1977_Raytheon_Digital_Low Power_Schottky 1977 Raytheon Digital Low Power Schottky
User Manual: 1977_Raytheon_Digital_Low-Power_Schottky
Open the PDF directly: View PDF .
Page Count: 308
Download | ![]() |
Open PDF In Browser | View PDF |
TOTAL WW·POWER SCHWiTKY 9LS/25LS/54LS/74LS [RAYTHEON] SEMICONDUCTOR DIVISION 350 Ellis Street, Mountain View, California 94042 (415) 968-9211, TWX: 910-379-6481 Raytheon cannot assume responsibility for use of any circuitry described other than circuitry entirety embodied in a Raytheon product. No other circuit patent licenses are implied. Raytheon reserves the right to change said circuitry at any time, without notice. All AC spec~ications are based on the knowledge at the time of publication. A~hough every effort has been made to insure the accuracy of the information contained in this catalog, Raytheon assumes no rasponsibility for inadvertent errors. TABLE OF CONTENTS PAGE INTRODUCTION General Description. Circuit Characteristics. Input Characteristics . Output Characteristics. Orderi ng Information . Quality and Reliability Definition of Letter Symbols and Terms. ii iii iii v xvi SECTION 1. SELECTION GUIDE TO DIGITAL PRODUCTS 9LS/54LS/74LS Low-Power Schottky . . . Beam Lead Low-Power Schottky. . . . . . 25LS High-Performance Low-Power Schottky. Standard TTL 2's Complement Multipliers. 54/74 SSI Series. 54/74 MSI Series. 8200 MSI Series. 930 DTL Series . RA Y I and II Series TTL. RAY III Series TTL. . . 1-2 1-4 1-5 1-5 1-6 1-7 1-8 1-9 1-10 1-15 SECTION 2. 9LS/54LS/74LS LOW·POWER SCHOTTKY LSOO LSOl LS02 LS03 LS04 LS05 LS08 LS09 LS10 LS11 LS12 LS13 LS14 LS15 LS20 LS21 LS22 LS26 LS27 LS28 LS30 LS32 LS33 LS37 LS38 LS40 LS42 LS43 LS44 LS51 LS54 LS55 ii Quad 2-input NAND gate. . . . . . . Quad 2-input NAND gate, open collectors Quad 2-input NOR gate, open collectors. Quad 2-input NAND gate, open collectors Hex inverter. . . . . . . . . . . Hex inverter, open collectors . . . . Quaq,?;,i[1p.M,t AN[) gate... . . . Quad'.2:;f6pt.1~aNlD9'~te,6pe'ri collectors Trip~3~\'fi3utfi\iAND,gatei:. . , . . Trip~ll~jjatljA;Nl1igilte>:. ; . . . . Trip!:lJi'a-iMputlNlPlND gate,i,open collectors Duaf 4-it!PlJIl.'Sil!:lrflLtttrigger. . . . . . Hex'Schn'\i:fr:Migge'r~'i: " . . . . . . . Triple 3.inP14 A'¥P~gate. open collectors " Dual4-input I\I:AN;Q gate, . . . . . . . DuaJA-input,ANO'g.at!1.......; Dual 4-inpufNANb' gate; 'open collectors. Quad 2-input NAND, open collector 15V. Triple 3-input NOR gate . Quad 2-input NOR buffer. 8-input NAND gate . . . Quad 2-input OR gate . . Quad 2-input NOR buffer, open collectors Quad 2-input NAND buffer. . . . . . Quad 2-input NAND buffer, open collectors. Dual 4-input NAND buffer . 1-of-10 decoder. . . . . . . Excess 3 to decimal decoder. . Excess gray to decimai decoder. Dual AOI gate . . . . 2-3-3-2-input AOI gate. 2-wide, 4-input AOI gate ,. ", .. ~ " \': ,,:., ", .~\ 2-2 2-4 2-6 2-4 2-2 2-4 2-7 2-9 2-2 2-7 2-4 2-10 2-10 2-9 2-2 2-7 2-4 2-14 2-6 2-15 2-2 2-17 2-18 2-15 2-18 2-15 2-19 2-19 2-19 2-22 2-22 2-22 TABLE OF CONTENTS (Continued) PAGE SECTION 2. 9LS/54LS/74LS LOW-POWER SCHOTTKY (Continued) LS73 LS74 LS75 LS76 LSn LS78 LS83A LS85 LS86 LS90 LS91 LS92 LS93 LS95B LS107 LS109 LS112 LS113 LS114 LS122 LS123 LS125 LS126 LS132 LS136 LS138 LS139 LS151 LS152 LS153 LS155 LS156 LS157 LS158 LS160 LS161 LS162 LS163 LS164 LS170 LS174 LS175 LS181 LS190 LS191 LS192 LS193 LS194A LS195A LS196 LS197 LS221 LS251 LS253 ~YTHE~ Dual J-K flip·flop. . . Dual D flip-flop. . . . Quad transparent latch. Dual J-K flip·flop. . . Quad transparent latch. Dual J-K flip-flop. . . 4-bit full adder. . . . 4-bit magnitude comparator. Quad exclusive OR gate Decade cou nter . . . 8-bit shift register. . Divide by 12 counter 4-bit binary counter. 4-bit shift register. Dual J-K flip-flop. . Dual J-K flip-flop. . Dual J-K edge-triggered flip-flop Dual J-K edge-triggered flip-flop Dual J-K edge-triggered flip-flop Retriggerable one-shot. . . . Dual one~hot . . . . . . . Quad 3-state buffer, low enable Quad 3-state buffer, high enable Quad 2-input Schmitt trigger 13-input NAND gate Quad exclusive OR gate, open collectors 3-to-8 decoder/demultiplexer . . Dual 2-to-4 decoder/demultiplexer 8-to-1 line multiplexer. 8-to-1 line multiplexer . . . . . Dual 4-to-1 multiplexer. . . . . Dual 2-to-4 decoder/demultiplexer Dual 2-to-4 decoder/demultiplexer open collectors Quad 2-to-1 line multiplexer Quad 2-to-1 line multiplexer, inverting. Decoder counter, asynchronous clear Binary counter, asynchronous clear Decade counter, synchronous clear Binary counter, synchronous clear 8-bit shift register (SIPO). . . . 4 X 4 register file, open collectors. Hex D-type flip-flop Quad D-type flip-flop . . . . . 4-bit arithmetic logic unit BCD decade counter, mode control 4-bit binary counter, mode control BCD decade counter, up/down. 4-bit binary counter, up/down. 4-bit R shift register. . . . . 4-bit parallel shift register 4-bit presettable decade counter 4-bit presettable binary counter Dual one-shot (very stable) . . 8-to-1 line multiplexer with tri-state-outputs 8-to-1 line multiplexer with tri-state-outputs 2-24 2-28 2-30 2-24 2-30 2-34 2-36 2-38 2·42 2-44 2-51 2-44 2-44 2-55 2-24 2-58 2-24 2-24 2-34 2-60 2-60 2-64 2·64 2-66 2-70 2·72 2·72 2-75 2-75 2-78 2·80 2-80 2-83 2-83 2-86 2-86 2-86 2-86 2-93 2-96 2-100 2-100 2-103 2-110 2-110 2-119 2-119 2-127 2-130 2-133 2-133 2-138 2-143 2-146 iii TABLE OF CONTENTS (Continued) PAGE SECTION 2. 9LS/54LS/74LS LOW-POWER SCHOTTKY (Continued) LS255 LS257 LS258 LS261 LS266 LS279 LS283 LS295A LS298 LS365 LS366 LS367 LS368 LS386 LS395A LS670 Dual 2·to-4 decoder/demultiplexer with tri·state outputs Quad 2·to- 1 line multiplexer with tri-state outputs Quad 2-to-l line multiplexer with tri-state outputs 2 X 4 binary multiplier. . . . . . . . Quad exclusive NO R gate, open collectors Quad set/reset latch. . . . . . . . . 4·bit full adder, fast carry (rotated LS83). 4·bit shift regjster with tri-state outputs Quad 2-multiplexer with output register Hex buffer, tri-state, common enable . Hex inverter, tri·state, common enable. Hex buffer, tri·state, 4-bit and 2-bit Hex inverter, tri-state, 4-bit and 2-bit Quad exclusive OR gate . 4-bit shift register, tri-state . . . . 4 X 4 register file, tri-state . . . . 2-148 2-150 2-150 2-154 2-70 2-157 2-36 2-159 2-161 2·163 2·163 2·163 2-163 2-42 2-165 2-168 SECTION 3. 25LS HIGH-PERFORMANCE LOW-POWER SCHOTTKY 25LS14 8-bit serial/parallel two's complement multiplier. 25LS15 Quad serial adder/subtractor. . . . . . . . . 25LS22 8-bit serial/parallel register with sign extender. . 25LS23 8-bit shift/storage register with synchronous clear 25LS122 Single retriggerable monostable multivibrator with clear 25LS123 Dual retriggerable monostable multivibrator with clear 25LS138 3-to-8 line decoder/demultiplexer. . . 25LS139 Dual 2-to-4Iine decoder/demultiplexer. 25LS151 8-to-l line multiplexer, compl. outputs. 25LS153 Dual 4-to-l line multiplexer. . . . . 25LS157 Quad 2-to-l line multiplexer . . . . . 25LS158 LS157, inverting . . . . . . . . . 25LS160 BCD decade counter, asynchronous clear. 25LS161 4-bit binary counter, asynchronous clear. 25LS162 BCD decade counter, synchronous clear 25LS163 4-bit binary counter, synchronous clear 25LS170 4 x 4 register file with open collectors. 25LS174 Hex D-type flip-flop with clear. . . . 25LS175 Quad D-type flip-flop with clear . . . 25LS181 4-bit arithmetic logic unit . . . . . . 25LS190 BCD decade up/down counter, synchronous. 25LS191 4-bit binary up/down counter, synchronous. 25LS192 BCD decade up/down counter, synchronous. 25LS193 4-bit binary up/down counter, synchronous. 25LS194A 4-bit bidirectional universal shift register. . 25LS195A 4-bit parallel access shift register . . . . . 25LS251 8-to-l line multiplexer with tri-state outputs 25LS253 Dual 4-to-l line data selectors/multiplexers with tri-state outputs 25LS257 Quad 2-to-l line multiplexer with tri-state outputs 25LS258 Quad 2-to-l line multiplexer with tri·state outputs 25 LS299 8-bit universal shift/storage register. . 25LS670 4 x 4 register file with tri-state outputs 3-2 3-6 3-10 3-15 3-18 3-18 3-21 3-21 3-24 3-26 3-28 3-28 3-30 3·30 3-30 3-30 3-38 3-42 3-42 3-44 3-50 3-50 3-58 3-58 3-66 3-66 3-73 3-75 3-79 3-79 3-83 3-86 SECTION 4. PACKAGING INFORMATION Plastic Packages, DIP . Metal Package, DIP. . Ceramic Packages, DIP. Ceramic Packages, Flat Metal Packages, Flat. . Beam Lead Mechanical Drawings. 4-2 4-2 4-3 4-4 4-5 4-6 iv ~YTHE@J Introduction GENERAL DESCRIPTION The Raytheon Low-Power Schottky TTL family utilizes advanced process technology, Schottky-barrier clamping, shallow diffusions, higher sheet resistivity and small geometries resulting in lower parasitic capacitance to achieve speeds comparable to 5400/7400 at one-fifth the power and 54H at one-tenth the power. The Raytheon TTL family is completely compatible with most of the popular TTL and DTL logic families and is equivalent in performance to the 9LS series. • High fan-out. • Schottky-diode-clamped inputs minimize high-speed termination effects. • Low output impedance gives low noise susceptibility, high capacitance drive capability. • Power disSipation remains relatively low at operating frequencies up to 30 MHz. • Smaller, lower-cost power supplies and cooling equipment. ABSOLUTE MAXIMUM RATINGS . 7V Raytheon Schottky Diodes are produced by depositing platinum over the collector and base contact openings of Schottky transistors. A protective layer of Titanium/ Tungsten alloy is deposited by a high-energy sputtering technique over the wafers. An alluminum layer is deposited and the interconnect pattern is etched-out during the final operation. Supply Voltage, Vee (See Note 1) Input Voltage (See Notes 1 and 2) Interemitter Voltage (See Note 3) Output Voltage (See Notes 1 and 4). Operation Free-Air Temperature Range:. . . . . . . . Storage Temperature Range. The tri-metal sandwich produced is one of the most rei iable metalization systems available in the industry. NOTES: 1. Voltage values, except interemitter voltage, are with respect to Raytheon has extensive experience in tri-metal metalization. For years similar techniques were used when producing trimetal systems for the fabrication of Beam Lead devices. FEATURES 7V 5.5V 7V _55°C to +125°C _65°C to +150°C network ground terminal. 2. Except 54LS74, 109, 181, 196, 197. For 54LS74, 109, 181, 196,197 rating is 5.5V. 3. This is the voltage between two emitters of a multiple-emitter transistor. 4. This is the maximum voltage which should be applied to any open-collector output when it is in the off state. • High speed, Low-power • 5 nsec typical gate' propagation delay time_ • 2 mW typical gate power dissipation at 50% duty cycle. Table I compares Raytheon's Low-Power Schottky to the other TTL technologies. CIRCUIT CHARACTERISTICS Dynamic Characteristic Ease of System Design • Switching times virtually insensitive to power supply, temperature variations. • Low noise generation. The average propagation delay time is relatively insensitive to variations of power supply voltage and temperature. Figure 1 shows typical propagation delay of a gate versus temperature with two different capacitive loads. TABLE I SPEED 'POWER COMPARISON FOR TTL TECHNOLOGIES Series Low-Power Schottky 54LS (Ray) 54LS/74LS (T.I.) Schottky 54S/74S Standard 54/74 Other ~YTHE03J 154H/74H 54L/74L Avg. Gate Propagation Delay Avg. Power Per Gate Speed-Power Product 5 ns 10 ns 2mW 2mW 3'ns 20mW 60 PJ 10 ns 10mW 100 PJ 6 ns 33 ns 23mW lmW 138 PJ 33 PJ 10 PJ 20 PJ v 54 LSOO CL= 50 pF Vee = 5.0V 11 54S 10 r-- r-- 50 pF 9 5400 8 Vee = 5.0V 7 o RL = 2kSl o 1= + 54LS 6 N 15pF r-- t=. 5 4 (20 nsec/division) 3 Figure 3. VCC Current Spiking Raytheon 54LS, 54S, 5400 Comparison 2 1 -55°e 0 -150 e +25 e +650 e TEMPERATURE IN °c +105"e Figure 1. Propagation Delay Change With Temperature The Raytheon LS family typically has 2 mW per gate power dissipation at 50% duty cycle, nearly constant to fre· quencies up to 5 MHz. PD increases to 8 mW per gate at 30 MHz. Figure 2 shows the dynamiC power dissipation at various frequencies for three different loading configurations. 20 ~ .5 A voltage higher than VOH min should be maintained on the unused inputs of positive AND/NAND gates during dynamic testing. This will eliminate the distributed capacitance associated with the floating inputs, band wire, and package lead, and ensure that no degradation will occur in the propagation delay times. In addition to the circuits mentioned in Note 2, all Raytheon LS devices employ a DTL input circuitry with Schottky diodes. The unused inputs may be connected directly to Vee. INPUT CHARACTERISTIC Schottky barrier diode clamping minimizes the high sp.eed termination effects previously associated with TTL devices. Figure 4 shows input clamp diode voltage versus input current. 15 Voltage (V) w -10 I- o « !2. a: w s:0 l] l.,rx -4 . E ... -8 t - 2, 5, 10, 20, 30, 40, FREQ (MHz) UNUSED INPUT AT 5.0V ~ " tl J... , ~H~ _~ ; :. . t: .1,.2, .5, 1, 1~I~uk~ , o ~ r~ ~ k ~ 0.. -12 Figure 2. Dynamic Power Dissipation -16 With its advanced circuit technology, Raytheon LS devices have inherently low power dissipation and current spiking on the Vee line during transitions. Far less than in standard TTL or high-power Schottky circuits. This advantage increases the "dynamic noise" margin of the overall system designed with 54LS. Figure 3 shows the Vee spikes of Raytheon LS and standard 5400 and 54S circuits. -20 vi -05 j '" r-•• to,· f- f-+« H I III I li~ I, I' lL J i f Figure 4. Clamp Diode Voltage Versus Input Current t;YTHE~ OUTPUT CHARACTERISTIC Figures 5 and 6 shol/¥ the typical sinking capability of Raytheon Low-Power Schottky devices and the V,N vs. VOUT curves over the full military temperature range. As shown in the curves, Raytheon LS devices can be guaranteed with IOL ot ff.o mA at VOL of 0.45V max. and also high output fan-out of 22 over the full military temperature range. 525 I +125"C +25°6 > 5 - ~ 0 .1 1/ ~r 5 ? +125"C V~C o = 5.0 VOLTS 1.0 .5 0.5 1.0 1.5 2.0 2.5 Y,N -INPUT VOLTAGE_V Figure 5. Typical Output vs. Input Voltage Characteristic OUTPUT VOLTAGE VOL(V) Figure 6 Ordering Information Package Descriptions BD 14-Pin Epoxy-B DIP DB 14-Pin Epoxy-B DIP L 16-Pin Metal Flatpak BM 16-Pin Epoxy-B DIP DC 14-Pin Ceramic DIP 16-Pin Epoxy-B DIP CJ 14-Pin Ceramic Flatpak DM 16-Pin Ceramic DIP MB MP CK CL 14-Pin Ceramic Flatpak 16-Pin Ceramic Flatpak J DP 14 or 16-Pin Ceramic DIP 14-Pin Epoxy-B DIP R 24-Pin Ceramic DIP N CN 24-Pin Ceramic Flatpak 14-Pin Metal DIP K TO-3 Power Pack W 24-Pin Glass/Metal Flatpak 14-Pin Ceramic Flatpak D ~YTHEOEl 16-Pin Epoxy-B DIP vii Ordering Information Low Power Schottky 54 930 DTL Series LS153 /883B 25 Com'l 0 to +75°C 25 Mil -55 to +125°C 54 -55to+125°C 74 0 to +75°C CJ Function - - - - - - - - - - - - ' Package Type - - - - - - - - - - - - - - - - ' Function-----------.-...J Package Type - - - - - - - - - - - - - ' CH 930 Temperature Range-----1T RC 0 to +70 oC RM -55 to +125°C Temperature Range-----1T W RM RAY I, II and III TTL Series Ceramic DIP Ceramic Flatpak Gold-backed chip, visually inspected to MIL-STD-883A, method 2012, and packaged in waffle pack. RFll F,,,,,, T I 2 CJ Temperature Range - - - - - - - - - - ' Optional Processing to MI L-STO-883A, Level 8 - - - - - - ' Notes: 1. 54LS orders will be branded 54LS 2. 9 LS orders will be branded 9 LS/54 LS or 9 LS/74 LS depending upon temperature range. 3. 25 LS orders will be branded 25 LS 4. For MIL-M·38510 device types, order by the JAN part numbering system. 123 Package T y p e - - - - - - - - - - - - - - ' 8200 MSI Series 54/7400 SSI and MSI Series 54 oor 1 -55 to +125°C 2 or 3 0 to +70 o C /883B RM 8200 OP Temperature Range---...JT Temperature Range----'T 54 -55 to +125°C 74 0 to +70 o C RC 0 to +70 o C RM -55 to +125°C Function _ _ _ _ _ _ _ _--.-...J Function-----------' Package Type----_ _ _ _ _ _....J Package T y p e - - - - - - - - - - - - - . . . J W CH Ceramic DIP Ceramic Flatpack Gold-backed chip, visually inspected to MI L·STD-883A, method 2012, and packaged in waffle pack. Optional Processing to MIL·STO·883A, Level B viii ~YTHEO]J Quality and Reliability RAYACT-883A PROGRAM The Rayth"on Acceptance Testing Program called Rayact-883A IIlvolves In-process inspections which assure compliance with MIL-STD-883A test methods and MIL-M-3851O Program Plan Requirements. Table 1 defines the Standard Process Flow for Raytheon Semiconductor's Military Level Integrated Circuits. After completion of the in-process inspections and 100% production screens, each lot is subjected to a quality conformance inspection as defined in Table 2. The screening and acceptance testlllg outlined in Tables 1 and 2 are provided at no extra cost. In addition to the Standard Process Flow and acceptance testing, Qualification Tests in accordance with MI L-STD-883A, Method 5005 are conducted every three months on each product line. Generic Summary Data of Groups A, B, and C testing (Table 3) is available upon request. The level of reliability you desire can be selected from Table 4. These tests are conducted in accordance with Method 5004 of MI L-STD-883A. APPLICABLE DOCUMENTS: Military: MI L-STD-883A MIL-M38510 Raytheon Semiconductor: Quality/Reliability Assurance Manual Table 1-Standard Process Flow Summary for Integrated Circuits MANUFACTURING OPERATION MANUFACTURING INSPECTION QUALITY /RELIABI L1TY INSPECTION Purchased Item Verification Receiving Inspection To Applicable M&SS and Blueprint Number Mask Making Mask Inspection Mask Inspection Materials Preparation Wafer Preparation and Epitaxial Growing Photoengraving and Diffusion Electrical Probe Check and 100% Visual Inspection a.c. a.c. Final Wafer Lot Acceptance 100% Visual Inspection Q.C. Wafer Lot Acceptance Electrical Test of Wafer 100% Electrical Test Scribing and Dicing Manufacturing Stores Monitor Monitor 100% Visual Inspection a.c. a.c. Visual Die Sort MIL.-STD-883A, Method 2010.2, Condition B 100% Die Sort Inspection Dice Lot Acceptance Die Attach 100% Visual Inspection Lead Bond 100% Visual Inspection Pre-Seal Inspection at 100X Magnification MIL·STD-883A, Method 2010, Condition B 100% Visual Inspection at High-Power Magnification a.c. a.c. a.c. Pre-Seal Inspection at 30X Magnification MIL-STD-883A, Method 2010, Condition B 100% Visual Inspection at Low-Power Magnification t[AYTHE~ Monitor Monitor Monitor Monitor Lot Acceptance Q.C. Lot Acceptance ix Quality and Reliability Table 1-Standard Process Flow Summary for Integrated Circuits (Cont.) MANUFACTURING INSPECTION MANUFACTURING OPERATIONS QUALITY IRE LIABILITY INSPECTION Final Seal Visual and Hermeticity 100% Processing a.c. a.c. Monitor High·Temperature Bake 150 0 C ··24 Hours Minimum IMI LSTD·883A, Method 1008, Condition C) Temperature Cycling -65 0 C to +150 0 C, 10 Cycles IMI L·STD·883A, Method 1010, Condition C) 100% Processi ng a.c. Monitor Centrifuge 30 KG Minimum Yl Axis IMI L·STD·883A, Method 2001, Condition E) 100% Processing a.c. Monitor Lead Form 100% Visual Inspection 100% Visual Inspection a.c. a.c. a.c. Monitor Carrier Load a.c. a.c. Monitor Hermeticity MILSTD·883A, Method 1014 External Visual 100% Inspection Electrical Test and Sort 100% Inspection Monitor Monitor Monitor Monitor Table 2-Quality Conformance Inspection (Each Lot) INSPECTION L TPD/MAX. ACC. NO. External 7/2 Hermeticity 7/2 COMMENTS M I L-STD-883A, Method 2009 Fine Leak MI L-STD-883A, Method 1014, Condition A or B Gross Leak MI L-STD-883A, Mthod 1014, Condition C2 Electrical Static Parameters +25 0 C 5/1 +125 0 C 7/1 -55 0 C 7/1 +25 0 C 5/1 Dynamic Parameters +125 0 C -55 0 C Package and Ship Per Applicable Electrical Test Specification 7/1 7/1 Quality Assurance Monitor NOTE: Generic Qualification Data in accordance with MI L-STD-883A, Method 5005, can be supplied if negotiated prior to procurement. x ~YTHE@'J Quality and Reliability Table 3A-Group A Electrical Tests-MIL-STD-883A CLASS A LTPD CLASS B LTPD CLASS C LTPD Subgroup 1 Static tests at 250C 5 5 5 Subgroup 2 Static tests at maximum rated operating temperature Subgroup 3 Static tests at minimum rated operating temperature 5 7 10 5 7 10 Subgroup 4 Dynamic tests at 25 0 C Subgroup 5 Dynamic tests at maximum rated operating temperature Subgroup 6 Dynamic tests at minimum rated operating temperature 5 5 5 5 7 10 5 7 10 Subgroup 7 Functional tests at 25 0 C 3 5 5 Subgroup 8 Functional tests at maximum and minimum rated operating temperatures Subgroup 9 Switching tests at 25 0 C 5 10 15 5 7 10 Subgroup 10 Switching tests at maximum rated operating temperature 5 10 15 Subgroup 11 Switching tests at minimum rated operating temperature 5 10 15 SUBGROUPS NOTE: The specific parameters to be included for tests in each subgroup shall be as specified in the applicable reliability specification. Where no parameters have been identified in a particular subgroup or test within a subgroup. no group A testing shall be performed for that subgroup or test to satisfy group A requirements. Table 3B-Group B Tests, MIL-STD-883A, Method 5005 TEST MI L-STD-883 METHOD CONDITION CLASS A CLASS B CLASS C LTPD LTPD LTPD Subgroup 1 Physical dimensions 2016 10 15 20 Subgroup 2 Resistance to solvents 2015 3 devices (no failures) 3 devices (no failures) 3 devices (no failures) Visual and mechanical 2014 Criteria from design and 1 device construction requirements (no failures) of applicable procurement document 1 device (no failures) 1 device (no failures) Bond strength 2011 Thermocompression Ultrasonic or wedge Subgroup 3 Subgroup 4 ~YTHE~ Test condition C or 0 Test condition C or 0 5 15 20 10 15 15 10 15 15 Solderability 2003 Soldering temperature of 260 0 C ±100 Lead fatigue 2004 Test condition B2 Seal: Fine, Gross 1014 As appl icable xi 1, Quality and Reliability Table 3C-Group C Tests, MIL-STO-883A, Method 5005 TEST METHOD MIL-STD-883A CONDITION CLASS A LTPD CLASS B LTPD CLASS C LTPD 10 15 15 10 15 15 Subgroup 1 (Note 1) Thermal shock Temperature cycling Moisture resistance Seal a. Fine b. Gross (Note 7) Visual examination (Note 2) End point electrical parameters 1011 1010 1004 1014 Test condition B as a minimum. Test condition C As appl icable As specified in the applicable procurement document. Subgroup 2 (Note 1) Mechanical shock Vibration, variable frequency Constant acceleration Seal a. Fine b. Gross (Note 7) Visual examination (Note 3) End point electrical parameters 2002 2007 2001 1014 Test condition B Test condition A Test condition E As applicable As specified in the applicable procurement document. Subgroup 3 Salt atmosphere (Note 4) Visual examination (Note 5) 1009 Test condition A 10 15 15 1008 Test condition C 1000 hours. As specified in the applicable procurement document. 7 7 7 1005 Test condition to be specified in the appl icable procurement document (1000 hours). As specified in the applicable procurement document: 5 5 5 1005 Test condition A, 72 hours at 1500 C. As specified in the applicable procurement document_ 7 - - Subgroup 4 High temperature storage (Note 6) End point electrical parameters Subgroup 5 Operating life test (Note 6) End point electrical parameters Subgroup 6 Steady state reverse bias End point electrical parameters NOTES: 1. Devices used for environmental tests in subgroup 1 may be used for mechanical tests in subgroup 2. 2. 3. Visual eXamination shall be in accordance with method 1010 or 1011 at a magnification of 5X to lOX. Visual eXamination shall be performed at a magnification of 5X to lOX for evidence of defects of damage to case, leads, or seals resulting from testing (not fixturing) such damage shall consitute a failure. Electrical reject devices from the same inspection lot may be used for samples. Visual examination shall be performed in accordance with 3.3.1 of method 1009. See 40.4 of appendix B of MI L-M-38510. When fluorocarbon gross leak testing is utilized, test condition C2 shall apply as minimum. 4. S. 6. 7. xii ~YTHE<3l Quality and Reliability Table 4-0ptional Screening-MIL-STD-883A, Method 5004 CLASS A SCREEN METHOD CLASS B REQUIREMENT METHOD REOliiR-C MENT r--------~-b.~~~ METHOD REQUIREME NT Internal visual (Precap) 2010 test condition A 100% 2010 test condition B 100% 2010 test condition B 100% Stabilization bake 1008, 24 hrs. test condition C, 1500 C 100% 1008, 24 hrs. test condition C, 1500 C 100% 1008, 24 hrs. test condition C, 1500 C 100% Thermal shock lOll, test condition A, 00C-l000C 15 cycles 100% Not required Temperature cycling 1010 test condition C, -65 0 C to +150 0 C 10 cycles 100% 1010, test condition C, -65 0 C to +150 0 C 10 cycles Not required 100% 1010, test condition C, -65 0 C to +150 0 C 10 cycles 100% Mechanical shock 2002** 100% Not required Constant Acceleration 2001, test condition E Y2 plane, then Yl plane, 30,000 G's 100% 2001, test condition E Yl plane, 30,000 G's 100% 2001, test condition E Yl plane, 30,000 G's 100% Seal Fine, Gross 1014, Condition A Condition C 100% 1014, Condition A Condition C 100% 1014, Condition A Condition C 100% Hermetic devices only Not required Hermetic devices only Hermetic devices only Not required Critical electrical parameters * 100% Go-No-Go Burn-i n test 1015,240 hrs. @ TA = 1250C* 100% 1015,168 hrs. @ T A = 1250 C* Critical electrical parameters * 100% Not required Not required Reverse bias burn-in 1015, test condition A or C, 72 hrs. @ 1500 C 100% Not required Not required Final electrical test * 100% * * Static tests 25 0 C 100% 100% Maximum and minimum rated operating temp. 100% 100% 100% 100% 100% 100% Dynamic tests and switching tests 25 0 C Functional test 25 0 C (subgroup 7, table 1, 5005) Not requ ired 100% 100% Group A Testing Per Table 3A Radiographic 2012 Qualification or quality conformance inspection Groups Band C optional, at extra cost 5005 . 5005 . 5005 . External visual 2009 100% 2009 100% 2009 100% Per Table 3A 100% Not required Per Table 3A Not required • Per applicable procurement document ~YTHEO]J • *Test Condition F one shock pulse in Y 1 plane only or five shock pulses at Condition B in Y 1 plane only. xiii Quality and Reliability Raytheon A + Program Introduction Raytheon's A+ program is designed to provide the Industrial and Commercial marketplace with product reliability. - Reliability consistent with application requirements. - Reliability that avoids an overbuy situation where the user pays for screening beyond the scope of his needs. 4. Pressure Cooker (epoxy packages only) 24 hours at +125°C in steam vapor, LTPD = 10. This RVT is performed on 25 samples from each EIA data code as to assure package and device integrity. 5. 85/85 (epoxy packages only) Raytheon offers three screening flows under the A+ program. Each having a separate reliability factor and cost saving. When deciding which A+ flow best suits your needs, you should consider the cost savings realized through elimination of outside lab services and the need to tighten incoming inspection. Users who do not presently have their integrated circuits screened should consider the cost of component replacement during system test and in the field. Substantial cost savings can now be realized by specifying Raytheon's A+ program. The designations A+l and A+2 are used for epoxy B packaged devices only. A+3 is reserved for ceramic devices. The appropriate screening level may be specified by simply adding the proper A+ suffix to the Raytheon part number, i.e., - - RC4136D B with A+2 screening would be designated RC4136DB2. 168 hours with bias at +8SoC and 85% relative humidity, STPD = 10. This RVT is performed on 25 samples from each EIA date code also as an indicator of package and device integrity. 6. Temperature Cycle (epoxy packages only) 100 cycles per method 1010.1, O°C to 100°C. This RVT is performed on 25 samples from each EIA date code to mechanically stress the wire bond, die bond and package material. 7. Military Flow (ceramic packages and metal-cans) Dnly dice lots which pass MI L-STD-883 condition B visual tests are used in these packages and the 883 class B flow is used up to point of electrical test. This provides military type product reliability at commercial prices. Customers who use the epoxy package may wish to obtain a copy of the Epoxy Encapsulated Linear I.C. Quality Review, available from your local Raytheon sales office. Basic Reliability Measures Raytheon has instituted an internal program to assure that products bearing the Raytheon logo are unsurpassed in reliability when used in the industrial environment. Several tests, including some normally reserved for military products, are applied to our industrial products on a continuing basis in support of this effort. A brief summary of these tests is given below. A+ Programs Increase Reliability Raytheon's A+ programs were designed to provide an even greater reliability assurance than standard process testing. Starting with devices which are processed with the basic reliability measures, various combinations of temperature cycle, burn-in, Hot Rail testing and tightened AQL lot acceptance are available as shown in the flow chart. The objectives of these 100% screens are: 1. Monitored Burn-In (all packages) 1. Temperature Cycle (epoxy packages only) 24 hours at +1 OOoC with zero failures allowed. This RVT (reliability verification test), a Raytheon exclusive, is performed on 20 samples from each manufacturing lot. OoC to +1 OOoC per method 1011, condition A. This is the first screening for the A+l and A+2 flows. (A+3 ceramic and metal-can devices received temperature cycles as part of standard product flow.) The purpose of this screening is to stress wire bonds and die bonds mechanically to prove the integrity of the devices. 2. Standard Burn-In (all packages) 168 hours at +125°C, 1% PDA. This RVT is performed on 200 samples from each EIA data code. 3. Operating Life (all packages) 1000 hours at +125°C, LTPD = 5. This RVT is performed on all new products and periodically on existing product types as an indicator of long-term reliability. xiv 2. Burn-In (all packages) 168 hours at +125°C. This screening is performed in A+2 and A+3 flows. 3. High Temperature Functional Test (Hot Rail) (epoxy packages only) +100 oC. This screening serves to further prove bond integrity. t;VTHEO]J A + Program Flow Chart Quality and Reliability I I I DICE INVENTORY I DICE VISUAL INSPECTION EPOXY B I I I DC"d J I PRESEAL VISUAL INSPECTION I Mll·STD-Ba3A Method 2010.2 COrld"OOn a 100"10 by Mig ,lIld OA S,lmple CERAMIC ASS[MBlY EPOXY B I I I J J I I Mll-STD-Ba3A Method 2010.2, Cond,"oll B 100% by Mig and QA Sample CERAMIC I I lOT ACg:PT ANCE L ." EPOXY B TEMPCYClEO~'OO I, I Mll-STD-Ba3A Method lOla CondItIOn C 10 Cydes TEMP CYCLE I DC,"d ; FUNCTIONAL TESTS J I I I J UNBRANDED INVENTORY I EPOXY B C B visual only) I sI FUNCTIONAL TESTS I ICla~s SEAL I I QA LOT ACCEPT ANCE 1 J .,3 A+2 CERAMIC TEMP CYCLE 0-1OO"C I BURN-IN 168 hrs@+125 C I DC TESTS@ +25 C DC TESTS (!!I +25 C BURN-IN 168hrs@+125C MIL-STD-Ba3A Method 1015 Conditione 168hrs DC & FUNCTIONAL TESTS @+25'C I HOT RAIL FUNCTIONAL@+100"C HOT RAIL FUNCTIONAL@+100"C LOT REJECTION POINT l%PDA LOT REJECTION POINT 1%PDA BRAND BRAND I I QA LOT ACCEPTANCE FUNCTIONAL@+25"C,0.15%AOL; DC @ +25' C, 0.28% AOL; DC@+75"C, 1.0% AOL; AC@+25 C, 1.0% AOL BRAND I QA LOT ACCEPTANCE FUNCTIONAL@+100°C,0.15% AOL; DC@O°C, 1% AOL; DC@+25°C, 0.28% AOL; OC@+75°C, 1.0% AOl; AC@+25°C, 1.0% AOl. QA LOT ACCEPTANCE FINE & GROSS LEAK, 0.4% AOL; FUNCTIONAL @+25 C, 0.15% AOL DC@OaC, 1.0% AOl; DC @+25°C, 0.28% AOL; DC@+75°C, 1.0% AOL; AC@ +25~C, 1.0% AQL. I PACK PACK PACK I QA PLANT CLEARANCE VISUAL & MECHANICAL DOCUMENTATION, MIXING INSPECTION t SHIP A<1 RELIABILITY FACTOR'" 1.5X QUALITY GUARANTEE ON FUNCTIONALITY", 0.15% AOL • t SHIP MajorDefect,@. 25% AOL Minor Defects@ 1.0% AQL SHIP A+2 A+3 ax - RELIABILITY FACTOR'" lOX· OUALITY GUARANTEE ON FUNCTIONALITY"" 0.15% AQL ReliABILITY FACTOR"" 15X QUALITY GUARANTEE ON FUNCTIONALITY"" 0.15% AOL • Must be expressed as a range since a normally controlled environment (constant power and temperature) cannot be assured. ~YTHEO~ xv DEFINITIONS OF SYMBOLS AND TERMS These symbols, terms, and definitions are in accordance with those currently agreed upon by the JEDEC Council ofthe Electronic Industries Association (EIAI for use in the USA and by the International Electrotechnical Commission (I ECI for international use_ The definitions are grouped into sections applying to voltages, currents, switching characteristics, and classification of circuit complexity. VO(ofl} Off-state output voltage The voltage at an output terminal for a specified output current with input conditions applied that according to the product specification will cause the output switching element to be in the off state. Note: This characteristic is usually specified only for puts not having internal pull-up elements. out~ CURRENT IIH High~level input current The current flowing into* an input when a specified highlevel voltage is applied to that input. IlL VOLTAGES V,H VI l High-level input voltage An input voltage "level within the more positive (less negative) of the two ranges of values used to represent the binary variables. A minimum value is specified which is the least-ppsitive (most-negative) value of high-level input voltage for which operation of the logic element withing specification limits is guaranteed. Low·level input current The current flowing into* an input when a specified low· level voltage is applied to that input. 10H High-level output current The current flowing into* the output with a specified high· level output voltage VOH applied. Note: This parameter is usually specified for open-collector outputs intended to drive other logic circuits. low-level input voltage An input voltage level within the less positive (more neg- ative) of the two ranges of values used to represent the binary variables. A maximum value is specified which is the most-positive (least-negative) value of low-level input voltage for which operation of the logic element within specification limits is guaranteed. VT+ 10(011} Off-state output current The current flowing into* an output with a specified output voltage applied and input conditions applied that according to the product specification will cause the out~ put switching element to be in the off state. Positive-going threshold voltage The voltage level at a transition·operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative~ going threshold voltage, VT_. Note: This parameter is usually specified for open-collec· tor outputs intended to drive devices other than logic circuits or for three-state outputs. lOS Short-circuit output current Negative-going threshold voltage The voltage level at a transition·operated input that causes operation of the logic element according to specification as the input voltage falls from a level above the positivegoing threshold voltage, VT+. The current flowing 'Into"* an output when "that output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified potential). VOH High-level output voltage The voltage at an output terminal for a specified output current 10H with input conditions applied that according to the product specification will establish a high level at the output. ICCH Supply current, output(s} high The current flowing into* the Vce supply terminal of a circuit when the reference outputls} is lare} at a highlevel voltage. VT _ VOL low-level output voltage The voltage at an output terminal for a specified output current IOL with input conditions applied that according to the product specification will establish a low level at the output. VO(on} On-state output voltage The voltage at an output terminal for a specified output current with input conditions applied that according to the product specification will cause the output switching element to be in the on state. Note: This characteristic is usually specified only for puts not having internal pull~up elements. xvi ICCl Supply current, output Is} low The current flowing into* the Vee supply terminal of a circuit when the reference output(s) is (are) at a lowlevel voltage. DYNAMIC CHARACTERISTICS f max Maximum clock frequency The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause a change of output state with each clock pulse. out~ *Current flowing out of a terminal is a negative value. ~YTHEO]J DYNAMIC CHARACTERISTICS (continued) Average pulse width The time between 50-percent-amplitude points (or other specified reference points) on the leading and trailing tHZ Output disable time (of a three-state output) from high leV81 The time between the specified reference points on the edges of a pulse_ thold Hold time input and output voltage waveforms with the three~state The time interval for which a signal or pulse is retained at a specified input terminal after an active transition occurs at another specified input terminal. output changing from the defined high level to a highimpedance (off) state, tLZ Output disable time (of a three-state output) from low level The time between the specified reference points on the input and output voltage waveforms with the three~state output changing from the defined low level to a highimpedance (off) state, trelease Release time The time interval between the release from a specified input terminal of data intended to be recognized and the occurrence of an active transition at another specified input terminal. Note: When specified, the interval designated "release time" falls within the setup interval and constitutes, in tpLH Propagation delay time, low-to-high-Ievel output The time between the specified reference points on the effect, a negative hold time, input and output voltage waveforms with the output changing from the defined low level to the defined high level. tpHL Propagation delay time, high~to-Iow-Ievel tsetup Setup time The time interval for which a signal is applied and maintained at a specified input terminal before an active transition occurs at another specified input terminal. tZH Output enable time (of a three-state output) to high level output The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level, The time between the specified reference points on the input and output voltage waveforms with the three-state tTLH Transition time, low-to-high-Ievel output output changing from a high-impedance (off) state to the defined high level. The time between a specified low-Ieve! voltage and a specified high-level voltage on a waveform that is changing from the defined low level to the defined high level, tTHL Transisition time, high-to-Iow-Ievel output The time between a specified high-level voltage and a specified low-level voltage on a waveform that is changing from the defined high-level to the defined low-level. ~YTHEO]J tZL Output enable time (of a three-state output) to low level The time between the specified reference points on the input and output voltage waveforms with the three-state output changing from a high-impedance (off) state to the defined low level. xvii SECTION 1 Selection Guide To Raytheon Digital Products CONTENTS PAGE 9LS/54LSI74LS Low-Power Schottky. 1-2 Beam Lead Low-Power Schottky. . . 1-4 25LS High-Performance Low-Power Schottky. Standard TTL 2's Complement Multipliers. 1-5 54174 SSI Series . 1-6 54/74 MSI Series. 8200 MSI Series . 930 DTL Series . RAY I and" Series TTL. RA Y "I Series TTL. . . ~YTHEO~ 1-5 1-7 1-8 1-9 1-10 1-15 1-1 Digital Circuits FEATURES • High Speed, Low Power • 5 ns typical gate propagation delay time • 2 mW typical gate power dissipation at 50% duty cycle = speed-power product of 10pJ • Ease of System Design • Switching times virtually insensitive to power supply, temperature variations • Low noise generation • High fan-out • Schottky-diode-clamped inputs minimize high-speed termination effects • Low output impedance gives low noise susceptibility, high capacitance drive capability • Power dissipation remains relatively low at operating frequencies up to 30 MHz • Smaller, lower-cost power supplies and cooling equipment 9LS/S4LS/74LS Low Power Schottky Type Number Description Prop Delayl (ns) or Max. Dp. Freq. (MHz)2 Available Packages Pwr Diss. (mW) J W 10 20 10 20 10 8 8 11 8 12 X X X X X X X X X X 14 Pin 9 LS/54 LS/7 4 LSOO 9 LS/54 LSI7 4 LSO 1 9 LS/54 LS174 LS02 9 LS/54 LS174 LS03 9 LS/54 LSI7 4 LS04 Quad 2·input Quad 2·input Quad 2·input Quad 2·input Hex inverter 9 LS/54 LS174 LS05 9 LS/54 LS174 LS08 9 LS/54 LS174 LS09 9 LS/54 LS174 LS1 0 9 LS/54 LS174 LS11 Hex inverter, open collectors Quad 2·input AND gate Quad 2·input AND gate, open collectors Triple 3·input NAND gate Triple 3·input AN 0 gate 20 12 17.5 10 12 12 17 17 6 13 X X X X X X X X X X 9 LS/54 LS174LS12 9 LS/54 LSI7 4 LS 13 9 LS/54LSI74LS14 9 LS/54 LS174 LS15 9 LS/54 LS174 LS20 Triple 3·input NAND gate, open collectors Dual 4·input Schmitt trigger Hex Schmitt trigger Triple 3·input AN 0 gate, open collectors Dual4·input NAND gate 20 20 20 17.5 10 6 60 60 13 4 X X X X X X X X X X 9 LS/54 LS174 LS21 9 LS/54 LS174 LS22 9 LS/54 LS174 LS26 9 LS/54LS174LS27 9 LS/54 LS/74 LS28 Dual 4·input AND gate Dual4·input NAND gate, open collectors LS03, 15 volt outputs Triple 3·input NO R gate Quad 2·input NOR gate buffer 17.5 20 25 10 15 8.5 4 8 18 22 X X X X X X X X X X 9 LS/54 LS/7 4 LS30 9 LS/54 LS/74 LS32 9 LS/54 LS/7 4 LS3 3 9 LS/54 LS/74 LS37 9 LS/54LS/74LS38 Single 8·input NAN 0 gate Quad 2·inptu 0 R gate LS28, open collectors Quad 2·input NAND gate buffer LS37, open collectors 13 11 30 15 30 2 20 22 17 17 X X X X X X X X X X 9 LS/54LS174LS40 9 LS/54 LS/7 4 LS42 9 LS/54 LS/7 4 LS43 9 LS/54 LS/74 LS44 9 LS/54 LS/7 4 LS51 Dual4·input NAND gate buffer 1 of 10 decoder Excess 3 to decimal decoder Excess gray to decimal decoder Dual 2·wide ADI 15 11 ns 11 ns 11 ns 13 9 35 35 35 5.5 X X 1-2 NAND gate NAND gate, open collectors NO R gate NOR gate, open collectors 1. Maximum at 25°C 2. Guaranteed minimum at 25°C X 16 Pin 24 Pin J W X X X X X X J W X ~YTHEO:EJ Digital Circuits 9LS/S4LS/74LS Low Power Schottky (Cont.) Type Number Description Available Packages Prop Delay' (ns) or Max. Dp. Freq. (MHz)2 Pwr Diss. (mW) 14 Pin J W X X X X X X X X 9 LS/54 LS/7 4 LS54 9 LS/li4 LS/74 LS55 9 LS/54 LS/74LS73 9 LS/54 LS/74LS74 9 LS/54 LS/74LS75 4·wide 2·3·3-2 input AD I 2-wide 4-input ADI Dual J-K .flip-flop, negative edge trigger Dual D·type flip-flop Quad transparent latch 13 13 35 MHz 30 MHz 12 4.5 2.8 20 20 32 9 LS/54 LS/7 4 LS7 6 9 LS/54 LS/7 4 LS77 9 LS/54 LS/74 LS78 9 LS/54 LS/74 LS83A 9 LS/54 LS/7 4 LS8 5 Dual J-K flip-flop, preset and clear Quad transparent latch Dual J-K flip-flop, common clock and clear 4-bit binary full adder 4-bit magnitude comparator 35 MHz 10 35 MHz 18 20 20 33 20 96 52 9 LS/54 LS/74 LS8 6 9 LS/54 LS/74LS90 9 LS/54 LS/74 LS91 9 LS/54 LS/74 LS9 2 9 LS/54 LS/74 LS93 Quad 2-input exclusive DR gate Decade Counter 8-bit shift register Divide by 12 counter 4-bit binary counter 12 32 32 32 32 MHz MHz MHz MHz 30 45 45 45 45 X X X X X X X X X X 9 LS/54 LS/7 4 LS9 5B 9 LS/54 LS/7 4 LS 107 9 LS/54 LS/74 LSI 09 9 LS/54LS/74LSI12 9LS/54LS/74LS113 4-bit bidirectional shift register Dual J-K flip-flop with clear Dual J-K flip-flop, positive edge trigger Dual J-K flip-flop, preset and clear Dual J-K flip·flop with preset 30 35 30 35 35 MHz MHz MHz MHz MHz 65 20 20 20 20 X X X X X X 9LS/54LS/74LS114 9 LS/54LS/74LSI22 9 LS/54 LS174 LS123 9 LS/54LS/74LS125 9 LS/54LS/74LSI26 Dual J-K flip-flop, common clock Retriggerable one-shot Dual one-shot multivibrator Quad buffer with tri-state output LS125. inverting 35 MHz 25 25 15 15 20 45 30 15 22 X X X X X X X X X X 9 LS/54LS/74LSI32 9 LS/54LS/7.4LSI36 9LS/54LS/74LS138 9 LS/54 LS/7 4 LS 139 9 LS/54 LS/7 4 LS 151 Quad 2·input Schmitt trigger LS86 with open collectors 3-to-8 line decoder/demultiplexer Dual 2-to-4 line decoder/demultiplexer 8-to-l line multiplexer, compl. outputs 20 23 23 23 20 40 30 31 34 30 X X X X 9 LS/54 LS/7 4 LS 15 2 9 LS/54 LS/7 4 LS 153 9LS/54LS/74LS155 9 LS/54 LS/74 LS156 9LS/54LS/74LS157 8-to·l line multiplexer Dual 4-to-l line multiplexer Dual 2-to-4 line decoder/demultiplexer LS155, open collectors Quad 2-to-l line mUltiplexer 20 15 40 40 15 34 31 30 31 49 X 9LS/54LS/74LS158 9LS/54LSmLSI60 9 LS/54 LS/7 4 LS 161 9LS/54LS/74LS162 9 LS/54 LS/7 4 LS 163 LS157, inverting BCD decade counter, asynchronous clear 4-bit binary counter, asynchronous clear BCD decade counter, synchronous clear 4-bit binary counter, synchronous clear 12 30 30 30 30 9 LS/54 LS/7 4 LS 164 9 LS/54LS/74LS170 9 LS/54 LS/7 4 LS 174 9 LS/54 LS/74 LS 17 5 9 LS/54 LS/7 4 LS 181 8-bit shift register 4 x 4 register file, open collectors Hex D-type flip-flop Quad D·type flip-flop 4-bit arithmetic logic unit 35 MHz 30 40 MHz 40 MHz 40 ~YTHE€FJ MHz MHz MHz MHz X X X W X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 24 Pin J W X X X X X 24 93 93. 93 93 80 25 80 55 102 16 Pin J X 1. Maximum at 25°C 2. Guaranteed minimum at 25°C 1-3 Digital Circuits 9LS/S4LS/74LS Low Power Schottky (Cont.) Type Number Description Prop Delayl (ns) or Max. Op. Freq. (MHz) 2 Available Packages Pwr Diss. (mW) 9lS/54lS/74lS190 9lS/54lS/74lS191 9lS/54lS/7 4lS 192 9lS/54lS/74lS193 9lS/54lS174lS194A BCD decade counter, mode control 4-bit binary counter, mode control BCD decade counter, up/down 4·bit binary counter, up/down 4·bit bidirectional universal shift register 25 MHz 25 MHz 30 MHz 30 MHz 30 MHz 90 90 85 85 75 9lS/54lS/7 4lS 195A 9lS/54lS/7 4lS 196 9 lS/54lS/74lS197 9 lS/54lS/74lS221 9 lS/54lS/7 4lS251 4·bit parallel access shift register 4·bit presettable decade counter 4-bit presettable binary counter Dual one-shot lS151 with tri-state outputs 30 MHz 35 MHz 35 MHz 40 25 70 60 60 95* 35 9 lS/54lS/74lS253 9 lS/54lS174lS255 9lS/54lS/74lS257 9 lS/54lS/74lS258 9 lS/54lS174lS261 lS153 with tri-state lS155 with tri·state lS157 with tri-state lS158 with tri-state 2 x 4 parallel binary 15 25 18 15 35 35 35 50 35 110 9 lS/54lS174lS266 9 lS/54lS/74lS279 9 lS/54lS174lS283 9 lS/54lS/74lS295A 9 lSI 54 lS/74lS298 Quad 2·input exclusive NOR open collectors Quad latch 4·bit full adder, fast carry lS95B with tri·state outputs Quad 2 multiplexer with output register 20 27 18 30 MHz 16 40 12 96 70 65 9lS/54lS/74lS365 9lS/54lS/7 4lS366 9lS/54lS/74lS367 9 lS/54lS/74lS368 9lS/54lS/74lS375 Hex buffer (tri-state, common enable) Hex inverter (tri·state, common enable) Hex buffer (tri-state, 4 x 2 bit) Hex inverter (tri·state, 4 x 2 bit) Quad latch (rotated lS75) 15 15 15 15 12 68 60 68 60 32 9lS/54lS/74lS386 9 lS/54lS174lS395 9lS/54lS174lS670 Quad 2·input exclusive 0 R gate 4·bit shift register (tri·state) 4 x 4 register file (tri·state) 12 35 MHz 40 30 75 150 1. Maximum at 25°C outputs outputs outputs outputs multiplexer 14 Pin 16 Pin W J X X X X X 24 Pin J W J X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X W X X X X X 2. Guaranteed minimum at 25°C Beam Lead Low Power Schottky Devices '-4 layout Die Size (Mils) No. of Beams EIA Mech. Outline Dwg. Type Description 54lS00Bl 54lS03Bl 54lS04Bl 54lS05Bl Quad 2·input NAND gate Quad 2·input NAND gate, open collector outputs Hex inverter Hex inverter, open collector outputs 45 x 45 45 x 45 45 x 45 45 x 45 16 16 16 16 X X X X 9 9 9 9 54lS10Bl 54lS11 Bl 54lS15Bl 54lS153Bl 54lS253Bl Triple 3·input NAND gate Triple 3·input AN 0 gate Triple 3-input AN 0 gate, open collector outputs Dual 4·to-l line multiplexer Dual4-to-lline mUltiplexer, tri·state output 45 x 45 45 x 45 45 x 45 55 x 55 55 x 55 16 16 16 20 20 X X X X X 9 9 9 12 12 Std. ~YJHEO]J Digital Circuits 25LS High-Performance Low Power Schottky Prop Delay I (ns) or Max. Dp. Freq. (MHz)2 Type Number Description 25LS14 25LS15 25LSn 25LS23 25LS138 8-bit serial/parallel mUltiplier Quad serial adder/subtractor 8-bit serial/parallel register 8-bit shift/storage register 3-to-8Iine decoder/demultiplexer 40 40 70 50 12 25LS139 25LS151 25LS153 25LS157 25LS158 Dual 2-to-4Iine decoder/demultiplexer 8-to-l line multiplexer, compl. outputs Dual 4-in-l line multiplexer Quad 2-to-l line multiplexer LS157, inverting 10 9 10 6 6 25LS160 25LS161 25LS162 25LS163 25LS170 BCD decade counter, async. clear 4-bit binary counter, async. clear BCD decade counter, sync. clear 4-bit binary counter, sync. clear 4 x 4 register file, open collector 40 40 40 40 20 25 LS174 25LS175 25LS1B1 3 25LS190 25LS191 Hex D-type flip-flop Quad D-type flip-flop 4-bit arithmetic logic unit BCD decade counter, mode control 4-bit binary counter, mode control 50 50 12 35 35 25LS192 25LS193 25LS194A 25LS195A 25LS251 BCD decade counter, up/down 4-bit binary counter, up/down 4-bit bidirectional-universal shift register 4-bit parallel access shift register LS151 with tri-state outputs 25LS253 25LS257 25LS258 25LS299 25LS670 LS153 with tri-state outputs LS157 with tri-state outputs LS158 with tri-state outputs B-bit shift/storage register LS170 with tri-state outputs 1. Maximum at 25°C 2. Guaranteed minimum at 25°C Available Packages Pwr. Diss. (mW) 14 Pin W 455 240 200 190 31 X X X X 34 30 31 40 24 X X X X X X X X X X MHz MHz MHz MHz 93 93 93 93 125 X X X X X X X X X X MHz MHz 80 55 102 90 90 X X X X X X X X 35 MHz 35 MHz 40 MHz 40 MHz 9 B5 85 75 70 35 X X X X X X X X X X 9 7 7 50 MHz 20 35 50 35 190 150 X X X X X X X X MHz MHz MHz MHz MHz MHz 20 Pin 16 Pin J J W J W X X X X X X X X 3. Available in 24-pin J or Wpackage. Standard TTL 2's Complement Multipliers Type Number 2505 2506 Description 4-bit by 2-bit 2's complement multiplier 4-bit arithmetic logic unit/function generator with output latch Prop Delay! (ns) Pwr Diss. (mW) 20 20 450 450 Available Packages N R X X X X 1. Maximum at 25°C ~YTHE@J '-5 Digital Circuits 54/74 SSI Series 1 Prop Delay (ns) or Max. Dp. Freq. (MHz) Type Description 54/7400 54/7401 54/7403 54/7404 54/7405 Quadruple 2·input NAND gate Quadruple 2·input NAN D gate, open collectors Qupdruple 2·input NAND gate, open collectors Hex inverter Hex inverter, open collectors 10 22 22 10 22 54/7408 54/7409 54/7410 54/7411 54/7412 Quadruple 2·input AND gate Quadruple 2·input AND gate, open collectors Triple 3·input NAND gate Triple 3·input AN 0 gate Triple 3·input NAND gate, open collectors 54/7415 54/7420 54/7421 54/7422 54/7437 Triple 3·input AN D gate, open collectors Dual 4·input NAN 0 gate Dual 4·input AND gate Dual 4·input NAND gate, open collectors Quad 2·input NAND gate 54/7438 54/7474 54/7486 54/74136 Quad 2·input NAND gate, open collectors Dual D·type flip·flop Quad 2·input exclusive 0 R gate 54/7486 with open collectors Pwrl Diss. Available Packages 14 Pin DC CJ 10 10 10 10 10 X X X X X X X X X X 15 18.5 10 15 22 19 19.4 10 19 10 X X X X X X X X X X 18.5 10 15 10 19.4 10 19 10 10 X X X X X X X X X X 10 25 MHz 14 27 10 43 150 150 X X X X X X X X 22 (mW) Power dissipation is given for VCC = 5.0 volts. Propagation delays given are for the average path. Operating temperature range, 5400 Types: -55°C to +125°C; 7400 Types: ooC to +70 oC. 1-6 ~YTHE~ Digital Circuits 54/74 MSI Series Prop Delay (ns) or Max. Dp. Freq. (MHz) Available Packages Pwrl Diss (mW) 14 Pin 16 Pin 24 Pin DC CJ CL DO N R Type Description 54/7442 54/7443 54/7444 54/7445 54/7483 BCD·to·Decimal Decoder Excess 3·to·Decimal Decoder Excess 3 Gray·to·Decimal Decoder BCD·to·Decimal Decoder/Driver (30V Breakdown) 4·Bit Binary Full Adder 22 22 22 30 13 140 140 140 215 300 54/74123 54/74145 54/74150 54/74151 54/74152 Dual Retriggerable Monostable Multivibrator BCD·to·Decimal recoder Driver (15V Breakdown) 16·to-l Line Data Selector/Multiplexer 8-to·l Line Data Selector/Multiplexer 8·to-l Line Data Selector/Multiplexer 21 30 11 11 11 230 215 200 145 130 54/74153 54/74154 54/74155 DuaI4-in-l Line Data Selector/Multiplexer 4-to-16 Line Decoder/Demultiplexer Dual 2-to-4 Line Decoder/Demultiplexer 14 23 21 180 170 250 X X 54/74156 54/74157 54/74158 54/74159 54/74160 Dual 2-to-4 Line Decoder/Demultiplexer (Open CoiL) Quad 2-to·l Line Data Selector/Multiplexer Quad 2·to-l Line Data Selector/Multiplexer (lnv. Data) 4-to-16 Line Decoder/Demultiplexer (Open Call.) BCD Decade Counter, Async. Clear 21 9 9 24 32 MHz 250 150 150 170 305 X X X X X X 54/74161 54/74162 54/74163 54/74164 54/74165 4·Bit Finary Counter, Async. Clear BCD Decade Counter, Sync. Clear 4·Bit Binary Counter, Sync. Clear 8·Bit Parallel-Out Serial Shift Register (S.LP.O.) Parallel-Load 8-Bit Shift Register (P.LS.O.) 32 32 32 36 26 MHz MHz MHz MHz MHz 305 305 305 167 210 X X X 54/74166 54/74170 54/74174 54/74175 54/74180 8-Bit Shift Register with Clear (P.I.S.O.) 4x4 Register File Hex D·Type Flip-Flop Quad D-Type Flip-Flop 9-Bit Odd/Even Parity Generator/Checker 35 MHz 20 35 MHz 35 MHz 32 360 625 225 150 170 54/74181 54/74182 54/74190 54/74191 54/74192 4-Bit Arithmetic Logic Unit Look-Ahead Carry Generator BCD Decade Up/Down Counter 4-Bit Binary Up/Down Counter BCD Decade Up/Down Counter (Dual Clock) 17 13 25 MHz 25 MHz 30 MHz 440 180 325 325 325 54/74193 54/74194 54/74195 54/74198 54/74199 4·Bit Binary Up/Down Counter (Dual Clock) 4-Bit Bidirectional Universal Shift Register 4-Bit Parallel Access Shift Register 8-Bit Right/Left Shift Register (P.LP.O.) 8-Bit Shift Register (P.LP.O.) 30 36 39 35 35 325 195 195 360 360 X X X X X X 54/74255 54/74283 54/7 4155 with 3·State Outputs 4·Bit Binary Full Adder with Fast Carry 21 13 250 300 X X X X MHz MHs MHz MHz MHz X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 1. Power dissipation is given for VCC = 5.0 Volts. Propagation delays given are for the average path. Operating temperature range, 5400 Types: -55°C to +125°C; 7400 Types: O°C to +70 oC. ~YTHE~ 1-7 Digital Circuits 8200 MSI Series Prop Delay (ns) or Max. Op. Freq. (MHz) Type Description RM/RC8TD9 RM/RC8T1D RM/RC8T20 RM/RC82DO RM/RC8201 Quad Bus Driver (Tri-State Outputs) Quad D-Type Bus Flip-Flop (Tri-State Outputs) Bidirectional One-Shot Dual 5-Bit Buffer Register Dual 5-Bit Buffer Register (Inv. Outputs) 16 50 MHz 30 35 MHz 35 MHz 235 250 250 400 400 RM/RC8202 RM/RC8203 RM/RC8230 RM/RC8231 RM/RC8232 10-Bit Buffer Register 10-Bit Buffer Register (Inv. Outputs) 8-lnput Multiplexer 8-lnput Multiplexer (Open Call. f Output) 8-lnput Multiplexer 35 MHz 35 MHz 11 13 11 400 400 184 184 172 RM/RC8233 RM/RC8234 RM/RC8235 RM/RC8241 2-lnput 4-Bit Multiplexer 2-lnput 4-Bit MUltiplexer (Open Call.) Z-Input 4-Bit Multiplexer (Open Call.) Quad Exclusive 0 R Gate 16 16 16 14 200 160 230 225 RM/RC8242 RM/RC8243 RM/RC8250 RM/RC8251 RM/RC8252 4-Bit Comparator (Open Call.) 8-Bit Positi on Scaler Binary-to-Octal Decoder BCD to Decimal Decoder (9301) BCD to Decimal Decoder 14 25 20 20 20 170 315 125 135 135 RM/RC8260 RM/RC8261 RM/RC8262 RM/RC8263 RM/RC8264 Arithmetic Logic Element Fast Carry Extender 9-Bit Parity Generator/Checker 3-lnput 4-Bit Multiplexer 3-lnput 4-Bit Multiplexer (Open Call.) 14 13 30 17 25 400 115 300 378 400 RM/RC8266 RM/RC82S7 RM/RC8270 RM/RC8271 RM/RC8273 2-lnput 4-Bit Multiplexer 2-lnput 4-Bit Multiplexer (Open Call.) 4-Bit Shift Register 4-Bit Shift Register 10-Bit Serial-In, Parallel-Out Shift Register 14 17 23 MHz 22 MHz 35 MHz 200 200 168 270 340 RM/RC8274 RM/RC8277 RM/RC8280 RM/RC8281 RM/RC8284 1O-Bit Parallel-In, Serial-Out Shift Register Dual 8-Bit Shift Register Decade Counter 4·8it Binary Counter Binary Hex Synchronous Up/Down Counter 25 MHz 20 MHz 25 MHz 25 MHz 30 MHz 380 400 185 185 315 RM/RC8285 RM/RC8290 RM/RC8291 BCD Decade Synchronous Up/Down Counter Presettable High Speed Decade Counter Presettable High Speed Binary Counter 30 MHz 60 MHz 60 MHz 315 190 190 1 Available Packages Pwrl Diss (mW) 14 rin 16 Pin 24 Pin DP DC CJ DB Cl DO MB MP X N R X X X X X X X X X X X X X X X X X X X X X X X X X X X xl X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Power dissipation is given for VCC ~ 5.0 volts; propagation delays are given for the average path. Operating temperature range, RM Types: _55°C to +125°C; RC Types: DoC to +70 oC. 1-8 ~YTHEO]J Digital Circuits 930 Senes DTL TYPICAL CHARACTERISTICS Available Packages Description Tpd (ns) Avg. Pwr. or Toggle Function (mW) Fanout Rate Function (Min) 50% Duty RM/RC930 RM/RC932 RM/RC933 RM/RC934 RM/RC935 Dual 4 NANDINOR gate with nodes 3 Oual.4 NANO/NOR buffer Oual four expander Hex Inverter 3 Hex Inverter 3 8 22 NA 8 8 30 40 NA 30 30 8.5/gate 28/gate NA 8.5/gate 7/gate 0.5 0.5 NA 0.5 0.5 X X X X X RM/RC936 RM/RC937 RM/RC940 RM/RC941 Hex Hex Hex Hex 8 8 8 8 30 30 30 30 8:5/gate 8.5/gate 8.5/gate 8.5/gate 0:5 0.5 0.5 0.5 X X X X RM/RC944 RM/RC945 RM/RC946 RM/RC948 RM/RC949 Oual4 NANO/NOR power gate Clocked Flip·Flop3 Quad two NAND/NOR gate 3 Clocked Flip·Flop4 Quad two NAND/NOR gate 4 25 9 8 9 7 27 52 30 50 25 22/gate 35 8.5/gate 40 8.5/gate 0.5 0.5 0.5 0.5 0.5 RM/RC950 RM/RC951 RM/RC957 RM/RC958 RM/RC961 8 9 22 25 7 30 50 40 27 25 22 35 28/gate 22/gate 8.5/gate 0.5 RM/RC962 RM/RC963 RM/RC988 RM/RC993 RM/RC994 Pulse triggered binary flip·flop Monostable multivibrator Quad 2 input buffers Quad 2 NAND power gates Dual 4 NAN D/N 0 R gate with nodes4 Triple three NANDINOR gate 3 Triple three NANDINOR gate 4 Monostable multivibrator Dual RM945 3} separate clock, separate Dual RM9484 direct set, no direct clear 8 7 10 9 9 30 25 8.5/gate 8.5/gate - - 52 50 RM/RC997 RM/RC999 Dual RM9484 } common clock, common Dual RM945 3 direct clear, direct set 9 9 50 52 Type' Number Inverter 2 Inverter" Inverter Inverter DC Noise Margin (V) 14 Pin ..... c.:> CD c.:> .... cc cc X X X X X X X X X X X X X X X X X X X X X ..... X X X X X X X X X X X X X X X X X X X 0.5 0.5 0.5 X X X X X X X X X X X X X X X X X X X X X X 70 80 0.5 0.5 1.0 0.5 0.5 X X X X X X X X X X X X X X X X X X X X X X 80 70 0.5 0.5 X X X X X X - X X X X X X X X X X X X X X X X NOTES 1. 