1976_National_TTL_Databook 1976 National TTL Databook

User Manual: 1976_National_TTL_Databook

Open the PDF directly: View PDF PDF.
Page Count: 562

Download1976_National_TTL_Databook 1976 National TTL Databook
Open PDF In BrowserView PDF
National Semiconductor

Section 1 - 54/74551 DEYICEs
Connection Diagrams • Electrical Tables
Section 2 - 54/74 MSI DEYICEs
Section 3 - National Semiconductor PROPRIETARY DEYICEs
Section 4 - National Semiconductor ADDITIONAL DEYICEs

~

NAnONAL
Manufactured under one or more of the following U.S. patents: 3083262, 3189758, 3231797, 3303356, 3317671, 3323071, 3381071, 3408542,3421025, 3426423, 3440498, 3518750.3519897,3557431,3560765,
3566218,3571630,3575609,3579059,3593069, 3597540, 3607469, 3617859, 3631312, 3633052, 3638131, 3648071, 3651565, 3693248.
National does not assume any responsibility for use of

© 1976 National Semiconductor Corp.

any

circuitry described, no circuit patent licenses are implied; and National reserves the right, at any time without notice, to change said circuitry.

•

~

-Alpha-Numerical Index

TTL Data Book
DEVICE

MIL

2502
2503
2504
5400
54HOO
54LOO
54LSOO
5401
54HOl
54LOl
54LSOl
5402
54L02
54LS02
5403
54L03
54lS03
5404
54H04
54L04
54 LS04
5405
54H05
54L05
54LS05
5406
5407
5408
54H08
54L08
54LS08
5409
54L09
54LS09

930
932
933
935
936
937
944
945
946
948
949
957
958
961
962
963
1800
1801
2502C
2503C
2504C
7400
74HOO
74LOO
74LSOO
74S00
7401
74HOl
74LOl
74LSOl
7402
74L02
74LS02
74S02
7403
74L03
74LS03
74S03
7404
74H04
74L04
74LS04
74S04
7405
74H05
74L05
74LS05
74S05
74D6
7407
7408
74H08
74L08
74LS08
7409
74L09
74LS09

DEVICE

PAGE NO.

COML

4-1
4-1
4-1
4·1
4-1
4-1
4-1
4-1
4-1
4·1
4-1
4·1
4-1
4·1
4·1
4-1
4·1
4-1
4-6
4-6
4·6
1-1,1-36
1-1,1·36
1-1, 1-36
1-1, 1-36
1-1,1·36
1-1, 1-38
(1,1·38
1-1, 1·38
1-1,1-38
1-2,1·40
1-2,1-40
1·2,1-40
1·2,1-40
1-2,1·38
!
1-2,1-38
1·2,1-38
1·2,1·38
1-2,1·36
1-2,1-36
1-2,1·36
1-2,1-36
1-2,1·36
1-3,1-38
1:3,1-38
1-3,1·38
1·3,1·38
1-3,1-38
1·3,1·42
1·3,1-42
1·4,1·44
1·4, 1-44
1-4,1-44
1-4,1-44
1·4,1-46
1-4,1-46
1-4,1·46

I

MIL

COML

5410
54H10
54L 10
54LS10

7410
74Hl0
74L10
74LS10
74S10
7411
74Hl1
74L11
74LS11
74S11
74LS12
7413
74LS13
7414
74LS14
74LS15
74S15
7416
7417
7420
74H20
74L20
74LS20
74S20
74H21
74LS21
74H22
74LS22
74S22
7423
7425
7426
74L26
74LS26
7427
74LS27
7430
74H30
74L30
74LS30
74S30
7432
74L32
74LS32
7437
74LS37
7438
74LS38
7440
74H40
74 LS40
74S40
7441A
7442
74L42A
74LS42
7445

5411
54Hll
54L11
54LSll
54LS12
5413
54LS13
5414
54LS14
54LS15
5416
5417
5420
54H20
54L20
54LS20
54H21
54LS21
54H22
54LS22
5423
5425
5426
54L26
54LS26
5427
54LS27
5430
54H30
54L30
54LS30
5432
54L32
54LS32
5437
54LS37
5438
54LS38
5440
54H40
54 LS40
5441A
5442
54L42A
54LS42
5445

DEVICE

PAGE NO.

1·4,1-36
1-4,1-36
1-4,1-36
1-4 1·36
1-4,1-36
1·5,1-44
1-5,1·44
1-5,1-44
'1·5,1-44
1·5,1·44
1-5,1-38
1·5,1·48
1-5,1·48
1-6, 1-48
1·6,1·48
1-6,1-46
1·6,1-46
1-6,1-42
1-7,1-42
1-7,1-36
1-7,1-36
1·7,1·36
1-7,1-36
1-7,1-36
1-7,1·44
1-7,1-44
1-8, '-38
1·8,1-38
1-8,1-38
1-8,1-50
1-8,1-40
1-9,1·42
1·9,1·42
1-9,1-42
1·9,1-40
1-9,1-40
1-9,1·36
1-9,1-36
1·9,1-36
1-9,1-36
1-9,1·36
1·10,1-52
1-10,1-52
1-10,1·52
1·10,1-54
1·10,1·54
1-10,1-42
1-10,1-42
1-11,1·54
1·11,1·54
1-11,154
Hl,1·54
2·1
2-3
2-3
2·3
2·6

I

MIL

COML

5446A
5447A
54LS47
5448
54LS48
54LS49
5450
54H50
5451
54H51
54L51
54LS51

7446A
7447A
74LS47
7448
74LS48
74LS49
7450
74H50
7451
74H51
74L51
74LS5l
74S51
74H52
7453
74H53
7454
74H54
74L54
74LS54
74H55
74L55
74LS55
7460
74H60
74H61
74H62
74S64
74S65
7470
74H71
74L71
7472
74H72
74L72
7473
74H73
74L73
14LS73
7474
74H74
74L74
74LS74
74S74
7475
74L75A
74LS75
7476
74H76
74LS76
74LSn
74H78
74L78
74LS78
7483
74LS83A
7485

54H52
5453
54H53
5454
54H54
54L54
54LS54
54H55
54L55
54LS55
5460
54H60
54H61
54H62

5470
54H71
54L71
5472
54H72
54L72
5473
54H73
54L73
54LS73
5474
54H74
54L74
54LS74
5475
54L75A
54LS75
5476
54H76
54LS76
54LS77
54H78
54L78
54LS78
5483
54 LS83A
5485

Note: When there are two sets of pa~e numbers, the first designates the connection diagram' page; the second indicates electrical tables.

iii

PAGE NO.

2·8
2·8
2·8
2-8
2-8
2-8
1-11,1-50
1-11, 1·50
1·12,1-56
1-12,1·56
1-12,1·56
1·12,1·56
1-12,1·56
1-13,1·50
1-13,1-50
1-13, 1-50
1-14,1-56
1·14,1-56
1·14,1-56
1-14,1·56
1·15,1·50
1·15,1·56
1·15,1-56
1·15,1·58
1-15,1·59
1·16,1-60
1·16, '·59
1-16,1·56
1·17,1-61
1-18,1·62
1-18,1·64
1-19,1-66
1·19,1-62
1·19,1·64
1-19,1-66
1·20, 1-62
1·20,1-64
1·20,1-66
1-20,1-68
1-20,1·62
1·20,1-64
1·20,1·66
1·20,1-68
1·20,1·70
2-14
2·14
2·14
1·21,1·62
1·21,1·64
1·21,1·68
2·14
1·21,1·64
'·21,1·66
1·21,1·68
2·17.
2·17
2·21

~ TTL Data Book
DEVICE
MIL
54L85
54 LS!35
5486
54L86
54LS86
5488
5489
54l89A
5490A
54L90
54LS90
5491A
54L91
5492A
54 LS'92
5493A
54L93
54LS93
5495
54L95
54LS958
5496
54LS96
54L98
54Hl03
54Hl06
54107
54LS107
54H108
54109
54LS109
54LSl12
54LS113
54LS114
54121
54LS122
54123
54L123A
54LS123
54LS124
54125
54LS125
54126
54LS126
54132
54LS132

54LS136
54LS138

COML
74185
74lS85
7486
74L86
74lS86
74S86
7488
7489
74L89A
7490A
74L90
74LS90
7491A
74L91
7492A
74LS92
7493A
74L93
74 LS93
7495
74L95
74LS958
7496
74LS96
74L98
74Hl03
74H106
74107
74LS107
74H108
74109
74LS109
74LS112
74S112
74LS113
74S113
74LS114
74S114
74121
74LS122
74123
74L123A
74LS123
74LS124
74125
74LS125
74126
74LS126
74132
74LS132
74S133
74S134
74S135
.74LS136
74S136
74LS138
74S138

Alpha-Numerical Index
DEVICE . .

PAGE NO.
2·21
2-21
1·22,1·72
1-22, 1-72
1-22,1·72
1·22, 1-72
2-25
2-28
2-89
2·30
2·30
2·30
2-34
2·34
2·30
2-30
2·30
2-30
2-30
2·36
2.36
2-36
2-39
2-39
2-42
1-23,1-74
1-23,1·74
1·23,1-62
1·23, 1-68
1-24, 1·74
1-24,1·62
1-24,1·68
1·24, 1-68
1·24, 1-70
1·25,1-68
1,25,1·70
1·25,1·68
1·25, 1-70
1-26,1-76
1-26,1·78
1·26,1·78
1·26, 1·78
1·26,1·78
2·44
1·27,1·80
1·27,1:80
1·27, 1·80
1·27,1·80
1·27,1·48
1·27,1·48
1·28,1·36
1·28,1·80
1·28,1·82
1·29,1·84
1-29,1·84
2·46
2-46

MIL

COML

54LS139

74lS139
74S139
74S140
74141
74145
74147
74148
74150
74151A
74LS151
74S151
74153
74LS153
74S153
74154
74L154A
74LS154
74155
74LS155
74156
74LS156
74157
74L157A
74LS157
74S157
74LS158
74S158
74160A
74LS160
74161A
74LS161
74162A
74LS162
74163A
74LS163
74164
74L164A
74lS164
74165
74L165A
74166
74LS168
74LS169
74170
74LS170
74173
74lS173
74174
74LS174
74S174
74175
74LS175
74S175
74176
74177
74180
74181

54141
54145
54147
54148
54150
54151A
54LS151
54153
54LS153.
54154
54L154A
54LS154
54155
54LS155
54156
54LS156
54157
54L157A
54LS157
54LS158
54160A
54LS160
54161A
54LS161
54162A
54LS162
54163A
54LS163
54164
54L 164A
54LS164
54165
54L165A
54166
54lS168
54LS169
54LS170
54173
54LS173
54174
54LS174
54175
54LS175
54176
54177
54180
54181

PAGE NO.
2·46
2·46
1-29, 1-54
2·1
2-6
2-49
2-49
2·53
2·53
2·53
2·53
2·57
2·57
2-57
2-60
2-60
2·60
2·63
2-63
2-63
2-63
2·66
2·66
2-66
2·66
2-66
2-66
2·70
2-70
2-70
2·70
2·70
2·70
2-70
2·70
2·76
2·76
2-76
2·79
2-79
2·82
2-85
2-85
2-91
2·91
2·96
2·96
2·98
2·98
2·98
2-98
2·98
2·98
2·101
2·101
2·105
2·107

DEVICE
MIL

COML

54182

74182
74S182
54184
74184
54185A
74185A
54187
74187
54L 187A
74L187A
54S189
74S189
54190
74190
54LS190
74lS190
54191
74191
54LS191
74LS191
54192
74192
54L 192
74L192
74LS192
54LS192
54193
74193
54L 193
74L193
54LS193
74LS193
54194
74194
54LS194A 74LS194A
74S194
74195
54195
54LS195A 74LS195A
74S195
54196
74196
54LS196
74LS196
54197
74197
54LS197
74LS197
54198
74198
54199
74199
54S200
74S200
54S206
74S206
54LS221
74LS221
54251
74251
54LS251
74LS251
74S251
74 LS253
54LS253
74S253
54lS257
74LS257
74S257
54 LS258
74LS258
74S258
74S260
54LS266
74LS266
54LS279
74lS279
74S280
74S281
54LS283
74LS283
54S287
74S287
54S289
74S289
54LS295A 74LS295A
74LS298
54LS298
54365
74365
54LS365
74LS365
74366
54366
54LS366
74LS366
54367
74367
54LS367
74LS367

Note: When there are two sets of page numbers, the first designates the connection diagram page; the second indicates electrical tables.

iv

PAGE NO.
2·11.3
2·113
2·116
2·116
2·122
2-122
2-125
2-128
2-128
2-128
2·128
2·133
2-133
2·133
2·133
2·133
2·133
2-140
2-140
2·140
2·144
2·144
2·144
2·101
2·101
2·101
2·101
2-148
2·148
2·154
2-157
1-30,1-76
2-160
2·160
2-160
2·163
2-163
2·165
2·165
2-165
2-165
1·31,1·40
1·31,1·84
2·168
2·170
2-173
2·17
2·177
2·179
2·182
2·184
1·32,1·86
1·32,1·86
1·32, 1·86
1·32, 1-86
1·32, 1·86
1.32,1·86

~

DEVICE
MIL

COML

54368
54LS368
54LS374
54L5386
545387
54L5395
54L5670

74368
74 LS368
74LS374
74L5386
745387
74L5395
74L5670
80L06
8090
8091
8092
8093
8094
8095
80L95
8096
80L96
8097
80L97
8098
80L98
8099
8121
81L22
8123
81L23
8130
8131
8136
8160
81L595
81L596
81L597
81L598
8200
8210
8211
8214
8219
8220
8223
8230
8280
8281
8288
8290
8291
8511
85L11
8512
85112
8520
8531
8542
8544
8546
85550

7090
7091
7092
7093
7094
7095
70L95
7096·
70L96
7097
70L97
7098
70L98
7099
7121
71L22
7123
71L23
7130
7131
7136
7160
71L595
71L596
71L597
71L598
7200
7210
7211
7214
7219
7220
7223
7230
7280
7281
7288
7290
7291
7511
75Lll
7512
75L12
7520
7542
7544
7546

Alpha-Numerical Index

TTL Data Book
DEViCE:

1·33,1·86
1·33,1·86
2·187
1·34,1·72
2-177
2·189
2·191
3-1
3·3
3-3
3·3
3-5
3-5
3-7
3-7
3-7
3-7
3-7
3-7
. 3-7
3-7
3·9
3-11
3·13
3-13
3·13
3-17
3-19
3·19
3-17
3-21
3-21
3·21
3-21
3-23
3·25
3-25
3-28
3-28
3-32
3-35
3-37
4-11
4-11
4·11
4-11
4-11
3-40
3-40
3-40
3-40
3-44
3-49
3-52
3-54
3-56
3-60

MIL

COML

7551
75L51
7552
75L52
7553
7554
75L54
7555
7556
7560
75L60
7563
75L63
75568
7570
7573
7574
7575
7576
7577
7578

8551
85L51
8552
85L52
8553
8554
85L54
8555
8556
8560
85L60
8563
85L63
85568
8570
8573
8574
8575
8576
8577
8578'
8581
8590
8595
8596
8597
8598
8599
8613
86113
86L24
86L25
86LlO
86L75
86Ll6
8678
8679
86L90
86L93
86L97
86L99
8795
8796
8853
8875A
88758
8898
8899
8280
8281
8288
8290
8291
9002C
9003C
9004C
9005C

7590
7595
7596
7597
7598
7599
7613
76L13
76L24
76L25
76LlO
76Ll5
76Ll6
7678
7679
76L90
76L93
76L97
76L99
7795
7796
7853
7875A
78758

7280
7281
7288
7290
7291

DEVICE

PAGE. NO.

PAGE NO.

MIL

3-62
3·62
3·64
3-64
3·70
3-64
3·64
3-72
3-72
3-76
3·76
~-76

3-76
3-82
3-86
3-89
3-92
3-95
3-95
3·101
3-104
3-107
3-110
3-113
3-116
3-119
3-122
3-127
3·40
3-40
3-131
3·134
3·86
3-137
3-137
3-140
3-140
3-110
3-142
3-144
3-148
3-113
3-116
3-151
3·154
3-154
3-156
3-156
4-11
4-11
4-11
4-11
4·11
4-15
4-15
4-15
4-15

9024

9300
9301
9309
9310
9311
9312
9316
9318
9322
9334
9601
9602

PAGE NO.

COML

9006C
9008C
9009C
9012C
9016C
8024
9093
9094
9097
9099
8300
8301
8309
8310
8311
8312
8316
8318
8322
8334
8601
8602

Note: When there are two sets of page numbers, the first designates the connection diagram page; the second indicates electrical tables.

v

4·15
4·15
4-15
4·15
4-15
4-17
4-1
4·1
4·1
4·1
4-19
4-22
4-24
4-27
4-33
4-24
4-27
4-36
4-38
4-40
4-43
4-46

~ TTL Data Book

Table of Contents

Alpha-Numerical I ndex _____ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
iii
TRI-STATE Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xvi
TTL Families Comparison Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
Industry Cross Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xix
Functional Index/Selection Guides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxv
Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
xli

54/74 SSI-SECTION 1
DM5400/DM7400 Quad 2-1 nput NAND Gates ........... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-1, 1-36
DM54HOO/DM74HOO Quad 2-lnput NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-36
DM54LOO/DM74LOO Quad2-lnputNANDGates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-36
DM54LSOO/DM74LSOO Quad 2-lnput NAND Gates ... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ 1-1,1-36
DM74S00 Quad 2-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . " ....... , 1-1,1-36
DM5401/DM7401 Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . l-t, 1-38
DM54H01/DM74H01 Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-38
DM54L01/DM74LOl Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-38
DM54LS01/DM74LSOl Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . 1-1,1-38
DM5402/DM7402 Quad 2-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ............ 1-2,1-40
DM54L02/DM74L02 Quad 2-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2,1-40
DM54LS02/DM74LS02 Quad 2-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2,1-40
DM74S02 Quad 2-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2,1-40
DM5403/DM7403 Quad 2-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . _ ..... , 1-2,1-38
DM54L03/DM74L03 Quad 2-lnput NAND Gates with Open-Collector Outputs ......... _ . . . . . . . . . . . . . . . . 1-2,1-38
DM54LS03/DM74LS03 Quad 2-lnput NAND Gates with Open-Collector Outputs _ ...... _ ........... _ .... 1-2,1-38
DM74S03 Quad 2-lnput NAND Gates with Open-Collector Outputs ... _ ............. _ ............. _ .. 1-2,1-38
DM5404/DM7404 Hex Inverters ........... _ ... _ ....... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2,1-36
DM54H04/DM74H04 Hex Inverters ......... _ ......... _ . _ ........ _ . . . . . . . . . . . . . . . . . . . . . _ .. 1-2, 1-36
DM54L04/DM74L04 Hex Inverters ...... _ .. _ . _ . _ . . . . . . . . . . . . . . . . . . . . . _ ............ _ ...... 1-2,1-36
DM54LS04/DM74LS04 Hex Inverters ....... _ ... _ ... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ........ 1-2, 1-36
DM74S04 Hex Inverters_ . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2, 1-36
DM5405/DM7405 Hex Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . .. 1-3, 1-38
DM54H05/DM74H05 Hex Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . _ ......... 1-3,1-38
DM54L05/DM74L05 Hex Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3,1-38
DM54LS05/DM74LS05 Hex Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . .. 1-3, 1-38
DM74S05 Hex Inverters with Open-Collector Outputs ....... _ . . . . . . . . . . . . . . . . . . . . . . . . . _ ......... 1-3,1-38
DM5406/DM7406 Hex Buffers with Open-Collector High-Voltage Outputs . . . . . . . . . . . . . . . . . . . . . . . _ . _ ... 1-3,1-42
DM5407/DM7407 Hex Buffers with Open-Collector High-Voltage Outputs . . . . . . . . . . . . . . . . . . . _ .... _ .... 1-3,1-42
DM5408/DM7408 Quad 2-lnput AND Gates _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ......... 1-4,1-44
DM54H08/DM74H08 Quad 2-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4,1-44
DM54L08/DM74L08 Quad 2-lnput AND Gates _ . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . _ .. _ ...... 1-4,1-44
DM54LS08/DM74LS08 Quad 2-lnput AND Gates . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4,1-44
DM5409/DM7409 Quad 2-lnput AND Gates with Open-Collector Outputs ..... _ . . . . . . . . . . . . . . . . . . _ .... 1-4,.1-46
DM54L09/DM74L09 Quad 2-lnput AND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4,1-46
DM54LS09/DM74LS09 Quad 2-lnput AND Gates with Open-Collector Outputs ...... _ .. _ . . . . . . . . . . . . . . . 1-4,1-46
DM5410/DM7410 Triple 3-lnput NAND Gates .. _ ............. _ . . . . . . . . . . . . . . . . . . . . . . . . . _ . _ .. 1-4,1-36
DM54Hl0/DM74Hl0 Triple 3-lnput NAND Gates _ . . . . . . . . . . . . . . . . . . . . _ ... _ .............. _ .. __ 1-4,1-36
DM54L10/DM74L10 Triple 3-lnput NAND Gates .. _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ..... 1-4,1-36
DM54LS10/DM74LS10 Triple 3-lnput NAND Gates ............. _ ..... __ . . . . . . . . . . . . . . . . . . . . . . _ 1-4,1-36
DM74S10 Triple 3-lnput NAND Gates . . . . . . . . . . . . . . _ ....... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . _. 1-4, 1-36
DM5411/DM7411 Triple 3-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . 1-5,1-44
DM54Hl1/DM74Hll Triple 3-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5,1-44
DM54L11/DM74L 11 Triple 3-lnput AND Gates ............. _ . _ ........ _ ....... _ ... _ ... ___ . . .. 1-5, 1-44
DM54LSll/DM74LS11 Triple 3-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5,1:44
DM74S11 Triple 3-lnput AND.Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ....... 1-5,1-44
DM54LS12/DM74LS12 Triple 3-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . _ . _ . _. 1-5, 1-38
DM5413/DM7413 Dual4-lnput NAND Schmitt Triggers ............. __ . _ ..... _ ... _ ...... _ ....... 1-5,1-48
DM54LS13/DM74LS13 Dual4-lnput NAND Schmitt Triggers ...... _ . . . . . . . . . . . . . . . . . . . . . . . . . __ . _. 1-5,1-48
DM5414/DM7414 Hex Schmitt Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . __ ....... _ .......... _ ... 1-6,1-48
Note: When there are two sets of page.numbers, the first designates the connection diagram page; the second indicates electrical tables.
uii

~ TTL Data Book

Table of Contents

DM54LS14/DM74LS14 Hex Schmitt Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6, lA8
DM54LS15/DM74LS15 Triple 3-lnput AND Gates with Open·Collector Outputs . . . . . . . . . . . . . . . . . . . .' ..... 1-6,1-46
DM74S15 Triple 3-lnput AND Gates with Open·Coliector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,1-6,1-46
DM5416/DM7416 Hex Buffers with Open-Collector High-Voltage Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1·6,1-42
DM5417/DM7417 Hex Buffers with Open-Collector High-Voltage Outputs ................ " .... ; ...... , 1-7,1-42
DM5420/DM7420 Dual4-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7,1·36
DM54H20/DM74H20 Dual4-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,1-7,1-36
DM54L20/DM74L20 Dual 4-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . 1-7,1-36
DM54LS20/DM74LS20 Dual 4-lnput NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _. 1-7,1-36
DM74S20 Dual4-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '........ _ .... 1-7,1-36
DM54H21/DM74H21 Dual 4-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7,1-44
'DM54LS211DM74LS21 Dual 4-lnput AND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '........... 1-7,1-44
DM54H22/DM74H22 Dual 4-lnput NAND Gates with Open-Collector Outputs .............. ; ........... 1-8,1-38
DM54LS22/DM74LS22 Dual4-lnput NAND Gates with Open·Coliector Outputs. . . . . . . . . . . . . . . . . . .. . . .. 1-8,1-38
DM74S22 Dual 4-lnput NAND Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . .. 1-8,1-38
DM5423/DM7423 Expandable Dual 4·lnput NOR Gates .... , , . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. 1-8,1-50
DM5425/DM7425 Dual 4-lnput NOR Gates . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . .. 1-8, 1-40
DM5426/DM7426 Quad 2-lnput High-Voltage NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9,lA2
DM54L26/DM74L26 Quad 2-lnput High-Voltage NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9,1-42
DM54LS26/DM74LS26 Quad 2-lnput High-Voltage NAND Gates. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .. .. 1-9,1-42
DM5427/DM7427 Triple 3·lnput NOR Gates. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9,1-40
DM54LS27/DM74LS27 Triple 3·lnput NOR Gates. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 1-9,1-40
DM5430/DM7430 8-lnput NAND Gates. . . . . . . . . . . .. .. . . . . . . .. . . . . . . . . . ... . .. . . . . . . . . . . . .. 1·9,1-36
DM54H30/DM74H30 8·lnput NAND Gates. . . . . . . . . . . . . . . . . . . . .'. . . . . . . . .. . . . . . . . . . . . . . .. . .. 1·9,1-36
DM54L30/DM74L30 8-lnput NAND Gates ........... ; . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . . .. 1-9,1-36
DM54LS30/DM74LS30 8-lnput NAND Gates ... _ . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9,1-36
,DM74S30 8·lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,' . . . . . . . . . . .. 1-9,1-36
DM5432/DM7432 Quad 2-lnput OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10; 1-52
DM54L32/DM74L32 Quad 2-lnput OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ; 1-10,1-52
DM54LS32/DM74LS32 Quad 2-lnput OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '...............• 1-10,1-52
DM5437/DM7437 Quad 2-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10,1-54
DM54LS37/DM74LS37 Quad 2-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . 1-10,1-54
DM5438/DM7438 Quad 2-lnput NAND Buffers with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10,1-42
DM54LS38/DM74LS38 Quad 2-lnput NAND Buffers with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . 1-10,1-42
DM5440/DM7440 Dual4-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11, '·54
DM54H40IDM74H40 Dual 4-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11,.1-54
DM54LS40/DM74LS40 Dual 4-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11,1·54
DM74S40 Dual4-lnput NAND Buffers ...... , ............ : .... _. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11,1-54
DM5450/DM7450 Dual 2-Wide 2-lnput AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11,1-50,'
DM54H50/DM74H50 Dual 2-Wide 2-lnput AND-OR-INV ERT Gates. . . . . . . . . . .. . . . . . • . . . . . . . . . . . . .. 1-11. 1-50
DM5451/DM7451 Dual 2-Wide 2-lnput AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12.1,-56
DM54H51/DM74H51 Dual 2-Wide 2-lnput AND-OR-INVERT Gates ............. , . . . . . . . . . . . . . . . . . . 1-12,1-56
DM54L51/DM74L51 Dual 2-Wide 2-lnput AND-OR-INVERT Gates ......... " . . . . . . . . . . . . . . . . . . . . . 1-12,1-56
DM54LS51/DM74LS51 Dual 2-Wide 2-lnput AND-OR-INVERT Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12,1-56
DM74S51 Dual 2-Wide 2-lnput AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , .... 1-12, 1-56
DM54H52/DM74H52 Expandable 4-Wide AND-OR Gates ...........•... : . . . . . . . . . . . . . . . . . . . . . . . 1-13,1-50
DM5453/DM7453 Expandable 4-Wide AND·OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; .. 1-13,1-50
DM54H53/DM74H53 Expandable 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . 1-13,1-50
DM5454/DM7454 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . 1-14,1-56
DM54H54/DM74H54 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14,1-56
DM54L54/DM74L54 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; ......... , .. 1-14,1-56
DM54LS54/DM74LS54 4-Wide AND-OR-INVERT Gates ... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14,1-56
DM54H55/DM74H55 2-Wide 4-lnput AND-OR-INVERT Gates ............ ; . . . . . . . . . . . . . . . . . . . . . . . 1-15.1-50
DM54L55/DM74L55 2-Wide 4-lnput AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . ; ..........•.. " 1-15,1-56
DM54LS55/DM74LS55 2-Wide 4-lnput AND-OR-INVERT Gates . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . 1-15,1-56
DM5460/DM7460 Dual4-lnput Expanders ..................... ; ...........•.•..........•.... 1-15,1-58
DM54H60/DM74H60 Dual 4-lnput Expanders . . . . . . . . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . 1-15,1-59
DM54H61/DM74H61 Triple 3-lnput Expanders ... ' . . . . . . . . . . . . . . . . . . . . . : . , . . . . . . . . . . . . . . . . . . . 1-16,1-60
DM54H62/DM74H62 4-Wide AND-OR Expanders . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '... 1-16,1-59

•

Note: When there ·are two sets of page numbers, the first designates the connection diagram page; the second indicates electrical tables.

~ TTL Data Book

Table of Contents

DM74S64 4-Wide AND-OR-INVERT Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16,1-56
DM74S65 4-Wide AND-OR-INVERT Gates with Open-Collector Outputs .............................. 1-17,1-61
DM5470/DM7470 AND-Gated J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . 1-18,1-62
DM54H71/DM74H71 AND-OR-Gated J-K Master-Slave Flip-Flops with Preset . . . . . . . . . . . . . . . . . . . . . . . . . 1-18,1-64
DM54L71/DM74L71 AND-Gated R-S Master-Slave Flip-Flops with Preset and Clear ............. " ....... 1·19,1-66
DM5472/DM7472 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . 1-19,1-62
DM54H72/DM74H72 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear. . . . . . . . . . . . . . . . . . . . . . 1-19,1-64
DM54L72/DM74L72 AND-Gated J-K Master-Slave Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . 1-19,1-66
DM5473/DM7473 Dual J-K Flip-Flops with Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20,1·62
DM54H73/DM74H73 Dual J-K Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . .. 1-20, 1-64
DM54L73/DM74L73 Dual J-K Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ............ 1-20,1-66
DM54LS73/DM74LS73 Dual J-K Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " ..... 1-20,1·68
DM5474/DM7474 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . 1-20,1-62
DM54H74/DM74H74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . 1-20,1-64
DM54L74/DM74L74 Dual D Positive-Edge-Triggered Flip·Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . 1-20,1-66
DM54LS74/DM74LS74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear ...... '. . . . . . . . . . . .. 1-20, 1-68
DM74S74 Dual D Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20,1-70
DM5476/DM7476 Dual J-K Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21,1·62
DM54H76IDM74H76 Dual J-K Flip-Flops with Preset and Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-21, 1-64
DM54LS76/DM74LS76 Dual J-K Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21,1-68
DM54H78/DM74H78 Dual J-K Flip-Flops with Preset, Common Clear and Common CI·ock . . . . . . . . . . . . . . . .. 1-21, 1-64
DM54L78/DM74L78 Dual J-K Flip-Flops with Preset, Common Clear and Common Clock . . . . . . . . . . . . . . . . . 1-21,1-66.
DM54LS78/DM74LS78 Dual J-K Flip-Flops with Preset, Common Clear and Common Clock . . . . . . . . . . . . . . . . 1-21,1-68
DM5486/DM7486 Quad EXCLUSIVE-OR Gates . . . . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . 1-22,1-72
DM54L86/DM74L86 Quad EXCLUSIVE-OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 1-22,1-72
DM54LS86/DM74LS86 Quad EXCLUSIVE-OR Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22,1-72
DM74S86 Quad EXCLUSIVE-OR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22,1-72
DM54Hl03/DM74Hl03 Dual J-K Negative-Edge-Triggered Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . 1-23,1-74
DM54H 106/DM74Hl 06 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear ........ '. . . . . . . .. 1-23, 1-74
DM54107/DM74107 Dual J-K Master-Slave Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23,1-62
DM54LS107/DM74LS107 Dual J-K Master-Slave Flip-Flops with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23,1-68
DM54Hl08/DM74Hl08 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear,
and Common Clock ... " " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '" ....... 1-24,1-74
DM54109/DM74109 Dual J.j( Positive-Edge-Triggered Flip-Flops with Preset and Clear. . . . . . . . . . . . . . . . . . .. 1-24, 1-62
DM54LS109/DM74LS109 Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . 1-24,1-68
DM54LS112/DM74Ls112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . , 1-24, 1-68
DM74S112 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear . . . . . . . . . . . . . . . . . . . . . . . . . 1-24,1-70
DM54LSl13/DM74LSl13 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset . . . . . . . . . . . . . . . . . . . . . . 1-25,1-68
DM74S113 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25,1-70
DM54LSl14/DM74LSl14 DlJal J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear,
and Common Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-25, 1-68
DM74S114 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Clock ....... 1-25,1-70
DM54121/DM74121 OneShots ... , ....... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26,1-76
DM54LS122/DM74LS122 Retriggerable One Shots with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26,1-78
DM54123/DM74123 Dual Retriggerable One Shots with Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26,1-78
DM54L 123A/DM74L 123A Du~1 Retriggerable One Shots with Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1·26, 1·78
DM54LS123IDM74LS123 Dual Retriggerable One Shots with Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-26, 1-78
DM54125/DM74125 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . 1-27,1-80
DM54LS125/DM74LS125 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-80
DM54126IDM74126 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-80
DM54LS126(DM74LS126 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-80
DM54132/DM74132 Quad 2-lnput NAND Schmitt Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-48
DM54LS132/DM74LS132 Quad 2-lnput NAND Schmitt Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27,1-48
DM74S133 13-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28,1-36
DM74S134 TRI-STATE 12-lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28,1-80
DM74S135 Quad EXCLUSIVE-OR/NOR Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28,1-82
DM54l-S1361DM74LS136 Quad EXCLUSIVE-OR Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . 1-29,1-84
DM74S136 Quad EXCLUSIVE-OR Gates with Open-Collector Outputs ............................... 1-29,1-84
DM74S140 Dual 50-Ohm Line Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29, 1-54
Note: When there are two sets of page numbers, the first designates the connection diagram page; the second indicates electrical tables.

ix

~ 'TTL Data Book

Table of Contents

DM54lS221/DM74LS221 Dual One Shots with Schmitt-Trigger Inputs ............•.........•......•
DM74S260 Dual 5-lnput NOR Gates ........................•............................
DM54LS266/DM74LS266 Quad EXCLUSIVE-NOR Gates with Open·Coliector Outputs ...................
DM54365/DM74365 TRI-STATE Hex Buffers .....•...•................... ' .......•...........
DM54LS365/DM74LS365 TRI·STATE Hex Buffers .............•...................•.•. ; .....
DM54366/DM74366 TRI-STATE Hex Buffers .....•..................' ..... ' •............. : . :.
DM54LS366/DM74LS366 TRI·STATE Hex Buffers ...... , ., .........................•....... ,
DM54367/DM74367 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM54LS367/DM74LS367 TRI-STATE Hex Buffers .................................... ',' ..•..
DM54368/PM74368 TRI-STATE Hex Buffers ......... ; ......... ; ...................... -.....
DM54LS368/DM74LS368 TRI-STATE Hex Buffers ................... '........................
DM54LS386/DM74LS386 Quad EXCLUSIVE·OR Gates .............................•..........

1-30,1-76
1-31,140
1-31,1-84
1·32,1·86
1~32, 1-86
1-32,1-86
1·32,1-86
1-32,1-86
1-32,1·86
1-33,1-86
1-33,1-86
1·34,1·72

54/74 MSI-SECTION 2
DM5441A/DM7441A BCD/Decimal Decoders/Drivers .... : ............ .'. . . . . . . . . . . . . . . • . • . . . ... . . .
DM5442/DM7442 BCD/Decimal Decoders . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM54L42A/DM74L42A BCD/Decimal Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . .
DM54LS42/DM74LS42 BCD/Decimal Decoders ........ '.................... _ ......... '. .. . . . . . .. .
DM5445/DM7445 BCD/Decimal Decoders/Drivers. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . .
DM5446A/DM7446A BCD!7-Segment Decoders/Drivers .......... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM5447A1DM7447A BCD!7-Segment Decoders/Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . .
DM54LS47/DM74LS47 BCD!7-Segment Decoders/Drivers .... .' .....•..........................•.. : .
PM5448/0M7448 BCD/7:Segment Decoders/Drivers ............................................ ;
DM54LS48/DM74LS48 BCD/7-Segment Decoders/Drivers ..............•.... ; .................• ; . . .
DM54LS49/DM74LS49 BCD/7-Segment Decoders/Drivers ................................. : ... ;. . • .
DM5475/DM7475 Quad Latches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . ..
DM54L75A/DM74L75A Quad Latches ................ :. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS75/DM74LS75 Quad Latches ........................... '.. . . . . . . . . . . . . . . . . . . . . . .. . ..
DM54LS77/DM74LS77 Quad Latches. . . . . . . . . . . . . . . .. . . . . . . . . . • .. . . . . . . . . . . . . . . . . . . . . . . . . .•
, DM5483/DM7483 4-Bit Binary Adders with Fast Carry ....... '. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ..
OM54LS83A/DM74LS83A 4-Bit Binary Adders with Fast Carry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM5485/DM7485 4-Bit Magnitude Comparators. . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . • . ..
DM54L85/DM74L85 4-Bit Magnitude Comparators .... '. . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . • • ..
DM54LS85/DM74LS85 4-BitMagnitude Compa~ators ......... : ......... : ................'. . . . . . . ..
DM5488/DM7488 256-Bit Read Only Memories. . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . .. ..
DM5489/DM74.89 64-Bit ReadlWrite Memories. . . . . . .. . . . . .. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OM54L89A/DM74L89A 64-Bit ReadlWrite Memories. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . •.
OM5490A/DM7490A Decade, Divide by 12, and Binary Counters. . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . ..
DM54L90/DM74L90 Decade, Divide by 12, and Binary Counters ........... '. . . . . .. . . . ... . . . . . . . . . . . . ..
DM54L!?90/DM74LS90 Decade, Divi!le by 12.-and Binary Counters. . . . . . . .. . . . . . . . . . . . . . . • . . . . . . . . . ..
DM5491A/DM7491A 8-Bit Serial Shift Registers ............... : . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . •.
DM54L91/DM74L91 8-Bit Serial Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . . . ..
DM5492A/DM7492A Decade, Divide by 12, and Binary Counters ............... ' ............... '. . . . . ..
DM54LS92/DM74LS92 Decade, Divide by 12, and Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . ..
DM5493A/DM7493A Decade, Divide by 12, and Binary Counters ...........' ........ ' ............ '. . .. . ..
DM54L93/DM74L93 Decade, Divide by 12, and Binary Counters ................................ ~ . . ..
, DM54LS93/DM74LS93 Decade, Divide by 12, and Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM5495/DM7495 4·Bit ParalierAccess Shift,Registers •................ '. . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54L95/DM74L95 A·Bit Parallel Access Shift Registers . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS95B/DM74LS95B 4·Bit Parallel Access Shift Registers. . . • . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . ..
DM5496/DM7496 5·Bit Shift Registers .......................... ; . . . . . . . . . . . . . . . . . . . . . • . . . . ..
DM54LS96/DM74LS96 5-Bit Shift Registers ................................ " . . . . . . . . . . . . . . . ..
DM54L98/DM74L98 4-Bit Storage Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' ......•... '. . . . ..
DM54LS124/DM74LSI24 Dual Voltage Controlled Oscillators. . . . . . . . . . . . . . . . . . . . . . .• . . . . . . . . . . . . . ..
DM54LSI38/DM74LS138 Decoders/Demultiplexers. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . • . . . . . . . . . . • . ..
DM74S138 Decoders/Demultiplexers.. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS139/DM74LSI39 Decoders/Dem!lltiplexers .................... : ............•....... : . . ..
DM74S139 Decoders/Demultiplexers ........... ~ ...................... ; . . • ... . . . . . . . . . . . . • . ..
Note: When there are ,two sets of page numbers, the first dttsignates the confl8ction diagram. page; the second indicates electrical tables.

x

2·1
2-3
2-3
2·3
2·6
2-8
2-8
2-8
2-8
2·8
2-8
2-14
2·14
2-14'
2·14
2-17
2-17
2·21
2-21
2-21
2-25
2·28
2-28
2·30
2-30
2·30
2;34
2·34
2-30
2-30
2-30
2·30
2-30
2·36
2·36
2·36
2·39
2-39
2·42
2-44
2·46
2·46
246
2-46

~ TTL Data Book

Table of Contents

DM54141/DM74141 BCD/Decimal Decoders/Drivers . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM54145/DM74145 BCD/Deciinal Decoders/Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM54147/DM74147 Priority Encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54148/DM74148 Priority Encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54150/DM74150 Data Selectors/Multiplexers... . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54151 A/DM74151 A Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
DM54LS151/DM74LS151 Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM74S151 Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54153/DM74153 Dual4·line to l·Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS153/DM74LS153 Dual4·Line to l·Line Data Selectors/Multiplexers.. .. .... . .. . .. . . . . . . . . . . . . . ..
DM74S153 Dual4·Line to l·Line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
DM54154/DM74154 4·Line to 16·Line Decoders/Demultiplexers . . . . . . . . . . . . . . . . . '.' . . . . . . . . . . . . . . . . ..
DM54Ll54A/DM74L154A 4·Lineto 16·Line DecodersiDemultiplexers . . . . . . . . . . . . . . . . . . . . . . ,..........
DM54LSl54/DM74LS154 4·Line to 16·Line Decoders/Demultiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54155/DM74155 Dual 2·Limi to 4·Line Decoders/Demultiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS155/DM74LS155 Dual 2·Line to 4·Line Decoders/Demultiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54156/DM74156 Dual 2·Line to 4·Line Decoders/Demultiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS156/DM74LS156 Dual 2·Line to 4·Line Decoders/Demultiplexers. . . . . . . . . . . . .. . . . . . . . . . . . . . . . ..
DM54157/DM74157 Quad 2·Line to 1·Line Data Selectors/Multiplexers........... '. . . . . . . . . . . . . . . . . . . . ..
DM54L 157A/DM74L 157A Quad 2·Line to 1·Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS157/DM74LS157 Quad 2·Line to I·Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM74S157 Quad 2·Li,ne to l·Line Data Selectors/Multiplexers. • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS158/DM74LS158 Quad 2·Line to 1·Line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . .' . . . . . . . ..
DM74S158 Quad 2·Line to I·Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
.. DM54160A/DM74160A Synchro·nous4·Bit,Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '......
DM54LS160/DM74LS160 Synchronous 4·BIt Counters. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54161A/DM74161A Synchronous 4·Bit Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OM54LS161/DM74LS161 Synchronous 4·Bit Counters: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54162A/DM74162A Synchronous 4·Bit Counters. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
OM54LS162/DM74LS162 Synchronous 4·Bit Counters ... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ..
DM54163A/DM74163A Synchronous 4·Bit Counters. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS163/DM74LS163 Synchronous4-Bit Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . ..
OM54164/0M74164 8·Bit Serial In/Parallel Out Shift Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . ..
DM54L164A/DM74L164A 8-Bit Seria,lln/Paraliel Out Shift Registers ....... '" .... " . . • . . . . . . . . . . . . . . ..
OM54LS164/DM74LS164 8;Bit Serial In/Paralle! Out Shift 'Registers ............•...•........•... ',' . . .•
OM54165/DM74165 8·Bit Parallel In/Serial Out Shift Registers •.............••••••...............• ,.
OM54L165A10M74L 165A 8-Bit Parallel In/Serial Out Shift Registers. . . . . . . . . . . . . . . . . • . . . . . . . . . . . . • • ..
OM54166/DM74166 8·Bit Parallel In/Serial Out Shift Registers . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . . . . . ..
DM54LSl68/DM74LS168 Synchronous 4·Bit Up/Down Counters. . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS169/DM74LS169 Synchronous 4·Bit Up/Down Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM74170 4 by 4 Register Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM54LS170/DM74LS170 4by4 Register Files ..... ' . . . . . . . . . . . . . . . . . . . • . . . . . . . . . '. . . . . . . . . . . . . . .
DM54173/DM74173 TRI·STATE Quad.o Registers . . . . . . . . . . . . . . . . '. . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
. OM54LS173/DM74LS173 TRI·STATE Quad 0 Registers .... " ...... '.' . . . . . . . . . . . . . . . . . . . . . . . . . , ..
OM54174/0M74174 Hex/Quad 0 Flip·Flops with Clear. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . ..
OM54LSi741OM74LS174 Hex/Quad 0 Flip·Flops with Clear. . . . . . . . . . . . . . . . . • . . . • . . . . • . . . . . . . • . . . ..
DM74S174 Hex/Quad 0 Flip-Flops with Clear ....•.......•..... " . . . . . . . . . . .. . . . . . . . . . . . . • . . • ..
OM541751DM74175 Hex/Quad 0 Flip·Flops with Clear. • . . • . . . . . . . . . • . • • . • • . . • . . . • . • • . . . . . • . . . • ..
OM54LSl75/DM74:LS175 Hex/Quad 0 Flip·Flops with·Clear....•.••..•••••• , ••••' •••••..••.••.•••• "
DM74S175 Hex/Qulld 0 Flip·Flops with Clear. • • . . • . . . . • . . . . . • • . . . • • .• . . . • • • . . . • • • . • . • • . • . • • . ••
OM54176/0M74176 Pnisettable Decade and 8inary Counters••....••...•. , .• , •. , , ••.••...•••..•••.•• '
DM54177/DM74177 Presettable Decade and Binary Counters.• , ........•....•••..•.•.• , .•• , •••••..••
DM541S0JOM74180 9-Blt Parity Generators/Checkers .••....•...••......•......••.••....••••••.••
OM541Bl/OM74181 Arithmetic L09ic Unit/Function Generators •.•.• '.' •..•..•...•...•..•.••..•••• , ••
DM5418WM74182 Look-Ahead Carry Generators ..••.••..•.•..•.....••• _ •..•••.•••.•...••••••.
'OM74S182 l.Qok·Ahead Carry Generators•...••...••.•.••.... ' •... .- •..••......•••••••...•••••••
OMS418410M74184 BCP·to-Binary Bnd Binary-to-BCD Converters ...•..•...•......•••.•.•••. _ .•••••••
OM541S5A/DM14185A 6CD-to·Binary and Binary-to-BCD Converters ...............•.••••••••.• , ••. "
OM54187/0M74187 1024:Bit Read Only Memories ..•.•.••.......•. ' ...•...••••...•.•. , , .•••• , •.•

xi

2·1
2·6
249
2·49
2·53
2·53
2·53
2·53
2·57
2·57
2·57
2·60
2·60
2·60
2·63
2·63
2·63
2·63
2·66
2·66
2·66
2·66
2·66
2·66
2·70
2·70
2·70
2·70
2·70
2·70
2·70
2·70
2-76,
2·76
2·76
2-79
2·79
2·82
2·85
2·85
2·91
2·91
2·96
2·96,
2·98
2·98
2·98
2-"98
2~98

2..sa
2.1.01
2·101
2·105
2-107
2-113

2·n3
2·116

2,116
2-122

~ TTL Data Book

Table of Contents

DM54L187A/DM74L187A 1024-8itRead Only Memories . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-122
DM54S189/DM74S189 TRI-STATE 64-Bit ReadIWrite Memories ... " ... ; ... : .................... , ...... 2-125
DM54190/DM74190 Synchronous Up/Down Counters with Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 2-128
DM54LS190/DM74LS190 Synchronous Up/Down Couniers with Mode Control . . . . . . . . . . . . . . . . . . . . : . . . . .. 2-128
DM54191/DM74191 Synchronous Up/Down Counters with Mode Control. .. . . . • . . . . . . . . . . . . . . .. . . . . . . .. 2-128
DM54LS191/DM74LS191 Synchronous Up/Down Counters'with Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·128
DM54192/DM74192 Synchronous Up/Down Counters with Dual Clock .................................. 2-133
DM54L 192/DM74L 192 Synchronous Up(Down Counters with Dual Clock. . . . . . . . . . . . . . . . . . . . . . . • . . . . . .. 2-133
DM54LS192/DM74LS192 Synchronous Up/Down Counters with Dual Clock ............. " ............... 2·133
DM54193/DM74193 Synchronous Up/Down Counters with Dual Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-133
DM54L 193/DM74L 193 Synchronous Up/Down Counters with Dual Clock ...................' •............ 2-133
DM54LS193/DM74LS193 Synchronous Up/Down Counters with Dual Clock ....................•. '.: ... " 2-13~
DM54194/DM74194 4-Bit Bidirectional Universal Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . , ........ 2-140
DM54LS194A/DM74LS194A 4-Bit Bidirectional Universal Shift Registers ...............................• 2·140
DM74S194 ,4·Bit Bidirectional Universal Shift Registers ........ " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " 2·140
DM54195/DM74195 4·Bit Parallel Access Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·144
DM54LS195A/DM74LS195A 4·Bit Parallel Access Shift Registers .......... '........... : ............... 2·144
DM74S195 4·Bit Parallel Access Shift Registers .........•................ '. . . . . . . . . . . . . . . . . . . . . . . 2·144
DM54196/DM74196 Presettable, Decade and Binary..counters . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . .. 2·101
DM54LS196/DM74LS196 Presettable Decade and Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101
DM54197/DM74197 Presettable Decade and Binary Counter~. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. 2·101
D~54LS197/DM74LS197 Presettable Decade and Binary Counters ..•.......... .' ...... , ..... ; ......... 2·101
DM54198/DM74198 8·Bit Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., ............. 2·148
DM54199/DM74199 8·Bit Shift Registers. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .. 2·148
DM54S200/DM74S200 TRI·STATE 256-Bit ReadIWrite Memories ...................................... 2·154
DM54S206/DM74S206 256·Bit ReadIWrite Memories with Open·Coliector Outputs: . . . . . . . . . . . . . . . . . . . . ; . .. 2·157
DM54251/DM74251 TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : .... '"
2-160
DM54LS251/DM74LS251 TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . 2·160
DM74S251 ·TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . • . . . 2·.160
DM54LS253/DM74LS253 TRI·STATE Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 2·16:t
DM74S253 TRI-STATE Data Selectors/Multiplexers . . . . . . . . . . • . . . . . . . . . . . . . . . . . . : ...... '.' .. , .... , 2·163
DM54LS257/DM74LS257 TRI·STATE Quad 2·Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . , .. 2·165
DM74S257 TRI·STATE Quad 2·Data Selectors/Multiplexers, ........................................ 2·165
DM54LS258/DM74LS258 TRI·STATE Quad 2·Dat3 Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·165
DM74S258 TRI·STATE Quad 2·Data Selectors/Multiplexers. : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·165
DM54LS279/0M74LS279 Quad S-R Latches . . . . . . . . . . . . . . . . . . . . . ' ............................... 2·168
DM74S280 9·Bit Parity Generators/Checkers. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . .. 2·170
DM74S281 4·Bit Parallel Binary Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . • • . . . . . .• 2·173
DM54LS283/DM74LS283 4·Bit Binary Adders with Fast Carry . . . . . . . . . . . . . . . . . . . . .,. . . . . . . . . . . . . . . .. 2·17
DM54S287/DM74S287 TRI·STATE 1024·Bit Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . 2-177
DM54S289/DM74S289 64·Bit ReadIWrite Memories with Open·Coliector Outputs ....•...... '............... 2·179
DM54LS295A/DM74LS295A TRI-STATE 4-Bit Parallel Access Shift Registers ..............•......•...... 2·182
DM54LS298/DM74LS298 Quad 2·Multiplexers with Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 2·184
DM54LS374/DM74LS374 TRI·STATE Octal D Flip-Flops .................. '. . . . . . . . . . . . . . . . . . . . . . . . 2·187
DM54S387/DM74S387 1024·Bit Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2~177
DM54LS395/DM74LS395 TRI·STATE 4-Bit Cascadable Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·189
DM54LS670/DM74LS670 TRI·STATE4 by 4 Register Files ....... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2·191

PROPRIETARY-SECTION 3,
DM80L06 Quad 2;lnput .NA.ND Gates with Resistive Pull·Ups .... : . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . ...
DM7090/DM8090 Quad Inverters plus Dual 2·lnput .NA.ND Gates ..... : . . . . . . . . . . . . . . . . ... . . . . . . . . . .
DM7091/DM8091 Quad 2-lnput .NA.ND Buffers. . . . . . . . . . . . . . . . . . . . . • . . . . . . .. .. . . . . . . . . . . . . . . .
DM7092/DM8092 Dual 5·lnput .NA.ND Gates. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . • . .. . . . . . . . . . . . .
DM7093/DM8093 TRI·STATE Quad Buffers. . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . .. . . . . . . . . .
DM7094/DM,8094 TRI-STATE Quad Buffers . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . '.
DM7095/DM8095 TRI-STATE Hex Buffers .............. ; ........ ". . . . . . . . . . . . . . .. . . . . . .. . .
DM70L95/DM80L95 TRI-STATE Hex Buffers ... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '.' . : . . . • . . . . . .
DM7096/DM8096 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . :. • . . . . . . . • . . . . . . • . . . . .

xii

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

3·1
.3·3
3·3
3·3
3-5,
3-5
3-7
3-7
3·7

~ TTL Data Book

Table of Contents

DM70L96/DM80L96 TR I-STATE Hex 8uffers
DM7097/DM8097 TRI-STATE Hex 8uffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . .
DM70L97/DM80L97 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ .......... .
DM7098/DM8098 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM70L98/DM80L98 TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ .......... .
DM7099/DM8099 TRI-STATE Quad 2-lnput NAND Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7121/DM8121 TR I-STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM71 L22/DM81 L22 Quad 2-lnput Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . .
DM7123/DM8123 TR I-STATE Quad 2-lnput Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM71 L23/DM81 L23 TRI-STATE Quad 2-lnput Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7130/DM8130 10-Bit Magnitude Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ........ .
DM7131/DM8131 6-Bit Unified Bus Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7136/DM8136 6-Bit Unified Bus Comparators. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . .
DM7160/DM8160 6-Bit Magnitude Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . .
DM71 LS95/DM81 LS95 TRI-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _
DM71 LS96/DM81 LS96 TR I-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM71 LS97/DM81 LS97 TR I-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM71 LS98/DM81 LS98 TR I-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7200/DM8200 4-8it Magnitude Comparators . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ...... .
DM721 0/DM821 0 8-line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7211/DM8211 8-Line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7214/DM8214 TRI-STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM72191DM8219 TRI-STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7220/DM8220 9-Bit Parity Generators/Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7223/DM8223 l-Line to 8-Line Demultiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7230/DM8230 TRI-STATE Dual 2/4 Demultiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ..... .
DM7511/DM8511 Dual Gated Flip-Flops. ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L 11/DM85L 11 Dual Gated Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . .
DM7512/DM8512 Dual Gated Flip·Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L12/DM85L12 Dual Gated Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ... .
DM7520/DM8520 Modulo-N Dividers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM8531 TRI-STATE 16k Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7542/DM8542 TR I-STATE Quad I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ............ _
DM7544/DM8544 TR I-STATE Quad Switch Debouncers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7546/DM8546 TRI-STATE 8-Bit Universal I/O Shift Reigsters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM85S50 6-Bit Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7551/DM8551 TR I-STATE 4-Bit 0 Type Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L51/DMB5L51 TRI-STATE 4-Bit 0 Type Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7552/DM8552 TRI-STATE Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L52/DM85L52 TR I-STATE Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7553/DM8553 TR I-STATE 8-Bit Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7554/DM8554 TR I-STATE Synchronous Coun~ers/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L54/DM85L54 TR I-STATE Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7555/DM8555 TRI-STATE Programmable Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7556/DM8556 TRI-STATE Programmable Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7560/DM8560 Synchronous 4-Bit Up/Down Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L60/DM85L60 Synchronous 4-Bit Up/Down Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ...... .
DM75p3IDM8563 Synchronous 4-Bit Up/Down Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75L63/DM85L63 Synchronous 4-Bit Up/Down Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM75S68/DM85S68 64-Bit Edge-Triggered Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7570IDM8570 8-Bit Serial In/Parallel Out Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7573/DM8573 1024-Bit Field Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7574/DM8574 TRI-STATE 1024-Bit Field Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . .
DM7575/DM8575_Programmable Logic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "' ..... .
DM7576/DM8576 Programmable Logic Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '.' ......... .
DM7577/DM8577 256-Bit Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . '.' ... ' .......... .
DM7578/DM8578 TRI-STATE 256-Bit Programmable Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM8581 TRI-STATE16k Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7590/DM8590 8-Bit Parallel In/Serial Out Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . , ............. .

xiii

3-7
3-7
3-7
3-7
3-7
3-9
3-11
3-13
3-13
3-13
3-17
3-19
3-19
3-17
3-21
3-21
3-21
3-21
3-23
3-25
3-25
3-28
3-28
3-32
3-35
3-37
3-40
3-40
3-40
3-40
3-44
3-49
3-52
3-54
3-56
3-60
3-62
3-62
3-64
3-64
3-70
3-64
3-64
3-72
3-72
3-76
3-76
3-76
3-76
3·82
3-86
3-89
3-92
3-95
3-95
3-101
3-104
3-107
3-110

~ TIL Data Book

Table of Contents

DM7595/DM8595 4096-8it Read Only Memories __ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7596/DM8596 TRI-STATE 4096,Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
DM7597/DM8597 TRI'STATE 1024·Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • .
DM7598/DM8598 TR I·STATE 256-Bit Read Only Memories ............ '. . . . .. . . . . . . . . . . . . . . . .. . . . ..
DM7599/DM8599 TRI-STATE 64-Bit Random Access Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7613/DM8613 Quad Gated Flip-Flops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM76L13/DM86L 13 Quad Gated Flip·Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . ..
DM76L24/DM86L24 TRI-STATE Magnitude Comparators with A Almost Equal B . . . . . . . . . . . . . . . . . . . . . . . . .
DM76L25/DM86L25 TRI·STATE 7-Segmentto BCD Decoders ......... '" . . . . . . . • . . . . . . . . . . . . . . . . . .
DM76L70/DM86L70 8-Bit Serial In/rarallel Out Shift Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM76L75/DM86L75 Presettable Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . .
DM76L76/DM86L76 Presettable Binary Counters, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7678/DM8678 7 by 9 Character Generators .... ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7679/DM8679 7 by 9 Character Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . , .... _ . . . . . . . . . . . . . . .
DM76L90/DM86L90 8-Bit Parallel In/Serial Out Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM76L93/DM86L93 Binary Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . ;......
DM761,.97/DM86L97 TRI-STATE 1024·Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM76L99/DM86L99 TRI-STATE 64-Bit Random Access Memories . . . . . . . . . . . . . . . . . . . . . . , ..... _ ......
DM7795/DM8795 4096-Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . .
DM7796/DM8796 TRI-STATE 4096-Bit Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7853/DM8853 Dual Retriggerable Resettable Monostable Multivibrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7875A/DM8875A TRI-STATE 4-Bit Parallel Binary Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM7875B/DM8875B TRI-STATE 4-Bit Parallel Binary Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM8898 TRI-STATE BCD to Binary Converters
DM8899 TR I·STATE Binary to BCD Converters

3-113
3-116
3-119
3-122
3-127
3-40
3-40
3-131
3-134
3-86
3-137
3-137
3-140
3-140
3-110
3-142
3-144
3-148
3-113
3-116
3-151
3-154
3-154
3-156
3-156

ADDITIONAL DEVICES-SECTION 4
DM930 Dual 4-lnput Gates with Expanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
4-1
DM932 Dual 4-lnput Buffers with Expanders . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM933 Dual 4·lnput Extenders. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . .
4-'
DM935 Hex Inverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM936 Hex Invert~rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; . . .. . ..... .
4-1
oM937 Hex Inverters . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . . . . . . . . . . . . . . . . . . . 4-1
4-1
DM944 Dual 4-lnput Power Gates with Expanders. , . . . . . . . . . . . . . . . . . . . . . . . . . . ', . . . . . . . . . . . . . . . . . .
4-1
DM945 R-S Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4·1
DM946 Quad 2-lnput Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM94B R-S Flip-Flops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . .
4-1
DM949 Quad 2-lnput Gates. _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . .
4·1
DM957 Quad 2-lnput Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM958 Quad 2·lnput Power Gates. . . . . . . . . . . . . . . . . : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
4-1
DM961 Dual4-lnput Gates with Expanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM962 Triple 3-lnput Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM963 Triple 3-lnput Gates . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4·1
DM1800 Dual 5-lnput Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM1801 Dual 5·lnput Gates . . . . . . . . . . . . . . . . '. . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-1
DM2502/DM2502C Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4-6
4-6
DM2503/DM2503C Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . " .........•..•...
DM2504/DM2504C Successive Approximation Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4·6
DM'7280/DM8280 Presett<\ble Decade Counters . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . • • . • . . . . . . . • . • . . . . . 4-11
DM72811DM8281 Pr~settable Binary Counters ... : . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • . . . . . • . . • _ ... 4'11
DM7288/DM8288 Presettable Divide by 12 Counters ........•.......................•....•..•....• 4-11
DM7290/DM8290 Presettable Decade Counters . . . . . . . . . . . . . • . . . . . . . . . . '...........••....•....... 4-11
.DM1291/DM8291 Presettable Binary Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . 4-11
DM9002C Quad 2·lnput NAND Gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . • • 4·15
DM9003C Triple 3~lnput NAND "Gates . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . • . . . • " ........••.... 4-15
DM9004C Dual 4-lnput NAND Gates . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . • . . . . . . . • • • . . . • .' 4·15
DM9005C Expandable Dual 2·lnput AND-OR-INVERT Gates . . . • . . . . . . . . . . . . . . . • . _ • _ .........••.•.• 4·15
DM9006C Dual 4-lnput Expanders . . . . . . . . . . . . . . . . . . . . . . . . . , ......•...•.•.•...••...••.••.•• .4-15

xiv

~ TTL Data Book

Table of Contents

DM9008C Expandable 4-Wide AND-OR-INVERT Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9009C Dual 4-lnput NAND Buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
DM9012C Quad 2-lnput NAND Gates with Open-Collector Outputs. . .. .. . . . . . . . . . . . . . . . . . . .. . . . . . . . ..
DM9016C Hex Inverters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9024/DM8024 Dual J-K Flip-Flops with Preset and Clear ............. _ . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9093 Dual J-K Flip-Flops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM9094 Dual J-K Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . .
DM9097 Dual J-K Flip-Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . .
DM9099 Dual J-K Flip-Flops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DM9300/DM8300 4-Bit Parallel-Access Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . ..
DM9301/DM8301 1 of 10 Decoders ..... : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9309/DM8309 Dual 4-Line to 1-Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9310/DM8310 Synchronous 4-Bit Decade Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . ..
DM9311/DM8311 4-Line to 16-Line Decoders/Demultiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . _ ..... _ . . . . ..
DM9312/DM8312 8·Line to 1-Line Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . . . . ..
DM9316/DM8316 Synchronous 4-Bit Binary Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9318/DM8318 Priority Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ ............ ,
DM9322/DM8322 Quad 2-Line to l-Line Data Selectors/Multiplexers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9334/DM8334 8-Bit Addressable Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ . . . . . . ..
DM9601/DM8601 Retriggerable One Shots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
DM9602/DM8602 Dual Retriggerable, Resettable, One Shots .......... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

xv

4·15
4-15
4-15
4-15
4-17
4-1
4-1
4-1
4-1
4-19
4-22
4-24
4-27
4-33
4-24
4-27
4-36
4-38
4-40
4-43
4-46

~ T1L Data Book

TRI-STATE Selection Guide

DEVICE NO.

DM54125/DM74125
DM54LS125/DM74LS125
DM54126/DM74126
DM54 LS126/DM74LS126
DM74S134
DM54173/DM74173
DM54LS173/DM74 LS173
DM54S189/DM74S189
DM54S200/DM74S200
DM54251/DM74251
DM54LS251/DM74LS251
DM74S251
DM54LS253/DM74LS253
DM74S253
DM54 LS257 /DM74LS257
DM74S257
DM54 LS258/DM74 LS258
DM74S258
DM54S287/DM74S287
DM54 LS295A/DM74LS295A
DM54365/DM74365 .
DM54 LS365/DM74LS365
DM54366/DM74366
DM54LS366/DM74 LS366
DM54367/DM74367
DM54 LS367 /DM74 LS367
DM54368/DM74368
DM54LS368/DM74LS368
DM54LS374/DM74LS374
DM54LS395/DM74LS395
DM54 LS670/DM74LS670
DM7093/DM8093
DM7094/DM8094
DM7095/DM8095
DM70L95/DM80L95
DM7096/DM8096
DM70L96/DM80L96
DM7097/DM8097
DM70L97/DM80L97
DM7098/DM8098
DM70L98/DM80L98
DM7099/DM8099
DM7121/DM8121
DM7123/DM8123
DM71 L23/DM81 L23
DM71 LS95/DM81 LS95
DM71 LS96/DM81 LS96
DM71 LS97/DM81 LS97
DM71 LS98/DM81 LS98
DM7214/DM8214
DM7219/DM8219
. DM7230/DM8230
DM8531
DM7542/DM8542
DM7544/DM8544
DM7546/DM8546
DM7551/DM8551
DM75L51/DM85L51
DM7552/DM8552

DESCRIPTION

PAGE
NO:

TRI·STATE Quad Buffers . .' ... ; ......... , ......................... ;
1-80
TRI·STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . .' .........•.•.....
1-80
TRI·STATE Quad Buffers ...................................... , .. .
1-80
TRI·STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '," ... .
1-S0
TRI·STATE 12-lnput NAND Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-80
TRI·STATE Quad D Registers ..................... o' • • • • • • • • • • • • • • • •
2·96
TRI·STATE Quad D Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2-96
TRI·STATE64-Bit Read/Write Memories............... " ............. . 2-125
TRI·STATE 256-Bit Read/Write Memories .. ; . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-154
TR I·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-160
TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . , .. ; .. . 2.1160
TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-160
TRI·STATE Data Selectors/Multiplexers. '.' . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-163
TRI·STATE DataSelectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . : ': .... . 2:163
TR I·STA TE Quad 2-0ata Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165
TR I·STA TE Quad 2-Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165
TRI·STATE Quad 2-Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165
TRI·STATE Quad 2-Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . 2-165
TRI·STATE 1024·Bit Programmable Read Only Memories .................. . 2-177
TR I·STA TE 4-Bit Parallel Access Shift Registers .................... .' .... . . 2-182
1·86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1-86
TRI·STATE Hex Buffers. " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRI-STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
'-86
TRI·STATE Octal D Flip·Flops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-187
TRI·STATE 4·Bit Cascadable Shift Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-189
TRI-.STATE4 By4 Register Files .. , ..................... , .......... . 2-191
3-5
TRI·STATE,Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-5
TRI·STATE Quad Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TR I·STA TE Hex Buffers ...... " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TR I·ST A TE Hex Buffers ................... '" .................... .
3-7
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TRI·STATE Hex Buffers ..... '................. : .................. .
3-7
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TRI·STATE Hex Buffers ................ " . . . . . . . . . . . . . . . . . . . . . . . . :
3-7
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-7
TRI·STATE Hex Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-9
TRI·STATE Quad 2·lnput NAND Buffers ....................' ......... .
3-11
TR I·STATE Data Selectors/Multiplexers ......•........................
3-13
TRI-STATE Quad 2·lnput Data Selectors/Multiplexers .. ,,' ................. ,
3-13
TRI·STATE Quad 2·lnput Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . .
3-21
TRt-STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' ..
3-21
TRI·STATE Octal Buffers .......... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-21
TRI·STATE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-21
TR I·STA TE Octal Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3·28
TRI-STATE Qata Selectors/Multiplexers ......... '........ , ............ .
3-28
TRI·STATE Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-37
TRI·STATE Dual 2/4 Demultiplexers ... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-49
TRI-STATE 16K Read Only Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-52
TRI·STATE Quad I/O Registers; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-54
TRI·STATE Quad Switch Debouncer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3-56
TRI-STATE 8-Bit Universal I/O Shift Registers. , ............ , ........... .
3,62
TR I·STA TE 4·Bit D Type Registers . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . .
3-62
TR I·STATE 4·Bit D Type Registers ..........•.. , ................... .
3-64
TRI·STATE Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . : .
xvi

~ TTL Data Book

TRI-STATE Selection Guide'
DESCRIPTION

DEVICE NO.
DM75L52/DM85L52
DM7553/DM8553
DM7554/DM8554
DM75L54/DM85L54
DM7555/DM8555
DM7556/DM8556
DM7574/DM8574
DM7578/DM8578
DM8581
DM7596/DM8596
D M7597 /DM8597
DM7598/DM8598
DM7599/DM8599
DM76L24/DM86L24
DM76L25/DM86L25
DM76L97/DM86L97
DM76L99/mil86L99
DM7796/ DM8796
DM7875A/DM8875A
DM7875B/DM8875B
DM8898
DM8899

TRI-STATE
TRI-STATE
TR I-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE
TRI-STATE

Synchronous Counters/Latches ......... '..... , ... , ......... .
8-Bit Latches ... , ...... , ..... , ...... , ..... , .... '...... .
Synchronous Counters/Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synchronous Counters/Latches ........... , ................ .
Programmable Decode Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable Binary Counters .. , .... , ..... , .............. .
1024-Bit Field Programmable Read Only Memories .............. .
256-Bit Programmable Read Only Memories ................... .
16k Read Only Memories, ................ , .............. .
4096-Bit Read Only Memories. , ..... , ......... , .......... .
1024-Bit Read Only Memories ....... , .................... .
256-Bit Read Only Memories ....... , , ..... , .. , ........... .
64-Bit Ran~om Access Memories. , .. , ........ , ............. .
Magnitude Comparators with A Almost Equal B................. .
7-Segmentto BCD Decoders ............ , ................. .
1024-Bit Read Only Memories, . , ................ , ........ .
64-Bit Random Access Memories ... , . , ....... , ............. .
4096-Bit Read Only Memories ...... , ... , , ... , ...... , ..... .
4-Bit Parallel Binary Multipliers .. , ................ , ........ .
4-Bit Parallel Binary Multipliers. , .. , ... , . , .. , , , , .. , ...... , ..
BCD to Binary Converters ... '. : .................... , ..... .
BCD to Binary to BCD Converters ........ , ..... , , .. , ..... , . ,

xvii

PAGE
NO.
3-64
3-70
3-64
3-64
3-72
3-72
3-92
3-104
3-107
3-116
3-119
3-122
3-127
3-131
3-134
3-144
3-148
3-116
3-154
3-154
3-156
3-156

~

TTL Families Comparison Guide

TTL Data Book

DM54174

DM54H174H

DM54L/74L

DM54LS/74LS

00

HOO

LOO

LSoo

PARAMET,ER(lI
MIN
10H

High Level Output Current

VOH

High Level Output
Voltage

DM54
DM74

10l

VOL

TVP

los

TVP

400ltA
2.4@

MAX

,MIN

MAX

MIN

TVP

SOO

2·4@

2.5@

500IlA
2.4@

200!lA
2.4@

400/lA
2.7@

looOltA
2.7@

20

2

4

Current

DM74

16

20

3.6

S

Short Circuit OutpUt Current

'CCH SupplV Current
(Average per,'Gate)

-20

20
20

0.4@

0.5@

2mA

4mA

0.4@

0.4@

0.5@

20 rnA
0.5@

20 rnA

3.6 rnA

SmA

20 rnA

20 rnA

16mA

,

40@

5O@

10'@

20@

50@

2.4V

2.4V

2.4V

2.7V

'PV

-1.6@

-2.0@

-{l.IS@

-{l.36@

-2.0@

0.4V

0.4V

0.3V

0.4V

0.5V

High level Input Current

Low Level Input Current

V

0.3@

0.4@

0.4@'
16mA
0.4@

-55
1.0

-3

-100

-40

-15

-130

-30

0.11

2.5

itA

1000ltA

400ltA

16

DM54

UNITS
MAX

-1000

2.5@

200ltA

TVP

-400'

-200

DM54

Low Level Output

MIN

MAX

2.4@

5OO1lA

400ltA

'TVP

-500

-400
2.4@

DM74

III

MIN

low Level Output

Voltage

I'H

MAX

' DM54S/74S

rnA

V

Jl.A

rnA

-100

-40

mA

2.5

0.2

rnA

..... l

Turn "ON" Time

7

15

6.2

10

31

60

10

15

3

5

tpLH

Turn "OFF" Time

11

22

5.9

10

35

60

9

15

3

4.5

.ns
ns

Notes
(1) The 00 gate parameters were used in all cases.
(2)

The product families below will drive the indicated number of loads of each of the above products.

DM54L/74L

DM54LS174ts

DM54S/74S

DM54/74

DM54H/74H

00

HOO

LOO

LSOO

SOO

,MIN

MIN

MIN

MIN

MIN

Series DM54174

10

S

40

20

8

Series DM54HI74H

12

10

50

25

10

Series DM54L174L

2'

1

20

10

1

Series DM54LS174LS

5

4

40

20

4

Series DM54S174S

12

10

100

50

10

FANOUT CAPABILITIES(2)

...

XVIII

~ TTL Data Book

Industry Cross Reference Guide

.

This list is intended to give National replacements for competitors' parts not using the 54/74 numbering system .
Only the basic circuit numbers are cross referenced. As the pin-out sometimes varies between a flat package part and the equivalent DIP part, it is recommended that the manufacturer's specifications be consulted prior to specifying a direct replacement.
Other than parts offered only in a flat package, the dual-in-line pin-outs were used as a guide in preparing the following cross
references.
Direct Replacements were selected as pin-for-pin equivalent circuits based on similarity of electrical and mechanical characteristics as shown in currently published data. Interchangeability in any particular application is not necessarily guaranteed. Before
using a substitute, the user should compare the specifications of the substitute device with the detailed specificati'ons of the
original device.
National Semiconductor makes no warranty as to the information furnished, and buyer assumes all risk in the use thereof.
No liability is assumed for damages resulting from the use of the information contained in this list.

DEVICE
TYPE

NATIONAL DIRECT
REPLACEMENT

DEVICE
TYPE

AMD

Fairchild (con't)
DM2502/2502C
DM250212502C
DM2503/2503C
DM250312503C
DM2504/2504C
DM250412504C
DM54LS138/74LS138
DM54LS139/74LS139
DM54LS151/74LS151
DM54LS153/74LS153
DM54LS157/74LS157
DM54LS158/74LS158
DM54LS160/74LS160
DM54LS161/74LS161
DM54LS162/74LS162
DM54LS163/74LS163
DM54LS164/74LSl64
DM54LS174/74LS174
DM54LS175/74LS175
DM54181n4181
DM54LS190/74LS190
DM54LS191/74LS191
DM54LS192/74LS192
DM54LS193/74LS193
DM54LS194A/74LS194A
DM54LS195A/74LS195A
DM54LS251/74LS251
DM54LS253174LS253
DM54LS25.1 /74LS257
DM54LS258/74LS258
DM$l602/8602
DM9602/8602
DM9602/8602
DM541:z3n4123
DM54L 123A!74L123A
DM75L60/85L60
DM75L63/85L63

AM2502
AM25L02
AM2503
AM25L03.
AM2504
AM25L04
AM25LS138
AM25LS139
AM25LS151
AM25LSl53
AM25lS157
AM25LS158
AM25LS160
AM25LS161
AM25LS162
AM25LS163
AM25LS164
AM25LS174
AM25LS175
AM25LS181
AM25LS190
AM25LS191
AM25LS192
AM25LS193
AM25LSl94A
AM25LS195A
AM25LS251
AM25LS253
AM25LS257
AM25LS258
AM2602
AM26L02
AM26S02
AM26123
AM26L123
AM93L60
AM93L66
Fairchild

930
932

,

NATIONAL DIRECT
REPLACEMENT

933
935
936
937
944
945
946
948
949
961
962
963
9002
9003
.9004
9005
9006
9008
9009
9012
9016
9024
9093
9094
9097
9099
9135
9157
9158
9300
9301
9307
9309
9310
9311
9312
9315
9316

..
DM930
DM932

2~'(
xix

DM933
DM935
DM936
DM937
DM944
DM945
DM946
DM948
DM949
DM961
DM962
DM963
DM9002C
DM9003C
OM9004C
DM9005C
DM9006C
DM9008C
· DM9009C
· DM9012C
DM9016C
DM9024/8024
DM9093
OM9094
DM9097
DM9099
DM935
oM957
DM958
DM9300/8300
DM9301/8301
DM5448/7448 .
DM9309/8309
· DM9310/8310
DM9311/8311
DM9312/8312
DM5441A/7441A
DM9316/8316

~ TTL Data Book
DEVICE
TYPE

Industry Cross Reference Guide
NATIONAL DIRECT
REPLACEMENT

DEVICE
TYPE

93178
9317C
9318
9321
9322
9325
9341
9342
9345
9352,
9357A
93578
9358
9360
9366
9375
9377
9383
9385
9390
9391
9392
9393
9395
9396

DM5447A/7447A
DM5446A17446A
,DM9318/8318
DM54LS139/74LS139
DM9322/8322
DM54141/74141
DM54181/74181
DM54182/74182
DM544517445
DM544217442
DM5446A/7446A
DM5447A17447A
DM544817448
DM54192/74192
DM54193/74193
DM5475/7475
DM54LS77/74LS77
DM5483/7483
DM5485i7485
DM5490/7490
DM5491 A17491 A
DM5492/7492
DM549317493
DM5495/7495
DM5496/7496

93197
93198
93199

DM54197/74197
DM54198/74198
DM54199/74199

9601
9602
9603 '

DM9601/8601
DM9602/8602
DM54121/74121

93141
93145
93150
93151
93153
93155
93156
93157
93160
93161
93162
93163
93164
93165
93166
93170
93174
93175
93176
93177
93180
93190
93191
93194
93195
93196

DM54141/74141
DM54145174145
DM54150/74150
DM54151A/74151A
DM54153/74153
DM54155/74155
DM54156174156
DM54157/74157
DM54160A174160A
DM54161A/74161A
DM 54162A/7 4162A
DM54163A/74163A
DM54164/74164
DM54165/74165
DM54166/74166
DM74170
DM54174/74174
DM54175/74175
DM54176/74176
DM54177/74177
DM54180/74180
DM54190/74190
DM54191/74191
DM54194/74194
DM54195/74195
DM54196/74196

9HOO
9HOl
9H04
9H05
9H08
9Hl0
9Hl1
9H20
9H21
9H22
9H30
9H40
9H50
9H51
9H52
9H53
9H54
9H55
9H60
9H61
9H62
9H71
9H72
9H73
9H74
9H76
9H78
9Hl03
9Hl06
9H108

DM54HOO/74HOO,
DM54H01/74HOl
DM54H04/74H04
DM54H05/74H05
DM54H08/74H08
DM54H 10174H 10
DM54H11174Hl1
DM54H20/74H20
DM54H21174H21
DM54H22174H22
DM54H30174H30
DM54H40/74H40
DM54H50174H50
DM54H51174H51
DM54H52174H52
DM54H53174H53
DM~H54/74H54
DM 4H55/74H55
DM54H60/74H60
DM54H61174H61
DM54H62174H62
DM54H71/74H71
DM54H72/74H72
DM54H73/74H73
DM54H74174H74
DM54H76174H76
DM54H78/74H78
DM54H103/74Hl03
DM54H106/74H106
DM54H108174H108

93HOO

DM54LS195A/74LS195A

9LOO'
9L04'
9L24*
9L54'
9L86'

DM54LOO/74LOO
DM54L04/74L04
DM9024/8024
DM54L54/74L54
DM5486/7486

93LOO'
93L01'
93L09'
93L 10'
93L11'
93L12'
93L16'
93L 18'
93L22'
93L34'
93L41 ,

DM54LS195A/74LS195A
DM9301/8301
DM9309/8309
DM76L75/86L75
DM54L 154A/74L 154A
DM9312/8312
DM76L76/86L76
DM9318/8318
DM54L157A/74L157A
DM9334/8334
DM54181/74181

96L02'

DM9602/8602

Fairchild (con't)

NATIONAL DIRECT
REPLACEMENT

Fairchild (con't)

'The National Low Power circuits are "True Tenth Power," whereas the Fairchild circuits are not.

xx

~ TTL Data Book
DEVICE
TYPE

Industry Cross Reference Guide
DEVICE
TYPE

NATIONAL DIRECT
REPLACEMENT

Fairchild (con't)

Fairchild (con't)

9LSOO
9LS02
9LS03
9LS04
9LS05
9LS08
9LS09
9LS10
9LS11
9LS14
9LS15
9LS20
9LS21
9LS22
9LS27
9LS30
9LS32
9LS37
9LS38
9LS40
9LS42
9LS51
9LS54
9LS55
9LS73
9LS74
9LS83
9LS86
9LS90
9LS92
9LS93
9LS95
9LS109
9LS112
9LSl13
9lS114
9LS125
9LS126
9LS132
9LS133
9LS136
9LS138
9LS139
9LS151
9LS153
9LS155
9LS156
9LS157
9LS158
9LS160
9LS161
9LS162
9LS163
9LS164
9LS170
9LS174

NATIONAL DIRECT
REPLACEMENT

9LS175
9LS181
9LS190
9LS191
9LS192
9LS193 .
9LS194
9LS195
9LS196
9LS197
9LS251
9LS253
9LS257
9LS258
9LS259
9LS266
9LS279
9LS283
9LS295
9LS298
9LS365
9LS366
9LS367
9LS368
9LS670

DM54LSOO/74LSOO
DM54LS02/74LS02
DM54LS03/74LS03
DM54LS04/74LS04
DM54LS05/74LS05
DM54LS08/74LS08
DM54LS09/74LS09
DM54LS10/74LS10
DM54LS11/74LS11
DM54LS14/74LS14
DM54LS15/74LS15
DM54LS20/74LS20
DM54LS21/74LS21
DM54LS22!74LS22
DM54LS27/74LS27
DM54LS30/74LS30
DM54LS32/74LS32
DM54LS37/74LS37
DM54LS38/74LS38
DM54LS40/74LS40
DM54LS42/74LS42
DM54LS51/74LS51
DM54LS54/74LS54
DM54LS55174LS55
DM54LS73/74LS73
DM54LS74/74LS74
DM 54 LS83A/7 4 LS83A
DM54LS86/74LS86
DM54 LS90/74LS90
DM54LS92/74LS92
DM54LS93/74LS93
DM54LS95B/74LS858
DM54LS109/74LS109
DM54LSl12/74LSl12
DM54LSl13/74LSl13
DM54LSl14/74LSl14
DM54LS125/74LS125
DM54LS126/74LS126
DM54LS132/74LS132
DM74S133
DM54LS136/74LS136
DM54LS138/74LS138
DM54LS139/74LS139
DM54LS151/74LS151
DM54LS153/74LS153
DM54LS155/74LS155
DM54LS156/74LS156
DM54LS157/74LS157
DM54LS158/74LS158
DM54LS160/74LS160
DM54LS161/74LS161
DM54LS162/74LS162
DM54LS163/74LS163
DM54LS164/74LS164
DM54LS170174LS170
DM54LS174174LS174

9NOO
9N01
·9N02
9N03
9N04
9N05
9N06
9N07
9N08
9N09
9N10
9Nl1
9N12
9N13
9N14
9N16
9N17
9N20
9N21
9N23
9N25
9N26
9N27
9N30
9N32
9N37
9N38
9N39
9N40
9N50

"The National Low Power circuits are "True Tenth Power," whereas the Fairchild circuits are not.

xxi

DM54LS175/74LS175
DM54181/74181
DM54LS190/74LS190
DM54LS191/74LS191
DM54LS192!74LS192
DM54LS193/74LS193
DM54LS194A/74LS194A
DM54LS195A/74LS195A
DM54LS196/74LS196
DM54LS197/74LS197
DM54LS251/74LS251
DM54LS253/74LS253
DM54LS257/74LS257
DM 54 LS258/7 4LS258
DM9334/8334
DM 54 LS266/7 4 LS266
DM54LS279/74LS279
DM54LS283/74LS283
DM54LS295A/74LS295A
DM54LS298/74LS298
DM54LS365/74LS365
DM54LS366/74LS366
DM54LS367/74LS367
DM54LS368/74LS368
DM54LS670/74LS670
DM5400/7400
DM5401/7401
DM5402/7402
DM5403/7403
DM5404/7404
DM5405/7405
DM5406/7406
DM 5407 /7407
DM5408/7408
DM5409/7409
DM5410/7410
DM5411/7411
DM54LS12/74LS12
DM5413/7413
DM5414/7414
DM5416/7416
DM5417/7417
DM5420/7420
DM54LS21/74LS21
DM5423/7423
DM5425/7425
DM5426/7426
DM5427/7427
DM5430/7430
DM5432/7432
DM5437/7437
DM5438/7438
DM5401/7401
DM5440/7440
DM5450/7450

~~

TTL Data Book
DEVICE
TYPE

Industry Cross Reference Guide
DEVICE
TYPE

NATIONAL DIRECT
REPLACEMENT

Fairchild (con't)

Fairchild (con't)
9N51
9N53
9N54
9N60
9N70
9N72
9N73
9N74
9N76
9N86
9Nl07
9N122
9N123
9N132
9N279
9500
9502
9503
9504A
,9505A
9508
9509
9510
9511
9515
9520
9522
9530
9532
9540
9551
9564
9565
9574
9586
95109
95112
95113
95114
95132
95133
95134
95135
95140
93500
93510
93512
93S16
93521
93522
93541
93542
93546
93547

I

,

NATIONAL DIRECT
REPLACEMENT

DM5451/7451
DM5453/7453
DM5454/7454
DM5460/7460
DM5470/7470
DM5472/7472
OM5473/7473
OM5474/7474
OM5476/7476
DM5486/7486
OM541 07/741 07
OM54L5122/74L5122
011.154123/74123
OM54132/74132
OM54L5279/74L5279

935138
935139
935151
935153
935157
935158
935174
935175
935194
935251
935253
935257
935258

DM745138
DM745139
DM745151
OM745153
DM745157
OM745158
OM745174
OM745175
OM745194
DM745251
OM745253
DM745257
DM745258

96502

OM9602/8602

DM74500
011.174502
011.174503
011.174504
011.174505
OM74L508
OM74L509
011.174510
011.174511
011.174515
DM74520
OM74522
OM74530
OM74L532
OM74S40
DM74551
OM74564
OM74565
011.174574
OM74586
OM74L5109
OM745112
DM745113
OM745114
OM54L5132/74L5132
DM745133
DM745134
DM745135
DM745140

Motorola
MC830
MC832
MC833
MC836
MC837
MC840
MC844
MC845
MC846
MC848
MC849
MC852
MC853
MC855
MC856
MC857
Me858
MC861
MC862
MC863

011.1930
DM932
011.1933
011.1936
011.1937
011.1935
DM944
OM945
OM946
OM948
OM949
OM9099
OM9093
OM9097
OM9094
OM957
OM958
OM961
OM962
OM963

MC1BOO
MC1BOl

DM1800
DM1801

Signetics
8230
82530
8241
82541
8252
82552
8269
8280
82580
8281
82S81
8290
82590
8291

011.1745195
DM54L5160/74L5160
OM9312/8312
DM54L5161/74L5161
OM745139
OM745157
OM54181174181
OM745182
OM7160/8160
OM7160/8160

'The National Low Power circuits are "True Tenth Power," whereas the Fairchild circuits are not.

xxii

DM9312/8312
OM9312/8312
OM54L5386/74LS386
OM54L5386/74LS386
DM9301/8301
DM9301/8301
OM7200/8200
DM7280/828a
OM54LSl96174L5196
OM7281/B281
DM54LS197174LS197
OM7290/8290
DM54LS196/74LSl96
DM7291/829l

~

TTL Data Book

DEVICE
TYPE

Industry Cross Reference Guide
NATIONAL DIRECT
REPLACEMENT

DEVICE
TYPE

82S91
8292
8293
82147
82148

DM54LS197/74LS197
DM54LS196/74LS196
DM54LS197/74LS197
DM54147/74147
DM54148/74148

8415
8455
8470
8471
8480
8481
8490

DM1800
DM5440/7440
DM5410/7410
DM54LS12/74LS12
DM5400/7400
DM5403/7403
DM540417404

SN15848
SN15849
SN15857
SN15858
SN15861
SN15862
SN15863
SN151800
SN151801
SN168093
SN158094
SN158097
SN158099

DM948
DM949
DM957
DM958
DM961
DM962
DM963
DM1800
DM1801
DM9093
DM9094
DM9097
DM9099

8806
8808
8815
8828
8840
8848
8859
8875
8881
8890
8891

DM546017460
DM543017430
DM542517425
DM5474/7474
DM5451/7451
DM54LS54/74LS54
DM5440/7440
DM542717427
DM540117401
DM540417404
DM5405/7405

8H16
8H70
8H80
8H90

DM54H20/74H20
DM54H 10/74H 10
DM54HOO/74HOO
DM54H04174H04

8T10
8T22
8T54
8T95
8T96
8T97
8T98

DM7551/8551
DM9601/8601
DM544817448
DM7095/8095
DM7096/8096
DM7097/8097
DM7098/8098

SN29002
SN29003
SN29004
SN29005
SN29006
SN29008
SN29009
SN29012
SN29016
SN29024
SN29300
SN29301
SN29309
SN29310
SN29311
SN29312
SN29316
SN29318
SN29322
SN29334
SN29601
SN29602

DM9002C
DM9003C
DM9004C
DM9005C
DM9006C
DM9008C
DM9009C
DM9012C
DM9016C
DM8024
DM8300
DM8301
DM8309
DM8310
DM8311
DM8312
DM8316
DM8318
DM8322
DM8334
DM8601
DM8602

SN39024
SN39300
SN39301
SN39309
SN39310
SN39311
SN39312
SN39316
SN39318
SN39322
SN39334
SN39601
SN39602

DM9024
DM9300
DM9301
DM9309
DM9310
DM9311
DM9312
DMg316
DM9318
DM9322
DM9334
DM9601
DM9602

Signetics (con't)

TI (con't)

j

TI

SNl5830
SN15832
SN15833
SN15835
SN15836
SN15837
SN15844
SN15845
SN15846

NATIONAL DIRECT
REPLACEMENT

DM930
DM932
DM933
DM935
DM936
DM937
DM944
DM945
DM946

xxiii

~. TTL Data Book

Functional Index/Selection Guides

The following pages contain functional indexes and selection guides designed to simplify the choice of a particular function to
fit a specific application. Essential characteristics of similar or like functions are grouped for comparative analysis, and the
electrical specifications are referenced by page number. The following categories of functions are covered:

SSI FUNCTIONS
·AND Gates with Totem-Pole Outputs . . . . . . . . . . . . .
AND Gates with Open-Collector Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AND-OR-INVERT Gates with Totem-Pole Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ANDwOR-INVERT Gates with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . .
Buffers/Clock Drivers with Totem-Pole Outputs . . . . . ' ....' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . " . . . . . . . . ..

Buffer and Interface Gates with Open·Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bus Interface Gates with TRI-STATE Totem-Pole Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Expandable Gates . . . . . . . . . . . . . . . . . . . . . . . . . . \. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Expanders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flip-Flops, Gated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flip·Flops, Single and Dual J·K Edge-Triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flip·Flops, Dual D-Type. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flip·Flops, Single and Dual Pulse-Triggered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Latches, 'S-R .......................... " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Line Drivers, 50·0hm/75-0hm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NAND Gates and Inverters with Open-Collector Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NAND Gates and Inverters with Totem-Pole Outputs . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
NOR Gates with Totem·Pole Outputs . . . . . . . . . . . . . . . . . . . . . . . . .
One Shots, Retriggerable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

xxvi

xxvi
xxvi

xxvii
xxvii
xxvii

xxviii
xxviii
xxviii
xxviii
xxix
xxix
xxx
xxx
xxxi
xxxi
xxxi

xxxii
xxxii

xxxiii

One Shots with Schmitt-Trigger Inputs . . . . . .' " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxiii

OR Gates with Totem-Pole Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . '.' . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxiii
Schmitt·Triggers with Totem·Pole Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxiii

MSI FUNCTIONS
Adders ...
Accumulators, Arithmetic Logic Units, Look-Ahead Carry Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Arithmetic Operators . . . . .
Code Converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Comparators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Counters, Asynchronous (Ripple Clockl-Negative·Edge Triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Counters, Synchronous-Positive-Edge Triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Data Selectors/Multiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Decoders/Demultiplexers . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Display Decoders/Drivers, Open-Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xxxiv

xxxiv
xxxiv

xxxiv
xxxv
xxxv
xxxvi
xxxvii
xxxviii
xxxviii
xxxix

Multipliers . . . . . . . . . . . . . . . . . ~ . . . . . . . . . . . . . . " . ; . " . . . . . . . . .' . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxix
Parity Generators/Checkers. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. xxxix

Priority Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , xxxix
xxxix
Register Files.
xl
Registers, Other . . . . . . . . . . . . . . . . . : . . . . . . . . . . . . . . . . . . . . . . . . .
xl
Registers, Sh if! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xxv

~

Functional Index/Selection Guides

SSI Functions

AND GATES WITH TOTEM-POLE OUTPUTS

Description
Dual4-lnput AND Gates

Triple 3-lnput AND Gates

Quad 2-lnput AND Gate.

Typ_

Typ. Power

Propagation

Dissipation

Delay Time

Per Gate·

8_2 ns

40mW

12 ns

4.25mW

4.75 ns

31 mW

8.2 ns

40mW

12 ns

Device Type and Package
Mil_

Connection
Diagram

Com!.

" - No_

Electrical

Table. Page No_

54H21

J,N

74H21

J,N

1-7

1-44

54 LS21

J,N,W

74LS21

J,N

1-7

1-44

74511

N

1-5

1-44

54Hll

J,N

74Hll

J,N

1-5

1-44

4.25 mW

54LS11

J,N,W

74LSll

J,N

1-5

1-44

12 ns

4.25 mW

54 LS08

J,N,W

74LS08

J,N

1-4

1-44

15 ns

19mW

5408

J,N,W

7408

J,N

1-4

1-44

AND GATES WITH OPEN-COLLECTOR OUTPUTS
Typ.

Description

Triple 3-lnput AND Gates

Quad 2-lnput AND Gates

ProP89ation
Delay Time

Typ. Power
Dissipation

Connection

Device Type and Package

Diagram
Mil.

Per Gate

Page No.

Coml.

y

Electrical

Tables Page No.

6 ns

28mW

74S15

N

1-6

1-46

20 ns

4.25 mW

54L515

J,N,W

74LS15

J,N

1-6

1-46

18.5 ns

19.4mW

5409

J,N,W

7409

J,N

1-4

1-46

20 ns

4.25mW

54LS09

J,N,W

74LS09

J,N

1-4

1-46

AND-OR-INVERT GATES WITH TOTEM-POLE OUTPUTS

Description

2-Wide 4-lnput

Dual 2-Wide 2-lnput

TYp.

Typ. Power

Device Type and Package

Propagation
Delay Time

Dissipation
Per Gate

MiI_

12.5 ns

2.75mW

43 ns

1.5mW

3.5 ns

28mW

6.5 ns

Connection
D~agram

Page No.

Coml.

Electrical
Tablas Page No.

54 LS55

J,N,W

74LS55

J,N

1-15

1-56

54L55

J,N,W

74L55

J,N

1-15

1-56

74S51

N

1-12

1-56

29mW

54H51

J,N

74H51

J,N

1-12

1-56

10.5 ns

14mW

5451

J,N,W

7451

J,N

1-12

1-56

12.5 ns

2.75mW

54LS51

J,N,W

74LS51

J,N

1-12

43 ns

1.5mW

54L51

J,N,W

74L51

J,N

1-12

1-56
1-56 .
1-56

4-Wide 4-2-3-2-lnput

3.5 ns

29mW

74S64

N

1-16

4-Wide 2-2-3-2-lnput

6.6 ns

41mW

54H54

J,N

74H54

J,N

1-14

I-56

4-Wide 2-lnput

10.5 ns

23mW

5454

J,N,W

7454

J,N

1-14

4-Wide 2-3-3-2-lnput

12.5 ns

4.5mW

54LS54

J,N,W

74 LS54

J,N

1-14

'-56
1-56

4-Wide 2-3-3-2-lnput

43 ns

1.5mW

54L54

J,N,W

74L54

J,N

1-14

1-56

~

Functional Index/Selection Guides

551 Functions

AND-OR-INVERT GATES WITH OPEN-COLLECTOR OUTPUTS
Typ_

Description

Propagation
Delay Time

4-Wide 4-2-3-2-lnput

5.5 ns

Typ. Power
Dissipation
Per Gate

Device Type and Package
Mil.

Connection
Diagram

Coml.

36mW

74565

Page No.

J

N

Electrical
Tables Page No.
1-61

1-17

BUFFERS/CLOCK DRIVERS WITH TOTEM-POLE OUTPUTS
(ALSO SEE CLOCK GENERATOR CIRCUITS)
Low-Level

Description

Output
Current

High-Level
Output

Current

Typ.

Typ. Power

Delay

Per

Time

Device Type and Package

Coml

Mil.

Gate

Connection
Diagram
Page No.

Electrical

1-54

T~bles

Page No.

Dual4-lnput NAND

60mA

-3mA

4 ns

44mW

74S40

N

1·11

Buffers

60mA

-1.5mA

7.5 ns

44mW

54H40

J,N

74H40

J,N

1-11

1-54

48mA

-1.2 mA

10.5 ns

26mW

5440

J,N,W

7440

J,N

1-11

1-54

24 mA

-1.2 mA

12 ns

4.3mW

74L540

J,N

12mA

-1.2 mA

12 ns

4.3 mW

54 LS40

J,N,W

Quad 2-lnput NAND

48mA

-1.2 mA

10 ns

25mW

7091

J,N,W

8091

Buffers

48mA

-1.2 mA

10.5 ns

27mW

5437

J,N,W

7437

24mA

-1.2mA

12 ns

4.3mW

74L537

12mA

-1.2mA

12 ns

4.3mW

54LS37

1-11

1-54

1-11

1-54

J,N

3-3

3-4

J,N

1-10

1-54

J,N

1-10

1-54

1-10

1-54

J,N,W

BUFFER AND INTERFACE GATES WITH OPEN-COLLECTOR OUTPUTS
High-Level

Description

Output
Voltage

Low-level
Output

Typ.

Typ. Power

Delay

Per

Current

Time

Quad 2-lnput NAND

15V

16mA

13.5 ns

10mW

Buffers

15V

8 mA

16 ns

2 mW

15V

4mA

16 ns

2mW

5.5V

48mA

12.5 ns

24.4 mW

S.5V

24mA

19 ns

4.3mW

5.5V

12 mA

19 ns

4.3 mW

30V

40mA

13 ns

21 mW

30V

30mA

13 ns

21 mW

15V

40mA

13 ns

21 mW

Hex Buffers/Drivers

Device Type and Package

Gate

15V

30mA

13 ns

21 mW

Hex Inverter Buffers!

30V

40mA

12.5 ns

26mW

Drivers

30V

30mA

12.5 ns

26mW

15V

40mA

'12.5ns

26mW

15V

30mA

12.5 ns

26mW

xxvii

Coml.

Mil.
5426

J,N

54LS26

J,N,W

5438

J,N,W

54L538

J,N,W

5407
5417

5406

Page No.

J,N

1-9

1-42

74L526

J,N

1-9

1-42

1-9

1-42

7438

J,N

1-10

1-42

74LS38

J,N

1-10

1-42

1-10

1-42
1-42

7407

J,N

1-3
1-3

1-42

7417

J,N

1-7

1-42

1-7

.1-42

7406

J,N

1-3

1-42

1-3

1-42

1-6

1-42

1-6

1-42

J,N,W
J,N,W

J,N,W
J,N,W

Electrical
Tables

7426

7416
5416

Connection
Diagram
Page No.

J,N

~

SS! Functions

Functional Index/Selection Guides
BUS INTERFACE GATES WITH TRI-STATE TOTEM-POLE OUTPUTS

Description

Typ_
Propagation
Delay Time

Quad Bus Buffers.

Hex Bus Drivers

Hex I nverter Bus Drivers

12-lnput NAND Gates

Cpnnection
Diagram
Page No.

Device Type and Package

Dissipation

Mil.

Per Gate

Coml.

Electrical Tables
Page No.

10 ns

40mW

54125

J,N,W

74125

J,N

1·27

1-80

10 ns

45mW

54126

J,N,W

74126

J,N

1··27

1-80

10 ns

40mW

7093

J,N,W

8093

J,N

3-5

3-6

10 ns

45mW

7094

J,N,W

8094

J,N

3-5

3-6

9 ns

30mW

7099

J,N,W

8099

J,N

3-9

3-10

12 ns

54mW

54365

J,W

74365

J,N

1-32

1-86

12 ns

54mW

54367

J,W

74367

J,N

1-32

1-86

12 ns

54mW

7095

J,W

8095

J,N

3-7

3-8

12 ns

54mW

7097

J,W

8097

J,N

3-7

38

33 ns

3.3mW

70L95

J,N,W

80L95

J,N

3-7

3-8

33 ns

3.3mW

70L97

J,N,W

80L97

J,N

3'7

3-8

11 ns

49mW

54366

J,W

74366

J,N

1-32

1-86

11 ns

49mW

54368

J,W

74368

J,N

1-33

1-86

11 ns

49mW

7096

J,W

8096

J,N

3-7

3-8

11 ns

49mW

7098

J,W

8098

J,N

3-7

3'8

30 ns

2.5mW

70L96

J,N,W

80L96

J,N

3-7

3·8

30 ns

2.5mW

70L98

J,N,W

80L98

J,N

3·7

3-8

13 ns

10mW

"71 LS95

N

81 LS95

N

3-21

3-22

13 ns

10mW

71 LS97

N

81 LS97

N

'3-21

3-22

9.5 ns

8mW

71 LS96

N

81 LS96

N

3-21

3·22

9.5 ns

8mW

71 LS98

N

81 LS98

N

3-21

3-22

4.5 ns

45mW

74S134

N

1-28

1-80

Octal Drivers

Octal Inverter Drivers

Typ. Power

CLOCK GENERATORS
Typ. Total

Description

Device Type and Package

Dual Voltage-Controlled Oscillators

Connection

Electrical

Diagram
Page No.

Tables
Page No.

2-44

2-45

Power

Mil.

Dissipation
90 mW

54LS124

Coml.

I

J,N,W

I

74LS124

J,N

EXPANDABLE GATES

Description

Typ.
Propagation
Delay Time

Typ. Power
Dissipation

Device Type and Package
Coml.

Mil.

Per Gate

Connection
Diagram
Pelge No.

Electrical
Tables
Page No.

2-Wide AND-OR-INVERT Gates

6.B ns

30mW

54H55

J,N

74H55

J,N

1-15

1-50

Dual2-Wide AND-OR-INVERT Gates

6.5 ns

29mW

54H50

J,N

74H50

J,N

1-11

1-50

10.5 ns

14mW

5450

J,N,W

7450.

J,N

1-11

1-50

4-Wide AND-OR Gates

9.9 ns

88mW

54H52

J,N

74H52

J,N

1-13

1-50

4·Wide AND-OR-INVERT Gates

6.6 ns

41mW

54H53

J,N

74H53

J,N

1-13

1-50

10.5 ns

23 mil'!

5453

J,N,W

7453

J,N

1-13

1-50

10.5 ns

23mW

5423

J,N,W

7423

J,N

1-8

1-50

Dual4-lnput NOR Gates With Strobe

EXPANDERS

Description

Typ. Power
Dissipation

Device Type and Package
Mil.

Per Gate

Dual4-lnput Expanders

Coml.

Connection
Diagram
Page No.

Electrical Tables
Page No.
1-58

4mW

5460

J,N,W

7460

J,N

1-15

6mW

54H60

J,N

74H60

J,N

1-15

1-59

3-2-2-3-lnput AND-OR Expanaer~

25mW

54H62

J,N

74H62

J,N

1-16

1·59

Triple 3-lnput Expanders

13mW

54H61

J,N

74H61

J,N

1-16

1-60

xxviii

~

Functional Index/Selection Guides

SSI Functions

FLIP-FLOPS, GATED
Typ. Characteristics

Data Times

fMAX
(MHzl

Pwr/F-F

Setup

(mWI

(nsl

45

105

15

30

73

24

28

110

15

10

8.0

110

9

9.3

80

7

7.3

100

Device Type and Package

-

Hold
(nsl

a
a
a
a
a
a

Mil_

Coml.

Connection
Diagram
Page No.

Electrical Tables
Page No.

7511

J,N,W

8511

J,N

3-40

3-41

7613

J,N,W

8613

J,N

3-40

3-41

7512

J,N,w

8512

J,N

3-40

3-41

75L12

J,N,W

85L12

J,N

3·40

3-41

75L11

J,N,W

85L11

J,N

3·40

3-41

76L13

J,N,W

86L13

J,N

3-40

3·41

FLIP-FLOPS, SINGLE AND DUAL J-K EDGE TRIGGERED
Typ. Characteristics
Dwg.

Data Times

Pwr/F·F

Setup

Device Type and Package

Hold
(nsl

Ref.

fMAX
(MHzl

{mWI

(nsl

A

125

75

61

at

50

100

131

01

54Hl06

45

10

201

01

45

10

201

01

125

75

61

01

50

100

131

01

54Hl08

45

10

201

01

45

10

201

01

125

75

61

0:

45

10

201

01

54LS113

50

100

13j

OJ

54Hl03

45

10

201

01

45

10

20,

OJ

40

45

1,51

101

33

10

201

51

33

45

101

35

65

201

B

C

D

E

F

Mil.

Com I.
N

1·24

1·70

J,N

74Hl06

J,N

1·23

174

54LS76

J,N,W

74LS76

N

1-21

1·68

54LSl12

J,N,W

74LSl12

J,N

1·24

1-68

745114

N

1·25

1·70

J,N

74Hl08

J,N

1·24

1·74

54LS78

.J,N,W

74LS78

J,N

1·21

1·68

54LSl14

J,N,W

74LS114

J,N

1·25

1·68

74S113

N

1-25

1·70

J,N,W

74LS113

J,N

1·25

1·68

J,N

74Hl03

J,N

1·23

1·74

54LS73

J,N,W

74LS73

J,N

1·20

1·68

54LS107

J,N

74LS107

J,N

1·23

1·68

9024

J,N,W

8024

J,N

4·17

4-17

54LS109

J,N,W

74LS109

J,N

1·24

1-68

61

54109

J,N,W

74109

J,N

1·24

1-62

51

5470

J,N,W

7470

J,N

1·18

1·62

(B)

Ur-

-<: CK

-J

T~:r

-J

--<

CK

01-

CLEAR

F·F_ K

Ii-

--(

CK

-T

-K

(E)

of--

-

TO OTHER
F·F

xxix

--Jru-

a-

K

or--

-J

-.
-

CK

CLEAR

'-----

(F)

PRESET

0-

-J

OTHER

or-

-K

for the falling edge.

-

PRESET

u-

~

(D)

(e)

.-Jm

PRESET

-J

Electrical
Tables
Page No.

74S112

t ~ The arrow indicates the edge of the clock pulse used for reference: t for the rising edge,

(AI

Connection
Diagram
Page No.

CK

arClEAR

~

~

0-

J
CK

K

a-

==r-

~

SSI Funct.ions

Functional Index/Selection Guides

""

FlIp·FlOPS, DUAL D·TVPE
Typ. Characteristics

DatalTimes

Connection
Diagram

Device Type and Package

Electrical
Tables
Page No.

Dwg.
Ref.

fMAX
(MHz)

G

110

75

31

2t

74S74

N

1-20

1-70

43

75

15t

5t

54H74

J,N

74H74

J,N

1-20

1-64

54LS74

J,N,W

1-20

1-68

J,N,W

74LS74
7474 .

J,N

5474

J,N

1-20

1-62

54L74

J,N,W

74L74

J,N

'-20

'-66

Connection
Diagram
Page No.

Electrical
Tables
Page No.

Pwr/F·F
(mW)

Hold
(ns)

Setup
(ns)

33

10

25t

25

43

20t

5t
5t

6

4

50t

15t

"Mil.

Page No.

Coml.

t.J. The arrow indicates the edge of the clock pulse used for reference: ffor the rising edge, t for the falling edge.

(G)
PRESET

-

0-

0

--(

CK

il;-CLEAR

FlIP·FlOPS, SINGLE AND DUAL PUlSE·TRIGGERED
Typ. Characteristics
Dwg.
Ref.

Data Times

Device Type and Package

fMAX
(MHz)

Pwr/F·F

Setup

(mV\()

(ns)

Hold
(ns)

30

80

Ot

01

54H73

J,N

74H73

JN

1-20

1-64

20

50

at

01

5473

J,N,W

7473

J,N

1-20

1-62

20

50

at

01

54107

J.N

74107

J,N

'-23

1·62

6

3.8

at

01

54L73

J,N,W

74L73

J.N

1·20

1·66

30

80

at

01

54H76

J.N

74H76

J.. N

1·21

1·64

20

50

ot

01

5476

J,N,W

7476

J,N

1·21

1·62

30

80

at

0;

54H78

J,N

74H78

J,N

1·21

1·64

6

3.8

ot

01

54L78

J,N,W

74L78

J,N

1·21

1·66

K

30

80

at

01

54H71

J,N

74H71

J,N

1·18

1·64

L

30

80

at

01

54H72

J,N

74H72

J,N

1·19

1·64

20

50

at

01

5472

J,N,W

7472

J,N

1-19

1·62

6

3.8

at

01

54172

J,N,W

74L72

J,N

1·19

1·66

6

3.8

at

01

54171

J,N.W

74L71

J;N

1·19

1·66

H

I

J

,

M

/II

(H)

--(

(J)

of-- -

CK

-K

--<
ilf-- -

CLEAR

0-

J

T~:r

CK

il;--

K

CLEAR

-J

III

ilf--

T-

(M)

~~- I;~r I;~~

of--

CK

OTHER
F·F_ K

Coml.

(K)

r-Jm

PRESET

-J

Mil.

TO OTHER
F·F

~

CK

-

K

xxx

CK

ill-

'--

K

.

CK

ill-

~

R

ill-

-"T-

~

Functional Index/Selection Guides

SSI Functions
LATCHES,

Description

Quad

S~R

Typ.

Typ. Total

Propagation

Power

Delay Time

Dissipation

12 ns

19mW

Latches

S-R
Connection
Diagram

Device Type and Package

I
I

Mil.
54L5279

I

J,N,W

Coml.

I

74L5279

J,N

Electrical

Page No.

Tables
Page No.

2-168

2-169

LINE DRIVERS, 50-0HM/75-0HM

Description

Dual4-lnput NAND Line

Current

Typ_
Delay
Time

Typ. Power
Per
Gate

-40 rnA

4 ns

44mW

Low~level

High-Level

Output

Output

Current

60 rnA

Device Type and Package

Coml.

Mil.

745140

I

Connection

Electrical

Diagram
Page No.

Tables
Page No.

1-29

1-54

N

Drivers

.
NAND GATES AND INVERTERS WITH OPEN-COLLECTOR OUTPUTS

Description

Dual4-lnput NAND Gates

Typ_

Typ. Power

Propagation

Dissipation

Delay Time

Per Gate

Mil.

Diagram
Page No.

Coml.

Electrical
Tables
Page No.

5 ns

17.5mW

74522

N

1-8

1-38

8 ns

22mW

54H22

J,N

74H22

J,N

1-8

1-38

16 ns

2mW

54L522

J,N,W

74L522

J,N

1-8

1-38
1-38
1-38

54L512

Triple 3-lnput NAND Gates

16 ns

2mW

Quad 2-lnput NAND Gates

5 ns

17.5 mW

8 ns

22mW

54HOl

16 ns

2mW

54L501

Hex Inverters

Connection

Device Type and Package

J,N

1-5

74S03

N

1-2

J.N

74HOl

J,N

1-1

1-38

J,N,W

74L501

J,N

1-1

1-38

J,N,W

74L512

16 ns

2mW

54L503

J,N,W

74L503

J,N

1-2

1-38

22 ns

10mW

5401

J,N,W

7401

J,N

1-1

1-38

22 ns

10mW

5403

J,N

7403

J,N

1-2

1-38

41 ns

1 mW

54LOl

W

74LOl

W

1-1

1-38

54L03

J,N

74103

J,N

1-2

1-38

80LOG

N

3-1

3-2
1-38

410s

1mW

115 ns

1.8mW

5 ns

17.5mW

8 ns

22mW

16 ns

2mW

22 ns

10mW

74S05

N

1-3,

54H05

J,N

74H05

J,N

1-3

1-38

54L505

J,N,W

74L505

J,N

1-3

1-38

5405

J,N,W

7405

J,N

1-3

1-38

.
'

.

~

551 Functions

Functional Index/Selection' Guides
NAND GATES AND INVERTERS WITH TOTEM-POLE OUTPUTS
Typ.

Description

Typ. Power
Dissipation

Propagation
Delay Time

Connection

Device Type and Package

Coml.

Mil.

Per Gate

Electrical

Diagram

Tables

Page No.

Page No.

3 ns

19 mW

74S20

J,N

1-7

1·36

6 ns

22mW

54H20

J,N

74H20

J,N

1·7

1·36

9,5 ns

'2 mW

54LS20

J,N,W

74LS20

J,N

1·7

1·36

10 ns

10mW

5420

J,N,W

7420

J,N

1·7

1-36

33 ns

1 mW

54L20

J,N,W

74L20

J,N

1-7

1-36

Dual 5-lnput NAND Gates

10 ns

20mW

7092

J,N,W

8092

J,N

3-3

3-4

Triple 3-lnput NAND Gates

3 ns

19mW

74S10

J,N

1-4

1-36

6 ns

22mW

54Hl0

J,N

74Hl0

J,N

1-4

1-36

9.5 ns

2mW

54LS10

J,N,W

74LSlO

J,N

1-4

1-36

10 ns

lOmW

33 ns

1 mW

Dual 4·lnput NAND Gates

Quad 2-1 nput NAND Gates

3 ns

19 mW

6 ns

22 mW

9.5 ns

2 mW

os

10mW

33 ns

1 mW

3 ns

19 mW

6 ns

22mW

10

Hex Inverters

•

7410

J,N

1-4

1-36

J,N,W

74L 10

J,N

1-4

1-36

74S00

N

1-1

1-36

54HOO

J,N

74HOO

J,N

1-1

1-36

54LSOO

J,N,W

74LSOO

J,N

1-1

1-36

5400

J,N,W

7400

J,N

1-1

1-36

54LOO

J,N,W

74LOO

J,N

1·1

1-36

74S04

N

1-2

1-36

J,N

74H04

J,N

1-2

1-36
1-36

54H04

2mW

54 LS04

J,N,W

74LS04

J,N

1-2

10 ns

10mW

5404

J,N,W

7404

J,N

1-2

1-36

11 ns

18mW

7090

J,N,W

8090

J,N

3-3

3-4

54L04

J,N,W

74L04

J,N

1-2

1-36

74S30

J,N

1-9

1-36

33 ns

1 mW

3 ns

19mW

6 ns

22mW

54H30

J,N

74H30

J,N

1-9

1-36

10 ns

10mW

5430

J,N,W

7430

J,N

1-9

1-36

54 LS30

J,N,W

74LS30

J,N

1-9

1-36

54L30

J,N,W

74L30

J,N

1-9

1-36

74S133

N

1-28

1-36

ns

2.4 mW

·33 ns

1 mW

3 ns

19mW

17

13-lnput NAND Gates

J,N,W

9.5 ns

,

8-lnput NAND Gates

5410
54Ll0

NOR GATES WITH TOTEM-POLE OUTPUTS
Typ.

Description

Dual 4-1 nput NOR Gates With Strobe
Dual 5-1 nput NOR Gates
Triple 3-lnput NOR pates

..

Quad 2-1 nput' NOR Gates

!

Propagation

Typ. Power
Dissipation

Delay Time

Per Gate

10.5 ns

23 mW

4 ns

54mW

8.5 ns

22mW

'10 ns

4.5 mW

3.5 ns

29mW

10 ns

2.75mW

10 ns
33 ns

Connection
Diagram

Device Type and Package
Coml.

Mil.
5425

Page No.

J,N,W

. Electrical Tables

Page No.

7425

J,N

1-8

1-40

74S260

N

1-31

1-40

5427

J,N,W

7427

J,N·

1-9

1-40

54 LS27

J,N,W

74LS27

J,N

1-9

1-40

74S02

N

1-2

1-40

54LS02

J,N,W

74 LS02

J,N

1-2

1-40

14mW

5402

J,N,W

7402

J,N

1-2

1-40

1.5mW

54L02

J,N,W

74L02

J,N

1-2

1-40

'.

~

Functional Index/Selection Guides

SSI Functions

ONE SHOTS, RETRIGGERABLE
No. of Inputs

Description

Dual

Device Type and Package

Typ.

Output
Pulse

Total

Range

Power

Connection
Diagram
Page No.

Electrical
Tables

Negative

Clear

2

2

Yes

45 ns- oo

30mW

54LS122

J.N,W

74LS122

J,N

1·26

1·78

2

2

Yes

50 ns-oo

90mW

9601

J,N,W

8601

J,N

4-43

4-44

1

1

Yes

45 ns- oo

230 mW

54123

J,N.W

74123

J,N

1-26

1-78

1

1

Yes

90

ns-~

25mW

54L 123A

J,N,W

74L 123A

J,N

1-26

1-78

1

1

Yes

45 ns- oo

60mW

54LS123

J,N,W

74LS123

J,N

1-26

1-78

1

1

Yes

72 ns·- oo

195mW

9602

J,N,W

8602

J,N

4-46

4-47

2

2

Yes

72 ns- oo

275 mW

7853

J,N,W

8853

J,N

3-151

3-152

Positive

Single

Direct

Mil.

Coml.

Page No.

