1976_Semiconductor_Data_Library_Vol_8_Chips 1976 Semiconductor Data Library Vol 8 Chips
User Manual: 1976_Semiconductor_Data_Library_Vol_8_Chips
Open the PDF directly: View PDF
.
Page Count: 513
| Download | |
| Open PDF In Browser | View PDF |
°t
00 L rl ~ P
.. Ii
.....,.r
.
~/ . '.""
1\'
~
[I]
~:t:~:·~
~
•
l;J
00
00
*
... i
--~:
~ 6•
IfII
,
+
;
~.
•~ ~
00
I~~~
'i
ill
~
[I]
ir;;",Pi'
1~1F
,:. , ~
.
..A
I~~~
•
~ [i •
.•• • .
.~ElrJ!
.~~ I#r!
.~ ~
~~~
+
;
00
_nticonduC'tor Product
.nc.
GENERAL INFORMATION
II
INDEX
DISCRETE DEVICES
FLIP-CHIP DEVICES
LINEAR INTEGRATED CIRCUITS
MECL, MEMORIES, PHASE·LOCKED LOOP, AND
LSI INTEGRATED CIRCUITS
DIGITAL SATURATED LOGIC INTEGRATED CIRCUITS
(MTTL, MDTL, MRlL, MHTL, SUHL)
CMOS INTEGRATED CIRCUITS
APPENDIX
•
•
•
•
•
II
IIIJ
Volume 8/Series A
prepared by
Technical Information Center
Sellliconductor
Data Library
CHIPS
The increasing complexity of today's electronic systems is accompanied
by paralleling demands for increased component density, improved subsystem
reliability and reduced functional costs. This triple requirement is leading to
widespread adaptation of hybrid technologies and consequently, to a rapidly
expanding demand for unencapsulated semiconductor components.
Motorola is responsding to this demand by making available, in chip form,
virtually all of the thousands of discrete and integrated circuit devices in its
standard-product catalogs.
The information in this book has been carefully checked and is believed to
be reliable, however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of semiconductor
devices any license under the patent right of any manufacturer.
Printed in U.S.A.
Series A
©MOTOROLA INC., 1976
"All Rights Reserved"
MeMOS, MDTL, MECL, MECL 10,000, MHTL, MRTL, MTTL,
and Glassivated are trademarks of Motorola Inc.
Annular Semiconductors are patented by Motorola Inc.
II
CHAPTER 1
General Information
Page
How to Use the CHIPS DATA BOOK ................................ 1-2
Chip Availability ................................................ 1-2
The Motorola SEMICONDUCTOR DATA LIBRARY .................... 1-3
Chip Designation System .......................................... 1-5
Discrete Chip Processing Flow Chart ................................. 1-6
Chip Packaging ................................................. 1-8
Wafer Packaging •............................................. 1-8
Bulk Packaging .............................................. 1-10
Individual Packaging .......................................... 1-11
Probe Capabil ity ............................................... 1-12
Reliability and Quality Assurance .................................. 1-12
Recommended Incoming Inspection Procedures ....................... 1-13
Hi-Rei Testing ................................................. 1-13
1-1
II
GENERAL INFORMATION
This Chips Data Book provides the information on physical characteristics, size, geometry,
pad layout, metallization and bonding techniques, needed by hybrid microcircuit manufacturers to use these chips in their circuits. It
presupposes that the electrical selection has been
made and a specific device or electrical selection
thereof has been determined.
HOW TO USE THE CHIPS DATA BOOK
STEP 1 Determine the standard device by
JEDEC or Motorola part number that
meets your electrical requirements.
Motorola's Semiconductor Data Library, Selector Guides, Cross References, Data Sheets, Handbooks, and
Application Notes are complete and
convenient sources of electrical selection information.
STEP 2 Find the desired device by JEDEC or
Motorola number in the I ndex. For
discrete devices note the Product
Family and geometry number.
STEP 3 Turn to the Product Family section
for specific information on chip layout,
metallization, bonding, testing guidelines, and ordering information. Discrete geometries within a Product
Family are in alphanumeric sequence
by geometry number; IC geometries
are by device number. The table of
contents . on the first page of each
chapter will assist in locating the information.
STEP 4 See the following pages and specific
Product Family sections for additional
information on packaging, probe capabilities, quality assurance provisions,
special features, Hi-Rei testing, visual
inspection, ordering, and non-standard
process capabilities.
STEP 5 Place order with your nearest Motorola
Sales Office or franchised distributor.
CHIPAVAILABILITY
A great strength of Motorola's chip program
is the ability to draw from the vast classified
wafer inventory for all standard products. The
presence of this wafer inventory permits quick
response to orders for most standard devices
and for electrical selections from the standards.
A wide variety of IC and discrete Flip Chips,
designed specifically for use in hybrid circuits,
are supplied by Motorola. See the Flip Chip
section for complete information on these
devices.
Motorola is completely equipped with electrical, visual and environmental test equipment
to provide chips and wafers qualified to the
most stringent reliability requirements of Space
and Military applications.
Most of these chips are available to the user
at any stage of processing from unscribed, class
or sample-probed wafers~ to fully tested, individual chips in Multi-Pak carriers. The processing
stages for discrete chips are presented in the
following Discrete Chip Processing Flow Chart.
Integrated circu it Processing F low is presented
in the specific Product Family sections.
1-?
THE MOTOROLA SEMICONDUCTOR
DATA LIBRARY
This reference library provides technical
data on a wide variety of discrete devices. It is
an ideal working tool for all designers and users
of semiconductors.
VOLUME
1
Includes complete data
sheets for EIA-registered type numbers available from Motorola up to 1 N5000 and 2N5000.
VOLUME
2
Includes complete data
sheets for EIA-registered type numbers available from Motorola from 1 N5000 and 2N5000
and up, plus 3N- and 4N-types.
VOLUME 3 Includes complete specifications for all Motorola discrete component nonregistered device type numbers.
$9.00/set
VOL. 4 - MECL DATA BOOK
This Data Book provides comprehensive
specifications, and family systems characteristics of the MECL family of digital integrated
circuits. Data sheets are included on MECL III
and the popular MECL 10,000 family, plus
information on compatible circuits, phaselocked loops and Motorola's MI L-M-38510
program.
$3.00
VOL.5 - CMOS DATA BOOK
Written with the very latest mid-'76 industrywide B-Series CMOS specifications formulated
under JEDEC cognizance, this all-CMOS (only
CMOS) data book is the authoritative work in
its field.
The book covers over 100 parts in the new
Motorola B-Series, representing the broadest
line of presently available B-Series CMOS in SSI,
MSI and LSI complexities. It also features
CMOS LSI circuits. In addition to data sheets,
reliability and handling procedures and all the
other reference material you've come to expect
in Motorola data books, YOU'll find one section
on "previews" of new devices.
$2.50
1-3
II
II
VOL. 6 - LINEAR IC DATA BOOK
This 847 page book includes master index,
product highlights, selector guides, previews of
new products, cross-reference, MI L-M-3851 0,
data sheet specs, package information and application notes. All at your fingertips, in one
handy volume!
$3.00
VOL. 7 -
MOS MEMORIES DATA BOOK
This 320-page book presents technical information on all of Motorola's broad, expanding
MOS memory lines in data sheet format. NMOS
and CMOS RAMs and ROMs are detailed, with
selection guides for quick reference. In addition, it includes applications and reliability information together with the memories that are
a part of Motorola's M6800 Family for microcomputer systems. One chapter is devoted to
the necessary information on memory interface. The book deals with those memories
planned as well as those already available.
$2.50
BIPOLAR SATURATED
DIGITAL LOGIC BOOK
This 200-page book provides selector guides,
logic diagrams, and general family information
on a wide variety of bipolar digital product
lines. Included are TTL (includingSUHL types),
DTL, HTL, RTL, and Diode Arrays. A cross
reference and a listing of devices included in
Motorola's MIL-M-38510 program add to the
usefulness of this book.
$1.50
1-.1
II
CHIP DESIGNATION SYSTEM
The chips of all Motorola JEDEC devices and
Motorola non-registered devices are designated
by the letter C after the prefix. These chips are
tested and or guaranteed to the published
Motorola data sheet performance subject to
probe limitations and qualifications detailed in
each Product Family section.
The chip designation system also includes
each chip processing stage and works as follows:
TABLE 1 - CHIP DESIGNATION EXAMPLES:
Encapsulated Device
Chip Device
Designation
Designation
" Example of Chip Device with
Typical Packaging Suffix (See Table 2)
Discrete Devices
2N2222
MPSA92
MJ3055
1N749
MBD201
2NC2222
MPSAC92
MJC3055
2N2222 (Multi-Pak; no quantity)
MPSAC92-2 (Multi-Pak; 100 chips)
MJC3055-25 (Multi-Pak; 25 chips)
1 NC749
MBDC201
1 NC749PV (Vial)
MBDC201 PK (Vacu-Pak)
Integrated Circuits
MC10101 L
MCC5400
MCC10101
MCC1 01 01-1 (Multi-Pak, 10 chips)
MC5400
MCC5400-2 (Multi-Pak, 100 chips)
Wafer
Designation
MC4344
MCW4344 (lC Wafer)
MCW4344
TABLE 2 - PACKAGING SUFFIX
Suffix
Discrete Products & I ntegrated Circuits
(none)
-1
-2
-25
-4
Discrete Products only
L
Description
Multi-pak, no quantity limitation, 100%
visual inspection to standard criteria of
each Product Family.
10 chips per Multi-pak; 100% visual
100 chips per Multi-pak; 100% visual
25 chips per M ulti-pak; 100% visual
400 chips per Multi-pak; 100% visual
Multi-pak; any quantitY per carrier, 100%
visual per standard Product Family
criteria to relaxed L TPD and/or lower
power inspection
Vial; sample visual
Vacu-Pak; sample visual
Wafer-Pak; class probed, unscribed wafer,
sample visual
Wafer-Pak; unit probed, unscribed wafer,
sample visual
PV
PK
W
WP
'-5
DISCRETE CHIP PROCESSING FLOW CHART
I
FIRST ORDER
OPTION
>--
Wafer Classification
(Visual)
SECOND ORDER
OPTION
Wafer
Wafer
Class Probe
(Electrical)
Unit Probe
(Electrical)
PROCESS
DESCRIPTION
Each wafer visually
inspected by a
qualified Q. C. inspector to Motorola
specification
12M55254L or
equivalent. Only
wafers passing this
inspection are accepted for further
processing. See
Appendix A for
details.
Unscribed wafer
visually inspected, with
statistically guaranteed electrical
performance.
Priced on a
wafer basis.
RESUL TING
PRODU CT
SHIPPIN G
CARRIE R
At least 10 chips
on each wafer are
probed for DC parameters. The
wafer is then
assigned for processing to a
specific device
specification.
All carriers are
shipped with
"tamper-proof"
seals affixed by
Q.A. personnel.
All chips on each
wafer are probed
for specific DC
parameters. All
electrical rejects
are inked.
Unscribed wafer,
visually inspected;
with guaranteed
electrical performa nee. Priced
accord ing to the
number of chips
meeting electrical
specifications.
,
Glass-Pak
Wafer-Pak
(W-Suffix)
See Appendix A
for suggested
incoming visual
inspection.
1-R
Glass-Pak
Wafer-Pak
(WP-Suffixi
II
FOURTH ORDER OPTIONS
Break into Chips
8
The scribed wafer
is broken into individual chips and
rejects are removed.
~
~
THIRD ORDER OPTION
Break into
Quarters on
Mylar
Each wafer is
quartered and
each quarter
broken on a
sheet of mylar.
Chips adhere to
the my lar in their
exact wafer orientation and
position. Wafers
are inspected
visually for gross
scribe damage.
Mylar and F reon
are registere d
trademarks of
E.I. DuPont
DeNemours & Co. Inc.
Scribed and
broken quarter
wafer, visually
inspected, with
guaranteed
electrical performance. Priced
on the number
of chips meeting
electrical
specifications.
Bulk Carrier Loading
(Sample visual)
Individual
Carrier Loading
(100% visual)
Good chips are
loaded into a
vial using a vacuum
needle. Visual inspection is performed
to Motorola
specification
12MRB00104A or
equ ivalent.
Good chips are
loaded into a
waffle type carrier
using a vacuum
needle. Visual inspection is performed to Motorola
specification
12M54725F or
equivalent.
Individual chips
in vial with guaranteed electrical
performance.
Priced on the
number of chips.
1
Freon-Pak
Straw-Pak
Vial-Pak
(PV-Suffix)
Vacu-Pak
(PK-Suffix)
1-7
Individual chips in
waffle type car-rier
with guarant"eed
electrical performance. Priced on the
number of chips.
l
Multi~Pak
I
CHIP PACKAGING
Motorola supplies chips in a variety of
standard packages to handle the different processing stages and to accommodate customers
with both large and small quantity requirements.
WAFER PACKAGING
FIGURE 1 - GLASS-PAK (Discrete Products only)
(Wafer - Unscribed)
The unscribed wafer is held between two
pieces of filter paper and is protected from
breakage by the thick glass plate. The wafer and
the glass plate are held together firmly in the
evacuated and thermally sealed plastic bag.
FIGURE 2 - WAFER-PAK
(Discrete Products and Integrated Circuits)
(Wafer - Unscribed)
Foam
Mylar or filter paper
Wafer
Mylar or filter paper
Wafers are shipped between two layers of
mylar of inert filter paper sandwiched between
two layers of polyfoam pressed together in a
plastic box. This technique prevents movement
or damage to the wafer in shipment.
Foam
1 0
FIGURE 3 - VACU-PAK (Discrete Products only)
(Wafer-Scribed and Broken on Mylar)
Each quarter wafer is scribed and broke~ on
a sheet of mylar with the gold-backed side
against the mylar. The chips stick to the mylar
and maintain their exact wafer orientation and
spacing. A maximum of four-quarter wafer
sections are packaged as illustrated. The evacuated plastic bag is thermally sealed, holds the
contents securely, and allows no chip movement. See handling precautions for Vacu-Pak
Carrier.
Filter Paper
Mylar
Broken Wafer
Filter Paper
Mylar
Filter Paper
Broken' Wafer
Mylar
VACU-PAK - HANDLING PRECAUTIONS
STEP 3: Roll back the filter paper on the top
layer of scribed and broken wafer
Care must be exercised when opening the
quarters making sure no chips adhere
package to avoid disturbing the chips. The
to the filter paper.
following procedure is recommended:
STEP 4: With tweezers grasp the uppermost
mylar sheet and sl ide the exposed
STEP 1: Place the Vacu-Pak on a flat surface
quarter wafer on to a grease plate,
with the opaque filter paper side of
bonding platform or container for
the sandwich up and the mylar side
storage.
Do not make waves in the
down.
mylar.
STEP 2: With a sharp knife, cut through three STEP 5: Keep the mylar on a flat, smooth
surface. Individual chips can be easily
sides of the top of the plastic bag so it
lifted off the mylar with a vacuum
can be carefully rolled back. Gently
pick-up needle without disturbing the
hold the top piece of filter paper in
remaining chips.
position as the bag is rolled back.
1-Q
II
BULK PACKAGING
II
FIGURE 4 - VIAL-PAK (Discrete Products only)
The Vial-Pak is designed for the large quantity
user. Chips are held in position with foam or
inert packing material.
FIGURE 5 - FREON VIAL (Zener Products only)
(5000 Chips, Maximum)
Freon Vial
Chips
Chips are protected from damage by being
immersed in Freon TF.
Freon TF (Trichlorotrifluoroethane) is nonflammable, non-explosive, exceptionally pure,
chemically stable and low in toxicity. Freon TF
leaves a residue-free surface when parts are dried
at room temperature. To remove the chips pour
the Freon TF through a piece of filter paper into
a beaker or waste can. Chips will dry rapidly
when Jeft at room temperature.
FIGURE 6 - STRAW-PAK (Discrete Products only)
Straw Pak
Vial
Pack ing Material
(Inert)
The chips are contained in a section of straw
which is placed ina plastic vial. Packing material
as indicated prevents movement of the chips
and keeps the chips from being crushed by the
top bend of the straw during packaging and
subsequent opening and closing for inspection
and use.
INDIVIDUAL PACKAGING
FIGURE 7 - MUL TI-PAK
(Discrete Products and Integrated Circuits)
14---- TOP V I E W _ I
I
2.00 NOM
COMPARTMENTEDTRAV
This is a 2"x2" waffle type carrier with a
separate hole for each chip, holding up to 400
chips depending upon chip size.
FIGURE 8 - M.E.S.A. PAK
(Motorola Etched Strip Assembly)
PLASTIC
TAPE
CONTAINER
PRE-BONDED
ETCHED METAL
TAPE
Dice pre-bonded to an etched metal tape
pattern. The M.E.S.A. method of chip mounting
offers excellent heat conductivity away from
the die.
Consult factory for availability.
1-11
II
II
PROBE CAPABILITY
Individual chips are tested to data sheet or
negotiated specifications for dc parameters
within the limitations of chip probe capabilities.
The following table presents unit probe capabilities of equipment in use at this time.
During unit probe, the desired tests and
limits are programmed and all chips on the
entire wafer are probed. Chips failing any test
are automatically inked as rejects. Parameters
that are outside the accuracies or limits of the
test equipment can often be guaranteed by
correlating to measureable values. Wafers can be
qualified to certain limits by encapsulating and
measuring a sample of chips from the wafer on
standard test set-ups.
Ac parameters, switching and threshold (noise
figure, power gain) tests cannot be performed
directly on a chip in wafer form, but can be
guaranteed on the basis of testing encapsu lated
samples from a wafer or lot.
TABLE 3 - ELECTRICAL TEST CAPABILITY
FOR PROBING OF BIPOLAR
TRANSISTORS AND DIODE DISCRETE CHIPS
Parameter
Test Condition Limits
Limits
All Breakdown Voltages
All Leakage Currents
Current Gain (hF~)
All Saturation & ' on" Voltages
Forward Voltages (V F)
10~A-150mA
0-500V
100nA-1.5mA
0-15,000
0-10V
0-25V
RELIABILITY AND QUALITY ASSURANCE
Chip processing steps include several independent visual and electrical checks on the
product by Quality Assurance (QA) personnel.
Prior to shipment, a final QA examination of
the product is performed to insure that all
requirements of the purchase order are met. The
total function of the Motorola Refiability and
Quality Assurance (R and QA) organization is
quite broad is presented in the Semiconductor
Products Division Rand QA Manual, which is
0-500V
1 00~A-500mA
100J..LA-1.5A
0-150mA
available upon request.
Integrated circuit chips are subjected to the
same in-process controls as Motorola's standard
encapsulated devices. The chips processing and
qual ity control requ irements are designed to
ensure reliability and performance of the finished
product. A.C. and D.C. parameters which cannot
be tested directly to limits and conditions as
specified on standard data sheets, are guaranteed
to an LTPD of 20/2. These quaranteed limits are
valid only when the chips are properly assembled.
TABLE 4 - STANDARD QA SAMPLING PLANS FOR DEVICE AND WAFERS
Characteristic
LTPD
Maximum
Sample Size
Maximum
Acceptance No.
Visual and Mechanical
Multi-Pak, Vial-Pak
(100% Production Inspected)
Glass-Pak and Vacu-Pak
10
52
2
20
69
9
DC Electrical Parameters
10
38
1
AC Electrical and Temperature Parameters
20
25
2
RECOMMENDED INCOMING INSPECTION
PROCEDURES
entire lot together with the test samples and
a detailed inspection report shall be returned
to Motorola. In no case will Motorola accept
rejected material that the customer has
inspected 100%.
Motorola assures that the devices will meet
the customers' incoming visual inspection when
inspected to the visual criteria and LTPD limits
specified. Inspection must be performed at the
power and magnification indicated. Motorola HI REL TESTING
Chips and wafers can be qualified for exguarantees dc parameters to LTPD limits
tremely critical applications by rigorous te~ing
specified.
of encapsulated samples, tight 100% visual inReturn Components
spection, SEM, strict process control and traceIt is suggested that the customer perform ability to wafer and lot.
Chips usedtn military or other highly reliable
incoming inspection in the following sequence:
applications are tested by the Motorola QA
1. Visual
personnel and conform to the following military
2. Test dc electrical parameters
A. If the lot fails visual inspection, containers specifications:
Cal ibration System
MI L-C-45662
must be closed and secured and the entire lot
Requirements
returned to Motorola with a detailed inspecfnspectlon System
MI L-I-45208
tion report. In no case will Motorola accept
Requ irements
rejected material that the customer has
General Specifications for
inspected 100%.
MI L-M-3851 0
Microcircuits
B. After the lot has passed incoming visual
Quality Program
MI L-Q-9858
inspection, samples are selected and su bRequirements
jected to electrical tests of the dc parameters.
General Specifications for
If samples do not pass the electrical tests,
MI L-S-19500
they shall be packaged separately and identiSemiconductor Devices
fied with all the information from the
Test Methods and ProceMI L-S-883
original package of chips. The shipping
dures for Microelectronics
, container must be closed and secured. The
1-13
II
I
NOTES
1-14
CHAPTER 2
Index
•
Page
Key to Column Identification for Discrete Device Chips .......... ~ . . . . . . .
Device Listi ng
Discrete devices and integrated circuits in a SINGLE
ALPHANUMERIC Listing.
2-1
2-2
KEY TO COLUMN IDENTIFICATION FOR
DISCRETE DEVICE CHIPS
•
Device
Type
Chip No.
2
Column 1 -
Alternate
Chip
Geometry
4
5
6
Device Type
Column 2 - Chip Number
Designation for the chip probed as closely as possible to the data sheet of the Column 1 device. Refer
to the Product Family sections and General Information section for specific information on physical
characteristics and probe limitations.
Alternate Chip
Designation of an alternate chip which could offer
advantages over the Column 2 chip in areas of performance, availability, physical characteristics or
price. Refer to the Product Family section for
guidance.
Column 4 -
Pol.
3
Alphanumeric listing of nearly all discrete, encapsulated devices made by Motorola and with data
sheets published by Motorola.
Column 3 -
Family
Family
The following abbreviations are used for discrete
devices; the page number for each family is listed
on page 3-1.
Diac
FETJ
FETM
FETM(D)
FETMDG
FETMQ
IRED
POD
PDT
PDTR
PIN
Bilateral Trigger
Junction FET
MOSFET
Dual MOSFET
Dual Gate MOSFET
Monolithic Quad MOSFET
Infrared-Emitting Diode
PIN Photodiode Detector
Phototransistor Detector
Photodarlington Detector
PIN Switching Diode
PUT
PWR
RF
SSD
SBR
SBS
SCR
SST
SST(D)
SSTR
SUS
SWD
TO
TD-D
TDHA
Triac
UJT
Z
ZCL
ZREF
Column 5 -
Programmable UJT (Trigger)
Silicon Power Transistor
R F Transistor
Schottky Barrier Low-Level
Diode
Schottky Barrier Rectifier
Silicon Bidirectional Switch
(Trigger)
Silicon-Controlled Rectifier
Small-Signal Transistor
Dual Small-Signal Transistor
Darlington Small-Signal Transistor
Silicon Unidirectional Switch
(Trigger)
Silicon Switching Diode
Abrupt Junction Tuning Diode
Monolithic Dual Diodes
Hyper-Abrupt Junction Tuning
Diodes
Bilaterial SCR
Unijunction Transistor (Trigger)
Zener Voltage Regulator Diode
Field-Effect Current Regulator
Diode
Precision Voltage Reference
Diode (Zero TC)
Polarity
Shows polarity of transistors: N for NPN, or P for
PNP.
Coiumn 6 -
Geometry
This number indicates a specific geometry which
is shown in alphanumeric order in the Product
Family section.
ALPHANUMERIC INDEX
1M110ZS10,5 - 1N989,A,8
Device
Type
1M110lS10.5
thru
1M200lS10.5
1N746.A
1N747.A
1N748.A
1N749.A
1N750.A
1N751,A
1N752,A
1N753,A
1N754,A
1N755,A
1N756,A
1N757,A
1N758,A
1N759,A
1N821,A
1N823,A
1N825,A
1N827,A
1N829,A
1N914
1N914A
1N935,A,B
thru
1N939,A,B
1N941,A,B
thru
1N945,A,B
1N957,A,B
1N958,A,B
1N959,A,B
1N960,A,B
1N961,A,B
1N962,A,B
1N963,A,B
1N964,A,B
1N965,A,B
1N966,A,B
1N967,A,B
1N968.A,B
1N969,A,B
1N970,A,B
1N971,A,B
1N972,A,B
1N973,A,B
1N974,A,B
1N975,A,B
1N976,A,8
1N977,A,B
1N978,A,B
1N979.A,B
1N980,A,B
1N981,A,B
1N982,A,B
1N983,A,B
1N984,A,B
1N985,A,B
1N986,A,B
1N987,A,B
1N988.A,B
1N989,A,B
Chip No.
1MC110lS1O,5
thru
1MC1 OOlS 10,5
1 NC746,A
1NC747,A
1 NC748,A
1NC749,A
1NC750,A
1NC751,A
1 NC752,A
1NC753,A
1NC754,A
1 NC755,A
1 NC756,A
1NC757,A
1NC758,A
1NC759,A
1 NC821,A
1 NC823,A
1 NC825,A
1NC827,A
1 NC829,A
1 NC914
1NC914A
CF
Alternate
Chip
MlC3.3A 10,5
MlC3.6A10,5
MZC3.9A10,5
MZC4.3A10,5
MZC4.7A10,5
MlC5.1 A 10,5
MZC5.6A10,5
MZC6.2A 10,5
MZC6.8A 10,5
MZC7.5A10,5
MZC8.2Al0,5
MZC9.1 A 10,5
MZC10A10,5
MZC12A10,5
CF
CF
CF
1 NC957,A,8
1NC958,A,8
1NC959,A,B
1 NC960,A,8
1 NC961,A,B
1NC962,A,8
1NC963,A,8
1NC964,A,8
1 NC965,A,8
1NC966,A,B
1NC967,A,8
1NC968,A,8
1 NC969,A,8
1NC970,A,B
1NC971,A,8
1NC972,A,8
1 NC973,A,8
1 NC974,A,B
1NC975,A,8
1NC976,A,8
1 NC977,A,8
1 NC978,A,8
1NC979,A,B
1NC980,A,8
1 NC981,A,8
1NC982,A,B
1NC983,A,8
1NC984,A,8
1 NC985,A,8
1 NC986,A,8
1NC987,A,8
1NC988,A,8
1NC989,A,8
MZCq.8A 10,5
MZC7.5A10,5
MZC8.2A 10,5
MZC9.1 A 10,5
MZC10A10,5
MZC11A10,5
MZC12A10,5
MZC13A10,5
MZC15A10,5
MZC16A10,5
MZC18A10,5
MZC20A10,5
MZC22A10,5
MZC24A10,5
MZC27A10,5
MZC30A10,5
MZC33A10,5
MZC36A10,5
MZC39A10,5
MZC43A10,5
MZC47A10,5
MZC51A10,5
MZC56A10,5
MZC62A10,5
MZC68A10,5
MZC75A10,5
MZC82A10,5
MZC91A10,5
MZC100A10,5
MZC11 OA 10,5
MZC120A 10,5
MZC130A 10,5
MZC150A10,5
Family
Pol.
Geometry
l
8
l
l
l
Z
Z
Z
l
Z
Z
Z
Z
Z
Z
Z
Z
ZREF
ZREF
ZREF
ZREF
ZREF
SWD
SWD
ZREF
8
B-A
8-A
B-A
8-A
8-A
B-A
8-A
8-A
8-A
8-A
B-A
8-A
8-A
8-A
F
F
F
F
F
EL241
ZREF
ZREF
F
F
ZREF
Z
Z
Z
Z
Z
Z
Z
Z
l
Z
Z
Z
Z
Z
l
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
F
8-A
8-A
8-A
8-A
B-A
8-A
8-A
B-A
8-A
8-A
8-A
8-A
B-A
8-A
8-A
B-A
B-A
8-A
8-A
8-A
8-A
8-A
8-A
8-A
8-A
B-A
8-A
8-A
8-A
8-A
8-A
8-A
8-A
F
II
1 N990,A,8 - 1 N4569,A
Device
Tvpe
II
1N990.A.B
1N991.A.B
1N992.A,B
1N2804.A.B
thru
1N2846.A.B
1N2970.A.B
thru
1N3015.A.B
1N3016.A
thru
1N3051.A
1N3305,A.B
thru
1N3350.A.B
1N3600
1N3785.A,B
thru
1N3820.A.B
1N3821.A
thru
1N3830.A
1N3993.A
thru
1N4000.A
1N4099
1 N4100
1N4101
1N4102
1N4103
1N4104
1N4105
1N4106
1N4107
1N4108
1N4109
1N4110
1N4111
1N4112
1N4113
1N4114
1N4115
1N4116
1N4117
1N4118
1N4119
1N4120
1N4121
1N4122
1N4123
1N4124
1N4125
1N4126
1N4127
1N4128
1N4129
1N4130
1N4131
1~4132
1N4133
1N4134
1N4135
1N4370.A
1N4371.A
1N4372.A
1N4549.A.B
thru
1N4564
1N4565.A
1N4566.A
1N4567.A
1N4568.A
1 N4569.A
Chip No.
Alternate
Chip
Family
Pol.
Geometry
Z
Z
Z
Z
B-A
B-A
B-A
E
CF
CF
Z
Z
E
0
CF
CF
Z
Z
C
CF
CF
Z
Z
C
E
Z
SWD
Z
E
CF
CF
Z
Z
E
C
CF
CF
Z
Z
C
0
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
0
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
E
Z
ZREF
ZREF
ZREF
ZREF
ZREF
E
F
F
F
F
F
1 NC999.A.B
1NC991.A.B
1 NC992.A.B
CF
MZC160Al0,5
MZC180Al0,5
MZC200A 10,5
CF
1 NC3600
CF
CF
1NC4099
lNC4100
lNC4101
lNC4102
lNC4103
lNC4104
lNC4105
lNC4106
lNC4107
1 NC41 08
lNC4109
1 NC4110
1 NC4111
1 NC4112
lNC4113
lNC4114
lNC4115
1 NC4116
1 NC4117
1 NC411B
1 NC4119
lNC4120
lNC4121
lNC4122
1 NC41'23
lNC4124
1 NC4125
1 NC4126
1 NC4127
1 NC412B
lNC4129
1 NC4130
lNC4131
lNC4132
1 NC4133
lNC4134
1 NC4135
1 NC4370,A
1 NC4371,A
1NC4372.A
CF
MZC6.BB5
MZC7.5B5
MZCB.2B5
MZCB.7B5
MZC9.1B5
MZC10B5
MZC11 B5
MZC12B5
MZC13B5
MZC14B5
MZC15B5
MZC16B5
MZC17B5
MZC1BB5
MZC19B5
MZC20B5
MZC22B5
MZC24B5
MZC25B5
MZC27B5
MZC2BB5
MZC30B5
MZC33B5
MZC36B5
MZC39B5
MZC43B5
MZC47B5
MZC51B5
MZC56B5
MZC60B5
MZC62B5
MZC68B5
MZC75B5
MZC82B5
MZC87B5
MZC91B5
MZC100B5
CF
CF
CF
CF
CF
CF
....
A
0
E
1 N4570,A - 1 N5264,A,B
Device
Type
1N4570.A
1N4571.A
1N4572.A
1N4573.A
1N4574.A
1N4575.A
1N4576.A
1N4577.A
1N4578.A
1N4579.A
1N4580.A
1N4581.A
1N4582.A
1N4583.A
1N4584.A
1N4728.A
thru
1N4764.A
1N4765.A
thru
1N4784.A
1N4896.A
thru
1N4932.A
1N5139.A
thru
1N5148.A
1N5159
1N5160
1N5221.A.B
1N5222.A.B
1N5223.A.B
1N5224.A.B
1N5225.A.B
1N5226.A.B
1N5227.A.B
1N5228.A.B
1N5229.A.B
1N5230.A.B
1N5231.A.8
1N5232.A.B
1N5233.A.B
1N5234.A.B
1N5235.A.B
1N5236.A.B
1N5237.A.B
1N5238.A.B
1N5239.A.B
1N5240.A.B
1N5241.A.B
1N5242.A.B
1N5243.A.B
1N5244.A.B
1N5245.A.B
1N5246.A.B
1N5247.A.B
1N5248.A.B
1N5249.A.B
1N5250.A.B
1N5251.A.B
1N5252.A.B
1N5253.A.B
1N5254.A.B
1N5255.A.B
1N5256.A.B
1N5257.A.8
1N5258.A.B
1N5259.A.B
1N5260.A.B
1N5261.A.B
1N5262.A.B
1N5263.A.B
1N5264,A,B
Chip No.
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
1N4728,A
thru
1NC4764,A
1NC4765,A
thru
1NC4784,A
1NC4896.A
thru
1NC4932,A
MVC5139.A
thru
MVC5148,A
CF
CF
1NC5221,A,B
1NC5222,A,B
1NC5223.A,B
1NC5224,A,B
1NC5225,A,B
1NC5226.A,B
1NC5227,A,B
1NC5228,A,B
1NC5229,A,B
1NC5230,A,B
1NC5231,A,B
1NC5232,A,B
1NC5233.A,B
1NC5234,A,B
1NC5235,A,B
1NC5236,A,B
1NC5237,A,B
1NC5238,A,B
1NC5239,A,B
1NC5240.A,B
1NC5241,A,B
1NC5242,A,B
1NC5243,A,B
1NC5244,A,B
1NC5245,A,B
1NC5246,A,B
1NC5247,A,B
1NC5248,A,B
1NC5249,A,B
1NC5250,A,B
lNC5251,A,B
1NC5252,A,B
1NC5253,A,B
1NC5254.A.B
1NC5255,A,B
1NC5256,A,B
1NC5257,A,B
1NC5258,A,B
1NC5259,A,B
1NC5260.A,B
1NC5261,A,B
1NC5262.A,B
1NC5263,A,B
1NC5264,A,B
Alternate
Chip
MZC2.4A 10,5
MZC2.5A10.5
MZC2.7A10,5
MZC2.8A 10.5
MZC3.0A 10,5
MZC3.3A 10.5
MZC3.6A 10,5
MZC3.9A10,5
MZC4.3A 10.5
MZC4.7A10.5
MZC5.1A10,5
MZC5.6A10.5
MZC6.0A 10,5
MZC6.2Al0,5
MZC6.8A 10,5
MZC7.5A10.5
MZC8.2A 10.5
MZC8.7A10.5
MZC9.1 A 10,5
MZC10A10.5
MZC11A10.5
MZC12A10.5
MZC13A10,5
MZC14A10.5
MZC15A10,5
MZC16A10,5
MZC17A10.5
MZC18A10,5
MZC19A10,5
MZC20A10,5
MZC22A10,5
MZC24A10.5
MZC25A10.5
MZC27A10,5
MZC28A10.5
MZC30A10,5
MZC33A10,5
MZC36A10.5
MZC39A10,5
MZC43A10,5
MZC47A10.5
MZC51A10,5
MZC56A10,5
MZC60A10,5
Family
Pol.
Geometry
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
ZREF
Z
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
B
Z
ZREF
B
F
ZREF
ZREF
F
F
ZREF
TO
F
VL19-30
TO
VL19-30
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
8-A
8-A
B-A
B-A
B-A
B-A
8-A
8-A
8-A
B-A
8-A
8-A
B-A
B-A
8-A
8-A
8-A
B-A
8-A
B-A
8-A
B-A
B-A
B-A
8-A
8-A
B-A
8-A
8-A
B-A
B-A
8-A
B-A
B-A
B-A
B-A
•
1 N5265,A,B - 1 N5818
Device
Type
II
1N5265.A.B
1N5266.A.B
1N5267.A.B
1N5268.A.B
1N5269.A.B
1N5270.A.B
1N5271.A.B
1N5272.A.B
1N5273.A.B
1N5274,A,B
1N5275,A,B
1N5276,A,B
1N5277,A.B
1N5278.A.B
1N5279,A.B
1N5280.A.B
1N5281,A,B
1N5283
thru
1N5314
1N5333,A,B
thru
1N5388,A.B
1N5441A,B,C
thru
1 N5456A, B, C
1N5461A,B.C
thru
1N5476A,B.C
1N5518,A,B
1N5519,A.B
1N5520,A,B
1N5521.A,B
1N5522,A.B
1N5523,A,B
1N5524.A,B
1N5525,A,B
1N5526,A,B
1N5527,A,B
1N5528,A,B
1N5529,A,B
1N5530.A.B
1N5531.A.B
1 N5532.A.B
1N5533.A.B
1N5534.A.B
1N5535.A.B
1N5536.A.B
1N5537,A.B
1N5538.A.B
1N5539,A.B
1N5540.A.B
1N5541.A.B
1N5542,A.B
1N5543,A.B
1N5544.A.B
1N5545,A.B
1N5546.A.B
1N5758
1N5758A
1N5759
1N5759A
1N5760
1N5760A
1N5761
1N5761A
1N5762
1N5762A
1N5779
thru
1N5793
1 N5817
1N5818
Alternate
Chip
Chip No.
1NC5265,A,B
1NC5266,A,B
1NC5267,A,B
1NC5268,AB
1NC5269,A,B
1NC5270,A,B
1NC5271,A,B
1NC5272,A,B
1NC5273,A,B
1NC5274,A,B
1NC5275,A,B
1NC5276,A,B
1NC5277,A,B
1NC5278,A,B
1NC5279,A,B
1NC5280,A,B
1NC5281 ,A,B
1NC5283
thru
lNC5314
CF
CF
MVC5441 A, B,
thru
MVC5456A, B,
MVC5461A, B,
thru
MVC5476A B,
1NC5518,A,B.
1NC5519,A,B
1NC5520,A,B
1NC5521 ,A,B
1NC5522,A,B
1NC5523,AB
1NC5524,A,B
1NC5525,A,B
1NC5526,A,B
1NC5527,A,B
1NC5528,A,B
1NC5529,A,B
1NC5530,A,B
1 NC5531,A,B
1NC5532,A,B
1NC5533,A,B
1NC5534,A,B
1 NC5535,A,B
1NC5536,A,B
1 NC5537,A,B
1NC5538.A.B
1NC5539.A.B
1NC5540.A.B
1NC5541 .A.B
1NC5542,A,B
1NC5543.A.B
1NC5544,A,B
1NC5545,A,B
1NC5546.A.B
1NC5758
MZC62Al0,5
MZC68Al0,5
MZC75Al0,5
MZC82Al0,5
MZC87Al0,5
MZC91Al0,5
MZC100Al0,5
MZCll OA 10,5
MZC120Al0,5
MZC130A 10,5
MZC140Al0,5
MZC150A 10,5
MZC160Al0,5
MZC170A 10,5
MZC180Al0,5
MZC190Al0,5
MZC200Al0,5
CF
Pol.
Geometry
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZCL
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
G
ZCL
Z
G
C
C
Z
TO
C
VL44-59
C
C
TO
TO
VL44-59
VL44-59
TO
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
OIAC
olAC
OIAC
OIAC
OIAC
OIAC
OIAC
olAC
OIAC
OIAC
VL44-59
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
TL51 153
TL51 153
TL51/53
TL51/53
TL51/53
TL51 153
TL51 153
TL51 153
TL51 153
TL51 153
SBR
SBR
RL754
RL754
CF
C
MZC3.3A 10,5
MZC3.6Al0,5
MZC3.9Al0,5
MZC4.3A 10,5
MZC4.7Al0,5
MZC5.1 A 10,5
MZC5.6Al0,5
MZC6.2Al0,5
MZC6.8A 10,5
MZC7.5Al0,5
MZC8.2A 10,5
MZC9.1 A 10,5
MZC10Al0,5
MZCllAl0;5
MZC12Al0,5
MZC13Al0,5
MZC14Al0,5
MZC15Al0,5
MZC16Al0,5
MZC17Al0,5
MZC18AlO,5
MZC19Al0,5
MZC20AlO,5
MZC22Al0,5
MZC24Al0,5
MZC25Al0,5
MZC28Al0,5
MZC30Al0,5
MZC33Al0,5
1NC5758
1 NC5759
1NC5759
1 NC5760
1NC4760
1 NC5761
1 NC5761
1NC5762
1 NC5762
CF
thru
CF
lNC5817
lNC5818
Family
1 N5820 - 1 N5895,A,8
Device
Type
1 N5820
1 N5821
lN5823
1 N5824
lN5825
lN5826
1 N5827
lN5828
lN5829
1 N5830
lN5831
lN5832
lN5833
lN5834
lN5837,A,B
lN5838,A,B
lN5839,A,B
lN5840,A,B
lN5841,A,B
lN5842,A,B
lN5843,A,B
lN5844,A,B
lN5845,A,B
lN5846,A,B
lN5847,A,B
lN5848,A,B
lN5849,A,B
lN5850,A,B
lN5851,A,B
1N5852,A,B
lN5853,A,B
lN5854,A,B
1N5855,A,B
lN5856,A,B
lN5857,A,B
1N5858,A,B
lN5859,A,B
1N5860,A,B
1N5861,A,B
1N5862,A,B
lN5863,A,B
lN5864,A,B
1N5865,A,B
1N5866,A,B
1N5867,A,B
1N5868,A,B
1N5869,A,B
1N5870,A,B
1N5871,A,B
1N5872,A,B
1N5873,A,B
1N5874,A,B
1N5875,A,B
1N5876,A,B
1N5877,A,B
1N5878,A,B
1N5879,A,B
1N5880,A,B
1N5881,A,B
1N5882,A,B
1N5883,A,B
1N5884,A,B
1N5885,A,B
1N5886,A,B
1N5887,A,B
lN5888,A,B
1N5889,A,B
1N5890,A,B
1 N5891,A,B
1N5892,A,B
1N5893,A,B
lN5894.A,B
1N5895,A,B
Chip No.
1NC5820
1NC5821
1NC5826
1NC5827
CF
1NC5826
1NC5827
CF
lNC5832
1NC5833
CF
1NC5832
1NC5833
CF
1NC5837,A.B
1NC5838,A.B
1NC5839,A.B
1NC5840,A,B
1NC5841 ,A.B
1NC5842,A.B
1NC5843,A.B
1NC5844,A.B
1NC5845,A.B
1NC5846,A.B
1NC5847,A.B
1NC5848,A.B
1NC5849,A.B
1NC5850,A.B
1NC5851 ,A.B
1NC5852,A,B
1NC5853,A.B
1NC5854,A.B
1 NC5855,A,B
1NC5856,A.B
1NC5857,A.B
1 NC5858,A.B
1NC5859,A.B
1NC5860,A,B
lNC5861,A.B
1NC5862,A.B
1NC5863,A.B
1 NC5864,A,B
1NC5865,A.B
1NC5866,A.B
1 NC5867,A.B
1 NC5868,A.B
1NC5869,A.B
1 NC5870,A.B
lNC5871,A.B
1 NC5872,A.B
1 NC5873,A.B
1 NC5874,A.B
1 NC5875AB
1 NC5876,A.B
1 NC5877,A.B
1 NC5878,A.B
1 NC5879,A,B
1 NC5880,A,B
lNC5881,A.B
1 NC5882,A.B
1 NC5883,A.B
1 NC5884,A,B
1 NC5885,A.B
1 NC5886,A.B
1 NC5887,A,B
1 NC5888,A,B
1 NC5889.A.B
1 NC5890,A.B
1 NC5891,A.B
1 NC5892,A,B
1 NC5893,A,B
1 NC5894,A.B
1 NC5895.A.B
Alternate
Chip
MZC2.4A 10,5
MZC2.5A 10,5
MZC2.7Al0,5
MZC2.8A10,5
MZC3.0A 10,5
MZC3.3A 10,5
MZC3.6Al0,5
MZC3.9A 10,5
MZC4.3A 10,5
MZC4.7Al0,5
MZC5.1 A 10,5
MZC5.6Al0,5
MZC6.0A 10,5
MZC6.2A 10,5
MZC6.8A 10,5
MZC7 .5A 10,5
MZC8.2A 10,5
MZC8.7Al0,5
MZC9.1Al0,5
MZCl OAl 0,5
MZCllAl0,5
MZC12Al0,5
MZC13Al0,5
MZC14Al0,5
MZC15Al0,5
MZC16Al0,5
MZC17Al0,5
MZC18Al0,5
MZC19Al0,5
MZC20Al0,5
MZC22Al0,5
MZC24Al0,5
MZC25Al0,5
MZC27Al0,5
MZC28Al0,5
MZC30Al0,5
MZC33Al0,5
MZC36Al0,5
MZC39Al0,5
MZC43Al0,5
MZC47Al0,5
MZC51Al0,5
MZC56Al0,5
MZC60Al0,5
MZC62Al0,5
MZC68Al0,5
MZC75Al0,5
MZC82Al0,5
MZC87Al0,5
MZC91Al0,5
MZC100Al0,5
MZCll OA 10,5
MZC120A 10.5
MZC130Al0.5
MZC140Al0,5
MZC150A 10,5
MZC160Al0,5
MZC170A 10.5
MZC180Al0.5
'1-7
Family
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
·z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Pol.
Geometry
RL755
RL755
RL756
RL756
RL756
RL756
RL756
RL756
RL760
RL760
RL760
RL760
RL760
RL760
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
•
1 N5896,A,8 - 2N706B
Device
Type
1N5896,A,B
1N5897,A,B
1N5913,A,B
Chip No.
1NC5896,A,B
1NC5897 A,B
Alternate
Chip
MZC190Al0,5
MZC200A 10,5
Family
Pol.
Geometry
Z
Z
Z
A
A
C
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
SST
SST
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SST
SST
SST
SST
SST
SST
SST
C
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
SL26
SL26
320
320
320
320
320
320
320
320
320
320
320
320
SL2
SL2
SL98
SL73
SL73
SL73
SL73
thru
II
1N5956,A,B
1N5985,A.B
1N5986,A,B
1N5987,A,B
1N5988,A,B
1N5989,A,B
1N5990,A,B
1N5991,A,B
1N5992,A,B
1N5993,A,B
1N5994,A,B
1N5995,A,B
1N5996,A,B
1N5997,A,B
1N5998,A,B
1N5999,A,B
1N6000,A,B
1N6001;A,B
1N6002,A,B
1N6003,A,B
1N6004,A,B
1N6005,A,B
1N6006,A,B
1N6007,A,B
1N6008,A,B
1N6009,A,B
1N6010,A,B
1N6011,A,B
1N6012,A,B
1N6013,A,B
1N6014,A,B
1N6015,A,B
1N6016,A,B
1N6017,A,B
1N6018,A,B
1N6019,A,B
1N6020,A,B
1N6021,A,B
1N6022,A,B
1N6023,A,B
1N6024,A,B
1N6025,A,B
1N6026,A,B
1N6027,A,B
1N6028,A,B
1N6029,A,B
1N6030,A,B
1N6031,A,B
2N656
2N657
2N681
2N682
2N683
2N684
2N685
2N686
2N687
2N688
2N689
2N690
2N691
2N692
2N696
2N697
2N699
2N702
2N706
2N706A
2N706B
MZC2.4Al0,5
MZC2.7Al0,5
MZC3.0Al0,5
MZC3.3Al0,5
MZC3.6Al0,5
MZC3.9Al0,5
MZC4.3A 10,5
MZC4.7Al0,5
MZC5.1Al0,5
MZC5.6Al0,5
MZC6.2A 10,5
MZC6.8Al0,5
MZC7.5AlO,5
MZC8.2Al0,5
MZC9.1AlO,5
MZC10Al0,5
MZCllAl0,5
MZC12Al0,5
MZC.13A 10,5
MZC15Al0,5
MZC16Al0,5
MZC18Al0,5
MZC20Al0,5
MZC22Al0,5
MZC24Al0,5
MZC27Al0,5
MZC30Al0,5
MZC33Al0,5
MZC36Al0,5
MZC39Al0,5
MZC43Al0,5
MZC47Al0,5
MZC51Al0,5
MZC56Al0,5
MZC62Al0,5
MZC68Al0,5
MZC75AlO,5
MZC82Al0,5
MZC91Al0,5
MZCl OOAl 0,5
MZCll0Al0,5
MZC120A 10,5
MZC130A 10,5
MZC150A 10,5
MZC160Al0,5
M"Z~180A 10,5
MZC200A 10,5,
2NC657
2NC657
2NC681
2NC682
2NC683
2NC684
2NC685
2NC686
2NC687
2NC688
2NC689
2NC690
2NC691
2NC692
MCRC3201
MCRC3201
MCRC3201
MCRC3202
MCRC3202
MCRC3203
MCRC3203
MCRC3204
MCRC3205
MCRC3206
MCRC3207
MCRC3207
2NC697
2NC697
2NC2102
2NC706B
2NC706
2NC706B
2NC706B
N
N
N
N
N
N
N
N
N
2N70B - 2N2194
Device
Type
2N708
2N718
2N718A
2N720
2N720A
2N721
2N722
2N726
2N731
2N735
2N736
2N739
2N740
2N743
2N744
2N753
2N834
2N835
2N840
2N841
2N869
2N869A
2N871
2N910
2N911
2N914
2N915
2N916
2N917
2N918
2N929
2N930
2N930A
2N956
2N978
2N995
2N996
2N1131
2N1131A
2N1132
2N1132A
2N1420
2N1595
2N1596
2N1597
2N1598
2N1599
2N1613
2N1708
2N1711
2N1842,A
2N1843,A
2N1844,A
2N1845,A
2N1846,A
2N1847,A
2N1848,A
2N1849,A
2N1850,A
2N1890
2N1893
2N1959
2N1983
2N1984
2N1990
2N1991
2N2102
2N2192
2N2192A
2N2192B
2N2193
2N2193A
.2N2194
Chip No.
Alternate
Chip
2NC708
2NC1613
2NC1613
2NC720A
2NC740
2NC740
2NC2369
MPSC834
2NC835
2NC869A
2NC910
2NC914
2NC915
2NC917
2NC918
2NC929
2NC930
2NC930A
2NC1711
2NC720A
2NC2906
2NC2906
2NC869A
2NC2221A
2NC720A
2NC3020
2NC706B
2NC3011
2NC720A
2NC740
2NC3250A
2NC2102
2NC910
2NC915
2NC2906A
2NC3251
2NC869A
2NC1131A
2NC1131A
2NC1132A
2NC1132A
2NC1595
2NC1596
2NC1597
2NC1598
2NC1599
2NC1613
2NC1711
2NC1842,A
2NC1843,A
2NC1844.A
2NC1845.A
2NC1846.A
2NC1847,A
2NC1848.A
2NC1849,A
2NC1850,A
2NC1890
2NC720A
2NC2222
MCRC6391
MCRC6391
MCRC6392
MCRC6393
MCRC6394
2NC2319
MCRC3201
MCRC3201
MCRC3201
MCRC3202
MCRC3202
MCRC3203
MCRC3203
MCRC3204
MCRC3205
2NC5859
2NC2221A
2NC2222
2NC3114
2NC1991
2NC2102
2NC2193A
2NC2193A
2NC2193A
2NC2193A
2NC2193A
2NC2193A
2-9
Family
Pol.
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SCR
SCR
SCR
SCR
SCR
SST
SST
SST
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
N
N
N
N
N
P
P
P
N
N
N
N
N
N
N
N
N
N
N
N
P
P
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
N
P
N
N
N
N
N
N
N
Geometry
SL73
SL98
SL98
SL98
SL98
SL333
SL333
SL44
SL2
SL98
SL98
SL98
SL98
SL73
SL73
SL73
SL73
SL73
SL98
SL98
SL271
SL44
SL98
SL98
SL98
SL73
EL221
EL221
SL75
SL75
SL18
SL18
SL18
SL2
SL333
EL271
SL44
SL333
SL333
SL333
SL333
SL2
639
639
639
639
639
SL98
SL73
SL2
320
320
320
320
320
320
320
320
320
SL98
SL98
SL27
SL2
SL2
SL26
SL333
SL98
SL98
SL98
SL98
SL98
SL98
SL98
•
2N2194A - 2N2857
Device
Type
•
2N2194A
2N2194B
2N2195
2N2195A
2N2195B
2N2206
2N2218
2N2218A
2N2219
2N2219A
2N2221
2N2221A
2N2222
2N2222A
2N2224
2N2242
2N2270
2N2297
2N2319
2N2322
2N2323
2N2324
2N2325
2N2326
2N2327
2N2328
2N2329
2N2330
2N2331
2N2368
2N2369
2N2369A
2N2405
2N2410
2N2476
2N2477
2N2481
2N2483
2N2484
2N2501
2N2537
2N2538
2N2539
2N2540
2N2573
2N2574
2N2575
2N2576
2N2577
2N2578
2N2579
2N2608
2N2609
2N2646
2N2647
2N2695
2N2696
2N2710
2N2716
2N2788
2N2789
2N2790
2N2791
2N2792
2N2800
2N2801
2N2837
2N2838
2N2845
2N2846
2N2847
2N2848
2N2857
Chip No.
2NC2221A
2NC2221A
2NC2222
2NC2222A
2NC2221A
2NC2221A
2NC2222
2NC2222A
2NC2270
2NC2319
2NC2322
2NC2323
2NC2324
2NC2325
2NC2326
2NC2327
2NC2328
2NC2329
2NC2330
2NC2331
2NC2368
2NC2369
2NC2369A
2NC2405
2NC2481
2NC2483
2NC2484
2NC2501
2NC2539
2NC2540
2NC2573
2NC2574
2NC2575
2NC2576
2NC2577
2NC2578
2NC2579
2NC2608
2NC2609
2NC2646
2NC2647
2NC2857
Alternate
Chip
2NC2193A
2NC2193A
2NC2193A
2NC2193A
2NC2193A
2NC753
2NC2221A
2NC708
2NC3020
MCRC6381
MCRC6381
MCRC6381
MCRC6382
MCRC6382
MCRC6383
MCRC6383
MCRC6384
2NC5859
2NC5859
2NC5859
2NC5859
2NC5859
MCRC3201
MCRC3201
MCRC3201
MCRC3202
MCRC3203
MCRC3204
MCRC3205
2NC3673
2NC2907
2NC3014
MPSC2716
2NC2222
2NC2222A
2NC697
2NC2221A
2NC2222
2NC1132
2NC2907
2NC2907
2NC2907
2NC2221A
2NC5859
2NC2221A
2NC5859
Family
Pol.
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SCR
SCR
SCR
SCR
SCR
SCR
SCR
FETJ
FETJ
UJT
UJT
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
RF
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
N
N
N
N
N
N
N
P
P
P
P
N
N
N
N
N
Geometry
SL98
SL98
SL98
SL98
SL98
SL73
SL2
SL2
SL2
SL2
SL2
SL2
SL2
SL2
SL2
SL73
SL98
SL98
SL73
638
638
638
638
638
638
638
638
SU9
SL19
SL73
SL73
SL73
SL26
SL27
SL27
SL27
SL73
SU8
SL18
SL76
SL27
SL27
SL4
SL4
320
320
320
320
320
320
320
FM125
FM125
TL58/59
TL58/59
SL333
SL333
SL76
EL220
SL2
SL2
SL2
SL2
SL2
SL333
SL333
SL333
SL333
SL2
SL27
SL2
SL27
RF153
2N2894 - 2N3302
Device
Type
2N2894
2N2895
2N2896
2N2897
2N2904
2N2904A
2N2905
2N2905A
2N2906
2N2906A
2N2907
2N2907A
2N2923
2N2924
2N2925
2N2926
2N2944
2N2945
2N2945A
2N2946
2N2946A
2N2951
2N2952
2N2958
2N2959
2N3009
2N3010
2N3011
2N3012
2N3013
2N3014
2N3015
2N3019
2N3020
2N3036
2N3053
2N3053A
2N3054A
2N3055
2N3072
2N3073
2N3081
2N3110
2N3114
2N3115
2N3116
2N3120
2N3121
2N3133
2N3134
2N3135
2N3136
2N3137
2N3209
2N3210
2N3211
2N3227
2N3244
2N3245
2N3248
2N3249
2N3250
2N3250A
2N3251
2N3251A
2N3252
2N3253
2N3295
2N3298
2N3299
2N3300
2N3301
2N3302
Chip No.
2NC2894
Alternate
Chip
2NC2102
2NC2896
2NC2896
2NC2906A
2NC2906A
2NC2907
2NC2907A
2NC2906A
2NC2906A
2NC2907
2NC2907A
MPSC2923
MPSC2924
MPSC2925
MPSC2923/4/5
2NC2944
2NC2945
2NC2945A
2NC2946
2NC2946A
2NC2951
2NC2951
2NC3011
2NC3013
2NC3014
2NC3019
2NC3020
2NC3053
2NC3053A
2NC3054A
2NC3055
2NC3073
2NC3073
2NC3110
2NC3114
2NC3137
2NC3227
2NC3244
2NC3245
2NC3250A
2NC3250A
2NC3251
2NC3251A
2NC3252
2NC3253
2NC3295
2NC2221A
2NC2222
2NC3013
2NC3011
2NC869A
2NC5859
2NC3053
2NC2906A
2NC2221A
2NC2222
2NC2906A
2NC2907
2NC2906A
2NC2907
2NC2906A
2NC2907
2NC869A
2NC708
2NC3013
2NC869A
2NC3251
2NC2369
2NC2221A
2NC2222A
2NC2221A
2NC2222A
Family
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
PWR
PWR
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
RF
SST
SST
SST
SST
SST.
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
Pol.
Geometry
P
SL44
SL98
SL98
SL98
SL333
SL333
SL333
SL333
SL333
SL333
SL333
SL333
EL220
EL220
EL220
EL220
SL41
SL41
SL41
SL41
SL41
SL2
SL2
SL2
SL2
SL76
SL73
SL73
SL44
SL76
SL76
SL27
SL98
SL98
SL98
SL98
SL98
5HE-C
4WH-C
SL333
SL333
SL333
SL98
SL26
SL2
SL2
SL333
SL333
SL333
SL333
SL333
SL333
RF82
SL44
SL73
SL76
SL73
SL337
SL337
SL44
EL271
EL271
EL271
EL271
EL271
SL17
SL17
SL2
SL73
SL2
SL2
SL2
SL2
N
N
N
P
P
P
P
P
P
P
P
N
N
N
N
P
P
P
P
P
N
N
N
N
N
N
N
P
N
N
N
N
N
N
N
N
N
N
P
P
P
N
N
N
N
P
P
P
P
P
P
N
P
N
N
N
P
P
P
P
P
P
P
P
N
N
N
N
N
N
N
N
•
2N3303 - 2N3706
Device
Type
II
2N3303
2N3307
2N3308
2N3330
2N3380
2N3390
2N3391
2N3391A
2N3392
2N3393
2N3394
2N3395
2N3396
2N3397
2N3398
2N3439
2N3440
2N3441
2N3442
2N3444
2N3445
2N3446
2N3447
2N3448
2N3467
2N3468
2N3485
2N3485A
2N3486
2N3486A
2N3494
2N3495
2N3496
2N3497
2N3498
2N3499
2N3500
2N3501
2N3506
2N3507
2N3508
2N3509
2N3510
2N3511
2N3512
2N3544
2N3546
2N3553
2N3563
2N3583
2N3584
2N3585
2N3634
2N3635
2N3636
2N3637
2N3638
2N3638A
2N3639
2N3640
2N3646
2N3647
2N3648
2N3671
2N3673
2N3693
2N3694
2N3700
2N3702
2N3703
2N3704
2N3705
2N3706
Chip No.
Alternate
Chip
2NC3303
2NC3307
2NC3330
2NC3307
2NC3307
MPSC3390
MPSC3391
MPSC3391A
MPSC3392
MPSC3393
MPSC3394
MPSC3395
MPSC3396
MPSC3396
MPSC3396
2NC3439
2NC3440
2NC3441
2NC3442
2NC3444
2NC3445
2NC3446
2NC3447
2NC3448
2NC3467
2NC3468
2NC2906A
2NC2906A
2NC2907
2NC2907A
2NC3496
2NC3497
2NC3496
2NC3497
2NC3498
2NC3499
2NC3500
2NC3501
2NC3506
2NC3507
2NC3508
2NC3227
2NC3510
2NC3511
2NC5859
2NC3544
2NC3546
2NC3553
2NC3583
2NC3584
2NC3585
2NC3634
2NC3635
2NC3636
2NC3637
2NC351O
2NC3511
2NC3673
MPSC3562
MPSC3638
MPSC3638A
MPSC3639
MPSC3640
MPSC3646
2NC2907
MPSC3693
MPSC3694
2NC2896
MPSC3702
MPSC3103
MPSC3704
MPSC3705
MPSC3705
?_1?
Family
SST
SST
SST
FETJ
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
PWR
PWR
PWR
PWR
SST
PWR
PWR
PWR
PWR
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
RF
SST
PWR
PWR
PWR
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
Pol.
N
P
P
P
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
N
N
N
P
N
P
N
N
N
P
P
P
P
P
P
P
P
N
N
N
P
P
N
N
N
P
P
N
N
N
Geometry
SL28
SL63
SL63
FM125
SL63
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
4SB-G
4SB-G
7MS-G
6KB-C
SL17
8MW-C
8MW-C
8MW-C
8MW-C
SL337
SL337
SL333
SL333
SL333
SL333
SL47
SL47
SL47
SL47
SL26
SL26
SL26
SL26
SL22
SL22
SL73
SL73
SL76
SL76
SL27
SL75
SL45
RF140
EL662
4RW-C
4RW-C
4RW-C
SL54
SL54
SL54
SL54
SL333
SL333
EL251
EL251
EL77
SL76
SL76
SL333
SL333
EL235
EL235
SL98
SL333
SL333
EL210
EL210
EL210
2N3707 - 2N3980
Device
Type
2N3707
2N3709
2N3710
2N3711
2N3712
2N3713
2N3714
2N3715
2N3716
2N3719
2N3720
2N3724
2N3725
2N3734
2N3735
2N3736
2N3737
2N3738
2N3739
2N3740
2N3741
2N3742
2N3743
2N3762
2N3764
2N3766
2N3767
2N3773
2N3789
2N3790
2N3791
2N3792
2N3796
2N3797
2N3798
2N3799
2N3799A
2N3821
2N3822
2N3823
2N3824
2N3839
2N3866
2N3866A
2N3867
2N3868
2N3870
2N3871
2N3872
2N3873
2N3896
2N3897
2N3898
2N3899
2N3902
2N3903
2N3904
2N3905
2N3906
2N3909
2N3909A
2N3946
2N3947
2N3948
2N3959
2N3960
2N3970
2N3971
2N3972
2N3977
2N3978
2N3980
Chip No.
Alternate
Chip
MPSC3707
MPSC3709
MPSC3710
MPSC3711
2NC3114
2NC3713
2NC3714
2NC3715
2NC3716
2NC3719
2NC3720
2NC3724
2NC3725
2NC3734
2NC3735
2NC3734
2NC3735
2NC3738
2NC3739
2NC3740
2NC3741
2NC6516
2NC6519
2NC3762
2NC3762
2NC3766
2NC3767
2NC3773
2NC3789
2NC3790
2NC3791
2NC3792
2NC3796
2NC3797
2NC3798
2NC3799
2NC3799
2NC3821
2NC3822
2NC3823
2NC3824
2NC2857!
2NC5031
2NC3866
2NC3866
2NC3867
2NC3868
2NC3870
2NC3871
2NC3872
2NC3873
2NC3896
2NC3897
2NC3898
2NC3899
2NC3902
2NC3903
2NC3904
2NC3905
2NC3906
2NC3909
2NC3909A
MCRC3201
MCRC3202
MCRC3204
MCRC3206
MCRC3201
MCRC3202
MCRC3204
MCRC3206
2NC3903
2NC3904
2NC3948
2NC3960
2NC3960
2NC3970
2NC3971
2NC3972
2NC2944
2NC2945A
2NC3980
2-13
Family
Pol.
Geometry
'SST
SST
SST
SST
SST
PWR
PWR
PWR
PWR
PWR
PWR
SST
SST
SST
SST
SST
SST
PWR
PWR
PWR
PWR
SST
SST
SST
SST
PWR
PWR
PWR
PWR
PWR
PWR
PWR
FETM
FETM
SST
SST
SST
FETJ
FETJ
FETJ
FETJ
N
N
N
N
N
N
N
N
N
P
P
N
N
N
N
N
N
N
N
P
P
N
P
P
P
N
N
N
P
P
P
P
N
N
P
P
P
N
N
N
N
EL220
EL220
EL220
EL220
SL26
4WH-C
4WH-C
4WH-C
4WH-C
J34-G
J34-G
SL2T
SL27
SL27
SL27
SL27
SL27
2AN-C
2AN-C
6KL-C
6KL-C
EL644
EL694
SL60
SL60
7MH-C
7MH-C
4KW-C
3FR-C
3FR-C
3FR-C
3FR-C
FM110
FM110
SL55
SL55
SL55
FM131
FM131
FM130
FM130
RF
RF
RF
PWR
PWR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
PWR
SST
SST
SST
SST
FETJ
FETJ
SST
SST
RF
RF
RF
FETJ
FETJ
FETJ
SST
SST
UJT
N
N
N
P
P
N
N
N
P
P
P
P
N
N
N
N
N
N
N
N
P
P
RF151
RF151
J34-G
J34-G
320
320
320
320
320
320
320
320
6KB-CN
EL221
EL221
EL271
EL271
FM125
FM125
EL221
EL221
RF161
RF93
FM140
FM140
FM140
SL41
SL41
TL58/59
•
2N3993 - 2N4215
Device
Type
II
2N3993
2N3994
2N4013
2N4014
2N4066
2N4067
2N4072
2N4073
2N4091
2N4092
2N4093
2N4117
2N4118
2N4119
2N4123
2N4124
2N4125
2N4126
2N4151
2N4152
2N4153
2N4154
2N4155
2N4156
2N4157
2N4158
2N4159
2N4160
2N4161
2N4162
2N4163
2N4164
2N4165
2N4166
2N4167
2N4168
2N4169
2N4170
2N4171
2N4172
2N4173
2N4174
2N4175
2N4176
2N4177
2N4178
2N4179
2N4180
2N4181
2N4182
2N4183
2N4184
2N4185
2N4186
2N4187
2N4188
2N4189
2N4190
2N4191
2N4192
2N4193
2N4194
2N4195
2N4196
2N4197
2N4198
2N4208
2N4209
2N4209A
2N4212
2N4213
2N4214
2N4215
Chip No.
Alte.rnate
Chip
2NC3993
2NC3994
2NC4013
2NC4014
2NC4066
2NC4067
2NC4073
2NC4073
2NC4091
2NC4092
2NC4093
2NC4117
2NC4118
2NC4119
2NC4151
2NC4152
2NC4153
2NC4154
2NC4155
2NC4156
2NC4157
2NC4158
2NC4159
2NC4160
2NC4161
2NC4162
2NC5163
2NC4164
2NC4165
2NC5166
2NC4167
2NC4168
2NC4169
2NC4170
2NC4171
2NC4172
2NC4173
2NC4174
2NC4175
2NC4176
2NC4177
2NC4178
2NC4179
2NC4180
2NC4181
2NC4182
2NC4183
2NC4184
2NC4185
2NC4186
2NC4187
2NC4188
2NC4189
2NC4190
2NC4191
2NC4192
2NC4193
2NC4194
2NC4195
2NC4196
2NC4197
2NC4198
2NC4208
2NC4209
2NC4209A
2NC4212
2NC4213
2NC4214
2NC4215
MPSC6512
MPSC6514
MPSC6516
MPSC6518
MCRC3101
MCRC3101
MCRC3101
MCRC3102
MCRC3103
MCR,C3104
MCRC3105
MCRC3106
MCRC3101
MCRC3101
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3105
MCRC3106
MCRC3101
MCRC3101
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3105
MCRC3106
MCRC3101
MCRC3101
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3105
MCRC3106
MCRC3101
MCRC3i01
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3105
MCRC3106
MCRC3101
MCRC3101
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3105
MCRC3106
MCRC6381
MCRC6381
MCRC6381
MCRC6382
"
1 "
Family
FETJ
FETJ
SST
SST
FETM(D)
FETM(D)
RF
RF
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
SST
SST
SST
SST
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SST
SST
SST
SCR
SCR
SCR
SCR
Pol.
Geometry
P
P
FM129
FM129
SL27
SL27
FM109
FM109
N
N
P
P
N
N
N
N
N
N
N
N
N
N
P
P
P
P
P
RF82
FM140
FM140
FM140
FM148
FM148
FM148
EL220
EL220
EL271
EL271
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310.
EL251
EL251
EL251
638
638
638
638
2N4216 - 2N4859
Device
Type
2N4216
2N4217
2N4218
2N4219
2N4220
2N4220A
2N4221
2N4221A
2N4222
2N4222A
2N4223
2N4224
2N4231A
2N4232A
2N4233A
2N4234
2N4235
2N4236
2N4237
2N4238
2N4239S
2N4240
2N4260
2N4261
2N4264
2N4265
2N4342
2N4348
2N4351
2N4352
2N4354
2N4355
2N4356
2N4359
2N4360
2N4391
2N4392
2N4393
2N4398
2N4399
2N4400
2N4401
2N4402
2N4403
2N4404
2N4405
2N4406
2N4407
2N4409
2N4416
2N4416A
2N4418
2N4427
2N4428
2N4441
2N4442
2N4443
2N4444
2N4449
2N4450
2N4453
2N4789
2N4790
2N4851
2N4852
2N4853
2N4856
2N4856A
2N4857
2N4857A
2N4858
2N4858A
2N4859
Chip No.
2NC4216
2NC4217
2NC4218
2NC4219
2NC4220
2NC4220
2NC4221
2NC4221
2NC4222
2NC4222
2NC4223
2NC4224
2NC4231A
2NC4232A
2NC4233A
2NC4234
2NC4235
2NC4236
2NC4237
2NC4238
2NC4239S
2NC4240
2NC4261
2NC4261
2NC4264
2NC4265
2NC4342
2NC4348
2NC4351
2NC4352
MPSC4354
MPSC4355
MPSC4356
2NC4360
2NC4391
2NC4392
2NC4393
2NC4398
2NC4399
2 NC4400
2NC4401
2NC4402
2NC4403
2NC4404
2NC4405
2NC4406
2NC4407
2NC4410
2NC4416
2NC4416A
2NC4410
2NC4427
2NC4428
2NC4441
2NC4442
2NC4443
2NC4444
2NC2369A
Alternate
Chip
SCR
SCR
SCR
SCR
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
SST
SST
SST
SST
FETJ
PWR
FETM
FETM
SST
SST
SST
SST
FETJ
FETJ
FETJ
FETJ
PWR
PWR
SST
SST
SST
SST
SST
SST
SST
SST
SST
FETJ
FETJ
SST
RF
RF
SCR
SCR
SCR
SCR
SST
SST
SST
SCR
SCR
UJT
UJT
UJT
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
MCRC6382
MCRC6383
MCRC6383
MCRC6384
2NC3799
MCRC3101
MCRC3102
MCRC3104
MCRC3106
2NC2222
2NC869A
2NC5062
2NC5064
2NC4851
2NC4852
2NC4853
2NC4856A
2NC4856A
2NC4857A
2NC4857A
2NC4858A
2NC4858A
2NC4856A
"_1
Family
t::
Pol.
N
N
N
N
N
N
N
N
N
N
N
P
P
P
N
N
N
N
P
P
N
N
P
N
N
P
P
P
P
P
P
N
N
N
P
P
N
N
P
P
P
P
P
P
N
N
N
N
N
N
N
N
P
P
P
N
N
N
N
N
N
N
Geometry
638
638
638
638
FM131
FM131
FM131
FM131
FM131
FM131
FM130
FM130
5HE-C
5HE-C
5HE-C
CF
CF
CF
CF
CF
CF
4RW-C
SL65
SL65
EL77
EL77
FM125
6KB-C
FM122
FM123
EL664
EL664
EL664
SL55
FM125
FM140
FM140
FM140
A5G-C
A5G-C
EL210
EL210
SL333
SL333
SL50
SL50
SL56
SL56
EL613
FM146
FM146
EL613
Rf=161
RF192
310
310
310
310
SL73
SL2
SL44
TL62
TL62
TL58/59
TL58/59
TL58/59
FM140
FM140
FM140
FM140
FM140
FM140
FM140
•
2N4859A - 2N5109
Device
Type
II
2N4859A
2N4860
2N4860A
2N4861
2N4861A
2N4870
2N4871
2N4877
2N4890
2N4891
2N4892
2N4893
2N4894
2N4898
2N4899
2N4900
2N4901
2N4902
2N4903
2N4904
2N4905
2N4906
2N4910
2N4911
2N4912
2N4913
2N4914
2N4915
2N4918
2N4919
2N4920
2N4921
2N4922
2N4923
2N4924
2N4925
2N4926
2N4927
2N4928
2N4929
2N4930
2N4931
2N4948
2N4949
2N4957
2N4958
2N4959
2N4987
2N4988
2N4991
2N4992
2N4993
2N5031
2N5050
2N5051
2N5052
2N5058
2N5059
2N5060
2N5061
2N5062
2N5063
2N5064
2N5067
2N5068
2N5069
2N5086
2N5087
2N5088
2N5089
2N5090
2N5108
2N5109
Chip No.
Alternate
Chip
2NC4856A
2NC4857A
2NC4857A
2NC4858A
2NC4858A
2NC4870
2NC4871
2NC4877
2NC4890
MUC4891
MUC4892
MUC4893
MUC4894
2NC4898
2NC4899
2NC4900
2NC4901
2NC4902
2NC4903
2NC4904
2NC4905
2NC4906
2NC4910
2NC4911
2NC4912
2NC4913
2NC4914
2NC4915
2NC4918
2NC4919
2NC4920
2NC4921
2NC4922
2NC4923
2NC4928
2NC4948
2NC4949
2NC4957
MUSC4987
MUSC4988
M8SC4991
MBSC4992
2NC5031
2NC5050
2NC5051
2NC5052
2NC5058
2NC5058
2NC5060
2NC5061
2NC5062
2NC5063
2NC5064
2NC5067
2NC5068
2NC5069
2NC5086
2NC5087
2NC5088
2NC5089
2NC5108
2NC5109
2NC3498
2NC3500
2NC6515
2NC6515
2NC3636
2NC6518
2NC6518
2NC4957
2NC4957
MBSC4991
2NC3866
?_1~
Family
Pol.
FETJ
FETJ
FETJ
FETJ
FETJ
UJT
UJT
PWR
SST
UJT
UJT
UJT
UJT
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
SST
SST
SST
SST
SST
SST
SST
SST
UJT
UJT
RF
RF
RF
SUS
SUS
SBS
SBS
SBS
RF
PWR
PWR
PWR
SST
SST
SCR
SCR
SCR
SCR
SCR
PWR
PWR
PWR
SST
SST
SST
SST
RF
RF
RF
N
N
N
N
N
N
P
P
P
P
P
P
P
P
P
P
N
N
N
N
N
N
P
P
P
N
N
N
N
N
N
N
P
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
P
P
N
N
N
N
N
Geometry
FM140
FM1,.O
FM1·40
FM140
FM140
TL58/59
TL58/59
4PD-G
SL50
TL58/59
TL58/59
TL58/59
TL58/59
6KL-C
6KL-C
6KL-C
4WH-C
4WH-C
4WH-C
4WH-C
4WH-C
4WH-C
5HE-C
5HE-C
5HE-C
4WH-C
4WH-C
4WH-C
4JE-GN
4JE-GN
4JE-GN
4JE-GN
4JE-GN
4JE-GN
SL26
SL26
EL644
EL644
SL47
SL54
EL694
EL694
TL58/59
TL58/59
RF57
TL70
TL70
TL71
TL71
TL71
RF191
4RW-C
4RW-C
4RW-C
EL644
EL644
TL60
TL60
TL62
TL62
TL62
4WH-C
4WH-C
4WH-C
SL55
SL55
EL233
EL233
RF192
RFl72
2N5157 - 2N5464
Device
Type
2N5157
2N5160
2N5164
2N5165
2N5166
2N5167
2N5168
2N5169
2N5170
2N5171
2N5172
2N5179
2N5190
2N5191
2N5192
2N5193
2N5194
2N5195
2N5208
2N5209
2N5210
2N5219
2N5220
2N5221
2N5222
2N5223
2N5224
2N5225
2N5226
2N5227
2N5228
2N5229
2N5230
2N5231
2N5241
2N5271
2N5301
2N5302
2N5303
2N5304
2N5336
2N5337
2N5338
2N5339
2N5344
2N5345
2N5346
2N5347
2N5348
2N5349
2N5400
2N5401
2N5427
2N5428
2N5429
2N5430
2N5431 .
2N5441
2N5442
2N5443
2N5444
2N5445
2N5446
2N5550
2N5551
2N5457
2N5458
2N5459
2N5460
2N5461
2N5462
2N5463
2N5464
Chip No.
2NC5157
2NC5160
2NC5164
2NC5165
2NC5166
2NC5167
2NC5168
2NC5169
2NC5170
2NC5171
Alternate
Chip
MCRC3201
MCRC3202
MCRC3204
MCRC3206
MCRC3201
MCRC3202
MCRC3204
MCRC3206
MPSC6575
2NC2857
2NC5190
2NC5191
2NC5192
2NC5193
2NC5194
2NC5195
2NC5208
2NC5209
2NC5210
MPSC3396
2NC5225
2NC5226
MPSC6548
MPSC3396
2NC2369
2NC5225
2NC5226
2NC3250
2NC5228
2NC5229
2NC5230
2NC5231
2NC5241
2NC5271
2NC5301
2NC5302
2NC5303
2NC5304
2NC5336
2NC5337
2NC5338
2NC5339
2NC5344
2NC5345
2NC5346
2NC5347
2NC5348
2NC5349
2NC5400
2NC5401
2NC5427
2NC5428
2NC5429
2NC5430
2NC5431
2NC5441
2NC5442
2NC5443
2NC5444
2NC5445
2NC5446
2NC5550
2NC5551
2NC5457
2NC5458
2NC5459
2NC5460
2NC5461
2NC5462
2NC5463
2NC5464
MACC4402A
MACC4404A
MACC4406A
MACC4402A
MACC4404A
MACC4406A
'-17
Family
Pol.
Geometry
PWR
RF
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SST
RF
PWR
PWR
PWR
PWR
PWR
PWR
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
PWR
SST
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
SST
SST
PWR
PWR
PWR
PWR
UJT
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
SST
SST
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
N
6KB-N
RF310
320
320
320
320
320
320
320
320
EL403
P
N
N
N
N
N
N
N
N
P
N
N
N
N
P
N
N
N
N
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
N
P
P
N
N
N
N
P
P
N
N
N
N
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
EL281
EL238
EL238
EL220
EL210
SL333
EL426
EL220
SL73
EL210
SL333
EL271
EL251
SL41
SL41
SL41
6KB-CN
SL19
A5G-C
A5G-C
A5G-C
CF
4PD-G
4PD-G
4PD-G
4PD-G
1LF-G
1LF-G
4PD-G
4PD-G
4PD-G
4PD-G
EL263
EL263
4PD-G
4PD-G
4PD-G
4PD-G
TL58/59
440
N
N
N
N
N
P
P
P
P
P
440
440
440
440
440
EL613
EL613
FM131
FM131
FM131
FM125
FM125
FM125
FM125
FM125
•
2N5465 - 2N5867
Device
Type
•
2N5465
2N5484
2N5485
2N5486
2N5555
2N5556
2N5557
2N5558
2N5567
2N5568
2N5569
2N5570
2N5571
2N5572
2N5573
2N5574
2N5581
2N5582
2N5583
2N5629
2N5630
2N5631
2N5632
2N5633
2N5634
2N5638
2N5639
2N5640
2N5653
2N5654
2N5655
2N5656
2N5657
2N5668
2N5669
2N5670
2N5683
2N5684
2N5685
2N5686
2N5716
2N5717
2N5718
2N5745
2N5758
2N5759
2N5760
2N5777
2N5778
2N5779
2N5780
2N5777
2N5778
2N5779
2N5780
2N5787
2N5788
2N5829
2N5835
2N5836
2N5837
2N5838
2N5839
2N5840
2N5841
2N5842
2N5845
2N5845A
2N5859
2N5861
2N5864
2N5865
2N5867
Chip No.
2NC5465
2NC5484
2NC5485
2NC5486
2NC5555
2NC5567
2NC5568
2NC5569
2NC5570
2NC5571
2NC5572
2NC5573
2NC5574
2NC2221A
2NC2222A
2NC5583
2NC5629
2NC5630
2NC5631
2NC5632
2NC5633
2NC5634
2NC5638
2NC5639
2NC5640
2NC5653
2NC5654
2NC5655
2NC5656
2NC5657
2NC5668
2NC5669
2NC5670
2NC5683
2NC5684
2NC5685
2NC5686
2NC5716
2NC5717
2NC5718
2NC5745
2NC5758
2NC5759
2NC5760
2NC5060
2NC5061
2NC5829
2NC5835
2NC5836
2NC5838
2NC5839
2NC5840
2NC5841
2NC5842
2NC5845A
2NC5845A
2NC5859
2NC5861
2NC5867
Alternate
Chip
2NC4220
2NC4221
2NC4222
MACC4202A
MACC4204A
MACC4202A
MACC4204A
MACC4202A
MACC4204A
MACC4202A
MACC4204A
MRDC8
MRDC8
MRDC8
MRDC8
MRDC8
MRDC8
MRDC8
MRDC8
2NC4957
2NC5836
2NC4404
2NC4404
"_10
Family
Pol.
Geometry
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
SST
SST
RF
PWR
PWR
PWR
PWR
PWR
PWR
FETJ
FETJ
FETJ
FETJ
FETJ
PWR
PWR
PWR
FETJ
FETJ
FETJ
PWR
PWR
PWR
PWR
FETJ
FETJ
FETJ
PWR
PWR
PWR
PWR
PDTR
PDTR
PDTR
PDTR
PDTR
PDTR
PDTR
PDTR
SCR
SCR
RF
RF
RF
RF
PWR
PWR
PWR
SST
SST
SST
SST
SST
SST
SST
SST
PWR
P
N
N
N
N
N
N
N
FM125
FM146
FM146
FM146
FM146
FM131
FM131
FM131
420
420
420
420
420
420
420
420
SL2
SL2
RF59
A5G-C
4KW-C
4KW-C
6KB-C
6KB-C
6KB-C
FM140
FM140
FM140
FM140
FM140
2AN-G
2AN-G
2AN-G
FM130
FM130
FM130
1JK-C
lJK-C
1JK-C
1JK-C
FM124
FM124
FM124
A5G-C
6KB-C
6KB-C
6KB-C
L19
L19
L19
L19
L19
L19
L19
L19
TL60
TL60
RF57
RF191
RF198
N
N
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
N
N
N
N
N
P
N
N
N
N
N
N
N
N
N
N
N
P
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
1TE-C
1TE-C
.1TE-C
ML204
ML204
SL27
SL27
SL27
SL27
SL50
SL50
4WH-C
2N5868 - 2N6071 A
Device
Type
2N5868
2N5875
2N5876
2N5877
2N5878
2N5879
2N5880
2N5881
2N5882
2N5883
2N5884
2N5885
2N5886
2N5943
2N5947
2N5974
2N5975
2N5976
2N5977
2N5978
2N5979
2N5980
2N5981
2N5982
2N5983
2N5984
2N5985
2N5986
2N5987
2N5988
2N5989
2N5990
2N5991
2N6027
2N6028
2N6029
2N6030
2N6031
2N6034
2N6035
2N6036
2N6037
2N6038
2N6039
2N6040
2N6041
2N6042
2N6043
2N6044
2N6045
2N6049
2N6050
2N6051
2N6052
2N6053
2N6054
2N6055
2N6056
2N6057
2N6058
2N6059
2N6067
2N6068
2N6068A
2N6068B
2N6069
2N6069A
2N6069B
2N6070
2N6070A
2N6070B
2N6071
2N6071A
Chip No.
Alternate
Chip
2NC5868
2NC5875
2NC5876
2NC5877
2NC5878
2NC5879
2NC5880
2NC5881
2NC5882
2NC5883
2NC5884
2NC5885
2NC5886
2NC5943
2NC5943
2NC5974
2NC5975
2NC5976
2NC5977
2NC5978
2NC5979
2NC5980
2NC5981
2NC5982
2NC5983
2NC5984
2NC5985
2NC5986
2NC5987
2NC5988
2NC5989
2NC5990
2NC5991
2NC6027
2NC6028
2NC6029
2NC6030
2NC6031
2NC6034
2NC6035
2NC6036
2NC6037
2NC6038
2NC6039
2NC6040
2NC6041
2NC6042
2NC6043
2NC6044
2NC6045
2NC6049
2NC6050
2NC6051
2NC6052
2NC6053
2NC6054
2NC6055
2NC6056
2NC6057
2NC6058
2NC6059
2NC6067
2NC6068
2NC6068A
2NC6068B
2NC6069
2NC6069A
2NC6069B
2NC6070
2NC6070A
2NC6070B
2NC6071
2NC6071A
MACC4011
MACC4011A
MACC4011A
MACC4011
MACC4011A
MACC4011A
MACC4011
MACC4011A
MACC4011A
MACC4012
MACC4012A
Family
Pol.
Geometry
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
RF
RF
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PUT
PUT
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
SST
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
P
P
P
N
N
P
P
N
N
P
P
N
N
N
N
P
P
P
N
N
N
P
P
P
N
N
N
P
P
P
N
N
N
4WH-C
3FR-C
3FR-C
4WH-C
4WH-C
6KB-C
6KB-C
6KB-C
6KB-C
A5G-C
A5G-C
A5G-C
A5G-C
RF172
P
P
P
P
P
P
N
N
N
P
P
P
N
N
N
P
P
P
P
P
P
N
N
N
N
N
P
4JN-GN
4JN-GN
4JN-GN
4JN-GN
4JN-GN
4JN-GN
3FR-GN
3FR-GN
3FR-GN
3FR-GN
3FR-GN
3FR-GN
9JL-CN
9JL-CN
9JL-CN
9JL-CN
9JL-CN
9JL-CN
TL83
TL83
A5G-C
4KW-C
4KW-C
5TB-GN
5TB-GN
5TB-GN
5TB-GN
5TB-GN
5TB-GN
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
4WH-C
8JA-C
8JA-C
8JA-C
7JA-C
7JA-C
7JA-C
7JA-C
8JA-C
8JA-C
8JA-C
EL656
401
401
401
401
401
401
401
401
401
401
401
II
2N6071 B - 2N6275
Device
Type
II
2N6071B
2N6072
2N6072A
2N6072B
2N6073
2N6073A
2N6073B
2N6074
2N6074A
2N6074B
2N6075
2N6075A
2N6075B
2N6077
2N6078
2N6116
2N6117
2N6118
2N6145
2N6146
2N6147
2N6151
2N6152
2N6153
2N6154
2N6155
2N6156
2N6157
2N6158
2N6159
2N6160
2N6161
2N6162
2N6163
2N6164
2N6165
2N6167
2N6168
2N6169
2N6170
2N6171
2N6172
2N6173
2N6174
2N6186
2N6187
2N6188
2N6189
2N6190
2N6191
2N6192
2N6193
2N6211
2N6212
2N6213
2N6226
2N6227
2N6228
2N6229
2N6230
2N6231
2N6234
2N6235
2N6236
2N6237
2N6238
2N6239
2N6240
2N6241
2N6256
2N6263
2N6274
2N6275
Chip No.