2. 3. 4. Operating temperature range; RM types: -55°C to +125°C; RC types: DoC to +75°C Without collector pull-up resistor, Rc 6 Krl pull·up resistor 2Krlpull·up resistor [§VTHEO]J 1-9 Digital Circuits RAY I and II Series TTL Type l Number Description TYPICAL CHARACTERISTICS Fanout Function Tpd (ns) or Toggle Rate (Min) Avg. Pwr. Function (mW) 50% Duty Available Packages DC Noise Margin 14 Pin (V) C3 ... c ...c :Ie: RF30 RF31 RF32 RF33 Single phase SRT flip·flop Single phase SRT flip·flop J-K flip·flop (AND inputs) J-K flip·flop (AN 0 inputs) 15 7 12 6 15 MHz 15 MHz 15 MHz 15 MHz 30 30 30 30 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RF50 RF51 RF52 RF53 J-K flip·flop (AND inputs) J-K flip·flop (AND inputs) F-K flip·flop (AND inputs) J-K flip·flop (AND inputs) 15 7 12 6 20 20 20 20 MHz MHz MHz MHz 50 50 50 50 +1.1,-1.5 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RF60 RF61 RF62 RF63 J-K flip·flop J-K flip·flop J-K flip·flop J-K flip·flop 15 7 12 6 20 MHz 20 MHz 20 MHz 20 MHz 55 55 55 55 +1.1,-1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RF100 RF10l RF102 RF103 Dual J-K flip·flop Dual J-K flip·flop Dual J-K flip·flop Dual J-K flip·flop (separate (separate (separate (separate clocks) clocks) clocks) clocks) 11 6 35 35 35 35 MHz MHz MHz MHz 55/flip·flop 55/flip·flop 55/flip·flop 55/flip·flop +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RFll0 RFll1 RF112 RFl13 Dual Dual Dual Dual J-K flip·flop J-K flip·flop J-K flip·flop J-K flip·flop (common (common (common (common clock) clock) clock) clock) 11 6 35 35 35 35 MHz MHz MHz MHz 55/flip·flop 55/flip·flop 55/flip·flop 55/flip·flop +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RF120 RF121 RF122 RF123 Dual Dual Dual Dual J-K flip·flop J-K flip·flop J-K flip·flop J-K flip·flop (separate (separate (separate (separate clocks) clocks) clocks) clocks) 11 50 50 50 50 MHz MHz MHz MHz 55/flip·flop 55/flip·flop 55/flip·flop 55/flip-flop +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RF130 RF131 RF132 RF133 Dual Dual Dual Dual J-K flip-flop J-K flip·flop J-K flip·flop J-K flip-flop (common (common (common (common clock) clock) clock) clock) 11 6 50 50 50 50 MHz MHz MHz MHz 55/flip-flop 55/flip-flop 55/flip·flop 55/flip·flop +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RF200 RF201 RF202 RF203 J-K flip-flop J-K flip-flop J-K flip-flop J-K flip·flop (AND inputs) (AN 0 inputs) (AND inputs) (AND inputs) 11 6 50 MHz 50 MHz 50 MHz 50 MHz 55 55 55 55 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RF210 RF211 RF212 RF213 J-K flip·flop J-K flip·flop J-K flip·flop J-K flip-flop (0 R inputs) (0 R inputs) 11 6 (OR inputs) 9 (0 R inputs) 5 50 50 50 50 MHz MHz MHz MHz 55 55 55 55 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RF250 RF251 RF252 RF253 J~K flip-flop (AND inputs) J-K flip-flop (AN 0 inputs) J-K flip-flop (AN 0 inputs) J-K flip-flop (AND inputs) 30 MHz 30 MHz 30 MHz 30 MHz 50 50 50 50 +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RF260 RF261 RF262 RF263 J-K flip·flop J-K flip-flop J-K flip·flop J-K flip·flop 30 MHz 30 MHz 30 MHz 30 MHz 55 55 55 55 +1.1,-1.5 +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X (0 R inputs) (0 R inputs) (DR inputs) (DR inputs) (OR inputs) (0 R inputs) (0 R inputs) (0 R inputs) 9 5 9 5 6 9 5 9 5 9 5 11 6 9 5 11 6 9 5 1. Operating temperature range, final digits 0 or 1: -55°C to +125°C; final digits 2 or 3: OOC to +70°C. 1-10 t;YTHEO~ Digital Circuits RAY I and II Series TTL (Cont.) Type l Number RF9601 RF9602 Description Retriggerable monostable multivibrator (-55°C to +125°C) Retriggerable monostable multivibrator (O°C to +75°C) Fanout Function Tpd (ns) or Toggle Rate (Min) Avg. Pwr. Function (mW) 50% Duty 10 mA 25 100 +1.0, -1.5 12.8 mA 25 100 +1.0, -1.5 15 7 12 6 10 10 10 10 15/gate 15/gate 15/gate 15/gate +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X 15 7 12 6 12 12 12 12 30 30 30 30 +1.1,-1.5 +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X 15 7 12 6 12 12 12 12 15 15 15 15 +1.1,-1.5 +1.1, -1.5 +1.1,-1.5 +1.1,-1.5 X X X X X X X X X X X X X X X X 15 7 12 6 12 12 12 12 20/gate 20/gate 20/gate 20/gate +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X 15 7 12 6 11 11 11 11 30/gate 30/gate 30/gate 30/gate +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 +1.1,-1.5 X X X X X X X X X X X X X X X X 15 7 12 6 11 11 11 11 35 35 35 35 +1.1,-1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X DC Noise Margin (V) 14 Pin ... :.0: (.) (.) (.) c c X X X X RG40 RG41 RG42 RG43 Dual 4 input Dual 4 input Dual 4 input Dual4 input RG50 RG51 RG52 RG53 Exp. 4-wide, 2-2-2-3 Exp. 4-wide, 2-2-2-3 Exp. 4-wide, 2-2-2-3 Exp. 4-wide, 2-2-2-3 RG60 RG61 RG62 RG63 Single 8 input Single 8 input Single 8 input Single 8 input RG70 RG71 RG72 RG73 Dual Dual Dual Dual 2-wide, 2 input 2-wide, 2 input 2-wide, 2 input 2-wide, 2 input RG80 RG81 RG82 RG83 Dual Dual Oual Dual pulse shaper/delay pulse shaper/delay pulse shaper/de!ay pulse shaper/delay RG90 RG91 RG92 RG93 Exclusive Exclusive Exclusive Exclusive RG100 RG10l RG102 RG103 Exp. 3-wide, 3 input AOI gate Exp. 3-wide, 3 input AOI gate Exp. 3-wide, 3 input AO I gate Exp. 3-wide, 3 input AOI gate 15 7 12 6 12 12 12 12 25 25 25 25 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X X X X X RGll0 . RGll1 RGl12 RGl13 Exp. 2-wide, 4 input AO I gate Exp. 2-wide, 4 input AO I gate Exp. 2-wide, 4 input AOI gate Exp. 2-wide, 4 input AO I gate 15 7 12 6 12 12 12 12 20 20 20 20 +1.1, -1.5 +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RG120 RG121 RG122 RG123 Expandable single Expandable single Expandable single Expandable single 15 7 12 6 18 18 18 18 IS/gate 15/gate 151gate IS/gate +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RG130 RG131 RG132 RG133 Dual 4-input line Oual 4 input line Dual 4 input line Dual 4 input line 30 30 24 12 15 15 15 15 30/gate 30/gate 30/gate 30/gate +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X X X X X tiAYTHE03J NAND gate NAND gate NAND gate NAN D gate Available Packages TYPICAL CHARACTERISTICS input AOI gate input AO I gate input AOI gate input AOI gate NANO gate NAND gate NAN D gate NAND gate AOI gate, AOI gate, AOI gate, AO I gate, one side expo one side expo one side expo one side expo AN D gate AN D gate AN D gate AN D gate 0 R gate with complement 0 R gate with complement 0 R gate with complement DR gate with complement 8 NAND gate 8 NAN D gate 8 NAN D gate 8 NAN D gate driver driver driver driver 1. Operating temperature range, final digits 0 or 1: -55°C to +125°C; final digits 2 or 3: O°C to +70o C. ,-" Digital Circuits RAY I and II Series TTL (Cont.) Type l Number Descriptio Description RG140 RG141 RG142 RG143 Quad Quad Quad Quad 2 input 2 input 2 input 2 input RG150 RG151 RG152 RG153 4-wide, 4-wide, 4-wide, 4-wide. RG160 RG161 RG162 RG163 Triple Triple Triple Triple RG170 RGl7l RG172 RG173 2-wide,4 input 2-wide, 4 input 2-wide,4 input 2·wide,4 input RG180 RG181 RG182 RG183 Dual4 input Dual4 input Dual 4 input Dual4 input RG200 RG201 RG202 RG203 Expandable single Expandable single Expandable single Expandable single RG210 RG211 RG212 RG213 Expandable Expandable Expandable Expandable RG220 RG221 RG222 RG223 Quad Quad Quad Quad NAN D gate NAN D gate NAN D gate NAND gate RG230 RG231 RG232 RGi33 4-wide, 4-wide, 4-wide, 4-wide, RG240 RG241 RG242 RG243 Dual 4 input Dual 4 input Dual4 input Dual 4 input RG250 RG251 RG252 RG253 Expandable 4-wide, Expandable 4-wide, Expandable 4-wide, Expandable 4-wide, 2-2-2-3 2-2-2-3 2-2-2-3 2-2-2-3 2 input 2 input 2 input 2 input input input input input buss buss buss buss 15 7 12 6 AD I expander AD I expander ADI expander ADI expander - - driver driver driver driver 22 11 18 9 expander expander expander expander - NAN D expander NAND expander NAN D expander NAND expander - ADI ADI ADI ADI NAND NAND NAND NAND 2-2-2-3 2-2-2-3 2-2-2-3 2-2-2-3 - - - 8 NAN D gate 8 NAN D gate 8 NAN D gate 8 NAN D gate 2-wide, 4 input 2-wide, 4 input 2-wide, 4 input 2·wide, 4 input 2 input 2 input 2 input 2 input Fanout Function input input input input 11 6 9 5 AD I gate AD I gate AD I gate AD I gate 11 6 9 5 TYPICAL CHARACTERISTICS Available Packages Tpd (ns) or Toggle Rate (Min) Avg. Pwr. Function (mW) 50% Duty 10 10 10 10 15/gate 15/gate 15/gate 15/gate +1.1,-1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X 4 4 4 4 5/gate 5/gate 5/gate 5/gate +1.1, -1.5 +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X 15 15 15 15 15/gate 15/gate 15/gate 15/gate +1.1,-1.5 +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X 1 1 1 1 5/gate 5/gate 5/gate 5/gate +1.1,-1.5 +1.1,-1.5 +1.1,-1.5 +1.1,-1.5 X X X X X X X X X X X X X X X X 1 1 1 1 1 1 1 1 +1.1,-1.5 +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X X X X X 8 8 8 8 221gate 22/gate +1.0, -1.5 +1.0, -1.:,5 +1.0, -1.5 + 1.0, -1.5 X X X X X X X X X X X X X X X X 7 7 7 7 30 30 30 30 +1.0,-1.5 +1.0, -1.5 + 1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X 8 6 6 22/gate 221gate 221gate X X X X X X X X X X X X X X X X 22/gate 221gate DC Noise Margin (V) 14 Pin CJ~ c '-' c gate gate gate gate 11 6 6 22/gate +1.0,-1.5 +1.0,-1.5 +1.0, -1.5 +1.0, -1.5 AD I expander AD I expander ADI expander ADI expander - 2 - 2 - 2 2 7/gate 7/gate 7/gate 7/gate + 1.0, -1.5 +1.0,-1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X 22/gate X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 9 5 - NAND gate NAN D gate NAN D gate NAN D gate 2-2-2-3 2-2-2-3 2-2-2-3 2-2-2-3 11 6 input input input input ADI ADI ADI ADI gate gate gate gate 9 6 6 6 5 6 22/gate 22/gate +1.0, -1.5 +1.0,-1.5 +1.0, -1.5 +1.0, -1.5 11 6 8 8 8 8 40 40 40 40 +1.0, -1.5 +1.0,-1.5 +1.0, -1.5 +1.0, -1.5 9 5 22/gate 1. Dperating temperature range, final digits 0 or 1: _55°C to +125°C; final digits 2 or 3: DoC to +70°C. 1-12 ~YTHEO]J Digital Circuits . RAY I an dliS enes TTL(C on t ) Type l Number Fanout Function Description TYPICAL CHARACTERISTICS Tpd (ns) or Toggle Rate (Min) Avg. Pwr. Function lmW) 50% Duty DC Noise Margin (V) Available Packages 14 Pin i3~Q ... Q 11 6 9 5 8 8 8 8 22 22 22 22 +to, -1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X - 1 1 1 1 7/gate 7/gate 7/gate 7/gate +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X 11 11 11 11 38/gate 38/gate 38/gate 38/gate +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X - 7 7 7 7 15/gate 15/gate 15/gate 15/gate +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X Expandable 3-wide, 3 input AO I gate Expandable 3-wide, 3 input AO I gate Expandable 3-wide, 3 input AO I gate Expandable 3-wide, 3 input AO I gate 11 6 9 5 7 7 7 7 35 35 35 35 +1.0,-1.5 +1.0,-1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RG310 RG311 RG312 RG313 Dual Dual Dual Dual 11 6 7 7 7 7 30/gate 30/gate 30/gate 30/gate +1.0, -1.5 +1.0, -1.5 +1.0,-1.5 +1.0,-1.5 X X X X X X X X X X X X X X X X RG320 RG321 RG322 RG323 Triple 3 input Triple 3 input Triple 3 input Triple 3 input 9 5 6 6 6 6 22/gate 22/gate 22/gate 22/gate +1.0,-1.5 +1.0, -1.5 +1.0, -1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RG370 RG371 RG372 RG373 Hex inverter Hex ·inverter Hex inverter Hex inverter 15 7 12 6 10 10 10 10 15linverter 15/inverter 15/inverter 15/inverter +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X X X X X RG380 RG381 RG382 RG383 Hex Hex Hex Hex 11 6 9 5 6 6 6 6 221inverter 22/inverter 22/inverter 22/inverter +1.0, -1.5 +1.0, -1.5 +1.0,-1.5 +1.0, -1.5 X X X X X X X X X X X X X X X X RG7510 RG7511 RG7512 RG7513 Quad 2 input line Quad 2 input line Quad 2 input line Quad 2 input line 30 15 24 12 15 15 15 15 30/gate 30/gate 30/gate 30/gate +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RG7520 RG7521 RG7522 RG7523 Quad 2 input lamp driver Quad 2 input lamp driver Quad 2 input lamp driver Quad 2 input lamp driver 15 15 15 15 30/gate 30/gate 30/gate 30/gate +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RG260 RG261 RG262 RG263 Single 8 input Single 8 input Single 8 input Single 8 input RG270 RG271 RG272 RG273 2·wide, 4 input AOI 2·wide,4 input AOI 2·wide, 4 input AOI 2·wide,4 input AOI RG280 RG281 RG282 RG283 Expandable dual4 input Expandable dual 4 input Expandable dual 4 input Expandable dual 4 input RG290 RG291 RG292 RG293 Dual Dual Dual Dual RG300 RG301 RG302 RG303 ~YTHEO].J NAND NAND NAND NAND gate gate gate gate expander expander expander expander - - AND gate AN D gate AN D gate AN D gate 2 and 3 input AND/O R gate expo 2 and 3 input AND/OR gate expo 2 and 3 input AND/OR gate expo 2 and 3 input AND/O R gate expo 2-wide, 2 input 2-wide, 2 input 2-wide, 2 input 2-wide, 2 input NAND NAND NAND NAND AO I gate, AOI gate, AOI gate, AOI gate, gate gate gate gate inverter inverter inverter inverter driver driver driver driver one side expo one side expo one side expo one side expo 15 7 12 6 - - 9 5 11 6 40 rnA 20mA 40 rnA 20 rnA 1. Operating temperature range, final digits 0 or 1: _55°C to +125°C; final digits 2 or 3: OOC to +70 oC 1-13 Digital Circuits . RAY I and II Series TTL (Cont ) Type I Number Description Fanout Function 10 10 10 10 adder adder adder adder TYPICAL CHARACTERISTICS Available Packages Tpd (ns) or Toggle Rate (Min) Avg. Pwr. Function (mW) 50% Duty 5 24 ns S 12 ns 7 13 ns 90 mW 90 mW 90 mW 90 mW +O.S, -1.4 +O.S, -1.4 +O.S, -1.3 +O.S, -1.3 X X X X X X X X X X X X X X X X 5 25 ns S 22 ns 7 13 ns 125 mW 125 mW 125 mW 125 mW +O.S, -1.4 +O.S, -1.4 +O.S, -1.3 +O.S, -1.3 X X X X X X X X X X X X X X X X 5 25 ns S 22 ns 7 13 ns 125 mW 125 mW 125 mW 125 mW +O.S, -1.4 +O.S, -1.4 +O.S, -1.3 +O.S, -1.3 X X X X X X X X X X X X X X X X r r r DC Noise Margin (V) 14 Pin -.~ (.) (.) c (.) c RL10 RL11 RL12 RL13 Fast full Fast full Fast full Fast full RL20 RL21 RL22 RL23 Dependent carry fast adder Dependent carry fast adder Dependent carry fast adder Dependent carry fast adder 10 10 10 10 RL30 RL31 RL32 RL33 Dependent carry fast adder Dependent carry fast adder Dependent carry fast adder Dependent carry fast adder 10 10 10 10 RL40 RL41 RL42 RL43 Carry decoder Carry decoder Carry decoder Carry decoder 10 10 10 10 RLSO RLSl RLS2 RLS3 4·bit storage register 4·bit storage register 4·bit storage register 4·bit storage register 11 11 11 11 25 ns 25 ns 25 ns 25 ns 175 mW 175mW 175 mW 17fi 1'1"'.' +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RL70 RL71 RL72 RL73 4·bit storage register 4·bit storage register 4·bit storage register 4·bit storage register 11 11 11 11 25 ns 25 ns 25 ns 25 ns 175mW 175mW 175 mW 175 MW +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X RL80 RL81 RL82 RL83 lS·bit scratch lS·bit scratch lS·bit scratch lS·bit scratch 27 27 27 27 250 250 250 250 +1.1,-1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X X X X X pad pad pad pad memory memory memory memory S S 6 S },,'"'" 2 ns ns ns ns 20 20 20 20 mW mW mW mW mW mW mW mW Expander +0.7, -2.35 +0.7, -2.35 +0.7, -2.25 +0.7, -2.25 X X X X X X X X X X X X 1. Operating temperature range, final digits 0 or 1: -55°C to +125°C; final digits 2 or 3; O°C to +70°C. 2. Pin 5, A ~ 4.0 nS (add 1 All pfd) '-14 ~YTHE03J Digital Circuits RAY III Series TTL Type l Number Description Avg. Pwr. Function (mW) 50% Duty 11 10 11 10 75 75 75 75 MHz MHz MHz MHz 55/FF 55/FF 55/FF 55/FF +1.1, -1.5 +1.1,-1.5 +1.1,-1.5 +1.1,-1.5 X X X X X X X X X X X X Fanout Function DC Noise Margin (V) Pins 14 RF3200 RF3202 RF3210 RF3212 AND input J-K flip-flop AND input J-K flip-flop DR input J-K flip-flop OR input J-K flip-flop 11 10 11 10 75 75 75 75 MHz MHz MHz MHz 55 55 55 55 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X RF3220 RF3222 RF3230 RF3232 Tr,iple latch flip-flop (sep. neg. edge clocks) Triple latch flip-flop (sep. neg. edge clocks) Dual D-type flip-flop Dual D-type flip-flop 11 10 11 10 50 50 60 60 MHz MHz MHz MHz 60/FF 60/FF 75/FF 75/FF +1.1,-1.5 +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X RF3240 RF3242 RF3250 RF3252 Triple latch flip-flop (com. pas. edge clock) Triple latch flip-flop (com. pas. edge clock) 5-channel selector flip-flop 5-channel selector flip-flop 11 10 11 10 50 50 50 50 MHz MHz MHz MHz 70/FF 70/FF 150 150 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X RG3180 RG3182 RG3200 RG3202 Dual4 input NAND gate expander Dual4 input NAND gate expander Expandable single 8 NAND gate Expandable single 8 NAND gate - - 11 10 1 1 6.5 6.5 22 22 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X RG3210 RG3212 RG3220 RG3222 Expandable 2-wide, 4 input AO I gate Expandable 2-wide, 4 input AO I gate Quad 2 input NAND gate Quad 2 input NAND gate 11 10 11 10 5.5 5.5 4.5 4.5 30 20 22/gate 22/gate +1.1,-1.5 +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X RG3230 RG3232 RG3240 RG3242 4-wide, 2-2-3-3 input AOI expander 4-wide, 2-2-3-3 input AOI expander Dual 4 input NAN 0 gate Dual 4 input NAND gate - 11 10 2 2 4.5 4.5 7/gate 7/gate 22/gate 22/gate +1.1,-1.5 +1.1, -1.5 +1.1,-1.5 +1.1,-1.5 X X X X X X X X X X X X RG3250 RG3252 RG3260 RG3262 Expandable 4-wide, 2-2-2-3 input AOI gate Expandable 4-wide, 2-2-2-3 input AOI gate Single 8 input NAND gate Single 8 input NAND gate 11 10 11 10 6.0 6.0 5.5 5.5 40 40 22 22 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X RG3270 RG3272 RG3300 RG3302 2-wide,4 input AOI expander 2-wide, 4-input AOI expander Expandable 3-wide, 3 input AO I gate Expandable 3-wide, 3 input AOI gate - 11 10 1 1 6.0 6.0 7/gate 7/gate 35 35 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X RG3310 RG3312 RG3320 RG3322 DuaI2-wide, 2 input AOI gate, one sideexp. Dual 2-wide, 2 input AOI gate, one side expo Triple 3 input NAND gate Triple 3 input NAND gate 11 10 11 10 5.5 5.5 4.5 4.5 30/gate 30/gate 22/gate 22/gate +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 +1.1, -1.5 X X X X X X X X X X X X RG3380 RG3382 RG3390 RG3392 Hex inverter Hex inverter Dual 4 input AND gate, split outputs Dual 4 input AND gate, split outputs 11 10 11 10 4.5 4.5 6.5 6.5 22/inverter 22/inverter 30/gate 20/gate +1.1,-1.5 +1.1,-1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X - - - - 24 .... :..:: co>: '-' ,-,,-,c Dual Dual Dual Dual _--_ I (separate clocks) (separate clocks) (common clock) (common clock) Available Packages RF3120 RF3122 RF3130 RF3132 C'§YTHEO]J J-K flip·flop J-K flip-flop J-K flip-flop J-K flip-flop TYPICAL CHARACTERISTICS Tpd (ns) or Toggle Rate (Min) Operating temperature range, final digit 0: -55°C to +125°C; final digit 2: O°C to +70°C. 1-15 Digital Circuits . RAY III Series TTL (Cont ) Type l Number I Description TYPICAL CHARACTERISTICS Fanout Function Tpd (nsl or Toggle Rata (MinI Avg. Pwr. Function (mWI 50% Duty DC Noise Margin (VI Available Packages Pins 14 24 u C3~CI CIa: RG3400 RG3402 RG3410 RG3412 auad 2 input AND gate auad 2 input AND gate auad 2 input NOR gate auad 2 input NO R gate 11 10 11 10 6.5 6.5 4.5 4.5 30/gate 30/gate 30/gate 30/gate +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 X X X X X X X X X X X X RG3420 RG3422 RG3430 RG3432 Dual 4 input NAND gate, split outputs Dual 4 input NAND gate, split outputs Single 8 input NAND gate, split outputs Single 8 input NAND gate, split outputs 11 10 11 10 4.5 4.5 5.5 5.5 221gate 22/gate 22 22 +1.1, -1.5 +1.1,-1.5 +1.1, -1.5 +1.1,-1.5 X X X X X X X X X X X X RG3440 RG3442 RG3450 RG3452 Dual 2·wide, 2 input ADI gate, split outputs Dual 2·wide, 2 input ADI gate, split outputs 4·wide, 2·2·3-4 input ADI gate 4·wide, 2·2·3-4 input ADI gate 11 10 11 10 5.5 5.5 5.5 5.5 30/gate 30/gate 40 40 +1.1, -1.5 +1.1, -1.5 +1.1,-1.5 +1.1,-1.5 X X X X X X X X X X X X RL3002 RL3100 RL3102 10·bit parity generator/checker 4·bit full adder 4·bit full adder 14 10 10 25 ns 15 ns 15 ns 325 mW 350 350 +1.1,-1.7 +1.4, -1.7 +1.4, -1.7 X X X Operating temperature range, final digit 0: _55°C to +125°C; final digit 2: O°C to +70 oC. 1·16 ~YTHEO~ SECTION 2 9 LS/54LS/74LS Low-Power Schottky CONTENTS PAGE CONTENTS PAGE LSOO LS01 LS02 LS03 LS04 LS05 LS08 LS09 LS10 LS11 LS12 LS13 LS14 LS15 LS20 LS21 LS22 LS26 LS27 LS28 LS30 LS32 LS33 LS37 LS38 LS40 LS42 LS43 LS44 LS51 LS54 LS55 LS73 LS74 LS75 LS76 LS77 LS78 LS83A. LS85 LS86 LS90 LS91 LS92 LS93 LS95B. LS107. LS109. LS112. LS113. LSl14. 2-2 2-4 2-6 2-4 2-2 2-4 2-7 2-9 2-2 2-7 2-4 2-10 2-10 2-9 2-2 2-7 2-4 2-14 2-6 2-15 2-2 2-17 2-18 2-15 2-18 2-15 2-19 2-19 2-19 2-22 2-22 2-22 2-24 2-28 2-30 2-24 2-30 2-34 2-36 2-38 2-42 2-44 2-51 2-44 2-44 2-55 2-24 2-58 2-24 2-24 2-34 LS122 . LS123. LS125 . LS126. LS132 . 2-60 2-60 2-64 2-64 2-66 LS136 . LS138 . LS139 . LS151 . LS152 . LS153. LS155 . LS156 . LS157 . LS158 . LS160. LS161 . LS162. LS163. LS164. LS170 . LS174 . LS175. LS181 . LS190. LS191 . LS192. LS193. LS194A LS195A LS196. LS197 . LS221 . LS251 . LS253 . LS255 . LS257 . LS258 . LS261 . LS266 . LS279 . LS283 . LS295A LS298 . LS365 . LS366 . LS367 . LS368 . LS386 . LS395A LS670 . 2-70 2-72 2-72 2-75 2-75 2-78 2-80 2-80 2-83 2-83 2-86 2-86 2-86 2-86 2-93 2-96 2-100 2-100 2-103 2-110 2-110 2-119 2-119 2-127 2-130 2-133 2-133 2-138 2-143 2-146 2-148 2-150 2-150 2-154 2-70 2-157 2-36 2-159 2-161 2-163 2-163 2-163 2-163 2-42 2-165 2-168 ~YTHEO~ 2-1 LSOOLS04 LS10 LS20 LS30 Positive-NAND Gates, Hex Inverters PIN-OUT AND'LOGICDIAGRAMS :LSOO QUADRUPLE 2-INPUT NAN'D GATE 12 11 10 . . 11.,804 , HEX INVERTER: 12 Vee 48 4A 4Y 38 3A 3Y ~tTtJ 3 4 2 ffi]~U~ £dJMMrn lA IV 2A 2Y 3A 3Y GNO 3 Die Size .060 x .067 4 5 posHive logic: Y = A Die Size .060 x .067 LS20, DUAL 4-INPUT NAND GATE 1.S1II. TRIPLE 3-INPUT NAND GATE 12 11 Vcc 6A 6Y SA 5Y 4A 4Y 9 8 7 6 lA 18 IV 2A 28 2Y GND Positive logiC: Y = AB 5 10 13 14 1 W~ 1 2 11 10 10 12 13 14 1 14 1 2 2 11\ 18 NC lC 10 IV GNO 3 4 posHive logiC: Y = ABC 5 Die Size .060 x .067 4 5 positive logic: Y = ABCD Die Size .060 x .067 NC - No intemal connection I-S30 II-INPUT NAND GATE 12 11 14 1 2 3 4 5 posHive logic: Y - ABCDEFGH Die Size .060 x .067 2-2 ~YTHEO:El Positive-NAND Gates, Hex Inverters Recommended Operating Conditions 9LS/54LS Nom Max Min 4.5 Supply voltage, Vee 5 I High logic level Normalized fan-out from each output, N I Low logic level -55 Operating free-air temperature, T A 5.5 20 10 125 Min 9LS/74LS Max Nom 4.75 5 0 5.25 20 20 70 Unit V °C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions· Parameter 9LS/54LS Typ·· Max Min VIH 2 VIL VI VOH Vee=MIN, II IIH III los 2 11--18mA ov leCH 9LS/74LS Typ·· Mex 0.7 -1.5 Vee=MIN, Vll=VllmaX, loW-400!.lA, Vll =0.7V Vee-MIN, VIH-2V llnl =4 mA Jim =8 mA VI=7.0V Vee=MAX, VI-2.7V Vee-MAX, VI=O.4V Vee=MAX, Vee-MAX, Vee=MAX, All inputs at I LSOO,04,10,20 {Per Gate} I LS30 Vee=MAX, All inputs at 4.5 {Per Gate} Val Min 2.5 3.4 0.25 15 0.2 0.35 0.6 0.8 1.5 2.7 0.4 0.1 20 -0.4 100 0.4 0.5 3.4 0.25 0.3 -15 0.2 0.35 0.6 0.4 0.45 0.1 20 -0.4 -100 0.4 0.5 1.1 Unit V V V V V V mA !.IA mA mA mA mA 1.1 leel .. "For conditIons shown as MIN or MAX, use the approproate value specIfIed under recommendea operatIng conditIons for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. Switching Characteristics, Vee Parameter Min Test Conditions: CL = lSpF. -5S0C Typ RL = 5V Over Recommended Free-Air Temperature Range Max Min +2S0C Typ Mex Min +12SoC Typ Max Unit = 2kO (See Fig. A, page 2-1741 tplH LSOO,04, 10,20 LS30 tpHl LSOO,04,10, LS20 LS30 Test Conditions: CL - SOpF. tplH tpHl LSOO,04, 10,20 LS30 LSOO,04,10, LS20 LS30 12 3.0 5.0 11 4.0 6 9 15 3.0 5.0 10 4.0 16 8.0 18 25 6.0 15 - 21(0 (See Fig. A, page 2-174) 6 7 RL 9 8 11 12 27 15 13 17 16 35 9 8 10 "12 21 10 7 11 9 10 12 20 15 13 16 16 28 ns 8 10 10 12 15 14 16 17 10 12 10 12 16 16 18 16 18 23 ns ns ns Note: Ae specification shown under -S5°e and +125°e are for 9lS devices only. All 50pF specifications a'e for 9lS devices only. CEAYTHE<3l 2-3 LS01 LS05 LS03 LS12 Positive-NAND Gates, Hex Inverters With Open-Collector Outputs LS22 PIN·OUT AND LOGIC DIAGRAMS 1.S03 QUADRUPLE 2·INPUT NAND GATE LS01 QUADRUPLE 2·INPUT NAND GATE 12 11 13 9 14 8 7 6 2 3 4 12 Vee 4Y 4B 4A 3Y 3B 3A 10 @~1Jj 11 10 vee 4B 4A 4Y 3B 3A 3Y : @tTt] 13 14 ;W~ IV IA IB 2Y 2A 2B GNO 5 2 3 4 IA IB IV 2A 2B 2Y GNO 5 positive logic: Y = AB positive logic: Y = AB Die Size .060 x .067 Die Size .060 x .067 LS05 HEX INVERTER LS12 TRIPLE 3-INPUT NAND GATE Vee 6A 6Y SA 5Y 4A 4Y 9 8 7 6 12 ~UU~ 4 5 10 13 9 14 8 7 6 ~cb1~m IA IV 2A 2Y 3A 3Y GNO 3 11 2 3 positive logic: Y = Ii. 4 5 positive logic Y = ABC Die Size .060 x .067 Die Size .060 x .067 LS22 DUAL 4·INPUT NAND GATE 12 10 IA IB Ne Ie 10 IY GNO positive logic: Y = ABCD Die Size .060 x .067 NC - No internal connection 2·4 ~YTHEO~ Positive-NAND Gates, Hex Inverters With Open-Collector Outputs LS01 LS12 LS05 LS03 LS22 Recommended Operating Conditions Min Supply voltage, Vee (See Note 1) High·level output voltage, VOH Low-level output current, IOL Operating free-air temperature, T A NOTE 1: Voltage values are wIth respect to network ground termonal. 9LS/54LS Nom Max 4.5 5.5 5.5 4 125 5 -55 Min 9LS/74LS Nom Max 4.75 5 5.25 5.5 8 70 Unit V V rnA °C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions" Parameter Min 9LS/54LS Typ"" Max Vee-MIN, Vee-MIN, 11--18mA VOH-5.5V VOL Vee~MIN, VIH~2V VIL -0.7V IOL -4mA IOL ~8mA 9LS/74LS Typ"" Max 2 2 VIH VIL VI IOH Min 0.25 0.7 -1.5 100 0.4 0.25 0.3 0.8 1.5 100 0.4 0.5 Unit V V V /lA V 0.1 0.1 rnA VI~7.0V Vee~MAX, II 20 20 Vee~MAX, VI~2.7V /lA IIH -0.4 -0.4 rnA Vee-MAX, VI-O.4V IlL 0.2 0.4 0.2 0.4 rnA Vee~MAX, All inputs at OV (Per Gate) leeH, 0.6 1.1 0.6 1.1 rnA Vee~MAX, All inputs at 4.5V (Per Gate) leeL .. ·For condItIons shown as MIN or MAX, use the appropriate value specIfied under recommended operatong condItions for the applocable device type. ·'AII typical values are at Vee = 5V, TA = 25°e. t Not more than one output should be shorted at a time. Switching Characteristlcs, Vcc = 5V Over Recommended Free-Air Temperature Range Parametar Test Conditions: CL I I Min I -55OC Typ I I Max I = 1SpF, RL = 2kO Min I +25°C Typ I I Max I tpLH tpHL I I I 12 6.0 = I I 18.0 I I 12 I I Unit 28 18 I ns ns 35 25 I ns ns +12S"C Typ I Max I I ISee Figure B, page 2-174) 17.0116 1 28 1 7.0 114122 tpLH 6.0 12 22 4.0 10 18 tpHL Test Conditions: CL - SOpF, RL 2kO (See Figure B, page 2-174) I Min I 35 25 I I I 12 6.0 I I I 20 12 I I 30 20 J 7.0 1 15 I I I I 4.0 I 10 I 12 6.0 I I 21 12 I I I I Note: Ae specification shown under ,_55°e and +125°e are for 9LS devices onlv. All 50pF specifications are for 9LS only. ~YTHEO"El 2-5 LS02 LS27 PIN-OUT AND LOGIC DIAGRAMS LS02 QUADRUPLE 2-INPUT NOR GATE 12 Vee 4Y 4B 4A 3Y 38 3A 11, 10 "'i3~ 9 13 14 8 7 6 2 3 4 LS27 TRIPLE 3-INPUT NOR GATE 9 13 14 8 7 6 IV lA 18 2Y 2A 28 GND 5 2 positive logic: Y = A+B Die Size .OS3 x .053 3 4 5 positive logic: Y = A+B+C Die Size .OS3 x .OS3 Recommended Operating Conditions Min Supply voltage, Vee 9LS/54LS Nom Max 4.5 5 LHigh logic level I Low logic level Normal ized fan-out from each output, N Operating free-air temperature, TA -55 Min 5.5 20 10 4.75 125 0 9LS/74LS Nom Max 5 Unit 5.25 20 20 V 70 °C Electricaf Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Condltions* Parameter Min 9LS/54LS Typ** Max 2 VIH VIL VI VOH 11=-18mA 10H- 400/lA Vee=MIN, Vee=MIN, Vee=MIN, VOL Min 9LS/74LS Typ*' Max 2 0.7 -1.5 2.5 VIL -0.7V 10L -4mA 10L-BmA 3.4 0.25 O.B -1.5 2.7 0.4 3.4 0.25 0.35 0.1 20 -0.4 15 100 15 1.6 3.2 1.6 LS02 Vee=MAX, All inputs at OV leeHt 4.0 2.0 2.0 LS27 2.8 2.B 5.4 LS02 Vee=MAX, All inputs at 5V leeL 3.4 6.B 3.4 LS027 .. .. *For condItIons shown as MIN or MAX, use the appropnate value specIfIed under recommendea operating condItIons device type. ·"AII typical values are at Vee = SV, TA = 2 Soe. tNot more than one output should be shorted at a tim•. Switching Characteristics, Vcc = 5V Over Recommended Free-Air Temperature Range Vee-MAX, Vee=MAX, Vee=MAX, Vee-MAX, II IIH IlL los VI=7V VI=2.7V VI=O.4V .. Parameter Test Conditions: Cl tpLH tpHL Test Conditions: Cl tpLH tpHL 2-6 I I Min -55°C Typ I 1 + 25°C "I I Max I Min I Typ, I Max I Min +125°c Typ I Max I I I I I Unit V V V V 0.4 V 0.5 0.1 mA 20 /lA -0.4 mA -100 mA 3.2 rnA 4.0 5.4 mA 6.8 for the appilcable Unit = 15pF, Rl = 2kO (See Fig. A. page 2-174) I I I 5 7 I L I J 8 10 I I I I I I I 6.0 11 11 I 6.0 I 12 14 I = SOpF, R, = 2kO (See Fig. A. page 2-174) I I I I 13 15 J 8 7 I I 13 14 I I I I I 8 4 I I 10 7 I I I I 13 14 15 15 I I I ns ns ns ns ~YTHEC3J Positive-AND Gates LS08 LS11 LS21 PIN-OUT AND LOGIC DIAGRAMS LS08 QUADRUPLE 2-INPUT AND GATES LSll TRIPLE 3-INPUT AND GATES VCC 4B 4A 4V 3B 3A 3V Vee lC IV 3C 3B 3A 3V "" "UfJ "~tJ 13 14 11 12 2 3 4 lA lB IV 2A 2B 2V GND 5 positive logic: Y = AB positive logic: Y = ABe Die Size .045 x .056 Die Size .052 x .054 LS21 DUAL 4-INPUT AND GATES 12 10 9 13 8 7 6 2 4 5 lA lB NC lC lD IV GND positive logic: Y = ABeD Die Size .042 x .044 Ne-No intemal connection Recommended Operating Conditions 9LS/54LS Supply voltage, Vee Normalized fan-out from each output, N Operating free-air temperature, T A ~VTHE03l 9LS/74LS MIn Nom Max Min Nom Max 4.5 5 5.5 20 11 125 4.75 5 5.25 20 20 70 I High logic level I Low logic level -55 0 Unit V °c 2-7 LS08 LS11 Positive-AND Gates LS21 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter Min 9LS/S4LS Typ" Max 11=-18mA IOH=-4OOILA Vee-MIN, Vee=MIN, VOL 9LS/74LS Typ" Max 2 2 VIH VIL VI VOH Min 0.8 1.5 0.7 -1.5 2.5 VIH=2.0V IOL-4mA IOL-8mA 3.4 0.25 2.7 0.4 3.4 0.25 0.35 0.4 0.5 0.1 20 -0.4 -100 1.2 2.2 Unit V V V V V mA VI=7.0V 0.1 Vee=MAX, II 20 VI=2.7V IlA Vee-MAX, IIH mA -0.4 Vee-MAX, VI=O.4V IlL -100 -15 mA -15 Vee-MAX los mA 0.6 1.2 0.6 All inputs at 4.5V (Per Gate) Vee=MAX, leeH 1.1 mA 1.1 2.2 Vee-MAX, All inputs at OV (Per Gate) leeL "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "AII typical values are at Vee = SV, TA = 2soe. tNot more than one output should be shorted at a time. Switching Characteristics, Vee Parameter Min Test Conditions: CL = 1SpF. LS08,11 LS21 LS08,11 t PHL LS21 Test Co.ndltlons: CL tpHL LSOB,11 LS21 LS08,11 LS21 RL 10 6 6 - SOpF. = 5V Over Recommended Free-Air Temperature Range Max Min +2SOC Typ Max Min +12S0C Typ Max Unit = 2kO (See Fig. A, page 2-174) 9 tpLH t PLH -SS"C Typ RL - 11 12 10 14 4 8.5 15 9 11 6 11 6 2kO (See Fig. A, page 2-174) 17 22 15 22 10 12 B 12 13 14 10 10 10 8 8 14 15 12 12 15 20 12 20 11 12 11 12 16 23 16 23 9 ns ns ns ns Note: AC specification shown under -S5°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. 2-8 ~YTHEO!J Positive-AND Gates With Open-Collector Outputs LS09 LS15 PIN-OUT AND LOGIC DIAGRAMS LS09 QUADRUPLE 2-INPUT AND GATES 12 L5 13 14 11 -.,---, 10 Vee 48 4A 4V 38 3A 3V 9 ~ III " --=~-.-. ~ ,~. '-.' • • ~! I" 8 :;-,.-.,..-,. ~ ....... ~ 2 3 4 Die Size .045 x .056 LS15 TRIPLE 3-INPUT AND GATES 7 6 5 @~tJ 10 W~ 11 12 1~. 18 1V JA 28. 2V GNU positive logic: Y = AB positive logic: Y = ABC Die Size .052 x .054 Recommended Operating Conditions Min 9LS/54LS Nom Max 4.5 Supply voltage, Vee (See Note 1) High-level output voltage, VOH Low-level output current, IOL 5 5.5 5.5 125 -55 Min 9LS/74LS Nom Max 4.75 5 0 5.25 5.5 70 Unit V V °c NOTE1: Voltage values are with respect to network ground terminal. Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions· Parameter 9LS/54LS Typ·· Max 2 VIH Vil VI VOH Vee=MIN, Vee=MIN, IOH Vec=MIN, Vcc=MAX, Vcc-MAX, • Vcc-MAX, II IIH IlL Min Min 9LS/74LS Typ·· Max 11=-18mA VOH=5.5V, VIW2.0V llOL =4mA IIOL -8mA VIL =VILMAX 0.8 -1.5 V V V 100 JlA 2 0.7 -1.5 0.25 100 0.4 0.25 004 U.;:!!) U.b 0.1 20 -0.4 VI=7.0V VI-2.7V VI-OAV Unit 0.1 20 -0.4 V mA JlA mA 0_6 All inputs at 4.5V (Per Gate) 1.2 1.2 mA 0.6 Vcc=MAX, 1.1 1.1 2.2 mA Vcc-MAX, All inputs at OV (Per Gate) 2.2 .. .. 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable ICCH ICCL device type. "AII typical values are at Vee = 5V, TA = 25°C. Switching Characteristics, Vcc = 5V Over Recommended Free-Air Temperature Range Parameter I I Min -55°C Typ I I I Max I Min I +25°C Typ 1 _ +125°C I I Max I Min I Typ I Max I Unit Test Conditione: CL = 15pF, RL = 2kO (See Fig. B. page 2-174) I I I I I I II I I I I I 9 I tpLH 14 20 14 21 tpHL I I 10 I 15 I I 8 I 12 Test Conditione: CL = SOpF. RL = 2kO (See Fig. B. page 2-174) tpLH I 30 I 38 L I 30 I 38 I tpHL I 12 I 17 I I 16 I 23 I 42 13 28 I I I I 40 13 I I 54 17 I I ns ns ns ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS devices only. ~VTHEO:?J 2-9 LS13 Schmitt-Trigger Positive-NAND Gates and Inverters with Totem-Pole Outputs LS14 PIN-OUT AND LOGIC DIAGRAMS FEATURES • Operation from Very Slow Transitions • Temperature-Compensated Threshold Levels LS13 • Temperature-Compensated Hysteresis, Typically O.8V • High Noise Immunity DESCRIPTION Each circuit functions as a NAND gate or inverter, but because of the Schmitt action, it has different input threshold levels for positive- and negative-going signals. The hysteresis or backlash, which is the difference between the two threshold levels, is typically 800 millivolts. These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals. Vee GND 14 7 b~m IA 18 NC IC 10 IV GND positive logic: V = ABCD 12.3456 Die Size .057 x .057 NC- No internal connection SCHEMATIC (EACH GATE) LS14 r--r--~---1---->r----~--VCC loon 20 kn NOM NOM 13 12 11 10 9 8 VCC 6A 6V 5A 5V 4A 4V If ~ [ill £¥][j~!,!f1 ~ Vee B-i--r---c-~-~-,..-1 1 1 I I I GND 14 0--1- +-1--.I ~~~ ~~~~------~-- 7 __~______~~-L_GNO 1t>J1t>J~ ~~&m IA IV 2A 2V 3A 3V GNO positive logic: V = A 2 3 4 5 6 Die Size .057 x .057 Recommended Operating Conditions Min Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Operating free-air temperature, T A 2-10 4.5 55 9LS/54LS Nom Max 5 5.5 -400 4 125 Min 4.75 0 9LS/74LS Nom Max 5 5.25 -400 8 70 Unit V IJ.A mA °C ~YTHE03'l Schmitt-Trigger Positive-NAND Gates and Inverters with Totem-Pole Outputs LS13 LS14 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter VOH Vcc=5V VllC=5V Vee=5V Vee- MIN,II--18mA Vee-MIN, IOH--400jlA, VI-0.6V VOL Vee=MIN, IT+ ITII Vee=5V, Vcc=5V, Vee=MAX, Vec=MAX, Vec-MAX, Vce=MAX VT+ VTVT+- VTVI IIH III los leeH leel Min 1.9 1.4 .8 0.8 1.0 .5 0.4 1.6 .8 0.8 2.5 3.4 2.7 3.4 -1.5 0.25 Vce=MAX, VI=4.5V 0.25 0.35 -0.14 -0.18 0.4 0.1 20 -0.4 LS13 LS14 LS13 LS14 2.9 8.6 4.1 12 -100 6 16 7 21 1.9 1.0 1.5 -0.14 -0.18 -15 VI=OV 9LS/74LS Typ" Max 1.6 VI=VT+ VI=VT_ VI=7V VI-2.7V VI-0.4V Vee=MAX, Min 1.4 .5 0.4 IOL=4mA 10l =8mA VI=2V 9LS/54LS Typ" Max -15 2.9 8.6 4.1 12 0.4 0.5 0.1 20 -0.4 -100 6 16 7 21 Unit V V V V V V mA mA mA jlA mA mA mA mA "For conditions· shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ""All typical values are at Vee = 5V, T A = 25°e. tNot more than ona output should be shorted at a time. Switching Characteristics, Vee = 5V Over Recommended Free-Air Temperature Range Parameter Min -55°C Typ Max Min +25°C Typ Max Min +125°C Max Typ I Unit TMt Conditione: CL = 15pF, RL = 2kO (See Fig. A, page 2-174) LS13 LS14 LS13 tpHl LS14 Teet Conditione: CL = tPLH tplH tpHl LS13 LS14 LS13 LS14 16 16 22 17 SOpF, 20 20 25 21 22 28 15 15 22 28 18 27 38 22 15 32 RL = 2kO (See Fig. A, page 2-174) 38 38 42 38 20 20 25 20 27 27 33 27 16 20 16 30 30 38 30 ns ns ns ns 20 21 25 21 38 38 42 38 ns ns ns ns 16 Note: AC specification shown under _55°e and +125°C are for 9LS devices only. A" 50pF specifications are for 9LS only. PARAMETER MEASUREMENT INFORMATION VOLTAGE WAVEFORMS NOTES: A. The input waveform is supplied by a generator with the following characteristics: Zout = 50S. and PRR .;; 1 MHz, tr .;; 15 ns, tf .;; 6 ns. B. el includes probe and jig capacitance. C. All diodes are 1N916 or 1N3064. ~YTHE~ 2·11 LS13 Schmitt-Trigger Positive-NAND Gates and Inverters with Totem-Pole Outputs LS14 TYPICAL CHARACTERISTICSt POSITIVE·GOING THRESHOLD VOLTAGE VS FREE·AIR TEMPERATURE. NEGATIVE·GOING THRESHOLD VOLTAGE VS FREE·AIR TEMPERATURE > > ~ 1.69 f- v~e =15V t I 1.70 > 1.68 1.67 "C o ~ 1.65 ~ 1.64 '0 1.63 .., 1.62 0.88 ~ 0.87 ~ 0.86 J .= 0.85 .~ * ~ .~ ~ 1.61 I 1.60 ·75 ·50 ·25 0 25 50 75 100 125 T A·Free·Air Temperature·oe J I ~ 0.80 ·75 ·50 ·25 0 25 50 75 100125 TA·Free.Air Temperature·oe -- ~ 'ij 810 !>- 800 ~ V~C=15V -- -I'-... :r: 790 I ... 780 ~ 770 i!: 760 > DISTRIBUTION OF UNITS FOR HYSTERESIS TA= 25°e I 820 I-... 99% ARE ABOVE 735mV .u...r 750 ·75 ·50 ·25 0 25 50 75 100125 T A Free·Air Temperature °c 2.0 ~ 1.8 .~ 1.6 ~ 1.4 ~ 1.2 c:: ~ 1.0 f! 0.8 I I l..J.-+-rT I "' \ ~ """ VT+-VT:·Hysteresis·mV OUTPUT VOLTAGE VS INPUT VOLTAGE TA = 25"C -I I I VT+ > tlit (i It~·-jge, I ~ Posrtlve-IG· olng T~ res.~ I 8. 0 I I 3~r-r-+-~+-+-1-~-r~ l3 Negative-Going Threshold Voltage, ~ 0.6 "C 0 0.4 .r: f! 0.2 .r: 0 4.5 ... I 720 740 760 780800 820 8408ElO 880 THRESHOLD VOLTAGES AND HYSTERESIS VS SUPPLY VOLTAGE > .... 0.81 Vee = 5V ~ 830 ,. " .... i""" ~ 0.84 0.83 0.82 HYSTERESIS VS FREE·AIR TEMPERATURE 850 840 v~e=15V 0.89 ~ . ~ 1.66 0.90 I 8- VT_ ~ " S- 2 ~+-t-+--+t++-+-tH-; o" Hysteresis. VT + - VT _ I ~ 4.75 5 5.25 Vec·Supply Voltage·V 5.5 oU..LL~q±:±~ o 0.4 0.8 1.2 1.6 V rlnput Voltage-V 2 t Data for temperatures below O°C and above 70°C and supply voltages below 4.75V and above 5.25 are applicable for 9LS/54LS13. and 9LS/54LS14. 2-12 ~YTHEO}J Schmitt-Trigger Positive-NAND Gates and Inverters with Totem-Pole Outputs LS13 LS14 TYPICAL APPLICATION DATA I -~ i TTL SYSTEM I----@}D--- CMOS I I I I ~------~ I I I I I ~INE.WAVE ~n I ~-- OSCILLATOR I OUTPUT I 1----... I I TTL SYSTEM INTERFACE FOR SLOW INPUT WAVEFORMS PULSE SHAPER ---- ---- 0.1 Hz tol0MHz 330n --VT+ INPUT OUTPUT THRESHOLD DETECTOR MULTIVIBRATOR Open-collector output r----'~A TI INPUT - - - ,I r- :. .}.LI' . I I I ,,' I I 1I 1-1 I OUTPUT -- I i I I L ___ --' .. PULSE STRETCHER ~YTHE<3J 2·13 Quadruple 2-lnput High-Voltage Positive-NAND Gate LS26 PIN-OUT AND LOGIC DIAGRAM (OPEN-COLLECTOR OUTPUTS) Vee 48 4A 4Y 38 3A 3Y ~l[jti 1A 18 1Y 2A 28 2Y GND positive logic: Y = AS Die Size .047 x .048 Recommended Operating Conditions Min Supply voltage, Vee (See Note 1) High-level output voltage, VOH Low-level output current, IOL Operating free-air temperature, T A 9LS/54LS Nom Max 4.5 5.5 15 4 125 5 55 Min 9LS/74LS Max Nom Unit 5.25 15 8 70 V V mA C 4.75 5 0 NOTE 1: Voltage values are with respect to network ground terminal. Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Teat Conditlona· Parameter Min 9LS/54LS Typ·· Max VI Vee=MIN, 11=-18mA IOH Vee=MIN, VIL =VILmax VOL Vee=MIN, VIW2V II IIH IlL leeH leeL VI=7V Vee=MAX, Vee=MAX, . VI=2.7V Vec=MAX, VI=O.4V All inputs at OV Vee=MAX, All inputs at 4.5V Vee-MAX, VOH-12V VOH=15V IOL =4mA IOL -8mA 9LS/74LS Typ·· Max 0.25 0.7 -1.5 50 1 0.4 0.8 2.4 0.1 20 -0.4 1.6 4.4 Unit V 2 2 VIH VIL Min 0.25 0.35 0.8 2.4 0.8 -1.5 50 1 0.4 0.5 0.1 20 -0.4 1.6 4.4 V V /lA mA V mA /lA mA mA mA "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ""All typical values are at Vee = SV, TA = 2soe. Switching Characteristics, Vcc Parameter I I Min -55°C Typ I = 5V Over Recommended Free-Air Temperature Range I I Max I Min I +25°C Typ I I Max I Min +125°C Typ Max I I J I Unit I ns ns I ns ns Test Conditions: CL = 15pF, RL = 2kO (See Fig. B, page 2-174) I 7.0 1 16 I I I I 28 7.0 14 22 12 I 22 I 4.0 10 I 18 Test Conditions: CL = SOpF, RL = 2kO (See Fig. B, page 2-174) tPLH I 12 I 18 I 35 I 12 I 20 I 30 tpHL I 6.0 I 12 I 25 I 6.0 I 12 I 20 tpLH tpHL I 6.0 I 1 I I I I 7.0 4.0 12 6.0 I I I I 15 10 21 12 I I I I 28 18 35 25 I I Note: Ae specification shown under _55°e and +12Soe are for 9LS devices only. All SOpF specifications are for 9LS only. 2-14 t§YTHEO~ NOR, NAND Buffers LS28 LS37 LS40 PIN·OUT AND LOGIC DIAGRAMS LS28 QUADRUPLE 2·INPUT NOR BUFFER 1 2 3 4 14 @lr:JtJ Vee Vee 4Y 48 4A 3Y 38 3A 13 R ~ffi_,'.1 Ili":'~=~.""i I R,. ' •• ' • .1 :b~- =~d ...... ..... .• r11:', •• , LS37 QUADRUPLE 2·INPUT NAND BUFFER '1"- @~il 12 11 1 10 9 14 13 2 12 3 11 4 10 5 5 ...... 678 positive logic: Y; A+S Die Size .045 x .052 1 W~ 9 6 1Y 1A 18 2Y 2A 28 GNO 7 48 4A 4Y 38 3A 3Y 8 lA 18 1Y 2A 28 2Y GNO positive logic: Y ; AS Die Size .045 x .052 14 13 2 12 4' 10 5 9 6 7 8 lA 18 NC 1C 10 1Y GNO positive logic: Y ; ABeD Die Size .045 x .052 Recommended Operating Conditions 9LS/54LS Supply voltage, Vee Normalized fan-out from each output, N Operating free-air temperature, T A r§VTHEO]J 9LS174LS Min Nom Max Min Nom Max 4.5 5 5.5 60 30 125 4.75 5 5.25 60 60 70 I High logic level I Low logic level -55 0 Unit V °c 2-15 LS28 LS37 NOR, NAND Buffers -LS40 Electrical Characteristics Over Recommended Free·Alr Temperature Range (Unless Otherwise Noted T..t CQndltlon.· Parameter Min 9LS/54LS Typ·· Max 2 VIH VIL VI IOH=-1.2mA 'VOL Vcc=MIN, VIH=2V II IIH IlL loS Vcc=MAX, VCC=MAX, Vcc=MAX, Vcc=MAX VI-7V VI=2.7V VI=0.4V 9LS"4LS Typ·· Max 2 0.7 -1.5 11=-18mA Vcc=MIN, Vcc=MIN, VOH Min 2.5 VIL =0.7V 10L =12mA IOL=22mA 3.4 0.25 0.8 -1.5 2.7 0.4 3.4 0.25 0.35 0.1 20 -0.4 -100 -30 -30 0.45 0.9 0.45 Vcc"'MAX, All inputs at OV LS28 ICCH 0.23 0.5 0.23 LS37.40 (Per Gate) 1.7 3.45 LS28 1.7 VccMAX, All inputs at 5V ICCL 1.5 3.0 (Per Gate) LS37.40 1.5 ~For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions device type. ' ""A" typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. .. .. .. Unit V V V V 0.4 V 0.5 0.1, mA 20 flA -0.4 mA -100 mA 0.9 mA 0.5 3.45 mA 3.0 .for the applicable . Switching CharacteristIcs , V'cc- 5V Over Recommended Free Air Temperature Range Parameter I. -55OC I 1 Min 1 Typ 1 Max I Min I +25°C Typ I Max I I Min +125°C Typ Max I I I I Unit Teet Conditions: CL = 45pF,R!,. = 6670 (See Fig. A, page 2-174) I I I 1 J I I I I I I I tpLH 11 6 10 5 tpHL I 7 I 15 I I 9 I 14 I Teet ConcIHIOflll: CL = 12SpF, RL = 6670 (See Fig. A. page 2-174) 7 tpLH 8 16 15 tpHL I 10 I 18 I I 14 I 20 I I I I I I I 7 I 1514 I I I I 6 8 10 I I ns I ns 16 20, I I ns ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only, All 50pF specifications are for 9LS devices only. 2-16 ~YTHEO~ Quadruple 2-lnput Positive-OR Gate LS32 PIN-OUT AND LOGIC DIAGRAM lS32 QUADRUPLE 2-INPUT OR GATE 12 11 10 Vee 48 4A 4V 38 3A 3V 13 9 14 8 ~tJtJ WWm 7 6 2 ....... 3 4 5 lA 18 tv 2A 28 2V GND positive logic: Y = A+B Die Size .053 x .053 Recommended Operating Conditions Min 9LS/S4LS Nom Max 5 4.5 Supply voltage, Vee I High logic level Low logic level Normalized fan-out from each output, N I -55 Operating free-air temperature, T A 5.5 20 10 125 Min 9LS/74LS Max Nom 4.75 5 0 5.25 20 20 70 Unit V °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Test Conditions" Min 9LS/S4LS Typ"" Max 2 VIH V'L V, 9LS/74LS Typ·· Max 2 0.7 -1.5 1,--18mA low 400tlA, V'L -0.7V Llol -4mA V,w2V IIOl -8m A V,=7V V,=2.7V v,=O.4V Vee-MIN, Vee-MIN, VOH Min 2.5 3.4 0.25 0.8 -1.5 2.7 0.4 3.4 0.25 0.35 Unit V V V V 0.4 V 0.5 0.1 mA I, 0.1 Vee=MAX, 20 20 Vee=MAX, tl A I'H -0.4 -0.4 mA Vee-MAX, I'l -100 mA -100 -15 lost Vee-MAX -15 3.1 6.2 3.1 6.2 mA All inputs at 5V Vee-MAX, leeH 4.9 9.8 4.9 9.8 mA All inputs at OV Vee=MAX, leel . . for the applicable 'For condItions shown as MIN or MAX, use the approproate value specIfIed under recommended operatong condItIons device type . •• All typical values are at Vee = 5V, T A = 25° e. tNot more than one output should be shorted at a time. Vee=MIN, VOL .. Switching Characteristics, Vee I Parameter I Test Conditions: CL = I J I Min +12SoC Typ I Max I J I Unit = 1 I I 7 7 tplH tpHl I I Test Conditions: CL - SOpF, RL tplH tpHl = 5V Over Recommended Free-Air Temperature Range -SsoC +2SoC Min I Typ I Mu I Min I Typ I Max 1SpF, RL 2kO (See Fig. A, page 2·1741 I - I I 9 I I 11 I I 11 7 12 13 I I 7 I 12 2kO (See Fig. A, page 2-1741 I I I I I I 9 9 I 13 14 10 I 15 I I I I 14 I I 8 I 13 I I I I I lu I Ibl I 12 I 181 11 ns ns ns ns Note: Ae specification shown under _55°C and +12Soe are for 9lS devices only. All 50pF specifications are for 9lS only. t;VTHE031 2-17 ,LS33 NOR, NAND Buffers With Open-Collector Outputs LS38 PIN-OUT AND LOGIC DIAGRAMS LS33 QUADRUPLE 2-INPUT NOR BUFFER vee 4V 4B 4A 3V 3B 3A LS38 QUADRUPLE 2-1NPUT NAND BUFFER Vee 4B 4A 4V 3B 3A 3V 14 13 ~i3Q 12 3 11 4 10 5 9 6 tv IA IB 2V 2A 2B GND positive logic: Y = A+B Die Size .045 x .052 2 7 ~rJrJ 8 IA IB IV 2A 28 2V GND positive logic: Y = AB Die Size .045 x .052 Recommended Operating Conditions Min 9LS/54LS Nom Max 4_5 SupplV voltage, Vee (See Note 1) High-level output voltage, VOH Low-level output current, IOl Operating free-air temperature, T A 5 -55 5.5 5.5 22 125 Min 9LS/74LS Nom Max 4.75 5 5.25 5.5 22 Unit V V rnA °C NOTE I: Voltage values are with respect to network ground terminal. Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted Parameter Test Conditions· Min 9LS/54LS Typ·· Max 2 VIH VIL VI Vee-MIN, 11--18mA IOH Vec=MIN, VIL =VILmax Min 9LS/74LS Typ·· Max 2 0.8 -1.5 0.7 -1.5 VOL Vcc';'MIN, VIH=2V II IIH IlL Vcc-MAX, Vcc-MAX, Vcc-MAX, VI-7V VI-2.7V VI-004V ICCH Vec=MAX, All inputs at OV ICCl Vcc=MAX, All inputs at 4.5V 250 VOH=5.5V IOl -12mA IOl -24mA 004 0.25 0.25 0.35 0.1 20 -0.4 250 0.4 0.5 0.1 20 -0.4 LS33 LS38 1.8. 0.9 3.6 1.8 0.9 3.6 2.0 LS33 LS38 6.9 6.0 13.8 12.0 6.9 6.0 1.38 12.0 2.0 Unit V V V p.A V V rnA p.A rnA rnA rnA *For conditions shown as MIN or MAX, use the appropriate value spacified under recommended operating conditions for the applicable device type. **AII typical values are at Vee = 5V, TA = 25°C. Switching Characteristics, Vee Parameter I I Min -55°C Typ I = 5V Over Recommended Free-Air Temperature Range I I Max I Min I +25°C Typ 1 I Max I Min .+125°C Typ Max I I I I Unit I ns Test Conditions: CL = 45pF, RL = 6670 (See Figure B, page 2-1741 tpLH I I I I I I I I 17 I 25 I I I 7.0 I 17 I I 25 I tpHl 13 22 4.0 9 16 Test Conditions: CL :.. 