ONE SHOTS WITH SCHMITT·TRIGGER INPUTS
Output
Pulse
Range

No. of Inputs

Description

Negative

1

2

40 ns-28

5

90mW

1

1

20 ns-70 s

23mW

1

1

20 ns-49 s

23 mW

Single

Dual

Device Type and Package

Typ. Total
Power
Dissipation

Positive

Connection

Coml.

Mil.
54121

J,N,W

54LS221

J,N,W

Electrical

Diagram

Tables

Page No.

Page No.
1-76

74121

J,N

1-26

74LS221

J,N

1-30

1-76

1-30

1·76

Connection
Diagram
Page No.

Electrical
Tables
Page No.

OR GATES WITH TOTEM-POLE OUTPUTS
Typ.

Description

Quad 2-lnput OR Gates

Propagation
Delay Time

12 ns
12 ns

Typ. Power
Dissipation
Per Gate
24mW
5mW

Device Tvpe and Package
Mil.
5432

I

54LS32

Coml.
J,N,W

7432

J,N

1-10

1-52

J,N,W

74LS32

J,N

1-10

1-52

Connection
Diagram
Page No.

Electrical
Tables

SCHMITT-TRIGGERS WITH TOTEM-POLE OUTPUTS

Description

Typ.

Device Type and Package

Typ.

Hysteresis

Delay
Time

Mil.

Coml.

Page No.

Dual4·lnput NAND

0.8V

16.5 ns

5413

J,N,W

7413

J.N

1-5

1-48

Schmitt Triggers

0.8V

16.5 ns

54LS13

J.N,W

74LS13

J,N

1-5

1-48

Quad 2·lnput NAND

0.8V

15 ns

54132

J.N,W

74132

J,N

1-27

1-48

Schmitt Triggers

0.8V

15 ns

54LS132

J,N,W

74LS132

J,N

1-27

1·48

Hex Schmitt Trigger Inverters

0,8V

15 ns

5414

J,N,W

7414

J,N

1-6

1-48

0.8V

15 ns

54LS14

J,N,W

74LS14

J,N

1-6

1-48

xxxiii

~

Functional Index/Selection Guides

MSI Functions
ADDERS
Typ.
Description

Carry
Time

Typ.
Add
Time

Typ. Power
Dissipation

10 ns

15 ns

24mW

54LS83A

J,N,W

74LS83A

J,N

2-17

2·18

10 ns

15 ns

24mW

54L~283

J,N,W

74LS283

J,N

2·17

2·18

10 ns

16 ns

76mW

5483

J,W

7483

J,N

2·17

2-18

Singl. 4-Bit Full Adders

Device Type and Package

Conneetion

Diagram
Mil.

Per Bit

Coml.

Page No.

Electrical
Tables
Page No.

ACCUMULATORS, ARITHMETIC LOGIC UNITS, LOOK-AHEAD CARRY GENERATORS
Typ,
Description

4~Bit

Typ. Tot.1

Time

Typ.
Add
Time

12.5 ns

24 ns

455mW

10 ns

20 ns

720mW

Carry

Arithmetic Logic Units!

Device Type and Package

Power

Mil.

Dissipation

Coml.

54181

J

Connection

Electrical

Diagram
Page No.

Table.
Page No,

74181

J,N

2·107

2-109

745281

N

2·173

2-174

74S182

N

2·113

2-114

74182

J,N

2-113

2·114

Function Generators

4·8it Parallel Binary
Accumulators
Look-Ahead Carry Generators

7 ns

260mW

13 ns

180mW

64182

J

ARITHMETIC OPERATORS
Typ.
Delay
Time

Description

Quad 2-ln"ut EXCLUSIVE-NOR

Typ. Total

Device Type and Package

Power

Mil.

Dissipation

Coml.

Connection

Electrical

Diagram
Page No.

Tables
Page No.

18 ns

40mW

54LS266

J,N,W

74LS266

J,N

1-31

1-84

18 ns

30mW

54LS136

J,N,W

74LS136

J,N

1·29

1·84

Gates
Quad 2·lnput EXCLUSIVE-OR

Gates With Open Collector Outputs
Quad 2-lnpu, EXCLUSIVE·OR
Gates with

Totem~Pole

Outputs

Quad EXCLUSIVE-OR/NOR

7 ns

250mW

74S86

N

1-22

1·72

10 ns

30mW

54LS86

J,N,W

74LS86

J,N

1-22

1-72

10 ns

30mW

54LS386

J,N,W

74LS386

J,N

1·34

1-72

14 ns

150mW

5486

J,N,W

7486

J,N

1·22

1-72

29 ns

15mW

54L86

J,N,W

74L86

J,N

1·22

1-72

8 ns

325mW

745135

N

1·28

1·82

Gates

CODE CONVERTERS

Description

Typ.
Delay Time
Per Package
Level

6-Bit Binary to 6-Bit BCD Gonverters

Device Type and Package

Typ. Total

Connection

Power

Diagram

Dissipation

25 ns

280mW

31 ns

350mW

6-Line BCD to 6-Line Binary, or

25 ns

280mW

4·Lin. to 4-Line BCD 9'.fBCD 10'.

31 n.

350mW

54185A

54184

Converters

xxxiv

Page No.

Coml.

Mil.
J,W

J,W

Electrica'
Table.
Page No,

,74185A

J,N

2·116

2·117

8899

N

3-156

3-157

74184

J,N

2·116

2-117

8898

N

3-156

3-157

~

Functional Index/Selection Guides

MSI Functions
COMPARATORS

Description

Typ.

Typ. Total

Compare

Power

Diagram

Page No.

Electrical
Tables
Page No.
3-24

4·8it Magnitude Comparators

6·8it Magnitude Comparators

10-8 it Magnitude Comparators

Connection

Device Type and Package
Mil.

Coml.

Time

Dissipation

20 ns

175mW

7200

J,N,W

8200

J,N

3-23

21 ns

275 mW

5485

J,W

7485

J,N

2-21

2-22

70 ns

20mW

54L85

J,N,W

74L85

J,N

2-21

2-22

70 ns

75mW

76L24

J,N,W

86L24

J,N

3-131

3-132

20 ns

250 mW

7131

J,w

8131

J,N

3-19

3-20

20 ns

250 mW

7136

J,W

8136

J,N

3-19

3-20

21 ns

205mW

7160

J,W

8160

J,N

3-17

3-18

21 ns

240mW

7130

J,F

8130

J,N

3-17

3-18

Connection

Electrical

Diagram
Page No.

Tables
Page No.

COUNTERS, ASYNCHRONOUS (RIPPLE CLOCK) - NEGATIVE-EDGE TRIGGERED

Description

4-Bit Binary

Decade

Divide by 12

Device Type and Package

Typ, Total

Freq.

Parallel
Load

Clear

50 MHz

Yes

Low

240mW

54197

J,N

74197

J,N

2-101

2-102

40 MHz

Yes

Low

150mW

7291

J,N,W

8291

J,N

4-11

4-12

35 MHz

Yes

Low

150mW

54177

J

74177

J,N

2-101

2·102

35 MHz

Yes

Low

150mW

7281

J,W

8281

J,N

4-11

4-12

32 MHz

None

High

39mW

54LS93

J,N,W

74LS93

J,N

2-30

2-31

32 MHz

None

High

160mW

5493A

J,W

7493A

J,N

2-30

2-31

30 MHz

Yes

Low

60mW

54LS197

J,N,W

74L5197

J,N

2-101

2-102

6 MHz

None

High

20mW

54L93

J,N,W

74L93

J,N

2-30

2-31

6 MHz

None

High

20mW

76L93

J,N,W

86L93

J,N

3-142

3-143

Count

Power

Com I.

Mil.

Dissipation

50 MHz

Yes

Low

240mW

54196

.I,N

74196

J,N

2-101

2-102

40 MHz

Yes

Low

150mW

7290

J,N,W

8290,

J,N

4-11

4-12

35 MHz

Yes

Lo'w

150mW

54176

J

74176

J,N

2-101

2-102

35 MHz

Yes

Low

150mW

7280

J,W

8280

J,N

4-11

4-12

32 MHz

Set-to-9

High

40mW

54LS90

J,N,W

74LS90

J,N

2-30

2-31

32 MHz

Set-to-9

High

160mW

5490A

J,W

7490A

J,N

2-30

2-31

30 MHz

Yes

Low

60mW

54LS196

J,N,W

74LS196

J,N

2-101

2·102

54L90

J.N,W

74L90

J.N

2-30

2-31

7288

J,W

8288

J,N

4-11

4-12

6 MHz

5et-to-9

High

20mW

35 MHz

Yes

Low

150mW

32 MHz

None

High

39mW

54LS92

J,N,W

74LS92

J,N

2·30

2·31

32 MHz

None

High

160mW

5492A

J,W

7492A

J,N

2-30

2-31

xx:xv

~

Functional Index/Selection Guides

MSI Functions

COUNTERS, SYNCHRONOUS-POSITlVE·EDGE TRIGGERED
Typ. Total
Description

4-Bit Binary

Count

Device Type and Package

Connection
Diagram

Electrical

Freq.

Parallel
Load

25 MHz

Sync

Sync·L

93 mW

54lS163

J,N,W

74LS163

J,N

2·70

2·71

25 MHz

Sync

Async-L

93 mW

54LS161

J,N,W

74LS161

J,N

2·70

2·71

25 MHz

Sync

Sync·L

305mW

54163A

J,W

74163A

J,N

2·70

2·71

25 MHz

Sync

Async-L

305mW

54161A

J,W

74161A

J,N

2·70

2·71

25 MHz

Sync

Async-L

305mW

9316

J,W

8316

J,N

4·27

4·28

25 MHz

Sync

Sync·L

375mW

7556

J.W

8556

J,N

3·72

3·73
3·138

Clear

Power

Mil.

Dissipation

Coml.

Page No.

Tables
Page No.

6MHz

Sync

Async-L

33 mW

76L76

J,N,W

86L76

J,N

3·137

4-Bit Binary

25 MHz

Sync

None

100mW

54LS169

J,N,W

74LS169

J,N

2·85

2· 86

Up/Down

25 MHz

Async

Async-H

85mW

54LS193

J,N,W

74LS193

.J,N

2·133

2·134

20 MHz

Async

Async-H

325mW

54193

J,W

74193

J,N

2·133

2·134

20 MHz

Async

Async-H

325mW

7563

J.W

8563

J,N

3·76

3·77

54LS191

J.N,W

74LS191

J,N

2·128

2·129

54191

J.N,W

74191

J,N

2·128

2·129

Decade

20 MHz

Async

None

90mW

20 MHz

Async

None

325 mW

6 MHz

Async

Async·H

40mW

54L 193

J,N,W

74L 193

J,N

2·133

2·134

Async-H

40mW

75L63

J,N,W

85L63

J,N

3·76

3·77

J,N

2·70

2·71

2·70

2·71
2-71

6 MHz

Async

25 MHz

Sync

Sync·L

93 mW

54LS162

J,N.W

74LS162

25 MHz

Sync

Async-L

93mW

54LS160

J,N,W

74LS160

J,N

25 MHz

Sync

Sync·L

305mW

54162A

J,W

74162A

J,N

2-70

25 MHz

Sync

Async-L

305mW

54160A

J.W

74160A

J,N

2·70

2·71

25 MHz

Sync

Async-L

305mW

9310

J,W

8310

J,N

4·27

4·28

400mW

7555

J,W

8555

J,W

3·72

3-73

76L75

J,N.W

S6Ll5

J,N

3·137

3-138

2-85

2·86

25 MHz

Sync

Sync-L

6 MHz

Sync

Async-L

33 mW

Decade

25 MHz

Sync

None

100mW

54LS168

J,N,W

74LS168

Up/Down

25 MHz

Async

Async-H

85mW

54LS192

J,N,W

74LS192

20 MHz

Async

Async-H

325mW

54192

J,W

Modulo·N

J,N
' J,N

2·133

2·134

74192

J,N

2-133

2·134
2·129

20 MHz

Async

None

100mW

54LS190

J,N,W

74LS190

J,N

2·128

20 MHz

Async

None

325mW

54190

J,N,W

74190

J,N

2·128

2·129

20 MHz

Async

Async~H

325mW

7560.

J,W

8560

J,N

3·76

3-77

6 MHz

Async

Async~H

40mW

54L 192

J,N,W

74L192

J,N

2·133

2·134

6 MHz

Async

Async·H

40mW

75L60

J,N,W

85L60

J,N

3-76

3·77

15 MHz

Sync

None

250mW

7520

J.W

8520

J,N

3-44

347

Divider

xxxvi

~

Functional Index/Selection Guides

MSI Functions

DATA SELECTORS/MUL TlPLEXERS
Typ. Delay Times
Description

Quad 2-Li ne to

l-Line

Type
of
Output
TRI·
STATE

Data to
Inv.
Output

4 ns

TRI-

5 ns

STATE

Standard

4 ns
5 ns

Standard
TRISTATE

12 ns

TRI-

12 ns

STATE
Standard

7 ns

l-Line

2·165

2·166

N

2·66

2-67

74S157

N

2·66

2-67

J,N,W

74LS258

J,N

2-165

2-166

54LS257

J,N,W

74LS257

J,N

2·165

2·166

54LS158

J,N,W

74LS158

J,N

2.£6

2-67

54LS157

J,N,W

74LS157

J,N

2.£6

2·67

54157

J,W

74157

J,N

2.£6

2·67

54L157A

J,N,W

74L 157A

J,N

2.£6

2-67

9322

J,W

8322

J,N

4·38

4·39

71L22

J,N,W

81L22

J,N

3·13

3·14

7123

J,W

8123

J,N

3·13

3·14

8 ns

250mW

20 ns

35mW

54LS258

20 ns

50mW

12 ns

24mW

Standard

40 ns

60 ns

15mW

9 ns

14 ns

150mW

Mil.

Coml.

40 ns

60 ns

15mW

9.5 ns

N/A

200mW

40 ns

N/A

20mW

71 L23

J,N,W

81L23

J,N

3-13

3·14

65mW

54LS298

J,N,W

74LS298

J,N

2·184

2·185

54LS253

J,N,W

20 ns
from
clock

TRI-

12 ns

16 ns

35mW

Standard

6 ns

9.5 ns

225mW

Standard

14 ns

17 os

180mW

Standard

14 ns

17 ns

31 mW

20 ns

20 ns

13.5 ns

4.5 ns

STATE

TRI·
TRISTATE
TRISTATE

J,N

2·163

2:164

N

2-57

2·58
2·58

54153

J,W

74153

J,N

2·57

J,N,W

74LS153

J,N

2-57

2·58

135mW

9309

J,W

8309

J,N

4·24

4·25

20 ns

170mW

7214

J,W

8214

J,N

3·28

3·29

8 ns

14 ns

275 mW

74S251

N

2-160

2·161

II ns

18 ns

17 ns

155mW

17 ns

21 ns

21 ns

35mW

12 ns

TRI·

STATE

74LS253
74S153

54LS153

STATE

16-Line to '-Une

N

74S158

195mW

Standard

Standard

B-Line-to '-Line

74S257

320mW

7 ns

150mW

Storage
Dual 4-Line to

2·166

14 ns

14 ns

Standard

2·165

74S258

9 ns

l-Line With

N

280mW

Standard

TRI·

Tables
Page No.

14 ns

49mW

STATE

Electrical

Diagram
Page No.

Dissipation

14 ns

STATE

Connection

Power

9 ns

TRI·

Device Type and Package

Typ. Total
From
Enable

Standard

Standard

Quad 2-line to

Data to
Non-Inv.
Output

54251

J,W

74251

J,N

2·160

2·161

54LS251

J,N,W

74LS251

J,N

2-160

2-161
2·54
2·54

Standard

4.5 ns

8 ns

9 ns

225mW

74S151

N

2-53

Standard

8 ns

16 ns

22 ns

145mW

54151A

J,W

74151A

J,N

2-53

Standard

11 ns

18 ns

27 ns

30mW

54LS151

J,N,W

74LS151

J,N

2·53

2-54

Standard

9 ns

16 ns

17 ns

135mW

9312

J,W

8312

J,N

4·24

4-25

Standard

11 ns

18 ns

17 ns

155mW

7121

J,W

8121

J,N

3·11

3·12

Standard

22 ns

N/A

100mW

7210

J,W

8210

J,N

3·25

3-26

Standard

22 ns

20 ns

100mW

7211

J,W

8211

J,N

3-25

3-26

11 ns

18 ns

200mW

54150

J,F

74150

J,N

2-53

2·54

II ns

21 ns

225mW

7219

J,F

8219

J,N

3-28

3-29

Standard
TRISTATE

,

xxxvii

~

MSI Functions

Functional Index/Selection Guides
DECODERS/DEMUL TIPLEXERS
Typ.
Select
Time

Type of
Output

Descriptio'n

T¥P·

Typ. Total

Device Type and Package

Enable
Time

Power
Dissipation

Mil.

Dual 2-Line to

Totem-Pole

7.5 ns

6 ns

300mW

4-Line

Totem-Pole

18 ns

15 ns

30mW

TRI-

Connection
Diagram

Coml.

Electrical

Tables
Page No.

Page No.

74S139

N

2,46

2-47

54LS155

J,N,W

74LS155

J,N

2·63

2·64

20 ns

15 ns

240mW

7230

J,W

8230

J,N

3-37

3-38

Totem-Pole

21 ns

16 ns

250mW

54155

J,W

74155

J,N

2·63

2·64

Totem-Pole

22 ns

19 ns

34mW

54LS139

J,N,W

74LS139

J,N

2-46

2·47

Open-Collector

23 ns

18 ns

250mW

54156

J,W

74156

J,N

2·63

2-64

Open-Collector

33 ns

26 ns

31 mW

54LS156

J,N,W

74LS156

J,N

2-63

2·64

74S138

N

2-46

2-47

54LS138

J,N,W

74LS138

J,N

2-46

2·47

7223

J

8223

J,N

3·35

3-36
2·4

STATE

3-Line to 8-Une

Totem-Pole

8 ns

7 ns

225mW

Totem-Pole

22 ns

21 ns

31 mW

Totem-Pole

25 ns

140mW

4-Une to 10-Line,

Totem-Pole

17 ns

35mW

54LS42

J,N,W

74LS42

J,N

2-3

BCD to Decimal

Totem-Pole

17 ns

140mW

5442

J,W

7442

J,N

2-3

2-4

Totem-Pole

20 ns

125mW

9301

J,W

8301

J,N

4·22

4·23

4-Lineto 16-Line

Totem-Pole

67 ns

54l42A

J,N,W

74L42A

J,N

2-3

2·4

Totem-Pole

19.5 ns

17.5 ns

170mW

54154

J,F

74154

J,N

2-60

2·61

Totem-Pole

19,5 ns

17,5 ns

170mW

9311

J,F

8311

J,N

4-33

4·34

Totem-Pole

23 ns

19 ns

45mW

54LS154

J,N,W

74LS154

J,N

2-60

2·61

Totem-Pole

55 ns

45 ns

24mW

54L 154A

F,J,N

74L154A

J,N

2·60

2-61

Connection

Electrical
Table.
Page No.

15mW

DISPLAY DECODERS/DRIVERS, OPEN·COLLECTOR

Curr'ent

Off·State
Output
Voltage

BCD to 7-

40mA

30V

320mW

Ripple

5446A

J,N,W

7446A

J,N

2·8

2-9

Segment

40mA

15V

320mW

Ripple

5447A

J,N,W

7447A

J,N

2-8

2·9

Decoders/Drivers

24mA

15V

35'mW

Ripple

74LS47

J,N

2-8

2·9

12mA

15V

35mW

Ripple

54LS47

J,N,W

2-8

2·9

6AmA

5.5V

265mW

Ripple

5448

J,N,W

6mA

5.5V

125mW

Ripple

4mA

5.5V

40mW

Direct

54LS49

J,N,W

2mA

5.5V

125mW

Ripple

54LS48

J,N,W

BCD to Decimal

80mA

30V

215mW

Invalid Codes

5445

J,W

7445

Decoders/Drivers

80mA

15V

215mW

Invalid Codes

54145

J,W

7 mA

60V

80mW

Invalid Codes

54141

3.6mA

2,4V

75mW

76L25

Output

Description

Sink

Typ. Total

Device Type and Package
Blanking

Power

Dissipation

Diagram
Mil.

Com!.

Page No,

7448

J,N

2-8

2-9

74LS48

J,N

2-8

2-9

74LS49

J,N

2-8

2·9

2-8

2·9

J,N

2-6

2·7

74145

J,N

2·6

2-7

J,W

74141

J,N

2-1

2·2

J,N,W

86L25

J,N

3·134

3-135

7-Segment to
BCD

Direct

Decoders/Drivers

RESULTANT DISPLAYS USING 46A, 47A, 48, LS47, LS48, LS49

/fl

C,j-Il

n

j
_ I_
-rjl-1~jl-l

~=1.=1
Lij~ijl-~_ _7
11
__77_7/_711_77/_

1-1

1

2

3

4

5

6

7

8

xxxviii

9

10

11

12

13

14

15

~

Functional Index/Selection Guides

MSI Functions
LATCHES
No.
of
Bits

Clear

Outputs

Typ.
Delay
Time

Typ. Total
Power
Dissipation

Addressable Latches

8

Low

a

21 ns

280mW

DG (Clocked) Latches

4

None

0,0

11 ns

4

None

10 ns

Description

Coml.

Electrical
Tables
Page No.
441

J,W

8334

J,N

440

32mW

54LS75

J,N,W

74LS75

J,N

2·14

2-15

35mW

54LS77

W

2·14

2-15

4

None

15 os

160mW

4

None

0,0

52 ns

17.5 mW

4

None

12 ns

19mW

4

None

19 ns

180mW

TAl-STATE

4

High

Counters/Latches

4

High

4

High

4

High

8

High

a
a
a
a
a
a
a

S-A Latches

Mil.

Connection
Diagram
Page No.

9334

a
a,a
-

Device Type and Package

28 ns

330mW

95 ns

38mW

28 ns

330mW

95 ns

38mW

21 ns

330mW

5475

J,N,W

7475

J,N

2'14

2·15

54L75A

J,N,W

74L75A

J,N

2'14

2-15

54LS279

J,N,W

74LS279

J,N

2-168

2-169

7544

J,N,W

8544

J,N

3-54

3-55

7552

J,W

8552

J,N

3-64

3-65

75L52

J,N,W

85L52

J,N

3-64

3-65

7554

J,W

8554

J,N

3-64

3-65

75L54

J,N,W

85L54

J,N

3-64

3-65

7553

J,W

8553

J,N

3-70

3-71

. MULTIPLIERS
Connection
Diagram
Page No.

Device Type and Package
Description
Mil.
4-Bit by 4·8it Parallel Binary Multipliers

Coml.

7875A

J

8875A

7875B

J

8875B

I

Electrical
Tables
Page No.

J,N

3-154

3-155

J,N

3-154

3-155

PARITY GENERATORS/CHECKERS
Typ.
Delay

Typ_ Total

Time

Dissipation

35 ns

170mW

9-Bit OddlEven Parity

13 ns

335mW

Generators/Checkers

34 ns

130mW

Description

8-Bit OddlEven Parity

Generators/Checkers

Connection
Diagram
Page No.

Electrical Tables
Page No_

J,N

2-105

2-106

745280

N

2-170

2-171

8220

J,N

3-32

3-33

Device Type and Package

Power
Mil.

Coml.

54180

J,W

74180

7220

J,N,W

PRIORITY ENCODERS
Typ.
Propagation
Delay Time

Description

Device Type and Package

Typ_ Total
Power
Dissipation

Connection

Electrical

Diagram
Page No.

Tables
Page No.

Coml_

Mil.

Cascadable Octal Priority

12 ns

190mW

54148

J,W

74148

J,N

249

2-50

Encoders

12 ns

190mW

9318

J,W

8318

J,N

4-36

4-37

10 ns

225mW

54147

J,W

74147

J,N

249

2-50

Full BCD Priority

Encoders

REGISTER FILES

Description

4 Words of 4-Bits

Typ_
Address

Time

Typ_ Aead
Enable
Time

Data
Input
Rate

Typ_ Total
Power
Dissipation

27 ns

15 ns

20 MHz

125mW

30 ns

15 ns

20 MHz

635mW

Connection
Diagram
Page No_

Device Type and Package
Mil.
54LS170

Coml.
J,N,W

Electrical
Tables
Page No_

74LS170

J,N

2-91

2-92

74170

J,N

2-91

2-92

4 Words of 4-Bits

24 ns

19 ns

20 MHz

135mW

54LS670

J,N,W

74LS670

J,N

2-191

2-192

(TRI-STATE Outputs)

24 ns

19 ns

30 MHz

400mW

7542

J,W

8542

J,N

3-52

3-53

xxxix

~

MSI Functions

Functional Index/Selection Guides
REGISTERS, OTHER

Description

Freq.

Quad Bus·Buffer Registers

Quad O·Type Registers

Quad Multiplexers
Wit~

Typ. Total

Async.

Electrical
Tables
Page No.

Connection

Device Type and Package

Diagram

Power

Clear

Mil.

Dissipation

Coml.

Page,Na.

25 MHz

High

250mW

54173

J,W

74173

J,N

2·96

2·97

25 MHz

High

250mW

7551

J,W

8551

J,N

3·62

3·63

75L51

J,N,W

85L51

j,N

3-62

3-63

74S175

N

2-98

2-99

'6 MHz

High

75 MHz

Low,

30 MHz

Low

55mW

25 MHz

Low

150mW

25 MHz

None

65mW

75 MHz

Low

450mW

30MHz

Low

80mW

25 MHz

Low

15 MHz

None

25 MHz

None

28mW
300mW

54LS175

J,N,W

74LS175

J,N

2-98

2-99

54175

J,W

74175

J,N

2-98

2-99

54LS298

J,N,W

74LS298

J,N'

2-184

74S174

N

2-98

2-99

54LS174

J,N,W

74LS174

J,N

2-98

2-99

225 mW

54174

J,W

74174

J,N

2-98

2-99

400mW

7546,

J,W

8546

J,N

3-56

3-57

175mW

54LS374

J,N,W

74LS374

J,N

2-187

2-188

,

2-185

Storage

Hex O·Type Registers

a-Bit Universal Shift/Storage
Registers
Octal D-Type Registers

REGISTERS, SHIFT

Description

No,
of
Bits

Serial
Data

Shift
Freq.

Input

Clear

. . ". "a
Modes

Async.

a: oJ
rh rh

0
oJ

:I:

Typ. Total

Device Type and Package

Power

Parallel-In,

8

25 MHz

D

Low

X X X X

360mW

Parallel-Out

4

70 MHz

D

Low

X X X X

450mW

(Bidirectional)

4

25 MHz

D

Low

X X X X

75mW

Com I.

Mil.

Dissipation
54198

J

Connection

Electrical

Diagram
Page No.

Tables
Page No.
2-149

74198

J,N

2-148

74S194

N

2-140

2-141

54LS194A

J,N,W

74LS194A

J,N

2-140

2-141

J,N

2-140

2-141

2-148

2-149

4

25 MHz

D

Low

X X X X

195mW

54194

J,W

74194

Parallel-In,

8

25 MHz

J-K

Low

X

X X

360mW

54199

J

74199

J,N

Paralrel-Out

5

10 MHz

D

Low

X

X

60mW

54LS96

J,N,W

74LS96

J,N

,2-39

2-40

5

10 MHz

D

Low

X

X

240mW

5496

J,W

7496

J,N

2-39

2-40

4

70 MHz

J-K

Low

375mW

74S195

N

2-144

2-145

30 MHz

J-R

Low

X
X

X

4

X

195mW

54195

J,W

74195

J,N

2-144

2-145

4

30 MHz

J-K

Low

X

X

300mW

9300

J,N,W

8300

J,N

4-19

4-20

4

30 MHz

J-K

Low

X

X

70mW

54LS195A

J,N,W

74LS195A

J,N

2-144

2-145

4

25 MHz

D

Low

X

X

75mW

54LS395

J,N,W

74LS395

J,N

2-189

2-190
2-37

-

4

25 MHz

D

None

X

X

195mW

5495

J,W

7495

J,N

2-36

4

25 MHz

D

None

X

X

65mW

54LS95B

J,N,W

74LS95B

J,N

2-36

2-37

4

6 MHz

D

None

X

X

24mW

54L95

J,N,W

74L95

J,N

2-36

2-37

Serial·ln,

8

25 MHz

Gated D

Low

X

80mW

54LS164

J,N,W

74LS164

J,N

2-76

2-77

Parallel-Out

8

25 MHz

Gated D

Low

X

175mW

54164

J,W

74164

J,N

2-76

2-77

8

25 MHz

Gated D

Low

X

175mW

7570

J,w

8570

J,N

3-86

3-87

8

6 MHz

Gated D

Low

X

30mW

54L 164A

J,N,W

74L164A

J,N

2-76

2-77

8

6 MHz

Gated D

Low

X

30mW

76L70

J,N;W

86L70

J,N

3-86

3-87
2-80

Parallel-I n,

8

25 MHz

D

None

X

X X

200mW

54165

J,W

74165

J,N

2-79

Serial-Out

8

20 MHz

D

Low

X

X X

360mW

54166

J

74166

J,N

2-82

2-83

8

14MHz

D

None

X

X X
X X

200mW

7590

J,W

8590

J,N

3-110

3-111
3-111

8

6 MHz

D

None

X

30mW

76L90

J,N,W

86L90

J,N

3-110

Serial-In,

8

10 MHz

Gated D

None

X

175mW

5491A

J,W

7491A

'J,N

2-34

2-35

Serial-Out,

8

4 MHz

Gated D

None

X

17,5mW

54L91

J,N,W

74L91

J,N

2-34

2-35

* S-R '" shift right, Sol '" shift left_

,

xl

~ TTL Data Book

Packages

DUAL-IN-LINE PACKAGES
(N)

All devi~es ordered with the oN" suffix are supplied in either the 14-pin, l.6-pin, 20-pin, or 24-pin molded dual-in-line
package. Molding material is EPOXV B, a highly reliable compound suitable for military as well as commercial temperature
range applications. Lead material is AIJoy 42 with a hot solder dipped surface to allow for ease of solderability.

(J)

All devices ordered with the "J" suffix are supplied in either the 14-pin, 16-pin, or 24-pin ceramic dual-in-line package.
The body of the package is made of ceramic and hermeticity is accomplished through a high temperature sealing of the
package. Lead material is tin-plated kovar.

FLAT PACKAGES
(W)

All devices ordered with the "W" suffix are supplied in either the 14-pin or 16-pin ceramic flat package. The'body of
the package is made of ceramic and hermeticity is accomplished through a high temperature sealing of the package.
Lead material is tin-plated kov~r.

(F)

All devices ordered with the of'' suffix are supplied in the 24-pin glass/metal flat package. The top and bottom of the
package are gold-plated kovar as are the leads. The side walls are glass, through which the leads extend forming a
hermetic seal.
Four combinations of bottom insulator and formed leads are supplied for the W or F packages. Suffix coding is as follows:

Suffix

Bottom Insulator

-00 (Ex: DM54LOOW-OO)
-01
-06
-07

Formed Leads

No
Ves
Ves
No

No
Ves
No
Ves

If no suffix is added, parts will be supplied as if the -00 suffix had been ordered.

~tr---±-~'-'~~-::l ""71~~

.it_______ .gA'~==~L_________~
if
te:=:=::~

O.O~~~J

0.000
0.005

I

1-------- 0.365--1
±0.005

Standard Flat Pack Lead Form

xli

~ TTL Data Book

Packages

~~~~~~~~~·,I--fG~

U25
RAD

0.025
RAD

D.28t1

MAX

'-T-:T'T'l'1'"T';''M'lT"1"";T'"I';T.,-;,-I~

0.2011

~

__11_ OJ. . . .125
'-0.002

80TH eNDS

14-Pin Ceramic Dual-In-Line Package CJI

8.810

MIN

16-Pin Ceramic Duel-In-Line Package (JI

"i~~~

.LASS

0.025
RAD

0.515

~~~~~~r.r~TW~~~~"'~
~~1.L

J

1-..... -I I- •..
tUGO ---,

_II--

011

10.010""1

0.•'8

!n.DOZ

.....

"070

MIN

24-Pin Ceramic Dual-In-Line Package '(JI

0.092 DIA NOM
PiN NO.1 INDENT

r·· 1 ~r

~
lJ
f ~m+"·" U-- Lo~
JD0

0.08&

~.3Z5 -o.a1fj-i

0.015
.8.01&

f---•.30. --1 r •
~fTMAX

0.138

it

.830

!

~::--\--

I -0 325 +0.025-1
,r·
.....015

. _
- TV'
-';-05:
.
~.o
.....
wo
8.

rJ ..... -=1f

......
0.015

I--- ---I TV,I-- -II---".m MiN

16-Pin Moldid Dual-In-Lina Package INI

14-Pin Molded Dual-In-Line Package (NI

xlii

8.1.1 0.125

~TTL Data Book

Packages

0.3oo--j

-0320
.
I

B.OlO
MAX

R=r------1+------,'"l

'~

H:

OO5

[1-,009
---0.010

I

I

TV'

\-0.]45 MAX-

20-Pin Molded Dual-In-Line Package (N)

