABLET
(4)
--t--+'
--t--+'
'-f~;
-+-+--+--'
OD _ _
RIPPlEOCU~~~~ ---+-+,,:-10,::-,-':":-....,,
---COUNT - - -
---~INHIBIT~.---
CLEAR PRESET
2-74
Inhibit
~ MSI
DM54/DM74160A.LS160.161A.LS161.162A.LS162.163A.LS163
Parameter Measurement Information
SWITCHING TIME WAVEFORMS
CLOCK
INPUT
OV
"lH
(MEASURE AT tN+11
VOH
OUTPUT
D.
VOL
VOH
OUTPUT
DB
OUTPUT
Ilc
VOL
VOH
VOL
VOH
OUTPUT
Do
RIPPLE
VOL
VOH
CARRY
OUTPUT
VOL
Notes:
(A) The input pulses are supplied by a generator having the following characteristics: PRR $. 1 MHz, duty cycle::; 50%, ZOUT
through 1.63A, tr S 10 ns, tf S 10 ns; for LS160 through LS163, tr S 15 ns, tf S 6 ns. Vary PRR to measure fMAX.
J'::l
50n, for 160A
(B)
Outputs DD and carry are tested at t n+l0 for 160A, 162A, LS160, LS162, and at t n+16 for 161A, 163A, LS161, LS163, where tn is the
bit time when all outputs are low.
(C)
For 160A through 163A, VREF = 1.5V; for LS160 through LS163, VREF = 1.3V.
SWITCHING TIME WAVEFORMS
CLOCK INPUT 3 . 0 V - - - - - - - " " \
160A.LS160
161A, LS161
OV _ _ _ _ _ _ _
--.,,'-_J
CLEAR
INPUT
OV -_I-'-_J
LOAD 3.0V
INPUT
DATA INPUTS
A, B, C. AND 0
D OUTPUTS
161A, lS161
Q
,---+=---~;..;::==-------
3.0V
--"1--+=="{
OV-~---r---H·~--'
3.0V --t-----j---t-t,r-"""\
OV
VOH
--:-+:--,--+---{
AAND Q16~~,T~s~~~ VOL --t--+'y---I---*""'
Oa AND Dc
OUTPUTS
16M, lS160
VOH
VOl--j--''-I---I---i--J
3.0V
ENABLE P OR
ENABLE T
--I---+--......j--,-.......
ov ---l--+--:-J-J
VOH----t---~----~~~--+_------~"f,~~
CARRY
VOl----t===~~~~~----+_--------I
CLOCK INPUT
r----------
3.0V
162A, LS162
16JA,lS16J
a OUTPUTS VOH-----t~
163A, LS163
QA AND 00 OUTPUTS
162A, lS162
DB AND
Ilc OUTPUTS
Voc--------......j.-+,------*""'
VOH----...::!,;::;'
162A,lS162
VOl - - - - - - - - - - - - - , - - - - - - - - - - '
Notes:
(A) The input pulses are supplied by generators having the following characteristics: PRR S 1 MHz, duty cycle
through 163A, tr S IOns, tf :0; IOns, and for LS160 through' LS163, tr S 15 ns, tf :0; 6 ns.
(B)
Enable P and enable T setup times are measured at tn+O.
(C)
For 160A through 163A, VREF ~ 1.5V;for LS160,hrough LS163, VREF ~ 1.3V.
2·75
S
50%, ZOUT ~ 50n. For 160A
~ MSI
OM54/0M74164,L164A,LS164
8-Bit Serial In/Parallel Out Shift Registers
General Description
.Features
These S-bit shift registers feature gated serial inputs and
an asynchronous clear. A low logic level at either input
inhibits entry of the new. data, and resets the first
flip-flop to the low level at the next clock pulse, thus
providing complete control over incoming data. A high
logic level on either input enables the other input,
which will then determine the state of the first flip-flop.
Data at the serial inputs may be changed while the
clock is high or low, but only information meeting the
setup requir,ements will be entered. Clocking occurs on
the low-to-high level transition of the clock input. All
inputs are diode-clamped to minimize transmission-line
effects.
•
Gated (enable/disable) serial inputs
•
Fully buffer~d clock 'and serial inputs
•
Asynchronous clear
Connection Diagram
TYPE
TYPICAL
CLOCK FREQUENCY
TYPICAL
POWER DISSIPATION
36 MHz
14 MHz
36 MHz
185mW
30mW
80mW
164
L164A
LS164
Timing Diagram
LS
ClEARLJ
OUTPUTS
G,
I"
13
12
CLEAR
G,
"
10
CLOCK
•
9
SERIAL {
A
INPUTS
-l----.J
CLOCK
l-
r-
I
2
J
----...-...SERIAL INPUTS
G,
A
,
4
5
,
I'
GND
OUTPUTS
OUTPUTS
~".l.- - -l-~
-, ----'-_ _ _ _ _ _r
--I I
0,_-,--,
, - -~
QG:~I
541641JI, (WI; 74164(JI, (NI, (WI;
54L 164A/74L 164A(JI, (NI, (WI;
54LS164/74LS164(JI, (N), (WI
____________________________________
OH:'~,
I
~1
__ ____________________________________
CLEAR
~
L--
I
~~
I
CLEAR
logic Diagram
2-76
LS164 To Be Announ'ced In 1976
~
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
CONDITIONS
PARAMETER
MIN
V IH
VIL
High Level Input Voltage
Low Level Input Voltage
High Level Output Current
V OH
High Level Output Voltage
10L
VOL
.:..,
'"
los
Icc
Short Circuit Output Cu'rrent
Supply Current
TYP(l)
MAX
MIN
TYP(l)
DM54
0.8
0.7
DM74
0.8
0.7
-1.5
N/A
V
3.2
2.4
2.5
3.5
2.4
3.2
2.4
2.7
3.5
Vee = Max
10L = Max
10L
=
Vee = Max
0.7
0.8
-400
-200
2.4
Vee=Mm
V, = 5.5V
8
2
4
DM74
8
3.6
8
DM54
0.2
0.4
0.3
0.25
0.4
DM74
0.2
0.4
0.4
0.35
0.5
0.25
0.4
Clear
1
0.2
Other
1
0.1
IlA
mA
V
mA
Clear
40
20
Other
40
10
IlA
V, = 2.7V
All
V, =0.3V, L164A
Clear
-1.6
-0.36
--{).4
V, = O.4V, Others
Other
-1.6
-0.18
-0.4
Vee = Max(2)
V
0.1
All
V, = 2.4V
V
V
DM54
DM74
4 mA
s:VJ
MAX
2
2
DM54
High Level I nput Current
Low Level I nput Current
MIN
DM74
Vee = Max
IlL
MAX
UNITS
-1.5
V, = 7V
IIH
TYP(1)
V'L = Max, 10H = Max
Input Current at Maximum
Input Voltage
LS164
Vee = Min, V'H = 2V
VIL=Max
II
L164A
-400
V'H = 2V
N
164
1,--18mA
Low Level Output Current
Low Level Output Voltage
DM54 LS/74 LS
1,=-12mA
Vee = Min
10H
DM54L/74L
2
Input Clamp Voltage
VI
DM54/74
20
DM54
-10
-27.5
-3
DM74
-9
-27.5
-3
Vee = Max(3)
37
54
'-9
-9
6
-15
-30
-130
-15
-30
-130
9
16
27
0
s:
(11
mA
~
......
mA
s:--.J
mA
0
...
~
0'1
~
!:
0'1
Notes
~
(1)
AI! typical values are at Vee = 5V, T A = 25°e.
(2)
Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
(3)
ICC is measured with outputs open, serial inputs grounded, the clock input at 2.4V, and a momentary ground, then 4.5V, applied to clear.
'r!>
...VJ
0'1
~
-
----
~
Switching Characteristics vee = 5V, T A = 25°C
tpHl
Propagation Delay Time,
RL
= 800rl for the 164
RL
= 4 krl for the L 164A
RL
= 2 krl for the LS164
From Clear Input
Propagation Delay Tim~,
Low-to-High Level Outputs
From Clock Input
tpHl
Propagation Delay Time,
High-to-Low Level Outputs
From the Clock Input
tw
"l
164
L164A
LS164
TYP
25
36
MAX
24
36
C L = 50 pF
28
42
C L = 15pF
8
17
27
C L = 50 pF
10
20
30
C L = 15pF
10
21
32
C L = 50 pF
10
25
37
Width of Clock or Clear
MIN
6
C L ='15pF
Input Pulse
..:J
DM54LS/74LS
MIN
C L = 15 pF
Maxirnum Clock Frequency
High,to,Low Level Outputs
tplH
DM54L!74L
CONDITIONS
PARAMETER
f MAX
DM54/74
TYP
MAX
MIN
TYP
25
36
14
75
120
50
85
90
135
20
60
40
20
UNITS
s:
en
MAX
MHz
24
36
17
27
21
32
ns
ns
ns
20
ns
15
ns
5
ns
00
tSETUP
Data Setup Time
15
40
tHOlD
Data Hold Time
5
20
-
-5
0
s:
Truth Table
U1
~
......
H = High level (steady state), l = low level (steady state)
OUTPUTS
INPUTS
X
= Don't Care
t
=
(any input, inciuding transitions)
CLEAR
CLOCK
A
B
OA
De
L
X
L
L
L
X
X
L
H
X
X
GAO
QBO
OHO
H
t
t
t
H
H
H
0AO, aBO, 0HO = The level of 0A, 0B, or 0H, respectively,
before the indicated st,eady-state input conditions were
OAn
OGn
established.
L
X
l
L
OAn
OGn
QAn, 0Gn
L
OAn
OGn
transition of the clock; indicates a one-bit shift.
H
H
X
,-,
OH
Transition from low to high level
=
The level of QA or QG before the most recent t
0
s:....
..
~
en
~
!:=
en
~
»
r-
en
...
en
~
'
~ MSI
DM54/DM74165.L165A
8-Bit Pararallel In/Serial Out Shift Registers
General Description
parallel inputs are loaded directly into the register on a
high-to-Iow transition of the shift/load input, regardless
of the logic levels on the clock, clock inhibit, or serial
inputs.
These are B-bit serial shift registers which shift the data
in the direction of Q A toward Q H when clocked. Parallelin access is made available by eight individual direct data
inputs, which are enabled by a low level at the shift/load
input. These registers also feature gated clock inputs and
complementary outputs from the eighth bit.
Features
Clocking is accomplished through a 2-input NOR gate,
permitting one input to be used as a clock-inhibit
function. Holding either of the clock inputs high inhibits
clockil)g, and holding either clock input low with the
load input high enables the other clock input. The
clock-inhibit input should be changed to the high level
only while the clock input is high. Parallel loading is
inhibited as long as the load input is high. Data at the
•
•
Complementary outputs
Direct overriding load (data) inputs
•
•
Gated clock inputs
Parallel-to-serial data conversion
TYPICAL FREQUENCY
TYPE
TYPICAL
POWER DISSIPATION
165
20 MHz
200mW
L165A
14 MHz
30mW
Connection Diagram
PARALLEl INPUTS
,,..----"----~,
CLOCK
INHIBIT
A
15
10
11
12
13
14
SERIAL OUTPUT
INPUT
OH
-
2
1
4
3
SHIFT! CLOCK
LOAQ
,
E
1
6
5
G
F
H
,
OUTPUT
I'
GND
QH
PARALLEl INPUTS
54165(J), (W); 74165(J), (N), (W);
54L 165A/74L 165A(J), (N), (W)
Truth Table
INPUTS
PARALLEL
SHIFT!
LOAD
CLOCK
INHIBIT
CLOCK
=
OUTPUT
QH
A .. . H
QA
a. .. h
X
a
b
h
DAD
DBa
D HO
DGc
QB
L
X
X
H
L
L
X
X
H
L
t
H
X
H
D Ac
H
L
1
L
L
G AC
DGc
H
H
t
X
X
X
D AO
D BO
OHO
H "" High Level (steady state). L
X
SERIAL
INTERNAL
OUTPUTS
::=;
Low Level (steady state)
Don't Care (any input, including transitions)
t = Transition from low-ta-high level
a.
h = The level of steady-state input at inputs A through H, respectively.
GAO. aBO, 0HO = The level of QA. OS. or 0H, respectively, before the indicated steady-state
input conditions were established.
QAn, QGn = The level of QA or aG, respectively before the most recent t transition of the clock.
T
2-79
~
\
MSI
DM54/DM74165.L165A
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted I
DM54/74
CDNDITIONS
PARAMETER
MIN
V IH
High Level Input Voltage
Vll
Low Level Input Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
Vee'" Min,
Input Current at Maximum Input Voltage
High Level Input Current
V 1H
VII_ =Max,
IOH == Max
V
0.7
-1.5
'"
2V
Short Circuit Output Current
N/A
V
pA
2.4
V
DM54
16
2
DM74
16
3.6
V 1H
:.
2V
DM54
0.2
0.4
0.3
JOl
= Max
DM74
0.2
0.4
0.4
Vee'" Max,
V, o5.5V
Vee'" Max,
Vee == Max,
V! = 2.4V
1
0.1
80
30
40
10
V, 0 0.3V for L165A
-3.2
'0.54
VI == O.4V for 165
-1.6
-0.18
Vee o Maxl2)
Supply Current
2.4
DM54
-20
--55
-3
-9
-15
DM74
-18
-55
-3
-9
-15
40
Ve,c 0 Maxl3)
V
-200
Min,
==
Load tnput
Other Inputs
Icc
MAX
V1L=Max,
Load Input
Other Inputs
los
UNITS
TYP(1)
2
I, 0 -12 rnA
Vee'" Min,
Vee
II
Low Level I nput Current
MIN
··800
IIH
III
L165A
MAX
'0.8
Low Level Output Voltage
VOL
TYPI1)
2
Low level Output Current
10l
DM54L/74L
165
9.5
63
rnA
V
rnA
pA
mA
mA
rnA
Notes
(1)
All typical values are at Vce ~ 5V, T A ~ 25"C.
(2)
Not more than one output should be shorted at a time.
(3)
With the outputS open, clock inhibit and shift/load at 4.5V, and a clock pulse applied to the clock input, ICC is measured first with the
parallel inputs at 4.5V, then with the parallel inputs grounded.
Switching Characteristics
Vce ~ 5V, TA
PARAMETER
FROM
(INPUT)
= 25°C
DM54/74
TO
(OUTPUT)
CONDITtONS
fMAX
Maximum Clock Frequency
tPlH
Propagation Delay Time,
14
Propagation Delay Time,
Propagation Delay Time,
low-to-High Level Output
Clock
Propagation Delay Time,
CL 0 15 pF
R L 0400£2
Propagation Delay Time,
Low-to-High Level Output
H
tpHl
Propagation Delay Time,
Propagation Delay Time,
H
Propagation Delay Time,
50
44
88
ns
42
60
62
124
ns
26
40
35
70
ns
35
50
50
100
ns
33
66
ns
RL 04 kn
25
40
36
50
56
112
ns
25
40
33
66
ns
36
50
56
112
ns
OH
High-to·Low Level Output
-
34
QH
Low-ta-High Level Output
tPHl
MHz
14
CL 050 pF
High-ta-Low Level Output
tPlH
6
TYP MAX
Any
High-ta-Low Level Output
tPlH
20
MIN
Any
High-to·Low Level Output
tPHl
CONDITIONS
,-
Load
tPlH
UNITS
l165A
MIN TYP MAX
Low-to-High Level Output
tPHl
DM54 Lt14L
165
tWlclOCKI
Width of Clock Input Pulse
35
25
100
ns
tWllOAOI
Width of Load Input Pulse
35
24
100
ns
tSETUP
Parallel Input Setup Time
25
10
44
22
tSETUP
Serial Input Setup Time
40
23
44
22
tHOLD
Hold Time at Any Input
5
2-80
10
ns
ns
ns
~ MSI
OM54iOM74165,L165A
Logic Diagram
PARALLEL INPUTS
191
{7)
Timing Diagram
TYPICAL SHIFT, LOAD, AND INHIBIT SEQUENCES
r.LOCK
ClOCKINHISIT
+ ___________________
SERIALINPUT _ _ _" -_ _ _
SHIFT,LOAD
-U
:~~--~-------------------OATA
OUTPUT OM
I
I-----INHIBIT
----1---------------
LOAD
2-81
SERIAL SHIFT
~----.-----
OUTPUT01-t
_
OUTPUT OK
~ MSI·
OM54/0M74166
8- Bit Parallel In/Serial Out Shift Registers
General Description
These parallel-in or serial-in, serial-out shift registers
. feature gated clock inputs and an overriding clear input.
All inputs are buffered to lower the drive requirement~
to one normalized Series 54/74 load, and input clamping
diodes minimize switching transients to simplify system
design. The load mode is established by the shift/load
input. When high, this input enables the serial data input
and couples the eight flip-flops for serial shifting with
each clock pulse. When low, the parallel (broadside) data
inputs are enabled and synchronous loading occurs on
the next clock pulse. During parallel loading, serial data
flow is inhibited. Clocking is accomplished on the low·to-
Connection Diagram
SHIFT/
INPUT
OUTPUT
LOA[)
H
01-/
I"
14
15
Truth Table
PARALlEL INPUTS
PARALLEL
Vee
11
12
9
10
Io
,
,
3
PARAllEL INPUTS
SHIFT!
CLOCK
LOAD
INHIBIT
L
x
H
X
CLEAR
6
CLOCK
7
CLOCK
I'
GNO
INH1BlT
INTERNAL
PARALLEL
OUTPUTS
OUTPUT
OH
CLOCK
SERIAL
X
x
x
X
L
L
L
L
L
X
X
QAO
0 80
OHO
A ...
/"i
QA
.Os
H
L
L
t
X
a .. ,h
a
b
h
H
H
L
t
H
X
H
OAn
QGn
H
H
L
X
L
QAn
°On
X
H
t
t
L
H
X
X
QAO
aBO
°HO
H = High level (steady state). l
5
o,
SERIAL
INPUT
INPUTS
CLEAR
13
r-
1
high-level edge of the clock pulse through a two-input
NOR gate, permitting one input to be used as a clockenable or clock-inhibit function. Holding either of the
clock ·inputs high inhibits clocking; holding either low
enables the other clock input. This allows the system
clock to be free-running, and the register can be stopped
on command with the other clock input. The clockinhibit input should be changed to the high level only
while the clock input is high. A buffered, direct clear
input overrides all other inputs, including the clock, and
sets all flip-flops to zero.
= low level
(steady state)
X"" Don't Care (any input, including transitions)
t =- Transition from
low to high level
a ... h == The level of steady-state input at inputs A through H, respectively.
QAO. 0SO. 0HO == The level of QA,
aS or QH, respectively, before the
indicated
steady-state input conditions were established.
0An, QGn == The level of QA or 0G, respectively, before the most recent t transition-
54166174166(J), (N)
of the clock
Logic Diagram
(9)
(1)
(l5)
CLEAR SERIAL SHIFT!
(2)
A
13)
8
(4)
c
(5)
(10)
o
PARAllEl INPUTS
2-82
{t2)
(11)
E
INPUT 'LOAD
F
G
(14)
H
",h
CLOCK CLOCK
INHIBIT
~
MSI
DM54/DM74166
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER
CONDITIONS
166
MIN
V IH
High Level Input Voltage
V IL
Low Level Input Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
V OH
High l.evel Output Voltage
~
I,
Min,
VOL
l.ow Level Output Voltage
II
-12 mA
0.8
V
-1.5
V
Vee.~
V'H ~ 2V
Min,
Vee
~
IOH
Min,
~
2.4
-8001lA
V
V'H = 2V
V'L ~ 0.8V,
IOL
Vee ~ Max,
V,
~
IlA
16 mA
16
mA
0.4
V
Input Current at Maximum
Input Voltage
~
IIH
High Level Input Current
Vee
IlL
Low Level Input Current
Vee = Max,
lOS
Short Circuit Output Current
Icc
~
V
-800
V'L ~ 0.8V,
Low Level Output Current
UNITS
MAX
2
Vee
10l
TYP(1)
Supply Current
~
5.5V
V,~2.4V
Max,
V,
Vee
~
Max(2)
Vee
~
Max(3)
~
O.4V
1
mA
40
IlA
-1.6
mA
DM54
-20
-57
DM74
-18
-57
DM54
72
104
DM74
72
116
mA
mA
Notes
All typical values are at vee = 5V, T A = 25°C.
(2) Not more than one output should be shorted at a time.
(3) With all outputs open, 4.5V applied to the serial input, all other inputs except the clock grounded, ICC is measured after a momentary ground,
then 4.5V, is applied to dock.
(1)
Switching Characteristics
Vee = 5V, T A = 25°C
DM54/74
PARAMETER
f MAX
Maximum Clock Frequency
tpHl
Propagation Delay Time, High-to-Low
CONDITIONS
TYP
25
35
tpHL
Propagation Delay Time, High-to-Low
~
MHz
35
ns
8
20
30
ns
8
17
26
ns
15 pF, RL = 400n
Level Output From Clock
tplH
MAX
23
Level Output From Clear
CL
UNITS
166
MIN
Propagation Delay Time, Low-to-High
Level Output From Clock
tw
Width of Clock or Clear Pulse
20
ns
tSETUP
Mode Control Setup Time
30
ns
tSETUP
Data Setup Time
20
ns
tHOLD
Hold Time at Any Input
0
ns
2-83
~ MSI
DM54/DM74166
Timing Diagram
TYPICAL CLEAR, SHIFT, LOAD, INHIBIT, AND SHIFT SEQUENCES
CLOCK
~lOCK
INHIBIT
CLEAR
SERIAL INPUT
SHIFT/LOAD
PARALLEL
INPUTS
----...1
ouTPUT fiH .::::........:..._ _ _ _ _ _ _ _ _ _ _ _
I
CLEAR
I - - - - - - - - - S E R I A L SHIFT - - - - - - - - I I I - - ' O H I 8 I T - I
LOAD
1------- SERIAL SHIFT-----~
Parameter Measurement Information
VOL TAGE WAVEFORMS
3.0V----..
CLEAR
INPUT
OV----~-'----'
CLOCK
INPUT
DATA
OV
3.0V-----,-------~-r-_+'
INPUT
(SEE TEST TABLE)
ov ---'---l-------~
VDH - - - - - - , .
OUTPUT
n
VDL--------~-------------J
Notes
(A) The clock pulse has the following characteristics: tW(clock) 2: 20 ns and PRR
tW(clear)
=
1 MHz. The clear pulse has the following characteristics:
2: 20 ns and tHOLD = 0 ns. When testing fMAX, vary the clock PRR.
fB)
CL includes probe and jig capacitance.
(C)
All diodes are 1N3064.
(0) A clear pulse is applied prior to each test.
(E) Propagation delay times (tPLH and tpH L) are measured at t n +1- Proper shifting of data is verified at tn+8 with a functional test.
(F) tn = bit time before clocking transition
t n+1 = bit time after one clockin~ transition
tn+8 "" bit time after eight clocking transitions
TEST TABLE FOR SYNCHRONOUS INPUTS
DATA INPUT
FOR TEST
SHIFT/LOAD
H
OV
Serial Input
4.5V
2·84
OUTPUT TESTED
(SEE NOTE EI
QH
at
tn+1
Q H at t nt-8
~ MSI
DM54/DM74lS168.lS169
Synchronous 4-Bit Up/Down Counters
General Description
These synchronous presettable counters feature an
internal carry look-ahead for cascading in high·speed
counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously, so
that the outputs all change at the same ti me when so
instructed by the count-enable inputs and internal gating.
This mode of operation helps eliminate the output
counting spikes that are normally associated with
asynchronous (ripple clock) counters. A buffered clock
input triggers the four master-slave flip-flops on the
rising edge of the clock waveform.
output thus enabled will produce a low-level output
pulse with a duration approximately equal to the high
portion of the Q A output when counting up, and approximately equal to the low portion of the Q A output
when counting down. This low-level overflow carry
pulse can be used to enable successive cascaded stages.
Transitions at the enable P or T inputs are allowed
regardless of the level of the clock input. All inputs are
diode clamped to minimize transmission-line effects,
thereby simplifying system design.
These counters feature a fully independent clock circuit.
Changes at control inputs (enable p. enable T, load,
up/down), which modify the operating mode, have no
effect until clocking occurs. The function of the counter
(whether enabled, disabled, loading, or counting) will be
dictated solely by the conditions meeting the stable
setup and hold ti meso
These counters are fully programmable; that is, the
outputs may each be preset either high or low. The load
input circuitry allows loading with the carry-enable
output of cascaded counters. As loading is synchronous,
setting up a low level at the load input disables the
counter and causes the outputs to agree with the data
inputs after the next clock pulse.
Features
The carry look-ahead circuitry permits cascading counters
for n-bit synchronous applications without additional
gating. Both count-enable inputs (i> and T) must be low
to count. The direction of the count is determined by
the level of the up/down input. When the input is high,
the counter counts up; when low, it counts down. Input
T is fed forward to enable the carry output. The carry
•
Fully synchronous
programming
1,6
RIPPLE
CARRY
OUT
OUTPUTS
f
0.
15
14
Dc
Os
13
12
,
00
11
ENABLE
T
LOAD
10
9
0-
1
uti!
3
2
CLOCK
,A
for
• Internal look-ahead for fast counting
• Carry output for n-bit cascading
• Fully independent clock circuit
Connection Diagram
Vee
operation
4
B
5
C
DATA INPUTS
54LS16Sn4LS168(J). (N). (W):
54LS169174LS169(J), (N), (W)
2-85
7
6
D;
ENABLE
P
J:
counting
and
~
DM54/DM74LS168,LS169
MSI
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
OM54LSf74LS16B, LS169
CONDITIONS
PARAMETER
V'H
High Level Input Voltage
V"
Low Level Input Voltage
TYP(l)
Input Clamp Voltage
High Level Output Current
VOH
High Level Output Voltage
V
2
DM54
0.7
DM74
0.8
Vee = Min, V 1H
co
2V
-1.5
DM54
2.5
3,4
DM74
2.7
3,4
4
Low Level Output Voltage
Vee = Min
V 1H "'- 2V
V1L=Max
Input Current at
A, B,C, D,
Maximum Input Voltage
ClocK, T
ii,
110L = 4 rnA
0.25
0,4
0.35
0.5
V
1.loL=BmA,
DM74
0.1
UfO
0.2 ,
Vee = Max, VI = 7V
A; B,C, 0, P, UfO
Clock, T
20
40
Vee "- Max, VI = 2.7V
Low Level Input Current
-0,4
A, 8, C, 0, P, UfO
T
Vee = Max, VI
'CO
-0.8
OAV
los
Short Circuit Output Current
Vee = Max(2)
Icc
Supply Current
Vee = Max(3)
Notes (1)
All typical values are at Vee
=;
mA
-1.2
Load ,Clock
,
MA
60
Load
"l
mA
0.3
Load
High Level Input Current
mA
8
OM74
"H
V
MA
V
OM54
Low Level Output Current
I,
V
--400
V 1L = Max, IOH = ·-400j4A
VOL
UNITS
MAX
Vee'" Min, II "" -18 rnA
V,
,IOH
10l
MIN
-30
20
-130
mA
34
mA
5V, TA = 25°C.
(2)
Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
(3)
ICC is measured after applying a momentary 4.5V, then ground, to the clock input with all other inputs grounded and the outputs open.
Switching Characteristics V cc =5V,T A =25°C
FROM
(INPUT)
PARAMETER
f MAX
Maximum Clock Frequency
tPLH
Propagation -Delay Time.
TO
(OUTPUn
DM54LS174LS168, LS169
CONDITIONS
MIN
TYP
25
-32
Low·to-High Level Output
Clock
tpHL
Propagation Delay Time,
Propagation Delay Time,
Low-to-High Level Output
Propagation Delay Time,
C L ""15pF,RL. "'2k£2,
High-to-Low Level Output
tPLH
Propagation Delay Time,
Low-to·High Level Output
Enable
tpHL
Propagation Delay Time,
High-to-Low Level Output
tPLH
Propagation Delay Time,
tpHL
Propagation Delay Time,
T
tW(ClOCK)
Width of Clock Pulse (High or Low)
tSETUP
Setup Time
25
A, B,C, 0
35
ns
13
20
ns
15
23
ns
10
15
ns
16
23
ns
17
25
ns
19
29
ns
ns
20
Enable P or T
Notes (4)
23
Ripple Carry
High-to-Low Level Output
Hold Time
ns
-
Up/Down (4)
tHOLD
35
Ripple Carry
Low-to-High Level Output
Data Inputs
MHz
23
Any Q
Clock
tpHL
UNITS
Hipple Carry
High -to-Low Level Output
tpLH
MAX
25
Load
25
Up/Down
30
Data Inputs A, B, C, 0
0
Enable P or T
0
Load, Up/Down
0
ns
ns
Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count.
As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry
output transition will be in phase. If the count is maximum (9 for LS168 or 15 for LS169), the ripple carry output will be out of phase.
2-86
~MSI
DM54/DM74LS168,LS169
Logic Diagrams
LS168 DECADE COUNTERS
......
_ 110)
ENABLE T
T
(7)
EN-ABLE Ii
I
(9)
I
LOAQ
(2)
v
~
~~
CLOCK
(1)
U/i!
'7
(3)
DATA A
..J
r~
~
.-L
PR
RIPPLE
CARRY
OUTPUT
(14)
Q
CLOCK
in
(4)
DATA B
>---<"ft
..J
n
41
':f)
~
~
PR
(13)
Q
~rc
G,
CLOCK
CLR [j
f---<
'--, ,.-
--C CLOC~
CLR :0
'--, c -
-
n
~
~
(6)
OATA 0
J
~
~
t-f
.("7"""-
PR
trJ,....rc
CLR
A~
Len
2~87
"
ClOCI{
G
'-- ,..-
':-T
L-=o
1-
(11)
GD
OM 54/ OM74lS168, lS169
. Logic Diagrams (Continued)
LS169 BINARY COUNTERS
ENABLE f (101
ENABLE P
LOAD
-"
I
(11
(91
I
I
(2)
~~
(IS) RIPPLE
CARRY
4
OUTPUT
r-'
CLOCK
(I)
UIO
.~
(31
DATA A
~
~
nR
~
~
~
~
b"P-r-<
+.
(13)
G,
G
CLOCK
CtR
ii
-<
--r
-l
+
0
CLOCK
ClR
-"
-r
(12)
0
i!
(111
~ MSI
DM54/DM74LS168,LS169
Timing Diagrams
LS168 DECADE COUNTERS
TYPICAL LOAD, COUNT, AND INHIBIT SEQUENCES
LOAD
'---.J
A
L
DATA
INPUTS
CLOCK
j> ANOl'
Go
---,
RIPPLE----r--H--.,
OCUAT~~~ ___ .J
II
1
I II..
··----COUNTUP----.I--INHIBIT-I
'--.,.---'
LOAD
Sequence:
(1) Load (preset) to Beq seven
(2)
Count up to eight, nine, zero, one and two
(3)
Inhibit
(4)
Count down to one, zero, nine, eight and seven
2-89
I-----COUNT DOWN - - - - -
~ MSI
DM54/ DM74 LS168, LS16 9
Timing Diagrams (Continued)
LS169 BINARY COUNTERS
TYPICAL LOAD, COUNT, AND INHIBIT SEQUENCES
lOAOL-j
A
...----l...-I L_
--.J
B----F-
OATA
INPUTS
L_
CLOCK
PANOI
G.
--..,
Go _ _
RIPPLE-
O~~~~;
-
--1
--r---H---.
-1
'3
I
I
14
152-1
I·I-·----COUNTUP---~·-II-·-INHIBIT-__I
LOAD
Sequence:
(1) Load (preset) to binary thirteen
(2)
I
Count up to fourteen, fifteen, zero, one and two
(31
Inhibit
(4)
Count down to one, zero, fifteen, fourteen and thirteen
2-90
15
14
13
.1-,----COUNT DOWN ---~-
~MSI
OM54/0M74170.LS170
4 by 4 Register Files
General Description
typical) and the read time (25 ns typical). The register
file has a nondestructive readout in that data is not lost
when addressed.
These 16-bit TTL register files are organized as 4 words
of 4 bits each, and separate on-chip decoding is provided
for addesssing the four word locations to either write-in
or retrieve data. This permits writing into one location
and reading from another word location, simultaneously.
All 170 inputs and all inputs except the read enable and
write enable of the LS 170 are buffered to lower the drive
requirements to one standard load. Input-clamping
diodes minimize switching transients to simplify system
design. High-speed, double-ended AND·OR-INVERT
gates are employed for the read-address function and
drive high-sink-current, open-collector outputs. Up to
256 of these outputs may be wire-AND connected for
increasing the capacity up to 1024 words. Any number
of these registers may be paralleled to provide n-bit
word length.
Four data inputs are available to supply the 4-bit word
to be stored. Location of the word is determined by the
write-address inputs A and B, in conjunction with a
write-enable signal. Data applied at the inputs should be
in its true form. That is, if a high-level signal is desired
from the output, a high level is applied at the data input
for that particular bit location. The latch inputs are
arranged so that new data will be accepted only if both
internal address gate inputs are high. When this condition
exists, data at the 0 input is transferred to the latch
output. When the write-enable input, Gw , is high, the
data inputs are inhibited and their levels can cause no
change in the information stored in the internal latches.
When the read-enable input, GR , is high, the data outputs
are inhibited and 'remain high.
Features
This arrangement-data entry addressing separate from
data-read addressing and individual sense line-eliminates
recovery times, permits simultaneous reading and writing,
and is limited in speed only by the write time (30 ns
• Separate addressing permits simultaneous reading and
writing
typically 20 ns
• Fast access times
• Organized as 4 words of 4 bits
• Expandable to 1024 words of n-bits
• for use as:
Scratch-pad memory
Buffer storage between processors
Bit storage in fast multiplication designs
• Open-collector outputs with low maximum off-state
current:
170
LS170
• DM54LS670 and DM74LS670 are similar but have
TRI-STATE outputs
Connection Diagram
~
The individual address lines permit direct reading of
data stored in any four of the latches. Four individual
decoding gates are used to complete the address for
reading a word. When the read address is made in conjunction with the read-enable signal, the word appears
at the four outputs.
Vr
OUTPUTS
OATA
01
14
"
16
QZ
Qt
12
13
'11
"
9
74170(J), (N);
54LS170/74LS170(J), (N), (W)
-
4
o.
03
•
~
DATA
READ
SELECT
~ .1:
OUTPUTS
Truth Tables
WRITE TRUTH TABLE (SEE NOTES A, B, AND C)
WRITE INPUTS
READ TRUTH TABLE (SEE NOTES A AND' D)
WORD
READ INPUTS
OUTPUTS
WB
WA
Gw
0
1
2
3
RB
RA
GR
01
Q2
03
Q4
L
L
L
O"D
00
Do
00
L
L
L
WOBl
WOB2
WOB3
WOB4
O"D
Do
Do
Do
L
H
L
W1Bl
W1B2
W1B3
W1B4
Do
Do
Do
Do
Do
Do
O"D
00
H
L
L
W2Bl
W2B2
W2B3
W2B4
Do
Do
O"D
H
H
L
W3Bl
W3B2
W3B3
W3B4
Do
x
X
H
H
H
H
H
L
H
L
H
L
L
H
H
L
X
X
H
Notes
(A) H
(B)
(C)
= High
Level, L
= Low Level, X = Don't Care
(Q = 0) = The four selected internal flip~flop outputs will assume the states applied to the four external data inputs.
00 = The level of Q
before the indicated input conditions were established.
(D) WOBl = The first bit of word 0, etc.
2-91
LS170 To Be Announced In 1976
Electrical Characteristics
~.
over recommended operating free·air temperature range (unless otherwise noted)
PARAMETER
CONDITIONS
MIN
VIH
High level Input Voltage
VIL
low level Input Voltage
VI
Input Clamp Voltage
DM74
DM54 lS/74 lS
170
lS170
TVP(1)
MAX
2
MIN
TVP(1)
UNITS
~
fJ)
MAX
V
2
I
DM54
/
DM74
IOH
High level· Output Current
V OH
High level Output Voltage
IOL
Low Level Output Current
VOL
low level Output Voltage
~
Min
Vee
~
Min, V ,H
Vee
~
II
Input Current at
Any
Maximum Input Voltage
Any D, R, orW
Min, V ,H
~
2V, V ,L
~
,
IIH
High level Input Current
V,
Vee
~
Max
G A or Gw
2V
Low Level Input Current
Any D, R,orW
G A or Gw
Icc
Supply Current
~
~
-1.5
Max, V OH
10l
~
4 rnA
10l
~
Max
~
5.5V
20
!J-A
5.5
5.5
V
DM54
N/A
4
DM74
16
8
DM74
DM54
DM74
0.2
5.5V
0.25
0.4
N/A
0.25
0.4
0.4
0.35
0.5
rnA
V
1
0.1
V, =7V
~
Max
rnA
Vee
~
Max, V,
Vee
~
Max(2)
40
20
V, =2.7V
!J-A
40
=0.4V
127
-1.6
--0.4
-1.6
--0.8
150
25
Notes
(1) All typical values are at Vee =5V, T A ~ 25°C.
(2)
V
30
V, = 2.4V
Vee
G A or Gw
IlL
0.8
V
0.2
Any
Any_D, R, or W
0.8
1,~-18mA
V'l ~ Max
'"cO
'"
0.7
-1.5
1,~-12mA
Vee
N/A
ICC is measured under the following worst-case conditions: 4.5V is applied ,\0 all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open.
40
rnA
rnA
0
~
(11
~
.......
0
~
.....
~
.....
...
...
.....
0
r-
fJ)
0
Switching Characteristics
FROM
(INPUT)
PARAMETER
TO
(OUTPUT)
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-ta-Low Level Output
Read Enable
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-ta-Low Level Output
tpLH
Propagation Delay Time, Low-ta-High Level Output
Read Select
tPLH
Propagation Delay Time, Low-ta-High Level Output
tpHL
Propagation Delay Time, High-ta-Low Level Output
tw
Width of Write-Enable or Read-Endble Pulse
tSETUP Setup Times, High- or
Low-Level Datal31
Data Input With Respect to
Write ~nable,
LS170
MAX
TYP
MAX
15
20
30
20
30
20
30
23
35
25
40
15pF
30
40
C L =15pF
24
40
RL = 400Q
25
40
RL = 2 kQ
34
45
MIN
Write Enable,
0---....---1·
2-9B
5174, S175 To Be
Annou~ced
In 1976
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
CONDITIONS
MIN
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
Input Clamp Voltage
IOH
High Level Output Current-
VOH
High Level Output Voltage
IOl
VOL
II
I'H
IlL
Vee
=
Min
i
MAX
MIN
TYP(l)
DM74
0.8
0.8
0.8
-1.5
-1.2
-400
V 1L
DM74
2.4
2.7
3.5
Max
High level Jrlput Current
10L = 4 rnA
=:
Max
16
4
N/A
16
8
20
DM54
0.4
0.25
0.4
N/A
DM74
0.4
0.35
0.5
0.5
1
0.1
V, =2.4V
50--
20
V,=O.4V
-1.6
-0.4
-1.6
--0.36
Vee = Max(3)
-20
-57
-30
-130
DM74
-18
-57
-30
-130
174, S17 4
175, LS175, 5175
~
IlA
0
~
r - - - - -..I
~
N/A
--100
-40
45
65
16
26
90
144
30
45
11
18
60
96
-..I
~
r-
-2
DM54
Ul
-'
- - - - - -----
!-*Hi
~
mA
mA
V, = 0.5V
Supply Current
V
'-
40
~27V
Vee = Max(2)
mA
0
1
Clock, Clear
Short Circuit Output Current
IlA
0.4
V,=7V
Vee = Max
V
-- ----
DM74
DM74
V
V
3.4
DM54
V, = 5.5V
Vee = Max
Vee
IOL ,;:: Max
-·1000
N/A
2.7
~
(J)
V
N/A
3.5
~
MAX
-1.5
Low Level Output Voltage
Input Current at Maximum Input Voltage
TYP(1)
2
2.5
Vee = Min, V'H = 2V
MIN
UNITS
0.7
2.4
=:
MAX
2
DM54
Max, IOH
S174,5175
0.8
Vee = Min, V'H = 2V
""
DM74~
DM54
I, =-18mA
Any
ICC
TYP(l)
-800
Data
lOS
LS174, LS175
1,=-12mA
Low Level Output Current
Low Level I nput Current
174, 175
I
V 1L = Max
'"cbCD
DM54LS/74LS
2
VI
DM54/74
(J)
-'
rnA
mA
-..I
~
(J)
-'
-..I
~
:..
Notes
(1) All typical values are at VCC = 5V, TA = 25°C.
(2) Not more than one output should be shorted at a time, and for OM54LS/74LS and DM74S duration of short circuit should not exceed one second.
(3) With all outputs open and 45V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5V applied to clock.
(4) National Semiconductor temporarily reseJves the right to ship DM54LS/DM74LS174. LS175 devices which have a minimum lOS = 5.0 mAo
-..I
Ul
i(J)
-'
-..I
Ul
(J)
-'
-..I
Ul
------
Switching Characteristics
Vee
= 5V, T A = 25°C
~
PARAMETER
DM54/74
DM54LS/74LS
DM74S
174, 175
LS174, LS175
S174, S175
CONDITIONS
f MAX
Maximum Clock Frequency
tpLH
Propagation Delay Time,
MIN
TYP
MAX
CONDITIONS
40
30
MIN
TYP
30
40
MAX
CONDITIONS
s:
UNITS
MIN
TYP
75
110
rJ)
MAX
MHz
-
Low-to-High Level Output
16
25
23
35
25
20
25
23
14
25
20
30
14
17
10
15
ns
13
22
ns
30
8
12
ns
35
11.5
17
ns
From Clear (175 Only)
tPHL
CL = 15 pF
Propagation Delay Time, High-toLow Level Output From Clear
tplH
= 400Q
RL
Propagation Delay Time, Low-toHigh Level Output From Clock
tpHL
Propagation Delay Time, High-toLow Level Output From Clock
tw
Pulse Width
CL
= 15 pF
RL
= 2 kQ
C L = 15 pF
RL
= 280Q
Clock
20
20
7
Clear
20
20
10
Data Input
20
20
5
Clear Inactive-State
30
25
5
0
5
3
ns
':"
o
o
tseTUP Setup Time
tHOLD
Data Hold Time
+:-
........
ns
1:1
s:-.J
+:....
-.J
?
Truth Table
ns
0
s:CJ1
+:r-
(Each Flip-Flop)
....-.J
rJ)
,
INPUTS
OUTPUTS
H = High Level (steady state)
L = Low Level (steady state)
X = Don't Care
CLEAR
CLOCK
D
a
at
L
H
X
t
t
L
X
L
H
t :::; Transition from low to high level
H
H
L
00
H
H
L
L
H
X
00
00
t
,
=
The level of Q before the indicated steady-state input
conditions were established.
= 175, LS175, and S175 only
+:-
....-.J
rJ)
+:-
~
-.J
CJ1
r-
....
-.J
rJ)
CJ1
rJ)
....
~,
-
-_ ... _ - - -
~MSI
DM54/DM74176.m .196.LS196.197.LS197
Presettable Decade and Binary Counters
General Description
These high-speed counters consist of four doc coupled,
master-slave flip-flops which are internally interconnected
to provide either a divide-by-two and a divide-by-five
counter (176, 196) or a divide-by-two and a divide-byeight counter (177, 197)_ These counters are fully
programmable; that is, the outputs may be preset to any
state by placing a low on the count/load input and
entering the desired data at the data inputs_ The outputs
will change independent of the state of the clocks_
are required_ Flip-flop A is used as a binary
element for the divide-by-two function_ The clock2 input is used to obtain binary divide-by-five
operation at the as, Oc, and 00 outputs. I n this
mode, the two counters operate independently;
however, all four flip-flops are loaded and cleared
simultaneously.
,
177, 197 AND LS197
During the count operation, transfer of information to
the outputs occurs on the negative-going edge of the
clock pulse_ These counters feature a direct clear which,
when taken low, sets all outputs low regardless of the
state of the clocks_
The output of flip-flop A is not internally connected to
the succeeding flip-flops; therefore the counter may be
operated in two independent modes:
1. When used as a high-speed 4-bit ripple-through
counter, output OA must be externally connected
to the clock-2 input_ The input count pulses are
applied to the clock-1 input_ Simultaneous divisions by 2, 4, 8, and 16 are performed at the OA'
as, Oc, and 00 outputs as shown in the truth
table.
These counters may also be used as 4-bit latches by
using the count/load input as the strobe and entering
data at the data inputs_ The outputs will directly follow
the data inputs when the count/load is low, but will
remain unchanged when the count/load is high and the
clock inputs are inactive_
2. When used as a 3-bit ripple-through counter, the
input count pulses are applied to the clock-2 input.
Simultaneous frequency divisions by 2, 4, and 8
are 'available at the as, Dc, and 00 outputs.
Independent use of flip-flop A is available if the
load and clear functions coincide with those of
the 3-bit ripple-through counter.
TYPICAL COUNT CONFIGURATIONS 176, 196
AND LS196
The output of flip-flop A is not internally connected to
the succeeding flip-flops; therefore, the count may be
operated in three independent modes:
1. When used as a BCD decade counter, the clock-2
input must be externally connected to the OA
output_ The clock-1 input receives the incoming
count, and a count sequence is obtained in accordance with the BCD count sequence truth table_
Features
• Performs BCD, bi-quinary, or binary counting
• Fully programmable
• Fully independent clear input
• Output OA maintains full fan-out capability in
addition to driving clock-2 input
2_ If a symmetrical divide-by-ten count is desired
for frequency synthesizers (or other applications
requiring division of a binary count by a power of
ten). the 00 output must be externally connected
to the clock-1 input_ The input count is then
applied at the clock-2 input and a divide-by-ten
square wave is obtained at output OA in accordance
with the bi-quinary truth table_
TYPE
176,177
196,197
LS196, LS197
3_ For operation as a divide-by-two counter and a
divide-by-five counter, no external interconnections
Connection Diagram
TYPICAL
COUNT FREQUENCY
CLOCK 2
CLOCK 1
50MHz
50MHz
40MHz
25 MHz
25 MHz
20 MHz
TYPICAL
POWER
DISSIPATION
150mW
240mW
80mW
DATA INPUTS
CLEAR
13
~
DD
12
D
11
B
10
Do
9
CLOCK
1
B
54176(J); 74176(J), (N); 54177(J); 74177(J), (N);
54196/74196(J), (N); 54LSl96/74LS196(J), (N), (W);
54197/74197(J), (N); 54LS197174LS197(J), (N), (W)
1
COUNTI
LOAD
3
C
4
A
~
DA
CLOCK
2
DATA INPUTS
Note: low input to clear sets QA. Ga. Ilc and QD ,lOW.
2-101
LS196, LS197 To Sa Announced In 1976
Electrical Characteristics
DM54/74
CDNDITIDNS
PARAMETER
176,177
MIN
VIH
High Level Input Voltage
Vll
Low Level Input Voltage
~nput
VI
IOH
High Level Output Current
High Level Output Voltage
I,
Vee
V tH
;::
,""
Input Current at
Data, Count/Load
Maximum Input Voltage
Clear. Clock 1
Clock 2
o
2V
0;;;:
;::
Min
Vee;;:; Max, VI
High Level Input Current
::=
5.5V
0.8
0.8
0.7
0.8
0.8
0.8
-1.5
-1.5
-800
--400
DM54
2.4
3.4
2.4
3.4
2.5
3.4
DM74
2.4
3.4
2.4
3.4
2.7
3.4
DM54
16
16
4
DM74
16
16
8
0.5
0.2
I
0.4
0.2
1
1
0.1
1
1
0.2
176,196
1
1
0.4
177,197
1
1
0.2
20
40
176,196
120
80
177,197
80
80
40
Data, Count/Load
-1.6
-1.6
-0.36
Clear
-3.2
-3.2
-0.72
Vee == Max, VI
Short Circuit Output Current
2.4V
Supply Current
= D.4V
176,196
Vee = Max(4)
!lA
mA
-4.8
-4.8
-2.4
-6.4
-2.8
DM54
-20
-57
DM74
18
-fJ7
30
48
-57
-30
-130
18
57
-30
-130
54
rnA
C
s:
U1
~
!lA
"C
s:
...
~
-.J
mA
-1.3
3.2
-20
39
V
-.J
-4.8
3.2
177,197
Vee = Max(2)
V
0.4
40
Clock 2
V
0.4
80
=
-
V
80
120 .
Vee;:: Max, VI
s:
en
V
2
40
Clock 1
Icc
UNITS
MAX
DM74
tOL - 16 mA
V, = 2.7V (LSI96, LS197)
lOS
TYP(l)
IOL - 8 rnA, DM74
Clock 2
Low Level Input Current
MIN
DM54
Data, Count/Load
Clear, Clock 1
III
LSI96, LS197
MAX
~.~4mA
2V
'"
IIH
TYP(1)
-1.5
Max, IOH == Max
V'L = Max(3)
II
MIN
-800
Vee;;:; Min, V tH
Low Level Output Voltage
~
196,197
MAX
18 rnA
Low Level Output Current
VOL
DM54LS174LS
2
1,=-12rnA
Vee;:: Min
V tL
IOL
TYP(1)
2
Clamp Voltage
VOH
~
over recommended operating free-air temperature range (unless otherwise noted)
16
27
rnA
rnA
en
~
-.J
:...
e.g
en
r-
...en
...en
:"'I
en
...re.g
Notes
(1)
All typical values are at V CC ~ 5V, T A = 25" C.
(2)
Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
QA outputs are tested at specified IOL plus the limit value of I, L for the c1ock~2 input. This permits driving the clock-2 input while maintaining full fan-out capability.
ICC is measured with all inputs grounded and all outputs open.
(3)
(4)
e.g
e.g
-.J
Switching Characteristics vee = 5V, TA = 25°C
~
DM54!74
FRDM
(INPUT)
PARAMETER
f MAX
Maximum Input Count Frequency
tpLH
Propagation Delay Time,
TO
(OUTPUT)
Clock 1
OA
Clock 1
OA
176,177
CONDITIONS
MIN
35
Low-ta-Hlgh Level 9utput
Propagation Delay Time,
tpHL
High-ta-Low Level Output
Low-ta-High Level .output
Clock 2
Propagation Delay Time,
tpHl
196,197
MAX
50
MIN
TYP
40
50
LS196
MAX
CONDITIONS
MIN
30
TYP
LS197
MAX
40
MIN
30
TYP
UNITS
MAX
s:
en
MH,
40
9
13
9
13
8
15
8
15
m
11
17
11
16
13
20
14
21
ns
12
18
12
18
16
24
12
19
ns
14
21
14
21
22
33
23
35
ns
27
41
24
36
38
57
34
51
ns
34
51
28
42
41
62
42
63
ns
12
18
55
78
63
95
°B
High-ta-Low level Output
Propagation Delay Time,
tPLH
Low-ta-High Lf;vel Output
Clock 2
Oc
Propagation Delay Time,
tPHL
High-ta-Low Level Output
CL
Propagation Delay Time,
tpLH
176,196
Low-ta-High Level Output
Clock 2
Propagation Delay Time,
tpHL
High-ta-Low Level Output
o
w
TYP
Propagation Delay Time,
tPI.H
~
DM54LS!74LS
°D
=
15 pF
C L =15pF
RL "400Q
~
~
13
20
14
21
44
66
36
54
RL "2 krl(5)
ns
17
26
16
23
50
75
42
63
19
29
16
24
20
30
18
27
ns
31
46
25
38
29
44
29
44
n5
29
43
22
33
27
41
26
39
ns
32
48
24
36
30
45
30
45
ns
30
45
ns
0
Propagation Delay Time,
tpLH
Low-ta-High Level Output
A, B, C, D
Propagation Delay Time,
tpHL
QA, Os· Oc,
aD
High-to-Low Level Output
Propagation Delay Time,
tpLH
Low-to-High Level Output
lJOad
High-to-Low Level Output
Propagation Delay Time,
tpHL
High-to-Low Level Output
Pulse Width
tw
tHOLD
Input Hold Time
Clear
Any
32
48
25
37
34
51
34
14
14
20
20
Clock-2 Input
2B
28
30
30
Clear
25
25
15
15
Load
20
20
20
20
High-Level Data
tW(lOAD)
tW(LOAD)
tW(LOAO)
tW(lOAO}
Low-Level.Data
tW(LOAO}
tW{LOADl
tW(LOADl
tW(LOAD}
High-Level Data
15
10
10
10
Input Setup Time
tENABLE
Count Enable Time(6)
Low-Level Data
s:
..
~
~
en
Clock-' Input
tsETUP
~
'0
~
Any
Propagation Delay Time,
tpHL
s:C1I
20
15
15
15
25
30
20
20
51
Notes
(5)
Load circuit, input conditions, and vol_tage waveforms are the same as those for the 176, 177 except that for the LS196, LS197 tr ~ 15 os, tf ~ 6 ns, and VREF = 1.3V (as opposed to 1.SV).
(6)
Count enable time is the interval immediately pr-eceding the negativeiJoing edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting.
ns
~
~
~
~
ns
to
en
..
r-
en
ns
ns
to
en
~
to
..
~
ns
r-
en
to
~
~ MSI
DM54/DM74176.177.196.LS196.197.LS197
Truth Tables
176.196, LS196
176,196, LS196
DECADE (BCD)
(See Note A)
BI-QUINARY (5-2)
(See Note B)
OUTPUT
COUNT
00
H
COUNT
ac aB aA
(See Note A)
OUTPUT
aA
00
ac as
OUTPUT
COUNT
00
Oc
as aA
0
L
L
L
L
0
L
L
L
L
0
L
L
L
l
1
L
L
L
H
1
L
L
L
H
1
L
L
L
H
2
3
L
L
H
L
2
L
L
H
L
2
L
L
H
L
L
L
H
H
L
L
H
H
3
L
L
H
H
4
L
H
L
L
L
H
L
L
4
L
H
L
L
5
L
H
L
H
3
4
5
H
L
L
L
5
L
H
L
H
6
L
H
H
L
L
L
H
6
L
H
H
L
L
H
H
H
6
7
H
7
H
L
H
L
7
L
H
H
H
8
9
H
L
L
L
L
H
H
8
H
L
L
L
L
L
,H
8
'9
H
H
H
H
L
L
9
H
L
L
H
10
H
'L
H
L
11
H
L
H
H
= High
Level, L
= Low
Level
Notes:
(A)
(8)
177,197, LS197
Output QA connected to clock 2 input.
Output QD connected to clock 1 input.
12
H
H
L
L
13
H
H
L
H
14
H
H
H
L
15
H
H
H
H
w
w
Logic Diagrams
196, LSl96
197, LS197
~MSI
DM54/DM74180
9-Bit Parity Generators/Checkers
General Description
These universal 9-bit (8 data bits plus 1 parity bit)
parity generators/checkers feature odd/even outputs and
control inputs to facilitate operation in either odd or
even parity applications. Depending on whether even
or odd' parity is being generated or checked, the even or
odd inputs can be utilized as the parity or 9th-bit input.
The word·length capability is easily expanded by
cascading.
Input buffers are provided so that each data input
represents only one normalized series 54/74 load. A full
fan·out to 10 normalized series 54/74 loads is available
from each of the outputs at a low logic level. A fan-out
to 20 normalized loads is provided at a high logic level
to facilitate the connection of unused inputs to used
inputs.
Connection Diagram
Truth Table
INPUTS
vee
JI'
13
11
12
'"
8
9
INPUTS
OF H', AT
EVEN
A THRU H
~
-
r--
I
2
•
3
5
6
EVEN
000
l.>EVEN
I-ODD
INPUT
INPUT
OUTPUT
OUTPUT
OUTPUTS
ODD
L
L
EVEN
ODD
EVEN
000
EVEN
ODD
H
L
H
L
H
L
L
H
L
H
L
H
L
H
H
L
X
H
H
L
L
X
L
L
H
H
H "" High Level, L = Low Level, X :; Don't Care
17
GND
INPUTS
54180(JI. (WI; 74180(JI, IN I, (WI
Logic Diagram
.!LJ
A~~
:~II"I
o
LEVEN
OUTPUT
1111
DATA
INPUTS
E~1121~
F
(131
::: 000
OUTPUT
G~
H.EL.j
I~~~~I~'I----------------------------------~
1~~~~~1",31
____________________________________....
2-105
~
MSI
DM54/DM74180
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER
CONDITIONS
V,H
High level Input Volt.age
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VOH
High level Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
o.a
Vee::: Min, V 1H
I,
Input Current at Maximum Input Voltage
I'H
High Level Input Current
Any Data Input
-800pA
Vee"" Min, V 1H
""'
2V
=::
=::
O.8V,
tOL '"
Vce
Supply Current
~
V
'-1.5
V
-800
}1A
2.4
V
16 mA '
Max, VI = 5.5V
1.6
rnA
0.4
V
rnA
1
40
pA
80
-1.6
Vee =Max, VI =DAV
Short Circuit Output Current
Icc
2V
~
Vee::: Max, VI"" 2.4V
Even or Odd Input
los
~
=
O.aV,loH
Vee
Any Data Input
Even or Odd Input
Low Level Input Current
V
Vee'" Min,ll == -12 mA
V!L
I,L
MAX
2
V'l
-
UNITS
180
TYPO)
MIN
rnA
3.2
Max(2)
Vee"" Max(3)
DM54
-20
-55
DM74
-18
-55
DM54
34
49
DM74
34
56
rnA
rnA
Notes
= 25'C.
(1)
All typical values are at VCC = 5V, T A
(21
Not more than one output should be shorted at a time.
ICC is measured with even and odd inputs at 4.5V, all other inputs and outputs open.
(31
Switching Characteristics Vcc = 5V, TA = 25°C
DM54fl4
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
CONDITIONS
tpLH
Propagation Delay Time.
Low-ta-High Level Output
Data
tpHL
tpLH
High-ta-Low Level Output
Cl
Propagation Delay Time,
Odd Input Grounded
~
Propagation Delay Time,
Propagation Delay Time,
Low-to-High Level Output
Data
tpHL
tpLH
High-ta-Low Level Output
CL " 15pF, Rl
Propagation Delay Time,
Even Input Grounded
Propagation Delay T,ime,
Propaga.tion Delay Time,
Low-to-High Level Output
Even or Odd
tpHL
45
68
ns
32
48
ns
25
38
ns
32
48
ns
25
38
ns
40
60
ns
45
68
ns
13
20
ns
7
10
ns
L Odd
High-to-Low Level Output
tpLH
ns
~400fl
Low-te-High Level Output
tpHl
60
}; Even
Propagation De,lay Time,
Data
40
L Odd
High-ta-Low Level Output
tPlH
MAX
15 pF, R l " 400n
Low-ta-High' Level OutP4t
tpHL
TYP
LEven
Propagation Delay Time,
Data
UNITS
180
MIN
L Even or L Odd
Propagation Delay Time,
High-to-Low Level Output
2-106
Cl
~
15 pF, RL
= 400n
,----------------------------------'-----------------------------------------------,
~MSI
DM54/DM74181
Arithmetic Logic Unit/Function Generators
General Description
Features
These arithmetic logic units (ALU)/function generators
perform 16 binary arithmetic operations on two 4-bit
words, as shown in Tables 1 and 2. These operations are
selected by the four function-select lines (SQ, S 1, S2, S3)
and include addition, subtraction, decrement, and straight
transfer. When performing arithmetic manipulations, the
internal carries must be enabled by applying a low-level
voltage to the mode control input (M). A full carry
look-ahead scheme is available in these devices for fast,
simultaneous carry generation by means of two cascadeoutputs (P and G) for the four bits in the package,
When used in conjunction with the DM54182/DM74182
full carry look-ahead circuits, high-speed arithmetic
operations can be performed, The typical addition times
shown below illustrate how little time is required for
addition of longer words, when full carry look·ahead is
employed. The method of cascading 182 circuits with
these ALU's to provide multi-level full carry look-ahead
is illustrated under typical applications data for the
DM54182/DM74182.
(Continued)
•
Arithmetic operating modes:
Addition
Subtraction
Shift operand A one position
Magnitude comparison
Plus twelve other arithmetic operations
•
Logic function modes:
EXCLUSIVE-OR
Comparator
AND, NAND, OR, NOR
Plus ten other logic operations
•
Full look-ahead for high-speed operations on long
words
Connection Diagram
J:.
Pin Designations
INPUTS
,
Al
81
23
21
22
OUTPUTS
82
A2
A3
20
19
83
\
'G
Cn+4
18
p
16
17
A:B
14
15
F3
\
13
DESIGNATION
PIN NOS,
FUNCTION
A3, A2, Al, AO
19,21,23,2
WORD A INPUTS
B3, 82, Bl, 80
18,20,22, 1
WORD B INPUTS
3,4,5,6
FUNCTION SELECT
INPUTS
S3, 52, 51, SO
Co
INV, CARRY INPUT
M
MODE CONTROL
INPUT
---
10
.
80
AO
S3
52
S1
SO
Co
M
,
\
'0
INPUTS
F1
11
F2
J
112
OUTPUTS
TYPICAL ADDITION TIMES
BITS
5 to 8
9 to 16
17 to 64
FUNCTION OUTPUTS
A=B
14
COMPARATOR OUTPUT
15
CAR RY PROPAGATE
OUTPUT,
Cn -J-4
16
INV. CARRY OUTPUT
G
17
CARRY GENERATE
OUTPUT
Vee
24
SUPPL Y VOLTAGE
GND
12
GROUND
PACKAGE COUNT
NUMBER
1 to 4
13,11,10,9
GNO
54181(J); 74181(J), (N)
OF
F3, F2, F'I, FO
20
30
30
50
ARITHMETIC!
LOOK AHEAD
LOGIC UNITS
CARRY GENERATORS
ns
CARRY METHOD
BETWEEN
ALU's
NONE
ns
ns
3or4
ns
5 to 16
0
2-107
RIPPLE
FUL.L LOOK·AHEAD
2 to 5
FULL LOOK,AHEAD
r-------------------------------------------------------------------------.-------------------~ MSI
DM54/DM74181
G.eneral Description (Continued)
If high speed is not important, a ripple·carry input
information. Again, the ALU should be placed in the
subtract mode by placing the function select inputs S3,
S2, S 1, SO at L, H, H, L, respectively.
(C n ) and a ripple·carry output (C n +4 ) are available.
However, the ripple-carry delay has also been minimized
so that arithmetic manipulations for small word lengths
can be performed without external circuitry,
These circuits have been designed to not only incorporate
all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two
Boolean variables without the use of external circuitry.
These logic functions are selected by use of the four
function-select inputs (SO, Sl, S2, S3) with the modecontrol input (M) at a high level to disable the internal
carry. The 16 logic functions are detailed in Tables 1
and 2 and include exciusive·OR, NAND, AND, NOR,
and OR functions.
These circuits will accommodate active-high or active·
low data, if the pin designations are interpreted as
shown below.
Subtraction is accomplished byl 's complement addition
where the 1's compjement of the subtrahend is generated
internally. The resultant output is A-B-l, which
requires an end-around or forced carry to provide A-B.
The 181 can also be util ized as a comparator. The A = B
output is internally decoded from the functi on outputs
(FO, F 1, F2, F3) so that when two words of equal
magnitude are applied at the A and B inputs, it will
assume a high level to indicate equality (A = B). The ALU
should be in the subtract mode with Cn = H when
performing this comparison. The A = B output is opencollector so that it can be wire-AND connected to give a
comparison for more than four bits. The carry output
(C n +4 ) can also be used to supply relative magnitude
ALU SIGNAL DESIGNATIONS
The DM54181/DM74181 can be used with the signal
designations of either Figure 1 or Figure 2.
The logic functions and arithmetic operations obtained
with signal designations as in Figure 1 are given in
Table 1; those obtained with the signal designations of
Figure 2 are given in Table 2.