125pF, RL - 6670 (See Figure B, page 2-1741 tplH tpHl 2-18 30 22 I I I I 45 I I 32 I 42 I 36 I I 18 I 35 I I 29 I 10 I 44 I 15 I 37 I 17 I ns I 56 35 J 1 ns ns 1 Note: Ae specification shown under _55°e and +1 25°C are for 9LS devices only. All 50pF specifications are for 9 LS devices only. ~YTHEO!J 4-Line To 10-Line Decoders (1-of-10) LS42 FEATURES LS43 LS44 PIN-OUT DIAGRAM • All Outputs Are High for Invalid Input Conditions • Also for Application as 4-Line to 16-Line Decoders 3-Line to B-Line Decoders LS42 BCD-TO-DECIMAL DECODER DESCRIPTION These monolithic decimal decoders consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of valid input logic ensures that all outputs remain off for all invalid input conditions. The LS42 BCD-to-decimal decoders, the LS43 excess-3-todecimal decoders, and the LS44 excess-3-gray-to-decimal decoders feature inputs and outputs that are compatible for use with most TTL and other saturated low-level logic circuits. OUTPUTS positive logic: see function table Die Size .077 x .065 54LS circuits are characterized for operation over the full military temperature range of -55 DC to 125DC; 74LS circuits are characterized for operation from ODC to 70 DC. LS43 EXCESS-3-TO-DECIMAL DECODER 13 12 NO. L54' L543 EXCESS BCD INPUT Excess a-INPUT a·GRAY INPUT B lLLLl BAD LLLHlHLLLHHL LLHLL 14 15 16 All. TYPES DECIMAL OUTPUT C BAD LHL 1 2 3 4 5 HHHHH 6 7 LHHHHH HHHHHL lLH lHLHHHHLHHHHHH LHLLLHHHLHlLHHHHLHHHHH LHL LLHHLlHHHH H L LHH IIHHlHHHHH H LHHHHLHLHHHHH LLHlHHHH H H H H H L H H H H H L H H HH H H H H l H H l H H H L HHHHHH H H cHlHHHHHlHL LHHHHH HHH ::iHHLLHHHHHL LLHHHH HHHH H ~ L H H ~~~~~~~ H H H H L L H L l H H H HH H L.L.HHHHHHHHHH LHHHHHHHHHHH LHH HHH OUTPUTS positive logic: see function table Die Size .077 x .065 HH H = high level, L = low level LS44 EXCESS-3-GRAY-TO-DECIMAL DECODER 14 15 16 ~~1~11 ~~IC:J10 OUTPUTS positive logic: see function table Die Size .077 x .065 ~YTHE03J 2-19 LS42 LS43 4-Line To·10-Line Decoders C1-of-10} LS44 LOGIC DI.AGRAMS i5 o LS42 BCD·TO·DECIMAL DECODERS LS43 EXCESS-3·TO-DECIMAL DECODERS LS44 EXCESS-3·GRA Y •TO·DECIMAL·DECODERS 2-20 t;YTHE~ 4-Line To 10-Line Decoders (1-of-10) LS43 LS42 LS44 Recommended Operating Conditions 9LS/54LS Supply voltage, Vee Min Nom 4.5 5 9LS/74LS Max Min Nom 5.5 4.75 5 -400 High level output current, IOH Low·level output current, IOL 4 Operating free·air temperature, T A 125 -55 0 Max Unit 5.25 V -400 tJ A 8 rnA 70 "c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted. 9LS/74LS 9LS/54LS Test Conditions' Parameter Min Typ" Max VOH VOL 0.8 1.5 Vee-MIN, 11--18mA Vee-MIN, VIL =VILmax VIW2V, low- 4OOtJ A Vee=MIN, VIH-2V, 2.5 0.25 IloL -4mA 1.5 3.5 2.7 0.4 V V V 3.5 IIOL =8mA VIL =VILmax Unit V 0.7 VIL VI Max 2 2 VIH Typ" Min 0.25 0.4 0.35 0.5 V II Vee=MAX, VI=7V 0.1 0.1 rnA IIH Vee=MAX, VI=2.7V 20 20 IlL Vee-MAX, VI-O.4V 0.4 0.4 tJ A rnA -100 rnA -15 -100 -15 Vee-MAX lost 13 rnA 13 7 7 Vee-MAX, lee tt . 'For condItIons shown as MIN or MAX, use the appropnate value specIfIed under recommendea operatong condItIons for the apphcable device type. "AII typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. ttlee is measured with all outputs open and inputs grounded. . .. Switching Characteristics, Vee Parameter From Teat CondItIona: C L = 15pF. = 5V Over Recommended Free-Air Temperature Range _55°C To !Input) (Output) RL .. Min. = 2kfi (See Fig, A. Typ. +25°C Max. Min. +125°C Typ. Max. Min. Units Typ. Max. page 2-174) A,B,C or D Any output 2 gate delay 15 26 14 25 15 26 ns tpHL A,B,e or D Any Output 3 gate delay 17 31 17 30 18 31 ns tpLH A,B,e or D Any output 2 gate delay 11 27 10 25 11 26 ns tpLH A,B,e or D Any output 3 gate delay 22 35 17 30 20 34 ns tpHL Teat Conditions: C L = 5OpF. RL = 2k!l (See FIg, A, page 2-174) tpHL A,B,eor D Any Output 2 gate delay 18 32 18 31 19 33 ns tpHL A,B,e or D 21 35 22 35 23 36 ns tpHL A,B,e or D Any Output 3 gate delay Any Output 2 gate delay 21 33 20 32 21 33 ns tpLH A,B,e or D Any Output 3 gate delay 29 36 25 38 28 40 ns Note: Ae specification shown under _55°C and +125°e are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHE@J 2-21 LS51 LS54 AND-OR-Invert Gates LS55 PIN·OUT AND LOGIC DIAGRAMS 2 LS54 . 4-WIDE 2·3-3-2·INPUT AOI GATE LS51 DUAL 2·WIDE AOI GATE vce IC IB IF 1 14 13 [ill 13 2 1 14 13 3 3 4 4 5 5 o 6 7 8 9 6 7 Die Size .041 x .046 9 positive logiC: Y = (AB) + (CDE) + (FGH) Die Size .041 x .046 + (IJ) LS55 2·WIDE 4-INPUT AOI GATE 7 8 positive logic: Y = (ABeD) + (EFGH) Die Size .041 x .046 Recommended Operating Conditions Min 4.5 Supply voltage, Vee Normalized fan-out from each output, N Operating free-air temperature, T A 2-22 I High logic level I Low logic level -55 9LS/54LS Nom Max 5 5.5 20 10 125 9LS/74LS Min Nom Max 4.75 5 5.25 20 20 70 0 Unit V °c ttAVTHEO]J ANO-OR-Invert Gates LS54 LS51 LS55 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter Min 9LS/54LS Typ" Max VcC=MIN, Vcc=MIN, 1,=-18mA VOH Val Vcc=MIN, V'H=2V I, I'H I,l Vcc-MAX, Vcc-MAX, Vcc=MAX, V,-7V V,-2.7V V,=O.4V los Vcc=MAX 2.5 V,L =0.7V 10l -4mA 10l -8mA 3.4 0.25 See Note 1 ICCl Vcc=MAX, See Note 2 2.7 0.4 0.1 20 -0.4 -100 -15 Vcc=MAX, 0.8 -1.5 0.7 -1.5 IOH=-400/lA ICCH 9LS/74LS Typ" Max 2 2 V,H V,L V, Min 0.8 0.8 0.4 1.4 1.0 0.7 LS51 LS54 LS55 LS51 LS54 LS55 1.6 1.6 0.8 2.8 2.0 1.3 3.4 0.25 0.35 -15 0.8 0.8 0.4 1.4 1.0 0.7 0.4 0.5 0.1 20 -0.4 -100 1.6 1.6 0.8 2.8 2.0 1.3 Unit V V V V V mA /lA mA mA mA mA 'For conditions shown as MIN or MAX, use the appropriate value specified under recommendea operating conditions for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. NOTES: 1. ICCH is measured with all inputs grounded, and the outputs open. 2. ICCl is measured with all inputs of one gate at 5V, the remaining inputs grounded, and the outputs open. Switching Characteristics, Vee Parameter I I = 5V Over Recommended I -55*C Min I Test Conditions: CL = 15pF, Typ RL I Max I +250C I Min Typ I Max I I I I I I I Free-Air Temperature Range Min + 125°C Typ Max I I I I Unit I ns = 2kO (Soe Fig. A, page 2·174) I 8 itplH 8.0 13 13 tpHl I 8.0 I 13 I 12 I 17 I I Test Conditions: CL - 50pF, RL - 2kO (See Fig. A, page 2·174) tplH tpHl I I I 13 I 18 I 15 I 20 L I J I 12 12 L I 18 18 I I I I I 8 I 9 I 13 13 I I I I I 12 13 17 17 I ns I ns I ns Note: AC specification shown under _55°C and +125 C are for 9lS devices only. All 50pF specifications 0 are for 9LS devices only. ~YTHEO}J 2-23 LS73 LS107 LS76 LS113 LS112 Dual J-K Negative-Edge-Triggered Flip-Flops ' .Pln-for-Pln and functional equivalents to 5473, 5476, 54107, 54S112, 54S113 PIN-OUT DIAGRAMS DESCRIPTION These monolithic dual J-K flip-flops feature individual J, K, clock, and asynchronous preset and clear inputs to each flip-flop. The preset or clear inputs, when low, set or reset the outputs regardless of the level.s at the other inputs. When preset and clear inputs are inactive (high), a high level at the clock input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change when. the clock pulse is high and the bistable will perform according to the function table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse. LS113 8 7 6 5 2J 2PR 20 2iI 8 9 4 10 3 11 2 lCK lK 1J lPR 10 12 13 14 Die Size .060 x .066 LS76 LS73 IK 10 1J Iii 14 13 12 2J 11 15 10 16 9 8 2 7 4 3 6 5 CLR Die Size .060 x .066 Die Size .060 x .066 LS112 LSI 07 1 9 2 9 8 7 6 2 11 8 12 14 15 16 1J Die Size .060 x .066 2-24 Iii 10 lK lCK lK 1J lPR 10 Die Size .060 x .066 r§YTHEO}J Dual J-K Negative-Edge-Triggered Flip-Flops LS73 LS112 LS107 LS76 LS113 LOGIC DIAGRAM ('h) Q +_ CLEAR" PRESET"4-----~----~ L -_ _. . -_ _ K~====! ~=='--J CLOCK PRESET LS73 LS76 LS107 LS112 LS113 CLEAR X X X X X X X LS113 LS73,LS107 FUNCTION TABLE (EACH FLIP-FLOP) OUTPUTS INPUTS CLEAR CLOCK FUNCTION TABLE (EACH FLIP-FLOP) J K 0 L X X X L H H I L L Qo 00 H H l H L H L H L H H H H TOGGLE X X Qo H H INPUTS PRESET CLOCK L X H I H I H I H I H H 0 00 J K X L X L L H H X H L H X H high level Isteady-state) L c low level Isteady-state) H . high level Isteady-state) L - low level Isteady-state) X ~. don't care X .- don't care ~ .-. transition from high to low level 00 t OUTPUTS 0 0 H L 00 ao H L L H TOGGLE Qo Go transition from high to low level the level of before the indicated steady-.state a input conditions were established. 00 :;. the level of Q before the indicated steady-state input conditions were established. TOGGLE: Each output changes to the complement of its previous level on each! clock transition. TOGGLE: Each output changes to the complement of its previous level on each transition. t clock LS76,LS112 FUNCTION TABLE (EACH FLIP-FLOP) INPUTS PRESET CLEAR CLOCK X H L H L X L L X H H I H H I H H I H H I H H H H L 0 OUTPUTS J K 0 0 X X X X X X H L W L H W 00 Go L H L H L L H X X H H L L H TOGGLE qo Go high level Isteady-state) low level Isteady-state) X .:: don't care t ..; transition from high to low level 0 0 = the level of before the indicated steady-state input conditions were a established. TOGGLE: Each output changes to the complement of its previous level on each ~ clock transition. *This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level. ~YTHEO:?J 2-25 LS73 LS76 LS107 LS113 Dual J-K Negative-Edge-Triggered Flip-Flops LS112 Recommended Operating Conditions 9LS/54LS Supply voltage, Vcc l High logic level Normalized fan-out from each output, N Nom Max Min Nom Max 4.5 5 5.5 20 10 35 4.75 5 5.25 20 20 35 125 0' I Low logic level 0 15 15 15 15 0 -55 Clock frequency, fclock Width of clock pulse, tw(clock) (High) Width of preset pulse, tw(preset) (Low) Width of clear pulse, twlclearl (Low) Input setup time, t setup Input hold time, thold Operating free-air temperature, T A 9LS/74LS Min 0 15 15 15 15 0 0 Unit V MHz ns ns ns ns ns °c 70 tsetup is the minimum time required for the correct logic level to be present at the J or K input prior to the falling edge of the clock in order to be recognized and transferred to the outputs. thold is the minimum time required for the logic level to be maintained at the J or K input after the falling edge of the clock in order to insure recognition. These devices require no hold time. Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter VIH VIL VI VOH VOL Teat Conditions· 9LS/54LS Typ·· Max 2 VCC=MIN, VIH=2V, VIL =VILmax 9LS/74LS Typ·· Max 2 2.5 l.IOL =4mA IOL -SmA 3.4 0.8 -1.5 2.7 0.25 0.4 4 0.1 0.4 0.3 20 SO 60 -0.4 -0.8 -0.8 -100 8 VI=2.7V VI=OAV -15 3.4 0.25 0.35 I VI=7V See Note 1 Min 0.7 -1.5 11=-18mA VcC=MIN, Vcc=MIN, VIH-2V, VIL =VILmax, IOH=-4OO!LA Jor K Clock Vcc=MAX, Preset or Clear J or K Clock Vr.C=MAX, IIH Preset or Clear J or K Clock Vcc-MAX, IlL Preset or Clear VCC=MAX lost VCC=MAX, Icc tt II Min -15 4 Unit V V V V 0.4 0.50 0.1 0.4 0.3 20 SO 60 -0.4 -O.S 0.8 -100 S V mA !LA mA mA mA *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. '*AII typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. tt ICC is measured with outputs open, with clock, J, K, and clear grounded and preset at 4.5V; then with clock, J, K, and preset grounded and clear at 4.5V. 2-26 ~YTHEO!1 Dual· J-K Negative-Edge-Triggered Flip-FI~ps LS107 Switching Characteristics, Vee Parameter I Typ Test Condition.: C L = 1SpF, RL I Max = 2kO tpHL tpLH tpHL Min 35 CLR.PR CLR.PR CK CK 8 14 8 13 +2SDC Typ I Max Min +12SDC Typ Max 12 19 12 18 50 8 11 8 11 MHz 12 12 16 11 13 10 11 15 18 14 16 15 22 14 20 13 18 14 15 17 23 18 20 17 1)iI.t Conditions.: CL -SOpF, RL - 2kO (See Fig. A. paga2·174) f max tpLH tpHL tpLH tpHL CLR.PR CLR.PR CK CK 10 19 10 18 Unit (See Fig. A. page 2·174) f max tpLH LS76 LS113 = 5V Over Recommended Free-Air Temperature Range -SSDC Min LS73 LS112 14 24 14 23 10 17 10 15 ns ns ns ns MHz ns ns ns ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. t;YTHEO}) 2·27 Dual D-Type Positive-Edge-Tri9gered Flip-Flop LS74 PIN-OUT DIAGRAM DESCRIPTION This monolithic dual edge-triggered D-type flip-flop features individual D, clock, preset, and clear inputs_ Preset and clear inputs are active-low and operate independently of the clock input. When preset and clear are inactive (high), information at the D input is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positivegoing pulse. When the clock input is at either the high or low level, the D-input signal has no effect at the output. ... "" '"a:ww a.. u u 0 ~ 5 3 4 20 211 2 6 7 8 13 9 10 11 a: ..: 10 u 12 ""9 !;iw ~ u LOGIC DIAGRAM ('h) u 10 a: a.. Die Size .055 x .056 PRESET'"••:...:."'0'......._ " CLEAR FUNCTION TABLE (EACH FLIP-FLOP) {I.'"' INP TS PRESET CLEAR CLOCK L H X H L H H H ~~=L.-J~r---L-' CLOCK 13 :.:.• .;.;"1' X X t t L L H H H o TP TIl D Q Q X X X H H L L H H* L H L X L H* H ~ 00 = high level (steady state) L = low level (steady state) H o '2::.'':::2'==~..J X = don't care i = transition from low to high level 0 0 = the level of 0 before the indicated steady-state input conditionll were estabUshed. 'This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (high) level. Recommended Operating Conditions Min 4.5 Supply voltage, Vee Normalized fan-out from each output, N Clock frequency, fclock Width of clock pulse, tw(clock) (High) Width of preset pulse, tw(preset) (Low) Width of clear pulse, tw(clearl (Low) Input setup time, !setup Input hold time, thold Operating free-air temperature, T A I High logic level I Low logic level I High-level data I Low-level data 0 17 15 15 10 10 0 -55 9LS/54LS Max Nom 5 5.5 20 10 30 125 9LS174LS Min Nom Max 4.75 5 5.25 20 20 30 0 17 15 15 10 10 0 0 Unit V MHz ns ns ns ns 70 ns VC tsetup is the minimum time required for the correct logic level to be present at the D input prior to the rising edge of the clock in order to be recognized and transferred to the outputs. thold is the minimum time required for the logic level to be maintained at the D input after the rising edge of the ciock in order to insure recognition. This device requires no hold time. 2-28 t;YTHE03'l Dual D-Type Positive-Edge-Triggered Flip-Flop LS74 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted. Teet Conditione· Paramater Min 9LS/54LS Typ·· Max Min 2 VIH 2 VIL VI VOH VOL VCC=MIN, 11=-18mA Vcc-MIN, VIH=2V, VIL=VILmax IOW-400~A Vcc=MIN, VIH=2V, VIL =VILmax 2.5 Vcc=MAX, VI=5.5V Clear D input Clockor prese IIH VCC=MAX, VI-2.7V Clear D input Clockor prese IlL Vcc=MAX, VI=O.4V Clear -15 lost Vcc=MAX Icctt Vcc-MAX, V -1.5 -1.5 V 2.7 0.4 .. 3.4 V 0.25 0.4 0.35 0.50 0.1 0.1 0.2 0.2 0.3 0.3 20 20 40 40 60 60 -0.4 -0.4 -0.8 -0.8 -1.2 -1.2 -100 4 V 0.8 IIOL =8mA D input Clock or prese II Unit 0.7 3.4 0.25 IloL=4mA 9LS/74LS Typ·· Mex -15 4 8 V mA /lA mA -100 mA 8 rnA 'For condItions shown as MIN or MAX, use the approproate value spaclfled under recommended operatIng conditIons for the appiocable device type. "AII typical values at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. tt ICC is measured with outputs open with D, clock, and preset grounded; then with D, clock, and clear grounded. are Switching Characteristics, Vee Parameter From (Input) = 5V Over Recommended Free-Air Temperature Range _55°C To (Output) Min. Typ. +25°C Max. Min. Typ. 30 45 Units +125°C Max. Min. Typ. Max. Test Conditions: C L = 15pF, RL = 2kn (See Figure A. page 2-174) f max tpLH maximum clock frequency MHz set or clear QorO 12 18 10 15 16 23 I CK Low set or clear QorQ 22 29 18 24 21 28 tpHL I CKHigh set or clear QorQ 29 39 26 35 27 38 tpHL clock QorQ 13 20 12 18 13 20 ns tpHL clock QerO: 17 27 14 22 15 24 ns ns Test Conditions: CL = 50pF, RL ns ns =2kn (See Figure A, page 2-174) 16 22 13 19 I CK Low tpHL 19 26 set or clear QorQ 26 33 21 27 24 31 CK High set or clear QorQ 33 44 29 38 30 41 tpLH clock QorQ 17 24 15 22 16 25 ns tpHL clock QorQ 22 31 18 26 19 28 ns tpLH I ns Note: AC specification shown under -5SoC and +12SoC are for 9LS devices only_ All 50pF specifications are for 9LS only. ~YTHEo!) 2-29 4-Bit Bistable Latches LS75 LS77 DESCRIPTION These latches are ideally suited for use as temporary storage for binary information between processing units and' input/output or indicator units. Information present at a data (D) input is transferred to the Q output when the enable (G) is high and the Q output will follow the data input as long as the enable remains high. When the enable goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the enable is permitted to go high. These circuits are completely compatible with all popular TTL or DTL families. All inputs are diode-clamped to minimize transmission-line effects and simplify system design. FUNCTION TABLE (Each Latch) OUTPUTS INPUTS The LS75 feature complementary Q and Q outputs from a 4-bit latch, and is available in various 16-pin packages. For higher component density applications, the 'LS77 4-bit latcl'l is available in 14-flin flat packages. 0 G Q Q L H L H H H H L X L QO QO H = high level, L = low level, X = Irrelevent of Q before the high-to-Iow transition of G Co '= the level LS75 10 3 2 1161514 4 20 2(1 3(1 30 40 13 12 GND Vee 5 67891011 10 logic: see function table Die Size .065 x .059 LS77 2 1 10 20 1-2 30 40 1413 3 12 11 GND Vee 4 5 6 7 8 9 10 Ne 3D 10 Ne 40 logic: see function table Die Size .065 x .059 FUNCTIONAL BLOCK DIAGRAMS leach latch) 'LS75 DATA~ TO OTHER LATCH ENABLE 2-30 1 'LS77 iJ DATA~ (1 O ' O;~ER 0 LATCH ENABLE [[AYTHE@J 4-Bit Bistable Latches LS75 LS77 Recommended Operating Conditions 9LS/54LS MIN Supply voltage, Vee 4.5 NOM 5 High·level output current, IOH 9LS/74LS MAX MIN 5.5 4.75 NOM MAX 5 -400 Low-level output cu rrent, 10 L 4 Unit 5.25 V -400 I'A 8 mA Width of enabling pulse, tw 20 20 ns Setup time" tsu Hold time, th 20 20 ns 0 0 Operating free-air temperature, T A -55 125 ns 0 70 °e Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted) PARAMETER VIH High·level input voltage VIL Low-level input voltage VI" Input clamp voltage 1i0H High-level output'voltage VOL Low-level output voltage Input current at II maximum input voltage High-level input current IIH Low-level input current IlL Short-circuit lOS lee output currentp Suppl y cu rrent 9LS/54LS TEST eONDITIONSt MIN TYPt 9LS/74LS MAX 2 Vee-MIN, 11~-8mA Vee-MIN, VIH-2 V, VI L ~VI L max,IOH=-440 I'A Vee~MIN, VIL~VIL VIW 2V, Vee=MAX, VI=7 V Vee=MAX, VI~2.7 VI~O.4 V V See Note 1 V V -1.5 -1.5 V 3.5 2.7 0.4 3.5 V 0.25 0.4 0.35 0.5 D input 0.1 0.1 0.4 0.4 D input 20 20 G input 80 80 D input -0.4 -0.4 G input -1.6 -1.6 -100 -15 Unit 0.8 G input Vee~MAX Vee~MAX, MAX 2 0.25 10L=4 mA TYP:\: 0.7 10L ~8 mA max VecMAX, 2.5 MIN 'LS75 6.3 12 'LS77 6.9 13 -100 -15 6.3 12 t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. :\: All typical values are at Vee = 5 V, T A = 25°e. p Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. V mA I'A mA mA mA NOTE 1: lee is tested with all input grounded and all outputs open. ~YTHEO:El 2-31 4-Bit Bistable Latches LS75 LS77 SwItChing Characteristics Vee = 5.0V Over Recommended F......Alr Temperature RaQge. 91.8/541.875 Parameter TMt CondItIon: C L From To (Input) (Output) tPLH tPHL tPLH tpHL tpLH tpHL tPLH tPHL Min. Typ. +25°C Max. Min. Typ. D Q D Q G Q G Q - 18 12 15 10 18 17 19 10 31 16 19 14 22 21 23 14 15 9 12 7 i5 14 16 7 Unit +125°C Max. Min. Typ. Max. , = 15pF, R.. = 2.Ok (Sea fig. A, page 2-174 and fig. 1, page 2-32) tPLH tPLH tpHL tpHL tPLH tPHL tPLH tPHL T..t Condition: C L -55°C 27 17 20 15 27 25 30 15 18 12 15 10. 18 17 19 10 31 16 19 14 22 21 ?3 14 22 16 19 14 22 21 23 14 37 22 25 20 28 27 29 20 ns ns ns ns = 5OpF; RL = 2.Ok (Sea fig. A, page 2-174. and fig. 1, page 2-32) . D Q D Q G Q G Q 22 16 19 14 22 21 23 14 37 22 25 20 28 27 29 20 19 13 16 11 19 18 20 11 33 18 21 16 24, 23 25 16 ns ns ns ns Note: AC specification shown under _55°C and +125°C are for 9LS deOices only. All 50pF specifications are for 9LS devices only. ,SWitching Characteristics Vee = 5.0V Over Recommended Free-Air Temperature Range. 91-8/54L877 Parameter From . (Input) TMt CondltlCJtla: C L tpLH (Output) tpHL TMt ConcIItI_: C L tPLH D Q G Q tpHI- Typ. Max. Min. Typ. +125°C Max. Min. Typ. Unit Max. 15 12 13 13 24 20 21 21 11 9 10 10 19 17 18 18 14 12 13 13 23 20 21 21 18 17 18 18 28 26 27 27 ns ns = 5OpF, RL = 2.Ok (Sea fig. A, page 2-174 and fig. 1, page 2-32) D Q G Q 17 16 tpHItpLH Min. +25°C = 15pF, RL = 2.Ok (Sea Fig. A, page 2-174 and fig. 1 page 2-32) tpHL tpLH -55°C To 17 17 28 26 27 27 15 13 14 14 24 22 23 23 ns ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS devices only. 2·32 ~YTHEc31 4-Bit Bistable Latches LS75 Lsn PARAMETER MEASUREMENT INFORMATION --- --OUTPUTS INPUTS o G Q VCC a 1 PULSE GENERATOR A (See Note A) RL:> l~ ... a PULSE GENERATOR B (See Note A) ~ . .. ... RL (See Note C) 1; (See Note B) .-G ~ : ... ~ Q 0 ,.... ... .. ... I f---- -'- CL (See Note B) J. ..... TEST CIRCUIT 1 ~s ---j I ' 90% I I Vref o INPUT 10% I--I ---I , I ~< 10 ns k - - tsetup II I ~I-I--.~'!!l'!s____ 90% 90% I -------.I I ' - - 500 ns ~ 500 ns = . j ~tPLH I ':=:!tPHL : , Vref L : ~., I ~ ,.. I I :--!I I tP\H :I \l~ref , OV r___ - - -- - H VVOOI . '--_ _ _ _ _ _ _-J .... ~ '--_ _ _ J _ - ,.t-----.,• "HC I- .1 ____'r-_ _ _ 3V I I 10% +. :T ov I _~.!.h~d~ i I a I , I OUTPUT I 1 , . - - - - - - 3V I: I Vref I I I 10% tsetup --t.thold..,1 '--_ _ _ _ _ _ _ _ _ _J_I - - - - - - - - - : - - tPHIL OUTPUTQ --I I 1 ' - - < 10ns 90% ---+---,GINPUT (See Note 0) --1 11---< 10ns .-IIt--tPHL y v r r - e f - - - - - - - " ' " " " \ - - - VOH . ~~ tPLH VOLTAGE WAVEFORMS FIGURE 1. NOTES: A. The pulse generators have the following characteristics: Zout '" 50 SJ.; for pulse generator A, PRR<;500 kHz; for pulse generator B, PRR~1 MHz. Positions of D and G input pulses are varied with respect to each other to verify setup times. B. CL includes probe and jig capacitance. C. All diodes are 1 N3064. O. When measuring propagation delay times from the 0 input, the corresponding G input must be held high. E. Vref = 1.3 V. t Complementary Q outputs are on the 'LS75 only. t;YTHEO]J 2-33 Dual J-K Negative-Edge-Triggered Flip-Flops LS78 . DESCRIPTION· These monolithic dual J-K edge-triggered flip-flops feature individual J, K, and preset inputs plus common clock and common clear inputs. The preset or clear inputs, when low, set or reset the outputs regardless of the levels at the other inputs. When preset and clear inputs are inactive (high), a high level at the clock input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs . may be allowed to change when the clock pulse is high and the bistable will perform according to the function table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse. LOGIC DIAGRAM f'h). Q PR.S.T·_+-__..-_---' g FUNCTION TABLE (EACH FLIP-FLOP) INPU UTPUTS PRESET CLEAR CLOCK L H X X L. H X L. L. i H H H H H ••• H H H H H t H J K Q X X X X X X H L. L. W H H' L. L. L H H H H X X L. Q ao 50 H L. L H TOGGL.E ao 50 H = high level (steady state) L = low level (steady stete) X = don't care ~ = transition from high to low level O. = the level 01 0 before the indicated steady-state input conditions were established. TOGGLE: Each output changes to the complement 01 its previous level on aach ~ ctock transition. ·This configuration is nonstable; that Is. it will not persist when preset and clear Inputs retum to their Inactive (high) level. L---t---l1>--CLEAR TO OTHER FLlP·FLOP 12 11 10 LS114 PIN-OUT DIAGRAMS LS78 876 5 LS114 ·13 14 1 3 4 5. Die·Size .060 x .DEia! Recommended Operating Conditions Min 4.5 Supply voltage, Vee Normalized fan-out from each output, N Clock frequency, fclock Width of clock pulse, tw(clock) (High) Width of preset pulse, tw(presetl (Low) Width of clear pulse, tw(cisari (Low) Input setup time, tsetup Input hold time, thnlrl Operating free-air temperature, T A I High logic level I Low logic level 0 15 15 15 15 0 -55 9LS/54LS Nom Max 5 5.5 20 10 35 125 9LS174LS Min Nom Max 4.75 5 5.25 20 20 35 0 15 15 15 15 0 0 Unit V MHz ns ns ns ns ns 70 °c tsetup is the minimum time required for the correct logiC level to be present at the J or K input prior to the falling edge of the clock in order to be recognized and transferred to the outputs. thold is the minimum time required for the logic level to be maintained at the J or K input after the falling edge of the clock in order to insure recognition. These devices require no hold time. 2-34 ~YTHEO:3l Dual J-K Negative-Edge-Triggered Flip-Flops. LS78 LS114 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Val III 9LS/54LS Typ"" Max Min Jar K Preset Clear Clock Jar K Preset Clear Clock Jar K Preset Clear Clock lost Icc tt VCC=MAX, 9LS/74LS Typ"" Max 2 0.7 -1.5 11=-18rnA Vcc-MIN, Vcc-MIN, VIH-2V, Vcc=Vllrnax,loH=-400tlA VCc=MIN, VIH=2V, IIOL =4rnA Vll=Vllrnax Iiol =BrnA VOH IIH Min 2 VIH Vil VI II Test Conditions" 2.5 0.8 -1.5 3.4 2.7 0.25 3.4 0.4 0.25 0.35 0.1 0.3 0.6 0.8 VI=7V 20 VCC=MAX, VI=2.7V Vcc=MAX, VI=O.4V 60 120 160 -0.4 -0.8 -1.6 -1.6 -15 Vcc=MAX Vcc-MAX, -100 4 -15 B 4 Unit V V V V 0.4 0.5 0.1 0.3 0.6 0.8 20 60 120 160 -0.4 -O.B -1.6 -.1.6 -100 8 V rnA tlA rnA rnA rnA "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "'AII typical values are at Vee = 5V, T A = 25°C. tNot mar. than one output should be shorted at a time. tt ICC is measured with outputs open, with clock, J, K, and clear grounded and preset at 4.5V; then with clock, J, K, and· preset grounded and clear at 4.5V. Switching Characteristics, Vee Parameter From (Input) Test Conditions: C l = 15pF, Rl =2kf! maximum clock clear or tpHL preset +25°C Typ. Max. Min. +125°C Typ. Max. Min. Units Typ. Max. (See Figure A. page 2-174) 35 clock OorO OorO tpHl Test Conditions: C l = 50pF. RL = 2kf! tpLH clear or tpHl preset tpHI,. Min. MHz 50 frequency tplH tpLH _55°C To (Output) f max tplH = 5V Over Recommended Free-Air Temperature Range clock 8 12 8 12 11 15 ns 15 19 13 17 13 17 ns 8 12 8 12 11 15 ns 14 19 13 18 13 18 ns 10 14 13 17 ns (See Figure A. page 2-174) oora OorO 10 14 19 24 16 21 16 21 ns 9 14 10 14 13 18 ns 19 24 17 21 17 22 ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHEO]J 2-35 4-Bit Binary Full Adders With Fast Carry LS83A LS283 PIN-OUT DIAGRAMS DESCRIPTION These improved full adders perform the addition of two 4-bit binary numbers. The sum (k) outputs are provided for each bit,.and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits generating the carry term in ten nanoseconds typically. This provides the system designer with partial look-ahead performance at the economy and reduced package count of a ripple-carry implementation. The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion. The LS83A and the LS283 are identical in performance; only the pin out is different. They are designed to replace the 5483A and the 54283 respectively. The LS283 is recommended for new designs, Vee and ground on corner pins simplify board layout. 12111098 LS83A 13 14 Ole Size .Ull"2")(l)68 15 16 1 2 Die Size .062 x .068 FUNCTION TABLE LOGIC DIAGRAM OUTPUT % % 1%i% %%%% % CO = L )-----C4 A 4 - -........, :£4 %~ A3 :£3 83 L A4 WHEN C2= L 84 L L WHEN C2=H ~ C4 H L L L L H L H L L H H H L L L L A3---<-r CO= H INPUT L L H C4 L H L H L. L L L L L H L L L H H L L L H L L H L H H L H L H L H H L L L H H L H H L H H L L L H H H L L H H L H L L L H L L H L H H L H L L H H H L L L H B1-fr{r-t==!::::;Ck_ _, L H L H H H L L L H H H L H L L H H L H A 1 - -........r L L H H L L H H L H CO---D----' H H H H L H L H H L L H H H H H H H H H L L H H H L H . - H H H H = high level. L = low level NOTE: Input conditons at Al, B1, A2, 82, and CO are used to determine outputs :El and I:2 and the value of the internal carry C2. The values at C2, A2, 83, A4, and 84 are then used to determine outputs :E3, I:4, and C4. 2-36 ~YTHE?EJ LS83A 4-Bit Binary Full Adders With Fast Carry LS283 Recommended Operating Conditions Min 4.5 Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Operating free-air temperature, T A 9LS/S4LS Nom Max 5 -55 5.5 . 400 4 125 Min 9LS/74LS Nom Max 4.75 5 0 5.25 400 8 70 Unit V /lA mA °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Test Conditions· Min V IH V IL 2 VO H VOL IIH IlL VIL=VILmax Any A or B co Any A or B co Any A or B co Min 2 2.5 3.4 0.8 -1.5 2.7 0.25 0.4 VI=7V Vee=MAX, VI=2.7V Vee=MAX, V I =O.4V 3.4 0.25 0.35 Ilo L -8mA Vee=MAX, 9LS/74LS Typ·· Max 0.7 -1.5 II --18mA Vee-MIN, Vee MIN, V IH -2V V IL ~VILmax, IOH=-400/lA V IH -2V, Vee-MIN, IIOL =4mA VI II 9LS/S4LS Typ·· Max 0.2 0.1 40 20 -0.8 -0.4 Unit V V V V 0.4 0.5 0.2 0.1 40 20 -0.8 -0.4 V mA /lA mA -100 -15 -100 mA -15 All inputs grounded 22 39 22 39 Vee=MAX, All 8 low, other inputs at 4.5V 34 19 19 34 mA Icc Outputs open 19 34 19 34 All inputs at 4.5V . .. .. for the applicable 'For cond,tions shown as MIN or MAX, use the appropriate value specIfIed under recommendea operatong condItIons device type . • 'All typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. Vee=MAX lost . - Switching Characteristics , V'cc- 5V Over Recommended Free Air Temperature Range Parameter Test Conditions: CL tpLH tpHL tpLH tpHL tPLH tpHL tpLH tpHL ,est Conditions: CL From (input) To (output) = 15pF, RL = 2k!l (See Fig. CO Ai or 8i CO Ai or Bi -SsoC Min Typ ~ Min +2SoC Typ A, page 2-174) 15 15 20 ~i 19 9 C4 9 9 C4 10 = 2kO (See Fig. A, page 2-174) 16 Any ~ 19 25 ~i 24 11 C4 12 11 C4 13 Any Max Miix Min +12SoC Typ Max .. 20 21 30 29 14 14 15 14 14 16 18 15 7 9 8 9 -. 19 22 24 24 12 13 13 14 15 20 21 17 11 11 11 11 21 27 27 25 18 16 17 16 = SOpF, RL ;w 15 21 11 :.l:.l tpLH CO 19 25 25 25 30 tpHL 26 25 32 18 32 tpLH Ai or Bi 18 26 25 31 30 tpHL 10 15 12 19 16 tpLH CO 18 10 16 13 17 tpHL 10 15 13 19 17 tpLH Ai or Bi 14 20 18 12 16 tpHL 0 0 NOTE: Ae specification shown under -55 e and +125 e are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHE~ Unit ns ns ns ns ns ns ns ns 2-37 4-Bit Magnitude Comparators LS85 PIN-OUT AND LOGIC DIAGRAM DESCRIPTION These four-bit magnitude. comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (A,B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade_ The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding A > B, A < B, and A =B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a highlevel voltage applied to the A = B input. The cascading paths of the '85, and 'LS85 are implemented with only a two-gatelevel delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data. LS85 DATA INPUTS r -_ _ ~A'- __ ~ 2 1 16 15 14 7m DATA 'ABA>BA=BA B .AB AB3 X X X X X X H L L A3 B2 X X X X X H L L A3=B3 A2 Bl X X X X H L L A3=B3 A2=B2 A1 BO X X X H L L A3=B3 A2= B2 A1 =Bl AO 8 Al 1131 1141 121 131 141 (12) (11) 81 n~ I 1 ..... t-< p-- :gp--- J ~--(6)A_8 I 1 - AD (10) BO 19) D- ~YTHEO~ 2-39 4-Bit Magnitude Comparators LS85 Recommended Operating Conditions 9LS/54LS Supply voltage, Vee High-level output current, IOH Low-level output current, 1m Operating free-air temperature, T A 9LS/74LS Min Nom Max Min Nom Max 4.5 5 5.5 -400 4 125 4.75 5 5.25 -400 8 70 -55 0 Unit V IlA mA °C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) . Paramlttsr VIH VIL VI VOH VOL Test Conditions· 9LS/54LS Typ·· Max Vee=MIN, Vee-MIN, V,L =V,Lmax, Vee-MIN, V,L =V,Lmax Vee=MAX Vec=MAX, 11--18mA VIH=2V, IOH=-4OOIlA [IOL =4mA V'H=2V, IloL=8mA Min 2 2 I, AB inputs Vee=MAX, all other inputs AB inputs I'H all other inputs Vee=MAX, AB inputs I,L Vee=MAX, all other inputs lost Min 9LS/74LS Typ·· Max '. 0.7 -1.5 2.5 3.4 0.25 V,=7V V,=2.7V V,=O.4V -15 0,8 -1.5 2.7 0.4 0.1 0.3 20 60 -0.4 -1.2 -100 20 -15 V V V V 3.4 0.25 0.35 Unit 0.4 0.5 0.1 0.3 20 60 -0.4 -1.2 -100 V mA IlA mA mA 10.4 20 mA 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device tYpe. "AII typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a til"(le. ttlee is measured with outputs open, A = B grounded, and all other inputs at 4.5V. I ectt 2-40 10.4 ~YTHEO]] 4-Bit Magnitude Comparators Switching Characteristics, Vee Parameter From (Input) Test Conditions: CL tPLH = 5V Over Recommended Free-Air Temperature Range No. of -55°C Gate Typ Levels Min ~ 2kO (See Fig. A, page 2-174) To (output) = 15pF, RL Any A or B data input AB A=B tpHl tpLH tpHL tpLH tpHL tpLH tpHL Any A or B data input AB or AA>B or A = Test Conditions: CL tpLH AB A=B A>B A>B A-B A-B AB or A A>B or A - B B B B 1 2 3 4 1 2 3 4 1 1 2 2 1 1 Max 14 20 25 42 28 11 15 21 22 14 12 13 14 16 12 50 34 48 27 23 23 30 26 21 Min +25°C Typ 14 19 24 27 11 15 20 23 14 11 13 13 14 11 Max 36 45 30 45 22 17 20 26 22 17 Min +125°C Typ 14 19 24 26 12 16 20 22 14 11 12 14 15 11 Max 41 48 33 48 27 22 22 30 25 20 I Unit ns ns ns ns ns ns ns ns = 2kO (See Fig. A, page 2-174) AB 1 2 3 A=B ~ LS85 AB 4 1 2 3 A=B A>B A>B A-B A-B A INPUT A .:..(1;.:.4:..;",,-14,;.:.1_ _-01> INPUT B ~(1.:..1_ _t.11ct> INPUT B .;.(1_1.;.(8_1_ _+.q:. (81 0C (91 0C 81 (101 (81 0D (111(121 °c °D LOGIC DIAGRAMS ~YTHEO~ 2-45 LS90 Decade, Divide-by-Twelve, and Binary Counters LS92 LS93 Recommended Operating Conditions . Min Supply voltage, Vee High-level output current, IOH Low-level output current, IOL 4.5 -",_Input B input A input B input Reset inputs Count frequency, count (see Figure 1 on 2-46) Pulse width, tw Reset inactive-state setup time, t setup Qperating free-air temperature, T A 9.LS/54LS Nom Max 5 Min 9LS/74LS Nom Max 5.5 -400 4 4.75 u ~;! u ;S;! 0 15 30 15 25 -55 16 0 15 30 15 25 0 16 125 ;;5 5.25 -400 8 Unit V /.J. A rnA MHz ns 70 ns C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Teat Con"ltIons· 9 LS/54 LS90/92 Typ·· Max Min 2 2 VIH VIL VI VOH VOL Any reset A input B input Any reset A input Binput Any reset A input B input Vee~MIN, 11~-18mA Vee-MIN, V IL ~VILmax, Vee-MIN, VIL ~VILrnax, Vee-MAX, VIH~2V, 0.7 -1.5 2.5 IOH~-400/.J.A VIH-2V, VI-7V 9LS/74LS90/92 Max Min Typ" IloL -4mA~ IloL-8mA~ 2.7 3.4 0.25 0.8 -1.5 0.4 0.1 3.4 0.25 0.35 Unit V V V V 0.4 0.5 0.1 V rnA 0.2 0.2 0.4 0.4 20 20 40 VI~2.7V 40 /.J.A Vee~MAX, IIH 80 -0.4 -0.4 -2.4 -2.4 rnA VI~O.4V Vee~MAX, IlL -3.2 -3.2 rnA -100 -15 -15 -100 Vee~MAX lost 15 15 9 9 I LS90 rnA Vee~MAX, lee tt 15 15 9 I LS92 9 "For conditions shown as MIN or MAX, use the appropriate value specified under recommendea operating conditions for the applicable device wpe . . ,"AII !ypical velues are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. tt lee is measured with all outputs opel\ both RO inputs grounded following momentary connection to 4.5V, and all other inputs grounded. ~ Outputs are tested at specified IOL plus the limit value of II L for the B input. This permits driving the B input while maintaining full fan-out capability. II 2-46 Vcc~MAX, VI~5.5V aD ~YTHEO!1 Decade, Divide-by-Twelve, and Binary Counters LS90 LS92 LS93 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) . Parameter Test Conditions· 9 LS/54 LS93 Min Typ·· 2 V,H V, VOH Vee-MIN, 11;-18rnA Vee;MIN, VIW2V , Vee-MIN, VOL VIH-2V, Ii0L -4rnA~1 Typ·· Max V 0.8 V -1.5 -1.5 V 3.4 0.25 2.7 0.4 3.4 V 0.25 0.4 0.35 0.5 Any reset Vee-MAX, VI=7V 0.1 0.1 A or B input Vee-MAX, VI;5.5V 0.2 0.2 Vee;MAX, VI;2.7V Vee;MAX, VI;O.4V Any reset A or B input Any reset IlL A input B input lost Vee;MAX -15 Unit 0.7 110L, -8rnA~ VIL ;VILrnax IIH 2.5 VIL ;VILrnax, loW-400J.lA Min 2 V,L 'I 9 LSI14 LS93 Max 20 20 40 -0.4 40 V rnA J.lA -0.4 -2.4 -2.4 rnA -1.6 -1.6 -100 rnA -100 -15 Vee-MAX, 9 15 9 15 rnA 'ed t 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "All typical values are at Vee = 5 V, T A = 25° e. tNot more than one output should be shorted at a time. tt lec is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V, and all other inputs grounded. ~Outputs are tested at specified 10L plus the limit value of IlL for the B input. This permits driving the B input while maintai.ning full fan-out capability. ~YTHEO}J 2-47 LS90 LS92 Decade, Divide-by-Twelve, and Binary Counters LS93 . Switching Characteristics, V'cc.- 5V Over Recommended Free Air Temperature Range Par.meter Teat Condition.: CL From (input) = 15pF, RL = To (output) A B LS90 A OA LS92 A OA LS93 A OA LS90 A OD LS92 A OD LS93 A OD LS90 B 08 LS92 B 08 LS93 B 08 LS90 B Oc ~ tpHL LS92 B Oc I tPLH LS93 B Oc LS90 B OD LS92 B OD "tPHL LS93 B OD tpHL tpHL tpHL tpLH LS90 LS92 LS93 Set·to-O Set-to-O Set-to-O Set-.to-9 Any Any Any OA,OD 08,OC LS90 f max LS92 f max LS93 ..!e1tL tpHL I tPLH tpHL tpLH I tpHL tPLH I tpHL I tpLH tpHL I tpLH tpHL tPLH I tpHL tpLH I tpHL I tplH tpHL tpLH I tpHL tpHL tPLH ~ tpLH ~ tpLH ~ Note: 2-48 LS90 Min Typ +2SDC I Max Min Typ ';' +12SDC I Max Min Typ Max Unit 2kO (See Fig. A, P!1118 2·174 and Fig. 1, page 2-49) OA 08 OA OR OA 08 f max -SSDC B A B A AC specification shown under -55 are for 9LS only. o 32 16 32 16 32 16 13 15 13 15 13 15 35 37 35 37 49 49 13 17 13 17 13 17 24 27 13 17 24 27 24 27 24 27 38 38 30 30 30 ;14 24 0 C and +125 C are for 9LS 20 22 20 22 20 22 51 56 54 56 76 76 20 27 20 27 20 27 39 42 20 27 39 41 39 41 39 41 57 57 47 47 47 35 47 devices only. MHz 42 MHz 42 10 12 10 12 10 12 32 34 32 34 46 46 10 14 10 14 10 14 21 23 10 14 21 23 21 23 21 23 34 34 26 26 26 20 26 All '" 42 MHz 16 18 16 18 16 18 48 50 48 50 70 70 16 21 16 21 16 21 32 35 16 21 32 35 32 35 32 35 51 51 40· 40 40 30 24 13 15 13 15 13 15 35 37 35 37 49 49 13 17 13 17 13 17 24 27 13 17 24 27 24 27 24 27 38 38 30 30 30 24 24 20 22 20 22 20 22 51 56 54 56 76 76 20 27 20 27 20 27 39 42 20 27 39 41 39 41 39 41 57 57 47 47 47 35 47 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 50pF specifications ~YTHE03l J~~ecade, Divide-by-Twelve, _~i"-ary Coul1t~rs and LS90 , LS92 LS93 Switching Characteristics , V'cc- 5V Over Recommended Free-Air Temperature Range Parameter ,T..t Condition.: C, ...!fbtL tPHL ~ tpHL tpLH tP"HL I tpLH tpHL I tpLH tpHL I tPLH tpHL I tPLH tpHL 'tPLH I tpHL tpLH I tPHL From (Input) To (output) A OA LS92 A OA LS93 A OA LS90 A OD LS92 A OD LS93 A OD LS92 B B Os Os LS93 B Os LS90 B Oc LS92 B Oc ~ LS93 B Oc ~ tpHL LS90 B OD I tpLH tPHL LS92 B OD ~ tPHL tpLH t;;HL tpLH ~ tpHL LS93 B OD tpHL tpHL tpHL tpLH LS90 LS92 LS93 Set-to-O Set-to-O Set-to-O Set-to-9 Any Any Any tPHL LS90 Min OA,OD Os,Oc Note: AC specification shown under _55°C and +125°C are for are for 9LS only. ~YTHE~ Typ Max Min +2SDC Typ Max I Min +12SDC Typ Max Unit = SOpF. R, = 2kO (See fig. A, page 2-174 and fig. 1, page 2-49) LS90 LS90 -SSDC 17 19 17 19 17 19 39 41 39 41 53 53 17 19 17 19 17 41 29 30 17 19 29 30 29 30 29 30 43 43 33 33 33 28 33 9LS 25 27 25 27 25 27 56 58 56 58 82 82 25 27 25 27 25 27 41 42 25 27 41 42 41 42 41 42 63 62 50 50 50 40 49 14 16 14 16 14 16 36 38 36 38 50 50 14 16 14 16 14 16 26 27 14 16 26 27 26 27 26 27 40 40 30 30 30 25 30 21 23 21 23 21 23 52 54 52 54 78 78 21 23 21 23 21 23 37 38 21 23 37 38 37 38 37 38 58 58 46 46 46 36 45 17 19 17 19 17 19 39 41 39 41 53 53 17 19 17 19 17 19 29 30 17 19 29 30 29 30 29 30 43 43 33 33 33 28 33 25 27 25 27 25 27 56 58 56 58 82 82 25 27 25 27 25 27 41 42 25 27 41 42 41 42 41 42 62 62 50 50 50 40 49 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns devices only. All 50pF specifications 2-49 LS90 LS92 LS93 ---------------------------------w V r., RESET TO 9 INPUTS (SEE NorE 8) CLOCK & Decade, Divide-by-Twelve, and Binary Counters '-----------------~~------------------~>,~-----------------OV 1 i-----".tup ---.L...------..J0~r.~ (SE~'::~;E B) • - 1 : 1 1--",luP..:..l 1 . ~- - >j I- - - - •1 - - - - - -,; - Iw(clock) -- - - - - - :: I r--"l.v ~V'.f I \ . r-\.;.----3V : / r:.:;~ ~;~~ ~ ~ R~~;~i~ ----I:-I.---.I--IP-l-H~:----.-I-I-PHl ~ ME~~~RE ~ ME~i~RE yr! IplH U ~ I OUTPUT DA I !.r.~T I\., TVre, I,Vrel I I OUTPUT DB ____~I--"'\ PHl !+--+j-lpHl II -!...",,\I ClOC;~~NPUT---i,--..J I r---+- \,V rel I r--+t-lpHl IPHl --~!-"'\X, ",,\1 : ,Vrel : ~Vrel I I IPlHi-----I IpHl i+-+i I 1 - .. I' OUTPUT 0 0 ---..1fv ,-Vrel . i \:rel I OUTPUT DC ref rei \v rei 11 In+l I : .: I I I : I II ' : r'> ~I _ _ _ VUH AT In+2 \ . Vrel I . 1-. ~ I, : / IpHl . MEASURE AT In+2 Iv ) (I re' IplH ~ ~~A~URE I I I Iv I n-4 re, {f ~ IplH MEASURE ATln+8 \I~ lS90 & lS93 oral In+6lS92A /1 V { J ' rei ,'.,' {j : I I Vrel I V Ol I IpHl . MEASURE AT In+4 "I--VO H :: I I \ . : VOL IpHl MEASURE AT In+8 ,~ __ V lS92 oral : 'iVref OH In_S lS92 I '\:.:.: VOL ~)-IPHl MEASURE ATl n+10 I• I lS9U I ~V VOH In+12alS92 or al re~Ol In+16lS93 r--.t ~Vrel I. 1--:1)- NOTES: A. Input pulses are supplied by a generator having the following characteristics: t r ... 15ns, tf ... 5ns, PRR = 1 MHz, duty cycle = 50%, Zout = 50 ohms B. Each reset input is tested separately with the other reset at 4.5V. C. Reference waveforms are shown with dashed lines. FIGURE 1. VOLTAGE WAVEFORMS 2·50 ~YTHE~ 8-Bit Shift Registers LS91 FEATURES PIN-OUT DIAGRAM • For Use In Digital Computer Systems DUAL·IN-LiNE PACKAGE • For Use In Data-Handling Systems • For Use In Control Systems CK NC IT] CLOCK DESCRIPTION These monolithic serial-in, serial-out, 8-bit shift registers utilize transistor-transistor logic (TTL) circuits and are composed of eight R-S master-slave flip-flops, input gating, and a clock driver_ Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. This clock pulse inverter/driver causes these circuits to shift information one bit on the positive edge of an input clock pulse. ~000000 NC NC NC NC VCC NC FLAT PACKAGE CK FUNCTION TABLE Inputs ATtn A B H L H X X L NC IT] Outputs ATt n+8 QH H L L NC positive logic: see function table QH H H H H = high, L = low, x = irrelevant tn = Reference bit time, clock low tn+8 = Bit time after 8 low-to-high clock transitions. CLOCK [2]000000 NC NC NC Vcc NC NC NC positive logic: see function table NC-No Internal Connection SCHEMATICS OF INPUTS AND OUTPUTS LS91 EQUIVALENT OF EACH INPUT LS91 TYPICAL OF BOTH OUTPUTS · _ - -.....-VCC VCC - - - - . - - - 120H NOM 17 kH NOM INPUT --1H......- ......- " - - - t - - OUTPUT ~YTHEO~ 2-51 a-Bit Shift Registers LS91 FUNCTIONAL BLOCK DIAGRAM (DUAL·IN·LlNE) (FLAT PACKAGE) s a s a s a s a s a s a s a (13) (13) CK R Q (14) (14) Recommended Operating Conditions 9LS/54LS Min. 4.5 Supply voltage, Vee 9LS174LS Nom. Max. High-level output current, 10H 5 Min. 5.5 Nom. Max. 5 4.75 ;400 Low-level output c~rrent, 'OL Unit 5.25 V f-400 IlA 4 8 mA Width of clock input pu Ise, tw 25 25 ns Setup time, tsu (See Figure 1) 25 25 ns 0 0 Hold time, tn (See Figure 1) Operating free-air temperature, T A -55 ns 0 125 70 °e Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (UnlesS Otherwise Noted) 9LS/54LS Test eonditionst Parameter V IH High-level input voltage Typ.:j: VO H High-Ievel"output voltage Max. 2 Vee = Min, II = -18 mA Vee = Min, V IH = 2V 2.5 Min. Typ.:j: Max. V 2 VI L Low-level input voltage V I K I nput clamp voltage 9 LS/74LS Unit Min. 0.7 0.8 V -1.5 -1.5 V 3.5 2.7 3.5 V VI L = VI L max, 10H = -4001lA VOL Low-level output voltage Vee = Min, V IH = 2V IIOL =4mA VIL=VILmax Ii0L =8mA 0.25 004 0.25 004 0.35 0.5 V Input cu rrent at II maximum input voltage 0.1 Vee = Max, VI = 7V 0.1 mA IIH High-level input current Vee = Max, VI = 2.7V 20 20 p.A II L Low-level input current Vee = Max, VI = OAV -004 -004 mA lOS Short-circuit currentt Vee = Max -100 mA ICC Supply current Vee = Max, See Note 1 20 mA 15 -100 12 15 20 12 tFor conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions. :j:AII typical values are at Vec = 5 V, TA = 25'C. f Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 1. ICC is measured after the eighth clock pulse with the output open and A and B inputs grounded. 2-52 ~YTHEO]J 8-Bit Shift Registers Switching Characteristics Vee = Parameter From (Input) LS91 s.ov Over Recommended Free-Air Temperature Range. To 9LS/54LS _55°C (Output) Min. Teat COnditions: CL Typ. Unit +25°C Max. Min. = 15pF, RL = 2.0kO (See Fig. A, page 2·174 and f(max) Typ. +125'C Min. Max. Typ. Max. Fig. 1, page 2-55) 10 MHz 18 TpLH clock QH 26 42 24 40 26 42 ns TpHL clock QH 28 45 27 40 28 45 ns Teat COnditions: CL = 5OpF, RL = 2.OkO (See Fig. A, page 2·174 and Fig. 1, page 2-55) TpLH clock QH 30 47 27 45 30 47 ns TpHL clock QH 33 52 30 48 33 52 ns PARAMETER MEASUREMENT INFORMATION OUTPUT Vcc=5V r-- - - I I I I I I I See Note C I I Cl : - LOA DCIRCUlT 1l VCc=5V I See L~t~ I I I I ..:. _ _ _ _ _ _ _ _":"~ TEST CIRCUIT 1 ClOCK·PUlSE INPUT INPUT A OUTPUTQH 2 thru 7 8 9 thru 15 16 17 18 19 thru 23 24 25 26 27 flJ1_-.-J1J11T~~nrumrr~~JlflJUlJ1 JL _________ ~ ______ _____ -.lL____ ____s - L TYPICAL INPUT/OUTPUT WAVEFORMS r§VTHEO]J 2-53 8-Bit Shift Registers LS91 PARAMETER MEASUREMENT INFORMATION CLOCK INPUT -trt-: 90% : 10% I"'- tw(clock)--j+- tw(clock)--t 3V CLOCK INPUT Vref : Vref I -:----OV ,,-_ _I..;.O-"%J:, : I t, --..; I i-tSU--i I INPUT V rei I AORB : I tPHL -j+-! tPHL-+OUTPUT QH OR QH Vrel :---3V 10% OV -..I tl I-- ~ _:~r~ ______ - - - : - :,----VOH OUTPUT QH OR QH 90% 90% : V,el fre, INPUT -----'·----VOL A OR B 3V I :..- tsu OV -t--th ~V:I - - - - - -3V -l OV --t--thold PROPAGATION DELAY TIMES VOLTAGE WAVEFORMS SWITCHING TIMES VOLTAGE WAVEFORMS FIGURE 1. SWITCHING TIMES NOTES: A. The generator has the following characteristics: tw(clock) = 500 ns; PRR .. 1 MHz; Zout '" 50 r!; t, = 15 ns, and t f =6ns. B. C L includes probe and j:s capacitance C. All diodes are 1 N3064 or 1 N916 D. Vref =I.3V 2-54 t;YTHE~ 4-Bit Bi-Directional Parallel-Access Shift Register LS95B PIN-OUT DIAGRAM DESCRIPTION This 4-bit register features parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The register has three modes of operation: Parallel (broadside) load Shift right (the direction aAtoward aD) Shift left (the direction aD toward aA) Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high~to-Iow transition of the clock-2 input. During loading, the entry of s,erial data is inhibited. Shift right is accomplished on the high-to-Iow transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-Iow transition of clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (aD to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected. 1234560 SERIAL ~MODEGNO INPUT INPUTS CONTROL 13 12. 1110 9 14 8 7 2 .3 4 5 6 Die Size .067 x .082 LOGIC DIAGRAM DATA INPUTS A MODECONTROL~l6t)~~~~~r=Ef==~~~±====;~1t~==~~ SERIAL!.!) INPUT ~~----~~~v~----~----~ OUTPUTS FUNciioN TABLE INPUTS MODE CLOCKS CONTROL 2 (L) 1 (R) H H H H SERIAL OUTPUTS PARALLEL A B C D X X X X b c X X I X X a I X X L L H X °Bt X L X I H L X I L Oct DOt d d X X X X X X X X X X X CA CB CAO CBO DCO 000 b c d a °Bn DCn OAO °BO H DAn L DAn Cc DOn CD d DCO DOO t L L X X X X X CBn Cen °Bn OCn OAO DBO Deo DOO I L L X X' X X X OAO DBa Dca 000 I L H X X X X X OAO DBa DCO 000 t t H L X X X X X H H X X X X X °AO °BO OCO °DO DAO DBa OCO 000 31 [[AYTH E0 tShifting left requires external connection of a'S to A, QC to B, and aD to C. Serial data is entered at input D. H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions) ..J, = transition from high to low level, t = transition from low to high level a, b, c, d == the level of steady-state input at input, A, B, C, or D, respectively. 0AO. 0BO. 0CO. 0DO = the level of 0A. OS. 0C. or 0D. respec· tively, before the indicated steady-state input conditions were established. QAn. 0Sn. 0Cn. QDn = the level of QA. 0B. QC. or 00. respec- tively, before the most-recent .J.. transition of the clock. 2·55 4-Bit Bi-Directional, Parallel-Access Shift Register LS958 Recommended Operating Conditions Min Supply voltage, Vee 4.5 High·level output current, 101'1 Low·level output 6urrent, . IOL Clock frequency, fclock 0 Width of clock pulse, tw(clock)(see Figure 2 page 2-57) 25 Setup time, high-level or low-level data, t setup (see Figure 1 page 2-57) 0 Hold time, high-!evel or low-level data, thold (see Figure 1 page 2-57) 20 Time to enable clock 1, tenable 1 (see Figure 2 page 2-57) 20 20 Time to enable clock 2, tenable 2 (see Figure 2 page 2-57) Time to inhibit clock 1, tinhibit 1 (see Figure 2 page 2-57) 10 Time to inhibit clock 2, tinhibit 2 (see Figure i page 2-57) 10 Operating free-air temperature TA -55 9LS/S4LS Nom Max 5 5.5 -400 4 20 125 Min 9LS/74LS Max Nom 4.75 5 0 25 0 20 20 20 10 10 0 5.25 -400 8 20 70 Unit V JlA rnA MHz ns ns ns ns ns ns ns °C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Test Conditions' Min VIH 2 VIL VI VOH VOL Mode inputs Other inputs Mode inputs II IIH Other inputs Mode inputs Other inputs IlL 9LS/S4LS Typ" Max lost I eett Min 9LS/74LS Typ" Max 2 0.7 -1.5 11=-18mA Vee=MIN, Vee-MIN, VIL =VILmax, Vee=MIN, VIL =VILmax VIH-2V, IOH=-400JlA IIOL =4mA VIW2V, II0l =8mA Vee=MAX, VI=7V Vee=MAX, VI=2.7V Vee=MAX, VI=O.4V Vee=MAX, Vee-MAX, See Note 1 2.5 3.4 2.7 0.25 0.4 13 0.2 0.1 40 20 -0.8 -0.4 -100 21 -15 0.8 -1.5 3.4 0.25 0.35 -15 13 Unit V V V V 0.4 0.5 0.2 0.1 40 20 -0.8 -0.4 -100 21 V rnA JlA mA mA rnA 'For conditions shown as MIN or MAX, use the appropriate value specified under recommendea operating conditions for the applicable device type. -'All typical values are at Vee = 5V, TA = 2Soe. tNot more than one output should be shorted at a time. tt ICC is measured with all outputs and ,erial inputs open; A B, e, and D inputs grounded; mode control at 4.5V; and a momentar.y 3V then ground, ~pplied to both clock inputs. Switching Characteristics, Vee Parameter = 5V Over Recommended Free-Air Temperature Range -SSDC Min Typ Max Min +2SDC Typ Max I Min +t2SDC Max Typ I Unit Test Conditions: C, = 15pF. R, = 2kO (See Fig.A. page 2-174 and Fig. 1 and 2. page 2-57) f max 30 20 35 27 37 tpLH 28 40 30 tpHL 32 45 Test Conditions: C, = 15pF. R, = 2kO (See Fig. A. page 2-174 and Fig. 1 and 40 42 31 tplH 32 I 45 50 34 36 tpHL 28 32 2. page 32 36 37 45 2-57) 42 50 MHz ns ns ns ns Note: Ae specification shown under _55°C and +125°e are for 9lS devices only. All 50pF specifications are for 9LS devices only. 2-56 r§VTHEO"EJ 4-Bit Bi·Directional Parallel·Access Shift Register LS958 PARAMETER MEASUREMENT INFORMATION LOAO CIRCUIT DATA INPUT CLOCK 1 OR 2 INPUT g~T~~~~C. I I OV r---.... I -.. OR 00 __________J iI \ / t V,~ V,e' I~--~I~~I tPHL~ VOH _ _ _ VOL ~tPLH VOLTAGE WAVEFORMS FIGURE 1 - SWITCHING TIMES NOTES: A. Input pulses are supplied by a generator having the following characteristics: tr .;; 10 ns, tf .;; 10 ns, and Zout '" 50n. For the data pulse generator, PRR = 500kHz; for the clock pulse generator, PRR = 1MHz. When testing f max , vary PRR. tw(data) ;;;. 20 ns, tw(clock) ;;;. 15 ns. B. Vref = 1.3V. J---..,..------- - - -- VIH SERIAL INPUT ' -_ _ _ _ _ _ _ VIL ,..---" MODE ,._ _ _ _ _ VIH 1 -______ \\,,_ _..1 CONTROL INPUT CLOCK 1 INPUT I I . CLOCK 2 INPUT _ _ _ _ _ _.V.'e..lf °AOUTPUT T I -----' '---------VIL ~tenable2 tinhibit 2-4"'---I.~~ VIL r-\.- --- - - ""',.v.'e.' ____-.J!' '___I VIH Vil C::: VOLTAGE WAVEFORMS NOTES: A. Input A is at a low level. B. Vref = 1.3V. C§YTHEO:?J FIGURE 2 - CLOCK ENABLE/INHIBIT TIMES 2-57 Dual J-K Positive-Edge-Triggered Flip-Flop LS109 DESCRIPTION LOGIC DIAGRAM (Yo) This mono.!ithic dual J-K edge-triggered flip-flop features individual J, K, clock, preset, and clear inputs. A low level at preset or clear sets or resets the outputs regardless of the levels of the other inputs. VlLhen preset and clear are inactive (high), data at the J and K inputs meeting the setup time requirements are transferred to the outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-gQjng pulse. Following the hold time interval, data at the J and K inputs may be changed without affecting the levels at the outputs. PRESET +--_+---l CLOCK +----+-----. CLEAR The J and K· data inputs simplify hardware design as a Q-type flip-flop can be implemented by simply tying the J and K inputs together. --If:=========~ FUNCTION TABLE (EACH FLIP-FLOP) PIN-OUT DIAGRAM 6 5 4 I ITIl PRESET CLEAR CLOCK L H X H L X L L X H H t H H t H H t H H t H H L 2K 2CK 2PR 20 20 3 7 8 1 lJ lK lCK lPR 10 ClR Die Size .O~~x .056 ___J positive logic: see function table J "R X X X X X X L H L H L L H H X X Q ii H L H L H' H* L H TOGGLE 00 H Qo iio L iio H = high level (steady state) L = low level (steady state) X = irrelevant t = transition from low to high level O. = the level of 0 before the indicated steady-state input conditions were established TOGGLE: each output changes to the complement of Hi; previous level on each t clock transition. "This configuration is nonstable; that is, it will not persist when preset and clear inputs retum to their inactive (high) level. Recommended Operating Conditions Min 4.5 Supply voltage, Vee Normalized fan-out from each output, N Clock frequency, fclock Width of clock pulse, twlclock) (High) Width of preset pulse, tw(preset) (Low) Width of clear pulse, !wlelear) (Low) I nput setup time !setuP Input hold time, thold Operating free·air temperature, .. . . TA l High logic level j Low 101lie level 0 17 15 15 15 0 -55 9LS/54LS Max Nom 5 5.5 20 10 30 125 9LS/74LS Min Nom Max 4.75 5 5.25 20 20 30 0 17 15 15 15 0 0 .. Unit V MHz ns ns ns 70 ns ns °C tsetup IS the mll'~lmum time required for the correct logiC level to be present at the J or K Input prior to the rising edge of the clock In order to be recognized and transferred to the outputs. thold is the miflimum time required for the logic level to be maintained at the J or K input after the clock transition in order to insure recognition. This device requires no hold time. 2-58 ~YTHE~ Dual J-K Positive~Edge-Triggered Flip-Flop LS109 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted.) Teat Condition.