2NC6071B
2NC6072
2NC6072A
2NC6072B
2NC6073
2NC6073A
2NC6073B
2NC6074
2NC6074A
2NC6074B
2NC6075
2NC6075A
2NC6075B
2NC6077
2NC6078
2NC6116
2NC6117
2NC6118
2NC6145
2NC6146
2NC6147
2NC6151
2NC6152
2NC6153
2NC6154
2NC6155
2NC6156
2NC6157
2NC6158
2NC6159
2NC6160
2NC6161
2NC6162
2NC6163
2NC6164
2NC6165
2NC6167
2NC6168
2NC6169
2NC6170
2NC6171
2NC6172
2NC6173
2NC6174
2NC6186
2NC6187
2NC6188
2NC6189
2NC6190
2NC6191
2NC6192
2NC6193
2NC6211
2NC6212
2NC6213
2NC6226
2NC6227
2NC6228
2NC6229
2NC6230
2NC6231
2NC6234
2NC6235
2NC6236
2NC6237
2NC6238
2NC6239
2NC6240
2NC6241
2NC6263
2NC6274
2NC6275
Alternate
Chip
MACC4012A
MACC4013
MACC4013A
MACC4013A
MACC4014
MACC4014A
MACC4014A
MACC4015
MACC4015A
MACC4015A
MACC4016
MACC4016A
MACC4016A
MACC4202A
MACC4204A
MACC4206A
MACC4202A
MACC4204A
MACC4206A
MACC4202
MACC4204
MACC4206
MACC4402A
MACC4404A
MACC4406A
MACC4402A
MACC4404A
MACC4406A
MACC4402A
MACC4404A
MACC4406A
MCRC3201
MCRC3202
MCRC3204
MCRC3206
MCRC3201
MCRC3202
MCRC3204
MCRC3206
MCRC0361
MCRC0361
MCRC0361
MCRC0362
MCRC0364
MCRC0366
2NC3948
Family
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
PWR
PWR
PUT
PUT
PUT
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
SCR
SCR
SCR
SCR
SCR
SCR
qF
P\\/R
PWR
PWR
Pol.
N
N
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
N
N
N
N
N
N
Geometry
401
401
401
401
401
A01
401
401
401
401
401
401
401
8MW-C
8MW-C
TL72/75
TL72175
TL72175
420
420
420
420
420
420
420
420
420
440
440
440
440
440
440
440
440
440
320
320
320
320
320
320
320
320
4PD-G
4PD-G
4PD-G
4PD-G
4PD-G
4PD-G
4PD-G
4PD-G
4RW-C
4RW-C
4RW-C
6KB-C
6KB-C
6KB-C
6KB-C
6KB-C
6KB-C
8MW-C
8MvV-C
036
036
036
036
036
036
8MW-C
8KJ-G
8KJ-G
2N6276 - 2N6404
Device
Type
2N6276
2N6277
2N6278
2N6279
2N6280
2N6281
2N6282
2N6283
2N6284
2N6285
2N6286
2N6287
2N6294
2N6295
2N6296
2N6297
2N6298
2N6299
2N6300
2N6301
2N6303
2N6304
2N6305
2N6306
2N6307
2N6308
2N6312
2N6313
2N6314
2N6315
2N6316
2N6317
2N6318
2N6338
2N6339
2N6340
2N6341
2N6342
2N6342A
2N6343
2N6343A
2N6344
2N6344A
2N6345
2N6345A
2N6346
2N6346A
2N6347
2N6347A
2N6348
2N6348A
2N6349
2N6349A
2N6377
2N6378
2N6379
2N6380
2N6381
2N6382
2N6383
2N6384
2N6385
2N6394
2N6395
2N6396
2N6397
2N6398
2N6399
2N6400
2N6401
2N6402
2N6403
2N6404
Chip No.
2NC6276
2NC6277
2NC6278
2NC6279
2NC6280
2NC6281
2NC6282
2NC6283
2NC6284
2NC6285
2NC6286
2NC62B7
2NC6294
2NC6295
2NC6296
2NC6297
2NC6298
2NC6299
2NC6300
2NC6301
2NC6303
2NC6304
2NC6306
2NC6307
2NC630B
2NC6312
2NC6313
2NC6314
2NC6315
2NC6316
2NC6317
2NC631B
2NC633B
2NC6339
2NC6340
2NC6341
2NC6342
2NC6342A
2NC6343
2NC6343A
2NC6344
2NC6344A
2NC6345
2NC6345A
2NC6346
2NC6346A
2NC6347
2NC6347A
2NC6348
2NC6348A
2NC6349
2NC6349A
2NC6377
2NC6378
2NC6379
2NC6380
2NC6381
2NC6382
2NC6383
2NC6384
2NC63B5
2NC6394
2NC6395
2NC6396
2NC6397
2NC6398
2NC6399
2NC6400
2NC6401
2NC6402
2NC6403
2NC6404
Alternate
Chip
BFYC90
2NC6304
MACC4202
MCRC4202
MACC4204
MCRC4204
MACC4206
MCRC4206
MACC4208
MCRC420B
MACC4202A
MCRC4202A
MACC4204A
MCRC4204A
MACC4206A
MCRC4206A
MACC4208A
MCRC4208A
MCRC3101
MCRC3101
MCRC3102
MCRC3104
MCRC3106
MCRC310B
MCRC3201
MCRC3201
MCRC3202
MCRC3204
MCRC3206
Family
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
RF
RF
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
Pol.
N
N
N
N
·N
N
N
N
N
P
P
P
N
N
P
P
P
P
N
N
P
N
N
N
N
N
P
P
P
N
N
P
P
N
N
N
N
P
P
P
P
P
P
N
N
N
Geometry
8KJ-G
8KJ-G
8KJ-G
8KJ-G
8KJ-G
8KJ-G
4LE-C
4LE-C
4LE-C
4LE-C
4LE-C
4LE-C
4KB-C
4KB-C
4KB-C
4KB-C
7JA-C
7JA-C
7JA-C
7JA-C
J34-G
RF199
8EF-NC
BEF-NC
8EF-NC
4WH-C
4WH-C
4WH-C
5HE-C
5HE-C
4WH-C
4WH-C
5MP-G
5MP-G
5MP-G
5MP-G
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
8KJ-G
BKJ-G
BKJ-G
8KJ-G
8KJ-G
8KJ-G
7JA-C
7JA-C
7JA-C
310
310
310
310
310
310
320
320
320
320
320
•
2N6405 - 3N209
Device
Type
•
2N6405
2N6410
2N6411
2N6412
2N6413
2N6414
2N6415
2N6416
2N6417
2N6418
2N6419
2N6420
2N6421
2N6422
2N6423
2N6424
2N6425
2N6426
2N6427
2N6436
2N6437
2N6438
2N6495
2N6497
2N6498
2N6499
2N6515
2N6516
2N6517
2N6518
2N6519
2N6520
2N6542
2N6543
2N6544
2N6545
2N6546
2N6547
2N6548
2N6549
2N6551
2N6552
2N6553
2N6554
2N6555
2N6556
2N6557
2N6558
2N6559
2N6569
2N6576
2N6577
2N6578
2N6594
3N124
3N125
3N126
3N128
3N155
3N155A
3N156
3N156A
3N157
3N157A
3N158
3N158A
3N169
3N170
3N171
3N201
3N202
3N203
3N209
Chip No.
2NC6405
2NC6410
Alternate
Chip
MCRC3208
2Nc6411
2NC6412
2NC6413
2NC6414
2NC6415
2NC6416
2NC6417
2NC 6418
2NC6419
2NC6420
2NC6421
2NC6422
2NC6423
2NC6424
2NC6425
2NC6426
2NC6427
2NC6436
2NC6437
2NC6438
.2NCQ495
2NC6497
2NC6498
2NC6499
2NC6515
2NC6516
2NC6517
2NC6518
2NC6519
2NC6520
2NC6542
2NC6543
2NC6544
2NC6545
2NC6546
2NC6547
2NC6569
2NC6576
2NC6577
2NC6578
2NC6594
3NC124
3NC125
3NC126
3NC128
3NC155A
3NC155A
3NC156A
3NC156A
3NC157
3NC157A
3NC158
3NC158A
3NC169
3NC169
3NC169
3NC201
3NC202
3NC203
3NC209
2NC6426
2NC6427
MPSUC05
MPSUC06
MPSUC07
MPSUC55
MPSUC56
MPSUC57
2NC6515
2NC6516
2NC6517
Family
SCR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
SSTR
SSTR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
SST
SST
SST
SST
SST
SST
PWR
PWR
PWR
PWR
PWR
PWR
SSTR
SSTR
SST
SST
SST
SST
SST
SST
SST
SST
SST
PWR
PWR
PWR
PWR
PWR
FETJ
FETJ
FETJ
FETM
FETM
FETM
FETM
FETM
FETM
FETM
FETM
FETM
FETM
FETM
FETM
FETMDG
FETMDG
FETMDG
FETMDG
Pol.
N
P
N
N
P
P
N
N
P
P
P
P
P
P
P
P
N
N
P
P
P
N
N
N
N
N
N
N
P
P
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
N
N
N
N
P
P
P
P
P
P
P
P
N
N
N
N
N
N
N
Geometry
320
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
4RW-C
4RW-C
4RW-C
4RW-C
lFF-C
lFF-C
EL645
EL645
5MP-G
5MP-G
5MP-G
4WH-C
4JN-G
4JN-G
4JN-G
EL644
EL644
EL644
EL694
EL694
EL694
HE-NC
lTE-NC
6KB-NC
6KB-NC
4TC-C
4TC-C
EL645
EL645
EL504
EL504
EL504
EL554
EL554
EL554
EL644
EL644
EL644
4WH-C
7JA-C
7JA-C
7JA-C
4WH-C
FM120
FM120
FM120
FMl12
FM123
FM123
FM123
FM123
FM123
FM123
FM123
FM123
FM122
FM122
FM122
FM877
FM877
FM877
FM877
3N210 - MAC92-3
Device
Type
3N210
3N211
3N212
3N213
BB105A
BB105B
BB105G
BFR90
BFR91
BFR96
BFT24
BFX89
BFY90
BU108
BU126
BU205
MAC10-1
MAC10-2
MAC10-3
MAC10-4
MAC10-5
MAC10-6
MAC10-7
MAC10-8
MAC11-1
MAC11-2
MAC11-3
MAC11-4
MAC11-5
MAC11-6
MAC11-7
MAC11-8
MAC35-1
MAC35-2
MAC35-3
MAC35-4
MAC35-5
MAC35-6
MAC35-7
MAC35-8
MAC35-10
MAC36-1
MAC36-2
MAC36-3
MAC36-4
MAC36-5
MAC36-6
MAC36-7
MAC36-8
MAC36-10
IiIIAC37-1
MAC37-2
MAC37-3
MAC37-4
MAC37-5
MAC37-6
MAC37-7
MAC37-8
MAC37-10
MAC38-1
MAC38-2
MAC38-3
MAC38-4
MAC38-5
MAC38-6
MAC38-7
MAC38-8
MAC38-10
MAC92-1
MAC92A-1
MAC92-2
MAC92A-2
MAC92-3
Chip No.
Alternate
Chip
3NC209
3NC211
3NC212
3NC2l3
BBC105A
BBC105B
BBC105G
BFRC90
BFYC90
BUC108
BUC126
BUC205
MACC10-1
MACC10-2
MACC10-3
MACC10-4
MACC10-5
MACC10-6
MACC10-7
MACC10-8
MACCll-l
MACCll-2
MACCll-3
MACCll-4
MACCll-5
MACC11-6
MACCll-7
MACCl i-8
MACC35-l
MACC35-2
MACC35-3
MACC35-4
MACC35-5
MACC35-6
MACC35-7
MACC35-8
MACC35-l0
MACC35-1
MACC35-2 '
MACC35-3
MACC35-4
MACC35-5
MACC35-6
MACC35-7
MACC35-8
MACC35-l0
MACC37-1
MACC37-2
MACC37-3
MACC37-4
MACC37-5
MACC37-6
MACC37-7
MACC37-8
MACC37-10
MACC37-1
MACC37-2
MACC37-3
MACC37-4
MACC37-5
MACC37-6
MACC37-7
MACC37-8
MACC37-10
MACC92-1
MACC92A-1
MACC92-2
MACC92A-2
MACC92-3
MRFC9ll
MRFC961
MRFC931
BFYC90
2NC6304
MACC4201A
MACC4201A
MACC4201A
MACC4202A
MACC4203A
MACC4204A
MACC4205A
MACC4206A
MACC4201
MACC4201
MACC4201
MACC4202
MACC4203
MACC4204
MACC4205
MACC4206
MACC4401A
MACC4401A
MACC4401A
MACC4402A
MACC4403A
MACC4404A
MACC4405A
MACC4406A
MACC4408A
MACC4401A
MACC4401A
MACC4401A
MACC4402A
MACC4403A
MACC4404A
MACC4405A
MACC4406A
MACC4408A
MACC4401
MACC4401
MACC4401
MACC4402
MACC4403
MACC4404
MACC4405
MACC4406
MACC440B
MACC4401
MACC4401
MACC4401
MACC4402
MACC4403
MACC4404
MACC4405
MACC4406
MACC4408
MACC4011
MACC4011A
MACC4011
MACC4011A
MACC4011
2-23
Family
'FETMDG
FETMDG
FETMDG
FETMDG
TDHA
TDHA
TOHA
RF
RF
RF
RF
RF
RF
PWR
PWR
PWR
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
Pol.
N
N
N
N
N
N
N
N
N
N
N
N
N
Geometry
FM877
FM881
FM881
FM881
VL534
VL534
VL534
RF103
RF104
RF105
RF199
5RV-NC
lTE-NC
5TD-NC
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
401
401
401
401
401
•
MAC92A-3 - MBS4992
Device
Type
I
MAC92A-3
MAC92-4
MAC92A-4
MAC92-5
MAC92A-5
MAC92-6
MAC92A-6
MAC220-2
MAC220-3
MAC220-5
MAC220-7
MAC220-9
MAC221-2
MAC221-3
MAC221-5
MAC221-7
MAC221-9
MAC4688
MAC4689
MAC4690
MAC5441
MAC5442
MAC5443
MAC5444
MAC5445
MAC5446
MAC6400-80
MAC641 0-80
MAC6420-80
MAC40688
MAC40689
MAC40690
MAC40795
MAC40796
MAC40797
MAC40798
MAC40799
MAC40800
MAC40801
MB0101
MB0102
MB0103
MB0201
MB0301
MB0501
MB0502
MB0701
MB0702
MBI101
MBR320,M
MBR330,M
MBR335,M
MBR340,M
MBR1520
MBR1530
MBR1535
MBR1540
MBR2520
MBR2530
MBR2535
MBR2540
MBR4020,PF
MBR4030,PF
MBR4035
MBR4040
MBS4991
MBS4992
Chip No.
MACC92A-3
MACC92-4
MACC92A-4
MACC92-5
MACC92A-5
MACC92-6
MACC92A-6
MACC220-2
MACC220-3
MACC220-5
MACC220-7
MACC220-9
MACC221-2
MACC221-3
MACC221-5
MACC221-7
MACC221-9
MACC4688
MACC4689
MACC4690
MACC5441
MACC5442
MACC5443
MACC5444
MACC5445
MACC5446
MACC6400-80
MACC641 0-80
MACC6420-80
MACC40688.
MACC40689
MACC40690
MACC40795
MACC40795
MACC40797
MACC40797
MACC40799
MACC40800
MACC40801
MBOC101
MBOC101
MBOC101
MBOC201
MBOC301
MBOC501
MBOC501
MBOC701
MBOC701
MBOC101
1NC5820
1NC5821
CF
CF
1NC5826
1NC5827
CF
CF
1 NC5832
1NC5833
CF
CF
1 NC5832
1 NC5833
CF
CF
MBSC4991
MBSC4992
Alternate
Chip'
MACC4011A
MACC4012
MACC4012A
MACC4013
MACC4013A
MACC4014
MACC4014A
MACC4201
MACC4201
MACC4203
MACC4205
MACC4207
MACC4201A
MACC4201A
MACC4203A
MACC4205A
MACC4207A
MACC4402A
MACC4404A
MACC4406A
MACC4402A
MACC4404A
MACC4406A
MACC4402A
MACC4404A
MACC4406A
MACC4408A
MACC4408A
MACC4408A
MACC4402A
MACC4404A
MACC4406A
MACC4206A
MACC4206A
MACC4206A
MACC4206A
MACC4202A
MACC4204A
MACC4206A
?-?4
Family
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
TRIAC
SBO
SBO
SBO
SBO
SBO
SBO
SBO
SBO
SBO
SBO
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBR
SBS
SBS
Pol.
Geometry
401
401
401
401
401
401
401
420
420
420
420
420
420
420
420
420
420
440
440
440
440
440
440
440
440
440
440
440
440
440
440
440
420
420
420
420
420
420
420
VL285
VL285
VL285
VL284
VL284
VL282
VL282
VL282
VL282
VL285
RL755
RL755
RL755
RL755
RL756
RL756
RL756
RL756
RL760
RL760
RL760
RL760
RL760
RL760
RL760
RL760
TL71
TL71
MCC8T13 - MCC511
Chip No.
MCC8T13
MCC8T14
MCC8T23
MCC8T24
MCC8T26
MCC400
MCC401
MCC402
MCC403
MCC404
MCC405
MCC406
MCC407
MCC408
MCC409
MCC410
MCC411
MCC412
MCC413
MCC414
MCC415
MCC416
MCC419
MCC420
MCC421
MCC422
MCC423
MCC424
MCC425
MCC426
MCC427
MCC428
MCC429
MCC450
MCC451
MCC452
MCC453
MCC454
MCC455
MCC456
MCC457
MCC458
MCC459
MCC460
MCC461
MCC462
MCC463
MCC464
MCC465
MCC466
MCC469
MCC470
MCC471
MCC472
MCC473
MCC474
MCC475
MCC476
MCC477
MCC478
MCC479
MCC500
MCC501
MCC502
MCC503
MCC504
MCC505
MCC506
MCC507
MCC508
MCC509
MCC510
MCC511
Family
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTTL
MTIL
MTIL
MTIL
MTIL
MTIL
MTTL
MTIL
MTIL
MTTL
MTIL
MTIL
MTTL
MTIL
MTIL
MTTL
MTIL
MTTL
MTIL
MTTL
MTIL
MTIL
MTTL
MTTL
Function
Dual Line Driver
Triple Line Receiver
Dual Line Driver
Triple Line Receiver
Quad Three-State Bus Transceiver
Dual 4-lnput NAND Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
8-lnput NAND Gate
2-W 3-lnput ADI Gate w/Comp.
Exp. 3-W 3-lnput AOI Gate
Exp. 2-W 4-lnput AOI Gate
Expandable 8-lnput NAND Gate
Line Driver
Quad 2-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Dual 4-lnput Exp. for AOI Gates
Dual 4-lnput Exp. for NAND Gates
Triple 3-lnput NAND Gate
R-S Flip Flop
Gated R-S Flip Flop
AND J-K Flip Flop
OR J-K Flip Flop
Triple 2-lnput Buss Driver
Exp. Dual 2-W 2-lnput AOI Gate
AC Coupled R-S Flip Flop
Dual Type D Flip-Flop
Dual J-K Flip-Flop (separate clock)
Dual J-K Flip-Flop (common clock)
Hex Inverter
Dual 3-1 Pulse Shaper/Delay AND Gate
OR Exp. Dual 4-lnput AND Gate
Dual 2-Wide 2-3 Input OR Expander
Hex Inverter
Dual 4-lnput NAND Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
8-lnput NAND Gate
2-W 3-lnput AOI Gate w/Comp.
Exp. 3-W 3-lnput AOI Gate
Exp. 2-W 4-lnput AOI Gate
Expandable 8-lnput NAND Gate
Line Driver
Quad 2-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Dual 4-lnput Exp. for AOI Gates
Dual 4-lnput Exp. for NAND Gates
Triple 3-lnput NAND Gate
R-S Flip Flop
Gated R-S Flip Flop
AND J-K Flip Flop
OR J-K Flip Flop
Triple 2-lnput Buss Driver
Exp. Dual 2-W 2-lnput AOI Gate
AC Coupled R-S Flip Flop
Dual Type D Flip-Flop
Dual J-K Flip-Flop (separate clock)
Dual J-K Flip-Flop (common clock)
Hex Inverter
Dual 3-1 Pulse Shaper/Delay AND Gate
OR Exp. Dual 4-lnput AND Gate
Dual 2-Wide 2-3 Input OR Expander
Hex Inverter
Dual 4-lnput NAND Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
8-lnput NAND Gate
2-W 3-lnput AOI Gate w/Comp.
Exp. 3-W 3-lnput AOI Gate
Exp. 2-W 4-lnput AOI Gate
Expandable 8-lnput NAND Gate
Line Driver
Quad 2-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Dual 4-lnput Exp. for AOI Gates
Dual 4-lnput Exp. for NAND Gates
2-25
Geometry
9LF
4MW
9LF
4MW
5NE
2BN
58E
6DN
30F
89A
4DA
6DN
76P
8DB
89A
4DA
4DA
45V
24A
03A
8EX
8EX
78E
9RW
03A
80V
2TJ
2TJ
80E
76E
76E
76E
79M
2BN
58E
6DN
30F
89A
4DA
6DN
76P
8DB
89A
4DA
4DA
45V
24A
03A
8EX
8EX
78E
9RW
03A
80V
2TJ
2TJ
80E
76E
76E
76E
79M
28N
58E
6DN
30F
89A
4DA
6DN
76P
8DB
89A
4DA
4DA
•
MCC512 - MCC689
Chip No.
I
MCC512
MCC513
MCC514
MCC515
MCC516
MCC519
MCC520
MCC521
MCC522
MCC523
MCC524
MCC525
MCC526
MCC527
MCC528
MCC529
MCC550
MCC551
MCC552
MCC553
MCC554
MCC555
MCC556
MCC557
MCC558
MCC559
MCC560
MCC561
MCC562
MCC563
MCC564
MCC565
MCC566
MCC569
MCC570
MCC571
MCC572
MCC573
MCC574
MCC575
MCC576
MCC577
MCC578
MCC579
MCC660
MCC661
MCC662
MCC663
MCC664
MCC665
MCC666
MCC667
MCC668
MCC669
MCC670
MCC671
MCC672
MCC673
MCC674
MCC675
MCC676
MCC677
MCC678
MCC679
~gg::~
MCC682
MCC683
MCC684
MCC685
MCC686
MCC688
MCC689
Family
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTTL
MTTL
MTIL
MTTL
MTTL
MTTL
MTTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
MHTL
Function
Triple 3-lnput NAND Gate
R-S Flip Flop
Gated R-S Flip Flop
AND J-K Flip Flop
OR J-K Flip Flop
Triple 2-lnput Buss Driver
Exp. Dual 2-W 2-lnput AOI Gate
AC Coupled R-S Flip Flop
Dual Type 0 Flip-Flop
Dual J-K Flip-Flop (separate clock)
Dual J-K Flip-Flop (common clock)
Hex Inverter
Dual 3-1 Pulse Shaper/Delay AND Gate
OR Exp. Dual 4-lnput AND Gate
Dual 2-Wide 2-3 Input OR Expander
Hex Inverter
Dual 4-lnput NAND Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
8-lnput NAND Gate
2-W 3-lnput AOI Gate w/Comp.
Exp. 3-W 3-lnput AOI Gate
Exp. 2-W 4-lnput AOI Gate
Expandable 8-lnput NAND Gate
Line Driver
Quad 2-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Dual 4-lnput Exp. for AOI Gates
Dual 4-lnput Exp. for NAND Gates
Triple 3-lnput NAND Gate
R-S Flip Flop
Gated R-S Flip Flop
AND J-K Flip Flop
OR J-K Flip Flop
Triple 2-lnput Buss Driver
Exp. Dual 2-W 2-lnput AOI Gate
AC Coupled R-S Flip Flop
Dual Type 0 Flip-Flop
Dual J-K Flip-Flop (separate clock)
Dual J-K Flip-Flop (common clock)
Hex Inverter
Dual 3-1 Pulse Shaper/Delay AND Gate
OR Exp. Dual 4-lnput AND Gate
Dual 2-Wide 2-3 Input OR Expander
Hex Inverter
Expandable Dual 4-lnput Gate (active pullup)
Expandable Dual 4-lnput Gate (passive pullup)
Expandable Dual 4-lnput Line Driver
Dual J-K Flip-Flop
Master Slave R-S Flip-Flop
Triple Level Translator
Triple Level Translator
Dual Monostable Multivibrator
Quad 2-lnput Gate (passive pullup)
Dual 4-lnput Expander
Triple 3-lnput Gate (passive pullup)
Triple 3-lnput Gate (active pullup)
Quad 2-lnput Gate (active pullup)
Dual 2-lnput AND-OR-INVERT Gate
Dual 2-lnput AND-OR-INVERT Gate
Dual Pulse Stretcher
BCD-To-Decimal Decoder Driver
Hex Inverter With Strobe (active pullup)
Hex Inverter With Strobe (without output resistors)
Dual Lamp Driver
Hex Inverter
Hex Inverter (open collector)
Quad Latch
Quad 2-lnput Exclusive OR
Decade Counter
Binary Counter
4-Bit Shift Register
. Dual J-K Flip-Flop
Hex Inverter (high voltage)
?-26
Geometry
45V
24A
03A
8EX
8EX
78E
9RW
03A
80V
2TJ
2TJ
80E
76E
76E
76E
79M
2BN
58E
6DN
30F
89A
4DA
6DN
76P
8DB
89A
4DA
4DA
45V
24A
03A
8EX
8EX
78E
9RW
03A
80V
2TJ
2TJ
80E
76E
76E
76E
79M
8MG
8MG
1TT
2EA
85M
5MG
4MF
1GD
8MG
59H
76H
76H
8MG
8MG
8MG
1MH
2ME
95R
95R
6BE
95R
95R
2AP
8TJ
3TA
3TA
3TA
9TW
48W
MCC690 - MCC809
Chip No.
.
MCC690
MCC691
MCC696
MCC697
MCC699
MCC700
MCC701
MCC702
MCC703
MCC704
MCC705
MCC706
MCC707
MCC708
MCC709
MCC710
MCC711
MCC712
MCC713
MCC714
MCC715
MCC717
MCC718
MCC719
MCC720
MCC721
MCC722
MCC723
MCC724
MCC725
MCC726
MCC727
MCC728
MCC729
MCC764
MCC767
MCC770
MCC771
MCC774
MCC775
MCC776
MCC777
MCC778
MCC779
MCC780
MCC781
MCC782
MCC783
MCC784
MCC785
MCC786
MCC787
MCC788
MCC789
MCC790
MCC791
MCC792
MCC793
MCC794
MCC796
MCC797
MCC798
MCC799
MCC800
MCC801
MCC802
MCC803
MCC804
MCC805
MCC806
MCC807
MCC808
MCC809
Function
Family
MHTl
MHTl
MHTl
MHTl
MHTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTl
MRTL
MRTl
MRTl
MRTl
Hex Inverter (active pullup)
Hex nverter/Translator
Dual Line Driver Receiver
Hex Inverter (passive pullup)
Dual 2-lnput Power AND Gate
Buffer
Counter Adapter
R-S Flip-Flop
3-lnput NOR Gate
Half Adder
Half Shift Register
Half Shift Register (w/o inverter)
4-lnput NOR Gate
Half Adder
2-lnput Buffer
Dual 2-lnput NOR Gate
4-lnput OR/NOR Gate
Half Adder
Type 0 Flip-Flop
Dual 2-lnput NOR Gate
Dual 3-lnput NOR Gate
Quad 2-lnput NOR Gate
Dual 3-lnput NOR Gate
Dual 4-lnput NOR Gate
J-K Flip-Flop
Dual 2-lnput Gate Expander
J-K Flip-Flop
J-K Flip-Flop
Quad 2-lnput NOR Gate
Dual 4-lnput NOR Gate
J-K Flip Flop
Quad Inverter
5-lnput NOR Gate
5-lnput NOR Gate
Dual Exclusive OR/NOR Gate
Quad latch
BCD to Decimal Decoder
Quad Exclusive OR Gate
J-K Flip Flop
Dual Half Adder
Dual J-K Flip Flop
Binary Up Counter
Dual Type 0 Flip Flop
1 J-K Flip Flop, 1 Expander, 2 Buffers
Decade Up Counter
Dual Buffer
J-K Flip Flop
Dual Half Shift Register
Dual Half Shift Register (w/inverter)
Quad 2-lnput Expander
Dual 4-lnput Expander
1 J-K Flip Flop, 1 Inverter, 2 Buffers
Dual 3-lnput Buffer, non-inverting
Hex Inverter
Dual J-K Flip Flop
Dual J-K Flip Flop
Triple 3-lnput NOR Gate
Triple 3-lnput NOR Gate
Serial-Parallel Shift Register
Dual Full Adder
Dual Full Subtractor
Dual 2-lnput Buffer
Dual Buffer
Buffer
Counter Adapter
R-S Flip-Flop
3-lnput NOR Gate
Half Adder
Half Shift Register
Half Shift Register (w/o inverter)
4-lnput NOR Gate
Half Adder
2-lnput Buffer
2·27
Geometry
48W
48W
900
95R
3NB
670
5MH
6Ml
2MH
6JC
CO2
8ME
B77
3JB
C15
7JC
4JC
3JB
1JD
9KM
1MF
2KD
1MF
1MF
810
7JC
87A
78M
2KD
1MF
12C
12l
774
B86
31A
69A
88G
30A
12C
19K
E90
800
490
2MK
800
37B
28C
54K
E24
2KD
1MF
2MK
19H
3KD
9KE
08K
90G
90G
2EF
940
940
A66
85H
670
5MH
6Ml
2MH
6JC
CO2
8ME
B77
3JB
C15
I
MCC810 - MCC893
Chip No.
II
MCC810'
MCC811'
MCC812'
MCC813'
MCC814
MCC815
MCC816
MCC817'
MCC818
MCC819
MCC820
MCC821
MCC822
MCC824
MCC825
MCC826
MCC827
MCC828
MCC829
MCC830
MCC831
MCC832
MCC833
MCC834
MCC835
MCC836
MCC837
MCC838
MCC839
MCC840
MCC841
MCC842
MCC844
MCC845
MCC846
MCC847
MCC848
MCC849
MCC850
MCC851
MCC852
MCC853
MCC855
MCC856
MCC857
MCC858
MCC861
MCC862
MCC863
MCC864
MCC867
MCC870
MCC871
MCC874
MCC875
MCC876
MCC877
MCC878
MCC879
MCC880
MCC881
MCC882
MCC883
MCC884
MCC885
MCC886
MCC887
MCC888
MCC889
MCC890
MCC891
MCC892
MCC893
Family
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
Function
Dual 2-lnput NOR Gate
4-lnput OR/NOR Gate
Half Adder
Type 0 Flip-Flop
Dual 2-lnput NOR Gate
Dual 3-lnput NOR Gate
J-K Flip-Flop
Quad 2-lnput NOR Gate
Dual 3-lnput NOR Gate
Dual 4-lnput NOR Gate
J-K Flip-Flop
Dual 2-lnput Gate Expander
J-K Flip-Flop
Quad 2-lnput NOR Gate
Dual 4-lnput NOR Gate
J-K Flip Flop
Quad Inverter
5-lnput NOR Gate
5-lnput NOR Gate
Exp, Dual 4-lnput NAND Gate
Clocked Flip Flop
Exp, Dual 4-lnput Buffer
Dual 4-lnput Expander
Hex Inverter
Hex Inverter (w/o Output resistors)
Hex Inverter
Hex Inverter
Decade Counter
Divide by Sixteen Counter
Hex Inverter (w/o input diodes)
Hex Inverter (w/o output resistors and input diodes
Type 0 FF Plus Gates
Exp, Dual4-lnput Power Gate
Clocked Flip Flop
Quad 2-lnput NAND Gate
Quad 2-lnput Gate Expander
Clocked Flip Flop
Quad 2-lnput NAND Gate (2K pullups)
Pulse Triggered Binary
Monostable Multivibrator
Dual J-K FF (common Clock and CD)
Dual J-K FF (separate Clock and SO)
Dual J-K FF (2K pullup resistor)
Dual J-K FF (2K pullup resistor)
Quad 2-lnput Buffer
Quad 2-lnput NAND Power Gate
Exp, Dual 4-lnput NAND Gate (2k pullup)
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate (2k pullups)
Dual Exclusive ORIN OR Gate
Quad Latch
BCD to Decimal Decoder
Quad Exclusive OR Gate
J-K Flip Flop
Dual Half Adder
Dual J-K Flip Flop
Binary Up Counter
Dual Type 0 Flip Flop
1 J-K Flip Flop, 1 Expander, 2 Buffers
Decade Up Counter
Dual Buffer
J-K Flip Flop
Dual Half Shift Register
Dual Half Shift Register (wi inverter)
Quad 2-lnput Expander
Dual 4-lnput Expander
1 J-K Flip Flop, 1 Inverter, 2 Buffers
Dual 3-lnput Buffer, non-inverting
Hex Inverter
Dual J-K Flip Flop
Dual J-K Flip Flop
Triple 3-lnput NOR Gate
Triple 3-lnput NOR Gate
Geometry
7JC
4JC
3JB
1JD
9KM
1MF
78M
2KD
1MF
1MF
810
7JC
87A
2KD
1MF
12C
12L
774
B86
18N
56H
84N
32H
57H
4AE
4AE
4AE
84L
84L
4AE
4AE
72A
84N
47P
98M
860
47P
98M
B93
29H
45N
45N
45N
45N
14P
14P
18N
83N
83N
31A
69A
88G
30A
12C
19K
E90
800
490
2MK
800
37B
28C
54K
E24
2KD
1MF
2MK
19H
3KD
9KE
08K
90G
90G
MCC894 - MCC978
Chip No.
MCC894
MCC896
MCC897
MCC898
MCC899
MCC900
MCC901
MCC902
MCC903
MCC904
MCC905
MCC906
MCC907
MCC908
MCC909
MCC910
MCC911
MCC912
MCC913
MCC914
MCC915
MCC916
MCC917
MCC918
MCC919
MCC920
MCC921
MCC922
MCC924
MCC925
MCC926
MCC927
MCC928
MCC929
MCC930
MCC931
MCC932
MCC933
MCC934
MCC935
MCC936
MCC937
MCC938
MCC939
MCC940
MCC941
MCC942
MCC944
MCC945
MCC946
MCC947
MCC948
MCC949
MCC950
MCC951
MCC952
MCC953
MCC955
MCC956
MCC957
MCC958
MCC961
MCC962
MCC963
MCC964
MCC967
MCC970
MCC971
MCC974
MCC975
MCC976
MCC977
MCC978
Family
MRTl
MRTl
MRTl
MRTl
MRTl
MATl
MATl
MATl
MRTl
MATl
MATl
MRTl
MATl
MATl
MATl
MATl
MATl
MRTl
MATl
MATl
MATl
MATl
MATl
MATl
MATl
MRTl
MATl
MATl
MRTl
MATl
MATl
MATl
MATl
MATl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MDTl
MATl
MRTl
MATl
MATl
MATl
MATl
MATL
MATl
MRTL
Function
Serial-Parallel Shift Register
Dual Full Adder .
Dual Full Subtractor
Dual 2-lnput Buffer
Dual Buffer
Buffer
Counter Adapter
A-S Flip-Flop
3-lnput NOR Gate
Half Adder
Half Shift Aegister
Half Shift Aegister (w/o inverter)
4-lnput NOA Gate
Half Adder
2-lnput Buffer
Dual 2-lnput NOA Gate
4-lnput OA/NOA Gate
Half Adder
Type 0 Flip-Flop
Dual 2-lnput NOA Gate
Dual 3-lnput NOA Gate
J-K Flip-Flop
Quad 2-lnput NOR Gate
Dual 3-lnput NOA Gate
Dual 4-lnput NOA Gate
J-K Flip-Flop
Dual 2-lnput Gate Expander
J-K Flip-Flop
Quad 2-lnput NOR Gate
Dual 4-lnput NOR Gate
J-K Flip Flop
Quad Inverter
5-lnput NOA Gate
5-lnput NOA Gate
Exp. Dual 4-lnput NAND Gate
Clocked Plip Flop
Exp. Dual 4-lnput Buffer
Dual 4-lnput Expander
Hex Inverter
Hex Inverter (w/o Output resistors)
Hex Inverter
Hex Inverter
Decade Counter
Divide by Sixteen Counter
Hex Inverter (w/o input diodes)
Hex Inverter (w/o output resistors and input diodes
Type 0 FF Plus Gates
Exp. Dual 4-lnput Power Gate
Clocked Flip Flop
Quad 2-lnput NAND Gate
Quad 2-lnput Gate Expander
Clocked Flip Flop
Quad 2-lnput NAND Gate (2K pullups)
Pulse Triggered Binary
Monostable Multivibrator
Dual J-K FF (common Clock and CD)
Dual J-K FF (separate Clock and SO)
Dual J-K FF (2K pullup resistor)
Dual J-K FF (2K pullup resistor)
Quad 2-lnput Buffer
Quad 2-lnput NAND Power Gate
Exp. Dual 4-lnput NAND Gate (2k pullup)
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate (2k pullups)
Dual Exclusive OR/NOR Gate
Quad latch
BCD to Decimal Decoder
Quad Exclusive OR Gate
J-K Flip Flop
Dual Half Adder
Dual J-K Flip Flop
Binary Up Counter
Dual Type 0 Flip,Flop
2-29
Geometry
2EF
940
940
A66
85H
670
5MH
6Ml
2MH
6JC
CO2
8ME
B77
3JB
C15
7JC
4JC
3JB
1JD
9KM
1MF
78M
2KD
1MF
1MF
810
7JC
87A
2KD
1MF
12C
12l
774
B86
18N
56H
84N
32H
57H
4AE
4AE
4AE
84l
84l
4AE
4AE
72A
84N
47P
98M
860
47P
98M
B93
29H
45N
45N
45N
45N
14P
14P
18N
83N
83N
31A
69A
88G
30A
12C
19K
E90
800
490
•
MCC979 - MCC1430
Chip No.
II
MCC979
MCC980
MCC981
MCC982
MCC983
MCC984
MCC985
MCC986
MCC987
MCC988
MCC989
MCC990
MCC991
MCC992
MCC993
MCC994
MCC996
MCC997
MCC998
MCC999
MCC1201
MCC1204
MCC1206
MCC1207
MCC1210
MCC1211
MCC1212
MCC1213
MCC1214
MCC1215
MCC1216
MCC1217
MCC1218
MCC1219
MCC1220
MCC1221
MCC1222
MCC1223
MCC1224
MCC1225
MCC1226
MCC1227
MCC1228
MCC1230
MCC1231
MCC1232
MCC1233
MCC1234
MCC1235
MCC1236
MCC1239
MCC1240
MCC1245
MCC1247
MCC1248
MCC1259
MCC1262
MCC1263
MCC1266
MCC1267
MCC1268
MCC1270
MCC1405
III1CC1406
MCC1407
MCC1408
MCC1410
MCC1411
MCC1412
MCC1413
MCC1414
MCC1420
MCC1430
Family
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
Function
1 J-K Flip Flop, 1 Expander, 2 Buffers
Decade Up Counter
Dual Buffer
J-K Flip Flop
Dual Half Shift Register
Dual Half Shift Register (w/inverter)
Quad 2-lnput Expander
Dual 4-lnput Expander
1 J-K Flip Flop, 1 Inverter, 2 Buffers
Dual 3-lnput Buffer, non-inverting
Hex Inverter
Dual J-K Flip Flop
Dual J-K Flip Flop
Triple 3-lnput NOR Gate
Triple 3-lnput NOR Gate
Serial-Parallel Shift Register
Dual Full Adder
Dual Full Subtractor
Dual 2-lnput Buffer
Dual Buffer
Single 6-lnput Gate
Dual 4-lnput Gate
Dual 4-lnput Gate
Triple 3-lnput Gate
Quad 2-lnput Gate
Quad 2-lnput Gate
Quad 2-lnput Gate
AC Coupled J-K FF (85 MHz typ)
Dual R-S FF (Positive Clock)
Dual R-S FF (Negative Clock)
Dual R-S FF (Single Rail)
Level Translator (Saturated Logic to MECL)
Level Translator (MECL to Saturated Logic)
Full Adder
Quad Line Receiver
Full Subtractor
Type 0 Flip-Flop
Dual 4-lnput OR/NOR Clock Driver
Dual 2-lnput Expandable Gate
Dual 4 and 5-lnput Expander
Dual 3-4-lnput Transmission Line and Clock Driver
AC Coupled J-K FF (120 MHz typ)
Dual 4-Channel Data Selector
Quad Exclusive OR Gate
Quad Exclusive NOR Gate
100-MHz AC Coupled Dual J-K FF
Dual R-S !=F (Single Rail, Negative Clock)
Type 0 Flip-Flop
Dual Schmitt Trigger/Triple Line Receiver
16-Bit Coincident Memory
Quad Level Translator (MECL to Sat. Logic)
Quad Latch
Decoder-Nixie ® Driver
Quad 2-lnput AND Gates
Quad 2-lnput NAND Gates
Dual Full Adder
Quad 2-lnput NOR Gate
Quad 2-!nput NOR Gate
Dual Schmitt Trigger/Triple Line Receiver
Quad MTTL to MECL Trans. W/Strobe
Quad MECL to MTTL Trans. W/Totem Pole Outputs
Quad Latch
A-to-D Converter Subsystem
Six Bit, Multiplying D-to-A Converter
A-to-D Control Circuit
Eight Bit Multiplying D-to-A Converter
Video Amplifier
Darlington Transistor. Array
Darlington Transistor Array
Darlington Transistor )Array
Dual Voltage Comparator
Differential Output Op Amp
OpAmp
Geometry
2MK
800
37B
28C
54K
E24
2KD
1MF
2MK
19H
3KD
9KE
08K
90G
90G
2EF
940
940
A66
85H
41E
250
250
9EG
05N
05N
05N
310
230
230
230
83B
220
80K
280
80K
31B
6DT
250
360
6DM
310
5SE
73A
73A
6EH
230
26K
48B
32G
41C
61T
99F
73A
73A
9FC
2KB
2KB
2KB
2CR
7CF
61T
1GM
6HR
9AR
1EE
60C
8TN
8TN
8TN
700
6HF
20C
MCC1431 - MCC1674
Chip No.
MCC1431
MCC1433
MCC1435
MCC1436
MCC1437
MCC1438
MCC1439
MCC1440
MCC1444
MCC1445
MCC1454
MCC1455
MCC1456
MCC1458
MCC1458S
MCC1463
MCC1466
MCC1468
MCC1469
MCC1488
MCC1489
MCC1489A
MCC1494
MCC1495
MCC1496
MCC1505
MCC1506
MCC1507
MCC1508
MCC1510
MCC1514
MCC1520
MCC1530
MCC1531
MCC1533
MCC1535
MCC1536
MCC1537
MCC1538
MCC1539
MCC1540
MCC1544
MCC1545
MCC1550
MCC1552
MCC1553
MCC1554
MCC1555
MCC1556
MCC1558
MCC1558S
MCC1563
MCC1566
MCC1568
MCC1569
MCC1590
MCC1594
MCC1595
MCC1596
MCC1648
MCC1648
MCC1650
MCC1651
MCC1654
MCC1658
MCC1660
MCC1662
MCC1664
MCC1666
MCC1668
MCC1670
MCC1672
MCC1674
Function
Family
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
Pll
MECl
MECl
MECl
MECl
MECl
MECl
MECl
MECl
MECl
MECl
MECl
MECl
MECl
Op Amp (Darlington Inputs)
OpAmp
Dual Op Amp
High Voltage Op Amp
Dual MCC1709C Op Amp
Op Amp/Power Booster
Uncompensated Op Amp
Core Memory Sense Amplifier
AC-Coupled Four-Channel Sense Amp
Gate Controlled Wideband Amplifier
1 -Watt Power Amplifier
Timing Circuit
High Performance Op Amp
Dual MC1741 High Performance Op Amp
High Slew Rate Op Amp
Negative Power Supply Voltage Regulator
Precision Voltage and Current Regulator
Dual ±15 Volt Tracking Regulator
Positive Voltage Regulator
Quad MDTl Line Driver
Quad MDTl Line Receiver
Quad MDTl Line Receiver
Four-Quadrant Multiplier
Four-Quadrant Multiplier
Balanced Modu lator-Demodu lator
A-to-D Converter Subsystem
Six Bit. Multiplying D-to-A Converter
A-to-D Control Circuit
Eight Bit Multiplying D-to-A Converter
Video Amplifier
Dual Voltage Comparator
Differential Output Op Amp
OpAmp
Op Amp (Darlington Inputs)
OpAmp
Dual Op Amp
High Voltage Op Amp
Dual MCC1709 Op Amp
Op Amp/Power Booster
Uncompensated Op Amp
Core Memory Sense Amplifier
AC-Coupled Four-Channel Sense Amp
Gate Controlled Wideband Amplifier
RF-IF Amplifier
High Frequency Video Amplifier (low Gain)
High Frequency Video Amplifier (High Gain)
1 -Watt Power Amplifier
Timing Circuit
High Performance Op Amp
Dual MC1741 High Performance Op Amp
High Slew Rate Op Amp
Negative Power Supply Voltage Regulator
Precision Voltage and Current Regulator
Dual ±15 Volt Tracking Regulator
Positive Voltage Regulator
Wideband Amplifier With AGC
Four Quadrant Multiplier
Four Quadrant Multiplier
Balanced Modu lator-Demodu lator
Voltage Controlled Oscillator
Voltage Controlled Oscillator
Dual A-D Comparator
Dual A-D Comparator
Binary Counter (High Z)
Voltage Controlled Multivibrator
Dual 4-lnput OR/NOR Gate (High Z)
Quad 2-lnput NOR Gate (High Z)
Quad 2-lnput OR Gate (High Z)
Dual Clocked R-S FF (High Z)
Dual Clocked latch (High Z)
Master-Slave Type 0 FF (High Z)
Triple 2-lnput Exclusive OR Gate (High Z)
Triple 2-lnput Exclusive NOR Gate (High Z)
2-31
Geometry
20C
19C
47C
02K
78W
36F
42P
420
64R
520
820
3EK
8NC
3NH
9MV
80H
56G
4CH
93C
7NA
62l
62l
15M
3TC
6PV
lGM
6HR
9AR
lEE
60C
700
6HF
20C
20C
19C
47C
02K
78W
36F
42P
420
64R
520
100
70C
70C
820
3EK
8NC
3NH
9MV
80H
56G
4CH
93C
62B
15M
3TC
6PV
7TC
7TC
4NG
4NG
4TG
5WJ
3TW
lNJ
lNJ
8TT
8TT
All
68F
68F
•
MCC1678 - MCC2016
Chip No.
MCC1678
MCC1688
MCC1690
MCC1692
MCC1694
MCC1709
MCC1709A
MCC1709C
MCC1710
MCC1710C
MCC1711
MCC1711C
MCC1712
MCC1712C
MCC1723
MCC1723C
MCC1733
MCC1733C
MCC1741
MCC1741C
MCC1741S
MCC1741SC
MCC1747
MCC1747C
MCC1748
MCC1748C
MCC1776
MCC1776C
MCC1800
MCC1801
MCC1802
MCC1803
MCC1804
MCC1805
MCC1806
MCC1807
MCC1808
MCC1809
MCC1810
MCC1811
MCC1812
MCC1813
MCC1814
MCC1818
MCC1820
MCC1900
MCC1901
MCC1902
MCC1903
MCC1904
MCC1905
MCC1906
MCC1907
MCC1908
MCC1909
MCC1910
MCC1911
MCC1912
MCC1913
MCC1914
MCC1918
MCC2000
MCC2001
MCC2002
MCC2003
MCC2004
MCC2005
MCC2006
'MCC2007
MCC2011
MCC2012
MCC2013
MCC2016
Family
MECL
MECL
MECL
MECL
MECL
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MDTL
MOlL
MOlL
MOlL
MOlL
MOlL
MOlL
MOlL
MOlL
MOlL
MOlL
MOlL
MDTL
MOlL
MDTL
MDTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTIL
Function
Bi-Quinary Counter (High Z)
Dual 4-5 Input OR/NOR Gate
UHF Prescater Type 0 Flip-Flop
Quad Line Receiver
4-Bit Shift Register (High Z)
OpAmp
OpAmp
OpAmp
Differential Voltage Comparator
Differential Voltage Comparator
Dual Differential Voltage Comparator
Dual Differential Voltage Comparator
Wideband DC Amplifier
Wideband DC Amplifier
Voltage Regulator
Voltage Regulator
Differential Video Wideband Amplifier
Differential Video Wideband Amplifier
High Performance Op Amp
High Performance Op Amp
High Slew Rate Op Amp
High Slew Rate Op Amp
Dual MC1741 High Performance Op Amp
Dual MC1741 High Performance Op Amp
High Performance Op Amp
High Performance Op Amp
Micropower Programmable Op Amp
Micropower Programmable Op Amp
Dual 6-lnput NAND Gate
Dual 5-lnput NAND Gate (2k pullups)
Exp. 8-lnput NAND Gate
Exp. 8-lnput NAND Gate (2k pullups)
10 Input NAND Gate
10 Input NAND Gate (2k pullup resistor)
Quad 2-lnput AND Gate
Quad 2-lnput AND Gate (2k pullup resistor)
Quad 2-lnput OR Gate
Quad 2-lnput OR Gate 12k pullup resistor)
Quad 2-lnput NOR Gate
Quad 2-lnput NOR Gate 12k pullup resistor)
Quad 2-lnput Exclusive OR Gate
Quad Latch
Quad Latch
Quad 2-lnput NAND Gate
High Voltage Hex Inverter
Dual 6-lnput NAND Gate
Dual 5-lnput NAND Gate (2k pullups)
Exp. 8-lnput NAND Gate
Exp. 8-lnput NAND Gate (2k pullups)
10 Input NAND Gate
10 Input NAND Gate (2k pullup resistor)
Quad 2-lnput AND Gate
Quad 2-lnput AND Gate (2k pullup resistor)
Quad 2-lnputOR Gate
Quad 2-lnput OR Gate (2k pullup resistor)
Quad 2-lnput NOR Gate
Quad 2-lnput NOR Gate 12k pullup resistor)
Quad 2-lnput Exclusive OR Gate
Quad Latch
Quad Latch
Quad 2-lnput NAND Gate
Exp. 2-Wide 4-lnput AOI Gate
Quad 2-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Dual 4-lnput NAND Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
8-lnput NAND Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput NAND Gate
Expandable 8-lnput NAND Gate
Exp. 3-Wide 3-lnput AOI Gate
Exp. Dual 2-Wide 2-lnput AOI Gate
Hex Inverter
?_'.l?
Geometry
4TG
9NF
6WK
1NJ
8WJ
21C
21C
21C
6TR
6TR
2BH
2BH
18C
18C
3PB
3PB
02R
02R
7NL
7NL
3DW
3DW
9KF
9KF
60P
60P
9CF
9CF
62C
62C
62C
62C
62C
62C
7DM
7DM
7DM
7DM
7DM
7DM
2AB
16C
16C
98M
4AE
62C
62C
62C
62C
62C
62C
7DM
7DM
7DM
7DM
7DM
7DM
2AB
l6C
l6C
98M
4DA
8DB
89A
2BN
89A
85N
4DA
45V
85N
89A
9RW
79M
MCC2018 - MCC3010/74H20
Chip No.
MCC2018
MCC2023
MCC2024
MCC2025
MCC2026
MCC2028
MCC2050
MCC2051
MCC2052
MCC2053
MCC2054
MCC2055
MCC2056
MCC2057
MCC2061
MCC2062
MCC2063
MCC2065
MCC2066
MCC2068
MCC2073
MCC2074
MCC2075
MCC2076
MCC2078
MCC2100
MCC2101
MCC2102
MCC2103
MCC2104
MCC2105
MCC2106
MCC2107
MCC2111
MCC2112
MCC2113
MCC2116
MCC2118
MCC2123
MCC2124
MCC2125
MCC2126
MCC2128
MCC2150
MCC2151
MCC2152
MCC2153
MCC2154
MCC2155
MCC2156
MCC2157
MCC2161
MCC2162
MCC2163
MCC2165
MCC2166
MCC2168
MCC2173
MCC2174
MCC2175
MCC2176
MCC2178
MCC3000/74HOO
MCC3001/74H08
MCC3002
MCC3003
MCC3004/74H01
MCC3005/74H10
MCC3006/74H11
MCC3007
MCC3008/74H04
MCC3009/74H05
MCC3010/74H20
Family
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
IVITIL
MTIL
MTTL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTTL
MTIL
MTIL
MTIL
MTIL
MTIL
MTTL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
Function
Quad 2-1 Lamp/Line Driver(open collector)
Dual J-K Flip Flop (separate clock)
Dual J-K Flip Flop (common clock)
AND J-K Flip Flop
OR J-K Flip Flop
OR J-K Flip Flop
Exp. 2-Wide 4-lnput AOI Gate
Quad 2-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Dual 4-lnput NAND Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
8-lnput NAND Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput NAND Gate
Expandable 8-lnput NAND Gate
Exp. 3-Wide 3-lnput AOI Gate
Exp. Dual 2-Wide 2-lnput AOI Gate
Quad 2-lnput Lamp/Line Driver
Hex Inverter
Quad 2-1 Lamp/Line Driver(open collector)
Dual J-K Flip Flop (separate clock)
Dual J-K Flip Flop (common clock)
AND J-K Flip Flop
OR J-K Flip Flop
OR J-K Flip Flop
Exp. 2-Wide 4-lnput AOI Gate
Quad 2-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Du'al 4-lnput NAND Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
8-lnput NAND Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput NAND Gate
Expandable 8-lnput NAND Gate
Exp. 3-Wide 3-lnput AOI Gate
Exp. Dual' 2-Wide 2-lnput AOI Gate
Hex Inverter
Quad 2-1 Lamp/Line Driver(open collector)
Dual J-K Flip Flop (separate clock)
Dual J-K Flip Flop (common clock)
AND J-K Flip Flop
OR J-K Flip Flop
OR J-K Flip Flop
Exp. 2-Wide 4-lnput AOI Gate
Quad 2-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOIGates
Dual 4-lnput NAND Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
8-lnput NAND Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput NAND Gate
Expandable 8-lnput NAND Gate
Exp. 3-Wide 3-lnput AOI Gate
Exp. Dual 2-Wide 2-lnput AOI Gate
Quad 2-lnput Lamp/Line Driver
Hex Inverter
Quad 2-1 Lamp/Line Driver(open collector)
Dual J-K Flip Flop (separate clock)
Dual J-K Flip Flop (common clock)
AND J-K Flip Flop
OR J-K Flip Flop
OR J-K Flip Flop
Quad 2-lnput NAND Gate
Quad 2-lnput AND Gate
Quad 2-lnput NOR Gate
Quad 2-lnput OR Gate
Quad 2-lnput NAND Gate (O.C.)
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput NAND Gate (O.C.)
Hex Inverter
Hex Inverter (O.C.)
Dual 4-lnput NAND Gate
Geometry
4RR
2TJ
2TJ
47E
47E
47E
4DA
8D8
89A
2BN
89A
85N
4DA
45V
85N
89A
9RW
5PJ
79M
4RR
2TJ
2TJ
47E
47E
47E
4DA
8DB
89A
2BN
89A
85N
4DA
45V
85N
89A
9RW
79M
4RR
2TJ
2TJ
47E
47E
47E
4DA
8DB
89A
2BN
89A
85N
4DA
45V
85N
89A
9RW
5PJ
79M
4RR
2TJ
2TJ
47E
47E
47E
5CA
5CA
59N
59N
16K
35T
35T
35T
09L
09L
1GH
•
MCC3011/74H21 -MCC3163
Chip No.
II
MCC3011/74H21
MCC3012/74H22
MCC3015
MCC3016/74H30
MCC3018/74H62
MCC3019/74H61
MCC3020/74H50
MCC3021
MCC3022
MCC3023/74H51
MCC3024/74H40
MCC3025
MCC3026
MCC3028
MCC3029
MCC3030
MCC3031/74H52
MCC3032/74H53
MCC3033/74H54
MCC3034/74H55
MCC3050
MCC3051
MCC3052
MCC3053
MCC3054/74H71
MCC3055/74H72
MCC3060
MCC3061
MCC3062
MCC3063
MCC3064/74H74
MCC3065/74H101
MCC3100/54HOO
MCC31 01 154H08
MCC3102
MCC3103
MCC3104/54H01
MCC31 05/54H1 0
MCC3106/54H11
MCC3107
MCC3108/54H04
MCC3109/54H05
MCC3110/54H20
MCC3111/54H21
MCC3112/54H22
MCC3115
MCC3116/54H30
MCC3118/54H62
MCC3119/54H61
MCC3120/54H50
MCC3121
MCC3122
MCC3123/54H51
MCC3124/54H40
MCC3125
MCC3126
MCC3128
MCC3129
MCC3130
MCC3131/54H52
MCC3132/54H53
MCC3133/54H54
MCC3134/54H55
MCC3150
MCC3151
MCC3152
MCC3153
MCC3154/54H71
MCC3155/54H72
MCC3160
MCC3161
MCC3162
MCC3163
Function
Family
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTIL
MTTL
MTIL
MTIL
MTIL
MTIL
MTTL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTTL
MTIL
MTIL
MTIL
MTIL
MTTL
MTIL
MTTL
MTIL
MTTL
MTIL
MTTL
MTIL
MTIL
MTIL
Dual 4-lnput AND Gate
Dual 4-lnput NAND Gate (O.C.)
8-lnput NAND Gate
8-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Triple 3-lnput Exp. for AND-OR Gates
Exp. Dual 2-W 2-lnput AOI Gate
Quad 2-lnput Exclusive OR Gate
Quad 2-lnput Exclusive NOR Gate
Dual 2-W 2-lnput AOI Gate
Dual 4-lnput NAND Buffer Gate
Dual 4-lnput NAND Power Gate
Dual 4-lnput AND Power Gate
Dual 3-1 3-0utput AND Series Term. Line Driver
Dual 3-1 3-0utput NAND Series Term. Line Driver
Dual 4-lnput Exp. for AOI Gates
Exp. 4-W 2-2-2-3 Input AND-OR Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
4-W 2-2-2-3 Input AOI Gate
Exp. 2-W 4-lnput AOI Gate
AND J-K Flip Flop
AND Input J-K Flip Flop
AND Input JJ-KK Flip Flop
Double Edge Triggered Master Slave Type D FF
OR Input J-K Flip Flop
AND Input J-K Flip Flop
Dual Type 0 Flip-Flop
Dual J-K Flip-Flop
Dual J-K Flip-Flop
Dual J-K Flip-Flop
Dual D Flip-Flop
J-K Flip-Flop
Quad 2-lnput NAND Gate
Quad 2-lnput AND Gate
Quad 2-lnput NOR Gate
Quad 2-lnput OR Gate
Quad 2-lnput NAND Gate (O.C.)
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput NAND Gate (O.C.)
Hex Inverter
Hex Inverter (O.C.)
Dual 4-lnput NAND Gate
Dual 4-lnput AND Gate
Dual 4-lnput NAND Gate (O.C.)
8-lnput NAND Gate
8-lnput NAND Gate
4-W 3-2-2-3 Input Exp. for AOI Gates
Triple 3-lnput Exp. for AND-OR Gates
Exp. Dual 2-W 2-lnput AOI Gate
Quad 2-lnput Exclusive OR Gate
Quad 2-lnput Exclusive NOR Gate
Dual 2-W 2-lnput AOI Gate
Dual 4-lnput NAND Buffer Gate
Dual 4-lnput NAND Power Gate
Dual 4-lnput AND Power Gate
Dual 3-1 3-0utput AND Series Term. Line Driver
Dual 3-1 3-0utput NAND Series Term. Line Driver
Dual 4-lnput Exp. for AOI Gates
Exp. 4-W 2-2-2-3 Input AND-OR Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
4-W 2-2-2-3 Input AOI Gate
2-W 4-lnput AOI Gate
.
A D J-K Flip Flop .
AND Input J-K Flip Flop
AND Input JJ-KK Flip Flop
Double Edge Triggered Master Slave Type D FF
OR Input J-K Flip Flop
AND Input J-K Flip Flop
Dual Type 0 Flip-Flop
Dual J-K Flip-Flop
Dual J-K Flip-Flop
DuaIJ-K Flip-Flop
tf.
?_~;4
Geometry
lGH
lGH
6GH
88K
98K
99K
27W
53H
53H
27W
6AL
6AL
6AL
32A
32A
63A
97K
48K
48K
93K
68A
580
55B
840
43H
43H
80V
9CW
9CW
60N
80V
8AD
5CA
5CA
59N
59N
16K
35T
35T
35T
09L
09L
lGH
1GH
lGH
6GH
88K
98K
99K
27W
53H
53H
27W
6AL
6AL
6AL
32A
32A
63A
97K
48K
48K
93K
68A
580
55B
840
43H
43H
80V
9CW
9CW
60N
MCC3164/54H74 - MCC4051
Chip No.
MCC3164/54H74
MCC3165/54H101
MCC3301
MCC3302
MCC3303
MCC3346
MCC3358
MCC3401
MCC3403
MCC3410
MCC3416
MCC3430
MCC3431
MCC3432
MCC3433
MCC3437
MCC3438
MCC3440
MCC3441
MCC3443
MCC3446
MCC3450
MCC3452
MCC3453
MCC3456
MCC3458
MCC3459
MCC3460
MCC3461
MCC3466
MCC3467
MCC3468
MCC3476
MCC3490
MCC3491
MCC3494
MCC3503
MCC3510
MCC3556
MCC3558
MCC4000
MCC4002
MCC4003
MCC4004
MCC4005
MCC4006
MCC4007
MCC4008/74408
MCC4010
MCC4012
MCC4015
MCC4016/74416
MCC4017174417
MCC4018/74418
MCC4019/74419
MCC4021
MCC4022
MCC4023
MCC4024
MCC4026
MCC4027
MCC4028
MCC4029
MCC4030
MCC4031
MCC4032
MCC4035
MCC4037
MCC4042
MCC4043
MCC4044
MCC4050/74450
MCC4051
Function
Family
MTTL
MTTL
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
Dual 0 Flip-Flop
J-K Flip-Flop
Quad Single Supply Op Amp
Quad Single Supply Op Amp
Quad Differential Input Op Amp
Five Transistor General Purpose Array
Dual Differential Input Op Amp
Quad Single Supply Op Amp
Quad Differential Input Op Amp
10 Bit D-to-A Converter
4x4x2 Crosspoint Switch
Quad High Speed Voltage Comparator
Quad High Speed Voltage Comparator
Quad High Speed Voltage Comparator
Quad High Speed Voltage Comparator
Hex Unified Bus Receiver
Quad Bus Transceiver
Quad General Purpose Interface Bus Transceiver
Quad General Purpose Interface Bus Transceiver
Quad General Purpose Interface Bus Transceiver
Quad General Purpose Interface Bus Transceiver
Quad Line Receiver
Quad Line Receiver
Quad Line Driver
Dual Timing Circuit
Dual Differential Input Op Amp
Quad NMOS Address Line Driver
Four Channel MOS Clock Driver
Du'al NMOS Memory Sense Amplifier
Four Channel MOS Clock Driver
Triple Preamplifier
Magnetic Tape Read Amplifier
Micropower Programmable Op Amp
Seven Digit Gas Discharge Display Driver
Segment Driver for Gas Discharge Displays
Seven Digit Gas Discharge Display Driver
Quad Differential Input Op Amp
10 Bit D-to-A Converter
Dual Timing Circuit
Dual Differential Input Op Amp
Dual 4 Channel Data Selector
Dual Data Distributor
Dual Binary to NBCD Converter
l6-Bit Scratch Pad Memory Cell
l6-Bit Scratch Pad Memory Cell
Binary to one of eight Line Decoder
Dual Binary to one of four Line Decoder
8-Bit Parity Tree
Dual 4-Bit Parity Tree
4-Bit Shift Register
Quad Type 0 Flip-Flop
Prog. Modulo-N Decade Counter
Modulo 2, Modulo 5 Prog. Counter
Prog. Modulo-N Hexadecimal Counter
Dual Modulo 4 Prog. Counter
Dual 4-Bit Comparator (O.C.)
Dual 4-Bit Comparator
4-Bit Universal Counter
Dual Voltage Controlled Multi.
Full Adder
Full Adder
Adder (Dependent Carry)
Adder (Dependent Carry)
Adder (Independent Carry)
Adder (Independent Carry)
Carry Decoder
Quad Latch (O.C.)
Quad Latch
Quad Predriver
Dual Line Selector
Phase Frequency Detector
Counter-Latch DecoderIDriver
Counter-Latch Decoder IDriver
2-35
Geometry
80V
8AD
2LM
4CC
1PP
3EJ
1TJ
2LM
lPP
lMJ
8NL
2FT
2FT
2FT
2FT
6KD
2JS
4MM
4MM
4MM
5PR
2FT
2FT
7GS
7MA
1TJ
7KR
8MR
4LN
8MR
1PJ
1TF
9CF
9MW
lJF
9MW
lPP
lMJ
7MA
1TJ
l8E
59B
06T
lPR
lPR
31C
31C
8HT
94F
43L
87N
30P
30P
30P
30P
04R
04R
74H
54H
33K
33K
33K
33K
33K
33K
50K
lOB
lOB
31E
32E
46K
09R
09R
II
MCC4052/74452 - MCC54HOOF
Chip No.
MCC4062/74462
MCC4063/74463
MCC4064/74464
MCC4066/74466
MCC4066/74466
MCC4068/74468
MCC4060/74460
MCC4062
MCC4068/74468
MCC4300
MCC4302
MCC4303
MCC4304
MCC4306
MCC4306
MCC4307
MCC4308
MCC4310
MCC4312
MCC4315
MCC4316
MCC4317
MCC4318
MCC4319
MCC4321
MCC4322
MCC4323
MCC4324
MCC4326
MCC4327
MCC4328
MCC4329
MCC4330
MCC4331
MCC4332
MCC4336
MCC4337
MCC4342
MCC4343
MCC4344
MCC4350
MCC4361
MCC4352
MCC4353
MCC4354
MCC4355
MCC4356
MCC4358
MCC4360
MCC4362
MCC4368
MCC4741
MCC4741C
MCC5090
MCC5092
MCC5111
MCC5113
MCC5121
MCC5123
MCC6131
MCC5133
MCC5141
MCC5143
MCC5151
MCC5153
MCC5173
MCC5163
MCC5181
MCC5183
MCC5191
MCC5193
MCC54HOO
MCC54HOOF
Family
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
LINEAR
LINEAR
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
Function
Dual Decade Counter
Dual Hexadecimal Counter
Dual Decade Up/Down Counter
Dual Binary Up/Down Counter
NBCD Adder
Nines Compliment/Zero Element
Bus Transfer Switch
Dual Majority Logic Gate
Dual MOS to TTL Level Translator
Dual 4 Channel Data Selector
Dual Data Distributor
Dual Binary to NBCD Converter
16-Bit Scratch Pad Memory Cell
16-Bit Scratch Pad Memory Cell
Binary to one of eight Line Decoder
Dual Binary to one of four Line Decoder
8-Bit Parity Tree
Dual 4-Bit Parity Tree
4-Bit Shift Register
Quad Type 0 Flip-Flop
Prog. Modulo-N Decade Counter
Modulo 2, Modulo 5 Prog. Counter
Prog. Modulo-N Hexadecimal Counter
Dual Modulo 4 Prog. Counter
Dual4-Bit Comparator (O.C.)
Dual 4-Bit Comparator
4-Bit Universal Counter
Dual Voltage Controlled Multi.
Fu11 Adder
Full Adder
Adder (Dependent Carry)
Adder (Dependent Carry)
Adder (Independent Carry)
Adder (Independent Carry)
Carry Decoder
Quad Latch (O.C.)
Quad Latch
Quad Predriver
Dual Line Selector
Phase Frequency Detector
Counter-Latch Decoder/Driver
Counter-Latch Decoder/Driver
Dual Decade Counter
Dual Hexadecimal Counter
Dual Decade Up/Down Counter
Dual Binary Up/Down Counter
NBCD Adder
Nines Compliment/Zero Element
Bus Transfer Switch
Dual Majority Logic Gate
Dual MOS to TTL Level Translator
QU;:ld MC1741 Op Amp
Quad MC1741 Op Amp
Fixed Frequency Decade Divider
Fixed Frequency Decade Divider
4-8it Shift Register
4-Bit Shift Register
Dual 4-Bit Parity Generator Checker
Dual 4-Bit Parity Generator Checker
Dual 4-Bit Comparator
Dual 4-Bit Comparator
Binary Programmable Divider
Binary Programmable Divider
BCD Programmable Divider
BCD Programmable Divider
4-Bit BCD Counter
4-Bit Binary Counter
4-Bit Binary up/Down Counter
4-Bit Binary up/Down Counter
4-Bit BCD Up/Down Counter
4-Bit BCD Up/Down Counter
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate
2-36
Geometry
91R
91R
66W
66W
74V
10K
38T
62T
2AG
18E
59B
06T
1PR
1PR
31C
31C
8HT
94F
43L
87N
30P
30P
30P
30P
04R
04R
74H
54H
33K
33K
33K
33K
33K
33K
50K
1DB
1DB
31E
32E
46K
09R
09R
91R
91R
66W
66W
74V
10K
38T
62T
2AG
7TP
7TP
12V
12V
13V
13V
14V
14V
14V
14V
15V
15V
4LW
4LW
16V
16V
17V
17V
17V
17V
5CA
06L
MCC54H01 - MCC5449
Chip No.
MCC54H01
MCC54H01F
MCC54H04
MCC54H05
MCC54H08
MCC54H10
MCC54H10F
MCC54H11
MCC54H11F
MCC54H20
MCC54H20F
MCC54H21
MCC54H21F
MCC54H22
MCC54H22F
MCC54H30
MCC54H40
MCC54H40F
MCC54H50
MCC54H51
MCC54H52
MCC54H53
MCC54H54
MCC54H55
MCC54H60
MCC54H61
MCC54H62
MCC54H71
MCC54H72
MCC54H73
MCC54H74A
MCC54H87
MCC54H101
MCC54H103
MCC5400
MCC5400F
MCC5401
MCC5402
MCC5403
MCC5404
MCC5405
MCC5406
MCC5407
MCC5408
MCC5409
MCC5410
MCC541OF
MCC5411
MCC5412
MCC5413
MCC5414
MCC5416
MCC5417
MCC5420
MCC5420F
MCC5423
MCC5425
MCC5426
MCC5427
MCC5430
MCC5437
MCC5438
MCC5440
MCC5440F
MCC5441A
MCC5442
MCC5443
MCC5444
MCC5445
MCC5446
MCC5447
MCC5448
MCC5449
Family
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTIl
MTIl
MTTl
MTTl
MTIl
MTIl
MTIl
MTIl
MTTl
MTIl
MTTl
MTTl
MTTl
MTTl
MTIl
MTTl
MTTl
MTIl
MTTl
MTTl
MTIl
MTTl
MTTl
MTIl
MTTl
MTTl
MTTl
MTTl
MTIl
MTTl
MTIl
MTIl
MTTl
MTTl
MTIl
MTTl
MTIl
MTTl
MTIl
MTTl
MTIl
MTIl
MTTL
MTTL
MTIL
MTTL
Function
Quad 2-lnput NAND Gate (O.C.)
Quad 2-lnput NAND Gate (O.C.)
Hex Inverter
Hex Inverter
Quad 2-lnput AND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput AND Gate
Dual 4-lnput NAND Gate
Dual 4-lnput NAND Gate
Dual 4-lnput AND Gate
Dual 4-lnput AND Gate
Dual 4-lnput NAND Gate (O.C.)
Dual4-lnput NAND Gate (O.C.)
a-Input NAND Gate
Dual 4-lnput NAND Buffer Gate
Dual 4-lnput NAND Buffer Gate
Exp. Dual 2-W 2-lnput AOI Gate
. Dual 2-Wide 2-lnput AOI Gate
Exp. 4-W 2-2-2-3 Input AND-OR Gate
Exp. 4-Wide 2-2-2-3 Input AOI Gate
4 Wide 2-2-2-3 Input AOI Gate
Exp. 2-W 4-lnput AOI Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput Exp. for AND-OR Gat~s
4-W 3-2-2-3 Input Exp. for AOI Gates
OR Input J-K Flip Flop
AND Input J-K Flip Flop
Dual J-K Flip Flop
Dual D positive edge triggered FF
4-Bit True/Compl. Zero/One Element
AND-OR Gated J-K neg. edge triggered FF w/preset
Dual J-K neg. edge triggered FF
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate (O.C.)
Quad 2-lnput NOR Gate
Quad 2-lnput NAND Gate (O.C.)
Hex Inverter
Hex Inverter (O.C.)
Hex Inverter Buffer/Driver (O.C.)
Hex Buffer/Driver (O.C.)
Quad 2-lnput AND Gate
Quad 2-lnput AND Gate (O.C.)
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput NAND Gate (O.C.)
Dual 4-1 NAND Gate Schmitt Trigger
Hex Schmitt Trigger Inverter
Hex Inverter Buffer/Driver (O.C.)
Hex Buffer/Driver
Dual4-lnput NAND Gate
Dual 4-lnput NAND Gate
Dual 4-lnput NOR Gate w/Strobe (exp.)
Dual 4-lnput NOR Gate w/Strobe
Quad 2-lnput Interface NAND Gate
Triple 3-input NOR Gate
a-Input NAND Gate
Quad 2-lnput Positive NAND Buffer
Quad 2-lnput Positive NAND Buffer (O.C.)
Dual 4-lnput NAND Buffer
Dual 4-lnput NAND Buffer
BCD to Decimal Decoder/High level Driver
BCD to Decimal Decoder
Excess Three-to-Decimal Decoder
Excess Three Gray to Decimal Decoder
BCD to Decimal Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
2-37
Geometry
16K
06l
09l
09l
5CA
35T
67M
35T
72H
1GH
31l
1GH
72H
1GH
31l
88K
6Al
12M
27W
27W
97K
48K
48K
93K
63A
99K
98K
43H
43H
60N
80V
8GM
8AD
6AD
16K
81l
22K
53T
16K
1CR
1CR
2AW
2AW
23T
23T
11N
61N
85W
11N
7KB
2JA
2AW
2AW
51N
90l
5AG
5AG
16K
75W
98l
1AF
1AF
10N
12M
17F
6FE
29R
29R
96M
83M
83M
011.01l
•
MCC5450 - MCC74H21
Chip No.
II
MCC5450
MCC5451
MCC5453
MCC5454
MCC5460
MCC5470
MCC5472
MCC5473
MCC5474
MCC5475
MCC5476
MCC5479
MCC5480
MCC5481
MCC5483
MCC5484
MCC5485
MCC5486
MCC5490A
MCC5491A
MCC5492A
MCC5493A
MCC5494
MCC549!iA
MCC5496
MCC5497
MCC5524
MCC5525
MCC5528
MCC5529
MCC5534
MCC5535
MCC5538
MCC5539
MCC6880
MCC7200
MCC7201
MCC7202
MCC7203
MCC7233
MCC7234
MCC7235
MCC7241
MCC7242
MCC7250
MCC7251
MCC7260
MCC7261
MCC7266
MCC7267
MCC7270
MCC7271
MCC7280
MCC7281
IViCC7284
MCC7285
MCC7288
MCC7290
MCC7291
MCC74HOO
MCC74HOOF
MCC74H01
MCC74H01F
MCC74H04
MCC74H05
MCC74H08
MCC74H10
MCC74H10F
MCC74H11
MCC74H11F
MCC74H20
MCC74H20F
MCC74H21
Family
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTIMTTL
MTTL
MTTL
M'rTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MITL
MTTL
MITL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
Function
Exp. Dual 2-W 2-lnput AOI Gate
Dual 2-W 2-lnput AOI Gate
Exp. 4-W 2-lnput AOI Gate
4-W 2-lnput AOI Gate
Dual 4-lnput Exp. for AOI Gates
AND Gated J-K FF Pos. edge triggered
AND Gated J-K Master Slave FF
Dual J-K Flip Flop
Dual Pos. edge triggered FF
Quad Latch
Dual J-K Flip Flop
Dual 0 Pos. edge triggered FF
Gated Full Adder (l-Bit)
16-Bit Scratch Pad Memory
4-Bit Full Adder
16-Bit Scratch Pad Memory
4-Bit Magnitude Comparator
Quadruple 2-lnput Exclusive OR Gate
Decade Counter
8-Bit Shift Register
Divide by 12 Counter
4-Bit Binary Counter
4-Bit Shift Register
4-Bit Shift Register (Parallel Access)
5-Bit Shift Register
Synchronous 6-Bit Binary Rate Multi.Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Quad Three-State Bus Transceiver
Dual 5-Bit Buffer Register
Dual 5-Bit Buffer Register wiD Compo
10-Bit Buffer Register
10-Bit Buffer Register wiD Compo
2-lnput. 4-Bit. digital Multiplexer
2-lnput. 4-Bit. digital Multi.- (O.C.)
2-lnput. 4-Bit. digital Multi. (O.C.)
Quad Exclusive OR Gate
Quad Exclusive NOR Gate (O.C.)
Binary to Octal Decoder
BCD to Decimal Decoder
Arithmetic LogiC Element
Fast Carry Extender
2-lnput. 4-Bit Data Selector
2-lhput. 4-8it Data Selector (O.C.)
4-Bit Shift Register
4-Bit Shift Register
Presettable Decade Counter
Presettable Binary Counter
Binary Up/Down Counter
Decade Up/Down Counter
Divide by 12 Counter
High Speed Presettable Decade Counter
High Speed Presettable Binary Counter
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate (O.C.)
Quad 2-lnput NAND Gate (O.C.)
Hex Inverter
Hex Inverter
Quad 2-lnput AND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput AND Gate
Dual 4-lnput NAND Gate
Dual 4-lnput NAND Gate
Dual 4-lnput AND Gate
Geometry
03R
03R
11 P
11 P
90B
12N
56C
91M
80V
7AJ
86N
80V
10L
lPR
10M
lPR
7GK
8GM
3HT
05R
3HT
3HT
66N
6RP
8BG
7MG
2ET
2ET
2ET
2ET
2ET
2ET
2ET
2ET
5NE
2JT
2JT
2JT
2JT
7EE
7EE
79T
57T
57T
04P
04P
40N
66P
79T
79T
3RA
3RA
5GD
5GD
51T
51T
39N
5GD
5GD
5CA
06L
16K
06L
09L
09L
5CA
35T
67M
35T
72H
lGH
31L
lGH
MCC74H21 F - MCC7479
Chip No.
MCC74H21F
MCC74H22
MCC74H22F
MCC74H30
MCC74H40
MCC74H4QF
MCC74H50
MCC74H51
MCC74H52
MCC74H53
MCC74H54
MCC74H55
MCC74H60
MCC74H61
MCC74tf62
MCC74H71
MCC74H72
MCC74H73
MCC74H74A
MCC74H87
MCC74H101
MCC74H103
MCC7400
MCC7400F
MCC7401
MCC7402
MCC7403
MCC7404
MCC7405
MCC7406
MCC7407
iVlCC7408
MCC7409
MCC7410
MCC741OF
MCC7411
MCC7412
MCC7413
MCC7414
MCC7416
MCC7417
MCC7420
MCC7420F
MCC7423
MCC7425
MCC7426
MCC7427
MCC7430
MCC7437
MCC7438
MCC7440
MCC7440F
MCC7441A
MCC7442
MCC7443
MCC7444
MCC7445
MCC7446
MCC7447
MCC7448
MCC7449
MCC7450
MCC7451
MCC7453
MCC7454
MCC7460
MCC7470
MCC7472
MCC7473
MCC7474
MCC7475
MCC7476
MCC7479
Function
Family
MTTl
MTTl
MTTl
MTTl
MTTl
MTTL
MTTl
MTTl
MTTl
Mrrl
MTTL
MTTl
MTTl
MtTL
MTTl
MTTl
MtTL
MTTl
MTTL
MTTl
MTTl
MTTl
MTTl
MTTl
MTTL
MTTl
MTTl
MTTL
MTTl
MTTL
MTTl
MTTl
MTTL
MTTl
MTTl
MTTl
MTT~
MTTL
MTTl
MTTl
MTTL
MTTl
MTTL
MTTl
MTTl
MTTl
MTTl
MTTl
MTTL
Mrrl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTL
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
MTTl
Dual 4-lnput AND Gate
Dual 4-lnput NAND Gate (O.C.)
Dual 4-lnput NAND Gate (O.C.)
8-lnput NAND Gate
Dual 4-lnput NAND Buffer Gate
Dual 4-lnput NAND Buffer Gate
Exp. Dual 2-W 2-lnput AOI Gate
Dual 2-Wide2-lnput AOI Gate
Exp. 4-W 2-2-2c3 Input AND-OR Gate
Exp. 4-Wide 2-2-2-3 Input AOI Gate
4 Wide 2-2-2-3 Input AOI Gate
Exp. 2-W 4-lnput ADI Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput Exp. for AND-OR Gates
4-W 3-2-2-3 Input Exp. for AOI Gates
OR Input J-K Flip Flop
ANO Input J-K Flip Flop
Dual J-K Flip Flop
Dual D positive edge triggered FF
4-Bit True/Compl. Zero/One Element
AND-OR Gated J-K neg. edge triggered FF w/preset
Dual J-K neg. edge triggered FF
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate (O.C.)
Quad 2-lnput NOR Gate
Quad 2-lnput NAND Gate (O.C.)
Hex Inverter
Hex Inverter (O.C.)
Hex Inverter Buffer/Driver (O.C.)
Hex Buffer/Driver (O.C.)
Quad 2-lnput AND Gate
Quad 2-lnput AND Gate (O.C.)
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput NAND Gate (O.C.)
Dual 4-1 NAND Gate Schmitt Trigger
Hex Schmitt Trigger Inverter
Hex Inverter Buffer/Driver (O.C.)
Hex Buffer/Driver
Dual 4-lnput NAND Gate
Dual 4-lnput-NAND Gate
Dual 4-lnput NOR Gate w/Strobe (exp.)
Dual 4-lnput NOR Gate w/Strobe
Quad 2-lnputlnterface NAND Gate
Triple 3-input NOR Gate
a-Input NAND Gate
Quad 2-lnput Positive NAND Buffer
Quad 2-lnput Positive NAND Buffer (D.C.)
Dual 4-lnput NAND Buffer
Dual 4-lnput NAND Buffer
BCD to Decimal Oecoder/High level Driver
BCD to Decimal Decoder
Excess Three-to-Decimal Decoder
Excess Three Gray to Decimal Decoder
BCD to Decimal Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
Exp. Dual 2-W 2-lnput AOI Gate
Dual 2-W 2-lnput AOI Gate
Exp. 4-W 2-lnput AOI Gate
4-W 2-lnput AOI Gate
Dual 4-lnput Exp. for AOI Gates
AND Gated J-K FF Pos. edge triggered
AND Gated J-K Master Slave FF
Dual J-K Flip Flop
Dual Pos. edge triggered FF
Quad latch
Dual J-K Flip Flop
Dual D Pos. edge triggered FF
2-39
Geometry
72H
lGH
31l
88K
6Al
12M
27W
27W
97K
48K
4BK
93K
63A
99K
98K
43H
43H
60N
80V
8GM
8AD
6AD
16K
Bll
22K
53T
16K
lCR
lCR
2AW
2AW
23T
23T
11 N
61N
85W
11 N
7KB
2JA
2AW
2AW
51N
90l
5AG
5AG
16K
75W
98l
lAF
lAF
10N
12M
17F
6FE
29R
29R
96M
83M
83M
01l
01l
03R
03R
11 P
l1P
90B
12N
56C
91M
80V
7AJ
86N
80V
•
MCC7480 - MCC7906C
Chip No.
II
MCC7480
MCC7481
MCC7483
MCC7484
MCC7485
MCC7486
MCC7490A
MCC7491A
MCC7492A
MCC7493A
MCC7494
MCC7495A
MCC7496
MCC7497
MCC7524
MCC7525
MCC7528
MCC7529
MCC7534
MCC7535
MCC7538
MCC7539
MCC7705C
MCC7706C
MCC7708C
MCC7712C
MCC7715C
MCC7718C
MCC7720C
MCC7724C
MCC78L05C
MCC78L05AC
MCC78L08C
MCC78L08AC'
MCC78L12C
MCC78L12AC
MCC78L15C
MCC78L15AC
MCC78L18C
MCC78L18AC
MCC78L24C
MCC78L24AC
MCC78M05
MCC78M06
MCC78M08
MCC78M12
MCC78M15
MCC78M18
MCC78M20
MCC78M24
MCC7805C
MCC7806C
MCC7808C
MCC7812C
MCC7815C
MCC7818C
MCC7824C
MCC79L03C
MCC79L03AC
MCC79L05C
MCC79L05AC
MCC79L12C
MCC79L12AC
MCC79L15C
MCC79L15AC
MCC79L18C
MCC79L18AC
MCC79L24C
MCC79L24AC
MCC7902C
MCC7905C
MCC7905.2C
MCC7906C
Function
Family
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
Gated Full Adder (1-Bit)
16-Bit Scratch Pad Memory
4-8it Full Adder
16-Bit Scratch Pad Memory
4-8it Magnitude Comparator
Quadruple 2-lnput Exclusive OR Gate
Decade Counter
8-Bit Shift Register
Divide by 12 Counter
4-Bit Binary Counter
4-Bit Shift Register
4-Bit Shift Register (Parallel Access)
5-Bit Shift Register
Synchronous 6-Bit Binary Rate Multi.