PIN NUMBER
2
1
23
22
21
20
19
18
9
10
11
13
7
16
15
Active·High Data ITable I)
AD
BO
A1
B1
A2
B2
A3
83
FD
F1
F2
F3
Cn
CnU
X
Y
Active-Low Data (Table II)
AO
BO
Al
81
A2
B2
A3
83
FO
Fl
F2
F3
en
C n-f-4
P
G
INPUT Cn
OUTPUT Cnt•
ACTIVE·HIGH DATA
IFIGURE 1)
ACTIVE·LOW DATA
IFIGURE 2)
H
H
A<;B
A::O:B
H
L
A>S
AB
L
L
A~B
A:SB
17
TABLE 1
T T (;T (T (Y
AO
I7H>-C
so
Al
B1
A2
(2f
B2
{lr (1r
A.1
ACTIVE HIGH DATA
SELECTION
B3
'0
181
Fl
F2
F3
Cnt4
Y
II16_)_
r
....11,,')
1)4)
XU
Yl
Xl
51
SO
L
L
L
L
L
L
H
L
H
l
x
J,)_,","_IO_)_"'"_,,_J_13_)__ 1,,51
1)3)
T T "f 'r
TT
YII
52
L
M" L; ARITHMETIC OPERATIONS
en :: H (no carry)
Cn :: L (with carry)
A=B-{14)
18)--- M
FO
53
M" H
LOGIC
FUNCTIONS
Y2
X2
V3
X3
x-m
1820RS182
v-om
FIGURE 1
F"A
F
F~A+8
F~A+B
F" IA
F ~ AB
F"A+8
F " IA + 8) PLUS 1
~
A PLUS 1
+ B) PLUS 1
L
L
H
H
F~O
F " MINUS 1 12', COMPL)
F " ZERO
L
H
l
L
F" AB
F" A PLUS AB
F" A PLUS AB PLUS 1
L
H
L
H
FoB
L
H
H
L
F~A
l
H
H
H
F~
H
L
L
L
H
L
L
H
H
l
H
l
F~B
F ~ IA + B) PLUS AB
F" IA + 8) PLUS AB PLUS 1
H
L
H
H
F
~
F" AS MINUS 1
F
H
H
L
L
F
=1
F
H
H
L
H
f:A+8
r
H
H
H
L
F"A+B
F " (A + 8) PLUS A
F
H
H
H
H
F"A
F=AMINUS 1
F" A
F" IA + B) PLUS AB
CD
B
A·S
F
~
A MINUS B MINUS 1
.F ~ IA + B) PLUS AB PLUS 1
F
~
A MINUS B
F"ABMINUS1
F" AB
F=A+S
F
F" A PLUS AB PLUS 1
F~
F "A PLUS B
A CDB
AB
0
A PLUS AB
~
AB
0
A PLUS A'
F " A PLUS A PLUS 1
0
IA + B) PLUS A
F" IA
*I::ach bit is shifted to the next more significant position.
2-108
F " A PLUS B PLUS 1
0
IA
+ B) PLUS A PLUS 1
+ 8) PLUS A PLUS 1
~
OM 54/ OM74181
MSI
General Description (Continued)
(X)
(1)
BO
A'
171->--
AI
Bt
A1
A3
R1
Fa
F3
Cn+4
(Xl (X) (Xl
(tt
Ft
!
F1
1t·, ~
13
GO
,
PO
GI
T {T
"
PI
S1
SO
L
L
L
F= A
F=AMINUSl
L
L
L
H
F = AB
F = AB MINUS 1
F = AB
,
lI
IX'
G3
P1
P3
':)-171
1820RS182
Cn
G :)-110)
Cn+K
Cn+Z
Cn+y
1
ut
}21
FIGURE 2
Electrical Characteristics
en :::: H (with carry)
S2
L
ril ,
G
M = L; ARITHMETIC OPERATIONS
en = L (no carry)
S3
A ~ 8 1"""(14)
-M
(ij)"
ACTIVE LOW DATA
M=H
LOGIC
FUNCTIONS
SELECTION
B3
"
tBI
(8'-
TABLE 2
(r II
I 1 (X 1)
-
F=A
,
L
L
H
L
F=A+B
F" A8 MINUS 1
F = A8
L
L
H
H
F=1
F = MINUS 1 12', COMPI
F = ZERO
L
H
L
L
F=A+B
F
PLUS IA + 81
F = A PLUS IA + 81 PLUS 1
L
H
L
H
F=8
L
H
H
L
F=A (0 B
F = AB PLUS IA + 81
F = A MINUS B MINUS 1
F = AB PLUS IA + 81 PLUS 1
F = A MINUS B
F = IA + 81 PLUS 1
=A
L
H
H
H
F=A+8
F=A+8
H
L
L
L
F = AB
F = A PLUS IA + BI
F = A PLUS IA + BI PLUS 1
H
L
L
H
F =A (0 B
F = A PLUS B
F = A PLUS B PLUS 1
H
L
H
L
F=B
F
H
L
H
H
F=A+B
F=A+B
H
H
L
L
FoO
F '" A PLUS A*
F = A PLUS A PLUS 1
H
H
L
H
F = A8
F = AB PLUS A
F = AB PLUS A PLUS 1
H
H
H
L
F = AB
F = AB PLUS A
F = A8 PLUS A PLUS 1
H
H
H
H
F=A
F=A
F = A PLUS 1
= A8
PLUS IA + BI
-
F = AB PLUS IA + BI PLUS 1
F = IA + BI PLUS 1
-
*Each bit is shifted to the next more Significant position.
over recommended operating free·air temperature range (unless otherwise noted)
DM54/74
PARAMETER
MIN
VIH
High Level Input Voltage
VIL
Low Level I nput Voltage
VI
.Input Clamp Voltage
IOH
High Level Output Current
TYPI1I
V OH
Vee == Min,
'I : :
V
-12 rnA
High Level Output Current
Vee = Min, V 1H = 2V
IA = B Output Onlyl
V,L = 0.8V, V OH = 5.5V
High Level Output Voltage
Vee = Min, V 1H == 2V
(Any Output Except A '" B)
V'L = 0.8V,
IOL
Low Level Output Current
VOL
Low level Output Voltage
10H
Vee"" Min, V 1H
=
I,
Input Current at Maximum Input Voltage
IIH
High Level Input Current
Any S Input
2V
Any S Input
16
mA
0.4
V
mA
I'A
-1.6
-4.8
--6.4
mA
-8.0
Vee = Maxl21
Condition A
Vee = Maxl31
Condition B
Notes
( 11
I'A
160
Vee'" Max, VI = O.4V
Supply r.urrent
Icc
250
200
Short Circuit Output Current
(Any Output Except A '" B)
I'A
120
Vee = Max, VI"" 2.4V
Carry Input
lOS
-800
40
Mode Input
Any A or 8 Input
V
1
Vee = Max, VI"" 5.5V
Carry Input
Low Level Input Current
V
-1.5
V
Mode Input
Any A or B Input
0.8
2.4
= -800!,A
V 1L = O.8V, IOL = 16 rnA
IlL
MAX
2
(Any Output Except A = B)
IOH
UNITS
181
CONDITIONS
All typical values are at Vec = 5V, TA = 25°e.
(21
Not more than one output should be shorted at a time.
(31
With outputs open, ICC is measured for the following conditions:
A. SO through 53, M, and A inputs are at 4.5V I all other inputs are grounded.
B. SO through S3 and M are at 4.5V, all other inputs are grounded.
2·109
DM54
-20
-55
DM74
-18
--57
DM54
88
127
DM74
88
140
DM54
92
92
135
DM74
150
mA
mA
~MSI
DM54/DM74181
Switching Characteristics vee = 5V, T A = 25°C
DM54/74
PARAMETER
FROM (lNPUTI
TO
(OUTPUTI
181
CONDITIONS
MIN
tpLH
Propagation Delay Time, Low-ta-High level Output
tpHl
Propagation Delay Time, High-ta-Low Level Output
tplH
Propagation Delay Time, Low-ta-High Level Output
tpHL
Propagation Delay Time, High-ta-Low Level_ Output
tpLH
Propagation Delay Time, Low-ta-High Level Output
tpHL
Propagation Delay Time. High-ta-Low Level-Output
tpLH
Propagation Delay Time, low-ta-High Level Output
~PHl
Propagation Delay Time, High-ta-Low Level Output
tpLH
Propagation Delay Time, Low-ta-High Level Output
tpHL
Propagation Delay Time. High-to-Low level Output
tplH
Propagation Delay Time, low-ta-High Level Output
tpHl
Propagation Delay Time, High-ta-Low Level Output
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-ta-Low level butput
Gn
Cn +4
AnyAorB
Cn +4
AnyAorB
Cnl4
Cn
Any F
Any A or B
G
Any A or B
G
P
Any A or B
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-to-Low level Output
Any A or B
tpLH
Propagation Delay Time, Low-to-High level, Output
tpHL
Propagation Delay Time, High-to-Low Level Output
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-to-Low Level Output
tpLH
Propagation Delay Time, Low·to-High Level Output
tpHL
Propagation Delay Time, High-to-Low Level Output
tpLH
Propagation Delay Time, Low-tb-High 'Level Output
tpHL
Propagation Delay Time, High-to-Low Level Output
P
Ai or Bi
F;
A; or Bj
F;
Ai or Bi
F;
Any A or B
A=B
TYP
UNITS
MAX
9
18
13
19
M = OV, SO = 53 = 4.5V
20
30
S1 = 52 = OV (5UM model
22
33
ns
-
ns
M=OV,50=53=OV
20
30
51 = 52 = 4.5V (DIFF model
22
33
M = OV
11
19
(5UMor DIFF model
12
18
--
ns
M = OV, 50 = 53 = 4.5V
13
19
51 = S2 = OV (SUM model
14
19
ns
M = OV, 50 = 53 = OV
12
20
51 = 52 = 4.5V (DIFF model
15
25
M = OV, 50 = 53" 4.5V
12
19
51 = 52" OV (5UM model
17
25
M=OV,50=53=OV
14
25
51 = 52 = 4.5V (DI FF model
17
25
--
ns
ns
ns
M = OV, 50 = 53 = 4.5V
18
30
51 = 52 = OV (5UM model
19
30
M = OV, 50" 53" OV
14
24
51 = 52 = 4.5V (DIFF model
14
24
-
--
ns
ns
17
28
19
30
M=OV,50=53"OV
26
40
51 = 52" 4.5V (DIFF model
25
40
ns
M "4.5V (log;c model
--
ns
Parameter Measurement Information
LOGIC MODE TE5T TABLE
FUNCTION INPUTS: S1 = S2 = M" 4.5V, 50" S3 '" OV
PARAMETER
tpLH
t pHL
t pLH
tpHL
INPUT
UNDER
TEST
OTHER INPUT
SAME BIT
APPLY
4,5V
OTHER DATA INPUTS
APPLY
GND
APPLY
4.5V
A;
B;
None
None
B;
A;
None
None
2-110
APPLY
GND
Remaining
A and B, Cn
Remaining
A and B, Cn
ns
OUTPUT
UNDER
TEST
OUTPUT
WAVEFORM
F;
Out-of-Phase
F;
Out-of-Phase
~
MSI
DM54/DM74181
Parameter Measurement Information (Continued)
SUM MODE TEST TABLE
FUNCTION INPUTS: SO = S3 = 4.5V, S1 = S2
PARAMETER
tpLH
INPUT
UNDER
TEST
A,
OTHER INPUT
SAME BIT
APPLY
4.5V
APPLY
GND
B,
None
OTHER DATA INPUTS
APPLY
4.5V
A and B
tpU-j
Rernallllllg
tpLH
B,
A,
None
A,
B,
None
OUTPUT
UNDER
TEST
OUTPUT
WAVEFORM
C"
F,
In·Phas(~
C"
F,
In-Phase
APPLY
GND
Rermlll11119
tpHI
t pHL
= M = OV
A and B
None
Remaining
tpHL
AandB,C n
tpL.H
Remaining
t pHL
B,
A,
None
None
In-Phase
In-Phase
AandB,C n
~-
tpu~
A,
None
B,
None
B,
Remaining
Remainihg
B
A, C"
tpHl
Remaining
Remaining
tpHL
8
A, C"
t p \. H
All
All
A
B
Remaining
Remaining
tpLH
tpHL
t pl.. H
t pHL
tpL H
C"
Norle
A,
None
None
B,
A,
None
B,
B
A, Co
Remaining
Remaining
S
A, C"
A,
tpHL
DIFF MODE TEST TABLE
FUNCTION INPUTS: S1 = S2 = 4.5V, SO = S3
PARAMETER
tpLH
t pHL
tpLH
INPUT
UNDER
TEST
OTHER INPUT
SAME BIT
APPLY
4.5V
APPLY
GND
Ai
None
B,
Bi
A,
None
APPLY
4.5V
APPLY
GND
Remaining
Remaining
A
S,C"
Remaining
Remaining
A
t pLt f
Ai
None
S,
None
A and B, en
Remaining
tpLH
t pHL
tpLH
A,
None
None
Ai
B,
None
None
S,
None
Ai
None
B,
Ai
tpHL
tpU-i
tpHL
tpLH
tpHL
tPL H
Ai
B,
None
Cn
None
None
Ai
B,
None
tpHL
tpL H
tpHL
t pLH
tpHL
None
or C n
Out-af·Phase
C"14
Out-af-Phase
OUTPUT
UNDER
TEST
OUTPUT
WAVEFORM
F,
In-Phase
F,
Out-af-Phase
In-Phase
Out-of-Phase
A and B, -C n
Remaining
G
In-Phase
G
Out-af-Phase
A=S
In-Phase
AandB,C n
Remaining
Remaining
Remaining
A
B, C"
Remaining
Remaining
A
S, Cn
A and S
None
A
=
B
Cn '4
or any F
Remaining
Si
None
None
A, S, C"
A,
None
2·111
In-Phase
'4
C"14
A and B, C n
All
In-Phase
B,C"
tpl_H
Si
G
Any F
Remaining
tpHL
tpHL
Ill-Phase
= M = OV
OTHER DATA INPUTS
tpHL
G
Remaining
A, S, Cn
Out-of-Phase
I n-Phasc
C ni4
Out-of-Phase
Cn14
In-Phase
·~MSI
OM 54/DM74181
Logic Diagram
(31
S3 (4f
S2
(5)
51
I
(6)
so
G (}rY
3(18)
3
r-
I'H
I'L
los
Icc
High Level I nput Current
0.7
DM74
0.8
0.7
0.8
-1.5
-1.5
-1.5
-200
Supply Current
-400
2.5
3.4
V IL == Max, IOH == Max
DM74
2.4
2.4
2.7
3.4
Vee
=
-=
Max
Max
Vee = Max(2)
Vee = Max(3)
IOL == Max
DM54
16
2
4
16
3.6
8
DM54
0.4
0.15
0.3
0.25
DM74
0.4
0.2
0.4
0.35
IOL=4mA DM74
V
V
J-i.A
V
DM74
mA
0.4
0.5
V
C
0.4
V, = 5.5V
1
0.1
V , -7V
0.1
V, = 2.4V
40
<1
20
-0.10
-0.18
-1.6
V, = 0.4V
mA
s:
(J1
,J:Io
.......
10
V, = 2.7V
V, = 0.3V
s:
(J)
V
0.7
2.4
Vee == Min, V 1H == 2V
UNITS
MAX
2
2
2.4
Vee =Max
Short Circuit Output Current
TYPlll
DM54
Vee = Max
Low Level Input Current
MIN
I, =-18 mA
Low Level Output Current
Low Level Output Voltage
MAX
0.8
-400
Input Current at Maximum Input Voltage
I,
TYPO)
Vee = Min, V ,H = 2V
V 1L
~
MIN
DM54
I, =-12·mA
"
VOL
MAX
2
Input Clamp Voltage
IOL
TYPll)
LS192, LS193
L 192, L193
192,193
MIN
DM54LS/74LS
DM54L/74L
DM54174
V,
~
over recommended operating free-air temperature range (unless otherwise noted)
-0.4
DM54
-20
-55
-3
-9
-15
-30
-130
DM74
-18
-55
-3
-9
-15
-30
-130
DM54
65
89
8
13
19
34
DM74
65
102
8
13
19
34
J-i.A
mA
C
s:.....
...
,J:Io
CD
N
mA
mA
!:
CD
N
r-
....CD
(J)
Notes
(1) All typical values are at Vee
=
5V, TA == 25°C.
(2)
Not more than one output should be shorted at a time. and for DM54LS/74LS duration of short circuit should not exceed one second.
(3)
ICC is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5V.
N
~
CD
to)
i....
CD
to)
r-
....
CD
(J)
to)
----_._---
~-
---
Switching Characteristics
DM54/74
PARAMETER
FROM
INPUT
TO
OUTPUT
f MAX
Maximum Clock Frequency
tPLH
Propagation Delay Time,
TYP
20
25
Propagation Delay Time,
Count down
tpLH
'"
12
~
UNITS
MIN
TYP
25
32
C/)
MAX
MHz
17
26
30
60
17
26
ns
16
24
60
120
21
33
ns
16
24
30
60
16
24
ns
16
24
50
100
21
33
ns
C L = 50 pF
C L = 15pF
Propagation Delay Time,
R L = 400[2
R L =4k[2
R L =2kl!
Propagation Delay Time,
45
90
25
38
ns
31
47
75
150
31
47
ns
27
40
55
110
27
40
ns
(J1
.......
C
~
C
~
~
High-ta-Low Level Output
High-to-Low Level Output
38
Q
Propagation Delay Time,
Propagation Delay Time,
25
Q
Propagation Delay Time,
Load
tpHL
CONDITIONS
C L =15pF
Low-ta-High Level Output
tPHL
MAX
High-ta-Low Level Output
High-ta-Low level Output
tpLH
6
LS192, LS193
TYP
Propagation Delay Time,
Either Count
'"w
MIN
Borrow
Low-to-High Level Output
tpHL
CONDtTlONS
Propagation Delay Time,
Low-ta-High Level Output
tPHL
MAX
Carry
High-to-Low Level Output
tpLH
DM54LS/74LS
L192, L193
MIN
Low-to-High Level Output
Count up
DM54L!74L
192,193
CONDtTlONS
tpHL
~
Vee = 5V, T A = 25° C
29
40
105
200
29
40
ns
22
35
95
190
22
35
ns
-.oJ
Clear
Q
tw
Width of Any I nput Pulse
25
70
20
ns
tSETUP
Data Setup Time
20
30
20
ns
tHOLD
Data Hold Time
0
0
0
ns
....
to
~
N
....tor-
N
r-
....
C/)
to
N
:..
to
W
tto
W
r-
....
CD
C/)
W
I
~ MSI
DM54/DM74192.L192.LS192.193.L193.LS193
Logic Diagrams
192, L192, LS192
(13) BORROW
'"
OUTPUT
.--
(12) CARRY
OUTPUT
J
DATA (15)
INPUT A
DOWN 14)
COUNT
/
r--'
J-
(3)
GA
OUTPUT OA
T
DA
UP (5)
COUNT
-
-
bT
DATA (1)
INPUT B
r----r
-L
~Q=>
(2)
OUTPUT De
G,
T
D, f--,...-
l>DATA (101
INPUT C
tr>-
r---''"
~
~~
(6)
Ge
OUTPUT
Dc
OUTPUT
no
T
iic-
~
-
6T
DATA (9)
INPUT D
(14)
CLEAR
rt-"
---i
r-''''"""'"
(7)
00
T
Do
LOAD
~
(11)
2,136
-
~ MSI
DM54/DM74192,L192.LS192,193,L193,LS193
Logic Diagrams (Continued)
193, L 193, LS193
113) BORROW
OUTPUT
"-
I
(12) CARRV
OUTPUT
DATA
INPUT A
(15)
~
J-
DOWN (4)
COUNT
(3)
GA
OUTPUT OA
T
OAr--
UP (,)
COUNT
~
-
6-;T
,.
DATA II)
INPUT B
J-
r---'
~---'--
-
OUTPUT
no
,.
~
-
(6)
Ge
T
fie
I
(14)
fie
tr>-
--;--
CLEAR
OUTPUT
fi,r--
r---'.
~=-=I
DATA (9)
INPUT 0
as
'-- r---
~.
DATA (10)
OUTPUT
T
1
INPUT C
(2)
G,
f--
6-;T
"-
~
'-!---1
r--' I...(7)
00
T
fiof--
LOAD
~
(11)
2·137
~ MSI
DM54/DM74192.l192.lS192.193,l193.lS193
Timing Diagrams
192, L 192, LS192 DECADE COUNTERS
TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES
CLEAR
LOAD
~
____________________~_________________________________________
II u
:~~
~1'---
DATA
! i
I,
1-
COUNT----+-t----r-t---,
UP
COUNT----+-t----r-t--~----------------------+---,
DOWN
OUTPUTS
CARRY
BORROW
~~
CLEAR
I
8
9
0
1
21
~-- COUNT U P - - - - J
I
1
0
9
8
11
. -COUNT DOWN-----'
PRESET
Sequence:
(li Clear outputs to zero.
(2)
Load (preset) to BCD seven.
(3)
Count up to eight. nine, carry, zero, one, and two.
(4)
Count down to one, zero, borrow, nine, eight, and seven,
Notes:
(A) Clear overrides load, data, and count inputs.
(8)
When counting up, count-down input must be high; when counting down, count-up input must be high.
2-138
~ MSI
DM54/DM74192,L192,LS192,193,L193,LS193
'Timing Diagrams (Continued)
193, L193, LS193 BINARY COUNTERS
TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES
LOAO
A
DATA
COUNT----+-~--~~--~
UP
COUNT----+-~--~~--~----------------------+---,
DOWN
OUTPUTS
Dc
CARRY
BORROW
~~
CLEAR
I
14
1&
0
1
1
I
- - - - COUNT UP - - - - ,
I
1
0
15
14
131
. - - - COUNT OOWN----'
PRESET
Sequence:
~1)
Clear outputs to zero.
(2) Load (preset) to binary thirteen.
(3) Count up to fourteen, fifteen, carry, zero, one, and two.
(4) Count down to one, zero, borrow, fifteen, fourteen, and thirteen.
Notes:
{Al Clear overrides load, data, and count inputs.
(8)
When counting up, count-down input must be hIgh; when counting down, count-up input must be high.
2-139
~MSI
DM54/DM74194,LS194A,S194
4-Bit Bidirectional Universal Shift Registers
General Description
shifts reft synchronously and new data is entered at the
shift-left serial input.
These bidirectional shift registers are designed to
incorporate virtually all of the features a system designer
may want ,in a shift register; they feature parallel inputs,
parallel outputs, right-shift and left-shift serial inputs,
operating-mode-control inputs, and a direct overriding
clear line, The register has four distinct modes of operation, namely:
Clocking of the flip-flop is inhibited when both mode
control inputs are low, The mode controls of the
DM54194/DM74194 should be changed only while the
clock input is high.
Features
Parallel (broadside) load
Shift right (in the direction G A toward Go)
Shift left (in the direction Go toward G A I
Inhibit clock (do nothing)
• Parallel inputs and outputs
• Four operating modes:
Synchronous parallel Ipad
Right shift
Left shift
Do nothing
• Positive edge-triggered clocking
• Direct overriding clear
Synchronous parallel loading is accomplished by applying
the fou'r bits of data and taking both mode control
inputs, SO and Sl, high, The data are loaded into the
associated flip-flops and appear at the outputs after the
positive transition of the clock input, During loading,
serial data flow is inhibited,
TYPE
Shift right is accomplished synchronously with the
rising edge of the clock pulse when SO is high and Sl is
low, Serial data for this mqde is entered at the shiftright data input. When SO is low and Sl is high, data
Connection Diagram
I"
1
CLEAR
S194
,
Go
2
l
,A
RIGHT
SERIAL
11
5
4
B
C
0
36 MHz
36 MHz
195mW
105 MHz
425mW
75mW
so
S1
CLOCK
12
Il
14
SHIFT
POWER DISSIPATION
194
OUTPUTS
15
TYPICAL
FREQUENCY
LS194A
D,
V,'
TYPICAL CLOCK
10
,
,
,
SHIFT
LEFT
SERIAL
PARAllEL INPUTS
J:
INPUT
INf'UT
54194(J), (W); 74194(J), IN), (WI;
54LS194A/74LS194A(J), (N), (W); 74S1941N)
Truth Table
OUTPUTS
INPUTS
CLEAR
MODE
CLOCK
LEFT
RIGHT
A
B
C
D
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
a
X
X
X
X
X
Sl
SO
H
X
X
X
X
H
H
H
t
H
L
H
H
L
H
H
H
L
t
t
t
H
H
L
t
L
H
L
L
X
X
L
X
L
PARALLEL
SERIAL
H
L
QA
QB
L
L
QAO QBO
Oc
Qo
L
L
Qco Q oo
b
c
d
a
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
Q An QBn
QCn
L
Q An QBn
Q Cn
b
c
d
QBn
QCn
QDn
H
QBn
Q Cn
QOn
L
QAO QBO
QCO Q oo
H = High Level (steady state), L = Low Level (steady state), X = Don't Care (any input, including transitions)
t =: Transition from low to high level
a, b, c, d = The level of steady state input at inputs A, B, C, or 0, respectively.
OAO" 0BO, OeD, 0DO = The level of QA, OS. Oc, or QD. respectively. before the indicated steady state input conditions were established.
QAn. 0Bn, aCn, QO n = The level of 0A, 0B, Cle, respectively, before the most recent t transition of the clock.
Tentative Data For LS194A
2-140
LS194A, 8194 To Be Announced In 1976
~
Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted)
DM54/74
PARAMETER
CONDITIONS
194
MIN
V'H
High Level Input Voltage
V'L
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
VOL
~
I,
I'H
Input Current at Maximum Input Voltage
High Level Input Current
I'L
Low Level Input Current
los
Short Circuit Output Current
Icc
Supply Current
MIN
TYP(l)
:=0
Max,
IOH =
Vee: Min, V ,H
:
2
Vee: Max
Vee: Max
Vee = Max
V
N/A
DM74
0.8
0.8
0.8
-1.5
-1.2
3.4
2.5
3.5
Max
DM74
2.4
3.4
2.7
3.5
IOL == Max
-1000
-400
2.4
N/A
2.7
16
4
N/A
DM74
16
8
20
DM54
0.2
0.4
0.25
0.4
N/A
DM74
0.2
0.4
0.35
0.5
0.5
0.25
0.4
V, : 5.5V
1
1
V, :7V
0.1
V, : 2.4V
50
40
2.7V
20
V, : OAV
-1.6
Vee: Max(2)
Vee: Max(3)
DM54
-20
DM74
-18
39
-30
-57
-30
63
-2
-0.4
-57
-130
-130
15
23
N/A
-40
-100
85
V
V
Il A
V
3.4
DM54
DM74
s:
(J)
MAX
2
DM54
~
TYP(l)
-1.5
IOL :4 mA
V,
MIN
0.7
2V
2V
UNITS
5194
MAX
0.8
-800
:
V1L=Max
::
LS194A
MAX
1,--18mA
Vee: Min, V ,H
DM74S
DM54
I, : -12 mA
Vee: Min
Low Level Output Current
Low Level Output Voltage
TYP(1)
2
V 1L
10L
DM54 LS/74LS
135
mA
V
rnA
IlA
rnA
0
rnA
s:
rnA
........
(11
~
0
Notes
(1) All typical values are at V CC : 5V, T A : 25 0 C,
12) Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second.
(3) With all outputs open, inputs A through 0 grounded, and 4.5V applied to SO, 81, clear, and the serial inputs, ICC is tested with a momentary GND. then 4.5V applied to clock.
s:-..J
...
~
(D
~
r(J)
...
(D
-
~
'(J)
!>
...
(D
~
~
Switching Characteristics vee = 5V, T A = 25°C
DM54/74
DM54 LS/74 LS
DM74S
194
LS194A
S194
PARAMETER
CONDITIONS
fMAX
Maximum Clock Frequency
tpHL
Propagation Delay Time, High-to-Low
MIN
TYP
25
36
19
Level Output From Clear
tpLH
Propagation Delay Time, Low-to-High
Level Output From Clock
tpHL
"'"
CONDITIONS
MIN
TYP
25
36
30
C L = 15pF
19
MAx
RL = 400n
Propagation Delay Time, High-to-Low
14
22
14
22
CONDITIONS
MIN
TYP
70
105
..
MAX
18.5
ns
4
8
12
ns
4
11
16.5
ns
C L = 15 pF
RL = 2 kn
14
22
17
22
RL = 280n
tv(CLOCKI
Width of Clock Pulse
20
20
7
ns
tW(CLEARI
Width of CI ear Pul se
20
20
12
ns
tSETUP
Setup Time
tHOLD
Mode Control
30
30
11
Serial and Parallel Data
20
20
5
Clear I nactive State
25
25
9
0
0
3
Hold Time at Any Input
~
--
en
MHz
12.5
30
C L = 15pF
Level Output From Clock
~
MAX
UNITS
ns
ns
N
-
0
~
(J1
+:>
........
0
~
-..J
....+:>
(D
+:>
r-
en
....
(D
+:>
»
en
~
(D
+:>
-
---_ .. -
---_ .. ----_._--- - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - _ ... -------_._--_ .. - - - - - -
~-.-
-----------------_ ... _-----
--
_ .. __..
-- -----
~MSI
OM54/0M74194,LS194A,S194
Logic Diagrams
A
SHIFT
RIGHT
SERIAL
INPUT
131
121
194
SHIFT
PARAllEL INPUTS
•1'1
D
C
151
LEFT
\ SERIAL
INPUT
I')
111
LSl94A, S194
PARAllEL INPUTS
•)'1
A
)3)
c
D
)51
161
MDDEtS1~(I~m{>04~---1~--r-----~------~---+----~~------~---r----~------~~--+-----'
CONTROL
,INPUTS so .;;1';:.I-D<>-1~---i---+~PI---+-------+---I+-:1.f---"~------+---++--.lf--fl---------~-i.f-~-'
SHIFT
SHIFT
S~~~~r .:;1':..1--------..,
.-++1____+..:.)7:.:.) ~:~iAL
INPUT
INPUT
CtOCK~ll~lIi~O---------------~--+---.f-________~~__~-i__________~__- i__+ __________~
CLEAR~)l~I
+-______________
____q)~______________~__
~~
(15)
______________-4__-+______________
.
(14)
"A
Timing Diagram
(13)
PARALLEL OUTPUTS
'"
TYPICAL CLEAR, LOAD, RIGHT·SHIFT, LEFT·SHIFT, INHIBIT, AND CLEAR SEQUENCES
CLOCK
CLEAR
SEO~~~ {R
INPUTS
L
--+-+--i---------------+-+.J
PARAtLEl\:---+-"t-I----+-t---+-------!DATA
INPUTS
c
l
O--~t--r--------------r-t-----------t-----------+_-
aA :
a,-
OUTPUTS
:
a,_
DD:
CLEAR
2·143
~
1121
110
~ MSI
DM54/DM74195,LS195A,S195
4-Bit Parallel Access Shift Registers
General Description
These 4-bit registers feature parallel inputs, parallel
outputs, J-K serial inputs, shift/lo~d control input, and
a direct overriding clear. All inputs are buffered to
lower the input drive requirements. The registers have
two modes of operation:
speed data processing systems. In most cases existing
systems can be upgraded merely by using this Schottkyclamped shift register.
Features
Parallel (broadside) load
Shift (in the direction Q A toward QD)
• Synchronous parallel load
• Positive-edge-triggered clocking
• Parallel inputs and outputs from each flip-flop
• Direct overriding clear
• J and K inputs to first stage
• Complementary outputs from last stage
• For use in high-performance:
accumulators/processors
serial-to-parallel, parallel-to-serial converters
Parallel loading is accomplished by applying the four
bi~s of data and taking the shift/load control input
low. The data is loaded into the associated flip-flop and
appears at the outputs after the positive transition of the
clock input. Duri,ng loading, serial data flow is inhibited.
Shifting is accomplished synchronously when the shift/
load control inpiJ.! is high. Serial data for this mode is
entered at the J-K inputs. These inputs permit the first
stage to perform as a J-K, D, or T-type flip-flop as shown
in the truth table.
TYPICAL CLOCK
TYPICAL
FREQUENCY
POWER DISSIPATION
195
3!l MHz
195mW
LS195A
39 MHz
70mW
105 MHz
350mW
TYPE
The high-performance S195, with a 105 MHz typical
shift frequency, is particularly attractive for very high-
S195
Connection Diagram
OUTPUTS
'~.,--u-,--u~,--Uo~-U-o"'l
V"r
"
15
K
J
11
•
3
1
1
CLEAR
13
14
5
C
~~~~
111
9
7
6
B
,A
~
CLOCK
11
D
Gt:
PARAllEL INPUTS
SERIAL INPUTS
54195(JI. (WI; 74195(J), (N), (W);
54LS195A/74LS195A(JI. IN), (W); 74S195(N)
Truth Table
INPUTS
CLEAR
SHIFTI
LOAD
CLOCK
L
X
X
H
L
t
H
H
L
H
H
H
H
H
H
H
H
t
t
t
t
OUTPUTS
SERIAL
PARALLEL
°D aD
J
K
A
B
C
D
°A
OS
X
X
X
X
X
X
X
L
L
L
L'
d
a
b
e
d
d
G eo
G DO
ODD
L
x
X
e
X
X
X
X
X
X
H
X
a
X
X
X
X
L
H
L
'L
H
H'
H = High Level (steady state), L = Low Level (steady, state), X
=
b
X
X
X
X
X
X
X
X
X
X
GAO G BO
Dc
H
°Bn
Q Co
Oen
L
GM
G BO
Q Cn
OCfl
H
QAO
°Sn
G Co
G An G sn
°en
Oen
Oen
GAO GAO
OAn
Dqn~t Care (any input, including transitions)
Transition from low to high' le~el
,'. ,
.-~~':J--,
a, b, c. d ==: The level of steady state input at A. B, e.,or D. respective~y.
0AO. 0BO, 0eo, ODO = The level of 0A_ 0B. Qc. or 00, respecti\iely, before the indicated steadY state inpl,It conditions were established.
t
=
QAn, 0Sn, QCn"'" The level of QA, 0B, or 0C. respectively, before tile most recent transition of the clock .
.
Tentative Data For LS195A
.2-144
LS195A, $195 To Be Announced In 1976
Electrical Characteristics
~
over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER
I
I
CONDITIONS
V,H
High Level Input Voltage
Low Level Input Voltage
MAX
2
MIN
TVP(l)
IOH
DM74
0.8
0.8
0.8
-1.5
-1.2
V 1L
IOL
VOL
I
0:0
Max, IOH
= Max
Low Level Output Current
I Low
Level Output Voltage
Vee = Min, V ,H = 2V
IOL -= Max
V 1L -= Max
~I
10L
I,
Input Current at Maximum Input Voltage
I'H
High Level I nput Current
Low Level I nput Current
I'L
los
ICC
I Short Circuit Output Current
I Supply Current
Notes
(1) All typical values are at
Vee = Max
Vee -= Max
Vee = Max
= 4 mA
-400
DM54
2.4
3.4
2.5
3.4
DM74
2.4
3.4
2.7
3.4
V
'1000
16
4
N/A
16
8
20
DM54
0.2
0.4
0.25
0.4
N/A
DM74
0.2
OA
0.35
0.5
0.5
0.25
0.4
V, = 5.5V
40
V, = 2.7V
20
V,=OAV
-1.6
50
--0.4
-2
V, = 0.5V
Vee = Maxl2)
Vee = Maxl3)
DM54
-20
-57
-30
-130
DM74
--18
-57
-30
-130
39
63
14
21
mA
I
V
mA
0.1
V , =2AV
MA
V
DM74
V, = 7V
I
3.4
DM54
DM74
V
N/A
2.7
(/)
V
N/A
-1.5
Vee -= Min, V 1H -= 2V
s:
MAX
0.7
-800
I
TVP(l)
2
2
High Level,Output Current
I High Level Output Voltage
MIN
0.8
Vee=MIfI
V OH
UNITS
S195
MAX
DM54
. LI, =-12mA
i l ,=-18mA
Input Clamp Voltage
V,
TVP(ll
DM74S
LS195A
195
MIN
V,L
DM54LS/74LS
N/A
-40
-100
70
109
J.1A
rnA
mA
0
s:
(JI
:a
......
mA
0
s:
"
:a
....
Vee = 5V, TA = 25°C.
(2)
Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second.
(3)
With all outputs open, shift/load grounded, and 4.5V applied to the J,
ground, followed by 4,5V, to clock.
K, and data
inputs, ICC is measured by applying a momentary ground, followed by 4.5V, to clear and then applying a momentary
CD
(JI
r-
....
CD
(/)
(JI
»
en
....
CD
(JI
Switching Characteristics
Vee ~ 5V, T A ~ 25°C
~
DM54/74
DM54LS174LS
DM74S
195
LS195
S195
PARAMETER
CONDITIONS
fMAX
Maximum Clock Frequency
tpHL
Propagation Delay Time, High-to-Low
Level Output From Clear
tPLH
Propagation Delay Time, Low-la-High
MIN
TVP
30
39
19
CL
AL
= 15 pF
= 400.12
Propagation Delay Time, High-to-Low
Level Output From Clock
~
.,.
CONDITIONS
MIN
TVI'
30
39
30
1--
Level Output From Clock
tpHL
MAX
14
22
17
26
19
CL
=
AL
= 2 kn
MAX
CONDITIONS
MIN
TVP
70
105
30
15 pF
UNiTS
~
en
MAX
MHz
12.5
18_5
ns
8
12
ns
11
16.5
ns
C L =15pF
14
22
17
26
AL = 280.12
tWICLOCKI
Width of Clock Input Pulse
16
16
7
ns
tWiCLEARI
Width of Clear I nput Pulse
12
12
12
ns
tsETUP
Setup Time
Shift/Load
25
25
11
Serial and Parallel Data
15
15
5
Clear Inactive-State
25
25
9
ns
----'-tRELEASE
Shift/Load Aelease Time
tHOLD
Serial and Parallel Data Hold Time
0>
10
r--6
10
0
6
3
ns
ns
C
~
U'I
~
.......
C
~
~
(D
U'I
ren
~
(D
U'I
»
en
~
(D.
U'I
~ MSI
DM54/DM74195,lS195A,S195
Logic Diagram
SE.RIAl
PAAALLElINPUTS
INPUT
~
K
('I
StllFTllOAO (!H
a
A
(41
c
151
o
(61
171
CONTROL
PARAllEl OUTPUTS
tnls connr;ctiOIlIS mad1l on 195 only.
Timing Diagram
TYPICAL CLEAR, SHIFT, AND LOAD SEQUENCES
ClOCK
-.r-
""'' {'
i
I
SHIFT/LOAD
I
PARI:~ t~ :---t-----+I--------------I*'--If-~
____________
I I
o
I
I
-i.-;;l
l
r--, L
-+
~--~i
0A _
-_
-
-----'
t
OUTPUTS
\
I'
L..._ _ _ _ _ _ __
r.--IttH
o,:=J
~.:;l_ _ _ __
OD--
I
'
-- I
CLEAR
LOAD
2-147
'
~ MSI
DM54/DM74198.199
8-Bit Shift Registers
General Description
Clocking, of the fiip-flop is inhibited when both mode
control inputs are low. The mode controls should be
changed only while the clock input is high.
These 8-bit shift registers feature buffered inputs to
lower the drive requirements to one normal ized Series
54/74 load, and input clamping diodes to minimize
switching transients and simplify system design_ Maximum input clock frequency is typically 35 MHz and
power dissipation is typically 360 mW.
DM54199/0M74199
These registers feature parallel inputs, parallel outputs,
J-K serial inputs, shift/load control input, a direct
overriding clear line, and gated clock inputs. The register
has three modes of operation:
DM54198/DM74198
These bidirectional registers are designed to incorporate
virtually all of the features a system designer may want
in a shift register. They feature parallel inputs, parallel
outputs, right-shift and left-shift serial inputs, operating
mode control inputs, and a direct overriding clear line.
The register has four distinct modes of operation, namely:
Parallel (broadside) load
Shift (in the direction Q A toward QH)
I nhibit clock (do nothing)
Parallel loading is accomplished by applying the eight
bits of data and taking the shift/load control input
low when the clock input is not inhibited. The data is
loaded into the associated flip-flop and appears at the
outputs after the positive transition of the clock input.
During loading, serial data flow is inhibited.
Parallel (broadside) load
Shift right (in the direction Q A toward QH)
Shift left (in the direction Q H toward QA)
Inhibit clock (do nothing)
Synchronous parallel loading is accomplished by applying
the eight bits of data and taking both mode control
inputs, SO and S1 high. The data is loaded into the
associated flip-flop and appears at the outputs after the
positive transition of the clock input. During loading,
serial data flow is inhibited.
Shifting is accomplished synchronously when shift/load
is high and the clock input is not inhibited. Serial data
for this mode is entered at the J-K inputs. See the truth
table for levels required to enter serial data into the
first flip-flop.
Both of the clock inputs are identical in function and
may be used interchangeably to serve as clock or clockinhibit inputs. Holding either clock input high inhibits
clocking; but when one is held low, a clock input applied
to the other input is passed to the eight flip-flops of the
register. The clock-inhibit input should be changed to
the high level only While the clock input is high.
Shift right is accomplished synchronously with the rising
edge of the clock pulse when SO is high and S1 is low.
Serial data for this mode is entered at the shift-right
data input. When SO is low and S1 is high, data shifts
left synchronously and new data is entered at the
shift-left serial input.
Connection Diagrams
SHIFT
LEFT
SERIAL INPUT
Sl INPUT
H DH
124
23
22
21
INPUT
INPUT
G
F
D,
Dc
20
19
18
17
INPUT
E
Oe CLEAR
16
15
-
1
SO
14
SHIFT/ INPUT
Vee LOAD
L4
13
23
H
22
OH
21
INPUT
F
INPUT
G
20
19
18
INPUT
E
17
Oe CLEAR CLOCK
16
15
2
3
4
5
INPUT
B
6
n,
7
INPUT
C
8
9
10
13
-
0-
SHIFT INPUT QA
'RIGHT A
SERIAL
INPUT
14
1
U J12
Dc INPUT 0 0 CLOCK GNO
0
K
2
J
----------
3
4
5
INPUT 0, INPUT
A
B
6
7
C
54199/74199(J), (N)
2-148
10
11 J'2
D, INPUT Ilc INPUT 00 CLOCK GND
SERIAL
INPUTS
54198/74198(Jl, (N)
9
8
D
INHIBIT
~
MSI
DM54/DM74198,199
Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted)
DM54/74
PARAMETER
CONDITIONS
198, 199
MIN
VIH
UNITS
MAX
2
High Level Input Voltage
V IL
Low Level Input Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
Vee
~
Min,
1,~-12mA
Vee
~
Min,
V ,H
~
2V
V'L ~ O.BV,
IOH
~
-SOOJ1A
V
O.S
V
-,1.5
V
-SOO
Vee
~
~
IOL~16mA
II
Input Current at Maximum Input Voltage
Vee
Max,
V,
~
IIH
High Level I nput Current
Vee~Max,
V,
~204V
IlL
Low Level Input Current
Vee
los
Short Circuit Output Current
Supply Current
~
5.5V
Vee
~
Max(2)
Vee
~
Max
16
mA
004
V
1
mA
40
fJ.A
. -1.6
V,~Oo4V
Max,
(See Conditions for lee Table)
J1A
V
204
V'H ~ 2V
Min,
V'L ~ O.BV,
Icc
TYP(1)
DM54
-20
-57
DM74
-lB
-57
mA
mA
.--
DM54
72
104
DM74
72
116
mA
Notes
All typical values are at vee = 5V, T A = 25° C.
(2) Not more than one output should be shorted at a time.
( 1)
Switching Characteristics Vee
= 5V,
T A ~ 25°C
DM54/74
CONDITIONS
PARAMETER
fMAX
Maximum Input Count Freque'ncy
tpHL
Propagation Delay Time, High·to-Low
198,199
MIN
TYP
25
35
Level Output From Clear
tPHL
Propagation Delay Time, High-to-Low
CL
~
15 pF, RL
~
UNITS
MHz
23
35
ns
20
30
ns
17
26
ns
400n
Level Output From Clock
tpLH
MAX
Propagation Delay Time, Low-to-High
Level Output From Cloc,k
tw
Width of Clock or .Clear Pulse
20
ns
tSETUP
Mode-Control Setup Time
30
ns
tSETUP
Data Setu p Ti me
20
ns
tHOLD
Hold Time at Any Input
0
ns
Conditions for Icc (All outputs are open)
TYPE
APPLY 4.5V
19S
Serial Input, SO, Sl
J, K, Inputs A thru H
199
F!RST GROUND,
THEN APPL Y 4.5V
GROUND
Clock
Clear, I nputs A thru H
Clock
Clock Inhibit, Clear, Shift/Load
2-149
~ MSI
OM54/0M74198,199
Truth Tables
198
INPUTS
MODE
CLEAR
51
so
OUTPUTS
SERIAL
CLOCK
PARALLEL
LEFT
RIGHT
A". H
X
X
X
X
X
H
X
X
X
X
X
H
H
H
X
X
a .. .h
H
L
H
X
H
X
H
X
aA
a.
aG
aH
L
a AO aBO
aGO G HO
h
b
H
GAo
G Fn
GGo
H
X
L
X
GAo
G Fn
GGn
H
H
l
H
X
X
G Bn
G eo
G Hn
H
H
H
L
l
X
X
G Bn
G en
G HO
H
L
l
X
X
X
GAO G BO
X
GGO a HO
H = High Level (steady state), L = Low Level (steady state)
X
:=
Don't care (any input, including transitions)
t = Transition from low to high level
a ... h ::: The level of steady state input at inputs' A thru H. respectively.
GAO, GSO, GGO, aHO
=
The level of aA, 0B, aG, or GH, respectively, before the indicated
steady-state input conditions were established.
QAn. 0Sn, etc. = The level of QA, 0B, etc., respectively, before the mostwrecent t transition of
the clock.
199
INPUTS
SHIFTI
CLOCK
LOAD
INHIBIT
L
X
X
X
H
X
L
L
L
t
CLEAR
H
H
H
H
H
H
H
H
H
H
X
CLOCK
OUTPUTS
SERIAL
K
A". H
X
X
X
X
X
X
X
x
L
L
H
PARALLEL
Oc
GH
G eo
°HO
b
h
GAO GAO G BO
GGn
aA
L
GAO G BO
... h
H
X
as
L
L
X
L
H
H
X
H
G An aBo
G An aBO
GGo
H
L
X
DAn
a Ao
aBo
GGn
X
X
X
aAO aBO
aBO
G HO
a Gn
H = High Level (steady state) .. L == Low Level (steady state)
X
:=
Don't care (any input, including transitions)
t
0;::
Transition from low to high level
a ... h = The level of steady state input at inputs A thru H, respectively.
OAO, 0BO, 0CO· .. 0HO =: The level of 0A, QS, or QC thru 0H, respectively, before the indicated
steady·state input conditions were established.
QAn, aBn· . 0Gn ::. The level of QA or' Os thru 0G, respectively, before the most-recent t
transition of the clock
2-150
~MSI
OM 54/ OM74198 .199
Logic Diagrams
199
198
CLOCK (1l)
ClOCK..:.I1"'lI'-_--11
>.....,
1~~~B~~.!!I'!.!!lI~-L~""'"--------1
SERIAL ( J \21
INPUTS j(.:.I'::.._ _ _ _.....,
S~~F;~::;[2""lt>.,.-<>I>....+-,=3
A (3)
r------+~--~nA
8(5)
B (5)
e(7)
c
(7)
[81 ilc
n 1'1
o (91
EllS)
E (16)
F (17)
F (t8)
G (19)
G (20)
H (21)
H (22)
s~~~~-,I::22,-1-------1--1-.)
ClE~R
-.,.O-----,--1======~~=:t,~
CLEAR.![':.::',-I
2-151
.q
.![",'4,-1_ _ _ _ _ _....ql:>:>-__....__
~ MSI
DM54/DM74198,199
Timing Diagrams
198
TYPICAL CLEAR, LOAD, RIGHT-SHIFT, LEFT-SHIFT, INHIBIT, AND CLEAR SEQUENCES
CLOCK
ClEAR
SERIAL {
DATA
R
-t-+-1---------------t-i-'
INPUTS
PARALLEL
DATA
INPUTS
OUTPUTS
199
TYPICAL CLEAR, SHIFT"LOAD, AND INHIBIT SEQUENCES
ClOCK
CLOCK
INHIBIT
CLEAR
SfRIAL{ J
INPUTS
K
SHIFT/LOAD
PARAllEL
DATA
INPUTS
OUTPUT
QO--'~---_1-----J
__
O£ - - ,
,+,-----r----------~
::::1,
--+,--+--------'
a,
j_-------CLEAR
SERIAL SHIFT
LOAD
~ MSI
OM54/0M74198,199
Parameter Measurement Information
198
199
TEST TABLE FOR SYNCHRONOUS INPUTS
TEST TABLE FOR SYNCHRONOUS INPUTS
DATA INPUT
FOR TEST
OUTPUT TESTED
(SEE NOTE EI
DATA INPUT
FOR TEST
SHIFT/LOAD
4.5V
Q A at t nf ,!
A
OV
Q A at tn+l
4.5V
0 8 at
tn+l
B
OV
4.5V
Oc at
tn+1
C
OV
Os at t n ""l
Q c at tn+l
4.5V
aD
at tn+l
D
OV
OD
4.5V
4.5V
OE
at
tn+1
E
OV
Q E at tn+1
5,
So
A
4.5V
B
4.5V
C
4.5V
D
4.5V
E
OUTPUT TESTED
(SEE NOTE EI
at tn+l
F
4.5V
4.5V
OF
at
tn+1
F
OV
OF
at tn+l
G
4.5V
4.5V
QG
at
tn+l
G
OV
OG
at
H
4.5V
4.5V
Q H at tn+l
H
OV
OH
at tn+l
L Serial Input
4.5V
OV
Q A at t n+8
4.5V
OH
at
A Serial Input
OV
4.5V
Q H at t n +8
J and
K
LOAD FOR OUTPUT UNDER TEST
OUTPUT
FROM
O~Z~~~ TEST
........~t--.t-.Hpth
l'
Cl "15 pF
ISEE NOTE 81
SWITCHING TIME WAVEFORMS
=J
CLEAR INPUT
tWIClEARIt;:
.
~1.5-V~~~~~~_----------------3V
(SEE NOTE f)
L
~
~
~3V
CLOCK INPUT
::J ~
11,...----3v
tHOlO
tSETU':j
DATA INPUT
ISEETESTTABLEI
__-+ ___. J
I
I
'l'HL
(CLEAR-ali
I-I
1.5V
OV
1.5V
-----ov
I
JtPLH
I
---IICLK-olr---
pi
tJUTPUT 0----""""'\'.5V
Notes
2: 20 ns and
(AI
The clock pulse has the following characteristics: twlclockl
(8)
The clear pulse has the following characteristics: tw(clear) :2: 20 ns and tHOLD
When testing fMAX, vary the clock PRR.
CL includes probe and jig capacitance.
IC)
All diodes are 1 N3064.
(O)
A clear pulse is applied prior to each test.
Propagation delay times (tPLH and tpH l) are measured at t n +1. Proper shifting of
data is verified at·t n+8 with a functio~~J...test.
t n ::; bit time before clocking transition,
t n +1 "" bit time after one clocking transition
t n +8 = bit time after clocking transitions
(EI
(F)
2-153
PRR = 1 MHz.
=
0 ns.
tn+l
t n +8
~ MSI
DM54/DM74S200
TRI-STATE 256-Bit ReadIWrite Memories
General Description
The DM54S200/DM74S200 256-bit active-element
memories are monolithic transistor-transistor logic (TTL)
integrated circuits organized as 256 words of one bit
each. They are fully decoded and have three gated
memory-enable inputs to simplify decoding required to
achieve the desired system organization. The memories
feature PNP input transistors which reduce the low-level
input current requirement to a maximum of -0.25 mA',
only one-eighth that of a normal Series 54S/74S load
factor. The memory-enable circuitry is implemented with
minimal delay times to compensate for added system
decoding.
neither load nor drive the bus line, but it will allow the
bus line to be driven by another' active output or a
passive pull-up if desired.
Read Cycle: The stored information (complement of
information applied at the data input during the write
cycle) is available at the output when the write-enable
input is high and the three memory-enable inputs are
low. When anyone of the memory enable inputs is high,
the output will be in the high-impedance state.
Features
The TRI-STATE output combines the convenience of
an open-collector with the speed of a totem-pole output;
it can be bus-connected to other similar outputs, yet it
retains the fast rise time characteristics of the TTL
totem-pole output.
• Schottky-clamped for high-speed memory systems:
Access from memory-enable inputs
20 ns typ
Access from address inputs
31 ns typ
Power dissipation
1.7 mW/bit typ
• TRI-STATE output for driving bus-organized systems
and/or highly capacitive loads
'. Fully decoded, organized as 256 words of one bit
, each
Write' Cycle: The complement of the information at the
data input is written into the selected location when all
memory-enable inputs and the write-enable input are
low. While the write-enable input is low, the output is
in the high-impedance state. When a number of outputs
are bus-connected, this high-impedance output state will
Connection Diagram
• Compatible with most TTL and DTL logic circuits
• Multiple memory-enable inputs to minimize external
decoding
Logic Diagram
ADDRESS
INPUTS
ADDRESS
INPUTS
ADDRESS
INPUTS
,0
!
1111
G
/101
ADDRESS
!NPUTS
F
E (9)
0/ 11
• A
MEt
ME2
ME3
OUTPUT
0
Y
ADDRESS
INPUT
ADDRESS
INPUTS
GNU
54S200IJ), IWI; 74S200(J), IN), (WI
Truth Table
INPUTS
MEMORY
ENABLEt
WRITE
ENABLE
Write (Store
Complement
of Data)
L
L
High Impedance
Read
L
H
Stored Data
Inhibit
H
X
High Impedance
Irrelevant
t = For memory enable; L = All ME inputs low'
H
OUTPUT
FUNCTION
~
High Level, L = Low
L.Y~I,
X=
H .,. One or more ME inputs high
2-154
~
MSI
DM54/DM74S200
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54S/74S
CONDITIONS
PARAMETER
S200
MIN
V 1H
High Level! nput Voltage
V ,L
low Le'V!(lln p ut Voltage
V,
Input
10H
High Level Output Current
UNITS
TVP(l}
MAX
V
2.0
C!a~p Voltage
i.
Vee"" Min,
= -18 rnA
I DM54
High Level Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
IO(OFF~
Vee"" Min,
V 1H
V 1L =O.BV,
'OH =
Vee'" Min,
V,H
V 1L =O.BV,
IOL
=
V
-1.2
\I
-2.0
I DM74
VOH
0.8
--5.2
2V
2.4
Max
\I
16
Off-State (High Impedance State) Output Current
Vee
=
Max
V 1H
""
2.0V
= 2V
= 16 mA
I DM54
I DM74
V
0.45
I Va = OA5V
-50
I Va:= 2.4V
50
Vee =Max,
VI"" 5.5V
1.0
I'H
High Level Input Current
Vee
Max,
V,
= 2.7V
I'L
Low Level Input Current
Vee =Max,
V,
= 0.45V
loS
Short Circuit Output Current
Vee;::: Max{2)
Icc
Supply Current
Vee
=
mA
0.5
Input Current at Maximum Input Voltage
I,
rnA
-30
= Max(3}
87
)1A
mA
25
)1A
--250
)lA
-100
mA
130
mA
Notes
{21
All typical values are at V CC ~ 5V, T A ~ 25" C_
Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
(3)
ICC is measured with the write enable and memory enable grounded, all other inputs at 4.5V and the output open.
(1)
Switching Characteristics v cc = 5V, T A = 25° C
DM54S/74S
PARAMETER
CONDITIONS
54S200
MIN
tPLH
tPHl
tZH
Propagation Delay Time,
Access Time From
Low-to-High Level Output
Address
Propagation Delay Time,
Access Time From
High-te-Low Level Output
Address
Output Enable Time To
High level
Access Time From
Memory Enable
CL
tze
tZH
tZL
'HZ
tLZ
Output Enable Time To
Access Time From
low Level
Memory Enable
Output Enable Time To
Sense Recovery Time
High Level
From Write Enable
Output Enable
Tim~
To
From Write Enable
Output Disable Time From
Disable Time From
High Level
Memory Enable
Output Disable Time From
Disable Time From
Low Level
Memory Enable
tLZ
Output Disable Time From
Disable Time From
High Level
Write Enable
Output Disable Time From
Disable Time From
Low Level
Write Enable
tw
Width of Write Enable Pulse
tSETUP
Setup Time
= 5.0 pF,
RL
UNITS
TVP
MAX
70
33
50
ns
29
70
29
50
ns
21
45
21
35
'"
10
30
10
20
05
24
50
24
40
ns
12
50
12
40·
ns
7.0
30
7.0
20
ns
20
45
20
35
ns
13
40
13
30
os
16
40
16
30
os
= 280n
50
~-
Address to Write Enable
0
Data to Write Enab!e
Hold Time
33
MIN
-
Memory Enable to Write Enable
tHOLD
MAX
15pF, R! " 280[2
Sense Recovery Time
Low Level
CL
tHZ
:::
74S200
TVP
0
40
ns
0
0
0
ns
Address From Write Enable
10
10
Data From Write Enable
10
10
Memory Enable to Write Enable
0
0
2-155
ns
I
~··MSI
OM54/0M74S200
AC Test Circuit
Vee
TEST
POINT
FROM
O~J~~~ -~--...-IIOIIII-'"
TEST
CL includes probe and jig capacitanct.
All diodes are 1NlO&4.
Switching Time Waveforms
3.0V
ADDRESS
INPUT
ISEE NOTE BI
3.0V
ADDRESS
INPUTS
VOH - " " ' - - 3.0V
OUTPUT
DATA
INPUTS
VOL----------__--,~--------__J
3.DV
MEMORY
ENABLE
INPUTS
3.0V
MEMORY ENABLE
INPUTS ISEE NOTE CI
WRITE
ENABLE
INPUT
Ov----r'------------J
3.DV
OV
~1.5V
WAVEFORM 1
(SEE NOTE Al
WAVEFORM 1
ISEE NOTE Al
VOL
VOH
WAVEFORM 2
(SEE NOTE Al
WAVEFORM 2
(SEE NOTE AI
~1.5V----J.
Notes:
(A) Waveform 1 is for the output with internal conditions such that the output is low ex~pt whe,n disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled.
.
(B)
When measuring delay times from address inputs, the memory enable inputs are low and the write enable input is high. ,
When measuring delay times from memory enable inputs, the addres. inpu~s are steady-state and the write enable input is high.
(01 Input waveforms are supplied by pulse generators having the following characteristics: tr:S: 7 ns, tf:S: 7 ns, PRR:S: 1.0 MHz, 8.nd
ZOUT '" 50.0..
(e)
.2,156
~ MSI
OM54/0M74S206
256-Bit Read/Write Memories with Open Collector Outputs
General Description
Read Cycle: The stored information (complement of
information applied at the data input during the write
cycle) is avai'lable at the output when the write-enable
input is high and the three memory-enable inputs are
low. When anyone of the memory enable inputs is
high, the output will be off.
The DM54S206/DM74S206 256-bit active-element memories are monolithic transistor-transistor logic (TTL)
integrated circuits organized as 256 words of one bit
each. They are fully decoded and have three gated
memory·enable inputs to simplify decoding required to
achieve the desired system organization_ The memories
feature PNP input transistors which reduce the lowlevel input current requirement to a maximum of
--D_25 milliamperes, only one-eighth that of a normal Series 54S/74S load ftlctor, The memory-enable
circuitry is implemented with minimal delay times to
compensate for added system decoding.
Features
• Schottky-clamped for high-speed memory systems:
17 ns typ
Access from memory-enable inputs
Access from address inputs
35 ns typ
Power dissipation
1.4 mW/bit typ
• Open-collector output for word expansion
• Fully decoded, organized as 256 words of one bit
each
• Compatible with most TTL and DTL logic circuits
• Multiple memory-enable inputs to minimize external
decoding
Write Cycle: The complement of the information at
the. data input is written into the selected location
when all memory-enable inputs and the write-enable
input are low_ While the write-enable input is low,
the output is off.
Connection Diagram
Logic Diagram
ADDRESS
INPUTS
10
1111
G
1
1101
ADDRESS
INiJUTS
F
E (9)
o 171
A
B
~
MEl
MEl
ME3
OUTPUT
0
V
ADDRESS
INPUT
ADDRESS
INPUTS
GNO
54S206IJ), (W); 74S206(JI. (N), (W)
Truth Table
INPUTS
OUTPUT
FUNCTION
MEMORY
ENABLEt
WRITE
ENABLE
Write (Store
Comolement
L
L
Hi-Z
Read
L
H
Stored Data
Inhibit
H
X
Hi-Z
of Data)
H
=
hIgh level, L
=
low level, X::: irrelevant
tFor memory enable: L
=
all ME inputs low;
H "" one or more ME inputs high.
'~'MSI
DM54/DM74S206
Electrical Characteristics
over recommended operat'ing
fr~e-air temperature
range (unless otherwise noted)
DM54S/74S
PARAMETER
CONDITIONS
V,H
High Level Input Voltage
V,L
Low Level I nput Voltage
V,
Input Clamp Voltage
IOH
High Level Output Current
TYP(1)
Vee = Min, V ,H = 2V
. V'L = 0.8V
Low Level' Output Curr1!nt
VOL
Low Level Output Voltage
IV/AX
V
2
. Vce = Min, I, =-18 mA
IOL
UNITS
S206
MIN
0.8
.V
-12
V
V OH = 2.4V
V OH = 5.5V
40
100
16
Vee = Min, V ,H = 2V
DM54
0.5
V'L = 0.8V, IOL = 16 mA
DM74
0.45
,!,-A
mA
V
I,
Input Current at Maximum Input Voltage
Vee = Max, V, = 5.5V
1
mA
I'H
High Level I nput Current
Vee = Max, V, = 2.7V
25
.!'-A
I,L
Low Level I nput Current
Vee = Max, V, = 0.45V
-:250
!'-A
Icc
Supp'y Curre'!t
Vee = Max(2)
130
mA
70
Notes
(1) All typical values are at Vcc = 5V, TA = 25°C.
(2)
ICC is measured wit~ the write enable and mem-ory enable inputs grounded, all other inputs at 4.SV, and the output open.
Switching Characteristics vee
=5V, TA = 25°C
DM54S174S
PARAMETER
tPLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tPLH
tpHL
tpLH
74S206
MIN TYP MAX
MIN TYP MAX
Access Times from Address
38
80
38
60
ns
Access Ti mes from Address
32
80
32
60
ns
21
45
21
35
ns
13
35
13
25
ns
20
50
20
40
ns
14
50
14
40
ns
Disable Time fr0'1:'
Low-to-High Level Output
Memory Enable
Propagation Delay.Time,
Enable Time from
High-to-Low Level Output
Memory Enable
Propagation Delay Time,
Disable Time from
Low-to·High Level Output
Write Enable
tSR
Sense Recovery Time
tw
Width of Write Enable Pulse
tSETUP Setup Time
tHOLD
54S206
Propagation Delay Time:
Hold Time
Addres~
CONDITIONS
CL = 15pF
UNITS
RL =3000
50
to Write Enable
40
0
0
Data to Write Enable
0
0
Memory Enable to Write Enable
0
0
Address from Write Enable
10
10
Data from Write Enable
10
10
Memory Enable to Write Enable
0
0
2-158.
ns
ns
ns
~ MSI
DM 54/ DM74S206
AC Test Circuit
Vee
TEST
POINT
FROM
O~;~~~
--4....- -. .
TEST
c[
1.0k
CL includes probe and jig capacitance.