---I

I
~~~~JD5

0.062

I

RAD

0.540

·L
F~"·
L~~5

0.0T5

,

_ I 1 __

0.015
±0.015

__

I
I

1--'

11.100
TYP

---II _
I

---1 oi"

11.018
iO.ODl

0.125 MIN
MIN

24-Pin Molded Dual-in-Line Package (N)

111~~111~ r

PIN NO.1

0.275

PIN NO.1
IDENT

MAX 0.840

0.275 0.880

lOENT

G~~~S 0.900

GLASS 0.B60

23""~

--.il

I

~
II
o.D19 --i1-0,015

14-Pin Flat Package (W)

0,015

II

~

D.019~f--

16-Pin Flat Package (W)

xliii

24-Pin Flat Package (F)

~ TTL Data Book

Packages

INCHES TO MILLIMETERS CONVERSION TABLE
INCHES

MM

INCHES

MM

INCHES

MM

0.001 .

0.0254

0.010

0.254

0.100

2.54

0.002

0.0508

0.020

0.508

0.200

5.08

0.003

0.0762
0.1016

0.030
0.040

0.762
1.016

0.300

7.62
10.16

0.005
0.006
0.007

0.1270
0.1524

1.270

0.1778

0.050
0.060
0.070

0.400
0.500

1.524
1.778

0.600
0.700

15.24
17.78

0.008

0.2032
0.2286

0.080
0.090

2.0.32

0.800
0.900

20.32

0.004

0.009

2.286

xliv

12.70

22.86

National Semiconductor
54f74 SSI DEVICES
Section 1

~

54/74 SSI
Device No.

Table of Contents
Conn.
Elec.
Diag.
Char.
Pg. No. Pg. No.

Description

~

DM5400/DM7400
DM54HOO/DM74HOO
DM54LOO/DM74LOO
DM54LSOO/DM74 LSOO
DM74S00
DM5401/DM7401
DM54H01/DM74HOl
DM54L01/DM74LOl
DM54LS01/DM74LSOl
DM5402/DM7402
DM54 L02/DM74 L02
DM54LS02/DM74LS02
DM74S02
DM5403/DM7403
DM54L03/DM74L03
DM54 LS03/DM74LS03
DM74S03
bM5404/DM7404
DM54H04/DM74H04
DM54L04/DM74L04
DM54LS04/DM74LS04
DM74S04
DM5405/DM7405
DM54H05/DM74H05
DM54L05/DM74L05
DM54LS05/DM74LS05
DM74S05
DM5406/DM7406
DM5407/DM7407
DM5408/DM7408
DM54H08/DM74H08
bM54L..08/DM74L08
DM54LS08/DM74LS08
DM5409/DM7409
DM54L09/DM14L09
DM 54 LS09/DM 74 LS09
DM5410/DM7410
DM54H10/DM74H10
DM54 L1 0/OM74L 10

Quad 2:lnput NAND 'Gates
Quad 2-lciput NAND-Gates
Quad 2-lnput NAND Gates
Quad 2-lnput NAND Gates
Quad 2-lnput'NAND Gates
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-lnput NAND Gates with
,open-Coilector ,outputs
Quad 2-lnput N,oR Gates
Quad 2-lnput N,oR Gates
Quad 2-lnput N,oR Gates
Quad 2-1 nput N,o R Gates
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-lnput NAND Gates with
,open-Collector ,outputs
Quad 2-1 nput NAN D Gates with
,open-Collector ,outputs
Quad 2-1 nput NAN D Gates with
Open-Collector ,outputs
Hex Inverters
Hex Inverters
Hex Inverters
Hex Inverters
Hex Inverters
Hex Inverters with ,open-Collector
,outputs
Hex Inverters with Open-Collector
,outputs
Hex Inverterswith ,open-Collector
,outputs
Hex I nverters with ,open-Collector
,outputs
Hex Inverters with Open-Collector
,outputs
Hex Buffers wjth ,open-Collector
High-Voltage ,outputs
Hex Buffers with ,open-Collector
High-Voltage ,outputs
Quad 2-lnput AND Gates
Ql.!ad 2-lnput AND Gates
Quad 2-lnput AND Gates
Quad 2-lnput ANDGates
Quad 2-lnput AND Gates with
,open-Collec~or ,outputs
Quad 2-lnput AND Gates with
,open-Collector ,outputs
Quad 2-If1put AND Gates with
,open-Collector ,outputs
Triple3-lnput NAND Gates
Triple 3_lnput NAND Gates
Triple 3-lnput NAND Gates

1·1
1-1
1-1

..

Mil

Coml

•
•
•
• N/A
•
•

1-'
1-1
1-1

1·36
1-36
1-36
1-36
1-36
1-38

1-1

1-38

1-1

1-38

N/A

1-1

1-38

1-2
1-2
1-2
1-2
1-2

1-40
1-40
1-40
1-40
1-38

•
•
•
• N/A
•

1-2

1-38

•

1-2

1-38

•

1-2

1-38

1-2
1-2
1-2
1-2
1-2
1-3

1-36,
. 1-36
1-36
1-36
1-36
1·38

1-3

1-38

1-3

1-38

1-3

1-38

1-3

1·38

1-3

1-42

"

1-3

1-42

•

1-4
1-4
1-4
1-4
1-4

l-n

J

I'"

1-44
1-44
1-44 '
1-44
1-46

1-4

1-46

1-4

1-46

1-4
1-4
1·4

1-36
1-36
1-36

•
•
•
•
•
•

Package
N
Mil Coml

•

•
•
•
•
•
•
•

'••.
N/A

•
•
•

•
•
•
•
•
•

•

•
•
•
•
•

•
•
•
•
•
•
•
•

N/A

•

•
•
•

•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•

•
•
•
•..
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•.
•
•
•
•
•
•

Coml

• N/A •
•
• N/A •
• •

'.

•
N/A

N/A

•
•
•
•

•
•
•
•
•

•
•
•
•
•
•

W
Mil

N/A

•
•
•
•
• N/A

•
•
•
•
•

N/A
N/A

•

•
N/A

•

N/A

•
•
N/A
•

•
•
•
•

N/A

•
•

•
•
N/A

• •
• •
• •
N/A
• •
• •
• •
• •
• •
• N/A •
• •

~

Table of Contents

54n4 SSI
Device No.

DM54LS10/DM74LS10
DM74S10
DMS411/DM7411
DM54Hll/DM74Hll
DM54L 11/DM74L 11
DM54LSll/DM74LSll
DM74S11
DM54LS12/DM74LS12
DM5413/DM7413
DMS4LS13IDM74LS13
DM5414/DM7414
DMS4LS14/DM74LS14
DM54LS15/DM74LS15
DM74S1S
DMS416/DM7416
DM5417/DM7417
DM5420/DM7420
DM54H20/DM74H20
DM54L20/DM74L20
DMS4LS20/DM74 LS20
DM74S20
DM54H21IDM74H21
DMS4LS21/DM74LS21
DM54H22/DM74H22
DM 54 LS22/DM 74 LS22
DM74S22
DM5423/DM7423
DM5425/DM742S
DMS426/DM7426
DM54L26/DM74L26
DM54LS26/DM74LS26
DM5427/DM7427
DM54CS27 IDM74LS27
DM5430/DM7430
DMS4H30/DM74H30
DM54L30/DM74L30
DMS4LS30/DM74LS30
DM74S30
DM5432/DM7432
DM54L32/DM74L32
DM54LS32/DM74LS32
DM5437/DM7437
DM54LS37/DM74LS37
DM5438/DM7438
DM54LS3B/DM74LS38

Elec.
Conn.
Char.
Diag.
Pg. No. Pg. No.

Description

Triple 3·lnput NAND Gates
Triple 3-lnput NAND Gates
Triple 3-lnput AND Gates
Triple 3-lnput AND Gates
Triple 3-lnput AND Gates
Triple 3-lnput AND Gates
Triple 3-lnput AND Gates
Triple 3-lnput NAND Gates with
Open-Collector Outputs
Dual 4-lnput NAND Schmitt Triggers
Dual 4-lnput NAND Schmitt Triggers
Hex Schmitt Triggers
Hex Schmitt Triggers
Triple 3-lnput AND Gates with
Open-Collector Outputs
Triple 3-lnput AND Gates '!'lith
Open-Collector Outputs
Hex Buffers with Open-Collector
High-Voltage Outputs
Hex Buffers with Open-Collector
High-Voltage Outputs
Dual 4-lnput NAND Gates
Dual 4-lnput NAND Gates
Dual 4-lnput NAND Gates
Dual 4-lnput NAND Gates
Dual 4-lnput NAND Gates
Dual 4-lnput AND Gates
Dual 4-lnput AND Gates
Dual 4-lnput NAND Gates with
Open-Collector Outputs
Dual 4-lnput NAND Gates with
Open-Collector Outputs
Dual 4-lnput NAND Gates with
Open-Collector Outputs
Expandable Dual 4-lnput NOR Gates
Dual 4-1 nput NOR Gates
Quad 2-lnput High-Voltage NAND
Gates
Quad 2-lnput High-Voltage NAND
Gates
Quad 2-lnput High-Voltage NAND
Gates
Triple 3-lnput NOR Gates
Triple 3-lnput NOR Gates
8-lnput NAND Gates
8-lnput NAND Gates
8-lnput NAND Gates
8-lnput NAND Gates
8-lnput NAND Gates
Quad 2-1 nput 0 R Gates
Quad 2-lnput OR Gates
Quad 2-lnput OR Gates
Quad 2-lnput NAND Buffers
Quad 2-lnput NAND Buffers
Quad 2-lnput NAND Buffers with
Open-Collector Outputs
Quad 2-lnput NAND Buffers with
Open-Collector Outputs

I-iii

J
Mil Coml

• N/A
•
•
•
• N/A
•
•
•
•
•
•

•
•

Package
N
Mil Coml

•

•
•
•
•
•
•
•

W
Mil

Coml

•

•

1-4
1-4
l-S
l-S
l-S
l-S
l-S
l-S

1-36
1-36
1-44
1-44
1-44
1-44
1-44
1-38

l-S
l-S
1-6
1-6
1-6

1-48
1-48
1-48
1-48
1-46

1-6

1-46

N/A

1-6

1-42

1-7

1-42

1-7
1-7
1-7
1-7
1-7
1-7
1-7
1-8

1-36
1-36
1-36
1-36
1-36
1-44
1-44
1-38

1-8

1-38

•
•
•
•
•
• N/A
•
•
•
•

1-8

1-38

1-8
1-8
1-9

1-S0
1-40
1-42

•
•
•

•
•
•

•
•
•

•
•
•

1-9

1-42

•

•

•

•

N/A

1-9

1-42
1-40
1-40
1-36
1-36
1-36
1-36
1-36
1-S2
1-S2
1-52
1-54
1-54
1-42
1-42

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
N/A
•
• N/A
•
•
•
•
•

1-10

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

1-9
1-9
1-9
1-9
1-9
1-9
1-9
1-10
1-10
1-10
1-10
1-10
1-10

•
•
•
•
•
•
• N/A
•
•
•
•
•
•
•

..

'.

•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
• N/A
•
•
•
•
•
•

•

•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•

•
•
•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

N/A

•
•

•

•N/A
•

• N/A

•
•
•
•

N/A

•

N/A

•

•

N/A

N/A
N/A
N/A

•

•
N/A

•

•

•N/A •

•
•

•

•

•
•
•
•
•
•
•
•
•
•
•

~_54n4 SSt
Device No.

DM5440/DM7440
DM54H40/DM74H40
DM54LS40/DM74LS40
DM74S40
DM5450/DM7450
DM54H50/DM74H50
DM5451/DM7451
DM54H51/DM74H51

.

DM54L51/DM74L51
DM54LS51/DM74LS51
DM74S51
DM54H52/DM74H52
DM.5453/DM7453
DM54H53/DM74H53
DM5454/DM7454
DM54H54/DM74H54
DM54L54/DM74L54
DM54LS54/DM74LS54
DM54H55/DM74H55
DM54L55/DM74l55
DM54LS55/DM74LS55
DM5460/DM7460
DM54H60/DM74H60
DM54H61/DM74H61
DM54H62/DM74H62
DM74S64
DM74S65
DM5470/DM7470
DM54H71/DM74H71
DM54L71/DM74L71
DM5472!DM7472
DM54H72/DM74H72
DM54L72/DM74L72
DM5473/DM7473
DM54H73/DM74H73
DM54L73/DM74L 73
DM54LS73/DM74LS73

Table of Contents
Conn.
Elec.
Diag.
Char.
Pg. No. Pg. No.

Description

Dual 4·lnput NAND
Dual 4·lnput NAND
Dual 4·lnput NAND
Dual 4·lnput NAND
Dual 2Wide 2·lnput
Gates
Dual 2Wide 2·lnput
Gates
DUIlI 2·Wide 2·lnput
Gates
Dual 2·Wide 2·lnput

Buffers
Buffers
Buffers
Buffers
AND·OR·INVERT

1-11
1·11
1·11
1-11
1·11

1·54
1:54
1·54
1·54
1·50

AND·OR·INVERT

1·11

1·50

AND·OR·INVERT

(12

1·56

AND·OR·INVERT . 1·12

1·56

Gates
Dual 2·Wide 2·lnput AND·OR·INVERT
Gate,
Dual 2-Wide 2-lnput AND-OR-INVERT
Gates
Dual 2-Wide 2-lnput AND-OR-INVERT
Gates
Expandable 4Wide AND-OR
Gates
Expandable 4-Wide AND-OR
INVERT Gates
Expandable 4-Wide AND-ORINVERT Gates
4-Wide AND-OR-INVERT Gates
4-Wide AND-OR-INVERT Gates
4-Wide AND-OR-INVERT Gates
4-Wide AND-OR-INVERT Gates
2-Wide 4-lnput AND-ORINVERT Gates
2-Wide 4-lnput AND-ORINVERT Gates
2Wide 4-lnput AND-ORINVERT Gates
Dual 4-lnput Expanders
Dual 4'lnput Expanders
Triple 3-lnput Expanders
4-Wide AND-OR Expanders
4-Wide AND-OR-INVERT Gates
4-Wide AND-OR-INVERT Gates
with Open-Collector Outputs
AND-Gated J-K Positive-Edge-Triggered
Flip-Flops with Preset and Clear
AND-OR-Gated J'K Master-Slave
Flip-Flops with Preset
AN D-Gated R -S Master-Slave
Flip-Flops with Preset and Clear
AND-Gated J-K Master-Slave Flip-Flops
. with Preset and Clear
AND-Gated J-K Master-Slave Flip-Flops
with Preset and Clear
AND-Gated J-K Master-Slave Flip-Flops
with Preset and Clear
Dual J-K Flip-Flops with Clear
Dual J-K Flip-Flops with Clear
Dual J-K Flip-Flops with Clear
Dual J-K Flip-Flops with Clear

J-iv

Mil

J
Coml

•

•

.-

• •
•
N/A
• •
• •
• •
• •
• •
• •

1·12

1·56

1-12

1-56

1-12

1-56

1-13

1-50

•

1-13

1-50

1-13

1-50

•
•

1-14
1-14
1-14
1-14
1-15

1-56
1-56
1-56
1-56
1-50

1-15

1-56

1-15

1-56

1-15
1-15
1-16
1-16
1-16
1-17

1-58
1-59
1-60
1-59
1-56
1-61

1-18

1-62

1-18

1-64

1-19

1-66

1-19

1-62

1-19

1-64

1-19

1-66

1-20
1-20
1-20
1-20

1-62
1-64
1-66
1-68

Package
N
Mil
Coml

•
•
•
•

•
•
•
•
•

N/A

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•

..

•
•

•
•
•
•
•

•

N/A
N/A

•
•
•
•
•
•
•

•
•
•
•
•
•
•

•
•

•
•
•
•
•
•

•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•

Mil

•

W
Coml

N/A

• N/A
•

•
•
•

N/A

•

•
N/A

•

•
•

•
N/A
N/A

•

•
N/A

• •
N/A
• •
• N/A •
• •
• •
• N/A •
N/A
N/A
N/A
N/A

•

•
N/A

•
•

~

•
N/A

•
•
N/A
•
•

•
•
•
•

~

54n4 SSI
Device No.

DM5474/DM7474
DM54H74/DM74H74
DM54L74/DM74L74
DM54LS74/DM74LS74
DM74S74
DM5476/DM7476
DM54H76/DM74H76
DM54LS76/DM74LS76
DM54H78/DM74H78
DM54L78/DM74L78
DM54LS78/DM74LS78
DM5486/DM7486
DM54L86/DM74L86
DM54LS86/DM74LS86
DM74S86
DM54H 103/DM74H 103
DM54H 106/DM74H1 06
DM54107/DM74107
DM54LS107/DM74LS107
DM54H108/DM74H108

DM541 09/DM741 09
DM54LS1 09/DM74LS1 09
DM54LS112/DM74LS112
DM74S112
DM54LS113/DM74LS113
DM74S113
OM54LS114/DM74LS114

DM74S114

DM54121/DM74121
DM54LS122/DM74LS122
DM54123/DM74123

Table of Contents
Elec.
Conn.
Diag.
Char.
Pg. No. Pg. No.

Description

Dual D Positive·Edge·Triggered
Flip·Flops with Preset and Clear
Dual D Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual D Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual D Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual D Positive-Edge-Triggered
'Flip-Flops with Preset and Clear
Dual J-K FI ip-Flops with Preset and
Clear
Dual J-K Flip-Flops with Preset and
Clear
Dual J-K Flip-Flops with Preset and
Clear
Dual J-K FI ip-Flops with Preset,
Common Clear and Common Clock
Dual J-K Flip-Flops with Preset,
Common Clear and Common Clock
Dual J-K Flip-Flops with Preset,
Common Clear and Common Clock
Quad EXCLUSIVE-OR Gates
Quad EXCLUSIVE-OR Gates
Quad EXCLUSIVE-OR Gates
Quad EXCLUSIVE-OR Gates
Dual J-K Negative-Edge-Triggered
Flip-Flops with Clear
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-K Master-Slave Flip-Flops with
Clear
Dual J-K Master-Slave Flip-Flops with
Clear
Dual J-K Negative-Euge-Triggered
Flip-Flops with Preset, Common
Clear, and Common Clock
Dual J-i( Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-i( Positive-Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-K Negative·Edge-Triggered
Flip-Flops with Preset and Clear
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset
Dual J-K Negative-Edge-Triggered
Flip-Flops with Preset, Common
Clear, and Common Clock
Dual J·K Negative-Edge-Triggered
Flip-Flops with Preset, Common
Clear, and Common Clock
One Shots
Retriggerable One Shots with Clear
Dual Retriggerable One Shots with Clear'
j-v

Mil

J
Coml

•
•
•
•

•
•
•

Package
N
Mil
Coml

•

•

•

•
•
•

Mil

W
Coml

•

•

1-20

1·62

1-20

1-64

1-20

1-66

1-20

1-68

1-20

1-70

1-21

1-62

•

•

1-21

1-64

•

1-21

1-68

•

1-21

1-64
1·66

•
•

1-21

1-68

•

•

1-22
1-22
1-22
1-22
1-23

1-72
1-72
1-72
1·72
1·74

•
•
•
• •
• •
• N/A •

•

1·21

•
•
•
•
•

•
•
•

• •
• •
• N/A •

•

•

•

1-23

1-74

•

•

1-23

1·62

N/A

1-68

•

•
•

•

1-23
1-24

1-74

•
•
•

•
•

•
•
•
•
•
•

•

•

1-24

1-62

•

•

1-24

1-68

1-24

1-68

•
•

•
•

•
•
•

1-24

1-70

1-25

1-68

1·25

1-70

1-25

1-68

1-25

1-70

1-26
1-26
1·26

1-76
1-78
1-78

•

•
•

•
•
•

N/A

•

•

N/A

•

•

•

•

•

•

•
•
•

•

N/A

•

•
N/A

•

•
N/A

•

•
•

•

N/A
N/A

•
•

•

•
•
•
•
•

•
•
•

•
•
•

•
•

•

•
•
•
N/A

,.

•

•

•

•
•
•

•
N/A

•
N/A

•

N/A

•
•
•

•

•

N/A

•

N/A

•
N/A

•
•
•

•
•
•

~

Table of Contents

54n4 SSI
Device No.

DM54L 123A/DM74L123A
DM54LS123/0M74LS123
DM54125iDM74125
DM54LS125/DM74LS125
DM5412o/DM74126
DM54LS1261DM74LS126
DM54132/DM74132
DM54LS132/DM74LS132
DM74$133
DM74S134
DM74S135
DM54LS136/DM74LS136
DM74S136
DM74S140
DM54LS221/DM74LS221
DM74S260
OM 54 LS266IDM7 4 LS266
DM54365/DM74365
DM54LS365/DM74LS365
DM54366/DM74366
DM54LS366/DM74LS366
DM54367/DM74367
DM54LS367/DM74LS367
DM54368/DM74368
DM54LS368/DM74LS368
DM54LS386/DM74LS386

Conn. Elec.
Diag. Char.
Pg. No. Pg. No.

Description

Dual Retriggerable One Shots
with Clear
Dual Retriggerable One Shots
with Clear
TRI-STATE Quad Buffers
TRI-STATE Quad Buffers
TRI-STATE Quad Buffers
TRI-STATE Quad Buffers
Quad 2-lnput NAND Schmitt
Triggers
Quad 2·lnput NAND Schmitt
Triggers
13·lnput NAND Gates
TRI·STATE 12·lnput NAND
Gates
Ql,Jad EXCLUSIVE-OR/NOR
Gates
Quad EXCLUSIVE-OR Gates
with Open·Coliector OutPl,Jts
Quad EXCL_USIVE-OR Gates
with Open·Collector Ol,Jtputs
Dual 50-Ohm Line Drivers
Dual One Shots with SchmittTrigger Inputs
Dual 5·lnput NOR Gates
Quad EXCLUSIVE·NOR Gates
with Open-Collector Outputs
TRI-STATE Hex Bl,Jffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TRI·STATE Hex Buffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TRI-STATE Hex Buffers
TRI.STATE Hex Buffers
Quad EXCLUSIVE-OR Gates

J·vi

J
Mil

Coml

1-26

1-78

•

•

1-26

1-78

•

•

1-27
1-27
1-27
1-27
1·27

l-BO
l·BO
1-80
1-80
1·48

•

1·27

1-48

1·28
1·28

1-36
1-80

N/A
N/A

1·28

1·82

N/A

1·29

1-84

1·29

1-84

1·29
1-30

1-54
1·76

1-31
1·31

1-40
1·84

1-32
1-32
1·32
1-32
1-32
1-32
1-33
1-33
1-34

1-86
1·86
1-86
1-86
1-86
1-86
1-86
1-86
1-72

•
•
•
•

•

•
•
•
•
•

•

•

Package
'N
Mil Coml

•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
N/A
N/A

N/A

•

•

•
•
• •

•

•
•
•
•
•
•
•

N/A

•
•
•
•
•
•
•
•
•

N/A

•
•
•

•
•

•
•

•

N/A

•
•
•
•
•

•

•
•
•
•

•
•
•
•
•
•
•
•

•
•

N/A

•

•

Coml

•

•

•

•

W
Mil

•

•
•
•
•

•

N/A

•

•

•
•
•
•
•
•
• •
• •
• •
• •

N/A

•
•
•

•
•
•
•
•
•
•

•

National Semiconductor
54I74 SSI DEYICES
Connection Diagrams
Section 1

~ SSI
00

DM54/DM74 Connection Diagrams/Gates

Quad 2-lnput NAND Gates

V4

B4

GND

B3

A3

Y = AS

A1

B1

Y1

A2

Y2

"

"

GNO

540017400(WI; 54L00/74LOO(WI

540017400(Jl. (NI; 54H00/74HOO(JI. (NI;
54LOO/74LOO(Jl. (NI; 54LSOO/74LSOO(JJ.(NI.(WI;
74S00(N)

See page 1-36 for electrical tables.

01

Quad 2-lnput NAND Gates with Open-Collector Outputs

14

"'

A4

GNO

B3

A3

Y= AS

5401/7401(JI. (NI; 54LS01/74LS01(JI. (NI. (WI

A1

B1

Y1

A2

B2

54H01/74H01(JI. (NI

See page 1-38 for electrical tables.

1-1

Y2

GNO

540117401 (WI; 54LOl/74LOl (W)

Y3

~ 551
02

DM54/DM74 Connection Diagrams/Gates

Quad 2-lnput NOR Gates
A3

Y4

B4

A4

GNO

"

A3

Y3

Y =A+B

Y1

52

B1

A1

540217402(JI, (N); 54L02/74L02(J), (NI;
54LS02/74LS02.(J), (NI, (INI; 74S02(NI

5402/7402(1N1; 54L02/74L02(1N1

See page 1-40 for electrical tables.

03

Quad 2-lnput NAND Gates with Open-Collector Outputs

Y=AB

5403/7403(JI, (NI; 54L03/74L03(JI. (NI;
54LS03/74LS03(Jl, (NI, (INI; 74S03(NI

See page 1·38 for electrical tables.

04

Hex Inverters

46

13

YO
12

A5

YO

A4

Y4

Y3

GNO

V1

A'

YO

GNO

YO

A5

10

11

Y=A

A1

Y1

A2

Y2

A3

5404/7404(JI, (NI; 54H04/74H04(JI, (NI;
54L04/74L04(JI, (NI; 54LS04/74LS04(JI,(NI,(INI;
74S04(NI
See page 1-36 for electrical tables.

1-2

5404/7404(1N1; 54L04/74L04(1N1

V4

~ SSI
05

DM54/DM74 Connection Diagrams/Gates·

Hex Inverters with Open-Collector Outputs

.6
14

Al

"

"

YO

11

.2

A5

11

Y2

"

A'

"

A3

Y3

GNo

"

5405174051J), IN); 54H05/74H05(J), IN);
54L05/74L051J), IN); 54LS05/74LS051J), IN), IW);
74S051N)

5405/74051W); 54L05/74L051W)

See page 1·38 for electrical tables.

06

Hex Buffers with Open-Collector High-Voltage Outputs

A6

Y6

"

"

.5
11

Y'

Y5

"

Y=A

Al

YI

A2

Y2

A3

Y3

GNo

A'

Y'

Y3

GNo

5406/74061J), IN), IW)

See page 1·42 for electrical tables.

07

Hex Buffers with Open-Collector High-Voltage Outputs

v"
14

A.

"

YB

"

A.
11

Y,

"

Y=A

Al

YI

A2

V2

A3

5407/74071J), IN), IW)

See page 1-42 for electrical tables.

'-3

.~ SSI

08

DM5.4/DM74 Connection Diagrams/Gates

Quad 2-lnput AND Gates

Y=AB

540S1740S(J), (N), (W); 54HOS174HOS(J), (N);
54l0S174l0S(J), (N), (W);
54lS0S/74lS0S(J)" (N), (W)
See page 1-44 for electrical tables.

09

Quad 2-lnput AND Gates with Open-Collector Outputs

Y= A8

5409/7409(J), (N), (W); 54l09/74l09(J), (N). (W);
54lS09174lS09(J), (N), (W)

See page 1 A6 for electrical tables.

10

Triple 3-lnput NAND Gates
C1

Y3

C3

OND

B3

'3

14

y= ABC

Al

82

541017410(J), (N); 54Hl0174Hl0(J), (N);
54l10174l10(JI, (N); 54lS10174lS10(J), (N), (W);
74S10(N)

See page 1 ~36 for electrical tables.

1-4

541017410(W); 54L 10/74l10(W)

C2

~ SSI
11

y

DM54/DM74 Connection Diagrams/Gates

Triple 3-lnput AND Gates

~

C3

"

Al

Yl

B1

C1

V1

GND

ABC

AI

B1

A1

5411/7411(Jl. (N); 54Hll/74Hl1(J), (N);
54111/74L l1(J), (N), (W); 54LSll/74LS11(J), (N), (W);
74S11(N)
See page 1-44 for electrical tables.

12

Triple 3-lnput NAND Gates with Open-Collector Outputs

y

= ABC

y

= ABCD

AI

B1

NO

C1

D1

VI

GND

5413/7413(J),(N),(W); 54LS13/74LS13(J),(N),(W)
See page 1-48 for electrical tables.

1-5

~ SSI

DM54/DM74 Connection Diagrams/Gates

14 Hex Schmitt Triggers

Y=A

5414/7414(J) ,(N) ,(W); 54LS14/74LS14(J),(N),(W)

See page 1 AS for electrical tables.

15 Triple 3-lnput AND Gates with Open-Collector Outputs

Y= ABC

54LS15/74LS15(J),(III),(W); 74S15(N)

See page 1 A46 for electrical tables.

16 Hex Buffers with Open-Collector High-Voltage Outputs
v~

14

AS
IJ

YO

12

A5
11

Y5

A4

"

V3

GNo

"

Y=A

AI

VI

A2

Y2

A3

5416/7416(J),(N),1W)

See page 1-42 for electrical tables.

1·6

~. SSI

DM54/DM74 Connection Diagrams /Gates

17 Hex Buffers with Open-Collector High-Voltage Outputs
A6
14

13

V6

A5

Y5

A4

Y4

YJ

GNO

D2

C2

10

12

Y=A

Al

Y1

A2

Y1

AJ

5417 /7417(J) ,IN),(W)

See page 1-42 for electrical tables.

20

Dual 4-lnput NAND Gates
vc

D2

13

Y

=

C2

NO

B2

A2

D1

12

"

13

"

GNO

12

Y1

10

ABeD

Al

"

NO

01

Yl

GNO

B2

5420/7420(J),(N); 54H20/74H20(J),(N);
54L20/74L20(J),IN); 54LS20/74LS20(J),IN),IW);
74S20(N)

5420/7420(W); 54L20/74L20(W)

See page 1-36 for electrical tables.

21 Dual 4-lnput AND Gates
NO

D2
14

Y

13

B2

A2

Y1

12

= ABeD

Al

"

54H21/74H21 (J) ,IN);54LS21/74LS21 (JI,(NI,(W)

See page 1 ·44 for electrical tables.

1-7

~ SSI
22

DM54/DM74 Connection Diagrams/Gates

Dual 4-lnput NAND Gates with Open Collector Outputs

"

D1

14

Y

B2

NO

A2

Y2

Yl

GNO

12

13

ABCD

~

C1

81

54H22/74H22(J),(N); 54LS22/74LS22IJ),(N),(W);
74S22(N)

See page 1 ~38 for electrical tables.

23

Expandable Dual 4-lnput NOR Gates with Strobe

Xl

D2

=

Gl (A1+B1+C1+DlI+X

Y2

=

G2 (A2+B2+C2+D2)

STROBE
G2

82

A2

Y2

C1

D1

Yl

GNO

14

16

Yl

C2

X = output of 5460/7460

XI

Al

STRUBE
G1

B1

5423/7 423(J), (N) ,(W)

See page 1 ~50 for electrical tables.

25

Dual 4-lnput NOR Gates with Strobe
STROBE
Vee

02

14

Y

=

13

C1

G2

B2

12

G(A+B+C+D)

Al

B1

5425/7 425(J) ,IN) ,(W)
See page 1-40 for electrical tables.

1-8.

A2

Y2

~ 551
26

DM54/DM74 Connection Diagrams/Gates

Quad 2-lnput High-Voltage NAND Gates

Y = AB

A1

B1

Y1

A2

B2

Y2

GND

542611426(J),(N);54L26114L26(J),(N);
54LS26/7 4LS26( J), (N) ,(WI

See page 1-42 for electrical tables.

27

Triple 3-lnput NOR Gates
BJ

CJ

A1

B1

A'

A3

Y3

Y2

"

542711427(J),(NI,(W); 54LS27114LS27(J),(N),(W)

See page 1-40 for electrical tables.

30

a-Input NAND Gates

NC

114

I"

NC
12

11

I"

2

3

,

4

NC

I.

-s

Y = ABCDEFGH

1

NC

•

NC

GND
11

10

)0-

I'

GND

"

See page 1·36 for electrical tables.

543011430(J),(N);54H30114H30(J),(N);
54L30114L30(J).(N);54LS30/74LS30(J),(N),(W)
74S30(N)

1-9

543011430(W),54L30114L30(W)

~ 881
32

DM54/DM74 Connection Diagrams/Ga~es

Quad 2-lnput OR Gates

Y=A+B

.,

"

Y1

.2

B2

Y2

GNO

543211432(J),(N),(W);54L32114L32(J),(N),(W);
54LS32/74LS32(J),(N),(W)

See page 1 ~52 for ele'etrical tables.

37

Quad 2-lnput NAND Buffers

Y=Ae

.,

"

Y1

A2

B2

Y'

GNO

5437 /7437(J) ,(N) ,(WI ;54LS37/74LS37(J) ,(N ),(W)

See page 1-54 for electrical tables.

38

Quad 2-lnput NAND Buffers with Open-Collector Outputs

Y=Ae

.,

"

Y1

'2

B2

Y'

GNO

5438/7438(J),(N),(W);54LS38174LS38(,J),(N),(W)

See page '·42 for electrical tables.

1·10

~ SSI
40

DM54/DM74 Connection Diagrams/Gates

Dual 4-lnput NAND Buffers

D2

"

C2

NC

B2

A2

V2

.,

12

Il

C1

B1

Il

14

12

ON.

V2

11

.2

C2

A2

82

D2

C2

10

y= ABeD

AI

B1

Ne

C1

.,

VI

GN.

AI

VI

Ne

5440/7440(JI, (NI; 54H40/74H40(JI, (NI;
54LS40/74LS40(JI, (NI, (W); 74S40(N)

V"

Ne

5440/7440(WI

See page 1 ~54 for electrical tables.

50

Dual 2-Wide, 2-lnput, AND-DR-INVERT Gates
v"

.,

B1

C1

VI

.,
"

y

C1
Il

GN.

VI

12

V2

11

"

=.AB+Ci5+X
50:
X = output of 5460/7460
H50: X = output of 54H60/74H60
or 54H62/74H62

AI

A2

82

&2

.,

V2

5450/7450(J), (N); 54H50/74H50(JI, (N)

See page 1-50 for electrical tables.

1-11

GN.

82

5450/7450(W)

··~SSI

DM54/DM74 Connection Diagrams/Gates

51 Dual 2·Wide, 2·lnput AND·DR·INVERT Gates
v"

81

"

.2

MAKE NO EXTERNAL
CONNECTION
~

01

C1

Y1

. 01

C1

Y1

GNO

Y2

02

C2

Al

v"

81

.,

B2

51, H51, 551

Y

= A8+Ci:5

B2

C2

0'

GNO

MA~AL
CONNECTION

5451/7451(J), (N); 54H51/74H51(J),(N);
74S51(N)

5451/7451(W)

L51, U51

Y1 = (AI' 81' Cl) + (01' El •. Fl)
Y2

= (A2

• 82)

+ (C2

• 02)

54L51/74L51 (J),(N); 54LS51/74LS51(J),(N),(W)

See page 1-56 for electrical

t~bl.s.

1-12

54L51/74L51(W)

~ 551
52

y

~

DM54/DM74 Connection Diagrams/Gates

Expandable 4-Wide AND-OR Gates

AB+COE+FG+HI+X
X

~

output of 54H61174H61

NC

GND

54H52/74H52(J). (N)

See page 1-50 for electrical tables.

53

Expandable 4-Wide AND-OR-INVERT Gates
GND

NO
10

53

Y

AB+CO+EF+GH+X
X = output of 5460/7460

5453/7453(J). (N)

5453/7453(W)

H53

Y

=

-;AC'B:C+C'C"'O"+:-;E'""'F'""'G""+:-;H7."C
1+~X
X

= output of 54H60/74H60
or 54H62174H62

GND

54H53/74H53(J), (N)

See page 1-50 for electrical tables.

1-13

~SSI

DM54/DM74 Connection Diagrams/Gates

54 4-Wide AND-OR-INVERT Gates
GND

NC
10

54

Y

~A:;:Bc;+-;;C:;:Dc;+"E"F'7+-;;G:;-;H

Ne

GNO

MAKE NO EXTERNAL
CONNECTION

5454/7454W, IN)

545417454IW)

MAKE NO EXTERNAL
CONNECTION

Ne

~

14

"

12

H54

Y =A
-;;-;;B'"'+""c"'D:-:+-;E'"'F:-;G"""+'"'H-;-;1
L541J, N), LS54

Y = AB+CDE+FGH+IJ

GNo

GNo

54H54/74H541J), IN)

54L54174L54IJI,IN}; 54LS54/74LS541J) ,IN) ,IW)

Ne

GND

L54(W)

Y = '=A-=Bc.:
C-c+-=D-=E""+-=F-=G-c+7":H"'"'IJ

54L54174L541W)

See pagel-56 for electrical tables.

1-14

~ 551

DM54/DM74 Connection Diagrams/Gates

55 2-Wide, 4-lnput AND-DR-INVERT Gates
Ne

"

13

12

H55 (EXPANDABLE)
y ~ ABCO+EFGH+X
X ~ output of 54H60/74H60
or 54H62/74H62
L55(J, NI. LS55

Y

~

ASCO+EFGH

Ne

Ne

GNO

54H55/7 4H55(J),(N)

Ne

GNO

54L55/7 4L55(J),(N); 54LS55/74LS55(J),(N),(W)

Ne

GNO

Ne

Ne

L55(W)

Y ~ "A"'S"'CC::O-+-=EC:-F-=-G'"'H

54L55/74L55(W)

See page 1-50 (H551. 1-56 (L55 and LS55) for electrical tables.

60

Dual4-lnput Expanders
v"

01

x,

x,

X2

X2

02

X2

14

X2

02

"

60

GNO

C2

11

B2

A2

C1

01

10

X =- ABeD when connected, to X and

X inputs of 542317423, 5450/7450
or 5453/7453

H60
X = ABeD when connnected to X
and X inputs of 54H50/74H50,
54H53/74H53, or 54H55/74H55

A'

B1

C1

A2

B2

C2

5460/7460(J),(N); 54H60/74H60(J),(N)
See page 1-58 (60), 1-59 (H60) for electrical tables.

1-15

GNO

x,

x,

A1

v"

B1

5460/7460(W)

~ SSl
61

DM54/DM74 Connection Diagrams/Gates

Triple 3·lnput Expanders
X3
11

XI

X2

C2

GNO

10

x = ABC when connected to X input
of 54H52/74H52

BI

AI

A2

CI

"

54H61/74H61(J) ,(N)

See page 1-60 for electrical tables.

62

4·Wide AND·OR Expander
v"
14

13

12

X = AB + CDE + FGH + iJ when
co nnected to X and X inputs
of 54H50/74H50, 54H53/74H53
or 54H55/74H55

.NO

54H62/74H62(J) ,(N)

See page 1-59 for electrical tables.

64

4 Wide AND·OR·INVERT Gates

14

13

12

Y = ABCD + EF + GHI + JK

GNO

74S64(N)
See page 1-56 for electrical tabies.

1-16

~ 551
65

DM54/DM74 Connection Diagrams/Gates

4 Wide AND-OR-INVERT Gates with Open-Collectbr Outputs

T
14

•

c

13

12

•

K

I,.

11

/,
I

Y = ABeD + EF + GHI + JK

y

•

~

-

,

•

2

,

J
F

,
G

74S65(N)

See page 1-61 for electrical tables.

1-17

J

.I'
H

!'
I

C!:

~ 551

DM54/DM74 Connection Diagrams/Flip-Flops

70 AND-Gated J-K Positive-edge-Triggered Flip-Flops with Preset and Clear
PA

elK

K'

eLR

J1

J2

KI

TRUTH TABLE
INPUTS

OUTPUTS

PR

CLR

CLK

J

K

a

L

H

L

X

X

H

a
L

H

L

L

X

X

L

H

L

L

X

X

X

H'

H'

H

H

t

L

L

ao

00

H

H

H

L

H

L
H

H

H

t
t

L

H

L

H

H

t

H

H

TOGGLE

H

H

L

X

X

ao

NC

GND

5470/7470(J),(N)

00

J=Jl ·J2·J
K=Kl ·K2·K
If inputs J and Kare not used, they
must be grounded.

J'

GNO

"

Preset or Clear function can occur
only when clock input is low.

KI

elK

PR

v"

CLR

NC

J1

5470/7470(W)

See page 1·62 for electrical tables.

H71 AND-DR-Gated J-K Master-Slave Flip'Flops with Preset
v"

TRUTH TABLE
INPUTS

14

elK

J

K

a

L

x

X

X

H

L

H

.JL
.JL
.JL
.JL

L

L

00

GO

H

L

H

L

L

H

L

H

H

H

TOGGLE

H
H

K"

KA'

KB1

JA'

JB2

PR

KAI

13

OUTPUTS

PR

H

elK

a

J = UIA • JIB) + (J2A - J2B)
K = (KIA· K1B) + (K2A' K2B)
JAI

JB1

GND

54H71/74H71(J) ,(N)

See page 1·64 for electrical tables.

Notes: ....JL "" high-level pulse; data inputs should be held constant while clock is hi,gh; data is transferred to output on the falling edge of the
~~,

'

00 = the level of Q before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

1-18

~ SSI

OM 54/0M74 Connection Oiag rams/Flip-Flops

l71 AND-Gated R-S Master-Slave Flip-Flops with Preset and Clear

TRUTH TABLE
INPUTS

OUTPUTS

PR

CLR

CLK

S

R

Q

Q

L

H

X

X

X

H

L

H

L

X

X

X

L

H

L

L

X

X

H

H

H'
00

H'
60

H

H

H

L

H

L

H

H

L

H

L

H

H

H

..1L
..1L
..1L
..1L

X
L

H

H

L

NC

S2

GNO

53

INDETERMINATE

=

51

54l71/14L71(JI.(N)

RJ

R2

GNO

53

52

Nt

51

"

R = Rl • R2' R3

5

CLR

SI ·52· S3

Rl

ClK

PR

V"

ClR

54l71/74l71(W)

See page 1-66 for electrical tables.

72

AND-Gated J-K Master-Slave Flip-Flops with Preset and ciear
v"

TRUTH TABLE
INPUTS
K

Q

L

H

X

X

X

H

L

H

L

X

X

X

L

H

L

L

X

X

X

H

H

..1L
..1L
..1L
..1L

L

L

H

H
H

H

H

ClK

KJ

K2

K1

KJ

K2

GNO

JJ

"

OUTPUTS

PR CLR ClK J

H

PR

Q

H' H*
00 60

H

L

H

L

L

H

L

H

H

H

TOGGLE

J = Jl·J2·J3
K=Kl'K2'K3
5472/1472(J) ,(N );54H72/7 4H72(J) ,(N);
54L72/74L72(J),(N)

5472/1 472(W) ;54l 72/1 4l 72 (WI

See page 1-62 (72),1-64 (H721.1-66 (L72) for electrical tables.

Notes: ..JL '" high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the

pulse.

ao "" the level

of Q before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level o,n each active transition (pulse) of the clock.
"'This configuration is nonstable; that is, it will not'persist when preset and clear inputs return to their inactive (high) level.

1-19

~ SSI

DM54/DM74 Connection Diagrams/Flip-Flops

73 Dual J-K Flip-Flops witn Clear
TRUTH TABLE
73,H73,L73
INPUTS

TRUTH TABLE
LS73
OUTPUTS

ClK

J

K

Q

Q

ClR

ClK

l

X

X

X

l

H

l

H

JL
JL
JL
JL

l

l

00

60

H

l

H

l

H

L

H

H

H

H
H

OUTPUTS

INPUTS

ClR

J

K

Q

X

X

X

l

Q

H

H

j

l

l

00

60

L

H

H,
l

H

l

H

I
I

l

H

H

l

H

TOGGLE

H

I

H

H

H

H

X

X

TOGGLE

00

60

See page 1-62 (73),1-64 (H73), 1-66 (L73), 1-68 (LS73) for electrical tables_

547317473('.1), (N), (W); 54H73174H73(J),(N);
54L73/74L73 (.I), (N), (W);
54LS73174LS73(J), (N), (W)

74 Dual D Positive-Edge-Triggered Flip-Flops witn Preset and Clear

TRUTH TABLE
INPUTS

Vee

eLR 2

elR l

01

D2

eLK 1

eLK 2

PR Z

02

Pfl 1

01

01

.ND

OUTPUTS

PR

ClR

ClK

l

H

H

L

L

L

H

H

H

H

X
X
X
t
t

H

H

l

'0

Q

Q

X
X

H

L

L

H

X

H'

H'

H

H

L

L

l

H

X

00

60

5474/7474(J),(N); 54H74/74H74(J),(N);
54L74/74L74(J),(N); 54LS74/74LS74(J),(N),(Wl;
74S74(N)

PR 1

"

.,
13

lil

ii2

GND

02

PR2

"

12

5474/7474(Wl; 54L74/74L74(Wl
See page 1-62 (74), 1-64 (H74), 1-66 (L74), 1-68 (LS74), 1-70 (S74) for electrical tables.

Notes: JL "" high-level pulse; data inputs should be held constant while clock is high; data is transferred to output
~~

on the falling edge of the
,

00 = the level of Q before the indicated input conditions were established.
TOGGLE: Each output changes'to the complement of its previous level on each active transition (pulse) of the clock.
*This configuration is nonstable; that 'is, it w'ill not persist when preset and clear inputs return to their inactive (high) level.

1-20

~ 551
76

DM54/DM74 Connection Diagrams/Flip-Flops

Dual J-K Flip-Flops with Preset and Clear
TRUTH TABLE
LS76

TRUTH TABLE
76, H76
INPUTS

INPUTS

OUTPUTS

OUTPUT&

PR

CLR

CLK

J

K

a

a

PR

CLR

CLK

J

K

a

L
H

H

X

X

X

H

L

L

H

X

X

X

H

L

L

X

X

X

L

H

H

L

X

X

X

L

H

H'

L
H

L

X

X

X

H

4-

L
H

L

W
00

W
00

L

H

L

L
H

H
H

H
L
TOGGLE

X

X

00

L

L

X

X

X

H
H

H

~

L

L

W
00

H

~

H

L

H

L

H

H

H

H

~

L

H

L

H

H

H

H

H

~

H

H

TOGGLE

H

H

t
t
t

H

H

H

00

a

00

elK 1

PR 1

ClR 1

J1

Vee

elK 2

PR 2

elR 2

5476/7476(J). (N), (W); 54H76/74H76(J), (N);
54LS76/74LS76(J), (N). (W)
See page 1-62 (76).1-64 (H76), 1-68 (LS76) for electrical tables.

78

Dual J-K Flip-Flops with Preset, Common Clear, and Common Clock

TRUTH TABLE
H78, L78
INPUTS

OUTPUTS

PR

CLR

eLK

J

K

a

L

H

X

X

X

H

L

H

L

X

X

X

L

H

W
00

L

L

X

X

X

H

H

~

L

L

W
00

a

H

H

~

H

L

H

L

H

H

~

L

H

L

H

H

H

~

H

H

.,

TOGGLE

., .,

J1

.,

.,

GND

54H78/7 4H78(J) ,(N)

TRUTH TABLE
LS78
INPUTS

OUTPUTS

PR

CLR

ClK

J

K

a

L

H

X

X

X

H

a
L

H

L

X

X

X

L

H

L

L

X

X

X

H

H

t

L

L

W
00

W
00

H

H

4-

H

L

H

L

H

H

4-

L

H

L

H

H

H

4-

H

H

TOGGLE

H

H

H

X

X

00

00
54L78/74l78(J), (N), (W);
54lS78/74lS78(J), (N).(W)

See page 1-64 .(H78), 1-66 (L78), 1-68 (LS78) for electrical tables.

Notes:

.JL

=

pulse.

high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the
'

QO = the level of Q before the indicated input conditions were established.
TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) of the clock.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level.

1·21

~ 551
86

DM54/DM74 Connection Diagrams/Gates

Quad 2-lnput EXCLUSIVE-OR Gates

.,

B1

Y1

.2

B2

Y2

GND

548617486(J), (N), (W);
54LS86174LS86(J), (N), (W); 74S86(N)

A3

TRUTH TABLE
(86, L86, LS86, S86)
INPUTS

OUTPUT

Y

A

B

L

L

L

L

H

H

H

L

H

H

H

L

Y=A0B=AB + AS
A1

B1

Y1

V2

.2

B2

GND

AJ

VJ

54L86174L,86JJ),(N)

V4

84

A4

GND

OJ

54L86174L86(W)

See page 1-72 for electrical tables.

1·22

~ SSI

DM54/DM74 Connection Diagrams/Flip-Flops

103 Dual J-K Negative-Edge-Triggered Flip-Flops with Clear
J1

01

.2

K2

GND

Q1

02

TRUTH TABLE
INPUTS

OUTPUTS

ClR

ClK

J

K

Q

L

X

X

X

L

H

H

L

L

00

60

H

L

H

L

L

H

L

H

H

I
I
I
I

H

H

TOGGLE

H

H

X

X

00

H
H

Q

60

54H 103/74H 103(J),(N)

See page 1 ~74 for electrical tables.

106 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset and Clear
K1

., .,

GND

K2

Jl

Vee

.2

.2

J2

TRUTH TABLE
INPUTS

OUTPUTS

PR

ClR

ClK

J

K

a

L

H

X

X

H

L

H

L

X

X

L

H

X

x

H'

H'

L

L

00

60

H

L

H

L

L

H

L

H

H

H

TOGGLE

X

X

00

H

H

X
X
X
I
I
I
I

H

H

H

L

L

H

H

H

H

H

H

a

elK1

PRl

elRl

CLK2

PR2

ClR2

60
54H106/74H106(J), (N)

See page 1-74 for electrical tables.

107 Dual J-K Master-Slave Flip-Flops with Clear

TRUTH TABLE
INPUTS

OUTPUTS

CLR

ClK

J

K

Q

L

X

X

X

L

H

H

SL
SL
SL
SL

L

L

00

60

H

L

H

L

L

H

L

H

H

H

H
H
H

Q

TOGGLE
J1

=

K1

.2

li2

GND

54107/74107(J),(N);
54lS107/74lS107(J), (N), (W)

See page 1-62 (1071.1-68 (LS107) for electrical tables.

Notes; JL

U1

high-level pulse; data inputs should be held constant while clock is high; data is transferred to output on the falling edge of the

pulse.

00 = the level of Q before the indicated input cc;inditio!,",s were establ ished.
TOGGLE: Each output changes to the complement of its previous level on each active transition (pulse) pf the clock.
*This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their i'nactive '(high) level.

1·23

~ SSI

DM54/DM74 Connection Diagrams/Flip-Flops

108 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, and Common Clock
TRUTH TABLE
INPUTS

OUTPUTS

PR

elR

elK

J

K

Q

L

H

X

X

H

L

H

L

X

X
X
X

l

H

l

W
00

aD

L

H

L

H

l

H

l

L

X
X

H

H

j

H
H
H
H

H

j

l
H

H

j

l

X

H

j

H

H

H

H

X

X

Q

W

., .,

TOGGLE

00

aD

oz

JT

0'

.z

GND

54Hl0S/74Hl08(J), (N)

See page 1-74 for electrical tables.

109 Dual J-K Positive-Edge-Triggered Flip-Flops with Preset and Clear
Vee

eLR 2

J2

eLR1

Jl

Kl

K2

ClK2

PRl

02

0'

PR 1

01

.,

GND

TRUTH TABLE
INPUTS

OUTPUTS

PR

qR

elK

J

K

a

a

l

H

X

X

X

H

l

H

l

X

X

X

l

H

l

l

X

X

X

W

W

H

H
H
H
H
H

t

L

L

t
t
t

H

L

L

H
H

00

H

l

X

X

00

H
H

H
H

H
L
TOGGLE
H

aD
l
aD

eLK 1

54109/74109(JI, (N). (W);
54lS109n4lS109(J), (N). (W)

See page 1-62 (109). 1-68 (lSI09) for electrical tables_

112 Dual J-K Negative-Ed\le-Triggered Flip-Flops with Preset and Clear
Vee

eLR 1

eLR z

eLK 2

K2

JZ

PR'

.z

eLK 1

Kt

JT

PR1

.,

.,

li%

GND

TRUTH TABLE
OUTPUTS

INPUTS
PR

ClR

ClK

J

K

a

L

H

X

X

H

l

H

l

X

X

X
X

l

H

l

Q

l
H

X

X

X

H
H

j

L

l

W
00

ao

H

j

H

l

H

L

H

H

H

H

H
H

l
H

H

H
l
TOGGLE

X

X

00

H

••

H

W

aD

54LSl12n4LSl12(J), (N), (W); 74S112(N)

See page 1-68 (LSI12). 1-70 (5112) for electrical tables_

Notes;

00 = the level of

a before the indicated input conditions were established.

TOGGLE: Each output changes to the complement of its previous level on each active transition of the clock.
*Thjs configuration is nonstable; that is, it will not persist when preset and,clear inputs return to their inactive (high) level.

1-24

~ SSI

DM54/DM74 Connection Diagrams/Flip-Flops

113 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset
eLK 2

Vee

k2

J2

PR 2

.2

02

TRUTH TABLE
INPUTS

OUTPUTS

a

PR

ClK

J

K

0

l

x

X

X

H

l

H

j

L

L

00

00

H

j

H

L

H

L

H

j

L

H

l

H

H

j

H

H

TOGGLE

H

H

X

X

00

00
elK 1

54LS113/74LS113(J), (N),

(wf; 74S113(N)

See page 1-68 (LS113), 1-70 (5113) for electrical tables.

114 Dual J-K Negative-Edge-Triggered Flip-Flops with Preset, Common Clear, .and Common Clock

TRUTH TABLE
INPUTS

OUTPUTS

ClR

elK

J

K

a

L

H

L

L

X
X
X

H

H

X
X
X

L

H

H*

H*

L

00

00

PR

a

L

L

X
X
X

H

H

j

L

H

H

j

H

L

H

l

H

H

j

L

H

L

H

H

H

j

H

H

TOGGLE

H

H

H

X

X

00

CtR

00

K'

J1

PR 1

.,

ii,

GND

54LS114/74LS114(J), (N), (W); 74S114(N)

See page 1-68 (LS1141, 1-70 (5114) for electrical tables.

Notes:

00 = the level of Q before the indicated input conditions were established.
TOG,GLE: Each output changes to the complement of its previous level on each active transition of the clock.
*This configuration is nonstable; that is. it will not persist when preset and clear inputs return to their inactive (high) level.

1-25

~ 88.1

DM54/DM74 Connection Diagrams/One 8hots

121 One Shots
TRUTH TABLE
INPUTS

OUTPUTS

A1

A2

B

0

0

L

X

H

L

H

X

L

H

L

H

X

X

L

L

H

H

H

X

L

H

.JL
.JL
.JL
.JL
.JL

lS
lS
lS
lS
lS

H

t

H

t
t

H

H

t

H

L

X

t

X

L

t

NO

Al

GND

'2

5412f/74121(J), (N), (W)

See page 1~ 76 for electrical tables.

122 Retriggerable One Shots with Clear
TRUTH TABLE
INPUTS

OUTPUTS

CLEAR

A1

A2

B1

B2

0

Q

L

X

X

X

X

L

H

X

H

H

X

X

L

H

X

X

X

L

X

L

H

X

X

X

X

L

L

H

X

L

X

H

H

L

H

JL
JL

LJ
LJ

H

L

X

t

H

H

L

X

H

t

H

X

L

H

H

L

H

H

X

L

t

H

LJ

H

X

L

H

t

JL
JL

H

H

I

H

H

H

I

I

H

H

H

I

H

H

H

t
t

L

X

H

H

X

L

H

H

See page 1 ~78 for electrical

JL
JL
JL
JL
JL

LJ
LJ

54LS122(J), (W); 74LS122(J), (N)

LJ
LJ

-LJ
LJ

ta~les.

123,123A Dual Retriggerable One Shots with Clear

REXT 1

Vee

CEXT

CEXT 1
14

02

III

"

12

elR 2

82

.2

REXT 2

GND

11

TRUTH TABLE
INPUTS

OUTPUTS

A

B

CLR

0

0

H

X

H

L

H

X

L

H

L

H

L

t

H

LJ

t

H

H

.JL
.JL

X

X

L

L

H

lS
Al

81

ClR 1

(11

Q2

CEXT 2

CeXT

54123n4123(J), IN), (W);
54L 123An4L 123A(J), (N),(W);
54LS123n4LS123(J), (N), (W)

See page 1~78 for electrical tables.

Notes: .....IL- = one high-level pulse, I S = one low-level pulse.
To use the internal timing resi~tor of 54121/74121, connect RINT to VeeAn external timing capacitor ':11ay be connected between CEXT and REXT/CeXT (positive),
For accurate repeatable pulse widths, connect an external resistor between REXT/CEXT and Vee with RINT oPBI!-circuited.
To obtain variable pulse widths, connect external variable resistance between RINT or REXT/CEXT and VCC·

1·26

~ SSI
125

DM54/DM74 Connection Diagrams/Gates

TRI-STATE Quad Buffers
C4

14

A4

Il

12

V4

11

"

AJ

VJ

V2

GND

I'

TRUTH TABLE
INPUTS

OUTPUT

A

C

Y

H

L

H

L

L

L

X

H

HI-Z

Y=A

01

AI

VI

C2

A2

54125/74125(J), (NI. (WI;
54LS125174LS125(JI. (NI. (WI

See page 1-80 for electrical tables.

126

TRI-STATE Quad Buffers
C4

A4

12

Il

V4
II

TRUTH TABLE
INPUTS

"
I'

AJ

VJ

A2

V2

GND

OUTPUT

A

C

y

H

H

H

L

H

L

X

L

Hi-Z

Y=A

01

AI

VI

C2

54126174126(J). (N). (WI;
54LS126174LS126(JI. (N), (WI

See page 1-80 for electrical tables.

132

Quad 2-lnput NAND Schmitt Triggers

Y=AB

54132/74132(JI. (N). (W);
54LS132174LS132(J). (N). (W)

See page 1-48 for electrical tables.

1-27

~ 551
133

DM54/DM74 Connection Diagrams/Gates

13-lnput NAND Gates

I"
Y

"

15

13

11

~

= ABCDEFGHIJKLM

2

1

3

,

I"

11

,

4

r-s
I'

6

p

I'

GNO

74S133(N)

See page 1-36 for electrical tables.

134

TRI-STATE 12-lnput NAND Gates
Vee

OUTPUT
CONTROL

J"

J"

"

13

11

11

,

1"

~

Y - ABCDEFGHIJKL
Output is off (disabled) when
output control is high.

)0-

2

1

3

,

4

3
,

E.

I'

I'

GNO

74S134(NI

See page '1-80 for electrical tables.

135

Quad EXCLUSIVE-OR/NOR Gates
TRUTH TABLE
OUTPUT

INPUTS

Y

A

B

C

L

L

L

L

L

H

L

H

H

L

L

H

H

H

L

L

L

L

H

H
L

L

H

H

H

L

H

L

H

H

H

H
Al

B1

VI

&1, C2

A2

Y= (A0SI0c=
ABC + ABC + ABC + ABC

74S135(NI

See page 1--82 for electrical tables.

1·28

82

Y2

GNO

~ 551
136

DM54/DM74 Connection Diagrams/Gates

Quad EXCLUSIVE-OR Gates with Open-Collector Outputs
B4

V'"

I"

13

A

OUTPUT
Y

B

L

L

L

L

H

H

H

L

H

H

H

L

Y = A

0

YO

12

83

11

~L>-

B = AB + AS

1

1

VJ

3
9

•

~L>,

1

8 12

AI

10

5))- Err

TRUTH TABLE
INPUTS

1~

,

1

85
2

A2

"

6

Y2

J:

54LSI36174LSI36(J), (N), (W)
74S136(N)

See page 1-84 for electrical tables.

140

Dual 50-Ohm Line Drivers

Vl~

14

D2
13

C2

12

NC

I"

--

Y2

B2
10

T9

8

~

Y=ABCD

1

AI

2

"

J:

,
C1

74S140(N)

See page 1 ~54 for electrical tables.

1·29

5
01

~

t J:

~ 551

DM54/DM74 Connection Diagrams/One Shots

221 Dual One Shots with Schmitt-Trigger Inputs
Vee

RUTI
CexT 1

CEXT 1

Q1

ii2

ClR2

Q2

CEXT 2

82

'2

Run!

GNU

TRUTH TABLE
INPUTS

OUTPUTS

CLEAR

A

B

Q

Q

L

X

X

L

H

X

H

H

X

X
L

L

X

L

H

H

L

t

H

j

H

JL LJ
JL l J '

.,

CEXT 2

54LS221/74LS221(J), (N), (W)

See page 1-76 for electrical tables.

Notes:

..Jl.... == one high-level pulse, L r = one low-level pulse.
An external timing capacitor may be cohnected between CEXT and ReXT/CEXT (positive).
For accurate repeatable pulse widths, connect an external resistor between R EXT/CEXT and Vee.
To obtain variable pulse widths, connect external variable resistance between ReXT!CeXT and Vee.

'-30

~ 551
260

DM54/DM74 Connection Diagrams/Gates

Dual 5-lnput NOR Gates

I..

E1

E1

D1

I"I

i"L.-

11

D2

B2

C2

•

1D

•

r--y

~

A+B+C+D+E

~
2

1

"

B1

l

C1

C
I
4
A2

I'

V1

6
V2

74S260(N)

See page 1-40 for electrical tables.

266

Quad EXCLUSIVE-NOR Gates with Open-Collector Outputs

TRUTH TABLE
INPUTS
B

A

OUTPUT
Y

L

L

L

H

L

H

L

L

H

H

H

y ~ A

0

H

B ~ AB

+

AB

54LS266/74LS266(Jl. (N), (W)

See page 1-84 for electrical tables.

1-31

I'

GNO

~ 551

DM54/DM74 Connection Diagrams/Buffers

365, TRI-STATE Hex Buffers

TRUTH TABLE
OUTPUT

INPUTS

Gl

G2

A

Y

H

X

X
L

H

X
X

Z
Z

H

H

L

L

L

L
L

54365(JI. (WI174365(JI. (NI. (WI;
54LS365174LS365(JI. (NI. (WI
See page 1·86 for electrical tables.

366 TRI-8TATE Hex Buffers
Vee

112

A'

ill

Al

Yl

y,

AS

Y5

A4

Y4

A2

Y2

A3

VJ

GND

TRUTH TABLE
INPUTS

OUTPUT

Gl

G2

A

Y

H

X

Z

X

H

X
X

L

L

H

L

L

L

L

H

Z

54366(J1. (WI174366(JI. (N). (W);
54LS366/74lS366(J). (N). (WI
See page 1-86 for electrical tables.

367 TRI-STATE Hex Buffers
Vee

G2

A'

Y'

A5

Y5

A4

V4

Al

Yl

A2

"

A3

Y3

GND

TRUTH TABLE
INPUTS

-G=A-

OUTPUT

Y

H

X

Z

L

H

H

L

L

L

54367(JI. (W)174367(J1. (N). (WI;
54LS367174LS367(JI. INI. (WI

See page 1-86 for electrical tables.

1-32

~ SSI
368

DM54/DM74 Connection Diagrams/Buffers

TRI·STATE Hex Buffers
AS

Y5

A5

Y5

A4

y.

y,

A2

V2

'3

Y3

GND

TRUTH TABLE
INPUTS

--=-G
A

OUTPUT

Y

H

X

Z

L

H

L

L

L

H

54368(J), (W)/74368(J), (N), (W);
54LS368/74LS368(J), (N), (W)

See page

1~86

for electrical tables.

1-33

~ 551
386

DM54/DM74 Connection Diagrams/Gates

Quad EXCLUSIVE-OR Gates

TRUTH TABLE
INPUTS

r--A
B

OUTPUT

L

L

L

L

H

H

H

L

H

H

H

L

Y=A0s = AS +AB

54LS386174LS386(J), (N), (WI
See page 1-72 for electrical tables.

1-34

National Semiconductor
54f74 SSI DEVICES
Electrical Tables
Section I

Max Ratings/Operating Conditions
RATINGS
Maximum Allowable
Supply Voltage
Guaranteed Operating
Supply Voltage Range

54/74

54H/74H

54L/74L

SERIES

SERIES

SERIES

7

7

8

54LS/74LS SERIES
DIODE

EMITTER

INPUTS

INPUTS

7

7

54S/74S
SERIES
7

4.50 to 5.50
4.75 to 5.25

154

J74

UNITS

V
V

Maximum Input Voltage

5.5

5.5

5.5

7

5.5

5.5

V

Maximum Voltage to OpenCollector Outputs*

7

7

8

7

7

7

V

Operating Free·Air
Temperature Range

154
174

Storage Temperature Range
*Except for selected high voltage types, as specified in electrical tables.

1-35

-55 to +125
o to +70

DC

-65 to +150

DC

Electrical Characteristics

over recommended operating free·air temperature range (unless otherwise noted).

CONDITIONS

PARAMETER

MIN

V'H

High Level Input Voltage

V'l

low Level Input Voltage

V,

Input Clamp Voltage

DM54/74

DM54HI74H

DM54L/74L

DM54 LS/74 LS

DM74S

00,04
10,20,30

HOO, H04
Hl0, H20, H30

LOO, L04
L 10, L20, L30

LSOO
LS04, LS10
LS20, LS30 '

SOO, S04
S10, S20
S30, S133

TYP(l)

MAX

2

Vee

= Min

I

~~8

It =

TYP(1)

MAX

2

MIN

TYP(1)

OB
-1.5

High Level Output Current

VOH

High Level Output Voltage

-1.5

IOH

10l

VOL

Low Level Output Current

Low Level Output Voltage

Vee

V 1H

w


Z
C
G)
til

S-

se..
~
CD

~

CD

iil

Electrical Characteristics

CONDITIONS

PARAMETER

MIN
VIH

High Level Input Voltage

VIL

Low Level Input Voltage

IOH

VOH

High Level Output Current

High Level Output Voltage

Vee = Min

Low Level Output Voltage

Others

Vee. = Min

J,.

IOL = Max

V'H = 2V

Input Current at Maximum

Vee = Max

I rrput Voltage
High Level

IIH

Input Current

Data Inputs
Strobe of 25
All Inputs

Vee = Max

IlL

Data Inputs

Input Current

Strobe of 25

,

Short Circuit Output
Current

Supply Current

IcC

02,25,27

L02

LS02, LS27

S02, S260·

TYP(1)

MAX

Vce

=Max

TYP(l)

MAX

2

Vee = Max (2)

MIN

TYPO)

MAX

2

MIN

TYP(l)

UNITS

2

0.7

0.7

N/A

DM74

0.8

0.7

0.8

0.8

N/A
N/A

-1.5

-1.2

-200

-400

-1000

25,27

-800

Others

-400

~

V

0.8

-1.5

en

MAX

DM54

V
V

f.lA

2.4
DM54

2.4

3.4

2.4

3.3

2,5

3.4

N/A

DM74

2.4

3.4

2.4

3.2

2.7

3.4

2.7

V

3.4

DM54

16

2

4

N/A

DM74

16

3.6

8

20

DM54

0,2

0.4

0.15

0.3

0.25

0.4

N/A

DM74

0,2

0.4

0.2

0.4

0.35

0.5

0.5

DM74

mA

V

0.4

V, = 5.5V

1

0.1

1
0.1

V, = 2.4V

40

10

160

N/A

=2.7V
=0.3V

mA

0

s:U'I
~

.......
C
f.lA

20

50

s:

li!
0
N

-0.18
-1.6

V, = OAV
V,

Vee = Max

MIN

V, = 7V

V,

All Inputs
lOS

IOL =4 rnA

V,

All Inputs
Low Level

DM74S

LS27

Low Level Output Current

o

II

DM54LS/74LS

I, =-18rnA

IOH = Max

VOL

DM54L!74L

I, =-12mA

Vee = Min

V'L = Max

IOL

DM54/74

2

Input Clamp Voltage

VI

~

over recommended operating free-air temperature range (unless otherwise noted).

-0.36
N/A

-6.4

mA

=0.5V

-2
DM54

-20

-55

-3

-15

-30

-130

DM74

-18

-55

-3

-15

-30

-130

N/A
-40

-100

All typical values are at Vee = 5V, TA = 25°C.
Not more than one output should be shorted at a time, and for DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.
National Semiconductor temporarily reserves the right to ship DM54/0M74LS02, LS27 devices which have a minimum lOS = 5.0 rnA.

en
Z

0

Notes
(21
(31

en
N
0

See Table

(1)

mA

N
U'I
N
....

::D
C)
I»

It
en

748260 To Be An';ouneed In 1976
--

-

Supply Currents
DEVICE

I

ICCH (rnA)
Total With Outputs High
TYP

02
25

Switching Characteristics

8
8

ICCl (rnA)
Total With Outputs Low

MAX

TYP

MAX

16

14

27

16

10

19

DEVICE

atVcc~5V,TA~25°C

CONDITIONS

MIN
02
25

CL

~

15 pF,

RL ~

400£2

27
27
L02

10
0.8

16
1.6

16
1.4

TYP

MAX

tpHl (ns)
Propagation Delay Time,
High-To-Low Level Output
MIN

TYP

I

~
en
en

MAX

12

22

8

15

13

22

8

15

7

11

10

15

26
L02

CL

~

50 pF,

RL ~4k£2

31

60

35

60

L502, L527

CL

~

15 pF,

RL ~

2 k£2

10

15

10

15

2.6

L502

1.6

3.2

2.8

5.4

L527

2.0

4

3.4

6.8

502.

17

29

26

45

5260

17

29

26

45

502

.j:,.

tPlH (ns)
Propagation Delay Time,
Low-To-High Level Output

5260

CL

~

15 pF,

RL ~

280£2

3.5

5.5

3.5

5.5

CL

~

50 pF,

RL ~

280£2

5

7.5

5

7.5

CL

~

15 pF,

RL

= 280£2

4

5.5

4

6

o

s:

U'I

.fa

.....
o

s:
~

o
N
N

U'I

N
:oJ
en
N
en
o
Z

o

:a
C)
III

;

III

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted).
OM54/14
CONDITIONS

PARAMETER

06,07,16,17
MIN

V,H

High Level Input Voltage

V,L

Low Level Input Voltage

Input Clamp Voltage

I, :-12 rnA

Vee::: Min

10H

High Level Output Current

VOH

High Level Output Voltage

26

MAX

2

I OM54
OM74

V,

TYP(11

11 -

VOH

Low Level Output Voltage

-

V,, 121

.i>

'"

Input Current at
Maximum Input Voltage

I,

High Level Input Current

I'H

Low Level I nput Current

I,L

Supply Current

Icc

Vee"" Max

L26
MAX

TYP(11

0.8

0.8

-1.5

-1.5

250
30

16,17

15

1000

MIN

TYP(1t

LS38
MAX

'2

0.8

0.8

06,07

LS26
MAX

2

2
0.8

MIN

MIN

TYP(1)

MAX

0.7

0.7

0.7

0.8

0.8

N/A

N/A

N/A

1.5

200

50

1.5

1000

250

250

5.5

15

15

30

16

48

2

4

12

40

16

48

3.6

8

24

DM54

0.7

0.4

0.4

0.7

0.4

0.4

IOL-4mA
IOL '" 12mA

DM74
0.4

V , ·5.5V

1

1

.1

40

40

40

0.15

0.3

0.25

0.4

0.4

0.4

0.35

0.5

0.5

0.25

0.4

0.1
0.1

0.1

20

20

-{J.36

-{J.36

10

-1.6

-1.6

1.6

Notes
(1)

All typical values are at Vee· 5V, TA· 25°e.

(2)

The input

~Itage

is VIH

U'I

~
......

0

~
en
b.....
0

mA

iJA

:.a
en
:.a

.....
en
W

N
CO

mA

0

i::l

See Table

Max

0

~

~

mA

V

-{J.18

VI'" O.3V

V1 - O.4V

pA

0.4

IOL -16mA

VI =2.4V

V

5.5

DM74

OM74

en
en

V

V
15

DM54

OM74

UNITS
V

2

0.7

V, - 2.7V

Vee'" Max
=

TYP(1)

~

OM54LS/74LS

VI=7V

Vee::: Max

Vee

MIN

50

Max

IOL '" Max
Vee"': Min

38
MAX

lamA

low Level Output Current

VOL

TYP(1)

-1.5

Others
10L

MIN
2

0.8

V OH ::: 12V

Vee'" Min
V,, (21

OM54LJ74L

0

2-

= 2V or VIL :::;: max, as appropriate.

(i'

~

LS38 To Be Announced In 1976

0
:"

;,
<
0
I

;

;:;'
I»
CC

CD

m

c

::::
CD

"'-

Ci1
-------

-

Supply Currenu

DEVICE

Switching Characteristics at Vee; 5V, T A; 25°C

ICCH (mA)
Total With Outputs High
TYP

MAX

ICCl (mA)
Total With Outputs Low
TYP

MAX

DEVICE I CONDITIONS

tplH (ns)
Propagation Delay Time,
Low-To-High Level Output
MIN

06, 16

30

42

27

07, 17

29

41

21

30

26

4

8

12

22

38

5

8.5

34

54

L26

0.48

0.8

1.32

2.04

LS26

0.8

1.6

2.4

4.4

LS38

0.9

2

6

12

06, 16
07,17

CL ;15pF
RL ;

110n

26

CL

15 pF

;

RL ;

38

RL ;

L26

133n

I CL ; 15 pF
RL ;

LS38

1 H~

I C L ; 45 pF

I CL

;

RL ;

w

MAX

10

15

6

10

MIN

TYP

MAX

15
20

23
30

~
en
en

38

LS26

.;,.

TYP

tpHl (ns)
Propagation Delay Time,
High-To-Low Level Output

4 kn
15 pF
2 kn

I Cl ; 45 pF
Rl

; 667n

16

24

11

17

C

s:
U'I
~

.......
14

22

11

18

C

s:-..J

~

0

40

90

25

60

0)

17

32

15

28

:....
0)

20

32

18

28

0

-..J

~

N
0)
W

00

0

't:I

CD
::l

0

2.

Ii"

...

n

...

0

J::

<:0

;:::;'

I»

(Q

CD

IXJ

c:....

....

CD

iil

~

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).
PARAMETER

COIllDITIONS
MIN

V,H

High level Input Voltage

V,L

Low Level Input Voltage

V,

DM54174

DM54H/74H

DM54L174L

DM54LS174LS

DM74S

08,11

H08, H11, H21

L08, Lll

LS08, LSll, LS21

S11

TVP(H MAX

2

I

Input Clamp Voltage

MIN

TVP(l)

DM54
DM74

I

0.8
0.8

1,=-12mA

MIN

TVP(1)

High Level Output Current

High Level Output

Vee

Voltage

IOH = Max

IOl

VOL

I,

0.7

0.8

0.8

-1.5

N/A
-1.5

-1.2

N/A

Low Level Output

Input Current at

I'H

High Level I nput Current

I,l

Low Level Input Current

Vee = Min

lOL

=

tOL

-4mA

V 1l = Max

Vee = Max

Max

3.3

2.5

3.4

DM74

2.4

3.4

2.4

3.4

2.4

3.2

2.7

3.4

Vee

= Max

,

2

4

N/A

20

3.6

8

20

DM54

0.2

0.4

0.2

0.4

0.15

0.3

0.25

0.4

N/A

0.2

0.4

0.2

0.4

0.2

0.4

0.35

0.5
0.4

0.5

1

1

1

0.1
0.1

= 2.7V
= 0.3V

Short Circuit Output
Current

ICC

Supply Current

Vee = Max(2)
Vee = Max

20

V, - O.4V

-2

-1.6

50

-{l.36

V

rnA

JlA

rnA
-2

I

DM54
DM74

-20

-55

-18

-55

-

--40
-40

-100

-3

-15

-30

-130

-100

-3

-15

-30

-130

See Table

Notes
All typical values are at Vee = 5V, T A = 25°C.
(2) Not more than one output should be shorted at a time, and for DM54H/DM74H, DM54LS/DM74LS and DM74S, duration 01 short circuit should not exceed one second.
(1)

rnA

-{l.18

V, - 0.5V

los

;tA

'10

50

40

,

V

V

3.4

20

V,=7V

V,

N/A
2.7

DM74
DM74

V, = 5.5V

V,

-1000

--400

2.4

V, = 2.4V
Vc;.c = Max

-200

3.4

16

"

V

2.4

16

V

0.8

-500

CJ)
CJ)

MAX

N/A

3.4

DM54

TVP(l)

0.7

2.4

DM74

MIN

0.7

DM54

Low Level Output

Maximum Input Voltage

..,

= 2V

MAX

2

N/A

Current

Voltage

J,.

= Mi'n, V 1H

TVP(lI

0.8

-1.5

-800

IOH

MIN
2

1,- 18mA

VOH

MAX

2

II =-8mA
Vee = lYlin

MAX

2

UNITS

N/A
-40

100

0

3:

rnA

c.n
~

........

0

3:
.....
~

0

CO

~
...&

LS11, LS21 To Be Announced In 1976

N
...&

»Z
0
C)
I»

...

~

en

Supply Currents

DEVICE

Switching Characteristics at Vee

ICCH (rnA)
Total With Outputs High
TYP

ICCL (rnA)
Total With Outputs Low

MAX

TYP

MAX

21

20

33

DEVICE

I CONDITIONS I

~ 5V, TA ~ 25°C

tpLH (ns)
Propagation Delay Time
Low-To-High Level Output
MIN

OB

~
(J1

I

I

OB,ll

CL

~

15 pF

RL ~

400£1

11

B

15

14

22

HOB

2B

40

42

64

Hll

lB

30

30

4B

HOB, Hll

CL

~

25 pF

H21

RL ~

280£1

H21

~

11

12

20

20

32

tpHL (ns)
Propagation Delay Time,
High-To-Low Level Output
TYP

MAX

27

12

19

12

B.8

12

TYP

MAX

17.5

7.6

MIN

LOB

1.1

2.1

2.0

3.3

LOB

CL

50 pF

45

90

45

90

L 11

1.0

1.5

1.6

2.2

Lll

RL ~

4 k£1

40

BO

45

90

LSOB

2.4

4.B

4.4

B.B

LSOB, LS11

CL

15 pF

LS21

RL ~

2 k£1

10

15

12

20

CL

4.5

7

5

7.5

6

9

7.5

11

LSll

l.B

3.6

3.3

6.6

LS21

1.2

2.4

2.2

4.4

Sll

13.5

24

24

42

Sll

~

~

~

15 pF

RL ~

280£1

CL

~

50 pF

RL ~

2BO£1

2.5

2.5

~
en
en

c

s:C1I

~
.......

C

s:
~
o

00

:::
N

~

»z
c

C)
II)

;

III

Electrical Characteristics

DM54/74
CDNDITIONS

PARAMETER

High Level Input Voltage

V,L

low Level I nput Voltage

Input Clamp Voltage

V,

IOH

High Level Output Current

VOH

High Level Output Voltage

IOl

Low Level Output Current

Low Level Output Voltage

VOL

Input Current at Maximum Input Voltage

.,.
C>

High level Input Current

I'H

Vee::: Min

Vee::: Min

lO9
MAX

:::

Vee"" Max

Max

IOl =4 mA
V, = 5.5V

LS09, LS15
MAX

2

MIN

Supply Current

Vee::: Max

TYP(1)

UNITS

V

2

DM74

0.8

0.7

0.8

0.8

-1.5

NfA
-1.5

-1.2

NfA

V

V

250

50

100

250

IJA

5.5

5.5

5.5

5.5

V

DM54

16

2

4

N/A

DM74

16

3.6

8

20

DM54

0.2

0.4

0.15

0.3

0.25

0.4

NfA

DM74

0.2

0.4

0.2

0.4

0.35

0.5

0.5

DM74

rnA

V

0.4
1

0.1

1
0.1

40

10
20

50

0
rnA

IJA

-0.18
-1.6

-0.36

rnA

s:

C1I

~
.......

0

s:.....
~

0
CD

-2

:...

See Table

C1I

0

Notes

(11

en
en

MAX

NfA

V, = 0.5V
Icc

MIN

0.7

V, = 2.7V

V, = O.4V

S15
MAX

2

V, -7V
V, =2.4V

TYP(l)

0.7

V, = 0.3V
Vee == Max

TYP(1)

DM74S

0.8

I, =-12 rnA

Max

Vee == Max

MIN

1,=-18rnA

tOl :::

DM54LSfDM74LS

DM54

Vee" Min, V ,H = 2V, V OH = 5.5V

Low Level Input Current

I,L

TYP(ll

2

V 1L

I,

DM54LfDM74L

09
MIN

V,H

~

over recommended operating free-air temperature range (unless otherwise noted).

"

All typical values are at VCC= 5V, T A = 25°C.

~

::J

LS15 To Be Announced In 1976

(')

2-

cr
~

0

~

»
z

O·

G)
C\)

CS'
en
'-

Supply Currents

DEVICE

I

Switching Characteristics at V cc

ICCH (rnA)
Total With Outputs High

ICCl (rnA)
Total With Outputs Low

TYP

MAX

TYP

MAX

09

11

21

20

33

L09

1.1

2.1

2

3.3

LS09

2.4

4.8

4.4

8.8

LS15

1.8

3.6

3.3

6.6

S15

10.5

19.5

24

42

DEVICE

CONDITIONS

~ 5V,

L09

LS09,LS15

S15

'CL~15pF

RL

~

400Q

CL

~

15pF

RL

~

4 kQ

CL
RL

~

15 pF

~

2 kQ

CL

~

15 pF

RL

~

280Q

CL

~

50 pF

RL

~

280Q

~ 25° C

tplH (ns)
Propagation Delay Time,
Low-To-High Level Output
MIN

09

TA

2.5

TYP

MAX

21

tpHl (ns)
Propagation Delay Time,
High-To-Low Level Output
TYP

MAX

32

16

24

50

110

50

110

20

35

20

35

5.5

8.5

6

9

8.5

13

8

12

MIN

2.5

~
en
en

o

~

(JI

.;,.
-..J

~

.......

o

~

~

o

CD

:....
(JI

o
i::I
(")

2-

~
g

...

»
z
o

C')

C»

;

en

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted).
DM54/74
CONDITIONS

PARAMETER

13
MIN

MIN

MAX

Vee

'=

5V

1.5

1.7

2

1.5

1.7

2

VT-

Negative-Going Threshold Voltage

Vee

~

5V

0.6

0.9

1.1

0.6

0.9

1.1

Vee ~ 5V

Hysteresis
Input Clamp Voltage

V,

Vee

0.4
~-12mA

I,

= Min

I, -

High Level Output Current
High Level Output Voltage

Low Level Output Voltage

O.B

-1.5

MAX

1.5

1.7

2

0.6

0.9

1.1

0.4

O.B

TYPO)

MAX

1.4

1.6

1.9

0.5

O.B

1.0

MIN

0.4
-1.5

-1.5

-1.5

--BOO

-800

-400

2.4

3.4

2.4

3.4

2.4

3.4

2.5

3.4

IOH

DM74

2.4

3.4

2.4

3.4

2.4

3.4

2.7

3.4

=:

Max

=:

IOL ~ 8 mA

IT+

Input Current at Positive-Going Threshold

Vee:: 5V, VI

IT-

Input Current at Negative-Going Threshold

Vee

I,

Input Current at Maximum Input Voltage

~

5V. V,

I

16

16

16

4

DM74

16

16

16

B

DM74
0.2

IOL -16mA

0.4

0.2

0.2

0.4

V

V
IlA

0.25

0.4

0.35

0.5

mA

V

0.4

VT +

--{l.65

-0.43

--{l.43

-0.14

rnA

~

VT -

-0.85

--{l.56

-0.56

--{l.18

rnA

Vee:: Max

Vee:o: Max

I,L

Low Level Input Current

Vee = Max,

los

Short Circuit Output Current

Vee ~ Max (2)

Icc

Supply Current

~

V,

~7.0V

V,

~

2AV

V,

~

2.7V

5.5\1

V, =QV

20

-1.0

V,

~

4.5V

-1.6
-55

--{l.S
-18

-1.2
-55

--{l.a
-18

-1.2
-55

-30

rnA

2.9

6
16

5.9

11

LS13

4.1

7

lS14

12

21

LS132

8.2

14

Others

14

20

23

32

22

39

36

60

15

26

24

40

p./i;

rnA

8.6

0

3:
CJ'I

.po

.......

-130

LS14
LS132

mA

-0.4

lS13

Others

Total Output Low

40

40

40

-18

Vee = Max

1
0.1

V,~O.4V

Total Output High

1

1

-

V

'=

V,

en
en

V

DM54

10L ~4mA

Min

UNITS

V

O.B

DM54

Vee

High Level Input Current

.

TYPO)

Vee"'" Min, V! :::: V T -- Min

Vj::::VT+Max

I'H

MIN

lBmA

l,.ow Level Output Current

VOL

0.4

-800

IOH
VOH

IOL

O.B

LS13. LS14. LS132

132

TYPO)

Positive-Going Threshold Voltage

VT-

'"

14
MAX

VT+

VT+

.;,.

TYP(l)

~

DM54LS/74LS

0

3:
~

-"

W

:..
.1)0
:..
W
N

rnA

en
(')

=r
3
;::;:

....

-4

Notes
(1)

All typical values are at V CC ~ 5V. T A ~ 25' C.

(2)

Not more than one output should be shorted at a time, and for OM54LS/DM74LS, duration of short circuit should not exceed one second.

LS13, LS14, LS132 To Be Announced In 1976
-~-

::I.

CQ
CQ

CD

iil

Switching Characteristics at Vee = 5V, TA = 25°C

DEVICE

13
14, 132
LS13
LS14, LS132

ct

I

CONDITIONS

CL

= 15 pF,

RL

= 400n

CL

= 15 pF,

RL

= 2 kn

tpLH (nsl
Propagation Delay Time,
I Low-To-High Level Output

tpHL (nsl
Propagation Delay Time,
High-To-Low Level Output

TYP

MAX

TYP

MAX

18

27
22

15

15

15

22
22

15
15

22
22

18
15

27
22

I

~
CJ)
CJ)

c

s:U'I

~

.......

c

3:
....~
W

~

~

~

W
N

CJ)

n

':

3

a
-t
~

eC'
eQ
~

ii1

Electrical Characteristics

DM54/74
PARAMETER

CONDITIONS

o

VIH

High Level Input Voltage

Vll

Low Level I nput Voltage

VI

Input Clamp Voltage

TYP(l)

II,

MAX

MIN

TYP(l)

MIN

TYP(l)

VOH

High Level Output Voltage

IOl

Low Level Output Current

VOL

Low Level Output Voltage

Vee = Min, V, = (2). IOL = Max

II

Input Current at Maximum I nput Voltage

Vee = Max, V, = 5.5V

IIH

High Level Input Current

Vee = Min, V, = (2). IOH = Max

UNITS

0.8

0.8

-1.5

-1.5

-800

-400

3.4

2.4

3.4

0.8

16
0.2

0.4

0.2

20

0.4

0.2

1

V
V
/J.A
V

3.4

16

1

Vee =Max, V, =2.4V

-500
2.4

-

V

-1.5

2.4

en
en

MAX

2

~-8 mA

High Level Output Current

Data Inputs

MAX

2

1I,=-12mA

IOH

Strobe of 23

H50, H52
H53, H55

50,53

2

Vee = Min

DM54H/74H

23

,

MIN

'"

~

over recommended operating free-air temperature range (unless otherwise noted).

0.4
1

40

40

50

160

N/A

N/A

mA
V
mA
/J.A

0

s:

UI
~

.......

0

s:
....,
~

N

W
Low Level I nput Current

III

Data Inputs
Strobe of 23

Short Circuit Output Current

los

Vee = Max, V, = O.4V

Vee = Max (3)
Vee ~ Max

Supply Current

Icc

-1.6

-2

-1.6

-

-6.4

N/A

N/A

I DM54

-20

-55

-20

-55

-40

-100

I DM74

-18

-55

-18

-55

-40

-100

mA

U1
0

J:

UI

mA

N

U1

W

See Table

J:
UI
UI

Notes
(1)

All typical values are at VCC = 5V, T A = 25°C.

(21

The input voltage is V I H

(31

Not more than one output should be shorted at a time, and for the DM54H/DM74H, duration of short circuit should not exceed one second.

=

m
><

2V or V I L = V I L max, as appropriate.

-

~
Q)

:::J

C.
Q)

C"

~
C)

...

Q)

(1)

en

-~------.-

-~-

Electrical Characteristics

using expander inputs, Vee

= Min,

Ix (mAl
(Ix for H521
Expander Current

DEVICE

CONDITIONS

MIN

TYP(l)

DM5423
Vxx "O.4V

DM5450

IOL""16mA

DM5453
DM7423

Vxx "O.4V

DM7450

10L" 16mA

DM7453
DM54H50

Vx" 1.4V

DM54H53

Ix" 0

DM54H55

tOl =

DM74H50

Vx "l.4V

DM74H53

Ix = 0

DM74H55

IOL = 0

TA

= Min

MAX

CONDITIONS

-3.5

Ix + Ix" 410pA

-2.9

Rxx

-2.9

IOL::: 16mA

-3.5

Ix + Ix " 620pA

-3.1

RX- x

-3.1

t oL =16mA

'=

=

MIN

TYP(1)

Rx:x

0;;

MAX

0

0

CONDITIONS

0

Rxx

=

IOl =

0

TYP(l)

CONDITIONS

MAX

2.4

R xx "138>1

3.4

10H "-400pA

IOL'"

2.4

Ix" -270pA

3.4

0.4

0.2

0.4

0.2

0.4

0.2

0.4

C

0.2

0.4

......

Ix + Ix" 470pA
2.4

Ix" -320pA

3.4

Rxx " 6811
IOL=20mA

10H "-500pA

Ix + Ix" 600pA

Ix" 570pA
Ix" -570pA

2.4

3.4

Rxx " 63>1
IOL =20mA

10H "-500pA

20 rnA

0.2

16 rnA

Rxx " 130>1

Ix" 320pA

1.0

MAX

IOL = 16 rnA

10H "-400pA

1.1

TYP(l)

Ix + Ix " 430pA

Ix" 270pA
1.0

MIN

Ix + Ix" 300pA

Ix "-150pA

Ix+Ix:: 1.1mA

-6.3

MIN

(J)
(J)

Low Level Output Voltage

Ix" 150pA

1.1

IOL ::: 20 rnA

0

VOL (V)

VOH (V)
High Level Output Voltage

Ix + Ix" 700pA
-5·85

~

(unless otherwise noted) (4), (5), (6)

VBEIOJ (V)
Base-Emitter Voltage of
Output Transistor Q

s:

(J1

~

Ix - -300pA

DM54H52

Vx" lV

DM74H52

10H" -500pA

Vx "1V

-4.5

-2.7

10H "-500pA

2.4

3.4

.j::o

IOL = 20 rnA

TA

=

Max

~

Notes
(1) All typical values are at Vec" 5V, T A" 25°C.
(4) The 23, 50, and 53 are designed for"use with up to four 60 expanders.
(5) The HSO, H53, and H55 are designed for use with up to four H60 expanders or one H62 expander.
(6) The H52 is designed for use with up to six H61 expanders.

N
W
Switching Characteristics

DEVICE

at Vee

CONDITIONS

23.50.53
DEVICE

Iccl. (rnA)
Total With Outputs Low

tplH (ns)
Propagation Delay Time,
low·To·High Level Output

MAX

TYP

~

15 pF. RL "40011

MAX

0
tpHl (ns)
Propagation Delay Time,
High-To-Low Level Output
TYP

MAX

CL

"

15 pF. RL "400>1

W
::I:

22

8

15

15

30

10

20

6.8

11

6.2

11

From Input of 60 Expander

8

16

10

19

50

4

8

7.4

14

H52

CL = 25 pF. RL "280>1

10.6

15

9.2

15

H53

Expander Pins Open

7

11

6.2

11

7

11

6.5

11

53

4

8

5.1

9.5

H50

8.2

12.8

15.2

24

H55
H50

CL "25 pF. RL = 280>1

N
(J1

13

23

H50

J::
(J1

MAX

Expander Pins Open
50

TYP

CL

(n

= 5V, T A = 25°C

TYP

Supply Currents
ICCH (rnA)
Total With Outputs High

C

s:

(J1
(J1

,.,m><
II)

::l

C.

II)

11

7.4

cr
CD

H52

20

31

15.2

24

H52

C " 15 pF. (GND to

14.8

9.8

C')

H53

7.1

11

9.4

14

H53

H50. H53. or H55; or

11.4

7.4

H55

4.5

6.4

7.5

12

H55

to X of H52)

11.4

7.7

Ii
en

X of

II)

Electrical Characteristics

CONDITIONS

PARAMETER

MIN
VIH

High Level Input Voltage

VIL

Low Level Input Voltage

Input Clamp Voltage

VI

DM54/74

DM54L/74L

DM54 LS/74 LS

32

L32

LS32

TYPll)

High Level Output Voltage

V OH

Vee = Min

TYP(l)

MAX

MIN

TYP(l)

V

0.8

0.7

0.7

DM74

0.8

0.7

0.8

-1.5

N/A

Input Current at Ma,ximum Input Voltage

II

High Level Input Current

IIH

Low Level Input Current

IlL

Short Circuit Output Current

lOS

Supply Current

Icc

I Total, Outputs High
I Total, Outputs Low

Notes
(1) All typical values are at Vee = 5V, T A = 25"e.
(2)

V

V

-1.5

N/A

-400

-200

Vee = Min, V'H = 2V, IOH = Max

IOL = Max

DM54

2.4

3.4

2.4

2.8

2.5

3.4

DM74

2.4

3.4

2.4

2.8

2.7

3.4

fJ.A

Vee = Max

Vee = Max

Vee = Max

V

DM54

16

2

4

DM74

16

3.6

8

DM54

0.2

0.4

DM74

0.2

0.4

0.15

0.3

0.25

0.4

0.35

IOL =4 mA DM74

'"

MAX

DM54

-800

en
en

~

Vee = Min, V'L = Max

'"

UNITS

2

2

I, =-12 mA

Low Level Output Voltage

VOL

MIN

1,=-18mA

Low Level Output Current

IOL

MAX

2

High Level Output Current

IOH

~

over recommended operating free·air temperature range (unless otherwise noted).

mA

0.4
0.5

V

0.4

V, = 5.5V

1

0.1

V, = 7V

mA

0.1

V,=2.4V

40

10

V, = 2.7V

fJ.A

20

V, = 0.3V

-0.12

-0.18

-1.6

V, =O.4V

Vee = Max(2)

Vee = Max

mA

-0.36

DM54

-20

-55

-3

DM74

-18

-55

-3

...g
...g

-15

-30

-130

-15

-30

-130

15

22

1.5

2.2

3.1

6.2

23

38

2.3

3.8

4.9

9.8

\

Not more than one output should be shorted at a time, and for Of\154LS/DM74lS, duration of short circuit should not exceed one second.

mA

mA

-

C

3:
(J1

.p.......

C

3:
~

W
N

0

::u
G')
III

;

(II

-----

Switching Characteristics at Vee = 5V, TA = 25°C

DEVICE

I

CONDITIONS

I

tpLH (ns)
Propagation Delay Time,
Low-To-High Level Output
MIN

32

L32
LS32

RL = 400Q
CL = 50 pF
RL =4kQ
CL = 15pF
RL = 2 kQ

TYP

MAX

10

tpHL (os)
Propagation Delay Time,
High-To-Low Level Output
MIN

TYP

MAX

15

14

22

40

80

50

100

14

22

14

22

~
CJ)
CJ)

'"
w

c

s:
(11

~

........

C

s:

ii!eN
N

oII
C)

...

Q)

~

en

Electrical Characteristics
PARAMETER

CONDITIONS

DM54/74

DM54H/74H

DM54LS174LS

DM74S

37,40

H40

LS37, LS40

S40, S140

MIN' TYP(l)
V,H

High Level I nput Voltage

V,L

Low Level Input Voltage

V,

MAX

2

Input Clamp Voltage

I,
Vee

10H

= Min

~-8

MIN

TYP(l)

MAX

2

MIN

TYPO)

MAX

DM54

0.8

0.8

0.7

DM74

0.8

0.8

0.8

mA

MIN

TYP(l)

12mA
I, ~-18 rnA

V
N/A
0.8

-1.5

-1.5

-1.2

-1.2

-3

I

I

IOH

= Max

-40
2.4

3.3

2.4

3.4

2.7

V'L - 0.5V, Ro

~

...en

VOL

Low Level Output Current

Low Level Output Voltage

Vee:::: Min

V ,H

~

2V

Input Current at Maximum Input Voltage

I,

Vee:::: Max

I'H

I,L

los

Icc

High Level Input Current

Vee

= Max

Vee

= Max

Vee

~

Low Level Input Current

Short Circuit Output Current

Supply Current

IOL :: Max

IOL - 12 mA
V,

~

V,

~

2.7

50n to

~

2.4V

~

2.7V

V,

~

O.4V

V,

~

0.5V

Max (2)

Vcc=Max

V

DM54

48

60

12

N/A

DM74

48

60

24

60

DM54

0.2

0.4

0.2

0.4

0.25

0.4

N/A

DM74

0.2

0.4

0.2

0.4

0.35

0.5

0.5

DM74

rnA

V

0.4
1

1
0.1

40

100
20
-4

-1.6

100

-0.36
-4

DM54

-20

-70

DM74

-18

-70

-40
-40

-125
-125

-30

-130

-30

-130

C

3:

U1

1

7V

V,

3.4

2

5.5V

V,

rnA

3.4

'oH--3mA

GND, S140 Only
10L

V

V

-1.2

Others

V1L=Max

MAX

-1.5

High Level Output Current

Vee = Min

en
en

-1.5

I, -

High Level Output Voltage

UNITS

:i

2

S140
VOH

~

over recommended operating free-air temperature range (unless otherwise noted).

-50

N/A
-225

See Table

~

rnA

p.A

rnA

rnA

.......
C

3:
.....
~
W
.....

~
0

en
....
~
0

III
Notes
(1) All typical values are at Vee ~ 5V, TA ~ 25°e.
(2r Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second for 37, L537, 40, H40 or LS40; or 100 milliseconds for 540 and 5140.
LS37, LS40 To Be Announced In 1976

C

=

CD

til

.......
C

...<'
CD

til

Supply Currents
DEVICE

I

Switching Characteristics

ICCH (rnA)
Total With Outputs High
TYP

'"
Ul

ICCL (rnA)
Total With Outputs Low

MAX

TYP

MAX

37

9

15_5

34

54

40

4

8

17

27

H40

10.4

16

25

40

LS37

0.9

2

6

12

LS40

0.45

1

3

6

S40

10

18

25

44

S140

10

18

25

44

DEVICE

atV cc =5V,T A =25°C
tpLH (ns)
Propagation Delay Time,
Low-To-High Level Output

CONDITIONS

MIN
37

CL = 45 pF, RL = 133Q

tpHL Ins)
Propagation Delay Time,
High-To-Low Level Output

TYP

MAX

MIN

TYP

13

22

8

I ~enen

MAX
15

40

CL = 15 pF, RL = 133Q

13

22

8

15

H40

CL =25pF,R L =93Q

8.5

12

6.5

12

12

24

I

12

24

4

6.5

6

9

I

f--LS37
LS40

r------S40
S140

I CL = 45 pF, RL = 667Q

I

CL = 50 pF, RL = 93Q
CL = 150 pF, RL = 93Q

I

I

2

2

4

6.5

6

9

c

3:
C1I

tc

3:

~
~

~

o

en
....
~

o

OJ

c:

::::::

CD

~
C
~

~.

U;

Electrical Characteristics

CDNDITIONS(l )

PARAMETER

MIN
V,H
V,L

V,

DM54/74

DM54H/74H

DM54l/74l

DM54lS174lS

DM74S

51,54

H51, H54

L51, l54
l55

lS51, lS54
lS55

551, S64

TYP(1)

MAX

2

High Level Input Voltage

Low Level Input Voltage

Input Clamp Voltage

MIN

TYP(1)

MAX

2

MIN

TYP(1)

2

High Level Output Current
High Level Output Voltage

V 1L = Max

IOH
10L

VOL

= Max

Low Level Output Voltage

'"

Vee -= Min
V'H =2V

C1l

I,

Input Current at Maximum
Input Voltage

I'H

I,L

High level Input Current

Vee = Max

Vee = Max

IOL =Max

Vee -= Max

0.7

N/A

0.7

0.8

0.8

Short Circuit Output

~1.5

~1.2

~4oo

~lOoo

N/A

Icc

Supply Current

Current

V

V

N/A
~200

-500

J.lA

2.4
DM54

2.4

3.4

2.4

3.4

2.4

3.3

2.5

3.4

DM74

2.4

3.4

2.4

3.4

2.4

3.2

2.7

3.4

N/A
2.7

V
3.4

DM54

16

20

2

4

N/A

DM74

16

20

3.6

8

20

DM54

0.2

0.4

0.2

0.4

0.15

0.3

0.25

0.4

N/A

DM74

0.2

0.4

0.2

0.4

0.2

0.4

0.35

0.5

0.5

e
mA

1

~

.......
V

40·

50

1

mA

50

20

J.lA

-1.6

-2

-0.36

rnA
~2

DM54

~20

DM74

-18

-55

~40

~55

-40

Vee -= Max

~100

~100

~3

~15

~3

~15

bI
~

U1
U1

-0.18

= O.4V

~

U1
~

10

V, = 2.7V

e

~

0.1
0.1

= 2.4V

~

U1

0.4
1

V, = 7V

Vee = Max (2)

-

N/A

~1.5
~1.5

V, = 0.5V
loS

en
en

V

2

0.7

IOL = 4 mA DM74

V,

MAX

0.8

V, = 0.3V

Low level Input Current

TYP(1)

0.8

V, = 5.5V

V,

MIN

0.8

lS54

Low Level Output Current

MAX

0.8

1,=~12mA

Others

TYP(1)

DM74

-400
Vee"" Min

MIN
2

I, = lBmA
10H

MAX

UNITS

DM54

I, =-8mA
Vee = Min

VOH

~

over recommended operating free-air temperature range (unless otherwise noted)_

-30

-130

-30

~130

N/A
-40

See Table

~100

en
en
~

mA

~
e
I

0

:::D

Notes
All typical values are at VCC = 5V, TA = 25°C.

I

:;,

(1)

(2)

Not more than one output should be shorted at a time, and for DM54H/DM74H, DM54LS/DM74LS and DM74S, duration of the short circuit should not exceed one second.

(3)

National Semiconductor. temporarily reserves the right to ship DM54/DM74LS51, lS54, lS55 devices which have a minimum lOS = 5.0 mAo

<
CD

::I.

G')

...

74S51 To Be Announced In 1976

Q)

CD
(I)

---------

----

-

- - - - - - - - - - - - - - - - - - - - - ----------------

--- - - - -

---

Supply Currents
DEVICE

c:n
-..J

l

I

I

Switching Characteristics at Vee = 5V, T A = 25°C

ICCH (mA)
Total With Outputs High

ICCl (mA)
Total With Outputs Low

TYP

MAX

TYP

MAX

51

4

8

7.4

14

54

4

8

5.1

9.5

H51

8.2

12.8

15.2

24

H54

7.1

11

9.4

14

DEVICE

CONDITIONS

tplH (ns)
Propagation Delay Time,
Low-To-High Level Output
MIN

TYP

MAX

tpHl (ns)
Propagation Delay Time,
High·To·Low Level Output
MIN

TYP

CL

= 15 pF,

RL

= 400Q

13

22

8

15

H51

CL

= 25 pF,

RL

= 280Q

6.8

11

6.2

11

H54

CL = 25 pF,

RL

= 280Q

7

11

6.2

11

CL = 50 pF,

RL

= 4 kQ I

50

90

35

60

L51

0.44

0.8

0.76

1.3

L54

0.39

0.8

0.60

0.99

L55

I

en
~

MAX

51,54

L51, L54

~

L55

0.22

0.4

0.38

0.65

L551,L555

CL = 15 pF,

RL

= 2 kQ

12

20

12.5

20

L551

0.8

1.6

1.4

2.8

L554

CL = 15pF,

RL

=2kQ

16

20

12.5

20

L554

0.8

1.6

1.0

2

L555

0.4

0.8

0.7

1.3

CL = 15 pF,

RL =

3.5

5.5

3.5

5.5

o

CL = 50 pF,

RL

5

8

5.5

8

U1

551

8.2

17.8

13.6

22

564

7

12.5

8.5

16

551,564

280Q

= 280Q

2

2

3:

~

.......

c

3:
~

...
U1

U1
~

Ut
U1

en
en
~

»
z
c

6XI
I

::l

~

~
C)
Ql

i

Electrical Characteristics

~

over recommended operating free-air temperature range (unless otherwise noted).
DM54

PARAMETER

60

60
CONDITIONS

VIH

DM74

High Level Input Voltage

MIN

TYP(1)

MAX

VXXIONI

On-State Voltage Between

Vee = 4.5V, V IH = 2V

Expander Outputs

Vx = 1.lV, Ix = 3.5 mA

V x =lV,lx=3.5mA

0.4

V

Vee = 4.75V, V IH = 2V
-Q.3

-Q.43

Vx = lV, Ix = 0

mA

TA = O°C

Vee = 4.5V, V IL = 0.8V
Vx = 4.5V, Rx = 1.2 kn

150

T A =-55°C

~

V

TA = O°C

TA =-55°C
Off-State Expander Current

V
0.8

Vee = 4.75V, V IH = 2V
0.4

Vee = 4.5V, V IH = 2V
Vx = 1.1V, Ix =0

Vee = 4.75V, V IL =0.8V
. Vx = 4.5V, Rx = 1.2 kn

270

IlA

mA

TA = O°C

II

Input Current at Maximum Input Voltage

Vee = 5.5V, VI = 5.5V

1

Vee = 5.25V, VI = 5.5V

1

IIH

High Level Input Current

Vee = 5.5V, VI = 2.4V

40

Vee = 5.25V, VI = 2.4V

40

IlA

IlL

Low Level Input Current

Vee = 5.5V, VI = O.4V

-1.6

Vee = 5.25V, VI = O.4V

-1.6

mA

'CCIONI

Supply Current, Expander On

1.2

2.5

mA

2

4

mA

Vee = 5.5V, VI = 4.5V
Vx = O_85V, Ix = 0

ICCIOFFI

Supply Current, Expander Off

Vee = 5.5V, VI = 0
Vx = 0.85V, Ix = 0

en
en

MAX

2

TA =-55°C

IXIOFF)

TYP(l)

0.8

Low Level Input Voltage

On-State Expander Current

MIN

2

VIL

IXIONI

CONDITIONS

UNITS

1.2

2.5

2

4

Vee = 5.25V, VI = 4.5V
Vx = 0.85V, Ix = 0

0

Vee = 5.25V, VI = 0
Vx = 0.85V, Ix = 0

3:
U1
~

.......
0

Notes
111 All typical values are at VCC = 5V, TA = 25°C.

3:
~

0)

0

m
)(

'0
I»

::;,

Co
CD-

til
----- -

- - - - - ---------

Electrical Characteristics

DM54H

DM74H

H60, H62

PARAMETER
CONDITIONS
VIH

High Level Input Voltage

Vil

Low Level Input Voltage

VXX{ON)

On-State Voltage Between Expander Outputs

MIN

H60, H62
TYP(l)

MAX

Vee = 4.5V, V IH = 2V

On-State Expander Current

V
V

Vee = 4.75V, V IH = 2V
0.4

Vee = 5.5V, V IH = 2V

Vee = 5.25V, V IH = 2V
0.4

0.4

V x = 1V, I x: = 6.3 mA
T A = O°C

V
0.4

V x =lV,Ix:=7.4mA
T A = 70°C

Vee = 4.5V, V IH = 2V

Vee = 4.75V, V IH = 2V
-470

V x =lV,Ix:=O

TA =-55°C
Off-State Expander Current

(I)

MAX

0.8

T A = -55°C

Vx = lV, IX: = 0

IXIOFF)

UNITS
TYP(l)

0.8

Vx = lV, Ix: = 7.85 mA

(!)

MIN
2

TA = 125°C

'"

CONDITIONS

2

Vx = lV, Ix: =5.85 mA

IXIONI

~I
(1)1

over recommended operating free-air temperature range (unless otherwise noted).

-BOO

JlA

T A = O°C

Vee = 4.5V, V IL = 0.8V

Vee = 4.75V, V IL = 0.8V

Vx: = 4.5V, Rx = 575[2

320

T A = -55°C

Vx: = 4.5V, Rx = 575[2

570

JlA

T A = O°C

II

Input Current at Maximum Input Voltage

Vee = 5.5V, VI = 5.5V

1

Vee = 5.25V, VI = 5.5V

1

mA

i lH

High Level Input Current

Vee = 5.5V, VI = 2.4V

50

Vee = 5.25V, VI = 2.4V

50

JlA

C
~

III

Low Level I nput Current

Vee = 5.5V, VI = O.4V

mA

-.....

ICCION)

ICCIOFF)

Supply Current, Expander On

Supply Current, Expander Off

Expander Output Capacitance

Cx

-2

Vee = 5.25V, VI = O.4V

H60

Vee = 5.5V, VI = 4.5V

1.9

3.5

Vee = 5.25V, VI = 4.5V

1.9

3.5

H62

Vx = 0.85V, Ix: = 0

3.8

7

Vx = 0.85V, IX: = 0

3.8

7

H60

Vee = 5.5V, VI = 0

3

4.5

Vee

3

4.5

H62

Vx = 0.85V, Ix: = 0

6

9

V x =0.85,1x:=0

6

9

H60

Vee, I nputs, and X

5.4

Vee, I nputs, and X

5.4

H62

Open; f = 1 MHz

6.0

Open; f = 1 MHz

6.0

= 5.25V, VI = 0

mA

mA

U1
~

C
~

~

:t:
c:n
0
J:

c:n

pF

N

m
><

"0

Notes

III

-2

Q)

All typical values are at Vee

= 5V lexcept ex), TA = 25°e.

:l

0.

.,

CD

en
-

..

---------

--

Electrical Characteristics

~

over recommended operating free-air temperature range (unless otherwise noted)_
DM54H/74H

PARAMETER

H61
CONDITIONS

VIH

High Level Input Voltage

VIL

Low Level Input Voltage

VX(ONI

On-State Expander Output Voltage

UNITS
MIN

TYP(l)

MAX

2

Vee

(J)
(J)

V
0_8

V

= Min, V ,H = 2V, Ix = 4.5 mA for DM54H61
= Min

1

V

5.35 mA lor DM74H61, T A

cr,

IX(OFFI

Off-State Expander Current

Vee

= Min, V ,L = 0.8V, Vx = 2.2V, TA = Max

50

I1A

11

Input Current at Maximum Input Voltage

Vee

= 5.5V, V, = 5.5V

1

mA

IIH

High Level Input Current

Vee

= 5.5V, V, = 2AV

50

I1A

IlL

Low Level I nput Current

Vee

= 5.5V, V, = OAV

ICC(ONI

Supp,ly Current, Expander On

Vee

= 5.5V, V, = 4.5V

11

16

mA

ICCIOFFI

Supply Current, Expander Off

Vee

= 5.5V, V, = a

5

7

mA

Cx

Expander Output Capacitance

Vee and I nputs Open, I

-2

mA

a

= 1 MHz

504

pF

Noles
(11

All typical values are at VCC = 5V (except CX), TA

(21

The H52 is designed for use with up to six H61 expanders.

=

25°C.

C

s:
U'I
~

.......
C

s:

"::t
~

...

en

,

m
><

'0
III

:::I

C-

...

CD
1/1

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted).

~

DM74S
PARAMETER

CONDITIONS

S65
MIN

VIH

High Level Input Voltaqe

Vil

Low Level Input Voltage

VI

Input Clamp Voltage

IOH

High Level Output Current

TYP(1)

UNITS
MAX

2

Vee

= Min,

Vee

= Min, VIL = 0.8V
= 5.5V

V OH

11

Cf)
Cf)

V

= -18 mA

0_8

V

-1.2

V

250

/.l-A

V

VOH

High Level Output Voltage

5.5 .

IOl

Low Level Output Current

20

mA
V

VOL

Low Level Output Voltage

Vee

= Min, V IH = 2V,l oL = 20 mA

0.5

II

Input Current at Maximum Input Voltage

Vee

= Max, VI = 5.5V

1

mA

C
~

IIH

High Level Input Current

Vee

= Max, VI = 2.7V

50

/.l-A

Cf)

-..J

6>1

III

Low Level I nput Current

Vee

= Max, VI = 0.5V

ICCH

Supply Current, Output High

Vee

= Max

6

11

mA

ICCl

Supply Current, Output Low

Vee

= Max

8.5

16

mA

-2

mA

~

0)

U1

0

"C
CD

:::s

C")
Notes
(1) All typical values are at

0

Vee ==

CD

5V, T A = 25° c.

....

(")

...
I»z
0

Switching Characteristics

at Vee

= 5V, T A = 25°C

19

DM74S
CONDITIONS

PARAMETER

1

S65
MIN

tplH

tpHL

Propagation Delay Time, Low-To-High Level Output

Propagation Delay Time, High-To-Low Level Output

= 15 pF, RL = 28011
CL = 50 pF, RL = 28OS2

2

= 15 pF, RL = 28OS2
= 50 pF, RL = 28011

2

CL

CL
CL

TYP

UNITS

0
:Xl
,

S"

MAX

<

5

7_5

ns

8

12

ns

5.5

8.5

ns

6.5

10

ns

CD

::+

C)

....CD
C)

1/1

Electrical Characteristics

~

over recommended operating free-air temperature range (unless otherwise noted).
DM54/74

PARAMETER

CONDITIONS

70
MIN

V,H

High Level Input Voltage

V ,L

Low Level Input Voltage

V,

Input Clamp Voltage

IOH

High Level Output Current

VOH

High Level Output Vpltage

Low Level Output Current

VOL

Low Level Output Voltage

Vee

Vee

= Min,

I,

= -12

-

= Min, V ,H = 2V
= O.SV, IOH = Max

2.4

V'L

High Level Input Current

Vee

= Max, V, = 5.5V

0.2

Preset

Vee

= Max, V, = 2.4V

Clock
I'L

D, J, K, or K
Clear

Preset

Vee

= Max, V,

= O.4V

I DM54
I DM74

Clock

Icc

Current

Vee

= Max(2)

Supply Current (Average per Flip-Flop)

Vee

= Max(3)

TYP(1)

MAX

MIN

TYP(1)

V

0.8

O.S

-1.5

-1.5

-1.5

-400

-400

-400

-1200

2.4

2.4

3.4
16

0.4

0.2

16

0.4

0.2

0.4

0.2

mA

0.4

V

1

1

1

1

40

40

40

SO

SO

120

160

SO

SO

40

SO

40

SO

SO

SO

-1.6

-1.6

-1.6

-1.6

-3.2

-3.2

-3.2

-4.S

-3.2

-3.2

-1.6

-3.2

-3.2

-20

-55

-20

-55

-30

-55

-S5

-lS

-57

-18

-55

-18

-55

-30

-55

-S5

10

15

26

17

9

S.5

15

mA

C

p.A

3:
c.n
~

.......
C
mA

-3.2

-20

~57

13

V
p.A

16

40

-3.2

V

V

2.4

3.4

C/)
C/)

MAX

2

0.8

-1.6

Short Circuit Output

loS

MIN

-1.5

3.4

D, J, K, or K
Clear

MAX

UNITS

109

2

16

Input Current at Maximum Input Voltage

Low Level I nput Current

TYP(l)

74

2

mA

= Min, V ,H = 2V
= O.SV, IOL = 16 mA

Vee

I'H

0,

MIN

0.8

I,

N

MAX

2

V'L
10L

TYP(l)

72, 73, 76, 107

mA
rnA

3:
~
.....

....N0
....W
....
....en
~

Notes
(1)
(2)
(3)

.

All typical values are at VCC = 5V, TA = 25°C.
Not more than one output should be shorted at a tlme._
With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement. the clock input is at 4.5V for.the 70, and is grounded for all the others.

:..
0
.....

:..
0

CD

~

'CI

."

0"

'C

III

~

Switching Charjlcteristics at Vcc = 5V, T A = 25°C
DM54/74
PARAMETER

fMAX

Maximum Clock Frequency

tpLH

Propagation Delay Time,

Low-ta-High Level Output
tpHl

Propagation Delay Time,

tplH

Propagation Delay Time,

FROM
(INPUT)

tpHl

Propagation Delay Time,

tpLH

Propagation Delay Time,

CONDITIONS

(as applicable)

TYP

20

35

20

MAX

TYP

20

25

MAX

MIN

TYP

30

40

fJ)
fJ)

UNITS
MAX
MHz

25

9

14

D

50

25

40

40

18

29

50

16

25

25

9

14

50

25

40

40

17

25

27

50

16

25

14

25

12

18

18

50

25

40

20

40

19

28

ns

CL = 15 pF. RL = 400Q

ns

(as applicable)

0

ns

OorO

High-ta-Low Level Output

""w

15

109

74.
MIN

25

Propagation Delay Time,

Clock High

TYP

16

D

Clock

Pulse Width

MIN

50

Low-ta-High Level Output

tw

MAX

0

Clear

High-ta-Low Level Output

tPHl

72, 73, 76, 107

70
MIN

Preset

High-ta-Low Level Output

Low-ta-High Level Output

TO
(OUTPUT)

20

20

30

20

Clock Low

30

47

37

20

Preset or Clear Low

25

25

30

20

C
~

U1

ns

tsETUP

Input Setup Time(4)

20t

ot

20t

15t

ns

tHOLD

Input Hold Time(4)

5t

01

5t

lOt

ns

~

.......
C
~
-.J
~

-.J

0
;".,.

Notes
(4)

t

-l-

The arrow indicates the edge of the clock pulse used for reference: t for the rising edge, ~ for the falling edge.

N

;".,.
to)

~

;".,.
0')
~

0

-.J

~

0

to

"T1

"9'
"T1

0"

'0
/II

-

~-

Electrical Characteristics

~

over recommended operating free·air temperature range (unless otherwise noted).
DM54Hn4H

PARAMETER

CONDITIONS

H71
MIN

VIH

High Level I nput Voltage

V IL

Low Level I nput Voltage

VI

Input Clamp Voltage

10H

High Level Output Current

V OH

High Level Output Voltage

Low Level Output Current

VOL

Low Level Output Voltage

Vee = Min, V ,H = 2V

,L = O.BV, IOH = Max

Vee

I,

Input Current at Maximum Input Voltage

IIH

High Level I nput Current

= Min, V ,H

Vee

= 2V

a.av, IOL

= Max, V,

Low Level Input Current

MAX

0,2

MIN

TYP(1)

MAX

2

MIN

TYP(1)

2

V

O.S

0.8

V

-1.5

-1.5

-1.5

-1.5

V

-500

--500

-1000

--500

pA

2,4

2,4

3,4

3,4

20

0.4

0.2

2,4

3,4

20

0,4

0.2

0.4

0.2

V
20

mA

0.4

V

1

1

1

1

D,J, or K

50

50

50

50

Clear

N/A

100

150

200

150

100

100

100

100

50

100

100

Vee = Max, V, = 2,4V

-2

D,J,or K
Clear

Vee = Max, V,

Preset

N/A

= O.4V

--5
-4

Clock
-40

Vee = Max(2)

loS

Short Circuit Output Current

Icc

Supply Current (Average per Flip·Flop)
Vee = Max(3)

1lDM54
DM74

-100

-40

-2

-2

-2

-4
-4

-4

-a

-2

-4

-2

-4

-4

'-100

-100

-40

-100

19

30

16

25

15

21

16

25

19

30

16

25

15

25

16

25

Notes
All typical values are at Vee = 5V, T A = 25°e.
(2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.
(3) With all outputs open, ICC is measured with the Q and Qoutputs high in turn. At the time of measurement, the clock input is grounded.

(1)

-40

en
en

MAX

0.8

= 20 mA

= 5.5V

UNITS

H78

O.S

3,4

Clock

I'L

TYP(1}

20

Preset

""

2,4

MIN

H74

2

Vee = Min, 'I, = -S mA

V ,L =

a,

MAX

2

V
10L

TYP(1)

H72,H73,H76

mA

C

3:

U1

JiA

~
......

C

3:
~

mA

:s
-"

~
mA
mA

....
N

~

....W

~J:

....en
~
....CO
."

'9'
."

0'

'0
(II

-

-

Switching Characteristics atV cc =5V,T A =25°C

~
DM54H174H
FROM
(INPUT)

PARAMETER

fMAX

Maximum Clock Frequency.

tpLH

Propagation Delay Time,

TO
(OUTPUT)

H71, H72
H73,H76,H78

CONDITIONS

MIN

TYP

25

30

Q

Low-to-High Level Output

6

Cf)
Cf)

H74

MAX

MIN

TYP

35

43

13

UNITS
MAX
MHz
20

Preset las applicable)
tpHL

Propagation Delay Time,

0

High-to-Low Level Output
tpLH

ns

Propagation Delay Time,

0

Low-to-H igh Level Output

C L = 25 pF,

RL =

280[2

12

24

30

6

13

20

12

24

30

Clear las applicable)
tpHL

Propagation Delay Time,
High-to-Low Level Output

0.,

tpLH

14

tSETUP

tHOLD

Setup Time(4)

15

~

-..J

ns
22

High-to-Low Level Output
tw

8.5

21

0

GorO

Propagation Delay Time,

Pulse Width

U1
~

Propagation Delay Time,
Clock

tpHL

~

........

Low-to-High Level Output

01

0

ns
G

27

13

Clock High

12

15

Clock Low

28

13.5

Clear or Preset Low

16

25

High Level Data

ot

lOt

Low Level Data

ot

15t

ot

5t

Hold Time(4)

~

:I:

20

....

-..J

:I:
-..J
N

ns

~

-..J
W

ns

~

ns

~

-..J

~

-..J

Q)

Notes
(4) .} t The arrow indicates the edge of the clock pulse used for reference; t for the rising edge,

~

+for the falling edge.

00
~

~.

'"T1

0"

'C
(II

-_ ... _ - - - -

--_ .. -

-------------------

----

-

-

-

-------

-

Electrical Characteristics

~

over recommended operating free-air temperature range (unless otherwise noted).
DM54U74L
L71, L72

CONDITIONS

PARAMETER

MIN
VIH

High Level Input Voltage

Vil

Low Level Input Voltage

TVP(1)

MAX

High Level Output Current

VOH

High Level Output Voltage

VOL

II

Vee

::0

Min, V'H "" 2V

Low Level Output Current

Low Level Output Voltage

IIH

MIN

TVP(1)

MAX

MIN

TVP(1)

0.6

V

0.7

0.6

0.7

0.7

0.7

0.7

-200

-200

-200

-200

DM54L

2.4

3.3

2.4

3.3

2.4

3.3

2.4

3.3

DM74L

2.4

3.2

2.4

3.2

2.4

3.2

2.4

3.2

DM54

2

2

2

2

DM74

3.6

3.6

3.6

3.6

DM54L

0.15

0.3

0.15

0.3

0.15

0.3

0.15

0.3

V 1L

DM74L

0.2

0.4

0.2

0.4

0.2

0.4

0.2

0.4

Max, IOL ::::: Max

Iflput Current at

R, S, J, K, or 0

100

100

100

100

Clear

200

200

300

400

Vee

High Level Input Current

Max, V, o5.5V

200

200

200

200

Clock

200

200

200

400

R, S, J, K, or 0

10

10

10

10

20

20

30

40

20

20

20

20

Clock

-200

-200

20

-400

R,S.J, K, or 0

-(J.18

-(J.18

-(J.18

-(J.18

-0.36

-(J.36

-0.36

-0.72

-(J.36

-(J.36

-(J.18

-(J.36

-0.36

-(J.36

-(J.36

-(J.72

Vee

Preset

low level I nput Current

0

Clear

Vee

Preset

0

0

Max, V, o2.4V

Max, V, °0.3V

Clock
loS

Short Circuit Output Current

Vee

= Max

IcC

Supply Current

Vee

0

Notes
(1) All typical values are at VCC 5V, TA = 25°C.
(2) With all outputs open, ICC is measured with the

-3

-9

-15

-3

1.44

0.76

Maxl2)

-9
1.52

-15
2.88

-3

--9

1.6

-15
3.0

-3

-9
1.52

V
I"A
V

Vee::::: Min, V 1H = 2V
=;

(J)
(J)

MAX

2

Maximum Input Voltage

Clear

til

MAX

UNITS

L78

2

0.6

Preset

6Q)

TVP(1)

2

Clock Input

V!L ::::: Max, IOH = Max

IOl

MIN

2
All Other Inputs

IOH

L74

L73

-15
2.88

rnA

V

I"A

0

3:

I"A

U1
.j::o.

......
0

rnA

3:
~

Ci
Ci
N

~
rnA
rnA

Ci

~
.-

0

Q

and Q outputs high in turn. At the time of measurement, the clock input is grounded.

Ci
.j::o.
Ci
CO
"T1

~
"T1
6"

tI

III

_ ..

--

-_.

--

-

----

Switching Characteristics

at Vee; 5V, T A

;

~

25°C
DM54L/74L
FROM
(INPUT)

PARAMETER

L71, L72, L73, L78

-

Maximum Clock Frequency

tpLH

Prop~gation

6

Delay Time,

Preset or Clear

Low-to-High Level Output

Oor

I

Propagation Delay Time,
High-to-Low Level Output

tpLH

CONDITIONS

MIN

fMAX

tpHL

TO
(OUTPUT)

0

-' (Clock High)
Preset or Clear
(Clock Low)

OorO

Clock

OorO

C L ; 50 pF, RL ; 4

Propagation Delay Time,

Pulse Width

a,
....,

MIN
6

TYP

UNITS
MAX

U)
U)

-

MHz

11

35

75

40

60

60

150

60

120

150

60

120

10

35

75

10

50

90

10

60

150

10

60

120

ns

ns

ns

Propagation Delay Time,
High-to-Low Level Output

tw

MAX

11

kn

Low-to-High Level Output
tpHL

TYP

L74

Clock High

100

75

Clock Low

100

75

Clear or Preset Low

100

75

ns

C

s:<11

tSETUP

Setup Time(3)

ot

50t

ns

~
.......

tHOLD

Hold Time(3)

ot

15t

ns

s:

C

~

~

Notes
(3)

t.J, The arrow indicates the

~
Ci
N

edge of the clock pulse used for reference: t for the rising edge 4. for the falling edge.

Ci

to)

Ci

~

Ci
CO

"T1

'9'
"T1

0'

'C
(II

-

-

-

-

-

--- - -

- - - - _ .. _--

----

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted).

~
DM54LS/74LS

PARAMETER

LS73. LS76, LS107
LS112, LSl13

CONDITIONS

MIN
V,H

High Level Input Voltage

V,L

Low level Input Voltage

V,

Input Clamp Voltage
High Level Output Current

VOH

High Level Output Voltage

VOL

Vee;:: Min, V 1H

=

2V

V 1L "'- Max. IOH

= -40QuA

Low Level Output Current

Low Level Output Voltage

Vee

= Min

I I OL

V 1H '" 2V

Input Current at Maximum

=

V,

D, J, K, or k

Input Voltage
Clear

m
00

Preset

Vee

= Max

~ Max

l' Ot -4mA

Max

~

7V

V,

5.5V

High Level Input Current

r

DM74

0.8

0.8

0.8

0.8

-1.5

-1.5

-1.5

-1.5

-400

-400

-400

-400

DM54

2.5

DM74

2.7

3.4

2.5

3.4

2.7

(2)

(4)

2.5

3.4

-2.5

3.4

3.4

2.7

3.4

2.7

3.4

DM54

4

4

4

4

OM74

8

8

8

8

0.25

0.4

0.25

0.4

0.25

DM74

0.35

0.5

0.35

0.5

0.35

DM74

0.4

0.4

0.25

0.4

0.5

0.35

0.5

0.6
0.2

0.2
0.2

20

120

80

60

40

60

40

80

40

160

40

D,J,Kor K

-0.36

-0.4

-0.36

-0.4

Clear

-0.8

-1.2

-1.6

-1.6

-0.8

-0.8

-0.8

-0.8

-0.72

-0.8

-1.44

-0.8

Supply Current

Vee

=:

Max(3)

4

-30

8

-130
4

8

-30

-130
4

8

....
~

'"
~

rnA

"'"
0)

CO

:...

....

0

20

-130

""3:0
W

0.8
20

-30

~

en
....

0.2

0.4

U'I

r-

r-

0.3

0.3

5.5V

60

Vee ~ Max(2)

V

0.4

0.3

5.5V

Vee"" Max, VI == OAV

rnA

0.1
0.3

0

3:

en

0.1

0.1
0.1

Vee =- Max, V, = 2.7V

V

/1A

0.4

0.4

0.4

-

V

V

20

Current

(3)

3.4

DM54

en
en

V

2

60

Short Circuit Output

Notes
(1) All typical values are at Vee

MAX

D,J,K or K

Preset

Icc

TYP(1)

0.7

Clock

los

MIN

0.7

Clock

Low Level I nput Current

MAX

Clear
Preset

I,L

TYP(l)

UNITS

0.7

V, -7V
I'H

MIN
2

2

V, -7V

V,

MAX

LS109

0.7

VI -7V
Clock

TYP(1)

5.5V

V,

V,

MIN

LS78, LSl14

DM54

Vee"" Min, II "" -18 rnA

V1L
I,

MAX

2

10H

10L

TYP(1)

LS74

-30
4

:...
pA

0
CD

:...
~

N

:...
rnA

~

W

:...
~

~

~130

rnA

0

8

rnA

!.

C

!!

= 5V, TA

25°C.
Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement; the clock input is grounded.
=:

National Semiconductor temporarily reserves the right to ship DM54/DM74LS73, LS74, LS76, LS78, LS107, LS109, LS112, LS113, LSl14

devices which have a minimum lOS

= 5.0 rnA.

_ .. -

_._.-

-

"9'
'TI

0'

"C

C/)

Switching Characteristics atV cc =5V,T A =25°C

~

DM54LSi74LS
PARAMETER

fMAX

Maximum Clock Frequency

tplH

PropagatIon Delay Time,

IpHL

FROM
(INPUT)

Low-ta-High Level Output

Clear, Preset, or Clock

Propagation Delay Time,

{as appropriate}

TO
(OUTPUT)

Oor

6.

CONDITIONS

CL

=

LS73, LS76, LS78, LS107
LS112, LS113, LS114
MIN

TYP

30

45

15pF,R L =2kU

Hlgh-ta-Low level Output

'w

Pulse WIdth

tSETUP

Setup Time(5J

tHOlO

MAX

LS74
MIN

TYP

25

33

LS109
MAX

MIN

TYP

25

33

MHz

20

13

25

13

25

ns

15

30

25

40

25

40

ns

20

25

25

Preset or Clear Low

25

25

25

High Level Data

201

251

201

Low Level Data

201

201

201

01

51

51

en
en

MAX

11

Clock High

Hold Tlme(5)

UNITS

ns

C

s:U1

~

r

en

ns

........

ns

....s:

C

~

Notes
(5) t t The arrow indicates the edge of the clock pulse used for reference: t for the rising edge,

-J.

for the falling edge.

r
....en

to)

m
to

",,-"
~

en
CO

:...

....0

:...
0
e.g

:...
....
N

....

:...

to)

:...
....
~

C

I:

~

"
"9'

"0'

"C

III

Electrical Characteristics

~

over recommended operating free-air temperature range (unless otherwise noted!.
DM74S
CONDITIONS

PARAMETER

S74
MIN

VIH

High Level Input Voltage

Vil

Low Level I nput Voltage

VI

Input Clamp Voltage

10H

High Level Output Current

VOH

High Level Output Voltage

Vee

Vee

10l

Low Level Output Current

VOL

Low Level Output Voltage

II

Input Current at Maximum Input Voltage

IIH

High Level I nput Current

= Min, I, = -18 mA

= Min, V'H = 2V
= 0.8V, IOH = -1 rnA

2.7

= Max, V, = 5.5V

J, K, or 0
Preset

Vee

= Max, V, = 2.7V

Clock
III

Low Level I nput Current

TYP(1)

MAX

-1.2

-1.2

-1.2

-1

-1

-1

3.4

2.7

los
Icc

Supply Current

Vee

= Max(3}

20

mA

0.5

0.5

0.5

0.5

V

1

1

1

1

50

50

50

50
200

150

100

N/A

100

100

100

100

100

100

100

200

-4
-100
30

V

20

-7

-40

3.4

V
mA

20

-4

= Max(2)

2.7

3.4

V

20

-7

Vee

V

-1
2.7

50

-1.6

-100
30

50

Notes
(1) All typical values are at VCC = 5V, T A = 25"C.
(2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
(3) With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement, the clock input is grounded.

-14

-7

-7

-4
-40

-100
30

50

rnA

fJ.A

C

-1.6

N/A

-4
-40

C/)
C/)

MAX

-1.2

-1.6

Clock

TYP(11

2
0.8

-2

Short Circuit Output Current

MIN

0.8

-6

= Max, V, = 0.5V

MAX

UNITS

0.8

Clear

Vee

TYP(l)

2

J, K, or 0

Preset

MIN

S114

0.8

3.4

= Min, V'H = 2V
V'L = 0.8V, 10L = 20 mA
Vee

MIN

S113

2

Vee

Clear

.:..,

MAX

2

V'L

o

TYP(1)

S112

rnA

-8
-40
30

-100

mA

50

mA

3:
~
C/)
.....
,J:o

en...
N
en...
Co)

...

C/)

,J:o

C

c
!!!.
~

'CI

.."

S"

'C
(II

Switching Characteristics at Vee; 5V, T A ; 25°C

~
DM74S

FROM
(INPUT)

PARAMETER

fMAX

Maximum Clock Frequency

tpLH

Propagati on Del ay Ti me,
Low-to-High Level Output

-tPHL

Propagation Delay Time,
High-to-Low Level Output

tpLH

Preset or Clear

Preset or Clear

TO
(OUTPUT)

Oor
High)
II (Clock
(Clock Low)

CONDITIONS

S74
MIN

TYP

75

110

a

Oor 0

;

15 pF,

RL ;

280[1

Low-to·High Level Output
Clock
tpHL

Oor

tHOLD

125

6

2

4

7

9

13.5

2

5

7

5

8

2

5

7

6

9

2

4

7

Pulse Width

6

9

2

Clock High

6

Clock Low

7.3

6.5

Clear or Preset Low

7

8

Input Setup

High Level Data

3t

3-1,

Time(4)

Low Level Data

3t

3-1,

2t

0-1,

Input Hold Time(4)

Notes
141 t! The arrow indicates the edge of the clock pulse used for reference: t for the rising edge, .\. for the falling edge.

en
en

MHz
ns

ns

ns

Propagation Delay Time,

.:.,
tSETUP

80

0

H igh-to-Low Level Output
tw

TYP

Propagation Delay Time,

MAX

UNITS

MAX

MIN

4

CL

S112,Sl13,Sl14

5

7

6
ns

C
~

ns
ns

.....
~
en
.....
~
en

...
en
......w
......en
N

~

C

c:

Q)

::!!

"9

"T1

0'

'C

(/)

.,

Electrical Characteristics

DM54/74
CONDITIONS

PARAMETER

High Level Input Voltage

V,L

Low Level I nput Voltage

V,

IOH

High Level Output Current

High level Output Voltage

IOL

VOL

MIN

TYPll)

2

2

0.8

0.7

0.8

0.8

-1.5

-1.2

-1.5

N/A
N/A
-200

-400
3.4

V 1L

DM74

2.4

3.4

2.4

3.2

2.7

3.4

::::

Max

Vee = Max

Max

IOL =4mA

V,

=

5.5V

V,

=

7V

1000
N/A
2.7

V

V
i'A
V

3.4

DM54

16

2

4

N/A

DM74

16

3.6

8

20

DM54

0.2

OA

0.15

0.3

0.25

0.4

N/A

DM74

0.2

0.4

0.2

0.4

0.35

0.5

0.5

mA

V

C

OA

DM74
1

0.2

1
0.2

mA

N

I'H

I,L

High Level I nput Current

Vee

=

Max

V, = 2.4V

V,

Low Level I nput Current
Vee == Max

40

20

V, - 2.7V
=

40

0.3V

50

'-1.6

-0.6

mA

V, = 0.5V
los

ICCH

'eeL

Vee

Short Circuit Output Current

Supply Current, All Outputs High

Supply Current, All Olltputs Low

=

Max(2)

Vee = Max(3)

/lA

-0.36

V,=OAV

-20

-55

-3

-15

-30

-130

DM74

-18

-55

-3

-15

-30

-·130

N/A
-40

-100

DM54

30

43

2.2

4.4

6.1

10

N/A

DM74

30

50

2.2

4.4

6.1

10

50

36

57

3.8

6.68

Vee = Max(4)

s:
(J1

~
......

0

s:
l!
00
0)

-2
DM54

fJ)
fJ)

V

DM74

2.5

tOL ::::

UNITS
MAX

N/A

33

Max

TYPll)

2

2A

IOH ::::

MIN

0.7

3.4

Max,

586

MAX

0.7

2.4

Vee:::: Min

I nput Voltage

TYPll)

0.8

1,--18mA

Low Level Output Current

Input Current at Maximum

MIN

DM54

::::

DM74S

LS86, LS386
MAX

Vee:::: Min, V 1H = 2V

VIL

.:.,

L86
MAX

-800

Low Level Output Voltage

DM54 LS/74 LS

DM54

I, =-8 mA

Vee = Min

V'H = 2V

I,

TYP(11

2

Input Clamp Voltage

VOH

DM54l/74L

86
MIN

V,H

~

over recommended operating free-air temperature range (unless otherwise noted).

jrnA

fJ)

W
00

0)

75

rnA
rnA

m
X

(")
I""

C

Notes
All typical values are at V CC = 5V, T A = 25° C.

fJ)

(1)

pe shorted at a time, and for

(2)

Not more than one output should

(3)

leCH is measured with all outputs open, one input of each gate at 4.5V. and the other inputs grounded.
leeL is measured with all outputs open and all inputs at 4.5V.

(4)

DM54LS/DM74LS and DM74S, duration of short circuit should not exceed one second.

<:m

6::D

C')
III

...

m
_.

__ ._-

--

Switching Characteristics

DEVICE

CONDITIONS
(FROM INPUT A OR B)

I

tpLH (ns)
Propagation Delay Time,
Low-to-High Level Output
TYP

86

Other I nput Low

15

23

11

18

30

13

17
22

I C L = 50 pF

Other I nput Low

37

60

21

60

= 4k[1

Other I nput High

25

60

35

60

= 15 pf

Other I nput Low

12

23

10

17

= 2k[1

Other Input High

18

30

13

22

= 15 pF

Other I nput Low

12

23

10

17

= 2k[1

Other I nput High

18

30

13

22

IC L =15pF

Other I nput Low

7

10.5

6.5

10

= 280[1

Other I nput High

7

10.5

6.5

10

IC

L

IC

L

RL

S86

~I

.:.
w

,

MAX

Other Input High

RL

LS386

TYP

= 400[1

RL

LS86

MAX

tpHL (ns)
Propagation Delay Time,
High-to-Low Level Output

I CL = 15 pF
RL

L86

~

atV cc =5V,T A =25°C

RL

m
m

c

3:
(J1
0l:Io

.......

c

3:
~

CD

en
Im
eN
CD

en

~
("')

E
m
<:m
6,;J

C)

!a
CD
III

Electrical Characteristics

~

over recommended operating free-air temperature range (unless otherwise noted).
DM54H/74H
CONDITIONS

PARAMETER

H103
MfN

VIH

High Level Input Voltage

VIL

Low Level I nput Voltage

VI

Input Clamp Voltage

10H

High Level Output Current

VOH

High Level Output Voltage

TYP(1)

Vee

~

Min, II

Vee

~

Min, V IH

~

2V

O.BV, IOH

~

-500JlA

Min, V IH

~

2V

O.BV, IOL

~

20 mA

~

~

-B mA

2.4

V IL
II

Input Current at Maximum Input Voltage

IIH

High Level Input Current

Vee

~
~
~

Max, VI

~

Clear

Vee

~

Max, VI

~

Low Level I nput Current

0.2

5.5V

2.4V

Clock

Clear
Preset

Vee

~

Max, VI

~

O.4V

Clock

loS

Short Circuit Output Current

Vee ~ Max(2)

Icc

Supply Current

Vee

~

Max, (3)

TYP(1)

MAX
V

2
O.B

O.S

V

-1.5

-1.5

V

-500

-500

-500

2.4

3.4

2.4

0.4

0.2

0.4

0.2

mA

0.4

V

1

1

1

50

50

100

100

200

N/A

100

100

-1

-1

0

-1

-2

-1

-2

-1

-2

-1

-2

-1

-2

-2

-4

N/A

-1

-2

-1

-2

-3

-4.B

-3

-4.B

---u

-9.6

-40

-100
40

-40

76

= 5V, T A = 25 C.

(1)

All typical values are at VCC

(2)

Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
With all outputs open, ICC is measured with the Q and Q outputs high .in turn. At the time of measurement, the clock input is grounded.

0

-100
40

76

-40
40

JlA

20

50

0

-

V

3.4

20

NoteS

(3)

MIN

O.B

-1

0

Any J or K

MAX

-1.5

3.4

Any J or K
Preset

IlL

TYP(1)

20
Vee

Low Level Output Voltage

.:...
",.

MIN

en
en

UNITS

H10S

2

Low Level Output Current

VOL

MAX

2

V IL
10L

H106

mA

0
~
JlA

U'I

mA

.......
0
~

mA

J:
~
0

~

~

W

-100

mA

J::

76

mA

en

~

0

J:
~
0
00

0
C

!!..

;!;!
"0
I
."

0"

"0
fI)

'---------..

Switching Characteristics

FROM
(INPUT)

PARAMETER

f MAX

Maximum Clock Frequency

tpLH

Propagation Delay Time,
Low-to-High Level Output

tpHL

Preset or Clear

Propagation Delay Time,
High-to-Low Level Output

tplH

~

atV cc :5V,T A :25°C

Preset or Clear

II Clock High
Clock Low

TO
(OUTPUT)

Oor

a

Oor

a

MIN

TYP

40

50
8

CL

:

25 pF,

RL :

280n

Propagation Delay Time,
Low-to-High Level Output
Clock

tpHL

CONDITIONS

Propagation Delay Time,

Oor

.:..,

Pulse Width

tSETUP Setup Time(4)

01

tHOLD

Clock High

10
15

Clear or Preset Low

16

Hold Time(4)

CJ)
CJ)

12

15

20

23

35

10

15

16

20

ns

ns

ns

Clock Low

I High Level Data
I Low Level Data

UNITS
MHz

a

High-to-Low Level Output
tw

MAX

lOt
13~
O~

ns

0

3:
(J'I

~

ns

.......

ns

3:
.....

0

~

Notes
t The arrow indicates that the falling edge of the clock pulse is used for reference.

(4)

...::I:
l:
...
...::I:
0

W

0
0'1
0

CIO

C

c:
Q)

"T1

'CI
"T1

5"

'C
!II

---_._-------

--

-----

Electrical Characteristics

CONDITIONS

PARAMETER

MIN
Vol~age

VT+

Positive-Going Threshold

VT-

Negative-Going Threshold Voltage at A Input

at A Input

VT+

Positive-Going Threshold Voltage at B Input

V T-

Negative-Going Threshold Voltage at B Input

VI

Vee"" Min
Vee

=

Vee

=

.:..,

IOH

High Level

High Level Output Voltage

VOL

I,

=

= -400fJ.A

Low Level Output Current

Low Level Output Voltage

Input Current at Maximum Input Voltage

Min

Vee::: Max

High Level I nput Current

10L = 8 mA

Supply Current

TYP(l)
1.0

1.4

0.7

1.0

DM74

0.8

1.4

0.8

1.0

DM54

0.8

1.35

0.7

0.9

DM74

0.8

1.35

0.8

0.9

2

1.0

V, - 2.7V

Vce = Max(2)

Vee = Max

2

2.4

3.4

2.5

3.5

DM74

2.4

3.4

2.7

3.5

2

V
fJ.A
V

16

4

DM74

16

8

0.2

V
V

DM54

DM74

V
V

-400

DM54

en
en

MAX

-1.5

0:25

0.4

0.35

0.5

mA

V

0.4
1

V, = 7V
V, = 2.4V

UNITS

-1.5

V, = 5.5V

Low Level Input Current

Short Circuit Output Current

MIN

10L = 4 mA
:=;

Vee = Max, V, = O.4V

ICC

2

-400

'.

los

MAX

1.4

-18 mA

Vee = Min

Vee::: Max

III

TYP(l)

0.8

10L = 16 mA

IIH

LS221

Current

Vee

II

121

1.55

Vee == Min

10H

0)

DM54LS/74LS

DM54

Min

Vee = Min

V OH

IOl

Min

DM54/74

1,=-12mA

Input Clamp Voltage

O~tput

~

over recommended operating free-air temperature range (unless otherwise noted).

0.1
Al or A2

40

B

80

mA

0
~

fJ.A

......

U1

20

All
Al or A2

-1.6

--0.36

B

-3.2

--0.44

Clear

N/A

-{).54

DM54

-20

-55

-30

-150

DM74

18

-55

-30

-150

Quiescent

13

25

4.7

11

Triggered

23

40

19

27

~

0

~

I1)A

~

...

....
N

mA

r-

en
N
N

mA

....

0

::l

Notes
(1) All typical values are at VCC ~ 5V, T A ~ 25°C.
(2) Not more than one output should be shorted at a time, and for DM54LS221/DM74LS221, duration of short circuit should not exceed one second.
LS221 To Be Announced In 1976

CD

en
:r

...

0

1/1

Switching Characteristics at Vee = 5V, T A = 25° C
PARAMETER

~
FROM
(INPUT)

TO
(OUTPUT)

DM54/74

DM54LS/74LS

121

LS221

CONDITIONS

MIN

TYP

MAX

TYP

Al or A2

Q

45

70

45

70

ns

tpLH

Propagation Delay Time, Low-ta-High Level Output

B

Q

35

55

35

55

ns

tplH

Propagation Delay Time, low-ta-High Level Output

Clear

Q

CT = 80 pF

65

ns

tpHL

Propagation Delay Time, High-ta-Low Level Output

Al or A2

Q

RINT to Vee

50

80

ns

tpHL

Propagation Delay Time, High-ta-Low Level Output

B

Q

40

65

ns

tPHL

Propagation Delay Time, High-to"Low Level Output

Clear

Q

55

'"

tW(OUn

Output Pulse Width

CT

50

80

R T =2kSl

40

65

C L =15pF

RL

I nternal Timing Resistor

= 400~2

N/A
CT -- 80 pF

70

CT
Al, A2 or B

External Timing Resistor

Oar

6.

=

RINT

110

150

30

50

700

800

0

to Vee

C, = 100 pF
RT

=

10 kU

CT

"

1~F

R T =10kU

600

6

80 pF

N/A

7

8

CL

=

15 pF

RL

=

2 kU

C EXT =80pF
R EX1 = 2 ki2
CE X

T =

R EXT

=

2 kSZ

CT = 100pF
R T =10kU
CT
RT

70

120

150

20

47

70

600

6-10

750

6

67

75

0

0

1V F

=

10kU

tWON)

Input Pulse Width

50

40

tWICLEAR)

Clear Pulse Width

N/A

40

dv/dt

Rate of Rise or Fall

Schmitt Input, B

1

1

of Input Pulse

Logic I nput, A

REXT

External Timing Resistance

CEXT

External Timing Capacitance

tsETUP

Clear-Inactive State Setup Time
Duty Cycle

1

ns

1

VifJs

30

DM54

14

70

DM74

14

40

DM74

14

100

0

1000

1000

15

RT = 2 kll

67

RT

RT

90

RT = Max RT

=

Max

c

ms

Vis

1.4

N/A

ns

ns

DM54

0

(f)
(f)

MAX

Propagation Delay Time, Low-ta-High Level Output

RINT to Vee

-..J

MIN

tplH

Zero-Timing Capacitance

.:.,

CONDITIONS

UNITS

2Hl

67
90

kS2

0

3:

vF

U1

ns

.......
0

oS

~

3:
.....

.

REX1

....
....N
~

(f)

N

....N
0

::::I
CD

(f)

':!'

...

0

III
---

--

--

--

. Electrical Characteristics

PARAMETER

CONDITIONS
MIN

VIH

High Level Input Voltage

Vil

Low Level Input Voltage

VI

High Level Output Current

VOH

High Leyel Output Voltage

~
00

VOL

II

IIH

123

L123A

LS122, LS123

TYP(1)

MAX

MIN

TYP(1)

Vee = Min, IOH = Max(3)

Vee = Min IOL = Max
(3)
IOL = 4 mA

Input Current at Maximum Input Voltage

Vee = Max

2

Vee = Max

Data Inputs
Clear Input

los

Short Circuit Output Current

Icc

Supply Current (Quiescent or Triggered)

MIN

TYP(1)

2

V

0.7

0.7

DM74

0.8

0.8

0.8

-1.5

-N/A
-1.5
-200

-400

DM54

2.4

3.4

2.4

3.4

2.5

'3.5

DM74

2.4

3.4

2.4

3.4

2.7

3.5

DM54

16

2.0

4

16

3.6

8

0.2

0.4

DM74

0.2

0.4

0.22

0.3

0.25

0.4

0.4

0.35

0.5

0.25

0.4

DM74

VI = 5.5V

1

0.1

VI=7V