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Dual High Speed Sense Amplifier
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltag~ Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Thr~e Terminal. Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three TermJnal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Termihal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Positive Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
?_An
Geometry
10L
1PR
10M
1PR
7GK
8GM
3HT
05R
3HT
3HT
66N
6RP
8BG
7MG
2ET
2ET
2ET
2ET
2ET
2ET
2ET
2ET
8HH
8HH
8HH
8HH
8HH
8HH
8HH
8HH
6TA
'6TA
6TA
6TA
6TA
6TA
6TA
6TA
6TA
6TA
6TA
6TA
8HH
8HH
8HH
8HH
8HH
8HH
8HH
8HH
4DG
4DG
4D,G
4DG
4DG
4DG
4DG
5TA'
5TA
5TA
5TA
5TA
5TA
5TA
5TA
5TA
5TA
5TA
5TA
1GL
1GL
1GL
1GL
MCC7908C - MCC9328
Chip No.
MCC7908C
MCC7912C
MCC7915C
MCC7918C
MCC7924C
MCC8200
MCC8201
MCC8202
MCC8203
MCC8233
MCC8234
MCC8235
MCC8241
MCC8242
MCC8250
MCC8251
MCC8260
MCC8261
MCC8266
MCC8267
MCC8270
MCC8271
MCC8280
MCC8281
MCC8284
MCC8285
MCC8288
MCC8290
MCC8291
MCC8300
MCC8301
MCC8304
MCC8306
MCC8307
MCC8308
MCC8309
MCC8310
MCC8311
MCC8312
MCC8314
MCC8316
MCC8317
MCC8318
MCC8322
MCC8324
MCC8328
MCC8500
MCC8501
MCC8502
MCC8503
MCC8504
MCC8505
MCC8506
MCC8520
MCC8601
MCC8602
MCC9300
MCC9301
MCC9304
MCC9306
MCC9307
MCC9308
MCC9309
MCC9310
MCC9311
MCC9312
MCC9314
MCC9316
MCC9317
MCC9318
MCC9322
MCC9324
MCC9328
Family
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
LSI
LSI
LSI
LSI
LSI
LSI
LSI
LSI
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
MTTL
Function
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Three Terminal Negative Fixed Voltage Regulator
Dual 5-Bit Buffer Register
Dual 5-Bit Buffer Register wiD Compo
10-Bit Buffer Register
10-Bit Buffer Register wiD Compo
2-lnput. 4-Bit. digital Multiplexer
2-lnput. 4-Bit. digital Multi. (O.C.)
2-lnput. 4-Bit. digital Multi. (O.C.)
Quad Exclusive OR Gate
Quad Exclusive NOR Gate (O.C.)
Binary to Octal Decoder
BCD to Decimal Decoder
Arithmetic Logic Element
Fast Carry Extender
2-lnput. 4-Bit Data Selector
2-lnput. 4-Bit Data Selector (O.C.)
4-Bit Shift Register
4-Bit Shift Register
Presettable Decade Counter
Presettable Binary Counter
Binary Up/Down Counter
Decade Up/Down Counter
Divide by 12 Counter
High Speed Presettable Decade Counter
High Speed Presettable Binary Counter
Universal 4-Bit Shift Register
BCD-to-Decimal Decoder
Dual Full Adder
Presettable Decade Up/Down Counter
BCD to Seven Segment Decoder
Dual 4-Bit Latch
Dual 4-Channel Data Selector
Presettable Decade Counter
One of 16 Decoder
8-Channel Data Selector
Quad Latch
Presettable 4-Bit Binary Counter
Seven Segment Decoder/Driver
8-lnput Priority Encoder
Quad 2-lnput Data Selector/Multi.
5-Bit Comparator
Dual 8-Bit Shift Register
CRCC Generator
Error Pattern Register
LRCC/Data Register
Universal Polynomial Generator
Universal Preset. Polynomial Gen.
Mos Dynamic Memory Address Refresh
Polynomial Generator
Deskew/Queve Register
Retriggerable Monostable Multi.
Dual Retriggerable Resettable Mono. Multi.
Universal 4-Bit Shift Register
. BCD-to-Decimal Decoder
Dual Full Adder
Presettable Decade Up/Down Counter
BCD to Seven Segment Decoder
Dual 4-Bit Latch
Dual 4-Channel Data Selector
Presettable Decade Counter
One of 16 Decoder
8-Channel Data Selector
Quad Latch
Presettable 4-Bit Binary Counter
Seven Segment Decoder/Driver
8-lnput Priority Encoder
Quad 2-lnput Data Selector/Multi.
5-Bit Comparator
Dual 8-Bit Shift Register
2-41
Geometry
1GL
1GL
1GL
1GL
1GL
2JT
2JT
2JT
2JT
7EE
7EE
79T
57T
57T
04P
04P
40N
66P
79T
79T
3RA
3RA
5GD
5GD
51T
51T
39N
5GD
5GD
99T
77H
10T
43P
94M
44P
09T
96R
11T
21L
69P
96R
12T
90P
62V
8CM
13M
MAB6DP
MAB6DP
MAA6DP
MAE6DP
M054JT
MAH6DP
MAI6DP
MAB4JV
70K
41R
99T
77H
10T
43P
94M
44P
09T
96R
11T
21L
69P
96R
12T
90P
62V
8CM
13M
•
MCC9601 - MCC10129
Chip No.
II
MCC9601
MCC9602
MCC9701
MCC9702
MCC9704
MCC9707
MCC9709
MCC9713
MCC9714
MCC9715
MCC9718
MCC9719
MCC9720
MCC9721
MCC9722
MCC9723
MCC9724
MCC9725
MCC9801
MCC9802
MCC9804
MCC9807
MCC9809
MCC9813
MCC9814
MCC9815
MCC9818
MCC9819
MCC9820
MCC9821
MCC9822
MCC9823
MCC9824
MCC9825
MCC9901
MCC9902
MCC9904
MCC9907
MCC9909
MCC9913
MCC9914
MCC9915
MCC9918
MCC9919
MCC9920
MCC9921
MCC9922
MCC9923
MCC9924
MCC9925
MCC10100
MCC10101
MCC10102
MCC10103
MCC10104
MCC10105
MCC10106
MCC10107
MCC10109
MCC10110
MCC10113
MCC10114
MCC10115
MCC10116
MCC10117
MCC10118
MCC10119
MCC10121
MCC10123
MCC10124
MCC10125
MCC10128
MCC10129
Family
MTIL
MTIL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MRTL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
Function
Retriggerable Monostable Multi.
Dual Retriggerable Resettable Mono. Multi.
Dual 4 Channel Data Selector
Dual J-K Flip Flop
4-Bit Parallel Full Adder
Dual 4 Channel Data Distributor
Quad Schmitt Trigger
Quad 2-lnput AND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput OR Gate
Hex Inverter
Hex Expander
Hex Expander
Quad 2-lnput Expander
Dual J-K Flip Flop
Quad 2-lnput AND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput OR Gate
Dual 4 Channel Data Selector
Dual J-K Flip Flop
4-Bit Parallel Full Adder
Dual 4 Channel Data Distributor
Quad Schmitt Trigger
Quad 2-lnput AND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput OR Gate
Hex Inverter
Hex Expander
Hex Expander
Quad 2-lnput Expander
Dual J-K Flip Flop
Quad 2-lnput AND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput OR Gate
Dual 4 Channel Data Selector
Dual J-K flip Flop
4-Bit Parallel Full Adder
Dual 4 Channel Data Distributor
Quad Schmitt Trigger
Quad 2-lnput AND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput OR Gate
Hex Inverter
Hex Expander
Hex Expander
Quad 2-lnput Expander
Dual J-K Flip Flop
Quad 2-lnput AND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput OR Gate
Quad NOR Gate W/Strobe
Quad OR/NOR Gate
Quad NOR Gate
Quad 2-lnput OR Gate
Quad AND Gate
Triple 2-3-2 OR/NOR Gate
Triple 4-3-3 NOR Gate
Triple Exclusive OR/NOR Gate
Dual 4-5 Input OR/NOR Gate
Dual 3-lnput/3-0utput OR Gate
Quad Exclusive OR Gate
Triple Line Receiver
Quad Line Receiver
Triple Line Receiver
Dual 2-Wide AND/OR-AND-INVERT Gate
Dual 2-Wide 3-lnput OR-AND Gate
4-Wide 4-3-3-3 Input OR-AND Gate
4-Wide OR-AND/OR-AND-INVERT Gate
Triple 4-3-3-lnput Bus Driver
Quad TIL-to-MECL Translator
Quad MECL-to-TTL Translator
Dual Bus Driver
Quad Bus Receiver
')_LI. ')
Geometry
70K
41R
35F
07P
87H
85F
47F
26G
26G
lMK
87C
3KD
87C
2KD
98A
27K
27K
29K
35F
07P
87H
85F
47F
26G
26G
lMK
87C
3KD
87C
2KD
98A
27K
27K
29K
35F
07P
87H
85F
47F
26G
26G
lMK
87C
3KD
87C
2KD
98A
27K
27K
29K
3MR
3MR
3MR
3MR
lKN
6MT
6MT
lTD
9KN
9KK
9NA
3TR
lKP
4MJ
7NE
7NE
lNF
lNF
lND
7KS.
3KV
7NC
6LS
MCC10130 - MCC10533
Chip No.
Family
Function
Geometry
~
MCC10130
MCC10131
MCC10132
MCC10133
MCC10134
MCC10135
MCC10136
MCC10137
MCC10138
MCC10141
MCC10153
MCC10158
MCC10159
MCC10160
MCC10161
MCC10162
MCC10163
MCC10164
MCC10165
MCC10166
MCC10168
MCC10170
MCC10171
MCC10172
MCC10173
MCC10174
MCC10175
MCC10176
MCC10177
MCC10178
MCC10179
MCC10180
MCC10181
MCC10182
MCC10183
MCC10186
MCC10190
MCC10191
MCC10193
MCC10194
MCC10195
MCC10197
MCC10198
MCC10210
MCC10211
MCC10212
MCC10216
MCC10231
MCC10237
MCC10500
MCC10501
MCC10502
MCC10503
MCC10504
MCC10505
MCC10506
MCC10507
MCC10509
MCC10111
MCC10513
MCC10514
MCC10515
MCC10516
MCC10517
MCC10518
MCC10519
MCC10521
MCC10524
MCC10525
MCC10530
MCC10531
MCC10532
MCC10533
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
Dual D Latch
Dual D Flip-Flop
Dual MUX W/Latch (Common Reset)
Quad Latch
Dual MUX W/Latch (Separate Select)
Dual J-K Master-Slave Flip-Flop
Universal Binary Counter
Universal Decade Counter
Bi-Quinary Counter
4-Bit Universal Shift Register
Quad Latch (Negative Clock)
Quad 2-1 Multi. (Non-Inverting Output)
Quad 2-1 Multi. (Inverting Output)
12-Bit Parity Generator/Checker
Binary to 1-S Line Decoder (Low)
Binary to 1-S Line Decoder (High)
Error Detection/Corro Ckto (IBM Pattern)
S-Line Multiplexer
Priority Encoder
5-Bit Comparator
Quad Latch (Common Clock)
9 + 2 Bit Parity Checker
Dual 4-Line Decoder (Low)
Dual 4-Line Decoder (High)
Quad 2-lnput MUX W/Latch
DuaI4-to-1 Multiplexer
Quint Latch
Hex D Flip-Flop
Triple MECL-to-MOS Translator (N-Channel)
Binary Counter
Look Ahead Carry Block
Dual High-Speed Adder/Subtractor
4-Bit Arithmetic Logic Unit
16-Pin 2-Bit ALU
4 x 2 (2s complement) Multiplier
Hex D Flip-Flop W/Common Reset
Quad IBM-to-MECL Translator
Hex MECL-to-IBM Translator
Error Detection/Corro Ckto (Motorola Pattern)
Dual Simulaneous Bus Transceiver
Hex Inverter/Buffer
Hex AND Gate
Retriggerable 1-Shot Multivibrator
High-Speed Dual 3-1/3-0utput OR Gate
High-Speed Dual 3-1/3-0utput NOR Gate
High-Speed Dual 2-NOR/1-0R Gate
High-Speed Triple Line Receiver
High-Speed Dual D Flip-Flop
High-Speed 2-Bit Multiplier
Quad NOR Gate W/Strobe
Quad OR/NOR Gate
Quad NOR Gate
Quad 2-lnput OR Gate
Quad AND Gate
Triple 2-3-2 OR/NOR Gate
Triple 4-3-3 NOR Gate
Triple Exclusive OR/NOR Gate
Dual 4-5 Input OR/NOR Gate
Dual 3-lnput/3-0utput NOR Gate
Quad Exclusive OR Gate
Triple Line Receiver
Quad Line Receiver
Triple Line Receiver
Dual 2-Wide AND/OR-AND-INVERT Gate
Dual 2-Wide 3-lnput OR-AND Gate
4-Wide 4-3-3-3 Input OR-AND Gate
4-Wide OR-AND/OR-AND-INVERT Gate
Quad TTL-to-MECL Translator
Quad MECL-to-TTL Translator
Dual D Latch
Dual D Flip-Flop
Dual MUX W/Latch (Common Reset)
Quad Latch
3NF
9NB
2TG
1MV
2TG
5LD
5KR
5KR
3NA
5KA
1MV
6LB
6LB
1MS
9MT
9MT
5ND
8MA
6MG
1TH
1MV
3RF
9MT
9MT
6LB
3KR
2MW
4NC
5TR
3NA
SMV
1NE
4EF
2TT
1PB
4NC
5TG
3TG
5ND
5LP
7TR
7TR
3NG
B2F
B2F
4NE
3WE
3TT
3MR
3MR
3MR
3MR
1KN
6MT
6MT
1TD
9KN
9KK
9NA
3TR
1KP
4MJ
7NE
7NE
1NF
1NF
7KS
3KV
3NF
9NB
2TG
1MV
II
MCC10534 - MCC54145
Chip No.
II
MCC10534
MCC10535
MCC10536
MCC10537
MCC10538
MCC10541
MCC10553
MCC10558
MCC10559
MCC10560
MCC10561
MCC10562
MCC10564
MCC10565
MCC10566
MCC10568
MCC10570
MCC10571
MCC10572
MCC10573
MCC10574
MCC10575
MCC10576
MCC10578
MCC10579
MCC10580
MCC10581
MCC10582
MCC10583
MCC10586
MCC10590
MCC10591
MCC10594
MCC10595
MCC10597
MCC10610
MCC10611
MCC10612
MCC10616
MCC10631
MCC12000
MCC12002
MCC12012
MCC12013
MCC12014
MCC12020
MCC12021
MCC12030
MCC12040
MCC12060
MCC12061
MCC12502
MCC12513
MCC12520
MCC12521
MCC12560
MCC12561
MCC14000 Series
MCC14046
MCC15482
MCC17482
MCC25482
MCC27482
MCC54100
MCC54107
MCC54120
MCC54121
MCC54122
MCC54123
MCC54132
MCC54136
MCC54141
MCC54145
Function
Family
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
MECL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
PLL
McMOS
PLL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
Dual MUX W/Latch (Separate Select)
Dual J-K Master-Slave Flip-Flop
Universal Binary Counter
Universal Decade Counter
Bi-Quinary Counter
4-Bit Universal Shift Register
Quad Latch (Negative Clock)
Quad 2-1 Multi. (Non-Inverting Output)
Quad 2-1 Multi. (Inverting Output)
12-Bit Parity Generator/Checker
Binary to 1-B Line Decoder (Low)
Binary to 1-8 Line Decoder (High)
8-Line Multiplexer
Priority Encoder
5-Bit Comparator
Quad Latch (Common Clock)
9 + 2 Bit Parity Checker
Dual 4-Line Decoder (Low)
Dual 4-Line Decoder (High)
Quad 2-lnput MUX W/Latch
Dual 4-to-1 Multiplexer
Quint Latch
Hex 0 Flip-Flop
Binary Counter
Look Ahead Carry Block
Dual High-Speed Adder /Subtractor
4-Bit Arithmetic Logic Unit
16-Pin 2-Bit ALU
4 x'2 (2s complement) Multiplier
Hex 0 Flip-Flop W/Common Reset
Quad IBM-to-MECL Translator
Hex MECL-to-IBM Translator
Dual Simulaneous Bus Transceiver
Hex Inverter/Buffer
Hex AND Gate
High-Speed Dual 3-1/3-0utput OR Gate
High-Speed Dual 3-113-0utput NOR Gate
High-Speed Dual 2-NOR/1-0R Gate
High-Speed Triple Line Receiver
High-Speed Dual 0 Flip-Flop
Digital Mixer/Translator
Analog Mixer
Two Modulus Prescaler
Two Modulus Prescaler
Counter Control Logic
Offset Control
Offset Programmer
To Be Introduced
Phase Frequency Detector
Crystal Oscillator
Crystal Oscillator
Analog Mixer
Two Modulus Prescaler
Offset Control
Offset Programmer
Crystal Oscillator
Crystal Oscillator
. See Chapter 8
McMos Phase-Locked Loop
2-Bit Full Adder
2-Bit Full Adder
2-Bit Full Adder
2-Bit Full Adder
Dual 4-Bit Latch
Dual J-K Master Slave FF
Dual Pulse Synchronizers/Drivers
Monostable Multivibrator
Retriggerable Monostable Multi.
Dual Retriggerable Monostable Multi.
Quadrupl~ 2-lnput NAND Schmitt Trigger
Quadruple 2-lnput Exc. OR Gate (O.C.)
BCD to Decimal Decoder/Driver
BCD to Decimal Decoder/Driver
') AA
Geometry
2TG
5LD
5KR
5KR
3NA
5KA
1MV
6LB
6LB
1MS
9MT
9MT
8MA
6MG
HH
1MV
3RF
9MT
9MT
6LB
3KR
2MW
4NC
3NA
8MV
1NE
4EF
2TI
1PB
4NC
5TG
3TG
5LP
7TR
7TR
B2F
B2F
4NE
3WE
6WT
8MT
BWJ
3PS
3TP
1WB
5WE
7TW
37L
7WJ(3EG)
8RH
8MT
3PS
1WB
5WE
7WI(3EG)
8RH
13E
13E
13E
13E
31R
45P
7HG
97M
6GR
3HA
1KD
8GM
8HF
96M
MCC54150 - MCC74193
Chip No.
MCC54150
MCC54151
MCC54152
MCC54153
MCC54154
MCC54155
MCC54156
MCC54157
MCC54160
MCC54161
MCC54162
MCC54163
MCC54164A
MCC54165
MCC54167
MCC54174
MCC54175
MCC54176
MCC54177
MCC54180
MCC54181
MCC54182
MCC54190
MCC54191
MCC54192
MCC54193
MCC54194
MCC54195
MCC54196
MCC54197
MCC54221
MCC54290
MCC54293
MCC54298
MCC55107
MCC55108
MCC55325
MCC74100
MCC74107
MCC74120
MCC74121
MCC74122
MCC74123
MCC74132
MCC74136
MCC74141
MCC74145
MCC74150
MCC74151
MCC74152
MCC74153
MCC74154
MCC74155
MCC74156
MCC74157
MCC74160
MCC74161
MCC74162
MCC74163
MCC74164A
MCC74165
MCC74167
MCC74174
MCC74175
MCC74176
MCC74177
MCC74180
MCC74181
MCC74182
MCC74190
MCC74191
MCC74192
MCC74193
Family
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
LINEAR
LINEAR
LINEAR
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
Function
16 Channel Data Selector/Multiplexer
8 Channel Data Selector/Multiplexer
8 Channel Data Selector/Multiplexer
Dual 4 line to 1 line Data Sel.lMulti.
4 line to 16 line Decoder/Demulti.
Dual 2-to-4 Line Dec.l1-to-4 Line Demul.
Dual 2-to-4 Line Dec.l1-to-4 Line Demul.
Quad 2-lnput Data Selector/Multiplexer
Decade Synchronous Counter
Synchronous 4-Bit Binary Counter
Synchronous Decade Counter
Synchronous 4-Bit Binary Counter
8-Bit Parallel-Out Serial Shift Reg.
Parallel-Load 8-Bit Shift Reg.
Decade Rate Multiplier (Synchronous)
Hex Type 0 Flip-Flop
Quadruple 0 Type Flip-Flop
35MHz preset. decade counter/latch
35MHz preset. decade counter/latch
8-Bit Odd/Even Parity Gen.lChecker
4-Bit ALU/Function Generator
Look Ahead Carry Generator
BCD Synchronous Up/Down Counter
4-Bit Binary Syn. Up/Down Counter
Preset. Decade Up/Down Counter
Preset. 4-Bit Binary Up/Down Counter
4-Bit Bidirectional Univ. Shift Reg.
4-Bit Parallel Access Shift Reg.
Preset. Decade or Binary Counter/Latch
Preset. Decade or Binary Counter/Latch
Dual Mono. Multiv. w/Schmitt-Trigger Inputs
Decade Counter
4-Bit Binary Counter
Quadruple 2-lnput Multi. w/Storage
Dual Line Receiver
Dual Line Receiver
Dual Memory Driver
Dual 4-Bit Latch
Dual J-K Master Slave FF
Dual Pulse Synchronizers/Drivers
Monostable Multivibrator
Retriggerable Monostable Multi.
Dual Retriggerable Monostable Multi.
Quadruple 2-lnput NAND Schmitt Trigger
Quadruple 2-lnput Exc. OR Gate (O.C.)
BCD to Decimal Decoder/Driver
BCD to Decimal Decoder/Driver
16 Channel Data Selector/Multiplexer
8 Channel Data Selector/Multiplexer
8 Channel Data Selector/Multiplexer
Dual4 line to 1 line Data Sel.lMulti.
4 line to 16 line Decoder/Demulti.
Dual 2-to-4 Line Dec.l1-to-4 Line Demul.
Dual 2~to-4 Line Dec.l1-to-4 Line Demul.
Quad 2-lnput Data Selector/Multiplexer
Decade Synchronous Counter
Synchronous 4-Bit Binary Counter
Synchronous Decade Counter
Synchronous 4-Bit Binary Counter
8-Bit Parallel-Out Serial Shift Reg.
Parallel-Load 8-Bit Shift Reg.
Decade Rate Multiplier (Synchronous)
Hex Type 0 Flip-Flop
Quadruple 0 Type Flip-Flop
35MHz preset. decade counter/latch
35MHz preset. decade counter/latch
8-Bit Odd/Even Parity Gen.lChecker
4-Bit ALU/Function Generator
Look Ahead Carry Generator
BCD Synchronous Up/Down Counter
4-Bit Binary Syn. Up/Down Counter
Preset. Decade Up/Down Counter
Preset. 4-Bit Binary Up/Down Counter
'-45
Geometry
68N
13W
13W
02T
11T
66V
66V
62V
8GK
8GK
8GK
8GK
20T
5ET
7MG
5KS
5KS
5GD
5GD
17R
4DW
37V
9GK
8RV
8RV
8RV
8FP
8FP
5GD
5GD
5NG
3HT
3HT
8FP
6DJ
6DJ
6PJ
31R
45P
7HG
97M
6GR
3HA
1KD
8GM
8HF
96M
68N
13W
13W
02T
11T
66V
66V
62V
8GK
8GK
8GK
8GK
20T
5ET
7MG
5KS
5KS
5GD
5GD
17R
4DW
37V
9GK
8RV
8RV
8RV
•
MCC74194 - MCR106-1
Chip No.
MCC74194
MCC74195
MCC74196
MCC74197
MCC74221
MCC74290
MCC74293
MCC74298
MCC75107
MCC75108
MCC75110
MCC75140
MCC75325
MCC75358
MCC75365
MCC75368
MCC75450
MCC75451
MCC75452
MCC75453
MCC75454
MCC75461
MCC75462
MCC75463
MCC75464
MCC75491
MCC75492
MCCF1458
MCCF1709
MCCF1741
MCCF3346
MCCF3386
MCCF3403
MCCF3503
Device
Type
MCL1300
MCL1301
MCL1302
MCL1303
MCL1304
Chip No.
MCMC5003
IViCMC5004
MCMC10143
MCMC10144
MCMC10145
MCMC10146
MCMC10147
MCMC10149
Device
Type
MCR101
MCR102
MCR103
MCR104
MCR106-1
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
FC
FC
FC
FC
FC
FC
FC
Chip No.
Alternate
Chip
Family
Pol.
Geometry
512-Bit Programmable ROM
512-Bit Programmable ROM
8x12 Multiport Register File
256-Bit Random Access Memory
64-Bit Register File (RAM)
1024-Bit Random Access Memory
128-Bit Random Access Memory
1024-Bit Programmable ROM
Alternate
Chip
2NC5060
2NC5061
2NC5062
MCRC0361
Geometry
G
G
G
G
Function
MCRC101
MCRC106-1
6TJ
6TJ
ZCL
ZCL
ZCL
ZCL
Family
Chip No.
8FP
8FP
5GD
5GD
5NG
3HT
3HT
8FP
6DJ
6DJ
1AW
1 ET
6PJ
3KT
8MR
3KT
8CV
8CV
1HT
1HT
1HT
8CV
1HT
1HT
1HT
2FE
8FD
3AE
77W
9AB
4-Bit Bidirectional Univ. Shift Reg.
4-Bit Parallel Access Shift Reg.
Preset. Decade or Binary Counter ILatch
Preset. Decade or Binary Counter ILatch
Dual Mono. Multiv. w/Schmitt-Trigger Inputs
Decade Counter
4-Bit Binary Counter
Quadruple 2-lnput Multi. w/Storage
Dual Line Receiver
Dual Line Receiver
Dual Line Driver
Dual Line Receiver
Dual Memory Driver
Dual MECL-to-MOS Driver
Quad MOS Clock Driver
Dual MECL-to-MOS Driver
Dual Peripheral Positive "AND" Driver
Dual Peripheral Driver
Dual Peripheral Driver
Dual Peripheral Driver
Dual Peripheral Driver
Dual Peripheral Driver
Dual Peripheral Driver
Dual Peripheral Driver
Dual Peripheral Driver
Quad Led Segment Driver
Hex Led Digit Driver
Dual Operational Amplifier
Operational Amplifier
Comsensated Operational Amplifier
Transistor Assembly
Transistor Assembly
Quad Operational Amplifier
Quad Operational Amplifier
MCLC1300
MCLC1301
MCLC1302
MCLC1303
MCLC1304
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
Geometry
Function
Family
Family
SCR
SCR
SCR
SCR
SCR
5RP
5RP
6MW
6WM
A8A
STR
7PH
9TN
Pol.
Geometry
TL60
TL60
TL60
TL62
036
MCR106-2 - MCR3000-2
Device
Type
MCR106-2
MCR106-3
MCR106-4
MCR106-5
MCR106-6
MCR106-7
MCR106-8
MCR106-9
MCR106-10
MCR107-1
MCR107-2
MCR107-3
MCR107-4
MCR107-5
MCR107-6
MCR107-7
MCR107-8
MCR115
MCR120
MCR201
MCR202
MCR203
MCR204
MCR205
MCR206
MCR220-5
MCR220-7
MCR220-9
MCR221-5
MCR221-7
MCR221-9
MCR406-1
MCR406-2
MCR406-3
MCR406-4
MCR407-1
MCR407-2
MCR407-3
MCR407-4
MCR649AP-1
MCR649AP-2
MCR649AP-3
MCR649AP-4
MCR649AP-5
MCR649AP-6
MCR649AP-7
MCR649AP-8
MCR649AP-9
MCR649AP-10
MCR1330
MCR1350
MCR1906-1
MCR1906-2
MCR1906-3
MCR1906-4
MCR2305-1
MCR2305-2
MCR2305-3
MCR2305-4
MCR2305-5
MCR2305-6
MCR2305-8
MCR2305-10
MCR2604L-1
MCR2604L-2
MCR2604L-3
MCR2604L-4
MCR2604L-5
MCR2604L-6
MCR2604L-8
MCR2604L-10
MCR3000-1
MCR3000-2
Chip No.
MCRC106-2
MCRC106-3
MCRC106-4
MCRC106-5
MCRC106-6
MCRC106-7
MCRC106-8
MCRC106-9
MCRC106-10
MCRC107-1
MCRC107-2
MCRC107-3
MCRC107-4
MCRC107-5
MCRC107-6
MCRC107-7
MCRC107-8
Alternate
Chip
MCRC0361
MCRC0361
MCRC0362
MCRC0363
MCRC0364
MCRC0365
MCRC0366
MCRC0367
MCRC0368
MCRC0361
MCRC0361
MCRC0361
MCRC0362
MCRC0363
MCRC0364
MCRC0365
MCRC0366
2NC5063
2NC5064
MCRC101
MCRC220-5
MCRC220-7
MCRC220-9
MCRC221-5
MCRC221-7.
MCRC221-9
MCRC406-1
MCRC406-2
MCRC406-3
MCRC406-4
MCRC407-1
MCRC407-2
MCRC407-3
MCRC407-4
MCRC649AP-1
MCRC649AP-2
MCRC649AP-3
MCRC649AP-4
MCRC649AP-5
MCRC649AP-6
MCRC649AP-7
MCRC649AP-8
MCRC649AP-9
MCRC649AP-10
MCRC1906-1
MCRC1906-2
MCRC1906-3
MCRC1906-4
MCRC2305-1
MCRC2305-2
MCRC2305-3
MCRC2305-4
MCRC2305-5
MCRC2305-6
MCRC2305-8
MCRC2305-10
MCRC2604L-1
MCRC2604L-2
MCRC2604L-3
MCRC2604L-4
MCRC2604L-5
MCRC2604L-6
MCRC2604L-8
MCRC2604L-10
MCRC3000-1
MCRC3000-2
2NC5060
2NC5061
2NC5062
2NC5063
2NC5064
MCRC3103
MCRC3103
MCRC3107
MCRC3203
MCRC3205
MCRC3207
MCRC0361
MCRC0361
MCRC0361
MCRC0362
MCRC0361
MCRC0361
MCRC0361
MCRC0362
MCRC3201
MCRC3201
MCRC3201
MCRC3202
MCRC3203
MCRC3204
MCRC3205
MCRC3206
MCRC3207
MCRC3208
2NC6116
2NC6118
MCRC6381
MCRC6381
MCRC6381
MCRC6382
MCRC3101
MCRC3101
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3106
MCRC3108
MCRC3101
MCRC3101
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3106
MCRC3108
MCRC3101
MCRC3101
?_t17
Family
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
PUT
PUT
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
Pol.
Geometry
036
036
036
036
036
036
036
036
036
036
036
036
036
036
036
036
036
TL62
TL62
TL60
TL60
TL60
TL62
TL62
TL62
310
310
310
320
320
320
036
036
036
036
036
036
036
036
320
320
320
320
320
320
320
320
320
320
TL72175
TL72/75
638
638
638
638
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
310
•
MCR3000-3 - MJ450
Device
Type
II
MCR3000-3
MCR3000-4
MCR3000-5
MCR3000-6
MCR3000-7
MCR3000-8
MCR3000-9
MCR3000-10
MCR3818-1
MCR3818-3
MCR3818-5
MCR3818-7
MCR3818-10
MCR3835-1
MCR3835-2
MCR3835-5
MCR3835-7
MCR3835-8
MCR3835-9
MCR3835-10
MCR3918-1
MCR3918-3
MCR3918-5
MCR3918-7
MCR3918-10
MCR3935-1
MCR3935-2
MCR3935-5
MCR3935-7
MCR3935-8
MCR3935-9
MCR3935-10
MD4957
MFE120
MFE121
MFE122
MFE130
MFE131
MFE132
MFE521
MFE823
MFE824
MFE2000
MFE2001
MFE2004
MFE2005
MFE2006
MFE2010
MFE2011
MFE2012
MFE2093
MFE2094
MFE2095
MFE3001
MFE3002
MFE3003
MFE3004
MFE3020
MFE3021
MJ205
MJ400
MJ410
MJ411
MJ413
MJ420
MJ421
MJ423
MJ424
MJ425
MJ430S
MJ431
MJ440S
MJ450
Chip No.
MCRC3000-3
MCRC3000-4
MCRC3000-5
MCRC3000-6
MCRC3000-7
MCRC3000-8
MCRC3000-9
MCRC3000-10
MCRC3818-1
MCRC3818-3
MCRC3818-5
MCRC3818-7
MCRC3818-10
MCRC3835-1
MCRC3835-2
MCRC3835-5
MCRC3835-7
MCRC3835-8
MCRC3835-9
MCRC3835-10
MCRC3918-1
MCRC3918-3
MCRC3918-5
MCRC3918-7
MCRC3918-10
MCRC3935-1
MCRC3935-2
MCRC3935-5
MCRC3935-7
MCRC3935-8.
MCRC3935-9
MCRC3935-10
MFEC120
MFEC121
MFEC122
MFEC130
MFEC131
MFEC132
MFEC521
MFEC823
MFEC824
MFEC2000
MFEC2001
MFEC2004
MFEC2005
MFEC2006
MFEC2010
MFEC2011
MFEC2012
MFEC2093
MFEC2094
MFEC2095
MFEC3001
MFEC3002
MFEC3003
MFE3004
2NC4066
2NC4067
MJC205
MJC400
MJC410
MJC411
MJC413
MJC420
MJC421
MJC423
MJC424
MJC425
MJC430S
MJC431
MJC440S
MJC450
Alternate
Chip'
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3105
MCRC3106
MCRC3107
MCRC3108
MCRC3201
MCRC3201
MCRC3203
MCRC3205
MCRC3208
MCRC3201
MCRC3201
MCRC3203
MCRC3205
MCRC3206
MCRC3207
MCRC3208
MCRC3201
MCRC3201
MCRC3203
MCR,C3205
MCRC3208
MCRC3201
MCRC3201
MCRC3203
MCRC3205
MCRC3206
MCRC3207
MCRC3208
2NC4957
Family
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
SCR
RF
FETMDG
FETMDG
FETMDG
FETMDG
FETMDG
FETMDG
FETMDG
FETM
FETM
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETM
FETM
FETM
FETM
FETM(D)
FETM(D)
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
Pol.
Geometry
310
310
310
310
310
310
310
310
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
320
P
N
N
N
N
N
N
N
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
N
P
P
N
N
N
N
N
N
N
N
N
N
P
N
N
P
FM819
FM819
FM819
FM877
FM877
FM877
FM890
FM123
FM110
FM146
FM146
FM140
FM140
FM140
FM136
FM136
FM136
FM124
FM124
FM124
FM110
FM114
FM115
FM112
FM109
FM109
5TD-CN
2AN-C
6KB-CN
6KB-CN
6KB-CN
4S8-G
4S8-G
6KB-CN
6KB-CN
6KB-CN
6KL-C
6KB-CN
6KL-C
A5G-C
MJ480 - MJ4647
Device
Type
MJ480
MJ481
MJ490
MJ491
MJ701
MJ702
MJ704
MJ721
MJ723
MJ802
MJ804
MJ900
MJ901
MJ1000
MJ1001
MJ1800
MJ2249
MJ2250
MJ2251
MJ2252
MJ2253
MJ2254
MJ2267
MJ2268
MJ2500
MJ2501
MJ2801
MJ2802
MJ2840
MJ2841
MJ2901
MJ2940
MJ2941
MJ2955
MJ3000
MJ3001
MJ3010
MJ3011
MJ3012
MJ3026
MJ3027
MJ3030
MJ3040
MJ3041
MJ3042
MJ3055
MJ3101
MJ3201
MJ3202
MJ3260
MJ3430
MJ3480
MJ3701
MJ3702
MJ3703
MJ3704
MJ3738
MJ3739
MJ3760
MJ3761
MJ3771
MJ3772
MJ3773
MJ4030
MJ4031
MJ4032
MJ4033
MJ4034
MJ4035
MJ4502
MJ4645
MJ4646
MJ4647
Chip No.
MJC480
MJC481
MJC490
MJC491
MJC701
MJC702
MJC704
MJC721
MJC723
MJC802
MJC804
MJC900
MJC901
MJC1000
MJC1001
MJC1800
MJC2249
MJC2250
MJC2251
MJC2252
MJC2253
MJC2254
MJC2267
MJC2268
MJC2500
MJC2501
MJC2801
MJC2802
MJC2840
MJC2841
MJC2901
MJC2940
MJC2941
MJC2955
MJC3000
MJC3001
MJC3010
MJC3011
MJC3012
MJC3026
MJC3027
MJC3030
MJC3040
MJC3041
MJC3042
MJC3055
MJC3101
MJC3201
MJC3202
MJC3260
MJC3430
MJC3480
MJC3701
MJC3702
MJC3703
MJC3704
MJC3738
MJC3739
MJC3760
MJC3761
MJC3771
MJC3772
MJC3773
MJC4030
MJC4031
MJC4032
MJC4033
MJC4034
MJC4035
MJC4502
MJC4645
MJC4646
MJC4647
Alternate
Chip
Family
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
Pol.
Geometry
N
N
P
P
N
N
N
N
N
N
N
P
P
N
N
N
N
4WH-C
4WH-C
4WH-C
4WH-C
5TO-CN
5TO-CN
5TO-CN
5TO-CN
5TO-CN
A5G-C
5RV-CN
7JA-C
7JA-C
7JA-C
7JA-C
HE-CN
7MH-C
7MH-C
2AN-C
2AN-C
6KL-C
6KL-C
3FR-C
3FR-C
8JA-C
8JA-C
4WH-C
4WH-C
4WH-C
4WH-C
3FR-C
3FR-C
3FR-C
3FR-C
8JA-C
8JA-C
6KB-C
6KB-C
6KB-C
7TB-C
7TB-C
6KB-CN
9RF-CN
9RF-CN
9RF-CN
4WH-C
7MH-C
2AN-C
2AN-C
HE-CN
6KB-CN
5RV-CN
6KL-C
6KL-C
6KL-C
6KL-C
1 FF-C
1 FF-CN
6KB-C
6KB-C
A5G-C
A5G-C
4KW-C
4LE-C
4LE-C
4LE-C
4LE-C
4LE-C
4LE-C
A5G-C
1LF-G
1LF-G
1 LF-G
1')1
N
N
P
P
P
P
P
P
N
N
N
N
P
P
P
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
P
P
P
P
N
N
N
N
N
P
P
P
N
N
N
P
P
P
P
•
MJ4648 - MJE233
Device
Type
II
MJ4648
MJ6038
MJ6039
MJ6416
MJ6416
MJ6302
MJ6700
MJ6701
MJ7000
MJ7160
MJ7161
MJ7260
MJ7261
MJ8020
MJ8100
MJ8101
MJ9000
MJ10000
MJ10001
MJ10002
MJ10003
MJ11011
MJ11012
MJ11013
MJ11014
MJ11016
MJ11016
MJ16001
MJ16002
MJ16003
MJ16004
MJE29
MJE30
MJE31
MJE32
MJE33
MJE34
MJE41
MJE42
MJE47
MJE48
MJE49
MJE61
MJE62
MJE63
MJE101
MJE102
MJE103
MJE104
MJE106
MJE170
MJE171
MJE172
MJE180
MJE181
MJE182
MJE200
MJE201
MJE202
MJE203
MJE204
MJE206
MJE210
MJE220
MJE221
MJE222
MJE223
MJE224
MJE226
MJE230
MJE231
MJE232
MJE233
Chip No.
Alternate
Chip
MJC4648
MJC5038
MJC503S
MJC5415
MJC5416
MJC6302
MJC6700
MJC6701
MJC7000
MJC7160
MJC7161
MJC7260
MJC7261
MJCB020
MJCB100
MJCB101
MJCSOOO
MJC10000
MJC1000l
MJC10002
MJC10003
MJCll0ll
MJCll012
MJCll013
MJC11014
MJCll015
MJC11016
MJC15001
. MJC15002
MJC15003
MJC15004
MJEC2S
MJEC30
MJEC31
MJEC32
MJEC33
MJEC34
MJEC41
MJEC42
MJEC47
MJEC4B
MJEC49
MJEC51
MJEC52
MJEC53
MJEC10l
MJEC102
MJEC103
MJEC104
MJEC105
MJEC170
MJEC171
MJECl72
MJEC1BO
MJEC1Bl
MJEC1B2
MJEC200
MJEC201
MJEC202
MJEC203
MJEC204
MJEC205
MJEC210
MJEC220
MJEC221
MJEC222
MJEC223
MJEC224
MJEC225
MJEC230
MJEC231
MJEC232
MJEC233
Family
PWR
~WR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
"I
en
Pol.
Geometry
P
N
N
P
P
N
P
P
N
N
N
N
N
N
P
P
N
N
N
N
N
P
N
P
N
P
N
N
P
N
P
N
P
N
P
N
P
N
P
N
N
N
N
N
N
P
P
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
P
N
N
N
N
N
N
P
P
P
P
1LF-G
8MW-C
8MW-C
4SB-C
4SB-C
4KW-C
4PD-G
4PD-G
BKJ-G
SKH-C
SKH-C
lTC-C
lTC-C
5RV-C
4PD-G
4PD-G
6KB-C
SRT-C
SRT-C
SRF-C
SRF-C
4LE-C
4LE-C
4LE-C
4-LEC
4-LEC
4-LEC
6KB-C
6KB-C
4KW-C
4KW-C
5HE-G
5HE-G
5HE-G
5HE-G
3FR-G
3FR-GN
4JN-GN
4JN-GN
BMS-G
BMS-G
BMS-G
4JN-G
4JN-G
4JN-G
4JN-GN
4JN-GN
4JN-GN
4JN-GN
4JN-GN
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
4JN-GN
4JN-GN
4JN-GN
4JN-GN
4JN-GN
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
MJE234 - MJE2520
Device
Type
MJE234
MJE235
MJE240
MJE241
MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254
MJE340
MJE341
MJE344
MJE345
MJE350
MJE370
MJE371
MJE520
MJE521
MJE700
MJE701
MJE702
MJE703
MJE710
MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE801
MJE802
MJE803
MJE1090
MJE1091
MJE1092
MJE1093
MJE1100
MJE1101
MJE1102
MJE1103
MJE1290
MJE1291
MJE1660
MJE1661
MJE2010
MJE2011
MJE2020
MJE2021
MJE2050
MJE2055
MJE2090
MJE2091
MJE2092
MJE2093
MJE2100
MJE2101
MJE2102
MJE2103
MJE2150
MJE2160
MJE2360
MJE2361
MJE2370
MJE2480
MJE2481
MJE2482
MJE2483
MJE2490
MJE2491
MJE2520
Chip No.
Alternate
Chip
Family
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
MJEC234
MJEC235
MJEC240
MJEC241
MJEC242
MJEC243
MJEC244
MJEC250
MJEC251
MJEC252
MJEC253
MJEC254
MJEC340
MJEC341
MJEC344
MJEC345
MJEC350
MJEC370
MJEC371
MJEC520
MJEC521
MJEC700
MJEC701
MJEC702
MJEC703
MJEC710
MJEC711
MJEC712
MJEC720
MJEC721
MJEC722
MJECBOO
MJECB01
MJECB02
MJECB03
MJEC1090
MJEC1091
MJEC1092
MJEC1093
MJEC1100
MJEC1101
MJEC1102
MJEC1103
MJEC1290
MJEC1291
MJEC1660
MJEC1661
MJEC2010
MJEC2011
MJEC2020
MJEC2021
MJEC2050
MJEC2055
MJEC2090
MJEC2091
MJEC2092
MJEC2093
MJEC2100
MJEC2101
MJEC2102
MJEC2103
MJEC2150
MJEC2160
MJEC2360
MJEC2361
MJEC2370
MJEC24BO
MJEC24B1
MJEC24B2
MJEC24B3
MJEC2490
MJEC2491
MJEC2520
?3:O1
Pol.
Geometry
P
N
N
N
N
N
N
P
P
P
P
P
N
N
N
N
P
P
P
N
N
P
P
P
P
P
P
P
N
N
N
N
N
N
N
P
P
P
P
N
N
N
N
P
P
N
N
P
P
N
N
N
N
P
P
P
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
2WE-G
1FF-G
1FF-G
1FF-G
P26-G
1FF-G
4JE-GN
5HE-G
4JE-GN
5HE-G
5TB-GN
5TB-GN
5TB-GN
5TB-GN
4JE-CN
4JE-CN
4JE-CN
4JE-CN
4JE-CN
4JE-CN
5TB-GN
5TB-GN
5TB-GN
5TB-GN
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
9JL-CN
9JL-CN
9JL-CN
9JL-CN
4JN-GN
4JN-GN
4JN-GN
4JN-GN
2WE-G
4JN-GN
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2WE-G
BMS-G
2AN-G
2AN-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
P
N
N
N
N
P
N
N
N
P
N
N
N
N
P
P
N
II
MJE2801 - MLED930
Device
Type
II
MJE2801
MJE2901
MJE2955
MJE3055
MJE3300
MJE3301
MJE3302
MJE3310
MJE3311
MJE3312
MJE3370
MJE3371
MJE3439
MJE3440
MJE3520
MJE3521
MJE3738
MJE3739
MJE4918
MJE4919
MJE4920
MJE4921
MJE4922
MJE4923
MJE5190
MJE5191
MJE5192
MJE5193
MJE5194
MJE5195
MJE5655
MJE5656
MJE5657
MJE5974
MJE5975
MJE5976
MJE5977
MJE5978
MJE5979
MJE5980
MJE5981
MJE5982
MJE5983
MJE5984
MJE5985
MJE6040
MJE6041
MJE6042
MJE6043
MJE6044
MJE6045
MJE13002
MJE13003
MJE13004
MJE13005
MJE13006
MJE13007
MJE13008
MJE13009
MLED60
MLED90
MLED92
MLED900
MLED910
MLED930
Chip No.
Alternate
Chip
MJEC2801
MJEC2901
MJEC2955
MJEC3055
MJEC3300
MJEC3301
MJEC3302
MJEC3310
MJEC3311
MJEC3312
MJEC3370
MJEC3371
MJEC3439
MJEC3440
MJEC3520
MJEC3521
MJEC3738
MJEC3739
MJEC4918
MJEC4919
MJEC4920
MJEC4921
MJEC4922
MJEC4923
MJEC5190
MJEC5191
MJEC5192
MJEC5193
MJEC5194
MJEC5195
MJEC5655
MJEC5656
MJEC5657
MJEC5974
MJEC5975
MJEC5976
MJEC5977
MJEC5978
MJEC5979
MJEC5980
MJEC5981
MJEC5982
MJEC5983
MJEC5984
MJEC5985
MJEC6040
MJEC6041
MJEC6042
MJEC6043
MJEC6044
MJEC6045
MJEC13002
MJEC13003
MJEC13004
MJEC13005
MJEC13006
MJEC13007
MJEC13008
MJEC13009
Family
.
MLDC2
MLDC2
MLDC2
MLDC2
MLDC2
MLDC2
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
PWR
IRED
IRED
IRED
IRED
IRED
IRED
Pol.
N
P
P
N
N
N
N
P
P
P
P
P
N
N
N
N
N
N
P
P
P
N
N
N
N
N
N
P
P
P
N
N
N
P
P
P
N
N
N
P
P
P
N
N
N
P
P
P
N
N
N
N
N
N
N
N
N
N
N
Geometry
3FR-GN
3FR-GN
3FR-GN
3FR-GN
7WW-GN
7WW-GN
7WW-GN
7WW-GN
7WW-GN
7WW-GN
5HE-G
5HE-G
P26-G
P26-G
4JE-GN
5HE-G
2AN-G
2AN-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
5HE-G
2AN-G
2AN-G
2AN-G
4JN-GN
4JN-GN
4JN-GN
4JN-GN
4JN-GN
4JN-GN
3FR-GN
3FR-GN
3FR-GN
3FR-GN
3FR-GN
3FR-GN
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
2KS-G
9TC-G
9TC-G
9TC-G
9TC-G
9TC-G
9TC-G
9TC-G
9TC-G
L91
L91
L91
L91
L91
L91
MLM565 - MM3735
Chip No.
MLM565
MLMC101A
MLMC104
MLMC105
MLMC107
MLMC108
MLMC108A
MLMC109
MLMC110
MLMC111
MLMC124
MLMC139
MLMC139A
MLMC158
MLMC201A
MLMC204
MLMC205
MLMC207
MLMC208
MLMC208A
MLMC209
MLMC210
MLMC211
MLMC224
MLMC239
MLMC239A
MLMC258
MLMC301A
MLMC304
MLMC305
MLMC307
MLMC308
MLMC308A
MLMC309
MLMC310
MLMC311
MLMC324
MLMC339
MLMC339A
MLMC358
MLMC2902
MLMCF124
MLMCF139
MLMCF324
MLMCF339
Device
Type
MM1505
MM1748
MM1748A
MM1941
MM2005-2
MM2258
MM2259
MM2260
MM3000
MM3001
MM3002
MM3003
MM3005
MM3006
MM3007
MM3008
MM3009
MM3053
MM3726
MM3734
MM3735
Family
.
PLL
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
LINEAR
FC
FC
FC
FC
Chip No.
Geometry
Function
3PJ
3CP
3FB
7DB
3CP
8TE
8TE
2FJ
6ED
1FG
1PP
5NA
5NA
1TJ
3CP
3FB
7DB
3CP
aTE
8TE
2FJ
6ED
1FG
1PP
5NA
5NA
1TJ
3CP
3FB
7DB
3CP
8TE
8TE
2FJ
6ED
1FG
1PP
5NA
5NA
1TJ
4PV
Linear Phase~Locked Loop
OpAmp
Negative Voltage Regulator
Positive Voltage Regulator
Internally Compensated Op Amp
Precision Op Amp
Precision Op Amp
Positive Voltage Regulator
Op Amp Voltage Follower
High Performance Voltage Comparator
Quad Differential Input Op Amp
Quad Comparator
Quad Comparator
Quad Differential Input Op Amp
OpAmp
Negative Voltage Regulator
Positive Voltage Regulator
Internally Compensated Op Amp
Precision Op Amp
Precision Op Amp
Positive Voltage Regulator
Op Amp Voltage Follower
High Performance Voltage Comparator
Quad Differential Input Op Amp
Quad Comparator
Quad Comparator
Quad Differential Input Op Amp
OpAmp
Negative Voltage Regulator
Positive Voltage Regulator
Internally Compensated Op Amp
Precision Op Amp
Precision Op Amp
Positive Voltage Regulator
Op Amp Voltage Follower
High Performance Voltage Comparator
Quad Differential Input Op Amp
Quad Comparator
Quad Comparator
Quad Differential Input Op Amp
Quad Differential Input Op Amp
Quad Operational Amplifier
Quad Comparator
Quad Operational Amplifier
Quad Comparator
Alternate
Chip
2NC3011
2NC2368
2NC2369
MMC1941
2NC2907
MPSUC03
MPSUC04
MPSUC04
MPSUC03
MPSUC04
MPSAC43
MPSAC42
MPSUC05
MPSUC06
MPSUC07
2NC5550
2NC5551
2NC3053A
2NC3245
2NC3734
2NC3735
2-53
Family
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
Pol.
Geometry
N
N
N
N
P
N
N
N
N
N
N
N
N
N
N
N
N
N
P
N
N
SL73
SL73
SL73
SL75
SL333
EL503
EL503
EL503
EL503
EL503
EL644
EL644
EL504
EL504
EL504
EL613
EL613
SL98
SL337
SL27
SL27
•
MM3736 - MMCF3251A
Device
Type
II
MM3736
MM3737
MM3903
MM3904
MM3905
MM3906
MM4000
MM4001
MM4002
MM4003
MM4005
MM4006
MM4007
MM4008
MM4009
MM4010
MM4018
MM4030
MM4031
MM4032
MM4033
MM4036
MM4037
MM4049
MM4052
MM4208
MM4208A
MM4209
MM4209A
MM4257
MM4258
MM4261A
MM5005
MM5006
MM5007
MM5189
MM5262
MM6427
MM8001
MM8002
MM8003
MM8006
MM8007
MM8008
MM8009
MM8010
MM8011
Chip No.
MMCF708
MMCF929
MMCF930
MMCF2221
MMCF2221A
MMCF2222
MMCF2222A
MMCF2'369
MMCF2484
MMCF2857
MMCF2906
MMCF2906A
MMCF2907
MMCF2907A
MMCF3227
MMCF3250
MMCF3250A
MMCF3251
MMCF3251A
Chip No.
Alternate
Chip
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
RF
SST
SST
SST
SST
SST
SST
RF
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SSTR
RF
RF
RF
RF
RF
RF
RF
RF
RF
2NC3734
2NC3735
2NC3903
2NC3904
2NC3905
2NC3906
2NC3497
2NC5401
MPSAC93
MPSAC92
MPSUC55
MPSUC56
MPSUC57
MPSUC55
MPSUC56
MPSUC57
2NC5160
2NC4406
2NC4406
2NC4407
2NC4407
2NC4404
2NC4890
MMC4049
MMC4052
2NC4208
2NC4208
2NC4209
2NC4209
2NC4208
2NC4208
2NC4261
MPSUC55
MPSUC56
MPSUC57
2NC5859
2NC3725
2NC6427
2NC5943
2NC5943
MRFC905
2NC5031
2NC5031
MRFC905
MRFC905
MRFC905
MRFC905
Family
FC
FC
Fe
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
Function
Switching Transistor
Amplifier Transistor
Amplifier Transistor
Switching and Amplifier
Switching and Amplifier
Switching and Amplifier
Switching and Amplifier
Switching Transistor
Amplifier Transistor
Switching
Switching
Switching
Switching
Switching
Switching
Switching
Switching
Switching
Transistor
Transistor
Transistor
Transistor
and Amplifier Transistor
and Amplifier Transistor
and Amplifier Transistor
and Amplifier.Transistor
Transistor
and Amplifier Transistor
and Amplifier Transistor
and Amplifier Transistor
and Amplifier Transistor
"
I:.JI
Pol.
Family
•
N
N
N
N
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
N
N
N
Geometry
SL27
SL27
SL221
SL221
SL271
SL271
SL47
EL263
EL694
EL694
EL554
EL554
EL554
EL554
EL554
EL554
RF310
SL56
SL56
SL56
SL56
SL50
SL50
RF327
SL40
SL345
SL345
SL345
SL345
SL345
SL345
SL65
EL554
EL554
EL554
SL27
SL27
EL645
Geometry
N34
N30
N30
NOO
NOO
NOO
NOO
N34
N30
N34
POO
POO
POO
POO
N34
P34
P34
P34
P34
MMCF3798 - MMT918
Chip No.
MMCF3798
MMCF3799
MMCF4223
MMCF4224
MMCF4338
MMCF4339
MMCF5179
MMCFA43
MMCFA93
MMCF0914
Device
Type
MMCM918
MMCM930
MMCM2222
MMCM2369
MMCM2484
MMCM2857
MMCM2907
MMCM3798
MMCM3799
MMCM3903
MMCM3904
MMCM3905
MMCM3906
MMCM3960A
tMMCS0122
tMMCS0123
tMMCS0125
tMMCS0130
tMMCS0131
tMMCS0134
tMMCS0159
MMDC70
MMDC6050
MMDC6100
MMDC6150
MMOC7000
MMDC7001
Family
FC
FC
FC
FC
FC
FC
FC
FC
FC
FC
Chip No.
Geometry
Function
P30
P30
N44
N44
FCF45
FCF45
FCN35
Amplifier Transistor
Amplifier Transistor
N-Channel J-FET Transistor
N-Channel J-FET Transistor
N-Channel J-FET Transistor
N-Channel J-FET Transistor
RF Small Signal Transistor
NPN High Voltage Transistor
PNP High Voltage Transistor
Switching Diode
Alternate
Chip
N41
Family
SST
SST
SST
SST
SST
RF
SST
SST
SST
SST
SST
SST
SST
RF
FETM
FETM
FETJ
FETJ
FETJ
FETJ
SST
SWD
SWD
SWD
SWD
SWD
SWD
2NC918
2NC930A
2NC2222
2NC2369
2NC2484
2NC2857
2NC2907
2NC3798
2NC3799
2NC3903
2NC3904
2NC3905
2NC3906
2NC3960
2NC4351
2NC4352
2NC5462
2NC3823
2NC5558
MFEC2004
2NC5841
lNC914
1 NC914
MSDC6100
MSDC6150
1 NC914
lNC914
Pol.
N
N
N
N
N
N
P
P
P
N
N
P
P
N
N
P
P
N
N
N
N
Geometry
SL75
SL18
SL2
SL73
SL18
RF153
SL333
SL55
SL55
EL221
EL221
EL271
EL271
RF93
FM122
FM123
FM125
FM130
FM131
FM140
ML204
EL241
EL241
EL240
EL290
EL241
EL241
tObsolete Device Type
Chip No.
MMHCOO26
MMHCOO26C
Device
Type
MMT70
MMT71
MMT72
MMT73
MMT74
MMT75
MMT76
MMT806
MMT807
MMT808
MMT809
MMT918
Family
LINEAR
LINEAR
Chip No.
Geometry
Function
50T
5DT
Dual MOS Clock Driver
Dual MOS Clock Driver
Alternate
Chip
2NC2483
2NC5086
2NC3011
2NC869A
MPSC6543
2NC4125
2NC4123
MMTC806
MMTC807
MMTCB08
MMTC809
2NC918
2-55
Family
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
Pol.
Geometry
N
SL1B
SL55
SL73
SL44
EL229
EL271
EL221
ML10l
ML10l
ML104
ML104
SL75
P
N
P
N
P
N
N
N
P
P
N
•
MMT930 - MPS3398
Device
Type
I
MMT930
MMT2222
MMT2369
MMT2484
MMT2857
MMT2907
MMT3014
MMT3546
MMT3798
MMT3799
MMT3903
MMT3904
MMT3905
MMT3906
MMT3960
MMT3960A
MMT4261
MMT8015
MPF102
MPF108
MPF109
MPF111
MPF112
MPF120
MPF121
MPF122
MPF130
MPF131
MPf132
MPF161
MPF256
MPF820
MPF970
MPF971
MPF4391
MPF4392
MPF4393
MPI3401
MPN3401
MPN3402
MPN3403
MPN3404
MPN3411
MPN3412
MPN3601
MPS404
MPS404A
MPS706
MPS706A
MPS708
MPS753
MPS834
MPS835
MPS914
MPS918
MPS2369
MPS2501
MPS2712
MPS2714
MPS2716
MPS2923
MPS2924
MPS2925
MPS2926
MPS3390
MPS3391
MPS3392
MPS3393
MPS3394
MPS3395
MPS3396
MPS3397
MPS3398
Chip No.
Alternate
Chip
2NC930A
2NC2222
2NC2369
2NC2484
2NC2857
2NC2907
2NC3014
2NC3546
2NC3798
2NC3799
2NC3903
2NC3904
2NC3905
2NC3906
2NC3960
2NC3960
2NC4261
2NC5031
MPFC102
MPFC108
MPFC109
MPFC111
MPFC112
MFEC120
MFEC121
MFEC122
MFEC130
MFEC131
MFEC132
MPFC161
MPFC256
MPFC820
MPFC970
MPFC971
MPFC4391
MPFC4392
MPFC4393
MPNC3401
MPNC3401
MPNC3402
MPNC3401
MPNC3404
MPNC3411
MPNC3411
MPNC3401
MPSC404
MPSC404A
2NC706
2NC706B
2NC708
2NC753
MPSC834
2NC835
2NC914
2NC918
2NC2369
2NC2501
MPSC2716
MPSC2714
MPSC2716
MPSC2923
MPSC2924
MPSC2925
MPSC2923/4/5
MPSC3390
MPSC3391
MPSC3392
MPSC3393
MPSC3394
MPSC3395
MPSC3396
MPSC3396
MPSC3396
Family
SST
SST
SST
SST
RF
SST
SST
SST
SST
SST
SST
SST
SST
SST
RF
RF
SST
RF
FETJ
FETJ
FETJ
FETJ
FETJ
FETMDG
FETMDG
FETMDG
FETMDG
FETMDG
FETMDG
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
FETJ
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
Pol.
Geometry
N
N
N
N
N
P
N
P
P
P
N
N
P
P
N
N
P
N
N
N
N
N
N
N
N
N
N
N
N
P
N
N
P
P
N
N
N
SL18
SL2
SL73
SL18
RF153
SL333
SL76
SL45
SL55
SL55
EL221
EL221
EL271
EL271
ML204
ML204
SL65
RF191
FM130
FM130
FM131
FM131
FM130
FM819
FM819
FM819
FM877
FM877
FM877
FM125
FM146
FM140
FM129
FM129
FM140
FM140
FM140
VL522
VL522
VL522
VL522
VL222
VL523
VL523
VL522
EL255
EL255
SL73
SL73
SL73
SL73
SL73
SL73
SL73
SL75
SL73
SL76
EL220
SL73
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
EL220
P
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
MPS3563 - MPS6580
Device
Type
MPS3563
MPS3638
MPS3638A
MPS3639
MPS3640
MPS3646
MPS3693
MPS3694
MPS3702
MPS3703
MPS3704
MPS3705
MPS3706
MPS3707
MPS3709
MPS3710
MPS3711
MPS3725
MPS3826
MPS3827
MPS4354
MPS4355
MPS4356
MPS5172
MPS6507
MPS6511
MPS6512
MPS6513
MPS6514
MPS6515
MPS6516
MPS6517
MPS6518
MPS6519
MPS6520
MPS6521
MPS6522
MPS6523
MPS6530
MPS6531
MPS6532
MPS6533
MPS6534
MPS6535
MPS6539
MPS6540
MPS6541
MPS6543
MPS6544
MPS6545
MPS6546
MPS6547
MPS6548
MPS6560
MPS6561
MPS6562
MPS6563
MPS6565
MPS6566
MPS6567
MPS6568
MPS6568A
MPS6569
MPS6569A
MPS6570
MPS6570A
MPS6571
MPS6573
MPS6574
MPS6575
MPS6576
MPS6579
MPS6580
Chip No.
Alternate
Chip
MPSC3563
MPSC3638
MPSC3638A
MPSC3639
MPSC3640
MPSC3646
MPSC3693
MPSC3694
MPSC3702
MPSC3703
MPSC3704
MPSC3705
MPSC3705
MPSC3707
MPSC3709
MPSC3710
MPSC3711
2NC3725
MPSC6565
MPSC6566
MPSC4354
MPSC4355
MPSC4356
MPSC6575
MPSC6507
MPSC6511
MPSC6512
MPSC6513
MPSC6514
MPSC6515
MPSC6516
MPSC6517
MPSC6518
MPSC6519
MPSC6520
MPSC6521
MPSC6522
MPSC6523
MPSC6530
MPSC6531
MPSC6530
MPSC6533
MPSC6534
MPSC6533
MPSC6548
MPSC6540
MPSC6541
MPSC6543
MPSC6545
MPSC6545
MPSC6547
MPSC6547
MPSC6548
MPSC6560
MPSC6560
MPSC6562
MPSC6562
MPSC6565
MPSC6566
MPSC6567
MPSHC30
MPSHC30
MPSHC30
MPSHC30
MPSHC30
MPSHC30
2NC5088
MPSC6575
MPSC6575
MPSC6575
MPSC6575
2NC5208
2NC5208
2-57
Family
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
Pol.
N
P
P
P
P
N
N
N
P
P
N
N
N
N
N
N
N
N
N
N
P
P
P
N
N
N
N
N
N
N
P
P
P
P
N
N
P
P
N
N
N
P
P
P
N
N
N
N
N
N
N
N
N
N
N
P
P
N
N
N
N
N
N
N
N
N
N
N
N
N
N
P
P
Geometry
SL75
SL333
SL333
EL251
EL251
EL77
EL235
EL235
SL333
SL333
SL2
SL2
SL2
EL220
EL220
EL220
EL220
SL27
EL221
EL221
EL664
EL664
EL664
EL403
SL75
SL75
EL220
EL220
EL220
EL220
EL271
EL271
EL271
EL271
EL220
EL220
SL55
SL55
EL210
EL210
EL210
SL333
SL333
SL333
EL426
EL627
SL75
EL229
EL627
EL627
EL229
EL229
EL426
EL611
EL662
EL662
EL662
EL221
EL221
EL627
EL231
EL231
EL231
EL231
EL231
EL231
EL233
EL403
EL403
EL403
EL403
EL281
EL2S1
•
MPS8000 - MPSU10
Device
Type
II
MPS8000
MPS8001
MPS8097
MPS8098
MPS8099
MPS8598
MPS8599
MPSA05
MPSA06
MPSA09
MPSA12
MPSA13
MPSA14
MPSA16
MPSA17
MPSA18
MPSA20
MPSA42
MPSA43
MPSA55
Chip No.
MPSAC05
MPSC8001
MPSC8097
MPSC8098
MPSC8099
MPSC8598
MPSC8599
MPSUC05
MPSUC06
MPSAC09
2NC6426
2NC6427
2NC6427
MPSAC16
MPSAC17
MPSAC18
MPSC6575
MPSAC42
MPSAC43
MPSUC551
MPSC4355
MPSUC561
MPSC4356
MPSA56
MPSA65
MPSA66
MPSA70
MPSA92
MPSA93
MPSD01
MPSD02
MPSD03
MPSD04
MPSD05
MPSD06
MPSD51
MPSD52
MPSD53
MPSD54
MPSD55
MPSD56
MPSH02
MPSH04
MPSH05
MPSH07
MPSH08
MPSH10
MPSH11
MPSH17
MPSH19
MPSH20
MPSH24
MPSH30
MPSH31
MPSH32
MPSH34
MPSH37
MPSH54
MPSH55
MPSH81
MPSH83
MPSH85
MPSL01
MPSL51
MPSU01
MPSU01A
MPSU02
MPSU03
MPSU04
MPSU05
MPSU06
MPSU07
MPSU10
Alternate
Chip
MPSAC65
MPSAC66
MPSAC70GREEN
MPSAC92
MPSAC93
MPSAC43
2NC5550
2NC5550
2NC6427
2NC2222
MPSC6575
MPSAC93
2NC5401
2NC5400
MPSAC65
2NC2907
MPSAC70GREEN
MPSHC02
MPSHC04
MPSHC04
MPSHC07
MPSHC07
MPSHC10
MPSHCll
MPSHC17
MPSHC11
MPSHC371
MPSC6567
MPSHC24
MPSHC30
MPSHC30
MPSHC32
MPSHC34
MPSHC37
MPSHC54
MPSHC54
MPSHC81
MPSHC83
MPSHC83
2NC5550
2NC5400
MPSUC01A
MPSUC01A
MPSUC02
MPSUC03
MPSUC04
MPSUC05
MPSUC06
MPSUC07
MPSAC42
Family
Pol.
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SSTR
SSTR
SSTR
SST
SST
SST
SST
SST
SST
N
N
N
N
N
P
P
N
N
N
N
N
N
N
N
N
N
N
N
EL614
SL75
SL18
EL416
EL416
EL466
EL466
EL504
EL504
EL233
EL645
EL645
EL645
EL406
EL406
SL18
EL403
EL644
EL644
SST
P
EL554
SST
SSTR
SSTR
SSTR
SST
SST
SST
SST
SST
SSTR
SST
SST
SST
SST
SST
SSTR
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
P
P
P
P
P
P
N
N
N
N
N
N
P
P
P
P
P
P
N
N
N
N
N
N
N
N
N
EL554
EL695
EL695
EL453
EL694
EL694
EL644
EL613
EL613
EL645
SL2
EL403
EL694
EL263
EL263
EL695
SL333
EL453
EL231
EL434
EL434
EL335
EL335
EL426
EL219
EL617
EL219
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
SST
N
N
N
EL627
EL318
EL231
EL231
EL336
EL318
EL627
EL484
EL484
EL274
EL383
EL383
EL613
EL263
EL501
EL501
EL501
EL503
EL503
EL504
EL504
EL504
EL644
N
N
N
N
P
P
P
P
P
N
P
N
N
N
N
N
N
N
N
N
Geometry
MPSU31 - MSD7000
Device
Type
MPSU31
MPSU45
MPSU51
MPSU51A
MPSU52
MPSU55
MPSU56
MPSU57
MPSU60
MPSU95
MPT20
MPT24
MPT28
MPT32
MPT36
MPU131
MPU132
MPU133
MPU231
MPU232
MPU233
MPU6027
MPU6028
MRD120
MRD121
MRD150
MRD300
MRD310
MRD360
MRD370
MRD450
MRD500
MRD510
MRD601
MRD602
MRD603
MRD604
MRD1413
MRD3050
MRD3051
MRD3052
MRD3053
MRD3054
MRD3055
MRD3056
MRF501. 502
MRF207
MRF511
MRF515
MRF531
MRF604
MRF626
MRF627
MRF816
MRF901
MRF902
MRF904
MRF905
MRF910
MRF911
MRF912
MRF914
MRF931
MRF960
MRF961
MRF962
MRF965
MRF966
MSD6100
MSD6101
MSD6102
MSD6150
MSD7000
Chip No.
Alternate
Chip
MPSUC31
MPSUC45
MPSUC51A
MPSUC51A
MPSUC52
MPSUC55
MPSUC56
MPSUC57
MPSAC92
MPSUC95
1NC5758
1NC5759
1NC5760
1NC5761
1NC5762
2NC6116
2NC6117
2NC6118
2NC6116
2NC6117
2NC6118
2NC6027
2NC6028
MROC6
MRDC5
MRDC6
MRDC6
MRDC5
MRDC8
MRDC8
MRDC5
MRDC7
MRDC7
MRDC4
MRDC5
MRDC5
MRDC6
MRDC8
MRDC4
MRDC4
MRDC4
MRDC4
MRDC4
MRDC5
MRDC5
2NC2857
2NC4427
MRFC515
MRFC515
MRFC531
2NC4427
MRFC515
MRFC515
MRFC515
MRFC901
MRFC901
MRFC901
MRFC905
MRFC911
MRFC911
MRFC911
MRFC911
MRFC931
MRFC961
MRFC961
MRFC961
MRFC961
MRFC961
MSDC6100
MSDC6100
MSDC6100
MSDC6150
lNC914
2-59
Family
SST
SSTR
SST
SST
SST
SST
SST
SST
SST
SSTR
DIAC
DIAC
DIAC
DIAC
DIAC
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PUT
PDT
PDT
PDT
PDT
PDT
PDTR
PDTR
PDT
POD
POD
PDT
PDT
PDT
PDT
PDTR
PDT
PDT
PDT
PDT
PDT
PDT
PDT
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
RF
SWD
SWD
SWD
SWD
SWD
Pol.
Geometry
N
N
P
P
P
P
P
P
P
P
EL531
EL645
EL551
EL551
EL551
EL554
EL554
EL554
EL694
EL595
TL51 153
TL51 153
TL51 153
TL51 153
TL51/53
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
TL72175
TL72175
TL72175
TL72175
TL72175
TL72175
TL83
TL83
L100
L100
L100
L100
L100
L19
L19
L100
L85
L85
L100
L100
L100
L100
L19
L100
Ll00
L100
L100
L100
L100
L100
RF83
RF91
RF100
RF90
RF104
RF106
RF105
EL240
EL240
EL240
EL240
EL241
•
MU10 - MVI2109
Device
Type
II
MU10
MU20
MUS51
MUS52
MUS53
MU4891
MU4892
MU4893
MU4894
MUS4987
MUS4988
MV104
MV109
MV206
MV206
MV209
MV830
thru
MV840
MV1401
MV1403
MV1404
MV1406
MV1620
thru
MV1660
MV1652
thru
MV1666
MV1858A, B, 0
thru
MV1870A, B. 0
MV1866
thru
MV1878
MV2101
thru
MV2106
MV2106
thru
MV2108
MV2109
MV2110
thru
MV2113
MV2114
MV2116
MV2201
MV2203
MV2205
MV2209
MV2301
thru
MV2308
MV3102
MV3103
MV3140
MV3141
MV3142
MV3501
thru
MV3505
MV3506
MV3507
MVAM-2
MVI2097
thru
MVI2105
MVI2106
thru
MVI2108
MVI2109
Chip No.
MUC10
MUC20
2NC4851
2NC4852
2NC4853
MUC4891
MUC4892
MUC4893
MUC4894
MUSC4987
MUSC4988
MVC104
MVC109
MVC205
MVC206
MVC209
MVC830
thru
MVC840
MVC1401
MVC1403
MVC1404
MVC1405
MVC1620
thru
MVC1650
MVC1652
thru
MVC1666
MVC1858A. B. 0
thru
MBC1858A. B. 0
MVC1866
thru
MVC1878
MVC2101
thru
MVC2105
MVC2106
thru
MVC2108
MVC2109
MVC2110
thru
MVC2113
MVC2114
MVC2115
MVC2201
MVC2203
MVC2205
MVC2209
MVC2301
thru
MVC2308
MVC3102
MVC3103
MVC3140
MVC3141
MVC3142
MVC3501
thru
MVC3505
MVC3506
MVC3507
MVAMC-2
MVIC2097
thru
MVIC2105
MVIC2106
thru
MVIC2108
MVIC2109
Alternate
Chip
Family
Pol.
Geometry
TO-O
TO
TO
TO
TO
TO
TL58/59
TL58/59
TL58/59
TL58/59
TL58/59
TL58/59
TL58/59
TL58/59
TL58/59
TL58/59
TL58/59
VL431
VL539
VL534
VL534
VL539
VL48-59
TO
TOHA
TOHA
TOHA
TOHA
TO
Vl48-59
VL276
VL73
VL271
VL74
VL44-59
TO
TO
VL44-59
VL140-147
TO
TO
VL140-147
VL700-708
TO
TO
VL700-708
VL21-30
TO
TO
VL21-30
VL229-233
TO
TO
VL229-233
VL234-236
TO
TO
TO
VL234-236
VL237
VL238-241
TO
TO
TO
TO
TO
TO
TO
TO
VL238-241
VL242
VL243
VL229
VL231
VL233
VL237
VL260-267
TO
TOHA
TOHA
TOHA
TOHA
TOHA
TO
VL260-267
VL538
VL538
VL534
VL534
VL534
VL229-233
TO
TO
TO
TO-O
TO
VL229-233
VL234
VL235
VL1002
VL225-233
TO
TO
VL225-233
VL234-236
TO
TO
VL234-236
VL237
UJT
UJT
UJT
UJT
UJT
UJT
UJT
UJT
UJT
sus
sus
MZ821 r A - U310
Device
Type
MZ821.A
Chip No.
Alternate
Chip
Family
CF
ZREF
CF
CF
ZREF
ZREF
CF
CF
ZREF
ZREF
CF
CF
ZREF
ZREF
Pol.
Geometry
thru
MZ827.A
MZ935.A.B
thru
MZ938.A.B
MZ941.A.B
thru
MZ944.A.B
MZ3154.A
thru
MZ3156.A
MZ4614
MZ4615
MZ4616
MZ4617
MZ4618
MZ4619
MZ4620
MZ4621
MZ4622
MZ4623
MZ4624
MZ4625
MZ4626
MZ4627
U309
U310
ZREF
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
CF
MZC4614
MZC4615
MZC4616
MZC4617
MZC4618
MZC4619
MZC4620
MZC4621
MZC4622
MZC4623
MZC4624
MZC4625
MZC4626
MZC4627
UC309
UC310
FETJ
FETJ
2-61
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
B-A
N
N
FM145
FM145
•
II
2-62
CHAPTER 3
Discrete Devices
Page
Silicon Power Transistor Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R F Transistor Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Small-Signal Transistor Chips ......................................
Field-Effect Transistor (FET) Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Opto Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Thyristor and Trigger Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . ..
Zener Diode Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Silicon Switching Diode Chips.................' . . . . . . . . . . . . . . . . . . . . ..
Tuning Diode Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Rectifier Chips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Note: Each section includes general information such as chip
size and metallization, probe capabilities, packaging, visual inspection, and other criteria unique to the product, as well as
geometry identification.
3-1
3-2
3-10
3-15
3-26
3-31
3-35
3-42
3-49
3-50
3-51
•
SILICON POWER TRANSISTOR CHIPS
The entire Motorola family of silicon low-frequency
power transistor devices is included in the Index. This
family is designated with PWR.
GEOMETRY IDENTIFICATION
AND DESCRIPTION
•
Motorola's engineering staff is available for consultation in the event of correlation or processing
problems encountered in the use of Motorola semiconductor chips. For assistance of this nature, please
contact your nearest Motorola sales representative.
The Geometry column of the Index provides information on back side metal and passivation as well as
identifying the exact geometry.
Each geometry is identified with two groups of
letters and numbers, for example: 4JE-GN. The first
group specifies an exact geometry.
The second group, separated by a dash, consists of
one or two letters. The first letter is either C or G and
indicates the back metal: C = Chrome-Silver, G = Gold.
The second letter, when it appears, is N, indicating
exposed junctions with no passivation.
PROBE CAPABILITIES
4JE - GN
\
\'
{ Exposed Junction (no glass)
G = Gold back metal
~r
= Chrome-silver back metal
Identifies geometry
CHIP SIZE, METALLIZATIONS AND BONDING
Chip Size-The dimensions of each chip are given on
the geometry itself. Chip thickness is typically 10 mils.
Any chip having a different thickness will have the
actual thickness noted on the geometry.
Metallization and Bonding-All of these power transistor chips have aluminum front metal and either gold
or chrome-silver back metal. Each chip comes standard
with the back metal indicated in the Index. In most
cases, the other back metal can be supplied on special
request.
The aluminum front metal adapts readily to most
wire bonding techniques. Gold-backed transistor chips
are primarily designed for applications that require
eutectic bonding. Chips with chrome-silver back metal
utilize solder preforms in the bonding technique.
Solder preforms consisting of lead (92.5%), indium
(2.5%), and silver (5.0%) are commercially available.
HANDLING PRECAUTIONS ON MESA TYPE CHIPS
The chips designated in the Index as having exposed
junctions (N in the suffix) are of mesa construction.
Mesa transistor chips have exposed collector-base junctions, therefore, it is important that the following
procedures be implemented:
a. Properly clean the die, prior to encapsulation,
i.e., ultrasonic cleaning in a solvent such as Xylene or
Trichloroethylene.
b. Completely coat the exposed junction area with
a suitable semiconductor coating.
All Silicon Power Chips are 100% probed to ensure
meeting the dc electrical specifications presented on the
Motorola standard data sheets. Due to probe limitations and power restrictions in handling silicon power
chips, certain parameters, e.g., hFE, must be read at
low current values which are correlated to high current
specifications.
Leakage currents and breakdown voltages are 100%
probed to the specified limits, although the BVCEO
test current is limited to 20 mA or less.
Current gain, hFE, is probed 100% if the specified
collector current is 5 A or less and if the specified collector voltage is from 2 to 10 V. When h F E is specified
at conditions outside these boundaries, the values are
correlated to a current and voltage condition within
the above limits by evaluation of finished product. In
special cases bFE can be measured to collector currents of 20 A; consult your Motorola Sales Office for
details.
Saturation voltages are dependent on mounting
techniques, and therefore cannot be guaranteed.
Since the unit probe parameters, limits, and conditions are correlated to the standard device specifications, the actual unit probe specifications are of little
value when applied to the silicon power chip. Unit
probe parameters will be supplied upon request.
QUALITY ASSURANCE PROVISIONS
All Motorola silicon power chips are 100% tested
at unit probe with the intent of meeting the specifications of the transistor properly mounted on a standard
header. Probe testing is limited to the conditions described above. AC and dc parameters which cannot be
tested directly to limits and conditions as specified on
standard data sheets, are guaranteed to an L TPD of 20.
These limits are valid only when the chips are properly
assembled and normal surface coating precautions are
observed. Functional ratings such as Power and Safe
Operating Area are dependent upon mounting techniques, and as such cannot be guaranteed.
When required, samples may be mounted in standard packages permitting complete electrical testing.
Test results and/or generic data can be made available
upon request for an additional charge.
3-2
VISUAL INSPECTION
All Motorola power chips are 100% visually inspected to meet an LTPD of 10 when Multi-Pak packaged. Motorola document 12MRB03061A defines
the accept/reject criteria.
3. Power Pill - the "power pill" consists of the
transistor chip mounted on a copper or molybdenum
pad. The "moly" pad is brazed to a copper button for
ease in mounting to the circuit assembly. Wires are
attached to the chip and to isolated contacts. Dimensions of the power pill are shown in Figure 3; the chip
and wire bonds are not to exceed a height of 100 mils.
The buttons and power pills are nickel or nickelgold plated. Any common solder technique may be
used to bond them to the circuit assembly.
MOUNTING OPTIONS
The following mounting options are available on
special order as aids to circuit design and assembly:
1. Chip on Button - silicon power transistor chip
properly mounted on a copper button designed for
ease in handling or where equipment limitations are
a problem. Dimensions of the copper button are
shown in Figure 1. Chip size is limited to 200 mils
square by the diameter of the button.
2. Chip on Button with Wires - aluminum wires
are attached to the chip after mounting on the copper
button. The copper button is then soldered to the
assembly and wires are attached to the appropriate
bonding pads or posts. The attached wire is of sufficient size to accommodate the current ratings for the
specific chip (minimum wire length is 0.5")' (See
Figure 2.)
PACKAGING AND ORDERING INFORMATION
Most of the silicon power chips are available in all
stages of chip processing from unit probed, unscribed
wafer to individual chips in Multi-Pak. The chip packaging designations system described in the General
Information section applies with the addition of the
letter C or G to the suffix to indicate back side metallization. The complete chip designation suffix is then:
(C or G) (package). An example is 2NC3055-CPV,
where the suffix C indicates chrome-silver metal and PV
indicates Vial packaging. The entire suffix is separated
from the specific device indicated by a dash (-).
Chips on Button and Power Pill, mounting options
1, 2, and 3, are available on special order. Contact the
nearest Motorola Sales Office for ordering information.
Dimensions Include Thickness of Die
FIGURE 1. CHIP ON BUTTON
Diameter of button - 330 mils
Height of button - 75 mils
FIGURE 2. CHIP ON BUTTON WITH WIRES
FIGURE 3. POWER PILL
375 mils square
100 mils thick (includes
wire and isolation pads)
Add 25 mils for chip and wires
3-3
•
111111111111111111111111111111111111111111111
SILICON POWER TRANSISTOR CHIPS
111111111111 I 11111 11111 11111 III
III II III
11111 1
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
•
1FF (60x60)
1CN (100x100)
E
E-15x40
B-20x25
E-10x21
B- 8x20
1JK (270x270)
1LF (82x98)
E-36x42
B-40x58
E-11x20
B- 7x20
1TC (220x220)
1TE (132x132)
E
E-20x30
B-25x30
E B -
EMITTER PAD SIZE
BASE PAD SIZE
B
E-20x54
B-26x29
3-4
SI LICON POWER TRANSISTOR CHIPS (continued)
2AN (60x60)
2KS (108x108)
E
E-10x20
8- 8x18
E-12x40
B-14x22
2WE (46x52)
3FR (110x130)
•
E
E-10x15
B-10x15
E-20x60
B-18x48
4JE (62x62)
4JN (100x100)
E
B
E-6x14
B-9x24
E-16x27
B-20x44
4KB (86x86)
4KW (184x210)
E-13x17
B- 8x14
E-40x60
B-35x70
3-5
SILICON POWER TRANSISTOR CHIPS (continued)
•
4LE (200x200)
4PD (112x112)
E-38x46
B-44x44
E-15x47
B-15x30
4SB (45x45)
4TC (202x202)
,..
~
B~
...
B
....
E-6x10
B-7x14
E-40x75
B-40x60
4WH (100x100)
5HE (69x89)
E
B
,..
E
E-18x28
B-23x30
E-10x30
B-10x30
5MP (170x170)
5RV (190x190)
~
I:
~
~
I:
~
B
E
I:
~
I:
I:
~
...
~
E-18x130
B- 30x30
E-25x45
B-20x100
3-6
SI LICON POWER TRANSISTOR CHIPS (continued)
5TB (72x90)
5TD (113x124)
E
B
E-11x25
B-11x20
E-20x25
B-20x30
6KB (156x156)
6KL (60x60)
I
I
I
E
I
B
I
E-25x60
B-34x55
E-10x14
B-12x15
7DF (200 x 200)
ASG (192 x 192) .
7JA (114x114)
B
E
B
E-25x70
B-20x140
E-20x30
B-20x30
7MH (SOx60)
7MS (100x100)
.
.
II
E
II
..
II
E-11x20
B-11x20
E
'" '"
E-15x30
B-20x30
3-7
•
SILICON POWER TRANSISTOR CHIPS (continued)
II
7TB (110x110)
8JA (156x156)
E-20x30
B-27x30
E-10x10
B-15x15
8KJ (230x230)
8MS (80x80)
:....
(
E
(
B
E
(
B(
E-20x170
B-35x45
E-Bx15
B-8x30
8MW (145x145)
9JL (142x142)
~
•
•
E
~
]8
•
~
•
~
E-18x100
B-15x90
E-12x55
B-17x28
9KH (174x174)
9RF (140x167)
B
I
E
8
E
[II1II
-.•
I
I
E-16x32
B-25x25
.,
E-20x30
B-18x50
3-8
fill
SILICON POWER TRANSISTOR CHIPS (continued)
9RT (200x205)
9TC (70x70)
E-15x60
B-36x44
E-15x18
B-14x19
J34 (70x70)
P26 (40x501
E-8x40
B-8x40
E-13x15
B-12x15
3-9
•
RF TRANSISTOR CHIPS
The R F Transistor product line includes small-signal
R F amplifiers, oscillators, switches and general purpose
transistors.
by RF.
They are designated in the Master Index
CHIP SIZE AND METALLIZATION
•
The overall dimensions of each chip are shown
with the geometry. All of these chips have gold back
metal and aluminum top metal and bonding pads except the following four, which have gold top metal and
bonding pads: RF100, RF103, RF104, RF105. All of
the chips are planar with all active junctions passivated
(protected with a layer of Si02)'
Some of the chips are glassivated; that is, the entire
surface of the chip, including the metallization is covered with a layer of glass, except for the bonding pads.
Check with your Motorola representative for details
on this process and to determine which devices are
glassivated. Any of the devices can be provided with
glassivation on special order.
BONDING
The gold backing is designed for eutectic die bonding. Standard TC or ultrasonic wire bonding with gold
or aluminum wire is most commonly used.
PROBE CAPABILITIES
Probe capabilities and limitations on RF chips are
the same as presented in the General Information
section.
As RF performance cannot be determined or guaranteed by any dc probes, a variety of sampling procedures are available for assuring the user of desired
performance. These procedures are negotiated with
each user around his specific needs and application.
Most standard devices have had samples assembled
for confirmation of functional performance. Traceability to encapsulated sample data may be achieved
through the lot and wafer identification found on all
RF chip packages.