Switching Time Waveforms
WRITE CYCLE
ADDRESS
INPUTS
DATA
INPUTS
MEMORY-ENABLE
3V
3V
3V
INPUTS
WRITE·ENABLE
3V
INPUT OV
tecH
OUTPUT VO "
(NOTE A) VOL
J
ACCESS (ENABLE) TIME AND
t
LSV
ACCESS TIME FROM ADDRESS INPUTS
DISABLE TIME FROM MEMORY ENABLE
ME~~~~~ 3V
(~~~~T;I ov ___+ ...1._5V_~_ _ _ __
tSR~
1.5V
AODRESS 3V~------""
INPUTS
1.5V
)j(,.5V
1.5V
(NOTE 8)
. t'"e
t'y.;-eH
OUTPUT VOH - - - ; " " ' - 1.5V
1.5V
(NOTE AI Voe _ _ _ _ _ _ _"'-_ _ _ _ _'"
OUTPUT
ov __ J
OH
V
t'He::1
---'--_·
~5V
:'.{';·,:-F-='
)/,.SV
Voe------~~·~-----"'·
Notes:
(A) Waveform shown is for the output with internal conditions such that the output ;s low except when disabled.
(B) When measuring delay times from address inputs, the memory-enable inputs are low and the write-enable input is high.
(C) When measuring delay ~jmes from memory-enable inputs, the address inputs are steady-state and the write-enable input is high.
(0) Input waveforms are supplied by pulse generators having the following characteristics: tr ~ 2.5 ns;tf ~ 2.5 ns, PRR ~ 1 MHz,
and ZOUT ~ 50n.
2-159
~MSI
DM54/DM74251.lS251.S251
TRI-STATE Data Selectors/Multiplexers
General Description
Features
These data selectors/multiplexers contain full on-chip
binary decoding to select one-of-eight data sources, and
feature a strobe-controlled TRI-STATE output_ The
strobe must be at a low logic level to enable these
devices_ The TRI-STATE outputs permit direct connection to a comman bus. When the strobe input is high,
both outputs are in a high-impedance state in which
both the upper and lower transistors of each totem-pole
output are off, and the output neither drives nor loads
the bus significantly. When the strobe is low, the
outputs are activated and operate as standard TTL
totem-pole outputs.
•
•
•
•
•
To minimize the possibility that two outputs will
attempt to take a common bus to opposite logic I.evels,
the output control circuitry is designed so that the
average output disable time is shorter than the average
output enable time.
,54251
Connection Diagram
Truth Table
DATA INPUTS
D5
04
/16
15
MAX NO. OF
TYPE
COMMON
OUTPUTS
2
02
A
07
17 ns
17 ns
155mW
129
49
49
17 ns
35mW
74LS251
129
745251
129
17 ns
8 ns
275mW
4
DO
155mW
35mW
C\
11
12
13
3
01
POWER
DISSIPATION
74251
54LS251
10
,
INPUTS
-1
TYPICAL
(DTOY)
SELECT
03
TYPICAL
PROP DELAY
TIME'
DATA SELECT
06
14
TRI-STATE versions of 151, LS151, S151
Interface directly with system bus
Perform parallel-to-serial conversion
Permit multiplexing from N-lines to one line
Complementary outputs provide true and inverted
data
~------Y-------~
DATA INPUTS
5
6
Y
W
~
OUTPUTS
7
STROBE
I'
'C
B
X
l
OUTPUTS
STROBE
Y
A
S
x
X
H
Z
L
l
L
DO
W
Z
-,
l
L
H
L
Dl
L
H
L
l
D2
DO
-
Dl
52
-
L
H
H
l
D3
D3
H
L
L
l
D4
H
L
H
L
D5
D4
D5
H
H
l
l
D6
H
H
H
L
D7
-
Os
-
D7
GND
54251(JI. (WI; 74251(J), (N), (W);
54LS251/74LS251 (J), (N), (W); 74S251(N)
H
= High
X
= Don't Care, Z = High Impedance (Off)
Logic Level, L
= Low
Logic Level
DO, 01 .. _07 = The level of the respective 0 input.
Logic Diagram
STROBE (7)
(ENABLE)
DO . :;14::. 1----r=:::::=33-,
D2~12~1--------i~F=*=~rDJ~I1~I--________-t~~~~~
DATA
INPUTS
D4 (151
D5~11~41-----------t~3E~~~
-----l=I=I=FI==l=l=t-,
11 31
D8..:::::
DATA
SElECT
(BINARY)
I
2-160
LS251, S251 To Be Announced In 1976
Electrical Characteristics
DM54/74
PARAMETER
CONDITIONS
V,H
High Level Input Voltage
V,l
Low Level Input Voltage
IOH'
VOH
IOl
VOL
Input Clamp Voltage
Vee = Min
Low Level Output Voltage
I,
I'H
I,l
Low Level Input Current
IQS
Short Circuit Output Current
Icc
Supply Current
0_8
0_8
1.5
1_2
-1.5
DM54
-2
-1
--5_2
-2_6
2.4
Vee = Max
Vee = Max
Vee = Max
IOL = Max
N/A
V
V
mA
V
3.2
DM54
16
4
N/A
DM74
16
8
20
DM54
0.4
0.25
0.4
DM74
0.4
0.35
0.5
N/A
0.5
mA
V
0.4
-40
-20
Vo -2.4V
40
20
V, = 5.5V
1
--50
0.1
V, = 2.4V
40
V, - 2.7V
50
20
V, = OAV
-1,6
-0.4
V, =0.5V
-2
-18
--55
-30
-130
-100
-40
Strobe Grounded
31
51
6.1
10
55
85
Strobe at 4.5V
31
51
7.1
12
55
85
Notes
(11 All typical values are at VCC = 5V, T A = 25° c.
(2) Not mOre than one output should be shorted at a time, and for DM54lSn4LS or DM745 duration of short circuit should not exceed one second.
(3) All outputs open,all inputs at 4.5V.
IlA
50
1
V , -7V
Vee = Max(2)
Vee = Max(3)
N/A
-6.5
2.4
IOL=4mA DM74
V'L = Max
High Level Input Current
0_8
2.4
Vo =0.4V
V
2
DM74
~
en
MAX
DM74
2.4
Vo -0.5V
TYP(l)
N/A
2.4
V'H =2V
MIN
0_7
DM74
Vee = Max
UNITS
S251
MAX
2
DM54
Off-State (High Impedance
Input Voltage
TYP(1)
0_8
V'L = Max. IOH = Max
State) Output Current
Input Current at Maximum
MIN
Vee = Min, V'H = 2V
V'L = Max
IOIOFfI.
LS251
MAX
1,--18mA
Vee = Min, V'H = 2V
DM74S
DM54
I, =-12 mA
Low Level Output Current
~
!!1
TYP(l)
2
High Level Output Current
High Level Output Voltage
DM54LS/74LS
251
MIN
V,
~
over recommended operating free-air temperature range (unless otherwise noted)
mA
IlA
C
~
.po
U1
......
mA
!11A
rnA
C
~
~
N
...
...
en
...
U1
ien
N
U1
N
U1
~
Switching Characteristics Vee
=
-~
5V, TA = 25°C
I
PARAMETER
FROM
(INPUT)
DM54174
DM54LS/74LS
DM74S
251
LS251
S251
TO
(OUTPUT)
CONDITIONS
tplH
Propagation Delay Time,
Low-to-High Level Output
A,8,orC
~l
Propagation Delay Time,
(4 levels)
Propagation Delay Time,
Low-to-High Level Output
tPHl
Propagation Delay Time,
A,B,orC
(3 levels)
Propagation Delay Time,
Any D
tplH
Propagation Delay Time,
CL
RL
Propagation Delay Time,
= 50 pF
= 400Q
Low-to-High Level Output
~
Any D
tpHl
Propagation Delay Time,
Output Enabie Time to
High Level
Strobe
tZl
Output Enable Time to
Output Enable Time to
Output Enable Time to
Output Disable Time from
High Level
Strobe
tlZ
tHZ
= 5 pF
CL
Output Disable Time from
RL =400Q
Strobe
Low Level
28
45
13
19.5
ns
18
29
20
33
10
15
ns'
16
27
21
33
9
13.5
ns
8
12
ns
= 15pf
RL = 280Q
17
28
18
28
17
28
CL
RL
= 15pf
= 2 kQ
18
28
8
12
ns
10
15
4.5
7
ns
11
15
10
15
9
15
4.5
7
ns
15
27
30
45
13
'19.5
ns
18
36
26
40
14
21
ns
= 50 pF
RL = 280Q
27
17
27
e
~
13
19.5
ns
19
38
24
40
14
21
ns
4
8
30
45
5.5,
8.5
ns
14
23
15
25
9
14
ns
(J'1
~
"·0
~
~
N
(J'1
. ....A
Low Level
Output Disable Time from
36
y
Output Disable Time from
High Level
tlZ
23
W
Low Level
"
ns
15
Strobe
tHZ
18
MIN
CL
High Level
tZl
MAX
12
CONDITIONS
y
Low Level
tZH
TYP
45
W
High-to-Low Level Output
tZH
MAX
29
MIN
Y
High-to-Low Level Output
~
TYP
36
CL
Low:to-High Level Output
tpHl
MAX
22
W
High-to-Low Level Output
tplH
.'
TYP
CONDITIONS
-
0
Y
High-to-Low Level Output
tplH
MIN
~
UNITS
CL
= 5 pF
CL
iRL
RL = 2kQ
4
8
37
55
15
23
15
25
= 5 pF
= 280Q
r-0
N
....
(J'1
5.5
8.5
ns
9
14
ns
.0
W
N
(J'1
....A
~ MSI
DM54/DM74LS253,S253
TRI-STATE Data Selectors/Multiplexers
General Description
Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully
complementary, on-chip, binary decoding data selection
to the AND-OR gates_ Separate output control inputs
are provided for each of the two four-line sections_
•
•
•
•
The TRI-STATE outputs can interface directly with data
lines of bus-organized systems_ With all but one of the
common outputs disabled (at a high impedance state),
the low impedance of the single enabled output will
drive the bus line to a high or low logic level.
Permits multiplexing from N lines to 1 line
Performs parallel-to-serial conversion
Strobe/output control
High fan-out totem-pole outputs
Features
LS253
• TRI-STATEversion of LS153,S153with same pin-out
• Schottky-diode-clamped transistors
S253
Connection Diagram
TYPICAL PROPAGATION DELAY
TYPE
Data to Output
Select to Output
Data to Output
Select to Output
TYPICAL
POWER
DISSIPATION
12 ns
21 ns
6 ns
12 n5
35mW
275mW
Truth Table
SELECT
INPUTS
OUTPUT
CONTROL
DATA INPUTS
OUTPUT
B
A
CO
C1
C2
C3
G
V
X
X
X
X
X
H
Z
L
L
L
X
X
X
X
L
L
L
L
H
X
X
L
H
L
H
X
L
X
X
X
L
L
L
H
H
X
x
L
H
H
L
X
X
X
L
L
L
L
H
H
L
L
L
H
H
X
X
X
H
H
X
X
X
X
X
l
H
H
L
H
X
X
Address inputs A and B are common to both sections.
H == High Level, L == Low level. X = Don't Care.
Z
= High
Impedance
54LS253/74LS253(JI, (N), (WI; 74S253(NI
Logic Diagram
OUTPUT (1)
CONTROL 61
.ATA 1\'C'
(s)
102 "I"'·}--------i-++tt......-
1C3 ..1;3 ;:.1----;:==:::t:tti-l-SELECT [
:lCt (11)
2C2 ..:.ll~21"-__________-;~::~~~
2C3~"--_:_----t=t:==*::r~
OUTPUT (15)
CONTROL G2
J
. - - - - - - 2-163
5253 To Be Announced In 1976
~MSI
OM54/0M74LS253.S253
Elej:trica' Characteristics
over recommended' operating free-air temperature range (unless otherwise ~oted)
DM74
DM54Lsn4LS
LS253
CONDITIONS
PARAMETER
TYP(l)
MIN
V,H
High Level Input Voltage
V,l
Low level Input Voltage
I nput Clamp
10H
High Level Output Current
VOH
2
Volt~ge
V,
Vee
V,L
10l
Val
:=
=
Min, V ,H
Max,
Low. Level Output Voltage
1010FFI
Vee
:=
High Level Input Current
,Low Level Input Current
-LS
-1.2
DM54
-1
DM74
-2.6
N/A
-6.S
3.4
3.1
..
""
2V
Max
4
DM74
8
DMS4
DM74
0.4
O.S
IOL ,., 4 rnA DM74
0.4
Vee
=Max. V,
los
Short Ci rc~ it Output Current·
Supply Current
Vee
Vee
Vo
:=
Ma>:
V,
=OAV
=2AV
=5.5V
=7V
V
N/A
20
mA
N/A
20
0.5
V
50
pA
50
1.0
0.1
50
20
-0.36
V, =OAV
=0.5V
2
= Max(2)
=Max(3)
mA
-20
= 2.7V
V,
V
3.2
Vo = O.SV
V,
Vee'" Max
Icc
IOL
V
N/A,
V
DM54
Vo
Vee .. M~x
Input Voltage
I,l
0.8
2.4
= 2V
Min. V 1H
Vee = Max, V 1H
V1L
Input Current at Maximum
I'H
0.8
2.4
Off-State (High-Impedance State)
Output Current
I,
DM74
DM74
V'L = Max
V
N/A,
DM54
.,
MAX
2
2V
Low Level Output CU'rrent
TYP(l)
0.7
= Max
='
IOH
MIN
I DM~4
Vee = Min, I, .. -18 rnA
High Level Output Voltage
UNITS
S253
MAX
-30
-130
Condition A
7
12
Condition B
8.5
14-
-40
-100
mA
pA
mA
mA
mA
55
All Outputs Open
70
Notes
(1) All typical values are at Vce = 5V. TA = 25°C.
(21 Not more than on~ output should be shorted at a time, and duration of short circuit should not exceed one second.
(31 ICC is measured with 'the outputs open under the following conditions;
A. All inputs grounded.
B. Output control at 4.5V. all inputs grounded.
(4) National S.mi~onductor temporarily reserves the right to ship DM54/DM74LS253 devices which have a minimum iOS = 5.0 rnA.
Switching Characteristics vee
= SV. T A = 2SoC
DM74
DM54Lsn4LS
,
PARAMETER
FROM
(iNPUT)
TO
(OUTPUT)
LS253
CONDITIONS
tplH
Propagation Delay Time,
Low-to-High Level Output
tPHL
Propagation Delay Time,
Propagation Delay Time,
I
Select
tpHL
Y
Propagation Delay Time,
CL = 15 pF
Rl = 2 kn
High-ta-Low Level Output
tZH
Output Enable Time
to High Le,vel
tZl
Output Enable
Output
Tim~
MAX,
17
25
13
20
CONDITIONS
Cl
Rl
Low-to-High Level Output
Control
UNITS
S253
TYP
MIN
TYP
MAX
6
9
ns
6
9
ns
11.5
18
ns
12
18
ns
13
19.5
ns
1'4
21
ns
5.5
8.5
ns
9
14
ns
Y
Data
High-to-Low Level Output
tPLH
MIN
30
45
21
32
15
23
Y
1.5
23
27
41
= 15 pF
= 280n
Cl
RL
=50 pF
=280!)
Cl
= 5 pF
to low level
tHZ
tlZ
.output Disable Time
From High Level
Output
'Output Disable Time
Control
Y
='5 pF
Rl = 2 kn
Cl
From Low level
2-164
18
27
RL = 280!)
~·MSI
OM54/0M74LS257.S257.LS258.S258
TRI-STATE Quad 2-0ata Selectors/Multiplexers
General Description
Features
These Schottky-clamped high-performance multiplexers
feature TRI-5TATE outputs that can interface directly
with data lines of bus-organized· systems. With all but
one of the common outputs disabled (at a high impedance
state I. the low impedance of the single enabled output
will drive the bus line to a high or low logic level. To
minimize the possibility that two outputs will attempt
to take a common bus to opposite logic levels, the output
enable circuitry is designed such that the output disable
times are shorter than the output enable times.
• TRI-5TATE versions L5157. 5157, L5158, 5158,
with same pin-outs
• Schottky-clamped for significant improvement in
A-C performance
• Provides bus interface from multiple sources in highperformance systems
This TRI-5TATE output feature means that n-bit
(paralleled) data selectors with up to 258 sources can
be implemented for data buses. It also permits the use
of standard TTL registers for data retention throughout
the system.
TYPE
AVERAGE PROPAGATION
DELAY FROM
DATA INPUT
TYPICAL
POWER
DISSIPATION
LS257
LS258
5257
5258
12 n.
12 ns
4.8 ns
4';.
SOmW
35mW
320mW
280mW
Connection and Logic Diagrams
.
INPUTS
Vee
OUTPUT
CONTROL
1,6
.r--....-....,
B4
A4
14
15
INPUTS
OUTPUT
V4
13
A3
11
12
OUTPUT
V3
B3
10
-
2
A1
4
3
Bl
VI
6
5
A2
B2
OUTPUT
INPUTS
7
V2
OUTPUT
OUTPUT
CONTROL
1,6
9
r-
1
SELECT
Vee
A4
15
OUTPUT
V4
B4
12
13
14
INP)JTS
A3
OUTPUT
V3
B3
11
p-
~
I
18
GNO
9
10
81
6
5
VI
A2
OUTPUT
INPUTS
INPUTS
4
3
2
AI
SELECT
B2
INPUTS
7
V2
OUTPUT
P
GNO
54L5258/74LS258(JI. (NI, (WI; 74S258(NI
54LS257/74LS257(JI, (NI. (WI; 7,4S257(NI
LS258.S258
LS257.S257
OUTPUT (15)
CONTROL
OUTPUT (15)
CONTROL
Al~~~I_·_ _ _ _----~~
Al~----------r~
+-_______
Bl~(3~1_ _ _
~~
A2~(5)~_ _~~_ _ _+-~~
B2 (61
A3 (111
+-______+-~~
B3~110~1______
+-______+-~~
A4~114~1______
V4
B4~(13~1_ _ _; -_ _ _-+-r~
V4
To S_ Announced In 1976
Electrical Characteristics
~
over recommended operating free-air temperature range (unless otherwise noted)
DM54lS/74lS
DM74S
lS257, lS258
S257, S258
TYP(l)
TYP(1)
!
PARAMETER
CONDITIONS
MIN
V ,H
High Level 'Input Voltage
V,L
Low Level Input Voltage
V,
I nput Clamp Voltage
10H
High Level OUtput Current
VOH
Vee
High Level Output Voltage
Vee
V 1L
10L
VOL
:::m
m
~
Min, I,
Current
Maximum Input Voltage
I,L
Low Level Input Current
. 1.5
-12
--10
DM74
-2.6
-6.5
2V
DM54
2.4
3.4
N/A
Max
DM74
2.4
3.1
2.4
~
Min, V ,H
~
2V
Max
Vee =-- Max
Vo~O.4V
V ,H
Vo~0.5V
~
2V
IOL
= Max
laL
~
4 mA
4
N/A
DM74
S
20
DM54
0.25
0.4
N/A
DM74
0.35
0.5
'0.5
DM74
0.25
0.4
~
V,
~7V
V,
~
~
-50
20
0.2
1
S Input
Vee'; Max
Any Other
V,
o·
0.5V
V,
~
OAV
Short Circuit Output Current
ICC
Supply Current
50
20
50
All Outputs Off
All Outputs Low
All Outputs Off
~
mA
0
IlA
(J)
Max(3)
LS258,S258
-130
s:.....
r-
N
.....
mA
-40
-100
5.9
10
44
68
9.2
16
60
93
10
17
64
99
4.1
7
36
56
6.2
11
52
81
7.0
12
56
87
(J)
N
U1
2
LS257, S257
Vee
~
-2
All Outputs High
All Outputs High
U1
U1
-{).4
--30
0
~
.......
-{)S
Vee ~ Max!21
All Outputs Low
Il A
~
40
V, " 0.5V
lOS
V
0.1
Max, V, o2.7V
OAV
mA
1
5.5V
~
mA
50
5.5V
V,
V
-20
Vo~2.4V
V,
V
V
3.2
DM54
V, - 7V
Vee
N/A
=
Vee:::: Max
Any Other
0.8
=:
S Input
S Input
0.8
Min, V 1H
Any Other
High Level"lnput Curre~t
DM74
Max, IOH
V1L=Max
I nput Current at
N/A
=
Lqw Level Output Voltage
Vee
0.7
DM54
~
(J)
V
2
DM54
-18·mA
Low Level Output Current
10lOFFI Off State (High Impedance State I Output
I'H
~
MIN
::::
V'L
I,
MAX
2
UNITS
MAX
mA
:-oJ
r(J)
N
U1
(X)
mA
(J)
N
U1
00
Switching Characteristics vee
~ 5V, T A,~ 25°C
~
DM74S
DM54LS/74LS
FROM
(INPUT)
PARAMETER
TO
(OUTPUT)
CONDITIONS
tpLH
Level Output
tZH
tZL
7 ~5
4
6
ns
12
18
4,5
6.5
4
6
ns
Any
~
14
21
8~5
15
8
12
ns
R L ~
14
21
8,5
15
7.5
12
ns
20
30
13
19.5
13
19.5
ns
Control
20
30
14
21
14
21
ns
tHZ
20
30
5.5
8.5
5,5
8.5
ns
0
~
9
14
9
14
ns
.......
2 krl
tLZ
Output
Control
Output Disable Time
15 pF
RL ~
280rl
Any
Output Disable Time
From High Level
~
CL
15 pF
Low Level
en
~ -.J
Output Enable Time to
CL
Any
~
RL ~
5 pF
CL
~
5 pF
RL ~
2 kn
17
From Low Level
25
(2)
(3)
280n
(11
~
0
~
Notes
(1)
MAX
5
Output Enable Time to
Output
TYP
18
Level Output
High Level
~
CL
Propagation Delay Time,
High~to~Low
MAX
MIN
12
Level Output
Select
TYP
Any
Propagation Delay Time,
Low~to~High
MIN
C/)
MAX
Propagation Delay Time,
High~to~Low
tpHL
CONDITIONS
~
UNITS
S258
TYP
Level Output
Data
tpLH
MIN
Propagation Delay Time,
Low~to~High
tpHL
S257
LS257, LS258
.....
All typical values are at Vee 5V, T A:::; 25° c.
Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
ICC is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions.
~
0:;
r-
C/)
N
(11
.....
Truth Table
C/)
OUTPUT Y
I~JPUTS
OUTPUT
CONTROL
SELECT
H
x
X
L
L
L
L
L
H
L
L
H
H
LS258
S258
~
x
Z
z
C/)
X
L
H
N
X
H
L
X
L
L
H
.00
X
H
H
L
A _ B
H = High Level, L :::; Low Level, X :::; Don't Care,
Z
_._--
._-
-
~
~
High Impedance (off)
--~
N
(11
LS251
S257
r-
(11
C/)
N
(11
00
,~ MSI
DM54/DM74lS279
Quad
General Description
Features
These latches are ideaily suited ·for use as temporary
storage of bfnary information between processing units
and I/O units. When either one of the data inputs is at
a low logic level, the output will follow the level of the
R input. When both data inputs are high, the output will
remain latched in its previous state. When both inputs
are low, the output will .go high. However, this high
level may not persist when either one of the data inputs
returns to the high state.
•
S-R
latches
For more advanced design S·R latches, see
DM7544/8544
• Typical power dissipation
19 mW
• Typical propagation delay
12 ns
Connection Diagram
Rl
181
iS1
Ql
R2
82
Q2
GND
54LS279174LS279(J), (N), (W)
Truth Table
INPUTS
-
OUTPUT
R
Q
H
H
Go
H
Sf
L
H
H
L
L
L
L
H*
H =' High Level
L::;: Low Level
0 0 ::;: The·level of Q before the indicated input conditions were
established .
.. This outpyJ leveUs pseudo stable: that is, it may not persist
when the Sand R inputs return to their inactive (high) level.
T For latches with double S inputs:
H = both S inpu~ high
L ::;: one or both S inputs low
2·168
To Be Announced In 1976
~
OM 54/ OM74LS279
MSI
Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted)
DM54LS/74LS
PARAMETER
MIN
V1H
High Level Input Voltage
V 1L
Low Level Input Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
= Min, I,
Vee
=
MAX
V
DM54
0.7
DM74
0.8
-1.5
-18 mA
-400
Vee
= Min, V ,H = 2V
= Max, IOH = -400pA
Low Level Output Current
= Min
= 2V
V ,L = Max
Low Level Output Voltage
VOL
TYP(1)
2
V ,L
10L
UNITS
LS279
CONDITIONS
Vee
DM54
2.5
3.5
DM74
2.7
3.5
4
DM74
8
0.25
0.4
0.35
0.5
Input Current at Maximum
I nput Voltage
Il A
mA
V
V ,H
II
V
V
DM54
IOL=4mA
V
IOL
Vee
= Max, V, = 7V
= 8 mA
DM74
0.1
mA
IIH
High Level I nput Current
Vee
= Max, V, = 2.7V
20
pA
IlL
Low Level Input Current
Vee
= Max, V, = O.4V
--0.4
mA
los
Short Circuit Output Current
Vee
= Max(2)
-130
mA
Icc
Supply Current
Vee
= Max (3)
7
mA
-30
3.8
Notes
= 5V, TA = 25°e.
(1)
All typical values are at Vee
(2)
Not mOre than one output should be shorted at a time, and duration of short circuit should not exceed one second.
(3)
ICC is measured with all
R inputs grounded, all S inputs at 4.5V, and all outputs open.
,
Switching Characteristics Vee
= 5V, T A = 25°C
PARAMETER
tpLH
CONDITIONS
MIN
TYP
MAX
UNITS
12
22
ns
9
15
ns
15
27
ns
Propagation Delay Time,
Low·to-H igh Level
----
Output From S Input
tPHL
Propagation Delay Time,
High·to-Low Level
I Output From S Input
--
= 15 pF
RL = 2 kD.
CL
-~-tpHL Propagation Delay Time,
I High-to-Low
~evel
Output From R Input
2·169
~ MSI
DM74S280i
9-Bit Parity Generators/Checkers
General Description
Input buffers are provided so that each input represents
only one normal 74S load, and full fan-out to 10 normal
Series 74S loads is available from each of the outputs at
low logic levels. A fan-out to 20 normal Series 74S loads
is provided at high logic levels, to facilitate connection
of unused inputs to used inputs.
These universal, nine·bit parity generators/checkers utilize
Schottky-clamped TTL high-performance circuitry, and
feature odd/even outputs to facilitate operation of either
odd or even parity applications. The word-length
capability is easily expanded by cascading.
The S280 can be used to upgrade the performance of
most systems utilizing the DM74180 parity generator/
checker. Although the S280 is implemented without
expander inputs, the corresponding function is provided
by the availability of an input at pin 4, and no internal
connection at pin 3. This permits the S280 to be substituted for the 180 in existing designs to produce an
identical function, even if S280's are mixed with
existing 180's.
Features
• Generates either odd or even parity for nine data lines
• Cascadable for n-bits
• Can be used to upgrade existing systems using MSI
parity circuits
• Typical data-to-output delay--14 ns
Connection Diagram
Truth Table
INPUTS
114
13
12
11
10
-
,
r-
1
2
-----...-...G
,
9
H
rNPU1S
I'
NC
4
I
INPUT
•
5
1
EVEN
I'
GNO
ODD
OlJTPUTS
74S280{N)
Logic Diagram
2-170
OUTPUTS
NUMBER OF INPUTS (A
THRU I) THAT ARE HIGH
LEVEN
0,2.4,6,8
H
L
1. 3, 5, 7, 9
L
H
L ODD
~
DM74S280
MSI
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM74S
CONDITIONS
PARAMETER
VIH
High Level Input Voltage
VIL
Low Level I nput Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
Low Level Output Current
VOL
Low Level Output Voltage
Ii
MAX
V
~
Min,
II
~-18ITlA
0.8
V
-1.2
V
-1
Min,
V IH
~
V IL ~ 0.8V,
IOH
~-1
Vee
Input Current at Maximum
I nput Voltage
~
2V
mA
Vee'" Min,
V IH = 2V
V IL = 0.8V,
IOl = 20 mA
Vee = Max,
VI
~
2.7
Vee
= Max,
VI
= 2.7V
IlL
Low Level Input Current
Vee
= Max,
VI
= 0_5V
los
Short Circuit Output Current
Vee
= Max(2)
Icc
Supply Current
Vee
= Max(3)
mA
V
3.4
5.5V
High Level I nput Current
IIH
TYP(1)
2
Vee
10L
UNITS
S280
MIN
-4.0
20
mA
0.5
V
1
mA
50
/lA
-2
mA
-100
mA
105
mA
67
Notes
(11
(2)
(3)
All typical value •• r. at VCC = 5V, TA ~ 25"C.
Not more than one output should be shorted at a tim.e, and duration of the short circuit should not exceed one second.
ICC is measured with all inputs grounded and all outputs open.
Switching Characteristics
Vee
= 5V,T A = 25°C
DM74S
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
CONDITIONS
S280
MIN
tpLH
Propagation Delav Time, Low-to-High
TYP
UNITS
MAX
14
21
ns
11.5
18
ns
14
21
ns
11.5
18
ns
Level Output
Data
tpHl
LEven
Propagation Delay Time, High-to-Low
Level Output
CL
tplH
= 15 pF, RL = 180n
Propagation Delay Time, Low-to-High
Level Output
Data
tpHl
L Odd
Propagation Delay Time, High-to-Low
Level Output
2-171
~ MSI
DM74S280
Typical Applications
Three S280's can be used to implement a 25-line parity
generator/checker_ This arrangement will provide parity
in typically 25 ns. (See Figure 1.)
(S86) or 3-input (S135) exclusive-OR gate for 18 or
27-line parity applications.
Longer word lengths can be implemented by cascading
S280's_ As shown in Figure 2, parity can be generated
for word lengths up to 81 bits in typically 25 ns_
As an alternative, the outputs of two or three parity
generators/checkers can be decoded with a 2-i nput
A
Z
EVEN
H = EVEN
L =000
A
l:
EVEN
~
EVEN
H =000
L = EVEN
F
G
H
L
000
~
EVEN
TO OTHER
S280'S
FIGURE 1: 25-LlNE PARITY/GENERATOR CHECKER
FIGURE 2: 81-LINE PARITY/GENERATOR CHECKER
2-172
H = EVEN
L = 000
H =EVEN
l = DOD
~ MSI
DM74S281
4-Bit Parallel Binary Accumulators
General Description
These Schottky-clamped four-bit accumulators integrate
high-performance versions of an arithmetic logic unit/
function generator, and a shift/storage matrix in a single
circuit. The arithmetic logic unit (ALU) portion provides
the. capability of 16 arithmetic/logic type operations, as
detailed in Table I. The accumulator includes an exchange
of subtract operands by which either A-B or B-A can
be accomplished directly. The ALU is controlled by
three function-select inputs (ASO, AS1, AS2) and a
mode-control input (M)_ When the mode-control input
is high, the ALU may perform any of seven logic functions on two binary variables, as detailed in Table II.
Full carry look-ahead is provided for fast, simultaneous
carry generation_ The carry input (C n ) and propagate
and generate outputs (P, G) are implemented for
direct use with the DM74S1 B2 look-ahead/carry generators. This permits systems to be implemented with the
added advantage of full look-ahead across any word
length to minimize the accumulator delay times. Once
data is loaded into the accumulator, the typical add
time with full look-ahead is 29 nanoseconds for
16-bit words_
or ho.ld. Control of the register is accomplished with
three inputs: register control (RC) and register selection
(RSO, RS1). The cascading input/output lines incorporate
TRI-STATE outputs multiplexed with an input. The
least-significant cascading bit is combined with the AO/FO
circuitry to provide the shift-right input and the shift-left
output (RI/LO). and the most significant bit is coupled
with the A3/F3 circuitry to provide the shift-left input
and the shift-right output (L1/RO).
Features
•
•
•
•
Logic mode operation provides seven Boolean
functions of the two variables
Full shifting capabilities:
Logic shift (left or right)
Arithmetic shift (left or right) for sign bit protection
Hold
Parallel load
Expandable to handle n-bit words with full carry
look-ahead
15 arithmetic/logic operations:
Add
Subtract (B-A or A-B)
Complement
Increment
Transfer
Plus 10 other functions
Full 4-bit binary accumulator in a single package
The shift/storage matrix has capabilities similar to the
DM74S194 universal bidirectional shift register, with
the added advantage of multiplexed input/output (I/O)
cascading lines which comprehend arithmetic shiftfunctions having a sign bit, such as 2's complements. The
matrix can be used to perform either logic or arithmetic
shifts in either direction (left or right). parallel load,
•
Connection Diagram
Truth Tables Notes Shown on Following Page
TABLE I-ARITHMETIC FUNCTIONS
Mode Control (M) = Low
FUNCTION
DATA
Vee
~~
SELECT
CLOCK Rl/lO rASa
AS1
MODE
ASZ'
CN~Rl 'FO
F1
F2
FJ'
AS2 AS1
24
23
22
21
20
19
18
11
16
15
14
ACTIVE HIGH DATA
ALU
SELECTION
DATA OUTPUTS
en
en = L
(no carry)
(with carry)
ASO
13
= H
L
L
L
FO
L
L
H
F
L
H
L
L
H
H
~
H
L
L
F
~
H
L
H
F ~ B PLUS 1
Fo ~ Bo
H
H
L
F
Fo
H
H
H
F ~ A PLUS 1
~
L. F 1 ~ F2
~
F3
~
H
Fo
~
H
F
~
B MINUS A MINUS 1
F~AMINUSB
F
~
A MINUS B MINUS 1
F
A PLUS B PLUS 1
F
~
B PLUS 1
Fo
~
~
B MINUS A
A PLUS 1
A PLUS B
~
~
Bo
Ao
Fo ~ Ao
TABLE II-LOGIC FUNCTIONS
Mode Control (M) = High
12
A1
A2
ASI
ASO
REG lIIAD
--.,....-.. ~ eNTAL
DATA IN
REGISTER
Ae
A3
en
P
Carry Input ICnl
GNO
ALU
SELECTION
DATA
IN
SElECT
AS2 AS1
74S2B1(N)
Tentative Data
2-173
= X (Don't Care)
ACTIVE-HIGH
DATA FUNCTION
ASO
L
L
L
Fo
~
L
L
X
H
Fn
=
An
L
H
L
Fo ~ Ao
H
L
L
Fo~AoBe
H
L
H
Fn = An
H
H
L
Fo
H
H
H
Fn =An +8.,
~
(i) Bo
(+)
Bo
+ Bn
AnBe
To Be Announced In 1976
~
MSI
DM74S281
Truth Tables (Continued)
TABLE III-SHIFT MODE FUNCTIONS
C n = M = SO = Sl = Low, and S2 = High
REGISTER
SELECTION
RS1
RSO
REGISTER
CONTROL
INPUT
FQ
F1
F2
F3
L
L
X
to
f1
f2
f3
L
H
L
OBo
Oeo
0 00
Ii
t
t
L
H
H
OCo
0 00
Ii
t
H
L
L
OAO
ri
OAo
OBO
OCn
SHIFT-MATRIX INPUTS
CLOCK
INPUT
H
L
H
ri
OAo
OBo
0 00
H
H
X
OAO
OBO
Oeo
0 00
t
t
t
X
X
X
OAO
OBO
Oeo
0 00
L
INPUTI
OUTPUT
RI/LO
SHIFT-MATRIX OUTPUTS
(INTERNAL)
°A
°B
OC
00
INPUTI
OUTPUT
U/RO
Z
to
f1
f2
f3
Z
OBo
OBo
OCo
0 00
Ii
Ii
OBo
ri
OBo
ri
Oeo
Ii
0 00
Ii
OAo
Q Sn
Oco
Oeo
ri
ri
OAo
OBo
0 00
Z
OAO
OBO
Oeo
000
Oeo
Z
X
OAO
OBO
Oeo
000
X
H = High Level (steady state)
L :::: Low Level (steady state)
X = Don't Care (any input,
i~cluding
transitions)
Z = High I mpedanee (output off)
t
= Transition from low to high level
fa, fl, f2, f3, ri, Ii = The level of steady-state conditions at FO, F1, F2, F3, RI/LO or Ll/RO respectively.
GAO. 0ao, QeD. 0DO = The level of GA. OS, OCI or GO. respectively', before the indicated steady state input conditions were established.
GAn, 0Sn, GCn. GO n :::: The level of GA. QS. OC. or GO, respectively, before the most recent transition of the clock.
Electrical Characteristics
over recommended operatinll free-air temperature range (unless otherwise noted)
DM74S
PARAMETER
CONDITIONS
UNITS
S281
MIN
TYP(l)
MAX
V,H
High Level Input Voltage
V,L
Low Level/nput Voltage
V,
Input Clamp Voltage
Any Input Except Ll/RO and RI/LO
10H
High Level Output Current
Any Output Except Ll/RO and RI/LO
-1
Ll/RO and RI/LO
-2
High Level Output Voltage
VOH
Low Level,Output Current
10L
Vee::!. Min,
I, =-18mA
Any Output Except Ll/RO and RI/LO
Vee =- Min,
V'H ~ 2V
2.7
3.4
Ll/RO, RI/LO
V'L - 0.8V,
IOH - Max
2.4
3.4
0.8
V
-1.2
V
20
Ll/RO and RI/LO
10
I,
Input Current at Maximum Input Voltage(3)
I'H
High Level J nput Current
Vee == Min,
V'H ~ 2V
V'L
'oL=Max
=
0.8V,
Vee'" Max,
0.5
V, = 5.5V
1
-
RSO, RS1
M, Clock
Ll/RO, RI/LQ(3)
jJ.A
250
-3
RI/LO
M, Clock
-4
Vee == Max, VI = O.5V
mA
-6
-8
ASO, AS1
Others
los
Short Circuit Output Current
Vee = Max(2)
Icc
Supply Current
Vee
0::::
Max
-40
144
Notes
(1)
All typical values are at Vee
(2)
Not more than one output should be shorted at a time, and duration q,f short circuit should not exceed one second.
When testing input current at the RI/LO or L1/RO terminals, the output under test must be in the high-impedance (off) state.
(3)
mA
-2
RSO, RSl, Ll/RO(3)
= 5V, TA =
V
150
200
. 300
Vee = Max, VI:;: 2.7V
Others
Low level Input Current
mA
50
AS2
I,L
mA
V
Any Output Except Ll/RO and R IILO
Low Level Output Voltage
VOL
V
2
25°e,
2-174
-110
mA
230
mA
~
DM74S281
MSI
Switching Characteristics vee
~ 5V, TA ~ 25°C
DM74S
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
CONDITIONS
S281
MIN
UNITS
TYP
MAX
10
20
ns
10
20
ns
18
30
ns
18
30
ns
10
20
ns
50
MHz
fMAX
Clock Frequency (For Shifting)
tpLH
Propagation Delay Time, Low-te-High level Output
tPHL
Propagation Delay Time, High-ta-low Level Output
tPLH
Propagation Delay Time. Low-ta-High Level _Output
tpHL
Propagation Delav Time, High-ta-Low Level Output
tpLH
Propagation Delay Time, Low-ta-High Level Output
tpHL
Propagation Delay Time, High-ta-Low Level Output
10
20
ns
tpLH
Propagation Delay Time, Low . to-High Level Output
14
24
ns
tpHl
Propagation Delay Time, High-ta-Low Level Output
14
24
ns
tpLH
Propagation Delay Time, Low-ta-High Level Output
12
20
ns
tPHl
Propagation Delay Time, High-to-Low Level Output
12
20
ns
tpLK
Propagation Delay Time, Low-to-High Level Output
20
35
ns
tpHL
Propagation Delay Time, High-to-Low Level Output
20
35
ns
tpLH
Propagation Delay Time, Low-to-High Level Output
30
45
ns
tPHL
Propagation Delay Time, High-to-Low Level Output
30
45
ns
tPLH
Propagation Delay Time, Low-to-High Level Output
30
45
ns
tpHL
Propagation Delay Time, High-to-Low Level Output
30
45
ns
tPLH
Propagation De!ay Time, Low-to-High Level Output
7
11
ns
tPHL
Propagation Delay Time, High-ta-Low Level Output
7
11
ns
Cn
C n +4
Any A
Cn
Cn + 4
Any F
G
Any A
P
Any A
Ai
Fi
RI/LO
Aa
CL
~
15pF
1/0 Outputs: RL ~ 560[2
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHl
Propagation Delay Time, High-to-Low ,Level Output
Ll/RO
A3
Fa
RIILO
F3
Ll/RO
Other Outputs: RL
=
280n
7
11
ns
7
11
ns
ns
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-to-Law Level Output
tplH
Propagation Delay Time, Low-to-High Level"Output
tpHL
Propagation Delay Time, High-to-Low Level Output
tpLH
Propagation Delay Time, Law-ta-High Level Output
tpHl
Propagation Delay Time, High-to-Low Level Output
tPLH
Propagation Delay Time, Low-to-High Level Output
tPHL
Propagation Delay Time, High-to-Low Level Output
tWICLOCKi
Width of Clock Pulse
8
ns
tsETUP
Data Setup Time With Respect to Clock
ot (5)
ns
tHOlD
Data Hold Time With Respect to Clock
1St (5)
Any AS
Any AS
Clock
Clock
Any For
28
45
C n +4
28
45
n5
20
33
ns
20
33
ns
30
45
ns
30
45
ns
RI/LOor
35
55
ns
LI/RO
35
55
ns
Por G
Any F
Notes
(5)
t ·The arrow indicates that the rising edge of the clock pulse is used for r,eference.
2-175
\
ns
~ MSI
DM74S281
Typic!!1 Applications
RIGHT
DATA' IN
CARJ!Y
-
INPUT -
RI/LO
LIIRO
5281
-
r-Co+4 r--
RI/LD
LIIRO
S281
Co+4 . - - Co
Co
RIILO
LIIRO
S281
C,
Co+4
-
LEFT
LIIRO ~ DATA IN
CARRY
Co+4 ~ OUTPUT
RI/LO
S281
Co
Enter and store timlt:
38 os typ
Each successive addition to stored data: 4405 typ
FIGURE A: 16-BIT BINARY ACCUMULATOR USING FOUR DM74S281 CIRCUITS IN RIPPLE-CARRY MODE
•
RIGHT
DATA IN
CARRY
INPUT
RI/LO
Co
lIlRO
lEFT
DATA IN
Co+4
CARRY
OUT
S182
Enter and stote time:
37 os typ
Each sllccessive addition to stored data: 29 IlS typ
~6~UK~!~~~;BIT BINARY ACCUMULATOR USING FOUR DM74S281 CIRCUITS AND ONE DM74S182 FOR FUlLpARRY
LEFT
RIGHT
DATA IN
DATA IN
CARRY
CARRY
OUTPUT
INPUT
S182
5182
S182
8182
Co
Co
'GO
PO
Co
G1
Co
G2
P1
P2
GJ
PJ
5182
Enter and store time:
42 os tvp
Each successive addition to stored data: 34 os typ
FIGURE C: 64-BIT BINARY ACCUMULATOR USING 16 DM74S281 CIRCUITS AND FIVE DM74S182 CIRCUITS FOR FULL CARRY
LOOK-AHEAD
2-176
~ MSI
OM54/0M74S287,S387
1024-Bit Programmable Read Only Memories
General Description
These circuits are field-programmable, 1024-bit, readonly memories organized as 256 words of four bits each.
This high-speed, Schottky-clamped, TTL memory array
is addressed in 8-bit binary with full on-chip decoding.
Two overriding chip-select inputs are provided which,
when either one or both are high, cause all four outputs
to be off (high Z state for 5287). This memory features
PNP input transistors, which reduce the low level input
current requirement to a maximum' of -0.25 mA, only
one-eighth that of a standard Series 745 load. The organization is expandable with no additional output
buffering.
in the recommended operating conditions will not alter
the memory content.
These programmable memories can be used to replace
the DM74187, as they are functionally and mechanically
identical.
Features
• Fully decoded, low-current PNP inputs
• 5387 has open-collector outputs for easy word expansion
• 5287 is functionally equivalent but has TRI-STATE
outputs
• Provides the versatility of custom designs virtually
"off the shelf"
• Applications include:
Microprogramming
Look-up tables for any fixed program
Parallel Code Converters
Sequence, routine, and subroutine generators
Random logic function generator
• I nterchangeable with most other 256 words by 4-bit
TTL PROMs/ROMs
• Fully compatible with most TTL and other saturated
low level logic families
• Schottky-clamped for high performance:
15nstyp
Chip-select access time,
30 ns typ
Address access time
The address of a 4-bit word is accomplished through
the buffered binary select inputs, with a low level at
both chip-select inputs. Where multiple devices are used
in. a memory system, the chip-select inputs allow easy
decoding of additional address bits.
Data can be electronically programmed at any of the
1024-bit locations. Prior to programming, the memory
contains a low logic level output condition at all bit
locations. The programming procedure open·circuits
metal links, which results in a high logic level output at
the selected locations. The procedure is irreversible;
once altered, the output for that bit is permanently
programmed to provide a high logic level. Outputs
never having been altered may later be programmed to
supply a high level output. Operation of the device with-
Connection Diagram
vr
SELECT
INPUT
H
16
15
ENABLES
CS2
L4
OATA OUTPUTS
,
CSI
113
VI
V2
12
V3
,
Y4
10
11
9
V)
.-
r-
I
1
,G
12
F
I
! t !
3
E
4
0
5
A
6
1
B
17
C
I
J:
SELECT INPUTS
,
54S2871JI; 74S287IJ), IN);
54S387IJ); 74S387IJ), (N)
2-177
To Be Announced In 1976
~
.'
MSI
DM54/DM14S281,S381
Electrical Characteristics over recommendedop€rating free-air temperature range (unless otherwise noted)
DM54S174S
CONDITIONS
PARAMETEIl
.5287
MIN
V'H
Hi,gh Level Input Voltage
V,"
Low Lever Input, Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
Min,
Vee
Ii
High Level Output Voltage
Vcc
V IL
10l
Low Level Output Current
Low Level Output Voltage
MIN
O.8V
Vcc
ViL
1010FF) Off-State (High Impedance State)
Output Current
Vcc
=
=:
=:
=
=
Min, V 1H
-=;
~
2.4V
VOH~
5.5V
V
.. 1.2
-1.2
V
N/A
50
N/A
100
N/A
DM74
"6.5
N/A
2.4
I,
Input Current at Maximum Input Voltage
Vee"" Max, V,
High level Input Current
Vcc = Max, V,
.. I,"
Low Level Input Current
Vee
:=
Max, VI
lOS
Short Circuit Output Current
Vee
~
Max(2)
Icc
Supply Current
Vee
=
Max(3)
~A
rnA
5.5
V
16
16
rnA
0.5
0.5
V
3.2
0.8V, IOL '" 16 rnA
I'H
V
0.8
--2.0
2V
2V
,
0.8
Min, V'H =- 2V
""
MAX
DM54
0.8V, IOH "" Max
Max, V 1H
UNITS
TYP(1)
2
= -18 mA
V OH
V'L
VOL
MAX
2
Vee "'Min, V'H::: 2V
VOH
S387
TYP(l)
Vo
:=0
0:5V
-50
NIA
Va
~2.4V
50
N/A
MA
=
5.5V
1
1
mA
0;;
2.7V
25
25
~A
-250
-250
:=
O.45V
-30
-100
N/A
135
100
100
!
MA
mA
135
mA
Notes
(1)
All typical values are at VCC ~ 5V, TA ~ 25°C.
(2)
Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
(3)
ICC is' measured with outputs open and both
Switching Characteristics vee
~ 5V,
CS inputs .grounded.
TA
~ 25°C
..
DM54S/74S
PARAMETEIl
FIlOM
/INPUT)
TO
IOUTPUT)
S287
CDNDITIONS
tplH
Propagation Delay Time,
Low-to-High Level Output
Address
tPHl
Propagation Delay Time,
High-ta-Low Level Output
tPlH
Propagation Delay Time,
Low-to-High Level Output
tpHl
tZH
Propagation Delay Time,
High-te-Low Level Output
Output Enable Time to
High Level
tZl
Output Enable Time to
Low Level
tHZ
Output Disable Time
From High Level
tLZ
Output Disable Time
From Low Level
MIN
S387
TYP
MAX
CONDITIONS
MIN
UNITS
TYP
30
35
ns
30
35
ns
15
os
15
I1S
N/A
ns
NIA
os
Any
N/A
Chip
Select
CL "30 pF
Any
CL
Rt. "400n
NIA
15
Chip
Select
MAX
Any
~
30 pF
to GND
Ru ~ 400n
to Vee
RL2
~
600n
to GND
15
-Chip
Select
Any
Notes
(4) When measuring times from address inputs, both
CS1
Cl
""
5 pF
RL
~
400n
and
CS2 are low.
held steady.
2-178
12
NIA
ns
12
N/A
os
When measuring times from chipMselect inputs, the address inputs are
-
I
I
I
~ MSI
OM54/0M74S289
64-Bit Read/Write Memories with Open Collector Outputs
General Description
The fast access time of the S289 makes it particularly
attractive for implementing high performance memory
functions requiring access times on the order of 25 ns.
The unique functional capability of the S289 outputs
being high during writing, combined with the data inputs
being inhibited during reading, means that both data
inputs and outputs can be connected to the data lines
of a bus organized system without the need for interface
These 64-bit active element memories are Schottkyclamped TTL arrays organized as 16 words of four bits
each. They are fully decoded and feature a chip-enable
input to simplify decoding required to achieve the desired
system organization. The memories feature PNP input
transistors that reduce the low level input current
requirement to a maximum of -{).25 mA, only oneeighth that of a (standard) Series 54S/74S load factor.
The chip-enable circuitry is implemented with minimal
delay times to compensate for added system decoding.
circuits.
Features
Write Cycle: The complement of the information at
the data input is written into the selected location when
both the chip-enable input and the read/write input
are low. While the read/write input is low, the outputs
are at a high logic level {off;.
• Schottky-clamped for high-speed applications:
12 ns typ
Access from chip-enable inputs
Access from address inputs
25 ns typ
Read Cycle:' The stored information (complement of
information applied at the data inputs during the write
cycle) is available at the outputs when the read/write
input is high and the chip-enable input is low. When
the chip-enable input is high, the outputs are high
(off).
SELECT INPUTS
BCD
'16
15
14
13
Open-collector outputs for controlled·impedance bus
lines
•
DM54S189/DM74S189 are functionally equivalent
but have TRI-STATE outputs
• Chip-enable input simplifies system decoding
• Compatible with Intel 3101A in most applications
Connection Diagram
....-----.------.
•
Logic Diagram
DATA
INPUT
4
,
OATA
0 UfPUI
Y4
INPUT
OUTPUT
3
Y3
11
10
12
111
9
115)
64·B1T MEMORY
ADDRESS
ADDRESS
INPUTS
114)
BUffERS
1·0F·16
DECODERS
MATRIX
ORGANIZED
16 X 4
1131
p..
r-
_
121
CHIP ENABLE (eE)
REAONvRITE IRM'I 13)
1
2
SElECT
CHIP
INPUT A ENABLE
4
3
READ!
Wf{ITE
DATA
INPUT
1
5
OUTPUT
Y1
6
DATA
INPUT
7
OUTPUT
Y2
18
GNO
DATA INPUTS \::
2
---"'1-'
-'I"'W-)
D3~~--~--~-'
04~1~12~1__~~__~__~
54S289(JI; 74S289(J), (WI
15)
Y1
171
191
Y2
1111
Y3
OUTPUTS
Truth Table
INPUTS
FUNCTION
Write
(Store Complement of Datal
CHIP
ENABLE
READ!
WRITE
OUTPUT
H
L
Read
L
H
Stored Data
Inhibit
H
X
H
H = High Level, L = Low Level, X =- Don't Care
2-179
Y4
~
MSI
OM54/0M74S289
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM54S04S
S289
CONDITIONS
PARAMETER
MIN
MAX
2
" High Level Input Voltage
VIH
UNITS
TYP(1)
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
Vee; Min, I, = -18 mA
IOH
High Level Output Current
Vee=Min,V'H=2V
V
I V oH =2,4V
V
V
40
I VOH - 5,5V
V'L ; 0,8V
0,8
-1.2
100
J1A
VOH
High Level Output Voltage
5,5
V
IOL
Low Level Output Current
16
mA
VOL
Low Level Output Voltage
Vee = Min, V ,H
= 2V
V'L ; 0,8V, 10L = 16 mA
0,5
DM74
0.45
Vee = Max, V, ; 5,5V
I nput Current at Maximum
II
DM54
V
1
mA
Input Voltage
,
IIH
High Level Input Currerit
Vee; Max, V, ; 2.7V
IlL
Low Level I nput Current
Vee; Max, V, ; 0,45V
IcC
Supply Current
Vee = Max(2)
75
25
IJ.A
-250
J1A
105
mA
Notes
(1) All typical value, are at VCC; 5V, TA = 25°C,
(2)
ICC is measured with all inputs grounded, and the outputs open.
Switching Characteristics over recommended operating ranges of Vee
and T A (unless otherwise noted)
DM54S
PARAMETER
CONDITIONS
DM74S
S289
MIN
MAX
25
50
12
25
12
17
ns
12
25
12
17
!'IS
22
40
22
35
ns
MIN
tAA
Access Times From Address
tCLH
Disable Time From Chip Enable
tCHL
Enable Time From Chip Enable
tWHL
Sense-Recovery Time From Read/Write
twp
Width of Write-Enable Pulse (Read/Write Low)
25
25
tAsw
Setup Time
D
0
CL = 30 pF
UNITS
S289
TYP
TYP
MAX
25
35
nS
Ru =300n
R L2 = 600n
Address to Read/Write
tosw
Data to Read/Write
25
25
tcsw
Chip Enable to Read/Write
0
0
Address From Read/Write
0
0
Data From Read/Write
0
0
Chip Enable From Read/Write
0
0
I~
I~
tCHW
Hold Time
,
2-180
!'IS
ns
ns
~MSI
DM54/DM74S289
Parameter Measurement Information
LOAD CIRCUIT
-h
r
VCCRU
FROM OUTPUT
UNDER TEST
..
c
C
':' R"
ENABLE AND DISABLE TIME FROM CHIP ENABLE
CHIP ENABLE
INPUT
(SEE NOTE 31
3V
1.5V
OV----____~~----~------------I
VOH
OUTPUT
ISEE NOTE II
----+--""'1.5V
VOC--------~------~-,------_4--'
ACCESS TIME FROM ADDRESS INPUTS
ADDRESS INPUTS
INOTE 21
,:=t~·~----J@:F----·
~5V _ _ _ _ _ _ _ ____
OUTPUT
Voc __________- - - -____
15V
~~
WRITE CYCLE
3V
ADDRESS
INPUTS
JV
DATA
INPUTS
JV
CHIP·ENABlE
INPUT
OV
3V
READiWAITE
INPUT
OV
VOH
OUTPUT
(NOTE 11
-------
Vo ,
Notes
(1)
Waveform 1 is for the output with internal conditions such that the output is Jo~ except when disabled.
(2)
When measuring delay times from address inputs, the drip enable input is low and the read/write input is high.
When measuring delay times from chip enable input, the address inputs are steady state and the read/write input is high.
~3)
(4)
Input waveforms are supplied by pulse generators having the following characteristics: tr ~ 2.5 ns, tf
ZOUT
~
50n.
2·181
s: 2.5 ns, PRR
~ 1 MHz and
~ MSI
OM54/0M74LS295A
TRI-STATE 4-Bit Parallel Access Shift Registers
General Description
When the output control is high, the normal logic levels
of the four outputs are available- for driving the loads or
bus lines. The outputs are disabled independently from
the level of the clock by a low logic level at the output
control input. The outputs then present a high impedance
and neither load nor drive the bus line; however,
sequential operation of the register is not affected.
These 4-bit registers feature parallel inputs, parallel
outputs, and clock, serial, mode, and output control
inputs. The registers have three modes of operation:
Parallel (broadside) load
Shift right (the direction OA toward Op)
Shift left (the direction Op toward 0A)
Parallel loading is accompiished by applying the four
bits of data and taking the mode control input high.
The data is loaded into the associated flip·flops and
appears at the outputs after the high to low transition of
the clock input. During parallel loading, the entry of
serial data is inhibited.
Features
• TRI-STATE versions of DM54LS95B(DM74LS95B
• Schottky diode clamped transistors
Shift right is accomplished when the mode control is low;
shift left is accomplished when the mode control is high
by connecting the output of each flip-flop to the parallel
input of the previous flip-flop (OD to input C, etc.)
and serial data is entered at input D.
Connection Diagram
I"
fie
"
•
Applications:
N-bit serial-to-parallel converter
N-bit parallel-to·serial converter
N-bit storage register
70 mW typical
'"
11
OUTPUT
CONTROL
CLOCK
fio
"
Low power dissi pation (enabled)
Logic Diagram
OUTPUTS
fi,
•
8
9
DATA
INPUTS
OUTPUTS
-
r-
3
2
1
4
I'
6
5
SERIAL
MODE
INPUT
CONTROL
INPUTS
GNU
54LS295A/74LS295AIJI, IN), IWI
MODE
CONTROL
OUTPUT
CONTROL
SERIAL
INPUT
Truth Table
INPUTS
MOOE
CONTROL
CLOCK
H
H
H
H
>
>
L
H
L
>
>
L
H
OUTPUTS
SERIAL
ac
aD
OAO aBO
b
a
Q eo
c
aDO
d
aCe
Q On
d
OAO aBO
Oeo
000
H
OAe Q Sn
aCe
L
OAe G Bn aCe
aA
A
B
e
D
X
X
X
X
a
b
c
d
d
QBn
X
X
X
X
X
X
X
,
as
Oc'
X
X
X
H
X
X
X
X
X
L
aD
X
t
aB
When the output control is low, the outputs are disabled to the high-impedance state;
however, sequential operation of the registers is not affected.
Tentative Data
= High
Level Isteady-state I , L
= Low
Level IsteadY·
state), X = Don't Care (any input including transitions)
PARALLEL
2-182
t "" Transition from high to low level
a, b, c, d = The level of steady-state input at inputs A,
S, C, or 0, respectively.
0AO, 0BO, OeD, 0DO = The level of 0A, 0B, 0C, or
0D, respectively, before the indicated steady-state
input conditions were established.
0An, 0Bn, 0Cn, 0Dn = The level of OA,OB, 0C, or
QO, respectively, before the most recent t transition
of the clock.
tShifting left requires external connection of 0B to
A, QC to B, and GD to C. Ser.ial data is entered at
input D.
To 'Se Announced In 1976
~
MSI
DM54/DM74LS295A
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM74LS
DM54LS
PARAMETER
CONDITIONS
MIN
Level Input Voltage
V'H
High
V'L
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VO H
High Level Output Voltage
10L
Low Level Output Current
Low Level Output Voltage
TYPI11
Vee::: Min, V 1H
:::
:::
2V
2.4
Max, IOH ::: Max
V
Off-State (High Impedance State)
=::
:::
Min, V 1H
:::
Max
tOL
-1.5
·15
V
2.6
rnA
2.4
3.4
Input Current at Maximum
=
2V
Vee::: Max, VI
= 7V
0.25
=4mA
tOL:":
Vee =:: Max, V 1H
V 1L ::: Max
Input Voltage
2V
V
0.8
V
3.1
4
Vee
MAX
0.7
·1
Output Current
I,
MIN
2
Vee::: Min, I, ::: ~18 rnA
V 1L
1010FFI
MAX
2
V 1L
VOL
TYPI11
UNITS
LS295A
LS295A
8
0.4
8 rnA
0.25
0.4
0.35
0.5
Vo = OAV
·-20
-20
Vo - 2.7V
20
20
0.1
0.1
rnA
V
~A
rnA
I'H
High Level Input Current
Vee::: Max, VI
= 2.7V
20
20
jJ.A
I'L
Low L~vel Input Current
Vee = Max, VI = DAV
-0.4
-0.4
rnA
los
Short Circuit Output Current
Vee = Maxl21
-130
rnA
Icc
Supply Current
Vee = Maxl31
-30
-130
-30
Condition A
14
23
14
23
Condition B
15
25
15
25
rnA
Notes
111 All typical values are at Vee = 5V, T A = 25°C.
(21 ' Not more than one output should be shorted at a time. and duration of short circuit should not exceed one second.
131
ICC is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the following
conditions:
A. Output control at 4.SV and a momentary 3V; then ground, applied to clock input.
B. Output control and clock input grounded.
Switching Characteristics vee
=
5V, TA
=
25°C
DM54LS/74LS
PARAMETER
CONDITIONS
fMAJ(
Maximum Clock Frequency
tpLH
Propagation Delay Time, Low"ta-High Level Output
tpHL
Propagation Delay Time, High-ta-Low Level Output
tZH
LS295A
MIN
TYP
20
28
UNITS
MAX
MHz
ns
40
60
47
70
ns
Output Enable Time to High Level
15
25
ns
tZL
Output Enable Time to Low Level
21
30
ns
tHZ
Output Disable Time From High Level
CL = 5 pF
39
60
ns
.tLZ
Output Disable Time From Low Level
RL = 400n
32
50
ns
tW(CLOCK)
Width of Clock Pulse
25
ns
tSETUP
Setup Time, High Lever or Low Level pata
20
ns
tHOLD
Hold Time, High Level or Low Level Data
20
ns
CL = 15 pF
RL = 400n
,
I
2-183
. ~·.MSI
OM54/0M74LS2$8
Quad 2-Multiplexers with Storage
General Deseription
Features
Thes.e [ntegratedcircuitsprovide.eyentially the equivalent
functional capabilities of two separate MSI functions
(DM54157/DM74157 or DM54LS157/DM74LS157 and
DM54175/DM74175 or DM54LS175/DM74LS175) in a
singljl16-pin package.
.
• Selects one of two 4-bit· data sources and stores
data synchronously with system clock
• Applications:
Dual· source for oPerands and constants in arithmetic processor; can release· processor register
files for acquiring new data
Whe.n the word-select input is low, word 1 (A1, 81,
Cl, 01) is entered· into the flip-flops. A high input to
cause the selection of word 2· (A2,
word select
82, C2, 02). The selected word is then clocked to the
output terminals on the negative-going edge of the
.
clock pulse.·
Implement separate registers capable of parallel
exchange of contents, yet retain external load
capability
Universal type register for implementing various
shift· patterns; even haS compound left~right
capabilities
will
Connection Diagram
Truth Table
OUTPUTS
00
I..
15
12
13
"
WORD
DATA
INPUT
CLOCK
SelECT
C1
11
10
INPUTS
•
WORD
SELECT
CLOCK
L
H
X
OUTPUTS
,
•
•
H
OA
OB
Dc
00
a1
a2
b1
1,2
c1
02
d1
d2
QAO
Cleo Oco 000
rH ~ High level (steady .tate)
I,. = Low level (steady state)
,
1
8Z
,
A1
AZ
•
B1
5
C2
•
DZ
DATA INPUTS
1
01
I'
GNO
X = Don't Care (any input, including transitions)
• = Transition from high to low level·.
a1, a2, etc. = The level of steady-state input at Al, A2, etc.
0AO, aBO, etc. = The level of 0A, 0B, etc. entered on tha
most recent'" transition of the clock input.
54lS298/74lS298(J), (N), (W)
Logic.Diagram
Tentative Data
2-l8!1
"To Be Announced 'n 1976
~MSI
DM54/DM74lS298
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM54LS/74LS
PARAMETER
CONDITIONS
LS29lI
MIN
V,H
High Level Input Voltage
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
Vee
=:
V
DM54
0.7
DM74
0.8
V
-1.5
Min, II = -18 rnA
V
-400
Vee = Min, V 1H = 2V
=:
Max, IOH
=-400jJA
Low Level Output Current
.