· Parameter Min 9LS/54LS Typ·· Max 2 VIH VIL VI VOH Vee=MIN, 11=-lSrnA Vee-MIN, VIH-2V, Vee=MIN, VIH-2V, VIL =VILrnax 2.5 3.4 0.25 IloL =4rnA IIOL =8rnA J or K clock or preset Vee=MAX, VI=2.7V 0.25 0.4 0.5 0.1 0.4 0.2 0.4 20 40 20 40 80 -0.4 Clear J or K clock or preset Vee=MAX, VI=0.4V Clear -15 V V V 0.35 0.2 VI=5.5V Clear IlL 0.4 3.4 0.1 Vee=MAX, clock or prese IIH O.S -1.5 2.7 Unit V 2 J or K II 9LS/74LS Typ·· Max 0.7 -1.5 VIL =VILrnax, IOH=-4OOIlA VOL Min V rnA IlA SO -0.4 -0.8 -O.S 1.6 -100 -1.6 rnA rnA -100 rnA 4 8 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ··AII typical values are at Vee = SV, TA = 2Soe. tNot more than one output should be shorted at a time. tt ICC is measured with outputs open, clock grounded, and J, K, preset, and clear at 4.SV. lost Vee-MAX Vee-MAX, Icctt 4 -15 8 Switching Characteristics , V·CC- SV Over Recommended Free-Air Temperature Range Parameter Te.t Condltlona: CL tpLH tpHL I CK Low I CK High I Min -55°C Typ Max Min +25°C Typ Max I Min =15pF, RL =2kO (See Figure A on page 2·1741 12 18 10 15 16 23 22 29 29 12 18 21 28 39 16 24 27 38 12 18 13 20 15 24 tpLH 13 20 14 22 tpHL 17 27 Test Conditions: CL - 50pF, RL - 2kO (See Figure A on page 2-1741 tpLH tpHL I CK Low I CK High tpLH tpHL +125°C Typ I Max I Unit 16 22 13 19 19 26 26 33 33 44 21 29 27 31 38 24 30 17 24 15 22 16 19 .. 41 25 ns ns ns ns ns ns ns ns ns 26 29 22 31 18 tsetup is the minimum time required for the correct logiC level to be present at the J or K input prior to the rising edge of the clock in order to be recognized and transferred to the outputs. thold is the minimum time required for the logic level to be maintained at the J or K input after the clock transition in order to insure recognition. This device requires no hold time. Note: Ae specification shown under -ssoe and +12Soe are for 9LS devices only. All SOpF specifications are for 9LS only. ~YTHE<3l 2-59 LS122 Single and Dual Retriggerable Monostable Multivibrators with Clear LS123 FEATURES LS122 • Functionally and Mechanically Identical to 54122 and 54123 • Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle • Overriding Clear Terminates Output Pulse • Low Power Dissipation: 'LS122 ... 30 mW Typical 'LS123 •.. 60 mW Typical • Compensated for VCC and Temperature Variations • D-C Triggered from Active-High or Active-Low Gated Logic Inputs • 'LS122 Has Internal 10 kn Timing Resistor • Diode-Clamped Inputs • Compatible for Use with TTL or DTL GND 8 7 A1 A2 e1 82 CLR logic: see function table NC-No internal connection. 14 1 vee Die Size .085 x .071 LS123 DESCRIPTION GND The 'LS122 and 'LS123 multivibrators feature doc triggering from gated low-level-active (A) and high~level-active (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be term inated at a predetermined time independently of the timing components Rand C. Enough Schmitt hysteresis is provided to ensure jitter-free triggering from the B inputs with transition rates as slow as 1 volt per second. Figure 1 illustrates triggering the one-shot with the high-level-active (B) inputs. 10 9 8 15 INPUTS OUTPUTS Q Q X X X X. X L L L L L H H H H H L X 1I t X X X X X H H X X L L L X X X X X H X X X L L L t t t • •• • H L X X L L X t H H H H H H H H L H H t H H t H H H H H IL ..f1. L .n.. X H H B Q Q X X L L L H H H X H X L t L H H • L ..n.. 1S ..J1.. 1S l.I .n.. LS H LS .J1. ..f1. 1S 1S ..Il... L.J" .J1. SL 1S 1S "lJ" SL OUTPUTS INPUTS CLEAR A B2 X H 'LS123 FUNCTION TABLE (SEE NOTE 1) B1 L H H H H H H H H 2-60 A2· 161 Vee Die Size .085 x .071 'LS122 FUNCTION TABLE (SEE NOTE 1) CLEAR A1 7 t;VTHEO]J Single and Dual Retriggerable Monostable Multivibrators with Clear LS122 LS123 NOTES: 1. H = hlgh level (steady state), L = low level (steady state), t = transition from low to high level, • = transition from high to low level, H = one high-level pulse, L = one 'Iow-Ievel pulse, X = irrelevant (any input, including transitions). 2. To use the internal timing resistor of 'LS122, connect Rint to Vcc. 3. An external timing capacitor may be connected between Cext and Rext/Cext (positive). 4. For accurate repeatable pulse widths, connect an external resisto.r, between Rext/Cext and Vee with Rint open ci rcuited. 5. To obtain variable pulse widths, connect external variable resistance between Rint or Rext/Cext and Vee. TVPICAL OUTPUT PULSE WIDTH w EXTERNAL TIMING CAPACITANCE 100000 RETRIGGER PULSE (See Note) Rr"260kH RT" 160kH 9 INPUT 10000 Io4---tw+tpLH~ OUTPUTQ ~ ~ ~- ______ I L ~ I ------------,OUTPUT WITHOUT RETRIGGER OUTPUT PULSE CONTROL USING RETRIGGER PULSE B'NPUT Il'--____________ 0 CLEAR OUTPurajl- -- .!! 1000 I 100 v if } OUTPUT WITHOUT CLEAR ---1 10 OUTPUT PULSE CO'-N-T=R-O-L-U-S''-N-G-C-LE=A-R-C'N-CP-CU=T-- 100 10 1000 Cexr-External Timing CapBcitance-pF NOTE: Retrigger pulse must not start before 0.22 Cext (in tThese values of resistance exceed the maximum recommended for use over the full temperature range of the 9LS/54LS' circuits. picofarads) nanoseconds after previous trigger pulse. FIGURE 2 FIGURE I-Typical Input/Output Pulses These monostables are designed to provide the system designer with complete flexibility in controlling the pulse width, either to lengthen the pulse by rerriggering, or to s~orten by clearing. The 'LS12;;1 has an internal timing resistor vilhich allows the circuit to be operated with only an external capacitor, if so desired. The output pulse is primarily a function of the external capacitor and resistor. For Cext pulse width (tw) is defined as: > 1000 pF, the output tw = 0.4 • RT • Cext where RT is in kH (either internal or external timing resistor), Cext is in pF, tw is in ns. For pulse widths when Cext';; 1000 pF, see Figure 2. Recommended Operating. Conditions 9LS/74LS 9LS/54LS Unit Min. Supply:voltage, VCC 4.5 High-level .output current, IOH 5 5.5 40 A or B inputs low 40 40 Clear low 40 40 External timing resistance, R ext 5 No restriction ~YTHE03l temperature, T A 225 5 -55 5 5.25 V -400 I'A 8 mA 125 ns 360 k!l No restriction 50 Wiring capacitarice at Rext/Cext terminal Nom. Max.- 40 External capacitance, Cext free~air 4.75 4 A or B inputs high Operating Min. 400 Low-level output curreot, IOL Pulse Width, tw Nom. Max. 0 50 pF 70 °c 2-61 LS122 Single and Dual Retriggerable Monostable Multivibrators with Clear LS123 Electrical Characteristics OVer Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted) 9LS/54LS VIH High·level input voltage VIL Low·level input voltage VI Input clamp voltage Unit Typ.* Max. Min. 2 VOH High·level output voltage VOL Vee = MIN. 11=-1BmA Vee = MIN. VIH = 2V, VIL = VIL max, IOH =-400I'A Vee = MIN, Low·level output voltage 2.5 0.25 VIH=2V, lIOL=4mA Typ.* Max. Min. 2 V 0.7 O.B V -1.5 -1.5 V 2.7 3.5 3.5 0.4 1 IOL = BmA VIL=VILmax Input current at II 9LS/74LS Test Conditions t Parameter Vee = MAX, VI = 7V V 0.25 0.4 0.35 0.5 0.1 0.1 V mA maximum input voltage IIH High·level input current Vee = MAX, VI = 2.7V 20 20 I'A IlL Low-level input current Vee = MAX, VI = O.4V -0.4 -0.4 mA lOS Short-circuit outputcurrentr Vee = MAX 150 mA ICC 1 'LS122 See Note 21 'LS123 Vee = MAX, (quiescent or triggered) 150 -30 Supply current -30 6 11 6 11 12 20 12 20 mA t.For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. *AII typical values are at Vee = 5V, TA = 25°C. rNat more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5 V, is applied to clock. ,Switching Characteristics Vee = S.OV Over Recommended Free-Air Temperature Range. Parameter From To (Input) (Output) Test Conditions: CL = 15pF, RL A tpLH B A tpHL B tpHL clear tpLH twQ(min) *twQ tpLH B clear tpLH A or B twQ(min) Q Q Q A tpHL Q Q B tpHL Q Aor B A Typ. +25°C Max. Min. Typ. +125°C Max. = 2.01< C". = Opf, R"" = 5.0kO (See Fig. 3, page 2-61 Aor B Teat Conditions: CL = 5OpF, RL -55'C Min. = 2.0k, C'x! Q Q Q Q Q .. = 25 32 33 40 21 33 140 37 48 49 61 31 50 250 - - Opt, R",. 30 37 38 45 26 39 155 26 33 34 41 22 35 127 Typ. Unit Max. snd Fig. A, page 2-174) 22 33 29 44 30 45 37 56 18 27 30 45 q6 200 4.0 4.!? 5.0 = 5.0kO (See Fig. 3, pag~ 2-61 43 54 55 67 37 55 270 Min. - 25 32 33 40 21 33 140 37 48 49 61 31 50 250 - - ns ns ns ns ns I'S and Fig. A, page 2-174) 38 49 50 62 32 50 240 .. 30 37 38 45 26 39 155 43 54 55 67 37 55 270 ns ns ns ns ns Note: Ae specification shown under -S5°e and +12Soe are for 9LS deVices only. All SOpF specifications are for 9LS deVices only . 'For this test R ext = 10kU, eext = 1000pF. 2-62 ~YTHEO~ Single and Dual Retriggerable Monostable Multivibrators with Clear LS122 LS123 TYPICAL APPLICATION DATA The basic output pulse width is essentially determined by the values of external capacitance and timing resistance. For pulse widths when Cext < 1000 pF. When Cext > 1000 pF, the output pulse width is defined as: where RT is in kS1 (internal or external timing resistance.) Cext is in pF tw is in nanoseconds For best results, system ground should be applied to the Cext terminal. The switching diode is not needed for electrolytic capacitance applications. Vcc RT ri coxt To Coxt To Rext/Cext terminal terminal FIGURE 3 TIMING COMPONENT CONNECTIONS ~YTHE~ 2·63 LS125 Quad 3-State Buffer, Low Enable LS126 Quad 3-State Buffer, High Enable QUAD 3-STATE BUFFERS WITH ACTIVE HIGH ENABLES LS125 LS126 Vee E DOE 0 0 GWgJ mm0 E DOE 0 0 GND Recommended Operating Conditions. 9LS174LS 9LS/54LS Min. Typ. 4.5 5 ..0 Supply Voltage Max. Min. 5.5 4.75 -1 ..0 High Level Output IOH Max. 5 ..0 5.25 V -1 ..0 -2.6 mA 24 mA 7.0 °c 12 12 Low Level Output 10L +125 -55 Operating Free Air Temperature Unit Typ. .0 Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise NOted) Parameter 9LS/54LS Test Conditions Min. VIH VIL VCD Guaranteed Input HIGH Voltage for All Inputs Input HIGH Voltage Typ. 2.0 Min. Typ. Max. 2.0 Guaranteed Input LOW Voltage for I nput LOW Voltage 9LS/74LS Max. Unit V 0.7 0.8 -1.5 -1.5 V All Inputs Input Clamp Diode Voltage VCC = MIN, liN = -18mA VOH Output HIGH Voltage VOL Output LOW Voltage 10H = -1.0mA Vee = MIN, VIN = VIH or 10H = -2.6mA VI L per Truth Table 10L = 12mA Vee = MIN, VIN = VIH or 10L = 24mA VI L per Truth Table 0.65 2.4 3.4 0.25 V V 0.4 2.4 3.1 V 0.25 0.4 V .0.35 .0.5 V 10ZH Output Off Current HIGH Vce = MAX, VOUT = 2.4 V, VE = VI L 20 2.0 p.A IOZL Output Off Current LOW Vee = MAX, VOUT = .0.4 V, VE = VIL IIH Input HIGH Current IlL Input LOW Current -20 -2.0 p.A Vee = MAX, VIN = 2.7V 20 2.0 p.A Vee = MAX, VIN = 10V .0.1 .0.1 rnA VCC = MAX, VIN = O.4V -0.4 -.0.4 mA -1.0.0 mA Output Short Circ .... it lOS ICC Vee = MAX' VOUT =.OV Current (Note 3) -15 100 -15 Power Supply Current, LS125 Vee = MAX, I(IN = OV, VE = OV 16 16 mA Outputs LOW LS126 Vee = MAX, VIN = OV, VE = 4.5V 20 2.0 mA Power Supply Current, LS125 Vce = MAX, VIN = OV, VE = 4.5V 2.0 2.0 mA LS126 Vee - MAX, VIN = DV, VE = OV 24 24 mA ICC Outputs Off NOTES: 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. 2. Typical lim·its are at Vec = 5.DV, T A = 25°C. 3. Not more than one output should be shorted at a time. 2-64 Q,;YTHEO]J Quad 3-State Buffer, Low Enable LS125 Quad 3-State Buffer, High Enable LS126 Switching Characteristics Vee = S.OV Over Recommended Free-Air Temperature Range. 91.S/54LS Parameters From * -55'C To (Input) (Output) Min Typ. +125'C +25'C Max. Min. Typ. Max. Min. Typ. Units Max. Tnt Condnlons: C, = 45pF, R, = 6670 (See Fig. C, page 2-174) tpLH D tpHL D tpZH E or E E or E tpZL 0 0 0 0 10 15 6 10 10 14 ns 13 20 10 16 13 20 13 20 10 16 13 20 ns ns 13 20 10 16 13 20 ns Tnt Conditions: C, = 5pF, R, = 6670 (See Fig. C, page 2-174) tpLZ E or tpHZ E or E E 0 13 19 10 15 13 20 ns 13 27 15 23 18 27 ns Teet CondItIons: C, = 45pF, RL = 8670 (See fig. C, page 2-174) tpLH D 0 13 20 10 15 13 19 ns tpHL D 18 25 15 21 18 25 ns tpZH E or E E or E 0 0 0 18 25 15 21 18 25 ns 18 25 15 21 18 25 ns tpZL Note: AC specification shown under -55'C and +125'C are for 9LS devices only. All 50pF specifications are for 9LS devices only. ",For LS125 use E and for LS126 use E. TRUTH TABLES 9LS125 9LS126 INPUTS OUTPUT E' 0 L L H L H X ~YTHE03l L H (Z) INPUTS OUTPUT E 0 H H L L H X L H (Z) L = LOW Voltage Level H = HI G H Voltage Level X = Don't Care (Z) = High Impedance (off) 2-65 Quad 2-lnput Schmitt-Trigger LS132 13 12 11 10 9 ~ 7 GND VCC. 14 Die Size .057 x .057 Vee 8 2 3 4 5 4A 4V 38 3A 3V ~J W mm 1A 6 48 18 1Y 2A 28 I2J 2V GND Recommended Operating Conditions 9LS/54LS Supply voltage, Vee Min. Typ. 4.5 5.0 High level output current, IOH 9LS174LS Max. Min. Typ. 5.5 4.75 5.0 5.25 V -400 p.A 4 8 mA +125 70 °e -400 low-level output current, IOl Operating free-air temperature, T A -55 Unit Max. Electrical Characterlstlca Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted) 9LS/54LS Test Conditions t Parameter Min. Typ. 9LS174LS Max. Min. Typ. Unit Max. VT+ Positive-going threshold voltage Vec= 5V 1.4 1.6 1.9 1.4 1.6 (9 V VT_ Negative-going threshold voltage Vee = 5V 0.5 0.8 1.0 0.5 0.8 1.0 V Hysteresis (VT+-VT_) Vce = 5V 0.4 O.B 0.4 0.8 Input clamp voltage Vee = MIN, II =-18mA Vee = MIN, IOH = MAX, VIK VOH High-level output voltage VOL low-level output voltage Input cu rrent at IT+ IT_ II positive-going threshold Input cu rrent at negative-going threshold Input current at maximum input voltage -0.65 2.5 VI = VT_MIN Vee = MIN, 3.4 0.25 VI = VT+MAX, IOl = MAX -1.5 -0.65 2.7 0.40 V -1.5 3.4 0.35 V V 0.50 V Vee = 5V, VI = VT+ -0.14 -0.14 mA Vee = 5V, VI = VT_ -0.18 -0.18 mA Vee = MAX 0.1 VI=7V IIH High-level input current Vee = MAX VI = 2.7V III Low-level input current Vee = MAX' Vil = O.4V lOS Short-circuit output current Vec= MAX Vee = MAX VIN = OV Icel Supply Current low Vee = MAX VIN =4.5V mA 20 20 p.A -0.4 -0.4 mA -100 mA B.6 16 8.6 16 mA 12 21 12 21 mA -15 IceH Supply Current High 0.1 -100 -45 tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. 2-66 ~YTHEt3l Quad 2-lnput Schmitt-Trigger LS132 s.ov Over Recommended Free-Air Temperature Range. Switching Characteristics Vee = 9LS/S4LS Parameter To (Input) (Output) Teat Conditions: CL = 15pF, tpLH tpHL y tpHL RL Min. ITyp. IMax. I I +2S"C Min·l Typ.l Max. I +12S"C Min. I Typ. IMax. Units = 2.0k (See Fig. A, page 2-174) A or B Test Conditions: C L = SOpF, tpLH RL I -SS"C From J 16J I 16 I 24 24 I I I I 13 13 I I I I 17 17 I I I 20 20 I I I I I 25 25 I I I I 24 24 ns ns I 20 I I 20 I 29 29 ns 16 16 = 2.Ok (See Fig. A, page 2·174) y Aor B I 20 I I 20 I 29 29 ns PARAMETER MEASUREMENT INFORMATION INPUTS A-.-----:i~H B-C - - D - - OUTPUT y ~-e-4~~---~--~----~--~GND FIGURE 1 [[AYTHEO]] 2-67 Quad 2-lnput Schmitt-Trigger LS132 TYPICAL CHARACTERISTICS NEGATIVE-GOING THRESHOLD VOLTAGE POSITIVE-GOING THRESHOLD VOLTAGE vs > 1_70 .---.--'-,--.--'r--',-'-'-I-"--,---, .. 1_69 ~ 1 ! t:-l!' Vcc • 5V ~ 1.68 ~ 1.67 1.68 ~l!' & • 1.65 8 1.64 ! 1.63 ~ 1.62 ..,..--,r-..... VCC=5V 0.69 0.68 0.87 0.86 0.86 0.84 0.83 ! 0.82 i= 1.61 > 1 FREE-AIR TEMPERATURE 0.90 .--....-'-T....;..;.,r'-'-.... 0.81 1.60 '-....1..._-'--'-_-'--'-_-'--'----' -75 -50 -25 0 25 50 75 100 125 0.80 '--'---''--'---''--'----'--'----' 25 50" 75 100 125 -75 -50 -26 0 T A-free-Air Temperature-°c TA-free-Air Temperature-°C HYSTERISIS DISTRIBUTION OF UNITS fOR HYSTERESIS vs FREE-AIR TEMPERATURE 850 , - - , - - - , - - , - - , - - . -. ......,---, 840 ~ Vcc = 5V VCC=5V TA' 25·C 830 820 c j I 790 ~ 780 770 760 760'-....1..._-'-....1..._'-....1..._'-....1...--.J -75 -60 -25 0 25 60 75 100 125 720 740 760 780 800 820 840 860 880 lA-free-Air Temperature-'"C VT+-VT _-Hysteresis-mV THRESHOLD VOLTAGES AND HYSTERESIS OUTPUT VOLTAGE VI 2.0 > 1.8 'Se !:.., 1.6 l: i I 1.4 0.8 0.6 Positive-Going Threshold Voltage, VT+. Negative-Going Threshold VoI_. VT- Hystel'8lil. VT +-VT_ 1 0.4 t:- I I I I I I ! t- 5.5 - - 2 - I 0 4.76 5.25 5 VCC-8upply VoI _ _ V I - > 0.2 0 4.5 2-68 JCC ! 5VI TA =25·C 1.2 1.0 INPUT VOLTAGE 4 o I 0.4 1.6 0.8 VI-Input VoI _ _ V 2 ~YTHEO~ Quad 2-lnput Schmitt-Trigger LS132 TYPICAL APPLICATIONS DATA TTL SYSTEM INPUT I 1----1&-0- MOS. CMOS. etc. '--_ _ _-' I SINE·WAVE OSCILLATOR I~~ h_ PULSE SHAPER TTL SYSTEM INTERFACE I FOR SLOW INPUT WAVEFORMS 330£1 0.1 Hz to 10 MHz THRESHOLD DETECTOR MULTIVIBRATOR I I I I 1 I J I I J I I , 1 I 1 1 I OU~ PULSE STRETCHER r§YTHE031 2-69 LS136 Quadruple 2-lnput Exclusive-OR, -NOR Gates With Open-COllector Outputs LS266 PIN-OUT AND LOGIC DIAGRAMS LS136 QUADRUPLE 2-INPUT EXCLUSIVE-OR WITH OPENCOLLECTOR OUTPUTS LS2!!6 QUADRUPLE 2-INPUT EXCLUSIVE-NOR WITH OPEN COLLECTOR OUTPUTS Vee 48 4A 4Y 38 3A 3Y 13 8 14 7 6 2 3 4 Die Size .045 x .056 5 @~~ 12 11 10 Vee 48 4A 4Y 3Y 38 3A 9 @~m 8 13 7 14 ~~rn IA 18 IY 2A 28 2Y GND positive logic: Y = A Et> B = AB + AS 6 2 3 4 Die Size .045 x .056 ~~rn IA 18 IY 2Y 2A 28 GND 5 positive logic: Y = 'A Et> B = AB + AS Recommended Operating Conditions Min Supply voltage, Vee High-level output voltage, VOH Low-level output current, IOl Operating free-air temperature, TA 4.5 9LS/54LS Nom Max 5 -55 5.5 5.5 4 125 Min 4.75 9LS/74LS Nom Max 5 0 5.25 5.5 S 70 Unit V V mA °c Electrical Characteristics Over Recommended Free-Air Temperature Range (I,Inless Otherwise Noted) Parameter Test Conditions' Min 9LS/54LS Typ" Max 2 VIH Vil VI Vee-MIN, Vee-MIN, VIL =Vllmax, Vee-MIN, Vil =Vllmax Vee-MAX, Vee-MAX, Vee-MAX, IOH 11=-1SmA VIH-2V, VOH=5.5V VIH-2V Min 9LS/74LS Typ" Max 2 D.7 -1.5 100 0.25 0.4 Unit O.S -1.5 V V V 100 J..lA 0.4 Llol -4mA V VOL 0.5 IIOl -SmA VI-7V 0.2 0.2 mA II VI-2.7V 40 40 IIH J..lA -O.S -O.S VI-O.4V mA IlL 13 LS266 S S 13 I eet I Vee=MAX, mA LS136 6.1 10 6.1 10 .. . 'For condItIons shown as MIN or MAX, use the appropriate value specIfIed under recommendea operatong condItIons for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°e. tlee is measured with one input of each gate at 4.5V, the other inputs grounded, and the outputs open. I 2-70 . 0.25 0.35 .. t;YTHEO~ Quadruple 2-lnput Exclusive-OR, -NOR Gates With Open-Collector Outputs LS136 LS266 Switching Characteristics , V'cc- 5V Over Recommended Free-Air Temperature Range Teat Conditione: -55'C +25'C Typ Max 18 16 16 16 13 9 13 18 (See figure B on page 2-174) 31 Other input 35 16 23 low 30 35 Other inp~t high' 19 23 30 13 31 13 From (Input) Parameter To (output) Min Typ Max Min +125'C Typ Max 17 14 17 13 20 10 8 7 26 16 12 12 35 19 36 19 36 14 35 13 42 21 41 19 Min Unit CL = 15pF. RL = 2kO (See figure B on page 2-174) tpLH tpHL tpLH tpHL Teat Conditione: C~ tpLH tpHL tpLH tpHL A or B Aor B Other input low Other input high 14 10 12 10 ns ns = 5OpF. RL = 2kO Aor B Aor B ns ns Note: AC specification shown under -5SoC and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHE03l 2-71 :LS~38 Decoders/Demultiplexers LS139 FEATURE$_ • LS138: 3-Line-to-8-Line Decoder 1-of-8 Demultiplexer LS139: Dual 2-Line-to-4-Line Decoder Dual 1-of-4 Demultiplexer LS138 is expandable to 5-lines-to-32-lines decoder using 4 LS138's and one inverter. PIN·OUT DIAGRAMS LS138 • DATA OUll'UlS r -____ ______ -JA~ VI Y2 Y3 V4 • DESCRIPTION The LS138 decodes one-of-eight lines dependent on the conditions at the three binary select inputs and the three enable inputs. Two active-low and on!! active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications. ~ Y6' 1234567[]J ~~Y7GND SELECT Die Size .063 x .069 The LS139 comprises two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications. ENABLE OUll'UT LS139 These circuits are designed to be used in high-performance memory-decoding and data-routing applications requiring very short delay times. 34567[]J IG IA 18 lYO 1YllY2lY3 GND ENABLE~~ Die Size .063 x .069 LSl38 FUNCTION TABLE INPUTS SELECT 'S A C ENABLE GI G2' OUTPUTS VO VI V2 V3 V4 V5 V6 V7 X H X X H H H H H L H H H X X X X H L L L L L L L L H L H H H H H H H H H H H H H L L H H H H H H L L L L H H H L H H L H L H H H L L H H H L H H X L H H H L H H H H H H H H H H H H H H H L H L H H H H H H H H H H H H H H H L H H H H H L H "G2 = G2A + G2B H = high level, L = low level, X = don't care 2-72 H H H H H H H H H L LS139 FUNCTION TABLE (V:z) .. INPUTS SELECT S A G H x X L L L OUTPUTS ENABLE L L L L H H H L H VO VI V2 V3 H L H H H H H L H H H H H L H H H H H L H = high level, L = low level, X = don't care ~YTHE03J Decoders/Demultiplexers LS138 LS139 LOGIC DIAGRAMS LS138 LS139 IVO (1) ENABLE 1G DATA OUTPUTS SELECT INPUTS {:1:::~:-t>~tt:~~~~J SELECT INPUTS t IV1 IV2 A (2) (3) IV3 1B DATA OUTPUTS (15) ENABLE 2G C (3) SELECT INPUTS t A(14) 2J13) Recommended Operating Conditions Min 4.5 Supply voltage, Vee High·level output current, IOH Low·level output current, IOL Operating free·air temperature, TA 9LS/54LS Max Nom 5 -55 5.5 -400 4 125 Min 4.75 9LS/74LS Nom Max 5 0 5.25 -400 8 70 Unit V jlA rnA "C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter VIH VIL VI VOH VOL II IIH IlL lost Icc Test Conditions· Min 9LS/54LS Typ·· Mex 2 11--18mA Vee=MIN, Vee=MIN, VIH=2V, VIL =Vllmax, IOH=-400,uA Vee=MIN, VIH=2V, 1101.. =4mA Vil =Vllmax IIOl =8mA VI-7V Vee-MAX, VI-2.7V Vee-MAX, VI=O.4V Vee=MAX, Vee-MAX I LS138 Vee=MAX, Outputs enabled and open LS139 I Min 9LS/74LS Typ •• Max V 2 0.7 1.5 2.5 3.4 2.7 0.25 0.4 6.3 6.8 0.1 20 -0.4 -100 10 11 15 Unit O.I::! V -1.5 V 3.4 0.25 0.35 V 0.4 0.5 U.l 15 6.3 6.8 20 -0.4 -100 10 11 V rnA jlA rnA rnA rnA "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. *"AII typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. ~YTHEO:FJ 2·73 LS138 Decoders/Demultiplexers LS139 LS138 - Switching Characteristics , V'cc.- 5V Over Recommended Free Air Temperature Range Levels -55°C From To of Parameter (Input) (output) Min Typ Delav· . Test Conditione: C L = 15pF, R.. = 2kO (See fig. A, page 2-174) tpLH tpHL tpLH tpHL tpLH tpHL tpLH tpHL 2 3 Binary Select Any Enable Any 11 17 16 22 11 19 16 22 2 3 Test Conditions: CL tpLH tpHL tpLH tpHL tpLH tpHL tpLH tpHL = SOpF, RL = 2 3 Binary Select Min +25°C Typ I Min Max +125°C Typ Max 16 24 22 30 16 26 22 30 10 17 16 21 10 18 16 20 15 24 21 28 15 25 22 28 13 21 21 24 13 23 21 24 18 27 28 32 18 30 27 31 19 31 24 35 16 30 24 34 12 22 17 25 12 24 18 24 17 29 23 32 18 33 23 32 14 26 23 28 15 26 24 28 20 33 29 36 20 34 30 37 I Unit ns ens ns ns ns ns ns ns 2kO (See fig. A, page 2-174) 13 23 Any 17 26 11 23 18 26 2 Enable Max Any 3 ns ns ns ns ns ns ns ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS devices only. LS139 - Switching Characteristics, V'cc- 5V Over Recommended Free Air Temperature Range ,p.rameter'~~ . Delav . Teid Conditione: CL tpLH tpH-.I. tpLH tPHL tplH tpHl 2 3 2 Test ConcIItIons: CL tpLH tpHL 2 tPlH tpHL tpLH tPHI 3 2 From (Input) To (output) -55"C Min Typ Max Min +25°C Typ I Max Min +125°C Typ Max I Unit = 15pF, RL = 2kO (See Fig. A, page 2-174) Binary Select Any Enable Any 12 13 16 18 12 11 21 21 28 30 22 22 12 12 15 17 11 11 26 26 33 35 27 27 15 15 18 20 14 14 17 22 25 15 16 13 13 17 18 11 12 20 20 27 30 22 22. ns ns ns ns ns ns 21 21 26 29 19 20 16 16 20 21 14 15 25 25 32 35 27 27 ns ns ns ns ns ns 17 = SOpF, RL = 2kO (See Fig. A, page 2-174) Binary Select Any Enable Any 15 16 19 21 15 14 Note: AC specification shown under _55°C and +125°C are for 9LS device. only. All 50pF specifications are for 9LS only. 2-74 ~YTHEc3J 8-Line-To-1-Line Multiplexers LS151 PIN-OUT DIAGRAMS FEATURES • • • LS151 Select one of eight data sources Perform parallel-to-serial conversion LS151 has complementary outputs; LS152 has inverting output only LS1'51 has strobe input • 6 8 These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources. The LS151 has a strobe input which must be at a low logic level to enable the device. A high level at the strobe forces the W output high. and the Y output low. The LS151 features complementary Wand Y outputs whereas the LS152 has an inverted (W) output only. INPUTS OUTPUTS SELECT STROBE V W C B A S )( H L L L L L L H L L H L L L DO 9 6 10 11 12 13 14 Die Size .056 x .057 LS152 LS152 FUNCTION TABLE LS151 FUNCTION TABLE X 5 4 3 7 DESCRIPTION x LS152 DATA INPUTS DATASEllCT 6 SELECT OUTPUT INPUTS C B H L iXi 51 L L L L DO H 51 52 OJ 54 L H H H L L L L H L H L OS 05 H H L H H L L H H L Os OJ H H 06 07 H H H L 52 OJ 54 L H H H H L L H L 1ill13 W A L 01 02 03 04 ~ ,.--A----.. VCC567ABC 54 05 Os OJ 10 9 8 3 2 7 8 14 9 123456[2] 10111213 ~WGND DATA INPUTS DU11'UT Die Size ,056 x ,057 H = high level, L = low level, X = don't care ~O, 01 , . , 07 = the level of the 0 respective input LOGIC DIAGRAMS (LS!5! STROBE (ENABLEI----.!I>------, onlyl OO------r=~====~~ 02---------Ft~=E=t~1 DATA 03----Tt=J=1~~::J OUTPUT W (LS151 only) INPUTS D4------"Hfl:$:I~Er: OUTPUT Y 05----lii=;~~S: SELECT DATA (BINARV) ~YTHE03'l {A===j;==~~~~~:!J B C 2-75 LS151 8-Line-To-1-Line Multiplexers LS152 Recommended Operating Conditions 9LS/54LS Supply voltage, Vec High-level output current, IOH Low-level output current, IOL Operating free-air temperature, TA 9LS/74LS Min Nom Max Min Nom Max 4.5 5 5.5 -400 4 125 4.75 5 5.25 -400 B 70 -55 0 Unit V tJ. A mA °C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted Parameter VIH VIL VI VOH VOL II IIH IlL lost Icc Test Conditions· . 11--1BmA Vee-MIN, Vee=MIN, VIH=2V, VIL=VILmax IOH=-4OOtJ. A Vee-MIN, VIH=2V, IIOL-4mA VIL=VILmax IloL-BmA Vee=MAX, VI=7V VI=2.7V Vce=MAX, VI=O.4V Vce=MAX, Vce-MAX Outputs open I LS151 Vee-MAX, I LS152: All inputs at 4.5V 9LS/74LS 9LS/54LS Min Typ·· Max Min Typ·· 2 2 0.7 -1.5 2.5 Max 3.4 0.3 O.B -1.5 2.7 0.4 0.5 u.l u.l 6.0 20 -0.4 -100 10 20 -0.4 -100 10 5~6 9 -15 -15 6.0 5.6 V V V V 3.4 0.25 0.35 0.45 Unit 9 V mA tJ. A mA mA mA *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. *·AII typical values are et Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. 2·76 ~YTHEO~ 8-Line-To-1-Line Multiplexers LS151 - LS152 Switching Characteristics , V'cc- 5V Over Recommended Free Air Temperature Range From (input) Parameter Test Conditions: CL To (output) A, B, or C W tpHL (4 levels) (54LS151 only) tpLH A, B, or C (3 y tpHL levels) tpLH W Strobe tpHL tpLH (54LS151 only) y Strobe tpHL tpLH (54LS151 only) W Any 0 tpHL tpLH (54LS151 only) Y Any 0 tpHL - SOpF. RL A, 8, or C W tPHL tpLH (4 levels) (54LS151 only) A, 8, tpHL (3 levels) or Strobe tpHL tpLH Strobe tpHL tpLH tpHL tpLH tpHL Typ Max* Min +2SDC Typ Max* Any 0 Any 0 15 19 24 21 12 13 18 18 8 6 11 14 22 26 32 30 17 20 26 27 13 12 18 22 15 18 24 20 11 13 18 16 9 5 11 14 22 25 31 28 +12SDC I Max. Unit Typ 20 18 20 29 22 13 14 21 17 11 6 13 15 25 26 36 31 19 20 29 25 17 13 19 22 24 31 33 37 20 24 28 35 15 16 20 30 17 21 26 25 13 15 20 20 10 8 14 18 24 29 32 35 19 23 27 31 16 14 19 27 20 22 29 29 15 16 23 21 13 8 15 20 27 31 38 38 21 24 30 32 19 14 21 29 17 19. 26 24 14 12 17 C y W (54LS151 only) y (54LS151 only) W (54LS151 only) Y 17 22 26 27 14 16 20 24 9 9 14 19 Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHEO~ Min ns ns ns ns ns ns = 2kO (See Fig. A. page 2-174) tpLH tpLH Min = 1SpF. RL = 2kO (See Fig. A. pege 2-174) tpLH Test Conditions: CL -SSDC ns ns ns ns ns ns *Tentative data, subject to change without notice 2-77 Dual 4-Line-To-1-Line Multiplexer SF LS153 .n PIN-OUT DIAGRAM FEATURES • • • Permits multipl!,xing from N lines to 1 line Performs parallel-to-serial conversion Strobe (Enable) line provided for cascading (N lines to n lines) Non-inverting • DATA DESCRIPTION The LS153 is a high speed DuaI4-Line-to-1-Line Multiplexer with common select inputs and separate strobe (enable) inputs for each half. Each half can select one bit of four and present it at the output in non-inverted form. 14 LOGIC DIAGRAM 9 15 B 16 1C1~(5~)~-------+~FF~J DATA 1 2 1C2~(4~)______~~~~L-~ ~~~. 7. Die Size .057 x .061 1C3~(3~)______~-r~__L-~ FUNCTION TABLE SELECT DATA INPUTS INPLrrS DATA 2 !;:'::: C2· ~:!-.--t=i=:::j~---'" C3~(1~3~)----~=F==~~ STROBE 2G (ENABLE) (15) 2Y STROBE OUTPLrr B A co Cl C2 C3 G X X X X X X H L L L L X X X L L L L H X X X L H L H X L X X L L L H X H X X L H y H L X )( L )( L L H L )( )( H )( L H H H )( )( )( L L L H H X X )( H L H Select Inputs A and B are common to both sections. H = high level, L = low level, X = don't care 2·78 ~YTHE~ Dual 4-Line-To-1-Line Multiplexer LS153 Recommended Operating Conditions Min 4.5 Supply voltage, Vcc H igh·level output current, IOH Low-level output current, In. Operating free-air temperature, T A 9LS/54LS Nom Max 5 -55 5.5 -400 4 125 Min 9LS/74LS Nom Max 4.75 5 0 5.5 -400 8 70 Unit V fJ.A mA °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter V,H V,L V, VOH VOL I, I'H I,L lost ICCL tt Tesl Conditions' Min 9LS/54LS Typ" Max 2 Vcc-MIN, Vcc-MIN, V,L =V,Lmax, Vcc-MIN, V,L =V,Lmax Vce-MAX, Vee-MAX, Vee-MAX, Vcc-MAX Vcc=MAX Min 9LS/74LS Typ" Max 2 0.7 -1.5 1,--18mA V,W 2V, IOH=-4OOfJ.A V,w2V, IIOL -4mA IIOL -8mA V,-7.0V V,-2.7V V,-O.4V 2.5 3.4 2.7 0.25 0.4 6.2 0.1 20 -0.4 -100 10 -15 0.8 -1.5 3.4 0.25 0.35 -15 6.2 Unit V V V V 0.4 0.5 0.1 20 -0.4 -100 10 V mA fJ.A mA mA mA "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. ttleCL is measured with the outputs open and all inputs grounded. - Switching Characteristics , V'!;C- 5V Over Recommended Free Air Temperature Range Parameter Teat Conditions: CL tpLH tpHL tpLH tpHL tpLH tpHL Test Conditions: CL tpLH tpHL tpLH tpHL tpLH tpHL From (Inllul) To (output) Min -55°C Typ I Max Min +25°C Typ Max Min +125°C Typ Max Unit = 15pF, RL = 2kO (See Fig. A, page 2-174) Data Data Select Select Strobe Strobe Y Y Y Y Y Y 8 13 15 17 14 17 13 18 21 23 20 23 8 14 17 16 16 16 13 18 22 21 21 21 11 17 22 21 21 20 16 22 28 26 26 25 ns ns ns ns ns ns 15 23 24 27 23 27 10 17 19 19 18 20 15 22 24 25 23 24 15 22 25 24 23 23 22 27 30 30 28 28 ns ns ns ns ns ns = 5OpF, RL = 2kO (See Fig. A, page 2-174) Data Data Select Select Strobe Strobe Y Y Y Y Y Y 10 17 18 22 17 21 Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHE@l 2·79 LS155 Dual 2-Line-To-4-Line Decoders/Demultiplexers LS156 FEATURES • • LOGIC DIAGRAM LS156 has open-collector outputs Applications: Dual 2-Line-to-4-Line Decoder Dual 1-Line-to-4-Line Demultiplexer 3-Line-to-8-Line Decoder 1-Line-to-8-Line Demultiplexer STROBE...:.I;:::21,--_...,--, DESCRIPTION These circuits feature dual l-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input 1 C is inverted at its outputs and data applied at2C is not inverted through its outputs. The inverter following the 1C data input permits use as a 3-to-8line decoder or l-to-8-line demultiplexer without external gating. Input clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design. B A 2Vl 111 OUTPUT 2V2 DATA -'. 11:. :5:.:.-1_ _..., 2C STROBE ..;..11_4"'-.1_ _-, 2G PIN-OUT DIAGRAM 14 13 12 11 4 5 6 15 16 2 3' Die Size .063 x .069 (both FUNCTION TABLE 3-LINE·TOoS·LlNE DECODER OR l·LINE·TO·8-LlNE DEMULTIPLEXER FUNCTION TABLES 2-LINE-TO-4·LlNE DECODER OR l-LlNE-T004-LINE DEMULTIPLEXER INPUTS SELECT ,v, lV2 'V3 H x H H H H L L H L H H H H L H H L H H H H L H H H H H H H x X L L H L L H H L X x X • OATA ,YO ,G ·0 - I I .. L.:_ SELECT lee A 2G x x H I ~ l~ I x 2-80 H H X X L I OR DATA 101 111 121 131 141 IS' III 171 c' B x x H H H H H H H H H L L L L L H H H H H H H H L L H L H L H H H H H H L L H l L H H l H H H H H H l H H l H H H l H H H H H l H OUTPUTS STROB. IOATA B ... OUTPUTS STROBE SELECT 2C 2VO 2V, 2V2 2V3 x H H H H L L H H H L H L H H L H H L H L H H H L H H H H H A GI X H 2YO 2Vl 2Y2 2Yl ,VO ,V, ,V2 'V3 L L l H H H H H H l H l H H H H H l H H H H l l H H H H H H l H H H H L H H H H H H H l H --- -- 0 INPUTS _ .. INPUTS ,C A L.... , . - --- ... OUTPUTS STROBE B 1234567[[j Ie IG B JV31V2v1Y1lvqGND DATASTR:E(ECT OUTPUTS IIII'UT types) tC = inputs 1C and 2C connected together tG = inputs 1G and 2G connected together H = high levet, L = low level, X = don't care ~YTHE~ Dual 2-Line-To-4-Line Decoders/Demultiplexers LS155 LS156 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Min 4.5 Supply voltage, Vee High-level output current, IOH Output voltage, VOH (LS156 only) Low-level output, IOL Operating free-air temperature, T A 9LS/54LS Typ·· Max 5 -55 5.5 -400 5.5 4 125 Min 4.75 9LS174LS Typ·· Max Unit 5.25 -400 5.5 8 70 /J. A V mA 5 0 V C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted TaBt Condition.· Paramatar VIH VIL VI VOH IOH VOL II IIH IlL lost leett Min 9LS/54LS Typ·· Max 2 Vee=MIN, Vee-MIN, VIL =VILmax, Vee=MIN, VIL =VILmax, Vee=MIN, VIL=VILmax Vee=MAX, Vee=MAX, Vee-MAX, Vee-MAX Vee-MAX 11=-18mA VIW2V, IOH=-400/J.A VIH-2V, VOH=5.5V (LS156 only) VIH-2V, IIOL -4mA IIOL -8m A VI=7V VI=2.7V VI-0.4V Min 9LS174LS Typ·· Max 2 0_8 -1.5 0.7 -1.5 2.5 3.4 2.7 3.4 100 0.25 0.4 6.1 0.1 20 -0.4 -100 10 -15 0.25 0.35 -15 6.1 Unit V V V V 100 0.4 0.5 0.1 20 -0.4 -100 10 /J. A V mA p.A mA mA mA 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. ttlee is measured with outputs open, A, B, and lC inputs at 4.5V, and 2e, 1G, and 2G inputs grounded. ~YTHEO]] 2-81 LS155 Dual 2-Line-To-4-Line Decoders/Demultiplexers LS156 LS155 Switching Characteristics , V'cc- 5V Over Recommended Free Air Temperature Range - Parameter Levels From (Input) of Logic Tnt Conditions: CL To (output) Min -55°C Typ Max 17 24 23 30 21 30 13 21 18 26 18 25 19 29 25 36 23 35 2 2 3 3 3 3 +25°C Typ Max Min +125°C Typ Max Unit = 15pF, RL = 2kO (See Fig. A, page 2-174) y 2C, 1G, or 2G tpLH 2 11 2C, 1G, or 2G Y 2 15 tpHL Y A or B 16 3 tpLH Y tpHL Aor B 20 3 1C Y 15 tpLH 3 Y 1C 20 3 tpHL Tnt Conditions: CL - SOpF, RL = 2kO (See Fig. A, page 2-174) tpLH tpHL tpLH tPHL tpLH tPHL Min 2C,lG,or2G 2C,lG,or2G Aor B A or B 1C 1C Y y Y y Y Y 10 15 16 19 15 19 13 18 18 22 18 23 16 23 24 30 22 28 12 17 19 20 19 21 18 26 27 31 26 31 ns ns ns ns ns ns 19 26 25 30 24 31 15 22 22 26 22 25 21 31 29 36 29 35 ns ns ns ns ns ns LS156 Switching Characteristics , V'cc- 5V Over Recommended Free -Air Temperature Range Levels -55°C From To of (input) (output) Min Typ Logic Tnt Conditions: CL = 15pF, RL = 2kO (See Fig. B, page 2-174) Max y 2C, 1G, or 2G 2 24 tpLH 2C,lG,or2G Y tpHL 18 2 Y A or B tpLH 29 3 A or B Y tpHL 24 3 Y 1C 3 tpLH 27 y 1C tPHL 25 3 Teat Conditions: CL - SOpF, RL - 2kO (See Fig. B, page 2-174) Parameter tpLH tpHL tpLH tpHL tpLH tpHL 2 2 3 3 3 3 2C,lG,or2G 2C,lG,or2G Aor B Aor B 1C 1C y y Y Y Y Y 27 21 32 27 30 28 +25°C Typ Max 34 27 40 34 38 35 22 16 27 22 25 23 30 24 37 30 34 31 24 18 29 24 27 25 34 27 40 34 38 35 ns ns ns ns ns ns 39 32 45 39 43 40 25 19 30 25 28 26 34 28 41 34 38 35 27 21 32 27 30 28 39 32 45 39 43 40 ns ns ns ns ns ns Min Min +125°C Typ Max I Unit Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 2-82 9LS only. ~YTHE~ Quadruple 2-Line-To-1 Line Multiplexers LS157 LS158 DESCRIPTION These data selectors/multiplexers select a 4·bit word from one of two sources and present it at the four outputs:The LS157 presents true data; the LS158 presents inverted data. PIN-oUT DIAGRAMS LS157 14 13 12 11 10 LS158 Vee ::I ~ In 4A'4i 4V '3A"3i 1ill15 15 12 11 9 2 3 4 5 ~ 14 13 12 11 10 3V 9 16 ::I INPUTS INPUTS OUTPUT OUTPUT Vee In 1ill15 15 8 8 7 7 2 1234567\]] 3 4 5 6 ""'v-jjUTPUT'--v"'"'OUTPUT IIII'UTS IIII'UTS 3V 10 9 1234567\]] SELECT 1A 18 1V 2A 28 2V GND Die Size .047 x .066 13 9 16 6 INPUTS INPUTS OUTPUT OUTPUT 4A'4i 4V '3A"3i SELECT lA 18 1V 2A 28 2V GND I""'v-jjNPUTS1I11'UT'--v"'"'01l11'UT IIII'UTS Die Size .047 x .066 LOGIC DIAGRAMS LS157 lA (2) 1A lB (3) lB 2A (5) 2A LS158 (2) (3) (5) (6) 2B (6) 2B 3A (11) 3A 38 (10) 38 4A (14) 4A 4B (13) 4B (11) (10) (14) (13) STROBE G (15) STROBE G (15) SELECT S 11 SELECT S 1) FUNCTION TABLE INPUTS STROBE SELECT OUTPUT Y A B 54LS157 54LSl68 H X X X L H L L L X L H L L H X H L L H X L L H L H X H H L H = high level, L = low level, X = don't care Low level at S selects A inputs High level at S selects B inputs Strobe is active low r:!VTHEO]'] 2·83 LS157 Quadruple 2-Line-To-1-Line Multiplexers LS158 Recommended Operating Conditions 9LS/54LS Supply voltage, Vee High·level output current, IOH Low-level output current, IOL Operating free-air temperature, TA 9LS/74LS Min Nom Max Min Nom Max 4.5 5 5.5 -400 4 125 4.75 5 5.25 -400 8 70 -55 0 Unit V p.A mA °C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter VIH VIL VI VOH VOL Test Condltlons* Typ** Max 2 Vee=MIN, Vee-MIN, VIL=MAX, Vee-MIN, VIL =MAX S or G input II Vee=MAX, A or 8 input S or G input Vee=MAX, IIH A or B input S or G input IlL Vee=MAX~ A or B input lost Vee=MAX lee tt 9LS/74LS 9LS/54LS Min Vee=MAX, 11=-18mA VIW2V, IOH=-400p.A VIW2V, l'OL-4mA 11m =8mA Typ**. 2.5 Max 2 0.7 -1.5 3.4 0.25 VI=7V VI=2.7V VI=O.4V -15 I LS157 I LS158 Min 9.7 4.8 0.8 -1.5 2.7 0.4 0.2 0.1 40 20 -0.8 -0.4 -100 16 8 3.4 0.25 0.35 -15 9.7 4.& Unit V V V V 0.4 0.5 0.2 0.1 40 20 -0.8 -0.4 -100 16 .J!.. V mA p.A mA mA mA 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted et a time. ttlee is measured with 4.5V applied to all inputs and all outpus open. 2-84 [[AYTHEO]J Quadruple 2-Line-To-1 Line Multiplexers LS157 LS158 - Switching Characteristics , V'cc.- 5V Over Recommended Free Air Temperature Range Parameter From (Input) Test Conditions: CL = 15pF, I tPLH tPHL . tPLH . r-:::.:--=:.. tpHL '1 tPLH tpHL tpLH ,I tpHL I tpLH tpHL I tpLH tpHL RL To (output) Data y LS158 Data y LS157 Strobe y LS158 Strobe Y LS157 Select Y LS158 Select Y RL = 2kO Data Y LS158 Data Y LS157 Strobe Y LS158 Strobe y .~ LS157 Select y Select y tPHL .~ tpHL LS158 Typ +2SoC Max Min +12SoC Typ Max 10 10 12 11 9 16 14 14 15 17 16 16 14 9 7 8 4 16 9 10 12 16 12 13 12 16 13 14 8 22 14 15 17 24 19 20 17 7 9 8 7 12 12 11 13 13 14 12 13 14 15 13 13 17 17 16 18 18 19 18 1a 10 10 10 7 18 13 12 15 16 14 15 15 17 16 16 12 25 18 17 21 21 20 22 21 Typ Max 11 13 11 12 16 17 16 15 17 18 16 16 5 7 6 4 10 9 9 10 11 11 10 14 16 13 16 Min Unit 6 8 6 7 10 12 10 10 11 13 10 10 ns ns ns ns ns ns (See fig. A,peas 2-174) ~ LS157 tPHL I tPLH tpHL I tpLH tpHL I tpLH . tpHL Min = 21<0 (See fig. A, page 2-174) LS157 Test Condltlona: C L = 5OpF. -SsoC 8 11 7 10 12 15 12 14 12 15 12 14 17 20 17 19 18 21 18 19 ns ns ns ns ns ns Note: AC specification shown under -55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHE03J 2-85 LS160 LS162 LS161 LS163 Synchronous BCD Synchronous 4-Bit Binary Counters FEATURES • 4-bit synchronous counters • Synchronously programmable • Internal look-ahead counting • Carry output for n-bit cascading • Synchronous or asynchronous clear • Advanced low-power Schottky technology • 100% reliability assurance testing in compliance with MI L-STD-883 DESCRIPTION The LS160, LS161, LS162 and LS163 synchronous, presettable counts have internal look-ahead carry and ripple carry output for high-speed counting applications. The LS160 and LS162 are decade counters and the LS161 and LS163 are 4-bit binary counters. Counting or loading occurs on the positive transition of the clock pulse. A LOW level on the load input causes the data on the A, B, C and D inputs to be shifted to the appropriate Q outputs on the next positive clock transition. The LS160 and LS161 feature an asynchronous clear. A LOW level at the clear input sets the Q outputs LOW regardless of the other inputs. The LS162 and LS163 have a synchronous clear. A LOW level at the clear input sets the Q outputs LOW after the next positive clock transition regardless of the enable inputs. Both count·enable inputs P and T must be HIGH to count. Count enable T is included in the ripple carry output gate for cascading connection. 2-86 Decade~ounters PIN-OUT DIAGRAM 7m 1 2 3 4 5 6 CLEAR CK ~ P GND ENABLE DATA INPUTS 14 13 12 11 10 9 15 16 8 7 2 3 4 Die Size .060 x .117:-' all 4 types 5 6 Synchronous BCD Decade Counters LS160 LS162 Synchronous 4-Bit Binary Counters LS161 LS163 LOGIC DIAGRAMS LS160 Synchronous Decade Counter CLR 1 CLEAR o-:...- co-, CK~--~-===~~~==t===~~~==~===4~====t===~~ CLOCK LOAD~~~~ EN P EN T RIPPLE CARRY LS162 synchronous decade counters are similar; however, the clear is synchronous as shown for the LS163 binary counters. LS163 SYNCHRONOUS BINARY COUNTER CL~~= o-~ ..., fiA °B CLog~o-+-;>-t____~____+1_4____~____rl_3__~r-____+-12__--, RIPPLE CARRY LS161 synchronous binary counters are similar; however, the clear is asynchronous as shown for the LS160 decade counters. r§VTHEO]J 2·87 LS160 LS162_ Synchronous BCD Decade Counters LS161 LS163 Synchronous 4-BitBin~ry Counters Recommended Operating Conditions 9LS/54LS Supply voltage, Vcc High·level output current, IOH Min Nom 4.5 5 9LS/74LS Max Min Nom 5.5 4.75 5.0 -400 Low-level output current, IOL 4 Clock frequency, f clock 25 0 25 Width of clock pulse, tw(clockl Width of clear pulse, tw(clear) Data inputs A, B, C, D Enable P or T 20 Load 20 0 20 20 Clear<> Data inputs A, B, C, D Other inputs Hold time, thold Operating free-air temperature, TA 0 20 20 25~ 25 10~ 10 -55 125 Unit 5.25 V -400 8 p.A mA 25 MHz 25 20 20 Setup time, tsetup (see Figures 3 and 4) 0 Max ns ns ns ns 0 70 °c OThis applies only for LS162 and LS163, which have synchronous clear inputs. ~ The minimum hold time is as specified or as long as the clock input takes to rise from 0.8 V to 2 V, whichever is longer. Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter Min 9LS/54LS Typ" Max 2 VIH Typ" Vcc-MIN, VOH VOL 11- 18mA VIW2V , VIL =VILmax, IOH=-400p.A Vcc-MIN, VIH-2V, VIL =VILmax, 2.5 3.4 0.25 IIOL -4mA VCC=MAX, 0.4 VI=7V 3.4 0.25 0.35 IIOL -8mA Data or enable P Load, clock, or enable T 1.5 2.7 0.4 0.5 0.1 0.1 0.2 0.2 0.1 0.1 0.2 Data or enable P 20 0.2 20 40 40 20 40 20 40 0.4 0.4 -0.8 -0.4 -0.8 -0.4 VCC=MAX, VI=2.7V Data or enable P V V V Clear (LS160,161 Clear (LS162,163 Load, clock, or IIH enable T Clear(LS160,161 Clear(LS162,163) Unit V 0,8 1.5 Vcc-MIN, Max 2 0.7 VIL VI II 9LS/74LS Min V mA p.A Load, clock, or IlL enable T Clear(LS160, 161 ) Clear(LS162,163) Vcc=MAX, -0.8 lost VCC=MAX ICCH Vcc=MAX, Vcc=MAX, ICCL VI=O.4V -15 -100 mA -0.8 -15 -100 mA See Note 1 18 31 18 31 mA See Note 2 19 32 19 32 mA *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. **AII typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. NOTES: 1. ICCH is measured with the load input high, then again with the load input low. with all other inputs high and all outputs open. 2. ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open. 2-88 ~YTHEO::J Synchronous BCD Decade Counters LS160 LS162 Synchronous 4-Bit Binary Counters LS161 LS163 - Switching Characteristics , V'cc- 5V Over Recommended Free Air Temperature Range From (Input) Parameter Test Conditions: CL To (output) -SSDC Min Typ Max 30 tpLH Clock tpHL tpLH Clock tpHL (load input high) tpLH Clock tpHL (load input low) tpLH Ripple carry AnyQ Any Q Enable T Ripple carry Clear Any Q tpHL tpHL Test Conditions: CL Clock tpLH Clock tpHL (toad input highl tpLH Clock tPHL Iload input low) Ripple carry Any Q Any Q Enable T Ripple carry Clear Any Q tpHL tpHL I Max Min +12SDC Typ Max Unit 28 23 13 18 13 18 18 13 17 39 39 22 24 22 24 25 18 32 40 25 20 10 15 10 14 15 9 14 MHz 35 35 18 20 18 20 20 14 28 28 23 13 18 13 18 18 13 17 39 39 22 24 22 24 25 18 32 31 26 16 21 16 21 21 16 20 44 44 27 29 27 29 30 23 37 ns ns ns ns ns = SOpF. RL = 2kO (See Fig. 1 snd 2 and Notes 3 and 4 and Fig. A. page 2-174) tpHL tpLH +2SDC Typ = 15pF, RL = 2k!l (See Fig. 1 and 2 and Notes 3 and 4 snd Fig. A, page 2-174) f max tpLH Min 31 26 16 21 16 21 21 16 20 44 44 27 29 27 29 30 23 37 28 23 13 18 13 17 18 12 17 39 39 22 24 22 24 24 18 32 ns ns ns ns ns NOTES: 3. Propagation delay for clearing is measured from the clear input for the LS160 and LS161 or from the clock input transition for the LS162 and LS163. 4. AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHEO]'J 2·89 LS160 LS162 Synchronous BCD Decade Counters LS161 LS163 Synchronous 4-Bit Binary Counters TYPICAL CLEAR, PRESET, COUNT, AND INHIBIT SEQUENCES CLEAR - - - - - , r~__~--____~-----------------LS160· (AYNSCHRONOUS) rs -U CLEAR LS162 LOAD DATA INPUTS (SYNCHRONOUS) U r-------------------------------- {:~...Jr----+----.[ = CD FIGURE 1 1-_ _- . ,_ _11- LS160,LS162 CLOCK _ _-+..., LS160 CLOCK LS162 1 Illustrated below is the following sequence: 1. Clear outputs to zero 2. Preset to BCD seven 3. Count to eight, nine, zero, one, two, and three 4. Inhibit , ENABLE P ----+!--i-I, ENABLET ,:'I-t,-------~---_, , L -_ _ :, OA===i ' {aB==::LH Oc= =::LH======~~~~:___:_-----~ OUTPUTS Q D_ - -_ --LiJ--, _ "--_ _ _-+-_______ " I: ---- : 3: RIPPLE CARRY _ _ _ _~I-~I-~! IL.._~~~~,-------OUTPUT :7 '8 9 0 1 2 I t:---:-COUNT----II--INHIBIT--CLEAR PRESET CLEAR LS161 - - U (ASYNCHRONOUS) 1 ------------------CLEAR ----, 1 . LS163 I...l.J (SYNCHRONOUS) LOAD LJ'---------------- I~:~~S :...J- ;.-:.-:.-:.~: :~ .~ {( FIGURE 2 [= D-.J LS161, LS163 CLOCK ----;...., LS161 CLOCK' LS163 ENABLEP _ _ _~-,~ ENABLET OUTPUTS{= aD ,:r-I--------~-----,L_ ___ Illustrated below is the following sequence: 1. Clear outputs to zero 2. Preset to binary twelve 3. Count to thirteen; fourteen fifteen, zero, one, and two 4. Inhibit ~===;--'-~-+!--....J~'__ __ +_------- ::LJI-'-----"1.__--.;________ I RIPPLE CARRY OUTPUT 2·90 : 111<--::--::-+-------:12 13 14 15 0 24 I I J---- COUNT--..,-INHIBITCLEAR PRESET r§VTHEO]J Synchronous BCD Decade Counters LS160 LS162 Synchronous 4-Bit Binary Counters LS161 LS163 FIGURE 1 PARAMETER MEASUREMENT INFORMATION CLOCK INPUT LS160 LS161 CLEAR INPUT LOAD INPUT VOH VOH 3V ENABLE POR ENABLE T OV VOH RIPPLE CARRY OUTPUT VOL VOH QOUTPUTS LS163 QA AND QD OUTPUTS VOL LS162 VOH Qs AND Qc OUTPUTS LS162 VOL NOTES: A. The input pulses are supplied by generators having the following characteristics: PRR .;; 1 MHz, duty cycle';; 50%, Zout '" 50 fl.; tr .; 15 ns, tf .; 6 ns. S. Enable P and enable T setup times are measured at tn ~YTHEO~ = O. 2·91 LS160 LS1&2 Synchronous BCD Decade Counters LS161 LS163 Synchronous 4.. Bit Binary Counters FIGURE 4 PARAMETER MEASUREMENT INFORMATION Io._---II-'wl....kl ~~~: d b 1.3V ---1, .. ~y \:::...I: ..•. .r,;;\ .. "-..L.r - -- . 3V ov \~ -y !--t- tpHL 1 ! (me.UN at tn+2) I.-...ojtpLH : I ImaMura at t~+1) OUTPUT QA 1/ III ~ I I 1.3V 1.3V I I I j--oj- tpLH I I (me_ure at t n+4) --+------I~ I ' OUTPUT \.1.3V QB ~S I Dc I (measure at tn+2) 1,.3V . VOH - - - - - - - - :..-...r.. '---"- 'PHL I : hneasure at t n+8) OUTPUT "-= ::: . S fo-...I.. tpHL I IIr - - - " - ' - - ---;~-----:--....' { 1.3V I ~S: ~I lSee Note BI 00 1.3V r--r tpLH I I {measure at tn+S) VOH 11 - - - - - - - - I--t- tpHL I VOH _ _ _ _ _ _ VOL 1.3V S I . ~.3~ l---+- tpLH r---t- tpHL __+-_____;.-!.., I '~~~).ttn+10 OUTPUT VOL tpLH I (measure at tn+4) VOL (me_UN at t"+O or'tn+16) RIPPLE ~: ~ -ISee Note BI - •• CARRY 1 3V 1.3V OUTPUT • 1-1_ _ _ _ _ _ _ _ _ __ VOH VOL VOLTAGE WAVEFORMS NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR '" 1 MHz, duty cycle", 50%, Zout '" son: t r '" 15 ns, tf '" 6 ns. Vary PRR to measure f max • B. Outputs Qd and carry are tested at tn+1 0 LS160, LS162, and at tn+16 for LS161, LS163 where tn is the bit time when all outputs are low. TYPICAL APPLICATION DATA N-BIT SYNCHRONOUS COUNTERS I hiS application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit counter. The LS160 or LS162 will count in BCD and the LS163 will count in binary. Virtually any count mode (modulo-N, Nl-to N2, Nl·to-maximum) can be used with this fast look-ahead circuit. INPUTS r---A-----o. INPUTS· ,--J'I---.. INPUTS INPUTS r---A-----o. ~ LO A B C 0 LO A BCD LO ABC 0 LO ABC 0 HzCOUNT L=OISABLE EN P EN P EN P ENP H-COUNT L-OISABLE RIPPLE EN T CARRY OUTPUT RIPPLE ENT CARRY OUTPUT RIPPLE ENT CARRY OUTPUT RIPPLE EN T CARRY OUTPUT '--v--' '---v--' '---v--' '---v--' OUTPUTS OUTPUTS OUTPUTS TO MORE SIGNIFICANT STAGES OUTPUTS CLOCK-4_----------~----------~--------4_--------_+ 2-92 t;YTHEO}J 8-Bit Parallel-Out Serial Shift Registers LS164 PIN-OUT DIAGRAM FEATURES • Gated (Enable/Disable) Serial Inputs • Fully Buffered Clock and Serial Inputs • Asynchronous Clear LS164 ...'"g ... DESCRIPTION These 8-bit shift registers feature gated serial inputs and an asynchronous clear_ The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip-flop to the low level at the next clock pulse. A high-level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low. but only information meeting the setup requirements will be entered. Clocking occurs on the low-to-high-Ievel transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects. m 3 4 5 6 A B fiA fiB fiCfiDGND '--v-'~ f~:~ OUTPUTS 9LS/54LS devices are characterized for operation over the full military temperature range of _55°C to 125°C; 9LS/ 74LS devices are characterized for operation from O°C to 70°C. FUNCTION TABLES INPUTS OUTPUTS CLEAR CLOCK A B QA L X X X L QB···QH L L H L X X QHO t t t H H QAO H QBO H QAn QGn L X X L QAn QGn L L QAn QGn H H H = high level (steady state). L = low level (steady state) X = irrelevant (any input. including transitions) t = transition from low to high level. aAO. aBO. aHO = the level of aA. aB or aH. respectively. before the indicated steady state input conditions were established. QAn. QGn = the level of QA or QG before the most recent t transition of the clock; indicates a one-bit shift. TYPICAL CLEAR, SHIFT, AND CLEAR SEQUENCES CLEAR SERIAL INPUTS ~~--------------------~w~------ {A B CLOCK Q ~~------~----_+-__-.Jr------------i----, Q B :-:::, Qc~~~l OUTPUTS QD~-::-l Q E ~-::-::i ~"---_T_----~i....--+ _____ ~'-+----- r-Lrii....-____ Q _ __ i: F==: .l. __________---'!.....--.'.....+-_ Q G ---1 QH:==l CLEAR ~YTHEO]J ---Jr--L...r1'--___+-____ : ____ A ---..... r---1!--'_ _ _ __ ri..' _____ CLEAR 2-93 8-Bit Parallel-Out Serial Shift Registers LS164 (13) OUTPUT OUTPUT OUTPUT OUTPUT Qs QA Recommended Operating Conditions Qc OUTPUT QE QG Qo Min Supply voltage, Vee High-level output current, IOH Low-level output current, IOl Clock frequency, fclock Width of clock or clear input pulse, tw Data setup time, tsetup (see Figure 1) Data hold time, thold (see Figure 1) Operating free-air temperature, TA OUTPUT 9LS/54LS Nom Max 5 4.5 0 20 15 5 -55 5.5 -400 4 25 125 Min OUTPUT OUTPUT Q F QH 9LSf74LS Nom Max 4.75 5 0 20 15 5 0 Unit V 5.25 -400 8 25 /J. A mA MHz 70 ns ns °C ns Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter Min 9LS/54LS Typ" Max Vee=MIN, Vec=MIN, VIL =VILmax, Ver.-MIN, VIL =VILmax Vee-MAX, Vee-MAX, VOH VOL II IIH 11=-18mA VIH=2V, IOH=-400/J.A VIH-2V, 9LSf74LS Typ" Max 2 2 VIH VIL VI Min 0.7 -1.5 2.5 3.5 0.25 IIOL -4mA IIOL =8mA 0.8 -1.5 2.7 0.4 3_5 0.25 0.35 0.1 20 -0.4 VI-7V V I -2.7V VI-O.4V Unit V V V V 0.4 0.5 0.1 20 -0.4 V mA /J. A mA mA mA Vee=MAX, IlL -15 -100 -15 -100 Vee-MAX lost 16 16 27 27 Vee-MAX lee tt "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ""All typical values are at Vee = 5V, TA = 25'e. tNot more than one output should be shorted at a time. ttlee is measured with outputs open, serial inputs grounded, the clock input at 2.4V, and a momentary ground, then 4.5V applied to clear. Switching Characteristics, Vee Parameter Teat Conditions: CL f max tpHL tpLH tpHL Test Conditions: CL tpHL tpLH tpHL 2-94 I Min -55'C Typ = 5V Over Recommended Max Min +25'C Typ Max = 15pF, RL = 2kn (See Fig_ 1, page 2-95 and 25 36 24 38 17 30 21 35 = 2kn (See Fig_ 1, page 2-95 26 20 24 = SOpF, RL 29 23 27 42 34 39 27 20 24 Free-Air Temperature Range Min +125'C Typ Max Fig_ A, page 2-174) 36 26 38 27 20 30 32 24 35 and Fig. A, page 2-174) 40 31 36 Unit 29 23 27 42 34 39 MHz ns ns ns Note: AC specification shown ns ns ns. under _55°e and +125°e are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHEO:FJ a-Bit Parallel-Out Serial Shift Registers LS164 FIGURE 1 PARAMETER MEASUREMENT INFORMATION ~I II ~ tw(elear) """1 ,.