PACKAGING AND VISUAL INSPECTION
All of these chips are available in any stage of processing from unscribed, unit probed wafer to individual chips in ivlulti-Pak carriers. These packaging forms,
associated inspection levels, and general ordering information' are presented in the General Information
section.
3-10
III11111111111111111111111111
RF TRANSISTOR CHIPS
11111111111111111111111111111
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
E B -
EMITTER
BASE
RF57 (10x15)
RF59 (15x20)
RF80 (16x17)
RF82 (20x20)
RF83 (14x18)
RF86 (15x15)
3-11
•
RF TRANSISTOR CHIPS (continued)
RF91 (19x19)
RF93 (15x15)
II
•
RF100 (15x15)
RF103 (14x16)
RF104 (14x16)
RF105 (13x16)
RF140 (30x30)
RF151 (15x20)
~
•
~:::::.E-=====
~:::::.E-=====
'1_1,)
RF TRANSISTOR CHIPS (continued)
RF153 (10x12)
RF159 (12x12)
RF161 (16x17)
RF172 (15x20)
•
RF191 (15x15)
•
~
•
RF192 (12x17)
RF198 (20x20)
•
RF199 (15x15)
+
R F TRANSISTOR CH IPS (continued)
RF310 (15x20)
RF327 (10x15)
•
~-1d
SMALL-SIGNAL TRANSISTOR CHIPS
Transistor chips included in this section are from
the Motorola broad line of silicon small-signal transistors encapsulated in metal (e.g. TO-18, TO-5), plastic
(e.g. TO-92, Uniwatt, Duowatt), Micro-T, dual and
quad packages. Electrical ratings are up to 350 V, 3.0
A, fT to 3000 MHz, and Cob less than 0.65 pF. Some
Darlington configurations are also included. These
chips are listed in the Master Index as:
SST - Small signal transistors
SST(D) -
Duals
SSTR - Darlingtons
DUALS AND QUADS
GLASSIVATION
Most dual and quad encapsulated devices are manufactured by bonding adjacent chips from the same
silicon wafer and testing for matching characteristics
on encapsulated devices. Matching characteristics cannot be guaranteed in chip form, but adjacent chips can
be ordered on a special basis packaged in pairs, trios, or
quads. Parameters such as hFE, VBE(sat), VCE(sat)
and Breakdown Voltages (BV) are generally quite consistent on adjacent chips.
Covering the active surface of tlJ.e device with glassivation (deposited Si02 of 6,000 )( minimum) except
for exposed bonding pads is standard processing for
many of the chips included in this section. Glassivation can be ordered on a special basis for nearly all
types.
CHIP SIZE AND METALLIZATION
All of the transistors included in this section are·
epitaxial with passivated junctions (Si02). Chip sizes
are included in the referenced geometries-with emitter
(E) and base (B) indicated. Chip thickness is 4 to 6
mils. In all cases the collector is the bottom side of the
chip, but where metallized annular rings are included
in the chip design (nearly all PNP types and some highvoltage NPN types) the metallized ring on the chip
surface is connected to the collector and care must be
used not to short the metal ring to another metallized
area or to a bonding wire. Front metallization is aluminum with a minimum thickness of 8,000~. Back
metallization is gold-silicon eutectic. Back metallization may be a one-step process in which a minimum
gold thickness af 3,000
is evaporated and then
alloyed to form the eutectic, or a two-step process
which is the same as the one-step process except that
an additional thin layer of gold is evaporated over the
one-step eutectic. Visual appearance of the two processes is nearly identical.
a
BONDING
Chip attachment may be accomplished with either
conductive epoxy or eutectic. Epoxy chip attachment
is often used because the lower temperature requirement facilitates process control. Eutectic bonding
requires no preform assuming a normal gold thickness
on the substrate (~100 J,tin.).
Wire bonding may employ either gold or aluminum
wire with ultrasonic or thermocompression wedge or
ball bonding. One mil wire is normally used unless
otherwise noted on the geometry.
PROBE CAPABILITIES
Probe capabilities and limitations are presented in
the General Information section.
PACKAGING AND VISUAL INSPECTION
All of the chips are available in any state of processing from unscribed, unit or class probed wafer to individual chips in Multi-Pak carriers. These packaging
forms, associated inspection levels, and ordering information are presented in detail in the General Information Section.
3-15
•
111111111111111111111111111111111111111111111111111111II
SILICON SMALL-SIGNAL TRANSISTOR CHIPS
111.11111111111111111111111111111111111111111111111111III
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
•
E B -
EL219 (11x13)
EL220 (11x16)
E-2.0x2.0
B-2.0x3.0
E-2.5x3.6
B-2.4x4x6 (Trapezoid)
EL221 (11x16)
EL229 (11x13)
E-2.5x3.6
B-2.4x4x6 (Trapezoid)
E-2.0x2.0
B-2.0x2.0
EL231 (11)<13)
EL233 (11x16)
E-,.5x2.0 .
B-1.5x2.0
E-2x2.3
B-3.2x4
EMITTER PAD SIZE
BASE PAD SIZE
3-16
SILICON SMALL-SIGNAL TRANSISTOR CHIPS
EL235 (11x16)
(continued)
E L238 (20x20)
E-2x2.3
8-3.2x4
E-2.6x2.8
B-6.0x2.0
EL251 (10x15)
EL255 (20x21)
E-2.8x4.0
B-3.3x4.0
E-2.5x4
B-2.5x4
EL263 (21x21)
EL271 (11x19)
E-4.6x4.6
E-3.4x3.4
8-2.7x7
8-3.5x4_3
EL281 (11x16)
EL274 (11x16)
E-2.5x2.5
B-2.5x2.5
E-2.5x2.5
B-2.5x2.5
3-17
•
SILICON SMALL-SIGNAL TRANSISTOR CHIPS (continued)
•
EL318 (11x13)
EL336 (11x13)
E-2.5x2.5
B-2.5x2.5
E-3.0x2.0
B-3.0x2.0
EL383 (11x16)
EL403 (11x16)
II
E-2.0x2.0
B-2.0x2:.0
E-4.6x3.0
B-4.6x3.0
EL406 (18x18)
EL416 (20x20)
E-3.0x12.4
B-4.2x12.4
E-2.7x10
B-2.7x12.6
EL434 (11x18)
EL426 (11x13)
e
•
E-2.0x2.0
B-2.0x2.0
E-2.5x4
B-2.5x5.4
~_1
Q
SI LICON SMALL-SIGNAL TRANSISTOR CHIPS (continued)
EL4S3 (14x16)
E L466 (20x20)
E-3x5.5
B-3.5x5.5
E-2.7x10
B-2.7x12.6
ELS01 (26x26)
EL484 (11x18)
~
E-2.5x4
B-2.5x5.4
E-4.5x4.5
B-4.6x4.6
ELS03 (36x36)
ELS04 (26x26)
~
E-4.5x4.5
B-4.6x4.6
E-4.4Dia.
B-8x8x8 Triangle
ELS31 (3Sx3S)
E-5.Ox5.O
8-5.0x6.5
ELSS1 (31x31)
E-6x6.5
B-4.5x5.5
1.5 mil Wire
3-1~
II
SILICON SMALL-SIGNAL TRANSISTOR CHIPS (continued)
EL554 (31x31)
EL595 (36x36)
B
1m
•
E-6x6.5
B-4.5x5.5
E-6x6
B-6.4x6.4
EL613 (20x20)
EL614 (26x26)
.---"
~
;BO
L _____ .I
E-4.2x4.6
B-2.8x9
E-4.5x4.5
B-4.6x4.6
EL627 (11x13)
EL617 (11x13)
e
e
o
•
o
•
E-2.0x2.0
B-2.0x2.0
E-2.0x2.0
B-2.0x2.0
EL644 (31x34)
EL645 (25x25)
E-3x6
B-6x11
E-5x6.5
B-5x5
'V)"
SILICON SMALL-SIGNAL TRANSISTOR CHIPS (continued)
EL656 (24x30)
EL662 (20x29)
I
I
B I
B
E
I
I
E-3.6x13
8-3.6x15
E-3.6x8
8-3.6x12
EL664 (31x31)
1.5 mil Wire
EL694 (31x34)
E-6x6.5
8-4.5x5.5
E-3x6
B-6x11
EL695 (25x25)
ML101 (10.12)
.... . ..
:"-=8:
••• • ••
•
E-5x6.5
8-5x5
E-1.5 Dia.
8-1.5 Dia.
ML 104 (10x12)
ML204 (10x12)
.... . ..
:"-=8:
•••
• ••
•
E-2x2
8-2.2x2.5
E-1.5 Dia.
8-1.5 Dia_
3-21
1 mil Wire
•
SILICON SMALL-SIGNAL TRANSISTOR CHIPS (continued)
SL2 (20x20)
E-3.Sx1.S
; B-2.2x2.2
II
SL4 (20x20)
E-3.Sx1.S
B-2.2x2.2
1 mil Wire
SL 18 (19x19)
Sl17 (3Sx3S)
1.5 mil Wire
E-4.4
B-8x8x8Triangle
E-3 Dia.
B-3x3
1 mil Wire
SL22 (60x60)
SL 19 (20x20)
E-S.Ox3.7
B-S.Ox3.0
E-4.2x4.6
B-2.8x9
SL26 (36x36)
1.5 mil Wire
1mil Wire
2 mil Wire
SL27 (24x24)
E-4x4
8-4x4
E-4.4 Dia.
B-8x8x8 Triangle
~-??
2 mil Wire
SI LICON SMALL-SIGNAL TRANSISTOR CHIPS (continued)
SL40 (16x20)
SL28 (20x20)
•
E-3.5x4.0
8-3.5x4.0
E-2.2xS.4
8-2.2xS.O
2 mil Wire
SL41 (15x20)
SL44 (10x15)
B
E
1 mil Wire
E-6x7
B -3x3x3 Triangle
E-2.5x4
B-2.5x4
SL45 (10x15)
E-2.4x4
B-2.4x4
1 mil Wire
1 mil Wire
SL47 (25x25)
E-2.2x2.2
B-2.2x2.2
1 mil Wire
SL50 (20x29)
1 mil Wire
SL54 (40x40)
B
E-3.6x8
B-3.6x 12
1 mil Wire
2 mil Wire
3-23
E-4 Dia.
B-8x8x8 Triangle
•
SI LICON SMALL-SIGNAL TRANSISTOR CHIPS (continued)
SL55 (11x16)
II
E-2.5x2.5
8-2.6x2.8
SL56 (25x34)
E-3.2x3.8
8-3.2x3.8
1 mil Wire
SL60 (20x29)
1.5 mil Wire
SL63 (10x15)
B
E-3.6x8
B-3.6x12
E-2.7x3
8-2.9x3
1.5 mil Wire
SL65 (10x15)
E-2.2x2.3
8-2.2x2.3
SL73 (10x15)
E-2x3.4
8-5.6x7
1 mil Wire
1 mil Wire
SL76 (1~x15)
SL75 (11x16)
E-3.0x3.0
B-3.0x3.0
1 mil Wire
E-2x3.6
8-2x4.4
1 mil Wire
3-'4
1 mil Wire
SILICON SMALL-SIGNAL TRANSISTOR CHIPS (continued)
SL98 (36x36)
1.5 mil Wire
SL333 (20x20)
E-2.8x6
8-2.8x6
E-4.4 Dia.
8-8x8x8 Triangle
SL337 (26x26)
E-4.6x5.2
8-5_2x5_6
1 mil Wire
SL345 (10x15)
E-2.8x4.0
8-3.3x4.0
1.5 mil Wire
3-25
1 mil Wire
•
FIELD-EFFECT TRANSISTOR (FET) CHIPS
The families shown in the Index as making
up the FET product line are:
FETJ -
Junction FET
FETM -
MOSFET
FETM (D) FETMDG -
•
FETMQ -
Dual MOSFET
Dual Gate MOSF ET
Monolithic Quad MOSFET
CHIP SIZE AND METALLIZATION
All of the FET chips included in this section have
passivated junctions. Chip sizes are included in the
geometry section with gate (G), source (S), and drain
(0) indicated. Chip thickness is 4 to 6 mils.
Metallization processing is the same for all FET
chips. Front metallizj\tion is aluminum with a minimum
thickness of 8,000 )( prior to alloy. Back metallization is gold-5ilicol)..eutectic. Gold metallization layer
is minimum 3000 )( prior to alloy.
Glassivation-Front metallization c,Rvered by glassivation (deposited Si02 min. 6000 )(), except for exposed bonding pads, is standard processing for most of
the chips included in this section. Glassivation can be
ordered on a special basis for nearly all types. Assembly processing is the same with or without glassivation.
Passivation-The silicon-nitride passivation process
now being employed on all Motorola MOSFETs has
greatly improved MOSFET threshold stability with
aging and temperature changes. All Motorola singlegate MOSFETs have transient gate breakdown voltages
of greater than ± 100 Vdc peak.
BONDING
Chip attachment may be either conductive epoxy or
eutectic. Epoxy chip attachment is recommended because of the lower temperature requirement which
facilitates process control; eutectic bonding requires no
preform assuming a normal gold thickness (~100 ~in.).
Wire bonding may be either gold or aluminum wire
with ultrasonic or thermocompression wedge or ball
bonding. Wire size is normally 1-mil diameter unless
otherwise indicated on reference geometry.
PROBE CAPABILITIES
Probe capabilities and limitations are presented in
the General Information section (see page 1-12).
PACKAGING AND VISUAL INSPECTION
All of the FET chips are available in any stage of
processing from unscribed, unit probed wafer to individual chips in Multi-Pak carriers. These packaging
forms, associated inspection levels and ordering information are presented in detail on page 1-8.
3-26
111111111111111111111111111111111111111111111111111111I
SILICON FIELD·EFFECT TRANSISTOR CHIPS
1111111111111111111111111111111111111111111111111111111
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
FM109 (22x23)
S-3.2x3.3
G1-4.0x3.7
G2-4.0x3.7
G-3.0x3.0
D-2.6x3.0
S-2.3x2.4
FM114 (15x15)
S-2.3x2.3
G-Gate
S-Source
D-Drain
G-2.3x2.3
D1-3.8x3.8
D2-3.8x3.8
FM112 (14x16)
FM110 (15x15)
S-3.0x3.0
•
D-2.4x2.4
G-2.3x2.4
FM115 (14x16)
D-2.5x2.4
S-2.3x2.4
G-2.3x2.4
D-2.4x2.4
All dimensions in mils
3-27
SI LICON FIELD-EFFECT TRANSISTOR CHIPS
(continued)
FM120 (13x9)
FM122 (15x15)
Alternate
G2
S-1.9x1.Sx3.1
I
G1-1.2x1.9
G2-Substrate
0-1.9x1.9
S-3.0x3.0
FM123 (15x15)
G-3.0x3.0
0-2.6x3.0
FM124 (10x15)
-
~EI
S-3.0x3.0
G-3.0x3.0
0-2.6x3.0
S-4.4x2.5
G-Substrate
0-4.4x2.5
FM127 (10x15)
FM125 (12x16)
-
~EI
S-3.0x2.S
G-Substrate
0-3.0x2.S
S-4.4x2.5
FM129 (22x23)
S-2.6x4.6x2.5
G-Substrate
G-Substrate
0-4.4x2.5
FM130 (12x16)
0-2.0 Radius
S-3.Sx2.S
3-2R
G-Substrate
0-3.0x2.S
SILICON FIELD-EFFECT TRANSISTOR CHIPS
(continued)
FM131 (12x15)
FM136 (40x40)
s
o
S-2.3x3.0
G-Substrate
0-2.3x3.0
S-4.6x4.6
G-Substrate
0-3.2x2.7
S-2.8x2.3x1.7
G-Substrate
0-2.8x2.2x1.B)
S-2.3x2.3
FM819 (20x20)
S-2.8x2.B
G1-2 .4x2.6
G2-4.Bx2.9
G-Substrate
0-2.8x1.7x2.2
FM148 (10x15)
FM146 (12x17)
S-2.3x2.Bx1.9
0-4.6x4.6
FM145 (17x18)
FM140 (19x19)
S-2.6x2.6
G-Substrate
G-Substrate
0-2.3x2.3
FM877 (19x19)
0-4.2x2.6
S-Substrate &
4.Bx3.5
3-29
G1-1.3 Radius
G2-1.5 Radius
0-3.1 x3.5
•
SILICON FIELD-EFFECT TRANSISTOR CHIPS (continued)
FMlI90 (14x20)
FM881 (21x25)
S
•
S-Substrate &
3.3x3.3
G,-'.5 Radius
G2-3.5x3.5
D-4.5x3.3
S-Substrate &
2.6x2.6
G1-2.6x2.6
G2-2.6x2.6
D-2.6x2.6
OPTO CHIPS
The chips included in this family are:
IRED -
Infrared-Emitting Diode
POD
PIN Photodiode Detector
PDT
Phototransistor Detector
PDTR -
Photodarlington Detector
GENERAL DESCRIPTION
There are two types of opto chips offered by
Motorola - Infrared-Emitting Diodes (IRED) and
Detectors.
All detector chips are silicon with silicon nitride
passivation for improved aging characteristics. Detector
chips are available in three types.
1. PIN Photodiode
2. NPN Phototransistor
3. NPN Photodarlington
Detectors utilize large areas of exposed silicon (no
metal) to maximize the photoelectric effect (transformation of photons into current carrying hole-electron
pairs). All of the detectors are sensitive to light and
infrared radiation in wavelengths from 400 to 1100
nanometers with peak response typically occurring at
800 nm wavelength.
IRED chips are gallium-arsenide diodes with zinc
diffused junctions. Radiation is emitted in the range of
800 to 1000 nm with peak output typically occurring
at 900 nm.
CHIP SIZE AND METALLIZATION
Chip geometry and chip size is shown for each
device presented in the following pages. All have the
same metallization.
Back - Gold
Front - Aluminum
BONDING TECHNIQUES
Gold eutectic die-bonding is normal for all these
chips. Wire bonding is accomplished using thermocompression or ultrasonic techniques with 1 to 1-1/2 mil
diameter aluminum or gold wire.
PROBE CAPABILITIES
All dc parameters for both IREDs and Detectors
are 100% unit probed except for sensitivity (detectors)
and light output (IREDs). Leakage measurements on
detector chips must be made in darkness for valid
readings to be obtained.
CHIP SELECTION
Selecting an optoelectronic chip is fundamentally
different from selecting a chip for almost any other
device type. The reason for this is the lens used in the
opto package takes an active part in determining the
performance of the packaged device. In other words,
the performance of the opto chip is not the performance of the finished device. This makes selection of
an opto chip more difficult than other chips. However,
there are also some factors which contribute to making
the job easier. Since the package is an active part of
the device, opto devices come in many package styles
but use only a few chip types. There is only one PI N
photodiode chip, one NPN phototransistor, and one
NPN photodarlington chip to consider when selecting
a detector chip. Selecting which one of these three to
use entails only selecting the switching speed required.
The photodiode has the least amount of gain but has
the fastest switching times (in the order of nanoseconds). The phototransistor has medium gain and
medium switching times (in the order of microseconds).
The photodarlington has the highest gain with switching times in the hundreds of microseconds.
For more detailed information, two excellent
application notes (AN-440 and AN-508) are available
upon request.
PACKAGING AND VISUAL INSPECTION
All of these opto chips are available in any stage of
processing, from unscribed unit probed wafer to indiual chips in Multi-Pak carriers. These packaging forms,
associated inspection levels and ordering information
are presented in the General Information section.
3-31
•
PHOTODIODE SPECIFICATION
MRDC7
Parameter
Reverse Current @ V R
RL = 1.0 Mn
•
= 20 V,
Reverse Breakdown Voltage
@ IR = 10.uA
Junction Capacitance @ V R
f = 1.0 MHz
= 20 V,
Bare Chip Radiation Current
@VR = 20 V, H = 5.0 mW/cm 2
from Tungsten Lamp Source
@ 2870 0 K Color Temperature
Response Time @ V R
RL = 50 n
= 20 V,
Symbol
Min
Typ
Max
Unit
IR
-
-
2.0
nA
BVR
100
200
-
Volts
CJ
-
3.0
-
pF
IL
-
2.5
-
.uA
trr
-
1.0
-
ns
PHOTOTRANSISTOR SPECI F ICATION
MRDC4,5,6
Parameter
Symbol
Min
Typ
Max
Unit
ICEO
-
-
100
nA
Collector-Emitter Breakdown Voltage
@ IC = 1.0 mA
BVCEO
40
-
-
Volts
Emitter-Collector Breakdown Voltage
@ IC = 10.uA
BVECO
6.0
-
-
Volts
80
300
550
-
300
550
850
ICBL*
-
1.5
-
.uA
t r , tf
-
4.0
-
.us
Leakage Current @ V CE = 20 V,
H = 0, RL = 1.0 Mn under
Dark Conditions
Beta @ V CE
= 10 V, I B = 10 .uA
Bare Chip Collector-Base Radiation
Current @ VCB ::: 20 V,
H = 5.0 mW/cm 2 from Tungsten
Source @ 2870 0 K Color Temperature
Rise Time, Fall Time @ IC
RL = 100 n
= 1.0 mA,
-
hFE
MRDC4
MRDC5
MRDC6
-
*ICBL x hFE = IL (Collector-Emitter Radiation Current specified for finished device)
ICBl is consistently within a ± 20% range of typical value on 95% of devices sampled-however, since this
parameter cannot be measured on a chip until it has been scribed, broken and mounted on a header, it is
not tested in chip form.
PHOTODARLINGTON SPECIFICATION
MRDC8
Symbol
Min
Typ
Max
Unit
ICEO
-
-
500
nA
Collector-Emitter Breakdown Voltage
@ Ic=10mA
BVCEO
25
-
-
Volts
Emitter-Base Breakdown Voltage
@ IC = 100 #LA
BVEBO
5.0
-
-
Volts
Parameter
leakage Current @ VCE = 10 V
under Dark Conditions
Beta
@
VCE = 10 V, IB = 1.0 #LA
Bare Chip Collector-Base Radiation
Current @ H = 5.0 mW/cm 2
from Tungsten Lamp @ 2870 0 K
Color Temperature, V CB = 20 V
Rise Time, Fall Time @ IC = 1.0 mA,
Rl=100n
*ICBl x hFE = I l
hFE
1000
-
-
-
ICBl*
-
0.5
-
#LA
tr,tf
-
60
-
#LS
(Collector-Emitter Radiation Current specified for finished device)
ICBl is consistently within a ±20% range of typical value of 95% of devices sampled-however, since this
parameter cannot be measured on a chip until it has been scribed, broken and mounted on a header, it is
not tested in chip form.
INFRARED EMITTER SPECIFICATION
MLDC2
Parameter
Reverse Breakdown
@
Forward Voltage
IF = 50 mA
@
I R = 100 #LA
Radiated Power Output
@
IF = 50 mA
Symbol
Min
Typ
Max
Unit
BVR
3.0
-
Volts
VF
-
-
1.5
Volts
400
-
#LW
P0 *
*P o cannot be measured in chip form until after mounting on a header. This value typically varies from
100 to 1000 microwatts @ IF = 50 mAo
•
Ill~t~~~IJW~~~I,~ IlW!~ I
1111'111111111111111111111111111111
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries. not scaled to size.
•
L 19 (25x25)
La5 (30x30)
~
•
E-5xS14 (Middle of H)
B-2x3
CoS ubstrate
L91 (16x16)
r
I
A-Anode
C-Cathode
L 100 (27x27)
....J
A-3x3 (Middle of H)
C-Substrate
E-Emitter
B-Base
C-Collector
A-4x4 on sides
4 mils long arrowhead
C -S ubstrate (Back)
E -4x714 (Oval)
B-3 Dia.
C-Substrate
THYRISTOR AND TRIGGER CHIPS
The thyristor and trigger product family consists of:
Diac
PUT
SBS
SCR
SUS
Triac
UJT
- Bilateral Trigger
- Programmable UJT (Trigger)
- Silicon Bidirectional Switch (Trigger)
- Silicon. Controlled Rectifier
- Silicon Unidirectional Switch (Trigger)
- Bilateral SCR
- Unijunction Transistor (Trigger)
conditions for Blocking Voltage, Gate Voltage, Gate
Current and Holding Current at room temperature
only. The other data sheet parameters cannot be
probed on the wafer and thus «;annot be guaranteed.
ALTERNATE CHIP SPECIFICATIONS
The devices in the Chip number column utilize the
same chip or geometry as the data sheet chip (column
2) but are tested to a simple specification presented
below. Only Blocking Voltage, IGTand VGT are tested
and guaranteed. These alternate chips are offered at a
substantial cost savings over the data sheet chips.
CHIP SPECIFICATIONS
SCR and Triac devices listed in the Index are often
shown with both "chip" and "alternate" selections.
The chips shown in the Chip number column are actually· probed to the data sheet specification limits and
Voltage is probed and guaranteed to an LTPD = 10.
VGT, IGT and 'H are sampled and guaranteed to an
LTPD = 20.
ALTERNAtE CHIP SPECIFICATIONS
Chip
(SCR)
MCRC0361
MCRC0362
MCRC0363
MCRC0364
MCRC0365
MCRC0366
MCRC0367
MCRC0368
MCRC6381
MCRC6382
MCRC6383
MCRC6384
MCRC6391
MCRC6392
MCRC6393
MCRC6394
MCRC3101
MCRC3102
MCRC3103
MCRC3104
MCRC3105
MCRC3106
MCRC3107
MCRC3108
MCRC3201
MCRC3202
MCRC3203
MCRC3204
MCRC3205
MCRC3206
MCRC3207
MCRC3208
VORM
VRRM
@ .020 mA-25 0 C
100
200
300
400
500
600
700
800
100
200
300
400
100
200
300
400
100
200
300
400
500
600
700
800
100
200
300
400
500
600
700
800
3-35
IGT Max VGTMax
(mA)
(Volts)
.5
1.0
II
t I
II
II
1.0
1.5
~
30
30
ao
1.5
1.5
Chip
(Triac)
@
II
MACC4011
MACC4012
MACC4013
MACC4014
MACC4015
MACC4016
MACC4011A
MACC4012A
MACC4013A
MACC4014A
MACC4015A
MACC4016A
MACC4201
MACC4202
MACC4203
MACC4204
MACC4205
MACC4206
MACC4207
MACC4208
MACC4201A
MACC4202A
MACC4203A
MACC3204A
MACC3205A
MACC4206A
MACC4207A
MACC4208A
MACC4401
MACC4402
MACC4403
MACC4404
MACC4405
MACC4406
MACC4408
MACC4401A
MACC4402A
MACC4403A
MACC4404A
MACC4405A
MACC4406A
MACC4408A
VORM
VRRM
.020 mA-250C
100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400
500
600
700
800
100
200
300
400
500
600
700
800
100
200
300
400
500
600
800
100
200
300
400
500
600
800
IGTMax (mA)
01
02
10
VGT Max (Volts)
03
04 01
10
1.5
02 03 04
1.5
! ! ! !
! ! !! ! ! ! !
10
10
50
10
15
50
1.5
1.5
2.0
1.5
2.0
2.0
IIII
IIIIIIII
50
75
60
50
75
60
2.0
2.5
2.5
2.0
2.5
2.5
IIII
I I I I III I
60
85
60
85
2.5
3.0
2.5
3.0
Diac, UJT, SUS, SBS and PUTchips are probed for the
following parameters. These parameters and limits are
guaranteed to an LTPD of 10.
DIAC
switching voltage
switching current
switchback voltage
leakage current
Vs
IS
ti.V
IS
UJT
Intrinsic standoff ratio
emitter reverse current
valley point current
interbase voltage
'11
IES20
IV
VS2S1
Figure TH1. Corner Fire Cathode Side (Top)
(Back side is anode)
Peak point emitter current Ip is not probed
but Is guaranteed to an LTPD of 20.
SUS
SBS
switching voltage
switching current
holding current
forward blocking current
reverse voltage
Vs
IS
IH
Ie
VR
switching voltage
switching current
holding current
forward voltage
forward blocking current
Vs
IS
IH
VF
IS
Cathode
(N
type)
Gate (P type)
N type
Anode (P type)
Figure TH2. Center Fire Cathode Side (Top)
(Back side is anode)
Switching voltage differential (VS1
absolutely cannot be probed.
PUT
The glass is continuous and extends around all four
sides of the chip. A 95/5 lead-tin solder is recommended for die attach and care must be taken to keep
the solder from flowing onto and past the glass-keep
the solder only under the metallized area. Solder on
the glass could cause shorting and arcing. A temperature of 400 0 C should not be exceeded during the die
attachment process. After processing and cleaning, a
die coat should be added around the edges to further
inhibit shorting and arcing. Typical construction of
these SCR and Triac die is illustrated in the following
sketches.
leakage current
IOAO
valley current
IV
forward voltage
VF
anode-to-cathode forward voltage
VAKF
anode-to-cathode reverse voltage
VAKR
offset voltage
VT (@ 1 Mil, 10 kil)
Gate (P type)
Anode (N type)
CHIP SIZE AND METALLIZATION
Passivation - All chips shown in the Thyristor family
are planar passivated or glassed and have no exposed
junctions.
BONDING
Chip Structure and Metallization - Most of the larger
SCR and Triac chips are edge-glass passivated and require some special attention. The glass covers the
active junctions near the top and bottom of the c"ips
as shown in the following figure.
_j:tl
~
JUNCTION
GL~
EAK
Die bonding methods in normal usage:
Gold
- Eutectic
CCA
- Solder, Epoxy
Wire bonding methods in normal usage:
Aluminum - Thermocompression, Ultrasonic
CCA
- Solder, Thermocompression
PROBE TEST CAPABILITIES
Parameters which can and will be probed are itemized
in the Chip Specifications section. Voltages can be
probed through 800 volts. The general probe limitations presented in the General I nformation section
provide guidance on what can be probed on a chip.
GLASS
Data sheet power and current ratings are useful only as
a guide to chip performance since both are dependent
upon the type of die bond and heat sink.
3-37
11
Method of Passivation and Metallization
Geometry
II
Planar
036
638
639
310
320
401
420
440
TL51/53
TL58/59
TL60
TL62
TL70
TL71
TL72/75
TL78
TL83
Edge·Glass
Top Metal
Back Metal
X
AL
AL
AL
CCA
CCA
AL
CCA
CCA
AL
AL
AL
AL
AL
AL
AL
AL
AL
CCA
CCA
CCA
CCA
CCA
CCA
CCA
CCA
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
G
G
G
G
G
G
G
G
G
AL - Aluminum
G
Gold
CCA - Chrome/Copper/Gold
PACKAGING AND VISUAL INSPECTION
The planar chips are available in any stage of processing from unscribed, unit probed wafer to individual
chips in Multi-Pak. Visual inspection is generally in
accordance with the criteria of 12M54 725F. The edgeglass chips are only available in individual chip form.
The standard packaging option is Vial, designated with
the PV suffix. Chips are inspected to the criteria of
12M55344L. These edge-glass die are also available in
Multi·Pak with the L suffix.
GEOMETRIES
Geometries referenced in the Index are presented in
alphanumeric order.
The following symbols are used
C
G
A
E
-
Cathode
Gate
Anode
Emitter
MT1
MT2
B1
B2
-
Main Terminal 1
Main Terminal 2
Base 1
Base 2
Size of metallized area on anode side (back of Figure
TH1 and TH2) is the same as C1, C2. The area is square
with no separate gate region.
11111111111111111111111111
THYRISTOR CHIPS
11111111111111111111111111
t
t
©
G3
Figure TH1. Corner Fire Cathode Side (Top)
(Back side is anode)
Figure TH2. Center Fire Cathode Side (Top)
(Back side is anode)
Gate (P type)
N type
Anode (N type)
Anode (P type)
All dimensions in mils
Geometry
Figure
Length
C-1
C-2
G-1
G-2
G-3
036
TH1
90
90
50
50
20
20
65
65
29
29
13
9
-
638
TH1
639
TH1
65
65
29
29
13
9
-
310
TH2
110
110
76
76
-
-
28
320
TH2
150
150
128
128
-
-
26
401
TH1
90
90
60
60
20
20
-
420
TH2
150
150
128
128
-
-
26
440
TH2
210
210
190
190
-
-
46
Width
3-39
THYRISTOR CHIPS
(continued)
CHIP G EOMETR I ES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
II
TL51/53 (20x20)
E-Emitter
S-Sase
TL58/59 (15x20)
TL60 (24x24)
TL62 (32x32)
TL70 (20x20)
TL71 (20x20)
C-Collector
G-Gate
THYRISTOR CHIPS
(continued)
TL78 (38x38)
TL72ns (20x20)
TL83 (20x20)
3-41
ZENER DIODE CHIPS
The zener diode product line includes voltage regulator,
voltage reference and current regulator (limiter) devices.
In the Index, these devices are indicated by:
Z - zener voltage regulator diodes.
ZREF - precision voltage reference diodes (zero TC).
ZCL - field-effect current regulator diodes.
•
INDEX
GEOMETRY
The presentation of zener diode devices and chips in
the Index is designed to direct the reader to the proper
ch ip for a specific appl ication . To reiterate a few
salient points:
Chip No. (Column 2) is the chip used in the designated
device (Column 1) and tested to the Column 1 data
sheet limits and conditions wherever possible.
When only one geometry is shown it applies to both
the Column 2 and Column 3 devices. When two
geometries are shown, the first applies to Column 2
and the second to Column 3.
CAUTION
If specific performance is critical to an application,
be sure to compare the specifications of the Chip and
Alternate Chip before ordering.
Alternate Chip (Column 3) for each zener diode
500 mW and under is the Preferred chip. It is preferred
over the Column 2 chip for the following reasons:
1) Aluminum/Gold metallization instead of Chrome/
Silver/Gold top and bottom
2) Smaller size
3) Lower cost
4) Immediate availability for most voltages.
MZC2.4AX - MZC200AX Series (High Level)
MZC1.8BX - MZC200BX Series (Low Level)
In all cases the Alternate Chip shown in the Index is
from one of these two series.
MZC1.8B10 thru MZC200B10 (Low Level Series)
Type
Number
(Note 1)
Nearest
1N
Equivalent
Type
Number
(Note 1)
Nearest
1N
Equivalent
MZC1.SB10
MZC2.0B10
MZC2.2B10
MZC2.4B10
MZC2.7B10
MZC3.0B10
MZC3.3B10
MZC3.6B10
MZC3.9B10
MZC4.3B10
MZC4.7B10
MZC5.1B10
MZC5.6B10
MZC6.2B10
MZC6.8B10
MZC7.5B10
MZCS.2B10
MZCS.7B10
MZC9.1B10
MZC10B10
MZC11B10
MZC12B10
MZC13B10
MZC14B10
MZC15B10
MZC16B10
MZC17B10
MZC18B10
MZC19B10
MZC20B10
1 N4614
1 N4615
1 N4616
1N4617
1N461S
1 N4619
1N4620
1N4621
1 N4622
1 N4623
1N4624
1N4625
1 N4626
1 N4627
1N4099
1 N4100
1 N4101
1 N4102
1 N4103
1 N4104
1 N4105
1N4106
1 N4107
1 N4108
1 N4109
1 N4110
1 N4111
1 N4112
1 N4113
1N4114
MZC22B10
MZC24B10
MZC25B10
MZC27B10
MZC28B10
MZC30B10
MZC33B10
MZC36B10
MZC39B10
MZC43B10
MZC47B10
MZC51B10
MZC56B10
MZC60B10
MZC62B10
MZC68B10
MZC75B10
MZCS2B10
MZCS7B10
MZC91B10
MZC100B10
MZC110B10
MZC120B10
MZC130B10
MZC140B10
MZC150B10
MZC160B10
MZC170B10
MZC1S0B10
MZC190B10
MZC200B10
1 N4115
1 N4116
1 N4117
1 N4118
1 N4119
1 N4120
1 N4121
1N4122
1N4123
1 N4124
1N4125
1 N4126
1 N4127
1 N4128
1 N4129
1 N4130
1 N4131
1 N4132
1 N4133
1 N4134
1 N4135
Note 1: See next page.
~
AI'\
MZC2.4A10 thru MZC200A10 (High Level Series)
Type
Number
(Note 1)
Nearest
1N
Equivalent
(Note 2)
MZC2.4A10
MZC2.5A10
Mic2.7A10
MZC2.8A10
MZC3.0A10
MZC3.3A10
MZC3.6A10
MZC3.9A10
MZC4.3A10
MZC4.7A10
MZC5.1A10
MZC5.6A10
MZC6.0A10
MZC6.2A10
MZC6.8A10
MZC7.5A10
MZC8.2A10
MZC8.7A10
MZC9.1A10
MZC10A10
MZC11A10
MZC12A10
MZC13A10
MZC14A10
MZC15A10
MZC16A10
MZC17A10
MZC18A10
MZC19A10
MZC20A10
MZC22A10
1 N5221, 1 N4370
1 N5222
1 N5223, 1 N4371
1N5224
1 N5225, 1 N4372
1N5226,1N746
1N5227,1N747
1N5228,1N748
1 N5229, 1 N749
1 N5230, 1 N750
1 N5231, 1 N751
1 N5232, 1 N752
1 N5233
1 N5234, 1 N753
1 N5235, 1 N754
1 N5236, 1 N755
1 N5237, 1 N756
1N5238
1N5239,1N757
1 N5240, 1 N758
1N5241,1N962
1 N5242, 1 N759
1 N5243, 1 N964
1 N5244
1 N5245, 1 N965
1 N5246, 1 N966
1N5247
1N5248,1N967
1N5249
1 N5250, 1 N968
1 N5251 1N969
Type
Number
(Note 1)
Nearest
1N
Equivalent
(Note 2)
MZC24A10
MZC25A10
MZC27A10
MZC28A10
M2C30A10
MZC33A10
MZC36A10
MZC39A10
MZC43A10
MZC47A10
MZC51A10
MZC56A10
MZC6OA10
MZC62A10
MZC68A10
MZC75A10
MZC82A10
MZC87A10
MZC91A10
MZC100A10
MZC110A10
MZC120A10
MZC130A10
MZC140A10
MZC150A10
MZC160A10
MZC170A10
MZC180A10
MZC190A10
MZC200A10
Note 1: Tolerance Designation -The device type numbers have a tolerance of ± 10%. For ± 5%, 3%, 2%, or
1%, change the suffix "10" to the desired tolerance.
Note 2: The MZC2.4A 10 Series is tested at a 50 Milliwatt dissipation level and not at the higher test currents
1 N5252, 1 N970
1 N5253
1 N5254, 1 N971
1N5255
1 N5256, 1 N972
1 N5257, 1 N973
1 N5258, 1 N974
1 N5259, 1 N975
1 N5260, 1 N976
1 N5261, 1 N977
1 N5262, 1 N978
1 N5263, 1 N979
1N5264
1 N5265, 1 N980
1 N5266, 1 N981
1N5267,1N982
1 N5268, 1 N983
1 N5269
1N5270,1N984
1 N5271, 1 N985
1 N5272, 1 N986
1 N5273, 1 N987
1 N5274, 1 N988
1N5275
1 N5276, 1 N989
1 N5277, 1 N990
1N5278
1 N5279, 1 N991
1N5280
1 N5281, 1 N992
of the nearest "1 N" equivalents. This procedure is
used to minimize correlation problems encountered
when probe testing. Zener voltage is guaranteed correlated when the die is mounted on a 1" x 1" x 0.010"
aluminum heat sink at T A = 30 0 C ± 1 0 C after 90
seconds.
CHIP SIZE AND METALLIZATION
In general, all of these zener diode chips are planar
with the diode junction completely protected with
silicon oxide. The entire top surface (anode side) is
covered with silicon oxide except for the metal bonding pad.
All of these zener diodes have either aluminum top
metal and gold back metal or chrome-sHver-gold top
and back. All are square and symmetrical with square
anode bonding pads (except ZCL which is shown
below). The nominal thickness of all diode chips is 8
mils.
Z - Zener Voltage Regulator Chips; Geometries A, B,
C, 0, E.
The following pages show the die construction and
corresponding dimensions pertinent to geometries A
thru E. Metallization for geometries A thru E is as
follows:
GEOMETRY
Top-anode
Back-cathode
A
B,C.D.E
Aluminum
Gold
Chrome-Silver-Gold
Chrome-Silver-Gold
ZREF - Precision Voltage Reference Diodes; Geometry F
Chip construction, metallization and dimensions
are shown on drawing F.
ZCL - Current Regulator Diodes; Geometry G
Chip construction, metallization and dimensions
are shown on drawing G.
3-43
II
GEOMETRIES A,
B,~,
D, E (2.4 V to 10 V)
~--------------------------------~--1
II
,
,
,....I
II'
II,
Top Metal
. . . . . . . . . . . . . . . . . . ."""- Back Metal
GEOMETRY DIMENSIONS (MILS)
(Die Thickness - 8 mils ± 2)
Geometry
Dimension
1
2
3
4
5
A*
20
15
12
10
8
25
18
13
11
9
B
C
D
E
37
30
25
23
21
60
52
46
44
42
90
80
78
76
74
120
112
106
103
100
*Geometry A - Available in two sizes; 20 x 20 mils and 25 x 25 mils. All current and future manufacture is
the 20 x 20 mil die, but due to the inventory of 25 x 25 mil die in nearly all voltages, either or both sizes
may be delivered against an order.
GEOMETRIES A, B, C, 0, E (11 V to 91 V)
~--------------------------------~~--1
•
I
I
:I
II
:I
II
I
II
II
II
II
II
II
II
II
II
II
II
fI
Top Metal
Si02
P Diffused
N Substrate
-
Back Metal
GEOMETRY DIMENSIONS (MILS)
(Die Thickness - 8 mils ±2)
Geometry
Dimension
1
2
3
4
A*
20
15
12
10
25
18
13
11
B
C
D
E
37
30
25
23
60
52
46
90
80
78
76
120
112
106
103
44
*Geometry A - Available in two sizes; 20 x 20 mils and 25 x 25 mils. All current and future manufacture is
the 20 x 20 mil die, but due to the inventory of 25 x 25 mil die in nearly all voltages, either or both sizes
may be delivered against an order.
3-45
GEOMETRIES A, B, C, D, E (100 V to 200 V)
~--------------------------------~~--1
•
I
LI
III
III
I
III
I
III
III
III
III
III
III
Top Metal
r~~~~~~~~I;;~~~~~~~~;;~~~~~~Si02
.. ......
P Diffused
p+ (AI Alloy)
N Substrate
. . . . . . . . . . . . . . . . . . . .--. Back-Metal
GEOMETRY DIMENSIONS (MILS)
(Die Thickness - 8 mils ± 2)
Geometry
A*
Dimension
1
2
3
4
5
20
15
12
10
8
25
18
13
11
9
B
C
D
E
37
30
25
23
21
60
52
46
44
42
90
80
78
76
74
120
112
106
103
100
*Geometry A - Available in two sizes; 20 x 20 mils and 25 x 25 mils. All current and future manufacture is
the 20 x 20 mil die, but due to the inventory of 25 x 25 mil die in nearly all voltages, either or both sizes
may be delivered against an order.
GEOMETRY F - SINGLE CHIP PRECISION REFERENCE DIODES (OTC)
(Dimensions in mils)
~-----------37----------~~
~---------30--------~~
/.
•
:\
~
~
--
3 7 ±2
I
I
I
I
I'Q
I"I
I
III
_1
; I,
I I
III
III
III
III
III
I
I
III
III
III
III
+
p
8±2
i
I I
I
I
p+ (AI Alloy)
N Substrate
.................~................................................~...... P Diffusion
Cr/Ag/Au
3-47
-r---
'"
I
GEOMETRY G - CURRENT LIMITER DIE
(Dimensions in mils)
-37~"1
~---------------28--------------~~
~-----------23--------~~~
•
37
± 5
Source
(CrAgAu)
lp
L ---------...-....
8 ±2
P SUBSTRATE
(CrAgAu) Gate
Gate and Source Shorted
internally
/1111111111111-111111111111111111111111111111
SILICON SWITCHING DIODE CHIPS
I 111111111111111111111111111111111,1111111111
Single and dual switching diode chips presented in
this section are designed for small-signal, high-speed
switching applications.
CHIP SIZE AND METALLIZATION
All junctions on switching diode chips are passivated (Si02). Chip sizes are included in the referenced
, geometries with anode (A) and cathode (e) indicated.
Chip thickness is 4 to 6 mils.
Front metalliza~on is aluminum with a minimum
thickness of 8,000):(. Back metallization is gold~ilicon
eutectic. The gold metallization layer is 3,000 ~ minimum prior to alloy.
BONDING
Chip attachment may be either conductive epoxy
or eutectic. Epoxy chip attachment is recommended
because of the lower temperature requirement which
facilitates process control. Eutectic bonding requires
no preform assuming a normal gold thickness (::::::100
}.tin.).
Wirebonding may be either gold or aluminUm wire
with ultrasonic or thermocompression wedge or ball
bonding.
PROBE CAPABILITIES
Probe capabilities and limitations are presented in
the General Information section (see page 1-12) .
PACKAGING AND VISUAL INSPECTION
All of the switching diode chips are available in any
stage of processing from unscribed, unit probed wafer
to individual chips in Multi-Pak carriers. These packaging forms, associated inspection levels and ordering
information are presented in detail on page 1-8.
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
EL240 (12x18)
EL241 (13x13)
Cathode is back of chip.
Cathode is back of chip.
EL290 (12x18)
A=Anode
C=Cathode
Anode is back of chip.
3-49
•
TUNING DIODE CHIPS
The
Tuning
TO -
line includes:
Monolithic dual diodes
TOHA -
•
product
Abrupt junction tuning diodes
TO-O -
SBO
Diode
Hyper-abrupt junction tuning diodes
Schottky barrier low level diodes
PIN -
PIN switching diodes
CHIP SIZE AND METALLIZATION
All of the diodes included in this section are
epitaxial and passivated; that is, the p-n junction
comes out on the top surface of the chip and is completely covered with a protective layer of Si0 . All
2
chips are square and have square anode bonding pads
centered on the chip.
In all cases the back of the chip is the cathode and
is completely covered with gold. The top metal-anode
bonding pad is either aluminum, chrome/silver/gold
or gold.
Chip size and top metal are shown in the following
table for each geometry listed in the Index.
BONDING
PROBE CAPABILITIES
Special equipment is being used to probe each
chip for CT, Diode Capacitance, and CR, Capacitance
Ratio, at f = 1.0 MHz. These parameters are guaranteed along with the standard BVR and I R performance.
PACKAGING AND VISUAL INSPECTION
All of the chips are available in any stage of processing from unscribed, unit probed wafer to individual chips in Multi-Pak carriers. These packaging forms,
associated inspection levels and ordering information
are presented in detail in the General Information
section.
Standard chip and wire bonding methods are used
on these chips. Eutectic die bonding and TC or ultrasonic wire bonding are recommended.
Timing Diode Geometries and Top Metallization
Geometry
VL 19-30
VL44-59
VL73
VL74
VL140-147
VL222
VL225-233
VL234-236,
VL237
VL238-241
VL242-243
VL260-267
VL271
VL276
VL282
VL284
VL285
VL431
VL522
VL523
VL534
VL538
VL539
VL700-708
VL1002
(1)
(2)
Size LxW (Mils) (1) Top Metal(2)
37x37
37x37
37x37
37x37
57x57
14x14
20x20
25x25
30x30
37x37
40x40
57x57
37x37
57x57
15x15
15x15
12x12
37x37
14x14
20x20
14x14
20x20
20x20
20x20
35x67
CSG
CSG
CSG
CSG
CSG
AI
AI
AI
AI
AI
AI
AI
AI
AI
Gold
Gold
Gold
AI
AI
AI
AI
AI
AI
AI
AI
Nominal thickness of all chips is 5 mils.
CSG-chrome/silver/gold, AI-aluminum, GoldMoly Gold.
3-50
RECTIFIER CHIPS
The only Rectifiers shown in the Index are: SBRSchottky Barrier Rectifier chips.
Although Motorola offers a broad line of packaged
silicon rectifiers (standard recovery and fast recovery
rectifiers) they utilize chips with exposed junctions.
Leakage and voltage breakdown characteristics are
extremely unstable until the exposed junction chips
are correctly encapsulated. Experience has shown that
processing required for exposed junction rectifier
chips is not compatible with hybrid assembly, therefore, hybrid manufacturers are encouraged to use
rectifiers in some of the various packaged forms available, or in some cases, zener diode chips (all of which
are passivated) or transistor junctions may be substituted.
CHIP SIZE AND METALLIZATION
Schottky barrier rectifier chips are passivated and
offered for hybrid circuit applications. These chips
feature state-of-the-art geometry with epitaxial construction, oxide passivation and metal overlap
contacts.
Schottky barrier rectifier chips are square and chip
sizes are included in the geometry reference. Chip
thickness is nominally 7 mils and the anode is the top
(smaller metallized area).
Metallization on both sides of the chip is the same
and consists of three layers. The bottom layer is a thin
barrier layer such as Cr or Moly. The next iayer is
Nickel (Ni) anddhe top layer is thin gold (Au) about
1,500 to 2,500 A. The function of the gold layer is to
facilitate soldering and protect the underlying Ni
layer.
BONDING
Schottky barrier rectifier chips are designed for
solder connections on both sides. Conductive epoxy
could be substituted. The metallization is wire bondable using thermocompression or ultrasonic techniques, but adjustments in the machine settings may be
necessary because of the metallization system.
PROBE CAPABILITIES
Reverse leakage and breakdown voltages and forward voltages are probed within the capabilities and
limitations presented in the General Information section (see page 1-12).
PACKAGING AND VISUAL INSPECTION
All of the Schottky barrier rectifier chips are available in any stage of processing from unscribed, unit
probed wafer to individual chips in Multi-Pak carriers.
These packaging forms, associated inspection levels
and ordering information are presented in detail on
page 1-8.
3-51
•
111111111111111111111111111111111111111111111111111111111111111
SCHOTTKY BARRIER RECTIFIER GEOMETRIES-SBR
111111111111111111111111111111111111111111111111111111I11111111
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
RL754
RL755
RL756
RL760
II
If
11
Anode
1~1--119-.~..1
126
~7~
3-52
CHAPTER 4
Flip-Chip Devices
Page
General Description .............................................. 4-2
Advantages of Flip-Chip Technology ................................. 4-4
Device Availability .............................................. 4-5
Physical Characteristics
Discrete Devices .............................................. 4-5
Integrated Circuits ............................................. 4-6
Flip-Chip Processing ............................................. 4-7
Recommendations for Flip-Chip Hybrid Fabrication .................... 4-9
Data Sheets
Discrete Devices
M MC F708/2369/3227 NPN Switch and Amplifier Transistors ...... 4-11
NPN Amplifier Transistors ............... 4-13
MMCF929/930/2484
MMCF2221,A/2222,A NPN Switch and Amplifier Transistors ...... 4-15
MMCF2906,A/2907,A PNP Switch and Amplifier Transistors ....... 4-17
MMCF3250,A/3251,A PNP Switch and Amplifier Transistors ....... 4-19
PNP Amplifier Transistors ................ 4-21
MMCF3798/3799
N-Channel JFET Transistor ............... 4-23
MMCF4223/4224
N-Channel JFET Transistor. .............. 4-25
MMCF4338/4339
NPN R F Small-Signal Transistor ........... 4-27
MMCF5179/2857
MMCFA43
NPN High-Voltage Transistor ............. 4-28
PNP High-Voltage Transistor .............. 4-29
MMCFA93
MMCFD914
Switching Diode ....................... 4-30
Integrated Circuits
MCCF1558/1458
Dual Operational Amplifier, Compensated ... 4-31
Operational Amplifier, Uncompensated ..... 4-33
MCCF1709/1709C
Operational Ampl ifier, Compensated ....... 4-35
MCCF1741/1741C
MCC F3503/3403/3303 Quad Operational Amplifier .............. 4-37
Transistor Array .......................... *
MCCF3346/3386
M LMC F 124/324
Quad Operational Amplifier ................. *
Quad Comparator ......................... *
MLMCF139/339
*To be introduced
4-1
•
FLIP-CHIPS
GENERAL DESCRIPTION
A flip-chip is a complete, ready-to-mount, passivated
active semiconductor device designed specifically for
application in thick-film hybrid circuits. Active junctions are connected with metallization to 95% Pb/5%
Sn solder bumps on the perimeter of the active face of
the device. Die bonds and the flip-chip counterpart to
wire bonds occur simultaneously when bumps on the
face-clown chip reflow together with mating bumps on
the hybrid substrate (Figure 1) by employing control
collapse reflow technology (Figure 2) (see IBM Journal
of Research and Development, May 1969).
Control collapse technology and solder bump flip-chips
were developed by IBM for internal use to provide a
low-cost, high yield, high reliability assembly technTque.
Although tfle technique is entirely automatable, bene-
•
fits of flip-chip technology will be realized with manual processing.· An operator working with an illuminated magnifying lens and vacuum pencil should be
capable of placing 800 flip chips each hour.
Flip-chips are manufactured with standard silicon
planar technology exactly like metal can or plastic
packaged chips except:
1. All contacts are made on the active surface
through 95% Pb/5% Sn bumps connected to the
aluminum metallization as described below;
2. All flip-chips are passivated with deposited glass.
3. All flip-chips are saw diced for precise size and
square edges to facilitate automatic handling.
A SEM of a typical discrete flip-chip is shown in Figure 3, and an integrated circuit flip-chip is shown in
Figure 4.
FIGURE 1
INTEGRATED
CIRCUIT CHIP
CHIP BUMPS
PRINTED
CONDUCTOR
RUNS
CERAMIC
SUBSTRATE
4-2
FIGURE 2- CONTROL COLLAPSE TECHNOLOGY
~
FLIP-CHIP
SOLDER DIPPED
INTERCONNECT
BEFORE
AFTER
4-3
•
FIGURE 3TYPICAL DISCRETE
FLIP-CHIP
•
FIGURE 4TYPICAL
INTEGRATED CIRCUIT
FLIP-CHIP
with flip-chips, and f1ip-chip thick· film hybrids
require no gold metal runs and permit greater cofiring potential.
ADVANTAGES OF
FLIP-CHIP TECHNOLOGY
•
A high yield, inexpensive reflow process step replaces relatively low yield, costly die and wire
bonding.
•
More rugged and reliable reflow bonds replace relatively fragile wire bonds; the typical four-bump discrete flip-chip described below will withstand 100
grams push-off force and almost three watts power
dissipation.
.•
Less expensive thick.film technology can be used
4-4
•
Flip-chips have established proven reliability after
more than five years of field use.
•
Flip-chip hybrid manufacturing requires less equipment resulting in less capital, depreciation, and
maintenance cost.
•
In most cases, flip-chip technology permits greater
active device packing density on the hybrid.
•
Low-tin content solder connections reduce leaching probability and enhance rework capability.
TABLE 1
Available Flip-Chip Devices
Motorola
Device
Similar to
Number
GENERAL PURPOSE SWITCH AND AMPLIFIER
Polarity
NPN
NPN
PNP
PNP
MMCF2221/A
MMCF2222/A
MMCF2906/A
MMCF2907/A
2N2221/A
2N2222/A
2N2906/A
2N2907/A
and
and
and
and
2N2218/A
2N2219/A
2N2904/A
2N2905/A
SMALL-SIGNAL AMPLIFIER
NPN
NPN
NPN
PNP
PNP
MMCF929
MMCF930
MMCF2484
MMCF3798
MMCF3799
2N929
2N930
2N2484
2N3798
2N3799
MMCF708
MMCF2369
MMCF3227
MMCF3250/A
MMCF3251/A
2N708
2N2369
2N3227
2N3250/A
2N3251/A
SWITCH
NPN
NPN
NPN
PNP
PNP
PHYSICAL CHARACTERISTICS
HIGH VOLTAGE TRANSISTOR
I
.
I
NPN
MMCFA43
PNP _ MMCFA93
I
DISCRETE DEVICES
MPSA43
_ MPSA93
Motorola manufactures flip-chip discrete devices to a
standard size and configuration as shown in Figure 5.
This standard offers optimum characteristics for producing and automatically testing and placing virtually
all small-signal devices in flip-chip form. A larger
standard will be developed for devices requiring greater
power dissipation.
SMALL-SIGNAL RF TRANSISTOR
NPN
MMCF5179
MMCF2857
2N5179
2N2857
N-CHANNEL JFET
MMCF4223/4
MMCF4338/9
2. Frequently, a new device specification is not
sufficiently similar to an existing specification
to permit special selection, but the device may
be produced with minor processing changes.
In this case, new devices will usually be available for qualification sample within 4-6 weeks.
3. Occasionally, a new device specification requires
completely new processing. In this instance,
development charges (if any) and delivery time
will be based on the difficulty in producing the
new device.
Similarly, almost all linear and most digital integrated
circuits found in Motorola's general data library can be
supplied in flip-chip form. Additionally, many hybrid
applications require custom designed ICs. Motorola
can design and produce flip-chip custom ICs to a broad
range of custom requirements. The potentially detailed
nature of flip-chip IC development dictates that each
case be reviewed individually to determine development time and charges (if any). Contact the nearest
Motorola Sales Office with your requirements.
2N4223/4
2N4338/9
SWITCHING DIODE
I
I MMCFD914
11N914
FIGURE 5
LINEAR INTEGRATED CIRCUITS
-
DIA.
MCCF1709C
MCCF1458
MCCF1741C
MC1709C UncompOpAmp
Dual MC1741C
MC1741C Comp Op Amp
MC3403 Quad Op Amp
MLM124 Quad Op Amp
t
MCCF3403
MLMCF124
Series
MLMCF139
Series
MCCF3346
t
MCCF3386
t
t
0.005
0.008
0
l
~
I
1
I
MLM139
Quad Comparator
MC3346
5-Transistor Array
MC3386
5-Transistor Array
I
I
SIDE
0.0175
I
0.~185
0----G)- ---I..-
.010
I
0.013
I
0.028
FRONT
r--O.032-j
0.0015
0.0045 ,..-_ _ _--,
0.0035
(0
TVP
tTo be introduced
N30
DEVICE AVAILABILITY
BACK
(4)
Standard flip-chip devices currently available are listed
in Table 1. Motorola's flip-chip offering, however, is
considerably greater than indicated directly from the
list. Virtually any small-signal discrete device may be
supplied in flip-chip form by one of the following development schemes:
1. If a new device specification is similar to an
existing specification, new devices may be
specially selected and supplied within 2~
weeks. Relaxed specifications result in lower
prices.
ALL DIMENSIONS IN INCHES
TRANSISTORS
Bump 1.
2.
3.
4.
Collector
Base
Emitter
Collector
Emitter is identified on active face by 2 dots and
on back by position of
M.·
4-5
. . .
•
Note the inclusion of dots on the front (active) face of
each discrete device as well as the metallized back
marking (visible with a low-power microscope). Because each discrete device must be oriented properly
on .the hybrid and because the device type must be
identifiable from the backside for face-down mounted
devices, the dots or Motorola emsignia designate the
emitter or source or cathode, and the three-digit back
marking designates device type (for transistors, an "N"
designates NPN polarity and a "P" designates PNP
polarity).
FETs
Bump 1. Gate
2. Drain
3. Source
4. Gate
Source is identified on active face by 2 dots and on
back by position of M.
DIODES
Bump 1. Anode
2. Anode
3. Cathode
4. Cathode
Cathode is identified on active face by 1 dot and
on back by position ofM.
INTEGRATED CIRCUITS
The physical size and configuration of a typical integrated circuit flip-chip is depicted in Figure 6. Outline
dimensions and bump center-to-center spacing will
vary, of course, depending on the particular IC.
FIGURE 6
•
0.075'REF
0.075
0.090
REF
I
J
0.005 MIN
0.009 TYP
__
--~----~--~--~~--L
0.020
----.
± 0.001
Bump Diameter at Base 0.006 ±0.C01
SOLDER BUMPS, 10 PLACES
Bump Height: 0.0040 ± 0.0005
Each bump centerline to be located within 0.001 of its true
position with respect to any other bump centerline.
Bump center-to-center spacing may be reduced to
0.008" and the number of bumps may be substantially
increased to conform to device pinout requirements
and hybrid construction capabilities.
4-6
METALLIZATION - 3 LAYERSCHROMIUM·COPPER·GOLD
FLIP-CHIP PROCESSING
The Motorola flip-chip devices employ the IBM bump
metallurgy system. The flip-chip processing starts
with a wafer which has completed the standard wafer
processing, that is, through final aluminum metallization. Subsequent processing is shown with the following sketches:
Au
Cr
STANDARD TRANSISTOR DIE
WITH Si02 PASSIVATION AND
ALUMINUM METALLIZATION
AI
AI
Metallization of the bump areas consists of three layers
sequentially evaporated through a metal mask. The
first metal is chromium which is needed to form a
good bond to the aluminum metallization. The second
metal is copper which forms a good bond to the
chromium, but more importantly, is readily soldered .
The gold is required to protect the copper from oxidation; it isa very thin layer and completely disolves
into the solder during bonding. Although gold solders
readily, it is not possible to use only gold as the metallization since gold and aluminum form undesirable
intermetallics., Since gold also reacts unfavorably with
the base silicon, it is not possibl~ to use gold throughout the entire flip-chip system.
Si
C
GLASS PASSIVATION
AI
GLASS PASSIVATION
Si
SOLDER APPLICATION
BUMP FORMATION
A layer of phosphorus-doped silene glass is deposited
over the entire semiconductor wafer at low temperatures to avoid any shifts in the electrical characteristics
that may occur at high temperatures.
SOLDER
CONTACT OPENING WITH
STANDARD PHOTORESIST TECHNIQUES
GLASS PASSIVATION
AI
Standard photoresist techniques are used to delineate
and etch contact holes in the passivation that will then
become the actual bump areas.
The 95/5 lead tin solder is evaporated onto the
Cr-Cu-Au pads through a metal mask. The amount of
solder is carefully controlled. The wafer is heated to
solder reflow temperature (approximately 32S0 C),
where the combination of solder surface tension and
unwettable glass surrounding the solder force the
molten solder into the uniform and spherical bumps.
4-7
•
The completed wafers are then diced with a saw, tested
and categorized (automatically for discrete devices),
and checked for visual and electrical quality. Discrete
flip~hips are loaded into a vial and ICs into a multipak for shipping. Figure 7 outlines this process flow
and flip~hip quality control procedures.
FIGURE 7 - QUALITY CONTROL FLOW CHART
STANDARD
WAFER PROCESSING
ELECTRICAL TEST
QC MACHINE
MONITOR
GLASS PASSIVATION
II
QC GATE: FINAL ELECTRICAL,
FINAL VISUAL (INCLUDING
SAW DEFECTS)
LOAD INTO VIAL OR
MULTI-PAK
QC GATE: WAFER VISUAL
INSPECTION
BUMP PROCESSING
SEAL
WAFER ELECTRICAL
CLASSIFICATION PROBE
SHIP
QC GATE: WAFER VISUAL INSPECTION,
BUMP VISUAL AND
MECHANICAL INSPECTION
WAFER DICING
DETAILS REGARDING EACH QC
UPON REQUEST; FINAL VISUAL
INSPECTIONS ARE CONDUCTED
MAXIMUM ACCEPT NUMBER OF
4-8
GATE ARE AVAILABLE
AND ELECTRICAL
TO A 10% LTPD WITH A
ONE.
RECOMMENDATIONS FOR
FLIP-CHIP HYBRID FABRICATION
Flip-chips are designed primarily for use on thick-film
hybrids with high temperature (90% Pb/10% Sn) solder
dip coated over palladium-,5i1ver metal runs. A typical
hybrid layout to accept a discrete flip-chip is shown in
Figure 8.
FIGURE 8
IJ
•
23 MILS
Note that solder is restricted to the pad area by glass
dams (refer to Figure 2) which are fabricated by
screening and firing any of a variety of non-tinnable
pastes to the geometry shown. For integrated circuits,
pad area size must be changed to 5 mils x 10 mils, but
no other changes in geometry or processing are
required.
4-9
After application of tiny amounts of non-activated
flux to substrate pad areas (only), flip-chips may be
placed onto hybrid manually (using a vacuum probe)
or automatically. Flip-chips need not be placed with
extreme accuracy because the forgiving self-alignment
feature of reflow technology dictates that chip and appropriate substrate bump need only be in mechanical
contact. The sticky flux holds each flip-chip in place
until all active devices and chip capacitors are in place
on the hybrid and ready for reflow in a multi-zone,
nitrogen purged belt oven with an ideal temperature
profile as indicated in Figure 9.
Note that this curve is approximate and that adjustment must be made in the profile to account for
process particulars. This curve may be approximated
by adjusting a reflow furnace so that the temperature
I
to melt pure lead is reached in a similar time profile.
Time above 3000 C must be minimized without causing poor reflow yield, and temperature rise time results from a tradeoff between thermal stress effects
(if too rapid) and flux carbonizing (if too slow). Cooling time is not critical except for thermal shock considerations. Excellent reflow yields have been realized
using this scheme, but flip-chips will reflow well on a
hot plate in open air.
After reflow, flux residue must be removed by a solvent and the hybrid should be cleaned by standard
procedures. The resulting reflow bond is ductile,
strong, reliable, and stable. use of 60% Pb/40% Sn
solder on the substrate, however, severely reduces
bump ductility and chip self-alignment during reflow
and causes tin leaching and bond embrittlement.
FIGURE 9
400
365
300
---------
I
I
I
I
200
I
I
I
I
100
I
I
I
O~----------------------------------~-----TIME (MIN)
I---
9-10 MIN
---l
--I I---
1--6-7
4-10
MIN~
30-90 S
MMCF708 (SILICON)
MMCF2369
MMCF3227
FLIP-CHIP
NPN SW1TCH AND
AMPLIFIER TRANSISTORS
Flip-Chip - NPN silicon Annular transistor family for low-current,
high-speed switching applications similar to the 2N708, 2N2369 and
2N3227.
•
Primary Electrical Features:
• High speed sWitchOing characteristics similar to 2N2369.
MAXIMUM RATINGS
Rating
Collector-E mitter Voltage
Collector-E mitter Voltage
Symbol MMCF708
MMCF2369
MMCF3227
Unit
VCEO
15
15
20
Vdc
VCES
-
40
40
Collector-Base Voltage
VCB
Emitter-Base Voltage
VEB
Collector Current - Peak
(10/-Ls pulse)
IC
•
40
5.0
III
4-11
4.5
500
Vdc
.
Vdc
.
mAdc
6.0
Vdc
MMCF708, MMCF2369, MMCF3227 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
I
Min
Max
15
20
-
40
-
40
-
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lc = 10 mAdc, 18 = 0)
MMCF708, MMCF2369
MMCF3227
BVCEO
Collector-Emitter Breakdown Voltage
(lC = 10 /lAdc, VBE = 0)
MMCF2369, MMCF3227
BVCES
Collector-Base Breakdown Voltage
(lC = 10 /lAdc, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(IE = 10 MAde, IC = 0)
BVEBO
•
-
Vdc
Vdc
Vdc
5_0
4.5
6.0
MMCF708
MMCF2369
MMCF3227
Collector Cutoff Current
(VCB = 20 Vdc, IE =0)
Vdc
-
MAdc
ICBO
MMCF708
MMCF2369
MMCF3227
-
0.025
0.4
0.2
15
-
30
40
150
150
300
ON CHARACTERISTICS
DC Current Gain
(lC = 0.5 mAdc, VCE
MMCF70S
(lC
(lC
-
hFE
= 1.0 Vdc)
= 10 mAde, VCE = 1.0 Vdc)
MMCF70S
MMCF2369
MMCF3227
100
MMCF2369
MMCF3227
15
-
30
-
= 100 mAdc, VCE = 1.0 Vdc)
Collector-Emitter Saturation Voltage
(lC = 10 mAdc,lB = 1.0 mAdc)
-
MMCF708
MMCF2369, MMCF3227
Base-Emitter Saturation Voltage
(lc = 10 mAde, IB = 1.0 mAde)
Vdc
VCE(sat)
-
0.4
0.25
Vdc
VBE(sat)
-
MMCF708
MMCF2369, MMCF3227
-
O.S
0.S5
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 10 mAdc, VCE = 10 Vdc, f
MMCF708
MMCF2369, MMCF3227
Output Capacitance
(VCB = 5.0 Vdc, IE
MHz
fT
= 100 MHz)
300
500
-
pF
Cob
= 0, f = 1.0 MHz)
MMCF708
MMCF2369, MMCF3227
-
-
6.0
4.0
MMCF929, MMCF930 (SILICON)
MMCF2484
FLIP-CHIP NPN
SMALL-SIGNAL
AMPLIFIER TRANSISTORS
Flip-Chip - NPN silicon Annular transistor family for low-level
amplifier applications similar to the 2N929, 2N930 and 2N2484.
Primary Electrical Features:
• High DC Current Gain @ IC = 1.0 mAdc, VCE = 5.0 Vdc hFE = 200 (Min) - MMCF2484
= 60 (Min) - MMCF929
•
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 1.0 mAdc
MAXIMUM RATINGS
,
Symbol
MMCF929
MMCF930
MMCF2484
Unit
VCEO
45
60
Vdc
Collector-Base Voltage
VCB
45
60
Vdc
Emitter-Base Voltage
VEB
Rating
Collector-Emitter Voltage
Collector Current - Continuous
IC
4-13
5.0
Vdc
50
mAdc
MMCF929, MMCF930, MMCF2484 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
I
Min
Max
45
-
60
-
Unit
OFF CHARACTERISTICS
COllector-Emitter Breakdown Voltage
(lC = 10 mAdc,lB = 0)
MMCF929, MMCF930
MMCF2484
j3VCEO
Collector-Base Breakdown Voltage
(lC = 10 !lAdc, 'E = 0)
BVCBO
Vdc
45
-
60
-
5.0
-
-
10
-
10
MMCF929
MMCF930
MMCF2484
50
100
175
-
MMCF929
MMCF930
MMCF2484
150
200
MMCF929, MMCF930
MMCF2484
Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC = 0)
•
Vdc
Vdc
BVEBO
Collector Cutoff Current
(VCB = 45 Vdc, Ie = 0)
'CBO
Emitter Cutoff Current
(VeB = 4.0 Vdc, IC = 0)
'EBO
nAdc
nAdc
ON CHARACTERISTICS
DC Current Gain
(lc = 0.1 mAdc, VCE
(lc = 1.0 mAdc, VCE
(lC = 10 mAdc, VCE
-
hFE
= 5.0 Vdc)
-
= 5.0 Vdcl
60
-
= 5.0 Vdc)
-
MMCF929
MMCF930
MMCF2484
Collector-Emitter Saturation Voltage
(lC = 1.0 mAdc, 'B = 0.1 mAdc)
VCE(sat)
Base·Emitter On Voltage
(lC = 1.0 mAdc, VCE = 5.0 Vdc)
VBE(on)
-
400
700
900
-
0.25
-
0.75
30
-
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 500 mAde, VCE = 5.0 Vdc, f
Output Capacitance
(VeB = 5.0 Vdc, Ie = 0, f
MHz
fT
= 30 MHz)
pF
Cob
= 1.0 MHz)
-
MMCF929, MMCF930
MMCF2484
-
4-14
8.0
6.0
MMCF2221, MMCF2221A (SILICON)
MMCF2222, MMCF2222A
FLIP-CHIP
NPN SWITCH AND
AMPLIFIER TRANSISTORS
Flip-Chip - General purpose NPN switching and amplifier transistor
family similar to the 2N2221,A and 2N2222,A devices.
•
Primary Electrical Features:
• DC Current Gain specified for 0.1 to 300 mAdc
• Low Collector-Emitter Saturation Voltage •
DC to VHF Amplifier Applications
•
Complements to MMCF2906,A and MMCF2907, A
MAXIMUM RATINGS
Rating
Symbol
MMCF2221
MMCF2222
MMCF2221A
MMCF2222A
Unit
VCEO
30
40
Vdc
Collector-Base Voltage
VCB
60
75
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
500
mAdc
Collector-Emitter Voltage
Collector Current - Continuous
4-15
MMCF2221, MMCF2221A, MMCF2222, MMCF2222A (continued)
ELECTRICAL CHARACT-ERISTICS ITA = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
I
Min
Max
30
-
Unit
OFF CHARACTERISTICS
•
Collector-Emitter Breakdown Voltage
(lc = 10 mAdc, IB = 0)
MMCF2221, MMCF2222
MMCF2221 A, MMCF2222A
BVCEO
Collector-Base Breakdown Voltage
(lC = 10 /JAdc, IE = 0)
MMCF2221, MMCF2222
MMCF2221A, MMCF2222A
BVCBO
Emitter-Base Breakdown Voltage
(IE = 10 /JAdc, IC = 0)
BVEBO
Vdc
40
Vdc
60
-
75
-
5_0
-
-
10
-
10
MMCF2221,A
MMCF2222,A
20
35
-
MMCF2221,A
MMCF2222,A
25
50
MMCF2221,A
MMCF2222,A
35
75
-
MMCF2221,A
MMCF2222,A
40
100
150
300
25
-
Collector Cutoff Current
NCB = 50 Vde, IE = OJ
ICBO
Emitter Cutoff Current
(VEB = 3_0 Vde, IC = 0)
lEBO
Vdc
nAdc
nAde
ON CHARACTERISTICS
DC Current Gain
(lC = 0_1 mAde, VCE
(lC
= 1.0 mAde, VCE = 10 Vde)
(lC
= 10 mAde, VCE = 10 Vde)
(IC
= 150 mAde, VCE = 10 Vdc)(1)
(lC
-
hFE
= 10 Vde)
= 300 mA'IJc. VCE = 10 Vde)(1)
MMCF2221
MMCF2221A
MMCF2222
MMCF2222A
30
Collector-Emitter Saturation Voltage(l)
(lC = 150 mAde, IB = 15 mAde)
MMCF2221, MMCF2222
MMCF2221A, MMCF2222A
VCE(sat)
Base-Emitter Saturation Voltage( 1)
(lC = 150 mAde, IB = 15 mAde)
MMCF2221, MMCF2222
MMCF2221A, MMCF2222A
VBE(sat)
-
-
-
35
45
-
-
0.5
0.4
Vde
Vde
-
2.0
1.5
DYNAMIC CHARACTERISTICS
MHz
Current-Gain-Bandwidth Product
(lC = 20 mAde, VCE = 20 Vdc, f = 100 MHz)
Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHz)
250
pF
Cob
12
(1) Pulse Test: Pulse Width ~300 /JS, Duty Cycle~ 2.0%
4·16
MMCF2906, MMCF2906A (SILICON)
MMCF2907, MMCF2907A
FLIP-CHIP
PNP SWITCH AND
AMPLIFIER TRANSISTORS
Flip-Chip - General purpose PNP switching and amplifier transistor
family similar to the 2N2906,A and 2N2907,A devices.
•
Primary Electrical Features:
• DC Current Gain specified for 0.1 to 300 mAdc
• Low Collector-Emitter Saturation Voltage
• DC to VHF Amplifier Applications
•
Complements to MMCF2221,A and MMCF2222,A
MAXIMUM RATINGS
Rating
Collector-E mitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous
Symbol
MMCF2906
MMCF2907
MMCF2906A
MMCF2907A
Unit
VCEO
40
60
Vdc
VCB
60
Vdc
VEB
5.0
Vdc
'C
500
mAdc
4-17
MMCF2906, MMCF2906A, MMCF2907, MMCF2907 (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
I
I
Characteristic
Symbol
I
Min
Max
Unit
OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage( 1)
(lC = 10 mAde, IS = 0)
MMCF2906, MMCF2907
MMCF2906A, MMCF2907A
BVCEO
Coliector·Base Breakdown Voltage
(lC = 10 J..IAdc, 'E = 0)
BVCBO
Emitter-Base Breakdown Voltage
(IE = 10 J..IAdc, IC = 0)
BVEBO
Vdc
40
60
Vdc
60
Vdc
5.0
Collector Cutoff Current
(VCB = 50 Vdc, 'E = 0)
nAdc
'CBO
MMCF2906, MMCF2907
MMCF2906A, MMCF2907A
Emitter Cutoff Current
(VEB = 3.0 Vdc, IC = 0)
•
20
10
nAdc
'EBO
10
ON CHARACTERISTICS
DC Current Gain
(lC = 0.1 mAde, VCE
(lC
(lC
(lC
(IC
= 1.0 mAde,
hFE
= 10 Vdc)
MMCF2906
MMCF2906A
MMCF2907
MMCF2907A
20
40
35
75
MMCF2906
MMCF2906A
MMCF2907
MMCF2907A
25
40
50
100
MMCF2906
MMCF2906A
MMCF2907
MMCF2907A
35
40
75
100
MMCF2906,A
MMCF2907,A
40
100
MMCF2906
MMCF2906A
MMCF2907
MMCF2907A
30
40
50
75
VCE = 10 Vdc)
= 10 mAde, VCE = 10 Vdc)
= 150 mAde,
= 300
VCE
mAde, VCE
= 10 Vdc)(l)
150
300
= 10 Vdc)(l)
Collector-Emitter Saturation Voltage(l)
He = 150 mAde, 18 = 15 mAde)
VCE(sat)
Base-Emitter Saturation Voltage( 1)
(lC = 150 mAde, 'B = 15mAdc)
VBE(sat)
Vdc
0.5
Vdc
1.5
DYNAMIC CHARACTERISTICS
Current·Gai n-Bandwidth Product
(lC = 50 mAde, VCE = 20 Vdc, f
Output Capacitance
(VCB = 10 Vdc, 'E
MHz
fT
=
200
100 MHz)
pF
Cob
= 0, f = 100 kHz)
(1) Pulse Test: Pulse Width
12
< 300 J..Is, Duty Cycle < 2.0 %
4-18
MMCF3250, MMCF3250A (SILICON)
MMCF3251, MMCF3251A
FLIP-CHIP
PNP SWITCH AND
AMPLIFIER TRANSISTORS
Flip-Chip - PNP silicon Annular transistor family for high-speed
switching and amplifier applications similar to the 2N3250,A and
2N3251,A.
Primary Electrical Features:
• High speed switching characteristics similar to 2N3251.
•
MAXIMUM RATINGS
Rating
Symbol
MMCF3250
MMCF3251
MMCF3250A
MMCF3251A
Unit
VCEO
40
60
Vdc
Collector-Base Voltage
VCB
50
60
Vdc
Emitter-Base Voltage
VEB
5.0
Vdc
IC
200
mAdc
Collector-Emitter Voltage
Collector Current - Continuous
4-19
MMCF3250, MMCF3250A, MMCF3251, MMCF3251A (continued)
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC = 10 mAde, 'B ~ 0)
MMCF3250, MMCF3251
MMCF3250A, MMCF3251A
BVCEO
Collector-Base Breakdown Voltage
(lC = 10 !lAde, IE ~ 0)
MMCF3250, MMCF3251
MMCF3250A, MMCF3251A
BVCBO
Emitter-Base Breakdown Voltage
(IE = 10 !lAde, IC ~ 0)
BVEBO
40
-
60
Vde
60
-
5.0
-
-
20
MMCF3250,A
MMCF3251,A
40
80
-
MMCF3250,A
MMCF3251,A
45
90
MMCF3250,A
MMCF3251,A
50
100
150
300
MMCF3250,A
MMCF3251,A
15
30
-
-
0.25
-
0.9
Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
•
Vde
50
Vde
nAde
ICBO
ON CHARACTERISTICS
DC Current Gain
(IC = 0.1 mAde, VCE
(lC
(lC
(Ie
-
hFE
= 1.0 Vde)
= 1.0 mAde, VCE = 1.0 Vde)
-
= 10 mAde, VCE = 1.0 Vdc)
= 50 mAde, VCE = 1.0 Vde)
Collector·Emitter Saturation Voltage
(lC = 10 mAde, IB '" 1.0 mAde)
VCE(sat)
Base-Emitter Saturation Voltage
(lC = 10 mAde, IB = 1.0 mAde)
VBE(sat)
Vde
Vde
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 10 mAde, VCE = 20 Vde, f
MMCF3250,A
MMCF3251,A
Output Capacitance
(VeB = 10 Vde, IE
MHz
fT
= 100 MHz)
Cob
= 0, f = 100 kHz)
4-?O
250
300
-
-
6.0
pF
MMCF3798 (SILICON)
MMCF3799
FLIP-CHIP
PNP SMALL-SIGNAL
AMPLIFIER TRANSISTORS
Flip-Chip - PNP silicon Annular transistor family for low-level
low-noise amplifier applications similar to the 2N3798 and 2N3799.
Primary Electrical Features:
• High DC Current Gain @ IC = 1.0 mAdc, V CE
hFE = 150-450 - MMCF3798
= 300-900 - MMCF3799
•
= 5.0 Vdc -
•
Low Collector-Emitter Saturation Voltage VCE(sat) = 0.25 Vdc (Max) @ IC = 1.0 mAdc
•
Current-Gain Bandwidth Product - fT = 100 MHz (Min)
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
60
Vdc
Vdc
Collector-Emitter Voltage
Collector-Base Voltage
VCB
60
Emitter-Base Voltage
VEB
5.0
Vdc
50
nlAdc
Collector Current - Continuous
IC
4-21
MMCF3798, MMCF3799 (continued)
ELECTRICAL CHARACTERISTICS (T A
I
= 25°C unless otherwise noted)
I
I
Min
Max
60
-
60
-
5.0
-
-
10
-
20
MMCF3798
MMCF3799
150
250
-
MMc;F3798
MMCF3799
150
300
450
900
MMCF3798
MMCF3799
125
250
-
-
0.25
-
0.7
100
-
-
6.0
Characteristic
Symbol
Unit
OFF CHARACTERISTICS
•
Collector-Emitter Breakdown Voltage
(lc = 10 mAde, IB = 0)
BVCEO
Collector-Base Breakdown Voltage
(lC = 10 MAde, IE = 0)
BVCBO
Emitter-Base Breakdown Voltage
(IE = 10 MAdc,lC = 0)
BVEBO
Collector Cutoff Current
(VCB = 50 Vdc, IE = 0)
ICBO
Emitter Cutoff Current
(VEB = 4.0 Vdc, IC = 0)
lEBO
Vdc
Vdc
Vdc
nAdc
nAdc
ON CHARACTERISTICS
DC Current Gain
(lC = 0.1 mAde, V CE = 5.0 Vdc)
-
hFE
-
(lC = 1.0 mAde, VCE = 5.0 Vdc)
(lC
= 10 mAde, VCE = 5.0 Vdc)
Collector-Emitter Saturation Voltage (1)
(lC = 1.0 mAdc,lB = 0.1 mAde)
VCE(sat)
Base-Emitter On Voltage
(lC = 1.0 mAde, VCE = 5.0 Vdc)
VBE(on)
-
Vdc
Vdc
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 mAde, VCE = 5.0 Vdc, f
Output Capacitance
(VCB = 5.0 Vdc, IE = 0, f
MHz
fT
= 100 MHz)
pF
Cob
= 100 kHz)
(1) Pulse Test: Pulse Width';;;; 300 MS, Duty Cycle';;;; 2.0%
4-??
MMCF4223 (SILICON)
MMCF4224
FLIP-CHIP
N-CHANNEL JUNCTION
FIELD EFFECT
TRANSISTORS
Flip-Chip - N-channel junction field effect transistors
designed for VHF amplifier and mixer applications.
•
Drain
~nd
•
Source Interchangeable
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain-Source Voltage
VDS
30
Vdc
Drain-Gate Voltage
VUG
30
Vdc
Gate-Source Voltage
VGS
30
Vdc
Drain Current
ID
20
mAdc
Operating Junction Temperature
TJ
+175
°c
4-23
MOMCF4223, MMCF4224 (continued)
ELECTRICAL CHARACTERISTICS
Characteristic
Gate-Source Breakdown Voltage
(IG = 10 tlAdc, VOS = 0)
Gate Reverse Current
(V GS = 20 Vdc, VOS
•
Max
Unit
30
-
Vdc
-
0.5
1.0
-
8_0
8.0
1.0
1.0
7.0
7.5
3.0
2.0
18
20
MMCF4223
MMCF4224
VGS(off)
MMCF4223
MMCF4224
Gate-5ource Voltage
nAdc
Vdc
Vdc
VGS
= 15 Vdc, 10 = 0.3 mAde)
= 15 Vdc, '0 = 0.2 mAde)
Zero-Gate Voltage Drain Current
(VOS = 15 Vdc, VGS = 0)
Forward Transmittance
(VOS = 15 Vdc, VGS
Min
IGSS
= 0)
Gate-Source Cutoff Voltage
(VOS = 15 Vdc, '0 = 0.5 nAdc)
(VOS = 15 Vdc, '0 = 1.0 nAdc)
(VOS
(VOS
Symbol
V(BR)GSS
MMCF4223
MMCF4224
mAdc
lOSS
MMCF4223
MMCF4224
tlmhos
IYfsl
= 0, f = 1.0 kHz)
3000
2000
7000
7500
Ciss
-
8.0
pF
Crss
-
3_0
pF
MMCF4223
MMCF4224
Input Capacitance
(VOS = 15 Vdc, VGS = 0, f
= 1.0 MHz)
Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, f = 1.0 MHz
4-24
MMCF4338 (SILICON)
MMCF4339
Flip-Chip - N-channel junction field effect transistor
designed for low~level transistor designed for low-level
audio and general purpose applications.
•
Drain and Source Interchangeable
•
Excellent Performance as High-Impedance Input
•
Low Pinch-Off Voltage Permits Use in Battery Driven
Applications.
FLIP-CHIP
N-CHANNEL JUNCTION
FIELD EFFECT
TRANSISTORS
•
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain-Source Voltage
VDS
50
Vdc
Drain-Gate Voltage
VDG
50
Vdc
VGS
50
Vdc
Gate-Source Voltage
Drain Current
ID
50
mAdc
Operating Junction Temperature
TJ
+175
°c
4-25
MMC4338, MMCF4339 (continued)
ELECTRICAL CHARACTERISTICS
Characteristic
Gate-Source Breakdown Voltage
(lG = 10 p.Adc, VOS = 0)
Gate Reverse Current
(VGS = 30 Vdc, VOS
•
Mir:t
Max
Unit
50
-
Vdc
IGSS
-
1.0
0.3
0.6
1.0
0.2
0.5
0.6
1.5
nAdc
= 0)
Gate-Source Pinch-Off Voltage
(VOS = 20 Vdc, 10 = 1.0 nAdc)
Zero-Gate Voltage Orain Current
(VOS = 15 Vdc, VGS = 0)
Forward Transmittance
(VOS = 15 Vdc, VGS
Symbol
V(BR)GSS
Vdc
VGS(off)
MMCF4338
MMCF4339
1.8
mAdc
lOSS
MMCF4338
MMCF4339
p.mhos
IYfsl
= 0, f = 1.0 kHz)
600
800
1800
2400
Ciss
-
7.0
pF
Crss
-
3.0
pF
MMCF4338
MMCF4339
Input Capacitance
(VOS = 15 Vdc, VGS = 0, f
Reverse Transfer Capacitance
(VOS = 15 Vdc, VGS = 0, f
= 1.0 MHz)
= 1.0 MHz
4-26
MMCFS179 (SILICON)
MMCF28S7
FLIP-CHIP NPN
RF SMALL-SIGNAL
TRANSISTORS
Flip-Chip - NPN RF small-signal transistors designed for
use in amplifier, oscillator and mixer applications.