Low Level Output Voltage
VOL
MAX
2
V IL
10L
UNITS
TYP(1)
Vee =Min, V 1H =2V
1 lot.-
V1L
]loL = 8 rnA
=
Max
DM54
2.5
3.4
DM74
2.7
3A
V
DM54
4
DM74
8
=4mA
DM74
MA
0.25
0.4
0.35
0.5
rnA
V
I,
Input Current at Maximum InpUt Voltage
Vee"" Max, VI = 7V
0.1
I'H
High Lev,el Input Current
Vee =Max, VI =2.7V
20
MA
I,L
Low Level Input Current
Vee
= Max, V, = OAV
-{).4
rnA
loS
Short Circuit Output Current
Vee
= Maxl2}
-130
rnA
Icc
Supply Current
Vee
= Max(3}
21
rnA
-30
13
rnA
Notes
= 5V. T A =25·C,
(ll
All typical values are at V CC
(2)
Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
With all outputs open and all inputs except clock low, ICC is measured after applying a momentary 4.5V, followed by ground,
to the clock input_
(3)
Switching Characteristics vee
= 5V. T A = 25°C
DM54LS/74LS
PARAMETER
CONDITIONS
LS29lI
MIN
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time. High-to-Low Level Output
tw
Width of Clock Pulse, High or Low Level'
20
tsETUP
Setup Time
15
CL
tHOLD
Hold Time
= 15pF,
Data
Word Select
5
0
2-185
UNITS
MAX
18
27
ns
21
32
ns
RL =2kn
25
Data
Word Select
TYP
ns
ns
ns
~MSI
DM54/DM74LS298
Typical Applications
:
Figure 1 illustrates a BCD shift register that will shift
Another function that can be ,implemented with the
LS298 is a register that can be designed specifi,cally
for supporting multiplier or division operations_ Figure 2
is an example of a one place/two place shift register_'
an entire 4-bit BCD digit in one clock pulse_
When the word select input is high and the registers are
clocked, the contents of register 1 is transferred (shifted)
to register 2, etc. In effect, the BCD digits are shifted
one position. In addition, this application retains a
parallel-load capability which means that new BCD
data can be entered into the entire register with one clock
pulse. This arrangement can be modified to perform the
shifting of binary 'data for any number of bit locations.
When word select is low and the register is clocked, the
outputs of the arithmetic/logic units (ALU's) are shifted
one place. When word select is high and the registers are
clocked, the dat~ is shifted two places.
PARALLEL LOAD
,
,
I
L
WS
AI
A2
' - Bl
B2
' - - - Cl
0.
lS298
REG 1
0.
L....-
B2
0,
LS298
REG 2
' - - Cl
Dc
C2
D.
02
01
CLOCK
L
ws
AI
A2
' - - Bl
C2
02
I
CLOCK
'(
AI
B2
' - - - Cl
Dc
C2
01
0.
02
0LS29S
Dc
CLOCK
------------
DIGiT 1
D,
REG 2
0.
y
'(
------------
ws
A2
Bl
0,
01
CLOCK
WORD
SELECT
------------
DIGIT 2
DIGIT3
FIGURE 1
-T----,l- -T----JALU ..
181
FO
Fl
...I I
.r-C
F2
Fe
FJ
Fl
F2
F3
...- ...-
nn
~
:v
nn
At Al 81 82 Ct C2 DI D2
At AZ 81 82 Cl C2 01 02
CLOCk
CLOCK
0.
CLOCk
I
ALU
lBl
.
LS298
0,
Dc
I I I I
FIGURE 2
0.
lSZ91
o.
WSr-
Dc
0.
J
I I I I
WORD'
SELECT
,
~ MSl
OM 54/ OM74LS374
TRI-STATE Octal D Flip-Flops
General Description
Features
These 8-bi t registers contain Ootype flip-flops with
totem-pole TRI-STATE outputs capable of driving highlycapacitive or low-i mpedance loads. When the output
control is taken to a high logic level, the outputs go
into the high impedance state. When a low logic level is
applied to the output control, data at the 0 inputs are
loaded into their respective flip-flops on the next
positive-going transition of the clock. Clocked flip-flops
provide fully synchronous operation and, in addition,
these devices come in the new 20-pin dual-in-line packages
with the 0.3" centers.
•
TRI-STATE bus driving outputs
•
Parallel access for loading and reading
•
Many appl ications
Holding/working registers
I/O register port
Buffer regi sters
Register files
•
Typical propagation delay
Connection Diagram
".
"8
D1
19 ns
Truth Table
07
O.
O.
.5
05
CLOCK
OUTPUT
CLOCK
CONTROL
0
OUTPUT
H
H
L
H
L
X
00
X
X
Z
10
OUTPUT 01
CONTROL
D1
D2
02
Ol
03
D4
fi'
GNO
A
54lS37 4/7 4lS37 41 N I
Logic Diagram
Typical Application
Q1
INPUT POAT
Tentative Data
2-187
To Be A.nnounced In 1976
~
MSI
DM54/DM74LS374
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM54
PARAMETER
CONDITIONS
MIN
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
1010FF)
DM74
LS374
TYP(1)
2
Vee -'"
Vee
=;
~in,
II:::
Min
~18
IOH
mA
:=
-1 rnA
MIN
-1.5
-1.5
V
-1.0
-5.0
rnA
2.7
IOH
5 rnA
2.4
""
2V
'"
Max
Off State (High Impedance State)
Vee
Output Current
V ,H ::: 2V
V1l
=
:=
Max
Max
V
25
V 1L = Max
V 1H
V
0.8
2.6 rnA
V 1L
MAX
2
IOH -
Vee"" Min
TYP{l)
0.7
V 1H '" 2V
:co
UNITS
LS374
MAX
IOL "'4 rnA
V
4
8
0.4
0.4
rnA
V
0.5
IPl "" 8 rnA
Va
= O.4V
-20
-20
Va
= 2.7V
20
20
pA
rnA
II
Input Current at Maximum Input Voltage
Vee
0.1
0.1
IIH
High Level Input Current
Vee::: Max, VI::: 2.7V
20
20
pA
IlL
Low Level Input Current
Vee::: Max, VI '" DAV
-0.4
-0.4
rnA
lOS
Short Circuit Output Current
Vee = Max{21
--130
rnA
Icc
Supply Current
Vee'" Max
50
rnA
:=
Max, VI =- 7V
-30
-130
-30
50
Notes:
(1)
(2)
typical. values are at V CC = 5V, T A = 250 C.
Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
.AII
Switching Characteristics vce = 5V, T A = 25°C
DM54LS/74LS
PARAMETER
fMAX
Maximum Clock Frequency
tPlH
Propagation Delay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time,
High-ta-Low Level Output
~ZH
FROM
TO
Clock
Output
Clock
Output
CONDITIONS
CL
= 15pF,
TYP
25
30
Output Enable Time to
Output Enable Time to
Low Level
'HZ
Output Disable Time from
High Level
ILZ
Output Disable Time from
tHOLO
Setup Time
Hold Time
MHz
18
30
ns
20
30
ns
15
20
ns
10
20
ns
13
20
ns
15
20
ns
CL = 5 pF, RL = 2 kn
Low level'
tSETUP
MAX
RL =2kn
High Level
IZL
UNITS
LS374
MIN
Data
10
Output Control
20
Data
10
Output Control
2
2-188
ns
ns
~MSI
DM54/DM74lS395
TRI-STATE 4-Bit Cascadable Shift Registers
General Description
These 4-bit registers feature parallel inputs, parallel
outputs, and clock, serial, lead/shift, output control
and direct overriding clear inputs.
control input. The outputs then present a high impedance,
and neither load nor drive the bus line; however,
sequential operation of the registers is not affected.
During the high·impedance mode, the output at G D ' is
still available for cascading.
Shifting is accomplished when the load/shift control
is low. Parallel loading is accomplished by applying
the four bits of data and taking the load/shift control
input high. The data is loaded into the associated flipflops and appears at the outputs after the high to low
transition of the clock input. During parallel loading,
the entry of serial data is inhibited.
Features
• Applications:
N-bit serial-to-parallel converter
N-bit parallel-to-serial converter
N-bit storage register
• TRI-STATE, 4-bit, cascadable, parallel-in, parallel-out
registers
• Schottky diode clamped transistors
75 mW typical
• Low power dissipation (enabled)
When the output control is low, the normal logic levels
of the four outputs are available for driving the loads or
bus lines. The outputs are disabled independently from
the level of the clock by a high logic level at the output
Connection Diagram
OUTPUTS
CASCADE
OUTPUT
vee
116
Go
15
14
13
OUTPUT
uo'
12
CLOCK CONTROL
11
p-
r<
I
CLEAR
9
'0
2
SERIAL
INPUT
3
4
5
7
6
A
LOADI
P
GNO
SHIFT
PARALLEL INPUTS
54LS395174LS395(J), (N), (W)
Logic Diagram
DATA INPUTS
A
131
B
o
C
161
151
141
S~:~~~ ~1",21_ _ _ _-,
CLOCK~I'~OI~'_--Q~~~________-+__-'~______~_-'~_____~_-'
CLEAR 1'1
OUTPUT 191
CONTROL
1151
1131
1141
D,
• OA
f1c
1121
00 ,
TRI·STATE OUTPUTS
Tentative Data
2-189
To Be Announced In 1976
~
MSI
DM54/DM74LS395
Truth Table
CLEAR
LOAD/SHIFT
CLOCK SERIAL
CONTROL
PARALLEL
A
B
C
0
L
X
X
X
X
X
X
X
H
H
H
X
X
X
X
X
H
H
t
X
a
b
c
d
H
L
H
X
X
X
X
X
H
L
~
H
X
X
X
X
H
L
t
L
X
X
X
X
H = High Level (steady state). L
(steady state).
TRI-STATE OUTPUTS CASCADE
OUTPUT
OA Oe Oc 00
00'
INPUTS
L
L
L
L
0AO. 0BO. 0eo. 000 = The level' of 0A. 0B.
0C. or 00. respectively. before the indicated
steady state input conditions were established.
DO~
0An. 0Bn. 0Cn. 00n.
d
DAD D BO Dco DO~
H DAn OBn Den
L
OAn DBn Dcn
Low Level
X == Don't Care (any input including transitions)
~ = T:ransition from high to low level.
L
DAD DBO Deo DO~
a
d
b
c
=
= The
level of 0A. 0B.
CCr or 00. respectively, before the more tecent
.j. transition of the Clock.
DO~
When the output control is high. the TRI-5TATE
outputs are disabled to the high·imped~l1ce state;
Dcn
Dcn
however, sequential operation of the registers and
,
the output at 00' are not affected.
Electrical Characteristics
over recommended operating free·air temperature range (unless otherwise noted)
-.
DM54LS
PARAMETER
CONDITIONS
MIN
V,H
High Level Input Voltage
V,L
Low Level I nput Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
Low Level Output Current
VOL
Low Level Output Voltage
TYP(1)
LS395
MIN ,TYP(l)
MAX
2
Vee': Min, V 1H
= 2V
2.4
V
0.7
0.8
-1.5
-1.5
V
-1
-2.6
mA
3.4
2.4
3.1
4
1010FFI Off-State (High Impedance State)
Output Current
= 4 mA
Vee == Min, V 1H = 2V
IOl
V 1L
IOl - 8 mA
Vee
""
Max
= Max, V 1H
== 2V
.v IL "" Max
UNITS
MAX
2
Vee::' Min, I, =-18 mA
V1L = Max, IOH = Max
10L
DM74LS
LS395
0.25
V
8
0.25
0.4
0.35
V
0.4
0.5
Vo =O.4V
-20
-20
V D = 2.7V
20
20
mA
V
p.A
I,
Input Current at Maximum Input Voltage
Vee == Max, VI "" 7V
0.1
0.1
I'H
High Level I nput Current
Vee = Max. V, = 2.7V
20
20
p.A
I,L
Low Level I nput Current
Vee = Max. V, = 0.4V
-0.4
-0.4
mA
lOS
Short Circuit Output Current
Vee = Max(2)
Icc
Supply Current
Vee = Max(3)
-30
-30
-130
Condition A
18
Condition B
15
29
25
-130
18
29
15
25
mA
rnA
mA
Notes
= 2S'C.
(1)
All typical values are at Vce = SV. TA
(2)
Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
ICC is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the following conditions:
A. Output controf-~t 4.SV aryd a momentary 3V. then ground. applied to clock input.
B. Output control and c;:lock input grounded.
(3)
Switching Characteristics Vee; 5V. T A; 25°C
DM54LS/74LS
PARAMETER
CONDITIONS
fMAX
Maximum Clock Frequency
tpLH
Propagation Delay Time, Low-ta-High Level Output
tpHL
Propagation Delay Time, High-to-Low level 9utput
tZH
LS395
MIN
TYP
25
35
UNITS
MAX
MHz
"8
27
ns
21
32
ns
Output Enable Time to High level
15
25
ns
tZL
Output Enable Time to Low Level
20
30
ns
tHZ
Ou~put
C l = 5 pF
30
50
ns
tLZ
Output Disable Time From Low Level
Rl =400n
30
50.
ns
tWICLOCKI
Width
tsETUP
Setup Time, High Level
tHOLD
Hold Time, High Level or low level Data
Disable Time From High LeveJ
Cl = 15 pF
Rl = 400n
at Clock Pulse
25·
o~
Low Level Data
2·190
ns
20
ns
10
ns
~MSI
DM54/DM74LS670
TRI-STATE 4 by 4 Register Files
General Description
These register files are organized as 4 words of 4 bits
each, and separate on-chip decoding is provided for
addressing the four word locations to either write-in or
retrieve data. This permits writing into one location, and
reading from another word location, simultaneously.
recovery times, permits simultaneous reading and writing,
and is limited in speed only by the write time (27 ns
typicall and the read time (24 ns typicall. The register
file has a non-volatile readout in that data is not lost
when addressed.
Four data inputs are available to supply the word to be
stored. Location of the word is determined by the write
select inputs A and B, in conjunction with a write-enable
signal. Data applied at the inputs should be in its true
form. Th'at is, if a high level signal is desired from the
output, a high level is applied at the data input for that
particular bit location. The latch inputs are arranged so
that new data will be accepted only if both internal
address gate inputs are high. When this condition exists,
data at the 0 input is transferred to the latch output.
When the write-enable input, Gw , is high, the data
inputs are inhibited and.their levels can cause no change
in the information stored in the internal latches. When the
read-enable input, G R , is high, the data outputs are
inhibited and go into the high impedance state.
All inputs (except read enable and write enablel are
buffered to lower the drive requirements to one nor·
mal Series 54LS/74LS load, and input clamping diodes
minimize switching transients to simplify system design.
High speed, double ended AND-OR-INVERT gates
are employed for the read-address function and have
high sink current, TRI-STATE outputs. Up to 12B of
these outputs may be wire-AND connected for increasing
the capacity up to 512 words. Any number of these
registers may be paralleled to provide n-bit word length.
Features
•
For use as:
Scratch pad memory
Buffer storage between processors
Bit storage in fast mUltiplication designs
• Separate read/write addressing permits simultaneous
reading and writing
The individual address lines permit direct acquisition of
data stored in any four of the latches. Four individual
decoding gates are used to complete the address for
reading a word. When the read address is made in
conjunction with the read-enable signal, the word appears at the four outputs.
This arrangement-data entry addressing separate from
data read addressing and individual sense line-eliminates
• Organized as 4 words of 4 bits
• Expandable to 512 words of n-bits
• TRI-STATE versions of DM54LS170/DM74LS170
20 ns typ
• Fast access ti mes
Connection Diagram
Truth Tables
WRITE TABLE (SEE NOTES A, B, AND C)
WORD
WRITE INPUTS
vTC
[lATA
INPUT
01
16
15
WB
WRITE SELECT
13
Gw
OUTPUTS
ENABLE
01
14
WA
11
"
0.2
O=D
Do
00
00
Do
O=D
Do
L
00
Do
Do
Do
O=D
Do
Do
H
10
H
L
H
H
L
00
X
X
H
Do
O=D
00
00
Do
READ TABLE (SEE NOTES A AND D)
I-
READ INPUTS
Ra
RA
OUTPUTS
GR
L
L
H
L
H
03
DATA
INPUTS
RB
RA
READ
SE LEer
I
04
03
I
H
H
x
x
H
Q1
02
03
04
WOBl
WOB2
WOB3
WOB4
W1Bl
W1B2
W1B3
W1B4
W2Bl
W2B2
W2B3
W2B4
W3S1
W3B2
W3B3
W3B4
Z
Z
Z
Z
OUTPUTS
Notes:
54LS670!74LS670(J), (N), (W)
(A) H = High Level, L
Impedance (Off)
(B) (0
= D) = The
=
Low Level, X
=
Don't Care, Z
=
High
four selected internal flip-flop outputs will
assume the states applied to the four external data inputs.
(C) 00 :; : ; The level of Q before the indicated input conditions
were established.
(D) WOSl = The first bit of word 0, etc.
2-191
To Be Announced In 1976
~
MSI
DM54/DM74lS670
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM54LS
CONDITIONS
PARAMETER
MIN
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
V OH
High Level
Ou~put
10L
low Level Output Current
Low Level Output Voltage
Vee
= Min, V ,H
= 2V
V 1L
~Max.loH
=Max
Vee
= Min,
= Max
""
V tH
2V
TYP(1)
UNITS
MAX
V
0.7
0.8
V
-1.5
-1.5
V
-1.0
-2.6
mA
3.4
0.25
IOL = 4 rnA
IOL
2.7
3.4
V
8
0.4
8 mA
0.25
0.4
0.35
0.5
Vee"" Max, V 1H = 2V
Va" O.4V
-20
-20
V1l
Vo - 2.7V
20
20
Any D, R,orW
0.1
0.1
Gw
GR
0.2
0.2
0.3
0.3
:=:
Max
Input Current at Maximum Input Voltage
Vee -= Max, VI"" 7V
High Level Input Current
Vee
= Max,
VI
= 2.7V
Low Level Input Current
IlL
2.5
MIN
4
1010FF} Off-State (High Impedance State)
Output Current
IIH
LS670
IVIAX
2
Vee"'" Min, I, -: -.18 rnA
V 1L
II
TYP(l)
2
Voltage
VOL
DM74LS
LS670
Vee::: Max, VI
=
DAV
Any 0, R,orW
20
20
Gw
GR
40
40
60
60
AnyD,R,orW
-{J.4
-{J.4
Gw
GR
-0.8
-{J.8
-1.2
-1.2
= Max(2)
los
Short Circuit Output Current
Vee
ICC
Supply Current
Vee" Maxl31
-30
-130
30
50
-30
30
mA
V
!J.A
mA
!J.A
mA
-130
mA
50
mA
Notes
typical values are at VCC
~
5V. T A ~ 25°C.
(1)
All
(2)
Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
Maximum ICC is guaranteed for the following worst-case conditions: 4.5V is applied to all data inputs and both enable inputs. all address
inputs are grounded and all outputs are open.
(3)
2-192
~
MSI
OM 54/ OM74LS670
Switching Characteristics Vee = 5V, TA = 25°C
DM54 LS/74 LS
FROM
(INPUT)
PARAMETER
TO
(OUTPUT)
tpLH
Propagation Delay Time, Low-to-High Level Output
tpHL
Propagation Delay Time, High-ta-Low level Output
Read Select
UNITS
LS670
CONDITIONS
MIN TYP MAX
23
40
ns
25
45
ns
26
45
ns
28
50
ns
25
45
ns
Any Q
tpLH
Propagation Delay Time, Low-ta-High Level Output
tpHL
Propagation Delay Time, High-ta-Low Level Output
tPLH
Propagation Delay Time, Low-ta-High Level Output
tPHL
Propagation Delay Time, High-ta-Low Level Output
23
40
ns
tZH
Output Enable Time to High Level
15
35
ns
tZL
Output Enable Time to Low Level
22
40
ns
tHZ
Output Disable Time From High Level
30
50
ns
16
35
os
Write Enable
Data
Read Enable
Any Q
CL "15pF
RL"2kSl
Any Q
Any Q,
C L " 5 pF
RL "2kll
Read Enable
Any Q
Output Disable Time From Low Level
tlZ
tw
Width of Write-Enable or Read-Enable Pulse
tSETUP
Setup Times, High or Low Level Data(4)
Data Input With Respect to
Write-Enable, tSETUP(D)
Write-Select With Respect to
Write-Enable, tSETUP(W)
tHOlD
Hold Times, High or Low Level Oata(4)
Data Input With Respect to
Write-Enable,
os
10
ns
15
ns
15
ns
5
ns
25
ns
tHOLO(O}
Write-Select With Respect to
Write-Enable, tHOLD(W)
tlATCH
25
Latch Time for New Data(5)
Notes
(4)
Write-select setup time will protect the data written into the previous address_ If protection of data in the previous address is not required,
tSETUP(W) can be ignored as 'any address selection sustained for the final 30 ns of the write-enable pulse and during tHOLD(W) will result
in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have
been written into_
(5)
Latch time is the time allowed for the internal output of the latch to assume the state Qf new data. This ;s important only when attempting
to read from a location immediately after that location has received new data.
2-193
~MSI
DM54/DM74LS670
Logic Diagram
OUTPUTS
DATA
INPUTS
1121
Gw
1131
We
WRITE INPUT
(1'1
WA
141
Rs
1111
GR
READ INPUT
151
RA
National Semiconductor
PROPRIETARY DEVICES
Section 3
~ Proprietary
Max Ratings/Operating Conditions
7X/8X 7XL!8XL
SERIES SERIES
RATINGS
Maximum Allowable
Supply Voltage
Guaranteed Operating
Voltage Range
~upply
7
8
I Mil
71LS/81LS
EMITTER
DIODE
INPUTS
7
INPUTS
7
758/85$
SERIES
7
4.50 to 5.. 50
4.75 to 5.25
. 1 Coml
UNITS
V
V
Maximum Input Voltage
5.5
5.5
7
5.5
5.5
V
Maximum Voltage to OpenCollector Outputs*
7
8
7
7
7
V
I
-55 to +125
o to +70
°c
Storage Temperature Range
,';;5 to +150
°c
Operating Free-Air
TemPerature Range
Mil
1 Coml
3·JJ
~
Table of Contents
Proprietary
Device No.
DM80L06
DM7090/DM8090
DM7091/DM8091
DM7092/DM8092
DM7093/DM8093
DM7094/DM8094
DM7095/DM8095
DM70L95/DM80L95
DM7096/DM8096
DM70L96/DM80L96
DM7097/DM8097
DM70L97/DM80L97
DM7098/DM8098
DM70L98/DM80L98
DM7099/DM8099
DM7121/DM8121
DM71 L22/DM81 L22
DM7123/DM8123
DM71 L23/DM81 L23
DM7130/DM8130
DM7131/DM8131
DM7136/DM8136
DM7160/DM8160
DM71 LS95/DM81 LS95
DM71 LS96/DM81 LS96
DM71 LS97/DM81 LS97
DM71 LS98/DM81 LS98
DM7200/DM8200
DM7210/DM8210
DM7211/DM8211
DM7214/DM8214
DM7219/DM8219
DM7220/DM8220
DM7223/DM8223
DM7230/DM8230
DM7511/DM8511
DM75L 11 /DM85L 11
DM7512/DM8512
DM75L 12/DM85L 12
DM7520/DM8520
DM8531
DM7542/DM8542
DM7544/DM8544
DM7546/DM8546
DMB5S50
DM7551/DM8551
DM75L51/DM85L51
DM7552/DM8552
DM75L52/DM85L52
DM7553/DM8553
DM7554/DM8554
DM75L54/DM85L54
Page
No.
Description
Quad 2-lnput NAND Gates with Resistive
Pull-Ups
Quad Inverters plus Dual 2-lnput NAND
Gates
Quad 2-lnput NAND 8uffers
Dual 5-lnput NAND Gates
TRI-STATE Quad Buffers
TRI-STATE Quad Buffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TR I-ST ATE Hex Buffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TR I-STATE Hex Buffers
TRI-STATE Hex Buffers
TRI-STATE Quad 2-lnput NAND Buffers
TR I-STATE Data Selectors/Multiplexers
Quad 2-lnput Data Selectors/Multiplexers
TRI-STATE Quad 2-lnput Data Selectors/
Multiplexers
TRI-STATE Quad 2-lnput Data Selectors/
Multiplexers
1O-Bit Magnitude Comparators
6-Bit Unified Bus Comparators
6-Bit Unified Bus Comparators
6-Bit Magnitude Comparators
TRI-STATE Octal Buffers
TRI-STATE Octal Buffers
TR I-STATE Octal Buffers
TR I-STATE Octal Buffers
4-Bit Magnitude Comparators
8-Line Data Selectors/Multiplexers
8-Line Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
T R I-ST A TE Data Selectors/Multiplexers
9-Bit Parity Generators/Checkers
1-line to 8-Line Demultiplexers
TRI-STATE Dual 2/4 Demultiplexers
Dual Gated Flip-Flops
Dual Gated Flip-Flops
Dual Gated Flip-Flops
Dual Gated Flip-Flops
Modulo-N Dividers
TRI-STATE 16k Read Only Memories
TRI-STATE Quad I/O Registers
TRI-STATE Quad Switch Debouncers
TRI-STATE 8-Bit Universal I/O Shift
Registers
6-Bit Shift Registers
TR I-STATE 4-Bit 0 Type Registers
TRI-STATE 4-Bit 0 Type Registers
TR I-STATE Synchronous Counters/Latches
TR I-STATE Synchronous Counters/Latches
TRI-STATE 8-Bit Latches
T R I-STAT E Synch ronous Cou nters/ Latches
TR I-STATE Synchronous Counters/Latches
3-iii
Package
J
Mil
3-3
3-3
3-3
3-5
3-5
3-7
3-7
3-7
3-7
3-7
3·7
3-7
3-7
3·9
3-11
3-13
3-13
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3-17
3-19
3-19
3-17
3-21
3-21
3-21
3-21
3-23
3-25
3·25
3-28
3-28
3-32
3-35
3-37
3-40
3-40
3-40
3-40
3-44
3-49
3-52
3-54
3-56
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Mil
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Coml
N/A
•
•
N/A
•
•
•
•
•
•
Coml
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
3-13
3-60
3-62
3-62
3-64
3-64
3-70
3-64
3-64
Mil
N/A
3-1
W
N
Coml
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
(F)
(F)
•
•
•
•
•
•
•
•
•
•
•
•
(F)
•
•
•
•
•
•
•
•
•
•
•(F)
•
N/A
•
•
•
•
•
•
•
•
N/A
•
•
•
N/A
•
•
•
•
•
•
•
•
•
•
•
•..
•
•
•
•
•
•
•
•
~
Proprietary
Device No.
DM7555/DM8555
DM7556/DM8556
DM7560/DM8560
DM75L60/DM85L60
DM7563/DM8563
DM75L63/DM85L63
DM75S68/DM85S68
DM7570/DM8570
DM7573/DM8573
DM7574/DM8574
DM7575/DM8575
DM7576/DM8576
DM7577 /DM8577
DM7578/DM8578
DM8581
DM7590/DM8590
DM7595/DM8595
DM7596/DM8596
DM7597/DM8597
DM7598/DM8598
DM7599/DM8599
DM7613/DM8613
DM76L 13/DM86L 13
DM76L24/DM86L24
DM76L25/DM86L25
DM76L70/DM86L70
DM76L75/DM86L75
DM76L76/DM86L76
DM7678/DM8678
DM7679/DM8679
DM76L90/DM86L90
DM76L93/DM86L93
DM76L97/DM86L97
DM76L99/DM86L99
DM7795/DM8795
DM7796/DM8796
DM7853/DM8853
DM7875A/DM8875A
DM7875B/DM8875B
DM8898
DM8899
Table of Contents
Page
No.
Description
TR I·STA TE Programmable ·DecadeCounters
TR I·STATE Programmable Binary Counters
Synchronous 4·Bit Up/Down Decade
Counters
Synchronous 4·Bit Up/Down Decade
Counters
Synchronous 4·Bit Up/Down Binary
Counters
Synchronous 4·BitUp/Down Binary
Counters
64·Bit Edge·Triggered Registers
8·Bit Serial In/Parallel Out Shift Registers
1024·Bit Field Programmable Read Only
Memories
TR I·STA TE 1024·Bit Field Programmable
Read Only Memories
Programmable Logic Arrays
Programmable Logic Arrays
256-Bit Programmable Read Only Memories
TR I-STA TE 256-Bit Programmable Read
Only Memories
TR I-ST A TE 16k Read Only Memories
8-Bit Parallel In/Serial Out Shift Registers
4096-Bit Read Only Memories
TRI-STATE·4096-Bit Read Only Memories
TRI-STATE 1024-Bit Read Only Memories
TRI-STATE 256-Bit Read Only Memories
TR I-STA TE 64-Bit Random Access Memories
Quad Gated Flip-Flops
Quad Gated Flip Flops
TR I-ST ATE Magnitude Comparators with A
Almost Equal B
TRI-STATE 7-Segment to BCD Decoders
8-Bit Serial In/Parallel Out Shift Registers
Presettable Decade Counters
Presettable Binary Counters
7 by 9 Character Generators
7 by 9 Character Generators
8·Bit Parallel In/Serial Out Shift Registers
Binary Counters
TRI-STATE 1024-Bit Read Only Memories
TRI-STATE 64'Bit Random Access Memories
4096-Bit Read Only Memories
TRI-STATE 4096,Bit Read Only M~mories
Dual Retriggerable Resettable Monostable
Multivibrators
TRI-STATE 4-Bit Parallel Binary Multipliers
TRI-STATE 4-Bit Parallel Binary Multipliers
TRI-STATE BCD to Binary Converters
TRI·STATE Binary to BCD Converters
3-iv
3·72
3·72
3·76
3·76
3·76
3·76
J
Mil
Com I
•
•
•
•
•
•
•
•
•
•
•
0
0
•
•
3-92
•
3-95
3-95
3-101
3-104
•
•
•.,
•
•
•
•
•
•
•
3-134
3·86
3·137
3·137
3-140
3-140
3-110
3,142
3-144
3-148
3-113
3·116
3-151
3-154
3-154
3-156
3-156
•
•
3·82
3·86
3·89
3-107
3-110
3-113
3-116
3-119
3-122
3-127
3-40
3-40
3-131
Package
N
Mil
Coml
•
•
•
•
•
•
•
•
•
•
•
•
D
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
N/A
• •
• •
• •
• •
• •
•
•
•
•
•
•
•
• N/A
N/A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
• •
N/A
• •
• •
•
•
• •
• •
• •
• •
•
•
•
•
•
•
•
•
W
Mil
Coml
•
•
•
•
•
•
•
•
•
•
•
•
N/A
•
N/A
•
N/A
N/A
N/A
N/A
N/A
N/A
•
N/A
N/A
N/A
N/A
N/A
•
• •
• •
• •
• •
• •
• •
• N/A •
N/A
•
•
•
•
•
•
•
N/A
N/A
•
•
•
N/A
N/A
N/A
N/A
~ Proprietary
DM80L06
Quad 2-lnput NAND Gates with Resistive Pull Up
General Description
Features
These quad two-input NAND gates feature internallyconnected, 20 kQ pull-up resistors on the outputs. The
pinout is the same as the very popular DM54L03/
DM74L03, and these devices provide the same "onetenth-power technology" as well.
• Typical power dissipation
12mW
• Typical propagation delay
115 ns
Connection Diagram
Vee
B4
A4
V4
B3
A3
V3
V2
GND
10
Al
Bl
VI
A2
80L06(N)
3-1
B2
~
DM80L06
Proprietary
Electrical Characteristics
overrecorrimended oi:>er~tirig free-air temperature' range (unfess otherwise noted)
.'.
DM80L
CONDITIONS
PARAMETER
VIH
High Level I nput Voltage
Vil
Low Level Input Voltage
UNITS
L06
TYP(1)
MIN
MAX
V
2
0.7
200
10H
High Level Output Current
V OH
High Level Output Voltage
10l
Low Level Output Current
VOL
Low Level Output Voltage
Vee
~
Min, IOL
II
Input Current at Maximum Input Voltage
Vct
~
Max, VI
~
S.SV
IIH
High Level I nput Current
Vee
~
Max, VI
~
2.4V
III
Low Level Input Current
Vee
~
Max, VI
~
0.3V
los
Short Circuit Output Current
Vee
~
Max
ICCH
Supply Current (Total with Outputs High)
Vee ~ Max, VI ~ 0
ICCl
Supply Current (Total with Outputs Low)
Vee
Vee ~ S.OV, V IL ~ 0.7V, IOH ~ 100/J.A
~
Max.. VI
~
Max, V IH
~
2.0
<1
-0.17
~
SV
/J.A
V
2.S
2V
V
3.6
mA
0.4
V
100
/J. A
10
/J.A •
-0.12
- word B,
2) word A < word B, or 3) word A ~ word B. A strobe
input overrides all other inputs, and when taken to a high
logic level, places both outputs in the low state. Comparison of words longer than four bits each may be
accomplished through the use of additional DM7200/
DM8200 devices.
• Typical power dissipation
175mW
• Typical propagation delay
20 ns
Connection Diagram
OUTPUT
Vr14
AflJ
Y
12
Af
11
L
l
STROBE
/9
10
B
~
+---J
L.:::4
r'-'
......
I'
84
r
--""
12
BJ
on;:
IT
x
T f'.J'
~r-I--I
~
r
:-;:;
:::»;
/
I
J
B2
14
15 _
Ne
Bl
OUtT
x
A4, 84 are most significant bits.
7200/8200(JI, IN), (WI
Truth Table
INPUTS
OUTPUTS
CONDITION
STROBE
X
Y
DON'T CARE
H
L
L
A>B
L
H
L
Ahort Circuit Output Current
Vee
-55
mA
Icc
Supply Current
Vee ~ Max
53
mA
I,
Input Current at Maximum Input Voltage
I'H
Vee
~
5.5V
mA
-18
Max(2)
35
Notes
(11 All typical values are at Vee = 5V. TA = 25'C.
121 Not more than one output should be shorted at a time.
Switching Characteristics
vee ~ 5V, TA ~ 25°C
DM72/82
FROM
TO
CONDITIONS
(INPUT) (OUTPUT)
PARAMETER
00
MIN
tpLH
Propagation Delay Time, Low-to-High Level Output
Data
Output
tpHL
Propagation Delay Time, High·to-Low Level Output
Data
Output
CL~15pF
RL
tpLH
Propagation Delay Ti me, Low·to-H igh Level Output
Strobe
Output
tpHL
Propagation Delay Time, High-to·Low Level Output
Strobe
Output
tSETUP Setup Time
tHOLD
~
400Q
10
Hold Time
0
3·24
UNITS
TYP MAX
24
40
ns
17
30
ns
15
27
ns
8
18
ns
0
ns
-10
ns
~
Proprietary
DM72/DM8210 ,11
8-Line Data Selectors/Multiplexers
General Description
Features
These monolithic data selectors/multiplexers contain full
on-chip binary decoding to select the desired one of eight
data sources. The DM7211/8211 have a strobe input,
which must be at a low logic level to enable these devices.
A high logic level on the strobe latches the output in a
high logic state, regardless of the conditions on the other
inputs. Depending upon the 3-bit binary number applied
to the select lines, the non-inverted data present on the
selected input is passed to the output. The circuit can
also be used to convert parallel input data to serial
output data. If 8 bits of parallel i'nformation are applied
to the inputs, and if the binary numbers 000 through 111
are sequenced on the select lines, the output will provide
a serial presentation of the input bits.
•
Full on-chip decoding
•
Series 54/74 compatible
•
Converts parallel data to serial data
•
One volt typical noise immunity
•
Typical propagation delay
22 ns
•
Typical power dissipation
100mW
Connection Diagrams
l
SELECT
INPUT
A
14
DATA INPUTS
,
I
1
13
5
6
11
12
OUTPUT
4
8
9
10
....-
16
r-
1
2
B
Vr
C
3
4
0
,
5
1
2
3
SELECT
INPUTS
6
7
15
13
14
,
STROBE OUTPUT
4
5
11
12
G!:
3
2
B
C
\
, ,
0
4
1
SELECT
INPUTS
DATA INPUTS
5
6
2
3
,
NV
OATA INPUTS
7210(J), (W); 8210(J), (N), (W)
7211 (J), (W); 8211 (J), (N), (W)
Truth Table
SELECT
INPUTS
STROBE
(OM7211iDM8211
ONLY)
OATAINPUTS
0
1
2
3
4
5
6
7
OUTPUT
C
B
A
L
L
L
L
L
X
X
X
X
X
X
X
L
L
L
L
L
H
X
X
X
X
X
X
X
H
L
L
H
L
X
L
X
X
X
X
X
X
L
L
L
H
L
x
H
X
X
X
X
X
X
H
L
H
L
L
X
X
L
X
X
X
X
X
L
L
H
L
L
X
X
H
X
X
X
X
X
H
L
H
H
L
X
X
X
L
X
X
X
X
L
L
H
H
L
X
X
X
H
X
X
X
X
H
H
L
L
L
X
X
X
X
L
X
X
X
L
H
L
L
L
X
X
X
X
H
X
X
X
H
H
L
H
L
X
X
X
X
X
L
X
X
L
H
L
H
L
X
X
X
X
X
H
X
X
H
H
H
L
L
X
X
X
X
X
X
L
X
L
H
H
L
L
X
X
X
X
X
X
H
X
H
H
H
H
L
X
X
X
X
X
X
X
L
L
H
H
X
X
X
X
X
X
H
H
X
L.
H
X
X
H
X
X
x
X
X
x
X
X
X
H
3-25
9
10
-
1
,
.
DATA INPUTS
I
r--
, 6
\
SELECT
INPUT
A
H
L
X
=0;
High Level
=
Low Level
0;:;
Don't Care
J:
~. Proprietary
DM721DM8210,11·
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM72/112
CONDITIONS
PARAMETER
MIN
VIH
High Level I nput Voltage
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
TYP(1)
Vee
~
Min,
II
High Level Output Vol tage
Vee
~
Min,
Low Level Output Current
VOL
Low Level Output Voltage
Vee = Min,
MAX
V
0.8
0.8
V
-1.5
-1.5
V
-400
-400
~-l:?mA
V IH
~
2V
IOH ~ -400/lA
10L
UNITS
MIN . TYPf1)
2.
High Level Output Current
VOH
MAX
2
TA ;, 25°C
10H
11
10
2.4
2.4
V IL = 0.8V
IOL = 16 mA
/lA
V
16
16
mA
0.4
0.4
V
1
1
mA
40
40
/lA
-1.6
-1.6
mA
-55
mA
33
mA
Input Current at Maximum
II
I nput Voltage
Vee
~
Max,
VI
~
5.5V
IIH
High Level I nput Current
Vee = Max,.
VI = 2.4V
IlL
Low Level Input Current
Vee = Max,
VI
los
Short Circuit Output Current
Vee = Max(2)
Ice
Supply Current
Vee = Max(3)
~
0.4V
-55
-18
20
-18
20
33
Notes
(1)
All typical values are at Vcc = 5V, T A = 25° c.
(2)
Not more than one output should be shorted ,at a time.
(3)
ICC is measured with all inputs grounded..
Switching Characteristics Vee = 5V, TA = 25°C
DM72/82
PARAMETER
FROM
TO
CONDITIONS
10
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
. tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
UNITS
11
MIN TYP MAX MIN
TYP MAX
Data
Output
23
32
23
32
ns
Data
Output
21
30
21
30
ns
Strobe
Output
N/A
21
30
ns
19
27
ns
C L = 15 pF, RL = 400n
Strobe
Output
N/A
Select
Output
31
43
31
43
ns
Select
Output
31
42
31
42
ns
3-26
~ Proprietary
OM72/0M8210 .11
Logic Diagrams
10
.;P
SElECT C
D1
1121
-6r-
V
1
I
(11)
D'
;mt>
SElECT B
D5
,....
T
{101
......
I
5
~
'--D4
191
.~
SElECT A
D3
D2
D'
DO
F'~ 4"'
181
OUTPUT
-;::::::
I ,....
3
161
~,}--
151
141
F' F=I,
131
':;:6."'
11
STROBE (10)
SelECT
~;P
7 (14
......
T
;mt>
1""'"
I
,1131
SELECT
-
V
6}--
,....
I
5
5 1121
;::::::t
4 (11)
SElECT A
(15)
I
1 (4)
,131
r--o
v
3
3 161
,151
4 "-
~'r--
1-'-"1,""'"
6'J
3·27
1'1 OUTPUT
~ . Proprietary
oM72/OM8214.19
TRI"STATE Data Selectors/Multiplexers
General Description
Features
These devices are the TAI·STATE versions of the ·very
popular DM54153 (DM7214) and DM54150 (DM7219)
data selectors/multiplexers. They contain full on·chip
decoding to select the desired data input. The DM72141
8214 is a dual, four-line multiplexer, while the DM72191
8219 selects one of sixteen input data lines, depending
upon the binary number applied to the select inputs. The
DM7214/8214 has common select lines, which therefore.
select the same input line of both multiplexers. However,
the two outputs can be individually controllec1 by means
of the separate enable lines; which, when taken to a.high
logic level, places the output in the high·imlledanc;e
TAl-STATE condition. The data at the output of the
DM7214/8214. is true, whereas the DM7219/8219 is
inverted.
• TRI·STATE pin equivalents to popular 54/74 TTL
devices
DM7214/8214 - 54153/74153
DM7219/8219 - 54150/74150
• Typical propagation delay
DM7214/8214
DM7219/8219
.• Typical power dissipation
DM7214/8214
DM7219/8219
• Strobe/enable override
Connection Diagrams
1
E7
\
2
E6
3
E5
4
E.
.
5
El
6
E2
DATA INPUTS
7
El
B
9
11.r
D GND
EO, ENABLE W
OUT DATA
SELECT
7219(J), IF}; 8219IJ}, IN}, IF}
3-28
10
13.5 ns
11 ns
170'rnW
225mW
~
Proprieta ry
Electrical Characteristics
DM72/DM8214.19
over recommended operating free-air temperature range (unless otherwise noted)
DM72/82
CONDITIONS
PARAMETER
MIN
V'H
High Level I nput Voltage
V'L
Low Level I nput Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
TVP(1)
==
Min,
I, =-12 mA
I DM72
High Leve! Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
1010FF)
Vee = Min
V IH = 2V
VIL = 0.8V,
10H ~
Max
Vee:;; Min,
V 1H
2V
VIL = O.8V,
10L = 16 mA
Off·State IHigh·lmpedance State)
Vee == Max
Output Current
V IH = 2V
V, .. = 0.8V
I,
Input Current at Maximum
Vee = Max,
Input Voltage
I
;;;;
MIN
TVP(1)
MAX
2
I DM82
VOH
MAX
2
Vee
UNITS
19
14
V
0.8
0.8
V
-1.5
-1.5
V
-2.0
-2.0
-5.2
-5.2
2A
V
2.4
16
16
rnA
0.4
OA
V
Va =OAV
-40
-40
Vo = 2.4V
40
40
1
1
V, =5.5V
I'H
High Level Input Current
Vee
=
Max,
V,
I'L
Low Level I nput Current
Vee
==
Max,
V I =O.4V
los
Short Circuit Output Current
Vee = Maxl21
Icc
Supply Current
~2.4V
Vee = Maxl31
~A
rnA
40
40
~A
'-1.6
-1.6
rnA
-100
mA
-55
-18
I DM72
I DM82
mA
-28
34
56
45
68
34
65
45
68
mA
Notes
= 5V, TA = 25°C.
(1)
All typical values are at VCC
(2)
Not more than one output should be shorted at a time, and for the DM7219/DM8219 duration of short circuit should not exceed one second.
ICC is measured with all inputs grounded.
131
Switching Characteristics vee = SV, T A = 2SoC
DM72!82
PARAMETER
FROM
CONDITIONS
TO
MIN
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tpLH
Propagation Delay Time,
Low··to-High Level Output
Propagation Delay Time,
High-to-Low Level Output
tZH
MIN
TVP
MAX
15
23
13'
20
ns
Data
Output
12
18
9
14
ns
Select
Output
20
34
21
35
ns
Select
Output
20
34
22
33
ns
12
18
15
23
os
14
21
17
27
ns
5
10
5
10
ns
15
23
21
30
ns
= 50 pF,
RL = 40011
Output Enable Time to
Output Enable Ti me to
Low Level
tHz
MAX
Output
High Level
tZL
TVP
Data
CL
tpHl
UNITS
19
14
Output Disable Time from
High Level
C L = 5 pF, RL = 40011
tLZ
Output
Di~able
Time from
Low Level
3·29
.'
~ Proprietary
OMn/OM8214.19
Truth Tables
14
SELECT INPUTS
B
A
DATA INPUTS
CO C, C2 C3
X
X
x
L
L
H
x
x
ENABLE
OUTPUT
x
H
Hi-Z
L
v
x
x
X
X
L
X
X
X
X
H
H
H
X
H
X
H
X
X
H
L
X
X
X
X
H
X
H
X
X
X
X
X
X
L
H
H
H
H
H
H
H
L
L
X
19
SELECT
ENABLE
DATA INPUTS
OUTPUT
~D---C----B----A~
G ~E-O--E-'---E-2---E-3--E-4---E-5---E-6-.-E-7---e-8---E9---E-'-O--E-1'--E-'-2--e-'-3--E-'4--e-'-54 v
X
x
x
L
L
L
L
.L
x
x
H
L
,H
H
L
x
x
x
x
,x
X
x
x
x
x
x
L
H
H
H
H
H
H
H
H
H
H
H
H
L
L
H
L
L
L
x
x
x
L
L
x
x
H
L
x
H
L
H
H
H
H
x
x
x
x
x
x
x
L
L
x
x
L
L
x
x
X
X
X
X
X
L
H
H
L
H
H
H
H
L
H
H
H
L
H
H
H
H
H
H
H
H
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
H
L
L
x
x
x
L
x
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
x
x
x
x
x
x
L
X
X
H
X
X
x
x
x
x
X
X
H
L
x
x
x
x
x
x
x
x
H
x
x
x
L
x
x
x
x
L
H
X
X
X
X
X
X
X
X
X
X
X
X
H
x
x
x
x
x
x
H
x
x
x
x
x
H
H
x
x
H
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
x
x
X
L
x
x
X
L
x
x
L
H
H
x
x
x
x
x
L
H
L
L
x
x
x
x
x
x
x
X
L
x
x
x
x
x
x
x
x
X
H
x
x
x
x
x
x
x
L
l.
x
x
x
x
X
X
X
X
L
L
x
x
x
X
X
X
L
H
L
x
x
x
x
x
x
x
x
x
L
H
X
X
L
x
x
x
x
x
x
x
x
x
x
x
L
L
x
x
x
x
x
x
x
x
x
x
H
L
x
x
x
x
x
x
x
x
x
x
X
L
X
X
X
X
H
X
X
L
X-
X
H
X
X
X
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Hi-Z
x
x
x
x
H
x
x
x
x
L
x
x
x
x
H
x
x
x
x
x
,x
x
x
x
x
x
x
x
x
x
x
x
L
x
x
x
H
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
H
L
H
H
L
H
x
x
x
x
x
x
H
X
x
L
x
H
X
x
x
x
x
x
x
X
X
X
X
X
L
x
x
X
X
X
H
x
X
x
x
x
x
x
x
x
x
x
x
x
x
X
x
L
X
X
X
X
X
X
L
H
X
X
X
X
x
H
X
X
X
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
H
x
X
H
X
X
X
X
X
L
X
H
X
X
X
X
X
X
X
X
X
H
X
X
X
L
H
H
x
X
x
i<
H
X
x
x
x
L
x
x
x
x
x
x
x
x
x
X
X
x
x
x
H
x
X
x
x' x
X
X
X
X
X
x
x
x
x
x
x
X
X
X
x
x
x
X
x
x
x
X
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3-30
x
x
x
x
x
x
x
x
X
X
X
X
X
X
L
H
H
L
H
H
H
~ Proprietary
DM72/DM8214.19
logic Diagrams
14
ENABLE
(I)
STROBE 01
DATA 1
DATA 2
ENABLE 115)
STROBE G2
19
OUTPUT
W
00:)
III I I 1
tr
l
~
!1
II
\h\[1il\~
~
III
11
11
l
III
;h ~ ~
D
0
C
,,
C
A
A
.
,
I9)
STROB
(ENABl
" " " " "
"
'" '"
" " " " '"
~--------------------------------------~v~---------------------------------------'
181
111
(61
151
(41
III
l21
111
E4
(23)
IZ2)
(1:1)
(201
(191
E12
DATA
INPUTS
(18)
(17)
(16)
E15
(15)
(14)
.
(13)
DATA
SELECT
(BINARY)
(11)
~' Proprietary
DM72/DM8220
9-Bit Parity Generators/Checkers
G,eneral Description
These circuits can be used both to check 'for parity and
to generate a parity bit, When the generation of a parity
bit is desired, the eight data inputs, are connected to the'
,transmission lines. If a low logic level is then connected
to the parity input, the circuit will generate o,dd parity.
The succeeding parity checker will acknowledge an odd
number 'of "1's" (odd parity) with a low fo'gic level on
its output. If a high logic level is connected to the paritY'
input of the first parity generator, the parity checker
will acknowle(lge even parity with a high logic level on
its output, although the output of the parity generator
will be low.
Features
•
•
Connection Diagram
r
Typical propagation delay
Typical power dissipation
34 ns
130mW
Truth Table
,DATA INPUTS
f
X
H
13
14
E'
F
G
11
12
OUTPUT
T9
10
8
r-
PARITY
INPUT
OUTPUT"
INPUTS A THRU H
H
L
Even number of inputs
are High
L
L
Odd number of inputs
are High
*Single device
X
A
4
3
2
8
.
\
C
5
6
PARITY
INPUT
0
GrO
I
DATA INPUTS
7220/8220(J), (N), (W)
Typical Application
If the control line is a logical "0" the parity generator
will generate odd parity. The paritx checker will
acknowledge the presence of an odd number of "1 's"
(odd parity) with a logical "0" on its output.
If the control line is a logical "1" the parity generator
will generate even parity. The parity checker will
acknowledge the presence of an even number of "1 's"
(even parity) with' a logical "j" on its output.
,
LA
LA
I
"--
B
"--
'----
C
L.-- C
'---- 0
E
CONTROl-
B
'--- 0
OUTPUT
r-
E'
F
F
G
G
H
H
P
P
OM7220/0MB220
AS PARITY GENERATOR
OUTPUT ~
OM7220/0MB220
AS PARITY CHECKER
,
~
DM72/DM8220
Proprietary
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM82
DM72
PARAMETER
20
CONDITIONS
MIN
V,H
High Level Input Voltage
V ,L
Low Level Input Voltage
V,
Input Clamp Voltage
TYPlll
-~
Mill,
12 mA
II =-
VO H
High Level Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
Min,
Vee
2V
V'H
400~A
V" - O.8V,
IOH -
Vee " Min,
V 1H
2V
V" - O.8V,
iOL =
16 mA
UNITS
TYPllI
MAX
2
TA - 25"C
High Level Output Current
MIN
2
Vee
IOH
20
MAX
V
0.8
0.8
V
-1.5
-1 5
V
--400
--400
MA
V
24
2.4
16
16
mA
0.4
0.4
V
mA
I,
Input Current at Maximum Input Voltage
Vee
Max,
VI"" 5.5V
1
1
I'H
High Level Input CUI"rent
Vee = Max,
VI'" 2.4V
40
40
MA
I,L
Low Level Input Current
Vee'" Max,
VI -= D.4V
-1,6
-1.6
mA
los
Short Circuit Output Current
Vee = Max(2)
-55
mA
Icc
Supply Current
Vee
35
mA
~
=-
-55
20
26
Max
-18
35
26
Notes
Vee
All typical values are at
121
Not more than one output should be shorted at a time.
Switching Characteristics
=-
5V, TA
= 25
1
CLOCK
2
G2
4
3
Gl
01
6
5
01
7
01
G!:
CLOCK
7511/8511(J), (N). (WI; 75L 11/85L 11(JI, (N), (WI
Vce
r16
G4
04
04
114
I
I
I
I
Gl
J1
t
Kl
03
G3
13
Cli:
Y
11
112
R
10
I
I
J
I
4
3
MODE 1
01
5
Jl
6
Ql
)
n1
7512/8512(JI, (N), (WI; 75L 12/85L 12(J), (N), (W)
115
I
J~K
2
·1
CLEAR
I
I l
I
4
3
GV
01
I
I
J
L6
)
02
-7613/8613(JI, (N), (WI; 76L 13/86L 13(JI. (NI. (W)
3-40
J:
J:
Electrical Characteristics
PARAMETER
CONDITIONS
MIN
VIH
High Level. Input Voltage
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
~OH
High Level Output Current
VOH
High Level Output Voltage
VOL
Vee = Min,
c.>
:!':
DM76/86
DM75L/85L".12
11.12
13
DM76L/86L 13
TVP{11
MAX
Vee = Min, V IH = 2V
MIN
TVP(11
MAX
2
I, = -12 mA
Low level Output Current
MIN
TVPt11
UNITS
2
V
0.8
0_8
-1.5
-1.5
N/A
V
-800
-800
-200
/lA
2.4
2.4
0.7
16
16
2.0
16
16
3.6
Vee = Min, V IH = 2V
Military
0.4
0.4
0.3
VIL = Max, IOL = Max
Commercial
0.4
0.4
0.4
V
Input Current at Maximum Input Voltage
Vce = Max, VI = 5.5V
1.0
1.0
0.1
mA
High Level Input Current
Vee = Max, VI = 2.4V
40
40
10
/lA
IlL
Low Level Input Current
-1.6
-1.6
Short Circuit Output Current
Icc
Supply Current
--{l.18
Vee = Max(3)
11, L11
42
55
12, L 12
44
57
13, L13
(3)
-18
-55
-3
--9
3.5
58
76
-15
mA
mA
3:
3.2
4.5
7.9
0
CO
U1
4.9
5.7
0
3:
-.J
U1
......
mA
...a
...a
!:;
...a
':.
N
Notes
(1) All typical values are at Vee = 5V, TA = 25°C_
(2)
-55
-18
Vee = Max(2)
I»
-<
V
IIH
los
~-
mA
1\
II VI = 0.3V
V I =O.4V
.
~
V
2.4
Military
Vee = Max
"0
'C
MAX
Commercial
.
Low Level Output Voltage
DM75/85
2
VIL = Max, IOH = Max
IOL
~
over recommended operating free-air temperature range (unless otherwise noted)
!:;
Not more than one output should be shorted at a trme.
Supply current is measured with clear/clock at 3V, an other inputs at OV.
N
0
3:
-.J
0)
......
0
-
3:
CO
0)
...a
W
!:
w
Switching Characteristics vcc
FROM
PARAMETER
fMAX
tplH,
Propagation Delay Time,
Clock
Propagation Delay Time,
Clock
High,to,Low Level Output
tpLH
Propagation Delay Time.
Clear
Propagation Delay Ti me,
Clear
High,to,Low Level Output
tWICLOCK'),
tWICLEARI
CONDITIONS
Q
RL=4kr2
Q
11, L 11
12, L12
13, L13
MIN
TYP
30
6
Q
Width of Clock Pulse
Width of Clear Pulse
Setup Time
DM76f86
(Low Power)
.i.
!sETUP
DM75f85
0
w
N
DM75f85
CL ~ 15 pF r(Standard)
RL ~ 400n
C L = 50 pF
Low,to,High Level Output
tpHL
TO
Maximum Clock Frequency
Low,to,High Level Output
tpHL
~
= 5V, T A = 25°C
J, D Inputs
MIN
TYP
MAX
MIN
TYP
45
20
28
20
30
9
6
10
5
7
20
21
35
17
24
95
35
70
41
60
19
30
26
40
22
33
75
125
60
120
70
100
14
20
22
35
NfA
55
95
32
65
NfA
19
30
26
40
21
31
75
125
57
114
68
100
11
25
15
24
16
30
100
30
100
50
20
10
25
13
27
18
100
30
' 100
30
100
50
15
9
15
9
24
16
80
40
110
55
100
55
30
120
MHz
14
100
K Inputs
MAX
55
20
Mode Inputs
Gl or G2 Inputs
MAX
UNITS
NfA
30
20
N/A
NfA
150
85
N/A
N/A
20
13
NfA
NfA
150
80
N/A
N/A
21
60
30
150
NfA
21
85
Hold Time
All
Truth Tables
11, L11
0
0
0
0
0
0
12, L12
0
G1
G2
CLR
°n+1
On+1
J
L
L
L
L
L
H
L
K
L
M
H
L
I»
ns
ns
ns
ns
ns
0
ns
s:-..J
ns
........
0
U1
ns
s:(X)
....U1
!:
....
::..
-"
ns
ns
N
!:
ns
N
0
s:-..J
13, L13
CLEAR
ii'
....
-<
t-c
tHOW
...
':'CI
0
~.
(J)
* Asynchronous Transition
On+1
0
G
CLR
°n+1
H
L
L
H
H
L
L
L
H
L
H
L
H
L
On
H
L
L
L
L
X
H'
X
L
On
On
L
H
H
L
L
X
H
L
On
X
X
H
L
On
0"
H
H
H
L
On
X
X
H
L'
X
X
X
H
L
W
X
X
L
L
0
X
X
X
H
L'
X
=- Don't Care
........
0
s:
(X)
en
....
Co)
t
Co)
~ Proprietary
DM75/DM8511,L11,12,L12,DM76/DM8613,L13
Logic Diagrams
11, L 11
1511111
a
16)(101
. CP
12,L12
191
CLEAR---
0------------_-- - --.
---,
r----------
I
I
I
I
CLEAR
n 1-....--4:.:,171!:,!ll,,:::0)
CP
L _________ _
111_ _
CLOCK_
_ _ _ .J
0------------....- - - - +
13, L13
CLEAR
----
191
CLEAR
0
o
13116){11){141
12)(5){12){151
CLOCK
CP
----
111
3-43
14)(7){1 0)(131
0
~
-DM75/DM8520
Proprietary
Modulo-N Dividers
General Description
serial shift register, the device may be used where
four-bit parallel-in-serial-out shifting is required.
(continued)
Although extremely versatile in a number of applications,
the primary uses of these circuits are in two a~eas:
1. MODULO-N DIVIDER
A single DM7520/DM8520 can be programmed
without external components to divide by any number
from 2 to 15. Cascading of these dividers will provide
division by any number from 2 to ver." large numbers.
Features
Fu!ly programmable divider-any number from 2 to
1M
2. SHI FT REGISTER
Since the basic organization of the logic is that of a
'" Typical propagation delay
36 ns
'" Typical power dissipation
250 mW
Truth Table
Connection Diagram
EXOR
EXOR
PRESET
INPUT
OUTPUT
16
15
14
0000
OUTPUT
GNU
DETECT
1.1
13
SERIAL
EX·OR
OUTPUT CONTROL
10
11
9
--SETTING
:
I
t-
'--
-
:~
I:
P1
3
SERIAl!
PARALLEL
l
15
4
P2
7
6
P3
Vee
7
8
H
H
H
H
l
H
H
L
12
H
13
H
H
14
H
H
15
H
8
H
INPUT
P4
H
H
H
2
P: Pl4-y1
L
l
f-
·BY
H
H
SERIAL
INPUT
----1
TABLE FOR DIVISION BY N
EXTERNAL
1
00
.. Also functions as a four-bit paraliel shift register
L
H
10
11
INPUT
7520(J), (Wi; 8520(Ji, (Ni, (Wi
Logic Diagram
EX-OR OUTPUT
(141
(±)
1 I16~1t><>-=E_.X_T_E~:_X:_~_~ Ir:l- '-5_1'- _-_-~=_=_=_=_~=~=_=_J_~ ~ ~ ~ ~ --==--_-b~~~~=~ ____,
__
PRESET -
SERIAL III
INPUT
--l
(101 SERIAL
OUTPUT
INPUT~(B~II~~________~-+
(21
PI
L--c><:"f.......l-1.5V - -.....--:..-I--~;..:...
OUTPUT
3v----\-r----""
STROBE
ov ___J
I: 1 MHz
t,: t,,; 10 ns (10% t. 90%)
Duty Cycle 50%
;::E
3·51
.~ Proprietary
DM75/DM8542
TRI-STATE Quad I/O Registers
General Description
Features
These circuits are four-bit storage registers having two
terminals per bit, which may be used as either inputs or
outputs while tied to their individual bus lines. Storage
capability is also provided by means of positive·edge
triggered flip·flops having a common clock and asyn·
chronous clear. Each 1/0 terminal can be forced into the
high·impedance state by applying a high logic level to
·its disable control. The four A outputs are tied together
on one disable control, while the four B outputs are tied
together on a separate disable contrpl.
• "TRI·STATE outputs
Connection Diagram
40MHz
• . Typical clock frequency
• Typical propagation delay
24 ns
• Typical power dissipation
400mW
Truth Table
MODES OF OPERATION
v
c
T"
DIS 1
.4
."
B4
14
AJ
BJ
11
13
CLOCK
"
11
CLEAR
,
A 11-41 B (1-4)
E1
E2
L
.H
H
H
a
Hi·Z
Output data to Bus A
H
L
H
H
Hi·Z
L
H
H
a
a
a
Output data to Bus 8
L
H
H
H
H
Hi·Z
Hi·Z
Output data to both buses
S~ore
data with output in high
impedance state
r-
,
2
1
DIS 2
COMMENTS
DIS2
DIS 1
Al
"
4
6
5
A2
B2
-E2
7
-E1
.t'
X
L
L
H
Data
On
Enter data from Bus A
X
H
L
H
Data
Hi·Z
Enter data from Bus.A
Data
Data
Data
Enter data from Bus B
L
X
H
L
On
H
X
H
L
Hi·Z
X
X
L
L
Data
GND
Enter data from Bus B
Enter data from both buses
(logical "1" on either will
dominate)
75421J1, (W); 8542(J), (N), (W)
Clear = Logical "1," puts all outputs to L state.
X = Don't Care
On = Data After Clock Transition
Logic Diagram
(21
Al
(JI
B1
(51
141
A2
B2
3·52
(11)
AJ
(12)
"
{14)
A4
UJ)
B4
~~~~p-ro--p-r--i-e-ta-~-----------------~------------------------D-M--7-5-ID~M-8-5-4-2--=~ectrical
Characteristics over recommended operating free-air temperature range (unless otherwise noted)
I
1___
PA
DM85
RAMETE~~ _ _ _ _ _ _--t______C_O_.N_D_I_T_IO_N_S_____--:I-f--_M=I-N_-_-_.-_-__-_-_-_-~---t---T-y-4--:(:-1--:)-M-A-X-l, UNITS
_V_'c.H'---t_H",ig_h_Levei Input VoltagF!
II
__ ~
2
Low Levellnput Vo:tagc
VIL
1-----+---!_VI
0.8
V cc "'Min,II""--12rnA
I__
I
I '"
I'~~w"~ "","","""""eo,
- ~ -_.
VOltage---~ -v-c-c·-~--M-in-,-V-'-H-~-2-V----------I--------
!,
.I
~H
High Level Output Current
VOH
High Level Output Vol ta 9c
Vec.
\IlL
IO(OFF)
I~
Min, V: H
-;;0
=
V
- 5.2
mA
V
2.4
Max
16
mA
I
0.4
V IL
=
0.8V,
Off State (High Irnpedance State)
Vee
I
Output Current
V,c - 0.8V
I
Input Curr-e-n7'ia-'-M-ax-,-m-u-m-I'-'P-L-'t-V-o-'t-a-g-e-+-vcc
I
101
~
- 40
O.4V
-"----+---------
1
L-e-ve-I-I-n-p-c--,t-C-'u--r-re-.r-,t-----~I-V--cc-.. -C;-2-M-a-x-,-V-,-~-2-.-4-V-
IlL
-
los
Short Ci:cuit Output Current ___ ~~ CC ;:;: N1ax(2}
ice
Supply Current
High
!. Vo
Low Leve! Input Current
\I CC'
~cc
-----;otes
Max, V I
-"
OAV
1.0
-1.6
-1.0
IlA
rnA
40
pA
-1.6
mA
----------+---------- --".---------25
-70
-25
-70
mA
Max
=
~--
II-:-cV"o'---::2'C.4coV-+---------:·-::-+--------:-::--1
40
Max, VI ::.. 5.5'1
00-_
V
16 mA
rVlax, V 1H '-°2V
=
II
II
'"
- - - - - - - - - - - - - - . - + - - - - - - - - - - - r - - - - - + - - . - - - - - - - - I f - . - . - - - - - - -- -
I'H
(1)
(2)
2V
O.8V, iot-!
j
l
V
-'1.5
Level Output
-VOL
!