---------.....,l.rJ'I------------- 3V CLEAR PULSE (;~~E:t~~~) I 1.3V 1 3V I "___ ..J _~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ OV 3V CLOCK PULSE GENERATOR (PRR ,,1 MHz) I I -----:-----OV _ k-- thold !,etup ~ SERIAL INPUTS A AND B PULSE GENERATOR (PRR,,1 MHz) I I k-I QA OUTPUT (See Note A) }V I I '------t----tpHL (See Note E) I I tpLH OV ~tpHLIE-- ,.------~tf--------------~'\l-~3~ VO H 1.3V \:VOl VOLTAGE WAVEFORMS NOTES: A. B. [§YTHEO]l QA output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence: Outputs are set to the high level prior to the measurement of tPHL from the clear input. 2·95 4-By-4 Register Files with Open-Collector Outputs LS170 PIN·OUT DIAGRAM FEATURES LS170 • Separate Read/Write Addressing Permits Simultaneous Reading and Writing • Fast Access Times ... Typically 20 ns • Organized as 4 Words of 4 Bits • Expandable to 1024 Words of n·Bits • For Use as: Scratch· Pad Memory Buffer Sto rage between Processors Bit Storage in Fast Multiplication Designs • Open·Collector Outputs with Low Maximum Off·State Current: .... 20MA 9 8 7 6 5 DESCRIPTION positive logic: see description The 'LS170 MSI 16·bit TTL register file incorporates the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on·chip decoding is pro· vided for addressing the four word locations to either write· in or retrieve data. This permits simultaneous writing into one location and reading from another word location. Four data inputs are available which are used to supply the 4·bit word to be stored. Location of the word is determined by the write·address inputs A and B in conjunction with a write·enable signal. Data applied at the inputs should be in its true form. That is, if a high·level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the Din· put is transferred to the latch output. When the write·enable input, GW, is high, the data inputs are inhibited and their :aVe:S cail cauSe no (;haflg~ in ih~ information stored in the internal latches. When the read·enable input, G R, is high, the data outputs are inhibited and remain high. Die Size .090 x .068 The individual address lines permit direct acquisition of. data stored. in any four of the latches. Four individual de· coding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read·enable signal, the word appears at the four outputs. This arrangement-data·entry addressing separate from data· read addressing and individual sense line-eliminates reo covery times, permits simultaneous reading and writing, and is limited in speed only by the write time (30 nanoseconds tYPical) and the read time (25 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed. LOGIC WRITE FUNCTION TABLE (SEE NOTES A, B, AND C) WRITE INPUTS WB L L H H X WA L H L H X READ FUNCTION TABLE (SEE NOTES A AND D) READ INPUTS WORD Gw 0 L L L L H O=D 00 00 O=D 00 00 00 1 00 00 00 OUTPUTS 2 3 RB RA GR 01 02 03 04 00 00 00 O=D 00 L L H H X L H L H X L L L L H WOBI W1Bl W2Bl W3Bl H WOB2 W1B2 W2B2 W3B2 H WOB3 W1B3 W2B3 W3B3 H WOB4 W1B4 W2B4 W3B4 H 00 00 O=D 00 00 NOTES: A. H = high level, L = low level, X = irrelevant. B. (0 = D) = The four selected internal flip·flop outputs will assume the states applied to the four external data inputs. C. 00 = the level of before the indicated input conditions were established. D. WOBI = The first bit of word 0, etc. a 2·96 ~YTHEO~ 4-By-4 Register Files with Open-Collector Outputs LS170 FUNCTIONAL BLOCK DIAGRAM 'LS170 -t__~__-+==:;===4==~======'-lF=J~) (11115~)bo____~__ D1- (1) D2 DATA INPUTS OUTPUTS (2) D3 GW WA .WB, WRITE INPUT r§VTHEo"EJ ---- (4) Ill) IS) RB GR RA READ INPUT 2-97 4-By-4 Register Files with Open-Collector Outputs LS170 Recommended Operating Conditions 9lS/74lS 9lS/54lS Min. Supply voltage, VCC 4.5 Nom. Max. 5 5.5 High·level output voltage, VOH low·level output current, IOl Width of write-enable or read-enable pulse, tw Min. 4.75 Nom. Max. Unit 5 'V 5.25 5.5 5.5 4 8 V mA 25 25 ns 10 10 ns 15 15 ns 15 15 5 5 Data input with respect to Setup times, high· or low·level data write enable, tsu(D) Write select with respect to write enable, tsu (W) Data input with respect to Hold times, high· or low·level data write enable, th(D) (see Note 1 and Figure 2) Write select with respect to write enable, th(W) 25 Latch time for new data, tlatch (see Note 2) 125 ns ns ns 25 -55 Operating free-air temperature range, T A , 70 0 ·C NOTES: 1. Write·select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, tsu(W) can be ignored as any address selection sustained for the final 30 ns of the write·enable pulse and during th(W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into. 2. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is im· portant only when attempting to read from a location immediately after that location has received new data. Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions t Parameter VIH High-level input voltage 9lS/54lS Min. vI :iij:iut ..:.lClIIIIJ vUitClge IOH High-level output current VCC = MIN, II =-18mA VCC = MIN, VOH = 5.5V, VCC = MIN, VIH = 2V, VIL = VIL max Input current at Any 0, R, orW maximum input voltage GR orGW Any 0, R, orW IIH High-level input current IlL Low-level input current IOL=4mA V 0.7 0.8 V -1.5 -1.5 V 20 20 0.25 Any 0, R, orW 0.4 IOL=8mA VCC= MAX, VI =7V VCC = MAX, VI = 2.7V VCC = MAX, VI = 0.4V Vcc = MAX, See Note 3 GR orGw ICC Supply current Typ;F Max. Unit mA VIL = VIL max, VIH = 2V VOL Low-level output voltage II Min. 2 2 VIL Low-level input voltage ... 9lS/74lS Typ;F Max. GRorGw 25 0.25 0.4 0.35 0.5 0.1 0.1 0.2 0.2 20 20 40 40 -0.4 -0.4 -0.8 -0.8 40 25 40 V mA mA mA mA tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. "'All typical values are at VCC = 5V, TA = 25·C. NOTE 3. ICC is measured under the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded, and all outputs are open. 2-98 t[AYTHEOEJ 4-By-4 Register Files with Open-Collector Outputs LS170 Switching Characteristics Vee = 5.0V Over Recommended Free-Air Temperature Range. Tut Conditions: -Ssoc From To (Input) (Output) Parameter RL = 2.0k, CL Read tPHL enable tPLH tpHL Read select Any Q tPLH Write enable Any Q Data Any Q tpLH 22 22 26 27 33 29 32 25 Any Q tpHL Tut Condition: RL = 2.0k, CL = 5OpF, Read tpLH tpHL enable tpLH tpHL Read select tpLH Write Data tpHL Min. Typ. +12SoC Max. Min. Unit Typ. Max. 20 20 25 24 30 25 30 22 34 34 44 44 49 44 49 39 30 30 40 40 45 40 45 35 23 23 28 27 33 28 33 25 34 34 44 44 49 44 49 39 35 35 45 45 50 45 50 40 27 27 32 31 37 32 37 29 39 39 49 49 54 49 54 44 ns ns n. ns (See Figs. 1 and 2 and Fig. B, psge 2-174) 27 27 32 31 37 32 37 29 Any Q Any Q Any Q tpHL tpLH +2SoC Typ. Max. = 15pF, (See Figs. 1 snd 2 snd Fig. B, psge 2-174) tpLH tpHL Min. Any Q 39 39 49 49 54 49 54 44 24 24 29 28 34 29 34 26 ns ns ns ns PARAMETER MEASUREMENT INFORMATION WRITE·SELECT INPUT WA or Ws (See Note Al DATA INPUT 01,02,03 or 04 (See Note AI WRITE· ENABLE INPUT GW READ·SELECT INPUT RA or RS (See Note B) .r-----\----------------3V g~,T6tQJor04iref \ . ._________ 1'---------oV ,~~~--------3V WRITE· ENABLE INPUT Gw ~~~~--------oV DA T A INPUT 01,02,03 or 0 4 _ _ 1'---J'-------------------3V f :":'::PL"":H:--- ~ Vref VOLTAGE WAVEFORM 1 / 1'-------3V ,,.-----oV I'---~'+------ 3V VOH OUTPUT Q1, 02, 03 or Q4 --;--;-::'P"":L-HJ DATA INPUT 01,02,03 or 04 VOLTAGE WAVEFORMS FIGURE 1 V::t \l.'' i-'v_"'-,--' 1,.---.--------oV READ· ENABLE -------~I INPUT GR ~ / • I---+l 'PLH 1'--+-J·~~~~--------3V / Vref VOLTAGE WAVEFORM 2 FIGURE 2 NOTES: A. High·level input pulses at the select and data inputs are illustrated in Figure 1; however, times associated with low·level pulses are measured from the same reference points. B. When measuring delay times from a read-select input, the read-enable input is low. When measuring delay times from the read-enable input, both read·select inputs have been established at steady states. C. In Figure 2, each select address is tested. Prior to the start of each of the above tests, both write and read address inputs are stabilized with WA ~ RA and Ws ~ RS. During the test GR is low. D. Input waveforms are supplied by generators having the following characteristics: PRR .;;; 1 MHz, Zout '" 50 n, duty cycle .;;; SO%, tr .;;; 15 ns and tf .;;; 6 ns. E. Vret ~ 1.3 V. ~YTHEO"EJ 2·99 LS174 Hex D-Type Flip-Flops With Clear LS175 Quadruple D-Type Flip-Flops With Clear PIN-OUT DIAGRAMS FEATURES • Positive edge-triggered common clock • Asynchronous common reset • Clock-to-output delays of 14 ns DESCRIF'TION. The LS174 is a six-bit register with single-rail outputs and the LS175 is a four-bit register with complementary outputs. Both consist of Ootype flip-flops with a buffered common clock and an asynchronous, active-Low buffered clear. Information at the 0 inputs meeting the setup time reQuirements is transferred to the Q outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the 0 input signal has no effect at the output. INPUTS Q ot x L H H H L H t L L H H L X Go aD 12 11 10 9 8 7 OUTPUTS D 14 13 16 3 Die Size .056 x .085 2 FUNCTION TABLE (EACH FLIP-FLOP) --_. _..CLEAR CLOCK L x H t 15 15 14 13 4 12 11 10 16 H = high level (steady state I L = low level (steady state) 5 234 x = irrelevant t = transition from low to high level 00 = the level of Q before the indicated steady state Die Size .056 x .085 input conditions were established. LOGIC DIAGRAMS t = !"li! 75 only LS174 6 LS175 CLOCK~9~1~J-----~--~------~--~------~~~~----~ 2-100 ~YTHEO]] Hex D-Type Flip-Flops With Clear LS174 .Quadruple D-Type Flip-Flops With Clear LS175 Recommended Operating Conditions Min Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Clock frequency, f clock Width of clock pulse, tw (Low) Width of clear pulse, tON (Low) 4.5 I Data input tsetuD ]Clear recovery, tree Setup time Data hold time, thold Operating free-air temperature, TA 9LS/54LS Nom Max 5 0 15 20 10 12 5 -55 5.5 -400 4 35 125 9LSI14LS Min Nom Max 4.75 5 5.25 -400 8 35 0 15 20 10 12 5 0 70 Unit V J1A rnA MHz ns ns ns ns ns °c tsetup is the minimum time required for the correct logic level to be present at the data input prior to the rising edge of the clock in order to be recognized and transferred to the output. thold is the minimum time required for the logic level to be maintained at the data input after the rising edge of the clock in order to insure recognition. tree is the minimum time required between the end of the clear pulse and the rising edge of the clock in order to transfer High data to the Q output. Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions· Parameter VIH VIL VI Min 9LS/54LS Typ·· Max Min 9LSI14LS Typ·· Max 2 2 0.7 -1.5 11=-18mA 0.8 -1.5 II IIH Vee=MIN, Vee=MIN, VIL =VILmax, Vee-MIN, V IL =VILmax Vee=MAX, Vee-MAX, VI=7V VI=2.7V 0.1 20 0.40 0.5 0.1 20 IlL Vee=MAX, VI=O.4V -0.4 -0.4 VOH VOL VIH=2V, IOH=-400J-lA VIH-2V, 2.5 3.5 0.25 IIOL =4mA IIOL =8mA 2.7 0.4 3.5 0.25 0.35 Unit V V V V V rnA J-IA rnA -15 -15 -100 -100 rnA LS174 16 26 16 26 Vee=MAX rnA LS175 11 18 11 18 I "For conditions shown as MIN or MAX, use the approproate value specIfIed under recommended operating condItions for the applicable device type. ""All typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. ttWith all outputs open and 4.5V applied to all data and clear inputs, ICC is measured, after a momentary ground, then 4.5V is applied to clock. lost lee tt Vee=MAX I .. ~YTHEC!aJ 2-101 LS174 Hex D-Type Flip-Flops With Clear LS175 Quadruple D-Type Flip-Flops With Clear Switching Characteristics, Vee = 5V Over Recommended Free-Air Temperature Range Parameter From (Input) _55°C To (Output) Min. Typ. +25'C Max. Min. Typ. +125'C Max. Min. Typ. Units Max. Test Conditions: C L = 15pF, RL = 2k!1 (See Figure A on page 2·174) f max tPLH maximum clock frequency clear 35 45 MHz Q 19 25 19 25 25 31 ns Q 23 29 19 25 22 27 ns '(LS175 only) tpHL clear (LS175 only) tpLH clock QorQ 14 20 13 17 14 19 ns tpHL clock QorQ 16 23 13 18 13 18 ns Test Conditions: C L = 50pF, RL = 2k!1 (See Figure A on page 2-174) tpLH tpHL clear Q 21 27 '22 27 28 35 ns Q 25 33 23 28 25 30 ns (LS175 only) clear (LS175 only) tpLH clock QorQ 16 22 15 19 17 21 ns tpHL clock QorQ 20 28 17 23 17 22 ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. 2·102 ~YTHE~ 4-Bit Arithmetic Logic Unit LS181 Subtraction is accomplished by 1's complement addition where the 1 's complement of the subtrahend is generated internally. The resultant output is A-B-l which requires an end-around or forced carry to provide A-B. FEATURES • Provides 16 arithmetic operations • Provides 16 logic operations • Fulliook-ahead for high-speed arithmetic operation on long words The LS181 can also be utilized as a comparator. The A = B output is internally decoded from the function outputs (Fa, Fl, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU should be in the subtract mode with Cn = H when performing this comparison. The A = B output is 'open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C n +4) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs, S3, S2, Sl, SO at L, H, H, L, respectively. DESCRIPTION The LS181 is an arithmetic logic unit (ALU)/function generator which has a complexity of 75 equival~nt gates on a monolithic chip_ This circuit performs 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (SO, Sl, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying ~ low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. Wh~n used in conjunction with the 182, full carry ahead look-ahead circuits, high-speed arithmetic operations can be performed. INPUT If high speed is not of importance, a ripple-carry input are available. However, the ripple-carry delay has also been minimized so that arithmetic manipulations for small word lengths can be performed without external circuitry. \ ~ The Lsi81 will accommodate active-high or active-low data if the pin designations are interpreted as follows: PIN NUMBER 2 Active-low data (Table 1) AO Active-low data (Table 2) AO OUTPUT Cn +4 ACTIVE·HIGH DATA ACTlVE·LOW DATA (FIGURE 11 (FIGURE 21 A;>B H H H L A"B A>B L H AB L L A;>B A"B A J (21) ...--.. J B1 !.ill H> ~ if- I A1 .!!L i HL tpLH tpHL tpLH tpHL Load Data A,B,C,D °A,OB,OC,OO Clock Ripple Clock Clock OA,OB,OC,OO Clock Max/Min Down/Up Ripple Clock Down/Up Max/Min Enable Ripple Clocl~ 28 39 2u 41 19 22 22 30 34 43 36 42 59 31 61 29 33 33 45 51 61 ~6 fi4 27 28 27 28 42 43 42 43 54 25 36 17 '38 16 19 19 27 31 40 33 33 24 25 2425 I Unit MHz 25 37 33 22 tpLH 25 Load OA,OB,Oc,OO 36 54 33 50 tpHL 36 14 LL tpLH 17 17 26 Data A,B,C,D °A,OB,Oc,OO 38 56 35 50 tpHL 38 16 24 13 20 tpLH 16 Ripple Clock Clock 19 28 16 24 tpHl 19 19 28 16 24 tpLH 19 Clock OA,OB,OC,OO 27 24 40 36 tpHL 27 31 28 42 46 tPLH 31 Max/Min Clock 40 37 52 56 tpHL 40 30 45 33 49 tpLH 33 Down/Up Ripple Clock 30 45 33 49 tpHL 33 33 21 24 tpLH 37 24 Down/Up Max/Min 22 33 25 tpHL 38 25 21 33 24 tpLH 37 24 Enable Ripple Clock 22 33 25 tpHL 38 25 Teat Condltlona: Cl = SOpF. Rl = 2kO (See FIg. 1 thru 7 on pages 2-115 and 2-116 and Fig. A on page 2-174), tpLH tpHL IPLH tpHL tPLH tpHL tpLH tpHL tpLH tpHL tpLH Max 37 04 26 54 24 28 28 40 46 56 49 49 37 37 37 37 28 39 20 41 19 22 22 30 34 43 36 36 27 28 27 28 37 54 26 56 24 28 28 40 46 56 49 49 37 38 37 38 42 59 31 61 29 33 33 45 51 61 54 54 42 43 42 33 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. 2-112 ~YTHE~ Synchronous BCD Decade Up/Down Counter LS190 Synchronous 4-Bit Binary Up/Down Counter LS191 LOGIC DIAGRAM LS190 -.. -.. . CLOCK~--------------------------------' DOWN/UP (5) -'~ I » r---i ..-----tv~rj:;;;:~~~~[) rP-~ ,,1>-_---'("-'13;;.:...) RIPPLE CLOCK (12) MAX/MIN >-----+-~~------'-'=- OUTPUT DATA~(1~5~)~+-1_______-+-~~~-~~-r~ INPUT A JJJH~----+-+---'A ~- r--. ENABLE G (,:::.4)~+-----H--+-+-+--+--+-I---- --+----... .TI--r--.r--. - - ~RESa~t--.......(_3) OUTPUT OA ~ ~ CK __ K QA CLEAR '( ~ F DATA ~(1~)_ _ _-4-+--+-~~--+-~_+_~~ INPUT B J '- - r--r- :RES~~t----"(2=-) OUTPUT OB ~>CK - '-- K QBr--. CLEAR- UlH!~~h~~~i-tf)~~J DATA ~(1~O~)_ _ _-+-+-~-+--+-~-+~-+-~r-~ INPUT C I }:J>-+---.----+---,,\ ...-,~~-H_±~----t- ~RES~~ ~~>+----. ~~CK ->--- U-l----t-~-l--t:+=~:::t.~ (6) 'OUTPUT Oc - r - ~LEA9f- ? DATA ..:.19..:.)_ _ _-+-+--+-H_+~+_H_+--~~ INPUTD - 1 I~ '-~--.-----+---, '- ---i r-- - , PRESET (7) J. 0Dt--...-:'-'- OUTPUTOD --<:>CK '-- K QDr--. CLEAR (11) LOAD nJr---.. J. >-__+-__-+--+-_____________---t__ ~I ::-{ -- ~YTHE03'l 2-113 LS190 Synchronous BCD Decade Up/Down Counter LS191 Synchronous 4-Bit Binary Up/Down Counter LOGIC DIAGRAM LS191 CLOCK (14) DOWN/UP - (5) I r--' pJ>-_-.--;1c.;.;13;.;..) RIPPLE CLOCK > - _ 4 4......_ _ _--..,....;1c.;.;12...;..) ,MAXIMIN OUTPUT D~TA .:.:11c;:.5:. . )H'-----iH+-+-HH+-."" ~_ I )>1~---++---'A INPUT A ~ r--ENABLE G, -,-,14,,-)+-.----I-+-+-t--f-+_+_+-t--f-RESE1 t--......~13:....) ,OUTPUT QA J QA ~>--_+_---~ ~ ~ CK '-f-- ~LE~t f-- Y DATA (1) ~ INPUT B --'---·--~-++-+-1f--+-++-+-1~-I,--' ----- r- - J 1 ~RES~~ (2) OUTPUT QB ~~CK '-_ K QB CLEAR' - ~++++~~~------~r-~J) DATA INPUTC I 1~1~D)----H-+++-H-+~+-~-.I'~~__1I__-t~;;,~~ .I - r - rRES~ ~-.:.::16,,-) ,OUTPUT Dc ~~CK -- ~LEA~~ V DATA INPUT D (=9:....)----iH+-+-H-++-+-H--r~ ...../'"»---......---+---,1 I ~ ---t (11) LOAD 2-114 >-__~~~______________~~~J -f-- ~RES~~r---+-(7)~ OUTPUT QD L-c~CK - K..._.QDf-~AR J ~YTHEO:?J Synchronous BCD Decade Up/Down Counter LS190 Synchronous 4-Bit Binary Up/Down Counter LS191 LS190 TYPICAL LOAD, COUNT AND INHIBIT SEQUENCES Illustrated below is the following sequence: 1. 2. 3. 4. Load (preset) to BCD seven. Count up to eight, nine (maximum). zero, one, and two. Inhibit. Count down to one, zero (minimum). nine, eight, and seven. LOAD~ I I A..J DATA INPUTS iL. _ B..J IL.. - C..J IL.. _ D r- - _ - CLOCK DOWN/UP! ENABLE! , ----rl I Ii ----:nI~i---------------------~------~~~---------------~r C ___ ~ Q B ___ Q ~ I~' __________________ ~ L L..UI' ---, QD ____ I I MAX/MIN :::J :: I, I, RIPPLE ----I I I CLOCK ___ ..J I I : 7 118 I U 9 I 0 1 2 II--COUNT UP--+INHIBIT.J 2 11 u 0 9 8 7 I--COUNT DOWN---I ~ LOAD ~YTHEO]J 2-115 Synchronous BCD Decade Up/Down Counter Synchronous 4-Bit Binary Up/Down Counter LS190 LS191 LS191 TYPICAL LOAD, COUNT AND INHIBIT SEQUENCES Illustrated below is the following sequence: 1. 2. 3. 4. Load (preset) to binary thirteen. Count up to fourteen, fifteen (maximum). zero, one, and two. Inhibit. Count down to one, zero (minimum), fifteen, fourteen, and thirteen. LOAD-U , , r-+---.:..., -'L-_ A ~ , :[= , , C ~- -': :L-_ , o-1: r-:--7"1 - ;L-_ B DATA INPUTS I I I DOWN/UP-'~~~______________~ ,, " ENABLE:-1I~~~ __________~ ,' '-+1~ ,i------., QB - -, ___ Qc QD MAX/MIN ::J ::J I', . L '----~. ,, ,," ,, ,, ,' , I =-=J ::, , n RIPPLE - --'I-L.:'' - - - - , CLOCK -- -: :: ,13, ,14 U 15 n '-------0 1 2 "U 0 15 2,2, 1 U~COUNT UP -4INHIBIT~ 14 13 l--COUNT DOWN--I LOAD 2·116 ~YTHE03l Synchronous BCD Decade Up/Down Counter LS190 Synchronous 4-Bit Binary Up/Down Counter LS191 PARAMETER MEASUREMENT INFORMATION DATA J 0_N-S---'::-910"'.%3""'--'V~' --,:'~-1-0~%"0-~S_ - - - - - 30VV INPUT •• • _ .,/'",'","=1 (SEE NOT~ 1~~ LOAD INPUT (SEE NOTE Al I~ :'-'-';".tse "~tu~pc-__ tsetup":"'-"': 1.3V' 10% 1.:W'" 90% 3V 10% __ ~ _______ OV --! ,'-"10NS ~::: OUTPUT FIGURE l-DATA SETUP TIME VOLTAGE WAVEFORMS "10NS-<..... INPUT (SEE NOTE Al 10% See waveform sequences in Figures 4 through 7 for propagation times from a specific input to a specific output. For simplification, pulse rise times, reference levels, etc., have not been shown in Figures 4 through 7. --' .r.=-:--::::=~'_ i.-"10NS -: - - - - - - -·3V I I ~1;.;0%;;;;..._ _ _ OV ,..-_ _ _",\;- - - - - - VOH NON INVERTING OUTPUT 1 , ,....tPHL.., FIGURE 2- GENERAL VOLTAGE WAVEFORMS FOR PROPAGATION TIMES 1 i INVERTING OUTPUT VOL 1 ,....tPLH.~i \1.3V VOH 1.3V/ ,...tPHL.., ~.- - - - - ' - - - - - - VOL NOTES: A. The input pulses are supplied by generators having the following characteristics: Zout ~ 50n, duty cycle" 50%, PRR " 1 MHz. LOAD ,, , ~~------------------ ANY DATA INPUT _ _ _ _ _ _ _ _..J CORRESPONDING ____-:_- a OUTPUT ,, _-_'LI___-'-~I ' tPLH ~ , :... --'I I I :-tPHL NOTE 8: Conditions on other inputs are irrelevant. FIGURE 3-LOAD TO OUTPUT ANP DATA TO OUTPUT LOADU L- DOWN/UP I I CLOCK ENABLE G I 1 I --l I- : --l :- tpLH tpHL RIPPLE C L O C K - - - - - - - - - - - - " -........""!.I_ _ _..JI tpHL --l...... --l:- tpLH : --___:!-'I --1 ...... ---==-rL tPLH.......,.M A X / M I N - - - - - - - - - - - - - - - , I;NOTE ~YTHE~ c: tpHL All data inputs are low. FIGURE 4-ENABLE TO RIPPLE CLOCK, CLOCK TO RIPPLE CLOCK, DOWN/UP TO MAX/MIN 2·117 Synchronous BCD Decade Up/Down Counter r Synchronous 4-Bit Binary Up/Down Counter LS190 LS191 PARAMETER MEASUREMENT INFORMATION (Continued) U LOAD:---U DATAINPUTS:- - - - - - - - - -....- - - - - - - - - - - - - - - ( S E E N O T E S G T O I l - - - - - - - - - - - - - - - - J1 - - - DOWN/UP ~ U COUNT I I OUTPUT(S) __ -, - ; r~_t_P_L;.;H_ _ _ _ _ _ _ _ __i.I___l:- tpHL UNDER TEST ___ ,-'_ _ _ _ _ _~. IL._ _ _ _ _ _ __ ENABLE = LOW F. to test OA, OB, and Oc outputs of LS190: Data inputs A, B, and C are shown by the solid line. Data input 0 is shown by the dashed line. G. To test OD output of LS190: Data inputs A and D are shown by the solid line. Data inputs Band C are held at the low logic level. H. To test OA, 0B, 0C, and OD outputs of LS191: All four data inputs are shown by the solid line. FIGURE 5-CLOCK TO OUTPUT u LOAD--U DATA A DAT~:fN~~~~----------------J1 _________ _ DOWN/UP COUNT l::!---JI:- tpLH ld I MAX/MIN_ _ _ _ _ ENABLE = LOW NOTE I: Data inputs Band C are shown by the dashed line for the LS190 and the solid line for the LS191: Data input D is shown by the solid line for both devices. FIGURE 6-CLOCK TO MAX/MIN 2-118 ~YTHEO]J Synchronous BCD Decade Up/Down,Counter LS192 Synchronous 4-Bit Bin~ry Up/Down Counter LS193 FEATURES • • • PIN-OUT DIAGRAM Separate clock inputs for count-up, count.down Asynchronous parallel load and clear Cascadable DESCRIPTION These monolithic circuits are synchronous reversible (up/down) counters having a complexity of 55 equivalent gates. The LS192 is a BCD counter and the LS193 is a 4-bit binary counter. Syn v COUNT °At---<__ciA INPUT C 1(1~)------~1Ol:~~~~~~§E~~U [1--1".1. ~ r-(2) ~BI----1~- OUTPUT OB -~O~) Ji~~;;;~~'------:~P.t~D=§EJ~J~ (1 ~ __ DATA INPUT D - (6) n - '-----1-- OUTPUT Oc ~.---T b~ ((9~)~----~iWJ£~~~~~==][~~ '" :-f- J (14) CLEAR ~=F~~~~ 2-120 r'- r1. . / ,,",++-+Hi::~::!:::::1~ ..... ~ - LOAD ~ OUTPUT OA ~~ ~ DATA OUTPUT (11) J'o>. y (7) OUTPUT OD 1»-_-- ~ - ~YTHEO!) Synchronous BCD Decade Up/Down Counter LS192 Synchronous 4-Bit Binary Up/Down Counter LS193 LOGIC DIAGRAM LS193 (13) BORROW OUTPUT (12) DATA INPUT A (15) DOWN COUNT (4) UP COUNT DATA INPUT B ~ (""L../ " X> (5) rL--" I I (10) ~ ..r-\. Ir\. ../ CLEAR LOAD ~YTHEO!J (11) J'oo. ---v OUTPUT QB If * (6) OUTPUT Dc T n (14) (2) T C=¢o (9) DATA iNPUT D bQ ~ D DATA INPUTC OUTPUTQA T b (1) (3) CARRY OUTPUT bH ...f"""'. =-k I r1---' ~ ~ (7) OUTPUTQD T hJ] 2-121 LS192 Synchronous BCD Decade Up/Down Counter LS193 Synchronous 4-Bit Binary Up/Down Counter Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Test Conditions· Min 9LS/S4LS Typ·· Max Vee-MIN, Vee=MIN, V IL =VILrnax, Vee=MIN, VOH VOL 11-- 18 VIH-2V, IOH=-400pA VIH=2V, VIL =VILrnax VI-7V Vee-MAX, VI-2.7V Vee-MAX, VI-O.4V Vee-MAX, Vee-MAX Vec-MAX II IIH IlL lost lee tt 9LS/74LS Typ·· Max 2 2 VIH VIL VI Min 0.7 -1.5 2.5 3.4 0.25 IIOL =4rnA 0.8 -1.5 2.7 0.40 3.4 0.25 0.35 IIOL =8rnA 0.1 20 -15 19 .. -0.4 -100 34 -15 19 Unit V V V V 0.40 0.5 0.1 20 -0.4 -100 34 V rnA pA rnA rnA rnA "For conditions shown as MIN or MAX, use the appropriate value specIfIed under recommended operating conditions for the applicable device type . • 'All typical values are at Vee = 5V, TA = 25 C. tNot more than one output should be shortad at a time. ttlec is measured with all inputs grounded and all outputs open. Q - Switching Characteristics, V'cc -- 5V Over Recommended Free Air Temperature Range From (Input) Parameter Test Conditions: CL - 15pF, RL - SsoC To (output) 2k!l Min +2SoC Typ Max 19 18 18 18 27 33 29 31 24 29 28 28 28 42 Min Typ 25 32 17 16 16 16 25 31 27 29 22 +12SoC Max Min Typ Max 19 18 29 28 28 28 42 51 44 44 I Unit (See Fig. 1 and 2) f max tpLH Count·up Carry tpHL tpLH Count-down Borrow tpHL tpLH Q Either Count tpHL tpLH Q Load tpHL -:'-'c - -Q Clear tpHL Te.st Conditions: C~'- SOpF, RL - 2k!l (S.8 Fig. 1and 2) 51 44 44 39 MHz 26 24 24 24 38 47 40 40 35 18 18 27 33 29 31 24 39 ns ns ns ns ns MHz tpLH tPHL tpLH tpHL tpLH tpHL tpLH tPHL tpHL Count-up Carry Count-down Borrow Either Count Q Load Q Clear Q .. o 23 22 22 22 31 34 32 32 32 47 37 33 35 28 56 49 49 44 21 20 20 20 29 34 31 33 26 31 30 30 30 43 51 44 45 40 23 22 22 34 22 31 32 32 32 47 37 33 35 28 56 49 49 44 ns ns ns ns ns 0 Note: AC specification shown under -55 e and +125 e are for 9LS devices only. All 50pF specifications are for 9LS only. 2-122 ~YTHEOE) Synchronous BCD Decade Up/Down Counter Synchronous 4-Bit Binary Up/Down Counter PARAMETER ME~~l,I~EMENT LS192 LS193 INFORMATION OUTPUTS ~ QD Dc DaQA Vee OATA PULSE GENERATOR r-----------------, I IlI'£N CARRY fSMNotwtA) I OPEN I I I Rl QA CLEAR PULSE GENERATOR 1800 N... AI I (See Note C) Da I T-=- Dc 00 LOAD PULSE -=- I I 1800 Note BI I -=- I L _____ ..!-!!~~~~~'_ _____ J LOAD GENERATOR ISoo N... AI Cl I I r-----:~;~~;~------~ L _____ ~=.!s~!:':~ J ':" _____ 1"'-------------------. LOAD CIRCUIT 2 I L _____'!'::.~~~c:.~I_____ : r----------------~ LOAD CIRCUIT 4 I L ____ ~'::.L!.ad.::i:u!.1!.. ____ ~ t, CLEAR -+! l-- -l I- I I I iI Jf90%90%~t----------------------------1.3V ~ I LOAD INPUT Q I+- tf 1_0%...,.~"'\""!.;~~~%-----------9~10~.~!"'!i;V~~o:- ___ tpHL I+- I ____, I OUTPUT --.I : ~~:UP---l~ ---i-1----..9....0%"""!i.~ 1.3~ 90% -+I W P -+I ~ t, ---:io l 3V .. ,_;,;l;,;;O,;,;%~_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ I DATA INPUT TEST CIRCUIT tf ~10% I 10%_ -..I I4--tPLH ~ 1.3V II4- ------------. :: I.-- 's.tup " I' ~-! lrio/~V ""=;-+--,-, - - --- t, -, -, ;/I ·~9~O::::%----- *-'PHL 14- 1.3V I .1. _____ ~ 3V OV VOH VOL VOLTAGE WAVEFORMS NOTES: A. The pulse generators have the following characteristics: Zout = 50n and for the data pulse generator PRR 50%; for the load pulse generator PRR is two times data PRR, duty cycle = 50%. B. CL includes probe and jig capacitance. C. Diodes ~re 1 N3064. D. tr and tf " 7 ns. FIGURE 1 - ~YTHE03l < 500KHz, duty cycle = CLEAR, SETUP, AND LOAD TIMES 2-123· LS192 Synchronous BCD Decade Up/Down Counter LS193 Synchronous 4-Bit Binary Up/Down Counter PARAMETER MEASUREMENT INFORMATION (Continued) OUTPIITS ,..----J'----.. Do "c "'0A 4V CARR. _ROW Ir--------------~ RL I 01=.011 _ _ AI I _ROW A .,. °A 11 D "c eU"R Do I I II TCL,... _ 0 1 I .". CA"IIIY I ,,,_CI ':" I • I IL _______________ ~I I ! LOAD CIRCUIT 1 ..~-----::;:~;----, ____ ____ l LOAD .:.s:.-.::."!~::~ r-----7o:O-c:;:,;]-----, ' - - - - - I.. ____ :=:.!;~:=,~ ___ .. J ,"'. ...------::.:co;;::;4------ 1 !.s.=; ~o: '!C:'~ ____ J ' - - - - - - IL _ ___ '--____-1r----------------, LOAD C'RCUIT 5 • L._.__ :=:!;.~~c:~ ____ .J lOAO CIRCUIT. I ~----------------~ '--_ _ _ _ _; ' '-___ !.s.=:~;:='! __ __ J TEST CIRCUIT .I......I~I--., COUNT. UP "' INPUT (Soe Note 0) 1 J90%~Ll_lln~ ~ ~~.;-., ~1.3V\.:!/ I l' - - - - '\.!../~~~ ~ 8 9 ' I I I r-- 'PLH -+t OUTPUT I --I ''!1 I+'PHL I f:! k-'PLH 'PHL COUNT DOWN INPUT (Se. No.e D) OUTPUT QD (See Not. E) I I :! "E ~:: Qo _ _ _ _ _ _ _ _ _ _ _..J f1.3V (S.e No.e E) CARRY OUTPUT ----------------------------------------------~~LFI I I VOH 1.3V - - - VOL 1.3V '1 -+I ~ J.+.." ':'-2' - II ~~---3V ~ T - - - - ov 1 90% 10% 8 - 1.3V 9 15 1.3V 16 I I -1 I r-'PHL -----------~I \ i I 1.3V I~ !--'PLH ,I 1.3V 71 1.3v ."""'-------~-~-r-- I ~ 'PHL~ BORROW OUTPUT 3V OV VOL TAGE WAVEFORMS I VOH V OL r-'PLH I 1.3V~ ::: NOTES: A. The pulse generator has the following characteristics: PRR .. 1 MHz, Zout = 50n, duty cycle = 50%. B. CL includes probe and jig capacitance. C. Diodes are 1 N3064. D. Count·up and count·down pulse shown is lor the LS193 binary counter. Count cycle for LS192 decade counter is 1 through 10. E. Waveforms for outputs QA, QB, and QC are omitted to simplify the drawing. F. tr and tl .. 7ns. FIGURE 2-PROPAGATION DELAY TIMES 2·124 ~YTHEO!1 Synchronous BCD Decade Up/Down Counter LS192 Synchronous 4-Bit Binary Up/Down Counter LS193 TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES LS192 Illustrated below is the following sequence: 1. 2. 3. 4. Clear outputs to zero. Load (preset) to BCD seven. Count up to eight, nine, carry, zero, one, and two. Count down to one, zero, borrow, nine, eight, and seven. CLEAR U LOAD r - - :I -I - - - . , , - - - - - - - - - - - - - - - - - ''-- _____ ----------I r--:--..,.---,,- - - - - - -- - - - -- - --- '-----------------I ~================ I COUNT UP COUNT _--,-__.,..'....IC I I I I I I I I I I I I I I I I ======== ======== ~l:: ==~r-:-'-.,-,~-----~ '--_____:---;-____ ac I I I QD= --, I I I I I I " I I CARRY I I I ~ I I U I BORROW-~,~,-~,~,-~,--------~,-~,---,LJ 101 I ---'11 ~ 171 SEQUENCE ILLUSTRATED ~ ~ CLEAR PRESET 9 ~ COUNT0UP~2 I I 9 8-?i ~ COUNT 0 DOWN NOTES: A. Clear overrides load, data, and count inputs. B. When counting up, count·down input must be high; when counting down, count·up input must be high. ~YTHE~ 2-125 Syn8h~onous BCD Decade Counter Synchronous 4-Bit Binary Up/Down Counter LS192 LS193 TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES LS193 Illustrated below is the following sequence: 1. 2. 3. 4. Clear outputs to zero. Load (preset) to binary thirteen. Count up to fourteen, fifteen, carry, zero, one, and two. Count down to one, zero, borrow, fifteen, fourteen, and thirteen. U I 1 ....--'-:----;,----------------- I~ _ _ _ _ _ - - - - - - - - - - 1 ~--------------- --:--:--.:.....;'----------------- c================ c================ 1 1 1 1 I 1 I OUTPUTS{::= 1 . . ;~- ; - L• . -'--'--' Clc=~ 1 1 1 QD = ~r-c--'------:"' 1 1 1 1 CARRY BORROW SEQUENCE ILLUSTRATED 1 101 Q 1 l13J ~<:T ---J u 1 I 1 1 1 ___-'---:-__ 1 1 ~4 COUNT 15 0 ~2 UP 11 r- u "I 0 15 14 COUNT DOWN--, NOTES: A. Clear overrides load, data, and count inputs. B. When counting up, count-down input must be high; when counting down, count-up input must be high. 2-126 ~YTHEO]J 4-Bit Universal Shift Register LS194A PIN-OUT DIAGRAM DESCRIPTION This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right·shift and left· shift inputs, operating·mode·control inputs, and a direct over·riding clear line. The register has four distinct modes of operation, namely: Parallel (broadside) load Shift right (in the direction C A toward CD) Shift left (in the direction CD toward CA) Inhibit clock (do nothing) 7[!J CLR SHIFT ABC 0 SHIFT GNO RIGHT~LEFT SERIAL PARALLEL SERIAL INPUT INPUTS INPUT Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, SO and S1, high. The data are loaded into the associated f1ip·flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited. 16 10 Shift right is accomplished synchronously with the rising edge of the clock pulse when SO is high and S1 is low. Serial data for this mode is entered at the shift.right data input. When SO is low and S1 is high, data shifts left synchronously and new data is entered at the shift·left serial input. Clocking of the flip·flop is inhibited when both mode control inputs are low. 9 2 8 Die Size .067 x .082 FUNCTION TABLE ._- INPUTS CLEAR ~ CLOCK SERIAL OUTPUTS PARALLEL QB Qc Qo X L -L L L X X QAO d a QBO b QCO QOO e X X X H QAn QBn QCn X X X X L QAn QBn aCn aDn H B ~ 0 X X X X X X X X X X a b f X H X t X L so LEFT RIGHT L X X X X H X X L H H H t H L H H L H H = high level (steady state) QA A Sl e H H L f H X X X X X aBn aCn H H L f L X X X X X aBn aCn DOn H L L X X X X X X X QAO QBO LOGIC DIAGRAM QCO d L QDO L = low level (steady state) X = irrelevant (any input, including transHions) t = transition from low to high level a, b, c. d = the level of steady'state input at inputs A, B, C, or D. respectively. eo, 2Q.. = the- level of A• B, e• or A., respectively, before the indicated steady-state input conditions were established. A" OBn. Oen. ODn = the level of OA' Oa. e• respectively. before the most-recent t transition of the clock. a.., a... a a a a a a PARALLE,L INPUTS 'A 131 B 141 C 151 D' 161 MODE {Sl 1101 CONTROL _191 INPUTS sO'={»-r---t--trn-,j-----1l-lhbn---t-it-tht----t-tht-,1 SHIFT ~~~~~ _1"'21'--_-, Ilr-Ht--.p71 S~~~;L SERIAL INPUT INPUT CLOCKI~l~llC»----_+-r-+---~~~r---~_t~r_-~ CLEAR~lC»---_ _ _~~~--~~b..._--~~~._--~ \121 QD , PARALLEL OUTPUTS [EAYTHEO]J 2·127 4-Bit Universal Shift Register LS194A TYPICAL TIMING SEQUENCES CLOCK C:~~~Lr~:~~'jl;J!:::::::::ij:======s;;;;;;;~ lS1::~ i INPUTS ,.~~~~~i~______~~______~____~-+_ OATA ic~~!~------~~------~-------+,~: INPUTS {:A::ti-Ln OUTPUTS . aa:::L...LJ---Ls--, Oc'.:~ , : '----c-+----..I ao::i;' i i i--SHIFT RIGHT-i CLEAR LOAO , r-+-----i LEFT i--SHIFT Recommended Operating Conditions Min 4.5 Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Clock frequency, fclock Width of clock or clear pulse, tw Mode control Serial and parallel data Clear inactive-state Setup time, t setup Hold time at any input, thold Operating free-air temperature, TA 9LS/54LS Nom Max 5 0 30 30 16 18 0 -55 5.5 -400 4 30 125 Min 4.75 9LS/74LS Max Nom 5 0 30 30 16 18 0 0 5.25 -400 8 30 70 Unit V JlA mA MHz ns ns ns ns ns °C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter VIH VIL VI VOH VOL II IIH IlL lost lee tt Min 9LS/54LS Typ" 9LS/74LS M@~ 11--18mA VIH-2V, IOH=-400JlA VIH=2V, Typ** 0.7 -1.5 2.5 IloL=4mA IIOL =8mA !!e~ 2 2 Vee=MIN, Vee-MIN, VIL =VILmax, Vee=MIN, VIL =VILmax Vee=MAX, Vee-MAX, Vee-MAX, Vee=MAX Vee=MAX Mh'! 3.5 0.8 -1.5 2.7 0.25 oAo 15 0.1 20 -0.4 -100 23 3.4 0.25 0.35 VI=7V VI-2.7V VI-O.4V -15 -15 12 Unit V V V V 0.40 0.5 0.1 20 -0.4 -100 23 V mA JlA mA mA mA 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "All typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. ttWith all outputs open, inputs A through 0 grounded, and 4.5V applied to SO, 51, clear, and the serial inputs, lee is tested with a momentary GND, then 4.5V, applied to clock. 2-128 r§YTHEO]J 4-Bit Universal Shift Register LS194A Switching CharacteristiCS, Vee =5V Over Recommended Free-Air Temperature Range -sS"C Parameter Min Test Conditions: C L = Typ = 1SpF, RL Max I I 30 27 14 18 tpLH tpHL _Test Conditions: CL - 50pF, RL = tpLH tpHL Min Max 40 24 11 15 34 22 26 Unit Typ Mex 27 14 18 34 22 26 ns ns ns 31 18 22 39 27 31 ns ns MHz 30 18 22 2kll (~Fi_g. below) . _.. ". -- _.- 28 15 19 39 27 31 31 18 22 tpHL I Typ 2kO (See Fig. below) f max tpHL +12SOC +2S"C Min 36 23 27 ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9 LS onlv. PARAMETER MEASUREMENT INFORMATION TEST TABLE FOR SYNCHRONOUS INPUTS OUTPUT DATA INPUT FOR TEST S1 SO OUTPUT TESTED (SEE NOTE EI FROM A 4.5V 4.5V OUTPUT--~~t-e-~-I'-~, B 4.5V Os at tn+1 UNDER TEST C 4.5V 4.5 V 4.5V Oc attn +1 LOAD FOR OUTPUT UNDER TEST ___""""\ I· CLEAR 'I 0 4.5V 4.5V L Serial Input 4.5V OV QA at tn+4 R Serial Input OV 4.5V 00 at tn+4 at tn+1 3V _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ OV : ~1setup I tn I tn+1 r- tn+1 (See Note F) tn P ~. I ---3V CLOCK 1.3V ~ ' - _ _ _ _J OUTPUTQ QO tw(clear) 1.3VU~=-,, 1 DATA INPUT (SEE TEST TABLE) QA at tn+1 tttoid tUPI-I ~ _~~ I 1.3V I 1 1 OV 3V _ _ _ OV 1 1 ~ I ~tpHL I -----~~~_1._3V____________ _J V·;'--- VOLTAGE WAVEFORMS NOTES: A. The clock pulse generator has the following characteristics: Zout '" 50n and PRR .. 1 MHz, tr .. 15 ns and tf .. 6 ns. When testing f max , vary PRR. B. CL includes probe and jig capacitance. C. All diodes are 1 N3064 or 1 N916. D. A clear pulse is applied prior to each test. E. Proplagation delay times (tPLH and tPH L) are measured at t n+l. Proper shifting of data is verified at tn+4 with a functional test. F. tn = bit time bef~re clocking transition. tn+1 = bit time after one clocking transition. tn+4 = bit time ~fter four clocking transiti.o.ns. ~YTHE03'l 2-129 4-Bit Parallel-Access Shift RegIster LS195A DESCRIPTION PIN-OUT DIAGRAM This 4-bit register features parallel inputs, parallel outputs, J-K serial inputs, shift/load control input, and a direct overriding clear_ All inputs,are buffered to lower the input drive requirements. The register has two modes of operation: Parallel (broadside) load Shift (in the direction QA toward QD) Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited. 7[[] CLEARJ K ABC DGND '-v-'~ SERIAL INPUTS PARALLEL INPUTS Shifting is accomplished synchronously when the shift/load contro.!. input is high, Serial data for this mode is entered at the J-K irputs. These inputs permit the first stage to perform as J-K, D-, or T-type flip-flop as shown in the function table, 15 14 13 12 11 16 10 FUNCTION TABLE INPUTS CLEAR l SHIFTI LOAD X CLOCK X H L , H H L OUTPUTS SERIAL PARALLEL J K A a c 0 °A Oa DC DO aD X X X X X )( L L L L H d X X , b c X X X X X , L H X X X L L X X X H , , , d d b c X ElAO 0ao Qeo aDO aDO X OAO CAD aS n Not more than one output should be shorted at a time and duration of·the short-circuit should not exceed one second. 2-140 ~YTHE~ Dual Monostable Multivibrator with Schmitt-Trigger Inputs LS221 Switching Characteristics Vee = 5.0V Over Recommended Free-Air Temperature Range. Parameter Test Conditions: TW(out) Test Conditions: TW(out) Test Conditions: TW(out) Test Conditions: TW(out) Test Conditions: From To (Input) (Output) -SS"C Min. Typ. +2S"C Max. Min. Typ. +12S"C Max. Min. Typ. Unit Max. R, = 2.0k, C, = 15pF, Ce" = 8OpF, R", = 2.0kO (See Fig. 1 on 2-139) QorQ A Dr B 77 138 70 17S 77 138 175 ns 22 50 80 ns 620 750 870 ns 6.0 7.7 8.S ms 150 120 R, = 2.0k, C, = 15pF, Ce" = 0, R", = 2.0kO (See Fig. 1 on page 2-139) QorQ Aor B 22 20 80 50 47 70 R, = 2.0k, C, = 15pF, C", = l00pF, R", = 10kO (See Fig. 1 on page 2-139) QorQ Aor B 600 725 600 870 670 750 R, = 2.0k, C, = 15pF, C", = lpF, R", = 10kO (See Fig. 1 on page 2-139) A or B QorQ 6.0 7.7 8.S 6.0 6.7 7.5 R, = 2.0k, C, = 15pF, C", = 80pF, R", = 2.0kO (See Fig. 1 on page 2-139) A Q 48 74 45 70 48 74 B Q 38 59 35 55 38 S9 A Q 53 84 50 80 53 84 B Q 43 69 40 65 43 69 tpHL Clear Q 38 59 35 55 38 59 ns tpLH Clear Q 47 69 44 65 47 69 ns tpLH tpHL ns ns Note: AC specification shown under -55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS devices only. PARAMETER MEASUREMENT INFORMATION ~-----------------3V - - - - - - - - - - - OV - - - - - - - - - - - 3V - - - - - - OV ~-----+--\+_-------- VOH Q OUTPUT ~ _____ ' - - - - - - - - - - - - VOL tPLH Ir----------- VOH 1.3V _ _ _ _ _ _ _ _ VOL J~ tPHL B input is high TRIGGER FROM A. THEN CLEAR /r--------- 3V ~.------~.•- - - - - - - - - - - OV A INPUT \ Q OUTPUT t=--- ---~ ~ 1.3 a OUTPUT t:1.3 _ _ _.j tw(out) VOH VOL tw(out)~~v f1.3 OH VOL B and clear inputs are high TRIGGER FROM A ~YTHE03J 2-141 . Dual Monostable Multivibrator with ' Schmitt-Trigger Inputs LS221 PARAMETER MEASUREMENT INFORMATION BINPUT --e W(in) --I ~~1_.3________________________ 1GI b "60ns~ 3V OV 3V ~V - - - - - - - - - - - - - - - - - - - OV .tPHL_~LH VOH CLEAR VOL VOH VOL TRIGGER FROM B, THEN CLEAR-CONDITION 1 3V j:1:3V B INPUT ---J I-.- ..60 ns :=:j CLEAR - - - - - - - - - - - , \'-___________ OV ~=================== 3V OV VOH oJ/ \'-------- Q OUTPUT _ _ _ A input is low VOL TRIGGER FROM B, THEN CLEAR-CONDITION 2 3V BINPUT~. "50nsB"u~rup~ CLEAR OV ------------------- 1~ 3V 1~ OV TRIGGERED ----, ~OH "NO""T"""T"'RIf>G"'G"'E"'~)"ED.,.-------------------f1 Q OUTPUT A input~! low VOL CLEAR OVERRIDING B. THEN TRIGGER FROM B 11~'3 .. 50 m ~_1_.3___________ B INPUT ---..1-.. 50 ns:.j ~3 CLEAR ~_1_.3_____________________ 3V OV 3V OV Q OUTPUT __________________- ' / A input is low TRIGGERING FROM POSITIVE TRANSITION OF CLEAR "- VOH VOL NOTES: A. Input pulses are supplied by generators havingthe following characteristics: PRR .. 1 MHz, Zout "' 50.11; tr .. 15 os, tf .. 6 ns. 2·142 ~YTHEOEJ 8-Line-To-1-Line Multiplexer With Three-State Outputs LS251 PIN-OUT DIAGRAM FEATURES • • • Selects one of eight data sources Performs parallel-to-serial conversion Complementary 3-state outputs DATA INPUTS DATA SELECT ~ DESCRIPTION VCC 4 2 1 16 15 This monolithic data selector/multiplexer contains full on-chip binary decoding to select one-of-eight data sources and features a strobe-controlled three-state output. The strobe must be at a low logic level to enable this device. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem-pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-pole outputs. 6 ,.----A--., ABC 7 [i]][i]][ill[illimilll[iQ] ! ....F-~~".51i 14 5 12 6 11 7 . . ._ 5 13 ....... 8 9 10 ITJ[}]QJ[I][]J[I][IJm 3 l l O Y W :::l GND '--v----' '---v---' '" DATA INPUTS OUTPUTS Die Size .056 x .057 := '" To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control circuitry is designed so that the average output disable time is shorter than the average output enable time. Recommended Operating Conditions 9LS/74LS 9LS/54LS Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Operating free-air temperature, TA Min Nom Max Min Nom Max 4.5 5 5.5 -1 8 125 4.75 5 5.25 -2.6 8 70 -55 0 Unit V mA mA °c LOGIC DIAGRAM ~;~~:CE) -'(.:...7)'--_ _... ;~_ _ _ _ _~------._-~ 00 (4) 01 (3) FUNCTION TABLE 02 (2) 03 (1) OAT A INPUTS 04 (15) 05 (14) 06.(13) 07 (12) ~:::CT {::::: (BINARY) ~YTHE031 OUTPUTS INPUTS STROBE SELECT H X BB ~ ~ ~O, y w C X B A S x X H Z Z L L L L DO Do L L H L Dl Dl L H L L D2 52 L H H L D3 H L L L D4 OJ 54 - - H L H L D5 D5 H H L L D6 06 H H H L D7 07 high logic level, L ~ low logic level irrelevant, Z ~ high impedance (off) 01. . 07 ~ the level of the respective 0 input II c~_ _ _C_~ 2-143 8-Line-To-1-Line Multiplexer .With 'Three-State Outputs LS251 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) VIH VIL VI VOH VOL 10 (off) II IIH IlL iost lee tt 9LS/54LS Te.t Conditions· Parameter Min Typ·· 9LS/74LS Max Vee=MAX 11=-lSmA VIH-2V, 10H=MAX VIH-2V, Typ·· 0.7 -1.5 2.4 IOL=4mA 10L -SmA Vo=2.7V Vo=O.4V 3.4 0.4 6.1 7.1 20 -20 0.1 20 -0.4 -100 10 12 -15 Condition B O.S -1.5 2.7 0.25 VI=7V VI-2.7V VI-O.4V I Condition A Max 2 2 Vee=MIN, Vee-MIN, VIL=MAX, Vee=MIN, VIL =MAX, Vee=MAX, VIH=2V Vee=MAX, Vee-MAX, Vee=MAX, Vee=MAX Min 3.4 0.25 0.35 -15 6.1 7.1 Unit V V V V 0.4 0.5 20 -20 0.1 20 -0.4 -100 10 12 V fJ.A mA fJ.A mA mA mA ·For conditions shown as MIN or MAX, use the appropriate value specified under recommendea operating conditions for the applicable device type. --All typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. ttlee is measured with the outputs open and all data and select inputs at 4.5V under the following conditions: A. Strobe grounded. B. Strobe at 4.5V 2-144 ~YTHEcaJ 8;.Line-To-1-Line Multiplexer With Three-State Outputs LS251 Switching Characteristics , V'cc- 5V Over Recommended Free-Air Temperature Range Parameter Test Condhlons: CL tpLH tpHL tpLH tpHL tpLH tpHL tpLH tpHL tZH tZL tZH tZL Test Conditions: CL tHZ tLZ tHZ tLZ Test Condhlons: CL tpLH tpHL tpLH tpHL tpLH tpHL tpLH tpHL tZH tZL tZH tZL From (Input) = 15pF, RL -55°C Min Typ = 2kO (See Fig. A, page 2-174) To (output) Max Min +25°C Typ Max Min +125°C Typ Max 23 21 16 16 11 12 9 5 8 12 11 12 page 2·174) 32 29 24 25 17 17 16 10 13 18 17 19 23 20 17 15 11 11 10 5 8 11 14 12 34 28 25 24 20 16 17 10 14 18 21 18 27 24 21 17 18 14 13 5 10 15 11 13 42 34 30 26 26 20 19 10 16 22 17 19 10 7 13 Strobe W 7 = SOpF, RL = 2kO (See Fig. A, page 2-174) A, B, or C 25 y (4 levels) 27 A, B, or C 17 W (3 levels) 19 15 11 18 11 8 6 11 6 13 11 16 10 7 8 10 7 12 13 15 14 34 35 25 27 20 23 26 25 18 18 14 16 11 6 11 17 17 16 37 32 26 27 22 21 18 12 17 23 23 22 33 28 22 20 20 19 14 6 13 20 15 17 44 37 31 29 28 25 21 12 19 27 21 23 A, (4 A, (3 B, or C levels) B, or C levels) y W Any D y Any 0 W Strobe y Strobe W = 5pF, RL Strobe = 2kO (See Fig. C on y Any D y Any D W Strobe y Strobe W 13 18 10 7 11 18 13 14 17 13 16 24 19 21 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS only. tEVTHEO]J 2·145 Dual 4-Line-To-1-Line Multiplexer With Thre.State Outputs LS253 FEATURES • • • • PIN-OUT DIAGRAM Three-state version of LS153 Non-inverting Permits multiplexing from N lines to 1 line Performs parallel-to-serial conversion DESCRIPTION The LS253 is a high-speed dual 4-line-to-1-line multiplexer with common select inputs and separate output control inputs for each half. Each half can select one bit of four and present it at the output in non-inverted form. The three-state outputs can interface with and drive data lines of bus-organized systems. With all but one of the common outputs disabled (at a high-impedance state) the low-impedance of the single enabled output will drive the bus line to a high or low logic level. '"13 OATA INPUTS co Cl C2 X X X X X X X X X X X L L L L H H H H L L H H L L H H L H X X X X X X L H X X X X 11 10 14 FUNCTION TABLE SELECT INPUTS e A 12 X X X H L L x L L H X X X X X L H L L L L L 9 15 OUTPUT CONTROl OUTPUT C3 G V 8 16 Z L H L H L H L H Address inputs A and B are common to both sections. H = high level. L = low level, X = irrelevant, Z = high impedance (off) 2 3 4 5 6 7 Die Size .057 x .061 LOGIC DIAGRAM OUTPUT I CONTROL~__------~----, lG Gcol-'-16:..;..)-------JDlI 'C1 (5 ) ---R::f:*:t1-J DATA 1 { lC2'-' (("4~) lC3~(3!L)--.t$$~..J B (2) SELECT{A(14 ) DATA 2 ~2;:.:,:.:. .o:. .:.: - - -+ -t:±: : r- -, 2C2:...:..::;'-------1==I==Et:f'l 2V 2C3':..::.'3.:..:)____-t:±=::±::r---, OUTPUT 11-'5)~.:>_---_-----' CONTROL 2G 2-146 tEYTHEO~ Dual 4-Line-To-1-Line Multiplexer With Three-State Outputs LS253 Recommended Operating Conditions Min Supply voltage, Vee High·level output current, IOH Low-level output current, IOL Operating free·air temperature, TA 9LS/54LS Nom Max 4.5 5 Min 5.5 -1 4 125 -55 9LS/74LS Nom Max 4.75 5 0 5.25 -2.6 8 70 Unit V mA mA °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter Min 9LS/54LS Typ" Max Min 2 2 VIH VIL VI II IIH IlL lost Vee=MIN, Vee-MIN, VIL =VILmax, Vee-MIN, VIL =VILmax Vee ~IVIAX, VIH=2V Vee-MAX, Vee-MAX, Vee=MAX, Vee-MAX lectt Vce=MAX VOH VOL IOloff) 0.7 -1.5 11=-18mA VIH-2V, IOH=MAX VIW2V, 2.4 0.8 -1.5 3.4 2.4 0.25 IOL -4mA IOL -8mA Vo ~2.7V Vo-OAV 0.25 0.35 20 -20 0.1 20 -0.4 -100 12 14 -15 Condition A Condition B .. use the appropriate value specified 7 8.5 -15 7 8.5 Unit V V V V 3.1 0.40 VI-7V VI-2.7V VI=0.4V *For conditions shown as MIN or MAX, 9LS/74LS Typ" Max 0.40 0.50 20 -20 0.1 20 -0.4 -100 12 14 V /lA mA /lA mA mA mA under recommended operating conditions for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. ttlee is measured with the outputs open under the following conditions: A. All inputs grounded. B. Output control at 4.5V, all inputs grounded. Switching Characteristics , V'cc -- 5V Over Recommended Free-Air Temperature Range From (input) Parameter Test Conditions: CL = 15pF, tpLH tpHL tPLH - -55°C Typ Max +25°C Typ Min Min Max - Output 9 tHZ y tLZ 13 I Control Test Conditions: CL = 50pF, RL = :2kn (See Fig. A, page 2-174) 7 12 18 18 10 13 15 22 30 31 21 23 9 14 20 Y 20 12 y 15 2kO (See Fig. C on page 2·174) Y Select Output Control 5pF, RL Min +125°C Typ I 16 22 I 7 12 12 17 25 27 16 18 I 15 19 I 16 20 13 10 21 27 15 18 29 35 21 24 Select Y 29 36 21 24 Output 20 26 16 13 Y Control 21 28 16 19 Note: AC specification shown under _55°C and +1250 e are for 9LS devices only. All 50pF specifications are for tPLH tpHL tpLH tpHL tZH tZL -- r§YTHE~ Data Max Unit = 2kn (See Fig. A, page 2-174) Data ~tZH tZL Test Conditions: CL RL To (output) y 9 14 20 20 12 15 15 22 30 31 21 23 ns 9 13 16 22 ns 13 18 24 24 16 19 20 27 35 36 26 28 ns ns ns ns ns 9LS only. 2,,147 Dual 2-Line-To-4-Line Decoder/Demultiplexer With Three-State Outputs LS255 PIN-OUT DIAGRAM FEATURES • Three-state version of LS155 • Applications: Dual 2-Line-to-4-Line Decoder Dual 1-Line-to-4-Line Demultiplexer 3-Line-to-8-Line Decoder 1-Line-to-8-Line Demultiplexer DESCRIPTION The LS255 features dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package_ When both sections are enabled by the output controls, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual controls permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input 1C is inverted at its outputs and data applied at 2C is not inverted through its outputs. The inverter following the , C data input permits use as a 3-to-B-line decoder or '-to-B-line demultiplexer without external gating. Input clamping diodes are provided on all of these circuits to minimize transmission-line effects and simplify system design. 