0.1
40

V
/lA

mA

0

V

20

mA

-10

/lA

-{l.18

-{l.4

-1.6

-Q.18

-Q.4

-12

-2.5

LS122
Vee = Max(4)(5)(6)
Others

46

66

5

7.5

N
N

:..
N

-1.6

-40

~

...

W

20

Vee = Max(2) (3)

s:....
r-

10

VI = 2.7V
Vee = Max, VI = O.4V

~

........
0

10

80

s:UI

en

VI = 2.7V
VI = 2.4V

V

V

DM74
DM54

en
en

MAX

0.8

VI = 2.4V

Data Inputs

MAX

UNITS

DM54

-800

Low Level Output Voltage

Low Level I nput Current

DM54 LS/74 LS

I

Clear Input
IlL

DM54L174L

.111=-12mA
Vee = Min
II =-18 mA

Low Level Output Current

High Level Input Current

DM54/74

2

Input Clamp Voltage

10H

10l

~

over recommended operating free·air temperature range (unless otherwise noted).

-30

-150
6

11

12

20

:...
N

mA

W

mA

0

»

C

0

m

mA

:::l

CD

-

en

:::l"
0

...
1/1

Switching Characteristics
PARAMETER

FROM
(INPUT)

Propagation Delay Time,

A

LON-ta-High Level Output

B

Propagation Delay Time,

A

High-ta-Low Level Output

B

DM54/74

DM54l/74L

123

L123A

TO
(OUTPUT)
CONDITIONS

tplH

tpHL

Q

D
Q

High-ta-Low Level Output
Propagation Delay Time,
Low-ta-High Level Output
tWQ(MIN) Minimum Width of Pulse

Aor B

at Output 0
Width of Pulse at Output

tWQ

C EXT

"'"

0

TYP

MAX

TYP

MAX

120

175

22

33

19

28

86

135

29

44

30

40

120

180

30

45

27

36

86

135

37

56

18

27

R EXT = 32 k[1

C L = 15 pF

18

27

Pulse Width

-:.,
<0

C L =15pF

RL = 2 kQ
30

45

Q

45

65

220

330

116

200

ns

34.0

37.4

4.5

5

ns

Q

R EXT = 10 kQ
C L =15pF

CEXT = 1000 pF
2.76

3.03

3.37

R EXT = 100 kQ
C L = 50 pF

CEXT = 1000 pF
30.6

RL = 4 kQ

R EXT = 10 k[1
C L = 15 pF

130

40

40

130

~

(J'1
ns

.j:a

........

40

~

5

25

5

200

5

225

DM74

5

50

5

400

5

360

0

kQ

~

-.J

.j:a
No Restriction

~
DM74

No Restriction

r

No Restriction

50

40

50

50

50

50

pF

...en
N
N

:...
N

Vee

(2)

Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
Ground CEXT to measure VOH at Q, VOL at
or lOS at O. CEXT is open to measure VOH at 5, VOL at Q, or lOS at Q.
Quiescent i-cc is measured (after clearing) with 2.4V applied to all clear and A inputs, B inputs grounded, all outputs open, CEXT:=: O.02JJ.F, and REXT = 25 krl.
ICC is measured in the triggered state with 2.4V applied to all clear and 8 inputs. A inputs grounded, all outputs OPen, CEXT = O.02,uF, and REXT = 25 krl.
With all outputs open and 4.5V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5V, is applied to clock. (LS122, LS123)

(6)

0

40

All typical values are at

(5)

4

RL = 2 kQ

Notes

(4)

ns

140

( 1)
(3)

ns

95

I

Terminal

ns

40

40

Wiring Capacitance at
REXT/CEXT

65

130

External Capacitance

C W1RE

45

40

External Timing Resistance

CEXT

C L = 50 pF

I A or B Inputs High
A or 8 Inputs Low

MAX

30

CEXT = 1000 pF

I Clear Low
REXT

C EXT = 0

TYP

en
en

REXT = 5 k[1

RL = 4 kQ

RL = 400Q
tw

a

CONDITIONS

MIN

UNITS

33

GEXT =

MIN

LS122, LS123

D

Q

A or B

CONDITIONS

DM54LS/74LS

22

RL = 400Q

Clear
tpLH

MIN

R ExT = 5 kQ

Propagation Delay Time,

tpHl

~

atV cc =5V,T A =25°C

= 5V, TA == 25°C.

a,

to,)

:..
N

to,)

:t>
0

C

Q)

LS122, LS123 To Be Announced In 1976

0

::l

CD

en

:r

...
0

1/1

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted).

PARAMETER

CONDITIONS
MIN

V'H

High Level Input Voltage

V'L

Low Level Input Voltage

VI

10H

VOH

I nput Clamp Voltage'

Vee: Min

Vee: Min, V ,H

High Level Output Voltage

0;::

~

2V

Max, IOH = Max

Low Level Output Current

Low Level Output Voltage

o

IIH

III

los

Icc

Vee

~

Min

V ,H

:

2V

V jL

:=

Max

IOL :::.:

Max

IOL ~4n:A

Off-State (High Impedance State)
Output Current

II

Input Current at Maximum Input Voltage

High Level I nput Current

Low Level I nput Current

Short Circuit Output Current

Supply Current

125,126

LS125, LS126

S134

TYP(1)

MAX

MIN

TYP(1?

V'L : O.7V
~

V ,H

~

Vee

Max
V'L : O.8V

~

Max

Vee: Max

Vee: Max

Vee

~

Max(2)

Vee: Max

V,

~

t/)
t/)

MAX
V

0.8

0.7

N/A

DM74

0.8

0.8

0.8

-1.5

-1.2

V

-1.5

DM54

-2.0

-1.0

N/A

DM74

-5.2

-2.6

-6.5

DM54

2.4

3.3

2.4

3.4

DM74

2.4

3.1

2.4

3.1

V

16

8

16

16

20

DM54

0.4

0.4

N1A

DM74

0.4

0.5

0.5

Va

~

mA

3.2

DM74

DM74

V

N/A
2.4

DM54

N/A

rnA

C

V

Va

~

0.5V

Va

~

2.4V

C

s:

20
-40

/1A
-50

40

5.5V

1

(J1

~

N

1

rnA

0.1

V,: 2AV

40

V, : 2.7V

20

V,: O.4V

-1.6

/1A

50

-0.4

mA

-2
-30

-70

-30

-130

DM74

-28

-70

-30

-130
See Table

en

en
->
W

~

~

V,: 0.5V
DM54

...
~
N

50

V, : 7.0V

(J1

........

-20

2.7V

s:
~

0.4

Notes
111 All typical values are at Vee = 5V, T A = 25°C.
.121 Not more than one output should be shorted at a time, and for DM54LS/OM74LS and DM74S, duration of short circuit should not exceed one second.
131 Data for DM54LS/74LS125, 126 is preliminary.
LS125, .LS126 To Be Announced In 1976

TYP(1)

UNITS

DM54

Vo~O.4V

2V

MIN

~

2

Vo~O.4V

Vee

MAX

2

1,:-12rnA

High Level Output Current

00
10iOFF)

DM74S

I, :-18rnA

,
VOL

DM54 LS/74 LS

2

V lL

IOL

DM54174

N/A
-40

:::0

,

en
rnA

-100

i

~

~
m
IXJ

t:
.....
.....
CD

...

C/I

Supply Currents

~

CONDITIONS
DEVICE

I

OUTPUT

INPUTS

CONTROLS

OV

125

(J)

Icc (rnA)

DATA

MIN

TYP(1)

MAX

4.5V

32

54

1W

W

W

~

~

LS125

OV

4.5V

11

18

LS126

OV

OV

12

21

S134

OV

OV

7

13

5V

OV

9

16

5V

5V

14

25

Switching Characteristics at

Vee ~ 5V,

TA

~

~ 25°C
DM54/74

Co I

PARAMETER

CONDITIONS

125
MIN

tpLH

I

tpHL

I

Propagation Delay Time,
Low-la-High Level Oulput
Propagation Delay Time.
High-to-Low Level Output

----------1
tZH

I

Output Enable Time
to High Level

C ~ 50 pF
L
RL ~ 400[2
RL

~ 2 krl

(LS)

I.

DM54LS/74LS
126

TVP

MAX

10

12

MIN

LS125

TYP

MAX

15

10

18

12

MIN

TVP

MAX

15

10

18

12

MIN

CONDITIONS

TVP

MAX

15

10

15

18

12

18

I

Output Enable Time
to Low Level
Output Disable Time

tHZ

tLZ

I

U1
~

TVP

MAX

C ~ 15 pF. R ~ 280[2
CL ~ 50 pF, RL ~ 280[2

4
5.5

6
9

ns

CL ~ 15 pF. RL ~ 280[2
CL - 50 pF. RL ~ 280[2

5
7

7.5
11

ns

.......

o

3:
...,
~
.....
N

181
_

13

191
_

12

181
_

13

I

191
.

25

16

25

10

16

16

25

16

~

50 pF, RL

~

13

19.5 I

ns

N

0)

280[2

I

25

:.

14

21

I

ns

en.....

w
~

~

----------1
Output Disable Time

RL ~ 2 krl (LS)

From Low Level

3:

U1

12

16

CL 5 pF
RL ~ 400[2

From High Level

I UNITS

S134
MIN

CL
tZL

o

DM74S
LS126

I

5
9

8
14

I

14

20

1

5
9

8
14

I

10
14

16
20

I

5.5

8_5

9

14

I

ns

CL ~ 5 pF. RL ~ 280[2
ns

-I
::JJ

in

-I

~

m

OJ

s::
....

....

CD

iil

Electrical Characteristics

CONDITIONS

PARAMETER

MIN

60

'"

~

over recommended operating free-air temperature range (unless otherwise notedL

DM74S
S135
TYP(1)

UNITS
MAX

VIH

High Level Input Voltage

2

VIL

Low Level Input Voltage

VI

Input Clamp Voltage

IOH

High Level Output Current

VOH

High Level Output Voltage

IOL

Low Level Output Current

VOL

Low Level Output Voltage

Vee ~ Min, V'H ~ 2V,V'L ~ O_BV, IOL ~ 20 mA

II

Input Current at Maximum Input Voltage

Vee

~

Max,V,

~

5.5V

1

mA

IIH

High Level Input Current

Vee

~

Max, V,

~

2.7V

50

IlA

IlL

Low Level I nput Current

Vee

~

Max, V,

~

0.5V

lOS

Short Circuit Output Current

Vee

~

Max(2)

Icc

Supply Current

Vee ~ Max(3)

Vee

~

Min, I,

~

0_8

V

-1-2

V

-1
2.7

3.4

-40
65

mA
V

20

mA

0.5

V

-2

mA

-100

mA

99

mA

C

3:
~

...

en

Notes

Vee =

(1)

All typical values are at

(2)

Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second.
ICC is measured with the inputs grounded and the outputs open.

(3)

-

V

-18 mA

Vee ~ Min, V'H ~ 2V, V'L ~ O.BV, IOH ~ -1 mA

en
en

5V, T A

:=

W

25° C.

U'I

m
X

n
rC

en

<:
m

0

::D

Z

0

::D

C>
.~
CD

1/1

- - --

.

- - - - - - _ .. -

--- - - - - - - - - -

"----

Switching Characteristics at Vee

~

= 5V, TA = 25°C

..

DM74S
FROM (INPUT)

PARAMETER(4)

CONDITIONS

S135
MIN

tpLH

Propagation Delay Time, Low-to-High Level Output

tpHL

Propagation Delay Time, High-ta-Low Level Output

tpLH

Propagation Delay Time, Low-to-High Level Output

tpHL

Propagation Delay Time, High-te-Low Level Output

tpLH

Propagation Delay Time, Low-te-High Level Output

tPHL

Propagation Delay Time, High-to-Low Level Output
Propagation Delay Time, Low-to-High Level Output

tpHL

Propagation Delay Time, High-te-Low Level Output

tpLH

Propagation Delay Time, Low-te-High Level Output

tpHL

Propagation Delay Time, High-to-Low Level Output

tpLH

Propagation Delay Time, Low-te-High Level Output

tpHL

Propagation Delay Time, High-te-Low Level Output

TYP

MAX

Aar B

B or A" L, C" L

8.5
11

13
15

ns

Aar B

B or A" H, C" L

8
9

12
13.5

ns

A or B

B or A" L, C" H

10
6.5

15
10

ns

8.5
7

12
11

ns

8
9.5

14.5

CL
tpLH

UNITS

A or B

B or A" H, C" H

C

A"B

C

A*B

"

15 pF,

RL

en
en

"280£2

7.5
8

12

11.5
12

ns

ns

00
w

C

3:
-..I

.

~

en

-'

W

(11

m

X

C")

r

C

en

<:m

0

:XI
I

Z

0

:XI
G)
II)

SIII

Electrical Characteristics

CONDITIONS

PARAMETER

MIN
VIH

High Level I nput Voltage

VIL

Low Level Input Voltage

VI

Input Clamp Voltage·

IOH

High Level Output Current

VOH

High Level Output Voltage

IOL

Low Level Output Current

Low Level Output Voltage

...00
II

Input Current at Maximum Input Voltage

IIH

High Level I nput Current

IlL

Low Level Input Current

Icc

Supply Current

DM54LS/74LS

DM74S

LS136,LS266

S136

TYP(11

MAX

2

Vee
Vee
V ,L

VOL

~

over recommended operating free-air temperature range (unless otherwise noted!.

~
~
~

Min, I,

~-18

Min, V ,H

Vee

~

Min

V ,H

~

2V

V ,L

~

Max

4 mA

~

Max

0.8

-1.5

-1.2

5.5

5.5

4

N/A

DM74

8

20

DM54

0.25

0.4

N/A

DM74

0.35

0.5

0.5

DM74

s:

V

.......

U'I

5.5V

V,

~

7V

0.2

2.7V

40

V,~O.4V

-0.6

~

~

Notes
(11 All typical values are at Vee ~ 5V, T A~ 25"C.
(21 Icc is measured with one input of each gate at 4.5V, the other inputs grounded, and

s:
"-I

....W
,...Ol

V
mA

V

50

-2
LS136

6.1

10

8

13

0

::s

1

Others

en

N
Ol
Ol
'C
CD

0.5V

Vee ~ Max(2)

I1A

0.4

~

V,

250

DM54

V,

~

0

V

.~

~

Vee

N/A

0.8

100

IOL

Max, V,

0.7

DM74

5.5V

Max

~

V

DM54

2V

~

~

Vee

MAX

2

mA

IOL

Vee ~ Max

TYP(1)

en
en

0

~

Max, V OH

MIN

UNITS

50

75

mA
/lA
mA

mA

(")

0

i(')
g

.

m
X
(")
r-

C

en

<:m

th~

outputs open.

0

::c

Z

0

::c

C)
I»
CD

,..
rJl

Switching Characteristics at Vee = 5V, T A = 25°C

PARAMETER

FROM
(INPUT)

~
CONDITIONS
MIN

tpLH

I Propagation Delay Time,
Low-to-High Level Output

tPHL

I Propagation Delay Time,

Aor B

Other Input Low

I

tpLH

I Propagation Delay Time,
Low-to-High Level Output

tpHL

I Propagation Delay Time,
High-to-Low Level Output

AorB

Other Input High

I

DM74S

LS136,LS266

S136

CJ)
CJ)

TYP

MAX

18

30

8

12.5

18

30

7.5

12

ns

1(11

18

30

8

12.5

ns

0
13:

18

30

7.5

12

ns

MIN

TYP

UNITS
MAX
I

ns

·0

3:

= 15 pF
RL = 2 kQ (54LS/74LS)
RL = 280Q (74S)

CL

High-to-Low Level Output

DM54LS/74LS

,J:Io

"
"...
,J:Io

I~
i-

CJ)

N

0)
0)

60

(Jl

0

'tI
CI)

:J
(1

!2.
CD

(')

g
....

m
X
(1
rC

CJ)

<:
m
0

:::c
Z
0
:::c
C')

...

II)
CI)

C/l

Electrical Characteristics

PARAMETER

CONDITIONS

DM54/74

DM54 LS/74 LS

365,366,367,368

LS365,LS366
LS367, LS368

MIN
VIH

High Level Input Voltage

VIL

Low Level Input Voltage

VI

IOH

VOH

IOL

00
a>

VOL

TYP(1)

MAX

2

Input Clamp Voltage

DM54

0.8

0.7

0.8

0.8

-1.5
-1.5
DM54

-2.0

-1.0

DM74

-5.2

-2.6

DM54

2.4

3.1

2.4

3.4

V IL = Max, IOH = Max

DM74

2.4

3.1

2.4

3.1

DM74

32

16

IOL = 16 mA, DM74
IOL = 32 mA

Vee = Max
V IH = 2V

0.5

IIH

IlL

High Level I nput Current

Vo = 0.4V

-40

Vo = 2.4V

40

Low Level Input Current

A Input

Short Circuit Output Current

ICC

Supply Current

VI = 2.7V

20

Vee = Max

-40

-20

-1.6

-0.4

-1.6

-0.4

-115

-40

Vee = Max(2)

3:
~

W
Ol
C1I

W
Ol
.....

mA

Ol
CO

-t

:JJ

,

40

VI", 0.4V

G Input

los

0.1

Vee = Max VI = 0.4V, Both G Inputs at O.4V

........

W

20

VI = 0.5V, Both G Inputs at 2V

3:
.j:I.

W
I1A

1

VI = 2.4V

C

Ol
Ol

-20

VI = 7.0V

Vee = Max

V

0.4

VI = 5.5V

Vee = Max

mA

0.4

Vo = 2.7V
Input Current at Maximum Input Voltage

mA

C
8

V IL = Max

V

C1I

32

V IH = 2V

V

V

DM54

IOL =8mA

-

MAX

DM74

Vee = Min

en
en

V

Vee = Min, V IH = 2V

Low Level Output Current

Low Level Output Voltage

TYP(1)

11=-18mA

High Level Output Current

High Level Output Voltage

MIN

UNITS

2

II =-12 mA

Vee = Min

IOIOFF) Off-State (High Impedance State) Output Current

II

~

over recommended operating free-air temperature range (unless otherwise noted).

-30

-130

365, LS365,367, LS367

65

85

22

28

366, LS366, 368, LS368

59

77

20

26

I1A
I1A
mA
rnA

~

~

m
J:

~

OJ

C

rnA

::t

...

(I)

(I)

-_ ... _--_ .. _

...

_-----

at Vee ~ 5V, T A ~ 25°C

Switching Characteristics

DM54/74
PARAMETER

tPLH

CONDITIONS

Propagation Delay Time, Low-to-High Level Output

tpHL

Propagation Delay Time, High-to-Low Level Output

tZH

Output Enable Time to High Level

tZL

Output Enable Ti me to Low Level

tHZ

Output Disable Time From High Level

CL

C,Output Disable Time From Low Level

tLZ

Notes
111 All typical values are at Vee

121
131

= 50 pF,

= 5 pF,

RL

RL

= 400D.

= 400D.

365,367

366,368

TYP

MAX

TYP

MAX

10

16

11

17

14

22

10

16

21

35

21

35

24

37

24

6

11

6

CONDITIONS

27

16

LS365, LS367
TYP

MAX
16

LS366, LS368
TYP

UNITS

17

ns

16

ns

35

35

ns

37

37

37

ns

11

11

11

ns

27

27

ns

27

=

~

15 pF,

5pF,

RL

RL

= 2 kD.

en
en

MAX

22
CL

CL
16

~

DM54LS/74LS

= 2kD.

C

3:
(J1
=

5V, T A = 25° C.

Not more than one output should be

shor~ed

~

.......

at a time, and duration of short circuit should not exceed one second.

C

Data for DM54LS/74LS is preliminary.

3:
-..J

LS365, LS366, LS367, LS368 To Be Announced In 1976

~
to)
0')

Co
-..j

(J1

W
0')
0')

W
0')
-..J

W
0')
00

-I

::D

in

-I

~
m

::I:

CD

><

OJ
I:

...

CD

1/1

----

-------

National5emiconductor
54;/74 MSI DEVICES

Section 2

~ 54/74 MSI

Max Ratings/Operating Conditions

RATINGS
Maximum Allowable
Supply Voltage
Guaranteed Operating
Supply Voltage Range

54/74

54H/74H

SERIES

SERIES

7

54L/74L 54LS/74LS SERIES 54S/745
DIODE EMITTER'
SERIES
SERIES
INPUTS INPUTS

8

7

7

7

7

4.50 to 5.50
4.75 to 5.25

154

UNITS

V
V

Maximum Input Voltage

5.5

5.5

5.5

7

5.5

5.5

V

Maximum Voltage to Open·
Collector Outputs*

7

7

8

7

7

7

V

Operating Free-Air
Temperature Range

-55 to +125

p4

o to+70

Storage Temperature Range

-65 to +150

* Except for selected high voltage types, as specified in electrical tables.

2-ii .

~

54/74 MSI

Table of Contents

DM5441 A/DM7441 A
DM5442/DM7442
DM54 L42A/DM 74 L42A
DM54LS42/DM74LS42
DM5445/DM7445
DM5446A/DM7446A
DM5447A/DM7447A
DM54LS47/DM74LS47
DM5448/DM7448
DM54LS48/DM74LS48
DM54LS49/DM74 LS49
DM54 75/DM74 75
DM54L75A/DM74L75A
DM54LS75/DM74LS75
DM54LSn/DM74LSn
DM5483/DM7483
DM54LS83A/DM74LS83A
DM5485/DM7485
DM54L85/DM74L85
DM54LS85/DM74LS85
DM5488/DM7488
DM5489/DM7489
DM54L89A/DM74L89A
DM5490A/DM7490A
DM54L90/DM74L90
DM54LS90/DM74LS90
DM5491 A/DM7491 A
DM54L91/DM74L91
DM5492A/DM7492A
DM54LS92IDM74LS92
DM5493A/DM7493A
DM54L93/DM74L93
DM54LS93/DM74LS93
DM5495/DM7495
DM54L95/DM74L95
OM 54 LS95BIDM74 LS95B
DM5496/DM7496
DM54LS96/DM74LS96
DM54L98/DM74L98
DM54LS124/DM74LS124
DM54LS138/DM74LS138
DM74S138
DM54LS139IDM74LS139
DM74S139
DM54141/DM74141
DM54145/DM74145
DM54147/DM74147
DM54148/DM74148
DM54150/DM74150
DM54151A/DM74151A
DM54LS151IDM74LS151
DM74S151
DM54153JDM74153
DM54LS153/DM74LS153

Page
No.

Description

Device No.

BCD/Decimal
BCD/Decimal
BCD/Decimal
BCD/Decimal
BCD/Decimal

DecoderslDrivers
Decoders
Decoders
Decoders
Decoders/Drivers
BCDI7~Segment Decoders/Drivers
BCDI7~Segment Decoders/Drivers
BCDI7~Segment Decoders/Drivers
BCDI7~Segment Decoders/Drivers
BCDI7 ~Segment Decoders/Drivers
BCDI7 ~Segment Decoders/Drivers
Quad Latches
Quad Latches
Quad Latches
Quad Latches
4~Bit Binary Adders with Fast Carry
4~Bit Binary Adders with Fast Carry
4~Bit Magnitude Comparators
4~Bit Magnitude Comparators
4~Bit Magnitude Comparators
256~Bit Read Only Memories
64~Bit Read/Write Memories
64~8it Read/Write Memories
Decade, Divide by 12, and Binary Counters
Decade, Divide by 12, and Binary Counters
Decade, Divide by 12, and Binary Counters
8~Bit Serial Shift Registers
8~Bit Serial Shift Registers
Decade, Divide by 12, and Binary Counters
Decade. Divide by 12, and Binary Counters
Decade, Divide by 12, and 8inary Counters
Decade, Divide by 12, and Binary Counters
Decade, Divide by 12, and Binary Counters
4~Bit Parallel Access Shift Registers
4~Bit Parallel Access Shift Registers
4~Bit Parallel Access Shift Registers
5~Bit Shift Registers
5~Bit Shift Registers
4~Bit Storage Registers
Dual Voltage Controlled Oscillators
Decoders/Demu Iti plexers
Decoders/Demultiplexers
Decoders/Demu Iti p!ex ers
Decoders/Demu Iti plexers
BCD/Decimal Decoders/Drivers
8CD/Decimal Decoders/Drivers
Priority Encoders
Priority Encoders
Data Selectors/Multiplexers
Data Selectors/Multiplexers
Data Selectors/Multiplexers
Data Selectors/Multiplexers
Dual 4~Line to 1 ~Line Data Selectors/
Multiplexers
Dual 4-Line to 1 ~Line Data Selectors/
Multiplexers

2-iii

2·1
2·3
2~3

2~3
2~6
2~8
2~8

2~8
2~8

2~8
2~8

2~ 14
2~ 14
2~ 14
2~14

2~ 17
2~ 17

2~21
2~21
2~21
2~25

2~28
2~28
2~30

2~30
2~30
2~34

2~34
2~30
2~30
2~30

2~30
2~30

2~36
2~36
2~36

2-39
2-39
2-42
2~44

2-46
2~46

2-46
2~46

2-1
2~6

2-49
2-49
2~53
2~53

2~53
2~53
2~57

2~57

J
Mil

•
•

•
•
•
•
•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•

Coml

Package
N
Mil
Coml

•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
N/A
• •
N/A
• •
• •
• •
• •
• •
• •
• •
N/A
•
• •

.,

•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•

•
•

•
•
•
•
•
•
•

'.

•
•
•

•
•

•
•
•

•

•
•
•
•
•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•

W
Mil

Coml

•

•

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•

N/A

·••
'

•

•

•
•
•
•
•
•

•
•
•
•
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
N/A
• •
N/A
• •
• •
• •
• •
• •
• •
• N/A •
• •
• •

~~ 54/74

MSI

Device No.

DM74S153
DM54154/DM74154
DM54L 154A/DM74L 154A
DM54LS154/DM74LS154
DM54155/DM74155
DM54LS155/DM74LS155
DM54156/DM74156
DM54LS156/DM74LS156
DM54157/DM74157
DM54L157A/DM74L 157 A
DM54 LS157 /DM74LS157
DM74S157
DM54LS158/DM74LS158
DM74S158
DM54160A/DM74160A
DM54LS160/DM74LS160
DM54161 A/DM74161A
DM54LS161/DM74LS161
DM54162A/DM74162A
DM54l,.S162/DM74LS162
DM54163A/DM74163A
DM54LS163/DM74 LS163
DM54164/DM74164
DM54L 164A/DM74L 164A
DM54LS164/DM74LS164
DM54165/DM74165
DM54L 165A/DM74L 16,5A
DM54166/DM74166
DM54LS168/DM74LS168
DM54LS169/DM74LS169
DM74170
DM54LS170/DM74LS170
DM54173/DM74173
DM54LS173/DM74LS173
DM54174/DM74174
DM54LS174/DM74LS174
DM74S174
DM54175/DM74175
DM54LS175/DM74LS175
DM74S175
DM54176/DM74176
DM54177 /DM74177
DM54180/DM74180
DM54181/DM74181
DM54182/DM74182

Table of Contents
Package

Page

Description

'No.

Dual 4-Line to 1-Line Data Selectors/
Multiplexers
4-Line to 16-Line Decoders/Demultiplexers
4-Line to 16-Line Decoders/Demultiplexers
4-Line to 16-Line Decoders/Demultiplexers
Dual 2-Line to 4-Line Decoders/
Demultiplexers
Dual 2-Line to 4-Line Decoders/
Demultiplexers
Dual 2-Line to 4-Line Decoders/
Demultiplexers
Dual 2-Line to 4-Line Decoders/
Demultiplexers
Quad 2-Line to 1-Line Data Selectors/
Multiplexers
Quad 2-Line to 1 Line Data Selectors/
Multiplexers
Quad 2-Line to 1 Line Data Selectors/
Multiplexers
Quad 2-Line to 1-Line Data Selectors/
Multiplexers
Quad 2-Line to 1-Line Data Selectors/
Multiplexers
Quad 2-Line to 1-Line Data Selectors/
Multiplexers
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
Synchronous 4-Bit Counters
8-Bit Serial In/Parallel Out Shift Registers
8-Bit Serial In/Parallel Out Shift Registers
8-Bit Serial In/Parallel Out Shift Registers
8-Bit Parallel In/Ser;al Out Shift Registers
8-Bit Parallel In/Serial Out Shift Registers
8-Bit Parallel In/Serial Out Shift Registers
Synchronous 4-Bit Up/Down Counters
Synchronous 4-Bit Up/Down Counters
4 by 4 Register Files
4 by 4 Register Files
TRI-STATE Quad 0 Registers
TRI-STATE Quad 0 Registers
Hex/Quad 0 Flip-Flops with Clear
He~/Quad 0 Flip-Flops with Clear
Hex/Quad 0 Flip-Flops with Clear
Hex/Quad 0 Flip-Flops with Clear
Hex/Quad 0 Flip-Flops with Clear
Hex/Quad 0 Flip-Flops with Clear
Presettable Decade and Binary Counters
Presettable Decade and Binary Counters
9-Bit Parity Generators/Checkers
Arithmetic Logic Unit/Function Generators
Look-Ahead Carry Generators

2-iv

J
Mil

2-60
2-60
2-60
2-63
2-63
2-63
2-63
2-66
2-66
2-66

•
•
•
•
•
•
•

•

•

2-70
2-70
2-70
2-70
2-70
2-70
2-70
2-76
2-76
2:76
2-79
2-79
2-82
2-85
2-85
2-91
2-91
2-96
2-96
2-98
2-98
2-98
2-98
2-98
2-98
2-101
2-101
2-105
2-107
2-113

,.

•
•
•
•
•
•

N/A

2-66
2-70

•

•

•

•

N/A

•

•
•
•
•
•
•

•
•
•
•
•
•
•
•

..

•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
N/A
•
•

•
•
•
•
•

N/A

Coml

Mil

•

•
•
•
•
•
•
•
•
•

2-66
2-66

Mil

N/A

2-57 -

W

N
Coml

•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•

•
•

•
•

•
•
•
•
•
•

•
•
•

•

•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•
•
•
•
•
•
•

Com I
N/A

(F)
(F)

(F)

(F)
(F)
(F)

•
•

•
•
•
•
•

•

•
•
•
•

•
•
N/A

•

•
N/A

•

•

•
•
•

•
•

•
• •
• •
• •
• •
• •
• •
• •
• •
• N/A •
• •
•

N/A

•

•

•
•
•
• •
• •
N/A
• •
• •
•
•

N/A
N/A
N/A

•

N/A
N/A

•

~

54/74 MSI
Device No.

DM74S182
DM54184/DM74184
DM54185A/DM74185A
DM54187/DM74187
DM54L 187A/DM74L 187 A
DM54S189/DM74S189
DM54190/OM74190
DM54LS190/DM74LS190
DM54191/OM74191
DM54LS191/DM74LS191
DM54192/OM74192
DM54L 192/DM74L 192
DM54LS192/DM74LS192
DM54193/DM74193
DM54L 193/DM74L 193
DM54LS193/OM74LS193
DM54194/DM74194
DM54LS194A/DM74LS194A
DM74S194
DM54195/DM74195
DM54LS195A/DM74LS195A
DM74S195
DM54196/DM74196
DM54LS196/DM74LS196
DM54197/DM74197
DM54LS197/DM74LS197
DM54198/DM74198
DM54199/DM74199
DM54S200/DM74S200
DM54S206/DM74S206
DM54251/DM74251
DM54LS251/DM74LS251
DM74S251
DM54LS253/DM74LS253
DIIII74S253
DM54 LS257 /OM74LS257
DM74S257
DM54LS258/DM74LS258
DM74S258
DM54LS279/DM74LS279
DM74S280

Table of Contents
Page
No.

Description
Look-Ahead Carry Generators
BCD-to-Binary and Binary-to-BCD Converters
BCD-to-Binary and Binary-to-BCD Converters
1024-Bit Read Only Memories
1024-Bit Read Only Memories
TRI-STATE 64-Bit Read/Write Memories
Synchronous Up/Down Counters with
Mode Control
Synchronous Up/Down Counters with
Mode Control
Synchronous Up/Down Counters with
Mode Control
Synchronous Up/Down Counters with
Mode Control
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
Synchronous Up/Down Counters with
Dual Clock
4-Bit Bidirectional Universal Shift Registers
4-Bit Bidirectional Universal Shift Registers
4-Bit Bidirectional Universal Shift Registers
4-Bit Parallel Access Shift Registers
4-Bit Parallel Access Shift Registers
4-Bit Parallel Access Shift Registers
Presettable Decade and Binary Counters
Presettable Decade and Binary Counters
Presettable Decade and Binary Counters
Presettable Decade ahd Binary Counters
8-Bit Shift Registers
8-Bit Shift Registers
TRI-STATE 256-Bit Read/Write Memories
256-Bit Read/Write Memories with OpenCollector Outputs
TR I-ST ATE Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
TR I-STATE Data Selectors/Multiplexers
TR I-ST ATE Quad 2-Data Selectors/
Multiplexers
TR I-STATE Quad 2-Data Selectors/
Multiplexers
TRI-STATE Quad 2-Data Selectors/
Multiplexers
T R I-STATE Quad 2-Data Selectors/
Multiplexers
Quad S-R Latches
9-Bit Parity Generators/Checkers

2-v

2-113
2-116
2-116
2-122
2-122
2-125
2-128

J
Mil

Coml

Package
N
Mil
Coml

•

N/A

•
•
•
•
•
•
•
•
•
•
•
•
•

•

•

•

•
•
•
•

2-133

•

2-133

•
•

•
•
•

•
•

•
•
•
•
•

•
•
•
•

2-128
2-128
2-128
2-133
2-133
2-133
2-133

2-140
2-140
2-140
2144
2-144
2-144
2-101
2-101
2-101
2-101
2-148
2-148
2-154
2-157
2-160
2-160
2160
2-163
2-163
2-165

•
•

•

•

•

•
•

•
•

•

•
N/A
•
•
•
•
•
•
•
•
•
•
N/A
•
N/A
•

•
•
•
•
•
•

•

•
•

•
•

•

•

•

•

N/A

•

•

2-165
2-168
2-170

•

•
•
•
•

• N/A •
• •

2-165
2-165

•
•
•
•

•

N/A

•

N/A

•

•

W
Mil

Coml
N/A

•

•

•

•

N/A

•

•

•
•
•

•
•
•
•

•

•

•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•

•
N/A

•

•
•

•
• •
• •
• •
N/A
• •
• •
N/A
N/A

•
N/A

•

•
•

N/A
N/A

•

•
• •
• •
• •
N/A
• •
N/A
• •
N/A

•

•
N/A

•

N/A

•

~ 54n4

Table of Contents

MS1

Device No.

OM74S281
OM 54 LS283/0M 74 LS283
OM54S287/0M74S287
OM54S289/0M74S289
OM 54 LS295A/OM 74 LS295A

OM54 LS298/0M 74 LS298
OM54LS3}4/0M74LS374
OM54S387/0M74S387
OM 54 LS395/0M74 LS395
OM54LS670/0M74LS670

Page
No.

Description

4-Bit Parallel Binary Accumulators
4-Bit Binary Adders with Fast Carry
TRI-STATE 1024-8it Programmable Read
Only Memories
64-Bit Read/Write Memories with OpenCollector Outputs
TR I-STATE 4-Bit Parallel Access Shift
Registers
Quad 2-Multiplexers with Storage
TRI-STATE Octal 0 Flip-Flops
1024-Bit Programmable Read Only Memories
TRI-STATE 4-Bit Cascadable Shift Registers
TR I-STATE 4 by 4 Register Files

2-vi

2-173
2-17
2-177
2-179
2-182
2-184
2-187
2-177
2-189
2-191

Package

J
Mil

Mil

N/A

•

N/A

•
•
•
•
N/A
•

•

W

N
Coml

•

•

•

•

•

•

•
•

•

•
•

•
•

Coml

•

•
•
•
•
•
•
•
•
•

Mil

Com I
N/A

• N/A •
N/A

•
•
•

•
•

•
•

N/A

•
•
•

~ MSI

DM54/DM7441A.141
BCD/Decimal Decoders/Drivers

General Description
The DM5441A/DM7441A is a BCD-to-decimal decoder
designed to drive gas-filled NI XI E tubes. The device is
also capable of driving other types of low·current lamps
and relays.

a minimum of external circuitry, can use these invalid
codes in blanking leading· and/or trailing-edge zeros in a
display.

An over-range decoding feature provides that if binary
numbers between 10 and 15 are applied to the input,
the least significant bit (0-5) will be decoded on the
output.

voltage transitions in order to minimize transmission-line

Input clamp diodes are also provided to clamp negative·
effects.

Features
•
•
•

The DM54141/DM74141 is a BCD-to·decimal decoder
designed specifically to drive cold-cathode indicator
tubes.
Full decoding is provided for all possible input states.
For binary inputs 10 through 15, all the outputs are
off. Therefore the DM54141/DM74141, combined with

Connection Diagram

.

•

OUTPUTS

o

Drive cold'cathode, numeric indicator tubes directly
Fully decoded inputs
Low leakage current
1.aIlA@50V
DM54/7441A
50llA @55V
DM54/74141
Low power dissipation
DM54/7441A
105 mW typical
55 mW typical
DM54/74141

,

OUTPUTS

13

10

4

15

16

14

p-

o-

1

3

Z

,

9

A

,

4

~

~

OUTPUTS

INPUTS

7

B

0

C

~
INPUTS

Z
OUTPUT

5441A(JI, (WI; 7441A(JI, (NI, (WI;
54141(JI, (WI; 74141(JI, (NI, (WI

Truth Tables
5441 A/7441 A
INPUT

54141/74141
OUTPUT

A

ow

L

L

L

H

L

H

L

L

L

H

H

3

L

H

L

L

4

D

C

B

L

L

L

L

L

INPUT
A

OUTPUT
ON"

L

L

0

L

H

1

L

H

L

2

L

L

H

H

3

L

H

L

L

4

D

C

B

0

L

L

1

L

L

2

L

L

H

L

H

5

L

H

L

H

5

L

H

H

L

6

L

H

H

L

6

L

H

H

H

7

L

H

H

H

7

H

L

L

L

8

H

L

L

L

8

H

L

L

H

9

H

L

L

H

9

lOVER RANGEl

lOVER RANGEl

H

L

H

L

0

H

L

H

L

NONE

H

L

H

H

1

H

L

H

H

NONE

H

H

L

L

2

H

H

L

L

NONE

H

H

L

H

3

H

H

L

H

NONE

H

H

H

L

4

H

H

H

L

NONE

H

H

H

H

5

H

H

H

H

NONE

H = High Level, L == Low Level

* All other outputs are off

2-1

~ MSI

DM54/DM7441A,141

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER

CONDITIONS

41A
MIN

V,H

High Level Input Voltage

V,L

low Level Input Voltage

V,

Input Clamp Voltage

VOL

On-State Output Voltage

MIN

TYP(1)

Vee'" Min, II ;;:: -12 rnA

Vee

0::

Max

V o -: 50V

V

N/A

Off-State Reverse Current
for Input Counts 10-15

VOH

Off-State Output Voltage

I,

Input Current at Maximum
Input Voltage

I'H

High Level I nput Current

I,L

Low Leve! I nput Current

. Icc

Supply Current

Vee"" Max, Vo = 30V

Vee = Max

125"c

3.0

3.0

60
40

55°C, oOe, 25"e

=

50
TA : 55°e

N/A

TA _70 o e

N/A

10: 0.5 mA

Vee: Max, V, : O.4V

5
15
60

10 - 1.0 mA

Max, VI '" 2.4V

V

IJ.A

1.8

A Input

3

8, C, or 0 Input

3
~1.0

A Input

B, C, or 0 Input

Vee: Max(2)

1

1.0

40

40

~1.6

21

36

Notes
(1)

All typical values are at Vee: 5V, TA: 25°C.

(2)

ICC is measured with all inputs grounded and outputs open.

Logic Diagrams
5441A17441A

54141/74141

Vee - 5
GND -12

2-2

80

40
~1.6

~1.0

IJ.A

V

70

Vee;;:: Max, VI = 5.5V

Vee

V

2.5

Vo - 55V
IOH

V

~1.5

2.5

TA : 70°C
~

0.8

~55"c to +70"c

T A =125°c
TA

MAX

2
0.8

Vee =Min,f o =7mA

UNITS

141
MAX

2

Off-State Reverse Current

IOH

TYP(l)

mA

IJ.A

-

~1.6

~3.2

11

25

mA
mA

~ MSI

DM54/DM7442,L42A,LS42
BCD/Decimal Decoders

General Description
These BCD-to-decimal decoders consist of eight inverters
and ten, four-input NAND gates. The inverters are
connected in pairs to make BCD input data available for
decoding by the NAND gates. Full decoding of input
logic ensures that all outputs remain off for all invalid
(10-15) input conditions.

•
•

TYPE

Features
•

Also for application as 4-line-to-16-line decoders; 3Iine-to-8-1 ine decoders
All outputs are high for invalid input conditions
TYPICAL

TYPICAL

POWER DISSIPATION

PROPAGATION DELAY

140mW

L42A

15mW

17 ns
53 ns

LS42

35mW

17 ns

42

Diode clamped inputs

Connection Diagram

Logic Diagram
OUTPUTS

0'

I"

15

"

11

13

11

10

p-

r<

,

9

2

J

4

•

5

I'

7

GNO
OUTPUTS

5442(JI, (W); 7442(J), IN), (W);
54L42A/74L42A(J), (N), (W);
54LS42/74LS42(Jl. (N), (W)

Truth Table
42, L42A, LS42
BCD INPUT

NO.
0

C

B

A

0

1

2

3

4

5

6

7

8

9

a

L

L

L

L

L

H

H

H

H

H

H

H

H

H

1

L

L

L

H

H

L

H

H

H

H

H

H

H

H

2

L

L

H

L

H

H

L

H

H

H

H

H

H

H

3

L

L

H

H

H

H

H

L

H

H

H

H

H

H

4

L

H

L

L

H

H

H

H

L

H

H

H

H

H
H

5

L

H

L

H

H

H

H

H

H

l.

H

H

H

6

L

H

H

L

H

H

H

H

H

H

L

H

H

H

7

L

H

H

H

H

H

H

H

H

H

H

L

H

H

8

H

L

L

L

H

H

H

H

H

H

H

H

L

H

9

H

L

L

H

H

H

H

H

H

H

H

H

H

L

H

L

H

L

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H'

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

0

:::;

~

H
L

~
:=

ALL TYPES
DECIMAL OUTPUT

High Level
Low Level

2-3

Electrical Characteristics

over recommended operating free·air temperature range (unless otherwise noted)

CONDITIONS

PARAMETER

MIN
VIH
V IL

High Level Input Voltage

DM54/74

DM54L/74L

DM54LS/74LS

42

L42A

LS42

TYPO)

MAX

TYPO)

MAX

2

2

Low Level Input Voltage

MIN

MIN

TYP(1)

~
UNITS

s:

(J)

MAX
V

2

DM54

0.8

0.7

0.7

DM74

0.8

0.7

0.8

V

.
VI

Input Clamp Voltage

Vec = Min

IOH

High Level Output Current

VOH

High Level Output Voltage

-1.5

I, = -12 rnA

N/A

I, =-18mA
-800

Vee = Min
V ,H = 2V

IOH = Max

-200

VOL

N

Low Level Output Current

Low Level Output Voltage

.i>.

Vee = Min
V ,H = 2V

IOL = 4 mA
IOL = Max

V'L = Max
Input Current at Maximum Input Voltage

II

IIH

IlL

los

Icc

High Level I nput Current

Vee = Max

Vee = Max

Low Level I nput Current

Vee = Max
Short Circuit OutputCurrent

Suppiy Current

Notes:
11) All typical values are at

Vee = Max(2)

Vee = Max(3)

Vee =

-400

DM54

2.4

3.4

2.4

3.4

2.5

3.5

DM74

2.4

3.4

2.4

3.4

2.7

3.5

V'L = Max
IOL

-1.5

N/A

DM54

16

2

4

16

3.6

8
0.25

0.2

0.4

0.15

0.3

0.25

0.4

DM74

0.2

0.4

0.2

0.4

0.35

0.5

V, = 55V

0.1

1

0.1

V, =2.4V

40

10
20

V, = 2.7V
. ---0.18

V I = 0.3V for L42A

V

mA

IlA

0
mA

-1.6

V I = 0.4 V for Others

mA

0.4

DM54

V, =7V

IlA

V

DM74
DM74

V

---0.4

DM54

-20

-55

-3

-15

-30

-130

DM74

-18

-55

-3

-15

-30

-130

DM54

28

41

3.0

5.3

7

13

DM74

28

56

3.0

5.3

7

13

5V,'TA = 25°C.

(2)

Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.

(3)

ICC is measured with all outputs open and all inputs grounded.

s:
C1I
,J:lo

mA

........
0

rnA

,J:lo
,J:lo

s:-..I
N

~
N

'l>
r-

(J)

,J:lo

N
-- -- ---- - - - - -

Switching Characteristics vee = 5V, T A = 25°C

PARAMETER
CONDlTIONS
tpHL

~

DM54/74

DM54L{74L

DM54 LS/74 LS

42

L42A

LS42

MIN

TYP

MAX

14

25

17

30

CONDITIONS

MIN

TYP

MAX

65

130

70

140

CONDITIONS

MIN

UNITS
TYP

MAX

14

25

ns

17

30

ns

s:

en

Propagation Delay Time, High-to-Low Level
Output From A, B, C, or D Through 2
Levels of Logic

tpHL

Propagation Delay Time, High-to-Low Level
Output From A, B, C, or D Through 3
Levels of Logic

tpLH

Propagation Delay Time, Low-to-High Level
Output From A, B, C, and D Through 2

= 15 pF
RL = 400n

CL

CL
RL

= 50 pF
= 4 kn

CL
RL

= 15pF
= 2 kfl

- 10

25

30

60

10

25

ns

17

30

35

70

17

30

ns

Levels of Logic
tpLH

Propagation Delay Time, Low-to-High Level
Output From A, B, C, and D Through 3
Levels of Logic

'"


en
~

N

~ MSI

DM54/DM7445,145

BCD/Decimal Decoders/Drivers
General Description
These BCD-to-decimal decoders/drivers consist of eight
inverters and ten, four-input NAND gates. The inverters
are connected in pairs to make BCD input data available
for decoding by the NAND gates. Full decoding of BCD
input logic ensures that all outputs remain off for all
invalid (10-15) binary input conditions. These decoders
feature high-performance, NPN output transistors de·
signed for use as indicator/relay drivers, or as open·
collector logic-circuit drivers. The high·breakdown output

Connection Diagram

0'
14

13

'9

Full decoding of input logic
80 mA sink-current capability

•

All outputs are off for invalid BCD input conditions

7'

8

9

10

11

12

P-

r<

I

•
•

'OUTPUTS

INPUTS

15

Features

Logic Diagram

vee

1,6

transistors are compatible for interfacing with most MOS
integrated circuits.

2

3

4

7

6

5

18

GNO
OUTPUTS

5445(J), (W); 7445(J), (N), (W);
54145(J), IW); 74145(J), (N), (W)

Truth Table
INPUTS

OUTPUTS

NO.

0

C

B

A

0

1

2

3

4

5

6

7

8

9

a

L

L

L

L

L

H

H

H

H

H

H

H

H

H

1

L

L

L

H

H

L

H

H

H

H

H

H

H

H

2

L

L

H

L

H

H

L

H

H

H

H

H

H

H

3
4
5

L

L

H

H

H

H

H

L

H

H

H

H

H

H

L

H

L

H

H

H

H

L

H

H

H

H

H

L

H

L
L

H

H

H

H

H

H

L

H

H

H

H

6

L

H

H

L

H

H

H

H

H

H

L

H

H

H

7

L

H

H

H

H

H

H

H

H

H

H

L

H

H

8

H

L

L

L

H

H

H

H

H

H

H

H

L

H

9

H

L

L

H

H

H

H

H

H

H

H

H

H

L

H

L

H

L

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

0

:::;

~

H

= High

Level (Off), L

= Low Level

(On)

2-6

~

MSI

DM54/ DM7445 ,145

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER

CONDITIONS
MIN

VIH

High Level Input Voltage

V IL

Low Level I nput Voltage

VI

Input Clamp Voltage

Vce

~

Min, I,

VO(ONI

On-State Output Voltage

Vee

~

Min, V ,H

Off-State Output Voltage

Vee
V'L

II

Input Current at Maximum
Input Voltage

IIH

High Level I nput Current

IlL

Low Level Input Current

Icc

Supply Current

TYP(l)

V

~ ~12

~

mA

I
I

2V

~

Min, V

~ O_SV,

,H

~

1010NI ~ SO mA

2V

1010FFI

0.5

~ 250llA

I
I

45

30

145

15

V

~1.5

V

0.9

V

V

Vee

~

Max, V,

~

5.5V

Vee

~

Max, V,

~

2AV

40

Il A

Vee

~

Max, V,

~

OAV

~1.6

mA

Vee

~

Max(2)

1

I
I

DM54

43

62

DM74

43

70

Notes
All typical values are at Vee = 5V, T A = 25°C.
(21 ICC is measured with all inputs grou'nded and outputs open.

Switching Characteristics vee ~ 5V, T A ~ 25°C
DM54/74
PARAMETER

CONDITIONS

Propagation Delay Time,
Low-to-High Level Output
Propagation Delay Time,

~

15 pF

RL ~

100n

CL

High-to-Low Level Output

2-7

UNITS

45, 145
MIN

tpHL

O.S

OA

1010NI ~ 20 mA

(11

tpLH

MAX

2

V'L ~ O.SV
VO(OFFI

UNITS

45, 145

TYP

MAX
30

ns

30

ns

mA

mA

.

~ MSI

~

DM54/DM7446A.47A,L$47.48.LS48.LS49

BCD/7-$egment Decoders/Drivers

General Description.

Features

The 46A, 47Aand LS47 feature active-low outputs
designed for driving common-anode LED's or incandescent indicators directly; and the 48, LS48 and LS49
feature active-high outputs for driving lamp buffers or
common-cathode LED's. All of the circuits except the
LS49 have full ripple-blanking input/output controls
and a lamp test input. The LS49 features a direct
blanking input. Segment identification and resultant
displays are shown on a following page. Display patterns
for BCD input counts above nine are unique symbols
to authenticate input conditions.

• All circuit types feature lamp intensity modulation
capability
5446A/7446A, 5447A/7447A, 54LS47/74LS47
• Open-collector outputs drive indicators directly
• Lamp-test provision
• Leading/trailing zero suppression
5448/7448,54LS48/74LS48
•
•
•

All of the circuits except the LS49 incorporate automatic leading and/or trailing-edge, zero-blanking control
(RBI and RBO). Lamp test (LT) of these devices may
be performed at any time when the BI/RBO node is at
a high logic level. All types (including LS49) contain
an overriding blanking input (BI) which can be used
to control the lamp intensity (by pulsing) , or to inhibit
the outputs.

Internal pull-ups eliminate need for external resistors
Lamp-test provision
Leadingltrailing zero suppression

54lS49/74LS49
• 'Open-collector outputs
• Blanking input

DRIVER OUTPUTS
TYPE

TYPICAL

ACTIVE

OUTPUT

SINK

MAX

POWER

LEVEL

CONFIGURATION

CURRENT

VOLTAGE

DISSIPATION

DM5446A

low

open-collector

40mA

30V

320mW

J. N,W

DM5447A

low

open-collector

40 mA

15V

320mW

J, N, W

DM5448

high

2-H2 pull·up

6.4 mA

5.SV

265mW

J, N,W

DM54LS47

low

open-collector

12 mA

15V

35mW

J, N, W

DM54LS48

high

2 kr! pull-up

2mA

5.5V

125mW

J, N, W

DM54LS49

high

open-collector

4mA

5.5V

40mW

J,N,W·

open·collector
open-collector

40mA

30V

320mW

J, N,W

rnA

15V

320 mW

J,N,W
J,N,W

.PACKAGES

DM7446A

low

DM7447A

low

DM7448

high

2-kr! pull-up

6.4 rnA

5.5V

265mW

DM74LS47

low

open-collector

24 mA

15V

35mW

J,N,W

DM74LS48

high

2 kr! pull-up

6mA

5.5V

125mW

J,N,W

DM74LS49

high

open-collector

SmA

5.5V

40mW

J, N,W

40

Connection Diagrams
OUTPUTS

2

7
~
INPUTS

LAMP SI/RBO RBI
TEST

~
INPUTS

5446A/7446A(J), (N), (W);
5447A/7447A(J), (N), (W);
54LS47174LS47(J), (N), (W)

GND

~
INPUTS

LAMP BI/RBO RBI
TEST

~
INPUTS

544817448(J), (N), (W);
54LS48174LS48(J), (N), (W)

2-8

GND

~

BI

INPUTS

e
OUTPUT

GND

54LS49174LS49(J), (N), (W)

LS47-.

LS~8.

LS49 To Be Announced In 1976

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54/74
PARAMETER

CONDITIONS

46A.47A
MIN

VIH

High Level Input Voltage

V ,L

Low Level Input Voltage

V,

Input Clamp Voltage

IOH

High Level

Output Current
VOH
IOL

BI/RBO

-

-

Vee - Min, V 1H - 2V

a thru 9

BI/RBO

'"'
o

o

~

U1
~

........

o

~

~
~

0)

l>

~

l>

r-

C/)

~

-..J

~

(X)

r-

C/)

~

(X)

i-

C/)
~

C.D

~ MSI

OM54/0M7446A.47 A.lS47.48 .lS48 .lS49

Output Display

SEGMENT
IDENTIFICATION

NUMERICAL DESIGNATIONS AND RESULTANT DISPLAYS

Truth Tables

46A. 47 A, LS47
DECIMAL
OR
FUNCTION

o

INPUTS

OUTPUTS

1--.-----,-------1 BI/RBOllll------------l
LT RBI
D
C
B
A
H

H

H

X

H

H

x
x
x
x

H

x

H

x

L

H

x

H

H

x
x
x
x
x
x

H

H

H

10

H

11

H

12

H

L

H

L

H

H

H

L

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H
H

H

H
H

l.
L

H

H
H

H

L

H

H

x

x

x

H

x

x

x

x

RBI

H

x

L

H

H
H

61

H

H

H

15

H
H

L

H
H

H

H
L

H

H

H

H

H

H

L
H

H

H

14

x

H

H

13

LT

L

H

x

x

H

x

L

H

NOTE

H
H

L

L

H

H

H

H

H

L

L

L

H

H

H

L

H

H

H

H

H

H

H

L

H

H

L

H

H

H

H

L

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H
H

H

H

121
L

L
L

L

L

L

H

H

H

H

H

H

H

H

131

H

H

H

H

141

H

151

4B, LS48
DECIMAL
OR
FUNCTION

o

INPUTS

H

H

H

X

H

x
x
x
x
x
x

H
H
H

H
H

H

• 9

H

10

H

11

H

12

H

13

H

14

H

15

H

BI

x

RBI

H

LT

OUTPUTS

t - - , - - , - - - - - - - - i BI/RBOl11 1 - - - - - - - - - - - - - \ NOTE
LT RBI
D
C
B
A
H
H
H

H

H
H

H
H

H

H

H

H
H

H

H

H

L

H

H

L

H

H

H

H

H

H

L

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

L

L

L

L

L

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

X
X
X
X

H
H
H
H

x
x
x
x
x

H

H

H

H

H

H

H

H

H

H

H

x

x

x

x

H
H

H

H

H
H

H

L

H

H

H

H

H

L

L

H

R

H

L

H

H

L

H

H

H

H

L

H

H

H

H

H
H

H

H

H

H

H

H

L

H

131

L

x

x

x

x

x

121

H

H

H

H

H

141
H

H

H

151

Notes
(1)

BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).

(21

The blanking input (BI) must be open or held at a high logic level when output functions 0 through 15 are desired. The ripple-blanking input
(RBi) must be open or high if blanking of a decimal zero is not desired.

(3)

When a low logic leveils applied directly to the blanking input (BII, all segment outputs are H regardless of the level of any other input.

(4)

When ripple-blanking input (RBI) and inputs A, B, C, and 0 are at a low level with the lamp test input high, all segment outputs go H and the
ripple-blanking output (RBO) goes to a low level (response condition).

(5)

When the blanking input/ripple blanking output (BI/RBO) is open or held high and a low is applied to the lamp-test input, all segment
outputs are L

H = High Level, L == Low Level, X == Don't.Care

2·11

~.MSI

OM54/0M7446A,47A,LS47.48 ,LS48 ,LS49

Truth Tables (Continued)
LS49
DECIMAL
OR
FUNCTiON

INPUTS
8

OUTPUTS

NOTE

81

a

b

c

d

e

f'

L

H

H

H

H

H

H

H

L

H

H

L

H

H

L

L

L

L

L

H

H

L

H

H

H

L

L

H

H

L

L

H

H

H

H

L

H

H

L

H

H

H

H

H

H

H

L

L

L

L

H

H

H

H

H

H

H

H

L

L

H

H

L

L

H

H

L

H

L

H

H

L

L

H
H

A

D

C

0

L

L

L

1

L

L

L

2

L

L

H

L

H

H

H

3

L

L

H

H

H

H

H

4

L

H

L

L

H

L

H

5

L

H

L

H

H

H

L

6
7

L

H

H

L

H

L

L

H

H

H

H

H

8

H

L

L

L

H

H

9

H

L

L

H

H

H

10

H

L

H

L

H

L

11

H

L

H

H

H

L

9

12

H

H

L

L

H

L

H

L

L

L

H

13

H

H

L

H

H

H

L

L

H

L

H

H

14

H

H

H

L

H

L

L

L

H

H

H

H

15

H

H

H'

H

H

L

L

L

L

L

L

L

BI

X

X

X

X

L

L

L

L

L

L

L

L

111

121

Notes
(1) The blanking input (81) must be open or held at a high logic level when output functions 0 through 15 are desired.
(2)

H

=

When a low logic level is applied directly to the blanking input (BI), all segment outputs are low regardless of the level of any other input.

High Level, L = Low Level, X

=

Don't Care

Logic Diagrams

46A,47A, LS47

2·12

~ MSI

DM54/DM7446A.47A.LS47.48.LS48.LS49

Logic Diagrams (Continued)
48, LS48

LS49

2-13

~ MSI

DM54/DM7475 ,L75A,LS75 ,LS77
Quad Latches

General Description
These latches are ideally suited for use as temporary
storage for binary information between processing units
and input/output or indicator units. I nformation present
at a data (0) input is transferred to the o output when
the enable (G) is high, and the 0 output will-follow
the data input as long as the enable remains high. When
the enable goes low, the information (that was pre~ent
at the data input at the time the transition occurred) is
retained at the 0 output until the enable is permitted
to go high.

The OM5475/0M7475, OM54L75A/OM74L75A, and
OM54LS75/DM74LS75 feature. complementary 0 and
Q outputs from a 4-bit latch, and are available in 16-pin
packages. For higher component density applications,
the OM54LS77/0M74LS77 4-bit latches are available
in 14-pin flat packages (only).

Connection Diagrams
ENABLE

01

01

02

1~2

GND

il3

03

04

01

01

ENABLE
1-1

GNO

NC

03

04

14

ill

01

02

ENABLE

03

Voc

04

NC

01

il4

3-4

5475/7475(J), (N), (W); 54L75A/74L75A(J), (N), (W);
54LS75/74LS75(Jl. (N), (W)

54LS77 /74LS77(W)

Truth Table (Each Latch)
INPUTS

H

=

OUTPUTS

ci

D

G

Q

L

H

L

H

H

H

L

X

L

00

Cia

H

High Level, L = Low Level, X = Don't Care
of Q Before the High-to-Low Transition of G

00 = The Level

Logic Diagrams (Each Latch)
75,L75

ENABLE

DATA

LS75

LS77

"'::+>?S
. ' ......... :

OTHER
LATCH

ro

ENABLE

ENABLE

Tentative Data For LS75, LS77

"m~.

OTHER
LATCH

2-14

0

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER

CONDITIONS
MIN

VIH

High Level Input Voltage

Vll

Low Level Input Voltage

VI

Input Clamp Voltage

IOH

High Level Output Current

VO H

High Level Output Voltage

VOL

Vee

~

I,

Min

Vee

Low Level Output Voltage
Vee

~

==

Min, V ,H

Max,

IOH

~

Min, VIIi

Input Current at Maximum Input Voltage

Vee

lOS

Icc

~

Short Circuit Output Current

TYP(l)

MAX

TYP(l)

MIN

~

~

Max(2)

Supply Current
~

TYP(l)

V

2

2
0.7

0.7

DM74

0.8

0.7

0.8

-1.5

-1.5

2.4

3.4

2.4

3.4

2.5

3.5

DM74

2.4

3.4

2.4

3.4

2.7

3.5

10L
10L

~

~

~

4 mA
Max

5.5V

V,

~

7V

V,

~

2.4V

V

V

-400

-200

DM54

2V,

2.7V

16

2

4

DM74

16

3.6

8
0.25

0.4

0.3

0.25

0.4

0.4

0.35

0.5

DM74
0.2

0.4

DM74

0.2

0.4

0.2

D Input

1

0.2

G Input

1

0.4

D Input

0.1

G Input

0.4

D Input

80

20

G Input

80

40

D Input

20

G Input

80

~

V,

~

0.3V, 54L174L

D Input

-3.2

-0.36

-0.4

V,

~

O.4V, Others

G Input

-3.2

-0.72

-1.6

DM54

-20

-55

-3

-9

-15

-30

-130

DM74

-18

-55

-3

-9

-15

-30

-130

DM74

LS75
Others

32

46

3.5

.5.0

LS75
Others

32

50

3.5

mA

V

mA

C
~

UI

V,

Max(3)

pA
V

DM54

DM54

~

rJ)

MAX

0.8

2V

~

UNITS

DM54

Max

DM54
Vee

MIN

~

Max

Vee~Max

Vee

MAX

~

-1.5

Max

High Level Input Current

Low Level Input Current

LS75, LS77

==

V,
Vee

IlL

L75A

-400

V'L ~ Max

IIH

75

-12 mA

~

<.n

II

DM54LS/74LS

1,~-18mA

Low Level Output Current

~

DM54L/74L

2

V 1L
IOl

DM54/74

5.0

6.3

12

6.9

13

6.3

12

6.9

13

pA

~
......

C
~

~

mA

-..J
UI

mA

UI

Cj
l>
r

rJ)

mA

-..J
UI

i-

rn

-..J
-..J

------_._-

-

-

._-

-----

-----

----

---

-

-- '----

Switching Characteristics Vee ~ 5V, T A ~ 25°C
PARAMETER

FROM
(INPUT)

DM54/74

DM54L/74L

75

L75A

TO
(OUTPUT)
CONDITIONS

'PLH

MIN

Propagation Delay Time.
low-to_-High Level Output

D
tpHL

Propagation Delay Time,

tplH

Propagation Delay Time,

D
tpHl

tplH

11

19

9

17

9

17

120

12

20

N/A

80

7

15

N/A

30

55

100

15

14

25

50

100

24

40

75

7

15

32

MIN

MIN

s:

en

ns

CL = 50 pF
HL

C L = 15 pF

~

R L =2kll

= 4 kfl

16

30

50

100

15

27

10

18

7

15

32

80

14

25

10

18

16

30

48

100

16

30

N/A

7

15

38

80

7

15

N/A

ns

Q

High-ta-Low Level Output

Low-ta-High Level Output

G

27

MAX

RL = 400[2

Propagation Delay Time,

MAX

TYP

C L = 15 pF

tpLH

TYP

MAX

Propagation Delay Time,

PropagatLon Delay Time,

CONDITIONS
TYP

High-ta-Low Level Output

tPHl

MIN

UNITS

Q

Propagation Delay Time,

G

'"

16

CONDITIONS

LS77

ns

Low-ta-High Level Output

~

MAX

LS75

Q

High-te-Low Level Output

low-ta-High Level Output

TYP

~

DM54LS/74LS

Q

ns

tpHl

Propagation Delay~ Time,

tw

Width of Enabling Pulse

20

100

20

20

ns

tSETUP

Setup Time

20

100

20

20

ns

tHOLD

Hold Time

5

25

0

0

ns

High-ta-low Level Output

0

s:c.n

Notes
(1) All typical values are at VCC ~ 5V, T A ~ 2SoC.

~

(2)

Not more than one output should be shorted at a time, and for the OM54LS/74LS duration of short circuit should not exceed one second.

........

(3)

ICC is tested with all inputs grounded and all outputs open.

0
,

s:

~
-.J
c.n

Ci

c.n

'r-!>
en
-.J

U1

;-

en
-.J
-.J

~ MSI

DM54/DM7483.LS83A.LS283
4-Bit Binary Adders with Fast Carry

General Description

Features

These full adders perform the addition of two 4-bit
binary numbers. The sum (2:) outputs are provided for
each bit and the resultant carry (C4) is obtained from
the fourth bit. These adders feature full internal look
ahead across all four bits. This provides the system
designer with partial look-ahead performance at the
economy and reduced package count of a ripple-carry
implementation.

• Full-carry look·ahead across the four bits
• Systems achieve partial look-ahead performance with
the economy of ripple carry

The adder logic, including the carry, is implemented in
its true form meaning that the end-around carry can be
accomplished without the need for logic or level inversion.

83
LS83A

25 ns

LS283

25 ns

TYPICAL ADD TIMES
TWO

TWO

8-BIT

16-BIT

WORDS

WORDS

23 ns

43 ns
45 ns
45 ns

TYPE

TYPICAL POWER
DISSIPATION PER
4-BIT ADDER
290mW
95mW
95mW

Connection Diagrams and Truth Table
B4

C4
15

'6

A4

,,3

,.

A3

co

I"

"

..I'

B3

A'

B'

G~O
13

>:2

Vee

10

.2

"

A3

'3

A2

'"

5483(J), (W); 7483(J), (N), (W);
54LS83A/74LS83A(J), (N), (WI

A2

B'

B4

A4

L1

A'

C4

"

"

13

14

10

co

B'

G!:

54LS283/74LS283(J), (N), (W)

OUTPUT

~~

INPUT

CO~

L

CO~

H

WHEN
C2~ L

WHEN
C2~ H

.~ ~ ~ ~ ~ ~ ~ ~ ~ ~
A4

83

A3

H
L

H

H

H

L
H

L

L

H

L

H

L4

C4

L

2:3

2:4

H

L

L

L

H

L

H

L

L

L

H

H

H

L

H

L

H

H

H

L

H

L

H

H

H

H

H

L

L3

84

L

L

H

H

L

L

H

H

H

L

L

H
H

H

H

L

L

H

L
L

H

L

H

H

L

H

H

H

L

L

H

L

H

L

H

H

H

L

L

H

H

H

L

H

L

L

H

H

H

H

L

L

H

H

H

L,

H
L

H

H

H

H

L

H

H

H

L

H

L

H

H

H

H

L

H

L

H

H

H

H

H

H

L

H

H

H

H

H

H "" High Level, L "" Low Level

Note: Input conditions at A 1, 81, A2, 82, and CO are used to determine outputs 1: 1 and 2;2 and the value
of the internal carry C2. The values at C2, A3, 83, A4, and 84 are then used to determine outputs I:3, 1':4,
and C4.

2-17

LS83A, LS283 To Be Announced In 1976

~

MSI

DM54/DM7483.LS83A.LS283

Electrical Characteristics

over recommended operating free·air temperature range (unless otherwise noted)

PARAMETER

CDNDITIONS

DM54174

DM54lS/74lS

83

LS83A, lS283

UNITS

MIN TYP(1) MAX MIN TYP(1) MAX
V,H

High Level Input Voltage

V,l

Low Level Input Voltage

V,

IOH

2

Vee'" Min
High Leve,1 Output Current

I,

Input Cllrrent at

High level Input Current

-1.5
-1.5
-400

-400

-400

Vee == Min, V 1H

2V

:=

Any Output Except C4

Vee '''' Min

IOL = 4 rnA

V 1H = 2V

IOL - 8 rnA

V 1L

IOL

=

Max

Vee

'=

2.4

3.4

2.5

3.4

DM74

2.4

3.4

2.7

3.4

16

4

16

8

DM54

8

4

DM74

8

8

0.2

Max

V,

c

0.25

0.4

0.35

0.5

0.2

5.5V

1

Low Level I nput Current

Any A or B
CO

lOS

Short Circuit Output

40

V,"2.4V

80

Output C4

Icc' Supply Current

-3.2

-0.8
-0.4

3.2
DM54

··20

-55

-30

-130

DM74

-18

-55

-30

-130

DM54

-20

-70

-30

-130

DM74

··18

-70

-30

-130

All Inputs
Grounded
All B Low, Other

Vee =. Max
Outputs Open

' I nputs at 4.SV
All Inputs at
4.5V

58

79

Notes

= SV, TA = 2S"C.

(1)

All typical values are at VCC

(21

Only one output should be shorted at a time, and for 54LS174LS duration

;

2·18

p.A

20

Vee"" Max, VI == O.4V

Vee" Max(2)

mA

0.1

V, "2.7V

Any Output Except C4

Current

V

80

V, o2.7V
III

rnA

1

V, o2.4V

=Max

I'A

0.4

V, -7V

Vee

V

V

DM74

DM74

V

."

DM54

V, o7V

Max

Any Aor.B

CO

=

DM54

V, "5.5V

AnyAor8

CO
I'H

O.B

-800

Low level Output Voltage

Maximum I nput Voltage

O.B

Any Output Except C4

Output C4

VOL

·DM74

',-··18mA

V)L = Max, IOH =Max

Low Level Olltput Current

0.7

Output C4
VOH High Level Output Voltage

IOl

0.8

l,o-12mA

Input Clamp Voltage

V

2

DM54

of short cifcuit should not exceed one second.

22

39

19

34

19

34

mA

mA

mA

~ MSI

DM54/DM7483,LS83A,LS283

Switching Characteristics

Vee

= 5V, T A = 25°C
DM54LS/74LS

DM54/74

FROM
(INPUT)

PARAMETER

TO
(OUTPUT)
CONDITIONS

tpLH

Propagation Delay Time,
Low-to-Hlgh Level Output
CO

tpHl

Propagation Delay Time,

Propagation Delay Time,
Low-to-Hlgh Level Output
CO

tpHl

tPLH

Propagation Delay Time,

32

16

24

ns

20

32

15

24

ns

28

47

16

24

ns

22

38

15

24

ns

28

47

16

24

ns

28

47

15

24

ns

38

15

24

ns

33

15

24

ns

12

19

11

17

ns

12

19

11

17

ns

12

19

11

17

ns

12

19

12

17

ns

22

C L = 15 pF

Propagation Delay Time,

R L =400l2

Propagation Delay Time,

"

Ai or B j

~,

Propagation Delay Time,

Hlgh-to-Low Level Output
Propagation Delay Time,

Low-ta-High Level Output

CO
tpHL

tplH

C4

Propagation Delay Time,
High-to-Low Level Output

C L "15pF

Propagation Delay Time,

RI-

o

78011

Low-to-High Level Output
Ai or S,
tpHL

C L = 15pF
RL = 2 kn

Propagatlon Delay Time,

Low-ta-High Level Output

tpLH

MIN

~4

High-to-Low Level Output

tPHL

CONDITIONS

"

High-ta-Low Level Output

CO

tPlH

MAX

MAX

-3

Lovv-ta-High Level Output
tPHL

TYP

TYP

:'::1 or 2.:2

High·to-Low Level Output
tplH

MIN

UNITS

LS83A, LS283

83

C4

Propagation Delay Time,
High·to-Low Level Output

Logic Diagrams
83

B3 ;.;(4",1....- r -.......

A'::"3LI:j~C=:>~-1HH1-------------------~

(

2-19

~ MSI

DM54/DM7483,LS83A,LS283

Logic Diagrams (Continued)

LS83A, LS283

)0_ _ _...;.;14"",(9;;.1 C4

Note: Pin numbers shown in parenthesis are for, LS283

2-20

~

MSI

DM54/DM7485.L85.LS85
4-Bit Magnitude C6mparators

General Description

A> B and A < B inputs. The cascading paths of the 85,
and LS85 are implemented with only a two-gate-Ievel
delay to reduce overall comparison times for long words.

These four-bit magnitude comparators perform comparison of straight binary or BCD codes.
Three
fully-decoded decisions about two, 4-bit words (A, B)
are made and are externally available at three outputs.
These devices are fully expandable to any number of
bits without external gates. Words of greater length may
be compared by connecting comparators in cascade. The
A > B, A < B, and A = B outputs of a stage handling
less-significant bits are connected to the corresponding
inputs of the next stage handling more-significant bits.
The stage handling the least-significant bits must have a
high-level voltage applied to the A = B input and in
addition for the L85, low-level voltages applied to the

Features
TYPICAL
DELAY
(4-BIT WORDSI

TYPICAL
POWER
DISSIPATION

TYPE

85
L85
LS85

275mW
20mW
52mW

23 n'
55 n'
24 n'

Connection Diagrams
DATA INPUTS

T
16

A3

82

"

A2
13

14

INPUTS

Al
12

r

AD

81
11

8D
10

vI'

9

16

r-

I

.3
DATA
INPUT

OUTPUTS

A>.

'3
15

A<.

13

14

INPUTS

,

~

A3

11

12

B1

AD

pD

10

Z

3

4

A=B

A>8

,

6

A>'

A"'8

CASCADING INPUTS

7

A<'

1

J:

82

2
A2

J

INPUTS

OUTPUTS

9

l-

~

A<8

\

3
A=8
OUTPUT

,

4

,A>B

6

A:B,

A<.

CASCADING INPUTS

7

Al
INPUT

J:

54L85174L85(JI, (NI, (WI

5485(JI, (WI: 7485(JI, (NI, (WI:
54LS85174LS85(JI, (NI, (WI

Truth Tables
CASCADING
INPUTS

COMPARING
INPUTS

OUTPUTS

A3,83

A2,82

Al,81

AO, BO

A>B

AB

AB3

x

x

x

H

L

L

x

x

H

L

A2> 82

x

X

X

X
X

L

A3 = 83

x
x

x
x

x

A3 <83

x
x

H

L

L

x

X

L

H

L

x

X

H

L

L

x

X

L

H

L

X

X

H

L

L

x

X

L

H

L

L

L

H

L

L

A3 = 83

A2 < 82

x

X

A3 = 82

A2 = 82

A1 >81

A3 = 83

A2 = 82

A1 <81

x
x

A3 = 63

A2 = 82

A1 = 81

AO> 80

A3 = 83

A2 = 82

A1 = 81

AO<80

x
x
x
x
x

A3 = 83

A2 = 82

A1 = 81

AD = 80

H

A3 = 83

A2 = 82

A1 = 81

AD = 80

L

H

L

L

H

L

A3 = 83

A2 = 82

A1 = 81

AO = 80

L

L

H

L

L

H

A3 = 83

A2 = 82

Al = 81

AD = 80

X

X

H

L

L

H

A3 = 83

A2 = 82

Al

= 81

AO = BO

H

H

L

L

L

L

A3 = B3

A2 = B2

Al = 81

AD = 80

L

L

L

H

H

L

A3 = 83

A2 = B2

Al = 81

AD = 80

L

H

H

L

H

H

A3 = 83

A2 = 82

Al = Bl

AD = 80

H

L

H

H

L

H

A3 = 83

A2 = 82

Al = 81

AO = 80

H

H

H

H

H

H

A3 = 83

A2 = B2

Al = 81

AD = 80

H

H

L

H

H

L

A3 = 83

A2 = 82

Al = 81

AO = 80

L

L

L

L

L

L

85, LS85

l85

H = High Level, L = Low Level, X = Don't Care

2-21

LS85 To Be Announced In 1976

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54Ln4L

DM54/74

CONDITIONS

PARAMETER

85
MIN

VIH

High Level Input Voltage

Vil

Low Level Input Voltage

VI

High Level Output Current

VOH

High Level Output Voltage

Vee;;:: Min

VOL

==

L6w,Level Output Voltage

II

Input Current at Maximum

A< B,A> B,

I nput Voltage

orA = B 15)

:::

Max

High Level Input Current

=:

Max

Vee == Max

Icc

0.8

-1.5

N/A

2.4

N/A

1.5

-200

-400
2.4

2.4
16

2

4

DM74

16

3.6

8

DM54

0.4

0.15

0.3

0.25

DM74

0.4

0.2

0.4

0.35

0,5

0.25

0.4

DM74
1.0

0.1

1.0

0.3

40

10

120

30

V, = 7V

Vee::; Max

V, - 2.7V

20

-{l.4

-1.6
-{l.54

V, - 0.3V

Condition B

IlA

rnA

V

.rnA

IlA

60

V , =O.4V

Condition A
Vee == Max

V

-{l.18

4.8

V, - O.4V

Supply Current

V

0.3

V , = 2.4V

Vee = Maxl2)

. -

0.4

0.1

V, = 5.5V

3:

0

V

3.4

DM54

V, = 0.3V

All Other Inputs

los

0.7

0.7

V, = 2.7V

A< B, A>B,
or A = B 15)

Short Circuit Output Current

0.7

1.3

V,=2.4V

All Other Inputs

Low Level Input Current

IOL-4mA

V

2

V, = 7V

AB,
or A = B 15)

III

=- Max

MAX

1.3

V, = 5.5V
Vee

All Other Inputs
IIH

IOL

TYP(ll

0.8

Max, IOH == Max

Vee == Min

MIN

0.8

18mA

Low.Level Output Current

V1L

'"
'"

1.3

-800

V'H = 2V

N

2

MAX

DM74

Vee:::: Min, V tH == 2V

V1L
IOl

TYP(l)

DM54

I, =-12 mA
I, -

MIN

UNITS

LS85

l85
MAX

2

Input Clamp Voltage

10H

TYP(l)

~

DM54Lsn4LS

rnA

CJ1

1.2

DM54

-20

-55

-3

-15

-30

-130

DM74

-18

-55

-3

-15

-30

-130

.j::o

mA

6.6
131
141

88

"3:0
~

7.0
55

0

3:

mA
10.4

20

.j::o

00
CJ1
r""

00
CJ1

fen

00
CJ1

- - _ ... -

Switching Characteristics Vce

5V, T A ~ 25°C
DM54/74

PARAMETER

FROM
INPUT

TO
OUTPUT

NUMBER OF
GATE LEVELS

85
CONDITIONS

Low-ta-High Level Output

Any A or B

Any A or B

Propagation Delay Time,
Low-ta-High Level Output

tpHL

High-ta-Low Level Output

Propagation Delay Time,

tplH

Low-ta-High Level Output
Propagation Delay Time,

tPHL

"-'
w

'"

High-ta-Low Leve1 Output
Propagation Delay Time,

tplH

low-ta-High Level Output
Propagation Delay Time,

tpHl

High-to-Low Level Output

TYP

MAX

CONDITIONS

MIN

TYP

70

115
115

19

3

17

26

70

115

24

36

A-B

4

23

35

70

115

23

40

1

11

55

90

11

AB

2

15

55

90

15

3

20

30

55

90

20

30

A=B

4

20

30

55

90

20

30

A>B

1

7

11

55

100

14

22

ns

A < B or A = B

CL = 15 pF
= 400n

C L = 50 pF
RL

= 4 kn

3:

Ul

MAX

70

RL

Propagation Delay Time,

MIN

12

Data Input

tpLH

CONDITIONS

7

Propagation Delay Time,

High-ta-Low Level Output

MAX

UNITS

LS85

L85
TYP

1
AB

Data Input

tpHL

MIN

~

DM54LS/74LS

2

Propagation Delay Time,

tpLH

DM54L/74L

14

CL = 15 pF
RL

ns

I

ns

= 2 kr!

AB

1

11

17

40

65

11

17

ns

A=B

A=B

2

13

20

55

100

13

20

ns

A=B

A=B

2

11

17

40

65

11

17

ns

A> B or A = B

ABorA=B

A--<

~

~y

pJfr
A2

(13)

)0-

2 U4J

A<8

~

irfo+---' D--

(2)

131

A>B

16)

~

~

(ll)

6=8=s ~8v-

~~hl1l
..,........,
--<

AD
BO

A=8

14)

,(12)

B1

A>'

(10)

")0-IS)

~
)--

L85
AJ {l5)

83 {141

A2 (2)

6211)

A1 (1)

Bl t91

AutIO)

80 (11 )

A:>8(4)
A<..B (5)

;tl} A"'S
OUTPUT

A=B (6)

2·24

A<'

~MSI

OM54/0M7488
256-Bit Read Only Memories

General Description
These custom-programmed, 256-bit, read-only memories
are organized as 32 words of eight bits each. Each 32-word
memory array is addressed in straight 5-bit binary with
full on-chip decoding. An overriding memory-enable
input is provided which, when taken high, will inhibit the
32 address gates and cause all eight outputs to remain
high (off). Data, as specified by the customer, are
permanently programmed into the monol ithic structure
for the 256-bit locations. This organization is expandable
to n-words of N-bit length.

only one decoding gate is addressed at a time, only one
of the 32 transistors can supply current to the output
buffers at a time.
Input buffers lower the fan-in requirement to only one
normalized DM54/74 load for all inputs including enable
(G). The open-collector outputs are capable of sinking
12 milliamperes of current and may be wire-AND
connected to increase the number of words available. An
external pull-up resistor from each output to the supply
. line (V cel is required to define the high-level output
voltage. Where multiple devices are used in a memory
system, the enable input allows easy decoding of additional address bits.

The address of an eight-bit word is accomplished through
the buffered, binary select inputs which are decoded by
the 32, five-input address gates. When the memoryenable input is high, all 32 gate outputs are low, turning
off the eight output buffers.

Features

Data are programmed into the memory at the 32,
eight-emitter transistors. The programming process involves connecting or not connecting each of the 256
emitters. If an emitter is connected, a low-level voltage
is read out of that bit location when its decoding gate is
addressed. If the emitter is not connected, a high-level
voltage is read when addressed. Those decoding-gate
outpu~ emitters which are used are connected to their
respective bit lines to.drive the eight output buffers. Since

•
•
•
•
•
•
•

Typical access time: 20 ns
Typical power dissipation: 240 mW
Applications in computer subroutines
Useful in display systems and readouts
Memory organized as 32 words of 8 bits each
Input clamping diodes simplify system design
Open-collector outputs permit wire-AND capability

Connection and Schematic Diagrams
BINARY SElECT
ENABLE

v~

r"

OUTPUT

G

VB

"

14

13

3

4

"

11

10

,

,

1

9

r-

,

1

,~VI____
V_'___V_3____V~4___V_'____
V6____V~7

OUTPUTS

I'

GNO

".

5488(J), (W); 7488(J), (N), (W)

r--------~"1

I
I
I

I

I

I

I

TO]10THER
DECODING GATES

I
I
PROGRAMMABLE
LlNKS
(256 POSSIBLE)

1 OF 32 ADDRESS
DECODING GATES

L _________ ...l

r---'--I
I

--,
I
I

360

I

IB~T

I ~~~;~~s
I
I

I
I

1k

":"

Yl

va

V5

Y4

YJ

V2

VI

I'

~------------------~
2-25

,

~

DM54/DM7488

MSI

Electrical Characteristics

over recommended operating free·air temperature range (unless otherwise noted)
DM54/74
CONDITIONS

PARAMETER

VIH

High level Input Voltage
low level I.nput Voltage

VI

Input Clamp Voltage

Vcc=Min,

1,"-12mA

IOH

High level Output Current

Vcc=Min,

V,H

V'L "0.8V,

VOH "5.5V

Low Level Output Current

VOL

low level Output Voltage

TYP(1)

MAX
V

2

Vll

IOl

UNITS

88

MIN

~

2V

V;L "a.av,

V,H "2V
10L " 12 rnA

Vee

:=

Min,

0.2

0.8

V

-1.5

V

40

/lA

12

mA

0.4

V

II

Input Current at Maximum Input Voltage

Vcc" Max,

V, "5.5V

1

IIH

High level I nput Current

Vee

:=

Max,

V, " 2.4V

25

III

Low level I nput Current

Vee

=0-

Max,

V, "O.4V

ICCH

Supply Current, All Outputs High
0

Maxl2)

Icel

Supply Current, All Outputs low

Vcc

-1

37

65

48

80

mA
/lA
mA
rnA

Notes
(1)

All typical values are at VCC " 5V, T A" 25'C.

(2)

All 32 words are addressed separately to ensure that the supply current does not exceed the stated maximum. The typical value shown is for
the worst-case condition of all eight outputs driven low at one time.

Switching Characteristics vee

= 5V, T A

= 25°C
DM54/74

PARAMETER

FROM
(INPUT)

TO
(OUTPUT)

CONDITIONS

tplH

Propagation Delay Time,

low·to·High Level Output
tpHl

Propagat(on Defay Time,

High-to·Low Level Output

Enable

Any

Enable

Any

CL " 30 pF

UNITS

88

MIN

TYP

MAX

19

35

ns

18

35

ns

21

35

ns

17

35

ns

RLl "400n

tplH

Propagation Delay Time,

low·to·High Level Output
tpHL

Propagation Delay Time,

High·ta·Low Level Output

Select

Any

Select

Any

Ru "600n

Ordering Instructions
Each card in the data 'deck prepared by the purchaser
identifies the word specified and describes the levels at
the eight outputs for that word. All addresses must have
all outputs defined and columns designated as "blank"
must not be punched. Cards should be punched according
to the data card format shown.

Programming instructions for the DM5488 or DM7488
are solicited in the form of a sequenced deck of 32
standard 80·column data cards providing the information
requested under "data card format," accompanied by a
properly sequenced listing of these cards, and the
supplementary ordering data. Upon receipt of these
items, a computer run will be made from the deck of
cards which will prodUCe a complete function table of
the requested part. This function table, showing output
conditions for each of the 32 words, will be forwarded
to the purchaser as verification of the input data as
interpreted by the computer·automated design (CAD)
program. This single run also generates mask and test
program data; therefore, verification of the function
table should be completed promptly.

Supplementary Ordering .Data
Submit the following information with the data cards:
a. Customer's name and address
b. Customer's purchase order number
c. Customer's drawing number
2.-26

~ MSI

OM54/0M7488

DataCard Format
Column
Punch a right·justified integer representing the
positive-logic binary input address (00-31) for
the word described on the card.

31-34

Blank

35

Punch "H," "L," or "X" for output Y2.

36-39

Blank

3-4

Blank

40

Punch "H," "L," or "X" for output Y1.

5

Punch "H," "L," or "X" for output Y8.
H = high-voltage-level output, L = low-voltage·

41-49

Blank

50-51

Punch a right-justified integer representing the
current calendar day of the month.

52

Blank

1-2

level output, X

= output

irrelevant.

6-9

Blank

10

Punch "H," "L," or "X" for output Y7.

53-55 Punch an alphabetic abbrev iation representing

11-14

Blank

15

Punch "H," "L," or "X" for output Y6.

56

16-19

Blank

57-58 Punch the last two digits of the current year.

the current month.
Blank

20

Punch "H," "L," or "X" for output Y5.

59

Blank

21-24

Blank

60-61

Punch "OM"

25

Punch "H," "L," or "X" for output Y4.

26-29

Blank

62-65 Punch the National Semiconductor part number
5488 or 7488.

30

Punch "H," "L," or "X" for output Y3.

66-70 Blank

Logic Diagram

Word Select Table

INPUTS

WORD

E

c

D

L
L

I
lW+~¥R-~lf~\8~--r·t~~t-+-T-l
19

L

H

H

L

H

H

4

L

H

L

L

L

H

L

H

6

L

H

H

L

H

H

H

L

H

L

L

L

L

H

L

L

H

10

H

L

H

L

11

H

L

H

H

12

H

H

13

H

H

L

H

14

H

H

H

L

15

H

H

H

H

16

H

L

L

L

L

17

H

L

L

L

H

18

H

19

H

L

Y

H

20

H

H

H

21

H

.22

H

H

H

L

L

H

H

23

H

L

H

H

24

H

H

L

L

L

25

H

H

L

H

26

H

H

L

H

L

27

H

H

L

H

H

28

H

H

H

L

29

H

H

H

H

30

H

H

H

H

L

31

H

H

H

H

H

H = High Level, L

2-27

A

5

9

BINARY
SELECl

B

:=

Low Level

H

~ MSI

DM541DM7489,l89A
64-Bit Read/Write Memories

General Description
denote that full "tenth-power" technology has been
employed in building this RAM.

The DM5489/DM7489, DM54L89A/DM74L89A are fully
decoded 64-bit RAMs organized as 16, 4-bit words. The
memory is addressed by applying a binary number to
the four Address inputs. After addressing, information
may be either written into or read from the memory.
To write, both the Memory Enable and the Write Enable
inputs must be in the logical "0" state_ Information
applied to the four Write inputs will then be written
info the addressed ic;lcation. To read information from
the memory the Memory Enable input must be in the
logical "0" state and the Write Enable input in the logical
"1" state. Information will be read as the complement
of what was written into the memory. When the Memory
Enable input is in the logical "1" state, the outputs will
go to the logical "1" state.

Features
•
•
•
•
•
•

For application as a "scratch pad" memory with
nondestructive read-out
Fully decoded memory organized as 16 words of
four bits each
DM54/74-35 ns typical
Fast access ti me
DM54l/74L-110 ns
Diode-clamped, buffered inputs
Open-collector outputs provide wire-OR capability
Typical power dissipation
.DM54/74-400 mW
DM54L!74L-75 mW
Pin compatible with 3101, MM5501

The "A" suffix on the low power versions is used to

•

Connection Diagram

Truth Table
SENSE
OUTPUT

3

MEMORY
ENABLE

WRITE
ENABLE

OPERATION

0

0

Write

Logical "'" State

0

1

Read

Complement of Data

1

X

Hold

OUTPUTS

Stored in Memory

SELECT MEMORY WRITE
'----v---'

INPUT A

ENABLES

DATA
INPUT
1

SENSE
OUTPUT
t

DATA'
INPUT
2

SENSE
OUTPUT
2

GND

5489IJ); 7489IJ), IN);
54L89A/74L89AIJ), IN)' IW)

Logic Diagram

rAU~::
I~AI
AI
Al

ADDRESS
INPUTS

A2

~ A2
A2

AJ

~

A3
AJ

DI
DZ
D3

OATA
INPUTS

D.
WE
ME

2-28

Logical" 1" State

~

MSI

OM54/0M7489,L89A

Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted)
DM54/74
CONDITIONS

PARAMETER

High Level I nput Voltage

UNITS

L89A

TVP(1)

MIN
V,H

DM54L174L

89
MAX

MIN

TVP(1)

MAX
V

2

2

V,L

Low Level Input Voltage

V,

Input Clamp Voltage

Vee = Min, I, = -12 mA

IOH

High Level Output Current

Vee = Min, V'H = 2V

DM54

100

50

V 1L == Max. V OH '" 5.5V

DM74

20

50

VOH

High Level Output Voltage

IOL

Low Level Output Current

VOL

Low Level Output Voltage

Input Current at Maximum

I,

0.8

0.7

V

-1.5

--1.5

V
IJA
V

5.5

5.5

DM54

12

2.0

DM74

12

3.6

Vee = Min, V'H = 2V

DM54

0.4

0.3

V 1L

DM74

0.4

0.4

Vee = Max, V, = 5.5V

1

0.1

mA

Vee = Max, V, = 2.4V

40

10

IJA

==

Max,

IOL ==

Max

mA

V

Input Voltage
I'H

High Level Input Current

I,L

Low Level Input Current

V, = 0.3V

Vee == Max

-0.18
-1.6

V,=OAV

ICC

Supply Current

Vee = Max(2)

80

Co

Off-State Output Capacitance

Vee = 5V, Va = 2.0V, f = 1 MHz

6

120

15

19

mA
mA
pF

N/A

Notes
(1) AU. typical values are at V CC

= 5V, T A = 25° c.
ICC is measured with all inputs grounded.

(2)

Switching Characteristics vee

= 5V, T A

= 25°C
DM54/74

PARAMETER

CONDITIONS
MIN

tpLH

Propagation De:lay Time, Low-ta-High
Level Output From Memory Enable

tpHL

Propagation Delay Time. High-ta-Low
Level Output From Me~ory Enable

tpLH

tpHL

CL

Ru = 300n

Level Output From Select

RL2 = 600n

Level Output From Select

Sense Recovery Time After Writing

tw

Width of Write-Enable Pulse

!sETUP Setup Time, Data Input With Respect to

Write Enable
!sETUP Select Input Setup Time With Respect to

Write Enable
tHOLD

Hold Time, Data Input With Respect to

Write Enable
tHOLD

Select Input Hold Time after Writing

TVP

MAX

23

UNITS

TVP

MAX

35

64

90

ns

23

35

33

60

ns

34

50

90

150

ns

35

50

78

150

ns

35

50

110

165

ns

MIN

CL

Propagation Delay Time, High-ta-Low

L89A

CONDITIONS

= 30 pF

Propagation Delay Time, Low-la-High

!sR

DM54L/74L

89

RL

= 50 pF
= 4 kn

40

50

ns

a

a

ns

a

0

ns

0

a

ns

5

0

ns'

2-29

~MSI

DM54/DM7490A. L90. LS90 .92A.LS92 .93A. L93 .LS93
Decade.Divide by 12. and Binary Counters

General Description
Each of these monolithic counters contains four
master-slave flip-flops and additional gating to provide
a divide-by-two counter and a three-stage binary counter
for which the count cycle length is divide-by-five for the
90A, L90, and LS90, divide-by-six for the 92A and
LS92, and divide-by-eight for the 93A. L93, and LS93.

obtained from the 90A, L90, or LS90 counters by
connecting the Q D output to the A input and applying
the input count to the B input which gives a divide-byten square wave at output QA'

Features
All of these counters have a gated zero reset and the
90A, L90, and LS90 also have gated set-to-nine inputs
for use in BCD nine's complement applications.

TYPICAL
POWER DISSIPATION

TYPE
90A
L90
LS90
92A. 93A
LS92, LS93
L93

To use their maximum count length (decade, divideby-twelve, or four-bit binary, the. B input is connected
to the Q A output. The input count pulses are applied to
input A and the outputs are as described in the appropriate
truth table. A symmetrical divide-by-ten count can be

COUNT
FREQUENCY

145mW
20mW
45mW
130'mW
45mW
16mW

42
11
42
42
42
15

MHz
MHi
MHz
MHz
MHz
MHz

Connection Diagrams
INPUT

GN10

A

12

14

INPUT

D,

Nr

A

10

11

14

aD

D,
11

12

I"

B

-c>

1

2

,

RO(11

RO 121

Jc

4

INPUT
B

..1

6

5

1

1

R9111

Vee

R9121

B

5490A17490A(JI. (NI. (WI;
54L90/74L90(JI, (NI. (WI;
54LS90174LS90(JI. (NI, (WI

INPUT
A

14

T
13

a.

aD

12

11

T
10

Nle'

NV

INPUT

Nle'

.15

6

1

Vee

ROlli

ROl21

5492A17492A(JI. (N). (WI;
54LS92174LS92(JI, (NI. (WI

a,
9

INPUT

ae

A

I.

B

a.
13

00

12

GND

1"

Dc
10

D,

INPUT
B

B

9

-0

<10-

2
INPUT

ROlli

,
ROl21

R0(11

ROl21

B

5493A/7493A(JI. (NI, (WI;
54LS93/74LS93(JI, (N). (WI

54L93174L93fJ1. (NI. (WI

2-30

LS90, LS92, LS93 To Be Anno.unced In 1976

Electrical Characteristics

DM54/74
PARAMETER

CONDITIONS

V,H

High Level Input Voltage

V,L

Low Level I nput Voltage

High Level Output Current

VOH

H'gh Level Output Voltage

~-12

I,

Vee:::; Min

~

Min, V ,H

2

Vee = Min

0.7

0.8

DM54

2.4

3.4

Max

DM74

2.4

3.4

V'H ~ 2V

I,

Input Current at Maximum

I nput Voltage

==

Max

High Level Input Current

Vee == Min

Vec ~ Max

ce

V

==

B Input

Icc

Short Circuit Output Current

Supply Current

2.4

3.4

2.4

2.7

3.4

2

4

16

3.6

8

0.15

0.3

DM74

0.2

0.4

0.2

0.4

DM74

5.5V

1

0.1

1

0.2

V,

~

5.5V

V,

~

2.7V for LS

V,

~

204V for Others

Vee

Vee

~

~

Max

V,

~

0.3V for L

VI

~

0.4 V for Others

Max(2)

Max(4)

pA
V

16

004

0.25

0.4

0.35

0.5

0.25

0.4

C

rnA

L90

V

1

0.4
0.8

40

10

20

20

120

93

80

20

40

Others

120

40

80

-1.6

-0.18

--0.4

-32

-0.36

-2.4

93

-3.2

-0.36

-1.6

Others

-4.8

-0.72

-3.2

DM54

-20

-57

-3

-9

-15

-30

-130

DM74

-18

-57

-3

-9

-15

-30

-130

90A

29

42

26

39

5.5

s:...,
CD
0

rnA

l>
r-

0.2

80

Others

"C
.j::a

0.4

Others

s:
U1
.j::a

:

0.1

Any Reset
A Input

los

~

-400
2.5

0.2

V, - 5.5V

B Input
Low Level I nput Current

4 rnA

-200

DM54

Any Reset
A Input

I,L

~

V

-1.5

V,~7V

B Input
I'H

IOL
V,

Any Reset
A Input

Max (3)

V

N/A
N/A

=

s:

-

m

V

2

0.8
-1.5

UNITS

MAX

DM74

2V

~

.TYP(l)

0.7

~

IOL

MIN

0.7

DM54

Low Level Output Voltage

LS90, LS92, LS93
MAX

0.8

rnA

Low Level Output Current

V1L

'"
~

TYP(l)

DM54

DM74
VOL

MIN

-800
Vee

DM54LS/74LS

L90, L93

MAX

I, ---18 rnA

V 1L = Max,,1oH

10L

TYP(l)

2

I nput Clamp Voltage

IOH

DM54L/74L

90A, 92A, 93A
MIN

V,

~

over recommended operating free-air temperature range (unless otherwise noted)

·9

15

CD
0

rm
pA

CD

0
(g
N

»

rnA

rm
CD
N

rnA

rnA

(g
W

»
r-

CD
W

rm
CD

w

~

Switching Characteristics V cc =5V,T A =25°C
DM54L/74L

DM54/74
FROM
(lNPUTI

PARAMETER

f max

tpLH

Maximum Count Frequency

TO
(OUTPUT 1

B

GA
Gs

A

GA

A

CONDITIONS

90A, LS90
MIN

TYP

32

42

16

Propagation Delay Time,
Low-ta-High Level Output

tpHL

Propagation Delay Time.

CL = 50 pF

Low-ta-High Level Output

A
tpHL

GD

High-ta-Low Level Output

CL =15pF

tplH

Propagation Delay Time,

For All Others

tpHL

Propagation Delay Time,

B

Gs

92A, LS92
MIN

TYP

32

42

93A, LS93

MAX

16

MIN

TYP

32

42

MIN

TYP

6

11

MAX

MIN

TYP

6

15

UNITS

MHz

16

10

16

10

16

10

16

12

18

12

18

12

18

32

48

32

48

46

70

175

300

210

400

34

50

34

50

46

70

190

300

230

400

10

16

10

16

10

16

C

3:
C1I

ns

RL = 400n
14

21

14

21

14

21

21

32

10

16

21

32

23

35

14

21

23

35

21

32

21

32

34

51

23

35

23

35

34

51

Any

26

40

26

40

26

40

GA.O O

20

30

Gs.Clc

26

40

3:

'"w

'"

Propagation Delay Time,
Low·to-High Level Output

B
tpHL

Propagation Delay Time,

Clc

High-ta-Low Level Output
tpLH

Propagation Delay Time,

tpHL

Propagation Delay Time,

RL = 2 HI

ns

For lS90. LS92
and LS93
RL=4kfl

Low-ta-High Level Output

B

GD

ns

For L90 and L93

High-to-Low Level Output
"'Hl

Propagation Delay Time,

Set-to-O

High-to-Low Level Output
tpLH

Purse Width

I A Input

I B Input
I Reset Input

tSETUP

»
,...
-

1

I'

GND

CLOCK2
L-SHIFT

. OU.TPUTS

OUTPUTS

CLOCK2

OUTPUTS

2
IN~UT 8

SERIAL

,

14

INPUT C

INPUT

5495(JI, (W); 7495(J), (N), (W);
54LS95B174LS95B(J), (N), (W)

Vee'

•

5
INPUT 0

7

MODE

CLOCK 1

CONTROL

R·SHIFT

54L95174L95(J), (N) ,(WI

Logic Diagram
DATA INPUTS
A

2,(14)

';12l

•

c
4. III

o
',I.l

MODE 6,(61

CONTROL

Note: Pin numbers in
parenthesis ar,e for L95
t3,(13)
0.

".I12l

o.
OUTPUTS

Tentative 'Oata For LS95B

2·36

LS9SB To Be Announced In 1976

Electrical Characteristics

~

over recommended operating free·air temperature range (unless otherwise noted)
DM54/74

PARAMETER

CONDITIONS

95
MIN

VIH

High Level Input Voltage

VIL

Low Level I nput Voltage

IOH

High Level Output Current

V OH

High Level Output Voltage

~

Min

Vee

~

Min, V ,H

VOL

II

=

Max,

Low Level Output Voltage

Input Current at Maximum

Mode Control

I nput Voltage

Others

IOH :::

Vee

~

Min

V ,H

=

2V

MIN

TYP(I)

0.7

DM74

0.8

0.7

0.8

~1.5

N/A
~1.5

N/A
~200

~400

DM54

2.4

3.4

2.4

3.1

2.5

3.4

Max

DM74

2.4

3.4

2.4

3.1

2.7

3.4

IOL
V,

~

V,

~

~4mA

16

2

4

DM74

16

3.6

8

0.2

0.4

0.13

0.3

0.25

DM74

0.2

0.4

0.2

0.4

0.35

0.5

0.25

0.4

1

0.2

1

0.1

V
I'A

0.4

0.2

7V

V

mA

DM54

5.5V

V)

V

DM54

DM74

~

V

2
0.7

2V

IOL ::: Max

UNITS
MAX

V

mA

0.1

Mode Contcal
Others

Vee

Clock Inputs

~

Mode Control
Others
Mode Control

V,

=

2.4V

V,

=

2.7V

V,

~

Max

Others
Low Level Input Current

2

Vee"" Max

Others
High Level Input Current

IlL

~

MAX

0.8

mA

Low Level Output Current

Clock Inputs

IIH

TYP(1)

DM54

11~~18mA

V'L ~ Max

""....
w

~~12

MIN

~800

V 1,L
10L

II

Vee

LS95B

L95
MAX

2

Input Clamp Voltage

VI

TVP(I)

DM54LS/74LS

DM54L/74L

20

40

10
40

~

<11
~

~0.18

OAV

~1.6

Short Circuit Output Current

Vee

~

Max(2)

Icc

Supply Current

Vee

~

Max(3)

~18

~57

50

75

mA

.......
C
~

-130

mA

CD
<11

21

mA

-D.4
-D.8

~1.6

Others
lOS

C
~

-D.36

0.3V
~3.2

V,

I'A

20

Vee:::: Max

Clocks

80

~

~0.4
~3

--9
4.8

~15

8

~30

13

r-

CD
<11

Notes
All typical values are at VCC ~ 5V, T A ~ 25'C.

r-

( 1)

V)

(2)

Not more than one output should be shorted at a time, and for DM54LS174LS duration of short circuit should not exceed one second.

131

ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5V; and a momentary 3V, then ground, applied to both clock inputs.
--

~~

CD
<11
CO

Vcc ~ 5V, T A ~ 25°C

Switching Characteristics

DM54/74
PARAMETER

Maximum Clock Frequency

MIN

TYP

25

36

MAX

CONDITIONS

MIN
6

~

DM54LS/74LS

L95

95
CONDITIONS

f max

DM54L!74L

UNITS

LS95B
TYP

MAX

CONDITIONS

14

MIN

TYP

25

36

MAX

3:

en

-

MHz

Propagation Delay- Time,

tPLH

Low"to"High Level Output

CL

From Clock

~

25

15 pF

35

42

C L ~ 50 PF:

RL ~ 400n

RL

~

90

CL~15pF"

18

27

ns

21

32

ns

RL ~ 2 kn

4 kn

Propagation Delay Time,

tpHl

High"to"Low Level Output

25

48

35

90

From Clock
90

25

ns

tSETUP

Setup Time, High-Level Data

20

10

50

20

ns

tSETUP

Setup Time, Low"Level Data

20

10

50

20

ns

0

10

ns

120

20

ns

15

tW(CLOCK) Width of Clock Pulse

Hold Time. High"Level or

tHOLD

0

Low"Level Data

'"w

00

tENABLE 1 Time to Enable Clock 1

-10

20

tENABLE2 Time io Enable Clock 2

15

100

20 '

ns

tlNHIBITl

Time to I nhibit Clock 1

10

0

20

ns

tiNHIBIT2

Time to Inhibit Clock 2

10

0

20.

ns

Truth Table
INPUTS
MODE

CLOCKS

CONTROL

2 (Ll

1 (Rl

H

H

X
X
X

•
•

H
H

L
L
L

t
t
t
t

-----

A

B

C

D

X

X

X

X

X

X

a

b

c

d

X

Qat

Oct

d
X

L

H

X

X

X

•

H

X

X

X

X

3:

X

X

X

X

<4

o.

Ce

00

OAO
a

OBO
b

OCO
e

0 00
d

OBo

Oeo

0 00

d

OAO
H
L

OBO
OAO

Dco
OBo

000
Oeo

OAo

OBo

Oeo

L
L

L

L
X

X

X

X

X

OAO

OBO

OeD

L

X

X

X

X

X

OAO

OBO

L

H

X

X

X

X

X

OAO

OBO

Dco
Dco

000
0 00
0 00

H

L

X

X

X

X

X

QAO

OBO

OeD

0 00

OAO

0,,0

Dco

0 00

H
----

PARALLEL

X
X

•

SERIAL

Oat
X

•

C

OUTPUTS

H

X

X

- - ---------------- -----

X

X

X

CJ1

oIlo
.......
C

3:

tShifting left requires external connection ofinput D.
H = High Level (Steady State),_ L
transitions)

= Low

aS to A, QC to s,' QD to C. Serial data is entered at

Level (Steady StateL X

=:

Don't Care (Any input, including

:g
(D

CJ1

r-

(D

t"" Transition from high to low level, t = Transition from low'to high level
a, b, c, d = The level of steady state input at inputs A, B, C, or D, respectively.
OAO, aBO., 0CO, 000 ~ The level of 0A. 0B. 0C, or 00. respectively, before the indicated steady
state input conditions were established.

(D

0An, 0Sn, 0Cn, oDn ~ The level of 0A. OS. 0C, or 00, respectively. before the most recent I
transition of the clock.

OJ

CJ1

r-

en
CJ1

~ MSI

DM54/DM7496,LS96
5-Bit Shift Registers

General Description
These shift registers consist of five R-S master-slave
flip-flops connected to perform parallel-to-serial or serialto-parallel conversion of binary data. Since both inputs
and outputs for all flip-flops are accessible, parallel-in/
parallel-out or serial-in/serial-out operation may also be
performed.

Transfer of information to the outputs occurs on the
positive-going edge of the clock pUlse. The proper information must be set up at the R-S inputs of each
flip-flop prior to the rising edge of the clock input
waveform. The serial input provides this information
to the first flip-flop, while the outputs of the subsequent
flip-flops provide information for the remaining R-S
inputs. The clear input must be high and the preset or
preset enable inputs must be low when clocking occurs.

All flip-flops are simultaneously set to a low output
level by applying a low-level voltage to the clear input
while the preset is low. Clearing is independent of the
level of the clock input.
The register may be parallel loaded by using the clear
input in conjunction with the preset inputs. After
clearing all stages to low output levels, data to be loaded
is applied to the individual preset inputs (A, B, C, D,
and E) and a high-level load pulse is applied to the
preset enable input. Presetting is also independent of
the level of the clock input.

Features
•

N-bit serial·to·parallel converter

•

N-bit parallel-to-serial converter

•

N-bit storage register

Connection Diagram
OUTPUTS

CLEAR

OUTPUTS

10

' GA

16

15

11

12

13

14

SERIAL
INPUT

fiE

GN

10

-

-

-p

CLOCK

,A

15

B'

E

Vee

PRESET
ENABLE

PRESET

PRESET

5496(J), (W); 7496(JI, (N), (W);
54LS96/74LS96(J), (N), (W)

Truth Table
OUTPUTS

INPUTS
CLEAR

PRESET

PRESET

ENABLE

A

B

C

D

L

X

X

L

X

X

X

L

L

L
H

CLOCK

SERIAL

X
X
X

H

H

H

H

H

H

H

L

L

L

H

H

H

L

H

H

L

H

L

X

X

X

X

L

H

L

X
X

X
X

t

H

L

X
X

x

H

X
X
X

X
X
X
X
X
X

X
H

L

X

aA

'as

ac

00

L

L

L

aE

L

H

H

H

H

H

GAO

G BO

Geo

GOO

G EO

H

GBO

H

GOO

H

GAO

GBO
GAn

Goo
GCn

G EO

H

L

GAn

Dco
G Bn
GBn

Dcn

G on

Gon

= high level (steady state), L = low level (steady state)
X = don't care (any input, including transitions)

H

t

= transition from low to high level

QAO, Os 0, etc. = the level of QA, 0B, etc., respectively before the indicated steady state input conditions were established.
0An, 0Sn, etc. = the level of QA, 0B, etc., respectively before the most recent t transition of the clock.
Tentative Data For LS96

2-39

LS96 To Be Announced In 1976

~

DM54/DM7496.lS96

MSI

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)
DM54i74
CONDITIONS

PARAMETER

MIN
V ,H

High Level Input Voltage

V,l

Low Level Input Voltage

TYPO)

10H

High Level Output Current

VOH

High Level Output Voltage

Vee

=

Min

Vee

0--

Min, V 1H

VOL

Low Level Output Voltage

=-

High Level Input Current

V iH

=

2V

V1L

'"

Max

Vee

=

Max

2V

Low Level Input Current

IOL

~

tOL

=4mA

Max

2.4

3.4

2.5

3.5

DM74

2.4

3.4

2.7

3.5

16

4

DM74

16

8

DM54

0.2

0.4

0.25

0.4

DM74

0.2

0.4

0.35

0.5

0.25

0.4

DM74
1

0.1

V, = 2.4V
V, - 2.7V

20

V, = 2.4V

200

=

Max, VI = GAV

Preset Enable

los
Icc

Short Circuit Output Current

Vee ~ Max(2)

Supply Current

~A

rnA

V

rnA

~A

20

V, - 2.7V

Vee

V

40

Any Input Except
Preset Enable

V

V

DM54

VI '=7V

Preset Enable

Vee "'Max

-400

DM54

V,"5.5V

Any I nput Except

Preset Enable

I,l

0.8

-1.5

Max., IqH = -400.uA

Vee:::' Min

Input Current at MaXimum Input Voltage

I'H

0.8

-1.5

Low Level Output Current

I,

V

0.7

11 ""--lamA

'"

MAX

0.8

-400

V 1l.

IOl

TYP(l)

2

Ij 0;0--12 mA

Input Clamp Voltage

UNITS

LS96
MIN

MAX

2
DM54
DM74

V,

DM54 LS/74 LS

96

Vee = MaxI31

-1.6

-0.4

-·8

-2

DM54

-20

--57

-30

-130

DM74

-18

-57

-30

-·130

DM54

48

68

12

20

DM74

48

79

12

20

rnA

rnA

rnA

Notes
(1)

All typical values are at VCC = 5V. TA = 25°C.

(21

Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
ICC is measured with the clear input grounded and all other inputs and outputs open.

(3)

Switching Characteristics vee

= 5V. T A = 25°C
DM54 LS/74LS

DM54/74
PARAMETER

96
CONDITIONS

,fmax
tplH

Maximum Shift Frequency

LS96
MIN

Propagation Delay Time, High-tolow Level Output From Clock

tplH

Propagation Delay Time, Low-to-

CONDITIONS

UNITS
MIN

TYP

MAX

10
25

40

25

40

CL = 15pF.RL =400f!

MHz

25

40

ns

25

40

ns

28

35

ns

55

ns

CL ·15pF.RL =2kf!

High Level Output From Preset
or Preset Enable
tPHl

MAX

10

Propagation Delay Time, Low·toHigh Level Output From Clock

tpHl

TYP

25

35

Propagation Delay Time, High-to55

Low Level Output From Clear
tW(CLOCKI Width of Clock Input Pulse

35

35

ns

tw

Width of Preset and Clear Input Pulse

30

30

ns

tSETUP

Serial Input Setup Time

30

30

ns

tHOlD

Seriailnput Hold Time

0

0

ns

2-40

~ MSI

DM54/DM7496,LS96

Logic Diagram
PRESET
A

PRESET
B
OUTPUT
UA

(2)

PRESET
C
OUTPUT

(3)

a,

(15)

PRESET
E

PRESET
0
OUTPUT

(4)

(6)

a,

OUTPUT
ae

(7)

(11)

(13)

(14)

OUTPUT
00

(10)

::!~~;~~--------------~~-----r-----r~-----+-----+-.-----t-----;~~----r----;~

a

INPUT

Timing Diagram
TYPICAL CLEAR, SHIFT, PRESET, AND SHIFT SEQUENCES
CLOCK

_-+______..
-+______-;-;__________________________________

PRESET __
ENA8LE

~

CLEAR
SERIAL
INPUT

A

PRESETS

--,

OA __ .'

I

--"

OB __ ... I

OUTPUTS

--.,I

Dc __ -'

I
°D --,
___
I

OE::]I

n

(I

n

I

I

-n
n

I

r-LJ
I ~

n
SHIFT

PRESET

CLEAR

2-41

I

H

SHIFT

LI L
H

~MSI

DM54/DM74L98
4-Bit Storage Registers

General Description
These data selectors/storage registers are composed of
four S-R master-slave flip-flops, four AND-OR INVERT
gates, one buffer, and six inverter/drivers.

word select will cause the selection of word 2 (A2, 82,
C2, D2). The selected wq~d is shifted to the output
terminals on the negative·going edge of the clock pulse.

When the word select input is low, word 1 (A 1, 81,
C1, D1) is applied to the flip·flops. A high level input to

Typical clock frequency is 12 MHz.

Connection Diagram

OUTPUTS
Vee

116

15

14

INPUT
1)1

OUTPUT
00

ClOCK

12

11

10

13

,--

9

f-

1

A2

WORD
SELECT

3

2

AI

81

6

5

4

01

82

02

7

D2

P

GND

INPUTS
Word select luw for wotd 1, wilrd select hIgh for word 2, see descnpl1011

54l98/74L98(J). (N), (W)

logic Diagram

(15)

ft.

(14)

1131

(111

ClOCK:,;(I;;OI_ _ _ _ _ _ _ _ _~

> _____....
2-42

0.

Oc

1lo

~

MSI

DM54/0M74L98

Electrical Characteristics

over recommended operating free-air temperature range lunless otherwise noted)
DM54L!74L

PARAMETER

CONDITIONS

VIH

High Level Input Vo1tage

VIL

Low Level Input Voltage

10H

High Level Output Current

VOH

High Level Output Voltage

MAX
V
0_7
-200

Vee

~
~

Min,

V IH

~

2V

0.7V,

I OH

~

-200j1A

Low Level Output Current

Low Level Output Voltage

VOL

TYP(1)

2

V IL
10L

UNITS

198
MIN

Vee
V IL

~
~

DM54

2

DM74

3.6

Min,

V 1H

~

2V

DM54

IOL

~

Max

DM74

'I

Input Current at Maximum Input Voltage

Vee

~

Max,

VI

IIH

High Level I nput Current

Vee

~

Max,

VI~2-4V

IlL

Low Level I nput Current

Vee

~

Max,

VI

lOS

Short Circuit Output Current

Vee

~

Max

Icc

Supply Current

Vee

~

Maxl2)

~

j1A
V

2-4

0.7V,

V

0_15

0.3
0-4

5.5V

mA

V

100

j1A

10

j1A

-0.18

mA

-15

mA

8

mA

~

0.3V
-3

-9
6

Notes
(1)
(2)

~ 5V, TA ~ 2SoC.
ICC is measured with all inputs grounded and all outputs open.

All typical values are at VCC

Switching Characteristics

Vee ~ 5V, TA ~ 25°C
DM54L!74l

PARAMETER

CONDITIONS
MIN

f max

Maximum Clock Frequency

tpLH

Propagation Delay Time, Low-to-High

6

Level Output From Clock
tpHL

CL

~

50 pF, RL = 4 kr2

Propagation Delay Time, High-to·Low
Level Output From Clock

tW(CLOCKI Width of Clock Pulse
tSETUP(HI

tSETUPILI

Setup Time for High-Level Data

Setup Time for Low·Level Data

100
A, 8, C, or D

100

Word Select

150

A, B, C, or D

120

Word Select

100

2-43

UNITS

L98
TYP

MAX
MHz

12
40

80

ns

65

100

ns

65

ns
ns

ns

~ MSI

DM54/DM74lS124
Dual Voltage Controlled Oscillators

General Description
The DM54LS124/DM74LS124 features two fully independent voltage~controlled oscillators (VCO's) in a single
monolithic chip. The output frequency of each is
establ ished by a single external component, either a
capacitor or a crystal, in combination with two voltage·
sensitive inPuts, one for frequency range and one for
frequency control. An enable input is provided that can
be used to start or stop the output pulses when it is
low or high, respectively. The internal oscillator runs
continuously, even while the output is disabled. A pulse
synchronizer ensures that the first output pulse is
neither clipped nor extended. Duty cycle of the output,
pulses is fixed at approximately 50 percent.

The enable input and the buffered output operate at
standard Schottky-clamped TTL levels. The enable input
is tine standard' load in each series. Although these
devices can operate from a single 5·volt supply, separate
supply-voltage and ground pins are provided for the
digital logic and for the oscillator/range control circuits
so that effective isolation can be accomplished in the
system.

Features

The highly stable oscillator can be set to operate at any
frequency between 0.12 Hz and 50 MHz typically. The
output frequency can be approximated as follows:

where: fo
CEXT

~

~

• Two fully independent yeO's in a 16-pin package
• Output frequency set by single external component:
Crystal for high-stability fixed-frequency operation
Capacitor for fixed- or variable-frequency operation
• Separate supply voltage pins for isolation of ,inputs
and oscillators from logic circuitry
• Stable operation over specified temperature and/or
supply voltage ranges

output frequency in MHz
external capacitance in pF

Connection Diagram

Y2
OUTPUT
10

I
I

9
6

J

rl
1
2

2

1 ,

3
RANGE 1

I

'I
~

14
tEXT

1

1

5

Cexrl

FREQUENCY CONTROL

6

7

Yl
lil
ENABLE OUTPUT

el:o

Note: While the enable input is low, the output is enabled. Whil~ the enable input is high,
the output is high.

54LS124/74LS124(J), (N), (WI

TentatIve Data

2-44

To Be Announced In 1976

~

MSI

OM54/0M74LS124

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

DM54
PARAMETER

CDNDITIONS

V,H

High Level Input Voltage at Enable

V,L

Low Level Input Voltage at Enable

V,

Input Clamp Voltage at Enable

10H

High Level Output Current

VOH

High Level Output Voltage

10L

Low Level Output Current

VOL

Low Level Output Voltage

DM74

LS124

LS124

MIN TYP(l} MAX

MIN TYP(l} MAX

2

Vee =- Min, Ij =

Vee

= Min,

~~18

V 1H

=

2

mA

2V, IOH

=

-1.2 mA

2.5

V

0.7

0.8

-1.5

-1.5

V

-1.2

-1.2

rnA

24

rnA

2.7

3.4

Vee

= Min, VENABLE == V 1L IOl = 12 rnA
= Vee (Minj-2V IOL = 24 rnA

0.25

0.4

Freq Control

Input Current

or range

I,

Input Current at Maximum
Input Voltage

I'H

High Level Input Current

I,L

Low Level Input Current

los

Short Circuit Output Current

Icc

Supply Current, Total into

Vee =- Max

Vee

= Max,

Enable

Vee

= Max,

Enable

Vee'" Max, VI

Enable

Vee =- Max,

50

250

50

250

10

50

10

50

1V

JJ.A

0.1

2.7V

20

20

JJ.A

= O.5V

--0.4

--0.4

rnA

-150

rnA

37

rnA

=

VENABLE

= 4.5V(2)

-30

-150
22

Input Voltage at Frequency

V,

V

0.1

Vee = Max(3}

Pins 15 and 16

0.4
0.5

V,
V, = 7V
VI

0.25
0.35

V,=5V
=

V

V

3.4

12

Pins 4 and 13

I,

UNITS

37

0

Control or Range Input

-30
22

5

rnA

5

0

V

Notes
(1) All typical values are at Vee:::: 5V, TA = 25°C.
(2) Not mpre than one output should be shorted at a time and duration of the short circuit should not exceed one second.
(3) ICC is measured with the outputs disabled and open.

Switching Characteristics

Vee = 5V, RL = 667.11,C L =45pF, TA = 25°C

PARAMETER

Output Frequency

I.

C

-2
EXT -

Output Duty Cycle

F
P

iVI(FREQ)

°5V,

VI(FREQJ

OV,

I

Output From Enable

~

TYP

V1(RNGi =

OV

35

50

V1(RNG} -

5V

11

20

CEXT = 8.3 pF to 500llF

50%

fo 21 Hz

30+(4}

Propagation Delay Time, High-ta-Low Level

tPHl

MIN

CONDITIONS

MAX

UNITS
MHz

ns

Notes
(4)

The delay will typically be 30 ns plus up to one half the period of one cycle O.e. 30 ns to 30 ns + 5 x 108 /f o (HZ)) depending upon the timing
of the enable pulse with respect to the signal generated by the internal oscillator.

2-45

~ MSI

DM54/DM74lS138.S138.lS139.S139
Decoders/ Demulti plexers

General Description
These Schottky-clamped circuits are designed to be used
in high-performance memory-decoding or data-routing
applications, requiring very short propagation delay
times_ In high-performance memory systems these decoders can be used to minimize the effects of system
decoding. When used with high-speed memories, the
delay times of these decoders are usually less than the,
typical access time of the memory. This means that the
effective system delay introduced by the decoder is
negligible,

All of these decoders/demultiplexers fe'ature fully
buffered inputs, presenting only one normalized load
to its driving circuit. All inputs are clamped with highperformance Schottky' diodes to suppress line-ringing
and simplify system design.

The LS138 and S138 decode one-of-eight lines, based
upon the conditions at the three binary select inputs
and the three enable inputs. Two active-low and one
active-high enable inputs reduce the need for ,external
gates or inverters when ~xpanding. A 24-line decoder
can be implemented with no external inverters. and a
32-line decoder requires only one inverter, An enable
input can be used as a data input for demultiplexing
applications.

• S138 and LS138 3-to-8-line decoders incorporate
3 enable inputs to simplify cascading and/or data
reception
• S139 and LS139 contain two fully independent
2-to-4-line decoders/demultiplexers
• Schottky clamped for high performance

Features
•

Designed specifically for high-speed:
Memory decoders
Data transmission systems

TYPICAL
TYPE

(3 LEVELS OF LOGIC)
LS138

The LS139 and S139 comprise two separate two-line-tofour-line decoders in a single package. The active-low
enable input can be used as a data line in demultiplexing
applications.

S138
LS139
S139

TYPICAL

PROPAGATION DELAY

POWER DISSIPATION

21 ns

32mW

8 ns

245 mW

21 ns

34mW

7.5 ns

300 mW

Connection and Logic Diagrams
DATA OUTPUTS

YO

116

Y1

15

Y2
14

YO
1)

Y6

11

11

0-

r-

1

•

10

2

3

4

5

6

,~G2_A_~G2_'_ _G~1.1
SELECT

I'

1

OU~~UT

GNO

ENABLE

54LS138174LS138(J), IN), (WI; 74S138(N)

54LS139/74LS139IJ), (N), (W); 74S139(N)

LS138,5138

LS139, S139

DATA
OUTPUTS

DATA
OUTPUTS

A (1)
2Y1
(2)

INPUTS

"'cui

IJI

2-46

To Be Announced In 1976

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER

CONDITIONS

High Level Input Voltage

Vll

Low Level Input Voltage

VI

Input Clamp Voltage

10H

High Level Output Current

VOH

High Level Output Voltage

10l

VOL

LS138, LS139

S138,S139

TYPO)

MAX

MIN

N/A

0.8

0.8

-1.5

-1.2

-400

-1000

2.5

3,4

N/A

V'L = Max, IOH = Max

DM74

2.7

3,4

2.7

V'L = Max

IOL = Max
IOL = 4 mA

V

0.7

DM54

3:

CJ).

MAX

DM74

Vee = Min, V'H = 2V

Vee = Min, V'H = 2\1

UNITS

DM54

Vee = Min, I, = -18 mA

Low Level Output Voltage

TYP(1)

~

2

2

Low Level Output Current

.'".;,.

DM74S

MIN

r

VIH

DM54LS/74LS

V
V
flA
V

3,4

DM54

4

NiA

DM74

8

20

DM54

0.25

0,4

N/A

DM74

0.35

0.5

0.5

rnA

V

0,4

DM74

-..J

II

Input Current at Maximum Input Voltage

IIH

High Level I nput Current

III

Low Level Input Current

lOS

Icc

Short Circuit Output Current

Supply Current

Vee = Max
Vee = Max

Vee:::: Max

V, = 5.5V

1

V, = 7V

0.1

V, = 2,7V

20

V, =O.4V

-{),36
-2
DM54

-30

-130

DM74

-30

-130

N/A
-40

-100

Vcc = Max

LS138,S138

6,3

10

49

74

Outputs Enabled and Open

LS139,S139

6.8

11

60

90

Notes
All typical values are at Vee = 5V. TA = 25°C.
(2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.
(1)

0

50

V, = 0,5V

Vee = Max(2)

rnA
flA

3:
(11

rnA

.......
0

mA

~

3:
'oJ
~

r-

...
en
...
CJ)

rnA

W

(X)

W

(X)

r-

...
...

CJ)

W
CD
CJ)

W
CD

Switching Characteristics vee

~ 5V, T A ~ 25°C
DM54 LS174 LS

FROM
!INPUT)

PARAMETER

TO
(OUTPUT)

LEVELS
OF DELAY

CONDITIONS

LS138
MIN

tPLH

Propagation Delay Time,

Low-ta-High Level Output

DM74S

DM54LSI74LS

MAX

13

MIN

S138

CONDITIONS

LS139

TYP

~

DM74S
S139

TYP

MAX

20

13

20

4.5

7

5

7.5

ns

27

41

22

33

7

10.5

6.5

10

ns

18

27

18

29

7.5

12

7

12

ns

26

39

25

38

8

12

8

12

ns

MIN

MAX

MIN

TYP

UNITS

TYP

MAX

s:

-

CJ)

2
tpHl

Propagation Delay Time,
High-ta-Low Level Output

tplH

Binary

Any

Select

Propagation Delay Time,
l.ow-ta-High Level Out'put

3
tpHL

tpLH

Propagation Delay Time,
High-ta-Low Level Output

CL

Propagation Delay Time,

RL

= 15pF
= 2 krl

CL
RL

low-ta-High Level Output

= 15 pF
= 28012

12

18

16

24

5

8

5

8

ns

21

32

21

32

7

11

6.5

10

ns

17

26

N/A

7

11

N/A

ns

25

38

N/A

7

11

N/A

ns

2
tpHL

Propagation Delay Time,

High-ta-Low level Output
Any

Enable
tpLH

Propagation Delay Time,

Low-ta-High Level Output

3

"".j:,.ex>

tPHL

Propagation Delay Time,

High-ta-Low level Output

0

s:

Truth Tables

(J1

.

~

LS138, S138

.......
0

s:

INPUTS

G1

G2'

OUTPUTS

SELECT

ENABLE
C

B

A

YO

Y1

Y2

Y3

Y4

LS139, S139
Y5

Y6

Y7

INPUTS

~

r'

OUTPUTS

CJ)

X

H

X

H

H

H

H

H

H

ENABLE

X

X
X

H

X

X
X

H

L

H

H

H

H

H

H

H

H

G

B

A

YO

Y1

Y2

Y3

H

L

L

L

L

L

H

H

H

H

H

H

H

L

H

L

H

H

H

H

L

H

H

H

H

H

H

X

H

H

X

L

H

H

H

H

H

H

H

H

H

H

L

L

H

L

L

L

L

L

H

L

H

H

L

L

H

H

H

L

H

H

H

H

H

H

H

H

L

H

L

H

L

H

H

L

H

L

H

H

H

H

H

L

H

L

L

H

L

H

L

L

H

H

H

H

L

H

H

H

H

L

H

L

H

H

H

H

H

H

L

H

H

H

L

H

H

L

H

H

H

H

H

H

L

H

H

L

H

H

H

H

H

H

H

H

H

H

L

'G2 ~ G2A + G2B
H::: High level, L = low level, X :::: don't care

H

=

SELECT

high level, L::: low level, X ::: don't care

"""

to)

00

...
CJ)
to)

00

...

r'.

CJ)
to)

to

...

CJ)
to)

to

~

DM54/DM74147.148

MSI

Priority Encoders

General Description

Features

These TTL encoders feature priority decoding of the
input data to ensure that only the highest-order data line
is encoded. The DM54147 and DM74147 encode nine
data lines to four-line (8-4-21) BCD. The implied
decimal zero condition requires no input condition as
zero is encoded when all nine data lines are at a high
logic level. All inputs are buffered to represent one
normalized Series 54/74 load. The DM54148 and
DM74148 encode eight data lines to three-line (4-2-1)
binary (octal). Cascading circuitry (enable input EI and
enable output EO) has been provided to allow octal
expansion without the need for external circuitry. For
all types, data inputs and outputs are active at the low
logic level.

DM54147, DM74147

..•
..

Encodes 10-1 ine deci mal to 4-line BCD
Applications include:
Keyboard encoding
Range selection
Typical data delay
Typical power dissipation

•

10 ns
225 mW

DM54148, DM74148

•

Encodes 8 data lines to 3-line binary (octal)
Applications include:
N-bit encoding
Code converters and generators
Typical data delay
Typical power dissipation

•

•
•

10 ns
190mW

Connection Diagrams

T

OUTPUT
0

Ne

L5

16

.

INPUTS

,
3

2
13

14

T

1

2

•

6

5

•

3

5

7

8

6

,

INPUTS

INPUTS

,

GS

3

I.

15

,
1

2
13

12

10

11

2

,•

9

0-

1

G!:

OUTPUT

AD

0

r-----,

~

MSI

DM54/DM74150.151A.LS151.S151
Data Selectors/Multiplexers

General Description

Features

These data selectors/multiplexers contain full on-chip
decoding to select the desired data source. The 150
selects one-of-sixteen data sources; the 151 A, LS151,
and S151 select one-of-eight data sources. The 150,
151A, LS151, and S151 have a strobe input which must
be at a low logic level to enable these devices. A high
level at the strobe forces the W output high, and the Y
output (as applicable) low.

•
•
•
•
•

The 151A, LS151, and S151 feature complementary
Wand Y outputs whereas the 150 has an inverted (W)
output only.

L4

'10

23

22

21

E12

Ell
20

E13

19

E14

18

E15

\

A

16

17

8

, E7

3
'5

'6

4
E4

5

6

E3

E2

7

8

10

9

,

11

o

EO STROBE W

'1

LS151

DATA INPUTS

04

05

07

06

14

13

30mW

4.5 ns

225mW

54150/74150

STROBE

13

D

C

B

A

S

X

X

X

X

H

L

L

L

L

L

L

L

H

L

L

L

H

L

L

L

L

H

H

L

L

H

L

L

L

L

H

L

H

L

L

H

H

L

L

L

H

H

H

L

H

L

L

L

L

J,12

H

L

L

H

L

H

L

H

L

L

GNO

H

L

H

H

L

H

H

L

L

L

H

H

L

H

L

E13

H

H

H

L

L

E14

H

H

H

H

L

E15

C

11

10

I-

r--

,03

02

3
01

DATA INPUTS

DO

,

6

5

4
Y

H

EO
El

Ez

E3
E4

E5

E6

-E7
E8
E9

El0

Ell
-

E12

54151A/74151A,54LSI51174LSI51,
74S151

9

INPUTS

2

W

L

SELECT

1

OUTPUT

\

8

A

12

135mW

SELECT

l76
15

200mW

9 ns

INPUTS

DATA SElECT

,

11 ns

12.5 ns

S151

54150(JI. (F); 74150(J), (N), (F)

v

DISSIPATION

150

OUT OATA
SELECT

DATA INPUTS

,

POWER

DATA INPUT TO W OUTPUT

C
14

15

TYPICAL

PROPAGATION DELAY TIME

151A

to-

2

Also for use as Boolean function generator

DATA SElECT

,.....

1

Permits multiplexing from N lines to one line

Truth Tables

DATA INPUTS

'9

Performs parallel·to-serial conversion

TYPICAL AVERAGE

Connection Diagrams
'8

Others select one-of-eight data lines

TYPE

The 151A incorporates address buffers which have
symmetrical propagation delay times through the complementary paths. This reduces the possibility of transients
occurring at the output(s) due to changes made at the
select inputs, even when the 151A outputs are enabled
(i.e., strobe low).

Vee

150 selects one-of-sixteen data lines

W

,

7

STROBE

J:

H

C

B

X
L

OUTPUTS
STROBE

Y

A

S

X

X

H

L

L

L

L

DO

L

L

H

L

01

L

H

L

L

D2

L

H

H

L

D3

H

L

L

L

D4

H

L

H

L

D5

H

H

L

L

06

H

H

H

L

07

W
H

-

DO
01

i52

D3
D4

55
-

06

OJ

= High Level, L = Low Level, X = Don't Care

Eo, E1 ... E15 = the complement of the level of the

OUTPUTS

respectiVe E input
DO, .01 ... 07 = the level of the respective 0 input

54151A(J), (W); 74151A(J), (N), (W);
54LS151174LS151(J), (N), (W); 74S151(N)

2-53

Electrical Characteristics

CONDITIONS