I
------------------------r---.-------+--------;:-t---
lnputCl2rnp'Joltage
80
120
80
120
mA
------------'----------'--------'----
All typiGal values are at Vee = 5V, TA 25°C.
Not more than one output should be shorted at a ti rne.
000
Switching Characteristics vee ~ 5V, TA ~ 25°C
'M.
PARAMETER
r
TO
CONDITIONS
-----.-------------------+-----~------------.~-------------t------------------r_----__fM:.c.:..:A:'::X_ _I--Maximurn Clock Fre~Uency
.1--_ _--1
--.+---___
I
Propagation Delay Time,
tpLH
Low-to·High Level Outout
Pro pagation Delay Time,
tpHl
Hig h-to-Low Lc\'cl Output
rl~,
Clock
Outpu t
Clock
Output
I
---------+------4--0·utPu~
Pm pagation Delay Time,
tpHL
Hi9 h-to-,Low
tZH
Clear
Level Ou-::put
j
Output Enable Time to
____ -+HiQ_h_L_e_ve_I_ _ _ _ _ _ __
tZl
_____t-L_OW
Level
~
-----
17
I
Output Disable rime frorn
tHZ
I
_ _ _ _+_Hi9h Level
I
----------------------+--------
Output Enable Time to
Tir~"e
from
.
-----
15
Output DiSC'lbl.e."
LOvi/ Levei
tW(CLOCKl
Clock Pulse Width
tW(CLEAR)
Clear Pulse Width
20
--------t------
I
tSETUP_+_E_na_b_le_-_se.tuP Time
I-'-:
UP
\
L
tHOLD
25
r_-~~-----~~------~
High Level
Low Level
Data Setup Time
High Leve!
Data Hold lime
IL~
~i9h Levei
I Low
Level
I--_O____~____
5.0
--4.0
~·----4---3~-5---
I
3-53
---------
6'
::
ns
-1
ns
I
~ Proprietary
DM75/DM8544
TRI-STATE Quad Switch Debouncers
General Description
Features
These circuits are for use. in front panels, and similar
applications where contact bou.nce must be eliminated.
Within the single package, these circuits do the job of
four R-S latches plu's pull-up resistors. A strobe is also
available which permits sampling of the switch information at a predetermined time. TRI-STATE outputs ~re
also provided for direct connections to the switch
line bus.
• Replaces SN54279174279
• Eliminates push-button noise
• Allows clocked devices to be operated 'from switches
• Maximum power dissipation
250 mW
• Bus-line connectable
• TRI-STATE outputs
18 ns
• Typical propagation delay
Connection Diagram
Vee
01
02
116
15
Truth Table
TRI-STATE
ENAaLE,
QD
14
13
C2
12
CI
It
Qe
10
r--
l-
I
STROBE
9
2
A2
3
5
.4
7
6
a.
AI
A1
A2
TRI·STATE
ENABLE
STROBE
X
X
H
X
Hj·Z
X
X
L
L
L
L
,_
QA1t- tl
L
H
L
H,
L
H·
L
L
H
H
'H
H
L
H
QA(tl
t
1
8
GNO
7544/8544(J), (N), (W)
Logic Diagram
S.Ok
(3)
~A2~(2~'t
-i-t__
__- '__
~~J---L--'
I
I
I
+
I
.
TO OTHER
LATCHES
3·54
•
I a. (71
.IOc (9)
I Go (13)
°AhI
Indeterminate
~
Proprietary
OM75/0M8544
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM75
PARAMETER
CONDITIONS
MIN
V,H
High Level Input Voltage
V,L
Low level Input Voltage
V,
Input Clamp Voltage
IOH
High Level Output Current
V OH
High Level Output Voltage
10L
VOL
Low Level Output Voltage
44
MAX
MIN
Vee
=
=
Min, V 1H
O.SV,
""
IOH
2V
O.8V,
Off State (High Impedance State)
Vee
Output Current
V 1L =O.BV
=
IOL =
Max, V 1H
=
16 mA
I Va ~ OAV
2V
V
0.8
·-1.5
-1.5
V
-2.0
·-5.2
mA
16
16
mA
OA
OA
V
I Vo -2.4V
-40
-40
40
40
1
1
V
Input Current at Maximum
I,
Input Voltage
I'H
Hi'gh Lev,ellnput Current
I,L
Low Leve! Input Current
Vee
=:
Max, VI
Vee
=
Max, VI = 2.4V
_
=
S.SV
_
Vee - Max, VI - O.4V
los
Short Ci reuit Output Current
Vee
Icc
Supply Current
Vee - Max
~
I Strobe/Enable
! Data
Max(2)
-18
V
2A
Vee = Min, V 1H = 2V
=
UNITS
MAX
0.8
2A
= Max
TYP(1)
2
Vee = Min, I) "" --12 mA
V 1L
IOIOFF)
TYP(1)
2
V 1L
Low Level Output Current
DM85
44
-30
40
40
-1.6
-1.6
-2.5
-2.5
-55
--18
-30
50
~A
mA
~A
mA
-55
mA
50
mA
Notes
( 1)
All typical values are at Vee"" 5V, TA == 25°e.
(21
Not more than one output should be shorted at a time.
Switching Characteristics vee = 5V, T A = 25°C
DM75/85
PARAMETER
FROM
TO
CONDITIONS
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
Data
Output
Data
Output
CL
IZH
~
50 pF, RL
Output Enable Ti me to
Output Enable Time to
Low Level
'HZ
Output Disable Time from
High Level
C L = 5 pF, R L
'LZ
Output Disable Time from
Low level
355
TYP
MAX
20
36
ns
17
·30
ns
15
25
ns
12
24
ns
5
10
ns
10
20
ns
=40051
High Level
'ZL
UNITS
44
MIN
=400n
DM75/DM8546
TRI-STATE 8-Bit Universal I/O Shift Registers
General Description
Features
These circuits are TRI-STATE, 8-bit,edge-triggered,
universal shih registers which are capable of operating
in any of the following modes: shift left, shift right,
parallel load, or inhibit_ Since the clock is edge-triggered,
the control lines which determine the mode of operation
are completely independent of the logic level applied to
the clock_ Designed for bus-oriented systems, these
circuits have their TRI-STATE inputs and outputs on
the same pins_
.. Positive-edge triggered clock
Connection Diagram
C2
lice
I"
"
RSlIlSD
lIO 1
14
13
tiD 2
1103
"
1104
Cl
J
~SIIRSO
I/O B
,
1/01
Both paraliel and serial data lines are TRI-STATE
•
High impedance state does not impede shift mode
with parallel outputs
00
,
10
11
l-
,
•
Truth Table
r-
I
.. "Do nothing" state without gating the clock
,
5
1/06
liD Ii
7
CLOCK
STATE OF
PARALLEL I/O
C2
L
1-1
H
Inhibit
H
H
H
Inhibit
X
H
L
P~rallel
L
L
H
Right Shift
H
L
H
Right Shift
Hi-Z*
Data In
Data In
L
L
L
Left Shift
QOUT
GOUT 1
H
L
L
Left Shift
Hi-Z'
00UT 1
Load
RSI/LSO
LSI/RSO
GOUT
Hi-Z'
Hi-Z'
Hi-Z'
Hi-Z*
Hi-Z*
Data In
Hi-Z'
OOl.,lT
I'
ONO
STATE OF
SERIAL I/O
Cl
Hi-Z"
GOUT 8
Q OUT 8
Data In
Data In
00' Output Disable (Cl, C2 • Mode Controls)
*~oth
7546(J), (W);.8546IJl, (N), (W)
MOOE OF
OPERATION
00
Input and Output of the 1/0 pin are in the hi,gh impedance state.
Logic Diagram
C1
-,,111--~~=h~~~:::[~>-
______ ________________________________________________________j
~
C2-""1"~I~-l~~~:::::::::[2>~------------------~--------~-----------------------------------J
"TAI·SfATE GAl'£
3-56
~
OM75/0M8546
Proprietary
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM75
PARAMETER
CONDITIONS
MIN
V,H
High Level Input Voltage
V,l
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
V OH
High level Output Voltage
10l
Low l,evel Output Current
Val
Low Level Output Voltage·
1,
I,l
46
MAX
Vee = Min, II
= -12
UNITS
TYP(l)
V'L
=o.av, 10H =Max
Vee
= Min,
V
0,8
Vee
Output Current
V,L
= Max,
V 1H
Input 'Current at Maximum
Vee = Max, VI
HiQh Level Input Current
Vee
Low Level Input Current
-1.5
-1.5
V
-5,2
mA
2,4
I:;l
2V
Vee = Max. VI = O.4V
loS
Short Circuit Output Current
V ee 'Max(2)
Icc
Supply Cu~rent
Vee:;: Max
16
mA
0.4
V
=O.4V
-40
-40
40
40
1
1
= S.5V
=Max, V, =2.4V
16
0.4
V a=2.. 4V
Va
I
/-LA
mA
C'2lnput
80
80
Others
40
40
C21nput
-3.2
Others
-1.6
-3.2
-1.6
mA
-70
mA
-30
-70
ao
-30
80
115
Notes
(1) All typical value. are at VCC = 5V, T A ~ 25"C,
(2) Not more than one output should be shorted at. time,
= 5V, T A
V
2.4
=0.8V, 10L = 16 mA
=o.a'v
V
-2.0
= 2V
V 1H
MAX
2
mA
Vee = Min, V 1H = 2V
Off State (High Impedance State)
Switching Characteristics vee
,MIN
0.8
I nput Voltage
I'H
TYP(1)
2
V'c
IOIOFFI
DM85
46
125
/-LA
mA
,
= 25°C
DM75/85
PARAMETER
CONDITIONS
f MAX
Maximum Clock F'reque,ncy
tPlH
Propagation Delay, Low-ta-High Level,
From Clock to Output
tpH~
.ZH
Propagation Delay. High-to-Low Level,
From Clock to Output
Propagation Delay From High
Impeda~ce
State
,to High Logic Level (From Output Disable)
tZH
CL
=50 pF, RL
• 400n
Propagation Delay From High Impedance State
'io.Hlgh Logic Level (From Mode Control eltC2)
tZl
Propagation Delay From High Impedance State
to Low Logic Level (From Output Disable)
tZL
Propagation Delay From High Impedance State
to Low Logic Lovel (From Mode Control Cl/C2)
tHZ
Prop,gation Del!)v From High Logic level to
tHZ
Propagation Delay From High Logic Level to
High I mpedance State (From Output Disable)
High Impedance State (From Mode Control
Cl/C2)
tlZ
Propagation Delay From Low Logic Level to
CL
TVP
15
22
UNITS
MAX
MHz
16
24
ns
27
40
ns
22
33
ns
13
20
ns
18.
27
ns
15
23
ns
5
a
ns
9
14
ns
16
24
ns
17
26
ns
=5pF, RL =400n'
High Impedance State (From Output Disable)
ILz
46
MIN
Propagation Delay From Low Logic Level to
High Impedance State (From Mode Control
Cl/C21
3-57
~" Proprietary'
DM75/DM8546
Switching Characteristics Vee
=5V, TA = 25°C
DM75/85
PARAMETER
CONDITIONS
46
MIN
.tWICLOCKI
tSETUP (HIGH!
. tsETUP IHIGHI
tsETUP ILOW)
UNITS.
TYP
MAX
Clock Pulse Width
18
12
ns
Serial Data
38
25
ns
Parallel Data
33
22
ns
Serial Data
21
14
ns
12
ns
CL
= 50 pF, RL = 4000
18
tsETUP ILOW)
Parallel Data
tHOLD IHIGH)
Serial Data
0
-11
ns
tHOLD (HIGHI
Parallel Data
0
-11
ns
tHOLD ILOW)
Serial Data
0
~22
ns
tHOLD (LOW)
Parallel Data
0
-21
ns
ns
SETUP. AND HOLD TIMES BETWEEN CHANGES'IN MODE CONTROL AND CLOCKING
tSETUP'
Parallel load to Right Shift
32
21
t~ETUP
Parallel load to Left Shift
40
27
ns
tSETUP
Right Shift to Parallel Load
60
40
ns
tSETUP
Left Shift to Parallel Load
53
35
ns
tSETUP
Right Shift to left Shift
33
21
ns
tsETUP
left Shift to Right Shift
56
37
ns
tsETUP
Inhibit to Right Shift
57
38
ns
tSETUP
Inhibit to left Shift
65
43
ns
tsETUP
Right Shi,ft to Inhibit
50
33
ns
!sETUP
left Shift to Inhibit
50
32
ns
tHOLD
Parallel load to Right Shift
9
6
ns
ns
CL
= 50 pF, RL =40011
tHOLD
Parallel Load to left Shift
6
4
tHOLD
Right Shift to Parallel load
'0
-13
ns
tHOLD
Left Shift to Parallel Load
0
-46
ns
tHOLD
Right Shift to left Shift
0
-10
tHOLD
left Shift to Right Shift
0
-23
tHOLD
Inhibit to Right Shift
0
-18
tHOLD
Inhibit to left Shift
0
-16
ns
tHOLO
Right Shift to Inhibit
0
-12
ns
tHOLD
left Shift to Inhibit
0
-29
ns
ns
,
ns
.
ns
Typical Applications
CASCADING DEVICES
TO COMMON BUS
1/01·
. . .(
• • 1/0'
I/O 1-
-.lLlIIIII
•
•
t
•
•
• • ~ • • • 1/08
I I I I I II I
1/01 •
• 1/08
I I I II I II
OTHER
OTHER
LSI/RSO
DEVICES
COMMg:
BUS
~
DM7546
~ DEVICES
LSI/RSO
DM754G
RSI/I,SO
OR
DM7!i48
RSI/LSO
,
COMMON
BUS
1 I
1
I
1
I
1
C1
Cl
co
00
3-58
~ Proprietary
OM75/0M8546
Typical Applications (Continued)
SERIAL DATA TRANSFER TO A FIRST IN-FIRST OUT STORAGE MEDIUM
TO COMMON BUS
I/O l '
•
•
t
• I/O 8
I I I I I I I I
TRI-STATE BUS OF
FIRST IN-FIRST OUT
STORAGE MEDIUM
.:.s~
~
OM7S46
OTHER
• • I/O 8
•
I I I I I I I I
RSI/LSO
····DEVICES····~
I
I
I/O l '
LSI/ASO
l-
QM7546
I 1
1
00
CP
C1
C1
n
TRI·STATE BUFFER (1093/94)
DISABLE THIS OUTPUT
WHEN RECEIVING DATA
FROM STORAGE MEDIUM
SERIAL DATA
I/O CONTROL
Timing Diagram
TYPICAL PARALLEL LOAD, RIGHT SHIFT, LEFT SHIFT AND INHIBIT SEQUENCES
CLK
I
I
I
n
n
00
--~--------------~I
I
I
I
I
I ______~__________________~I__~____~I
I __~
C1--'~__________________~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
RSI/LSO
I
I
I
I
~--------~+-~--------~----------------~--~I
I
I
I
I
I
r-
I
"'--1
--LJI
ill
I/O 1
1/02
I/O 3
1/04
I/O 5
1/06
lIn 1
I/O 8
lSI/RSO
I
I
PARALL~!~ f-~-------RIGHTSHIF~
I.
_I
OUTPUT
I-
OUTPUT
__
'_018_A_Bl_E_ _ _ _ _ _ _ _ _ _ _ lEHSHIFT _ _ _ _'_O_IS_AB_"E_t-_INHIBIT _ _
3-59
~ Proprietary
DM85S50
6-Bit Shift Registers
General Description
These 6-bit shift registers feature J-K serial inputs,
parallel outputs. and a direct overriding clear_ All inputs.'
are buffered to lower the input drive requirements to
one standard DM74S load_ Furthermore. shifting is
synchronous. and occurs on the positive-going edge of
the clock pulse. Thes~ shift registers are particularly
well-suited for very high speed data processing systems.
Connection Diagram
Truth Table
Vee
116
06
06
15
05
13
.14
04
04
12
11
CLOCK
2
1
CLEAR
CLEAR
<
2
4
3
-01
6
5
-
02
1
03
18
GND
r-;-""2
L
X
X
H
L
L
H
H
L
H
H
L
H
H
H
H
·L
H
t
t
t
H
H
01
OUTPUTS
CLOCKS
9
10
-
INPUTS
CLOCK
1
J
K
X
X
X
X
X
L
X
X
X
X
X
L
L
L
H
L
H
t
L
H
L
H
H
L
L
L
L
H
H
L
H
L
t
t
t
t
L
H
H
t
H
H
H
t
H
L
H
H
X
X
X
X
01
02
03
04
05
06
L
'-
L
L
L
L
01 0
020
030
040
050
060
01 0
0.20
030
040
050
01 0 020
030
04 0
040
060
05 0 060
050
01 0 020 030
L O1 N O2 N 03 N O4 N
O1 N 01N Q2N Q3 N 04 N
O1 N 01N 02N 03 N O4 N
060
05 N
05 N
05 N
01 N 02 N 03 N O4 N OSN
L 01 N 02 N 03N 04 N OSN
O1 N 01N 02 N 03 N O4 N OSN
O1 N 01 N O2N 03 N O4 N OSN
H
H 01 N 02 N Q3 N 04 N OSN
01 N 02 N 03 N O4 N OSN 06 N
O1 N 02 N 03 N O4 N 05 N 06 N
010.020. etc. ~ The level of Ot. 02. etc. before the indicated
steady~state input conditions were established.
01N. 02N. etc. ~ The level of 01, 02, etc.,bef~re the most-
recent t transition of the clock; indicates a l-bit shift.
Logic Diagram
\
3-60
To Be Announced In 1976
~
DM85S50
Proprietary
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
I
DM85S
PARAMETER
CONDITIONS
I
MIN
VIH
High Level I nput Voltage
VIL
Low Level I nput Voltage
VI
Input Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
10L
Low Level Output Current
Low Level Output Voltage
TYP(l)
MAX
V
2
1,~~18mA
Vee ~ Min,
VOL
UNITS
S50
Vee ~ Min,
V'H ~ 2V
V'L ~ 0.8V,
IOH
Vee ~ Min,
V'H ~ 2V
~~1
mA
2.7
0.8
V
~1.2
V
~1.0
mA
3.4
V
20
V'L
= 0.8V,
0.5
IOL~20mA
1\
Input Current at Maximum Input Voltage
Vee ~ Max,
V,
~
5.5V
IIH
High Leve! Input Current
Vee ~ Max,
V,
= 2.7V
IlL
Low Level [nput Current
Vee
= Max,
V,
= 0.5V
los
Short Circuit Output Current
Vee
= Max(2)
Icc
Supply Current
Vee ~ Max
1
50
~40
mA
V
mA
M/l·
~2
mA
--100
mA
150
mA
90
Notes
(1)
(2)
All typical values are at VCC ~ 5V, TA = 25°C.
Not more than one output should be ,shorted at a time, and the duration of the short circuit should not exceed one second.
Switching Characteristics
vee ~ 5V, TA
= 25°C
DM85S
PARAMETER
MAX
!_f
tpLH
Propagation Delay Time,
Propagation Delay Time,
High-la-Low Level Output
tpLH
Propagation Delay Time,
LOW-lo·High Level Output
tpHL
CONDITIONS
TO
Maxllnum Clock Frequency
Low-to·High Level Output
tpHL
FROM
Propagation Delay Time,
High-ta-Low Level Output
Clock
Oar 0
Clock
OorO
CL
= 15 pF,
UNITS
S50
MIN
TYP
75
110
MAX
MHz
8
12
ns
12
18
ns
RL = 280n
Clear
0
10
15
ns
Clear
Q
13
20
ns
3·61
~ Proprietary
OM75/0M8551,L51
TRI-STATE 4-Bit 0 Type .Registers
General Description
These four-bit registers contain D-type flip-flops with
totem-pole TRI-STATE outputs, capable of driving
highly capacitive or low-impedance loads. The highimpedance state and increased high-logic-level drive
provide these flip-flops with the capability of driving the
bus lines in a bus-organized system without need for
interface or pull-up components.
theoutplJt control circuitry is designed so that the
average output disable times are. shorter than the average
output enable times.
Features
• TRI-STATE outputs interface directly with system
bus
• Gated output control lines for enabling or disabling
the outputs
• Fully independent clock eliminates restrictions for
operating in one of two modes:
Parallel load
Do nothing (hold)
Gated enable inputs are provided for controlling the
entry of data into the flip-flops. When both data-enable
inputs are low, data at the D inputs are loaded into their
respective flip-flops on the next positive transition of
the buffered clock input. Gate output control inputs are
also provided. When both are low, the nc;>rmal logic
states of the four outputs are available for driving the
loads or bus Iines. The outputs are disabled independently
from the level of the clock by a high logic level at either
output control input. The outputs then present a high
impedance and neither load nor drive the bus line.
Detailed operation is given in the truth table.
•
To minimize the possibility that two outputs will
attempt to take a common bus to opposite logic levels,
Connection Diagram
For application as bus buffer registers
TYPE
TYPICAL
PRO PA ATION
G
DELAY
TYPICAL
FREQUENCY
7551/8551
75L51/85L51
18 ns
59 ns
30 MHz
15 MHz
TYPICAL
POWER
DISSIPATION
250mW
27.5 mW
Logic Diagram
DATA ENABLE
INPUTS
DATA INPUTS
~
Vee
CLEAR
116
01
"
02
14
04
OJ
13
11
GZ
Gl
10
11
I,
tf
+-_,. . .
OA~~-,I:.:.14,-1_ _ _ _ _ _
I
.----,-,./"~-o,
.~
\'
M
3
1
0'
N
'----------'
OUTPUT
CONTROL
4,
02
,
S
Q4
QJ
)
CLOCK
\'
GNO
'--~--~
DATA (13)
D2
OUTPUTS
7551(J), (W); 8551(J), (N), (W);
75L51/85L51 (J), (N), (W)
01
~LOCK
m
Truth Table
INPUTS
DATA ENABLE
CLEAR
CLOCK
Gl
G2
DATA
OUTPUT
0
D
H
X
X
X
X
L
L
L
X
X
X
L
H
X
X
L
t
t
X
H
X
00
00
00
L
1
L
L
L
L
L
t
L
L
H
H
DATA (12)
03
03
-r-......
+_--'-__
DA~:-'1..;,11i'-_ _
When either M or N (or both) is (are) high the output is
disabled to the high-impedance state; however, sequential
operation of the flip-flops is not affected.
H =: high level (steady state}
L = low level '(steady state}
t = low·to-high level transition
X = don't care (any input induding transitions)
QO,= the level of Q before the indicated steady state input
conditions were established
04
(15)
CLEAR
3-62
~
Proprietary
OM75/0M8551,L51
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM75/85
PARAMETER
MIN
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
10H
t-ligh Level Output Current
VOH
High Level Output Voltage
Vee
TVP(l)
MAX
V
DM75
-2.0
IDM85
-5.2
Min, V 1H == 2V
=:
Off State (High Impedance State)
Curren~
2.4
= Max
tOL ==
Max
2.0
16
3.6
DM75
0.4
0.15
0.3
DM85
0.4
0.2
0.4
-40
I Vo =2.4V
40
~igh Level Input Curre,nt
IlL
Low Level Input Current
loS
Short Circuit Output Current
Vee = Max(2)
Icc
Supply Current
Vee = Max(3)
Vee
Vee = Max, VI = 2.4V
Vee = Max
V
mA
mA
V
-40
= Max, VI = S.SV
Input
IIH
V
V
16
I Vo =O.4V
II
-1.0
DM85
Iyo =O.3V
Max
-1.0
DM75
Vee =Max
==
N/A
2.4
V ,H = 2V
V 1L
Current at Maximum Input Voltage
= Max,
0.7
-1.5
Vee == Min, V 1H == 2V
V IL
Output
MIN
2
Vee == Min, II = -12 rnA
Low Level Output Voltage
1010FFI
MAX
0.8
Low Level Output Current
VOL
UNITS
L51
TVP(l)
2
V 1L == Max, IOH
10L
DM75L/85L
51
CONDITIONS
/lA
20
1
0.Q1
0.1
mA
40
I
10
/lA
I V, = 0.3V
-0.18
I V, _ 0.4V
-1.6
-30
-70
-3
72
50
-8
mA
-15
mA
9
mA
5.5
Notes
(1)
All typical values are at Vee = SV, TA = 25°C ..
(2)
Not more than one output should
(3)
ICC is measured with all outputs open; clear grounded following momentary connection to 4.SV; N, G1, G2, and all data inputs grounded; and
be shorted at a time.
the clock input and M at 4.SV.
Switching Characteristics Vcc
=
5V, T A= 25°C
DM75/85
CONDITIONS
PARAMETER
FROM
TO
BOTH
fMAX
Maximum Clock Frequency
,"HL
Propagati.on. Delay Time,
High-to-Low Level Output
tPLH
Propag~tion
Delay Time,
Low-to·H igh Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tZH
tZL
STD.
tLZ
tHOLD
6
TVP
UNITS
MAX
15
MHz
110
n,
Clock
Output
16
25
39
70
n,
Cloc~
Output
20
28
77
120
ns
7
16
30
28
55
.~ns
7
21
30
35
60
n,
3
5
14
18
50
n,
3
11
20.
32
75
n,
CL = 50 pF
RL = 40011
Outpu"t Disable time from
RL = 4 kl1
CL = 5 pF
?,utput Disable Time from
. Width of Clpck or Cle.r Pulse
Hold Time
30
MIN
72
Low Level
tw
25
L51
MAX
27
Output Enable Time to
'sETUP Setup Time
TVP
18
~evel
High Level
MIN
Output
Low Level
tHZ
LOW POWER
Clear
Output Enable Time to
High
DM75L/8SL
51
20
100
Data Enable
17
45
Data
10
30
Clear I nactive State
10
30
Data Enable
2
0
Oat.
10
10
3-63
n,
n,
n,
~ Proprietary
DM75/DM85.52,L52,54.l54
'
,
TRI-STATE Synchronous Counters/Latches
.
General Description
Features
These circuits logically combine the functions of counters.
for frequency division, latches to store the data from
the counters, and output buffer gates which provide
both standard TTL outputs as well as high-impedance
outputs for multiplexing of data. The counters are fully
synchronous, and are made up of four edge-triggered
JK flip-flops. To further facilitate operation, the Count
Mode and Terminal CO'unt outputs are also operable
when the data outputs are in the high-impedance state
or the latch mode.
• DM7552/8552
DM75L52/85L52
• DM7554/8554
DM75L54/85L54
Decade counter/latch
Binary counter/latch
TYPICAL POWER
DISSIPATION
TYPE
52,54
L52, L54
330mW
38mW
TYPICAL CLOCK
FREQUENCY
23 MHz
11 MHz
I----------------------------------~------------------------~----------Connection Diagram
r
vcc
TRANSFER
ENABLE
16
15
1
2
CP
DUTPUT
. DISABLES
CLEAR
13
12
4
3
C
~
PRESET
14
\
D
11
6
5
.
B
CEP
NC
A
,
OUTPUTS
7552{J), (W); 8S52{J), IN), (W);
7SL52/85L52(J), IN), (W);
7554(J), (W); 8554IJ), IN), (W);
75L54/85L54(J), (N), (W)
Truth Table
3-64
C.ET
10
7
HAM.
CDUNT
61:
~
Proprietary
OM75/0M8552.L52.54.L54
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM75L/85L
DM75/85
PARAMETER
CONDITIONS
52,54
MIN
V,H
High Level I nput Voltage
V,l
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
V cc
I Others
Vee
V 1L
~
Low Level Output Voltage
'OIOFFI
Off State (High Impedance State)
Output Current
=:
=
Min, V 1H
High Level Input Current
Max
Short Circuit Output Current
Icc
Supply Current
~5.2
IOH -
0.4 rnA
2.4
3.3
IOH -
Max
204
3.3
V
-'=
Vee
0
Max, VI = S.5V
Max, V, "OAV (Std.1
Vee 'Max(21
-10
204
2.S
2.4
2.7
mA
V
2.0
3.6
004
004
0.15
0.3
0.2
004
mA
V
-40
Va" 0.3V
2V
V
16
0.2
::
NlA
-1.0
16
DM85
=Max, V 1H
V
DMS5
V 1L -= Max, IOL -= Max
Vee
0.7
DM75
0.2
V, "0.3V (75L1S5LI
lOS
DMS5
DM75
Vee = Max, VI = 2.4V
Low Level I nput Current
I,l
~2.0
IOH '" 0.2 mA
2V
:::
DM75
Vee'" Min, V 1H '" 2V
Vee
Input Voltage
I'H
UNITS
MAX
~1.5
V 1L -= Max
Input Current at Maximum
I,
TVP(11
2
Min, II -= -12 rnA
Low Level Output Current
VOL
MIN
O.S
High Level
Terminal Count
Output Voltage
10l
L52, L54
MAX
2
,l
VOH
TVP(11
Vo "OAV
-40
Va -2AV
40
CET Input
2
0.02
0.2
Others
1
0.01
0.1
CET Input
SO
2
20
Others
40
1
10
MA
20
CET Input
-2.0
-'3.2
-0.24
~0.36
Others
-1.0
-1.6
-0.12
~O.lS
TC Output
-·20
Others
-30
Vee'" Max
66
--55
-3
~S
-15
-70
-3
-8
-15
106
7.6
13
mA
pA
mA
mA
mA
Notes
(11
All typical values are at VCC ~ 5V, TA = 2SoC.
(21
Not more than one output should be shorted at a time, and for DM7552/8552 or DM7554/8554 duration of short circuit should not exceed
one second.
Switching Characteristics vee = 5V, TA = 25°C
PARAMETER
FROM
52,54
BOTH
f MAX
Maximum Clock Frequency
tpLH
Propagation Delay Time,
tpHL
Propagation Delay Time,
tplH
Propagation Delay Time,
tpHl
Propagation Delay Time,
Low-to-High Level Output
High-to-Low Level Output
Low-to-High Level Output
High-ta-Low Level Output
tZH
,Output Enable Time to
tZl
Output Enable Time to
'HZ
Output Disable Time
tlZ·
Output Disable Time
DM75L/85L
DM75/85
CONDITIONS
TO
STD.
LOW POWER
MIN
TVP
15
23
L52, L54
MAX
MIN
6
TVP
UNITS
MAX
11
MHz
Clock
Output
34
70
115
220
ns
Clock
Output
23
45
75
150
ns
Transfer Enable
Output
26
50
90
160
ns
26
50
90
160
ns
21
45
75
150
ns
25
50
90
150
ns
3
S
S
15
ns
17
40
57
105
ns
CL " 50 pF
Transfer Enable
Output
RL "400"
High Level
Low Level
ftom High Level
CL
"
R L "4kSl
5 pF
from Low Level
3-65
I
~ Proprietary
DM75/DM8552.L52;54.L54
Mode of Operation
When the Transfer Enable (TE) is at a logical. "1" level,
the data transfer paths between the counter outputs
and the output buffer gates are maintained. When the
Transfer Enable is at a logical "0" level, the data transfer
paths are inhibited, and the state of the output buffer
gates are locked in by the latches. The counter and
Terminal Count (TC) output remain operable during
this time.
•
To enable the count mode both CET and CEP inputs
must be at a logical" 1" level.
•
To latch the outputs the Transfer Enable (TE) input
must be taken to the logical "0" level.
Asynchronous Clear resets the counter to 0000.
•
To place the TRI·STATE outputs into the "third·
state," either of the Output Disable (00) inputs
must be taken to the logical" 1" level.
Asynchronous Preset sets the counter to 1111.
The 1111 state may be used in the 52 for blanking out
leading zeroes in visual displays. The next clock pulse
will advance the 52 to 0001 which denotes the first
count of the blanked zero. The next clock pulse will
advance the 54 to 0000.
The clock input must be high during the high to low
transition of CEP and/or CET for correct logic operation.
The CEP and CET inputs may be used in a high speed
look ahead.technique.
The Terminal Count (TC) output is active high when
the counters are at terminal count and the CET is high.
The Terminal Count logic equations are:
(52)
(54)
TC
TC
~
~
Counter stages can be cascaded to provide multiple
stage BCD or Binary synchronous counting by using the
52 or the 54 respectively. With a Terminal Count (TC)
fan OLit of ten, eleven stages are able to operate at the
maximum frequency equivalent to a two stage counter.
CET • A • B • C " 0
CET"A -B -C-O
The following logic levels control the device:
•
•
The counters change state on the positive·going
transition of the clock.
The characters displayed can be held with a low level
on the strobe line while the counters can continue
counting. The display can be updated at any time by
applying a positive pulse to the strobe line.
.
Clearing or presetting is enabled by taking the
respective input to a logical "1" level.
OM7552iOM8552
OM75L52iOM85L52
DECADE COUNT SEQUENCE
COUNT
OM7554iOM8554
OM75L54iOM85L54
BINARY COUNT SEQUENCE
OUTPUTS
A
B
C
0
COUNT
TC
H
H
H
H
L
4
.... ,f
L
B
L
L
H
L
C
H
4
5
0
TC
L
H
H
H
L
L
H
L
L
H
L
H
L
H
L
H
H
L
H
H
L
L
H
H
H
H
H
H
L
L
L
H
H
H
H
H
H
10
Applied
11
Next·
H
Count
H
H
H
H
7447A,
H
7448)
for
blanking
leading zeroes.
3·66
H
H
H
H
L
H
H
13
H
L
H
H
14
L
H
H
H
15
H
H
H
H
12
**The 1111 state may be used in conjunction witf:l certain
iDM7446A,
H
H
Preset
decoder/drivers
OUTPUTS
A
H
~ Proprietary
OM75/0M8552 ,L52 ,54 ,L54
Logic Diagrams
52,L52
TERMINAL
COUNT
OUTPUT
(7)
OUTPUT
DISABLES
111
121
SET
SET
CP
.+++--ojCP
ij
RESET
COUNT
T~~~:t~
ij
RESET
(9)
54,L54
TERMINAL
COUNT
OUTPUT
171
111
OUTPUT
DISABLES (2)
3·67
~ Proprietary
DM75/DM8552.L52.54.L54
Switching Time Waveforms
52,54
"=Tl1~~- .. -- . ---
_______~_~_~+~~~~_l____
I
1
'
PRESET-
JtJL~'
1
---.----.---,-------+~----
~I
!
3V
1
"(PRESE~
_____
~
1,5V
ov
__
CLEAR--l~-~---+~-±--~--fE-~--1
,T
----+---I
'I
--II '
+----
i'
I
I
I
,,----+---~
- - - - ,+,
3V
1.5V
ov
I
'PiClEAR)
I
3V
~~~~
t.5V
ov
3V
TE~--+I~~~---+-
I
-----l-----~-~-, --~------
I
I
I
'I
I
1.5V
+_I-,r---h,
~ \--~~
~ _____.____ ::;
1
OUTPUTS _ _
-=r:~- ~f±:l~Il'-.---------..J
vOl
tpHL
3V =£='V
=t
3t=
TE'
--l.SV--TE
I
~~--ov
OUTPUTS-~~
1.5V
---ov
I
VO H =
I
J f ' VOH
~~-1'5V-~- -1.5V
I
-vOl----
.LH
lTE1-
--
VOL
.Hl
irE)
"
r-----------------3V
3V
oV_,.PUTt.HZ~-~-,5V
-.l
ACTUAL
LOGICAL ''1''
VOLTAGE
OUTPUT
OV
'"J{
1.5V
""1.5'11
~---
5V
---_IS
tZH
INPUT~' 3'
J
INPUT----.~~_
3V
--~~-I.5V
ou
~
'ZH-
lr
OUTPUT---,"'
1.5v
OUTPUT
\ ..._ _ _ _ _ _ 1.5V
3-68
~ Proprietary
DM75/DM8552.l52.54.L54
Switching Time Waveforms (Continued)
L52, L54
I
I
'v
-------.---"~~--+----+----
t.JV
OV
lV
---~-
~~--j
i
I-----j
'SiCEI
--t---
uv
ov
1- 'Ai'"
'v
TE--i----t--l----r------~---------~--I
i
I
I
Iii
OUIPUTS
1.3V
----- ~::
I
--L--+~--HIt=tt-~-~----~=+-.
~~'PLHr- ~ ~---1 "rlSl---~"dR~
± ~---=:~v-=-t-----~:v
'V_T<~lV
TE----
=t§= ---=r-
VOH==jf1VOH
1
O!1TP.UTS----;-
•
1
--1.3V----
I
-'1'LH
_
i----------~-
'"_'U....}'
VOLTAGE
VOL
(TE)
,---------'V
'"_PU_T..J~-I-l---~
lV
-t,ll,{
oV _ _ _ _
1.3V
~
I---'HZ-~'
LOG1~~~~~~·-----------
1.JV
tl'HL
(TE)
OV _______
I
--VOL
--~v--
:=f,--_.-
OUTI'U1
tZL
b-1.3V
·------3V
INPUT-----,
INPUT
\~-~
---
'v
---1.3V
OV
~-~
'ZH
I
t~-
~--I
OUTPUT _ _ _ _ _
~
tZL
r~
--,~
-1.3'.'
OUTPU1
\L-_
'
3~69
UV
~ Proprietary
DM75/DM85'53
TRI-STATE 8-Bit latches
General Description
By utilizing TRI-STATE circuitry on the outputs, the
,inputs and outputs can be accessed on the same pins,
and these circuits provide eight separate A-S latches in
the popular 16-pin package. While in the high-i'mpedance
state, the inputs and outputs are disabled and no information can be entered. When both WRITE inputs are
brought to a low logic level, the outputs are disabled and
new information may be entered at the inputs. When
a low logic level is applied to both READ inputs,' and a
Connection Diagram
high logic ,level to both WRITE inputs, the inputs are
rendered inactive and' data may. be read from the outputs.
Features
• TRI-STATE I/O pins
• 8 latches in popular 16-pin package
• Typical propagation delay-22 ns
Logic Diagram
DATA INPUTS/OUTPUTS
Vee = 16
"
I..
"
"
"
12
11
,
10
GNO;oa
DATA INPUT/OUTPUT 1
I~----------,
,
I I
(:::4J~....._ - ; - . . .
I
I
I
I
rDATA INPUT/OUTPUT 2
,
t
REAfl
Emu
,
,
4
,
:::;(5',-+++-;-...
7
CLEAR
GNO
OA-TA INPUTS/OUTPUTS
"
7553(J), (W); B5531J1, (N), (W)
Truth Table
DATA INPUT/OUTPUT 7
CLEAR
ENABLE
READ'
WRITE**
OPERATION
DATA INPUT/OUTPUT'
STATE OF
BUS
H
L
L
H
Enter L
L
H'
L
L
L
Enter L
Hi·Z
L
X
H
H
Do Nothing
Hi·Z
L
H
X
X
Do Nothing
L
L
X
L
Write
Hi·Z
HDr L**-11
L
L
'L
H
Read
H or L H *
*Both Read Inputs
**Both Write' Inputs
***Depends on State of
lat~h
3·70
~(12:!.'-H'-i-'\
~
DM75/DM8553
Proprietary
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM75
PARAMETER
CONDITIONS
MIN
V ,H
High Level t nput Voltage
V,l
Low Level I nput Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
10l
Low Level Output Current
Low Level Output Voltage
I,
Vee::: Min, V 1H = 2V
Vee == Min, V 1H
Off State (H igh Impedance State)
Vee
V 1L =O.SV
Input Current at Maximum
=
:::
tOL:::
Max, V 1H
I'H
High Level Input Current
Vee::: Max, VI
I,l
Low Level Input Current
Vee
los
Short Circuit Output Current
Vee = Max(2)
ICC
Supply Current
Vcc=Max
(21
UNITS
MAX
TYPlll
V
0.8
=
Vee = 5V, T A =
=
-1.5
-1.5
V
-5.2
mA
2A
2V
16 mA
I
2V
V
-20
2A
VaoOo4V
I Va =2AV
Vee = Max, VI = 5.5V
Input Voltage
Notes
All typical values are at
MIN
2
Vee''''' Min, II =-12 rnA
Output Current
(1)
53
MAX
0.8
V 1L = a.BV,
1010FFI
TYPlll
2
V 1L =O.8V,I OH =Max
VOL
DM85
53
V
16
16
mA
OA
004
V
--40
-40
40
40
1
1
~A
mA
2.4V
40
40
~A
Max, VI::: O.4V
-1.6
-1.6
mA
-70
mA
93
mA
=
-28
-28
-70
66
93
66
25° C
Not more than one output should be shorted at a time.
Switching Characteristics vec = 5V, TA = 25°C
DM75/85
PARAMETER
FROM
TO
CONDITIONS
53
MIN
tpHL
Propagation Delay Time,
Clear
High-to-Low Level Output
'ZH
Output
Output Enable Time to
C L = 50 pF, RL = 400n
High Level
'Zl
MAX
21
32
os
22,
33
ns
25
38
ns
7
12
ns
20
30
os
Output Enable Time to
Low Level
'HZ
UNITS
TYP
Output Disable Time from
High Level
C L = 5pF, RL =400n
tlZ
Output Disable Time from
Low Level
'W
tSETUP
tHOLD
Minimum Pulse Width
Minimum Data Setup Time
Minimum Data Hold Time
Clear
15
10
Write
40
28
High Level
20
14
Low Level
36
26
High Level
-15
-26
Low Level
-8
-14
3-71
ns
ns
ns
~ Proprietary
DM75/0Ma555.56
TRI-STATE Programmable Decade/Binary C!lunters
Genera! Description
Features
These circuits are synchronous, edge·sensitive, fully·
programmable 4·bit counters. The counters feature both
conventional totem·pole and TRI'STATE outputs; such
that when the outputs are in the high·impedance mode,
they can be used to enter data from the bus lines. In
addition, the clear input operates completely independent
of all other inputs. During the programming operation,
data is loaded into the flip,flops on the positive·going
edge of the clock pulse. To facilitate cascading of these
counters, the MAX COUNT output can be tied directly
into the count enable input.
•
Connection Diagram
Truth Table
Vee
MAX
COUNT I/O D
00
DM7555/8555..,..Decade courtter
•
DM7556/8556-Binary counter
•
Typical clock frequency
•
TRI·STATE outputs
•
Fully independent clear
•
Synchro·nous loading
•
Cascading circuitry provided internally
II0 g
J
K
0
0
0
M
, , ,,
, , ,
L
0
X
X
j(
0
X
X
CLEAR
On+1
0
00
0
0
0
0
,
'* Asynchronous Transition
Note: See Timing Diagrams
7565(J), (W); 8555(J), (N), (W);
7556(J), (W); 8556(J). (N), (WI
Logic Diagrams
35 MHz
55
56
3·72
,
0
G"
D
o·
~
DM75/DM8555.56
Proprietary
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM75!8555
PARAMETER
MIN
High Level Input
VIL
Low Level Input Volta\)e
VI
Input Clamp Voltage
10H
High Level Output Current
Vee
=:
Min, "
Low Level Output Current
Low Level Output Voltage
I DM75
I DM85
Vee
=
Mm, V'H = 2V
-=
TVPlll
UNITS
MAX
V
= Min, V:I-l
= 2V
Off State (High Impedance State)
Vee
Output Current
V'H
0::
=:
-5.2
·5.2
-40
'-40
40
40
,
rnA
V
0.4
Vo = 2AV
mA
V
16
0.4
Vo "OAV
V ,L =Max
V
-1.5
",2.0
2.4
Max
2V
V
-1.5
16
Vee
0.8'
-2.0
24
Max
V ,L '" a.BV, tOl "'" 16 rnA
'O(OFFI
MIN
2
-12 mA
=:
V ,L = a.BV, IOH
10L
DM75!8556
MAX
0.8
High Level Output Voltage
VOL
TVPlll
2
Voltagf~
V IH
V oH
CONDITIONS
~A
rnA
II
Input Current at MaXimum Input Voltage
Vee'" Max, V, = 5.5V
1
1
IIH
High Level Input Current
Vee::" Max, V, = 2.4V
40
40
~A
IlL
Low Level Input Current
Vee
Max, V,
1.6
-1.6
rnA
los
Short Circuit Output Current
Vee =- Max(2)
-70
rnA
Icc
Supply Current
Vee
=:
=:
=:
OAV
-25
·70
80
Max
·25
75
110
100
mA
Notes
III
All typical values are at Vee ~ 5V, TA ~ 25°e.
(2)
Not more than one output should be shorted at a time.
Switching Characteristics vec = 5V, TA = 25°C
PARAMETER
fMAX
Maximum Clock Frequency
tpLH
Propagation Delay Time,
FROM
Low-ta-Hlgh Level Output
tpHL
Propagation Delay Time,
tpLH
Propagation Delay Time,
tpHL
Propagatlo~ Delay Time,
High-ta-Low Level Output
Low-ta-High Level Output
High-ta-Low Level Output
tpHL
Propagation Delay Time,
Hlgh-ta-Low Level Output
TO
DM75!8555,56
CONDITIONS
MIN
TYP
25
35
UNITS
MAX
MHz
.Clock
Output
15
22
ns
Clock
Output
34
44
ns
Clock
Max Count
23
33
ns
Clock
Max Count
23
33
ns
Clear
Output
30
44
ns
CL
= 50 pF,
RL
= 4000.
tZH
Output Enable Ti me to High Level
13
20
ns
'ZL
Output Enable Time to Low Level
14
20
ns
tHZ
Output Disable Time from High ,Level
6
12
ns
tLZ
Output Disable Time from Low Level
12
20
ns
tw
Minimum Pulse Width
teE
CL
Count Enable Time
Clock
tSETUP(1)
tHOLO(1)
tSETUP(O)
tHOLO(Ol
HOld Time - High LogIC Level
Setup Time - Low Logic Level
Hold Time - Low Logic Level
RL =4000.
25
Clear
20
Load
30
Setup
30
-30
Hold
Setup Time - High LogIC level
= 5pF,
Data
25
Load
30
Data
5
Load
10
Data
30
Load
25
Data
5
Load
-10
3·73
ns
ns
ns
ns
ns
ns
·~. ProprietarY
DM75/DM8555,56
Timing Diagrams
55 TYPICAL CLEAR, PRESET, COUII!T,INHIBIT SEOUENCE
CLEAR
--1IL-_______------------..:..------
LOAO~~.-------------------------------:,~:~i
______________. . .
r - - l L_ _ _ _ _ _ _ _ _ _ _ _ _
COUNT
DISABLE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. . , . . - - - - , . - - -
CLOCK
Sequence
11
Clear to zero.
(2) Load BCD five.
(3~ Co'unt six, seven, eight, nine, zero,
i
IIO{C)
::l..J
(4)
(5)
(6)
one, two, three, four.
Disable TR I·STA TE outputs.
Disable Counter.
Count to six.
..J1
O{B) : : ....
', _ _ _. J r - - l L ._ _ _ _ _. J r - - l L_ _ _ _ _
~{Cl::L....J
O{O, : : ...
', _ _ _ _ _ _- - I r - - l l ._ _ _ _ _ _ _ _ _ _ _ _ _ __
MAX - - i
LJ
COUNT __ ..f
LOAD
COUNT
-----lj
I/O USED
AS INPUTS
DISABLE
OUTPUTS
56 TYPICAL CLEAR, PRESET, COUNT, INHIBIT SEQUENCE
CLEA'
LOAD
-rlL-____________________________
~----------------------------
OUTPUT _ _ _ _ _ _ _ _ _ _.JI. - - - - - - .11._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __
DISABLE
COUNT
.....- - - - - - - - - - - - - - - - - -__--....J
DISABLE _ _-
CLOCK
Sequence
(1) Clear to zero.
(2) Load'binary five.
(3) Count six, seven, eight, nine, ten,
I/O (A)
110 (B)
IIO{C)
::LJ
--,.,L-_ _ _ _ _ _ _
(4)
(5)
(6)
.J
IIO{O, __
0{C).::l-..J
-- ,
Q{O, _ _
~'
_ _ _ _ _ _ _--...J
C~~::J'---------------------'L__Jr-~------
I:LE~'
.
DISABLE
LOAD
----- ..
, . Ito USED
--
~-.,-----~CO:.cU.:.NT---------1 ,.COUNTER'.,I~I
AS,
INPUTS
'I
~
DISABLE
OUTPUTS
I
,-,
eleven,. twelve, thirteen, fourteen,
fifteen, zero.
Disable TRI-STATE outputs.
Disable counter.
Count to one.
~ Proprietary
DM75/ DM8555 ,56
Switching Time Waveforms
CLOCK AND CLEAR VOLTAGE
3V
CLEAR
OV
CLOCK
OUTPUT
MAX
COUNT
COUNT ENABLE AND CLOCK
COUNT
ENABLE
CLOCK
\--------
OUTPUT
LOAD, DATA AND CLOCK
LOAD
DATA
CLOCK
_/
\'----~/
OUTPUT
OUTPUT DI,liABLE
DISABLE
l.SV
1ZHfCOUTPUT
----~T
O.SV
3-75
~ Proprietary
DM75/DM8560,L60,63,L63
Synchronous 4-Bit Up/Down Decade Counters
General Description
These circuits are synchronous up/down counters; the
60 and L60 circuits are BCD counters and the 63 and
L63 are 4-bit binary counters. Synchronous operation
. is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so
instructed by the steering logic. This mode of operation
eliminates the output counting spikes normally associated
with asynchronous (ripple-clock) counters.
of the count and load ,inputs. The clear, count, and load
inputs are buffered to lower the drive requirements of
clock drivers, etc., required for long words .
These circuits are synchronous up/down counters; the
60 and L60 circuits are BCD counters and the 63 and
L63 are 4-bit binary counters. Synchronous operation
is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so
instructed by the steering logic. This mode of operation
eliminates the output counting spikes normally associated
with asynchronous (ripple-clock) counters.
The outputs of the four master-slave flip-flops are
triggered by a low-to-high level transition of either
count (clock) input. The direction of counting is determined by which count input is pulsed, while the other
count input is held high.
Features
All four counters are fully programmable; that is, each
output may be preset to either level by entering the
desired data at the inputs while the load input is low.
The output will change independently of the count
pulses. This feature allows the counters to be used as
modulo-N dividers by simply modifying the count length
with the preset inputs.
•
Fully independent clear input
•
Synchronous operation
•
•
Cascading circuitry provided internally
Individual preset each flip-flop
TYPICAL COUNT
TYPE
A clear input has been provided which, when taken to a
high level, forces all outputs to the low level; independent
FREQUENCY
Vee
J
DATA
A
25 MHz
325 mW
L60, L63
12 MHz
40mW
OUTPUTS
16
DATA B
INPUT
CLEAR
14
15
as
QA
OUTPUTS
INPUTS
BORROW CARRY
LOAD
13
12
11
COUNT
DOWN
COUNT
UP
INPUTS
DATA
e
Qc
OUTPUTS
7560(J), (W); 8560(J), (N), (W);
75L60/85L60(J), (N), (W);
7563(Jl, (WI; 8563(J), (N), (W);
75L63/85L63(J), IN), (W)
3-76
POWER
DISSIPATION
60,63
Connection Diagram
INPUTS
TYPICAL
10
DATA
o
~
OM75/0M8560.L60.63.L63
Proprietary
Electrical Characteristics over recommended operating free-air temperature range (u~less otherwise noted)
DM75/85
PARAMETER
CONDITIONS
MIN
V,H
High Level Input Voltage
V,L
Low Level Input Voltage
V,
I nput Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
Vee
=:
Vee:= Min, V 1H
=
::;;0
2V
Low Level Output Voltage
Vee == Min, V 1H
V JL
Input Current at Maximum
I,
High Level Input Current
I'L
Low Level Input Current
Vee
Vee
los
Short Circuit Output Current
V
0.7
-1.5
-1.5
V
-400
-200
).IA
2.4
Max,
tOL
:::
2V
= Max
V
V
2.4
DM75
16
2.0
DM85
16
3.6
DM75
0.4
0.15
0.3
DM85
0.4
0.2
0.4
= Max,
= Max
V,
1
= 2.4V
40
I V, = 0.3V
I V, = O.4V
<1
Vee = Max(3)
rnA
V
0.1
-rnA
10
MA
-0.10
-{U8
-1.6
Vee = Maxl21
Supply Current
ICC
MAX
0.8
Vee = Max, VI ::: 5.5V
I nput Voltage
I'H
"'"
TYP(l)
MIN
Max, IOH "" Max
Low Level Outpu t Current
VOL
MAX
2
I, =--12 rnA
Min
UNITS
LSO, L63
TYP(l)
2
V IL
10L
DM75L/85L
60,63
DM75
-20
-55
-3
--9
-15
DM85
-18
-55
3
-9
15
DM75
65
89
8
13
DM85
65
102
8
13
rnA
rnA
rnA
Notes
Vee
III
All typical values are at
121
Not more than one output should be shorted at a time.
131
ICC is measured with all outputs open, clear and load inputs grounded, and a!! other inputs at 4.5V.
= 5V, TA =- 25"C_
Switch ing Characteristics Vcc
~ 5V, T A ~ 25° C
DM75/85
FROM
INPUT
PARAMETER
TO
OUTPUT
CONDITIONS
f MAX
MaXimum Clock Frequency
tplH
Propagation Delay Time,
20
tpHL
Count up
Propagation Delay Time,
I
Propagation Delay Time,
tpHl
Propagation Delay Time.
Low-to-Hlgh Level Output
Count down
Either Count
Q
CL
7
Propagation Delay Time,
12
MHz
26
30
60
ns
16
24
60
120
ns
16
24
30
60
ns
16
24
50
100
ns
25
38
45
90
ns
C i_
Rl.
= 50
pF
4kll
31
47
75
150
ns
27
40
55
110
ns
29
40
105
200
ns
22
35
95
'190
ns
Propagation Delay Time,
Load
Q
Propagation Delay Time,
Hlgh-ta-Low Levei Output
tpHL
UNITS
TVP MAX
17
15 pF
Low-to-High Level Output
tpHl
6
RL = 40011
High-ta-Law Level Output
tpLH
25
MIN
Propagation OeluY Time,
Law-ta-High Level Output
tPHl
CONDITIONS
Borrow
High-ta-Low Level Output
tPLH
MAX
Carry
High-w·Lovv Level Output
tpLH
L60, L63
MIN TVP
!
Low·ta-High Level Output
DM75Li85L
60,63
Propagation Delay Time,
Clear
High-to-Law Level Output
Q
tw
Width of Any Input Pulse
25
70
ns
tSETUP
Data Setup Time
20
30
ns
tHOLD
Data Hold Time
0
0
ns
f
3-77
~ Proprietary
OM75/0M8560.l60.63.l63
- logic Diagrams
60,L60
(13) BORROW
OUTPUT
"\.
~
(12) CARRY
OUTPUT
DATA (15)
INPUT A
~
rL--"
OOWN (4)
COUNT
(3)
oA
OUTPUT OA
T
QA
UP (5)
COUNT
---rp
-
I
OATA (11
INPUT B
r--
bDT
'-.
~
~
~
~
~
a,
(2)
OUTPUT Oa
T
ITs i-'-
-r--
tf>-
DATA (10)
INPUT C
r-'~
1-
~
(6)
0,
OUTPUT
Dc
OUTPUT
nD
T
0,-
"--fP
- Y
OATA (9)
INPUT 0
CLEAR
114)
~,
r--'-~
--''"'-
aD
T
jjD~
LOAO
~
(11)
3-78
(7)
~ Proprietary
DM75/DM85S0,LSO,S3,LS3
Logic Diagrams (Continued)
63, L63
(13) BORROW
OUTPUT
~
J
(12)
J
DATA (15)
INPUT A
J-
r---'
DOWN (4)
CDUNT
CARRY
OUTPUT
13)
OUTPUT
0.
0.
T
ij.~
UP (5)
COUNT
~
--
DATA (1)
INPUT B
~
rLJ'
~
L
L.L
(2)
OUTPUT QB
DB
T
1
......
f'
~
,.
DATA (10)
INPUTC
~
r--"
..... --;
-
CLEAR
~
OUTPUT
lie
Ocr--
-
(14)
(6)
lie
T
.....-r-
DATA 19)
INPUT D
fiB~
,--
Lrp. ;r-
--
,.
~
'- r--;
.-- "'-(7)
00
T
fiDi--
(11)
J
LOAD
..
3·79
~
OUTPUT Do
~. Proprietary
DM75/DM8560,L60,63,LS:3
Timing Diagrams
60, L60 DECADE COUNTERS
TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES
CLEAR~~
_____________________________________________________________
LOAD
A
L-
I
DATA
L-
I
rCOUNT
UP
-.....,.....,-.....,-+-...,
COUNT----~~--+-+---+----------------~--_,
DOWN
n.
OUTPUTS
CARRY
BORROW
·1
.--"---> .--"--->
CLEAR
-
8
9
D
1
21
COUNT UP--------J
1
1
D
9
871
r--COUNTOOWN~
PRESET
Sequence:
(1) Clear outputs to zero.
(2) ·Load (preset) to BCD seven.
(3) .Count up to eight, nine, carry, zero, one, and two.
(4)
Count down to one, zero, borrow, nine, eight, and seven.
Notes:
(A) Clear overrides load, data, and count inputs.
fB)
Y'Vt:len counting up, count-down input-must be ..high;when counting 'down; countMup i.nput·must be high.
3:80
~ Proprietary
OM75/0M8560,L60,63,L63
Timing Diagrams (Continued)
TYPI~AL
CLEAR
63, L63 BINARY COUNTERS
CLEAR, LOAD, AND COUNT SEQUENCES
~~________~____________________________________________________
LOAD
A
DATA
COUNT----+-+---~~---,
UP
COUNT----+-+---~~--~--------------------~--__,
OOWN
OUTPUTS
CARRY
BORROW
.~~
CLEAR
PRESET
I
14
15
0
1
1
I
- - COUNT UP-------
I
r-1
0
15
14
13
1
COUNT D O W N - '
Sequence:
(1) Clear outputs to zero.
(21
Load (preset) to binary thirteen.
(3)
Count up to fourteen, fifteen, carry, zero, one, and two.
(4)
Count down to one, zero, borrow, fifteen, fourteen, and thirteen.
Notes:
(A) Clear overrides load, data, and count inputs.
(8)
When counting up, count-down input must be high; when counting down, count-up input must be high.
3-81
~Proprietary
DM75/DM85S&S
64-Sit Edge Triggered Regis,ters
General Description
Features
The DM75S68/DM85S68 is an addressable ~'D" register
file. Any of its 16 four-bit words may be asynchronously
read' or may be written into on the next clock transition.
An input terminal is provided to enable or disable the
synchronous writing of the input data into the location
specified by the address terminals. An output disable
terminal 'operates only as a TRI·STATE output control
terminal. The addressable register data may be latched at
the outputs and retained as long as the output store
terminal is held in a 'low state, This memory storage
condition is independent of the state of the output
'disable terminal.
•
On chip output register
•
Edge triggered write
•
High speed
All input terminals are high impedance at all times, and
all outputs have low impedance active drive logic states
and the high impedance TR I-STATE condition.
Connection Diagram
30 ns typ
• TRI-STATE outputs
•
Optimized for register stack applications
350mW
• Typical power dissipation
•
18-pi n package
Logic Diagram
(WRITE
CLOCK
(DATA INPUTS)
[..
Vee
OJ
11
04
16
WE
15
CLOCK
O'S"
14
00
12
13
04
11
1
02
,.
03
(WRITE
ENABLE)
we0 51
A'~
A1
~
...
~
A2
~
~
~
AJ
~
~
~
116 x 4MEMORY CEll ARRAY
I--
2
01
3
AD
4,
A2
5
AJ
7
6
A1
01
75S68(0); 85S68(0), (N)
,
02
INPUT)
J'
GNO
os (131
(OUTPUT
STORE)
Oo(~12{I~~---t~---------+~---------1~----------~
(OUTPUT
DISABLE)
04
(OUTPUTS)
To
Be Announced In 1976
~
DM75/DM85S68
Proprietary
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM75S/85S
PARAMETER
CONDITIONS
S68
MIN
V IH
High Level Input Voltage
VIL
!,-ow Level Input Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
IOCOFFI
II
Input Current at Maximum Voltage
IIH
High Level Input Current
IlL
Low Level Input Current
UNITS
MAX
2
V
Vee ~ Min, liN = -18 mA
Vee = Min
0.8
V
-1.2
V
DM75
-2.0
DM85
-5.2
10H =-2.0 mA
DM75
10H = -5.2 mA
DM86
= 16 mA
Vee = Min, 10L
Vee
= Max
Vee
= Max,
V
DM75
0.5
DM85
0.45
Va" 0.5V
-40
Va = 2.4V
+40
= 5.5V
V,
1.0
Vee = Max
Clock Input
50
V, = 2.4V
All Others
25
Vee = Max
Clock Input
-500
All Others
-250
V,
= 0.5V
= Max(2)
los
Short Circuit Output Current
Vee
Icc
Supply Current
Vee = Max
mA
2.4
16
Off-State (High Impedance State)
Output Current
TYP(l)
-55
-20
70
100
mA
V
MA
mA
MA
MA
mA
mA
Notes
(1( All typical values are at VCC = 5V and T A = 25°C.
(2) Not more than one 0l!tput should be shorted at a time.
Switching Characteristics
DM75S
PARAMETER
DM85S
CONDITIONS
UNITS
MIN
TYP
MAX
MIN
TYP
MAX
40
Address to Output
30
55
30
tOSA
Output Store to Output
20
35
20
30
tCA
Clock to Output
25
50
25
40
20
40
20
35
14
30
14
24
ns.
10
18
10
15
ns
12
22
12
18
ns
tAA
Access Time
= 30 pF
RL = 400Q
CL
tZH
Output Enable to High Level
tZL
Output Enable to Low Level
tHZ
Output Disable Time From High Level
CL
tLZ
Output Disable Time From Low Level
RL
tA/iC
Set-Up Time
= 5 pF
= 400Q
Address to Clock
25
5
15
5
tosc
Data to' Clock
15
a
5
0
tASOS
Address to Ou tput Store
40
15
30
15.
tWESC
Write Enable Set·Up Time
10
a
5
a
tossc
Store Before Write
15
0
10
0
Address From Clock
15
5
10
5
tOHC
Data From Clock
20
5
15
5
tAHOS
Address From Output Store
10
0
5
0
tWEHC
Write Enable Hold Time
20
5
15
5
tAHC
Hold Time
3-83
ns
ns
ns
ns
~. Proprietary
OM75/0M85S68
Typical Applications
The DM85S68 can enhance the dynamic performance of
a TTL processor, since it may safely operate using single
phase clocking instead of the multi phase clock ing systems
being used currently. Th is simple feature not only enhances the system's dynamic performance, since multiple levels of registers need not be activated, .but also
reduces component count by elimination of one set of
buffer registers. For example, note the simplicity of
I
the register tile/ALU loop shown in Figure 1.
r- R3
~
... RO
r- AAD3
AAD3
WDRDA
ADDRESSES
~
AADO
r-
-
In a 4-bit slice with zero delay within the arithmetic
logic unit, a level-triggered memory with buffering to
prevent logic oscillation requires about 80 ns to make
the loop whereas the DM85S68 does it in 35 ns. With a
30 ns delay in the ALU, the two compared system
speeds are 110 ns and 65 ns, respectively.
-,....
---
DMB5S68
--
CP
-
--
A3
AD •
as
O~ ..,
... /I ADO _
I
W
AFOD
CONTROL
INPUTS
CP
NW
BFDD
r- R3
R3
DATA
INPUTS
~
RO
-
RO
r- BAD3
BAD3
WORDB
ADDRESSES
~
~
-
--
----
DM85S68
CP
-
A3
DATA
OUTPUT
~
AD
BO
as
00
_BADO _
BADO
--
rB3 •
W
r- B3
A=B
M
ALU
FUNCTION
SELECt INPUTS
so
SI
S2
S3
i
-I
Vee
r- R3
J-{
------
,
DM74181
1
---
-,....
--
...
A3
B3
Fntures
BO.