•
High Current-Gain Bandwidth Product
•
Low Input Capacitance
•
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
15
Vdc
Collector-Base Voltllge
VCB
30
Vdc
Emitter-Blise Voltllge
VEB
25
Vdc
IC
50
mAdc
Collector-Emitter Voltage
Collector Current - Continuous
ELECTRICAL CHARACTERISTICS
Characteristic
Collector-Emitter Breakdown Voltage
(lc = 3.0 mAde, IB = 0)
Collector-Base Breakdown Voltage
(lC = 1.0 J..LAdc, IE = 0)
Symbol
Min
Max
12
15
-
MMCF5179
MMCF2857
20
30
Vdc
nAdc
Vdc
BVCBO
BVEBO
2.5
-
ICBO
-
10
25
30
250
150
MMCF5179
MMCF2857
Emitter-Base ~reakdown Voltage
(IE = 10 J..LAdc, IC = 0)
Collector Cutoff Current
(VCB = 15 Vdc, IE = 0)
Unit
Vdc
BVCEO
ON CHARACTERISTICS
DC Current Gain
(lc = 3.0 mAde, VCE = 1.0 Vdc)
-
hFE
MMCF5179
MMCF2857
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 5.0 mAde, VCE = 6.0 Vdc, f = 100 MHz)
MMCF5179
MMCF2857
Input Capacitance
(VBE = 10 Vdc, IE = 0, f = 0.1 to 1.0 MHz)
Ccb
4-27
MHz
fT
900
1000
2000
1900
-
1.0
pF
MMCFA43 (SILICON)
FLIP-CHIP
NPN HIGH-VOLTAGE
TRANSISTOR
Flip-Chip - NPN silicon annular transistor designed for
applications requiring high breakdown voltages with low
saturation voltages.
•
•
Complement to PNP Type MMCFA93
MAXIMUM RATINGS
Rating
Symbol
Value
VCEO
200
Vdc
Collector-Base Voltage
VCB
200
Vdc
Emitter-Base Voltage
VEa
6.0
Vdc
IC
500
mAdc
Coliector~Emitter
Voltage
Collector Current - Continuous
Unit
ELECTRICAL CHARACTERISTICS
Characteristic
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage
(Ie = 1.0 mAde, 'B = 0)
BVCEO
200
-
Vdc
Collector-Base Breakdown Voltage
(Ie = 100 /-LAde, IE = 0)
BVCBO
200
-
Vdc
Emitter-Base Breakdown Voltage
(IE = 100 /-LAde, IC = 0)
BVEBO
6.0
-
Vdc
Collector Cutoff Current
(VCB = 160 Vde, IE = 0)
'eBO
-
100
nAde
Emitter Cutoff Current
(VBE = 4.0 Vdc, IC = 0)
'EBO
-
100
nAde
De Current Gain
(lc = 1.0 mAde, VCE = 10 Vde)
(Ie = 10 mAde, VCE = 10 Vdc)
(Ie = 30 mAde, VeE = 10 Vdc)
hFE
25
35
25
200
Collector-Emitter Saturation Voltage
(Ie = 20 mAde, 'B = 2.0 mAde)
VCE(sat)
-
0.5
Base-Emitter Saturation Voltage
(Ie = 20 mAde, 'B = 2.0 mAdc)
VBE(sat)
-
0.9
4-28
-
Vdc· ...
I"
Vdc
MMCFA93 (SILICON)
FLIP-CHIP
PNP HIGH-VOLTAGE
TRANSISTOR
Flip-Chip - PNP silicon annular transistor designed for
applications requiring high breakdown voltages with low
saturation voltages.
•
•
Complement to NPN Type MMCFA43
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCEO
200
Vdc
Collector-Base Voltage
VCB
200
Vdc
Emitter-Base Voltage
VEe
5.0
Vdc
IC
500
mAdc
Collector-Emitter Voltage
Co "ector Current - Continuous
ELECTRICAL CHARACTERISTICS
Symbol
Min
Max
Unit
Collector-Emitter Breakdown Voltage
(lC = 1.0 mAdc, IB = 0)
BVCEO
200
-
Vdc
Collector-Base Breakdown Voltage
(lC = 100 /-LAdc, IE = 0)
BVCBO
200
-
Vdc
Emitter-Base Breakdown Voltage
(IE = 100 J-LAdc, IC = 0)
BVEBO
5.0
-
Vdc
Collector Cutoff Current
(VCB = 160 Vdc, IE = 0)
ICBO
-
250
nAdc
Emitter Cutoff Current
(VBE = 3.0 Vdc, IC = 0)
lEBO
-
100
nAdc
DC Current Gain
(lc = 1.0 mAdc, VCE ::::: 10 Vdc)
(lc = 10 mAdc, VCE = 10 Vdc)
(lc = 30 mAdc, VCE = 10 Vdc)
hFE
25
40
25
150
Collector-Emitter Saturation Voltage
(lc = 20 mAdc, IB = 2.0 mAdc)
VCE(sat)
-
0.5
Vdc
BOase-Emitter Saturation Voltage
(IC = 20 mAdc, IB = 2.0 mAdc)
VBE(sat)
-
0_9
Vdc
Characteristic
4-29
-
MMCFD914
FLIP-CHIP
SWITCHING DIODE
Flip-Chip diode for high·speed switching applications with
performance similar to the 1 N9l4 .
•
Primary Electrical Features:
• Breakdown Voltage - V(BR)
==
100V (Min)
•
Forward Current - to 225 mAde
•
Reverse Recovery time trr";; 5.0 ns
MAXIMUM RATINGS
Rating
Symbol
Value
Reverse Voltage
VR
100
Vde
Forward Current
IF
225
mAde
IF(surge)
500
mAde
Forward Surge Current
Unit
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol
Min
Max
Unit
V(BR)
100
-
Vde
Reverse Current
(VR == 20 Vde)
IR
-
50
nAde
Forward Volt~ge
(IF = 10 mAde)
VF
-
1.0
Vde
C
-
5.0
pF
trr
-
5.0
ns
Characteristic
Breakdown Voltage
(I (BR) == 10 /-LAde)
Capacitance
(VR == 0)
Reverse Recovery Time
(I F = 10 mAde, VR == 6.0 Vde, irr
==
1.0 mAde)
MCCF1558
MCCF1458
l _____
O_P_E_R_A_T_IO_N_A_L_A_M_PL_I_F_1E_R_S----'
FLIP-CHIP
DUAL MC1741
INTERNALLY COMPENSATED, HIGH PERFORMANCE
MONOLITHIC OPERATIONAL AMPLIFIER FLIP-CHIP
(DUAL MC1741)
DUAL
OPERATIONAL AMPLIFIER
MONOLITHIC SILICON
INTEGRATED CIRCUIT
· .. designed for use as a summing amplifier, integrator, or amplifier
with operating characteristics as a function of the external feedback
components.
The MCCF1558 and MCCF1458 employ phosphorsilicate passivation that protects the entire die surface area, including metalization
interconnects. The bumps are 95-5 solder on a chrome-coppergold base. The interconnecting metalization is evaporated aluminum.
2
2
14
12
12
•
• No Frequency Compensation Required
• Short-Circuit Protection
• Wide Common-Mode and Differential Voltage Ranges
•
Low-PowerConsumption
•
No Latch Up
MAXIMUM RATI NGS ITA
7
6
5
8
9
= +250 C unless otherwise noted.!
Symbol
Rating
Power Supply Voltage
VCC
VEE
MCCF1558
MCCF1458
Unit
+18
-18
Vdc
+22
-22
Differential I nput Signal
VID
:t30
Volts
Common-Mode Input Swing
VIC
±15
Volts
Output Short Circuit Duration
ts
Continuous
TA
-55 to + 125
Operating Temperature Range
MCCF1558
Junction Temperature Range
°c
o to +75
MCCF1458
-65 to + 150
TJ
°c
r-~----------~--~-----------~----------~--OVcc
14
INPUT I
25
INVERTING
INPUT
5 (9)
OUTPUT
o--+----t---t--t----'
14 Vee
2(12)
50
~~--~--+_-~~~-~----~--------~~~lVEE
The letters without parenthesis represent thepin numbers for 1/2 ot the dual circuit,
lenersinparenthesisrepresent the pin numbers for the other hal t
4-31
SUBSTRATE
MCCF1558, MCCF1458 (continued)
ELECTRICAL CHARACTERISTICS
(VCC
= +15 Vdc,
VEE
= -15
Vdc, T A
= +25 0 C unless otherwise noted.l
MCCF1458
MCCF1558
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Mal(
Unit
liB
-
0.2
0.5
-
0.2
0.5
/lAde
I nput Bias Current
Input Offset Current
1/101
-
0.03
0.2
-
0.03
0.2
/lAde
Input Offset Voltage
(RS ~ 10k ohms)
IV,ol
-
1.0
5.0
-
2.0
6.0
mVdc
-
Megohm
Differential I nput Impedance
(Open-Loop, f = 20 Hzl
Parallel I nput Resistance
Rp
-
1.0
-
-
1.0
Parallel Input Capacitance
Cp
-
6.0
-
-
6.0
200
-
200
V'C
-
±13
-
±13
CMRR
-
90
-
90
200,000
-
20,000
100,000
-
-
14
-
-
14
-
Unity Gain Crossover Frequency (open-loop)
-
1.1
MHz
65
65
degrees
-
11
-
-
-
0.8
-
-
-
-
1.1
Phase Margin (open-loop, unity gain)
Common-Mode Input Impedance (f = 20 Hz)
zin
Common-Mode Input Voltage Swing
Common·Mode Rejection Ratio (f
•
= 100 Hz)
Open-Loop Voltage Gain
(Va = ±10 V, RL = 2.0 k ohms)
Avol
Power Bandwidth
(Av = 1, RL = 2.0 k ohms, THD $ 5%,
va = 20 Vp-p)
PBW
50,000
Gain Margin
Slew Rate (Unity Gain)
Output Impedance (f
dVO/dt
= 20 Hz)
Zo
-
75
IS
-
20
Va
±12
S+
= constant,
S-
kHz
-
dB
V//lS
ohms
20
-
Vpk
75
±12
±14
-
-
30
150
-
30
150
30
150
-
30
150
2.3
5.0
-
2.3
5.6
'DEE
-
2.3
5.0
2.3
5.6
PD
-
70
150
-
70
170
Power Supply Sensitivity
VEE = constant, Rs ~ 10k ohms
dB
VIV
11
±14
Output Voltage Swing
(RL = 10:~ ohms)
Vpk
0.8
-
Short-Circuit Output Current
VCC
-
pF
Megohms
/lV/V
Rs ~ 10 k ohms
Power Supply Current
'DCC
DC Quiescent Power Dissipation
(Va = 0)
See current MC1558/MC1458 data sheet for additional information.
--l
f- 0.006
I 0.009
0.075 REF.
mAde
0.006 --I
0.009 I
~ 0.006
0 009
.
I~I~
+
+
+
-+
+---.-[
The popular 1558 type dual operational amplifier is now available in three chip forms: 1) conventional chips, 2} beam-lead chips and 3} flipchips, as well as in a variety of plastic and hermetic
packages. The flip-chip consists of a silicon chip
with solder bumps on the geometry surface to provide easy mechanical mounting and electrical connection. These devices are protected by a thin layer
of phosphorsilicate passivation which covers the
interconnect metalization and active areas of the
die.
Care must be exercised when removing the dice
from the shipping carrier to avoid scratching the
solder bumps. A vacuum pickup is useful for the
handling of dice. Tweezers are not recommended
for this purpose.
The non-spill type shipping carrier consists of a
compartmentalized tray and fitted cover. Die are
placed in the carrier with geometry side up.
~ll
0.006
MOO
,-L--"'-----------'--"'--------p., -1.
0.005 MIN
---,
Bump Diameter at Base 0.006 ± 0.001
SOLDER BUMPS, 10 PLACES
Bump Height: 0.0040 ± 0.0005
Each bump centerline to be located within 0.001 of its true
position with respect to any other bump centerline.
4-32
mAde
mW
MCCF1709
MCCF1709C
~__________O_P_E_R_A_T_IO_N_A_L_A_M__PL_I_F_IE_R_S~
MONOLITHIC OPERATIONAL AMPLIFIER FLIP-CHIP
FLIP-CHIP
· .. designed for use as a summing amplifier, integrator, or amplifier
with operating characteristics as a function of the external feedback
components.
The MCCF1709 and MCCF1709C employ phosphorsilicate passivation that protects the entire die surface area, including metalization
interconnects. The bumps are 95-5 solder on a chrome-coppergold base. The interconnecting metalization is evaporated aluminum.
•
High·Performance Open Loop Gain Characteristics
Avol = 45,000 typical
•
Low Temperature Drift - ±3.0 p.V laC
•
Large Output Voltage Swing - ± 14 V typical @ ± 15 V Supply
•
Low Output Impedance - Zo
MAXIMUM RATINGS
(T A = +
OPERATIONAL AMPLIFIER
MONOLITHIC SILICON
INTEGRATED CIRCUIT
Symbol
Value
Unit
Power Supply Voltage
VCC
VEE
+18
-18
Vdc
Differential I nput Signal
V/O
±5.0
Volts
Common Mode I nput Swing
VIC
±VS
Volts
Load Current
IL
10
mA
Output Short Circuit Duration
ts
5_0
s
TA
-55 to +125
to +75
°c
TJ
-55 to +150
°c
MCCF1709
MCCF1709C
Junction Temperature Range
o
2
FIGURE 1 -CIRCUIT SCHEMATIC
3
4
6
NON INVERTING
INPUT
INVERTING
INPUT
4
24k
VEE
ISU8STRA TEl
4-33
5
FIGURE 2 - EaUIVALENT CIRCUIT
Vee 7
3
7
un ess ot erwlse note d . )
Rating
Operating Temperature Range
8
= 150 ohms typical
•
MCCF1709, MCCF1709C(eontinued)
ELECTRICAL CHARACTERISTICS (Vce" +15 Vdc, VEE - -15 Vdc, TA - +25 0 C unless otherwise noted.)
MCCF1709
Characteristic
Open Loop Voltage Gain
(Va -±10V)
zo
Input Impedance
(f = 20 Hz)
zin
Output Voltage Swing
(R L = 10 kW
(RL = 2.0 kSl)
Va
I nput Common-Mode Voltage Swing
MCCF1709C
Min
Typ
Max
Min
Typ
Max
25,000
45,000
70,000
15,000
45,000
-
-
150
-
-
150
-
-
400
-
-
250
-
±'12
±10
±14
±.13
-
±12
±10
±14
±13
-
±10
-
-
±10
-
90
-
90
-
0.2
0.5
-
0.3
1.5
IJA
AVOI
Output Impedance
(f = 20 Hz)
Common-Mode Rejection Ratio
(f = 20 Hz)
VIC
CMRR
Unit
S!
kH
Vpeak
Vpeak
dB
liB
-
Input Offset Current
1110 I
-
0.05
0.2
-
0.1
0.5
IJA
Input Offset Voltage
IVIO
I
-
1.0
5.0
-
2.0
7.5
mV
tTHL
td
dVo/dt
-
-
-
0.8
0.38
12
-
IJS
JAS
V/lJs
-
-
-
0.6
0.34
1.7
-
-
2.2
1.3
0.25
-
IJS
/JS
V//Js
2.7
6.7
mAde
2.7
6.7
Input Bias Current
•
Symbol
Step Response
Gain
Gain
Gain
= 100, 5.0% overshoot
= 10, 10% overshoot
= 1, 5.0% overshoot
Power Supply Current
-l
0.8
0.38
12
0.6
0.34
1.7
IDCC
-
IDEE
tTHL
td
dVo/dt
'THL
td
dVo/dt
DC Quiescent Power Dissipation
(Power Supply = ±.15 V, Vo = 0)
PD
Positive Supply Sensitivity
(VEE constant)
s+
Negative Supply Sensitivity
(VCC constant)
S-
-
-
-
-
-
2.2
1.3
0.25
-
-
2.7
5.5
-
2.7
5.5
-
-
80
165
-
80
200
-
25
150
-
25
200
-
25
150
-
25
200
-
IJS
IJS
V//Js
mW
JAV/V
/JV/V
See current MC1709/1709C data sheet for additional information.
PACKAGING AND HANDLING
,a a
a
The popular 1709 type operational amplifier is
now available in three chip forms: 1) conventional
chips, 2) beam-lead chips and 3) flip-chips, as well
as in a variety of plastic and hermetic packages.
The flip-chip consists of a silicon chip with solder
bumps on· the geometry surface to provide easy
mechanical mounting and electrical connection.
These devices are protected by a thin layer of
phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.
Care must be exercised when removing the dice
from the shipping carrier to avoid scratching the
solder bumps. A vacuum pickup is useful for the
handling of dice. Tweezers are not recommended
for this purpose.
The non-spill type shipping carrier consists of a
compartmentalized tray and fitted cover. Die are
placed in the carrier with geometry side up.
, ,_________O_P_E_R_A_T_IO_N_A_L_A_M_P_L_I_FI_E_R_S~
MCCF1741
MCCF1741C
INTERNALLY COMPENSATED, HIGH PERFORMANCE
MONOLITHIC FLIP-CHIP OPERATIONAL AMPLIFIER
FLIP... CHIP
· .. designed for use as a summing amplifier, integrator; or amplifier
with operating characteristics as a function of the external feedback
cOmponents.
The MCCF1741 and MCCF1741C employ phosphorsilicate passivation that protects the entire die surface area, including metalization
interconnects. The bumps are: 95-5 solder on a chrome-copper-gold
base. The interconnecting metalization is evaporated aluminum.
OPERATIONAL AMPLIFIER
MONO LITHIC SI LICON
INTEGRATED CIRCUIT
• No Frequency Compensation Required
• Short-Circuit Protection
• Offset Voltage Null Capability
• Wide Common-Mode and Differential Voltage Ranges
• Low-Power Consumption
• No Latch lip
6
5
7
2
4
MAXIMUM RATINGS (T A = +25 0 C unless otherwise noted.)
Rating
Svmbol
Value
Unit
MCCF1741C MCCF1741
Power Supply Voltage
VCC
VEE
Differential I nput Signal
VID
±30
Volts
Common Mode Input Swing (Note 1)
VIC
+15
Volts
ts
Continuous
Output Short Circuit Duration (Note 2)
Operating Temperature Range
TA
Junction Temperature Range
TJ
+18
-18
o to +75
+22
-22
-55 to +125
-65 to +150
Vdc
°c
°c
Note 1.
For supply voltages less than +~ 15 V, the absolute maximum input voltage is equal
to the supply voltage.
Note 2.
Supply voltage equal to or less than 15 V.
3
FIGURE 2 -OFFSET ADJUST CIRCUIT
FIGURE 1 - CIRCUIT SCHEMATIC
r--.---------.----~------------~------------~--Ovee
7
Vee.
I
I
25
.. ____
~2
'2.
OUTPUT
.----
5
1
50
OffSET
NUll
o----t--t---i
I
I
: 10kfl:
lJ"iv~
I
I
I
I
:
---,.
VEE.
4-35
' ___ -.
•
MCCF1741, MCCF1741C (continued)
ELECTRICAL CHARACTERISTICS (Vee = +15 Vdc, VEE = 15 Vdc, TA = +250 e unless otherwise noted.)
Min
MCCF1741
Typ
50,000
200,000
Max
Min
20,000
MCCF1741C
Typ
Unit
100,000
n
75
75
1.0
1.0
Megn
Vpeak
±12
±10
±14
±13
±13
±12
±10
90
±14
±13
±13
Vpeak
90
dB
0.2
0.5
0.2
0.5
0.03
0.2
0.03
0.2
1.0
5.0
2.0
6.0
mV
mA
29
8.5
29
8.5
1.0
1.0
3.0
3.0
1.0
1.0
1.0
1.0
0.6
0.6
0.38
0.38
0.8
0.8
1.67
1.67
2.83
2.83
1.67
1.67
2.83
2.83
50
85
50
85
30
150
30
150
30
150
30
150
mW
CD
See current MC174111741C data sheet for additional information.
dVo/dt = Slew Rate
MCCF1741/MCCF1741C BONDING DIAGRAM AND DEVICE DIMENSIONS
tgg~
'j
0.054 REF
0.006
~s
+
+
PACKAGING AND HANDLING
~ I
The popular 1741 type operational amplifier
is now available in three chip forms: 1) conventional chips, 2) beam-lead chips and 3) flip-chips,
as well as in a variety of plastic hermetic packages.
The flip-chip consists of a silicon chip with solder
bumps on the geometry surface to provide easy
mechanical mounting and electrical connection.
These devices are protected by a thin layer of
phosphorsilicate passivation which covers the interconnect metalization and active areas of the die.
Care must be exercised when removing the dice
from the shipping carrier to avoid scratching the
solder bumps. A vacuum pickup is useful for the
handling of dice. Tweezers are not recommended
for this purpose.
The non-spill type shipping carrier consists of a
compartmentalized tray and fitted cover. Die are
placed in the carrier with geometry side up.
~J1
~0.013+0.013+0.013~
0.039
o
a
rl--......_ ......
a
II
0.006
iilm9
~SrOERBUMPS.8PLACES
_L::::J--I...,o:ac
0.005 MIN
...Ao_ _......
~------------------.Bump Oia. at Base: 0.006 t 0.001 in. Bump Height: 0.0040 ± 0.0005 in.
Each bump centerline to be located within 0.001 in. of its true position with respect to any other bump centerline.
4-36
~f
MCCF3503
MCCF3403
MCCF3303
'l__________O_PE_R_A_T_I_O_N_A_L_A_M_P_L_IF_I_E_R_S~
QUAD LOW POWER OPERATIONAL AMPLIFIER
FLIP-CHIPS
QUAD DIFFERENTIAL
. . low-cost, quad operational amplifiers, with true differential
inputs. This ampl ifier can operate at supply voltages as low as 3.0
Volts or as high as 36 Volts with quiescent currents about one-third
of those associated with the MCCF1741 (on a per amplifier basis).
The common mode input range includes the negative supply, thereby
eliminating the necessity for external biasing components in many
applications. The output voltage range also includes the negative
power supply voltage.
INPUT
OPERATIONAL AMPLIFIERS
SILICON MONOLITHIC
INTEGRATED CIRCUIT
• Short Circuit Protected Output.s
• Class AB Output Stage for Minimal Crossover Distortion
• Split Supply Operation: ± 1.5 to ± 18 Volts
• Low Input Bias Currents: 500 nA Max
• Internally Compensated
6
5
4
3
•
2
MAXIMUM RATINGS
Rating
Power Supply Voltages
Single Supply
Split Supplies
Symbol
Value
Vee
Vee
VEE
36
+18
-18
Unit
7
Vdc
14
8
I nput Differentia I Voltage Range (1)
VIDR
±30
Vdc
Input Common Mode Voltage Range (1) (2)
VieR
±15
Vdc
Storage Temperature Range
Ceramic Package
Plastic Package
Tstg
Operating Ambient Temperature Range
TA
°c
-65 to +150
-55 to +125
9
10
-55 to +125
o to +70
to +85
MCCF3503
MCCF3403
MCCF3303
11
12
13
°c
-40
EOUIVALENT CIRCUIT
(11 Split Power Supplies.
(2) For Supply Voltages less than ±15 V, the absolute maximum input voltage is equal to the
supply voltage.
CIRCUIT SCHEMATIC
Output
Vee
Bias Circuitry
Inputs
Output
Common to Four
Amplifiers
1
1
Inputs
Output
2
2
Inputs
Output
3
3
Inputs
4
Output
4
VEE
(Gnd)
L-~~--~~---+--~~--~~~----~~-+------~---+~VEE
4-37
MCCF3503, MCCF3403, MCCF3303 (continued)
ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25 0 C unless otherwise noted I
Typ
Max
Unit
Input Offset Voltage
VIO
2.0
5.0
2.0
10
2.0
8.0
mV
Input Offset Current
110
30
50
30
50
30
75
Large Signal Open·Loop Voltage Gain
Vo = tl0V, RL = 2.0 kn,
T A = Thigh to Tlow
Input Bias Current
Output Voltage Range
RL = 10 W
RL=2.0kn
Symbol
Min
Typ
Max
Min
Typ
Max
Min
Power Supply Current (V 0
RL = ~
= 01
Individual Output Short·Circuit Current (21
nA
V/mV
AVOL
20
15
200
±13.5
±13
±12
±10
±13.5
±13
t12
±10
90
70
90
70
50
25
200
300
±12
±10
70
-500
-200
116
-200
20
15
-500
200
-200
-500
nA
V
VOR
Common-Mode Rejection Ratio
RS'; 10 kn
•
MCCF3303
MCCF3403
MCCF3503
Characteristic
CMRR
ICC.lEE
±10
2.8
4.0
±30
±45
±10
2.B
7.0
10S±
PSRR+
±20
±45
Positive Power Supply Rejection Ratio
30
150
30
150
Negative Power Supply Rejection Ratio
PSRR-
30
150
30
150
Average Temperature Coefficient of Input
I>"OIL>T
50
±10
±12.5
±12
7.0
±30
±45
mA
30
150
JjV/V
150
p.V/V
30
50
dB
90
2.8
mA
pA/oC
50
0
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = Gnd, TA = 25 C unless otherwise noted I
MCCF3503
Characteristic
Input Offset Voltage
'nput Offset Current
'nput Bias Current
Large-Signa' Open·Loop Voltage Gain
RL = 2.0kSl
Power Supply Rejection Ratio
Output Vo'tage Range 131
RL = 10 kU, Vee =5.0 V
RL = 10kU,5.0V "VCC .. 30V
Power Supply Current
MCCF3403
Max
Max
Unit
V'O
2.0
5.0
2.0
10
10
mV
1'0
30
50
30
50
75
nA
'IB
AVOL
-200
-500
-200
-500
-500
Min
20
200
3.3
VCC-l.7
3.5
VCC-l.S
PSRR
Min
Typ
MCCF3303
Typ
Symbol
20
200
3.3
VCC-l.7
3.5
VCC-l.S
150
Max
Min
Typ
20
200
3.3
Vec-l.7
3.5
VCC-l.S
150
nA
V/mV
150
p.V/V
Vp·p
VOR
2.5
ICC
Chennel Separation
f· 1.0 kHz to 20 kHz (Input Referenced)
4.0
-120
2.5
7.0
-120
2.5
7.0
-120
mA
dB
(') Output will awing to ground
MCCF3503/MCCF3403/MCCF3303 BONDING DIAGRAM AND DEVICE DIMENSIONS
.002
(!Y .C!y 8
3
PACKAGING AND HANDLING
The popular 3503 type quad operational amplifier is now available in two chip forms: 1) conventional chips, and 2) flip-chips, as well as in a
variety of plastic and hermetic packages. The
flip-chip consists of a silicon chip with solder
bumps (90-10 solder on a chrome-copper-gold base)
on the geometry surface to provide easy mechanical
mounting and electrical connection. These devices
are protected by a thin layer of phosphorsilicate
passivation which covers the interconnect metallization and active areas of the die.
Care must be exercised when removing the dice
from the shipping carrier to avoid scratching the
solder bumps. A vacuum pickup is useful for the
handling of dice. Tweezers are not recommended
for this purpose.
The non-spill type shipping carrier consists of a
cRmpartmentalized tray and fitted cover. Die are
placed in the carrier with geometry side up.
I
.077
0.005 MIN
a....---------~--T
Bump Diameter at Base 0.006 ± 0.001
Bump Height: O.0040± 0.0005
SOLDER BUMPS, 14 PLACES
4-38
CHAPTER 5
Linear Integrated Circuits
Page
General Description ............................................. .
Standard Features for Linear Integrated Circuit Chips .................. .
General Physical Characteristics of Linear Chips ....................... .
Handling Precautions ............................................ .
Chip and Wafer Packaging ........................................ .
How to Order Linear Chips or Wafers ............................... .
Linear Chip Processing .......................................... .
Geometries and Functions
MCC1500/1400 Series......................................... .
MCC1700/1700C Series ....................................... .
MCC3300 Series ............................................. .
MCC3400/3500 Series......................................... .
MCC4741/4741C ..................... ~ ...................... .
MCC5500/7500 Series......................................... .
MCC7700 Series ............................................. .
MCC7800 Series ............................................. .
MCC7900 Series ............................................. .
MCC8TOO Series ............................................. .
MCC55000/75000 Series....................................... .
MLMC100/200/300 Series ..................................... .
M M HC0026/0026C ........................................... .
5-1
5-2
5-2
5-2
5-2
5-2
5-2
5-3
5-4
5-23
5-29
5-30
5-41
5-41
5-43
5-44
5-45
5-46
5-48
5-54
5-60
•
LINEAR INTEGRATED
CIRCUIT CHIPS
GENERAL DESCRIPTION
Motorola now offers a very broad selection of linear
integrated circuit chips. Among the types of circuits
which compose the linear family there are:
A. Operational Amplifiers
B. Voltage Regulators
C. Comparators
D. Drivers and Receivers
E. Sense Amplifiers
F. 01 A and AID Converters
As a general rule of thumb, all linear chips from
Motorola are 100% unit probed to the D.C. parameters
given in Volume 6 of the Semiconductor Data Library.
For specific information on electrical parameters which
are probed contact the nearest Motorola Sales Office.
STANDARD FEATURES FOR
LINEAR INTEGRATED CIRCUIT CHIPS
I
All linear integrated circuit chips ...
• are 100% electrically tested to sufficient parameter limits (min/max) to permit distinct identification as either premium or industrial versions
•
employ phosphorsilicate passivation which protects the entire active surface area including
metallization interconnects during shipping and
handling
•
are 100% visually inspected to a modified cri·
teria per MIL·STD-883, Method 2010, Condition B
•
H. Overall chip dimensions:
See pages that follow for individual device type.
Tolerance of ±5 mils should be allowed.
HANDLING PRECAUTIONS
Although passivation on all chips provides protection in shipping and handling, care should be exercised
to prevent damaging the face of the chip. A vacuum
pickup is most useful for this purpose; tweezers are
not recommended.
There are four basic requirements for handling
devices in a prudent manner:
1. Store the chips in a covered or sealed container
2. Store devices in an environment of no more
than 30% relative humidity
3. Process the chips in a non-inert atmosphere not
exceeding 1OooC, or in an inert atmosphere not
exceeding 400 0 C.
4. Processing equipment should conform to the
minimum standards that are normally employed by semiconductor manufacturers.
Motorola's engineering staff is available for consultation in the event of correlation or processing problems encountered in the use of Motorola linear chips.
For assistance, please contact your nearest Motorola
sales representative.
CHIP AND WAFER PACKAGING
Chips
Motorola's linear integrated circuit chips come
Packaged to the customer in the Multi-Pak carrier.
Refer to page 1-11, Figure 7.
incorporate a minimum of 4000 A gold backing
to ensure positive adherence bonding
GENERAL PHYSICAL CHARACTERISTICS
OF LINEAR CHIPS
The following characteristics represent the vast
majority of all Motorola linear chips. Since an indio
vidual chip type may vary slightly, contact your local
sales office for information regarding physical charac·
teristics critical to a specific application. The overall
size and final metallization patterns are shown in the
following pages; however the geometries shown and
MIC numbers listed are current at the date of print·
ing. Since we are constantly striving to improve the
quality, performance, and yield of our linear devices
we cannot be responsible for changes at future dates.
Please contact your local Motorola Sales representative
for the most current information.
A. Chips thickness: 8 ± 1 mil
B. Passivation: Phosphorsilicate
C. Passivation thickness: 5kA ± 1 kA
0_ Metallization: Aluminum
E. Metallization thickness: 12kA ± 2kA
F. Back metallization: Gold, alloyed
G. Bonding pad dimensions:
Typical
4.0 mil x 5.0 mil
Wafers
Motorola's linear integrated circuit wafers come
packaged to the customer in the Wafer-Pak plastic
bow. The wafer has been probed and rejects are
designated by a red color dot on the die surface.
Refer to page 1-8, Figure 2.
HOW TO ORDER LINEAR CHIPS
OR WAFERS FROM MOTOROLA
1. Remove all suffix package designators from the
desired device type. (EXAMPLE: MC1741CP1
now becomes MC1741C)
2. Add a C to the prefix designator if individual
chips are desired. (EXAMPLE: MC1741C now is
MCC1741C)
Add a W to the prefix designator if a wafer is desired. (EXAMPLE: MC1741C now is MCW1741C)
3. When ordering chips, two options are available:
a. The -1 suffix designator will deliver to you 10
chips per Multi-Pak, up to 1000 chips.
(EXAMPLE: MCC1741C-1)
5-2
b. The -2 suffix designator will deliver to you 100
chips per Multi-Pak, minimum of 100 chips per
order. (EXAMPLE: MC1741 C-2)
4. Contact you local Motorola Sales Office or franchised distributor to place your order.
LINEAR CHIP PROCESSING FLOW CHART
The linear integrated circuits offered in Motorola's
Linear Chip line are subjected to the same in-process
controls as Motorola's standard linear encapsulated
devices. The chip processing and quality control
requirements are designed to insure reliability and
performance of the finished product.
WAFER PROCESSING
a. Diffusion
b. Passivation
c. Metallization
d. Stabilization
100%
VISUAL INSPECTION
100%
UNIT PROBE
1st Order Option
Chip Form
WAFEAS ARE ASSIGNED
TO PRODUCTION OF
ENCAPSULATED DEVICES
2nd Order Option
Wafer Form
*Chips are visually inspected to MIL-STD-883 Method
2010 Condition B (modified) and rejects removed.
5-3
•
11111111111I1I1111111111111111111111111111111111
~
LINEAR INTEGRATED CIRCUIT CHIPS '
1111111111111111111111111111111111111111111111111
MCC1505/MCC1405 Analog-to-Digital Converter Subsystem
82 x88
4
5
6
3
PIN CONNECTIONS
___ 2
7 _____
8
8
Input
16
9
15
10
Comparator
Output
I
Reference 10
Ramp Voltage
Control Output
I
Ix
/
Referem;e
I nput
Reference
Test
(for device
testing)
11
14
12
MCC1506/MCC1406 Six Bit, Multiplying Digital-,to-Analog Converter
66 x85
4
5
3
PIN CONNECTIONS
2
14
13
10
11
12
All dimensions are in mils.
~-4
Vee
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1507/MCC1407Analog-to-Digital Control Circuit
72 x 88
4
5
6
PIN CONNECTIONS
3
7
2
Off ..t
Adjust
Ampllfl.r
Inputs
8
Vcc
16
Compensation
15
Comperator
Amplifier
Output
Inputs
VREF(+1
DOWN
Output
VLOGIC
10
12
11
13
14
MCC1508/MCC1408 Eight-Bit Multiplying Digital-to-Analog Converter
84x94
5
4
PIN CONNECTIONS
3
6
2
7
8
9
16
10
15
11
12
13
14
5-5
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1510/MCC1410 Video Amplifier
PIN CONNECTIONS
35 x40
Vee 9
7
5
8
10
4
INPUT 1
OUTPUT 1
9
OUTPUT 2
1
4
INPUT 2
VEE
•
8
Gnd
5-
MCC1411/MCC1412/MCC1413
High Voltage, High Current Darlington Transistor Arrays
99x 68
6
5
4
PIN CONNECTIONS
3
2
7
8
9
16
15
10
11
12
13
14
The MCC1411 features direct access to the transistor base for use in TTL or DTL systems.
The MCC1412 provides a series zener diode and a 10.5K.Q resistor for PMOS systems while the
MCC1413 provides only a 2.7K.Q resistor for CMOS systems.
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1514/MCC1414 Dual Differential Voltage Comparator
PIN CONNECTIONS
35 x56
5
3
Output
1
Vee
2
6
Inverting
Input
Non-Inverting
Input
7
14
Gnd
8
Non-I nverting
Input
13
9
10
11
Vee
5
Inverting
Input
12
MCC1520/MCC1420 Differential Output Operational Amplifier
PIN CONNECTIONS
51 x47
10
9
Input 2
10
C1 ( I D 9 Input 1
C2 2
8
Vee 3
8 VCC
7 C3
Output 1 4
5
6 C4
Output 2
7
4
5
6
5-7
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1530/MCC1430 Operational Amplifier
60 x60
10
PIN CONNECTIONS
9
.~--......_ 8
5
3 _....~~-
7
4
6
5
•
MCC1531/MCC1431 Operational Amplifier (Darlington Input)
60x60
PIN CONNECTIONS
8
--+.....
ro--J._~I~
5
9
2
10
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1533/MCC1433 Operational Amplifier
55x55
PIN CONNECTIONS
5
4
3
12
13
14
6
7
11
11
12
7
2
MCC1535/MCC1435 Dual Operational Amplifier
5-9
3
6
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1536/MCC1436
High Voltage, Internally Compensated Operational Amplifier
68x88
PIN CONNECTIONS
7
INVERTING
lin
Vo
NON
INVERTING
2
5
L~..J
t
3
•
___ -.J
5
4
OFFSET
ADJUST
MCC1537/MCC1437 Highly Matched Dual Operational Amplifier
63x 64
PIN CONNECTIONS
4
5
3
2
6
OutPutLagA~14 vee
Output A
2
Output
13 Lag B
Output B
7
14
I nput Lag B
8
Input Lag B
13
Non Inv.
Input
9
Non Inv.
Input
10
11
12
5-10
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1538/MCC1438 Operational Amplifier/Power Booster
9
10
8
7
6
3
4
5
PIN CONNECTIONS
Positive Current Sense
Input 9 0-----1
Negative Current Sense
Negative Output
Negative Current Limit Adjust
VEE
Substrate
The MCC1538/MCC1438 requires a second chip (SL50 or SL56) to complete its function.
Please consult factory or your nearest sales office or distributor.
5-11
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1539/MCC1439 Uncompensated Operational Amplifier
48 x60
PIN CONNECTIONS
6
5
4
N.C.
N.C.
3
9
Compensation
3
Vee
10
Non-Inv. Input 5
11
•
Compensation
12
MCC1540/MCC1440 Core Memory Sense Amplifier
5-12
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1544/MCC1444 AC-Coupled Four-Channel Sense Amplifier
69 x 73
PIN CONNECTIONS
6
Inputs
Channel C {
7
1
2
16
8
Inputs
Channel 0 {
15
9
Strobe
Inputs
14
Channel {
Select
Inputs
11
10
3
7
8
13
12
•
MCC1545/MCC1445
Gate Controlled Two-Channel-Input-Wideband Amplifier
39 x46
PIN CONNECTIONS
10
2
Output
3
Non-Inv.,
Input B
Vee
Inv.
Input B
-....- ...-
""~--8
Inv. Input A
6
7
5-13
LINEAR INTEGRATED CIRCUIT CHIPS
(continued)
MCC1550 RF-IF Amplifier
30x32
3
2
4
~"'_10
5--."A
6
9
8
7
•
PIN CONNECTIONS
r------
---------,
I
I
I
I
I
10 O-+---+--3-k- -..
I
Vee
I
I
I
'
T
"
~
i
L ______ ~---~----~
~: i
D_
'21.-
Q,
CASE.J
3
5-14
2
7
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1552 High Frequency Video Amplifier (Low Gain)
42 x42
3
2
PIN CONNECTIONS
9
Ext.
Capacitor
7
6
MCC1553 High Frequency Video Amplifier (High Gain)
42 x42
2
PIN CONNECTIONS
3
4 _....~.
Ext.
Capacitor
5
6
7
5-15
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1554/MCC1454 1-Watt Power Amplifier
54 x58
PIN CONNECTIONS
VCC
10
Input 1
9 Output
'6
5
8
...-.,.-
6
7
External Compensation
Bias Reference
VeE
•
MCC1555/MCC1455 Timing Circuit
4
2
3
54x59
5
PIN CONNECTIONS
6
8
7
Vcc
Control Voltaga
2
t-------+--oTrigger
7
Discharge
1
5-16
Ground
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1556/MCC1456
Internally Compensated, High Performance Operational Amplifier
60 x 65
PIN CONNECTIONS
2
N.C.
7
Offset
Null
Vcc
Output
Inv. Input
3
Offset
Null
Non-Inv.
Input
6
4
VEE
5
MCC1558/MCC1458
Dual MC1741 Internally Compensated, High Performance Operational Amplifier
54x49
PIN CONNECTIONS
8
7
Vcc
Output
A
2
6
3
4
VEE
5
h-17
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1558S/MCC1458S Dual High Slew Rate Operational Amplifier
64x87
4
PIN CONNECTIONS
3
5
NC
6
2
VCC
Ouptut A
Offset
Adjust A
7
~
NC
w
Ouptut B
14
8
} Offset
Adjust B
Inverting
Input A
~
Non-Inverting
Input A
9
10
II
.,
VEE
12
Inverting
Input B
Non-I nverting
Input B
11
MCC1563/MCC1463 Negative Power Supply Voltage Regulator
10
9
2
68 x 75
3
7
4
PIN CONNECTIONS
5
6
Shut Down
COAtrol
2
4
Start-Up
and
Shut Down
Noise Filter
3
C ompen sati on
7
Vref
and
V out
'ref
(Substrate)
10
DC Shift Sense
Ground
5-18
Output
Sense
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1566/MCC1466 Precision Wide-Range Voltage and Current Regulator
5
4
3
2
6
56 x52
14
8
13
9
11
10
PIN CONNECTIONS
12
14
+Vaux
OUTPUT
0----1
13
INTERNAL
0 _ _--1
COMPENSATION 7
-Vaux
o-----t:======f:=======+~:::;:;;:;::==+=='_t-------.J
10
8
3
CURRENT
SOURCE
VOLTAGE
SENSE INPUT
CURRENT
SENSE INPUT
•
MCC1568/MCC1468 Dual ±15 Volt Tracking Regulator
44 x56
PIN CONNECTIONS
Voltage
5
4
Sense (+)
3
4
2
+ Compensation
VCC
3
7
7
14
Ground
8
12
10
11
- Compensation
12
8
11
Balance
Adjust
"_1 a
V out (-) Sense (-)
LINEAR INTEGRATED CIRCUIT CHIPS
(continued)
MCC1569/MCC1469 Positive Voltage Regulator
10
2
63 x 66
3
9
8
4
5
PIN CONNECTIONS
7
6
Shut Down
Noise
Filter
Output
7
_
Compensation and
~e::n~ce
+cu,,:nt ,-,mot
, V
8
5
Ground
(Substrate)
•
DC Shift
Output
1
Output
Sense
MCC1488 Quad MDTL Line Dtiver
68x58
PIN CONNECTIONS
3
4
5
2
6
Input 02
7
Output 0
14
8
Input Cl
13
9
10
11
12
5-20
out
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1489/MCC1489A Quad MDTL Line Receiver
58 x 62
PIN CONNECTIONS
5
4
3
2
6
7
14
8
13
9
10
12
11
The MCC1489A provides increased hysteresis over the MCC1489
•
MCC1590 Wideband Amplifier With AGC
44x46
PIN CONNECTIONS
2
Case
Ground
3
8
4
Substrate
Ground
7
5
6
5-21
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1594/MCC1494 Linear Four-Quadrant Multiplier
PIN CONNECTIONS
78 x 77
Emitter Degeneration
Resistor Pins
5
6
4
r
3
A
Ry
.---7
8
2
7
8
Inputs
fY
9
Vx
Output
10
9
14
10
Offset { Y 6
Adjust
X
15
13
12
11
13
•
MCC1595/MCC1495 Linear Four-Quadrant Multiplier
PIN CONNECTIONS
50x56
5
4
Emitter Degeneration
Resistor Pins
3
~
Ry
Rx
6
-----96
95
2
...-"-..
910911
7 _ _....--.._
8
14
9
13
2
(+)
Output
14 ( )
Offset { Y
Adjust X
Output
Scale
Factor
Adjust
5-22
V- Current
Adjust
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1596/MCC1496 Balanced Modulator-Demodulator
41 x45
PIN CONNECTIONS
5
3
4
2
Signal Input
Gain Adjust
6
Output
Gain Adjust
Signal Input
8
Bias
14
Carrier t nput
Output
NC
NC
10
(Top View)
12
•
MCC1709/MCC1709A/MCC1709C Operational Amplifier
40x45
PIN CONNECTIONS
5
4
3
6
N.C.
N.C.
9
Input Freq.
Compo
3
12 Input Freq.
Compo
Non-Inv. Input
5
Output
VCC
9
10
11
12
Output Freq.
Compo
N.C.
The MCC1709A is an improved performance version of the MCC1709/MCC1709C.
5-23
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1710/MCC1710C Differential Voltage Comparator
PIN CONNECTIONS
32 x 32
2
3
7
3
2
4
GND
•
VEE
MCC1711/MCC1711C Dual Differential Voltage Comparator
PIN CONNECTIONS
46x43
5
4
3
6
2
9
13
10
11
12
Strobe 2
5-24
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1712/MCC1712C Wideband DC Amplifier
PIN CONNECTIONS
36x42
v+
13
6
9
5
4
9
4
3
12
10
5
12
LAG
13
10
3
GND
•
MCC1723/MCC1723C Voltage Regulator
52 x53
5
4
PIN CONNECTIONS
3
11
10
Vc
6
2
---{) v out
7
VEE
2
--0
12
7
13
--0
9
Vz
--0
5
--0
Non-Inverting
Input
11
I nverting Input
13
V ref
10
Current Sense
4
6
9
Current Limit
3
VCC
12
Substrate
5-25
Compensation
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1733/MCC1733C Differential Video Wideband Amplifier
45x46
PIN CONNECTIONS
5
4
3
14
INPUT 2
7
INPUT 1
2
13 NC
G2B GAIN SELECT
3
12 G2A GAIN SELECT
G1B GAINSELECT
4
11 G1A GAIN SELECT
v-
5
10
NC
6
9 NC
NC
14
8
v+
(top view)
OUTPUT 1
OUTPUT 2
10
I
12
11
MCC1741/MCC1741C
Internally Compensated High Performance Operational Amplifier
41 x40
PIN CONNECTIONS
9
6
NC~NC
5
NC
NC
Offset Null
NC
4
VCC
Inputs
" Output
3
~
00
(Top View)
5-26
Offset Null
NC
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1741S/MCC1741SC
High Slew-Rate Internally Compensated Operational Amplifier
51 x 63
7
6
PIN CONNECTIONS
5
M
OFFSET NULL
INVT INPUT
NONINVT INPUT
VEE
8
NC
7
Vee
3
6
OUTPUT
4
5
OFFSET NULL
2
.
(Top View)
4
2
3
MCC1747/MCC1747C
Dual MC1741, Internally Compensated Operational Amplifier
67 x84
5
4
PIN CONNECTIONS
3
2
6
7
14
8
7 Inv. Input
VEE
13
9
10
12
1=;_,)7
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC1748/MCC1748C High Performance Operational Amplifier
51 x45
PIN CONNECTIONS
7
8
Compensation
6
2
4
3
•
5
MCC1776/MCC1776C/MCC3476
Micropower Programmable Operational Amplifier
50x55
PIN CONNECTIONS
7
6
5
2
INVERTING
INPUT
8
4
2
3
NONINVERTING
INPUT
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3301 Quad Single Supply Operational Amplifier
59 x 61
PIN CONNECTIONS
7
8
9
6
5
4
6~8~
AMPL #2
1
3
14
AMPL #3
13
AMPL #1
4
+
AMPL #4
12
10
+
GROUND - PIN 7
Vee-PIN 14
2
9
+
3~11$--a
2
13
5
+
•
MCC3302 Quad Single-Supply Comparator
53 x57
PIN CONNECTIONS
9
8
7
6
5
10
6~'0~
eO~PTR
4
11
12
3
13
1 ...
2
7
4~
eOMPTR
5
+ 2
Vee-PIN 3
eO~PTR
1
+
11
2
B$-a
CO~PTR
9
13
+
+
GROUND - PIN 12
14
LINEAR INTEGRATED CIRCUIT CHIPS
(continued)
MCC3346 Five Transistor General Purpose Array
31 x 39
9
8
7
PIN CONNECTIONS
6
10
5
11
4
12
3
13
14
•
2
MCC3401 Quad Single-Supply Operational Amplifier
59 x61
9
8
7
PIN CONNECTIONS
6
5
10
4
6~8~
9
3~"~
10
AMPL #2
1
11
AMPUl
3
2
12
+
Vee - pin 14
13
14
2
5-30
5
AMPL #3
13
+
4
+
AMPLU4
12
+
Ground - pin 7
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3503/MCC3403/MCC3303 Quad Differential Input Operational Amplifier
72 x 72
PIN CONNECTIONS
3
4
5
Out
1
Out
4
Inputs
Inputs
1
4
Vee
Inputs
Inputs
2
3
11
10
Out
2
8
7
Out
3
•
MCC3510/MCC3410 10 Bit Digital-to-Analog Converter
100 x 102
PIN CONNECTIONS
10
9
8
7
6
Gnd
5
11
Output I
12
MSB
,w_
A
1-----,
t;;
LSB
13
4
3
2
14
15
16
5-31
Digital
Digital
Inputs
Inputs
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3416 4x4x2 Crosspoint Switch
87 x 57
8
9
10
PIN CONNECTIONS
7
6
5
Anode
Al
Cathode
Y2
Row Select
Z
3
4
11
2
Cathode
X2
Row Select
X
Cathode
W2
Anode
A2
Anode
81
Anode
82
Anode
Cl
Anode
C2
Anode
01
Cathode
W1
Row Select
W
Cathode
Xl
Cathode
Z2
12
Column
Select A
Column
Select 8
Column
Select C
13
24
Column
Select 0
23
14
15
16
17
18
20
19
I
Cathode
Zl
Row Select
Y
Cathode
Y1
Anode
02
22
21
MCC3430/MCC3431/MCC3432/MCC3433
Quad High-Speed Voltage Comparators
76 x 70
PIN CONNECTIONS
5
6
4
3
2
7
8
16
9
15
10
INPUTS
C
11
12
13
14
5-32
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3437 Hex Unified Bus Receiver
73x 79
PIN CONNECTIONS
10
8
9
7
~=;:;t_6
11
5
12
4
13
3
15
16
2
•
MCC3438 Quad Bus Transceiver
75 x 78
6
5
PIN CONNECTIONS
4
3
Vee
2
Bus 1
Input 1
7
Output 1
8
16
Bus 2
9
Input 2
15
Output 2
10
11
12
13
14
5-33
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3440/MCC3441/MCC3443
Quad General Purpose Interface Bus Transceivers
MC3440
(
Output and
Termination ....
Gnd
~----~
~------~
Ol
Bus C
Bus A
Receiver
Output A
PIN CONNECTIONS
VCC
3k
3 k
Receiver
Output C
Driver
Input A
Driver
Input C
Driver
Input B
Enable E
Driver
Inp\jt D
Receiver
Output B
Receiver
Output D
Bus B
Bus D
Logic Gnd
MC3441
86x82
10
•
9
8
Output and
Termination
Gnd
7
r-----~
r------~
VCC
Bus C
Bus A
6
Receiver
Output A
11
5
12
Receiver
Output C
Driver
Input A
Driver
Input C
Driver
Input B
Enable E
Driver
Input D
Receiver
Output B
13
4
14
3
Receiver
Output D
Bus B
Logic Gnd
Bus D
MC3443
15
16
2
Output Gnd
V '------'
dr-------t
j
Bus A
Receiver
Output A
Driver
Input A
Driver
Input C
Driver
Input B
Enable E
Receiver
Output B
Bus B
Logic Gnd
5-34
Receiver
Output C
Driver
Input D
Receiver
Output D
Bus D
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3446 Ouad General Purpose Interface Bus Transceiver
PIN CONNECTIONS
84x 73
10
8
9
Receiver
Output A
7
6
Vee
Receiver
Output D
Bus A
11
Driver
Input A
5
12
13
Bus D
Enable
ABC
Driver
Input D
4
Driver
InputB
Enable D
3
Bus B
Driver
Input e
Receiver
Output B
14
Bus
Receiver
Output e
Gnd
15
16
2
Rl
=
2.4 k
R2 = 5.0 k
MCC3450/MCC3452
Ouad Line Receivers with Common Three-State Strobe Input
76 x 70
5
6
PIN CONNECTIONS
4
3
INPUTS
A
2
7
8
16
9
15
10
INPUTS
C
11
12
13
14
5-35
e
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3453 Quad Line Driver with Common I nhibit Input
75 x 79
6
5
PIN CONNECTIONS
4
3
VCC
2
INPUT B
Y
OUTPUT A
7
Y
OUTPUT B
Z
Z
8
Z
OUTPUT C
Y
Z
OUTPUT D
Y
16
9
15
1Q
INPUT C
INPUT D
10
GND
11
12
13
8
9
VEE
14
I
MCC3556/MCC3456 Dual Timing Circuit
84 x68
PIN CONNECTIONS
4
5
3
v
~
~
Vee
D!!charge B
6
Control A
w
Threshold B
Reset A
..
Control B
Output A
'"
Reset B
Trigger A
'"
~
Output B
Gnd
~
'"
Trigger B
7
8--~--
3
9
10
11
12
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3558/MCC3458/MCC3358
Dual Differential Input Operational Amplifier
50 x58
7
PIN CONNECTIONS
6
5
OutputA 1
8
7 Output 8
4
2
3
•
MCC3459 Quad NMOS Address Line Driver
PIN CONNECTIONS
66x 68
5
6
4
3
2
Input
1A
Vcc
Input
2A
Input
10
Output
A
Input
20
7
8
9
14
Input
18
Output
0
13
Input
28
Input
1C
Output
8
Input
2C
Gnd
Output
C
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3460/MCC3466
Gate Controlled Four Channel MOS Clock Drivers
86x 79
PIN CONNECTIONS
3
4
5
6
VOO1
2
7
1
16 VCC
Output A
Channel
8
14 Channel
Select A
Select 0
13 Enable 3
9
16
Refresh
Select
Channel
11 Channel
Select C
Select 8
10
I
Output 8
7
Gnd
8
9 VOO2
MCC3461 Dual NMOS Memory Sense Amplifier
76x 66
10
9
8
PIN CONNECTIONS
7
Ou'pu,
Gnd.
Output
1A
11
g::_
1
2
v
:l
Refe,en"
Gnd.
15 Output
28
Output
2A
12
Outputs A
Enable
13
Input
2A
Input
1A
14
Latch
Inp4 t
15
16
2
VEE
(-5.2 V) 8
Input
18
Input
28
Amp!. Input
10 Term ination
(RT)
9
VCC
(+7.5 V)
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3467 Triple Preamplifer
75x 75
PIN CONNECTIONS
16
15
14
13
12
EGC 1 -
17
11
18
10
9
5
4
3
Inputs 1 ( "
loutou,," 1
Inputs 2 ( •
I
EGC 3
8
2
OU'puts 2
'"
EGC 2
Inpu" 3 ( -
: lou,pu" 3
GNO "'
7
6
VCC
VEE
•
MCC3468 Magnetic Tape Read Amplifier
86 X 92
16
15
14
12
13
PIN CONNECTIONS
17
11
Input Select
10
Single-Ended
Input A
18
Inverting Input
Threshold Ampl.
VCC
Threshold Output
w
Single-Ended
Input B
EGC
9
2
8
3
4
5
6
7
o If,.,on". I (
Inputs A
OIf'o,.n".1 ( •
Threshold Level
Input
Zero Crossing
Oet. Output
Gnd
I
Dlff.,entlatlon
Components
Single-Ended
Output
Inputs B
VEE
5-39
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC3490/MCC3494 Seven-Digit Gas-Discharge Display Drivers
60 x 77
PIN CONNECTIONS
8
9
7
10
Output
6
11
Output
B
Output
C
Output
0
Output
5
12
4
13
16
2
15
3
14
VCC
4
13
Input
A
Input
B
Input
5
12
Input
C
E
3
Output
F
Output
G
14
VEE
2
15
1
A
o
6
11
Input
)
10
Input
8
9
E
F
Input
G
16
The MCC3490 requires a high logic level to turn drivers on
•
while the MCC 3494 'requires a low logic level.
MCC3491 Segment Driver for Gas-Discharge Displays
76x 72
PIN CONNECTIONS
15
16
14
13
12
17
11
Programming
Current
18
10
9
2
8
3
4
5
6
7
~
1
18
Input 1
2
17
Input 2
3
Input 3
4
Input4
5
Input 5
6
Input 6
7
Input 7
8
Input 8
~ 9
Output 1
Output 2
Output 3
Output 4
14
Output 5
Output 6
Output 7
11
Output 8
Substrate (Gnd)
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC4741/MCC4741C Quad MC1741 Operational Amplifier
78 x 70
PIN CONNECTIONS
4
5
Out
1
3
Out
4
2
6
Inputs
Inputs
1
4
7
VCC
14
8
Inputs
2
Inputs
3
13
9
11
10
Out
2
12
8
7
Out
3
•
MCC5524/MCC5525/MCC7524/MCC7525
Dual High-Speed Sense Amplifier
48x 60
4
5
6
PIN CONNECTIONS
3
7
Strobe Output
Output Strobe
A
A
Gnd
B
B
N.C.
9
2
9
Gnd
16
15
11
12
13
14
C ext
VEE
Differential
Input A
Reference
Input
Differential
Input B
The MCC5524/MCC7524 feature Improved threshold over the MCC5525/MCC7525.
5-41
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC5528/MCC5529/MCC7528/MCC7529
Dual High-Speed Sense Amplifier with Preamplifier Test Points
48 x60
10
PIN CONNECTIONS
8
9
7
TEST
POINT
A
VCC
STROBE
A
TEST
OUTPUT OUTPUT STROBE POINT
B
B
B
A
GND
6
11
12
5
13
4
3
14
15
2
16
Cext
•
--.-'
--.-'
--.-'
OIFFERENTIAL
INPUT A
REFERENCE
INPUT
DIFFERENTIAL
INPUT B
VEE
The MCC5528/MCC7528 feature improved threshold over the MCC5529/MC7529.
MCC5534/MCC5535/MCC7534/MCC7535
Dual High-Speed Sense Amplifier with Inverted Outputs
48x60
12
13
PIN CONNECTIONS
11
STROBE
N.C.
GND 1
VCC
L
15
16
110
19
9
8
7
2
3
4
5
6
Cext
VEE
DIFFERENTIAL
INPUT A
REFERENCE
INPUT
DIFFERENTIAL
INPUT B
The MCC5534/MCC7534 feature improved threshold over the MCC5535/MCC7535.
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC5538/MCC5539/MCC7538/MCC7539
Dual Sense Amplifiers with Preamplifier Test Points and Inverted outputs
48 x 60
4
5
6
PIN CONNECTIONS
3
vcc
TEST
POINT
A
STROBE
A
OUTPUT OUTPUT STROBE
B
A
TEST
POINT
B
GND
2
7
8
9
16
10
15
11
12
13
Cext
14
~
~
DIFFERENTIAL
INPUT A
REFERENCE
INPUT
The MCC5538/MCC7538 feature improved threshold over the MCC5539/MCC7539 •
MCC7700 C Series Three Terminal Positive Fixed Voltage Regulators
Chips available in the following
voltages:
66x 77
TYPE NO./VOL TAGE
MCC7705C
MCC7706C
MCC7708C
MCC7712C
MCC7715C
MCC7718C
MCC7720C
MCC7724C
2
5.0
6.0
8.0
12
15
18
20
24
2
'nput~----~--~
MCC7XXC
3
PIN CONNECTIONS
Substrate
5-43
VEE
DIFFERENTIAL
INPUT B
1-----<-)--___ 0 utput
Volts
Volts
Volts
Volts
Volts
Volts
Volts
Volts
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC7800C Series
Three-Terminal Positive Fixed Voltage Regulator
2
Chips available in the following
voltages:
TYPE NO'/VOL T AGE
MCC7805C
MCC7806C
MCC7808C
MCC7812C
MCC7815C
MCC7818C
MCC7824C
5.0
6.0
8.0
12.0
15.0
18.0
24.0
Volts
Volts
Volts
Volts
Volts
Volts
Volts
2
I nput __---{~__I
MCC78XXC
1-----<-)--.... 0 utput
3
PIN CONNECTIONS
I
Substrate
MCC78MOOC Series
Three-Terminal Positive Fixed Voltage Regulator
Chips available in the following
Voltages:
66x 77
TYPE NO./VOL TAGE
2
1
E ==11
MCC78M05C
MCC78M06C
MCC73M08C
MCC78M12C
MCC78M15C
MCC78M18C
MCC78!V120C
MCC78M24C
5.0
6.0
8.0
12
15
18
Volts
Volts
Volts
Volts
Volts
Volts
20 Volts
24 Volts
2
Input __- - - { J - - _ _ I
PIN CONNECTIONS
MCC78MXXC
3
Substrate
)..--__ Output
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC78 LOOC/MCC78LOOAC Series
Three-Terminal Positive Fixed Voltage Regulators
38x49
Chips available in the following voltages:
3
Device No.
Device No.
±10%
±5%
Nominal
Voltage
MCC7SL05C
MCC7SLOSC
MCC7SL 12C
MCC7SL 15C
MCC7SL 1SC
MCC7SL24C
MCC7SL05AC
MCC7SLOSAC
MCC7SL12AC
MCC7SL 15AC
MCC7SL 1SAC
MCC7SL24AC
5.0
S.O
12
15
1S
24
2
2
I nput __---<~~
MCC7SLXXC
~--<-)---
__
0 utput
3
PIN CONNECTIONS
•
Substrate
MCC7900C Series
Three-Terminal Negative Fixed Voltage Regulator
2
3
Chips available in the fo"owing voltages:
TYPE NO./VOLTAGE
MCC7902C
MCC7905C
MCC7905.2C
MCC7906C
MCC790SC
MCC7912C
MCC7915C
MCC791SC
MCC7924C
3 or Case
I nput __---<~~
2.0 volts
5.0 volts
5.2 volts
6.0 volts
S.O volts
12.0 volts
15.0 volts
1S.0 volts
24.0 volts
2
MCC79XXC
PIN CONNECTIONS
Substrate
~---{)---
__ 0 utput
LINEAR INTEGRATED CIRCUIT CHIPS
(continued)
MCC79LOOC/MCC79LOOAC Series
Three-Terminal Negative Fixed Voltage Regulator
38x47
Chips available in the following voltages;
2
Device No.
Device No_
±10%
±5%
Nominal
Voltage
MCC79L03C
MCC79L05C
MCC79L 12C
MCC79L 15C
MCC79L 18C
MCC79L24C
MCC79L03AC
MCC79L05AC
MCC79L12AC
MCC79L15AC
MCC79L18AC
MCC79L24AC
-3.0
-5.0
-12
-15
-18
-24
2
3
Input __--<..)----1
) - - -__ Output
PIN CONNECTIONS
•
MCC8T13/MCC8T23 Dual Line Drivers
PIN CONNECTIONS
61 x68
8
9
10
7
Input A1
1
16
Vec
Input B6
11
InputB5
12
13
Input B3
14
Input B2
15
16
2
Output A
7
Gnd 8
The MCC8T23 meets all of the input/output requirements
of the I BM system 360/370 specifi·cations.
5-46
InputB1
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC8T14/MCC8T24 Triple Line Receivers with Hysteresis
PIN CONNECTIONS
77 x 66
6
4
5
Gate
3
Input A3
Gate
Input B3
7
2
Receiver
InputR1
8
Strobe
Input S1
16
9
Gate
Gate
Input A 1
Input A2
Gate
15
Strobe
Input B1
Input S2
10
Output
F1
11
12
13
14
Output
Gnd
F2
•
MCC8T26/MCC6880
Quad Three-State Bus Tranceiver with High Impedance PNP Inputs
PIN CONNECTIONS
92x66
6
7
5
4
3
2
Receiver
Enable
Input
Vee
Receiver
Output
1
Driver
Enable
Input
Bus 1
8
16
9
Driver
Input
1
Receiver
Output
15
2
Bus 2
10
Driver
Input
Receiver
Output
4
Bus 4
Driver
Input
4
Receiver
Output
3
Bus3
2
Gnd
5-47
Driver
Input
3
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC551 07/MCC551 08/MCC751 07/MCC75108
Dual Line Receivers
51 x53
PIN CONNECTIONS
INPUTS
2A
2B
5
NC
OUTPUT STROBE
2 Y
2G
4
2
6
7
14
13
8
9
11
12
INPUTS
1A
1B
NC
OUTPUT STROBE STROBE
1 Y
1G
S
GND
The MCC55107/MCC75107 feaure active pullup outputs,
•
while the MCC55108/MCC75108 features an open collector output.
MCC75110 Dual Line Driver
PIN CONNECTIONS
70 x 70
7
8
9
INHIBIT
INPUT
- ' - OUTPUTS
D
2Z
2Y
OUTPUTS
VCC 1Y
12 VEE
6
5
10
~
4
11
3
12
13
14
2
1A
1B
LOGIC
INPUTS
1C
2C
INHIBIT
INPUTS
2A
2B
LOGIC
INPUTS
GND
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC75140 Dual Line Receiver
PIN CONNECTIONS
49 x45
Vee
8
OUTPUT
2
REF.
INPUT
LINE
INPUT 2
7
6
2
5
4
3
OUTPUT
1
STROBE
LIN E
INPUT INPUT 1
GND
•
MCC55325/MCC75325 Dual Memory Driver
80 x 102
PIN CONNECTIONS
6
5
4
3
7
2
Source
Collectors
W
8
16
9
I
Rint
Gnd
VCC1
Strobes
S2
10
Node
S1
15
11
12
13
14
5-49
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC75365 Quad MOS Clock Driver
86 x 79
PIN CONNECTIONS
7
8
9
10
VCC2
Output A
11
6
12
5
Input 1A
13
Input D
4
13
5
12
6
11
Input 2AB
Input 3CD
Input 3AB
4
Input 2CD
Input 1B
14
3
Output B
Gnd
15
16
2
II
MCC75368/MCC75358 Dual MECL-to-MOS Drivers
55 x58
PIN CONNECTIONS
v
2
~VCC1
132A
7
8
"'11...----14
13
9
10
11
12
The MCC75368 is optimized for higher voltage operation while the
MCC75358 is optimized for higher speed at a sacrifice of operating voltage.
5-50
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC75450 Dual Peripheral Positive "AND" Driver
54 x 60
7
8
9
PIN CONNECTIONS
6
2A
2Y
2B
2C
SUB2E STRATE
1A
1Y
18
1C
1E
5
10
4
11
12
3
13
14
2
G
•
MCC75451/MCC75461 Dual Peripheral Drivers
54x60
7
PIN CONNECTIONS
6
5
8
4
2
3
1A
1B
1Y
GND
Positive Logic: Y = AB
The MCC75461 exhibits a higher breakdown voltage than the MCC75451.
5-51
GND
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC75452/MCC75462 Dual Peripheral Drivers
50 x 52
7
PIN CONNECTIONS
Vec
28
2A
2Y
1A
18
1Y
GND
5
6
4
2
•
3
The MCC75462 exhibits a higher breakdown voltage than the MCC75452.
MCC75453/MCC75463 Dual Peripheral Drivers
50 x 52
PIN CONNECTIONS
7
Vec
28
2A
2Y
1A
18
1Y
GND
\
8
4
2
3
The MCC75463 exhibits higher breakdown voltage than the MCC75453.
5-52
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC75454/MCC75464 Dual Peripheral Drivers
50 x 52
3
PIN CONNECTIONS
VCC
28
2A
2Y
1A
18
1Y
GND
2
4
8
5
6
7
•
The MCC75464 exhibits higher breakdown voltage than the MCC75454 .
MCC75491 Quad LED Segment Driver
48 x 60
PIN CONNECTIONS
9
8
7
6
5
10
Input 4
Emitter 4
Collector 4
11
4
VSS
Collector 3
12
3
13
14
2
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MCC75492 Hex LED Digit Driver
66 x 70
PIN CONNECTIONS
9
8
7
6
Output 1
10
5
11
4
12
3
1
Output 6
Output4 7
13
2
14
•
MLMC101A/MLMC201A/MLMC301A Operational Amplifier
51 x 55
PIN CONNECTIONS
3
2
4
Balance
8
In
7
5
6
5-54
p
u"l '
Compensation
LINEAR INTEGRATED CIRCUIT CHIPS
(continued)
MLMC104/MLMC204/MLMC304 Negative Voftage Regulator
55 x 55
PIN CONNECTIONS
9
8
2
NO
CONNECTION
""USTMEa"'"NU
~~~~~:TEO
7
REFERENCE '
REF~~~~~
•
I
J
.
BOOSTER
COMPENSATION' I
'CURRENT LIMIT
UNREGULATED
INPUT
3
6
5
4
MLMC105/MLMC205/MLMC305 Positive Voltage Regulator
49 x39
PIN CONNECTIONS
7
8
REGULATED OUTPUT
8
6
BOOSTER OUTPUT 2 .
2
GROUND
Note: Pin 4 connected to case
(TOP VIEW)
3
4
5
5-55
•
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MLMC1 07/M LMC207/M LMC307
Internally Compensated Operational Amplifier
PIN CONNECTIONS
51 x55
7
6
2
3
4
•
MLMC1 08/MLMC208/M LMC308/M LMC1 08A/M LMC208A/M LMC308A
Precision Operational Amplifier
67 x55
3
2
PIN CONNECTIONS
CI:~:: :
4
VEE
6
7
i8
3
4
+
~ :OC~PEN
6 OUTPUT
NC
5
B
The M LMC 1 OBA featu res improved input offset voltage over the M LMC 1 OB.
5-56
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
M LMC 109/M LMC209/M LMC309 Positive Voltage Regulator
86 x90
PIN CONNECTIONS
2
Input __- - 0 - - 1
MLMC109
5V
{)--___a Output
3
Case
•
MLMC110/MLMC210/MLMC310 Operational Amplifier Voltage Follower
50 x 54
PIN CONNECTIONS
8
7
3
3
Input l r - - - I
6
4
5
5-57
~---n
Output
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MLMC111/MLMC211/MLMC311 High Performance Voltage Comparator
49x 69
PIN CONNECTIONS
4
6
7
3
NC
1
14 NC
GND
2
13 NC
3
INPUTS 4
12 NC
NC 5
10 NC
8
2
vEE
6
BALANCE 7
9
11 vcc
9 OUTPUT
8 BALANCI::/STROBE
(Top Viewl
·1ii·"'11
M LMC124/M LMC224/M LMC324
Ouad Differential Input Operational Amplifier
72 x 72
PIN CONNECTIONS
9
8
7
o,utP,t
6
2
10
5
11
4
:5o~t
"-
13
Inputs
Inputs
1
4
VEE
Vee
3
12
13
14
2
Inputs
Inputs
2
3
Out
2
7
8
Out
3
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
M LMC139/M LMC239/M LMC329/MLMC139A/M LMC239A/MLMC329A
Quad Comparator
54 x56
PIN CONNECTIONS
3
4
2
5
6~
CO~PTR
7
1
+
10~
CO~PTR
11
. 13
+
6
14
7
13
4~
COMPTR
5
8
12
9
11
10
2
+ 2
'$-a
COM:TR
9
GROUND - PIN 12
VCC--PIN 3
The MLMC139A/MLMC239A/MLMC339A feature improved input
offset voltage over the MLMC139/MLMC239/MLMC339.
M LMC158/M LMC258/M LMC358
Quad Differential Input Operational Amplifier
50 x 58
PIN CONNECTIONS
7
6
5
8
4
2
3
14
+
Vce
II
LINEAR INTEGRATED CIRCUIT CHIPS (continued)
MLMC2902 Quad Differential Input Operational Amplifier
PIN CONNECTIONS
60x 74
9
7
8
Out
1
6
10
5
11
4
12
3
13
14
Inputs
4
Inputs
1
Gnd/VE E
Inputs
Inputs
2
3
2
Out
2
•
Out
4
8
7
Out
3
MMHC0026/MMHC0026C Dual MOS Clock Driver
74 x 75
5
PIN CONNECTIONS
3
~~~~~C
OUTPUT A
NC
14
INPUT A
3
12
OUTPUT B
NC
INPUT B
NC
NC
10
12
CHAPTER 6
MECL, Memories, Phase-Locked Loop,
& LSI Integrated Circuits
Page
Standard Chip Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Probe Capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
General Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Quality Assurance Provisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packagi ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Geometries and Functions
MECL 10,000 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ..
MECL "I MCC1600 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
MECL " MCC1200 Series .......................................
Memories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Phase-Locked Loop Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
LSI Integrated Circuits .........................................
~-1
6-2
6-2
6-2
6-3
6-3
6-4
6-40
6-47
6-60
6-65
6-73
•
MECL, MEMORIES,
PHASE-LOCKED LOOP, AND LSI
INTEGRATED CIRCUITS
STANDARD CHIP PROCESSING
quirements are designed to ensure the same reliability
and performance of the finished product. The following flow chart represents the processing after the wafer
has been completely diffused, passivated, metallized,
and stabilized.
The circuits offered are subjected to the same inprocess controls as Motorola's standard encapsulated
devices. The chip processing and quality control re-
Wafer
~
Processing
100%
Visual
~
Class
Probe
~
Encapsulated
Device
Production
100%
Probe
+
In-Process
Sample
Inspection
Shipping
Sample
Visual
~
QC
(L TPD = 7)
~
100%
Visual·
and
Load
~
Scribe
and
Break
I
·MIL-STD-883, Method 2010.2, Condition B (12M55367J)
DEVICE DATA
Detailed information on these chips is presented in
the Motorola MECL Data Book or on detailed data
sheets. Information contained herein includes the
device description or function, logic diagram, chip
geometry, and "pinouts".
•
PROBE CAPABILITIES
All chips in this chapter are 100% probed to
ensure that they meet the de electrical specifications
and functional ity presented on the Motorola standard
data sheets. For some device types certain tests can be
guaranteed only by testing packaged samples.
GENERAL PHYSICAL CHARACTERISTICS
The following characteristics represent the majority
of all MECL, Memory, PLL, and LSI chips. Since an
individual chip type may vary slightly, contact Product
Marketing for information regarding physical characteristics critical to a particular application. The overall
size and final metallization pattern are shown for each
chip. The metallization pattern shows the position and
identification for each bonding pad.
MECL III, MECL 10,000,
Memories, PLL, LSI
MECL II
Chip Thickness
10 ± 1 mil
9 ± 1 mil
Passivation
9-11 kA
9-11
Metall ization Type
Silicon Aluminum
Silicon Aluminum
Metallization Thickness: *
Single Layer Metal
Double Layer Metal, First Layer
Double Layer Metal, Second Layer
12.5-14.5 kA
6-8 kA
15-18 kA
11-14 kA
7-8.5 kA
20-22 kA
kA
Back Metallization
Gold, Alloyed
Gold, Alloyed
Pad Dimensions
4.5 x 4.5 mil typ
4.0 x 4.0 mil min
4.5 x 4.5 mil typ
4.0 x 4.0 mil min
Overall Chip Dimensions
Given for individual device type; allow ±5 mils for scribe
tolerance.
*Some LSI devices,have three layers of metallization; consult Product Marketing for details.
QUALITY ASSURANCE PROVISIONS
All chips in these families are subjected to the same
in-process controls as Motorola's standard encapsulated
devices. The chip processing and quality control requirements are designed to ensure reliability and
performance of the finished product.
PACKAGING
These devices are available in two package options:
Multi-Pak for chips and Wafer-Pak for wafers.
designed to provide maximum device protection, permit
partial removal of chips and resealing of carrier, and
supply a convenient container for unused device storage.
WAFER-PAK
Wafers are placed in a plastic box, between two
layers of mylar or inert filter paper sandwiched between
two layers of polyfoam. The plastic box is securely
taped shut and allows no movement of the wafer.
MULTI-PAK
The Multi-Pak is a non-spill type waffle carrier consisting of a two inch square with 100 compartments
arranged in a 10 by 10 matrix tray with a transparent
cover. The chips are covered within the carrier that is
•
6-3
MECL 10,000 INTEGRATED CIRCUITS
The MECL 10,000 family is a high speed (2 ns propagation delay),
economical logic family designed to fill the gap between the MECL II (4 ns)
and MECL III (1 ns) families and to meet the requirements for future
performance systems.
The features of MECL II and MECL III have been optimized and combined
to give MECL 10,000 an excellent speed-power product, relatively slow rise
and fall times, and transmission-line drive capability.
MAXIMUM RATINGS
I
Characteristic
Ratings above which device life may be impaired:
Symbol
Unit
Power Supply Voltage (VCC = 0 Vdc)
VEE
-8 to 0
Vdc
Base Input Voltage (VCC = 0 Vdc)
Vin
o to VEE
< 50
< 100
mAdc
Output Source Current - Continuous
- Surge
•
Rating
10
Storage Temperature Range
MCC10100 thru MCC10287
Vdc
°c
T stg
-55 to +150
MCC10500 thru MCC10631
-55 to +150
Recommended maximum ratings above which performance may be degraded'
Operating Temperature Range
°c
TA
MCC10100 thru MCC10287
-30 to +85
MCC10500 thru MCC10631
-55 to +125
6-4
11111111111111111
MECL 10,000
11111111111111111
LOGIC DIAGRAMS AND CHIP GEOMETRIES
Logic diagram, geometry and chip size are shown for each chip. All dimensions
are in mils. Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
MCC1 01 00/MCC1 0500
Quad NOR Gate W/Strobe
4
5
6
4
3
2
5
2
7
6
3
7
9
49 x51
(3MR)
10
14
11
12
15
13
V ce 1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
8 _ _--0
9--10
15
11
MCC10101/MCC10501
Quad OR/NOR Gate
4----"'"
12
13
14
51 x43
(3MR)
'<'1----·2
2
~----5
7-+--~
•
'<'1----3
~----6
10-+--~
'<'1----14
16
~----11
13 --'--~~'d"""'-- 15
12
9
veC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
15
11
MCC10102/MCC10502
Quad NOR Gate
12
13
6
5
14
4
3
2
7
49 x 51
8 _--=::-w-l
(3MR)
9
11....::1--16
10
15
11
6-5
12
13
14
MECL 10,000 (continued)
4
5
6
MCC10103/MCC10503
Quad 2-lnput OR Gate
:cr
2
:[>-
3
11
49 x 51
(3MR)
9
14
VCC1 == Pin 1
V C C2==Pin16
9
16
10
15
VEE==Pin8
11
:~2
51 x 58
(1KN)
10~ 14
6
13
12~9
4
5
3
15
8
VCC1 == Pin 1
VCC2 == Pin 16
VEE == Pin 8
5
10
11
MCC10105/MCC10505
Triple 2-3-2 OR/Nor Gate
44x47
(6MT)
2
1:~~
14
15
6
VCC1 == Pin 1
VCC2 == Pin 16
VEE == Pin 8
11
;~3
MCC1 01 06/MCC1 0506
Triple 4-3-3 NOR Gate
14
13
14
44x47
(6MT)
16
11
12~ 15
12
2
1:~2
13
14
13
12
3
11
~~~
14
9
11
13
12
7
6~
7
3
•
3
8
MCC10104/MCC10504
Quad AND Gate
:~
4
2
15
:e>--
10
5
7
:0:
12
13
6
VCC1 == P n 1
VCC2 == P n 16
VEE == P n 8
15
6-6
MECL 10,000 (continued)
MCC10107/MCC10507
Triple Exclusive OR/MOR Gate
4
5
3
2
7
4~2
5
50 x49
(1TD)
3
9~11
7
16
9
10
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
14~12
15
8
13
15
10
11
12
14
3
2
7
2
9~
4
5
6
7
10
11
13
MCC1 01 09/MCC1 0509
Dual 4-5-lnput OR/NOR Gate
:3x=3
6
12
8
41 x42
(9KN)
16
9
14
15
13
15
VCC1 = 1
VCC2 = 16
VEE = 8
10
11
MCC10110
Dual 3-lnput/3-0utput OR Gate
13
12
14
42 x42
(9KK)
~~~
4
9
10
11
E \\ ::
VCC1 = Pin 1,15
VCC2 = Pin 16
VEE = Pin 8
5
MCC10111
Dual 3-lnput/3-0utput NOR Gate
5
6
7
9
10
11
6=:
6=::
42x42
(9KK)
6
5
4
3
7
8
6
VCC1 = Pin 1, 15
VCC2 = Pin 16
VEE = Pin 8
6-7
9
10
•
MEeL 10,000 (continued)
MCC10113/MCC10513
Quad Exclusive OR Gate
52 x57
(9NA)
5
6
2
4
3
2
7
3
8
16
14
9
15
10
15
11
veC1 = Pin 1
VeC2 = Pin' 16
VEE = Pin 8
MCC10114/MCC10514
Triple Line Receiver
•
7
12~14
Vee1 = Pin 1
Vee2 = Pin 16
VEe = Pin 8
15
I
2
7
50 x50
(3TR)
9~6
13
11
Vss
8
16
9
15
10
11
12
MCC10115/MCC10515
Quad Line Receiver
4
5
:t>--
~
~~~
6
7
12
13
:rr-
Vss
14
\
3
10
13
6
4~2
5
12
13
14
40 x45
(1KP)
2
2
3
14
15
9
16
vec1 = Pin 1
VeC2 = Pin 16
VEe = Pin 8
h-H
15
11
12
13
14
MECL 10,000 (continued)
MCC10116/MCC10516
Triple Line Receiver
41 x 53
(4MJ)
4~2
5
3
2
9~6
10
7
12~14
13
16
15
I
Vee
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
11
'15
12
11
13
14
MCC10117/MCC10517
Dual 2-Wide OR-AND/OR-AND-INVERT Gate
6
5
4
3
2
7
48 x49
(7NE)
14
10
8
16
9
11
15
12
13
10
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
15
11
MCC10118/MCC10518
Dual 2-Wide 3-lnput OR-AND Gate
3
6
12
13
14
5
4
3
4
2
5
2
6
7
7
48x49
(7NE)
9
8
16
9
10
11
10
15
12
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
13
14
3
15
11
MCC10119/MCC10519
4-Wide 4-3-3-3-lnput OR-AND Gate
4
9
47 x47
(1NF)
* Collector Dot
12
14
15
5
4
14
3
7
10
13
13
2
6
11
6
12
vec1 = P n
VeC2 = P n
VEE =Pn
1
2
8
8
9
16
10
15
11
6-9
12
13
14
•
MECL 10,000 (continued)
4
MCC10121/MCC10521
4-Wide OR-AND/OR-AND-INVERT Gate
5
6
3
4
5
6
7
2
7
3
9
8
47 x47
(1NF)
10
11
9
16
10
15
12
VCCl = Pin 1
VCC2 =Pin 16
VEE =Pin 8
13
14
15
12
11
MCC10123
Triple 4-3-3-lnput Bus Driver
;~3
11
13
5
6
4
14
3
2
7
':=r:a=>-2
'2~
13
15
61 x56
(1ND)
8
9
VCC1 = Pin 1
VCC2=Pin16
VEE = Pin 8
16
10
15
14
12
11
MCC10124/MCC10524
Quad TTL-To-MECL Translator
•
5
4
6
2
7
3
10
6
13
5
14
4
3
7
60x59
(7KS)
12
8
16
9
15
15
Gnd = Pin 16
13
VCC (+5.0 Vdc) = Pin 9
14 VEE (-5.2 Vdc) = Pin 8
11
10
11
:~4
MCC1 0125/MCC1 0525
Quad MECL-To-TTL Translator
11
5
4
14
3
2
7
~~5
10~ 12
6
13
12
57 x 62
(3KV)
8
16
9
14~ 13
15
I
Vee
1
Gnd=Pin16
VCC (+5.0 Vdc) = Pin 9
VEE (-5.2 Vdc) = Pin 8
15
10
11
C1n
12
13
14
MECL 10,000 (continued)
MCC10128
Dual Bus Driver
68x63
(7NC)
CONTROL 1
13
5
6
11
01
0
3
4
7
2
10
C LOCK:o--_---I
7
8
RESE T o - - + -__---I
_-+-+-___+--J
2
DISABLE 116
5
DISABLE 2 0 - - - 1 - 1 - - - - - 4 - _
9
16
6
020--+-1--1
15
10
12
11
STROBE03------~
Vee
Gnd1
Gnd2
Gnd3
VEE
4
CONTROL 2
=
=
=
=
=
Pin
Pin
Pin
Pin
Pin
14
13
14
16
1
9
8
MCC10129
Quad Bus Receiver
76x 86
(6LS)
6
14QO
5
4
3
7
2
15 Ql
8
16
3
Q2
9
15
10
2
Q3
Hysteresis
Control
Clock 1 1 0 - - - - - - - - - 1
Reset 1 0 0 - - - - - - - - - - < l ' - - - - - l
Strobe 1 2 o - - - - - - - - - - . . . . . J
Vee = Pin 9
Gnd = Pins 1 and16
VEE = Pin 8
6-11
11
12
13
14
•
MECL 10,000 (continued)
MCC1 0130/MCC1 0530
Dual D Latch
55 x50
(3NF)
51 5--------------~
01
CE 1
7 - - - - -.......
2
4
5
6
3
6------
7
3
R 1 4 __+-_ _ _ _ _ _-J
C
R2
9
9
13-+-------~
10
14
11
12
13
14
CE2 11 - - - 0210-----~
5212--------~
15
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
MCC1 0131/MCC1 0531
Dual D Flip-Flop
51
•
01
CEl
58
5-----·------~
7 - - - - -.......
X
70
(9NB)
2
5
6
4
3
6
3
Rl
4-+------~
C
9
R213-+------~
14
CE2 11
02 1 0 - - - - - - -
11
15
5212-------------~
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
~_1?