PARAMETER

MIN
VIH

High level Input Voltage

V IL

low level I nput Voltage

Input Clamp Voltage

VI

10H

High level Output Current

V OH

High level Output Voltage

10L

VOL

low level Output Voltage

.

Vee = Min

Input Current at Maximum

High level I nput Current

IIH

low level I nput Current

IlL

los
IcC

Short Circuit Output Current

DM54/74

DM74S

150, 151A

lS151

S151

TYP(l)

MAX

MIN

TYP(1)

0.8

0.7

N/A

0.8

0.8

0.8

-1.5

-1.2

-800
3.4

N/A

V'L = Max, IOH = Max

DM74

2.4

2.7

3.4

2.7

Vee = Max(2)

Supply Current

IOL = Max
IOL =4 mA

16

4·

N/A

DM74

16

8

20

DM54

0.4

0.25

0.4

N/A

DM74

0.4

0.35

0.5

0.5

DM74

(4)

V
/lA
V

3.4

DM54

mA

V

0.4

V, = 5.5V

1

1

V, = 7V

0.1

V, = 2.4V

mA

40

V, = 2.7V

20
-1.6

V, = O.4V

50

-0.4
-2

V, - 0.5V
DM54

-20

-55

-30

-130

DM74

-18

-55

~30

-130

150

40

68

151A

27

48

Others

(3)

-1000

-400
2.5

Vee = Max

V

-1.5

2.4

Vee = Max

(/)

V

DM74

DM54

Vee = Max

s:

MAX

DM54

I, =-18 mA

Vee = Min, V ,H =2V

TYP(l)

UNITS

2

N/A
-100

-40

/lA

mA

0

s:U1
~

........

0

mA

s:

...
:...
...
l>
......r~

~

U1

mA
6

N~tes

(2)

MIN

Vee = Min, V ,H = 2V

Vee = Max(3)

(1)

MAX

2

I, =-12 mA

V,L = Max

Input Voltage

DM54/74

2

low level Output Current

'"

r-

UI'

rJ)
....
UI

....
....
....UI
rJ)

-

------

~ MSI

DM54/DM74150.151A.lS151.S151

Logic Diagrams

150

ISlA. S151

STROBE (9)
(ENABLE)
(B)

EO

-C

p-

>-c

Ft-'

>-;:::::

Ft-'

m

£1

(61

E2

(5)

EJ

~

(4)

E4

>--c
(3)

E5

DATA
INPUTS

~

~
Ft)--:-

SEE ADDRESS BUFFERS BElOW

>--c
(1)

E7

>-c p--(231

E8

(22)

~

(21)

~

(201

~

-

E9

£10

Ell

f=I'"

(19)

E12

(10)

OUTPUT W

~

r;:::::;
ADDRESS BUFFERS FOR 54151A174151A

5----

j

(~

t::r

A

(141

B

(13)

ADDRESS BUFFERS FOR 54lS151174lS151. 74S151

~

1161

E15

DATA
SElECT

B

(BINARY)

B

t

c
(11)

.

C

Ft-'

(17)

A~7nill

SE~~~~ IB

Ft-'

(18)

£14

:

~

(BINARY)

Ell

(BINARY)

~
~

DATA
INPUTS

DATA
SELECT

}f..ASS'CC

(2)

E6

D4(1",8)t=f=f:f$~f3J

D
0

2-56

l ·=~i·illl
B

c

~MSI

DM54/DM74153.LS153.S153
Dual 4-Line to 1-Line Data Selectors/Multiplexel'S

General Description
Each of these data selectors/multiplexers contains inverters and drivers to supply fully complementary,
on-chip, binary decoding data selection to the AND-ORinvert gates. Separate strobe inputs are provided for
each of the two four-line sections.

• Strobe (enable) line provided for cascading (N lines
to n lines)
• High fan-out, low-impedance, totem-pole outputs
TYPICAL AVERAGE
PROPAGATION DELAY TIMES
FROM
FROM
FROM

TYPE

Features
• Permits multiplexing from N lines to 1 line
• Performs parallel-to-serial conversion

Connection Diagram

153
LS153
S153

DATA

STROBE

SELECT

11 ns
14 ns
6 ns

18 ns
19 ns
9.5 ns

20 ns
22 ns

TYPICAL
POWER
DISSIPATION
170mW
31 mW
225mW

12 ns

Truth Table

SELECT
INPUTS

DATA INPUTS

54153(JI, (W); 74153(J), (N), (W);
54LS153/74LS153(J), (N), (W);
74S153(N)

A

CO

Cl

C2

C3

G

V

x

x

x

L

L

L

i..

L

H

L

H

X

L

X

L

H

H

x

H

L

x
x

x
x
x
x
x

H

L

x
x
x

x

L

X

L

L

H

L

X

X

H

X

L

H

H

H

X

X

X

L

L

L

H

H

X

X

X

H

L

H

X

x

L

L

L

H

L

L

L

H

Select inputs A and B are common to both sections.
H = High Level, L = Low Level, X = Don't Care

.....-,

1p,~16",1--------+++

1C1.!!5!!.,1--------+=:f::t=:t=L...J
DATA 1

1C2.:;14;:..1--'---_-+++i-+-.&..-'
1C3 .f13!L1______+~$$=lJ

___++i_~~r-~

DATA 2

2C2 "'112;;:.I-----"'1=1==t=~-"'\

2C3~11~3Ibf;:==========~~~~r=~
115)

OUTPUT

x

STROBE G1 lH

STROBE G2

STROBE

B

Logic Diagram

2C1~11~1I----

DATA INPUTS

Electrical Characteristics over recommended o'perating free-air temperature range (unless otherwise noted)

PARAMETER

CONDITIONS
MIN

VIH

High level Input Voltage

VIL

low level Input Voltage

Input Clamp Voltage

VI

10H

High level Output Current

VOH

High level Output Voltage

DM54lS/74lS

DM74S

153

lS153

S153

TYP(1)

Vee; Min

VOL

low level Output Voltage

Input Current at Maximum

II

Input Voltage
High level Input Current

IIH

low,level Input Current

III

Short Circuit Output Current

los

Supply Current

ICC

0.7

N/A
0.8

-1.5

-1.2

-1.5

-800
DM54
DM74

2.4
2.4

3.2
3.2

3.4

N/A

3.4

2.7

16
16

DM54

0.2

DM74·
DM74lS

0.2

-1000

-400
2.5
2.7

0.25

0.4
0.4

0.35

V

V

/lA
V

3.4

4

N/A

8

20

0.4
0.5

N/A
0.5

mA

/

V

0.4

Vee; Max

V,; 5.5V
V,;7V

1

V,'; 2.4V

40

Vee; Max(3)

V

0.8

IOL; 4 mA

Vee; Max(2)

MAX

0.8

V'L; Max

Vee; Max

TYP(1)

0.8

DM54

Vee; Max

MIN
2

I, --18 mA

IOL ; Max

MAX

3:
f!!

UNITS

DM54

,

V'H ; 2V

TYP(1)

~

DM74
1,;-12mA

Vee; Min, V'H ; 2V
V'L = Max,l oH ; Max

Vee = Min

MIN
2

DM74

'"81

MAX

2

low level Output Current

10l

DM54/74

1
0.1

V,; 2.7V

20

V,';O.4V

,-1.6

50

-0.36

mA

/lA

C

mA

V, ; 0.5V

3:
en

'-2
DM54

-20

-55

-30

-130

DM74

-18

-'57

-30

-130

DM54

34

52

6.2

10

DM74

34

60

6.2

10

N/A
-40

-100

N/A
45

70

~
.......

0

mA

3:

~
en

mA

~

W
Not_
(1)
(2)

All typical values are at Vcc; 5V, TA; 2SoC.

(3)

ICCl is measured with the outputs open and all inputs grounded.
National Semiconductor temporarily reserves the right to ship'OM54LS/OM74LS153 devices which have a minimum lOS = 5.0 rnA.

(4)

t;....

-

en

Not more than one output should be shorted at a time, and for DM54lS/74LS or DM74S duration of short circuit should not exceed one second.

W

en
....
en

w

.,

-

Switching Characteristics vee = 5V, T A = 25°C

PARAMETER

FROM
(INPUT)

~
DM54/74

DM54 LS/74 LS

DM74S

153

LS153

S153

TO
(OUTPUT)
CONDITIONS

tpLH

Propagation Delay Time,

Low-to-High Level Output
tpHL

Propagation Delay Time,

High-to-Low Level Output
tpLH

Propagation Delay Time,
Low-to-High Level Output

tpHL

Propagation Delay Time,

High-to-Low Level Output
tpLH

Propagation Delay Time,
Low-to-High Level Output

tpHL

Propagation Delay Time,
High-ta-Law Level Output

MIN

TYP

MAX

CONDITIONS

MIN

TYP

MAX

CONDITIONS

MIN

UNITS
TYP

MAX

Data

Y

11

18

10

15

6

9

ns

Data

Y

10

23

17

26

6

9

ns

Select

Y

20

34

19

29

11.5

18

ns

CL
Select

y

Strobe

Strobe

~

C L = 15pF

30 pF

RL = 400Q

s:

V)

C L = 15pF

RL = 2 kQ

RL =28012

20

34

25

38

12

18

ns

y

19

30

16

24

10

15

ns

y

17

23

21

32

9

13.5

ns

N

c:n



0

s:

(J1

~

........

0

s:
~

(J1

w

lV)

...
...

(J1

W

V)

(J1

W
-

_.-

~

MSI

DM54/DM74154,L154A,LS154
4-Line to 16-Line Decoders/Demultiplexers

General Description

Features

Each of these 4-line-to-16-line decoders utilizes TTL
circuitry to decode four binary-coded inputs into one
of sixteen mutually exclusive outputs when both the
strobe inputs, G 1 and G2, are low. The demultiplexing
function is performed by using the 4 input lines to
address the output line, passing data from one of the
strobe inputs with the other strobe input low. When
either strobe input is high, all outputs are high. These
demultiplexers are .ideally suited for implementing,highperformance memory decoders. All inputs are buffered
and input clamping diodes are provided to minimize
transmission-I ine effects and thereby simplify system
design.

•
•
•
•

Decodes 4 binary-coded inputs into one of 16 mutually
exclusive outputs
Performs the demultiplexing func.tion by distributing
data from one input line to anyone of 16 outputs
Input clamping diodes simplify system design
High fan-out, low-i mpedance, totem-pole outputs
TYPICAL

TYPE

TYPICAL

PROPAGATION DELAY
3 LEVELS OF LOGIC

POWER

STROBE·

DISSIPATION

154
L154A

19 ns

18 ns

170mW

55'ns

LS154

23 ns

45 ns
19 ns

24mW
45mW

Connection and Logic Diagrams
Ii.

M

Wo

B
C

0
A

INPUTS

t

A

B

0

C

22

23

21

G2
20

G1
19

,

Gl (lB)

OUTPUTS

15

18

13

14

16

17

62

11

12

15

(4)3

13

14

I--

i

10-

INPUTS

rv

1

2

1

5

4

]

2

]

4

7

6
5

6

9

B

7

8

10
9

A
(6)5

A
B

B(22)

l
e l2l )

,,

(1)5

B

-v

t::~

c
C

~

11 J12
10.

GNO

(5/ 4

C

A (23)

r<

)oELz

•

G

(19)

(2'1

(8/ 7
OUTPUTS
{9)S

Or" ~r(10)9

0

D (20)

I

OUTPUTS

54154(JI. (F); 74154(J), (N), (F);
54L 154A/74L 154A(J), (N), (F);
54LS154/74LSl54(J), (N), (F)

t::l--

D

0

(11)10

(13)11

c

(14) 12

(15)13

B

A

(16)14

A

G
B
C

Tentative Data For LS154

2-60

OJI Is

O~

LS 154 To Be Announced In 1976

Electrical Characteristics

PARAMETER

CONDITIONS
MIN

VIH

High Level I nput Voltage

VIL

Low Level Input Voltage

Input Clamp Voltage

VI

IOH

High Level Output Current

VOH

High Level Output Voltage

'"~

Vee ~ Min

Low Level Output Voltage

IIH

IlL

Input Current at Maximum Input Voltage

High Level Input Current

Vee

Icc

Supply Current

L 154A

LS154(4)

TYP(1)

MAX

MIN

TYP(1)

Vee

~

Min, V ,H

2

Vee

~

Vee

= Max

Max

~

Max

Vee ~ Max(2)

Vee

~

Max(3)

~

5.5V

V,

~

7V

V,

= 2.4V

V,

~

2.7V

V,

~

0.3V

V,

= 0.4V

0.7

O.B

N/A
-1.5
-200

-400

DM54

2.4

3.4

2.4

2.B

2.5

3.5

DM74

2.4

3.4

2.4

2.8

2.7

3.5

DM54

16

2

4

16

3.6

8

DM54

0.25

0.4

0.15

0.3

0.25

0.4

DM74

0.25

0.4

0.20

0.4

0.35

0.5

0.1

1

0.1
40

V

V
IlA
V

DM74

10
20

mA

V

mA

IlA

-0.18
-1.6

-0.36

DM54

-20

-55

-3

--9

-15

-30

-130

DM74

-18

-57

-3

--9

-15

-30

-130

DM54

34

49

4.8

6.0

9

14

DM74

34

56

4.8

6.0

9

14

mA

mA

0
~

(J1
~

.......
0
~
-..J

mA

~
....

(J1
~

!:

Notes
All typical values are at Vee = 5V, TA = 25°C.
(21 Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.
(4)

V

O.B
-1.5

~

en

MAX

2

(J1

(1)
(3)

TYP(1)

DM74
mA

V,

MIN

0.7

~-lBmA

= 2V

MAX

UNITS

0.7

~-12

~ Min, V ,H ~ 2V
= Max, IOH = Max

Low Level I nput Current

Short Circuit Output Current

154

-BOO

Vee

loS

DM54LS/74LS

0.8

I,

V'L ~ Max, IOL ~ Max
II

DM54L/74L

DM54

I,

Low Level Output Current

VOL

DM54/74

2

V'L
IOL

~

over recommended operating free-air temperature range (unless otherwise noted)

~

»
ren
....

ICC is measured with all inputs grounded and all outputs open.
Tentative data.

(J1

~
----------

Switching Characteristics vee

~ 5V, TA ~ 25°C
DM54/74

DM54L/74L

DM54 LS174 lS

154

L154A

LS154(4)

PARAMETER
CONDITIONS
tpLH

Propagation Delay Time,

MIN

TYP

MAX

18

36

21

33

CONDITIONS

MIN

TYP

MAX

35

70

75

150

CONDITIONS

MIN

~
UNITS

TYP

MAX

24

36

nS

22

33

ns

s:

C/)

Low~to~High

Level Output, From A, B, C, o-r D Inputs
Through 3 Levels of Logic
tpHL

tpLH

Propagation Delay Time,

High~to~Low

Level Output, From A, 8, C, or D Inputs

CL =15pF

Through 3 Levels of Logic

HL

Propagation Delay Time,

RL

Low~to~High

Level Output, From Either Strobe Input
tpHL

Propagation Delay Time,

High~to~Low

Level Output, From Either Strobe Input

'"0,
'"

CL = 50 pF

=400n

C L = 15pF

= 4 kn

RL

='2kn

17

30

35

70

20

30

ns

18

27

55

110

18

27

ns

Truth Table
INPUTS

OUTPUTS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

G1

G2

D

C

B

A

o~

L

L

L

L

L

L

L

L

L

L

L

H

15

L

L

L

L

H

L

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

L

L

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

L

L

L

H

L

l

H

H

H

H

L

H

H

H

H

H

H

H

,H

H

H

H

L

L

L

H

L

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

H

L

L

L

H

H

L

H

H

H

H

H

H

L

H

H

H

H

H

H

H

H

H

L

L

L

H

H

H

H

H

H

If

H

H

H

L

H

H

H

H

H

H

H

H

C

s:C11
01=0

.......
C

s:-...I

L

L

H

L

L

L

H

H

H

H

H

H

H

H

L

H

H

H

H

H

H

H

L

L

H

L

L

H

H

H

H

H

H

H

H

H

H,

L

H

H

H

H

H

H

L

L

H

L

H

L

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

H

L

l

H

l

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

H

l

l

H

H

l

l

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

H

01=0

L

l

H

H

L

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

H

l

l

H

H

H'

l

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

H

s:
C11

l

l

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

L

L

H

X

X

X

X

H

H~

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

l

X

X

X

X

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

X

X

X

X

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

...
01=0

C11

01=0

l>
ro-

...

C/)

C11

H = High Level, L;:: Low Level, X = Don't Care

01=0

~ MSI

DM54/DM74155.LS155.156.LS156
Dual 2-Une to 4-Une Decoders/Demultiplexers

General Description

Features

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binaryaddress inputs in a single 16-pin package .. When both
sections are enabled by the strobes, the common address
inputs sequentially select and route associated input data
to the appropriate output of each" section. The individual
strobes permit activating or inhibiting each of the 4.bit
sections as desired. Data applied to input C1 is inverted
at its outputs and data applied at C2 is true through its
outputs. The inverter following the C1 data input permits
use as a 3-to-8-line decoder, or 1-to-8-line demultiplexer,'
without external gating. Input clamping diodes are
provided on these circuits to minimize transmission-line
effects and simplify system design.

•

Applications:
Dual 2-to-4-line decoder
Dual 1-to-4-line demultiplexer
3-to-8-line decoder
1-t0-8-line demultiplexer

•

Individual strobes simplify cascading for decoding or
demultiplexing larger words

•

Input clamping diodes simplify system design

•

Choice of outputs:
Totem-pole (155, LS1551
Open-collector (156, LS1561

Connection Diagram

Truth Tables
2-LlNE-TO-4-LlNE DECODER
OR 1-LlNE-TO-4-LINE DEMULTIPLEXER
INPUTS
SELECT

OUTPUTS

STROBE

DATA
Cl

B

A

Gl

1Y0

lY2

lY3
H

X

X

H

X

H

H

H

L

L

L

H

L

H

H

H

L

H

L

H

H

L

H

H
H

H

L

L

H

H

H

L

H

H

L

H

H

H

H

L

X

X

X

L

H

H

H

H

INPUTS
SELECT
B
541551J), IW); 741551J), INl.IW);
54LS155174LS155IJ), IN), IW);
5415SIJl. IW); 7415SIJ), IN), IW);
54LS156174LS15SIJ), IN), IW)

lYl

OUTPUTS

STROBE

DATA

A

G2

C2

2YO

2Yl

2Y2

2Y3

X

X

H

X

H

H

H

H

L

L

L

L

L

H

H

H

L

H

L

L

H

L

H

H

H

L

L

L

H

H

L

H

H

H

L

L

H

H

H

L

X

X

X

H

H

H

H

H

Logic Diagram
3-LlNE-TO-8-LlNE DECODER
OR 1-LlNE-TO-8-LlNE DEMULTIPLEXER
INPUTS

Ct

B

X

L

OA~~ ",115..
1 _ _- .

10)

11)

12)

13)

14)

15)

IS)

(7)

A

Gi

X

X

H

H

H

H

H

H

H

H

H

L

L

L

L

H

H

H

H

H

H

H

L

L

H

L

H

L

H

H

H

H

H

H

L

H

L

L

H

H

L

H

H

H

H

H

2YO 2Yl 2Y2 2Y3 1Y0 1Yl lY2 1Y3

L

H

H

L

H

H

H

L

H

H

H

H

H

L

L

L

H

H

H

H

L

H

H

H

H

L

H

L

H

H

H

H

H

L

H

H

H

H

L

L

H

H

H

H

H

H

L

H

H

H

H

L

H

H

H

H

H

H

H

L

tC
STRO~i ",114;;..1_ _- ,

OUTPUTS

STROBE
OR DATA

SELECT

= inputs C1 and C2 connected together

+G == inputs G 1 and G2 connected together
H = high level, L

2-63

= low

level, X

= don't care
LS155, LS156 To Be Announced In 1976

Electrical Characteristics

DM54LS/74LS

DM54174
CONDITIONS

PARAMETER

155
MIN

V ,H

High Level Input Voltage

V ,L

Low Level Input Voltage

Input Clamp-Voltage

V,

TYP(1)

=:

Min

MIN

TYP(1)

MAX

2

MIN

TYP(1)

2

=;

High Level Output Voltage

Vee
V 1L

= Min, V 1H
= Max, IOH

=:;

=:

TYP(l)

0.7

DM74

0.8

0.8

0.8

0.8

-1.5

-1.5
1.5

1.5

Max, V OH

=:

100

250

5.5V

400

2V

DM54

2.4

2.5

3.4

Max

DM74

2.4

2.7

3.4

Low Level Output Current

Low Level Output Voltage

VOL

'"
~

Vee

=:;

Min, V 1H

=:;

2V

V'L = 0.8V
Input Current at Maximum

I,

Vee::: Max

Input Voltage

High Level I nput Current

I'H

I,L

Low Level Input Current

los

Short Circuit Output

Cu~rent

Supply Current

Icc

Vee

= Max

16

16

4

4

16

16

8

8

4 mA

10L - 8 mA, DM74
IOL -16mA

V, = 5.5V

Vee = Max(3)

0.4

1

1

0.4

0.25

0.4

0.35

0.5

0.35

0.5

V, = 2.7V
-1.6

-1.6
DM54

-20

-32

-55

DM74

-18

-32

-55

0.1

0.1

20

20

-0.36

-0.36

40

40

V, = 2.4V

-30

N/A

p.A

mA

0.25

V, = 7V

Vee = Max, V, = O.4V
Vee = Max(2)

0.4

V

V

DM74
=:

V

5.5

DM54

IOL

s:

-en

V

2
0.7

5.5
10L

MAX

0.8

800
VOH

MIN

0.8

18mA

Vee"" Min, V 1H == 2V, V 1l

UNITS

LS156
MAX

DM54

1,=-12mA
I, -

LS155

156
MAX

2

Vee

High Level Output Curren!

IOH

~

over recommended operating free-air temperature range (unless otherwise noted)

,

-130
-130

-30

N/A

DM54

25

35

25

35

6.1

10

6.1

10

DM74

25

40

25

40

6.1

10

6.1

10

V

rnA

0

p.A

s:

rnA

~
.......

mA

s:.....

mA

U1

0

....
U1
~

U1

,...

en
....

Notes
(1)

All typical values are at VCC = SV, T A = 2SoC.

(2)

Not more than one output should be shorted at a time, and for DM54LSJ74LS duration of short circuit should not exceed one second.

(3)

ICC is measured with outputs open, A, B, and C1 inputs at 4_.5V, and C2, G1 and G2 inputs grounded.

..

U1
U1

:...

U1

m
r-

en
....

U1

m
_.

,

Switching Characteristics vcc = 5V, T A = 25°C

~
DM54LSI74LS

DM54/74

PARAMETER

FROM
(INPUT)

TO
(OUTPUT)

LEVELS
OF LOGIC

155

CONDITIONS

MIN
tPLH

156

TYP

MAX

13

20

MIN

LS155

CONDITIONS

TYP

MAX

15

23

MIN

LS156

TYP

MAX

10

15

MIN

UNITS

TYP

MAX

25

40

' Propagation
Delay Time,

A, B, C2

Low-to-H igh

Gl or G2

Y

2

Level Output
tPHl

s:

CJ)

ns

-

Propagation
Delay Time,

A, B, C2

H igh-to-Low

Gl or G2

Y

2

Y

3

18

27

19

30

18

27

21

32

19

30

34

51

ns

17

26

31

46

ns

Level Output
tPLH

Propagation

Delay Time,
Low-ta-High

Aor B

Level Output

CL = 15 pF

CL

= 15 pF

= 40011

RL

= 2 kl1

RL

tpHL

Propagation

Delay Time,
High-ta-Low

'"en

A or B

Y

3

17

26

18

27

19

30

34

51

ns

C1

y

3

17

24

19

27

18

27

32

48

ns

Level Output

(J'1

tPLH

Propagation

Delay Time,
Low-ta-High
Level Output
tpHl

0

Propagation

Delay Time,
High-ta-Low

C1

y

3

17

26

18

Level Output

27

18

27

32

48

ns

s:U1
~

........
0

s:

"...
~

U1
U1

r-

....U1

CJ)

U1

:..
U1

O'l

r-

....

CJ)

U1

O'l
--

~ MSI

DM54/DM74157 ,l157A.lS157 ,S157 ,lS158 ,S158
Quad 2-line to 1-line Data Selectors/Multiplexers

General Description

Features

These data selectors/multiplexers contain inverters and
drivers to supply full on-chip data selection to the .four
output gates. A separate strobe input is provided. A
4-bit word is selected from one of two sources and is
routed to the four outputs. The 157, L 157 A, LS157, and
S 157 present true data whereas the LS 158 and S 158
present inverted data to minimize propagation delay time.

•

Buffered inputs and outputs

• Three speed/power ranges available

TYPICAL
PROPAGATION

TYPICAL
POWER

TIME

DISSIPATION

9 ns
40 ns

150mW

TYPE

Applications

157·
L157A
LS157

• Expand any data input point
• Multiplex dual data buses
• Generate four functions of two variables (one variable
is common)
• Source programmable counters

S157

9 ns
5 ns

15mW
49mW
250mW

LS158
S158

7 ns
4 ns

24mW
195mW

Connection Diagrams

STROBE

T
16

,

G

INPUTS
A4

15

INPUTS

B'

I.

13

OUTPUT
V.

OUTPUT

A3

12

B3

11

T

vCC

Y3
10

9

1
SElECT

2

, AI

1

.,

•
VI

6

5
02

82

OUTPUT
INPUTS

,

7

V2
OUTPUT

INPUTS
,,.._......_-,,

G

A4

15

16

s

STROBE

84

14

INPUTS'

OUTPUT
V4

13

,

12

OUTPUT
Vl

BJ

A3

10

11

-

1

J:

3

2
AI

S

4

VI

81

OUTPUT

SElECT

INPUTS

INPUTS

low level at S sefects A inputs
High level at S selec1s B inputs

5

,A2

7

6
82

,

Y2
, OUTPUT

61:

INPUTS
lowlevtl at Sselects A inputs

High level at S selects B inputs

54157(JI, (W); 74157(JI, (NI, (WI;
54L 157A174L 157A(JI, (N), (WI;
54LS157174LS157(JI, (N), (WI; 74S157(NI

54LS158174LS158(JI, INI, (WI;
74S158(NI

Truth Table
INPUTS

OUTPUT Y
i57. L157A
LS157, S157

LS158
S158
H

STROBE

SELECT,

A

B

H

X

x

x

L

L

L

X

L
L

L

L

H

X

H

H
L

L

H

X

L

L

H

L

H

x

H

H

L

H = High Level, L. = Low Level, X = Don't Care

2-66

LS157, LS158 To Be Announced In 1976

~

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
DM54L174L

DM54n4
PARAMETER

CONDITIDNS

V'H

High Level Input Voltage

V'l

Low Level I nput Voltage

V,

IOH

High Level Output Current
High Level Output Voltage

~

I,

Vee"" Min

Low level Output Voltage

= Min,

Vee

V IL

''""

Input Current at

Any Input

Max'imum Input Voltage

S or G Input

-.J

=::

0=

""

High Levell nput Current

Low Level Input Current

2

2
0.8

07

0.7

N/A

0.8

07

0.8

0.8

-1.5

N/A
--1.5

-1.2

ICC

Supply Current

-400

-200

N/A

Max, IOH

'='

Max

DM74

2,4

3.4

2.4

2.7

3.4

2,7

Max

10L

V,
Vee = Max

Vee ""Max

Vee'" Max

Vee ~ Maxl2!

Vee ~ Maxl3!

=4

mA

V,

16

2

4

N/A

DM74

16

36

8

20

DM54

0.4

0.3

0.25

0.4

DM74

0.4

0.4

0.35

0.5

1

0,1

OM74

0.25

~5.5V
~

~2.4V

V,

~

2,7V

V,

~

0,3V

V,

~

OAV

V,

~

0.5V

V

V
/lA

rnA

0.4
N/A
0,5

V

0

1
rnA

0.2

7V

V,

0

40

50

20

50

/lA

(,J1

-0.8

-1.6

-0.4

rnA

-20

DM74

-18

157

30

158

N/A

·-55
'-55

·3

48

-15

-30

-9

-15

-30

3

4

N/A

-130
-130

N/A
--40

-100

9,7

16

50

78

4.8

8

39

61

Notes

'-I

!:;
(,J1

-2
DM54

~

~

'0.18
1.6

~9

(,J1

.......

10

-3

~

~

0.1
40

-

V

3.4

DM54

'-I

mA

mA

l>

i(J)

....
'-I
en....
(,J1

(,J1

'-I

(1)

All typical values are at V CC = 5V, T A ~ 25" c.

(2)

Not more than one output should be shorted at a time, and for the DM54LS/74~S or DM74S duration of the short circuit should not excee.d one second.
ICC is measured with 4.5V applied to all inputs and all outputs open.

(3)

-1000

3.4

~

(J)

V

OM74
-'12 mA

10L ::: Max

UNITS
MAX

OM54

2.5

Min

TYP(1)

2

2.4

Any Input

Short Circuit Output Current

MIN

3,4

Any Input

lOS

S157, S158

MAX

2.4

S or G Input

A or B Input

TYP(1)

OM54

A or B Input
I'L

MIN

2V

Any Input
S or G Input

LS157, LS158
MAX

~

A or B Input

I'H

TYP(1)

DM74S

V 1H

V'H ~ 2V

I,

MIN

1,",-18rnA

Low Level Output Current

VOL

MAX

-800
Vee
V 1L

IOl

TYPI1!

2

Input Clamp Voltage

V OH

L157A

157
MIN

DM54LS/74LS

i(J)

....

(,J1

CO

en
....
(,J1

CO
--

-

_ .. -

-

Switching Characteristics V cc =5V,T A =25°C
DM54L/74L

DM54/74

FROM
(INPUT)

PARAMETER

tplH

Propagation Delay
Time, Low-to-High
Level Output

L157A

157
CONDITIONS

~
158

MIN

DM54 LS/74 LS

TYP

8

MAX

Co'NDITIONS

14

MIN

LS157, LS158
TYP
40

N/A

MAX

CONDITIONS

MIN

80

N/A

~

DM74S
S157, S158

TYP

MAX

CONDITIONS

MIN

UNITS
TYP

MAX

9

14

5

7.5

8

13

4

6

s:

en

ns

Data
tpHL

Propagation Delay
Time, High-to-Low
Level OutPlJt

tPlH

Propagation Delay
Time, Low·to-High

157

10

f--;ss
157

13

f--;ss
Strobe

Propagation Delay
Time, High-to·Low
Level Output
Propagation Delay

tpLH

Time, Low-to-High
Level Output

40

157

20

60

RL

~

CL 0 50 pF

400f!

15

157

23

19

4.5

6.5

13

4

6

16

25

8.5

12.5

14

25

6.5

11.5

RL 02 kf!
60

70

ns

ns

C L 0 15pF
RL

120

N/A

N/A

12

8

C L 0 15pF

RL 04 kf!
21

N/A

f-;58

120

N/A

C L 0 15 pF
14

7s

80

N/A.

N/A

Level Output
tpHL

14

N/A

140

N/A

o

280n

17

27

7.5

12

16

27

7

12

16.5

26

9.5

15

13

20

8

12

19

30

9.5

15

16

24

8

12

ns

ns

,'t;-J
.0>

Propagation Delay

tpHl

Time, High-to-Low

cOO

Level Output

157

f--;ss

17
N/A

27

50

100

N/A

a

s:

Select

(J1

ns

~

'"a
s:

......
~
--'

-

(J1

......

!::
(J1

......

l>
r-

en
--'
(J1

......

en
--'
(J1

......

l-

en
--'
(J1

co

en
...
(J1

co
-

-

~ MSI

OM 54/DM74157 .L157A.LS157. S157 .LS158 .5158

Logic Diagrams
157, L 157A

STROBE US)

L5157

L5158

m

Al

m

8t l31

81

131

A2 (51

A2

151

8Z'S!

"

At

(11)

Al (It)

8l

••

161

AJ

110)

BJ

(14)

(111)

(14)

A4

(O)

84 (13 )

B4

STROBE G /151

STROBE G (1S)

SElECT S

SelECT

{1}

s

(1)

5157

5158
Al

..::12~1-----;==========r-~

8t (3)

A2 (S)

82 (6)

A3 01}

83 (10)

A4 (14)

84(13)

2-69

.~ MSI

OM54/0M14160A.LS160.161A.LS161.162A.LS162.163A,LS163
Synchronous 4-Bit Counters
law level at the clear input sets all faur af the flip-flap
autputs law after the next clack pulse, regardless af the
levels af the enable inputs. This synchronous clear
allows the count length to. be modified easily, as decading
the maximum count desired can be accomplished with
one external NAND gate. The gate autput is connected
to. the clear input to. synchronously clear the counter to.
all law autputs. Low-ta-high transitians at the clear
input af the 162A and 163A are also permissible regardless af the logic levels on the clock, enable, or load inputs.

General Description
These synchronous, presettable counters feature an
internal carry look-ahead for application in high-speed·
counting designs. The 160A, 162A, LS160, LS162, are
decade counters and the 161A, 163A, LS161, LS163
are 4-bit binary counters. The carry outPUt is decoded
by means of a NOR gate, thus preventing spikes during
the normal counting mode of operation. Synchronous
operation is provided by having all flip-flops clocked
simultaneously so that the outputs change coincident
with each other when so instructed by the count-enable
inputs and internal gating. This mode ·of operation
eliminates the output co.unting spikes which are normally
associated with asynchronous (ripple clock) counters.
A buffered clock input triggers the four flip-flops on
the rising (positive-going) edge of the clock input
waveform.

The carry laok-ahead circuitry pravides far cascading
caunters far n-bit synchranous applicatians withaut
additianal gating. Instrumental in accomplishing this
functian are twa caunt-enable inputs and a ripple carry
autput. Bath caunt-enable inputs (P and T) must be
high to caunt, and input T is fed forward to enable the
ripple carry autput. The ripple carry autput thus enabled
will praduce a high-level output pulse with a duration
approximately equal to. the high-level portion af the Q A
output. This high-level overflaw ripple carry pulse can
be used to. enable successive cascaded sfages. High-tolow-level transitions at the enable P ar T inputs af the
160A thraugh 163A ar LS160 through LS163, may
occur regardless af the lagic level an the clack.

These counters are fully programmable; that is, the
outputs may be preset to either level. As presetting is
synchronous, setting up a low level at the Io.ad input
disables the counter and causes the outputs to agree
with the setup data after the next clock pulse regardless
of the levels of the enable input_ Low-to-high transitions
at the laad input af the 160A thraugh 163A ar LS160
thraugh LS163 are perfectly act:eptable, regardless af the
lagic levels an the clack or enable inputs. The clear
function far the 160A, 161A, LS160, and LS161 is
asynchronaus; and a law level at the clear input sets all
faur af the flip-flap autputs law regardless af the levels
af clock, laad, ar enable inputs. The clear functian far
the 162A, 163A, LS162, LS163, is synchranaus; and a

LS160 through LS163 feature a fully independent clack
circuit. Changes made to control inputs (enable P ar T,
laad ar clear) that will modify the aperating made have
no effect until clocking accurs. The functian of the
caunter (whether enabled, disabled, loading, ar caunting)
will be dictated salely by the canditians meeting the
stable setup and hold times.

Features
• Synchranously programmable
• Internallaok-ahead far fast caunting
• Carry output for n-bit cascading
• Synchranaus caunting
• Load cantralline
• Diade-clamped inputs

TYPE

160 thru 163
LS160 thru LS163

TYPICAL PROPAGATION
TIME, CLOCK TO

TYPICAL

TYPICAL

CLOCK

Q OUTPUT

FREQUENCY

POWER
DISSIPATION

14
14

ns
ns

35 MHz
32 MHz

Connection Diagram

I

vCC
16

OUTPUTS

RIPPLE
CARRY
OUTPUT

ENABLE
T

15

13

14

12

LOAD

10

"

54160A(J), (W); 74160A(J), (N), (W);
54LS160/74LS160IJ), (N), (W);
54161A(J), (W); 74161A(J), (N), (W);
54LS161/74LS161 (J), (N.), (W);
54162A(J), (W); 74162A(J), 010, (W);
54LS162/74LS162(J), (N), (W);
54163A(J), (W); 74163A(J), (N), (W);
54LS163/74LS163(J), (N), (W)

1

2

CLEAR

CLOCK

4

3

,

A

B

7

6

5

C

0

,

ENABLE

P

J:

DATA INPUTS

2-70

315mW
93mW

~

OM54/0M74160A.LS160.161A.LS161.162A.LS162.163A.LS163

MSI

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)
"

PARAMETER

CONDITIONS

DM54/74

DM54LS/74LS

160A,161A
162A,163A

LS160, LS161
LS162, LS163

UNITS

MIN TVPl11 MAX MIN TYPl11 MAX
V ,H

High Level Input Voltage

V,L

Low Level Input Voltage

V,

Input Clamp Voltage

2

DM74

IOH

High Level Output CUrrent

V OH

High Level Output Voltage

1

I

Vee

=

==

Min, V IH

2V

=

Max, IOH ::: Max

Low Level Output Voltage

Vcc=Min
tOl =

V 1H = 2V

Input Current ax Maximum

All

Input Voltage

Data or Enable P

/

Load, Clock, or Enable T

Clear ILS160, LS1611

Max

i Ol ==4 mA

VI L = Max

I,

0.8

0.8

-1.5

II::: -18 mA

Low Level Output Current

VOL

0.7

-800

V 1L
IOL

0.8

-1.5

1 =--'2 mA
Vee"" Min

V

2

DM54

V,

= 5.5V

VI

=

-400

DM54

2.4

3.4

2.5

DM74

2A

3A

2.7

3A
3A

16

4

DM74

16

8

0.2

DM74

0.2

OA
OA

0.25

DM74

I'H

0.5

0.25

OA

Data

\

Enable P

Clear {160, 1611

0.1
Vcc=Max

0.2

7V

0.2

Vcc=Max

V,
V,

= 2AV
= 2.7V

1160A-163AI
ILS160-LS1631

Data, Enable P
Clock

Load
Enable T

Vee = Max

V, =OAV

"-

Clear 1160, 1611

ICCH

Iccj.-

Supply Current, All Outputs High

Supply Current, All Outputs Low

40

40

80

40

40

20

40

20

40

20

40

40

-1.6

-0.4

-3.2

1.2

-1.6

0.8

-3.2

0.8

-1.6

-{)A

-1.6

Clear 1162, 1631

Short CirCUit Output Current

los

Vee"" Max(2)

Vee::: Max(3)

Vee = Max(4)

-20

-57

-30

-130

DM74

-18

-57

-30

-130

DM54

59

85

18

31

DM74

59

94

18

31

DM54

63

91

19

32

DM74

63

101

19

32

11)

All typical values are at VCC ~ 5V, TA ~ 25°C.

121

Not more than one output should be shorted at a time, and for OM54LS/74LS duration of short circuit should not exceed one second.
ICCH is measured with the load input high, then again with the load input low, with all o~her inputs high and all outputs open.
leel is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open .

14)

.~

2-71

pA

mA

-{).8

DM54

Notes

131

mA

0.1

Clear 1162, 1631
Low Level Input Current

I,L

V

1

Load

Clock, Enable T

mA

OA

0.35

Clear {LS162, LS1631
High Level I nput Current

V
pA
V

DM54

DM54

V

mA

mA

mA

~

DM54/DM74160A,LS160,161A,LS161,162A,LS162,163A,LS163

MSI

Switching Characteristics

vcc = 5V, T A = 25° C

PARAMETER

FROM
(INPUT)

TO
(OUTPUT)

DM54174

DM54LS/74LS

160A, 161A, 162A, 163A

LS160, LS161, LS162, LS163

CONDITIONS
f MAX

Maximum Clock Frequency

tpLH

Propagation Delay Time,

25

Low-ta-High Level Output
Clock

Propagation Oe.lay Time,

tpHl

MIN TYP MAX CONDITIONS

Propagation Delay Time,

tpHL

Clock

(Loap Input High)

Propagation Delay Time,

tPHl

tpLH

tpHl

Propagation Delay Time,

RL = 40011
Clock
(Load Input Low)

Low-ta-High Level Output

Enable T

Propagation Delay Time',
High-to-Low Level Output

tW(CLOCK)

Width of Clock Pulse

tW(ClEAR)

Width of Clear Pulse

tSETUP

Setup Time

tHOlO

35

ns

16

24

23

35

ns

14

20

16,

24

ns

16

23

18

27

ns

17

25

ns

Clearl5)

RL = 2 kH

14

21

18

25

19

29

ns

10

15

15

23

ns

12

16

15

23

ns -

24

36

26

38

ns

Any Q

Ripple
carry

High-ta-Low Level Output
tpHl

23

CL = 15 pF

High·ta-Low Level Output

Propagation Delay Time,

27

CL =15pF

Propagation Delay Time,

Low-ta-High Level Output

18

Any Q

High-to-Low Level Output
tpLH

MHz

carry

Propagation Delay Time,
Low-to-H igh Level Output

32

Ripple

High-ta-Low Level Output
tpLH

25

35

UNITS

MIN TYP MAX

Any Q

Data Inputs

25

25

ns

20

20

ns

A.B.C.D
Enable P

20

20

20

25

Load

25

25

Clear(6)

20

25

Hold Time at

0

Any Input

0

ns

ns

Notes

(5)

Propagation delay for clearing is measured from the clear input for the l60A, LS160, 161 A and LS161 or from the clock input transition for
the 162A, LS162, 163A and ['S163.

(6)

This applies only for ,162, 163, LS1~2 and LS163, which have synchronous clear inputs.

!

2-72

~MSI

DM54/DM74160A,LS160,161A,LS161,162A,LS162,163A,LS163

Logic Diagrams

160A, LS160

'2'

ClOCK---{;»---'-~======ttjj:~C===]rt
il'

DATAA----...J

111
CLEAR

DATA

'41
8--------++--1++1-1"'\

DATA

C-------H-t1++-t+l-1"'\

DATA

16'
D-------I+++-H+H-1-,

151

162A, LS162 are similar; however,
the clear is svochronousas shown

for the 163A, LS163 binary counters.

163A, LS163

Q,

DATAi.c.31_ _ _ _---'

Q,

171
ENABLEP
Oil}

ENA8LET--r::">--+--~

'"

OATAC-------H~F=:l=I:::j::j:::j::::::f..,

'6161-------+-Wd=UJJ:k~r:;:=~-~

OATAD-

161A, lS161 are similar; however,
the clear isasynchroflousasshown
for 160A, lS160 decade counters.

lJJ:~~~~~~~~~g®=)c

2-73

~MSI

DM54/DM74160A,LS160,161A,LS161,162A,LS162,163A,LS163

Timing Diagrams
160, 162, lS160, LS162 SYNCHRONOUS DECADE COUNTERS
TYPICAL CLEAR; PRESET, COUNT AND INHIBIT SEQUENCES
CLEAR
160A, LS16D

CLEAR
162A,LS162
LOAD

r---f-----.--------------

,----+--,-------------DATA [

:

'--+--'r= _===_========

INPUTS: _ _+----L
ClOCK---+'
160A,lSl11D
CLOCK
162A,LS162

HIIASLEP

---+-+'
ENABlET
---+-+'

RIPPLECARRY _ _ _

OUTPUT

+_+:--l-:-~
a

9

Sequence:
(1) Clear outputs to zero
(2)

Preset to BCD seven

(3)

Count 10 eight, nine, zero, one, two, and three

(4)

Inhibit

I'

0

I

2

3

- - - - - - COUNT----I----INHIBIT - - - CLEAR PRESET

161, LS161, 163, LS163 SYNCHRONOUS BINARY COUNTERS
TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES

CLEAR
161A LS161
CLEAR
163A,lS163
LOAD

r--------------

INDp~ ~ ~~~~~~::~~~~.Lr
==============
,----+--,-------------[ D:'

L _ _ _ _ _ _ _ '_ _ _ _ _ _ _

""'--+---"T- - - - - - - - - - - - - Sequence:
(1) Clear outputs to zero
(2) Preset to binary twelve
{3) Count to thirteen, fourteen, fifteen, zero, one, and two

ClOCK---+'
16lA,LSt61

CLOCK
16lA,LS163
ENABlEP
ENABLET

(4)

--t--+'
--t--+'

'-f~;

-+-+--+--'

OD _ _

RIPPlEOCU~~~~ ---+-+,,:-10,::-,-':":-....,,
---COUNT - - -

---~INHIBIT~.---

CLEAR PRESET

2-74

Inhibit

~ MSI

DM54/DM74160A.LS160.161A.LS161.162A.LS162.163A.LS163

Parameter Measurement Information
SWITCHING TIME WAVEFORMS

CLOCK
INPUT
OV
"lH
(MEASURE AT tN+11
VOH
OUTPUT
D.
VOL

VOH
OUTPUT
DB

OUTPUT

Ilc

VOL

VOH
VOL

VOH
OUTPUT
Do

RIPPLE

VOL
VOH

CARRY
OUTPUT

VOL

Notes:
(A) The input pulses are supplied by a generator having the following characteristics: PRR $. 1 MHz, duty cycle::; 50%, ZOUT
through 1.63A, tr S 10 ns, tf S 10 ns; for LS160 through LS163, tr S 15 ns, tf S 6 ns. Vary PRR to measure fMAX.

J'::l

50n, for 160A

(B)

Outputs DD and carry are tested at t n+l0 for 160A, 162A, LS160, LS162, and at t n+16 for 161A, 163A, LS161, LS163, where tn is the
bit time when all outputs are low.

(C)

For 160A through 163A, VREF = 1.5V; for LS160 through LS163, VREF = 1.3V.

SWITCHING TIME WAVEFORMS
CLOCK INPUT 3 . 0 V - - - - - - - " " \
160A.LS160
161A, LS161
OV _ _ _ _ _ _ _

--.,,'-_J

CLEAR
INPUT

OV -_I-'-_J

LOAD 3.0V
INPUT
DATA INPUTS
A, B, C. AND 0
D OUTPUTS
161A, lS161
Q

,---+=---~;..;::==-------

3.0V

--"1--+=="{

OV-~---r---H·~--'

3.0V --t-----j---t-t,r-"""\
OV
VOH

--:-+:--,--+---{

AAND Q16~~,T~s~~~ VOL --t--+'y---I---*""'

Oa AND Dc

OUTPUTS

16M, lS160

VOH

VOl--j--''-I---I---i--J
3.0V

ENABLE P OR
ENABLE T

--I---+--......j--,-.......

ov ---l--+--:-J-J
VOH----t---~----~~~--+_------~"f,~~

CARRY
VOl----t===~~~~~----+_--------I

CLOCK INPUT

r----------

3.0V

162A, LS162

16JA,lS16J
a OUTPUTS VOH-----t~

163A, LS163
QA AND 00 OUTPUTS
162A, lS162

DB AND

Ilc OUTPUTS

Voc--------......j.-+,------*""'
VOH----...::!,;::;'

162A,lS162

VOl - - - - - - - - - - - - - , - - - - - - - - - - '
Notes:
(A) The input pulses are supplied by generators having the following characteristics: PRR S 1 MHz, duty cycle
through 163A, tr S IOns, tf :0; IOns, and for LS160 through' LS163, tr S 15 ns, tf :0; 6 ns.

(B)

Enable P and enable T setup times are measured at tn+O.

(C)

For 160A through 163A, VREF ~ 1.5V;for LS160,hrough LS163, VREF ~ 1.3V.

2·75

S

50%, ZOUT ~ 50n. For 160A

~ MSI

OM54/0M74164,L164A,LS164
8-Bit Serial In/Parallel Out Shift Registers

General Description

.Features

These S-bit shift registers feature gated serial inputs and
an asynchronous clear. A low logic level at either input
inhibits entry of the new. data, and resets the first
flip-flop to the low level at the next clock pulse, thus
providing complete control over incoming data. A high
logic level on either input enables the other input,
which will then determine the state of the first flip-flop.
Data at the serial inputs may be changed while the
clock is high or low, but only information meeting the
setup requir,ements will be entered. Clocking occurs on
the low-to-high level transition of the clock input. All
inputs are diode-clamped to minimize transmission-line
effects.

•

Gated (enable/disable) serial inputs

•

Fully buffer~d clock 'and serial inputs

•

Asynchronous clear

Connection Diagram

TYPE

TYPICAL
CLOCK FREQUENCY

TYPICAL
POWER DISSIPATION

36 MHz
14 MHz
36 MHz

185mW
30mW
80mW

164
L164A
LS164

Timing Diagram

LS

ClEARLJ
OUTPUTS

G,

I"

13

12

CLEAR

G,

"

10

CLOCK

•

9

SERIAL {

A

INPUTS

-l----.J
CLOCK

l-

r-

I

2

J

----...-...SERIAL INPUTS

G,

A

,

4

5

,

I'

GND
OUTPUTS

OUTPUTS

~".l.- - -l-~

-, ----'-_ _ _ _ _ _r
--I I
0,_-,--,
, - -~

QG:~I

541641JI, (WI; 74164(JI, (NI, (WI;
54L 164A/74L 164A(JI, (NI, (WI;
54LS164/74LS164(JI, (N), (WI

____________________________________

OH:'~,

I

~1

__ ____________________________________

CLEAR

~

L--

I

~~

I

CLEAR

logic Diagram

2-76

LS164 To Be Announ'ced In 1976

~

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

CONDITIONS

PARAMETER

MIN
V IH
VIL

High Level Input Voltage
Low Level Input Voltage

High Level Output Current

V OH

High Level Output Voltage

10L

VOL

.:..,

'"

los
Icc

Short Circuit Output Cu'rrent

Supply Current

TYP(l)

MAX

MIN

TYP(l)

DM54

0.8

0.7

DM74

0.8

0.7

-1.5

N/A

V

3.2

2.4

2.5

3.5

2.4

3.2

2.4

2.7

3.5

Vee = Max

10L = Max
10L

=

Vee = Max

0.7
0.8

-400

-200

2.4

Vee=Mm

V, = 5.5V

8

2

4

DM74

8

3.6

8

DM54

0.2

0.4

0.3

0.25

0.4

DM74

0.2

0.4

0.4

0.35

0.5

0.25

0.4

Clear

1

0.2

Other

1

0.1

IlA

mA

V

mA

Clear

40

20

Other

40

10

IlA

V, = 2.7V

All

V, =0.3V, L164A

Clear

-1.6

-0.36

--{).4

V, = O.4V, Others

Other

-1.6

-0.18

-0.4

Vee = Max(2)

V

0.1

All

V, = 2.4V

V

V

DM54

DM74

4 mA

s:VJ

MAX

2

2

DM54

High Level I nput Current

Low Level I nput Current

MIN

DM74

Vee = Max

IlL

MAX

UNITS

-1.5

V, = 7V
IIH

TYP(1)

V'L = Max, 10H = Max

Input Current at Maximum
Input Voltage

LS164

Vee = Min, V'H = 2V

VIL=Max

II

L164A

-400

V'H = 2V

N

164

1,--18mA

Low Level Output Current

Low Level Output Voltage

DM54 LS/74 LS

1,=-12mA
Vee = Min

10H

DM54L/74L

2

Input Clamp Voltage

VI

DM54/74

20

DM54

-10

-27.5

-3

DM74

-9

-27.5

-3

Vee = Max(3)

37

54

'-9
-9
6

-15

-30

-130

-15

-30

-130

9

16

27

0

s:

(11

mA

~
......

mA

s:--.J

mA

0

...
~

0'1

~

!:
0'1

Notes

~

(1)

AI! typical values are at Vee = 5V, T A = 25°e.

(2)

Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second.

(3)

ICC is measured with outputs open, serial inputs grounded, the clock input at 2.4V, and a momentary ground, then 4.5V, applied to clear.

'r!>

...VJ

0'1
~

-

----

~

Switching Characteristics vee = 5V, T A = 25°C

tpHl

Propagation Delay Time,
RL

= 800rl for the 164

RL

= 4 krl for the L 164A

RL

= 2 krl for the LS164

From Clear Input
Propagation Delay Tim~,
Low-to-High Level Outputs
From Clock Input
tpHl

Propagation Delay Time,
High-to-Low Level Outputs
From the Clock Input

tw
"l

164

L164A

LS164

TYP

25

36

MAX

24

36

C L = 50 pF

28

42

C L = 15pF

8

17

27

C L = 50 pF

10

20

30

C L = 15pF

10

21

32

C L = 50 pF

10

25

37

Width of Clock or Clear

MIN
6

C L ='15pF

Input Pulse

..:J

DM54LS/74LS

MIN
C L = 15 pF

Maxirnum Clock Frequency

High,to,Low Level Outputs

tplH

DM54L!74L

CONDITIONS

PARAMETER

f MAX

DM54/74

TYP

MAX

MIN

TYP

25

36

14

75

120

50

85

90

135

20

60

40
20

UNITS

s:

en

MAX
MHz

24

36

17

27

21

32

ns

ns

ns

20

ns

15

ns

5

ns

00

tSETUP

Data Setup Time

15

40

tHOlD

Data Hold Time

5

20

-

-5

0

s:

Truth Table

U1
~

......
H = High level (steady state), l = low level (steady state)

OUTPUTS

INPUTS

X

= Don't Care

t

=

(any input, inciuding transitions)

CLEAR

CLOCK

A

B

OA

De

L

X

L

L

L

X
X

L

H

X
X

GAO

QBO

OHO

H

t
t
t

H

H

H

0AO, aBO, 0HO = The level of 0A, 0B, or 0H, respectively,
before the indicated st,eady-state input conditions were

OAn

OGn

established.

L

X
l

L

OAn

OGn

QAn, 0Gn

L

OAn

OGn

transition of the clock; indicates a one-bit shift.

H
H

X

,-,

OH

Transition from low to high level

=

The level of QA or QG before the most recent t

0

s:....

..
~

en
~

!:=

en
~

»
r-

en
...
en
~

'

~ MSI

DM54/DM74165.L165A
8-Bit Pararallel In/Serial Out Shift Registers

General Description
parallel inputs are loaded directly into the register on a
high-to-Iow transition of the shift/load input, regardless
of the logic levels on the clock, clock inhibit, or serial
inputs.

These are B-bit serial shift registers which shift the data
in the direction of Q A toward Q H when clocked. Parallelin access is made available by eight individual direct data
inputs, which are enabled by a low level at the shift/load
input. These registers also feature gated clock inputs and
complementary outputs from the eighth bit.

Features

Clocking is accomplished through a 2-input NOR gate,
permitting one input to be used as a clock-inhibit
function. Holding either of the clock inputs high inhibits
clockil)g, and holding either clock input low with the
load input high enables the other clock input. The
clock-inhibit input should be changed to the high level
only while the clock input is high. Parallel loading is
inhibited as long as the load input is high. Data at the

•
•

Complementary outputs
Direct overriding load (data) inputs

•
•

Gated clock inputs
Parallel-to-serial data conversion
TYPICAL FREQUENCY

TYPE

TYPICAL
POWER DISSIPATION

165

20 MHz

200mW

L165A

14 MHz

30mW

Connection Diagram
PARALLEl INPUTS
,,..----"----~,

CLOCK
INHIBIT

A

15

10

11

12

13

14

SERIAL OUTPUT
INPUT
OH

-

2

1

4

3

SHIFT! CLOCK
LOAQ

,

E

1

6

5

G

F

H

,

OUTPUT

I'

GND

QH

PARALLEl INPUTS

54165(J), (W); 74165(J), (N), (W);
54L 165A/74L 165A(J), (N), (W)

Truth Table
INPUTS
PARALLEL

SHIFT!
LOAD

CLOCK
INHIBIT

CLOCK

=

OUTPUT
QH

A .. . H

QA

a. .. h
X

a

b

h

DAD

DBa

D HO

DGc

QB

L

X

X

H

L

L

X
X

H

L

t

H

X

H

D Ac

H

L

1

L

L

G AC

DGc

H

H

t

X

X
X

D AO

D BO

OHO

H "" High Level (steady state). L
X

SERIAL

INTERNAL
OUTPUTS

::=;

Low Level (steady state)

Don't Care (any input, including transitions)

t = Transition from low-ta-high level
a.
h = The level of steady-state input at inputs A through H, respectively.
GAO. aBO, 0HO = The level of QA. OS. or 0H, respectively, before the indicated steady-state
input conditions were established.
QAn, QGn = The level of QA or aG, respectively before the most recent t transition of the clock.
T

2-79

~

\

MSI

DM54/DM74165.L165A

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted I
DM54/74
CDNDITIONS

PARAMETER

MIN
V IH

High Level Input Voltage

Vll

Low Level Input Voltage

VI

Input Clamp Voltage

10H

High Level Output Current

VOH

High Level Output Voltage

Vee'" Min,

Input Current at Maximum Input Voltage

High Level Input Current

V 1H

VII_ =Max,

IOH == Max

V
0.7

-1.5

'"

2V

Short Circuit Output Current

N/A

V
pA

2.4

V

DM54

16

2

DM74

16

3.6

V 1H

:.

2V

DM54

0.2

0.4

0.3

JOl

= Max

DM74

0.2

0.4

0.4

Vee'" Max,

V, o5.5V

Vee'" Max,

Vee == Max,

V! = 2.4V

1

0.1

80

30

40

10

V, 0 0.3V for L165A

-3.2

'0.54

VI == O.4V for 165

-1.6

-0.18

Vee o Maxl2)

Supply Current

2.4

DM54

-20

--55

-3

-9

-15

DM74

-18

-55

-3

-9

-15

40

Ve,c 0 Maxl3)

V

-200

Min,

==

Load tnput

Other Inputs

Icc

MAX

V1L=Max,

Load Input

Other Inputs

los

UNITS

TYP(1)

2

I, 0 -12 rnA

Vee'" Min,

Vee

II

Low Level I nput Current

MIN

··800

IIH

III

L165A
MAX

'0.8

Low Level Output Voltage

VOL

TYPI1)

2

Low level Output Current

10l

DM54L/74L

165

9.5

63

rnA

V
rnA
pA

mA

mA
rnA

Notes
(1)

All typical values are at Vce ~ 5V, T A ~ 25"C.

(2)

Not more than one output should be shorted at a time.

(3)

With the outputS open, clock inhibit and shift/load at 4.5V, and a clock pulse applied to the clock input, ICC is measured first with the
parallel inputs at 4.5V, then with the parallel inputs grounded.

Switching Characteristics

Vce ~ 5V, TA

PARAMETER

FROM
(INPUT)

= 25°C
DM54/74

TO
(OUTPUT)
CONDITtONS

fMAX

Maximum Clock Frequency

tPlH

Propagation Delay Time,

14

Propagation Delay Time,

Propagation Delay Time,
low-to-High Level Output
Clock
Propagation Delay Time,
CL 0 15 pF
R L 0400£2

Propagation Delay Time,
Low-to-High Level Output
H

tpHl

Propagation Delay Time,

Propagation Delay Time,
H

Propagation Delay Time,

50

44

88

ns

42

60

62

124

ns

26

40

35

70

ns

35

50

50

100

ns

33

66

ns

RL 04 kn

25

40

36

50

56

112

ns

25

40

33

66

ns

36

50

56

112

ns

OH

High-to·Low Level Output

-

34

QH

Low-ta-High Level Output
tPHl

MHz

14

CL 050 pF

High-ta-Low Level Output
tPlH

6

TYP MAX

Any

High-ta-Low Level Output
tPlH

20

MIN

Any

High-to·Low Level Output

tPHl

CONDITIONS

,-

Load

tPlH

UNITS

l165A

MIN TYP MAX

Low-to-High Level Output
tPHl

DM54 Lt14L

165

tWlclOCKI

Width of Clock Input Pulse

35

25

100

ns

tWllOAOI

Width of Load Input Pulse

35

24

100

ns

tSETUP

Parallel Input Setup Time

25

10

44

22

tSETUP

Serial Input Setup Time

40

23

44

22

tHOLD

Hold Time at Any Input

5

2-80

10

ns
ns
ns

~ MSI

OM54iOM74165,L165A

Logic Diagram

PARALLEL INPUTS

191

{7)

Timing Diagram
TYPICAL SHIFT, LOAD, AND INHIBIT SEQUENCES

r.LOCK

ClOCKINHISIT

+ ___________________

SERIALINPUT _ _ _" -_ _ _

SHIFT,LOAD

-U

:~~--~-------------------OATA

OUTPUT OM

I

I-----INHIBIT

----1---------------

LOAD

2-81

SERIAL SHIFT

~----.-----­

OUTPUT01-t

_
OUTPUT OK

~ MSI·

OM54/0M74166
8- Bit Parallel In/Serial Out Shift Registers

General Description
These parallel-in or serial-in, serial-out shift registers
. feature gated clock inputs and an overriding clear input.
All inputs are buffered to lower the drive requirement~
to one normalized Series 54/74 load, and input clamping
diodes minimize switching transients to simplify system
design. The load mode is established by the shift/load
input. When high, this input enables the serial data input
and couples the eight flip-flops for serial shifting with
each clock pulse. When low, the parallel (broadside) data
inputs are enabled and synchronous loading occurs on
the next clock pulse. During parallel loading, serial data
flow is inhibited. Clocking is accomplished on the low·to-

Connection Diagram

SHIFT/

INPUT

OUTPUT

LOA[)

H

01-/

I"

14

15

Truth Table

PARALlEL INPUTS

PARALLEL
Vee

11

12

9

10

Io

,

,

3

PARAllEL INPUTS

SHIFT!

CLOCK

LOAD

INHIBIT

L

x

H

X

CLEAR

6

CLOCK

7

CLOCK

I'

GNO

INH1BlT

INTERNAL
PARALLEL

OUTPUTS

OUTPUT

OH

CLOCK

SERIAL

X

x

x

X

L

L

L

L

L

X

X

QAO

0 80

OHO

A ...

/"i

QA

.Os

H

L

L

t

X

a .. ,h

a

b

h

H

H

L

t

H

X

H

OAn

QGn

H

H

L

X

L

QAn

°On

X

H

t
t

L

H

X

X

QAO

aBO

°HO

H = High level (steady state). l
5

o,

SERIAL
INPUT

INPUTS

CLEAR

13

r-

1

high-level edge of the clock pulse through a two-input
NOR gate, permitting one input to be used as a clockenable or clock-inhibit function. Holding either of the
clock ·inputs high inhibits clocking; holding either low
enables the other clock input. This allows the system
clock to be free-running, and the register can be stopped
on command with the other clock input. The clockinhibit input should be changed to the high level only
while the clock input is high. A buffered, direct clear
input overrides all other inputs, including the clock, and
sets all flip-flops to zero.

= low level

(steady state)

X"" Don't Care (any input, including transitions)

t =- Transition from

low to high level

a ... h == The level of steady-state input at inputs A through H, respectively.
QAO. 0SO. 0HO == The level of QA,

aS or QH, respectively, before the

indicated

steady-state input conditions were established.
0An, QGn == The level of QA or 0G, respectively, before the most recent t transition-

54166174166(J), (N)

of the clock

Logic Diagram

(9)

(1)

(l5)

CLEAR SERIAL SHIFT!

(2)
A

13)
8

(4)

c

(5)

(10)

o

PARAllEl INPUTS

2-82

{t2)

(11)

E

INPUT 'LOAD

F

G

(14)

H

",h

CLOCK CLOCK
INHIBIT

~

MSI

DM54/DM74166

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)
DM54/74

PARAMETER

CONDITIONS

166
MIN

V IH

High Level Input Voltage

V IL

Low Level Input Voltage

VI

Input Clamp Voltage

10H

High Level Output Current

V OH

High l.evel Output Voltage

~

I,

Min,

VOL

l.ow Level Output Voltage

II

-12 mA

0.8

V

-1.5

V

Vee.~

V'H ~ 2V

Min,

Vee

~

IOH

Min,

~

2.4

-8001lA

V

V'H = 2V

V'L ~ 0.8V,

IOL

Vee ~ Max,

V,

~

IlA

16 mA

16

mA

0.4

V

Input Current at Maximum
Input Voltage

~

IIH

High Level Input Current

Vee

IlL

Low Level Input Current

Vee = Max,

lOS

Short Circuit Output Current

Icc

~

V

-800

V'L ~ 0.8V,
Low Level Output Current

UNITS
MAX

2

Vee

10l

TYP(1)

Supply Current

~

5.5V

V,~2.4V

Max,

V,

Vee

~

Max(2)

Vee

~

Max(3)

~

O.4V

1

mA

40

IlA

-1.6

mA

DM54

-20

-57

DM74

-18

-57

DM54

72

104

DM74

72

116

mA

mA

Notes
All typical values are at vee = 5V, T A = 25°C.
(2) Not more than one output should be shorted at a time.
(3) With all outputs open, 4.5V applied to the serial input, all other inputs except the clock grounded, ICC is measured after a momentary ground,
then 4.5V, is applied to dock.
(1)

Switching Characteristics

Vee = 5V, T A = 25°C
DM54/74

PARAMETER

f MAX

Maximum Clock Frequency

tpHl

Propagation Delay Time, High-to-Low

CONDITIONS

TYP

25

35

tpHL

Propagation Delay Time, High-to-Low

~

MHz
35

ns

8

20

30

ns

8

17

26

ns

15 pF, RL = 400n

Level Output From Clock
tplH

MAX

23

Level Output From Clear
CL

UNITS

166
MIN

Propagation Delay Time, Low-to-High
Level Output From Clock

tw

Width of Clock or Clear Pulse

20

ns

tSETUP

Mode Control Setup Time

30

ns

tSETUP

Data Setup Time

20

ns

tHOLD

Hold Time at Any Input

0

ns

2-83

~ MSI

DM54/DM74166

Timing Diagram
TYPICAL CLEAR, SHIFT, LOAD, INHIBIT, AND SHIFT SEQUENCES
CLOCK

~lOCK

INHIBIT

CLEAR
SERIAL INPUT

SHIFT/LOAD

PARALLEL
INPUTS

----...1

ouTPUT fiH .::::........:..._ _ _ _ _ _ _ _ _ _ _ _

I

CLEAR

I - - - - - - - - - S E R I A L SHIFT - - - - - - - - I I I - - ' O H I 8 I T - I
LOAD

1------- SERIAL SHIFT-----~

Parameter Measurement Information
VOL TAGE WAVEFORMS

3.0V----..
CLEAR
INPUT

OV----~-'----'

CLOCK
INPUT

DATA

OV
3.0V-----,-------~-r-_+'

INPUT
(SEE TEST TABLE)

ov ---'---l-------~
VDH - - - - - - , .

OUTPUT

n
VDL--------~-------------J

Notes
(A) The clock pulse has the following characteristics: tW(clock) 2: 20 ns and PRR
tW(clear)

=

1 MHz. The clear pulse has the following characteristics:

2: 20 ns and tHOLD = 0 ns. When testing fMAX, vary the clock PRR.

fB)

CL includes probe and jig capacitance.

(C)

All diodes are 1N3064.

(0) A clear pulse is applied prior to each test.
(E) Propagation delay times (tPLH and tpH L) are measured at t n +1- Proper shifting of data is verified at tn+8 with a functional test.
(F) tn = bit time before clocking transition
t n+1 = bit time after one clockin~ transition
tn+8 "" bit time after eight clocking transitions
TEST TABLE FOR SYNCHRONOUS INPUTS
DATA INPUT
FOR TEST

SHIFT/LOAD

H

OV

Serial Input

4.5V

2·84

OUTPUT TESTED
(SEE NOTE EI
QH

at

tn+1

Q H at t nt-8

~ MSI

DM54/DM74lS168.lS169
Synchronous 4-Bit Up/Down Counters

General Description
These synchronous presettable counters feature an
internal carry look-ahead for cascading in high·speed
counting applications. Synchronous operation is provided by having all flip-flops clocked simultaneously, so
that the outputs all change at the same ti me when so
instructed by the count-enable inputs and internal gating.
This mode of operation helps eliminate the output
counting spikes that are normally associated with
asynchronous (ripple clock) counters. A buffered clock
input triggers the four master-slave flip-flops on the
rising edge of the clock waveform.

output thus enabled will produce a low-level output
pulse with a duration approximately equal to the high
portion of the Q A output when counting up, and approximately equal to the low portion of the Q A output
when counting down. This low-level overflow carry
pulse can be used to enable successive cascaded stages.
Transitions at the enable P or T inputs are allowed
regardless of the level of the clock input. All inputs are
diode clamped to minimize transmission-line effects,
thereby simplifying system design.
These counters feature a fully independent clock circuit.
Changes at control inputs (enable p. enable T, load,
up/down), which modify the operating mode, have no
effect until clocking occurs. The function of the counter
(whether enabled, disabled, loading, or counting) will be
dictated solely by the conditions meeting the stable
setup and hold ti meso

These counters are fully programmable; that is, the
outputs may each be preset either high or low. The load
input circuitry allows loading with the carry-enable
output of cascaded counters. As loading is synchronous,
setting up a low level at the load input disables the
counter and causes the outputs to agree with the data
inputs after the next clock pulse.

Features

The carry look-ahead circuitry permits cascading counters
for n-bit synchronous applications without additional
gating. Both count-enable inputs (i> and T) must be low
to count. The direction of the count is determined by
the level of the up/down input. When the input is high,
the counter counts up; when low, it counts down. Input
T is fed forward to enable the carry output. The carry

•

Fully synchronous
programming

1,6

RIPPLE
CARRY
OUT

OUTPUTS
f

0.

15

14

Dc

Os

13

12

,

00

11

ENABLE

T

LOAD

10

9

0-

1

uti!

3

2
CLOCK

,A

for

• Internal look-ahead for fast counting
• Carry output for n-bit cascading
• Fully independent clock circuit

Connection Diagram

Vee

operation

4
B

5
C

DATA INPUTS

54LS16Sn4LS168(J). (N). (W):
54LS169174LS169(J), (N), (W)

2-85

7

6
D;

ENABLE

P

J:

counting

and

~

DM54/DM74LS168,LS169

MSI

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)
OM54LSf74LS16B, LS169
CONDITIONS

PARAMETER

V'H

High Level Input Voltage

V"

Low Level Input Voltage

TYP(l)

Input Clamp Voltage
High Level Output Current

VOH

High Level Output Voltage

V

2
DM54

0.7

DM74

0.8

Vee = Min, V 1H

co

2V

-1.5

DM54

2.5

3,4

DM74

2.7

3,4
4

Low Level Output Voltage

Vee = Min
V 1H "'- 2V

V1L=Max
Input Current at

A, B,C, D,

Maximum Input Voltage

ClocK, T

ii,

110L = 4 rnA

0.25

0,4

0.35

0.5

V
1.loL=BmA,

DM74

0.1

UfO

0.2 ,

Vee = Max, VI = 7V

A; B,C, 0, P, UfO
Clock, T

20
40

Vee "- Max, VI = 2.7V

Low Level Input Current

-0,4

A, 8, C, 0, P, UfO
T

Vee = Max, VI

'CO

-0.8

OAV

los

Short Circuit Output Current

Vee = Max(2)

Icc

Supply Current

Vee = Max(3)

Notes (1)

All typical values are at Vee

=;

mA

-1.2

Load ,Clock

,

MA

60

Load
"l

mA

0.3

Load
High Level Input Current

mA

8

OM74

"H

V
MA

V

OM54

Low Level Output Current

I,

V

--400

V 1L = Max, IOH = ·-400j4A

VOL

UNITS

MAX

Vee'" Min, II "" -18 rnA

V,
,IOH

10l

MIN

-30
20

-130

mA

34

mA

5V, TA = 25°C.

(2)

Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second.

(3)

ICC is measured after applying a momentary 4.5V, then ground, to the clock input with all other inputs grounded and the outputs open.

Switching Characteristics V cc =5V,T A =25°C
FROM
(INPUT)

PARAMETER
f MAX

Maximum Clock Frequency

tPLH

Propagation -Delay Time.

TO
(OUTPUn

DM54LS174LS168, LS169
CONDITIONS

MIN

TYP

25

-32

Low·to-High Level Output
Clock
tpHL

Propagation Delay Time,

Propagation Delay Time,
Low-to-High Level Output
Propagation Delay Time,

C L ""15pF,RL. "'2k£2,

High-to-Low Level Output
tPLH

Propagation Delay Time,
Low-to·High Level Output
Enable

tpHL

Propagation Delay Time,
High-to-Low Level Output

tPLH

Propagation Delay Time,

tpHL

Propagation Delay Time,

T

tW(ClOCK)

Width of Clock Pulse (High or Low)

tSETUP

Setup Time

25

A, B,C, 0

35

ns

13

20

ns

15

23

ns

10

15

ns

16

23

ns

17

25

ns

19

29

ns
ns

20

Enable P or T

Notes (4)

23

Ripple Carry

High-to-Low Level Output

Hold Time

ns

-

Up/Down (4)

tHOLD

35

Ripple Carry

Low-to-High Level Output

Data Inputs

MHz

23

Any Q

Clock
tpHL

UNITS

Hipple Carry

High -to-Low Level Output
tpLH

MAX

25

Load

25

Up/Down

30

Data Inputs A, B, C, 0

0

Enable P or T

0

Load, Up/Down

0

ns

ns

Propagation delay time from up/down to ripple carry must be measured with the counter at either a minimum or a maximum count.
As the logic level of the up/down input is changed, the ripple carry output will follow. If the count is minimum (0), the ripple carry
output transition will be in phase. If the count is maximum (9 for LS168 or 15 for LS169), the ripple carry output will be out of phase.

2-86

~MSI

DM54/DM74LS168,LS169

Logic Diagrams
LS168 DECADE COUNTERS

......

_ 110)

ENABLE T

T

(7)

EN-ABLE Ii

I

(9)

I

LOAQ
(2)

v

~

~~

CLOCK

(1)

U/i!

'7
(3)

DATA A

..J

r~

~

.-L
PR

RIPPLE
CARRY
OUTPUT

(14)

Q

CLOCK

in
(4)

DATA B

>---<"ft

..J

n

41

':f)

~

~
PR

(13)

Q

~rc

G,

CLOCK
CLR [j

f---<

'--, ,.-

--C CLOC~ CLR :0 '--, c - - n ~ ~ (6) OATA 0 J ~ ~ t-f .("7"""- PR trJ,....rc CLR A~ Len 2~87 " ClOCI{ G '-- ,..- ':-T L-=o 1- (11) GD OM 54/ OM74lS168, lS169 . Logic Diagrams (Continued) LS169 BINARY COUNTERS ENABLE f (101 ENABLE P LOAD -" I (11 (91 I I (2) ~~ (IS) RIPPLE CARRY 4 OUTPUT r-' CLOCK (I) UIO .~ (31 DATA A ~ ~ nR ~ ~ ~ ~ b"P-r-< +. (13) G, G CLOCK CtR ii -< --r -l + 0 CLOCK ClR -" -r (12) 0 i! (111 ~ MSI DM54/DM74LS168,LS169 Timing Diagrams LS168 DECADE COUNTERS TYPICAL LOAD, COUNT, AND INHIBIT SEQUENCES LOAD '---.J A L DATA INPUTS CLOCK j> ANOl' Go ---, RIPPLE----r--H--., OCUAT~~~ ___ .J II 1 I II.. ··----COUNTUP----.I--INHIBIT-I '--.,.---' LOAD Sequence: (1) Load (preset) to Beq seven (2) Count up to eight, nine, zero, one and two (3) Inhibit (4) Count down to one, zero, nine, eight and seven 2-89 I-----COUNT DOWN - - - - - ~ MSI DM54/ DM74 LS168, LS16 9 Timing Diagrams (Continued) LS169 BINARY COUNTERS TYPICAL LOAD, COUNT, AND INHIBIT SEQUENCES lOAOL-j A ...----l...-I L_ --.J B----F- OATA INPUTS L_ CLOCK PANOI G. --.., Go _ _ RIPPLE- O~~~~; - --1 --r---H---. -1 '3 I I 14 152-1 I·I-·----COUNTUP---~·-II-·-INHIBIT-__I LOAD Sequence: (1) Load (preset) to binary thirteen (2) I Count up to fourteen, fifteen, zero, one and two (31 Inhibit (4) Count down to one, zero, fifteen, fourteen and thirteen 2-90 15 14 13 .1-,----COUNT DOWN ---~- ~MSI OM54/0M74170.LS170 4 by 4 Register Files General Description typical) and the read time (25 ns typical). The register file has a nondestructive readout in that data is not lost when addressed. These 16-bit TTL register files are organized as 4 words of 4 bits each, and separate on-chip decoding is provided for addesssing the four word locations to either write-in or retrieve data. This permits writing into one location and reading from another word location, simultaneously. All 170 inputs and all inputs except the read enable and write enable of the LS 170 are buffered to lower the drive requirements to one standard load. Input-clamping diodes minimize switching transients to simplify system design. High-speed, double-ended AND·OR-INVERT gates are employed for the read-address function and drive high-sink-current, open-collector outputs. Up to 256 of these outputs may be wire-AND connected for increasing the capacity up to 1024 words. Any number of these registers may be paralleled to provide n-bit word length. Four data inputs are available to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B, in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the 0 input is transferred to the latch output. When the write-enable input, Gw , is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, GR , is high, the data outputs are inhibited and 'remain high. Features This arrangement-data entry addressing separate from data-read addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (30 ns • Separate addressing permits simultaneous reading and writing typically 20 ns • Fast access times • Organized as 4 words of 4 bits • Expandable to 1024 words of n-bits • for use as: Scratch-pad memory Buffer storage between processors Bit storage in fast multiplication designs • Open-collector outputs with low maximum off-state current: 170 LS170 • DM54LS670 and DM74LS670 are similar but have TRI-STATE outputs Connection Diagram ~ The individual address lines permit direct reading of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs. Vr OUTPUTS OATA 01 14 " 16 QZ Qt 12 13 '11 " 9 74170(J), (N); 54LS170/74LS170(J), (N), (W) - 4 o. 03 • ~ DATA READ SELECT ~ .1: OUTPUTS Truth Tables WRITE TRUTH TABLE (SEE NOTES A, B, AND C) WRITE INPUTS READ TRUTH TABLE (SEE NOTES A AND' D) WORD READ INPUTS OUTPUTS WB WA Gw 0 1 2 3 RB RA GR 01 Q2 03 Q4 L L L O"D 00 Do 00 L L L WOBl WOB2 WOB3 WOB4 O"D Do Do Do L H L W1Bl W1B2 W1B3 W1B4 Do Do Do Do Do Do O"D 00 H L L W2Bl W2B2 W2B3 W2B4 Do Do O"D H H L W3Bl W3B2 W3B3 W3B4 Do x X H H H H H L H L H L L H H L X X H Notes (A) H (B) (C) = High Level, L = Low Level, X = Don't Care (Q = 0) = The four selected internal flip~flop outputs will assume the states applied to the four external data inputs. 00 = The level of Q before the indicated input conditions were established. (D) WOBl = The first bit of word 0, etc. 2-91 LS170 To Be Announced In 1976 Electrical Characteristics ~. over recommended operating free·air temperature range (unless otherwise noted) PARAMETER CONDITIONS MIN VIH High level Input Voltage VIL low level Input Voltage VI Input Clamp Voltage DM74 DM54 lS/74 lS 170 lS170 TVP(1) MAX 2 MIN TVP(1) UNITS ~ fJ) MAX V 2 I DM54 / DM74 IOH High level· Output Current V OH High level Output Voltage IOL Low Level Output Current VOL low level Output Voltage ~ Min Vee ~ Min, V ,H Vee ~ II Input Current at Any Maximum Input Voltage Any D, R, orW Min, V ,H ~ 2V, V ,L ~ , IIH High level Input Current V, Vee ~ Max G A or Gw 2V Low Level Input Current Any D, R,orW G A or Gw Icc Supply Current ~ ~ -1.5 Max, V OH 10l ~ 4 rnA 10l ~ Max ~ 5.5V 20 !J-A 5.5 5.5 V DM54 N/A 4 DM74 16 8 DM74 DM54 DM74 0.2 5.5V 0.25 0.4 N/A 0.25 0.4 0.4 0.35 0.5 rnA V 1 0.1 V, =7V ~ Max rnA Vee ~ Max, V, Vee ~ Max(2) 40 20 V, =2.7V !J-A 40 =0.4V 127 -1.6 --0.4 -1.6 --0.8 150 25 Notes (1) All typical values are at Vee =5V, T A ~ 25°C. (2) V 30 V, = 2.4V Vee G A or Gw IlL 0.8 V 0.2 Any Any_D, R, or W 0.8 1,~-18mA V'l ~ Max '"cO '" 0.7 -1.5 1,~-12mA Vee N/A ICC is measured under the following worst-case conditions: 4.5V is applied ,\0 all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open. 40 rnA rnA 0 ~ (11 ~ ....... 0 ~ ..... ~ ..... ... ... ..... 0 r- fJ) 0 Switching Characteristics FROM (INPUT) PARAMETER TO (OUTPUT) Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output Read Enable tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output tpLH Propagation Delay Time, Low-ta-High Level Output Read Select tPLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output tw Width of Write-Enable or Read-Endble Pulse tSETUP Setup Times, High- or Low-Level Datal31 Data Input With Respect to Write ~nable, LS170 MAX TYP MAX 15 20 30 20 30 20 30 23 35 25 40 15pF 30 40 C L =15pF 24 40 RL = 400Q 25 40 RL = 2 kQ 34 45 MIN Write Enable, 0---....---1· 2-9B 5174, S175 To Be Annou~ced In 1976 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER CONDITIONS MIN VIH High Level Input Voltage VIL Low Level Input Voltage Input Clamp Voltage IOH High Level Output Current- VOH High Level Output Voltage IOl VOL II I'H IlL Vee = Min i MAX MIN TYP(l) DM74 0.8 0.8 0.8 -1.5 -1.2 -400 V 1L DM74 2.4 2.7 3.5 Max High level Jrlput Current 10L = 4 rnA =: Max 16 4 N/A 16 8 20 DM54 0.4 0.25 0.4 N/A DM74 0.4 0.35 0.5 0.5 1 0.1 V, =2.4V 50-- 20 V,=O.4V -1.6 -0.4 -1.6 --0.36 Vee = Max(3) -20 -57 -30 -130 DM74 -18 -57 -30 -130 174, S17 4 175, LS175, 5175 ~ IlA 0 ~ r - - - - -..I ~ N/A --100 -40 45 65 16 26 90 144 30 45 11 18 60 96 -..I ~ r- -2 DM54 Ul -' - - - - - ----- !-*Hi ~ mA mA V, = 0.5V Supply Current V '- 40 ~27V Vee = Max(2) mA 0 1 Clock, Clear Short Circuit Output Current IlA 0.4 V,=7V Vee = Max V -- ---- DM74 DM74 V V 3.4 DM54 V, = 5.5V Vee = Max Vee IOL ,;:: Max -·1000 N/A 2.7 ~ (J) V N/A 3.5 ~ MAX -1.5 Low Level Output Voltage Input Current at Maximum Input Voltage TYP(1) 2 2.5 Vee = Min, V'H = 2V MIN UNITS 0.7 2.4 =: MAX 2 DM54 Max, IOH S174,5175 0.8 Vee = Min, V'H = 2V "" DM74~ DM54 I, =-18mA Any ICC TYP(l) -800 Data lOS LS174, LS175 1,=-12mA Low Level Output Current Low Level I nput Current 174, 175 I V 1L = Max '"cbCD DM54LS/74LS 2 VI DM54/74 (J) -' rnA mA -..I ~ (J) -' -..I ~ :.. Notes (1) All typical values are at VCC = 5V, TA = 25°C. (2) Not more than one output should be shorted at a time, and for OM54LS/74LS and DM74S duration of short circuit should not exceed one second. (3) With all outputs open and 45V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5V applied to clock. (4) National Semiconductor temporarily reseJves the right to ship DM54LS/DM74LS174. LS175 devices which have a minimum lOS = 5.0 mAo -..I Ul i(J) -' -..I Ul (J) -' -..I Ul ------ Switching Characteristics Vee = 5V, T A = 25°C ~ PARAMETER DM54/74 DM54LS/74LS DM74S 174, 175 LS174, LS175 S174, S175 CONDITIONS f MAX Maximum Clock Frequency tpLH Propagation Delay Time, MIN TYP MAX CONDITIONS 40 30 MIN TYP 30 40 MAX CONDITIONS s: UNITS MIN TYP 75 110 rJ) MAX MHz - Low-to-High Level Output 16 25 23 35 25 20 25 23 14 25 20 30 14 17 10 15 ns 13 22 ns 30 8 12 ns 35 11.5 17 ns From Clear (175 Only) tPHL CL = 15 pF Propagation Delay Time, High-toLow Level Output From Clear tplH = 400Q RL Propagation Delay Time, Low-toHigh Level Output From Clock tpHL Propagation Delay Time, High-toLow Level Output From Clock tw Pulse Width CL = 15 pF RL = 2 kQ C L = 15 pF RL = 280Q Clock 20 20 7 Clear 20 20 10 Data Input 20 20 5 Clear Inactive-State 30 25 5 0 5 3 ns ':" o o tseTUP Setup Time tHOLD Data Hold Time +:- ........ ns 1:1 s:-.J +:.... -.J ? Truth Table ns 0 s:CJ1 +:r- (Each Flip-Flop) ....-.J rJ) , INPUTS OUTPUTS H = High Level (steady state) L = Low Level (steady state) X = Don't Care CLEAR CLOCK D a at L H X t t L X L H t :::; Transition from low to high level H H L 00 H H L L H X 00 00 t , = The level of Q before the indicated steady-state input conditions were established. = 175, LS175, and S175 only +:- ....-.J rJ) +:- ~ -.J CJ1 r- .... -.J rJ) CJ1 rJ) .... ~, - -_ ... _ - - - ~MSI DM54/DM74176.m .196.LS196.197.LS197 Presettable Decade and Binary Counters General Description These high-speed counters consist of four doc coupled, master-slave flip-flops which are internally interconnected to provide either a divide-by-two and a divide-by-five counter (176, 196) or a divide-by-two and a divide-byeight counter (177, 197)_ These counters are fully programmable; that is, the outputs may be preset to any state by placing a low on the count/load input and entering the desired data at the data inputs_ The outputs will change independent of the state of the clocks_ are required_ Flip-flop A is used as a binary element for the divide-by-two function_ The clock2 input is used to obtain binary divide-by-five operation at the as, Oc, and 00 outputs. I n this mode, the two counters operate independently; however, all four flip-flops are loaded and cleared simultaneously. , 177, 197 AND LS197 During the count operation, transfer of information to the outputs occurs on the negative-going edge of the clock pulse_ These counters feature a direct clear which, when taken low, sets all outputs low regardless of the state of the clocks_ The output of flip-flop A is not internally connected to the succeeding flip-flops; therefore the counter may be operated in two independent modes: 1. When used as a high-speed 4-bit ripple-through counter, output OA must be externally connected to the clock-2 input_ The input count pulses are applied to the clock-1 input_ Simultaneous divisions by 2, 4, 8, and 16 are performed at the OA' as, Oc, and 00 outputs as shown in the truth table. These counters may also be used as 4-bit latches by using the count/load input as the strobe and entering data at the data inputs_ The outputs will directly follow the data inputs when the count/load is low, but will remain unchanged when the count/load is high and the clock inputs are inactive_ 2. When used as a 3-bit ripple-through counter, the input count pulses are applied to the clock-2 input. Simultaneous frequency divisions by 2, 4, and 8 are 'available at the as, Dc, and 00 outputs. Independent use of flip-flop A is available if the load and clear functions coincide with those of the 3-bit ripple-through counter. TYPICAL COUNT CONFIGURATIONS 176, 196 AND LS196 The output of flip-flop A is not internally connected to the succeeding flip-flops; therefore, the count may be operated in three independent modes: 1. When used as a BCD decade counter, the clock-2 input must be externally connected to the OA output_ The clock-1 input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence truth table_ Features • Performs BCD, bi-quinary, or binary counting • Fully programmable • Fully independent clear input • Output OA maintains full fan-out capability in addition to driving clock-2 input 2_ If a symmetrical divide-by-ten count is desired for frequency synthesizers (or other applications requiring division of a binary count by a power of ten). the 00 output must be externally connected to the clock-1 input_ The input count is then applied at the clock-2 input and a divide-by-ten square wave is obtained at output OA in accordance with the bi-quinary truth table_ TYPE 176,177 196,197 LS196, LS197 3_ For operation as a divide-by-two counter and a divide-by-five counter, no external interconnections Connection Diagram TYPICAL COUNT FREQUENCY CLOCK 2 CLOCK 1 50MHz 50MHz 40MHz 25 MHz 25 MHz 20 MHz TYPICAL POWER DISSIPATION 150mW 240mW 80mW DATA INPUTS CLEAR 13 ~ DD 12 D 11 B 10 Do 9 CLOCK 1 B 54176(J); 74176(J), (N); 54177(J); 74177(J), (N); 54196/74196(J), (N); 54LSl96/74LS196(J), (N), (W); 54197/74197(J), (N); 54LS197174LS197(J), (N), (W) 1 COUNTI LOAD 3 C 4 A ~ DA CLOCK 2 DATA INPUTS Note: low input to clear sets QA. Ga. Ilc and QD ,lOW. 2-101 LS196, LS197 To Sa Announced In 1976 Electrical Characteristics DM54/74 CDNDITIDNS PARAMETER 176,177 MIN VIH High Level Input Voltage Vll Low Level Input Voltage ~nput VI IOH High Level Output Current High Level Output Voltage I, Vee V tH ;:: ,"" Input Current at Data, Count/Load Maximum Input Voltage Clear. Clock 1 Clock 2 o 2V 0;;;: ;:: Min Vee;;:; Max, VI High Level Input Current ::= 5.5V 0.8 0.8 0.7 0.8 0.8 0.8 -1.5 -1.5 -800 --400 DM54 2.4 3.4 2.4 3.4 2.5 3.4 DM74 2.4 3.4 2.4 3.4 2.7 3.4 DM54 16 16 4 DM74 16 16 8 0.5 0.2 I 0.4 0.2 1 1 0.1 1 1 0.2 176,196 1 1 0.4 177,197 1 1 0.2 20 40 176,196 120 80 177,197 80 80 40 Data, Count/Load -1.6 -1.6 -0.36 Clear -3.2 -3.2 -0.72 Vee == Max, VI Short Circuit Output Current 2.4V Supply Current = D.4V 176,196 Vee = Max(4) !lA mA -4.8 -4.8 -2.4 -6.4 -2.8 DM54 -20 -57 DM74 18 -fJ7 30 48 -57 -30 -130 18 57 -30 -130 54 rnA C s: U1 ~ !lA "C s: ... ~ -.J mA -1.3 3.2 -20 39 V -.J -4.8 3.2 177,197 Vee = Max(2) V 0.4 40 Clock 2 V 0.4 80 = - V 80 120 . Vee;:: Max, VI s: en V 2 40 Clock 1 Icc UNITS MAX DM74 tOL - 16 mA V, = 2.7V (LSI96, LS197) lOS TYP(l) IOL - 8 rnA, DM74 Clock 2 Low Level Input Current MIN DM54 Data, Count/Load Clear, Clock 1 III LSI96, LS197 MAX ~.~4mA 2V '" IIH TYP(1) -1.5 Max, IOH == Max V'L = Max(3) II MIN -800 Vee;;:; Min, V tH Low Level Output Voltage ~ 196,197 MAX 18 rnA Low Level Output Current VOL DM54LS174LS 2 1,=-12rnA Vee;:: Min V tL IOL TYP(1) 2 Clamp Voltage VOH ~ over recommended operating free-air temperature range (unless otherwise noted) 16 27 rnA rnA en ~ -.J :... e.g en r- ...en ...en :"'I en ...re.g Notes (1) All typical values are at V CC ~ 5V, T A = 25" C. (2) Not more than one output should be shorted at a time, and for DM54LS/74LS duration of short circuit should not exceed one second. QA outputs are tested at specified IOL plus the limit value of I, L for the c1ock~2 input. This permits driving the clock-2 input while maintaining full fan-out capability. ICC is measured with all inputs grounded and all outputs open. (3) (4) e.g e.g -.J Switching Characteristics vee = 5V, TA = 25°C ~ DM54!74 FRDM (INPUT) PARAMETER f MAX Maximum Input Count Frequency tpLH Propagation Delay Time, TO (OUTPUT) Clock 1 OA Clock 1 OA 176,177 CONDITIONS MIN 35 Low-ta-Hlgh Level 9utput Propagation Delay Time, tpHL High-ta-Low Level Output Low-ta-High Level .output Clock 2 Propagation Delay Time, tpHl 196,197 MAX 50 MIN TYP 40 50 LS196 MAX CONDITIONS MIN 30 TYP LS197 MAX 40 MIN 30 TYP UNITS MAX s: en MH, 40 9 13 9 13 8 15 8 15 m 11 17 11 16 13 20 14 21 ns 12 18 12 18 16 24 12 19 ns 14 21 14 21 22 33 23 35 ns 27 41 24 36 38 57 34 51 ns 34 51 28 42 41 62 42 63 ns 12 18 55 78 63 95 °B High-ta-Low level Output Propagation Delay Time, tPLH Low-ta-High Lf;vel Output Clock 2 Oc Propagation Delay Time, tPHL High-ta-Low Level Output CL Propagation Delay Time, tpLH 176,196 Low-ta-High Level Output Clock 2 Propagation Delay Time, tpHL High-ta-Low Level Output o w TYP Propagation Delay Time, tPI.H ~ DM54LS!74LS °D = 15 pF C L =15pF RL "400Q ~ ~ 13 20 14 21 44 66 36 54 RL "2 krl(5) ns 17 26 16 23 50 75 42 63 19 29 16 24 20 30 18 27 ns 31 46 25 38 29 44 29 44 n5 29 43 22 33 27 41 26 39 ns 32 48 24 36 30 45 30 45 ns 30 45 ns 0 Propagation Delay Time, tpLH Low-ta-High Level Output A, B, C, D Propagation Delay Time, tpHL QA, Os· Oc, aD High-to-Low Level Output Propagation Delay Time, tpLH Low-to-High Level Output lJOad High-to-Low Level Output Propagation Delay Time, tpHL High-to-Low Level Output Pulse Width tw tHOLD Input Hold Time Clear Any 32 48 25 37 34 51 34 14 14 20 20 Clock-2 Input 2B 28 30 30 Clear 25 25 15 15 Load 20 20 20 20 High-Level Data tW(lOAD) tW(LOAD) tW(LOAO) tW(lOAO} Low-Level.Data tW(LOAO} tW{LOADl tW(LOADl tW(LOAD} High-Level Data 15 10 10 10 Input Setup Time tENABLE Count Enable Time(6) Low-Level Data s: .. ~ ~ en Clock-' Input tsETUP ~ '0 ~ Any Propagation Delay Time, tpHL s:C1I 20 15 15 15 25 30 20 20 51 Notes (5) Load circuit, input conditions, and vol_tage waveforms are the same as those for the 176, 177 except that for the LS196, LS197 tr ~ 15 os, tf ~ 6 ns, and VREF = 1.3V (as opposed to 1.SV). (6) Count enable time is the interval immediately pr-eceding the negativeiJoing edge of the clock pulse during which interval the count/load and clear inputs must both be high to ensure counting. ns ~ ~ ~ ~ ns to en .. r- en ns ns to en ~ to .. ~ ns r- en to ~ ~ MSI DM54/DM74176.177.196.LS196.197.LS197 Truth Tables 176.196, LS196 176,196, LS196 DECADE (BCD) (See Note A) BI-QUINARY (5-2) (See Note B) OUTPUT COUNT 00 H COUNT ac aB aA (See Note A) OUTPUT aA 00 ac as OUTPUT COUNT 00 Oc as aA 0 L L L L 0 L L L L 0 L L L l 1 L L L H 1 L L L H 1 L L L H 2 3 L L H L 2 L L H L 2 L L H L L L H H L L H H 3 L L H H 4 L H L L L H L L 4 L H L L 5 L H L H 3 4 5 H L L L 5 L H L H 6 L H H L L L H 6 L H H L L H H H 6 7 H 7 H L H L 7 L H H H 8 9 H L L L L H H 8 H L L L L L ,H 8 '9 H H H H L L 9 H L L H 10 H 'L H L 11 H L H H = High Level, L = Low Level Notes: (A) (8) 177,197, LS197 Output QA connected to clock 2 input. Output QD connected to clock 1 input. 12 H H L L 13 H H L H 14 H H H L 15 H H H H w w Logic Diagrams 196, LSl96 197, LS197 ~MSI DM54/DM74180 9-Bit Parity Generators/Checkers General Description These universal 9-bit (8 data bits plus 1 parity bit) parity generators/checkers feature odd/even outputs and control inputs to facilitate operation in either odd or even parity applications. Depending on whether even or odd' parity is being generated or checked, the even or odd inputs can be utilized as the parity or 9th-bit input. The word·length capability is easily expanded by cascading. Input buffers are provided so that each data input represents only one normalized series 54/74 load. A full fan·out to 10 normalized series 54/74 loads is available from each of the outputs at a low logic level. A fan-out to 20 normalized loads is provided at a high logic level to facilitate the connection of unused inputs to used inputs. Connection Diagram Truth Table INPUTS vee JI' 13 11 12 '" 8 9 INPUTS OF H', AT EVEN A THRU H ~ - r-- I 2 • 3 5 6 EVEN 000 l.>EVEN I-ODD INPUT INPUT OUTPUT OUTPUT OUTPUTS ODD L L EVEN ODD EVEN 000 EVEN ODD H L H L H L L H L H L H L H H L X H H L L X L L H H H "" High Level, L = Low Level, X :; Don't Care 17 GND INPUTS 54180(JI. (WI; 74180(JI, IN I, (WI Logic Diagram .!LJ A~~ :~II"I o LEVEN OUTPUT 1111 DATA INPUTS E~1121~ F (131 ::: 000 OUTPUT G~ H.EL.j I~~~~I~'I----------------------------------~ 1~~~~~1",31 ____________________________________.... 2-105 ~ MSI DM54/DM74180 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM54/74 PARAMETER CONDITIONS V,H High level Input Volt.age V,L Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current VOH High level Output Voltage 10L Low Level Output Current VOL Low Level Output Voltage o.a Vee::: Min, V 1H I, Input Current at Maximum Input Voltage I'H High Level Input Current Any Data Input -800pA Vee"" Min, V 1H ""' 2V =:: =:: O.8V, tOL '" Vce Supply Current ~ V '-1.5 V -800 }1A 2.4 V 16 mA ' Max, VI = 5.5V 1.6 rnA 0.4 V rnA 1 40 pA 80 -1.6 Vee =Max, VI =DAV Short Circuit Output Current Icc 2V ~ Vee::: Max, VI"" 2.4V Even or Odd Input los ~ = O.aV,loH Vee Any Data Input Even or Odd Input Low Level Input Current V Vee'" Min,ll == -12 mA V!L I,L MAX 2 V'l - UNITS 180 TYPO) MIN rnA 3.2 Max(2) Vee"" Max(3) DM54 -20 -55 DM74 -18 -55 DM54 34 49 DM74 34 56 rnA rnA Notes = 25'C. (1) All typical values are at VCC = 5V, T A (21 Not more than one output should be shorted at a time. ICC is measured with even and odd inputs at 4.5V, all other inputs and outputs open. (31 Switching Characteristics Vcc = 5V, TA = 25°C DM54fl4 PARAMETER FROM (INPUT) TO (OUTPUT) CONDITIONS tpLH Propagation Delay Time. Low-ta-High Level Output Data tpHL tpLH High-ta-Low Level Output Cl Propagation Delay Time, Odd Input Grounded ~ Propagation Delay Time, Propagation Delay Time, Low-to-High Level Output Data tpHL tpLH High-ta-Low Level Output CL " 15pF, Rl Propagation Delay Time, Even Input Grounded Propagation Delay T,ime, Propaga.tion Delay Time, Low-to-High Level Output Even or Odd tpHL 45 68 ns 32 48 ns 25 38 ns 32 48 ns 25 38 ns 40 60 ns 45 68 ns 13 20 ns 7 10 ns L Odd High-to-Low Level Output tpLH ns ~400fl Low-te-High Level Output tpHl 60 }; Even Propagation De,lay Time, Data 40 L Odd High-ta-Low Level Output tPlH MAX 15 pF, R l " 400n Low-ta-High' Level OutP4t tpHL TYP LEven Propagation Delay Time, Data UNITS 180 MIN L Even or L Odd Propagation Delay Time, High-to-Low Level Output 2-106 Cl ~ 15 pF, RL = 400n ,----------------------------------'-----------------------------------------------, ~MSI DM54/DM74181 Arithmetic Logic Unit/Function Generators General Description Features These arithmetic logic units (ALU)/function generators perform 16 binary arithmetic operations on two 4-bit words, as shown in Tables 1 and 2. These operations are selected by the four function-select lines (SQ, S 1, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is available in these devices for fast, simultaneous carry generation by means of two cascadeoutputs (P and G) for the four bits in the package, When used in conjunction with the DM54182/DM74182 full carry look-ahead circuits, high-speed arithmetic operations can be performed, The typical addition times shown below illustrate how little time is required for addition of longer words, when full carry look·ahead is employed. The method of cascading 182 circuits with these ALU's to provide multi-level full carry look-ahead is illustrated under typical applications data for the DM54182/DM74182. (Continued) • Arithmetic operating modes: Addition Subtraction Shift operand A one position Magnitude comparison Plus twelve other arithmetic operations • Logic function modes: EXCLUSIVE-OR Comparator AND, NAND, OR, NOR Plus ten other logic operations • Full look-ahead for high-speed operations on long words Connection Diagram J:. Pin Designations INPUTS , Al 81 23 21 22 OUTPUTS 82 A2 A3 20 19 83 \ 'G Cn+4 18 p 16 17 A:B 14 15 F3 \ 13 DESIGNATION PIN NOS, FUNCTION A3, A2, Al, AO 19,21,23,2 WORD A INPUTS B3, 82, Bl, 80 18,20,22, 1 WORD B INPUTS 3,4,5,6 FUNCTION SELECT INPUTS S3, 52, 51, SO Co INV, CARRY INPUT M MODE CONTROL INPUT --- 10 . 80 AO S3 52 S1 SO Co M , \ '0 INPUTS F1 11 F2 J 112 OUTPUTS TYPICAL ADDITION TIMES BITS 5 to 8 9 to 16 17 to 64 FUNCTION OUTPUTS A=B 14 COMPARATOR OUTPUT 15 CAR RY PROPAGATE OUTPUT, Cn -J-4 16 INV. CARRY OUTPUT G 17 CARRY GENERATE OUTPUT Vee 24 SUPPL Y VOLTAGE GND 12 GROUND PACKAGE COUNT NUMBER 1 to 4 13,11,10,9 GNO 54181(J); 74181(J), (N) OF F3, F2, F'I, FO 20 30 30 50 ARITHMETIC! LOOK AHEAD LOGIC UNITS CARRY GENERATORS ns CARRY METHOD BETWEEN ALU's NONE ns ns 3or4 ns 5 to 16 0 2-107 RIPPLE FUL.L LOOK·AHEAD 2 to 5 FULL LOOK,AHEAD r-------------------------------------------------------------------------.-------------------~ MSI DM54/DM74181 G.eneral Description (Continued) If high speed is not important, a ripple·carry input information. Again, the ALU should be placed in the subtract mode by placing the function select inputs S3, S2, S 1, SO at L, H, H, L, respectively. (C n ) and a ripple·carry output (C n +4 ) are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry, These circuits have been designed to not only incorporate all of the designer's requirements for arithmetic operations, but also to provide 16 possible functions of two Boolean variables without the use of external circuitry. These logic functions are selected by use of the four function-select inputs (SO, Sl, S2, S3) with the modecontrol input (M) at a high level to disable the internal carry. The 16 logic functions are detailed in Tables 1 and 2 and include exciusive·OR, NAND, AND, NOR, and OR functions. These circuits will accommodate active-high or active· low data, if the pin designations are interpreted as shown below. Subtraction is accomplished byl 's complement addition where the 1's compjement of the subtrahend is generated internally. The resultant output is A-B-l, which requires an end-around or forced carry to provide A-B. The 181 can also be util ized as a comparator. The A = B output is internally decoded from the functi on outputs (FO, F 1, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU should be in the subtract mode with Cn = H when performing this comparison. The A = B output is opencollector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C n +4 ) can also be used to supply relative magnitude ALU SIGNAL DESIGNATIONS The DM54181/DM74181 can be used with the signal designations of either Figure 1 or Figure 2. The logic functions and arithmetic operations obtained with signal designations as in Figure 1 are given in Table 1; those obtained with the signal designations of Figure 2 are given in Table 2. PIN NUMBER 2 1 23 22 21 20 19 18 9 10 11 13 7 16 15 Active·High Data ITable I) AD BO A1 B1 A2 B2 A3 83 FD F1 F2 F3 Cn CnU X Y Active-Low Data (Table II) AO BO Al 81 A2 B2 A3 83 FO Fl F2 F3 en C n-f-4 P G INPUT Cn OUTPUT Cnt• ACTIVE·HIGH DATA IFIGURE 1) ACTIVE·LOW DATA IFIGURE 2) H H A<;B A::O:B H L A>S AB L L A~B A:SB 17 TABLE 1 T T (;T (T (Y AO I7H>-C so Al B1 A2 (2f B2 {lr (1r A.1 ACTIVE HIGH DATA SELECTION B3 '0 181 Fl F2 F3 Cnt4 Y II16_)_ r ....11,,') 1)4) XU Yl Xl 51 SO L L L L L L H L H l x J,)_,","_IO_)_"'"_,,_J_13_)__ 1,,51 1)3) T T "f 'r TT YII 52 L M" L; ARITHMETIC OPERATIONS en :: H (no carry) Cn :: L (with carry) A=B-{14) 18)--- M FO 53 M" H LOGIC FUNCTIONS Y2 X2 V3 X3 x-m 1820RS182 v-om FIGURE 1 F"A F F~A+8 F~A+B F" IA F ~ AB F"A+8 F " IA + 8) PLUS 1 ~ A PLUS 1 + B) PLUS 1 L L H H F~O F " MINUS 1 12', COMPL) F " ZERO L H l L F" AB F" A PLUS AB F" A PLUS AB PLUS 1 L H L H FoB L H H L F~A l H H H F~ H L L L H L L H H l H l F~B F ~ IA + B) PLUS AB F" IA + 8) PLUS AB PLUS 1 H L H H F ~ F" AS MINUS 1 F H H L L F =1 F H H L H f:A+8 r H H H L F"A+B F " (A + 8) PLUS A F H H H H F"A F=AMINUS 1 F" A F" IA + B) PLUS AB CD B A·S F ~ A MINUS B MINUS 1 .F ~ IA + B) PLUS AB PLUS 1 F ~ A MINUS B F"ABMINUS1 F" AB F=A+S F F" A PLUS AB PLUS 1 F~ F "A PLUS B A CDB AB 0 A PLUS AB ~ AB 0 A PLUS A' F " A PLUS A PLUS 1 0 IA + B) PLUS A F" IA *I::ach bit is shifted to the next more significant position. 2-108 F " A PLUS B PLUS 1 0 IA + B) PLUS A PLUS 1 + 8) PLUS A PLUS 1 ~ OM 54/ OM74181 MSI General Description (Continued) (X) (1) BO A' 171->-- AI Bt A1 A3 R1 Fa F3 Cn+4 (Xl (X) (Xl (tt Ft ! F1 1t·, ~ 13 GO , PO GI T {T " PI S1 SO L L L F= A F=AMINUSl L L L H F = AB F = AB MINUS 1 F = AB , lI IX' G3 P1 P3 ':)-171 1820RS182 Cn G :)-110) Cn+K Cn+Z Cn+y 1 ut }21 FIGURE 2 Electrical Characteristics en :::: H (with carry) S2 L ril , G M = L; ARITHMETIC OPERATIONS en = L (no carry) S3 A ~ 8 1"""(14) -M (ij)" ACTIVE LOW DATA M=H LOGIC FUNCTIONS SELECTION B3 " tBI (8'- TABLE 2 (r II I 1 (X 1) - F=A , L L H L F=A+B F" A8 MINUS 1 F = A8 L L H H F=1 F = MINUS 1 12', COMPI F = ZERO L H L L F=A+B F PLUS IA + 81 F = A PLUS IA + 81 PLUS 1 L H L H F=8 L H H L F=A (0 B F = AB PLUS IA + 81 F = A MINUS B MINUS 1 F = AB PLUS IA + 81 PLUS 1 F = A MINUS B F = IA + 81 PLUS 1 =A L H H H F=A+8 F=A+8 H L L L F = AB F = A PLUS IA + BI F = A PLUS IA + BI PLUS 1 H L L H F =A (0 B F = A PLUS B F = A PLUS B PLUS 1 H L H L F=B F H L H H F=A+B F=A+B H H L L FoO F '" A PLUS A* F = A PLUS A PLUS 1 H H L H F = A8 F = AB PLUS A F = AB PLUS A PLUS 1 H H H L F = AB F = AB PLUS A F = A8 PLUS A PLUS 1 H H H H F=A F=A F = A PLUS 1 = A8 PLUS IA + BI - F = AB PLUS IA + BI PLUS 1 F = IA + BI PLUS 1 - *Each bit is shifted to the next more Significant position. over recommended operating free·air temperature range (unless otherwise noted) DM54/74 PARAMETER MIN VIH High Level Input Voltage VIL Low Level I nput Voltage VI .Input Clamp Voltage IOH High Level Output Current TYPI1I V OH Vee == Min, 'I : : V -12 rnA High Level Output Current Vee = Min, V 1H = 2V IA = B Output Onlyl V,L = 0.8V, V OH = 5.5V High Level Output Voltage Vee = Min, V 1H == 2V (Any Output Except A '" B) V'L = 0.8V, IOL Low Level Output Current VOL Low level Output Voltage 10H Vee"" Min, V 1H = I, Input Current at Maximum Input Voltage IIH High Level Input Current Any S Input 2V Any S Input 16 mA 0.4 V mA I'A -1.6 -4.8 --6.4 mA -8.0 Vee = Maxl21 Condition A Vee = Maxl31 Condition B Notes ( 11 I'A 160 Vee'" Max, VI = O.4V Supply r.urrent Icc 250 200 Short Circuit Output Current (Any Output Except A '" B) I'A 120 Vee = Max, VI"" 2.4V Carry Input lOS -800 40 Mode Input Any A or 8 Input V 1 Vee = Max, VI"" 5.5V Carry Input Low Level Input Current V -1.5 V Mode Input Any A or B Input 0.8 2.4 = -800!,A V 1L = O.8V, IOL = 16 rnA IlL MAX 2 (Any Output Except A = B) IOH UNITS 181 CONDITIONS All typical values are at Vec = 5V, TA = 25°e. (21 Not more than one output should be shorted at a time. (31 With outputs open, ICC is measured for the following conditions: A. SO through 53, M, and A inputs are at 4.5V I all other inputs are grounded. B. SO through S3 and M are at 4.5V, all other inputs are grounded. 2·109 DM54 -20 -55 DM74 -18 --57 DM54 88 127 DM74 88 140 DM54 92 92 135 DM74 150 mA mA ~MSI DM54/DM74181 Switching Characteristics vee = 5V, T A = 25°C DM54/74 PARAMETER FROM (lNPUTI TO (OUTPUTI 181 CONDITIONS MIN tpLH Propagation Delay Time, Low-ta-High level Output tpHl Propagation Delay Time, High-ta-Low Level Output tplH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level_ Output tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time. High-ta-Low Level-Output tpLH Propagation Delay Time, low-ta-High Level Output ~PHl Propagation Delay Time, High-ta-Low Level Output tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time. High-to-Low level Output tplH Propagation Delay Time, low-ta-High Level Output tpHl Propagation Delay Time, High-ta-Low Level Output tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-ta-Low level butput Gn Cn +4 AnyAorB Cn +4 AnyAorB Cnl4 Cn Any F Any A or B G Any A or B G P Any A or B tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low level Output Any A or B tpLH Propagation Delay Time, Low-to-High level, Output tpHL Propagation Delay Time, High-to-Low Level Output tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tpLH Propagation Delay Time, Low·to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tpLH Propagation Delay Time, Low-tb-High 'Level Output tpHL Propagation Delay Time, High-to-Low Level Output P Ai or Bi F; A; or Bj F; Ai or Bi F; Any A or B A=B TYP UNITS MAX 9 18 13 19 M = OV, SO = 53 = 4.5V 20 30 S1 = 52 = OV (5UM model 22 33 ns - ns M=OV,50=53=OV 20 30 51 = 52 = 4.5V (DIFF model 22 33 M = OV 11 19 (5UMor DIFF model 12 18 -- ns M = OV, 50 = 53 = 4.5V 13 19 51 = S2 = OV (SUM model 14 19 ns M = OV, 50 = 53 = OV 12 20 51 = 52 = 4.5V (DIFF model 15 25 M = OV, 50 = 53" 4.5V 12 19 51 = 52" OV (5UM model 17 25 M=OV,50=53=OV 14 25 51 = 52 = 4.5V (DI FF model 17 25 -- ns ns ns M = OV, 50 = 53 = 4.5V 18 30 51 = 52 = OV (5UM model 19 30 M = OV, 50" 53" OV 14 24 51 = 52 = 4.5V (DIFF model 14 24 - -- ns ns 17 28 19 30 M=OV,50=53"OV 26 40 51 = 52" 4.5V (DIFF model 25 40 ns M "4.5V (log;c model -- ns Parameter Measurement Information LOGIC MODE TE5T TABLE FUNCTION INPUTS: S1 = S2 = M" 4.5V, 50" S3 '" OV PARAMETER tpLH t pHL t pLH tpHL INPUT UNDER TEST OTHER INPUT SAME BIT APPLY 4,5V OTHER DATA INPUTS APPLY GND APPLY 4.5V A; B; None None B; A; None None 2-110 APPLY GND Remaining A and B, Cn Remaining A and B, Cn ns OUTPUT UNDER TEST OUTPUT WAVEFORM F; Out-of-Phase F; Out-of-Phase ~ MSI DM54/DM74181 Parameter Measurement Information (Continued) SUM MODE TEST TABLE FUNCTION INPUTS: SO = S3 = 4.5V, S1 = S2 PARAMETER tpLH INPUT UNDER TEST A, OTHER INPUT SAME BIT APPLY 4.5V APPLY GND B, None OTHER DATA INPUTS APPLY 4.5V A and B tpU-j Rernallllllg tpLH B, A, None A, B, None OUTPUT UNDER TEST OUTPUT WAVEFORM C" F, In·Phas(~ C" F, In-Phase APPLY GND Rermlll11119 tpHI t pHL = M = OV A and B None Remaining tpHL AandB,C n tpL.H Remaining t pHL B, A, None None In-Phase In-Phase AandB,C n ~- tpu~ A, None B, None B, Remaining Remainihg B A, C" tpHl Remaining Remaining tpHL 8 A, C" t p \. H All All A B Remaining Remaining tpLH tpHL t pl.. H t pHL tpL H C" Norle A, None None B, A, None B, B A, Co Remaining Remaining S A, C" A, tpHL DIFF MODE TEST TABLE FUNCTION INPUTS: S1 = S2 = 4.5V, SO = S3 PARAMETER tpLH t pHL tpLH INPUT UNDER TEST OTHER INPUT SAME BIT APPLY 4.5V APPLY GND Ai None B, Bi A, None APPLY 4.5V APPLY GND Remaining Remaining A S,C" Remaining Remaining A t pLt f Ai None S, None A and B, en Remaining tpLH t pHL tpLH A, None None Ai B, None None S, None Ai None B, Ai tpHL tpU-i tpHL tpLH tpHL tPL H Ai B, None Cn None None Ai B, None tpHL tpL H tpHL t pLH tpHL None or C n Out-af·Phase C"14 Out-af-Phase OUTPUT UNDER TEST OUTPUT WAVEFORM F, In-Phase F, Out-af-Phase In-Phase Out-of-Phase A and B, -C n Remaining G In-Phase G Out-af-Phase A=S In-Phase AandB,C n Remaining Remaining Remaining A B, C" Remaining Remaining A S, Cn A and S None A = B Cn '4 or any F Remaining Si None None A, S, C" A, None 2·111 In-Phase '4 C"14 A and B, C n All In-Phase B,C" tpl_H Si G Any F Remaining tpHL tpHL Ill-Phase = M = OV OTHER DATA INPUTS tpHL G Remaining A, S, Cn Out-of-Phase I n-Phasc C ni4 Out-of-Phase Cn14 In-Phase ·~MSI OM 54/DM74181 Logic Diagram (31 S3 (4f S2 (5) 51 I (6) so G (}rY 3(18) 3 r- I'H I'L los Icc High Level I nput Current 0.7 DM74 0.8 0.7 0.8 -1.5 -1.5 -1.5 -200 Supply Current -400 2.5 3.4 V IL == Max, IOH == Max DM74 2.4 2.4 2.7 3.4 Vee = -= Max Max Vee = Max(2) Vee = Max(3) IOL == Max DM54 16 2 4 16 3.6 8 DM54 0.4 0.15 0.3 0.25 DM74 0.4 0.2 0.4 0.35 IOL=4mA DM74 V V J-i.A V DM74 mA 0.4 0.5 V C 0.4 V, = 5.5V 1 0.1 V , -7V 0.1 V, = 2.4V 40 <1 20 -0.10 -0.18 -1.6 V, = 0.4V mA s: (J1 ,J:Io ....... 10 V, = 2.7V V, = 0.3V s: (J) V 0.7 2.4 Vee == Min, V 1H == 2V UNITS MAX 2 2 2.4 Vee =Max Short Circuit Output Current TYPlll DM54 Vee = Max Low Level Input Current MIN I, =-18 mA Low Level Output Current Low Level Output Voltage MAX 0.8 -400 Input Current at Maximum Input Voltage I, TYPO) Vee = Min, V ,H = 2V V 1L ~ MIN DM54 I, =-12·mA " VOL MAX 2 Input Clamp Voltage IOL TYPll) LS192, LS193 L 192, L193 192,193 MIN DM54LS/74LS DM54L/74L DM54174 V, ~ over recommended operating free-air temperature range (unless otherwise noted) -0.4 DM54 -20 -55 -3 -9 -15 -30 -130 DM74 -18 -55 -3 -9 -15 -30 -130 DM54 65 89 8 13 19 34 DM74 65 102 8 13 19 34 J-i.A mA C s:..... ... ,J:Io CD N mA mA !: CD N r- ....CD (J) Notes (1) All typical values are at Vee = 5V, TA == 25°C. (2) Not more than one output should be shorted at a time. and for DM54LS/74LS duration of short circuit should not exceed one second. (3) ICC is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5V. N ~ CD to) i.... CD to) r- .... CD (J) to) ----_._--- ~- --- Switching Characteristics DM54/74 PARAMETER FROM INPUT TO OUTPUT f MAX Maximum Clock Frequency tPLH Propagation Delay Time, TYP 20 25 Propagation Delay Time, Count down tpLH '" 12 ~ UNITS MIN TYP 25 32 C/) MAX MHz 17 26 30 60 17 26 ns 16 24 60 120 21 33 ns 16 24 30 60 16 24 ns 16 24 50 100 21 33 ns C L = 50 pF C L = 15pF Propagation Delay Time, R L = 400[2 R L =4k[2 R L =2kl! Propagation Delay Time, 45 90 25 38 ns 31 47 75 150 31 47 ns 27 40 55 110 27 40 ns (J1 ....... C ~ C ~ ~ High-ta-Low Level Output High-to-Low Level Output 38 Q Propagation Delay Time, Propagation Delay Time, 25 Q Propagation Delay Time, Load tpHL CONDITIONS C L =15pF Low-ta-High Level Output tPHL MAX High-ta-Low Level Output High-ta-Low level Output tpLH 6 LS192, LS193 TYP Propagation Delay Time, Either Count '"w MIN Borrow Low-to-High Level Output tpHL CONDtTlONS Propagation Delay Time, Low-ta-High Level Output tPHL MAX Carry High-to-Low Level Output tpLH DM54LS/74LS L192, L193 MIN Low-to-High Level Output Count up DM54L!74L 192,193 CONDtTlONS tpHL ~ Vee = 5V, T A = 25° C 29 40 105 200 29 40 ns 22 35 95 190 22 35 ns -.oJ Clear Q tw Width of Any I nput Pulse 25 70 20 ns tSETUP Data Setup Time 20 30 20 ns tHOLD Data Hold Time 0 0 0 ns .... to ~ N ....tor- N r- .... C/) to N :.. to W tto W r- .... CD C/) W I ~ MSI DM54/DM74192.L192.LS192.193.L193.LS193 Logic Diagrams 192, L192, LS192 (13) BORROW '" OUTPUT .-- (12) CARRY OUTPUT J DATA (15) INPUT A DOWN 14) COUNT / r--' J- (3) GA OUTPUT OA T DA UP (5) COUNT - - bT DATA (1) INPUT B r----r -L ~Q=> (2) OUTPUT De G, T D, f--,...- l>DATA (101 INPUT C tr>- r---''" ~ ~~ (6) Ge OUTPUT Dc OUTPUT no T iic- ~ - 6T DATA (9) INPUT D (14) CLEAR rt-" ---i r-''''"""'" (7) 00 T Do LOAD ~ (11) 2,136 - ~ MSI DM54/DM74192,L192.LS192,193,L193,LS193 Logic Diagrams (Continued) 193, L 193, LS193 113) BORROW OUTPUT "- I (12) CARRV OUTPUT DATA INPUT A (15) ~ J- DOWN (4) COUNT (3) GA OUTPUT OA T OAr-- UP (,) COUNT ~ - 6-;T ,. DATA II) INPUT B J- r---' ~---'-- - OUTPUT no ,. ~ - (6) Ge T fie I (14) fie tr>- --;-- CLEAR OUTPUT fi,r-- r---'. ~=-=I DATA (9) INPUT 0 as '-- r--- ~. DATA (10) OUTPUT T 1 INPUT C (2) G, f-- 6-;T "- ~ '-!---1 r--' I...(7) 00 T fiof-- LOAD ~ (11) 2·137 ~ MSI DM54/DM74192.l192.lS192.193,l193.lS193 Timing Diagrams 192, L 192, LS192 DECADE COUNTERS TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES CLEAR LOAD ~ ____________________~_________________________________________ II u :~~ ~1'--- DATA ! i I, 1- COUNT----+-t----r-t---, UP COUNT----+-t----r-t--~----------------------+---, DOWN OUTPUTS CARRY BORROW ~~ CLEAR I 8 9 0 1 21 ~-- COUNT U P - - - - J I 1 0 9 8 11 . -COUNT DOWN-----' PRESET Sequence: (li Clear outputs to zero. (2) Load (preset) to BCD seven. (3) Count up to eight. nine, carry, zero, one, and two. (4) Count down to one, zero, borrow, nine, eight, and seven, Notes: (A) Clear overrides load, data, and count inputs. (8) When counting up, count-down input must be high; when counting down, count-up input must be high. 2-138 ~ MSI DM54/DM74192,L192,LS192,193,L193,LS193 'Timing Diagrams (Continued) 193, L193, LS193 BINARY COUNTERS TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES LOAO A DATA COUNT----+-~--~~--~ UP COUNT----+-~--~~--~----------------------+---, DOWN OUTPUTS Dc CARRY BORROW ~~ CLEAR I 14 1& 0 1 1 I - - - - COUNT UP - - - - , I 1 0 15 14 131 . - - - COUNT OOWN----' PRESET Sequence: ~1) Clear outputs to zero. (2) Load (preset) to binary thirteen. (3) Count up to fourteen, fifteen, carry, zero, one, and two. (4) Count down to one, zero, borrow, fifteen, fourteen, and thirteen. Notes: {Al Clear overrides load, data, and count inputs. (8) When counting up, count-down input must be hIgh; when counting down, count-up input must be high. 2-139 ~MSI DM54/DM74194,LS194A,S194 4-Bit Bidirectional Universal Shift Registers General Description shifts reft synchronously and new data is entered at the shift-left serial input. These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want ,in a shift register; they feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line, The register has four distinct modes of operation, namely: Clocking of the flip-flop is inhibited when both mode control inputs are low, The mode controls of the DM54194/DM74194 should be changed only while the clock input is high. Features Parallel (broadside) load Shift right (in the direction G A toward Go) Shift left (in the direction Go toward G A I Inhibit clock (do nothing) • Parallel inputs and outputs • Four operating modes: Synchronous parallel Ipad Right shift Left shift Do nothing • Positive edge-triggered clocking • Direct overriding clear Synchronous parallel loading is accomplished by applying the fou'r bits of data and taking both mode control inputs, SO and Sl, high, The data are loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input, During loading, serial data flow is inhibited, TYPE Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and Sl is low, Serial data for this mqde is entered at the shiftright data input. When SO is low and Sl is high, data Connection Diagram I" 1 CLEAR S194 , Go 2 l ,A RIGHT SERIAL 11 5 4 B C 0 36 MHz 36 MHz 195mW 105 MHz 425mW 75mW so S1 CLOCK 12 Il 14 SHIFT POWER DISSIPATION 194 OUTPUTS 15 TYPICAL FREQUENCY LS194A D, V,' TYPICAL CLOCK 10 , , , SHIFT LEFT SERIAL PARAllEL INPUTS J: INPUT INf'UT 54194(J), (W); 74194(J), IN), (WI; 54LS194A/74LS194A(J), (N), (W); 74S1941N) Truth Table OUTPUTS INPUTS CLEAR MODE CLOCK LEFT RIGHT A B C D X X X X X X X X X X X X X X H X X X X X a X X X X X Sl SO H X X X X H H H t H L H H L H H H L t t t H H L t L H L L X X L X L PARALLEL SERIAL H L QA QB L L QAO QBO Oc Qo L L Qco Q oo b c d a X X X X X X X X X X X X X X X H Q An QBn QCn L Q An QBn Q Cn b c d QBn QCn QDn H QBn Q Cn QOn L QAO QBO QCO Q oo H = High Level (steady state), L = Low Level (steady state), X = Don't Care (any input, including transitions) t =: Transition from low to high level a, b, c, d = The level of steady state input at inputs A, B, C, or 0, respectively. OAO" 0BO, OeD, 0DO = The level of QA, OS. Oc, or QD. respectively. before the indicated steady state input conditions were established. QAn. 0Bn, aCn, QO n = The level of 0A, 0B, Cle, respectively, before the most recent t transition of the clock. Tentative Data For LS194A 2-140 LS194A, 8194 To Be Announced In 1976 ~ Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted) DM54/74 PARAMETER CONDITIONS 194 MIN V'H High Level Input Voltage V'L Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage VOL ~ I, I'H Input Current at Maximum Input Voltage High Level Input Current I'L Low Level Input Current los Short Circuit Output Current Icc Supply Current MIN TYP(l) :=0 Max, IOH = Vee: Min, V ,H : 2 Vee: Max Vee: Max Vee = Max V N/A DM74 0.8 0.8 0.8 -1.5 -1.2 3.4 2.5 3.5 Max DM74 2.4 3.4 2.7 3.5 IOL == Max -1000 -400 2.4 N/A 2.7 16 4 N/A DM74 16 8 20 DM54 0.2 0.4 0.25 0.4 N/A DM74 0.2 0.4 0.35 0.5 0.5 0.25 0.4 V, : 5.5V 1 1 V, :7V 0.1 V, : 2.4V 50 40 2.7V 20 V, : OAV -1.6 Vee: Max(2) Vee: Max(3) DM54 -20 DM74 -18 39 -30 -57 -30 63 -2 -0.4 -57 -130 -130 15 23 N/A -40 -100 85 V V Il A V 3.4 DM54 DM74 s: (J) MAX 2 DM54 ~ TYP(l) -1.5 IOL :4 mA V, MIN 0.7 2V 2V UNITS 5194 MAX 0.8 -800 : V1L=Max :: LS194A MAX 1,--18mA Vee: Min, V ,H DM74S DM54 I, : -12 mA Vee: Min Low Level Output Current Low Level Output Voltage TYP(1) 2 V 1L 10L DM54 LS/74LS 135 mA V rnA IlA rnA 0 rnA s: rnA ........ (11 ~ 0 Notes (1) All typical values are at V CC : 5V, T A : 25 0 C, 12) Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second. (3) With all outputs open, inputs A through 0 grounded, and 4.5V applied to SO, 81, clear, and the serial inputs, ICC is tested with a momentary GND. then 4.5V applied to clock. s:-..J ... ~ (D ~ r(J) ... (D - ~ '(J) !> ... (D ~ ~ Switching Characteristics vee = 5V, T A = 25°C DM54/74 DM54 LS/74 LS DM74S 194 LS194A S194 PARAMETER CONDITIONS fMAX Maximum Clock Frequency tpHL Propagation Delay Time, High-to-Low MIN TYP 25 36 19 Level Output From Clear tpLH Propagation Delay Time, Low-to-High Level Output From Clock tpHL "'" CONDITIONS MIN TYP 25 36 30 C L = 15pF 19 MAx RL = 400n Propagation Delay Time, High-to-Low 14 22 14 22 CONDITIONS MIN TYP 70 105 .. MAX 18.5 ns 4 8 12 ns 4 11 16.5 ns C L = 15 pF RL = 2 kn 14 22 17 22 RL = 280n tv ........ 0 ~ -..J ....+:> (D +:> r- en .... (D +:> » en ~ (D +:> - ---_ .. - ---_ .. ----_._--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ ... -------_._--_ .. - - - - - - ~-.