234567[]] lC lG B ,V3 lY2}YllvqGND DATA SELECT OUTPUTS IM'UT I OUlPUT CONTROL 15 16 FUNCTION TABLE 3-LlNE-T0-8-LlNE DECODER OR l-LiNE-TO-8-LINE DEMULTIPLEXER OUTPUTS INPUTS SELECT CONTRO • A 10 X 2 DATA 1VO 1C 1V1 1V2 1V3 H X z z z z L L H H H H L H H H L L L H H H L H H H L H H H L H H H H L X X X L H H H H 2VO 2V1 X L L I Die Size .063 x .069 OUTPUTS INPUTS SELECT ICONTRoll DATA OUTPUT • A 20 2C X X H X z z z z L L L L L H H H L H L L H H L L L L H H H H L H L H H H H H H H L H H H L X X X 2V2 2V3 CONT~~L -"(2,,,1_ _- , DATA 1C SELECT B FUNCTION TABLES 2-LlNE-T0-4-LINE DECODER OR 1-LlNE-TO-4-LINE DEMULTIPLEXER OUTPUTS INPUTS CONTROL 10) SELECT ct X • OR DATA A G~ 11) X X H L L L L L H H L L H H L H L L L H L H L H L L H H H H H L H H H H L L H H H 121 131 141 151 16) 171 2YO 2V, 2V2 2V3 1YO lV, lV2 1V3 z z z z z z z z L L LOGIC DIAGRAM L H A H H H H H H H H H H H H H L H H H H H L H H H ~~~~~~L_(:..:.14-")_ __' H H H L H H H 2G H L H H H H H L H H L H H L H H H H ~ H H H H H DATA 1151 2C -'-""----, 2V3 tC = inputs 1C and 2C connacted 10gether *G = inputs 1G and 2G connacted 10gether H = high level, L = low level, X = irrelevant, Z = high impedance (off) 2-14B ~YTHEO!) Dual 2-Line-To-4-Line Decoder/Demultiplexer With Three-State Outputs LS255 Recommended Operating Conditions Min 9LS/54LS Nom Max 4.5 Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Operating free-air temperature, TA 5 -55 5.5 -1 4 125 Min 4.75 9LS174LS Max Nom 5 0 5.25 -2.6 8 70 Unit V mA mA °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions· Parameter VIH VIL VI VOH Min 9LS/54LS Typ·· Max 9LS174LS Typ·· Max 2 2 Vee-MIN, Vee=MIN, VIL ;VILmax, Vee-MIN, V IL =VILmax Vee=MAX, Vlw 2V Vec-MAX, Vcc-MAX, Vcc=MAX, Vcc-MAX Min 0.7 -1.5 11--18mA VIH-2V, IOH=MAX VIH-2V, 2.4 3.4 0.25 IOL -4mA IOL -8mA 0.8 -1.5 2.7 0.4 3.4 Unit V V V V 0.4 V 0.5 Vo~2.7V 20 20 pA IOloff) -20 -20 Vo-O.4V mA 0.1 0.1 VI-7V II 20 20 pA VI-2.7V IIH -0.4 -0.4 mA VI=O.4V IlL -100 -15 -100 mA -15 lost Condition A 10 6 10 6 mA tt Icc VeC MAX Condition B 11 11 17 17 "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device tvpe. "AII typical values are at Vee = 5V, T A = 25°C. tNot more than one output should be shorted at a time. ttlee is measured with the outputs open under the following conditions: A. A, B, and 1C inputs at 4.5V, and 2C, 1G, and 2G inputs grounded. B. Same as Condition A except inputs 1G and 2G at 4.5V. VOL 0.25 0.35 Switching Characteristics , V'cc -- 5V Over Recommended Free-Air Temperature Range Parameter From (input) To (output) Min -55°C Typ Max +25°C Typ Min Max Min +125°C Typ Max Unit Test Conditions: C, = 15pF, R, = 2kO (See Fig. A, page 2-174) A,B,lC 15 y or2C 18 18 A or B y (3 levels) 22 Output 12 y Control 14 SpF, RL = 2kll ISe. Fig. C on page 2-174) Output 11 tHZ y tLZ 17 I Control Test Conditions: C, = 5OpF, R, = 2kO (See Fig. A, page 2-174) 21 24 24 29 18 20 tpLH tpHL tpLH tpHL tZH tZL Test Conditions: CL - A, B,lC tpLH Y or 2C tpHL Aor B tpLH y (3 levels) tpHL Output tZH y Control tZL Note: AC specification shown under _55°C and +125 ° C are for All 50pF specifications are for 9LS only. ~-R"'A-YT-H-EO"'~- 19 22 22 26 16 18 I 18 23 I 27 30 30 34 22 26 I 13 16 16 20 10 12 18 22 22 26 15 18 15 18 18 22 12 14 21 24 24 29 18 20 9 15 15 20 11 17 18 23 16 20 20 24 14 16 22 28 28 32 20 22 19 22 22 26 16 18 27 30 30 34 22 26 ns ns ns ns ns ns ns 9LS devices only. 2-149 LS257 Quadruple 2-Line-To-1-Line Multiplexers With Three-State Outputs LS258 DESCRIPTION These data selectors/multiplexers select a 4·bit word from one of two sources and present it at the four outputs. The LS257 presents true data; the LS258 presents inverted data. With Output Control HIGH, the outputs are forced to a high impedance state. -- FUNCTION TABLE INPUTS OUTPUT CONTROL H = high' SELECT OUTPUT" A B LS257 LS258 H X X X Z Z L L L X L H L L H X H L L H X L L H L H X H H L level, L :: low level, X = irrelevant, Z -= high impedance (offl Low level at S selects A inputs. High level at S selects B inputs. PIN-OUT DIAGRAMS LS257 LS258 5 ~ INPUTS 5!i;; ~... z~ INPUTSOUTPUTINPUTSOUTPUT INPUTS OUTPUT OUTPUT vcco8~ 4Y ~ 3Y [ill 15 14 13 12 11 10 vcc68~4V~ 3V [ill 9 7m 15 14 13 12 11 SELECT IA 18 IV 2A 28 2V GND '--v-tiUTPU-r---v--'OUTPUT INPUTS INPUTS 14 13 12 11 10 g 16 8 9 16 8 7 7 Die Size .047 x .066 2·150 9 7m SELECT IA 18 IV 2A 28 2Y GND '--v-tiUTPU-r---v--'OUTPUT INPUTS INPUTS 15 10 Die Size .047 x .066 ~YTHEO::J Quadruple 2-Line-To-1-Line Multiplexers With Three-State Outputs LS257 LS258 LOGIC DIAGRAMS LS258 LS257 1B 1B 2A 2A 2B 2B 3A 3A 3B 3Y 4A 4B 4B SELECT SELECT Recommended Operating Conditions Min Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Operating free-air temperature, TA ~YTHEO]J 4.5 -55 9LS/54LS Nom Max 5 5.5 -1 4 125 9LS174LS Min Nom Max 4.75 5 5.25 -2.6 0 Unit 8 V mA mA 70 °C 2-151 Quadruple 2-Line-To.. 1-Line LS257 Multiplexers With Three-State Outputs LS258 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted Teat Conditions' Parameter Vee-MIN, Vcc=MIN, VII =V~Lmax, Vee=MIN, VIL =VILmax Vee=MAX, Vo=2.4V VOH VOL IOZH Vee=MAX, Vo=O.4V IOZL IIH IlL S input Any other S input Any other S input Any other 2.4 All outputs high All outputs low All outputs off All outputs high All outputs low All outputs _u 3.4 0.25 IOL =4mA 0.8 -1.5 2.4 0.4 VIH=2V, VI=7V Vee=MAX, VI=2.7V Vee=MAX, VI=O.4V -15 LS257 3.1 0.25 0.35 Unit V V V V 0.4 0.5 V 20 20 p.A -20 -20 p.A 0.2 0.1 40 20 -0.8 -0.4 -100 0.2 0.1 40 20 -0.8 -0.4 -100 IIOL -8mA VIH-2V Vee=MAX, 9LS/74LS Typ" Max 2 11--18mA VIH-2V, IOH=MAX VIH=2V, Min 0.7 -1.5 Vee=MAX lost ,Iee tt 9LS/54LS Typ" Max 2 VIH VIL VI II Min -15 5.9 10 5.9 10 9.2 16 9.2 16 10 17 10 17 4.1 7 4.1 7 6.2 11 6.2 11 7.0 12 7.0 12 Vee=MAX rnA p.A rnA rnA rnA LS258 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. ttlec is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions. 2-152 ~YTHEO~ Quadruple 2-Line-To-1-Line Multiplexers With Three-State Outputs LS257 LS258 - Switching Characteristics , V'cc- 5V Over Recommended Free Air Temperature Range Parameter From (Input) Test Conditions: CL = 15pF, RL = 2k!1 Data Any ~ LS258 tpHl Data Any LS257 Select Any LS258 Select Any LS257 ~ tZl Output Control Output Control tpHL ~ tpHL tZH tzt- LS258 Test Conditions: C L ~ tLZ LS257 ~ LS258 tLZ = lSpF, RL Any Any LS258 ~ tpHL Data Any LS257 Select Any LS258 ~ tpHL Select Any ~ LS257 Output Control Output Control LS258 Min +125°C Typ Max ·12 12 14 12 18 18 18 18 18 16 18 18 8 9 10 7 14 14 14 12 12 12 12 13 15 15 17 15 21 21 21 21 21 19 21 21 10 10 .9 8 15 18 15 15 12 12 11 10 18 21 18 18 10 11 12 9 16 16 16 14 14 14 14 15 17 17 19 17 23 23 23 23 23 21 23 23 12 13 14 11 18 18 18 16 16 16 16 17 19 20 22 19 25 25 25 25 25 24 25 25 Typ Max 15 15 17 15 21 21 21 21 21 19 :l1 21 6 7 8 5 12 12 12 10 10 10 10 11 18 21 18 18 19 20 22 19 25 25 25 25 25 24 25 25 Min Unit ns ns ns ns ns ns ns ns = 2k!1 (See Fig. A, page 2-174) Any ~ tZL 12 12 11 10 Any Data tZL +25°C Max = 2k!1 (See Fig. A, page 2~174) LS257 ~ tpHL Typ 8 9 10 7 14 14 14 12 12 12 1:l 13 Any Output Control Output Control Test Conditions: CL = 5OpF, ~ tpHl RL Min (See Fig. C on page 2·174) ~ LS257 tPHL ~ -55°C To (output) 12 13 14 11 18 18 18 16 16 16 16 17 Any Any o ns ns ns ns ns ns 0 Note: AC specification shown under -55 C and +125 C are for 9LS devices only. All 50pF specifications are for 9LS only. ~YTHEO],'l 2·153 LS261 2-Bit By4-Bit Parallel Binary Multipliers PIN-OUT DIAGRAM FEATURES • • • • • • Fast Multiplication ••• 5-Bit Product in 26ns Typ Power Dissipation ... 110mW Typical Latch Outputs for Synchronous Operation Expandable for m-Bit·by-n·Bit Applications Fully Compatible with Most TTL and Other Saturated Low·Level Logic Families Diode·Clamped Inputs Simplify System Design DESCRIPTION These low-power Schottky circuits are designed to be used in parallel multiplication applications. They perform binary multiplication in two's-complement form, two bits at a time. TheM inputs are for the multiplier bits and the B inputs are for the multiplicand. The Q outputs represent the partial product as a recoded base-4 number. This recoding effectively reduces the Wallace-tree hardware requirements by a factor of two_ The outputs represent partial products in one's complement form generated as a result of multiplication_ A simple rounding scheme using two additional gates is needed for each partial product to generate two's complement. The leading (most-significant) bit of the product is inverted for ease in extending the sign to square (left justify) the partial-product bits. The 9LS/54L261 is characterized for operation over the full military temperature range of -55°C to 125°C; the 9LS/74LS261 for operation from O°C to 70°C. LS261 13 11 12 10 14 15 16 1 4567[!] 04 IIJ 02 GNO M:z 4 '--v--' LATCH CONTROL G OUTPUTS ~l1:!U2 Die Size _086 x .071 FUNCTION TABLE INPUTS LATCH OUTPUTS MULTIPLIER CONTROL G M2 M1 MO Q4 a3 a2 a1 ao L X X X L L L a20 L a10 L aoo L a40 H a3 0 H H L L H 84 B4 B3 B2 B1 L H L H L 84 B4 B3 B2 B1 H L H H 84 B3 B2 B1 BO H H L L B4 83 82 81 80 H H L H B4 84 ih 82 81 H H H L B4 84 83 82 81 H H H H H L L L L H = high level, L = low level, X = irrelevant U40 ... UOO 84 ... 80 2-154 = = The logic level of the same output before the high-tolow transition of G. The logic level of the indicated multiplicand (8) input t;YTHEO~ 2-Bit By 4-Bit Parallel Binary Multipliers LS261 LOGIC DIAGRAM ~YTHE@J 2-155 2-Bit By 4-Bit Parallel Binary Multipliers LS261 Recommended Operating Conditions Min Supply voltage, Vee High·level output current, IOH Low-level output current, IOL Width of enable pulse, tw 4.5 Any Any Any Any Setup time, t setup Hold time, thold Minput B input M input B input Operating free-air temperature, TA 9LS/S4LS Nom Max 5 25 17'/' 15./. O./. Ot -55 5.5 -1 4 125 Min 4.75 9LS174LS Nom Max 5 25 lU 15./. O./. O./. 0 5.25 -1 8 Unit V mA mA ns ns ns 70 °C ./. The arrow Indicates that the failing edge of the enable pulse is used for reference. Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions· Paramater Min 9LS/54LS Typ·· Max 2 VIH V IL VI Vee-MIN, Vee-MIN, VIL =VILmax, Vee=MIN, VIL =VILmax Vee-MAX, Vee=MAX, Vee-MAX, Vee-MAX Vee-MAX, Outputs open VOH VOL II IIH IlL lost Icc Min 9LS174LS Typ" Max 2 0.7 -1.5 11--18mA VIH-2V, IOH=-lmA VIH=2V 2.5 3.4 0.25 IIOL =4mA IIOL 8mA VI-7V VI-2.7V VI-0.4V 2.7 0.4 0.1 20 -0.4 -100 -15 All inputs at OV 22 0.2 -1.5 3.4 0.25 0.35 -15 38 22 Unit V V V V 0.4 0.5 0.1 20 -0.4 -100 mA p.A mA mA 40 mA V 'For conditions shown as MIN or MAX, use the appropriate value specified under recommendeCl operating conditions for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. Switching Characteristics , V'cc -- 5V Over Recommended Free-Air Temperature Range From (input) Parameter Teat Conditions: C, tpLH tpHL tpLH tpHL tpLH tpHL Tesl Conditions: tpLH tPHL tpLH tpHL tpLH tpHL To (output) -SsoC Min Typ +2SoC Max Max 39 34 44 39 46 41 22 20 25 22 27 24 35 30 40 35 42 37 25 23 28 25 30 27 39 34 44 39 46 41 44 39 49 44 51 46 26 24 29 26 31 28 40 35 45 40 47 42 30 28 33 30 35 32 44 39 49 44 51 46 Min Min +12SoC Typ Typ Max Unit = lSpF, R, = 2k11 (See Fig. A, page 2-174) Enable G Any Q Any M input AnyQ Any B input Any Q C, = 5OpF, R, 25 23 28 25 30 27 ns ns ns = 2k11 (See Fig. A, page 2-174) Enable G AnyQ Any M input Any Q Any B input AnyQ 30 28 33 30 35 32 ns ns ns Note: Ae specification shown under _55°C and +125°e are for 9LS devices onlv, All 50pF specifications are for 9LS only. 2-156 ~YTHE031 Quadruple S-R Latches LS279 FEATURES • • Functionally and Mechanically Identical to 54279 Features Low Power Dissipation of 19 mW Typical FUNCTION TABLE (EACH LATCH) H = high level L = low level Qo = the level of Q before the indicated input conditions were established. *This output level is pseudo stable: that is, it may not persist when the 5 and R inputs return to their inactive (high) level. tFor latches with double Sinputs: H = both 5 inputs high L = one or both 5 inputs low INPUTS OUTPUT st R Q H H QO L H H H L L L L H* PIN-OUT DIAGRAM Vee 45 4R 40 352 351 3R 30 ~WLm 321161514 4 13 5 12 67891011 w~ 1R '-51 152 10 2R 25 2Q GND logic: see function table Die Size .065 x .059 Recommended Operating Conditions 9LS/54LS Min. Supply voltage, Vee (See Note 1) 4.5 High-level output current, IOH NOTE 5 5.5 Min. 4.75 -400 Low-level output current, IOL Operating free-air temperature, T A 9LS/74LS Nom. Max. 4 -55 125 0 Nom. Max. 5 Unit 5.25 V -400 /LA 8 mA 70 °e 1. Voltage values are with respect to network ground terminal. ~YTHEO~ 2-157 Quadrupule S-R Latches LS279 Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted) IIH 9LS/54LS Test eonditions t Parameter Min. High·level input voltage Min. 2 Input clamp voltage VOH High-level output voltage VOL Low-level output voltage Vee = MIN, II =-18mA Vee = MIN, VIH = 2V, VIL = VIL max, 10H =-400/LA Vee = MIN, VIH = 2V, llOL =4 mA VIL=VILmax 2.5 Typ* Max. Uni 2 VIL Low·level input voltage VI 9LS/74LS Typ* Max. 0.8 V -1.5 -1.5 V 2.7 3.5 0.25 V 0.7 V 3.5 0.4 0.25 0.4 0.35 0.5 V IIOL = 8 mA Input current at II maximum input voltage Vee = MAX, VI =7V 0.1 0.1 mA IIH High-level input current Vee = MAX, VI = 2.7V 20 20 /LA IlL Low-level input current Vee = MAX, VI = O.4V -0.4 -0.4 mA 130 mA _ 7 mA lOS Short-circuit output current1 Vee = MAX Ice Supply current Vee = MAX, -30 See Note 2 130 3.8 -30 7 3.8 tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. *AII typical values are at Vee = 5V, TA = 25°e. 1Not more than one output should be shorted at a time. NOTE 2. Ice is measured with all R inputs grounded, all S inputs at 4.5 V, and all outputs open. Switching Characteristics Vee = S.OV Over Recommended Free-Air Temperature. Range. Parameter Test Coltditions: From To (Input) (Output) CL = 15pF, RL _55°e Min. Typ. +25°e Max. Min. I +125°e Typ. Max. Min. Typ. Unit Max. = 2kO (See Fig. A, page 2-174) tpLH S Q 15 26 12 22 15 26 ns tPHL S Q 12 19 9 15 12 19 ns Q '0 ~n ~!3 27 ,n 'u ~n ~v tr:::.... ~ Test Conditions: tPLH tpHL tpHL CL = SOpF, RL ... = 2.Ok (See Fig. A, page 2-174) S S Q 19 30 16 26 19 30 ns Q 16 23 13 19 16 23 ns R Q 22 35 19 31 23 35 ns .. Note: Ae speCification shown under _55°e and +125°e are for 9LS devices only. All 50pF specifications are for 9LS devices only . 2-158 ~YTHEO]l 4-Bit Bi-Directional Shift Register Witl\ Three-State Outputs --,,~. " ...... - LS295A . FEATURES PINOUT DIAGRAM ..g • Three-state version of LS95B parallel-access shift register d OU11'UT CQNTROL 9 8 DESCRIPTION This 4-bit register features parallel inputs, parallel outputs, and clock, serial, mode, and output control inputs. The register has three modes of operation: Parallel (broadside) load Shift right (the direction QA toward Qo) Shift left (the direction Qo toward QA) 1234560 SERIAL ABC D MiiDE GND INPUT~CONTROL Parallel loading is accomplished by'applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-lo.1(II transition of the clock input. During parallel loading, the entry of serial data is inhibited. 13 12 11 10 9 8 Shift right is accomplished when the mode control is low; shift left is accomplished when the mode control is high by connecting the output of each flip-flop to the parallel input , of the previous flip-flop (Q o to input C, etc.) and serial data is entered at input D. 7 W~en the output is high, the normal logic levels of the four o~tPuts are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a low logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus bus line; however, sequential operation of the register is not affected. Die Size .067 x .082 LOGIC DIAGRAM DATA INPUTS ~~ ____~~~A~_ _~______~ MODE 161 CONTROL SERIAL t11 INPUT INPUTS MODE OUTPUTS PARALLEL CLOCK SERIAL H X X H X H X a., CONTROL H H A x X H X X x C x aa 00 °A It aAO aBO aco aDO d aBn 0Cn Oon d °AO aao Oeo aDO CLOCK (91 d b act Qot X X X X X X Dc D X X X H L OUTPUT(SI CONTROL nAn aBn 0Cn QAn as n OCn When the output control is low, the outputs are dlubled to the high-impedance It8te; however. sequentla' optlfation of the registers is not affected. " . - tShifting left requires external connection of a. to A, acto entered at input O. e, and aD to C. Serial data is H = high level (sl8a11y sIBte), L = low level (steady sIBle), X = irrelevant (any input, including transitions) = transition from high to low level. a, b, c, d = the level of ateally-sIBte input at inputs A. e, C, or 0, respectively. aM, a... aoo• aoo = the level of a., as, ac. or aD, respectively, before the indicated stsady-state input conditions were esIBbHshed. a... as.. ac., aon = the level of a., as, ac, or aD. resJl8Cliveiy, before the most-recent trens~lon of the clock. [EYTHEO?J 2-159 4-Bit Bi-Directional Shift Register With Three-State Outputs LS295A Recommended Operating Conditions Min Supply voltage, V~e High·level output current, IOH Low·level output current, IOL Clock frequency, fclock Width of clock pulse, tw(clock) Setup time, high·level or low·level data, tset\ll1_ Hold time, high-level or low-level data, thold Operating free-air temperature, TA '9LS/54LS Nom Max 4.5 5 5.5 -1 4 30 0 20 10 10 -55 125 Min 9LS/74LS Max Nom 4.75 5 0 20 10 10 0 Unit 5.25 -2.6 8 30 V mA mA MHz ns ns ns 70 °c Electrical Characteristics Over Recommended Free-Air Temperature Range {Unless Otherwise Noted Parameter Test Conditions· Min 9LS/54LS Typ·· Max Vee=MIN, Vee-MIN, VIL =VILmax, Vee=MIN, VIL =VjLmaX Vee-MAX, Vo=2.7V Vee-MAX, Vo=O.4V Vee=MAX, Vee-MAX, Vee-MAX, Vee-MAX VOH VOL IOZH IOZL 9LS/74LS Typ·· Max 2 2 VIH VIL VI Min 0.7 -1.5 11=-18mA VIH=2V, IOH=MAX VIH=2V, 2.4 3.4 0.25 IIOL -4mA IIOL =8mA VIL =VILmax, VIH=2V, 0.8 -1.5 2.7 0.4 3.4 Unit V V V V 0.40 0.5 V 20 20 I1A -20 -20 I1A 0.25 0.35 0.1 0.1 mA 20 20 I1A -0.4 -0.4 mA -15 -100 -15 -100 mA I Condition A 14 23 14 23 mA Vee=MAX lee tt I Condition B 15 25 15 25 "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. **AII tvoical vali:Jes are at Vee = ;V TA = 25°C" tNot more than one output should be shorted at a time. ttlee is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the following conditions: A. Output control at 4.5V and a momentary 3V, then ground, applied to clock input. B. Output control and clock input grounded. II IIH IlL lost VI=7V VI-2.7V VI-O.4V i Switching Characteristics, Vee = 5V Over Recommended Free-Air Temperature Range Parameter I Min Test Conditions: CL = 15pF, -55°C Typ RL Max Min +25°C Typ Max , 2-160' +125°C Typ Max Unit = 2kO (See Fig. A, page 2-174) f max 40 30 27 35 tpLH 38 29 35 45 tpHL 48 37 10 18 tZH 21 12 10 18 tZL 21 12 Te"t Conditions: CL - 15pF, RL '" 2kO (See Fig. C on page 2-174) 19 28 tHZ 21 32 I 24 32 tLZ 36 26 Test Conditions: CL = 5OpF, RL = 2kO (See Fig, A, page 2-174) , tpLH tpHL tZH tZL Min 32 40 15 15 42 52 25 25 30 38 13 13 39 49 22 22 29 37 12 12 21 26 32 40 15 15 I 38 48 21 21 MHz ns ns ns ns 32 36 ns ns 42 52 25 25 ns ns ns ns Note: Ae specification shown under -5Soe and +12Soe are for 9LS devices only. All SOpF specifications are'for 9LS devices only. Quadruple 2-lnput Multiplexers with Storage LS298 FEATURES • Selects One of Two 4-Bit Data Sources and Stores Data Synchronously with System Clock. • PIN-OUT DIAGRAM ~9 DATA Appl ications: Dual Source for Operands and Constants in Arithmetic Processor; Can Release Processor Register Files for Acquiring New Data. !;;IU::: INPUT ~'" Cl 9 Implement Separate Registers Capable of Parallel Exchange of Contents Yet Retain External load Capability. Universal Type Register for Implementing Various Shift Patterns; Even Has Compound left-Right Capabilities. ~---~vr----J DESCRIPTION These monolithic quadruple tWo-input multiplexers with storage provide essentially the equivalent functional capabilities of two separate MSI functions (54157/74157 or 54LS157/74LS157 and 54175/74175 or 54LS175/74LS175) in a single 16-pin package. When the word-select input is low, word 1 (A 1, B1, C1, D1) is applied to the flip-flops. A high input to word select will cause the selection of word 2 (A2, B2, C2, D2). The selected word is clocked to the output tern;)inals on the negative-going edge of the clock pulse. DATA INPUTS FUNCTION TABLE INPUTS WORD SELECT L H X • • H QA QB Qc QD a1 b1 c1 d1 a2 b2 c2 d2 QAO QBO QCO QDO H = high level (steady state I L = low level (steady state) x = irrelevant (any LOGIC DIAGRAM OUTPUTS CLOCK input, including transitions) • = transition from high to low level a1. a2. etc. = the level of steady-state input at A1. A2. etc. OAO. OBO etc. = the level of 0A. 0B. etc. entered on the most recent J. transition of the clock input. ---- ____- J . Dynamic input activated by a transition from a high level to a low level ~YTHEO"?J 2-161 Quadruple2-lnput Multiplexers with Storage LS298 Recommended Operating Conditions Min 9LS/54LS Nom Max 4.5 Supply voltage, Vee High-level output current, IOH Low-level output current, IOl Width of clock pulse, high or low level, tw Hold time, thold 5.5 -400 4 20 15 25 5 0 -55 Data Word select Data Word select Setup time, t setup 5 Operating free-air temperature, TA Min 9LS/74LS Nom Max 4.75 125 5 20 15 25 5 0 0 5.25 -400 8 Unit V iJ. A mA ns ns ns 70 °C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter Min 9LS/54LS Typ" Max VOH VOL II IIH III lost lee tt 9LS/74LS Typ" Max 2 2 VIH Vil VI Min 0.7 -1.5 Vee=MIN, Vee-MIN, 11=-18mA VIH=2V Vil =Vllmax, Vee-MIN, Vil =Vllmax Vee-MAX, Vee-MAX, Vee-MAX, Vee-MAX Vee-MAX, IOH=-400J.!A VIH-2V, 2.5 3.4 tlOl -4mA IIOL -8mA 0.8 -1.5 2.7 0.25 0.4 13 0.1 20 -0.4 -40 21 VI-7V VI-2.7V VI=O.4V -6 3.4 0.25 0.35 -5 13 Unit V V V V 0.4 0.5 0.1' 20 -0.4 -42 21 V mA J.!A mA mA mA "For conditions shown as MIN or MAX, use the appropriate value specified under recommendea operating conditions for the applicable device type. -'All typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. ttWith all outputs open and all inputs except clock low, lee is measured after applying a momentary 4.5V, followed by ground, to the clock input. Switching Characteristics, Vee = 5V Over Recommended Free-Air Temperature Range I I J 1 I L I I I I I 1 23 26 I 1 36 40 1 J I I +125°C L Min I Typ I I I -55°C +25·C Min Typ Max Min I Typ Max Test Conditions: CL = 15pF. RL = 2kO (See Fig. A. page 2-174) Parameter 18 27 tpi H 20 31 I 21 32 tpHL 23 35 Test Conditions: CL = SOpF;RL = 2kO (See Fig. A. page 2-174) I tPLH tpHI 1 I I I I I I I I 21 24 I I 32 37 I I I I I I I 20 23 23 26 I I I I I Maxi 31 35 36 40 Unit I ns I ns I I Note: Ae specification shown under _55°e and +125°e are for 9LS devices only. All 50pF specifications are for 9LS only. 2-162 ~YTHEO]] Hex Buffers, Tri-State, Common Enable LS365 LS366 Hex Buffers, Tri-State, 4-Bit and 2-Bit LS367 LS368 DESCRIPTION The LS365/366/367/368 are high speed hex buffers with 3-state outputs. They are organized as single 6-bit or 2-bit/ 4-bit, with inverting or non-inverting data (D) paths. The outputs are designed to drive 15TTL Unit Loads on 60 Low Power Schottky loads when the Enable (E) is LOW. When Output Enable Input (E) is HIGH, the outputs are forced to a high impedance "off" state. If the outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap. PIN-OUT DIAGRAMS LS365 HEX 3-STATE BUFFER WITH COMMON 2-INPUT NOR ENABLE LS366 HEX 3-STATE INVERTER BUFFER WITH COMMON 2-INPUT NOR ENABLE TRUTH TABLE INPUTS E1 L E2 L L H L X X H 0 TRUTH TABLE INPUTS OUTPUTS OUTPUTS E1 L E2 L L (Z) L H D L H X X (Z) (Z) X H X (Z) L L H H X X H L LS368 HEX 3-STATE INVERTER BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS LS367 HEX 3-STATE BUFFER SEPARATE 2-BIT AND 4-BIT SECTIONS TRUTH TABLE INPUTS E L L H 0 L OUTPUTS H L H X (Z) ~VTHE@'l INPUTS OUTPUTS E L 0 L L H H L X (Z) H 2-163 LS365 LS366 Hex Buffers, Tri-State, Common Enable LS367 LS368 Hex Buffers, Tri-State, 4-Bit and 2-Bit Recommended Operating Conditions Min Supply Voltage, Vee High·Level Output Current, 10H 9LS/54LS Nom Max 4.5 5 5.5 -1 Low·Level Output Current, 10l 9LS/74LS Nom Max 4.75 5 5.25 -2.6 V 24 mA 75 C 12 Operating Free·Air Temperature, T A -55 125 Unit Min 0 mA Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted Test Conditions· Parameter Min VIH Guaranteed Input HIGH Voltage for All Inputs Vil Guaranteed Input lOW Voltage for All Inputs VeD Vee-MIN, VOH Vee-MIN, VIN-VIH or Vil per Truth Table IOH--l.0mA Val Vee=;MIN, VIN-VIH or Vil per Truth Table 10l -12mA I()L-24mA 9LS/54LS Typ·· Max 2.0 2.4 IIH Ve~=MAX, III lost IOH=-2.6mA Icc Vee=MAX, VIN=O.4V V_OUT=OV VIN=OV, VE =4.5V V 2.0 V .8 -1.5 -0.65 2.4 0.25 V~=7.0V Vee-MAX, Vee=MAX, Unit V 3.4 Vee=MAX, V out =2.4V, VE"=2.0V Vee-MAX, V out =O.4V, VE-2.0V Vee=MAX, VIN=2.7V 10ZH 10Zl 9LS/74LS Typ·· Max 2.0 .7 -1.5 -0.65 IIN--18mA Min -30 V 3.1 0.4 0.25. 0.40 0.35 0.5 20 -20 20 20 fJ.A 20 - .1 -0.4 20 fJ.A mA -100 - .1 -0.4 -30 -100 I LS365/367 13.5 24 13.5 24 J LS366/368 11.8 . 21 11.8 21 V fJ.A mA mA mA "For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ·'AII typical values are at Vee = 5V, TA = 25 e. tNot more than one output should be shorted at a time. Q Switching Characteristics, Vee From Parameter Test Conditions: iinput; CL = tplH ( lS365/367) tpHl ( lS365/367) tplH ( lS366/368) tpHl ( LS366/368) tZH tZl = 5V Over Recommended To iuutput; _55°C Nlln tZH Min lYIax +25°e Iyp Max +125°e Iyp Max Min 10 9 14 16 10 12 9 12 20 14 D'I Di 9 12 9 14 °i °i 12 20 7 10 E 12 20 10 16 12 20 °i 20 36 18 30 20 36 RL = Di E °i a 19 7 10 20 14 6670 (See Fig. C, page 2-174) 12 tlZ E °i tHZ Test Conditions: CL = 125pF, (See Fig. A, page 2-174) tplH (LS365/367) Di °i tpHL (LS365/367) tZl Iyp Unit 45pF (See Fig. A, page 2-174) Test Conditions: CL = 5pF, tplH ( LS366/368) tpHL ( LS366/368) Free-Air Temperature Range 10 20 I 27 I 17 16 I I 15 23 I I I I 12 19 ns ns 20 I I 20 27 12 20 10 15 12 20 15 26 15 21 15 26 12 15 20 26 10 15 15 21 12 20 15 20 16 26 20 16 24 42 13 21 35 24 26 40 ns I ns ns ns ns Note: Ae specification shown under _55°C and +125°e are for 9LS devices only. All 50pF specifications are for 9LS only. 2·164 ~YTHE~ 4-Bit Cascadable Shift Registers with 3-State Outputs LS395A FEATURES • PIN-OUT DIAGRAM Three-State, 4-Bit, Cascadable, Parallel-I n, Parallel-Out Registers • LS395A Schottky-Diode-Clamped Transistors • Low Power Dissipation ... 75mW Typical (Enabled) • Applications: N-Bit Serial-To-Parallel Converter N-Bit Parallel-To-Serial Converter N-Bit.Storage Register • Pin for pin compatible with LS395 DESCRIPTION 4 These 4-bit registers feature parallel inputs, parallel outputs, and clock, serial, load/shift, output control and direct overriding clear inputs. 5 6 7 m ~ c;!s ABC 0 ~t;: ~ .... ffi ~ '----v----' 9~ '" U en - Shifting is accomplished when the load/shift control is low. Parallel loading is accomplished by applying the four bits of data and taking the load/shift control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-Iow transition of the clock input. During parallel loading, the entry of serial data is inhibited. PARALLEL INPUTS When the output control is low, the normal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently from the level of the clock by a high logic level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the reigsters is not affected. During the highimpedance mode, the output at aD' is still available for cascading. The 9LS/54 LS395A is characterized for operation over the full military temperature range of _55°C to 125°C; the 9LS174LS395A is characterized for operation from. O°C to 70°C. FUNCTION TABLE INPUTS CLEAR LOAD/SHIFT CONTROL 3-8TATE OUTPUTS CLOCK SERIAL PARALLEL ABC D QA QB Qc Qo CASCADE OUTPUT Qo L X X X X X X X L L L L L H H H X X X X X QAO QCO H H .( X QBO b QOO d H L H X X X X X H L .( H H L .( L c QOO d QBO QCO QOO QOO X X X X QAO H QAn QBn QCn QCn X XXX L QAn QBn QCn QCn • b c d • When the output control is high, the 3-state outputs are disabled to the high-impedance state; however, sequential operation of the registers and the output at QD are not affected. H = high level (steadv state), L = low level (steadv state). X .( = transition from high to low level. QAO. QBO. QCO. QDO = the level of QA. QB. QAn. QBn. QCn. QDn ~YTHE031 = irrelevant (anv input, including transitions) Oc. or QO. respectively. before the indicated steady state input conditions were established. = the level of QA. QB. QC. or QO. respectively. before the most recent'" transition of the clock. 2-165 4-Bit Cascadable Shift Registers with 3-State Outputs LS395A Recommended Operating Conditions Min 9LS/54LS Nom Max 4.5 Supply voltage, Vee 5 High-level output current, 10H Low-level output current, 10L 0 25 20 10 -55 Clock frequency, fclock Width of clock pulse, tw(clock) Setup time, high-level or low-level data, t sewp . Hold time, high-level or low-level data, thold Operating free-air temperature, TA 5.5 -1 4 25 125 9LS174LS Max Nom Min 4.75 5 fl 5.25 -2.6 8 25 25 -20 10 0 Unit V rnA rnA MHz ns ns ns 70 °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) 9LS/54LS Test Conditions* Parameter Min Typ" 2 VIH VOH VOL 10ZH 10ZL Vee=MIN, 11=-lSmA Vee-MIN, VIW2V, VI L=VILmax, 10H=MAX 2.4 Vee=MIN QA,QB IOL-12mA VIL=VILmax, VIW 2V Oc,QO loe-24mA Vee-MAX, Vee=MAX, 0.25 QA,QB VIW2V, Oc,QO VIW2V, QA,QB VO=O.4V Max Unit V O.S V -1.5 -1.5 V 2.4 0.4 0.4 10L -SmA VO=2.7V Typ** 0.7 3.4 0.25 101--4mA QO Min 2 VIL VI 9LS/74LS Max 3.1 V 0.25 0.40 0.35 0.50 0.25 0.40 0.35 0.50 V V 20 20 iJ. A -20 -20 iJ. A Oc,QO II Vee-MAX, VI-7V 0.1 0.1 mA IIH Vee-MAX, VI=2.7V 20 20 iJ. A IlL Vee=MAX, VI=O.4V lost Vee-MAX leett Vee=MAX, ':':0.4 -15 L -100 -15 -0.4 mA -100 mA COiiG:tkm A ,n 'u ~<> 18 29 Condition B 15 25 15 25 mA *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type . •• All typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. ttlee is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the following conditions: A. Output control at 4.5V and a momentary 3V, then ground, applied to clock input. B. Output control and clock input grounded. 2-166 4-Bit Ca!!~_ilct~ble Shift Registers with 3-State Outputs Switching Characteristics, Vee = 5V Over Recommended Free-Air Temperature Range -55°e Parameters Typ Min Test Conditions: CL = 15pF, RL +25°e Max Min Typ +125°C Max Typ Min Unit Max = 2kO (See Fig. C, psge 2-174) f max . 35 25 Clear to LS395 MHz 27 40 23 35 27 40 ns tPLH 27 40 23 35 27 40 ns tPHL 24 35 20 30 24 35 ns tpZH 17 25 13 20 17 25 ns tpZL 28 41 24 36 41 ns tpHZ 15 22 11 17 2~ 15 22 ns tPLZ 19 27 15 23 19 27 ns tpHL output Test Conditions: CL - 5.OpF, RL - 2kO (See Fig. C, page 2-174) tHZ 13 22 11 17 13 22 ns tLZ 18 27 15 23 18 27 ns Test Conditions: CL = SOpF, RL = 2kO (See Fig. C, page 2-174) tPHL .. 30 44 26 39 30 44 ns tPLH 30 44 26 39 30 44 ns tpHL 27 38 23 34 27 38 ns tPZH 20 29 18 24 22 27 ns tpZL 31 45 27 40 30 45 ns tpHZ 18 26 14 20 19 26 ns tpLZ 22 32 18 27 22 32 ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS devices only. LOGIC DIAGRAM ~ OATA INPUTS ___________ ___________ JA~ ~ A (3) CLOCK ;.:.(1.;.;0)_ _011 ~~..-II-----+-.....+----+--..-ll-----+-....., CLEAR OUTPUT (9) CONTROL (15) ,OA (14) DB ~-------~-~v 3·STATE OUTPUTS ~YTHE03J (13) DC (12) Do, (11) DO, CASCADE OUTPUT 2-167 4-By-4 Register Files with3~State Outputs LS670 FEATURES • Separate Read!Write Addressing Permits Simultaneous Reading and Writing • Fast Access Times ... Typically 20 ns • Organized as 4 Words of 4 Bits • Expandable to 512 Words of n·Bits • For Use as: Scratch·Pad Memory Buffer Storage Between Processors Bit Storage in Fast Multiplication Designs • 3-State Outputs DESCRIPTION The LS670 and MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either writein or retrieve data. This permits simultaneous writing into one location and reading from another word location. Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in 12 11 10 9 8 GND 7 6 5 its true form. That is, if a high-level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the writeenable input, GW, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, GR, is high, the data outputs are inhibited and go into the highimpedance state. The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs. This arrangement-data-entry addressing separate from dataread addressing and individual sense I ine-el im inates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed. VCC WRITE SELECT ENABLE DATA D1 OUTPUTS 02 ~ D2 ~ D2 4 Q2 Q3 D3 RB RA 04 03 --..- --..- 0 GND DATA READ SELECT OUTPUTS Positive Logic: See Description Die Size .090 x .068 2-168 ~YTHEO]J 4-By-4 Register Files with 3-State Outputs LS670 LOGIC WRITE FUNCTION TABLE (SEE NOTES A, B, AND CJ WRITE INPUTS WORD READ FUNCTION TABLE (SEE NOTES A AND oj READ INPUTS OUTPUTS WB WA Gw 0 1 2 3 RB RA GR Q1 02 03 04 L L L Q=D Qo Qo Qo L L L W081 WOB2 WOB3 WOB4 L H L Qo Q=D H L L Qo Qo Qo Q=D H H L Qo Qo X X H Qo Qo NQTES: Qo L H L W181 W182 W183 W184 H L L W281 W282 W283 W284 Qo Qo Q=D H H L W381 W382 W383 W384 Qo Qo X X H Z Z Z Z A. H = high level, L = low level, X = irrelevant, Z = high impedance (off) B. (0 = D) = The four selected internal flip·flop outputs will assume the states applied to the four external data inputs. C. QO = the level of Q before the indicated input conditions were established. D. WOB1 = The first bit of word 0, etc. FUNCTIONAL BLOCK DIAGRAM DATA INPUTS OUTPUTS --.-Ra WRITE INPUT ~YTHEO!J GR RA READ INPUT 2-169 4-By-4 Register Files with 3-State Outputs LS670 Recommended OperatIng Conditions 9lS/54lS Min. Supply voltage, Vee 4.5 High·level output current, IOH low·level output current, IOl (see Figure 2) Min. 5.5 4.75 5 -1 Nom. Max. 5 Unit 5.25 V -2.6 mA 8 mA 4 Width of write-enable or read·enable pulse, tw Setup times, high· or low·level data 9lS174lS Nom. Max. 25 25 ns 10 10 ns 15 15 ns 15 15 ns 5 5 ns Data input with respect to write enable, tsetup(D) Write select with respect to write enable, tsetup(W) Data input with respect to Hold times, high· or low·level data (see Note 2 and Figure 2) write enable, thold(D) . Write select wi th respect to write enable, thold(W) latch time for new data, tlatch (see Note 3) Operating free·air temparature range, T A NOTES 25 -55 ns 25 125 0 70 'e 1. Voltage values are with respect to network ground terminal. 2. Write-select setup time will protect the data written into the previous address. If protection of data in the previous address is not required, tsetup(W) can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during thold(W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses:may have been written into. 3. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data. 2-170 ~YTHE~ 4-By-4 Register Files with 3-State Outputs LS670 Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted) Parameter 9LS/54LS Test Conditions t Min. VIH High-level input voltage VIL Low-level input voltage VI Input clamp voltage VOH High-level output voltage 2 Vee = MIN. II = -ISmA Vee - MIN. VIH = 2V. VIL = VILmax VOL Low-level output voltage 9LS174LS Tvp* Max. Vee = MIN. 10H - -lmA 2.4 VIH = 2V. 2 Unit V O.S V -1.5 -1.5 V 3.4 2.4 10L = 4mA Tvpt Max. 0.7 10H =-2.6mA VIL = VILmax Min. 0.25 0.4 V 3.1 0.25 0.4 0.35 0.5 V 10L = SmA Off-state output current. 10ZH high-level voltage applied Vee = MAX. VIH = 2V. Va = 2.7V 20 20 itA Vee = MAX. VIH = 2V. Va = O.4V -20 -20 /LA Off-state output current, 10ZL low-level voltage applied Input current at II IIH IlL maximum input voltage High-level input current VI = 7V 0.1 0.1 0.2 0.2 GR 0.3 0.3 Anv D, R, orW 20 20 GW 40 40 GR 60 60 -0.4 Vee = MAX, VI = 2.7V Low-level input current Anv.D.R,orW GW Vee=MAX, Vee = MAX lOS Short-circuit output current 'i Vee = MAX ICC Supply current Vee =MAX, Any D, R, orW -0.4 GW -O.S -O.S GR -1.2 -1.2 -30 See Note 4 130 30 50 -30 30 mA itA mA 130 mA 50 mA rFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. tAli typical values are at Vee = 5V, TA = 25°e. iNot more than one output should be shorted at a time. NOTE 4: Maximum ICC is guaranteed for the following worst-case conditions: 4.5V is applied to all data inputs and both enable inputs, all address inputs are grounded and all outputs are open. ~YTHEO:?J 2-171 . LS670 SwHchlng Characteristics Vee Parameter Test Conditions: CL _55°C From To. (Output) Min. tpHL Select tpLH Write tpHL enable Data Any Q Any Q Any Q tpHL tZL Read tHZ enable Any Q tLZ Min. Typ. +125°C Max. Min. Typ. Max. Unit A on page 2-174) 26 44 23 40 26 45 28 49 25 45 28 50 30 49 26 45 30 50 31 54 28 50 31 55 28 49 25 45 28 50 26 44 23 40 26 45 ns ns ns 18 39 15 35 18 40 25 44 22 40 25 45 33 54 30 50 33 55 19 39 16 35 19 40 ns = SOpF, RL = 2.0kO (See Figs. 1, 2,3 on pages 2-172 and 2-173 and Fig. A on page 2-174) tpLH Read tpHL Select tpLH Write tpHL enable tpLH +25°C Max. = SpF, RL = 2.0kO (See Figs. 1, 2, 3 on pages 2-172 and 2-173 and Fig. C on page 2-174) tZH Test Conditions: CL Typ. = lSpF, RL = 2.0kO (See Figs. 1, 2, 3 on pages 2-172 and 2-173 and Fig. Read Test Conditions: CL - = S.OV Over Recommended Free-Air Temperature Range. (Input) tpLH tpLH 4-By-4 Register Files with 3-State Outputs Data Any Q Any Q Any Q tpHL 30 49 27 44 31 50 32 54 29 49 33 55 34 54 30 49 35 55 35 59 32 54 36 60 32 5J ;19 49 JJ 5b 30 49 27 44 31 -50 ns ns ns Note: AC specification shown under _55°C and +125°C are for 9LS devices only. All 50pF specifications are for 9LS devices only_ REAn ENABLE 3V ~~---------- OV j+--tHZ WAVEFORM 1 (See Note A) lclosed' S2 open ~ 1.5V VOL tLZ WAVEFORM 2 Slopen, (See Note A) ____~S=2~c=lo=se=d_'_______ OV VOH 1.5V S2 closed VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS FIGURE 1 NOTES: A. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the read-enable input. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the read· enable input. B. When measuring delay times from the read-enable input, both read-select inputs have been established at steady states. C. Input waveforms are supplied by generators having the following characteristics: PRR .; 1 MHz, Zout '" 50 50%, tr .; 15 ns, tr .; 6 ns. 2-172 n, dutY cycle .; ~YTHEO]J 4-By-4 Register Files with 3-State Outputs LS670 PARAMETER MEASUREMENT INFORMATION -J WRITE·SELECT ::U~o:AAiWB 1.3V =l t 3V 1.3_V__________ OV l--.tsetup(W) I -----i-____ OATA INPUT 01,02,03, or D4 (See Note AI 1.3V thold{W) ,---------- 3V 1.3V OV 3V WRITE-ENABLE INPUT GW OV 3V READ-SELECT INPUT RA or RS (See Note BJ OV VOH OUTPUT Q1. 02, 03, or 04 VOL VOLTAGE WAVEFORMS (51 AND 52 ARE CLOSED) FIGURE 2 NOTES: A. High·level input pulses at ,the select and data inputs ar~ illustrated; however. times associated with low-level pulses are measured from the same reference points. B. When measuring delay times from a read select input, the read-enable input is low. C. Input waveforms are supplied by generators having the following characteristics: PRR .;; 2 MHz. Zout ,., 50 50%. tr';; 15 ns. tr';; 6 ns. i \ n. dutY cycle .;; ,-------,.----------------------3V DATA 01, 02,INPUT 03. or 04 1.3V II WRITE· ENABLE INPUT Gw -~--.--~ -I tPLH I- '-----OV ~-~----w tPHL g~T~'"a3. '" 04 ____ J.3V -i VOl '\.3V VOLTAGE WAVEFORM 1 (S1 AND 82 ARE ClOSED~'---- VOl 1r---- 3V ~------.,----------------------- ov I~-----"--- 3V _ _~_~_J OUTPUT Q1, 02, 03, or 04 3V ~1.3V ~-------OV ,----3V 1.3V ------,-----------f------OV VOLTAGE WAVEFORM 2 (51 AND 52 ARE CLOSED) FIGURE 3 NOTES: A. Each select address is tested. Prior to the start of each of the above tests both write and read address inputs are stabilized with WA ~ RA and WB ~ RB. During the test GR is low. B. Input waveforms are supplied by generators having the following characteristics: PRR .;; 1 MHz. Zout ,., 50 n. dutY cycle .;; 50%. tr';; 15 ns. tr';; 6 ns. ~YTHE~ 2-173 FIGURES A, Band C SWITCHING TEST CONDITIONS INPUT --/f~~.;V T"=--- ov - - -3V I.~V ~tPLH'1 :--tPH~ _ _ V IN.PHASE~I r I OUTPUT I ':3V I I 1. OH 1.3V I VOL I ,...tPHL'" : :.~. t-"tpLH--I :VOH 1.3V ~ OUT·Of.PHASE· OUTPUT FIGURE A FOR TOTEM-POLE PUTPUTS VCC rh T - - -VOL VOLTAGE WAVEFORMS LOAD CIRCUIT fROM OUTPUT UNOER TEST 1.3V INPUT TEST POINT --/f~-I.;V T'==-- OV - I.~Y \'tPLH 1.3V I ,-tpHL"" : : I VOL t--tPLH--I ,:VOH - - -VOL VOLTAGE WAVEfORMS FIGURE B J1 1.3V I 1.3V· 1.3V ~ LOAD CIRCUIT FOR OPEN-COLLECTOR OUTPUTS VCC I RL I '~"':''I Q ~UeA TEST 3V r-tPHL~ _ _ V 1 OUT·Of·PHASE OUTPUT 'OMour'ur - IN-PHAS~I I 1 I OH OUTPUT: (See Note Al CL TEST POINT - . OUTPUT CONTROL" 1.3V (low-level enabling) t vvAVt:t-ORM 1 (See Note Cl WAVEfORM 2 (See Note C) _______ _ r---------- ~.:.::.v : OV itZL~----;:"4!;V _ .... {SI k ] (S•• Note BI ~3V l\ !tLz1 81 ANO i 51 CLoseo ~1 3 v i r :SZ CLOSED : 52 OPEN" i ~""1.5V I ----'------'VOL ~tHZ---l ~tZH-jO.5V O.SV == ,-:. --- ~ S10PEN, 52 CLOSED __ ~.:!------ VOH ~.~~ ~""15V _ ",OV 51 ANO . S2 CLOSEO S2 VOLTAGE WAVEfORMS LOAD CIRCUIT FIGURE C - FOR THREE-STATE OUTPUTS NOTES: A. CL includes probe and jig capacitance. B. All diodes ar.e 1 N3064. C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. D. In the examples above, the phase relationships between inputs and outputs have been chosen arbitrarily. E. All input pulses are supplied by generators having the following characteristics: tr .. 15 ns, tf" 6 ns, PRR .; 1 MHz, Zout '" 50 n, and tw = 100 ns. 2-174 ~YTHEO}J 25LS HIGH-PERFORMANCE LOW-POWER SCHOTTKY Page 25LS2~ 8-bit serial/parallel two's complement multiplier Quad serial adder/subtractor 8-bit serial/parallel register with sign extender_ 8-bit shift/storage register with synchronous clear _ 3-2 3-6 3-10 3-15 25LS122 25LS123 25LS138 25LS139 25LS151 25LS153 Single retriggeraple monostable multivibrator with clear Dual retrig!jerable monostable multivibrator with clear 3-to-8Iine decoder/demultiplexer Dual 2-to-4 line decoder/demultiplexer 8-to-l line multiplexer, compl_ outputs Dual 4 to 1 line multiplexer 3-16 3-18 3-21 3-21 3-24 3-26 25LS157 25LS158 25LS160 25LS161 Quad 2-to-l line multiplexer LS157, inverting BCD decade counter, asynchronous clear 4-bit binary counter, asynchronous clear 3-28 3-28 3-30 3-30 25LS162 25LS163 25LS170 25LS174 BCD decade counter, synchronous clear _ 4-bit binary counter, synchronous clear _ 4 x 4 register file with open collectors_ Hex D-type flip-flop with clear 3-30 3-30 3-38 3-42 25LS175 25LS181 25LS190 25LS191 Quad D-type flip-flop with clear _ 4-bit arithmetic logic unit BCD decade up/down counter, synchronous 4-bit binary up/down counter, synchronous 3-42 3-44 3-50 3-50 25LS192 25LS193 25LSl94A 25LS195A BCD decade up/down counter, synchronous_ 4-bit binary up/down counter, synchronous _ 4-bit universal shift register 4-bit parallel-access shift register 3-58 3-58 3-66 3-66 25LS251 25LS253 25LS257 25LS258 8-to-l line multiplexer with tri-state output _ Dual 4-to-l line data selectors/multiplexers with tri-state output _ Quad 2-to-1 line multiplexer with tri-state output_ Quad 2-to-1 line multiplexer with tri-state output_ 3-73 3-75 3-79 3-79 25LS299 25LS670 8-bit universal shift/storage register 4 x 4 register files with tri-state outputs 3-83 3-86 25LS14 25LS15 25LS22 ~YTHEO~ 3-1 8-Bit Serial/Parallel Two's Complement Multiplier 25LS14 FEATURES • • • • • • • • Two's Complement Multiplication Without Correction Magnitude Only Multiplication Cascadable for any Number of Bits 8-Bit Parallel Multiplicand Data Input Serial Multiplier Data Input Serial Data Output for Multiplication Product 25 MHz Minimum clock Frequency 100% Reliability Assurance Testing in Compliance With MIL-STD-883 Vcc Y X4 X5 X6 X7 K §] 25lS14 [!] CP GND FUNCTIONAL DESCRIPTION The 25LS14 is an 8-bit by l-bit sequential logic element that performs digital multiplication of two numbers represented in two's complement form to produce a two's complement product without correction by using Booth's algorithm internally. The device accepts an 8-bit multiplicand (X input) and stores this data in eight internal latches. The X latches are controlled via the clear input. When the clear input is LOW, all internal flip-flops are cleared and the X latches are opened to accept new multiplicand data. When the clear input is HIGH, the latches are closed and are insensitive to X input changes. The multiplier word data is passed by the Y input in a serial bit stream-least significant bit first. The product is clocked out the S output least significant bit first. The multiplication of an m-bit multiplicand by an n-bit multiplier results in an m + n bit product. The 25LS14 must be clocked for m + n clock cycles to produce this two's complement product. Likewi~e, the n-bit multiplier (Y-input) sign bit data must be extended for the remaining m-bits to complete the multiplication cycle. The device also contains a K input so that devices can be cascaded for longer length X words. The sum (S) output of one device is connected to the K input of the succeeding device when cascading. Likewise, a mode input (M) is used to indicate which device contains the most significant bit. The mode input is wired HIGH or LOW depending on the position of the 8-bit slice in the total X word length. LOGIC DIAGRAM CLEAR lelR) L---+-......--1rlcLe:~ VO=Vl CP CLOCK (CP) M Recommended Operating Conditions Military Min. Supply Voltage, Vee 4.75 5 High-level Output Current, IOH 3-2 5.25 Min. 4.5 Nom. Max. 5 -1 Low-level Output Current, IOl Operating Free-Air Temperature, T A CommerciaJ Nom Max. 8 -55 12 125 8 0 5.5 Units V -,. mA 12 mA 70 ·C ~YTHEr3l 8-Bit Serial/Parallel Two's Complement Multiplier 25LS14 Electrical Characteristics Over Operating Temperature Range (Unless Otherwise Noted) Military Min. VCC = MIN., IOH = 1.0mA VOH Output HIGH Voltage VCC= MIN. VIN = VIH or VIL VIL I nput LOW Level VI Input ClamP Voltage 3.4 3.4 Units V 0.40 0.45 2.0 Vce 0.8 VCC = MAX., VIN = O.4V Input HIGH Current Vce = MAX., VIN = 2.7V Input HIGH Current Vce = MAX., VIN = 5.5V V V -1.2 -1.2 0.48 0.48 -1.2 K' CLR -1.2 CP -1.6 -1.6 Y -3.2 -3.2 X,M 20 20 K,CLR 30 30 CP 40 40 -40 VCC= MAX. mA /,A 80 80 1.0 1.0 mA -100 rnA 155 mA -100 91 Vce= MAX. Power Supply Current 0.8 X,M MIN., liN = -18mA V V 2.0 Guaranteed input logical LOW (Note 4) ICC 2.7 Max. 0.4 voltage for all inputs Output Short Circuit Current ISC Typ. 0.45 Y II Min. IOL = 12rnA voltage for all inputs Input LOW Current IIH Max. IOL = 8.0mA Guaranteed input logical HIGH Input HIGH Level IlL 2.5 (2) VIN = VIH or VIL VOL Output LOW Voltage VIH Commercial Typ. Test Cond!tions (Note 1) Parameters 155 -40 91 Switching Characteristics, Vee = 5V Parameter From To (Input) (Output) +25°C Min. Typ. Max. Units Test Conditions: CL = 15pF, RL = 2kO (See Fig. A, page 2-174) tpLH Clock y 13 20 ns tpHL Clock y 13 20 ns 17 25 ns tpHL Clear ts Set up time th Hold time ts Set up time th Hold time ts Set up time th Hold time tpw X Y to Clock K to Clock Xi to Clear 32 ns 0 ns 18 ns 0 ns 13 ns 0 ns Clock Pulse Clock Hi 15 ns Width Clock Low 15 ns ns tp_w Clear Pulse Width 20 t, Clear Recovery Time 18 f max Max. Clock Frequency 25 t;YTHE03J ns 40 MHz 3-3 8-Bit Serial/Parallel Two's Complement Multiplier 25LS14 FUNCTION TABLE Inputs CLR - CP K M Xi Y - L L - CS H - - - OP H - - - - - L H. t H t H t H t , Internal Output Y-1 S - - - L L Load New Multiplicand and Clear Internal Sum and Carry Registers - - Device Enabled Function Most Significant Multiplier Device Devices Cascaded in Multiplier String - - L L· AR - - L H AR Add Multiplicand to Sum Register and Shift - - H L AR Subtract Multiplicand from Sum Register and Shift H H AR Shift Sum Register Shift Sum Register H = HIGH L= LOW t = LOW to HIGH transition CS = Connected to S output of higher order device OP =: Xi latches open for new data (i = o. 7) AR = Output as required per Booth's algorithm DEFINITION OF FUNCTIONAL TERMS Xo. Xl. X2. X3. X4. X5. XS. X7 The eight data inputs for the multiplicand (X) data. V The serial input for the multiplier (V) data-least signifi· cant bit first. S The serial output for the product of X • V -least signifi· cant bit first. CP Clock. The buffered common clock input for the serial/ parallel multiplier. All functions occur on the LOW-toHIGH transition of the clock. 3-4 CLR Clear. The buffered common clear for all flip-flops within the device. When the clear is LOW all flip-flops are cleared. Also the buffered X-input latch enable. When the clear input is LOW. the X latches will accept new X-input data. K The sum expansion input to the serial/parallel multiplier. Allows for cascading devices. M The mode control input for the most significant bit of determine the most significant bit. ~YTHEO~ B-Bit Serial/Parallel Two's Complement Multiplier 25LS14 APPLICATIONS 24·BIT y ----------~~~~~+-+-+-+-+-------------.-+-~~~~~~-+------------, --------1M M H -----;K CLR CP 25lS14 H I------\K I----IK 25LS14 CLR CP CLR CP 25lS14 CLEAR __--~------------------------~~~--------------------------~ CLOCK--~~----------------------------~----------------------------~ PRODUCT SERIAL OUTPUT SERIAL/PARALLEL CLOCK ENABLE 6 ' - - - DA SIGN EXTEND CLOCK OUTPUT CONTROL RE SER/PAR H - DB MUX CLEAR 25LS22 SE S-BIT SHIFT REGISTER ~~ CP OE aD DY7DV SDYSDV 4DY 30Y 20Y lOY a MULTIPLIER INPUT CLOCK CP y L-K L-M CLEAR ~YTHEO:?J X7 X6 X5 X4X3 X2Xl Xo 25LS14 SERIAL/PARALLEL MULTIPLIER CLR 3-5 Quad Serial Adder/Subtractor 25LS15 FEATURES. • • • • • Four Independent Adder/Subtractors Use with Two's Complement Arithmetic Magnitude Only Addition/Subtraction Advanced Low-Power Schottky Processing 100% Reliability Assurance Testing in Compliance With MIL-STD-883 VCC ~ CLOCK CLEAR DESCRIPTION The 25LS15 is a serial/parallel two's complement adder/ subtractor designed for use in association with the 25LS14 serial/parallel two's complement multiplier. This device can also be used for magnitude only addition or subtraction. Four independent adder/subtractors are provided with common clock and clear inputs. The add function is A plus B and the subtract function is A minus B. The clear function sets the internal carry function to· logic one in subtract mode. This least significant plus one is self propagating in the subtract mode as long as zeroes are applied at the LSB's. Note: Pin 1 is marked for orientation The 25LS15 is particularly useful for recursive or nonrecursive digital filtering or butterfly networks in fast fourier transforms. LOGIC DIAGRAM (One of Four Similar Functions) I ---£>0 TO 3 OTHER ---£>0 c--J ADDER/SUBTRACTIONS A1 ---£>o-rr~[)o--+-----IID ar-F1SUM CLOCK ....- - - - - I C P CLR S1 ADD SUBTRACT CLEAR 3-6 ~~~i~-------------------------~----- } TO 3 OTHER ADDER/SUBTRACTORS Quad Serial Adder/Subtractor 25LS15 Recommended Operating Conditions Military Supply Voltage VCC High·Level Output Current IOH Low Level Output Current IOL Operating Free Air Temperature Commercial Min. TVp. Max. Min. Typ. Max. 4.5 5 5.5 -440 4.75 5.0 5.25 -440 8 +70 -55 8 +125 0 Units V j.lA mA °c Electrical characteristics Over Operating Temperature Range (Unless Otherwise Noted) Military Commercial Typ. Parameters Description V OH Output HIGH Voltage VOL Output LOW Voltage V IH Input HIGH Level Test Conditions (Note 1) Min. (Note 21 Max. 2.5 Vee = MIN .• IOH = -440j.lA Min. Typ. Max. 2.7 Units Volts VIN = V IH or V IL Vee - MIN. V IN = V IH or V IL IIOL =4.0mA 0.4 0.4 IIOL -8.0mA 0.45 0.45 Guaranteed input logical HIGH voltage for all inputs 2.0 Volts 2.0 Guaranteed input logical LOW Volts V IL Input LOW Level 0.7 0.8 Volts VI Input Clamp Voltage Vee - MIN., liN = -18mA 1.5 1.5 Volts IlL (Note 31 I "put LOW Current Vee = MAX" VIN = O.4V -0.36 -0.36 Volts IIH (Note 31 Input HIGH Current Vee = MAX., VIN = 2.7V 20 20 Volts Input HIGH CUrrent Vee = MAX., VIN = 7.0V 0.1 mA -85 mA 75 mA II Output Short Circuit Ise Current (Note 4) Power Supply Current lee Notes: 1. 2: 3, 4. 5. INote 51 voltage for atl inputs Vee = MAX. Vee = MAX. 0.1 -30 -85 48 -30 75 48 For conditions shown as Min. or Max., use the appropriate value specified under Electrical Characteristics for the applicable' device type. Typical limits are at Vee = 5.0V. 25°C ambient and maximum loading. Actual input currents = Input Load Current x Input Load Factor (See Loading Rultes), Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. All inputs HIGH, measured after a LOW-to-HIGH clock transition. ~YTHEO~ 3·7 Quad Serial Adder/Subtractor 25LS15 = 5.0V, TA = +25°C Switch Characteristics Vcc Parameters From To (Input) (Output) Test Conditions: CL = 15pF, tpLH RL +25"C Min. Max. Units = 2kO (See Fig, A, page 2-174) Clock F tPHL tpHL Clear ts Set up time th Hold time ts Clear R'ecovery time th Clear Hold time F 22 14 22 20 30 25 ns ns 0 "I ns ns 0 17 CIOCk HIGH LOW l Width 14 10 A,B,S Clock Pulse tpw Typ. ns 17 tpw Clear Pulse Width 20 fMAX Max. Clock Frequency 30 ns 40 MHz DEFINITION OF FUNCTIONAL TERM8 FUNCTION TABLE Internal External Inputs CP CLR S A Point B C Output F L X L L X X L C1 L X L H X X H H L H X X X NC NC NC H H X X X NC NC NC t t t t H L L L L L L H L L L H L H H L L H L L H L H L L H H H L t t t t t t t t H L H L L L H H L H L H H L H L H H L H L H L H H H H H H H L L L L H L Function Clear CP Clock Add CLR Clear H H L L H H H H L H L L L H H L H H L H t t H H H L L H L H H H L H H H t t H H H H L L H H H H H H H L = Data In the Carry Flip-Flop Before the Clock Transition C C, X NC H L t Subtract = Data In the Carry Flip-Flop After the Clock = Don't.Care = No Change = HIGH = LOW = LOW-to-HIGH Transition A1,A2.A3,A4 B1,B2,B3,B4 81,82,83,84 The" A" input into each adder/subtractor The "B" input Into each adder/subtractor The add subtract control for each adder/ subtractor. When S is LOW, the F function is A+B. When S is HIGH, the F function is A-B. The four independent serial outputs of the adder/subtractor. The clock input for the device. All internal flip-flops change state on the LOW-toHIGH transition. When the clear input is LOW, the four independent addllr/subtractors are asynchronously reset. The sum flip-flop is always set to logic "0". The carry flip-flop is set to logic "O~' in the add mode and logic "1" in the subtract mode. Quad Serial Adder/Subtractor 25LS15 APPLICATIONS The normal butterfly network associated with the CooleyTukey Fast Fourier Transform (FFT) algorithm is shown below. Here we assume A, B, C, D and Ware all complex numbers such that: A ~ B ~ BR+jB, W ~ WR+jW, C CR+jCI~IAR+BRWR-B,W,)+j(A,+BRW,+B,WR) D CR+jD,~(AR-BRWR+B,W,)+J(A,-BRW,-B,WR) The four multiplications can be implemented using four 25LS14 serial-parallel multipliers (the appropriate number of bits must, of course, be used). The additions and the subtractions are implemented using the 25LS15 quad serial adder/subtractors. This diagram depicts only the basic data flow; binary weighting of the numbers, rounding, truncation, etc. must be handled as required by the individual design parameters. AR+jA, The outputs C and D are also complex numbers and are eva Iuated as: FAST FOURIER TRANSFORM (FFT) BUTTERFLY ~ 'N 25LS22 II-B'T REG 00 y 25LS14 A S 1/425LS15 (A-B) F - "...