12
13
14
MECL 10,000 (continued)
MCC1 0132/MCC1 0532
Dual MUX W/Latch (Common Reset)
58 x 56
(2TG)
All
5
6
011
4
2 01
4
3
7
2
012
5
CE010
3
8
01
Cc 7
R
16
6
9
1502
eEl
9
15
10
021 13
11
12
13
14
1402
02212
VCC1
VCC2
VEE
= Pin
= Pin
= Pin
1
15
8
MCC1 0133/MCC1 0533
Quad Latch
DO
61 x 63
(1MV)
3
2
00
6
GO
5
01
7
CE
4
Cc
13
6
01
5
4
3
2
7
8
16
9
CE 12
02
9
11 02
10
15
G1 10
11
1503
0314
VCC1
VCC2
VEE
=P
=P
=P
n 1
n 16
n 8
6-13
12
13
14
•
MECL 10,000 (continued)
MCC1 0134/MCC1 0534
Dual MUX W/Latch (Separate Select)
58 x 56
(2TG)
011
01
6
6
SOl
4
3
7
012
2
CEl
01
8
16
C
9
CE2
02
15
10
021
12
'1
13
14
S02
02
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
022
MCC1 0135/MCC1 0535
Dual J-K Master-Slave Flip-Flop
S1
•
J1
5
7
2
6
3
60 x 60
(5LD)
6
K1
R1
4
C
9
6
4
3
7
2
8·
S212
12 10
16
9
15
15
10
K211
14
11
R213
VCCl = P n 1
VCC2 = P n 16
VEE = P n 8
~-14
12
13
14
MECL 10,000 (continued)
MCC10136/MCC10536
Universal Binary Counter
90x91
(5KR)
7
10
~
13
C
12
DO
11
01
6
02
5
03
9
51
7
00
14
01
15
02
2
03
3
2
8
16
15
52
Cout
4
9
10
12
11
Vee = Gnd
VEE = -5.2 Vdc
13
MCC1 0137/MCC1 0537
Universal Decade Counter
90 x 91
(5KR)
6
5
3
4
7
10
Cin
13
C
12
DO
11
01
6
02
5
03
9
51
7
52
00
14
01
15
02
2
03
3
2
8
16
15
9
Cout
4
10
Vec
VEE
14
11
= Gnd
= -5.2 Vdc
6-15
12
13
•
MECL 10,000
(continued)
MCC1 0138/MCC1 0538
Bi-Quinary Counter
66x83
(3NA)
6
5
4
3
7
00
9
R
01
13
7
C2
02
4
11
SO
03
2
10
S1
0.0
14
6
S2
5
S3
03
2
15
C1
12
S
16
9
3
15
10
11
12
13
14
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin S
MCC1 0153/MCC1 0553
Quad Latch (Negative Clock)
•
DO
61 x63
(1MV)
3
2
00
6
GO
5
D1
7
CE
4
6
01
5
4
3
2
7
1'
S
Cc 13
16
cr 12
D2
9
9
11 02
10
15
<31 10
11
1503
D314
VCC1 = P n 1
VCC2=Pn16
VEE=PnS
12
13
14
MECL 10,000 (continued)
MCC1 0158/MCC1 0558
Quad 2-lnput Multiplexer (Non-Inverting Output)
Select 9
DO 1 5
1 QO
000 6
01 1
3 ----+--+---J
2 Q1
01 0 4 -----t--+-"-J
02 1 12 ------1---+---.
15 Q2
02 0 13 -----t--+-"-J
03 1 10 - - - - - t - - - - " - J
14 Q3
•
03011 - - - - - - - - " - .
Vee = Pin 16
VEE=Pin8
4
5
6
3
2
60x66
(6LB)
8
~16
9
15
10
11
12
6-17
13
14
MECL 10,000
(continued)
MCC1 0159/MCC1 0559
Quad 2-lnput Multiplexer (Inverting Output)
Select 9
001
5
1 QO
000 6
01 1
3
2 Q1
01
o
4
Enable 7
02 1 12
15 Q2
020 13
~--
03110
II
03011
_
-
Vee = Pin 16
VE E =Pin8
5
4
2
7
60x66
(6LB)
8
!'6
9
15
10
11
12
~-1R
13
14
14Q3
MEeL 10,000 (continued)
MCC1 0160/MCC1 0560
12-Bit Parity Generator/Checker
61 x55
(1MS)
3
6
3
"4
7
5
2
6
8
7
9
9
2
10
.... .....;::r-- 16
10
11
12
15
13
14
12
11
14
13
15
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
MCC10161/MCC10561
Binary to 1-8 Line Decoder (Low)
EO
2
6
00
5
01
4
02
3
03
58x59
(9MT)
E1 15
6
4
5
3
2
1304
7
8
1205
15
11 06
10
1007
A
7
B
9
C 14
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
6-19
11
12
13
14
•
MECL 10,000 (continued)
MCC10162/MCC10562
Binary to 1-8 Line Decoder (High)
EO
2
6
00
5
01
4
02
58 x59
(9MT)
E1 15
6
5
4
3
2
7
3
03
8
1304
16
1205
9
11 06
10
15
11
1007
A
7
B
9
C14
12
13
14
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
MCC10163
Error Detection/Correction Ckt. (IBM Pattern)
Bl 7
67 x 71
(5ND)
B2 6
•
15PO A
B412
6
5
4
3
B711
3 P3
7
2
B5 4
B6 5
2 POs
60 9
8
0-, IU
16
9
15
10
14 Pl
13 P2
VCC1 = Pin 1
VCC2 = Pin 16
VEE, = Pin 8
6·20
11
12
13
14
MECL 10,000 (continued)
MCC10164/MCC10564
8-Line Multiplexer
A
7
B
9
C 10
Enable
2
15 Z
XO
6
X1
5
X2
4
X3
3
X4 11
X5 12
X613
X7 14
•
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
5
2
54x54
(8MA)
16
9
15
10
11
12
13
6-21
14
MECL 10,000
(continued)
MCC10165/MCC10565
Priority Encoder
C 4
DO 5
--t=)
D1 7
--r=
H=>-
~
r-
D2 13
--L
D3 10
-----D5
~
Lb
L
12
~
'4
D6 9
D7 6
~ 3 00
~·C
'--
t->-
~
D4 1 1
.-----t-D
~)
I
'--
D
t-r-;;--~ 1403
'--C
'--
6
4
3
_.~~2
8
(6MG)
16
9
15
10
11
12
13
~-??
~ 15 02
'---
'---
I
II
~ 2 01
~C
_c
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
73x 82
D
r--
I:
rJ>-
-T
r--
f-
14
MECL 10,000 (continued)
MCC1 0166/MCC1 0566
5-Bit Comparator
A4
9
---+-+--O~
B4
10
----e..-.JJ
A 3 12
---+----+--"""
B3
A2 13
B2
2A>B
11
---+-+--O~
14 -~.-j.J
3A__--...J
6-27
12
13
14
•
MECL 10,000 (continued)
MCCl 0176/MCCl 0576
Hex 0 Flip-Flop
005
66 x 72
(4NC)
200
6
01 6
301
02 7
402
5
4
3
7
2
8
9
0310
16
13 03
15
10
0411
1404
05 12
15 05
Clock 9
11
VC C1
VC C2
VEE
= Pin
= Pin
= Pin
12
13
14
1
16
8
MCC10177
Triple MECL-to-MOS Translator (N-Channel)
•
73 x 77
(5TR)
6
15
5
4
3
2
14
2
7
13~
8
,
9
16
10
15
} 1
4
12
7
-- - H-l
-L
11
6
10
11
Vee
Vee
Vss
= Gnd = Pins 1,16
= Pin 8 = -5.2 Vdc ± 5%
= Pin 9 (+5.0 Vdc or +6.0 Vdc ±
6-28
12
10%)
13
14
MECL 10,000 (continued)
MCC10178/MCC10578
Binary Counter
66x83
(3NA)
6
5
4
3
7
2
8
16
9
15
10
11
12
6-29
13
14
MEeL 10,000 (continued)
MCC10179/MCC10579
Look Ahead Carry Block
53 x55
(8MV)
6
en 11
3
2
_~-+_--+-+-...-;
POI4---+-r---+~~
__
PlIO --i-+-----._+_~
,....--t~""------P212----t-r-4r++-~-P3 13 ----+--+-__+-+-+---.:t
GO
4
5
3 Cn +4
4 ----4--+-t-+-+_+_~
16
15
11
12
14
13
132 9 ---+-H-+-~\""""-""'--1
133 5 ----t-+-+_+_~
~---------15PG
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
MCC1 0180/MCC1 0580
Dual High-Speed Adder/Subtractor
69 x 77
(1NE)
II
7 - - - -.......----1
9
--+----1-----1
5
--+--1--"
6
--+--1---'
4 ---+--+---.
~'----15
6
3
2
P-'----3
9
15
10
------t
10------.
12------.
4
7
~~--14
11
5
!""'----2
11
!""'----13
VCC = Pin 16
VEE = Pin 8
6-30
12
13
14
MECL 10,000 (continued)
MC10181/MCC10581
4-Bit Arithmetic Logic Unit
82
X
87
(4EF)
13--------------~
15 -------------,
17 ------------,
3
10
14------'---...,
SO
21
20
80
18
A1
19
81
16
A2
11
82
10
A3
9
83
FO
2
F1
3
12
F2
7
13
F3
6
24
23
14
4
22
15
8
PG
22
23
2
11
51 $'2 $3
5
M
Vee1 = Pin 1
VeC2 ':" Pin 16
Vee = Pin 8
MCC1 0182/MCC1 0582
16-Pin 2-Bit ALU
74 x92
(2TT)
9
10
13
5
6
12
11
~
-
-
-
-
,
~
SO
Cn
5
4
3
7
2
S1
F1
....
....
14
PG
....
15
GG
....
3
C n +2
....
2
FO
AO
BO
A1
B1
4
8
16
9
15
10
11
M
J
7
6
vce 1 = Pin 1
Vee 2= Pin 16
ve e = Pin 8
12
13
14
•
MECL 10,000 (continued)
MCC1 0183/MCC1 0583
4 x 2 (25 complement) Multiplier
.....
8
10
13
7
6
16
15
...
...
...
...
Y-1
9
11
14
5
...
YO
...
19
20
X2
X3
..
18
50
....
21
51
......
22
52
......
23
X1
...
..
...
....
...
17
X-1
XO
53 iIIIII...c
Y1
KO
54
K1
.....
3
K2
K3
55 ....
4
....
2
P
C n +4
M
en
Vcc= Pin 24
= Pin 12
VEE
•
80 x 118
(1PB)
9
8
5
7
4
3
10
2
11
12
t
13
24
14
23
15
16
22
17
18
19
6-32
20
21
MEeL 10,000 (continued)
MCC10186/MCC10586
Hex D Flip-Flop W/Common Reset
66x 72
(4NC)
2 QO
6
4
6
3
3 Q1
2
7
4 Q2
8
9
!'6
·13 Q3
16
10
14 Q4
15 Q5
11
12
14
13
Vee = Pin 16
VEE = Pin 8
Clock 9
Reset 1
MCC10190/MCC10590
Quad IBM-to-MECL Translator
56 x 68
(5TG)
6
:~2
7
:~3
8
10~14
11~
9
13~15.
12~
10
Vss
= Pin 9 Translator
V CC = Pin 9 Receiver
4
3
2
16
16
11
vec1 = Pin 1
Vec2 = Pin 16
VEE = Pin 8
5
12
13
14
•
MECL 10,000 (continued)
MCC1 0191/MCC1 0591
Hex MECL-to-IBM Translator
53x52
(3TG)
7
E
2
9
5
6
3
4
2
6
3
5
7
.10
}1
8
4
·9
16
10
15
15
11
14
11
12
13
14
12
13
VCC1 = Pin 1 = +1.25 Vdc
VCC2 = Pin 16 = Gnd
VEE = pin 8 = -5.2 Vdc
MCC10193
Error Detection/Correction Ckt. (Motorola Pattern)
E1
67 x 71
7---~t-----'-+I
62 6 _----1-----+1
•
(5ND)
......- - - 1 5 P4
64 12 -+----.,1-----'-+1
6
5
4
3
B 7 11-1--...---.,1---+1
}-I----
65 4 -I---:--+--~---\-\
B6 5 -+-+--+--1-+---+1
3 P3
7
2
2 P5
e
80 9 -+-+--+--1-+---'-+1
B3 10-1--++-..-1-+-+1
A.oo.oIIr-_
9
15
10
11
> - - - - - 1 4 P1
>-----13P2
6-34
16
_-..1......,......
12
13
14
MECL 10,000 (continued)
MCC1 0194/MCC1 0594
Dual Simultaneous Bus Transceiver
51 x 51
(5LP)
RE1
5
Din 1A
3 -----\
Din 2A
4 ----I
7
5
Bus A
4
3
2
7
2 D out A
8
~rt:::
Din2B
14---
Din 1B
13---
16
D out B
15
Bus B
12
11
13
14
12
RE2
VCC1
VCC2
VEE
= Pin
= Pin
= Pin
1
16
8
MCC1 0195/MCC1 0595
Hex Inverter/Buffer
A
9 - - -.......----II~
B
5
----+-----II~
55 x56
(7TR)
Q
2
6
6
----+------'-H
5
4
3
3
2
7
8
4
16
9
__~
10----~--~,
10
13
15
12
11
14
11----~--_H
12----------H
VCC1
VCC2
VEE
15
6-35
= Pin
= Pin
= Pin
1
16
8
13
14
•
MECL 10,000 (continued)
MCC10197/MCC10597
Hex AND Gate
A
9
5
55x56
(7TR)
Q
2
B
5
6
3
4
3
6
2
7
8
4
16
9
10
13
10
15
11
12
13
14
,...._ _ _ _ 14
11
12
----+---:--t
--------t
VCC1 = Pin 1
VCC2 == Pin 16
VEE = Pin 8
,...----15
MCC10198
Retriggerable 1-shot Multivibrator
VEE
VCC
65x 74
(3NG)
1
•
6
5
4
3
4
6
2
REx!
7
CExt
5
c_t'os
7
External Pulse
Width Control
O
~
3
8
16
15
10
ENeg
13
Trigger
Input
15
10
13
Hi-Speed
Input
Q
2
VCC1 = Pin 1
VCC2= Pin 16
VEE = Pin 8
R
14
6-36
14
MECL 10,000 (continued)
MCC10210/MCC10610
High-Speed Dual 3-lnput/3-0utput OR Gate
40x46
(B2F)
5
6
5
6
7
9
10
11
2
~:
7
8
16
~:~
9
15
10
14
VCC1
VCC2
VEE
3
4
11
12
14
13
= 1, 15
= 16
=8
MCC10211/MCC10611
High-Speed Dual 3-lnput/3-0utput NOR Gate
40x46
(B2F)
5
6
7
9
10
11
6=:
6=::
6
•
3
7
8
6
9
10
11
VCC1
VCC2
VEE
4
5
= 1, 15
= 16
=8
6-37
12
13
14
MECL 10,000 (continued)
MCC10212/MCC10612
High-Speed Dual 2-NOR/1-0R Gate
46 x 44
(9WJ)
5
6
7
9
10
11
2
4
6
7,
3
2
16
6=:~
9
~5
10
11
VCC1
VCC2
VEE
12
14
= 1, 15
= 16
=8
MCC1 0216/MCC1 0616
High-Speed Triple Line Receiver
•
46x48
(4NE)
4~2
5~3
9~h
1U~;
12~14
13~15
--11
<-I
11
Vee =
Gnd
Vee = -5.2 Vdc
6-38
12
13
14
MECL 10,000 (continued)
MCC1 0231/MCC1 0631
High-Speed Dual 0 Flip-Flop
Sl
5------------~
01
7 - - - - - - -........
CEl
66x56
(3WE)
6
2
5
4
3
6--""'1
7
3
R1
2
8
4--+---------~
CC9
R2
16
13--+---------~
9
15
10
14
13
12
11
CE2 11
14
15
02 10 - - - - - - - - - - .
VCC1
VCC2
VEE
S212------------~
= Pin 1
= Pin 16
= Pin 8
MCC10287
High-Speed 2-Bit Multiplier
68 x 70
(3TT)
6
co
9
aO
6-~------.....
aO'
7
bO
bO'
4
MO
3
5
4
3
------.......j
2
2
SO
7
C1
5
8
-------l
}16
9
a1 11
Sl
A1
10
a1' 10
15
1)1 13
81
1)1' 12
15
C2
11
M 1 14 --------i
'------'
VCC=Pin16
VEE = Pin 8
6-39
12
13
14
•
MECL III INTEGRATED CIRCUITS
MCC 1600 Series
The MECL III Series of circuits presents the system design engineer
with a family designed with even higher performance than MECL II.
• Compatible with MECL II and MECL 10,000
• Propagation Delays Typically 1.0 ns
• Clock Rates Greater than 300 MHz
MAXIMUM RATINGS
Characteristic
I
Symbol
I
Rating
Unit
Vdc
Ratings above which devices life may be impaired:
Power Supply Voltage (Vee = 0)
VEE
- 8 to 0
Input Voltage (Vee = 0)
Vin
o toVEE min
Vdc
'0
40
T stg
-55 to +150
mAde
°e
Output Source Current
Storage Temperature Range
•
Recommended maximum ratings above which performance may be degraded:
Operating Temperature Range
De Fan-Out
(Gates and Flip-Flops)
6-40
TA
-30 to +185
n
70
11111111111111
MCC1600
11111111 " I " I
LOGIC DIAGRAMS and CHIP GEOMETRIES
Logic diagram, geometry and chip size are shown for each chip. All dimensions
are in mils. Chip geometries are subject to change without notice as modifications
are made.
Chip Geometries not scaled to size.
MCC1650
Dual A-D Comparator
6~
:
6
5
3
4
2
D
Q
2
C
Q
3
7
56x 57
(4NG)
8
,.~
D
,:
Q
c"
16
12
VEE = 5.2 Volts
VCC = +5.0 Volts
10
13
15
11
12
13
14
MCC1651
Dual A-D Comparator
V 1a (10) 6
56 x57
(4NGI
2(6)QO
V2a (9) 5
Ca
(8) 4 -----IIIIojC
V1b(16)
V2b (15) 1
11 2 : 1
- :1+
~
6
3 (7) 00
_Q~14(2)_Q1
5
4
3
2
7
8
Cb(1) 13
C
Q
16
15(3)Q1
L..-_ _---'
VCC = +5.0 V = Pin 7,10 - (11), (14)
VEE = -5.2 V = Pin 8 (12)
Gnd = Pin 1,16 (4) (5)
•
Po = 330 mW typ/pkg (No Load)
•
tpd = 3.5 ns typ (MC1650)
= 3.0 nstyp (MC1651)
•
Input Slew Rate = 350 V/jls (MC1650)
= 500 V/jlS (MC1651)
•
Differential Input Voltage:
-5.0 V to +5.0 V (-30°C to +85 0 C)
10
15
11
12
13
14
•
Common Mode Range:
-3.0 V to +2.5 V (-30°C to +850 C) (MC1651)
-2.5 V to +3.0 V (-30°C to +85 0 C) (MC1650)
•
Resolution: ~ 20 mV (-30°C to +85 C)
•
Drives 50
0
n
lines
Number at end of terminal denotes pin number for L package (Case 620).
Number in parenthesis denotes pin number for F package (Case 650).
6-41
•
MCC1600 (continued)
MCC1654
Bi nary Cou nter
80 (3)
81 (7)
00 (5)
01 (6)
82 (9)
83(14)
02 (11)
03(12)
0
Clock 1 (15)
C1
(2)
C2
Clock 2
Q'
o·
o·
Q'
RT
RT
RT
RT
0
C
C
R
R
C
0
R
Reset ( 10)
00 (4)
03 (13)
84x 78
(4TG)
6
5
3
7
2
VCC1
VCC2
VEE
= Pin
= Pin
= Pin
1
16
8
8
16
...
I
This "......... :"'"
,.., rsqu.ires careful and
knowledgeable thermal management to handle the high current
and assure the power dissipation
necessary to ach ieve the high speed
performance. This thermal management should be discussed with
a Motorola device engineer prior to
decision to use the chip.
9
15
10
11
12
13
14
MCC1658
Voltage Controlled Multivibrator
6
11
Vex
2
4
40 x43
(5WJ)
Q
VCC1
VCC2
VEE
5.
2
6
Bias Filter 12
Input Filter 13
5
= Pin
= Pin
= Pin
1
8
5
6
4
11
6-42
12
13
14
MCC1600 (continued)
:~3
6
2
7
:~~
MCC1660 (High Z)
Dual 4-lnput OR/NOR Gate
40x42
(3TW)
14
15
12
13
6
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
3=4+5+6+7
2=4+5+6+7
5
:~2
~~3
MCC1662 (High Z)
Quad 2-lnput NOR Gate
6
5
4
3
2
48x52
(lNJ)
10~ 14
7
8
16
11
12~ 15
13
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
10
2=4+5
15
11
:~2
~~3
10~ 14
MCC1664 (High Z)
Quad 2-lnput OR Gate
6
12
13
5
4
14
3
2
48x52
(lNJ)
7
8
11
16
12~ 15
13
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
10
2=4+5
11
2
Sil
'2il'S
7
C
4
R
9
C
13
R
a
a
15
12
13
14
MCC1666 (High Z)
Dual Clocked R-S Flip-Flop
45 x47
(8TT)
3
VCC1 = Pin 1
VCC2 =Pin 16
VEE = Pin 8
6
5
14
6-43
II
MCC1600 (continued)
6
2
7
:3
11
15
9
14
MCC1668 (High Z)
Dual Clocked Latch
45x47
(8TT)
6
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
5
11
12
13
14
MCC1670(High Z)
Master-Slave Type 0 Flip-Flop
5
S-------,
7 C1
Q 2
9 C2
40x 51
(A1L)
8
Q
11 0 - - - - - 1
3
VCC1
VCC2
VEE
4
7
= Pin 1
= Pin 16
= Pin 8
9
11
R --------'
MCC1672 (High Z)
Triple 2-lnput Exclusive OR Gate
~~2
3
5
•
~~14
13
6
~~15
11
7
2
= (3
•
5) + (3 •
56x 56
(68F)
VCC1
VCC2
VEE
5)
= Pin
= Pin
= Pin
1
16
8
5
MCC1674 (High Z)
Triple 2-lnput Exclusive NOR Gate
~~2
3
5
~~14
13
6
~~15
11
7
7
56x 56
(68F)
VCC1
VCC2
VEE
2
= (3
•
5) + (3 •
= Pin
= Pin
= Pin
5)
6-44
1
16
8
MCC1600 (continued)
MCC1678 (High Z)
BI-Quinary Counter
SO (14)
S1 (10)
00 (13)
01 (11)
S2 (3)
S3 (7)
02 (4)
03 (6)
0'
RT
Clock (15)
C1
0
R
Reset (9)
00 (12)
6
C2 (2)
5
4
03 (5)
3
7
This chip requires careful and
knowledgeable thermal management to handle the high current
and assure the power dissipation
necessary to achieve the high speed
performance. This thermal management should be discussed with
a Motorola device engineer prior to
decision to use the chip.
2
84x78
(4TG)
8
16
9
10
11
12
13
14
MCC1688
Dual 4-5 Input OR/NOR Gate
8~
14
12
13
11
15
9
7
10
6
49 x 42
(9NF)
2
3
VCC1 = 4
VCC2 = 5
VEE = 12
11
13~
VCC1 = Pin 1
VCC2 = Pin 16
VEE = Pin 8
15
0
1.6
II
14
15
16
2
1
3
4
5
MCC1690
UH F Prescaler Type D Flip-Flop
3
7 C1
9 C2
2
43x39
(6WK)
2
7
8
1101
1202
3
VCC1 = Pin 1
VCC2 = Pin 16
VEE=Pin8
16
9
11
6-45
12
MCC1600 (continued)
MCC1692
Quad Line Receiver
48 x 52
(1NJ)
6
4
3
2
:=:J>---2
7
:=:J>---3
8
1 0 = : J > - - - 14
11
9
13=:::rr::
5
16
10
15
15
12
9
11
VBB
12
13
14
VCC1 = Pi'n 1
VCC2 = Pin 16
VEE = Pin 8
MCC1694
4-Bit Sh ift Register
99 x 101
(8WJ)
II
50
(2)
00
(13)
51
(10)
01
(12)
52
(3)
02
(4)
S3
(6)
03
(5)
01 (14)
02 (15)
Clock
Reset
2
~~::~-------+--------~------~------~
16
5
This chip requires careful and
knowledgeable thermal management to handle the high current
and assure the power dissipation
necessary to achieve the high speed
performance. This thermal management should be discussed with
a Motorola device engineer prior to
decision to use the chip.
VCC1 = Pin 1
VCC2 '" Pin 16
VEE '" Pin 8
6-46
MECL II INTEGRATED CIRCUITS
MCC 1200 Series
The MECL II Series of circuits presents the system design engineer with a family designed to
permit system implementation with the fewest number of devices.
• Propagation Delays Typically 4 ns
• Excellent Noise Immunity
• Simultaneous OR/NOR Outputs
• High Fan-In and Fan-Out
MAXIMUM RATINGS
Characteristic
Symbol
Ratings above which device life may be impaired:
Power Supply Voltage (VCC - 0)
Rating
Unit
Vdc
VEE
-10 to 0
Input Voltage (VCC = 0)
Vin
o to VEE
Vdc
Output Source Current
10
T stg
20
mAdc
-55 to +150
°c
Storage Temperature Range
Recommended maximum ratings above which performance may be degraded:
Operating Temperature Range
TA
-55 to +125
AC Fan-I n (Expandable Gates)
m
AC Fan-Out* (Gates and Flip-f:lops)
n
20
15
°c
-
* Although a minimum dc fan-out of 25 is guaranteed in each electrical specification, it is recommended that the
maximum ac fan-out of 15_ be used for high-speed operation.
6-47
•
1111111111111
MCC1200
1111111111111
LOGIC DIAGRAMS AND CHIP GEOMETRIES
Logic diagram, geometry and chip size are shown for each chip. All dimensions
are in mils. Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
MCC1201
6-1 nput Gate
40
X
5
55 (41E)
4
2
3
:~~
6
8
9
10
3
11
12
13
1=4+5+6+8+9+10
11=4+5+6+8+9+10
tpd
Vee = Pin 14
VEE = Pin 7
14
= 4.0 ns
13
10
11
12
MCC1204/MCC1206
Dual 4-lnput Gate
45
:~~5
3
•
X
5
50 (250)
3
4
2
6
4
10~ 9
11
12
8
13
14
Vee = Pin 14
VEE=Pin 7
5=1+2+3+4
13
6=1+2+3+4
tpd
11
10
= 4.0 ns
12
MCC1207
Triple 3-lnput Gate
51
X
54 (240)
4
3
2
5
OR
'14
45 x 47 (9EG)
~y~t--13
6 - _..... 1
11~ 10
12
13
Vee = Pin 14
VEE = Pin 7
7
12
8
4=1+2+3
6-48
9
10
11
MCC1200 (continued)
MCC1210/MCC1211/MCC1212
Quad 2-lnput Gate
5
4
3
2
39 x 40 (05N)
6
7
12=D- 11
14
8
13
3
=
13
Vee = Pin 14
VEE=Pin 7
1 + 2
9
10
tpd = 4.5 ns
11
12
MCC1213
AC-Coupled J-K Flip-Flop
2------.
3
4
13
5
6
58 x 65 (310)
8
5
4
3
2
6
tpd
=
6.0 ns
Vee = Pin 14
VEE = Pin 7
7
14
13
2
3
4
10
9
13
5
11
12
6
•
8
9
10
11
12
tpd
MCC1227
AC-Coupled J-K Flip-Flop
= 4.0 ns
MCC1214/MCC1215
Dual-Clocked R-S Flip-Flop
6=CJ=0 2
8=CJ=0
4
5
C
R
C
R
10
9
Q
Q
5
4
2
6
1
12
54 x 62 (230)
7
Vee = Pin 14
VEE = Pin 7
13
14
8
13
tpd
9
= 6.0 ns
10
t::_AQ
12
MCC1200 (continued)
MCC1216/MCC1233
Dual Clocked Single Rail R-S Flip-Flop
s=fJ='
4
C
5
5
2
54 x 62 (230)
2
9=4]="
10
C
tpd
5
= 6.0
7
14
12
13
Vee = Pin 14
VEE = Pin 7
ns
9
10
MCC1217
Level Translator
~~,
1:~
3
4
2
7
14
13
8
Vee
VEE
= 3-4-5-6
= 15
52 x 54 (838)
5
11
tpd
12
6
12
1
4
= Pin 14
= Pin 7
9
13
10
ns
12
11
MCC1218
Level Translator
•
44 x 45 (220)
2
8
3
4
1~~'
tpd'" 19 ns
14
11
12
13
8
= 1+2+3+4
or
8
= 6+10+11+12+13
9
Vee = Pin 14
VEE = Pin 7
6-50
10
11
12
MCC1219
Full Adder
56 x 60 (SOK)
6
7
tpd = 3.0 to 8.0 ns
Vee = Pin 14
VEE = Pin 7
MCC1220
Quad line Recelver
.
39 x 54 (280)
5
2
~=t>-3
:=t>-4
:=t>-10
Vee
VEE
= Pin 14
= Pin 7
7
8
12==l>13
11
9
tpd = 4.0 ns
6-51
12
•
MCC 1200 (continued)
MCC1221
Full Subtractor
56
X
5
60 (aOK)
4
3
2
6
7
14
Vee = Pin 14
VEE:: Pin 7
13
12
~ = ~~~j + YXBj + VXBj + VXBj
D = YXBj + YXBj + YXBj + VXBj
Bo = VXBj + YXBj + YXBj + YXBj
Bo = VXBj + VXBj + VXBj + YXBj
tpd
= 4.0 to 11
ns
MCC1222
Type D Flip-Flop
5
4
6
i i
I
10
•
4
C,52 5,
2
C2
12
D,
13
60x 63 (318)
Q
5 (25)
Q
6 (25)
2
7
14
8
D2R1 R2
I
8
9
I
13
tpd = 8.0 ns
Vee:: Pin 14
VEE = Pin 7
9
:~6
4
MCC1223
Dual 4-lnput Clock Driver
1
47 x 42 (60T)
5
9~
10
8
11
13
5
12
11
10
4
3
2
6
7
14
8
12
6=2+2+4+5
1=2+3+4+5
tpd = 2.0 ns
Vee = Pin 14
VEE == Pin 7
6-52
13
9
10
11
12
MCC1200 (continued)
MCC1224
Dual 2-lnput Expandable Gate
~=tT=:
5
4
3
2
6
45 x 50 (250)
10
~~=Q==:
7
14
13
8
5=2+3
6=2+3
Vee = Pin 14
VEE = Pin 7
13
9
tpd = 4.0 ns
10
12
'11
MCC1225
Dual 4-5 I nput Expander
~~~1
3
_
13
14
5
27 x 37 (360)
12
3
4
6
2
7
:~_\
1
-7
~
14
8
Vee = Pin 14
VEE = Pin 7
11
13
9
12
10
MCC1226
Dual 3-4 I nput Transmission
Line and Clock Driver
45 x 40 (6DM)
5
:3L:L:
Bp
9
12
10
13
4
3
2
6
Vee = Pin 14
VEE = Pin 7
7
14
8
11
13
9
3=4+5+6
2=4+5+6
10
tpd = 2.0 ns
6-53
11
12
•
MCC1200 (continued)
MCC1228
01
02
03
04
Dual 4-Channel Selector
7
9
10 c r - - - - - - ,
11 0--------,
60 x 64 (59E)
51 3
52 2
a:
w
o
o
w
o
6
o
5
4
3
2
7
01'150-------~
Vee = Pin 16
8
02'140---------~
VEE = Pin 8
03' 130-------,
04' 120--------,
16
9
15
51'4
52' 5
rc
w
o
o
o
w
o
10
11
tpd
= 5.0 or
12
14
13
10 os*
*Oata Input = 5.0 os
Select loput = 10 ns
Output Function:
Si
52 01 + 51
52
02 + 51 52 03 + 51 52 04
MCC1230
Quad Exclusive OR Gate
5
4
3
2
60 x 70 (73A)
•
6
7
Vee = Pin 14
VEE = Pin 7
14
8
13
tpd
2=1
9
= 5.0 ns
0
10
3+1.3
MCC1231
Quad Exclusive NOR Gate
4
5
12
11
3
2
60 x 70 (73A)
6
7
Vee"" Pin 14
VEE = Pin 7
14
8
13
9
tpd = 5.0 ns
10
6-54
11
12
MCC1200 (continued)
R
2
3
K
4
e
5
J
S
6
7
10
S
Q
15
11
J
e
13
K
14
R
2
7
6
12
5
6
MCC1232
100 MHz AC-Coupled Dual
J-K Flip-Flop
Q
60 x 60 (6EH)
8
16
9
Vcc '" Pin 16
VEE'" Pin 8
15
10
tpd:: 4.5 ns
6
9
11
12
MCC1234
Type D Flip-Flop
5
3
4
2
6
6
Q
8
D
2
12
11
3
Fh
C2
10
RT
Q
7
14
R
Vcc = Pin 14
VEE'" Pin 7
4
8
tpd = 4.0 ns
MCC1235
Tri pie Line Receiver
49 x 50 (488)
3~1
8
2
6
A
6~8
10~12
7
Vce = Pin 14
VEE = Pin 7
13
8--
3
4
5
2
11
12
11
10
A
5
14
47 x 48 (26K)
5
4
13
14
8
13
9
tpd
=
5.0 ns
9
MCC1239
Quad Level Translator
6
5
4
3
2
7
~~2
:~7
42 x 56 (41C)
8
11~ 10
Vcc
VEE
12
= Pin
= Pin
13~ 15
14
12
10
*MCC1236
tpd
= 12
2 - 3
16
8
16
9
10
15
ns
11
+4
*MCC1236-See Page 6-59.
,:u:::~
12
13
14
•
MCC1200 (continued)
3
MCC1240/MCC1270
Quad Latch
42 x 46 (61T)
5
6
4
3
6
9
Vee = Pin 14
VEE = Pin 7
7
14
8
13
tpd = 8.0 ns
C1 (Clock)
13
9
10
C2 (Strobe)
11
8
12
A
11
B
10
9
C
0
00
13
01
14
02
15
MCC1245
Decoder - Nixie® Driver
13
85 x 95 (99F)
03
04
2
05
3
06
4
07
5
08
6
09
7
4
12
5
VCC=Pin16
VEE = Pin 8
11
6
8
7
9
10
3
4
5
MCC1247
Quad 2-lnput AND Gate
~=O-2
•
14
16 15
1
2
3
2
:=o-s
6
60x 70 (73A)
7
14
VCC=Pin14
VEE = Pin 7
9
'1:=01 1 = 0 - 12
13
2 = 1 • 3
8
13
9
tpd = S.O ns
11
10
5
MCC1248
Quad 2-lnput NAND Gate
4
12
3
2
:=C>-2
6
60x 70 (73A)
:=C>-S
7
Vcc=Pin14
VEE = Pin 7
1:=C>-9
1 1 = C > - 12
13
2 = .,.---;-J
8
3
9
tpd = S.O ns
10
fi-nn
11
12
MCC1200 (continued)
MCC1259
Dual Full Adder
A1
B1
6
7
Ci1
5
A1 B1
4
A1 B1
3
(AS
2
Sum 1
66 x 78 (9FC)
+ AB)1
5
4
3
2
7
8
C0 1
16
11 A2B2
A2 10
B2
9
9
12 A2B2
13 (AS
15
10
+ AB)2
14 Sum 2
15
12
11
14
13
Co 2
N.M. = 150 mV
tpd (Add delay) = 9.0 ns typ
Po = 375 mW typ
MCC1262
Quad 2-lnput NOR Gate
~=L>-4
3
2
7
:=1>-7
54 x 52 (2KB)
Vcc=Pin16
VEE = Pin 8
10=1>-9
11
13=L>-
4
5
6
8
9
16
10
12
15
4=2+3
14
11
tpd = 2.0 ns
:=1>3
MCC1263
Hi-Speed Quad 2-lnput OR/NOR Gate
5
14
13
12
4
3
2
6
54 x 52 (2KB)
:=1>6
7
1~=L>-8
12=L>-
13
3
=1+
11
8
N.M. = 150 mV
tpd = 2.0 ns
Po = 320 mW
14
9
2
13
10
a
c:.,
11
12
•
MCC1200 (continued)
MCC1266
Triple Line Receiver
3=tr2=1
4
3
4
5
2
2
A
6
:=i1>-a
54 x 52 (2KB)
7
A
a
10=m.=.12
11
13
[3-9
Vee = Pin 14
VEE = Pin 7
9
tpd = 2.0 ns
13
10
5
4
MCC1267
Quad MTTL to MECL Translator
With Strobe
6
2
7
59 x 60 (2CR)
Gnd = 16
Vee (+5.0 Vdc) = 9
VEE (-5.2 Vdc) = 8
12
11
6
12
4
5
3
2
a
3
10
14
16
9
15
15
tpd = 5.0 ns typ
11
13
14
2=5-6
4=5-6
10
11
MCC1268
Quad MECL to MTTL Translator
With Totem-Pole Outputs
:=1>-4
•
6
12
5
14
13
4
7
~=1>-5
57 x 62 (7CF)
Gnd = 16
Vee (+5.0 Vdc) = 9
VEE (-5.2 Vdc) = 8
1 0 = 1 > - 12
11
2
a
9
1 4 = 1 > - 13
15
tpd ,.. 5.0 typ
4=
10
1+2
11
6-58
12
13
14
MCC1200 (continued)
MCC1236
16-Bit Coincident Memory
67 x 70(32G)
6
14
7
8
9
13
10
11
12
Write "1"
12
"1" Out
10
X1
Sense
Write
Circuits
13
"0" Out
11
Write "0"
DC Input Loading Factor: X, Y = 2
Write = 0.5
DC Output Loading Factor
Cycle Time = 50 ns
=5
tpd = 17 ns typ
Power Dissipation = 250 mW typ
Maximum Power Supply Variation = ±.1 0%
Noise Immunity
6-59
=
150 mV
•
1111111111111111111111
MEMORIES CHIPS
1111111111111111111111
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
MCMC5003
512-Bit Programmable ROM
PIN CONNECTIONS
N.C.
24
2
N.C.
23
3
AO
22
4
Al
21
5
A2
20
6
CEl
19
CE2
18
A3
17
A4
16
10
A5
15
11
Gl
14
8
129 N.C .
•
9
8
7
6
4
5
10
3
11
109 x 154
(5RP)
24
23
13
14
15
16
17
18
6-60
19
20
21
22
MEMORIES CHIPS (continued)
MCMC5004
512-Bit Programmable ROM
PIN CONNECTIONS
24
2
23
3
22
4
21
6
19
20
18
17
8
16
10
15
11
14
12
13
109 x 154
(5RP)
10
8
9
7
6
5
4
3
•
11
24
23
13
14
22
15
16
17
19
18
6-61
20
21
MEMORIES CHIPS (continued)
MCMC10143
8 x 12 Multiport Register File
PIN CONNECTIONS
vcco
92 x99
(SMW)
Vcc
24
2
aB1
VCC1
23
3
aBo
aC1
22
4
REB
aco
21
5
B2
REC
20
6
BO
Clock
19
7
B1
C2
18
8
WE1
Co
17
9
WEo
C1
16
10
Do
A1
15
11
D1
Ao
14
12
VEE
A2
13
8
9
7
4
5
3
10
11
2
12
24
13
23
22
14
15
16
17
18
19
20
21
MCMC10144
256-Bit Random Access Memory
85 x iOi
(SWM)
PIN CONNECTIONS
•
5
2
AO
Vcc
16
A1
Dout
15
3
A2
WE
14
4
A3
Din
13
5
CE1
A7
12
6
CE2
A6
11
7
CE3
A5
10
8
VEE
A4
9
4
7
2
8
16
15
10
12
6-·62
13
MEMORIES CHIPS (continued)
MCMC10145
64-Bit Register File (RAM)
79 x 84
(A8A)
6
PIN CONNECTIONS
5
3
4
2
Vee
(Gnd)
16
Q2
15
2
3
Q3
14
4
WE
13
5
03
12
6
02
11
7
AO
10
8
A1
9
7
!
8
16
9
15
10
11
12
13
14
MCMC10146
1024-Bit Random Access Memory
6
5
4
3
PIN CONNECTONS
2
7
D out
Vee
16
2
AO
Din
15
8
3
A1
eE
14
9
4
A2
WE
13
5
A3
A9
12
6
A4
A8
11
7
A5
A7
10
8
VEE
A6
9
16
15
10
11
12
13
122 x 128
(9TR)
6-63
14
•
MEMORIES CHIPS (continued)
MCMC10147
128-Bit Random Access Memory
94x95
(7PH)
PIN CONNECTIONS
6
VCC1
VCC2
16
2
A2
DOUT
15
3
A1
CE1
14
4
AO
CE2
13
5
A3
WE
12
6
A4
D
11
7
A5
A6
10
8
VEE
N.C.
9
4
5
3
7
2
8
16
15
10
11
14
13
12
MCMC10149
1024-Bit Programmable ROM
114 x 120
PIN CONNECTIONS
•
5
(9TN)
3
4
VCP
A1
7
A2
8
4 AO
5
2
A6
6 A5
Dout3 11
7 A7
A410
8
A3 9
VEE
16
15
10
11
6-64
12
13
14
PHASE-LOCKED LOOP INTEGRATED CIRCUITS
The MCC12000/12500 family offers a choice of specially-designed integrated circuits for performing phase-locked loop functions: phase detection,
frequency division, filtering, and voltage-controlled signal generation. MECL
III and MECL 10,000 processing are used throughout this family.
MAXIMUM RATINGS
(Applicable to all MCC12000/12500 Series devices except MC12014.)
I
Characteristic
Ratings above which device life may be impaired:
Symbol
Rating
Unit
Power Supply Voltage (VCC = 0 Vdc)
VEE
-8 to 0
Vdc
Base Input Voltage (VCC -,- 0 Vdc)
Vin
o to VEE
< 50
< 100
mAde
Output Source Current - Continuous
- Surge
10
Storage Temperature Range
Vde
°c
T stg
MCC12000 Series
-55 to +150
MCC12500 Series
-55to+150
Recommended maximum ratings above which performance may be degraded:
Operating Temperature Range
°c
TA
MCC 12000 Series
-0 to +75
MCC12500 Series
-55 to +125
6-65
•
11111111111111111111111111"11111111111
PHASE-LOCKED LOOP CHIPS
I 111111111111111111111111111111111111
LOGIC DIAGRAMS AND CHIP GEOMETRIES
Logic diagram, geometry and chip size are shown for each chip. All dimensions are in mils.
Chip geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
MCC1648
Voltage Controlled Oscillator
33 x42
(7TC)
3
5
3
7
14
8
Vee (+5.0 Vdc)
VEE (-5.2 Vdc)
= Pins 1,14; Gnd = Pins 7, 8
= Pins 7, 8; Gnd = Pins 1, 14
12
10
MCC12000
Digital Mixer/Translator
'=tJ='3
I
•
2
3
I
e
Q
------r=x=.
48x55
(6WJ)
12
5
4
3
11
6
10
2
7
4
5
14
8
13
9
9
10
6
8
Vee
= Pin 14
VEE = Pin 7
0
On
0
0
0
0
1
0
1
0
1
1
1
1
6-66
°n+1
11
12
PHASE-LOCKED LOOP CHIPS (continued)
MCC12002/MCC12502
Analog Mixer
5
4
3
2
6
41 x50
(8MT)
7
14
8
13
9
10
11
12
Regulator Bypass 1
14 VCC
Local Oscillator Input 2
13 Resistor Load
Local Oscillator Input 3
12 Data Output
11 Data Output
Alternate Signal Input 4
10 Regulator Bypass
Null Adjust 5
Null Adjust 6
9 Mixer Signal Input
VEE 7
8 Mixer Signal Input
NC - No Connection
MCC12012
Two Modulus Prescaler
2
7
8
16
9
15
10
11
I nput Toggle
12
0
13
14
16 VCC
03 2
15 04
03 3
14 Q4
(-) 4
13 E2 MECL
(+) 5
12 CLOCK
MTTL VCC 6
11 E1 MECL
MTTL Output 7
10 E4 MTTL
V:EE 8
9 E3 MTTL
6-67
62 x64
(9WJ)
•
PHASE·LOCKED LOOP CH IPS
(continued)
MCC12013/MCC12513
Two Modulus Prescaler
6
11
VCCO
1
Q4
2
0
16 VCC
15 Clock
14 Vss
(-) 4
13 E1 MECL
(+) 5
12 E2 MECL
11
MTTL VCC 6
12
5
Q4 3
62 x67
(3PS)
4
13
E3 MECL
3
10 E4 MTTL
MTTL Output 7
9
VEE 8
14
E5 MTTL
15
2
16
MCC12014
Counter Control. Logic
- - -Early
- -Decode
- - - - - - ,I
10
S1
P1
14
PO
P2
11
P3
13
12
56 X 57
(3TP)
fin
(Clock)
6
5
4
3
r2
7
8
II
Vee
= Pin
16 I
Gnd = Pin 8
~
9
16
I
I
10
I
11
I
20
2
21
3
22
4
23
5
T-I
I
82
_ _ _ _ _ .-1I
6-68
12
13
14
PHASE·LOCKED LOOP CHIPS (continued)
MCC12020/MCC12520
Offset Control
3
R/T 1
Q
VCC = Pin 14 = +5.0 Vdc
Gnd = Pin 7
o @ Clock, R/T = +0.5 Vdc
1 @ Clock, R/T = +4.0 Vdc
------+---1~-------'
Clock 1 0 - - - - - - +.......
1.....-_ _ _ ,
5a
D
Invert
In 13 - - - - - - - -
Invert
_ - - - - - - - 1 1 Out
MC12020. MC12520
5
3
Functional Truth Table
Input
Output
Q
Q
0
0
1
0
1
1
1
1
1
1
0
1
0
1
0
1
1
0
1
RfT Clock
0
41 x44
(1WB)
14
7
13
10
11
MCC12021/MCC12521
Offset Programmer
P 1 11
55x63
(5WE)
---I---L~
6 Out 1
6
81 10 - - - t - - i - L - - - "
P2 13 ---I---+--L-..I
5
4
3
7
5 Out 2
2
82 12
---I-+-L~
8
P3 15
---+--I-L---"
40ut3
8314
16
15
10
P4
1
84
2 ---I---+--L-..I
Enable In 9
9
30ut4
--[:>0- 7
Enable Out
6-69
11
12
13
14
•
PHASE·LOCKED LOOP CH IPS (continued)
MCC12030
41 x 50
(7TW)
To Be Introduced
MECL
to
Voltage
Reg.
MTTL
Translator
6-70
10
MTTL
Output
PHASE-LOCKED LOOP CHIPS (continued)
MCC12061/MCC12561
Crystal Oscillator
3
4
6
7
2
46 x 48
(8RH)
8
16
9
Note: 0.1 J.lF power supply
pin bypass capacitors
not shown.
Bias
Bypass
0.1 J.lF
VCC
AGC
Filter
0.1 J.lF
15
10
11
Sine Wave
Output
~
-
3
7
-----
+
+
2
14
12
14
13
MECL
Output
13
15
12
11
VCC
MECL
to
MTTL
Translator
Voltage
Reg.
10
MTTL
0 utput
MLMC565
Linear Phase-Locked Loop
48x 51
(3PJ)
NC
8
7
6
5
NC
Phase
Comparator
9
4
NC
VCO
Output
Phase
Comparator
veo Input
5 1------'
3
+VCC
2
External
C for veo
Reference
Output
VCO
Control
10
NC
7
8
External
R for veo
Voltage
6-71
•
PHASE·LOCKED LOOP CHIPS (continued)
MCC14046
MeMOS Phase-Locked Loop
Consult Factory
PCAin 14
PCSin
2
Comparator 1
13 PC2 0ut
Phase
Comparator 2
3
PCP out
4
VCOin
VDD
VSS
= Pin
= Pin
Voltage
Controlled
. Oscillator
(VeO)
9
16
8
Inh
5
•
6-72
VCO out
11 R1
12 R2
6
7
C1A
C1S
10 SF out
Source Follower
I __
V ~ ____
0
~~ _______
L
PC1 0ut
I
~
015 Zener
LSI INTEGRATED CIRCUITS
The MCC8500 Series is a bipolar LSI family of low-cost products directed
to the computer, industrial, and consumer markets, for both MPU and
non-MPU applications. The MCC8500 family offers production-proven, costeffective, off-the-shelf availability of standard bipolar LSI functions.
MAXIMUM RATINGS
Symbol
Value
Unit
VCC
-0.5 to +7.0
Vdc
Input Voltage
Vin
-1.0 to +5.5
Vdc
Operating Temperature Range
TA
o to +75
T stg
-55 to +165
°c
°c
Rating
Supply Voltage
Storage Temperature Range
•
6·73
11111111111111
LSI CHIPS
I"
I " IIIIII11
CHIP GEOMETRIES
Geometry and chip size are shown for each chip. All dimensions are in mils.
Chi p geometries are subject to change without notice as modifications are made.
Chip Geometries not scaled to size.
MCC8500 CRCC Generator
8
7
6
4
5
PIN CONNECTIONS
74 x 103
24
3
9
23
2
2
10
11
24
12
23
13
22
14
15
17
16
18
19
20
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
21
MCC8501 Error Pattern Register
5
4
3
2
PIN CONNECTIONS
74 x 103
6
16
7
16
8
9
15
14
10
11
12
13
6-74
2
C01
C04
15
3
CO2
C05
14
4
COP
C06
13
5
COO
C07
12
6
Reset
Clock
11
7
Read
VRC
8
Gnd
10
9
LSI CHIPS (continued)
MCC8502 Longitudinal Redundancy Check Character/Data Register
74 x 103
·8
7
6
5
4
PIN CONNECTIONS
24
3
9
2
10
11
24
12
23
13
14
15
22
16
17
18
19
2
06
Q1
3
07
01
22
4
Me
Reset
21
23
5
Q5
03
20
6
Q7
OP
19
7
Q6
QP
18
8
05
QO
17
9
Match
DO
16
15
10
04
Q2
11
Q4
02
14
12
Gnd
Q3
13
21
20
MCC8503 Universal Polynominal Generator (UPG)
74 x 103
5
4
3
PIN CONNECTIONS
2
14
6
13
12
11
14
7
10
9
8
8
13
9
10
11
12
6-75
•
LSI CH IPS (continued)
MCC8504 Universal Presettable Polynominal Generator (UPPG)
69 x 103
9
8
PIN CONNECTIONS
7
10
16
6
11
5
12
4
13
2
15
3
14
4
13
5
12
6
11
7
10
8
3
14
2
15
16
MCC8505 MOS Dynamic Memory Address Refresh Logic Circuit
74 x 103
•
4
5
3
PIN CONNECTIONS
2
6
7
8
16
9
15
14
10
11
12
13
6-76
A2in
Vee
2
A1in
A3in
15
3
AOin
A4in
14
4
AO out
A5in
13
5
Ref
A5 0ut
12
16
6
A10ut
A4 0ut
11
7
Reset
A3 0ut
10
8
Gnd
A20ut
9
LSI CHIPS (continued)
MCC8506 Polynominal Generator
74
5
X
103
4
PIN CONNECTIONS
2
6
PM
2
7
16
8
15
16
Vee
P
15
3
Ne
WD
14
4
WC
R/W
13
5
RC
RD
12
6
E
11
9
7
PS
Dout
Inv
8
Gnd
Shift
14
9
A2
10
13
NC
11
10
=
No Connection
12
MCC8507 Priority I nterrupt Controller
74x103
15
14
13
12
11
PIN CONNECTIONS
10
0
eS1
Vee
IRQ
24
eso
24
22
INO
23
21
5
IN1
22
20
9
16
8
17
7
18
19
6
20
5
21
4
22
23
24
2
3
6-77
2
Stretch
3
4
23
6
TN2
21
19
7
IN3
E
18
8
IN4
IN5
R/W
A1
17
9
10
IN6
A2
15
11
iN7
A3
14
12
Gnd
A4
13
16
•
LSI CHIPS (continued)
MCC8520 DSKEW/QUEUE Register
125 x 123
15
14
13
12
PIN CONNECTIONS
11
10
24
9
16
8
17
7
18
19
6
5
20
4
21
22
23
24
2
3
•
6-78
2
ICA
RFA
23
3
DA
RFB
22
4
DB
Out 2A
21
5
20
6
OCB Out 1A
Out 2B
ICB
7
R
Out 1 B
18
8
DC
Out2c
17
9
19
ICC
Out 1c
16
10
Inv
B2
15
11
OCC
B1
14
12
Gnd
RFC
13
CHAPTER 7
Digital Saturated logic
(MTTl, MDTl, MRTl, MHTl, SUHl)
Page
Silicon-Aluminum Metallization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Motorola Stress T.E.S.T. ......................................... 7-2
Processing Flow Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Process Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
First Order Option - Chip Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
7-4
Second Order Option - Wafer Form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
Non-Standard Chip Processing Capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4
General Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Family Listings and Geometries
MTTL SUH L MCC400/450/500/550 Series. . . . . . . . . . . . . . . . . . . . . . . ..
7-6
MHTL MCC660 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-19
MRTL MCC700/800/900 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-37
MDT L MCC830/930 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-39
MTTL SUHL MCC2000/2050/2100/2150 Series ..................... 7-61
MTTL MCC3000/3100 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7-72
MTTL Complex Functions MCC4000/4300 Series. . . . . . . . . . . . . . . . . . .. 7-95
MTTL SUHL MCC5000 Series ................................... 7-118
MTTL MCC54HOO/74HOO Series ................................. 7-124
MTTL SSI MCC5400/7400 Series ................................ 7-125
MTTL MSI MCC5400/7400 Series ................................ 7-140
MTTL Complex Functions MCC7200/8200 Series .................... 7-174
MTTL Complex Functions MCC8300/9300 Series .................... 7-185
7-1
•
DIGITAL SATURATED LOGIC
INTEGRATED CIRCUIT CHIPS
MTTL
MDTL
MRTL
SUHL
MHTL
DIODE ARRAYS
CUSTOM CIRCUITS
Motorola is firmly committed to supply a complete
line of TTL, DTL, SUH L, HTL, RTL, diode arrays and
custom digital chips.
By combining a N.A.S.A. Class A approved wafer
area with technology advantages (Silicon-Aluminum
metallization) and state-of-the-art screening methods
(Total Electrical Stress Test) overall chip reliability
is maximized.
MOTOROLA STRESS T.E.S.T.
Si-AI METALLIZATION
II
Silicon-Aluminum metallization is utilized on all
TTL and SUHL product lines. This process provides
several important advantages over pure Aluminum
metal systems. The result is increased quality and
more reliable product:
1. Mean-times-before-failure due to electromigration are extended through the addition of
Silicon.
2. Produces improved step coverage, as deposition
temperatures can be increased without etch pit
problems.
3. Etch pit formation at the metal-semiconductor
surface interface in the preohmic contact areas
is minimized.
4. Hillock formation (protrusions from the metal
surface) is reduced due to addition of the
silicon.
5. Provides more desirable interface conditions
between metal and insulation glass in the manufacture of multilayer metal circ.uits.
6. Excellent edge definition in the metal patterning.
Motorola now has available an additional test procedure at wafer probe for all TTL and Saturated Logic
product lines. This special testing is called Motorola
Stress T.E.S.T. (Total Electrical Stress Test). These
tests are designed to eliminate any electrically weak
device, even though it maybe completely within all
other specified parameters. By screening out these
weak devices, overall reliability is increased due to a
reduction of infant mortality failures as well as a
deletion of potential future failures.
Motorola Stress T.E.S.T. consists of two basic
test modes: Overvoltage or stress testing and leakage
testing. The overvoltage tests screen out any device
elements with voltage sensitive oxide Of diffusion
faults which constitute latent reliability field hazards
under normal operating conditions. The leakage tests
eliminate any devices which have low leakage current
paths which would exist due to soft or shorted junctions, diffusion faults or surface problems.
Overall, the Motorola Stress T.E.S.T. provides
several important features:
7-2
1. Overall reliability on a level with "burned-in"
product.
2. Reduced Infant-Mortality rate.
3. Higher reliability than devices 100% visually
screened to Level A criteria.
4. A truly objective means of screening for improved reliability.
Each Digital Saturated logic chip and wafer receives
100% electrical probe and visual inspection. Every die
is glass passivated and gold alloy backed,
Specific processing received by each die and wafer
is detailed on the following flow chart.
DIGITAL SATURATED LOGIC CHIP
PROCESSING FLOW CHART
I
1ST ORDER OPTION
CHIP FORM
I
I
I
WAFER FABRICATION
I
STABILIZATION BAKE
I
100% UNIT PROBE
I
I
I
I
2ND ORDER OPTION
WAFER FORM
I
SCRIBE
AND BREAK
VISUAL INSPECTION
OF UNSCRIBED WAFER
I
J
LOAD INDIVIDUAL
MULTI-PAKS
LOAD INDIVIDUAL
WAFER-PAKS
I
I
100% VISUAL
INSPECTION
a.A. VISUAL INSPECTION
AND TAMPER PROOF SEAL
I
I
LABEL WAFER-PAKS
a.A. VISUAL INSPECTION
AND TAMPER PROOF SEAL
I
I
OUTGOING a.A.
INSPECTION
LABEL MUL TI-PAKS
I
I
SHIP WAFER-PAKS
TO CUSTOMER
OUTGOING a.A.
INSPECTION
I
SHIP MULTI-PAKS
TO CUSTOMER
7-3
•
PROCESS DESCRIPTION
SECOND ORDER OPTION- WAFER FORM
Stabilization Bake:
Each wafer is subjected to stabilization bake at
elevated temperature without electrical stress as a
preconditioning treatment.
Visual Inspection:
Each unscribed wafer is visually inspected for gross
processing and handling defects. Reject wafers are removed.
100% Unit Probe:
Load Wafer-Paks:
All Digital Saturated Logic Chips are 100% probed
The individual wafer-paks are loaded with one
to ensure meeting the DC electrical specifications - wafer per wafer-pak.
presented on Motorola standard data sheets. Probe
limits are guard-banded at 25 0 C to separate chips into a.A. Visual Inspection:
Commercial and Military temperature ranges. The
The wafers are reinspected and "tamper-proof"
100% probe testing usually consists of all DC paramseals affixed by Q.A. personnel.
eters and functionality tests; Total Electrical Stress
Label Wafer-Paks:
Testing (T.E.S.T.) is also available as an oPtional
screen. AC and DC parameters which cannot be tested
A label is affixed to each wafer-pak which includes
directly to data sheet limits are guaranteed to an LTPD
device type, mask number, wafer lot number, date
of 20/accept on 2 (over rated operating temperatures).
code and quantity of good die per wafer.
Outgoing a.A. Inspection:
All lots are inspected and labeling, counts, and
final packaging are verified.
Ship Wafer-Paks to Customer.
NON-STANDARD CHIP
PROCESSING CAPABILITIES
FIRST ORDER OPTION- CHIP FORM
Scribe and Break:
The probed wafer is scribed and broken into individual chips and electrical rejects are removed.
Load Multi-Paks:
Chips are loaded into a waffle type carrier using a
vacuum needle.
100% Visual Inspection:
Each chip is visually inspected and rejects are
removed.
Military temperature range chips are inspected to
Motorola specification 12M55367J which meets or
exceeds MIL-STD-883 method 2010.2 condition B~
Commercial temperature range chips are inspected to
Motorola specification 12M53030J, which meets
the intent of MI L-STD-883B.
•
a.A. Visu~!
The standard Digital Saturated Logic Chips as presented in this data book are selected by many customers to meet a wide variety of application requirements.
Nevertheless, there are situations when a designer
can benefit from a non-standard device for a specific
circuit requirement.
To satisfy these needs, any device from Motorola's
extensive lines of Digital Saturated Logic circuits may
be purchased on a specially negotiated basis. Nonstandard capabilities include, but are not limited to
the following:
•
!!"!sp@ctioo;
A ·sample is taken from each lot and visually inspected to the same criteria as the total lot. Military
temperature range product must meet 1.5% A.O.Q.L.
(Average Outgoing Quality Level) and commercial
temperature range product must meet 2.5% A.O.Q.L.
All Carriers have "tamper-proof" seals affixed by Q.A.
personnel.
Label Multi-Paks:
Each individual carrier receives a label which
includes device type, mask number, wafer lot number,
date code and quantity.
Outgoing a.A. Inspection:
All lots are inspected to verify labeling, counts and
final packaging.
Ship Multi-Paks to Customer.
7-4
•
•
•
•
•
•
•
•
•
•
•
•
•
Encapsulation of samples from chip lot for lot
qualification
Temperature testing on encapsulated sample
lots to guarantee performance over temperature
range
Special visual criteria
SEM inspection of metallization
Bondability testing
Maintenance of diffusion lot integrity
Additional electrical testing and selection
Special labeling
Flip-chip technology for high volume, low cost
hybrid microcircuits
Generic data
Reliability data
Layout tolerances
Custom chip design
Total Electrical Stress Testing (T.E.S.T.)
Wafer-Pak
GENERAL PHYSICAL CHARACTERISTICS
OF DIGITAL SATURATED LOGIC CHIPS
The following characteristics represent the vast
majority of all Digital Saturated Logic Chips. Since an
individual chip type may vary slightly, contact Motorola for information regarding physical characteristics
critical to a particular application. The overall size
and final metallization pattern is shown on the following pages for each chip. The metallization patterr.
shows the position and identification for each pad.
1. Chip thickness 9 ± 1 mil
2. Passivation 9-11 kA
3. Front metallization type:
TTL, SUHL - Silicon Aluminum
DTL, RTL, HTL,
Diode Arrays - Pure Aluminum
4. Metallization thickness:
.
Single layer metal - 11-14 kA
Double layer metal - 1st layer 7-8.5 kA
Double layer metal - 2nd layer 20-22 kA
5. Back metallization - Gold, alloyed
6. Pad dimensions
Typical
4.5 x 4.5 mils
Minimum 4.0 x 4.0 mils
7. Overall chip dimensions
As given for individual device type. ± 5.0 mils
should be allowed for scribe tolerance.
PACKAGING
Digital Saturated Logic Chips are available in three
package options: Multi-Pak for chips, Wafer-Pak for
wafers, and prebonded onto a continuous reef of tape
(M.E.S.A.-Pak).
Wafers are placed in a plastic box, between two
layers of mylar or inert filter paper sandwiched between two layers of polyfoam. The plastic box is
securely taped shut and allows no movement of the
wafer.
M.E.S.A-Pak
The M.E.S.A.-Pak (Motorola Etched Strip Assembly) is a new innovation within the chip industry.
Dice may be ordered pre-bonded to an etched
metal tape pattern. The pattern is etched onto a continuous reel of tape and registered to align with bonding pads of conventional die.
The M.E.S.A. method of chip mounting offers excellent heat conductivity away from the die. Bond
strength of die/foil connections far exceeds conventional wire bonds.
The reel carriers provide a low cost means of automated handling, assembly and testing. Not all device
types are presently available in the M.E.S.A.-Pak.
Consult your local Motorola representative for assistance.
DEVICE DATA
Detailed information is presented in Motorola
data books and on detailed data sheets. The following
pages contain a description of each device, logic diagram, chip geometry and pin identification.
All pin numbers are referenced to the equivalent
pinout of dual-in,line packages.
Multi-Pak
The Multi-Pak is a non-spill type waffle carrier
consisting of a two-inch square with 100 compartments arranged in a 10 by 10 matrix tray with a transparent cover. The chips are cbvered within the carrier
by antistatic inert filter paper. The Multi-Pak carrier
is designed to provide maximum device protection,
permit partial removal of chips and resealing of carrier,
and supply a convenient container for unused device
storage.
•
7-5
1111111111111111111
MTTL -SUHL
1111111111111 IIIIII
MCC400/450 Series (0 to +750 C)
MCC500/550 Series (-55 to +125 0 C)
These integrated circuits comprise a family of transistor-transistor logic designed for general
purpose digital applications. The family has a medium operating speed (20 MHz clock rate), good
external noise immunity, high fan-out, and the capability of driving lines up to 600 pF capacitance.
Type
o to 75°C
•
MCC400
MCC401
MCC402
MCC403
MCC404
MCC405
MCC406
MCC407
MCC408
MCC409
MCC410
MCC411
MCC412
MCC413
MCC414
MCC415
MCC416
MCC419
MCC420
MCC421
MCC422
MCC423
MCC424
MCC425
MCC426
MCC427
MCC428
MCC429
MCC450
MCC451
MCC452
MCC453
MCC454
MCC455
MCC456
MCC457
MCC458
MCC459
MCC460
MCC461
MCC462
MCC463
MCC464
MCC465
MCC466
MCC469
MCC470
MCC471
MCC472
MCC473
MCC474
MCC475
MCC476
MCC477
MCC478
MCC479
-55 to +1250 C
MCC500
MCC501
MCC502
MCC503
MCC504
MCC505
MCC506
MCC507
MCC508
MCC509
MCC510
MCC511
MCC512
MCC513
MCC514
MCC515
MCC516
MCC519
MCC520
MCC521
MCC522
MCC523
MCC524
MCC525
MCC526
MCC527
MCC528
MCC529
MCC550
MCC551
MCC552
MCC553
MCC554
MCC555
MCC556
MCC557
MCC558
MCC559
MCC560
MCC561
MCC562
MCC563
MCC564
MCC565
MCC566
MCC569
MCC570
MCC571
MCC572
MCC573
MCC574
MCC575
MCC576
MCC577
MCC578
MCC579
Function
Dual 4 Input NAND Gate
Expo 4 Wide 2-2-2-3 Input AOI Gate
8 Input NAND Gate
2 Wide 3 Input AOI Gate w/Gated Complement
Expo 3 Wide 3 Input AOI Gate
Expo 2 Wide 4 Input AOI Gate
Expo 8 Input NAND Gate
Line Driver
Quad 2 Input NAND Gate
4 Wide 3-2-2-3 Input Expo for AOI Gates
Dual 4 Input Expo for AOI Gates
Dual 4 Input Expo for NAND Gates
Triple 3 Input NAND Gate
R-S Flip-Flop
Gated R-S Flip-Flop
AND J-K Flip-Flop
OR J-K Flip-Flop
Triple 2-lnput Buss Driver
Expo Dual 2 Wide 2-lnput AOI Gate
AC Coupled R-S Flip-Flop
Dual Type D Flip-Flop
Dual J-K Flip-Flop (separate clock)
Dual J-K Flip-Flop (commo,.. clock)
Hex Inverter
Dual 3-lnput Pulse Shaper/Delay AND Gate
OR Expo Dual 4-lnput AND Gate
Dual 2-Wide 2-3 Input OR Expander
Hex Inverter
Dual 4 Input NAND Gate
Expo 4 Wide 2-2-2-3 Input AOI Gate
8 Input NAND Gate
2 Wide 3 Input AOI Gate w/Gated Complement
Expo 3 Wide 3 Input AOI Gate
Expo 2 Wide 4 Input AOI Gate
Expo 8 Input NAND Gate
Line Driver
Quad 2 Input NAND Gate
4 Wide 3-2-2-3 Input Expo for AOI Gates
Dual 4 Input Expo for AOI Gates
Dual 4 Input Expo for NAND Gates
Triple 3 Input NAND Gate
R-S Flip-Flop
Gated R-S Flip-Flop
AND J-K Flip-Flop
-OR J-K Flip-Flop
Triple 2-lnput Buss Driver
Expo Dual 2 Wide 2-lnput AOI Gate
AC Coupled R-S Flip-Flop
Dual Type D Flip-Flop
Dual J-K Flip-Flop (separate clock)
Dual J-K Flip-Flop (common clock)
Hex Inverter
Dual 3-lnput Pulse Shaper/Delay AND Gate
OR Expo Dual 4-lnput AND Gate
Dual 2-Wide 2-3 Input OR Expander
Hex Inverter
7-6
Wafer
Mask
Set #
Chip
Size
(Mils)
2BN
58E
6DN
30F
89A
4DA
6DN
76P
8DB
89A
4DA
4DA
45V
24A
03A
8EX
8EX
78E
9RW
03A
80V
2TJ
2TJ
80E
76E
76E
76E
79M
2BN
58E
6DN
30F
89A
4DA
6DN
76P
8DB
89A
4DA
4DA
45V
24A
03A
8EX
8EX
78E
9RW
03A
80V
2TJ
2TJ
80E
76E
76E
76E
79M
35x42
36x50
36x38
48x53
49x36
36x38
36x38
39x53
44x45
49x36
36x38
36x38
44x45
41x47
47x52
53x63
53x63
50x50
40x45
47x52
62x65
59x66
59x66
68x54
43x48
43x48
43x48
53x61
35x42
36x50
36x38
48x53
49x36
36x38
36x38
39x53
44x45
49x36
36x38
36x38
44x45
41x47
47x52
53x63
53x63
50x50
40x45
47x52
62x65
59x66
59x66
68x54
43x48
43x48
43x48
53x61
111111111111111111111111111111111111111111111111
MTTL SUHL MCC400/450/500/550 Series
111111111111111111111111111111111111111111111111
MCC400/MCC450/MCC500/MCC550
Dual 4 Input NAND Gate
35 x 42
(2BN)
5
4
PIN CONNECTIONS
3
6
(1)13~
1
12
2
(1)
(1)
(1)
7
2
3
(1)5~
(1)
.6
(1)
(1)
9
13
7
9
Vcc
= Pin 4
GND= Pin
10
10
11
tpd = 10 ns typ
P D = 30 mW typ/pkg
12
11
MCC401 /MCC451 /MCC501 /MCC551
Expandable 4 Wide 2 2 2 3 Input AND OR INVERT Gate
PIN CONNECTIONS
36 x 50
(1) 14
(58E)
5
4
(1)
1
(1)
2
(1)
3
(1)
5
(1)
6
(1)
(1)
(1)
Emitter
7
8
9
3
2
6
7
8
14
9
13 _ _ _ _ _ __
Collector 1 2 - - - - - - - - -
13
11
10
11
12
Vcc
= Pin 4
tpd = 12 ns typ
GN D = Pin 10
Po = 30 mW typ/pkg
MCC402/MCC452/MCC502/MCC552
8 Input NAND Gate
36 x 38
(6DN)
5
PIN CONNECTIONS
4
3
6
!j!i~12
2
(1)
(1)
7
7
9
(1) 13
12=~1-·=2-·~3-·~5-·~6~·~7~·~9~·-1~3
9
Vcc= Pin 4
10
13
GNO = Pin
10
12
All dimensions are in mils.
7-7
tpd= 12 nstyp
Po = 15 mW typ/pkg
•
MTTL SUHL MCC400/450/500/550 Series (continued)
MCC403/MCC453/MCC503/MCC553
2 Wide 3 Input AND OR INVERT Gate With GatedComplement
48 x 53
PIN CONNECTIONS
(30F)
5
4
3
(1) 13
(1) 14
(1)
(1)
2
6
------r--........
12
1
2
3
(1)
11
5
6
(1)
(1)
(1)
7
7
12=11·13·14
13
11
10
11=(1.2
12
VCC
3)
0
+
(5·6·7)
tpd = 11 ns typ
= Pin 4
Po = 35 mW typ/pkg
GNO= Pin 10
MCC404/MCC454/MCC504/MCC554
Expandable 3 Wide 3 Input AND OR INVERT Gate
PIN CONNECTIONS
49x36
(89A)
4
5
(1)
1
~H ~
3
2
6
(1)
5
(1)
6
(1)
12
7
(1) 8
(1) 9
(1) 11
7
8
14
9
13
10
•
11
12=(1-2-3)+(5-6-7)+(8-9-11)+ .. ,
12
VCC = Pin 4
tpd = 12 ns typ
GNO = Pin 10
Po = 25 mW typ/pkg
MCC405/MCC455/MCC505/MCC555
Expandable 2 Wide 4 Input AND OR INVERT Gate
PIN CONNECTIONS
36x38
(4DA)
5
4
(1) 1 4 - - (1) 1
(1) 2
(1) 3 - - -
3
12
6
(1)
2
(1)
(1)
(1)
7
Emitter
Collector
8
14
9
13
5---
6
7
8--4.
__
13------~
9-------~
12=(14·1·2 · 3 ) + ( 5 . 6 . 7 . 8 ) + ...
Vcc
10
= Pin
4
GNO = Pin 10
12
7-8
tpd
= 12
ns typ
Po = 20 mW typ/pkg
MTTL SUHL MCC400/450/500/550 Series (continued)
MCC406/MCC456/MCC506/MCC556
Expandable 8 Input NAND Gate
PIN CONNECTIONS
36 x 38
(6DN)
5
4
(1) 14
(1 ) 1
(1 ) 2
(1 ) 3
(1) 5
(1 ) 6
(1 ) 7
(1 ) 8
Base 9
Collector 13
3
6
2
7
8
14
9
13
12 = 1
10
Vcc
12
• 3
• 5
= Pin 4
GNO = Pin 10
12
• 7
• 8
• 14
...
tpd = 18 ns typ
Po = 15 mW typ/pkg
MCC407 /MCC457 /MCC507 /MCC557
Line Driver
PIN CONNECTIONS
39 x 53
(76P)
(1.5)13~
4
5
(1.5)
(1.5)
(1.5)
3
6
7
(1.5)5~
2
~
12
1
2
3
(1.5)
(1.5)
(1.5)
_____ .
6
7
11
9
12=1·2·3·"13
Vcc
9
13
=
Pin 4
tpd = 25 ns typ
GNO = Pin 10
@
1000 pF Load
Po = 60 mW typ/pkg
10
11
12
MCC408/MCC458/MCC508/MCC558
Quad 2 Input NAND Gate
PIN CONNECTIONS
44 x45
(1 )
(8DB)
1=r=>5
4
2
(1 )
3
3
(1 )
6
2
(1 )
:=r=>-7
(1 )
7
(1 )
:=r=>-11
(1) 12 = r = > 14
(1) 13
14
8
3=~
13
9
Vcc
=
Pin 4
. tpd = 10 nstyp
GNO = Pin 10 Po = 60 mW typ/pkg
10
11
12
•
MTTL SUHL MCC400/450/500/550 Series (continued)
MCC409/MCC459/MCC509/MCC559
4 Wide 3 2 2 3 Input Expander for AND OR INVERT Gates
49x36
(89A)
4
5
PIN CONNECTIONS
3
(1) 13
(1) 14
(1) 1
2
6
--=
7 __
8
14
9
13
10
(1)
2
(1)
3
(1)
5
(1)
6
(1)
(1)
(1)
8
9
7
VCC = Pin 4
GND = Pin 10
12
11
MCC41 O/MCC460/MCC51 O/MCC560
Dual 4 Input Expander for AND OR INVERT Gates
36 x 38
(4DA)
4
5
PIN CONNECTIONS
3
Collector
2
6
(1)14~
1
-
(1)
(1)
(1)
7
8
14
9
13
Emitter
Emitter
Hl ~LX-\9
(1)
(1)
7
8
\.
-~"
VCC=Pin4
GND = Pin 10
12
11
10
\'2
-~13
2
3
Collector
MC.C411/MCC461/MCC511/MCC561
Dual 4 Input Expander for NAND Gates
II
36x38
(4DA)
5
4
PIN CONNECTIONS
3
Collector
2
6
11)'4~_\'2
1) 1
7
1)
1)
2
3
-~13
Base
8
Base
14
(1)
(1 )
9
(1)
(1)
13
10
11
12
GND = Pin 10
7-10
~~_\g
~
- \
Collector
11
MTTL SUHL MCC400/450/500/550 Series
(continued)
MCC412/MCC462/MCC512/MCC562
Triple 3 Input NAND Gate
PIN CONNECTIONS
44x45
(45V)
(1)
3
4
5
(1)
(1 )
2
\1)
(1)
(1)
1::[J-2
3
5
6
7 ::[J-- 9
8
(1)11~
n~g~14
14
10
12
11
13
tpd = 10 ns typ
Po = 45 mW typ!pkg
Vee =
Pin
4
GNO = Pin 10
MCC413/MCC463/MCC513/MCC563
R-S Flip Flop
41 x47
(24A)
PIN CONNECTIONS
4
5
3
m~1~g12Q
2
6
!H~
9
(1)
13
10
11
~
6
9
11Q
12
t+ = 15 ns typ
t- = 20 ns typ
Po = 30 mW typ!pkg
Vee = Pin 4
GNO = Pin 10
7-11
II
MTTL SUHL MCC400/450/500/550 Series
(continued)
MCC414/MCC464/MCC514/MCC564
Gated R-8 Flip Flop
47 x52
(03A)
PIN CONNECTIONS
4
5
'3
(1 )
(1 )
S1 14
1
S2
2
S3
6
(1 )
AO 13
7
(2) CLOCK
(1)
2
(1 )
14
13
9
10
11
12
(1 )
Vec
3
5
So
R1
R2
R3
(1)
(1)
12 Q
11 Q
6
7
9
= Pin 4
GNO = Pin 10
t+ = 7.5 ns typ
t- = 20 ns typ
Po = 30 mW typ/pkg
MCC415/MCC465/MCC515/MCC565
AND J-K Flip Flop
53x 63
(8EX)
5
4
PIN CONNECTIONS
3
6
2
(1)
~13
(1 )
7
(1 \
12 Q
hi
II
(1.5)
CLOCK
3
(1)
J1
J2
J3
5
6
7
(1 )
SET
(1) PRESET
8
(1 )
B
(1)
14
9
13
9
10
11
12
tpd- '" 25 ns typ
tpd+ '" 13 ns typ
Po '" 40 mW typ/pkg
VCC = Pin 4
GNO = Pin 10
7-1 ?
11 Q
MTTL SUHL MCC400/450/500/550 Series (continued)
MCC416/MCC466/MCC516/MCC566
OR J-K Flip Flop
53 x 63
(SEX)
PIN CONNECTIONS
4
5
3
6
2
7
(1 )
(1 )
M213
M114
(1 )
(1 )
K2
K1
12
1
2
(3)CLOCK 3
8
14
9
13
11
10
12
(1 )
(1 )
J1
J2
6
~1)
1)
L1
L2
8
(1 )
5
7
SET 9
Vee = Pin 4
GND = Pin 10
tpd- = 25 ns typ
tpd+ = 13 ns typ
P D = 50 mW typ/pkg
MCC419/MCC469/MCC519/MCC569
Triple 2-1 nput Buss Driver
50 x50
(7SE)
PIN CONNECTIONS
S
4
3
2
6
5k
(1 )
7
(1 )
:=L)-1
8
14
65 = L ) - 7
(1)12=L)(1) 13
9
13
10
11
12
14~
Sk
(1 )
(1 )
11
8
9
Sk
4
1=2-3
Propagation Delay Time (using S.O k ohm pullup resistor):
. tpd+ = 50 ns typ
tpd_ = 15 ns tvP
Po = 54 mW tvp/pkg
Vee = Pin 4
GND = Pin 10
7-13
•
MTTL SUHL MCC400/450/500/550 Series (continued)
MCC420/MCC470/MCC520/MCC570
Expandable Dual 2-Wide 2-lnput AND OR INVERT Gate
PIN CONNECTIONS
40x45
(9RW)
(1)14~
1
(1)
5
3
4
6
2
(1)
2
(1)
3
(1)
5
(1)
6
(1)
9
13
13==(1'14)+(2' 3)
7
8
---14
(1) 11
Emitter 7------~
Collector 8 - - - - - - - - - - - - - "
9
13
10
12 == (5 • 6) + (9 . 11) + ...
12
11
tpd = 12 ns typ
Po = 40 mW typ/pkg
Vee = Pin 4
GNO = Pin 10
MCC421/MCC471/MCC521/MCC571
AC Coupled R-S Flip Flop
5
4
3
2
6
47 x 52
(03A)
9
PIN CONNECTIONS
13
Ro
10
11
(1 )
12
12
a
11
a
f= 10 MHz typ
Po = 30 mW typ/pkg
Vee =·Pin 4
GNO=Pin10
7-14
So
MTTL SUHL MCC400/450/500/550 Series (continued)
MCC422/MCC472/MCC522/MCC572
Dual Type D Flip Flop
62x 65
(80V)
PIN CONNECTIONS
(2)
4
5
SET14~
3
(1)
6
2
7
8
14
10
2
Q
13
(2) CLOCK
1
a
12
(3)
RESET
3
(2)
SET
(1 )
D
(2) CLOCK
6
Q
9
:
Q"
f = 30 MHz typ
12
11
8j)=
RESET
(3)
13
9
D
Po= 84 mW typ/pkg
Vcc = Pin 4
GNO = Pin 10
MCC423/MCC473/MCC523/MCC573
Dual J-K Flip Flop (separate clock)
59x 66
(2TJ)
PIN CONNECTIONS
5
4
(* )
SET 14
(1 )
J
2
(1.5)
Ci:OCi<
3
(1)
K
(1)
3
2
Q
13
1
a
12
J
6
Q
9
( 1.5)
C'L'O'CK
5
(1 )
K
7
a
11
(* )
SET
8
6
7
14
8
13
9
10
11
12
VCC
GNO
= Pin 4
= Pin 10
f
Po
7-15
= 45 MHz typ
= 110 mW tvp/pkg
•
MTTL SUHL MCC400/450/500/550 Series (continued)
MCC424/MCC474/MCC524/MCC574
Dual J-K Flip Flop (common clock)
59x66
(2TJ)
PIN CONNECTIONS
SET 1 4 - - - - -
5
4
3
2
2
13
K
1
12
(3) CLOCK
3
(1 )
J
(1 )
6
7
( .. ) RESET
14
5 - - + - - -.......
(1 )
J
6
9
(1 )
K
7
11
13
9
a ------'
SET
12
11
10
Vcc = Pin 4
f
GND = Pin 10
= 45 MHz typ
Po =
110 mW typ/pkg
MCC425/MCC475/MCC525/MCC575
Hex Inverier
68x54
(80E)
5
4
PIN CONNECTIONS
3
3-{>o--2
6
2
5-{>o--6
II
7
a-{>o--7
11 - { > o - - 9
a
14
9
13
12 - { > o - - 1 3
14-{>o--1
10
11
12
Vcc
GND
= Pin 4
= Pin 10
Positive Logic: 2
=3
Total Power Dissipation = 90 mW typ/pkg
Propagation Delay Time = 10 ns typ
7-16
MTTL SUH L MCC400/450/500/550 Series (continued)
MCC426/MCC476/MCC526/MCC576
Dual 3-lnput Pulse Shaper/Delay AND Gate
43x48
(76E)
PIN CONNECTIONS
3
4
5
AESISTOA3~
2
6
7
8
(1 )
(1 )
BASE 2
1
13
14
P)
8
(1)
7~
1)
(1 )
14
12
12 = 1 - 13 _ 14
RESISTOR:
BASE 6
9
11
13
tpd = 15 ns ty p
Po = 60 mW typ/pkg
12
11
10
Vee
= Pin 4
GNO = Pin 10
MCC427/MCC477 /MCC527 /MCC577
OR Expandable Dual4-lnput AND Gate
PIN CONNECTIONS
43x48
(76E)
5
4
Il! ~~'2
3
(1
2
6
!j!!~"
7
8
14
9
13
14
13
12=1-2-3-14
+ ...
tpd = 10 ns typ
10
11
Po = 38 mW typ!pkg
12
Vee
GNO
7-17
= Pin 4
= Pin 10
MTTL SUHL MCC400/450/500/550 Series (continued)
MCC428/MCC478/MCC528/MCC578
Dual 2-Wide 2-3 Input OR Expander
43x48
(76E)
PIN CONNECTIONS
4
5
,
3
(1) 13
2
6
12
(1) 14
(1 )
7
(1 )
(1 )
14
8
9
13
10
-~
1
2
3
(1 )
5
(1 )
(1 )
6
(1 )
a
(1 )
9
,
11
7
-~
12
11
Vee = Pin 4
GNO = Pin 10
MCC429/MCC479/MCC529/MCC579
Hex Inverter
53 x 61
79M
4
5
II
6
PIN CONNECTIONS
\
\
3
/
(1 )
1-{>o--2
(1 )
3--{>o--5
(1 )
6-{>o--7
(1 )
a-{>o--9
= '1
2
7
14
8
(1) 11-{>o--12
9
13
10
11
(1) 13-{>o--14
tpd = 10 ns typ
Po = 90 mW typ/pkg
12
Vee=Pin4
GNO = Pin 10
7-18
1111111111
MHTL
111111 " II
MCC660 Series (-30 to +75 0 C)
Motorola's MHTL integrated circuits are especially designed to meet the requirements
of industrial applications because of the outstanding noise immunity. MHTL circuits provide
error-free operation in high noise environments far beyond the tolerance of other integrated
circuit families. Multifunction packages and broad operating temperature range further tailor
this family to the industrial designer's requirements.
Type
MCC660
MCC661
MCC662
MCC663
MCC664
MCC665
MCC666
MCC667
MCC668
MCC669
MCC670
MCC671
MCC672
MCC673
MCC674
MCC675
MCC676
MCC677
MCC678
MCC679
MCC680
MCC681
MCC682
MCC683
MCC684
MCC685
MCC686
MCC688
MCC689
MCC690
MCC691
MCC696
MCC697
MCC699
Function
Exp. Dual 4-lnput Gate (active pullup)
Exp. Dual 4-lnput Gate (passive pullup)
Exp. Dual 4-lnput Line Driver
Dual J-K Flip-Flop
Master Slave R-S Flip-Flop
Triple Level Translator
Triple Level Translator
Dual Monostable Multivibrator
Quad 2-lnput Gate (passive pullup)
Dual 4-lnput Expander
Triple 3-lnput Gate (passive pullup)
Triple 3-lnput Gate (active pullup)
Quad 2-lnput Gate- (active pullup)
Dual 2-lnput AOI Gate
Dual 2-lnput AOI Gate
Dual Pulse Stretcher
BCD-to-Decimal Decoder-Driver
Hex Inverter With Strobe (active pullup)
Hex Inverter With Strobe (without output resistors)
Dual Lamp Driver
Hex Inverter
Hex Inverter (O.C.)