- -----------------_ ... _----- -- _ .. __.. -- ----- ~MSI OM54/0M74194,LS194A,S194 Logic Diagrams A SHIFT RIGHT SERIAL INPUT 131 121 194 SHIFT PARAllEL INPUTS •1'1 D C 151 LEFT \ SERIAL INPUT I') 111 LSl94A, S194 PARAllEL INPUTS •)'1 A )3) c D )51 161 MDDEtS1~(I~m{>04~---1~--r-----~------~---+----~~------~---r----~------~~--+-----' CONTROL ,INPUTS so .;;1';:.I-D<>-1~---i---+~PI---+-------+---I+-:1.f---"~------+---++--.lf--fl---------~-i.f-~-' SHIFT SHIFT S~~~~r .:;1':..1--------.., .-++1____+..:.)7:.:.) ~:~iAL INPUT INPUT CtOCK~ll~lIi~O---------------~--+---.f-________~~__~-i__________~__- i__+ __________~ CLEAR~)l~I +-______________ ____q)~______________~__ ~~ (15) ______________-4__-+______________ . (14) "A Timing Diagram (13) PARALLEL OUTPUTS '" TYPICAL CLEAR, LOAD, RIGHT·SHIFT, LEFT·SHIFT, INHIBIT, AND CLEAR SEQUENCES CLOCK CLEAR SEO~~~ {R INPUTS L --+-+--i---------------+-+.J PARAtLEl\:---+-"t-I----+-t---+-------!DATA INPUTS c l O--~t--r--------------r-t-----------t-----------+_- aA : a,- OUTPUTS : a,_ DD: CLEAR 2·143 ~ 1121 110 ~ MSI DM54/DM74195,LS195A,S195 4-Bit Parallel Access Shift Registers General Description These 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/lo~d control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The registers have two modes of operation: speed data processing systems. In most cases existing systems can be upgraded merely by using this Schottkyclamped shift register. Features Parallel (broadside) load Shift (in the direction Q A toward QD) • Synchronous parallel load • Positive-edge-triggered clocking • Parallel inputs and outputs from each flip-flop • Direct overriding clear • J and K inputs to first stage • Complementary outputs from last stage • For use in high-performance: accumulators/processors serial-to-parallel, parallel-to-serial converters Parallel loading is accomplished by applying the four bi~s of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. Duri,ng loading, serial data flow is inhibited. Shifting is accomplished synchronously when the shift/ load control inpiJ.! is high. Serial data for this mode is entered at the J-K inputs. These inputs permit the first stage to perform as a J-K, D, or T-type flip-flop as shown in the truth table. TYPICAL CLOCK TYPICAL FREQUENCY POWER DISSIPATION 195 3!l MHz 195mW LS195A 39 MHz 70mW 105 MHz 350mW TYPE The high-performance S195, with a 105 MHz typical shift frequency, is particularly attractive for very high- S195 Connection Diagram OUTPUTS '~.,--u-,--u~,--Uo~-U-o"'l V"r " 15 K J 11 • 3 1 1 CLEAR 13 14 5 C ~~~~ 111 9 7 6 B ,A ~ CLOCK 11 D Gt: PARAllEL INPUTS SERIAL INPUTS 54195(JI. (WI; 74195(J), (N), (W); 54LS195A/74LS195A(JI. IN), (W); 74S195(N) Truth Table INPUTS CLEAR SHIFTI LOAD CLOCK L X X H L t H H L H H H H H H H H t t t t OUTPUTS SERIAL PARALLEL °D aD J K A B C D °A OS X X X X X X X L L L L' d a b e d d G eo G DO ODD L x X e X X X X X X H X a X X X X L H L 'L H H' H = High Level (steady state), L = Low Level (steady, state), X = b X X X X X X X X X X GAO G BO Dc H °Bn Q Co Oen L GM G BO Q Cn OCfl H QAO °Sn G Co G An G sn °en Oen Oen GAO GAO OAn Dqn~t Care (any input, including transitions) Transition from low to high' le~el ,'. , .-~~':J--, a, b, c. d ==: The level of steady state input at A. B, e.,or D. respective~y. 0AO. 0BO, 0eo, ODO = The level of 0A_ 0B. Qc. or 00, respecti\iely, before the indicated steadY state inpl,It conditions were established. t = QAn, 0Sn, QCn"'" The level of QA, 0B, or 0C. respectively, before tile most recent transition of the clock . . Tentative Data For LS195A .2-144 LS195A, $195 To Be Announced In 1976 Electrical Characteristics ~ over recommended operating free-air temperature range (unless otherwise noted) DM54/74 PARAMETER I I CONDITIONS V,H High Level Input Voltage Low Level Input Voltage MAX 2 MIN TVP(l) IOH DM74 0.8 0.8 0.8 -1.5 -1.2 V 1L IOL VOL I 0:0 Max, IOH = Max Low Level Output Current I Low Level Output Voltage Vee = Min, V ,H = 2V IOL -= Max V 1L -= Max ~I 10L I, Input Current at Maximum Input Voltage I'H High Level I nput Current Low Level I nput Current I'L los ICC I Short Circuit Output Current I Supply Current Notes (1) All typical values are at Vee = Max Vee -= Max Vee = Max = 4 mA -400 DM54 2.4 3.4 2.5 3.4 DM74 2.4 3.4 2.7 3.4 V '1000 16 4 N/A 16 8 20 DM54 0.2 0.4 0.25 0.4 N/A DM74 0.2 OA 0.35 0.5 0.5 0.25 0.4 V, = 5.5V 40 V, = 2.7V 20 V,=OAV -1.6 50 --0.4 -2 V, = 0.5V Vee = Maxl2) Vee = Maxl3) DM54 -20 -57 -30 -130 DM74 --18 -57 -30 -130 39 63 14 21 mA I V mA 0.1 V , =2AV MA V DM74 V, = 7V I 3.4 DM54 DM74 V N/A 2.7 (/) V N/A -1.5 Vee -= Min, V 1H -= 2V s: MAX 0.7 -800 I TVP(l) 2 2 High Level,Output Current I High Level Output Voltage MIN 0.8 Vee=MIfI V OH UNITS S195 MAX DM54 . LI, =-12mA i l ,=-18mA Input Clamp Voltage V, TVP(ll DM74S LS195A 195 MIN V,L DM54LS/74LS N/A -40 -100 70 109 J.1A rnA mA 0 s: (JI :a ...... mA 0 s: " :a .... Vee = 5V, TA = 25°C. (2) Not more than one output should be shorted at a time, and for DM54LS/74LS or DM74S duration of short circuit should not exceed one second. (3) With all outputs open, shift/load grounded, and 4.5V applied to the J, ground, followed by 4,5V, to clock. K, and data inputs, ICC is measured by applying a momentary ground, followed by 4.5V, to clear and then applying a momentary CD (JI r- .... CD (/) (JI » en .... CD (JI Switching Characteristics Vee ~ 5V, T A ~ 25°C ~ DM54/74 DM54LS174LS DM74S 195 LS195 S195 PARAMETER CONDITIONS fMAX Maximum Clock Frequency tpHL Propagation Delay Time, High-to-Low Level Output From Clear tPLH Propagation Delay Time, Low-la-High MIN TVP 30 39 19 CL AL = 15 pF = 400.12 Propagation Delay Time, High-to-Low Level Output From Clock ~ .,. CONDITIONS MIN TVI' 30 39 30 1-- Level Output From Clock tpHL MAX 14 22 17 26 19 CL = AL = 2 kn MAX CONDITIONS MIN TVP 70 105 30 15 pF UNiTS ~ en MAX MHz 12.5 18_5 ns 8 12 ns 11 16.5 ns C L =15pF 14 22 17 26 AL = 280.12 tWICLOCKI Width of Clock Input Pulse 16 16 7 ns tWiCLEARI Width of Clear I nput Pulse 12 12 12 ns tsETUP Setup Time Shift/Load 25 25 11 Serial and Parallel Data 15 15 5 Clear Inactive-State 25 25 9 ns ----'-tRELEASE Shift/Load Aelease Time tHOLD Serial and Parallel Data Hold Time 0> 10 r--6 10 0 6 3 ns ns C ~ U'I ~ ....... C ~ ~ (D U'I ren ~ (D U'I » en ~ (D. U'I ~ MSI DM54/DM74195,lS195A,S195 Logic Diagram SE.RIAl PAAALLElINPUTS INPUT ~ K ('I StllFTllOAO (!H a A (41 c 151 o (61 171 CONTROL PARAllEl OUTPUTS tnls connr;ctiOIlIS mad1l on 195 only. Timing Diagram TYPICAL CLEAR, SHIFT, AND LOAD SEQUENCES ClOCK -.r- ""'' {' i I SHIFT/LOAD I PARI:~ t~ :---t-----+I--------------I*'--If-~ ____________ I I o I I -i.-;;l l r--, L -+ ~--~i 0A _ -_ - -----' t OUTPUTS \ I' L..._ _ _ _ _ _ __ r.--IttH o,:=J ~.:;l_ _ _ __ OD-- I ' -- I CLEAR LOAD 2-147 ' ~ MSI DM54/DM74198.199 8-Bit Shift Registers General Description Clocking, of the fiip-flop is inhibited when both mode control inputs are low. The mode controls should be changed only while the clock input is high. These 8-bit shift registers feature buffered inputs to lower the drive requirements to one normal ized Series 54/74 load, and input clamping diodes to minimize switching transients and simplify system design_ Maximum input clock frequency is typically 35 MHz and power dissipation is typically 360 mW. DM54199/0M74199 These registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input, a direct overriding clear line, and gated clock inputs. The register has three modes of operation: DM54198/DM74198 These bidirectional registers are designed to incorporate virtually all of the features a system designer may want in a shift register. They feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating mode control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely: Parallel (broadside) load Shift (in the direction Q A toward QH) I nhibit clock (do nothing) Parallel loading is accomplished by applying the eight bits of data and taking the shift/load control input low when the clock input is not inhibited. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited. Parallel (broadside) load Shift right (in the direction Q A toward QH) Shift left (in the direction Q H toward QA) Inhibit clock (do nothing) Synchronous parallel loading is accomplished by applying the eight bits of data and taking both mode control inputs, SO and S1 high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited. Shifting is accomplished synchronously when shift/load is high and the clock input is not inhibited. Serial data for this mode is entered at the J-K inputs. See the truth table for levels required to enter serial data into the first flip-flop. Both of the clock inputs are identical in function and may be used interchangeably to serve as clock or clockinhibit inputs. Holding either clock input high inhibits clocking; but when one is held low, a clock input applied to the other input is passed to the eight flip-flops of the register. The clock-inhibit input should be changed to the high level only While the clock input is high. Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When SO is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input. Connection Diagrams SHIFT LEFT SERIAL INPUT Sl INPUT H DH 124 23 22 21 INPUT INPUT G F D, Dc 20 19 18 17 INPUT E Oe CLEAR 16 15 - 1 SO 14 SHIFT/ INPUT Vee LOAD L4 13 23 H 22 OH 21 INPUT F INPUT G 20 19 18 INPUT E 17 Oe CLEAR CLOCK 16 15 2 3 4 5 INPUT B 6 n, 7 INPUT C 8 9 10 13 - 0- SHIFT INPUT QA 'RIGHT A SERIAL INPUT 14 1 U J12 Dc INPUT 0 0 CLOCK GNO 0 K 2 J ---------- 3 4 5 INPUT 0, INPUT A B 6 7 C 54199/74199(J), (N) 2-148 10 11 J'2 D, INPUT Ilc INPUT 00 CLOCK GND SERIAL INPUTS 54198/74198(Jl, (N) 9 8 D INHIBIT ~ MSI DM54/DM74198,199 Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted) DM54/74 PARAMETER CONDITIONS 198, 199 MIN VIH UNITS MAX 2 High Level Input Voltage V IL Low Level Input Voltage VI Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage 10L Low Level Output Current VOL Low Level Output Voltage Vee ~ Min, 1,~-12mA Vee ~ Min, V ,H ~ 2V V'L ~ O.BV, IOH ~ -SOOJ1A V O.S V -,1.5 V -SOO Vee ~ ~ IOL~16mA II Input Current at Maximum Input Voltage Vee Max, V, ~ IIH High Level I nput Current Vee~Max, V, ~204V IlL Low Level Input Current Vee los Short Circuit Output Current Supply Current ~ 5.5V Vee ~ Max(2) Vee ~ Max 16 mA 004 V 1 mA 40 fJ.A . -1.6 V,~Oo4V Max, (See Conditions for lee Table) J1A V 204 V'H ~ 2V Min, V'L ~ O.BV, Icc TYP(1) DM54 -20 -57 DM74 -lB -57 mA mA .-- DM54 72 104 DM74 72 116 mA Notes All typical values are at vee = 5V, T A = 25° C. (2) Not more than one output should be shorted at a time. ( 1) Switching Characteristics Vee = 5V, T A ~ 25°C DM54/74 CONDITIONS PARAMETER fMAX Maximum Input Count Freque'ncy tpHL Propagation Delay Time, High·to-Low 198,199 MIN TYP 25 35 Level Output From Clear tPHL Propagation Delay Time, High-to-Low CL ~ 15 pF, RL ~ UNITS MHz 23 35 ns 20 30 ns 17 26 ns 400n Level Output From Clock tpLH MAX Propagation Delay Time, Low-to-High Level Output From Cloc,k tw Width of Clock or .Clear Pulse 20 ns tSETUP Mode-Control Setup Time 30 ns tSETUP Data Setu p Ti me 20 ns tHOLD Hold Time at Any Input 0 ns Conditions for Icc (All outputs are open) TYPE APPLY 4.5V 19S Serial Input, SO, Sl J, K, Inputs A thru H 199 F!RST GROUND, THEN APPL Y 4.5V GROUND Clock Clear, I nputs A thru H Clock Clock Inhibit, Clear, Shift/Load 2-149 ~ MSI OM54/0M74198,199 Truth Tables 198 INPUTS MODE CLEAR 51 so OUTPUTS SERIAL CLOCK PARALLEL LEFT RIGHT A". H X X X X X H X X X X X H H H X X a .. .h H L H X H X H X aA a. aG aH L a AO aBO aGO G HO h b H GAo G Fn GGo H X L X GAo G Fn GGn H H l H X X G Bn G eo G Hn H H H L l X X G Bn G en G HO H L l X X X GAO G BO X GGO a HO H = High Level (steady state), L = Low Level (steady state) X := Don't care (any input, including transitions) t = Transition from low to high level a ... h ::: The level of steady state input at inputs' A thru H. respectively. GAO, GSO, GGO, aHO = The level of aA, 0B, aG, or GH, respectively, before the indicated steady-state input conditions were established. QAn. 0Sn, etc. = The level of QA, 0B, etc., respectively, before the mostwrecent t transition of the clock. 199 INPUTS SHIFTI CLOCK LOAD INHIBIT L X X X H X L L L t CLEAR H H H H H H H H H H X CLOCK OUTPUTS SERIAL K A". H X X X X X X X x L L H PARALLEL Oc GH G eo °HO b h GAO GAO G BO GGn aA L GAO G BO ... h H X as L L X L H H X H G An aBo G An aBO GGo H L X DAn a Ao aBo GGn X X X aAO aBO aBO G HO a Gn H = High Level (steady state) .. L == Low Level (steady state) X := Don't care (any input, including transitions) t 0;:: Transition from low to high level a ... h = The level of steady state input at inputs A thru H, respectively. OAO, 0BO, 0CO· .. 0HO =: The level of 0A, QS, or QC thru 0H, respectively, before the indicated steady·state input conditions were established. QAn, aBn· . 0Gn ::. The level of QA or' Os thru 0G, respectively, before the most-recent t transition of the clock 2-150 ~MSI OM 54/ OM74198 .199 Logic Diagrams 199 198 CLOCK (1l) ClOCK..:.I1"'lI'-_--11 >....., 1~~~B~~.!!I'!.!!lI~-L~""'"--------1 SERIAL ( J \21 INPUTS j(.:.I'::.._ _ _ _....., S~~F;~::;[2""lt>.,.-<>I>....+-,=3 A (3) r------+~--~nA 8(5) B (5) e(7) c (7) [81 ilc n 1'1 o (91 EllS) E (16) F (17) F (t8) G (19) G (20) H (21) H (22) s~~~~-,I::22,-1-------1--1-.) ClE~R -.,.O-----,--1======~~=:t,~ CLEAR.![':.::',-I 2-151 .q .![",'4,-1_ _ _ _ _ _....ql:>:>-__....__ ~ MSI DM54/DM74198,199 Timing Diagrams 198 TYPICAL CLEAR, LOAD, RIGHT-SHIFT, LEFT-SHIFT, INHIBIT, AND CLEAR SEQUENCES CLOCK ClEAR SERIAL { DATA R -t-+-1---------------t-i-' INPUTS PARALLEL DATA INPUTS OUTPUTS 199 TYPICAL CLEAR, SHIFT"LOAD, AND INHIBIT SEQUENCES ClOCK CLOCK INHIBIT CLEAR SfRIAL{ J INPUTS K SHIFT/LOAD PARAllEL DATA INPUTS OUTPUT QO--'~---_1-----J __ O£ - - , ,+,-----r----------~ ::::1, --+,--+--------' a, j_-------CLEAR SERIAL SHIFT LOAD ~ MSI OM54/0M74198,199 Parameter Measurement Information 198 199 TEST TABLE FOR SYNCHRONOUS INPUTS TEST TABLE FOR SYNCHRONOUS INPUTS DATA INPUT FOR TEST OUTPUT TESTED (SEE NOTE EI DATA INPUT FOR TEST SHIFT/LOAD 4.5V Q A at t nf ,! A OV Q A at tn+l 4.5V 0 8 at tn+l B OV 4.5V Oc at tn+1 C OV Os at t n ""l Q c at tn+l 4.5V aD at tn+l D OV OD 4.5V 4.5V OE at tn+1 E OV Q E at tn+1 5, So A 4.5V B 4.5V C 4.5V D 4.5V E OUTPUT TESTED (SEE NOTE EI at tn+l F 4.5V 4.5V OF at tn+1 F OV OF at tn+l G 4.5V 4.5V QG at tn+l G OV OG at H 4.5V 4.5V Q H at tn+l H OV OH at tn+l L Serial Input 4.5V OV Q A at t n+8 4.5V OH at A Serial Input OV 4.5V Q H at t n +8 J and K LOAD FOR OUTPUT UNDER TEST OUTPUT FROM O~Z~~~ TEST ........~t--.t-.Hpth l' Cl "15 pF ISEE NOTE 81 SWITCHING TIME WAVEFORMS =J CLEAR INPUT tWIClEARIt;: . ~1.5-V~~~~~~_----------------3V (SEE NOTE f) L ~ ~ ~3V CLOCK INPUT ::J ~ 11,...----3v tHOlO tSETU':j DATA INPUT ISEETESTTABLEI __-+ ___. J I I 'l'HL (CLEAR-ali I-I 1.5V OV 1.5V -----ov I JtPLH I ---IICLK-olr--- pi tJUTPUT 0----""""'\'.5V Notes 2: 20 ns and (AI The clock pulse has the following characteristics: twlclockl (8) The clear pulse has the following characteristics: tw(clear) :2: 20 ns and tHOLD When testing fMAX, vary the clock PRR. CL includes probe and jig capacitance. IC) All diodes are 1 N3064. (O) A clear pulse is applied prior to each test. Propagation delay times (tPLH and tpH l) are measured at t n +1. Proper shifting of data is verified at·t n+8 with a functio~~J...test. t n ::; bit time before clocking transition, t n +1 "" bit time after one clocking transition t n +8 = bit time after clocking transitions (EI (F) 2-153 PRR = 1 MHz. = 0 ns. tn+l t n +8 ~ MSI DM54/DM74S200 TRI-STATE 256-Bit ReadIWrite Memories General Description The DM54S200/DM74S200 256-bit active-element memories are monolithic transistor-transistor logic (TTL) integrated circuits organized as 256 words of one bit each. They are fully decoded and have three gated memory-enable inputs to simplify decoding required to achieve the desired system organization. The memories feature PNP input transistors which reduce the low-level input current requirement to a maximum of -0.25 mA', only one-eighth that of a normal Series 54S/74S load factor. The memory-enable circuitry is implemented with minimal delay times to compensate for added system decoding. neither load nor drive the bus line, but it will allow the bus line to be driven by another' active output or a passive pull-up if desired. Read Cycle: The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the three memory-enable inputs are low. When anyone of the memory enable inputs is high, the output will be in the high-impedance state. Features The TRI-STATE output combines the convenience of an open-collector with the speed of a totem-pole output; it can be bus-connected to other similar outputs, yet it retains the fast rise time characteristics of the TTL totem-pole output. • Schottky-clamped for high-speed memory systems: Access from memory-enable inputs 20 ns typ Access from address inputs 31 ns typ Power dissipation 1.7 mW/bit typ • TRI-STATE output for driving bus-organized systems and/or highly capacitive loads '. Fully decoded, organized as 256 words of one bit , each Write' Cycle: The complement of the information at the data input is written into the selected location when all memory-enable inputs and the write-enable input are low. While the write-enable input is low, the output is in the high-impedance state. When a number of outputs are bus-connected, this high-impedance output state will Connection Diagram • Compatible with most TTL and DTL logic circuits • Multiple memory-enable inputs to minimize external decoding Logic Diagram ADDRESS INPUTS ADDRESS INPUTS ADDRESS INPUTS ,0 ! 1111 G /101 ADDRESS !NPUTS F E (9) 0/ 11 • A MEt ME2 ME3 OUTPUT 0 Y ADDRESS INPUT ADDRESS INPUTS GNU 54S200IJ), IWI; 74S200(J), IN), (WI Truth Table INPUTS MEMORY ENABLEt WRITE ENABLE Write (Store Complement of Data) L L High Impedance Read L H Stored Data Inhibit H X High Impedance Irrelevant t = For memory enable; L = All ME inputs low' H OUTPUT FUNCTION ~ High Level, L = Low L.Y~I, X= H .,. One or more ME inputs high 2-154 ~ MSI DM54/DM74S200 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM54S/74S CONDITIONS PARAMETER S200 MIN V 1H High Level! nput Voltage V ,L low Le'V!(lln p ut Voltage V, Input 10H High Level Output Current UNITS TVP(l} MAX V 2.0 C!a~p Voltage i. Vee"" Min, = -18 rnA I DM54 High Level Output Voltage 10L Low Level Output Current VOL Low Level Output Voltage IO(OFF~ Vee"" Min, V 1H V 1L =O.BV, 'OH = Vee'" Min, V,H V 1L =O.BV, IOL = V -1.2 \I -2.0 I DM74 VOH 0.8 --5.2 2V 2.4 Max \I 16 Off-State (High Impedance State) Output Current Vee = Max V 1H "" 2.0V = 2V = 16 mA I DM54 I DM74 V 0.45 I Va = OA5V -50 I Va:= 2.4V 50 Vee =Max, VI"" 5.5V 1.0 I'H High Level Input Current Vee Max, V, = 2.7V I'L Low Level Input Current Vee =Max, V, = 0.45V loS Short Circuit Output Current Vee;::: Max{2) Icc Supply Current Vee = mA 0.5 Input Current at Maximum Input Voltage I, rnA -30 = Max(3} 87 )1A mA 25 )1A --250 )lA -100 mA 130 mA Notes {21 All typical values are at V CC ~ 5V, T A ~ 25" C_ Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second. (3) ICC is measured with the write enable and memory enable grounded, all other inputs at 4.5V and the output open. (1) Switching Characteristics v cc = 5V, T A = 25° C DM54S/74S PARAMETER CONDITIONS 54S200 MIN tPLH tPHl tZH Propagation Delay Time, Access Time From Low-to-High Level Output Address Propagation Delay Time, Access Time From High-te-Low Level Output Address Output Enable Time To High level Access Time From Memory Enable CL tze tZH tZL 'HZ tLZ Output Enable Time To Access Time From low Level Memory Enable Output Enable Time To Sense Recovery Time High Level From Write Enable Output Enable Tim~ To From Write Enable Output Disable Time From Disable Time From High Level Memory Enable Output Disable Time From Disable Time From Low Level Memory Enable tLZ Output Disable Time From Disable Time From High Level Write Enable Output Disable Time From Disable Time From Low Level Write Enable tw Width of Write Enable Pulse tSETUP Setup Time = 5.0 pF, RL UNITS TVP MAX 70 33 50 ns 29 70 29 50 ns 21 45 21 35 '" 10 30 10 20 05 24 50 24 40 ns 12 50 12 40· ns 7.0 30 7.0 20 ns 20 45 20 35 ns 13 40 13 30 os 16 40 16 30 os = 280n 50 ~- Address to Write Enable 0 Data to Write Enab!e Hold Time 33 MIN - Memory Enable to Write Enable tHOLD MAX 15pF, R! " 280[2 Sense Recovery Time Low Level CL tHZ ::: 74S200 TVP 0 40 ns 0 0 0 ns Address From Write Enable 10 10 Data From Write Enable 10 10 Memory Enable to Write Enable 0 0 2-155 ns I ~··MSI OM54/0M74S200 AC Test Circuit Vee TEST POINT FROM O~J~~~ -~--...-IIOIIII-'" TEST CL includes probe and jig capacitanct. All diodes are 1NlO&4. Switching Time Waveforms 3.0V ADDRESS INPUT ISEE NOTE BI 3.0V ADDRESS INPUTS VOH - " " ' - - 3.0V OUTPUT DATA INPUTS VOL----------__--,~--------__J 3.DV MEMORY ENABLE INPUTS 3.0V MEMORY ENABLE INPUTS ISEE NOTE CI WRITE ENABLE INPUT Ov----r'------------J 3.DV OV ~1.5V WAVEFORM 1 (SEE NOTE Al WAVEFORM 1 ISEE NOTE Al VOL VOH WAVEFORM 2 (SEE NOTE Al WAVEFORM 2 (SEE NOTE AI ~1.5V----J. Notes: (A) Waveform 1 is for the output with internal conditions such that the output is low ex~pt whe,n disabled. Waveform 2 is for the output with internal conditions such that the output is high except when disabled. . (B) When measuring delay times from address inputs, the memory enable inputs are low and the write enable input is high. , When measuring delay times from memory enable inputs, the addres. inpu~s are steady-state and the write enable input is high. (01 Input waveforms are supplied by pulse generators having the following characteristics: tr:S: 7 ns, tf:S: 7 ns, PRR:S: 1.0 MHz, 8.nd ZOUT '" 50.0.. (e) .2,156 ~ MSI OM54/0M74S206 256-Bit Read/Write Memories with Open Collector Outputs General Description Read Cycle: The stored information (complement of information applied at the data input during the write cycle) is avai'lable at the output when the write-enable input is high and the three memory-enable inputs are low. When anyone of the memory enable inputs is high, the output will be off. The DM54S206/DM74S206 256-bit active-element memories are monolithic transistor-transistor logic (TTL) integrated circuits organized as 256 words of one bit each. They are fully decoded and have three gated memory·enable inputs to simplify decoding required to achieve the desired system organization_ The memories feature PNP input transistors which reduce the lowlevel input current requirement to a maximum of --D_25 milliamperes, only one-eighth that of a normal Series 54S/74S load ftlctor, The memory-enable circuitry is implemented with minimal delay times to compensate for added system decoding. Features • Schottky-clamped for high-speed memory systems: 17 ns typ Access from memory-enable inputs Access from address inputs 35 ns typ Power dissipation 1.4 mW/bit typ • Open-collector output for word expansion • Fully decoded, organized as 256 words of one bit each • Compatible with most TTL and DTL logic circuits • Multiple memory-enable inputs to minimize external decoding Write Cycle: The complement of the information at the. data input is written into the selected location when all memory-enable inputs and the write-enable input are low_ While the write-enable input is low, the output is off. Connection Diagram Logic Diagram ADDRESS INPUTS 10 1111 G 1 1101 ADDRESS INiJUTS F E (9) o 171 A B ~ MEl MEl ME3 OUTPUT 0 V ADDRESS INPUT ADDRESS INPUTS GNO 54S206IJ), (W); 74S206(JI. (N), (W) Truth Table INPUTS OUTPUT FUNCTION MEMORY ENABLEt WRITE ENABLE Write (Store Comolement L L Hi-Z Read L H Stored Data Inhibit H X Hi-Z of Data) H = hIgh level, L = low level, X::: irrelevant tFor memory enable: L = all ME inputs low; H "" one or more ME inputs high. '~'MSI DM54/DM74S206 Electrical Characteristics over recommended operat'ing fr~e-air temperature range (unless otherwise noted) DM54S/74S PARAMETER CONDITIONS V,H High Level Input Voltage V,L Low Level I nput Voltage V, Input Clamp Voltage IOH High Level Output Current TYP(1) Vee = Min, V ,H = 2V . V'L = 0.8V Low Level' Output Curr1!nt VOL Low Level Output Voltage IV/AX V 2 . Vce = Min, I, =-18 mA IOL UNITS S206 MIN 0.8 .V -12 V V OH = 2.4V V OH = 5.5V 40 100 16 Vee = Min, V ,H = 2V DM54 0.5 V'L = 0.8V, IOL = 16 mA DM74 0.45 ,!,-A mA V I, Input Current at Maximum Input Voltage Vee = Max, V, = 5.5V 1 mA I'H High Level I nput Current Vee = Max, V, = 2.7V 25 .!'-A I,L Low Level I nput Current Vee = Max, V, = 0.45V -:250 !'-A Icc Supp'y Curre'!t Vee = Max(2) 130 mA 70 Notes (1) All typical values are at Vcc = 5V, TA = 25°C. (2) ICC is measured wit~ the write enable and mem-ory enable inputs grounded, all other inputs at 4.SV, and the output open. Switching Characteristics vee =5V, TA = 25°C DM54S174S PARAMETER tPLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tPLH tpHL tpLH 74S206 MIN TYP MAX MIN TYP MAX Access Times from Address 38 80 38 60 ns Access Ti mes from Address 32 80 32 60 ns 21 45 21 35 ns 13 35 13 25 ns 20 50 20 40 ns 14 50 14 40 ns Disable Time fr0'1:' Low-to-High Level Output Memory Enable Propagation Delay.Time, Enable Time from High-to-Low Level Output Memory Enable Propagation Delay Time, Disable Time from Low-to·High Level Output Write Enable tSR Sense Recovery Time tw Width of Write Enable Pulse tSETUP Setup Time tHOLD 54S206 Propagation Delay Time: Hold Time Addres~ CONDITIONS CL = 15pF UNITS RL =3000 50 to Write Enable 40 0 0 Data to Write Enable 0 0 Memory Enable to Write Enable 0 0 Address from Write Enable 10 10 Data from Write Enable 10 10 Memory Enable to Write Enable 0 0 2-158. ns ns ns ~ MSI DM 54/ DM74S206 AC Test Circuit Vee TEST POINT FROM O~;~~~ --4....- -. . TEST c[ 1.0k CL includes probe and jig capacitance. Switching Time Waveforms WRITE CYCLE ADDRESS INPUTS DATA INPUTS MEMORY-ENABLE 3V 3V 3V INPUTS WRITE·ENABLE 3V INPUT OV tecH OUTPUT VO " (NOTE A) VOL J ACCESS (ENABLE) TIME AND t LSV ACCESS TIME FROM ADDRESS INPUTS DISABLE TIME FROM MEMORY ENABLE ME~~~~~ 3V (~~~~T;I ov ___+ ...1._5V_~_ _ _ __ tSR~ 1.5V AODRESS 3V~------"" INPUTS 1.5V )j(,.5V 1.5V (NOTE 8) . t'"e t'y.;-eH OUTPUT VOH - - - ; " " ' - 1.5V 1.5V (NOTE AI Voe _ _ _ _ _ _ _"'-_ _ _ _ _'" OUTPUT ov __ J OH V t'He::1 ---'--_· ~5V :'.{';·,:-F-=' )/,.SV Voe------~~·~-----"'· Notes: (A) Waveform shown is for the output with internal conditions such that the output ;s low except when disabled. (B) When measuring delay times from address inputs, the memory-enable inputs are low and the write-enable input is high. (C) When measuring delay ~jmes from memory-enable inputs, the address inputs are steady-state and the write-enable input is high. (0) Input waveforms are supplied by pulse generators having the following characteristics: tr ~ 2.5 ns;tf ~ 2.5 ns, PRR ~ 1 MHz, and ZOUT ~ 50n. 2-159 ~MSI DM54/DM74251.lS251.S251 TRI-STATE Data Selectors/Multiplexers General Description Features These data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources, and feature a strobe-controlled TRI-STATE output_ The strobe must be at a low logic level to enable these devices_ The TRI-STATE outputs permit direct connection to a comman bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs. • • • • • To minimize the possibility that two outputs will attempt to take a common bus to opposite logic I.evels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time. ,54251 Connection Diagram Truth Table DATA INPUTS D5 04 /16 15 MAX NO. OF TYPE COMMON OUTPUTS 2 02 A 07 17 ns 17 ns 155mW 129 49 49 17 ns 35mW 74LS251 129 745251 129 17 ns 8 ns 275mW 4 DO 155mW 35mW C\ 11 12 13 3 01 POWER DISSIPATION 74251 54LS251 10 , INPUTS -1 TYPICAL (DTOY) SELECT 03 TYPICAL PROP DELAY TIME' DATA SELECT 06 14 TRI-STATE versions of 151, LS151, S151 Interface directly with system bus Perform parallel-to-serial conversion Permit multiplexing from N-lines to one line Complementary outputs provide true and inverted data ~------Y-------~ DATA INPUTS 5 6 Y W ~ OUTPUTS 7 STROBE I' 'C B X l OUTPUTS STROBE Y A S x X H Z L l L DO W Z -, l L H L Dl L H L l D2 DO - Dl 52 - L H H l D3 D3 H L L l D4 H L H L D5 D4 D5 H H l l D6 H H H L D7 - Os - D7 GND 54251(JI. (WI; 74251(J), (N), (W); 54LS251/74LS251 (J), (N), (W); 74S251(N) H = High X = Don't Care, Z = High Impedance (Off) Logic Level, L = Low Logic Level DO, 01 .. _07 = The level of the respective 0 input. Logic Diagram STROBE (7) (ENABLE) DO . :;14::. 1----r=:::::=33-, D2~12~1--------i~F=*=~rDJ~I1~I--________-t~~~~~ DATA INPUTS D4 (151 D5~11~41-----------t~3E~~~ -----l=I=I=FI==l=l=t-, 11 31 D8..::::: DATA SElECT (BINARY) I 2-160 LS251, S251 To Be Announced In 1976 Electrical Characteristics DM54/74 PARAMETER CONDITIONS V,H High Level Input Voltage V,l Low Level Input Voltage IOH' VOH IOl VOL Input Clamp Voltage Vee = Min Low Level Output Voltage I, I'H I,l Low Level Input Current IQS Short Circuit Output Current Icc Supply Current 0_8 0_8 1.5 1_2 -1.5 DM54 -2 -1 --5_2 -2_6 2.4 Vee = Max Vee = Max Vee = Max IOL = Max N/A V V mA V 3.2 DM54 16 4 N/A DM74 16 8 20 DM54 0.4 0.25 0.4 DM74 0.4 0.35 0.5 N/A 0.5 mA V 0.4 -40 -20 Vo -2.4V 40 20 V, = 5.5V 1 --50 0.1 V, = 2.4V 40 V, - 2.7V 50 20 V, = OAV -1,6 -0.4 V, =0.5V -2 -18 --55 -30 -130 -100 -40 Strobe Grounded 31 51 6.1 10 55 85 Strobe at 4.5V 31 51 7.1 12 55 85 Notes (11 All typical values are at VCC = 5V, T A = 25° c. (2) Not mOre than one output should be shorted at a time, and for DM54lSn4LS or DM745 duration of short circuit should not exceed one second. (3) All outputs open,all inputs at 4.5V. IlA 50 1 V , -7V Vee = Max(2) Vee = Max(3) N/A -6.5 2.4 IOL=4mA DM74 V'L = Max High Level Input Current 0_8 2.4 Vo =0.4V V 2 DM74 ~ en MAX DM74 2.4 Vo -0.5V TYP(l) N/A 2.4 V'H =2V MIN 0_7 DM74 Vee = Max UNITS S251 MAX 2 DM54 Off-State (High Impedance Input Voltage TYP(1) 0_8 V'L = Max. IOH = Max State) Output Current Input Current at Maximum MIN Vee = Min, V'H = 2V V'L = Max IOIOFfI. LS251 MAX 1,--18mA Vee = Min, V'H = 2V DM74S DM54 I, =-12 mA Low Level Output Current ~ !!1 TYP(l) 2 High Level Output Current High Level Output Voltage DM54LS/74LS 251 MIN V, ~ over recommended operating free-air temperature range (unless otherwise noted) mA IlA C ~ .po U1 ...... mA !11A rnA C ~ ~ N ... ... en ... U1 ien N U1 N U1 ~ Switching Characteristics Vee = -~ 5V, TA = 25°C I PARAMETER FROM (INPUT) DM54174 DM54LS/74LS DM74S 251 LS251 S251 TO (OUTPUT) CONDITIONS tplH Propagation Delay Time, Low-to-High Level Output A,8,orC ~l Propagation Delay Time, (4 levels) Propagation Delay Time, Low-to-High Level Output tPHl Propagation Delay Time, A,B,orC (3 levels) Propagation Delay Time, Any D tplH Propagation Delay Time, CL RL Propagation Delay Time, = 50 pF = 400Q Low-to-High Level Output ~ Any D tpHl Propagation Delay Time, Output Enabie Time to High Level Strobe tZl Output Enable Time to Output Enable Time to Output Enable Time to Output Disable Time from High Level Strobe tlZ tHZ = 5 pF CL Output Disable Time from RL =400Q Strobe Low Level 28 45 13 19.5 ns 18 29 20 33 10 15 ns' 16 27 21 33 9 13.5 ns 8 12 ns = 15pf RL = 280Q 17 28 18 28 17 28 CL RL = 15pf = 2 kQ 18 28 8 12 ns 10 15 4.5 7 ns 11 15 10 15 9 15 4.5 7 ns 15 27 30 45 13 '19.5 ns 18 36 26 40 14 21 ns = 50 pF RL = 280Q 27 17 27 e ~ 13 19.5 ns 19 38 24 40 14 21 ns 4 8 30 45 5.5, 8.5 ns 14 23 15 25 9 14 ns (J'1 ~ "·0 ~ ~ N (J'1 . ....A Low Level Output Disable Time from 36 y Output Disable Time from High Level tlZ 23 W Low Level " ns 15 Strobe tHZ 18 MIN CL High Level tZl MAX 12 CONDITIONS y Low Level tZH TYP 45 W High-to-Low Level Output tZH MAX 29 MIN Y High-to-Low Level Output ~ TYP 36 CL Low:to-High Level Output tpHl MAX 22 W High-to-Low Level Output tplH .' TYP CONDITIONS - 0 Y High-to-Low Level Output tplH MIN ~ UNITS CL = 5 pF CL iRL RL = 2kQ 4 8 37 55 15 23 15 25 = 5 pF = 280Q r-0 N .... (J'1 5.5 8.5 ns 9 14 ns .0 W N (J'1 ....A ~ MSI DM54/DM74LS253,S253 TRI-STATE Data Selectors/Multiplexers General Description Each of these Schottky-clamped data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip, binary decoding data selection to the AND-OR gates_ Separate output control inputs are provided for each of the two four-line sections_ • • • • The TRI-STATE outputs can interface directly with data lines of bus-organized systems_ With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. Permits multiplexing from N lines to 1 line Performs parallel-to-serial conversion Strobe/output control High fan-out totem-pole outputs Features LS253 • TRI-STATEversion of LS153,S153with same pin-out • Schottky-diode-clamped transistors S253 Connection Diagram TYPICAL PROPAGATION DELAY TYPE Data to Output Select to Output Data to Output Select to Output TYPICAL POWER DISSIPATION 12 ns 21 ns 6 ns 12 n5 35mW 275mW Truth Table SELECT INPUTS OUTPUT CONTROL DATA INPUTS OUTPUT B A CO C1 C2 C3 G V X X X X X H Z L L L X X X X L L L L H X X L H L H X L X X X L L L H H X x L H H L X X X L L L L H H L L L H H X X X H H X X X X X l H H L H X X Address inputs A and B are common to both sections. H == High Level, L == Low level. X = Don't Care. Z = High Impedance 54LS253/74LS253(JI, (N), (WI; 74S253(NI Logic Diagram OUTPUT (1) CONTROL 61 .ATA 1\'C' (s) 102 "I"'·}--------i-++tt......- 1C3 ..1;3 ;:.1----;:==:::t:tti-l-SELECT [ :lCt (11) 2C2 ..:.ll~21"-__________-;~::~~~ 2C3~"--_:_----t=t:==*::r~ OUTPUT (15) CONTROL G2 J . - - - - - - 2-163 5253 To Be Announced In 1976 ~MSI OM54/0M74LS253.S253 Elej:trica' Characteristics over recommended' operating free-air temperature range (unless otherwise ~oted) DM74 DM54Lsn4LS LS253 CONDITIONS PARAMETER TYP(l) MIN V,H High Level Input Voltage V,l Low level Input Voltage I nput Clamp 10H High Level Output Current VOH 2 Volt~ge V, Vee V,L 10l Val := = Min, V ,H Max, Low. Level Output Voltage 1010FFI Vee := High Level Input Current ,Low Level Input Current -LS -1.2 DM54 -1 DM74 -2.6 N/A -6.S 3.4 3.1 .. "" 2V Max 4 DM74 8 DMS4 DM74 0.4 O.S IOL ,., 4 rnA DM74 0.4 Vee =Max. V, los Short Ci rc~ it Output Current· Supply Current Vee Vee Vo := Ma>: V, =OAV =2AV =5.5V =7V V N/A 20 mA N/A 20 0.5 V 50 pA 50 1.0 0.1 50 20 -0.36 V, =OAV =0.5V 2 = Max(2) =Max(3) mA -20 = 2.7V V, V 3.2 Vo = O.SV V, Vee'" Max Icc IOL V N/A, V DM54 Vo Vee .. M~x Input Voltage I,l 0.8 2.4 = 2V Min. V 1H Vee = Max, V 1H V1L Input Current at Maximum I'H 0.8 2.4 Off-State (High-Impedance State) Output Current I, DM74 DM74 V'L = Max V N/A, DM54 ., MAX 2 2V Low Level Output CU'rrent TYP(l) 0.7 = Max =' IOH MIN I DM~4 Vee = Min, I, .. -18 rnA High Level Output Voltage UNITS S253 MAX -30 -130 Condition A 7 12 Condition B 8.5 14- -40 -100 mA pA mA mA mA 55 All Outputs Open 70 Notes (1) All typical values are at Vce = 5V. TA = 25°C. (21 Not more than on~ output should be shorted at a time, and duration of short circuit should not exceed one second. (31 ICC is measured with 'the outputs open under the following conditions; A. All inputs grounded. B. Output control at 4.5V. all inputs grounded. (4) National S.mi~onductor temporarily reserves the right to ship DM54/DM74LS253 devices which have a minimum iOS = 5.0 rnA. Switching Characteristics vee = SV. T A = 2SoC DM74 DM54Lsn4LS , PARAMETER FROM (iNPUT) TO (OUTPUT) LS253 CONDITIONS tplH Propagation Delay Time, Low-to-High Level Output tPHL Propagation Delay Time, Propagation Delay Time, I Select tpHL Y Propagation Delay Time, CL = 15 pF Rl = 2 kn High-ta-Low Level Output tZH Output Enable Time to High Le,vel tZl Output Enable Output Tim~ MAX, 17 25 13 20 CONDITIONS Cl Rl Low-to-High Level Output Control UNITS S253 TYP MIN TYP MAX 6 9 ns 6 9 ns 11.5 18 ns 12 18 ns 13 19.5 ns 1'4 21 ns 5.5 8.5 ns 9 14 ns Y Data High-to-Low Level Output tPLH MIN 30 45 21 32 15 23 Y 1.5 23 27 41 = 15 pF = 280n Cl RL =50 pF =280!) Cl = 5 pF to low level tHZ tlZ .output Disable Time From High Level Output 'Output Disable Time Control Y ='5 pF Rl = 2 kn Cl From Low level 2-164 18 27 RL = 280!) ~·MSI OM54/0M74LS257.S257.LS258.S258 TRI-STATE Quad 2-0ata Selectors/Multiplexers General Description Features These Schottky-clamped high-performance multiplexers feature TRI-5TATE outputs that can interface directly with data lines of bus-organized· systems. With all but one of the common outputs disabled (at a high impedance state I. the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output enable circuitry is designed such that the output disable times are shorter than the output enable times. • TRI-5TATE versions L5157. 5157, L5158, 5158, with same pin-outs • Schottky-clamped for significant improvement in A-C performance • Provides bus interface from multiple sources in highperformance systems This TRI-5TATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system. TYPE AVERAGE PROPAGATION DELAY FROM DATA INPUT TYPICAL POWER DISSIPATION LS257 LS258 5257 5258 12 n. 12 ns 4.8 ns 4';. SOmW 35mW 320mW 280mW Connection and Logic Diagrams . INPUTS Vee OUTPUT CONTROL 1,6 .r--....-...., B4 A4 14 15 INPUTS OUTPUT V4 13 A3 11 12 OUTPUT V3 B3 10 - 2 A1 4 3 Bl VI 6 5 A2 B2 OUTPUT INPUTS 7 V2 OUTPUT OUTPUT CONTROL 1,6 9 r- 1 SELECT Vee A4 15 OUTPUT V4 B4 12 13 14 INP)JTS A3 OUTPUT V3 B3 11 p- ~ I 18 GNO 9 10 81 6 5 VI A2 OUTPUT INPUTS INPUTS 4 3 2 AI SELECT B2 INPUTS 7 V2 OUTPUT P GNO 54L5258/74LS258(JI. (NI, (WI; 74S258(NI 54LS257/74LS257(JI, (NI. (WI; 7,4S257(NI LS258.S258 LS257.S257 OUTPUT (15) CONTROL OUTPUT (15) CONTROL Al~~~I_·_ _ _ _----~~ Al~----------r~ +-_______ Bl~(3~1_ _ _ ~~ A2~(5)~_ _~~_ _ _+-~~ B2 (61 A3 (111 +-______+-~~ B3~110~1______ +-______+-~~ A4~114~1______ V4 B4~(13~1_ _ _; -_ _ _-+-r~ V4 To S_ Announced In 1976 Electrical Characteristics ~ over recommended operating free-air temperature range (unless otherwise noted) DM54lS/74lS DM74S lS257, lS258 S257, S258 TYP(l) TYP(1) ! PARAMETER CONDITIONS MIN V ,H High Level 'Input Voltage V,L Low Level Input Voltage V, I nput Clamp Voltage 10H High Level OUtput Current VOH Vee High Level Output Voltage Vee V 1L 10L VOL :::m m ~ Min, I, Current Maximum Input Voltage I,L Low Level Input Current . 1.5 -12 --10 DM74 -2.6 -6.5 2V DM54 2.4 3.4 N/A Max DM74 2.4 3.1 2.4 ~ Min, V ,H ~ 2V Max Vee =-- Max Vo~O.4V V ,H Vo~0.5V ~ 2V IOL = Max laL ~ 4 mA 4 N/A DM74 S 20 DM54 0.25 0.4 N/A DM74 0.35 0.5 '0.5 DM74 0.25 0.4 ~ V, ~7V V, ~ ~ -50 20 0.2 1 S Input Vee'; Max Any Other V, o· 0.5V V, ~ OAV Short Circuit Output Current ICC Supply Current 50 20 50 All Outputs Off All Outputs Low All Outputs Off ~ mA 0 IlA (J) Max(3) LS258,S258 -130 s:..... r- N ..... mA -40 -100 5.9 10 44 68 9.2 16 60 93 10 17 64 99 4.1 7 36 56 6.2 11 52 81 7.0 12 56 87 (J) N U1 2 LS257, S257 Vee ~ -2 All Outputs High All Outputs High U1 U1 -{).4 --30 0 ~ ....... -{)S Vee ~ Max!21 All Outputs Low Il A ~ 40 V, " 0.5V lOS V 0.1 Max, V, o2.7V OAV mA 1 5.5V ~ mA 50 5.5V V, V -20 Vo~2.4V V, V V 3.2 DM54 V, - 7V Vee N/A = Vee:::: Max Any Other 0.8 =: S Input S Input 0.8 Min, V 1H Any Other High Level"lnput Curre~t DM74 Max, IOH V1L=Max I nput Current at N/A = Lqw Level Output Voltage Vee 0.7 DM54 ~ (J) V 2 DM54 -18·mA Low Level Output Current 10lOFFI Off State (High Impedance State I Output I'H ~ MIN :::: V'L I, MAX 2 UNITS MAX mA :-oJ r(J) N U1 (X) mA (J) N U1 00 Switching Characteristics vee ~ 5V, T A,~ 25°C ~ DM74S DM54LS/74LS FROM (INPUT) PARAMETER TO (OUTPUT) CONDITIONS tpLH Level Output tZH tZL 7 ~5 4 6 ns 12 18 4,5 6.5 4 6 ns Any ~ 14 21 8~5 15 8 12 ns R L ~ 14 21 8,5 15 7.5 12 ns 20 30 13 19.5 13 19.5 ns Control 20 30 14 21 14 21 ns tHZ 20 30 5.5 8.5 5,5 8.5 ns 0 ~ 9 14 9 14 ns ....... 2 krl tLZ Output Control Output Disable Time 15 pF RL ~ 280rl Any Output Disable Time From High Level ~ CL 15 pF Low Level en ~ -.J Output Enable Time to CL Any ~ RL ~ 5 pF CL ~ 5 pF RL ~ 2 kn 17 From Low Level 25 (2) (3) 280n (11 ~ 0 ~ Notes (1) MAX 5 Output Enable Time to Output TYP 18 Level Output High Level ~ CL Propagation Delay Time, High~to~Low MAX MIN 12 Level Output Select TYP Any Propagation Delay Time, Low~to~High MIN C/) MAX Propagation Delay Time, High~to~Low tpHL CONDITIONS ~ UNITS S258 TYP Level Output Data tpLH MIN Propagation Delay Time, Low~to~High tpHL S257 LS257, LS258 ..... All typical values are at Vee 5V, T A:::; 25° c. Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second. ICC is measured with all outputs open and all possible inputs grounded, while achieving the stated output conditions. ~ 0:; r- C/) N (11 ..... Truth Table C/) OUTPUT Y I~JPUTS OUTPUT CONTROL SELECT H x X L L L L L H L L H H LS258 S258 ~ x Z z C/) X L H N X H L X L L H .00 X H H L A _ B H = High Level, L :::; Low Level, X :::; Don't Care, Z _._-- ._- - ~ ~ High Impedance (off) --~ N (11 LS251 S257 r- (11 C/) N (11 00 ,~ MSI DM54/DM74lS279 Quad General Description Features These latches are ideaily suited ·for use as temporary storage of bfnary information between processing units and I/O units. When either one of the data inputs is at a low logic level, the output will follow the level of the R input. When both data inputs are high, the output will remain latched in its previous state. When both inputs are low, the output will .go high. However, this high level may not persist when either one of the data inputs returns to the high state. • S-R latches For more advanced design S·R latches, see DM7544/8544 • Typical power dissipation 19 mW • Typical propagation delay 12 ns Connection Diagram Rl 181 iS1 Ql R2 82 Q2 GND 54LS279174LS279(J), (N), (W) Truth Table INPUTS - OUTPUT R Q H H Go H Sf L H H L L L L H* H =' High Level L::;: Low Level 0 0 ::;: The·level of Q before the indicated input conditions were established . .. This outpyJ leveUs pseudo stable: that is, it may not persist when the Sand R inputs return to their inactive (high) level. T For latches with double S inputs: H = both S inpu~ high L ::;: one or both S inputs low 2·168 To Be Announced In 1976 ~ OM 54/ OM74LS279 MSI Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted) DM54LS/74LS PARAMETER MIN V1H High Level Input Voltage V 1L Low Level Input Voltage VI Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage = Min, I, Vee = MAX V DM54 0.7 DM74 0.8 -1.5 -18 mA -400 Vee = Min, V ,H = 2V = Max, IOH = -400pA Low Level Output Current = Min = 2V V ,L = Max Low Level Output Voltage VOL TYP(1) 2 V ,L 10L UNITS LS279 CONDITIONS Vee DM54 2.5 3.5 DM74 2.7 3.5 4 DM74 8 0.25 0.4 0.35 0.5 Input Current at Maximum I nput Voltage Il A mA V V ,H II V V DM54 IOL=4mA V IOL Vee = Max, V, = 7V = 8 mA DM74 0.1 mA IIH High Level I nput Current Vee = Max, V, = 2.7V 20 pA IlL Low Level Input Current Vee = Max, V, = O.4V --0.4 mA los Short Circuit Output Current Vee = Max(2) -130 mA Icc Supply Current Vee = Max (3) 7 mA -30 3.8 Notes = 5V, TA = 25°e. (1) All typical values are at Vee (2) Not mOre than one output should be shorted at a time, and duration of short circuit should not exceed one second. (3) ICC is measured with all R inputs grounded, all S inputs at 4.5V, and all outputs open. , Switching Characteristics Vee = 5V, T A = 25°C PARAMETER tpLH CONDITIONS MIN TYP MAX UNITS 12 22 ns 9 15 ns 15 27 ns Propagation Delay Time, Low·to-H igh Level ---- Output From S Input tPHL Propagation Delay Time, High·to-Low Level I Output From S Input -- = 15 pF RL = 2 kD. CL -~-tpHL Propagation Delay Time, I High-to-Low ~evel Output From R Input 2·169 ~ MSI DM74S280i 9-Bit Parity Generators/Checkers General Description Input buffers are provided so that each input represents only one normal 74S load, and full fan-out to 10 normal Series 74S loads is available from each of the outputs at low logic levels. A fan-out to 20 normal Series 74S loads is provided at high logic levels, to facilitate connection of unused inputs to used inputs. These universal, nine·bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry, and feature odd/even outputs to facilitate operation of either odd or even parity applications. The word-length capability is easily expanded by cascading. The S280 can be used to upgrade the performance of most systems utilizing the DM74180 parity generator/ checker. Although the S280 is implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4, and no internal connection at pin 3. This permits the S280 to be substituted for the 180 in existing designs to produce an identical function, even if S280's are mixed with existing 180's. Features • Generates either odd or even parity for nine data lines • Cascadable for n-bits • Can be used to upgrade existing systems using MSI parity circuits • Typical data-to-output delay--14 ns Connection Diagram Truth Table INPUTS 114 13 12 11 10 - , r- 1 2 -----...-...G , 9 H rNPU1S I' NC 4 I INPUT • 5 1 EVEN I' GNO ODD OlJTPUTS 74S280{N) Logic Diagram 2-170 OUTPUTS NUMBER OF INPUTS (A THRU I) THAT ARE HIGH LEVEN 0,2.4,6,8 H L 1. 3, 5, 7, 9 L H L ODD ~ DM74S280 MSI Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM74S CONDITIONS PARAMETER VIH High Level Input Voltage VIL Low Level I nput Voltage VI Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage Low Level Output Current VOL Low Level Output Voltage Ii MAX V ~ Min, II ~-18ITlA 0.8 V -1.2 V -1 Min, V IH ~ V IL ~ 0.8V, IOH ~-1 Vee Input Current at Maximum I nput Voltage ~ 2V mA Vee'" Min, V IH = 2V V IL = 0.8V, IOl = 20 mA Vee = Max, VI ~ 2.7 Vee = Max, VI = 2.7V IlL Low Level Input Current Vee = Max, VI = 0_5V los Short Circuit Output Current Vee = Max(2) Icc Supply Current Vee = Max(3) mA V 3.4 5.5V High Level I nput Current IIH TYP(1) 2 Vee 10L UNITS S280 MIN -4.0 20 mA 0.5 V 1 mA 50 /lA -2 mA -100 mA 105 mA 67 Notes (11 (2) (3) All typical value •• r. at VCC = 5V, TA ~ 25"C. Not more than one output should be shorted at a tim.e, and duration of the short circuit should not exceed one second. ICC is measured with all inputs grounded and all outputs open. Switching Characteristics Vee = 5V,T A = 25°C DM74S PARAMETER FROM (INPUT) TO (OUTPUT) CONDITIONS S280 MIN tpLH Propagation Delav Time, Low-to-High TYP UNITS MAX 14 21 ns 11.5 18 ns 14 21 ns 11.5 18 ns Level Output Data tpHl LEven Propagation Delay Time, High-to-Low Level Output CL tplH = 15 pF, RL = 180n Propagation Delay Time, Low-to-High Level Output Data tpHl L Odd Propagation Delay Time, High-to-Low Level Output 2-171 ~ MSI DM74S280 Typical Applications Three S280's can be used to implement a 25-line parity generator/checker_ This arrangement will provide parity in typically 25 ns. (See Figure 1.) (S86) or 3-input (S135) exclusive-OR gate for 18 or 27-line parity applications. Longer word lengths can be implemented by cascading S280's_ As shown in Figure 2, parity can be generated for word lengths up to 81 bits in typically 25 ns_ As an alternative, the outputs of two or three parity generators/checkers can be decoded with a 2-i nput A Z EVEN H = EVEN L =000 A l: EVEN ~ EVEN H =000 L = EVEN F G H L 000 ~ EVEN TO OTHER S280'S FIGURE 1: 25-LlNE PARITY/GENERATOR CHECKER FIGURE 2: 81-LINE PARITY/GENERATOR CHECKER 2-172 H = EVEN L = 000 H =EVEN l = DOD ~ MSI DM74S281 4-Bit Parallel Binary Accumulators General Description These Schottky-clamped four-bit accumulators integrate high-performance versions of an arithmetic logic unit/ function generator, and a shift/storage matrix in a single circuit. The arithmetic logic unit (ALU) portion provides the. capability of 16 arithmetic/logic type operations, as detailed in Table I. The accumulator includes an exchange of subtract operands by which either A-B or B-A can be accomplished directly. The ALU is controlled by three function-select inputs (ASO, AS1, AS2) and a mode-control input (M)_ When the mode-control input is high, the ALU may perform any of seven logic functions on two binary variables, as detailed in Table II. Full carry look-ahead is provided for fast, simultaneous carry generation_ The carry input (C n ) and propagate and generate outputs (P, G) are implemented for direct use with the DM74S1 B2 look-ahead/carry generators. This permits systems to be implemented with the added advantage of full look-ahead across any word length to minimize the accumulator delay times. Once data is loaded into the accumulator, the typical add time with full look-ahead is 29 nanoseconds for 16-bit words_ or ho.ld. Control of the register is accomplished with three inputs: register control (RC) and register selection (RSO, RS1). The cascading input/output lines incorporate TRI-STATE outputs multiplexed with an input. The least-significant cascading bit is combined with the AO/FO circuitry to provide the shift-right input and the shift-left output (RI/LO). and the most significant bit is coupled with the A3/F3 circuitry to provide the shift-left input and the shift-right output (L1/RO). Features • • • • Logic mode operation provides seven Boolean functions of the two variables Full shifting capabilities: Logic shift (left or right) Arithmetic shift (left or right) for sign bit protection Hold Parallel load Expandable to handle n-bit words with full carry look-ahead 15 arithmetic/logic operations: Add Subtract (B-A or A-B) Complement Increment Transfer Plus 10 other functions Full 4-bit binary accumulator in a single package The shift/storage matrix has capabilities similar to the DM74S194 universal bidirectional shift register, with the added advantage of multiplexed input/output (I/O) cascading lines which comprehend arithmetic shiftfunctions having a sign bit, such as 2's complements. The matrix can be used to perform either logic or arithmetic shifts in either direction (left or right). parallel load, • Connection Diagram Truth Tables Notes Shown on Following Page TABLE I-ARITHMETIC FUNCTIONS Mode Control (M) = Low FUNCTION DATA Vee ~~ SELECT CLOCK Rl/lO rASa AS1 MODE ASZ' CN~Rl 'FO F1 F2 FJ' AS2 AS1 24 23 22 21 20 19 18 11 16 15 14 ACTIVE HIGH DATA ALU SELECTION DATA OUTPUTS en en = L (no carry) (with carry) ASO 13 = H L L L FO L L H F L H L L H H ~ H L L F ~ H L H F ~ B PLUS 1 Fo ~ Bo H H L F Fo H H H F ~ A PLUS 1 ~ L. F 1 ~ F2 ~ F3 ~ H Fo ~ H F ~ B MINUS A MINUS 1 F~AMINUSB F ~ A MINUS B MINUS 1 F A PLUS B PLUS 1 F ~ B PLUS 1 Fo ~ ~ B MINUS A A PLUS 1 A PLUS B ~ ~ Bo Ao Fo ~ Ao TABLE II-LOGIC FUNCTIONS Mode Control (M) = High 12 A1 A2 ASI ASO REG lIIAD --.,....-.. ~ eNTAL DATA IN REGISTER Ae A3 en P Carry Input ICnl GNO ALU SELECTION DATA IN SElECT AS2 AS1 74S2B1(N) Tentative Data 2-173 = X (Don't Care) ACTIVE-HIGH DATA FUNCTION ASO L L L Fo ~ L L X H Fn = An L H L Fo ~ Ao H L L Fo~AoBe H L H Fn = An H H L Fo H H H Fn =An +8., ~ (i) Bo (+) Bo + Bn AnBe To Be Announced In 1976 ~ MSI DM74S281 Truth Tables (Continued) TABLE III-SHIFT MODE FUNCTIONS C n = M = SO = Sl = Low, and S2 = High REGISTER SELECTION RS1 RSO REGISTER CONTROL INPUT FQ F1 F2 F3 L L X to f1 f2 f3 L H L OBo Oeo 0 00 Ii t t L H H OCo 0 00 Ii t H L L OAO ri OAo OBO OCn SHIFT-MATRIX INPUTS CLOCK INPUT H L H ri OAo OBo 0 00 H H X OAO OBO Oeo 0 00 t t t X X X OAO OBO Oeo 0 00 L INPUTI OUTPUT RI/LO SHIFT-MATRIX OUTPUTS (INTERNAL) °A °B OC 00 INPUTI OUTPUT U/RO Z to f1 f2 f3 Z OBo OBo OCo 0 00 Ii Ii OBo ri OBo ri Oeo Ii 0 00 Ii OAo Q Sn Oco Oeo ri ri OAo OBo 0 00 Z OAO OBO Oeo 000 Oeo Z X OAO OBO Oeo 000 X H = High Level (steady state) L :::: Low Level (steady state) X = Don't Care (any input, i~cluding transitions) Z = High I mpedanee (output off) t = Transition from low to high level fa, fl, f2, f3, ri, Ii = The level of steady-state conditions at FO, F1, F2, F3, RI/LO or Ll/RO respectively. GAO. 0ao, QeD. 0DO = The level of GA. OS, OCI or GO. respectively', before the indicated steady state input conditions were established. GAn, 0Sn, GCn. GO n :::: The level of GA. QS. OC. or GO, respectively, before the most recent transition of the clock. Electrical Characteristics over recommended operatinll free-air temperature range (unless otherwise noted) DM74S PARAMETER CONDITIONS UNITS S281 MIN TYP(l) MAX V,H High Level Input Voltage V,L Low Level/nput Voltage V, Input Clamp Voltage Any Input Except Ll/RO and RI/LO 10H High Level Output Current Any Output Except Ll/RO and RI/LO -1 Ll/RO and RI/LO -2 High Level Output Voltage VOH Low Level,Output Current 10L Vee::!. Min, I, =-18mA Any Output Except Ll/RO and RI/LO Vee =- Min, V'H ~ 2V 2.7 3.4 Ll/RO, RI/LO V'L - 0.8V, IOH - Max 2.4 3.4 0.8 V -1.2 V 20 Ll/RO and RI/LO 10 I, Input Current at Maximum Input Voltage(3) I'H High Level J nput Current Vee == Min, V'H ~ 2V V'L 'oL=Max = 0.8V, Vee'" Max, 0.5 V, = 5.5V 1 - RSO, RS1 M, Clock Ll/RO, RI/LQ(3) jJ.A 250 -3 RI/LO M, Clock -4 Vee == Max, VI = O.5V mA -6 -8 ASO, AS1 Others los Short Circuit Output Current Vee = Max(2) Icc Supply Current Vee 0:::: Max -40 144 Notes (1) All typical values are at Vee (2) Not more than one output should be shorted at a time, and duration q,f short circuit should not exceed one second. When testing input current at the RI/LO or L1/RO terminals, the output under test must be in the high-impedance (off) state. (3) mA -2 RSO, RSl, Ll/RO(3) = 5V, TA = V 150 200 . 300 Vee = Max, VI:;: 2.7V Others Low level Input Current mA 50 AS2 I,L mA V Any Output Except Ll/RO and R IILO Low Level Output Voltage VOL V 2 25°e, 2-174 -110 mA 230 mA ~ DM74S281 MSI Switching Characteristics vee ~ 5V, TA ~ 25°C DM74S PARAMETER FROM (INPUT) TO (OUTPUT) CONDITIONS S281 MIN UNITS TYP MAX 10 20 ns 10 20 ns 18 30 ns 18 30 ns 10 20 ns 50 MHz fMAX Clock Frequency (For Shifting) tpLH Propagation Delay Time, Low-te-High level Output tPHL Propagation Delay Time, High-ta-low Level Output tPLH Propagation Delay Time. Low-ta-High Level _Output tpHL Propagation Delav Time, High-ta-Low Level Output tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output 10 20 ns tpLH Propagation Delay Time, Low . to-High Level Output 14 24 ns tpHl Propagation Delay Time, High-ta-Low Level Output 14 24 ns tpLH Propagation Delay Time, Low-ta-High Level Output 12 20 ns tPHl Propagation Delay Time, High-to-Low Level Output 12 20 ns tpLK Propagation Delay Time, Low-to-High Level Output 20 35 ns tpHL Propagation Delay Time, High-to-Low Level Output 20 35 ns tpLH Propagation Delay Time, Low-to-High Level Output 30 45 ns tPHL Propagation Delay Time, High-to-Low Level Output 30 45 ns tPLH Propagation Delay Time, Low-to-High Level Output 30 45 ns tpHL Propagation Delay Time, High-to-Low Level Output 30 45 ns tPLH Propagation De!ay Time, Low-to-High Level Output 7 11 ns tPHL Propagation Delay Time, High-ta-Low Level Output 7 11 ns Cn C n +4 Any A Cn Cn + 4 Any F G Any A P Any A Ai Fi RI/LO Aa CL ~ 15pF 1/0 Outputs: RL ~ 560[2 tpLH Propagation Delay Time, Low-to-High Level Output tpHl Propagation Delay Time, High-to-Low ,Level Output Ll/RO A3 Fa RIILO F3 Ll/RO Other Outputs: RL = 280n 7 11 ns 7 11 ns ns tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Law Level Output tplH Propagation Delay Time, Low-to-High Level"Output tpHL Propagation Delay Time, High-to-Low Level Output tpLH Propagation Delay Time, Law-ta-High Level Output tpHl Propagation Delay Time, High-to-Low Level Output tPLH Propagation Delay Time, Low-to-High Level Output tPHL Propagation Delay Time, High-to-Low Level Output tWICLOCKi Width of Clock Pulse 8 ns tsETUP Data Setup Time With Respect to Clock ot (5) ns tHOlD Data Hold Time With Respect to Clock 1St (5) Any AS Any AS Clock Clock Any For 28 45 C n +4 28 45 n5 20 33 ns 20 33 ns 30 45 ns 30 45 ns RI/LOor 35 55 ns LI/RO 35 55 ns Por G Any F Notes (5) t ·The arrow indicates that the rising edge of the clock pulse is used for r,eference. 2-175 \ ns ~ MSI DM74S281 Typic!!1 Applications RIGHT DATA' IN CARJ!Y - INPUT - RI/LO LIIRO 5281 - r-Co+4 r-- RI/LD LIIRO S281 Co+4 . - - Co Co RIILO LIIRO S281 C, Co+4 - LEFT LIIRO ~ DATA IN CARRY Co+4 ~ OUTPUT RI/LO S281 Co Enter and store timlt: 38 os typ Each successive addition to stored data: 4405 typ FIGURE A: 16-BIT BINARY ACCUMULATOR USING FOUR DM74S281 CIRCUITS IN RIPPLE-CARRY MODE • RIGHT DATA IN CARRY INPUT RI/LO Co lIlRO lEFT DATA IN Co+4 CARRY OUT S182 Enter and stote time: 37 os typ Each sllccessive addition to stored data: 29 IlS typ ~6~UK~!~~~;BIT BINARY ACCUMULATOR USING FOUR DM74S281 CIRCUITS AND ONE DM74S182 FOR FUlLpARRY LEFT RIGHT DATA IN DATA IN CARRY CARRY OUTPUT INPUT S182 5182 S182 8182 Co Co 'GO PO Co G1 Co G2 P1 P2 GJ PJ 5182 Enter and store time: 42 os tvp Each successive addition to stored data: 34 os typ FIGURE C: 64-BIT BINARY ACCUMULATOR USING 16 DM74S281 CIRCUITS AND FIVE DM74S182 CIRCUITS FOR FULL CARRY LOOK-AHEAD 2-176 ~ MSI OM54/0M74S287,S387 1024-Bit Programmable Read Only Memories General Description These circuits are field-programmable, 1024-bit, readonly memories organized as 256 words of four bits each. This high-speed, Schottky-clamped, TTL memory array is addressed in 8-bit binary with full on-chip decoding. Two overriding chip-select inputs are provided which, when either one or both are high, cause all four outputs to be off (high Z state for 5287). This memory features PNP input transistors, which reduce the low level input current requirement to a maximum' of -0.25 mA, only one-eighth that of a standard Series 745 load. The organization is expandable with no additional output buffering. in the recommended operating conditions will not alter the memory content. These programmable memories can be used to replace the DM74187, as they are functionally and mechanically identical. Features • Fully decoded, low-current PNP inputs • 5387 has open-collector outputs for easy word expansion • 5287 is functionally equivalent but has TRI-STATE outputs • Provides the versatility of custom designs virtually "off the shelf" • Applications include: Microprogramming Look-up tables for any fixed program Parallel Code Converters Sequence, routine, and subroutine generators Random logic function generator • I nterchangeable with most other 256 words by 4-bit TTL PROMs/ROMs • Fully compatible with most TTL and other saturated low level logic families • Schottky-clamped for high performance: 15nstyp Chip-select access time, 30 ns typ Address access time The address of a 4-bit word is accomplished through the buffered binary select inputs, with a low level at both chip-select inputs. Where multiple devices are used in. a memory system, the chip-select inputs allow easy decoding of additional address bits. Data can be electronically programmed at any of the 1024-bit locations. Prior to programming, the memory contains a low logic level output condition at all bit locations. The programming procedure open·circuits metal links, which results in a high logic level output at the selected locations. The procedure is irreversible; once altered, the output for that bit is permanently programmed to provide a high logic level. Outputs never having been altered may later be programmed to supply a high level output. Operation of the device with- Connection Diagram vr SELECT INPUT H 16 15 ENABLES CS2 L4 OATA OUTPUTS , CSI 113 VI V2 12 V3 , Y4 10 11 9 V) .- r- I 1 ,G 12 F I ! t ! 3 E 4 0 5 A 6 1 B 17 C I J: SELECT INPUTS , 54S2871JI; 74S287IJ), IN); 54S387IJ); 74S387IJ), (N) 2-177 To Be Announced In 1976 ~ .' MSI DM54/DM14S281,S381 Electrical Characteristics over recommendedop€rating free-air temperature range (unless otherwise noted) DM54S174S CONDITIONS PARAMETEIl .5287 MIN V'H Hi,gh Level Input Voltage V," Low Lever Input, Voltage V, Input Clamp Voltage 10H High Level Output Current Min, Vee Ii High Level Output Voltage Vcc V IL 10l Low Level Output Current Low Level Output Voltage MIN O.8V Vcc ViL 1010FF) Off-State (High Impedance State) Output Current Vcc = =: =: = = Min, V 1H -=; ~ 2.4V VOH~ 5.5V V .. 1.2 -1.2 V N/A 50 N/A 100 N/A DM74 "6.5 N/A 2.4 I, Input Current at Maximum Input Voltage Vee"" Max, V, High level Input Current Vcc = Max, V, .. I," Low Level Input Current Vee := Max, VI lOS Short Circuit Output Current Vee ~ Max(2) Icc Supply Current Vee = Max(3) ~A rnA 5.5 V 16 16 rnA 0.5 0.5 V 3.2 0.8V, IOL '" 16 rnA I'H V 0.8 --2.0 2V 2V , 0.8 Min, V'H =- 2V "" MAX DM54 0.8V, IOH "" Max Max, V 1H UNITS TYP(1) 2 = -18 mA V OH V'L VOL MAX 2 Vee "'Min, V'H::: 2V VOH S387 TYP(l) Vo :=0 0:5V -50 NIA Va ~2.4V 50 N/A MA = 5.5V 1 1 mA 0;; 2.7V 25 25 ~A -250 -250 := O.45V -30 -100 N/A 135 100 100 ! MA mA 135 mA Notes (1) All typical values are at VCC ~ 5V, TA ~ 25°C. (2) Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second. (3) ICC is' measured with outputs open and both Switching Characteristics vee ~ 5V, CS inputs .grounded. TA ~ 25°C .. DM54S/74S PARAMETEIl FIlOM /INPUT) TO IOUTPUT) S287 CDNDITIONS tplH Propagation Delay Time, Low-to-High Level Output Address tPHl Propagation Delay Time, High-ta-Low Level Output tPlH Propagation Delay Time, Low-to-High Level Output tpHl tZH Propagation Delay Time, High-te-Low Level Output Output Enable Time to High Level tZl Output Enable Time to Low Level tHZ Output Disable Time From High Level tLZ Output Disable Time From Low Level MIN S387 TYP MAX CONDITIONS MIN UNITS TYP 30 35 ns 30 35 ns 15 os 15 I1S N/A ns NIA os Any N/A Chip Select CL "30 pF Any CL Rt. "400n NIA 15 Chip Select MAX Any ~ 30 pF to GND Ru ~ 400n to Vee RL2 ~ 600n to GND 15 -Chip Select Any Notes (4) When measuring times from address inputs, both CS1 Cl "" 5 pF RL ~ 400n and CS2 are low. held steady. 2-178 12 NIA ns 12 N/A os When measuring times from chipMselect inputs, the address inputs are - I I I ~ MSI OM54/0M74S289 64-Bit Read/Write Memories with Open Collector Outputs General Description The fast access time of the S289 makes it particularly attractive for implementing high performance memory functions requiring access times on the order of 25 ns. The unique functional capability of the S289 outputs being high during writing, combined with the data inputs being inhibited during reading, means that both data inputs and outputs can be connected to the data lines of a bus organized system without the need for interface These 64-bit active element memories are Schottkyclamped TTL arrays organized as 16 words of four bits each. They are fully decoded and feature a chip-enable input to simplify decoding required to achieve the desired system organization. The memories feature PNP input transistors that reduce the low level input current requirement to a maximum of -{).25 mA, only oneeighth that of a (standard) Series 54S/74S load factor. The chip-enable circuitry is implemented with minimal delay times to compensate for added system decoding. circuits. Features Write Cycle: The complement of the information at the data input is written into the selected location when both the chip-enable input and the read/write input are low. While the read/write input is low, the outputs are at a high logic level {off;. • Schottky-clamped for high-speed applications: 12 ns typ Access from chip-enable inputs Access from address inputs 25 ns typ Read Cycle:' The stored information (complement of information applied at the data inputs during the write cycle) is available at the outputs when the read/write input is high and the chip-enable input is low. When the chip-enable input is high, the outputs are high (off). SELECT INPUTS BCD '16 15 14 13 Open-collector outputs for controlled·impedance bus lines • DM54S189/DM74S189 are functionally equivalent but have TRI-STATE outputs • Chip-enable input simplifies system decoding • Compatible with Intel 3101A in most applications Connection Diagram ....-----.------. • Logic Diagram DATA INPUT 4 , OATA 0 UfPUI Y4 INPUT OUTPUT 3 Y3 11 10 12 111 9 115) 64·B1T MEMORY ADDRESS ADDRESS INPUTS 114) BUffERS 1·0F·16 DECODERS MATRIX ORGANIZED 16 X 4 1131 p.. r- _ 121 CHIP ENABLE (eE) REAONvRITE IRM'I 13) 1 2 SElECT CHIP INPUT A ENABLE 4 3 READ! Wf{ITE DATA INPUT 1 5 OUTPUT Y1 6 DATA INPUT 7 OUTPUT Y2 18 GNO DATA INPUTS \:: 2 ---"'1-' -'I"'W-) D3~~--~--~-' 04~1~12~1__~~__~__~ 54S289(JI; 74S289(J), (WI 15) Y1 171 191 Y2 1111 Y3 OUTPUTS Truth Table INPUTS FUNCTION Write (Store Complement of Datal CHIP ENABLE READ! WRITE OUTPUT H L Read L H Stored Data Inhibit H X H H = High Level, L = Low Level, X =- Don't Care 2-179 Y4 ~ MSI OM54/0M74S289 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM54S04S S289 CONDITIONS PARAMETER MIN MAX 2 " High Level Input Voltage VIH UNITS TYP(1) VIL Low Level Input Voltage VI Input Clamp Voltage Vee; Min, I, = -18 mA IOH High Level Output Current Vee=Min,V'H=2V V I V oH =2,4V V V 40 I VOH - 5,5V V'L ; 0,8V 0,8 -1.2 100 J1A VOH High Level Output Voltage 5,5 V IOL Low Level Output Current 16 mA VOL Low Level Output Voltage Vee = Min, V ,H = 2V V'L ; 0,8V, 10L = 16 mA 0,5 DM74 0.45 Vee = Max, V, ; 5,5V I nput Current at Maximum II DM54 V 1 mA Input Voltage , IIH High Level Input Currerit Vee; Max, V, ; 2.7V IlL Low Level I nput Current Vee; Max, V, ; 0,45V IcC Supply Current Vee = Max(2) 75 25 IJ.A -250 J1A 105 mA Notes (1) All typical value, are at VCC; 5V, TA = 25°C, (2) ICC is measured with all inputs grounded, and the outputs open. Switching Characteristics over recommended operating ranges of Vee and T A (unless otherwise noted) DM54S PARAMETER CONDITIONS DM74S S289 MIN MAX 25 50 12 25 12 17 ns 12 25 12 17 !'IS 22 40 22 35 ns MIN tAA Access Times From Address tCLH Disable Time From Chip Enable tCHL Enable Time From Chip Enable tWHL Sense-Recovery Time From Read/Write twp Width of Write-Enable Pulse (Read/Write Low) 25 25 tAsw Setup Time D 0 CL = 30 pF UNITS S289 TYP TYP MAX 25 35 nS Ru =300n R L2 = 600n Address to Read/Write tosw Data to Read/Write 25 25 tcsw Chip Enable to Read/Write 0 0 Address From Read/Write 0 0 Data From Read/Write 0 0 Chip Enable From Read/Write 0 0 I~ I~ tCHW Hold Time , 2-180 !'IS ns ns ~MSI DM54/DM74S289 Parameter Measurement Information LOAD CIRCUIT -h r VCCRU FROM OUTPUT UNDER TEST .. c C ':' R" ENABLE AND DISABLE TIME FROM CHIP ENABLE CHIP ENABLE INPUT (SEE NOTE 31 3V 1.5V OV----____~~----~------------I VOH OUTPUT ISEE NOTE II ----+--""'1.5V VOC--------~------~-,------_4--' ACCESS TIME FROM ADDRESS INPUTS ADDRESS INPUTS INOTE 21 ,:=t~·~----J@:F----· ~5V _ _ _ _ _ _ _ ____ OUTPUT Voc __________- - - -____ 15V ~~ WRITE CYCLE 3V ADDRESS INPUTS JV DATA INPUTS JV CHIP·ENABlE INPUT OV 3V READiWAITE INPUT OV VOH OUTPUT (NOTE 11 ------- Vo , Notes (1) Waveform 1 is for the output with internal conditions such that the output is Jo~ except when disabled. (2) When measuring delay times from address inputs, the drip enable input is low and the read/write input is high. When measuring delay times from chip enable input, the address inputs are steady state and the read/write input is high. ~3) (4) Input waveforms are supplied by pulse generators having the following characteristics: tr ~ 2.5 ns, tf ZOUT ~ 50n. 2·181 s: 2.5 ns, PRR ~ 1 MHz and ~ MSI OM54/0M74LS295A TRI-STATE 4-Bit Parallel Access Shift Registers General Description When the output control is high, the normal logic levels of the four outputs are available- for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a low logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the register is not affected. These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, mode, and output control inputs. The registers have three modes of operation: Parallel (broadside) load Shift right (the direction OA toward Op) Shift left (the direction Op toward 0A) Parallel loading is accompiished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip·flops and appears at the outputs after the high to low transition of the clock input. During parallel loading, the entry of serial data is inhibited. Features • TRI-STATE versions of DM54LS95B(DM74LS95B • Schottky diode clamped transistors Shift right is accomplished when the mode control is low; shift left is accomplished when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (OD to input C, etc.) and serial data is entered at input D. Connection Diagram I" fie " • Applications: N-bit serial-to-parallel converter N-bit parallel-to·serial converter N-bit storage register 70 mW typical '" 11 OUTPUT CONTROL CLOCK fio " Low power dissi pation (enabled) Logic Diagram OUTPUTS fi, • 8 9 DATA INPUTS OUTPUTS - r- 3 2 1 4 I' 6 5 SERIAL MODE INPUT CONTROL INPUTS GNU 54LS295A/74LS295AIJI, IN), IWI MODE CONTROL OUTPUT CONTROL SERIAL INPUT Truth Table INPUTS MOOE CONTROL CLOCK H H H H > > L H L > > L H OUTPUTS SERIAL ac aD OAO aBO b a Q eo c aDO d aCe Q On d OAO aBO Oeo 000 H OAe Q Sn aCe L OAe G Bn aCe aA A B e D X X X X a b c d d QBn X X X X X X X , as Oc' X X X H X X X X X L aD X t aB When the output control is low, the outputs are disabled to the high-impedance state; however, sequential operation of the registers is not affected. Tentative Data = High Level Isteady-state I , L = Low Level IsteadY· state), X = Don't Care (any input including transitions) PARALLEL 2-182 t "" Transition from high to low level a, b, c, d = The level of steady-state input at inputs A, S, C, or 0, respectively. 0AO, 0BO, OeD, 0DO = The level of 0A, 0B, 0C, or 0D, respectively, before the indicated steady-state input conditions were established. 0An, 0Bn, 0Cn, 0Dn = The level of OA,OB, 0C, or QO, respectively, before the most recent t transition of the clock. tShifting left requires external connection of 0B to A, QC to B, and GD to C. Ser.ial data is entered at input D. To 'Se Announced In 1976 ~ MSI DM54/DM74LS295A Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM74LS DM54LS PARAMETER CONDITIONS MIN Level Input Voltage V'H High V'L Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current VO H High Level Output Voltage 10L Low Level Output Current Low Level Output Voltage TYPI11 Vee::: Min, V 1H ::: ::: 2V 2.4 Max, IOH ::: Max V Off-State (High Impedance State) =:: ::: Min, V 1H ::: Max tOL -1.5 ·15 V 2.6 rnA 2.4 3.4 Input Current at Maximum = 2V Vee::: Max, VI = 7V 0.25 =4mA tOL:": Vee =:: Max, V 1H V 1L ::: Max Input Voltage 2V V 0.8 V 3.1 4 Vee MAX 0.7 ·1 Output Current I, MIN 2 Vee::: Min, I, ::: ~18 rnA V 1L 1010FFI MAX 2 V 1L VOL TYPI11 UNITS LS295A LS295A 8 0.4 8 rnA 0.25 0.4 0.35 0.5 Vo = OAV ·-20 -20 Vo - 2.7V 20 20 0.1 0.1 rnA V ~A rnA I'H High Level Input Current Vee::: Max, VI = 2.7V 20 20 jJ.A I'L Low L~vel Input Current Vee = Max, VI = DAV -0.4 -0.4 rnA los Short Circuit Output Current Vee = Maxl21 -130 rnA Icc Supply Current Vee = Maxl31 -30 -130 -30 Condition A 14 23 14 23 Condition B 15 25 15 25 rnA Notes 111 All typical values are at Vee = 5V, T A = 25°C. (21 ' Not more than one output should be shorted at a time. and duration of short circuit should not exceed one second. 131 ICC is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the following conditions: A. Output control at 4.SV and a momentary 3V; then ground, applied to clock input. B. Output control and clock input grounded. Switching Characteristics vee = 5V, TA = 25°C DM54LS/74LS PARAMETER CONDITIONS fMAJ( Maximum Clock Frequency tpLH Propagation Delay Time, Low"ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output tZH LS295A MIN TYP 20 28 UNITS MAX MHz ns 40 60 47 70 ns Output Enable Time to High Level 15 25 ns tZL Output Enable Time to Low Level 21 30 ns tHZ Output Disable Time From High Level CL = 5 pF 39 60 ns .tLZ Output Disable Time From Low Level RL = 400n 32 50 ns tW(CLOCK) Width of Clock Pulse 25 ns tSETUP Setup Time, High Lever or Low Level pata 20 ns tHOLD Hold Time, High Level or Low Level Data 20 ns CL = 15 pF RL = 400n , I 2-183 . ~·.MSI OM54/0M74LS2$8 Quad 2-Multiplexers with Storage General Deseription Features Thes.e [ntegratedcircuitsprovide.eyentially the equivalent functional capabilities of two separate MSI functions (DM54157/DM74157 or DM54LS157/DM74LS157 and DM54175/DM74175 or DM54LS175/DM74LS175) in a singljl16-pin package. . • Selects one of two 4-bit· data sources and stores data synchronously with system clock • Applications: Dual· source for oPerands and constants in arithmetic processor; can release· processor register files for acquiring new data Whe.n the word-select input is low, word 1 (A1, 81, Cl, 01) is entered· into the flip-flops. A high input to cause the selection of word 2· (A2, word select 82, C2, 02). The selected word is then clocked to the output terminals on the negative-going edge of the . clock pulse.· Implement separate registers capable of parallel exchange of contents, yet retain external load capability Universal type register for implementing various shift· patterns; even haS compound left~right capabilities will Connection Diagram Truth Table OUTPUTS 00 I.. 15 12 13 " WORD DATA INPUT CLOCK SelECT C1 11 10 INPUTS • WORD SELECT CLOCK L H X OUTPUTS , • • H OA OB Dc 00 a1 a2 b1 1,2 c1 02 d1 d2 QAO Cleo Oco 000 rH ~ High level (steady .tate) I,. = Low level (steady state) , 1 8Z , A1 AZ • B1 5 C2 • DZ DATA INPUTS 1 01 I' GNO X = Don't Care (any input, including transitions) • = Transition from high to low level·. a1, a2, etc. = The level of steady-state input at Al, A2, etc. 0AO, aBO, etc. = The level of 0A, 0B, etc. entered on tha most recent'" transition of the clock input. 54lS298/74lS298(J), (N), (W) Logic.Diagram Tentative Data 2-l8!1 "To Be Announced 'n 1976 ~MSI DM54/DM74lS298 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM54LS/74LS PARAMETER CONDITIONS LS29lI MIN V,H High Level Input Voltage V,L Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage Vee =: V DM54 0.7 DM74 0.8 V -1.5 Min, II = -18 rnA V -400 Vee = Min, V 1H = 2V =: Max, IOH =-400jJA Low Level Output Current . Low Level Output Voltage VOL MAX 2 V IL 10L UNITS TYP(1) Vee =Min, V 1H =2V 1 lot.- V1L ]loL = 8 rnA = Max DM54 2.5 3.4 DM74 2.7 3A V DM54 4 DM74 8 =4mA DM74 MA 0.25 0.4 0.35 0.5 rnA V I, Input Current at Maximum InpUt Voltage Vee"" Max, VI = 7V 0.1 I'H High Lev,el Input Current Vee =Max, VI =2.7V 20 MA I,L Low Level Input Current Vee = Max, V, = OAV -{).4 rnA loS Short Circuit Output Current Vee = Maxl2} -130 rnA Icc Supply Current Vee = Max(3} 21 rnA -30 13 rnA Notes = 5V. T A =25·C, (ll All typical values are at V CC (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second. With all outputs open and all inputs except clock low, ICC is measured after applying a momentary 4.5V, followed by ground, to the clock input_ (3) Switching Characteristics vee = 5V. T A = 25°C DM54LS/74LS PARAMETER CONDITIONS LS29lI MIN tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time. High-to-Low Level Output tw Width of Clock Pulse, High or Low Level' 20 tsETUP Setup Time 15 CL tHOLD Hold Time = 15pF, Data Word Select 5 0 2-185 UNITS MAX 18 27 ns 21 32 ns RL =2kn 25 Data Word Select TYP ns ns ns ~MSI DM54/DM74LS298 Typical Applications : Figure 1 illustrates a BCD shift register that will shift Another function that can be ,implemented with the LS298 is a register that can be designed specifi,cally for supporting multiplier or division operations_ Figure 2 is an example of a one place/two place shift register_' an entire 4-bit BCD digit in one clock pulse_ When the word select input is high and the registers are clocked, the contents of register 1 is transferred (shifted) to register 2, etc. In effect, the BCD digits are shifted one position. In addition, this application retains a parallel-load capability which means that new BCD data can be entered into the entire register with one clock pulse. This arrangement can be modified to perform the shifting of binary 'data for any number of bit locations. When word select is low and the register is clocked, the outputs of the arithmetic/logic units (ALU's) are shifted one place. When word select is high and the registers are clocked, the dat~ is shifted two places. PARALLEL LOAD , , I L WS AI A2 ' - Bl B2 ' - - - Cl 0. lS298 REG 1 0. L....- B2 0, LS298 REG 2 ' - - Cl Dc C2 D. 02 01 CLOCK L ws AI A2 ' - - Bl C2 02 I CLOCK '( AI B2 ' - - - Cl Dc C2 01 0. 02 0LS29S Dc CLOCK ------------ DIGiT 1 D, REG 2 0. y '( ------------ ws A2 Bl 0, 01 CLOCK WORD SELECT ------------ DIGIT 2 DIGIT3 FIGURE 1 -T----,l- -T----JALU .. 181 FO Fl ...I I .r-C F2 Fe FJ Fl F2 F3 ...- ...- nn ~ :v nn At Al 81 82 Ct C2 DI D2 At AZ 81 82 Cl C2 01 02 CLOCk CLOCK 0. CLOCk I ALU lBl . LS298 0, Dc I I I I FIGURE 2 0. lSZ91 o. WSr- Dc 0. J I I I I WORD' SELECT , ~ MSl OM 54/ OM74LS374 TRI-STATE Octal D Flip-Flops General Description Features These 8-bi t registers contain Ootype flip-flops with totem-pole TRI-STATE outputs capable of driving highlycapacitive or low-i mpedance loads. When the output control is taken to a high logic level, the outputs go into the high impedance state. When a low logic level is applied to the output control, data at the 0 inputs are loaded into their respective flip-flops on the next positive-going transition of the clock. Clocked flip-flops provide fully synchronous operation and, in addition, these devices come in the new 20-pin dual-in-line packages with the 0.3" centers. • TRI-STATE bus driving outputs • Parallel access for loading and reading • Many appl ications Holding/working registers I/O register port Buffer regi sters Register files • Typical propagation delay Connection Diagram ". "8 D1 19 ns Truth Table 07 O. O. .5 05 CLOCK OUTPUT CLOCK CONTROL 0 OUTPUT H H L H L X 00 X X Z 10 OUTPUT 01 CONTROL D1 D2 02 Ol 03 D4 fi' GNO A 54lS37 4/7 4lS37 41 N I Logic Diagram Typical Application Q1 INPUT POAT Tentative Data 2-187 To Be A.nnounced In 1976 ~ MSI DM54/DM74LS374 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM54 PARAMETER CONDITIONS MIN VIH High Level Input Voltage VIL Low Level Input Voltage VI Input Clamp Voltage IOH High Level Output Current VOH High Level Output Voltage 10L Low Level Output Current VOL Low Level Output Voltage 1010FF) DM74 LS374 TYP(1) 2 Vee -'" Vee =; ~in, II::: Min ~18 IOH mA := -1 rnA MIN -1.5 -1.5 V -1.0 -5.0 rnA 2.7 IOH 5 rnA 2.4 "" 2V '" Max Off State (High Impedance State) Vee Output Current V ,H ::: 2V V1l = := Max Max V 25 V 1L = Max V 1H V 0.8 2.6 rnA V 1L MAX 2 IOH - Vee"" Min TYP{l) 0.7 V 1H '" 2V :co UNITS LS374 MAX IOL "'4 rnA V 4 8 0.4 0.4 rnA V 0.5 IPl "" 8 rnA Va = O.4V -20 -20 Va = 2.7V 20 20 pA rnA II Input Current at Maximum Input Voltage Vee 0.1 0.1 IIH High Level Input Current Vee::: Max, VI::: 2.7V 20 20 pA IlL Low Level Input Current Vee::: Max, VI '" DAV -0.4 -0.4 rnA lOS Short Circuit Output Current Vee = Max{21 --130 rnA Icc Supply Current Vee'" Max 50 rnA := Max, VI =- 7V -30 -130 -30 50 Notes: (1) (2) typical. values are at V CC = 5V, T A = 250 C. Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second. .AII Switching Characteristics vce = 5V, T A = 25°C DM54LS/74LS PARAMETER fMAX Maximum Clock Frequency tPlH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output ~ZH FROM TO Clock Output Clock Output CONDITIONS CL = 15pF, TYP 25 30 Output Enable Time to Output Enable Time to Low Level 'HZ Output Disable Time from High Level ILZ Output Disable Time from tHOLO Setup Time Hold Time MHz 18 30 ns 20 30 ns 15 20 ns 10 20 ns 13 20 ns 15 20 ns CL = 5 pF, RL = 2 kn Low level' tSETUP MAX RL =2kn High Level IZL UNITS LS374 MIN Data 10 Output Control 20 Data 10 Output Control 2 2-188 ns ns ~MSI DM54/DM74lS395 TRI-STATE 4-Bit Cascadable Shift Registers General Description These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, lead/shift, output control and direct overriding clear inputs. control input. The outputs then present a high impedance, and neither load nor drive the bus line; however, sequential operation of the registers is not affected. During the high·impedance mode, the output at G D ' is still available for cascading. Shifting is accomplished when the load/shift control is low. Parallel loading is accomplished by applying the four bits of data and taking the load/shift control input high. The data is loaded into the associated flipflops and appears at the outputs after the high to low transition of the clock input. During parallel loading, the entry of serial data is inhibited. Features • Applications: N-bit serial-to-parallel converter N-bit parallel-to-serial converter N-bit storage register • TRI-STATE, 4-bit, cascadable, parallel-in, parallel-out registers • Schottky diode clamped transistors 75 mW typical • Low power dissipation (enabled) When the output control is low, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at the output Connection Diagram OUTPUTS CASCADE OUTPUT vee 116 Go 15 14 13 OUTPUT uo' 12 CLOCK CONTROL 11 p- r< I CLEAR 9 '0 2 SERIAL INPUT 3 4 5 7 6 A LOADI P GNO SHIFT PARALLEL INPUTS 54LS395174LS395(J), (N), (W) Logic Diagram DATA INPUTS A 131 B o C 161 151 141 S~:~~~ ~1",21_ _ _ _-, CLOCK~I'~OI~'_--Q~~~________-+__-'~______~_-'~_____~_-' CLEAR 1'1 OUTPUT 191 CONTROL 1151 1131 1141 D, • OA f1c 1121 00 , TRI·STATE OUTPUTS Tentative Data 2-189 To Be Announced In 1976 ~ MSI DM54/DM74LS395 Truth Table CLEAR LOAD/SHIFT CLOCK SERIAL CONTROL PARALLEL A B C 0 L X X X X X X X H H H X X X X X H H t X a b c d H L H X X X X X H L ~ H X X X X H L t L X X X X H = High Level (steady state). L (steady state). TRI-STATE OUTPUTS CASCADE OUTPUT OA Oe Oc 00 00' INPUTS L L L L 0AO. 0BO. 0eo. 000 = The level' of 0A. 0B. 0C. or 00. respectively. before the indicated steady state input conditions were established. DO~ 0An. 0Bn. 0Cn. 00n. d DAD D BO Dco DO~ H DAn OBn Den L OAn DBn Dcn Low Level X == Don't Care (any input including transitions) ~ = T:ransition from high to low level. L DAD DBO Deo DO~ a d b c = = The level of 0A. 0B. CCr or 00. respectively, before the more tecent .j. transition of the Clock. DO~ When the output control is high. the TRI-5TATE outputs are disabled to the high·imped~l1ce state; Dcn Dcn however, sequential operation of the registers and , the output at 00' are not affected. Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted) -. DM54LS PARAMETER CONDITIONS MIN V,H High Level Input Voltage V,L Low Level I nput Voltage V, Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage Low Level Output Current VOL Low Level Output Voltage TYP(1) LS395 MIN ,TYP(l) MAX 2 Vee': Min, V 1H = 2V 2.4 V 0.7 0.8 -1.5 -1.5 V -1 -2.6 mA 3.4 2.4 3.1 4 1010FFI Off-State (High Impedance State) Output Current = 4 mA Vee == Min, V 1H = 2V IOl V 1L IOl - 8 mA Vee "" Max = Max, V 1H == 2V .v IL "" Max UNITS MAX 2 Vee::' Min, I, =-18 mA V1L = Max, IOH = Max 10L DM74LS LS395 0.25 V 8 0.25 0.4 0.35 V 0.4 0.5 Vo =O.4V -20 -20 V D = 2.7V 20 20 mA V p.A I, Input Current at Maximum Input Voltage Vee == Max, VI "" 7V 0.1 0.1 I'H High Level I nput Current Vee = Max. V, = 2.7V 20 20 p.A I,L Low Level I nput Current Vee = Max. V, = 0.4V -0.4 -0.4 mA lOS Short Circuit Output Current Vee = Max(2) Icc Supply Current Vee = Max(3) -30 -30 -130 Condition A 18 Condition B 15 29 25 -130 18 29 15 25 mA rnA mA Notes = 2S'C. (1) All typical values are at Vce = SV. TA (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second. ICC is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the following conditions: A. Output controf-~t 4.SV aryd a momentary 3V. then ground. applied to clock input. B. Output control and c;:lock input grounded. (3) Switching Characteristics Vee; 5V. T A; 25°C DM54LS/74LS PARAMETER CONDITIONS fMAX Maximum Clock Frequency tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-to-Low level 9utput tZH LS395 MIN TYP 25 35 UNITS MAX MHz "8 27 ns 21 32 ns Output Enable Time to High level 15 25 ns tZL Output Enable Time to Low Level 20 30 ns tHZ Ou~put C l = 5 pF 30 50 ns tLZ Output Disable Time From Low Level Rl =400n 30 50. ns tWICLOCKI Width tsETUP Setup Time, High Level tHOLD Hold Time, High Level or low level Data Disable Time From High LeveJ Cl = 15 pF Rl = 400n at Clock Pulse 25· o~ Low Level Data 2·190 ns 20 ns 10 ns ~MSI DM54/DM74LS670 TRI-STATE 4 by 4 Register Files General Description These register files are organized as 4 words of 4 bits each, and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits writing into one location, and reading from another word location, simultaneously. recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 ns typicall and the read time (24 ns typicall. The register file has a non-volatile readout in that data is not lost when addressed. Four data inputs are available to supply the word to be stored. Location of the word is determined by the write select inputs A and B, in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. Th'at is, if a high level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the 0 input is transferred to the latch output. When the write-enable input, Gw , is high, the data inputs are inhibited and.their levels can cause no change in the information stored in the internal latches. When the read-enable input, G R , is high, the data outputs are inhibited and go into the high impedance state. All inputs (except read enable and write enablel are buffered to lower the drive requirements to one nor· mal Series 54LS/74LS load, and input clamping diodes minimize switching transients to simplify system design. High speed, double ended AND-OR-INVERT gates are employed for the read-address function and have high sink current, TRI-STATE outputs. Up to 12B of these outputs may be wire-AND connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length. Features • For use as: Scratch pad memory Buffer storage between processors Bit storage in fast mUltiplication designs • Separate read/write addressing permits simultaneous reading and writing The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs. This arrangement-data entry addressing separate from data read addressing and individual sense line-eliminates • Organized as 4 words of 4 bits • Expandable to 512 words of n-bits • TRI-STATE versions of DM54LS170/DM74LS170 20 ns typ • Fast access ti mes Connection Diagram Truth Tables WRITE TABLE (SEE NOTES A, B, AND C) WORD WRITE INPUTS vTC [lATA INPUT 01 16 15 WB WRITE SELECT 13 Gw OUTPUTS ENABLE 01 14 WA 11 " 0.2 O=D Do 00 00 Do O=D Do L 00 Do Do Do O=D Do Do H 10 H L H H L 00 X X H Do O=D 00 00 Do READ TABLE (SEE NOTES A AND D) I- READ INPUTS Ra RA OUTPUTS GR L L H L H 03 DATA INPUTS RB RA READ SE LEer I 04 03 I H H x x H Q1 02 03 04 WOBl WOB2 WOB3 WOB4 W1Bl W1B2 W1B3 W1B4 W2Bl W2B2 W2B3 W2B4 W3S1 W3B2 W3B3 W3B4 Z Z Z Z OUTPUTS Notes: 54LS670!74LS670(J), (N), (W) (A) H = High Level, L Impedance (Off) (B) (0 = D) = The = Low Level, X = Don't Care, Z = High four selected internal flip-flop outputs will assume the states applied to the four external data inputs. (C) 00 :; : ; The level of Q before the indicated input conditions were established. (D) WOSl = The first bit of word 0, etc. 2-191 To Be Announced In 1976 ~ MSI DM54/DM74lS670 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM54LS CONDITIONS PARAMETER MIN VIH High Level Input Voltage VIL Low Level Input Voltage VI Input Clamp Voltage 10H High Level Output Current V OH High Level Ou~put 10L low Level Output Current Low Level Output Voltage Vee = Min, V ,H = 2V V 1L ~Max.loH =Max Vee = Min, = Max "" V tH 2V TYP(1) UNITS MAX V 0.7 0.8 V -1.5 -1.5 V -1.0 -2.6 mA 3.4 0.25 IOL = 4 rnA IOL 2.7 3.4 V 8 0.4 8 mA 0.25 0.4 0.35 0.5 Vee"" Max, V 1H = 2V Va" O.4V -20 -20 V1l Vo - 2.7V 20 20 Any D, R,orW 0.1 0.1 Gw GR 0.2 0.2 0.3 0.3 :=: Max Input Current at Maximum Input Voltage Vee -= Max, VI"" 7V High Level Input Current Vee = Max, VI = 2.7V Low Level Input Current IlL 2.5 MIN 4 1010FF} Off-State (High Impedance State) Output Current IIH LS670 IVIAX 2 Vee"'" Min, I, -: -.18 rnA V 1L II TYP(l) 2 Voltage VOL DM74LS LS670 Vee::: Max, VI = DAV Any 0, R,orW 20 20 Gw GR 40 40 60 60 AnyD,R,orW -{J.4 -{J.4 Gw GR -0.8 -{J.8 -1.2 -1.2 = Max(2) los Short Circuit Output Current Vee ICC Supply Current Vee" Maxl31 -30 -130 30 50 -30 30 mA V !J.A mA !J.A mA -130 mA 50 mA Notes typical values are at VCC ~ 5V. T A ~ 25°C. (1) All (2) Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second. Maximum ICC is guaranteed for the following worst-case conditions: 4.5V is applied to all data inputs and both enable inputs. all address inputs are grounded and all outputs are open. (3) 2-192 ~ MSI OM 54/ OM74LS670 Switching Characteristics Vee = 5V, TA = 25°C DM54 LS/74 LS FROM (INPUT) PARAMETER TO (OUTPUT) tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-ta-Low level Output Read Select UNITS LS670 CONDITIONS MIN TYP MAX 23 40 ns 25 45 ns 26 45 ns 28 50 ns 25 45 ns Any Q tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output tPLH Propagation Delay Time, Low-ta-High Level Output tPHL Propagation Delay Time, High-ta-Low Level Output 23 40 ns tZH Output Enable Time to High Level 15 35 ns tZL Output Enable Time to Low Level 22 40 ns tHZ Output Disable Time From High Level 30 50 ns 16 35 os Write Enable Data Read Enable Any Q CL "15pF RL"2kSl Any Q Any Q, C L " 5 pF RL "2kll Read Enable Any Q Output Disable Time From Low Level tlZ tw Width of Write-Enable or Read-Enable Pulse tSETUP Setup Times, High or Low Level Data(4) Data Input With Respect to Write-Enable, tSETUP(D) Write-Select With Respect to Write-Enable, tSETUP(W) tHOlD Hold Times, High or Low Level Oata(4) Data Input With Respect to Write-Enable, os 10 ns 15 ns 15 ns 5 ns 25 ns tHOLO(O} Write-Select With Respect to Write-Enable, tHOLD(W) tlATCH 25 Latch Time for New Data(5) Notes (4) Write-select setup time will protect the data written into the previous address_ If protection of data in the previous address is not required, tSETUP(W) can be ignored as 'any address selection sustained for the final 30 ns of the write-enable pulse and during tHOLD(W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into_ (5) Latch time is the time allowed for the internal output of the latch to assume the state Qf new data. This ;s important only when attempting to read from a location immediately after that location has received new data. 2-193 ~MSI DM54/DM74LS670 Logic Diagram OUTPUTS DATA INPUTS 1121 Gw 1131 We WRITE INPUT (1'1 WA 141 Rs 1111 GR READ INPUT 151 RA National Semiconductor PROPRIETARY DEVICES Section 3 ~ Proprietary Max Ratings/Operating Conditions 7X/8X 7XL!8XL SERIES SERIES RATINGS Maximum Allowable Supply Voltage Guaranteed Operating Voltage Range ~upply 7 8 I Mil 71LS/81LS EMITTER DIODE INPUTS 7 INPUTS 7 758/85$ SERIES 7 4.50 to 5.. 50 4.75 to 5.25 . 1 Coml UNITS V V Maximum Input Voltage 5.5 5.5 7 5.5 5.5 V Maximum Voltage to OpenCollector Outputs* 7 8 7 7 7 V I -55 to +125 o to +70 °c Storage Temperature Range ,';;5 to +150 °c Operating Free-Air TemPerature Range Mil 1 Coml 3·JJ ~ Table of Contents Proprietary Device No. DM80L06 DM7090/DM8090 DM7091/DM8091 DM7092/DM8092 DM7093/DM8093 DM7094/DM8094 DM7095/DM8095 DM70L95/DM80L95 DM7096/DM8096 DM70L96/DM80L96 DM7097/DM8097 DM70L97/DM80L97 DM7098/DM8098 DM70L98/DM80L98 DM7099/DM8099 DM7121/DM8121 DM71 L22/DM81 L22 DM7123/DM8123 DM71 L23/DM81 L23 DM7130/DM8130 DM7131/DM8131 DM7136/DM8136 DM7160/DM8160 DM71 LS95/DM81 LS95 DM71 LS96/DM81 LS96 DM71 LS97/DM81 LS97 DM71 LS98/DM81 LS98 DM7200/DM8200 DM7210/DM8210 DM7211/DM8211 DM7214/DM8214 DM7219/DM8219 DM7220/DM8220 DM7223/DM8223 DM7230/DM8230 DM7511/DM8511 DM75L 11 /DM85L 11 DM7512/DM8512 DM75L 12/DM85L 12 DM7520/DM8520 DM8531 DM7542/DM8542 DM7544/DM8544 DM7546/DM8546 DMB5S50 DM7551/DM8551 DM75L51/DM85L51 DM7552/DM8552 DM75L52/DM85L52 DM7553/DM8553 DM7554/DM8554 DM75L54/DM85L54 Page No. Description Quad 2-lnput NAND Gates with Resistive Pull-Ups Quad Inverters plus Dual 2-lnput NAND Gates Quad 2-lnput NAND 8uffers Dual 5-lnput NAND Gates TRI-STATE Quad Buffers TRI-STATE Quad Buffers TRI-STATE Hex Buffers TRI-STATE Hex Buffers TRI-STATE Hex Buffers TR I-ST ATE Hex Buffers TRI-STATE Hex Buffers TRI-STATE Hex Buffers TR I-STATE Hex Buffers TRI-STATE Hex Buffers TRI-STATE Quad 2-lnput NAND Buffers TR I-STATE Data Selectors/Multiplexers Quad 2-lnput Data Selectors/Multiplexers TRI-STATE Quad 2-lnput Data Selectors/ Multiplexers TRI-STATE Quad 2-lnput Data Selectors/ Multiplexers 1O-Bit Magnitude Comparators 6-Bit Unified Bus Comparators 6-Bit Unified Bus Comparators 6-Bit Magnitude Comparators TRI-STATE Octal Buffers TRI-STATE Octal Buffers TR I-STATE Octal Buffers TR I-STATE Octal Buffers 4-Bit Magnitude Comparators 8-Line Data Selectors/Multiplexers 8-Line Data Selectors/Multiplexers TR I-STATE Data Selectors/Multiplexers T R I-ST A TE Data Selectors/Multiplexers 9-Bit Parity Generators/Checkers 1-line to 8-Line Demultiplexers TRI-STATE Dual 2/4 Demultiplexers Dual Gated Flip-Flops Dual Gated Flip-Flops Dual Gated Flip-Flops Dual Gated Flip-Flops Modulo-N Dividers TRI-STATE 16k Read Only Memories TRI-STATE Quad I/O Registers TRI-STATE Quad Switch Debouncers TRI-STATE 8-Bit Universal I/O Shift Registers 6-Bit Shift Registers TR I-STATE 4-Bit 0 Type Registers TRI-STATE 4-Bit 0 Type Registers TR I-STATE Synchronous Counters/Latches TR I-STATE Synchronous Counters/Latches TRI-STATE 8-Bit Latches T R I-STAT E Synch ronous Cou nters/ Latches TR I-STATE Synchronous Counters/Latches 3-iii Package J Mil 3-3 3-3 3-3 3-5 3-5 3-7 3-7 3-7 3-7 3-7 3·7 3-7 3-7 3·9 3-11 3-13 3-13 • • • • • • • • • • • • • • • • • • • • • • • • • • 3-17 3-19 3-19 3-17 3-21 3-21 3-21 3-21 3-23 3-25 3·25 3-28 3-28 3-32 3-35 3-37 3-40 3-40 3-40 3-40 3-44 3-49 3-52 3-54 3-56 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Mil • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Coml N/A • • N/A • • • • • • Coml • • • • • • • • • • • • • • • 3-13 3-60 3-62 3-62 3-64 3-64 3-70 3-64 3-64 Mil N/A 3-1 W N Coml • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (F) (F) • • • • • • • • • • • • (F) • • • • • • • • • • •(F) • N/A • • • • • • • • N/A • • • N/A • • • • • • • • • • • •.. • • • • • • • • ~ Proprietary Device No. DM7555/DM8555 DM7556/DM8556 DM7560/DM8560 DM75L60/DM85L60 DM7563/DM8563 DM75L63/DM85L63 DM75S68/DM85S68 DM7570/DM8570 DM7573/DM8573 DM7574/DM8574 DM7575/DM8575 DM7576/DM8576 DM7577 /DM8577 DM7578/DM8578 DM8581 DM7590/DM8590 DM7595/DM8595 DM7596/DM8596 DM7597/DM8597 DM7598/DM8598 DM7599/DM8599 DM7613/DM8613 DM76L 13/DM86L 13 DM76L24/DM86L24 DM76L25/DM86L25 DM76L70/DM86L70 DM76L75/DM86L75 DM76L76/DM86L76 DM7678/DM8678 DM7679/DM8679 DM76L90/DM86L90 DM76L93/DM86L93 DM76L97/DM86L97 DM76L99/DM86L99 DM7795/DM8795 DM7796/DM8796 DM7853/DM8853 DM7875A/DM8875A DM7875B/DM8875B DM8898 DM8899 Table of Contents Page No. Description TR I·STA TE Programmable ·DecadeCounters TR I·STATE Programmable Binary Counters Synchronous 4·Bit Up/Down Decade Counters Synchronous 4·Bit Up/Down Decade Counters Synchronous 4·Bit Up/Down Binary Counters Synchronous 4·BitUp/Down Binary Counters 64·Bit Edge·Triggered Registers 8·Bit Serial In/Parallel Out Shift Registers 1024·Bit Field Programmable Read Only Memories TR I·STA TE 1024·Bit Field Programmable Read Only Memories Programmable Logic Arrays Programmable Logic Arrays 256-Bit Programmable Read Only Memories TR I-STA TE 256-Bit Programmable Read Only Memories TR I-ST A TE 16k Read Only Memories 8-Bit Parallel In/Serial Out Shift Registers 4096-Bit Read Only Memories TRI-STATE·4096-Bit Read Only Memories TRI-STATE 1024-Bit Read Only Memories TRI-STATE 256-Bit Read Only Memories TR I-STA TE 64-Bit Random Access Memories Quad Gated Flip-Flops Quad Gated Flip Flops TR I-ST ATE Magnitude Comparators with A Almost Equal B TRI-STATE 7-Segment to BCD Decoders 8-Bit Serial In/Parallel Out Shift Registers Presettable Decade Counters Presettable Binary Counters 7 by 9 Character Generators 7 by 9 Character Generators 8·Bit Parallel In/Serial Out Shift Registers Binary Counters TRI-STATE 1024-Bit Read Only Memories TRI-STATE 64'Bit Random Access Memories 4096-Bit Read Only Memories TRI-STATE 4096,Bit Read Only M~mories Dual Retriggerable Resettable Monostable Multivibrators TRI-STATE 4-Bit Parallel Binary Multipliers TRI-STATE 4-Bit Parallel Binary Multipliers TRI-STATE BCD to Binary Converters TRI·STATE Binary to BCD Converters 3-iv 3·72 3·72 3·76 3·76 3·76 3·76 J Mil Com I • • • • • • • • • • • 0 0 • • 3-92 • 3-95 3-95 3-101 3-104 • • •., • • • • • • • 3-134 3·86 3·137 3·137 3-140 3-140 3-110 3,142 3-144 3-148 3-113 3·116 3-151 3-154 3-154 3-156 3-156 • • 3·82 3·86 3·89 3-107 3-110 3-113 3-116 3-119 3-122 3-127 3-40 3-40 3-131 Package N Mil Coml • • • • • • • • • • • • D • • • • • • • • • • • • • • • • • • • • N/A • • • • • • • • • • • • • • • • • • N/A N/A • • • • • • • • • • • • • • • • • • • • • • • • • • N/A • • • • • • • • • • • • • • • • • • • • • • W Mil Coml • • • • • • • • • • • • N/A • N/A • N/A N/A N/A N/A N/A N/A • N/A N/A N/A N/A N/A • • • • • • • • • • • • • • N/A • N/A • • • • • • • N/A N/A • • • N/A N/A N/A N/A ~ Proprietary DM80L06 Quad 2-lnput NAND Gates with Resistive Pull Up General Description Features These quad two-input NAND gates feature internallyconnected, 20 kQ pull-up resistors on the outputs. The pinout is the same as the very popular DM54L03/ DM74L03, and these devices provide the same "onetenth-power technology" as well. • Typical power dissipation 12mW • Typical propagation delay 115 ns Connection Diagram Vee B4 A4 V4 B3 A3 V3 V2 GND 10 Al Bl VI A2 80L06(N) 3-1 B2 ~ DM80L06 Proprietary Electrical Characteristics overrecorrimended oi:>er~tirig free-air temperature' range (unfess otherwise noted) .'. DM80L CONDITIONS PARAMETER VIH High Level I nput Voltage Vil Low Level Input Voltage UNITS L06 TYP(1) MIN MAX V 2 0.7 200 10H High Level Output Current V OH High Level Output Voltage 10l Low Level Output Current VOL Low Level Output Voltage Vee ~ Min, IOL II Input Current at Maximum Input Voltage Vct ~ Max, VI ~ S.SV IIH High Level I nput Current Vee ~ Max, VI ~ 2.4V III Low Level Input Current Vee ~ Max, VI ~ 0.3V los Short Circuit Output Current Vee ~ Max ICCH Supply Current (Total with Outputs High) Vee ~ Max, VI ~ 0 ICCl Supply Current (Total with Outputs Low) Vee Vee ~ S.OV, V IL ~ 0.7V, IOH ~ 100/J.A ~ Max.. VI ~ Max, V IH ~ 2.0 <1 -0.17 ~ SV /J.A V 2.S 2V V 3.6 mA 0.4 V 100 /J. A 10 /J.A • -0.12 - word B, 2) word A < word B, or 3) word A ~ word B. A strobe input overrides all other inputs, and when taken to a high logic level, places both outputs in the low state. Comparison of words longer than four bits each may be accomplished through the use of additional DM7200/ DM8200 devices. • Typical power dissipation 175mW • Typical propagation delay 20 ns Connection Diagram OUTPUT Vr14 AflJ Y 12 Af 11 L l STROBE /9 10 B ~ +---J L.:::4 r'-' ...... I' 84 r --"" 12 BJ on;: IT x T f'.J' ~r-I--I ~ r :-;:; :::»; / I J B2 14 15 _ Ne Bl OUtT x A4, 84 are most significant bits. 7200/8200(JI, IN), (WI Truth Table INPUTS OUTPUTS CONDITION STROBE X Y DON'T CARE H L L A>B L H L Ahort Circuit Output Current Vee -55 mA Icc Supply Current Vee ~ Max 53 mA I, Input Current at Maximum Input Voltage I'H Vee ~ 5.5V mA -18 Max(2) 35 Notes (11 All typical values are at Vee = 5V. TA = 25'C. 121 Not more than one output should be shorted at a time. Switching Characteristics vee ~ 5V, TA ~ 25°C DM72/82 FROM TO CONDITIONS (INPUT) (OUTPUT) PARAMETER 00 MIN tpLH Propagation Delay Time, Low-to-High Level Output Data Output tpHL Propagation Delay Time, High·to-Low Level Output Data Output CL~15pF RL tpLH Propagation Delay Ti me, Low·to-H igh Level Output Strobe Output tpHL Propagation Delay Time, High-to·Low Level Output Strobe Output tSETUP Setup Time tHOLD ~ 400Q 10 Hold Time 0 3·24 UNITS TYP MAX 24 40 ns 17 30 ns 15 27 ns 8 18 ns 0 ns -10 ns ~ Proprietary DM72/DM8210 ,11 8-Line Data Selectors/Multiplexers General Description Features These monolithic data selectors/multiplexers contain full on-chip binary decoding to select the desired one of eight data sources. The DM7211/8211 have a strobe input, which must be at a low logic level to enable these devices. A high logic level on the strobe latches the output in a high logic state, regardless of the conditions on the other inputs. Depending upon the 3-bit binary number applied to the select lines, the non-inverted data present on the selected input is passed to the output. The circuit can also be used to convert parallel input data to serial output data. If 8 bits of parallel i'nformation are applied to the inputs, and if the binary numbers 000 through 111 are sequenced on the select lines, the output will provide a serial presentation of the input bits. • Full on-chip decoding • Series 54/74 compatible • Converts parallel data to serial data • One volt typical noise immunity • Typical propagation delay 22 ns • Typical power dissipation 100mW Connection Diagrams l SELECT INPUT A 14 DATA INPUTS , I 1 13 5 6 11 12 OUTPUT 4 8 9 10 ....- 16 r- 1 2 B Vr C 3 4 0 , 5 1 2 3 SELECT INPUTS 6 7 15 13 14 , STROBE OUTPUT 4 5 11 12 G!: 3 2 B C \ , , 0 4 1 SELECT INPUTS DATA INPUTS 5 6 2 3 , NV OATA INPUTS 7210(J), (W); 8210(J), (N), (W) 7211 (J), (W); 8211 (J), (N), (W) Truth Table SELECT INPUTS STROBE (OM7211iDM8211 ONLY) OATAINPUTS 0 1 2 3 4 5 6 7 OUTPUT C B A L L L L L X X X X X X X L L L L L H X X X X X X X H L L H L X L X X X X X X L L L H L x H X X X X X X H L H L L X X L X X X X X L L H L L X X H X X X X X H L H H L X X X L X X X X L L H H L X X X H X X X X H H L L L X X X X L X X X L H L L L X X X X H X X X H H L H L X X X X X L X X L H L H L X X X X X H X X H H H L L X X X X X X L X L H H L L X X X X X X H X H H H H L X X X X X X X L L H H X X X X X X H H X L. H X X H X X x X X x X X X H 3-25 9 10 - 1 , . DATA INPUTS I r-- , 6 \ SELECT INPUT A H L X =0; High Level = Low Level 0;:; Don't Care J: ~. Proprietary DM721DM8210,11· Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM72/112 CONDITIONS PARAMETER MIN VIH High Level I nput Voltage VIL Low Level Input Voltage VI Input Clamp Voltage TYP(1) Vee ~ Min, II High Level Output Vol tage Vee ~ Min, Low Level Output Current VOL Low Level Output Voltage Vee = Min, MAX V 0.8 0.8 V -1.5 -1.5 V -400 -400 ~-l:?mA V IH ~ 2V IOH ~ -400/lA 10L UNITS MIN . TYPf1) 2. High Level Output Current VOH MAX 2 TA ;, 25°C 10H 11 10 2.4 2.4 V IL = 0.8V IOL = 16 mA /lA V 16 16 mA 0.4 0.4 V 1 1 mA 40 40 /lA -1.6 -1.6 mA -55 mA 33 mA Input Current at Maximum II I nput Voltage Vee ~ Max, VI ~ 5.5V IIH High Level I nput Current Vee = Max,. VI = 2.4V IlL Low Level Input Current Vee = Max, VI los Short Circuit Output Current Vee = Max(2) Ice Supply Current Vee = Max(3) ~ 0.4V -55 -18 20 -18 20 33 Notes (1) All typical values are at Vcc = 5V, T A = 25° c. (2) Not more than one output should be shorted ,at a time. (3) ICC is measured with all inputs grounded.. Switching Characteristics Vee = 5V, TA = 25°C DM72/82 PARAMETER FROM TO CONDITIONS 10 tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output . tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output UNITS 11 MIN TYP MAX MIN TYP MAX Data Output 23 32 23 32 ns Data Output 21 30 21 30 ns Strobe Output N/A 21 30 ns 19 27 ns C L = 15 pF, RL = 400n Strobe Output N/A Select Output 31 43 31 43 ns Select Output 31 42 31 42 ns 3-26 ~ Proprietary OM72/0M8210 .11 Logic Diagrams 10 .;P SElECT C D1 1121 -6r- V 1 I (11) D' ;mt> SElECT B D5 ,.... T {101 ...... I 5 ~ '--D4 191 .