~. B 1/425LS15 (A+ B) B X F_ A WR~ 'N -r---B 25LS22 B 00 X ~ IN 25 LS22 00 B,WR .... y 25LS14 S y 25LS14 S ~B B,W, ~B X A 1/425LS15 (A-B) 1/425LS15 (A+B) A F~ F_' WI~ A ,~ 'N B 25LS22 B 00 -Y X 25LS14 BRW' S~A B 1/425LS15 (A+B) F B A 1/425LS15 (A-B) F_ An F FT butterfly connection for complex arithmetic inputs and outputs. ~YTHEO]J 3-9 8-Bit Serial/Parallel Register with Sign Extend 25LS22 FEATURES • Three-State Outputs • Multiplexed Serial Data Input ill Sign Extend Function • Advanced Low-Power Schottky Processing • 100% Reliability Assurance Testing in Compliance With MI L-STD-883 Vcc [§] SE DB DV6 DV4 DV2 OVo CLOCK .DESCRIPTION 25LS22 CP Co CLEAR The 25LS22 is an 8-bit Serial/Parallel register with 3state outputs. Data may also be loaded in a serial manner from inputs DA or DB under control of a multiplexer select input A register enable function also provides parallel load, shift and hold functions. The 25LS22 has a sign extend function which is specifically designed for use with the 25LS14 eight by one serial/parallel two's complement multiplier. Typical shift frequency is 50MHz. The 25LS22 is packaged in a standard 20-pin package. 8GNO Note: Pin 1 is marked for orientation. LOGIC DIAGRAM SERIAL~~~+-----~---4~--~--~--~--~--~--~---+--~---+--~---'--+----' PARALLEL 2 EX;~~~~18~~~O-~~~ DB MUX SELECT 17_-'FFL.Fl r -19,'L./'~-I--<""" u....=:,d.-+.... Co CLEAR~~~-----t--1-~-+~~-+-+-t-+-+-+-+-+-+-+-+-+~-+-+-+~-+-+-+~~~-+~ CLDCK~.t~-----+--~---+-+-+---+-+-+---+-+-+---+-+~-----+~----~~----~~ ~~:i~~--------~~)D-r-+-t---1-+-+---1-+-t---1-+-+---1r-~--~r-~--~r-~---. CONTROL ~ OV6 3-10 14 16 OV3 OV3 13 OV1 ~YTHEO:3J 8-Bit Serial/Parallel Register with Sign Extend 25LS22 Recommended Operating Conditions Military Supply Voltage V CC Min. Typ. 4.5 5.0 Min. Typ. 5.5 4."7:5 5.0 -0.44 10 0 High Level Output Current 10H Commercial Max. I DYi Max. 5.25 -0.44 -1.0 Low Level Output Current 10L 4 -55 Operating Free Air Temperature -2.6 8 +125 4 0 Unit V mA 8 mA 70 °c Electrical Characteristics Over Operating Temp. Range (Unless Otherwise Noted) Military Commercial Typ. Description VOH Output HIGH Voltage VOL Output LOW Voltage VIH Input HIGH Level VIL Input LOW Level VI Input Clamp Voltage IIH (Note 3) Input LOW Current Input HIGH Current Input HIGH Current Off State (High Impedance) 10 VIN = MIN. = VIH or VIL VCC = MIN. VCC Output Current (DYi) Min. (2) DYi, 10H 2.4 2.4 DYi, 2.4 = -1.0mA 10H = -2.6mA 10L = 4.0mA VCC = MAX., VIN = 2.7V (Except DYi) VCC = MAX., VIN = 5.5V (Except DYi) VCC = MAX. 0.4 0.45 0.45 0.8 V V -1.5 -1.5 SE 1.08 -1.08 S 0.72 -0.72 Others 0.36 -0.36 SE 60 60 S 40 40 Others 20 20 SE 0.3 0.3 S 0.2 0.2 Others 0.1 0.1 = 2.4V 40 40 Vo - O.4V -100 -100 Vo V V 0.7 = -18mA = MAX., VIN = O.4V V 2.0 Guaranteed input logical LOW VCC Max. 0.4 2.0 voltage for all inputs liN Typ. 2.4 10L - 8.0mA Guaranteed input logical HIGH = MIN., Min. 2.7 = -440J.LA voltage for all inputs VCC Unit Max. 2.5 00, 10H VIN = VIH or VIL IlL (Note 3) II Test Conditions (Note 1) mA J.LA mA J.LA Output Short Circuit ISC ICC Current (Note 4) Power Supply Current VCC = MAX. VCC = MAX. -30 -85 40 65 -30 40 -85 mA 65 mA Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typical limits are at VCC = 5.0V, 25°C ambient and maximum loading. 3. Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules). 4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. ~YTHE03J 3-11 8-81t Serial/Parallel Register with Sign. Extend 25LS22 Switching Characteristics Vee = 5V, TA = +25°C Parameters To (Output) Test Conditions: CL = SOpF, tPLH RL Clock Clock aO Clear 24 18 26 23 30 16.5 24 18 26 23 30 DYi tpHL tPHL Units Max. 16.5 DYi Clear tPLH Typ. Min. = 2kO (see Fig. C on page 2-174) tpHL tpHL +2SoC From (Input) aO ns ns ns ns Test Conditions: CL = 15pF, RL = 2kO (see Fig. C on page 2-174) tZH tZL OE DYi 1HZ 13 21 18 26 13 21 26 tLZ 18 tZH 18 26 tZL 23 32 SER/PAR DYi tHZ tLZ Is Set Up Time RE To Clock 20 ts Set Up Time SE To Clock 10 ts Set Up Time S To Clock 15 ts Set Up Time DA/DB to Clock 15 ts Set Up Time DY· To Clock 15 ts Clear to Recovery To Clock 8.0 ts Set Up Time SIP To Clock 15 th th Hold Time Any Input Clear Hold Time tpw Clock Pulse Width tpw f max Clear Pulse Width 20 Max. Clock Frequency 50 18 26 23 32 ns ns ns ns 0 ns 0 I HIGH 8.0 LOW 8.0 ns ns MHz 70 FUNCTiON TABLi: INPUTS Register Clear Enable Mode L Clear Parallel Load OUTPUTS Seriall Sign Mux Parallel Extend Select DE" X X X X L H X X X X t D7 D6 D5 D4 D3 D2 01 ·DO DO t DA Y7n Y6n Y5n Y4n Y3n Y2n YIn YIn L X X H L L X X X H L H H L Clock DY7 DY6 DY5 OY4 OY3 OY2 OYI OYO L L L L L L L L L Z Z Z Z Z Z Z Z L QO H L H H H L L t DS Y7n Y6n Y~n Y4n Y3n Y2n YIn YIn Sign Extend H L H L X L t Y7n Y7n Y6n Y5n Y4n Y3n Y2n YIn YIn Hold H H X X X L t NC NC NC NC NC NC NC NC NC Shift Right L LOW H = HIGH t Clock LOW·to-HIGH Transition NC= No Change Don't Care Z = High·lmpedance Output State X *When the DE input is HIGH, all input/output terminals are at the high-impedance state; sequential operation or clearing of the register is not affected. D7. D6 ... DO = the level of the steady-state input at the respective DY n terminal is loaded into the flip-flop while the flip-flop outputs (except aO) are isolated from the DY n terminal. 0A. DB = the level of the steady state inputs to the serial multiplexer input. Y7n. Y6n ... YOn = the level of the respective an flip-flop prior to the last Clock LOW-to-HIGH transition. 3-12 ~YTHE03J 8-Bit Serial/Parallel Register with Sign Extend 25LS22 DEFINITION OF FUNCTIONAL TERMS DYi The multiplexed parallel input/output port to the device. Data may be parallel loaded into the register or data can be read in parallel from the register on these pins. These outputs can be forced to the high-impedance state, i = 0 through 7. aO The continuous output from the aO fl ip-flop of the register. This output is used for serial shifting. RE Register Enable. When RE is LOW, the register functions are enabled. When RE is HIGH, the register functions (parallel load, shift right and sign extended) are inhibited. SIP SE Serial/Parallel. When SIP is LOW, the register can by synchronously parallel loaded. This input forces the register output buffers to the high-impedance state independent of the OE input. When SIP is HIGH, the register contents are shifted right on the clock LOW-to-HIGH transition. CP Clock. The clock pulse for the register. Register operations occur on the LOW-to-HIGH transition of the clock pulse. OE Output Control. When the OE input is HIGH, the eight DYi outputs are in the high-impedance state. When OE is LOW, data in the eight flip-flops will be present at the register parallel outputs unless SIP is LOW. LOADING RULES (In Unit Loads) Fan-Out Inputl Output Pin No:s Output HIGH Output LOW 4mA SmA RE SIP 2 DA 3 DY7 4 0.3 50/130 11 22 DY5 5 0.3 50/130 11 22 DY3 6 0.3 50/130 11 22 DYI 7 0.3 50/130 11 22 OE 8 Sign Extend. When the SE input is LOW, the contents of the a7 flip-flop will be repeated in the a7 fl ip-flop as the register is sh ifted right. When SE is HIGH, the two-input multiplexer (DA and OS) is enabled to enter data during the serial shift right. The a7 flip-flop (DY7) is normally considered the MSS of the register for arithmetic definitions. CLR 9 GND 10 oA, DB S CLR LOW Input Unit Load CP 11 QO 12 22 11 22 DYO 13 0.3 50/130 11 22 The serial inputs to the device. DY2 14 0.3 50/130 11 22 Multiplexer Select. When S is LOW, the DA serial input is selected. When S is HIGH, the Os serial input is selected. DY4 15 0.3 50/130 11 22 DY6 16 0.3 50/130 11 22 DB SE 17 1 18 3 S 19 2 VCC 20 Clear. The asynchronous clear to the register. When the clear is LOW, the outputs. of the flipflops are set LOW independent of all other inputs. When the clear is HIGH, the register will perform the selected function. ~YTHEO:?J Low-Power Schottky TTL unit load is defined as 20"A measured at 2.7V HIGH and -0.36mA measured at O.4V LOW. 3-13 8-Bit Serial/Parallel Register with Sign Extend 25LS22 APPLICATIONS WN""{ INPUTS b I b ,Ie " c-' b e, r - DA r-r- cce 25LS22 '" ce Q' DY7 DY6 DY5 DY4 DY3 OY2 DVl ~ Load upper byte and e, OVo 25LS22 ce Q' DY7 25LS22 LOWER BYTE DY6 DY5 DY4 DY3 DY2 DYl oVo FUNCTION SE SIP RE OE SE SIP RE OE Description H H L X X L L X Load from Bus L H L H X X H H X L L X X X X X extend lower byte sign to upper byte I ,Ie DA Qo 25LS22 UPPER BYTE SYSTEM OPERATION Load lower byte and ~ " c-' extend upper byte sign 7 clock cycles to extend sign Load from Bus 8 clock cycles to extend while shifting value to upper byte sign and shift lower byte position H H L H H H L H Read 16-bit word to Bus X X X L X X X L upper byte into lower byte position Two 25LS22 S-bit registers can be used to perform the sign extend associated with two's complement S-bit bytes for arithmetic operations in a 16-bit machine. If the upper byte value is to be used, it is shifted to the lower bit positions and its sign is extended. If the lower byte value is to be used, it is held in place while the sign is extended downward from the MSB position of the upper byte. Unload _ SET-UP, HOLD, AND RELEASE TIMES ~N~~~_ I_ts_~~th_I TIMING +-_______ _______ 1________ INPUT _ _ _ _- : - _..... DAOA~ts~-~ 'N'",~~~ Notes: 1. 3-14 Diagram shown for HIGH data only. Output transition may be opposite sense. 2. Cross-hatched area is don't care condition. ~YTHEO]J 8-Bit Shift/Storage Register with Synchronous Clear 25LS23 FEATURES • • • • • Synchronous Clear Three-State Outputs Common Input/Output Pins Advanced Low-Power SchottkY Processing 100% Reliability Assurance Testing in Compliance With MI L-STD-883 CONNECTION DIAGRAM Top View vcc S, Sl QH1 H/QH F/QF O/Qo B/QB ClK SR ~ DESCRIPTION 25lS23 The 25LS23 is an 8-bit universal shift/storage register with 3-state outputs. The function is similar to the 25LS299 with the exception of a synchronous clear function. Parallel load inputs and register outputs are multiplexed to allow the use of a 20-pin package. Separate continuous outputs are also provided for flip-flops A and H. Note: Pin 1 is marked for orientation Four modes of operation are possible-Hold (store), Shiftleft, Shift-right and Load Data. The 25LS23 has a typical shift frequency of 50MHz. The 25LS23 is packaged in a standard 20-pin package. LOGIC DIAGRAM So SHIFT (181 LEFT SERIAL INPUT SERIAL INPUT CLEAR OUTPUT CONTROLS I G, G2 (3) 113) BlaB r§VTHE@J 161 (14) 151 (15) C/Qe DIDO E/Qe F/OF 141 G/Oo 3-15 8-Bit Shift/Storage Register with Synchronous Clear 25LS23 Recommended Operating Conditions Commetcial Military Min. Supply Voltage Vee 4.5 L I High Level Output Current IOH Typ. Max. 5.0 5.5 Typ. Max. 4.75 5.0 5.25 -0.44 00,,-07 DYO-DY7 -0.44 -1.0 Low-Level OutPut Current In!- 4.0 -55 Operating Free Air Temperature T A Min. -2.6 8.0 +125 4.0 8.0 0° 70 Unit V mA mA °e Electrical Characteristics Over Operating Temperature Range (Unless Otherwise Noted) Military Description Test Conditions (Note 1) Vee Output HIGH Voltage VOH VOL Output LOW Voltage VIH Input HIGH Level 0 MIN. VIN "" VIH or .1 DYO-DY7 VOL j (21 Input LOW Current Vee: MAX .• VIN : O.4V Input HIGH Current V 4.0mA IOl'" B.OmA 0.25 0.4 0.25 0.4 0.35 0.45 0.35 0.45 2.0 2.0 0.7 0.8 -1.5 -1.5 50. 51 -0.8 -D.8 All others -0.4 -D.4 40 40 (Except DYi) All others 20 20 Vee: MAX .• VIN - 5.5V 50. 51 0.2 0.2 All others (Note 41 Power Supply Current VO: 0.4V 0.1 0.1 -100 -100 40 VO: 2.4V -30 Vee: MAX. -85 38 Vec - MAX. (Note 51 57 V V 50. 5 1 Vee: MAX. Output Current Output Short Circuit CUrrent Typ. Max. Units Vee: MAX .• VIN: 2.7V (Except DYi! Off-State (High Impedancel Min. 2.4 voltage for all inputs IIH Input HIGH Current iNote 3) Commercial Max. 2.7 Guaranteed input logical LOW Vee: MIN .• liN: -18mA lee 2.4 -2.6mA voltage for all inputs Input Clamp Voltage Ise -1.0mA L10H - I 10L - Input LOW Level 10 IloH - VIN "" VIH or VIL . Guaranteed input logical HIGH VI (Note 3) 2.5 Vee - MIN. VIL IlL -440~A IIOH '" 1 0 0. 0 7 Min. 400 -30 38 V V mA "A mA ~A -85 mA 57 mA Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. = 5.0V. 25°C ambient and maximum loading. = Unit Load Current x Input Load Factor (see Loading Rules!' 2. Typical limits are at VCC 3. Actual input currents 4. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 5. Icc-measured with clock input HIGH and output controls HIGH. = +25°C Vee From To I (lnputl (Output) Switching Characteristics (TA Parameters = 50Vl +25°C Min. TYP. I Max. Units Teat Condllton.: C, = 15pF, R, = 2k!l (See FIg. A, page 2-174) tPLH Clock OOor 07 Clock DYi tPHL tPLH 19 23 18 tPHL ts Sj, So Setup Prior to Clock 20 ts SR. SL Setup Prior to Clock 20 Clock Pulse Width 25 th Hold Time 3.0 ts Clear Setup Prior to Clock tpw tZH tZL tZH tZL f max Sit So DYi Gl. G2 DYi ns 21 ns 20 Maximum FrequencV 20 19 20 ns 18 50 mH. Teat Condition.: C, = 5pF, R, = 2k!l (See Fig. C, page 2-174) tLZ tHZ tLZ tHZ 3-16 So DYi Gl. G2 DYi 51. 22 20 2D 16 ns 8-Bit ShiftlStorageRegister with Synchronous Clear 25LS23 TRUTH TABLE OUTPUTS INPUTS Function Clear Output Control Hold G2 00 0, OVO OV, OV2 OV3 DV4 DV5 DVS (Note'l L L L L L L L L L L L L X H L NC NC Z Z Z Z Z Z Z Z X X L H NC NC Z Z Z Z Z Z Z Z H H NC NC Z Z Z Z Z Z Z Z L L L L NC NC NC NC NC NC NC NC NC NC H H L L A H A 8 C D E F G H H L L L L DY6 L DYa DV, DV2 DY3 DV4 DY5 DY6 DY6 SL CLEAR CLOCK X X. L t X X X X X X X X X X X X X X X X X H X H H t t t t t M Load (Note 21 X X 0 Shift Right L D Shift Right H X X E Shift Left X L H Shift Left X H H H INPUTS/OUTPUTS G, SR S, So OV, H L L L H DY6 H DVa DY, DY2 DY3 DY4 DY5 L H L L DY, L QY, DY2 DY3 DY4 DY5 DYS DY, L L H L L DY, H DY, DY2 DY3 DY4 DY5 DYS DY7 H L= LOW Z = High Impedance t H= HIGH X = Don't Care NC = No Change Notes: 1. Either LOW to observe outputs. = Transition LOW-to-HIGH 2. In this mode DYj are inputs. DEFINITION qF FUNCTIONAL TERMS SR Shift right data input to 07 SL Shift left data input to 00 Active LOW input to control three-state outpui: in active LOW AND configuration. Clear Active LOW synchronous input forcing the 00 through 07 register to see LOW condi· tions, visable only if outputs are enabled. The only two direct outputs; used to cascade sh ift operations A LOW-to-HIGH transition will result in the register changing state to next state as described by mode and input data condition. Clock Input/Output line dependent on mode and output control. Input only with mode select LOAD. Output in all other modes but subject to output select (<31, (32). DYO-DY7 Mode selection control lines used to control input (output during load) conditions 50. 5 , APPLICATION INPUT/OUTPUT DATA I I I I I I I I Ilrrrr!"r SHtf:T RIGHT OVo ov, DY2 OV3 DY4 DYs OY6 DY7 SHIFT LEFT INPUT OVo DY, DY2 OVa DV4 OVs DYe DY7 Sl SR 5l 5R DO elK CLEAR 25LS23 r--So r - 5, Go SERIAL OUTPUT LEFT I a' I--- G,loG2 p- I elK CLEAR 25L523 r--So c-- 5, Go °7 I I I--- G,loG2 pSERIAL OUTPUT RIGHT CLEAR CLOCK OUTPUT CO~tTROL. rv'ODE{ CO~ITROL 16-Bit Cascaded Parallel Load/Unload Sbift Right/Left Register ~YTHE~ 3-17 25LS122 Single and Dual Retriggerable Monostable· Multivlbrators with Clear 25LS123 FEATURES • • • • • • • • • • • 25LS122 Retriggerable for Very Long Output Pulses, Up to 100% Duty Cycle Overriding Clear Terminates Output Pulse Low Power Dissipation: 25LS122 ... 30 mW Typical 25LS123 ... 60 mW Typical Compensated for VCC and Temperature Variations D·C Triggered from Active-High or Active-Low Gated Logic Inputs 25LS122 Has Internal 10 kn Timing Resistor Diode-Clamped Inputs Compatible for Use with TTL or DTL 50mV improved VOL compared to 9LS/74LS 440ILA source current 100% reliability assurance testing in compliance with MI L-STD-883 DESCRIPTION The 25LS122 and 25LS123 multi vibrators feature doc triggering from gated low-level-active (A) and high-level-active (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the timing components Rand C. Enough Schmitt hysteresis is provided to ensure jitter-free triggering from the B inputs with transition rates as slow as 1 volt per second. Figure 1 illustrates triggering the one·shot with the high·level-active (B) inputs. GND 8 7 logic: see function table NC-No internal connlilction. 14 Vee Die Size .085 x .071 25LS123 GND 10 9 8 Die Size .085 x .071 OUTPUTS A2 B1 B2 Q Q L X X X X X X H H X X X X L L L X X X X X X X X L L L L L H H H H H Jl. lS V X X X L L L H t t H H H H H H H H t t 3-18 25LS123 FUNCTION TABLE (SEE NOTE 1) CLEAR A1 t t H L X X L L X H t H H t H H H H H H L H H t IL H H ..fl. t H H H H H L .n.. SL ..n. .Il.. SL SL 7 15 25LS122 FUNCTION TABLE (SEE NOTE 1) INPUTS 1 OUTPUTS INPUTS CLEAR A B Q Q L X X X H X X X L L L L H H H H H L t Sl. 1I t t L H H SL Sl. V lS H V V V LS V 1S 1S t'EVTHEO!J Single and Dual Retriggerable Monostable Multivibrators with Clear 25LS122 25LS123 NOTES: 1. H ~ high level (steady state), l ~ low level (steady state), t ~ transition from low to high level,. ~ transition from high to low level, H ~ one high-level pulse, l ~ one low-level pulse, X ~ irrelevant (any input, including transitionsl. 2. To use the internal timing resistor of 25lS122, connect R int to VCC' 3. An external timing capacitor may be connected between Cext and Rext/Cext (positive). 4. For accurate repeatable pulse widths, connect an external resistor between Rext/Cext and Vee with Rint open circuited. 5. To obtain variable pulse widths, connect external variable resistance between Rint or Rext/Cext and Vee. TVPICAL OUTPUT PULSE WIDTH EXTERNAL TIMING CAPACITANCE RETRIGGER PULSE (See Notel 9 INPUT .....-tw+tPLH~ I L Jl______ OUTPUTQ I 1--- L ~OUTPUT -WITHOUT RETRIGGER OUTPUT PULSE CONTROL USING RETRIGGER PULSE 8 INPUT CLEAR OUTPUT a..JI.-_-_-_-_-_-_' . ' -:_______ OUTPUT PULSE CONTROL USING CLEAR INPUT 100 10 1000 Cext-External Timing Capaciunce-pf NOTE: Retrigger pulse must not start before 0.22 Cext (in picofarads) nanoseconds after previous trigger pulse. tThese values of resistance exceed the maximum recommended for use over the full temperature range of the 9lS/54lS' circuits. FIGURE 2 FIGURE 1- Typical Input/Output Pulses These monostables are designed to provide the system designer with complete flexibility in controlling the pulse width, either to lengthen the pulse by retriggering, or to shorten by clearing. The 25LS122 has an internal timing resistor which allows the circuit to be operated with only an external capacitor, if so desired. The output pulse is primarily a function of the external capacitor and resistor. For Cext pulse width (tw) is defined as: tw = > 1000 pF, the output 0.4 • RT • Cext where RT is in H1. (either internal or external timing resistor), Cext is in pF, tw is in ns. For pulse widths when Cext';;; 1000 pF, see Figure 2_ Recommended Operating Conditions Military Min. 4.5 Supply voltage, Vec High-level output current, IOH Nom. Max_ 5 5.5 4 A or 8 inputs high 8 4 40 A or.B inputs low 40 40 Clear low 40 40 225 5 External capacitance, Cext No restriction 5 -55 125 Nom_ Max_' 5 Unit 5.25 V -440 /LA 8 mA ns 360 kn No restriction 50 Wiring capacitance at Rext/Cext terminal ~YTHEOBJ 4.75 40 External timing resistance, R ext Operating free-air temperature, T A Min_ -440 low-level output curreot, IOL Pulse width, tw Commercial 0 50 pF 70 °c 3-19 25LS122 Single and Dual Retriggerable Monostable Multivibrators with Clear 25LS123 Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)· Commercial Military Parameter VIH High.level input voltage VIL Low·level input voltage VI Input clamp voltage VOH High·level output voltage VOL Unit Test Conditions t Low·level output voltage Min. 2 TVp.* Max. V 0.7 0.8 V -1.5 -1.5 V 11=-18mA Vee = MIN, VIH = 2V, VIL = VIL max, 10H = -440I'A Vee = MIN, VIH = 2V, llOL = 4 mA 0.25 0.4 0.25 0.4 IIOL = 8mA 0.35 0.45 0.35 0.45 2.5 Vee = MAX, VI = 7V 2.7 3.5 Input current at maximum input voltage TVp.* Max. Vee = MIN, VIL=VILmax II Min. 2 V 3.5 0.1 0.1 V mA IIH High-level input current Vee = MAX, VI = 2.7V 20 20 JjA IlL Low-level input current Vee = MAX, VI = O.4V -0.4 -0.4 mA lOS Short-circuit outputcurrent1 Vee = MAX -85 mAo -15 Supply current lee (quiescent or triggered) Vee = MAX, -85 -15 I 25LS122 6 11 6 11 25LS123 12 20 12 20 See Note 2l mA tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. *AII typical values are at Vee = 5V, T A = 25'e. iNot more than one output should be shorted at a time and duration of the short·circuit should not exceed one second. NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, lee is measured after a momentary ground, then 4.5 V, is applied to clock. Switching Characteristics Vee Parameters = 5.0V Over Recommended Free-Air Temperature Range. From To (Input) (Output) +25'e Min. Typ. Max. Unit Tesi ConditionS: CL= 15pF, RL = 2.Ok C... = OpF, Rex. = 5.0 kO (See Fig. 3, page 3-19, and fig. A, page 2-174) A tPLH B A tpHL tpHL B elear tpLH Q Q 20 30 26 38 28 40 35 48 ns ns Q 16 22 ns Q 25 40 .ns 116 200 ns 4.5 5.0 ns twQ(min) Aor 8 Q *tw Q Aor B Q 4.0 "For this test R ext = 10 kn, eext = 1000 pF. 3-20 ~YTHEO!) Decoders/Demultiplexers 25LS138 25LS139 PIN-OUT DIAGRAMS FEATURES • • • • • • • 25LS138: 3-Line-to-8-Line Decoder 1-of-8 Demultiplexer 25LS139: Dual 2-Line-to-4-Line Decoder Dual 1-of-4 Demultiplexer Higher Speed compared to 9LS/54LS and 9LS/74LS 8mA sink current over full military temperature range 50mV improved VOL compared to 9LS/74LS 440IlA source current 100% reliability assurance testing in compliance with MI L-STD-883_ 25LS138 DATA OUTPUTS ,..-_ _-'''1..._ _- - , VI V2 V6' DESCRIPTION The 25LS138 decodes one-of-eight iines dependent on. the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the 'need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications. Die Size .063 x .069 25LS139 The 25LS139 comprises two individual two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications. These circuits are designed to be used in high-performance memory-decoding and data-routing applications requiring very short delay times. 1234567[]] lG lA lB IVO IVIIV21V3 GND ENABLE~~ Die Size .063 x .069 25LS138 FUNCTION TABLE ENABLE INPUTS SELECT OUTPUTS YO Y1 Y2 V3 Y4 Y5 Y6 Y7 C B A X G2" H X X X H H H H H H H H 25LS139 L X X X X H H H H H H H H L L L L L H H H H H H H FUNCTION TABLE (111) H H G1 L L H H L H H H H H H L L H L H H L H H H H H H L L H H H H H L H H H H H L H L L H H H H L H H H H X X H H H H H L H L H H H H H H L H H L L L L H H H H L H H L H H H H H H L H L L H H L H H H L H H H H H H H H H H L L H L H H L H L H H H H H L *G2 ~ G2A + G2B H = high level, L = low level, X = don't care [[AYTHEO]] INPUTS ENABLE SELECT B A G L H H ~ high level, L OUTPUTS YO V1 Y2 Y3 ~ low level, X ~ don't care 3-21 Decoders/Demultiplexers 25LS138 25LS139 LOGIC DIAGRAMS 25LS138 25LS139 1YO ENABLE lG -'-''P-t1===::::::t:=:ln lYl lY2 DATA OUTPUTS 1Y3 DATA OUTPUTS SELECT INPUTS Recommended Operating Conditions Military Supply voltage, Vee High-level output current, IOH Low-level output current, IOl Operating free-air temperature, TA Min Nom 4.5 5 4 -55 Commercial Max Min Nom Max 5.5 4.75 5 -440 8 125 4 0 5.25 -440 8 70 Unit V J.lA mA "C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter VIH Vil VI VOH Val II ilH IlL lost lee Test Conditions' Min Military Typ" Max 2 2 11--18mA Vee-MIN, Vee-MIN, VIW 2V, VIL =Vllmax, loW -440J.lA VIH=2V, Vec=MIN, Vil =VII_max VI-7V Vee-MAX, VI-2.7V Vee=IVIAX, VI-O.4V Vee=MAX, Vee=MAX Vee-MAX, Outputs enabled and open Commercial Typ" Max Min 0.7 1.5 2.5 3.4 0.25 0.3 IIOl =4mA IIOl =8mA -15 125LS138 125LS139 6.3 6.8 u.8 1.5 2.7 0.4 0.45 0.1 20 0.36 -85 10 11 3.4 0.25 0.35 15 6.3 6.8 Unit V V V V 0.40 0.45 V U.1 mA 20 0.36 J.lA mA mA -85 10 11 mA 'For conditions shown as MIN or M,o.X, use the appropriate value specified under recommendea operating conditions for the applicable device type. -'All typical values are at Vce = 5V, TA = 25°e. tNot more than one output should be shorted at a time. 3-22 ~YTHE~ 25LS138 25LS139 Decoders/Demultiplexers 25LS138 Switching Characteristics, Vee = 5V, TA = +25°C Levels Parameter of Delay Test Conditions: C L tpLH tpLH tPLH tpLH +25 0 C From To (output) (input) = 15pF, RL = 2kO Binary 2 tpLH tpLH 3 Any Select 3 Enable Any 25LS139 Switching Characteristics, Vee Levels of Delay Test Conditions: C L tpLH tpLH tpLH tpLH t PLH tpLH ~YTHEO]J 2 3 2 = Typ Max Unit 10 14 15 18 10 15 12 18 15 20 23 27 15 23 18 27 ns ns ns Typ Max Unit 10 12 13 14 15 18 20 21 12 16 ns ns (See Fig. A, page 2·174) 2 tpLH tpLH Parameters Min ns ns ns ns ns = 5V, TA = +25°C +250 C From To (output) (input) 15pF, RL = 2kO (See Fig. A, page 2·174) Binary Select Min Any 9 Enable Any 11 ns ns ns ns 3-23 8-Line-To-1-Line Multiplexers 25LS151 PIN-OUT DIAGRAMS FEATURES • • • • • • • • • 25LS151 Select one of eight data sources Perform parallel-to-serial conversion 25LS151 has complementary outputs 25LS151 has strobe input Higher Speed,compared to 9LS/54LS and 9LS/74LS 8mA sink current over full military temperature range 50mV improved VOL compared to 9LS/74LS 440/lA source current 100% reliability assurance testing in compliance with .MI L-STD-883 DESCRIPTION These monolithic data selectors/multiplexers contain full on-chip binary decoding to select one-of-eight data sources. The 25LS151 has a strobe input which must be at a low logic level to enable the device. A flfgh level at the strobe forces the W output high, and the Y o~tPut low. 3 14 4 13 The 25LS151 features complementary Wand Y outputs. LOGIC DIAGRAMS 5 12 6 11 7 STROBE (ENPBLEI Die Size: .056 x .057 DO 01 25LS151 02 03 OATA INPUTS D4 05 l: FUNCTION TABLE INPUTS OUTPUT V OUTPUTW SELECT OUTPUTS STROBE y W C B A S x X X H L H L L L L DO 01 02 03 04 05 06 07 Do D1 52 03 54 L L H L L H L L L H H L H L L L H L H L H H L L H H H L - 05 Os D7 H ~ high level. L ~ low level, X ~ don't care DO, 01 ... 07 ~ Ihe level of the 0 respective inpul 3-24 ~YTHEO~ 8-Line-To-1-Line Multiplexers 25LS151 Recommended Operating Conditions Military Supply voltage, Vee High-level output current, IOH Low-level output current, 10L Operating free-air temperature, TA Commercial Min Nom Max Min Nom Max 4.5 5 5.5 -440 8 125 4.75 5 5.25 -440 8 70 4 -55 4 0 Unit V pA mA °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions· Parameter Min Military Typ·· Max VOL II IIH IlL los t Icc 2.5 Max 0.8 -1.5 0.7 1.5 11- 18mA Vee-MIN, Vee-MIN, VIH-2V, VIL =VILmax low -440pA Vee-MIN, VIH-2V, IIOL -4mA VIL =VILmax 110L -8m A VI-7V Vee-MAX, VI-2.7V Vee-MAX, VI-O.4V Vee-MAX, Vee-MAX Outputs open Vee=MAX, All inputs at 4.5V VOH Typ·· 2 2 VIH VIL VI Commercial Min 2.7 3.4 0.25 0.3 ~15 6.0 0.40 0.45 0.1 20 -0.4 -85 10 -15 6.0 V V V V 3.4 0.35 Unit 0.40 0.45 0.1 20 0.4 -85 mA pA mA mA 10 mA V *For conditions shown as MIN or MAX, use the appropriate value specified under retommended operating conditions for the applicable device type . • 'All typical values are at Vee = 5V, TA = 25 e. tNot more than one output should be shorted at a time. Q Switching Characteristics, Vee = 5V, TA = +25°C From (Inplill To (output) tpLH tpLH tpLH A, B or C (4 levels) y tPLH tPLH (3 levels) Parameter Teat Conditions: CL tpLH tPLH tPLH tpLH tpLH t~H tpLH r:VTHEO]J - + 25 C Q Min Typ 15pF, RL - 2kO (See FIg_ A. page 2-174) A, B, or C W Strobe y Strobe W Any 0 y Any 0 W Max 272 41 20 16 22 22 18 13 17 17 15 10 10 30 23 32 33 27 20 26 26 23 15 15 Unit ns ns ns ns ns ns 3-25 Dual 4-Line-To-1-Line Multiplexer 25LS153 FEATURES • Permits multiplexing from N lines to 1 line Performs parallel-to-serial. conversion • • Strobe (Enable) line provided for cascading (N lines to "lines) • Non-inverting • Higher Speed compared to 9LS/54LS and 9LS174LS 8mA sink current over full military temperature • range • 50mV improved VOL compared to 9LS174LS 440MA source current • • 100% reliability assurance testing in compliance with MIL-STD-883 PIN-OUT DIAGRAM DATA 2 3 4 ITlm[IJ[iJ STROBE B '-----y----J 1Y GND lG DATA INPUTS OUTPUT SELECT 13 12 11 10 DESCRIPTION The 25LS153 is a high speed Dual 4-Line to 1-Line Multiplexer with common select inputs and separate strobe (enable) inputs for each half. Each half can select one bit of four and present it at the output in non-inverted form. 14 9 15 8 16 LOGIC DIAGRAM STROBE lG (1) (ENABLE) Die Size .057 x .061 lCO (6) lCl~(5~)--------~~1-L-/ DATA 1 lC2~(4~)______~~~1-~ IV lC3 f(3~)---t=$$I~.-J FUNCTION TABLE SELECT INPUTS DATA 2 [ : ' '~: C2~~--~==EE~ 2C3~(1~3~)_ _~=E==Ef~ STROBE 2G (ENABLE) (15) 3-26 2V DATA INPUTS I STROBEIOUTPUTi Cl C2 C3 G x co x x x X H L L L X X X L L H B A x L v L L H X X X L L H X L X X L L L H X H X X L H H L X X L X L L H L X X H X L H H H X X X L L L H H X X X H L H Select I~puts A and B are common to both sections. H ~ high level, L ~ low level, X ~ don't care ~YTHEO:;J Dual 4-Line-To-1-Line Multiplexer 25LS153 Recommended Operating Conditions Military Supply voltage, Vcc High-level output current, IOH Low-level output current, IOL Operating free-air temperature, TA Min Nom 4.5 5 Commercial Max Min Nom 5.5 4.75 5 4 8 125 5.5 -440 -440 -55 Max 4 8 70 0 Unit V p.A mA °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) VIH VIL VI VOH VOL II IIH IlL lost leeL tt Military Test Conditions' Parameter Min Typ" Commercial Max 2 Vee=MIN, Vee=MIN, VIL =VILmax, Vee-MIN, VIL =VILmax Vec-MAX, Vee-MAX, Vee-MAX, Vee=MAX Vee=MAX Min Typ** 2 0.7 -1.5 11=-18mA VIH=2V, IOH=-440p.A VIH-2V, IIOL -4mA IIOL -8m A VI-7.0V VI=2.7V VI=O.4V 2.5 Max 3.4 0.25 0.3 -15 6.2 0.8 -1.5 2.7 0.40 0.45 0.1 20 -0.36 -85 10 3.4 0.35 -15 6.2 Unit V V V V 0.40 0.45 0.1 20 -0.36 -85 10 V mA p.A -~ mA mA *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ""All typical values are at Vee = 5V, T A = 25°C. tNot more than one output should be shorted at a time. tt leCL is measured with the outputs open and all inputs grounded. Switching Characteristics, Vee Parameter Test Conditions: CL = 1SpF, tpLH tpLH tpLH tpLH tpLH tpLH ~YTHE031 = 5V, TA = +25°C From (input) RL Data Data Select Select Strobe Strobe To (output) = 2kO. +25°C Min Typ Max Unit (See Fig. A, page 2-174) y y y y y y 7 10 16 20 13 15 13 16 24 25 n-,20 20 ns ns ns ns ns ns 3-27 Quadruple 2-Line-To-1 Line Multiplexers 25LS157 25LS158 DESCRIPTION FEATURES These data selectors/multiplexers select a 4-bit word from one of two sources and present it at the four outputs_ The 25LS157 presents true data; the 25LS158 presents inverted data_ • • • • • Higher Speed compared to 9LS/54LS and 9LS/74LS SmA sink current over full military temperature range 50mV improved VOL compared to 9LS/74LS 440llA source current 100% reliability assurance testing in compliance with MI L-STD-883 PIN-OUT DIAGRAMS 25LS157 25LSI58 ~ INPUTS INPUTS a: OUTPUT OUTPUT 14 13 12.11 10 Vee Ii; @) 15 iA"4i 4V '3A'3i 15 13 9 9 16 2 3 4 5 14 1312 11 10 3V 15 9 16 8 8 7 7 6 2 7m 3 4 5 6 1234567m SELECT lA 18 IV 2A 28 2V GNO "--v-"QUTPUr--v--'OUTPUT INPUTS INPUTS Die Size .047 x .066 SELECT 1A 18 tV 2A 28 2V GNU ~UTPUr--v--'OUTPUT INPUTS INPUTS Die Size .047 x .066 LOGIC DIAGRAMS 25LS157 25LSI58 r-, lA ..:.(2"')_ _ _ _ _ _ _ _ _-r""'""\ lA lB (3) lB 2A (5) 2A~(5~)_ _ _ _ _ _~~~r_, 2B..:.(6~)-------4-~_r~ 28 - - - ~(2:!)_ _ _ _ _ _ _ _ _ (3) (6) 3A (11) 3A 3B (10) 3B 4A (14) 4A (11) (10) (14) 4B ....:(..:..:13~)_ _ _ _ _ __+_-I--i_.... 4B (13) STROBE G-':(1=:;5;.:.)_ _~p_cr"'""'\ SELECT S ~(.:.Jl....._ _+..q_J STROBEG~(~15~)--~p-~~ ..I.1.!..i)~--+--cjLJ SELECT S FUNCTION TABLE 3-28 STROBE INPUTS SELECT A B hi X X L L L X X X H L L L H H H L L L H L H L H X X OUTPUT V 25LS157 25LS158 ~ H L H H = high level, L = low level, X Low level at S selects A inputs High level at S select~ B inputs = don't care Strobe is active low CE 63.l YTHE Quadruple 2-Line-To-1-Line Multiplexers 25LS157 25LS158 Recommended Operating Conditions Military Supply voltage, Vee H igh·level output current, IOH Low·level output current, IOl Operating free·air temperature, TA COmmercial Min Nom Max Min Nom Max 4.5 5 5.5 -440 8 125 4.75 5 5.25 -440 8 70 4 -55 4 0 Unit V JlA mA °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Test Conditions' Parameter Min Military Typ" Max 2 VIH Vil VI Vee=MIN, Vee-MIN, VIL =MAX, Vee-MIN, Vil =MAX VOH Min Commercial Typ" Max 2 0.7 -1.5 11=-18mA VIW2V, low-440JlA VIH-2V, IIOl -4mA IIOL -8mA 2.5 3.4 0.8 -1.5 2.7 3.4 Unit V V V V 0.40 0.25 0.40 V 0.45 0.35 0.45 S or G input 0.2 0.2 Vee=MAX, VI=7V II mA A or B input 0.1 0.1 S or G input 40 40 VI=2.7V Vee=MAX, IIH JlA A or B input 20 20 -0.8 S or G input -0.8 VI=O.4V Vee=MAX, IlL mA A or B input -0.4 -04 -15 -15 Vee=MAX -85 lost -85 mA 9.7 16 9.7 16 125LS157 Vee=MAX mA lee tt I 25LS158 4.8 8 4.8 8 'For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. "AII typical values are at Vee = SV, TA = 2Soe. tNot more than one output should be shorted at a time. tt lee is measured with 4.SV applied to all inputs and all outputs OPen. VOL Switching Characteristics, Vee Parameter Test Conditions: CL ....!Eb.!i tplH tpLH ~ ..!fill tplH From (input) = 5V, TA To (output) 0.25 0.3 = +25°C +25°C Min Typ Max = 15pF, RL = 2kfi (See Fig. A, page 2-174) 25LS157 Data Yi 5 7 10 12 25LS158 Data Yi 25LS157 Strobe Yi 7 5 13 12 10 20 8 16 12 17 20 20 lU 20 It PlH 25LS158 tpLH Strobe Yi I tpLH 25LS157 tpLH Select Yi It PlH 25LS158 t PlH Select Yi ~YTHEO]l Unit 8 12 10 11 n 10 ns ns ns ns ns ns 3-29 25LS160 25LS162 25LS161 25LS163 Synchronous BCD Decade Counters Synchronous 4-Bit Binary Counters PIN-OUT DIAGRAM FEATURES • 4-bit synchronous counters • Synchronously programmable • Internal look-ahead counting • Carry output for n-bit cascading • Synchronous or asynchronous clear • Advanced low-power Schottky technology • 100% reliability assurance testing in compliance with MIL-STD-883 • Higher speed compared to 9LS/54LS and 9LS/74LS • 8mA sink current over full military temperature range • 50mV improved VOL compared to 9LS/74LS 440J.LA sou rce cu rrent • 1 2 3 4 5 6 7 II] CLEAR CK ~ P GND ENABLE DATA INPUTS 14 13 12 11 9 DESCRIPTION The 25LS160, 25LS161, 25LS162 and 25LS163 synchronous, presettable counts have internal look-ahead carry and ripple carry output for high-speed counting applications. The 25LS160 and 25LS162 are decade counters and the 25LS161 and 25LS163 are 4-bit binary counters. Counting or loading occurs on the positive transition of the clock pulse. A LOW level on the load input causes the data on the A, B, C and D inputs to be shifted to the appropriate Q outputs on the next positive clock transition. The 25LS160 and 25LS161 feature an asynchronous clear~ A LOW level at the clear input sets the Q outputs LOW regardless of the other inputs. The 25LS162 and 25LS163 have a synchronous clear. A LOW level at the clear input sets the Q outputs LOW after the next positive clock transition regardless of the enable inputs. 3-30 10 15 16 8 7 2 3 Die Size .070 x .118 - 4 5 6 all 4 types Both count-enable inputs P and T must be HIGH to count. Count enable T is included in the ripple carry output gate for cascading connection. ~YTHEO~ Synchronous BCD Decade Counters 25LS160 25LS162 Synchronous 4-Bit Binary Counters 25LS161 25LS163 LOGIC DIAGRAMS 25LS160 Synchronous Decade Counter CLR 1 CL EAR 0--<9''' CK 2 CLOCK °A DO 11 14 LOAO~~~~ EN P EN T RIPPLE CARRY 25LS162 synchronous decade counters are similar; however, the clear is synchronous as shown for the 25LS163 binary counters. 25LS163 SYNCHRONOUS BINARY COUNTER CLR CLEAR 0--.,-9-, DA 14 DB 13 12 CLOg:~+-;>~-~---+--Jr--~--r---t---. 11 RIPPLE CARRY 25LS161 synchronous binary counters are similar; however, the clear is asynchronous as shown for the 25LS160 decade counters. ~YTHE~ 3-31 25LS160 25LS162 Synchronous BCD Decade Counters 25LS161 25LS163 Synchronous 4-Bit Binary Counters Recommended Operating Conditions Military Min 4.5 Supply voltage, Vec High-level output current, IOH Nom 5 8 125 -5.5 , Min 5.5 4.75 -440 4 low-level output current, IOL Operating free-air temperature, TA - Commercial Max Nom 5 Max 5.25 V -440 f.l.A mA 8 70 <:I o~ Unit Uc Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Test Conditions· Min Military Typ·· Max 2 VIH . 2 i!;: 0.7 VIL VI VOH VOL Vec-MIN, 11- 18mA Vec-MIN, VIH-2V, ~:5 VIL =VILmax, IOH= -440f.l.A Vcc=MIN, VIH=2V, V IL =VILmax, IIOL -4mA 0.25 IloL-8mA 0.35 Load, clock, or enable T Vec=MAX, VI=7V Clear (LS160,161 Clear (LS162,163 Data or enable P Load, clock, or IIH enable T Clear(LS160,161 VCC=MAX, VI=2.7V Clear (LS1 62,163) Data or enable P Load, clopk, or I!L enable T Clear(LS160,161 ) Clear(LS1 62,163) VCC=MAX lost VCC=MAX ICCH Vcc=MAX, VcC=MAX, JCCL Vl=O_4V -15 See Note 1 See Note 2 2.7 0.35 0.40 0.45 V V 0.1 0.2 0.1 0.2 20 0.1 40 40 20 40 0.4 20 40 -0.4 -O.R -0.8 -0.4 -0.8 -0.4 31 32 V V 0.2 -85 18 19 3.4 0.25 0.40 0.45 0.1 Unit V 0.8 -1.5 1.5 3.4 Data or enable P Ii Commercial Typ~· Min Max mA 0.2 20 f.l.A rnA -0.8 -15 -85 18 19 31 32 mA mA mA 'For conditions shown as MIN or MAX, use the appropriate value specified under recom~nded operating conditions for the applicable device type. . . \ , -'All typical values are at Vee = 5V, TA = 25°C. tNot more than one output should be shorted at a time. NOTES: 1. IceH is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open. 2. ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outP~ts open. 3-32 ~YTHEO!) Synchronous 4-Bit Binary Counters 25LS160 25LS162 Synchronous BCD Decade Counters 25LS161 Switching Characteristics, Vee Parameters To (Inputs) (Outputs) Teet Conditions: CL tpLH = 5V, T From A + 25°C = Clock Clock (Load tpHL Input High) tpLH Clock (Load tpHL Input Low) Carry Enable T Q Q Carry tpHL Clear tpw (Note 1) Pulse Width Set up time ts Q Clock 25 Clear 20 Data A,B,C,D 20 ENABLE P 20 Load, Enable T Clear (Note 2) th f max Typ Max I Unit = 15pF, RL = 2kO (see Fig. A on page 2-174) tpLH tpHL J +25·C Min tpHL tpLH 25LS163 Hold time Any input Maximum Frequency 25 35 20 35 10 18 15 20 10 18 14 20 15 20 9 14 14 28 ns ns ns ns ns ns ns 20 20 ns 3 30 40 MHz NOTES: 1. Measured from clear input on 25LS160 and 25LS161. Measured from clock input on 25LS162 and 25LS163. 2. Applies to 25LS162 and 25LS163 only. ~YTHEO~ 3·33 . Synchronous BCD Decade Counters 25LS160 25LS162 25LS161 Synchronous4-Bit Binary Counters 25LS163 TYPICAL CLEAR, PRESET, COUNT, AND INHIBIT SEQUENCES CLEAR 25LS160 ---"'lJ , LfI (AYNSCHRONOUS) CLEAR - - - - , ..~----------------------------------25LS162 (SYNCHRONOUS) U ~---------------------- LOAD DATA INPUTS {:~ ~== ~r---r-----'[ CD r- ---.,.--...;'0- 25LS160,25LS162 CLOCK 25LS160 CLOCK 25LS162 IIluslrated below is the following sequence: 1. Clear outputs to zero 2. Preset to BCD seven 3. Count to eight, nine, zero, one, two, and three 4. Inhibit ENABLEP _____~~,~ ENABLET _ _ _~,-~:rl-+--------r----~---- OUTPUTS {:~ ~ ~~==========~--'--------- QD===~----~~------: i 1Il;:_-=---::--::+-:________ " RIPPLE CARRY OUTPUT !7 I :8 9 0 1 2 3: ~ COUNT---II--INHIBIT-- CLEAR PRESET CLEAR 25LS161~~(~A~SY~NC=H~R=O=N~O~US=)------------CLEAR I~~~~__________________ 25LS163 ~ { : ( A DATA : ,-- : ,-- ! B INPUTS (SYNCHRONOUS) , Ur------------------ LOAD '-- C-.J D-.J 25LS161,25LS163 CLOCK 25LS161 CLOCK 25LS163 ENABLE P _ _---,;.-_+' Illustrated below is the following sequence: 1. Clear outputs to zero 2. Preset to binaoy twelve 3. Count to thirteen; fourteen fifteen, zero, one, and two 4. Inhibit ENABLE T -----'c-_+' QA= ==: { ==::L.j --1.'_+__-' : ......__-+'________ QD ==::ur,' --------"1..____-::____________ Q OUTPUTS' - - B- - ~"f:-------- -, Oc RIPPLE CARRY OUTPUT : :12 13 14 I I ...--- rlJ.--=--=-f-'________ 15 0 2' COUNT---Ilt---- INHIBIT- CLEAR PRESET 3·34 ~YTHEO:;J Synchronous BCD Decade Counters 25LS160 25LS162 Synchronous 4-Bit Binary Counters 25LS161 25LS163 FIGURE 1 PARAMETER MEASUREMENT INFORMATION I. .I tw(clock 1 I 3V CLOCK INPUT I.....-...L- tPLH I I OU~:UT (measureatt n +11 ~...Jl'3v I l.-.-t- tpHL ' , __ "'---..1- - - - - OV I I (measureatt n +2 1 I ~l VOH / I--rI VOL ) I.---.+- tpHL I OU~:UT I (measure at tn+41 ~S I.....-....L I I I QC I. I OUTPUT QD (measure at tn+81 ~ tPLH tpHL I· (measure at t n+10 ortn+16 1 I (See Note BI 1.3V I ") I I I ,..-_ _ _ _ _.., I ..-.J/ I 1 .3V CARRY _ _ _ _ OUTPUT. I :. \. _ _ _ _ S ·1 -l:;~S \ I' VOH ______ VOL tpLH (measure at tn+8 1 VOH 1.3V - - - - - - - - tpHL (measure at tn+O or tn+161 (Se Note BI ~_ __ VOL (measure at t n +4 1 1~3V "' \S VOH r----t- tpLH tPHL ~s OUTPUT RIPPLE l ~3~ --....:..-------:....--, I ' , tpLH (measure at tn+21 ) - -- - - _ _ _ _ VOL _ VOH VOL VOL TAGE WAVEFORMS NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR '" MHz, duty cycle", 50%, Zout '" 50r!: tr '" 15 ns, tf '" 6 ns. Vary PRR to measure f max . B. Outputs Qd and carry are tested at tn+l 0 25LS162, and at t n +16 for 25LS 163 where tn is the bit time when all outputs are low. ~YTHEO~ 3-35 Synchronous BCD Decade Counters 25LS160 25LS162 25LS161 Synchronous 4-Bit Binary Counters 25LS163 FIGURE 2 PARAMETER MEASUREMENT INFORMATION t CLOCK INPUT 25LS160 25LS161 CLEAR INPUT f \1.3V I l 1.3V I ..,- I·tw(clear) Uy - - - '-~~ i - - _I I -l-- tsetup.-J I ' - tsetup-: DATA INPUT_S_ _ A,B,C, AND D ~_--:_ _ _ _ _ _.J~I' j ;r \w. I --'tPHL..... ~?E~: OU»O) 25LS160 1.3V i - - - - - - - - - - - - ______ -__ -m '11\ 1 u_: 3V - - i\::1~~Y LOAD INPUT ___________ tw(clock) . , - 1:V- - - - - - - - - - - - - OV : - - 1 3V 0v -:tPLH- : f"1-'~-V-_-_-_-_-_-_-_-_--_-_-_- VOH '----e.L- tPLH(measure at tn+2 or t n+4) ...., tPHL:-- ~. I'''' - - - - - - - - - - - -1.3V _____:-___-:-...J't ____________ _ 0B AND Oc OUTPUTS: I 2 5 L S 1 6 0 \1.3V ~ : 3V ENABLE P OR ENABLE T OV VOH RIPPLE CARRY OUTPUT I ... ~~~~~~NPU~ 25LS163 a OUTPUTS 25LS163 0A AND aD OUTPUTS 25LS162 OB AND Dc OUTPUTS 25LS162 f 1.3V ' \ 1.3V --ltPHL...... I I I :1 VOL Ir ,._ _ _ _ _ _ _ _ _ _ _ _ __ tsetup~ \1 f 3V 1.3V -1- - - -- ~ ;L~i;e;;;.u;...;;t~2~r_;;,+_:;)- -- ! - - - - - - - - - - - ~tPLH~,.------------ :.3V • -!tPHLl- I : OV VOH 1.3V • ~1.3V \ lr-------- --- I T 1.3V _____________ _ VOL VOLTAGE WAVEFORMS NOTES: A. The input pulses are supplied by generators having the following characteristics: PRR .; 1 MHz, duty cycle'; 50%, Zout '" 50 D.; tr .; 15 ns, tf .; 6 ns. B. Enable P and enable T setup times are measured at tn = O. 3-36 ~YTHEO~ Synchronous BCD Decade Counters 25LS160 25LS162 Synchronous 4-Bit Binary Counters 25LS161 25LS163 TYPICAL APPLICATION DATA N-BIT SYNCHRONOUS COUNTERS This application demonstrates how the look-ahead carry circuit can be used to implement a high-speed n-bit count.r. The 25LS160 or 25LS162 will count in BCD and the 25LS163 will count in binary. Virtually any count mode (modulo-N, Nl-to N2, N1-to-maximum) can be used with this fast look-ahead circuit. INPUTS INPUTS INPUTS INPUTS ~ ,---A---... ~ ~ LD A BCD LD A BCD LD A BCD LD A BCD H = COUNT L= DISABLE EN P EN P EN P EN P H = COUNT L = DISABLE RIPPLE ENT CARRY OUTPUT RIPPLE EN T CARRY OUTPUT RIPPLE EN T CARRY OUTPUT RIPPLE EN T CARRY OUTPUT ~ '--v---' '--v---' '--.r---J OUTPUTS OUTPUTS OUTPUTS TO MORE SIGNIFICANT STAGES CK CLEAR OUTPUTS CLOCK t;VTHEO]J 3-37 25LS170 FEATURES • Separate Read/Write Addressing Permits Simultaneous Reading and Writing • Fast Access Times ... Typically 20 ns • Organized as 4 Words of 4 Bits • Expandable to 1024 Words of n·Bits • For Use as: Scratch-Pad Memory Buffer Storage between Processors Bit Stonlge in Fast Multiplication Designs • Open-Collector Outputs with Low Maximum Off·State Current: 20 JlA 4-By-4 Register Files with Open-Collector Outputs PIN·OUT DIAGRAM 25LS170 WRITE SELECT ENABLE Vcc ~ OUTPUTS DATA - - - - - - " - - - - D1 WA WB WRITE READ 01 02 15 13 12 11 D2 02 DESCRIPTION --- [!] The 25LS170 MSI 16-bit TTL register files incorporate the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on·chip decoding is provided for addressing the four word locations to either writein or retrieve data. This permits simultaneous writing into one location and reading from another word location. D3 D4 , DATA RB RA -..READ SELECT 03 Q4 GND OUTPUTS Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and 8 in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high-level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When the writeenable input, GW, is high, the data inputs are inhibited and their levels can cause no change in the information stored in the l:ltcriial :atcheS~ \ftv'hBIl ih~ reau-enabie input, G R, is high, the data outputs are inhibited and remain high. The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read .address is made in conjunction with the read-enable signal, the word appears at the four outputs. This arrangement-data-entry addressing separate from dataread addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (30 nanoseconds typical) and the read time (25 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed. All inputs except the read enable and write enable of the 25LS170 are buffered to lower the drive requirements to one Series 54LS/74LS standard load, respectively, input-c1amp- 3-38 13 14 15 16 2 3 4 Die Size: .090 x .068 ing diodes minimize switching transients to simplify system design. High-speed, double-ended AND-OR-INVERT gates are employed for the read-address function and drive highsink-current, open-collector outputs. Up to 256 of these outputs may be wire-AN D connected for increasing the capacity up to 1024 word7." Any number of these registers may be paralleled to proviae n-bit word length. ~YTHEQ]J 4-By-R Register Files with Open-Collector Outputs 25LS170 LOGIC WRITE FUNCTION TABLE (SEE NOTES A, B, AND CI. WRITE INPUTS READ INPUTS WORD WB WA Gw 0 L L H H X L H L H L L L L H O=D X READ FUNCTION TABLE (SEE NOTES A AND OJ Clo Clo Clo Clo 1 Qo Q=D Qo Clo Qo 2 RS RA GR 01 02 03 04 Clo L L H H X L H L H X L L L L H WOB1 W1B1 W2B1 W3B1 H WOB2 W1B2 W2B2 W3B2 H WOB3 W1B3 W2B3 W3B3 H WOB4 W1B4 W2B4 W3B4 H Clo Clo Qo Clo Q=D Qo Q=D Qo OUTPUTS 3 Clo NOTES: A. H = high level, L = low level, X = irrelevant. B. (Q = Dj = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs. C. Clo = the level of Q before the indicated input conditions were established. D. WOB1 = The first bit of word 0, etc. FUNCTIONAL BLOCK DIAGRAM 01 ('5~ ('I 02 02 DATA INPUTS OUTPUTS 03 (21 03 04 (3) (12) Gw ~YTHEO:?J 3-39 4-By-R Register Files with Open-Collector Outputs 25LS170 Recommended Operating Conditions Commercial Militarv Min. Supply voltage, Vee 4.5 Nom. Max. 5 High-level output voltage, VOH 5.5 Min. Nom. Max. 4.75 5 5.25 5.5 4 Low-level output current, IOL Width of write-enable or read-enable pulse, tw 8 5.5 4 8 Unit ·V V mA 25 25 ns 10 10 ns 15 15 ns 15 15 ns 5 5 ns Data input with respect to Setup times, high- or low-level data write enable, tsu(D) Write select with respect to write enable, tsu(W) Data input with respect to Hold times, high- or low-level data write enable, th(D) (see Note 2 and Figure 2) Write select with respect to write enable, th(W) Latch time for new data, tlatch (see Note 3) 25 25 -55 Operating free-air temperature range, T A 125 ns 70 0 °e NOTES: 2. Write-select setup time will protect the data wri~ten into the previous address. If protection of data in the previous address is not required, tsu(W) can be ignored as any address selection sustained for the final 30 ns of the write-enable pulse and during th(W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into. 3. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data. Electrical Characteristics Over Recommended Operating Free-Air Temp. Range (Unless Otherwise Noted) Militarv Test Conditions t Parameter Min. VIH High-level input voltage Commercial Tvp~ Max. VIL Low-level input voltage VIK Input clamp voltage IOH High-level output current Vee = MIN, 11=-18mA Vee = MIN, VOH = 5.5V, Min. TVp;F Max. Unit V 2 2 07 Q.8 V -1.5 -1.5 V 20 20 mA VIL = VIL max, VIH = 2V Vee = MIN, IOL=4mA VOL Low-level output voltage 0.25 0.4 VIH = 2V, IOL =8 mA 0.25 0.4 0.35 0.5 V VIL = VIL max Input current at II maximum input voltage Any D, R,orW Vee = MAX, VI =7V High~level IlL Low-level input current input current Vee = MAX, VI = 2.7V Vee = MAX, VI = O.4V Vee = MAX, See Note 6 0.2 20 20 40 40 -0.4 -0.4 -0.8 -0.8 mA GR orGw Any D, R, orW mA GR orGW lee Supply current 0.1 0.2 mA GR orGw Any D, R, orW IIH 0.1 25 40 25 40 mA tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. *AII typical values are at Vee = 5V, TA = 25°e. ' NOTE 3-40 4. lee is measured under the following worst-case conditions: 4.5 V is applied to all data inputs and both enable inputs, all address inputs are grounded r and all outputs are open. ~YTHE~ 4-By-R Register Files with Open-Collector Outputs Switching Characteristics, Vee Parameter = 25LS170 5V Over Recommended Free-Air Temperature Range +2SoC From To (Input) (Output) Typ Min Max Unit Test Conditions: C, = 15pF, R, = 2kO (See Fig. 1, page 3-41 and Fig. B, page 2-174) tpLH Read tpHL enable tpLH Read tpHL select tpLH Write tpHL enable tpLH 20 20 Any Q Any Q 25 40 24 30 26 30 22 Any Q Any Q Data tpHL 30 30 40 45 40 45 35 ns ns ns ns PARAMETER MEASUREMENT INFORMATION WRITE·SELECT INPUT WA or WB (See Note AI DATA INPUT 01,02,03 or 04 (See Note AI WRITE·ENABLE INPUT GW REAO·SELECT INPUT RA or RB (See Note BI .r-------~----------------3V ~--------------IOV .-r=;.:....------03'V 1'-~~~~~---------3V ~,~~~-----------OV g~T~T03 or 0 4 i r M \ W~IT~.ENABLE ~.------------- //,.------..... . INPUT GW ---+1-.-."'l'I:':'P':"LHOA TA INPUT 01, 02, 03 or D4 1'----J,-------------------3V }v Vnof ~tp::L::H---- \l1\;Vnof f re VOLTAGE WAVEFORM 1 I,-----"",-------OV / '--------3V ,,-----OV REAO·ENABLE INPUT GR 1~--~~+-------3V VOH OUTPUT DATA INPUT 01,02,03 or 04 01.02,03 or 04 FIGURE 1 FIGURE 2 NOTES: A. High·level input pulses at the select and data inputs are illustrated in Figure 1; however, times associated with low-level pulses are measured from the same reference points. B. When measuring delay times from a read-select input, the read-enable input is low. When measuring delay times from the read-enable input, both read-select inputs have been established at steady states. C. In Figure 2, each select address is tested. Prior to the start of each of the above tests, both write and read address inputs are stabilized with WA = RA and WB = RB. During the test GR is low, D. Input waveforms are supplied by generators having the following characteristics: PRR ..;; 1 MHz, Zout '" 50 n, duty cycle ..;; 50% tr:S;;; 15 nsand tf ~ 6 ns for. D. V re f=1.3V, ri.AVTHEO:?J 3-41 25LS174 Hex 0-Type Flip-Flops With Clear 25LS175 Quadruple D-Type Flip-Flops With Clear PIN-OUT .DIAGRAMS FEATURES • • • • • Positive edge-triggered common clock Asynchronous common reset Clock-to-output delays of 14 ns Higher speed compared to 9LS/54LS and 9LS/74LS 8mA sink current over full military temperature range 50mV improved VOL compared to 9LS/74LS 440ILA source current 100% reliability assurance testing in compliance with MI L-STD-883_ • • • 25LS174 50 50 40 40 CLR 10 DESCRIPTION 15 The 25LS174 is a six-bit register with single-rail outputs and the 25LS175 is a four-bit register with complementary outputs. Both consist of D-type flip-flops with a buffered common clock and an asynchronous, active-Low buffered clear. Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a· particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output. 0 0 ot x X L H H H H L H t t L L H H L X 00 00 12 11 10 9 8 7 3 Die Size .056 x .085 2 4 5 6 25LS175 15 14 13 3D 30 30 CK 12 11 10 9 16 8 tii:ilfa:cEl7 OUTPUTS L CLEAR CLOCK 13 16 FUNCTION TABLE (EACH FLIP-FLOP) INPUTS 14 2 3 4 5 6 CLR 10 10 Die Size .056 x .085 20 20 20 GN[J H = high level (steady state) L = low level (steadv state) X ::: irrelevant t == transition from iaw to high level 00 = the level of Q before the indicateo steady state input conditions were established. t = LOGIC DIAGRAMS 25LS174 .25LS175 onlv 60 CLOCK 9~~~____~__~______~~~______.