Quad Latch
Quad 2-lnput Exclusive OR
Decade Counter
Binary Counter
4-Bit Shift Register
Dual J-K Flip-Flop
Hex Inverter (high voltage)
Hex Inverter (active pullup)
Hex InverterITranslator
Dual Line Driver Receiver
Hex Inverter (Passive Pullup)
Dual 2-lnput Power AND Gate
7-19
Wafer
Mask
Set #
Chip
Size
(Mils)
8MG
8MG
1TI
2EA
85M
5MG
4MF
1GD
8MG
59H
76H
76H
8MG
8MG
8MG
1MH
2ME
95R
95R
6BE
95R
95R
2AP
8TJ
3TA
3TA
3TA
9TW
48W
48W
48W
9DD
95R
3NB
45x43
45x43
38x44
61x62
60x50
40x40
42x49
53x57
45x43
30x30
50x58
50x58
45x43
45x43
45x43
55x58
58x63
52x54
54x52
48x56
52x54
52x54
64x67
53x61
85x86
85x86
85x86
68x68
53x55
53x55
53x55
58x59
54x52
64x66
•
111111111111111111111111
MHTL MCC660 Series
111111111111111111111111
MCC660
Expandable Dual4-lnput Gate (active pull up)
PIN CONNECTIONS
45 x43
(8MG)
(1)
(1)
~3=>-6('0)
(1)
5
(1)
3
9
(1 )
2
6
(,)
,
1O~8
('1) 12
7
('0)
(1) 13
14
8
13
9
11
= Pin 14
GNO = Pin 7
Vee
tpd
Po
10
11
= 110 ns typ
= 88 mW typ/pkg (Inputs High)
26 mW typ/pkg (I nput Low)
12
MCC661
Expandable Dual 4-lnput Gate (passive pull up)
45x43
(8MG)
PI
PIN CONNECTIONS
2
6
(1)9~ 8(10)
7
14
(1) 10
(1) 12
13
(1) 13
8
9
10
11
12
Ve~ = Pin 14
GNO = Pin 7
11
tpd = 125 ns ty'p
Po
= 88 mW typ/pkg (Inputs High)
26 mW typ/pkg (I nput Low)
All dimensio'ns are in mils.
7-20
MHTL MCC660 Series (continued)
MCC662
Expandable Dual 4-1 nput Line Driver
38x44
(1TT)
PIN CONNECTIONS
(1)
1
(1)2
5
4
3
(1) 45
(1 )
6
3
H
(3~)
~~:1~~(3~)
7
(1)12
(1) 13
11
Vee = Pin 14
GNO = Pin 7
3
8
9
10
11
tpd = 140 ns typ
Po
= 180 mW typ/pkg (Inputs High)
26 mW typ/pkg (Input Low)
MCC663
Dual J-K Flip Flop
61 x 62
(2EA)
PIN CONNECTIONS
5
4
3
(1)
2
6
7
14
8
13
9
10
11
I~
I~
5 -'----i
(1.5) 4 - - - - - 1
Ro
(1)
2---"'"
(2)
3 - - - - -....I
(1)
9-----1
(1.5)10-----1
RO
(1)
12-----1
(2)
11 - - - - - - - '
Vee = Pin 14
GNO,-, Pin 7
12
7-21
:1
:1
6
(9)
1
(9)
8
(9)
13 (9)
fTog = 3.0 MHz/typ
Po =
200 mW typ/pkg
•
MHTL MCC660 Series (continued)
MCC664
Mastin-Slave R-S Flip Flop
60 x50
(85M)
5
PIN CONNECTIONS
4
(1) 10
3
( 1)
3
(1)
4
(3)
2
6
2
Q
6 (8)
6.
9 (8)
( 1) 11
7
(1) 12
14
9
(1)
5
Vee = Pin 14 fTog = 3.0 MHz typ
GND = Pin 7 PD = 160 mW typ/pkg
10
12
11
MCC665
Triple Level Translator
40x40
(5MG)
PIN CONNECTIONS
(1)
•
5
4
MHTL
3
6
7
1 - 0 - -3
\
2
2
14
:Y"
8
13
(MDTL = 8)
(MTTllll = 5.5)
(MRTL = 5)
9
1 1 - - - D - 1O
10
11
12
3
7-22
=1
• [2]
Vee = Pin 14
GND=Pin7
MHTL MCC660 Series (continued)
MCC666
Triple Level Translator
(1.0)
MDTL
MTTL
42 x49
(4MF)
5
(0.8)
MRTL
(1.0)
3
4
PIN CONNECTIONS
r
12 MHTL
(10)
13
12=2-(1)+13
5
2
6
3
6
14
8 - _C
4
tpd = 75 ns typ
-'lliiiOiiiii
Po = 105 mW typ/pkg
13
10
8
9
11
10
Vee = Pin 14
GND = Pin 7
12
11
MCC667
Dual Monostable Multivibrator
53x57
1GD
PIN CONNECTIONS
5
4
3
2
6
(1) 1
8
8
o
7
14
(1,13
2
( 10)
6
(10)
TSS
12
(101
TSS
o
8
8
(10)
13
9
Vee = Pin
GND
10
11
12
7-23
= Pin
14
7
tpd = 140 ns typ
PD = 240 mW typ/pkg
•
MHTL MCC660 Series (continued)
MCC668
Ouad 2-lnput Gate (passive pull up)
45x43
(8MG)
PIN CONNECTIONS
( 1)
21 - - - - - - r - \ , . .
3
( 1)
45 - - - - - - r - \ , . .
6
(1)~(10)
(1)~
6
( 1)
(1)
7
(10)
9------r-\,..
10~8
(10)
( 1) 12------r-\,..
(1)
13~11 (10)
8
9
11
10
tpd = 125 ns typ
Po = 176 mW typ/pkg (Inputs High)
52 mW typ/pkg (I nput Low)
12
Vee = Pin 14
GNO = Pin 7
MCC669
Dual 4-1 nput Expander
PIN CONNECTIONS
30x30
(59H)
,
(1)2~'
(1)
•
3~
b--~4
( 1 ) 56 ---I'""""--::J
J
(1)~-
2
93=J'
\
(1)
(1) 10
13
-
(1) 12
(1) 13
10
11
12
GND = Pin 7
7-24
~
11
MHTL MCC660 Series (continued)
MCC670
Triple 3-lnput Gate (passive pull up)
50 x58
(76H)
PIN CONNECTIONS
(1)3~
5
3
4
(1)
4
(1)
5
9
(1)
6
(10)
(1)10~"'----8(10)
6
(1)11~
7
(1)1~
(1)
8
2
12 (10)
(1) 13
9
tpd = 125 ns typ
10
Po = 132 mW typ/pkg (I nputs High)
12
11
39 mW typ/pkg (Input Low)
Vee = Pin 14
GNO = Pin 7
MCC671
Triple 3-lnput Gate (active pullup)
50 x58
(76H)
5
4
PIN CONNECTIONS
(1)3~
3
(1)
2
4
(1)
5
(1)
9
6
(1)10~12 =C>-
7
14
(1) 10
8
13
(1)
9
(1) 13
10
11
12
8
(10)
11 (10)
tpd = 110 ns typ
P D = 176 mW typ/pkg (Inputs High)
52 mW typ/pk g (I nput Low)
Vee = Pin 14
GND = Pin 7
MCC673
Dual 2-lnput AND OR INVERT Gate
45 x43
(8MG)
PIN CONNECTIONS
(1)
1
(1)
2
-,
6 (10)
11----,
8 (10)
3--~
CONSULT FACTORY
(1)45~
II
--LJ
(1)
12
(1) 13
(1)
(1) 10
(1)
9
tpd = 110 ns typ
P D = 160 mW typ/pkg (Inputs High)
50 mW typ/pkg (I nput Low)
Vee = Pin 14
GND = Pin 7
7-26
MHTL MCC660 Series (continued)
MCC674
Dual2-lnput AND OR INVERT Gate
45x43
(8MG)
PIN CONNECTIONS
(1)
1
(1)
2
(1)
4
(1)
5
3------,
CONSULT FACTORY
6 (10)
Vee = Pin 14
GNO = Pin 7
(1) 13
(1) 12
11 - - - - - . ,
8 (10)
(1) 10
(1)
9
tpd = 125 ns typ
Po = 160 mW typ/pkg (Inputs High)
50 mW typ/pkg (I nput Low)
MCC675
Dual Pulse Stretcher
55x58
(1MH)
PIN CONNECTIONS
(1)
1
(1)
2
6
(1) 5 _ _ _ _ _--'
7
(1) 13
(1 )12
(1) 9 _ _ _ _ _---J
8
9
tpd = 150 ns typ (Pins 1,6)
110 ns typ (Pins 5, 6)
10
11
12
PD = 180 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
7-?7
•
MHTL MCC660 Series (continued)
MCC676
BCD to Decimal Decoder Driver
PIN CONNECTIONS
58 x 63
(2ME)
6
4
5
3
(1 )
(1 )
7
6
A
B
2
.00
5
0.1
4
0.2
3
0.3
2
04
7
15
05
(1) 10
C
8
16
9
(1 )
9
0
10
06
14
07
13
08
12
09
11
15
11
Power Dissipation = 380 mW typ/pkg
14
13
12
Vee
= Pin 16
GND=Pin8
MCC677
Hex Inverter With Strobe (active pull up)
52 x 54
(95R)
PIN CONNECTIONS
(10)
5
6
4
3
(10)
2
II
i
(1 ) 1
2 (10)
(1) 10
8
9
(10)
16
(1) 13
9
11 (10)
15
10
(1) 15
11
12
13
14
Vee
= Pin 16
(1) 12
14 (10)
GND = Pin 8
tpd = 110 ns typ
Po = 246 mW typ/pkg (I nputs High)
96 mW typ/pkg (I nput Low)
7-28
MHTL MCC660 Series (continued)
MCC678
Hex Inverter With Strobe (without output resistors)
35=
PIN CONNECTIONS
54x52
(95R)
3
111
(1) 4
5 (10)
7 (10)
(1) 6
(1) 1
2
2 (10)
7
(1) 1 0
9 (10)
8
16
(1) 13
11 (10)
9
15
(1) 15
Vee = Pin
10
16
GND = Pin 8
11
12
14
13
14( 1 0)
(1) 12
tpd
= 125 ns typ
Po = 192 mW typ/pkg (Inputs High)
96 mW typ/pkg (I nputs Low)
MCC679
Dual Lamp Driver
48 x56
(6SE)
4
5
PIN CONNECTIONS
~;I~~(1~5)
3
. (1) 4
(1) 5
3
2
6
1119~
(1) 10
7
(1~5)
(1)12
(1) 13
11
14
8
1.3
9
tpd
Po
10
11
12
= 0.5 JlS typ
= 250 mW (Inputs
High)
30 mW (I nput Low)
Vee = Pin
14
GND = Pin 7
7-29
II
MHTL MCC660 Series (continued)
MCC680
Hex Inverter
52 x 54
(95R)
PIN CONNECTIONS
(1 )
1--{)o-2
(10)
(1 )
3--{)o-4
(10)
(1 )
5--{)o-S
( 10)
14
(1 )
9--{)o-S
(10)
13
(1) 11--{)o-10 (10)
2
S
7
9
Vee = Pin 14
GND = Pin 7
12
11
10
(1)
13~12 (10)
tpd = 110 ns typ
P D = 246 mW typ/pkg (I nputs High)
96 mW typ/pkg (I nput Low)
MCC681
Hex Inverter (open collector)
52x54
(95R)
5
II
PIN CONNECTIONS
3
4
2
S
7
(1 )
1--{)o-2
(10)
(1 )
3--{)o-4
(10)
(1 )
5~6
(10)
(1 )
9--{)o-S
(10)
f'.....
14
(1) 11--{»-10(10)
13
9
(1) 1 3 - - { » - 1 2 (10)
10
11
12
tpd = 125 ns typ
PD = 192 mW typ/pkg (Inputs High)
96 mW typ/pkg (I nput Low)
Vee =: Pin 14
GND =: Pin 7
7-30
· MHTL MCC660 Series
(continued)
MCC682
Quad Latch
(8) (1)
15
PIN CONNECTIONS
1
C
64x67
(2AP)
(1)
(1)
2
7
(1 )
~--+---1
~--+---1
9 --+----+----i
Q
3
(10)
Q
4
(10)
Q
6
(10)
Q
5
( 10)
Q
10 (10)
Q
11 (10)
tpd
Po
= 250 ns typ
= 375 mW typ/pkg
Q
13 (10)
Q
12 (10)
R
(1) 14----1 0
Vee = Pin 16
GND = Pin 8
MCC683
Quad 2-lnput Exclusive OR
PIN CONNECTIONS
53 x61
(8TJ)
CONSULT FACTORY
(2)
1--.-"""'1
(2)
2 ---,,.---,
(2)
4
(2)
5
(2)
9
1
_____
II
(2) 10
8
Vee = Pin 14
GND = Pin 7
11 (10)
Po = 380 mW tvp/pkg
7-31
(10)
MHTL MCC660 Series (continued)
MCC684
Decode Counter
85 x86
(3TA)
PIN CONNECTIONS
7
2
8
(5)
1
MR
(2)
2
so
(2)
5
S1
(2) 10
S2
(2) 14
S3
QO
3
(10)
Q1
4
(10)
Q2
11 (10)
(1 )
6
C
Q3
13 (10)
(1 )
7
CE
(2)
9
TCinTCout
12 (10)
16
9
10
Vce
= Pin
GNO
= Pin 8
= 0.5
MHz min
mW typ/pkg
16
14
11
12
f Tog
Po
13
= 480
MCC685
Binary Counter
85 x 86
(3TA)
6
5
PIN CONNECTIONS
4
3
II
(5)
1
MR
(2)
2
so
(2)
5
S1
(2) 10
S2
(2) 14
S3
QO
3
(10)
Q1
4
(10)
Q2
11 (10)
(1 )
6
C
Q3
13 (10)
(1 )
7
CE
(2)
9
TCinTCout
12 (10)
9
Vee
GNO
10
= Pin 16
= Pin 8
4
11
12
fTog
Po
13
7-32
= 0.5 MHz min
= 480 mW typ/pkg
MHTL MCC660 Series (continued)
MCC686
4-Bit Shift Register
85 x 86
(3TA)
CONSUL T FACTORY
PIN CONNECTIONS
(5)
1 - - - < MR
(2)
2---<
(2)
5---< Sl
00 - 3
(10)
01 - 4
(10)
so
(2) 10---< S2
02 - 1 1 (10)
(2) 14---< S3
6- e
eE
03 r------13 (10)
(1 )
7-
(2)
9- D
63 r------12 (10)
(1 )
Vee = Pin 16
GND = Pin 8
f Tog = 0.5 MHz min
PD = 480 mW typ/pkg
MCC688
Dual J-K Flip Flop
68x68
(9TW)
PIN CONNECTIONS
(2)
(1 )
(1 )
CONSUL T FACTORY
(1 )
(2)
:g6
9
1
e
2
K
R
6
(10)
(10)
7
5
(2) 12
(1 ) '3
'0
(1 ) 15
e
(1 ) 14
K
R
6
9
('01
(10)
(2) 11
f Tog = 2.5 MHz typ
P D = 375 mW typ/pkg
Vee = Pin 16
GND = Pin 8
•
MHTL MCC660 Series (continued)
MCC689
Hex Inverter (high voltage)
PIN CONNECTIONS
53x55
(48W)
2
(1 )
1---{)o-2
(10)
(1 )
3---{)o-4
(10)
(1 )
5---{)o-6
(10)
(1 )
9---{)o-S
(10)
6
7
(1) 11 ---{)o-10 (10)
14
S
13
9
10
11
Vee = Pin 14
GNO = Pin 7
12
tpd
Po
(1) 13----{)o-12 (10)
= 150
= 173
ns typ
mW typ/pkg (Inputs High)
55 mW typ/pkg (Inputs Low)
MCC690
Hex Inverter (active pull up)
53 x55
PIN CONNECTIONS
(48W)
(1 )
1----[>0- 2
(10)
(1 )
3----[>0-4
(10)
(1 )
5----[>0- 6
(10)
(1 )
9----[>o-S
(10)
2
II
6
7
14
(1) 11 ---{:>o--10 (10)
8
13
9
(f) 13 ---{:>o-- 12 (10)
10
11
12
tpd = 150 ns typ
Po = 173 mW typ/pkg (Inputs High)
55 mW typ/pkg (I nputs Low)
Vee = Pin 14
GNO = Pin 7
7-34
MHTL MCC660 Series (continued)
MCC691
Hex I nverter/Translator
53 x 55
PIN CONNECTIONS
(48W)
1---[>0-- 2
3---[>0--4
5---[>0--6
9---[>o--S
11
Vee=Pin14
GNO=Pin7
--(:>0---
10
~
13~12
tpd = 150 ns typ
Po = 173 mW typ/pkg (I nputs High)
55 mW typ/pkg (I nputs Low)
MCC696
Dual Line Driver Receiver
58 x 59
(900)
6
5
PIN CONNECTIONS
3
4
( 11) 5
2
7
(10) 6
7 (9)
1 (15)
(14) 2
8
16
Gnd = PinS
(13) 3
9
VCC= Pin 16
15
10
11
12
13
14
tpd = 750 ns typ
Po = 225 mW typ/pkg (Inputs High)
96 mW typ/pkg (I nputs Low)
Vee = Pin 16
GNO = Pin 8
•
MHTL MCC660 (continued)
MCC697
Hex Inverter (passive pullup)
54x52
(95R)
PIN CONNECTIONS
1-{)o-2
3-{)o-4
2
5-{)o-6
9-{)o-S
14
11-{>o-10
13
Vcc
= Pin 16
13-{>o-12
GNO = Pin 8
10
11
12
tpd = 150 ns typ
Po = 173 mW tvp/pkg (Inputs High)
55 mW tvp/pkg (I nputs Low)
MCC699
Dual 2-lnput Power AND Gate
64x66
(3NB)
PIN CONNECTIONS
2
1~6
•
?
6
7--."--
~L-..--''-'
~~
0 E
...
12=CCC
-
14
13
OE
13
OE = Open Emitter
OC = Open Collector
8
9
Vcc
= Pin 14
GNO = Pin 7
7-36
S
9
11111111
MRTL
11111111
MCC700 Series (+15 to +550 C)
MCC800 Series (O to +1000 C)
MCC900 Series (-55 to 125°C)
MRTLintegrated circuits provide a broad line of lowcost, multi-function, digital circuits. Typical gate speed is
12 ns, with power dissipation averages of 19 mW (input
high) and 5.0 mW (inputs low) per logic node.
Type
+15 to +55 0 C
o to +100 o C
-55 to +125 C
MCC700
MCC701
MCC702
MCC703
MCC704
MCC705
MCC706
MCC707
MCC708
MCC709
MCC710
MCC711
MCC712
MCC713
MCC714
MCC715
Not Avail.
MCC717
MCC718
MCC719
MCC720
MCC721
MCC722
MCC723
MCC724
MCC725
MCC726
MCC727
MCC728
MCC729
MCC764
MCC767
MCC770
MCC771
MCC774
MCC775
MCC776
MCC777
MCC778
MCC779
MCC780
MCC781
MCC782
MCC783
MCC784
MCC785
MCC786
MCC787
MCC788
MCC789
MCC790
MCC800
MCC801
MCC802
MCC803
MCC804
MCC805
MCC806
MCC807
MCC808*
MCC809*
MCC810*
MCC811 *
MCC812*
MCC813*
MCC814
MCC815
MCC816
MCC817*
MCC818*
MCC819*
MCC820*
MCC821 *
MCC822*
Not Avail.
MCC824
MCC825
MCC826
MCC827
MCC828*
MCC829
MCC864*
MCC867*
MCC870*
MCC871
MCC874
MCC875
MCC876*
MCC877
MCC878*
MCC879
MCC880
MCC881 *
MCC882*
MCC883
MCC884
MCC885
MCC886
MCC887
MCC888
MCC889
MCC890
MCC900
MCC901
MCC902
MCC903
MCC904
MCC905
MCC906
MCC907
MCC908
MCC909
MCC910
MCC911
MCC912
MCC913
MCC914
MCC915
MCC916
MCC917
MCC918
MCC919
MCC920
MCC921
MCC922
Not Avail.
MCC924
MCC925
MCC926
MCC927
MCC928
MCC929
MCC964
MCC967
MCC970
MCC971
MCC974
MCC975
MCC976
MCC977
MCC978
MCC979
MCC980
MCC981
MCC982
MCC983
MCC984
MCC985
MCC986
MCC987
MCC988
MCC989
MCC990
0
Function
Buffer
Cou nter Adapter
R-S Flip Flop
3-lnput NOR Gate
Half Adder
Half Shift Register
Half Shift Register (w/o inverter)
4-lnput NOR Gate
Half Adder
2-1 nput Buffer
Dual 2-lnput NOR Gate
4-lnput ORINOR Gate
Half Adder
Type 0 Flip Flop
Dual 2-lnput NOR Gate
Dual 3-lnput NOR Gate
J-K Flip Flop
Quad 2-lnput NOR Gate
Dual 3-lnput NOR Gate
Dual 4-lnput NOR Gate
J-K Flip Flop
Dual 2-lnput Gate Expander
J-K Flip Flop
J-K Flip Flop
Quad 2-lnput NOR Gate
Dual 4-lnput NOR Gate
J-K Flip Flop
Quad Inverter
5-lnput NOR Gate
5-lnput NOR Gate
Dual Exclusive ORINOR Gate
Quad Latch
BCD to Decimal Decoder
Quad Exclusive OR Gate
J-K Flip Flop
Dual Half Adder
Dual J-K Flip Flop
Binary Up Cou nter
Dual Type 0 Flip Flop
J-K FHp Flop, 1 Expander, 2 Buffers
Decade Up Counter
Dual Buffer
J-K Flip Flop
Dual Half Shift Register
Dual Half Shift Register (w/inverter)
Quad 2-1 nput Expander
Dual 4-lnput Expander
1 J-K Flip Flop, 1 Inverter, 2 Buffers
Dual 3-1 nput Buffer, non-I nverting
H ex Inverter
Dual J-K Flip Flop
·These device types are guaranteed over the operating range 0 to +75 0 C.
7-37
Wafer Mask
Set #
670
5MH
6ML
2MH
6JC
CO2
8ME
B77
3JB
C15
7JC
4JC
3JB
1JD
9KM
1MF
78M
2KO
1MF
1MF
810
7JC
87A
78M
2KD
1MF
12C
12L
774
B86
31A
69A
88G
30A
12C
19K
E90
800
490
2MK
800
37B
28C
54K
E24
2KD
1MF
2MK
19H
3KD
9KE
Chip
Size
(Mils)
25 x
32 x
25 x
25 x
39 x
40x
40x
25 x
43 x
32 x
38 x
48 x
43 x
48 x
30x
35 x
43 x
35 x
35 x
35 x
60x
38 x
54 x
43 x
35 x
35 x
51 x
29 x
45 x
33 x
42 x
60 x
54 x
47 x
51.x
36 x
50 x
72 x
45 x
39 x
72 x
43 x
50x
43 x
42 x
35 x
35 x
39 x
37 x
34 x
48 x
35
34
30
27
36
40
40
35
34
39
31
57
34
57
37
33
43
35
33
33
60
31
58
43
35
33
57
29
45
35
49
64
71
55
57
37
58
80
73
46
80
45
50
37
63
35
33
46
38
36
51
(continued)
•
MRTL (continued)
Type
+15 to +55 0 C
MCC791
MCC792
MCC793
MCC794
MCC796
MCC797
MCC798
MCC799
MCC;:9701
MCC9702
MCC9704
MCC9707
MCC9709
MCC9713
MCC9714
MCC9715
MCC9718
MCC9719
MCC9720
MCC9721
MCC9722
MCC9723
MCC9724
MCC9725
o to +100 o C
MCC891
MCC892
MCC893*
MCC894
MCC896
MCC897
MCC898·
MCC899
MCC9801
MCC9802
MCC9804
MCC9807
MCC9809
MCC9813
MCC9814
MCC9815
MCC981S*
MCC9819
MCC9830·
MCC9821·
MCC9822*
MCC9823·
MCC9824·
MCC9825·
-55 to + 125°C
Function
MCC991
MCC992
MCC993
Dual J-K Flip Flop
Triple 3-lnput NOR Gate
Triple 3-lnput NOR Gate
MCC994
MCC996
MCC997
MCC998
MCC999
MCC9901
MCC9902
MCC9904
MCC9907
MCC9909
MCC9913
MCC9914
MCC9915
MCC9918
MCC9919
MCC9920
MCC9921
MCC9922
MCC9923
MCC9924
MCC9925
Serial-Parallel Shift Register
Dual Full Adder
Dual Full Subtractor
Dual 2-lnput Buffer
Dual Buffer
Dual 4 Channel Data Selector
Dual J-K Flip Flop
4-Bit Parallel Full Adder
Dual 4 Channel Data Distributor
Quad Schmitt Trigger
Quad 2-lnput AND Gate
Quad 2-1 nput NAN 0 Gate
Quad 2-lnput OR Gate
Hex Inverter
Hex Expander
Hex Expander
Ouad 2-1 nput Expander
Dual J-K Flip Flop
Quad 2-lnput AND Gate
Quad 2-1 nput NAND Gate
Quad 2-lnput OR Gate
*These device types are guaranteed over the operating range 0 to +75 0 C .
•
7-38
Wafer Mask
Set #
08K
90G
90G
2EF
940
940
A66
85H
35F
07P
87H
85F
47F
26G
26G
1MK
87C
3KD
87C
2KD
98A
27K
27K
29K
Chip
Size
(Mils)
48 x
35 x
35 x
64 x
60 x
60 x
45 x
30 x
48 x
52 x
55 x
49 x
39 x
42 x
42 x
37x
35 x
34 x
35 x
35 x
56 x
42 x
42 x
37 x
55
36
36
72
74
74
50
34
54
59
72
51
43
44
44
37
41
36
41
35
61
44
44
38
1111111111
MDTL
1111111111
MCC830 Series (0 to +75 0 C)
MCC930 Series (-55 to +125 0 C)
MDTL integrated circuits provide an excellent balance of speed, power dissipation, and noise
immunity for general purpose digital applications. The line includes many multifunction types.
Additional logic power is provided by the "wired OR" capability of the basic MDTL gate.
Type
o to 75°C
MCC830
MCC831
MCC832
MCC833
MCC834
MCC835
MCC836
MCC837
MCC838
MCC839
MCC840
MCC841
MCC842
MCC844
MCC845
MCC846
MCC847'
MCC848
MCC849
MCC850
MCC851
MCC852
MCC853
MCC855
MCC856
MCC857
MCC858
MCC861
MCC862
MCC863
MCC1800
MCC1801
MCC1802
MCC1803
MCC1804
MCC1805
MCC1806
MCC1807
MCC1808
MCC1809
MCC18l0
MCC1811
MCC1812
MCC1813
MCC1814
MCC1818
MCC1820
-55 to +125 0 C
MCC930
MCC931
MCC932
MCC933
MCC934
MCC935
MCC936
MCC937
MCC938
MCC939
MCC940
MCC941
MCC942
MCC944
MCC945
MCC946
MCC947
MCC948
MCC949
MCC950
MCC951
MCC952
MCC953
MCC955
MCC956
MCC957
MCC958
MCC961
MCC962
MCC963
MCC1900
MCC1901
MCC1902
MCC1903
MCC1904
MCC1905
MCC1906
MCC1907
MCC1908
MCC1909
MCC1910
MCC19ll
MCC19l2
MCC19l3
MCC19l4
MCC1918
Function
Exp. Dual 4-lnput NAND Gate
Clocked Flip-Flop
Exp. Dual 4-lnput Buffer
Dual 4-lnput Expander
Hex Inverter
Hex Inverter (w/o Output Resistors)
Hex Inverter
Hex Inverter
Decade Counter
Divide by Sixteen Counter
Hex Inverter (w/o Input Diodes)
Hex Inverter (w/o Output Resistors and Input Diodes)
Dual D Flip-Flop Plus Gates
Exp. Dual 4-lnput Power Gate
Clocked Flip-Flop
Quad 2-lnput NAND Gate
Quad 2-lnput Gate Expander
Clocked Flip-Flop
Quad 2-lnput NAND Gate (2K Pullups)
Pulse Triggered Binary
Monostable Multivibrator
Dual J-K Flip Flop (common Clock and CD)
Dual J-K Flip Flop (Separate Clock and SD)
Dual J-K Flip Flop (2K Pullup Resistor)
Dual J-K Flip Flop (2K Pullup Resistor)
Quad 2-lnput Buffer
Quad 2-lnput NAND Power Gate
Exp. Dual 4-lnput NAND Gate (2K Pullup)
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate (2K Pullups)
Dual 6-lnput NAND Gate
Dual 5-lnput NAND Gate (2K Pullups)
Exp. 8-lnput NAND Gate
Exp. 8-lnput NAND Gate (2K Pullups)
10-lnput NAND Gate
10-lnput NAND Gate (2K Pullup Resistor)
Quad 2-lnput AND Gate
Quad 2-lnput AND Gate (2K Pullup Resistor)
Quad 2-lnput OR Gate
Quad 2-lnput OR Gate (2K Pullup Resistor)
Quad 2-lnput NOR Gate
Quad 2-lnput NOR Gate (2K Pullup Resistor)
Quad 2-lnput Exclusive OR Gate
Quad Latch
Quad Latch
Quad 2-lnput NAND Gate
High Voltage Hex Inverter
7-39
Wafer
Mask
Set #
Chip
Size
(Mils)
l8N
56H
84N
32H
57H
4AE
4AE
4AE
84L
84L
4AE
4AE
72A
84N
47P
98M
86D
47P
98M
B93
29H
45N
45N
45N
45N
l4P
l4P
l8N
83N
83N
62C
62C
62C
62C
62C
62C
7DM
7DM
7DM
7DM
7DM
7DM
2AB
l6C
l6C
98M
4AE
38x39
55x55
39x40
30x30
47x64
44x44
44x44
44x44
60x66
60x66
44x44
44x44
59x59
39x40
44x46
40x4l
39x4l
44x46
40x4l
60x60
55x55
60x62
60x62
60x62
60x62
44x49
44x49
38x39
39x4l
39x4l
34x35
34x35
34x35
34x35
34x35
34x35
46x48
46x48
46x48
46x48
46x48
46x48
48x53
74x57
74x57
40x4l
42x50
•
111111111111111111111111111111
MDT L MCC830/930 Series
II " " 1111I1I1 " I " I " II " 1111
MCC830/MCC930
Expandable Dual4-lnput NAND Gate
38 x 39
(18N)
4
5
PIN CONNECTIONS
3
2
:~:)1~~8(8)<7)'
14
(1
12
(1) 13
13
11
=-
6
10
11
12
1 • 2· 4 • 5 • [3)
• Applies to MC861/MC961
Vee = Pin 14
GND = Pin 7
MCC831/MCC931
Clocked Flip Flop
55 x 55
(56H)
•
5
4
PIN CONNECTIONS
3
10
3
6
2
6
4
7
2
12
14
9
11
8
5
10
11
Vee = Pin 14
GND = Pin 7
12
All dimensions are in mils.
7-40
MDTL MCC830/930 Series (continued)
MCC832/MCC932
Expandable Dual4-lnput Buffer
39 x40
(84N)
4
5
PIN CONNECTIONS
3
2
(1)1~
(1) 2
6 (25)
(1)9B
(1)
6
(1)
4
5
3
14
7
13
8
(1) 10
(1) 12
(1) 13
11
12
9
10
11
8 (25)
6 = 1 • 2· 4· 5· [3]
Vee = Pin 14
GND = Pin 7
MCC833/MCC933
Dual 4-lnput Expander
PIN CONNECTIONS
30 x30
(32H)
3
12
4
11
5
10
93CJ'
-~ 11
10
12
13
678
Gnd ,,;, Pin 7
Vee = Pin 14
MDTL MCC830/930 Series (continued)
MCC834/MCC934
Hex Inverter
PIN CONNECTIONS
47 x 64
(57H)
1-V--- 6
2-V--- 3
5-V--- 4
9-V--- 10
12-V---11
3
4
5
13-V---S
6=1
Vee = Pin 14
GND = Pin 7
MCC835/MCC935/MCC836/MCC936/MCC837/MCC937
Hex Inverter (w/o output resistors)
PIN CONNECTIONS
44x44
(4AE)
II
3
9-{»-S
11-{»-10
4
5
6
7
13 -{:>o--12
Vee = Pin 14
GND = Pin 7
7-42
MDT L MCC830/930 Series (continued)
4
5
MCC838/MCC938
Decade Counter
3
2
6
60 x 66
7
(84L)
14
9
10
11
PIN CONNECTIONS
12
( 1.5) (8)
3 S01 4 °1
(1)
ep
(1.5)
(8)
125 02 11 02
(1.5)
(8)
.105 03 90 3
(8)
( 1.5)
5S04 5 °4
1
Vee = Pin 14
GNO = Pin 7
(5)e02~----------~------------~-------------~----------~
MCC839/MCC939
Divide by Sixteen Counter
4
5
3
2
6
60 x 66
(84L)
'==----14
9
10
11
12
(1.5)
(8)
3S01401
PIN CONNECTIONS
(1.5)
(8)
12 S02 11 02
(1.5)
(8)
10503 90 3
(1.5)
(8)
5504 6 °4
(1) CP 1
Vee = Pin 14
GND = Pin 7
(5)e02~----------~------------+-------------~----------~
MDTL MCC830/930 Series (continued)
MCC840/MCC940
Hex Inverter (w/o input diodes)
PIN CONNECTIONS
44x44
(4AE)
3-----{:>o-- 4
-----{:>o------{:>o-11 -----{:>o--10
13-----{:>o--1
2
12
3
, .. r=:l
L.. J---"11
4
5
9
5
6
9
8
2
2=1
Vee = Pin 14
GND = Pin 7
MCC841/MCC941
Hex Inverter (w/o output resistors and input diodes)
PIN CONNECTIONS
44x44
(4AE)
2
"
II
1-----{:>o-3-----{:>o------{:>o------{:>o-11 -----{:>o--1,0
13 -----{:>o--1 2
2
4
1
\
12
'. r='L-OO--11
4
5
10
5
6
9
8
2=1
Vee = Pin 14
GND = Pin 7
7-44
MDTL MCC830/930 Series (continued)
MCC842/MCC942
Type 0 Flip-Flop plus 2-Wide 2-lnput NAND Gate
59x59
(72A)
9
PIN CONNECTIONS
7
8
6
5
10
4
CONSULT FACTORY
11
12
3
13
2
14
MCC844/MCC944
Expandable Dual 4-lnput Power Gate
39 x 40
(84N)
5
4
PIN CONNECTIONS
3
2
(1)1~
(1)
2
4 (27)
(1) 3
(1l8=r={-
6
14
(1) 9
7
7
13
8
4=1-2-3
12
9
10
11
Vee = Pin 14
GND = Pin 7
7-45
6 (27)
•
MOlL MCC830/930 Series (continued)
MCC845/MCC945
Clocked Flip Flop
PIN CONNECTIONS
44x46
(47P)
F,L, & P PACKAGES
(2)
10
(2/3)
3
(2/3)
4
5
6
(*. )
9
(**)
4
(
6
(
(2)
3
6
2
(2/3)
12
(2/3)
11
(2)
5
G PACKAGES
7
14
9
10
11
12
**
(2)
7
(2/3)
2
(2/3)
3
(2)
1
(2/3)
9
(2/3)
8
Q loading
factor: 12
10
11
9
GND = Pin 7
Q and
VCC = Pin 14
for
for
for
for
..
..
PIN CONNECTIONS
(1)1~
2~3 (8) (7)·
(1)
II
(1)4~
5~6(8)(7).
2
6
(1)
7
(1)9~
(1) 10~8(8) (7).
14
(1)12~
(1) 13~11 (8) (7)*
8
9
10
11
3=~
12
Vce =
Pin 14
GND=Pin7
• Applies to MC849/MC949
7-46
)
MC845
MC945
MC848
MC948
MCC846/MCC946
Quad 2-lnput NAND Gate
40x41
(98M)
)
types
types
types
types
MDTL MCC830/930 Series (continued)
MCC847/MCC947
Ouad 2-lnput Gate Expander
39 x41
(860)
2
PIN CONNECTIONS
13
VCC = Pin 14
GND Pin 7
=
MCC848/MCC948
Clocked Flip Flop
PIN CONNECTIONS
F,L, & P PACKAGES
44x46
(47P)
5
4
(2)
3
(2/3)
4
3
6
2
10
(2/3)
(2)
2
(2/3)
12
(2/3)
11
(2)
5
6
(* *)
9
(* *)
G PACKAGES
7
(2)
14
9
10
11
12
(2/3)
2
(2/3)
3
(2)
1
(2/3)
9
(2/3)
8
•• Q
7-47
7
and Q loading factor: 12
10
VCC = Pin 14
11
GND = Pin 7
9
4
(* *)
6
(**)
for
for
for
for
MC845 types
MC945 types
MC848 types
MC948 typ~s
•
MOll MCC830/930 Series
(continued)
MCC849/MCC949
Quad 2-lnput NAND Gate (2k pullups)
40 x41
(98M)
4
5
PIN CONNECTIONS
3
(1)1~
(1)
2
2~3 (8) (7)·
(1)4~_
6
7
14
(1)
5~6(8)(7).
(1)
9=C}-
(1) 10
8
(1)12=C}13
(1) 13
8 (8) (7)·
11 (8) (7)·
9
10
11
3=~
12
Vcc = Pin 14
GND = Pin 7
* Applies to MC849/MC949
MCC850/MCC950
Pulse Triggered Binary
60x60
(B93)
PIN CONNECTIONS
13-----,
II
4
3
5
6
11
10
Vcc = Pin 14
GND = Pin 7
1-48
MDTL MCC830/930 Series (continued)
MCC851/MCC951
Monostable Multivibrator
55x55
(29H)
PIN CONNECTIONS
6
3
4
2-----...J>
Vcc = Pin 14
GND=Pin7
MCC852/MCC952
Dual J-K Flip Flop (common clock and CD)
MCC853/MCC953
Dual J-K Flip Flop (separate clock and SO)
MCC855/MCC955
Dual J-K Flip Flop (2k pullup resistor)
MCC856/MCC956
Dual J-K Flip Flop (2k pullup resistor)
(2)
(2/3)
(4)
(2/3)
4-----,
6 (*)
3
2
14
2
1 -":':':"--01
(2) 1 0
60x62
(45N)
(2)
4
(2/3)
3
(2)
1
(2/3)
2
13
12
5 (*)
It;::==:.::J..~
(2)
8 (*)
(2/3) 11
6 ( •• )
5(")
10---;:===+---.
8 (**)
(2/3) 11
(2) 13~---<2f
(2/3) 12
9 (*)
-===::j-_....J
(4) 13 ......
*Q and
"'1rr.:~ltb!t~~~II"'''''''1 0
5 .........iiiiiii........_~
6
7
8
(2/3) 12
9
Q loading factor:
12
10
11
9
-
9 (* *)
* *Q and Q loading factor:
MC852
MC952
MC855
MC955
VCC = Pin 14
GND = Pin 7
7.LLQ
12
10
11
9
-
MC853
MC953
MC856
MC956
MOll MCC830/930 Series (continued)
MCC857/MCC957
Quad 2-lnput Buffer
PIN CONNECTIONS
44x49
(14P)
2
14
13
. . . . . . . . . . .II!!I,,/"
12
3
=J ..........-11
4_.-::::-',f<='ii-=
10
5
3=~
6
8
7
9
Vee = Pin 14
GND = Pin 7
MCC858/MCC958
Quad 2-lnput NAND Power Gate
PIN CONNECTIONS
44x49
(14P)
II
....
2
...,
.. A
.. "
3
4_.-::::-',f<='ii-=
10
3=~
5
6
7
8
9
Vee = Pin 14
GND = Pin 7
7-50
MDTL MCC830/930 Series (continued)
MCC861/MCC961
Expandable Dual 4-lnput NAND Gates (2k pullup)
38 x 39
(18N)
4
5
PIN CONNECTIONS
3
~~: ~ti6(S)(7)'
2
6
7
--..11""'1'
1"'-
....1.....1---
(1)
4
(1)
5
3
(1)
9
14
~~: ~~~8(S)
13
(1) 13
(7)'
11
9
6
12
11
10
=1•
2 • 4 • 5 • [31
• Applies to MC861/MC961
Vcc = Pin 14
GND = Pin 7
MCC862/MCC962
Triple 3-lnput NAND Gate
PIN CONNECTIONS
39x41
(83N)
14
~===CJ-6
5
13
16===CJ-s
11
1
12
12
13===CJ-
3
11
4
10
6=3·4·5
5
6
7
S
9
Vcc = Pin 14
GND = Pin 7
7-51
•
MOll MCC830/930 Series
(continued)
MCC863/MCC963
Triple 3-lnput NAND Gate (2k pull ups)
PIN CONNECTIONS
39x41
(83N)
2
1
14
~===CY-6
13
12
3
16===CY-S
11
13===CY1
4
5
8
12
6= 3 • 4 • 5
9
Vee = Pin 14
GND = Pin 7
MCC1800/MCC1900
Dual 5-lnput NAND Gate
PIN CONNECTIONS
34x35
(62C)
(1)
(1)
•
7
8
~~~:~
6
5
9
1
2---,~
10
4
11
3
~~;
;-~I
(1)
9
» - 6 ( S ) (7)'
--
(1)10~ S(S)(7)'
(1)11
(1) 12
(1) 1 3 - _ - J
2
12
13
14
*Applies to MC1801/MC1901
Vee = Pin 14
GND = Pin 7
7-52
MDTL MCC830/930 Series (continued)
MCC1801/MCC1901
Dual 5-lnput NAND Gate (2k pullups)
PIN CONNECTIONS
34x 35
(62C)
:~: ~~6(8)(7)*
6
7
8
6
(1)
9
4
10
4
(1)
5
(1)
9
(1)10~ 8(8)(7)*
(1)11
(1) 12
(1) 1 3 - - - . J
11 - -. . . . .~4-IIIl1IIIII-- 3
2
12
13
14
*App/ies to MC1801/MC1901
Vec = Pin 14
GND = Pin 7
MCC1802/MCC1902
Expandable 8-lnput NAND Gate
34x35
(62C)
5
PIN CONNECTIONS
(1 )
4
14
(1 )
( 1)
5
9
•
(1) 10
(1) 12
(1) 13
11
7
13
8
( 1)
1
2
4
(1)
2
12
9
10
11
8 = 1 • 2 • 4 • 5 • 9 • 10 • 12 • 13 • [111
• Applies to MC1803/MC1903
Vee = Pin 14
GND = Pin 7
7·53
MDTL MCC830/930 Series (continued)
MCC1803/MCC1903
Expandable a-Input NAND Gate (2k pullups)
34x35
(62C)
PIN CONNECTIONS
(1)
4
5
(1)
2
1----.
2
(1)
4
(1)
5
(1)
9
(1) 10
~
___-
14
(1) 12
(1) 13_-~
7
11 ___________
13
~
8
8= 1 · 2 · 4 . 5 . 9 . 1 0 - 12 - 13 - [11]
12
11
10
9
* Applies to MC1803/MC1903
VCC = Pin 14
GND = Pin 7
MCC1804/MCC1904
10 Input NAND Gate
34x35
(62C)
PIN CONNECTIONS
(1 )
4
5
•
/
'"
(1 )
3
/
( 1)
2
(1)
(1)
5
(1)
9
8 (8) (7)-
(1) 1 0
14
(1) 11--~
7
(1) 12 - - - - - - '
13
(1) 13--~
8
8=1· 2 · 3 - 4 . 5-9.10.11.12.13
12
9
10
11
* Applies to MC1805/MC1905
Vcc = Pin 14
GND = Pin 7
7-54
MDTL MCC830/930 Series (continued)
MCC1805/MCC1905
10 Input NAND Gate (2k pullup resistor)
34 x 35
(62C)
4
5
PIN CONNECTIONS
3
.--::;111-0..---
7
....-:=..J_
_-i.r._,~
2
(1)
(1)
1 ------,
2--___.
.1
(1)
(1)
3----.
4
(1)
5
14
(1)
9
8 (8) (7)*
(1) 10
(1)11 - - - '
13
(1) 1 2 - - - - - '
8
(1)13--~
12
9
8 = 1 • 2· 3. 4. 5. 9. 10·11· 12.13
11
10
Vcc = Pin 14
GND = Pin 7
• Applies to MC1805/MC1905
MCC1806/MCC1906
Quad 2-lnput AND Gate
46x48
(7DM)
4
5
PIN CONNECTIONS
1=C>(1) 4=C>(1) 9=C>12 =C>-
3
(1)
2
6
7
·
(1 )
2
(1)
5
3(8)(7)*
6(8)(7)*
8 (8) (7) *
(1) 10
14
(1)
.
(1) 13
8
11 (8) (7)'
13
9
10
11
12
• Applies to MC1807/MC1907
VCC = Pin 14
GND;Pin7
7-55
•
MDTL MCC830/930 Series (continued)
MCC1807/MCC1907
Quad 2-lnput AND Gate (2k pull up resistor)
46x48
(70M)
PIN CONNECTIONS
(1)
4
5
1 = 0 - 3(8)(7)"
2
(1 )
3
(1)
2
6
(1)
4=0
- 6(8)(7)"
.
5
(1)
9 = 0 - 8 (8) (7)"
(1) 10
7
(1) 12
~11
(1)13~
14
8
(8) (7)"
13
9
10
11
12
• Appl ies to M C 1807 /MC 1907
VCC = Pin 14
GND = Pin 7
MCC1808/MCC1908
Quad 2-lnput OR Gate
46x48
(70M)
4
5
•
PIN CONNECTIONS
( 1)
3
(1)
(1)
2
~~3(8)(7)"
:~6(8)(7)"
6
(1 )
7
(1) 10
(1)9~
(1)12~
14
8
(1)13
.
13
9
10
11
3
=1
8 (8) (7)"
11(8)(7)·
+ 2
12
* Applies to
MC1809/MC1909
VCC = Pin 14
GND = Pin 7
7-56
MDTL MCC830/930 Series (continued)
MCC1809/MCC1909
Quad 2-lnput OR Gate (2k pullup resistor)
PIN CONNECTIONS
46x48
(70M)
5
4
(1)1~
(1) 2~3'(8) (7)·
3
(1)4~
5~6(8)(7).
(1)
6
(1) 9 = = [ ) - 8 (8) (7)'
(1) 10
7
(1)12==[)--
8
11(8)(7)·
(1) 13
3 = 1 + 2
9
10
12
11
.. Applies to MC1809/MC1909
VCC = Pin 14
GND = Pin 7
MCC1810/MCC1910
Quad 2-lnput NOR Gate
46x48
(70M)
(1)1~
(1) 2~3(8)(7)'
3
4
5
PIN CONNECTIONS
2
(1)4~
(1) 5~6(8)(7)'
6
(1)9~
(1)10~8(8)(7).
7
(1)'2~
14
8
(1) 13~11 (8) (7)"
13
3 = ,--:t:2
9
10
11
12
"'Applies to MC1811/MC1911
Vce =
Pin 14
GND = Pin 7
7-57
•
MDTL MCC830/930"Series (continued)
MCC1811/MCC1911
Quad 2-lnput NOR Gate (2k pullup resistor)
PIN CONNECTIONS
46x48
(70M)
4
5
(1)1~
(1) 2~3(8)(7)"
3
2
(1)4~
5~6(8)(7)"
6
(1)
(1)9~
7
(1)10~8(8)(7)"
14
(1)12~
13~11 (8) (7)"
8
(1')
13
3
9
10
Vcc = Pin 14
GND ~ Pin 7
12
11
=""1"+2
* Applies to MC18111MC1911
MCC1812/MCC1912
Quad 2-lnput Exclusive OR Gate
PIN CONNECTIONS
48x53
(2AB)
II
3
4
5
2
(2)
:~3(8)
(2)_~
(2)4~
(2)
6
5~6(8)
(2)9~
(2)10~8(8)
14
7
(2)12~
(2)13~11(8)
13
8
3=1.2+1-2
10
11
Vcc = Pin 14
GND = Pin 7
12
7-58
MDT L MCC830/930 Series (continued)
MCC1813/MCC1913
Quad Latch
74 x57
(16C)
4
5
6
PIN CONNECTIONS
3
2
(2)
1
c
Q
4
(7)
(2)
2
D Q
3
(7)
c
Q
5
(7)
D Q
6
(7)
7
8
(2)
7
16
9
10
(2)
11
12
6
11 (7)
D Q
10(7)
C
15
9
14
13
Vee
=
GND
=
(2) 15
C
6
12 (7)
(2) 14
D
Q
13 (7)
Pin 16
Pin 8
MCC1814/MCC1914
Quad Latch
PIN CONNECTIONS
74x57
(16C)
3
4
5
(2)
1
c
(2)
2
D Q
3
(7)
e 6
4
(7)
o
Q
5
(7)
C
Q
10 (7)
2
6
(2)
6
7
14
8
13
(2)
8
D Q
9
(7)
9
10
11
12
Vee = Pin 14
GND = Pin 7
7-59
(2) 13
c
(2) 12
D Q
11 (7)
II
MDT L MCC830/930 Series (continued)
MCC1818/MCC1918
Quad 2-lnput NAND Gate
PIN CONNECTIONS
40 x41
(98M)
:===r=Y- 3
(1 )
3
4
5
(8)
(1 )
2
:===r=Y===r=Y-
(1 )
6
(1 )
7
(1) 9
(1) 10
14
(1)
8
s
12===r=Y-
(8)
(8)
8
11 (8)
(1) 13
13
9
10
11
3=~
12
Vee = Pin 14
GND = Pin 7
MCC1820/(MCC1920 Not Available)
High Voltage Hex Inverter
PIN CONNECTIONS
42x50
(4AE)
4
5
3
(1)
1-{>o-2
(7)
(1)
3-----{>o-4
(7)
(1)
5-{>o-S
(7)
(1)
9-{>o-B
(7)
"-
2
6
7
14
(1) 1 1 - { > o - 1 0 (7)
8 - -.......~1
13
(1) 1 3 - { > o - 1 2 (7)
9
2='
10
11
12
Vee = Pin 14
GND = Pin 7
7-60
111111111111111111
MTTL -SUHL
II1111111111111111
MCC2000/2050 Series (0 to +75 0 C)
MCC2100/2150 Series (-55 to +1250 C)
These integrated circuits comprise a family of transistor-transistor logic designed for general purpose digital applications. The family has a high operating speed (30-50 MHz clock rate),
good external noise immunity, high fan out, and the capability of driving capacitive loads to 600
pF.
Type
o to 75°C
MCC2000
MCC2001
MCC2002
MCC2003
MCC2004
MCC2005
MCC2006
MCC2007
MCC2011
MCC2012
MCC2013
MCC2016
MCC2018
MCC2023
MCC2024
MCC2025
MCC2026
MCC2028
MCC2050
MCC2051
MCC2052
MCC2053
MCC2054
MCC2055
MCC2056
MCC2057
MCC2061
MCC2062
MCC2063
MCC2065
MCC2066
MCC2068
MCC2073
MCC2074
MCC2075
MCC2076
MCC2078
-55 to +125 0 C
MCC2100
MCC2101
MCC2102
MCC2103
MCC2104
MCC2105
MCC2106
MCC2107
MCC2111
MCC2112
MCC2113
MCC2116
MCC2118
MCC2123
MCC2124
MCC2125
MCC2126
MCC2128
MCC2150
MCC2151
MCC2152
MCC2153
MCC2154
MCC2155
MCC2156
MCC2157
MCC2161
MCC2162
MCC2163
MCC2165
MCC2166
MCC2168
MCC2173
MCC2174
MCC2175
MCC2176
MCC2178
Function
Exp. 2 Wide 4-lnput AOI Gate
Quad 2-lnput NAND Gate
4 Wide 3-2-2-3 Input Exp. for AOI Gates
Dual 4-lnput NAND Gate
Exp. 4 Wide 2-2-2-3 Input AOI Gate
8 Input NAND Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput NAND Gate
Exp. 8-lnput NAND Gate
Exp. 3-Wide 3-lnput AOI Gate
Exp. Dual 2-Wide 2-lnput AOI Gate
Hex Inverter
Quad 2-lnput Lamp/Line Driver (O.C.)
Dual J-K Flip-Flop (separate clock)
Dual J-K Flip-Flop (common clock)
AND J-K Flip-Flop
OR J-K Flip-Flop
OR J-K Flip-Flop
Exp. 2 Wide 4-lnput AOI Gate
Quad 2-lnput NAND Gate
4 Wide 3-2-2-3 Input Exp. for AOI Gates
Dual 4-lnput NAND Gate
Exp. 4 Wide 2-2-2-3 Input AOI Gate
8 Input NAND Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput NAND Gate
Exp. 8-lnput NAND Gate
Exp. 3-Wide 3-lnput AOI Gate
Exp. Dual 2-Wide 2-lnput AOI Gate
Quad 2-lnput Lamp/Line Driver
Hex Inverter
Quad 2-lnput Lamp/Line Driver (O.C.)
Dual J-K Flip-Flop (separate clock)
Dual J-K Flip-Flop (common clock)
AND J-K Flip-Flop
OR J-K Flip-Flop
OR J-K Flip-Flop
7-61
Wafer
Mask
Set #
Chip
Size
(Mils)
4DA
8DB
89A
2BN
89A
85N
4DA
45V
85N
89A
9RW
79M
4RR
2TJ
2TJ
47E
47E
47E
4DA
8DB
89A
2BN
89A
85N
4DA
45V
85N
89A
9RW
5PJ
79M
4RR
2TJ
2TJ
47E
47E
47E
36x38
44x45
36x49
35x42
36x49
34x38
36x38
44x45
34i<38
49x36
40x45
53x61
50x52
59x66
59x66
56x66
56x66
56x66
36x38
44x45
36x49
35x42
36x49
34x38
36x38
44x45
34x38
49x36
40x45
46x50
53x61
50x52
59x66
59x66
56x66
56x66
56x66
•
11111111111111111111111111111111.1111111111111111111
MTTl SUHl MCC2000/2050/2100/2150 Series
IIII11111111111111111111111111111111111111111111111
MCC2000/MCC2050/MCC2100/MCC2150
Expandable 2 Wide 4-lnput AND-OR-INVERT Gate
36 x 38
(4DA)
3
4
5
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
(1) 14
2
6
(1
(1
(1
(1
7 ___
8
14
9
13
10
)
)
)
)
( 1)
( 1)
(1 )
Emitter
Collector
1
2
3
12
5
6
7
8
13
9
12
tpd = 7.0 ns typ
Po = 27 mW tvp/pkg
VCC = Pin 4
GND = Pin 10
MCC2001/MCC2051/MCC2101/MCC2151
Quad 2-lnput NAND Gate
44x45
(8DB)
5
4
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
3
6
II
2
~~~
: ---r-'P-
(1)
56~7
\I/"~
7
3
(1)~
14
(1)
8
(1 )
13
9
8 = C > - 11
9
(1) 12 = C > - 14
(1) 13
10
11
12
tpd = 6.0 ns typ
Po = 88 mW Wp/pkg
Vcc
=
Pin 4
GND = Pin 10
A II dimensions are in mils.
7·62
MTTL SUHL MCC2000/2050/21 00/2150 Series (continued)
MCC2002/MCC2052/MCC2102/MCC2152
4 Wide 3-2-2-3 Input Expander for AND-OR-INVERT Gates
36 x.49
(89A)
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
4
5
3
(1) 13
(1) 14
(1) 1
2
14
13
10
11
12
(1)
2
( 1)
3
(1 )
5
( 1)
6
(1)
(1 )
(1)
7
8
12
_\
_\
9
Po = 28 mW typ/pkg
Vee=Pin4
GND = Pin 10
MCC2003/MCC2053/MCC2103/MCC2153
Dual4-lnput NAND Gate
35x42
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
(2BN)
5
4
3
6
('I'33=>--
2
7
( 1)
(1)
1
2
(1)
3
( 1)
~3=>--"
(1)
9
13
(1)
( 1)
10
11
12
tpd = 6.0 ns typ
Po = 44 mW typ/pkg
Vee = Pin 4
GNO=Pin10
7-63
12
II
MTTL SUHL MCC2000/2050/21 00/2150 Series (continued)
MCC2004/MCC2054/MCC2104/MCC2154
Expandable 4-Wide 2-2-2-3 Input ANO-OR-INVERT Gate
36 x49
(89A)
5
4
PIN CONNECTIONS
(1) 14
3
2
12
11
1
2
(1)
3
(1)
5
(1)
6
(1)
7
11
Hl ~
Emitter 13 _ _ _ _ _ _ _ __
13
10
( 1)
(1)
Collector 12 ---------~
tpd = 7.0 ns typ
Po = 36 mW typ/pkg
VCC = Pin 4
GNO = Pin 10
MCC2005/MCC2055/MCC2105/MCC2155
8 Input NAND Gate
34x38
(85N)
5
4
PIN CONNECTIONS
3
II
(1)1~
2
(1)
(1)
2
6
i
L
(1)
7
(1)
9
(1) 13
9
13
10
3
('J5~'2
(1)
6
7 ______...-.
tpd = 8.0 ns typ
Po = 22 mW typ/pkg
12
VCC = Pin 4
GNO=Pin10
7-64
MTTL SUHL MCC2000/2050/2100/2150 Series (continued)
MCC2006/MCC2056/MCC2106/MCC2156
Dual4-lnput Expander for AND-OR-INVERT Gates
36x 38
(4DA)
5
PIN CONNECTIONS
3
4
Collector
6
11114~\
(1) 1
12
2
8
14
9
13
10
-~13
(1)
(1)
2
3
(1 )
(1 )
(1 )
(1)
:~_\9
Emitter
Emitter
7
_ \ 11
8
Collector
12
11
Po = 14 mW typ/pkg
Vee = Pin 4
GNO=Pinl0
MCC2007/MCC2057/MCC2107/MCC2157
Triple 3-Input NAND Gate
44x45
(45V)
5
4
PIN CONNECTIONS
3
2
6
(1)
1=L>-
(1)
6=L>-
(1)
(1 )
7
14
(1)
( 1)
8
11
87
(1)11=L>-
(1) 12
(1) 13
13
9
10
23
9
14
12
tpd = 6.0 ns typ
Po = 66 mW typ!pkg
Vee
= Pin 4
GNO = Pin 10
7-nfi
5
MTTL SUHL MCC2000/2050/2100/2150 Series (continued)
MCC2011/MCC2061/MCC2111/MCC2161
Expandable 8-lnput NAND Gate
34x38
(85N)
5
PIN CONNECTIONS
4
3
6
2
(1) 14
~
Hl
7
(1)
3-,,-==
12
(~! ~
h) ~
8
Base
9
10
9 - - - -....
Collector 1 3 - - - - -....
13
12
tpd = 11 ns typ
Po = 22 mW tvp/pkg
VCC = Pin 4
GND = Pin 10
MCC2012/MCC2062/MCC2112/MCC2162
Expandable 3-Wide 2-lnput AND-OR-INVERT Gate
49 x36
(89A)
PIN CONNECTIONS
3
4
5
II
2
1
2
3
5-r---...
6
7
14
12
8-~""""
9
11
1.3
10
11
Collector
Emitter
13------~
14-------~
12
tpd = 6.0 ns typ
Po
=
39 mW typ/pkg
Vce
= Pin
4
GNO = Pin 10
7-66
MTTL SUHLMCC2000/2050/2100/2150 Series (continued)
MCC2013/MCC2063/MCC2113/MCC2163
Expandable Dual 2-Wide 2-lnput AND-OR-INVERT Gate
40 x45
(9RW)
PIN CONNECTIONS
(1)14~
5
6
7
(1)
1
(1)
2
(1)
3
13
2
~___-'I""=-I
8---.11:·_1114
9
(1)
5
(1)
6
(1)
9 -.----...
12
(1) 11
13
10
11
Emitter 7 - - - - - - . . . . . . )
Collector 8-------~
12
tpd = 7.0 ns typ
Po = 58 mW tvp/pkg
Vee
= Pin 4
GNO = Pin 10
-/MCC2065/-/MCC2165
Quad 2-lnput Lamp/Line Driver
46x 50
(5PJ)
5
4
PIN CONNECTIONS
3
6
(1 )
2
(1 )
7
(1 )
8
(1 )
:=L>-3
(1 ) : = L > - 7
14
(1 ) : = L > - 1 1
13
(1) 1 2 = L > - 14
(1) 13
9
10
11
12
tpd = 20 ns typ
Po = 105 mW tvp/pkg
Vee = Pin 4
= Pin 10
GNO
7-67
•
MTTL SUHL MCC2000/2050/21 00/2150 Series (continued)
MCC2016/MCC2066/MCC2116/MCC2166
Hex Inverter
53x61
PIN CONNECTIONS
(79M)
5
3
4
( 1)
1--{>o-2
(1 )
3--{>o-5
(1 )
6--{>o-7
14
(1 )
s--{>o-g
13
(1) 1 1 - - { > o - 1 2
2
6
7
8
q
(1) 1 3 - - { > o - 1 4
12
11
10
Vcc=Pin4
GNO = Pin 10
tpd = 6.0 ns typ
Po = 132 mW typ/pkg
MCC2018/MCC2068/MCC2118/MCC2168
Quad 2-lnput Lamp/Line Drive (open collector)
50 x 52
(4RR)
PIN CONNECTIONS
(1)
•
(1)
1
'1
---r-lo--
3
'~
(1)
7
(1 )
:=L)-7
(1)
S
14
9
(1)
:=L)-11
(1)12=L)14
13
13
(1)
10
11
12
VCC=Pin4
GNO = Pin 10
7-68
MTTL SUHL MCC2000/2050/2100/2150 Series (continued)
MCC2023/MCC2073/MCC2123/MCC2173
Dual J-K Flip Flop (separate clock)
59x66
(2TJ)
PIN CONNECTIONS
5
4
3
2
6
(. )
(0.67)
7
(0.67)
14
8
(0.67)
9
10
(0.67)
12
11
(. )
Vee = Pin 4
GN D = Pin 10
K
1
5
K
7
SET
8
f = 70 MHz typ
PD= 110 mW typ/pkg
59x66
(2TJ)
PIN CONNECTIONS
4
5
2
6
7
14
8
13
9
10
11
12
7-69
12
_
Q
MCC2024/MCC2074/MCC2124/MCC2174
Dual J-K Flip Flop (common clock)
3
13
J6V9
CLOCK 5
(1.0)
13
SE:':U
CC5CK 3
( 1.0)
11
MTTL SUHL MCC2000/2050/2100/2150 Series (continued)
MCC2025/MCC2075/MCC2125/MCC2175
AND J-K Flip Flop
56x66
(47E)
5
PIN CONNECTIONS
3
4
6
2
( 1.2)
RESET 13
(0.67)
(0.67)
(0.67)
7
14
8
10
11
(1.00) CLOCK
3
(0.67)
(0.67)
(0.67)
J1
J2
J3
5
PRE~~t
8
9
( 1.2)
( 1.2)
13
9
K3 14
K2 1
K1 2
f
12
Po
12
11
6
7
=
50 MHz typ
= 50 mW typ/pkg
VCC = Pin 4
GND = Pin 10
MCC2026/MCC2076/MCC2126/MCC2176
OR J-K Flip Flop
56x 66
(47E)
5
•
PIN CONNECTIONS
4
3
2
6
(0. 67
(0.67
l
M213~
M114
L-....-'
7
14
(0.67)
(0.67)
K2
K1
1
2
(2.00)
CLOCK
3
(0.67)
(0.67)
J1
J2
5
6
(0.67)
(0.67)
t~
7
8
SET
9
8
13
9
(1.2)
10
11
12
VCC=Pin4
f=50MHztyp
GNO = Pin 10
Po
7-70
= 60 mW typ/pkg
II
6.
12
Q
11
MTTL SUHL MCC2000/2050/2100/2150 Series (continued)
MCC2028/MCC2078/MCC2128/MCC2178
OR J-K Flip Flop
56x66
(47E)
5
PIN CONNECTIONS
4
3
2
6
( 1.2)
RESET 13
(0.67)
( 1.33)
K1 1
JK1 14
(0.67)
K2 2
K
7
14
(2.0)
CLOCK
3
16:~11
JK2
J2
~
(0.67)
J1
7
( 1.2)
( 1.2)
SET
SET
8
9
,8
Q
12
Q
11
13
9
10
11
12
Vcc=Pin4
f = 35 MHz typ
GNO = Pin 10 Po = 60 mW typ/pkg
•
7-71
1111111111
MTTL
1111111111
MCC3000 Series (0 to +750 C) - 74HOO Series Replacements
MCC3100 Series (-55 to +1250 C) - 54HOO Series Replacements
These integrated circuits comprise a family of transistor-transistor logic designed for general purpose digital applications. The family has a high operating speed (30-50 MHz clock rate),
good external noise immunity, high fan-out, and the capability of driving lines up to 600 pF
capacitance.
Type
o to 75°C
-55 to +125 0 C
MCC3000174HOO
MCC3001174H08
MCC3002
MCC3003
MCC3004174HOl
MCC3005174Hl0
MCC3006174Hll
MCC3007
MCC3008174H04
MCC3009174H05
MCC3010174H20
MCC3011174H21
MCC3012174H22
MCC3015
MCC3016174H30
MCC3018174H62
MCC3019174H61
MCC3020174H50
MCC3021
MCC3022
MCC3023174H51
MCC3024174H40
MCC3025
MCC3026
MCC3028
MCC3029
MCC3030
MCC3031174H52
MCC3032174H53
MCC3033174H54
MCC3034174H55
MCC3050
MCC3051
MCC3052
MCC3053
MCC3054174H71
MCC3055174H72
MCC3060
MCC3061
MCC3062
MCC3063
MCC3064174H74
MCC3065174Hl0l
MCC3100/54HOO
MCC3101/54H08
MCC3102
MCC3103
MCC3104/54H01
MCC31 05/54H 10
MCC3106/54H11
MCC3107
MCC3108/54H04
MCC3109/54H05
MCC3110/54H20
MCC3111/54H21
MCC3112/54H22
MCC3115
MCC3116/54H30
MCC3118/54H62
MCC3119/54H61
MCC3120/54H50
MCC3121
MCC3122
MCC3123/54H51
MCC3124/54H40
MCC3125
MCC3126
MCC3128
MCC3129
MCC3130
MCC3131/54H52
MCC3132/54H53
MCC3133/54H54
MCC3134/54H55
MCC3150
MCC3151
MCC3152
MCC3153
MCC3154/54H71
MCC3155/54H72
MCC3160
MCC3161
MCC3162
MCC3163
MCC3164/54H74
MCC3165/54Hl0l
Mask
Chip
Size
Function
Set #
(Mils)
Quad 2-lnput NAND Gate
Quad 2-lnput AND Gate
Quad 2-lnput NOR Gate
Quad 2-lnput OR Gate
Quad 2-lnput NAND Gate (O.C.)
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput NAND Gate (O.C.)
Hex Inverter
Hex Inverter (O.C.)
Dual 4-lnput NAND Gate
Dual 4-lnput AND Gate
Dual 4-lnput NAND Gate (O.C.)
8-lnput NAND Gate
8-lnput NAND Gate
4 Wide 3-2-2-3 Input Exp. for" AOI Gates
Triple 3-lnput Exp. for AND-OR Gates
Exp. Dual 2 Wide 2-lnput AOI Gate
Quad 2-lnput Exclusive OR Gate
Quad 2-lnput Exclusive NOR Gate
Dual 2 Wide 2-lnput AOI Gate
Dual 4-lnput NAND Buffer Gate
Dual 4-lnput NAND Power Gate
Dual 4-lnput AND Power Gate
Dual 3-ln 3-0ut AND Series Term. Line Driver
Dual 3-ln 3-0ut NAND Series Term. Line Driver
Dual 4-lnput Exp. for AOI Gates
Exp. 4-W 2-2-2-3 Input AND-OR Gate
Exp. 4-W 2-2-2-3 Input AOI Gate
4-W 2-2-2-3 Input AOI Gate
Exp. 2-W 4-lnput AOI Gate
AND J-K Flip-Flop
AND Input J-K Flip-Flop
AND Input JJ-KK Flip-Flop
Double Edge Triggered Master Slave Type 0 FF
OR Input J-K Flip-Flop
AND Input J-K Flip-Flop
Dual Type 0 Flip-Flop
Dual J-K Flip-Flop
Dual J-K Flip-Flop
Dual J-K Flip-Flop
Dual 0 Flip-Flop
J-K Flip-Flop
5CA
5CA
59N
59N
16K
35T
35T
35T
09L
09L
lGH
1GH
lGH
6GH
88K
98K
99K
27W
53H
53H
27W
6AL
6AL
6AL
32A
32A
63A
97K
48K
48K
93K
68A
580
55B
840
43H
43H
80V
9CW
9CW
60N
80V
8AD
46x49
46x49
47x57
47x57
43x46
46x46
46x46
46x46
58x57
58x57
39x42
39x42
39x42
35x35
37x39
37x37
39x44
41x41
61x70
61x70
41x41
42x42
42x42
42x42
Wafer
7-72
A .... C~
&.foIA'-IU
41x56
33x37
47x47
39x45
39x45
38x42
61x66
61x57
70x75
70x63
63x63
63x63
65x62
58x68
58x68
59x65
65x62
54x59
11111111111111111111111111111111
MTT L MCC3000/3100 Series
11111111111111111111111111111111
MCC3000/74HOO/MCC3100/MCC54HOO
Quad 2-lnput NAND Gate
46x49
(5CA)
PIN CONNECTIONS
3
4
2
5
(1)
:=[J-3
:=[J-6
(1)
9=[J-
(1)
(1 )
6
(1)
14
7
13
12
9
10
11
(10)
(10)
(1) 10
8
(1)13
11(10)
(1)12=[J-
8
(10)
Vee
= Pin 14
GNO=Pin7
tpd - 6.0 ns typ
Po - 88 mW typ/pkg
MCC3001/74H08/MCC3101/54H08
Quad 2-lnput AND Gate
46x49
(5CA)
PIN CONNECTIONS
3
4
2
14
(1)
(1)
21=C)--3
(10)
(1)
4 =C)-- 6
5
(10)
(1)
(1)
9=C)-- 8
(10)
7
1~
(1) 10
8
( 1 ) 1 2 = C ) - - 11 (10)
(1) 13
12
9
10
11
tpd = 9.0 ns typ
Po = 112 mW typ/pkg
Vee =
Pin 14
GNO = Pin 7
All dimensions are in mils.
Numbers at ends of terminals represent pin numbers.
7-73
III
MTTL MCC3000/3100 Series (continued)
MCC3002/MCC3102
Quad 2-lnput NOR Gate
47 x57
(59N)
PIN CONNECTIONS
4
3
2
(1)
21=D-3
(10)
(1)4=D- 6
(10)
(1)
(1)
14
7'---"1'"
5
(1)9~
(1)
13
10~
8
(10)
(1) 12 = D - 11 (10)
(1) 13
8
10
9
12
11
tpd = 6.0 ns typ
Po =112 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
MCC3003/MCC3103
Quad 2-lnput OR Gate
47 x 57
(59N)
•
6_
5
4
'\
I
PIN CONNECTIONS
3
/
(1)1~
2
(1)
2---L-./
3
(10)
(1)4~
(1)5~6(10)
7
(1)9~
14
(1)10~8
8
(1)12=0-
13
(1) 13
9
10
11
11 (10)
12
tpd = 9.0 ns typ
Po = 150 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
7-74
(10)
MTTL MCC3000/3100 Series (continued)
MCC3004/74H01/MCC3104/54H01
Quad 2-lnput Nand Gate (open Collector)
43x46
(16K)
5
4
PIN CONNECTIONS
3
2
6
(1)
(1)
(1)
7
14
(1 )
(1)
8
13
21=fJ--3
45=fJ-- 6
( 10)
( 10)
9~8
(10)
(1)10~
12~11
(1)13~
9
(1)
11
(10)
12
tpd = 8.0 ns typ
Po = 88 mW typ/pkg
Vee = Pin 14
GNO
= Pin 7
MCC3005/74H 1O/MCC31 05/54H 10
Triple 3-lnput NAND Gate
46x46
(35T)
4
5
PIN CONNECTIONS
3
6
2
8--------""'-
14
9
13
10
11
12
(1) 1==C}3==C}(1) 9==C}-
(1) 2
(1) 13
12 (10)
(1)
(1)
(1)
4
6
(10)
(1) 10
(1) 11
8
(10)
5
tpd = 6.0 ns typ
Po = 66 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
MTTL MCC3000/3100 Series (continued)
MCC3006/74H11/MCC3106/54H11
Triple 3-lnput AND Gate
46x46
(35T)
3
4
5
PIN CONNECTIONS
(1) 1=L)(1) 3=L)(1)9=L)-
6
2
(1)
2
12 (10)
(1)
4
6
(10)
8
(10)
(1) 13
7
(1)
14
8
9
(1) 10
(1) 1 1 -
13
10
5
12
11
tpd = 9.0 ns typ
Po = 84 mW typ/pkg
Vee
= Pin 14
GNO = Pin 7
MCC3007/MCC3107
Triple 3-lnput NAND Gate (open collector)
46x46
(35T)
II
PIN CONNECTIONS
2
(1)1~
(1) 2
12
(10)
(1) 13
7
8
14
(1)'3~
(1)
4
6
(1) 5
9
13
(1)9~
(1) 10
8
(1) 11
10
11
tpd
12
Po
= 8.0 ns typ
= 66 mW typ/pkg
Vee = Pin
GNO
7-76
= Pin
14
7
(10)
( 10)
MTTL MCC3000/3100 Series (continued)
MCC3008/74H04/MCC3108/54H04
Hex Inverter
58 x57
(09L)
5
PIN CONNECTIONS
3
4
2
(1 )
1 -----{>o-- 2
(10)
(1 ) 3 - - - - - { > o - - 4
(10)
(1 )
5 -----{>o-- 6
(10)
9 -----{>o-- 8
(10)
14
(1 )
.:ilII~~r--13
(1) 11 -----{>o--10 (10)
8
9
(1) 13 -----{>o--12 (10)
12
11
10
tpd = 6.0 ns typ
Po = 140 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
MCC3009/74H05/MCC3109/54H05
Hex Inverter (OC)
58 x 57
(09L)
4
PIN CONNECTIONS
3
2
6
14
7
(1 )
1 -----{>o-- 2
(10)
(1 )
3 -----{>o-- 4
(10)
(1 )
5 -----{>o-- 6
(10)
(1 )
9 -----{>o-- 8
(10)
(1) 11-----{>o--10 (10)
8
12
9
10
(1) 13-----{>o--12 (10)
11
Vee = Pin 14
GNO"" Pin 7
7-77
tpd = 8.0 ns typ
Po = 90 mW typ/pkg
MTTL MCC3000/3100 Series (continued)
MCC3010/74H20/MCC3110/54H20
Dual 4-lnput NAND Gate
39 x42
(1GH)
5
4
PIN CONNECTIONS
2
( 1)
~3=>-61101
(1)
(1 )
( 1)
6
93=>-
(1)
(1) 10
14
7
(1) 12
8 (10)
(1) 13
13
8
9
10
tpd = 6.0 ns typ
12
Po = 44 mW typ/pkg
Vee = Pin 14
GNO=Pin7
MCC3011/74H21/MCC3111/54H21
Dual 4-1 nput AN D Gate
39 x42
(1GH)
5
•
4
PIN CONNECTIONS
2
6~'
14
7
( 11
1
(1 )
(1 )
!==L)-6
(1 j
(1)9~
(1) 1 0 - -
(1) 12
(1) 13
13
8
9
10
8 (10)
tpd = 9.0 ns typ
Po = 56 mW typ/pkg
12
Vee = Pin 14
GNO = Pin 7
7-78
(10)
MTTL MCC3000/3100 Series
(continued)
MCC3012/74H22/MCC3112/54H22
Dual 4-lnput NAND Gate (open collector)
39 x42
(1GH)
PIN CONNECTIONS
4
(1)
(1)
(1)
1==j ) -
2
(1)
5 - - -.......
4
.
(1)
9
}-
(1) 10~
(1) 12-----1
.
( 1) 13 - - - - I L - - _
9
10
6 (10)
8 (10)
tpd = 8.0 ns typ
Po = 44 mW typ/pkg
12
Vee = Pin 14
GNO = Pin 7
MCC3015/14H31/MCC3115/54H31
8-lnput NAND Gate
7-79
MTTL MCC3000/3100 Series (continued)
MCC3016174H30/MCC3116/54H30
8-lnput NAND Gate
37 x 39
(88K)
2
3
4
PIN CONNECTIONS
(1) 4
(1)3~
(1) 5
14
H~ 1 ~
.
8 (10)
(1) 12
(1)
(1)
12
1
2
tpd = 8.0 ns typ
Po = 22 mW typ/pkg
8
11
Vcc = Pin 14
GNO = Pin 7
MCC3018174H62/MCC3118/54H62
4 Wide 3-2-2-3 Input Expander for AND-OR-INVERT Gates
37 x 37
(98K)
5
II
4
PIN CONNECTIONS
(1)34~
3
6
7
I
8
--:=j
J---l
(1)
(1 )
5 ---.l
(1)
1
(1)
2
--j.
(1) 12
---j.
L--.-/
Collector
~6
~8
(1) 13
3
(1)
9
9
(1) 10
10
11
12
(1) 11
Po = 40 mW typ/pkg
Vcc = Pin 14
GNO = Pin 7
7-80
MTTL MCC3000/3100 Series (continued)
MCC3019/74H61/MCC3119/54H61
Triple 3-lnput Expander for AND-OR Gates
PIN CONNECTIONS
(1)
(1)
13=[)23
9
(1 )
(1)
(1)
43=[)56
8
(1 )
(1)113=[)(1) 12
10
(1) 13
Po = 25 mW typ/pkg
Vee = Pin 14
GNO=Pin7
MCC3020/74H50/MCC3120/54H50
Expandable Dual 2 Wide 2-lnput AND-OR-INVERT Gate
41 x 41
(27W)
5
4
PIN CONNECTIONS
3
6
2
7
(1)
9
(1)
10
(1)
13
(1)
1
8 (10)
Emitter 11
14
8
Collector 12
1::)
9
1\
11
12
(1)
2
(1)
3
(1)
4
(1)
5
6 (10)
tpd = 6.0 ns typ
Po = 62.5 mW typ/pkg
Vee
= Pin 14
GNO = Pin 7
7-81
•
MTTL MCC3000/3100 Series (continued)
MCC3021/MCC3121
Quad 2-lnput Exclusive OR Gate
61 x 70
(53H)
PIN CONNECTIONS
3
2
( 1.6)
6
( 1.6)
( 1.6)
( 1.6)
7--~E[==========~1---14
(1.6)
9=J[)-
8
(8)
(1.6) 10
9
(1.6) 1 2 = J [ ) -
-----1---13
8
11
10
11 (8)
(1.6) 13
tpd = 14 ns typ
Po = 100 mW typ/pkg
12
Vee = Pin 14
GNO = Pin 7
MCC3022/MCC3122
Quad 2-lnput Exclusive NOR Gate
61 x 70
PIN CONNECTIONS
(53H)
3
4
2
( 1.6)
:~3(8)
(1.6)
(1.6)
45~- 6
~(8)
( 1.6)
•
7---I:C========:E1---14
(1.6)
_.
-7~
9=J[>12=J[>-
8
(8)
(1.6) 10
(1.6)
13
(1.6) 13
9
10
11
tpd = 14 ns typ
Po = 85 mW typ/pkg
Vee
=
GNO =
7-82
Pin 14
Pln 7
11 (8)
MTTL MCC3000/3100 Series (continued)
MCC3023/74H51/MCC3123/54H51
Dual 2 Wide 2-lnput AOI Gate
41 x 41
(27W)
5
PIN CONNECTIONS
4
(1)
6
2
9
(1) 10
8 (10)
(1) 13
7
(1)
8
14
9
13
10
1
(1)
2
(1)
3
(1)
4
(1)
5
6 (10)
tpd = 6.0 ns typ
Po = 62.5 mW typ/pkg
Vee = Pin 14
GND = Pin 7
MCC3024/74H40/MCC3124/54H40
Dual 4-lnput NAND Buffer Gate
42x42
(6Al)
5
PIN CONNECTIONS
4
2
(2)
(2)
(2)
(2)
14
} -6 (30)
21~
4
5--"'---
(2)9
!~ng~
(2)
~
/'
8 (30)
13-~-----"
9
typ = 6.0 ns typ
10
Po = 90 mW tvp/pkg
12
Vee = Pin 14
GND = Pin 7
7-83
MTTL MCC3000/3100 Series (continued)
MCC3025/MCC3125
Dual4-lnput NAND Power Gate
42x42
(6AL)
5
PIN CONNECTIONS
4
6
2
13J2
6(20)
(1.3)
(1.3)
(1.3)
(1.3)
7
14
4
5
(1.3) 9 3 J (1.3) 10
.
8 (20)
(1.3) 12
(1.3) 13
9
10
12
tpd = 6.0 ns typ
Po = 70 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
MCC3026/MCC3126
Dual 4-lnput AND Power Gate
42x42
(6AL)
PIN CONNECTIONS
l::~:!~
II
(1.3)5~
6 (20)
(1.3)9~
(1.3) 10
(1.3) 12
8(20)
(1.3) 13
10
12
tpd = 9.0 ns typ
Po = 90 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
7-84
MTTL MCC3000/3100 Series (continued)
MCC3028/MCC3128
Dual 3-lnput 3-0utput AND Series Terminated Line Driver
41 x56
(32A)
5
PIN CONNECTIONS
4
3
2
(1)
6
1
(1)
2
(1)
3
7
14
(1) 11
(1) 12
(1) 13
13
9
10
6
(*)
4
(1)
9(1)
8
(*)
10 (1)
tpd = 9.0 ns typ
Po = 56 mW typ/pkg
12
11
=0£
=0£
5(1)
Vee = Pin 14,
GND = Pin 7
MCC3029/MCC3129
Dual 3-lnput 3-0utput NAND Series Terminated Line Driver
41 x56
(32A)
5
4
PIN CONNECTIONS
3
2
( 1)
1
(1)
2
(1)
3
14
(1) 11
(1) 12
(1) 13
1;3
11
~
~
.
tpd = 6.0 ns typ
Po = 44 mW typ/pkg
12
Vee = Pin 14
GND = Pin 7
7-85
5(1)
6
(*)
4
(1)
9(1)
8
(*)
10 (1)
MTTL MCC3000/3100 Series (continued)
MCC3030/MCC3130
Dual4-lnput Expander for AND-OR-INVERT Gates
33x37
(63A)
4
5
PIN CONNECTIONS
3
Collector
'"
(1) 13
2
6
7
(1)
1~-_~12
(1)
(1)
2~; __ ~ 11
3
Emitter
(1)
4
(1)
(1)
6
(1)
8
14
8
13
9
11
10
Emitter
5~---~
10
_ _~ 9
Collector
12
Po
= 15 mW typ/Pkg
VCC = Pin 14
GNO = Pin 7
MCC3031/74H52/MCC3131/54H52
Expandable 4 Wide 2-2-2-3 Input AND OR Gate
47 x47
(97K)
4
5
PIN CONNECTIONS
3
(1)1~
(1)2~
II
(1)
3
(1)
4
(1)
5
8 (10)
(1) 10
(1) 11
(1) 12
(1) 13
10
11
12
Collector
9 _ _ _ _ _ _ _ _ _---1
Vee = Pin 14
GNO = Pin 7
7-86
tpd = 10 ns typ
Po = 87.5 mW typ/pkg
MTTL MCC3000/3100 Series (continued)
MCC3032/74H53/MCC3132/54H53
Expandable 4 Wide 2-2-2-3 Input AND OR INVERT Gate
39x45
(48K)
PIN CONNECTIONS
(1) 13
4
5
3
4
3
(1 )
1
(1 )
2
(1 )
3
(1 )
4
(1 )
5
(1 )
6
(1 )
9
8 (10)
(1) 10
Emitter 11
Collector 12
Vee = Pin 14
GNO=Pin7
tpd = 7 ns typ
Po = 40 mW typ/pkg
MCC3033/74H54/MCC3133/54H54
4 Wide 2-2-2-3 Input AND OR INVERT Gate
39x45
(48K)
5
4
PIN CONNECTIONS
3
(1) 13
2
6
7
14
13
(1)
1
(1)
2
(1)
3
(1)
4
(1)
5
(1)
6
(1)
9
8 (10)
(1) 10
10
tpd
Po
=
=
7 ns typ
40 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
7-87
•
MTTL MCC3000/3100 Series (continued)
MCC3034/74H55/MCC3134/54H55
Expandable 2 Wide 4-lnput AND OR INVERT Gate
38x42
(93K)
5
PIN CONNECTIONS
3
4
2
6
(1 )
1
( 1)
2
(1 )
3
(1)
4
8 (10)
(1) 10
7
(1) 11
14
8
(1) 12
13
(1) 13
9
5
12
11
10
9
tpd
Po
= 7.0 ns typ
= 30 mW typ!pkg
Vee = Pin
GNO
= Pin
14
7
MCC3050/MCC3150
AND J-K Flip Flop
61 x 66
(68A)
PIN CONNECTIONS
3
4
5
•
6
(0.75)
SET
9
lO.75!