~ SElECT A D3 D2 D' DO F'~ 4"' 181 OUTPUT -;:::::: I ,.... 3 161 ~,}-- 151 141 F' F=I, 131 ':;:6."' 11 STROBE (10) SelECT ~;P 7 (14 ...... T ;mt> 1""'" I ,1131 SELECT - V 6}-- ,.... I 5 5 1121 ;::::::t 4 (11) SElECT A (15) I 1 (4) ,131 r--o v 3 3 161 ,151 4 "- ~'r-- 1-'-"1,""'" 6'J 3·27 1'1 OUTPUT ~ . Proprietary oM72/OM8214.19 TRI"STATE Data Selectors/Multiplexers General Description Features These devices are the TAI·STATE versions of the ·very popular DM54153 (DM7214) and DM54150 (DM7219) data selectors/multiplexers. They contain full on·chip decoding to select the desired data input. The DM72141 8214 is a dual, four-line multiplexer, while the DM72191 8219 selects one of sixteen input data lines, depending upon the binary number applied to the select inputs. The DM7214/8214 has common select lines, which therefore. select the same input line of both multiplexers. However, the two outputs can be individually controllec1 by means of the separate enable lines; which, when taken to a.high logic level, places the output in the high·imlledanc;e TAl-STATE condition. The data at the output of the DM7214/8214. is true, whereas the DM7219/8219 is inverted. • TRI·STATE pin equivalents to popular 54/74 TTL devices DM7214/8214 - 54153/74153 DM7219/8219 - 54150/74150 • Typical propagation delay DM7214/8214 DM7219/8219 .• Typical power dissipation DM7214/8214 DM7219/8219 • Strobe/enable override Connection Diagrams 1 E7 \ 2 E6 3 E5 4 E. . 5 El 6 E2 DATA INPUTS 7 El B 9 11.r D GND EO, ENABLE W OUT DATA SELECT 7219(J), IF}; 8219IJ}, IN}, IF} 3-28 10 13.5 ns 11 ns 170'rnW 225mW ~ Proprieta ry Electrical Characteristics DM72/DM8214.19 over recommended operating free-air temperature range (unless otherwise noted) DM72/82 CONDITIONS PARAMETER MIN V'H High Level I nput Voltage V'L Low Level I nput Voltage V, Input Clamp Voltage 10H High Level Output Current TVP(1) == Min, I, =-12 mA I DM72 High Leve! Output Voltage 10L Low Level Output Current VOL Low Level Output Voltage 1010FF) Vee = Min V IH = 2V VIL = 0.8V, 10H ~ Max Vee:;; Min, V 1H 2V VIL = O.8V, 10L = 16 mA Off·State IHigh·lmpedance State) Vee == Max Output Current V IH = 2V V, .. = 0.8V I, Input Current at Maximum Vee = Max, Input Voltage I ;;;; MIN TVP(1) MAX 2 I DM82 VOH MAX 2 Vee UNITS 19 14 V 0.8 0.8 V -1.5 -1.5 V -2.0 -2.0 -5.2 -5.2 2A V 2.4 16 16 rnA 0.4 OA V Va =OAV -40 -40 Vo = 2.4V 40 40 1 1 V, =5.5V I'H High Level Input Current Vee = Max, V, I'L Low Level I nput Current Vee == Max, V I =O.4V los Short Circuit Output Current Vee = Maxl21 Icc Supply Current ~2.4V Vee = Maxl31 ~A rnA 40 40 ~A '-1.6 -1.6 rnA -100 mA -55 -18 I DM72 I DM82 mA -28 34 56 45 68 34 65 45 68 mA Notes = 5V, TA = 25°C. (1) All typical values are at VCC (2) Not more than one output should be shorted at a time, and for the DM7219/DM8219 duration of short circuit should not exceed one second. ICC is measured with all inputs grounded. 131 Switching Characteristics vee = SV, T A = 2SoC DM72!82 PARAMETER FROM CONDITIONS TO MIN tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tpLH Propagation Delay Time, Low··to-High Level Output Propagation Delay Time, High-to-Low Level Output tZH MIN TVP MAX 15 23 13' 20 ns Data Output 12 18 9 14 ns Select Output 20 34 21 35 ns Select Output 20 34 22 33 ns 12 18 15 23 os 14 21 17 27 ns 5 10 5 10 ns 15 23 21 30 ns = 50 pF, RL = 40011 Output Enable Time to Output Enable Ti me to Low Level tHz MAX Output High Level tZL TVP Data CL tpHl UNITS 19 14 Output Disable Time from High Level C L = 5 pF, RL = 40011 tLZ Output Di~able Time from Low Level 3·29 .' ~ Proprietary OMn/OM8214.19 Truth Tables 14 SELECT INPUTS B A DATA INPUTS CO C, C2 C3 X X x L L H x x ENABLE OUTPUT x H Hi-Z L v x x X X L X X X X H H H X H X H X X H L X X X X H X H X X X X X X L H H H H H H H L L X 19 SELECT ENABLE DATA INPUTS OUTPUT ~D---C----B----A~ G ~E-O--E-'---E-2---E-3--E-4---E-5---E-6-.-E-7---e-8---E9---E-'-O--E-1'--E-'-2--e-'-3--E-'4--e-'-54 v X x x L L L L .L x x H L ,H H L x x x x ,x X x x x x x L H H H H H H H H H H H H L L H L L L x x x L L x x H L x H L H H H H x x x x x x x L L x x L L x x X X X X X L H H L H H H H L H H H L H H H H H H H H x x x x x x x x x x x x x x x x x x H L L x x x L x H H H H H H H H L L L H H H H H x x x x x x L X X H X X x x x x X X H L x x x x x x x x H x x x L x x x x L H X X X X X X X X X X X X H x x x x x x H x x x x x H H x x H X X X X X X X X X X X X X X H x x X L x x X L x x L H H x x x x x L H L L x x x x x x x X L x x x x x x x x X H x x x x x x x L l. x x x x X X X X L L x x x X X X L H L x x x x x x x x x L H X X L x x x x x x x x x x x L L x x x x x x x x x x H L x x x x x x x x x x X L X X X X H X X L X- X H X X X x x x x x x x x x x x x x x Hi-Z x x x x H x x x x L x x x x H x x x x x ,x x x x x x x x x x x x L x x x H x x x x x x x x x x x x x x x x x x x x x x x x H L H H L H x x x x x x H X x L x H X x x x x x x X X X X X L x x X X X H x X x x x x x x x x x x x x X x L X X X X X X L H X X X X x H X X X x x x x x x x x x x x x x x x x x x x x x x x x x x x x x H x X H X X X X X L X H X X X X X X X X X H X X X L H H x X x i< H X x x x L x x x x x x x x x X X x x x H x X x x' x X X X X X x x x x x x X X X x x x X x x x X x x x x x x x x x x x x x x x x x x x x x x x x x x x 3-30 x x x x x x x x X X X X X X L H H L H H H ~ Proprietary DM72/DM8214.19 logic Diagrams 14 ENABLE (I) STROBE 01 DATA 1 DATA 2 ENABLE 115) STROBE G2 19 OUTPUT W 00:) III I I 1 tr l ~ !1 II \h\[1il\~ ~ III 11 11 l III ;h ~ ~ D 0 C ,, C A A . , I9) STROB (ENABl " " " " " " '" '" " " " " '" ~--------------------------------------~v~---------------------------------------' 181 111 (61 151 (41 III l21 111 E4 (23) IZ2) (1:1) (201 (191 E12 DATA INPUTS (18) (17) (16) E15 (15) (14) . (13) DATA SELECT (BINARY) (11) ~' Proprietary DM72/DM8220 9-Bit Parity Generators/Checkers G,eneral Description These circuits can be used both to check 'for parity and to generate a parity bit, When the generation of a parity bit is desired, the eight data inputs, are connected to the' ,transmission lines. If a low logic level is then connected to the parity input, the circuit will generate o,dd parity. The succeeding parity checker will acknowledge an odd number 'of "1's" (odd parity) with a low fo'gic level on its output. If a high logic level is connected to the paritY' input of the first parity generator, the parity checker will acknowle(lge even parity with a high logic level on its output, although the output of the parity generator will be low. Features • • Connection Diagram r Typical propagation delay Typical power dissipation 34 ns 130mW Truth Table ,DATA INPUTS f X H 13 14 E' F G 11 12 OUTPUT T9 10 8 r- PARITY INPUT OUTPUT" INPUTS A THRU H H L Even number of inputs are High L L Odd number of inputs are High *Single device X A 4 3 2 8 . \ C 5 6 PARITY INPUT 0 GrO I DATA INPUTS 7220/8220(J), (N), (W) Typical Application If the control line is a logical "0" the parity generator will generate odd parity. The paritx checker will acknowledge the presence of an odd number of "1 's" (odd parity) with a logical "0" on its output. If the control line is a logical "1" the parity generator will generate even parity. The parity checker will acknowledge the presence of an even number of "1 's" (even parity) with' a logical "j" on its output. , LA LA I "-- B "-- '---- C L.-- C '---- 0 E CONTROl- B '--- 0 OUTPUT r- E' F F G G H H P P OM7220/0MB220 AS PARITY GENERATOR OUTPUT ~ OM7220/0MB220 AS PARITY CHECKER , ~ DM72/DM8220 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM82 DM72 PARAMETER 20 CONDITIONS MIN V,H High Level Input Voltage V ,L Low Level Input Voltage V, Input Clamp Voltage TYPlll -~ Mill, 12 mA II =- VO H High Level Output Voltage 10L Low Level Output Current VOL Low Level Output Voltage Min, Vee 2V V'H 400~A V" - O.8V, IOH - Vee " Min, V 1H 2V V" - O.8V, iOL = 16 mA UNITS TYPllI MAX 2 TA - 25"C High Level Output Current MIN 2 Vee IOH 20 MAX V 0.8 0.8 V -1.5 -1 5 V --400 --400 MA V 24 2.4 16 16 mA 0.4 0.4 V mA I, Input Current at Maximum Input Voltage Vee Max, VI"" 5.5V 1 1 I'H High Level Input CUI"rent Vee = Max, VI'" 2.4V 40 40 MA I,L Low Level Input Current Vee'" Max, VI -= D.4V -1,6 -1.6 mA los Short Circuit Output Current Vee = Max(2) -55 mA Icc Supply Current Vee 35 mA ~ =- -55 20 26 Max -18 35 26 Notes Vee All typical values are at 121 Not more than one output should be shorted at a time. Switching Characteristics =- 5V, TA = 25 1 CLOCK 2 G2 4 3 Gl 01 6 5 01 7 01 G!: CLOCK 7511/8511(J), (N). (WI; 75L 11/85L 11(JI, (N), (WI Vce r16 G4 04 04 114 I I I I Gl J1 t Kl 03 G3 13 Cli: Y 11 112 R 10 I I J I 4 3 MODE 1 01 5 Jl 6 Ql ) n1 7512/8512(JI, (N), (WI; 75L 12/85L 12(J), (N), (W) 115 I J~K 2 ·1 CLEAR I I l I 4 3 GV 01 I I J L6 ) 02 -7613/8613(JI, (N), (WI; 76L 13/86L 13(JI. (NI. (W) 3-40 J: J: Electrical Characteristics PARAMETER CONDITIONS MIN VIH High Level. Input Voltage VIL Low Level Input Voltage VI Input Clamp Voltage ~OH High Level Output Current VOH High Level Output Voltage VOL Vee = Min, c.> :!': DM76/86 DM75L/85L".12 11.12 13 DM76L/86L 13 TVP{11 MAX Vee = Min, V IH = 2V MIN TVP(11 MAX 2 I, = -12 mA Low level Output Current MIN TVPt11 UNITS 2 V 0.8 0_8 -1.5 -1.5 N/A V -800 -800 -200 /lA 2.4 2.4 0.7 16 16 2.0 16 16 3.6 Vee = Min, V IH = 2V Military 0.4 0.4 0.3 VIL = Max, IOL = Max Commercial 0.4 0.4 0.4 V Input Current at Maximum Input Voltage Vce = Max, VI = 5.5V 1.0 1.0 0.1 mA High Level Input Current Vee = Max, VI = 2.4V 40 40 10 /lA IlL Low Level Input Current -1.6 -1.6 Short Circuit Output Current Icc Supply Current --{l.18 Vee = Max(3) 11, L11 42 55 12, L 12 44 57 13, L13 (3) -18 -55 -3 --9 3.5 58 76 -15 mA mA 3: 3.2 4.5 7.9 0 CO U1 4.9 5.7 0 3: -.J U1 ...... mA ...a ...a !:; ...a ':. N Notes (1) All typical values are at Vee = 5V, TA = 25°C_ (2) -55 -18 Vee = Max(2) I» -< V IIH los ~- mA 1\ II VI = 0.3V V I =O.4V . ~ V 2.4 Military Vee = Max "0 'C MAX Commercial . Low Level Output Voltage DM75/85 2 VIL = Max, IOH = Max IOL ~ over recommended operating free-air temperature range (unless otherwise noted) !:; Not more than one output should be shorted at a trme. Supply current is measured with clear/clock at 3V, an other inputs at OV. N 0 3: -.J 0) ...... 0 - 3: CO 0) ...a W !: w Switching Characteristics vcc FROM PARAMETER fMAX tplH, Propagation Delay Time, Clock Propagation Delay Time, Clock High,to,Low Level Output tpLH Propagation Delay Time. Clear Propagation Delay Ti me, Clear High,to,Low Level Output tWICLOCK'), tWICLEARI CONDITIONS Q RL=4kr2 Q 11, L 11 12, L12 13, L13 MIN TYP 30 6 Q Width of Clock Pulse Width of Clear Pulse Setup Time DM76f86 (Low Power) .i. !sETUP DM75f85 0 w N DM75f85 CL ~ 15 pF r(Standard) RL ~ 400n C L = 50 pF Low,to,High Level Output tpHL TO Maximum Clock Frequency Low,to,High Level Output tpHL ~ = 5V, T A = 25°C J, D Inputs MIN TYP MAX MIN TYP 45 20 28 20 30 9 6 10 5 7 20 21 35 17 24 95 35 70 41 60 19 30 26 40 22 33 75 125 60 120 70 100 14 20 22 35 NfA 55 95 32 65 NfA 19 30 26 40 21 31 75 125 57 114 68 100 11 25 15 24 16 30 100 30 100 50 20 10 25 13 27 18 100 30 ' 100 30 100 50 15 9 15 9 24 16 80 40 110 55 100 55 30 120 MHz 14 100 K Inputs MAX 55 20 Mode Inputs Gl or G2 Inputs MAX UNITS NfA 30 20 N/A NfA 150 85 N/A N/A 20 13 NfA NfA 150 80 N/A N/A 21 60 30 150 NfA 21 85 Hold Time All Truth Tables 11, L11 0 0 0 0 0 0 12, L12 0 G1 G2 CLR °n+1 On+1 J L L L L L H L K L M H L I» ns ns ns ns ns 0 ns s:-..J ns ........ 0 U1 ns s:(X) ....U1 !: .... ::.. -" ns ns N !: ns N 0 s:-..J 13, L13 CLEAR ii' .... -< t-c tHOW ... ':'CI 0 ~. (J) * Asynchronous Transition On+1 0 G CLR °n+1 H L L H H L L L H L H L H L On H L L L L X H' X L On On L H H L L X H L On X X H L On 0" H H H L On X X H L' X X X H L W X X L L 0 X X X H L' X =- Don't Care ........ 0 s: (X) en .... Co) t Co) ~ Proprietary DM75/DM8511,L11,12,L12,DM76/DM8613,L13 Logic Diagrams 11, L 11 1511111 a 16)(101 . CP 12,L12 191 CLEAR--- 0------------_-- - --. ---, r---------- I I I I CLEAR n 1-....--4:.:,171!:,!ll,,:::0) CP L _________ _ 111_ _ CLOCK_ _ _ _ .J 0------------....- - - - + 13, L13 CLEAR ---- 191 CLEAR 0 o 13116){11){141 12)(5){12){151 CLOCK CP ---- 111 3-43 14)(7){1 0)(131 0 ~ -DM75/DM8520 Proprietary Modulo-N Dividers General Description serial shift register, the device may be used where four-bit parallel-in-serial-out shifting is required. (continued) Although extremely versatile in a number of applications, the primary uses of these circuits are in two a~eas: 1. MODULO-N DIVIDER A single DM7520/DM8520 can be programmed without external components to divide by any number from 2 to 15. Cascading of these dividers will provide division by any number from 2 to ver." large numbers. Features Fu!ly programmable divider-any number from 2 to 1M 2. SHI FT REGISTER Since the basic organization of the logic is that of a '" Typical propagation delay 36 ns '" Typical power dissipation 250 mW Truth Table Connection Diagram EXOR EXOR PRESET INPUT OUTPUT 16 15 14 0000 OUTPUT GNU DETECT 1.1 13 SERIAL EX·OR OUTPUT CONTROL 10 11 9 --SETTING : I t- '-- - :~ I: P1 3 SERIAl! PARALLEL l 15 4 P2 7 6 P3 Vee 7 8 H H H H l H H L 12 H 13 H H 14 H H 15 H 8 H INPUT P4 H H H 2 P: Pl4-y1 L l f- ·BY H H SERIAL INPUT ----1 TABLE FOR DIVISION BY N EXTERNAL 1 00 .. Also functions as a four-bit paraliel shift register L H 10 11 INPUT 7520(J), (Wi; 8520(Ji, (Ni, (Wi Logic Diagram EX-OR OUTPUT (141 (±) 1 I16~1t><>-=E_.X_T_E~:_X:_~_~ Ir:l- '-5_1'- _-_-~=_=_=_=_~=~=_=_J_~ ~ ~ ~ ~ --==--_-b~~~~=~ ____, __ PRESET - SERIAL III INPUT --l (101 SERIAL OUTPUT INPUT~(B~II~~________~-+ (21 PI L--c><:"f.......l-1.5V - -.....--:..-I--~;..:... OUTPUT 3v----\-r----"" STROBE ov ___J I: 1 MHz t,: t,,; 10 ns (10% t. 90%) Duty Cycle 50% ;::E 3·51 .~ Proprietary DM75/DM8542 TRI-STATE Quad I/O Registers General Description Features These circuits are four-bit storage registers having two terminals per bit, which may be used as either inputs or outputs while tied to their individual bus lines. Storage capability is also provided by means of positive·edge triggered flip·flops having a common clock and asyn· chronous clear. Each 1/0 terminal can be forced into the high·impedance state by applying a high logic level to ·its disable control. The four A outputs are tied together on one disable control, while the four B outputs are tied together on a separate disable contrpl. • "TRI·STATE outputs Connection Diagram 40MHz • . Typical clock frequency • Typical propagation delay 24 ns • Typical power dissipation 400mW Truth Table MODES OF OPERATION v c T" DIS 1 .4 ." B4 14 AJ BJ 11 13 CLOCK " 11 CLEAR , A 11-41 B (1-4) E1 E2 L .H H H a Hi·Z Output data to Bus A H L H H Hi·Z L H H a a a Output data to Bus 8 L H H H H Hi·Z Hi·Z Output data to both buses S~ore data with output in high impedance state r- , 2 1 DIS 2 COMMENTS DIS2 DIS 1 Al " 4 6 5 A2 B2 -E2 7 -E1 .t' X L L H Data On Enter data from Bus A X H L H Data Hi·Z Enter data from Bus.A Data Data Data Enter data from Bus B L X H L On H X H L Hi·Z X X L L Data GND Enter data from Bus B Enter data from both buses (logical "1" on either will dominate) 75421J1, (W); 8542(J), (N), (W) Clear = Logical "1," puts all outputs to L state. X = Don't Care On = Data After Clock Transition Logic Diagram (21 Al (JI B1 (51 141 A2 B2 3·52 (11) AJ (12) " {14) A4 UJ) B4 ~~~~p-ro--p-r--i-e-ta-~-----------------~------------------------D-M--7-5-ID~M-8-5-4-2--=~ectrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) I 1___ PA DM85 RAMETE~~ _ _ _ _ _ _--t______C_O_.N_D_I_T_IO_N_S_____--:I-f--_M=I-N_-_-_.-_-__-_-_-_-~---t---T-y-4--:(:-1--:)-M-A-X-l, UNITS _V_'c.H'---t_H",ig_h_Levei Input VoltagF! II __ ~ 2 Low Levellnput Vo:tagc VIL 1-----+---!_VI 0.8 V cc "'Min,II""--12rnA I__ I I '" I'~~w"~ "","","""""eo, - ~ -_. VOltage---~ -v-c-c·-~--M-in-,-V-'-H-~-2-V----------I-------- !, .I ~H High Level Output Current VOH High Level Output Vol ta 9c Vec. \IlL IO(OFF) I~ Min, V: H -;;0 = V - 5.2 mA V 2.4 Max 16 mA I 0.4 V IL = 0.8V, Off State (High Irnpedance State) Vee I Output Current V,c - 0.8V I Input Curr-e-n7'ia-'-M-ax-,-m-u-m-I'-'P-L-'t-V-o-'t-a-g-e-+-vcc I 101 ~ - 40 O.4V -"----+--------- 1 L-e-ve-I-I-n-p-c--,t-C-'u--r-re-.r-,t-----~I-V--cc-.. -C;-2-M-a-x-,-V-,-~-2-.-4-V- IlL - los Short Ci:cuit Output Current ___ ~~ CC ;:;: N1ax(2} ice Supply Current High !. Vo Low Leve! Input Current \I CC' ~cc -----;otes Max, V I -" OAV 1.0 -1.6 -1.0 IlA rnA 40 pA -1.6 mA ----------+---------- --".---------25 -70 -25 -70 mA Max = ~-- II-:-cV"o'---::2'C.4coV-+---------:·-::-+--------:-::--1 40 Max, VI ::.. 5.5'1 00-_ V 16 mA rVlax, V 1H '-°2V = II II '" - - - - - - - - - - - - - - . - + - - - - - - - - - - - r - - - - - + - - . - - - - - - - - I f - . - . - - - - - - -- - I'H (1) (2) 2V O.8V, iot-! j l V -'1.5 Level Output -VOL ! I ------------------------r---.-------+--------;:-t--- lnputCl2rnp'Joltage 80 120 80 120 mA ------------'----------'--------'---- All typiGal values are at Vee = 5V, TA 25°C. Not more than one output should be shorted at a ti rne. 000 Switching Characteristics vee ~ 5V, TA ~ 25°C 'M. PARAMETER r TO CONDITIONS -----.-------------------+-----~------------.~-------------t------------------r_----__fM:.c.:..:A:'::X_ _I--Maximurn Clock Fre~Uency .1--_ _--1 --.+---___ I Propagation Delay Time, tpLH Low-to·High Level Outout Pro pagation Delay Time, tpHl Hig h-to-Low Lc\'cl Output rl~, Clock Outpu t Clock Output I ---------+------4--0·utPu~ Pm pagation Delay Time, tpHL Hi9 h-to-,Low tZH Clear Level Ou-::put j Output Enable Time to ____ -+HiQ_h_L_e_ve_I_ _ _ _ _ _ __ tZl _____t-L_OW Level ~ ----- 17 I Output Disable rime frorn tHZ I _ _ _ _+_Hi9h Level I ----------------------+-------- Output Enable Time to Tir~"e from . ----- 15 Output DiSC'lbl.e." LOvi/ Levei tW(CLOCKl Clock Pulse Width tW(CLEAR) Clear Pulse Width 20 --------t------ I tSETUP_+_E_na_b_le_-_se.tuP Time I-'-: UP \ L tHOLD 25 r_-~~-----~~------~ High Level Low Level Data Setup Time High Leve! Data Hold lime IL~ ~i9h Levei I Low Level I--_O____~____ 5.0 --4.0 ~·----4---3~-5--- I 3-53 --------- 6' :: ns -1 ns I ~ Proprietary DM75/DM8544 TRI-STATE Quad Switch Debouncers General Description Features These circuits are for use. in front panels, and similar applications where contact bou.nce must be eliminated. Within the single package, these circuits do the job of four R-S latches plu's pull-up resistors. A strobe is also available which permits sampling of the switch information at a predetermined time. TRI-STATE outputs ~re also provided for direct connections to the switch line bus. • Replaces SN54279174279 • Eliminates push-button noise • Allows clocked devices to be operated 'from switches • Maximum power dissipation 250 mW • Bus-line connectable • TRI-STATE outputs 18 ns • Typical propagation delay Connection Diagram Vee 01 02 116 15 Truth Table TRI-STATE ENAaLE, QD 14 13 C2 12 CI It Qe 10 r-- l- I STROBE 9 2 A2 3 5 .4 7 6 a. AI A1 A2 TRI·STATE ENABLE STROBE X X H X Hj·Z X X L L L L ,_ QA1t- tl L H L H, L H· L L H H 'H H L H QA(tl t 1 8 GNO 7544/8544(J), (N), (W) Logic Diagram S.Ok (3) ~A2~(2~'t -i-t__ __- '__ ~~J---L--' I I I + I . TO OTHER LATCHES 3·54 • I a. (71 .IOc (9) I Go (13) °AhI Indeterminate ~ Proprietary OM75/0M8544 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75 PARAMETER CONDITIONS MIN V,H High Level Input Voltage V,L Low level Input Voltage V, Input Clamp Voltage IOH High Level Output Current V OH High Level Output Voltage 10L VOL Low Level Output Voltage 44 MAX MIN Vee = = Min, V 1H O.SV, "" IOH 2V O.8V, Off State (High Impedance State) Vee Output Current V 1L =O.BV = IOL = Max, V 1H = 16 mA I Va ~ OAV 2V V 0.8 ·-1.5 -1.5 V -2.0 ·-5.2 mA 16 16 mA OA OA V I Vo -2.4V -40 -40 40 40 1 1 V Input Current at Maximum I, Input Voltage I'H Hi'gh Lev,ellnput Current I,L Low Leve! Input Current Vee =: Max, VI Vee = Max, VI = 2.4V _ = S.SV _ Vee - Max, VI - O.4V los Short Ci reuit Output Current Vee Icc Supply Current Vee - Max ~ I Strobe/Enable ! Data Max(2) -18 V 2A Vee = Min, V 1H = 2V = UNITS MAX 0.8 2A = Max TYP(1) 2 Vee = Min, I) "" --12 mA V 1L IOIOFF) TYP(1) 2 V 1L Low Level Output Current DM85 44 -30 40 40 -1.6 -1.6 -2.5 -2.5 -55 --18 -30 50 ~A mA ~A mA -55 mA 50 mA Notes ( 1) All typical values are at Vee"" 5V, TA == 25°e. (21 Not more than one output should be shorted at a time. Switching Characteristics vee = 5V, T A = 25°C DM75/85 PARAMETER FROM TO CONDITIONS tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output Data Output Data Output CL IZH ~ 50 pF, RL Output Enable Ti me to Output Enable Time to Low Level 'HZ Output Disable Time from High Level C L = 5 pF, R L 'LZ Output Disable Time from Low level 355 TYP MAX 20 36 ns 17 ·30 ns 15 25 ns 12 24 ns 5 10 ns 10 20 ns =40051 High Level 'ZL UNITS 44 MIN =400n DM75/DM8546 TRI-STATE 8-Bit Universal I/O Shift Registers General Description Features These circuits are TRI-STATE, 8-bit,edge-triggered, universal shih registers which are capable of operating in any of the following modes: shift left, shift right, parallel load, or inhibit_ Since the clock is edge-triggered, the control lines which determine the mode of operation are completely independent of the logic level applied to the clock_ Designed for bus-oriented systems, these circuits have their TRI-STATE inputs and outputs on the same pins_ .. Positive-edge triggered clock Connection Diagram C2 lice I" " RSlIlSD lIO 1 14 13 tiD 2 1103 " 1104 Cl J ~SIIRSO I/O B , 1/01 Both paraliel and serial data lines are TRI-STATE • High impedance state does not impede shift mode with parallel outputs 00 , 10 11 l- , • Truth Table r- I .. "Do nothing" state without gating the clock , 5 1/06 liD Ii 7 CLOCK STATE OF PARALLEL I/O C2 L 1-1 H Inhibit H H H Inhibit X H L P~rallel L L H Right Shift H L H Right Shift Hi-Z* Data In Data In L L L Left Shift QOUT GOUT 1 H L L Left Shift Hi-Z' 00UT 1 Load RSI/LSO LSI/RSO GOUT Hi-Z' Hi-Z' Hi-Z' Hi-Z* Hi-Z* Data In Hi-Z' OOl.,lT I' ONO STATE OF SERIAL I/O Cl Hi-Z" GOUT 8 Q OUT 8 Data In Data In 00' Output Disable (Cl, C2 • Mode Controls) *~oth 7546(J), (W);.8546IJl, (N), (W) MOOE OF OPERATION 00 Input and Output of the 1/0 pin are in the hi,gh impedance state. Logic Diagram C1 -,,111--~~=h~~~:::[~>- ______ ________________________________________________________j ~ C2-""1"~I~-l~~~:::::::::[2>~------------------~--------~-----------------------------------J "TAI·SfATE GAl'£ 3-56 ~ OM75/0M8546 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75 PARAMETER CONDITIONS MIN V,H High Level Input Voltage V,l Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current V OH High level Output Voltage 10l Low l,evel Output Current Val Low Level Output Voltage· 1, I,l 46 MAX Vee = Min, II = -12 UNITS TYP(l) V'L =o.av, 10H =Max Vee = Min, V 0,8 Vee Output Current V,L = Max, V 1H Input 'Current at Maximum Vee = Max, VI HiQh Level Input Current Vee Low Level Input Current -1.5 -1.5 V -5,2 mA 2,4 I:;l 2V Vee = Max. VI = O.4V loS Short Circuit Output Current V ee 'Max(2) Icc Supply Cu~rent Vee:;: Max 16 mA 0.4 V =O.4V -40 -40 40 40 1 1 = S.5V =Max, V, =2.4V 16 0.4 V a=2.. 4V Va I /-LA mA C'2lnput 80 80 Others 40 40 C21nput -3.2 Others -1.6 -3.2 -1.6 mA -70 mA -30 -70 ao -30 80 115 Notes (1) All typical value. are at VCC = 5V, T A ~ 25"C, (2) Not more than one output should be shorted at. time, = 5V, T A V 2.4 =0.8V, 10L = 16 mA =o.a'v V -2.0 = 2V V 1H MAX 2 mA Vee = Min, V 1H = 2V Off State (High Impedance State) Switching Characteristics vee ,MIN 0.8 I nput Voltage I'H TYP(1) 2 V'c IOIOFFI DM85 46 125 /-LA mA , = 25°C DM75/85 PARAMETER CONDITIONS f MAX Maximum Clock F'reque,ncy tPlH Propagation Delay, Low-ta-High Level, From Clock to Output tpH~ .ZH Propagation Delay. High-to-Low Level, From Clock to Output Propagation Delay From High Impeda~ce State ,to High Logic Level (From Output Disable) tZH CL =50 pF, RL • 400n Propagation Delay From High Impedance State 'io.Hlgh Logic Level (From Mode Control eltC2) tZl Propagation Delay From High Impedance State to Low Logic Level (From Output Disable) tZL Propagation Delay From High Impedance State to Low Logic Lovel (From Mode Control Cl/C2) tHZ Prop,gation Del!)v From High Logic level to tHZ Propagation Delay From High Logic Level to High I mpedance State (From Output Disable) High Impedance State (From Mode Control Cl/C2) tlZ Propagation Delay From Low Logic Level to CL TVP 15 22 UNITS MAX MHz 16 24 ns 27 40 ns 22 33 ns 13 20 ns 18. 27 ns 15 23 ns 5 a ns 9 14 ns 16 24 ns 17 26 ns =5pF, RL =400n' High Impedance State (From Output Disable) ILz 46 MIN Propagation Delay From Low Logic Level to High Impedance State (From Mode Control Cl/C21 3-57 ~" Proprietary' DM75/DM8546 Switching Characteristics Vee =5V, TA = 25°C DM75/85 PARAMETER CONDITIONS 46 MIN .tWICLOCKI tSETUP (HIGH! . tsETUP IHIGHI tsETUP ILOW) UNITS. TYP MAX Clock Pulse Width 18 12 ns Serial Data 38 25 ns Parallel Data 33 22 ns Serial Data 21 14 ns 12 ns CL = 50 pF, RL = 4000 18 tsETUP ILOW) Parallel Data tHOLD IHIGH) Serial Data 0 -11 ns tHOLD (HIGHI Parallel Data 0 -11 ns tHOLD ILOW) Serial Data 0 ~22 ns tHOLD (LOW) Parallel Data 0 -21 ns ns SETUP. AND HOLD TIMES BETWEEN CHANGES'IN MODE CONTROL AND CLOCKING tSETUP' Parallel load to Right Shift 32 21 t~ETUP Parallel load to Left Shift 40 27 ns tSETUP Right Shift to Parallel Load 60 40 ns tSETUP Left Shift to Parallel Load 53 35 ns tSETUP Right Shift to left Shift 33 21 ns tsETUP left Shift to Right Shift 56 37 ns tsETUP Inhibit to Right Shift 57 38 ns tSETUP Inhibit to left Shift 65 43 ns tsETUP Right Shi,ft to Inhibit 50 33 ns !sETUP left Shift to Inhibit 50 32 ns tHOLD Parallel load to Right Shift 9 6 ns ns CL = 50 pF, RL =40011 tHOLD Parallel Load to left Shift 6 4 tHOLD Right Shift to Parallel load '0 -13 ns tHOLD Left Shift to Parallel Load 0 -46 ns tHOLD Right Shift to left Shift 0 -10 tHOLD left Shift to Right Shift 0 -23 tHOLD Inhibit to Right Shift 0 -18 tHOLD Inhibit to left Shift 0 -16 ns tHOLO Right Shift to Inhibit 0 -12 ns tHOLD left Shift to Inhibit 0 -29 ns ns , ns . ns Typical Applications CASCADING DEVICES TO COMMON BUS 1/01· . . .( • • 1/0' I/O 1- -.lLlIIIII • • t • • • • ~ • • • 1/08 I I I I I II I 1/01 • • 1/08 I I I II I II OTHER OTHER LSI/RSO DEVICES COMMg: BUS ~ DM7546 ~ DEVICES LSI/RSO DM754G RSI/I,SO OR DM7!i48 RSI/LSO , COMMON BUS 1 I 1 I 1 I 1 C1 Cl co 00 3-58 ~ Proprietary OM75/0M8546 Typical Applications (Continued) SERIAL DATA TRANSFER TO A FIRST IN-FIRST OUT STORAGE MEDIUM TO COMMON BUS I/O l ' • • t • I/O 8 I I I I I I I I TRI-STATE BUS OF FIRST IN-FIRST OUT STORAGE MEDIUM .:.s~ ~ OM7S46 OTHER • • I/O 8 • I I I I I I I I RSI/LSO ····DEVICES····~ I I I/O l ' LSI/ASO l- QM7546 I 1 1 00 CP C1 C1 n TRI·STATE BUFFER (1093/94) DISABLE THIS OUTPUT WHEN RECEIVING DATA FROM STORAGE MEDIUM SERIAL DATA I/O CONTROL Timing Diagram TYPICAL PARALLEL LOAD, RIGHT SHIFT, LEFT SHIFT AND INHIBIT SEQUENCES CLK I I I n n 00 --~--------------~I I I I I I ______~__________________~I__~____~I I __~ C1--'~__________________~ I I I I I I I I I I I I I I I I I I I I I RSI/LSO I I I I ~--------~+-~--------~----------------~--~I I I I I I r- I "'--1 --LJI ill I/O 1 1/02 I/O 3 1/04 I/O 5 1/06 lIn 1 I/O 8 lSI/RSO I I PARALL~!~ f-~-------RIGHTSHIF~ I. _I OUTPUT I- OUTPUT __ '_018_A_Bl_E_ _ _ _ _ _ _ _ _ _ _ lEHSHIFT _ _ _ _'_O_IS_AB_"E_t-_INHIBIT _ _ 3-59 ~ Proprietary DM85S50 6-Bit Shift Registers General Description These 6-bit shift registers feature J-K serial inputs, parallel outputs. and a direct overriding clear_ All inputs.' are buffered to lower the input drive requirements to one standard DM74S load_ Furthermore. shifting is synchronous. and occurs on the positive-going edge of the clock pulse. Thes~ shift registers are particularly well-suited for very high speed data processing systems. Connection Diagram Truth Table Vee 116 06 06 15 05 13 .14 04 04 12 11 CLOCK 2 1 CLEAR CLEAR < 2 4 3 -01 6 5 - 02 1 03 18 GND r-;-""2 L X X H L L H H L H H L H H H H ·L H t t t H H 01 OUTPUTS CLOCKS 9 10 - INPUTS CLOCK 1 J K X X X X X L X X X X X L L L H L H t L H L H H L L L L H H L H L t t t t L H H t H H H t H L H H X X X X 01 02 03 04 05 06 L '- L L L L 01 0 020 030 040 050 060 01 0 0.20 030 040 050 01 0 020 030 04 0 040 060 05 0 060 050 01 0 020 030 L O1 N O2 N 03 N O4 N O1 N 01N Q2N Q3 N 04 N O1 N 01N 02N 03 N O4 N 060 05 N 05 N 05 N 01 N 02 N 03 N O4 N OSN L 01 N 02 N 03N 04 N OSN O1 N 01N 02 N 03 N O4 N OSN O1 N 01 N O2N 03 N O4 N OSN H H 01 N 02 N Q3 N 04 N OSN 01 N 02 N 03 N O4 N OSN 06 N O1 N 02 N 03 N O4 N 05 N 06 N 010.020. etc. ~ The level of Ot. 02. etc. before the indicated steady~state input conditions were established. 01N. 02N. etc. ~ The level of 01, 02, etc.,bef~re the most- recent t transition of the clock; indicates a l-bit shift. Logic Diagram \ 3-60 To Be Announced In 1976 ~ DM85S50 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) I DM85S PARAMETER CONDITIONS I MIN VIH High Level I nput Voltage VIL Low Level I nput Voltage VI Input Clamp Voltage IOH High Level Output Current VOH High Level Output Voltage 10L Low Level Output Current Low Level Output Voltage TYP(l) MAX V 2 1,~~18mA Vee ~ Min, VOL UNITS S50 Vee ~ Min, V'H ~ 2V V'L ~ 0.8V, IOH Vee ~ Min, V'H ~ 2V ~~1 mA 2.7 0.8 V ~1.2 V ~1.0 mA 3.4 V 20 V'L = 0.8V, 0.5 IOL~20mA 1\ Input Current at Maximum Input Voltage Vee ~ Max, V, ~ 5.5V IIH High Leve! Input Current Vee ~ Max, V, = 2.7V IlL Low Level [nput Current Vee = Max, V, = 0.5V los Short Circuit Output Current Vee = Max(2) Icc Supply Current Vee ~ Max 1 50 ~40 mA V mA M/l· ~2 mA --100 mA 150 mA 90 Notes (1) (2) All typical values are at VCC ~ 5V, TA = 25°C. Not more than one output should be ,shorted at a time, and the duration of the short circuit should not exceed one second. Switching Characteristics vee ~ 5V, TA = 25°C DM85S PARAMETER MAX !_f tpLH Propagation Delay Time, Propagation Delay Time, High-la-Low Level Output tpLH Propagation Delay Time, LOW-lo·High Level Output tpHL CONDITIONS TO Maxllnum Clock Frequency Low-to·High Level Output tpHL FROM Propagation Delay Time, High-ta-Low Level Output Clock Oar 0 Clock OorO CL = 15 pF, UNITS S50 MIN TYP 75 110 MAX MHz 8 12 ns 12 18 ns RL = 280n Clear 0 10 15 ns Clear Q 13 20 ns 3·61 ~ Proprietary OM75/0M8551,L51 TRI-STATE 4-Bit 0 Type .Registers General Description These four-bit registers contain D-type flip-flops with totem-pole TRI-STATE outputs, capable of driving highly capacitive or low-impedance loads. The highimpedance state and increased high-logic-level drive provide these flip-flops with the capability of driving the bus lines in a bus-organized system without need for interface or pull-up components. theoutplJt control circuitry is designed so that the average output disable times are. shorter than the average output enable times. Features • TRI-STATE outputs interface directly with system bus • Gated output control lines for enabling or disabling the outputs • Fully independent clock eliminates restrictions for operating in one of two modes: Parallel load Do nothing (hold) Gated enable inputs are provided for controlling the entry of data into the flip-flops. When both data-enable inputs are low, data at the D inputs are loaded into their respective flip-flops on the next positive transition of the buffered clock input. Gate output control inputs are also provided. When both are low, the nc;>rmal logic states of the four outputs are available for driving the loads or bus Iines. The outputs are disabled independently from the level of the clock by a high logic level at either output control input. The outputs then present a high impedance and neither load nor drive the bus line. Detailed operation is given in the truth table. • To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, Connection Diagram For application as bus buffer registers TYPE TYPICAL PRO PA ATION G DELAY TYPICAL FREQUENCY 7551/8551 75L51/85L51 18 ns 59 ns 30 MHz 15 MHz TYPICAL POWER DISSIPATION 250mW 27.5 mW Logic Diagram DATA ENABLE INPUTS DATA INPUTS ~ Vee CLEAR 116 01 " 02 14 04 OJ 13 11 GZ Gl 10 11 I, tf +-_,. . . OA~~-,I:.:.14,-1_ _ _ _ _ _ I .----,-,./"~-o, .~ \' M 3 1 0' N '----------' OUTPUT CONTROL 4, 02 , S Q4 QJ ) CLOCK \' GNO '--~--~ DATA (13) D2 OUTPUTS 7551(J), (W); 8551(J), (N), (W); 75L51/85L51 (J), (N), (W) 01 ~LOCK m Truth Table INPUTS DATA ENABLE CLEAR CLOCK Gl G2 DATA OUTPUT 0 D H X X X X L L L X X X L H X X L t t X H X 00 00 00 L 1 L L L L L t L L H H DATA (12) 03 03 -r-...... +_--'-__ DA~:-'1..;,11i'-_ _ When either M or N (or both) is (are) high the output is disabled to the high-impedance state; however, sequential operation of the flip-flops is not affected. H =: high level (steady state} L = low level '(steady state} t = low·to-high level transition X = don't care (any input induding transitions) QO,= the level of Q before the indicated steady state input conditions were established 04 (15) CLEAR 3-62 ~ Proprietary OM75/0M8551,L51 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75/85 PARAMETER MIN VIH High Level Input Voltage VIL Low Level Input Voltage VI Input Clamp Voltage 10H t-ligh Level Output Current VOH High Level Output Voltage Vee TVP(l) MAX V DM75 -2.0 IDM85 -5.2 Min, V 1H == 2V =: Off State (High Impedance State) Curren~ 2.4 = Max tOL == Max 2.0 16 3.6 DM75 0.4 0.15 0.3 DM85 0.4 0.2 0.4 -40 I Vo =2.4V 40 ~igh Level Input Curre,nt IlL Low Level Input Current loS Short Circuit Output Current Vee = Max(2) Icc Supply Current Vee = Max(3) Vee Vee = Max, VI = 2.4V Vee = Max V mA mA V -40 = Max, VI = S.SV Input IIH V V 16 I Vo =O.4V II -1.0 DM85 Iyo =O.3V Max -1.0 DM75 Vee =Max == N/A 2.4 V ,H = 2V V 1L Current at Maximum Input Voltage = Max, 0.7 -1.5 Vee == Min, V 1H == 2V V IL Output MIN 2 Vee == Min, II = -12 rnA Low Level Output Voltage 1010FFI MAX 0.8 Low Level Output Current VOL UNITS L51 TVP(l) 2 V 1L == Max, IOH 10L DM75L/85L 51 CONDITIONS /lA 20 1 0.Q1 0.1 mA 40 I 10 /lA I V, = 0.3V -0.18 I V, _ 0.4V -1.6 -30 -70 -3 72 50 -8 mA -15 mA 9 mA 5.5 Notes (1) All typical values are at Vee = SV, TA = 25°C .. (2) Not more than one output should (3) ICC is measured with all outputs open; clear grounded following momentary connection to 4.SV; N, G1, G2, and all data inputs grounded; and be shorted at a time. the clock input and M at 4.SV. Switching Characteristics Vcc = 5V, T A= 25°C DM75/85 CONDITIONS PARAMETER FROM TO BOTH fMAX Maximum Clock Frequency ,"HL Propagati.on. Delay Time, High-to-Low Level Output tPLH Propag~tion Delay Time, Low-to·H igh Level Output tpHL Propagation Delay Time, High-to-Low Level Output tZH tZL STD. tLZ tHOLD 6 TVP UNITS MAX 15 MHz 110 n, Clock Output 16 25 39 70 n, Cloc~ Output 20 28 77 120 ns 7 16 30 28 55 .~ns 7 21 30 35 60 n, 3 5 14 18 50 n, 3 11 20. 32 75 n, CL = 50 pF RL = 40011 Outpu"t Disable time from RL = 4 kl1 CL = 5 pF ?,utput Disable Time from . Width of Clpck or Cle.r Pulse Hold Time 30 MIN 72 Low Level tw 25 L51 MAX 27 Output Enable Time to 'sETUP Setup Time TVP 18 ~evel High Level MIN Output Low Level tHZ LOW POWER Clear Output Enable Time to High DM75L/8SL 51 20 100 Data Enable 17 45 Data 10 30 Clear I nactive State 10 30 Data Enable 2 0 Oat. 10 10 3-63 n, n, n, ~ Proprietary DM75/DM85.52,L52,54.l54 ' , TRI-STATE Synchronous Counters/Latches . General Description Features These circuits logically combine the functions of counters. for frequency division, latches to store the data from the counters, and output buffer gates which provide both standard TTL outputs as well as high-impedance outputs for multiplexing of data. The counters are fully synchronous, and are made up of four edge-triggered JK flip-flops. To further facilitate operation, the Count Mode and Terminal CO'unt outputs are also operable when the data outputs are in the high-impedance state or the latch mode. • DM7552/8552 DM75L52/85L52 • DM7554/8554 DM75L54/85L54 Decade counter/latch Binary counter/latch TYPICAL POWER DISSIPATION TYPE 52,54 L52, L54 330mW 38mW TYPICAL CLOCK FREQUENCY 23 MHz 11 MHz I----------------------------------~------------------------~----------Connection Diagram r vcc TRANSFER ENABLE 16 15 1 2 CP DUTPUT . DISABLES CLEAR 13 12 4 3 C ~ PRESET 14 \ D 11 6 5 . B CEP NC A , OUTPUTS 7552{J), (W); 8S52{J), IN), (W); 7SL52/85L52(J), IN), (W); 7554(J), (W); 8554IJ), IN), (W); 75L54/85L54(J), (N), (W) Truth Table 3-64 C.ET 10 7 HAM. CDUNT 61: ~ Proprietary OM75/0M8552.L52.54.L54 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75L/85L DM75/85 PARAMETER CONDITIONS 52,54 MIN V,H High Level I nput Voltage V,l Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current V cc I Others Vee V 1L ~ Low Level Output Voltage 'OIOFFI Off State (High Impedance State) Output Current =: = Min, V 1H High Level Input Current Max Short Circuit Output Current Icc Supply Current ~5.2 IOH - 0.4 rnA 2.4 3.3 IOH - Max 204 3.3 V -'= Vee 0 Max, VI = S.5V Max, V, "OAV (Std.1 Vee 'Max(21 -10 204 2.S 2.4 2.7 mA V 2.0 3.6 004 004 0.15 0.3 0.2 004 mA V -40 Va" 0.3V 2V V 16 0.2 :: NlA -1.0 16 DM85 =Max, V 1H V DMS5 V 1L -= Max, IOL -= Max Vee 0.7 DM75 0.2 V, "0.3V (75L1S5LI lOS DMS5 DM75 Vee = Max, VI = 2.4V Low Level I nput Current I,l ~2.0 IOH '" 0.2 mA 2V ::: DM75 Vee'" Min, V 1H '" 2V Vee Input Voltage I'H UNITS MAX ~1.5 V 1L -= Max Input Current at Maximum I, TVP(11 2 Min, II -= -12 rnA Low Level Output Current VOL MIN O.S High Level Terminal Count Output Voltage 10l L52, L54 MAX 2 ,l VOH TVP(11 Vo "OAV -40 Va -2AV 40 CET Input 2 0.02 0.2 Others 1 0.01 0.1 CET Input SO 2 20 Others 40 1 10 MA 20 CET Input -2.0 -'3.2 -0.24 ~0.36 Others -1.0 -1.6 -0.12 ~O.lS TC Output -·20 Others -30 Vee'" Max 66 --55 -3 ~S -15 -70 -3 -8 -15 106 7.6 13 mA pA mA mA mA Notes (11 All typical values are at VCC ~ 5V, TA = 2SoC. (21 Not more than one output should be shorted at a time, and for DM7552/8552 or DM7554/8554 duration of short circuit should not exceed one second. Switching Characteristics vee = 5V, TA = 25°C PARAMETER FROM 52,54 BOTH f MAX Maximum Clock Frequency tpLH Propagation Delay Time, tpHL Propagation Delay Time, tplH Propagation Delay Time, tpHl Propagation Delay Time, Low-to-High Level Output High-to-Low Level Output Low-to-High Level Output High-ta-Low Level Output tZH ,Output Enable Time to tZl Output Enable Time to 'HZ Output Disable Time tlZ· Output Disable Time DM75L/85L DM75/85 CONDITIONS TO STD. LOW POWER MIN TVP 15 23 L52, L54 MAX MIN 6 TVP UNITS MAX 11 MHz Clock Output 34 70 115 220 ns Clock Output 23 45 75 150 ns Transfer Enable Output 26 50 90 160 ns 26 50 90 160 ns 21 45 75 150 ns 25 50 90 150 ns 3 S S 15 ns 17 40 57 105 ns CL " 50 pF Transfer Enable Output RL "400" High Level Low Level ftom High Level CL " R L "4kSl 5 pF from Low Level 3-65 I ~ Proprietary DM75/DM8552.L52;54.L54 Mode of Operation When the Transfer Enable (TE) is at a logical. "1" level, the data transfer paths between the counter outputs and the output buffer gates are maintained. When the Transfer Enable is at a logical "0" level, the data transfer paths are inhibited, and the state of the output buffer gates are locked in by the latches. The counter and Terminal Count (TC) output remain operable during this time. • To enable the count mode both CET and CEP inputs must be at a logical" 1" level. • To latch the outputs the Transfer Enable (TE) input must be taken to the logical "0" level. Asynchronous Clear resets the counter to 0000. • To place the TRI·STATE outputs into the "third· state," either of the Output Disable (00) inputs must be taken to the logical" 1" level. Asynchronous Preset sets the counter to 1111. The 1111 state may be used in the 52 for blanking out leading zeroes in visual displays. The next clock pulse will advance the 52 to 0001 which denotes the first count of the blanked zero. The next clock pulse will advance the 54 to 0000. The clock input must be high during the high to low transition of CEP and/or CET for correct logic operation. The CEP and CET inputs may be used in a high speed look ahead.technique. The Terminal Count (TC) output is active high when the counters are at terminal count and the CET is high. The Terminal Count logic equations are: (52) (54) TC TC ~ ~ Counter stages can be cascaded to provide multiple stage BCD or Binary synchronous counting by using the 52 or the 54 respectively. With a Terminal Count (TC) fan OLit of ten, eleven stages are able to operate at the maximum frequency equivalent to a two stage counter. CET • A • B • C " 0 CET"A -B -C-O The following logic levels control the device: • • The counters change state on the positive·going transition of the clock. The characters displayed can be held with a low level on the strobe line while the counters can continue counting. The display can be updated at any time by applying a positive pulse to the strobe line. . Clearing or presetting is enabled by taking the respective input to a logical "1" level. OM7552iOM8552 OM75L52iOM85L52 DECADE COUNT SEQUENCE COUNT OM7554iOM8554 OM75L54iOM85L54 BINARY COUNT SEQUENCE OUTPUTS A B C 0 COUNT TC H H H H L 4 .... ,f L B L L H L C H 4 5 0 TC L H H H L L H L L H L H L H L H H L H H L L H H H H H H L L L H H H H H H 10 Applied 11 Next· H Count H H H H 7447A, H 7448) for blanking leading zeroes. 3·66 H H H H L H H 13 H L H H 14 L H H H 15 H H H H 12 **The 1111 state may be used in conjunction witf:l certain iDM7446A, H H Preset decoder/drivers OUTPUTS A H ~ Proprietary OM75/0M8552 ,L52 ,54 ,L54 Logic Diagrams 52,L52 TERMINAL COUNT OUTPUT (7) OUTPUT DISABLES 111 121 SET SET CP .+++--ojCP ij RESET COUNT T~~~:t~ ij RESET (9) 54,L54 TERMINAL COUNT OUTPUT 171 111 OUTPUT DISABLES (2) 3·67 ~ Proprietary DM75/DM8552.L52.54.L54 Switching Time Waveforms 52,54 "=Tl1~~- .. -- . --- _______~_~_~+~~~~_l____ I 1 ' PRESET- JtJL~' 1 ---.----.---,-------+~---- ~I ! 3V 1 "(PRESE~ _____ ~ 1,5V ov __ CLEAR--l~-~---+~-±--~--fE-~--1 ,T ----+---I 'I --II ' +---- i' I I I ,,----+---~ - - - - ,+, 3V 1.5V ov I 'PiClEAR) I 3V ~~~~ t.5V ov 3V TE~--+I~~~---+- I -----l-----~-~-, --~------ I I I 'I I 1.5V +_I-,r---h, ~ \--~~ ~ _____.____ ::; 1 OUTPUTS _ _ -=r:~- ~f±:l~Il'-.---------..J vOl tpHL 3V =£='V =t 3t= TE' --l.SV--TE I ~~--ov OUTPUTS-~~ 1.5V ---ov I VO H = I J f ' VOH ~~-1'5V-~- -1.5V I -vOl---- .LH lTE1- -- VOL .Hl irE) " r-----------------3V 3V oV_,.PUTt.HZ~-~-,5V -.l ACTUAL LOGICAL ''1'' VOLTAGE OUTPUT OV '"J{ 1.5V ""1.5'11 ~--- 5V ---_IS tZH INPUT~' 3' J INPUT----.~~_ 3V --~~-I.5V ou ~ 'ZH- lr OUTPUT---,"' 1.5v OUTPUT \ ..._ _ _ _ _ _ 1.5V 3-68 ~ Proprietary DM75/DM8552.l52.54.L54 Switching Time Waveforms (Continued) L52, L54 I I 'v -------.---"~~--+----+---- t.JV OV lV ---~- ~~--j i I-----j 'SiCEI --t--- uv ov 1- 'Ai'" 'v TE--i----t--l----r------~---------~--I i I I Iii OUIPUTS 1.3V ----- ~:: I --L--+~--HIt=tt-~-~----~=+-. ~~'PLHr- ~ ~---1 "rlSl---~"dR~ ± ~---=:~v-=-t-----~:v 'V_T<~lV TE---- =t§= ---=r- VOH==jf1VOH 1 O!1TP.UTS----;- • 1 --1.3V---- I -'1'LH _ i----------~- '"_'U....}' VOLTAGE VOL (TE) ,---------'V '"_PU_T..J~-I-l---~ lV -t,ll,{ oV _ _ _ _ 1.3V ~ I---'HZ-~' LOG1~~~~~~·----------- 1.JV tl'HL (TE) OV _______ I --VOL --~v-- :=f,--_.- OUTI'U1 tZL b-1.3V ·------3V INPUT-----, INPUT \~-~ --- 'v ---1.3V OV ~-~ 'ZH I t~- ~--I OUTPUT _ _ _ _ _ ~ tZL r~ --,~ -1.3'.' OUTPU1 \L-_ ' 3~69 UV ~ Proprietary DM75/DM85'53 TRI-STATE 8-Bit latches General Description By utilizing TRI-STATE circuitry on the outputs, the ,inputs and outputs can be accessed on the same pins, and these circuits provide eight separate A-S latches in the popular 16-pin package. While in the high-i'mpedance state, the inputs and outputs are disabled and no information can be entered. When both WRITE inputs are brought to a low logic level, the outputs are disabled and new information may be entered at the inputs. When a low logic level is applied to both READ inputs,' and a Connection Diagram high logic ,level to both WRITE inputs, the inputs are rendered inactive and' data may. be read from the outputs. Features • TRI-STATE I/O pins • 8 latches in popular 16-pin package • Typical propagation delay-22 ns Logic Diagram DATA INPUTS/OUTPUTS Vee = 16 " I.. " " " 12 11 , 10 GNO;oa DATA INPUT/OUTPUT 1 I~----------, , I I (:::4J~....._ - ; - . . . I I I I rDATA INPUT/OUTPUT 2 , t REAfl Emu , , 4 , :::;(5',-+++-;-... 7 CLEAR GNO OA-TA INPUTS/OUTPUTS " 7553(J), (W); B5531J1, (N), (W) Truth Table DATA INPUT/OUTPUT 7 CLEAR ENABLE READ' WRITE** OPERATION DATA INPUT/OUTPUT' STATE OF BUS H L L H Enter L L H' L L L Enter L Hi·Z L X H H Do Nothing Hi·Z L H X X Do Nothing L L X L Write Hi·Z HDr L**-11 L L 'L H Read H or L H * *Both Read Inputs **Both Write' Inputs ***Depends on State of lat~h 3·70 ~(12:!.'-H'-i-'\ ~ DM75/DM8553 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75 PARAMETER CONDITIONS MIN V ,H High Level t nput Voltage V,l Low Level I nput Voltage V, Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage 10l Low Level Output Current Low Level Output Voltage I, Vee::: Min, V 1H = 2V Vee == Min, V 1H Off State (H igh Impedance State) Vee V 1L =O.SV Input Current at Maximum = ::: tOL::: Max, V 1H I'H High Level Input Current Vee::: Max, VI I,l Low Level Input Current Vee los Short Circuit Output Current Vee = Max(2) ICC Supply Current Vcc=Max (21 UNITS MAX TYPlll V 0.8 = Vee = 5V, T A = = -1.5 -1.5 V -5.2 mA 2A 2V 16 mA I 2V V -20 2A VaoOo4V I Va =2AV Vee = Max, VI = 5.5V Input Voltage Notes All typical values are at MIN 2 Vee''''' Min, II =-12 rnA Output Current (1) 53 MAX 0.8 V 1L = a.BV, 1010FFI TYPlll 2 V 1L =O.8V,I OH =Max VOL DM85 53 V 16 16 mA OA 004 V --40 -40 40 40 1 1 ~A mA 2.4V 40 40 ~A Max, VI::: O.4V -1.6 -1.6 mA -70 mA 93 mA = -28 -28 -70 66 93 66 25° C Not more than one output should be shorted at a time. Switching Characteristics vec = 5V, TA = 25°C DM75/85 PARAMETER FROM TO CONDITIONS 53 MIN tpHL Propagation Delay Time, Clear High-to-Low Level Output 'ZH Output Output Enable Time to C L = 50 pF, RL = 400n High Level 'Zl MAX 21 32 os 22, 33 ns 25 38 ns 7 12 ns 20 30 os Output Enable Time to Low Level 'HZ UNITS TYP Output Disable Time from High Level C L = 5pF, RL =400n tlZ Output Disable Time from Low Level 'W tSETUP tHOLD Minimum Pulse Width Minimum Data Setup Time Minimum Data Hold Time Clear 15 10 Write 40 28 High Level 20 14 Low Level 36 26 High Level -15 -26 Low Level -8 -14 3-71 ns ns ns ~ Proprietary DM75/0Ma555.56 TRI-STATE Programmable Decade/Binary C!lunters Genera! Description Features These circuits are synchronous, edge·sensitive, fully· programmable 4·bit counters. The counters feature both conventional totem·pole and TRI'STATE outputs; such that when the outputs are in the high·impedance mode, they can be used to enter data from the bus lines. In addition, the clear input operates completely independent of all other inputs. During the programming operation, data is loaded into the flip,flops on the positive·going edge of the clock pulse. To facilitate cascading of these counters, the MAX COUNT output can be tied directly into the count enable input. • Connection Diagram Truth Table Vee MAX COUNT I/O D 00 DM7555/8555..,..Decade courtter • DM7556/8556-Binary counter • Typical clock frequency • TRI·STATE outputs • Fully independent clear • Synchro·nous loading • Cascading circuitry provided internally II0 g J K 0 0 0 M , , ,, , , , L 0 X X j( 0 X X CLEAR On+1 0 00 0 0 0 0 , '* Asynchronous Transition Note: See Timing Diagrams 7565(J), (W); 8555(J), (N), (W); 7556(J), (W); 8556(J). (N), (WI Logic Diagrams 35 MHz 55 56 3·72 , 0 G" D o· ~ DM75/DM8555.56 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75!8555 PARAMETER MIN High Level Input VIL Low Level Input Volta\)e VI Input Clamp Voltage 10H High Level Output Current Vee =: Min, " Low Level Output Current Low Level Output Voltage I DM75 I DM85 Vee = Mm, V'H = 2V -= TVPlll UNITS MAX V = Min, V:I-l = 2V Off State (High Impedance State) Vee Output Current V'H 0:: =: -5.2 ·5.2 -40 '-40 40 40 , rnA V 0.4 Vo = 2AV mA V 16 0.4 Vo "OAV V ,L =Max V -1.5 ",2.0 2.4 Max 2V V -1.5 16 Vee 0.8' -2.0 24 Max V ,L '" a.BV, tOl "'" 16 rnA 'O(OFFI MIN 2 -12 mA =: V ,L = a.BV, IOH 10L DM75!8556 MAX 0.8 High Level Output Voltage VOL TVPlll 2 Voltagf~ V IH V oH CONDITIONS ~A rnA II Input Current at MaXimum Input Voltage Vee'" Max, V, = 5.5V 1 1 IIH High Level Input Current Vee::" Max, V, = 2.4V 40 40 ~A IlL Low Level Input Current Vee Max, V, 1.6 -1.6 rnA los Short Circuit Output Current Vee =- Max(2) -70 rnA Icc Supply Current Vee =: =: =: OAV -25 ·70 80 Max ·25 75 110 100 mA Notes III All typical values are at Vee ~ 5V, TA ~ 25°e. (2) Not more than one output should be shorted at a time. Switching Characteristics vec = 5V, TA = 25°C PARAMETER fMAX Maximum Clock Frequency tpLH Propagation Delay Time, FROM Low-ta-Hlgh Level Output tpHL Propagation Delay Time, tpLH Propagation Delay Time, tpHL Propagatlo~ Delay Time, High-ta-Low Level Output Low-ta-High Level Output High-ta-Low Level Output tpHL Propagation Delay Time, Hlgh-ta-Low Level Output TO DM75!8555,56 CONDITIONS MIN TYP 25 35 UNITS MAX MHz .Clock Output 15 22 ns Clock Output 34 44 ns Clock Max Count 23 33 ns Clock Max Count 23 33 ns Clear Output 30 44 ns CL = 50 pF, RL = 4000. tZH Output Enable Ti me to High Level 13 20 ns 'ZL Output Enable Time to Low Level 14 20 ns tHZ Output Disable Time from High ,Level 6 12 ns tLZ Output Disable Time from Low Level 12 20 ns tw Minimum Pulse Width teE CL Count Enable Time Clock tSETUP(1) tHOLO(1) tSETUP(O) tHOLO(Ol HOld Time - High LogIC Level Setup Time - Low Logic Level Hold Time - Low Logic Level RL =4000. 25 Clear 20 Load 30 Setup 30 -30 Hold Setup Time - High LogIC level = 5pF, Data 25 Load 30 Data 5 Load 10 Data 30 Load 25 Data 5 Load -10 3·73 ns ns ns ns ns ns ·~. ProprietarY DM75/DM8555,56 Timing Diagrams 55 TYPICAL CLEAR, PRESET, COUII!T,INHIBIT SEOUENCE CLEAR --1IL-_______------------..:..------ LOAO~~.-------------------------------:,~:~i ______________. . . r - - l L_ _ _ _ _ _ _ _ _ _ _ _ _ COUNT DISABLE _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. . , . . - - - - , . - - - CLOCK Sequence 11 Clear to zero. (2) Load BCD five. (3~ Co'unt six, seven, eight, nine, zero, i IIO{C) ::l..J (4) (5) (6) one, two, three, four. Disable TR I·STA TE outputs. Disable Counter. Count to six. ..J1 O{B) : : .... ', _ _ _. J r - - l L ._ _ _ _ _. J r - - l L_ _ _ _ _ ~{Cl::L....J O{O, : : ... ', _ _ _ _ _ _- - I r - - l l ._ _ _ _ _ _ _ _ _ _ _ _ _ __ MAX - - i LJ COUNT __ ..f LOAD COUNT -----lj I/O USED AS INPUTS DISABLE OUTPUTS 56 TYPICAL CLEAR, PRESET, COUNT, INHIBIT SEQUENCE CLEA' LOAD -rlL-____________________________ ~---------------------------- OUTPUT _ _ _ _ _ _ _ _ _ _.JI. - - - - - - .11._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ DISABLE COUNT .....- - - - - - - - - - - - - - - - - -__--....J DISABLE _ _- CLOCK Sequence (1) Clear to zero. (2) Load'binary five. (3) Count six, seven, eight, nine, ten, I/O (A) 110 (B) IIO{C) ::LJ --,.,L-_ _ _ _ _ _ _ (4) (5) (6) .J IIO{O, __ 0{C).::l-..J -- , Q{O, _ _ ~' _ _ _ _ _ _ _--...J C~~::J'---------------------'L__Jr-~------­ I:LE~' . DISABLE LOAD ----- .. , . Ito USED -- ~-.,-----~CO:.cU.:.NT---------1 ,.COUNTER'.,I~I AS, INPUTS 'I ~ DISABLE OUTPUTS I ,-, eleven,. twelve, thirteen, fourteen, fifteen, zero. Disable TRI-STATE outputs. Disable counter. Count to one. ~ Proprietary DM75/ DM8555 ,56 Switching Time Waveforms CLOCK AND CLEAR VOLTAGE 3V CLEAR OV CLOCK OUTPUT MAX COUNT COUNT ENABLE AND CLOCK COUNT ENABLE CLOCK \-------- OUTPUT LOAD, DATA AND CLOCK LOAD DATA CLOCK _/ \'----~/ OUTPUT OUTPUT DI,liABLE DISABLE l.SV 1ZHfCOUTPUT ----~T O.SV 3-75 ~ Proprietary DM75/DM8560,L60,63,L63 Synchronous 4-Bit Up/Down Decade Counters General Description These circuits are synchronous up/down counters; the 60 and L60 circuits are BCD counters and the 63 and L63 are 4-bit binary counters. Synchronous operation . is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. of the count and load ,inputs. The clear, count, and load inputs are buffered to lower the drive requirements of clock drivers, etc., required for long words . These circuits are synchronous up/down counters; the 60 and L60 circuits are BCD counters and the 63 and L63 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change together when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters. The outputs of the four master-slave flip-flops are triggered by a low-to-high level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed, while the other count input is held high. Features All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the inputs while the load input is low. The output will change independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs. • Fully independent clear input • Synchronous operation • • Cascading circuitry provided internally Individual preset each flip-flop TYPICAL COUNT TYPE A clear input has been provided which, when taken to a high level, forces all outputs to the low level; independent FREQUENCY Vee J DATA A 25 MHz 325 mW L60, L63 12 MHz 40mW OUTPUTS 16 DATA B INPUT CLEAR 14 15 as QA OUTPUTS INPUTS BORROW CARRY LOAD 13 12 11 COUNT DOWN COUNT UP INPUTS DATA e Qc OUTPUTS 7560(J), (W); 8560(J), (N), (W); 75L60/85L60(J), (N), (W); 7563(Jl, (WI; 8563(J), (N), (W); 75L63/85L63(J), IN), (W) 3-76 POWER DISSIPATION 60,63 Connection Diagram INPUTS TYPICAL 10 DATA o ~ OM75/0M8560.L60.63.L63 Proprietary Electrical Characteristics over recommended operating free-air temperature range (u~less otherwise noted) DM75/85 PARAMETER CONDITIONS MIN V,H High Level Input Voltage V,L Low Level Input Voltage V, I nput Clamp Voltage IOH High Level Output Current VOH High Level Output Voltage Vee =: Vee:= Min, V 1H = ::;;0 2V Low Level Output Voltage Vee == Min, V 1H V JL Input Current at Maximum I, High Level Input Current I'L Low Level Input Current Vee Vee los Short Circuit Output Current V 0.7 -1.5 -1.5 V -400 -200 ).IA 2.4 Max, tOL ::: 2V = Max V V 2.4 DM75 16 2.0 DM85 16 3.6 DM75 0.4 0.15 0.3 DM85 0.4 0.2 0.4 = Max, = Max V, 1 = 2.4V 40 I V, = 0.3V I V, = O.4V <1 Vee = Max(3) rnA V 0.1 -rnA 10 MA -0.10 -{U8 -1.6 Vee = Maxl21 Supply Current ICC MAX 0.8 Vee = Max, VI ::: 5.5V I nput Voltage I'H "'" TYP(l) MIN Max, IOH "" Max Low Level Outpu t Current VOL MAX 2 I, =--12 rnA Min UNITS LSO, L63 TYP(l) 2 V IL 10L DM75L/85L 60,63 DM75 -20 -55 -3 --9 -15 DM85 -18 -55 3 -9 15 DM75 65 89 8 13 DM85 65 102 8 13 rnA rnA rnA Notes Vee III All typical values are at 121 Not more than one output should be shorted at a time. 131 ICC is measured with all outputs open, clear and load inputs grounded, and a!! other inputs at 4.5V. = 5V, TA =- 25"C_ Switch ing Characteristics Vcc ~ 5V, T A ~ 25° C DM75/85 FROM INPUT PARAMETER TO OUTPUT CONDITIONS f MAX MaXimum Clock Frequency tplH Propagation Delay Time, 20 tpHL Count up Propagation Delay Time, I Propagation Delay Time, tpHl Propagation Delay Time. Low-to-Hlgh Level Output Count down Either Count Q CL 7 Propagation Delay Time, 12 MHz 26 30 60 ns 16 24 60 120 ns 16 24 30 60 ns 16 24 50 100 ns 25 38 45 90 ns C i_ Rl. = 50 pF 4kll 31 47 75 150 ns 27 40 55 110 ns 29 40 105 200 ns 22 35 95 '190 ns Propagation Delay Time, Load Q Propagation Delay Time, Hlgh-ta-Low Levei Output tpHL UNITS TVP MAX 17 15 pF Low-to-High Level Output tpHl 6 RL = 40011 High-ta-Law Level Output tpLH 25 MIN Propagation OeluY Time, Law-ta-High Level Output tPHl CONDITIONS Borrow High-ta-Low Level Output tPLH MAX Carry High-w·Lovv Level Output tpLH L60, L63 MIN TVP ! Low·ta-High Level Output DM75Li85L 60,63 Propagation Delay Time, Clear High-to-Law Level Output Q tw Width of Any Input Pulse 25 70 ns tSETUP Data Setup Time 20 30 ns tHOLD Data Hold Time 0 0 ns f 3-77 ~ Proprietary OM75/0M8560.l60.63.l63 - logic Diagrams 60,L60 (13) BORROW OUTPUT "\. ~ (12) CARRY OUTPUT DATA (15) INPUT A ~ rL--" OOWN (4) COUNT (3) oA OUTPUT OA T QA UP (5) COUNT ---rp - I OATA (11 INPUT B r-- bDT '-. ~ ~ ~ ~ ~ a, (2) OUTPUT Oa T ITs i-'- -r-- tf>- DATA (10) INPUT C r-'~ 1- ~ (6) 0, OUTPUT Dc OUTPUT nD T 0,- "--fP - Y OATA (9) INPUT 0 CLEAR 114) ~, r--'-~ --''"'- aD T jjD~ LOAO ~ (11) 3-78 (7) ~ Proprietary DM75/DM85S0,LSO,S3,LS3 Logic Diagrams (Continued) 63, L63 (13) BORROW OUTPUT ~ J (12) J DATA (15) INPUT A J- r---' DOWN (4) CDUNT CARRY OUTPUT 13) OUTPUT 0. 0. T ij.~ UP (5) COUNT ~ -- DATA (1) INPUT B ~ rLJ' ~ L L.L (2) OUTPUT QB DB T 1 ...... f' ~ ,. DATA (10) INPUTC ~ r--" ..... --; - CLEAR ~ OUTPUT lie Ocr-- - (14) (6) lie T .....-r- DATA 19) INPUT D fiB~ ,-- Lrp. ;r- -- ,. ~ '- r--; .-- "'-(7) 00 T fiDi-- (11) J LOAD .. 3·79 ~ OUTPUT Do ~. Proprietary DM75/DM8560,L60,63,LS:3 Timing Diagrams 60, L60 DECADE COUNTERS TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES CLEAR~~ _____________________________________________________________ LOAD A L- I DATA L- I rCOUNT UP -.....,.....,-.....,-+-..., COUNT----~~--+-+---+----------------~--_, DOWN n. OUTPUTS CARRY BORROW ·1 .--"---> .--"---> CLEAR - 8 9 D 1 21 COUNT UP--------J 1 1 D 9 871 r--COUNTOOWN~ PRESET Sequence: (1) Clear outputs to zero. (2) ·Load (preset) to BCD seven. (3) .Count up to eight, nine, carry, zero, one, and two. (4) Count down to one, zero, borrow, nine, eight, and seven. Notes: (A) Clear overrides load, data, and count inputs. fB) Y'Vt:len counting up, count-down input-must be ..high;when counting 'down; countMup i.nput·must be high. 3:80 ~ Proprietary OM75/0M8560,L60,63,L63 Timing Diagrams (Continued) TYPI~AL CLEAR 63, L63 BINARY COUNTERS CLEAR, LOAD, AND COUNT SEQUENCES ~~________~____________________________________________________ LOAD A DATA COUNT----+-+---~~---, UP COUNT----+-+---~~--~--------------------~--__, OOWN OUTPUTS CARRY BORROW .~~ CLEAR PRESET I 14 15 0 1 1 I - - COUNT UP------- I r-1 0 15 14 13 1 COUNT D O W N - ' Sequence: (1) Clear outputs to zero. (21 Load (preset) to binary thirteen. (3) Count up to fourteen, fifteen, carry, zero, one, and two. (4) Count down to one, zero, borrow, fifteen, fourteen, and thirteen. Notes: (A) Clear overrides load, data, and count inputs. (8) When counting up, count-down input must be high; when counting down, count-up input must be high. 3-81 ~Proprietary DM75/DM85S&S 64-Sit Edge Triggered Regis,ters General Description Features The DM75S68/DM85S68 is an addressable ~'D" register file. Any of its 16 four-bit words may be asynchronously read' or may be written into on the next clock transition. An input terminal is provided to enable or disable the synchronous writing of the input data into the location specified by the address terminals. An output disable terminal 'operates only as a TRI·STATE output control terminal. The addressable register data may be latched at the outputs and retained as long as the output store terminal is held in a 'low state, This memory storage condition is independent of the state of the output 'disable terminal. • On chip output register • Edge triggered write • High speed All input terminals are high impedance at all times, and all outputs have low impedance active drive logic states and the high impedance TR I-STATE condition. Connection Diagram 30 ns typ • TRI-STATE outputs • Optimized for register stack applications 350mW • Typical power dissipation • 18-pi n package Logic Diagram (WRITE CLOCK (DATA INPUTS) [.. Vee OJ 11 04 16 WE 15 CLOCK O'S" 14 00 12 13 04 11 1 02 ,. 03 (WRITE ENABLE) we0 51 A'~ A1 ~ ... ~ A2 ~ ~ ~ AJ ~ ~ ~ 116 x 4MEMORY CEll ARRAY I-- 2 01 3 AD 4, A2 5 AJ 7 6 A1 01 75S68(0); 85S68(0), (N) , 02 INPUT) J' GNO os (131 (OUTPUT STORE) Oo(~12{I~~---t~---------+~---------1~----------~ (OUTPUT DISABLE) 04 (OUTPUTS) To Be Announced In 1976 ~ DM75/DM85S68 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75S/85S PARAMETER CONDITIONS S68 MIN V IH High Level Input Voltage VIL !,-ow Level Input Voltage VI Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage 10L Low Level Output Current VOL Low Level Output Voltage IOCOFFI II Input Current at Maximum Voltage IIH High Level Input Current IlL Low Level Input Current UNITS MAX 2 V Vee ~ Min, liN = -18 mA Vee = Min 0.8 V -1.2 V DM75 -2.0 DM85 -5.2 10H =-2.0 mA DM75 10H = -5.2 mA DM86 = 16 mA Vee = Min, 10L Vee = Max Vee = Max, V DM75 0.5 DM85 0.45 Va" 0.5V -40 Va = 2.4V +40 = 5.5V V, 1.0 Vee = Max Clock Input 50 V, = 2.4V All Others 25 Vee = Max Clock Input -500 All Others -250 V, = 0.5V = Max(2) los Short Circuit Output Current Vee Icc Supply Current Vee = Max mA 2.4 16 Off-State (High Impedance State) Output Current TYP(l) -55 -20 70 100 mA V MA mA MA MA mA mA Notes (1( All typical values are at VCC = 5V and T A = 25°C. (2) Not more than one 0l!tput should be shorted at a time. Switching Characteristics DM75S PARAMETER DM85S CONDITIONS UNITS MIN TYP MAX MIN TYP MAX 40 Address to Output 30 55 30 tOSA Output Store to Output 20 35 20 30 tCA Clock to Output 25 50 25 40 20 40 20 35 14 30 14 24 ns. 10 18 10 15 ns 12 22 12 18 ns tAA Access Time = 30 pF RL = 400Q CL tZH Output Enable to High Level tZL Output Enable to Low Level tHZ Output Disable Time From High Level CL tLZ Output Disable Time From Low Level RL tA/iC Set-Up Time = 5 pF = 400Q Address to Clock 25 5 15 5 tosc Data to' Clock 15 a 5 0 tASOS Address to Ou tput Store 40 15 30 15. tWESC Write Enable Set·Up Time 10 a 5 a tossc Store Before Write 15 0 10 0 Address From Clock 15 5 10 5 tOHC Data From Clock 20 5 15 5 tAHOS Address From Output Store 10 0 5 0 tWEHC Write Enable Hold Time 20 5 15 5 tAHC Hold Time 3-83 ns ns ns ns ~. Proprietary OM75/0M85S68 Typical Applications The DM85S68 can enhance the dynamic performance of a TTL processor, since it may safely operate using single phase clocking instead of the multi phase clock ing systems being used currently. Th is simple feature not only enhances the system's dynamic performance, since multiple levels of registers need not be activated, .but also reduces component count by elimination of one set of buffer registers. For example, note the simplicity of I the register tile/ALU loop shown in Figure 1. r- R3 ~ ... RO r- AAD3 AAD3 WDRDA ADDRESSES ~ AADO r- - In a 4-bit slice with zero delay within the arithmetic logic unit, a level-triggered memory with buffering to prevent logic oscillation requires about 80 ns to make the loop whereas the DM85S68 does it in 35 ns. With a 30 ns delay in the ALU, the two compared system speeds are 110 ns and 65 ns, respectively. -,.... --- DMB5S68 -- CP - -- A3 AD • as O~ .., ... /I ADO _ I W AFOD CONTROL INPUTS CP NW BFDD r- R3 R3 DATA INPUTS ~ RO - RO r- BAD3 BAD3 WORDB ADDRESSES ~ ~ - -- ---- DM85S68 CP - A3 DATA OUTPUT ~ AD BO as 00 _BADO _ BADO -- rB3 • W r- B3 A=B M ALU FUNCTION SELECt INPUTS so SI S2 S3 i -I Vee r- R3 J-{ ------ , DM74181 1 --- -,.... -- ... A3 B3 Fntures BO. -Expandable • Minimum package c.unt -60 n. cyd. (typ)' Truth Table 00 WE ClK OS l X X Data From l X X X ..r l X Output Store X Write Data Dependent on State, of 00 and H Read Data Data Stored in Addressed Location l Output Store Hi·Z H OutJ?ut Disable Hi·Z H' H X X X MODE BO AD FIGURE 1. 4-BIT REGISTER ALU l DATA OUTPUT ~ OUTPUTS Las~ Addressed Location OS ~ Proprietary DM75/DM85S68 AC Test Circuit and Switching Time Waveforms [i,QV 400 DI OUTPUT r: L 111l:ludes prob~ and jl!1 capal;ltance All dIOdes are 1N3064 OM75S68! OM85S68 READ CYCLE WRITE CYCLE ADDRESS INPUT ADDRESS 1.5V [lATA INPUT 1.5V INPUT 1.5·V\,r---- - - - - - - ----.II?\~'AA-l OUTPUTS _ _ _ _ _ _ ..:s:-\\.r------· _______ FIGURE 4. ADDRESS TO OUTPUT ACCESS TIME OUTPUT STORE ADDRESS INPUTS WRllE ENABLE WRITE CLOCK 1'------ ,wl OUTPUT STORE ---'W--"H,~-I OUTPUTS FIGURE 2. CLOCK SET·UP AND HOLD TIME FIGURE 5. OUTPUT STORE ACCESS, SET·UP AND HOLD TIME OUTPUT DISABLE 1.5V l":r~~ 15V)(---------- ----.I . O.5V VO'--+-"l""".J OUTPUT iI WAnE CLOCK 15V l~tOA_1 ,-- OUTPUTS _ _ _ _ _ _ _ _ _ _ _' : , " - - FIGURE 3. CLOCK TO OUTPUT ACCESS FIGURE 6. OUTPUT DISABLE AND ENABLE TIME Note: Input waveforms supplied by pulse generator having the following characteristics: V:::: 3.0V, tR $. 2.5 ns, PRR :S 1.0 MHz, and ZOUT = 50 MD. I 3·85 ~ Proprietary OM75/0M8570,OM76/0M86L70 8-Bit Serial In/Parallel Out Shift Registers General Description Features These 8-bit shift registers feature gated serial inputs and an asynchronous clear. A low logic level at either input inhibits entry of the new data, and re$ets the first flip·flop to the low level at the next clock pulse, thus providing complete control over incoming data. A high logic level on either input enables the other input, which will then determine the state of the firs't flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered. Clocking occurs on the low-to·high level tran~ition of the clock input. All inputs are diode-clamped to minimize transmission-line effects. • Gated (enable/disable) serial inputs, • Fully buffered clock and serial inputs • Asynchronous clear TYPE TYPICAL TYPICAL CLOCK FREOUENCY POWER DISSIPATION 36 MHz 14 MHz 185mW 70 L70 30mW Connection Diagrams OUTPUTS CLEAR DF 13 12 11 CLOCK D5 10 14 <- a. A SERIAL INPUTS CLOCK GND 13 12 111 D4 D3 D6 U2 10 - - Do Dc CLEAR - D7 UB S. OUTPUTS 7570(J), (W); 8570IJ), (N), (W) 76L70/86L70(W) Truth Table INPUTS CLEAR OUTPUTS CLOCK A 8 L x x x H L x X GAO GBO H t H H H GAo x H H x GA OB H X = =: High Level (steady state), L = Low Level (steady state) Don't Care (any input, including transitions) t = Transition from low to high level 0AO, 0BO, OHO = The level of {lA, OB, or 0H, respectively, before the indicated steady·state input conditions were established. QAn. QGn = The level of -QA or QG before the most recent t transition of the clock; indicates a one-bit shift. 3·86 01 ~ DM75/DM8570.DM76/DM86L70 P rQprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) -DM76L/86L DM75/85 CONDITIONS PARAMETER MIN V'H High Level Input Voltage V'L Low Level ',"put Voltage Input Clamp Voltage High Level Output Current Vee'" Min, V 1H V 1L :::: VOL Low Level Output Voltage Input Current at Maximum Input Voltage ICC MAX V 0.7 2V High Le~ei Input Current Supply Current V -200 ~A V 2.4 DM75,76l 8 2 DM85,86l 8 3.6 DM75,76l 0.2 0.4 V 1L DM85,86l 0.2 0.4 0.3 0.4 Clear 1 0.2 Other 1 0.1 "" Max, tOL = Max Vee = Vee = Max, VI:::: 2.4V Low Level Input Current Short Circuit Output Current N/A -400 3.2 2.4 Max, VI"" S.5V M -j------~'-------------~-----'1 DATA INPUTS '-------+-------H.-.------+----j, >O-ir--------+-+----------j------'14 '14 L------+--JI!:--~~-------_+-..--- 14 INPUTS FOR MASK PROGRAMMING 96 OUTPUTS ,, I ~ .rr:::=\ NOTE:): IS A MASK·PROGRAMMABLE CONNECTION 3-95 FB ORF8 ~ DM75/DM8575,76 Proprietary Electrical Characteristics over recommended' operating free-air temperature range (unless otherwise noted) DM75/85 PARAMETER CONDITIONS V IH High Level Input Voltage Vee=Min Vil Low Level I nput Voltage Vee = Min VI Input Clamp Voltage Vee = Min, I, = -12 mA 10H High Level Output Current High' Level Output Voltage TVP(1) MAX 2 V OH =5.5V V OH UNITS 75, 76 MIN Vee = Min 0_8 V -1.5 V DM75/S575 -SOO DM75/S576 100 DM75/S575 V ,H = 2V V 2.4 V V'L = O.SV Low Level Output Current VOL Low Level Output Voltage 5.5 DM75/S576 IOH = Max tOl Vee = Min, V ,H = 2V V'L = 0.8V, IOL = 12 mA II IJ-A 12 mA 0.4 V Input Current at Maximum Input Voltage Vee = Max, V, = 5.5V 1 mA IIH High Level Input Current Vee = Max, V, = 2.4V 40 IJ-A III Low Level Input Current Vee = Max, V, = OAV -1.0 mA los Short Circuit Output Current Icc Supply Current Vee = Max(21 DM75 -20 ""55 DM85 -18 -55 110 Vee = Max mA mA 170 Notes 111 All typical values are at Vee == 5V and T A = 25u~. 121 Not more than one output should be shorted at a ~ime. Switching Characteristics Vee = 5V, T A = 25°c DM75/85 PARAMETER FROM CONDITIONS TO tPlH Propagation Delay Time, Low-to-H igh Level Output tpHl Propagation Delay Time, High-to-Low Level Output Data Output Data Output UNITS 75, 76 MIN TVP MAX 80 150 ns 100 150' ns C L = 50 pF, RL = 400Q PLA Programming Information PUNCHED CARDS Information to program the PLA can be supplied in one of two formats: : (Used to determine whether outputs are CARD presented' in their true or inverted form, :If this. card is not used it is assumed that all.eight outputs are true.) , 1. Punched 80-column cards 2. The applicable section of this data sheet (manual entry of information). Col, '-6: DM7575 DM8576. 3·96 or DM8575 or DM7576 or ~ Proprietary DM75/DM8575.76 PtA Programming Information (Continued) Col. 7·9: (Blank) number, program number, etc.). However the exact combination of characters must appear on all cards, associated with that particular device. The purpose of this section is to prevent mixing of cards. Col 10·17: Output Data. Outputs are F8 (most significant) to F1 (least significant). All eight outputs must be specified. Col. 76·78: (Blank) A 'T' in an output location indicates that the output is true. Col. 79·80: Product Term Number 01 to 96. (All 96 cards need not be used.) Zero in column 79 may be suppressed. A 'C' in an output location indicates that the output is complemented (inverted). Col. 18·39: (Blank) MANUAL ENTRY Col. 40·75: This space is reserved for any unique letters/numbers desired by the customer (special part number, program number, etc.). However the exact combination of characters must appear on all cards, associated with that particular device. The matrix·blank shown in this data sheet can be used in lieu of punched cards to submit information for pro· gramming the PLA. INSTRUCTIONS Col. 76·78: (Blank) 1. Circle the appropriate part number. I n the event a catalog part is not being purchased, circle the closest catalog part number. If an electrical screen is required between the military and commercial devices, the military designation should be circled. Col. 79·80: 00 CARDS 2·97: Term Data Cards. Used to specify the input and output conditions. Col. 1·6: DM7575 or DM8575 or DM7576 or DM8576. 2. Customer should write the name of his company. Col. 7·9: (Blank) 3. Enter the total number of unique product terms found in all eight outputs. Repeated terms count only once. Col. 10·17: Output Connections. Outputs are F8, (most significant) to F1 (least significant). This field describes the outputs on which the product term appears. 4. Output Inverter Option. Under the appropriate output designation specify a 'T' when the high (true) level is desired on the output for the given input conditions. Specify a 'C' if the complement is needed. A '+' in one of the eight output locations indicates that the term described by the card is one of the "OR" terms in that output. 5. Matrix A '(blank)' in one of the eight output locations indicates that the term described by the card is not one of the "OR" terms in that output. a. Input data. This block is used to describe what comprises each of the 96 (maximum) product terms. In each row, opposite the appropriate Product Term number, information on the fourteen Input Data locations is entered. Information must be entered on all 14 inputs. (Care should be exercised in punching this particular field; since in mOst cases, unless a product term is repeated, this field will appear as one '+' and seven blanks.) 1). Col. 18: (Blank) Col. 19: = (equal sign) Enter an "H" under the appropriate input designation if that particular input appears in the product term as a high (true) level. Col. 21·34: Input Data. Inputs are 113 (most signifi· cant) to 10 (least significant). 2). Enter an "L" under the appropriate input designation if that particular input appears in the product term as a low (complemented) level. An 'H' in one of the fourteen locations indicates that input appears in the high state in the output term. 3). Enter an "X" under the appropriate input designation if that particular input does not appear in the product term. An 'L' in one of the fourteen input locations indio cates that input appears in the low state in the output term. If less than 96 product terms are used leave all spaces for the unused terms blank. Col. 20: (Blank) b. Output Data. This block is used to describe the outputs on which the product terms appear. An 'X' in one of the fourteen input locations indicates that input does not appear in the output 1). Enter a '+' under the appropriate output designation if the product term is contained in that output's expression. term. Col. 35·39: (Blan~) Col. 40·75: This space is reserved for any unique letter/number desired by the customer (special part 2). Leave a location blank if the product term is not contained in that output's expression. 3·97 ~ . Proprietary DM75/DM8575.76 AC Test Circuit 14 INPUTS 5V 8 OUTPUTS Switching Time Waveforms .r::90~%:---~90~%""-- 3.0V ANY INPUT - - - " l NON-IN~~~~~~ _ _ _.....,_-' FREGUmCY ~ 1 MHz DUTY CYCLE ~ 50% tr = tf = 10 ns 3-98 ~ Proprietary DM75/DM8575.76 Truth Table/Order Blank 1. PART NO. - (DM7575, DM8575, DM7576, DM8576) 2. CUSTOMER IDENTIFICATlON- 3. TOTAL NO. OF UNIQUE PRODUCT TERMS USED- (Repeated Terms Count Only Once) 4. OUTPUT INVERTER OPTION 5. MATRIX 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 3-99 ~ Proprietary DM75/DM8575.76 Truth Table/Order Blank (Continued) PRODUCT~-r~~r-.--r-.I_N_PTUT~DrA_T~A__r-~-r~__~~~__r-~O~U~TTPU~T~O~A~T~A~r-~~ TERM 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63. 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 III' 3·100 ~ Proprietary DM75/DM85n 256-Bit Programmable Read Only Memories GeneraLDe~ription output for that bit is permanently programmed to provide a low logic level. Outputs never having been altered may later be programmed to supply a low-level output. Operation of the unit within the recommended operating conditions will not alter the memory content. The DM7577/DM8577 is a field-programmable, 256-bit, read only memory organized as 32 words of 8 bits each. This monolithic, high-speed, transistor-transistor-Iogic (TTL) memory array is addressed in 5-bit binary with full on-chip decoding_ An overriding memory-enable input is provided which, when taken high, will inhibit the function causing all eight outputs to remain high. The organization is expandable to 1,856 words of n-bits with no additional output bufferi ng. The mask-programmable DM5488/DM7488 can be used to replace the DM7577/DM8577 as they are functionally and mechanically identical. The address of an 8-bit word is accomplished through the buffered binary select inputs in coincidence with a low logic level at the enable input. Where multiple DM7571/DM8577 devices are used in a memory system, the enable input allows easy decoding of additional address bits. Features Data can be electronically programmed, as desired, at any of the 256-bit locations of the DM7577/DM8577 in accordance with the programming procedure specified. Prior to programming, the memory contains a high-Iogiclevel output condition at all 256 bit locations. The programming procedure open-circuits nichrome links which results in a low-logic-level output at selected locations. The procedure is irreversible and, once altered, the • Field programmabl,e for custom or prototype memories • Mask-programmable DM5488/DM7488 is a direct replacement for the DM7577/DM8577 • • Typical access time Organized as 32 words • Ideal for microprogramming and code converters • Open-collector outputs are easily expanded • Fully-decoded buffered inputs • Fully compatible with most TTL and DTL circuits • Pin compatible with SN74188A Connection Diagram ENABLE v G . SELECT , E OUTPUT \ YB A B C 0 r16 15 13 14 12 11 10 9 2 1 Y1 \ Y2 4 3 Y3 . V4 5 V5 OUTPUTS 7577(J}; 8577(J}, (N) 3-101 35 ns of 8-bits each 7 6 VB V7 , J: ~ DM75/DM8577 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75/85 PARAMETER CONDITIONS 77 MIN VIH High Level Input Voltage V il Low Level Input Voltage VI Input Clamp Voltage Vee IOH High Level Output Current Vee Low Level Output Current VOL Low Level Output Voltage II MAX 2 V'L IOL UNITS TVP(1) Input Voltage I, = -12 mA = Min, V ,H = 2V V OH = 5.5V = 0.8V, 0.8 V -1.5 V 100 pA 12 mA V = Min, V ,H = 2V = 0.8V, 10L = 12 mA 0.4 V'L Vee =Max, V, = 5.5V· 1 mA 40 pA Vee Input Current at Maximum = Min, V IIH High Level Input Current Vee = Max, V, = 2.4V III Low Level Input Current Vee = Max, V, = O.4V ICCH Supply Current, Outputs High Vee = Max(2) 50 80. mA ICCl Supply Current, Outputs Low Vee = Max(3) 82 1.10 mA -1 mA Notes (1 ) All typical values are at Vee == 5V and T A = 25° C. (2) ICCH is measured with all inputs at 4.5V, all outputs open. (3) leel is measured with enable input grounded, aiL other inputs at 4.5V, and all outputs open, The typical value shown is for the worst-case condition of all eight outputs low at one time. This condition may not be possible after the device has been programmed. Switching Characteristics vee = 5V, T A = 25°C DM75/85 PARAMETER FROM TO 77 CONDITIONS MIN tpLH Propagation Delay Time, Enable Any Enable Any UNITS TVP MAX 22 35 ns 15 35 ns 35 50 ns . 35 50 ns Low-to-H igh Level Output tpHl Propagation Delay Time, High-to-Low Level Output tPlH Propagation Delay Time, Select Any Select Any Low-to-High L,evel Output tpHl Propagation Delay Time, = 30 pF to GND RL1 = 400[2 to Vee RL2 = 600[2 to GND CL .'. High-to-Low Level Output 3-102 ; , ~ Proprietary DM75/DM8577 Programming Procedure 1. Apply steady-state supply voltage (Vee ~ 5.0V, GND ~ OV) and address the word to be programmed with' specified input voltages. The bit programmed may be verified by checking the output for a low logic level after the enable input reaches a low logic level. 2. Disable the outputs by applying a high logic level to the enable input. 5. Repeat steps 2 through 4 for each output of this address to be programmed as a low level. 3. Only one bit location is programmed at a time. Open circuit all outputs except the one to be programmed as a low logic level. 6. Advance to next address location and repeat steps 2 through 5. 4. Apply the specified programming pulse to the output to be programmed, The recommended pulse width is 1.0 ms. Recommended Conditions for Programming MIN CONDITIONS TYP MAX UNITS 5.0 5.5 V 0 2.4 0.5 5.0 V Programming Pulse Amplitude 20 22 V Programming Pulse Rise Time 1.0 5.0 10 ~s Programming Pulse Current limit 100 Programming Pulse Width 10 20 50 ms Cas€ Temperature 25 75 °c Supply Voltage, Vee Input Voltage I I Low Level High Level 200 V mA AC Test Circuit and Switching Time Waveforms 5.DV RU FROM OUTPUT UNDER TEST -~ ENABLE ME 2f,cr- ____'-~______~~~IaI________~~~______~ oniON 1 ME1::::[)ME2 Other options on .....DIY .neMe gatI: ME1~ ME2~ oniON 3 OPTION 2 ~-119 ~ OM75/0M8597 Proprietary' Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM75/85 PARAMETER I ~ V IH High Level Input Voltage Vee V IL Low Level Input Voltage Vee ~ Min VI Input Clamp Voltage Vee IOH High Level Output Current V OH High Level Output Voltage ~ MIN Low Level, Output Current VOL Low Level Output Voltage Off State (High Impedance State) Output Current II Input Current at Maximum Input Voltage ~ Vee V'L IOIOFFI V Min, I, ~ -12 mA Min, V ,H ~ ~ Min, V ,H ~ 2V ~ Max Vee ~ Max V -1.5 V -5.2 2V 0.8V, IOL 0.8 -2.0 J DM85 ~ MAX 2.0 Min V II Vo~OAV ~ Max, V, ~ 5.5V 16 mA OA V -40 Vo~2AV Vee mA 2A V'L ~ 0.8V, IOH ~ Max IOL TYP(1) I DM75 Vee UNITS 97 CONDITIONS 40 1.0 /lA mA IIH High Level Input Current V ee ~ Max, V, ~ 2AV 40 /lA IlL Low Level Input Current Vee ~ Max, V, ~ OAV -1.0 mA los Short Circuit Output Current Vee ~ Max(2) -70 mA Icc Supply Current Vee ~ Ma~ -20 75 110 mA Notes 11 ) All typical values are at Vee:::: 5V and TA = 25°C. (2) Not more than one output should be shorted at a time. Switching Characteristics vee ~ 5V, T A ~ 25°C DM75/85 PARAMETER FROM TO CONDITIONS tplH Propagation Delay Time, Address Output Address Output UNiTS 97 MIN TYP MAX 31 60 ns 39 60 ns Low-ta·High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tZH Output Enable Time to CL ~ 50pF RL ~ 400n Enable Any 20 30 ns Enable Any 20 30 ns Enable Any 20 30 ns 20 30 ns High Level tZl Output Enable Time to Low Level tHZ Output Disable Time from High Level tlZ Output Disable Time from Enable Any CL ~ 5 pF RL ~ 400n I Low Level 3-120 ~ Proprietary DM75/DM8597 Ordering Instructions Programming instructions for the DM7597 or DM8597 are solicited in the form of a sequenced deck of 32 standard 80-column data cards providing the information requested under data card format, accompanied by a properly sequenced listing of these cards, and the supplementary ordering data. Upon receipt of these items, a computer run ·will be made from the deck of cards which will produce a complete truth table of the requested part. This truth table, showing output conditions for each of the 256 words, will be forwarded to the purchaser as verification of the input data as interpreted by the computer·automated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the truth table should be completed promptly. 20·23 Punch "H," "L," or "X" for the third set of outputs. 24 Blank 25·28 Punch "H," "L," or "X" for the fourth set of outputs. 29 Blank 30·33 Punch "H," "L," or "X" for the fifth set of outputs. 34 Blank 35·38 Punch "H," "L," or "X" for the sixth set of outputs. 39 Blank 40-43 Punch "H," "L," or "X" for the seventh set of outputs. 44 Blank 45-48 Punch "H," "L," or "X" for the eighth set of outputs. 49 Blank 50-51 Punch a right-justified integer representing the current calendar day of the month. 52 Blank 53-55 Punch an alphabetic abbreviation representing the current month. 56 Blank 57-58 Punch the last two digits of the current year. 59 Blank 60-61 Punch "DM" 62-65 Punch 7597 or 8597 66-70 Blank 71 Punch 1, 2 or 3 for memory enable option desired (assumed 1 if not punched). Each card in the data deck prepared by the purchaser identifies the eight words specified and describes the conditions at the four outputs for each of the eight words. All addresses must have all outputs defined and columns designated as "blank" must not be punched. Cards should be punched according to the data card format shown. Supplementary Ordering Data Submit the following information with the data cards: a) Customer's name and address b) Customer's purchase order number c) Customer's drawing number Data Card Format Column AC Test Circuit 1-3 Punch a right-justified integer representing the binary input address (00·248) for the first set of outputs described on the card. 4 Punch a "-" (minus sign) 5·7 Punch a right-justified integer representing the binary input address (007-255) for the last set of outputs described on the card. 8·9 Blank 10-13 Punch "H," "L," or "X" for bits four, three, two and .one (outputs Y4, Y3, Y2, and Yl in that order) for the first set of outputs specified on the card. H = high level output, L = low level output, X = output irrelevant. Blank 14 15-18 Punch "H," "L," or "X" for the second set of outputs. 19 Blank 5.0V RL OUTPUT DM7597/ DM8597 I- lI- 3-121 I~ ,..... t" .,,. -I- lK ~, -l- ~~ .:: ~ Proprietary DM75/DM8598 TRI-STATE 256-Bjt Read Only Memories General Description The DM7598/DM8598 is a mask-programmed 256-bit read only memory, organized as 32, 8-bit words. A 5-bit input code selects the appropriate word which then appears on the eight outputs. An enable input overrides the select inputs and blanks all outputs. TRI-STATE elements, neither waveform integrity nor optimum speed would be achieved. The low output impedance of the DM7598/DM8598 provides gOOd capa· citance drive capability and rapid transition from the logical "0" to logical "1" level, thus assuring both. speed and waveform integrity. Although the DM7598/DM8598 can have its outputs tied together for word-expansion, the outputs are not open-collector, but rather the familiar totem-pole output with the capability of being placed in a "third-state." This unique TRI-STATE concept allows outputs to be tied together and then connected to a common bus line. Normal TTL outputs cannot be connected due to the low-impedance logical "1" output current which one device would have to sink from the other. If, however, on all but one of the connected devices both the upper and lower output transistors are turned "OFF," then the one remaining device in the normal low impedance state will have to supply to, or sink from, the other devices only a small amount of leakage current. It is possible to connect as many as 128 DM8598s to a common bus line and still have adequate drive capability to allow fan-out from the bus. Features • • • • • • • While it is true that in a TTL system open-collector gates could be used to perform the logic function of these TRI-STATE outputs Pin compatible with DM5488/DM7488 Organized as 32 8-bit words Full internal ,decoding 26 ns typical access time 350 mW typical power dissipation Designed for bus-organized systems Connection and Logic Diagrams SELECT \ ,-----~-----,A ME .. , OUTPUTV8 1..v 1D " BINARV SHEeT "" I'-Oov-t-H-HH .. o,;i> - E(l4} 1 Y1 Y2 Y3 Y4 V5 Y6 OUTPUTS V) ME (lSI "v PROGRAMMING 7598IJ); 8598(Jl, IN) NOT SHOWN 3-122 OUTPUTS ~ DM75/DM8598 Proprietary Electrical Characteristics over recommended operating free·air temperature range (unless otherwise noted) DM75/85 PARAMETER CONDITIONS 98 MIN V 1H High Level Input Voltage Low Level Input Voltage Vee = Min VI Input Clamp Voltage Vee = Min, I, = -12 mA 10H High Level Output Current I I High Level Output Voltage Low Level Output Current VOL Low Level Output Voltage -1.5 V -2.0 -5.2 mA 2A V mA 12 Vee = Min, V ,H = 2V 10(OFF) Off·State IHigh Impedance State) Output Current II V DM85 = Max 10H V 0.8 DM75 Vee = Min, V ,H = 2V V ,L = 0.8V, 10L UNITS MAX 2 Vee. = Min V IL V OH TYP(1) Input Current at Maximum Input Voltage OA V ,L = 0.8V, 10L ," I Vo = OAV -40 Vee = Max I Vo = 2AV 40 12 mA Vee = Min, V, = 5.5V IIH High Level Input Current Vee = Max, V, = 2AV IlL Low Level I nput Current Vee = Max, V, lOS Output Short Circuit Current Vee = Max(2) Icc Supply Current ~ V /lA mA 1 OAV -20 Vee = Max, Inputs 70 Grounded 25 /lA -1.0 mA -70 mA 99 mA Notes (1) AI! typical values are at Vee = 5V and T A ~ 25°C. (2) Not more than one output should be shorted at a time. Switching Characteristics Vee = 5V, T A = 25°C PARAMETER tpLH tpHL tZH tZL tHZ tLZ PARAMETER CONDITIONS Propagation Delay Time, AccessTime from Low to High Level Output Address Propagation Delay Time, Access Time from High to Low Level Output Address Output En'able Time to Access Time from High Level Memory Enable Output Enable Time to Access Time from Low Level Memory Enable DM85 DM75 UNITS CONDITIONS MIN C,- = 50 pF RL =400.11 Output Disable Time from Disable Time from High Level Memory Enable CL ~ Output Disable Time from Disable Time from RL = 400.11 Low Level Memory Enable 3·123 TYP MAX 65 23 50 ns 29 65 29 50 ns 16 40 16 30 ns 20 40 20 30 ns 10 30 10 20 ns 22 45 22 40 ns TYP MAX 23 MIN 5.0 pF ~ DM75/0M8598 Proprietary AC Test Circuit and Switching Time Waveforms r----' J.OV BINARY SELECT Vee TEST I.5V 15V "_J~~~ 'PLH VO" POINT R[ FROM ........ OUTPUT UNDER TEST OUTPUT 1" 15V 15V Voc~~---- ~, ME l.Ok 1 '------ ~, 30V~ .. 1.5V , 1.5V I OV --I ~, -,. 1,5V ~~ 'll I OUTPUT \ VOI--1-: I- VOH OUTPUT J '" 1.5V o.sv ---r1 \ 'ZH Cl includ~s proba and jig capacitance. All diodes are lN3064. I ~ . -T I "'= '[Z~ 05V ~_1 O.!)V 0.5V I' t I, -T -J 1HZ t---- Note: Input waveforms are supplied by pulse generators having the following characteristics: tn.s;; 10 os, tS:OS, 10 os, PRR S 1.0 MHz and lOUT z" 50H. Truth Table A special pattern has been generated for the DM7598/DM8598. The AA pattern provides a sine look up table. The 5-bit input code linearly devides 90 0 into 32 equal segments. Each 8-bit output is therefore the sine of the angle applied. EXAMPLE: Input 11010 means 26/32 of 90 0 , or about 73°. The corresponding output 1110100 indicates (112 + 1/4 + 1/8 + 1/16 + 1/64) or about 0.96, which is close to the sine of 73°. Rounding-off has not been employed, since without rounding-off, it is possible to extend the accuracy with additional ROMs. INPUTS BINARY SELECT WORD OUTPUTS ENABLE E D C B A ME YB Y7 Y6 Y5 Y4 Y3 Y2 0 L L L L L L L L L L L L L Y1 L 1 L L L L H L L L L L H H L L 2 L L L H L L L l L H H L L H 3 L L L H H L L L H L L H L H 4 L L H L L L L L H H L L L H 5 L L H L H L L L H H H H H L 6 L H H L L L H L L H L H L 7 l. L L H H H L L H L H L H H L 8 L H L L L L L H H L L L L H H 9 L H L L H L L H H L H H L 10 L H L H L L L H H H H L L L 11 L H L H H L H L L L L L H H 12 L H H L L L H L L L H H H L 13 L H H L H L H L L H H L L L 14 L H H H L L H L H L L L H L 15 L H H H H L H L H L H L H H 16 H L L L l L H L H H L H L H 17 H L L L H L H L H H H H L H 18 H L L H L L H H L L L H L H H 19 H L L H H L H H L L H H L 20 H L H L L L H H L H L H L L 21 H L H L H L H, H L H H L H H 22 H L H H L L H H H L L L L H 23 H L H H H L H H H L L H H H 24 H H L L L L H H H L H H L L 25 H H L L H L H H H H L L L H L 26 H H L H L L H H H H L H L 27 H H L. H H L H H H H H L L L 28 H H H L L L H H H H H L H H H 29 H H H L H L H H H H H H L 30 H H H H L L H H H H H H H L 31 H H H H H L H H H H H H H H All X X X x X H X ~ Don't Care 3-124 Hi-Z Hj·Z Hi·Z Hi-Z Hi-Z Hi-Z Hj·Z Hi-Z ~ Proprietary DM75/DM8598 Truth Table/Order Blank The output levels are not shown on the truth taule since the customer specifies the output condition he desires at each of the eight outputs for each of the 32 WOf~S (256 bits). The customer does this by filling out the Truth Table on this data sheet, and sending it in with his purchase order INPUTS OUTPUTS BINARY SELECT WORD ENABLE E D C 0 L L L 1 L L L 2 L L L H L l. 3 L L L H H L B A ME L L L L H L 4 L L H L L L 5 L L H L H L 6 L L H H L L 7 L L H H H L 8 9 L H L L L L L H L L H L 10 L H L H L L 11 L H L H H L 12 L H H L L I. 13 14 L H H L H L L H H H L L 15 L H H H H L 16 H L L L I. L 17 H l. L L H L 18 H l. L H L L 19 H l L H H L L 2.0 H L H L L 21 H L H ~ H L 22 H L H H L L 23 H L H H H L 24 H. H L L L L 25 H H L L H L 26 H H L H L L 27 H H L H H L 28 H H H L L L L 29 H H H L H 30 H H H H L L 31 H H H H H L AI! X X X X X H YB Yl Y6 Y5 Y4 Y3 Y2 Y1 - Hi-Z Hi-Z H,·Z H,·Z Hi-Z Hi-Z Hi-Z Hi-Z x "" Don't Care Notice: This sheet must be completed and signed by an authorized representative of the customer's company before an order can be entered. To be used by National only Authorized Representative Date __________ Part Number _ _ _ _._ _ _ _ S.O. Number Company Date Received Desired Part 3·125 o DM7598 o DM8598 ~ Proprietary DM75/DM8598 Ordering Instructions Programming instructions for the DM7598/DM85.98 are solicited in the form of a'sequenced deck of 32 standard 80-column data cards providing the information requested under "data card format," accompan ied by a properly sequenc~d listing of these cards,and the supplementary ordering data. Upon receipt of these items, a computer run will be made from the deck of cards which will produce a complete ·functio·n table of the requested part. This function table, showing output conditions for each of the 32 words, will be forwarded to the purchaser as verification of the input data as -interpreted by the computer'automated design (CAD) program. This single run also generates mask and test program data; therefore, verification of the function table should be completed promptly. Each card in the data deck prepared by the purchaser identifies the word specified and describes the levels at the eight outputs for that word. All addresses must have all outputs defined and columns _designated as "blank" must not be punched, Cards should be punched according to the data card format shown. Col. 15: Punch "H" or "L" for butput V6. CoL 16-19: Blank Col. 20: Punch "H" or "L" for outp~t Y'ft' .. ~.,. Col. 21-24: Blank Col. 25: Punch "H" or "L" for output V4. Col. 26-29: Blank (:01. 30: Punch "H" or "L" for output V3. Col. 31-34: Blahk Col. 35: Punch "H" or "L" for output V2. Col. 36'-39: Blank Supplementary Ordering Data Col. 40: Punch "H" or "L" for output Y1. Submit the following information with the data cards: Col. 41-49: Blank a) h) c) Customer's name and address Customer's purchase order number Customer's drawing number Col. 50-51: Punch a right-justified integer representing the current calendar day of the month. Col_ 52: Blank The following information will be furnished to the customer: a) National's part number b) National's sales order number c) Date received Col. 53-55: Punch an alphabetic abbreviation representil)g the current month. Col. 56: Blank Data Card ForQ1at Col. 57-58: Punch the last two digits of the current_ year. Col. 1-2: Punch a ,right-justified integer representing the positive-logic binary input .address (00-31) for the word described on the card. Col. 59: Blank Col. 3-4: Blank Col. 60-61: Punch "OM," Col. 5: Punch "H" or "L" for output V8. H ; highvoltage level output, L = low·voltage level output. Col. 62-66: Punch Col. 6-9: Blank Col_ 10: Punch "75~8fl or "8598." Col. 67-68:'Blank "tt" or "V' for output V7. Col. 11-14: Blank Col.-69-S0: These columns may be used for any custO,mer information or identification_ 3·126 ~ Proprie~ry DM75/DM8599 TRI-STATE 64-Bit Random Acc,ss Memories General Description The DM7599/DM8599 is a fully decoded 64-bit RAM organized as 16 4-bit words.The memory is addressed by applying a binary number to the four address inputs. After addressing, information may be either written into or read from the memory. To write, both the memory enable and the write enable inputs must be in the logical "0" state_ Information applied to the four write inputs will then be written into the addressed location_ To read information from the memory the memory enable input must be in the logical· "0" state and the write enable input in the logical "1" state. Information will be read as the complement of what was written into the memory _ When the memory enable input is in the rogical "1" state, the outputs will go to the high-impedance state. This allows up to 128 memories to be connected to a common bus line with- out the use of pull-up resistors_ All memories except one are gated into the high impedance state while the one selected memory exhibits the normal low impedance output characteristics of TTL_ Connection Diagram Truth Table A' AI I" " AJ 1J " 04 OJ S4 12 11 Features • • • • TRI-STATE outputs Same pin-out as DM5489/DM7489 Organized as 16, 4-bit words Expandable to 2048, 4-bit words without additional resistors (DM8599 only) 20 ns • Typical access from chip enable 28 ns • Typical access time 53 • 10 MEMORV ENABLE r-- 0- WRITE ENABLE OUTPUTS OPERATION L L Write Hi-Z L H Read Complement' of Data H X Hold Stored in, Memory 1 Aft , • 3 ME WE 01 •• , 6 5 Hi-Z 02 52 GNO " 7599{JI; 8599{J), (N) Logic Diagram ~AO (.1) AD iio AI . .2 AD ii3 ~Al A' (15) _ - ·At ADDRESS INPUTS A' AD iiI ii2 ii3 ~A2 '2' A3~:J . A) .' AD AI A2 A3 01 (41 02(6) DATA INPUTS SENSE OUTPUTS DJ (101 04 (12) Vec "U61 GND-II) 3-127 ~ Proprietary DM75/DM8599 Electrical Characteristics over recommended opeiating free-air temp~rature range (unless otherwise noted) DM75/85 PARAMETER CONDITIONS V,H High Level Input Voltage Vee =- Min V,L low Level input Voltage Vee == Min V, Input Clamp Voltage V'cc == Min,l, == -12 rnA IOH High Level Output Current V OH High Level Output Voltage IOL Low level Output Current Low Level Output Voltage IOIOFFI V I DM75 I DMS5 Vee = Min, V 1H Input Current at Maximum Input Voltage 10H := 2V = Max Vee:: Min, V ,H := V'L = D.SV, 104 = 12 rnA Vee =Max I Vo -2:4V 2V l Vo =O.4V Off State (High Impedance State) Output Current I, MAK 2 V'L = O.SV, VOL UNITS 99 TVP(l) MIN 0.8 V -1.5 V -2.0 -5.2 rnA 2.4 V 12 rnA 0.4 V -40 IJ,A 40 Vee = Max, V, = 5.5V 1 mA 40 IJ,A - -1.6 mA -30 -70 mA I'H High Level Input Current Vee = Max, V, = 2.4V I'l Low Level Input Current Vee = Max, V, = O.4V los Short Circuit Output Current Vee Icc Supply Current Vee == Max = Max(2) 80 mA 120 Notes: = 5V and TA = 25°C. (11 All typical val~es are at VCC (2) Not more than one output should be shorted at a time. Switching Characteristics Vee = 5V, TA = 25°C DM75/85 PARAMETER FRQM TO - CONDITIONS MIN tpLH Propagation Delay Time, Low-to-High Level Output tPHl Address OutP~t Address Output 99 UNITS TVP MAX 27 45 ns 28 45 ns 20 ns Propagation Delay Time, High-to-Low Level Output CL = 50;iF RL = 400n tZH Output Enable Time to High Level tZl tHOLD ME Output 19 30 ns ME Output 12 20 ns 21 3.0 ns CL =.6 pF RL Output Disable Time from ME low leyel tSETUP 14 Output Disable Time from High Level tlZ Output Output Enable Time to Low Level tHZ I ME Setup Time Hold Time = 400n 'Output , Address 0 -17 Oat. 0 -1.5. Address 5 Data 0 twp Write Enable 'Pulse Width tSR Sense Recovery Time 4.0 .. . -:7 -14 ns 23 42 3-128 ns , ns 60 ns ~ Proprietary DM75/DM8599 Typical Performance Curves DELAY FROM ADDRESS TO OUTPUT DELAY FROM ENABLE TO LOW IMPEDANCE STATE DELAY FROM ENABLE TO HIGH IMPEDANCE STATE 1 _I Vee'" S.OV 70 35 ] 50 ~ 40 - ~ 30 20 :g 25 ~ 20 _ 15 30 "..... ~ 10 :g -~ I" t pHL - -:- 35 I 30 60 ~ 25 ~ In > ~ 20 - c== - 15 ~V ~ ~ f- 10 10 -75 -50 -25 0 25 50 75 100 125 -75 -50 -25 Vee"' 5.IlV ~ 25 - r-LPL - r-tr §: 20 ~ 15 10 ~ H ;; 0.2 75 10e 125 Y ~ :.--:: ~ :;;.o TEMPERATURE 1°C) ~5~C 25°C '_55°C (-- 25°C K-' '" ~ 20 12t"'" L'\ ~ I\.~ 1.0 25 30 35 40 I 55"C- "~ ~~ 0.5 15 75100125 Vee" S.OV \ _55°C o 10 50 3.0 / !)" i'-.. V 25 LOGICAL "'" OUTPUT VOL TAGE VS SOURCE CURRENT ...... V ~ il > 0.3 o 50 O -;:. 0.4 I 25 - 12J C 0 TEMPERATURE (' C) 3.5 0.6 0.5 0.1 0 -75 -50 -25 0: I -75 -50 -25 75 100 125 0.7 "..... r- 50 Vee 5.0V -- I 30 '" 25 LOGICAL "0" OUTPUT VOLTAGE VS SINK CURRENT MINIMUM WRITE PULSE WIDTH 35 0 TEMPERATURE ( C) TEMPERATURE rC) o 5 10 15 20 25 30 35 40 lOUT (rnA) lOUT (rnA) DELAY FROM ENABLE TO OUTPUT VS LOAD CAPACITANCE SENSE RECOVERY TIME 70 60 ]: 50 ! tSR w 40 '" ;:: 30 g 30 20 20 10 10 -75 -50 -25 0 25 50 t--Hffiffit---t-H+ttIItI--t-ttttittl ~t;t;WI~t'H;L~I:::j+tm~ t--Hffiffit---t,t~"THrrffi~~~~ 5 10 75 100 125 50 100 500 CL I,F) TEMPERATURE 1°C) Test Circuit TEST CIRCUIT FOR DELAY VS LOAD CAPACITANCE Note: In a typical application the output of the TRI·STATE memories might be wired together and one would be switching Met to the low impedance state at the same time the circuit previously selected would be switching back into the high impedance state. The measurements of delay versus load capacitance were made under conditions which simulate actual operating conditions in an application. (See test circuit.) ME2 ONE TTL LOAD 3-129 ~ Proprietary .OM75/8599 AC Test Circuit 5.OV OUTPUT OM15991 OM8599 Switching Time Waveforms WRITE CYCLE ME WE--......,--"",", - - - - - - - - -,----!-"",":"--...,+ ISR~--- OUTPUT _ _ _ _ _ _ _ tZL & tZH MEMORY -'L. ENABLE - - - - " 1.5V OUTPUTS ACTUAL "0" VOLTAGE 'LZ MEMORY~15V ENABLE· ~~ __._ _ _ _ _ _~_ _ ~V OUTPUTS -"',.;-------~ 1.5V ----1-...1:, 'll f--_ ---+-"' I - 0.5V +_...;:;---.L ACTUAL "1" _ _ _ VOLTAGE I -..;.------~ 1.5V 'HZ ~ ~1.5V---+__1 'ZH Note: The pulse generator has the following characteristics: V = 3.0V, '" 15 ns, tf 5.0 liS, f '" 500 kHz, duty cycle'" 50%, ZOUT = 50n, VI =-1.3V@25 C. tr J 0: 3·130 I r ~1.5V ~ Proprietary DM76/DM86L24 TRI-STATE Magnitude Comparators with A almost equal B General Description Features These circuits are low power, 4-bit, magnitude comparators which provide both standard totem-pole TTL outputs as well as TRI-STATE outputs. A comparison of two, 4-bit words is performed, and the result indicated by the four outputs: A> B, A < B, A == B, and A ~ B. The A ~ B output is unique with this device, and is enabled only when Word A is within one binary count of Word B_ The comparison is expandable to any number, without the need for external gates_ The maximum speed method of cascading, and typical comparison times are shown in Figures 1 and 2. • TRI-STATE outputs • May be cascaded to compare words of greater length • Typical power dissipation 75 mW • Four separate outputs A==B AB Connection Diagram Logic Diagram OUTPUT ENABLES EO A~B • A almost equal to B (A ~ B) output permits lookahead and anticipation of a match (A == B) OUTPUTS A-B A'B 12 11 13 AB 10 ·256X4 LOW POWER ROM 1 2 f OUTPUT E02 ENABLE l.ED 1;.;114,;:1-4t++-... A2 Al AD B3 WORDA Bo Bl 82 ++_M+--. GNO WORO B 76L24/86L24(J), (N), (W) Truth Table' COMPARING INPUTS (MSB) (LSB) ENABLE INPUTS A3B3 A2B2 Al Bl AO BO EOI E02 A3>B3 A2>B2 Ai >81 AO>80 L L A382 x A3= 83 A2< 82 x x A3= 83 A2 = B2 Al >81 A3= 63 A2= 82 A3 =63' A2= 62 A3 = 83" A3= 63 X X OUTPUTS A=B A-B A>B L H H L H L L L L H L H L L L L L L L H L H L -L L L_ L L H H L L H L H L- L L L H L L H X Hi-Z Hi-Z Hi-Z Hi-Z X H Hi-Z Hi-Z Hi-Z' Hi-Z ABO L. A2 = 82 Al = 61 AO<80 A2= 82 Al = Bl AO= 60 X X X X X X 'Word A > Word 8 8y I **Word A < Word B By 1 H = High Level, L = Low Level, X = Don't Care 3-131 N OM76/0M86L24 Proprietary' Electrical Charac~eristics over recommended operating free-air temperature range (unless otherwise noted) DM76 CONDITIONS PARAMETE'R MIN VIH High Level Input Voltage VIL Low Level Input Voltage VI Input Clamp Voltage 10H Hiill:' Level Output Current V OH High Level Output Voltage TYP(l) Vee =Min, V,H = 2V Low Level Output Current Low Level Output Voltage Off Vee = Min, V ,H = 2V Stat~ (High Impedance State) Vee = Max, V,H = 2V V'L = 0.7V II Input Current at Maximum Input Voltage Vee = Max, V, = 5.5V IIH High Level Input Current Vee = Max, V, = 2.4V IlL Low Level Input Current Vee = Max, V, = 0.3V los Short Circuit Output Current Ver:; = Max'(2) Icc Supply Current Vee = Max, V, = OV -.".4 MAX "~':'\ V 0.7 0.7 V -1.5 -1.5 V -1.0 -1.0 rnA V 2.0 3.6 mA 0.3 0.4 V I Va = 0.3V -40 --40 Va = 2.4V 40 40 100 100 p.A 10 10 p.A -180 -180 p.A -30 mA 20 mA I Output Current UNITS TYP(li 2.4 V'L = 0.7V, 10L = Max 1010FFI MIN 2 2.4 V'L = 0.7V, 10H = -1.0 rnA 10L L24 MAX 2 Vee =Min, I, = -12 rnA VOL DM86 L24 -6 -30 15 -6 15 20 p.A Notes All typical values are at VCC = 5V, TA = 25°C. (21 Not more than one output should be shorted at a time. (11 Switching Characteristics Vee = 5V, TA = 25°C DM76L/86L PARAMETER FROM CONDITIONS TO tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propa~ation Delay Time, High·to-Low Level Output Data Output Data Output UNITS L24 NIIN TYP MAX 86 130 ns 55 85 . ns '34 51 ns 47 70 ns 15 23 ns 57 86 ns C L =50pF, RL =4 kQ tZH Output Enable Time to High Level tZL Output Enable Time to Low Level tHZ Output Drsable Time from High Level tLZ C L =5pF, RL =4 Output Disable Time from Low Level 3-132 kP- ~ Proprietary OM76/0M86L24 Typical Applications A15· AlJ HIGH"'A>B A>B OUTPUTS { HIGH-'A3.B A,"B 8 .