--+~ ____~~~~____-t__~~____~ CLEAR ~l)()---------t~~~-----;~--~----~~--~------~~~------~~ 10 50 40 30 60 25LS175 CLOCK 9 CLEAR 20 3-42 3d 4d 40 ~YTHEO~ Hex 0-Type Flip-Flops With Clear 25LS174 Quadruple D-Type Flip-Flops With Clear 25LS175 Recommended Operating Conditions Commercial Military Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Clock frequency, f clock Width of clock pulse, tw (Low) Width of clear pulse, tw (Low) Nom Max Min Nom Max 4.5 5 5.5 -440 8 4.75 5 35 .0 15 20 10 12 5 0 5.25 -440 8 35 V p.A mA MHz ns ns ns ns ns 70 °c 4 I Data input t setuD Setup time t Clear recovery, tree Data hold time, thold Operating free-air temperature, TA Unit Min 0 15 20 10 12 5 -55 125 4 tsetup is the minimum time required for the correct logic level to be present at the data input prior to the rising edge of the clock in order to be recognized and transferred to the output. thold is the minimum time required for the logic level to be maintained at the data input after the rising edge of the clock in order to insure recognition. tree is the minimum time required between the end of the clear pulse and the rising edge of the clock in order to transfer High data to the Q output. Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) V IH V IL VI Commercial Military Test Conditions' Parameter Min Typ" Max II IIH 11=-18mA VIH=2V, VI=VIHor VIL low-44Op.A VIH-2V, IIOL -4mA VI=VIHor VIL I'OL =8mA VI=7V VI-2.7V IlL Vee=MAX, VI=O.4V lost Vee=MAX V OH VOL lee tt Vee=MAX I Max 0.7 -1.5 2.5 0.25 0.35 16 11 25LS174 25LS175 0.8 -1.5 2.7 3.4 -15 I Typ" 2 2 Vee=MIN, Vec=MIN, VIL =VILmax, Vee-MIN, V IL =VILmax Vee-MAX, Vee-MAX, Min 0.40 -0.36 -85 26 18 0.40 0.45 0.1 20 -15 16 11 V V V V 3.4 0.45 0.1 20 Unit -0.36 -85 26 18 V mA p.A mA mA mA *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. '"AII typical values are at Vee = 5V, T A = 25'e. tNot more than one output should be shorted at a time. ttWith all outputs open and 4.5V applied to all data and clear inputs, lee is measured. after a momentary ground. then 4.5V is applied to clock. - Switching Characteristics , V'cc -- 5V Over Recommended Free Air Temperature Range From (Input) Parameter Test Conditions: CL = f max tpLH (LS175 onlv) tpHL tpLH tpHL ~YTHE03'l 15pF, RL To (output) + 25'C Min Max = 2kO (See Fig. A, page 2-174) 35 Clear Clear Clock Clock Typ Unit Q Q Q Q 45 19 20 14 13 25 35 23 20 MHz ns ns ns ns 3-43 4-Bit Arithmetic Logic Unit 25LS181 FEATURES • • • • • • • • The 25LS181 will accommodate active-high or active-low data if the pin designations are interpreted as follows: Provides 16 arithmetic operations Provides 16 logic operations Full look-ahead for high-speed arithmetic operation on long words Higher speed compared to 9LS/54LS and 9LS/74LS SmA sink current over full military temperature range 50mV improved VOL compared to 9LS/74LS 440IlA source current 100% reliability assurance testing in compliance with MIL-STD-883_ Subtraction is accomplished by l's complement addition where the 1 's complement of the subtrahend is generated internally. The resultant output is A-B-l which requires an end-around or forced carry to provide A-B. The 25LS181 can also be utilized as a comparator. The A = B output is internally decoded from the function outputs (FO, Fl, F2, F3) so that when two words of equal magnitude are applied at the A and B inputs, it will assume a high level to indicate equality (A = B). The ALU should be in the subtract mode with Cn = H when performing this comparison. The A = B output is open-collector so that it can be wire-AND connected to give a comparison for more than four bits. The carry output (C n+4) can also be used to supply relative magnitude information. Again, the ALU should be placed in the subtract mode by placing the function select inputs, S3, S2, Sl, SO at L, H, H, L, respectively. DESCRIPTION The 25LS181 is an arithmetic logic unit (ALU)/function generator which has a complexity of 75 equivalent gates on a monolithic chip. This circuit performs 16 binary arithmetic operations on two 4-bit words as shown in Tables 1 and 2. These operations are selected by the four function-select lines (SO, Sl, S2, S3) and include addition, subtraction, decrement, and straight transfer. When performing arithmetic manipulations, the internal carries must be enabled by applying a low-level voltage to the mode control input (M). A full carry look-ahead scheme is made available in these devices for fast, simultaneous carry generation by means of two cascade-outputs (pins 15 and 17) for the four bits in the package. When used in conjunction with the 182, full carry ahead look-ahead circuits, high-speed arithmetic operations can be performed. INPUT OUTPUT Cn +4 ACTIVE-HIGH OATA ACTIVE-LOW DATA IFIGURE 11 IFIGURE 21 H H AB H L L H A>B A B L L A-,B A",;;B A$ II (3) (4) (1) (2) y (11) (13) (1) (2) (13) (11) (9) (12) FIGURE 1 (FOR TABLE 1) M-H en = H FUNCTIONS Inocarryl L L L F·II L L H F L L L H L H H L H L "A+'B ACTIVE·LOW DATA. Cn = L (nocarryl SelECTION LOGIC 53 52 S, So FUNCTIONS L l L L F . A L L L H F F " (A + II PLUS 1 L L F " ZERO L ~ F =A F F = A'" 8 F " (A + Bl PLUS 1 A PLUS 1 AJj A-. F = AS F = A + '§ H L F F-O F • All F-II L H H F=l F = A PLUS A'§ F = A PLUS AS PLUS 1 H L L F F " (A .;. BI PLUS AS F " (A + 81 PLUS A'a" PLUS 1 H L H F=B F = A MINUS B F ~ (10)1 TABLE 2 M=H M = L; ARITHMETIC OPERATIONS LOGIC L G MINUS 1 12', COMPU (9) (11) ACTIVE-HIGH OAT A L (7) FIGURE 2 IFOR TABLE 2) TABLE 1 So P Cn +x (12) 53 52 S1 (5) (6) (14) (15) 54182 en Cn +x SELECTION (17) (15) (16) 171 (10) (14) A=B II (3) (4) 54182 en (10) I (5) (6) (14) (15) X (13) (7) (14) M (9) (19) (18) (23) (22) (21) (20) =A7B A19"B M'" L; ARITHMETIC OPERATIONS Cn Cn '" L Iwithc.arry) F A. MINUS 1 F ~ H A. F " AS MINUS 1 F "AS F = ABMINUS 1 F - A"§ F - MINUS 1 C?'s COMP} '" Iwithcarryl F "ZERO F - A. PLUS IA +!') F = A PLUS (A. + 11) PLUS 1 F = AB PLUS (A. + H) F " AS PLUS (A + H) PLUS 1 L H H L F = F " A. MINUS B MINUS 1 F "A MINU5 B L H H H F=A+!' F=A+fi F = tA + 9") PLUS 1 H L L L F = AS F " A PLUS tA + BI F = A PLUS (A. + BI PLUS 1 F " A PLUS B PLUS 1 H L L H F =A0B F " A PLUS B F" A'PLUS B PLUS 1 L H H F=A(3B F = A MINUS B MINUS 1 L H H H F "'AI F" AIMINUS 1 F = AD" H L L L F = F "A PLUS AS F H L L H A'+ B F'~ F = A PLUS B ~ A PLUS AS PLUS 1 L H L F " (A ... 11 PLUS A8 F = (A + II PLUS AS PLUS 1 H L H L F "B F " A!' PLUS IA + BI F = All PLUS IA + 81 PLUS' H L H H F" AS F = AS MINUS 1 F = AS H L H H F=A+B F=A+8 F ... IA + BI PLUS 1 H H L L F' , F=APLUSA* F=APLUSAPlUSl H H L L F=0 F=APLUSA- H' L F=A ... II F .. (A + 81 PLUS A F " fA ... 81 PLUS A PLUS 1 H H L H F "AD" F H H f=A"'B F = IA ... 1) PLUS A F = IA ... !') PLUS A. PLUS 1 H H H L F" AS F H H F=A F '" A MINUS 1 F=A H H H H F-A F=A H H H F =B = A.S P'LUS A = A"lPLUS A F '" A PLUS A PLUS 1 F = AS PLU5 A PLUS 1 F " A.1i PLUS A. PLUS 1 F =·A PLUS 1 • Each bit is shifted to the next more significant position. ~YTHEOFJ 3-45 4-Bit Arithmetic Logic Unit 25LS181 LOGIC DIAGRAM S3 S2 S1 (3) (4 (5) SO~ 83 ~ A3 82 ~ (19) .!3.21. H> J w- ~ (17) ~ 1 j ... " - - F:::::l n GOR Y (16) (15) .r \ POR X (13) F3 r.JL/ ~ J A2 (21 ) 81 !El. ~ ~ ~ - .1 J A1 .!.!L t-- -----'(""13,,-) RIPPLE (5) DOWN/UP CLOCK - 1 (12) MAX/MIN > - - - + - +......----.....:...:.=:. OUTPUT DATA~(1~5~)~+-I_ _ _ _~+-~~_~~-r~ ~ INPUT A ~." I- ENABLE G ....:.(4.;..:.1-+-.--_--1f-+_+-t---1_ TI-I-I- A ~-+- ~RESalt--........(3_1 OUTPUT QA _+_-~- - - -.......---+-~·-'6 - ...-t-+_+_-t--+~-1~f---,'-'--""'\ ,,-+--_..r - ~ .......:>CK '-- IJ LllJd~=E~~§---~~~--~J DATA INPUTC PRESET (21 J QB~-=-OUTPUT QB ~LEA~B- y ....:.(_10~)_ _ __+_+-~-+-+--~~~--1~r-,~~+-_......._ __+_-~ I r Ji ____ ~RES~~ ~~>+--.. ~>CK ~W-+-I-~~=++=~L) -- r-- (6) OUTPUT Qc ~LEAW: f-If DATA INPUT D _(9~1----+-r;-~r+-r;-+4-+--~J~'P-_ _......._ _-r_--, - ---t (111 LOAD ~YTHEO]J 1 --..../ >-__+-~~______________~~~f PRESET (71 -f-- J QDI-.......""""'OUTPUT QD L....cI>CK '---- K QD- CLEAR I 3-53 25LS190 Synchronous BCD Decade Up/Down Counter 25LS191 Synchronous 4-Bit Binary Up/Down Counter LOGIC DIAGRAM 25LS191 CLOCK (14) (5) DOWN/UP I~ DATA (151 INPUT A ENABLE G (4) I ~+ TI- -I r- rP '- r (12) MAX/MIN OUTPUT (31 PRESET QA I-- J OUTPUT QA ~ ~CK 1-1- L.- I-- K OA ~ CLEAR Y (11 I '- n J - - I-- K OB CLEAR h DATA (10) INPUT C - 1 OUTPUT QB - r- '-- n - '1' '- I-f--I (9) (2) PRESET QB I-- J ~ ~CK r DATA INPUT D RIPPLE CLOCK J.. ~ -...../ DATA INPUT B (13) - A PRESET J Qc ~ >CK - K Oc CLEAR- y ~ f I (6) OUTPUT Qc - 1 .... ---t .-- I-- PRESET QD J (7) OUTPUTQD L..c:: t>CK LOAD 3-54 (~ n ' - - - I~l QD~ EAR '1' t;VTHEO]J Synchronous BCD Decade Up/Down Counter 25LS190 Synchronous 4-Bit Binary Up/Down Counter 25LS191 25LS190 TYPICAL LOAD, COUNT AND INHIBIT SEQUENCES Illustrated below is the following sequence. 1. 2. 3. 4. Load (preset) to BCD seven. Count up to eight, nine (maximum), zero, one, and two. Inhibit. Count down to one, zero (minimum), nine, eight, and seven. LO{A:X,-= , , B DATA INPUTS ' I ~L.._ , , CJ::L = o~= CLOCK ENA8lE'L+-.c..;..._ _ _ _~ ; aD==~~ I IIL.._ _ __ " MAX/MIN:::~ ~~~~:=:::,~ u :7:189012212110987 UI--COUNT UP~NHIBIT..f I--COUNT OOWN~ LOAD 25LS191 TYPICAL LOAD, COUNT AND INHIBIT SEQUENCES Illustrated below is the following sequence: 1. Load (preset) to binary thirteen. 2. Count up to fourteen, fifteen (maximum), zero, one, and two. 3. Inhibit. 4. Count down to one, zero (minimum), fifteen, fourteen, and thirteen. j lOAD~ Ast:'..:= ---+--+.r= = OAT A B INPUTS c~~= D~~= ENABLEIL,....-'c-_ _ _---! . , Oc:::r~ MAX/MIN ::~ ~~'6i: : =~13.:: 14 15 0 1 2 ·2 :2: 1 UI--COUNT UP --kNHIBITJ 0 15 14 13 J---COUNT DOWN---I LOAD [[AYTHEOE] 3-55 25LS190 Synchronous BCD Decade Up/Down Counter 25LS191 Synchronous 4-Bit ~inary Up/Down Counter , . PARAMETER MEASUREMENT INFORMATION DATA INPUT ...... ' -<10 NS '~~------",~ (SEENOT~~~ LOAD foetup: 1.3V~ INPUT 10% (SEE NOTE A) "-"o.:..:......,......_----oV ,-;:,=--, OUTPUT NOTE: A. The inputs pulses are supplied by generators having the foilowing characteristics: Z~~t = 50n, duty cycle <; 50%, PRR < 1 MHz. FIGURE l-DATA SETUP TIME VOLTAGE WAVEFORMS LOAD ,~'-------------------,, ANY DATA INPUT _ _ _ _ _ _ _ _..... CORRESPONDING ____-_-_- _-_'.. , ______-'-.....1 QOUTPUT ' tpLH ~ :... : ~I I I --: I ____-'--!I I : - tpHL tpLH ~ :, 1------..., I ~ -' :-- tPHL NOTE: Conditions on other inputs are irrelevant. FIGURE 2-LOAD TO OUTPUT AND DATA TO OUTPUT LOADU ,~ DOWN/UP CLOCK ENABLE G I, I, : : I tPHL-: I I- -: :- tpLH I I tPHL-: - -'I : - tPLH ,, r tpLH-I r-tpHL ..... M A X / M I N - - - - - - - - - - - - - - - - - - - - , I I;-- - = " ' - j RIPPLE CLOCK LI_ _ _ _ ~I : I L NOTE: All data inputs are low. FIGURE 3-ENABLE TO RIPPLE CLOCK, CLOCK TO RIPPLE CLOCK, DOWN/UP TO MAX/MIN 3-56 ~YTHEii!J Synchronous BCD Decade Up/Down Counter 25LS190 Synchronous 4-Bit Binary Up/Down Cpunter 25LS191 PARAMETER MEASUREMENT INFORMATION (Continued) u LOAD~ -_----'-I ___ _ DATA INPUTS__- __ -_ -_-_-_-___ - ____ (SEE NOTES G TO I) I DOWN/UP U W COUNT I (S) - : '-- tPLH OUTPUT - - .., , UNDER TEST ___ 'i.-_ _ _ _ _ _-' I : :-- tPHL r------------'---i l 1..._ _ _ _ _ _ _ __ ENABLE = LOW NOTES: F. To test QA, QB, and QC outputs of 25LS190: Data inputs A, B, and C are shown by the solid line. Data input 0 is shown by the dashed line. G. To test QD output of 25LS190: Data inputs A and 0 are shown by the solid line. Data inputs Band C are held at the low logic level. H. To test QA. QB. Qc, and QD outputs of 54LS191: All four data inputs are shown by the solid line. FIGURE 4-CLOCK TO OUTPUT u LOAD--U DATA A --JI _________ _ DAT~:ECN~~~ J~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -DOWN/UP COUNT l::!--JI :-tPLH ld, MAX/MIN_ _ _ _ _ ENABLE = LOW NOTE I: Data inputs Band C are shown by the dashed line for the 25LS190 and the solid line for the 25LS191: Data input 0 is shown by the solid line for both devices. FIGURE 5-CLOCK TO MAXIMIN r§YTHEO]J 3-57 25LS192 Synchronous BCD Decade Up/Down Counter 25LS193 Synchronous 4-Bit Binary Up/Down Counter FEATURES • Separate clock inputs for count-up, count-down • Asynchronous parallel load and clear • Cascadable • Higher speed compared to 9LS/54LS and 9LSn4LS • 8mA sink current over full military temperature range • 50mV improved VOL compared to 9LSn4LS • 440J,IA source current • 100% reliability assurance testing in compliance with MIL-STD-883. PIN-OUT DIAGRAM OUTl'U"TS INPUTS ~ INPUlS r--"--- CI > r-K-----, DATA a: ~ ~ ~ DATA Vee A ;:j 1il <3 ::: e 0 [ill 15 14 DESCRIPTION These monolithic circuits are synchronous reversible (up/ down) counters having a complexity of 55 equivalent gates. The 25LS192 is a BCD counter and the 25LS193 is a 4-bit binary counter. Synchronous operation is provided by having all flip·flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-ciock) counters. The outputs of the four master-slave flip-flops are triggered by a low-to-high-Ievel transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high. All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data iAputs independently of the count pulses. This feature allows the counters to qe used as modulo-N dividers by simply modifying the count length with the preset inputs. A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are b"uffered to lower the drive requirements. This reduces the number of clock drivers, etc., required for long words. These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-down input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter. 3-58 Low input to load sets OA = A, O. = B, Oc = C, and aD = D 25LS192 16 9 8 2 7 5 4 3 6 25LS193 14 15 13 12 11 10 16 9 8 2 7 3 4 5 6 Die Size: .100 x .077 Iboth types) ~YTHEO~ Synchronous BCD Decade Up/Down Counter 25LS192 Synchronous 4-Bit Binary Up/Down Counter 25LS193 Recommended Operating Conditions Min Supply voltage, Vee High-level output current, IOH Low-level output current, IOL Count frequency, fcount Width of any input pulse, tw Data setup time, t setup (see Figure 1) Data hold time, thold Operating free-air temperature range, TA 4.5 Military Nom Max 5 5.5 -440 8 25 4 0 20 20 0 -55 125 Commercial Min Nom Max 4.75 5 4 0 20 20 0 0 5.25 -440 8 25 70 Unit V JJ.A mA MHz ns ns ns °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter V,H V ,L V, Min Military Typ" Max Vee=MIN, Vee-MIN, V IL =V,Lmax, Vee-MIN, V IL =V,Lmax Vee-MAX, Vee-MAX, Vee-MAX, Vee-MAX Vee-MAX VOL I, Commercial Typ" Max 0.7 -1.5 1,=-18 V'H-2V, IOH =- -440JJ.A V'H~2V, Min 2 2 VOH I'H I,L lost lee tt Test Conditions' 2.5 l'oL -4mA l' oL -8mA 0.25 0.40 0.30 0.45 0.1 20 -0.4 --15 .. .. 19 . 2.7 3.4 V ,-7V V,-2.7V V I -D.4V 0.8 -1.5 -85 34 3.4 0.25 0.30 -15 19 .. Unit V V V V 0.40 0.45 0.1 20 -0.4 -85 34 V mA JJ.A mA mA mA *For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditIOns for the applicable device type. "All typical values are at Vee ~ 5V, 'r A = 25°e. t Not more than one output should be shorted at a time. tt1cc is measured with all inputs grounded and all outputs open. Switching Characteristics, Vee = 5V Over Recommended Free-Air Temperature Range +25°C From To I Unit (input) (output) I Min I Typ I Max I Test Conditions: C, - 15pF, R, - 2kO (See Fig. 1 & 2 on page 3-62 and 3-63 and Fig. A, page 2-174) Parameters f max tPLH tPHL tpLH tPHL tpLH tPHL tPLH tpHL tpHL [[AYTHEO]J 25 35 9 17 9 Count-up Carry Count-down Borrow Either Count Q Load Q 19 20 22 Clear Q 23 17 29 MHz 18 24 18 24 30 32 33 40 33 ns ns ns ns ns 3-59 25LS192 Synchronous BCD Decade Up/Down Counter 25LS193 Synchronous 4-Bit Binary Up/Down Counter LOGIC DIAGRAM 25LS192 (3) 1 SORROW OUTPUT (12) DATA (15) DOWN COUNT UP COUNT DATA CARRY OUTPUT ..--.. INPUT A ~ r'----'" (4) " v (5) QA T P "v ~ (1 ) "\. f"\---/ INPUT S Qs T '---- -1).. DATA h rl./ OUTPUT Qs ] ---' ,....A- ~ ......... [>oJ ~ - (6) OUTPUT Qc ~ If-~ '\, ii4; Qc T D (9) INPUT D CLEAR (2) (10) INPUT C DATA OUTPUT QA Jr r-A- ~ (3) l (7) OUTPUT QD DO LOAD 3-60 (11) .Jo>. -yo t;YTHEc3l Synchronous BCD Decade Up/Down Counter 25LS192 Synchronous 4-Bit Binary Up/Down Counter 25LS193 LOGIC DIAGRAM 25LS193 (13) BORROW OUTPUT f (12) DATA INPUT A (15) DOWN COUNT (4) UP COUNT DATA INPUT B ......... ["1...J 1: '" (5) ,... --v CARRY OUTPUT (3) OUTPUTOA T h (1 ) rt--r ~ ~ r-L OB (2) OUTPUTOB T ] D -'" DATA INPUT C (10) ..r--"\. ../ {- (6) i f J} D OUTPUTOC T DATA INPUT 0 (9) (14) CLEAR LOAD ~YTHEO]l (11) .r-'\. ~ ~b ~ 1 00 T (7) OUTPUT 00 J;H 3-61 25LS192 Synchronous BCD Decade Up/Down Counter 25LS193 Synchronous 4-Bit Binary Up/Down Counter PARAMETER MEASUREMENT INFORMATION 1 r--------- --------, I I .. .. ... I ! l ~ T - DATA PUlse BORROW OPEN A CARRY OPEN • °A C 0. ~ > DOWN rL { GENERATOR (See Note AI CLEAR PULSE GENERATOR (See >UP I Note AJ LOAD PULSE GENERATOR (See Note Al I I 0 Dc -r-< CLEAR 00 I ISe:-Nol;"CI I c I I I I J'~NO"B' ----< I -= I L _____ ..!-~~~~~:.~ ____ _J LOAD -=- I I RL -:!- r-----~~;;~~~----- L __________________ (Same as lOild CIrCUli 1) -, I _I -. r-----------------____ r-- -- ------------ ., ~ L _____ I LOAD CIRCUIT 2 I (!!r:!!.::'!';c.:t~l _ I I LOAD CIRCUIT 4 L ____ ~:: :.l:,ad':J::\I:,l~ ____ ~ f-- t,-1 I CLEAR I INPUT I INPUT Q OUTPUT I : Jf90%90%'k~--________________________________________________________ - - - - - - - - - - - --- - - - - - - --- - - - . .-. I '" I -+l f+- t, I -+I I I 10% ~~~:up; ;I 1.3V - - - - - - - - - - - ~ ~ I 1.N G\i },Ie.l!~9~0~%~--------- 3V 10%£1- --. t.- tPHL 3V I ~tsetup~ ----""'i-I--------~90~"k;.:o;;!l1$..l 1.3~ ~O% -+f tPHL I+~ 10% 10%'1 I I -...l 14- t, I 14--- tpLH· .. , , ~ I-- tf }.Tt!!1~.;~O;:~'. -------------------~9~10~~~~UI ~ ~O: ---""'i-------.;.;;~~ 1 . 'l'c : 3V _,_~1Q~o/c~" I LOAD f-tf ~1.3V I DATA TEST CIRCUIT ~ 't:.= t-;- - 1.3V - - - - .1 _____ ~ OV VOH VOL VOLTAGE WAVEFORMS NOTES: A. The pulse generators have the following characteristics: Zout = 50.11 and for the data pulse generator PRR 50%; for the load pulse generator PRR is two times data PRR, duty cycle = 50%. B. CL includes probe and jig capacitance. • C, Diodes are 1 N3064. D. tr and tf ..; 7 ns. FIGURE 1 - 3-62 < 500KHz, dutY cycle = CLEAR, SETUP, AND LOAD TIMES ~YTHEOEJ Synchronous BCD Decade Up/Down Counter Synchronous 4-Bit Binary Up/Down Counter 25LS192 25LS193 PARAMETER MEASUREMENT INFORMATION (Continued) r-------------., I "L I 'ULSf GENERATOR ..,."OW~_+~~--~~~_1~~ CS-Nott"" __--~~__~~__, CARRY H-+-+-+-~ 51 I I Q.H-++~ a" •• I a.:: ... IL _______________ lOAO CIRCU'T t ! 00 elUR I I I '-------+--<1 lOAD ~----------------, LOAD CIRCUIT!) L ________________ - '• (S. ..... lOllll C."tv,11) • ~---~------------~ lOAOCIACUIT, • ' -__________-.;. L ____ If COUNT UP INPUT (See Note 0) OUTPUT QO (See Note E) "\. 1 -.I ~ !+- I, J90~iLTlJd h. .:..S.:;.!;~;:=t.!' ____ J TEST CIRCUIT ~ 8 9 ,I, h. 15 ~ 16 " " ; . ; - - 3V ___ ov ~~~';,~., ~1.3V\.!./" \.:./1.3V~~ I I ~ I _____________oJf I I ,..-'PLH I 'VOH I I!t I~I I : 1.3V --J ~ VOL J+:tPHL - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___,. .~I I VOH tpHL !.-tPLH CARRY OUTPUT ~OO~: INPUT (See Note D) OUTPUT QO (See Note E) 1.3V tf , 1.3V - - - VOL r--- -.l4..t 14- t, ~:_~_~h.\.!.Jrl.3V~ _~ Ai\. .. ~ .. ~9~~~ ~1.3V~~.3V _ n •• % ,. I -1 r- tPHL - - - - - - -__________________'\ I \ ; 1.3V • I I Ii I I T---- ~tPLH I I ~ 1.3V wr _ _ ..-I tPHL~1 BORROW OUTPUT r- VOH V OL tPLH I Jr- VOH 1.3V~ __ VOL \! I VOLTAGE WAVEFORMS ~ 3V OV NOTES: A. B. C. D. The pulse generator has the following characteristics: PRR .;;; 1MHz, Zout = 50n, duty cycle = 50%. CL includes probe and jig capacitance. Diodes are 1N3064. Count-up and count-down pulse shown is for the 25LS193 binary counter. Count cycle for 25LS192 decade counter is 1 through 10. E. Waveforms for outputs 0A, OB, and Ot:: are omitted to simplify the drawing. F. tr and tf';;; 7ns. FIGURE Z-'ROPAGATION DELAY TI~ES [EYTHEO]'] 3-63 25LS192 Synchronous BCD Decade Up/Down Counter 25LS193 Synchronous 4-Bit Binary Up/Down Counter TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES ~5LS192 Illustrated below is the following sequence: 1. 2. 3. 4. Clear outputs to zero. Load (pres'et) to BCD seven. Count up to eight, nine, carry, zero, one, and two. Count down to one, zero, borrow, nine, eight, and seven. CLEAR ~ _______________________________________ U LOAD 11 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ DATA{:D -1_-.Jr-;:- ;:- - - '- -:;-~ -_- ~ ~ ~ ~ ~ ~; ~ ~ ~; ~ ~ ~ ~ -.J I L === ________________ _ I COUNT~ " UP LJ COUNT DOWN OUTPUTS { I ,I , I! -------------- - -. - - - - - - - - - - - " LJ " LJ " LJ ,-------------------LJ I I ~ I I I I I I QA=~~~~ I I I OB=~ I I I I I I I I I I , I I ,I I I I' Qc=~ I I I ~ I I r;- I I I I I I I I QD=i I I I I I I ~ I I I I I I I I I I I I CARRY I u BORROW--~,~,--~,~,--~,----------------~,--~----,LJ lui i7i SEQUENCE ILLUSTRATED ~ ~ CLEAR PRESET '~ij-COUNT " iI ~", UP 1$-1' .~ COUNT U !I DOWN NOTES: A. Clear overrides load, data, and count inputs. B. When counting up, count·down input must be high; when counting down, count-up input must be high. 3-64 ~YTHEO~ Synchronous BCD Decade Counter 25LS192 Synchronous 4-Bit Binary Up/Down Counter 25LS193 TYPICAL CLEAR, LOAD, AND COUNT SEQUENCES 25LS193 Illustrated below is the following sequence: 1. 2. 3. 4. Clear outputs to zero. Load (preset) to binary thirteen. Count up to fourteen, fifteen, carry, zero, one, and two. Count down to one, zero, borrow, fifteen, fourteen, and thirteen. CLEAR ~ , I U I I LOAD ~ OA>{ ,L - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I I I I I _ , r- - --;--;-----', I I ~ ~ I I COUNT UP , , COUNT DOWN =h----f:-~ , I, , { OUTPUTS· I, 'rc.'--.-:..'___---, Qc=~" '---______~ QA: Qs- I I I I QD=~' CARRY I I I I I I I I I It: I I I U I I SORROW----'-'--'-,-~,--'-,---'-,--------~,----'-,-----.u 101 1131 SEQUENCE -A---'-ILLUSTRATED , - ~ , - ~ CLEAR PRESET ~4 15 0 COUNT UP ~2 ~1 0 ' 15 14~' - COUNT DOWN NOTES: A. Clear overrides load, data, and count inputs. B. When counting up, count-down input must be high; when counting down, count-up input must be high. ~YTHEO]J 3-65 25LS194A 4-Bit Universal Shift Register 25LS195A 4-Bit Parallel-Access Shift Register FEATURES • • • • • PIN-OUT DIAGRAM Higher speed compared to 9LS/54LS and 9LSn4LS 8mA sink current over full military temperature range 50mV improved VOL compared to 9LSn4LS 440tlA sou rce cu rrent 100% reliability assurance testing in compliance with 25LS194A MIL-STD-883. III CLR SHIFT A B C 0 SHIFT GND RIGHT'----v---' LEFT SERIAL PARALLEL SERIAL INPUT INPUTS INPUT DESCRIPTION The 25LS194A and 25LS195A are 4·bit registers that exhibit fully synchronous operation in all operating modes. The 25LS195A can either parallel load all four register bits via the parallel inputs (A, B, C, D) or shift each of the four register bits right one place. The shifting or parallel loading is under control of the shift/load input (S/L). When the shift/load input is LOW, data is loaded from the paral· lei data inputs; when the shift/load input is HIGH, data is loaded from the register bits on the left. The first bit, QA, is loaded via the J and K inputs in the shift mode. 11 16 10 9 2 8 3 Die Size .067 x .082 25LS195A The 25LS194A operates in four modes under control of the two select inputs, So and S1. The four modes are parallel load (data comes from the parallel inputs), shift right (data comes from the flip·flop to the left, with the QA bit input from R), shift left (data comes from the flip·flop to the riQht. with the 0D inrlllt frnf11 L!, and ho!d or d~ ncthing (each flip·flop receives data from its own output). 3 CLEARJ For both devices the outputs change state synchronously following a LOW·to·HIGH transition on the clock input, CP. Both devices have an active-LOW synchronous clear (CLR) which forces all outputs to the LOW state (QD HIGH) independent of any other inputs. K ABC DGND '-v-'~ SERIAL INPUTS PARALLEL INPUTS 15 14 13 12 11 16 Because all the flip-flops are D·type they do not catch o's or 1's, and the only requirements on any inputs is that they meet the short set-up and hold time intervals with respect to the clock LOW·to-HIGH transition. 10 9 2 8 3 .4 .5 6 .7 Die Size .067 x .082 3-66 t;YTHE~ 4-Bit Universal Shift Register 25LS194A 4-Bit Parallel-Access Shift Register 25LS195A 25LS194A LOGIC DIAGRAM LOGIC DIAGRAM PARALLEL INPUTS B (41 'A (31 • C (51 0' (61 MODE {S1 1101 CONTROL (91 INPUTS so~~~--+-1+~~----~~~~r----t~~~+----1--~~,1 SERIAL INPUT CLOCK(~1~1I~--------__~-r-+ ______~-+~r-____~__r-t-____-" CLEAR~1~------------~-+'~______-4~~.-______~f.7.~____~ PARALLEL OUTPUTS 25LS194A FUNCTION TABLE CLEAR MODE Sl SO CLOCK INPUTS SERIAL LEFT RIGHT OUTPUTS PARALLEL A B C D °A °B Oc °D L X X X X X X X X X L L L L H X X L X X X X X X H H H X X a b c d H X H X X X X H L H X L X X X X L °An °An nco c Q Bn QDO d L H H L H X X X X X °Bn °Cn H H L t t t t t °BO b H °AO a H L X X X X X °Bn °Cn H L L X X "X X X X X °AO °BO H high level (steady state) L low level (steady state) X irrelevant (any input, including transitions) t transition from low to high level °Bn °Dn Q Dn QCO °Cn Cen H L °DO a, b, c, d = the level of steady-state input at inputs A, B, C. or D, respectively. 0AO' QBO' nCO, 2QDO = the level of 0A' 0B' 0C' or ° 0 , respectively, before the indicated steady-state input conditions were established. QAn' QBn' 0Cn' 00n = the level of QA' 0B' 0C' respectively, before the most-recent t transition of the clock. ~YTHEO]J 3-67 25LS194A 4-Blt Universal Shift Register 25LS195A 4-BitParaliel-Access Shift Register 25LS195A LOGIC DIAGRAM SERIAL INPUT PARAllEL INPUTS ~ A~--------~B~--~A~--~C----------~d K J (2) (3 (4) (5) m (6) lOAD CONTROL ClOCK...;.(1_0_)--t~ P+----~~------~~r-----~+-~------r+_. ClEAR~(1~)~~~-----r~--~--~~~--~--~~--~---r+-~--, (15) QA ~~----------~----~vr------------------~ PARAllEL OUTPUTS 25LS195A FUNCTION TABLE -_ ........... INPUTS CLEAR SHIFT/ LOAD CLOCK SERIAL J K PARALLEL A B C 0 aA aB a C aD 00 L X X X X X X X X L L L L H H L t X X a b c d a b c d d H H L X X X X X X QAO QBO Q CO H H L H X X X X QAO QAO QBn QDO QCn Dcn H H H H H H t t t t H high.J~vel L low level (steady state) L L X X X X L QAn QBn QCn H H X X X X H QAn QBn QCn H L X X X X QAn QAn QBn QCn QDO Dcn QCn QCn (steady state) X irrelevant (any input, including transitions) t transition from low to high level a, b, c, d = the level of steady-state input at A, B, C, or D, respectively. QAO' QBO' Dca, QDO = the level of QA' QB' QC' or QD' respectively, before the indicated steady-state input conditions were established. QAn' QBn' QCn = the level of QA' QB' or QC' respectively, before the most-recent transition of the clock. 3-68 ~YTHEO]J 4-Bit Universal Shift Register 25LS194A 4-Bit Parallel-Access Shift Register 25LS195A Recommended Operating Conditions Military Min Nom Supply voltage, Vee High-level output current, IOH 4.5 5 Low-level output current, IOL 4 0 Clock frequency, fclock Width of clock or clear pulse, tw Mode control Serial and parallel data Setup time, t setup Min Nom 5.5 4.75 5 -440 8 4 0 3~_ Max 16 18 5.25 V /lA mA 35 MHz 0 -55 ns ns ns 30 16 18 -- ns ns 0 0 125 Unit -440 8 20 20 30 Clear inactive-state Hold time at any input, thold Operating free-air temperature, TA Commercial Max 70 °c Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Min VOH VOL II IIH III lost Icc tt Typ·· Max Min 2 VIH VIL VI Commercial Military Test Conditions· Parameter Vee-MIN, Vee-MIN, 11--18mA VCC=MIN, VIH=2V, VIW2V , Vil =Vllmax, IOH=--44O/lA Vcc-MAX, Vec-MAX, VI=7V Vcc=MAX, VI=O.4V 2.5 V 0_8 V -1.5 -1.5 V 2.7 3.5 3.4 0.25 0.40 0.30 0.45 0.1 0.30 0.45 0.1 20 -0.4 Vcc=MAX V 0.40 -15 Unit 0_7 0.25 VI=2.7V Vec-MAX Max 2 IloL=4mA IIOl -8m A V il =Vllmax Typ·· I 25LS194A 15 -85 23 I 25LS195A 14 21 20 -0_36 -15 15 -85 23 14 21 V mA /lA mA rnA rnA "For conditions shown as MIN or MAX, use the appropriate value specified under recommendea operating conditions for the applicable device type. ""All typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. ttWith all outputs open, inputs A through 0 grounded, and 4_5V applied to SO, 51, clear, and the serial inputs, Ice is tested with a momentary GND, then 4.5V, applied to clock. Switching Characteristics, Vee Parameter (Input) Test Conditions: CL = 15pF, IplH RL Ipw Ipw Is Is Is 25LS194A Typ Max, Min 25LS195A Typ Max Unit = 2.0kO (See Fig. 1 .. 2 on page 3-71 and Flg_ A on page 2-174) 13 21 12 18 17 26 13 12 21 18 ns ns 17 26 ns °i Clear °i Clock 17 16 ns Clear 17 12 ns Mode Control Dala Input 25 25 15 Pulse Width Set up time . Clear recovery Clock Data th Hold time IR Shift/Release Time (25LS195A only) f MAX Maximum clock frequency ~YTHEO]l Min Ciock tpHl IpHl = 5V Over Recommended Free-Air Temperature Range To (Output) From 16 20 20 ns ns ns 0 0 ns 35 55 10 35 55 ns MHz 3-69 4-Bit Universal Shift Register 4-Bit Parallel-Access Shift Register 25LS194A 25LS195A 25LS194A TYPICAL TIMING SEQUENCES CLOCK MODE {SOU' ! CONTROL __ J , -i' I: INPUTS Sl::~L.-+-_ _ _ _ _ _ CLEAR~~:-+----------~'~'------~:---------~ i: !: SERIAL{R OAT A I NPUTS -'--+-_____-'-,:~ , n 1..-_ _ _ _ {~---l1Hl-iir-"H-r: -~--------:--.,...... l PARALLEL . B L! DATA C~~_ _ _ _ ____:_~---__~----~- 1 INPUTS ~ rD __ L L oA·-~ OUTPUTS l----l ,'-------'--:--------' h ~L--Ji oB::'; :: ;' :' oc ~a .-~ : D._~ i i L--J f..SHIFT CLEAR LOAD RIGHT~ I--SHIFT LEFT -+-INHIBIT~ CLEAR 25LS195A TYPICAL TIMING SEQUENCES I I SERIAL{.:! INPUTS K ---;----'~ r-TI I SHIFT/LOAD PARALLEL { DATA INPUTS I I , A ' I"ifi'"I B L : C nHf-,~~ ---;----~---------~, D ~ Dc : : : ; , aD:::~ : CLEAR __________ L, I OUTPUTS{~;~~~~ 3·70 , L.!......J I ~SERIALSHIFT ~r--,,--______ ~_ _ _ __ I .l t--SERIALSHIFT-- LOAD ~YTHE~ 4-Bit Universal Shift Register 4-Bit Parallel-Access Shift Register 25LS194A 25LS195A 25LS194A I" CLEAR "' tw(clearl --1.-3V""'Ui=:,..1-=--.V-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-- : : 1 , 1 lsetup t I tn+1 ,---.;. n tn+1 (See Note F) I t n ~ I - ~--- -I ~ thold '-----...1 OV lsetUPI--I DATA INPUT (SEE TEST TABLE) OUTPUTQ 3V 1.3V CLOCK I ~ _~3~ I 1.3V , 3V __ _ 1 OV 1 1 ~ f---!--tPHL I ----..... ' t - - - -.....\~.~--- \.. 1.3V VOLTAGE WAVEFORMS NOTES: A. The clock pulse generator has the following characteristics: Zout'" 50 nand PRR .. 1 MHz, t r .. 15ns and tf .. 6 ns. When testing f max, va~v PR R. B. A clear pulse is applied prior to each test. C. Vref = 1.3V. Proplagation delav times (tPLH and tpHL) are measured at t n+1. Proper shifting of data is verified at tn+4 with a functional test. t n = bit time before clocking transition. tn+1 = bit time after one clocking transition. tn+4 = bit time after four clocking transitions. FIGURE 1 25LS195A LOAD FOR OUTPUT UNDER TEST :. CLEAR -; tw{clear) ---....~~~---------------------o--lsetup........j r- t n +1 t-- t n+ 1 CLOCK :: tn~ ___ 3V tn..., ~ 1.3V 1.3V '-- tW(Clk~lsetUP ..:"-thold r--lsetuP.l-!- thold OV I ,I ~'Ii 3V DATA (SEE NOTE G) _ _ _-;. _ _ _ r-lsetup---'! : r----itrelease ....,-J: SHIFT/LOAD I ~1.3V! t--tPHL.-I ~:::r~~I:~ED ------~'' \ 1.3V NOTES: 1.3V ,_~~____ OV r--tsetup-----.j _. 3V 2~ ~ ~~~~ _______ OV r.-tPLH-.t t.-tPHL ...., ~2 1.3V f ~ VOLTAGE WAVEFORMS A. The clock pulse generator has the following characteristics: Zout ~ 50 ns. When testing f max • vary the clock PRR. B. CL includes probe and jig capacitance. VOH VOL .n and PAR ~ MHz, tr '" 15 ns, and tf '" 6 C. All diode. are 1N 3064. D. A clear pulse Is applied prior to each test. E. Propagation delay times (tpLH and tpHL) are measured at t"+1' Proper shiftIng of data is verified at tn+4 with a functional test. F. J and K are tested the same as data A, B, C, and I;) inputs except that shift/load input remains high. G. tn = bit time before clocking transition. tn+1 == bit time after one clocking transition. tn+4 == bit time after four clocking transitions. FIGURE 2 G!VTHE@J 3-71 25LS194A 4-Bit Universal Shift Register 25LS195A 4-Bit Par~lIel-Access Shift Register APPLICATION 12-BIT SHIFT-LEFT. SHIFT-RIGHT. PARALLEL LOAD REGISTER S, CLOCK SHIFT RIGHT AO A, A2 A3 - So R ' - - S, B A L as Oc " - So - 25LS194A eLR QA LEFT 0 C ' - - - CP CLEAR SHIFT A4 A5 A6 A7 AS Ag Al0A11 I I I I I IN DO I " R S, B A " C 0 L 25LS194A ' - - - CP eLA QA 08 Oc Do r 1 ~ - "- So '-- S, I I I It r-- R L A B C 0 LEFT IN 25LS194A CP CL.R QA as Qc Do y SHIFT ~ ~ RIGHT OUT OUT 8S 3-72 SHIFT B9 810 811 8-Line-To-1-Line Multiplexer With Three-State Outputs 25LS251 FEATURES • • • • • • • • Selects one of eight data sources Performs parallel-to-serial conversion Complementary 3-state outputs Higher speed compared to 9LS/54LS and 9LS/74LS 8mA sink current over full military temperature range 50mV improved VOL compared to 9LS/74LS 440J.LA source current 100% reliability assurance testing in compliance with MIL-STD-883_ PIN-OUT DIAGRAM DATA INPUTS DATA SElECT ~ ,....----J"---. Vce 4 I DESCRIPTION J 6 7 ABC IT][Il CD ITlIIl m[I] lOY W ~ DATA INPUTS OUTPUTS 2 t; '-----.t---' '--v-' This monolithic data selector/multiplexer contains full on-chip binary decoding to select one-of-eight data sources and features a strobe-controlled three-state output. The strobe must be at a low logic level to enable this device. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high-impedance state in which both the upper and lower transistors of each totem·pole output are off, and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem-polt outputs. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output control cii cuitry is designed so that the average output disable time is shorter than the average output enable time. 5 Iilllllillil@JllilfiP[jQ) 2 16 GND 0 15 14 13 5 12 11 6 7 . . . . . . . . .. . 8 9 10 Die Size: .056 x .057 LOGIC DIAGRAM STROBE (7) (ENABLE) -'-'-'------- :.!......---t---H SELECT SELECT Recommended Operating Conditions Military Supply voltage, Vr.r. High-level output current, IOH Low-level output current, IOL Operating free-air temperature, TA 3-80 Commercial Min Nom Max Min Nom Max 4.5 5 5.5 -1 4.75 5 5.25 -2.6 8 70 4 8 4 -55 125 0 Unll V mA mA °c t;YTHEO}J Quadruple 2-Line-To-1-Line Multiplexers With Three-State Outpufs 25LS257 25LS258 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Test Conditions· Min VIH Guaranteed input logical high voltage for all inputs VIL Guaranteed input logical low voltage for all inputs VI Vee-MIN, VOH Vee-MIN, V I W 2V , V =V max, IOH =MAX Vee=MIN, VOL Vee-MAX, IIH IlL -1.0mA IOH -2.6mA Vee=MAX, S input Any other S input Any 9ther S input Any other VI=7V Vee=MAX, VI=2.7V Vee=MAX, VI=O.4V 0.25 0.40 0.30 0.45 0.30 All outputs 25 LS257 All outputs off All outputs off 0.45 V pA -20 -20 pA 0.2 0.2 0.1 0.1 40 40 20 20 -0.8 -0.8 -0.4 -15 -15 -85 5.9 10.0 5.9 10.0 8.2 13.5 9.2 13.5 10 15.3 10 15.3 4.1 8.0 4.1 8.0 6.2 11.0 6.2 11.0 7.0 11.2 7.0 11.2 Vee=MAX mA I1A mA mA mA high low 0.40 20 -85 -15 V 20 -0.4 high All outputs V IOL 8mA All outputs All outputs -1.5 IOL =4mA Vee=MAX low V -1.5 3.1 0.25 V IH =2V, Vee=MAX, V 0.8 2.4 V IH -2V Unit 0.7 3.4 Vo=O.4V lost lee tt 2.4 Commercial Typ·· Max Min 2 Vo=2.4V IOZL II V IH =2V, IOH Max 2 11--18mA VIL =VILmax IOZH Military Typ·· 25LS258 "For conditions shown as MIN or MAX, use the appropriate value specified under recommendea operating conditions for the applicable device type. "AII typical values are at Vee = 5V, TA = 25°e. tNot more than one output should be shorted at a time. ttlee is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions. ~YTHEO::;J 3·81 25LS258 Quadruple 2-Line-To-1-Line Multiplexers With Three-State Outputs 25LS257 Switching Characteristics , V'cc -- 5\l•TA = 25°C Parameter 1) From (input) To (output) Min +2S'C Typ Max Unit Test Conditions: CL = 15pF, RL = 2kO (See Fig. A, page 2-174) ~ 25LS257 Data Any ....!llii 25LS258 Data Any 25LS257 Select Any 25LS258 Select Any tpHL tpHL tPLH t"PHl tpLH ""1PHL tZH TzttZH Tzt- 25LS257 25LS258 Test Conditions: CL ~ tLZ 25LS257 ..!!iL 25LS258 tLZ Output Control Output Control = 15pF, RL ;, Output Control Output Control Any Any 6 7 8 5 12 12 12 10 10 10 10 11 12 12 12 12 18 18 18 18 18 16 18 18 ns ns ns ns ns ns 2kO(see~Fig. A, page 2-174) Any Any 10 10 9 8 15 18 15 15 ns ns 8-Bit Universal Shift/Storage Register 25LS299 FEATURES • • • • • • PIN-OUT DIAGRAM Four operational modes Three-state outputs Common input/output pins Cascadable shifting Advanced Low-Power Schottky processing 100% reliability assurance testing in compliance with MI L-STD-883 Vcc St 07 DY7 DYS DY3 DYt CP SR SL lill DESCRIPTION SA So The 25LS299 is an 8-bit universal shift/storage register with 3-state outputs. Four modes of operation are possibleHold (store), shift left, shift right and load data. [!Q] So Parallel load inputs and register outputs are multiplexed to reduce the number of package pins. Separate continuous outputs are also provided for flip·flop 00 and 07. These devices can be cascaded to N-Bit words. Gt G2 DYs DY 4 DY2 DYo 00 CLR GND The 25LS299 has a typical shift frequency of 50 MHz; and is packaged in the standard 20-pin DIP package. A separate active-LOW asynchronous clear input forces all flip-flops to the LOW state whenever this clear input is LOW. LOGIC DIAGRAM S, 1191 So 111 IIBI SHIFT ~~~,r SERIAL INPUT s~I~I~II~1'!!.I':=:=~~h INPUT 171 AIOA ~YTHEO~ 1131 BlOB 161 CIOc 1141 D/OD 151 E/OE 1151 F/OF 141 G/OG 1161 H/QH 3-83 8-Bit Universal Shift/Storage Register 25LS299 Recommended Operating Conditions Military Min Nom Max 5 5.5 -1.0 8 125 4.5 Supply Voltage, Vee High·Level Output Current, 10H -0.44 4 -55 Low-Level Output Current, 10L Operating Free-Air Temperature, T A Commercial Min Nom Max 4.75 5 -0.44 4 0 Unit 5.25 -2.6 8 70 V mA mA C Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless Otherwise Noted) Parameter Military Test Conditions· Min V IH Guaranteed input logical HIGH voltage for all inputs V IL Guaranteed input logical LOW voltage for all inputs VI Vee-MIN., IIN- -18mA VOH VIN=VIH or V IL Commercial Max 2 DY O,DY 7 Vec-MIN. IOH--0.44mA 2.5 IOH=-1.0mA 2.4 II IH SO, 51 All others IlL SO, 51 All others 0.30 Vee - MAX., See Note 3 -1.5 I 0.25 0.45 0.30 0.40 0.45 0.2 0.1 0.1 40 40 20 -0.8 -0.4 -0.4 -100 -100 40 -85 40 -85 38 57 -30 38 V mA IlA 20 -0.8 V O- 2.7V -30 V V 0.40 V O- O.4V Vee - MAX., See Note 4 V V 0.2 Vee=MAX., V IN = 0.4V lOS lee V 0.8 2.4 Vee=MAX., V IN = 2.7V Vee = MAX. Unit 2.7 Vec=MAX., V IN = 5.5V 10 Max 2 0.25 10L -4.0mA 10L 8.0mA VIN=V IH or V IL SO,S1 All others Typ** 0.7 IOH--2.6mA VOL Min -1.5 0 0 ,07 Vee-MIN. TVp** mA Il A mA mA 57 Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type. 2. Typic": :iiiiits arc ai: V{;C; - 5.v V, 26°C tlmbien ana maximum ioaaing. T 3. Not more than one output should be shorted at a time. Duration of the short circuit !est should not exceed one second. 4. lee - measured with clock input HIGH and output controls HIGH. 3-84 ~YTHEO]] a-Bit Universal Shift/Storage Register 25LS299 Switching Characteristics , V·CC- 5V, TA = +25°C From (Input) Parameter Test Conditions: C L To (output) Clock °i Clock DY i tpHL Clear DYo-DY7 tpHL Clear 00 or 0 7 51,50 DYi <3 1 ,<3 2 DYi tpHL tpLH tpHL tZH tZL tZH +2SoC Min Typ Unit Max = 15pF, RL = 2kO (See Fig. A, page 2-174) tpLH tZL I 19 23 18 21 25 27 20 19 20 18 51, So Set-up Prior ts to Clock SR, SL Set-up Prior ts to Clock Pulse Width (Clock) tpw Hold Time tn ns ns ns ns ns ns 20 ns 20 ns 25 3 ns ns 50 f max Test Conditions: C L tLZ tHz tLZ tHz MHz = SpF, RL = 2kO (See Fig. C, page 2-174) 51,50 DYi <31.<3 2 DYi 22 20 20 16 ns ns TRUTH TABLE INPUTS OUTPUTS FUNCTION SR SL CLEAR CLOCK X X L X X X X X X X X X X X X X X X X H X M Load (Note 2) X X H t 0 Shift Right L X H H D Sh ift Right H X H E Shift Left X L H t t t Shift Left X 1'1 H t Clear Output Control Hold = LOW Z = High H = HIGH X = Don't Care L ~YTHE~ Impedence G2 Q7 OVo OV1 OV2 OV3 OV4 OV5 OVs OV7 L L L L L L L L L L L L X H L NC NC Z Z Z Z Z Z Z Z X X L H NC NC Z Z Z Z Z Z Z Z X X H H NC NC Z Z Z Z Z Z Z Z L L L L NC NC NC NC NC NC NC NC NC NC H H L L A A A B C 0 E F G H L L L L DYS L DVO DY1 DY2 DY3 DY4 DYS DYS DYS S1 G1 (Note 1) H L L L H DYS H DYO DY1 DY2 DY3 DY4 DYS L H L L DY1 L DY1 DY2 DY3 DY4 DYS DYS DY7 L L H L L DY1 H DY1 DY2 DY3 DY4 DYS DYS DY7 H t = Transition LOW-to-HIGH NC INPUTS/OUTPUTS Qo So = N a Change Notes: 1. Either LOW to observe outputs. 2. In this mode DYi are inputs. 3-85 4-8y-4 Register Files with 3-State Outputs 25LS670 FEATURES • Separate Read/Write Addressing Permits Simultaneous Reading and Writing • Fast Access Times ... Typically 20 ns • Organized as 4 Words of 4 Bits • Expandable to 512 Words of n-Bits .• For Use as: Scratch-Pad Memory Buffer Storage Between Processors Bit Storage in Fast Multiplication Designs • 3·State Outputs • The 25LS170 is Similar But Has Open-Collector Outputs VCC ~ WRITE SELECT ENABLE OATA 01 OUTPUTS Q2 15 02 02 -- -RA [!] GND DATA· READ SELECT OUTPUTS Positive Logic: See Description DESCRIPTION The 25LS670 MSI 16-bit TTL register file incorporates the equivalent of 98 gates. The register file is organized as 4 words of 4 bits each and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits simultaneous writing into one location and reading from another word location. Four data inputs are available which are used to supply the 4-bit word to be stored. Location of the word is determined by the write-address inputs A and B in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high·level signal is desired from the output, a high-level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both internal address gates inputs are high. When this condition exists, data at the 0 input is transferred to the latch output. When the writeFmab1r:' input, GV'J, ls h~gh, the d:::tu ;ilPUt3 aie inhibited and their levels can cause no change in the information stored in the internal latches. When the read-enable input, GR, is high, the data outputs are inhibited and go into the high-impedance state. The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs. This arrangement-data-entry addressing separate from dataread addressing and individual sense line-eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 nanoseconds typical) and the read time (24 nanoseconds typical). The register file has a nondestructive readout in that data is not lost when addressed. All inputs except read enable and write enable are buffered to lower the drive requirements to one Series 25LS standard load, and input-clamping diodes minimize switching transients to simplify system design. High-speed double-ended AND-OR-iNVERT yates are empioyed for tne read-address function and have high-sink-current three-state outputs. Up to 120 of these outputs may be wire-AND connected for increasing the capacity up to 512 words. Any number of these registers may be paralleled to provide n-bit word length. LOGIC READ FUNCTION TABLE (SEE NOTES A AND D) READ INPUTS RB RA WRITE FUNCTION TABLE (SEE NOTES A, B, AND C) OUTPUTS GR 01 02 03 WRITE INPUTS 04 WORD WB WA GW 0 1 2 3 L L L O=D 00 00 L L L WOBl WOB·2 WOB3 WOB4 L H L W1Bl W1B2 W1B3 W1B4 L H L 00 00 O=D H L L W2Bl W2B2 W2B3 W2B4 H L L 00 00 00 O=D 00 00 H H L W3Bl W3B2 W3B3 W3B4 H H O=D H Z Z Z X X 00 00 00 X L H 00 X 00 00 NOTES: A. B. C. D. Z 00 H = high level, L = low level, X = irrelevant, Z = high impedance (off) (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs. 00 = the level of a before the indicated input conditions were established. WOB 1 = The first bit of word 0, etc. 4-By-4 Register Files with 3-State Outputs 25LS670 FUNCTIONAL BLOCK DIAGRAM D1 ~----.---f-~_--+=:::;:==:r==~===Ii=:33""") OAT A INPUTS OUTPUTS 03 (2) 04 (3) -.-.GW WB WA WRITE INPUT r§YTHEO]J -.-.RB GR RA READ INPUT 3-87 4-By-4 Register Files witb a:State Outputs 2SLS670 Recommended Operating Conditions Military Min. Supply voltage, Vee 4.5 High-level output current, IOH Low-level output current, IOL 4 5.5 4.75 8 4 Nom. Max. 5 Unit 5.25 V -2.6 mA 8 mA 25 2ei ns 10 10 ns 15 15 ns 15 15 ns 5 5 ns Data input with respect to write enable, tsetup(D) (see Figure 2) 5 Min. -1 Width of write-enable or read-enable pulse, tw Setup times, high. or low·level data Com."ercial Nom. Max. Write select wi th respect to write enable, lsetup(W) Data input with respect to Hold times, high· or low-level data (see Note 2 and Figure 2) write enable, thold(D) . Write select with respect to write enable, thold(W) Latch time for new data, tlatch (see Note 3) Operating free-air temparature range, T A NOTES ns 25 25 -55 125 0 70 °e 1. Voltage values are with respect to network ground terminal. 2. Write-select setup tim" will protect the data written into the previous address. If protection of data in the previous address is not required, tsetup(W) can be ignored as any address selection sustained for the final 30 ns of the write·enable pulse and during thold(W) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses;may have been written into. 3. Latch time is the time allowed for the internal output of the latch to assume the state of new data. See Figure 2. This is important only when attempting to read from a location immediately after that location has received new data. 4-By-4 Register Files with 3-State Outputs 25LS670 Electrical Characteristics Over Recommended Free-Air Temperature Range (Unless otherwise Noted) Military Parameter Unit Min. V,H High·level input voltage V,L Low·level input voltage V, Input clamp voltage VOH High-level output voltage Low-level output voltage TVp' Max. 2 VCC=MIN, " =-18mA Vee = ~IN, V,H = 2V. V,L = V!LmaX VOL Commercial Test Conditions t Vee = ~IN, 10H = -1mA 2.4 V,H = 2V. TVp' Max. V 2 0.7 0.8 V -1.5 -1.5 V 3.4 10H =-2.SmA V,L = V,Lmax Min. 2.4 V 3.1 10L =4mA 0.25 0.4 0.25 0.4 10L =8mA 0.35 0.45 0.35 0.45 V Off'Olate ou.!put cllrrent. 10ZH high-level voltage applied Vee = MAX, V,H = 2V. Vo = 2.7V 20 20 IJ.A Vee = MAX, V,H = 2V. Vo = O.4V -20 -20 IJ.A Off-state output current, 10ZL low-level voltage applied Input current at " maximum input voltage "H High-level input current ',L V, = 7V 0.1 0.1 0.2 0.2 GR 0.3 0.3 Any D. R.orW 20 20 GW 40 40 GR SO 60 Vce =MAX. V, = 2.7V Low-level input current Any.D.R,orW GW Vee = MAX. Vee = MAX lOS Short-circuit output current ~ Vee = MAX lee Supply current Vee=MAX, tFor conditions shown as MIN or MAX, use the AnyD.R,orW -0.4 -0.4 GW -0.8 -0.8 GR -1.2 -1.2 -15 See Note 4 -85 30 -15 50 30 mA IJ.A mA -85 mA 50 mA appropri~te value specified under recommended operating conditions. *AII typical values are at Vee = 5V, TA = 250e. r !liNot more than one output should be shorted at a time. NOTE 4: ~YTHEO~ Maximum lee is guaranteed for the following worst-case conditions: 4.5V is applied to all data inputs and both enable inputs, all address inputs are grounded and all outputs ar~ open. 3-89 4-By-4 Register Files with 3-State Outputs 25LS670 Switching Characteristics, Vee = 5V, Over Recommended Free-Air Temperature Range. Parameter T88t CondlUona: CL = 1SpF, RL From To (Input) (Output) Read tpHL Select tpLH Write tpHL enable Any Q Any Q Any Q Data tpHL T88t Condltlona: CL = SpF, RL Typ. Max. Unit = 2.0kO (See Fig. 1 .2 on page 3-90'. 3-91 and Fig. A on page 2-174) tpLH tpLH +25°e Min. 23 40 25 45 26 45 28 50 25 45 23 40 ns ns ns = 2.0kO (See Fig. C,page 2-174) tZH tZL Read tHZ enable Any Q tLZ WRITE·SELECT INPUT WA or WB (See Note A) 35 40 30 50 16 35 1.3V ns 3V 1.3V _ _ _ _ _ _ _ _ _ _ _ __ ~ tsetup(W) ~ I DATA INPUT 01.02, 03, or 04 (See Note A) ns t -J - 15 22 1.3V trh_OI_d_(W~)_ _ _ _ _ _ _ __ I OV 3V 1,3V OV 3V WRITE·ENABLE INPUTGW OV I:, ~!'-~'p_3:-H-f-;-3V- - =, R EAD·SE L ECT INPUT RA or RB (See Note B) OUTPUT Q1, Q2, Q3, ofQ4 VOLTAGE WAVEFORMS (S1 AND S2 ARE CLOSED) , VOL FIGURE 1 NOTES: A. High-level input pulses at .the select and data inputs are illustrated; however, times associated with low-level pulses are measured from the same reference points. B. When measuring delay times from a read select input, the read-enable input is low. e, 3·90 Input waveforms are supplied by generators having the following characteristics: PRR .;;; 2 MHz, Zout " 50 50%, tr';;; 15 ns, tr';;; 6 ns. n, duty cycle .;;; 4-By-4 Register Files with 3-State Outputs i DATA INPUT 01,02,03, or 04 'II \ 25LS670 r-----------~-------------------------3V 1.3V '-----oV r----------.-------------------3V WRITE· ENABLE INPUT GW ___-;-____;--__ ....j OUTPUT 01,02,03, or Q4 tpLH ~. I- ~ 1~.3_V____________ tpHL _ }.3V OV --I \-;--1-.3-V----- VOH VOLTAGE WAVEFORM 1 (Sl AND S2 ARE CLOSEO'-)----- VOL 1r-----3V . OV 1,---~---3V ---;.------' ' - - - - - - - - - - - - OV r-----3V OUTPUT 01,02,03, or 04 FIGURE2 NOTES: A. Each select address is tested. Prior to the start of each of the above tests both write and read address inputs are stabilized with WA = RA and WB = RB. During the test GR is low. B. Input waveforms are supplied by generators having the following characteristics: PRR <; 1 MHz, Zout '" 50 n, dutY cycle <; 50%, tr <; 15 ns, Ir <; 6 ns. ~YTHE€3l 3-91 SECTION 4 Packaging Information CONTENTS PAGE Plastic Packages, DIP Metal Packages, DIP 4-2 Ceramic Packages, DIP 4-3 Ceramic Packages, Flat 4·4 Metal Packages, Flat 4-2 . Beam Lead Mechanical Drawings. ~YTHEO]J 4·5 4·6 4-' Packaging Information Plastic Packages 14-PIN PLASTIC DIP 16-LEAD PLASTIC DIP DB/BD BM/MB ~ .760 ----1 .031 OIA X .010 ~[ :~: :,~::~~r;~:~;J. ~--II- :0a5~ ~ I- NOM .025 --II- .025 NOM .045 '~~~ SeatingJM~ff~6~fE\ -. PI~ c.l. J~L II .100 ,020 11.016 ~ .375 ml ~.009 NOM TVP Metal Package 14-LEAD METAL DIP o .718 ~.688~ ~ \ '\\ /\1 Is .025R lV .. ~... 7 11 ,,,.nIUI JQvvvv .718 , . 1 i::: 157 ~ =.1. '688 45"TVP .1~X -r-I I .100 TYP--j 4-2 r [1fT -111~05OTYp -11- .017TYP ~YTHE~ Packaging Information Ceramic Packages l6-LEAD CERAMIC PACKAGE 14-LEAD CERAMIC DIP DC/J OM I .785 --:750~.098 J ~ r. __ .060 .150 ffi r- Il MIN .200 .125 I .098 MAX 1'- I·· - -.L Tr=- - JL .020 .016 .015 i ; ::::::: Oo~ .Q1L .009 MAX ./ I..065 15'-ffrat:~ j ll NOM .200 MAX ~J ~~~R iEl: , 1 T4 r- -I~ .005 MIN .045 ECU.'f(I·tffllt~JI-150 I- /-_ .200 .060 MAX .125 MIN .100 , TYP - 037 -ti'-MIN -'----11-.020 .027 .016 I .310 .290- ~ MAX - :~ri~ .100 TYP 24-LEAD CERAMIC PACKAGE R/J ~YTHE~ 4·3 Packaging Information Flat Packages ,J Ceramic 14-LEAD CERAMIC FLAT PACKAGE CJ/W 16-LEAD CERAMIC FLAT PACKAGE CL!W .050 TYP .004MIN .019 .015 ==~~~~~§~ ~ = -_- ------rr .260 .240 .-L '~t I .006 MIN -t .!l06. I. ..;I1L _,.;I7IL .004 1.250 .250 I +t-~~a::::::~~~ --~ 1- I .025 2611 .'-240 -I .08 __ .0_ .~p TYP 24-LEAD CERAMIC FLAT PACKAGE CN/W 14-LEAD CERAMIC FLAT PACKAGE CK --H-- ~ ~.004 MIN .Oi9C::~==:':il,4 ~:I_-+t.015 _.260 1 ..L.- .: ~.370_~ 71 r .025 TYP '.170 ~ T¥_ ~Il. -t ]~ 241 j .11!!!! .055 .L~'Uj 24-LEAD METAL FLAT PACKAGE PIN NO. I':: .370 ---lIT 14-LEAD METAL FLAT PACKAGE J(TO-86) ;: \: 1 .400 10t::=:::::l 8 -r 11 ,,= T.019 j TyP .014 c=:::::J7 .060J TYP ~YTHEO]J ~~ =4 .070 .OOS .040 J~~~~~!5E.:9~ L.039 01 1 1+1._ _ _ _.__ T ;- .004 ~=----1 4-5 Packaging Information Beam Lead Mechanical Outline Drawings I . r 1!,055 0.053 BEAM LEAD 0.0075 TYP ! ~.~5 ~ TYP '" :!! 1/ ~~~~I~~pLlP - 0.0075 TYP _ ,,-0.0025 TYP r ~g:g~ dTYP I 0.0075 -.L ,..,:;:0::tt;;;;;;~;t::;it=~~1---.-n-,1)•.005 -.L~ . Q.91Q TYP_'_ -L 0,004 i 05 0.063 tll 0,005 TYP.::L. QJ153 MECHANICAL OUTLINE 9 4-6 ::2------BEAM LEAD .. --NITRIDE LIP 0,001 TYP 0.0025 TYP , -10.0075 TYP . I ' ---'--~L~~~75 - 0.005 TYP l·· ':'c6 _U "irT 1 0.001 TYP hp1 - 0.0025 TYP ~:~:; .. -_.. --I ~SILlCON =4 20 BEAM CHIP EIA STANDARD NOTE: 20 PLACES ....J.. 'i.: _ TYP 0,0005 TYP 1. METALIZATION DOWN 2, COUNTER CLOCKWISE BEAM ORDER '....J:"" 0,003 L 10.01(~. ~SILICON T6 16 BEAM CHIP- 11--0.004 I 0.004 ' ~ ~~~5 16PLACES 0,001 TYP - 0,001 TYP L T : L.§0,0075ITYP ------I ~~~75 ! 0.065~ 16 PLACES I 0.0025 sse q, 0.0025 TYP 0.005 20 PLACES 1-....·.. ~1 1'1 NOTE: 0.055 0.0075 TYP T ~-'----, 0,0005 TYP 1. METALIZATION DOWN 2. COUNTER CLOCKWISE BEAM ORDER MECHANICAL OUTLINE 12 t[AYTHEO]J
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:16 09:23:54-08:00 Modify Date : 2017:07:16 09:57:31-07:00 Metadata Date : 2017:07:16 09:57:31-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:4a076a22-123f-554f-a8a6-b4e0ce529fb3 Instance ID : uuid:c08ab4b1-622f-1f4b-8671-28562e3d7640 Page Layout : SinglePage Page Mode : UseNone Page Count : 308EXIF Metadata provided by EXIF.tools