-Expandable
• Minimum package c.unt
-60 n. cyd. (typ)'
Truth Table
00 WE ClK
OS
l
X
X
Data From
l
X
X
X
..r
l
X
Output Store
X
Write Data
Dependent on State, of 00 and
H
Read Data
Data Stored in Addressed Location
l
Output Store
Hi·Z
H
OutJ?ut Disable
Hi·Z
H'
H
X
X
X
MODE
BO
AD
FIGURE 1. 4-BIT REGISTER ALU
l
DATA
OUTPUT
~
OUTPUTS
Las~
Addressed Location
OS
~ Proprietary
DM75/DM85S68
AC Test Circuit and Switching Time Waveforms
[i,QV
400
DI
OUTPUT
r: L 111l:ludes prob~
and jl!1 capal;ltance
All dIOdes are 1N3064
OM75S68!
OM85S68
READ CYCLE
WRITE CYCLE
ADDRESS
INPUT
ADDRESS
1.5V
[lATA
INPUT
1.5V
INPUT
1.5·V\,r---- - - - - - -
----.II?\~'AA-l
OUTPUTS _ _ _ _ _ _
..:s:-\\.r------·
_______
FIGURE 4. ADDRESS TO OUTPUT ACCESS TIME
OUTPUT
STORE
ADDRESS
INPUTS
WRllE
ENABLE
WRITE
CLOCK
1'------
,wl
OUTPUT
STORE
---'W--"H,~-I
OUTPUTS
FIGURE 2. CLOCK SET·UP AND HOLD TIME
FIGURE 5. OUTPUT STORE ACCESS, SET·UP AND HOLD TIME
OUTPUT
DISABLE
1.5V
l":r~~
15V)(----------
----.I .
O.5V
VO'--+-"l""".J
OUTPUT
iI
WAnE
CLOCK
15V
l~tOA_1
,--
OUTPUTS _ _ _ _ _ _ _ _ _ _ _' : , " - -
FIGURE 3. CLOCK TO OUTPUT ACCESS
FIGURE 6. OUTPUT DISABLE AND ENABLE TIME
Note: Input waveforms supplied by pulse generator having the following characteristics: V:::: 3.0V, tR $. 2.5 ns,
PRR
:S
1.0 MHz, and ZOUT = 50 MD.
I
3·85
~ Proprietary
OM75/0M8570,OM76/0M86L70
8-Bit Serial In/Parallel Out Shift Registers
General Description
Features
These 8-bit shift registers feature gated serial inputs and
an asynchronous clear. A low logic level at either input
inhibits entry of the new data, and re$ets the first
flip·flop to the low level at the next clock pulse, thus
providing complete control over incoming data. A high
logic level on either input enables the other input,
which will then determine the state of the firs't flip-flop.
Data at the serial inputs may be changed while the
clock is high or low, but only information meeting the
setup requirements will be entered. Clocking occurs on
the low-to·high level tran~ition of the clock input. All
inputs are diode-clamped to minimize transmission-line
effects.
•
Gated (enable/disable) serial inputs,
•
Fully buffered clock and serial inputs
•
Asynchronous clear
TYPE
TYPICAL
TYPICAL
CLOCK FREOUENCY
POWER DISSIPATION
36 MHz
14 MHz
185mW
70
L70
30mW
Connection Diagrams
OUTPUTS
CLEAR
DF
13
12
11
CLOCK
D5
10
14
<-
a.
A
SERIAL INPUTS
CLOCK
GND
13
12
111
D4
D3
D6
U2
10
-
-
Do
Dc
CLEAR
-
D7
UB
S.
OUTPUTS
7570(J), (W); 8570IJ), (N), (W)
76L70/86L70(W)
Truth Table
INPUTS
CLEAR
OUTPUTS
CLOCK
A
8
L
x
x
x
H
L
x
X
GAO
GBO
H
t
H
H
H
GAo
x
H
H
x
GA
OB
H
X
=
=:
High Level (steady state), L
=
Low Level (steady state)
Don't Care (any input, including transitions)
t = Transition from low to high level
0AO, 0BO, OHO = The level of {lA, OB, or 0H, respectively,
before the indicated steady·state input conditions were
established.
QAn. QGn = The level of -QA or QG before the most recent t
transition of the clock; indicates a one-bit shift.
3·86
01
~
DM75/DM8570.DM76/DM86L70
P rQprietary
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
-DM76L/86L
DM75/85
CONDITIONS
PARAMETER
MIN
V'H
High Level Input Voltage
V'L
Low Level ',"put Voltage
Input Clamp Voltage
High Level Output Current
Vee'" Min, V 1H
V 1L
::::
VOL Low Level Output Voltage
Input Current at Maximum
Input Voltage
ICC
MAX
V
0.7
2V
High Le~ei Input Current
Supply Current
V
-200
~A
V
2.4
DM75,76l
8
2
DM85,86l
8
3.6
DM75,76l
0.2
0.4
V 1L
DM85,86l
0.2
0.4
0.3
0.4
Clear
1
0.2
Other
1
0.1
""
Max,
tOL
= Max
Vee
=
Vee
= Max, VI:::: 2.4V
Low Level Input Current
Short Circuit Output Current
N/A
-400
3.2
2.4
Max, VI"" S.5V
M -j------~'-------------~-----'1
DATA
INPUTS
'-------+-------H.-.------+----j,
>O-ir--------+-+----------j------'14
'14
L------+--JI!:--~~-------_+-..---
14 INPUTS
FOR MASK
PROGRAMMING
96
OUTPUTS
,,
I
~ .rr:::=\
NOTE:): IS A MASK·PROGRAMMABLE CONNECTION
3-95
FB ORF8
~
DM75/DM8575,76
Proprietary
Electrical Characteristics over recommended' operating free-air temperature range (unless otherwise noted)
DM75/85
PARAMETER
CONDITIONS
V IH
High Level Input Voltage
Vee=Min
Vil
Low Level I nput Voltage
Vee = Min
VI
Input Clamp Voltage
Vee = Min, I, = -12 mA
10H
High Level Output Current
High' Level Output Voltage
TVP(1)
MAX
2
V OH =5.5V
V OH
UNITS
75, 76
MIN
Vee = Min
0_8
V
-1.5
V
DM75/S575
-SOO
DM75/S576
100
DM75/S575
V ,H = 2V
V
2.4
V
V'L = O.SV
Low Level Output Current
VOL
Low Level Output Voltage
5.5
DM75/S576
IOH = Max
tOl
Vee = Min, V ,H = 2V
V'L = 0.8V, IOL = 12 mA
II
IJ-A
12
mA
0.4
V
Input Current at Maximum
Input Voltage
Vee = Max, V, = 5.5V
1
mA
IIH
High Level Input Current
Vee = Max, V, = 2.4V
40
IJ-A
III
Low Level Input Current
Vee = Max, V, = OAV
-1.0
mA
los
Short Circuit Output
Current
Icc
Supply Current
Vee = Max(21
DM75
-20
""55
DM85
-18
-55
110
Vee = Max
mA
mA
170
Notes
111 All typical values are at Vee == 5V and T A = 25u~.
121 Not more than one output should be shorted at a ~ime.
Switching Characteristics Vee = 5V, T A = 25°c
DM75/85
PARAMETER
FROM
CONDITIONS
TO
tPlH
Propagation Delay Time,
Low-to-H igh Level Output
tpHl
Propagation Delay Time,
High-to-Low Level Output
Data
Output
Data
Output
UNITS
75, 76
MIN
TVP
MAX
80
150
ns
100
150'
ns
C L = 50 pF, RL = 400Q
PLA Programming Information
PUNCHED CARDS
Information to program the PLA can be supplied in one
of two formats:
: (Used to determine whether outputs are
CARD
presented' in their true or inverted form, :If this. card
is not used it is assumed that all.eight outputs are true.)
,
1. Punched 80-column cards
2. The applicable section of this data sheet (manual
entry of information).
Col, '-6: DM7575
DM8576.
3·96
or
DM8575
or
DM7576
or
~ Proprietary
DM75/DM8575.76
PtA Programming Information (Continued)
Col. 7·9:
(Blank)
number, program number, etc.). However the exact
combination of characters must appear on all cards,
associated with that particular device. The purpose
of this section is to prevent mixing of cards.
Col 10·17: Output Data. Outputs are F8 (most
significant) to F1 (least significant). All eight outputs
must be specified.
Col. 76·78: (Blank)
A 'T' in an output location indicates that the
output is true.
Col. 79·80: Product Term Number 01 to 96. (All 96
cards need not be used.) Zero in column 79 may be
suppressed.
A 'C' in an output location indicates that the
output is complemented (inverted).
Col. 18·39: (Blank)
MANUAL ENTRY
Col. 40·75: This space is reserved for any unique
letters/numbers desired by the customer (special part
number, program number, etc.). However the exact
combination of characters must appear on all cards,
associated with that particular device.
The matrix·blank shown in this data sheet can be used in
lieu of punched cards to submit information for pro·
gramming the PLA.
INSTRUCTIONS
Col. 76·78: (Blank)
1. Circle the appropriate part number. I n the event a
catalog part is not being purchased, circle the closest
catalog part number. If an electrical screen is required
between the military and commercial devices, the
military designation should be circled.
Col. 79·80: 00
CARDS 2·97: Term Data Cards. Used to specify the
input and output conditions.
Col. 1·6: DM7575 or DM8575 or DM7576 or DM8576.
2. Customer should write the name of his company.
Col. 7·9: (Blank)
3. Enter the total number of unique product terms
found in all eight outputs. Repeated terms count
only once.
Col. 10·17: Output Connections. Outputs are F8,
(most significant) to F1 (least significant). This field
describes the outputs on which the product term
appears.
4. Output Inverter Option. Under the appropriate output
designation specify a 'T' when the high (true) level is
desired on the output for the given input conditions.
Specify a 'C' if the complement is needed.
A '+' in one of the eight output locations indicates
that the term described by the card is one of the
"OR" terms in that output.
5. Matrix
A '(blank)' in one of the eight output locations
indicates that the term described by the card is not
one of the "OR" terms in that output.
a. Input data. This block is used to describe what
comprises each of the 96 (maximum) product
terms. In each row, opposite the appropriate
Product Term number, information on the fourteen
Input Data locations is entered. Information must
be entered on all 14 inputs.
(Care should be exercised in punching this particular
field; since in mOst cases, unless a product term is
repeated, this field will appear as one '+' and seven
blanks.)
1).
Col. 18: (Blank)
Col. 19: = (equal sign)
Enter an "H" under the appropriate input
designation if that particular input appears in
the product term as a high (true) level.
Col. 21·34: Input Data. Inputs are 113 (most signifi·
cant) to 10 (least significant).
2). Enter an "L" under the appropriate input
designation if that particular input appears in
the product term as a low (complemented)
level.
An 'H' in one of the fourteen locations indicates
that input appears in the high state in the output
term.
3). Enter an "X" under the appropriate input
designation if that particular input does not
appear in the product term.
An 'L' in one of the fourteen input locations indio
cates that input appears in the low state in the
output term.
If less than 96 product terms are used leave all
spaces for the unused terms blank.
Col. 20: (Blank)
b. Output Data. This block is used to describe the
outputs on which the product terms appear.
An 'X' in one of the fourteen input locations
indicates that input does not appear in the output
1). Enter a '+' under the appropriate output
designation if the product term is contained
in that output's expression.
term.
Col. 35·39:
(Blan~)
Col. 40·75: This space is reserved for any unique
letter/number desired by the customer (special part
2). Leave a location blank if the product term is
not contained in that output's expression.
3·97
~ . Proprietary
DM75/DM8575.76
AC Test Circuit
14 INPUTS
5V
8 OUTPUTS
Switching Time Waveforms
.r::90~%:---~90~%""-- 3.0V
ANY INPUT - - - " l
NON-IN~~~~~~ _ _ _.....,_-'
FREGUmCY ~ 1 MHz
DUTY CYCLE ~ 50%
tr = tf = 10 ns
3-98
~ Proprietary
DM75/DM8575.76
Truth Table/Order Blank
1. PART NO. -
(DM7575, DM8575, DM7576, DM8576)
2. CUSTOMER IDENTIFICATlON-
3. TOTAL NO. OF UNIQUE PRODUCT TERMS USED-
(Repeated Terms Count Only Once)
4. OUTPUT INVERTER OPTION
5. MATRIX
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
3-99
~ Proprietary
DM75/DM8575.76
Truth Table/Order Blank (Continued)
PRODUCT~-r~~r-.--r-.I_N_PTUT~DrA_T~A__r-~-r~__~~~__r-~O~U~TTPU~T~O~A~T~A~r-~~
TERM
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63.
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
III'
3·100
~ Proprietary
DM75/DM85n
256-Bit Programmable Read Only Memories
GeneraLDe~ription
output for that bit is permanently programmed to provide a low logic level. Outputs never having been altered
may later be programmed to supply a low-level output.
Operation of the unit within the recommended operating
conditions will not alter the memory content.
The DM7577/DM8577 is a field-programmable, 256-bit,
read only memory organized as 32 words of 8 bits each.
This monolithic, high-speed, transistor-transistor-Iogic
(TTL) memory array is addressed in 5-bit binary with
full on-chip decoding_ An overriding memory-enable
input is provided which, when taken high, will inhibit
the function causing all eight outputs to remain high.
The organization is expandable to 1,856 words of n-bits
with no additional output bufferi ng.
The mask-programmable DM5488/DM7488 can be used
to replace the DM7577/DM8577 as they are functionally and mechanically identical.
The address of an 8-bit word is accomplished through
the buffered binary select inputs in coincidence with a
low logic level at the enable input. Where multiple
DM7571/DM8577 devices are used in a memory system,
the enable input allows easy decoding of additional
address bits.
Features
Data can be electronically programmed, as desired, at
any of the 256-bit locations of the DM7577/DM8577
in accordance with the programming procedure specified.
Prior to programming, the memory contains a high-Iogiclevel output condition at all 256 bit locations. The programming procedure open-circuits nichrome links which
results in a low-logic-level output at selected locations.
The procedure is irreversible and, once altered, the
•
Field programmabl,e for custom or prototype memories
•
Mask-programmable DM5488/DM7488 is a direct
replacement for the DM7577/DM8577
•
•
Typical access time
Organized as 32 words
•
Ideal for microprogramming and code converters
•
Open-collector outputs are easily expanded
•
Fully-decoded buffered inputs
•
Fully compatible with most TTL and DTL circuits
•
Pin compatible with SN74188A
Connection Diagram
ENABLE
v
G
.
SELECT
,
E
OUTPUT
\
YB
A
B
C
0
r16
15
13
14
12
11
10
9
2
1
Y1
\
Y2
4
3
Y3
.
V4
5
V5
OUTPUTS
7577(J}; 8577(J}, (N)
3-101
35 ns
of 8-bits each
7
6
VB
V7
,
J:
~
DM75/DM8577
Proprietary
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM75/85
PARAMETER
CONDITIONS
77
MIN
VIH
High Level Input Voltage
V il
Low Level Input Voltage
VI
Input Clamp Voltage
Vee
IOH
High Level Output Current
Vee
Low Level Output Current
VOL
Low Level Output Voltage
II
MAX
2
V'L
IOL
UNITS
TVP(1)
Input Voltage
I,
= -12 mA
= Min, V ,H = 2V
V OH = 5.5V
= 0.8V,
0.8
V
-1.5
V
100
pA
12
mA
V
= Min, V ,H = 2V
= 0.8V, 10L = 12 mA
0.4
V'L
Vee
=Max, V, = 5.5V·
1
mA
40
pA
Vee
Input Current at Maximum
= Min,
V
IIH
High Level Input Current
Vee
= Max, V, = 2.4V
III
Low Level Input Current
Vee
= Max, V, = O.4V
ICCH
Supply Current, Outputs High
Vee
= Max(2)
50
80.
mA
ICCl
Supply Current, Outputs Low
Vee
= Max(3)
82
1.10
mA
-1
mA
Notes
(1 ) All typical values are at Vee == 5V and T A = 25° C.
(2) ICCH is measured with all inputs at 4.5V, all outputs open.
(3) leel is measured with enable input grounded, aiL other inputs at 4.5V, and all outputs open, The typical value shown is for the worst-case
condition of all eight outputs low at one time. This condition may not be possible after the device has been programmed.
Switching Characteristics
vee
= 5V, T A = 25°C
DM75/85
PARAMETER
FROM
TO
77
CONDITIONS
MIN
tpLH
Propagation Delay Time,
Enable
Any
Enable
Any
UNITS
TVP
MAX
22
35
ns
15
35
ns
35
50
ns
. 35
50
ns
Low-to-H igh Level Output
tpHl
Propagation Delay Time,
High-to-Low Level Output
tPlH
Propagation Delay Time,
Select
Any
Select
Any
Low-to-High L,evel Output
tpHl
Propagation Delay Time,
= 30 pF to GND
RL1 = 400[2 to Vee
RL2 = 600[2 to GND
CL
.'.
High-to-Low Level Output
3-102
;
,
~ Proprietary
DM75/DM8577
Programming Procedure
1. Apply steady-state supply voltage (Vee ~ 5.0V,
GND ~ OV) and address the word to be programmed
with' specified input voltages.
The bit programmed may be verified by checking
the output for a low logic level after the enable input
reaches a low logic level.
2. Disable the outputs by applying a high logic level to
the enable input.
5. Repeat steps 2 through 4 for each output of this
address to be programmed as a low level.
3. Only one bit location is programmed at a time. Open
circuit all outputs except the one to be programmed
as a low logic level.
6. Advance to next address location and repeat steps
2 through 5.
4. Apply the specified programming pulse to the output
to be programmed, The recommended pulse width
is 1.0 ms.
Recommended Conditions for Programming
MIN
CONDITIONS
TYP
MAX
UNITS
5.0
5.5
V
0
2.4
0.5
5.0
V
Programming Pulse Amplitude
20
22
V
Programming Pulse Rise Time
1.0
5.0
10
~s
Programming Pulse Current limit
100
Programming Pulse Width
10
20
50
ms
Cas€ Temperature
25
75
°c
Supply Voltage, Vee
Input Voltage
I
I
Low Level
High Level
200
V
mA
AC Test Circuit and Switching Time Waveforms
5.DV
RU
FROM
OUTPUT
UNDER
TEST
-~
ENABLE
ME 2f,cr-
____'-~______~~~IaI________~~~______~
oniON 1
ME1::::[)ME2
Other options on .....DIY .neMe gatI:
ME1~
ME2~
oniON 3
OPTION 2
~-119
~
OM75/0M8597
Proprietary'
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM75/85
PARAMETER
I
~
V IH
High Level Input Voltage
Vee
V IL
Low Level Input Voltage
Vee ~ Min
VI
Input Clamp Voltage
Vee
IOH
High Level Output Current
V OH
High Level Output Voltage
~
MIN
Low Level, Output Current
VOL
Low Level Output Voltage
Off State (High Impedance
State) Output Current
II
Input Current at Maximum
Input Voltage
~
Vee
V'L
IOIOFFI
V
Min, I,
~
-12 mA
Min, V ,H
~
~
Min, V ,H
~
2V
~
Max
Vee ~ Max
V
-1.5
V
-5.2
2V
0.8V, IOL
0.8
-2.0
J DM85
~
MAX
2.0
Min
V
II Vo~OAV
~
Max, V,
~
5.5V
16
mA
OA
V
-40
Vo~2AV
Vee
mA
2A
V'L ~ 0.8V, IOH ~ Max
IOL
TYP(1)
I DM75
Vee
UNITS
97
CONDITIONS
40
1.0
/lA
mA
IIH
High Level Input Current
V ee
~
Max, V,
~
2AV
40
/lA
IlL
Low Level Input Current
Vee
~
Max, V,
~
OAV
-1.0
mA
los
Short Circuit Output Current
Vee
~
Max(2)
-70
mA
Icc
Supply Current
Vee ~ Ma~
-20
75
110
mA
Notes
11 ) All typical values are at Vee:::: 5V and TA = 25°C.
(2) Not more than one output should be shorted at a time.
Switching Characteristics vee ~ 5V, T A ~ 25°C
DM75/85
PARAMETER
FROM
TO
CONDITIONS
tplH
Propagation Delay Time,
Address
Output
Address
Output
UNiTS
97
MIN
TYP
MAX
31
60
ns
39
60
ns
Low-ta·High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tZH
Output Enable Time to
CL
~
50pF
RL
~
400n
Enable
Any
20
30
ns
Enable
Any
20
30
ns
Enable
Any
20
30
ns
20
30
ns
High Level
tZl
Output Enable Time to
Low Level
tHZ
Output Disable Time from
High Level
tlZ
Output Disable Time from
Enable
Any
CL
~
5 pF
RL
~
400n
I
Low Level
3-120
~ Proprietary
DM75/DM8597
Ordering Instructions
Programming instructions for the DM7597 or DM8597
are solicited in the form of a sequenced deck of 32
standard 80-column data cards providing the information requested under data card format, accompanied
by a properly sequenced listing of these cards, and the
supplementary ordering data. Upon receipt of these
items, a computer run ·will be made from the deck of
cards which will produce a complete truth table of
the requested part. This truth table, showing output
conditions for each of the 256 words, will be forwarded
to the purchaser as verification of the input data as
interpreted by the computer·automated design (CAD)
program. This single run also generates mask and test
program data; therefore, verification of the truth table
should be completed promptly.
20·23 Punch "H," "L," or "X" for the third set of
outputs.
24
Blank
25·28 Punch "H," "L," or "X" for the fourth set of
outputs.
29
Blank
30·33 Punch "H," "L," or "X" for the fifth set of
outputs.
34
Blank
35·38 Punch "H," "L," or "X" for the sixth set of
outputs.
39
Blank
40-43 Punch "H," "L," or "X" for the seventh set
of outputs.
44
Blank
45-48 Punch "H," "L," or "X" for the eighth set
of outputs.
49
Blank
50-51 Punch a right-justified integer representing the
current calendar day of the month.
52
Blank
53-55 Punch an alphabetic abbreviation representing
the current month.
56
Blank
57-58 Punch the last two digits of the current year.
59
Blank
60-61 Punch "DM"
62-65 Punch 7597 or 8597
66-70 Blank
71
Punch 1, 2 or 3 for memory enable option
desired (assumed 1 if not punched).
Each card in the data deck prepared by the purchaser
identifies the eight words specified and describes the
conditions at the four outputs for each of the eight
words. All addresses must have all outputs defined and
columns designated as "blank" must not be punched.
Cards should be punched according to the data card
format shown.
Supplementary Ordering Data
Submit the following information with the data cards:
a) Customer's name and address
b) Customer's purchase order number
c) Customer's drawing number
Data Card Format
Column
AC Test Circuit
1-3
Punch a right-justified integer representing the
binary input address (00·248) for the first set
of outputs described on the card.
4
Punch a "-" (minus sign)
5·7
Punch a right-justified integer representing the
binary input address (007-255) for the last set
of outputs described on the card.
8·9
Blank
10-13 Punch "H," "L," or "X" for bits four, three,
two and .one (outputs Y4, Y3, Y2, and Yl in
that order) for the first set of outputs specified
on the card. H = high level output, L = low level
output, X = output irrelevant.
Blank
14
15-18 Punch "H," "L," or "X" for the second set
of outputs.
19
Blank
5.0V
RL
OUTPUT
DM7597/
DM8597
I-
lI-
3-121
I~
,.....
t"
.,,.
-I-
lK
~,
-l-
~~
.::
~ Proprietary
DM75/DM8598
TRI-STATE 256-Bjt Read Only Memories
General Description
The DM7598/DM8598 is a mask-programmed 256-bit
read only memory, organized as 32, 8-bit words. A 5-bit
input code selects the appropriate word which then
appears on the eight outputs. An enable input overrides
the select inputs and blanks all outputs.
TRI-STATE elements, neither waveform integrity nor
optimum speed would be achieved. The low output
impedance of the DM7598/DM8598 provides gOOd capa·
citance drive capability and rapid transition from the
logical "0" to logical "1" level, thus assuring both. speed
and waveform integrity.
Although the DM7598/DM8598 can have its outputs
tied together for word-expansion, the outputs are not
open-collector, but rather the familiar totem-pole output
with the capability of being placed in a "third-state."
This unique TRI-STATE concept allows outputs to be
tied together and then connected to a common bus line.
Normal TTL outputs cannot be connected due to the
low-impedance logical "1" output current which one
device would have to sink from the other. If, however,
on all but one of the connected devices both the upper
and lower output transistors are turned "OFF," then the
one remaining device in the normal low impedance state
will have to supply to, or sink from, the other devices
only a small amount of leakage current.
It is possible to connect as many as 128 DM8598s to a
common bus line and still have adequate drive capability
to allow fan-out from the bus.
Features
•
•
•
•
•
•
•
While it is true that in a TTL system open-collector gates
could be used to perform the logic function of these
TRI-STATE outputs
Pin compatible with DM5488/DM7488
Organized as 32 8-bit words
Full internal ,decoding
26 ns typical access time
350 mW typical power dissipation
Designed for bus-organized systems
Connection and Logic Diagrams
SELECT
\
,-----~-----,A
ME
..
,
OUTPUTV8
1..v
1D
"
BINARV
SHEeT
""
I'-Oov-t-H-HH
..
o,;i>
-
E(l4}
1
Y1
Y2
Y3
Y4
V5
Y6
OUTPUTS
V)
ME
(lSI
"v
PROGRAMMING
7598IJ); 8598(Jl, IN)
NOT
SHOWN
3-122
OUTPUTS
~
DM75/DM8598
Proprietary
Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted)
DM75/85
PARAMETER
CONDITIONS
98
MIN
V 1H
High Level Input Voltage
Low Level Input Voltage
Vee = Min
VI
Input Clamp Voltage
Vee = Min, I, = -12 mA
10H
High Level Output Current
I
I
High Level Output Voltage
Low Level Output Current
VOL
Low Level Output Voltage
-1.5
V
-2.0
-5.2
mA
2A
V
mA
12
Vee = Min, V ,H = 2V
10(OFF) Off·State IHigh Impedance State)
Output Current
II
V
DM85
= Max
10H
V
0.8
DM75
Vee = Min, V ,H = 2V
V ,L = 0.8V,
10L
UNITS
MAX
2
Vee. = Min
V IL
V OH
TYP(1)
Input Current at Maximum Input
Voltage
OA
V ,L = 0.8V,
10L ,"
I
Vo = OAV
-40
Vee = Max
I
Vo = 2AV
40
12 mA
Vee = Min, V, = 5.5V
IIH
High Level Input Current
Vee = Max, V, = 2AV
IlL
Low Level I nput Current
Vee = Max, V,
lOS
Output Short Circuit Current
Vee = Max(2)
Icc
Supply Current
~
V
/lA
mA
1
OAV
-20
Vee = Max, Inputs
70
Grounded
25
/lA
-1.0
mA
-70
mA
99
mA
Notes
(1) AI! typical values are at Vee = 5V and T A ~ 25°C.
(2) Not more than one output should be shorted at a time.
Switching Characteristics Vee = 5V, T A = 25°C
PARAMETER
tpLH
tpHL
tZH
tZL
tHZ
tLZ
PARAMETER
CONDITIONS
Propagation Delay Time,
AccessTime from
Low to High Level Output
Address
Propagation Delay Time,
Access Time from
High to Low Level Output
Address
Output En'able Time to
Access Time from
High Level
Memory Enable
Output Enable Time to
Access Time from
Low Level
Memory Enable
DM85
DM75
UNITS
CONDITIONS
MIN
C,-
= 50 pF
RL
=400.11
Output Disable Time from
Disable Time from
High Level
Memory Enable
CL
~
Output Disable Time from
Disable Time from
RL
= 400.11
Low Level
Memory Enable
3·123
TYP
MAX
65
23
50
ns
29
65
29
50
ns
16
40
16
30
ns
20
40
20
30
ns
10
30
10
20
ns
22
45
22
40
ns
TYP
MAX
23
MIN
5.0 pF
~
DM75/0M8598
Proprietary
AC Test Circuit and Switching Time Waveforms
r----'
J.OV
BINARY
SELECT
Vee
TEST
I.5V
15V
"_J~~~
'PLH
VO"
POINT
R[
FROM
........
OUTPUT
UNDER
TEST
OUTPUT
1"
15V
15V
Voc~~----
~,
ME
l.Ok
1
'------
~,
30V~
..
1.5V
, 1.5V
I
OV
--I
~,
-,. 1,5V
~~
'll
I
OUTPUT
\
VOI--1-:
I-
VOH
OUTPUT
J
'" 1.5V
o.sv
---r1
\
'ZH
Cl includ~s proba and jig capacitance.
All diodes are lN3064.
I ~
.
-T
I
"'=
'[Z~
05V
~_1
O.!)V
0.5V
I'
t
I,
-T
-J 1HZ t----
Note: Input waveforms are supplied by pulse generators
having the following characteristics: tn.s;; 10 os, tS:OS, 10 os,
PRR S 1.0 MHz and lOUT z" 50H.
Truth Table
A special pattern has been generated for the DM7598/DM8598. The AA pattern provides a sine look up table. The 5-bit input
code linearly devides 90 0 into 32 equal segments. Each 8-bit output is therefore the sine of the angle applied.
EXAMPLE: Input 11010 means 26/32 of 90 0 , or about 73°. The corresponding output 1110100 indicates (112 + 1/4 + 1/8 +
1/16 + 1/64) or about 0.96, which is close to the sine of 73°. Rounding-off has not been employed, since without rounding-off,
it is possible to extend the accuracy with additional ROMs.
INPUTS
BINARY SELECT
WORD
OUTPUTS
ENABLE
E
D
C
B
A
ME
YB
Y7
Y6
Y5
Y4
Y3
Y2
0
L
L
L
L
L
L
L
L
L
L
L
L
L
Y1
L
1
L
L
L
L
H
L
L
L
L
L
H
H
L
L
2
L
L
L
H
L
L
L
l
L
H
H
L
L
H
3
L
L
L
H
H
L
L
L
H
L
L
H
L
H
4
L
L
H
L
L
L
L
L
H
H
L
L
L
H
5
L
L
H
L
H
L
L
L
H
H
H
H
H
L
6
L
H
H
L
L
L
H
L
L
H
L
H
L
7
l.
L
L
H
H
H
L
L
H
L
H
L
H
H
L
8
L
H
L
L
L
L
L
H
H
L
L
L
L
H
H
9
L
H
L
L
H
L
L
H
H
L
H
H
L
10
L
H
L
H
L
L
L
H
H
H
H
L
L
L
11
L
H
L
H
H
L
H
L
L
L
L
L
H
H
12
L
H
H
L
L
L
H
L
L
L
H
H
H
L
13
L
H
H
L
H
L
H
L
L
H
H
L
L
L
14
L
H
H
H
L
L
H
L
H
L
L
L
H
L
15
L
H
H
H
H
L
H
L
H
L
H
L
H
H
16
H
L
L
L
l
L
H
L
H
H
L
H
L
H
17
H
L
L
L
H
L
H
L
H
H
H
H
L
H
18
H
L
L
H
L
L
H
H
L
L
L
H
L
H
H
19
H
L
L
H
H
L
H
H
L
L
H
H
L
20
H
L
H
L
L
L
H
H
L
H
L
H
L
L
21
H
L
H
L
H
L
H,
H
L
H
H
L
H
H
22
H
L
H
H
L
L
H
H
H
L
L
L
L
H
23
H
L
H
H
H
L
H
H
H
L
L
H
H
H
24
H
H
L
L
L
L
H
H
H
L
H
H
L
L
25
H
H
L
L
H
L
H
H
H
H
L
L
L
H
L
26
H
H
L
H
L
L
H
H
H
H
L
H
L
27
H
H
L.
H
H
L
H
H
H
H
H
L
L
L
28
H
H
H
L
L
L
H
H
H
H
H
L
H
H
H
29
H
H
H
L
H
L
H
H
H
H
H
H
L
30
H
H
H
H
L
L
H
H
H
H
H
H
H
L
31
H
H
H
H
H
L
H
H
H
H
H
H
H
H
All
X
X
X
x
X
H
X ~ Don't Care
3-124
Hi-Z Hj·Z Hi·Z Hi-Z Hi-Z Hi-Z Hj·Z Hi-Z
~ Proprietary
DM75/DM8598
Truth Table/Order Blank
The output levels are not shown on the truth taule since the customer specifies the output condition he desires at each of the
eight outputs for each of the 32 WOf~S (256 bits). The customer does this by filling out the Truth Table on this data sheet,
and sending it in with his purchase order
INPUTS
OUTPUTS
BINARY SELECT
WORD
ENABLE
E
D
C
0
L
L
L
1
L
L
L
2
L
L
L
H
L
l.
3
L
L
L
H
H
L
B
A
ME
L
L
L
L
H
L
4
L
L
H
L
L
L
5
L
L
H
L
H
L
6
L
L
H
H
L
L
7
L
L
H
H
H
L
8
9
L
H
L
L
L
L
L
H
L
L
H
L
10
L
H
L
H
L
L
11
L
H
L
H
H
L
12
L
H
H
L
L
I.
13
14
L
H
H
L
H
L
L
H
H
H
L
L
15
L
H
H
H
H
L
16
H
L
L
L
I.
L
17
H
l.
L
L
H
L
18
H
l.
L
H
L
L
19
H
l
L
H
H
L
L
2.0
H
L
H
L
L
21
H
L
H
~
H
L
22
H
L
H
H
L
L
23
H
L
H
H
H
L
24
H.
H
L
L
L
L
25
H
H
L
L
H
L
26
H
H
L
H
L
L
27
H
H
L
H
H
L
28
H
H
H
L
L
L
L
29
H
H
H
L
H
30
H
H
H
H
L
L
31
H
H
H
H
H
L
AI!
X
X
X
X
X
H
YB
Yl
Y6
Y5
Y4
Y3
Y2
Y1
-
Hi-Z Hi-Z H,·Z H,·Z Hi-Z Hi-Z Hi-Z Hi-Z
x "" Don't Care
Notice: This sheet must be completed and signed by an authorized representative of the
customer's company before an order can be entered.
To be used by National only
Authorized Representative
Date
__________ Part Number
_ _ _ _._ _ _ _ S.O. Number
Company
Date Received
Desired Part
3·125
o
DM7598
o
DM8598
~ Proprietary
DM75/DM8598
Ordering Instructions
Programming instructions for the DM7598/DM85.98 are
solicited in the form of a'sequenced deck of 32 standard
80-column data cards providing the information
requested under "data card format," accompan ied by a
properly sequenc~d listing of these cards,and the supplementary ordering data. Upon receipt of these items, a
computer run will be made from the deck of cards
which will produce a complete ·functio·n table of the
requested part. This function table, showing output
conditions for each of the 32 words, will be forwarded
to the purchaser as verification of the input data as
-interpreted by the computer'automated design (CAD)
program. This single run also generates mask and test
program data; therefore, verification of the function
table should be completed promptly.
Each card in the data deck prepared by the purchaser
identifies the word specified and describes the levels at
the eight outputs for that word. All addresses must
have all outputs defined and columns _designated as
"blank" must not be punched, Cards should be punched
according to the data card format shown.
Col. 15: Punch "H" or "L" for butput V6.
CoL 16-19: Blank
Col. 20: Punch "H" or "L" for outp~t
Y'ft' .. ~.,.
Col. 21-24: Blank
Col. 25: Punch "H" or "L" for output V4.
Col. 26-29: Blank
(:01. 30: Punch "H" or "L" for output V3.
Col. 31-34: Blahk
Col. 35: Punch "H" or "L" for output V2.
Col. 36'-39: Blank
Supplementary Ordering Data
Col. 40: Punch "H" or "L" for output Y1.
Submit the following information with the data cards:
Col. 41-49: Blank
a)
h)
c)
Customer's name and address
Customer's purchase order number
Customer's drawing number
Col. 50-51: Punch a right-justified integer representing
the current calendar day of the month.
Col_ 52: Blank
The following information will be furnished to the
customer:
a)
National's part number
b) National's sales order number
c) Date received
Col. 53-55: Punch an alphabetic abbreviation representil)g the current month.
Col. 56: Blank
Data Card ForQ1at
Col. 57-58: Punch the last two digits of the current_
year.
Col. 1-2: Punch a ,right-justified integer representing
the positive-logic binary input .address (00-31) for the
word described on the card.
Col. 59: Blank
Col. 3-4: Blank
Col. 60-61: Punch "OM,"
Col. 5: Punch "H" or "L" for output V8. H ; highvoltage level output, L = low·voltage level output.
Col. 62-66: Punch
Col. 6-9: Blank
Col_ 10: Punch
"75~8fl
or "8598."
Col. 67-68:'Blank
"tt" or "V' for output V7.
Col. 11-14: Blank
Col.-69-S0: These columns may be used for any custO,mer information or identification_
3·126
~ Proprie~ry
DM75/DM8599
TRI-STATE 64-Bit Random Acc,ss Memories
General Description
The DM7599/DM8599 is a fully decoded 64-bit RAM
organized as 16 4-bit words.The memory is addressed
by applying a binary number to the four address inputs.
After addressing, information may be either written into
or read from the memory. To write, both the memory
enable and the write enable inputs must be in the
logical "0" state_ Information applied to the four
write inputs will then be written into the addressed
location_ To read information from the memory the
memory enable input must be in the logical· "0" state
and the write enable input in the logical "1" state.
Information will be read as the complement of what
was written into the memory _ When the memory enable
input is in the rogical "1" state, the outputs will go to
the high-impedance state. This allows up to 128
memories to be connected to a common bus line with-
out the use of pull-up resistors_ All memories except one
are gated into the high impedance state while the one
selected memory exhibits the normal low impedance
output characteristics of TTL_
Connection Diagram
Truth Table
A'
AI
I"
"
AJ
1J
"
04
OJ
S4
12
11
Features
•
•
•
•
TRI-STATE outputs
Same pin-out as DM5489/DM7489
Organized as 16, 4-bit words
Expandable to 2048, 4-bit words without additional
resistors (DM8599 only)
20 ns
• Typical access from chip enable
28 ns
• Typical access time
53
•
10
MEMORV
ENABLE
r--
0-
WRITE
ENABLE
OUTPUTS
OPERATION
L
L
Write
Hi-Z
L
H
Read
Complement' of Data
H
X
Hold
Stored in, Memory
1
Aft
,
•
3
ME
WE
01
••
,
6
5
Hi-Z
02
52
GNO
"
7599{JI; 8599{J), (N)
Logic Diagram
~AO
(.1)
AD
iio
AI
.
.2
AD
ii3
~Al
A' (15)
_
-
·At
ADDRESS
INPUTS
A'
AD
iiI
ii2
ii3
~A2
'2'
A3~:J
.
A)
.'
AD
AI
A2
A3
01 (41
02(6)
DATA
INPUTS
SENSE
OUTPUTS
DJ (101
04 (12)
Vec "U61
GND-II)
3-127
~
Proprietary
DM75/DM8599
Electrical Characteristics
over recommended opeiating free-air temp~rature range (unless otherwise noted)
DM75/85
PARAMETER
CONDITIONS
V,H
High Level Input Voltage
Vee =- Min
V,L
low Level input Voltage
Vee == Min
V,
Input Clamp Voltage
V'cc == Min,l, == -12 rnA
IOH
High Level Output Current
V OH
High Level Output Voltage
IOL
Low level Output Current
Low Level Output Voltage
IOIOFFI
V
I DM75
I DMS5
Vee
=
Min, V 1H
Input Current at Maximum
Input Voltage
10H
:=
2V
= Max
Vee:: Min, V ,H
:=
V'L = D.SV,
104
= 12 rnA
Vee =Max
I Vo -2:4V
2V
l Vo =O.4V
Off State (High Impedance
State) Output Current
I,
MAK
2
V'L = O.SV,
VOL
UNITS
99
TVP(l)
MIN
0.8
V
-1.5
V
-2.0
-5.2
rnA
2.4
V
12
rnA
0.4
V
-40
IJ,A
40
Vee = Max, V, = 5.5V
1
mA
40
IJ,A
-
-1.6
mA
-30
-70
mA
I'H
High Level Input Current
Vee = Max, V, = 2.4V
I'l
Low Level Input Current
Vee = Max, V, = O.4V
los
Short Circuit Output Current
Vee
Icc
Supply Current
Vee == Max
= Max(2)
80
mA
120
Notes:
= 5V and TA = 25°C.
(11
All typical val~es are at VCC
(2)
Not more than one output should be shorted at a time.
Switching Characteristics Vee
=
5V, TA
=
25°C
DM75/85
PARAMETER
FRQM
TO
-
CONDITIONS
MIN
tpLH
Propagation Delay Time,
Low-to-High Level Output
tPHl
Address
OutP~t
Address
Output
99
UNITS
TVP
MAX
27
45
ns
28
45
ns
20
ns
Propagation Delay Time,
High-to-Low Level Output
CL = 50;iF
RL = 400n
tZH
Output Enable Time to
High Level
tZl
tHOLD
ME
Output
19
30
ns
ME
Output
12
20
ns
21
3.0
ns
CL =.6 pF
RL
Output Disable Time from
ME
low leyel
tSETUP
14
Output Disable Time from
High Level
tlZ
Output
Output Enable Time to
Low Level
tHZ
I
ME
Setup Time
Hold Time
= 400n
'Output
,
Address
0
-17
Oat.
0
-1.5.
Address
5
Data
0
twp
Write Enable 'Pulse Width
tSR
Sense Recovery Time
4.0
.. . -:7
-14
ns
23
42
3-128
ns
,
ns
60
ns
~ Proprietary
DM75/DM8599
Typical Performance Curves
DELAY FROM ADDRESS
TO OUTPUT
DELAY FROM ENABLE TO
LOW IMPEDANCE STATE
DELAY FROM ENABLE TO
HIGH IMPEDANCE STATE
1 _I
Vee'" S.OV
70
35
]
50
~
40
-
~
30
20
:g
25
~
20
_
15
30
".....
~
10
:g
-~
I"
t pHL
- -:-
35
I
30
60
~
25
~
In
>
~ 20
-
c==
-
15
~V
~ ~ f-
10
10
-75 -50 -25
0
25
50
75 100 125
-75 -50 -25
Vee"' 5.IlV
~
25
-
r-LPL
-
r-tr
§: 20
~ 15
10
~
H
;;
0.2
75 10e 125
Y
~ :.--::
~ :;;.o
TEMPERATURE 1°C)
~5~C
25°C
'_55°C
(--
25°C
K-'
'"
~
20
12t"'" L'\ ~
I\.~
1.0
25
30
35
40
I
55"C-
"~ ~~
0.5
15
75100125
Vee" S.OV
\ _55°C
o
10
50
3.0
/
!)"
i'-.. V
25
LOGICAL "'" OUTPUT
VOL TAGE VS SOURCE
CURRENT
...... V ~
il
> 0.3
o
50
O
-;:. 0.4
I
25
-
12J C
0
TEMPERATURE (' C)
3.5
0.6
0.5
0.1
0
-75 -50 -25
0:
I
-75 -50 -25
75 100 125
0.7
".....
r-
50
Vee 5.0V
--
I
30
'"
25
LOGICAL "0" OUTPUT
VOLTAGE VS SINK
CURRENT
MINIMUM WRITE PULSE
WIDTH
35
0
TEMPERATURE ( C)
TEMPERATURE rC)
o
5
10
15
20
25
30
35
40
lOUT (rnA)
lOUT (rnA)
DELAY FROM ENABLE TO
OUTPUT VS LOAD CAPACITANCE
SENSE RECOVERY TIME
70
60
]: 50
!
tSR
w 40
'"
;::
30
g
30
20
20
10
10
-75 -50 -25
0
25
50
t--Hffiffit---t-H+ttIItI--t-ttttittl
~t;t;WI~t'H;L~I:::j+tm~
t--Hffiffit---t,t~"THrrffi~~~~
5 10
75 100 125
50 100
500
CL I,F)
TEMPERATURE 1°C)
Test Circuit
TEST CIRCUIT FOR DELAY VS LOAD CAPACITANCE
Note: In a typical application the output of the TRI·STATE
memories might be wired together and one would be switching
Met
to the low impedance state at the same time the circuit previously
selected would be switching back into the high impedance state.
The measurements of delay versus load capacitance were made
under conditions which simulate actual operating conditions in
an application. (See test circuit.)
ME2
ONE TTL LOAD
3-129
~ Proprietary
.OM75/8599
AC Test Circuit
5.OV
OUTPUT
OM15991
OM8599
Switching Time Waveforms
WRITE CYCLE
ME
WE--......,--"",",
- - - - - - - - -,----!-"",":"--...,+
ISR~---
OUTPUT _ _ _ _ _ _ _
tZL & tZH
MEMORY
-'L.
ENABLE - - - - " 1.5V
OUTPUTS
ACTUAL "0"
VOLTAGE
'LZ
MEMORY~15V
ENABLE·
~~
__._ _ _ _ _ _~_ _
~V
OUTPUTS
-"',.;-------~ 1.5V
----1-...1:,
'll
f--_
---+-"' I -
0.5V
+_...;:;---.L
ACTUAL "1" _ _ _
VOLTAGE
I -..;.------~
1.5V
'HZ ~
~1.5V---+__1
'ZH
Note: The pulse generator has the following characteristics: V = 3.0V,
'" 15 ns, tf 5.0 liS, f '" 500 kHz, duty cycle'" 50%, ZOUT = 50n, VI =-1.3V@25 C.
tr
J
0:
3·130
I
r
~1.5V
~ Proprietary
DM76/DM86L24
TRI-STATE Magnitude Comparators with A almost equal B
General Description
Features
These circuits are low power, 4-bit, magnitude comparators which provide both standard totem-pole TTL
outputs as well as TRI-STATE outputs. A comparison
of two, 4-bit words is performed, and the result indicated
by the four outputs: A> B, A < B, A == B, and A ~ B.
The A ~ B output is unique with this device, and is
enabled only when Word A is within one binary count
of Word B_ The comparison is expandable to any number,
without the need for external gates_ The maximum
speed method of cascading, and typical comparison
times are shown in Figures 1 and 2.
• TRI-STATE outputs
• May be cascaded to compare words of greater length
• Typical power dissipation
75 mW
• Four separate outputs
A==B
AB
Connection Diagram
Logic Diagram
OUTPUT ENABLES
EO
A~B
•
A almost equal to B (A ~ B) output permits lookahead and anticipation of a match (A == B)
OUTPUTS
A-B
A'B
12
11
13
AB
10
·256X4
LOW POWER
ROM
1 2
f
OUTPUT E02
ENABLE l.ED 1;.;114,;:1-4t++-...
A2
Al
AD
B3
WORDA
Bo
Bl
82
++_M+--.
GNO
WORO B
76L24/86L24(J), (N), (W)
Truth Table'
COMPARING INPUTS
(MSB)
(LSB)
ENABLE
INPUTS
A3B3
A2B2
Al Bl
AO BO
EOI
E02
A3>B3
A2>B2
Ai >81
AO>80
L
L
A382
x
A3= 83
A2< 82
x
x
A3= 83
A2 = B2
Al >81
A3= 63
A2= 82
A3 =63'
A2= 62
A3 = 83"
A3= 63
X
X
OUTPUTS
A=B
A-B
A>B
L
H
H
L
H
L
L
L
L
H
L
H
L
L
L
L
L
L
L
H
L
H
L
-L
L
L_
L
L
H
H
L
L
H
L
H
L-
L
L
L
H
L
L
H
X
Hi-Z
Hi-Z
Hi-Z
Hi-Z
X
H
Hi-Z
Hi-Z
Hi-Z'
Hi-Z
ABO
L.
A2 = 82
Al = 61
AO<80
A2= 82
Al = Bl
AO= 60
X
X
X
X
X
X
'Word A > Word 8 8y I
**Word A < Word B By 1
H = High Level, L = Low Level, X
= Don't Care
3-131
N
OM76/0M86L24
Proprietary'
Electrical
Charac~eristics over recommended operating free-air temperature range (unless otherwise noted)
DM76
CONDITIONS
PARAMETE'R
MIN
VIH
High Level Input Voltage
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
10H
Hiill:' Level Output Current
V OH
High Level Output Voltage
TYP(l)
Vee =Min, V,H = 2V
Low Level Output Current
Low Level Output Voltage
Off
Vee = Min, V ,H = 2V
Stat~
(High Impedance State)
Vee = Max, V,H = 2V
V'L = 0.7V
II
Input Current at Maximum
Input Voltage
Vee = Max, V, = 5.5V
IIH
High Level Input Current
Vee = Max, V, = 2.4V
IlL
Low Level Input Current
Vee = Max, V, = 0.3V
los
Short Circuit Output Current
Ver:; = Max'(2)
Icc
Supply Current
Vee = Max, V, = OV
-.".4
MAX
"~':'\
V
0.7
0.7
V
-1.5
-1.5
V
-1.0
-1.0
rnA
V
2.0
3.6
mA
0.3
0.4
V
I Va = 0.3V
-40
--40
Va = 2.4V
40
40
100
100
p.A
10
10
p.A
-180
-180
p.A
-30
mA
20
mA
I
Output Current
UNITS
TYP(li
2.4
V'L = 0.7V, 10L = Max
1010FFI
MIN
2
2.4
V'L = 0.7V, 10H = -1.0 rnA
10L
L24
MAX
2
Vee =Min, I, = -12 rnA
VOL
DM86
L24
-6
-30
15
-6
15
20
p.A
Notes
All typical values are at VCC = 5V, TA = 25°C.
(21 Not more than one output should be shorted at a time.
(11
Switching Characteristics
Vee = 5V, TA = 25°C
DM76L/86L
PARAMETER
FROM
CONDITIONS
TO
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propa~ation
Delay Time,
High·to-Low Level Output
Data
Output
Data
Output
UNITS
L24
NIIN
TYP
MAX
86
130
ns
55
85 .
ns
'34
51
ns
47
70
ns
15
23
ns
57
86
ns
C L =50pF, RL =4 kQ
tZH
Output Enable Time to
High Level
tZL
Output Enable Time to
Low Level
tHZ
Output Drsable Time from
High Level
tLZ
C L =5pF, RL =4
Output Disable Time from
Low Level
3-132
kP-
~ Proprietary
OM76/0M86L24
Typical Applications
A15· AlJ
HIGH"'A>B
A>B
OUTPUTS { HIGH-'A3.B
A,"B
8
.<8
Lr-r-r~~~~~~ ~
IMSB)
OUTPUT
ENABLE
(lSB)
FIGURE 2. MAXIMUM SPEED EXPANSION (NOT SUITABLE FOR A - BI
COMPARE
CIRCUIT DELAY
(FIGURE 2)
1A BITS
5-7
NUMBER
OF CIRCUITS
1 DELAY
1
BITS
2 DELAYS
2
8-10 BITS
2 DELAYS
3
11-13 BITS
2 DELAYS
4
14-16 BITS
2 DELAYS
5
AC Test Circuit and Switching Time Waveforms
~L'~ ____
VCC=5.0V
3V
Z.OV
Rl
v, ,
I
1.0V
I
tpHL
OUTPUT---.....
i-i
I
----I
I
OUTPUT ENABLE
tZL Be tZH
OUTPUT
ENABLE
1.0V ----I~r--_;;;_;_
VOUTlIl-----t--,.--:---1.0V ----I-~I_-=r
Note: The pulse generator has the following characteristics: V ::= 3.0V, tr::: 15 ns, tf '" 5.0 ns, f '" 600 kHz, duty cycle'" 50%, ZOUT '" 50n. Vt ::: 1.3V@25°C.
3·133
ov
tplH
VOUT(1}
~ Proprietary
DM76/DMB6l25
TRI-STATE 7·Segment to BCD Decoder
General Description
Features
These circuits are low power converters which accept
7 -segment data on the inputs, and provide binary-coded
decima,1 (BCD) data on the outputs. An input control
line is also provided, in the event that the 7-segment
input data is presented in inverted form. The BCD
outputs are normally of the standard totem-pole TTL
type, however they may also be converted ,to highimpedance (TRI-STATE) types by applying a high logic
level to either of the two output enable pins.
• TRI-STATE outputs
Connection Diagram
OUTPUT ENABLE
CSZ
1J
2'
12
11
10
a
b
c
d
e
f
9
cn
CS 1
CS 2
z1
22
2'
D
I
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
H
H
L
L
L
L
H
L
L
L
L
L
H
C'
H
H
L
H
H
L
H
H
L
L
L
L
H
L
3
'-/
H
H
H
H
L
L
H
H
L
L
L
L
H
H
L
H
H
L
L
H
H
H
L
L
L
H
L
L
5
H
L
H
H
L
H
H
H
L
L
L
H
L
H
b
5
7
L
L
H
H
H
H
H
H
L
L
L
H
H
L
H
L
H
H
H
H
H
H
L
L
L
H
H
L
H
H
H
L
L
L
L
H
L
H
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
q
'3
H
H
H
L
L
H
H
H
l
l
L
L
B
L
H
L
L
H
H
H
H
H
L
H
H
H
L
l
H
L
L
H
BLANK
L
L
L
L
L
L
L
H
L
L
H
H
H
H
:I:
Logic Diagram
2°
L
L
L
H
H
H
L
H
L
L
H
H
L
H
E
R
P
H
L
L
H
H
H
H
H
L
L
H
H
H
L
H
H
H
'L
H
H
H
H
L
L
H
L
H
L'
H
H
L
L
H
H
H
H
L
L
H
L
H
H
-
L
L
L
L
L
L
H
H
L
L
H
H
L
L
n
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
H
H
H
H
L
L
L
L
L
L
H
L
76l25/B6L25(J), (N), (W)
CONl:RG~~
70 ns
DIGIT
,
INPUTS
INPUTS
• Typical p(opagation delay
OUTPUTS
2°
GNO
SE:~~:~
75 mW
Truth Table
~.~----~~--~~
CSl
• Typical power dissipation
,,
LJ
i'
'3
L
L
H
L
L
H
L
L
L
L
L
L
H
L
13)
L
L
L
L
H
H
L
L
L
L
L
L
H
H
:
i4J
'-I
H
L
L
H
H
L
L
L
L
L
L
H
L
l
e (5)
5
L
H
L
L
H
L
L
L
L
L
L
H
L
H
f (6)
b
H
H
L
L
L
L
L
L
L
L
L
H
H
L
.9(7)
E,
L
H
L
L
L
L
L
L
L
L
L
H
H
L
7
B
q
L
L
L
H
H
H
H
L
L
L
L
H
H
H
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
H
L
L
L
L
L
H
L
L
H
C 05)
INPUT
_'II~"~H-~H-~H--'
C51ENABlE {CSZ..:.II","....,f+-....,f+-....,f+--.
OUTPUT
BCD OUTPUTS
Segment Identification
9
L
L
L
L
H
L
L
L
L
L
H
L
L
H
BLANK
,
H
H
H
H
H
H
L
L
L
H
H
H
H
L
H
H
H
L
H "
L
L
H
L
L
L
H
H
L
H
E
R
P
-
L
L
H
H
L
L
L
L
L
L
L
H
H
H
L
L
L
H
L
L
L
L
L
L
H
L
H
L
l.
L
Ii
H
L
L
L
L
L
H
L
H
H
H
Ii
H
H
H
H
L
L
L
L
L
H
H
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
X
Z
Z
Z
Z
X
H
Z
Z
Z
Z
L
L
H
H
H
H
All Other "Input Combinations
3-134
~
OM76/0M86L25
Proprietary
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM76L
PARAMETER
CONDITIONS
MIN
VIH
High Level Input Voltage
VIL
Low Level I nput Voltage
VI
Input Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
TYP(1)
Vee = Min, V ,H = 2V
VOL
Low Level Output Voltage
II
V'L = 0.7V
Input Current at Maximum
I Vo =0.3V
1va =2.4V
Vee = Max, V, = 5.5V
Input Voltage
MAX
V
0.7
-1.5
-1.5
V
-1.0
-1.0
mA
V
V
2.4
V'L = 0.7V, 10L = Max
Vee = Max, V ,H = 2V
UNITS
TYP(1)
2
Vee = Min, V ,H = 2V
IOIOFFI Off State (High Impedance State)
Output Current
MIN
0.7
2.4
V'L = 0.7V, 10H = -1.0 mA
Low Level Output Current
L25
MAX
2
Vce = Min, I, = -12 mA
IOL
DM86L
L25
2.0
3.6
mA
0.3
0.4
V
-40
-40
40
40
100
100
/lA
/lA
J1A
IIH
High Level I nput Current
Vee = Max, V, = 2.4V
10
10
IlL
Low Level Input Current
Vee = Max, V, = 0.3V
-180
-180
/lA
los
Short Circuit Output Current
Vee = Max(2)
-30
mA
Icc
Supply Current
20
mA
-6
• Vee = Max, V I = OV
-30
15
-6
15
20
Notes
All typical values are at Vee'" 5V, T A"" 25°C.
(21 Not more than one output should be shorted at a time.
(11
Switching Characteristics
Vee = 5V,
TA
= 25°C
DM76L{86L
PARAMETER
FROM
TO
CONDITIONS
L25
MIN
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tZH
Output Enable Time to
Data
Output
Data
Output
130
ns
55
85
ns
34
51
ns
47
70
ns
15
23
ns
57
86
ns
Output Disable Time from
High Level
tLZ
86
Output Enable Time to
Low Level
tHZ
MAX
C L = 50 pF, RL = 4 kU
High Level
tZL
UNITS
TYP
Output Disable Time from
C L = 5 pF, RL = 4 kU
Low Level
3-135
~ Proprietary
DM76/DM86L25
AC Test Circuit
Vee = 5.0V
OM76l25/
OM86l25
All diodes
are lN914
Switching Time Waveforms
~1~~=_-.3V
2.0V
2.0V
Vt
1
I
WORO
INPUT
I
--I
tPHl I -
OUTPUT---.......\
1.0V
r"'' "'
\.. _ _ _- ' _ _ _J.
- - VOUTlL)
OUTPUT
ENABLE
OUTPUT
ENABLE
1.0V
OV
tplH \ - -
~
-----C-j----,-'--
1.0V
-----+----+-..._-,.__
O.5V
VOUTll)----+-'-..:...-----
VOUTll)------t-I~--_:_;,
VOUTlH)----f-----:..._-:-----
VOUTlH)
LOV ----+-'-f---=T
------i-.. .
-----'L
~ 1.0V ~----_+_--+-,-'"--
Note: The pulse genenltor has the following characteristics: V '" 3.0V, tr "" 15 liS, tf '" 5.0 n5, f '" 500 kHz,
duty cycle =: 50%, ZOUT = 50n, Vt '" f.3V @ 25~C.
3·136
~ Proprietary
DM76/DM86L75,L76
Presettable Decade/Binary Counters
General Description
These synchronous, presettable counters are true tenthpower versions of the popular DM54160A/DM74160A,
DM54161A/DM74161A,
DM9310,
and
DM9316
counters. They feature an internal carry/look ahead for
high-speed cascading, and trigger on the positive-going
transition of the clock pulse. The counters are fully
programmable; and, since presetting is synchronous,
applying a low logic level to the load input disables
the counter and forces the outputs to agree with the
setup data after the next clock pulse,. regardless of the
levels of the enable inputs. Low-to·high transitions at
the load inputs are acceptable, regardless of the logic
levels on the clock or enable inputs. The clear (reset)
function is asynchronous, and a low level applied to
the clear input sets all four outputs low regardless of
the levels on the clock, load, or enable inputs. In
high-speed cascading arrangements, both count·enable
inputs (p, T) must be high to count, and input T is fed
forward toenable the ripple carry output. This high·level
overflow ripple carry pulse can be used to enable
successive stages. High·to·low level transitions at the P
or T enable inputs are permitted, regardless of the
logic level on the clock.
Features
•
Low power versions popular counters
DM76L75/DM86L75 = DM54160A/DM74160A,
DM9310 ~ decade counter
DM76L76/DM86L76 = DM54161A/DM74161A,
DM9316 ~ binary counter
• Internal look-ahead for fast cascading
• Counters are fully synchronous and presettable
• Typical power dissipation
33 mW .
Connection Diagram
OUTPUTS
TC
Vrcc
16
OUTPUT
00
15
02
CEl
Q3
11
13
14
11
PE
10
p-
1
2
CLEAR
CLOCK
3
PO
PI
P2
P3
''----v---~'
DATA INPUTS
76L75/86L75(J), (N). (WI;
76L76/86l76(JI, (N), (WI
3-137
CEP
~
DM76/DM86L75,L76
Proprietary
Electrical Characteristics
over recommended operating free-air t~mperature range (unless otherwise noted)
PARAMETER
CONDITIONS
MIN
VIH
High level Input Voltage
VIL
low level Input Voltage
10H
High Level Output Current
VOH
High level Output Voltage
10L
Low Level Output Cu'rrent
Low Level Output Voltage
Vce = Min, V ,H = 2V
Input Current at Maximum
I nput Voltage
IIH
IlL
High Level I nput Current
Low Level Input Current
Vee
=
2.4
Vee = Max, V,
Vee
MAX
MIN
UNITS
TYP(1)
MAX
2
V
0.7
0.7
-200
-200
2.4
3.1
=
Vee ""Max
Icc
Supply Current
Vee -':: Max
0.2
= Max
2.4V
= Max, V, = 0.3V
Short Circuit Output Current
Notes
All typical values are at VCC
iv
Max, V, =5.5V
los
( 1)
TYP(l)
3.1
0.2
0.3
3.6
mA
0.4
V
CET Input
200
200
Others
100
100
CET Input
20
20
Others
10
10
CET Input
-360
-360
Others
-180
-180
-3
-9
6.5
-15
-9
-3
6.5
9
V
MA
V
2.0
Ve.e = Min, V ,H =
V'L = 0.7V, IOL
II
DM86l
L75, l76
2
V'L = 0.7V, IOH = -200MA
VOL
DM76l
l75,l76
MA
!J.A
!J.A
-15
mA
9
mA
= 5V, TA = 25'C.
Switching Characteristics V cc =5V,T A =25°C
DM76l/86L
PARAMETER
FROM
CONDITIONS
TO
fMAX
Maximum Clock Frequency
tpLH
Pro.pagation Delay Time,
low·to·High level Output
tPHL
Propagation Delay Time,
H igh·to-law level Output
tpLH
Propagation Delay Time,
low-to-High level Output
tPHL
Propagation Delay Time,
High-to-low level Output
tpLH
Propagation Delay Time,
law-to-H igh level Output
tpHL
Propagation Delay Time,
High·ta-low Level Output
UNITS
l75, l76
MIN
6
TYP
MAX
MHz
13
Clock
Q Output
45
75
ns
Clock
Q Output
65
110
ns
Clock
TC Output
70
115
ns
Clock
TC Output
85
140
ns
CET
TC Output
35
60
ns
CET
TC Output
35
60
ns
C L =50pF, RL =4kH
tW(CLOCKI
Minimum Pulse Width
60
25
ns
tW!RESETI
Minimum Pulse Width
80
30
ns
tSETUP
Setup Time
CE
65
40
tHOLD
Hold Time
P Inputs
30
15
Parallel Entry
65
40
CE
80
50
P Inputs
30
15
Parallel Entry
65
40
3·138
ns
ns
~ Proprietary
DM76/DM86L75.L76
Logic Diagrams
76L75/86L75 (DECADE)
PO
P1
P2
~~19)~t>~jfl~3)::::::::::~-----rtl~4)::::::::::~~---rtl~5)::::::::::::~--~
o
n
r+-+--..q,cp
rl--+----~
I'r)__________- ,
o
n
r+-+--..q,cp
r+-+--..q,cp
cp
114)
aD
P3
113)
(11)
112)
02
G1
03
76L76/86L76 (BINARY)
~19)
PI
PO
P3
P2
(5)
14)
(3)
I')
a
a
r+-+---q,cp
r+-t---4cp
r+-+-------oI> cP
a
r+-+---of> cp
R CD 0
114)
aD
113)
al
Vee" (16)
GND" 18)
3-139
112)
a2
(11)
03
~
Proprietary
DM7618678 ,79
7 by 9 Character Generators
General Description
Features
The DM7678/8678 and DM7679/DM8679 are bipolar
character generators. A maximum of 64 characters can
be displayed in a 7X9 dot matrix. Shifted characters
can be generated by the on-chip subtractor. On·chip
line counter and parallel·in-serial·out shift register reduce
package pin-out.