<8 Lr-r-r~~~~~~ ~ IMSB) OUTPUT ENABLE (lSB) FIGURE 2. MAXIMUM SPEED EXPANSION (NOT SUITABLE FOR A - BI COMPARE CIRCUIT DELAY (FIGURE 2) 1A BITS 5-7 NUMBER OF CIRCUITS 1 DELAY 1 BITS 2 DELAYS 2 8-10 BITS 2 DELAYS 3 11-13 BITS 2 DELAYS 4 14-16 BITS 2 DELAYS 5 AC Test Circuit and Switching Time Waveforms ~L'~ ____ VCC=5.0V 3V Z.OV Rl v, , I 1.0V I tpHL OUTPUT---..... i-i I ----I I OUTPUT ENABLE tZL Be tZH OUTPUT ENABLE 1.0V ----I~r--_;;;_;_ VOUTlIl-----t--,.--:---1.0V ----I-~I_-=r Note: The pulse generator has the following characteristics: V ::= 3.0V, tr::: 15 ns, tf '" 5.0 ns, f '" 600 kHz, duty cycle'" 50%, ZOUT '" 50n. Vt ::: 1.3V@25°C. 3·133 ov tplH VOUT(1} ~ Proprietary DM76/DMB6l25 TRI-STATE 7·Segment to BCD Decoder General Description Features These circuits are low power converters which accept 7 -segment data on the inputs, and provide binary-coded decima,1 (BCD) data on the outputs. An input control line is also provided, in the event that the 7-segment input data is presented in inverted form. The BCD outputs are normally of the standard totem-pole TTL type, however they may also be converted ,to highimpedance (TRI-STATE) types by applying a high logic level to either of the two output enable pins. • TRI-STATE outputs Connection Diagram OUTPUT ENABLE CSZ 1J 2' 12 11 10 a b c d e f 9 cn CS 1 CS 2 z1 22 2' D I H H H H H H L H L L L L L L L H H L L L L H L L L L L H C' H H L H H L H H L L L L H L 3 '-/ H H H H L L H H L L L L H H L H H L L H H H L L L H L L 5 H L H H L H H H L L L H L H b 5 7 L L H H H H H H L L L H H L H L H H H H H H L L L H H L H H H L L L L H L H H H H H H H H H H H L H L L L q '3 H H H L L H H H l l L L B L H L L H H H H H L H H H L l H L L H BLANK L L L L L L L H L L H H H H :I: Logic Diagram 2° L L L H H H L H L L H H L H E R P H L L H H H H H L L H H H L H H H 'L H H H H L L H L H L' H H L L H H H H L L H L H H - L L L L L L H H L L H H L L n L L L L L L H L L L L L L L H L L H H H H L L L L L L H L 76l25/B6L25(J), (N), (W) CONl:RG~~ 70 ns DIGIT , INPUTS INPUTS • Typical p(opagation delay OUTPUTS 2° GNO SE:~~:~ 75 mW Truth Table ~.~----~~--~~ CSl • Typical power dissipation ,, LJ i' '3 L L H L L H L L L L L L H L 13) L L L L H H L L L L L L H H : i4J '-I H L L H H L L L L L L H L l e (5) 5 L H L L H L L L L L L H L H f (6) b H H L L L L L L L L L H H L .9(7) E, L H L L L L L L L L L H H L 7 B q L L L H H H H L L L L H H H L L L L L L L L L L H L L L L L L H H L L L L L H L L H C 05) INPUT _'II~"~H-~H-~H--' C51ENABlE {CSZ..:.II","....,f+-....,f+-....,f+--. OUTPUT BCD OUTPUTS Segment Identification 9 L L L L H L L L L L H L L H BLANK , H H H H H H L L L H H H H L H H H L H " L L H L L L H H L H E R P - L L H H L L L L L L L H H H L L L H L L L L L L H L H L l. L Ii H L L L L L H L H H H Ii H H H H L L L L L H H L L X X X X X X X X X X X X X X X X H X Z Z Z Z X H Z Z Z Z L L H H H H All Other "Input Combinations 3-134 ~ OM76/0M86L25 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM76L PARAMETER CONDITIONS MIN VIH High Level Input Voltage VIL Low Level I nput Voltage VI Input Clamp Voltage IOH High Level Output Current VOH High Level Output Voltage TYP(1) Vee = Min, V ,H = 2V VOL Low Level Output Voltage II V'L = 0.7V Input Current at Maximum I Vo =0.3V 1va =2.4V Vee = Max, V, = 5.5V Input Voltage MAX V 0.7 -1.5 -1.5 V -1.0 -1.0 mA V V 2.4 V'L = 0.7V, 10L = Max Vee = Max, V ,H = 2V UNITS TYP(1) 2 Vee = Min, V ,H = 2V IOIOFFI Off State (High Impedance State) Output Current MIN 0.7 2.4 V'L = 0.7V, 10H = -1.0 mA Low Level Output Current L25 MAX 2 Vce = Min, I, = -12 mA IOL DM86L L25 2.0 3.6 mA 0.3 0.4 V -40 -40 40 40 100 100 /lA /lA J1A IIH High Level I nput Current Vee = Max, V, = 2.4V 10 10 IlL Low Level Input Current Vee = Max, V, = 0.3V -180 -180 /lA los Short Circuit Output Current Vee = Max(2) -30 mA Icc Supply Current 20 mA -6 • Vee = Max, V I = OV -30 15 -6 15 20 Notes All typical values are at Vee'" 5V, T A"" 25°C. (21 Not more than one output should be shorted at a time. (11 Switching Characteristics Vee = 5V, TA = 25°C DM76L{86L PARAMETER FROM TO CONDITIONS L25 MIN tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tZH Output Enable Time to Data Output Data Output 130 ns 55 85 ns 34 51 ns 47 70 ns 15 23 ns 57 86 ns Output Disable Time from High Level tLZ 86 Output Enable Time to Low Level tHZ MAX C L = 50 pF, RL = 4 kU High Level tZL UNITS TYP Output Disable Time from C L = 5 pF, RL = 4 kU Low Level 3-135 ~ Proprietary DM76/DM86L25 AC Test Circuit Vee = 5.0V OM76l25/ OM86l25 All diodes are lN914 Switching Time Waveforms ~1~~=_-.3V 2.0V 2.0V Vt 1 I WORO INPUT I --I tPHl I - OUTPUT---.......\ 1.0V r"'' "' \.. _ _ _- ' _ _ _J. - - VOUTlL) OUTPUT ENABLE OUTPUT ENABLE 1.0V OV tplH \ - - ~ -----C-j----,-'-- 1.0V -----+----+-..._-,.__ O.5V VOUTll)----+-'-..:...----- VOUTll)------t-I~--_:_;, VOUTlH)----f-----:..._-:----- VOUTlH) LOV ----+-'-f---=T ------i-.. . -----'L ~ 1.0V ~----_+_--+-,-'"-- Note: The pulse genenltor has the following characteristics: V '" 3.0V, tr "" 15 liS, tf '" 5.0 n5, f '" 500 kHz, duty cycle =: 50%, ZOUT = 50n, Vt '" f.3V @ 25~C. 3·136 ~ Proprietary DM76/DM86L75,L76 Presettable Decade/Binary Counters General Description These synchronous, presettable counters are true tenthpower versions of the popular DM54160A/DM74160A, DM54161A/DM74161A, DM9310, and DM9316 counters. They feature an internal carry/look ahead for high-speed cascading, and trigger on the positive-going transition of the clock pulse. The counters are fully programmable; and, since presetting is synchronous, applying a low logic level to the load input disables the counter and forces the outputs to agree with the setup data after the next clock pulse,. regardless of the levels of the enable inputs. Low-to·high transitions at the load inputs are acceptable, regardless of the logic levels on the clock or enable inputs. The clear (reset) function is asynchronous, and a low level applied to the clear input sets all four outputs low regardless of the levels on the clock, load, or enable inputs. In high-speed cascading arrangements, both count·enable inputs (p, T) must be high to count, and input T is fed forward toenable the ripple carry output. This high·level overflow ripple carry pulse can be used to enable successive stages. High·to·low level transitions at the P or T enable inputs are permitted, regardless of the logic level on the clock. Features • Low power versions popular counters DM76L75/DM86L75 = DM54160A/DM74160A, DM9310 ~ decade counter DM76L76/DM86L76 = DM54161A/DM74161A, DM9316 ~ binary counter • Internal look-ahead for fast cascading • Counters are fully synchronous and presettable • Typical power dissipation 33 mW . Connection Diagram OUTPUTS TC Vrcc 16 OUTPUT 00 15 02 CEl Q3 11 13 14 11 PE 10 p- 1 2 CLEAR CLOCK 3 PO PI P2 P3 ''----v---~' DATA INPUTS 76L75/86L75(J), (N). (WI; 76L76/86l76(JI, (N), (WI 3-137 CEP ~ DM76/DM86L75,L76 Proprietary Electrical Characteristics over recommended operating free-air t~mperature range (unless otherwise noted) PARAMETER CONDITIONS MIN VIH High level Input Voltage VIL low level Input Voltage 10H High Level Output Current VOH High level Output Voltage 10L Low Level Output Cu'rrent Low Level Output Voltage Vce = Min, V ,H = 2V Input Current at Maximum I nput Voltage IIH IlL High Level I nput Current Low Level Input Current Vee = 2.4 Vee = Max, V, Vee MAX MIN UNITS TYP(1) MAX 2 V 0.7 0.7 -200 -200 2.4 3.1 = Vee ""Max Icc Supply Current Vee -':: Max 0.2 = Max 2.4V = Max, V, = 0.3V Short Circuit Output Current Notes All typical values are at VCC iv Max, V, =5.5V los ( 1) TYP(l) 3.1 0.2 0.3 3.6 mA 0.4 V CET Input 200 200 Others 100 100 CET Input 20 20 Others 10 10 CET Input -360 -360 Others -180 -180 -3 -9 6.5 -15 -9 -3 6.5 9 V MA V 2.0 Ve.e = Min, V ,H = V'L = 0.7V, IOL II DM86l L75, l76 2 V'L = 0.7V, IOH = -200MA VOL DM76l l75,l76 MA !J.A !J.A -15 mA 9 mA = 5V, TA = 25'C. Switching Characteristics V cc =5V,T A =25°C DM76l/86L PARAMETER FROM CONDITIONS TO fMAX Maximum Clock Frequency tpLH Pro.pagation Delay Time, low·to·High level Output tPHL Propagation Delay Time, H igh·to-law level Output tpLH Propagation Delay Time, low-to-High level Output tPHL Propagation Delay Time, High-to-low level Output tpLH Propagation Delay Time, law-to-H igh level Output tpHL Propagation Delay Time, High·ta-low Level Output UNITS l75, l76 MIN 6 TYP MAX MHz 13 Clock Q Output 45 75 ns Clock Q Output 65 110 ns Clock TC Output 70 115 ns Clock TC Output 85 140 ns CET TC Output 35 60 ns CET TC Output 35 60 ns C L =50pF, RL =4kH tW(CLOCKI Minimum Pulse Width 60 25 ns tW!RESETI Minimum Pulse Width 80 30 ns tSETUP Setup Time CE 65 40 tHOLD Hold Time P Inputs 30 15 Parallel Entry 65 40 CE 80 50 P Inputs 30 15 Parallel Entry 65 40 3·138 ns ns ~ Proprietary DM76/DM86L75.L76 Logic Diagrams 76L75/86L75 (DECADE) PO P1 P2 ~~19)~t>~jfl~3)::::::::::~-----rtl~4)::::::::::~~---rtl~5)::::::::::::~--~ o n r+-+--..q,cp rl--+----~ I'r)__________- , o n r+-+--..q,cp r+-+--..q,cp cp 114) aD P3 113) (11) 112) 02 G1 03 76L76/86L76 (BINARY) ~19) PI PO P3 P2 (5) 14) (3) I') a a r+-+---q,cp r+-t---4cp r+-+-------oI> cP a r+-+---of> cp R CD 0 114) aD 113) al Vee" (16) GND" 18) 3-139 112) a2 (11) 03 ~ Proprietary DM7618678 ,79 7 by 9 Character Generators General Description Features The DM7678/8678 and DM7679/DM8679 are bipolar character generators. A maximum of 64 characters can be displayed in a 7X9 dot matrix. Shifted characters can be generated by the on-chip subtractor. On·chip line counter and parallel·in-serial·out shift register reduce package pin-out. • TRI-STATE outputs • On-chip input latches • • • • • On-chip line counter -- The clear input and the load input are active low. Load is. synchronous with the Dot Rate Clock. Both the line rate clock and the dot rate clock are positive triggered. When the strobe input receives a low signal, the character address will be held at the inputs. Connection Diagram On-chip shift register Serial output 20 MHz typical clock rate Shifted characters Character Display Example . SELECT T f 16 A4 AS A6 A7 \ DOT CLOCK [jj 0 DOT RATE CLOCK (SERIAL OUTPUTI _ 15 14 13 12 11 9 10 LINE COUNTER CLOCK 0 1 2 . 3 4 6 1 a ClOCK K INPUT A NC GNU /13 14 12 /10 11 8 9 19} OB --0 ~ 18} Oe --0> 1 2 3 INPUT B ROlli ROI2} 14 15 NC 16 NC Vee 17 (11) 00 NC 76L93/86L93IJ}, IN}, (W) Truth Tables COUNT SEQUENCE TABLE OUTPUT COUNT RESET/COUNT TRUTH TABLE RESET INPUTS OUTPUT ROil} RO(2) QD H H L L X COUNT X L COUNT QC QB QA L L L 3-142 QA Qo Dc QB 0 L L L L 1 L L L H 2 L L H L 3 L L H H 4 L H L L 5 L H L H 6 L H H L 7 L H H H 8 H L L L 9 H L L. H 10 H L H L 11 H L H H 12 H H L L 13 H H L H 14 H H H L 15 H H H H ~ Proprietary Electrical Characteristics DM76/DM86L93 over recommended operating free-air temperature range (unless otherwise noted) DM76L PARAMETER CONDITIONS MIN VIH High Level Input Voltage V IL Low Level Input Voltage 10H High Level Output Current V OH High Level Output Voltage 10L Low Level Output Current Low Level Output Voltage Vce = = Min, V'H = 2V O.7V, 10H = -200iJ.A = Min, V'H = 2V = 0.7V, 10L = Max Vee = Max, V, = 5.5V High Level I nput Current Vee = Max, V, = 2.4V Low Level I nput Current IlL MIN TYP(1) Vee = Max, los Short Circuit Output Current Vee =Max ICC Supply Current Vee V,' = 0.3V UNITS MAX V 2 2.4 0.7 0.7 V -200 -200 iJ.A 2.8 0.15 Input Current at Maximum Input Voltage IIH L93 MAX 2.4 0.2 0.3 V 2.8 2.0 Vee V'L II TYPll) 2 V'L VOL DM86L L93 3.6 rnA 0.4 V Reset 100 100 A Input 200 200 B Input 200 200 Reset 10 10 A Input 20 20 B Input 20 20 Reset -180 -180 A Input -360 -360 B Input -360 -360 -3 -9 = Max(2) -15 -3 -9 iJ.A iJ.A iJ.A -15 rnA 5.5 5.5 rnA Notes All typical values are at Vee::: 5V, TA = 25°C. (2) ICC is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V, and all other inputs grounded. (1) Switching Characteristics vee = 5V, TA = 25°C DM76L186L PARAMETER f MAX Maximum Clock Frequency tpLH Propagation Delay Time, Low·to-High Level Output tpHL Propagation Delay Time, High-to·Low Level Output FROM A CONDITIONS TO TYP 6 15 QD CL A L93 MIN = 50 pF, RL = UNITS MAX MHz 210 400 ns 230 400 ns 4 kSl Qo tw Pulse Width (All Inputs) 200 ns tSETUP Reset I nactive State Setup Time 200 ns 3·143 ~ Proprietary - DM76/DM86 L97 TRI-STATE 1024-Bit Read Only Memories, General Description Feat.ures The DM76L97/DM86L97 is a custom-programmed Read Only Memory organized as 256 four-bit words. Selection' of the proper word is accomplished through the eight select inputs. . • Full te'lth-power technology • ,Pin compatible with SN54187/SN74187 • Typical power dissipation Two overriding memory enable inputs are provided which when mask-programmed in one of the three options described 'will cause all four outputs to read either the normal memory contents or go to the high impedance .state. • Typical access ti me • Custom-programmed memory enable inputs INPUT H Truth Table ENABLES SELECT 70 ns • TRI-STATE outputs Connection Diagram Vee 75 mW DATA OU1PUTS •, ME2 MEl YI 13 V2 12 Y3 II Y4 10 OPTION MEl ME2 1 L L H X High Itnpedance X H High Impedance ,, 2 3 x = Don't H H Normal l X High Impedance X L High Impedance H L Normal X H High Impedance L \ X High I mpedanc..f Care GNO A SELECT INPUTS 76L97/86L97(J), (N), (WI ' Logic Diagram H (15) G 1,') F (2) 1024-BIT MEMORY CEll I OF 32 DECODER 32 BY32 MEMORY MATRIX (3) SELECT INPUTS (4) 'c I~) ! 5) MEl (13) ENABLES { /1114~)---o-AO ~AO 15) AI ~ ADDRESS INPUTS ~~ A2 A3 AI AD AI .2 ~I A3 A2 (l4)..... rC>o-A2 ~A2 lJI ~ ,A3 A3 A3 14) 01 02 (6) DATA INPUTS {lO) 03 d. (12) 13) WE Vee" (16) GNO" (81 ME 12) 3-148 Hi-Z ~ DM76/DM86L99 Proprietary Electrical Characteristics over recommended operating free-air temperature range lunless otherwise noted) DM76L1B6L PARAMETER CONDITIONS - - -- V'L Low Level Input Voltage Vcc""Min V, Input Clamp Voltage Vee =- Min, II -- -12 rnA 10H High Level Output Current V OH High Level Output Voltage 10L low Level Output Current VOL IO(OFF) Vee Low Level Output Voltage Min, IOH V 0.7 = -·1.0 rnA V -1.0 rnA V 2.4 2.0 DM86L 3.6 Vee =- Min DM76L 0.3 IOL "" Max DM86L 0.4 Vee'" Max Vo =0.3V -40 Vo = 2.4V 40 Input Current at Maximum Vee Input Voitage := Max, VI = 5.5V I'H HIgh level Input Current Vee == Max, VI == 2.4V "L Low Level Input Current Vee los Short Circuit Output Max, VI O.3V -6 Vee = Maxl2) Current Supply Current ICC = V --1.5 DM76L Off State {High Impedance State} Output Current I, -= MAX 2 Vee =" TYPll) ~--------- Min High Level Input Voltage V'H UNITS L99 MIN V /lA 100 /lA 10 /lA -180 /lA -30 rnA. 19 mA 15 Vee::: Max rnA Notes 11 ) Vee = 5V, T A = 25°C. Not more than one output should be shorted at a time. All typical values are at (2) Switching Characteristics Vcc=5V,TA~25°C DM76li86L PARAMETER FROM TO -. tplH Propagation Delay Time, Low~to·Hjgh tpHl Level Output Propagation Delay Time, High-to-Low Level Output tEN Output Disable Ti me from Write Enable UNITS 199 CONDITIONS MIN TYP MAX Address Output 51 120 ns Address Output 77 150 ns WE Output 73 110 ns C L = 50 pF, RL = 4 ki1 tSR Sense Recovery Time fror1'l Write Enable tZH Output Enable Time to High Level tZL Output Enable Time to Low Level tHZ Output Disable Time from High Level WE Output 110 165 ns ME Output 30 50 ns ME Output 29 43 ns ME Output 18 27 ns 37 56 ns Cl. = 5 pF, RL = 4 ki1 tLz I Output Disable Time from Low Level tSETUP tHQLD Setup Time Hold Time Output Data 0 Address 0 ME 0 Data 0 0 0 Address ME twp ME Write Enable Pulse Width 50 ns ns 30 ns ~ Proprietary DM76/DM86l99 AC Test Circuit ~ Vee 5.nv OUTPUT DM76L99! DM86L99 Switching Time Waveforms WRITE CYCLE lE.. r 'l1\ ADDRESS INPUT1 'PHL v, v, ,. - - -- - - - - - ---,I--~-! ---_. , - --- - -- - -- --.1.,--m ___ ,", ME I nv nv ~_'_PL.-J:~::::::: WE------!---.... , DUTPUT----.\\..,_ _ _ _ _ t ItfNi-- OUTPUT _ _ _ _ _ _ _ .... ~ J 'k I~---- I i-'SR MEMORY ENABLE 'ZL & tZH 'LZ & 'HZ MEMORY ENABLE MEMDRY~V' ENABLE J .- . tLl Ir":-:_0°1..l..5V---VOUT(L) ---+--'-----r' Vo UT(H) ---+--...c--..-1 I ~~V.;.,_ _ _ _ _ __ ~ tll h-- 1.3V---t-r-~L.Jff5---V_ _ '1.3V d--4ir -.- VOUTlL) --tf-----VOUTlH) 1.3V ~----~1.3V n.5V r----- . 'ZH Note: The plltse generator has the following characteristics: V'" 3.0V tr ~ 15 liS, tf"" 5.0 ns, f =: 500 kHz, duty cvcle ::: 50%, Zo ur '" 50£1, Vt ::: 1.3V @25"C. I 3-150 f--- ~ Proprietary DM78/DM8853 Dual Retriggerable Resettable One Shots General Description Features The DM7853/DM8853 is a dual, retriggerable, resettable monostable multivibrator similar to the DM9602/ DM8602 but with a unique input triggering logic. • 72 ns to • Retriggerable 0 to 100% duty cycle This device has two trigger inputs-a standard input and a delayed input-which are Exclusive OR'ed together. In the dual·edge triggering mode, the two inputs are tied together. On either a positive or negative transition the Exciusive·OR logic is satisfied for a length of time equal to the delay on the delayed input-approximately 15 ns-thus triggering or retriggering the one·shot. = output width range • TTL input gating-leading AND/OR trailing edge triggering • • Complementary TTL outputs Pulse width compensated for Vee and temperature variations Once fired, the accuracy and performance of the DM7853/DM8853 is identical to that of the DM9602/ DM8602. • Connection Diagram Resettable Logic Diagrams 14 15 Dtt l!t)(41 11 (51 (71 (31 "Pins for external timing (91 7853/8853(JI, (N), (W) (131 *A non-inverting buffer with delay Truth Tables TRIGGERING TRUTH TABLE Dt CD OPERATION L H Trigger H~L H Trigger H~L H H Trigger L L~H H Trigger H~L Same as t H Trigger H Same as t H Trigger X L Reset t L~ H H L~ X LOADING RULES INPUTS 3.4,5,11.12.13 OUTPUTS 6,7.9.10 3-151 LOAD HIGH I LOW 1 u.L.11 U.L. DRIVE FACTOR HIGH I LOW 16U·L.ISU.L. ~~ DM78/DM8853 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM78 CONDITIONSl21 PARAMETER MIN V,H High Level Input Voltage V,l Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current VO H High Level Output Voltage Low Level Output Current Low Level Output Voltage =: Min, 'I =>-12 rnA Vee == Min, V 1H == 2V = a.BV, =; Min~ V 1H 2V "" Input Current at Maximum Input Voltage Vee High Level Input Current Vee == Max, VI'''''4.5V I,l Low Level Input Current 0= Vee == Max Supply Current Curr~nt Vee -1.5 -800 2A 0.2 Vee =- I VI -1.1 -1.6 == O.45V Max, V OUT " 55 == mA OA V mA 10 60 !1A -'1.0 -1.6 '-25 1.0VI31 16 1 1 = OAV V !iA V 0.2 60 V 3.4 OA 10 Vee == Max Notes (11 All typical values are at -1.5 -800 Max, VI == 5.5V I V, MAX V 16 Vee I'H Short Circuit Output UNITS TYPlll 0.8 3.3 2A == -8OO.uA(3) 'OH I, lOS MIN 2 V'L " 0.8V. 10L = 16 mAI31 Icc MAX 0.8 V 1L VOL 53 TYPOI 2 Vee 10l DM88 53 55 72 mA -35 mA 72 mA 5V, T A =: 25°C. Vee (2) Unless otherwise noted, 10 kSl resistor placed between RX and (3) Ground Pin 1 1151 for VOL on Pin 7 (9). or for VOH on Pin 6 (10), or for lOS on Pin 6 (101; also. apply momentary ground to Pin 4 (12). Open Pin 11151 for 'VOL on Pin 6 (10), or for VOH on Pin 7 191, or for loson Pin 7 (9). . Switching Characteristics vee for all tests. ~ 5V, T A ~ 25°C DM78 FRDM PARAMETER CONDITIONS TO tPHL tpLH I tpHL Propagation Delay Time, Standard Trigger Low-to-High Level Output Input Propagation Delay Time, Standard Trigger High·to-Low Level Output Input Propagation Delay Time, Delayed Trigger Low-to-High Level Output Input Propagation Delay Time, Delayed Trigger High-to-Low Level Output tWfMINl Minimum Possible Output Pulse . fT 53 UNITS TYP MAX MIN TYP MAX Q 25 35 25 40 ns Q 29 43 29 48 ns 40 53 40 58 ns 44 61 44 66 ns 72 90 72 100 78 100 78 110 3A2 3.76 MIN tpLH DM88 53 CL = 15pF.Rx "5kr/ Q ex" 0 Q Input Q tw Pulse Width Tolerance ex =1000pF.Rx =10kfl 3.08 eSTRAY Maximum Allowable Wiring Capacitance Pins 121 and 1141 to GND Rx Timing Resistor 5 3-152 3.08 50 25 5 3.42 ns 3.76 !is 50 pF 5Q kfl ~. Proprietary DM78/DM8853 Typical Performance Characteristics OUTPUT PULSE WIOTH VS TIMING RESISTANCE AND CAPACITANCE FOR < Cx 103 pF 10' ~x ,1~ I Z :; kn-;: t7'7 +t!t~x ~ 20 kl! /' .....: 10 3 IR~~30kS2 ~Y Rx -50kSl ~ w " >- ..... ~ >- ">"0 I-'" --r- 10' .... ~ ::Tlkrr I III 10 1,0 Cx _10 3pF t'" 0.31 RxCx 10 (1 + 1/Rxl 10' 10 3 ex - TIMING CAPACITANCE (pF) Switching Circuit Cx RX ~CC Va VIN -::- va -::- -::- -::- Switching Time Waveforms VIN_n_,SV_ __ INPUT PULSES f"'- 100 kHz AMP,3:0V WIDTH :;:- 40 ns t r '" 3·153 tf ~ 10 ns ~ Proprietary OM78/0M8875A.75B TRI-STATE 4-Bit Parallel Binary Multipliers General Description These circuits are capable of multiplying together two 4-bit binary numbers when,used together in pairs. The DM7875A/8875A provides the most significant four bits, and the DM7875B/8875B provides the least signifi· cant four bits. Since the largest number that can be obtained· by multiplying two 4-bit numbers is 225 (15 x 151, the eight output pins (four from each packagel are sufficient to produce this number. Both the multiplier and the multiplicand must be connected to the eight input pins of each device. These devices are pin compatible with the SN54284/74284, and SN542851 74285; but have the advantage that these circuits pro· vide either standard totem-pole TTL or TRI-STATE Connection Diagram STROBE I" 52 15 • • Pin compatible replacements for SN54284/74284 (DM7875A/8875AI SN54285/74285 (DM7875B/8875BI TRI·STATE outputs Typical propagation delay 35 ns OUTPUTS 51 14 Features • Typical Application ~ V4 outputs. A gated two-input strobe control is provided. When either one, or both, of the strobe inputs is raised to a high logic level the outputs are forced into the high-impedance state. Thus, multiple devices may be connected to a common bus line. P2 Pl 12 1] MOST v, P3 11 10 V3 V2 VI 9 X4-MOST SIGNIFICANT BIT X, X3 X2 Xl X3 X2 Xl-LEAST SIGNIFICANT 81T - " SIGNIFICANT BIT P3 DM1875A! DM8875A P2 PI x.v Y4-MOST SIGNIFICANT BIT P4 Vl V2 P3 Yl-lEAST SIGNIFICANT BIT 2 1 Vl V2 4 1 VI X4 5 Xl 6 X2 7 Xl OM787581 ,OM88158 I' P2 GNO 7875A(J); 8875A(J), (N); 7875B(J); 8875B(J), (N) PI AC Test Circuit s.ov 01 OUTPUT OM7875/ DM8875 1k 3-154 LEAST SIGNIFICANT BIT ~ Proprietary DM78/DM8875A.75 B Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER CONDITIONS DM78 DM88 75A,758 75A,758 MIN V'H High Level Input Voltage V'l Low Level Input Voltage V, Input qamp Voltage IOH High Level Output Current VOH High Level Output Voltage Low Level Output Current Val Low Level Output Voltage UNITS MIN TVP(I) MAX 2 V 0.8 0.8 Vee = Min, I, ~ -12 mA Vee = Min, V 1H :; 2V = 0.8V, 10H = Max 10L = Off State (High Impedance State) Vee = Max, V 1H Output Current V ,L = 0.8V -1.5 V -2.0 -'5.2 mA V 2.4 16 16 0.4 0.4 Va = O.4V -·40 -40 Va = 2.4V 40 40 16 mA = 2V V -1.5 2.4 Vee = Min, V 1H -= 2V V ,L = 0.8V, IOIOFFI MAX 2 V ,L IOl TVP(ll mA V IlA I, Input Current at Maximum Input Voltage Vee = Max, V, = 5.5V 1 1 I'H High Level Input Current Vee = Max, V, = 2.4V 40 40 IlA I,L Low Level Inpl:Jt Current Vee = Max, V, = O.4V -1.0 -1.0 mA los Short Cilfcuit Output Current Vee = Max(2) -70 mA Icc Supply Current Vee = Maxq) -70 -20 75 -20 110 75 110 mA rnA Notes = 25°C. (I) All typical valu", are at VCC = 5V, TA (2) Not more than one output should be shorted at a time. (3) ICC is measured with all inputs grounded. Switching Characteristics vee = 5V,T A = 25°C DM78/88 PARAMETER FROM TO CONDITIONS 75A,758 MIN tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-to·Low Level Output Data Output Data Output CL = 50 pF, RL = 400n UNITS TVP MAX 35 60 n, 35 60 n, t~H Output Enable Time to High Level 20 30 ns tZL Output Enable Time to Low Level 20 30 n, tHZ Output Disable Time from High Level tLZ Output Disable Time from Low Level CL c 20 30 n, 20 30 n, 5 pF, R L = 400[2 Switching Time Waveforms tZL & tZH J tLZ & tHZ STROBE·~1.5V STROBE' X. v - INPUTS _ _ _ _ ------_r--- 1.5V OUTPUTS tpHL 'H5V OUTPUTS - /-,.5V I'~~ ..L tpLH <1.5V INPUT PULSES: tr <: IfS 10 ns f= 1 MHz STROBE ~ 12 tZH . - - 3-155 ~1.5V OUTPUTS ~1.5V -- 'LZ I~v ..::r. ACTUAL "0" VOLTAGE ~ 1.5V I I ACTUAL "1" VOLTAGE -- 'HZ :r I--":~v 1.5V ~ Proprietary DM8898,99 TRI-,$TATE BCD to Binary/Binary to BCD Converters General Description In addition to BCD-to-binary conversion, the DM8898 is programmed to generate BCD 9's complement or BCD 10's complement. In each case, one bit of the complement code is logically equal to one of the BCD bits; therefore, these complements can be produced on three lines. As outputs V6, V7, and V8 are not required in the BCD·to· binary conversion, they are utilized to provide these complement codes as specified in the truth table when the devices are connected as shown. These circuits are the TRI-STATE versions of the popular BCD to binary and binary to BCD converters, DM74184 and DM74185A respectively, They are derived from the 256-bit ROM, DM8598. Emitter connections are made to provide direct read out of converted codes at outputs Y8 through Y 1, as shown in the truth tables. Both converters comprehend the fact that the least significant bits (LSB) of the binary and BCD codes are 10gic~lIy equal, anq in each case the LSB bypasses the converter. Thus a 6-bit converter is produced in each case, and both devices are cascadable. DM8899 BINARV-TO-BCD CONVERTERS An overriding enable input is provided on each converter which, when taken high, inhibits the function, causing all outputs to go into the high-impedance state. For this reason, and to min-imize power consumption, unused outputs Y7 and Y8 of the 185A and all "don't care" conditions of the 184 are programmed high. The function performed by these B-bit binary-to'BCD converters is analogous to the algorithm: a. Examine the three most significant bits. If the sum is greater than four, add three and shift left one bit. b. Examine each BCD decade. If the sum is greater than four, add three and shift left one bit: c. Repeat step b until the least-significant Dinary bit is in the least·significant BCD locatio!]. DM8898 BCD-TO-BINARV CONVERTERS The 6·bit BCD-to-binary function of the DM8898 is analogous to the algorithm: a. Shift BCD ;'umber right one bit and examine each decade. Subtract three from each 4-bit decade containing a binary value greater than seven. b. Shift right, examine, and correct after each shift until the least significant decade contains a number smaller than eight and all other converted decadescontain zeros. Features • TRI-STATE versions DM74184, DM74185A • Typical propagation delay I Connection Diagram . BINARV SELECT ENA8.lE l G 1-6 I E 15 0 14 \ C B 12 13 11 10 9 -- VI OUTPUT VB A V2 V3 V4 V5 OUTPUTS 8898{N); 8899{N) 3·156 VB V7 30 ns ~ DM8898.99 Proprietary Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM88 CONDITIONS PARAMETER MIN V,H High Level Input Voltage V,L Low Level Input Voltage V, Input Clamp Voltage IOH High Level Output Current VOH High Level Output Voltage Low Level Output Current VOL Low Level Output Voltage IOIOFFI I, TYP(1) MAX V 2 O.B Vee Vee V'I. IOL UNITS 98,99 = = = Min, I, -12 mA = = 2V = -5.2 mA 4.7SV, V ,H a.BV, IOH -1.S V -S.2 mA V 2A 12 Vee = 4.7SV, V ,H = 2V V'I. = 12 mA = 2V Off State (High Impedance State) Vee Output Current V'L Input Current at Maximum Input Voltage Vee = O.BV, 10L = Max, = V ,H O.BV = Max, V, = I I V OA Vo = OAV -40 Va = 2AV 40 V IlA mA 1 5.5V mA IIH High Level Input Current Vee = Max, V, = 2.4V 40 IlA I'L Low Level Input Current Vee = Max, V, = OAV -1.6 mA los Short Circuit Output Current Vee -70 mA Icc Supply Current Vee 99 mA -20 Max(2) = 70 Max, V, = OV Notes ( 1) All typical values are at VCC = 5V, TA = 25"C_ (2) Not more than one output should be shorted at a time. Switching Characteristics Vcc = 5V, T A = 25°C DM88 PARAMETER FROM CONDITIONS TO 98,99 MIN tpLH Propagation Delay Time, Low-to-High Level Output tPHL Propagation Delay Time, High-tn-Low Level Output tpLH Propagation Delay Time, Low-to-H igh Level Output tpHL Propagation Delay Time, High-to-Low Level Output UNITS TYP MAX Binary Sel ect Output 29 50 ns Binary Select Output 33 SO ns Enable Output 23 40 ns Enable Output 29 40 ns CL = 50 pF, RL = 400n tZH Output Enable Time to High Level 16 25 ns tZL Output Enable Time to Low Level 26 40 ns tHZ Output Disable Time from 13 20 ns 24 36 ns High Level tLZ C L =5pF,R L Output Disable Time from Low Level 3-157 = 400n ~ Proprietary DM8898,99 Truth Tables BCD 9's OR BCD 10', COMPLEMENT CONVERTER BCD-TO-BINARY CONVERTER INPUTS (See Note A) BCD WORDS OUTPUTS (See Note INPUTS (See Note C) BCD BI WORD OUTPUTS (See Note 01 E 0 C B A G Y5 Y4 Y3 Y2 Yl E' a C B A G YB Y7 Y6 L L L L L L L L L L L 0 L L L L L L H L H 2 3 L L L L H L L L L L H 1 L L L L H L H L L 4 5 L L L H L L L L L H L 2 L L L H L L L H H 6 7 L t L H H L L L L H H 3 L L L H H L L H L 8 9 L L H L L L L L H L L 4 L L H L L L L H H 10 11 L H L L L L L L H L H 5 L L H L H L L H L 12 13 L H L L H L L L H H L 6 L L' H H L L L L H 14 15 L H L H L L L L H H H 7 L L H H H L L L L 16 17 L H L H H L L H L L L L H L L L l l l H 0 1 A 18 19 L H H L L L L H L L H S 9 l H L l H L L L L 20 21 H L L L L L L I-! L H L 0 H l l L l L l l l 22 23 H L L L H L L H L H H 1 H l l l H l H L l 24 25 H L L H L L L H H L L 2 H l l H l l H L L 26 27 H L L H H L L H H L H 3 H L L H H L I. H H 28 29 H L H L L L L H H H L 4 H L H l L l L H H 30 31 H H L L I- L L H H H H 5 H L H L H L L H L 32 33 H H L L H L H L L L L 6 H l H H l L l H L 34 35 H H L H L L H L L L H 7 H L H H H L 'l L H 36 37 H H L H H L H L L H L 8 H H l l L l L L H 38 39 H H H L L L H L L H H 9 H H L l H L L l ANY X X X X X H Z Z Z Z Z ANY X X X X X H Z l Z H == High Level, L == Low Level, H = High level, L X = Don't Care, Z X == Don't Care, Z == High Impedance = High Impedance BCD 9's COMPLEMENT CONVERTER 6-BIT CONVERTER = Low Level, BCD 10', COMPLEMENT CONVERTER BCD MSD Z BCD LSD ~v ~~ 0 A 1 6"BfT BINARV OUTPUT BCD 9'S COMPLEMENT BCD 10'S COMPLEMENT Notes: (e) Input conditions other than those shown produce highs at outputs Y 1 through Y5. Outputs Y6, Y7, and YB are not used for BCD-ta-binary conversion. Input conditions other than those shown produce highs at outputs Y6,.Y7, and VB. (0) Outputs Y 1 through Y5 are not used for BCD 9's or BCD 1 D's complement conversion. (A) (8) tWhen these devices are used as complement converters, input E is used as a mode con'trol. With this input low, the BCD 9's complement is gen~ arated; when it is high, the BCD 10'5 complement is generated. . 3-158 ~ Proprietary DM8898.99 Truth Tables (Continued) BINARY·TO·BCD CONVERTER +-__________O~U~TP~U~T~S__________-4 BINARY ~________~I~N~P~UT~S~-r______ BINARY SELECT ENABLE WORDS E D C BAG o I L L L L L 2 3 L L L L H L H 4 5 L L 6 7 L L H H 8 9 L H L L 10 11 L L H L H 12 13 14 15 L L H H L L L H H H L H L L H L L H H L H L H H 16 17 18 19 20 21 22 23 H L L L H 32 33 H L L 34 35 H 36 37 H L 38 39 4041 H L H L H L 42 43 H L H L 44 45 H L H H L 46 47 H L H H H L H 52 53 H H 54 55 H 56 57 H 58 59 60 61 62 63 ALL H = High L L L L H L H L H L L H L H H H L L L L H L L L H H H H L L L L H H H H H H H H H L L H H H H H H H H H H H H L L L H H H H H H H H H H H L 30 31 H L L H 28 29 H H H H L H L L L L H L H H L 48 49 H H L H 50 51 L L H L H L L L L L H H ~ L L L L n L L H H L n L L L H H L H H H H ~ L H H L H " H H H H H L H H H H H H " H L H H H H H H H H H H 26 27 L ~ H H H H L 24 25 L ~ L H L H L H L H L H H H L H H H L H H H H H H H H L L L H H H L L L L L L H L L L L L L H L H L L H L L H L H H L H H L L L H L H H L H H H H H L H L H H H L L H H H L H L H H H H L H H H H H H L H H H H L L H H H H L H H H L H H H H H H L L L H z z z z z z z z x x x x Level, L = Low Level, X = Don't x H Care, Z = High Impedance 6·BIT CONVERTER 6-BIT BINARV INPUT " 1 2j 2j 21 2j 2i 2 liitiil BAD C B '-v--' '-v_ _ ~ . MSD __ LSD· 6-BIT BCD DUTPUT 3·159 H National Semiconductor ADDITIONAL DEVICES Section 4 · ~ Additional Devices DTL RATINGS Maximum A"owable Supply Voltage Max Ratings/Operating Conditions 2502 72xxl 9000C 93XXI 96XXI SERIES 82XX SERIES 83XX 86XX 8 7 N/A 5 4.50 to 5.50 4.75to5.25 Maximum Input Voltage 5.5 5.5 5.5 Max.imum Voltage to Open· Collector Outputs 8 7 7 N/A -55 to +125 o to +70 Guaranteed Operating Supply Voltage Range Operating Free-Air Temperature Range I Mil I Com I I Mil IComl o to +75 7 7 4-ii 7 V 4.50 to 5.50 4.75 to 5.25 V 5.5 5.5 5.5 V 7 7 7 V N/A 4.75-5.25 N/A -65 to +150 Storage Temperature Range 7 UNITS -55 to +125 o to +75 °C °C ~. Additional Devices Device No. DM930 DM932 DM933 DM935 DM936 DM937 DM944 DM945 DM946 DM948 DM949 DM957 DM958 DM961 DM962 DM963 DM1800 DM1801 DM2502/DM2502C DM2503/DM2503C DM2504/DM2504C DM7280/DM8280 DM7281/DM8281 DM7288/DM8288 DM7290/DM8290 DM7291/DM8291 DM9002C DM9003C DM9004C DM9005C DM9006C DM9008C DM9009C DM9012C DM9016C DM9024/DM8024 DM9093 DM9094 DM9097 DM9099 DM9300/DM8300 DM9301/DM8301 DM9309/DM8309 DM9310/DM8310 DM9311/DM8311 DM9312/DM8312 DM9316/DM8316 DM9318/DM8318 DM9322/DM8322 DM9334/DM8334 DM9601/DM8601 DM9602/DM8602 Table of Contents Page No. Description Dual 4·lnput Gates with Expanders Dual 4-lnput Buffers with Expanders Dual 4-lnput Extenders Hex Inverters H ex Inverters Hex Inverters Dual 4-lnput Power Gates with Expanders R-S Flip-Flops Quad 2-lnput Gates R-S Flip-Flops Quad 2-lnput Gates Quad 2-lnput Buffers Quad 2-lnput Power Gates Dual 4-lnput Gates with Expanders Triple 3-lnput Gates Triple 3-lnput Gates Dual 5-lnput Gates Dual 5-lnput Gates Successive Approximation Registers Successive Approximation Registers Successive Approx imation Registers Presettable Decade Counters Presettable Binary Counters Presettable Divide-by-12 Counters Presettable Decade Counters Presettable Binary Counters Quad 2-lnput NAND Gates Triple 3-lnput NAND Gates Dual 4-lnput NAND Gates Expandable Dual 2-lnput AND-OR-INVERT -Gates Dual 4-lnput Expanders Expandable 4-Wide AND-OR-INVERT Gates Dual 4-lnput NAND Buffers Quad 2-lnput NAND Gates with OpenCollector Outputs Hex Inverters Dual J-K Flip-Flops with Preset and Clear Dual J- K Flip-Flops Dual J-K Flip-Flops Dual J-K Flip-Flops Dual J - K Flip-Flops 4-Bit Parallel-Access Shift Registers 1 of 10 Decoders Dual 4-Line to 1-line Data Selectors/ Mul tiplexers Synchronous 4-Bit Decade Counters 4-line to 16-Line Decoders/Demultiplexers 8-line to 1-line Data Selectors/Multiplexers Synchronous 4-Bit Binary Counters Priority Encoders Quad 2-Line to 1-line Data Selectors/ Multiplexers 8-Bit Addressable Latches Retriggerable One Shots Dual Retriggerable, Resettable, One Shots 4·iii J Mil • • 4-' 4-' 4-1 4-' 4-1 4-1 4-1 4-' 4-1 4-" 4-11 4-11 4-11 4-15 4-15 4-15 4-15 • • • • • • • • 4-15 4-15 4-15 4-15 4-15 4-17 4-1 4-1 4-1 4-1 4-19 4-22 4-24 4-27 4-33 4-24 4-27 4-36 4-38 4-40 4·43 4-46 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •.• • • • • • • • • • • • • • • • • • • W Mil • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Com I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A • • • • • • • • 4-' 4-1 4-1 4-' 4-1 4-1 4-1 4-1 4-1 4-6 4-6 4-6 4-11 Coml Package N Mil Coml • • (F) • • • • • N/A N/A N/A N/A • •(F) • • • • • N/A N/A N/A N/A N/A • • • • • (F) • • • • • • • N/A N/A N/A N/A • • • • • (F) • • • • • • • ~ Additional Devices DM930 Series DTL Circuits General Description The National Semiconductor family of DTL is a complete line of compatible monolithic integrated circuits designed to operate at medium speed with medium power dis~ sipation and high fan~out. The DTL family is available in 14~pin epoxy B 01 ceramic dual~in~line packages for operation over the oDe to +75"C temperature range. The DM9093 and DM9094 are dual JK fl ip-flops of the DM945 and DM948 variety respectively. Both flip-flops have separate clocks and no asynchronous clear lines. The DM9097 and DM9099 are dual JK fl ip~flops of the DM948 and DM945 variety respectively_ Both flip-flops have common clocks and both asynchronous set and clear I; nes_ The DTL line is composed of a variety of NAND gates . that allow complete design flexibility. The gates are available with either 6k pull-up resistors for low power dissipation, or 2k pull~up resistors for increased speed. The gate outputs can be wired together to achieve the wired-OR function. The DM930 series is directly compatible with the TTL devices manufactured by National and can be used in conjunction with them in those portions of a system where speed is not the main consideration. Features The NAND gates are complemented with the DM932 and DM957 buffers which provide higher fan~out; the DM944 and DM958 power gates which have an open collector, and the DM933 extender which allows in~ creased fan~in for both buffers and DM930 and DM961 gates. • The flip~flops in this family are of the direct coupled master-slave type, with direct ciear and direct set lines. The dual flip~flops include ones with either common or separate clocks_ NAND Gates DM930, DM961 - dual four input gates with expanders DM935, DM936, DM937 - hex inverters DM946, DM949 - quad two input gates DM962, DM963 triple three input gates OM 1800, DM 1801 - dual five input gates • The DM945 and DM948 are R~S flip~flDps which can be externally crDSS coupled to perform in the JK mode. They are of the master-slave type with output buffers to provide isolation from the output load. These flip~ flops feature both asynchronous set and clear lines. The DM945 has a 6k puil~up resistor and the DM948 has a 2k pull-up resistor. Buffers/Extenders DM932 ~ dual four input buffer with expander DM933 - dual four~input extender DM944 - dual four input power gate with expander DM957 - quad two input buffer DM958 - quad two input power gate • Flip-Flops DM945, DM948 - RS flip-flops DM9093, DM9094, DM9097, DM9099 flip-flops dual JK Truth Tables SYNCHRONOUS TRUTH TABLE CD a Q Pin 5 Pin"6 Pin 9 H H NC NC L H H L On H L L X an L L H X L On L tn tn +1 51 S2 C1 C2 a Pin 3 Pin 4 Pin 12 Pin 11 Pin 6 X L X 0" X X L X L L x L L L I ASYNCHRONOUS TRUTH TABLE L X H H x L H H L H H L X H H H X L H H H H H * SD Pin 10 JK TRUTH TABLE +1 tn tn 51 a Pin 3 C1 Pin 12 Pin 6 L L On H H L H H L H l H H On {Connect 52 to 0., C2 to Qj Asynchronous inputs, direct set (Sol and direct clear (CO), override the synchronous inputs, and are independent of all other InplJts. *- Indeterminate State X - Don't Care 4-1 ~ Additional Devices DM930 Series Connection and Logic Diagrams I """-' ~. J I 11 -11----1 ;>0---+--10 10 -r-"--_--' 11-,--r---, ~. 12 1 3 - t - -... 11 ~, I J 10 -t===_--.1 1 3 - 1 - - - - - 1 ><:>--+-11 930IJ), IN); 932IJ), IN); 944IJ), IN); 961(J1, IN); 1800lJI, IN); 1801(JI, IN) I 13 I 11 946(J), IN); 949IJ), IN) 9351Jl, IN); 936IJ), IN); 937IJ), IN) ~, I 10---+-12 13-t--"' ./' ~, I - ~. ./' ..--.. 10 I 11 I 10-1----1 12 11 13 962(J1, IN); 963IJ), IN) 1 0 - r -_ _-I )--+-11 12 13-1---,-1 957IJ), IN); 9581JI, IN) 933IJ), IN) 10 - 1 - - - - - - . li=E;:::1~ ll--1f-::::'L../'a.;;..~...::.1 10-1----, 10-H+---. 11-1--; 13-1--1J/ 11~H+-I 12-1--; 12--'1-+-1 13 945IJ); IN); 9481JI, IN) 90931Jl, IN); 9094IJ), IN) 4-2 -t:::!==__.J 9097(J), IN); 9099IJ), IN) ~ Additional Devices Electrical Characteristics (V cc DM930 Series = 5.0V) DM930, DM935, DM936, DM937, DM946 DM949, DM961, DM962, DM963, DM1800, DM1801 PARAMETER CONDITIONS o°c MIN ICEX VOH Output Leakage Current V, =0, Vo =5V High Level Output Voltage( 1) Low Level Output Voltage VI = V 1H . IIH High Level Input Current (1) V, = V R IlL Low Level Input Current V, = V F los Short Circuit Output Current ICC1 Supply Current Propagation Delay Time, 100 100 Max Vee - BV, V, - 6k Gates Propagation Delay Time, V 0.50 5 10 I1A -1.33 rnA 1.30 -1.40 -1.B5 -3.90 -0.61 -1.30 2k Gates 5.9 4 4 2k Gates 15 60 6k Gates 25 BO 2k Gates 10 30 6k Gates 10 30 Test Conditions GATES (6k) (2k) (6k) (2k) 10L (rnA) 10L (rnA) 10H (rnA) IOH (rnA) -0.5 o°C 2.0 1.2 4.0 0.45 - 12.0 11.0 -0.12 +25°~ 1.9 1.1 4.0 0.45 5.0 12.0 11.0 -0.12 -0.5 +75°C 1.B 0.95 4.0 0.50 - 11.4 10.4 -0.12 -0.5 , 4-3 V 0.45 6k Gates VR VIH VF VIL VCEX VOLTS VOLTS VOLTS VOLTS VOLTS I1A 5 Notes U) Applies to all gates except DM935. TEMP. UNITS MAX 0.45 a C L = 50 pF, RL = 400n High·to-Low Level Output MIN 2.5 -1.40 C L =30pF, RL =3.9kn Low-ta-High Level Output 2.6 2k Gates Vee = 5V, V, = V R ICC2 MAX 2k Gates 2.6 . V, = a Supply Current tPLH tpHL IOL = MIN 6k Gates V'L = Max, IOH = Max VOL 75°C 25°C MAX -1.25 rnA rnA rnA ns ns ~ DM930 Series Additional I;)evices Electrical Characteristics (Vcc = 5.0\1) , PARAMETER DM932, DM933, DM944. DM957. DM958 o'c CONDITIONS MIN VIL Low Level Input Voltage ICEX Output Leakage,Current VOH High Level Output Voltage VOL Low Level Output, Voltage IIH IlL IlL 933 = I'FD High Level I,nput Current IOL'::: 932,957 Max Short Circuit Output Current IccI Supply Current tPLH tPHL 0.45 0.50 5 10 10 mA -16 -'16 -14 mA 30.0 944 22.5 ·957 60.0 958 4.5 4 80 15 50 150[2 932,957 15 40 150[2 944,958 10 35 932 957 944 958 '932 957 10L ·(mA) 10L (rnA) 10H (rnA) 500 pF. RL ~ C L = 100 pF, RL ~ Test Conditions BUFFERS/EXTENDERS TEMP. , VR VF VIH VIL VCEX VOLTS VOLTS VOLTS VOLTS VOLTS IFO rnA O'C 2.0 1.2 4.0 0.45 - -2 36 40 -2.0 +25'C 1.9 1.1 4.0 0.45 5.0 -2 36 40 -2.5 +75'C 1.8 0.95 4.0 0.50 - -2 34 36 -3.0 , 4-4 /lA -1.33 25 CL V -1.40 944,958 High-to-Low Level Output /lA '-1.40 932,957 Propagation Delay Time, V V .5 933. CL = 500 pF, RL = 510[2 C L = 20 pF, RL = 510[2 = 2.5 5 All Except Low-to-High Level Output Propagation Delay Time, 200 5 932,957 Vee = 8V, V, = 0 0.75 933 932 Supply Current 0.60 UNITS MAX Others 933 Vee = 5V, V, = V R ICC2 2.6 0.45 All Except V, = 0 0.82 75'C MIN 100 2.6 933 V, = V F loS 25 All Except V, = V R Low Level Input Current 0.68 MAX 100 944,958 V, = V'L' IOH = Max V 1H • 0.90' MIN 932,957 v,=0.Vo=5V VI = 0.75 25'C' MAX mA rnA ns ns ~ Additional Devices Electrical Characteristics (Vee DM930 Series = 5,OV) DM945, DM948, DM9093, DM9094 DM9097, DM9099 PARAMETER CONDITIONS oOe MIN ICEX Output Leakage Current VOH High Level Output Voltage IOH = Max VOL Low Level Output Voltage "H High Level Input Current Data 945,948 Set, Reset 945,948 9093,9094 All 9097,9099 100 2.6 2.5 2.6 2.6 2.6 2.6 2.6 2.5 045 0.50 5.0 10.0 Set, Reset 945,948 5.0 5.0 10.0 945,948 30 30 40 9093,9094 20 20 30 9097,9099 40 40 60 9097,9099 10 10 20 5.0 5.0 10.0 9093,9094 9097,9099 on 9097, 9099 Data All -0.95 -0.95 ·{l.90 Set, Reset 945,948 -2.8 2.8 -2.67 -2.8 "2.8 -2.67 2.8 -2.8 -2.66 "2.8 -2.8 -2.67 -56 -5.6 9093,9094 Direct Set 9097,9099 VI "'-,V F 945 Clock 948,9093 9094 Clock, Direct 9097,9099 Clear VI =0 Supply Current ICC2 := 5V (Inputs Open) Supply Current V cc =8V,V 1 =O -1.77 -4.2 -1.77 -4.2 -1.60 --40 6k 0.59 -1.41 -0.59 -1.41 -0.55 -1.38 Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-to-L.0w Level Output CL =30p~,RL =2kn CL 17 9093,9099 28 9094',9097 34 945 18 948 23 9093,9099 36 Test Conditions 25 75 6k 25 100 15 55 TEMP. mA ns ns 948 9094 9097 (2kl 945 9093 9099 (6kl 948 9094 9097 (2kl 945 9093 9099 (Ski . 948 9094 9097 (2kl V CPTH VCPTH (VOLTSI (VOLTSI 10L (mAl 10L (mAl 10H (mAl 10H (mAl 945 VR VF VCEX V'H V'L VOLTS VOLTS VOLTS VOLTS VOLTS \ O°C 2.0 1.2 4.0 0.45 - 1.15 1.30 16.8 15.4 -D.12 -D.5 +25°C +7SoC 1.9 1.1 4.0 0.45 5.0 0.95 1.15 16.8 15.4 -D.12 -D.5 1.8 0.95 4.0 0.50 - 0.65 0.85 16.0 14.6 -D.12 -D.5 , ! >2.5V " ! ! ov ! ,! , I ! ! I PRESET REMOVED , , , ! TEST I ! 4·5 I I I >2.5V , , • vCPTH I ov ,I , PRESET REMOVED TEST I ! I ! I '&fb CPa mA mA FLIP-FLOPS 9093 9099 (6kl mA 45 2k 50 pF , R L = 330n = MA 14 948 9094,9097 tpLH V -'5.34 2k 945 Vee V 0.45 All Except Clocks, ICC1 MA 2.6 5.0 and Direct Clear Short Circuit Output Current MAX All Clear lOS MIN 945,948 Clock Low Level Input Current UNITS 75"C MAX Data VI = V 1H , tOL = Max VI = V R "L MIN 945,948 VI =0, Vo ""5V VI '-' V 1L 25'e MAX I ~ Additional Devices DM2502.03.04 Successive Approximation Registers General Description DM2503 and DM2504 operate over --55°C to +125°C; the DM2502C, DM2503C and DM2504C operate over \ O°C to +70°C. The DM2502, DM2503 and DM2504 are 8-bit and 12-bit TTL registers designed for use in successive approximation AID converters . These devices contain all the logic and control circuits necessary (in combination with a D/A converter) to perform successive approximation analog-to-digital conversions. Features The DM2502 has 8 bits with serial capability and is not expandable. • • • The DM2503 has 8 bits and is expandable without serial capabil ity. • The DM2504 has 12 bits with serial capability and expandability. • • • All three devices are available in ceramic DIP, eeramic flatpak, and molded Epoxy·B DIPs. The DM2502, Complete logic for successive appro'xi mati on AID converters 8-bit and 12-bit registers Capable of short cycle or expanded operation Continuous or start·stop operation Compatible with D/A converters using any logic code Active low or active high logic outputs Use as general purpose serial·to·parallel converter or ring counter Connection Diagrams v" a7 07 f16 15 06 12 13 " a. as 11 T 011 • 10 - 2. I- 2 I (DM2502) 00 IOM2S0ll - ep S • J no a" 5 01 03 1 G!: 0 all Ne 22 21 010 O' 20 19 08 07 18 16 j' ep S Ne 06 17 15 13 " l- ;- 7 6 02 23 2 00 • 3 0" 00 5 Ul 6 02 7 03 , 8 O. 11 J12" 10 Ne OS 0 GNO E 2504(J), (F); 2504C(J), (N), (F) 2502(J), (W); 2502C(J), IN), (W); 2503(J), (W); 2503C(J), (N), (W) Truth Table OUTPUTS(1) INPUTS TIME 0 S E12) 00(3) 07 06 05 04 03 02 01 00 0 x L L X X X X X X X X X X 1 D7 H L X L H H H H H H H H 2 06 H L D7 D7 L H H H H H H H 3 D5 H L D6 D7 D6 L H H H H H H 4 D4 H L D5 D7 D6 D5 L H H H H H 5 D3 H L D4 D7 D6 D5 D4 L H H H H 6 D2 H L D3 D7 D6 D5 D4 D3 L H H H 7 Dl H L D2 D7 D6 D5 D4 D3 D2 L H H 8 9 DO H L Dl D7 D6 D5 D4 D3 D2 01 L H X H L DO D7 D6 D5 D4 03 D2 D1 DO L 10 X X L X D7 D6 D5 D4 D3 D2 Dl DO L X X H X H NC NC NC NC NC NC NC NC tn Notes (1) Truth table for DM2504 is extended to include 12 outputs. (2) Truth table for DM2502 does not include in truth table shown. 'E column or last line (31 Truth table for DM2503 does not include DO column. 4·6 ace H = High Level L = Low Level X = NC 0 Don't Care No Change , ~ Additional Devices DM2502,03,04 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM25 PARAMETER CONDITIONS 02,02C MIN V ,H High Level I nput Voltage V,L Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage IOL Low Level Output Current Low Level Output Voltage Vee = Min, 11 "" --12 mA Vee = Min, V ,H I nput Current at Maximum Input Voltage I'H I,L High Level Input Current Low Level Input Current los Current ICC TYPlll '" IOH 2V -"--48OI1A 04,04C MAX = :. Min, V 1H O.BV, tOl == Vee == Max, V, Vee = Max MIN 2 2V 0.2 9.6 rnA = 5.5V UNITS MAX 2 V 0.8 0.8 V -1.5 --1.5 -1.5 V 3.6 2.4 TYPI1I 0.8 --480 2.4 -480 3.6 2.4 9.6 Vee 3.6 9.6 0.4 0,4 0.2 1 0.2 9.6 rnA 0.4 V rnA 1 1 CP Input 6 40 6 40 6 40 D, E, S Inputs 12 80 12 80 12 80 Vee CP, S Inputs -·1.0 -1.6 -1.0 -1.6 --1.0 -1.6 D, E Inputs -2.0 -3.2 -·2.0 -3.2 ·--2.0 -3.2 -20 -45 -20 -45 -20 -45 Military 65 85 60 80 90 110 Commercial 65 95 60 90 90 124 ~ = = Max CAV Vee = Max(2) Vee = Max Supply Current -10 -10 -10 MA V VI'" 2.4V VI Short Circuit Output MIN -480 V 1L I, MAX 2 V 1L =O.BV, VOL TYPlll 03,03C MA rnA rnA rnA Notes 111 All typical values are at Vec = 5V, T A = 25°C. 121 Not more than one output should be shorted at a time. Switching Characteristics vcc ~ 5V, TA ~ 25°C DM25 PARAMETER fMAX Maximum Clock Frequency tPlH Propagation Delay Time. FROM TO CONDITIONS Low-to"High Level Output CP tpHl Propagation Delay Time, C L = 15 pF tpHL Propagation Delay Time, TYP tSETUP MIN TYP 04,04C MAX MIN TYP 15 21 15 21 15 21 26 38 10 26 38 10 26 38 ns 10 18 28 10 18 28 10 18 28 ns NIA 13 19 13 19 ns NIA 16 24 16 24 ns Q7 (Ql1) E MHz CP High SLow Width of Low Level 42 30 42 30 42 30 Clock Pulse High Level 24 17 24 17 24 17 5 Input 16 9 16 9 16 9 o Input 8 4 8 4 8 4 Setup Time UNITS MAX 10 High-to-Low Level Output tw MAX RL = 400n Propagation Delay Time, Low-to-High Level Output MIN 03,03C Output High-ta-Low Level Output tPLH 02,02C 4-7 ns ns ~ Additional Devices DM2502.03.04 Application Information voltage level. If D/A converters are used that turn on with a high logic level then the digital output is active high; a logic "1" is represented as a high voltage level. OPERATION The registers consist of a set of master latches that act as the control elements in the device and change state on the input clock high-to;low transition and a set of slave latches that hold the register data and change on the input clock 'Iow-to-high transition. Externally the device acts as a special purpose serial·to·parallel converter that accepts data a,t the D input of the register and sends the data to the appropriate slave latch to appear at the register output and the DO output on the DM2502 and DM2504 when the clock goes from low-to·high. There, are no restrictions on the data input; it can change state at any time except during ~hort i'nterval centered about the clock low-to·high transition. At the same time that data enters the register bit the next less significant bit register is set to a low ready for the next iteration. EXPANDED OPERATION An active low enable input, E, on the DM2503 and DM2504 allows registers to be connected together to form a longer register by connecting the clock, D, and S inputs in parallel and connecting the Occ output of one register to the E input of the next less signifi.cant register. When the start signal resets the register, the E signal goes high, forcing the 07 (11) bit high and inhibiting the register from accepting data until the previous register is full and its Occ goes low. If only one register is used the E input should be held at a low logic level. a The register is reset by holding the S (Start) signal low during the clock low·to·high transition. The register synchronously resets to the state 07 (11) low, and all the remaining register outputs high. The Occ (Conver- • sion Complete) signal is also set high at this time. The S signal should not be brought back high until after the clock low-to·high transition in order to 'guarantee correct resetting. After the clock has gone high resetting the register, the S signal must be removed. On the next clock low·to-high t'ransition the data on the D input is set into the 07 (11) register bit and the 06 (10) register bit is set to a low ready for the next clock cycle. On the next clock low-to·high transitioil data enters the 06 (10) register bit and 05 (9) is set to a low. This operation is repeated for each register bit in turn until the register has been fil,led. When the data goes into 00, the Occ , signal goes low, and the register is inhibited from further change until reset by a Start signal. The DM2502, DM2503 and DM2504 have a specially tailored two-phase clock generator to provide' nonoverlapping two·phase clock pulses (i.e., the clock waveforms intersect below the thresholds of the gates they drive). Thus, even at very slow dVldt rates at the clock input (such as from relatively weak compa'rator outputs), improper logic operation will not result. SHORT CYCLE If all bits are not required, the register may be truncated and conversion time saved by using a register output going low rather ,than the Occ signal to indicate the end of conversion. If the register is truncated and operated in the continuous conversion mode, a lock-up condition may occur on power turn-on. This' condition can be avoided by making the start input the OR function of Dec and the appropriate register output. COMPARATOR BIAS To minimize the digital error belo'w ±112 LSB, the comparator must be biased. If a DI A converter is used whiCh requires a low voltage level to turn on, the comparator shOUld be biased +1/2 LSB. If the D/A converter requires a h'Igh logic level to turn on, the comparator must be biased -1/2 LSB. Definition of Terms (See Timing Diagram) CP: The Clock input of the register. D: The 'serial data input of the register. DO: The serial data out. (The D input delayed one bit),. LOGIC CODES E: The register enable. This input is used to expand the length of the register and when high forces the 07 (11) register output high and inhibits conversion. When not used for expansion the enable is held at a low logic level (ground). All three registers can be operated with various logic codes. Two's complement code is used by offsetting the comparator 112 full range + 1/2 LSB and using the complement of the MSB (07 or 011) with a binary D/A converter. Offset binary is used in the same manner but with the MSB (07 or 011). BCD D/A converters can be used with the addition of illegal code suppression logic. 0i i = 7 (11) to 0: The outputs of the register. Dec: The conversion complete output. This output remains high during a conversion and goes low when a conversion is complete. ACTIVE HIGH OR ACTIVE LOW LOGIC 07 (11): The true output of the MSB of the register. The register can be used with either D/A converters that require a low voltage level to turn on, or D/A converters that require a high voltage level to turn the switch on. If D/A converters are used which turn on with a low logic level, the resulting digital output from, the register is active low. That is, a logic "1" is represented as a lo'w Q7 (11): The complement output of the MSB of the register'. S: The start input. If the start input is held low for at least a clock period the register will be reset to 07 (11) low and all the remaining outputs high. A start pulse that is low for a shorter period of time can be used if it meets the set·up time requirements of the S input. 4·8 ~ Additional Devices DM2502.03.04 Logic Diagram ., ~~I~~~,- ---n~---I .6 .7 I I I I I I I I ii7--~==::::tI--' f--_____J.-_ _ _ _ _ _.....L_ _ _~------..L---' L ___________ Timing Diagram J Note 1: eeu logic is repeated for register stages. Q5to Ql DM2502,DM2503 Q9 to Ql DM2504 02,03 ee ,NPUTS l : L--.J 07y===] 06L:J 05L:J o.y===] .JL:J OUTPUTS o,y===] O'L=:J oor:::::J neeL:] 00 .....__'-_--''--_..... Switching Time Waveforms AT LEAST AT LEAST tpwH(CP) WAVEFORMS INPUTS OUTPUTS Must be steady Will be steady ---1.!iV .5V .5V 07(11) .... .- May change from Will be changing H to L fromHtoL May change from Will be changing L to H from LtoH Don't care: any change permitted Changing: state unknown G6(0) ----+-~ WfJJl!!!J. 00 (DM25D2,DM25D41 _ _ _ _ _...:...--lIJ/1.@~====:::t.1/J.(jJ (DM2503, DM250!) -------...Jf-----· HtPLH IEl MAX 07(11) ~ 1.5V \---------'.5V ENABLE TO 07 Ill) CP =H BtPHLIEIMAX ~\\ 4-9 S=L 1.5V ~. Additional Devices DM2502,03,04 Typical Applications BCD ILLEGAL CODE SUPPRESSION ACTIVE HIGH ACTIVE LOW 00 CLOCK CP DM2502 DM2502 CLOCK Dc, 01 06 05 04 03 D2 01 Dc, ao 07 0& 05 04 03 Q2 01 00 DIA CONVERTER D/A CONVERTER HIGH SPEED 12-BIT AID CONVERTER 5V1.. ov 5V JlJ1J1I ~r~ 1 r S v" CLOCK INPUT 'V'""L ov Doc C, DO DM2504 SAR ~E r----.- ~~~:u\ 0 lSB MSB -:!PARAllEL OUTPUT +5V ----, L± ~~ VIN OV TO 10V 4-10 1.2M 'N91. ~ Additional Devices DM72/DM8280,81,88 ,90 ,91 Presettable Counters General Description These high-speed counters consist of four dc-coupled, master-slave flip-flops which are internally interconnected to provide divide-by-two, divide-by-four, divide-by-five, divide-by-six, divide-by-eight, divide-by-ten, divide-bytwelve, or divide-by-sixteen operations_ The counters are fully programmable; that is, the outputs may be preset to any number by placing a low logic level on the count/load input and entefing the desired number at the data inputs_ Transfer of information to the outputs occurs on the negative-going edge of the clock pulse_ These counters also feature a direct clear which, when placed at a low logic level, sets all outputs low regardless of the conditions on the clocks_ operated in two independent modes: 1. When used as a high-speed 4-bit ripple-through counter, output OA must be externally connected to the clock-2 input. The input count pulses are applied to the clock-1 input. Simultaneous divisions by 2, 4, B, and 16 are performed at the OA' Os, Oc, and 0 0 outputs as shown in the truth table for the DM72B1/B2B1, DM?291/8291. 2. When used as a 3-bit ripple-through counter, the input count pulses are applied to the clock-2 input. Simultaneous frequency divisions by 2, 4, and 8 are available at the Os, 0c, and 0 0 outputs. Independent use of flip-flop A is available if the load and clear functions coincide with those of the 3-bit ripple-through counter. Typical C;:ount Configurations DM7280/DM8280, DM7290/DM8290 The output of flip-flop A is not internally connected to the succeeding flip-flops; therefore, the count may be operated in three independent modes: DM7288/DM8288 The 8288 divide-by-twelve counter is a four-bit subsystem consisting of divide-by-two and divide-by-six counters in a 14-pin package. For divide-by-twelve operation, output A is connected externally to the clock-2 input. 1. When used as a binary-coded decimal decade counter, the clock-2 input must be externally connected to the OA output. The clock-' input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence truth table. Features • 2. If a symmetrical divide-by-ten count is desired for frequency synthesizers (or other applications requiring division of a binary count by a power of ten), the 0 0 .output must be externally connected to the clock-1 input. The input count is then applied at the clock-2 input and a divide-by-ten square wave is obtained at output OA in accordance with the bi-quinary truth table. • • • • • 3. For operation as a divide-by-two counter and a divide-by-five counter', no external interconnections are required. Flip-flop A is used as a binary element for the divide-by-tvvo function. The clock-2 input is used to obtain binary divide-bY-five operation at the Os, Oc, and 0 0 outputs. In this mode, the two counters operate independently; however, all four flip-flops are loaded and cleared simultaneously . Direct replacements Signetics B2BO, 8281, 8288, 8290,8291 Pin-for-pin with popular Series 54 counters: 82BO,B290-54176,54196 8281,8291-54177,54197 Fully programmable Independent clear input Performs BCD, bi-quinary, or quinary counting Output OA maintains full fan-out while driving clock 2 TYPICAL TYPE CLOCK FREQUENCY TYPICAL POWER OISSIPATION CLOCK 1 CLOCK 2 50 MHz 25 MHz 150mW DM7281/DM8281, DM7291/DM8291 7280/8280 7281/8281 7288/8288 The output of flip-flop A is not internally connected to the succeeding flip-flops, therefore the counter may be 7290/8290 7291/8291 50 MHz 25 MHz 150mW OATAINPtlTS Connection Diagram CLEAR 13 COUNT! LOAD ·0 ~ c o. D B 11 12 ---------- ., CLOCK 1 10 , CLDCK DATA INPUTS 7280(J), (W); 8280(J), (N), (W); 7281(J), (W); 8281 (J), (N), (W); 7288(J). (W); 8288(J), (N), (W); 7290/8290(J), (N), (W); 7291/8291(J),.(N), (WI 4-11 - ~ Electrical Characteristics over recom!T'ended operating free-air temperature range (unless otherwise noted) DM72/82 CONDITIONS PARAMETER 80,81 MIN V,H High Level I nput Voltage V,L Low Level Input Voltage V, Input Clamp Voltage IOH High Level Output Current VOH High Level Output Voltage IOL Low Level Output Current VOL Low Level Output Voltage Input Current at Maximum Input Voltage '" MIN TYP(1) 2 0" V 0_8 0_8 0.8 V -1.5 -1.5 -1.5 V -800 -800 --800 MA 2.6 2.6 2.6 16 mA 0.4 0.4 0.4 V Vee = Max, V, '" 5.5V 1 1 1 Count/Load, Data 40 40 40 Vee = Max Clear, Clock 1 80 80 aD V, =4.5V Clock 2 (8281,8291) 40 N/A 80 Clock 2 (Others) Count/Load V, = O.4V lOS Short Circuit Output Current Vee = Max(2) Icc Supply Current Vee = Max :::l III C CD S. (') CD V 16 Vee = Max Q;. ;:j: MAX 16 Low Level I nput Current I,L. MAX Vee = Min, V ,H = 2V V ,L = 0.8V, IOL = 16 mA High Level I nput Current .I'H TYP(1) Q. III Vee = Min:V'H = 2V '~"-. MIN UNITS 90,91 2 Vee = Min, I, = -12 mA '" ! MAX 2 V ,L = 0.8V, IOH = -800MA I, TYP(l) l> 88 80 80 120 -1.6 -1.6 -1.6 Data -1.2 -1.2 -1.2 Clear -3.2 -3.2 -2.8 Clk 1, Clk 2 (8280,8290) -3.2 -3.2 -4.8 Clock 2 (Others) -1.6 -1.6 -2.4 -18 -57 30 45 -18 -57 30 45 -18 30 mA MA mA C -57 mA 48. mA s: ...., N ....... C s: 00 N 00 Notes (11 All typical values are at VCC = SV, TA = 2SoC. (21 Not more than one output should be shorted at a time. 0 Co .... Co 00 Co 0 Co .... - - - - - - - - - - - - - - - _ .. _ - - - - -- -- - - - - - - - _.. _ - - - - - - - Switching Characteristics vee ~ 5V, TA ~ 25°C ~ DM72/82 PARAMETER FROM CONDITIONS TO 80,81 MIN fMAX Maximum Clock Frequency tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output 'PLH Propagation Oelay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time. High-ta-Low Level Output tpLH Propagation Delay Time, Low-ta-High Level Output f" w tpHL Propagation Delay Time, High-ta-Low level Output tpLH Propagation Delay Time, Low-ta-High Level Output 'PHL Propagation Delay Time, High-to-Low Level Output tpLH Propagation Delay Time, Low-to-High Level Output tpHL Propagation Delay Time, High-to-Low Level Output tpHL Propagation Delay Time, High-ta-Low Level Output tw tHOLD 'sETUP tENABLE ---- Pulse Width Input Ho!d Time Input Setup Time Count Enable Time - -- Clock 1 aA 35 TYP 88 MAX 50 MIN 35 TYP UNITS 90,91 MAX 50 MIN 40 TYP MAX 50 MHz l> Q. Q. ;:j.' S' j !!. Clock 1 aA 9 13 9 13 9 13 ns eCD Clock 1 aA 11 17 11 17 11 17 ns ii' < CD Clock 2 a. 12 18 12 18 12 18 ns Clock 2 a. 14 21 14 21 14 21 ns Clock 2 Dc 27 41 27 41 24 36 ns Clock 2 Dc 34 51 34 51 28 42 ns 13 20 13 20 14 21 44 66 N/A 36 54 til CL " 15 pF Clock 2 aD Clock 2 aD 8280,8288,8290 RL "400Sl 8281,8291 8280, 8288, 8290 17 26 17 8281,8291 50 75 N/A 26 16 23 42 63 ns ns Any Data Input Any Output 19 29 19 29 16 24 ns Any Data Input Any Output 31 46 31 46 25 38 ns Load Any Output 29 43 29 43 22 33 ns Load Any Output 32 48 32 48 24 36 ns Clear Anv Output 32 48 32 48 25 37 ns Clock 1 14 14 14 Clock 2 28 28 28 Clear 25 25 25 Load 20 20 20 High-Level Data tW(LOAOI twtLOAOI tWtLoAO) Low-Level Data tW(LOAOI twtLOAD) tW(LOAO) High-Level Data 15 15 10 Low-Level Data 20 20 15 25 25 30 ns ns ns ns e s:..... N ...... e s:CO N CO 0 Ol .... Ol CO CD 0 CD .... ~ Additional Devices DM721DM8280,81,88 ,90,91 Truth Tables 80,90 BI·QUINARY (5·21 (S.. Not. BI 80,90 DECADE (BCDI (S•• Note AI OUTPUT COUNT 81,91 TRUTH TABLE (See Note AI OUTPUT COUNT 88 TRUTH TABLE OUTPUT OUTPUT COUNT COUNT Ile Os 0 L L L L O. L L L L 0 L L L L 0 L L L L 1 L L L H 1 L L L H 1 L L L H 1 L L L H L L H L L L H H L H L L L H L H 00 Ile Os QA QA 00 Ile Os QD' Ile QIi QA QD QA L H L L 4 L H L L 2 3 4 H L L L 5 L H L H 5 L 5 6 H L L H 6 L H H L 6 L H H L H 7 H L H L 7 L H H H 7 L H H H L L 8 H L H H 8 H L L L L L L H 9 H H L L 9 H L L H 8 9 H L H L L H 10 H L H L 10 H L H L 11 H L H H 11 H L H H 12 H H L L 13 H H L H (A) Output QA connected to clock 2 input. 14 H H H L (BI Output QD connected to clock 1 input. 15 H H H H 2 L L H L 2 L L H L 2 L L H L 3 4 5 L L H H L L H H 3 L L H H L H L L H L L 'H 3 4 6 L H H 7 L H H 8 H L 9 H L H = High Level, L = Low Level Not.. : Logic Diagrams 81,91 80,90 88 4·14 ~ Additional Devices DM9000C Series Gates/Inverters General Description TTL circuits offering a choice of specific performance ranges (see Sections 1 and 2); and are designed to serve any application from industrial numerical controllers or high-speed computers, to sophisticated high-reliability aerospace and defense systems. Series 54/74 pin-for-pin equivalents are available for the following SSI types: DM9000C series devices are designed to be used in existing systems as replacements for Fairchild 9000-type circuits. These DM9000C circuits offer several significant advantages over 9000 type circuits, some of which are: • Input clamp diodes • Output short-circuit current specified to guarantee the high-level impedance. • DM9000C SERIES EQUIVALENT SERi'ES 74 DM9002C DM9003C DM9004C DM9005C DM9006C DM9008C DM9009C DM9012C DM9016C DM9024C Power dissipation of DM9000C circuits is i[1 most cases lower than that for the equivalent 9000 type. DM9000C circuits are characterized for operation over the industrial temperature range of O°C to 75°C. For new designs, the 54/74 families of TTL circuits offer the industry's broadest choice of high-performance digital circuits. Included are several families of compatible DM7400 DM7410 DM7420 DM7450 DM74H60 DM74H53 DM7440 DM7403 DM7404 DM74109 Connection Diagrams Vee B4 A4 Y4 BJ A3 Vl Vee D2 C2 NC B2 A2 yz A1 81 VI Al 82 YZ GND A1 B1 Nt Cl 01 V1 GNO 9002CIJ), IN); 9012CIJ), IN) Vee B1 AI A' " C2 9004CIJ), IN); 9009CIJ), IN) 9003CIJ), IN) 01 C1 VI Vee 01 D2 Y2 GND AI B1 . " Xl i• D2 C1 A2 " C2 GNo , X"OllfllUtolEltpfndl!r 9006CIJ), IN) 9006CIJ), IN) Vee AI A1 V1 9008CIJ).IN) V6 AS YS A4 V4 A2 Y2 A3 Vl GNU 9016CIJ), IN) 4:15 GND X=OIll\llltofExplnder ~ Add itionalDevices DM9000C Series Electrical Characteristics over recommended ·operating free-air temperature range (unless otherwi~e noted) DM90 05C PARAMETER V,H CONDITIONS I High Level Input Voltage O°C 02C,03C 04C,16C EXPANDABLE GATE NONEXPANDABLE GATE MIN MAX MIN MAX MIN MAX 1.8 1.8 175°C. 1.6· 1.6 1.6 0.85 IOH High Level Output Current Vee = 4.75V, V'L = 0.85V VOH High Level Output Voltage V OH = 5.5V Low Level Output Voltage I'H High Level Input Current Vee"" 4.75V IOH "" --1.2 mA V JL IOH '" IOl :: 16 mA V 1H IOL - 48 mA Min Low Level Input Current IOl "" 14.1 mA V 1H :: Min IOL at 5.2SV los Short Circuit Output Current ICCH Supply Current, All Outputs High ICCL Supply Current, All Outputs Low /llcCH Vee 1.6 1.6 0.85 0.85 -1.5 -1.5 -1.5 -1.2 -1.2 -1.2 -1.2 -3.6 2.4 2.4 V 0.85 0.85 -1.5 0.S5 -1.5 50 50 50 50 0.45 0.45 0.45 0.45 0.45 0.45 0.45 V mA 50 mA V N/A 100 0.45 0.45 0.45 V 0.45 60 . Vee = 4.75V Vee = 5.25Vlll V 0.25 N/A 2.4 = 42.3 rnA = 5.25V 1.9 2.4 Vee = 5.25V, V, = 4.5V V, = 0.45V 1.6 UNITS 0.45 Vcc- 4 .75V Other Inputs 1.8 -1.5 2,4 Other Inputs at Ground I,L 1.8 1:9 1.8 3.6mA Vee = 5.25V "" MIN MAX 125°C Vee = 4.75V,I, = -12 mA VOL MIN MAX 1.9 Input Clamp Voltage Low Level Output Current MIN MAX 1.9 Low Level'lnput Voltage 10L 12C 1.9 V, O.85V 09C 1.9 1.8 V,L :. 06C,OSC 120 60 90 60 -1.6 -2.4 ·-1.6 -2.4 -3.2 -1.6 -1.41 -2.12 -1.41 --2.12 -2.82 -1.41 -18 -55 90 -20 -70 -20 -70 -40 -100 -20 -70 N/A J. ~ l l l l l l l H l l H l 1 H l H H H 2 H H l H H DECIMAL OUTPUT 4 5 6 0 l H H H D 4-22 3 H H H l H 7 H H H H H H H H H H H H 8 H H H 9 H H H H H H H H H l H H H H H H' l H H H H H H l H H H H H H l H H H l H H H L H H H H H H H H H H H H H H H H H H H H H H H H H ~ DM93/DM8301 Additional Devices Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM93i83 CONDITIONS PARAMETER 01 MIN V IH High Level Input Voltage VIL Low Level Input Voltage VI Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage 10L Low Level Output Current VOL Low Level Output Voltage TYP(l) UNITS MAX 2 Vee = Min, V 1,=-12mA 0.8 V -1.5 V -BOO Vee = Min, V'H = 2V V'L = O.8V, IOH Vee =: Min, = -BOOJ1A 2.4 V V'H = 2V V,c = O.BV, 10L = 16 mA II I nput Current at Maximum I nput Voltage Vee :-:: Max, V,=5.5V J1A 16 mA 0.4 V 1 mA IIH High Level Input Current Vee ~ Max, V, = 2.4V 40 J1A IlL Low Level Input Current Vee = Max, V, =OAV -1.6 mA los Short Circuit Output Current Vee = Max(2) --55 mA Icc Supply Current Vee = Max(3) 41 mA --20 25 Notes (11 All typical values are at Vee = 5V, T A = 25' e, (21 Not more than one output should be shorted at a time. (31 ICC is measured with the outputs open and all inputs grounded. Switching Characteristics vee = 5V, TA = 25°C DM93i83 PARAMETER CONDITIONS 01 MIN tpHl Propagation Delay Time, High-to-Low Level, Any Output from A, B, C, or D UNITS TYP MAX 19 30 ns 20 30 ns C L = 15 pF, RL = 400n tpLH Propagation Delay Time, Low-to-High Level, Any Output from A, B, C, or D l____ 423 ~ Additional Devices DM93/DM8309,12 Data Selectors/Multiplexers General Description Features These data selectors/multiplexers contain inverter/ drivers to supply full complementary, on-chip, binary decoded data selection to the AND-OR-INVERT gates. DM9309/8309 • Direct replacement for Fairchild 9309 • Complementary outputs • Dual one-of-four data selectors The DM9309/8309 contains two separate 4·bit multi· plexers with complementary Y and Y outputs; however, the two sections have common address select inputs. DM9312/8312 • • • • • The DM9312/8312 is a single 8-bit multiplexer with complementary outputs and a strobe control. When the strobe is low, the function is enabled. When a high logic level is applied to the strobe, the outputs are latched. Direct replacement for Fairchild 9312 Selects one-of-eight data sources Performs parallel to serial conversion Strobe controlled outputs Complementary outputs Connection Diagrams OUTPUTS V2 15 14 . OATA INPUTS SELECT INPUT A '12 2eo 2el 12 13 OUTPUTS' 2C3 2C2 11 , V TC 10 SElECT INPUTS C 16 15 13 14 , STROBE A 12 10 11 - Vl SElECT INPUT '11 leo lel B OUTPUTS le2 J: le3 DO DATA INPUT 07 - 01 02 03 04 05 os J: DATA INPUTS DATA INPUTS 9309(JI, (WI; 8309(JI, (N), (WI 9312(JI, (WI; 8312(JI, (NI, (WI Truth Tables 09 12 INPUTS DATA SELECT B A OUTPUTS CO C1 C2 C3 V Y OUTPUTS INPUTS STROBE SELECT C B A G V Y L L L X X X L H X X X H L H l. L H X X X H L L L L L L H X L X X L H L L H L 00 01 L H X H X X H L L H L L 00 01 02 X X L X L H L H H L X X H X H L H L L L H H L H H X X X L L H H L H L H H X X X H H L H H L L H H H L 03 04 05 06 07 52 03 54 D5 56 57 Select inputs A and B are common to both sections. H ::: High Level, L::: Low Level, X "" Don't Care. H :: High Level, L"" Low level, X = Don't Care. DO, 01 .. . 07 = The level of the respective 0 input. 4·24 ~ DM93/DM8309.12 Additional Devices Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) DM93/83 CONDITIONS PARAMETER 09,12 MIN V ,H High Level Input Voltage V,L Low Level Input Voltage V, Input Clamp Voltage IOH High Level Output Current V OH High Level Output Voltage IOL Low Level Output Current VOL Low Level Output Voltage UNITS TYP,(11 MAX V 2 0.8 Vee = Min, I, = -12 rnA Vee = Min, V 1H V'L =0.8V, 10H = 2V 2.4 = -800p.A Vee = Min. V 1H = 2V I, Input Current at Maximum Input Voltage Vee = Max, VI = 5.5V I'H High Level Input Current Vee = Max, VI I,L Low level Input Current Vee los Short Circuit Output Current Vee = Max(21 Icc Supply Current Vee = Max(3) V -800 p.A V 3.4 0.2 V'L = 0.8V, 10L = 16 mA V -1.5 16 mA 0.4 V mA 1 = 2.4V 40 p.A = Max, VI = O.4V -1.6 mA -85 mA 44 mA -30 27 Notes = 2SC. (1) All lypical values are at V CC = SV, T A (2) Not more than one output should be shorted at a time. (3) ICC is measured with the outputs open and all inputs at 4.SV for the DM9309/B309, and with the strobe and data select inputs at 4.SV, all other inputs and outputs open for the DM9312/B312. Switching Characteristics Vee = 5V, T A = 25° C DM93/83 PARAMETER FROM TO MIN tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time, High-ta-Low Level Output tpLH Propagation Delay Time, low-ta-High ,Level Output 'PHL Propagation Delay Til.'"e, High-ta-Low Level Output tpLH Propagation Delay Time, Low-ta-High Level Output 'PHL Propagation Delay Time, H igh-to- Low Level Output tpLH Propagation Delay Time, Low-ta-High Level Output 'PHL Propagation Delay Time, High-ta-Low Level Output tpLH Propagation Delay Time, Low-ta-High Level Output tpHL Propagation Delay Time. High-la-Low Level Output tpLH Propagation Delay Time, Low-to~High 'otIL Level Output Propagation Delay Time, High·to·Low Level Output DM93/83 09 CONDITIONS 12 TYP MAX MIN UNITS TYP MAX Select Y 27 40· 22 33 ns Select Y 23 36 23 35 ns Select Y 17 24 18 ·28 ns Select Y 20 29 16 25 ns Data Y 18 27 16 23 ns Data Y 23 34 17 25 ns 14 21 9 13 ns 9 13 9 13 ns CL = 15 pF RL = 40011 Data y Data Y Strobe Y N/A 22 33 ns Strobe Y N/A 21 32 ns Strobe Y N/A 13 19 ns Strobe Y N/A 15 21 ns 4-25 - ~ Additional Devices DMS3/DM830S.12 Logic Diagrams 09 IC3 (7) (21 1'1 } lC2 (61 111 OUTPUTS Vl lel (51 lCO (41 DATA INPUTS 2e3 (91 (141 V2 _ } 2C2 (101 (151 2el 1111 SELECT (31 INPUT B 12 STROBE 00 01 1101 111 (21 02 (31 03 (41 DATA INPUTS 04 (51 05 06 (61 (71 07(91 A jj C 4-26 OUTPUTS V2 ~ Additional Devices DM931DM8310.16 Synchronous 4-Bit Counters General Description These ·synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The DM9310/DM8310 are decade counters and the DM9316/DM8316 are 4-bit binary counters. The carry output is decoded by means of a NOR gate, thus preventing spikes during the normal counting mode of operation. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input waveform. The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed-forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the Q A output. This high-level overflow ripply carry pulse can be used to enable successive cascaded stages. High-to-Iow level transitions at the enable P or T inputs may occur regardless of the logic level in the clock. Features • • • • • • • • These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable input. Low-to-high transitions at the· load input are perfectly acceptable regardless of the logic levels on the clock or enable inputs. The clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs. Direct replacement for Fairchild 9310, 9316 Internal look-ahead for fast counting Carry output for n-bit cascading Synchronous counting Load control line Diode-clamped inputs 35 MHz Typical clock frequency Pin-for-pin replacements popular 54/74 counters 9310 - 54,160A/74160A (decade) 9316 - 54161A/74161A (binary) Connection Diagram Vee 1",6 RIPPLE CARRY OUTPUT OUTPUTS , U, 15 14 , Dc D. 13 Do ENABLE T LOAD 10 9 II 12 --c 1 2 CLEAR CLOCK 6 A ________ '~ D ~ ______-J' DATA INPUTS 9310(J), (WI; 8310(JI, (N), (W); 9316(JI, (WI; 8316(J), (N), (WI 4-27 7 ENABLE P ~ Additional Devices Electrical Characteristics ove~ .DM93/DM8310.16 recommended op~rating free-air temperature range (unless otherwise noted) PM93/83 PARAM·ETER MIN : VIH High Level Input Voltage V ll Low Level Input Voltage VI Input I.OH High Level Output Current VOH High Level Output Voltage CI~mp Vee = Min, I, = -12 mA Vee = Min, V ,H = 2V = 0.8V, 10H = -800jJA VOL Low Level Output Voltage Vee V'L II Input Current at Maximum Input Voltage IIH High Level Input Current Cloc~ or Enable T Other Inputs' Low Level Input Current III Clock or Enable T Other Inputs Short Circuit Output Current los ICCH ICCl I Supply Current (High Level) Supply Current (Low Level) Not---;======~~~~====lrt {Jl DATAA~-----' III CLEAR '4J B--------H--++1H---t-, DATA '5} DATA C -------+H++++1H---t-, 16l DATA 0 (15) RIPPLE CARRV OUTPUT 16 0, III ClOCK {Jl DATA A III CLEAR 0, LOAD DATA '5} c--------I-+-I+-+++++1-1", 16' OATAD-------+H+H+H-+--r, (t5) RIPPLE CARRY OUTPUT 4-30 ~ Additional Devices DM93/DM8310 .16 Timing Diagrams 9310/8310 SYNCHRONOUS DECADE COUNTERS TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES CLEAR --U (ASYNCHRONOUS) lDAD---+I-,u I A-.J 'NDp~~~ : r -------------- I l============== -1'-_I---.L _ -------------r-------------Sequence: CLOCK (1) Clear outputs to zero ENABLE P-----I---I.J (2) (3) Preset to BCD seven Count to eight, nine, zero, one, two, and three ENABLE T (4) Inhibit ---t--+-' ----COUNT---- ----lNHIBIT---- CLEAR PRESET 9316/8316 SYNCHRONOUS BINARY COUNTERS TYPICAL CLEAR, PRESET, COUNT AND INHIBIT SEQUENCES CLEAR ~NCHRDNDUSI , lDAD=8r - - - - - - - - - - - - - DATAl -1 r-============= A B, C 'NPUTS 0"'] I I i - - - - - - - - - - - - - L_============= L_____________ _ CLOCK ENABLE P ENABLE T OUTPUTS \ : Qc Sequence: (1) Clear outputs to zero (2) Preset to binary twelve ---~-+' (3) Count to thirteen, fourteen, fifteen, zero, one, ---t---f.I 14) __ and two -+--+-+--' 00 RIPPlEOCU;~~i -----I--f.:'''"'--I.,,13:--'''14:--....I15 - - '- - C O U N T - - - - - - - - I N H 1 B 1 T - - - CLEAR PRESET 4·31 Inhibit ~ Additional Devices DM93/DM8310.16 Parameter Measurement Information SWITCHING TIME WAVEFORMS CLOCK INPUT -F\-I OV tplH tpHl (MEASURE AT tN+tl VOH OUTPUT 0. VOl (MEASURE AT 'N'2) VOH OUTPUT 0. OUTPUT Dc Val VOH VOL VOH OUTPUT 00 RIPPLE CARRY OUTPUT VOL VOH VOL Notes: (A) The input pulses are supplied by a generator having the following characteristics: PRR ::; 1 MHz, duty cycle:S. 50%, ZOUT ~ 50,0, tr S. 10 ns, tf:S. 10 ns. Vary PRR to measure fMAX. (8) Outputs 00 and carry are tested at t n+10 for 9310/8310, and at tn+16 for 9316/8316, where tn is the bit time when all outputs are low. IC) VREF ~ 1.5V. SWITCHING TIME WAVEFORMS CLOCK INPUT l.OV - - - - - - - - - , . 160A. LS160 161A. LS161 CLEAR INPUT LOAD INPUT DATA INPUTS A. B. C. AND D a OUTPUTS 9316 OUTPUTS 9310 a. AND aD Ils AND ac OUTPUTS 9310 OV l.OV OV 3.0V OV VOH VOL VOH VOl -- l.OV-ENABLE P OR ENABLE T OV VOH CARRY VOL Notes: (A) The input pulses are supplied by generators having the following characteristics: PRR tf S; 10 ns. (B) Enable P and enable T setup times are mQ,asured at tn+O. IC) VREF ~ 1.5V. 4-32 S. 1 MHz, duty cycle S. 50%, ZOUT ~ 50n, tr S. 10 ns, ~ Additional Devices DM93/DM8311 4-Line to 16-Line Decoders/Demultiplexers General Description Features Each of these 4-line-to-16-line decoders utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, Gl and G2, are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe input low. When either 'strobe input is high, all outputs are high. These demultiplexers are ideally suited for implementing highperformance memory decoders. All inputs are buffered and input clamping diodes are provided to minimize transmission·line effects and thereby simplify system design. • Direct replacement for Fairchild 9311 • Pin for pin with popular 54154/74154 • Decodes 4 binary·coded inputs into one of 16 mutually exclusive outputs • Performs the demultiplexing function by distributing data from one input line to anyone of 16 outputs • Input clamping diodes simplify system design • High fan-out, low-impedance, totem-pole outputs • Typical propagation delay 19 ns • Typical power dissipation 170mW Connection Diagram Vee INPUTS ,A 124 OUTPUTS Gl ' '15 G2 23 22 21 20 19 18 5 6 1 13 14 17 15 16 \ 11 12 13 14 -c 10 11 ,r2 .,-0;......-;1_...;;,2_...;3;....-.-;4_-Y~_..;6;.......;;,1_..;8;.......;;,9_..;.10;"1 GNO OUTPUTS 9311(J), (F); 8311(J), (N), (F) Truth Table INPUTS H OUTPUTS Gl G2 0 c B A o L L L L L L L L L L L L H L L L L H L L L L L L L H 8 9 10 11 12 13 14 15 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H )-l H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 2 3 4 H H H H H H H L H H H H H L H H L H H H H H H H L H H L L H H H H L L L L H L H H H H H H L H H H L L L H H L H H H H H H L H H L L L H H H H H H H H H H L H L L L L L L L L L L L L L L L L H H H H H H H H L L L H H H H H H H H L L L H H H H H H H H L H H H H H H H L H H H H H H H H L H H H H H L H H H H H H H H H H H H L H H H H H L L H H H H H H H H H H H H L H H H H H H H H H H H H H L H H H H H H L H H L H H H H H H L H H H H H H H H H H H H H H L H H H H H H H H H H H H H H H H H H H L L H X X X X H H H H H H H H H H H H H H H H L X X X X H H H H H H H H H H H H H H H H H H H X X X X H H H H H H H H H H H H H H H H = High Level, L = Low Level, X = Don't Care 4-,33 ~ Additional D.evices DM93/DM8311 Electrical Characteristics over recommended operating free-air temperature ;ange (unless otherwise n·oted) DM93/83 PARAMETER 11 CONDITIONS V,H High Level Input Voltage V,L Low Level Input Voltage V, I nput Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage , Low Level Output Current VOL Low Level Output Voltage MAX 2 V V ce = Min. II = -12 mA 0.8 V -1.5 V -800 Vee = Min, V IH = 2V 304 2.4 V il = 0.8V, 10H = -800JlA 10L UNITS TYP(1) MIN Vee = Min, V IH = 2V V 0.25 V il = 0.8V, IOl = 16 mA JlA 16 mA 004 V I, Input Current at Maximum Input Voltage Vee = Max, VI = 5.5V 1 I'H High Level Input Current Vee = Max, VI =·2AV 40 JlA I,L Low Level I nput Current Vee = Max, VI = OAV ~1.6 mA los Short Circuit Output Current Icc Supply Current Vee = Max(2) Vee = Max(3) DM93 -20 -55 DM83 -18 -57 DM93 34 49 DM83 34 56 mA mA ilnA Notes (1) All typical value. are at Vcc = 5V, TA = 25°C. (21 Not more than one output should be shorted at a time. (3) ICC is measured with all inputs grounded and all outputs open. Switching Characteristics Vee = 5V, T A = 25°C DM93/83 PARAMETER CONDITIONS tpLH UNITS 11 MIN TYP MAX 18 27 ns 21 30 ns 17 25 ns 18 27 ns Propagation Delay Time, Low-to-High Level Output, From A, B, C, or D Inputs Through 3 Levels of Logic tpHL tpLH Propagation Delay Time, High-to-Low Level_ Output, From A, B, C, or D Inputs CL = 15 pF Through 3 Levels of Logic RL Propagation Delay Time, Low-to-High Level Output, From Either Strobe Input -tpHL Propagation Delay Time, High-to-Low Level Output, From Either Strobe Input 4-34 = 400n ~ Additional Devices DM93/DM8311 Logic Diagram r-~ II C 0 ~I---.. A H Gl ;;U G G2 (4) ~ INPUTS ~olli A T (22) A ~~ )oJ!!. B T B ~~ c (21) T -V c ~ 0 (20) (5) ..J C (23) (2) Jo-ill B (18)~ (I) B ......... ~---- (B) OUTPUTS (9) (10) 0 1 h-.. 0 (II) 0 ~ ~ (13) C H (14) --I H B ~--- II 7= A B 4-35 c 0 (15) (16) (11) 10 11 12 13 14 15 ~. Additional Devices DM93/DM8318 General Description Features These TTL encoders feature PriOrity decoding of the input data to ensure that only the highest-order data line is encoded. All inputs are buffered to represent one normalized Series 54/74 load. The DM9318 anq DM8318 encode eight data lines to three-line (4-2-1) binary (octal). Cascading circuitry (enable input E1 and enable output EO) has been provided to allow octal expansion without the need for external circuitry_ For all types, data inputs and outputs are active at the low logic level. • Connection Diagram . L6 EO , . Typical data delay 10 ns • Typical power dissipation 190 mW AD I. lD 11 12 13 3 • , • . EI , , 6 5 A2 A1 18 GNO H EI 0 1 2 3 4 5 6 7 A2 Al AO GS EO H X X X X X X X X H H H H H L H H H H H H H H H H H H L L X X X X X X X L L L L L X X X X L H L H L X L L H H H L .L H H H H H L H L H L L H L L L H H. H H L L L X X X L L X X X X X X L L X X X H H H H X L L H H X H H H H H L X L H H H H H H H L L H L L H H H H H H H H H ~ X High Logic Level, L OUTPUTS INPUTS OUTPUTS INPUTS 9 0- 2 Encodes 8 data lines to 3-line binary (octal) . • Applications include: N -bit encodi ng Code converters and .generators OUTPUT -C 1 • Ir,lPUTS GS 15 Direct replacement for Fairchild 9318 • Pin for pin with popular DM54148174148 Truth Table OUTPUTS Vee Priority Encoders 9318(JI, (W); 8318(JI, (N), (W) LogiC Diagram INPUTS 4-36 ~ Low Logic Level, X ~ Don't Care L H H H ~ Additional Devices DM93/DM8318 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER DM93/83 18 CONDITIONS MIN V ,H High level Input Voltage V,L Low Level Input Voltage V, Input Clamp Voltage IOH High Level Output Current VOH High Level Output Voltage MAX V 2 0.8 Vee = Mm,'1 IOL Low Level Output Current VOL Low Level Output Voltage == V -1.5 -12 rnA V -800 , I, Input Current at MaXimum Input Voltage I'H High Level Input Current o Input Others o Input Low Level Input Current I,L UNITS TVP(lI Others Vee'" Min, V 1H = 2V V 1l == O.BV, 10H Vee = Min, V 1H == 2\1 V,L "0.8V, tOL = 16 rnA Vee = Max, V, o5.5V "-800I1A Vee:: Max, V, "2AV Vee"" Max, V, "OAV los Short Circuit Output Current Vee Icc Supply Current Vee"= Max ~ Max(2) (3) IlA 2.4 V 16 mA 0.4 V 1 mA 40 IlA 80 -1.6 mA -3.2 -85 -35 I Condition 1 I Condition 2 mA 40 60 35 55 mA Notes (1) All typical values are at Vee = 5V, TA = 25°e. (2) Not more than one output should be shorted at a time. ICC (condition 1) is measured with inputs 7 and El grounded, other inputs and outputs open; ICC (condition (3) ?) is measured with all inputs and outputs open. Switching Characteristics vee PARAMETER = 5V, T A = 25°C FROM (INPUT) DM93/83 TO (OUTPUT) WAVEFORM CONDITIONS "'LH Propagation Delay Time, Low-toHigh Level Output o thru 7 tPHL Propagation Delay Time, High-to- tpLH Propagation Delay Time, Low-to- A, B, C, D High Level Output o thru 7 A, B,C, D Propagation Delay Time, High-to- o thru 7 EO Propagation Delay Time, Low-toHigh Level Output tpHL PropagatIon Delzy Time, High-to- tPLH Propagation Delay Time, Low-to- o thru 7 GS In-Phase Output Low Level Output High Level Output EI tPHL AO, Al, or A2 Propagation Delay Time, High-ta- Propagation Delay TimEl, Low-toHigh Level Output EI "'HL GS Propagation Delay Time, High·to- Propagation Delay Time, Low-taHigh Level Output tpHL 9 14 ns 13 19 ns 12 19 ns G 9 ns 14 21 ns 18 27 ns 14 21 ns 10 15 ns la 15 ns 8 12 ns 10 15 ns EI EO la 15 ns 17 26 ns CL =15pF R L = 400n In-Phase Output Low Level Output ""-H ns In-Phase Output Low Level Output tpLH 15 Out·of-Phase Output Low Level Output tPLH 10 Propagation Delay Time, Low-toHigh Level Output tpHL MAX Out-of-Phase Output Propagation Delay Time, High-toLow Level Output "'LH TVP In-Phase Output Low Level Output tPHL UNITS 18 MIN In·Phase Output Propagation Delay Time, High-toLow Level Output 4-37 ~ Additional Devices DM93/DM8322 Quad 2-Line to 1-Line Data Selectors/Multiplexers General Description Applications These data selectors/multiplexers contain inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. True data is presented at the outputs. • Expand any data input point • Multiplex dual-data buses • 'Generate four functions of two variables (one variable is common) , Features • Source programmable counters • Direct replacement for Fairchild 9322 • Pin-for-pin with popular DM54157/74157 • Buffered inputs and outputs Truth Table Connection Diagram . INPUTS Vee STROBE 1,6 A4 " INPUTS OUTPUT 84 V4 13 14 OUTPUT A3 BJ 11 12 VJ 10 9 OUTPUT INPUTS STROBE SELECT A B Y H X X X L f - r- L L L X L L L H X H L H X L L L H X H H H = High Level, L = Low Level,X= Don't Care 2 1 SELECT 4 3 AI 81 Yl 6' 5 A2 82 OUTPUT INPUTS 7 V2 OUTPUT 1 8 GND INPUTS 9322(J), (W); 8322(J), '(N), (W) Logic Diagram AI 121 81 131 A2 151 82 161 A3 1111 83 1101 A4 1141 84 1131 4-,38 ~ DM93/DM8322 Additional Devices Electrical Characteristics over recommended operating free~air temperature range (unless otherwise noted) DM93 PARAMETER CONDITIONS MIN VIH High Level Input Voltage Vil Low Level Input Voltage VI Input Clamp Voltage ~ 1--- Vee == Min, High Level Output Current VOH High Level Output Voltage 10l 22 MAX -- c-----Vcc=Min, 0.8V, 10H ~ Vcc==Mm, V IH = 2V V'L - O.8V, IOL = 16 mA V'L r-Low Level Output Current ~ V'H ~ 2V -800/-lA 2,4 MIN UNITS TVPll) MAX 2 I, """ ·-12 mA _.... VOL TVPll) 2 IOH --- DM83 22 V 0.8 0.8 -1.5 -1.5 V -800 -800 /-lA 3,4 2,4 3,4 V 16 Low Level' Output Voltage II Input Current at Maximum Input Voltage Vee = Max, V, IIH High Level Input Current Vee = Max, III Low Level Input Current Vee::: Max, los Short Circuit Output Current Vec ~ Max(2) Icc Supply Current Vee ~ Max(3) ~ 0.2 5.5V 0,4 V 0.2 16 mA 0,4 V 1 1 V, - 2.4V 40 40 /-lA V,~O.4V ~1.6 ~-L6 mA ·20 55 30 -·18 48 mA -55 mA 48 mA 30 Notes All typical values are at Vee = 5V. T A = 25° C. (2) Not more than one output should be shorted at a time. (3) ICC is measured with 4.5V applied to all inputs and all outputs open. (1) Switching Characteristics vee ~ 5V, TA ~ 25 c C DM93/83 PARAMETER FROM (INPUT) 22 CONDITIONS MIN tplH Propagation Delay Time, Low-to-High Level Output TVP UNITS MAX 8 14 ns 10 14 ns 13 20 ns 14 21 ns 15 23 ns 17 27 ns Data tpHl Propagation Delay Time, High·to~Low tplH Level Output Propagation Delay Time, Low-to-High Level Output Strobe tpHl Propagation Delay Time, High~to~Low tplH CL = 15 pF, RL = 40011 Level Output Propagation Delay Time, Low~to~High Level Output Select tpHl Propagation Delay Time, High·to~Low Level Output 4~39 ~ Additional Devices DM93/DM8334 8-Bit Addressable Latches General Description all outputs are low and unaffected by the address and data inputs. The DM9334/DM8334 is a high speed 8-bit Addressable Latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level high outputs. The device also incorporates an active level low common clear· for resetting all latches, as well as an active level low enable. When operating the device as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. The truth table below summarizes the operation of the product. The DM9334/DM8334 has four modes of operation which are shown in the mode selection table. In the addressable latch mode, data on the data line (D) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs. Features • • • Direct replacement for Fairchild 9334 Common clear Easily expandable Random (addressable) data entry Serial to parallel capability 8 bits of s~orage/outPut of each bit available Active high demultiplexing/decoding capability In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state of the D input with all other inputs in the low state. In the clear mode • • • • Truth Tables Connection Diagram vr c E C MODE L H Addressable Latch H H Memory L L Active High EightChannel Demultiplexer H L Clear E " 16 .6 07 0 " O. 0' 10 11 11 13 , r-- X = Don't Care Condition L = Low Voltage Level , H = High Voltage Level 0N-1 "" Previous Output State AD 1 A1 J , 4 ., 00 , 02 0' 7 OJ J; 9334/8334(J), IN), (W) INPUTS PR ESENT OUTPUT STATES C E D AO A1 A2 00 01 02 03 04 05 06 07 . L H X X X X L L L L L L L L L L L L L L L L L L L L L L L L H L L L H L L L L L L L L L L H L L L L L L L L L L L L H H L L L H L L L L L L ·· ·· ·· · · · L L H H ··· H H H H X .X X X H L L L L L L ON_' ON_1 H ON_l ON-1 H L H L L L H L L H L L H L H H L L ··· ··· ··· L L L ·· · L DEMUL TIPLEX L L L °N_1 ON_' L ON_' ON_, H °N_1 H L L H ··· H H °N-1 H L H H H H ON_' ··· H . .. . °N_' MEMORY ~ ADDRESSABLE LATCH . ~ 4-40 MODE CLEAR ON_' ON_' L H ~ Additional Devices Electrical Characteristics DM93/DM8334 over recommended operating free-air temperature range (unless otherwise noted) DM93/83 PARAMETER 34 CONDITIONS MIN V ,H High Level Input Voltage V,L Low Level Input Voltage V, Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage 10L Low Level Output Current Low Level Output Voltage UNITS MAX 2 V V 0.8 Vee = Min,ll = -12 mA -1.5 -800 Vee = Min, V 1H " = 2V 2.4 V ,L = 0.8V, IOH = -aOOfJA VOL TYPO) rnA 0.2 0.4 V E Input 15 60 Others 10 40 E Input -1.44 -2.4 Others -{J.96 -1.6 --65 -100 rnA 86 rnA V ,L = 0.8V,I·OL = 16 rnA Input Current at Maximum Input Voltage I'H High level Input Current I,L Low Level Input Current Vee = Max, VI = 5.5V Vee = Max, VI = 2.4V Vee = Max, VI los Short Circuit Output Current Vee = Max(2) Icc Supply Current Vee = D.4V V 3.6 16 Vee:;;' Min, V 1H = 2V I, V fJA 1 -30 = Max 56 rnA fJA rnA Notes (1) (2) All typical values are at VCC = SV, T A =2SoC. Not more than one output should be shorted at a time, and duration of short circuit should not exceed one second. Switching Characteristics Vee = 5V, T A = 25°C DM93/83 PARAMETER FROM TO CONDITIONS 34 MIN Propagation Delay Time. tpLH low-ta-High level Output Enable Propagation Oelay Time. tpHL (Figure 1) Propagation Delay Time, low·to-High level Output Data Propagation Delay Time, tpHL (Figure 2J Propagation Delay Time, low-to-High Level Output Output CL =15pF /Figure 3) RL = 400fl Address Propagation Delay Time, .... L High-to-low level Output Propagation, Delay Time, tpHL low-to-High Level Output Clear Output (Figure 5J Enable Pulse Width tw tHOLD 28 ns 18 27 ns 24 35 ns 19 28 n, 23 35 ns 21 35 ns 21 31 ns ns 19 13 High Data to Enable (Figure 4) 20 13 low Data to Enable (Figure 4) 20 14 Address to Enable(3) (Figure6J 10 5 High Data to Enable (Figure 4) 0 -10 ns low Data to Enable (Figure 4) 0 -13 ns (Figure 1) tSETUP 19 Output High-to-Low Level Output tpLH MAX O,utput High-to-low level Output tpLH UNITS TYP ns Notes (3) The Address to Enable Set-Up Time is the time before, the High-ta-Low Enable transition that the Address must be stable so that the correct latch is addressed and the other latches are not affected. 4-41 ~ Additional Devices DM93/DM8334 Logic Diagram Switching Time Waveforms OTHER CONDITIONS: E" l. C = H, A '" STABLE OTHER CONDlTI.ONS: C '" H, A '" STABLE FIGURE 1 FIGURE 2 tpHL Al AI 01 1.5V OTHER CONDITIONS: E" l, C '" L, 0 = H OTHER CONDITIONS: C = H, A = STABLE FIGURE4 FIGURE 3 OTHER CONDITIONS: C'" H OTHER CONDITIONS: E"" H FIGURE 5 FIGURE 6 Note. The shaded areas indicate when the inputs are permitted to change' for predictable 'Output performance. 4-42 ~ Additional Devices DM96/DM8601 Retriggerable One Shots Features General Description These retriggerable one shots provide the designer with four inputs; two active high and two active low. This permits a choice of either leading-edge or trailing-edge triggering, independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge again_ The retriggerable feature allows for output pulse widths to be expanded. In fact a continuous true output can be maintained by having an input cycle time which is shorter than the output cycle time. Retriggering may be inhibited by tying the Q output to an active low input. • High speed operation-input repetition rate> 10M Hz • • Output pulse width range-50 ns to • ex R)( 81 • Input clamping diodes • DTLITTL compatible logic levels I v" .2 Leading or trailing edge triggering Truth Table r"Nv-r---II--- r A1 ~ • Complementary outputs/inputs Connection Diagram I Flexibility of operation-optional retriggering/lockout capability " OUTPUTS INPUTS NO Nt NO GND 9601/8601(J), (N), (W) Schematic Diagram {1J} (11) 4-43 A1 A2 B1 B2 a a H H X X L H X X L X L H X X X L L H L X H H L H L X t H ..fL -u- L x H t 5L -U- x L H H L H X L t H _n... -U-U-U-U-U- x L H t ..fL H I H H ..fL I I H H ..fL I H H H ..fL ~. Additional Devices Electrical Characteristics DM96/DM8601 over recommended operating free-air temperature range (unless otherwise noted) PARAMETER MIN V'H DM96 DM86 01 01 CONDITIONS High Level Input Voltage T A =-55"C TYP(1) MAX MIN MAX 1.9 = 25°C T A = 75°C TA = 125°C TA Low Level Input Voltage TYPllI 2.0 TA = O°C V'L , UNITS 1.7. 1.8 V 1.6 1.5 TA =-55°C 0.85 TA = O°C 0.85 TA = 25°C 0.90 0.85 TA = 75°C TA = 125 C V, Input Clamp Voltage 10H High Level Output Current VOH High Level Output Voltage 10L Low Level Output Current Vee = Min, I, 0.85 =-12 mA -1.5 -1.5 V -720 -960 /J.A ,12.8 mA 2A Vee == Min, IOH == Max 2A V 10 = Max VOL Low Level Output Voltage Vee = ,Min. "H High Level Input Current Vee = Max, V, = 4.5V "L Low Level Input Current Vee = Max IOl I I los Short Ci fcuit Output Current Vee = Max(2) Icc Supply Current Vee = Max V, V, V 0.85 OAO 15 =OAOV = 0.45V 0.45 60 15 V 60 /J.A -1.6 mA -1.6 '-10 -10 -40 -40 mA 25 mA 25 Notes 11) All typical values are at VCC = 511, TA = 25°C. 12} Not more than one output should be shorted at a time. 13} ·Unless otherwise specified, RX = 10 k.n between Pin 13 and VCC on all tests. 14} Ground Pin 11 for VOL test on Pin 6, VOH test on Pin 8 and 'OS test on Pin 8. Open Pin 11 for VOL test on Pin 8, VOH test on Pin 6 and lOS test on Pin 6, Switching Characteristics vee =; 5V, T A'" 25°C DM96 CONDITIONS PARAMETER MIN tpLH tpHL Propagation Delay Time, Negative Trigger Input Low-to-High Level Output to True Output PropagatiQn Delay Time, High-to-Low Level Output . Negative Trigger Input to Complement Output CL = 15 pF, Cx = 0 Rx = 5 kU !pw 1M',,!' Minimum True Output Pulse Width !PW Pulse Width CSTRAY Maximum Allowable Wiring Capacitance Rx ~xternal Rx = 10 kn, ex = 1000 pF 3.08 Timing 01 MAX 40 25 40 ns 25 40 2p 40 ns 45 65 45 65 ns 3_42 3.76 3.42 3.76 /J.s 50 pF MAx 25 MIN 5 UNITS TYP TYP 3.08 50 Pin 13 to GND Resistor DM86 01 25 5 50 kO --4-44' ~ Additional Devices DM96/DM8601 Operating Rules noise pickup. If remote trimming is required, Rx may be split up such that at least RX(MIN) must be as close as possible to the circuit and the remote portion of the trimming resistor R< RX(MAX) - Rx. 4. Set·up time (t,) for input trigger pulse must be > 40 ns. (See Figure 1). Release time (t2) for input trigger pulse must be > 40 ns. (See Figure 2). 5. Retrigger pulse width (see Figure 3) is calculated as follows: 1. An external resistor Rx and an external capacitor C x are required for operation, The value of Rx can vary between the limits shown in switching charac· teristics. The value of Cx is optional and may be adjusted to achieve the required output pulse width. 2. Output pulse width tpw may be calculated as follows: tpw = 0.32 RxCx [1 + ~.~] (for Cx ;:::10 3 pF) Rx in kn, Cx in pF and tpw in ns. (For C x < 103 pF, see curve.) 3. R x and Cx must be kept as close as possible to the circuit in order to minimize stray capacitance and 2.5V J"~ L5V VIN 1.5V tw =tpw + tpLH =0.32 RxCx ~ ' 1.5V 2.5V 1.5V [ + 0.7] 1 Rx "."~ D OUTPUT VON FIGURE 1 FIGURE 2 FIGURE 3 Typical Performance Characteristics OUTPUT PULSE WIDTH VS TIMING RESISTANCE AND CAPACITANCE FOR ex < 103pF ::c NORMALIZED OUTPUT PULSE WIDTH VS AMBIENT TEMPERATURE 1.10 .-,----r-,.-.,--r--.---, vee '" 5.DV f-~+-+':'-'+-+Rx '" 10k '\ Cx =10'pF i; iii .~ ~ !:; ~ " ~ ~ "" I-+---l'-,,'-+-+-+-"T-t'-l 1.05 ~ 1.00 I-+--+--l-::;;o-l""+-+-t---l I-+-+-+-+-+--+"~I.I'...--l 0.95 1"/-+-f-+-+--+-1-+--I 0.95 I '" TA "'2SoC -75 2. -25 75 125 SUPPLY VOLTAGE (V) v~ ••.bv ] ~ S i f-t-+-~-+-+~~~ ~ 1.0' 1-+-+-1-+--1--+-1""'1 ~ 12 1-+--+--+-+-..."../'4-+--1 0.8 I-+--+-f-+-+--+-/--l ;; OPERATING DUTY CYCLE (%) ./ ~ ~ OUTPUT PULSE WIDTH VS AMBIENT TEMPERATURE I-+-+--t-+-+ ex '" 103pF 16 iii 0.6 '--'--'-_'---'--L........_l..-.I 20 60 80' 100 40 0.90 '-..L....L--'_.l.--L...-'_.L-..J 4.5 5.0 5.5 6.0 4.0 0.90 '---'---'--'_.l.--L........_l..-.I PULSE WIDTH VS TIMING RESISTANCE 20 .-,,-"--,--,.-.,---r-,.-,......., 1.' .---r--'--'r-,---r-r-,.--, I-+--+-f-+-+'Cx '" 103 pF VI-"'" T A - AMBIENT TEMPERATURE (OC) NORMALIZED OUTPUT PULSE WIDTH VS OPERATING DUTY CYCLE 1.2 -~I-'"' '\ 1.00 I-+-+--+-"'"rlf-+--+---l ex. TIMING CAPACITANCE (pFl f--+-+---""f-+-+ ~~:,~:V NORMALIZED OUTPUT PULSE WIDTH VS SUPPLY VOLTAGE L B.O 1-+--ti"-:71~+--t--t--+--I / 10 20 30 40 50 Rx - EXTERNAL TIMING RESISTANCE (on) 4·45 70 f--+-+--1-+-+-""t--'-r--:I ~ ~ .!!i z ~ COMPLEMENTARY OUTPUT I :0 ;; 4.0 90 r---r--+~-,----r~v~cc-=~5~.D~V' 1-+--+--1-+-+ Rx = 5.Dk ex = 0 50 1-+--+-1C-+--:T"'R'C'UE"'O"'U=Ti-:pU=T,-l 30 f--+-+--1i---+-+-j-+--l 10 L--'--'-~~~-L--' -75 -25 25 __~~ 75 TA - AMBIENTTEMPERATlJRE 1°C) 125 ~ Additional Devices DM96/DM8602 Dual Retriggerable, Resettable One Shots . General Description These dual resettable, retriggerable one shots have two inputs per function; one'which is active high, and one which is active low. This allows the designer to employ either leading-edge or trailing-edge triggering, which is independent of input transition times. When input con· ditions for triggering are met, a new cycle starts and the external capacitor is allowed to rapidly discharge and then charge again. The retriggerable feature permits output pulse widths to be extended. I n fact a continuous true output can be maintained by having an input cycle time which is shorter than the output cycle time. The output pulse may then be terminated at any time by applying a low logic level to the RESET pin. Retriggering may be inhibited by either connecting the Q output to an active high input, or the Q output to an active low input. Features • • • • • • Connection Diagram vee 16 Truth Table Q CD . 15* 70 ns to 00 output width range Resettableand retriggerable-O% to 100% duty cycle TIL input gating-leading or trailing edge triggering Complementary TIL outputs Optional retrigger lock·out capability Pulse width compensated for V cc and temperature variations Ii 14* PIN NO'S. 5(11) 4(12) H~L H X ' 3(13) OPERATION L H Trigger L~H H Trigger -X L Reset H = High Voltage L 40 ns Min. Negative Input Pulse Width> 40 ns 2.5V 2.5V INPUT OOUT'U:V~ Input to Pin 4 (12), Pin 5 (11) ~ HIGH C. Use to obtain extended pulse widths: This configuration can be used to obtain ex· tended pulse widths, because of the larger timing resistor allowed by beta multiplication. Electrolytics with high inverse leakage currents can be used. R < Rx (0.7) (h FE 01) or ever is the lesser (Pin 3 (13) ~ HIGH) 8. The retriggerable pulse width is calculated as shown below: tw < 2.5 MQ, which· ~ t + tpLH ~ 0.31 Rx Cx (1 + R1x) + tpLH INPUT~_ _~n I--~tw-,--'-1- - - Rx (min) < Ry < Rx (max) (5 kQ S Ry S 10 kQ is recommended) Q OUTPUT 4·48 ---1 LI_ __ ~ Add itional Devices DM96/DM8602 Operating Rules (Continued) The retrigger pulse width is equal to the pulse width (t) plus a delay time. For pulse widths greater than 500 ns, tw can be approximated as t. Retriggering will not occur if the retrigger pulse comes within "" 0.3 ex (ns) after the initial trigger pulse. (j.e., during the discharge cycle). INPUT '--------', RESET o OUTPUT PULSE I-WIDTH-j t n OUTPUT .9. Reset Operation - An overriding clear (active LOW level) is provided on each one shot. By applying a LOW to the reset, any i:iming cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW. 10. Vee and Ground wiring should conform to good high frequency standards so that switching transients on Vee and Ground leads do not cause interaction between one shots. Use of a 0.01 to O.l/-lF bypass capacitor between Vee and Ground located near the DM9602/DM8602 is recommended. Typical Performance Characteristics 1.10 .-,.....,...-.,-r-...,..~--,"" ::!: Vee '" 5.DV l; f-++-\-t--+R x =10kn i i ..... Rx =30k 1Rx.- 20k Rx'" 10k ~ i 1.00 f-++-\"'-.,...:!!'k::::lL-+--i!--1 ~ ~ -25 TA - 25 75 '25 AMBIENT TEMPERATURE (OC) 10 Rx'" 10 kG 1.00 20 FIGURE 2. NORMALIZED OUTPUT PULSE WIDTH VS AMBIENT TEMPERATURE +--+-4-+---+-1 I I--f-I--I-V"*/'-+-'-+---+--I COMPLEMENTARY OUTPUT./ V 0.90 L-...o....--l..--'_.!.......l..-'-_'--' 4.0 4.5 5.0 5.5 6.0 60 -75 Vee -SUPPLY VOLTAGE (V) -25 25 75 TA - AMBIENT TEMPERATURE (·CI FIGURE 4. NORMALIZED OUTPUT PULSE WIDTH VS SUPPLY VOLTAGE FIGURE 5. MINIMUM OUTPUT PULSE WIDTH VS AMBIENT TEMPERATURE 4-49 30 4U FIGURE 3. PULSE WIDTH VS TIMING RESISTOR Cx =1tJ3pF 0.95 - ' / 50 Px - EXTERNAL TIMING RESISTOR (nl 1.10 r-:"T~A-=2=5"'.C-'-"''''''--'-'--' 1.05 v ~~~---1-t--+-+---+---1~ 2 10> / L co Cx - TIMING CAPACITANCE (pFi FIGURE 1. OUTPUT PULSE WIDTH VS TIMING RESISTANCE AND CAPACITANCE FOR C x < 103 pF 10 \; 1-+-+-4-+---+---+-f-i I 14 => r- ~ 0.95 10' 10 ~ Cx "'103 pF 1-+'-P"'-:l-+---+---+---1f-i 1.05 C> II I I ~ 18 125 Notes Notes National Semiconductor Corporation . 2900 Semiconductor Drive . Santa Clara, CA 95051 © 1976 Natlonal Semiconductor Corp, Printed in U,S,A,


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2016:08:11 13:30:06-08:00
Modify Date                     : 2016:08:11 13:55:35-07:00
Metadata Date                   : 2016:08:11 13:55:35-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:001e0d9e-402f-2f4a-9629-c2b4a2d3a526
Instance ID                     : uuid:ff39092a-6fca-c847-bdb0-94e6a277148b
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 562
EXIF Metadata provided by
EXIF.tools

Navigation menu