0.75
(0.75)
J3
J2
J1
4
3
2
(1.5) CLOCK 13
(1.5)
JK 1
7
3
8
9
8 (10)
(0.75)
(0.75)
(0.75)
(0.75)
10
K 1 10
K2 11
K312
RESET
6 (10)
5
f= 40 MHz
11
Po = 80 mW typ/pkg
Vee
GNO
7-88
= Pin 14
Pin 7
=
MTTL MCC3000/3100 Series (continued)
MCC3051/MCC3151
AND Input J-K Flip Flop
61 x 57
(580)
4
5
PIN CONNECTIONS
3
(2.0)
SET
(0.75)
(0.75)
(0.75)
K3
K2
K1
6
4
3
2
(2.3) CLOCK 13
(1.5)
1
JK
8
J1 10
J2 11
J3 12
(0.75)
(0.75)
(0.75)
3
(2.0) RESET
9
11
10
6 (10)
5
f = 50 MHz
Po = 50 mW typ/pkg
12
Vee = Pin
GNO
= Pin
14
7
MCC3052/MCC3152
AND Input JJ-KK Flip Flop
70 x 75
(558)
PIN CONNECTIONS
3
4
5
:.:
(2.25)
6
t·75~
0.75
0.75)
SET
2
J3 5
J2 12
J1 4
Q
6 (10)
Q
8 (10)
7
(0.75) CLOCK
( 1.5)
JK
8
14
13
(0.75)
~0.75)
0.75)
(2.25)
9
1
K1 3
K2 11
K310
RESET 13
f
10
11
12
= 40 MHz
= 75 mW typ/pkg
Vee = Pin 14
GNO = Pin 7
Po
7-89
K
II
MTTL MCC3000/3100 Series (continued)
MCC3053/MCC3153
Double Edge Triggered Master-Slave Type D Flip Flop
70 x 63
(84D)
5
PIN CONNECTIONS
3
4
(1 ) 3
1) 4
1) 5
i
6
(1)
2
0
(1) 10
7
Q
6 (10)
a
8 (10)
(1) 11
4
(1) 13
(1) 12
8
(2)
3
9
9
11
10
Po = 100 mW typ!pkg
12
Vee = Pin 14
GND = Pin 7
MCC3054/74H71/MCC3154/54H71
OR Input J-K Flip Flop
63x63
(43H)
5
•
4
PIN CONNECTIONS
3
(3)
SET. 5 - - - - - - - - - - ,
(1)
(1)
J1A
J1B
1
2
(1 )
(1 )
J2A
J2B
3
4
13
6 (10)
4
3
(2) CLOCK
K1A
(1 )
K1B
(1 )
(1 )
(1 )
K2A
K2B
9
10
8 (10)
11
12
tpd = 20 ns typ
f = 30 MHz typ
Po = 95 mW typ!pkg
Vee = Pin 14
GND = Pin 7
7-90
MTTL MCC3000/3100 Series (continued)
MCC3055/74H72/MCC3155/54H72
AND Input J-K Flip Flop
63x63
(43H)
5
PIN CONNECTIONS
3
4
2
(2)
SET
(1 )
J1
3
(1 )
J2
4
(1 )
J3
5
13
8 (10)
(1) CLOCK 12
(1 )
(1 )
14
Kl
9
K2 10
K3 11
(1 )
(2)
13
2
tpd = 10 ns typ
f = 30 MHz typ
P D = 80 mW typ/pkg
12
11
10
R"Es'ET
6 (10)
Vee = Pin
GND
= Pin
14
7
MCC3060/MCC3160
Dual Type D Flip Flop
65 x 62
(80V)
5
4
PIN CONNECTIONS
3
(1.15)
SET
(0.75)
0
(1.5)
CLOCK
(1.7)
(1.15)
RESET
1
(0.75)
o
12
2
14
:~5(10)
3
SET'0jJ=
(1.5) CLOCK 11
13
(1.7)
Q
Q
9 (10)
Q
8 (10)
RESET 13
f = 30 MHz
Po = 120 mW typ!pkg
Vee = Pin 14
GND = Pin 7
7-91
6 (10)
II
MTTL MCC3000/3100 Series (continued)
MCC3061/MCC3161
Dual J-K Flip Flop
58x68
PIN CONNECTIONS
(9CW)
5
3
4
(1.75)
SET
4
(0.75)
J
3
5 (10)
(0.75)
K
2
6 (10)
.(3.7) CLOCK 13
(3.7) RESET 1 - + -....
(0.75)
J 11
9 (10)
(0.75)
K 12
8 (10)
(1.75)
SET 10
f = 50 MHz
11
10
PD = 100 mW typ/pkg
12
Vce = Pin 14
GND = Pin 7
MCC3062/MCC3162
Dual J-K Flip Flop
58 x 68
(9CW)
5
4
PIN CONNECTIONS
3
(1.75)
II
SET
(0.75)
J
(1.75) CLOCK
(0.75)
K
4-:=0.-,
~=J
:r
5
(10)
2~6(10)
J11~Q· 9(10)
(0.75) _ _
(1.75) CLOCK 13
(0.75)
K12
(1.75)
SET10
Q
f = 50 MHz
P D = 100 mW typ/pkg
Vee = Pin 14
GND'; Pin 7
7-92
8(10)
· MTTL MCC3000/3100 Series (continued)
MCC3063/MCC3163
Dual J-K Flip Flop
59 x 65
(60N)
4
5
PIN CONNECTIONS
3
~
2
6
(2) CLOCK
(l)K
(2) RESET
8
(1) J
14
(2) CLOCK
(2) RESET
9
11
1
7U
3
PD
tpd
f
12
.
Q
13(10)
2
9
(10)
5
~ 10
13
10
14y. 12(10)
Q
8(10)
6
= 176 mW typ/pkg
= 10 ns typ
= 30 MHz typ
Vee = Pin 4
GND = Pin 11
MCC3064/74H74
Dual D Flip Flop
65 x 62
(80V)
5
PIN CONNECTIONS
3
4
6
7
4
8
3
'4 V ee
R01 '
0 12
13R0 2
e p1 3
120 2
SD14
11 ep2
0,5
10502
0,6
9 Q2
GNO 7
8 02
9
10
11
Vee = Pin 14
GNO = Pin 7
12
7-93
MTTL MCC3000/3100 Series (continued)
MCC3065/74Hl0l
J-K Flip Flop
54x59
(SAD)
4
5
PIN CONNECTIONS
3
2
6
7
14
13
9
10
11
12
NC 1
14VCC
RD2
1350
J1 3
12CP
J2 4
11 K3
J3 5
10 K2
06
9
K1
GN07
8
Q
Vcc = Pin 14
GNO = Pin 7
•
7-94
111111111111111111111111111111111111111
MTTL - COMPLEX FUNCTIONS
1111111111111111 " III " I
r" "1111111111
MCC4000 Series (0 to +75 0 C)
MCC4300 Series (-55 to +1250 C)
The MTTL complex functions are designed for digital applications in the medium to highspeed range.
These MTTL devices provide significant reduction in package count and increased logic per
function over devices in the basic MTTL and MDTL families.
Type
o to 75°C
MCC4000
MCC4002
MCC4003
MCC4004
MCC4005
MCC4006
MCC4007
MCC4008174408
MCC4010
MCC4012
MCC4015
MCC4016174416
MCC4017174417
MCC4018174418
MCC4019174419
MCC4021
MCC4022
MCC4023
MCC4024
MCC4026
MCC4027
MCC4028
MCC4029
MCC4030
MCC4031
MCC4032
MCC4035
MCC4037
MCC4042
MCC4043
MCC4044
MCC4050174450
MCC4051
MCC4052174452
MCC4053174453
MCC4054174454
MCC4055174455
MCC4056174456
MCC4058174458
MCC4060174460
MCC4062
MCC4068174468
-55 to +125 0 C
MCC4300
MCC4302
MCC4303
MCC4304
MCC4305
MCC4306
MCC4307
MCC4308
MCC4310
MCC4312
MCC4315
MCC4316
MCC4317
MCC4318
MCC4319
MCC4321
MCC4322
MCC4323
MCC4324
MCC4326
MCC4327
MCC4328
M·CC4329
MCC4330
MCC4331
MCC4332
MCC4335
MCC4337
MCC4342
MCC4343
MCC4344
MCC4350
MCC4351
MCC4352
MCC4353
MCC4354
MCC4355
MCC4356
MCC4358
MCC4360
MCC4362
MCC4368
Function
Dual 4 Channel Data Selector
Dual Data Distributor
Dual Binary to NBCD Converter
16 Bit Scratch Pad Memory Cell
16 Bit Scratch Pad Memory Cell
Binary to one of eight Line Decoder
Dual Binary to one of four Line Decoder
8 Bit Parity Tree
Dual 4 Bit Parity Tree
4 Bit Shift Register
Quad Type D Flip-Flop
Program. Modulo-N Decade Counter
Modulo 2, Modulo 5 Program. Counter
Program. Modulo-N Hexadecimal Counter
Dual Modulo 4 Program. Counter
Dual 4 Bit Comparator (O.C.)
Dual 4 Bit Comparator
4-Bit Universal Counter
Dual Voltage Controlled Multivibrator
Full Adder
Full Adder
Adder (Dependent Carry)
Adder (Dependent Carry)
Adder (Independent Carry)
Adder (Independent Carry)
Ca rry Decode r
Quad Latch (O.C.)
Quad Latch
Quad Predriver
Dual Line Selector
Phase Frequency Detector
Counter-Latch Decoder/Driver
Counter-Latch Decoder/Driver
Dual Decade Counter
Dual Hexadecimal Counter
Dual Decade Up/Down Counter
Dual Binary Up/Down Counter
NBCD Adder
Nines Complement/Zero Element
Bus Transfer Switch
Dual Majority Logic Gate
Dual MOS to TTL Level Translator
7-95
Wafer
Mask
Set #
Chip
Size
(Mils)
18E
59B
06T
1PR
1PR
31C
31C
8HT
94F
43L
87N
30P
30P
30P
30P
04R
04R
74H
54H
33K
33K
33K
33K
33K
33K
50K
1DB
1DB
31E
32E
46K
09R
09R
91R
91R
66W
66W
74V
1DK
38T
62T
2AG
58x86
60x90
73x75
77x82
77x82
88x88
88x88
53x59
78x79
58x74
68x74
79x89
79x89
79x89
79x89 ,
63x69
63x69
94x95
66x53
58x60
58x60
58x60
58x60
58x60
58x60
39x43
60x61
60x61
55x67
61x61
62x66
92x94
92x94
80x84
80x84
102x99
102x99
69x90
61x62
64x66
50x45
50x50
111111111111111111111111111111111111111111111111111111IIIII
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series
1111111111111111111111111111111111111111111111111111111IIII
MCC4000/MCC4300
Dual 4 Channel Data Selector
58 x86
(18E)
PI!\! CONNECTIONS
6
2
(1 )
3
(1 )
5
(1 )
6
~
XO
(1 )
7 '"
~
X1
(1 )
8
~
X2
(1 )
9
~
X3
2~ 11 (10)
A
~
B
'"
7
8
14
13
9
10
'--
A
L--
B
W
f-----o 12 (10)
( 1)
2
~
YO
(1 )
1
~
Y1
Vee
=
~
'"
Y2
Gnd
=
(1) 13 "
Y3
(1) 14
Pin 4
Pin 10
12
11
tpd = 11 ns typ
Po = 150 mW typ/pkg
MCC4002/MCC4302
Dual Data Distributor
60 x 90
(59B)
5
PIN CONNECTIONS
4
1~20 11(10)
(3)
3
(3) 13
II
B
~v
2
21
__
~
~~C
5
__
(10)
,.~\
IL\IU/
(4)3~2(10)
(2)
8
e
WO
6
(10)
7
Y
W1
9
(10)
Cl
(2)
13
10
11
12
tpd = 10.5 ns typ
Po = 175 mW typ!pkg
Vee
= Pin 4
GNO = Pin 10
All dimension,s are in mils.
7-96
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4003/MCC4303
Dual Binary to NBCD Converter
73 x 75
(06T)
PIN CONNECTIONS
9
8
7
6
10
2
21 (6)
XO
YO
23(10)
·1
20(7)
X1
Y1
22(11)
19(8)
X2
Y2
1(13)
18(9)
X3
Y3
2(14)
11
24
12
23
13
22
Vee = Pin 24
GND = Pin 12
14
18
19
21
20
MCC4004/MCC4304
16 Bit Scratch Pad Memory Cell
77 x82
(1PR)
PIN CONNECTIONS
5
6
7
8
Y1Y2Y3Y4
3
X1
2
X2
14
X4
14
12
X3
11
131.)-----'
90--------'
10
11
12
tpd: Write Mode = 25 ns typ
Read Mode = 15 ns typ
Po
~ 250 mW typ/pkg
Vee
= Pin
4
GND = Pin 10
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4005/MCC4305
16 Bit Scratch Pad Memory Cell
77 x82
(1PR)
PIN CONNECTIONS
5
6
7
8
6 _______
Y1Y2Y3Y4
3
X1
2
X2
14
X4
S"1" ,
12
S"O"
11
X3
W"1"
W"O"
13
9
3
9
tpd: Write Mode = 25 ns typ
Read Mode ~ 15 ns typ
Po
10
~
250 mW typ/pkg
12
11
Vee
= Pin
4
GNO = Pin 10
MCC4006/MCC4306
Binary to one of eight Line Decoder
88 x 88
PIN CONNECTIONS
(31C)
5
1,)an'OI'O)
2
( 1) 5
II
(1) 6
(1) 9
A
B
e
0.1
11 (10)
0.2
12 (10)
0.3
13 (10)
04
4
(10)
05
3
(10)
06
2
( 10)
Q7
1
(10)
14
13
10
11
t p d=14nstyp
Po = 100 mW typ/pkg
Vee = Pin 14
GND = Pin 7
12
7-98
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series
(continued)
MCC4007/MCC4307
Dual Binary to one of four Line Decoder
88 x88
(31C)
PIN CONNECTIONS
3
4
5
2
8
4
(10)
01
3
(10)
02
2
(10)
B
03
1
(10)
E'
00'
5
E
(1 )
6
A
(1 )
7
50
(1 )
6
7
(1) 11
12 (10)
13 (10)
16
9
(1) 10
10
(1 )
B'
9
02'
14 (10)
0.3'
15 (10)
15
tpd = 14 ns typ
Po = 125 mW typ/pkg
11
12
13
14
Vee = Pin 16
GNO=Pin8
MCC4008/74408/MCC4308/54408
8 Bit Parity Tree
53 x59
(8HT)
5
PIN CONNECTIONS
2
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
13
1
2
3
9
10
11
12
14
(2)
(2)
4
5
3
4
6
7
8
8 (10)
)D
13
9
tpd = 15-30 ns typ
Po = 150 mW typ/pkg
10
11
12
Vee = Pin 14
GND = Pin 7
6 (10)
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4010/MCC4310
Dual 4 Bit Parity Tree
78 x 79
(94F)
5
PIN CONNECTIONS
4
(2)1~
~;~ ~
(2)
6 (10)
5
g:1~~
(2) 12
8 (10)
(2) 13
tpd = 9.5-22 ns typ
Po = 125 mW typ/pkg
10
Vee = Pin 14
GND = Pin 7
12
MCC4012/MCC4312
4 Bit Shift Register
58x 74
(43L)
PIN CONNECTIONS
(1)10~9110)
(5)
•
7
1
C
(1) 13
ST
(1) 11
(1)
14
8
MC
(1) 12
Q1
6 (10)
Q2
4 (10)
Q3
2 (10)
°PO
8
°P1
(1 )
5
°p2
(1 )
3
°p3
13
9
10
11
tpd = 22 ns typ/bit
12
Po = 180 mW typ/pkg
Vee = Pin
GND
7-100
= Pin
14
7
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series
(continued)
MCC4015/MCC4315
Quad Type 0 Flip Flop
68 x 74
(87N)
PIN CONNECTIONS
3
4
6
2
(2) SO
40--------,
(1) 00
2
(8)
C 13
(8)
R
3
(2)
S1
5
(1) 01
1
7
01 (10)
9
02 (10)
7
8
9
16
(2) 52 11
15
(1 ) D215
VCC = Pin 16
Gnd = Pin 8
10
14
11
(2) S312
13
12
1003 (10)
(1 ) 0314
tpd = 16 ns typ
GNO = Pin 8
Po = 190 mW typ/pkg
MCC4016/74416/MCC4316/54416
Programmable Modulo-N Decade Counter
79 x89
(30P)
6
VCC = Pin 16
5
4
3
PIN CONNECTIONS
2
7
( 1)
8
9
4
Gate
(2)
6
Clock
(1 )
5
PO
00
7
(8)
01
9
(8)
15 (8)
1
(1) 11
P1
02
(1) 14
P2
03
(1 )
2
P3
(2)
3
PE
(4) 10
MR
R
13
Bus
12
16
10
'"
14
VCC = Pin 16
GNO=Pin8
7-101
tpcJ. Clock to 03 = 50 ns typ
Clock to Bus = 35 ns typ
Po
= 250 mW typ/pkg
(8)
•
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4017/74417/MCC4317/544.17
Modulo 2, Modulo 5 Programmable Counter
79 x 89
(30P)
5
6
4
PIN CONNECTIONS
3
2
00
7
01
DO
02
01
14
2
3
16
9
10
11
12
13
03
03
Bus
12
PE
MR
vee = Pin
Gnd = Pin
15
10
02
9
15
16
8
14
MCC4018/74418/MCC4318/54418
Programmable Modulo-N Hexadecimal Counter
79 x 89
(30P)
•
PIN CONNECTIONS
8
16
9
IGate
I
7
(8)
Q1
9
(8)
P1
Q2
15 (8)
(1) 14
P2
Q3
1
(1 )
2
P3
(2)
3
PE
( 1)
7
4
(2)
6
Clock
(1 )
5
PO
(1) 11
(4) 10
MR
QO
R
13
Bus
12
15
10
tpd, Clock to Q3 = 50 ns typ
Clock to Bus = 35 ns typ
11
12
PD
= 250 mW typ/pkg
VCC
GND
7-102
= Pin 16
= Pin 8
(8)
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4019174419/MCC4319/54419
Dual Modulo 4 Programmable Counter
79 x 89
(30P)
5
6
PIN CONNECTIONS
3
4
00 7
7
Clock 2
01 9
00
02
15
8
03
PE
Bus
12
MR
Vcc = Pin 16
Gnd = Pin 8
MCC4021/MCC4321
Dual 4 Bit Comparator (open collector)
63x 69
(04R)
'5
6
PIN CONNECTIONS
4
3
2
7
8
9
16
10
15
11
12
13
14
(2)
3
AO
(2)
4
A1
(2)
5
A2
(2)
6
A3
(2) 13
BO
(2) 12
B1
(2) 11
B2
(2) 10
B3
(2)
1
RO
(2)
2
R1
(2) 15
R2
(2) 14
R3
Vee = Pin 16
GNO = Pin 8
7-1n~
Z1
7 (10)
•
Z2
9 (10)
tpd = 20 ns typ
Po = 250 mW typ/pkg
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4022/MCC4322
Dual 4 Bit Comparator
63x69
(04R)
6
5
PIN CONNECTIONS
4
3
2
7
8
9
16
10
15
11
12
13
(2)
3
AO
(2)
4
A1
(2)
5
A2
(2)
6
A3
(2) 13
BO
(2) 12
B1
(2) 11
B2
(2) 10
B3
(2)
1
RO
(2)
2
R1
(2) 15
R2
(2) 14
R3
Z1
7 (10)
Z2
9 (10)
14
Vee = Pin 16
= Pin 8
tpd
Po
GND
= 20 ns typ
= 250 mW typ/pkg
MCC4023/MCC4323
4-Bit Universal Counter
94 x 95
(74H)
4
PIN CONNECTIONS
3
(2)2~5(10)
•
(2) 13
C1
(2)
1
C2
(1) 12
J3
(3)
3
RO
(3) 10
R1
(3)
4
R2
(3) 11
R3
01
8 (10)
02
6 (10)
03
9 (10)
tpd = 16 ns typ/bit
P D = 200 mW typ/pkg
f
=
30 MHz typ
Vce
= Pin 16
GND = Pin 8
7-104
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4024/MCC4324
Dual Voltage Controlled Multivibrator
66 x53
(54H)
5
4
PIN CONNECTIONS
3
6
2
6 (7)
12
8 (7)
7
9
PD = 150 mW typ!pkg
11
10
f=30MHztyp
~?-
12
10 "11
Vce = Pin 13 & 1,14
GN 0 = Pin 5, 9, 7
MCC4026/MCC4326
Full Adder
58 x60
(33K)
5
PIN CONNECTIONS
4
2
(2)
8
A
(2)
9
B
(1 )
2
Cin
(1) 11
5
C out
7
-tr--'
(1) 12
(1) 13
S
-j
P
_11... __ ./
6
tpd = (Add Delay) = 25 ns typ
tpd
(Carry Delay) = 13 ns typ
PD = 90 mW typ/pkg
VCC=Pin4
GND = Pin 10
7-105
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4027/MCC4327
Full Adder
58x60
(33K)
5
PIN CONNECTIONS
4
(2)
8
A
(2)
9
B
(1 )
2
Cin
(1) 11
10
11
C out
7
-j
...J
P
6
= 25
ns typ
L.. _ _ .....
(1) 13
tpd
5
-tr--'
(1) 12
tpd
S
= (Add
Delay)
(Carry Delay) = 13 ns typ
Po = 90 mW typ/pkg
12
Vce = Pin 4
GND = Pin 10
MCC4028/MCC4328
Adder (dependent carry)
58 x60
(33K)
5
4
PIN CONNECTIONS
3
(2)8~5
•
(2)
9
(1) 11
B
C n -1
(1) 12
e
out
6
(1) 14
(2) 13
( 1)
1
7
30---......J
Vee=Pin4
2o----......J GND = Pin 10
tpd
= (Add
Delay)
= 25
ns typ
tpd (Carry Delay) = 13 ns typ
Po = 125 mW typ/pkg
7-106
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4029/MCC4329
Adder (dependent carry)
58 x 60
(33K)
5
PIN CONNECTIONS
3
4
6
2
14
9
8
A
(2)
9
B
(1) 11
C n -1
(1) 12
C n -2
(1) 14
C n -3
7 -.........::-
8
(2)
S
5
(!)
out
6
O~t
7
(2) 13
(i) n-1
(1 )
(9 n-2
X1 X2
1
3
13
VCC = Pin 4
GND = Pin 10
2
10
11
12
tpd
= (Add
Delay)
= 25
ns typ
tpd (Carry Delay) = 13 ns typ
Po
= 125 mW typ/pkg
MCC4030/MCC4330
Adder (independent carry)
PIN CONNECTIONS
58 x 60
(33K)
3
4
5
2
(2)
8
A
(2)
9
B
(1) 11
C n -l
(1) 12
C n -2
(1) 14
C n -3
S
EEl
out
6
o~t
7
(2) 13
(i) n-1
(1 )
(9n-2
X1 X2
1
5
14
3
2
VCC ~ Pin 4
GND = Pin 10
13
tpd = (Add Delay) = 25 ns typ
tpd (Carry Delay) = 13 ns typ
10
11
12
Po
7-107
= 125 mW typ/pkg
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4031/MCC4331
Adder (independent carry)
58 x 60
PIN CON~ECTIONS
(33K)
5
4
3
6
2
8
14
9
13
10
11
(2)
8
A
(2)
9
B
(1) 11
C n -1
(1) 12
C n -2
(1) 14
C n -3
S
5
(!)
out
6
o~t
7
(2) 13
c;9 n-1
(1 )
E!:)n-2
X1 X2
1
3
Vce
2
GNO = Pin 10
=, Pin 4
12
tpd = (Add Delay) = 25 ns typ
tpd (Carry Delay) = 13 ns typ
Po
= 125
mW typ/pkg
MCC4032/MCC4332
Carry Decoder
39 x43
(50K)
5
II
4
PIN CONNECTIONS
3
(4)14~
(4)8~~
(4) 1 0--_ _-+-1--1
2
( 1 ) 13 0----4++J
7 o--~-+-I--I
( 1) 9 0---+-1--+4-1
(3)
( 2 ) 3 0--...;::+=+=1====1
( 1) 2 o--+-H++J
( 1) 6 o--..!:::::::::===~
( 1) 5 o--_---.-J
Vee = Pin
GNO
4
= Pin 10
A. tpd = 4.0 ns typ/decoder
1.0 ns typ/pF at expander nodes
Po
7-108
= 20
mW typ/pkg
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4035/MCC4335
Quad Latch (open collector)
60 x 61
(108)
5
4
PIN CONNECTIONS
3
(")
DO 1
(5.2) Strobe 2
(" ") Enable 6
2
(")
D1 3
D
Q
14QO(7)
Q
12 Q1 (7)
Q
11 Q2 (7)
ST
E
D
ST
E
14
(")
D25
D
ST
13
E
(")
8
D37
tpd = 25 ns typ
PD = 140 mW typ/pkg
ST
E
Vee
Q3 (7)
= Pin
4
GND = Pin 10
MCC4037/MCC4337
Quad Latch
60 x 61
(108)
5
4
PIN CONNECTIONS
3
(O)
DO 1
•
(5.2) Strobe 2
7
(0)
01 3
.
)
D25
( 0)
037
(
tpd = 25 ns typ
Po = 150 mW typ/pkg
7-109
ST
Vee
= Pin
4
GND = Pin 10
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4042/MCC4342
Quad Predriver
55 x 67
(31E)
5
4
6
PIN CONNECTIONS
3
2
(1) A1 2
(4) B
B
(1) A3
14
9
13
VCC = Pin 4
GND = Pin 10 & 3
10
Gnd
10
11
tpd
Po
MCC4043/MCC4343
Dual Line Selector
7-110
C1
7
C2
B
C3
14 C4
(1) A413
9
VCC2
1
11
(1) A2 6
7
5
= 15 ns typ
= 120 mW typ/pkg
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4044/MCC4344
Phase Frequency Detector
62 x 66
(46K)
PIN CONNECTIONS
3
4
5
PhaseFreq
Detector
VI
3
Amplifier
1
4>.:
10)
(3)
9
4
8
Output
PhaseFreq
Detector
2
Vee = Pin 14
GND=Pin7
10
11
tpd (th ru phase detector)
12
=
9_0
ns typ
PD = 85 mW typ/pkg
MCC4050/74450/MCC4350/54450
COU nter- Latch Decoder /0 river
92 x 94
PIN CONNECTIONS
(09R)
2
Lamp
Test
13
High'Current
Drivers
10 a
11 b
4-Bit
Latch
11
12
13
7-Segment
Decoder
Serial
Output
Reset
3
fTog = 35 MHz typ
PD = 450 mW typ/pkg
7 -111
9
c
5
d
4
e
6
f
7
9
Lamp
Blank ing
Vee = Pin 16
GND = Pin 8
•
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4051/MCC4351
Counter-Latch Decoder/Driver
92 x94
(09R)
PIN CONNECTIONS
2
High-Current
Drivers
..--<.----0 16 V CC
-+-----o 1 0 a
-1-----<"111 b
7-Segment _
Decoder
4-Bit
Latch
-+-----o 9
c
5
d
-+-----o 4
e
6
f
----07
9
-1----(']
-1----(']
11
12
Serial
Output
3
Lamp
Blank ing
fTog = 35 MHz typ
Vce = Pin 16
PD = 450 mW typ/pkg
GND = Pin 8
MCC4052/74452/MCC4352/54452
Dual Decade Counter
PIN CONNECTIONS
80x84
(91R)
3
2
II
c
E
R
16
01
6
02
5
03
I
4
00
9
01
10
02
11
03
12
e
15
14
7
I
1 0
13
00
E
R
11
12
13
14
Vce == Pin 16
15
7-112
GND == Pin 8
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4053/74453/MCC4353/54453
Dual Hexadecimal Counter
PIN CONNECTIONS
80 x 84
(91R)
6
00
7
01
6
02
5
R 03
4
00
9
01
10
02
11
03
12
3 0 - -.......0 e
5
3
4
2o---CE
2
16
e
13
15
E
14
R
11
13
12
14
Vee
GND
15
=
=
Pin 16
Pin 8
MCC4054/74454/MCC4354/54454
Dual Decade Up/Down Counter
102 x 99
(66W)
9
7
8
6
PIN CONNECTIONS
Lse
5
4
P
10
3
10
SEI
~
UfD
11
13
11
~
SEQ
UE
14
C
QO
I-- ~ 23
Q1
r-- f-o 22
DO
Q2
D1
12
2
D2
4
Q3
D3
I--
-
--9 21
--0 20
13
14
24
~
-
P'
~c
SEQ' - - - - 0 15
SEI'
15
23
UE'
UfD'
C'
22
16
QO' - - - - 0 19
Q1' - - - - 0 18
DO'
D1'
Q2'
D2'
D3'
17
18
19
20
21
7-113
Q3'
Vce = Pin 24
Gnd = Pin 12
r------o
r------o
17
16
•
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series
(continued)
MCC4055/74455/MCC4355/54455
Dual Binary Up/Down Counter
102 x 99
(66W)
PIN CONNECTIONS
LSC
P
10
10
11
SE~
r--
SEI
11
UE
13
U/D
14
C
00
r-- ~ 23
01
-
02
- f-o 21
03
- f-o 20
~ 22
DO
D1
12
2
D2
D3
13
~
24
M"
'-- P'
SE~'
- - - 0 15
SEI'
UE'
23
00' - - - 0 19
U/D'
01' - - - 0 18
C'
DO'
22
D1'
02' - - - 0 17
D2'
D3'
17
18
20
19
03'
----<> 16
Vec = Pin 24
Gnd = Pin 12
21
MCC4056/74456/MCC4356
NBCD Adder
PIN CONNECTIONS
69 x 90
(74V)
6
5
4
3
2
•
7
Cin
15
A1
14
B1
S1
1 ...,
A2
82
2
B2
3
16
4
B3
5
A4
6
B4
S3
11
S4
10
Cout
15
11
12
13
14
VCC
GND
7-114
=
=
13
Pin 16
Pin 8
9
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series
(continued)
MCC4058/74458/MCC4358/54458
Nines Complement/Zero Element
PIN CONNECTIONS
61 x 62
(10K)
11
5
4
3
A1
A2
C1
10 ,
2
A3
C2
9
12
A4
C3
4
3
B
C4
5
13
0
2
7
14
9
13
VCC
GND
10
11
=
=
Pin 14
Pin 7
12
•
7-115
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series (continued)
MCC4060/74460/MCC4360/54460
Bus Transfer Switch
64x66
(38T)
5
6
PIN CONNECTIONS
4
3
Q1 (2)
2
7
B1 (6)
8
(4) 01
16
9
Q2 (1)
10
15
B2 (7)
11
12
13
14
(5) 02
Q3 (15)
B3 (9)
(12) 03 0----+-_+_--1
Q4 (14)
....-.......- - 0 B4 (10)
•
Vee =: 16
GNO =: 8
( 11) 04 0----+--+---1
T'G'
(13)
R
7-116
=:
Tri Stable Gate.
MTTL COMPLEX FUNCTIONS MCC4000/4300 Series
(c<;>ntinued)
MCC4062/MCC4362
Dual Majority Logic Gate
50x45
(62T)
4
5
PIN CONNECTIONS
3
A1
1
B1
2
C1
3
2
7
5
Z1
L...-.---o421
14
13
8
A213
8 Z2
B212
10
11
L...-.----o10 22
C211
tpd
= 20 ns
typ (~ Output)
11 ns typ (Z Output)
PD
= 75
mW typ/pkg
MCC4068/74468/MCC4368/54468
Dual MOS to TTL Level Translator
50 x 50
(2AG)
5
4
PIN CONNECTIONS
3
6
A3
4
A4
3
A5
2
A6
1
Address
Decoders,
Word
Drivers
32 X 32 Array
A715
7
-------
8
14
9
AO
5
A1
6
A2
7
1 of 8
Address
Decode
CE 1 13
10
11
12
CE2 14
VCC = Pin 16
Gnd = Pin 8
7-117
993 10 B2
11 B 1 12 BO
•
11111111111111111111111111111111111111111111111
MTTL - SUHL COMPLEX FUNCTIONS
11111111111111111111111111111111111111111111111
MCC5xx2 Ser~es } (0 to +750C)
MCC5xx3 Senes
MCC5xxO Series} (-55 to +1250C)
MCC5xx1 Series
These complex functions are designed for digital applications in the medium to high-speed
range, with significant reduction in package count and increased logic per function over devices in
the basic MTTL-SUHL family.
Type
o to 75°C
MCC5092
MCC5113
MCC5123
MCC5133
MCC5143
MCC5153
MCC5163
MCC5173
MCC5183
MCC5193
-55 to +125 0 C
MCC5090
MCC5111
MCC5121
MCC5131
MCC5141
MCC5151
-
MCC5181
MCC5191
Function
Fixed Frequency Decade Divider
4-Bit Shift Register
Dual 4-Bit Parity Generator Checker
Dual 4-Bit Comparator
Binary Programmable Divider
BCD Programmable Divider
4-Bit Binary Counter
4-Bit BCD Counter
4-Bit Binary Up/Down Counter
4-Bit BCD Up/Down Counter
•
7-118
Wafer
Mask
Set #
Chip
Size
(Mils)
12V
13V
14V
14V
15V
4LW
16V
16V
17V
17V
80x48
89x68
86x55
86x55
93x84
82x81
78x72
78x72
92x100
92x100
1111111111111111111111111111111111 \
MTT L SU H L MCC5000 Series
11111111111111111111111111111111111
MCC5092/MCC5090
Fixed Frequency Decade Divider
EaUIVALENT CIRCUIT
AND PIN CONNECTIONS
80x48
(13V)
3
4
5
2
14
~~TPUT
2
C:::::::J---4
3
r:--~--4AC
13
INPUT
12
Vee 4
11
5 C::J---ICLI~:~BIT
10 GND
DIGITAL
INPUT
6
7
Vee= Pin 4
GND=Pinl0
MCC5113/MCC5111
4-Bit Shift Register
89x68
(13V)
5
4
EaUIVALENT CIRCUIT
AND PIN CONNECTIONS
3
14
2
13
3
12
Vee 4
11
5
10 GND
6
9
7
8
Vee = Pin 4
GND
All dimensions are in mils.
7-119
= Pin
10
•
MTTL SUHL MCC5000 Series
(continued)
MCC5123/MCC5121
Dual 4-Bit Parity Generator Checker
86 x 55
(14V)
EQUIVALENT CIRCUIT
AND PIN .CONNECTIONS
---. ,.....-r:::::l
2
r--~'"
3
14
13
12
Vee 4
11
5 -----.......
10 GND
6
9
8
3
Vcc= Pin 4
GND= Pin 10
MCC5133/MCC5131
Dual 4-Bit Comparator
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
86 x55
(14V)
5
4
3
u
•
r---t:::::::l 14
2
13
3
12
Vee 4
11
4
3
5
10GND
6 r -.........
9
7 '-----___-
8
VCC=Pin4
GND = Pin 10
7-120
ITTL SUHL MCC5000 Series (continued)
MCC5143/MCC5141
Binary Programmable Divider
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
93x84
(15V)
14
2
13
12
VCC4
11
5
10 GND
6
9
7
8
Vee = Pin 4
GND = Pin 10
MCC5153/MCC5151
BCD Programmable Divider
MTTL SUHL MCC5000 Series (continued)
MCC5163
4·Bit Bianary Counter
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
78 x 72
(16V)
5
4
2
14
2
13
3
12
Vee 4
11
14
5
10 GND
6
9
7
8
13
10
11
12
Vee = Pin 4
GND = Pin 10
MCC5173
4·Bit BCD Counter
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
78 x 72
(16V)
5
4
u
2
II
14
2
13
3
12
Vee 4
11
7
8
14
9
3
10
11
12
5
10 l GND
6
9
7
8
Vee = Pin 4
GND = Pin 10
7-122
MTTL SUHL MCC5000 Series (continued)
MCC5183/MCC5181
4-Bit Binary Up/Down Counter
92 x 100
EQUIVALENT CIRCUIT
AND PIN CONNECTIONS
(17V)
5
4
3
•
14
4
2
13
3
12
Vee 4
11
3
5
10 GND
6
9
7
8
MCC5193/MCC5191
4-Bit BCD Up/Down Counter
EQUIVALENT CIRC~IT
AND PIN CONNECTIONS
92 x 100
(17V)
5
4
3
14
2
13
3
12
Vee 4
11
4
3
7-123
5
10GND
6
9
7
8
IIIIII1II1
MTTL
1111111111
MCC54HOO Series (-55 to +125 0 C)
MCC74HOO Series (0 to +75 0 C)
These integrated circuits comprise a family of transistor-transistor logic designed for general
purpose digital applications. The family has a high operating speed (30-50 MHz clock rate), good
external noise immunity, high fan-out, and the capability of driving lines up to 600 pF capacitance.
Many of these devices have been replaced by Motorola's MCC3000/3100 Series; bonding diagrams
are shown with that Series.
Type
o to 75°C
II
MCC74HOO
MCC74HOOF
MCC74HOl
MCC74H01F
MCC74H04
MCC74H05
MCC74H08
MCC74H10
MCC74H10F
MCC74H11
MCC74H11 F
MCC74H20
MCC74H20F
MCC74H21
MCC74H21F
MCC74H22
MCC74H22F
MCC74H30
MCC74H40
MCC74H40F
MCC74H50
MCC74H51
MCC74H52
MCC74H53
MCC74H54
MCC74H55
MCC74H60
MCC74H61
MCC74H62
MCC74H71
MCC74H72
MCC74H73
MCC74H74A
MCC74H101
MCC74H103
-55 to +125 0 c
MCC54HOO
MCC54HOOF
MCC54HOl
MCC54H01F
MCC54H04
MCC54H05
MCC54H08
MCC54H10
MCC54H10F
MCC54H11
MCC54H11F
MCC54H20
MCC54H20F
MCC54H21
MCC54H21 F
MCC54H22
MCC54H22F
MCC54H30
MCC54H40
MCC54H40F
MCC54H50
MCC54H51
MCC54H52
MCC54H53
MCC54H54
MCC54H55
MCC54H60
MCC54H61
MCC54H62
MCC54H71
_MCC54H72
MCC54H73
MCC54H74A
MCC54H101
MCC54H103
Function
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate (O.C.)
Quad 2-lnput NAND Gate (O.C.)
Hex Inverter
Hex Inverter
Quad 2-lnput AND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput AND Gate
Dual 4-lnput NAND Gate
Dual 4-lnput NAND Gate
Dual 4-lnput AND Gate
Dual 4-lnput AND Gate
Dual 4-lnput NAND Gate (O.C.)
Dual 4-lnput NAND Gate (O.C.)
8-lnput NAND Gate
Dual 4-lnput NAND Buffer Gate
Dual 4-lnput NAND Buffer Gate
Exp. Dual 2 Wide 2-lnput AOI Gate
Dual 2 Wide 2-lnput AOI Gate
Exp. 4 Wide 2-2-2-3 Input AND-OR Gate
Exp. 4 Wide 2-2-2-3 Input AOI Gate
4 Wide 2-2-2-3 Input AOI Gate
Exp. 2 Wide 4-lnput AOI Gate
Dual 4-lnput Exp. for AOI Gates
Triple 3-lnput Exp. for AND-OR Gates
4 Wide 3-2-2-3 Input Exp. for AOI Gates
OR Input J-K Flip-Flop
AND Input J-K Flip-Flop
Dual J-K Flip-Flop
Dual D positive edge triggered FF
AND-OR Gated J-K Neg. edge Triggered FF W/Preset
Dual J-K Neg. edge Triggered FF
7-124
Wafer
Mask
Chip
Size
Set #
(Mils)
5CA
06l
16K
06l
09l
09l
5CA
35T
67M
35T
72H
1GH
31l
1GH
72H
1GH
31l
88K
6Al
12M
27W
27W
97K
48K
48K
93K
63A
99K
98K
43H
43H
60N
80V
8AD
6AD
46x49
50x50
43x46
50x50
58x57
58x57
46x49
46x46
45x47
46x46
62x47
39x42
38x47
39x42
62x47
39x42
38x47
37x39
42x42
43x44
41x41
41x41
47x47
39x45
39x45
38x42
33x37
39x44
37x37
63x63
63x63
59x65
65x62
54x59
65x79
MTTL -881
'""""""'"'
11111111111111111
MCC5400 Series (-55 to +1250 C)
MCC7400 Series (0 to +750 C)
MC5400/MC7400 Series SSI circuits comprise a family of transistor-transistor logic designed
for general purpose digital applications. The family has a medium operating speed (15-30 MHz
clock rate), good external noise immunity, high fan out, and the capability of driving capacitive
loads of up to 600 pF.
Type
o to 7SoC
MCC7400
MCC7400F
MCC7401
MCC7402
MCC7403
MCC7404
MCC7405
MCC7406
MCC7407
MCC7408
MCC7409
MCC7410
MCC7410F
MCC7411
MCC7412
MCC7416
MCC7417
MCC7420
MCC7420F
MCC7423
MCC7425
MCC7426
MCC7427
MCC7430
MCC7437
MCC7438
MCC7440
MCC7440F
MCC7450
MCC7451
MCC7453
MCC7454
MCC7460
MCC7470
MCC7472
MCC7473
MCC7474
MCC7476
MCC7479
MCC74107
-55 to +125 0 C
MCC5400
MCC5400F
MCC5401
MCC5402
MCC5403
MCC5404
MCC5405
MCC5406
MCC5407
MCC5408
MCC5409
MCC5410
MCC541OF
MCC5411
MCC5412
MCC5416
MCC5417
MCC5420
MCC5420F
MCC5423
MCC5425
MCC5426
MCC5427
MCC5430
MCC5437
MCC5438
MCC5440
MCC5440F
MCC5450
MCC5451
MCC5453
MCC5454
MCC5460
MCC5470
MCC5472
MCC5473
MCC5474
MCC5476
MCC5479
MCC54107
Function
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate
Quad 2-lnput NAND Gate (OoCo)
Quad 2-lnput NOR Gate
Quad 2-lnput NAND Gate (OoCo)
Hex Inverter
Hex Inverter (OoCo)
Hex Inverter Buffer/Driver (OoCo)
Hex Buffer/Driver (OoCo)
Quad 2-lnput AND Gate
Quad 2-lnput AND Gate (OoCo)
Triple 3-lnput NAND Gate
Triple 3-lnput NAND Gate
Triple 3-lnput AND Gate
Triple 3-lnput NAND Gate (OoCo)
Hex Inverter Buffer/Driver (OoCo)
Hex Buffer/Driver
Dual 4-lnput NAND Gate
Dual 4-lnput NAND Gate
Dual 4-lnput NOR Gate w/Strobe (Expo)
Dual 4-lnput NOR Gate w/Strobe
Quad 2-lnput Interface NAND Gate
Triple 3-lnput NOR Gate
8 Input NAND Gate
Quad 2-lnput Positive NAND Buffer
Quad 2-lnput Positive NAND Buffer (OoCo)
Dual 4-lnput NAND Buffer
Dual 4-lnput NAND Buffer
Expo Dual 2 Wide 2-lnput AOI Gate
Dual 2 Wide 2-lnput AOI Gate
Expo 4 Wide 2-lnput AOI Gate
4 Wide 2-lnput AOI Gate
Dual 4-lnput Expo for AOI Gates
AND Gated J-K FF Positive Edge Triggered
AND Gated J-K Master Slave FF
Dual J-K Flip-Flop
Dual Positive Edge Triggered FF
Dual J-K Flip-Flop
Dual D Positive Edge Triggered FF
Dual J-K Master Slave Flip-Flop
7-125
Wafer
Mask
Set #
Chip
Size
(Mils)
16K
81l
22K
53T
16K
1CR
1CR
2AW
2AW
23T
23T
11 N
61N
85W
11 N
2AW
2AW
51N
90l
5AG
5AG
16K
75W
98l
1AF
1AF
10N
12M
03R
03R
11 P
11 P
90B
12N
56C
91M
80V
86N
80V
45P
43x46
43x50
40x44
43x49
43x46
48x51
48x51
47x51
47x51
51x46
51x46
46x41
43x44
43x46
46x41
47x51
47x51
34x42
39x40
41x49
41x49
43x46
46x44
34x35
52x44
52x44
41x44
43x44
41x42
41x42
38x40
38x40
36x49
56x60
51x60
66x66
65x62
71x65
65x62
69x63
It 11111111111111111111111111111111111
MTTL SSI MCC5400/7400 Series,
IIIIIIIII11111111111111111 rill 11111 II
43 x46
(16K)
5
MCC7400, MCC5400
Quad 2-lnput NAND Gate
4
3
PIN CONNECTIONS
2
:=C)-3
14
:=C)-6
1~=C)-8
13
10
11
12
Vee = Pin14
tpd = 10 ns typ
3=~
Gnd = Pin
43x 50
(81L)
9
13~
MCC7400F /MCC5400F
Quad 2-lnput NAND Gate
7
8
7
12~11
PIN CONNECTIONS
6
:=C)-3
5
10
:=C)-6
11
4
12
3
1~=C)-8
Vee = Pin 14
Gnd = Pin 7
13
14
2
40 x44
MCC7401/MCC5401
Quad 2-input NAND Gate
,... --- ..
I??K\
II
5
1 2 = C ) - 11
13
4
3
2
(Open Collector Output)
PIN CONNECTIONS
6
~=C)-1
7
14
:=C)-4
8
13
:=C)-1O
9
10
11
12
tpd = 35 ns typ
1=~
Vee = Pin 14
Gnd = Pin 7
All dimensions are in mils.
7-126
1 1 = C ) - 13
12
MTTL SSI MCC5400/7400 Series (continued)
43 x 49
(53T) 5
4
MCC7402/MCC5402
3
Quad 2-lnput NOR Gate
6
PIN CONNECTIONS
2
7-_Z"""II
14
8
9
,13
10
1 = 2 +3
Vee = Pin 14
Gnd = Pin 7
11
12
tpd = 10 ns typ
43 x 46
(16K)
3
4
5
MCC7403/MCC5403
Quad 2-lnput NAND Gate
PIN CONNECTIONS
2
7
14
8
13
9
11
10
tpd
3=~
Vee = Pin 14
Gnd= Pin 7
12
= 35
ns typ
48 x 51
MCC7404/MCC5404
Hex Inverter
(1CR)
5
4
3
PIN CONNECTIONS
1--{:>o-·2
6
5--{:>o-6
7
8
Vee = Pin 14
Gnd = Pin 7
9
tpd
2
=
13 ns typ
=1
MCC7405/MCC5405
Hex Inverter
(Open Collector)
48 x 51
(1CR)
11V10
13V12
PIN CONNECtiONS
2
6
7
14
8
13
9
10
11
Vee=Pin14
Gnd = Pin 7
12
tpd
= 35 ns
typ
2=1
7-127
9-V- 8
11-V- 10
13-V-12
•
MTTL SSI MCC5400/7400 Series (continued)
MCC7406/MCC5406
Hex Inverter
Buffers/Drivers (open collectors)
3
4
5
2
6
-;
47 x 51
(2AW)
14
PIN CONNECTIONS
8
Vee
13
Gnd
12
11
10
= Pin 14
= Pin 7
tpd
= 15
ns typ
2=1
MCC7407/MCC5407
Hex Buffers/Drivers (open collectors)
4
5
3
2
PIN CONNECTIONS
47 x 51
(2AW)
14
13
Vee = Pin 14
Gnd = Pin 7
Positive Logic: 2 = 1
51 x 46
(23T)
5
9---{:::>o- 8
11 ---{:::>o-1 0
13 ---{:::>o-12
1-{>--2
3-{>--4
5-{>--6
9-{>--S
11-{>--10
13-{>--12.
MCC7408/MCC5408
Quad 2-1 nput AN 0 Gate
4
3
2
6
7
PIN CONNECTIONS
14
8
13
9
10
11
Positive Logic:
Negative Logic:
II
5tx46
(23T)
3 = 1
4
5
3
1 2 = = C = > - 11
13
Vee = Pin 14
3 = 1 • 2
Gnd = Pin
7
+2
MCC7409/MCC5409
Quad 2-lnput AND Gate (open collector)
2
6
:==C=>-3
7
:==C=>-6
14
PIN CONNECTIONS 9~8
8
13
10
11
Positive Logic:
Negative Logic:
10~
12
3 = 1 • 2
3
=1+2
Vee = Pin 14
Gnd = Pin
7
7-128
1 2 = = C = > - 11
13
MTTL SSI MCC5400/7400 Series (continued)
4
5
MCC741 O/MCC541 0
Triple 3-lnput NAND Gate
3
,2
6
46x41
(11N)
7
14
8
13
PIN CONNECTIONS
9
10
12
11
12=1·2·13
Vee = Pin 14
Gnd = Pin 7
tpd = 10 ns typ
MCC7410F/MCC5410F
Triple 3-lnput NAND Gate
43x44
(61N)
9
8
7
~~
6
13~
PIN CONNECTIONS
10
5
11
12
~=C>-6
16~
4
12
11:~
8
3
12=1·2·13
13
2
14
Vee = Pin 14
Gnd = Pin 7
tpd = 10 ns typ
MCC7411/MCC5411
Triple 3-lnput AND Gate
43x46
(S5W)
5
4
PIN CONNECTIONS
3
14
7-129
2
13
3
12
4
11
5
10
6
9
7
8
MTTL SSI MCC5400/7400 Series (continued)
MCC7412/MCC5412
Triple 3-lnput NAND Gate (open collector)
46 x 41
(11N)
3
4
5
PIN CONNECTIONS
14
4
3
10
11
12
2
13
3
12
4
11
5
10
6
9
7
8
·Open Collector
MCC7416/MCC5416
Hex Inverter Buffer/Driver (open collector)
47 x 51
(2AW)
PIN CONNECTIONS
~~14
II
~
CONSULT FACTORY
.
3
4
11
5
10
6
9
7
8
·Open Collector
7-130
13
12
MTTL SSI MCC5400/7400 Series (continued)
MCC7417/MCC5417
Hex Buffer/Driver
47 x51
(2AW)
PIN CONNECTIONS
14
2
CONSUL T FACTORY
13
3
12
4
11
5
10
6
9
7
8
·Open Collector
14
2
13
11
MCC7420/MCC5420
Dual 4-lnput NAND Gate
34x42
(5IN)
4
~b-6
10
PIN CONNECTIONS
5
6
7
9
8
Vcc = Pin 14
Gnd = Pin 7
tpd = 10 ns typ
39x40
(90l)
8
MCC7420F /MCC5420F
Dual 4-lnput NAND Gate
7
6
10
PIN CONNECTIONS
11
4
6=1-2-4-5
14
2
~b-6
9b-
10
12
13
12
13
8
13
6=1-2-4-5
9
9b-
10
12
tpd = 10 ns typ
7-131
Vcc = Pin 14
Gnd = Pin 7
8
•
MTTL SSI MCC5400/7400 Series (continued)
MCC7423/MCC5423
Dua14.J.nputNQRG.ate wJ~trobe ,(expandable)
41 x49
(5AG)
6
5
PIN CONNECTIONS
3
4
2
5
1X
VCC
16
1A
1X
15
14
3
1B
20
4
Strobe(1 G)
2C
13
5
1C
2G
12
11
6
10
2B
7
1Y
2A
10
8
Gnd
2Y
9
1Y
= 1G(1A+1 B+1C+1 O)+X
2Y
= 2G(2A+2B+2C+20)
MCC7425/MCC5425
Dual 4-lnput NOR Gate w/strobe
41.x 49
(5AG)
5
4
•
PIN CONNECTIONS
1·~14
3
4
3
10
11
7·132
2
13
3
12
4
11
5
10
6
9
7
8
MTTL SSI MCC5400/7400 Series (continued)
MCC7426/MCC5426
Quad 2-lnput Interface NAND Gate
43x46
(16K)
5
4
PIN CONNECTIONS
3
14
2
2
c=:JI------,
r-==--c:::J
13
'-----r:::=:J
12
11
3
4 r::==1---------.
14
5 c::::::::J1----.
13
10
11
r-==--r::::::::J 10
6
9
7
8
12
MCC7427/MCC5427
Triple 3-lnput NOR Gate
46x44
(75W)
5
4
6
PIN CONNECTIONS
3
14
2
7
14
8
13
10
11
7-133
2
13
3
12
4
11
5
10
6
9
7
8
•
MTTL SSI MCC5400/7400 Series
4
5
3
(continued)
MCC7430/MCC5430
8 Input NAND Gate
2
PIN CONNECTIONS
14
11
s
34 x35
(98l)
!jJ-s
11
12
12
= 1 • 2 • 3 • 4 • 5 • 6 ·11 • 12
tpd = 10 ns typ
Vee = Pin 14
Gnd = Pin 7
MCC?437/MCC5437
Quad Buffer
4
5
3
PIN CONNECTIONS
6
52 x44
(1AF)
7
s
9
10
11
l~A
Z
B
3
2
:==iJl:==iJ12~
12
13~
3
4
5
6
s
11
MCC7438/MCC5438
6
2
52 x44
(1AF)
7
Positive Logic: Z '" A • B
Negative Logic: Z
='
A
+B
14
8
13
9
•
10
11
5
4
Vee = Pin 14
Gnd = Pin 7
12
2
14
MCC7440/MCC5440
Dual4-lnput NAND Buffer
PIN CONNECTIONS
41 x44
.(10N)
13
10
12
tpd = 13 ns typ
Vee = Pin 14
Gnd = Pin 7
7.1::l4
1~D8
12
13
MTTL SSI MCC5400/7400 Series (continued)
MCC7440F/MCC5440F
Dual 4-lnput NAND Buffer
43x44
(12M)
PIN CONNECTIONS
8
9
7
6
10
~.•
11---c=--....
-.--- 4
1~~8
12
12
13
13
14
Vee = Pin 14
Gnd = Pin' 7
2
tpd = 13 ns typ
MCC7450/MCC5450
Expandable Dual 2 Wide 2 Input
AND OR INVERT Gate
PIN CONNECTIONS
41 x42
(03R)
3
9
14
2
13
10
12
8 [12)" (10)
13
Emitter 11 _ _ _ _ _ _ _J
Collector 12--------~
11
Vee = Pin 14
Gnd = Pin 7
tpd
=
13 ns typ
2
3
6 [10] (10)
4
5
6
7
8
9
5
10
8 = (9 • 10) + (13· 1) + (Expanders)
MCC7451/MCC5451
Dual 2 Wide 2 Input
2
14
13
AND OR INVERT Gate
3
41 x42
(03R)
PIN CONNECTIONS
1~~8
4
13
1
10
5
Vee = Pin 14
Gnd = Pin 7
8
= (9
• 10)
+ (13 • 1)
tpd"" 13 ns typ
7-135
~39=>-6
•
MTTL SSI MCC5400/7400 Series (continued)
MCC7453/MCC5453
Expandable 4 Wide 2 Input
AND OR INVERT~Gate
38 x40
(11P)
2
PIN CONNECTIONS
14
13
13
12
2
3
3
11
4
10
9
4
8
5
10
5
9
8
7
Emitter
Collector
Vcc =
Pin 14
Gnd = Pin 7
8 ~ (13·1) + (2·3) + (4·5) + (9·10) + (Expanders)
tpd - 13 ns typ
38 x 40
5
4
(11P)
MCC7454/MCC5454
4 Wide 2 Input
AND OR INVERT Gate
3
2
7
PIN CONNECTIONS
13
14
8
Vcc
2
= Pin 14
13 Gnd=Pin
3
7
4
9
tpd == 13 ns typ
10
5
9
8 ~ (13 • 1) + (2 • -3) + (4·5) + (9· 10)
•
MCC7460/MCC5460
Dual 4 Input Expander for
36x49
(90B)
5
4
10
AND OR INVERT Gates
3
13
2
Collector
1~---~12
2~---~11
14
13
PIN CONNECTIONS
Vcc =
Pin 14
Gnd = Pin 7
tpd == 5.0 ns typ
7-136
3
4
.
Emitter
Emitter
5~---~10
6~_-~9
8
Collector
MTTL SSI MCC5400/7400 Series
(continued)
MCC7470/MCC5470
AND Gated J-K Flip Flop Positive Edge Triggered
56x60
(12N)
PIN CONNECTIONS
4
5
13
3
3
2
6
4
Q
8
6
6
5
12
7
14
9
10
8
11
13
9
2
11
10
12
Vee = Pin 14
Gnd = Pin 7
5
tpd
3
4
=
30 ns typ
MCC7472/MCC5472
AND Gated J-K Master Slave F-F
PIN CONNECTIONS
2
6
13
51 x 60
(56C)
7
3
4
14
12
13
10
11
8
8
5
9
9
11
10
12
Vee = Pin 14
Gnd=Pin7
Q
6
2
f = 20 MHz
5
4
MCC7473/MCC5473
Dual J-K Flip Flop
3
.6
66x66
(91M)
7
8
11
12
vee
= Pin 4, Gnd
e
K
R Q
13
'~'
13
10
1
3
2
14
9
PIN CONNECTIONS
,.~"
2
= Pin 11
7_1"J..7
5
e
1:
K
R Q
8
MTTL SSI MCC5400/7400 Series (continued)
MCC7474/MCC5474
Dual Positive Edge Triggered Flip Flop
65 x 62
(80V)
PIN CONNECTIONS
4------,
4
5
3
2
o
S Q
5
3
C
R Q
6
2
6
14
8
10 - - - - - - ,
13
12
o
S Q
9
11
C
R Q
8
9
10
11
12
13----"
MCC74 76/MCC54 76
Dual J-K Flip Flop
71 x 65
(86N)
4
5
6
PIN CONNECTIONS
3
7
se: :~'5
8
•
Clock
1
K 16
9
Reset
10
Set
11
12
13
f= 15 MHz
VCC
= Pin
5, Gnd
= Pin
13
7-138
~K Q~
?
R
14
--~
7 ------,
J
9
J
Clock
6
C
K 12
K
Reset
16 Pin Package
3
~~ ~I
S
Q
11
R
5
10
8 ------'
MTTL SSI MCC5400/7400 Series (continued)
MCC74 79/MCC54 79
Dual Type 0 Flip Flop Positive Edge Triggered
PIN CONNECTIONS
65 x 62
4
(80V)
2
D S Q
5
3
e
R Q
6
12
D S Q
9
11
e
8
3
4
5
2
6
7
14
8
10
13
9
10
11
12
f = 30 MHz
R Q
13-----J
Vee = Pin 14
Gnd = Pin 7
MCC741 07/MCC541 07
Dual J-K Master Slave Flip Flop
69 x 63
(45P)
PIN CONNECTIONS
8
J
9
e
11
K
Q
5
14
RQ
6
10
13
112
e
9
K
Vee
= Pin 14
Gnd = Pin 7
13
7-139
J
Q
RQ.
3
2
•
11111111111111111
MTTL - MSI
11111111,111111111
MCC5400 Series (-55 to +1250 C)
MCC7400 Series (0 to +75 0 C)
MC5400/7400 Series MSI circuits comprise a family of transistor-transistor logic similar in
design to the SSI series but more complex in function. The family has a medium operating speed
(15-30 MHz clock rate), good external noise immunity, high fan out, and capability of driving
capacitive loads of up to 600 pF.
Type
o to 75°C
•
MCC74H87
MCC7413
MCC7414
MCC7441A
MCC7442
MCC7443
MCC7444
MCC7445
MCC7446
MCC7447
MCC7448'
MCC7449
MCC7475
MCC7480
MCC7481
MCC17482
MCC27482
MCC7483
MCC7484
MCC7485
MCC7486
MCC7490A
MCC7491A
MCC7492A
MCC7493A
MCC7494
MCC7495A
MCC7496
MCC7497
MCC74100
MCC74120
MCC74121
MCC74122
MCC74123
MCC74132
MCC74136
MCC74141
MCC74145
MCC74150
-55 to +125 0 C
MCC54H87
MCC5413
MCC5414
MCC5441A
MCC5442
MCC5443
MCC5444
MCC5445
MCC5446
MCC5447
MCC5448
MCC5449
MCC5475
MCC5480
MCC5481
MCC15482
MCC25482
MCC5483
MCC5484
MCC5485
MCC5486
MCC5490A
MCC5491A
MCC5492A
MCC5493A
MCC5494
MCC5495A
MCC5496
MCC5497
MCC54100
MCC54120
MCC54121
MCC54122
MCC54123
MCC54132
MCC54136
MCC54141
MCC54145
MCC54150
Function
4-Bit True/Complement Zero/One Element
Dual 4-lnput NAND Gate Schmitt Trigger
Hex Schmitt Trigger Inverter
BCD to Decimal Decoder/High level Driver
BCD to Decimal Decoder
Excess Three-to-Decimal Decoder
Excess Three Gray to Decimal Decoder
BCD to Decimal Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
BCD to seven Segment Decoder/Driver
Quad latch
Gated Full Adder (1-Bit)
16-Bit Scratch Pad Memory
2 Bit Full Adder
2 Bit Full Adder
4-Bit Full Adder
16-Bit Scratch Pad Memory
4-Bit Magnitude Comparator
Quadruple 2-lnput Exclusive OR Gate
Decade Counter
8-Bit Shift Register
Divide by12 Counter
4-Bit Binary Counter
4-Bit Shift Register
4-Bit Shift Register (Parallel Access)
5-Bit Shift Register
Synchronous 6-Bit Binary Rate Multiplier
Dual 4-Bit latch
Dual Pulse Synchronizers/Drivers
Monostable Multivibrator
Retriggerable Monostable Multivibrator
Dual Retriggerable Monostable Multivibrator
Quadruple 2-lnput NAND Schmitt Trigger
Quadruple 2-lnput Exclusive OR Gate (O.C.)
BCD to Decimal Decoder/Driver
BCD to Decimal Decoder/Driver
16 Channel Data Selector/Multiplexer
Wafer
Mask
Set #
Chip
Size
(Mils)
8GM
7KB
2JA
17F
6FE
29R
29R
96M
83M
83M
01l
01l
7AJ
10l
1PR
13E
13E
10M
1PR
7GK
8GM
3HT
05R
3HT
3HT
66N
6RP
8BG
7MG
31R
7HG
97M
6GR
3HA
1KD
8GM
8HF
96M
68N
69x72
40x42
56x62
74x79
64x66
68x67
68x67
79x87
65x76
65x76
88x79
88x79
62x68
58x58
77x82
65x82
65x82
69x80
77x82
65x77
69x72
69x71
59x72
69x71
69x71
66)(76
64x88
86x77
94x101
7Ox72
68x69
50x53
52x53
58x100
49x52
69x72
77x78
79x87
64xBO
(continued)
7-140
MTTL-MSI (continued)
Type
o to 75°C
MCC74151
MCC74152
MCC74153
MCC74154
MCC74155
MCC74156
MCC74157
MCC74160
MCC74161
MCC74162
MCC74163
MCC74164A
MCC74165
MCC74167
MCC74174
MCC74175
MCC74176
MCC74177
MCC74180
MCC74181
MCC74182
MCC74190
MCC74191
MCC74192
MCC74193
MCC74194
MCC74195
MCC74196
MCC74197
MCC74221
MCC74290
MCC74293
MCC74298
-55 to +1250 C
MCC54151
MCC54152
MCC54153
MCC54154
MCC54155
MCC54156
MCC54157
MCC54160
MCC54161
MCC54162
MCC54163
MCC54164A
MCC54165
MCC54167
MCC54174
MCC54175
MCC54176
MCC54177
MCC54180
MCC54181
MCC54182
MCC54190
MCC54191
MCC54192
MCC54193
MCC54194
MCC54195
MCC54196
MCC54197
MCC54221
MCC54290
MCC54293
MCC54298
Function
8 Channel Data Selector/Multiplexer
8 Channel Data Selector/Multiplexer
Dual 4 Line to 1 Line Data Selector/Multiplexer
4 Line to 16 Line Decoder/Demultiplexer
Dual 2-to-4 Line Decoder/1-to-4 Line Demultiplexer
Dual 2-to-4 Line Decoder/1-to-4 Line Demultiplexer
Quad 2-lnput Data Selector/Multiplexer
Decade Synchronous Counter
Synchronous 4-Bit Binary Counter
Synchronous Decade Counter
Synchronous 4-Bit Binary Counter
8 Bit Parallel-Out Serial Shift Register
Parallel-Load 8-Bit Shift Register
Decade Rate Multiplexer (Synchronous)
Hex Type 0 Flip-Flop
Quadruple 0 Type Flip-Flop
Preset. Decade and Binary Counters/Latches
Preset. Decade and Binary Counter/Latch
8-Bit Odd/Even Parity Generator/Checker
4-Bit ALU/Function Generator
Look Ahead Carry Generator
BCD Synchronous Up/Down Counter
4 Bit Binary Synchronous Up/Down Counter
Preset. Decade Up/Down Counter
Preset. 4-Bit Binary Up/Down Counter
4-Bit Bidirectional Universal Shift Register
4-Bit Parallel Access Shift Register
Preset. Decade or Binary Counter/Latch
Preset. Decade or Binary Counter/Latch
Dual Monostable Multivibrator w/Schmitt-Trigger Inputs
Decade Counter
4-Bit Binary Counter
Quadruple 2-lnput Multiplexer w/Storage
7-141
Wafer
Mask
Set #
Chip
Size
(Mils)
13W
13W
02T
11T
66V
66V
62V
8GK
8GK
8GK
8GK
20T
5ET
7MG
5KS
5KS
5GD
5GD
17R
4DW
37V
9GK
8RV
8RV
8RV
8FP
8FP
5GD
5GD
5NG
3HT
3HT
8FP
60x65
6Ox65
52x60
77x87
66x71
66x71
52x57
78x99
78x99
78x99
78x99
65x92
73x80
44x101
78x88
78x88
72x78
72x78
56x60
87x89
62x55
74x113
74x113
74x113
74x113
89x70
89x70
72x78
72x78
59x80
69x71
69x71
89x70
1111111111111111111111111111111111111111
MTTL MSI MCC5400/7400 Series
1111111111111111111111111111111111111111
MCC7413/MCC5413
Dual 4-lnput NAND Gate Schmitt Trigger
40x42
(7KB)
PIN CONNECTIONS
2
14VCC
2
r-'J---,I
~--r:::-:l
13
12
NC3
4
11 NC
5
10
9
6
GND 7
'-----C::::::::J
8
MCC7414/MCC5414
Hex Schmitt Trigger Inverter
56x62
(2JA)
5
4
•
PIN CONNECTIONS
3
1A1
1Y2
4
3
All dimensions are in mils.
7-142
14
vce
~---C:::::J 13 6A
2A3
126Y
2Y4
--=-;..--' 11 5A
3A5
105Y
3Y6
--=---J:::::J 9 4A
GND 7
8 4Y
MTTL MSI MCC5400/7400 Series (continued)
MCC7441A/MCC5441A
BCD to Decimal Decoder/High Level Driver
74x 79
(17F)
4
5
6
PIN CONNECTIONS
3
2
3
A
00
01
02
7
6
B
16
03
04
05
15
8
e
7
9
10
11
12
13
4
D
•
14
06
07
08
09
16
15
8
9
13
14
11
10
2
Vcc=Pin5
GND = Pin 12
MCC7442/MCC5442
BCD to Decimal Decoder
64x66
(6FE)
PIN CONNECTIONS
15
A
aO
01
7
14
B
13
e
8
6
02
03
04
05
0.6
0.7
9
0.8
12
10
11
12
0
Vee
0.9
= Pin 16
Gnd = Pin 8
13
7-143
1
2
3
4
5
6
7
9
10
11
MTTL MSI MCC5400/7400 Series (continued)
MCC7443/MCC5443
Excess Three-to-Decimal Decoder
MCC7444/MCC5444
Excess Three Gray to Decimal Decoder
68 x 67
(29R)
6
5
PIN CONNECTIONS
4
3
15
2
7
14
8 - -.........'JI
9
16
13
A
B
e
10
12
15
11
13
12
0
ao
01
2
02
3
4
03
04
5
05
6
06
7
07
9
08
10
09
11
14
Vee = Pin 16
Gnd = Pin 8
MCC7445/MCC5445
BCD to Decimal Decoder /Driver
79 x87
(96M)
PIN CONNECTIONS
'5~'
•
2
7
14
B
13
e
8
9
16
10
15
11
12
13
12
14
0
01
2
02
3
03
04
4
5
05
6
06
7
07
9
08
09
10
Vee = Pin 16
GND = Pin 8
tpd = 50 ns max
7-144
11
MTTL MSI MCC5400/7400 Series (continued)
MCC5446, MCC7446
MCC5447, MCC7447
MCC5448, MCC7448
BCD-to-Seven Segment Decoder/Drivers
MCC5446/MCC7446
65 x 76
(83M)
PIN CONNECTIONS·
2
7
8
16
10
A
a
B
b
13
12
11
2
C
c
6
0
d
10
3
LT
e
9
5
4
BI/RBO 9
15
14
RBI
15
11
12
13
14
Vee == Pin 16
GND==Pin 8
MCC5447/MCC7447
65 X 76
(83M)
3
2
1
MCC5448/MCC7448
15
16
14
88 x 79
(Oil)
13
4
2
7
8
5
12
16
9
15
10
6
7
9
8
10
11
11
12
13
14
MCC7449/MCC5449
BCD to Seven Segment Decoder/Driver
88 x 79
(Oil)
PIN CONNECTIONS
5
2
A
B
2
6
C
14
7
13
8
9
10
11
12
4
0
3
BI
a
10
c
9
d
8
e
6
13
9
Vee = Pin 14
GND = Pin 7
.., 1/1
r::
11
b
12
MTTL MSI MCC5400/7400 Series (continued)
MCC7475/MCC5475
Quad Latch
62 x 68
(7AJ)
PIN CONNECTIONS
DO
6
4
5
2
3
D
a
ST
Q
-016 00
1
ao
2
7
3
15 01
Strobe 13
14 a1
D1
8
9
16
10
D2
7
9
02
8
a2
15
11
D3
6
10 03
Strobe
4
11 03
14
13
12
Vee = Pin
GND
5
= Pin
12
MCC7480/MCC5480
Gated Full Adder(1-Bit)
58x58
(10L)
•
8~5
3
4
5
PIN CONNECTIONS
2
9
A2
11
AC
12
B1
14
13
B2
13
6
7
8
S
6
2
BC
3
Cin C out
A* B*
4
9
10
11
12
10
VCC
Gnd
7-146
= Pin
= Pin
7
14
MTTL MSI MCC5400/7400 Series (continued)
MCC7481/MCC5481
16-Bit Scratch Pad Memory
77 x82
(1PR)
PIN CONNECTIONS
CONSULT FACTORY
W
1
Vcc=Pin4
GND =0 Pin 10
Yo
2
W1
13
12
3
4
14
11
VCC
5
GND
10
6
9
7
8
MCC17482/MCC15482
2 Bit Full Adder
PIN CONNECTIONS
65x82
(13E)
5
4
2
A1
81
14
A2
82
12
3
B1
®1
7*
13
B2
®2
8*
5
Cin
Cout
10
3
* Available only on
MCC25482/27482
VCC=Pin4
GND= Pin 11
7-147
•
MTTL'MSI MCC5400/7400 Series (continued)
MCC27482/MCC25482
2 Bit Full Adder
PIN CONNECTIONS
65x82
(13E)
3
4
5
2
A1
S1
14
A2
S2
12
3
B1
(!)1
7*
13
B2
(£)2
8*
5
Cin
Cout
10
4
8
* Available only on
MCC25482/27482
VCC=Pin4
GND = Pin 11
MCC7483/MCC5483
4-Bit Full Adder
69x80
(10M)
PIN CONNECTIONS
•
6
.
..,
A
....,
2
8
16
9
15
10
11
12
13
14
11
B1
52
6
8
A2
53
2
7
B2
3
A3
4
B3
A4
54
15
16
B4
Cout
14
VCC = Pin 5
Gnd = Pin 12
7-148
9
51
10
7
I
Cin
A1
13
MTTL MSI MCC5400/7400 Series (continued)
MCC7484/MCC5484
16-Bit Scratch Pad Memory
77 x82
(1PR)
PIN CONNECTIONS
CONSULT FACTORY
12 '
4o---i
30---1
20---1
11
15
16
Vee = Pin 5
GND == Pin 12
MCC7485/MCC5485
4-Bit Magnitude Comparator
65 x 77
(7GK)
6
5
PIN CONNECTIONS
4
3
DATA
INPUTS1c=~==~~__
16 Vee
15
eA~CADING
INPUTS
3
14
13
12
11
10
9
7.14q
DATA
INPUT
MTTL MSI MCC5400/7400 Series (continued)
MCC7486/MCC5486
Quadruple 2-lnput Exclusive OR Gate
69 x 72
(8GM)
PIN CONNECTIONS
CONSULT FACTORY
12=J[>13
11
Vcc=Pin14
Gnd = Pin 7
MCC74H87/MCC54H87
4 Bit True/Complement Zero/One Element
69x 72
(8GM)
5
PIN CONNECTIONS
3
•
2
e
13
10
12
7-150
14
A4
13
Y4
12
4
NC
11
6
A3
V3
10
9
7
B
8
5
14
Vee
3
2
A1
MTTL MSI MCC5400/7400 Series (continued)
MCC7490A/MCC5490A
Decade Counter
69 x 71
(3HT)
PIN CONNECTIONS
~
5
6
14
QO
12
Q1
9
7
Q2
8
Q3
11
4
2
3
6
7
Vee = Pin 5
GND = Pin 10
11
10
MCC7491A/MCC5491A
8-Bit Shift Register
59 x 72
(05R)
PIN CONNECTIONS
5
s
C
14
9
A 11
B 12
13
10
11
9
12
13
(3
14
C
R
Vee=Pin5
GND = Pin 10
7-151
Q
•
MTTL MSt MCC5400/7400 Series (continued)
MCC7492A/MCC5492A
Divide by 12 Counter
'69 x 71
(3HT)
5
PIN CONNECTIONS
CO
4
C1
QO
Q2
9
Q1
11
12
14
Q3
8
Q
Q
Q
RO 6
RO 7
Vcc=Pin5
Gnd = Pin 10
M~CC7493A/MCC5493A
4-Bit Binary Counter
69 x 71
(3HT)
5
3
PIN CONNECTIONS
•
02
01
00 C1
12
1
03
8
9
11
4
01
C
C
R
Rol~
R
VCC=Pin5
GND = Pin 10
7-152
04
03
02
R
R
MTTL MSI MCC5400/7400 Series
(continued)
MCC7494/MCC5494
4-Bit Shift Register
66x 76
(66N)
PIN CONNECTIONS
3
6
S1A
2
7
16
15
11
12
13
S1 DS
2
S1B
3
S1C
4
S1D
11
S2D
13
S2C
14
S2B
16
15
S2A
S2
R
Q
C
10
8
Vcc=Pin5
GND = Pin 12
MCC7495A/MCC5495A
4-Bit Shift Register (parallel access)
9
MTTL MSI MCC5400/7400 Series (continued)
MCC7496/MCC5496
5~Bit Shift Register
S6x77
(SBG)
PIN CONNECTIONS
Clock 00
2
16
15
9
Os
8
SE
2
so
3
S1
4
S2
6
S3
7
S4
16
R
15
01
14
02
13
03
11
04
10
Vcc = Pin 5
Gnd = Pin 12
MCC7497/MCC5497
Synchronous 6-Bit Binary Rate Multiplier
94 x 101
(7MG)
II
PIN CONNECTIONS
f1J
CONSULT FACTORY
E
RATEr
INPUTS:
b
L
B
0
c
F
12
11
z
UNITY/
CASCADE
ENABLE
INPUT
10STROBE
Y
ENABLE7
OUTPUT
GN08
9CLOCK
VCC
Gnd
7-154
15}
RATE
14 INPUTS
13 CLEAR
A
OUTPUTS {:
16 Vcc
= Pin
= Pin
16
8
MTTL MSI MCC5400/7400 Series (continued)
MCC741 00/MCC541 00
Dual 4-Bit Latch
70 x 72
(31R)
PIN CONNECTIONS
23
5
2
4
3
19
22
21
20
12
8
11
9
10
150
02'
16
03'
Q2'
18
Q3'
17
Vee = Pin 24
VEE = Pin 7
MCC74120/MCC54120
Dual Pulse Synchronizers/Drivers
68x69
(7HG)
6
5
4
PIN CONNECTIONS
3
M 1
INPUTS
16 Vee
~. ~~
::~
1
1R 4
13 281 INPUTS
1e 5
12 2R
1Y6
11 2
OUTPUTS { 1Y7r-~--~
~--~~10:;]o
GNO 8
9 2Y
Vee = Pin 16
GND=Pin8
7-155
UTPUT
II
MTTL MSI MCC5400/7400 Series (continued)
MCC74121/MCC54121
Monostable Multivibrator
50 x 53
(97M)
PIN CONNECTIONS
4
5
3
Cx
+
6
-
RX
7
6 Q
A1 3
A2 4
8 5
14
8
1.0
1
Q
11
Vcc
= Pin 14
Gnd = Pin 7
MCC74122/MCC54122
Retriggerable Monostable Multivibrator
52x53
(6GR)
5
II
4
PIN CONNECTIONS
3
\r:: :
DATA
I N PUTS
81 3
14 VCC
13 Rext/Cext
C::=lr~=~ll
824
C LEA R 5 ,.....--L-....L-.cr--a.o<.-\-..oI.
7-156
12 NC
11 C ext
10 NC
66
9
Rint
GND 1
8
Q
MTTL MSI MCC5400/7400 Series (continued)
MCC74123/MCC54123
Dual Retriggerable Monostable Multivibrator
58 x 100
PIN CONNECTIONS
(3HA)
6
5
3
4
1A 1
16 Vcc
1B 2
15 Rex}Cext
14Ce~t
1 3
6
164
1310
205
1220
Ce~t
2
11 CLEAR
6
2
Rext,Cext 7
102B
GND8
9 2A
5
MCC74132/MCC54132
Quadruple 2-lnput NAND Schmitt Trigger
49 x52
(1KD)
5
4
PIN CONNECTIONS
3
1A 1
4
3
14VCC
1B 2
134B
1Y3
124A
2A4
114Y
285
103B
2Y 6
9 3A
GND7
8 3Y
VCC = Pin 14
GND=Pin7
7-157
MTTL MSI MCC5400/7400 Series (continued)
MCC74136/MCC54136
Quadruple 2-lnput Exclusive OR Gate (oc)
69x72
(8GM)
PIN CONNECTIONS
3
4
5
1A 1
4
.14 Vee
182
13 48
1Y3
124A
2A4
114Y
285
1038
2YG
9
3A
GND7
8
3Y
MCC74141/MCC54141
BCD to Decimal Decoder/Driver
77 x 78
(8HF)
6
5
PIN CONNECTIONS
4
3
3 6 7 4
I I I I
•
16158 9131411101 2
Vee=Pin5
GND::;: Pin 12
7--158
MTTL MSI MCC5400/7400 Series (continued)
MCC74145/MCC54145
BCD to Decimal Decoder/Driver
79x 87
(96M)
PIN CONNECTIONS
5
6
3
4
2
7
8
16
9
15
10
2 3 4 5 6 7 8 9 10
Vee
14
13
12
11
GND
= Pin 16
= PinS
MCC74150/MCC54150
16 Channel Data Selector/Multiplexer
PIN CONNECTIONS
64 x 80
(68N)
9
9
8
7
6
5
15
14
13
12
8
4
3
2
7
6
24
23
22
15
16
17
18
19
20
21
5
4
3
2
1
23
22
21
20
19
18
17
16
7-1~A
A
B
E
e
0
XO
X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X15
Vee = Pin 24
Gnd = Pin 12
Z
10
MTTL MSI MCC5400/7400 Series (continued)
MCC74151/MCC54151
8 Channel Datil Selector/Multiplexer
60 x 65
PIN CONNECTIONS
(13W)
70----E
z
5
Z
6
Vee = Pin 16
GND = Pin 8
MCC74152/MCC54152
8 Channel Data Selector/Multiplexer
PIN CONNECTIONS
60x65
(13W)
X X2~ :>---------+-~
5
43
II
CONSULT FACTORY
:~.--++11~1
X3
2O-----~~H+-~~
X4
lo-----~~==~~
)0-----06
X513~------~1t~~~
X612~------~~~==r-'
Vee
= Pin
Gnd = Pin
B
9
C 8
7-160
14
7
Z
MTTL MSI MCC5400/7400 Series (continued)
MCC74153/MCC54153
Dual 4 Line to 1 Line Data Selector/Multiplexer
5
14
B
2
PIN CONNECTIONS
52x60
(02T)
6
A
STx
1
XO
6
Xl
5
X2
4
3
4
7
2
7 Z
8
16
9
15
10
11
12
13
X3
3
STy
15
YO
10
Yl
11
Y2
12
Y3
13
Vee = Pin 16
Gnd :;::. Pin
14
9 W
MCC74154/MCC54154
4 Line to 16 Line Decoder/Demultiplexer
77 x 87
(11T)
PIN CONNECTIONS
9
8
7
5
6
4
10
3
1819
23
22
21
20
2
11
12
24
23
13
14
22
16
1 2 3 4 5 6 7 8 91°111314161617
16
17
18
19
20
21
Vee
= Pin 24
GND = Pin 12
8
MTTL MSI MCC5400/7400 Series (continued)
MCC74155/MCC54155
MCC74156/MCC54156
Dual 2 to 4 Line Decoder/
66x 71
(66V)
1 to 4 Line Demulitplexer
MC54155, MC74155
6
5
4
3
PIN CONNECTIONS
7
YO
3
~
6
Yl
11
12
13
14
2
5
Strohe 1
Y2
MC54156, MC74156
6
5
4
3
4
1
Y3
Data 1
9
Y4
15
10
Data 2
Y5
11
14
Y6
Strobe 2
12
11
12
13
Vee
=
Gnd
= Pin 8
Y7
Pin 16
14
MCC74157/MCC54157
Quad 2-lnput Data Selector/Multiplexer
52x 57
(62V)
PIN CONNECTIONS
E
14
II
12
13
15
VCC=Pin16
Gnd ~ Pin 8
11
A
i5
9
16
8
XO
2
YO
3
X1
4
ZO
7
Z1
9
Z2
7
Y1
6
X2
11
Y2
10
X3
14
Y3
13
2
3
4
5
6
7-162
12 Z3
MTTL MSI MCC5400/7400 Series (continued)
MCC74160/MCC54160
MCC74161/MCC54161
MCC74163/MCC54163
MCC74162/MCC54162
Synchronous Decade Counter Synchronous 4-Bit Binary Counter
PIN CONNECTIONS
16 V CC
CARRY
C L EA R 1 r:::jl-----..
I~;J:CI~~ r:::l~--I
6
5
06
c::J~--I
7
c::J~--I
ENABLE
~~t:::::I15 OUTPUT
::~I
~~t:::::I12QC
1----t:::::J 1 1 Q
OUT
o
1----t:::::J 1 0 EN AB LET
"'------[::::J 9 LOA 0
GN08
MCC74164A/MCC54164A
a-Bit Parallel-Out Serial Shift Register
5
3
4
65x92
(20T)
10
11
12
PIN CONNECTIONS
QO
VCC = Pin 14
Gnd.= Pin 7
A
3
Q1
4
Q2
5
1
B 2
Clock 8
Clear 9
7.1 f\~
Q3
6
Q4
10
Q5
11
Q6
12
Q7
13
•
MTTL MSI MCC5400/7400 Series (continued)
MCC74165/MCC54165
Parallel load 8-Bit Shift Register
73x80
(5ET)
2
.....- - 1 6
6
15
PIN CONNECTIONS
9
Inhibit
MCC74167/MCC54167
Decade Rate Multiplier (synchronous)
94 x 101
(7MG)
•
P!!\J CO!\J!\JECT!OI\JS
16
NC1
CONSULT FACTORY
RATE {2
INPUTS 3
c
B
D
A
z
ENABLE7
OUTPUT
GND8
7-164
15} RATE
14 INPUTS
13 CLEAR
SET TO 94
OUTPUTS { :
vcc
Y
12 UNITY/
CASCADE
11ENABLE
INPUT
10STROBE
9CLOCK
MTTL MSI MCC5400/7400 Series (continued)
MCC74174/MCC54174
Hex Type 0 Flip Flop
78 x 88
(5KS)
PIN CONNECTIONS
6
3
4
5
Clear
?
1
16
v cc
102
1560
103
1460
204
13 50
205
12 50
306
11 4Q
307
1040
8
6
9
5
12
11
gCLOCK
GN08
14
13
MCC74175/MCC54175
Quadruple 0 Type Flip-Flop
78x88
(5KS)
6
5
PIN CONNECTIONS
4
3
CLEAR 1
2
16
VCC
b~}OUTPUTS
'-.AJ_ ----"14
0.0
3
}INPUTS
.---1--..-.....b
12
C
16
86
OUTPUT
\ 08?
15
l1C}OUTPUT
10
OC
' , . . - J " -....
9 CLOCK
11
12
13
14
MTTL MSI MCC5400/7400 Series (continued)
MCC74176/MCC54176
Presettable Decade and Binary, Counters/Latches
PIN CONNECTIONS
72 x 78
(5GD)
5
3
4
6
Clock 1 o----~.-++---t-+----O 2
Rv
OtR2 R1
~
.----"
r---r
PI
+,
~
II
Q1
Clock
~
0210
VCC
Gnd
PI
Q-r-<:!
Clock
0R2
R1
bIT
~
039
~\.
~.
~
Set
Reset 14
Qr--r--o 7 Q3
~
LOad
Clock
OtR2 R1
-
11
7-170
lIT
= Pin
= Pin
16
8
MTTL MSI MCC5400/7400 Series (continued)
MCC74194/MCC54194
4-Bit Bidirectional Universal Shift Register
89x 70
(8FP)
6
5
3
4
PIN CONNECTIONS
CLEAR1 c=tr====~--~
SHIFT SERIAL 2
RIGHT
INPUT/ 3
PARALLEL
INPUTS
14
~~""13
4
5
12
6
11CLOCK
~
SHIFT
15 LEFT
SERIAL:
INPUT
GND 8
16 Vcc
15
10
'-----"C:::=::!.......I~ 9
MCC74195/MCC54195
4-Bit Parallel Access Shift Register
2
89x 70
(8FP)
.....- - 1 6
15
R
J
3
2
PIN CONNECTIONS
Dp3
CpO
7
4
•
7-171
MTTL MSI MCC5400/7400 Series (continued)
MCC74196/MCC54196
MCC74197/lVicC54197
Presettable Decade or Binary Counter/Latch
72 x 78
(5GD)
4
5
PIN CONNECTIONS
3
2
4
10
3
11
5
9
2
12
8
6
14
13
10
11
13
Vcc = Pin 14
GND = Pin 7
12
MCC74221/MCC54221
Dual Monostable Multivibrator wISch mitt-Trigger Inputs
(5NG)
PIN CONNECTIONS
r;::;~~--'L 1<> "
II
IV
CONSULT FACTORY
C~R 3
2
Ce~t
6
14Ce~t
C:=I-----+-;
1Q4~-""""
205
c:.::::J,......-----'
r----C::J 13 1 0
~--I==.::J12.26.
+-+---1=:::::111 C L R
Rext/Cext 7
GND 8
102B
I..-.JI\,l...-,..u'n~9
VCC = Pin 16
GND = Pin 8
7-172
vee
1 5R ex\! C ext
1B2
2A
MTTL MSI MCC5400/7400 Series (continued)
69 x 71
(3HT)
MCC74290/MCC54290
Decade Counter
PIN CONNECTIONS
7
R9( 1) 1 r::::~---o
14VCC
NC2
13 RO(2)
R9(2) 3
12 RO(1)
11 INPUT
OUTPUTS{:C:::::J----I
B·
AO
13
A1
12
A3
10
A4
9
BO
3
11
7
2
8
2
A
Source Exif Data:
File Type : PDF
File Type Extension : pdf
MIME Type : application/pdf
PDF Version : 1.3
Linearized : No
XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date : 2017:07:17 12:57:57-08:00
Modify Date : 2017:07:17 14:03:57-07:00
Metadata Date : 2017:07:17 14:03:57-07:00
Producer : Adobe Acrobat 9.0 Paper Capture Plug-in
Format : application/pdf
Document ID : uuid:f31d800f-dbf7-a846-a2ef-7c13b94e1a69
Instance ID : uuid:3530ce26-2923-574d-9fd1-85a10a970f7c
Page Layout : SinglePage
Page Mode : UseNone
Page Count : 513
EXIF Metadata provided by EXIF.tools