•
TRI-STATE outputs
•
On-chip input latches
•
•
•
•
•
On-chip line counter
--
The clear input and the load input are active low. Load
is. synchronous with the Dot Rate Clock. Both the line
rate clock and the dot rate clock are positive triggered.
When the strobe input receives a low signal, the character
address will be held at the inputs.
Connection Diagram
On-chip shift register
Serial output
20 MHz typical clock rate
Shifted characters
Character Display Example
.
SELECT
T
f
16
A4
AS
A6
A7
\
DOT
CLOCK
[jj
0
DOT RATE CLOCK (SERIAL OUTPUTI _
15
14
13
12
11
9
10
LINE
COUNTER
CLOCK
0
1
2
.
3
4
6
1
a
ClOCK
K
INPUT
A
NC
GNU
/13
14
12
/10
11
8
9
19}
OB
--0
~
18}
Oe
--0>
1
2
3
INPUT
B
ROlli
ROI2}
14
15
NC
16
NC
Vee
17
(11)
00
NC
76L93/86L93IJ}, IN}, (W)
Truth Tables
COUNT SEQUENCE TABLE
OUTPUT
COUNT
RESET/COUNT TRUTH TABLE
RESET INPUTS
OUTPUT
ROil}
RO(2)
QD
H
H
L
L
X
COUNT
X
L
COUNT
QC
QB
QA
L
L
L
3-142
QA
Qo
Dc
QB
0
L
L
L
L
1
L
L
L
H
2
L
L
H
L
3
L
L
H
H
4
L
H
L
L
5
L
H
L
H
6
L
H
H
L
7
L
H
H
H
8
H
L
L
L
9
H
L
L.
H
10
H
L
H
L
11
H
L
H
H
12
H
H
L
L
13
H
H
L
H
14
H
H
H
L
15
H
H
H
H
~
Proprietary
Electrical Characteristics
DM76/DM86L93
over recommended operating free-air temperature range (unless otherwise noted)
DM76L
PARAMETER
CONDITIONS
MIN
VIH
High Level Input Voltage
V IL
Low Level Input Voltage
10H
High Level Output Current
V OH
High Level Output Voltage
10L
Low Level Output Current
Low Level Output Voltage
Vce
=
=
Min, V'H
=
2V
O.7V, 10H
=
-200iJ.A
=
Min, V'H
=
2V
=
0.7V, 10L
=
Max
Vee
=
Max, V,
=
5.5V
High Level I nput Current
Vee
=
Max, V,
=
2.4V
Low Level I nput Current
IlL
MIN
TYP(1)
Vee
= Max,
los
Short Circuit Output Current
Vee =Max
ICC
Supply Current
Vee
V,'
= 0.3V
UNITS
MAX
V
2
2.4
0.7
0.7
V
-200
-200
iJ.A
2.8
0.15
Input Current at Maximum Input Voltage
IIH
L93
MAX
2.4
0.2
0.3
V
2.8
2.0
Vee
V'L
II
TYPll)
2
V'L
VOL
DM86L
L93
3.6
rnA
0.4
V
Reset
100
100
A Input
200
200
B Input
200
200
Reset
10
10
A Input
20
20
B Input
20
20
Reset
-180
-180
A Input
-360
-360
B Input
-360
-360
-3
-9
= Max(2)
-15
-3
-9
iJ.A
iJ.A
iJ.A
-15
rnA
5.5
5.5
rnA
Notes
All typical values are at Vee::: 5V, TA = 25°C.
(2) ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V, and all other inputs grounded.
(1)
Switching Characteristics vee = 5V,
TA
= 25°C
DM76L186L
PARAMETER
f MAX
Maximum Clock Frequency
tpLH
Propagation Delay Time,
Low·to-High Level Output
tpHL
Propagation Delay Time,
High-to·Low Level Output
FROM
A
CONDITIONS
TO
TYP
6
15
QD
CL
A
L93
MIN
= 50 pF,
RL
=
UNITS
MAX
MHz
210
400
ns
230
400
ns
4 kSl
Qo
tw
Pulse Width (All Inputs)
200
ns
tSETUP
Reset I nactive State Setup Time
200
ns
3·143
~ Proprietary
- DM76/DM86 L97
TRI-STATE 1024-Bit Read Only Memories,
General Description
Feat.ures
The DM76L97/DM86L97 is a custom-programmed Read
Only Memory organized as 256 four-bit words. Selection'
of the proper word is accomplished through the eight
select inputs.
.
•
Full te'lth-power technology
• ,Pin compatible with SN54187/SN74187
• Typical power dissipation
Two overriding memory enable inputs are provided
which when mask-programmed in one of the three
options described 'will cause all four outputs to read
either the normal memory contents or go to the high
impedance .state.
• Typical access ti me
• Custom-programmed memory enable inputs
INPUT
H
Truth Table
ENABLES
SELECT
70 ns
• TRI-STATE outputs
Connection Diagram
Vee
75 mW
DATA OU1PUTS
•,
ME2
MEl
YI
13
V2
12
Y3
II
Y4
10
OPTION
MEl
ME2
1
L
L
H
X
High Itnpedance
X
H
High Impedance
,,
2
3
x
= Don't
H
H
Normal
l
X
High Impedance
X
L
High Impedance
H
L
Normal
X
H
High Impedance
L
\ X
High I mpedanc..f
Care
GNO
A
SELECT INPUTS
76L97/86L97(J), (N), (WI '
Logic Diagram
H (15)
G 1,')
F (2)
1024-BIT MEMORY CEll
I OF 32
DECODER
32 BY32
MEMORY MATRIX
(3)
SELECT
INPUTS
(4)
'c I~)
!
5)
MEl (13)
ENABLES
{
/1114~)---o-AO
~AO
15)
AI
~
ADDRESS
INPUTS
~~
A2
A3
AI
AD
AI
.2
~I
A3
A2 (l4).....
rC>o-A2
~A2
lJI
~
,A3
A3
A3
14)
01
02 (6)
DATA
INPUTS
{lO)
03
d.
(12)
13)
WE
Vee" (16)
GNO" (81
ME
12)
3-148
Hi-Z
~
DM76/DM86L99
Proprietary
Electrical Characteristics over recommended operating free-air temperature range lunless otherwise noted)
DM76L1B6L
PARAMETER
CONDITIONS
- -
--
V'L
Low Level Input Voltage
Vcc""Min
V,
Input Clamp Voltage
Vee =- Min, II -- -12 rnA
10H
High Level Output Current
V OH
High Level Output Voltage
10L
low Level Output Current
VOL
IO(OFF)
Vee
Low Level Output Voltage
Min, IOH
V
0.7
=
-·1.0 rnA
V
-1.0
rnA
V
2.4
2.0
DM86L
3.6
Vee =- Min
DM76L
0.3
IOL "" Max
DM86L
0.4
Vee'" Max
Vo =0.3V
-40
Vo = 2.4V
40
Input Current at Maximum
Vee
Input Voitage
:=
Max, VI = 5.5V
I'H
HIgh level Input Current
Vee == Max, VI == 2.4V
"L
Low Level Input Current
Vee
los
Short Circuit Output
Max, VI
O.3V
-6
Vee = Maxl2)
Current
Supply Current
ICC
=
V
--1.5
DM76L
Off State {High Impedance
State} Output Current
I,
-=
MAX
2
Vee
="
TYPll)
~---------
Min
High Level Input Voltage
V'H
UNITS
L99
MIN
V
/lA
100
/lA
10
/lA
-180
/lA
-30
rnA.
19
mA
15
Vee::: Max
rnA
Notes
11 )
Vee = 5V, T A = 25°C.
Not more than one output should be shorted at a time.
All typical values are at
(2)
Switching Characteristics
Vcc=5V,TA~25°C
DM76li86L
PARAMETER
FROM
TO
-.
tplH
Propagation Delay Time,
Low~to·Hjgh
tpHl
Level Output
Propagation Delay Time,
High-to-Low Level Output
tEN
Output Disable Ti me
from Write Enable
UNITS
199
CONDITIONS
MIN
TYP
MAX
Address
Output
51
120
ns
Address
Output
77
150
ns
WE
Output
73
110
ns
C L = 50 pF, RL = 4 ki1
tSR
Sense Recovery Time
fror1'l Write Enable
tZH
Output Enable Time
to High Level
tZL
Output Enable Time
to Low Level
tHZ
Output Disable Time
from High Level
WE
Output
110
165
ns
ME
Output
30
50
ns
ME
Output
29
43
ns
ME
Output
18
27
ns
37
56
ns
Cl. = 5 pF, RL = 4 ki1
tLz
I Output Disable Time
from Low Level
tSETUP
tHQLD
Setup Time
Hold Time
Output
Data
0
Address
0
ME
0
Data
0
0
0
Address
ME
twp
ME
Write Enable Pulse Width
50
ns
ns
30
ns
~ Proprietary
DM76/DM86l99
AC Test Circuit
~
Vee
5.nv
OUTPUT
DM76L99!
DM86L99
Switching Time Waveforms
WRITE CYCLE
lE.. r 'l1\
ADDRESS INPUT1 'PHL
v,
v,
,. - - -- - - - - - ---,I--~-! ---_.
, - --- - -- - -- --.1.,--m
___ ,",
ME
I nv
nv
~_'_PL.-J:~:::::::
WE------!---.... ,
DUTPUT----.\\..,_ _ _ _ _
t
ItfNi--
OUTPUT _ _ _ _ _ _ _ ....
~
J
'k
I~----
I i-'SR
MEMORY ENABLE
'ZL & tZH
'LZ & 'HZ
MEMORY
ENABLE
MEMDRY~V'
ENABLE
J
.- . tLl Ir":-:_0°1..l..5V---VOUT(L)
---+--'-----r'
Vo UT(H)
---+--...c--..-1
I
~~V.;.,_ _ _ _ _ __
~ tll h--
1.3V---t-r-~L.Jff5---V_ _
'1.3V
d--4ir
-.-
VOUTlL)
--tf-----VOUTlH)
1.3V
~----~1.3V
n.5V
r-----
. 'ZH
Note: The plltse generator has the following characteristics: V'" 3.0V tr ~ 15 liS,
tf"" 5.0 ns, f =: 500 kHz, duty cvcle ::: 50%, Zo ur '" 50£1, Vt ::: 1.3V @25"C.
I
3-150
f---
~ Proprietary
DM78/DM8853
Dual Retriggerable Resettable One Shots
General Description
Features
The DM7853/DM8853 is a dual, retriggerable, resettable
monostable multivibrator similar to the DM9602/
DM8602 but with a unique input triggering logic.
•
72 ns to
•
Retriggerable 0 to 100% duty cycle
This device has two trigger inputs-a standard input and
a delayed input-which are Exclusive OR'ed together.
In the dual·edge triggering mode, the two inputs are tied
together. On either a positive or negative transition the
Exciusive·OR logic is satisfied for a length of time equal
to the delay on the delayed input-approximately 15
ns-thus triggering or retriggering the one·shot.
= output width
range
• TTL input gating-leading AND/OR trailing edge
triggering
•
•
Complementary TTL outputs
Pulse width compensated for Vee and temperature
variations
Once fired, the accuracy and performance of the
DM7853/DM8853 is identical to that of the DM9602/
DM8602.
•
Connection Diagram
Resettable
Logic Diagrams
14
15
Dtt l!t)(41
11
(51
(71
(31
"Pins for external timing
(91
7853/8853(JI, (N), (W)
(131
*A non-inverting buffer with delay
Truth Tables
TRIGGERING TRUTH TABLE
Dt
CD
OPERATION
L
H
Trigger
H~L
H
Trigger
H~L
H
H
Trigger
L
L~H
H
Trigger
H~L
Same as t
H
Trigger
H
Same as t
H
Trigger
X
L
Reset
t
L~
H
H
L~
X
LOADING RULES
INPUTS
3.4,5,11.12.13
OUTPUTS
6,7.9.10
3-151
LOAD
HIGH
I LOW
1 u.L.11 U.L.
DRIVE FACTOR
HIGH
I LOW
16U·L.ISU.L.
~~
DM78/DM8853
Proprietary
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM78
CONDITIONSl21
PARAMETER
MIN
V,H
High Level Input Voltage
V,l
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VO H
High Level Output Voltage
Low Level Output Current
Low Level Output Voltage
=:
Min,
'I
=>-12 rnA
Vee == Min, V 1H == 2V
=
a.BV,
=;
Min~ V 1H
2V
""
Input Current at Maximum Input Voltage
Vee
High Level Input Current
Vee == Max, VI'''''4.5V
I,l
Low Level Input Current
0=
Vee == Max
Supply Current
Curr~nt
Vee
-1.5
-800
2A
0.2
Vee
=-
I VI
-1.1
-1.6
== O.45V
Max, V OUT
"
55
==
mA
OA
V
mA
10
60
!1A
-'1.0
-1.6
'-25
1.0VI31
16
1
1
= OAV
V
!iA
V
0.2
60
V
3.4
OA
10
Vee == Max
Notes
(11 All typical values are at
-1.5
-800
Max, VI == 5.5V
I V,
MAX
V
16
Vee
I'H
Short Circuit Output
UNITS
TYPlll
0.8
3.3
2A
== -8OO.uA(3)
'OH
I,
lOS
MIN
2
V'L " 0.8V. 10L = 16 mAI31
Icc
MAX
0.8
V 1L
VOL
53
TYPOI
2
Vee
10l
DM88
53
55
72
mA
-35
mA
72
mA
5V, T A =: 25°C.
Vee
(2)
Unless otherwise noted, 10 kSl resistor placed between RX and
(3)
Ground Pin 1 1151 for VOL on Pin 7 (9). or for VOH on Pin 6 (10), or for lOS on Pin 6 (101; also. apply momentary ground to Pin 4 (12).
Open Pin 11151 for 'VOL on Pin 6 (10), or for VOH on Pin 7 191, or for loson Pin 7 (9).
.
Switching Characteristics vee
for all tests.
~ 5V, T A ~ 25°C
DM78
FRDM
PARAMETER
CONDITIONS
TO
tPHL
tpLH
I
tpHL
Propagation Delay Time,
Standard Trigger
Low-to-High Level Output
Input
Propagation Delay Time,
Standard Trigger
High·to-Low Level Output
Input
Propagation Delay Time,
Delayed Trigger
Low-to-High Level Output
Input
Propagation Delay Time,
Delayed Trigger
High-to-Low Level Output
tWfMINl
Minimum Possible Output Pulse
.
fT
53
UNITS
TYP
MAX MIN
TYP
MAX
Q
25
35
25
40
ns
Q
29
43
29
48
ns
40
53
40
58
ns
44
61
44
66
ns
72
90
72
100
78
100
78
110
3A2
3.76
MIN
tpLH
DM88
53
CL = 15pF.Rx "5kr/
Q
ex" 0
Q
Input
Q
tw
Pulse Width Tolerance
ex =1000pF.Rx =10kfl 3.08
eSTRAY
Maximum Allowable Wiring Capacitance
Pins 121 and 1141 to GND
Rx
Timing Resistor
5
3-152
3.08
50
25
5
3.42
ns
3.76
!is
50
pF
5Q
kfl
~. Proprietary
DM78/DM8853
Typical Performance Characteristics
OUTPUT PULSE WIOTH VS
TIMING RESISTANCE AND
CAPACITANCE FOR
<
Cx
103 pF
10'
~x ,1~
I
Z
:;
kn-;: t7'7
+t!t~x ~ 20 kl! /' .....:
10 3
IR~~30kS2
~Y
Rx -50kSl
~
w
"
>- .....
~
>-
">"0
I-'"
--r-
10'
....
~
::Tlkrr
I III
10
1,0
Cx _10 3pF
t'" 0.31
RxCx
10
(1 +
1/Rxl
10'
10 3
ex - TIMING CAPACITANCE (pF)
Switching Circuit
Cx
RX
~CC
Va
VIN
-::-
va
-::-
-::-
-::-
Switching Time Waveforms
VIN_n_,SV_ __
INPUT PULSES
f"'- 100 kHz
AMP,3:0V
WIDTH :;:- 40 ns
t r '"
3·153
tf
~ 10 ns
~ Proprietary
OM78/0M8875A.75B
TRI-STATE 4-Bit Parallel Binary Multipliers
General Description
These circuits are capable of multiplying together two
4-bit binary numbers when,used together in pairs. The
DM7875A/8875A provides the most significant four
bits, and the DM7875B/8875B provides the least signifi·
cant four bits. Since the largest number that can be
obtained· by multiplying two 4-bit numbers is 225
(15 x 151, the eight output pins (four from each
packagel are sufficient to produce this number. Both
the multiplier and the multiplicand must be connected
to the eight input pins of each device. These devices are
pin compatible with the SN54284/74284, and SN542851
74285; but have the advantage that these circuits pro·
vide either standard totem-pole TTL or TRI-STATE
Connection Diagram
STROBE
I"
52
15
•
•
Pin compatible replacements for
SN54284/74284 (DM7875A/8875AI
SN54285/74285 (DM7875B/8875BI
TRI·STATE outputs
Typical propagation delay
35 ns
OUTPUTS
51
14
Features
•
Typical Application
~
V4
outputs. A gated two-input strobe control is provided.
When either one, or both, of the strobe inputs is raised
to a high logic level the outputs are forced into the
high-impedance state. Thus, multiple devices may be
connected to a common bus line.
P2
Pl
12
1]
MOST
v,
P3
11
10
V3
V2
VI
9
X4-MOST SIGNIFICANT BIT
X,
X3
X2
Xl
X3
X2
Xl-LEAST SIGNIFICANT 81T
-
"
SIGNIFICANT
BIT
P3
DM1875A!
DM8875A
P2
PI
x.v
Y4-MOST SIGNIFICANT BIT
P4
Vl
V2
P3
Yl-lEAST SIGNIFICANT BIT
2
1
Vl
V2
4
1
VI
X4
5
Xl
6
X2
7
Xl
OM787581
,OM88158
I'
P2
GNO
7875A(J); 8875A(J), (N);
7875B(J); 8875B(J), (N)
PI
AC Test Circuit
s.ov
01
OUTPUT
OM7875/
DM8875
1k
3-154
LEAST
SIGNIFICANT
BIT
~
Proprietary
DM78/DM8875A.75 B
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
CONDITIONS
DM78
DM88
75A,758
75A,758
MIN
V'H
High Level Input Voltage
V'l
Low Level Input Voltage
V,
Input qamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
Low Level Output Current
Val
Low Level Output Voltage
UNITS
MIN TVP(I) MAX
2
V
0.8
0.8
Vee = Min, I, ~ -12 mA
Vee
= Min, V 1H :; 2V
= 0.8V, 10H = Max
10L =
Off State (High Impedance State)
Vee = Max, V 1H
Output Current
V ,L = 0.8V
-1.5
V
-2.0
-'5.2
mA
V
2.4
16
16
0.4
0.4
Va = O.4V
-·40
-40
Va = 2.4V
40
40
16 mA
= 2V
V
-1.5
2.4
Vee = Min, V 1H -= 2V
V ,L = 0.8V,
IOIOFFI
MAX
2
V ,L
IOl
TVP(ll
mA
V
IlA
I,
Input Current at Maximum Input Voltage
Vee = Max, V, = 5.5V
1
1
I'H
High Level Input Current
Vee = Max, V, = 2.4V
40
40
IlA
I,L
Low Level Inpl:Jt Current
Vee = Max, V, = O.4V
-1.0
-1.0
mA
los
Short Cilfcuit Output Current
Vee = Max(2)
-70
mA
Icc
Supply Current
Vee = Maxq)
-70
-20
75
-20
110
75
110
mA
rnA
Notes
= 25°C.
(I)
All typical valu", are at VCC = 5V, TA
(2)
Not more than one output should be shorted at a time.
(3)
ICC is measured with all inputs grounded.
Switching Characteristics vee
=
5V,T A = 25°C
DM78/88
PARAMETER
FROM
TO
CONDITIONS
75A,758
MIN
tpLH
Propagation Delay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time,
High-to·Low Level Output
Data
Output
Data
Output
CL = 50 pF, RL = 400n
UNITS
TVP
MAX
35
60
n,
35
60
n,
t~H
Output Enable Time to High Level
20
30
ns
tZL
Output Enable Time to Low Level
20
30
n,
tHZ
Output Disable Time from High Level
tLZ
Output Disable Time from Low Level
CL
c
20
30
n,
20
30
n,
5 pF, R L = 400[2
Switching Time Waveforms
tZL & tZH
J
tLZ & tHZ
STROBE·~1.5V
STROBE'
X. v
-
INPUTS _ _ _ _
------_r---
1.5V
OUTPUTS
tpHL
'H5V
OUTPUTS
-
/-,.5V
I'~~
..L
tpLH
<1.5V
INPUT PULSES:
tr <: IfS 10 ns
f= 1 MHz
STROBE
~
12
tZH . - -
3-155
~1.5V
OUTPUTS
~1.5V
--
'LZ
I~v
..::r.
ACTUAL "0"
VOLTAGE
~
1.5V
I
I
ACTUAL "1"
VOLTAGE
--
'HZ
:r
I--":~v
1.5V
~ Proprietary
DM8898,99
TRI-,$TATE BCD to Binary/Binary to BCD Converters
General Description
In addition to BCD-to-binary conversion, the DM8898 is
programmed to generate BCD 9's complement or BCD
10's complement. In each case, one bit of the complement
code is logically equal to one of the BCD bits; therefore,
these complements can be produced on three lines. As
outputs V6, V7, and V8 are not required in the BCD·to·
binary conversion, they are utilized to provide these
complement codes as specified in the truth table when
the devices are connected as shown.
These circuits are the TRI-STATE versions of the popular
BCD to binary and binary to BCD converters, DM74184
and DM74185A respectively, They are derived from the
256-bit ROM, DM8598. Emitter connections are made
to provide direct read out of converted codes at outputs
Y8 through Y 1, as shown in the truth tables. Both
converters comprehend the fact that the least significant
bits (LSB) of the binary and BCD codes are 10gic~lIy
equal, anq in each case the LSB bypasses the converter.
Thus a 6-bit converter is produced in each case, and
both devices are cascadable.
DM8899 BINARV-TO-BCD CONVERTERS
An overriding enable input is provided on each converter
which, when taken high, inhibits the function, causing all
outputs to go into the high-impedance state. For this
reason, and to min-imize power consumption, unused
outputs Y7 and Y8 of the 185A and all "don't care"
conditions of the 184 are programmed high.
The function performed by these B-bit binary-to'BCD
converters is analogous to the algorithm:
a. Examine the three most significant bits. If the
sum is greater than four, add three and shift left
one bit.
b. Examine each BCD decade. If the sum is greater
than four, add three and shift left one bit:
c. Repeat step b until the least-significant Dinary
bit is in the least·significant BCD locatio!].
DM8898 BCD-TO-BINARV CONVERTERS
The 6·bit BCD-to-binary function of the DM8898 is
analogous to the algorithm:
a. Shift BCD ;'umber right one bit and examine each
decade. Subtract three from each 4-bit decade
containing a binary value greater than seven.
b. Shift right, examine, and correct after each shift
until the least significant decade contains a number
smaller than eight and all other converted decadescontain zeros.
Features
• TRI-STATE versions DM74184, DM74185A
• Typical propagation delay
I
Connection Diagram
.
BINARV SELECT
ENA8.lE
l
G
1-6
I
E
15
0
14
\
C
B
12
13
11
10
9
--
VI
OUTPUT
VB
A
V2
V3
V4
V5
OUTPUTS
8898{N); 8899{N)
3·156
VB
V7
30 ns
~
DM8898.99
Proprietary
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM88
CONDITIONS
PARAMETER
MIN
V,H
High Level Input Voltage
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
Low Level Output Current
VOL
Low Level Output Voltage
IOIOFFI
I,
TYP(1)
MAX
V
2
O.B
Vee
Vee
V'I.
IOL
UNITS
98,99
=
=
=
Min, I,
-12 mA
=
= 2V
= -5.2 mA
4.7SV, V ,H
a.BV, IOH
-1.S
V
-S.2
mA
V
2A
12
Vee = 4.7SV, V ,H
= 2V
V'I.
=
12 mA
=
2V
Off State (High Impedance State)
Vee
Output Current
V'L
Input Current at Maximum Input Voltage
Vee
=
O.BV, 10L
= Max,
=
V ,H
O.BV
= Max,
V,
=
I
I
V
OA
Vo
=
OAV
-40
Va
= 2AV
40
V
IlA
mA
1
5.5V
mA
IIH
High Level Input Current
Vee
= Max,
V,
=
2.4V
40
IlA
I'L
Low Level Input Current
Vee
= Max, V,
=
OAV
-1.6
mA
los
Short Circuit Output Current
Vee
-70
mA
Icc
Supply Current
Vee
99
mA
-20
Max(2)
=
70
Max, V, = OV
Notes
( 1) All typical values are at VCC = 5V, TA = 25"C_
(2) Not more than one output should be shorted at a time.
Switching Characteristics Vcc
= 5V, T A = 25°C
DM88
PARAMETER
FROM
CONDITIONS
TO
98,99
MIN
tpLH
Propagation Delay Time,
Low-to-High Level Output
tPHL
Propagation Delay Time,
High-tn-Low Level Output
tpLH
Propagation Delay Time,
Low-to-H igh Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
UNITS
TYP
MAX
Binary Sel ect
Output
29
50
ns
Binary Select
Output
33
SO
ns
Enable
Output
23
40
ns
Enable
Output
29
40
ns
CL
= 50 pF,
RL
= 400n
tZH
Output Enable Time to High Level
16
25
ns
tZL
Output Enable Time to Low Level
26
40
ns
tHZ
Output Disable Time from
13
20
ns
24
36
ns
High Level
tLZ
C L =5pF,R L
Output Disable Time from
Low Level
3-157
=
400n
~ Proprietary
DM8898,99
Truth Tables
BCD 9's OR BCD 10', COMPLEMENT CONVERTER
BCD-TO-BINARY CONVERTER
INPUTS
(See Note A)
BCD
WORDS
OUTPUTS
(See Note
INPUTS
(See Note C)
BCD
BI
WORD
OUTPUTS
(See Note 01
E
0
C
B
A
G
Y5
Y4
Y3
Y2
Yl
E'
a
C
B
A
G
YB
Y7
Y6
L
L
L
L
L
L
L
L
L
L
L
0
L
L
L
L
L
L
H
L
H
2 3
L
L
L
L
H
L
L
L
L
L
H
1
L
L
L
L
H
L
H
L
L
4 5
L
L
L
H
L
L
L
L
L
H
L
2
L
L
L
H
L
L
L
H
H
6 7
L
t
L
H
H
L
L
L
L
H
H
3
L
L
L
H
H
L
L
H
L
8 9
L
L
H
L
L
L
L
L
H
L
L
4
L
L
H
L
L
L
L
H
H
10 11
L
H
L
L
L
L
L
L
H
L
H
5
L
L
H
L
H
L
L
H
L
12 13
L
H
L
L
H
L
L
L
H
H
L
6
L
L'
H
H
L
L
L
L
H
14 15
L
H
L
H
L
L
L
L
H
H
H
7
L
L
H
H
H
L
L
L
L
16 17
L
H
L
H
H
L
L
H
L
L
L
L
H
L
L
L
l
l
l
H
0 1
A
18 19
L
H
H
L
L
L
L
H
L
L
H
S
9
l
H
L
l
H
L
L
L
L
20 21
H
L
L
L
L
L
L
I-!
L
H
L
0
H
l
l
L
l
L
l
l
l
22 23
H
L
L
L
H
L
L
H
L
H
H
1
H
l
l
l
H
l
H
L
l
24 25
H
L
L
H
L
L
L
H
H
L
L
2
H
l
l
H
l
l
H
L
L
26 27
H
L
L
H
H
L
L
H
H
L
H
3
H
L
L
H
H
L
I.
H
H
28 29
H
L
H
L
L
L
L
H
H
H
L
4
H
L
H
l
L
l
L
H
H
30 31
H
H
L
L
I-
L
L
H
H
H
H
5
H
L
H
L
H
L
L
H
L
32 33
H
H
L
L
H
L
H
L
L
L
L
6
H
l
H
H
l
L
l
H
L
34 35
H
H
L
H
L
L
H
L
L
L
H
7
H
L
H
H
H
L
'l
L
H
36 37
H
H
L
H
H
L
H
L
L
H
L
8
H
H
l
l
L
l
L
L
H
38 39
H
H
H
L
L
L
H
L
L
H
H
9
H
H
L
l
H
L
L
l
ANY
X
X
X
X
X
H
Z
Z
Z
Z
Z
ANY
X
X
X
X
X
H
Z
l
Z
H == High Level, L == Low Level,
H = High level, L
X = Don't Care, Z
X == Don't Care, Z == High Impedance
=
High Impedance
BCD 9's
COMPLEMENT CONVERTER
6-BIT CONVERTER
=
Low Level,
BCD 10',
COMPLEMENT CONVERTER
BCD
MSD
Z
BCD
LSD
~v
~~
0
A
1
6"BfT BINARV OUTPUT
BCD 9'S COMPLEMENT
BCD 10'S COMPLEMENT
Notes:
(e)
Input conditions other than those shown produce highs at outputs Y 1 through Y5.
Outputs Y6, Y7, and YB are not used for BCD-ta-binary conversion.
Input conditions other than those shown produce highs at outputs Y6,.Y7, and VB.
(0)
Outputs Y 1 through Y5 are not used for BCD 9's or BCD 1 D's complement conversion.
(A)
(8)
tWhen these devices are used as complement converters, input E is used as a mode con'trol. With this input low, the BCD 9's complement is gen~
arated; when it is high, the BCD 10'5 complement is generated.
.
3-158
~ Proprietary
DM8898.99
Truth Tables (Continued)
BINARY·TO·BCD CONVERTER
+-__________O~U~TP~U~T~S__________-4
BINARY ~________~I~N~P~UT~S~-r______
BINARY SELECT
ENABLE
WORDS
E
D
C
BAG
o
I
L
L
L
L
L
2 3
L
L
L
L
H
L
H
4 5
L
L
6 7
L
L
H
H
8 9
L
H
L
L
10 11
L
L
H
L
H
12 13
14 15
L
L
H
H
L
L
L
H
H
H
L
H
L
L
H
L
L
H
H
L
H
L
H
H
16 17
18 19
20 21
22 23
H
L
L
L
H
32 33
H
L
L
34 35
H
36 37
H
L
38 39
4041
H
L
H
L
H
L
42 43
H
L
H
L
44 45
H
L
H
H
L
46 47
H
L
H
H
H
L
H
52 53
H
H
54 55
H
56 57
H
58 59
60 61
62 63
ALL
H = High
L
L
L
L
H
L
H
L
H
L
L
H
L
H
H
H
L
L
L
L
H
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
H
H
H
H
H
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
H
H
H
H
H
H
L
30 31
H
L
L
H
28 29
H
H
H
H
L
H
L
L
L
L
H
L
H
H
L
48 49
H
H
L
H
50 51
L
L
H
L
H
L
L
L
L
L
H
H
~
L
L
L
L
n
L
L
H
H
L
n
L
L
L
H
H
L
H
H
H
H
~
L
H
H
L
H
"
H
H
H
H
H
L
H
H
H
H
H
H
"
H
L
H
H
H
H
H
H
H
H
H
H
26 27
L
~
H
H
H
H
L
24 25
L
~
L
H
L
H
L
H
L
H
L
H
H
H
L
H
H
H
L
H
H
H
H
H
H
H
H
L
L
L
H
H
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
H
L
L
H
L
L
H
L
H
H
L
H
H
L
L
L
H
L
H
H
L
H
H
H
H
H
L
H
L
H
H
H
L
L
H
H
H
L
H
L
H
H
H
H
L
H
H
H
H
H
H
L
H
H
H
H
L
L
H
H
H
H
L
H
H
H
L
H
H
H
H
H
H
L
L
L
H
z
z
z
z
z
z
z
z
x x x x
Level, L = Low Level, X = Don't
x
H
Care, Z = High Impedance
6·BIT CONVERTER
6-BIT
BINARV INPUT
"
1
2j 2j 21 2j 2i 2
liitiil
BAD
C B
'-v--'
'-v_ _
~
. MSD
__
LSD·
6-BIT BCD DUTPUT
3·159
H
National Semiconductor
ADDITIONAL DEVICES
Section 4
·
~ Additional Devices
DTL
RATINGS
Maximum A"owable
Supply Voltage
Max Ratings/Operating Conditions
2502
72xxl
9000C
93XXI
96XXI
SERIES
82XX
SERIES
83XX
86XX
8
7
N/A
5
4.50 to 5.50
4.75to5.25
Maximum Input Voltage
5.5
5.5
5.5
Max.imum Voltage to Open·
Collector Outputs
8
7
7
N/A
-55 to +125
o to +70
Guaranteed Operating
Supply Voltage Range
Operating Free-Air
Temperature Range
I Mil
I Com I
I Mil
IComl
o to +75
7
7
4-ii
7
V
4.50 to 5.50
4.75 to 5.25
V
5.5
5.5
5.5
V
7
7
7
V
N/A
4.75-5.25
N/A
-65 to +150
Storage Temperature Range
7
UNITS
-55 to +125
o to +75
°C
°C
~. Additional Devices
Device No.
DM930
DM932
DM933
DM935
DM936
DM937
DM944
DM945
DM946
DM948
DM949
DM957
DM958
DM961
DM962
DM963
DM1800
DM1801
DM2502/DM2502C
DM2503/DM2503C
DM2504/DM2504C
DM7280/DM8280
DM7281/DM8281
DM7288/DM8288
DM7290/DM8290
DM7291/DM8291
DM9002C
DM9003C
DM9004C
DM9005C
DM9006C
DM9008C
DM9009C
DM9012C
DM9016C
DM9024/DM8024
DM9093
DM9094
DM9097
DM9099
DM9300/DM8300
DM9301/DM8301
DM9309/DM8309
DM9310/DM8310
DM9311/DM8311
DM9312/DM8312
DM9316/DM8316
DM9318/DM8318
DM9322/DM8322
DM9334/DM8334
DM9601/DM8601
DM9602/DM8602
Table of Contents
Page
No.
Description
Dual 4·lnput Gates with Expanders
Dual 4-lnput Buffers with Expanders
Dual 4-lnput Extenders
Hex Inverters
H ex Inverters
Hex Inverters
Dual 4-lnput Power Gates with Expanders
R-S Flip-Flops
Quad 2-lnput Gates
R-S Flip-Flops
Quad 2-lnput Gates
Quad 2-lnput Buffers
Quad 2-lnput Power Gates
Dual 4-lnput Gates with Expanders
Triple 3-lnput Gates
Triple 3-lnput Gates
Dual 5-lnput Gates
Dual 5-lnput Gates
Successive Approximation Registers
Successive Approximation Registers
Successive Approx imation Registers
Presettable Decade Counters
Presettable Binary Counters
Presettable Divide-by-12 Counters
Presettable Decade Counters
Presettable Binary Counters
Quad 2-lnput NAND Gates
Triple 3-lnput NAND Gates
Dual 4-lnput NAND Gates
Expandable Dual 2-lnput AND-OR-INVERT
-Gates
Dual 4-lnput Expanders
Expandable 4-Wide AND-OR-INVERT Gates
Dual 4-lnput NAND Buffers
Quad 2-lnput NAND Gates with OpenCollector Outputs
Hex Inverters
Dual J-K Flip-Flops with Preset and Clear
Dual J- K Flip-Flops
Dual J-K Flip-Flops
Dual J-K Flip-Flops
Dual J - K Flip-Flops
4-Bit Parallel-Access Shift Registers
1 of 10 Decoders
Dual 4-Line to 1-line Data Selectors/
Mul tiplexers
Synchronous 4-Bit Decade Counters
4-line to 16-Line Decoders/Demultiplexers
8-line to 1-line Data Selectors/Multiplexers
Synchronous 4-Bit Binary Counters
Priority Encoders
Quad 2-Line to 1-line Data Selectors/
Multiplexers
8-Bit Addressable Latches
Retriggerable One Shots
Dual Retriggerable, Resettable, One Shots
4·iii
J
Mil
•
•
4-'
4-'
4-1
4-'
4-1
4-1
4-1
4-'
4-1
4-"
4-11
4-11
4-11
4-15
4-15
4-15
4-15
•
•
•
•
•
•
•
•
4-15
4-15
4-15
4-15
4-15
4-17
4-1
4-1
4-1
4-1
4-19
4-22
4-24
4-27
4-33
4-24
4-27
4-36
4-38
4-40
4·43
4-46
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•.•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
W
Mil
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Com I
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
•
•
•
•
•
•
•
•
4-'
4-1
4-1
4-'
4-1
4-1
4-1
4-1
4-1
4-6
4-6
4-6
4-11
Coml
Package
N
Mil
Coml
•
•
(F)
•
•
•
•
•
N/A
N/A
N/A
N/A
•
•(F)
•
•
•
•
•
N/A
N/A
N/A
N/A
N/A
•
•
•
•
•
(F)
•
•
•
•
•
•
•
N/A
N/A
N/A
N/A
•
•
•
•
•
(F)
•
•
•
•
•
•
•
~ Additional Devices
DM930 Series
DTL Circuits
General Description
The National Semiconductor family of DTL is a complete
line of compatible monolithic integrated circuits designed
to operate at medium speed with medium power dis~
sipation and high fan~out. The DTL family is available
in 14~pin epoxy B 01 ceramic dual~in~line packages for
operation over the oDe to +75"C temperature range.
The DM9093 and DM9094 are dual JK fl ip-flops of the
DM945 and DM948 variety respectively. Both flip-flops
have separate clocks and no asynchronous clear lines.
The DM9097 and DM9099 are dual JK fl ip~flops of the
DM948 and DM945 variety respectively_ Both flip-flops
have common clocks and both asynchronous set and
clear I; nes_
The DTL line is composed of a variety of NAND gates
. that allow complete design flexibility. The gates are
available with either 6k pull-up resistors for low power
dissipation, or 2k pull~up resistors for increased speed.
The gate outputs can be wired together to achieve the
wired-OR function.
The DM930 series is directly compatible with the TTL
devices manufactured by National and can be used in
conjunction with them in those portions of a system
where speed is not the main consideration.
Features
The NAND gates are complemented with the DM932
and DM957 buffers which provide higher fan~out; the
DM944 and DM958 power gates which have an open
collector, and the DM933 extender which allows in~
creased fan~in for both buffers and DM930 and DM961
gates.
•
The flip~flops in this family are of the direct coupled
master-slave type, with direct ciear and direct set lines.
The dual flip~flops include ones with either common
or separate clocks_
NAND Gates
DM930, DM961 - dual four input gates with
expanders
DM935, DM936, DM937 - hex inverters
DM946, DM949 - quad two input gates
DM962, DM963 triple three input gates
OM 1800, DM 1801 - dual five input gates
•
The DM945 and DM948 are R~S flip~flDps which can be
externally crDSS coupled to perform in the JK mode.
They are of the master-slave type with output buffers
to provide isolation from the output load. These flip~
flops feature both asynchronous set and clear lines.
The DM945 has a 6k puil~up resistor and the DM948
has a 2k pull-up resistor.
Buffers/Extenders
DM932 ~ dual four input buffer with expander
DM933 - dual four~input extender
DM944 - dual four input power gate with expander
DM957 - quad two input buffer
DM958 - quad two input power gate
•
Flip-Flops
DM945, DM948 - RS flip-flops
DM9093, DM9094, DM9097, DM9099
flip-flops
dual JK
Truth Tables
SYNCHRONOUS TRUTH TABLE
CD
a
Q
Pin 5
Pin"6
Pin 9
H
H
NC
NC
L
H
H
L
On
H
L
L
X
an
L
L
H
X
L
On
L
tn
tn
+1
51
S2
C1
C2
a
Pin 3
Pin 4
Pin 12
Pin 11
Pin 6
X
L
X
0"
X
X
L
X
L
L
x
L
L
L
I
ASYNCHRONOUS TRUTH TABLE
L
X
H
H
x
L
H
H
L
H
H
L
X
H
H
H
X
L
H
H
H
H
H
*
SD
Pin 10
JK TRUTH TABLE
+1
tn
tn
51
a
Pin 3
C1
Pin 12
Pin 6
L
L
On
H
H
L
H
H
L
H
l
H
H
On
{Connect 52 to 0., C2 to Qj Asynchronous inputs, direct set (Sol and direct
clear (CO), override the synchronous
inputs, and are independent of all other
InplJts.
*-
Indeterminate State
X - Don't Care
4-1
~ Additional Devices
DM930 Series
Connection and Logic Diagrams
I
"""-'
~.
J
I
11 -11----1 ;>0---+--10
10 -r-"--_--'
11-,--r---,
~.
12
1 3 - t - -...
11
~,
I J
10
-t===_--.1
1 3 - 1 - - - - - 1 ><:>--+-11
930IJ), IN); 932IJ), IN);
944IJ), IN); 961(J1, IN);
1800lJI, IN); 1801(JI, IN)
I
13
I
11
946(J), IN); 949IJ), IN)
9351Jl, IN); 936IJ), IN);
937IJ), IN)
~,
I
10---+-12
13-t--"'
./'
~,
I
-
~.
./'
..--..
10
I
11
I
10-1----1
12
11
13
962(J1, IN); 963IJ), IN)
1 0 - r -_ _-I
)--+-11
12
13-1---,-1
957IJ), IN); 9581JI, IN)
933IJ), IN)
10 - 1 - - - - - - .
li=E;:::1~
ll--1f-::::'L../'a.;;..~...::.1
10-1----,
10-H+---.
11-1--;
13-1--1J/
11~H+-I
12-1--;
12--'1-+-1
13
945IJ); IN); 9481JI, IN)
90931Jl, IN); 9094IJ), IN)
4-2
-t:::!==__.J
9097(J), IN); 9099IJ), IN)
~
Additional Devices
Electrical Characteristics (V cc
DM930 Series
= 5.0V)
DM930, DM935, DM936, DM937, DM946
DM949, DM961, DM962, DM963, DM1800, DM1801
PARAMETER
CONDITIONS
o°c
MIN
ICEX
VOH
Output Leakage Current
V, =0, Vo =5V
High Level Output Voltage( 1)
Low Level Output Voltage
VI = V 1H .
IIH
High Level Input Current (1)
V, = V R
IlL
Low Level Input Current
V, = V F
los
Short Circuit Output Current
ICC1
Supply Current
Propagation Delay Time,
100
100
Max
Vee - BV, V, -
6k Gates
Propagation Delay Time,
V
0.50
5
10
I1A
-1.33
rnA
1.30
-1.40
-1.B5
-3.90
-0.61
-1.30
2k Gates
5.9
4
4
2k Gates
15
60
6k Gates
25
BO
2k Gates
10
30
6k Gates
10
30
Test Conditions
GATES
(6k)
(2k)
(6k)
(2k)
10L
(rnA)
10L
(rnA)
10H
(rnA)
IOH
(rnA)
-0.5
o°C
2.0
1.2
4.0
0.45
-
12.0
11.0
-0.12
+25°~
1.9
1.1
4.0
0.45
5.0
12.0
11.0
-0.12
-0.5
+75°C
1.B
0.95
4.0
0.50
-
11.4
10.4
-0.12
-0.5
,
4-3
V
0.45
6k Gates
VR
VIH
VF
VIL
VCEX
VOLTS VOLTS VOLTS VOLTS VOLTS
I1A
5
Notes
U) Applies to all gates except DM935.
TEMP.
UNITS
MAX
0.45
a
C L = 50 pF, RL = 400n
High·to-Low Level Output
MIN
2.5
-1.40
C L =30pF, RL =3.9kn
Low-ta-High Level Output
2.6
2k Gates
Vee = 5V, V, = V R
ICC2
MAX
2k Gates
2.6
. V, = a
Supply Current
tPLH
tpHL
IOL =
MIN
6k Gates
V'L = Max, IOH = Max
VOL
75°C
25°C
MAX
-1.25
rnA
rnA
rnA
ns
ns
~
DM930 Series
Additional I;)evices
Electrical Characteristics
(Vcc = 5.0\1)
,
PARAMETER
DM932, DM933, DM944. DM957. DM958
o'c
CONDITIONS
MIN
VIL
Low Level Input Voltage
ICEX
Output Leakage,Current
VOH
High Level Output Voltage
VOL
Low Level Output, Voltage
IIH
IlL
IlL
933
= I'FD
High Level I,nput Current
IOL':::
932,957
Max
Short Circuit Output Current
IccI
Supply Current
tPLH
tPHL
0.45
0.50
5
10
10
mA
-16
-'16
-14
mA
30.0
944
22.5
·957
60.0
958
4.5
4
80
15
50
150[2
932,957
15
40
150[2
944,958
10
35
932
957
944
958
'932
957
10L
·(mA)
10L
(rnA)
10H
(rnA)
500 pF. RL
~
C L = 100 pF, RL
~
Test Conditions
BUFFERS/EXTENDERS
TEMP.
,
VR
VF
VIH
VIL
VCEX
VOLTS VOLTS VOLTS VOLTS VOLTS
IFO
rnA
O'C
2.0
1.2
4.0
0.45
-
-2
36
40
-2.0
+25'C
1.9
1.1
4.0
0.45
5.0
-2
36
40
-2.5
+75'C
1.8
0.95
4.0
0.50
-
-2
34
36
-3.0
,
4-4
/lA
-1.33
25
CL
V
-1.40
944,958
High-to-Low Level Output
/lA
'-1.40
932,957
Propagation Delay Time,
V
V
.5
933.
CL = 500 pF, RL = 510[2
C L = 20 pF, RL = 510[2
=
2.5
5
All Except
Low-to-High Level Output
Propagation Delay Time,
200
5
932,957
Vee = 8V, V, = 0
0.75
933
932
Supply Current
0.60
UNITS
MAX
Others
933
Vee = 5V, V, = V R
ICC2
2.6
0.45
All Except
V, = 0
0.82
75'C
MIN
100
2.6
933
V, = V F
loS
25
All Except
V, = V R
Low Level Input Current
0.68
MAX
100
944,958
V, = V'L' IOH = Max
V 1H •
0.90'
MIN
932,957
v,=0.Vo=5V
VI =
0.75
25'C'
MAX
mA
rnA
ns
ns
~
Additional Devices
Electrical Characteristics
(Vee
DM930 Series
= 5,OV)
DM945, DM948, DM9093, DM9094
DM9097, DM9099
PARAMETER
CONDITIONS
oOe
MIN
ICEX
Output Leakage Current
VOH
High Level Output Voltage
IOH = Max
VOL
Low Level Output Voltage
"H
High Level Input Current
Data
945,948
Set, Reset
945,948
9093,9094
All
9097,9099
100
2.6
2.5
2.6
2.6
2.6
2.6
2.6
2.5
045
0.50
5.0
10.0
Set, Reset
945,948
5.0
5.0
10.0
945,948
30
30
40
9093,9094
20
20
30
9097,9099
40
40
60
9097,9099
10
10
20
5.0
5.0
10.0
9093,9094
9097,9099
on 9097, 9099
Data
All
-0.95
-0.95
·{l.90
Set, Reset
945,948
-2.8
2.8
-2.67
-2.8
"2.8
-2.67
2.8
-2.8
-2.66
"2.8
-2.8
-2.67
-56
-5.6
9093,9094
Direct Set
9097,9099
VI "'-,V F
945
Clock
948,9093
9094
Clock, Direct
9097,9099
Clear
VI =0
Supply Current
ICC2
:=
5V (Inputs Open)
Supply Current
V cc =8V,V 1 =O
-1.77
-4.2
-1.77
-4.2
-1.60
--40
6k
0.59
-1.41
-0.59
-1.41
-0.55
-1.38
Propagation Delay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time,
High-to-L.0w Level Output
CL =30p~,RL =2kn
CL
17
9093,9099
28
9094',9097
34
945
18
948
23
9093,9099
36
Test Conditions
25
75
6k
25
100
15
55
TEMP.
mA
ns
ns
948
9094
9097
(2kl
945
9093
9099
(6kl
948
9094
9097
(2kl
945
9093
9099
(Ski
. 948
9094
9097
(2kl
V CPTH
VCPTH
(VOLTSI
(VOLTSI
10L
(mAl
10L
(mAl
10H
(mAl
10H
(mAl
945
VR
VF
VCEX
V'H
V'L
VOLTS VOLTS VOLTS VOLTS VOLTS
\
O°C
2.0
1.2
4.0
0.45
-
1.15
1.30
16.8
15.4
-D.12
-D.5
+25°C
+7SoC
1.9
1.1
4.0
0.45
5.0
0.95
1.15
16.8
15.4
-D.12
-D.5
1.8
0.95
4.0
0.50
-
0.65
0.85
16.0
14.6
-D.12
-D.5
,
!
>2.5V
"
!
!
ov
!
,!
,
I
!
!
I
PRESET
REMOVED
,
,
,
!
TEST
I
!
4·5
I
I
I
>2.5V
,
,
• vCPTH
I
ov
,I
,
PRESET
REMOVED
TEST
I
!
I
!
I
'&fb
CPa
mA
mA
FLIP-FLOPS
9093
9099
(6kl
mA
45
2k
50 pF , R L = 330n
=
MA
14
948
9094,9097
tpLH
V
-'5.34
2k
945
Vee
V
0.45
All Except Clocks,
ICC1
MA
2.6
5.0
and Direct Clear
Short Circuit Output Current
MAX
All
Clear
lOS
MIN
945,948
Clock
Low Level Input Current
UNITS
75"C
MAX
Data
VI = V 1H , tOL = Max
VI = V R
"L
MIN
945,948
VI =0, Vo ""5V
VI '-' V 1L
25'e
MAX
I
~
Additional Devices
DM2502.03.04
Successive Approximation Registers
General Description
DM2503 and DM2504 operate over --55°C to +125°C;
the DM2502C, DM2503C and DM2504C operate over
\
O°C to +70°C.
The DM2502, DM2503 and DM2504 are 8-bit and 12-bit
TTL registers designed for use in successive approximation AID converters . These devices contain all the logic
and control circuits necessary (in combination with a
D/A converter) to perform successive approximation
analog-to-digital conversions.
Features
The DM2502 has 8 bits with serial capability and is not
expandable.
•
•
•
The DM2503 has 8 bits and is expandable without serial
capabil ity.
•
The DM2504 has 12 bits with serial capability and
expandability.
•
•
•
All three devices are available in ceramic DIP, eeramic
flatpak, and molded Epoxy·B DIPs. The DM2502,
Complete logic for successive appro'xi mati on AID
converters
8-bit and 12-bit registers
Capable of short cycle or expanded operation
Continuous or start·stop operation
Compatible with D/A converters using any logic code
Active low or active high logic outputs
Use as general purpose serial·to·parallel converter or
ring counter
Connection Diagrams
v"
a7
07
f16
15
06
12
13
"
a.
as
11
T
011
•
10
-
2.
I-
2
I
(DM2502)
00
IOM2S0ll
-
ep
S
•
J
no
a"
5
01
03
1
G!:
0
all
Ne
22
21
010
O'
20
19
08
07
18
16
j'
ep
S
Ne
06
17
15
13
"
l-
;-
7
6
02
23
2
00
•
3
0"
00
5
Ul
6
02
7
03
,
8
O.
11 J12"
10
Ne
OS
0
GNO
E
2504(J), (F); 2504C(J), (N), (F)
2502(J), (W); 2502C(J), IN), (W);
2503(J), (W); 2503C(J), (N), (W)
Truth Table
OUTPUTS(1)
INPUTS
TIME
0
S
E12)
00(3)
07
06
05
04
03
02
01
00
0
x
L
L
X
X
X
X
X
X
X
X
X
X
1
D7
H
L
X
L
H
H
H
H
H
H
H
H
2
06
H
L
D7
D7
L
H
H
H
H
H
H
H
3
D5
H
L
D6
D7
D6
L
H
H
H
H
H
H
4
D4
H
L
D5
D7
D6
D5
L
H
H
H
H
H
5
D3
H
L
D4
D7
D6
D5
D4
L
H
H
H
H
6
D2
H
L
D3
D7
D6
D5
D4
D3
L
H
H
H
7
Dl
H
L
D2
D7
D6
D5
D4
D3
D2
L
H
H
8
9
DO
H
L
Dl
D7
D6
D5
D4
D3
D2
01
L
H
X
H
L
DO
D7
D6
D5
D4
03
D2
D1
DO
L
10
X
X
L
X
D7
D6
D5
D4
D3
D2
Dl
DO
L
X
X
H
X
H
NC
NC
NC
NC
NC
NC
NC
NC
tn
Notes
(1) Truth table for DM2504 is extended to include 12 outputs.
(2) Truth table for DM2502 does not include
in truth table shown.
'E column or last line
(31 Truth table for DM2503 does not include DO column.
4·6
ace
H
= High Level
L
= Low Level
X
=
NC
0
Don't Care
No Change
,
~
Additional Devices
DM2502,03,04
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM25
PARAMETER
CONDITIONS
02,02C
MIN
V ,H
High Level I nput Voltage
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
IOL
Low Level Output Current
Low Level Output Voltage
Vee
=
Min, 11 "" --12 mA
Vee
=
Min, V ,H
I nput Current at
Maximum Input Voltage
I'H
I,L
High Level Input Current
Low Level Input Current
los
Current
ICC
TYPlll
'"
IOH
2V
-"--48OI1A
04,04C
MAX
=
:.
Min, V 1H
O.BV,
tOl ==
Vee == Max, V,
Vee
=
Max
MIN
2
2V
0.2
9.6 rnA
= 5.5V
UNITS
MAX
2
V
0.8
0.8
V
-1.5
--1.5
-1.5
V
3.6
2.4
TYPI1I
0.8
--480
2.4
-480
3.6
2.4
9.6
Vee
3.6
9.6
0.4
0,4
0.2
1
0.2
9.6
rnA
0.4
V
rnA
1
1
CP Input
6
40
6
40
6
40
D, E, S Inputs
12
80
12
80
12
80
Vee
CP, S Inputs
-·1.0
-1.6
-1.0
-1.6
--1.0
-1.6
D, E Inputs
-2.0
-3.2
-·2.0
-3.2
·--2.0
-3.2
-20
-45
-20
-45
-20
-45
Military
65
85
60
80
90
110
Commercial
65
95
60
90
90
124
~
=
=
Max
CAV
Vee
=
Max(2)
Vee
=
Max
Supply Current
-10
-10
-10
MA
V
VI'" 2.4V
VI
Short Circuit Output
MIN
-480
V 1L
I,
MAX
2
V 1L =O.BV,
VOL
TYPlll
03,03C
MA
rnA
rnA
rnA
Notes
111 All typical values are at Vec = 5V, T A = 25°C.
121 Not more than one output should be shorted at a time.
Switching Characteristics vcc
~ 5V, TA ~ 25°C
DM25
PARAMETER
fMAX
Maximum Clock Frequency
tPlH
Propagation Delay Time.
FROM
TO
CONDITIONS
Low-to"High Level Output
CP
tpHl
Propagation Delay Time,
C L = 15 pF
tpHL
Propagation Delay Time,
TYP
tSETUP
MIN
TYP
04,04C
MAX
MIN
TYP
15
21
15
21
15
21
26
38
10
26
38
10
26
38
ns
10
18
28
10
18
28
10
18
28
ns
NIA
13
19
13
19
ns
NIA
16
24
16
24
ns
Q7 (Ql1)
E
MHz
CP High
SLow
Width of
Low Level
42
30
42
30
42
30
Clock Pulse
High Level
24
17
24
17
24
17
5 Input
16
9
16
9
16
9
o Input
8
4
8
4
8
4
Setup Time
UNITS
MAX
10
High-to-Low Level Output
tw
MAX
RL = 400n
Propagation Delay Time,
Low-to-High Level Output
MIN
03,03C
Output
High-ta-Low Level Output
tPLH
02,02C
4-7
ns
ns
~ Additional Devices
DM2502.03.04
Application Information
voltage level. If D/A converters are used that turn on
with a high logic level then the digital output is active
high; a logic "1" is represented as a high voltage level.
OPERATION
The registers consist of a set of master latches that act
as the control elements in the device and change state
on the input clock high-to;low transition and a set of
slave latches that hold the register data and change on
the input clock 'Iow-to-high transition. Externally the
device acts as a special purpose serial·to·parallel converter
that accepts data a,t the D input of the register and sends
the data to the appropriate slave latch to appear at the
register output and the DO output on the DM2502 and
DM2504 when the clock goes from low-to·high. There,
are no restrictions on the data input; it can change state
at any time except during ~hort i'nterval centered about
the clock low-to·high transition. At the same time that
data enters the register bit the next less significant bit
register is set to a low ready for the next iteration.
EXPANDED OPERATION
An active low enable input, E, on the DM2503 and
DM2504 allows registers to be connected together to
form a longer register by connecting the clock, D, and S
inputs in parallel and connecting the Occ output of one
register to the E input of the next less signifi.cant
register. When the start signal resets the register, the E
signal goes high, forcing the 07 (11) bit high and
inhibiting the register from accepting data until the
previous register is full and its Occ goes low. If only
one register is used the E input should be held at a low
logic level.
a
The register is reset by holding the S (Start) signal low
during the clock low·to·high transition. The register
synchronously resets to the state 07 (11) low, and all
the remaining register outputs high. The Occ (Conver- •
sion Complete) signal is also set high at this time. The S
signal should not be brought back high until after the
clock low-to·high transition in order to 'guarantee
correct resetting. After the clock has gone high resetting
the register, the S signal must be removed. On the next
clock low·to-high t'ransition the data on the D input is
set into the 07 (11) register bit and the 06 (10) register
bit is set to a low ready for the next clock cycle. On the
next clock low-to·high transitioil data enters the 06 (10)
register bit and 05 (9) is set to a low. This operation is
repeated for each register bit in turn until the register
has been fil,led. When the data goes into 00, the Occ ,
signal goes low, and the register is inhibited from further
change until reset by a Start signal.
The DM2502, DM2503 and DM2504 have a specially
tailored two-phase clock generator to provide' nonoverlapping two·phase clock pulses (i.e., the clock
waveforms intersect below the thresholds of the gates
they drive). Thus, even at very slow dVldt rates at the
clock input (such as from relatively weak compa'rator
outputs), improper logic operation will not result.
SHORT CYCLE
If all bits are not required, the register may be truncated
and conversion time saved by using a register output
going low rather ,than the Occ signal to indicate the end
of conversion. If the register is truncated and operated
in the continuous conversion mode, a lock-up condition
may occur on power turn-on. This' condition can be
avoided by making the start input the OR function of
Dec and the appropriate register output.
COMPARATOR BIAS
To minimize the digital error belo'w ±112 LSB, the
comparator must be biased. If a DI A converter is used
whiCh requires a low voltage level to turn on, the
comparator shOUld be biased +1/2 LSB. If the D/A
converter requires a h'Igh logic level to turn on, the
comparator must be biased -1/2 LSB.
Definition of Terms (See Timing Diagram)
CP: The Clock input of the register.
D: The 'serial data input of the register.
DO: The serial data out. (The D input delayed one bit),.
LOGIC CODES
E: The register enable. This input is used to expand the
length of the register and when high forces the 07 (11)
register output high and inhibits conversion. When not
used for expansion the enable is held at a low logic level
(ground).
All three registers can be operated with various logic
codes. Two's complement code is used by offsetting the
comparator 112 full range + 1/2 LSB and using the
complement of the MSB (07 or 011) with a binary D/A
converter. Offset binary is used in the same manner but
with the MSB (07 or 011). BCD D/A converters can be
used with the addition of illegal code suppression logic.
0i i = 7 (11) to 0: The outputs of the register.
Dec: The conversion complete output. This output
remains high during a conversion and goes low when a
conversion is complete.
ACTIVE HIGH OR ACTIVE LOW LOGIC
07 (11): The true output of the MSB of the register.
The register can be used with either D/A converters that
require a low voltage level to turn on, or D/A converters
that require a high voltage level to turn the switch on. If
D/A converters are used which turn on with a low logic
level, the resulting digital output from, the register is
active low. That is, a logic "1" is represented as a lo'w
Q7 (11): The complement output of the MSB of the
register'.
S: The start input. If the start input is held low for at
least a clock period the register will be reset to 07 (11)
low and all the remaining outputs high. A start pulse that
is low for a shorter period of time can be used if it
meets the set·up time requirements of the S input.
4·8
~ Additional Devices
DM2502.03.04
Logic Diagram
.,
~~I~~~,- ---n~---I
.6
.7
I
I
I
I
I
I
I
I
ii7--~==::::tI--'
f--_____J.-_ _ _ _ _ _.....L_ _ _~------..L---'
L ___________
Timing Diagram
J
Note 1: eeu logic is repeated for register stages.
Q5to Ql DM2502,DM2503
Q9 to Ql DM2504
02,03
ee
,NPUTS
l
:
L--.J
07y===]
06L:J
05L:J
o.y===]
.JL:J
OUTPUTS
o,y===]
O'L=:J
oor:::::J
neeL:]
00 .....__'-_--''--_.....
Switching Time Waveforms
AT LEAST
AT LEAST
tpwH(CP)
WAVEFORMS
INPUTS
OUTPUTS
Must be steady
Will be steady
---1.!iV
.5V
.5V
07(11)
....
.-
May change from
Will be changing
H to L
fromHtoL
May change from
Will be changing
L to H
from LtoH
Don't care: any
change permitted
Changing: state
unknown
G6(0)
----+-~
WfJJl!!!J.
00
(DM25D2,DM25D41 _ _ _ _ _...:...--lIJ/1.@~====:::t.1/J.(jJ
(DM2503, DM250!)
-------...Jf-----·
HtPLH
IEl MAX
07(11)
~
1.5V
\---------'.5V
ENABLE TO 07 Ill)
CP =H
BtPHLIEIMAX
~\\
4-9
S=L
1.5V
~. Additional Devices
DM2502,03,04
Typical Applications
BCD ILLEGAL CODE SUPPRESSION
ACTIVE HIGH
ACTIVE LOW
00
CLOCK
CP
DM2502
DM2502
CLOCK
Dc,
01 06 05 04 03 D2 01
Dc,
ao
07 0& 05 04 03 Q2 01 00
DIA CONVERTER
D/A CONVERTER
HIGH SPEED 12-BIT AID CONVERTER
5V1.. ov
5V
JlJ1J1I
~r~
1
r
S
v"
CLOCK
INPUT
'V'""L ov
Doc
C,
DO
DM2504
SAR
~E
r----.- ~~~:u\
0
lSB
MSB
-:!PARAllEL
OUTPUT
+5V
----, L± ~~
VIN
OV TO 10V
4-10
1.2M
'N91.
~ Additional Devices
DM72/DM8280,81,88 ,90 ,91
Presettable Counters
General Description
These high-speed counters consist of four dc-coupled,
master-slave flip-flops which are internally interconnected
to provide divide-by-two, divide-by-four, divide-by-five,
divide-by-six, divide-by-eight, divide-by-ten, divide-bytwelve, or divide-by-sixteen operations_ The counters are
fully programmable; that is, the outputs may be preset
to any number by placing a low logic level on the
count/load input and entefing the desired number at the
data inputs_ Transfer of information to the outputs
occurs on the negative-going edge of the clock pulse_
These counters also feature a direct clear which, when
placed at a low logic level, sets all outputs low regardless
of the conditions on the clocks_
operated in two independent modes:
1. When used as a high-speed 4-bit ripple-through
counter, output OA must be externally connected
to the clock-2 input. The input count pulses are
applied to the clock-1 input. Simultaneous divisions
by 2, 4, B, and 16 are performed at the OA' Os,
Oc, and 0 0 outputs as shown in the truth table
for the DM72B1/B2B1, DM?291/8291.
2. When used as a 3-bit ripple-through counter, the
input count pulses are applied to the clock-2 input.
Simultaneous frequency divisions by 2, 4, and 8
are available at the Os, 0c, and 0 0 outputs.
Independent use of flip-flop A is available if the
load and clear functions coincide with those of the
3-bit ripple-through counter.
Typical C;:ount Configurations
DM7280/DM8280, DM7290/DM8290
The output of flip-flop A is not internally connected to
the succeeding flip-flops; therefore, the count may be
operated in three independent modes:
DM7288/DM8288
The 8288 divide-by-twelve counter is a four-bit subsystem
consisting of divide-by-two and divide-by-six counters in
a 14-pin package. For divide-by-twelve operation, output
A is connected externally to the clock-2 input.
1. When used as a binary-coded decimal decade
counter, the clock-2 input must be externally
connected to the OA output. The clock-' input
receives the incoming count, and a count sequence
is obtained in accordance with the BCD count
sequence truth table.
Features
•
2. If a symmetrical divide-by-ten count is desired for
frequency synthesizers (or other applications requiring division of a binary count by a power of
ten), the 0 0 .output must be externally connected
to the clock-1 input. The input count is then
applied at the clock-2 input and a divide-by-ten
square wave is obtained at output OA in accordance
with the bi-quinary truth table.
•
•
•
•
•
3. For operation as a divide-by-two counter and a
divide-by-five counter', no external interconnections
are required. Flip-flop A is used as a binary element
for the divide-by-tvvo function. The clock-2 input
is used to obtain binary divide-bY-five operation at
the Os, Oc, and 0 0 outputs. In this mode, the two
counters operate independently; however, all four
flip-flops are loaded and cleared simultaneously .
Direct replacements Signetics B2BO, 8281, 8288,
8290,8291
Pin-for-pin with popular Series 54 counters:
82BO,B290-54176,54196
8281,8291-54177,54197
Fully programmable
Independent clear input
Performs BCD, bi-quinary, or quinary counting
Output OA maintains full fan-out while driving
clock 2
TYPICAL
TYPE
CLOCK FREQUENCY
TYPICAL
POWER OISSIPATION
CLOCK 1
CLOCK 2
50 MHz
25 MHz
150mW
DM7281/DM8281, DM7291/DM8291
7280/8280
7281/8281
7288/8288
The output of flip-flop A is not internally connected to
the succeeding flip-flops, therefore the counter may be
7290/8290
7291/8291
50 MHz
25 MHz
150mW
OATAINPtlTS
Connection Diagram
CLEAR
13
COUNT!
LOAD
·0
~
c
o.
D
B
11
12
----------
.,
CLOCK
1
10
,
CLDCK
DATA INPUTS
7280(J), (W); 8280(J), (N), (W); 7281(J), (W); 8281 (J), (N), (W);
7288(J). (W); 8288(J), (N), (W); 7290/8290(J), (N), (W);
7291/8291(J),.(N), (WI
4-11
-
~
Electrical Characteristics over recom!T'ended operating free-air temperature range (unless otherwise noted)
DM72/82
CONDITIONS
PARAMETER
80,81
MIN
V,H
High Level I nput Voltage
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
IOL
Low Level Output Current
VOL
Low Level Output Voltage
Input Current at Maximum Input Voltage
'"
MIN
TYP(1)
2
0"
V
0_8
0_8
0.8
V
-1.5
-1.5
-1.5
V
-800
-800
--800
MA
2.6
2.6
2.6
16
mA
0.4
0.4
0.4
V
Vee = Max, V, '" 5.5V
1
1
1
Count/Load, Data
40
40
40
Vee = Max
Clear, Clock 1
80
80
aD
V, =4.5V
Clock 2 (8281,8291)
40
N/A
80
Clock 2 (Others)
Count/Load
V, = O.4V
lOS
Short Circuit Output Current
Vee = Max(2)
Icc
Supply Current
Vee = Max
:::l
III
C
CD
S.
(')
CD
V
16
Vee = Max
Q;.
;:j:
MAX
16
Low Level I nput Current
I,L.
MAX
Vee = Min, V ,H = 2V
V ,L = 0.8V, IOL = 16 mA
High Level I nput Current
.I'H
TYP(1)
Q.
III
Vee = Min:V'H = 2V
'~"-.
MIN
UNITS
90,91
2
Vee = Min, I, = -12 mA
'"
!
MAX
2
V ,L = 0.8V, IOH = -800MA
I,
TYP(l)
l>
88
80
80
120
-1.6
-1.6
-1.6
Data
-1.2
-1.2
-1.2
Clear
-3.2
-3.2
-2.8
Clk 1, Clk 2 (8280,8290)
-3.2
-3.2
-4.8
Clock 2 (Others)
-1.6
-1.6
-2.4
-18
-57
30
45
-18
-57
30
45
-18
30
mA
MA
mA
C
-57
mA
48.
mA
s:
....,
N
.......
C
s:
00
N
00
Notes
(11
All typical values are at VCC = SV, TA = 2SoC.
(21
Not more than one output should be shorted at a time.
0
Co
....
Co
00
Co
0
Co
....
- - - - - - - - - - - - - - - _ .. _ - - - -
-- --
-
-
- - - - - _.. _ - - - - -
-
-
Switching Characteristics vee
~ 5V, TA ~ 25°C
~
DM72/82
PARAMETER
FROM
CONDITIONS
TO
80,81
MIN
fMAX
Maximum Clock
Frequency
tpLH
Propagation Delay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time,
High-ta-Low Level Output
'PLH
Propagation Oelay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time,
High-ta-Low Level Output
tpLH
Propagation Delay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time.
High-ta-Low Level Output
tpLH
Propagation Delay Time,
Low-ta-High Level Output
f"
w
tpHL
Propagation Delay Time,
High-ta-Low level Output
tpLH
Propagation Delay Time,
Low-ta-High Level Output
'PHL
Propagation Delay Time,
High-to-Low Level Output
tpLH
Propagation Delay Time,
Low-to-High Level Output
tpHL
Propagation Delay Time,
High-to-Low Level Output
tpHL
Propagation Delay Time,
High-ta-Low Level Output
tw
tHOLD
'sETUP
tENABLE
----
Pulse Width
Input Ho!d Time
Input Setup Time
Count Enable Time
- --
Clock 1
aA
35
TYP
88
MAX
50
MIN
35
TYP
UNITS
90,91
MAX
50
MIN
40
TYP
MAX
50
MHz
l>
Q.
Q.
;:j.'
S'
j
!!.
Clock 1
aA
9
13
9
13
9
13
ns
eCD
Clock 1
aA
11
17
11
17
11
17
ns
ii'
<
CD
Clock 2
a.
12
18
12
18
12
18
ns
Clock 2
a.
14
21
14
21
14
21
ns
Clock 2
Dc
27
41
27
41
24
36
ns
Clock 2
Dc
34
51
34
51
28
42
ns
13
20
13
20
14
21
44
66
N/A
36
54
til
CL " 15 pF
Clock 2
aD
Clock 2
aD
8280,8288,8290
RL "400Sl
8281,8291
8280, 8288, 8290
17
26
17
8281,8291
50
75
N/A
26
16
23
42
63
ns
ns
Any Data Input
Any Output
19
29
19
29
16
24
ns
Any Data Input
Any Output
31
46
31
46
25
38
ns
Load
Any Output
29
43
29
43
22
33
ns
Load
Any Output
32
48
32
48
24
36
ns
Clear
Anv Output
32
48
32
48
25
37
ns
Clock 1
14
14
14
Clock 2
28
28
28
Clear
25
25
25
Load
20
20
20
High-Level Data
tW(LOAOI
twtLOAOI
tWtLoAO)
Low-Level Data
tW(LOAOI
twtLOAD)
tW(LOAO)
High-Level Data
15
15
10
Low-Level Data
20
20
15
25
25
30
ns
ns
ns
ns
e
s:.....
N
......
e
s:CO
N
CO
0
Ol
....
Ol
CO
CD
0
CD
....
~ Additional Devices
DM721DM8280,81,88 ,90,91
Truth Tables
80,90
BI·QUINARY (5·21
(S.. Not. BI
80,90
DECADE (BCDI
(S•• Note AI
OUTPUT
COUNT
81,91
TRUTH TABLE
(See Note AI
OUTPUT
COUNT
88
TRUTH TABLE
OUTPUT
OUTPUT
COUNT
COUNT
Ile
Os
0
L
L
L
L
O.
L
L
L
L
0
L
L
L
L
0
L
L
L
L
1
L
L
L
H
1
L
L
L
H
1
L
L
L
H
1
L
L
L
H
L
L
H
L
L
L
H
H
L
H
L
L
L
H
L
H
00 Ile
Os
QA
QA
00 Ile
Os
QD'
Ile
QIi
QA
QD
QA
L
H
L
L
4
L
H
L
L
2
3
4
H
L
L
L
5
L
H
L
H
5
L
5
6
H
L
L
H
6
L
H
H
L
6
L
H
H
L
H
7
H
L
H
L
7
L
H
H
H
7
L
H
H
H
L
L
8
H
L
H
H
8
H
L
L
L
L
L
L
H
9
H
H
L
L
9
H
L
L
H
8
9
H
L
H
L
L
H
10
H
L
H
L
10
H
L
H
L
11
H
L
H
H
11
H
L
H
H
12
H
H
L
L
13
H
H
L
H
(A) Output QA connected to clock 2 input.
14
H
H
H
L
(BI Output QD connected to clock 1 input.
15
H
H
H
H
2
L
L
H
L
2
L
L
H
L
2
L
L
H
L
3
4
5
L
L
H
H
L
L
H
H
3
L
L
H
H
L
H
L
L
H
L
L
'H
3
4
6
L
H
H
7
L
H
H
8
H
L
9
H
L
H = High Level, L = Low Level
Not.. :
Logic Diagrams
81,91
80,90
88
4·14
~ Additional Devices
DM9000C Series
Gates/Inverters
General Description
TTL circuits offering a choice of specific performance
ranges (see Sections 1 and 2); and are designed to serve
any application from industrial numerical controllers or
high-speed computers, to sophisticated high-reliability
aerospace and defense systems. Series 54/74 pin-for-pin
equivalents are available for the following SSI types:
DM9000C series devices are designed to be used in
existing systems as replacements for Fairchild 9000-type
circuits. These DM9000C circuits offer several significant
advantages over 9000 type circuits, some of which are:
•
Input clamp diodes
• Output short-circuit current specified to guarantee
the high-level impedance.
•
DM9000C SERIES
EQUIVALENT SERi'ES 74
DM9002C
DM9003C
DM9004C
DM9005C
DM9006C
DM9008C
DM9009C
DM9012C
DM9016C
DM9024C
Power dissipation of DM9000C circuits is i[1 most
cases lower than that for the equivalent 9000 type.
DM9000C circuits are characterized for operation over
the industrial temperature range of O°C to 75°C.
For new designs, the 54/74 families of TTL circuits
offer the industry's broadest choice of high-performance
digital circuits. Included are several families of compatible
DM7400
DM7410
DM7420
DM7450
DM74H60
DM74H53
DM7440
DM7403
DM7404
DM74109
Connection Diagrams
Vee
B4
A4
Y4
BJ
A3
Vl
Vee
D2
C2
NC
B2
A2
yz
A1
81
VI
Al
82
YZ
GND
A1
B1
Nt
Cl
01
V1
GNO
9002CIJ), IN); 9012CIJ), IN)
Vee
B1
AI
A'
"
C2
9004CIJ), IN); 9009CIJ), IN)
9003CIJ), IN)
01
C1
VI
Vee
01
D2
Y2
GND
AI
B1
.
"
Xl
i•
D2
C1
A2
"
C2
GNo
,
X"OllfllUtolEltpfndl!r
9006CIJ), IN)
9006CIJ), IN)
Vee
AI
A1
V1
9008CIJ).IN)
V6
AS
YS
A4
V4
A2
Y2
A3
Vl
GNU
9016CIJ), IN)
4:15
GND
X=OIll\llltofExplnder
~
Add itionalDevices
DM9000C Series
Electrical Characteristics over recommended ·operating free-air temperature range (unless
otherwi~e
noted)
DM90
05C
PARAMETER
V,H
CONDITIONS
I
High Level Input Voltage
O°C
02C,03C
04C,16C
EXPANDABLE
GATE
NONEXPANDABLE
GATE
MIN MAX
MIN MAX
MIN MAX
1.8
1.8
175°C.
1.6·
1.6
1.6
0.85
IOH
High Level Output Current
Vee = 4.75V, V'L = 0.85V
VOH
High Level Output Voltage
V OH = 5.5V
Low Level Output Voltage
I'H
High Level Input Current
Vee"" 4.75V
IOH "" --1.2 mA
V JL
IOH '"
IOl :: 16 mA
V 1H
IOL - 48 mA
Min
Low Level Input Current
IOl "" 14.1 mA
V 1H :: Min
IOL
at 5.2SV
los
Short Circuit Output Current
ICCH
Supply Current, All Outputs
High
ICCL
Supply Current, All Outputs
Low
/llcCH
Vee
1.6
1.6
0.85
0.85
-1.5
-1.5
-1.5
-1.2
-1.2
-1.2
-1.2
-3.6
2.4
2.4
V
0.85
0.85
-1.5
0.S5
-1.5
50
50
50
50
0.45
0.45
0.45
0.45
0.45
0.45
0.45
V
mA
50
mA
V
N/A
100
0.45
0.45
0.45
V
0.45
60
.
Vee = 4.75V
Vee = 5.25Vlll
V
0.25
N/A
2.4
= 42.3 rnA
= 5.25V
1.9
2.4
Vee = 5.25V, V, = 4.5V
V, = 0.45V
1.6
UNITS
0.45
Vcc- 4 .75V
Other Inputs
1.8
-1.5
2,4
Other Inputs at Ground
I,L
1.8
1:9
1.8
3.6mA
Vee = 5.25V
""
MIN MAX
125°C
Vee = 4.75V,I, = -12 mA
VOL
MIN MAX
1.9
Input Clamp Voltage
Low Level Output Current
MIN MAX
1.9
Low Level'lnput Voltage
10L
12C
1.9
V,
O.85V
09C
1.9
1.8
V,L
:.
06C,OSC
120
60
90
60
-1.6
-2.4
·-1.6
-2.4
-3.2
-1.6
-1.41
-2.12
-1.41
--2.12
-2.82
-1.41
-18 -55
90
-20 -70
-20 -70
-40 -100
-20 -70
N/A
J.
~
l
l
l
l
l
l
l
H
l
l
H
l
1
H
l
H
H
H
2
H
H
l
H
H
DECIMAL OUTPUT
4
5
6
0
l
H
H
H
D
4-22
3
H
H
H
l
H
7
H
H
H
H
H
H
H
H
H
H
H
H
8
H
H
H
9
H
H
H
H
H
H
H
H
H
l
H
H
H
H
H
H'
l
H
H
H
H
H
H
l
H
H
H
H
H
H
l
H
H
H
l
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
~
DM93/DM8301
Additional Devices
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM93i83
CONDITIONS
PARAMETER
01
MIN
V IH
High Level Input Voltage
VIL
Low Level Input Voltage
VI
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
10L
Low Level Output Current
VOL
Low Level Output Voltage
TYP(l)
UNITS
MAX
2
Vee = Min,
V
1,=-12mA
0.8
V
-1.5
V
-BOO
Vee = Min,
V'H = 2V
V'L = O.8V,
IOH
Vee
=:
Min,
=
-BOOJ1A
2.4
V
V'H = 2V
V,c = O.BV,
10L = 16 mA
II
I nput Current at Maximum I nput Voltage
Vee :-:: Max,
V,=5.5V
J1A
16
mA
0.4
V
1
mA
IIH
High Level Input Current
Vee
~
Max,
V, = 2.4V
40
J1A
IlL
Low Level Input Current
Vee
=
Max,
V, =OAV
-1.6
mA
los
Short Circuit Output Current
Vee = Max(2)
--55
mA
Icc
Supply Current
Vee = Max(3)
41
mA
--20
25
Notes
(11 All typical values are at Vee = 5V, T A = 25' e,
(21 Not more than one output should be shorted at a time.
(31
ICC is measured with the outputs open and all inputs grounded.
Switching Characteristics vee
= 5V, TA = 25°C
DM93i83
PARAMETER
CONDITIONS
01
MIN
tpHl
Propagation Delay Time, High-to-Low Level,
Any Output from A, B, C, or D
UNITS
TYP
MAX
19
30
ns
20
30
ns
C L = 15 pF, RL = 400n
tpLH
Propagation Delay Time, Low-to-High Level,
Any Output from A, B, C, or D
l____
423
~ Additional Devices
DM93/DM8309,12
Data Selectors/Multiplexers
General Description
Features
These data selectors/multiplexers contain inverter/
drivers to supply full complementary, on-chip, binary
decoded data selection to the AND-OR-INVERT gates.
DM9309/8309
• Direct replacement for Fairchild 9309
• Complementary outputs
• Dual one-of-four data selectors
The DM9309/8309 contains two separate 4·bit multi·
plexers with complementary Y and Y outputs; however,
the two sections have common address select inputs.
DM9312/8312
•
•
•
•
•
The DM9312/8312 is a single 8-bit multiplexer with
complementary outputs and a strobe control. When the
strobe is low, the function is enabled. When a high logic
level is applied to the strobe, the outputs are latched.
Direct replacement for Fairchild 9312
Selects one-of-eight data sources
Performs parallel to serial conversion
Strobe controlled outputs
Complementary outputs
Connection Diagrams
OUTPUTS
V2
15
14
.
OATA INPUTS
SELECT
INPUT
A
'12
2eo
2el
12
13
OUTPUTS'
2C3
2C2
11
,
V
TC
10
SElECT INPUTS
C
16
15
13
14
,
STROBE
A
12
10
11
-
Vl
SElECT
INPUT
'11
leo
lel
B
OUTPUTS
le2
J:
le3
DO
DATA
INPUT
07
-
01
02
03
04
05
os
J:
DATA INPUTS
DATA INPUTS
9309(JI, (WI; 8309(JI, (N), (WI
9312(JI, (WI; 8312(JI, (NI, (WI
Truth Tables
09
12
INPUTS
DATA
SELECT
B
A
OUTPUTS
CO
C1
C2
C3
V
Y
OUTPUTS
INPUTS
STROBE
SELECT
C
B
A
G
V
Y
L
L
L
X
X
X
L
H
X
X
X
H
L
H
l.
L
H
X
X
X
H
L
L
L
L
L
L
H
X
L
X
X
L
H
L
L
H
L
00
01
L
H
X
H
X
X
H
L
L
H
L
L
00
01
02
X
X
L
X
L
H
L
H
H
L
X
X
H
X
H
L
H
L
L
L
H
H
L
H
H
X
X
X
L
L
H
H
L
H
L
H
H
X
X
X
H
H
L
H
H
L
L
H
H
H
L
03
04
05
06
07
52
03
54
D5
56
57
Select inputs A and B are common to both sections.
H ::: High Level, L::: Low Level, X "" Don't Care.
H :: High Level, L"" Low level, X = Don't Care.
DO, 01 .. . 07 = The level of the respective 0 input.
4·24
~
DM93/DM8309.12
Additional Devices
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
DM93/83
CONDITIONS
PARAMETER
09,12
MIN
V ,H
High Level Input Voltage
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
IOH
High Level Output Current
V OH
High Level Output Voltage
IOL
Low Level Output Current
VOL
Low Level Output Voltage
UNITS
TYP,(11
MAX
V
2
0.8
Vee = Min, I,
= -12 rnA
Vee
= Min, V 1H
V'L
=0.8V, 10H
= 2V
2.4
= -800p.A
Vee = Min. V 1H = 2V
I,
Input Current at Maximum Input Voltage
Vee = Max, VI = 5.5V
I'H
High Level Input Current
Vee = Max, VI
I,L
Low level Input Current
Vee
los
Short Circuit Output Current
Vee = Max(21
Icc
Supply Current
Vee = Max(3)
V
-800
p.A
V
3.4
0.2
V'L = 0.8V, 10L = 16 mA
V
-1.5
16
mA
0.4
V
mA
1
= 2.4V
40
p.A
= Max, VI = O.4V
-1.6
mA
-85
mA
44
mA
-30
27
Notes
= 2SC.
(1)
All lypical values are at V CC = SV, T A
(2)
Not more than one output should be shorted at a time.
(3)
ICC is measured with the outputs open and all inputs at 4.SV for the DM9309/B309, and with the strobe and data select inputs at 4.SV,
all other inputs and outputs open for the DM9312/B312.
Switching Characteristics Vee = 5V, T A = 25° C
DM93/83
PARAMETER
FROM
TO
MIN
tpLH
Propagation Delay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time,
High-ta-Low Level Output
tpLH
Propagation Delay Time,
low-ta-High ,Level Output
'PHL
Propagation Delay Til.'"e,
High-ta-Low Level Output
tpLH
Propagation Delay Time,
Low-ta-High Level Output
'PHL
Propagation Delay Time,
H igh-to- Low Level Output
tpLH
Propagation Delay Time,
Low-ta-High Level Output
'PHL
Propagation Delay Time,
High-ta-Low Level Output
tpLH
Propagation Delay Time,
Low-ta-High Level Output
tpHL
Propagation Delay Time.
High-la-Low Level Output
tpLH
Propagation Delay Time,
Low-to~High
'otIL
Level Output
Propagation Delay Time,
High·to·Low Level Output
DM93/83
09
CONDITIONS
12
TYP
MAX
MIN
UNITS
TYP
MAX
Select
Y
27
40·
22
33
ns
Select
Y
23
36
23
35
ns
Select
Y
17
24
18
·28
ns
Select
Y
20
29
16
25
ns
Data
Y
18
27
16
23
ns
Data
Y
23
34
17
25
ns
14
21
9
13
ns
9
13
9
13
ns
CL = 15 pF
RL = 40011
Data
y
Data
Y
Strobe
Y
N/A
22
33
ns
Strobe
Y
N/A
21
32
ns
Strobe
Y
N/A
13
19
ns
Strobe
Y
N/A
15
21
ns
4-25
-
~ Additional Devices
DMS3/DM830S.12
Logic Diagrams
09
IC3 (7)
(21 1'1 }
lC2 (61
111
OUTPUTS
Vl
lel
(51
lCO (41
DATA
INPUTS
2e3
(91
(141 V2
_ }
2C2 (101
(151
2el
1111
SELECT (31
INPUT B
12
STROBE
00
01
1101
111
(21
02 (31
03
(41
DATA
INPUTS
04 (51
05
06
(61
(71
07(91
A
jj
C
4-26
OUTPUTS
V2
~ Additional Devices
DM931DM8310.16
Synchronous 4-Bit Counters
General Description
These ·synchronous, presettable counters feature an
internal carry look-ahead for application in high-speed
counting designs. The DM9310/DM8310 are decade
counters and the DM9316/DM8316 are 4-bit binary
counters. The carry output is decoded by means of a
NOR gate, thus preventing spikes during the normal
counting mode of operation. Synchronous operation
is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each
other when so instructed by the count-enable inputs
and internal gating. This mode of operation eliminates
the output counting spikes which are normally
associated with asynchronous (ripple clock) counters.
A buffered clock input triggers the four flip-flops on
the rising (positive-going) edge of the clock input
waveform.
The carry look-ahead circuitry provides for cascading
counters for n-bit synchronous applications without
additional gating. Instrumental in accomplishing this
function are two count-enable inputs and a ripple carry
output. Both count-enable inputs (P and T) must be
high to count, and input T is fed-forward to enable the
ripple carry output. The ripple carry output thus
enabled will produce a high-level output pulse with a
duration approximately equal to the high-level portion
of the Q A output. This high-level overflow ripply carry
pulse can be used to enable successive cascaded stages.
High-to-Iow level transitions at the enable P or T inputs
may occur regardless of the logic level in the clock.
Features
•
•
•
•
•
•
•
•
These counters are fully programmable; that is, the
outputs may be preset to either level. As presetting is
synchronous, setting up a low level at the load input
disables the counter and causes the outputs to agree
with the setup data after the next clock pulse regardless
of the levels of the enable input. Low-to-high transitions
at the· load input are perfectly acceptable regardless of
the logic levels on the clock or enable inputs. The clear
function is asynchronous and a low level at the clear
input sets all four of the flip-flop outputs low regardless
of the levels of clock, load, or enable inputs.
Direct replacement for Fairchild 9310, 9316
Internal look-ahead for fast counting
Carry output for n-bit cascading
Synchronous counting
Load control line
Diode-clamped inputs
35 MHz
Typical clock frequency
Pin-for-pin replacements popular 54/74 counters
9310 - 54,160A/74160A (decade)
9316 - 54161A/74161A (binary)
Connection Diagram
Vee
1",6
RIPPLE
CARRY
OUTPUT
OUTPUTS
,
U,
15
14
,
Dc
D.
13
Do
ENABLE
T
LOAD
10
9
II
12
--c
1
2
CLEAR
CLOCK
6
A
________
'~
D
~
______-J'
DATA INPUTS
9310(J), (WI; 8310(JI, (N), (W);
9316(JI, (WI; 8316(J), (N), (WI
4-27
7
ENABLE
P
~
Additional Devices
Electrical Characteristics
ove~
.DM93/DM8310.16
recommended op~rating free-air temperature range (unless otherwise noted)
PM93/83
PARAM·ETER
MIN
:
VIH
High Level Input Voltage
V ll
Low Level Input Voltage
VI
Input
I.OH
High Level Output Current
VOH
High Level Output Voltage
CI~mp
Vee
= Min, I, = -12 mA
Vee
= Min, V ,H = 2V
= 0.8V, 10H = -800jJA
VOL
Low Level Output Voltage
Vee
V'L
II
Input Current at Maximum Input Voltage
IIH
High Level Input Current
Cloc~
or Enable T
Other Inputs'
Low Level Input Current
III
Clock or Enable T
Other Inputs
Short Circuit Output Current
los
ICCH
ICCl
I
Supply Current (High Level)
Supply Current (Low Level)
Not---;======~~~~====lrt
{Jl
DATAA~-----'
III
CLEAR
'4J
B--------H--++1H---t-,
DATA
'5}
DATA C
-------+H++++1H---t-,
16l
DATA 0
(15) RIPPLE
CARRV
OUTPUT
16
0,
III
ClOCK
{Jl
DATA A
III
CLEAR
0,
LOAD
DATA
'5}
c--------I-+-I+-+++++1-1",
16'
OATAD-------+H+H+H-+--r,
(t5) RIPPLE
CARRY
OUTPUT
4-30
~ Additional Devices
DM93/DM8310 .16
Timing Diagrams
9310/8310 SYNCHRONOUS DECADE COUNTERS
TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES
CLEAR
--U
(ASYNCHRONOUS)
lDAD---+I-,u
I
A-.J
'NDp~~~
:
r --------------
I
l==============
-1'-_I---.L
_
-------------r-------------Sequence:
CLOCK
(1)
Clear outputs to zero
ENABLE P-----I---I.J
(2)
(3)
Preset to BCD seven
Count to eight, nine, zero, one, two, and three
ENABLE T
(4)
Inhibit
---t--+-'
----COUNT---- ----lNHIBIT----
CLEAR PRESET
9316/8316 SYNCHRONOUS BINARY COUNTERS
TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES
CLEAR
~NCHRDNDUSI
,
lDAD=8r - - - - - - - - - - - - - DATAl -1
r-=============
A
B,
C
'NPUTS
0"']
I
I
i
-
-
-
-
-
-
-
-
-
-
-
-
-
L_=============
L_____________ _
CLOCK
ENABLE P
ENABLE T
OUTPUTS \
:
Qc
Sequence:
(1) Clear outputs to zero
(2)
Preset to binary twelve
---~-+'
(3)
Count to thirteen, fourteen, fifteen, zero, one,
---t---f.I
14)
__
and two
-+--+-+--'
00
RIPPlEOCU;~~i -----I--f.:'''"'--I.,,13:--'''14:--....I15
- - '- - C O U N T - - - - - - - - I N H 1 B 1 T - - - CLEAR PRESET
4·31
Inhibit
~ Additional Devices
DM93/DM8310.16
Parameter Measurement Information
SWITCHING TIME WAVEFORMS
CLOCK
INPUT
-F\-I
OV
tplH
tpHl
(MEASURE AT tN+tl
VOH
OUTPUT
0.
VOl
(MEASURE AT 'N'2)
VOH
OUTPUT
0.
OUTPUT
Dc
Val
VOH
VOL
VOH
OUTPUT
00
RIPPLE
CARRY
OUTPUT
VOL
VOH
VOL
Notes:
(A) The input pulses are supplied by a generator having the following characteristics: PRR ::; 1 MHz, duty cycle:S. 50%, ZOUT ~ 50,0, tr S. 10 ns,
tf:S. 10 ns. Vary PRR to measure fMAX.
(8) Outputs 00 and carry are tested at t n+10 for 9310/8310, and at tn+16 for 9316/8316, where tn is the bit time when all outputs are low.
IC) VREF ~ 1.5V.
SWITCHING TIME WAVEFORMS
CLOCK INPUT l.OV - - - - - - - - - , .
160A. LS160
161A. LS161
CLEAR
INPUT
LOAD
INPUT
DATA INPUTS
A. B. C. AND D
a OUTPUTS
9316
OUTPUTS
9310
a.
AND
aD
Ils
AND
ac OUTPUTS
9310
OV
l.OV
OV
3.0V
OV
VOH
VOL
VOH
VOl
--
l.OV-ENABLE P OR
ENABLE T
OV
VOH
CARRY
VOL
Notes:
(A) The input pulses are supplied by generators having the following characteristics: PRR
tf S; 10 ns.
(B) Enable P and enable T setup times are mQ,asured at tn+O.
IC)
VREF ~ 1.5V.
4-32
S. 1 MHz, duty cycle S. 50%, ZOUT ~ 50n, tr S. 10 ns,
~ Additional Devices
DM93/DM8311
4-Line to 16-Line Decoders/Demultiplexers
General Description
Features
Each of these 4-line-to-16-line decoders utilizes TTL
circuitry to decode four binary-coded inputs into one
of sixteen mutually exclusive outputs when both the
strobe inputs, Gl and G2, are low. The demultiplexing
function is performed by using the 4 input lines to
address the output line, passing data from one of the
strobe inputs with the other strobe input low. When
either 'strobe input is high, all outputs are high. These
demultiplexers are ideally suited for implementing highperformance memory decoders. All inputs are buffered
and input clamping diodes are provided to minimize
transmission·line effects and thereby simplify system
design.
•
Direct replacement for Fairchild 9311
•
Pin for pin with popular 54154/74154
•
Decodes 4 binary·coded inputs into one of 16 mutually
exclusive outputs
•
Performs the demultiplexing function by distributing
data from one input line to anyone of 16 outputs
•
Input clamping diodes simplify system design
•
High fan-out, low-impedance, totem-pole outputs
• Typical propagation delay
19 ns
• Typical power dissipation
170mW
Connection Diagram
Vee
INPUTS
,A
124
OUTPUTS
Gl ' '15
G2
23
22
21
20
19
18
5
6
1
13
14
17
15
16
\
11
12
13
14
-c
10
11 ,r2
.,-0;......-;1_...;;,2_...;3;....-.-;4_-Y~_..;6;.......;;,1_..;8;.......;;,9_..;.10;"1 GNO
OUTPUTS
9311(J), (F); 8311(J), (N), (F)
Truth Table
INPUTS
H
OUTPUTS
Gl
G2
0
c
B
A
o
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
L
L
L
H
8
9
10
11
12
13
14
15
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
)-l
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
2
3
4
H
H
H
H
H
H
H
L
H
H
H
H
H
L
H
H
L
H
H
H
H
H
H
H
L
H
H
L
L
H
H
H
H
L
L
L
L
H
L
H
H
H
H
H
H
L
H
H
H
L
L
L
H
H
L
H
H
H
H
H
H
L
H
H
L
L
L
H
H
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
H
H
H
L
L
L
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
L
L
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
L
H
H
L
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
H
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
= High Level, L = Low Level,
X
= Don't Care
4-,33
~
Additional D.evices
DM93/DM8311
Electrical Characteristics over recommended operating free-air temperature ;ange (unless otherwise n·oted)
DM93/83
PARAMETER
11
CONDITIONS
V,H
High Level Input Voltage
V,L
Low Level Input Voltage
V,
I nput Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
,
Low Level Output Current
VOL
Low Level Output Voltage
MAX
2
V
V ce = Min. II = -12 mA
0.8
V
-1.5
V
-800
Vee = Min, V IH = 2V
304
2.4
V il = 0.8V, 10H = -800JlA
10L
UNITS
TYP(1)
MIN
Vee = Min, V IH = 2V
V
0.25
V il = 0.8V, IOl = 16 mA
JlA
16
mA
004
V
I,
Input Current at Maximum Input Voltage
Vee = Max, VI = 5.5V
1
I'H
High Level Input Current
Vee = Max, VI =·2AV
40
JlA
I,L
Low Level I nput Current
Vee = Max, VI = OAV
~1.6
mA
los
Short Circuit Output Current
Icc
Supply Current
Vee = Max(2)
Vee = Max(3)
DM93
-20
-55
DM83
-18
-57
DM93
34
49
DM83
34
56
mA
mA
ilnA
Notes
(1) All typical value. are at Vcc = 5V, TA = 25°C.
(21 Not more than one output should be shorted at a time.
(3)
ICC is measured with all inputs grounded and all outputs open.
Switching Characteristics
Vee = 5V, T A = 25°C
DM93/83
PARAMETER
CONDITIONS
tpLH
UNITS
11
MIN
TYP
MAX
18
27
ns
21
30
ns
17
25
ns
18
27
ns
Propagation Delay Time, Low-to-High
Level Output, From A, B, C, or D Inputs
Through 3 Levels of Logic
tpHL
tpLH
Propagation Delay Time, High-to-Low
Level_ Output, From A, B, C, or D Inputs
CL = 15 pF
Through 3 Levels of Logic
RL
Propagation Delay Time, Low-to-High
Level Output, From Either Strobe Input
-tpHL
Propagation Delay Time, High-to-Low
Level Output, From Either Strobe Input
4-34
= 400n
~ Additional Devices
DM93/DM8311
Logic Diagram
r-~
II
C
0
~I---..
A
H
Gl
;;U
G
G2
(4)
~
INPUTS
~olli
A
T
(22)
A
~~
)oJ!!.
B
T
B
~~
c
(21)
T -V c
~
0
(20)
(5)
..J
C
(23)
(2)
Jo-ill
B
(18)~
(I)
B
.........
~----
(B)
OUTPUTS
(9)
(10)
0
1
h-..
0
(II)
0
~
~
(13)
C
H
(14)
--I
H
B
~---
II
7=
A
B
4-35
c
0
(15)
(16)
(11)
10
11
12
13
14
15
~. Additional Devices
DM93/DM8318
General Description
Features
These TTL encoders feature PriOrity decoding of the
input data to ensure that only the highest-order data line
is encoded. All inputs are buffered to represent one
normalized Series 54/74 load. The DM9318 anq
DM8318 encode eight data lines to three-line (4-2-1)
binary (octal). Cascading circuitry (enable input E1 and
enable output EO) has been provided to allow octal
expansion without the need for external circuitry_
For all types, data inputs and outputs are active at
the low logic level.
•
Connection Diagram
.
L6
EO
, . Typical data delay
10 ns
• Typical power dissipation
190 mW
AD
I.
lD
11
12
13
3
•
,
•
. EI
,
,
6
5
A2
A1
18
GNO
H
EI
0
1
2
3
4
5
6
7
A2
Al
AO
GS
EO
H
X
X
X
X
X
X
X
X
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
L
L
X
X
X
X
X
X
X
L
L
L
L
L
X
X
X
X
L
H
L
H
L
X
L
L
H
H
H
L
.L
H
H
H
H
H
L
H
L
H
L
L
H
L
L
L
H
H.
H
H
L
L
L
X
X
X
L
L
X
X
X
X
X
X
L
L
X
X
X
H
H
H
H
X
L
L
H
H
X
H
H
H
H
H
L
X
L
H
H
H
H
H
H
H
L
L
H
L
L
H
H
H
H
H
H
H
H
H
~
X
High Logic Level, L
OUTPUTS
INPUTS
OUTPUTS
INPUTS
9
0-
2
Encodes 8 data lines to 3-line binary (octal) .
• Applications include:
N -bit encodi ng
Code converters and .generators
OUTPUT
-C
1
•
Ir,lPUTS
GS
15
Direct replacement for Fairchild 9318
• Pin for pin with popular DM54148174148
Truth Table
OUTPUTS
Vee
Priority Encoders
9318(JI, (W); 8318(JI, (N), (W)
LogiC Diagram
INPUTS
4-36
~
Low Logic Level, X
~
Don't Care
L
H
H
H
~
Additional Devices
DM93/DM8318
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
DM93/83
18
CONDITIONS
MIN
V ,H
High level Input Voltage
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
IOH
High Level Output Current
VOH
High Level Output Voltage
MAX
V
2
0.8
Vee = Mm,'1
IOL
Low Level Output Current
VOL
Low Level Output Voltage
==
V
-1.5
-12 rnA
V
-800
,
I,
Input Current at MaXimum Input Voltage
I'H
High Level Input Current
o Input
Others
o Input
Low Level Input Current
I,L
UNITS
TVP(lI
Others
Vee'" Min,
V 1H = 2V
V 1l == O.BV,
10H
Vee = Min,
V 1H ==
2\1
V,L "0.8V,
tOL =
16 rnA
Vee = Max,
V, o5.5V
"-800I1A
Vee:: Max,
V, "2AV
Vee"" Max,
V, "OAV
los
Short Circuit Output Current
Vee
Icc
Supply Current
Vee"= Max
~
Max(2)
(3)
IlA
2.4
V
16
mA
0.4
V
1
mA
40
IlA
80
-1.6
mA
-3.2
-85
-35
I Condition 1
I Condition 2
mA
40
60
35
55
mA
Notes
(1)
All typical values are at Vee = 5V, TA = 25°e.
(2)
Not more than one output should be shorted at a time.
ICC (condition 1) is measured with inputs 7 and El grounded, other inputs and outputs open; ICC (condition
(3)
?)
is measured with all inputs
and outputs open.
Switching Characteristics
vee
PARAMETER
= 5V, T A = 25°C
FROM
(INPUT)
DM93/83
TO
(OUTPUT)
WAVEFORM
CONDITIONS
"'LH
Propagation Delay Time, Low-toHigh Level Output
o thru 7
tPHL
Propagation Delay Time, High-to-
tpLH
Propagation Delay Time, Low-to-
A, B, C, D
High Level Output
o thru 7
A, B,C, D
Propagation Delay Time, High-to-
o thru 7
EO
Propagation Delay Time, Low-toHigh Level Output
tpHL
PropagatIon Delzy Time, High-to-
tPLH
Propagation Delay Time, Low-to-
o thru 7
GS
In-Phase Output
Low Level Output
High Level Output
EI
tPHL
AO, Al, or A2
Propagation Delay Time, High-ta-
Propagation Delay TimEl, Low-toHigh Level Output
EI
"'HL
GS
Propagation Delay Time, High·to-
Propagation Delay Time, Low-taHigh Level Output
tpHL
9
14
ns
13
19
ns
12
19
ns
G
9
ns
14
21
ns
18
27
ns
14
21
ns
10
15
ns
la
15
ns
8
12
ns
10
15
ns
EI
EO
la
15
ns
17
26
ns
CL =15pF
R L = 400n
In-Phase Output
Low Level Output
""-H
ns
In-Phase Output
Low Level Output
tpLH
15
Out·of-Phase Output
Low Level Output
tPLH
10
Propagation Delay Time, Low-toHigh Level Output
tpHL
MAX
Out-of-Phase Output
Propagation Delay Time, High-toLow Level Output
"'LH
TVP
In-Phase Output
Low Level Output
tPHL
UNITS
18
MIN
In·Phase Output
Propagation Delay Time, High-toLow Level Output
4-37
~ Additional Devices
DM93/DM8322
Quad 2-Line to 1-Line Data Selectors/Multiplexers
General Description
Applications
These data selectors/multiplexers contain inverters and
drivers to supply full on-chip data selection to the four
output gates. A separate strobe input is provided. A
4-bit word is selected from one of two sources and is
routed to the four outputs. True data is presented
at the outputs.
• Expand any data input point
• Multiplex dual-data buses
• 'Generate four functions of two variables (one variable
is common)
,
Features
• Source programmable counters
• Direct replacement for Fairchild 9322
• Pin-for-pin with popular DM54157/74157
• Buffered inputs and outputs
Truth Table
Connection Diagram
.
INPUTS
Vee
STROBE
1,6
A4
"
INPUTS
OUTPUT
84
V4
13
14
OUTPUT
A3
BJ
11
12
VJ
10
9
OUTPUT
INPUTS
STROBE
SELECT
A
B
Y
H
X
X
X
L
f
-
r-
L
L
L
X
L
L
L
H
X
H
L
H
X
L
L
L
H
X
H
H
H = High Level, L = Low Level,X= Don't Care
2
1
SELECT
4
3
AI
81
Yl
6'
5
A2
82
OUTPUT
INPUTS
7
V2
OUTPUT
1
8
GND
INPUTS
9322(J), (W); 8322(J), '(N), (W)
Logic Diagram
AI 121
81 131
A2 151
82 161
A3 1111
83 1101
A4 1141
84 1131
4-,38
~
DM93/DM8322
Additional Devices
Electrical Characteristics over recommended operating free~air temperature range (unless otherwise noted)
DM93
PARAMETER
CONDITIONS
MIN
VIH
High Level Input Voltage
Vil
Low Level Input Voltage
VI
Input Clamp Voltage
~
1---
Vee == Min,
High Level Output Current
VOH
High Level Output Voltage
10l
22
MAX
-- c-----Vcc=Min,
0.8V,
10H
~
Vcc==Mm,
V IH
=
2V
V'L - O.8V,
IOL
=
16 mA
V'L
r-Low Level Output Current
~
V'H ~ 2V
-800/-lA
2,4
MIN
UNITS
TVPll)
MAX
2
I, """ ·-12 mA
_....
VOL
TVPll)
2
IOH
---
DM83
22
V
0.8
0.8
-1.5
-1.5
V
-800
-800
/-lA
3,4
2,4
3,4
V
16
Low Level' Output Voltage
II
Input Current at Maximum Input Voltage
Vee = Max,
V,
IIH
High Level Input Current
Vee = Max,
III
Low Level Input Current
Vee::: Max,
los
Short Circuit Output Current
Vec
~
Max(2)
Icc
Supply Current
Vee
~
Max(3)
~
0.2
5.5V
0,4
V
0.2
16
mA
0,4
V
1
1
V, - 2.4V
40
40
/-lA
V,~O.4V
~1.6
~-L6
mA
·20
55
30
-·18
48
mA
-55
mA
48
mA
30
Notes
All typical values are at Vee = 5V. T A = 25° C.
(2)
Not more than one output should be shorted at a time.
(3) ICC is measured with 4.5V applied to all inputs and all outputs open.
(1)
Switching Characteristics
vee ~
5V, TA ~ 25 c C
DM93/83
PARAMETER
FROM (INPUT)
22
CONDITIONS
MIN
tplH
Propagation Delay Time,
Low-to-High Level Output
TVP
UNITS
MAX
8
14
ns
10
14
ns
13
20
ns
14
21
ns
15
23
ns
17
27
ns
Data
tpHl
Propagation Delay Time,
High·to~Low
tplH
Level Output
Propagation Delay Time,
Low-to-High Level Output
Strobe
tpHl
Propagation Delay Time,
High~to~Low
tplH
CL = 15 pF, RL = 40011
Level Output
Propagation Delay Time,
Low~to~High
Level Output
Select
tpHl
Propagation Delay Time,
High·to~Low
Level Output
4~39
~ Additional Devices
DM93/DM8334
8-Bit Addressable Latches
General Description
all outputs are low and unaffected by the address and
data inputs.
The DM9334/DM8334 is a high speed 8-bit Addressable
Latch designed for general purpose storage applications
in digital systems. It is a multifunctional device capable
of storing single line data in eight addressable latches,
and being a one-of-eight decoder and demultiplexer
with active level high outputs. The device also incorporates an active level low common clear· for resetting
all latches, as well as an active level low enable.
When operating the device as an addressable latch,
changing more than one bit of the address could impose
a transient wrong address. Therefore, this should only
be done while in the memory mode.
The truth table below summarizes the operation of the
product.
The DM9334/DM8334 has four modes of operation
which are shown in the mode selection table. In the
addressable latch mode, data on the data line (D) is
written into the addressed latch. The addressed latch
will follow the data input with all non-addressed latches
remaining in their previous states. In the memory mode,
all latches remain in their previous state and are
unaffected by the data or address inputs.
Features
•
•
•
Direct replacement for Fairchild 9334
Common clear
Easily expandable
Random (addressable) data entry
Serial to parallel capability
8 bits of s~orage/outPut of each bit available
Active high demultiplexing/decoding capability
In the one-of-eight decoding or demultiplexing mode,
the addressed output will follow the state of the D input
with all other inputs in the low state. In the clear mode
•
•
•
•
Truth Tables
Connection Diagram
vr
c
E
C
MODE
L
H
Addressable Latch
H
H
Memory
L
L
Active High EightChannel Demultiplexer
H
L
Clear
E
"
16
.6
07
0
"
O.
0'
10
11
11
13
,
r--
X = Don't Care Condition
L = Low Voltage Level
,
H = High Voltage Level
0N-1 "" Previous Output State
AD
1
A1
J
,
4
.,
00
,
02
0'
7
OJ
J;
9334/8334(J), IN), (W)
INPUTS
PR ESENT OUTPUT STATES
C
E
D
AO
A1
A2
00
01
02
03
04
05
06
07 .
L
H
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
H
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
L
L
L
L
L
H
H
L
L
L
H
L
L
L
L
L
L
·· ·· ··
· · ·
L
L
H
H
···
H
H
H
H
X
.X
X
X
H
L
L
L
L
L
L
ON_'
ON_1
H
ON_l
ON-1
H
L
H
L
L
L
H
L
L
H
L
L
H
L
H
H
L
L
··· ··· ···
L
L
L
··
·
L
DEMUL TIPLEX
L
L
L
°N_1
ON_'
L
ON_'
ON_,
H
°N_1
H
L
L
H
···
H
H
°N-1
H
L
H
H
H
H
ON_'
···
H
.
..
.
°N_'
MEMORY
~
ADDRESSABLE
LATCH
.
~
4-40
MODE
CLEAR
ON_'
ON_'
L
H
~
Additional Devices
Electrical Characteristics
DM93/DM8334
over recommended operating free-air temperature range (unless otherwise noted)
DM93/83
PARAMETER
34
CONDITIONS
MIN
V ,H
High Level Input Voltage
V,L
Low Level Input Voltage
V,
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
10L
Low Level Output Current
Low Level Output Voltage
UNITS
MAX
2
V
V
0.8
Vee
= Min,ll
= -12 mA
-1.5
-800
Vee
= Min, V 1H " = 2V
2.4
V ,L = 0.8V, IOH = -aOOfJA
VOL
TYPO)
rnA
0.2
0.4
V
E Input
15
60
Others
10
40
E Input
-1.44
-2.4
Others
-{J.96
-1.6
--65
-100
rnA
86
rnA
V ,L = 0.8V,I·OL = 16 rnA
Input Current at Maximum Input Voltage
I'H
High level Input Current
I,L
Low Level Input Current
Vee
= Max,
VI
= 5.5V
Vee = Max, VI = 2.4V
Vee
= Max,
VI
los
Short Circuit Output Current
Vee = Max(2)
Icc
Supply Current
Vee
= D.4V
V
3.6
16
Vee:;;' Min, V 1H = 2V
I,
V
fJA
1
-30
= Max
56
rnA
fJA
rnA
Notes
(1)
(2)
All typical values are at VCC
= SV, T A =2SoC.
Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
Switching Characteristics Vee
= 5V, T A
= 25°C
DM93/83
PARAMETER
FROM
TO
CONDITIONS
34
MIN
Propagation Delay Time.
tpLH
low-ta-High level Output
Enable
Propagation Oelay Time.
tpHL
(Figure 1)
Propagation Delay Time,
low·to-High level Output
Data
Propagation Delay Time,
tpHL
(Figure 2J
Propagation Delay Time,
low-to-High Level Output
Output
CL =15pF
/Figure 3)
RL = 400fl
Address
Propagation Delay Time,
.... L
High-to-low level Output
Propagation, Delay Time,
tpHL
low-to-High Level Output
Clear
Output
(Figure 5J
Enable Pulse Width
tw
tHOLD
28
ns
18
27
ns
24
35
ns
19
28
n,
23
35
ns
21
35
ns
21
31
ns
ns
19
13
High Data to Enable (Figure 4)
20
13
low Data to Enable (Figure 4)
20
14
Address to Enable(3) (Figure6J
10
5
High Data to Enable (Figure 4)
0
-10
ns
low Data to Enable (Figure 4)
0
-13
ns
(Figure 1)
tSETUP
19
Output
High-to-Low Level Output
tpLH
MAX
O,utput
High-to-low level Output
tpLH
UNITS
TYP
ns
Notes
(3)
The Address to Enable Set-Up Time is the time before, the High-ta-Low Enable transition that the Address must be stable so that the correct
latch is addressed and the other latches are not affected.
4-41
~ Additional Devices
DM93/DM8334
Logic Diagram
Switching Time Waveforms
OTHER CONDITIONS: E" l. C = H, A '" STABLE
OTHER CONDlTI.ONS: C '" H, A '" STABLE
FIGURE 1
FIGURE 2
tpHL
Al
AI
01
1.5V
OTHER CONDITIONS: E" l, C '" L, 0 = H
OTHER CONDITIONS: C = H, A = STABLE
FIGURE4
FIGURE 3
OTHER CONDITIONS: C'" H
OTHER CONDITIONS: E"" H
FIGURE 5
FIGURE 6
Note. The shaded areas indicate when the inputs are permitted to change' for predictable 'Output performance.
4-42
~ Additional Devices
DM96/DM8601
Retriggerable One Shots
Features
General Description
These retriggerable one shots provide the designer with
four inputs; two active high and two active low. This
permits a choice of either leading-edge or trailing-edge
triggering, independent of input transition times. When
input conditions for triggering are met, a new cycle
starts and the external capacitor is rapidly discharged
and then allowed to charge again_ The retriggerable
feature allows for output pulse widths to be expanded.
In fact a continuous true output can be maintained by
having an input cycle time which is shorter than the
output cycle time. Retriggering may be inhibited by
tying the Q output to an active low input.
• High speed operation-input repetition rate> 10M Hz
•
• Output pulse width range-50 ns to
•
ex
R)(
81
•
Input clamping diodes
•
DTLITTL compatible logic levels
I
v"
.2
Leading or trailing edge triggering
Truth Table
r"Nv-r---II--- r
A1
~
• Complementary outputs/inputs
Connection Diagram
I
Flexibility of operation-optional retriggering/lockout capability
"
OUTPUTS
INPUTS
NO
Nt
NO
GND
9601/8601(J), (N), (W)
Schematic Diagram
{1J}
(11)
4-43
A1
A2
B1
B2
a
a
H
H
X
X
L
H
X
X
L
X
L
H
X
X
X
L
L
H
L
X
H
H
L
H
L
X
t
H
..fL
-u-
L
x
H
t
5L
-U-
x
L
H
H
L
H
X
L
t
H
_n...
-U-U-U-U-U-
x
L
H
t
..fL
H
I
H
H
..fL
I
I
H
H
..fL
I
H
H
H
..fL
~. Additional Devices
Electrical Characteristics
DM96/DM8601
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
MIN
V'H
DM96
DM86
01
01
CONDITIONS
High Level Input Voltage
T A =-55"C
TYP(1)
MAX
MIN
MAX
1.9
= 25°C
T A = 75°C
TA = 125°C
TA
Low Level Input Voltage
TYPllI
2.0
TA = O°C
V'L
,
UNITS
1.7.
1.8
V
1.6
1.5
TA =-55°C
0.85
TA = O°C
0.85
TA = 25°C
0.90
0.85
TA = 75°C
TA = 125 C
V,
Input Clamp Voltage
10H
High Level Output Current
VOH
High Level Output Voltage
10L
Low Level Output Current
Vee = Min, I,
0.85
=-12 mA
-1.5
-1.5
V
-720
-960
/J.A
,12.8
mA
2A
Vee == Min, IOH == Max
2A
V
10
= Max
VOL
Low Level Output Voltage
Vee = ,Min.
"H
High Level Input Current
Vee = Max, V, = 4.5V
"L
Low Level Input Current
Vee
= Max
IOl
I
I
los
Short Ci fcuit Output Current
Vee
= Max(2)
Icc
Supply Current
Vee
= Max
V,
V,
V
0.85
OAO
15
=OAOV
= 0.45V
0.45
60
15
V
60
/J.A
-1.6
mA
-1.6
'-10
-10
-40
-40
mA
25
mA
25
Notes
11) All typical values are at VCC = 511, TA = 25°C.
12} Not more than one output should be shorted at a time.
13} ·Unless otherwise specified, RX = 10 k.n between Pin 13 and VCC on all tests.
14} Ground Pin 11 for VOL test on Pin 6, VOH test on Pin 8 and 'OS test on Pin 8. Open Pin 11 for VOL test on Pin 8, VOH test on Pin 6 and
lOS test on Pin 6,
Switching Characteristics vee
=;
5V, T A'" 25°C
DM96
CONDITIONS
PARAMETER
MIN
tpLH
tpHL
Propagation Delay Time,
Negative Trigger Input
Low-to-High Level Output
to True Output
PropagatiQn Delay Time,
High-to-Low Level Output
. Negative Trigger Input
to Complement Output
CL = 15 pF, Cx = 0
Rx = 5 kU
!pw 1M',,!' Minimum True Output
Pulse Width
!PW
Pulse Width
CSTRAY
Maximum Allowable
Wiring Capacitance
Rx
~xternal
Rx = 10 kn, ex = 1000 pF
3.08
Timing
01
MAX
40
25
40
ns
25
40
2p
40
ns
45
65
45
65
ns
3_42
3.76
3.42
3.76
/J.s
50
pF
MAx
25
MIN
5
UNITS
TYP
TYP
3.08
50
Pin 13 to GND
Resistor
DM86
01
25
5
50
kO
--4-44'
~ Additional Devices
DM96/DM8601
Operating Rules
noise pickup. If remote trimming is required, Rx may
be split up such that at least RX(MIN) must be as
close as possible to the circuit and the remote portion
of the trimming resistor R< RX(MAX) - Rx.
4. Set·up time (t,) for input trigger pulse must be
> 40 ns. (See Figure 1).
Release time (t2) for input trigger pulse must be
> 40 ns. (See Figure 2).
5. Retrigger pulse width (see Figure 3) is calculated
as follows:
1. An external resistor Rx and an external capacitor
C x are required for operation, The value of Rx can
vary between the limits shown in switching charac·
teristics. The value of Cx is optional and may be
adjusted to achieve the required output pulse width.
2. Output pulse width tpw may be calculated as follows:
tpw = 0.32 RxCx [1 +
~.~] (for Cx ;:::10
3
pF)
Rx in kn, Cx in pF and tpw in ns.
(For C x < 103 pF, see curve.)
3. R x and Cx must be kept as close as possible to the
circuit in order to minimize stray capacitance and
2.5V
J"~
L5V
VIN
1.5V
tw
=tpw + tpLH =0.32 RxCx
~
'
1.5V
2.5V
1.5V
[ + 0.7]
1
Rx
"."~
D OUTPUT
VON
FIGURE 1
FIGURE 2
FIGURE 3
Typical Performance Characteristics
OUTPUT PULSE WIDTH VS
TIMING RESISTANCE AND
CAPACITANCE FOR
ex < 103pF
::c
NORMALIZED OUTPUT
PULSE WIDTH VS AMBIENT
TEMPERATURE
1.10 .-,----r-,.-.,--r--.---,
vee '" 5.DV
f-~+-+':'-'+-+Rx '" 10k
'\
Cx =10'pF
i;
iii
.~
~
!:;
~
"
~
~
""
I-+---l'-,,'-+-+-+-"T-t'-l
1.05
~
1.00 I-+--+--l-::;;o-l""+-+-t---l
I-+-+-+-+-+--+"~I.I'...--l
0.95 1"/-+-f-+-+--+-1-+--I
0.95
I '"
TA "'2SoC
-75
2.
-25
75
125
SUPPLY VOLTAGE (V)
v~ ••.bv
]
~
S
i
f-t-+-~-+-+~~~
~
1.0'
1-+-+-1-+--1--+-1""'1
~ 12 1-+--+--+-+-..."../'4-+--1
0.8
I-+--+-f-+-+--+-/--l
;;
OPERATING DUTY CYCLE (%)
./
~
~
OUTPUT PULSE WIDTH VS
AMBIENT TEMPERATURE
I-+-+--t-+-+ ex '" 103pF
16
iii
0.6 '--'--'-_'---'--L........_l..-.I
20
60
80'
100
40
0.90 '-..L....L--'_.l.--L...-'_.L-..J
4.5
5.0
5.5
6.0
4.0
0.90 '---'---'--'_.l.--L........_l..-.I
PULSE WIDTH VS TIMING
RESISTANCE
20 .-,,-"--,--,.-.,---r-,.-,.......,
1.' .---r--'--'r-,---r-r-,.--,
I-+--+-f-+-+'Cx '" 103 pF
VI-"'"
T A - AMBIENT TEMPERATURE (OC)
NORMALIZED OUTPUT
PULSE WIDTH VS
OPERATING DUTY CYCLE
1.2
-~I-'"'
'\
1.00 I-+-+--+-"'"rlf-+--+---l
ex. TIMING CAPACITANCE (pFl
f--+-+---""f-+-+ ~~:,~:V
NORMALIZED OUTPUT
PULSE WIDTH VS SUPPLY
VOLTAGE
L
B.O 1-+--ti"-:71~+--t--t--+--I
/
10
20
30
40
50
Rx - EXTERNAL TIMING RESISTANCE (on)
4·45
70 f--+-+--1-+-+-""t--'-r--:I
~
~
.!!i
z
~
COMPLEMENTARY OUTPUT
I
:0
;;
4.0
90 r---r--+~-,----r~v~cc-=~5~.D~V'
1-+--+--1-+-+ Rx = 5.Dk
ex = 0
50
1-+--+-1C-+--:T"'R'C'UE"'O"'U=Ti-:pU=T,-l
30 f--+-+--1i---+-+-j-+--l
10
L--'--'-~~~-L--'
-75
-25
25
__~~
75
TA - AMBIENTTEMPERATlJRE 1°C)
125
~ Additional Devices
DM96/DM8602
Dual Retriggerable, Resettable One Shots
. General Description
These dual resettable, retriggerable one shots have two
inputs per function; one'which is active high, and one
which is active low. This allows the designer to employ
either leading-edge or trailing-edge triggering, which is
independent of input transition times. When input con·
ditions for triggering are met, a new cycle starts and the
external capacitor is allowed to rapidly discharge and
then charge again. The retriggerable feature permits
output pulse widths to be extended. I n fact a continuous
true output can be maintained by having an input cycle
time which is shorter than the output cycle time. The
output pulse may then be terminated at any time by
applying a low logic level to the RESET pin. Retriggering
may be inhibited by either connecting the Q output to
an active high input, or the Q output to an active
low input.
Features
•
•
•
•
•
•
Connection Diagram
vee
16
Truth Table
Q
CD
. 15*
70 ns to 00 output width range
Resettableand retriggerable-O% to 100% duty cycle
TIL input gating-leading or trailing edge triggering
Complementary TIL outputs
Optional retrigger lock·out capability
Pulse width compensated for V cc and temperature
variations
Ii
14*
PIN NO'S.
5(11)
4(12)
H~L
H
X
'
3(13)
OPERATION
L
H
Trigger
L~H
H
Trigger
-X
L
Reset
H = High Voltage L 40 ns
Min. Negative Input Pulse Width> 40 ns
2.5V
2.5V
INPUT
OOUT'U:V~
Input to Pin 4 (12),
Pin 5 (11) ~ HIGH
C.
Use to obtain extended pulse widths:
This configuration can be used to obtain ex·
tended pulse widths, because of the larger
timing resistor allowed by beta multiplication.
Electrolytics with high inverse leakage currents
can be used.
R < Rx (0.7) (h FE 01) or
ever is the lesser
(Pin 3 (13)
~
HIGH)
8. The retriggerable pulse width is calculated as shown
below:
tw
< 2.5 MQ, which·
~ t + tpLH ~ 0.31
Rx Cx (1 + R1x) + tpLH
INPUT~_ _~n
I--~tw-,--'-1- - -
Rx (min) < Ry < Rx (max)
(5 kQ S Ry S 10 kQ is recommended)
Q OUTPUT
4·48
---1
LI_ __
~ Add itional Devices
DM96/DM8602
Operating Rules (Continued)
The retrigger pulse width is equal to the pulse width
(t) plus a delay time. For pulse widths greater than
500 ns, tw can be approximated as t. Retriggering
will not occur if the retrigger pulse comes within ""
0.3 ex (ns) after the initial trigger pulse. (j.e., during
the discharge cycle).
INPUT
'--------',
RESET
o OUTPUT
PULSE
I-WIDTH-j
t
n OUTPUT
.9. Reset Operation - An overriding clear (active LOW
level) is provided on each one shot. By applying a
LOW to the reset, any i:iming cycle can be terminated
or any new cycle inhibited until the LOW reset
input is removed. Trigger inputs will not produce
spikes in the output when the reset is held LOW.
10. Vee and Ground wiring should conform to good
high frequency standards so that switching transients
on Vee and Ground leads do not cause interaction
between one shots. Use of a 0.01 to O.l/-lF bypass
capacitor between Vee and Ground located near
the DM9602/DM8602 is recommended.
Typical Performance Characteristics
1.10
.-,.....,...-.,-r-...,..~--,""
::!:
Vee '" 5.DV
l;
f-++-\-t--+R x =10kn
i
i
..... Rx =30k
1Rx.- 20k
Rx'" 10k
~
i
1.00 f-++-\"'-.,...:!!'k::::lL-+--i!--1
~
~
-25
TA
-
25
75
'25
AMBIENT TEMPERATURE (OC)
10
Rx'" 10 kG
1.00
20
FIGURE 2. NORMALIZED
OUTPUT PULSE WIDTH VS
AMBIENT TEMPERATURE
+--+-4-+---+-1
I
I--f-I--I-V"*/'-+-'-+---+--I
COMPLEMENTARY OUTPUT./
V
0.90 L-...o....--l..--'_.!.......l..-'-_'--'
4.0
4.5
5.0
5.5
6.0
60
-75
Vee -SUPPLY VOLTAGE (V)
-25
25
75
TA - AMBIENT TEMPERATURE (·CI
FIGURE 4. NORMALIZED
OUTPUT PULSE WIDTH VS
SUPPLY VOLTAGE
FIGURE 5. MINIMUM
OUTPUT PULSE WIDTH VS
AMBIENT TEMPERATURE
4-49
30
4U
FIGURE 3. PULSE WIDTH
VS TIMING RESISTOR
Cx =1tJ3pF
0.95 - '
/
50
Px - EXTERNAL TIMING RESISTOR (nl
1.10 r-:"T~A-=2=5"'.C-'-"''''''--'-'--'
1.05
v
~~~---1-t--+-+---+---1~
2
10>
/
L
co
Cx - TIMING CAPACITANCE (pFi
FIGURE 1. OUTPUT PULSE
WIDTH VS TIMING RESISTANCE AND CAPACITANCE
FOR C x < 103 pF
10
\;
1-+-+-4-+---+---+-f-i
I
14
=>
r-
~ 0.95
10'
10
~
Cx "'103 pF
1-+'-P"'-:l-+---+---+---1f-i
1.05
C>
II
I I
~
18
125
Notes
Notes
National Semiconductor Corporation . 2900 Semiconductor Drive . Santa Clara, CA 95051
© 1976 Natlonal Semiconductor Corp,
Printed in U,S,A,
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2016:08:11 13:30:06-08:00 Modify Date : 2016:08:11 13:55:35-07:00 Metadata Date : 2016:08:11 13:55:35-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:001e0d9e-402f-2f4a-9629-c2b4a2d3a526 Instance ID : uuid:ff39092a-6fca-c847-bdb0-94e6a277148b Page Layout : SinglePage Page Mode : UseNone Page Count : 562EXIF Metadata provided by EXIF.tools